file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Algebra/BigOperators/Finprod.lean
finprod_mem_iUnion
[ { "state_after": "case intro\nα : Type u_2\nβ : Type ?u.365704\nι : Type u_1\nG : Type ?u.365710\nM : Type u_3\nN : Type ?u.365716\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\nf g : α → M\na b : α\ns t✝ : Set α\ninst✝ : Finite ι\nt : ι → Set α\nh : Pairwise (Disjoint on t)\nht : ∀ (i : ι), Set.Finite (t i)\nval✝ : Fintype ι\n⊢ (∏ᶠ (a : α) (_ : a ∈ ⋃ (i : ι), t i), f a) = ∏ᶠ (i : ι) (a : α) (_ : a ∈ t i), f a", "state_before": "α : Type u_2\nβ : Type ?u.365704\nι : Type u_1\nG : Type ?u.365710\nM : Type u_3\nN : Type ?u.365716\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\nf g : α → M\na b : α\ns t✝ : Set α\ninst✝ : Finite ι\nt : ι → Set α\nh : Pairwise (Disjoint on t)\nht : ∀ (i : ι), Set.Finite (t i)\n⊢ (∏ᶠ (a : α) (_ : a ∈ ⋃ (i : ι), t i), f a) = ∏ᶠ (i : ι) (a : α) (_ : a ∈ t i), f a", "tactic": "cases nonempty_fintype ι" }, { "state_after": "case intro.intro\nα : Type u_2\nβ : Type ?u.365704\nι : Type u_1\nG : Type ?u.365710\nM : Type u_3\nN : Type ?u.365716\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\nf g : α → M\na b : α\ns t✝ : Set α\ninst✝ : Finite ι\nval✝ : Fintype ι\nt : ι → Finset α\nh : Pairwise (Disjoint on fun i => ↑(t i))\n⊢ (∏ᶠ (a : α) (_ : a ∈ ⋃ (i : ι), (fun i => ↑(t i)) i), f a) = ∏ᶠ (i : ι) (a : α) (_ : a ∈ (fun i => ↑(t i)) i), f a", "state_before": "case intro\nα : Type u_2\nβ : Type ?u.365704\nι : Type u_1\nG : Type ?u.365710\nM : Type u_3\nN : Type ?u.365716\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\nf g : α → M\na b : α\ns t✝ : Set α\ninst✝ : Finite ι\nt : ι → Set α\nh : Pairwise (Disjoint on t)\nht : ∀ (i : ι), Set.Finite (t i)\nval✝ : Fintype ι\n⊢ (∏ᶠ (a : α) (_ : a ∈ ⋃ (i : ι), t i), f a) = ∏ᶠ (i : ι) (a : α) (_ : a ∈ t i), f a", "tactic": "lift t to ι → Finset α using ht" }, { "state_after": "case intro.intro\nα : Type u_2\nβ : Type ?u.365704\nι : Type u_1\nG : Type ?u.365710\nM : Type u_3\nN : Type ?u.365716\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\nf g : α → M\na b : α\ns t✝ : Set α\ninst✝ : Finite ι\nval✝ : Fintype ι\nt : ι → Finset α\nh : Pairwise (Disjoint on fun i => ↑(t i))\n⊢ ∏ x : ι, ∏ i in t x, f i = ∏ᶠ (i : ι) (a : α) (_ : a ∈ (fun i => ↑(t i)) i), f a\n\ncase intro.intro\nα : Type u_2\nβ : Type ?u.365704\nι : Type u_1\nG : Type ?u.365710\nM : Type u_3\nN : Type ?u.365716\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\nf g : α → M\na b : α\ns t✝ : Set α\ninst✝ : Finite ι\nval✝ : Fintype ι\nt : ι → Finset α\nh : Pairwise (Disjoint on fun i => ↑(t i))\n⊢ PairwiseDisjoint ↑Finset.univ fun x => t x", "state_before": "case intro.intro\nα : Type u_2\nβ : Type ?u.365704\nι : Type u_1\nG : Type ?u.365710\nM : Type u_3\nN : Type ?u.365716\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\nf g : α → M\na b : α\ns t✝ : Set α\ninst✝ : Finite ι\nval✝ : Fintype ι\nt : ι → Finset α\nh : Pairwise (Disjoint on fun i => ↑(t i))\n⊢ (∏ᶠ (a : α) (_ : a ∈ ⋃ (i : ι), (fun i => ↑(t i)) i), f a) = ∏ᶠ (i : ι) (a : α) (_ : a ∈ (fun i => ↑(t i)) i), f a", "tactic": "rw [← biUnion_univ, ← Finset.coe_univ, ← Finset.coe_biUnion, finprod_mem_coe_finset,\n Finset.prod_biUnion]" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u_2\nβ : Type ?u.365704\nι : Type u_1\nG : Type ?u.365710\nM : Type u_3\nN : Type ?u.365716\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\nf g : α → M\na b : α\ns t✝ : Set α\ninst✝ : Finite ι\nval✝ : Fintype ι\nt : ι → Finset α\nh : Pairwise (Disjoint on fun i => ↑(t i))\n⊢ ∏ x : ι, ∏ i in t x, f i = ∏ᶠ (i : ι) (a : α) (_ : a ∈ (fun i => ↑(t i)) i), f a", "tactic": "simp only [finprod_mem_coe_finset, finprod_eq_prod_of_fintype]" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u_2\nβ : Type ?u.365704\nι : Type u_1\nG : Type ?u.365710\nM : Type u_3\nN : Type ?u.365716\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\nf g : α → M\na b : α\ns t✝ : Set α\ninst✝ : Finite ι\nval✝ : Fintype ι\nt : ι → Finset α\nh : Pairwise (Disjoint on fun i => ↑(t i))\n⊢ PairwiseDisjoint ↑Finset.univ fun x => t x", "tactic": "exact fun x _ y _ hxy => Finset.disjoint_coe.1 (h hxy)" } ]
[ 1065, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1057, 1 ]
Mathlib/Data/Finset/Lattice.lean
Finset.inf_insert
[]
[ 339, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 338, 1 ]
Mathlib/RingTheory/TensorProduct.lean
TensorProduct.Algebra.smul_def
[]
[ 1208, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1207, 1 ]
Mathlib/MeasureTheory/Constructions/BorelSpace/Basic.lean
borel_eq_top_of_countable
[ { "state_after": "α : Type u_1\nβ : Type ?u.26837\nγ : Type ?u.26840\nγ₂ : Type ?u.26843\nδ : Type ?u.26846\nι : Sort y\ns✝ t u : Set α\ninst✝² : TopologicalSpace α\ninst✝¹ : T1Space α\ninst✝ : Countable α\ns : Set α\nx✝ : MeasurableSet s\n⊢ MeasurableSet (⋃ (x : α) (_ : x ∈ s), {x})", "state_before": "α : Type u_1\nβ : Type ?u.26837\nγ : Type ?u.26840\nγ₂ : Type ?u.26843\nδ : Type ?u.26846\nι : Sort y\ns t u : Set α\ninst✝² : TopologicalSpace α\ninst✝¹ : T1Space α\ninst✝ : Countable α\n⊢ borel α = ⊤", "tactic": "refine' top_le_iff.1 fun s _ => biUnion_of_singleton s ▸ _" }, { "state_after": "α : Type u_1\nβ : Type ?u.26837\nγ : Type ?u.26840\nγ₂ : Type ?u.26843\nδ : Type ?u.26846\nι : Sort y\ns✝ t u : Set α\ninst✝² : TopologicalSpace α\ninst✝¹ : T1Space α\ninst✝ : Countable α\ns : Set α\nx✝ : MeasurableSet s\n⊢ ∀ (b : α), b ∈ s → MeasurableSet {b}", "state_before": "α : Type u_1\nβ : Type ?u.26837\nγ : Type ?u.26840\nγ₂ : Type ?u.26843\nδ : Type ?u.26846\nι : Sort y\ns✝ t u : Set α\ninst✝² : TopologicalSpace α\ninst✝¹ : T1Space α\ninst✝ : Countable α\ns : Set α\nx✝ : MeasurableSet s\n⊢ MeasurableSet (⋃ (x : α) (_ : x ∈ s), {x})", "tactic": "apply MeasurableSet.biUnion s.to_countable" }, { "state_after": "α : Type u_1\nβ : Type ?u.26837\nγ : Type ?u.26840\nγ₂ : Type ?u.26843\nδ : Type ?u.26846\nι : Sort y\ns✝ t u : Set α\ninst✝² : TopologicalSpace α\ninst✝¹ : T1Space α\ninst✝ : Countable α\ns : Set α\nx✝ : MeasurableSet s\nx : α\na✝ : x ∈ s\n⊢ MeasurableSet {x}", "state_before": "α : Type u_1\nβ : Type ?u.26837\nγ : Type ?u.26840\nγ₂ : Type ?u.26843\nδ : Type ?u.26846\nι : Sort y\ns✝ t u : Set α\ninst✝² : TopologicalSpace α\ninst✝¹ : T1Space α\ninst✝ : Countable α\ns : Set α\nx✝ : MeasurableSet s\n⊢ ∀ (b : α), b ∈ s → MeasurableSet {b}", "tactic": "intro x _" }, { "state_after": "case h\nα : Type u_1\nβ : Type ?u.26837\nγ : Type ?u.26840\nγ₂ : Type ?u.26843\nδ : Type ?u.26846\nι : Sort y\ns✝ t u : Set α\ninst✝² : TopologicalSpace α\ninst✝¹ : T1Space α\ninst✝ : Countable α\ns : Set α\nx✝ : MeasurableSet s\nx : α\na✝ : x ∈ s\n⊢ MeasurableSet ({x}ᶜ)", "state_before": "α : Type u_1\nβ : Type ?u.26837\nγ : Type ?u.26840\nγ₂ : Type ?u.26843\nδ : Type ?u.26846\nι : Sort y\ns✝ t u : Set α\ninst✝² : TopologicalSpace α\ninst✝¹ : T1Space α\ninst✝ : Countable α\ns : Set α\nx✝ : MeasurableSet s\nx : α\na✝ : x ∈ s\n⊢ MeasurableSet {x}", "tactic": "apply MeasurableSet.of_compl" }, { "state_after": "case h.a\nα : Type u_1\nβ : Type ?u.26837\nγ : Type ?u.26840\nγ₂ : Type ?u.26843\nδ : Type ?u.26846\nι : Sort y\ns✝ t u : Set α\ninst✝² : TopologicalSpace α\ninst✝¹ : T1Space α\ninst✝ : Countable α\ns : Set α\nx✝ : MeasurableSet s\nx : α\na✝ : x ∈ s\n⊢ {x}ᶜ ∈ {s | IsOpen s}", "state_before": "case h\nα : Type u_1\nβ : Type ?u.26837\nγ : Type ?u.26840\nγ₂ : Type ?u.26843\nδ : Type ?u.26846\nι : Sort y\ns✝ t u : Set α\ninst✝² : TopologicalSpace α\ninst✝¹ : T1Space α\ninst✝ : Countable α\ns : Set α\nx✝ : MeasurableSet s\nx : α\na✝ : x ∈ s\n⊢ MeasurableSet ({x}ᶜ)", "tactic": "apply GenerateMeasurable.basic" }, { "state_after": "no goals", "state_before": "case h.a\nα : Type u_1\nβ : Type ?u.26837\nγ : Type ?u.26840\nγ₂ : Type ?u.26843\nδ : Type ?u.26846\nι : Sort y\ns✝ t u : Set α\ninst✝² : TopologicalSpace α\ninst✝¹ : T1Space α\ninst✝ : Countable α\ns : Set α\nx✝ : MeasurableSet s\nx : α\na✝ : x ∈ s\n⊢ {x}ᶜ ∈ {s | IsOpen s}", "tactic": "exact isClosed_singleton.isOpen_compl" } ]
[ 77, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 71, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Deriv.lean
HasDerivAt.csin
[]
[ 214, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 212, 1 ]
Mathlib/Order/Filter/Prod.lean
Filter.coprod_neBot_left
[]
[ 509, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 508, 1 ]
Mathlib/NumberTheory/LucasLehmer.lean
LucasLehmer.X.nat_coe_snd
[]
[ 280, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 280, 9 ]
Mathlib/Data/Set/Pointwise/BigOperators.lean
Set.list_prod_singleton
[]
[ 124, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 122, 1 ]
Mathlib/Topology/MetricSpace/EMetricSpace.lean
uniformity_basis_edist_inv_two_pow
[]
[ 263, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 258, 1 ]
Mathlib/Analysis/SpecialFunctions/Exponential.lean
hasStrictDerivAt_exp_smul_const'
[]
[ 419, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 416, 1 ]
Mathlib/CategoryTheory/Subobject/Limits.lean
CategoryTheory.Limits.kernelSubobject_zero
[ { "state_after": "no goals", "state_before": "C : Type u\ninst✝² : Category C\nX Y Z : C\ninst✝¹ : HasZeroMorphisms C\nf : X ⟶ Y\ninst✝ : HasKernel f\nA B : C\n⊢ IsIso (kernel.ι 0)", "tactic": "infer_instance" } ]
[ 194, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 193, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.sub_eq_of_eq_add
[]
[ 1124, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1123, 11 ]
Mathlib/CategoryTheory/Sites/Sheaf.lean
CategoryTheory.Presheaf.isSheaf_iff_isLimit
[]
[ 177, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 173, 1 ]
Mathlib/Algebra/Homology/Additive.lean
ChainComplex.single₀MapHomologicalComplex_inv_app_succ
[]
[ 392, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 390, 1 ]
Mathlib/Data/Polynomial/Eval.lean
Polynomial.eval_add
[]
[ 377, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 376, 1 ]
Mathlib/Data/List/Rotate.lean
List.isRotated_nil_iff'
[ { "state_after": "no goals", "state_before": "α : Type u\nl l' : List α\n⊢ [] ~r l ↔ [] = l", "tactic": "rw [isRotated_comm, isRotated_nil_iff, eq_comm]" } ]
[ 497, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 496, 1 ]
Mathlib/Computability/TuringMachine.lean
Turing.BlankExtends.trans
[ { "state_after": "case intro.intro\nΓ : Type u_1\ninst✝ : Inhabited Γ\nl₁ : List Γ\ni j : ℕ\n⊢ BlankExtends l₁ (l₁ ++ List.replicate i default ++ List.replicate j default)", "state_before": "Γ : Type u_1\ninst✝ : Inhabited Γ\nl₁ l₂ l₃ : List Γ\n⊢ BlankExtends l₁ l₂ → BlankExtends l₂ l₃ → BlankExtends l₁ l₃", "tactic": "rintro ⟨i, rfl⟩ ⟨j, rfl⟩" }, { "state_after": "no goals", "state_before": "case intro.intro\nΓ : Type u_1\ninst✝ : Inhabited Γ\nl₁ : List Γ\ni j : ℕ\n⊢ BlankExtends l₁ (l₁ ++ List.replicate i default ++ List.replicate j default)", "tactic": "exact ⟨i + j, by simp [List.replicate_add]⟩" }, { "state_after": "no goals", "state_before": "Γ : Type u_1\ninst✝ : Inhabited Γ\nl₁ : List Γ\ni j : ℕ\n⊢ l₁ ++ List.replicate i default ++ List.replicate j default = l₁ ++ List.replicate (i + j) default", "tactic": "simp [List.replicate_add]" } ]
[ 90, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 87, 1 ]
Mathlib/Analysis/Convex/Between.lean
Wbtw.swap_right_iff
[ { "state_after": "no goals", "state_before": "R : Type u_1\nV : Type u_2\nV' : Type ?u.218711\nP : Type u_3\nP' : Type ?u.218717\ninst✝⁷ : OrderedRing R\ninst✝⁶ : AddCommGroup V\ninst✝⁵ : Module R V\ninst✝⁴ : AddTorsor V P\ninst✝³ : AddCommGroup V'\ninst✝² : Module R V'\ninst✝¹ : AddTorsor V' P'\ninst✝ : NoZeroSMulDivisors R V\nx y z : P\nh : Wbtw R x y z\n⊢ Wbtw R x z y ↔ y = z", "tactic": "rw [← wbtw_swap_right_iff R x, and_iff_right h]" } ]
[ 396, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 395, 1 ]
Std/Data/Int/DivMod.lean
Int.ediv_mul_cancel
[]
[ 704, 58 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 703, 11 ]
Mathlib/Topology/Sheaves/Stalks.lean
TopCat.Presheaf.stalk_mono_of_mono
[]
[ 510, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 508, 1 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.IsBigOWith.congr'
[]
[ 304, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 302, 1 ]
Mathlib/Data/Int/Bitwise.lean
Int.testBit_lnot
[ { "state_after": "no goals", "state_before": "n k : ℕ\n⊢ testBit (lnot ↑n) k = !testBit (↑n) k", "tactic": "simp [lnot, testBit]" }, { "state_after": "no goals", "state_before": "n k : ℕ\n⊢ testBit (lnot -[n+1]) k = !testBit -[n+1] k", "tactic": "simp [lnot, testBit]" } ]
[ 367, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 365, 1 ]
Mathlib/Data/Finset/Lattice.lean
Finset.inf_product_right
[]
[ 437, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 435, 1 ]
Mathlib/Algebra/Lie/Basic.lean
LieModuleHom.map_sub
[]
[ 741, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 740, 1 ]
Mathlib/Data/Set/Pointwise/Interval.lean
Set.preimage_mul_const_Ioi
[]
[ 519, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 517, 1 ]
Mathlib/SetTheory/ZFC/Basic.lean
ZFSet.sUnion_empty
[ { "state_after": "case a\nz✝ : ZFSet\n⊢ z✝ ∈ ⋃₀ ∅ ↔ z✝ ∈ ∅", "state_before": "⊢ ⋃₀ ∅ = ∅", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case a\nz✝ : ZFSet\n⊢ z✝ ∈ ⋃₀ ∅ ↔ z✝ ∈ ∅", "tactic": "simp" } ]
[ 1070, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1068, 1 ]
Mathlib/Data/List/Perm.lean
List.Perm.sizeOf_eq_sizeOf
[ { "state_after": "no goals", "state_before": "α : Type uu\nβ : Type vv\nl₁✝ l₂✝ : List α\ninst✝ : SizeOf α\nl₁ l₂ : List α\nh : l₁ ~ l₂\n⊢ sizeOf l₁ = sizeOf l₂", "tactic": "induction h with | nil => rfl\n| cons _ _ h_sz₁₂ => simp [h_sz₁₂]\n| swap => simp [add_left_comm]\n| trans _ _ h_sz₁₂ h_sz₂₃ => simp [h_sz₁₂, h_sz₂₃]" }, { "state_after": "no goals", "state_before": "case nil\nα : Type uu\nβ : Type vv\nl₁✝ l₂✝ : List α\ninst✝ : SizeOf α\nl₁ l₂ : List α\n⊢ sizeOf [] = sizeOf []", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "case cons\nα : Type uu\nβ : Type vv\nl₁✝¹ l₂✝¹ : List α\ninst✝ : SizeOf α\nl₁ l₂ : List α\nx✝ : α\nl₁✝ l₂✝ : List α\na✝ : l₁✝ ~ l₂✝\nh_sz₁₂ : sizeOf l₁✝ = sizeOf l₂✝\n⊢ sizeOf (x✝ :: l₁✝) = sizeOf (x✝ :: l₂✝)", "tactic": "simp [h_sz₁₂]" }, { "state_after": "no goals", "state_before": "case swap\nα : Type uu\nβ : Type vv\nl₁✝ l₂✝ : List α\ninst✝ : SizeOf α\nl₁ l₂ : List α\nx✝ y✝ : α\nl✝ : List α\n⊢ sizeOf (y✝ :: x✝ :: l✝) = sizeOf (x✝ :: y✝ :: l✝)", "tactic": "simp [add_left_comm]" }, { "state_after": "no goals", "state_before": "case trans\nα : Type uu\nβ : Type vv\nl₁✝¹ l₂✝¹ : List α\ninst✝ : SizeOf α\nl₁ l₂ l₁✝ l₂✝ l₃✝ : List α\na✝¹ : l₁✝ ~ l₂✝\na✝ : l₂✝ ~ l₃✝\nh_sz₁₂ : sizeOf l₁✝ = sizeOf l₂✝\nh_sz₂₃ : sizeOf l₂✝ = sizeOf l₃✝\n⊢ sizeOf l₁✝ = sizeOf l₃✝", "tactic": "simp [h_sz₁₂, h_sz₂₃]" } ]
[ 322, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 316, 1 ]
Mathlib/MeasureTheory/Constructions/Pi.lean
MeasureTheory.Measure.pi_caratheodory
[ { "state_after": "ι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\n⊢ ∀ (i : ι),\n MeasurableSpace.comap (fun b => b i) ((fun a => inst✝ a) i) ≤\n OuterMeasure.caratheodory (OuterMeasure.pi fun i => ↑(μ i))", "state_before": "ι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\n⊢ MeasurableSpace.pi ≤ OuterMeasure.caratheodory (OuterMeasure.pi fun i => ↑(μ i))", "tactic": "refine' iSup_le _" }, { "state_after": "ι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((a : ι) → α a)\nhs : MeasurableSet s\n⊢ MeasurableSet s", "state_before": "ι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\n⊢ ∀ (i : ι),\n MeasurableSpace.comap (fun b => b i) ((fun a => inst✝ a) i) ≤\n OuterMeasure.caratheodory (OuterMeasure.pi fun i => ↑(μ i))", "tactic": "intro i s hs" }, { "state_after": "ι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((a : ι) → α a)\nhs : MeasurableSet s\n⊢ MeasurableSet s", "state_before": "ι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((a : ι) → α a)\nhs : MeasurableSet s\n⊢ MeasurableSet s", "tactic": "rw [MeasurableSpace.comap] at hs" }, { "state_after": "case intro.intro\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\n⊢ MeasurableSet ((fun b => b i) ⁻¹' s)", "state_before": "ι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((a : ι) → α a)\nhs : MeasurableSet s\n⊢ MeasurableSet s", "tactic": "rcases hs with ⟨s, hs, rfl⟩" }, { "state_after": "case intro.intro.hs\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\n⊢ ∀ (t : Set ((a : ι) → α a)),\n piPremeasure (fun i => ↑(μ i)) (t ∩ (fun b => b i) ⁻¹' s) +\n piPremeasure (fun i => ↑(μ i)) (t \\ (fun b => b i) ⁻¹' s) ≤\n piPremeasure (fun i => ↑(μ i)) t", "state_before": "case intro.intro\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\n⊢ MeasurableSet ((fun b => b i) ⁻¹' s)", "tactic": "apply boundedBy_caratheodory" }, { "state_after": "case intro.intro.hs\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\nt : Set ((a : ι) → α a)\n⊢ piPremeasure (fun i => ↑(μ i)) (t ∩ (fun b => b i) ⁻¹' s) +\n piPremeasure (fun i => ↑(μ i)) (t \\ (fun b => b i) ⁻¹' s) ≤\n piPremeasure (fun i => ↑(μ i)) t", "state_before": "case intro.intro.hs\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\n⊢ ∀ (t : Set ((a : ι) → α a)),\n piPremeasure (fun i => ↑(μ i)) (t ∩ (fun b => b i) ⁻¹' s) +\n piPremeasure (fun i => ↑(μ i)) (t \\ (fun b => b i) ⁻¹' s) ≤\n piPremeasure (fun i => ↑(μ i)) t", "tactic": "intro t" }, { "state_after": "case intro.intro.hs\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\nt : Set ((a : ι) → α a)\n⊢ ∏ x : ι, ↑↑(μ x) (eval x '' (t ∩ (fun b => b i) ⁻¹' s)) + ∏ x : ι, ↑↑(μ x) (eval x '' (t \\ (fun b => b i) ⁻¹' s)) ≤\n ∏ x : ι, ↑↑(μ x) (eval x '' t)", "state_before": "case intro.intro.hs\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\nt : Set ((a : ι) → α a)\n⊢ piPremeasure (fun i => ↑(μ i)) (t ∩ (fun b => b i) ⁻¹' s) +\n piPremeasure (fun i => ↑(μ i)) (t \\ (fun b => b i) ⁻¹' s) ≤\n piPremeasure (fun i => ↑(μ i)) t", "tactic": "simp_rw [piPremeasure]" }, { "state_after": "case intro.intro.hs.refine'_1\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\nt : Set ((a : ι) → α a)\n⊢ ↑↑(μ i) (eval i '' (t ∩ (fun b => b i) ⁻¹' s)) + ↑↑(μ i) (eval i '' (t \\ (fun b => b i) ⁻¹' s)) ≤\n ↑↑(μ i) (eval i '' t)\n\ncase intro.intro.hs.refine'_2\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\nt : Set ((a : ι) → α a)\n⊢ ∀ (j : ι), j ∈ Finset.univ → j ≠ i → ↑↑(μ j) (eval j '' (t ∩ (fun b => b i) ⁻¹' s)) ≤ ↑↑(μ j) (eval j '' t)\n\ncase intro.intro.hs.refine'_3\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\nt : Set ((a : ι) → α a)\n⊢ ∀ (j : ι), j ∈ Finset.univ → j ≠ i → ↑↑(μ j) (eval j '' (t \\ (fun b => b i) ⁻¹' s)) ≤ ↑↑(μ j) (eval j '' t)", "state_before": "case intro.intro.hs\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\nt : Set ((a : ι) → α a)\n⊢ ∏ x : ι, ↑↑(μ x) (eval x '' (t ∩ (fun b => b i) ⁻¹' s)) + ∏ x : ι, ↑↑(μ x) (eval x '' (t \\ (fun b => b i) ⁻¹' s)) ≤\n ∏ x : ι, ↑↑(μ x) (eval x '' t)", "tactic": "refine' Finset.prod_add_prod_le' (Finset.mem_univ i) _ _ _" }, { "state_after": "no goals", "state_before": "case intro.intro.hs.refine'_1\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\nt : Set ((a : ι) → α a)\n⊢ ↑↑(μ i) (eval i '' (t ∩ (fun b => b i) ⁻¹' s)) + ↑↑(μ i) (eval i '' (t \\ (fun b => b i) ⁻¹' s)) ≤\n ↑↑(μ i) (eval i '' t)", "tactic": "simp [image_inter_preimage, image_diff_preimage, measure_inter_add_diff _ hs, le_refl]" }, { "state_after": "case intro.intro.hs.refine'_2\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\nt : Set ((a : ι) → α a)\nj : ι\na✝ : j ≠ i\n⊢ ↑↑(μ j) (eval j '' (t ∩ (fun b => b i) ⁻¹' s)) ≤ ↑↑(μ j) (eval j '' t)", "state_before": "case intro.intro.hs.refine'_2\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\nt : Set ((a : ι) → α a)\n⊢ ∀ (j : ι), j ∈ Finset.univ → j ≠ i → ↑↑(μ j) (eval j '' (t ∩ (fun b => b i) ⁻¹' s)) ≤ ↑↑(μ j) (eval j '' t)", "tactic": "rintro j - _" }, { "state_after": "case intro.intro.hs.refine'_2.h\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\nt : Set ((a : ι) → α a)\nj : ι\na✝ : j ≠ i\n⊢ eval j '' (t ∩ (fun b => b i) ⁻¹' s) ⊆ eval j '' t", "state_before": "case intro.intro.hs.refine'_2\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\nt : Set ((a : ι) → α a)\nj : ι\na✝ : j ≠ i\n⊢ ↑↑(μ j) (eval j '' (t ∩ (fun b => b i) ⁻¹' s)) ≤ ↑↑(μ j) (eval j '' t)", "tactic": "apply mono'" }, { "state_after": "case intro.intro.hs.refine'_2.h.h\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\nt : Set ((a : ι) → α a)\nj : ι\na✝ : j ≠ i\n⊢ t ∩ (fun b => b i) ⁻¹' s ⊆ t", "state_before": "case intro.intro.hs.refine'_2.h\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\nt : Set ((a : ι) → α a)\nj : ι\na✝ : j ≠ i\n⊢ eval j '' (t ∩ (fun b => b i) ⁻¹' s) ⊆ eval j '' t", "tactic": "apply image_subset" }, { "state_after": "no goals", "state_before": "case intro.intro.hs.refine'_2.h.h\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\nt : Set ((a : ι) → α a)\nj : ι\na✝ : j ≠ i\n⊢ t ∩ (fun b => b i) ⁻¹' s ⊆ t", "tactic": "apply inter_subset_left" }, { "state_after": "case intro.intro.hs.refine'_3\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\nt : Set ((a : ι) → α a)\nj : ι\na✝ : j ≠ i\n⊢ ↑↑(μ j) (eval j '' (t \\ (fun b => b i) ⁻¹' s)) ≤ ↑↑(μ j) (eval j '' t)", "state_before": "case intro.intro.hs.refine'_3\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\nt : Set ((a : ι) → α a)\n⊢ ∀ (j : ι), j ∈ Finset.univ → j ≠ i → ↑↑(μ j) (eval j '' (t \\ (fun b => b i) ⁻¹' s)) ≤ ↑↑(μ j) (eval j '' t)", "tactic": "rintro j - _" }, { "state_after": "case intro.intro.hs.refine'_3.h\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\nt : Set ((a : ι) → α a)\nj : ι\na✝ : j ≠ i\n⊢ eval j '' (t \\ (fun b => b i) ⁻¹' s) ⊆ eval j '' t", "state_before": "case intro.intro.hs.refine'_3\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\nt : Set ((a : ι) → α a)\nj : ι\na✝ : j ≠ i\n⊢ ↑↑(μ j) (eval j '' (t \\ (fun b => b i) ⁻¹' s)) ≤ ↑↑(μ j) (eval j '' t)", "tactic": "apply mono'" }, { "state_after": "case intro.intro.hs.refine'_3.h.h\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\nt : Set ((a : ι) → α a)\nj : ι\na✝ : j ≠ i\n⊢ t \\ (fun b => b i) ⁻¹' s ⊆ t", "state_before": "case intro.intro.hs.refine'_3.h\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\nt : Set ((a : ι) → α a)\nj : ι\na✝ : j ≠ i\n⊢ eval j '' (t \\ (fun b => b i) ⁻¹' s) ⊆ eval j '' t", "tactic": "apply image_subset" }, { "state_after": "no goals", "state_before": "case intro.intro.hs.refine'_3.h.h\nι : Type u_1\nι' : Type ?u.2502507\nα : ι → Type u_2\ninst✝¹ : Fintype ι\nm : (i : ι) → OuterMeasure (α i)\ninst✝ : (i : ι) → MeasurableSpace (α i)\nμ : (i : ι) → Measure (α i)\ni : ι\ns : Set ((fun i => α i) i)\nhs : MeasurableSet s\nt : Set ((a : ι) → α a)\nj : ι\na✝ : j ≠ i\n⊢ t \\ (fun b => b i) ⁻¹' s ⊆ t", "tactic": "apply diff_subset" } ]
[ 301, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 289, 1 ]
Mathlib/Analysis/VonNeumannAlgebra/Basic.lean
VonNeumannAlgebra.mem_commutant_iff
[]
[ 141, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 139, 1 ]
Std/Data/List/Lemmas.lean
List.diff_nil
[]
[ 1492, 61 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1492, 9 ]
Mathlib/Data/Complex/Exponential.lean
Real.sin_sub_sin
[ { "state_after": "no goals", "state_before": "x y : ℝ\n⊢ ↑(sin x - sin y) = ↑(2 * sin ((x - y) / 2) * cos ((x + y) / 2))", "tactic": "simp [sin_sub_sin]" } ]
[ 1214, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1213, 8 ]
Mathlib/RingTheory/NonUnitalSubsemiring/Basic.lean
NonUnitalSubsemiring.mem_comap
[]
[ 283, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 282, 1 ]
Mathlib/Data/List/Perm.lean
List.Perm.diff
[]
[ 806, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 805, 1 ]
Mathlib/Probability/Independence/Basic.lean
ProbabilityTheory.indep_of_indep_of_le_right
[]
[ 199, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 197, 1 ]
Mathlib/Analysis/Normed/Group/Seminorm.lean
GroupNorm.apply_one
[]
[ 887, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 886, 1 ]
Mathlib/Algebra/Algebra/Equiv.lean
AlgEquiv.refl_symm
[]
[ 374, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 373, 1 ]
Mathlib/AlgebraicGeometry/PresheafedSpace.lean
AlgebraicGeometry.PresheafedSpace.mk_coe
[]
[ 83, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 80, 1 ]
Mathlib/Order/UpperLower/Basic.lean
LowerSet.inf_prod
[]
[ 1688, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1687, 1 ]
Mathlib/Data/Set/Intervals/Instances.lean
Set.Icc.coe_eq_one
[ { "state_after": "α : Type u_1\ninst✝ : OrderedSemiring α\nx : ↑(Icc 0 1)\n⊢ x = 1 ↔ ↑x = 1", "state_before": "α : Type u_1\ninst✝ : OrderedSemiring α\nx : ↑(Icc 0 1)\n⊢ ↑x = 1 ↔ x = 1", "tactic": "symm" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : OrderedSemiring α\nx : ↑(Icc 0 1)\n⊢ x = 1 ↔ ↑x = 1", "tactic": "exact Subtype.ext_iff" } ]
[ 92, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 90, 1 ]
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.set_lintegral_max
[ { "state_after": "α : Type u_1\nβ : Type ?u.1032041\nγ : Type ?u.1032044\nδ : Type ?u.1032047\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhf : Measurable f\nhg : Measurable g\ns : Set α\n⊢ MeasurableSet {x | g x < f x}\n\nα : Type u_1\nβ : Type ?u.1032041\nγ : Type ?u.1032044\nδ : Type ?u.1032047\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhf : Measurable f\nhg : Measurable g\ns : Set α\n⊢ MeasurableSet {x | f x ≤ g x}", "state_before": "α : Type u_1\nβ : Type ?u.1032041\nγ : Type ?u.1032044\nδ : Type ?u.1032047\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhf : Measurable f\nhg : Measurable g\ns : Set α\n⊢ (∫⁻ (x : α) in s, max (f x) (g x) ∂μ) =\n (∫⁻ (x : α) in s ∩ {x | f x ≤ g x}, g x ∂μ) + ∫⁻ (x : α) in s ∩ {x | g x < f x}, f x ∂μ", "tactic": "rw [lintegral_max hf hg, restrict_restrict, restrict_restrict, inter_comm s, inter_comm s]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.1032041\nγ : Type ?u.1032044\nδ : Type ?u.1032047\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhf : Measurable f\nhg : Measurable g\ns : Set α\n⊢ MeasurableSet {x | g x < f x}\n\nα : Type u_1\nβ : Type ?u.1032041\nγ : Type ?u.1032044\nδ : Type ?u.1032047\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhf : Measurable f\nhg : Measurable g\ns : Set α\n⊢ MeasurableSet {x | f x ≤ g x}", "tactic": "exacts [measurableSet_lt hg hf, measurableSet_le hf hg]" } ]
[ 1257, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1253, 1 ]
Mathlib/LinearAlgebra/SymplecticGroup.lean
SymplecticGroup.coe_J
[]
[ 132, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 132, 1 ]
Mathlib/CategoryTheory/EqToHom.lean
CategoryTheory.congrArg_mpr_hom_left
[ { "state_after": "case refl\nC : Type u₁\ninst✝ : Category C\nX Z : C\nq : X ⟶ Z\n⊢ Eq.mpr (_ : (X ⟶ Z) = (X ⟶ Z)) q = eqToHom (_ : X = X) ≫ q", "state_before": "C : Type u₁\ninst✝ : Category C\nX Y Z : C\np : X = Y\nq : Y ⟶ Z\n⊢ Eq.mpr (_ : (X ⟶ Z) = (Y ⟶ Z)) q = eqToHom p ≫ q", "tactic": "cases p" }, { "state_after": "no goals", "state_before": "case refl\nC : Type u₁\ninst✝ : Category C\nX Z : C\nq : X ⟶ Z\n⊢ Eq.mpr (_ : (X ⟶ Z) = (X ⟶ Z)) q = eqToHom (_ : X = X) ≫ q", "tactic": "simp" } ]
[ 94, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 91, 1 ]
Mathlib/Topology/Homeomorph.lean
Homeomorph.inducing
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.57703\nδ : Type ?u.57706\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\nh : α ≃ₜ β\n⊢ Inducing (↑(Homeomorph.symm h) ∘ ↑h)", "tactic": "simp only [symm_comp_self, inducing_id]" } ]
[ 229, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 227, 11 ]
Mathlib/Data/Polynomial/FieldDivision.lean
Polynomial.eval_gcd_eq_zero
[]
[ 334, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 332, 1 ]
Mathlib/Order/Filter/Lift.lean
Filter.lift_mono
[]
[ 101, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 100, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Equalizers.lean
CategoryTheory.Limits.Cofork.IsColimit.homIso_natural
[]
[ 588, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 584, 1 ]
Mathlib/Data/Nat/Parity.lean
Odd.of_dvd_nat
[]
[ 367, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 366, 1 ]
Mathlib/Analysis/Calculus/ParametricIntervalIntegral.lean
intervalIntegral.hasDerivAt_integral_of_dominated_loc_of_deriv_le
[ { "state_after": "𝕜 : Type u_1\ninst✝⁶ : IsROrC 𝕜\nμ : MeasureTheory.Measure ℝ\nE : Type u_2\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : CompleteSpace E\nH : Type ?u.684895\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\na b ε : ℝ\nbound : ℝ → ℝ\nF F' : 𝕜 → ℝ → E\nx₀ : 𝕜\nε_pos : 0 < ε\nhF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))\nhF_int : IntervalIntegrable (F x₀) μ a b\nhF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b))\nh_bound : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x\nbound_integrable : IntervalIntegrable bound μ a b\nh_diff :\n ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → HasDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1\n⊢ IntervalIntegrable (F' x₀) μ a b ∧\n HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' x₀ t ∂μ) x₀", "state_before": "𝕜 : Type u_1\ninst✝⁶ : IsROrC 𝕜\nμ : MeasureTheory.Measure ℝ\nE : Type u_2\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : CompleteSpace E\nH : Type ?u.684895\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\na b ε : ℝ\nbound : ℝ → ℝ\nF F' : 𝕜 → ℝ → E\nx₀ : 𝕜\nε_pos : 0 < ε\nhF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))\nhF_int : IntervalIntegrable (F x₀) μ a b\nhF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b))\nh_bound : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → ∀ (x : 𝕜), x ∈ ball x₀ ε → ‖F' x t‖ ≤ bound t\nbound_integrable : IntervalIntegrable bound μ a b\nh_diff : ∀ᵐ (t : ℝ) ∂μ, t ∈ Ι a b → ∀ (x : 𝕜), x ∈ ball x₀ ε → HasDerivAt (fun x => F x t) (F' x t) x\n⊢ IntervalIntegrable (F' x₀) μ a b ∧\n HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' x₀ t ∂μ) x₀", "tactic": "rw [← ae_restrict_iff' measurableSet_uIoc] at h_bound h_diff" }, { "state_after": "𝕜 : Type u_1\ninst✝⁶ : IsROrC 𝕜\nμ : MeasureTheory.Measure ℝ\nE : Type u_2\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : CompleteSpace E\nH : Type ?u.684895\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\na b ε : ℝ\nbound : ℝ → ℝ\nF F' : 𝕜 → ℝ → E\nx₀ : 𝕜\nε_pos : 0 < ε\nhF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))\nhF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b))\nh_bound : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x\nh_diff :\n ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → HasDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1\nhF_int : IntegrableOn (F x₀) (Ι a b)\nbound_integrable : IntegrableOn bound (Ι a b)\n⊢ IntegrableOn (F' x₀) (Ι a b) ∧ HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' x₀ t ∂μ) x₀", "state_before": "𝕜 : Type u_1\ninst✝⁶ : IsROrC 𝕜\nμ : MeasureTheory.Measure ℝ\nE : Type u_2\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : CompleteSpace E\nH : Type ?u.684895\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\na b ε : ℝ\nbound : ℝ → ℝ\nF F' : 𝕜 → ℝ → E\nx₀ : 𝕜\nε_pos : 0 < ε\nhF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))\nhF_int : IntervalIntegrable (F x₀) μ a b\nhF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b))\nh_bound : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x\nbound_integrable : IntervalIntegrable bound μ a b\nh_diff :\n ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → HasDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1\n⊢ IntervalIntegrable (F' x₀) μ a b ∧\n HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' x₀ t ∂μ) x₀", "tactic": "simp only [intervalIntegrable_iff] at hF_int bound_integrable ⊢" }, { "state_after": "𝕜 : Type u_1\ninst✝⁶ : IsROrC 𝕜\nμ : MeasureTheory.Measure ℝ\nE : Type u_2\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : CompleteSpace E\nH : Type ?u.684895\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\na b ε : ℝ\nbound : ℝ → ℝ\nF F' : 𝕜 → ℝ → E\nx₀ : 𝕜\nε_pos : 0 < ε\nhF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))\nhF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b))\nh_bound : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x\nh_diff :\n ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → HasDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1\nhF_int : IntegrableOn (F x₀) (Ι a b)\nbound_integrable : IntegrableOn bound (Ι a b)\n⊢ IntegrableOn (F' x₀) (Ι a b) ∧\n HasDerivAt (fun x => (if a ≤ b then 1 else -1) • ∫ (x_1 : ℝ) in Ι a b, F x x_1 ∂μ)\n ((if a ≤ b then 1 else -1) • ∫ (x : ℝ) in Ι a b, F' x₀ x ∂μ) x₀", "state_before": "𝕜 : Type u_1\ninst✝⁶ : IsROrC 𝕜\nμ : MeasureTheory.Measure ℝ\nE : Type u_2\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : CompleteSpace E\nH : Type ?u.684895\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\na b ε : ℝ\nbound : ℝ → ℝ\nF F' : 𝕜 → ℝ → E\nx₀ : 𝕜\nε_pos : 0 < ε\nhF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))\nhF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b))\nh_bound : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x\nh_diff :\n ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → HasDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1\nhF_int : IntegrableOn (F x₀) (Ι a b)\nbound_integrable : IntegrableOn bound (Ι a b)\n⊢ IntegrableOn (F' x₀) (Ι a b) ∧ HasDerivAt (fun x => ∫ (t : ℝ) in a..b, F x t ∂μ) (∫ (t : ℝ) in a..b, F' x₀ t ∂μ) x₀", "tactic": "simp only [intervalIntegral_eq_integral_uIoc]" }, { "state_after": "𝕜 : Type u_1\ninst✝⁶ : IsROrC 𝕜\nμ : MeasureTheory.Measure ℝ\nE : Type u_2\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : CompleteSpace E\nH : Type ?u.684895\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\na b ε : ℝ\nbound : ℝ → ℝ\nF F' : 𝕜 → ℝ → E\nx₀ : 𝕜\nε_pos : 0 < ε\nhF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))\nhF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b))\nh_bound : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x\nh_diff :\n ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → HasDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1\nhF_int : IntegrableOn (F x₀) (Ι a b)\nbound_integrable : IntegrableOn bound (Ι a b)\nthis : Integrable (F' x₀) ∧ HasDerivAt (fun n => ∫ (a : ℝ) in Ι a b, F n a ∂μ) (∫ (a : ℝ) in Ι a b, F' x₀ a ∂μ) x₀\n⊢ IntegrableOn (F' x₀) (Ι a b) ∧\n HasDerivAt (fun x => (if a ≤ b then 1 else -1) • ∫ (x_1 : ℝ) in Ι a b, F x x_1 ∂μ)\n ((if a ≤ b then 1 else -1) • ∫ (x : ℝ) in Ι a b, F' x₀ x ∂μ) x₀", "state_before": "𝕜 : Type u_1\ninst✝⁶ : IsROrC 𝕜\nμ : MeasureTheory.Measure ℝ\nE : Type u_2\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : CompleteSpace E\nH : Type ?u.684895\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\na b ε : ℝ\nbound : ℝ → ℝ\nF F' : 𝕜 → ℝ → E\nx₀ : 𝕜\nε_pos : 0 < ε\nhF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))\nhF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b))\nh_bound : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x\nh_diff :\n ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → HasDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1\nhF_int : IntegrableOn (F x₀) (Ι a b)\nbound_integrable : IntegrableOn bound (Ι a b)\n⊢ IntegrableOn (F' x₀) (Ι a b) ∧\n HasDerivAt (fun x => (if a ≤ b then 1 else -1) • ∫ (x_1 : ℝ) in Ι a b, F x x_1 ∂μ)\n ((if a ≤ b then 1 else -1) • ∫ (x : ℝ) in Ι a b, F' x₀ x ∂μ) x₀", "tactic": "have := hasDerivAt_integral_of_dominated_loc_of_deriv_le ε_pos hF_meas hF_int hF'_meas h_bound\n bound_integrable h_diff" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\ninst✝⁶ : IsROrC 𝕜\nμ : MeasureTheory.Measure ℝ\nE : Type u_2\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : CompleteSpace E\nH : Type ?u.684895\ninst✝¹ : NormedAddCommGroup H\ninst✝ : NormedSpace 𝕜 H\na b ε : ℝ\nbound : ℝ → ℝ\nF F' : 𝕜 → ℝ → E\nx₀ : 𝕜\nε_pos : 0 < ε\nhF_meas : ∀ᶠ (x : 𝕜) in 𝓝 x₀, AEStronglyMeasurable (F x) (Measure.restrict μ (Ι a b))\nhF'_meas : AEStronglyMeasurable (F' x₀) (Measure.restrict μ (Ι a b))\nh_bound : ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → ‖F' x_1 x‖ ≤ bound x\nh_diff :\n ∀ᵐ (x : ℝ) ∂Measure.restrict μ (Ι a b), ∀ (x_1 : 𝕜), x_1 ∈ ball x₀ ε → HasDerivAt (fun x_2 => F x_2 x) (F' x_1 x) x_1\nhF_int : IntegrableOn (F x₀) (Ι a b)\nbound_integrable : IntegrableOn bound (Ι a b)\nthis : Integrable (F' x₀) ∧ HasDerivAt (fun n => ∫ (a : ℝ) in Ι a b, F n a ∂μ) (∫ (a : ℝ) in Ι a b, F' x₀ a ∂μ) x₀\n⊢ IntegrableOn (F' x₀) (Ι a b) ∧\n HasDerivAt (fun x => (if a ≤ b then 1 else -1) • ∫ (x_1 : ℝ) in Ι a b, F x x_1 ∂μ)\n ((if a ≤ b then 1 else -1) • ∫ (x : ℝ) in Ι a b, F' x₀ x ∂μ) x₀", "tactic": "exact ⟨this.1, this.2.const_smul _⟩" } ]
[ 115, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 100, 8 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.isLittleO_const_id_atTop
[]
[ 1885, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1884, 1 ]
Mathlib/Topology/ContinuousOn.lean
Continuous.piecewise
[]
[ 1211, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1208, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Pullbacks.lean
CategoryTheory.Limits.pullback.condition
[]
[ 1214, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1212, 1 ]
Mathlib/Combinatorics/Additive/SalemSpencer.lean
mulSalemSpencer_mul_left_iff₀
[ { "state_after": "no goals", "state_before": "F : Type ?u.103189\nα : Type u_1\nβ : Type ?u.103195\n𝕜 : Type ?u.103198\nE : Type ?u.103201\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : NoZeroDivisors α\ns : Set α\na : α\nha : a ≠ 0\nhs : MulSalemSpencer ((fun x x_1 => x * x_1) a '' s)\nb c d : α\nhb : b ∈ s\nhc : c ∈ s\nhd : d ∈ s\nh : b * c = d * d\n⊢ a * b * (a * c) = (fun x x_1 => x * x_1) a d * (fun x x_1 => x * x_1) a d", "tactic": "rw [mul_mul_mul_comm, h, mul_mul_mul_comm]" } ]
[ 257, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 251, 1 ]
Mathlib/Order/Hom/Bounded.lean
TopHom.cancel_right
[]
[ 288, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 286, 1 ]
Mathlib/Combinatorics/SetFamily/Compression/Down.lean
Down.mem_compression
[ { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 ℬ : Finset (Finset α)\ns : Finset α\na : α\n⊢ s ∈ 𝒜 ∧ erase s a ∈ 𝒜 ∨ (∃ a_1, a_1 ∈ 𝒜 ∧ erase a_1 a = s) ∧ ¬s ∈ 𝒜 ↔ s ∈ 𝒜 ∧ erase s a ∈ 𝒜 ∨ insert a s ∈ 𝒜 ∧ ¬s ∈ 𝒜", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 ℬ : Finset (Finset α)\ns : Finset α\na : α\n⊢ s ∈ 𝓓 a 𝒜 ↔ s ∈ 𝒜 ∧ erase s a ∈ 𝒜 ∨ ¬s ∈ 𝒜 ∧ insert a s ∈ 𝒜", "tactic": "simp_rw [compression, mem_disjUnion, mem_filter, mem_image, and_comm (a := (¬ s ∈ 𝒜))]" }, { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 ℬ : Finset (Finset α)\ns : Finset α\na : α\nhs : ¬s ∈ 𝒜\n⊢ (∃ a_1, a_1 ∈ 𝒜 ∧ erase a_1 a = s) → insert a s ∈ 𝒜", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 ℬ : Finset (Finset α)\ns : Finset α\na : α\n⊢ s ∈ 𝒜 ∧ erase s a ∈ 𝒜 ∨ (∃ a_1, a_1 ∈ 𝒜 ∧ erase a_1 a = s) ∧ ¬s ∈ 𝒜 ↔ s ∈ 𝒜 ∧ erase s a ∈ 𝒜 ∨ insert a s ∈ 𝒜 ∧ ¬s ∈ 𝒜", "tactic": "refine'\n or_congr_right\n (and_congr_left fun hs =>\n ⟨_, fun h => ⟨_, h, erase_insert <| insert_ne_self.1 <| ne_of_mem_of_not_mem h hs⟩⟩)" }, { "state_after": "case intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 ℬ : Finset (Finset α)\na : α\nt : Finset α\nht : t ∈ 𝒜\nhs : ¬erase t a ∈ 𝒜\n⊢ insert a (erase t a) ∈ 𝒜", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\n𝒜 ℬ : Finset (Finset α)\ns : Finset α\na : α\nhs : ¬s ∈ 𝒜\n⊢ (∃ a_1, a_1 ∈ 𝒜 ∧ erase a_1 a = s) → insert a s ∈ 𝒜", "tactic": "rintro ⟨t, ht, rfl⟩" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u_1\ninst✝ : DecidableEq α\n𝒜 ℬ : Finset (Finset α)\na : α\nt : Finset α\nht : t ∈ 𝒜\nhs : ¬erase t a ∈ 𝒜\n⊢ insert a (erase t a) ∈ 𝒜", "tactic": "rwa [insert_erase (erase_ne_self.1 (ne_of_mem_of_not_mem ht hs).symm)]" } ]
[ 174, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 167, 1 ]
Mathlib/Analysis/Normed/Ring/Seminorm.lean
RingNorm.apply_one
[]
[ 221, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 220, 1 ]
Mathlib/CategoryTheory/Limits/Opposites.lean
CategoryTheory.Limits.pushoutIsoUnopPullback_inv_fst
[ { "state_after": "case a\nC : Type u₁\ninst✝³ : Category C\nJ : Type u₂\ninst✝² : Category J\nX✝ : Type v₂\nX Y Z : C\nf : X ⟶ Z\ng : X ⟶ Y\ninst✝¹ : HasPushout f g\ninst✝ : HasPullback f.op g.op\n⊢ ((pushoutIsoUnopPullback f g).inv.op ≫ pullback.fst).unop = pushout.inl.op.unop", "state_before": "C : Type u₁\ninst✝³ : Category C\nJ : Type u₂\ninst✝² : Category J\nX✝ : Type v₂\nX Y Z : C\nf : X ⟶ Z\ng : X ⟶ Y\ninst✝¹ : HasPushout f g\ninst✝ : HasPullback f.op g.op\n⊢ (pushoutIsoUnopPullback f g).inv.op ≫ pullback.fst = pushout.inl.op", "tactic": "apply Quiver.Hom.unop_inj" }, { "state_after": "case a\nC : Type u₁\ninst✝³ : Category C\nJ : Type u₂\ninst✝² : Category J\nX✝ : Type v₂\nX Y Z : C\nf : X ⟶ Z\ng : X ⟶ Y\ninst✝¹ : HasPushout f g\ninst✝ : HasPullback f.op g.op\n⊢ pullback.fst.unop ≫ (pushoutIsoUnopPullback f g).inv = pushout.inl", "state_before": "case a\nC : Type u₁\ninst✝³ : Category C\nJ : Type u₂\ninst✝² : Category J\nX✝ : Type v₂\nX Y Z : C\nf : X ⟶ Z\ng : X ⟶ Y\ninst✝¹ : HasPushout f g\ninst✝ : HasPullback f.op g.op\n⊢ ((pushoutIsoUnopPullback f g).inv.op ≫ pullback.fst).unop = pushout.inl.op.unop", "tactic": "dsimp" }, { "state_after": "no goals", "state_before": "case a\nC : Type u₁\ninst✝³ : Category C\nJ : Type u₂\ninst✝² : Category J\nX✝ : Type v₂\nX Y Z : C\nf : X ⟶ Z\ng : X ⟶ Y\ninst✝¹ : HasPushout f g\ninst✝ : HasPullback f.op g.op\n⊢ pullback.fst.unop ≫ (pushoutIsoUnopPullback f g).inv = pushout.inl", "tactic": "rw [← pushoutIsoUnopPullback_inl_hom, Category.assoc, Iso.hom_inv_id, Category.comp_id]" } ]
[ 699, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 694, 1 ]
Mathlib/GroupTheory/Nilpotent.lean
lowerCentralSeries_pi_of_finite
[ { "state_after": "G : Type ?u.343966\ninst✝³ : Group G\nH : Subgroup G\ninst✝² : Normal H\nη : Type u_1\nGs : η → Type u_2\ninst✝¹ : (i : η) → Group (Gs i)\ninst✝ : Finite η\nn : ℕ\npi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f\n⊢ lowerCentralSeries ((i : η) → Gs i) n = Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) n", "state_before": "G : Type ?u.343966\ninst✝³ : Group G\nH : Subgroup G\ninst✝² : Normal H\nη : Type u_1\nGs : η → Type u_2\ninst✝¹ : (i : η) → Group (Gs i)\ninst✝ : Finite η\nn : ℕ\n⊢ lowerCentralSeries ((i : η) → Gs i) n = pi Set.univ fun i => lowerCentralSeries (Gs i) n", "tactic": "let pi := fun f : ∀ i, Subgroup (Gs i) => Subgroup.pi Set.univ f" }, { "state_after": "case zero\nG : Type ?u.343966\ninst✝³ : Group G\nH : Subgroup G\ninst✝² : Normal H\nη : Type u_1\nGs : η → Type u_2\ninst✝¹ : (i : η) → Group (Gs i)\ninst✝ : Finite η\npi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f\n⊢ lowerCentralSeries ((i : η) → Gs i) Nat.zero = Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) Nat.zero\n\ncase succ\nG : Type ?u.343966\ninst✝³ : Group G\nH : Subgroup G\ninst✝² : Normal H\nη : Type u_1\nGs : η → Type u_2\ninst✝¹ : (i : η) → Group (Gs i)\ninst✝ : Finite η\npi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f\nn : ℕ\nih : lowerCentralSeries ((i : η) → Gs i) n = Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) n\n⊢ lowerCentralSeries ((i : η) → Gs i) (Nat.succ n) =\n Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) (Nat.succ n)", "state_before": "G : Type ?u.343966\ninst✝³ : Group G\nH : Subgroup G\ninst✝² : Normal H\nη : Type u_1\nGs : η → Type u_2\ninst✝¹ : (i : η) → Group (Gs i)\ninst✝ : Finite η\nn : ℕ\npi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f\n⊢ lowerCentralSeries ((i : η) → Gs i) n = Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) n", "tactic": "induction' n with n ih" }, { "state_after": "no goals", "state_before": "case zero\nG : Type ?u.343966\ninst✝³ : Group G\nH : Subgroup G\ninst✝² : Normal H\nη : Type u_1\nGs : η → Type u_2\ninst✝¹ : (i : η) → Group (Gs i)\ninst✝ : Finite η\npi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f\n⊢ lowerCentralSeries ((i : η) → Gs i) Nat.zero = Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) Nat.zero", "tactic": "simp [pi_top]" }, { "state_after": "no goals", "state_before": "case succ\nG : Type ?u.343966\ninst✝³ : Group G\nH : Subgroup G\ninst✝² : Normal H\nη : Type u_1\nGs : η → Type u_2\ninst✝¹ : (i : η) → Group (Gs i)\ninst✝ : Finite η\npi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f\nn : ℕ\nih : lowerCentralSeries ((i : η) → Gs i) n = Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) n\n⊢ lowerCentralSeries ((i : η) → Gs i) (Nat.succ n) =\n Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) (Nat.succ n)", "tactic": "calc\n lowerCentralSeries (∀ i, Gs i) n.succ = ⁅lowerCentralSeries (∀ i, Gs i) n, ⊤⁆ := rfl\n _ = ⁅pi fun i => lowerCentralSeries (Gs i) n, ⊤⁆ := by rw [ih]\n _ = ⁅pi fun i => lowerCentralSeries (Gs i) n, pi fun i => ⊤⁆ := by simp [pi_top]\n _ = pi fun i => ⁅lowerCentralSeries (Gs i) n, ⊤⁆ := (commutator_pi_pi_of_finite _ _)\n _ = pi fun i => lowerCentralSeries (Gs i) n.succ := rfl" }, { "state_after": "no goals", "state_before": "G : Type ?u.343966\ninst✝³ : Group G\nH : Subgroup G\ninst✝² : Normal H\nη : Type u_1\nGs : η → Type u_2\ninst✝¹ : (i : η) → Group (Gs i)\ninst✝ : Finite η\npi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f\nn : ℕ\nih : lowerCentralSeries ((i : η) → Gs i) n = Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) n\n⊢ ⁅lowerCentralSeries ((i : η) → Gs i) n, ⊤⁆ = ⁅pi fun i => lowerCentralSeries (Gs i) n, ⊤⁆", "tactic": "rw [ih]" }, { "state_after": "no goals", "state_before": "G : Type ?u.343966\ninst✝³ : Group G\nH : Subgroup G\ninst✝² : Normal H\nη : Type u_1\nGs : η → Type u_2\ninst✝¹ : (i : η) → Group (Gs i)\ninst✝ : Finite η\npi : ((i : η) → Subgroup (Gs i)) → Subgroup ((i : η) → Gs i) := fun f => Subgroup.pi Set.univ f\nn : ℕ\nih : lowerCentralSeries ((i : η) → Gs i) n = Subgroup.pi Set.univ fun i => lowerCentralSeries (Gs i) n\n⊢ ⁅pi fun i => lowerCentralSeries (Gs i) n, ⊤⁆ = ⁅pi fun i => lowerCentralSeries (Gs i) n, pi fun i => ⊤⁆", "tactic": "simp [pi_top]" } ]
[ 799, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 787, 1 ]
Mathlib/GroupTheory/Coset.lean
leftCoset_mem_leftCoset
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : Group α\ns : Subgroup α\na : α\nha : a ∈ s\n⊢ ∀ (x : α), x ∈ a *l ↑s ↔ x ∈ ↑s", "tactic": "simp [mem_leftCoset_iff, mul_mem_cancel_left (s.inv_mem ha)]" } ]
[ 224, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 223, 1 ]
Mathlib/Order/CompleteLattice.lean
Monotone.iInf_comp_eq
[]
[ 1001, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 999, 1 ]
Mathlib/Logic/Equiv/LocalEquiv.lean
LocalEquiv.bijOn
[]
[ 256, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 255, 11 ]
Mathlib/Data/Multiset/Lattice.lean
Multiset.inf_dedup
[]
[ 162, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 161, 1 ]
Mathlib/GroupTheory/Subsemigroup/Center.lean
Set.subset_center_units
[]
[ 89, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 88, 1 ]
Mathlib/Order/Filter/Extr.lean
isMinOn_dual_iff
[]
[ 234, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 233, 1 ]
Mathlib/Order/BoundedOrder.lean
min_bot_left
[]
[ 835, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 834, 1 ]
Mathlib/Topology/ContinuousOn.lean
continuousWithinAt_update_same
[]
[ 798, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 791, 1 ]
Mathlib/Tactic/CategoryTheory/Elementwise.lean
Tactic.Elementwise.forall_congr_forget_Type
[]
[ 46, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 45, 1 ]
Mathlib/Topology/LocallyConstant/Algebra.lean
LocallyConstant.charFn_eq_one
[]
[ 115, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 114, 1 ]
Mathlib/Analysis/SpecialFunctions/ExpDeriv.lean
HasFDerivWithinAt.cexp
[]
[ 130, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 128, 1 ]
Mathlib/Data/Sum/Order.lean
Sum.Lex.lt_def
[]
[ 344, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 343, 1 ]
Mathlib/GroupTheory/Subgroup/Basic.lean
Subgroup.map_symm_eq_iff_map_eq
[ { "state_after": "case mp\nG : Type u_2\nG' : Type ?u.263490\ninst✝⁴ : Group G\ninst✝³ : Group G'\nA : Type ?u.263499\ninst✝² : AddGroup A\nH✝ : Subgroup G\nk : Set G\nN : Type u_1\ninst✝¹ : Group N\nP : Type ?u.263526\ninst✝ : Group P\nH : Subgroup N\ne : G ≃* N\n⊢ map (↑e) (map (↑(MulEquiv.symm e)) H) = H\n\ncase mpr\nG : Type u_2\nG' : Type ?u.263490\ninst✝⁴ : Group G\ninst✝³ : Group G'\nA : Type ?u.263499\ninst✝² : AddGroup A\nH K : Subgroup G\nk : Set G\nN : Type u_1\ninst✝¹ : Group N\nP : Type ?u.263526\ninst✝ : Group P\ne : G ≃* N\n⊢ map (↑(MulEquiv.symm e)) (map (↑e) K) = K", "state_before": "G : Type u_2\nG' : Type ?u.263490\ninst✝⁴ : Group G\ninst✝³ : Group G'\nA : Type ?u.263499\ninst✝² : AddGroup A\nH✝ K : Subgroup G\nk : Set G\nN : Type u_1\ninst✝¹ : Group N\nP : Type ?u.263526\ninst✝ : Group P\nH : Subgroup N\ne : G ≃* N\n⊢ map (↑(MulEquiv.symm e)) H = K ↔ map (↑e) K = H", "tactic": "constructor <;> rintro rfl" }, { "state_after": "no goals", "state_before": "case mp\nG : Type u_2\nG' : Type ?u.263490\ninst✝⁴ : Group G\ninst✝³ : Group G'\nA : Type ?u.263499\ninst✝² : AddGroup A\nH✝ : Subgroup G\nk : Set G\nN : Type u_1\ninst✝¹ : Group N\nP : Type ?u.263526\ninst✝ : Group P\nH : Subgroup N\ne : G ≃* N\n⊢ map (↑e) (map (↑(MulEquiv.symm e)) H) = H", "tactic": "rw [map_map, ← MulEquiv.coe_monoidHom_trans, MulEquiv.symm_trans_self,\n MulEquiv.coe_monoidHom_refl, map_id]" }, { "state_after": "no goals", "state_before": "case mpr\nG : Type u_2\nG' : Type ?u.263490\ninst✝⁴ : Group G\ninst✝³ : Group G'\nA : Type ?u.263499\ninst✝² : AddGroup A\nH K : Subgroup G\nk : Set G\nN : Type u_1\ninst✝¹ : Group N\nP : Type ?u.263526\ninst✝ : Group P\ne : G ≃* N\n⊢ map (↑(MulEquiv.symm e)) (map (↑e) K) = K", "tactic": "rw [map_map, ← MulEquiv.coe_monoidHom_trans, MulEquiv.self_trans_symm,\n MulEquiv.coe_monoidHom_refl, map_id]" } ]
[ 1491, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1485, 1 ]
Mathlib/Analysis/SpecialFunctions/ExpDeriv.lean
deriv_cexp
[]
[ 113, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 111, 1 ]
Std/Data/List/Lemmas.lean
List.suffix_of_suffix_length_le
[ { "state_after": "no goals", "state_before": "α✝ : Type u_1\nl₁ l₃ l₂ : List α✝\nh₁ : l₁ <:+ l₃\nh₂ : l₂ <:+ l₃\nll : length l₁ ≤ length l₂\n⊢ length (reverse l₁) ≤ length (reverse l₂)", "tactic": "simp [ll]" } ]
[ 1674, 90 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1671, 1 ]
Mathlib/Data/Matrix/Rank.lean
Matrix.rank_le_height
[]
[ 159, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 157, 1 ]
Mathlib/Data/Rat/NNRat.lean
NNRat.coe_list_sum
[]
[ 256, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 255, 1 ]
Mathlib/AlgebraicGeometry/PrimeSpectrum/Basic.lean
PrimeSpectrum.subset_zeroLocus_vanishingIdeal
[]
[ 236, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 234, 1 ]
Mathlib/Algebra/Order/Ring/Defs.lean
Decidable.mul_lt_mul''
[ { "state_after": "α : Type u\nβ : Type ?u.59742\ninst✝¹ : StrictOrderedSemiring α\na b c d : α\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\nh1 : a < c\nh2 : b < d\nh3 : 0 ≤ a\nh4 : 0 ≤ b\nb0 : 0 = b\n⊢ 0 < c * d", "state_before": "α : Type u\nβ : Type ?u.59742\ninst✝¹ : StrictOrderedSemiring α\na b c d : α\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\nh1 : a < c\nh2 : b < d\nh3 : 0 ≤ a\nh4 : 0 ≤ b\nb0 : 0 = b\n⊢ a * b < c * d", "tactic": "rw [← b0, mul_zero]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type ?u.59742\ninst✝¹ : StrictOrderedSemiring α\na b c d : α\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\nh1 : a < c\nh2 : b < d\nh3 : 0 ≤ a\nh4 : 0 ≤ b\nb0 : 0 = b\n⊢ 0 < c * d", "tactic": "exact mul_pos (h3.trans_lt h1) (h4.trans_lt h2)" } ]
[ 556, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 553, 11 ]
Mathlib/ModelTheory/Semantics.lean
FirstOrder.Language.BoundedFormula.realize_mapTermRel_id
[ { "state_after": "case falsum\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.71406\nP : Type ?u.71409\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝¹ l : ℕ\nφ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝¹ : Fin l → M\ninst✝ : Structure L' M\nft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)\nfr : (n : ℕ) → Relations L n → Relations L' n\nn : ℕ\nv : α → M\nv' : β → M\nxs✝ : Fin n → M\nh1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t\nh2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x\nn✝ : ℕ\nxs : Fin n✝ → M\n⊢ Realize (mapTermRel ft fr (fun x => id) falsum) v' xs ↔ Realize falsum v xs\n\ncase equal\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.71406\nP : Type ?u.71409\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝¹ l : ℕ\nφ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝¹ : Fin l → M\ninst✝ : Structure L' M\nft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)\nfr : (n : ℕ) → Relations L n → Relations L' n\nn : ℕ\nv : α → M\nv' : β → M\nxs✝ : Fin n → M\nh1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t\nh2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x\nn✝ : ℕ\nt₁✝ t₂✝ : Term L (α ⊕ Fin n✝)\nxs : Fin n✝ → M\n⊢ Realize (mapTermRel ft fr (fun x => id) (equal t₁✝ t₂✝)) v' xs ↔ Realize (equal t₁✝ t₂✝) v xs\n\ncase rel\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.71406\nP : Type ?u.71409\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝¹ l : ℕ\nφ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝¹ : Fin l → M\ninst✝ : Structure L' M\nft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)\nfr : (n : ℕ) → Relations L n → Relations L' n\nn : ℕ\nv : α → M\nv' : β → M\nxs✝ : Fin n → M\nh1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t\nh2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x\nn✝ l✝ : ℕ\nR✝ : Relations L l✝\nts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)\nxs : Fin n✝ → M\n⊢ Realize (mapTermRel ft fr (fun x => id) (rel R✝ ts✝)) v' xs ↔ Realize (rel R✝ ts✝) v xs\n\ncase imp\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.71406\nP : Type ?u.71409\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝¹ l : ℕ\nφ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝¹ : Fin l → M\ninst✝ : Structure L' M\nft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)\nfr : (n : ℕ) → Relations L n → Relations L' n\nn : ℕ\nv : α → M\nv' : β → M\nxs✝ : Fin n → M\nh1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t\nh2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x\nn✝ : ℕ\nf₁✝ f₂✝ : BoundedFormula L α n✝\nih1 : ∀ {xs : Fin n✝ → M}, Realize (mapTermRel ft fr (fun x => id) f₁✝) v' xs ↔ Realize f₁✝ v xs\nih2 : ∀ {xs : Fin n✝ → M}, Realize (mapTermRel ft fr (fun x => id) f₂✝) v' xs ↔ Realize f₂✝ v xs\nxs : Fin n✝ → M\n⊢ Realize (mapTermRel ft fr (fun x => id) (f₁✝ ⟹ f₂✝)) v' xs ↔ Realize (f₁✝ ⟹ f₂✝) v xs\n\ncase all\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.71406\nP : Type ?u.71409\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝¹ l : ℕ\nφ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝¹ : Fin l → M\ninst✝ : Structure L' M\nft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)\nfr : (n : ℕ) → Relations L n → Relations L' n\nn : ℕ\nv : α → M\nv' : β → M\nxs✝ : Fin n → M\nh1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t\nh2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih : ∀ {xs : Fin (n✝ + 1) → M}, Realize (mapTermRel ft fr (fun x => id) f✝) v' xs ↔ Realize f✝ v xs\nxs : Fin n✝ → M\n⊢ Realize (mapTermRel ft fr (fun x => id) (∀'f✝)) v' xs ↔ Realize (∀'f✝) v xs", "state_before": "L : Language\nL' : Language\nM : Type w\nN : Type ?u.71406\nP : Type ?u.71409\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝ l : ℕ\nφ✝ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝ : Fin l → M\ninst✝ : Structure L' M\nft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)\nfr : (n : ℕ) → Relations L n → Relations L' n\nn : ℕ\nφ : BoundedFormula L α n\nv : α → M\nv' : β → M\nxs : Fin n → M\nh1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t\nh2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x\n⊢ Realize (mapTermRel ft fr (fun x => id) φ) v' xs ↔ Realize φ v xs", "tactic": "induction' φ with _ _ _ _ _ _ _ _ _ _ _ ih1 ih2 _ _ ih" }, { "state_after": "no goals", "state_before": "case falsum\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.71406\nP : Type ?u.71409\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝¹ l : ℕ\nφ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝¹ : Fin l → M\ninst✝ : Structure L' M\nft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)\nfr : (n : ℕ) → Relations L n → Relations L' n\nn : ℕ\nv : α → M\nv' : β → M\nxs✝ : Fin n → M\nh1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t\nh2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x\nn✝ : ℕ\nxs : Fin n✝ → M\n⊢ Realize (mapTermRel ft fr (fun x => id) falsum) v' xs ↔ Realize falsum v xs", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "case equal\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.71406\nP : Type ?u.71409\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝¹ l : ℕ\nφ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝¹ : Fin l → M\ninst✝ : Structure L' M\nft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)\nfr : (n : ℕ) → Relations L n → Relations L' n\nn : ℕ\nv : α → M\nv' : β → M\nxs✝ : Fin n → M\nh1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t\nh2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x\nn✝ : ℕ\nt₁✝ t₂✝ : Term L (α ⊕ Fin n✝)\nxs : Fin n✝ → M\n⊢ Realize (mapTermRel ft fr (fun x => id) (equal t₁✝ t₂✝)) v' xs ↔ Realize (equal t₁✝ t₂✝) v xs", "tactic": "simp [mapTermRel, Realize, h1]" }, { "state_after": "no goals", "state_before": "case rel\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.71406\nP : Type ?u.71409\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝¹ l : ℕ\nφ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝¹ : Fin l → M\ninst✝ : Structure L' M\nft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)\nfr : (n : ℕ) → Relations L n → Relations L' n\nn : ℕ\nv : α → M\nv' : β → M\nxs✝ : Fin n → M\nh1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t\nh2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x\nn✝ l✝ : ℕ\nR✝ : Relations L l✝\nts✝ : Fin l✝ → Term L (α ⊕ Fin n✝)\nxs : Fin n✝ → M\n⊢ Realize (mapTermRel ft fr (fun x => id) (rel R✝ ts✝)) v' xs ↔ Realize (rel R✝ ts✝) v xs", "tactic": "simp [mapTermRel, Realize, h1, h2]" }, { "state_after": "no goals", "state_before": "case imp\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.71406\nP : Type ?u.71409\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝¹ l : ℕ\nφ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝¹ : Fin l → M\ninst✝ : Structure L' M\nft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)\nfr : (n : ℕ) → Relations L n → Relations L' n\nn : ℕ\nv : α → M\nv' : β → M\nxs✝ : Fin n → M\nh1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t\nh2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x\nn✝ : ℕ\nf₁✝ f₂✝ : BoundedFormula L α n✝\nih1 : ∀ {xs : Fin n✝ → M}, Realize (mapTermRel ft fr (fun x => id) f₁✝) v' xs ↔ Realize f₁✝ v xs\nih2 : ∀ {xs : Fin n✝ → M}, Realize (mapTermRel ft fr (fun x => id) f₂✝) v' xs ↔ Realize f₂✝ v xs\nxs : Fin n✝ → M\n⊢ Realize (mapTermRel ft fr (fun x => id) (f₁✝ ⟹ f₂✝)) v' xs ↔ Realize (f₁✝ ⟹ f₂✝) v xs", "tactic": "simp [mapTermRel, Realize, ih1, ih2]" }, { "state_after": "no goals", "state_before": "case all\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.71406\nP : Type ?u.71409\ninst✝³ : Structure L M\ninst✝² : Structure L N\ninst✝¹ : Structure L P\nα : Type u'\nβ : Type v'\nn✝¹ l : ℕ\nφ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝¹ : Fin l → M\ninst✝ : Structure L' M\nft : (n : ℕ) → Term L (α ⊕ Fin n) → Term L' (β ⊕ Fin n)\nfr : (n : ℕ) → Relations L n → Relations L' n\nn : ℕ\nv : α → M\nv' : β → M\nxs✝ : Fin n → M\nh1 : ∀ (n : ℕ) (t : Term L (α ⊕ Fin n)) (xs : Fin n → M), realize (Sum.elim v' xs) (ft n t) = realize (Sum.elim v xs) t\nh2 : ∀ (n : ℕ) (R : Relations L n) (x : Fin n → M), RelMap (fr n R) x = RelMap R x\nn✝ : ℕ\nf✝ : BoundedFormula L α (n✝ + 1)\nih : ∀ {xs : Fin (n✝ + 1) → M}, Realize (mapTermRel ft fr (fun x => id) f✝) v' xs ↔ Realize f✝ v xs\nxs : Fin n✝ → M\n⊢ Realize (mapTermRel ft fr (fun x => id) (∀'f✝)) v' xs ↔ Realize (∀'f✝) v xs", "tactic": "simp only [mapTermRel, Realize, ih, id.def]" } ]
[ 379, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 365, 1 ]
Mathlib/Topology/Instances/ENNReal.lean
ENNReal.hasBasis_nhds_of_ne_top
[ { "state_after": "no goals", "state_before": "α : Type ?u.66801\nβ : Type ?u.66804\nγ : Type ?u.66807\na b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nxt : x ≠ ⊤\n⊢ HasBasis (𝓝 x) (fun x => 0 < x) fun ε => Icc (x - ε) (x + ε)", "tactic": "simpa only [pos_iff_ne_zero] using hasBasis_nhds_of_ne_top' xt" } ]
[ 254, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 252, 1 ]
Mathlib/ModelTheory/Semantics.lean
FirstOrder.Language.BoundedFormula.realize_foldr_inf
[ { "state_after": "case nil\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.45572\nP : Type ?u.45575\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn l : ℕ\nφ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝ : Fin l → M\nv : α → M\nxs : Fin n → M\n⊢ Realize (List.foldr (fun x x_1 => x ⊓ x_1) ⊤ []) v xs ↔ ∀ (φ : BoundedFormula L α n), φ ∈ [] → Realize φ v xs\n\ncase cons\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.45572\nP : Type ?u.45575\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn l✝ : ℕ\nφ✝ ψ : BoundedFormula L α l✝\nθ : BoundedFormula L α (Nat.succ l✝)\nv✝ : α → M\nxs✝ : Fin l✝ → M\nv : α → M\nxs : Fin n → M\nφ : BoundedFormula L α n\nl : List (BoundedFormula L α n)\nih : Realize (List.foldr (fun x x_1 => x ⊓ x_1) ⊤ l) v xs ↔ ∀ (φ : BoundedFormula L α n), φ ∈ l → Realize φ v xs\n⊢ Realize (List.foldr (fun x x_1 => x ⊓ x_1) ⊤ (φ :: l)) v xs ↔\n ∀ (φ_1 : BoundedFormula L α n), φ_1 ∈ φ :: l → Realize φ_1 v xs", "state_before": "L : Language\nL' : Language\nM : Type w\nN : Type ?u.45572\nP : Type ?u.45575\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn l✝ : ℕ\nφ ψ : BoundedFormula L α l✝\nθ : BoundedFormula L α (Nat.succ l✝)\nv✝ : α → M\nxs✝ : Fin l✝ → M\nl : List (BoundedFormula L α n)\nv : α → M\nxs : Fin n → M\n⊢ Realize (List.foldr (fun x x_1 => x ⊓ x_1) ⊤ l) v xs ↔ ∀ (φ : BoundedFormula L α n), φ ∈ l → Realize φ v xs", "tactic": "induction' l with φ l ih" }, { "state_after": "no goals", "state_before": "case nil\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.45572\nP : Type ?u.45575\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn l : ℕ\nφ ψ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv✝ : α → M\nxs✝ : Fin l → M\nv : α → M\nxs : Fin n → M\n⊢ Realize (List.foldr (fun x x_1 => x ⊓ x_1) ⊤ []) v xs ↔ ∀ (φ : BoundedFormula L α n), φ ∈ [] → Realize φ v xs", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case cons\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.45572\nP : Type ?u.45575\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nn l✝ : ℕ\nφ✝ ψ : BoundedFormula L α l✝\nθ : BoundedFormula L α (Nat.succ l✝)\nv✝ : α → M\nxs✝ : Fin l✝ → M\nv : α → M\nxs : Fin n → M\nφ : BoundedFormula L α n\nl : List (BoundedFormula L α n)\nih : Realize (List.foldr (fun x x_1 => x ⊓ x_1) ⊤ l) v xs ↔ ∀ (φ : BoundedFormula L α n), φ ∈ l → Realize φ v xs\n⊢ Realize (List.foldr (fun x x_1 => x ⊓ x_1) ⊤ (φ :: l)) v xs ↔\n ∀ (φ_1 : BoundedFormula L α n), φ_1 ∈ φ :: l → Realize φ_1 v xs", "tactic": "simp [ih]" } ]
[ 295, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 291, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Biproducts.lean
CategoryTheory.Limits.BinaryBicone.binary_cofan_inl_toCocone
[]
[ 1040, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1039, 1 ]
Mathlib/RingTheory/Subsemiring/Basic.lean
Subsemiring.mem_toAddSubmonoid
[]
[ 489, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 488, 1 ]
Mathlib/Topology/Order/Basic.lean
nhds_basis_abs_sub_lt
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\ninst✝³ : TopologicalSpace α\ninst✝² : LinearOrderedAddCommGroup α\ninst✝¹ : OrderTopology α\nl : Filter β\nf g : β → α\ninst✝ : NoMaxOrder α\na : α\n⊢ HasBasis (⨅ (r : α) (_ : r > 0), 𝓟 {b | abs (b - a) < r}) (fun ε => 0 < ε) fun ε => {b | abs (b - a) < ε}", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝³ : TopologicalSpace α\ninst✝² : LinearOrderedAddCommGroup α\ninst✝¹ : OrderTopology α\nl : Filter β\nf g : β → α\ninst✝ : NoMaxOrder α\na : α\n⊢ HasBasis (𝓝 a) (fun ε => 0 < ε) fun ε => {b | abs (b - a) < ε}", "tactic": "simp only [nhds_eq_iInf_abs_sub, abs_sub_comm (a := a)]" }, { "state_after": "α : Type u\nβ : Type v\nγ : Type w\ninst✝³ : TopologicalSpace α\ninst✝² : LinearOrderedAddCommGroup α\ninst✝¹ : OrderTopology α\nl : Filter β\nf g : β → α\ninst✝ : NoMaxOrder α\na x : α\nhx : x > 0\ny : α\nhy : y > 0\n⊢ ∃ k, k > 0 ∧ {b | abs (b - a) < k} ⊆ {b | abs (b - a) < x} ∧ {b | abs (b - a) < k} ⊆ {b | abs (b - a) < y}", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝³ : TopologicalSpace α\ninst✝² : LinearOrderedAddCommGroup α\ninst✝¹ : OrderTopology α\nl : Filter β\nf g : β → α\ninst✝ : NoMaxOrder α\na : α\n⊢ HasBasis (⨅ (r : α) (_ : r > 0), 𝓟 {b | abs (b - a) < r}) (fun ε => 0 < ε) fun ε => {b | abs (b - a) < ε}", "tactic": "refine hasBasis_biInf_principal' (fun x hx y hy => ?_) (exists_gt _)" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝³ : TopologicalSpace α\ninst✝² : LinearOrderedAddCommGroup α\ninst✝¹ : OrderTopology α\nl : Filter β\nf g : β → α\ninst✝ : NoMaxOrder α\na x : α\nhx : x > 0\ny : α\nhy : y > 0\n⊢ ∃ k, k > 0 ∧ {b | abs (b - a) < k} ⊆ {b | abs (b - a) < x} ∧ {b | abs (b - a) < k} ⊆ {b | abs (b - a) < y}", "tactic": "exact ⟨min x y, lt_min hx hy, fun _ hz => hz.trans_le (min_le_left _ _),\n fun _ hz => hz.trans_le (min_le_right _ _)⟩" } ]
[ 1915, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1910, 1 ]
Mathlib/Data/Finset/NAry.lean
Finset.image₂_inter_union_subset
[ { "state_after": "α : Type u_1\nα' : Type ?u.103900\nβ : Type u_2\nβ' : Type ?u.103906\nγ : Type ?u.103909\nγ' : Type ?u.103912\nδ : Type ?u.103915\nδ' : Type ?u.103918\nε : Type ?u.103921\nε' : Type ?u.103924\nζ : Type ?u.103927\nζ' : Type ?u.103930\nν : Type ?u.103933\ninst✝⁹ : DecidableEq α'\ninst✝⁸ : DecidableEq β'\ninst✝⁷ : DecidableEq γ\ninst✝⁶ : DecidableEq γ'\ninst✝⁵ : DecidableEq δ\ninst✝⁴ : DecidableEq δ'\ninst✝³ : DecidableEq ε\ninst✝² : DecidableEq ε'\nf✝ f' : α → β → γ\ng g' : α → β → γ → δ\ns✝ s' : Finset α\nt✝ t' : Finset β\nu u' : Finset γ\na a' : α\nb b' : β\nc : γ\ninst✝¹ : DecidableEq α\ninst✝ : DecidableEq β\nf : α → α → β\ns t : Finset α\nhf : ∀ (a b : α), f a b = f b a\n⊢ image2 f (↑s ∩ ↑t) (↑s ∪ ↑t) ⊆ image2 f ↑s ↑t", "state_before": "α : Type u_1\nα' : Type ?u.103900\nβ : Type u_2\nβ' : Type ?u.103906\nγ : Type ?u.103909\nγ' : Type ?u.103912\nδ : Type ?u.103915\nδ' : Type ?u.103918\nε : Type ?u.103921\nε' : Type ?u.103924\nζ : Type ?u.103927\nζ' : Type ?u.103930\nν : Type ?u.103933\ninst✝⁹ : DecidableEq α'\ninst✝⁸ : DecidableEq β'\ninst✝⁷ : DecidableEq γ\ninst✝⁶ : DecidableEq γ'\ninst✝⁵ : DecidableEq δ\ninst✝⁴ : DecidableEq δ'\ninst✝³ : DecidableEq ε\ninst✝² : DecidableEq ε'\nf✝ f' : α → β → γ\ng g' : α → β → γ → δ\ns✝ s' : Finset α\nt✝ t' : Finset β\nu u' : Finset γ\na a' : α\nb b' : β\nc : γ\ninst✝¹ : DecidableEq α\ninst✝ : DecidableEq β\nf : α → α → β\ns t : Finset α\nhf : ∀ (a b : α), f a b = f b a\n⊢ ↑(image₂ f (s ∩ t) (s ∪ t)) ⊆ ↑(image₂ f s t)", "tactic": "push_cast" }, { "state_after": "no goals", "state_before": "α : Type u_1\nα' : Type ?u.103900\nβ : Type u_2\nβ' : Type ?u.103906\nγ : Type ?u.103909\nγ' : Type ?u.103912\nδ : Type ?u.103915\nδ' : Type ?u.103918\nε : Type ?u.103921\nε' : Type ?u.103924\nζ : Type ?u.103927\nζ' : Type ?u.103930\nν : Type ?u.103933\ninst✝⁹ : DecidableEq α'\ninst✝⁸ : DecidableEq β'\ninst✝⁷ : DecidableEq γ\ninst✝⁶ : DecidableEq γ'\ninst✝⁵ : DecidableEq δ\ninst✝⁴ : DecidableEq δ'\ninst✝³ : DecidableEq ε\ninst✝² : DecidableEq ε'\nf✝ f' : α → β → γ\ng g' : α → β → γ → δ\ns✝ s' : Finset α\nt✝ t' : Finset β\nu u' : Finset γ\na a' : α\nb b' : β\nc : γ\ninst✝¹ : DecidableEq α\ninst✝ : DecidableEq β\nf : α → α → β\ns t : Finset α\nhf : ∀ (a b : α), f a b = f b a\n⊢ image2 f (↑s ∩ ↑t) (↑s ∪ ↑t) ⊆ image2 f ↑s ↑t", "tactic": "exact image2_inter_union_subset hf" } ]
[ 541, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 537, 1 ]
Mathlib/Analysis/Asymptotics/Theta.lean
Asymptotics.isTheta_const_smul_left
[]
[ 283, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 281, 1 ]
Mathlib/Data/MvPolynomial/Basic.lean
MvPolynomial.C_eq_coe_nat
[ { "state_after": "no goals", "state_before": "R : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_1\na a' a₁ a₂ : R\ne : ℕ\nn✝ m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\ninst✝ : CommSemiring S₁\np q : MvPolynomial σ R\nn : ℕ\n⊢ ↑C ↑n = ↑n", "tactic": "induction n <;> simp [Nat.succ_eq_add_one, *]" } ]
[ 269, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 268, 1 ]
Mathlib/Algebra/Lie/BaseChange.lean
LieAlgebra.ExtendScalars.bracket_lie_smul
[ { "state_after": "case refine'_1\nR : Type u\nA : Type w\nL : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing A\ninst✝² : Algebra R A\ninst✝¹ : LieRing L\ninst✝ : LieAlgebra R L\na : A\nx y : A ⊗[R] L\n⊢ ⁅0, a • y⁆ = a • ⁅0, y⁆\n\ncase refine'_2\nR : Type u\nA : Type w\nL : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing A\ninst✝² : Algebra R A\ninst✝¹ : LieRing L\ninst✝ : LieAlgebra R L\na : A\nx y : A ⊗[R] L\n⊢ ∀ (x : A) (y_1 : L), ⁅x ⊗ₜ[R] y_1, a • y⁆ = a • ⁅x ⊗ₜ[R] y_1, y⁆\n\ncase refine'_3\nR : Type u\nA : Type w\nL : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing A\ninst✝² : Algebra R A\ninst✝¹ : LieRing L\ninst✝ : LieAlgebra R L\na : A\nx y : A ⊗[R] L\n⊢ ∀ (x y_1 : A ⊗[R] L), ⁅x, a • y⁆ = a • ⁅x, y⁆ → ⁅y_1, a • y⁆ = a • ⁅y_1, y⁆ → ⁅x + y_1, a • y⁆ = a • ⁅x + y_1, y⁆", "state_before": "R : Type u\nA : Type w\nL : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing A\ninst✝² : Algebra R A\ninst✝¹ : LieRing L\ninst✝ : LieAlgebra R L\na : A\nx y : A ⊗[R] L\n⊢ ⁅x, a • y⁆ = a • ⁅x, y⁆", "tactic": "refine' x.induction_on _ _ _" }, { "state_after": "no goals", "state_before": "case refine'_1\nR : Type u\nA : Type w\nL : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing A\ninst✝² : Algebra R A\ninst✝¹ : LieRing L\ninst✝ : LieAlgebra R L\na : A\nx y : A ⊗[R] L\n⊢ ⁅0, a • y⁆ = a • ⁅0, y⁆", "tactic": "simp only [zero_lie, smul_zero]" }, { "state_after": "case refine'_2\nR : Type u\nA : Type w\nL : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing A\ninst✝² : Algebra R A\ninst✝¹ : LieRing L\ninst✝ : LieAlgebra R L\na : A\nx y : A ⊗[R] L\na₁ : A\nl₁ : L\n⊢ ⁅a₁ ⊗ₜ[R] l₁, a • y⁆ = a • ⁅a₁ ⊗ₜ[R] l₁, y⁆", "state_before": "case refine'_2\nR : Type u\nA : Type w\nL : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing A\ninst✝² : Algebra R A\ninst✝¹ : LieRing L\ninst✝ : LieAlgebra R L\na : A\nx y : A ⊗[R] L\n⊢ ∀ (x : A) (y_1 : L), ⁅x ⊗ₜ[R] y_1, a • y⁆ = a • ⁅x ⊗ₜ[R] y_1, y⁆", "tactic": "intro a₁ l₁" }, { "state_after": "case refine'_2.refine'_1\nR : Type u\nA : Type w\nL : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing A\ninst✝² : Algebra R A\ninst✝¹ : LieRing L\ninst✝ : LieAlgebra R L\na : A\nx y : A ⊗[R] L\na₁ : A\nl₁ : L\n⊢ ⁅a₁ ⊗ₜ[R] l₁, a • 0⁆ = a • ⁅a₁ ⊗ₜ[R] l₁, 0⁆\n\ncase refine'_2.refine'_2\nR : Type u\nA : Type w\nL : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing A\ninst✝² : Algebra R A\ninst✝¹ : LieRing L\ninst✝ : LieAlgebra R L\na : A\nx y : A ⊗[R] L\na₁ : A\nl₁ : L\n⊢ ∀ (x : A) (y : L), ⁅a₁ ⊗ₜ[R] l₁, a • x ⊗ₜ[R] y⁆ = a • ⁅a₁ ⊗ₜ[R] l₁, x ⊗ₜ[R] y⁆\n\ncase refine'_2.refine'_3\nR : Type u\nA : Type w\nL : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing A\ninst✝² : Algebra R A\ninst✝¹ : LieRing L\ninst✝ : LieAlgebra R L\na : A\nx y : A ⊗[R] L\na₁ : A\nl₁ : L\n⊢ ∀ (x y : A ⊗[R] L),\n ⁅a₁ ⊗ₜ[R] l₁, a • x⁆ = a • ⁅a₁ ⊗ₜ[R] l₁, x⁆ →\n ⁅a₁ ⊗ₜ[R] l₁, a • y⁆ = a • ⁅a₁ ⊗ₜ[R] l₁, y⁆ → ⁅a₁ ⊗ₜ[R] l₁, a • (x + y)⁆ = a • ⁅a₁ ⊗ₜ[R] l₁, x + y⁆", "state_before": "case refine'_2\nR : Type u\nA : Type w\nL : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing A\ninst✝² : Algebra R A\ninst✝¹ : LieRing L\ninst✝ : LieAlgebra R L\na : A\nx y : A ⊗[R] L\na₁ : A\nl₁ : L\n⊢ ⁅a₁ ⊗ₜ[R] l₁, a • y⁆ = a • ⁅a₁ ⊗ₜ[R] l₁, y⁆", "tactic": "refine' y.induction_on _ _ _" }, { "state_after": "no goals", "state_before": "case refine'_2.refine'_1\nR : Type u\nA : Type w\nL : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing A\ninst✝² : Algebra R A\ninst✝¹ : LieRing L\ninst✝ : LieAlgebra R L\na : A\nx y : A ⊗[R] L\na₁ : A\nl₁ : L\n⊢ ⁅a₁ ⊗ₜ[R] l₁, a • 0⁆ = a • ⁅a₁ ⊗ₜ[R] l₁, 0⁆", "tactic": "simp only [lie_zero, smul_zero]" }, { "state_after": "case refine'_2.refine'_2\nR : Type u\nA : Type w\nL : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing A\ninst✝² : Algebra R A\ninst✝¹ : LieRing L\ninst✝ : LieAlgebra R L\na : A\nx y : A ⊗[R] L\na₁ : A\nl₁ : L\na₂ : A\nl₂ : L\n⊢ ⁅a₁ ⊗ₜ[R] l₁, a • a₂ ⊗ₜ[R] l₂⁆ = a • ⁅a₁ ⊗ₜ[R] l₁, a₂ ⊗ₜ[R] l₂⁆", "state_before": "case refine'_2.refine'_2\nR : Type u\nA : Type w\nL : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing A\ninst✝² : Algebra R A\ninst✝¹ : LieRing L\ninst✝ : LieAlgebra R L\na : A\nx y : A ⊗[R] L\na₁ : A\nl₁ : L\n⊢ ∀ (x : A) (y : L), ⁅a₁ ⊗ₜ[R] l₁, a • x ⊗ₜ[R] y⁆ = a • ⁅a₁ ⊗ₜ[R] l₁, x ⊗ₜ[R] y⁆", "tactic": "intro a₂ l₂" }, { "state_after": "no goals", "state_before": "case refine'_2.refine'_2\nR : Type u\nA : Type w\nL : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing A\ninst✝² : Algebra R A\ninst✝¹ : LieRing L\ninst✝ : LieAlgebra R L\na : A\nx y : A ⊗[R] L\na₁ : A\nl₁ : L\na₂ : A\nl₂ : L\n⊢ ⁅a₁ ⊗ₜ[R] l₁, a • a₂ ⊗ₜ[R] l₂⁆ = a • ⁅a₁ ⊗ₜ[R] l₁, a₂ ⊗ₜ[R] l₂⁆", "tactic": "simp only [bracket_def, bracket', TensorProduct.smul_tmul', mul_left_comm a₁ a a₂,\n TensorProduct.curry_apply, LinearMap.mul'_apply, Algebra.id.smul_eq_mul,\n Function.comp_apply, LinearEquiv.coe_coe, LinearMap.coe_comp, TensorProduct.map_tmul,\n TensorProduct.tensorTensorTensorComm_tmul]" }, { "state_after": "case refine'_2.refine'_3\nR : Type u\nA : Type w\nL : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing A\ninst✝² : Algebra R A\ninst✝¹ : LieRing L\ninst✝ : LieAlgebra R L\na : A\nx y : A ⊗[R] L\na₁ : A\nl₁ : L\nz₁ z₂ : A ⊗[R] L\nh₁ : ⁅a₁ ⊗ₜ[R] l₁, a • z₁⁆ = a • ⁅a₁ ⊗ₜ[R] l₁, z₁⁆\nh₂ : ⁅a₁ ⊗ₜ[R] l₁, a • z₂⁆ = a • ⁅a₁ ⊗ₜ[R] l₁, z₂⁆\n⊢ ⁅a₁ ⊗ₜ[R] l₁, a • (z₁ + z₂)⁆ = a • ⁅a₁ ⊗ₜ[R] l₁, z₁ + z₂⁆", "state_before": "case refine'_2.refine'_3\nR : Type u\nA : Type w\nL : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing A\ninst✝² : Algebra R A\ninst✝¹ : LieRing L\ninst✝ : LieAlgebra R L\na : A\nx y : A ⊗[R] L\na₁ : A\nl₁ : L\n⊢ ∀ (x y : A ⊗[R] L),\n ⁅a₁ ⊗ₜ[R] l₁, a • x⁆ = a • ⁅a₁ ⊗ₜ[R] l₁, x⁆ →\n ⁅a₁ ⊗ₜ[R] l₁, a • y⁆ = a • ⁅a₁ ⊗ₜ[R] l₁, y⁆ → ⁅a₁ ⊗ₜ[R] l₁, a • (x + y)⁆ = a • ⁅a₁ ⊗ₜ[R] l₁, x + y⁆", "tactic": "intro z₁ z₂ h₁ h₂" }, { "state_after": "no goals", "state_before": "case refine'_2.refine'_3\nR : Type u\nA : Type w\nL : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing A\ninst✝² : Algebra R A\ninst✝¹ : LieRing L\ninst✝ : LieAlgebra R L\na : A\nx y : A ⊗[R] L\na₁ : A\nl₁ : L\nz₁ z₂ : A ⊗[R] L\nh₁ : ⁅a₁ ⊗ₜ[R] l₁, a • z₁⁆ = a • ⁅a₁ ⊗ₜ[R] l₁, z₁⁆\nh₂ : ⁅a₁ ⊗ₜ[R] l₁, a • z₂⁆ = a • ⁅a₁ ⊗ₜ[R] l₁, z₂⁆\n⊢ ⁅a₁ ⊗ₜ[R] l₁, a • (z₁ + z₂)⁆ = a • ⁅a₁ ⊗ₜ[R] l₁, z₁ + z₂⁆", "tactic": "simp only [h₁, h₂, smul_add, lie_add]" }, { "state_after": "case refine'_3\nR : Type u\nA : Type w\nL : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing A\ninst✝² : Algebra R A\ninst✝¹ : LieRing L\ninst✝ : LieAlgebra R L\na : A\nx y z₁ z₂ : A ⊗[R] L\nh₁ : ⁅z₁, a • y⁆ = a • ⁅z₁, y⁆\nh₂ : ⁅z₂, a • y⁆ = a • ⁅z₂, y⁆\n⊢ ⁅z₁ + z₂, a • y⁆ = a • ⁅z₁ + z₂, y⁆", "state_before": "case refine'_3\nR : Type u\nA : Type w\nL : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing A\ninst✝² : Algebra R A\ninst✝¹ : LieRing L\ninst✝ : LieAlgebra R L\na : A\nx y : A ⊗[R] L\n⊢ ∀ (x y_1 : A ⊗[R] L), ⁅x, a • y⁆ = a • ⁅x, y⁆ → ⁅y_1, a • y⁆ = a • ⁅y_1, y⁆ → ⁅x + y_1, a • y⁆ = a • ⁅x + y_1, y⁆", "tactic": "intro z₁ z₂ h₁ h₂" }, { "state_after": "no goals", "state_before": "case refine'_3\nR : Type u\nA : Type w\nL : Type v\ninst✝⁴ : CommRing R\ninst✝³ : CommRing A\ninst✝² : Algebra R A\ninst✝¹ : LieRing L\ninst✝ : LieAlgebra R L\na : A\nx y z₁ z₂ : A ⊗[R] L\nh₁ : ⁅z₁, a • y⁆ = a • ⁅z₁, y⁆\nh₂ : ⁅z₂, a • y⁆ = a • ⁅z₂, y⁆\n⊢ ⁅z₁ + z₂, a • y⁆ = a • ⁅z₁ + z₂, y⁆", "tactic": "simp only [h₁, h₂, smul_add, add_lie]" } ]
[ 131, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 118, 9 ]
Mathlib/MeasureTheory/Function/SimpleFunc.lean
MeasureTheory.SimpleFunc.FinMeasSupp.of_map
[]
[ 1215, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1213, 1 ]
Mathlib/GroupTheory/SemidirectProduct.lean
SemidirectProduct.left_inr
[]
[ 145, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 145, 1 ]
Mathlib/Analysis/NormedSpace/Multilinear.lean
ContinuousMultilinearMap.bound
[]
[ 294, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 293, 1 ]
Mathlib/Logic/Basic.lean
dite_ne_left_iff
[ { "state_after": "α : Sort u_1\nβ : Sort ?u.35535\nσ : α → Sort ?u.35531\nf : α → β\nP Q : Prop\ninst✝¹ : Decidable P\ninst✝ : Decidable Q\na b c : α\nA : P → α\nB : ¬P → α\n⊢ (∃ x, ¬B x = a) ↔ ∃ h, a ≠ B h", "state_before": "α : Sort u_1\nβ : Sort ?u.35535\nσ : α → Sort ?u.35531\nf : α → β\nP Q : Prop\ninst✝¹ : Decidable P\ninst✝ : Decidable Q\na b c : α\nA : P → α\nB : ¬P → α\n⊢ dite P (fun x => a) B ≠ a ↔ ∃ h, a ≠ B h", "tactic": "rw [Ne.def, dite_eq_left_iff, not_forall]" }, { "state_after": "no goals", "state_before": "α : Sort u_1\nβ : Sort ?u.35535\nσ : α → Sort ?u.35531\nf : α → β\nP Q : Prop\ninst✝¹ : Decidable P\ninst✝ : Decidable Q\na b c : α\nA : P → α\nB : ¬P → α\n⊢ (∃ x, ¬B x = a) ↔ ∃ h, a ≠ B h", "tactic": "exact exists_congr fun h ↦ by rw [ne_comm]" }, { "state_after": "no goals", "state_before": "α : Sort u_1\nβ : Sort ?u.35535\nσ : α → Sort ?u.35531\nf : α → β\nP Q : Prop\ninst✝¹ : Decidable P\ninst✝ : Decidable Q\na b c : α\nA : P → α\nB : ¬P → α\nh : ¬P\n⊢ ¬B h = a ↔ a ≠ B h", "tactic": "rw [ne_comm]" } ]
[ 1161, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1159, 1 ]
Mathlib/GroupTheory/Commutator.lean
Subgroup.commutator_pi_pi_le
[]
[ 221, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 218, 1 ]
Mathlib/SetTheory/Ordinal/Basic.lean
Ordinal.lift_down
[ { "state_after": "α : Type ?u.113662\nβ : Type ?u.113665\nγ : Type ?u.113668\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\na : Ordinal\nb : Ordinal\nh : b ≤ lift a\n⊢ card b ≤ card (lift a)", "state_before": "α : Type ?u.113662\nβ : Type ?u.113665\nγ : Type ?u.113668\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\na : Ordinal\nb : Ordinal\nh : b ≤ lift a\n⊢ card b ≤ Cardinal.lift (card a)", "tactic": "rw [lift_card]" }, { "state_after": "no goals", "state_before": "α : Type ?u.113662\nβ : Type ?u.113665\nγ : Type ?u.113668\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\na : Ordinal\nb : Ordinal\nh : b ≤ lift a\n⊢ card b ≤ card (lift a)", "tactic": "exact card_le_card h" } ]
[ 815, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 813, 1 ]
Mathlib/Data/List/Infix.lean
List.prefix_rfl
[]
[ 60, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 59, 1 ]
Mathlib/AlgebraicTopology/DoldKan/PInfty.lean
AlgebraicTopology.DoldKan.QInfty_comp_PInfty
[ { "state_after": "case h\nC : Type u_2\ninst✝¹ : Category C\ninst✝ : Preadditive C\nX : SimplicialObject C\nn : ℕ\n⊢ HomologicalComplex.Hom.f (QInfty ≫ PInfty) n = HomologicalComplex.Hom.f 0 n", "state_before": "C : Type u_2\ninst✝¹ : Category C\ninst✝ : Preadditive C\nX : SimplicialObject C\n⊢ QInfty ≫ PInfty = 0", "tactic": "ext n" }, { "state_after": "no goals", "state_before": "case h\nC : Type u_2\ninst✝¹ : Category C\ninst✝ : Preadditive C\nX : SimplicialObject C\nn : ℕ\n⊢ HomologicalComplex.Hom.f (QInfty ≫ PInfty) n = HomologicalComplex.Hom.f 0 n", "tactic": "apply QInfty_f_comp_PInfty_f" } ]
[ 157, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 155, 1 ]
Mathlib/Data/MvPolynomial/PDeriv.lean
MvPolynomial.pderiv_eq_zero_of_not_mem_vars
[]
[ 113, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 111, 1 ]
Mathlib/Topology/Order/Basic.lean
Dense.exists_le'
[ { "state_after": "case pos\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : LinearOrder α\ninst✝ : OrderClosedTopology α\nf g : β → α\ns : Set α\nhs : Dense s\nhbot : ∀ (x : α), IsBot x → x ∈ s\nx : α\nhx : IsBot x\n⊢ ∃ y, y ∈ s ∧ y ≤ x\n\ncase neg\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : LinearOrder α\ninst✝ : OrderClosedTopology α\nf g : β → α\ns : Set α\nhs : Dense s\nhbot : ∀ (x : α), IsBot x → x ∈ s\nx : α\nhx : ¬IsBot x\n⊢ ∃ y, y ∈ s ∧ y ≤ x", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : LinearOrder α\ninst✝ : OrderClosedTopology α\nf g : β → α\ns : Set α\nhs : Dense s\nhbot : ∀ (x : α), IsBot x → x ∈ s\nx : α\n⊢ ∃ y, y ∈ s ∧ y ≤ x", "tactic": "by_cases hx : IsBot x" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : LinearOrder α\ninst✝ : OrderClosedTopology α\nf g : β → α\ns : Set α\nhs : Dense s\nhbot : ∀ (x : α), IsBot x → x ∈ s\nx : α\nhx : IsBot x\n⊢ ∃ y, y ∈ s ∧ y ≤ x", "tactic": "exact ⟨x, hbot x hx, le_rfl⟩" }, { "state_after": "case neg\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : LinearOrder α\ninst✝ : OrderClosedTopology α\nf g : β → α\ns : Set α\nhs : Dense s\nhbot : ∀ (x : α), IsBot x → x ∈ s\nx : α\nhx : ∃ x_1, x_1 < x\n⊢ ∃ y, y ∈ s ∧ y ≤ x", "state_before": "case neg\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : LinearOrder α\ninst✝ : OrderClosedTopology α\nf g : β → α\ns : Set α\nhs : Dense s\nhbot : ∀ (x : α), IsBot x → x ∈ s\nx : α\nhx : ¬IsBot x\n⊢ ∃ y, y ∈ s ∧ y ≤ x", "tactic": "simp only [IsBot, not_forall, not_le] at hx" }, { "state_after": "case neg.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : LinearOrder α\ninst✝ : OrderClosedTopology α\nf g : β → α\ns : Set α\nhs : Dense s\nhbot : ∀ (x : α), IsBot x → x ∈ s\nx : α\nhx : ∃ x_1, x_1 < x\ny : α\nhys : y ∈ s\nhy : y < x\n⊢ ∃ y, y ∈ s ∧ y ≤ x", "state_before": "case neg\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : LinearOrder α\ninst✝ : OrderClosedTopology α\nf g : β → α\ns : Set α\nhs : Dense s\nhbot : ∀ (x : α), IsBot x → x ∈ s\nx : α\nhx : ∃ x_1, x_1 < x\n⊢ ∃ y, y ∈ s ∧ y ≤ x", "tactic": "rcases hs.exists_mem_open isOpen_Iio hx with ⟨y, hys, hy : y < x⟩" }, { "state_after": "no goals", "state_before": "case neg.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : LinearOrder α\ninst✝ : OrderClosedTopology α\nf g : β → α\ns : Set α\nhs : Dense s\nhbot : ∀ (x : α), IsBot x → x ∈ s\nx : α\nhx : ∃ x_1, x_1 < x\ny : α\nhys : y ∈ s\nhy : y < x\n⊢ ∃ y, y ∈ s ∧ y ≤ x", "tactic": "exact ⟨y, hys, hy.le⟩" } ]
[ 781, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 775, 1 ]
Mathlib/Algebra/Invertible.lean
mul_right_eq_iff_eq_mul_invOf
[ { "state_after": "no goals", "state_before": "α : Type u\nc a b : α\ninst✝¹ : Monoid α\ninst✝ : Invertible c\n⊢ a * c = b ↔ a = b * ⅟c", "tactic": "rw [← mul_right_inj_of_invertible (c := ⅟c), mul_mul_invOf_self_cancel]" } ]
[ 321, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 319, 1 ]
Mathlib/ModelTheory/Satisfiability.lean
FirstOrder.Language.BoundedFormula.induction_on_exists_not
[]
[ 635, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 626, 1 ]
Std/Data/Rat/Lemmas.lean
Rat.normalize.reduced'
[ { "state_after": "num : Int\nden g : Nat\nden_nz : den ≠ 0\ne : g = Nat.gcd (Int.natAbs num) den\n⊢ Nat.coprime (Int.natAbs (Int.div num ↑g)) (den / g)", "state_before": "num : Int\nden g : Nat\nden_nz : den ≠ 0\ne : g = Nat.gcd (Int.natAbs num) den\n⊢ Nat.coprime (Int.natAbs (num / ↑g)) (den / g)", "tactic": "rw [← Int.div_eq_ediv_of_dvd (e ▸ Int.ofNat_dvd_left.2 (Nat.gcd_dvd_left ..))]" }, { "state_after": "no goals", "state_before": "num : Int\nden g : Nat\nden_nz : den ≠ 0\ne : g = Nat.gcd (Int.natAbs num) den\n⊢ Nat.coprime (Int.natAbs (Int.div num ↑g)) (den / g)", "tactic": "exact normalize.reduced den_nz e" } ]
[ 18, 35 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 15, 1 ]
Mathlib/RingTheory/Ideal/LocalRing.lean
LocalRing.ResidueField.mapEquiv_trans
[]
[ 468, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 466, 1 ]