file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Algebra/Order/Ring/Lemmas.lean
le_mul_of_le_of_one_le_of_nonneg
[]
[ 765, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 763, 1 ]
Mathlib/Topology/MetricSpace/Basic.lean
Metric.iUnion_ball_nat
[]
[ 468, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 467, 1 ]
Mathlib/Algebra/TrivSqZeroExt.lean
TrivSqZeroExt.snd_mk
[]
[ 106, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 105, 1 ]
Mathlib/Data/List/Perm.lean
List.Subperm.exists_of_length_lt
[ { "state_after": "α : Type uu\nβ : Type vv\nl₁✝ l₂✝ l₁ l₂ l : List α\np : l ~ l₁\ns : l <+ l₂\nh : length l₁ < length l₂\n⊢ length l < length l₂ → ∃ a, a :: l <+~ l₂", "state_before": "α : Type uu\nβ : Type vv\nl₁✝ l₂✝ l₁ l₂ l : List α\np : l ~ l₁\ns : l <+ l₂\nh : length l₁ < length l₂\n⊢ ∃ a, a :: l₁ <+~ l₂", "tactic": "suffices length l < length l₂ → ∃ a : α, a :: l <+~ l₂ from\n (this <| p.symm.length_eq ▸ h).imp fun a => (p.cons a).subperm_right.1" }, { "state_after": "α : Type uu\nβ : Type vv\nl₁ l₂✝ l₂ l : List α\ns : l <+ l₂\n⊢ length l < length l₂ → ∃ a, a :: l <+~ l₂", "state_before": "α : Type uu\nβ : Type vv\nl₁✝ l₂✝ l₁ l₂ l : List α\np : l ~ l₁\ns : l <+ l₂\nh : length l₁ < length l₂\n⊢ length l < length l₂ → ∃ a, a :: l <+~ l₂", "tactic": "clear h p l₁" }, { "state_after": "case slnil\nα : Type uu\nβ : Type vv\nl₁ l₂✝ l₂ l : List α\nh : length [] < length []\n⊢ ∃ a, [a] <+~ []\n\ncase cons\nα : Type uu\nβ : Type vv\nl₁✝ l₂✝¹ l₂✝ l l₁ l₂ : List α\na : α\ns : l₁ <+ l₂\nIH : length l₁ < length l₂ → ∃ a, a :: l₁ <+~ l₂\nh : length l₁ < length (a :: l₂)\n⊢ ∃ a_1, a_1 :: l₁ <+~ a :: l₂\n\ncase cons₂\nα : Type uu\nβ : Type vv\nl₁ l₂✝¹ l₂ l l₁✝ l₂✝ : List α\nb : α\na✝ : l₁✝ <+ l₂✝\nIH : length l₁✝ < length l₂✝ → ∃ a, a :: l₁✝ <+~ l₂✝\nh : length (b :: l₁✝) < length (b :: l₂✝)\n⊢ ∃ a, a :: b :: l₁✝ <+~ b :: l₂✝", "state_before": "α : Type uu\nβ : Type vv\nl₁ l₂✝ l₂ l : List α\ns : l <+ l₂\n⊢ length l < length l₂ → ∃ a, a :: l <+~ l₂", "tactic": "induction' s with l₁ l₂ a s IH _ _ b _ IH <;> intro h" }, { "state_after": "no goals", "state_before": "case slnil\nα : Type uu\nβ : Type vv\nl₁ l₂✝ l₂ l : List α\nh : length [] < length []\n⊢ ∃ a, [a] <+~ []", "tactic": "cases h" }, { "state_after": "case cons.inl\nα : Type uu\nβ : Type vv\nl₁✝ l₂✝¹ l₂✝ l l₁ l₂ : List α\na : α\ns : l₁ <+ l₂\nIH : length l₁ < length l₂ → ∃ a, a :: l₁ <+~ l₂\nh✝ : length l₁ < length (a :: l₂)\nh : length l₁ < length l₂\n⊢ ∃ a_1, a_1 :: l₁ <+~ a :: l₂\n\ncase cons.inr\nα : Type uu\nβ : Type vv\nl₁✝ l₂✝¹ l₂✝ l l₁ l₂ : List α\na : α\ns : l₁ <+ l₂\nIH : length l₁ < length l₂ → ∃ a, a :: l₁ <+~ l₂\nh✝ : length l₁ < length (a :: l₂)\nh : length l₁ = length l₂\n⊢ ∃ a_1, a_1 :: l₁ <+~ a :: l₂", "state_before": "case cons\nα : Type uu\nβ : Type vv\nl₁✝ l₂✝¹ l₂✝ l l₁ l₂ : List α\na : α\ns : l₁ <+ l₂\nIH : length l₁ < length l₂ → ∃ a, a :: l₁ <+~ l₂\nh : length l₁ < length (a :: l₂)\n⊢ ∃ a_1, a_1 :: l₁ <+~ a :: l₂", "tactic": "cases' lt_or_eq_of_le (Nat.le_of_lt_succ h : length l₁ ≤ length l₂) with h h" }, { "state_after": "no goals", "state_before": "case cons.inl\nα : Type uu\nβ : Type vv\nl₁✝ l₂✝¹ l₂✝ l l₁ l₂ : List α\na : α\ns : l₁ <+ l₂\nIH : length l₁ < length l₂ → ∃ a, a :: l₁ <+~ l₂\nh✝ : length l₁ < length (a :: l₂)\nh : length l₁ < length l₂\n⊢ ∃ a_1, a_1 :: l₁ <+~ a :: l₂", "tactic": "exact (IH h).imp fun a s => s.trans (sublist_cons _ _).subperm" }, { "state_after": "no goals", "state_before": "case cons.inr\nα : Type uu\nβ : Type vv\nl₁✝ l₂✝¹ l₂✝ l l₁ l₂ : List α\na : α\ns : l₁ <+ l₂\nIH : length l₁ < length l₂ → ∃ a, a :: l₁ <+~ l₂\nh✝ : length l₁ < length (a :: l₂)\nh : length l₁ = length l₂\n⊢ ∃ a_1, a_1 :: l₁ <+~ a :: l₂", "tactic": "exact ⟨a, s.eq_of_length h ▸ Subperm.refl _⟩" }, { "state_after": "no goals", "state_before": "case cons₂\nα : Type uu\nβ : Type vv\nl₁ l₂✝¹ l₂ l l₁✝ l₂✝ : List α\nb : α\na✝ : l₁✝ <+ l₂✝\nIH : length l₁✝ < length l₂✝ → ∃ a, a :: l₁✝ <+~ l₂✝\nh : length (b :: l₁✝) < length (b :: l₂✝)\n⊢ ∃ a, a :: b :: l₁✝ <+~ b :: l₂✝", "tactic": "exact (IH <| Nat.lt_of_succ_lt_succ h).imp fun a s =>\n (swap _ _ _).subperm_right.1 <| (subperm_cons _).2 s" } ]
[ 732, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 720, 1 ]
Mathlib/Analysis/ODE/PicardLindelof.lean
PicardLindelof.FunSpace.lipschitz
[]
[ 181, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 180, 11 ]
Mathlib/Algebra/Divisibility/Basic.lean
map_dvd
[]
[ 99, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 98, 1 ]
Mathlib/Data/Fin/Tuple/Basic.lean
Fin.tuple0_le
[]
[ 54, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 53, 1 ]
Mathlib/Topology/LocalHomeomorph.lean
LocalHomeomorph.EqOnSource.restr
[]
[ 980, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 978, 1 ]
Mathlib/LinearAlgebra/Span.lean
Submodule.apply_mem_span_image_of_mem_span
[ { "state_after": "R : Type u_1\nR₂ : Type u_2\nK : Type ?u.203558\nM : Type u_3\nM₂ : Type u_4\nV : Type ?u.203567\nS : Type ?u.203570\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\nx✝ : M\np p' : Submodule R M\ninst✝³ : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝² : AddCommMonoid M₂\ninst✝¹ : Module R₂ M₂\ns✝ t : Set M\ninst✝ : RingHomSurjective σ₁₂\nf : M →ₛₗ[σ₁₂] M₂\nx : M\ns : Set M\nh : x ∈ span R s\n⊢ ↑f x ∈ map f (span R s)", "state_before": "R : Type u_1\nR₂ : Type u_2\nK : Type ?u.203558\nM : Type u_3\nM₂ : Type u_4\nV : Type ?u.203567\nS : Type ?u.203570\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\nx✝ : M\np p' : Submodule R M\ninst✝³ : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝² : AddCommMonoid M₂\ninst✝¹ : Module R₂ M₂\ns✝ t : Set M\ninst✝ : RingHomSurjective σ₁₂\nf : M →ₛₗ[σ₁₂] M₂\nx : M\ns : Set M\nh : x ∈ span R s\n⊢ ↑f x ∈ span R₂ (↑f '' s)", "tactic": "rw [Submodule.span_image]" }, { "state_after": "no goals", "state_before": "R : Type u_1\nR₂ : Type u_2\nK : Type ?u.203558\nM : Type u_3\nM₂ : Type u_4\nV : Type ?u.203567\nS : Type ?u.203570\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : Module R M\nx✝ : M\np p' : Submodule R M\ninst✝³ : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝² : AddCommMonoid M₂\ninst✝¹ : Module R₂ M₂\ns✝ t : Set M\ninst✝ : RingHomSurjective σ₁₂\nf : M →ₛₗ[σ₁₂] M₂\nx : M\ns : Set M\nh : x ∈ span R s\n⊢ ↑f x ∈ map f (span R s)", "tactic": "exact Submodule.mem_map_of_mem h" } ]
[ 583, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 580, 1 ]
Mathlib/Control/Functor.lean
Functor.Comp.run_map
[]
[ 203, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 201, 11 ]
Mathlib/Analysis/Calculus/BumpFunctionInner.lean
ContDiffBump.rOut_pos
[]
[ 345, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 344, 1 ]
Mathlib/RingTheory/Artinian.lean
isArtinian_of_fg_of_artinian
[ { "state_after": "R : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nN : Submodule R M\ninst✝ : IsArtinianRing R\nhN : FG N\ns : Finset M\nhs : span R ↑s = N\n⊢ IsArtinian R { x // x ∈ N }", "state_before": "R : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nN : Submodule R M\ninst✝ : IsArtinianRing R\nhN : FG N\n⊢ IsArtinian R { x // x ∈ N }", "tactic": "let ⟨s, hs⟩ := hN" }, { "state_after": "R : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nN : Submodule R M\ninst✝ : IsArtinianRing R\nhN : FG N\ns : Finset M\nhs : span R ↑s = N\nthis : DecidableEq M\n⊢ IsArtinian R { x // x ∈ N }", "state_before": "R : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nN : Submodule R M\ninst✝ : IsArtinianRing R\nhN : FG N\ns : Finset M\nhs : span R ↑s = N\n⊢ IsArtinian R { x // x ∈ N }", "tactic": "haveI := Classical.decEq M" }, { "state_after": "R : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nN : Submodule R M\ninst✝ : IsArtinianRing R\nhN : FG N\ns : Finset M\nhs : span R ↑s = N\nthis✝ : DecidableEq M\nthis : DecidableEq R\n⊢ IsArtinian R { x // x ∈ N }", "state_before": "R : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nN : Submodule R M\ninst✝ : IsArtinianRing R\nhN : FG N\ns : Finset M\nhs : span R ↑s = N\nthis : DecidableEq M\n⊢ IsArtinian R { x // x ∈ N }", "tactic": "haveI := Classical.decEq R" }, { "state_after": "R : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nN : Submodule R M\ninst✝ : IsArtinianRing R\nhN : FG N\ns : Finset M\nhs : span R ↑s = N\nthis✝¹ : DecidableEq M\nthis✝ : DecidableEq R\nthis : ∀ (x : M), x ∈ s → x ∈ N\n⊢ IsArtinian R { x // x ∈ N }", "state_before": "R : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nN : Submodule R M\ninst✝ : IsArtinianRing R\nhN : FG N\ns : Finset M\nhs : span R ↑s = N\nthis✝ : DecidableEq M\nthis : DecidableEq R\n⊢ IsArtinian R { x // x ∈ N }", "tactic": "have : ∀ x ∈ s, x ∈ N := fun x hx => hs ▸ Submodule.subset_span hx" }, { "state_after": "case refine'_1\nR : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nN : Submodule R M\ninst✝ : IsArtinianRing R\nhN : FG N\ns : Finset M\nhs : span R ↑s = N\nthis✝¹ : DecidableEq M\nthis✝ : DecidableEq R\nthis : ∀ (x : M), x ∈ s → x ∈ N\n⊢ (↑↑s →₀ R) →ₗ[R] { x // x ∈ N }\n\ncase refine'_2\nR : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nN : Submodule R M\ninst✝ : IsArtinianRing R\nhN : FG N\ns : Finset M\nhs : span R ↑s = N\nthis✝¹ : DecidableEq M\nthis✝ : DecidableEq R\nthis : ∀ (x : M), x ∈ s → x ∈ N\n⊢ Surjective ↑?refine'_1", "state_before": "R : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nN : Submodule R M\ninst✝ : IsArtinianRing R\nhN : FG N\ns : Finset M\nhs : span R ↑s = N\nthis✝¹ : DecidableEq M\nthis✝ : DecidableEq R\nthis : ∀ (x : M), x ∈ s → x ∈ N\n⊢ IsArtinian R { x // x ∈ N }", "tactic": "refine' @isArtinian_of_surjective _ ((↑s : Set M) →₀ R) N _ _ _ _ _ _ _ isArtinian_finsupp" }, { "state_after": "case refine'_2\nR : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nN : Submodule R M\ninst✝ : IsArtinianRing R\nhN : FG N\ns : Finset M\nhs : span R ↑s = N\nthis✝¹ : DecidableEq M\nthis✝ : DecidableEq R\nthis : ∀ (x : M), x ∈ s → x ∈ N\n⊢ Surjective ↑(Finsupp.total ↑↑s { x // x ∈ N } R fun i => { val := ↑i, property := (_ : ↑i ∈ N) })", "state_before": "case refine'_1\nR : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nN : Submodule R M\ninst✝ : IsArtinianRing R\nhN : FG N\ns : Finset M\nhs : span R ↑s = N\nthis✝¹ : DecidableEq M\nthis✝ : DecidableEq R\nthis : ∀ (x : M), x ∈ s → x ∈ N\n⊢ (↑↑s →₀ R) →ₗ[R] { x // x ∈ N }\n\ncase refine'_2\nR : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nN : Submodule R M\ninst✝ : IsArtinianRing R\nhN : FG N\ns : Finset M\nhs : span R ↑s = N\nthis✝¹ : DecidableEq M\nthis✝ : DecidableEq R\nthis : ∀ (x : M), x ∈ s → x ∈ N\n⊢ Surjective ↑?refine'_1", "tactic": ". exact Finsupp.total (↑s : Set M) N R (fun i => ⟨i, hs ▸ subset_span i.2⟩)" }, { "state_after": "no goals", "state_before": "case refine'_2\nR : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nN : Submodule R M\ninst✝ : IsArtinianRing R\nhN : FG N\ns : Finset M\nhs : span R ↑s = N\nthis✝¹ : DecidableEq M\nthis✝ : DecidableEq R\nthis : ∀ (x : M), x ∈ s → x ∈ N\n⊢ Surjective ↑(Finsupp.total ↑↑s { x // x ∈ N } R fun i => { val := ↑i, property := (_ : ↑i ∈ N) })", "tactic": ". rw [← LinearMap.range_eq_top, eq_top_iff,\n ← map_le_map_iff_of_injective (show Injective (Submodule.subtype N)\n from Subtype.val_injective), Submodule.map_top, range_subtype,\n ← Submodule.map_top, ← Submodule.map_comp, Submodule.map_top]\n subst N\n refine span_le.2 (fun i hi => ?_)\n use Finsupp.single ⟨i, hi⟩ 1\n simp" }, { "state_after": "no goals", "state_before": "case refine'_1\nR : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nN : Submodule R M\ninst✝ : IsArtinianRing R\nhN : FG N\ns : Finset M\nhs : span R ↑s = N\nthis✝¹ : DecidableEq M\nthis✝ : DecidableEq R\nthis : ∀ (x : M), x ∈ s → x ∈ N\n⊢ (↑↑s →₀ R) →ₗ[R] { x // x ∈ N }", "tactic": "exact Finsupp.total (↑s : Set M) N R (fun i => ⟨i, hs ▸ subset_span i.2⟩)" }, { "state_after": "case refine'_2\nR : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nN : Submodule R M\ninst✝ : IsArtinianRing R\nhN : FG N\ns : Finset M\nhs : span R ↑s = N\nthis✝¹ : DecidableEq M\nthis✝ : DecidableEq R\nthis : ∀ (x : M), x ∈ s → x ∈ N\n⊢ N ≤\n LinearMap.range\n (LinearMap.comp (Submodule.subtype N)\n (Finsupp.total ↑↑s { x // x ∈ N } R fun i => { val := ↑i, property := (_ : ↑i ∈ N) }))", "state_before": "case refine'_2\nR : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nN : Submodule R M\ninst✝ : IsArtinianRing R\nhN : FG N\ns : Finset M\nhs : span R ↑s = N\nthis✝¹ : DecidableEq M\nthis✝ : DecidableEq R\nthis : ∀ (x : M), x ∈ s → x ∈ N\n⊢ Surjective ↑(Finsupp.total ↑↑s { x // x ∈ N } R fun i => { val := ↑i, property := (_ : ↑i ∈ N) })", "tactic": "rw [← LinearMap.range_eq_top, eq_top_iff,\n ← map_le_map_iff_of_injective (show Injective (Submodule.subtype N)\n from Subtype.val_injective), Submodule.map_top, range_subtype,\n ← Submodule.map_top, ← Submodule.map_comp, Submodule.map_top]" }, { "state_after": "case refine'_2\nR : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\ninst✝ : IsArtinianRing R\ns : Finset M\nthis✝¹ : DecidableEq M\nthis✝ : DecidableEq R\nhN : FG (span R ↑s)\nthis : ∀ (x : M), x ∈ s → x ∈ span R ↑s\n⊢ span R ↑s ≤\n LinearMap.range\n (LinearMap.comp (Submodule.subtype (span R ↑s))\n (Finsupp.total ↑↑s { x // x ∈ span R ↑s } R fun i => { val := ↑i, property := (_ : ↑i ∈ span R ↑s) }))", "state_before": "case refine'_2\nR : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\nN : Submodule R M\ninst✝ : IsArtinianRing R\nhN : FG N\ns : Finset M\nhs : span R ↑s = N\nthis✝¹ : DecidableEq M\nthis✝ : DecidableEq R\nthis : ∀ (x : M), x ∈ s → x ∈ N\n⊢ N ≤\n LinearMap.range\n (LinearMap.comp (Submodule.subtype N)\n (Finsupp.total ↑↑s { x // x ∈ N } R fun i => { val := ↑i, property := (_ : ↑i ∈ N) }))", "tactic": "subst N" }, { "state_after": "case refine'_2\nR : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\ninst✝ : IsArtinianRing R\ns : Finset M\nthis✝¹ : DecidableEq M\nthis✝ : DecidableEq R\nhN : FG (span R ↑s)\nthis : ∀ (x : M), x ∈ s → x ∈ span R ↑s\ni : M\nhi : i ∈ ↑s\n⊢ i ∈\n ↑(LinearMap.range\n (LinearMap.comp (Submodule.subtype (span R ↑s))\n (Finsupp.total ↑↑s { x // x ∈ span R ↑s } R fun i => { val := ↑i, property := (_ : ↑i ∈ span R ↑s) })))", "state_before": "case refine'_2\nR : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\ninst✝ : IsArtinianRing R\ns : Finset M\nthis✝¹ : DecidableEq M\nthis✝ : DecidableEq R\nhN : FG (span R ↑s)\nthis : ∀ (x : M), x ∈ s → x ∈ span R ↑s\n⊢ span R ↑s ≤\n LinearMap.range\n (LinearMap.comp (Submodule.subtype (span R ↑s))\n (Finsupp.total ↑↑s { x // x ∈ span R ↑s } R fun i => { val := ↑i, property := (_ : ↑i ∈ span R ↑s) }))", "tactic": "refine span_le.2 (fun i hi => ?_)" }, { "state_after": "case refine'_2\nR : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\ninst✝ : IsArtinianRing R\ns : Finset M\nthis✝¹ : DecidableEq M\nthis✝ : DecidableEq R\nhN : FG (span R ↑s)\nthis : ∀ (x : M), x ∈ s → x ∈ span R ↑s\ni : M\nhi : i ∈ ↑s\n⊢ ↑(LinearMap.comp (Submodule.subtype (span R ↑s))\n (Finsupp.total ↑↑s { x // x ∈ span R ↑s } R fun i => { val := ↑i, property := (_ : ↑i ∈ span R ↑s) }))\n (Finsupp.single { val := i, property := hi } 1) =\n i", "state_before": "case refine'_2\nR : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\ninst✝ : IsArtinianRing R\ns : Finset M\nthis✝¹ : DecidableEq M\nthis✝ : DecidableEq R\nhN : FG (span R ↑s)\nthis : ∀ (x : M), x ∈ s → x ∈ span R ↑s\ni : M\nhi : i ∈ ↑s\n⊢ i ∈\n ↑(LinearMap.range\n (LinearMap.comp (Submodule.subtype (span R ↑s))\n (Finsupp.total ↑↑s { x // x ∈ span R ↑s } R fun i => { val := ↑i, property := (_ : ↑i ∈ span R ↑s) })))", "tactic": "use Finsupp.single ⟨i, hi⟩ 1" }, { "state_after": "no goals", "state_before": "case refine'_2\nR : Type u_1\nM : Type u_2\ninst✝³ : Ring R\ninst✝² : AddCommGroup M\ninst✝¹ : Module R M\ninst✝ : IsArtinianRing R\ns : Finset M\nthis✝¹ : DecidableEq M\nthis✝ : DecidableEq R\nhN : FG (span R ↑s)\nthis : ∀ (x : M), x ∈ s → x ∈ span R ↑s\ni : M\nhi : i ∈ ↑s\n⊢ ↑(LinearMap.comp (Submodule.subtype (span R ↑s))\n (Finsupp.total ↑↑s { x // x ∈ span R ↑s } R fun i => { val := ↑i, property := (_ : ↑i ∈ span R ↑s) }))\n (Finsupp.single { val := i, property := hi } 1) =\n i", "tactic": "simp" } ]
[ 355, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 340, 1 ]
Mathlib/Algebra/QuadraticDiscriminant.lean
quadratic_eq_zero_iff_discrim_eq_sq
[ { "state_after": "R : Type u_1\ninst✝² : CommRing R\na b c : R\ninst✝¹ : NeZero 2\ninst✝ : NoZeroDivisors R\nha : a ≠ 0\nx : R\nh : discrim a b c = (2 * a * x + b) ^ 2\n⊢ a * x * x + b * x + c = 0", "state_before": "R : Type u_1\ninst✝² : CommRing R\na b c : R\ninst✝¹ : NeZero 2\ninst✝ : NoZeroDivisors R\nha : a ≠ 0\nx : R\n⊢ a * x * x + b * x + c = 0 ↔ discrim a b c = (2 * a * x + b) ^ 2", "tactic": "refine ⟨discrim_eq_sq_of_quadratic_eq_zero, fun h ↦ ?_⟩" }, { "state_after": "R : Type u_1\ninst✝² : CommRing R\na b c : R\ninst✝¹ : NeZero 2\ninst✝ : NoZeroDivisors R\nha : a ≠ 0\nx : R\nh : b ^ 2 - 4 * a * c = (2 * a * x + b) ^ 2\n⊢ a * x * x + b * x + c = 0", "state_before": "R : Type u_1\ninst✝² : CommRing R\na b c : R\ninst✝¹ : NeZero 2\ninst✝ : NoZeroDivisors R\nha : a ≠ 0\nx : R\nh : discrim a b c = (2 * a * x + b) ^ 2\n⊢ a * x * x + b * x + c = 0", "tactic": "rw [discrim] at h" }, { "state_after": "R : Type u_1\ninst✝² : CommRing R\na b c : R\ninst✝¹ : NeZero 2\ninst✝ : NoZeroDivisors R\nha✝ : a ≠ 0\nx : R\nh : b ^ 2 - 4 * a * c = (2 * a * x + b) ^ 2\nha : 2 * 2 * a ≠ 0\n⊢ a * x * x + b * x + c = 0", "state_before": "R : Type u_1\ninst✝² : CommRing R\na b c : R\ninst✝¹ : NeZero 2\ninst✝ : NoZeroDivisors R\nha : a ≠ 0\nx : R\nh : b ^ 2 - 4 * a * c = (2 * a * x + b) ^ 2\n⊢ a * x * x + b * x + c = 0", "tactic": "have ha : 2 * 2 * a ≠ 0 := mul_ne_zero (mul_ne_zero (NeZero.ne _) (NeZero.ne _)) ha" }, { "state_after": "R : Type u_1\ninst✝² : CommRing R\na b c : R\ninst✝¹ : NeZero 2\ninst✝ : NoZeroDivisors R\nha✝ : a ≠ 0\nx : R\nh : b ^ 2 - 4 * a * c = (2 * a * x + b) ^ 2\nha : 2 * 2 * a ≠ 0\n⊢ 2 * 2 * a * (a * x * x + b * x + c) = 2 * 2 * a * 0", "state_before": "R : Type u_1\ninst✝² : CommRing R\na b c : R\ninst✝¹ : NeZero 2\ninst✝ : NoZeroDivisors R\nha✝ : a ≠ 0\nx : R\nh : b ^ 2 - 4 * a * c = (2 * a * x + b) ^ 2\nha : 2 * 2 * a ≠ 0\n⊢ a * x * x + b * x + c = 0", "tactic": "apply mul_left_cancel₀ ha" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝² : CommRing R\na b c : R\ninst✝¹ : NeZero 2\ninst✝ : NoZeroDivisors R\nha✝ : a ≠ 0\nx : R\nh : b ^ 2 - 4 * a * c = (2 * a * x + b) ^ 2\nha : 2 * 2 * a ≠ 0\n⊢ 2 * 2 * a * (a * x * x + b * x + c) = 2 * 2 * a * 0", "tactic": "linear_combination -h" } ]
[ 73, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 66, 1 ]
Mathlib/Data/Complex/Basic.lean
Complex.normSq_apply
[]
[ 584, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 583, 1 ]
Std/Data/List/Lemmas.lean
List.forall_mem_map_iff
[ { "state_after": "α : Type u_1\nβ : Type u_2\nf : α → β\nl : List α\nP : β → Prop\n⊢ (∀ (i : β) (x : α), x ∈ l → f x = i → P i) ↔ ∀ (j : α), j ∈ l → P (f j)", "state_before": "α : Type u_1\nβ : Type u_2\nf : α → β\nl : List α\nP : β → Prop\n⊢ (∀ (i : β), i ∈ map f l → P i) ↔ ∀ (j : α), j ∈ l → P (f j)", "tactic": "simp" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nf : α → β\nl : List α\nP : β → Prop\n⊢ (∀ (i : β) (x : α), x ∈ l → f x = i → P i) ↔ ∀ (j : α), j ∈ l → P (f j)", "tactic": "exact ⟨fun H j h => H _ _ h rfl, fun H i x h e => e ▸ H _ h⟩" } ]
[ 166, 69 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 164, 1 ]
Mathlib/Data/Vector3.lean
vectorAllP_iff_forall
[ { "state_after": "case refine'_1\nα : Type u_1\nm n : ℕ\np : α → Prop\nv : Vector3 α n\n⊢ VectorAllP p [] ↔ ∀ (i : Fin2 0), p []\n\ncase refine'_2\nα : Type u_1\nm n : ℕ\np : α → Prop\nv : Vector3 α n\n⊢ ∀ {n : ℕ} (a : α) (w : Vector3 α n),\n (VectorAllP p w ↔ ∀ (i : Fin2 n), p (w i)) → (VectorAllP p (a :: w) ↔ ∀ (i : Fin2 (succ n)), p ((a :: w) i))", "state_before": "α : Type u_1\nm n : ℕ\np : α → Prop\nv : Vector3 α n\n⊢ VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)", "tactic": "refine' v.recOn _ _" }, { "state_after": "no goals", "state_before": "case refine'_1\nα : Type u_1\nm n : ℕ\np : α → Prop\nv : Vector3 α n\n⊢ VectorAllP p [] ↔ ∀ (i : Fin2 0), p []", "tactic": "exact ⟨fun _ => Fin2.elim0, fun _ => trivial⟩" }, { "state_after": "case refine'_2\nα : Type u_1\nm n : ℕ\np : α → Prop\nv : Vector3 α n\n⊢ ∀ {n : ℕ} (a : α) (w : Vector3 α n),\n (VectorAllP p w ↔ ∀ (i : Fin2 n), p (w i)) → (p a ∧ VectorAllP p w ↔ ∀ (i : Fin2 (succ n)), p ((a :: w) i))", "state_before": "case refine'_2\nα : Type u_1\nm n : ℕ\np : α → Prop\nv : Vector3 α n\n⊢ ∀ {n : ℕ} (a : α) (w : Vector3 α n),\n (VectorAllP p w ↔ ∀ (i : Fin2 n), p (w i)) → (VectorAllP p (a :: w) ↔ ∀ (i : Fin2 (succ n)), p ((a :: w) i))", "tactic": "simp" }, { "state_after": "case refine'_2.refine'_1\nα : Type u_1\nm n✝ : ℕ\np : α → Prop\nv✝ : Vector3 α n✝\nn : ℕ\na : α\nv : Vector3 α n\nIH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)\nh : ∀ (i : Fin2 (succ n)), p ((a :: v) i)\n⊢ p a\n\ncase refine'_2.refine'_2\nα : Type u_1\nm n✝ : ℕ\np : α → Prop\nv✝ : Vector3 α n✝\nn : ℕ\na : α\nv : Vector3 α n\nIH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)\nh : ∀ (i : Fin2 (succ n)), p ((a :: v) i)\ni : Fin2 n\n⊢ p (v i)", "state_before": "case refine'_2\nα : Type u_1\nm n : ℕ\np : α → Prop\nv : Vector3 α n\n⊢ ∀ {n : ℕ} (a : α) (w : Vector3 α n),\n (VectorAllP p w ↔ ∀ (i : Fin2 n), p (w i)) → (p a ∧ VectorAllP p w ↔ ∀ (i : Fin2 (succ n)), p ((a :: w) i))", "tactic": "refine' @fun n a v IH =>\n (and_congr_right fun _ => IH).trans\n ⟨fun ⟨pa, h⟩ i => by\n refine' i.cases' _ _\n exacts [pa, h], fun h => ⟨_, fun i => _⟩⟩" }, { "state_after": "case refine'_1\nα : Type u_1\nm n✝ : ℕ\np : α → Prop\nv✝ : Vector3 α n✝\nn : ℕ\na : α\nv : Vector3 α n\nIH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)\nx✝ : p a ∧ ∀ (i : Fin2 n), p (v i)\ni : Fin2 (succ n)\npa : p a\nh : ∀ (i : Fin2 n), p (v i)\n⊢ p ((a :: v) fz)\n\ncase refine'_2\nα : Type u_1\nm n✝ : ℕ\np : α → Prop\nv✝ : Vector3 α n✝\nn : ℕ\na : α\nv : Vector3 α n\nIH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)\nx✝ : p a ∧ ∀ (i : Fin2 n), p (v i)\ni : Fin2 (succ n)\npa : p a\nh : ∀ (i : Fin2 n), p (v i)\n⊢ ∀ (n_1 : Fin2 n), p ((a :: v) (fs n_1))", "state_before": "α : Type u_1\nm n✝ : ℕ\np : α → Prop\nv✝ : Vector3 α n✝\nn : ℕ\na : α\nv : Vector3 α n\nIH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)\nx✝ : p a ∧ ∀ (i : Fin2 n), p (v i)\ni : Fin2 (succ n)\npa : p a\nh : ∀ (i : Fin2 n), p (v i)\n⊢ p ((a :: v) i)", "tactic": "refine' i.cases' _ _" }, { "state_after": "no goals", "state_before": "case refine'_1\nα : Type u_1\nm n✝ : ℕ\np : α → Prop\nv✝ : Vector3 α n✝\nn : ℕ\na : α\nv : Vector3 α n\nIH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)\nx✝ : p a ∧ ∀ (i : Fin2 n), p (v i)\ni : Fin2 (succ n)\npa : p a\nh : ∀ (i : Fin2 n), p (v i)\n⊢ p ((a :: v) fz)\n\ncase refine'_2\nα : Type u_1\nm n✝ : ℕ\np : α → Prop\nv✝ : Vector3 α n✝\nn : ℕ\na : α\nv : Vector3 α n\nIH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)\nx✝ : p a ∧ ∀ (i : Fin2 n), p (v i)\ni : Fin2 (succ n)\npa : p a\nh : ∀ (i : Fin2 n), p (v i)\n⊢ ∀ (n_1 : Fin2 n), p ((a :: v) (fs n_1))", "tactic": "exacts [pa, h]" }, { "state_after": "case refine'_2.refine'_1\nα : Type u_1\nm n✝ : ℕ\np : α → Prop\nv✝ : Vector3 α n✝\nn : ℕ\na : α\nv : Vector3 α n\nIH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)\nh : ∀ (i : Fin2 (succ n)), p ((a :: v) i)\nh0 : p ((a :: v) fz)\n⊢ p a", "state_before": "case refine'_2.refine'_1\nα : Type u_1\nm n✝ : ℕ\np : α → Prop\nv✝ : Vector3 α n✝\nn : ℕ\na : α\nv : Vector3 α n\nIH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)\nh : ∀ (i : Fin2 (succ n)), p ((a :: v) i)\n⊢ p a", "tactic": "have h0 := h fz" }, { "state_after": "case refine'_2.refine'_1\nα : Type u_1\nm n✝ : ℕ\np : α → Prop\nv✝ : Vector3 α n✝\nn : ℕ\na : α\nv : Vector3 α n\nIH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)\nh : ∀ (i : Fin2 (succ n)), p ((a :: v) i)\nh0 : p a\n⊢ p a", "state_before": "case refine'_2.refine'_1\nα : Type u_1\nm n✝ : ℕ\np : α → Prop\nv✝ : Vector3 α n✝\nn : ℕ\na : α\nv : Vector3 α n\nIH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)\nh : ∀ (i : Fin2 (succ n)), p ((a :: v) i)\nh0 : p ((a :: v) fz)\n⊢ p a", "tactic": "simp at h0" }, { "state_after": "no goals", "state_before": "case refine'_2.refine'_1\nα : Type u_1\nm n✝ : ℕ\np : α → Prop\nv✝ : Vector3 α n✝\nn : ℕ\na : α\nv : Vector3 α n\nIH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)\nh : ∀ (i : Fin2 (succ n)), p ((a :: v) i)\nh0 : p a\n⊢ p a", "tactic": "exact h0" }, { "state_after": "case refine'_2.refine'_2\nα : Type u_1\nm n✝ : ℕ\np : α → Prop\nv✝ : Vector3 α n✝\nn : ℕ\na : α\nv : Vector3 α n\nIH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)\nh : ∀ (i : Fin2 (succ n)), p ((a :: v) i)\ni : Fin2 n\nhs : p ((a :: v) (fs i))\n⊢ p (v i)", "state_before": "case refine'_2.refine'_2\nα : Type u_1\nm n✝ : ℕ\np : α → Prop\nv✝ : Vector3 α n✝\nn : ℕ\na : α\nv : Vector3 α n\nIH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)\nh : ∀ (i : Fin2 (succ n)), p ((a :: v) i)\ni : Fin2 n\n⊢ p (v i)", "tactic": "have hs := h (fs i)" }, { "state_after": "case refine'_2.refine'_2\nα : Type u_1\nm n✝ : ℕ\np : α → Prop\nv✝ : Vector3 α n✝\nn : ℕ\na : α\nv : Vector3 α n\nIH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)\nh : ∀ (i : Fin2 (succ n)), p ((a :: v) i)\ni : Fin2 n\nhs : p (v i)\n⊢ p (v i)", "state_before": "case refine'_2.refine'_2\nα : Type u_1\nm n✝ : ℕ\np : α → Prop\nv✝ : Vector3 α n✝\nn : ℕ\na : α\nv : Vector3 α n\nIH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)\nh : ∀ (i : Fin2 (succ n)), p ((a :: v) i)\ni : Fin2 n\nhs : p ((a :: v) (fs i))\n⊢ p (v i)", "tactic": "simp at hs" }, { "state_after": "no goals", "state_before": "case refine'_2.refine'_2\nα : Type u_1\nm n✝ : ℕ\np : α → Prop\nv✝ : Vector3 α n✝\nn : ℕ\na : α\nv : Vector3 α n\nIH : VectorAllP p v ↔ ∀ (i : Fin2 n), p (v i)\nh : ∀ (i : Fin2 (succ n)), p ((a :: v) i)\ni : Fin2 n\nhs : p (v i)\n⊢ p (v i)", "tactic": "exact hs" } ]
[ 296, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 281, 1 ]
Mathlib/Data/Finset/Lattice.lean
Finset.set_biInter_insert_update
[]
[ 2074, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2072, 1 ]
Mathlib/Combinatorics/SimpleGraph/Hasse.lean
SimpleGraph.hasseDualIso_symm_apply
[]
[ 64, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 63, 1 ]
Mathlib/Combinatorics/Young/YoungDiagram.lean
YoungDiagram.up_left_mem
[]
[ 99, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 97, 1 ]
Mathlib/Algebra/EuclideanDomain/Basic.lean
EuclideanDomain.mul_div_cancel
[ { "state_after": "R : Type u\ninst✝ : EuclideanDomain R\na b : R\nb0 : b ≠ 0\n⊢ b * a / b = a", "state_before": "R : Type u\ninst✝ : EuclideanDomain R\na b : R\nb0 : b ≠ 0\n⊢ a * b / b = a", "tactic": "rw [mul_comm]" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝ : EuclideanDomain R\na b : R\nb0 : b ≠ 0\n⊢ b * a / b = a", "tactic": "exact mul_div_cancel_left a b0" } ]
[ 49, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 47, 1 ]
Mathlib/Data/Finset/Sigma.lean
Finset.coe_sigma
[]
[ 59, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 57, 1 ]
Std/Data/String/Lemmas.lean
String.data_append
[]
[ 28, 76 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 28, 9 ]
Mathlib/Data/Polynomial/Splits.lean
Polynomial.mem_lift_of_splits_of_roots_mem_range
[ { "state_after": "F : Type u\nK : Type v\nL : Type w\ninst✝⁴ : Field K\ninst✝³ : Field L\ninst✝² : Field F\ni : K →+* L\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : Algebra R K\nf : K[X]\nhs : Splits (RingHom.id K) f\nhm : Monic f\nhr : ∀ (a : K), a ∈ roots f → a ∈ RingHom.range (algebraMap R K)\n⊢ Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots f)) ∈ liftsRing (algebraMap R K)", "state_before": "F : Type u\nK : Type v\nL : Type w\ninst✝⁴ : Field K\ninst✝³ : Field L\ninst✝² : Field F\ni : K →+* L\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : Algebra R K\nf : K[X]\nhs : Splits (RingHom.id K) f\nhm : Monic f\nhr : ∀ (a : K), a ∈ roots f → a ∈ RingHom.range (algebraMap R K)\n⊢ f ∈ lifts (algebraMap R K)", "tactic": "rw [eq_prod_roots_of_monic_of_splits_id hm hs, lifts_iff_liftsRing]" }, { "state_after": "F : Type u\nK : Type v\nL : Type w\ninst✝⁴ : Field K\ninst✝³ : Field L\ninst✝² : Field F\ni : K →+* L\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : Algebra R K\nf : K[X]\nhs : Splits (RingHom.id K) f\nhm : Monic f\nhr : ∀ (a : K), a ∈ roots f → a ∈ RingHom.range (algebraMap R K)\nP : K[X]\nhP : P ∈ Multiset.map (fun a => X - ↑C a) (roots f)\n⊢ P ∈ liftsRing (algebraMap R K)", "state_before": "F : Type u\nK : Type v\nL : Type w\ninst✝⁴ : Field K\ninst✝³ : Field L\ninst✝² : Field F\ni : K →+* L\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : Algebra R K\nf : K[X]\nhs : Splits (RingHom.id K) f\nhm : Monic f\nhr : ∀ (a : K), a ∈ roots f → a ∈ RingHom.range (algebraMap R K)\n⊢ Multiset.prod (Multiset.map (fun a => X - ↑C a) (roots f)) ∈ liftsRing (algebraMap R K)", "tactic": "refine' Subring.multiset_prod_mem _ _ fun P hP => _" }, { "state_after": "case intro.intro\nF : Type u\nK : Type v\nL : Type w\ninst✝⁴ : Field K\ninst✝³ : Field L\ninst✝² : Field F\ni : K →+* L\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : Algebra R K\nf : K[X]\nhs : Splits (RingHom.id K) f\nhm : Monic f\nhr : ∀ (a : K), a ∈ roots f → a ∈ RingHom.range (algebraMap R K)\nb : K\nhb : b ∈ roots f\nhP : X - ↑C b ∈ Multiset.map (fun a => X - ↑C a) (roots f)\n⊢ X - ↑C b ∈ liftsRing (algebraMap R K)", "state_before": "F : Type u\nK : Type v\nL : Type w\ninst✝⁴ : Field K\ninst✝³ : Field L\ninst✝² : Field F\ni : K →+* L\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : Algebra R K\nf : K[X]\nhs : Splits (RingHom.id K) f\nhm : Monic f\nhr : ∀ (a : K), a ∈ roots f → a ∈ RingHom.range (algebraMap R K)\nP : K[X]\nhP : P ∈ Multiset.map (fun a => X - ↑C a) (roots f)\n⊢ P ∈ liftsRing (algebraMap R K)", "tactic": "obtain ⟨b, hb, rfl⟩ := Multiset.mem_map.1 hP" }, { "state_after": "no goals", "state_before": "case intro.intro\nF : Type u\nK : Type v\nL : Type w\ninst✝⁴ : Field K\ninst✝³ : Field L\ninst✝² : Field F\ni : K →+* L\nR : Type u_1\ninst✝¹ : CommRing R\ninst✝ : Algebra R K\nf : K[X]\nhs : Splits (RingHom.id K) f\nhm : Monic f\nhr : ∀ (a : K), a ∈ roots f → a ∈ RingHom.range (algebraMap R K)\nb : K\nhb : b ∈ roots f\nhP : X - ↑C b ∈ Multiset.map (fun a => X - ↑C a) (roots f)\n⊢ X - ↑C b ∈ liftsRing (algebraMap R K)", "tactic": "exact Subring.sub_mem _ (X_mem_lifts _) (C'_mem_lifts (hr _ hb))" } ]
[ 383, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 377, 1 ]
Mathlib/MeasureTheory/CardMeasurableSpace.lean
MeasurableSpace.self_subset_generateMeasurableRec
[ { "state_after": "α : Type u\ns : Set (Set α)\ni : (Quotient.out (ord (aleph 1))).α\n⊢ s ⊆\n let i := i;\n let S := ⋃ (j : ↑(Iio i)), generateMeasurableRec s ↑j;\n s ∪ {∅} ∪ compl '' S ∪ range fun f => ⋃ (n : ℕ), ↑(f n)", "state_before": "α : Type u\ns : Set (Set α)\ni : (Quotient.out (ord (aleph 1))).α\n⊢ s ⊆ generateMeasurableRec s i", "tactic": "unfold generateMeasurableRec" }, { "state_after": "case h.h.h\nα : Type u\ns : Set (Set α)\ni : (Quotient.out (ord (aleph 1))).α\n⊢ s ⊆ s", "state_before": "α : Type u\ns : Set (Set α)\ni : (Quotient.out (ord (aleph 1))).α\n⊢ s ⊆\n let i := i;\n let S := ⋃ (j : ↑(Iio i)), generateMeasurableRec s ↑j;\n s ∪ {∅} ∪ compl '' S ∪ range fun f => ⋃ (n : ℕ), ↑(f n)", "tactic": "apply_rules [subset_union_of_subset_left]" }, { "state_after": "no goals", "state_before": "case h.h.h\nα : Type u\ns : Set (Set α)\ni : (Quotient.out (ord (aleph 1))).α\n⊢ s ⊆ s", "tactic": "exact subset_rfl" } ]
[ 62, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 58, 1 ]
Mathlib/LinearAlgebra/FiniteDimensional.lean
CompleteLattice.Independent.subtype_ne_bot_le_finrank
[ { "state_after": "no goals", "state_before": "K : Type u\nV : Type v\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nV₂ : Type v'\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : FiniteDimensional K V\nι : Type w\np : ι → Submodule K V\nhp : CompleteLattice.Independent p\ninst✝ : Fintype { i // p i ≠ ⊥ }\n⊢ Fintype.card { i // p i ≠ ⊥ } ≤ finrank K V", "tactic": "simpa using hp.subtype_ne_bot_le_finrank_aux" } ]
[ 438, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 435, 1 ]
Mathlib/Topology/Homeomorph.lean
Homeomorph.t1Space
[]
[ 290, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 289, 11 ]
Mathlib/LinearAlgebra/Basic.lean
LinearEquiv.funCongrLeft_symm
[]
[ 2675, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2674, 1 ]
Mathlib/Topology/UrysohnsLemma.lean
Urysohns.CU.lim_of_mem_C
[ { "state_after": "no goals", "state_before": "X : Type u_1\ninst✝¹ : TopologicalSpace X\ninst✝ : NormalSpace X\nc : CU X\nx : X\nh : x ∈ c.C\n⊢ CU.lim c x = 0", "tactic": "simp only [CU.lim, approx_of_mem_C, h, ciSup_const]" } ]
[ 227, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 226, 1 ]
Mathlib/RingTheory/Coprime/Lemmas.lean
IsCoprime.of_prod_left
[]
[ 75, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 73, 1 ]
Mathlib/FieldTheory/Adjoin.lean
IntermediateField.equivOfEq_rfl
[ { "state_after": "case h.a\nF : Type u_1\ninst✝² : Field F\nE : Type u_2\ninst✝¹ : Field E\ninst✝ : Algebra F E\nS : IntermediateField F E\na✝ : { x // x ∈ S }\n⊢ ↑(↑(equivOfEq (_ : S = S)) a✝) = ↑(↑AlgEquiv.refl a✝)", "state_before": "F : Type u_1\ninst✝² : Field F\nE : Type u_2\ninst✝¹ : Field E\ninst✝ : Algebra F E\nS : IntermediateField F E\n⊢ equivOfEq (_ : S = S) = AlgEquiv.refl", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h.a\nF : Type u_1\ninst✝² : Field F\nE : Type u_2\ninst✝¹ : Field E\ninst✝ : Algebra F E\nS : IntermediateField F E\na✝ : { x // x ∈ S }\n⊢ ↑(↑(equivOfEq (_ : S = S)) a✝) = ↑(↑AlgEquiv.refl a✝)", "tactic": "rfl" } ]
[ 202, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 201, 1 ]
Mathlib/Algebra/Polynomial/BigOperators.lean
Polynomial.natDegree_multiset_prod_of_monic
[ { "state_after": "R : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommSemiring R\nf : ι → R[X]\nt : Multiset R[X]\nh : ∀ (f : R[X]), f ∈ t → Monic f\n✝ : Nontrivial R\n⊢ natDegree (prod t) = Multiset.sum (Multiset.map natDegree t)", "state_before": "R : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommSemiring R\nf : ι → R[X]\nt : Multiset R[X]\nh : ∀ (f : R[X]), f ∈ t → Monic f\n⊢ natDegree (prod t) = Multiset.sum (Multiset.map natDegree t)", "tactic": "nontriviality R" }, { "state_after": "case h\nR : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommSemiring R\nf : ι → R[X]\nt : Multiset R[X]\nh : ∀ (f : R[X]), f ∈ t → Monic f\n✝ : Nontrivial R\n⊢ prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0", "state_before": "R : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommSemiring R\nf : ι → R[X]\nt : Multiset R[X]\nh : ∀ (f : R[X]), f ∈ t → Monic f\n✝ : Nontrivial R\n⊢ natDegree (prod t) = Multiset.sum (Multiset.map natDegree t)", "tactic": "apply natDegree_multiset_prod'" }, { "state_after": "case h\nR : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommSemiring R\nf : ι → R[X]\nt : Multiset R[X]\nh : ∀ (f : R[X]), f ∈ t → Monic f\n✝ : Nontrivial R\n⊢ prod (Multiset.map (fun f => leadingCoeff f) t) = 1", "state_before": "case h\nR : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommSemiring R\nf : ι → R[X]\nt : Multiset R[X]\nh : ∀ (f : R[X]), f ∈ t → Monic f\n✝ : Nontrivial R\n⊢ prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0", "tactic": "suffices (t.map fun f => leadingCoeff f).prod = 1 by\n rw [this]\n simp" }, { "state_after": "case h.e'_2.h.e'_3\nR : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommSemiring R\nf : ι → R[X]\nt : Multiset R[X]\nh : ∀ (f : R[X]), f ∈ t → Monic f\n✝ : Nontrivial R\n⊢ Multiset.map (fun f => leadingCoeff f) t = replicate (↑Multiset.card t) 1\n\ncase h.e'_3\nR : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommSemiring R\nf : ι → R[X]\nt : Multiset R[X]\nh : ∀ (f : R[X]), f ∈ t → Monic f\n✝ : Nontrivial R\n⊢ 1 = 1 ^ ↑Multiset.card t", "state_before": "case h\nR : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommSemiring R\nf : ι → R[X]\nt : Multiset R[X]\nh : ∀ (f : R[X]), f ∈ t → Monic f\n✝ : Nontrivial R\n⊢ prod (Multiset.map (fun f => leadingCoeff f) t) = 1", "tactic": "convert prod_replicate (Multiset.card t) (1 : R)" }, { "state_after": "R : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommSemiring R\nf : ι → R[X]\nt : Multiset R[X]\nh : ∀ (f : R[X]), f ∈ t → Monic f\n✝ : Nontrivial R\nthis : prod (Multiset.map (fun f => leadingCoeff f) t) = 1\n⊢ 1 ≠ 0", "state_before": "R : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommSemiring R\nf : ι → R[X]\nt : Multiset R[X]\nh : ∀ (f : R[X]), f ∈ t → Monic f\n✝ : Nontrivial R\nthis : prod (Multiset.map (fun f => leadingCoeff f) t) = 1\n⊢ prod (Multiset.map (fun f => leadingCoeff f) t) ≠ 0", "tactic": "rw [this]" }, { "state_after": "no goals", "state_before": "R : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommSemiring R\nf : ι → R[X]\nt : Multiset R[X]\nh : ∀ (f : R[X]), f ∈ t → Monic f\n✝ : Nontrivial R\nthis : prod (Multiset.map (fun f => leadingCoeff f) t) = 1\n⊢ 1 ≠ 0", "tactic": "simp" }, { "state_after": "case h.e'_2.h.e'_3\nR : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommSemiring R\nf : ι → R[X]\nt : Multiset R[X]\nh : ∀ (f : R[X]), f ∈ t → Monic f\n✝ : Nontrivial R\n⊢ ∀ (b : R), b ∈ Multiset.map (fun f => leadingCoeff f) t → b = 1", "state_before": "case h.e'_2.h.e'_3\nR : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommSemiring R\nf : ι → R[X]\nt : Multiset R[X]\nh : ∀ (f : R[X]), f ∈ t → Monic f\n✝ : Nontrivial R\n⊢ Multiset.map (fun f => leadingCoeff f) t = replicate (↑Multiset.card t) 1", "tactic": "simp only [eq_replicate, Multiset.card_map, eq_self_iff_true, true_and_iff]" }, { "state_after": "case h.e'_2.h.e'_3\nR : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommSemiring R\nf : ι → R[X]\nt : Multiset R[X]\nh : ∀ (f : R[X]), f ∈ t → Monic f\n✝ : Nontrivial R\ni : R\nhi : i ∈ Multiset.map (fun f => leadingCoeff f) t\n⊢ i = 1", "state_before": "case h.e'_2.h.e'_3\nR : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommSemiring R\nf : ι → R[X]\nt : Multiset R[X]\nh : ∀ (f : R[X]), f ∈ t → Monic f\n✝ : Nontrivial R\n⊢ ∀ (b : R), b ∈ Multiset.map (fun f => leadingCoeff f) t → b = 1", "tactic": "rintro i hi" }, { "state_after": "case h.e'_2.h.e'_3.intro.intro\nR : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommSemiring R\nf : ι → R[X]\nt : Multiset R[X]\nh : ∀ (f : R[X]), f ∈ t → Monic f\n✝ : Nontrivial R\ni : R[X]\nhi✝ : i ∈ t\nhi : leadingCoeff i ∈ Multiset.map (fun f => leadingCoeff f) t\n⊢ leadingCoeff i = 1", "state_before": "case h.e'_2.h.e'_3\nR : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommSemiring R\nf : ι → R[X]\nt : Multiset R[X]\nh : ∀ (f : R[X]), f ∈ t → Monic f\n✝ : Nontrivial R\ni : R\nhi : i ∈ Multiset.map (fun f => leadingCoeff f) t\n⊢ i = 1", "tactic": "obtain ⟨i, hi, rfl⟩ := Multiset.mem_map.mp hi" }, { "state_after": "case h.e'_2.h.e'_3.intro.intro.a\nR : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommSemiring R\nf : ι → R[X]\nt : Multiset R[X]\nh : ∀ (f : R[X]), f ∈ t → Monic f\n✝ : Nontrivial R\ni : R[X]\nhi✝ : i ∈ t\nhi : leadingCoeff i ∈ Multiset.map (fun f => leadingCoeff f) t\n⊢ i ∈ t", "state_before": "case h.e'_2.h.e'_3.intro.intro\nR : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommSemiring R\nf : ι → R[X]\nt : Multiset R[X]\nh : ∀ (f : R[X]), f ∈ t → Monic f\n✝ : Nontrivial R\ni : R[X]\nhi✝ : i ∈ t\nhi : leadingCoeff i ∈ Multiset.map (fun f => leadingCoeff f) t\n⊢ leadingCoeff i = 1", "tactic": "apply h" }, { "state_after": "no goals", "state_before": "case h.e'_2.h.e'_3.intro.intro.a\nR : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommSemiring R\nf : ι → R[X]\nt : Multiset R[X]\nh : ∀ (f : R[X]), f ∈ t → Monic f\n✝ : Nontrivial R\ni : R[X]\nhi✝ : i ∈ t\nhi : leadingCoeff i ∈ Multiset.map (fun f => leadingCoeff f) t\n⊢ i ∈ t", "tactic": "assumption" }, { "state_after": "no goals", "state_before": "case h.e'_3\nR : Type u\nι : Type w\ns : Finset ι\ninst✝ : CommSemiring R\nf : ι → R[X]\nt : Multiset R[X]\nh : ∀ (f : R[X]), f ∈ t → Monic f\n✝ : Nontrivial R\n⊢ 1 = 1 ^ ↑Multiset.card t", "tactic": "simp" } ]
[ 206, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 193, 1 ]
Mathlib/Data/Set/Basic.lean
Set.compl_singleton_eq
[]
[ 1700, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1699, 1 ]
Mathlib/Data/Stream/Init.lean
Stream'.nth_zero_iterate
[]
[ 291, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 290, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.toList_singleton
[]
[ 488, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 487, 1 ]
Mathlib/LinearAlgebra/Basis.lean
VectorSpace.card_fintype
[ { "state_after": "no goals", "state_before": "ι : Type ?u.1163482\nι' : Type ?u.1163485\nR : Type ?u.1163488\nR₂ : Type ?u.1163491\nK : Type u_1\nM : Type ?u.1163497\nM' : Type ?u.1163500\nM'' : Type ?u.1163503\nV : Type u\nV' : Type ?u.1163508\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module K V\ninst✝² : Module K V'\nv : ι → V\ns t : Set V\nx y z : V\ninst✝¹ : Fintype K\ninst✝ : Fintype V\n⊢ ∃ n, card V = card K ^ n", "tactic": "classical\nexact ⟨card (Basis.ofVectorSpaceIndex K V), Module.card_fintype (Basis.ofVectorSpace K V)⟩" }, { "state_after": "no goals", "state_before": "ι : Type ?u.1163482\nι' : Type ?u.1163485\nR : Type ?u.1163488\nR₂ : Type ?u.1163491\nK : Type u_1\nM : Type ?u.1163497\nM' : Type ?u.1163500\nM'' : Type ?u.1163503\nV : Type u\nV' : Type ?u.1163508\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : AddCommGroup V'\ninst✝³ : Module K V\ninst✝² : Module K V'\nv : ι → V\ns t : Set V\nx y z : V\ninst✝¹ : Fintype K\ninst✝ : Fintype V\n⊢ ∃ n, card V = card K ^ n", "tactic": "exact ⟨card (Basis.ofVectorSpaceIndex K V), Module.card_fintype (Basis.ofVectorSpace K V)⟩" } ]
[ 1512, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1510, 1 ]
Mathlib/Algebra/Free.lean
FreeMagma.toFreeSemigroup_comp_of
[]
[ 726, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 726, 1 ]
Mathlib/Logic/Equiv/LocalEquiv.lean
LocalEquiv.invFun_as_coe
[]
[ 206, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 205, 1 ]
Mathlib/LinearAlgebra/AffineSpace/Combination.lean
Finset.sum_affineCombinationSingleWeights
[ { "state_after": "k : Type u_2\nV : Type ?u.415884\nP : Type ?u.415887\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\nS : AffineSpace V P\nι : Type u_1\ns : Finset ι\nι₂ : Type ?u.416543\ns₂ : Finset ι₂\ninst✝ : DecidableEq ι\ni : ι\nh : i ∈ s\n⊢ ∑ j in s, affineCombinationSingleWeights k i j = affineCombinationSingleWeights k i i", "state_before": "k : Type u_2\nV : Type ?u.415884\nP : Type ?u.415887\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\nS : AffineSpace V P\nι : Type u_1\ns : Finset ι\nι₂ : Type ?u.416543\ns₂ : Finset ι₂\ninst✝ : DecidableEq ι\ni : ι\nh : i ∈ s\n⊢ ∑ j in s, affineCombinationSingleWeights k i j = 1", "tactic": "rw [← affineCombinationSingleWeights_apply_self k i]" }, { "state_after": "no goals", "state_before": "k : Type u_2\nV : Type ?u.415884\nP : Type ?u.415887\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\nS : AffineSpace V P\nι : Type u_1\ns : Finset ι\nι₂ : Type ?u.416543\ns₂ : Finset ι₂\ninst✝ : DecidableEq ι\ni : ι\nh : i ∈ s\n⊢ ∑ j in s, affineCombinationSingleWeights k i j = affineCombinationSingleWeights k i i", "tactic": "exact sum_eq_single_of_mem i h fun j _ hj => affineCombinationSingleWeights_apply_of_ne k hj" } ]
[ 671, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 668, 1 ]
Mathlib/RingTheory/Subring/Basic.lean
Units.mem_posSubgroup
[]
[ 1521, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1519, 1 ]
Mathlib/LinearAlgebra/AffineSpace/FiniteDimensional.lean
finrank_vectorSpan_range_le
[ { "state_after": "k : Type u_2\nV : Type u_3\nP : Type u_4\nι : Type u_1\ninst✝⁴ : DivisionRing k\ninst✝³ : AddCommGroup V\ninst✝² : Module k V\ninst✝¹ : AffineSpace V P\ninst✝ : Fintype ι\np : ι → P\nn : ℕ\nhc : Fintype.card ι = n + 1\n⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p Finset.univ) } ≤ n", "state_before": "k : Type u_2\nV : Type u_3\nP : Type u_4\nι : Type u_1\ninst✝⁴ : DivisionRing k\ninst✝³ : AddCommGroup V\ninst✝² : Module k V\ninst✝¹ : AffineSpace V P\ninst✝ : Fintype ι\np : ι → P\nn : ℕ\nhc : Fintype.card ι = n + 1\n⊢ finrank k { x // x ∈ vectorSpan k (Set.range p) } ≤ n", "tactic": "rw [← Set.image_univ, ← Finset.coe_univ, ← Finset.coe_image]" }, { "state_after": "k : Type u_2\nV : Type u_3\nP : Type u_4\nι : Type u_1\ninst✝⁴ : DivisionRing k\ninst✝³ : AddCommGroup V\ninst✝² : Module k V\ninst✝¹ : AffineSpace V P\ninst✝ : Fintype ι\np : ι → P\nn : ℕ\nhc : Finset.card Finset.univ = n + 1\n⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p Finset.univ) } ≤ n", "state_before": "k : Type u_2\nV : Type u_3\nP : Type u_4\nι : Type u_1\ninst✝⁴ : DivisionRing k\ninst✝³ : AddCommGroup V\ninst✝² : Module k V\ninst✝¹ : AffineSpace V P\ninst✝ : Fintype ι\np : ι → P\nn : ℕ\nhc : Fintype.card ι = n + 1\n⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p Finset.univ) } ≤ n", "tactic": "rw [← Finset.card_univ] at hc" }, { "state_after": "no goals", "state_before": "k : Type u_2\nV : Type u_3\nP : Type u_4\nι : Type u_1\ninst✝⁴ : DivisionRing k\ninst✝³ : AddCommGroup V\ninst✝² : Module k V\ninst✝¹ : AffineSpace V P\ninst✝ : Fintype ι\np : ι → P\nn : ℕ\nhc : Finset.card Finset.univ = n + 1\n⊢ finrank k { x // x ∈ vectorSpan k ↑(Finset.image p Finset.univ) } ≤ n", "tactic": "exact finrank_vectorSpan_image_finset_le _ _ _ hc" } ]
[ 163, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 159, 1 ]
Mathlib/Data/Set/Intervals/OrdConnectedComponent.lean
Set.ordConnectedSection_subset
[]
[ 153, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 152, 1 ]
Mathlib/Data/Set/Intervals/Disjoint.lean
IsGLB.biUnion_Ioi_eq
[ { "state_after": "case refine'_1\nι : Sort u\nα : Type v\nβ : Type w\ninst✝ : LinearOrder α\ns : Set α\na : α\nf : ι → α\nh : IsGLB s a\nx : α\nhx : x ∈ s\n⊢ Ioi x ⊆ Ioi a\n\ncase refine'_2\nι : Sort u\nα : Type v\nβ : Type w\ninst✝ : LinearOrder α\ns : Set α\na : α\nf : ι → α\nh : IsGLB s a\nx : α\nhx : x ∈ Ioi a\n⊢ x ∈ ⋃ (i : α) (_ : i ∈ s), Ioi i", "state_before": "ι : Sort u\nα : Type v\nβ : Type w\ninst✝ : LinearOrder α\ns : Set α\na : α\nf : ι → α\nh : IsGLB s a\n⊢ (⋃ (x : α) (_ : x ∈ s), Ioi x) = Ioi a", "tactic": "refine' (iUnion₂_subset fun x hx => _).antisymm fun x hx => _" }, { "state_after": "no goals", "state_before": "case refine'_1\nι : Sort u\nα : Type v\nβ : Type w\ninst✝ : LinearOrder α\ns : Set α\na : α\nf : ι → α\nh : IsGLB s a\nx : α\nhx : x ∈ s\n⊢ Ioi x ⊆ Ioi a", "tactic": "exact Ioi_subset_Ioi (h.1 hx)" }, { "state_after": "case refine'_2.intro.intro.intro\nι : Sort u\nα : Type v\nβ : Type w\ninst✝ : LinearOrder α\ns : Set α\na : α\nf : ι → α\nh : IsGLB s a\nx : α\nhx : x ∈ Ioi a\ny : α\nhys : y ∈ s\nleft✝ : a ≤ y\nhyx : y < x\n⊢ x ∈ ⋃ (i : α) (_ : i ∈ s), Ioi i", "state_before": "case refine'_2\nι : Sort u\nα : Type v\nβ : Type w\ninst✝ : LinearOrder α\ns : Set α\na : α\nf : ι → α\nh : IsGLB s a\nx : α\nhx : x ∈ Ioi a\n⊢ x ∈ ⋃ (i : α) (_ : i ∈ s), Ioi i", "tactic": "rcases h.exists_between hx with ⟨y, hys, _, hyx⟩" }, { "state_after": "no goals", "state_before": "case refine'_2.intro.intro.intro\nι : Sort u\nα : Type v\nβ : Type w\ninst✝ : LinearOrder α\ns : Set α\na : α\nf : ι → α\nh : IsGLB s a\nx : α\nhx : x ∈ Ioi a\ny : α\nhys : y ∈ s\nleft✝ : a ≤ y\nhyx : y < x\n⊢ x ∈ ⋃ (i : α) (_ : i ∈ s), Ioi i", "tactic": "exact mem_biUnion hys hyx" } ]
[ 189, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 185, 1 ]
Mathlib/CategoryTheory/Bicategory/Strict.lean
CategoryTheory.Bicategory.eqToHom_whiskerRight
[ { "state_after": "case refl\nB : Type u\ninst✝ : Bicategory B\na b c : B\nf : a ⟶ b\nh : b ⟶ c\n⊢ eqToHom (_ : f = f) ▷ h = eqToHom (_ : f ≫ h = f ≫ h)", "state_before": "B : Type u\ninst✝ : Bicategory B\na b c : B\nf g : a ⟶ b\nη : f = g\nh : b ⟶ c\n⊢ eqToHom η ▷ h = eqToHom (_ : f ≫ h = g ≫ h)", "tactic": "cases η" }, { "state_after": "no goals", "state_before": "case refl\nB : Type u\ninst✝ : Bicategory B\na b c : B\nf : a ⟶ b\nh : b ⟶ c\n⊢ eqToHom (_ : f = f) ▷ h = eqToHom (_ : f ≫ h = f ≫ h)", "tactic": "simp only [id_whiskerRight, eqToHom_refl]" } ]
[ 92, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 89, 1 ]
Mathlib/Algebra/Lie/Nilpotent.lean
LieModule.isNilpotent_iff
[]
[ 192, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 191, 1 ]
Mathlib/Algebra/Lie/Semisimple.lean
LieAlgebra.abelian_radical_of_semisimple
[ { "state_after": "R : Type u\nL : Type v\ninst✝³ : CommRing R\ninst✝² : LieRing L\ninst✝¹ : LieAlgebra R L\ninst✝ : IsSemisimple R L\n⊢ IsLieAbelian { x // x ∈ ↑⊥ }", "state_before": "R : Type u\nL : Type v\ninst✝³ : CommRing R\ninst✝² : LieRing L\ninst✝¹ : LieAlgebra R L\ninst✝ : IsSemisimple R L\n⊢ IsLieAbelian { x // x ∈ ↑(radical R L) }", "tactic": "rw [IsSemisimple.semisimple]" }, { "state_after": "no goals", "state_before": "R : Type u\nL : Type v\ninst✝³ : CommRing R\ninst✝² : LieRing L\ninst✝¹ : LieAlgebra R L\ninst✝ : IsSemisimple R L\n⊢ IsLieAbelian { x // x ∈ ↑⊥ }", "tactic": "exact isLieAbelian_bot R L" } ]
[ 104, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 103, 1 ]
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.restrict_withDensity
[ { "state_after": "case h\nα : Type u_1\nβ : Type ?u.1771367\nγ : Type ?u.1771370\nδ : Type ?u.1771373\nm : MeasurableSpace α\nμ ν : Measure α\ns : Set α\nhs : MeasurableSet s\nf : α → ℝ≥0∞\nt : Set α\nht : MeasurableSet t\n⊢ ↑↑(Measure.restrict (withDensity μ f) s) t = ↑↑(withDensity (Measure.restrict μ s) f) t", "state_before": "α : Type u_1\nβ : Type ?u.1771367\nγ : Type ?u.1771370\nδ : Type ?u.1771373\nm : MeasurableSpace α\nμ ν : Measure α\ns : Set α\nhs : MeasurableSet s\nf : α → ℝ≥0∞\n⊢ Measure.restrict (withDensity μ f) s = withDensity (Measure.restrict μ s) f", "tactic": "ext1 t ht" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_1\nβ : Type ?u.1771367\nγ : Type ?u.1771370\nδ : Type ?u.1771373\nm : MeasurableSpace α\nμ ν : Measure α\ns : Set α\nhs : MeasurableSet s\nf : α → ℝ≥0∞\nt : Set α\nht : MeasurableSet t\n⊢ ↑↑(Measure.restrict (withDensity μ f) s) t = ↑↑(withDensity (Measure.restrict μ s) f) t", "tactic": "rw [restrict_apply ht, withDensity_apply _ ht, withDensity_apply _ (ht.inter hs),\n restrict_restrict ht]" } ]
[ 1666, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1662, 1 ]
Mathlib/RingTheory/DedekindDomain/Ideal.lean
sup_eq_prod_inf_factors
[ { "state_after": "R : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\n⊢ I ⊔ J = Multiset.prod (normalizedFactors I ∩ normalizedFactors J)", "state_before": "R : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\n⊢ I ⊔ J = Multiset.prod (normalizedFactors I ∩ normalizedFactors J)", "tactic": "have H : normalizedFactors (normalizedFactors I ∩ normalizedFactors J).prod =\n normalizedFactors I ∩ normalizedFactors J := by\n apply normalizedFactors_prod_of_prime\n intro p hp\n rw [mem_inter] at hp\n exact prime_of_normalized_factor p hp.left" }, { "state_after": "R : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ I ⊔ J = Multiset.prod (normalizedFactors I ∩ normalizedFactors J)", "state_before": "R : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\n⊢ I ⊔ J = Multiset.prod (normalizedFactors I ∩ normalizedFactors J)", "tactic": "have := Multiset.prod_ne_zero_of_prime (normalizedFactors I ∩ normalizedFactors J) fun _ h =>\n prime_of_normalized_factor _ (Multiset.mem_inter.1 h).1" }, { "state_after": "case a\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ I ⊔ J ≤ Multiset.prod (normalizedFactors I ∩ normalizedFactors J)\n\ncase a\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≤ I ⊔ J", "state_before": "R : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ I ⊔ J = Multiset.prod (normalizedFactors I ∩ normalizedFactors J)", "tactic": "apply le_antisymm" }, { "state_after": "case h\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\n⊢ ∀ (p : Ideal T), p ∈ normalizedFactors I ∩ normalizedFactors J → Prime p", "state_before": "R : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\n⊢ normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J", "tactic": "apply normalizedFactors_prod_of_prime" }, { "state_after": "case h\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\np : Ideal T\nhp : p ∈ normalizedFactors I ∩ normalizedFactors J\n⊢ Prime p", "state_before": "case h\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\n⊢ ∀ (p : Ideal T), p ∈ normalizedFactors I ∩ normalizedFactors J → Prime p", "tactic": "intro p hp" }, { "state_after": "case h\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\np : Ideal T\nhp : p ∈ normalizedFactors I ∧ p ∈ normalizedFactors J\n⊢ Prime p", "state_before": "case h\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\np : Ideal T\nhp : p ∈ normalizedFactors I ∩ normalizedFactors J\n⊢ Prime p", "tactic": "rw [mem_inter] at hp" }, { "state_after": "no goals", "state_before": "case h\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\np : Ideal T\nhp : p ∈ normalizedFactors I ∧ p ∈ normalizedFactors J\n⊢ Prime p", "tactic": "exact prime_of_normalized_factor p hp.left" }, { "state_after": "case a\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ∣ I ∧\n Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ∣ J", "state_before": "case a\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ I ⊔ J ≤ Multiset.prod (normalizedFactors I ∩ normalizedFactors J)", "tactic": "rw [sup_le_iff, ← dvd_iff_le, ← dvd_iff_le]" }, { "state_after": "case a.left\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ∣ I\n\ncase a.right\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ∣ J", "state_before": "case a\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ∣ I ∧\n Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ∣ J", "tactic": "constructor" }, { "state_after": "case a.left\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ normalizedFactors I ∩ normalizedFactors J ≤ normalizedFactors I", "state_before": "case a.left\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ∣ I", "tactic": "rw [dvd_iff_normalizedFactors_le_normalizedFactors this hI, H]" }, { "state_after": "no goals", "state_before": "case a.left\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ normalizedFactors I ∩ normalizedFactors J ≤ normalizedFactors I", "tactic": "exact inf_le_left" }, { "state_after": "case a.right\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ normalizedFactors I ∩ normalizedFactors J ≤ normalizedFactors J", "state_before": "case a.right\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ∣ J", "tactic": "rw [dvd_iff_normalizedFactors_le_normalizedFactors this hJ, H]" }, { "state_after": "no goals", "state_before": "case a.right\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ normalizedFactors I ∩ normalizedFactors J ≤ normalizedFactors J", "tactic": "exact inf_le_right" }, { "state_after": "case a\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ ∀ (a : Ideal T), count a (normalizedFactors (I ⊔ J)) ≤ count a (normalizedFactors I ∩ normalizedFactors J)\n\ncase a\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ ∀ (p : Ideal T), p ∈ normalizedFactors I ∩ normalizedFactors J → Prime p\n\ncase a.hx\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ I ⊔ J ≠ 0\n\ncase a.hy\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0", "state_before": "case a\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≤ I ⊔ J", "tactic": "rw [← dvd_iff_le, dvd_iff_normalizedFactors_le_normalizedFactors,\n normalizedFactors_prod_of_prime, le_iff_count]" }, { "state_after": "case a\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\na : Ideal T\n⊢ count a (normalizedFactors (I ⊔ J)) ≤ count a (normalizedFactors I ∩ normalizedFactors J)", "state_before": "case a\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ ∀ (a : Ideal T), count a (normalizedFactors (I ⊔ J)) ≤ count a (normalizedFactors I ∩ normalizedFactors J)", "tactic": "intro a" }, { "state_after": "case a\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\na : Ideal T\n⊢ count a (normalizedFactors (I ⊔ J)) ≤ min (count a (normalizedFactors I)) (count a (normalizedFactors J))", "state_before": "case a\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\na : Ideal T\n⊢ count a (normalizedFactors (I ⊔ J)) ≤ count a (normalizedFactors I ∩ normalizedFactors J)", "tactic": "rw [Multiset.count_inter]" }, { "state_after": "no goals", "state_before": "case a\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\na : Ideal T\n⊢ count a (normalizedFactors (I ⊔ J)) ≤ min (count a (normalizedFactors I)) (count a (normalizedFactors J))", "tactic": "exact le_min (count_le_of_ideal_ge le_sup_left hI a) (count_le_of_ideal_ge le_sup_right hJ a)" }, { "state_after": "case a\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\np : Ideal T\nhp : p ∈ normalizedFactors I ∩ normalizedFactors J\n⊢ Prime p", "state_before": "case a\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ ∀ (p : Ideal T), p ∈ normalizedFactors I ∩ normalizedFactors J → Prime p", "tactic": "intro p hp" }, { "state_after": "case a\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\np : Ideal T\nhp : p ∈ normalizedFactors I ∧ p ∈ normalizedFactors J\n⊢ Prime p", "state_before": "case a\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\np : Ideal T\nhp : p ∈ normalizedFactors I ∩ normalizedFactors J\n⊢ Prime p", "tactic": "rw [mem_inter] at hp" }, { "state_after": "no goals", "state_before": "case a\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\np : Ideal T\nhp : p ∈ normalizedFactors I ∧ p ∈ normalizedFactors J\n⊢ Prime p", "tactic": "exact prime_of_normalized_factor p hp.left" }, { "state_after": "no goals", "state_before": "case a.hx\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ I ⊔ J ≠ 0", "tactic": "exact ne_bot_of_le_ne_bot hI le_sup_left" }, { "state_after": "no goals", "state_before": "case a.hy\nR : Type ?u.906300\nA : Type ?u.906303\nK : Type ?u.906306\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\nT : Type u_1\ninst✝² : CommRing T\ninst✝¹ : IsDomain T\ninst✝ : IsDedekindDomain T\nI J : Ideal T\nhI : I ≠ ⊥\nhJ : J ≠ ⊥\nH :\n normalizedFactors (Multiset.prod (normalizedFactors I ∩ normalizedFactors J)) =\n normalizedFactors I ∩ normalizedFactors J\nthis : Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0\n⊢ Multiset.prod (normalizedFactors I ∩ normalizedFactors J) ≠ 0", "tactic": "exact this" } ]
[ 937, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 911, 1 ]
Mathlib/Algebra/Order/Monoid/Lemmas.lean
exists_square_le
[ { "state_after": "case pos\nα : Type u_1\nβ : Type ?u.59597\ninst✝² : MulOneClass α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\na : α\nh : a < 1\n⊢ ∃ b, b * b ≤ a\n\ncase neg\nα : Type u_1\nβ : Type ?u.59597\ninst✝² : MulOneClass α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\na : α\nh : ¬a < 1\n⊢ ∃ b, b * b ≤ a", "state_before": "α : Type u_1\nβ : Type ?u.59597\ninst✝² : MulOneClass α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\na : α\n⊢ ∃ b, b * b ≤ a", "tactic": "by_cases h:a < 1" }, { "state_after": "case pos\nα : Type u_1\nβ : Type ?u.59597\ninst✝² : MulOneClass α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\na : α\nh : a < 1\n⊢ a * a ≤ a", "state_before": "case pos\nα : Type u_1\nβ : Type ?u.59597\ninst✝² : MulOneClass α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\na : α\nh : a < 1\n⊢ ∃ b, b * b ≤ a", "tactic": "use a" }, { "state_after": "case pos\nα : Type u_1\nβ : Type ?u.59597\ninst✝² : MulOneClass α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\na : α\nh : a < 1\nthis : a * a < a * 1\n⊢ a * a ≤ a", "state_before": "case pos\nα : Type u_1\nβ : Type ?u.59597\ninst✝² : MulOneClass α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\na : α\nh : a < 1\n⊢ a * a ≤ a", "tactic": "have : a * a < a * 1 := mul_lt_mul_left' h a" }, { "state_after": "case pos\nα : Type u_1\nβ : Type ?u.59597\ninst✝² : MulOneClass α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\na : α\nh : a < 1\nthis : a * a < a\n⊢ a * a ≤ a", "state_before": "case pos\nα : Type u_1\nβ : Type ?u.59597\ninst✝² : MulOneClass α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\na : α\nh : a < 1\nthis : a * a < a * 1\n⊢ a * a ≤ a", "tactic": "rw [mul_one] at this" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nβ : Type ?u.59597\ninst✝² : MulOneClass α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\na : α\nh : a < 1\nthis : a * a < a\n⊢ a * a ≤ a", "tactic": "exact le_of_lt this" }, { "state_after": "case neg\nα : Type u_1\nβ : Type ?u.59597\ninst✝² : MulOneClass α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\na : α\nh : ¬a < 1\n⊢ 1 * 1 ≤ a", "state_before": "case neg\nα : Type u_1\nβ : Type ?u.59597\ninst✝² : MulOneClass α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\na : α\nh : ¬a < 1\n⊢ ∃ b, b * b ≤ a", "tactic": "use 1" }, { "state_after": "case neg\nα : Type u_1\nβ : Type ?u.59597\ninst✝² : MulOneClass α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\na : α\nh : 1 ≤ a\n⊢ 1 * 1 ≤ a", "state_before": "case neg\nα : Type u_1\nβ : Type ?u.59597\ninst✝² : MulOneClass α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\na : α\nh : ¬a < 1\n⊢ 1 * 1 ≤ a", "tactic": "push_neg at h" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_1\nβ : Type ?u.59597\ninst✝² : MulOneClass α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\na : α\nh : 1 ≤ a\n⊢ 1 * 1 ≤ a", "tactic": "rwa [mul_one]" } ]
[ 1200, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1192, 1 ]
Mathlib/Init/Data/Nat/Bitwise.lean
Nat.bodd_two
[]
[ 65, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 64, 1 ]
Mathlib/GroupTheory/SpecificGroups/Quaternion.lean
QuaternionGroup.orderOf_a
[ { "state_after": "n : ℕ\ninst✝ : NeZero n\ni : ZMod (2 * n)\n⊢ orderOf (a ↑(ZMod.val i)) = 2 * n / Nat.gcd (2 * n) (ZMod.val i)", "state_before": "n : ℕ\ninst✝ : NeZero n\ni : ZMod (2 * n)\n⊢ orderOf (a i) = 2 * n / Nat.gcd (2 * n) (ZMod.val i)", "tactic": "conv_lhs => rw [← ZMod.nat_cast_zmod_val i]" }, { "state_after": "no goals", "state_before": "n : ℕ\ninst✝ : NeZero n\ni : ZMod (2 * n)\n⊢ orderOf (a ↑(ZMod.val i)) = 2 * n / Nat.gcd (2 * n) (ZMod.val i)", "tactic": "rw [← a_one_pow, orderOf_pow, orderOf_a_one]" } ]
[ 263, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 260, 1 ]
Mathlib/Algebra/BigOperators/Basic.lean
Nat.cast_multiset_prod
[]
[ 2206, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2205, 1 ]
Mathlib/Order/Filter/Pointwise.lean
Filter.mul_bot
[]
[ 318, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 317, 1 ]
Mathlib/Data/Fintype/BigOperators.lean
Fintype.prod_eq_single
[]
[ 83, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 82, 1 ]
Mathlib/Algebra/Periodic.lean
Function.Antiperiodic.neg_eq
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.157720\nf g : α → β\nc c₁ c₂ x : α\ninst✝¹ : AddGroup α\ninst✝ : InvolutiveNeg β\nh : Antiperiodic f c\n⊢ f (-c) = -f 0", "tactic": "simpa only [zero_add] using h.neg 0" } ]
[ 420, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 419, 1 ]
Std/Data/Nat/Lemmas.lean
Nat.div_zero
[ { "state_after": "n : Nat\n⊢ (if 0 < 0 ∧ 0 ≤ n then (n - 0) / 0 + 1 else 0) = 0", "state_before": "n : Nat\n⊢ n / 0 = 0", "tactic": "rw [div_eq]" }, { "state_after": "no goals", "state_before": "n : Nat\n⊢ (if 0 < 0 ∧ 0 ≤ n then (n - 0) / 0 + 1 else 0) = 0", "tactic": "simp [Nat.lt_irrefl]" } ]
[ 262, 36 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 261, 19 ]
Mathlib/Topology/Instances/ENNReal.lean
ENNReal.nhds_coe_coe
[]
[ 104, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 102, 1 ]
Mathlib/Analysis/Convex/Segment.lean
Convex.mem_Icc
[ { "state_after": "𝕜 : Type u_1\nE : Type ?u.291676\nF : Type ?u.291679\nG : Type ?u.291682\nι : Type ?u.291685\nπ : ι → Type ?u.291690\ninst✝ : LinearOrderedField 𝕜\nx y z : 𝕜\nh : x ≤ y\n⊢ z ∈ [x-[𝕜]y] ↔ ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ a * x + b * y = z", "state_before": "𝕜 : Type u_1\nE : Type ?u.291676\nF : Type ?u.291679\nG : Type ?u.291682\nι : Type ?u.291685\nπ : ι → Type ?u.291690\ninst✝ : LinearOrderedField 𝕜\nx y z : 𝕜\nh : x ≤ y\n⊢ z ∈ Icc x y ↔ ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ a * x + b * y = z", "tactic": "rw [← segment_eq_Icc h]" }, { "state_after": "𝕜 : Type u_1\nE : Type ?u.291676\nF : Type ?u.291679\nG : Type ?u.291682\nι : Type ?u.291685\nπ : ι → Type ?u.291690\ninst✝ : LinearOrderedField 𝕜\nx y z : 𝕜\nh : x ≤ y\n⊢ z ∈ [x-[𝕜]y] ↔ ∃ a b _h _h _h, a * x + b * y = z", "state_before": "𝕜 : Type u_1\nE : Type ?u.291676\nF : Type ?u.291679\nG : Type ?u.291682\nι : Type ?u.291685\nπ : ι → Type ?u.291690\ninst✝ : LinearOrderedField 𝕜\nx y z : 𝕜\nh : x ≤ y\n⊢ z ∈ [x-[𝕜]y] ↔ ∃ a b, 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ a * x + b * y = z", "tactic": "simp_rw [← exists_prop]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type ?u.291676\nF : Type ?u.291679\nG : Type ?u.291682\nι : Type ?u.291685\nπ : ι → Type ?u.291690\ninst✝ : LinearOrderedField 𝕜\nx y z : 𝕜\nh : x ≤ y\n⊢ z ∈ [x-[𝕜]y] ↔ ∃ a b _h _h _h, a * x + b * y = z", "tactic": "rfl" } ]
[ 538, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 534, 1 ]
Mathlib/Topology/Bases.lean
TopologicalSpace.IsTopologicalBasis.prod
[ { "state_after": "case refine'_1\nα : Type u\nt : TopologicalSpace α\nβ : Type u_1\ninst✝ : TopologicalSpace β\nB₁ : Set (Set α)\nB₂ : Set (Set β)\nh₁ : IsTopologicalBasis B₁\nh₂ : IsTopologicalBasis B₂\n⊢ ∀ (u : Set (α × β)), u ∈ image2 (fun x x_1 => x ×ˢ x_1) B₁ B₂ → IsOpen u\n\ncase refine'_2\nα : Type u\nt : TopologicalSpace α\nβ : Type u_1\ninst✝ : TopologicalSpace β\nB₁ : Set (Set α)\nB₂ : Set (Set β)\nh₁ : IsTopologicalBasis B₁\nh₂ : IsTopologicalBasis B₂\n⊢ ∀ (a : α × β) (u : Set (α × β)), a ∈ u → IsOpen u → ∃ v, v ∈ image2 (fun x x_1 => x ×ˢ x_1) B₁ B₂ ∧ a ∈ v ∧ v ⊆ u", "state_before": "α : Type u\nt : TopologicalSpace α\nβ : Type u_1\ninst✝ : TopologicalSpace β\nB₁ : Set (Set α)\nB₂ : Set (Set β)\nh₁ : IsTopologicalBasis B₁\nh₂ : IsTopologicalBasis B₂\n⊢ IsTopologicalBasis (image2 (fun x x_1 => x ×ˢ x_1) B₁ B₂)", "tactic": "refine' isTopologicalBasis_of_open_of_nhds _ _" }, { "state_after": "case refine'_1.intro.intro.intro.intro\nα : Type u\nt : TopologicalSpace α\nβ : Type u_1\ninst✝ : TopologicalSpace β\nB₁ : Set (Set α)\nB₂ : Set (Set β)\nh₁ : IsTopologicalBasis B₁\nh₂ : IsTopologicalBasis B₂\nu₁ : Set α\nu₂ : Set β\nhu₁ : u₁ ∈ B₁\nhu₂ : u₂ ∈ B₂\n⊢ IsOpen ((fun x x_1 => x ×ˢ x_1) u₁ u₂)", "state_before": "case refine'_1\nα : Type u\nt : TopologicalSpace α\nβ : Type u_1\ninst✝ : TopologicalSpace β\nB₁ : Set (Set α)\nB₂ : Set (Set β)\nh₁ : IsTopologicalBasis B₁\nh₂ : IsTopologicalBasis B₂\n⊢ ∀ (u : Set (α × β)), u ∈ image2 (fun x x_1 => x ×ˢ x_1) B₁ B₂ → IsOpen u", "tactic": "rintro _ ⟨u₁, u₂, hu₁, hu₂, rfl⟩" }, { "state_after": "no goals", "state_before": "case refine'_1.intro.intro.intro.intro\nα : Type u\nt : TopologicalSpace α\nβ : Type u_1\ninst✝ : TopologicalSpace β\nB₁ : Set (Set α)\nB₂ : Set (Set β)\nh₁ : IsTopologicalBasis B₁\nh₂ : IsTopologicalBasis B₂\nu₁ : Set α\nu₂ : Set β\nhu₁ : u₁ ∈ B₁\nhu₂ : u₂ ∈ B₂\n⊢ IsOpen ((fun x x_1 => x ×ˢ x_1) u₁ u₂)", "tactic": "exact (h₁.isOpen hu₁).prod (h₂.isOpen hu₂)" }, { "state_after": "case refine'_2.mk\nα : Type u\nt : TopologicalSpace α\nβ : Type u_1\ninst✝ : TopologicalSpace β\nB₁ : Set (Set α)\nB₂ : Set (Set β)\nh₁ : IsTopologicalBasis B₁\nh₂ : IsTopologicalBasis B₂\na : α\nb : β\nu : Set (α × β)\nhu : (a, b) ∈ u\nuo : IsOpen u\n⊢ ∃ v, v ∈ image2 (fun x x_1 => x ×ˢ x_1) B₁ B₂ ∧ (a, b) ∈ v ∧ v ⊆ u", "state_before": "case refine'_2\nα : Type u\nt : TopologicalSpace α\nβ : Type u_1\ninst✝ : TopologicalSpace β\nB₁ : Set (Set α)\nB₂ : Set (Set β)\nh₁ : IsTopologicalBasis B₁\nh₂ : IsTopologicalBasis B₂\n⊢ ∀ (a : α × β) (u : Set (α × β)), a ∈ u → IsOpen u → ∃ v, v ∈ image2 (fun x x_1 => x ×ˢ x_1) B₁ B₂ ∧ a ∈ v ∧ v ⊆ u", "tactic": "rintro ⟨a, b⟩ u hu uo" }, { "state_after": "case refine'_2.mk.intro.mk.intro.intro.intro.intro\nα : Type u\nt✝ : TopologicalSpace α\nβ : Type u_1\ninst✝ : TopologicalSpace β\nB₁ : Set (Set α)\nB₂ : Set (Set β)\nh₁ : IsTopologicalBasis B₁\nh₂ : IsTopologicalBasis B₂\na : α\nb : β\nu : Set (α × β)\nhu✝ : (a, b) ∈ u\nuo : IsOpen u\ns : Set α\nt : Set β\nhu : (s, t).fst ×ˢ (s, t).snd ⊆ u\nhs : (s, t).fst ∈ B₁\nha : a ∈ (s, t).fst\nht : (s, t).snd ∈ B₂\nhb : b ∈ (s, t).snd\n⊢ ∃ v, v ∈ image2 (fun x x_1 => x ×ˢ x_1) B₁ B₂ ∧ (a, b) ∈ v ∧ v ⊆ u", "state_before": "case refine'_2.mk\nα : Type u\nt : TopologicalSpace α\nβ : Type u_1\ninst✝ : TopologicalSpace β\nB₁ : Set (Set α)\nB₂ : Set (Set β)\nh₁ : IsTopologicalBasis B₁\nh₂ : IsTopologicalBasis B₂\na : α\nb : β\nu : Set (α × β)\nhu : (a, b) ∈ u\nuo : IsOpen u\n⊢ ∃ v, v ∈ image2 (fun x x_1 => x ×ˢ x_1) B₁ B₂ ∧ (a, b) ∈ v ∧ v ⊆ u", "tactic": "rcases(h₁.nhds_hasBasis.prod_nhds h₂.nhds_hasBasis).mem_iff.1 (IsOpen.mem_nhds uo hu) with\n ⟨⟨s, t⟩, ⟨⟨hs, ha⟩, ht, hb⟩, hu⟩" }, { "state_after": "no goals", "state_before": "case refine'_2.mk.intro.mk.intro.intro.intro.intro\nα : Type u\nt✝ : TopologicalSpace α\nβ : Type u_1\ninst✝ : TopologicalSpace β\nB₁ : Set (Set α)\nB₂ : Set (Set β)\nh₁ : IsTopologicalBasis B₁\nh₂ : IsTopologicalBasis B₂\na : α\nb : β\nu : Set (α × β)\nhu✝ : (a, b) ∈ u\nuo : IsOpen u\ns : Set α\nt : Set β\nhu : (s, t).fst ×ˢ (s, t).snd ⊆ u\nhs : (s, t).fst ∈ B₁\nha : a ∈ (s, t).fst\nht : (s, t).snd ∈ B₂\nhb : b ∈ (s, t).snd\n⊢ ∃ v, v ∈ image2 (fun x x_1 => x ×ˢ x_1) B₁ B₂ ∧ (a, b) ∈ v ∧ v ⊆ u", "tactic": "exact ⟨s ×ˢ t, mem_image2_of_mem hs ht, ⟨ha, hb⟩, hu⟩" } ]
[ 254, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 245, 11 ]
Mathlib/Order/Hom/Lattice.lean
SupBotHom.id_apply
[]
[ 784, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 783, 1 ]
Mathlib/Data/ZMod/Quotient.lean
IsOfFinOrder.finite_zpowers
[ { "state_after": "n : ℕ\nA : Type ?u.324794\nR : Type ?u.324797\ninst✝² : AddGroup A\ninst✝¹ : Ring R\nα : Type u_1\ninst✝ : Group α\na : α\nh : 0 < Nat.card { x // x ∈ zpowers a }\n⊢ Finite { x // x ∈ zpowers a }", "state_before": "n : ℕ\nA : Type ?u.324794\nR : Type ?u.324797\ninst✝² : AddGroup A\ninst✝¹ : Ring R\nα : Type u_1\ninst✝ : Group α\na : α\nh : IsOfFinOrder a\n⊢ Finite { x // x ∈ zpowers a }", "tactic": "rw [← orderOf_pos_iff, order_eq_card_zpowers'] at h" }, { "state_after": "no goals", "state_before": "n : ℕ\nA : Type ?u.324794\nR : Type ?u.324797\ninst✝² : AddGroup A\ninst✝¹ : Ring R\nα : Type u_1\ninst✝ : Group α\na : α\nh : 0 < Nat.card { x // x ∈ zpowers a }\n⊢ Finite { x // x ∈ zpowers a }", "tactic": "exact Nat.finite_of_card_ne_zero h.ne.symm" } ]
[ 206, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 204, 1 ]
Mathlib/Algebra/IndicatorFunction.lean
Set.mulIndicator_mulIndicator
[ { "state_after": "α : Type u_1\nβ : Type ?u.12298\nι : Type ?u.12301\nM : Type u_2\nN : Type ?u.12307\ninst✝¹ : One M\ninst✝ : One N\ns✝ t✝ : Set α\nf✝ g : α → M\na : α\ns t : Set α\nf : α → M\nx : α\n⊢ (if x ∈ s then if x ∈ t then f x else 1 else 1) = if x ∈ s ∩ t then f x else 1", "state_before": "α : Type u_1\nβ : Type ?u.12298\nι : Type ?u.12301\nM : Type u_2\nN : Type ?u.12307\ninst✝¹ : One M\ninst✝ : One N\ns✝ t✝ : Set α\nf✝ g : α → M\na : α\ns t : Set α\nf : α → M\nx : α\n⊢ mulIndicator s (mulIndicator t f) x = mulIndicator (s ∩ t) f x", "tactic": "simp only [mulIndicator]" }, { "state_after": "case inl.inl.inl\nα : Type u_1\nβ : Type ?u.12298\nι : Type ?u.12301\nM : Type u_2\nN : Type ?u.12307\ninst✝¹ : One M\ninst✝ : One N\ns✝ t✝ : Set α\nf✝ g : α → M\na : α\ns t : Set α\nf : α → M\nx : α\nh✝² : x ∈ s\nh✝¹ : x ∈ t\nh✝ : x ∈ s ∩ t\n⊢ f x = f x\n\ncase inl.inl.inr\nα : Type u_1\nβ : Type ?u.12298\nι : Type ?u.12301\nM : Type u_2\nN : Type ?u.12307\ninst✝¹ : One M\ninst✝ : One N\ns✝ t✝ : Set α\nf✝ g : α → M\na : α\ns t : Set α\nf : α → M\nx : α\nh✝² : x ∈ s\nh✝¹ : x ∈ t\nh✝ : ¬x ∈ s ∩ t\n⊢ f x = 1\n\ncase inl.inr.inl\nα : Type u_1\nβ : Type ?u.12298\nι : Type ?u.12301\nM : Type u_2\nN : Type ?u.12307\ninst✝¹ : One M\ninst✝ : One N\ns✝ t✝ : Set α\nf✝ g : α → M\na : α\ns t : Set α\nf : α → M\nx : α\nh✝² : x ∈ s\nh✝¹ : ¬x ∈ t\nh✝ : x ∈ s ∩ t\n⊢ 1 = f x\n\ncase inl.inr.inr\nα : Type u_1\nβ : Type ?u.12298\nι : Type ?u.12301\nM : Type u_2\nN : Type ?u.12307\ninst✝¹ : One M\ninst✝ : One N\ns✝ t✝ : Set α\nf✝ g : α → M\na : α\ns t : Set α\nf : α → M\nx : α\nh✝² : x ∈ s\nh✝¹ : ¬x ∈ t\nh✝ : ¬x ∈ s ∩ t\n⊢ 1 = 1\n\ncase inr.inl\nα : Type u_1\nβ : Type ?u.12298\nι : Type ?u.12301\nM : Type u_2\nN : Type ?u.12307\ninst✝¹ : One M\ninst✝ : One N\ns✝ t✝ : Set α\nf✝ g : α → M\na : α\ns t : Set α\nf : α → M\nx : α\nh✝¹ : ¬x ∈ s\nh✝ : x ∈ s ∩ t\n⊢ 1 = f x\n\ncase inr.inr\nα : Type u_1\nβ : Type ?u.12298\nι : Type ?u.12301\nM : Type u_2\nN : Type ?u.12307\ninst✝¹ : One M\ninst✝ : One N\ns✝ t✝ : Set α\nf✝ g : α → M\na : α\ns t : Set α\nf : α → M\nx : α\nh✝¹ : ¬x ∈ s\nh✝ : ¬x ∈ s ∩ t\n⊢ 1 = 1", "state_before": "α : Type u_1\nβ : Type ?u.12298\nι : Type ?u.12301\nM : Type u_2\nN : Type ?u.12307\ninst✝¹ : One M\ninst✝ : One N\ns✝ t✝ : Set α\nf✝ g : α → M\na : α\ns t : Set α\nf : α → M\nx : α\n⊢ (if x ∈ s then if x ∈ t then f x else 1 else 1) = if x ∈ s ∩ t then f x else 1", "tactic": "split_ifs" }, { "state_after": "no goals", "state_before": "case inl.inl.inl\nα : Type u_1\nβ : Type ?u.12298\nι : Type ?u.12301\nM : Type u_2\nN : Type ?u.12307\ninst✝¹ : One M\ninst✝ : One N\ns✝ t✝ : Set α\nf✝ g : α → M\na : α\ns t : Set α\nf : α → M\nx : α\nh✝² : x ∈ s\nh✝¹ : x ∈ t\nh✝ : x ∈ s ∩ t\n⊢ f x = f x\n\ncase inl.inl.inr\nα : Type u_1\nβ : Type ?u.12298\nι : Type ?u.12301\nM : Type u_2\nN : Type ?u.12307\ninst✝¹ : One M\ninst✝ : One N\ns✝ t✝ : Set α\nf✝ g : α → M\na : α\ns t : Set α\nf : α → M\nx : α\nh✝² : x ∈ s\nh✝¹ : x ∈ t\nh✝ : ¬x ∈ s ∩ t\n⊢ f x = 1\n\ncase inl.inr.inl\nα : Type u_1\nβ : Type ?u.12298\nι : Type ?u.12301\nM : Type u_2\nN : Type ?u.12307\ninst✝¹ : One M\ninst✝ : One N\ns✝ t✝ : Set α\nf✝ g : α → M\na : α\ns t : Set α\nf : α → M\nx : α\nh✝² : x ∈ s\nh✝¹ : ¬x ∈ t\nh✝ : x ∈ s ∩ t\n⊢ 1 = f x\n\ncase inl.inr.inr\nα : Type u_1\nβ : Type ?u.12298\nι : Type ?u.12301\nM : Type u_2\nN : Type ?u.12307\ninst✝¹ : One M\ninst✝ : One N\ns✝ t✝ : Set α\nf✝ g : α → M\na : α\ns t : Set α\nf : α → M\nx : α\nh✝² : x ∈ s\nh✝¹ : ¬x ∈ t\nh✝ : ¬x ∈ s ∩ t\n⊢ 1 = 1\n\ncase inr.inl\nα : Type u_1\nβ : Type ?u.12298\nι : Type ?u.12301\nM : Type u_2\nN : Type ?u.12307\ninst✝¹ : One M\ninst✝ : One N\ns✝ t✝ : Set α\nf✝ g : α → M\na : α\ns t : Set α\nf : α → M\nx : α\nh✝¹ : ¬x ∈ s\nh✝ : x ∈ s ∩ t\n⊢ 1 = f x\n\ncase inr.inr\nα : Type u_1\nβ : Type ?u.12298\nι : Type ?u.12301\nM : Type u_2\nN : Type ?u.12307\ninst✝¹ : One M\ninst✝ : One N\ns✝ t✝ : Set α\nf✝ g : α → M\na : α\ns t : Set α\nf : α → M\nx : α\nh✝¹ : ¬x ∈ s\nh✝ : ¬x ∈ s ∩ t\n⊢ 1 = 1", "tactic": "repeat' simp_all (config := { contextual := true })" }, { "state_after": "no goals", "state_before": "case inr.inr\nα : Type u_1\nβ : Type ?u.12298\nι : Type ?u.12301\nM : Type u_2\nN : Type ?u.12307\ninst✝¹ : One M\ninst✝ : One N\ns✝ t✝ : Set α\nf✝ g : α → M\na : α\ns t : Set α\nf : α → M\nx : α\nh✝¹ : ¬x ∈ s\nh✝ : ¬x ∈ s ∩ t\n⊢ 1 = 1", "tactic": "simp_all (config := { contextual := true })" } ]
[ 240, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 235, 1 ]
Mathlib/Algebra/Order/Group/Defs.lean
Left.self_le_inv
[]
[ 453, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 452, 1 ]
Std/Data/Nat/Lemmas.lean
Nat.succ_ne_self
[]
[ 16, 50 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 14, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/CommSq.lean
CategoryTheory.IsPushout.flip_iff
[]
[ 671, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 670, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Equiv.lean
ContinuousLinearEquiv.differentiableWithinAt
[]
[ 79, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 78, 11 ]
Mathlib/Data/Nat/Factorial/Basic.lean
Nat.succ_descFactorial
[ { "state_after": "no goals", "state_before": "n : ℕ\n⊢ (n + 1 - 0) * descFactorial (n + 1) 0 = (n + 1) * descFactorial n 0", "tactic": "rw [tsub_zero, descFactorial_zero, descFactorial_zero]" }, { "state_after": "no goals", "state_before": "n k : ℕ\n⊢ (n + 1 - (k + 1)) * descFactorial (n + 1) (k + 1) = (n + 1) * descFactorial n (k + 1)", "tactic": "rw [descFactorial, succ_descFactorial _ k, descFactorial_succ, succ_sub_succ, mul_left_comm]" } ]
[ 388, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 384, 1 ]
Mathlib/Computability/Primrec.lean
PrimrecRel.comp₂
[]
[ 505, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 502, 1 ]
Mathlib/MeasureTheory/Function/AEEqOfIntegral.lean
MeasureTheory.ae_const_le_iff_forall_lt_measure_zero
[ { "state_after": "α : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\n⊢ ↑↑μ {a | ¬c ≤ f a} = 0 ↔ ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0", "state_before": "α : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\n⊢ (∀ᵐ (x : α) ∂μ, c ≤ f x) ↔ ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0", "tactic": "rw [ae_iff]" }, { "state_after": "α : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\n⊢ ↑↑μ {a | f a < c} = 0 ↔ ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0", "state_before": "α : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\n⊢ ↑↑μ {a | ¬c ≤ f a} = 0 ↔ ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0", "tactic": "push_neg" }, { "state_after": "case mp\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\n⊢ ↑↑μ {a | f a < c} = 0 → ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\n\ncase mpr\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\n⊢ (∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0) → ↑↑μ {a | f a < c} = 0", "state_before": "α : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\n⊢ ↑↑μ {a | f a < c} = 0 ↔ ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0", "tactic": "constructor" }, { "state_after": "case mpr\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\n⊢ ↑↑μ {a | f a < c} = 0", "state_before": "case mpr\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\n⊢ (∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0) → ↑↑μ {a | f a < c} = 0", "tactic": "intro hc" }, { "state_after": "case pos\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nh : ∀ (b : β), c ≤ b\n⊢ ↑↑μ {a | f a < c} = 0\n\ncase neg\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nh : ¬∀ (b : β), c ≤ b\n⊢ ↑↑μ {a | f a < c} = 0", "state_before": "case mpr\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\n⊢ ↑↑μ {a | f a < c} = 0", "tactic": "by_cases h : ∀ b, c ≤ b" }, { "state_after": "case pos\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nh : ¬∀ (b : β), c ≤ b\nH : ¬IsLUB (Set.Iio c) c\n⊢ ↑↑μ {a | f a < c} = 0\n\ncase neg\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nh : ¬∀ (b : β), c ≤ b\nH : ¬¬IsLUB (Set.Iio c) c\n⊢ ↑↑μ {a | f a < c} = 0", "state_before": "case neg\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nh : ¬∀ (b : β), c ≤ b\n⊢ ↑↑μ {a | f a < c} = 0", "tactic": "by_cases H : ¬IsLUB (Set.Iio c) c" }, { "state_after": "case neg\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nH : IsLUB (Set.Iio c) c\nh : ∃ b, b < c\n⊢ ↑↑μ {a | f a < c} = 0", "state_before": "case neg\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nh : ¬∀ (b : β), c ≤ b\nH : ¬¬IsLUB (Set.Iio c) c\n⊢ ↑↑μ {a | f a < c} = 0", "tactic": "push_neg at H h" }, { "state_after": "case neg.intro.intro.intro.intro\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nH : IsLUB (Set.Iio c) c\nh : ∃ b, b < c\nu : ℕ → β\nleft✝ : StrictMono u\nu_lt : ∀ (n : ℕ), u n < c\nu_lim : Tendsto u atTop (nhds c)\n⊢ ↑↑μ {a | f a < c} = 0", "state_before": "case neg\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nH : IsLUB (Set.Iio c) c\nh : ∃ b, b < c\n⊢ ↑↑μ {a | f a < c} = 0", "tactic": "obtain ⟨u, _, u_lt, u_lim, -⟩ :\n ∃ u : ℕ → β,\n StrictMono u ∧ (∀ n : ℕ, u n < c) ∧ Tendsto u atTop (nhds c) ∧ ∀ n : ℕ, u n ∈ Set.Iio c :=\n H.exists_seq_strictMono_tendsto_of_not_mem (lt_irrefl c) h" }, { "state_after": "case neg.intro.intro.intro.intro\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nH : IsLUB (Set.Iio c) c\nh : ∃ b, b < c\nu : ℕ → β\nleft✝ : StrictMono u\nu_lt : ∀ (n : ℕ), u n < c\nu_lim : Tendsto u atTop (nhds c)\nh_Union : {x | f x < c} = ⋃ (n : ℕ), {x | f x ≤ u n}\n⊢ ∀ (i : ℕ), ↑↑μ {x | f x ≤ u i} = 0", "state_before": "case neg.intro.intro.intro.intro\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nH : IsLUB (Set.Iio c) c\nh : ∃ b, b < c\nu : ℕ → β\nleft✝ : StrictMono u\nu_lt : ∀ (n : ℕ), u n < c\nu_lim : Tendsto u atTop (nhds c)\nh_Union : {x | f x < c} = ⋃ (n : ℕ), {x | f x ≤ u n}\n⊢ ↑↑μ {a | f a < c} = 0", "tactic": "rw [h_Union, measure_iUnion_null_iff]" }, { "state_after": "case neg.intro.intro.intro.intro\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nH : IsLUB (Set.Iio c) c\nh : ∃ b, b < c\nu : ℕ → β\nleft✝ : StrictMono u\nu_lt : ∀ (n : ℕ), u n < c\nu_lim : Tendsto u atTop (nhds c)\nh_Union : {x | f x < c} = ⋃ (n : ℕ), {x | f x ≤ u n}\nn : ℕ\n⊢ ↑↑μ {x | f x ≤ u n} = 0", "state_before": "case neg.intro.intro.intro.intro\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nH : IsLUB (Set.Iio c) c\nh : ∃ b, b < c\nu : ℕ → β\nleft✝ : StrictMono u\nu_lt : ∀ (n : ℕ), u n < c\nu_lim : Tendsto u atTop (nhds c)\nh_Union : {x | f x < c} = ⋃ (n : ℕ), {x | f x ≤ u n}\n⊢ ∀ (i : ℕ), ↑↑μ {x | f x ≤ u i} = 0", "tactic": "intro n" }, { "state_after": "no goals", "state_before": "case neg.intro.intro.intro.intro\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nH : IsLUB (Set.Iio c) c\nh : ∃ b, b < c\nu : ℕ → β\nleft✝ : StrictMono u\nu_lt : ∀ (n : ℕ), u n < c\nu_lim : Tendsto u atTop (nhds c)\nh_Union : {x | f x < c} = ⋃ (n : ℕ), {x | f x ≤ u n}\nn : ℕ\n⊢ ↑↑μ {x | f x ≤ u n} = 0", "tactic": "exact hc _ (u_lt n)" }, { "state_after": "case mp\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nh : ↑↑μ {a | f a < c} = 0\nb : β\nhb : b < c\n⊢ ↑↑μ {x | f x ≤ b} = 0", "state_before": "case mp\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\n⊢ ↑↑μ {a | f a < c} = 0 → ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0", "tactic": "intro h b hb" }, { "state_after": "no goals", "state_before": "case mp\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nh : ↑↑μ {a | f a < c} = 0\nb : β\nhb : b < c\n⊢ ↑↑μ {x | f x ≤ b} = 0", "tactic": "exact measure_mono_null (fun y hy => (lt_of_le_of_lt hy hb : _)) h" }, { "state_after": "case pos\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nh : ∀ (b : β), c ≤ b\nthis : {a | f a < c} = ∅\n⊢ ↑↑μ {a | f a < c} = 0", "state_before": "case pos\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nh : ∀ (b : β), c ≤ b\n⊢ ↑↑μ {a | f a < c} = 0", "tactic": "have : {a : α | f a < c} = ∅ := by\n apply Set.eq_empty_iff_forall_not_mem.2 fun x hx => ?_\n exact (lt_irrefl _ (lt_of_lt_of_le hx (h (f x)))).elim" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nh : ∀ (b : β), c ≤ b\nthis : {a | f a < c} = ∅\n⊢ ↑↑μ {a | f a < c} = 0", "tactic": "simp [this]" }, { "state_after": "α : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nh : ∀ (b : β), c ≤ b\nx : α\nhx : x ∈ {a | f a < c}\n⊢ False", "state_before": "α : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nh : ∀ (b : β), c ≤ b\n⊢ {a | f a < c} = ∅", "tactic": "apply Set.eq_empty_iff_forall_not_mem.2 fun x hx => ?_" }, { "state_after": "no goals", "state_before": "α : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nh : ∀ (b : β), c ≤ b\nx : α\nhx : x ∈ {a | f a < c}\n⊢ False", "tactic": "exact (lt_irrefl _ (lt_of_lt_of_le hx (h (f x)))).elim" }, { "state_after": "case pos\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nh : ¬∀ (b : β), c ≤ b\nH : ¬IsLUB (Set.Iio c) c\nthis : c ∈ upperBounds (Set.Iio c)\n⊢ ↑↑μ {a | f a < c} = 0", "state_before": "case pos\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nh : ¬∀ (b : β), c ≤ b\nH : ¬IsLUB (Set.Iio c) c\n⊢ ↑↑μ {a | f a < c} = 0", "tactic": "have : c ∈ upperBounds (Set.Iio c) := fun y hy => le_of_lt hy" }, { "state_after": "case pos.intro.intro\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nh : ¬∀ (b : β), c ≤ b\nH : ¬IsLUB (Set.Iio c) c\nthis : c ∈ upperBounds (Set.Iio c)\nb : β\nb_up : b ∈ upperBounds (Set.Iio c)\nbc : b < c\n⊢ ↑↑μ {a | f a < c} = 0", "state_before": "case pos\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nh : ¬∀ (b : β), c ≤ b\nH : ¬IsLUB (Set.Iio c) c\nthis : c ∈ upperBounds (Set.Iio c)\n⊢ ↑↑μ {a | f a < c} = 0", "tactic": "obtain ⟨b, b_up, bc⟩ : ∃ b : β, b ∈ upperBounds (Set.Iio c) ∧ b < c := by\n simpa [IsLUB, IsLeast, this, lowerBounds] using H" }, { "state_after": "no goals", "state_before": "case pos.intro.intro\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nh : ¬∀ (b : β), c ≤ b\nH : ¬IsLUB (Set.Iio c) c\nthis : c ∈ upperBounds (Set.Iio c)\nb : β\nb_up : b ∈ upperBounds (Set.Iio c)\nbc : b < c\n⊢ ↑↑μ {a | f a < c} = 0", "tactic": "exact measure_mono_null (fun x hx => b_up hx) (hc b bc)" }, { "state_after": "no goals", "state_before": "α : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nh : ¬∀ (b : β), c ≤ b\nH : ¬IsLUB (Set.Iio c) c\nthis : c ∈ upperBounds (Set.Iio c)\n⊢ ∃ b, b ∈ upperBounds (Set.Iio c) ∧ b < c", "tactic": "simpa [IsLUB, IsLeast, this, lowerBounds] using H" }, { "state_after": "case h\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nH : IsLUB (Set.Iio c) c\nh : ∃ b, b < c\nu : ℕ → β\nleft✝ : StrictMono u\nu_lt : ∀ (n : ℕ), u n < c\nu_lim : Tendsto u atTop (nhds c)\nx : α\n⊢ x ∈ {x | f x < c} ↔ x ∈ ⋃ (n : ℕ), {x | f x ≤ u n}", "state_before": "α : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nH : IsLUB (Set.Iio c) c\nh : ∃ b, b < c\nu : ℕ → β\nleft✝ : StrictMono u\nu_lt : ∀ (n : ℕ), u n < c\nu_lim : Tendsto u atTop (nhds c)\n⊢ {x | f x < c} = ⋃ (n : ℕ), {x | f x ≤ u n}", "tactic": "ext1 x" }, { "state_after": "case h\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nH : IsLUB (Set.Iio c) c\nh : ∃ b, b < c\nu : ℕ → β\nleft✝ : StrictMono u\nu_lt : ∀ (n : ℕ), u n < c\nu_lim : Tendsto u atTop (nhds c)\nx : α\n⊢ f x < c ↔ ∃ i, f x ≤ u i", "state_before": "case h\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nH : IsLUB (Set.Iio c) c\nh : ∃ b, b < c\nu : ℕ → β\nleft✝ : StrictMono u\nu_lt : ∀ (n : ℕ), u n < c\nu_lim : Tendsto u atTop (nhds c)\nx : α\n⊢ x ∈ {x | f x < c} ↔ x ∈ ⋃ (n : ℕ), {x | f x ≤ u n}", "tactic": "simp_rw [Set.mem_iUnion, Set.mem_setOf_eq]" }, { "state_after": "case h.mp\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nH : IsLUB (Set.Iio c) c\nh✝ : ∃ b, b < c\nu : ℕ → β\nleft✝ : StrictMono u\nu_lt : ∀ (n : ℕ), u n < c\nu_lim : Tendsto u atTop (nhds c)\nx : α\nh : f x < c\n⊢ ∃ i, f x ≤ u i\n\ncase h.mpr\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nH : IsLUB (Set.Iio c) c\nh✝ : ∃ b, b < c\nu : ℕ → β\nleft✝ : StrictMono u\nu_lt : ∀ (n : ℕ), u n < c\nu_lim : Tendsto u atTop (nhds c)\nx : α\nh : ∃ i, f x ≤ u i\n⊢ f x < c", "state_before": "case h\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nH : IsLUB (Set.Iio c) c\nh : ∃ b, b < c\nu : ℕ → β\nleft✝ : StrictMono u\nu_lt : ∀ (n : ℕ), u n < c\nu_lim : Tendsto u atTop (nhds c)\nx : α\n⊢ f x < c ↔ ∃ i, f x ≤ u i", "tactic": "constructor <;> intro h" }, { "state_after": "case h.mp.intro\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nH : IsLUB (Set.Iio c) c\nh✝ : ∃ b, b < c\nu : ℕ → β\nleft✝ : StrictMono u\nu_lt : ∀ (n : ℕ), u n < c\nu_lim : Tendsto u atTop (nhds c)\nx : α\nh : f x < c\nn : ℕ\nhn : f x < u n\n⊢ ∃ i, f x ≤ u i", "state_before": "case h.mp\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nH : IsLUB (Set.Iio c) c\nh✝ : ∃ b, b < c\nu : ℕ → β\nleft✝ : StrictMono u\nu_lt : ∀ (n : ℕ), u n < c\nu_lim : Tendsto u atTop (nhds c)\nx : α\nh : f x < c\n⊢ ∃ i, f x ≤ u i", "tactic": "obtain ⟨n, hn⟩ := ((tendsto_order.1 u_lim).1 _ h).exists" }, { "state_after": "no goals", "state_before": "case h.mp.intro\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nH : IsLUB (Set.Iio c) c\nh✝ : ∃ b, b < c\nu : ℕ → β\nleft✝ : StrictMono u\nu_lt : ∀ (n : ℕ), u n < c\nu_lim : Tendsto u atTop (nhds c)\nx : α\nh : f x < c\nn : ℕ\nhn : f x < u n\n⊢ ∃ i, f x ≤ u i", "tactic": "exact ⟨n, hn.le⟩" }, { "state_after": "case h.mpr.intro\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nH : IsLUB (Set.Iio c) c\nh : ∃ b, b < c\nu : ℕ → β\nleft✝ : StrictMono u\nu_lt : ∀ (n : ℕ), u n < c\nu_lim : Tendsto u atTop (nhds c)\nx : α\nn : ℕ\nhn : f x ≤ u n\n⊢ f x < c", "state_before": "case h.mpr\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nH : IsLUB (Set.Iio c) c\nh✝ : ∃ b, b < c\nu : ℕ → β\nleft✝ : StrictMono u\nu_lt : ∀ (n : ℕ), u n < c\nu_lim : Tendsto u atTop (nhds c)\nx : α\nh : ∃ i, f x ≤ u i\n⊢ f x < c", "tactic": "obtain ⟨n, hn⟩ := h" }, { "state_after": "no goals", "state_before": "case h.mpr.intro\nα : Type u_2\nE : Type ?u.30634\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\np : ℝ≥0∞\nβ : Type u_1\ninst✝³ : LinearOrder β\ninst✝² : TopologicalSpace β\ninst✝¹ : OrderTopology β\ninst✝ : FirstCountableTopology β\nf : α → β\nc : β\nhc : ∀ (b : β), b < c → ↑↑μ {x | f x ≤ b} = 0\nH : IsLUB (Set.Iio c) c\nh : ∃ b, b < c\nu : ℕ → β\nleft✝ : StrictMono u\nu_lt : ∀ (n : ℕ), u n < c\nu_lim : Tendsto u atTop (nhds c)\nx : α\nn : ℕ\nhn : f x ≤ u n\n⊢ f x < c", "tactic": "exact hn.trans_lt (u_lt _)" } ]
[ 161, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 129, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasurableEquiv.map_measurableEquiv_injective
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.2439120\nδ : Type ?u.2439123\nι : Type ?u.2439126\nR : Type ?u.2439129\nR' : Type ?u.2439132\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSpace β\nμ : MeasureTheory.Measure α\nν : MeasureTheory.Measure β\ne : α ≃ᵐ β\nμ₁ μ₂ : MeasureTheory.Measure α\nhμ : Measure.map (↑e) μ₁ = Measure.map (↑e) μ₂\n⊢ μ₁ = μ₂", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.2439120\nδ : Type ?u.2439123\nι : Type ?u.2439126\nR : Type ?u.2439129\nR' : Type ?u.2439132\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSpace β\nμ : MeasureTheory.Measure α\nν : MeasureTheory.Measure β\ne : α ≃ᵐ β\n⊢ Injective (Measure.map ↑e)", "tactic": "intro μ₁ μ₂ hμ" }, { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.2439120\nδ : Type ?u.2439123\nι : Type ?u.2439126\nR : Type ?u.2439129\nR' : Type ?u.2439132\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSpace β\nμ : MeasureTheory.Measure α\nν : MeasureTheory.Measure β\ne : α ≃ᵐ β\nμ₁ μ₂ : MeasureTheory.Measure α\nhμ : Measure.map (↑(symm e)) (Measure.map (↑e) μ₁) = Measure.map (↑(symm e)) (Measure.map (↑e) μ₂)\n⊢ μ₁ = μ₂", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.2439120\nδ : Type ?u.2439123\nι : Type ?u.2439126\nR : Type ?u.2439129\nR' : Type ?u.2439132\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSpace β\nμ : MeasureTheory.Measure α\nν : MeasureTheory.Measure β\ne : α ≃ᵐ β\nμ₁ μ₂ : MeasureTheory.Measure α\nhμ : Measure.map (↑e) μ₁ = Measure.map (↑e) μ₂\n⊢ μ₁ = μ₂", "tactic": "apply_fun Measure.map e.symm at hμ" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.2439120\nδ : Type ?u.2439123\nι : Type ?u.2439126\nR : Type ?u.2439129\nR' : Type ?u.2439132\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSpace β\nμ : MeasureTheory.Measure α\nν : MeasureTheory.Measure β\ne : α ≃ᵐ β\nμ₁ μ₂ : MeasureTheory.Measure α\nhμ : Measure.map (↑(symm e)) (Measure.map (↑e) μ₁) = Measure.map (↑(symm e)) (Measure.map (↑e) μ₂)\n⊢ μ₁ = μ₂", "tactic": "simpa [map_symm_map e] using hμ" } ]
[ 4309, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 4306, 1 ]
Mathlib/SetTheory/Cardinal/Basic.lean
Cardinal.mul_lt_aleph0_iff_of_ne_zero
[ { "state_after": "no goals", "state_before": "α β : Type u\na b : Cardinal\nha : a ≠ 0\nhb : b ≠ 0\n⊢ a * b < ℵ₀ ↔ a < ℵ₀ ∧ b < ℵ₀", "tactic": "simp [mul_lt_aleph0_iff, ha, hb]" } ]
[ 1590, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1589, 1 ]
Mathlib/Algebra/Invertible.lean
map_invOf
[ { "state_after": "α : Type u\nR : Type u_1\nS : Type u_2\nF : Type u_3\ninst✝³ : MulOneClass R\ninst✝² : Monoid S\ninst✝¹ : MonoidHomClass F R S\nf : F\nr : R\ninst✝ : Invertible r\n⊢ ↑f ⅟r = ⅟(↑f r)", "state_before": "α : Type u\nR : Type u_1\nS : Type u_2\nF : Type u_3\ninst✝³ : MulOneClass R\ninst✝² : Monoid S\ninst✝¹ : MonoidHomClass F R S\nf : F\nr : R\ninst✝ : Invertible r\nifr : Invertible (↑f r)\nh : ifr = Invertible.map f r\n⊢ ↑f ⅟r = ⅟(↑f r)", "tactic": "subst h" }, { "state_after": "no goals", "state_before": "α : Type u\nR : Type u_1\nS : Type u_2\nF : Type u_3\ninst✝³ : MulOneClass R\ninst✝² : Monoid S\ninst✝¹ : MonoidHomClass F R S\nf : F\nr : R\ninst✝ : Invertible r\n⊢ ↑f ⅟r = ⅟(↑f r)", "tactic": "rfl" } ]
[ 445, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 441, 1 ]
Mathlib/Data/Seq/Seq.lean
Stream'.Seq.coinduction2
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\ns : Seq α\nf g : Seq α → Seq β\nH : ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s))\n⊢ IsBisimulation fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ns : Seq α\nf g : Seq α → Seq β\nH : ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s))\n⊢ f s = g s", "tactic": "refine' eq_of_bisim (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) _ ⟨s, rfl, rfl⟩" }, { "state_after": "α : Type u\nβ : Type v\nγ : Type w\ns : Seq α\nf g : Seq α → Seq β\nH : ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s))\ns1 s2 : Seq β\nh : ∃ s, s1 = f s ∧ s2 = g s\n⊢ BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct s1) (destruct s2)", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ns : Seq α\nf g : Seq α → Seq β\nH : ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s))\n⊢ IsBisimulation fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s", "tactic": "intro s1 s2 h" }, { "state_after": "case intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ns✝ : Seq α\nf g : Seq α → Seq β\nH : ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s))\ns1 s2 : Seq β\ns : Seq α\nh1 : s1 = f s\nh2 : s2 = g s\n⊢ BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct s1) (destruct s2)", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ns : Seq α\nf g : Seq α → Seq β\nH : ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s))\ns1 s2 : Seq β\nh : ∃ s, s1 = f s ∧ s2 = g s\n⊢ BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct s1) (destruct s2)", "tactic": "rcases h with ⟨s, h1, h2⟩" }, { "state_after": "case intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ns✝ : Seq α\nf g : Seq α → Seq β\nH : ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s))\ns1 s2 : Seq β\ns : Seq α\nh1 : s1 = f s\nh2 : s2 = g s\n⊢ BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s))", "state_before": "case intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ns✝ : Seq α\nf g : Seq α → Seq β\nH : ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s))\ns1 s2 : Seq β\ns : Seq α\nh1 : s1 = f s\nh2 : s2 = g s\n⊢ BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct s1) (destruct s2)", "tactic": "rw [h1, h2]" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ns✝ : Seq α\nf g : Seq α → Seq β\nH : ∀ (s : Seq α), BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s))\ns1 s2 : Seq β\ns : Seq α\nh1 : s1 = f s\nh2 : s2 = g s\n⊢ BisimO (fun s1 s2 => ∃ s, s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s))", "tactic": "apply H" } ]
[ 433, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 425, 1 ]
Mathlib/Data/IsROrC/Basic.lean
IsROrC.ofReal_mul_re
[ { "state_after": "no goals", "state_before": "K : Type u_1\nE : Type ?u.1980449\ninst✝ : IsROrC K\nr : ℝ\nz : K\n⊢ ↑re (↑r * z) = r * ↑re z", "tactic": "simp only [mul_re, ofReal_im, zero_mul, ofReal_re, sub_zero]" } ]
[ 275, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 274, 1 ]
Mathlib/Data/Nat/Sqrt.lean
Nat.le_sqrt
[]
[ 89, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 87, 1 ]
Mathlib/Topology/UniformSpace/Basic.lean
nhds_eq_uniformity'
[]
[ 793, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 792, 1 ]
Mathlib/Order/LiminfLimsup.lean
Filter.limsSup_le_limsSup
[]
[ 501, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 497, 1 ]
Mathlib/MeasureTheory/Measure/OuterMeasure.lean
MeasureTheory.OuterMeasure.restrict_biInf
[ { "state_after": "α : Type u_2\nι : Type u_1\nI : Set ι\nhI : Set.Nonempty I\ns : Set α\nm : ι → OuterMeasure α\nthis : Nonempty ↑I\n⊢ ↑(restrict s) (⨅ (i : ι) (_ : i ∈ I), m i) = ⨅ (i : ι) (_ : i ∈ I), ↑(restrict s) (m i)", "state_before": "α : Type u_2\nι : Type u_1\nI : Set ι\nhI : Set.Nonempty I\ns : Set α\nm : ι → OuterMeasure α\n⊢ ↑(restrict s) (⨅ (i : ι) (_ : i ∈ I), m i) = ⨅ (i : ι) (_ : i ∈ I), ↑(restrict s) (m i)", "tactic": "haveI := hI.to_subtype" }, { "state_after": "α : Type u_2\nι : Type u_1\nI : Set ι\nhI : Set.Nonempty I\ns : Set α\nm : ι → OuterMeasure α\nthis : Nonempty ↑I\n⊢ ↑(restrict s) (⨅ (i : ↑I), m ↑i) = ⨅ (i : ↑I), ↑(restrict s) (m ↑i)", "state_before": "α : Type u_2\nι : Type u_1\nI : Set ι\nhI : Set.Nonempty I\ns : Set α\nm : ι → OuterMeasure α\nthis : Nonempty ↑I\n⊢ ↑(restrict s) (⨅ (i : ι) (_ : i ∈ I), m i) = ⨅ (i : ι) (_ : i ∈ I), ↑(restrict s) (m i)", "tactic": "rw [← iInf_subtype'', ← iInf_subtype'']" }, { "state_after": "no goals", "state_before": "α : Type u_2\nι : Type u_1\nI : Set ι\nhI : Set.Nonempty I\ns : Set α\nm : ι → OuterMeasure α\nthis : Nonempty ↑I\n⊢ ↑(restrict s) (⨅ (i : ↑I), m ↑i) = ⨅ (i : ↑I), ↑(restrict s) (m ↑i)", "tactic": "exact restrict_iInf _ _" } ]
[ 1282, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1278, 1 ]
src/lean/Init/Classical.lean
Classical.byContradiction
[]
[ 124, 55 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 123, 1 ]
Mathlib/MeasureTheory/Function/LpSeminorm.lean
MeasureTheory.snorm_le_snorm_mul_snorm'_of_norm
[]
[ 1450, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1446, 1 ]
Mathlib/Order/Antisymmetrization.lean
OrderHom.antisymmetrization_apply_mk
[]
[ 238, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 236, 1 ]
Mathlib/GroupTheory/MonoidLocalization.lean
Submonoid.LocalizationMap.lift_spec_mul
[ { "state_after": "no goals", "state_before": "M : Type u_3\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_2\ninst✝¹ : CommMonoid N\nP : Type u_1\ninst✝ : CommMonoid P\nf : LocalizationMap S N\ng : M →* P\nhg : ∀ (y : { x // x ∈ S }), IsUnit (↑g ↑y)\nz : N\nw v : (fun x => P) z\n⊢ ↑(lift f hg) z * w = v ↔ ↑g (sec f z).fst * w = ↑g ↑(sec f z).snd * v", "tactic": "erw [mul_comm, ← mul_assoc, mul_inv_left hg, mul_comm]" } ]
[ 975, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 974, 1 ]
Mathlib/Data/Polynomial/Splits.lean
Polynomial.splits_zero
[]
[ 63, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 62, 1 ]
Mathlib/Algebra/Order/ToIntervalMod.lean
toIcoDiv_apply_left
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b c : α\nn : ℤ\na : α\n⊢ a - 0 • p ∈ Set.Ico a (a + p)", "tactic": "simp [hp]" } ]
[ 196, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 195, 1 ]
Mathlib/Algebra/Group/Basic.lean
div_right_comm
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.34821\nG : Type ?u.34824\ninst✝ : DivisionCommMonoid α\na b c d : α\n⊢ a / b / c = a / c / b", "tactic": "simp" } ]
[ 535, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 535, 1 ]
Mathlib/GroupTheory/FreeAbelianGroup.lean
FreeAbelianGroup.of_mul
[]
[ 422, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 421, 1 ]
Mathlib/Algebra/Algebra/Equiv.lean
AlgEquiv.toLinearEquiv_injective
[]
[ 564, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 563, 1 ]
Mathlib/Order/Minimal.lean
IsAntichain.minimals_eq
[]
[ 184, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 183, 1 ]
Std/Data/List/Lemmas.lean
List.mem_append_right
[]
[ 150, 26 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 149, 1 ]
Mathlib/Data/Int/Cast/Prod.lean
Prod.fst_intCast
[]
[ 31, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 30, 1 ]
Mathlib/FieldTheory/Fixed.lean
FixedPoints.minpoly.irreducible_aux
[ { "state_after": "M : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\n⊢ f = 1 ∨ g = 1", "state_before": "M : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\n⊢ f = 1 ∨ g = 1", "tactic": "have hf2 : f ∣ minpoly G F x := by rw [← hfg]; exact dvd_mul_right _ _" }, { "state_after": "M : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\nhg2 : g ∣ minpoly G F x\n⊢ f = 1 ∨ g = 1", "state_before": "M : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\n⊢ f = 1 ∨ g = 1", "tactic": "have hg2 : g ∣ minpoly G F x := by rw [← hfg]; exact dvd_mul_left _ _" }, { "state_after": "M : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\nhg2 : g ∣ minpoly G F x\nthis : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x (minpoly G F x) = 0\n⊢ f = 1 ∨ g = 1", "state_before": "M : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\nhg2 : g ∣ minpoly G F x\n⊢ f = 1 ∨ g = 1", "tactic": "have := eval₂ G F x" }, { "state_after": "M : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\nhg2 : g ∣ minpoly G F x\nthis :\n Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x f = 0 ∨\n Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x g = 0\n⊢ f = 1 ∨ g = 1", "state_before": "M : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\nhg2 : g ∣ minpoly G F x\nthis : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x (minpoly G F x) = 0\n⊢ f = 1 ∨ g = 1", "tactic": "rw [← hfg, Polynomial.eval₂_mul, mul_eq_zero] at this" }, { "state_after": "case inl\nM : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\nhg2 : g ∣ minpoly G F x\nthis : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x f = 0\n⊢ f = 1 ∨ g = 1\n\ncase inr\nM : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\nhg2 : g ∣ minpoly G F x\nthis : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x g = 0\n⊢ f = 1 ∨ g = 1", "state_before": "M : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\nhg2 : g ∣ minpoly G F x\nthis :\n Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x f = 0 ∨\n Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x g = 0\n⊢ f = 1 ∨ g = 1", "tactic": "cases' this with this this" }, { "state_after": "M : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\n⊢ f ∣ f * g", "state_before": "M : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\n⊢ f ∣ minpoly G F x", "tactic": "rw [← hfg]" }, { "state_after": "no goals", "state_before": "M : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\n⊢ f ∣ f * g", "tactic": "exact dvd_mul_right _ _" }, { "state_after": "M : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\n⊢ g ∣ f * g", "state_before": "M : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\n⊢ g ∣ minpoly G F x", "tactic": "rw [← hfg]" }, { "state_after": "no goals", "state_before": "M : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\n⊢ g ∣ f * g", "tactic": "exact dvd_mul_left _ _" }, { "state_after": "case inl.h\nM : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\nhg2 : g ∣ minpoly G F x\nthis : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x f = 0\n⊢ g = 1", "state_before": "case inl\nM : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\nhg2 : g ∣ minpoly G F x\nthis : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x f = 0\n⊢ f = 1 ∨ g = 1", "tactic": "right" }, { "state_after": "case inl.h\nM : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\nhg2 : g ∣ minpoly G F x\nthis : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x f = 0\nhf3 : f = minpoly G F x\n⊢ g = 1", "state_before": "case inl.h\nM : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\nhg2 : g ∣ minpoly G F x\nthis : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x f = 0\n⊢ g = 1", "tactic": "have hf3 : f = minpoly G F x :=\n Polynomial.eq_of_monic_of_associated hf (monic G F x)\n (associated_of_dvd_dvd hf2 <| @of_eval₂ G _ F _ _ _ x f this)" }, { "state_after": "no goals", "state_before": "case inl.h\nM : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\nhg2 : g ∣ minpoly G F x\nthis : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x f = 0\nhf3 : f = minpoly G F x\n⊢ g = 1", "tactic": "rwa [← mul_one (minpoly G F x), hf3, mul_right_inj' (monic G F x).ne_zero] at hfg" }, { "state_after": "case inr.h\nM : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\nhg2 : g ∣ minpoly G F x\nthis : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x g = 0\n⊢ f = 1", "state_before": "case inr\nM : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\nhg2 : g ∣ minpoly G F x\nthis : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x g = 0\n⊢ f = 1 ∨ g = 1", "tactic": "left" }, { "state_after": "case inr.h\nM : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\nhg2 : g ∣ minpoly G F x\nthis : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x g = 0\nhg3 : g = minpoly G F x\n⊢ f = 1", "state_before": "case inr.h\nM : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\nhg2 : g ∣ minpoly G F x\nthis : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x g = 0\n⊢ f = 1", "tactic": "have hg3 : g = minpoly G F x :=\n Polynomial.eq_of_monic_of_associated hg (monic G F x)\n (associated_of_dvd_dvd hg2 <| @of_eval₂ G _ F _ _ _ x g this)" }, { "state_after": "no goals", "state_before": "case inr.h\nM : Type u\ninst✝⁵ : Monoid M\nG : Type u\ninst✝⁴ : Group G\nF : Type v\ninst✝³ : Field F\ninst✝² : MulSemiringAction M F\ninst✝¹ : MulSemiringAction G F\nm : M\ninst✝ : Fintype G\nx : F\nf g : Polynomial { x // x ∈ subfield G F }\nhf : Polynomial.Monic f\nhg : Polynomial.Monic g\nhfg : f * g = minpoly G F x\nhf2 : f ∣ minpoly G F x\nhg2 : g ∣ minpoly G F x\nthis : Polynomial.eval₂ (Subring.subtype (subfield G F).toSubring) x g = 0\nhg3 : g = minpoly G F x\n⊢ f = 1", "tactic": "rwa [← one_mul (minpoly G F x), hg3, mul_left_inj' (monic G F x).ne_zero] at hfg" } ]
[ 249, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 233, 1 ]
Mathlib/Dynamics/PeriodicPts.lean
Function.Semiconj.mapsTo_periodicPts
[]
[ 264, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 263, 1 ]
Mathlib/Combinatorics/SimpleGraph/Connectivity.lean
SimpleGraph.ConnectedComponent.map_mk
[]
[ 2057, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2055, 1 ]
Mathlib/Algebra/ContinuedFractions/Computation/CorrectnessTerminating.lean
GeneralizedContinuedFraction.of_correctness_of_terminatedAt
[]
[ 253, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 249, 1 ]
Mathlib/Data/Polynomial/Degree/Definitions.lean
Polynomial.eq_C_of_degree_le_zero
[ { "state_after": "case a.zero\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type ?u.469754\nh : degree p ≤ 0\n⊢ coeff p Nat.zero = coeff (↑C (coeff p 0)) Nat.zero\n\ncase a.succ\nR : Type u\nS : Type v\na b c d : R\nn✝ m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type ?u.469754\nh : degree p ≤ 0\nn : ℕ\n⊢ coeff p (Nat.succ n) = coeff (↑C (coeff p 0)) (Nat.succ n)", "state_before": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type ?u.469754\nh : degree p ≤ 0\n⊢ p = ↑C (coeff p 0)", "tactic": "ext (_ | n)" }, { "state_after": "case a.succ\nR : Type u\nS : Type v\na b c d : R\nn✝ m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type ?u.469754\nh : degree p ≤ 0\nn : ℕ\n⊢ degree p < ↑(Nat.succ n)", "state_before": "case a.succ\nR : Type u\nS : Type v\na b c d : R\nn✝ m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type ?u.469754\nh : degree p ≤ 0\nn : ℕ\n⊢ coeff p (Nat.succ n) = coeff (↑C (coeff p 0)) (Nat.succ n)", "tactic": "rw [coeff_C, if_neg (Nat.succ_ne_zero _), coeff_eq_zero_of_degree_lt]" }, { "state_after": "no goals", "state_before": "case a.succ\nR : Type u\nS : Type v\na b c d : R\nn✝ m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type ?u.469754\nh : degree p ≤ 0\nn : ℕ\n⊢ degree p < ↑(Nat.succ n)", "tactic": "exact h.trans_lt (WithBot.some_lt_some.2 n.succ_pos)" }, { "state_after": "no goals", "state_before": "case a.zero\nR : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type ?u.469754\nh : degree p ≤ 0\n⊢ coeff p Nat.zero = coeff (↑C (coeff p 0)) Nat.zero", "tactic": "simp" } ]
[ 623, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 620, 1 ]
Mathlib/Dynamics/Circle/RotationNumber/TranslationNumber.lean
CircleDeg1Lift.commute_add_nat
[ { "state_after": "no goals", "state_before": "f g : CircleDeg1Lift\nn : ℕ\n⊢ Function.Commute ↑f fun x => x + ↑n", "tactic": "simp only [add_comm _ (n : ℝ), f.commute_nat_add n]" } ]
[ 339, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 338, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.subset_union_left
[]
[ 1374, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1374, 1 ]
Mathlib/Topology/Basic.lean
closure_empty
[]
[ 490, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 489, 1 ]
Mathlib/Data/Finset/PImage.lean
Finset.mem_pimage
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\ninst✝² : DecidableEq β\nf g : α →. β\ninst✝¹ : (x : α) → Decidable (f x).Dom\ninst✝ : (x : α) → Decidable (g x).Dom\ns t : Finset α\nb : β\n⊢ b ∈ pimage f s ↔ ∃ a, a ∈ s ∧ b ∈ f a", "tactic": "simp [pimage]" } ]
[ 70, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 69, 1 ]
Std/Data/Nat/Gcd.lean
Nat.coprime_div_gcd_div_gcd
[ { "state_after": "no goals", "state_before": "m n : Nat\nH : 0 < gcd m n\n⊢ coprime (m / gcd m n) (n / gcd m n)", "tactic": "rw [coprime_iff_gcd_eq_one, gcd_div (gcd_dvd_left m n) (gcd_dvd_right m n), Nat.div_self H]" } ]
[ 275, 94 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 273, 1 ]
src/lean/Init/Data/Nat/SOM.lean
Nat.SOM.Expr.eq_of_toPoly_eq
[ { "state_after": "ctx : Context\na b : Expr\nh✝ : (toPoly a == toPoly b) = true\nh : Poly.denote ctx (toPoly a) = Poly.denote ctx (toPoly b)\n⊢ denote ctx a = denote ctx b", "state_before": "ctx : Context\na b : Expr\nh : (toPoly a == toPoly b) = true\n⊢ denote ctx a = denote ctx b", "tactic": "have h := congrArg (Poly.denote ctx) (eq_of_beq h)" }, { "state_after": "ctx : Context\na b : Expr\nh✝ : (toPoly a == toPoly b) = true\nh : denote ctx a = denote ctx b\n⊢ denote ctx a = denote ctx b", "state_before": "ctx : Context\na b : Expr\nh✝ : (toPoly a == toPoly b) = true\nh : Poly.denote ctx (toPoly a) = Poly.denote ctx (toPoly b)\n⊢ denote ctx a = denote ctx b", "tactic": "simp [toPoly_denote] at h" }, { "state_after": "no goals", "state_before": "ctx : Context\na b : Expr\nh✝ : (toPoly a == toPoly b) = true\nh : denote ctx a = denote ctx b\n⊢ denote ctx a = denote ctx b", "tactic": "assumption" } ]
[ 183, 13 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 180, 1 ]