file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Data/Finset/Image.lean
Finset.mem_map_equiv
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.3584\nf✝ : α ↪ β\ns : Finset α\nf : α ≃ β\nb : β\n⊢ (∃ a, a ∈ s ∧ ↑(Equiv.toEmbedding f) a = b) ↔ ↑f.symm b ∈ s", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.3584\nf✝ : α ↪ β\ns : Finset α\nf : α ≃ β\nb : β\n⊢ b ∈ map (Equiv.toEmbedding f) s ↔ ↑f.symm b ∈ s", "tactic": "rw [mem_map]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.3584\nf✝ : α ↪ β\ns : Finset α\nf : α ≃ β\nb : β\n⊢ (∃ a, a ∈ s ∧ ↑(Equiv.toEmbedding f) a = b) ↔ ↑f.symm b ∈ s", "tactic": "exact\n ⟨by\n rintro ⟨a, H, rfl⟩\n simpa, fun h => ⟨_, h, by simp⟩⟩" }, { "state_after": "case intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.3584\nf✝ : α ↪ β\ns : Finset α\nf : α ≃ β\na : α\nH : a ∈ s\n⊢ ↑f.symm (↑(Equiv.toEmbedding f) a) ∈ s", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.3584\nf✝ : α ↪ β\ns : Finset α\nf : α ≃ β\nb : β\n⊢ (∃ a, a ∈ s ∧ ↑(Equiv.toEmbedding f) a = b) → ↑f.symm b ∈ s", "tactic": "rintro ⟨a, H, rfl⟩" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.3584\nf✝ : α ↪ β\ns : Finset α\nf : α ≃ β\na : α\nH : a ∈ s\n⊢ ↑f.symm (↑(Equiv.toEmbedding f) a) ∈ s", "tactic": "simpa" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.3584\nf✝ : α ↪ β\ns : Finset α\nf : α ≃ β\nb : β\nh : ↑f.symm b ∈ s\n⊢ ↑(Equiv.toEmbedding f) (↑f.symm b) = b", "tactic": "simp" } ]
[ 80, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 75, 1 ]
Mathlib/Topology/Order/Basic.lean
nhdsWithin_Ioi_neBot
[]
[ 2388, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2387, 1 ]
Mathlib/Order/Filter/AtTopBot.lean
Filter.disjoint_atTop_atBot
[]
[ 129, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 128, 1 ]
Mathlib/Data/List/Lattice.lean
List.inter_subset_left
[]
[ 171, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 170, 1 ]
Mathlib/Topology/LocallyConstant/Basic.lean
LocallyConstant.coe_mk
[]
[ 270, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 269, 1 ]
Mathlib/Order/CompleteLattice.lean
iSup_subtype
[]
[ 1198, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1196, 1 ]
Mathlib/Data/Set/Finite.lean
Set.Finite.toFinset_eq_univ
[]
[ 288, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 286, 11 ]
Mathlib/Topology/MetricSpace/EMetricSpace.lean
EMetric.isOpen_iff
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nX : Type ?u.209202\ninst✝ : PseudoEMetricSpace α\nx y z : α\nε ε₁ ε₂ : ℝ≥0∞\ns t : Set α\n⊢ IsOpen s ↔ ∀ (x : α), x ∈ s → ∃ ε, ε > 0 ∧ ball x ε ⊆ s", "tactic": "simp [isOpen_iff_nhds, mem_nhds_iff]" } ]
[ 687, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 686, 1 ]
Mathlib/Data/Polynomial/Degree/Lemmas.lean
Polynomial.natDegree_bit1
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nι : Type w\na✝ b : R\nm n : ℕ\ninst✝ : Semiring R\np q r a : R[X]\n⊢ max (natDegree (bit0 a)) (natDegree 1) ≤ natDegree a", "tactic": "simp [natDegree_bit0]" } ]
[ 263, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 262, 1 ]
Mathlib/Analysis/SpecialFunctions/CompareExp.lean
Complex.IsExpCmpFilter.isLittleO_log_abs_re
[ { "state_after": "l : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\nh2 : 0 < Real.sqrt 2\n⊢ ‖Real.log (↑abs z)‖ ≤ 1 * ‖Real.log (Real.sqrt 2) + Real.log (max z.re (Abs.abs z.im))‖", "state_before": "l : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\n⊢ ‖Real.log (↑abs z)‖ ≤ 1 * ‖Real.log (Real.sqrt 2) + Real.log (max z.re (Abs.abs z.im))‖", "tactic": "have h2 : 0 < Real.sqrt 2 := by simp" }, { "state_after": "l : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\nh2 : 0 < Real.sqrt 2\nhz' : 1 ≤ ↑abs z\n⊢ ‖Real.log (↑abs z)‖ ≤ 1 * ‖Real.log (Real.sqrt 2) + Real.log (max z.re (Abs.abs z.im))‖", "state_before": "l : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\nh2 : 0 < Real.sqrt 2\n⊢ ‖Real.log (↑abs z)‖ ≤ 1 * ‖Real.log (Real.sqrt 2) + Real.log (max z.re (Abs.abs z.im))‖", "tactic": "have hz' : 1 ≤ abs z := hz.trans (re_le_abs z)" }, { "state_after": "l : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\nh2 : 0 < Real.sqrt 2\nhz' : 1 ≤ ↑abs z\nx✝ : 0 < ↑abs z\n⊢ ‖Real.log (↑abs z)‖ ≤ 1 * ‖Real.log (Real.sqrt 2) + Real.log (max z.re (Abs.abs z.im))‖", "state_before": "l : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\nh2 : 0 < Real.sqrt 2\nhz' : 1 ≤ ↑abs z\n⊢ ‖Real.log (↑abs z)‖ ≤ 1 * ‖Real.log (Real.sqrt 2) + Real.log (max z.re (Abs.abs z.im))‖", "tactic": "have _ : 0 < abs z := one_pos.trans_le hz'" }, { "state_after": "l : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\nh2 : 0 < Real.sqrt 2\nhz' : 1 ≤ ↑abs z\nx✝ : 0 < ↑abs z\nhm₀ : 0 < max z.re (Abs.abs z.im)\n⊢ ‖Real.log (↑abs z)‖ ≤ 1 * ‖Real.log (Real.sqrt 2) + Real.log (max z.re (Abs.abs z.im))‖", "state_before": "l : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\nh2 : 0 < Real.sqrt 2\nhz' : 1 ≤ ↑abs z\nx✝ : 0 < ↑abs z\n⊢ ‖Real.log (↑abs z)‖ ≤ 1 * ‖Real.log (Real.sqrt 2) + Real.log (max z.re (Abs.abs z.im))‖", "tactic": "have hm₀ : 0 < max z.re (|z.im|) := lt_max_iff.2 (Or.inl <| one_pos.trans_le hz)" }, { "state_after": "l : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\nh2 : 0 < Real.sqrt 2\nhz' : 1 ≤ ↑abs z\nx✝ : 0 < ↑abs z\nhm₀ : 0 < max z.re (Abs.abs z.im)\n⊢ Real.log (↑abs z) ≤ ‖Real.log (Real.sqrt 2) + Real.log (max z.re (Abs.abs z.im))‖", "state_before": "l : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\nh2 : 0 < Real.sqrt 2\nhz' : 1 ≤ ↑abs z\nx✝ : 0 < ↑abs z\nhm₀ : 0 < max z.re (Abs.abs z.im)\n⊢ ‖Real.log (↑abs z)‖ ≤ 1 * ‖Real.log (Real.sqrt 2) + Real.log (max z.re (Abs.abs z.im))‖", "tactic": "rw [one_mul, Real.norm_eq_abs, _root_.abs_of_nonneg (Real.log_nonneg hz')]" }, { "state_after": "l : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\nh2 : 0 < Real.sqrt 2\nhz' : 1 ≤ ↑abs z\nx✝ : 0 < ↑abs z\nhm₀ : 0 < max z.re (Abs.abs z.im)\n⊢ Real.log (↑abs z) ≤ Real.log (Real.sqrt 2) + Real.log (max z.re (Abs.abs z.im))", "state_before": "l : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\nh2 : 0 < Real.sqrt 2\nhz' : 1 ≤ ↑abs z\nx✝ : 0 < ↑abs z\nhm₀ : 0 < max z.re (Abs.abs z.im)\n⊢ Real.log (↑abs z) ≤ ‖Real.log (Real.sqrt 2) + Real.log (max z.re (Abs.abs z.im))‖", "tactic": "refine' le_trans _ (le_abs_self _)" }, { "state_after": "l : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\nh2 : 0 < Real.sqrt 2\nhz' : 1 ≤ ↑abs z\nx✝ : 0 < ↑abs z\nhm₀ : 0 < max z.re (Abs.abs z.im)\n⊢ ↑abs z ≤ Real.sqrt 2 * max (Abs.abs z.re) (Abs.abs z.im)\n\ncase h\nl : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\nh2 : 0 < Real.sqrt 2\nhz' : 1 ≤ ↑abs z\nx✝ : 0 < ↑abs z\nhm₀ : 0 < max z.re (Abs.abs z.im)\n⊢ 0 < ↑abs z\n\ncase h₁\nl : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\nh2 : 0 < Real.sqrt 2\nhz' : 1 ≤ ↑abs z\nx✝ : 0 < ↑abs z\nhm₀ : 0 < max z.re (Abs.abs z.im)\n⊢ 0 < Real.sqrt 2 * max z.re (Abs.abs z.im)\n\ncase hx\nl : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\nh2 : 0 < Real.sqrt 2\nhz' : 1 ≤ ↑abs z\nx✝ : 0 < ↑abs z\nhm₀ : 0 < max z.re (Abs.abs z.im)\n⊢ Real.sqrt 2 ≠ 0\n\ncase hy\nl : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\nh2 : 0 < Real.sqrt 2\nhz' : 1 ≤ ↑abs z\nx✝ : 0 < ↑abs z\nhm₀ : 0 < max z.re (Abs.abs z.im)\n⊢ max z.re (Abs.abs z.im) ≠ 0", "state_before": "l : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\nh2 : 0 < Real.sqrt 2\nhz' : 1 ≤ ↑abs z\nx✝ : 0 < ↑abs z\nhm₀ : 0 < max z.re (Abs.abs z.im)\n⊢ Real.log (↑abs z) ≤ Real.log (Real.sqrt 2) + Real.log (max z.re (Abs.abs z.im))", "tactic": "rw [← Real.log_mul, Real.log_le_log, ← _root_.abs_of_nonneg (le_trans zero_le_one hz)]" }, { "state_after": "no goals", "state_before": "l : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\nh2 : 0 < Real.sqrt 2\nhz' : 1 ≤ ↑abs z\nx✝ : 0 < ↑abs z\nhm₀ : 0 < max z.re (Abs.abs z.im)\n⊢ ↑abs z ≤ Real.sqrt 2 * max (Abs.abs z.re) (Abs.abs z.im)\n\ncase h\nl : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\nh2 : 0 < Real.sqrt 2\nhz' : 1 ≤ ↑abs z\nx✝ : 0 < ↑abs z\nhm₀ : 0 < max z.re (Abs.abs z.im)\n⊢ 0 < ↑abs z\n\ncase h₁\nl : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\nh2 : 0 < Real.sqrt 2\nhz' : 1 ≤ ↑abs z\nx✝ : 0 < ↑abs z\nhm₀ : 0 < max z.re (Abs.abs z.im)\n⊢ 0 < Real.sqrt 2 * max z.re (Abs.abs z.im)\n\ncase hx\nl : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\nh2 : 0 < Real.sqrt 2\nhz' : 1 ≤ ↑abs z\nx✝ : 0 < ↑abs z\nhm₀ : 0 < max z.re (Abs.abs z.im)\n⊢ Real.sqrt 2 ≠ 0\n\ncase hy\nl : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\nh2 : 0 < Real.sqrt 2\nhz' : 1 ≤ ↑abs z\nx✝ : 0 < ↑abs z\nhm₀ : 0 < max z.re (Abs.abs z.im)\n⊢ max z.re (Abs.abs z.im) ≠ 0", "tactic": "exacts [abs_le_sqrt_two_mul_max z, one_pos.trans_le hz', mul_pos h2 hm₀, h2.ne', hm₀.ne']" }, { "state_after": "no goals", "state_before": "l : Filter ℂ\nhl : IsExpCmpFilter l\nz : ℂ\nhz : 1 ≤ z.re\n⊢ 0 < Real.sqrt 2", "tactic": "simp" }, { "state_after": "case h\nl : Filter ℂ\nhl : IsExpCmpFilter l\nn : ℕ\nz : ℂ\nhre : ↑n * ‖Real.log z.re‖ ≤ ‖z.re‖\nhim : Abs.abs z.im ^ ↑n ≤ Real.exp z.re\nh₁ : 1 < z.re\n⊢ ↑n * ‖Real.log (max z.re (Abs.abs z.im))‖ ≤ ‖z.re‖", "state_before": "l : Filter ℂ\nhl : IsExpCmpFilter l\nn : ℕ\n⊢ ∀ᶠ (x : ℂ) in l, ↑n * ‖Real.log (max x.re (Abs.abs x.im))‖ ≤ ‖x.re‖", "tactic": "filter_upwards [isLittleO_iff_nat_mul_le'.1 hl.isLittleO_log_re_re n,\n hl.abs_im_pow_eventuallyLE_exp_re n,\n hl.tendsto_re.eventually_gt_atTop 1] with z hre him h₁" }, { "state_after": "case h.inl\nl : Filter ℂ\nhl : IsExpCmpFilter l\nn : ℕ\nz : ℂ\nhre : ↑n * ‖Real.log z.re‖ ≤ ‖z.re‖\nhim : Abs.abs z.im ^ ↑n ≤ Real.exp z.re\nh₁ : 1 < z.re\nhle : Abs.abs z.im ≤ z.re\n⊢ ↑n * ‖Real.log (max z.re (Abs.abs z.im))‖ ≤ ‖z.re‖\n\ncase h.inr\nl : Filter ℂ\nhl : IsExpCmpFilter l\nn : ℕ\nz : ℂ\nhre : ↑n * ‖Real.log z.re‖ ≤ ‖z.re‖\nhim : Abs.abs z.im ^ ↑n ≤ Real.exp z.re\nh₁ : 1 < z.re\nhle : z.re ≤ Abs.abs z.im\n⊢ ↑n * ‖Real.log (max z.re (Abs.abs z.im))‖ ≤ ‖z.re‖", "state_before": "case h\nl : Filter ℂ\nhl : IsExpCmpFilter l\nn : ℕ\nz : ℂ\nhre : ↑n * ‖Real.log z.re‖ ≤ ‖z.re‖\nhim : Abs.abs z.im ^ ↑n ≤ Real.exp z.re\nh₁ : 1 < z.re\n⊢ ↑n * ‖Real.log (max z.re (Abs.abs z.im))‖ ≤ ‖z.re‖", "tactic": "cases' le_total (|z.im|) z.re with hle hle" }, { "state_after": "no goals", "state_before": "case h.inl\nl : Filter ℂ\nhl : IsExpCmpFilter l\nn : ℕ\nz : ℂ\nhre : ↑n * ‖Real.log z.re‖ ≤ ‖z.re‖\nhim : Abs.abs z.im ^ ↑n ≤ Real.exp z.re\nh₁ : 1 < z.re\nhle : Abs.abs z.im ≤ z.re\n⊢ ↑n * ‖Real.log (max z.re (Abs.abs z.im))‖ ≤ ‖z.re‖", "tactic": "rwa [max_eq_left hle]" }, { "state_after": "case h.inr\nl : Filter ℂ\nhl : IsExpCmpFilter l\nn : ℕ\nz : ℂ\nhre : ↑n * ‖Real.log z.re‖ ≤ ‖z.re‖\nhim : Abs.abs z.im ^ ↑n ≤ Real.exp z.re\nh₁ : 1 < z.re\nhle : z.re ≤ Abs.abs z.im\nH : 1 < Abs.abs z.im\n⊢ ↑n * ‖Real.log (max z.re (Abs.abs z.im))‖ ≤ ‖z.re‖", "state_before": "case h.inr\nl : Filter ℂ\nhl : IsExpCmpFilter l\nn : ℕ\nz : ℂ\nhre : ↑n * ‖Real.log z.re‖ ≤ ‖z.re‖\nhim : Abs.abs z.im ^ ↑n ≤ Real.exp z.re\nh₁ : 1 < z.re\nhle : z.re ≤ Abs.abs z.im\n⊢ ↑n * ‖Real.log (max z.re (Abs.abs z.im))‖ ≤ ‖z.re‖", "tactic": "have H : 1 < |z.im| := h₁.trans_le hle" }, { "state_after": "case h.inr\nl : Filter ℂ\nhl : IsExpCmpFilter l\nn : ℕ\nz : ℂ\nhre : ↑n * ‖Real.log z.re‖ ≤ ‖z.re‖\nhle : z.re ≤ Abs.abs z.im\nhim : Abs.abs z.im ^ n ≤ Real.exp z.re\nh₁ : 1 < z.re\nH : 1 < Abs.abs z.im\n⊢ ↑n * ‖Real.log (max z.re (Abs.abs z.im))‖ ≤ ‖z.re‖", "state_before": "case h.inr\nl : Filter ℂ\nhl : IsExpCmpFilter l\nn : ℕ\nz : ℂ\nhre : ↑n * ‖Real.log z.re‖ ≤ ‖z.re‖\nhim : Abs.abs z.im ^ ↑n ≤ Real.exp z.re\nh₁ : 1 < z.re\nhle : z.re ≤ Abs.abs z.im\nH : 1 < Abs.abs z.im\n⊢ ↑n * ‖Real.log (max z.re (Abs.abs z.im))‖ ≤ ‖z.re‖", "tactic": "norm_cast at *" }, { "state_after": "no goals", "state_before": "case h.inr\nl : Filter ℂ\nhl : IsExpCmpFilter l\nn : ℕ\nz : ℂ\nhre : ↑n * ‖Real.log z.re‖ ≤ ‖z.re‖\nhle : z.re ≤ Abs.abs z.im\nhim : Abs.abs z.im ^ n ≤ Real.exp z.re\nh₁ : 1 < z.re\nH : 1 < Abs.abs z.im\n⊢ ↑n * ‖Real.log (max z.re (Abs.abs z.im))‖ ≤ ‖z.re‖", "tactic": "rwa [max_eq_right hle, Real.norm_eq_abs, Real.norm_eq_abs, abs_of_pos (Real.log_pos H),\n ← Real.log_pow, Real.log_le_iff_le_exp (pow_pos (one_pos.trans H) _),\n abs_of_pos (one_pos.trans h₁)]" } ]
[ 163, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 137, 1 ]
Mathlib/Data/Fintype/Lattice.lean
Finite.exists_max
[ { "state_after": "case intro\nα : Type u_1\nβ : Type u_2\ninst✝² : Finite α\ninst✝¹ : Nonempty α\ninst✝ : LinearOrder β\nf : α → β\nval✝ : Fintype α\n⊢ ∃ x₀, ∀ (x : α), f x ≤ f x₀", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝² : Finite α\ninst✝¹ : Nonempty α\ninst✝ : LinearOrder β\nf : α → β\n⊢ ∃ x₀, ∀ (x : α), f x ≤ f x₀", "tactic": "cases nonempty_fintype α" }, { "state_after": "no goals", "state_before": "case intro\nα : Type u_1\nβ : Type u_2\ninst✝² : Finite α\ninst✝¹ : Nonempty α\ninst✝ : LinearOrder β\nf : α → β\nval✝ : Fintype α\n⊢ ∃ x₀, ∀ (x : α), f x ≤ f x₀", "tactic": "simpa using exists_max_image univ f univ_nonempty" } ]
[ 65, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 62, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Images.lean
CategoryTheory.Limits.image.map_id
[ { "state_after": "case e_self\nC : Type u\ninst✝⁴ : Category C\nf g : Arrow C\ninst✝³ : HasImage f.hom\ninst✝² : HasImage g.hom\nsq : f ⟶ g\ninst✝¹ : HasImageMap sq\ninst✝ : HasImageMap (𝟙 f)\n⊢ HasImageMap.imageMap (𝟙 f) = imageMapId f", "state_before": "C : Type u\ninst✝⁴ : Category C\nf g : Arrow C\ninst✝³ : HasImage f.hom\ninst✝² : HasImage g.hom\nsq : f ⟶ g\ninst✝¹ : HasImageMap sq\ninst✝ : HasImageMap (𝟙 f)\n⊢ (HasImageMap.imageMap (𝟙 f)).map = (imageMapId f).map", "tactic": "congr" }, { "state_after": "no goals", "state_before": "case e_self\nC : Type u\ninst✝⁴ : Category C\nf g : Arrow C\ninst✝³ : HasImage f.hom\ninst✝² : HasImage g.hom\nsq : f ⟶ g\ninst✝¹ : HasImageMap sq\ninst✝ : HasImageMap (𝟙 f)\n⊢ HasImageMap.imageMap (𝟙 f) = imageMapId f", "tactic": "simp only [eq_iff_true_of_subsingleton]" } ]
[ 843, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 841, 1 ]
Mathlib/LinearAlgebra/TensorProduct.lean
TensorProduct.tensorTensorTensorAssoc_symm_tmul
[]
[ 966, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 964, 1 ]
Mathlib/Analysis/Calculus/Deriv/Add.lean
deriv_neg
[]
[ 263, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 262, 1 ]
Mathlib/Order/Filter/Archimedean.lean
tendsto_int_cast_atTop_iff
[ { "state_after": "α : Type u_2\nR : Type u_1\ninst✝¹ : StrictOrderedRing R\ninst✝ : Archimedean R\nf : α → ℤ\nl : Filter α\n⊢ Tendsto (fun n => ↑(f n)) l atTop ↔ Tendsto (Int.cast ∘ f) l atTop", "state_before": "α : Type u_2\nR : Type u_1\ninst✝¹ : StrictOrderedRing R\ninst✝ : Archimedean R\nf : α → ℤ\nl : Filter α\n⊢ Tendsto (fun n => ↑(f n)) l atTop ↔ Tendsto f l atTop", "tactic": "rw [← @Int.comap_cast_atTop R, tendsto_comap_iff]" }, { "state_after": "no goals", "state_before": "α : Type u_2\nR : Type u_1\ninst✝¹ : StrictOrderedRing R\ninst✝ : Archimedean R\nf : α → ℤ\nl : Filter α\n⊢ Tendsto (fun n => ↑(f n)) l atTop ↔ Tendsto (Int.cast ∘ f) l atTop", "tactic": "rfl" } ]
[ 61, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 59, 1 ]
Mathlib/Data/Real/CauSeq.lean
CauSeq.limZero_congr
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝² : LinearOrderedField α\ninst✝¹ : Ring β\nabv : β → α\ninst✝ : IsAbsoluteValue abv\nf g : CauSeq β abv\nh : f ≈ g\nl : LimZero f\n⊢ LimZero g", "tactic": "simpa using add_limZero (Setoid.symm h) l" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝² : LinearOrderedField α\ninst✝¹ : Ring β\nabv : β → α\ninst✝ : IsAbsoluteValue abv\nf g : CauSeq β abv\nh : f ≈ g\nl : LimZero g\n⊢ LimZero f", "tactic": "simpa using add_limZero h l" } ]
[ 495, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 494, 1 ]
Mathlib/Data/Polynomial/Eval.lean
Polynomial.eval_smul
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\nι : Type y\na b : R\nm n : ℕ\ninst✝³ : Semiring R\np✝ q r : R[X]\nx✝ : R\ninst✝² : Monoid S\ninst✝¹ : DistribMulAction S R\ninst✝ : IsScalarTower S R R\ns : S\np : R[X]\nx : R\n⊢ eval x (s • p) = s • eval x p", "tactic": "rw [← smul_one_smul R s p, eval, eval₂_smul, RingHom.id_apply, smul_one_mul]" } ]
[ 400, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 398, 1 ]
Mathlib/Data/Matrix/Basis.lean
Matrix.StdBasisMatrix.diag_zero
[]
[ 153, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 152, 1 ]
Std/Logic.lean
exists_congr
[]
[ 377, 61 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 376, 1 ]
Mathlib/MeasureTheory/Constructions/BorelSpace/Basic.lean
measurable_limsup
[]
[ 1341, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1339, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean
Real.bijOn_cos
[]
[ 646, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 645, 1 ]
Mathlib/Topology/Algebra/Module/Basic.lean
ContinuousLinearEquiv.symm_map_nhds_eq
[]
[ 1973, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1972, 1 ]
Mathlib/NumberTheory/Padics/PadicNumbers.lean
Padic.AddValuation.map_add
[ { "state_after": "p : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\n⊢ min (if x = 0 then ⊤ else ↑(valuation x)) (if y = 0 then ⊤ else ↑(valuation y)) ≤\n if x + y = 0 then ⊤ else ↑(valuation (x + y))", "state_before": "p : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\n⊢ min (addValuationDef x) (addValuationDef y) ≤ addValuationDef (x + y)", "tactic": "simp only [addValuationDef]" }, { "state_after": "case pos\np : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\nhxy : x + y = 0\n⊢ min (if x = 0 then ⊤ else ↑(valuation x)) (if y = 0 then ⊤ else ↑(valuation y)) ≤\n if x + y = 0 then ⊤ else ↑(valuation (x + y))\n\ncase neg\np : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\nhxy : ¬x + y = 0\n⊢ min (if x = 0 then ⊤ else ↑(valuation x)) (if y = 0 then ⊤ else ↑(valuation y)) ≤\n if x + y = 0 then ⊤ else ↑(valuation (x + y))", "state_before": "p : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\n⊢ min (if x = 0 then ⊤ else ↑(valuation x)) (if y = 0 then ⊤ else ↑(valuation y)) ≤\n if x + y = 0 then ⊤ else ↑(valuation (x + y))", "tactic": "by_cases hxy : x + y = 0" }, { "state_after": "case pos\np : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\nhxy : x + y = 0\n⊢ min (if x = 0 then ⊤ else ↑(valuation x)) (if y = 0 then ⊤ else ↑(valuation y)) ≤ ⊤", "state_before": "case pos\np : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\nhxy : x + y = 0\n⊢ min (if x = 0 then ⊤ else ↑(valuation x)) (if y = 0 then ⊤ else ↑(valuation y)) ≤\n if x + y = 0 then ⊤ else ↑(valuation (x + y))", "tactic": "rw [hxy, if_pos (Eq.refl _)]" }, { "state_after": "no goals", "state_before": "case pos\np : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\nhxy : x + y = 0\n⊢ min (if x = 0 then ⊤ else ↑(valuation x)) (if y = 0 then ⊤ else ↑(valuation y)) ≤ ⊤", "tactic": "exact le_top" }, { "state_after": "case pos\np : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\nhxy : ¬x + y = 0\nhx : x = 0\n⊢ min (if x = 0 then ⊤ else ↑(valuation x)) (if y = 0 then ⊤ else ↑(valuation y)) ≤\n if x + y = 0 then ⊤ else ↑(valuation (x + y))\n\ncase neg\np : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\nhxy : ¬x + y = 0\nhx : ¬x = 0\n⊢ min (if x = 0 then ⊤ else ↑(valuation x)) (if y = 0 then ⊤ else ↑(valuation y)) ≤\n if x + y = 0 then ⊤ else ↑(valuation (x + y))", "state_before": "case neg\np : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\nhxy : ¬x + y = 0\n⊢ min (if x = 0 then ⊤ else ↑(valuation x)) (if y = 0 then ⊤ else ↑(valuation y)) ≤\n if x + y = 0 then ⊤ else ↑(valuation (x + y))", "tactic": "by_cases hx : x = 0" }, { "state_after": "case pos\np : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\nhxy : ¬x + y = 0\nhx : x = 0\n⊢ (if y = 0 then ⊤ else ↑(valuation y)) ≤ ⊤", "state_before": "case pos\np : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\nhxy : ¬x + y = 0\nhx : x = 0\n⊢ min (if x = 0 then ⊤ else ↑(valuation x)) (if y = 0 then ⊤ else ↑(valuation y)) ≤\n if x + y = 0 then ⊤ else ↑(valuation (x + y))", "tactic": "rw [hx, if_pos (Eq.refl _), min_eq_right, zero_add]" }, { "state_after": "no goals", "state_before": "case pos\np : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\nhxy : ¬x + y = 0\nhx : x = 0\n⊢ (if y = 0 then ⊤ else ↑(valuation y)) ≤ ⊤", "tactic": "exact le_top" }, { "state_after": "case pos\np : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\nhxy : ¬x + y = 0\nhx : ¬x = 0\nhy : y = 0\n⊢ min (if x = 0 then ⊤ else ↑(valuation x)) (if y = 0 then ⊤ else ↑(valuation y)) ≤\n if x + y = 0 then ⊤ else ↑(valuation (x + y))\n\ncase neg\np : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\nhxy : ¬x + y = 0\nhx : ¬x = 0\nhy : ¬y = 0\n⊢ min (if x = 0 then ⊤ else ↑(valuation x)) (if y = 0 then ⊤ else ↑(valuation y)) ≤\n if x + y = 0 then ⊤ else ↑(valuation (x + y))", "state_before": "case neg\np : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\nhxy : ¬x + y = 0\nhx : ¬x = 0\n⊢ min (if x = 0 then ⊤ else ↑(valuation x)) (if y = 0 then ⊤ else ↑(valuation y)) ≤\n if x + y = 0 then ⊤ else ↑(valuation (x + y))", "tactic": "by_cases hy : y = 0" }, { "state_after": "case pos\np : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\nhxy : ¬x + y = 0\nhx : ¬x = 0\nhy : y = 0\n⊢ (if x = 0 then ⊤ else ↑(valuation x)) ≤ ⊤", "state_before": "case pos\np : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\nhxy : ¬x + y = 0\nhx : ¬x = 0\nhy : y = 0\n⊢ min (if x = 0 then ⊤ else ↑(valuation x)) (if y = 0 then ⊤ else ↑(valuation y)) ≤\n if x + y = 0 then ⊤ else ↑(valuation (x + y))", "tactic": "rw [hy, if_pos (Eq.refl _), min_eq_left, add_zero]" }, { "state_after": "no goals", "state_before": "case pos\np : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\nhxy : ¬x + y = 0\nhx : ¬x = 0\nhy : y = 0\n⊢ (if x = 0 then ⊤ else ↑(valuation x)) ≤ ⊤", "tactic": "exact le_top" }, { "state_after": "case neg\np : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\nhxy : ¬x + y = 0\nhx : ¬x = 0\nhy : ¬y = 0\n⊢ min (valuation x) (valuation y) ≤ valuation (x + y)", "state_before": "case neg\np : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\nhxy : ¬x + y = 0\nhx : ¬x = 0\nhy : ¬y = 0\n⊢ min (if x = 0 then ⊤ else ↑(valuation x)) (if y = 0 then ⊤ else ↑(valuation y)) ≤\n if x + y = 0 then ⊤ else ↑(valuation (x + y))", "tactic": "rw [if_neg hx, if_neg hy, if_neg hxy, ← WithTop.coe_min, WithTop.coe_le_coe]" }, { "state_after": "no goals", "state_before": "case neg\np : ℕ\nhp : Fact (Nat.Prime p)\nx y : ℚ_[p]\nhxy : ¬x + y = 0\nhx : ¬x = 0\nhy : ¬y = 0\n⊢ min (valuation x) (valuation y) ≤ valuation (x + y)", "tactic": "exact valuation_map_add hxy" } ]
[ 1144, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1131, 1 ]
Mathlib/Topology/Algebra/Order/MonotoneContinuity.lean
StrictMonoOn.continuousWithinAt_left_of_closure_image_mem_nhdsWithin
[]
[ 192, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 189, 1 ]
Mathlib/Analysis/SpecialFunctions/Log/Deriv.lean
Real.contDiffOn_log
[ { "state_after": "x : ℝ\nn : ℕ∞\nthis : ContDiffOn ℝ ⊤ log ({0}ᶜ)\n⊢ ContDiffOn ℝ n log ({0}ᶜ)\n\ncase this\nx : ℝ\nn : ℕ∞\n⊢ ContDiffOn ℝ ⊤ log ({0}ᶜ)", "state_before": "x : ℝ\nn : ℕ∞\n⊢ ContDiffOn ℝ n log ({0}ᶜ)", "tactic": "suffices : ContDiffOn ℝ ⊤ log ({0}ᶜ)" }, { "state_after": "case this\nx : ℝ\nn : ℕ∞\n⊢ ContDiffOn ℝ ⊤ log ({0}ᶜ)", "state_before": "x : ℝ\nn : ℕ∞\nthis : ContDiffOn ℝ ⊤ log ({0}ᶜ)\n⊢ ContDiffOn ℝ n log ({0}ᶜ)\n\ncase this\nx : ℝ\nn : ℕ∞\n⊢ ContDiffOn ℝ ⊤ log ({0}ᶜ)", "tactic": "exact this.of_le le_top" }, { "state_after": "case this\nx : ℝ\nn : ℕ∞\n⊢ DifferentiableOn ℝ log ({0}ᶜ) ∧ ContDiffOn ℝ ⊤ (deriv log) ({0}ᶜ)", "state_before": "case this\nx : ℝ\nn : ℕ∞\n⊢ ContDiffOn ℝ ⊤ log ({0}ᶜ)", "tactic": "refine' (contDiffOn_top_iff_deriv_of_open isOpen_compl_singleton).2 _" }, { "state_after": "no goals", "state_before": "case this\nx : ℝ\nn : ℕ∞\n⊢ DifferentiableOn ℝ log ({0}ᶜ) ∧ ContDiffOn ℝ ⊤ (deriv log) ({0}ᶜ)", "tactic": "simp [differentiableOn_log, contDiffOn_inv]" } ]
[ 84, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 1 ]
Mathlib/RingTheory/Polynomial/Content.lean
Polynomial.primPart_zero
[]
[ 264, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 263, 1 ]
Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
csSup_Ioc
[]
[ 771, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 770, 1 ]
Std/Data/Int/DivMod.lean
Int.zero_fmod
[ { "state_after": "no goals", "state_before": "b : Int\n⊢ fmod 0 b = 0", "tactic": "cases b <;> rfl" } ]
[ 250, 73 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 250, 9 ]
Mathlib/Topology/LocalAtTarget.lean
isOpen_iff_coe_preimage_of_iSup_eq_top
[ { "state_after": "α : Type ?u.17624\nβ : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns✝ : Set β\nι : Type ?u.17643\nU : ι → Opens β\nhU : iSup U = ⊤\ns : Set β\n⊢ (∀ (i : ι), IsOpen (s ∩ ↑(U i))) ↔ ∀ (i : ι), IsOpen (Subtype.val ⁻¹' s)", "state_before": "α : Type ?u.17624\nβ : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns✝ : Set β\nι : Type ?u.17643\nU : ι → Opens β\nhU : iSup U = ⊤\ns : Set β\n⊢ IsOpen s ↔ ∀ (i : ι), IsOpen (Subtype.val ⁻¹' s)", "tactic": "rw [isOpen_iff_inter_of_iSup_eq_top hU s]" }, { "state_after": "α : Type ?u.17624\nβ : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns✝ : Set β\nι : Type ?u.17643\nU : ι → Opens β\nhU : iSup U = ⊤\ns : Set β\ni : ι\n⊢ IsOpen (s ∩ ↑(U i)) ↔ IsOpen (Subtype.val ⁻¹' s)", "state_before": "α : Type ?u.17624\nβ : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns✝ : Set β\nι : Type ?u.17643\nU : ι → Opens β\nhU : iSup U = ⊤\ns : Set β\n⊢ (∀ (i : ι), IsOpen (s ∩ ↑(U i))) ↔ ∀ (i : ι), IsOpen (Subtype.val ⁻¹' s)", "tactic": "refine forall_congr' fun i => ?_" }, { "state_after": "α : Type ?u.17624\nβ : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns✝ : Set β\nι : Type ?u.17643\nU : ι → Opens β\nhU : iSup U = ⊤\ns : Set β\ni : ι\n⊢ IsOpen (s ∩ ↑(U i)) ↔ IsOpen (Subtype.val '' (Subtype.val ⁻¹' s))", "state_before": "α : Type ?u.17624\nβ : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns✝ : Set β\nι : Type ?u.17643\nU : ι → Opens β\nhU : iSup U = ⊤\ns : Set β\ni : ι\n⊢ IsOpen (s ∩ ↑(U i)) ↔ IsOpen (Subtype.val ⁻¹' s)", "tactic": "rw [(U _).2.openEmbedding_subtype_val.open_iff_image_open]" }, { "state_after": "α : Type ?u.17624\nβ : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns✝ : Set β\nι : Type ?u.17643\nU : ι → Opens β\nhU : iSup U = ⊤\ns : Set β\ni : ι\n⊢ IsOpen (s ∩ ↑(U i)) ↔ IsOpen (s ∩ range Subtype.val)", "state_before": "α : Type ?u.17624\nβ : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns✝ : Set β\nι : Type ?u.17643\nU : ι → Opens β\nhU : iSup U = ⊤\ns : Set β\ni : ι\n⊢ IsOpen (s ∩ ↑(U i)) ↔ IsOpen (Subtype.val '' (Subtype.val ⁻¹' s))", "tactic": "erw [Set.image_preimage_eq_inter_range]" }, { "state_after": "no goals", "state_before": "α : Type ?u.17624\nβ : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nf : α → β\ns✝ : Set β\nι : Type ?u.17643\nU : ι → Opens β\nhU : iSup U = ⊤\ns : Set β\ni : ι\n⊢ IsOpen (s ∩ ↑(U i)) ↔ IsOpen (s ∩ range Subtype.val)", "tactic": "rw [Subtype.range_coe, Opens.carrier_eq_coe]" } ]
[ 100, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 93, 1 ]
Mathlib/Algebra/Order/Floor.lean
Int.map_fract
[ { "state_after": "no goals", "state_before": "F : Type u_3\nα : Type u_1\nβ : Type u_2\ninst✝⁴ : LinearOrderedRing α\ninst✝³ : LinearOrderedRing β\ninst✝² : FloorRing α\ninst✝¹ : FloorRing β\ninst✝ : RingHomClass F α β\na✝ : α\nb : β\nf : F\nhf : StrictMono ↑f\na : α\n⊢ fract (↑f a) = ↑f (fract a)", "tactic": "simp_rw [fract, map_sub, map_intCast, map_floor _ hf]" } ]
[ 1543, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1542, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.mem_sets
[]
[ 118, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 117, 11 ]
Mathlib/MeasureTheory/Measure/Haar/Basic.lean
MeasureTheory.Measure.haar.haarContent_apply
[]
[ 560, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 558, 1 ]
Mathlib/Data/Stream/Init.lean
Stream'.inits_eq
[ { "state_after": "case a\nα : Type u\nβ : Type v\nδ : Type w\ns : Stream' α\n⊢ ∀ (n : ℕ), nth (inits s) n = nth ([head s] :: map (List.cons (head s)) (inits (tail s))) n", "state_before": "α : Type u\nβ : Type v\nδ : Type w\ns : Stream' α\n⊢ inits s = [head s] :: map (List.cons (head s)) (inits (tail s))", "tactic": "apply Stream'.ext" }, { "state_after": "case a\nα : Type u\nβ : Type v\nδ : Type w\ns : Stream' α\nn : ℕ\n⊢ nth (inits s) n = nth ([head s] :: map (List.cons (head s)) (inits (tail s))) n", "state_before": "case a\nα : Type u\nβ : Type v\nδ : Type w\ns : Stream' α\n⊢ ∀ (n : ℕ), nth (inits s) n = nth ([head s] :: map (List.cons (head s)) (inits (tail s))) n", "tactic": "intro n" }, { "state_after": "case a.zero\nα : Type u\nβ : Type v\nδ : Type w\ns : Stream' α\n⊢ nth (inits s) zero = nth ([head s] :: map (List.cons (head s)) (inits (tail s))) zero\n\ncase a.succ\nα : Type u\nβ : Type v\nδ : Type w\ns : Stream' α\nn✝ : ℕ\n⊢ nth (inits s) (succ n✝) = nth ([head s] :: map (List.cons (head s)) (inits (tail s))) (succ n✝)", "state_before": "case a\nα : Type u\nβ : Type v\nδ : Type w\ns : Stream' α\nn : ℕ\n⊢ nth (inits s) n = nth ([head s] :: map (List.cons (head s)) (inits (tail s))) n", "tactic": "cases n" }, { "state_after": "no goals", "state_before": "case a.zero\nα : Type u\nβ : Type v\nδ : Type w\ns : Stream' α\n⊢ nth (inits s) zero = nth ([head s] :: map (List.cons (head s)) (inits (tail s))) zero", "tactic": "rfl" }, { "state_after": "case a.succ\nα : Type u\nβ : Type v\nδ : Type w\ns : Stream' α\nn✝ : ℕ\n⊢ take (succ (succ n✝)) s = head s :: take (succ n✝) (tail s)", "state_before": "case a.succ\nα : Type u\nβ : Type v\nδ : Type w\ns : Stream' α\nn✝ : ℕ\n⊢ nth (inits s) (succ n✝) = nth ([head s] :: map (List.cons (head s)) (inits (tail s))) (succ n✝)", "tactic": "rw [nth_inits, nth_succ, tail_cons, nth_map, nth_inits]" }, { "state_after": "no goals", "state_before": "case a.succ\nα : Type u\nβ : Type v\nδ : Type w\ns : Stream' α\nn✝ : ℕ\n⊢ take (succ (succ n✝)) s = head s :: take (succ n✝) (tail s)", "tactic": "rfl" } ]
[ 728, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 722, 1 ]
Mathlib/Data/Set/Lattice.lean
Set.iUnion_range_eq_sUnion
[ { "state_after": "case h\nα✝ : Type ?u.180126\nβ✝ : Type ?u.180129\nγ : Type ?u.180132\nι : Sort ?u.180135\nι' : Sort ?u.180138\nι₂ : Sort ?u.180141\nκ : ι → Sort ?u.180146\nκ₁ : ι → Sort ?u.180151\nκ₂ : ι → Sort ?u.180156\nκ' : ι' → Sort ?u.180161\nα : Type u_1\nβ : Type u_2\nC : Set (Set α)\nf : (s : ↑C) → β → ↑↑s\nhf : ∀ (s : ↑C), Surjective (f s)\nx : α\n⊢ (x ∈ ⋃ (y : β), range fun s => ↑(f s y)) ↔ x ∈ ⋃₀ C", "state_before": "α✝ : Type ?u.180126\nβ✝ : Type ?u.180129\nγ : Type ?u.180132\nι : Sort ?u.180135\nι' : Sort ?u.180138\nι₂ : Sort ?u.180141\nκ : ι → Sort ?u.180146\nκ₁ : ι → Sort ?u.180151\nκ₂ : ι → Sort ?u.180156\nκ' : ι' → Sort ?u.180161\nα : Type u_1\nβ : Type u_2\nC : Set (Set α)\nf : (s : ↑C) → β → ↑↑s\nhf : ∀ (s : ↑C), Surjective (f s)\n⊢ (⋃ (y : β), range fun s => ↑(f s y)) = ⋃₀ C", "tactic": "ext x" }, { "state_after": "case h.mp\nα✝ : Type ?u.180126\nβ✝ : Type ?u.180129\nγ : Type ?u.180132\nι : Sort ?u.180135\nι' : Sort ?u.180138\nι₂ : Sort ?u.180141\nκ : ι → Sort ?u.180146\nκ₁ : ι → Sort ?u.180151\nκ₂ : ι → Sort ?u.180156\nκ' : ι' → Sort ?u.180161\nα : Type u_1\nβ : Type u_2\nC : Set (Set α)\nf : (s : ↑C) → β → ↑↑s\nhf : ∀ (s : ↑C), Surjective (f s)\nx : α\n⊢ (x ∈ ⋃ (y : β), range fun s => ↑(f s y)) → x ∈ ⋃₀ C\n\ncase h.mpr\nα✝ : Type ?u.180126\nβ✝ : Type ?u.180129\nγ : Type ?u.180132\nι : Sort ?u.180135\nι' : Sort ?u.180138\nι₂ : Sort ?u.180141\nκ : ι → Sort ?u.180146\nκ₁ : ι → Sort ?u.180151\nκ₂ : ι → Sort ?u.180156\nκ' : ι' → Sort ?u.180161\nα : Type u_1\nβ : Type u_2\nC : Set (Set α)\nf : (s : ↑C) → β → ↑↑s\nhf : ∀ (s : ↑C), Surjective (f s)\nx : α\n⊢ x ∈ ⋃₀ C → x ∈ ⋃ (y : β), range fun s => ↑(f s y)", "state_before": "case h\nα✝ : Type ?u.180126\nβ✝ : Type ?u.180129\nγ : Type ?u.180132\nι : Sort ?u.180135\nι' : Sort ?u.180138\nι₂ : Sort ?u.180141\nκ : ι → Sort ?u.180146\nκ₁ : ι → Sort ?u.180151\nκ₂ : ι → Sort ?u.180156\nκ' : ι' → Sort ?u.180161\nα : Type u_1\nβ : Type u_2\nC : Set (Set α)\nf : (s : ↑C) → β → ↑↑s\nhf : ∀ (s : ↑C), Surjective (f s)\nx : α\n⊢ (x ∈ ⋃ (y : β), range fun s => ↑(f s y)) ↔ x ∈ ⋃₀ C", "tactic": "constructor" }, { "state_after": "case h.mp.intro.intro.intro.intro.mk\nα✝ : Type ?u.180126\nβ✝ : Type ?u.180129\nγ : Type ?u.180132\nι : Sort ?u.180135\nι' : Sort ?u.180138\nι₂ : Sort ?u.180141\nκ : ι → Sort ?u.180146\nκ₁ : ι → Sort ?u.180151\nκ₂ : ι → Sort ?u.180156\nκ' : ι' → Sort ?u.180161\nα : Type u_1\nβ : Type u_2\nC : Set (Set α)\nf : (s : ↑C) → β → ↑↑s\nhf : ∀ (s : ↑C), Surjective (f s)\ny : β\ns : Set α\nhs : s ∈ C\n⊢ (fun s => ↑(f s y)) { val := s, property := hs } ∈ ⋃₀ C", "state_before": "case h.mp\nα✝ : Type ?u.180126\nβ✝ : Type ?u.180129\nγ : Type ?u.180132\nι : Sort ?u.180135\nι' : Sort ?u.180138\nι₂ : Sort ?u.180141\nκ : ι → Sort ?u.180146\nκ₁ : ι → Sort ?u.180151\nκ₂ : ι → Sort ?u.180156\nκ' : ι' → Sort ?u.180161\nα : Type u_1\nβ : Type u_2\nC : Set (Set α)\nf : (s : ↑C) → β → ↑↑s\nhf : ∀ (s : ↑C), Surjective (f s)\nx : α\n⊢ (x ∈ ⋃ (y : β), range fun s => ↑(f s y)) → x ∈ ⋃₀ C", "tactic": "rintro ⟨s, ⟨y, rfl⟩, ⟨s, hs⟩, rfl⟩" }, { "state_after": "case h.mp.intro.intro.intro.intro.mk\nα✝ : Type ?u.180126\nβ✝ : Type ?u.180129\nγ : Type ?u.180132\nι : Sort ?u.180135\nι' : Sort ?u.180138\nι₂ : Sort ?u.180141\nκ : ι → Sort ?u.180146\nκ₁ : ι → Sort ?u.180151\nκ₂ : ι → Sort ?u.180156\nκ' : ι' → Sort ?u.180161\nα : Type u_1\nβ : Type u_2\nC : Set (Set α)\nf : (s : ↑C) → β → ↑↑s\nhf : ∀ (s : ↑C), Surjective (f s)\ny : β\ns : Set α\nhs : s ∈ C\n⊢ (fun s => ↑(f s y)) { val := s, property := hs } ∈ s", "state_before": "case h.mp.intro.intro.intro.intro.mk\nα✝ : Type ?u.180126\nβ✝ : Type ?u.180129\nγ : Type ?u.180132\nι : Sort ?u.180135\nι' : Sort ?u.180138\nι₂ : Sort ?u.180141\nκ : ι → Sort ?u.180146\nκ₁ : ι → Sort ?u.180151\nκ₂ : ι → Sort ?u.180156\nκ' : ι' → Sort ?u.180161\nα : Type u_1\nβ : Type u_2\nC : Set (Set α)\nf : (s : ↑C) → β → ↑↑s\nhf : ∀ (s : ↑C), Surjective (f s)\ny : β\ns : Set α\nhs : s ∈ C\n⊢ (fun s => ↑(f s y)) { val := s, property := hs } ∈ ⋃₀ C", "tactic": "refine' ⟨_, hs, _⟩" }, { "state_after": "no goals", "state_before": "case h.mp.intro.intro.intro.intro.mk\nα✝ : Type ?u.180126\nβ✝ : Type ?u.180129\nγ : Type ?u.180132\nι : Sort ?u.180135\nι' : Sort ?u.180138\nι₂ : Sort ?u.180141\nκ : ι → Sort ?u.180146\nκ₁ : ι → Sort ?u.180151\nκ₂ : ι → Sort ?u.180156\nκ' : ι' → Sort ?u.180161\nα : Type u_1\nβ : Type u_2\nC : Set (Set α)\nf : (s : ↑C) → β → ↑↑s\nhf : ∀ (s : ↑C), Surjective (f s)\ny : β\ns : Set α\nhs : s ∈ C\n⊢ (fun s => ↑(f s y)) { val := s, property := hs } ∈ s", "tactic": "exact (f ⟨s, hs⟩ y).2" }, { "state_after": "case h.mpr.intro.intro\nα✝ : Type ?u.180126\nβ✝ : Type ?u.180129\nγ : Type ?u.180132\nι : Sort ?u.180135\nι' : Sort ?u.180138\nι₂ : Sort ?u.180141\nκ : ι → Sort ?u.180146\nκ₁ : ι → Sort ?u.180151\nκ₂ : ι → Sort ?u.180156\nκ' : ι' → Sort ?u.180161\nα : Type u_1\nβ : Type u_2\nC : Set (Set α)\nf : (s : ↑C) → β → ↑↑s\nhf : ∀ (s : ↑C), Surjective (f s)\nx : α\ns : Set α\nhs : s ∈ C\nhx : x ∈ s\n⊢ x ∈ ⋃ (y : β), range fun s => ↑(f s y)", "state_before": "case h.mpr\nα✝ : Type ?u.180126\nβ✝ : Type ?u.180129\nγ : Type ?u.180132\nι : Sort ?u.180135\nι' : Sort ?u.180138\nι₂ : Sort ?u.180141\nκ : ι → Sort ?u.180146\nκ₁ : ι → Sort ?u.180151\nκ₂ : ι → Sort ?u.180156\nκ' : ι' → Sort ?u.180161\nα : Type u_1\nβ : Type u_2\nC : Set (Set α)\nf : (s : ↑C) → β → ↑↑s\nhf : ∀ (s : ↑C), Surjective (f s)\nx : α\n⊢ x ∈ ⋃₀ C → x ∈ ⋃ (y : β), range fun s => ↑(f s y)", "tactic": "rintro ⟨s, hs, hx⟩" }, { "state_after": "case h.mpr.intro.intro.intro\nα✝ : Type ?u.180126\nβ✝ : Type ?u.180129\nγ : Type ?u.180132\nι : Sort ?u.180135\nι' : Sort ?u.180138\nι₂ : Sort ?u.180141\nκ : ι → Sort ?u.180146\nκ₁ : ι → Sort ?u.180151\nκ₂ : ι → Sort ?u.180156\nκ' : ι' → Sort ?u.180161\nα : Type u_1\nβ : Type u_2\nC : Set (Set α)\nf : (s : ↑C) → β → ↑↑s\nhf : ∀ (s : ↑C), Surjective (f s)\nx : α\ns : Set α\nhs : s ∈ C\nhx : x ∈ s\ny : β\nhy : f { val := s, property := hs } y = { val := x, property := hx }\n⊢ x ∈ ⋃ (y : β), range fun s => ↑(f s y)", "state_before": "case h.mpr.intro.intro\nα✝ : Type ?u.180126\nβ✝ : Type ?u.180129\nγ : Type ?u.180132\nι : Sort ?u.180135\nι' : Sort ?u.180138\nι₂ : Sort ?u.180141\nκ : ι → Sort ?u.180146\nκ₁ : ι → Sort ?u.180151\nκ₂ : ι → Sort ?u.180156\nκ' : ι' → Sort ?u.180161\nα : Type u_1\nβ : Type u_2\nC : Set (Set α)\nf : (s : ↑C) → β → ↑↑s\nhf : ∀ (s : ↑C), Surjective (f s)\nx : α\ns : Set α\nhs : s ∈ C\nhx : x ∈ s\n⊢ x ∈ ⋃ (y : β), range fun s => ↑(f s y)", "tactic": "cases' hf ⟨s, hs⟩ ⟨x, hx⟩ with y hy" }, { "state_after": "case h.mpr.intro.intro.intro\nα✝ : Type ?u.180126\nβ✝ : Type ?u.180129\nγ : Type ?u.180132\nι : Sort ?u.180135\nι' : Sort ?u.180138\nι₂ : Sort ?u.180141\nκ : ι → Sort ?u.180146\nκ₁ : ι → Sort ?u.180151\nκ₂ : ι → Sort ?u.180156\nκ' : ι' → Sort ?u.180161\nα : Type u_1\nβ : Type u_2\nC : Set (Set α)\nf : (s : ↑C) → β → ↑↑s\nhf : ∀ (s : ↑C), Surjective (f s)\nx : α\ns : Set α\nhs : s ∈ C\nhx : x ∈ s\ny : β\nhy : f { val := s, property := hs } y = { val := x, property := hx }\n⊢ (fun s => ↑(f s y)) { val := s, property := hs } = x", "state_before": "case h.mpr.intro.intro.intro\nα✝ : Type ?u.180126\nβ✝ : Type ?u.180129\nγ : Type ?u.180132\nι : Sort ?u.180135\nι' : Sort ?u.180138\nι₂ : Sort ?u.180141\nκ : ι → Sort ?u.180146\nκ₁ : ι → Sort ?u.180151\nκ₂ : ι → Sort ?u.180156\nκ' : ι' → Sort ?u.180161\nα : Type u_1\nβ : Type u_2\nC : Set (Set α)\nf : (s : ↑C) → β → ↑↑s\nhf : ∀ (s : ↑C), Surjective (f s)\nx : α\ns : Set α\nhs : s ∈ C\nhx : x ∈ s\ny : β\nhy : f { val := s, property := hs } y = { val := x, property := hx }\n⊢ x ∈ ⋃ (y : β), range fun s => ↑(f s y)", "tactic": "refine' ⟨_, ⟨y, rfl⟩, ⟨s, hs⟩, _⟩" }, { "state_after": "no goals", "state_before": "case h.mpr.intro.intro.intro\nα✝ : Type ?u.180126\nβ✝ : Type ?u.180129\nγ : Type ?u.180132\nι : Sort ?u.180135\nι' : Sort ?u.180138\nι₂ : Sort ?u.180141\nκ : ι → Sort ?u.180146\nκ₁ : ι → Sort ?u.180151\nκ₂ : ι → Sort ?u.180156\nκ' : ι' → Sort ?u.180161\nα : Type u_1\nβ : Type u_2\nC : Set (Set α)\nf : (s : ↑C) → β → ↑↑s\nhf : ∀ (s : ↑C), Surjective (f s)\nx : α\ns : Set α\nhs : s ∈ C\nhx : x ∈ s\ny : β\nhy : f { val := s, property := hs } y = { val := x, property := hx }\n⊢ (fun s => ↑(f s y)) { val := s, property := hs } = x", "tactic": "exact congr_arg Subtype.val hy" } ]
[ 1384, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1375, 1 ]
Mathlib/Geometry/Euclidean/Angle/Unoriented/RightAngle.lean
InnerProductGeometry.norm_div_cos_angle_add_of_inner_eq_zero
[ { "state_after": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : inner x y = 0\nh0 : x ≠ 0 ∨ y = 0\n⊢ ‖x‖ / (‖x‖ / ‖x + y‖) = ‖x + y‖", "state_before": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : inner x y = 0\nh0 : x ≠ 0 ∨ y = 0\n⊢ ‖x‖ / Real.cos (angle x (x + y)) = ‖x + y‖", "tactic": "rw [cos_angle_add_of_inner_eq_zero h]" }, { "state_after": "case inl\nV : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : inner x y = 0\nh0 : x ≠ 0\n⊢ ‖x‖ / (‖x‖ / ‖x + y‖) = ‖x + y‖\n\ncase inr\nV : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : inner x y = 0\nh0 : y = 0\n⊢ ‖x‖ / (‖x‖ / ‖x + y‖) = ‖x + y‖", "state_before": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : inner x y = 0\nh0 : x ≠ 0 ∨ y = 0\n⊢ ‖x‖ / (‖x‖ / ‖x + y‖) = ‖x + y‖", "tactic": "rcases h0 with (h0 | h0)" }, { "state_after": "no goals", "state_before": "case inl\nV : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : inner x y = 0\nh0 : x ≠ 0\n⊢ ‖x‖ / (‖x‖ / ‖x + y‖) = ‖x + y‖", "tactic": "rw [div_div_eq_mul_div, mul_comm, div_eq_mul_inv, mul_inv_cancel_right₀ (norm_ne_zero_iff.2 h0)]" }, { "state_after": "no goals", "state_before": "case inr\nV : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : inner x y = 0\nh0 : y = 0\n⊢ ‖x‖ / (‖x‖ / ‖x + y‖) = ‖x + y‖", "tactic": "simp [h0]" } ]
[ 209, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 204, 1 ]
Mathlib/Order/LocallyFinite.lean
Finset.coe_Ici
[]
[ 394, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 393, 1 ]
Mathlib/Data/MvPolynomial/Supported.lean
MvPolynomial.supported_eq_range_rename
[ { "state_after": "σ : Type u_1\nτ : Type ?u.560\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ns : Set σ\n⊢ AlgHom.range (aeval fun x => X ↑x) = AlgHom.range (aeval (X ∘ Subtype.val))", "state_before": "σ : Type u_1\nτ : Type ?u.560\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ns : Set σ\n⊢ supported R s = AlgHom.range (rename Subtype.val)", "tactic": "rw [supported, Set.image_eq_range, adjoin_range_eq_range_aeval, rename]" }, { "state_after": "no goals", "state_before": "σ : Type u_1\nτ : Type ?u.560\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝ : CommSemiring R\np q : MvPolynomial σ R\ns : Set σ\n⊢ AlgHom.range (aeval fun x => X ↑x) = AlgHom.range (aeval (X ∘ Subtype.val))", "tactic": "congr" } ]
[ 52, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 50, 1 ]
Mathlib/Algebra/Quaternion.lean
Quaternion.normSq_div
[]
[ 1397, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1396, 1 ]
Mathlib/Topology/Separation.lean
nhds_inter_eq_singleton_of_mem_discrete
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\ninst✝¹ : TopologicalSpace α\ns : Set α\ninst✝ : DiscreteTopology ↑s\nx : α\nhx : x ∈ s\n⊢ ∃ U, U ∈ 𝓝 x ∧ U ∩ s = {x}", "tactic": "simpa using (𝓝 x).basis_sets.exists_inter_eq_singleton_of_mem_discrete hx" } ]
[ 838, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 836, 1 ]
Mathlib/Logic/Equiv/Option.lean
Equiv.coe_optionSubtype_apply_apply
[]
[ 228, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 225, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.sub_eq_of_eq_add_rev
[]
[ 1132, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1131, 11 ]
Mathlib/Order/Heyting/Boundary.lean
Coheyting.boundary_le_boundary_sup_sup_boundary_inf_right
[ { "state_after": "α : Type u_1\ninst✝ : CoheytingAlgebra α\na b : α\n⊢ ∂ b ≤ ∂ (b ⊔ a) ⊔ ∂ (b ⊓ a)", "state_before": "α : Type u_1\ninst✝ : CoheytingAlgebra α\na b : α\n⊢ ∂ b ≤ ∂ (a ⊔ b) ⊔ ∂ (a ⊓ b)", "tactic": "rw [@sup_comm _ _ a, inf_comm]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : CoheytingAlgebra α\na b : α\n⊢ ∂ b ≤ ∂ (b ⊔ a) ⊔ ∂ (b ⊓ a)", "tactic": "exact boundary_le_boundary_sup_sup_boundary_inf_left" } ]
[ 125, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 123, 1 ]
Mathlib/RingTheory/UniqueFactorizationDomain.lean
UniqueFactorizationMonoid.count_normalizedFactors_eq'
[ { "state_after": "case inl\nα : Type ?u.1182347\nR : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : Nontrivial R\ninst✝¹ : NormalizationMonoid R\ndec_dvd : DecidableRel Dvd.dvd\ninst✝ : DecidableEq R\nx : R\nn : ℕ\nhnorm : ↑normalize 0 = 0\nhle : 0 ^ n ∣ x\nhlt : ¬0 ^ (n + 1) ∣ x\n⊢ count 0 (normalizedFactors x) = n\n\ncase inr\nα : Type ?u.1182347\nR : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : Nontrivial R\ninst✝¹ : NormalizationMonoid R\ndec_dvd : DecidableRel Dvd.dvd\ninst✝ : DecidableEq R\np x : R\nhnorm : ↑normalize p = p\nn : ℕ\nhle : p ^ n ∣ x\nhlt : ¬p ^ (n + 1) ∣ x\nhp : Irreducible p\n⊢ count p (normalizedFactors x) = n", "state_before": "α : Type ?u.1182347\nR : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : Nontrivial R\ninst✝¹ : NormalizationMonoid R\ndec_dvd : DecidableRel Dvd.dvd\ninst✝ : DecidableEq R\np x : R\nhp : p = 0 ∨ Irreducible p\nhnorm : ↑normalize p = p\nn : ℕ\nhle : p ^ n ∣ x\nhlt : ¬p ^ (n + 1) ∣ x\n⊢ count p (normalizedFactors x) = n", "tactic": "rcases hp with (rfl | hp)" }, { "state_after": "case inl.zero\nα : Type ?u.1182347\nR : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : Nontrivial R\ninst✝¹ : NormalizationMonoid R\ndec_dvd : DecidableRel Dvd.dvd\ninst✝ : DecidableEq R\nx : R\nhnorm : ↑normalize 0 = 0\nhle : 0 ^ Nat.zero ∣ x\nhlt : ¬0 ^ (Nat.zero + 1) ∣ x\n⊢ count 0 (normalizedFactors x) = Nat.zero\n\ncase inl.succ\nα : Type ?u.1182347\nR : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : Nontrivial R\ninst✝¹ : NormalizationMonoid R\ndec_dvd : DecidableRel Dvd.dvd\ninst✝ : DecidableEq R\nx : R\nhnorm : ↑normalize 0 = 0\nn✝ : ℕ\nhle : 0 ^ Nat.succ n✝ ∣ x\nhlt : ¬0 ^ (Nat.succ n✝ + 1) ∣ x\n⊢ count 0 (normalizedFactors x) = Nat.succ n✝", "state_before": "case inl\nα : Type ?u.1182347\nR : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : Nontrivial R\ninst✝¹ : NormalizationMonoid R\ndec_dvd : DecidableRel Dvd.dvd\ninst✝ : DecidableEq R\nx : R\nn : ℕ\nhnorm : ↑normalize 0 = 0\nhle : 0 ^ n ∣ x\nhlt : ¬0 ^ (n + 1) ∣ x\n⊢ count 0 (normalizedFactors x) = n", "tactic": "cases n" }, { "state_after": "no goals", "state_before": "case inl.zero\nα : Type ?u.1182347\nR : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : Nontrivial R\ninst✝¹ : NormalizationMonoid R\ndec_dvd : DecidableRel Dvd.dvd\ninst✝ : DecidableEq R\nx : R\nhnorm : ↑normalize 0 = 0\nhle : 0 ^ Nat.zero ∣ x\nhlt : ¬0 ^ (Nat.zero + 1) ∣ x\n⊢ count 0 (normalizedFactors x) = Nat.zero", "tactic": "exact count_eq_zero.2 (zero_not_mem_normalizedFactors _)" }, { "state_after": "case inl.succ\nα : Type ?u.1182347\nR : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : Nontrivial R\ninst✝¹ : NormalizationMonoid R\ndec_dvd : DecidableRel Dvd.dvd\ninst✝ : DecidableEq R\nx : R\nhnorm : ↑normalize 0 = 0\nn✝ : ℕ\nhle : 0 ∣ x\nhlt : ¬0 ∣ x\n⊢ count 0 (normalizedFactors x) = Nat.succ n✝", "state_before": "case inl.succ\nα : Type ?u.1182347\nR : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : Nontrivial R\ninst✝¹ : NormalizationMonoid R\ndec_dvd : DecidableRel Dvd.dvd\ninst✝ : DecidableEq R\nx : R\nhnorm : ↑normalize 0 = 0\nn✝ : ℕ\nhle : 0 ^ Nat.succ n✝ ∣ x\nhlt : ¬0 ^ (Nat.succ n✝ + 1) ∣ x\n⊢ count 0 (normalizedFactors x) = Nat.succ n✝", "tactic": "rw [zero_pow (Nat.succ_pos _)] at hle hlt" }, { "state_after": "no goals", "state_before": "case inl.succ\nα : Type ?u.1182347\nR : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : Nontrivial R\ninst✝¹ : NormalizationMonoid R\ndec_dvd : DecidableRel Dvd.dvd\ninst✝ : DecidableEq R\nx : R\nhnorm : ↑normalize 0 = 0\nn✝ : ℕ\nhle : 0 ∣ x\nhlt : ¬0 ∣ x\n⊢ count 0 (normalizedFactors x) = Nat.succ n✝", "tactic": "exact absurd hle hlt" }, { "state_after": "no goals", "state_before": "case inr\nα : Type ?u.1182347\nR : Type u_1\ninst✝⁴ : CancelCommMonoidWithZero R\ninst✝³ : UniqueFactorizationMonoid R\ninst✝² : Nontrivial R\ninst✝¹ : NormalizationMonoid R\ndec_dvd : DecidableRel Dvd.dvd\ninst✝ : DecidableEq R\np x : R\nhnorm : ↑normalize p = p\nn : ℕ\nhle : p ^ n ∣ x\nhlt : ¬p ^ (n + 1) ∣ x\nhp : Irreducible p\n⊢ count p (normalizedFactors x) = n", "tactic": "exact count_normalizedFactors_eq hp hnorm hle hlt" } ]
[ 1024, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1016, 1 ]
Mathlib/Algebra/Module/Opposites.lean
MulOpposite.opLinearEquiv_toAddEquiv
[]
[ 62, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 61, 1 ]
Mathlib/Combinatorics/SimpleGraph/DegreeSum.lean
SimpleGraph.dart_edge_fiber_card
[ { "state_after": "V : Type u\nG : SimpleGraph V\ninst✝³ : Fintype V\ninst✝² : DecidableRel G.Adj\ninst✝¹ : Fintype (Sym2 V)\ninst✝ : DecidableEq V\ne : Sym2 V\nh✝ : e ∈ edgeSet G\nv w : V\nh : Quotient.mk (Sym2.Rel.setoid V) (v, w) ∈ edgeSet G\n⊢ card (filter (fun d => Dart.edge d = Quotient.mk (Sym2.Rel.setoid V) (v, w)) univ) = 2", "state_before": "V : Type u\nG : SimpleGraph V\ninst✝³ : Fintype V\ninst✝² : DecidableRel G.Adj\ninst✝¹ : Fintype (Sym2 V)\ninst✝ : DecidableEq V\ne : Sym2 V\nh : e ∈ edgeSet G\n⊢ card (filter (fun d => Dart.edge d = e) univ) = 2", "tactic": "refine' Sym2.ind (fun v w h => _) e h" }, { "state_after": "V : Type u\nG : SimpleGraph V\ninst✝³ : Fintype V\ninst✝² : DecidableRel G.Adj\ninst✝¹ : Fintype (Sym2 V)\ninst✝ : DecidableEq V\ne : Sym2 V\nh✝ : e ∈ edgeSet G\nv w : V\nh : Quotient.mk (Sym2.Rel.setoid V) (v, w) ∈ edgeSet G\nd : Dart G := { toProd := (v, w), is_adj := h }\n⊢ card (filter (fun d => Dart.edge d = Quotient.mk (Sym2.Rel.setoid V) (v, w)) univ) = 2", "state_before": "V : Type u\nG : SimpleGraph V\ninst✝³ : Fintype V\ninst✝² : DecidableRel G.Adj\ninst✝¹ : Fintype (Sym2 V)\ninst✝ : DecidableEq V\ne : Sym2 V\nh✝ : e ∈ edgeSet G\nv w : V\nh : Quotient.mk (Sym2.Rel.setoid V) (v, w) ∈ edgeSet G\n⊢ card (filter (fun d => Dart.edge d = Quotient.mk (Sym2.Rel.setoid V) (v, w)) univ) = 2", "tactic": "let d : G.Dart := ⟨(v, w), h⟩" }, { "state_after": "case h.e'_3\nV : Type u\nG : SimpleGraph V\ninst✝³ : Fintype V\ninst✝² : DecidableRel G.Adj\ninst✝¹ : Fintype (Sym2 V)\ninst✝ : DecidableEq V\ne : Sym2 V\nh✝ : e ∈ edgeSet G\nv w : V\nh : Quotient.mk (Sym2.Rel.setoid V) (v, w) ∈ edgeSet G\nd : Dart G := { toProd := (v, w), is_adj := h }\n⊢ 2 = card {d, Dart.symm d}", "state_before": "V : Type u\nG : SimpleGraph V\ninst✝³ : Fintype V\ninst✝² : DecidableRel G.Adj\ninst✝¹ : Fintype (Sym2 V)\ninst✝ : DecidableEq V\ne : Sym2 V\nh✝ : e ∈ edgeSet G\nv w : V\nh : Quotient.mk (Sym2.Rel.setoid V) (v, w) ∈ edgeSet G\nd : Dart G := { toProd := (v, w), is_adj := h }\n⊢ card (filter (fun d => Dart.edge d = Quotient.mk (Sym2.Rel.setoid V) (v, w)) univ) = 2", "tactic": "convert congr_arg card d.edge_fiber" }, { "state_after": "case h.e'_3\nV : Type u\nG : SimpleGraph V\ninst✝³ : Fintype V\ninst✝² : DecidableRel G.Adj\ninst✝¹ : Fintype (Sym2 V)\ninst✝ : DecidableEq V\ne : Sym2 V\nh✝ : e ∈ edgeSet G\nv w : V\nh : Quotient.mk (Sym2.Rel.setoid V) (v, w) ∈ edgeSet G\nd : Dart G := { toProd := (v, w), is_adj := h }\n⊢ ¬d ∈ {Dart.symm d}", "state_before": "case h.e'_3\nV : Type u\nG : SimpleGraph V\ninst✝³ : Fintype V\ninst✝² : DecidableRel G.Adj\ninst✝¹ : Fintype (Sym2 V)\ninst✝ : DecidableEq V\ne : Sym2 V\nh✝ : e ∈ edgeSet G\nv w : V\nh : Quotient.mk (Sym2.Rel.setoid V) (v, w) ∈ edgeSet G\nd : Dart G := { toProd := (v, w), is_adj := h }\n⊢ 2 = card {d, Dart.symm d}", "tactic": "rw [card_insert_of_not_mem, card_singleton]" }, { "state_after": "case h.e'_3\nV : Type u\nG : SimpleGraph V\ninst✝³ : Fintype V\ninst✝² : DecidableRel G.Adj\ninst✝¹ : Fintype (Sym2 V)\ninst✝ : DecidableEq V\ne : Sym2 V\nh✝ : e ∈ edgeSet G\nv w : V\nh : Quotient.mk (Sym2.Rel.setoid V) (v, w) ∈ edgeSet G\nd : Dart G := { toProd := (v, w), is_adj := h }\n⊢ ¬d = Dart.symm d", "state_before": "case h.e'_3\nV : Type u\nG : SimpleGraph V\ninst✝³ : Fintype V\ninst✝² : DecidableRel G.Adj\ninst✝¹ : Fintype (Sym2 V)\ninst✝ : DecidableEq V\ne : Sym2 V\nh✝ : e ∈ edgeSet G\nv w : V\nh : Quotient.mk (Sym2.Rel.setoid V) (v, w) ∈ edgeSet G\nd : Dart G := { toProd := (v, w), is_adj := h }\n⊢ ¬d ∈ {Dart.symm d}", "tactic": "rw [mem_singleton]" }, { "state_after": "no goals", "state_before": "case h.e'_3\nV : Type u\nG : SimpleGraph V\ninst✝³ : Fintype V\ninst✝² : DecidableRel G.Adj\ninst✝¹ : Fintype (Sym2 V)\ninst✝ : DecidableEq V\ne : Sym2 V\nh✝ : e ∈ edgeSet G\nv w : V\nh : Quotient.mk (Sym2.Rel.setoid V) (v, w) ∈ edgeSet G\nd : Dart G := { toProd := (v, w), is_adj := h }\n⊢ ¬d = Dart.symm d", "tactic": "exact d.symm_ne.symm" } ]
[ 100, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 93, 1 ]
Std/Data/List/Init/Lemmas.lean
List.append_inj'
[ { "state_after": "α✝ : Type u_1\ns₁ t₁ s₂ t₂ : List α✝\nh : s₁ ++ t₁ = s₂ ++ t₂\nhl : length t₁ = length t₂\nhap : length (s₁ ++ t₁) = length (s₂ ++ t₂) := congrArg length h\n⊢ length s₁ + length t₁ = length s₂ + length t₁", "state_before": "α✝ : Type u_1\ns₁ t₁ s₂ t₂ : List α✝\nh : s₁ ++ t₁ = s₂ ++ t₂\nhl : length t₁ = length t₂\n⊢ length s₁ + length t₁ = length s₂ + length t₁", "tactic": "let hap := congrArg length h" }, { "state_after": "α✝ : Type u_1\ns₁ t₁ s₂ t₂ : List α✝\nh : s₁ ++ t₁ = s₂ ++ t₂\nhl : length t₁ = length t₂\nhap : length s₁ + length t₁ = length s₂ + length t₁\n⊢ length s₁ + length t₁ = length s₂ + length t₁", "state_before": "α✝ : Type u_1\ns₁ t₁ s₂ t₂ : List α✝\nh : s₁ ++ t₁ = s₂ ++ t₂\nhl : length t₁ = length t₂\nhap : length (s₁ ++ t₁) = length (s₂ ++ t₂) := congrArg length h\n⊢ length s₁ + length t₁ = length s₂ + length t₁", "tactic": "simp only [length_append, ← hl] at hap" }, { "state_after": "no goals", "state_before": "α✝ : Type u_1\ns₁ t₁ s₂ t₂ : List α✝\nh : s₁ ++ t₁ = s₂ ++ t₂\nhl : length t₁ = length t₂\nhap : length s₁ + length t₁ = length s₂ + length t₁\n⊢ length s₁ + length t₁ = length s₂ + length t₁", "tactic": "exact hap" } ]
[ 70, 82 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 68, 1 ]
Mathlib/SetTheory/Ordinal/Basic.lean
Ordinal.lift_umax
[]
[ 694, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 691, 1 ]
Mathlib/Data/Finset/Basic.lean
Multiset.toFinset_dedup
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.453504\nγ : Type ?u.453507\ninst✝ : DecidableEq α\ns t m : Multiset α\n⊢ toFinset (dedup m) = toFinset m", "tactic": "simp_rw [toFinset, dedup_idempotent]" } ]
[ 3198, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3197, 1 ]
Mathlib/Data/Quot.lean
Quotient.inductionOn₃'
[]
[ 689, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 685, 11 ]
Mathlib/Algebra/Order/ToIntervalMod.lean
toIocDiv_add_zsmul
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\nm : ℤ\n⊢ b + m • p - (toIocDiv hp a b + m) • p ∈ Set.Ioc a (a + p)", "tactic": "simpa only [add_smul, add_sub_add_right_eq_sub] using sub_toIocDiv_zsmul_mem_Ioc hp a b" } ]
[ 251, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 249, 1 ]
Mathlib/Data/Finset/Lattice.lean
Finset.min'_image
[ { "state_after": "F : Type ?u.366451\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.366460\nι : Type ?u.366463\nκ : Type ?u.366466\ninst✝¹ : LinearOrder α\ns✝ : Finset α\nH : Finset.Nonempty s✝\nx : α\ninst✝ : LinearOrder β\nf : α → β\nhf : Monotone f\ns : Finset α\nh : Finset.Nonempty (image f s)\ny : β\nhy : y ∈ image f s\n⊢ f (min' s (_ : Finset.Nonempty s)) ≤ y", "state_before": "F : Type ?u.366451\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.366460\nι : Type ?u.366463\nκ : Type ?u.366466\ninst✝¹ : LinearOrder α\ns✝ : Finset α\nH : Finset.Nonempty s✝\nx : α\ninst✝ : LinearOrder β\nf : α → β\nhf : Monotone f\ns : Finset α\nh : Finset.Nonempty (image f s)\n⊢ min' (image f s) h = f (min' s (_ : Finset.Nonempty s))", "tactic": "refine'\n le_antisymm (min'_le _ _ (mem_image.mpr ⟨_, min'_mem _ _, rfl⟩)) (le_min' _ _ _ fun y hy => _)" }, { "state_after": "case intro.intro\nF : Type ?u.366451\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.366460\nι : Type ?u.366463\nκ : Type ?u.366466\ninst✝¹ : LinearOrder α\ns✝ : Finset α\nH : Finset.Nonempty s✝\nx✝ : α\ninst✝ : LinearOrder β\nf : α → β\nhf : Monotone f\ns : Finset α\nh : Finset.Nonempty (image f s)\nx : α\nhx : x ∈ s\nhy : f x ∈ image f s\n⊢ f (min' s (_ : Finset.Nonempty s)) ≤ f x", "state_before": "F : Type ?u.366451\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.366460\nι : Type ?u.366463\nκ : Type ?u.366466\ninst✝¹ : LinearOrder α\ns✝ : Finset α\nH : Finset.Nonempty s✝\nx : α\ninst✝ : LinearOrder β\nf : α → β\nhf : Monotone f\ns : Finset α\nh : Finset.Nonempty (image f s)\ny : β\nhy : y ∈ image f s\n⊢ f (min' s (_ : Finset.Nonempty s)) ≤ y", "tactic": "obtain ⟨x, hx, rfl⟩ := mem_image.mp hy" }, { "state_after": "no goals", "state_before": "case intro.intro\nF : Type ?u.366451\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.366460\nι : Type ?u.366463\nκ : Type ?u.366466\ninst✝¹ : LinearOrder α\ns✝ : Finset α\nH : Finset.Nonempty s✝\nx✝ : α\ninst✝ : LinearOrder β\nf : α → β\nhf : Monotone f\ns : Finset α\nh : Finset.Nonempty (image f s)\nx : α\nhx : x ∈ s\nhy : f x ∈ image f s\n⊢ f (min' s (_ : Finset.Nonempty s)) ≤ f x", "tactic": "exact hf (min'_le _ _ hx)" } ]
[ 1512, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1507, 1 ]
Mathlib/Analysis/LocallyConvex/Basic.lean
balanced_iUnion
[]
[ 191, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 190, 1 ]
Mathlib/Order/Partition/Finpartition.lean
Finpartition.default_eq_empty
[]
[ 141, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 140, 1 ]
Mathlib/CategoryTheory/Sites/Grothendieck.lean
CategoryTheory.GrothendieckTopology.isGLB_sInf
[ { "state_after": "case refine'_1\nC : Type u\ninst✝ : Category C\nX Y : C\nS R : Sieve X\nJ : GrothendieckTopology C\ns : Set (GrothendieckTopology C)\n⊢ ∀ {x y : GrothendieckTopology C}, x.sieves ≤ y.sieves ↔ x ≤ y\n\ncase refine'_2\nC : Type u\ninst✝ : Category C\nX Y : C\nS R : Sieve X\nJ : GrothendieckTopology C\ns : Set (GrothendieckTopology C)\n⊢ IsGLB (sieves '' s) (sInf s).sieves", "state_before": "C : Type u\ninst✝ : Category C\nX Y : C\nS R : Sieve X\nJ : GrothendieckTopology C\ns : Set (GrothendieckTopology C)\n⊢ IsGLB s (sInf s)", "tactic": "refine' @IsGLB.of_image _ _ _ _ sieves _ _ _ _" }, { "state_after": "case refine'_1\nC : Type u\ninst✝ : Category C\nX Y : C\nS R : Sieve X\nJ : GrothendieckTopology C\ns : Set (GrothendieckTopology C)\nx✝ y✝ : GrothendieckTopology C\n⊢ x✝.sieves ≤ y✝.sieves ↔ x✝ ≤ y✝", "state_before": "case refine'_1\nC : Type u\ninst✝ : Category C\nX Y : C\nS R : Sieve X\nJ : GrothendieckTopology C\ns : Set (GrothendieckTopology C)\n⊢ ∀ {x y : GrothendieckTopology C}, x.sieves ≤ y.sieves ↔ x ≤ y", "tactic": "intros" }, { "state_after": "no goals", "state_before": "case refine'_1\nC : Type u\ninst✝ : Category C\nX Y : C\nS R : Sieve X\nJ : GrothendieckTopology C\ns : Set (GrothendieckTopology C)\nx✝ y✝ : GrothendieckTopology C\n⊢ x✝.sieves ≤ y✝.sieves ↔ x✝ ≤ y✝", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "case refine'_2\nC : Type u\ninst✝ : Category C\nX Y : C\nS R : Sieve X\nJ : GrothendieckTopology C\ns : Set (GrothendieckTopology C)\n⊢ IsGLB (sieves '' s) (sInf s).sieves", "tactic": "exact _root_.isGLB_sInf _" } ]
[ 293, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 289, 1 ]
Mathlib/Data/Finsupp/Defs.lean
Finsupp.update_self
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.148539\nγ : Type ?u.148542\nι : Type ?u.148545\nM : Type u_2\nM' : Type ?u.148551\nN : Type ?u.148554\nP : Type ?u.148557\nG : Type ?u.148560\nH : Type ?u.148563\nR : Type ?u.148566\nS : Type ?u.148569\ninst✝ : Zero M\nf : α →₀ M\na : α\nb : M\ni : α\n⊢ update f a (↑f a) = f", "tactic": "classical\n ext\n simp" }, { "state_after": "case h\nα : Type u_1\nβ : Type ?u.148539\nγ : Type ?u.148542\nι : Type ?u.148545\nM : Type u_2\nM' : Type ?u.148551\nN : Type ?u.148554\nP : Type ?u.148557\nG : Type ?u.148560\nH : Type ?u.148563\nR : Type ?u.148566\nS : Type ?u.148569\ninst✝ : Zero M\nf : α →₀ M\na : α\nb : M\ni a✝ : α\n⊢ ↑(update f a (↑f a)) a✝ = ↑f a✝", "state_before": "α : Type u_1\nβ : Type ?u.148539\nγ : Type ?u.148542\nι : Type ?u.148545\nM : Type u_2\nM' : Type ?u.148551\nN : Type ?u.148554\nP : Type ?u.148557\nG : Type ?u.148560\nH : Type ?u.148563\nR : Type ?u.148566\nS : Type ?u.148569\ninst✝ : Zero M\nf : α →₀ M\na : α\nb : M\ni : α\n⊢ update f a (↑f a) = f", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_1\nβ : Type ?u.148539\nγ : Type ?u.148542\nι : Type ?u.148545\nM : Type u_2\nM' : Type ?u.148551\nN : Type ?u.148554\nP : Type ?u.148557\nG : Type ?u.148560\nH : Type ?u.148563\nR : Type ?u.148566\nS : Type ?u.148569\ninst✝ : Zero M\nf : α →₀ M\na : α\nb : M\ni a✝ : α\n⊢ ↑(update f a (↑f a)) a✝ = ↑f a✝", "tactic": "simp" } ]
[ 573, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 570, 1 ]
Mathlib/MeasureTheory/Function/L1Space.lean
MeasureTheory.integrable_finset_sum'
[]
[ 671, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 668, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.inter_eq_inter_iff_right
[]
[ 1815, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1814, 1 ]
Mathlib/Data/Polynomial/Eval.lean
Polynomial.map_pow
[]
[ 912, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 911, 11 ]
Mathlib/Topology/ContinuousOn.lean
continuousAt_update_same
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.328491\nδ : Type ?u.328494\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\ninst✝ : DecidableEq α\nf : α → β\nx : α\ny : β\n⊢ ContinuousAt (update f x y) x ↔ Tendsto f (𝓝[{x}ᶜ] x) (𝓝 y)", "tactic": "rw [← continuousWithinAt_univ, continuousWithinAt_update_same, compl_eq_univ_diff]" } ]
[ 804, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 802, 1 ]
Mathlib/SetTheory/Cardinal/Basic.lean
Cardinal.mk_le_of_surjective
[]
[ 281, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 280, 1 ]
Mathlib/Topology/LocalHomeomorph.lean
LocalHomeomorph.left_inv
[]
[ 158, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 157, 1 ]
Mathlib/RingTheory/Adjoin/Basic.lean
Algebra.adjoin_empty
[ { "state_after": "case gc\nR : Type u\nA : Type v\nB : Type w\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Semiring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\ns t : Set A\n⊢ GaloisConnection (adjoin R) ?u\n\ncase u\nR : Type u\nA : Type v\nB : Type w\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Semiring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\ns t : Set A\n⊢ Subalgebra R A → Set A", "state_before": "R : Type u\nA : Type v\nB : Type w\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Semiring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\ns t : Set A\n⊢ adjoin R ⊥ = ⊥", "tactic": "apply GaloisConnection.l_bot" }, { "state_after": "no goals", "state_before": "case gc\nR : Type u\nA : Type v\nB : Type w\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Semiring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\ns t : Set A\n⊢ GaloisConnection (adjoin R) ?u\n\ncase u\nR : Type u\nA : Type v\nB : Type w\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Semiring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\ns t : Set A\n⊢ Subalgebra R A → Set A", "tactic": "exact Algebra.gc" } ]
[ 154, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 151, 1 ]
Mathlib/GroupTheory/Submonoid/Operations.lean
Submonoid.comap_iInf
[]
[ 349, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 347, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.count_inter
[ { "state_after": "case a\nα : Type u_1\nβ : Type ?u.394964\nγ : Type ?u.394967\ninst✝ : DecidableEq α\na : α\ns t : Multiset α\n⊢ count a (s - t) + count a (s ∩ t) = count a (s - t) + min (count a s) (count a t)", "state_before": "α : Type u_1\nβ : Type ?u.394964\nγ : Type ?u.394967\ninst✝ : DecidableEq α\na : α\ns t : Multiset α\n⊢ count a (s ∩ t) = min (count a s) (count a t)", "tactic": "apply @Nat.add_left_cancel (count a (s - t))" }, { "state_after": "no goals", "state_before": "case a\nα : Type u_1\nβ : Type ?u.394964\nγ : Type ?u.394967\ninst✝ : DecidableEq α\na : α\ns t : Multiset α\n⊢ count a (s - t) + count a (s ∩ t) = count a (s - t) + min (count a s) (count a t)", "tactic": "rw [← count_add, sub_add_inter, count_sub, tsub_add_min]" } ]
[ 2473, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2471, 1 ]
Mathlib/Logic/Equiv/LocalEquiv.lean
LocalEquiv.refl_restr_source
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.40873\nγ : Type ?u.40876\nδ : Type ?u.40879\ne : LocalEquiv α β\ne' : LocalEquiv β γ\ns : Set α\n⊢ (LocalEquiv.restr (LocalEquiv.refl α) s).source = s", "tactic": "simp" } ]
[ 629, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 629, 1 ]
Mathlib/Data/List/Basic.lean
List.reduceOption_cons_of_none
[ { "state_after": "no goals", "state_before": "ι : Type ?u.349293\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nl : List (Option α)\n⊢ reduceOption (none :: l) = reduceOption l", "tactic": "simp only [reduceOption, filterMap, id.def]" } ]
[ 3425, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3424, 1 ]
Mathlib/Data/Nat/Multiplicity.lean
Nat.Prime.pow_dvd_factorial_iff
[ { "state_after": "no goals", "state_before": "p n r b : ℕ\nhp : Prime p\nhbn : log p n < b\n⊢ p ^ r ∣ n ! ↔ r ≤ ∑ i in Ico 1 b, n / p ^ i", "tactic": "rw [← PartENat.coe_le_coe, ← hp.multiplicity_factorial hbn, ← pow_dvd_iff_le_multiplicity]" } ]
[ 166, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 164, 1 ]
src/lean/Init/Data/Nat/Basic.lean
Nat.add_le_add_left
[]
[ 388, 28 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 383, 11 ]
Mathlib/Order/Interval.lean
NonemptyInterval.coe_dual
[]
[ 287, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 286, 1 ]
Mathlib/RingTheory/Ideal/Basic.lean
Ideal.span_singleton_le_iff_mem
[]
[ 176, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 175, 1 ]
Mathlib/Topology/PartitionOfUnity.lean
BumpCovering.sum_toPartitionOfUnity_eq
[]
[ 484, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 482, 1 ]
Mathlib/Order/LiminfLimsup.lean
Filter.bliminf_antitone
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.132666\nι : Type ?u.132669\ninst✝ : CompleteLattice α\nf g : Filter β\np q : β → Prop\nu v : β → α\nh : ∀ (x : β), p x → q x\na : α\nha : a ∈ {a | ∀ᶠ (x : β) in f, q x → a ≤ u x}\n⊢ ∀ (x : β), (q x → a ≤ u x) → p x → a ≤ u x", "tactic": "tauto" } ]
[ 862, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 861, 1 ]
Mathlib/Algebra/Associated.lean
DvdNotUnit.not_associated
[ { "state_after": "case intro\nα : Type u_1\nβ : Type ?u.354581\nγ : Type ?u.354584\nδ : Type ?u.354587\ninst✝ : CancelCommMonoidWithZero α\np : α\na : αˣ\nh : DvdNotUnit p (p * ↑a)\n⊢ False", "state_before": "α : Type u_1\nβ : Type ?u.354581\nγ : Type ?u.354584\nδ : Type ?u.354587\ninst✝ : CancelCommMonoidWithZero α\np q : α\nh : DvdNotUnit p q\n⊢ ¬p ~ᵤ q", "tactic": "rintro ⟨a, rfl⟩" }, { "state_after": "case intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.354581\nγ : Type ?u.354584\nδ : Type ?u.354587\ninst✝ : CancelCommMonoidWithZero α\np : α\na : αˣ\nhp : p ≠ 0\nx : α\nhx : ¬IsUnit x\nhx' : p * ↑a = p * x\n⊢ False", "state_before": "case intro\nα : Type u_1\nβ : Type ?u.354581\nγ : Type ?u.354584\nδ : Type ?u.354587\ninst✝ : CancelCommMonoidWithZero α\np : α\na : αˣ\nh : DvdNotUnit p (p * ↑a)\n⊢ False", "tactic": "obtain ⟨hp, x, hx, hx'⟩ := h" }, { "state_after": "case intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.354581\nγ : Type ?u.354584\nδ : Type ?u.354587\ninst✝ : CancelCommMonoidWithZero α\np : α\na : αˣ\nhp : p ≠ 0\nhx : ¬IsUnit ↑a\nhx' : p * ↑a = p * ↑a\n⊢ False", "state_before": "case intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.354581\nγ : Type ?u.354584\nδ : Type ?u.354587\ninst✝ : CancelCommMonoidWithZero α\np : α\na : αˣ\nhp : p ≠ 0\nx : α\nhx : ¬IsUnit x\nhx' : p * ↑a = p * x\n⊢ False", "tactic": "rcases(mul_right_inj' hp).mp hx' with rfl" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.354581\nγ : Type ?u.354584\nδ : Type ?u.354587\ninst✝ : CancelCommMonoidWithZero α\np : α\na : αˣ\nhp : p ≠ 0\nhx : ¬IsUnit ↑a\nhx' : p * ↑a = p * ↑a\n⊢ False", "tactic": "exact hx a.isUnit" } ]
[ 1197, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1192, 1 ]
Mathlib/Deprecated/Submonoid.lean
IsSubmonoid.finset_prod_mem
[ { "state_after": "no goals", "state_before": "M✝ : Type ?u.56585\ninst✝² : Monoid M✝\ns✝ : Set M✝\nA✝ : Type ?u.56594\ninst✝¹ : AddMonoid A✝\nt : Set A✝\nM : Type u_1\nA : Type u_2\ninst✝ : CommMonoid M\ns : Set M\nhs : IsSubmonoid s\nf : A → M\nm : Multiset A\nhm : Multiset.Nodup m\nx✝ : ∀ (b : A), b ∈ { val := m, nodup := hm } → f b ∈ s\n⊢ ∀ (a : M), a ∈ Multiset.map (fun b => f b) { val := m, nodup := hm }.val → a ∈ s", "tactic": "simpa" } ]
[ 265, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 263, 1 ]
Mathlib/CategoryTheory/Limits/Pi.lean
CategoryTheory.pi.hasLimit_of_hasLimit_comp_eval
[]
[ 121, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 118, 1 ]
Mathlib/CategoryTheory/Monoidal/Category.lean
CategoryTheory.MonoidalCategory.associator_conjugation
[ { "state_after": "no goals", "state_before": "C✝ : Type u\n𝒞 : Category C✝\ninst✝² : MonoidalCategory C✝\nC : Type u\ninst✝¹ : Category C\ninst✝ : MonoidalCategory C\nU V W X✝ Y✝ Z✝ X X' Y Y' Z Z' : C\nf : X ⟶ X'\ng : Y ⟶ Y'\nh : Z ⟶ Z'\n⊢ (f ⊗ g) ⊗ h = (α_ X Y Z).hom ≫ (f ⊗ g ⊗ h) ≫ (α_ X' Y' Z').inv", "tactic": "rw [associator_inv_naturality, hom_inv_id_assoc]" } ]
[ 330, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 328, 1 ]
Mathlib/Data/Set/Intervals/OrderIso.lean
OrderIso.image_Ioc
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝¹ : Preorder α\ninst✝ : Preorder β\ne : α ≃o β\na b : α\n⊢ ↑e '' Ioc a b = Ioc (↑e a) (↑e b)", "tactic": "rw [e.image_eq_preimage, e.symm.preimage_Ioc, e.symm_symm]" } ]
[ 96, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 95, 1 ]
Mathlib/Order/Interval.lean
Interval.coe_bot
[]
[ 498, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 497, 1 ]
Mathlib/Algebra/BigOperators/Basic.lean
Finset.prod_biUnion
[ { "state_after": "no goals", "state_before": "ι : Type ?u.311298\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na : α\nf g : α → β\ninst✝¹ : CommMonoid β\ninst✝ : DecidableEq α\ns : Finset γ\nt : γ → Finset α\nhs : Set.PairwiseDisjoint (↑s) t\n⊢ ∏ x in Finset.biUnion s t, f x = ∏ x in s, ∏ i in t x, f i", "tactic": "rw [← disjiUnion_eq_biUnion _ _ hs, prod_disjiUnion]" } ]
[ 519, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 517, 1 ]
Mathlib/RingTheory/PowerBasis.lean
PowerBasis.dim_le_degree_of_root
[ { "state_after": "R : Type ?u.124871\nS : Type u_2\nT : Type ?u.124877\ninst✝⁸ : CommRing R\ninst✝⁷ : Ring S\ninst✝⁶ : Algebra R S\nA : Type u_1\nB : Type ?u.125183\ninst✝⁵ : CommRing A\ninst✝⁴ : CommRing B\ninst✝³ : IsDomain B\ninst✝² : Algebra A B\nK : Type ?u.125605\ninst✝¹ : Field K\ninst✝ : Algebra A S\nh : PowerBasis A S\np : A[X]\nne_zero : p ≠ 0\nroot : ↑(aeval h.gen) p = 0\n⊢ ↑h.dim ≤ ↑(natDegree p)", "state_before": "R : Type ?u.124871\nS : Type u_2\nT : Type ?u.124877\ninst✝⁸ : CommRing R\ninst✝⁷ : Ring S\ninst✝⁶ : Algebra R S\nA : Type u_1\nB : Type ?u.125183\ninst✝⁵ : CommRing A\ninst✝⁴ : CommRing B\ninst✝³ : IsDomain B\ninst✝² : Algebra A B\nK : Type ?u.125605\ninst✝¹ : Field K\ninst✝ : Algebra A S\nh : PowerBasis A S\np : A[X]\nne_zero : p ≠ 0\nroot : ↑(aeval h.gen) p = 0\n⊢ ↑h.dim ≤ degree p", "tactic": "rw [degree_eq_natDegree ne_zero]" }, { "state_after": "no goals", "state_before": "R : Type ?u.124871\nS : Type u_2\nT : Type ?u.124877\ninst✝⁸ : CommRing R\ninst✝⁷ : Ring S\ninst✝⁶ : Algebra R S\nA : Type u_1\nB : Type ?u.125183\ninst✝⁵ : CommRing A\ninst✝⁴ : CommRing B\ninst✝³ : IsDomain B\ninst✝² : Algebra A B\nK : Type ?u.125605\ninst✝¹ : Field K\ninst✝ : Algebra A S\nh : PowerBasis A S\np : A[X]\nne_zero : p ≠ 0\nroot : ↑(aeval h.gen) p = 0\n⊢ ↑h.dim ≤ ↑(natDegree p)", "tactic": "exact WithBot.coe_le_coe.2 (h.dim_le_natDegree_of_root ne_zero root)" } ]
[ 188, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 185, 1 ]
Mathlib/Data/Nat/Prime.lean
Int.prime_two
[]
[ 809, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 808, 1 ]
Mathlib/Logic/Equiv/Set.lean
Equiv.image_eq_preimage
[]
[ 44, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 43, 11 ]
Mathlib/Algebra/Opposites.lean
AddOpposite.unop_eq_one_iff
[]
[ 388, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 387, 1 ]
Mathlib/Algebra/Order/ToIntervalMod.lean
toIcoDiv_sub'
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\n⊢ toIcoDiv hp (a - p) b = toIcoDiv hp a b + 1", "tactic": "simpa only [one_zsmul] using toIcoDiv_sub_zsmul' hp a b 1" } ]
[ 345, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 344, 1 ]
Mathlib/Algebra/Group/Basic.lean
inv_eq_of_mul_eq_one_left
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.21054\nG : Type ?u.21057\ninst✝ : DivisionMonoid α\na b c : α\nh : a * b = 1\n⊢ b⁻¹ = a", "tactic": "rw [← inv_eq_of_mul_eq_one_right h, inv_inv]" } ]
[ 361, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 360, 1 ]
Mathlib/Analysis/Convex/Side.lean
AffineSubspace.wOppSide_comm
[ { "state_after": "case mp\nR : Type u_1\nV : Type u_2\nV' : Type ?u.89985\nP : Type u_3\nP' : Type ?u.89991\ninst✝⁶ : StrictOrderedCommRing R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y : P\n⊢ WOppSide s x y → WOppSide s y x\n\ncase mpr\nR : Type u_1\nV : Type u_2\nV' : Type ?u.89985\nP : Type u_3\nP' : Type ?u.89991\ninst✝⁶ : StrictOrderedCommRing R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y : P\n⊢ WOppSide s y x → WOppSide s x y", "state_before": "R : Type u_1\nV : Type u_2\nV' : Type ?u.89985\nP : Type u_3\nP' : Type ?u.89991\ninst✝⁶ : StrictOrderedCommRing R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y : P\n⊢ WOppSide s x y ↔ WOppSide s y x", "tactic": "constructor" }, { "state_after": "case mp.intro.intro.intro.intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.89985\nP : Type u_3\nP' : Type ?u.89991\ninst✝⁶ : StrictOrderedCommRing R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nhp₁ : p₁ ∈ s\np₂ : P\nhp₂ : p₂ ∈ s\nh : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)\n⊢ WOppSide s y x", "state_before": "case mp\nR : Type u_1\nV : Type u_2\nV' : Type ?u.89985\nP : Type u_3\nP' : Type ?u.89991\ninst✝⁶ : StrictOrderedCommRing R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y : P\n⊢ WOppSide s x y → WOppSide s y x", "tactic": "rintro ⟨p₁, hp₁, p₂, hp₂, h⟩" }, { "state_after": "case mp.intro.intro.intro.intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.89985\nP : Type u_3\nP' : Type ?u.89991\ninst✝⁶ : StrictOrderedCommRing R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nhp₁ : p₁ ∈ s\np₂ : P\nhp₂ : p₂ ∈ s\nh : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)\n⊢ SameRay R (y -ᵥ p₂) (p₁ -ᵥ x)", "state_before": "case mp.intro.intro.intro.intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.89985\nP : Type u_3\nP' : Type ?u.89991\ninst✝⁶ : StrictOrderedCommRing R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nhp₁ : p₁ ∈ s\np₂ : P\nhp₂ : p₂ ∈ s\nh : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)\n⊢ WOppSide s y x", "tactic": "refine' ⟨p₂, hp₂, p₁, hp₁, _⟩" }, { "state_after": "no goals", "state_before": "case mp.intro.intro.intro.intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.89985\nP : Type u_3\nP' : Type ?u.89991\ninst✝⁶ : StrictOrderedCommRing R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nhp₁ : p₁ ∈ s\np₂ : P\nhp₂ : p₂ ∈ s\nh : SameRay R (x -ᵥ p₁) (p₂ -ᵥ y)\n⊢ SameRay R (y -ᵥ p₂) (p₁ -ᵥ x)", "tactic": "rwa [SameRay.sameRay_comm, ← sameRay_neg_iff, neg_vsub_eq_vsub_rev, neg_vsub_eq_vsub_rev]" }, { "state_after": "case mpr.intro.intro.intro.intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.89985\nP : Type u_3\nP' : Type ?u.89991\ninst✝⁶ : StrictOrderedCommRing R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nhp₁ : p₁ ∈ s\np₂ : P\nhp₂ : p₂ ∈ s\nh : SameRay R (y -ᵥ p₁) (p₂ -ᵥ x)\n⊢ WOppSide s x y", "state_before": "case mpr\nR : Type u_1\nV : Type u_2\nV' : Type ?u.89985\nP : Type u_3\nP' : Type ?u.89991\ninst✝⁶ : StrictOrderedCommRing R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y : P\n⊢ WOppSide s y x → WOppSide s x y", "tactic": "rintro ⟨p₁, hp₁, p₂, hp₂, h⟩" }, { "state_after": "case mpr.intro.intro.intro.intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.89985\nP : Type u_3\nP' : Type ?u.89991\ninst✝⁶ : StrictOrderedCommRing R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nhp₁ : p₁ ∈ s\np₂ : P\nhp₂ : p₂ ∈ s\nh : SameRay R (y -ᵥ p₁) (p₂ -ᵥ x)\n⊢ SameRay R (x -ᵥ p₂) (p₁ -ᵥ y)", "state_before": "case mpr.intro.intro.intro.intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.89985\nP : Type u_3\nP' : Type ?u.89991\ninst✝⁶ : StrictOrderedCommRing R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nhp₁ : p₁ ∈ s\np₂ : P\nhp₂ : p₂ ∈ s\nh : SameRay R (y -ᵥ p₁) (p₂ -ᵥ x)\n⊢ WOppSide s x y", "tactic": "refine' ⟨p₂, hp₂, p₁, hp₁, _⟩" }, { "state_after": "no goals", "state_before": "case mpr.intro.intro.intro.intro\nR : Type u_1\nV : Type u_2\nV' : Type ?u.89985\nP : Type u_3\nP' : Type ?u.89991\ninst✝⁶ : StrictOrderedCommRing R\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\ns : AffineSubspace R P\nx y p₁ : P\nhp₁ : p₁ ∈ s\np₂ : P\nhp₂ : p₂ ∈ s\nh : SameRay R (y -ᵥ p₁) (p₂ -ᵥ x)\n⊢ SameRay R (x -ᵥ p₂) (p₁ -ᵥ y)", "tactic": "rwa [SameRay.sameRay_comm, ← sameRay_neg_iff, neg_vsub_eq_vsub_rev, neg_vsub_eq_vsub_rev]" } ]
[ 212, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 205, 1 ]
Mathlib/Order/Interval.lean
NonemptyInterval.subset_coe_map
[]
[ 291, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 290, 1 ]
Mathlib/Algebra/Homology/Augment.lean
CochainComplex.cochainComplex_d_succ_succ_zero
[ { "state_after": "case a\nV : Type u\ninst✝¹ : Category V\ninst✝ : HasZeroMorphisms V\nC : CochainComplex V ℕ\ni : ℕ\n⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) 0 (i + 2)", "state_before": "V : Type u\ninst✝¹ : Category V\ninst✝ : HasZeroMorphisms V\nC : CochainComplex V ℕ\ni : ℕ\n⊢ d C 0 (i + 2) = 0", "tactic": "rw [C.shape]" }, { "state_after": "case a\nV : Type u\ninst✝¹ : Category V\ninst✝ : HasZeroMorphisms V\nC : CochainComplex V ℕ\ni : ℕ\n⊢ ¬1 = i + 2", "state_before": "case a\nV : Type u\ninst✝¹ : Category V\ninst✝ : HasZeroMorphisms V\nC : CochainComplex V ℕ\ni : ℕ\n⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) 0 (i + 2)", "tactic": "simp only [ComplexShape.up_Rel, zero_add]" }, { "state_after": "no goals", "state_before": "case a\nV : Type u\ninst✝¹ : Category V\ninst✝ : HasZeroMorphisms V\nC : CochainComplex V ℕ\ni : ℕ\n⊢ ¬1 = i + 2", "tactic": "exact (Nat.one_lt_succ_succ _).ne" } ]
[ 327, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 324, 1 ]
Mathlib/Topology/Separation.lean
t2_separation_nhds
[]
[ 937, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 934, 1 ]
Mathlib/Data/Polynomial/Basic.lean
Polynomial.C_mul
[]
[ 507, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 506, 1 ]
Mathlib/CategoryTheory/Sites/Closed.lean
CategoryTheory.GrothendieckTopology.close_eq_top_iff_mem
[ { "state_after": "case mp\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\n⊢ close J₁ S = ⊤ → S ∈ sieves J₁ X\n\ncase mpr\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\n⊢ S ∈ sieves J₁ X → close J₁ S = ⊤", "state_before": "C : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\n⊢ close J₁ S = ⊤ ↔ S ∈ sieves J₁ X", "tactic": "constructor" }, { "state_after": "case mp\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nh : close J₁ S = ⊤\n⊢ S ∈ sieves J₁ X", "state_before": "case mp\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\n⊢ close J₁ S = ⊤ → S ∈ sieves J₁ X", "tactic": "intro h" }, { "state_after": "case mp.h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nh : close J₁ S = ⊤\n⊢ ∀ ⦃Y : C⦄ ⦃f : Y ⟶ X⦄, ⊤.arrows f → Sieve.pullback f S ∈ sieves J₁ Y", "state_before": "case mp\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nh : close J₁ S = ⊤\n⊢ S ∈ sieves J₁ X", "tactic": "apply J₁.transitive (J₁.top_mem X)" }, { "state_after": "case mp.h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nh : close J₁ S = ⊤\nY : C\nf : Y ⟶ X\nhf : ⊤.arrows f\n⊢ Sieve.pullback f S ∈ sieves J₁ Y", "state_before": "case mp.h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nh : close J₁ S = ⊤\n⊢ ∀ ⦃Y : C⦄ ⦃f : Y ⟶ X⦄, ⊤.arrows f → Sieve.pullback f S ∈ sieves J₁ Y", "tactic": "intro Y f hf" }, { "state_after": "case mp.h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nh : close J₁ S = ⊤\nY : C\nf : Y ⟶ X\nhf : ⊤.arrows f\n⊢ (close J₁ S).arrows f", "state_before": "case mp.h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nh : close J₁ S = ⊤\nY : C\nf : Y ⟶ X\nhf : ⊤.arrows f\n⊢ Sieve.pullback f S ∈ sieves J₁ Y", "tactic": "change J₁.close S f" }, { "state_after": "no goals", "state_before": "case mp.h\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nh : close J₁ S = ⊤\nY : C\nf : Y ⟶ X\nhf : ⊤.arrows f\n⊢ (close J₁ S).arrows f", "tactic": "rwa [h]" }, { "state_after": "case mpr\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ sieves J₁ X\n⊢ close J₁ S = ⊤", "state_before": "case mpr\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\n⊢ S ∈ sieves J₁ X → close J₁ S = ⊤", "tactic": "intro hS" }, { "state_after": "case mpr\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ sieves J₁ X\n⊢ ⊤ ≤ close J₁ S", "state_before": "case mpr\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ sieves J₁ X\n⊢ close J₁ S = ⊤", "tactic": "rw [eq_top_iff]" }, { "state_after": "case mpr\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ sieves J₁ X\nY : C\nf : Y ⟶ X\na✝ : ⊤.arrows f\n⊢ (close J₁ S).arrows f", "state_before": "case mpr\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ sieves J₁ X\n⊢ ⊤ ≤ close J₁ S", "tactic": "intro Y f _" }, { "state_after": "no goals", "state_before": "case mpr\nC : Type u\ninst✝ : Category C\nJ₁ J₂ : GrothendieckTopology C\nX : C\nS : Sieve X\nhS : S ∈ sieves J₁ X\nY : C\nf : Y ⟶ X\na✝ : ⊤.arrows f\n⊢ (close J₁ S).arrows f", "tactic": "apply J₁.pullback_stable _ hS" } ]
[ 165, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 155, 1 ]
Mathlib/Data/Set/Ncard.lean
Set.two_lt_ncard_iff
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.157357\ns t : Set α\na b x y : α\nf : α → β\nhs : autoParam (Set.Finite s) _auto✝\n⊢ 2 < ncard s ↔ ∃ a b c, a ∈ s ∧ b ∈ s ∧ c ∈ s ∧ a ≠ b ∧ a ≠ c ∧ b ≠ c", "tactic": "simp_rw [ncard_eq_toFinset_card _ hs, Finset.two_lt_card_iff, Finite.mem_toFinset]" } ]
[ 710, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 708, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Pullbacks.lean
CategoryTheory.Limits.cospan_one
[]
[ 222, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 221, 1 ]
Mathlib/Order/Bounded.lean
Set.bounded_gt_inter_ge
[]
[ 440, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 438, 1 ]
Mathlib/Data/List/Func.lean
List.Func.get_nil
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\na : α\nas as1 as2 as3 : List α\ninst✝¹ : Inhabited α\ninst✝ : Inhabited β\nk : ℕ\n⊢ get k [] = default", "tactic": "cases k <;> rfl" } ]
[ 119, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 119, 1 ]
Mathlib/Data/Analysis/Filter.lean
Filter.Realizer.top_σ
[]
[ 187, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 186, 1 ]
Mathlib/Data/Set/Basic.lean
Set.antitoneOn_singleton
[]
[ 2699, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2698, 1 ]
Mathlib/Order/Filter/AtTopBot.lean
Filter.tendsto_atTop_pure
[]
[ 305, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 303, 1 ]
Mathlib/LinearAlgebra/Basic.lean
LinearMapClass.ker_eq_bot
[ { "state_after": "no goals", "state_before": "R : Type u_2\nR₁ : Type ?u.1427240\nR₂ : Type u_3\nR₃ : Type ?u.1427246\nR₄ : Type ?u.1427249\nS : Type ?u.1427252\nK : Type ?u.1427255\nK₂ : Type ?u.1427258\nM : Type u_1\nM' : Type ?u.1427264\nM₁ : Type ?u.1427267\nM₂ : Type u_4\nM₃ : Type ?u.1427273\nM₄ : Type ?u.1427276\nN : Type ?u.1427279\nN₂ : Type ?u.1427282\nι : Type ?u.1427285\nV : Type ?u.1427288\nV₂ : Type ?u.1427291\ninst✝⁹ : Ring R\ninst✝⁸ : Ring R₂\ninst✝⁷ : Ring R₃\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : AddCommGroup M₂\ninst✝⁴ : AddCommGroup M₃\ninst✝³ : Module R M\ninst✝² : Module R₂ M₂\ninst✝¹ : Module R₃ M₃\nτ₁₂ : R →+* R₂\nτ₂₃ : R₂ →+* R₃\nτ₁₃ : R →+* R₃\ninst✝ : RingHomCompTriple τ₁₂ τ₂₃ τ₁₃\nF : Type u_5\nsc : SemilinearMapClass F τ₁₂ M M₂\nf : F\n⊢ ker f = ⊥ ↔ Injective ↑f", "tactic": "simpa [disjoint_iff_inf_le] using @disjoint_ker' _ _ _ _ _ _ _ _ _ _ _ _ _ f ⊤" } ]
[ 1506, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1505, 1 ]
Mathlib/Data/Num/Lemmas.lean
Num.dvd_to_nat
[ { "state_after": "m n : Num\nx✝ : ↑m ∣ ↑n\nk : ℕ\ne : ↑n = ↑m * k\n⊢ ↑(↑m * k) = m * ↑k", "state_before": "m n : Num\nx✝ : ↑m ∣ ↑n\nk : ℕ\ne : ↑n = ↑m * k\n⊢ n = m * ↑k", "tactic": "rw [← of_to_nat n, e]" }, { "state_after": "no goals", "state_before": "m n : Num\nx✝ : ↑m ∣ ↑n\nk : ℕ\ne : ↑n = ↑m * k\n⊢ ↑(↑m * k) = m * ↑k", "tactic": "simp" }, { "state_after": "no goals", "state_before": "m n : Num\nx✝ : m ∣ n\nk : Num\ne : n = m * k\n⊢ ↑n = ↑m * ↑k", "tactic": "simp [e, mul_to_nat]" } ]
[ 513, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 512, 1 ]