file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
src/lean/Init/Core.lean
Nat.add_zero
[]
[ 457, 68 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 457, 19 ]
Mathlib/Order/SuccPred/Basic.lean
Order.succ_le_iff_of_not_isMax
[]
[ 258, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 257, 1 ]
Mathlib/Data/Matrix/Notation.lean
Matrix.eta_fin_three
[ { "state_after": "case a.h\nα : Type u\no n m : ℕ\nm' : Type uₘ\nn' : Type uₙ\no' : Type uₒ\na b : ℕ\nA : Matrix (Fin 3) (Fin 3) α\ni j : Fin 3\n⊢ A i j = ↑of ![![A 0 0, A 0 1, A 0 2], ![A 1 0, A 1 1, A 1 2], ![A 2 0, A 2 1, A 2 2]] i j", "state_before": "α : Type u\no n m : ℕ\nm' : Type uₘ\nn' : Type uₙ\no' : Type uₒ\na b : ℕ\nA : Matrix (Fin 3) (Fin 3) α\n⊢ A = ↑of ![![A 0 0, A 0 1, A 0 2], ![A 1 0, A 1 1, A 1 2], ![A 2 0, A 2 1, A 2 2]]", "tactic": "ext (i j)" }, { "state_after": "no goals", "state_before": "case a.h\nα : Type u\no n m : ℕ\nm' : Type uₘ\nn' : Type uₙ\no' : Type uₒ\na b : ℕ\nA : Matrix (Fin 3) (Fin 3) α\ni j : Fin 3\n⊢ A i j = ↑of ![![A 0 0, A 0 1, A 0 2], ![A 1 0, A 1 1, A 1 2], ![A 2 0, A 2 1, A 2 2]] i j", "tactic": "fin_cases i <;> fin_cases j <;> rfl" } ]
[ 433, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 428, 1 ]
Mathlib/Order/Heyting/Hom.lean
HeytingHom.cancel_right
[]
[ 359, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 358, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Types.lean
CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom
[]
[ 242, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 240, 1 ]
Mathlib/Analysis/Convex/Between.lean
affineSegment_same
[ { "state_after": "R : Type u_2\nV : Type u_3\nV' : Type ?u.18554\nP : Type u_1\nP' : Type ?u.18560\ninst✝⁶ : OrderedRing R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\nx : P\n⊢ ↑(lineMap x x) '' Set.Icc 0 1 = {x}", "state_before": "R : Type u_2\nV : Type u_3\nV' : Type ?u.18554\nP : Type u_1\nP' : Type ?u.18560\ninst✝⁶ : OrderedRing R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\nx : P\n⊢ affineSegment R x x = {x}", "tactic": "rw [affineSegment]" }, { "state_after": "no goals", "state_before": "R : Type u_2\nV : Type u_3\nV' : Type ?u.18554\nP : Type u_1\nP' : Type ?u.18560\ninst✝⁶ : OrderedRing R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\nx : P\n⊢ ↑(lineMap x x) '' Set.Icc 0 1 = {x}", "tactic": "simp_rw [lineMap_same, AffineMap.coe_const _ _, Function.const,\n (Set.nonempty_Icc.mpr zero_le_one).image_const]" } ]
[ 78, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 73, 1 ]
Mathlib/Topology/SubsetProperties.lean
isPreirreducible_iff_closure
[ { "state_after": "α : Type u\nβ : Type v\nι : Type ?u.181256\nπ : ι → Type ?u.181261\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns✝ t s u v : Set α\nhu : IsOpen u\nhv : IsOpen v\n⊢ IsOpen (u ∩ v)\n\nα : Type u\nβ : Type v\nι : Type ?u.181256\nπ : ι → Type ?u.181261\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns✝ t s u v : Set α\nhu : IsOpen u\nhv : IsOpen v\n⊢ IsOpen v\n\nα : Type u\nβ : Type v\nι : Type ?u.181256\nπ : ι → Type ?u.181261\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns✝ t s u v : Set α\nhu : IsOpen u\nhv : IsOpen v\n⊢ IsOpen u", "state_before": "α : Type u\nβ : Type v\nι : Type ?u.181256\nπ : ι → Type ?u.181261\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns✝ t s u v : Set α\nhu : IsOpen u\nhv : IsOpen v\n⊢ Set.Nonempty (closure s ∩ u) → Set.Nonempty (closure s ∩ v) → Set.Nonempty (closure s ∩ (u ∩ v)) ↔\n Set.Nonempty (s ∩ u) → Set.Nonempty (s ∩ v) → Set.Nonempty (s ∩ (u ∩ v))", "tactic": "iterate 3 rw [closure_inter_open_nonempty_iff]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nι : Type ?u.181256\nπ : ι → Type ?u.181261\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns✝ t s u v : Set α\nhu : IsOpen u\nhv : IsOpen v\n⊢ IsOpen (u ∩ v)\n\nα : Type u\nβ : Type v\nι : Type ?u.181256\nπ : ι → Type ?u.181261\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns✝ t s u v : Set α\nhu : IsOpen u\nhv : IsOpen v\n⊢ IsOpen v\n\nα : Type u\nβ : Type v\nι : Type ?u.181256\nπ : ι → Type ?u.181261\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns✝ t s u v : Set α\nhu : IsOpen u\nhv : IsOpen v\n⊢ IsOpen u", "tactic": "exacts [hu.inter hv, hv, hu]" }, { "state_after": "α : Type u\nβ : Type v\nι : Type ?u.181256\nπ : ι → Type ?u.181261\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns✝ t s u v : Set α\nhu : IsOpen u\nhv : IsOpen v\n⊢ IsOpen (u ∩ v)\n\nα : Type u\nβ : Type v\nι : Type ?u.181256\nπ : ι → Type ?u.181261\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns✝ t s u v : Set α\nhu : IsOpen u\nhv : IsOpen v\n⊢ IsOpen v\n\nα : Type u\nβ : Type v\nι : Type ?u.181256\nπ : ι → Type ?u.181261\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns✝ t s u v : Set α\nhu : IsOpen u\nhv : IsOpen v\n⊢ IsOpen u", "state_before": "α : Type u\nβ : Type v\nι : Type ?u.181256\nπ : ι → Type ?u.181261\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns✝ t s u v : Set α\nhu : IsOpen u\nhv : IsOpen v\n⊢ Set.Nonempty (s ∩ u) → Set.Nonempty (s ∩ v) → Set.Nonempty (closure s ∩ (u ∩ v)) ↔\n Set.Nonempty (s ∩ u) → Set.Nonempty (s ∩ v) → Set.Nonempty (s ∩ (u ∩ v))\n\nα : Type u\nβ : Type v\nι : Type ?u.181256\nπ : ι → Type ?u.181261\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns✝ t s u v : Set α\nhu : IsOpen u\nhv : IsOpen v\n⊢ IsOpen v\n\nα : Type u\nβ : Type v\nι : Type ?u.181256\nπ : ι → Type ?u.181261\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns✝ t s u v : Set α\nhu : IsOpen u\nhv : IsOpen v\n⊢ IsOpen u", "tactic": "rw [closure_inter_open_nonempty_iff]" } ]
[ 1722, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1718, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.ae_iff_measure_eq
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.647088\nγ : Type ?u.647091\nδ : Type ?u.647094\nι : Type ?u.647097\nR : Type ?u.647100\nR' : Type ?u.647103\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t : Set α\ninst✝ : IsFiniteMeasure μ\np : α → Prop\nhp : NullMeasurableSet {a | p a}\n⊢ (∀ᵐ (a : α) ∂μ, p a) ↔ ↑↑μ {a | p a} = ↑↑μ univ", "tactic": "rw [← ae_eq_univ_iff_measure_eq hp, eventuallyEq_univ, eventually_iff]" } ]
[ 3173, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3171, 1 ]
Mathlib/CategoryTheory/MorphismProperty.lean
CategoryTheory.MorphismProperty.StableUnderCobaseChange.mk
[ { "state_after": "C : Type u\ninst✝² : Category C\nD : Type ?u.40576\ninst✝¹ : Category D\nP : MorphismProperty C\ninst✝ : HasPushouts C\nhP₁ : RespectsIso P\nhP₂ : ∀ (A B A' : C) (f : A ⟶ A') (g : A ⟶ B), P f → P pushout.inr\nA A' B B' : C\nf : A ⟶ A'\ng : A ⟶ B\nf' : B ⟶ B'\ng' : A' ⟶ B'\nsq : IsPushout g f f' g'\nhf : P f\ne : B' ≅ pushout f g := IsPushout.isoPushout (_ : IsPushout f g g' f')\n⊢ P f'", "state_before": "C : Type u\ninst✝² : Category C\nD : Type ?u.40576\ninst✝¹ : Category D\nP : MorphismProperty C\ninst✝ : HasPushouts C\nhP₁ : RespectsIso P\nhP₂ : ∀ (A B A' : C) (f : A ⟶ A') (g : A ⟶ B), P f → P pushout.inr\nA A' B B' : C\nf : A ⟶ A'\ng : A ⟶ B\nf' : B ⟶ B'\ng' : A' ⟶ B'\nsq : IsPushout g f f' g'\nhf : P f\n⊢ P f'", "tactic": "let e := sq.flip.isoPushout" }, { "state_after": "C : Type u\ninst✝² : Category C\nD : Type ?u.40576\ninst✝¹ : Category D\nP : MorphismProperty C\ninst✝ : HasPushouts C\nhP₁ : RespectsIso P\nhP₂ : ∀ (A B A' : C) (f : A ⟶ A') (g : A ⟶ B), P f → P pushout.inr\nA A' B B' : C\nf : A ⟶ A'\ng : A ⟶ B\nf' : B ⟶ B'\ng' : A' ⟶ B'\nsq : IsPushout g f f' g'\nhf : P f\ne : B' ≅ pushout f g := IsPushout.isoPushout (_ : IsPushout f g g' f')\n⊢ P pushout.inr", "state_before": "C : Type u\ninst✝² : Category C\nD : Type ?u.40576\ninst✝¹ : Category D\nP : MorphismProperty C\ninst✝ : HasPushouts C\nhP₁ : RespectsIso P\nhP₂ : ∀ (A B A' : C) (f : A ⟶ A') (g : A ⟶ B), P f → P pushout.inr\nA A' B B' : C\nf : A ⟶ A'\ng : A ⟶ B\nf' : B ⟶ B'\ng' : A' ⟶ B'\nsq : IsPushout g f f' g'\nhf : P f\ne : B' ≅ pushout f g := IsPushout.isoPushout (_ : IsPushout f g g' f')\n⊢ P f'", "tactic": "rw [← hP₁.cancel_right_isIso _ e.hom, sq.flip.inr_isoPushout_hom]" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝² : Category C\nD : Type ?u.40576\ninst✝¹ : Category D\nP : MorphismProperty C\ninst✝ : HasPushouts C\nhP₁ : RespectsIso P\nhP₂ : ∀ (A B A' : C) (f : A ⟶ A') (g : A ⟶ B), P f → P pushout.inr\nA A' B B' : C\nf : A ⟶ A'\ng : A ⟶ B\nf' : B ⟶ B'\ng' : A' ⟶ B'\nsq : IsPushout g f f' g'\nhf : P f\ne : B' ≅ pushout f g := IsPushout.isoPushout (_ : IsPushout f g g' f')\n⊢ P pushout.inr", "tactic": "exact hP₂ _ _ _ f g hf" } ]
[ 257, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 252, 1 ]
Mathlib/MeasureTheory/Function/SimpleFunc.lean
MeasureTheory.SimpleFunc.zero_lintegral
[]
[ 1042, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1041, 1 ]
Mathlib/Order/WellFoundedSet.lean
Set.Subsingleton.wellFoundedOn
[]
[ 503, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 502, 11 ]
Mathlib/Topology/LocalHomeomorph.lean
LocalHomeomorph.bijOn
[]
[ 193, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 192, 11 ]
Mathlib/Algebra/Star/Module.lean
skewAdjointPart_comp_subtype_skewAdjoint
[ { "state_after": "R : Type u_2\nA : Type u_1\ninst✝⁷ : Semiring R\ninst✝⁶ : StarSemigroup R\ninst✝⁵ : TrivialStar R\ninst✝⁴ : AddCommGroup A\ninst✝³ : Module R A\ninst✝² : StarAddMonoid A\ninst✝¹ : StarModule R A\ninst✝ : Invertible 2\nx✝ : { x // x ∈ skewAdjoint.submodule R A }\nx : A\nhx : star x = -x\n⊢ x = ↑(↑LinearMap.id { val := x, property := hx })", "state_before": "R : Type u_2\nA : Type u_1\ninst✝⁷ : Semiring R\ninst✝⁶ : StarSemigroup R\ninst✝⁵ : TrivialStar R\ninst✝⁴ : AddCommGroup A\ninst✝³ : Module R A\ninst✝² : StarAddMonoid A\ninst✝¹ : StarModule R A\ninst✝ : Invertible 2\nx✝ : { x // x ∈ skewAdjoint.submodule R A }\nx : A\nhx : star x = -x\n⊢ ↑(↑(LinearMap.comp (skewAdjointPart R) (Submodule.subtype (skewAdjoint.submodule R A)))\n { val := x, property := hx }) =\n ↑(↑LinearMap.id { val := x, property := hx })", "tactic": "simp only [LinearMap.comp_apply, Submodule.subtype_apply, skewAdjointPart_apply_coe, hx,\n sub_neg_eq_add, smul_add, invOf_two_smul_add_invOf_two_smul]" }, { "state_after": "no goals", "state_before": "R : Type u_2\nA : Type u_1\ninst✝⁷ : Semiring R\ninst✝⁶ : StarSemigroup R\ninst✝⁵ : TrivialStar R\ninst✝⁴ : AddCommGroup A\ninst✝³ : Module R A\ninst✝² : StarAddMonoid A\ninst✝¹ : StarModule R A\ninst✝ : Invertible 2\nx✝ : { x // x ∈ skewAdjoint.submodule R A }\nx : A\nhx : star x = -x\n⊢ x = ↑(↑LinearMap.id { val := x, property := hx })", "tactic": "rfl" } ]
[ 173, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 169, 1 ]
Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
csSup_Ico
[]
[ 755, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 754, 1 ]
Mathlib/Algebra/Parity.lean
Even.neg_one_zpow
[ { "state_after": "no goals", "state_before": "F : Type ?u.44652\nα : Type u_1\nβ : Type ?u.44658\nR : Type ?u.44661\ninst✝¹ : DivisionMonoid α\na : α\ninst✝ : HasDistribNeg α\nn : ℤ\nh : Even n\n⊢ (-1) ^ n = 1", "tactic": "rw [h.neg_zpow, one_zpow]" } ]
[ 194, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 194, 1 ]
Mathlib/Geometry/Manifold/LocalInvariantProperties.lean
LocalHomeomorph.isLocalStructomorphWithinAt_iff
[ { "state_after": "case mp\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx : x ∈ f.source ∪ sᶜ\n⊢ IsLocalStructomorphWithinAt G (↑f) s x →\n x ∈ s → ∃ e, e ∈ G ∧ e.source ⊆ f.source ∧ EqOn (↑f) (↑e) (s ∩ e.source) ∧ x ∈ e.source\n\ncase mpr\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx : x ∈ f.source ∪ sᶜ\n⊢ (x ∈ s → ∃ e, e ∈ G ∧ e.source ⊆ f.source ∧ EqOn (↑f) (↑e) (s ∩ e.source) ∧ x ∈ e.source) →\n IsLocalStructomorphWithinAt G (↑f) s x", "state_before": "H : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx : x ∈ f.source ∪ sᶜ\n⊢ IsLocalStructomorphWithinAt G (↑f) s x ↔\n x ∈ s → ∃ e, e ∈ G ∧ e.source ⊆ f.source ∧ EqOn (↑f) (↑e) (s ∩ e.source) ∧ x ∈ e.source", "tactic": "constructor" }, { "state_after": "case mp\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx : x ∈ f.source ∪ sᶜ\nhf : IsLocalStructomorphWithinAt G (↑f) s x\nh2x : x ∈ s\n⊢ ∃ e, e ∈ G ∧ e.source ⊆ f.source ∧ EqOn (↑f) (↑e) (s ∩ e.source) ∧ x ∈ e.source", "state_before": "case mp\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx : x ∈ f.source ∪ sᶜ\n⊢ IsLocalStructomorphWithinAt G (↑f) s x →\n x ∈ s → ∃ e, e ∈ G ∧ e.source ⊆ f.source ∧ EqOn (↑f) (↑e) (s ∩ e.source) ∧ x ∈ e.source", "tactic": "intro hf h2x" }, { "state_after": "case mp.intro.intro.intro\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne✝ e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx : x ∈ f.source ∪ sᶜ\nhf : IsLocalStructomorphWithinAt G (↑f) s x\nh2x : x ∈ s\ne : LocalHomeomorph H H\nhe : e ∈ G\nhfe : EqOn (↑f) (↑e.toLocalEquiv) (s ∩ e.source)\nhxe : x ∈ e.source\n⊢ ∃ e, e ∈ G ∧ e.source ⊆ f.source ∧ EqOn (↑f) (↑e) (s ∩ e.source) ∧ x ∈ e.source", "state_before": "case mp\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx : x ∈ f.source ∪ sᶜ\nhf : IsLocalStructomorphWithinAt G (↑f) s x\nh2x : x ∈ s\n⊢ ∃ e, e ∈ G ∧ e.source ⊆ f.source ∧ EqOn (↑f) (↑e) (s ∩ e.source) ∧ x ∈ e.source", "tactic": "obtain ⟨e, he, hfe, hxe⟩ := hf h2x" }, { "state_after": "case mp.intro.intro.intro.refine'_1\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne✝ e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx : x ∈ f.source ∪ sᶜ\nhf : IsLocalStructomorphWithinAt G (↑f) s x\nh2x : x ∈ s\ne : LocalHomeomorph H H\nhe : e ∈ G\nhfe : EqOn (↑f) (↑e.toLocalEquiv) (s ∩ e.source)\nhxe : x ∈ e.source\n⊢ (LocalHomeomorph.restr e f.source).toLocalEquiv.source ⊆ f.source\n\ncase mp.intro.intro.intro.refine'_2\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne✝ e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx : x ∈ f.source ∪ sᶜ\nhf : IsLocalStructomorphWithinAt G (↑f) s x\nh2x : x ∈ s\ne : LocalHomeomorph H H\nhe : e ∈ G\nhfe : EqOn (↑f) (↑e.toLocalEquiv) (s ∩ e.source)\nhxe : x ∈ e.source\n⊢ EqOn (↑f) (↑(LocalHomeomorph.restr e f.source)) (s ∩ (LocalHomeomorph.restr e f.source).toLocalEquiv.source)\n\ncase mp.intro.intro.intro.refine'_3\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne✝ e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx : x ∈ f.source ∪ sᶜ\nhf : IsLocalStructomorphWithinAt G (↑f) s x\nh2x : x ∈ s\ne : LocalHomeomorph H H\nhe : e ∈ G\nhfe : EqOn (↑f) (↑e.toLocalEquiv) (s ∩ e.source)\nhxe : x ∈ e.source\n⊢ x ∈ interior f.source", "state_before": "case mp.intro.intro.intro\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne✝ e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx : x ∈ f.source ∪ sᶜ\nhf : IsLocalStructomorphWithinAt G (↑f) s x\nh2x : x ∈ s\ne : LocalHomeomorph H H\nhe : e ∈ G\nhfe : EqOn (↑f) (↑e.toLocalEquiv) (s ∩ e.source)\nhxe : x ∈ e.source\n⊢ ∃ e, e ∈ G ∧ e.source ⊆ f.source ∧ EqOn (↑f) (↑e) (s ∩ e.source) ∧ x ∈ e.source", "tactic": "refine' ⟨e.restr f.source, closedUnderRestriction' he f.open_source, _, _, hxe, _⟩" }, { "state_after": "case mp.intro.intro.intro.refine'_1\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne✝ e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx : x ∈ f.source ∪ sᶜ\nhf : IsLocalStructomorphWithinAt G (↑f) s x\nh2x : x ∈ s\ne : LocalHomeomorph H H\nhe : e ∈ G\nhfe : EqOn (↑f) (↑e.toLocalEquiv) (s ∩ e.source)\nhxe : x ∈ e.source\n⊢ e.source ∩ interior f.source ⊆ f.source", "state_before": "case mp.intro.intro.intro.refine'_1\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne✝ e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx : x ∈ f.source ∪ sᶜ\nhf : IsLocalStructomorphWithinAt G (↑f) s x\nh2x : x ∈ s\ne : LocalHomeomorph H H\nhe : e ∈ G\nhfe : EqOn (↑f) (↑e.toLocalEquiv) (s ∩ e.source)\nhxe : x ∈ e.source\n⊢ (LocalHomeomorph.restr e f.source).toLocalEquiv.source ⊆ f.source", "tactic": "simp_rw [LocalHomeomorph.restr_source]" }, { "state_after": "no goals", "state_before": "case mp.intro.intro.intro.refine'_1\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne✝ e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx : x ∈ f.source ∪ sᶜ\nhf : IsLocalStructomorphWithinAt G (↑f) s x\nh2x : x ∈ s\ne : LocalHomeomorph H H\nhe : e ∈ G\nhfe : EqOn (↑f) (↑e.toLocalEquiv) (s ∩ e.source)\nhxe : x ∈ e.source\n⊢ e.source ∩ interior f.source ⊆ f.source", "tactic": "refine' (inter_subset_right _ _).trans interior_subset" }, { "state_after": "case mp.intro.intro.intro.refine'_2\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne✝ e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx : x ∈ f.source ∪ sᶜ\nhf : IsLocalStructomorphWithinAt G (↑f) s x\nh2x : x ∈ s\ne : LocalHomeomorph H H\nhe : e ∈ G\nhfe : EqOn (↑f) (↑e.toLocalEquiv) (s ∩ e.source)\nhxe : x ∈ e.source\nx' : H\nhx' : x' ∈ s ∩ (LocalHomeomorph.restr e f.source).toLocalEquiv.source\n⊢ ↑f x' = ↑(LocalHomeomorph.restr e f.source) x'", "state_before": "case mp.intro.intro.intro.refine'_2\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne✝ e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx : x ∈ f.source ∪ sᶜ\nhf : IsLocalStructomorphWithinAt G (↑f) s x\nh2x : x ∈ s\ne : LocalHomeomorph H H\nhe : e ∈ G\nhfe : EqOn (↑f) (↑e.toLocalEquiv) (s ∩ e.source)\nhxe : x ∈ e.source\n⊢ EqOn (↑f) (↑(LocalHomeomorph.restr e f.source)) (s ∩ (LocalHomeomorph.restr e f.source).toLocalEquiv.source)", "tactic": "intro x' hx'" }, { "state_after": "no goals", "state_before": "case mp.intro.intro.intro.refine'_2\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne✝ e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx : x ∈ f.source ∪ sᶜ\nhf : IsLocalStructomorphWithinAt G (↑f) s x\nh2x : x ∈ s\ne : LocalHomeomorph H H\nhe : e ∈ G\nhfe : EqOn (↑f) (↑e.toLocalEquiv) (s ∩ e.source)\nhxe : x ∈ e.source\nx' : H\nhx' : x' ∈ s ∩ (LocalHomeomorph.restr e f.source).toLocalEquiv.source\n⊢ ↑f x' = ↑(LocalHomeomorph.restr e f.source) x'", "tactic": "exact hfe ⟨hx'.1, hx'.2.1⟩" }, { "state_after": "case mp.intro.intro.intro.refine'_3\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne✝ e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx : x ∈ f.source ∪ sᶜ\nhf : IsLocalStructomorphWithinAt G (↑f) s x\nh2x : x ∈ s\ne : LocalHomeomorph H H\nhe : e ∈ G\nhfe : EqOn (↑f) (↑e.toLocalEquiv) (s ∩ e.source)\nhxe : x ∈ e.source\n⊢ x ∈ f.source", "state_before": "case mp.intro.intro.intro.refine'_3\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne✝ e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx : x ∈ f.source ∪ sᶜ\nhf : IsLocalStructomorphWithinAt G (↑f) s x\nh2x : x ∈ s\ne : LocalHomeomorph H H\nhe : e ∈ G\nhfe : EqOn (↑f) (↑e.toLocalEquiv) (s ∩ e.source)\nhxe : x ∈ e.source\n⊢ x ∈ interior f.source", "tactic": "rw [f.open_source.interior_eq]" }, { "state_after": "no goals", "state_before": "case mp.intro.intro.intro.refine'_3\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne✝ e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx : x ∈ f.source ∪ sᶜ\nhf : IsLocalStructomorphWithinAt G (↑f) s x\nh2x : x ∈ s\ne : LocalHomeomorph H H\nhe : e ∈ G\nhfe : EqOn (↑f) (↑e.toLocalEquiv) (s ∩ e.source)\nhxe : x ∈ e.source\n⊢ x ∈ f.source", "tactic": "exact Or.resolve_right hx (not_not.mpr h2x)" }, { "state_after": "case mpr\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx✝ : x ∈ f.source ∪ sᶜ\nhf : x ∈ s → ∃ e, e ∈ G ∧ e.source ⊆ f.source ∧ EqOn (↑f) (↑e) (s ∩ e.source) ∧ x ∈ e.source\nhx : x ∈ s\n⊢ ∃ e, e ∈ G ∧ EqOn (↑f) (↑e.toLocalEquiv) (s ∩ e.source) ∧ x ∈ e.source", "state_before": "case mpr\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx : x ∈ f.source ∪ sᶜ\n⊢ (x ∈ s → ∃ e, e ∈ G ∧ e.source ⊆ f.source ∧ EqOn (↑f) (↑e) (s ∩ e.source) ∧ x ∈ e.source) →\n IsLocalStructomorphWithinAt G (↑f) s x", "tactic": "intro hf hx" }, { "state_after": "case mpr.intro.intro.intro.intro\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne✝ e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx✝ : x ∈ f.source ∪ sᶜ\nhf : x ∈ s → ∃ e, e ∈ G ∧ e.source ⊆ f.source ∧ EqOn (↑f) (↑e) (s ∩ e.source) ∧ x ∈ e.source\nhx : x ∈ s\ne : LocalHomeomorph H H\nhe : e ∈ G\nleft✝ : e.source ⊆ f.source\nhfe : EqOn (↑f) (↑e) (s ∩ e.source)\nhxe : x ∈ e.source\n⊢ ∃ e, e ∈ G ∧ EqOn (↑f) (↑e.toLocalEquiv) (s ∩ e.source) ∧ x ∈ e.source", "state_before": "case mpr\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx✝ : x ∈ f.source ∪ sᶜ\nhf : x ∈ s → ∃ e, e ∈ G ∧ e.source ⊆ f.source ∧ EqOn (↑f) (↑e) (s ∩ e.source) ∧ x ∈ e.source\nhx : x ∈ s\n⊢ ∃ e, e ∈ G ∧ EqOn (↑f) (↑e.toLocalEquiv) (s ∩ e.source) ∧ x ∈ e.source", "tactic": "obtain ⟨e, he, _, hfe, hxe⟩ := hf hx" }, { "state_after": "no goals", "state_before": "case mpr.intro.intro.intro.intro\nH : Type u_1\nM : Type ?u.69060\nH' : Type ?u.69063\nM' : Type ?u.69066\nX : Type ?u.69069\ninst✝⁷ : TopologicalSpace H\ninst✝⁶ : TopologicalSpace M\ninst✝⁵ : ChartedSpace H M\ninst✝⁴ : TopologicalSpace H'\ninst✝³ : TopologicalSpace M'\ninst✝² : ChartedSpace H' M'\ninst✝¹ : TopologicalSpace X\nG✝ : StructureGroupoid H\nG' : StructureGroupoid H'\ne✝ e' : LocalHomeomorph M H\nf✝ f' : LocalHomeomorph M' H'\nP : (H → H') → Set H → H → Prop\ng g' : M → M'\ns✝ t : Set M\nx✝ : M\nQ : (H → H) → Set H → H → Prop\nG : StructureGroupoid H\ninst✝ : ClosedUnderRestriction G\nf : LocalHomeomorph H H\ns : Set H\nx : H\nhx✝ : x ∈ f.source ∪ sᶜ\nhf : x ∈ s → ∃ e, e ∈ G ∧ e.source ⊆ f.source ∧ EqOn (↑f) (↑e) (s ∩ e.source) ∧ x ∈ e.source\nhx : x ∈ s\ne : LocalHomeomorph H H\nhe : e ∈ G\nleft✝ : e.source ⊆ f.source\nhfe : EqOn (↑f) (↑e) (s ∩ e.source)\nhxe : x ∈ e.source\n⊢ ∃ e, e ∈ G ∧ EqOn (↑f) (↑e.toLocalEquiv) (s ∩ e.source) ∧ x ∈ e.source", "tactic": "exact ⟨e, he, hfe, hxe⟩" } ]
[ 626, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 608, 1 ]
Mathlib/Algebra/MonoidAlgebra/ToDirectSum.lean
AddMonoidAlgebra.toDirectSum_zero
[]
[ 125, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 124, 1 ]
Mathlib/Data/Set/Prod.lean
Set.prod_subset_preimage_fst
[]
[ 349, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 348, 1 ]
Mathlib/Data/Nat/Log.lean
Nat.clog_zero_right
[]
[ 265, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 264, 1 ]
Mathlib/Data/Multiset/FinsetOps.lean
Multiset.zero_ndinter
[]
[ 229, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 228, 1 ]
Mathlib/Topology/Semicontinuous.lean
LowerSemicontinuous.isOpen_preimage
[]
[ 265, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 263, 1 ]
Mathlib/Init/Function.lean
Function.Surjective.comp
[]
[ 76, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 73, 1 ]
Mathlib/Control/Applicative.lean
Functor.Comp.applicative_id_comp
[]
[ 127, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 124, 1 ]
Mathlib/Analysis/InnerProductSpace/Basic.lean
inner_self_ne_zero
[]
[ 618, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 617, 1 ]
Mathlib/Topology/Algebra/UniformMulAction.lean
UniformSpace.Completion.smul_def
[]
[ 149, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 148, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/ZeroMorphisms.lean
CategoryTheory.Limits.IsZero.eq_zero_of_tgt
[]
[ 186, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 185, 1 ]
Mathlib/Data/Polynomial/Eval.lean
Polynomial.map_sub
[]
[ 1231, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1230, 11 ]
Mathlib/Analysis/Calculus/FDeriv/Add.lean
HasStrictFDerivAt.const_add
[]
[ 254, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 252, 1 ]
Mathlib/Data/Real/Sqrt.lean
Real.sqrtAux_nonneg
[ { "state_after": "f : CauSeq ℚ abs\n⊢ 0 ≤ ↑↑(Nat.sqrt (Int.toNat (↑f 0).num)) / ↑↑(Nat.sqrt (↑f 0).den)", "state_before": "f : CauSeq ℚ abs\n⊢ 0 ≤ sqrtAux f 0", "tactic": "rw [sqrtAux, Rat.mkRat_eq, Rat.divInt_eq_div]" }, { "state_after": "no goals", "state_before": "f : CauSeq ℚ abs\n⊢ 0 ≤ ↑↑(Nat.sqrt (Int.toNat (↑f 0).num)) / ↑↑(Nat.sqrt (↑f 0).den)", "tactic": "apply div_nonneg <;>\nexact Int.cast_nonneg.2 (Int.ofNat_nonneg _)" } ]
[ 149, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 145, 1 ]
Mathlib/Computability/Reduce.lean
ManyOneDegree.le_add_right
[ { "state_after": "no goals", "state_before": "α : Type u\ninst✝⁵ : Primcodable α\ninst✝⁴ : Inhabited α\nβ : Type v\ninst✝³ : Primcodable β\ninst✝² : Inhabited β\nγ : Type w\ninst✝¹ : Primcodable γ\ninst✝ : Inhabited γ\nd₁ d₂ : ManyOneDegree\n⊢ ?m.115538 d₁ d₂ + d₂ ≤ d₁ + d₂", "tactic": "rfl" } ]
[ 505, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 504, 11 ]
Mathlib/Algebra/Order/Field/Basic.lean
sub_self_div_two
[ { "state_after": "ι : Type ?u.183426\nα : Type u_1\nβ : Type ?u.183432\ninst✝ : LinearOrderedField α\na✝ b c d : α\nn : ℤ\na : α\n⊢ a / 2 + a / 2 - a / 2 = a / 2", "state_before": "ι : Type ?u.183426\nα : Type u_1\nβ : Type ?u.183432\ninst✝ : LinearOrderedField α\na✝ b c d : α\nn : ℤ\na : α\n⊢ a - a / 2 = a / 2", "tactic": "suffices a / 2 + a / 2 - a / 2 = a / 2 by rwa [add_halves] at this" }, { "state_after": "no goals", "state_before": "ι : Type ?u.183426\nα : Type u_1\nβ : Type ?u.183432\ninst✝ : LinearOrderedField α\na✝ b c d : α\nn : ℤ\na : α\n⊢ a / 2 + a / 2 - a / 2 = a / 2", "tactic": "rw [add_sub_cancel]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.183426\nα : Type u_1\nβ : Type ?u.183432\ninst✝ : LinearOrderedField α\na✝ b c d : α\nn : ℤ\na : α\nthis : a / 2 + a / 2 - a / 2 = a / 2\n⊢ a - a / 2 = a / 2", "tactic": "rwa [add_halves] at this" } ]
[ 909, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 907, 1 ]
Mathlib/Algebra/Lie/Basic.lean
lie_sub
[ { "state_after": "no goals", "state_before": "R : Type u\nL : Type v\nM : Type w\nN : Type w₁\ninst✝¹⁰ : CommRing R\ninst✝⁹ : LieRing L\ninst✝⁸ : LieAlgebra R L\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R M\ninst✝⁵ : LieRingModule L M\ninst✝⁴ : LieModule R L M\ninst✝³ : AddCommGroup N\ninst✝² : Module R N\ninst✝¹ : LieRingModule L N\ninst✝ : LieModule R L N\nt : R\nx y z : L\nm n : M\n⊢ ⁅x, m - n⁆ = ⁅x, m⁆ - ⁅x, n⁆", "tactic": "simp [sub_eq_add_neg]" } ]
[ 188, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 188, 1 ]
Mathlib/Algebra/Associated.lean
irreducible_units_mul
[ { "state_after": "α : Type u_1\nβ : Type ?u.87841\nγ : Type ?u.87844\nδ : Type ?u.87847\ninst✝ : Monoid α\na : αˣ\nb : α\n⊢ ¬IsUnit b →\n ((∀ (a_2 b_1 : α), ↑a * b = a_2 * b_1 → IsUnit a_2 ∨ IsUnit b_1) ↔\n ∀ (a b_1 : α), b = a * b_1 → IsUnit a ∨ IsUnit b_1)", "state_before": "α : Type u_1\nβ : Type ?u.87841\nγ : Type ?u.87844\nδ : Type ?u.87847\ninst✝ : Monoid α\na : αˣ\nb : α\n⊢ Irreducible (↑a * b) ↔ Irreducible b", "tactic": "simp only [irreducible_iff, Units.isUnit_units_mul, and_congr_right_iff]" }, { "state_after": "case refine'_1\nα : Type u_1\nβ : Type ?u.87841\nγ : Type ?u.87844\nδ : Type ?u.87847\ninst✝ : Monoid α\na : αˣ\nb : α\nx✝ : ¬IsUnit b\nh : ∀ (a_1 b_1 : α), ↑a * b = a_1 * b_1 → IsUnit a_1 ∨ IsUnit b_1\nA B : α\nHAB : b = A * B\n⊢ IsUnit A ∨ IsUnit B\n\ncase refine'_2\nα : Type u_1\nβ : Type ?u.87841\nγ : Type ?u.87844\nδ : Type ?u.87847\ninst✝ : Monoid α\na : αˣ\nb : α\nx✝ : ¬IsUnit b\nh : ∀ (a b_1 : α), b = a * b_1 → IsUnit a ∨ IsUnit b_1\nA B : α\nHAB : ↑a * b = A * B\n⊢ IsUnit A ∨ IsUnit B", "state_before": "α : Type u_1\nβ : Type ?u.87841\nγ : Type ?u.87844\nδ : Type ?u.87847\ninst✝ : Monoid α\na : αˣ\nb : α\n⊢ ¬IsUnit b →\n ((∀ (a_2 b_1 : α), ↑a * b = a_2 * b_1 → IsUnit a_2 ∨ IsUnit b_1) ↔\n ∀ (a b_1 : α), b = a * b_1 → IsUnit a ∨ IsUnit b_1)", "tactic": "refine' fun _ => ⟨fun h A B HAB => _, fun h A B HAB => _⟩" }, { "state_after": "case refine'_1\nα : Type u_1\nβ : Type ?u.87841\nγ : Type ?u.87844\nδ : Type ?u.87847\ninst✝ : Monoid α\na : αˣ\nb : α\nx✝ : ¬IsUnit b\nh : ∀ (a_1 b_1 : α), ↑a * b = a_1 * b_1 → IsUnit a_1 ∨ IsUnit b_1\nA B : α\nHAB : b = A * B\n⊢ IsUnit (↑a * A) ∨ IsUnit B", "state_before": "case refine'_1\nα : Type u_1\nβ : Type ?u.87841\nγ : Type ?u.87844\nδ : Type ?u.87847\ninst✝ : Monoid α\na : αˣ\nb : α\nx✝ : ¬IsUnit b\nh : ∀ (a_1 b_1 : α), ↑a * b = a_1 * b_1 → IsUnit a_1 ∨ IsUnit b_1\nA B : α\nHAB : b = A * B\n⊢ IsUnit A ∨ IsUnit B", "tactic": "rw [← a.isUnit_units_mul]" }, { "state_after": "case refine'_1.a\nα : Type u_1\nβ : Type ?u.87841\nγ : Type ?u.87844\nδ : Type ?u.87847\ninst✝ : Monoid α\na : αˣ\nb : α\nx✝ : ¬IsUnit b\nh : ∀ (a_1 b_1 : α), ↑a * b = a_1 * b_1 → IsUnit a_1 ∨ IsUnit b_1\nA B : α\nHAB : b = A * B\n⊢ ↑a * b = ↑a * A * B", "state_before": "case refine'_1\nα : Type u_1\nβ : Type ?u.87841\nγ : Type ?u.87844\nδ : Type ?u.87847\ninst✝ : Monoid α\na : αˣ\nb : α\nx✝ : ¬IsUnit b\nh : ∀ (a_1 b_1 : α), ↑a * b = a_1 * b_1 → IsUnit a_1 ∨ IsUnit b_1\nA B : α\nHAB : b = A * B\n⊢ IsUnit (↑a * A) ∨ IsUnit B", "tactic": "apply h" }, { "state_after": "no goals", "state_before": "case refine'_1.a\nα : Type u_1\nβ : Type ?u.87841\nγ : Type ?u.87844\nδ : Type ?u.87847\ninst✝ : Monoid α\na : αˣ\nb : α\nx✝ : ¬IsUnit b\nh : ∀ (a_1 b_1 : α), ↑a * b = a_1 * b_1 → IsUnit a_1 ∨ IsUnit b_1\nA B : α\nHAB : b = A * B\n⊢ ↑a * b = ↑a * A * B", "tactic": "rw [mul_assoc, ← HAB]" }, { "state_after": "case refine'_2\nα : Type u_1\nβ : Type ?u.87841\nγ : Type ?u.87844\nδ : Type ?u.87847\ninst✝ : Monoid α\na : αˣ\nb : α\nx✝ : ¬IsUnit b\nh : ∀ (a b_1 : α), b = a * b_1 → IsUnit a ∨ IsUnit b_1\nA B : α\nHAB : ↑a * b = A * B\n⊢ IsUnit (↑a⁻¹ * A) ∨ IsUnit B", "state_before": "case refine'_2\nα : Type u_1\nβ : Type ?u.87841\nγ : Type ?u.87844\nδ : Type ?u.87847\ninst✝ : Monoid α\na : αˣ\nb : α\nx✝ : ¬IsUnit b\nh : ∀ (a b_1 : α), b = a * b_1 → IsUnit a ∨ IsUnit b_1\nA B : α\nHAB : ↑a * b = A * B\n⊢ IsUnit A ∨ IsUnit B", "tactic": "rw [← a⁻¹.isUnit_units_mul]" }, { "state_after": "case refine'_2.a\nα : Type u_1\nβ : Type ?u.87841\nγ : Type ?u.87844\nδ : Type ?u.87847\ninst✝ : Monoid α\na : αˣ\nb : α\nx✝ : ¬IsUnit b\nh : ∀ (a b_1 : α), b = a * b_1 → IsUnit a ∨ IsUnit b_1\nA B : α\nHAB : ↑a * b = A * B\n⊢ b = ↑a⁻¹ * A * B", "state_before": "case refine'_2\nα : Type u_1\nβ : Type ?u.87841\nγ : Type ?u.87844\nδ : Type ?u.87847\ninst✝ : Monoid α\na : αˣ\nb : α\nx✝ : ¬IsUnit b\nh : ∀ (a b_1 : α), b = a * b_1 → IsUnit a ∨ IsUnit b_1\nA B : α\nHAB : ↑a * b = A * B\n⊢ IsUnit (↑a⁻¹ * A) ∨ IsUnit B", "tactic": "apply h" }, { "state_after": "no goals", "state_before": "case refine'_2.a\nα : Type u_1\nβ : Type ?u.87841\nγ : Type ?u.87844\nδ : Type ?u.87847\ninst✝ : Monoid α\na : αˣ\nb : α\nx✝ : ¬IsUnit b\nh : ∀ (a b_1 : α), b = a * b_1 → IsUnit a ∨ IsUnit b_1\nA B : α\nHAB : ↑a * b = A * B\n⊢ b = ↑a⁻¹ * A * B", "tactic": "rw [mul_assoc, ← HAB, Units.inv_mul_cancel_left]" } ]
[ 258, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 250, 1 ]
Mathlib/SetTheory/Cardinal/Basic.lean
Cardinal.mk_range_eq
[]
[ 2017, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2016, 1 ]
Mathlib/Data/Nat/Order/Basic.lean
Nat.zero_eq_mul
[ { "state_after": "no goals", "state_before": "m n k l : ℕ\n⊢ 0 = m * n ↔ m = 0 ∨ n = 0", "tactic": "rw [eq_comm, Nat.mul_eq_zero]" } ]
[ 102, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 102, 11 ]
Mathlib/LinearAlgebra/StdBasis.lean
LinearMap.proj_stdBasis_ne
[]
[ 98, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 97, 1 ]
Mathlib/Topology/Constructions.lean
Dense.quotient
[]
[ 194, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 192, 1 ]
Mathlib/GroupTheory/Commutator.lean
commutatorElement_self
[]
[ 58, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 57, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.mul_lt_mul
[ { "state_after": "case intro.intro\nα : Type ?u.152394\nβ : Type ?u.152397\na b c d : ℝ≥0∞\nr p q : ℝ≥0\nac : a < c\nbd : b < d\na' : ℝ≥0\naa' : a < ↑a'\na'c : ↑a' < c\n⊢ a * b < c * d", "state_before": "α : Type ?u.152394\nβ : Type ?u.152397\na b c d : ℝ≥0∞\nr p q : ℝ≥0\nac : a < c\nbd : b < d\n⊢ a * b < c * d", "tactic": "rcases lt_iff_exists_nnreal_btwn.1 ac with ⟨a', aa', a'c⟩" }, { "state_after": "case intro.intro.intro\nα : Type ?u.152394\nβ : Type ?u.152397\nb c d : ℝ≥0∞\nr p q : ℝ≥0\nbd : b < d\na' : ℝ≥0\na'c : ↑a' < c\na : ℝ≥0\nac : ↑a < c\naa' : ↑a < ↑a'\n⊢ ↑a * b < c * d", "state_before": "case intro.intro\nα : Type ?u.152394\nβ : Type ?u.152397\na b c d : ℝ≥0∞\nr p q : ℝ≥0\nac : a < c\nbd : b < d\na' : ℝ≥0\naa' : a < ↑a'\na'c : ↑a' < c\n⊢ a * b < c * d", "tactic": "lift a to ℝ≥0 using ne_top_of_lt aa'" }, { "state_after": "case intro.intro.intro.intro.intro\nα : Type ?u.152394\nβ : Type ?u.152397\nb c d : ℝ≥0∞\nr p q : ℝ≥0\nbd : b < d\na' : ℝ≥0\na'c : ↑a' < c\na : ℝ≥0\nac : ↑a < c\naa' : ↑a < ↑a'\nb' : ℝ≥0\nbb' : b < ↑b'\nb'd : ↑b' < d\n⊢ ↑a * b < c * d", "state_before": "case intro.intro.intro\nα : Type ?u.152394\nβ : Type ?u.152397\nb c d : ℝ≥0∞\nr p q : ℝ≥0\nbd : b < d\na' : ℝ≥0\na'c : ↑a' < c\na : ℝ≥0\nac : ↑a < c\naa' : ↑a < ↑a'\n⊢ ↑a * b < c * d", "tactic": "rcases lt_iff_exists_nnreal_btwn.1 bd with ⟨b', bb', b'd⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nα : Type ?u.152394\nβ : Type ?u.152397\nc d : ℝ≥0∞\nr p q a' : ℝ≥0\na'c : ↑a' < c\na : ℝ≥0\nac : ↑a < c\naa' : ↑a < ↑a'\nb' : ℝ≥0\nb'd : ↑b' < d\nb : ℝ≥0\nbd : ↑b < d\nbb' : ↑b < ↑b'\n⊢ ↑a * ↑b < c * d", "state_before": "case intro.intro.intro.intro.intro\nα : Type ?u.152394\nβ : Type ?u.152397\nb c d : ℝ≥0∞\nr p q : ℝ≥0\nbd : b < d\na' : ℝ≥0\na'c : ↑a' < c\na : ℝ≥0\nac : ↑a < c\naa' : ↑a < ↑a'\nb' : ℝ≥0\nbb' : b < ↑b'\nb'd : ↑b' < d\n⊢ ↑a * b < c * d", "tactic": "lift b to ℝ≥0 using ne_top_of_lt bb'" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nα : Type ?u.152394\nβ : Type ?u.152397\nc d : ℝ≥0∞\nr p q a' : ℝ≥0\na'c : ↑a' < c\na : ℝ≥0\nac : ↑a < c\nb' : ℝ≥0\nb'd : ↑b' < d\nb : ℝ≥0\nbd : ↑b < d\naa' : a < a'\nbb' : b < b'\n⊢ ↑(a * b) < c * d", "state_before": "case intro.intro.intro.intro.intro.intro\nα : Type ?u.152394\nβ : Type ?u.152397\nc d : ℝ≥0∞\nr p q a' : ℝ≥0\na'c : ↑a' < c\na : ℝ≥0\nac : ↑a < c\naa' : ↑a < ↑a'\nb' : ℝ≥0\nb'd : ↑b' < d\nb : ℝ≥0\nbd : ↑b < d\nbb' : ↑b < ↑b'\n⊢ ↑a * ↑b < c * d", "tactic": "norm_cast at *" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro\nα : Type ?u.152394\nβ : Type ?u.152397\nc d : ℝ≥0∞\nr p q a' : ℝ≥0\na'c : ↑a' < c\na : ℝ≥0\nac : ↑a < c\nb' : ℝ≥0\nb'd : ↑b' < d\nb : ℝ≥0\nbd : ↑b < d\naa' : a < a'\nbb' : b < b'\n⊢ ↑(a * b) < c * d", "tactic": "calc\n ↑(a * b) < ↑(a' * b') := coe_lt_coe.2 (mul_lt_mul₀ aa' bb')\n _ = ↑a' * ↑b' := coe_mul\n _ ≤ c * d := mul_le_mul' a'c.le b'd.le" } ]
[ 971, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 962, 1 ]
Mathlib/Algebra/Order/Hom/Ring.lean
OrderRingHom.coe_ringHom_apply
[]
[ 236, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 235, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Equivalence.lean
CategoryTheory.Equivalence.hasInitial_iff
[]
[ 36, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 34, 1 ]
Mathlib/MeasureTheory/MeasurableSpace.lean
Measurable.dite
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.74519\nδ : Type ?u.74522\nδ' : Type ?u.74525\nι : Sort uι\ns t u : Set α\nm : MeasurableSpace α\nmβ : MeasurableSpace β\ninst✝ : (x : α) → Decidable (x ∈ s)\nf : ↑s → β\nhf : Measurable f\ng : ↑(sᶜ) → β\nhg : Measurable g\nhs : MeasurableSet s\n⊢ Measurable (restrict s fun x => if hx : x ∈ s then f { val := x, property := hx } else g { val := x, property := hx })", "tactic": "simpa" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.74519\nδ : Type ?u.74522\nδ' : Type ?u.74525\nι : Sort uι\ns t u : Set α\nm : MeasurableSpace α\nmβ : MeasurableSpace β\ninst✝ : (x : α) → Decidable (x ∈ s)\nf : ↑s → β\nhf : Measurable f\ng : ↑(sᶜ) → β\nhg : Measurable g\nhs : MeasurableSet s\n⊢ Measurable\n (restrict (sᶜ) fun x => if hx : x ∈ s then f { val := x, property := hx } else g { val := x, property := hx })", "tactic": "simpa" } ]
[ 612, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 609, 1 ]
Mathlib/NumberTheory/ModularForms/CongruenceSubgroups.lean
Gamma_zero_bot
[ { "state_after": "case h\nN : ℕ\nx✝ : SL(2, ℤ)\n⊢ x✝ ∈ Gamma 0 ↔ x✝ ∈ ⊥", "state_before": "N : ℕ\n⊢ Gamma 0 = ⊥", "tactic": "ext" }, { "state_after": "case h\nN : ℕ\nx✝ : SL(2, ℤ)\n⊢ ↑(↑x✝ 0 0) = 1 ∧ ↑(↑x✝ 0 1) = 0 ∧ ↑(↑x✝ 1 0) = 0 ∧ ↑(↑x✝ 1 1) = 1 ↔ x✝ = 1", "state_before": "case h\nN : ℕ\nx✝ : SL(2, ℤ)\n⊢ x✝ ∈ Gamma 0 ↔ x✝ ∈ ⊥", "tactic": "simp only [Gamma_mem, coe_matrix_coe, Int.coe_castRingHom, map_apply, Int.cast_id,\n Subgroup.mem_bot]" }, { "state_after": "case h.mp\nN : ℕ\nx✝ : SL(2, ℤ)\n⊢ ↑(↑x✝ 0 0) = 1 ∧ ↑(↑x✝ 0 1) = 0 ∧ ↑(↑x✝ 1 0) = 0 ∧ ↑(↑x✝ 1 1) = 1 → x✝ = 1\n\ncase h.mpr\nN : ℕ\nx✝ : SL(2, ℤ)\n⊢ x✝ = 1 → ↑(↑x✝ 0 0) = 1 ∧ ↑(↑x✝ 0 1) = 0 ∧ ↑(↑x✝ 1 0) = 0 ∧ ↑(↑x✝ 1 1) = 1", "state_before": "case h\nN : ℕ\nx✝ : SL(2, ℤ)\n⊢ ↑(↑x✝ 0 0) = 1 ∧ ↑(↑x✝ 0 1) = 0 ∧ ↑(↑x✝ 1 0) = 0 ∧ ↑(↑x✝ 1 1) = 1 ↔ x✝ = 1", "tactic": "constructor" }, { "state_after": "case h.mp\nN : ℕ\nx✝ : SL(2, ℤ)\nh : ↑(↑x✝ 0 0) = 1 ∧ ↑(↑x✝ 0 1) = 0 ∧ ↑(↑x✝ 1 0) = 0 ∧ ↑(↑x✝ 1 1) = 1\n⊢ x✝ = 1", "state_before": "case h.mp\nN : ℕ\nx✝ : SL(2, ℤ)\n⊢ ↑(↑x✝ 0 0) = 1 ∧ ↑(↑x✝ 0 1) = 0 ∧ ↑(↑x✝ 1 0) = 0 ∧ ↑(↑x✝ 1 1) = 1 → x✝ = 1", "tactic": "intro h" }, { "state_after": "case h.mp.a\nN : ℕ\nx✝ : SL(2, ℤ)\nh : ↑(↑x✝ 0 0) = 1 ∧ ↑(↑x✝ 0 1) = 0 ∧ ↑(↑x✝ 1 0) = 0 ∧ ↑(↑x✝ 1 1) = 1\ni : Fin 2\n⊢ ∀ (j : Fin 2), ↑x✝ i j = ↑1 i j", "state_before": "case h.mp\nN : ℕ\nx✝ : SL(2, ℤ)\nh : ↑(↑x✝ 0 0) = 1 ∧ ↑(↑x✝ 0 1) = 0 ∧ ↑(↑x✝ 1 0) = 0 ∧ ↑(↑x✝ 1 1) = 1\n⊢ x✝ = 1", "tactic": "ext i" }, { "state_after": "case h.mp.a\nN : ℕ\nx✝ : SL(2, ℤ)\nh : ↑(↑x✝ 0 0) = 1 ∧ ↑(↑x✝ 0 1) = 0 ∧ ↑(↑x✝ 1 0) = 0 ∧ ↑(↑x✝ 1 1) = 1\ni j : Fin 2\n⊢ ↑x✝ i j = ↑1 i j", "state_before": "case h.mp.a\nN : ℕ\nx✝ : SL(2, ℤ)\nh : ↑(↑x✝ 0 0) = 1 ∧ ↑(↑x✝ 0 1) = 0 ∧ ↑(↑x✝ 1 0) = 0 ∧ ↑(↑x✝ 1 1) = 1\ni : Fin 2\n⊢ ∀ (j : Fin 2), ↑x✝ i j = ↑1 i j", "tactic": "intro j" }, { "state_after": "case h.mp.a.head.head\nN : ℕ\nx✝ : SL(2, ℤ)\nh : ↑(↑x✝ 0 0) = 1 ∧ ↑(↑x✝ 0 1) = 0 ∧ ↑(↑x✝ 1 0) = 0 ∧ ↑(↑x✝ 1 1) = 1\n⊢ ↑x✝ { val := 0, isLt := (_ : 0 < 2) } { val := 0, isLt := (_ : 0 < 2) } =\n ↑1 { val := 0, isLt := (_ : 0 < 2) } { val := 0, isLt := (_ : 0 < 2) }\n\ncase h.mp.a.head.tail.head\nN : ℕ\nx✝ : SL(2, ℤ)\nh : ↑(↑x✝ 0 0) = 1 ∧ ↑(↑x✝ 0 1) = 0 ∧ ↑(↑x✝ 1 0) = 0 ∧ ↑(↑x✝ 1 1) = 1\n⊢ ↑x✝ { val := 0, isLt := (_ : 0 < 2) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } =\n ↑1 { val := 0, isLt := (_ : 0 < 2) } { val := 1, isLt := (_ : (fun a => a < 2) 1) }\n\ncase h.mp.a.tail.head.head\nN : ℕ\nx✝ : SL(2, ℤ)\nh : ↑(↑x✝ 0 0) = 1 ∧ ↑(↑x✝ 0 1) = 0 ∧ ↑(↑x✝ 1 0) = 0 ∧ ↑(↑x✝ 1 1) = 1\n⊢ ↑x✝ { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 0, isLt := (_ : 0 < 2) } =\n ↑1 { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 0, isLt := (_ : 0 < 2) }\n\ncase h.mp.a.tail.head.tail.head\nN : ℕ\nx✝ : SL(2, ℤ)\nh : ↑(↑x✝ 0 0) = 1 ∧ ↑(↑x✝ 0 1) = 0 ∧ ↑(↑x✝ 1 0) = 0 ∧ ↑(↑x✝ 1 1) = 1\n⊢ ↑x✝ { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } =\n ↑1 { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 1, isLt := (_ : (fun a => a < 2) 1) }", "state_before": "case h.mp.a\nN : ℕ\nx✝ : SL(2, ℤ)\nh : ↑(↑x✝ 0 0) = 1 ∧ ↑(↑x✝ 0 1) = 0 ∧ ↑(↑x✝ 1 0) = 0 ∧ ↑(↑x✝ 1 1) = 1\ni j : Fin 2\n⊢ ↑x✝ i j = ↑1 i j", "tactic": "fin_cases i <;> fin_cases j <;> simp only [h]" }, { "state_after": "no goals", "state_before": "case h.mp.a.head.head\nN : ℕ\nx✝ : SL(2, ℤ)\nh : ↑(↑x✝ 0 0) = 1 ∧ ↑(↑x✝ 0 1) = 0 ∧ ↑(↑x✝ 1 0) = 0 ∧ ↑(↑x✝ 1 1) = 1\n⊢ ↑x✝ { val := 0, isLt := (_ : 0 < 2) } { val := 0, isLt := (_ : 0 < 2) } =\n ↑1 { val := 0, isLt := (_ : 0 < 2) } { val := 0, isLt := (_ : 0 < 2) }\n\ncase h.mp.a.head.tail.head\nN : ℕ\nx✝ : SL(2, ℤ)\nh : ↑(↑x✝ 0 0) = 1 ∧ ↑(↑x✝ 0 1) = 0 ∧ ↑(↑x✝ 1 0) = 0 ∧ ↑(↑x✝ 1 1) = 1\n⊢ ↑x✝ { val := 0, isLt := (_ : 0 < 2) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } =\n ↑1 { val := 0, isLt := (_ : 0 < 2) } { val := 1, isLt := (_ : (fun a => a < 2) 1) }\n\ncase h.mp.a.tail.head.head\nN : ℕ\nx✝ : SL(2, ℤ)\nh : ↑(↑x✝ 0 0) = 1 ∧ ↑(↑x✝ 0 1) = 0 ∧ ↑(↑x✝ 1 0) = 0 ∧ ↑(↑x✝ 1 1) = 1\n⊢ ↑x✝ { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 0, isLt := (_ : 0 < 2) } =\n ↑1 { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 0, isLt := (_ : 0 < 2) }\n\ncase h.mp.a.tail.head.tail.head\nN : ℕ\nx✝ : SL(2, ℤ)\nh : ↑(↑x✝ 0 0) = 1 ∧ ↑(↑x✝ 0 1) = 0 ∧ ↑(↑x✝ 1 0) = 0 ∧ ↑(↑x✝ 1 1) = 1\n⊢ ↑x✝ { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } =\n ↑1 { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 1, isLt := (_ : (fun a => a < 2) 1) }", "tactic": "exacts [h.1, h.2.1, h.2.2.1, h.2.2.2]" }, { "state_after": "case h.mpr\nN : ℕ\nx✝ : SL(2, ℤ)\nh : x✝ = 1\n⊢ ↑(↑x✝ 0 0) = 1 ∧ ↑(↑x✝ 0 1) = 0 ∧ ↑(↑x✝ 1 0) = 0 ∧ ↑(↑x✝ 1 1) = 1", "state_before": "case h.mpr\nN : ℕ\nx✝ : SL(2, ℤ)\n⊢ x✝ = 1 → ↑(↑x✝ 0 0) = 1 ∧ ↑(↑x✝ 0 1) = 0 ∧ ↑(↑x✝ 1 0) = 0 ∧ ↑(↑x✝ 1 1) = 1", "tactic": "intro h" }, { "state_after": "no goals", "state_before": "case h.mpr\nN : ℕ\nx✝ : SL(2, ℤ)\nh : x✝ = 1\n⊢ ↑(↑x✝ 0 0) = 1 ∧ ↑(↑x✝ 0 1) = 0 ∧ ↑(↑x✝ 1 0) = 0 ∧ ↑(↑x✝ 1 1) = 1", "tactic": "simp [h]" } ]
[ 91, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 1 ]
Mathlib/Analysis/Calculus/Deriv/Comp.lean
HasDerivAtFilter.scomp
[ { "state_after": "no goals", "state_before": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : NormedSpace 𝕜 F\nE : Type w\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx : 𝕜\ns t : Set 𝕜\nL L₁ L₂ : Filter 𝕜\n𝕜' : Type u_1\ninst✝³ : NontriviallyNormedField 𝕜'\ninst✝² : NormedAlgebra 𝕜 𝕜'\ninst✝¹ : NormedSpace 𝕜' F\ninst✝ : IsScalarTower 𝕜 𝕜' F\ns' t' : Set 𝕜'\nh : 𝕜 → 𝕜'\nh₁ : 𝕜 → 𝕜\nh₂ : 𝕜' → 𝕜'\nh' h₂' : 𝕜'\nh₁' : 𝕜\ng₁ : 𝕜' → F\ng₁' : F\nL' : Filter 𝕜'\nhg : HasDerivAtFilter g₁ g₁' (h x) L'\nhh : HasDerivAtFilter h h' x L\nhL : Tendsto h L L'\n⊢ HasDerivAtFilter (g₁ ∘ h) (h' • g₁') x L", "tactic": "simpa using ((hg.restrictScalars 𝕜).comp x hh hL).hasDerivAtFilter" } ]
[ 82, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 79, 1 ]
Mathlib/Data/Set/Basic.lean
Set.eq_of_mem_singleton
[]
[ 1277, 4 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1276, 1 ]
Mathlib/Data/Finset/Prod.lean
Finset.offDiag_inter
[ { "state_after": "α : Type u_1\nβ : Type ?u.122500\nγ : Type ?u.122503\ninst✝ : DecidableEq α\ns t : Finset α\nx : α × α\n⊢ Set.offDiag (↑s ∩ ↑t) = Set.offDiag ↑s ∩ Set.offDiag ↑t", "state_before": "α : Type u_1\nβ : Type ?u.122500\nγ : Type ?u.122503\ninst✝ : DecidableEq α\ns t : Finset α\nx : α × α\n⊢ ↑(offDiag (s ∩ t)) = ↑(offDiag s ∩ offDiag t)", "tactic": "push_cast" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.122500\nγ : Type ?u.122503\ninst✝ : DecidableEq α\ns t : Finset α\nx : α × α\n⊢ Set.offDiag (↑s ∩ ↑t) = Set.offDiag ↑s ∩ Set.offDiag ↑t", "tactic": "exact Set.offDiag_inter _ _" } ]
[ 389, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 386, 1 ]
Mathlib/Algebra/Module/Submodule/Lattice.lean
Submodule.mem_iInf
[ { "state_after": "R : Type u_2\nS : Type ?u.144585\nM : Type u_3\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : Module S M\ninst✝¹ : SMul S R\ninst✝ : IsScalarTower S R M\np✝ q : Submodule R M\nι : Sort u_1\np : ι → Submodule R M\nx : M\n⊢ (∀ (i : ι), x ∈ ↑(p i)) ↔ ∀ (i : ι), x ∈ p i", "state_before": "R : Type u_2\nS : Type ?u.144585\nM : Type u_3\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : Module S M\ninst✝¹ : SMul S R\ninst✝ : IsScalarTower S R M\np✝ q : Submodule R M\nι : Sort u_1\np : ι → Submodule R M\nx : M\n⊢ (x ∈ ⨅ (i : ι), p i) ↔ ∀ (i : ι), x ∈ p i", "tactic": "rw [← SetLike.mem_coe, iInf_coe, Set.mem_iInter]" }, { "state_after": "no goals", "state_before": "R : Type u_2\nS : Type ?u.144585\nM : Type u_3\ninst✝⁶ : Semiring R\ninst✝⁵ : Semiring S\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : Module S M\ninst✝¹ : SMul S R\ninst✝ : IsScalarTower S R M\np✝ q : Submodule R M\nι : Sort u_1\np : ι → Submodule R M\nx : M\n⊢ (∀ (i : ι), x ∈ ↑(p i)) ↔ ∀ (i : ι), x ∈ p i", "tactic": "rfl" } ]
[ 269, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 268, 1 ]
Mathlib/Algebra/CubicDiscriminant.lean
Cubic.splits_iff_roots_eq_three
[ { "state_after": "no goals", "state_before": "R : Type ?u.714741\nS : Type ?u.714744\nF : Type u_1\nK : Type u_2\nP : Cubic F\ninst✝¹ : Field F\ninst✝ : Field K\nφ : F →+* K\nx y z : K\nha : P.a ≠ 0\n⊢ Splits φ (toPoly P) ↔ ∃ x y z, roots (map φ P) = {x, y, z}", "tactic": "rw [splits_iff_card_roots ha, card_eq_three]" } ]
[ 521, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 519, 1 ]
Mathlib/Topology/Algebra/Order/Group.lean
Continuous.abs
[]
[ 83, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 82, 11 ]
Mathlib/Deprecated/Group.lean
RingHom.to_isAddMonoidHom
[]
[ 381, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 379, 1 ]
Mathlib/NumberTheory/Padics/PadicVal.lean
padicValNat.pow
[ { "state_after": "no goals", "state_before": "p a b : ℕ\nhp : Fact (Nat.Prime p)\nn : ℕ\nha : a ≠ 0\n⊢ padicValNat p (a ^ n) = n * padicValNat p a", "tactic": "simpa only [← @Nat.cast_inj ℤ, push_cast] using padicValRat.pow (Nat.cast_ne_zero.mpr ha)" } ]
[ 427, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 426, 11 ]
Mathlib/MeasureTheory/Integral/SetToL1.lean
MeasureTheory.L1.setToL1_indicatorConstLp
[ { "state_after": "α : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1189632\nG : Type ?u.1189635\n𝕜 : Type ?u.1189638\np : ℝ≥0∞\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : NormedAddCommGroup F\ninst✝⁷ : NormedSpace ℝ F\ninst✝⁶ : NormedAddCommGroup F'\ninst✝⁵ : NormedSpace ℝ F'\ninst✝⁴ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝³ : NontriviallyNormedField 𝕜\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : NormedSpace 𝕜 F\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nhT : DominatedFinMeasAdditive μ T C\ns : Set α\nhs : MeasurableSet s\nhμs : ↑↑μ s ≠ ⊤\nx : E\n⊢ ↑(setToL1 hT) ↑(indicatorConst 1 hs hμs x) = ↑(T s) x", "state_before": "α : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1189632\nG : Type ?u.1189635\n𝕜 : Type ?u.1189638\np : ℝ≥0∞\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : NormedAddCommGroup F\ninst✝⁷ : NormedSpace ℝ F\ninst✝⁶ : NormedAddCommGroup F'\ninst✝⁵ : NormedSpace ℝ F'\ninst✝⁴ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝³ : NontriviallyNormedField 𝕜\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : NormedSpace 𝕜 F\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nhT : DominatedFinMeasAdditive μ T C\ns : Set α\nhs : MeasurableSet s\nhμs : ↑↑μ s ≠ ⊤\nx : E\n⊢ ↑(setToL1 hT) (indicatorConstLp 1 hs hμs x) = ↑(T s) x", "tactic": "rw [← Lp.simpleFunc.coe_indicatorConst hs hμs x]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1189632\nG : Type ?u.1189635\n𝕜 : Type ?u.1189638\np : ℝ≥0∞\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : NormedAddCommGroup F\ninst✝⁷ : NormedSpace ℝ F\ninst✝⁶ : NormedAddCommGroup F'\ninst✝⁵ : NormedSpace ℝ F'\ninst✝⁴ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝³ : NontriviallyNormedField 𝕜\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : NormedSpace 𝕜 F\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nhT : DominatedFinMeasAdditive μ T C\ns : Set α\nhs : MeasurableSet s\nhμs : ↑↑μ s ≠ ⊤\nx : E\n⊢ ↑(setToL1 hT) ↑(indicatorConst 1 hs hμs x) = ↑(T s) x", "tactic": "exact setToL1_simpleFunc_indicatorConst hT hs hμs.lt_top x" } ]
[ 1153, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1149, 1 ]
Mathlib/Analysis/SpecialFunctions/Complex/Arg.lean
Complex.abs_mul_exp_arg_mul_I
[ { "state_after": "case inl\n\n⊢ ↑(↑abs 0) * exp (↑(arg 0) * I) = 0\n\ncase inr\nx : ℂ\nhx : x ≠ 0\n⊢ ↑(↑abs x) * exp (↑(arg x) * I) = x", "state_before": "x : ℂ\n⊢ ↑(↑abs x) * exp (↑(arg x) * I) = x", "tactic": "rcases eq_or_ne x 0 with (rfl | hx)" }, { "state_after": "no goals", "state_before": "case inl\n\n⊢ ↑(↑abs 0) * exp (↑(arg 0) * I) = 0", "tactic": "simp" }, { "state_after": "case inr\nx : ℂ\nhx : x ≠ 0\nthis : ↑abs x ≠ 0\n⊢ ↑(↑abs x) * exp (↑(arg x) * I) = x", "state_before": "case inr\nx : ℂ\nhx : x ≠ 0\n⊢ ↑(↑abs x) * exp (↑(arg x) * I) = x", "tactic": "have : abs x ≠ 0 := abs.ne_zero hx" }, { "state_after": "no goals", "state_before": "case inr\nx : ℂ\nhx : x ≠ 0\nthis : ↑abs x ≠ 0\n⊢ ↑(↑abs x) * exp (↑(arg x) * I) = x", "tactic": "ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]" } ]
[ 64, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 60, 1 ]
Mathlib/NumberTheory/ArithmeticFunction.lean
Nat.ArithmeticFunction.cardDistinctFactors_apply_prime
[ { "state_after": "no goals", "state_before": "R : Type ?u.570430\np : ℕ\nhp : Prime p\n⊢ ↑ω p = 1", "tactic": "rw [← pow_one p, cardDistinctFactors_apply_prime_pow hp one_ne_zero]" } ]
[ 939, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 938, 1 ]
Mathlib/MeasureTheory/Integral/Bochner.lean
MeasureTheory.integral_norm_eq_lintegral_nnnorm
[ { "state_after": "α : Type u_2\nE : Type ?u.1049026\nF : Type ?u.1049029\n𝕜 : Type ?u.1049032\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace ℝ E\ninst✝⁹ : CompleteSpace E\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedSpace 𝕜 E\ninst✝⁶ : SMulCommClass ℝ 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : CompleteSpace F\nf✝ g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1051723\ninst✝² : TopologicalSpace X\ninst✝¹ : FirstCountableTopology X\nG : Type u_1\ninst✝ : NormedAddCommGroup G\nf : α → G\nhf : AEStronglyMeasurable f μ\n⊢ ENNReal.toReal (∫⁻ (a : α), ENNReal.ofReal ‖f a‖ ∂μ) = ENNReal.toReal (∫⁻ (x : α), ↑‖f x‖₊ ∂μ)\n\nα : Type u_2\nE : Type ?u.1049026\nF : Type ?u.1049029\n𝕜 : Type ?u.1049032\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace ℝ E\ninst✝⁹ : CompleteSpace E\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedSpace 𝕜 E\ninst✝⁶ : SMulCommClass ℝ 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : CompleteSpace F\nf✝ g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1051723\ninst✝² : TopologicalSpace X\ninst✝¹ : FirstCountableTopology X\nG : Type u_1\ninst✝ : NormedAddCommGroup G\nf : α → G\nhf : AEStronglyMeasurable f μ\n⊢ 0 ≤ᵐ[μ] fun x => ‖f x‖", "state_before": "α : Type u_2\nE : Type ?u.1049026\nF : Type ?u.1049029\n𝕜 : Type ?u.1049032\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace ℝ E\ninst✝⁹ : CompleteSpace E\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedSpace 𝕜 E\ninst✝⁶ : SMulCommClass ℝ 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : CompleteSpace F\nf✝ g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1051723\ninst✝² : TopologicalSpace X\ninst✝¹ : FirstCountableTopology X\nG : Type u_1\ninst✝ : NormedAddCommGroup G\nf : α → G\nhf : AEStronglyMeasurable f μ\n⊢ (∫ (x : α), ‖f x‖ ∂μ) = ENNReal.toReal (∫⁻ (x : α), ↑‖f x‖₊ ∂μ)", "tactic": "rw [integral_eq_lintegral_of_nonneg_ae _ hf.norm]" }, { "state_after": "no goals", "state_before": "α : Type u_2\nE : Type ?u.1049026\nF : Type ?u.1049029\n𝕜 : Type ?u.1049032\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace ℝ E\ninst✝⁹ : CompleteSpace E\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedSpace 𝕜 E\ninst✝⁶ : SMulCommClass ℝ 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : CompleteSpace F\nf✝ g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1051723\ninst✝² : TopologicalSpace X\ninst✝¹ : FirstCountableTopology X\nG : Type u_1\ninst✝ : NormedAddCommGroup G\nf : α → G\nhf : AEStronglyMeasurable f μ\n⊢ ENNReal.toReal (∫⁻ (a : α), ENNReal.ofReal ‖f a‖ ∂μ) = ENNReal.toReal (∫⁻ (x : α), ↑‖f x‖₊ ∂μ)", "tactic": "simp_rw [ofReal_norm_eq_coe_nnnorm]" }, { "state_after": "α : Type u_2\nE : Type ?u.1049026\nF : Type ?u.1049029\n𝕜 : Type ?u.1049032\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace ℝ E\ninst✝⁹ : CompleteSpace E\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedSpace 𝕜 E\ninst✝⁶ : SMulCommClass ℝ 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : CompleteSpace F\nf✝ g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1051723\ninst✝² : TopologicalSpace X\ninst✝¹ : FirstCountableTopology X\nG : Type u_1\ninst✝ : NormedAddCommGroup G\nf : α → G\nhf : AEStronglyMeasurable f μ\n⊢ ∀ (a : α), OfNat.ofNat 0 a ≤ (fun x => ‖f x‖) a", "state_before": "α : Type u_2\nE : Type ?u.1049026\nF : Type ?u.1049029\n𝕜 : Type ?u.1049032\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace ℝ E\ninst✝⁹ : CompleteSpace E\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedSpace 𝕜 E\ninst✝⁶ : SMulCommClass ℝ 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : CompleteSpace F\nf✝ g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1051723\ninst✝² : TopologicalSpace X\ninst✝¹ : FirstCountableTopology X\nG : Type u_1\ninst✝ : NormedAddCommGroup G\nf : α → G\nhf : AEStronglyMeasurable f μ\n⊢ 0 ≤ᵐ[μ] fun x => ‖f x‖", "tactic": "refine' ae_of_all _ _" }, { "state_after": "no goals", "state_before": "α : Type u_2\nE : Type ?u.1049026\nF : Type ?u.1049029\n𝕜 : Type ?u.1049032\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace ℝ E\ninst✝⁹ : CompleteSpace E\ninst✝⁸ : NontriviallyNormedField 𝕜\ninst✝⁷ : NormedSpace 𝕜 E\ninst✝⁶ : SMulCommClass ℝ 𝕜 E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : CompleteSpace F\nf✝ g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1051723\ninst✝² : TopologicalSpace X\ninst✝¹ : FirstCountableTopology X\nG : Type u_1\ninst✝ : NormedAddCommGroup G\nf : α → G\nhf : AEStronglyMeasurable f μ\n⊢ ∀ (a : α), OfNat.ofNat 0 a ≤ (fun x => ‖f x‖) a", "tactic": "simp_rw [Pi.zero_apply, norm_nonneg, imp_true_iff]" } ]
[ 1143, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1139, 1 ]
Mathlib/Algebra/Homology/Homotopy.lean
Homotopy.nullHomotopicMap_comp
[ { "state_after": "case h\nι : Type u_1\nV : Type u\ninst✝¹ : Category V\ninst✝ : Preadditive V\nc : ComplexShape ι\nC D E : HomologicalComplex V c\nf g✝ : C ⟶ D\nh k : D ⟶ E\ni : ι\nhom : (i j : ι) → X C i ⟶ X D j\ng : D ⟶ E\nn : ι\n⊢ Hom.f (nullHomotopicMap hom ≫ g) n = Hom.f (nullHomotopicMap fun i j => hom i j ≫ Hom.f g j) n", "state_before": "ι : Type u_1\nV : Type u\ninst✝¹ : Category V\ninst✝ : Preadditive V\nc : ComplexShape ι\nC D E : HomologicalComplex V c\nf g✝ : C ⟶ D\nh k : D ⟶ E\ni : ι\nhom : (i j : ι) → X C i ⟶ X D j\ng : D ⟶ E\n⊢ nullHomotopicMap hom ≫ g = nullHomotopicMap fun i j => hom i j ≫ Hom.f g j", "tactic": "ext n" }, { "state_after": "case h\nι : Type u_1\nV : Type u\ninst✝¹ : Category V\ninst✝ : Preadditive V\nc : ComplexShape ι\nC D E : HomologicalComplex V c\nf g✝ : C ⟶ D\nh k : D ⟶ E\ni : ι\nhom : (i j : ι) → X C i ⟶ X D j\ng : D ⟶ E\nn : ι\n⊢ (dFrom C n ≫ hom (ComplexShape.next c n) n + hom n (ComplexShape.prev c n) ≫ dTo D n) ≫ Hom.f g n =\n dFrom C n ≫ hom (ComplexShape.next c n) n ≫ Hom.f g n +\n (hom n (ComplexShape.prev c n) ≫ Hom.f g (ComplexShape.prev c n)) ≫ dTo E n", "state_before": "case h\nι : Type u_1\nV : Type u\ninst✝¹ : Category V\ninst✝ : Preadditive V\nc : ComplexShape ι\nC D E : HomologicalComplex V c\nf g✝ : C ⟶ D\nh k : D ⟶ E\ni : ι\nhom : (i j : ι) → X C i ⟶ X D j\ng : D ⟶ E\nn : ι\n⊢ Hom.f (nullHomotopicMap hom ≫ g) n = Hom.f (nullHomotopicMap fun i j => hom i j ≫ Hom.f g j) n", "tactic": "dsimp [nullHomotopicMap, fromNext, toPrev, AddMonoidHom.mk'_apply]" }, { "state_after": "no goals", "state_before": "case h\nι : Type u_1\nV : Type u\ninst✝¹ : Category V\ninst✝ : Preadditive V\nc : ComplexShape ι\nC D E : HomologicalComplex V c\nf g✝ : C ⟶ D\nh k : D ⟶ E\ni : ι\nhom : (i j : ι) → X C i ⟶ X D j\ng : D ⟶ E\nn : ι\n⊢ (dFrom C n ≫ hom (ComplexShape.next c n) n + hom n (ComplexShape.prev c n) ≫ dTo D n) ≫ Hom.f g n =\n dFrom C n ≫ hom (ComplexShape.next c n) n ≫ Hom.f g n +\n (hom n (ComplexShape.prev c n) ≫ Hom.f g (ComplexShape.prev c n)) ≫ dTo E n", "tactic": "simp only [Preadditive.add_comp, Category.assoc, g.comm]" } ]
[ 275, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 271, 1 ]
Mathlib/MeasureTheory/Integral/SetToL1.lean
MeasureTheory.setToFun_mono_left
[]
[ 1481, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1478, 1 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.IsBigOWith.sup'
[]
[ 639, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 636, 1 ]
Mathlib/CategoryTheory/Preadditive/Basic.lean
CategoryTheory.Preadditive.epi_of_cokernel_iso_zero
[]
[ 290, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 288, 1 ]
Mathlib/LinearAlgebra/Basis.lean
Basis.prod_apply_inr_snd
[ { "state_after": "case h\nι : Type u_3\nι' : Type u_4\nR : Type u_5\nR₂ : Type ?u.583731\nK : Type ?u.583734\nM : Type u_2\nM' : Type u_1\nM'' : Type ?u.583743\nV : Type u\nV' : Type ?u.583748\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid M'\ninst✝ : Module R M'\nb b₁ : Basis ι R M\ni✝¹ : ι\nc : R\nx : M\nb' : Basis ι' R M'\ni✝ i : ι'\n⊢ ↑(↑b'.repr (↑(Basis.prod b b') (Sum.inr i✝)).snd) i = ↑(↑b'.repr (↑b' i✝)) i", "state_before": "ι : Type u_3\nι' : Type u_4\nR : Type u_5\nR₂ : Type ?u.583731\nK : Type ?u.583734\nM : Type u_2\nM' : Type u_1\nM'' : Type ?u.583743\nV : Type u\nV' : Type ?u.583748\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid M'\ninst✝ : Module R M'\nb b₁ : Basis ι R M\ni✝ : ι\nc : R\nx : M\nb' : Basis ι' R M'\ni : ι'\n⊢ ↑b'.repr (↑(Basis.prod b b') (Sum.inr i)).snd = ↑b'.repr (↑b' i)", "tactic": "ext i" }, { "state_after": "case h\nι : Type u_3\nι' : Type u_4\nR : Type u_5\nR₂ : Type ?u.583731\nK : Type ?u.583734\nM : Type u_2\nM' : Type u_1\nM'' : Type ?u.583743\nV : Type u\nV' : Type ?u.583748\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid M'\ninst✝ : Module R M'\nb b₁ : Basis ι R M\ni✝¹ : ι\nc : R\nx : M\nb' : Basis ι' R M'\ni✝ i : ι'\n⊢ ↑(Finsupp.single (Sum.inr i✝) 1) (Sum.inr i) = ↑(Finsupp.single i✝ 1) i", "state_before": "case h\nι : Type u_3\nι' : Type u_4\nR : Type u_5\nR₂ : Type ?u.583731\nK : Type ?u.583734\nM : Type u_2\nM' : Type u_1\nM'' : Type ?u.583743\nV : Type u\nV' : Type ?u.583748\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid M'\ninst✝ : Module R M'\nb b₁ : Basis ι R M\ni✝¹ : ι\nc : R\nx : M\nb' : Basis ι' R M'\ni✝ i : ι'\n⊢ ↑(↑b'.repr (↑(Basis.prod b b') (Sum.inr i✝)).snd) i = ↑(↑b'.repr (↑b' i✝)) i", "tactic": "simp only [Basis.prod, Basis.coe_ofRepr, LinearEquiv.symm_trans_apply, LinearEquiv.prod_symm,\n LinearEquiv.prod_apply, b'.repr.apply_symm_apply, LinearEquiv.symm_symm, repr_self,\n Equiv.toFun_as_coe, Finsupp.snd_sumFinsuppLEquivProdFinsupp]" }, { "state_after": "no goals", "state_before": "case h\nι : Type u_3\nι' : Type u_4\nR : Type u_5\nR₂ : Type ?u.583731\nK : Type ?u.583734\nM : Type u_2\nM' : Type u_1\nM'' : Type ?u.583743\nV : Type u\nV' : Type ?u.583748\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid M'\ninst✝ : Module R M'\nb b₁ : Basis ι R M\ni✝¹ : ι\nc : R\nx : M\nb' : Basis ι' R M'\ni✝ i : ι'\n⊢ ↑(Finsupp.single (Sum.inr i✝) 1) (Sum.inr i) = ↑(Finsupp.single i✝ 1) i", "tactic": "apply Finsupp.single_apply_left Sum.inr_injective" } ]
[ 761, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 755, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.list_cycles_perm_list_cycles
[ { "state_after": "ι : Type ?u.2673155\nα✝ : Type ?u.2673158\nβ : Type ?u.2673161\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl₁ l₂ : List (Perm α)\nh₀ : List.prod l₁ = List.prod l₂\nh₁l₁ : ∀ (σ : Perm α), σ ∈ l₁ → IsCycle σ\nh₁l₂ : ∀ (σ : Perm α), σ ∈ l₂ → IsCycle σ\nh₂l₁ : List.Pairwise Disjoint l₁\nh₂l₂ : List.Pairwise Disjoint l₂\nσ : Perm α\n⊢ σ ∈ l₁ ↔ σ ∈ l₂", "state_before": "ι : Type ?u.2673155\nα✝ : Type ?u.2673158\nβ : Type ?u.2673161\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl₁ l₂ : List (Perm α)\nh₀ : List.prod l₁ = List.prod l₂\nh₁l₁ : ∀ (σ : Perm α), σ ∈ l₁ → IsCycle σ\nh₁l₂ : ∀ (σ : Perm α), σ ∈ l₂ → IsCycle σ\nh₂l₁ : List.Pairwise Disjoint l₁\nh₂l₂ : List.Pairwise Disjoint l₂\n⊢ l₁ ~ l₂", "tactic": "refine'\n (List.perm_ext (nodup_of_pairwise_disjoint_cycles h₁l₁ h₂l₁)\n (nodup_of_pairwise_disjoint_cycles h₁l₂ h₂l₂)).mpr\n fun σ => _" }, { "state_after": "case pos\nι : Type ?u.2673155\nα✝ : Type ?u.2673158\nβ : Type ?u.2673161\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl₁ l₂ : List (Perm α)\nh₀ : List.prod l₁ = List.prod l₂\nh₁l₁ : ∀ (σ : Perm α), σ ∈ l₁ → IsCycle σ\nh₁l₂ : ∀ (σ : Perm α), σ ∈ l₂ → IsCycle σ\nh₂l₁ : List.Pairwise Disjoint l₁\nh₂l₂ : List.Pairwise Disjoint l₂\nσ : Perm α\nhσ : IsCycle σ\n⊢ σ ∈ l₁ ↔ σ ∈ l₂\n\ncase neg\nι : Type ?u.2673155\nα✝ : Type ?u.2673158\nβ : Type ?u.2673161\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl₁ l₂ : List (Perm α)\nh₀ : List.prod l₁ = List.prod l₂\nh₁l₁ : ∀ (σ : Perm α), σ ∈ l₁ → IsCycle σ\nh₁l₂ : ∀ (σ : Perm α), σ ∈ l₂ → IsCycle σ\nh₂l₁ : List.Pairwise Disjoint l₁\nh₂l₂ : List.Pairwise Disjoint l₂\nσ : Perm α\nhσ : ¬IsCycle σ\n⊢ σ ∈ l₁ ↔ σ ∈ l₂", "state_before": "ι : Type ?u.2673155\nα✝ : Type ?u.2673158\nβ : Type ?u.2673161\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl₁ l₂ : List (Perm α)\nh₀ : List.prod l₁ = List.prod l₂\nh₁l₁ : ∀ (σ : Perm α), σ ∈ l₁ → IsCycle σ\nh₁l₂ : ∀ (σ : Perm α), σ ∈ l₂ → IsCycle σ\nh₂l₁ : List.Pairwise Disjoint l₁\nh₂l₂ : List.Pairwise Disjoint l₂\nσ : Perm α\n⊢ σ ∈ l₁ ↔ σ ∈ l₂", "tactic": "by_cases hσ : σ.IsCycle" }, { "state_after": "case pos\nι : Type ?u.2673155\nα✝ : Type ?u.2673158\nβ : Type ?u.2673161\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl₁ l₂ : List (Perm α)\nh₀ : List.prod l₁ = List.prod l₂\nh₁l₁ : ∀ (σ : Perm α), σ ∈ l₁ → IsCycle σ\nh₁l₂ : ∀ (σ : Perm α), σ ∈ l₂ → IsCycle σ\nh₂l₁ : List.Pairwise Disjoint l₁\nh₂l₂ : List.Pairwise Disjoint l₂\nσ : Perm α\nhσ : IsCycle σ\nx✝ : ∃ x, ¬↑σ x = ↑1 x\n⊢ σ ∈ l₁ ↔ σ ∈ l₂", "state_before": "case pos\nι : Type ?u.2673155\nα✝ : Type ?u.2673158\nβ : Type ?u.2673161\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl₁ l₂ : List (Perm α)\nh₀ : List.prod l₁ = List.prod l₂\nh₁l₁ : ∀ (σ : Perm α), σ ∈ l₁ → IsCycle σ\nh₁l₂ : ∀ (σ : Perm α), σ ∈ l₂ → IsCycle σ\nh₂l₁ : List.Pairwise Disjoint l₁\nh₂l₂ : List.Pairwise Disjoint l₂\nσ : Perm α\nhσ : IsCycle σ\n⊢ σ ∈ l₁ ↔ σ ∈ l₂", "tactic": "obtain _ := not_forall.mp (mt ext hσ.ne_one)" }, { "state_after": "no goals", "state_before": "case pos\nι : Type ?u.2673155\nα✝ : Type ?u.2673158\nβ : Type ?u.2673161\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl₁ l₂ : List (Perm α)\nh₀ : List.prod l₁ = List.prod l₂\nh₁l₁ : ∀ (σ : Perm α), σ ∈ l₁ → IsCycle σ\nh₁l₂ : ∀ (σ : Perm α), σ ∈ l₂ → IsCycle σ\nh₂l₁ : List.Pairwise Disjoint l₁\nh₂l₂ : List.Pairwise Disjoint l₂\nσ : Perm α\nhσ : IsCycle σ\nx✝ : ∃ x, ¬↑σ x = ↑1 x\n⊢ σ ∈ l₁ ↔ σ ∈ l₂", "tactic": "rw [mem_list_cycles_iff h₁l₁ h₂l₁, mem_list_cycles_iff h₁l₂ h₂l₂, h₀]" }, { "state_after": "no goals", "state_before": "case neg\nι : Type ?u.2673155\nα✝ : Type ?u.2673158\nβ : Type ?u.2673161\ninst✝¹ : DecidableEq α✝\nα : Type u_1\ninst✝ : Finite α\nl₁ l₂ : List (Perm α)\nh₀ : List.prod l₁ = List.prod l₂\nh₁l₁ : ∀ (σ : Perm α), σ ∈ l₁ → IsCycle σ\nh₁l₂ : ∀ (σ : Perm α), σ ∈ l₂ → IsCycle σ\nh₂l₁ : List.Pairwise Disjoint l₁\nh₂l₂ : List.Pairwise Disjoint l₂\nσ : Perm α\nhσ : ¬IsCycle σ\n⊢ σ ∈ l₁ ↔ σ ∈ l₂", "tactic": "exact iff_of_false (mt (h₁l₁ σ) hσ) (mt (h₁l₂ σ) hσ)" } ]
[ 1325, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1313, 1 ]
Mathlib/Init/Data/Int/Basic.lean
Int.ofNat_add_out
[]
[ 48, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 48, 11 ]
Mathlib/Topology/DenseEmbedding.lean
DenseInducing.prod
[]
[ 103, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 99, 11 ]
Mathlib/Topology/Inseparable.lean
IsClosed.not_specializes
[]
[ 136, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 135, 1 ]
Mathlib/MeasureTheory/Function/L1Space.lean
MeasureTheory.lintegral_norm_eq_lintegral_edist
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.688837\nδ : Type ?u.688840\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf : α → β\n⊢ (∫⁻ (a : α), ENNReal.ofReal ‖f a‖ ∂μ) = ∫⁻ (a : α), edist (f a) 0 ∂μ", "tactic": "simp only [ofReal_norm_eq_coe_nnnorm, edist_eq_coe_nnnorm]" } ]
[ 76, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 74, 1 ]
Mathlib/GroupTheory/Commutator.lean
Subgroup.commutator_bot_left
[]
[ 160, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 159, 1 ]
Mathlib/LinearAlgebra/LinearIndependent.lean
exists_finite_card_le_of_finite_of_linearIndependent_of_span
[ { "state_after": "ι : Type u'\nι' : Type ?u.1312198\nR : Type ?u.1312201\nK : Type u_1\nM : Type ?u.1312207\nM' : Type ?u.1312210\nM'' : Type ?u.1312213\nV : Type u\nV' : Type ?u.1312218\ninst✝⁴ : DivisionRing K\ninst✝³ : AddCommGroup V\ninst✝² : AddCommGroup V'\ninst✝¹ : Module K V\ninst✝ : Module K V'\nv : ι → V\ns t : Set V\nx y z : V\nht : Set.Finite t\nhs : LinearIndependent K fun x => ↑x\nhst : s ⊆ ↑(span K t)\n⊢ s ⊆ ↑(span K t)", "state_before": "ι : Type u'\nι' : Type ?u.1312198\nR : Type ?u.1312201\nK : Type u_1\nM : Type ?u.1312207\nM' : Type ?u.1312210\nM'' : Type ?u.1312213\nV : Type u\nV' : Type ?u.1312218\ninst✝⁴ : DivisionRing K\ninst✝³ : AddCommGroup V\ninst✝² : AddCommGroup V'\ninst✝¹ : Module K V\ninst✝ : Module K V'\nv : ι → V\ns t : Set V\nx y z : V\nht : Set.Finite t\nhs : LinearIndependent K fun x => ↑x\nhst : s ⊆ ↑(span K t)\n⊢ s ⊆ ↑(span K ↑(Finite.toFinset ht))", "tactic": "simp" }, { "state_after": "no goals", "state_before": "ι : Type u'\nι' : Type ?u.1312198\nR : Type ?u.1312201\nK : Type u_1\nM : Type ?u.1312207\nM' : Type ?u.1312210\nM'' : Type ?u.1312213\nV : Type u\nV' : Type ?u.1312218\ninst✝⁴ : DivisionRing K\ninst✝³ : AddCommGroup V\ninst✝² : AddCommGroup V'\ninst✝¹ : Module K V\ninst✝ : Module K V'\nv : ι → V\ns t : Set V\nx y z : V\nht : Set.Finite t\nhs : LinearIndependent K fun x => ↑x\nhst : s ⊆ ↑(span K t)\n⊢ s ⊆ ↑(span K t)", "tactic": "assumption" }, { "state_after": "ι : Type u'\nι' : Type ?u.1312198\nR : Type ?u.1312201\nK : Type u_1\nM : Type ?u.1312207\nM' : Type ?u.1312210\nM'' : Type ?u.1312213\nV : Type u\nV' : Type ?u.1312218\ninst✝⁴ : DivisionRing K\ninst✝³ : AddCommGroup V\ninst✝² : AddCommGroup V'\ninst✝¹ : Module K V\ninst✝ : Module K V'\nv : ι → V\ns t : Set V\nx y z : V\nht : Set.Finite t\nhs : LinearIndependent K fun x => ↑x\nhst : s ⊆ ↑(span K t)\nthis✝ : s ⊆ ↑(span K ↑(Finite.toFinset ht))\nu : Finset V\n_hust : ↑u ⊆ s ∪ ↑(Finite.toFinset ht)\nhsu : s ⊆ ↑u\nEq : Finset.card u = Finset.card (Finite.toFinset ht)\nthis : Set.Finite s\n⊢ Finset.card (Finite.toFinset this) ≤ Finset.card u", "state_before": "ι : Type u'\nι' : Type ?u.1312198\nR : Type ?u.1312201\nK : Type u_1\nM : Type ?u.1312207\nM' : Type ?u.1312210\nM'' : Type ?u.1312213\nV : Type u\nV' : Type ?u.1312218\ninst✝⁴ : DivisionRing K\ninst✝³ : AddCommGroup V\ninst✝² : AddCommGroup V'\ninst✝¹ : Module K V\ninst✝ : Module K V'\nv : ι → V\ns t : Set V\nx y z : V\nht : Set.Finite t\nhs : LinearIndependent K fun x => ↑x\nhst : s ⊆ ↑(span K t)\nthis✝ : s ⊆ ↑(span K ↑(Finite.toFinset ht))\nu : Finset V\n_hust : ↑u ⊆ s ∪ ↑(Finite.toFinset ht)\nhsu : s ⊆ ↑u\nEq : Finset.card u = Finset.card (Finite.toFinset ht)\nthis : Set.Finite s\n⊢ Finset.card (Finite.toFinset this) ≤ Finset.card (Finite.toFinset ht)", "tactic": "rw [← Eq]" }, { "state_after": "no goals", "state_before": "ι : Type u'\nι' : Type ?u.1312198\nR : Type ?u.1312201\nK : Type u_1\nM : Type ?u.1312207\nM' : Type ?u.1312210\nM'' : Type ?u.1312213\nV : Type u\nV' : Type ?u.1312218\ninst✝⁴ : DivisionRing K\ninst✝³ : AddCommGroup V\ninst✝² : AddCommGroup V'\ninst✝¹ : Module K V\ninst✝ : Module K V'\nv : ι → V\ns t : Set V\nx y z : V\nht : Set.Finite t\nhs : LinearIndependent K fun x => ↑x\nhst : s ⊆ ↑(span K t)\nthis✝ : s ⊆ ↑(span K ↑(Finite.toFinset ht))\nu : Finset V\n_hust : ↑u ⊆ s ∪ ↑(Finite.toFinset ht)\nhsu : s ⊆ ↑u\nEq : Finset.card u = Finset.card (Finite.toFinset ht)\nthis : Set.Finite s\n⊢ Finset.card (Finite.toFinset this) ≤ Finset.card u", "tactic": "exact Finset.card_le_of_subset <| Finset.coe_subset.mp <| by simp [hsu]" }, { "state_after": "no goals", "state_before": "ι : Type u'\nι' : Type ?u.1312198\nR : Type ?u.1312201\nK : Type u_1\nM : Type ?u.1312207\nM' : Type ?u.1312210\nM'' : Type ?u.1312213\nV : Type u\nV' : Type ?u.1312218\ninst✝⁴ : DivisionRing K\ninst✝³ : AddCommGroup V\ninst✝² : AddCommGroup V'\ninst✝¹ : Module K V\ninst✝ : Module K V'\nv : ι → V\ns t : Set V\nx y z : V\nht : Set.Finite t\nhs : LinearIndependent K fun x => ↑x\nhst : s ⊆ ↑(span K t)\nthis✝ : s ⊆ ↑(span K ↑(Finite.toFinset ht))\nu : Finset V\n_hust : ↑u ⊆ s ∪ ↑(Finite.toFinset ht)\nhsu : s ⊆ ↑u\nEq : Finset.card u = Finset.card (Finite.toFinset ht)\nthis : Set.Finite s\n⊢ ↑(Finite.toFinset this) ⊆ ↑u", "tactic": "simp [hsu]" } ]
[ 1405, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1399, 1 ]
Mathlib/Algebra/Hom/Ring.lean
RingHom.coe_copy
[]
[ 510, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 509, 1 ]
Mathlib/Order/SymmDiff.lean
bot_bihimp
[ { "state_after": "no goals", "state_before": "ι : Type ?u.57742\nα : Type u_1\nβ : Type ?u.57748\nπ : ι → Type ?u.57753\ninst✝ : HeytingAlgebra α\na : α\n⊢ ⊥ ⇔ a = aᶜ", "tactic": "simp [bihimp]" } ]
[ 373, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 373, 1 ]
Mathlib/Algebra/Order/Ring/Lemmas.lean
mul_lt_iff_lt_one_left
[ { "state_after": "no goals", "state_before": "α : Type u_1\na b c d : α\ninst✝⁴ : MulOneClass α\ninst✝³ : Zero α\ninst✝² : Preorder α\ninst✝¹ : MulPosStrictMono α\ninst✝ : MulPosReflectLT α\nb0 : 0 < b\n⊢ a * b < b ↔ a * b < 1 * b", "tactic": "rw [one_mul]" } ]
[ 660, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 658, 1 ]
Mathlib/Data/Set/Pairwise/Lattice.lean
Set.pairwise_sUnion
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.513\nγ : Type ?u.516\nι : Type ?u.519\nι' : Type ?u.522\nr✝ p q : α → α → Prop\nf g : ι → α\ns✝ t u : Set α\na b : α\nr : α → α → Prop\ns : Set (Set α)\nh : DirectedOn (fun x x_1 => x ⊆ x_1) s\n⊢ Set.Pairwise (⋃₀ s) r ↔ ∀ (a : Set α), a ∈ s → Set.Pairwise a r", "tactic": "rw [sUnion_eq_iUnion, pairwise_iUnion h.directed_val, SetCoe.forall]" } ]
[ 45, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 43, 1 ]
Mathlib/Algebra/Divisibility/Units.lean
isUnit_iff_forall_dvd
[]
[ 132, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 131, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineEquiv.lean
AffineMap.lineMap_vsub
[]
[ 640, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 638, 1 ]
Mathlib/Data/Set/Intervals/Basic.lean
Set.Ioo_subset_Ioc_self
[]
[ 511, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 511, 1 ]
Mathlib/RingTheory/DedekindDomain/Factorization.lean
Associates.finprod_ne_zero
[ { "state_after": "R : Type u_1\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : IsDedekindDomain R\nK : Type ?u.240355\ninst✝² : Field K\ninst✝¹ : Algebra R K\ninst✝ : IsFractionRing R K\nv : HeightOneSpectrum R\nI : Ideal R\n⊢ (if h : Set.Finite (mulSupport fun v => maxPowDividing v I) then ∏ i in Finite.toFinset h, maxPowDividing i I\n else 1) ≠\n 0", "state_before": "R : Type u_1\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : IsDedekindDomain R\nK : Type ?u.240355\ninst✝² : Field K\ninst✝¹ : Algebra R K\ninst✝ : IsFractionRing R K\nv : HeightOneSpectrum R\nI : Ideal R\n⊢ Associates.mk (∏ᶠ (v : HeightOneSpectrum R), maxPowDividing v I) ≠ 0", "tactic": "rw [Associates.mk_ne_zero, finprod_def]" }, { "state_after": "case inl\nR : Type u_1\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : IsDedekindDomain R\nK : Type ?u.240355\ninst✝² : Field K\ninst✝¹ : Algebra R K\ninst✝ : IsFractionRing R K\nv : HeightOneSpectrum R\nI : Ideal R\nh✝ : Set.Finite (mulSupport fun v => maxPowDividing v I)\n⊢ ∏ v in Finite.toFinset h✝, maxPowDividing v I ≠ 0\n\ncase inr\nR : Type u_1\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : IsDedekindDomain R\nK : Type ?u.240355\ninst✝² : Field K\ninst✝¹ : Algebra R K\ninst✝ : IsFractionRing R K\nv : HeightOneSpectrum R\nI : Ideal R\nh✝ : ¬Set.Finite (mulSupport fun v => maxPowDividing v I)\n⊢ 1 ≠ 0", "state_before": "R : Type u_1\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : IsDedekindDomain R\nK : Type ?u.240355\ninst✝² : Field K\ninst✝¹ : Algebra R K\ninst✝ : IsFractionRing R K\nv : HeightOneSpectrum R\nI : Ideal R\n⊢ (if h : Set.Finite (mulSupport fun v => maxPowDividing v I) then ∏ i in Finite.toFinset h, maxPowDividing i I\n else 1) ≠\n 0", "tactic": "split_ifs" }, { "state_after": "case inl\nR : Type u_1\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : IsDedekindDomain R\nK : Type ?u.240355\ninst✝² : Field K\ninst✝¹ : Algebra R K\ninst✝ : IsFractionRing R K\nv : HeightOneSpectrum R\nI : Ideal R\nh✝ : Set.Finite (mulSupport fun v => maxPowDividing v I)\n⊢ ∀ (a : HeightOneSpectrum R), a ∈ Finite.toFinset h✝ → maxPowDividing a I ≠ 0", "state_before": "case inl\nR : Type u_1\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : IsDedekindDomain R\nK : Type ?u.240355\ninst✝² : Field K\ninst✝¹ : Algebra R K\ninst✝ : IsFractionRing R K\nv : HeightOneSpectrum R\nI : Ideal R\nh✝ : Set.Finite (mulSupport fun v => maxPowDividing v I)\n⊢ ∏ v in Finite.toFinset h✝, maxPowDividing v I ≠ 0", "tactic": "rw [Finset.prod_ne_zero_iff]" }, { "state_after": "case inl\nR : Type u_1\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : IsDedekindDomain R\nK : Type ?u.240355\ninst✝² : Field K\ninst✝¹ : Algebra R K\ninst✝ : IsFractionRing R K\nv✝ : HeightOneSpectrum R\nI : Ideal R\nh✝ : Set.Finite (mulSupport fun v => maxPowDividing v I)\nv : HeightOneSpectrum R\na✝ : v ∈ Finite.toFinset h✝\n⊢ maxPowDividing v I ≠ 0", "state_before": "case inl\nR : Type u_1\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : IsDedekindDomain R\nK : Type ?u.240355\ninst✝² : Field K\ninst✝¹ : Algebra R K\ninst✝ : IsFractionRing R K\nv : HeightOneSpectrum R\nI : Ideal R\nh✝ : Set.Finite (mulSupport fun v => maxPowDividing v I)\n⊢ ∀ (a : HeightOneSpectrum R), a ∈ Finite.toFinset h✝ → maxPowDividing a I ≠ 0", "tactic": "intro v _" }, { "state_after": "no goals", "state_before": "case inl\nR : Type u_1\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : IsDedekindDomain R\nK : Type ?u.240355\ninst✝² : Field K\ninst✝¹ : Algebra R K\ninst✝ : IsFractionRing R K\nv✝ : HeightOneSpectrum R\nI : Ideal R\nh✝ : Set.Finite (mulSupport fun v => maxPowDividing v I)\nv : HeightOneSpectrum R\na✝ : v ∈ Finite.toFinset h✝\n⊢ maxPowDividing v I ≠ 0", "tactic": "apply pow_ne_zero _ v.ne_bot" }, { "state_after": "no goals", "state_before": "case inr\nR : Type u_1\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : IsDedekindDomain R\nK : Type ?u.240355\ninst✝² : Field K\ninst✝¹ : Algebra R K\ninst✝ : IsFractionRing R K\nv : HeightOneSpectrum R\nI : Ideal R\nh✝ : ¬Set.Finite (mulSupport fun v => maxPowDividing v I)\n⊢ 1 ≠ 0", "tactic": "exact one_ne_zero" } ]
[ 135, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 128, 1 ]
Mathlib/Order/PartialSups.lean
partialSups_eq_sup_range
[ { "state_after": "case zero\nα : Type u_1\ninst✝¹ : SemilatticeSup α\ninst✝ : OrderBot α\nf : ℕ → α\n⊢ ↑(partialSups f) Nat.zero = Finset.sup (Finset.range (Nat.zero + 1)) f\n\ncase succ\nα : Type u_1\ninst✝¹ : SemilatticeSup α\ninst✝ : OrderBot α\nf : ℕ → α\nn : ℕ\nih : ↑(partialSups f) n = Finset.sup (Finset.range (n + 1)) f\n⊢ ↑(partialSups f) (Nat.succ n) = Finset.sup (Finset.range (Nat.succ n + 1)) f", "state_before": "α : Type u_1\ninst✝¹ : SemilatticeSup α\ninst✝ : OrderBot α\nf : ℕ → α\nn : ℕ\n⊢ ↑(partialSups f) n = Finset.sup (Finset.range (n + 1)) f", "tactic": "induction' n with n ih" }, { "state_after": "no goals", "state_before": "case zero\nα : Type u_1\ninst✝¹ : SemilatticeSup α\ninst✝ : OrderBot α\nf : ℕ → α\n⊢ ↑(partialSups f) Nat.zero = Finset.sup (Finset.range (Nat.zero + 1)) f", "tactic": "simp" }, { "state_after": "case succ\nα : Type u_1\ninst✝¹ : SemilatticeSup α\ninst✝ : OrderBot α\nf : ℕ → α\nn : ℕ\nih : Nat.rec (f 0) (fun n a => a ⊔ f (n + 1)) n = Finset.sup (Finset.range (n + 1)) f\n⊢ Nat.rec (f 0) (fun n a => a ⊔ f (n + 1)) n ⊔ f (n + 1) = Finset.sup (Finset.range (Nat.succ n + 1)) f", "state_before": "case succ\nα : Type u_1\ninst✝¹ : SemilatticeSup α\ninst✝ : OrderBot α\nf : ℕ → α\nn : ℕ\nih : ↑(partialSups f) n = Finset.sup (Finset.range (n + 1)) f\n⊢ ↑(partialSups f) (Nat.succ n) = Finset.sup (Finset.range (Nat.succ n + 1)) f", "tactic": "dsimp [partialSups] at ih⊢" }, { "state_after": "no goals", "state_before": "case succ\nα : Type u_1\ninst✝¹ : SemilatticeSup α\ninst✝ : OrderBot α\nf : ℕ → α\nn : ℕ\nih : Nat.rec (f 0) (fun n a => a ⊔ f (n + 1)) n = Finset.sup (Finset.range (n + 1)) f\n⊢ Nat.rec (f 0) (fun n a => a ⊔ f (n + 1)) n ⊔ f (n + 1) = Finset.sup (Finset.range (Nat.succ n + 1)) f", "tactic": "rw [Finset.range_succ, Finset.sup_insert, sup_comm, ih]" } ]
[ 138, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 133, 1 ]
Mathlib/RingTheory/UniqueFactorizationDomain.lean
Associates.count_mul
[ { "state_after": "case intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na : Associates α\nha : a ≠ 0\nb : Associates α\nhb : b ≠ 0\np : Associates α\nhp : Irreducible p\na0 : α\nnza : a0 ≠ 0\nha' : Associates.mk a0 = a\n⊢ count p (factors (a * b)) = count p (factors a) + count p (factors b)", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na : Associates α\nha : a ≠ 0\nb : Associates α\nhb : b ≠ 0\np : Associates α\nhp : Irreducible p\n⊢ count p (factors (a * b)) = count p (factors a) + count p (factors b)", "tactic": "obtain ⟨a0, nza, ha'⟩ := exists_non_zero_rep ha" }, { "state_after": "case intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na : Associates α\nha : a ≠ 0\nb : Associates α\nhb : b ≠ 0\np : Associates α\nhp : Irreducible p\na0 : α\nnza : a0 ≠ 0\nha' : Associates.mk a0 = a\nb0 : α\nnzb : b0 ≠ 0\nhb' : Associates.mk b0 = b\n⊢ count p (factors (a * b)) = count p (factors a) + count p (factors b)", "state_before": "case intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na : Associates α\nha : a ≠ 0\nb : Associates α\nhb : b ≠ 0\np : Associates α\nhp : Irreducible p\na0 : α\nnza : a0 ≠ 0\nha' : Associates.mk a0 = a\n⊢ count p (factors (a * b)) = count p (factors a) + count p (factors b)", "tactic": "obtain ⟨b0, nzb, hb'⟩ := exists_non_zero_rep hb" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na : Associates α\nha : a ≠ 0\nb : Associates α\nhb : b ≠ 0\np : Associates α\nhp : Irreducible p\na0 : α\nnza : a0 ≠ 0\nha' : Associates.mk a0 = a\nb0 : α\nnzb : b0 ≠ 0\nhb' : Associates.mk b0 = b\n⊢ count p (factors (a * b)) = count p (factors a) + count p (factors b)", "tactic": "rw [factors_mul, ← ha', ← hb', factors_mk a0 nza, factors_mk b0 nzb, ← FactorSet.coe_add, ←\n WithTop.some_eq_coe, ← WithTop.some_eq_coe, ← WithTop.some_eq_coe, count_some hp,\n Multiset.count_add, count_some hp, count_some hp]" } ]
[ 1738, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1732, 1 ]
Mathlib/Data/Matrix/Basic.lean
Matrix.submatrix_diagonal_embedding
[]
[ 2478, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2476, 1 ]
Mathlib/Data/Set/Lattice.lean
Set.iInter_iInter_eq'
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.210965\nι : Sort u_3\nι' : Sort ?u.210971\nι₂ : Sort ?u.210974\nκ : ι → Sort ?u.210979\nκ₁ : ι → Sort ?u.210984\nκ₂ : ι → Sort ?u.210989\nκ' : ι' → Sort ?u.210994\nf : ι → α\ng : α → Set β\n⊢ (⋂ (x : α) (y : ι) (_ : f y = x), g x) = ⋂ (y : ι), g (f y)", "tactic": "simpa using biInter_range" } ]
[ 1694, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1693, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.disjoint_erase_comm
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.245796\nγ : Type ?u.245799\ninst✝ : DecidableEq α\ns t u v : Finset α\na b : α\n⊢ _root_.Disjoint (erase s a) t ↔ _root_.Disjoint s (erase t a)", "tactic": "simp_rw [erase_eq, disjoint_sdiff_comm]" } ]
[ 2231, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2230, 1 ]
Mathlib/Order/Filter/Germ.lean
Filter.Germ.coe_inv
[]
[ 454, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 453, 1 ]
Std/Data/Int/Lemmas.lean
Int.add_neg
[]
[ 835, 40 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 834, 11 ]
Mathlib/Algebra/Order/Field/Basic.lean
lt_one_div
[ { "state_after": "no goals", "state_before": "ι : Type ?u.81079\nα : Type u_1\nβ : Type ?u.81085\ninst✝ : LinearOrderedSemifield α\na b c d e : α\nm n : ℤ\nha : 0 < a\nhb : 0 < b\n⊢ a < 1 / b ↔ b < 1 / a", "tactic": "simpa using lt_inv ha hb" } ]
[ 445, 100 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 445, 1 ]
Mathlib/Algebra/Lie/Nilpotent.lean
LieAlgebra.nilpotent_ad_of_nilpotent_algebra
[]
[ 536, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 534, 1 ]
Mathlib/GroupTheory/FreeAbelianGroupFinsupp.lean
FreeAbelianGroup.support_neg
[ { "state_after": "no goals", "state_before": "X : Type u_1\na : FreeAbelianGroup X\n⊢ support (-a) = support a", "tactic": "simp only [support, AddMonoidHom.map_neg, Finsupp.support_neg]" } ]
[ 178, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 177, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/CommSq.lean
CategoryTheory.IsPushout.of_hasBinaryBiproduct
[]
[ 836, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 834, 1 ]
Mathlib/Analysis/Convex/Segment.lean
segment_translate_image
[]
[ 284, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 283, 1 ]
Mathlib/Data/Nat/Log.lean
Nat.lt_pow_of_log_lt
[]
[ 131, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 130, 1 ]
Mathlib/Data/Finset/Basic.lean
Multiset.toFinset_cons
[]
[ 3148, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3147, 1 ]
Mathlib/GroupTheory/Complement.lean
Subgroup.quotientEquivSigmaZMod_symm_apply
[]
[ 586, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 583, 1 ]
Mathlib/Data/Finset/Sum.lean
Finset.disj_sum_strictMono_right
[]
[ 113, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 111, 1 ]
Mathlib/Data/Polynomial/Induction.lean
Polynomial.exists_C_coeff_not_mem
[]
[ 102, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 101, 1 ]
Mathlib/Data/Real/Hyperreal.lean
Hyperreal.infinitesimal_of_tendsto_zero
[]
[ 715, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 713, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.one_lt_top
[]
[ 695, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 695, 9 ]
Std/Data/Nat/Lemmas.lean
Nat.dvd_antisymm
[]
[ 710, 96 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 707, 1 ]
Mathlib/Topology/Semicontinuous.lean
LowerSemicontinuousAt.add
[]
[ 495, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 493, 1 ]
Mathlib/RingTheory/Subsemiring/Basic.lean
Subsemiring.closure_univ
[]
[ 994, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 993, 1 ]
Mathlib/Data/Finset/NAry.lean
Finset.coe_image₂
[]
[ 54, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 52, 1 ]
Mathlib/Data/Complex/Exponential.lean
Complex.sin_sub_sin
[ { "state_after": "x y : ℂ\ns1 : sin ((x + y) / 2 + (x - y) / 2) = sin ((x + y) / 2) * cos ((x - y) / 2) + cos ((x + y) / 2) * sin ((x - y) / 2)\n⊢ sin x - sin y = 2 * sin ((x - y) / 2) * cos ((x + y) / 2)", "state_before": "x y : ℂ\n⊢ sin x - sin y = 2 * sin ((x - y) / 2) * cos ((x + y) / 2)", "tactic": "have s1 := sin_add ((x + y) / 2) ((x - y) / 2)" }, { "state_after": "x y : ℂ\ns1 : sin ((x + y) / 2 + (x - y) / 2) = sin ((x + y) / 2) * cos ((x - y) / 2) + cos ((x + y) / 2) * sin ((x - y) / 2)\ns2 : sin ((x + y) / 2 - (x - y) / 2) = sin ((x + y) / 2) * cos ((x - y) / 2) - cos ((x + y) / 2) * sin ((x - y) / 2)\n⊢ sin x - sin y = 2 * sin ((x - y) / 2) * cos ((x + y) / 2)", "state_before": "x y : ℂ\ns1 : sin ((x + y) / 2 + (x - y) / 2) = sin ((x + y) / 2) * cos ((x - y) / 2) + cos ((x + y) / 2) * sin ((x - y) / 2)\n⊢ sin x - sin y = 2 * sin ((x - y) / 2) * cos ((x + y) / 2)", "tactic": "have s2 := sin_sub ((x + y) / 2) ((x - y) / 2)" }, { "state_after": "x y : ℂ\ns1 : sin x = sin ((x + y) / 2) * cos ((x - y) / 2) + cos ((x + y) / 2) * sin ((x - y) / 2)\ns2 : sin ((x + y) / 2 - (x - y) / 2) = sin ((x + y) / 2) * cos ((x - y) / 2) - cos ((x + y) / 2) * sin ((x - y) / 2)\n⊢ sin x - sin y = 2 * sin ((x - y) / 2) * cos ((x + y) / 2)", "state_before": "x y : ℂ\ns1 : sin ((x + y) / 2 + (x - y) / 2) = sin ((x + y) / 2) * cos ((x - y) / 2) + cos ((x + y) / 2) * sin ((x - y) / 2)\ns2 : sin ((x + y) / 2 - (x - y) / 2) = sin ((x + y) / 2) * cos ((x - y) / 2) - cos ((x + y) / 2) * sin ((x - y) / 2)\n⊢ sin x - sin y = 2 * sin ((x - y) / 2) * cos ((x + y) / 2)", "tactic": "rw [div_add_div_same, add_sub, add_right_comm, add_sub_cancel, half_add_self] at s1" }, { "state_after": "x y : ℂ\ns1 : sin x = sin ((x + y) / 2) * cos ((x - y) / 2) + cos ((x + y) / 2) * sin ((x - y) / 2)\ns2 : sin y = sin ((x + y) / 2) * cos ((x - y) / 2) - cos ((x + y) / 2) * sin ((x - y) / 2)\n⊢ sin x - sin y = 2 * sin ((x - y) / 2) * cos ((x + y) / 2)", "state_before": "x y : ℂ\ns1 : sin x = sin ((x + y) / 2) * cos ((x - y) / 2) + cos ((x + y) / 2) * sin ((x - y) / 2)\ns2 : sin ((x + y) / 2 - (x - y) / 2) = sin ((x + y) / 2) * cos ((x - y) / 2) - cos ((x + y) / 2) * sin ((x - y) / 2)\n⊢ sin x - sin y = 2 * sin ((x - y) / 2) * cos ((x + y) / 2)", "tactic": "rw [div_sub_div_same, ← sub_add, add_sub_cancel', half_add_self] at s2" }, { "state_after": "x y : ℂ\ns1 : sin x = sin ((x + y) / 2) * cos ((x - y) / 2) + cos ((x + y) / 2) * sin ((x - y) / 2)\ns2 : sin y = sin ((x + y) / 2) * cos ((x - y) / 2) - cos ((x + y) / 2) * sin ((x - y) / 2)\n⊢ sin ((x + y) / 2) * cos ((x - y) / 2) + cos ((x + y) / 2) * sin ((x - y) / 2) -\n (sin ((x + y) / 2) * cos ((x - y) / 2) - cos ((x + y) / 2) * sin ((x - y) / 2)) =\n 2 * sin ((x - y) / 2) * cos ((x + y) / 2)", "state_before": "x y : ℂ\ns1 : sin x = sin ((x + y) / 2) * cos ((x - y) / 2) + cos ((x + y) / 2) * sin ((x - y) / 2)\ns2 : sin y = sin ((x + y) / 2) * cos ((x - y) / 2) - cos ((x + y) / 2) * sin ((x - y) / 2)\n⊢ sin x - sin y = 2 * sin ((x - y) / 2) * cos ((x + y) / 2)", "tactic": "rw [s1, s2]" }, { "state_after": "no goals", "state_before": "x y : ℂ\ns1 : sin x = sin ((x + y) / 2) * cos ((x - y) / 2) + cos ((x + y) / 2) * sin ((x - y) / 2)\ns2 : sin y = sin ((x + y) / 2) * cos ((x - y) / 2) - cos ((x + y) / 2) * sin ((x - y) / 2)\n⊢ sin ((x + y) / 2) * cos ((x - y) / 2) + cos ((x + y) / 2) * sin ((x - y) / 2) -\n (sin ((x + y) / 2) * cos ((x - y) / 2) - cos ((x + y) / 2) * sin ((x - y) / 2)) =\n 2 * sin ((x - y) / 2) * cos ((x + y) / 2)", "tactic": "ring" } ]
[ 900, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 894, 1 ]
Mathlib/Data/Finset/Card.lean
Finset.card_sdiff_add_card
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.41772\ns t : Finset α\nf : α → β\nn : ℕ\ninst✝ : DecidableEq α\n⊢ card (s \\ t) + card t = card (s ∪ t)", "tactic": "rw [← card_disjoint_union sdiff_disjoint, sdiff_union_self_eq_union]" } ]
[ 453, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 452, 1 ]