file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Analysis/Normed/Group/Basic.lean
pi_norm_const'
[ { "state_after": "no goals", "state_before": "𝓕 : Type ?u.1275542\n𝕜 : Type ?u.1275545\nα : Type ?u.1275548\nι : Type u_1\nκ : Type ?u.1275554\nE : Type u_2\nF : Type ?u.1275560\nG : Type ?u.1275563\nπ : ι → Type ?u.1275568\ninst✝³ : Fintype ι\ninst✝² : (i : ι) → SeminormedGroup (π i)\ninst✝¹ : SeminormedGroup E\nf x : (i : ι) → π i\nr : ℝ\ninst✝ : Nonempty ι\na : E\n⊢ ‖fun _i => a‖ = ‖a‖", "tactic": "simpa only [← dist_one_right] using dist_pi_const a 1" } ]
[ 2535, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2534, 1 ]
Mathlib/Data/Nat/Count.lean
Nat.count_add'
[ { "state_after": "p : ℕ → Prop\ninst✝ : DecidablePred p\na b : ℕ\n⊢ count (fun k => p (b + k)) a + count p b = count (fun k => p (k + b)) a + count p b", "state_before": "p : ℕ → Prop\ninst✝ : DecidablePred p\na b : ℕ\n⊢ count p (a + b) = count (fun k => p (k + b)) a + count p b", "tactic": "rw [add_comm, count_add, add_comm]" }, { "state_after": "no goals", "state_before": "p : ℕ → Prop\ninst✝ : DecidablePred p\na b : ℕ\n⊢ count (fun k => p (b + k)) a + count p b = count (fun k => p (k + b)) a + count p b", "tactic": "simp_rw [add_comm b]" } ]
[ 91, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 89, 1 ]
Mathlib/Data/Set/Countable.lean
Set.countable_univ_pi
[]
[ 270, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 267, 1 ]
Mathlib/GroupTheory/Submonoid/Membership.lean
Submonoid.powers_one
[]
[ 455, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 454, 1 ]
Mathlib/Analysis/Calculus/Deriv/Basic.lean
hasFDerivAtFilter_iff_hasDerivAtFilter
[ { "state_after": "no goals", "state_before": "𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type w\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf'✝ f₀' f₁' g' : F\nx : 𝕜\ns t : Set 𝕜\nL L₁ L₂ : Filter 𝕜\nf' : 𝕜 →L[𝕜] F\n⊢ HasFDerivAtFilter f f' x L ↔ HasDerivAtFilter f (↑f' 1) x L", "tactic": "simp [HasDerivAtFilter]" } ]
[ 163, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 162, 1 ]
Mathlib/CategoryTheory/MorphismProperty.lean
CategoryTheory.MorphismProperty.IsInvertedBy.leftOp
[ { "state_after": "C : Type u\ninst✝¹ : Category C\nD : Type u_2\ninst✝ : Category D\nW : MorphismProperty C\nL : C ⥤ Dᵒᵖ\nh : IsInvertedBy W L\nX Y : Cᵒᵖ\nf : X ⟶ Y\nhf : MorphismProperty.op W f\nthis : IsIso (L.map f.unop)\n⊢ IsIso (L.leftOp.map f)", "state_before": "C : Type u\ninst✝¹ : Category C\nD : Type u_2\ninst✝ : Category D\nW : MorphismProperty C\nL : C ⥤ Dᵒᵖ\nh : IsInvertedBy W L\nX Y : Cᵒᵖ\nf : X ⟶ Y\nhf : MorphismProperty.op W f\n⊢ IsIso (L.leftOp.map f)", "tactic": "haveI := h f.unop hf" }, { "state_after": "C : Type u\ninst✝¹ : Category C\nD : Type u_2\ninst✝ : Category D\nW : MorphismProperty C\nL : C ⥤ Dᵒᵖ\nh : IsInvertedBy W L\nX Y : Cᵒᵖ\nf : X ⟶ Y\nhf : MorphismProperty.op W f\nthis : IsIso (L.map f.unop)\n⊢ IsIso (L.map f.unop).unop", "state_before": "C : Type u\ninst✝¹ : Category C\nD : Type u_2\ninst✝ : Category D\nW : MorphismProperty C\nL : C ⥤ Dᵒᵖ\nh : IsInvertedBy W L\nX Y : Cᵒᵖ\nf : X ⟶ Y\nhf : MorphismProperty.op W f\nthis : IsIso (L.map f.unop)\n⊢ IsIso (L.leftOp.map f)", "tactic": "dsimp" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝¹ : Category C\nD : Type u_2\ninst✝ : Category D\nW : MorphismProperty C\nL : C ⥤ Dᵒᵖ\nh : IsInvertedBy W L\nX Y : Cᵒᵖ\nf : X ⟶ Y\nhf : MorphismProperty.op W f\nthis : IsIso (L.map f.unop)\n⊢ IsIso (L.map f.unop).unop", "tactic": "infer_instance" } ]
[ 328, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 324, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.add_ne_top
[ { "state_after": "no goals", "state_before": "α : Type ?u.82044\nβ : Type ?u.82047\na b c d : ℝ≥0∞\nr p q : ℝ≥0\n⊢ a + b ≠ ⊤ ↔ a ≠ ⊤ ∧ b ≠ ⊤", "tactic": "simpa only [lt_top_iff_ne_top] using add_lt_top" } ]
[ 546, 101 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 546, 1 ]
Mathlib/LinearAlgebra/LinearIndependent.lean
LinearIndependent.repr_range
[ { "state_after": "no goals", "state_before": "ι : Type u'\nι' : Type ?u.444864\nR : Type u_1\nK : Type ?u.444870\nM : Type u_2\nM' : Type ?u.444876\nM'' : Type ?u.444879\nV : Type u\nV' : Type ?u.444884\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\n⊢ LinearMap.range (repr hv) = ⊤", "tactic": "rw [LinearIndependent.repr, LinearEquiv.range]" } ]
[ 795, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 794, 1 ]
Mathlib/Data/Polynomial/RingDivision.lean
Polynomial.zero_of_eval_zero
[ { "state_after": "R : Type u\nS : Type v\nT : Type w\na b : R\nn : ℕ\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\np✝ q : R[X]\ninst✝ : Infinite R\np : R[X]\nh : ∀ (x : R), eval x p = 0\nhp : ¬p = 0\n⊢ False", "state_before": "R : Type u\nS : Type v\nT : Type w\na b : R\nn : ℕ\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\np✝ q : R[X]\ninst✝ : Infinite R\np : R[X]\nh : ∀ (x : R), eval x p = 0\n⊢ p = 0", "tactic": "classical by_contra hp;" }, { "state_after": "R : Type u\nS : Type v\nT : Type w\na b : R\nn : ℕ\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\np✝ q : R[X]\ninst✝ : Infinite R\np : R[X]\nh : ∀ (x : R), eval x p = 0\nhp : ¬p = 0\n⊢ Fintype R", "state_before": "R : Type u\nS : Type v\nT : Type w\na b : R\nn : ℕ\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\np✝ q : R[X]\ninst✝ : Infinite R\np : R[X]\nh : ∀ (x : R), eval x p = 0\nhp : ¬p = 0\n⊢ False", "tactic": "refine @Fintype.false R _ ?_" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\na b : R\nn : ℕ\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\np✝ q : R[X]\ninst✝ : Infinite R\np : R[X]\nh : ∀ (x : R), eval x p = 0\nhp : ¬p = 0\n⊢ Fintype R", "tactic": "exact ⟨p.roots.toFinset, fun x => Multiset.mem_toFinset.mpr ((mem_roots hp).mpr (h _))⟩" }, { "state_after": "R : Type u\nS : Type v\nT : Type w\na b : R\nn : ℕ\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\np✝ q : R[X]\ninst✝ : Infinite R\np : R[X]\nh : ∀ (x : R), eval x p = 0\nhp : ¬p = 0\n⊢ False", "state_before": "R : Type u\nS : Type v\nT : Type w\na b : R\nn : ℕ\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\np✝ q : R[X]\ninst✝ : Infinite R\np : R[X]\nh : ∀ (x : R), eval x p = 0\n⊢ p = 0", "tactic": "by_contra hp" } ]
[ 872, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 869, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasurableSet.map_coe_volume
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.1818394\nγ : Type ?u.1818397\nδ : Type ?u.1818400\nι : Type ?u.1818403\nR : Type ?u.1818406\nR' : Type ?u.1818409\ninst✝ : MeasureSpace α\ns✝ t s : Set α\nhs : MeasurableSet s\n⊢ Measure.map Subtype.val volume = Measure.restrict volume s", "tactic": "rw [volume_set_coe_def, (MeasurableEmbedding.subtype_coe hs).map_comap volume, Subtype.range_coe]" } ]
[ 4261, 100 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 4259, 1 ]
Mathlib/Data/Rat/NNRat.lean
NNRat.coe_pos
[]
[ 177, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 176, 1 ]
Mathlib/Order/Filter/Bases.lean
Filter.HasBasis.biInf_mem
[]
[ 819, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 814, 11 ]
Mathlib/CategoryTheory/Limits/Shapes/Pullbacks.lean
CategoryTheory.Limits.pullbackRightPullbackFstIso_inv_snd_fst
[ { "state_after": "C : Type u\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\nW X Y Z : C\nf : X ⟶ Z\ng : Y ⟶ Z\nf' : W ⟶ X\ninst✝² : HasPullback f g\ninst✝¹ : HasPullback f' pullback.fst\ninst✝ : HasPullback (f' ≫ f) g\n⊢ (pullbackRightPullbackFstIso f g f').inv ≫ pullback.fst ≫ f' = pullback.fst ≫ f'", "state_before": "C : Type u\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\nW X Y Z : C\nf : X ⟶ Z\ng : Y ⟶ Z\nf' : W ⟶ X\ninst✝² : HasPullback f g\ninst✝¹ : HasPullback f' pullback.fst\ninst✝ : HasPullback (f' ≫ f) g\n⊢ (pullbackRightPullbackFstIso f g f').inv ≫ pullback.snd ≫ pullback.fst = pullback.fst ≫ f'", "tactic": "rw [← pullback.condition]" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\nW X Y Z : C\nf : X ⟶ Z\ng : Y ⟶ Z\nf' : W ⟶ X\ninst✝² : HasPullback f g\ninst✝¹ : HasPullback f' pullback.fst\ninst✝ : HasPullback (f' ≫ f) g\n⊢ (pullbackRightPullbackFstIso f g f').inv ≫ pullback.fst ≫ f' = pullback.fst ≫ f'", "tactic": "exact pullbackRightPullbackFstIso_inv_fst_assoc _ _ _ _" } ]
[ 2191, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2188, 1 ]
Mathlib/Topology/Bases.lean
TopologicalSpace.IsTopologicalBasis.nhds_hasBasis
[ { "state_after": "no goals", "state_before": "α : Type u\nt : TopologicalSpace α\nb : Set (Set α)\nhb : IsTopologicalBasis b\na : α\ns : Set α\n⊢ (∃ t, t ∈ b ∧ a ∈ t ∧ t ⊆ s) ↔ ∃ i, (i ∈ b ∧ a ∈ i) ∧ i ⊆ s", "tactic": "simp only [exists_prop, and_assoc]" } ]
[ 165, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 163, 1 ]
Mathlib/Data/Rat/Cast.lean
Rat.preimage_cast_Icc
[ { "state_after": "case h\nF : Type ?u.68729\nι : Type ?u.68732\nα : Type ?u.68735\nβ : Type ?u.68738\nK : Type u_1\ninst✝ : LinearOrderedField K\na b x : ℚ\n⊢ x ∈ Rat.cast ⁻¹' Icc ↑a ↑b ↔ x ∈ Icc a b", "state_before": "F : Type ?u.68729\nι : Type ?u.68732\nα : Type ?u.68735\nβ : Type ?u.68738\nK : Type u_1\ninst✝ : LinearOrderedField K\na b : ℚ\n⊢ Rat.cast ⁻¹' Icc ↑a ↑b = Icc a b", "tactic": "ext x" }, { "state_after": "no goals", "state_before": "case h\nF : Type ?u.68729\nι : Type ?u.68732\nα : Type ?u.68735\nβ : Type ?u.68738\nK : Type u_1\ninst✝ : LinearOrderedField K\na b x : ℚ\n⊢ x ∈ Rat.cast ⁻¹' Icc ↑a ↑b ↔ x ∈ Icc a b", "tactic": "simp" } ]
[ 371, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 369, 1 ]
Mathlib/Order/CompleteLattice.lean
unary_relation_sInf_iff
[ { "state_after": "α✝ : Type ?u.198791\nβ : Type ?u.198794\nβ₂ : Type ?u.198797\nγ : Type ?u.198800\nι : Sort ?u.198803\nι' : Sort ?u.198806\nκ : ι → Sort ?u.198811\nκ' : ι' → Sort ?u.198816\nα : Type u_1\ns : Set (α → Prop)\na : α\n⊢ (⨅ (f : ↑s), ↑f a) ↔ ∀ (r : α → Prop), r ∈ s → r a", "state_before": "α✝ : Type ?u.198791\nβ : Type ?u.198794\nβ₂ : Type ?u.198797\nγ : Type ?u.198800\nι : Sort ?u.198803\nι' : Sort ?u.198806\nκ : ι → Sort ?u.198811\nκ' : ι' → Sort ?u.198816\nα : Type u_1\ns : Set (α → Prop)\na : α\n⊢ sInf s a ↔ ∀ (r : α → Prop), r ∈ s → r a", "tactic": "rw [sInf_apply]" }, { "state_after": "no goals", "state_before": "α✝ : Type ?u.198791\nβ : Type ?u.198794\nβ₂ : Type ?u.198797\nγ : Type ?u.198800\nι : Sort ?u.198803\nι' : Sort ?u.198806\nκ : ι → Sort ?u.198811\nκ' : ι' → Sort ?u.198816\nα : Type u_1\ns : Set (α → Prop)\na : α\n⊢ (⨅ (f : ↑s), ↑f a) ↔ ∀ (r : α → Prop), r ∈ s → r a", "tactic": "simp [← eq_iff_iff]" } ]
[ 1790, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1787, 1 ]
Mathlib/Order/Bounds/Basic.lean
bddBelow_def
[]
[ 99, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 98, 1 ]
Mathlib/Data/Multiset/Powerset.lean
Multiset.mem_powersetAux
[ { "state_after": "no goals", "state_before": "α : Type u_1\nl : List α\ns : Multiset α\n⊢ ∀ (a : List α), Quotient.mk (isSetoid α) a ∈ powersetAux l ↔ Quotient.mk (isSetoid α) a ≤ ↑l", "tactic": "simp [powersetAux_eq_map_coe, Subperm, and_comm]" } ]
[ 40, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 39, 1 ]
Mathlib/Algebra/Symmetrized.lean
SymAlg.unsym_bijective
[]
[ 99, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 98, 1 ]
Mathlib/Data/Set/Intervals/UnorderedInterval.lean
Set.uIcc_prod_uIcc
[]
[ 149, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 147, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Basic.lean
fderiv_id'
[]
[ 1038, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1037, 1 ]
Mathlib/Topology/MetricSpace/Lipschitz.lean
LipschitzWith.iff_le_add_mul
[]
[ 348, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 346, 11 ]
Mathlib/Data/Dfinsupp/NeLocus.lean
Dfinsupp.coe_neLocus
[]
[ 55, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 54, 1 ]
Mathlib/Analysis/SpecialFunctions/Complex/Circle.lean
Real.Angle.expMapCircle_add
[ { "state_after": "case h\nθ₂ : Angle\nx✝ : ℝ\n⊢ expMapCircle (↑x✝ + θ₂) = expMapCircle ↑x✝ * expMapCircle θ₂", "state_before": "θ₁ θ₂ : Angle\n⊢ expMapCircle (θ₁ + θ₂) = expMapCircle θ₁ * expMapCircle θ₂", "tactic": "induction θ₁ using Real.Angle.induction_on" }, { "state_after": "case h.h\nx✝¹ x✝ : ℝ\n⊢ expMapCircle (↑x✝¹ + ↑x✝) = expMapCircle ↑x✝¹ * expMapCircle ↑x✝", "state_before": "case h\nθ₂ : Angle\nx✝ : ℝ\n⊢ expMapCircle (↑x✝ + θ₂) = expMapCircle ↑x✝ * expMapCircle θ₂", "tactic": "induction θ₂ using Real.Angle.induction_on" }, { "state_after": "no goals", "state_before": "case h.h\nx✝¹ x✝ : ℝ\n⊢ expMapCircle (↑x✝¹ + ↑x✝) = expMapCircle ↑x✝¹ * expMapCircle ↑x✝", "tactic": "exact _root_.expMapCircle_add _ _" } ]
[ 146, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 142, 1 ]
Mathlib/Topology/Order/Basic.lean
isClosed_Iic
[]
[ 139, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 138, 1 ]
Mathlib/Analysis/NormedSpace/LinearIsometry.lean
LinearIsometryEquiv.toIsometryEquiv_inj
[]
[ 644, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 642, 1 ]
Mathlib/Algebra/Order/Archimedean.lean
exists_int_lt
[ { "state_after": "α : Type u_1\ninst✝¹ : StrictOrderedRing α\ninst✝ : Archimedean α\nx : α\nn : ℤ\nh : -x < ↑n\n⊢ -↑n < x", "state_before": "α : Type u_1\ninst✝¹ : StrictOrderedRing α\ninst✝ : Archimedean α\nx : α\nn : ℤ\nh : -x < ↑n\n⊢ ↑(-n) < x", "tactic": "rw [Int.cast_neg]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : StrictOrderedRing α\ninst✝ : Archimedean α\nx : α\nn : ℤ\nh : -x < ↑n\n⊢ -↑n < x", "tactic": "exact neg_lt.1 h" } ]
[ 156, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 154, 1 ]
Mathlib/Algebra/Hom/Aut.lean
AddAut.one_apply
[]
[ 226, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 225, 1 ]
Mathlib/RingTheory/IntegralClosure.lean
isIntegral_sub
[]
[ 518, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 516, 1 ]
Mathlib/NumberTheory/Zsqrtd/Basic.lean
Zsqrtd.not_sqLe_succ
[]
[ 872, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 871, 1 ]
Mathlib/LinearAlgebra/Quotient.lean
Submodule.mapQ_zero
[ { "state_after": "no goals", "state_before": "R : Type ?u.264287\nM : Type ?u.264290\nr : R\nx y : M\ninst✝⁵ : Ring R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\np p' : Submodule R M\nR₂ : Type ?u.265303\nM₂ : Type ?u.265306\ninst✝² : Ring R₂\ninst✝¹ : AddCommGroup M₂\ninst✝ : Module R₂ M₂\nτ₁₂ : R →+* R₂\nq : Submodule R₂ M₂\n⊢ p ≤ comap 0 q", "tactic": "simp" }, { "state_after": "case h.h\nR : Type u_2\nM : Type u_1\nr : R\nx y : M\ninst✝⁵ : Ring R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\np p' : Submodule R M\nR₂ : Type u_3\nM₂ : Type u_4\ninst✝² : Ring R₂\ninst✝¹ : AddCommGroup M₂\ninst✝ : Module R₂ M₂\nτ₁₂ : R →+* R₂\nq : Submodule R₂ M₂\nh : optParam (p ≤ comap 0 q) (_ : p ≤ comap 0 q)\nx✝ : M\n⊢ ↑(comp (mapQ p q 0 h) (mkQ p)) x✝ = ↑(comp 0 (mkQ p)) x✝", "state_before": "R : Type u_2\nM : Type u_1\nr : R\nx y : M\ninst✝⁵ : Ring R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\np p' : Submodule R M\nR₂ : Type u_3\nM₂ : Type u_4\ninst✝² : Ring R₂\ninst✝¹ : AddCommGroup M₂\ninst✝ : Module R₂ M₂\nτ₁₂ : R →+* R₂\nq : Submodule R₂ M₂\nh : optParam (p ≤ comap 0 q) (_ : p ≤ comap 0 q)\n⊢ mapQ p q 0 h = 0", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h.h\nR : Type u_2\nM : Type u_1\nr : R\nx y : M\ninst✝⁵ : Ring R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\np p' : Submodule R M\nR₂ : Type u_3\nM₂ : Type u_4\ninst✝² : Ring R₂\ninst✝¹ : AddCommGroup M₂\ninst✝ : Module R₂ M₂\nτ₁₂ : R →+* R₂\nq : Submodule R₂ M₂\nh : optParam (p ≤ comap 0 q) (_ : p ≤ comap 0 q)\nx✝ : M\n⊢ ↑(comp (mapQ p q 0 h) (mkQ p)) x✝ = ↑(comp 0 (mkQ p)) x✝", "tactic": "simp" } ]
[ 426, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 423, 1 ]
Mathlib/CategoryTheory/Limits/HasLimits.lean
CategoryTheory.Limits.HasColimit.isoOfEquivalence_inv_π
[ { "state_after": "no goals", "state_before": "J : Type u₁\ninst✝⁴ : Category J\nK : Type u₂\ninst✝³ : Category K\nC : Type u\ninst✝² : Category C\nF✝ F : J ⥤ C\ninst✝¹ : HasColimit F\nG : K ⥤ C\ninst✝ : HasColimit G\ne : J ≌ K\nw : e.functor ⋙ G ≅ F\nk : K\n⊢ colimit.ι G k ≫ (isoOfEquivalence e w).inv =\n G.map ((Equivalence.counitInv e).app k) ≫ w.hom.app (e.inverse.obj k) ≫ colimit.ι F (e.inverse.obj k)", "tactic": "simp [HasColimit.isoOfEquivalence, IsColimit.coconePointsIsoOfEquivalence_inv]" } ]
[ 960, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 956, 1 ]
Mathlib/Data/Finset/Image.lean
Finset.mem_image
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.61453\ninst✝ : DecidableEq β\nf g : α → β\ns : Finset α\nt : Finset β\na : α\nb c : β\n⊢ b ∈ image f s ↔ ∃ a, a ∈ s ∧ f a = b", "tactic": "simp only [mem_def, image_val, mem_dedup, Multiset.mem_map, exists_prop]" } ]
[ 328, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 327, 1 ]
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.IsNormal.blsub_eq
[ { "state_after": "α : Type ?u.366269\nβ : Type ?u.366272\nγ : Type ?u.366275\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nf : Ordinal → Ordinal\nH : IsNormal f\no : Ordinal\nh : IsLimit o\n⊢ ∀ (a : Ordinal), a < o → f a < f (succ a)", "state_before": "α : Type ?u.366269\nβ : Type ?u.366272\nγ : Type ?u.366275\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nf : Ordinal → Ordinal\nH : IsNormal f\no : Ordinal\nh : IsLimit o\n⊢ (blsub o fun x x_1 => f x) = f o", "tactic": "rw [← IsNormal.bsup_eq.{u, v} H h, bsup_eq_blsub_of_lt_succ_limit h]" }, { "state_after": "no goals", "state_before": "α : Type ?u.366269\nβ : Type ?u.366272\nγ : Type ?u.366275\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\nf : Ordinal → Ordinal\nH : IsNormal f\no : Ordinal\nh : IsLimit o\n⊢ ∀ (a : Ordinal), a < o → f a < f (succ a)", "tactic": "exact fun a _ => H.1 a" } ]
[ 1970, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1967, 1 ]
Mathlib/MeasureTheory/MeasurableSpace.lean
Measurable.subtype_coe
[]
[ 564, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 562, 1 ]
Mathlib/GroupTheory/Perm/Basic.lean
Equiv.swap_mul_self
[]
[ 519, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 518, 1 ]
Mathlib/Combinatorics/SimpleGraph/Coloring.lean
SimpleGraph.chromaticNumber_bddBelow
[]
[ 250, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 249, 1 ]
Mathlib/SetTheory/Ordinal/Principal.lean
Ordinal.principal_add_isLimit
[ { "state_after": "case refine'_1\no : Ordinal\nho₁ : 1 < o\nho : Principal (fun x x_1 => x + x_1) o\nho₀ : o = 0\n⊢ False\n\ncase refine'_2\no : Ordinal\nho₁ : 1 < o\nho : Principal (fun x x_1 => x + x_1) o\na : Ordinal\nhao : a < o\n⊢ succ a < o", "state_before": "o : Ordinal\nho₁ : 1 < o\nho : Principal (fun x x_1 => x + x_1) o\n⊢ IsLimit o", "tactic": "refine' ⟨fun ho₀ => _, fun a hao => _⟩" }, { "state_after": "case refine'_1\no : Ordinal\nho₁ : 1 < 0\nho : Principal (fun x x_1 => x + x_1) o\nho₀ : o = 0\n⊢ False", "state_before": "case refine'_1\no : Ordinal\nho₁ : 1 < o\nho : Principal (fun x x_1 => x + x_1) o\nho₀ : o = 0\n⊢ False", "tactic": "rw [ho₀] at ho₁" }, { "state_after": "no goals", "state_before": "case refine'_1\no : Ordinal\nho₁ : 1 < 0\nho : Principal (fun x x_1 => x + x_1) o\nho₀ : o = 0\n⊢ False", "tactic": "exact not_lt_of_gt zero_lt_one ho₁" }, { "state_after": "case refine'_2.inl\no : Ordinal\nho₁ : 1 < o\nho : Principal (fun x x_1 => x + x_1) o\na : Ordinal\nhao : a < o\nha : a = 0\n⊢ succ a < o\n\ncase refine'_2.inr\no : Ordinal\nho₁ : 1 < o\nho : Principal (fun x x_1 => x + x_1) o\na : Ordinal\nhao : a < o\nha : a ≠ 0\n⊢ succ a < o", "state_before": "case refine'_2\no : Ordinal\nho₁ : 1 < o\nho : Principal (fun x x_1 => x + x_1) o\na : Ordinal\nhao : a < o\n⊢ succ a < o", "tactic": "cases' eq_or_ne a 0 with ha ha" }, { "state_after": "case refine'_2.inl\no : Ordinal\nho₁ : 1 < o\nho : Principal (fun x x_1 => x + x_1) o\na : Ordinal\nhao : a < o\nha : a = 0\n⊢ 1 < o", "state_before": "case refine'_2.inl\no : Ordinal\nho₁ : 1 < o\nho : Principal (fun x x_1 => x + x_1) o\na : Ordinal\nhao : a < o\nha : a = 0\n⊢ succ a < o", "tactic": "rw [ha, succ_zero]" }, { "state_after": "no goals", "state_before": "case refine'_2.inl\no : Ordinal\nho₁ : 1 < o\nho : Principal (fun x x_1 => x + x_1) o\na : Ordinal\nhao : a < o\nha : a = 0\n⊢ 1 < o", "tactic": "exact ho₁" }, { "state_after": "case refine'_2.inr\no : Ordinal\nho₁ : 1 < o\nho : Principal (fun x x_1 => x + x_1) o\na : Ordinal\nhao : a < o\nha : a ≠ 0\n⊢ succ a ≤ (fun x x_1 => x + x_1) a a", "state_before": "case refine'_2.inr\no : Ordinal\nho₁ : 1 < o\nho : Principal (fun x x_1 => x + x_1) o\na : Ordinal\nhao : a < o\nha : a ≠ 0\n⊢ succ a < o", "tactic": "refine' lt_of_le_of_lt _ (ho hao hao)" }, { "state_after": "no goals", "state_before": "case refine'_2.inr\no : Ordinal\nho₁ : 1 < o\nho : Principal (fun x x_1 => x + x_1) o\na : Ordinal\nhao : a < o\nha : a ≠ 0\n⊢ succ a ≤ (fun x x_1 => x + x_1) a a", "tactic": "rwa [← add_one_eq_succ, add_le_add_iff_left, one_le_iff_ne_zero]" } ]
[ 152, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 143, 1 ]
Mathlib/Data/Finset/Pointwise.lean
Finset.op_smul_finset_smul_eq_smul_smul_finset
[ { "state_after": "case a\nF : Type ?u.755717\nα : Type u_3\nβ : Type u_1\nγ : Type u_2\ninst✝⁴ : DecidableEq β\ninst✝³ : DecidableEq γ\ninst✝² : SMul αᵐᵒᵖ β\ninst✝¹ : SMul β γ\ninst✝ : SMul α γ\na : α\ns : Finset β\nt : Finset γ\nh : ∀ (a : α) (b : β) (c : γ), (op a • b) • c = b • a • c\na✝ : γ\n⊢ a✝ ∈ (op a • s) • t ↔ a✝ ∈ s • a • t", "state_before": "F : Type ?u.755717\nα : Type u_3\nβ : Type u_1\nγ : Type u_2\ninst✝⁴ : DecidableEq β\ninst✝³ : DecidableEq γ\ninst✝² : SMul αᵐᵒᵖ β\ninst✝¹ : SMul β γ\ninst✝ : SMul α γ\na : α\ns : Finset β\nt : Finset γ\nh : ∀ (a : α) (b : β) (c : γ), (op a • b) • c = b • a • c\n⊢ (op a • s) • t = s • a • t", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case a\nF : Type ?u.755717\nα : Type u_3\nβ : Type u_1\nγ : Type u_2\ninst✝⁴ : DecidableEq β\ninst✝³ : DecidableEq γ\ninst✝² : SMul αᵐᵒᵖ β\ninst✝¹ : SMul β γ\ninst✝ : SMul α γ\na : α\ns : Finset β\nt : Finset γ\nh : ∀ (a : α) (b : β) (c : γ), (op a • b) • c = b • a • c\na✝ : γ\n⊢ a✝ ∈ (op a • s) • t ↔ a✝ ∈ s • a • t", "tactic": "simp [mem_smul, mem_smul_finset, h]" } ]
[ 1826, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1823, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.Insert.comm
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.108268\nγ : Type ?u.108271\ninst✝ : DecidableEq α\ns✝ t u v : Finset α\na✝ b✝ a b : α\ns : Finset α\nx : α\n⊢ x ∈ insert a (insert b s) ↔ x ∈ insert b (insert a s)", "tactic": "simp only [mem_insert, or_left_comm]" } ]
[ 1117, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1116, 1 ]
Mathlib/Data/Sym/Basic.lean
Sym.attach_nil
[]
[ 452, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 451, 1 ]
Mathlib/Data/Complex/Basic.lean
Complex.AbsTheory.abs_re_le_abs
[ { "state_after": "z : ℂ\n⊢ z.re * z.re ≤ ↑normSq z", "state_before": "z : ℂ\n⊢ abs z.re ≤ Real.sqrt (↑normSq z)", "tactic": "rw [mul_self_le_mul_self_iff (abs_nonneg z.re) (abs_nonneg' _), abs_mul_abs_self, mul_self_abs]" }, { "state_after": "no goals", "state_before": "z : ℂ\n⊢ z.re * z.re ≤ ↑normSq z", "tactic": "apply re_sq_le_normSq" } ]
[ 918, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 916, 9 ]
Mathlib/Algebra/Lie/Nilpotent.lean
LieModule.isNilpotent_of_top_iff
[]
[ 504, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 502, 1 ]
Mathlib/Algebra/MonoidAlgebra/Support.lean
AddMonoidAlgebra.mem_span_support
[ { "state_after": "no goals", "state_before": "k : Type u₁\nG : Type u₂\ninst✝¹ : Semiring k\ninst✝ : AddZeroClass G\nf : AddMonoidAlgebra k G\n⊢ f ∈ Submodule.span k (↑(of k G) '' ↑f.support)", "tactic": "erw [of, MonoidHom.coe_mk, ← Finsupp.supported_eq_span_single, Finsupp.mem_supported]" } ]
[ 145, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 143, 1 ]
Mathlib/Analysis/NormedSpace/MStructure.lean
IsLprojection.Lcomplement_iff
[]
[ 105, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 104, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Diagonal.lean
CategoryTheory.Limits.pullback_diagonal_map_snd_fst_fst
[ { "state_after": "no goals", "state_before": "C : Type ?u.9333\ninst✝¹ : Category C\nX Y Z : C\ninst✝ : HasPullbacks C\nU V₁ V₂ : C\nf : X ⟶ Y\ni : U ⟶ Y\ni₁ : V₁ ⟶ pullback f i\ni₂ : V₂ ⟶ pullback f i\n⊢ (i₁ ≫ snd) ≫ i = (i₁ ≫ fst) ≫ f", "tactic": "simp [condition]" }, { "state_after": "no goals", "state_before": "C : Type ?u.9333\ninst✝¹ : Category C\nX Y Z : C\ninst✝ : HasPullbacks C\nU V₁ V₂ : C\nf : X ⟶ Y\ni : U ⟶ Y\ni₁ : V₁ ⟶ pullback f i\ni₂ : V₂ ⟶ pullback f i\n⊢ (i₂ ≫ snd) ≫ i = (i₂ ≫ fst) ≫ f", "tactic": "simp [condition]" }, { "state_after": "C : Type u_2\ninst✝¹ : Category C\nX Y Z : C\ninst✝ : HasPullbacks C\nU V₁ V₂ : C\nf : X ⟶ Y\ni : U ⟶ Y\ni₁ : V₁ ⟶ pullback f i\ni₂ : V₂ ⟶ pullback f i\n⊢ snd ≫ fst ≫ i₁ ≫ fst = fst ≫ 𝟙 X", "state_before": "C : Type u_2\ninst✝¹ : Category C\nX Y Z : C\ninst✝ : HasPullbacks C\nU V₁ V₂ : C\nf : X ⟶ Y\ni : U ⟶ Y\ni₁ : V₁ ⟶ pullback f i\ni₂ : V₂ ⟶ pullback f i\n⊢ snd ≫ fst ≫ i₁ ≫ fst = fst", "tactic": "conv_rhs => rw [← Category.comp_id pullback.fst]" }, { "state_after": "no goals", "state_before": "C : Type u_2\ninst✝¹ : Category C\nX Y Z : C\ninst✝ : HasPullbacks C\nU V₁ V₂ : C\nf : X ⟶ Y\ni : U ⟶ Y\ni₁ : V₁ ⟶ pullback f i\ni₂ : V₂ ⟶ pullback f i\n⊢ snd ≫ fst ≫ i₁ ≫ fst = fst ≫ 𝟙 X", "tactic": "rw [← diagonal_fst f, pullback.condition_assoc, pullback.lift_fst]" } ]
[ 100, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 91, 1 ]
Mathlib/Topology/Algebra/Module/Basic.lean
ContinuousLinearMap.coe_restrictScalars
[]
[ 1680, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1678, 1 ]
Mathlib/LinearAlgebra/Matrix/ToLin.lean
Matrix.mulVec_stdBasis_apply
[]
[ 273, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 271, 1 ]
Mathlib/Algebra/Homology/ImageToKernel.lean
imageToKernel_comp_mono
[ { "state_after": "no goals", "state_before": "ι : Type ?u.14901\nV : Type u\ninst✝⁴ : Category V\ninst✝³ : HasZeroMorphisms V\nA B C : V\nf : A ⟶ B\ng : B ⟶ C\ninst✝² : HasKernels V\ninst✝¹ : HasImages V\nD : V\nh : C ⟶ D\ninst✝ : Mono h\nw : f ≫ g ≫ h = 0\n⊢ (f ≫ g) ≫ h = 0 ≫ h", "tactic": "simpa using w" }, { "state_after": "case h\nι : Type ?u.14901\nV : Type u\ninst✝⁴ : Category V\ninst✝³ : HasZeroMorphisms V\nA B C : V\nf : A ⟶ B\ng : B ⟶ C\ninst✝² : HasKernels V\ninst✝¹ : HasImages V\nD : V\nh : C ⟶ D\ninst✝ : Mono h\nw : f ≫ g ≫ h = 0\n⊢ imageToKernel f (g ≫ h) w ≫ Subobject.arrow (kernelSubobject (g ≫ h)) =\n (imageToKernel f g (_ : f ≫ g = 0) ≫\n (Subobject.isoOfEq (kernelSubobject (g ≫ h)) (kernelSubobject g)\n (_ : kernelSubobject (g ≫ h) = kernelSubobject g)).inv) ≫\n Subobject.arrow (kernelSubobject (g ≫ h))", "state_before": "ι : Type ?u.14901\nV : Type u\ninst✝⁴ : Category V\ninst✝³ : HasZeroMorphisms V\nA B C : V\nf : A ⟶ B\ng : B ⟶ C\ninst✝² : HasKernels V\ninst✝¹ : HasImages V\nD : V\nh : C ⟶ D\ninst✝ : Mono h\nw : f ≫ g ≫ h = 0\n⊢ imageToKernel f (g ≫ h) w =\n imageToKernel f g (_ : f ≫ g = 0) ≫\n (Subobject.isoOfEq (kernelSubobject (g ≫ h)) (kernelSubobject g)\n (_ : kernelSubobject (g ≫ h) = kernelSubobject g)).inv", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nι : Type ?u.14901\nV : Type u\ninst✝⁴ : Category V\ninst✝³ : HasZeroMorphisms V\nA B C : V\nf : A ⟶ B\ng : B ⟶ C\ninst✝² : HasKernels V\ninst✝¹ : HasImages V\nD : V\nh : C ⟶ D\ninst✝ : Mono h\nw : f ≫ g ≫ h = 0\n⊢ imageToKernel f (g ≫ h) w ≫ Subobject.arrow (kernelSubobject (g ≫ h)) =\n (imageToKernel f g (_ : f ≫ g = 0) ≫\n (Subobject.isoOfEq (kernelSubobject (g ≫ h)) (kernelSubobject g)\n (_ : kernelSubobject (g ≫ h) = kernelSubobject g)).inv) ≫\n Subobject.arrow (kernelSubobject (g ≫ h))", "tactic": "simp" } ]
[ 122, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 117, 1 ]
Mathlib/FieldTheory/Separable.lean
Polynomial.multiplicity_le_one_of_separable
[ { "state_after": "R : Type u\ninst✝¹ : CommSemiring R\nS : Type v\ninst✝ : CommSemiring S\np✝ q✝ : ℕ\np q : R[X]\nhsep : Separable p\nhq : 1 < multiplicity q p\n⊢ IsUnit q", "state_before": "R : Type u\ninst✝¹ : CommSemiring R\nS : Type v\ninst✝ : CommSemiring S\np✝ q✝ : ℕ\np q : R[X]\nhq : ¬IsUnit q\nhsep : Separable p\n⊢ multiplicity q p ≤ 1", "tactic": "contrapose! hq" }, { "state_after": "R : Type u\ninst✝¹ : CommSemiring R\nS : Type v\ninst✝ : CommSemiring S\np✝ q✝ : ℕ\np q : R[X]\nhsep : Separable p\nhq : 1 < multiplicity q p\n⊢ q * q ∣ p", "state_before": "R : Type u\ninst✝¹ : CommSemiring R\nS : Type v\ninst✝ : CommSemiring S\np✝ q✝ : ℕ\np q : R[X]\nhsep : Separable p\nhq : 1 < multiplicity q p\n⊢ IsUnit q", "tactic": "apply isUnit_of_self_mul_dvd_separable hsep" }, { "state_after": "R : Type u\ninst✝¹ : CommSemiring R\nS : Type v\ninst✝ : CommSemiring S\np✝ q✝ : ℕ\np q : R[X]\nhsep : Separable p\nhq : 1 < multiplicity q p\n⊢ q ^ 2 ∣ p", "state_before": "R : Type u\ninst✝¹ : CommSemiring R\nS : Type v\ninst✝ : CommSemiring S\np✝ q✝ : ℕ\np q : R[X]\nhsep : Separable p\nhq : 1 < multiplicity q p\n⊢ q * q ∣ p", "tactic": "rw [← sq]" }, { "state_after": "case a\nR : Type u\ninst✝¹ : CommSemiring R\nS : Type v\ninst✝ : CommSemiring S\np✝ q✝ : ℕ\np q : R[X]\nhsep : Separable p\nhq : 1 < multiplicity q p\n⊢ ↑2 ≤ multiplicity q p", "state_before": "R : Type u\ninst✝¹ : CommSemiring R\nS : Type v\ninst✝ : CommSemiring S\np✝ q✝ : ℕ\np q : R[X]\nhsep : Separable p\nhq : 1 < multiplicity q p\n⊢ q ^ 2 ∣ p", "tactic": "apply multiplicity.pow_dvd_of_le_multiplicity" }, { "state_after": "case a\nR : Type u\ninst✝¹ : CommSemiring R\nS : Type v\ninst✝ : CommSemiring S\np✝ q✝ : ℕ\np q : R[X]\nhsep : Separable p\nhq : 1 < multiplicity q p\nh : { Dom := 1.Dom ∧ 1.Dom, get := fun x => 2 } ≤ multiplicity q p\n⊢ ↑2 ≤ multiplicity q p", "state_before": "case a\nR : Type u\ninst✝¹ : CommSemiring R\nS : Type v\ninst✝ : CommSemiring S\np✝ q✝ : ℕ\np q : R[X]\nhsep : Separable p\nhq : 1 < multiplicity q p\n⊢ ↑2 ≤ multiplicity q p", "tactic": "have h : ⟨Part.Dom 1 ∧ Part.Dom 1, fun _ ↦ 2⟩ ≤ multiplicity q p := PartENat.add_one_le_of_lt hq" }, { "state_after": "case a\nR : Type u\ninst✝¹ : CommSemiring R\nS : Type v\ninst✝ : CommSemiring S\np✝ q✝ : ℕ\np q : R[X]\nhsep : Separable p\nhq : 1 < multiplicity q p\nh : { Dom := 1.Dom, get := fun x => 2 } ≤ multiplicity q p\n⊢ ↑2 ≤ multiplicity q p", "state_before": "case a\nR : Type u\ninst✝¹ : CommSemiring R\nS : Type v\ninst✝ : CommSemiring S\np✝ q✝ : ℕ\np q : R[X]\nhsep : Separable p\nhq : 1 < multiplicity q p\nh : { Dom := 1.Dom ∧ 1.Dom, get := fun x => 2 } ≤ multiplicity q p\n⊢ ↑2 ≤ multiplicity q p", "tactic": "rw [and_self] at h" }, { "state_after": "no goals", "state_before": "case a\nR : Type u\ninst✝¹ : CommSemiring R\nS : Type v\ninst✝ : CommSemiring S\np✝ q✝ : ℕ\np q : R[X]\nhsep : Separable p\nhq : 1 < multiplicity q p\nh : { Dom := 1.Dom, get := fun x => 2 } ≤ multiplicity q p\n⊢ ↑2 ≤ multiplicity q p", "tactic": "exact h" } ]
[ 160, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 152, 1 ]
Mathlib/Geometry/Euclidean/Basic.lean
EuclideanGeometry.orthogonalProjection_vsub_mem_direction_orthogonal
[]
[ 432, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 430, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.sdiff_sdiff_eq_sdiff_union
[]
[ 2303, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2302, 1 ]
Mathlib/Combinatorics/Young/YoungDiagram.lean
YoungDiagram.get_rowLens
[ { "state_after": "no goals", "state_before": "μ : YoungDiagram\ni : Fin (List.length (rowLens μ))\n⊢ List.get (rowLens μ) i = rowLen μ ↑i", "tactic": "simp only [rowLens, List.get_range, List.get_map]" } ]
[ 421, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 420, 1 ]
Mathlib/Analysis/Calculus/ContDiff.lean
ContDiffWithinAt.prod_map'
[]
[ 1597, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1593, 1 ]
Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.mk'_mem_incidenceSet_iff
[]
[ 835, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 834, 1 ]
Mathlib/Algebra/Group/Prod.lean
Prod.fst_mul_snd
[]
[ 128, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 127, 1 ]
Mathlib/Data/Finset/LocallyFinite.lean
Finset.map_add_left_Ioc
[ { "state_after": "ι : Type ?u.221440\nα : Type u_1\ninst✝² : OrderedCancelAddCommMonoid α\ninst✝¹ : ExistsAddOfLE α\ninst✝ : LocallyFiniteOrder α\na b c : α\n⊢ ↑(addLeftEmbedding c) '' Set.Ioc a b = Set.Ioc (c + a) (c + b)", "state_before": "ι : Type ?u.221440\nα : Type u_1\ninst✝² : OrderedCancelAddCommMonoid α\ninst✝¹ : ExistsAddOfLE α\ninst✝ : LocallyFiniteOrder α\na b c : α\n⊢ map (addLeftEmbedding c) (Ioc a b) = Ioc (c + a) (c + b)", "tactic": "rw [← coe_inj, coe_map, coe_Ioc, coe_Ioc]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.221440\nα : Type u_1\ninst✝² : OrderedCancelAddCommMonoid α\ninst✝¹ : ExistsAddOfLE α\ninst✝ : LocallyFiniteOrder α\na b c : α\n⊢ ↑(addLeftEmbedding c) '' Set.Ioc a b = Set.Ioc (c + a) (c + b)", "tactic": "exact Set.image_const_add_Ioc _ _ _" } ]
[ 1072, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1069, 1 ]
Mathlib/RingTheory/Polynomial/Pochhammer.lean
pochhammer_eval_cast
[ { "state_after": "no goals", "state_before": "S : Type u\ninst✝ : Semiring S\nn k : ℕ\n⊢ ↑(eval k (pochhammer ℕ n)) = eval (↑k) (pochhammer S n)", "tactic": "rw [← pochhammer_map (algebraMap ℕ S), eval_map, ← eq_natCast (algebraMap ℕ S), eval₂_at_nat_cast,\n Nat.cast_id, eq_natCast]" } ]
[ 82, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 79, 1 ]
Mathlib/CategoryTheory/Preadditive/Mat.lean
CategoryTheory.Mat.comp_def
[]
[ 609, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 607, 1 ]
Mathlib/Data/IsROrC/Basic.lean
IsROrC.ofReal_intCast
[]
[ 665, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 664, 1 ]
Mathlib/RingTheory/NonZeroDivisors.lean
mul_left_coe_nonZeroDivisors_eq_zero_iff
[]
[ 65, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 64, 1 ]
Std/Data/Int/DivMod.lean
Int.div_eq_ediv_of_dvd
[ { "state_after": "no goals", "state_before": "a b : Int\nh : b ∣ a\n⊢ div a b = a / b", "tactic": "if b0 : b = 0 then simp [b0]\nelse rw [Int.div_eq_iff_eq_mul_left b0 h, ← Int.ediv_eq_iff_eq_mul_left b0 h]" }, { "state_after": "no goals", "state_before": "a b : Int\nh : b ∣ a\nb0 : b = 0\n⊢ div a b = a / b", "tactic": "simp [b0]" }, { "state_after": "no goals", "state_before": "a b : Int\nh : b ∣ a\nb0 : ¬b = 0\n⊢ div a b = a / b", "tactic": "rw [Int.div_eq_iff_eq_mul_left b0 h, ← Int.ediv_eq_iff_eq_mul_left b0 h]" } ]
[ 795, 80 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 793, 1 ]
Mathlib/Topology/MetricSpace/PiNat.lean
PiNat.cylinder_eq_pi
[ { "state_after": "case h\nE : ℕ → Type u_1\nx : (n : ℕ) → E n\nn : ℕ\ny : (n : ℕ) → E n\n⊢ y ∈ cylinder x n ↔ y ∈ Set.pi ↑(Finset.range n) fun i => {x i}", "state_before": "E : ℕ → Type u_1\nx : (n : ℕ) → E n\nn : ℕ\n⊢ cylinder x n = Set.pi ↑(Finset.range n) fun i => {x i}", "tactic": "ext y" }, { "state_after": "no goals", "state_before": "case h\nE : ℕ → Type u_1\nx : (n : ℕ) → E n\nn : ℕ\ny : (n : ℕ) → E n\n⊢ y ∈ cylinder x n ↔ y ∈ Set.pi ↑(Finset.range n) fun i => {x i}", "tactic": "simp [cylinder]" } ]
[ 117, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 114, 1 ]
Mathlib/Analysis/Convex/Combination.lean
convexHull_prod
[]
[ 426, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 421, 1 ]
Mathlib/MeasureTheory/Function/StronglyMeasurable/Basic.lean
MeasureTheory.AEStronglyMeasurable.smul_const
[]
[ 1344, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1342, 11 ]
Mathlib/Probability/ProbabilityMassFunction/Basic.lean
Pmf.toOuterMeasure_apply_eq_zero_iff
[ { "state_after": "α : Type u_1\nβ : Type ?u.25862\nγ : Type ?u.25865\np : Pmf α\ns t : Set α\n⊢ (∀ (i : α), Set.indicator s (↑p) i = 0) ↔ Disjoint (support p) s", "state_before": "α : Type u_1\nβ : Type ?u.25862\nγ : Type ?u.25865\np : Pmf α\ns t : Set α\n⊢ ↑(toOuterMeasure p) s = 0 ↔ Disjoint (support p) s", "tactic": "rw [toOuterMeasure_apply, ENNReal.tsum_eq_zero]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.25862\nγ : Type ?u.25865\np : Pmf α\ns t : Set α\n⊢ (∀ (i : α), Set.indicator s (↑p) i = 0) ↔ Disjoint (support p) s", "tactic": "exact Function.funext_iff.symm.trans Set.indicator_eq_zero'" } ]
[ 197, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 195, 1 ]
Mathlib/Data/Int/Cast/Lemmas.lean
Int.cast_le
[ { "state_after": "no goals", "state_before": "F : Type ?u.15849\nι : Type ?u.15852\nα : Type u_1\nβ : Type ?u.15858\ninst✝¹ : OrderedRing α\ninst✝ : Nontrivial α\nm n : ℤ\n⊢ ↑m ≤ ↑n ↔ m ≤ n", "tactic": "rw [← sub_nonneg, ← cast_sub, cast_nonneg, sub_nonneg]" } ]
[ 132, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 131, 1 ]
Mathlib/MeasureTheory/Measure/NullMeasurable.lean
MeasureTheory.NullMeasurableSet.const
[]
[ 217, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 216, 11 ]
Mathlib/Algebra/Module/Equiv.lean
LinearEquiv.toLinearMap_symm_comp_eq
[ { "state_after": "case mp.h\nR : Type ?u.209595\nR₁ : Type u_2\nR₂ : Type u_5\nR₃ : Type u_1\nk : Type ?u.209607\nS : Type ?u.209610\nM : Type ?u.209613\nM₁ : Type u_4\nM₂ : Type u_6\nM₃ : Type u_3\nN₁ : Type ?u.209625\nN₂ : Type ?u.209628\nN₃ : Type ?u.209631\nN₄ : Type ?u.209634\nι : Type ?u.209637\nM₄ : Type ?u.209640\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring S\ninst✝¹⁵ : Semiring R₁\ninst✝¹⁴ : Semiring R₂\ninst✝¹³ : Semiring R₃\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : AddCommMonoid M₁\ninst✝¹⁰ : AddCommMonoid M₂\ninst✝⁹ : AddCommMonoid M₃\ninst✝⁸ : AddCommMonoid M₄\ninst✝⁷ : AddCommMonoid N₁\ninst✝⁶ : AddCommMonoid N₂\nmodule_M : Module R M\nmodule_S_M₂ : Module S M₂\nσ : R →+* S\nσ' : S →+* R\nre₁ : RingHomInvPair σ σ'\nre₂ : RingHomInvPair σ' σ\ne e' : M ≃ₛₗ[σ] M₂\nmodule_M₁ : Module R₁ M₁\nmodule_M₂ : Module R₂ M₂\nmodule_M₃ : Module R₃ M₃\nmodule_N₁ : Module R₁ N₁\nmodule_N₂ : Module R₁ N₂\nσ₁₂ : R₁ →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₁₃ : R₁ →+* R₃\nσ₂₁ : R₂ →+* R₁\nσ₃₂ : R₃ →+* R₂\nσ₃₁ : R₃ →+* R₁\ninst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁\nre₁₂ : RingHomInvPair σ₁₂ σ₂₁\nre₂₃ : RingHomInvPair σ₂₃ σ₃₂\ninst✝³ : RingHomInvPair σ₁₃ σ₃₁\nre₂₁ : RingHomInvPair σ₂₁ σ₁₂\nre₃₂ : RingHomInvPair σ₃₂ σ₂₃\ninst✝² : RingHomInvPair σ₃₁ σ₁₃\ne₁₂ : M₁ ≃ₛₗ[σ₁₂] M₂\ne₂₃ : M₂ ≃ₛₗ[σ₂₃] M₃\ninst✝¹ : RingHomCompTriple σ₂₁ σ₁₃ σ₂₃\ninst✝ : RingHomCompTriple σ₃₁ σ₁₂ σ₃₂\nf : M₃ →ₛₗ[σ₃₁] M₁\ng : M₃ →ₛₗ[σ₃₂] M₂\nH : LinearMap.comp (↑(symm e₁₂)) g = f\nx✝ : M₃\n⊢ ↑g x✝ = ↑(LinearMap.comp (↑e₁₂) f) x✝\n\ncase mpr.h\nR : Type ?u.209595\nR₁ : Type u_2\nR₂ : Type u_5\nR₃ : Type u_1\nk : Type ?u.209607\nS : Type ?u.209610\nM : Type ?u.209613\nM₁ : Type u_4\nM₂ : Type u_6\nM₃ : Type u_3\nN₁ : Type ?u.209625\nN₂ : Type ?u.209628\nN₃ : Type ?u.209631\nN₄ : Type ?u.209634\nι : Type ?u.209637\nM₄ : Type ?u.209640\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring S\ninst✝¹⁵ : Semiring R₁\ninst✝¹⁴ : Semiring R₂\ninst✝¹³ : Semiring R₃\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : AddCommMonoid M₁\ninst✝¹⁰ : AddCommMonoid M₂\ninst✝⁹ : AddCommMonoid M₃\ninst✝⁸ : AddCommMonoid M₄\ninst✝⁷ : AddCommMonoid N₁\ninst✝⁶ : AddCommMonoid N₂\nmodule_M : Module R M\nmodule_S_M₂ : Module S M₂\nσ : R →+* S\nσ' : S →+* R\nre₁ : RingHomInvPair σ σ'\nre₂ : RingHomInvPair σ' σ\ne e' : M ≃ₛₗ[σ] M₂\nmodule_M₁ : Module R₁ M₁\nmodule_M₂ : Module R₂ M₂\nmodule_M₃ : Module R₃ M₃\nmodule_N₁ : Module R₁ N₁\nmodule_N₂ : Module R₁ N₂\nσ₁₂ : R₁ →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₁₃ : R₁ →+* R₃\nσ₂₁ : R₂ →+* R₁\nσ₃₂ : R₃ →+* R₂\nσ₃₁ : R₃ →+* R₁\ninst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁\nre₁₂ : RingHomInvPair σ₁₂ σ₂₁\nre₂₃ : RingHomInvPair σ₂₃ σ₃₂\ninst✝³ : RingHomInvPair σ₁₃ σ₃₁\nre₂₁ : RingHomInvPair σ₂₁ σ₁₂\nre₃₂ : RingHomInvPair σ₃₂ σ₂₃\ninst✝² : RingHomInvPair σ₃₁ σ₁₃\ne₁₂ : M₁ ≃ₛₗ[σ₁₂] M₂\ne₂₃ : M₂ ≃ₛₗ[σ₂₃] M₃\ninst✝¹ : RingHomCompTriple σ₂₁ σ₁₃ σ₂₃\ninst✝ : RingHomCompTriple σ₃₁ σ₁₂ σ₃₂\nf : M₃ →ₛₗ[σ₃₁] M₁\ng : M₃ →ₛₗ[σ₃₂] M₂\nH : g = LinearMap.comp (↑e₁₂) f\nx✝ : M₃\n⊢ ↑(LinearMap.comp (↑(symm e₁₂)) g) x✝ = ↑f x✝", "state_before": "R : Type ?u.209595\nR₁ : Type u_2\nR₂ : Type u_5\nR₃ : Type u_1\nk : Type ?u.209607\nS : Type ?u.209610\nM : Type ?u.209613\nM₁ : Type u_4\nM₂ : Type u_6\nM₃ : Type u_3\nN₁ : Type ?u.209625\nN₂ : Type ?u.209628\nN₃ : Type ?u.209631\nN₄ : Type ?u.209634\nι : Type ?u.209637\nM₄ : Type ?u.209640\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring S\ninst✝¹⁵ : Semiring R₁\ninst✝¹⁴ : Semiring R₂\ninst✝¹³ : Semiring R₃\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : AddCommMonoid M₁\ninst✝¹⁰ : AddCommMonoid M₂\ninst✝⁹ : AddCommMonoid M₃\ninst✝⁸ : AddCommMonoid M₄\ninst✝⁷ : AddCommMonoid N₁\ninst✝⁶ : AddCommMonoid N₂\nmodule_M : Module R M\nmodule_S_M₂ : Module S M₂\nσ : R →+* S\nσ' : S →+* R\nre₁ : RingHomInvPair σ σ'\nre₂ : RingHomInvPair σ' σ\ne e' : M ≃ₛₗ[σ] M₂\nmodule_M₁ : Module R₁ M₁\nmodule_M₂ : Module R₂ M₂\nmodule_M₃ : Module R₃ M₃\nmodule_N₁ : Module R₁ N₁\nmodule_N₂ : Module R₁ N₂\nσ₁₂ : R₁ →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₁₃ : R₁ →+* R₃\nσ₂₁ : R₂ →+* R₁\nσ₃₂ : R₃ →+* R₂\nσ₃₁ : R₃ →+* R₁\ninst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁\nre₁₂ : RingHomInvPair σ₁₂ σ₂₁\nre₂₃ : RingHomInvPair σ₂₃ σ₃₂\ninst✝³ : RingHomInvPair σ₁₃ σ₃₁\nre₂₁ : RingHomInvPair σ₂₁ σ₁₂\nre₃₂ : RingHomInvPair σ₃₂ σ₂₃\ninst✝² : RingHomInvPair σ₃₁ σ₁₃\ne₁₂ : M₁ ≃ₛₗ[σ₁₂] M₂\ne₂₃ : M₂ ≃ₛₗ[σ₂₃] M₃\ninst✝¹ : RingHomCompTriple σ₂₁ σ₁₃ σ₂₃\ninst✝ : RingHomCompTriple σ₃₁ σ₁₂ σ₃₂\nf : M₃ →ₛₗ[σ₃₁] M₁\ng : M₃ →ₛₗ[σ₃₂] M₂\n⊢ LinearMap.comp (↑(symm e₁₂)) g = f ↔ g = LinearMap.comp (↑e₁₂) f", "tactic": "constructor <;> intro H <;> ext" }, { "state_after": "no goals", "state_before": "case mp.h\nR : Type ?u.209595\nR₁ : Type u_2\nR₂ : Type u_5\nR₃ : Type u_1\nk : Type ?u.209607\nS : Type ?u.209610\nM : Type ?u.209613\nM₁ : Type u_4\nM₂ : Type u_6\nM₃ : Type u_3\nN₁ : Type ?u.209625\nN₂ : Type ?u.209628\nN₃ : Type ?u.209631\nN₄ : Type ?u.209634\nι : Type ?u.209637\nM₄ : Type ?u.209640\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring S\ninst✝¹⁵ : Semiring R₁\ninst✝¹⁴ : Semiring R₂\ninst✝¹³ : Semiring R₃\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : AddCommMonoid M₁\ninst✝¹⁰ : AddCommMonoid M₂\ninst✝⁹ : AddCommMonoid M₃\ninst✝⁸ : AddCommMonoid M₄\ninst✝⁷ : AddCommMonoid N₁\ninst✝⁶ : AddCommMonoid N₂\nmodule_M : Module R M\nmodule_S_M₂ : Module S M₂\nσ : R →+* S\nσ' : S →+* R\nre₁ : RingHomInvPair σ σ'\nre₂ : RingHomInvPair σ' σ\ne e' : M ≃ₛₗ[σ] M₂\nmodule_M₁ : Module R₁ M₁\nmodule_M₂ : Module R₂ M₂\nmodule_M₃ : Module R₃ M₃\nmodule_N₁ : Module R₁ N₁\nmodule_N₂ : Module R₁ N₂\nσ₁₂ : R₁ →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₁₃ : R₁ →+* R₃\nσ₂₁ : R₂ →+* R₁\nσ₃₂ : R₃ →+* R₂\nσ₃₁ : R₃ →+* R₁\ninst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁\nre₁₂ : RingHomInvPair σ₁₂ σ₂₁\nre₂₃ : RingHomInvPair σ₂₃ σ₃₂\ninst✝³ : RingHomInvPair σ₁₃ σ₃₁\nre₂₁ : RingHomInvPair σ₂₁ σ₁₂\nre₃₂ : RingHomInvPair σ₃₂ σ₂₃\ninst✝² : RingHomInvPair σ₃₁ σ₁₃\ne₁₂ : M₁ ≃ₛₗ[σ₁₂] M₂\ne₂₃ : M₂ ≃ₛₗ[σ₂₃] M₃\ninst✝¹ : RingHomCompTriple σ₂₁ σ₁₃ σ₂₃\ninst✝ : RingHomCompTriple σ₃₁ σ₁₂ σ₃₂\nf : M₃ →ₛₗ[σ₃₁] M₁\ng : M₃ →ₛₗ[σ₃₂] M₂\nH : LinearMap.comp (↑(symm e₁₂)) g = f\nx✝ : M₃\n⊢ ↑g x✝ = ↑(LinearMap.comp (↑e₁₂) f) x✝", "tactic": "simp [← H, ← e₁₂.toEquiv.symm_comp_eq f g]" }, { "state_after": "no goals", "state_before": "case mpr.h\nR : Type ?u.209595\nR₁ : Type u_2\nR₂ : Type u_5\nR₃ : Type u_1\nk : Type ?u.209607\nS : Type ?u.209610\nM : Type ?u.209613\nM₁ : Type u_4\nM₂ : Type u_6\nM₃ : Type u_3\nN₁ : Type ?u.209625\nN₂ : Type ?u.209628\nN₃ : Type ?u.209631\nN₄ : Type ?u.209634\nι : Type ?u.209637\nM₄ : Type ?u.209640\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring S\ninst✝¹⁵ : Semiring R₁\ninst✝¹⁴ : Semiring R₂\ninst✝¹³ : Semiring R₃\ninst✝¹² : AddCommMonoid M\ninst✝¹¹ : AddCommMonoid M₁\ninst✝¹⁰ : AddCommMonoid M₂\ninst✝⁹ : AddCommMonoid M₃\ninst✝⁸ : AddCommMonoid M₄\ninst✝⁷ : AddCommMonoid N₁\ninst✝⁶ : AddCommMonoid N₂\nmodule_M : Module R M\nmodule_S_M₂ : Module S M₂\nσ : R →+* S\nσ' : S →+* R\nre₁ : RingHomInvPair σ σ'\nre₂ : RingHomInvPair σ' σ\ne e' : M ≃ₛₗ[σ] M₂\nmodule_M₁ : Module R₁ M₁\nmodule_M₂ : Module R₂ M₂\nmodule_M₃ : Module R₃ M₃\nmodule_N₁ : Module R₁ N₁\nmodule_N₂ : Module R₁ N₂\nσ₁₂ : R₁ →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₁₃ : R₁ →+* R₃\nσ₂₁ : R₂ →+* R₁\nσ₃₂ : R₃ →+* R₂\nσ₃₁ : R₃ →+* R₁\ninst✝⁵ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝⁴ : RingHomCompTriple σ₃₂ σ₂₁ σ₃₁\nre₁₂ : RingHomInvPair σ₁₂ σ₂₁\nre₂₃ : RingHomInvPair σ₂₃ σ₃₂\ninst✝³ : RingHomInvPair σ₁₃ σ₃₁\nre₂₁ : RingHomInvPair σ₂₁ σ₁₂\nre₃₂ : RingHomInvPair σ₃₂ σ₂₃\ninst✝² : RingHomInvPair σ₃₁ σ₁₃\ne₁₂ : M₁ ≃ₛₗ[σ₁₂] M₂\ne₂₃ : M₂ ≃ₛₗ[σ₂₃] M₃\ninst✝¹ : RingHomCompTriple σ₂₁ σ₁₃ σ₂₃\ninst✝ : RingHomCompTriple σ₃₁ σ₁₂ σ₃₂\nf : M₃ →ₛₗ[σ₃₁] M₁\ng : M₃ →ₛₗ[σ₃₂] M₂\nH : g = LinearMap.comp (↑e₁₂) f\nx✝ : M₃\n⊢ ↑(LinearMap.comp (↑(symm e₁₂)) g) x✝ = ↑f x✝", "tactic": "simp [H, e₁₂.toEquiv.symm_comp_eq f g]" } ]
[ 457, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 453, 1 ]
Mathlib/CategoryTheory/Whiskering.lean
CategoryTheory.isoWhiskerRight_inv
[]
[ 189, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 187, 1 ]
Mathlib/Data/Finsupp/Defs.lean
Finsupp.update_eq_single_add_erase
[ { "state_after": "case h\nα : Type u_1\nβ : Type ?u.295412\nγ : Type ?u.295415\nι : Type ?u.295418\nM : Type u_2\nM' : Type ?u.295424\nN : Type ?u.295427\nP : Type ?u.295430\nG : Type ?u.295433\nH : Type ?u.295436\nR : Type ?u.295439\nS : Type ?u.295442\ninst✝ : AddZeroClass M\nf : α →₀ M\na : α\nb : M\nj : α\n⊢ ↑(update f a b) j = ↑(single a b + erase a f) j", "state_before": "α : Type u_1\nβ : Type ?u.295412\nγ : Type ?u.295415\nι : Type ?u.295418\nM : Type u_2\nM' : Type ?u.295424\nN : Type ?u.295427\nP : Type ?u.295430\nG : Type ?u.295433\nH : Type ?u.295436\nR : Type ?u.295439\nS : Type ?u.295442\ninst✝ : AddZeroClass M\nf : α →₀ M\na : α\nb : M\n⊢ update f a b = single a b + erase a f", "tactic": "ext j" }, { "state_after": "case h.inl\nα : Type u_1\nβ : Type ?u.295412\nγ : Type ?u.295415\nι : Type ?u.295418\nM : Type u_2\nM' : Type ?u.295424\nN : Type ?u.295427\nP : Type ?u.295430\nG : Type ?u.295433\nH : Type ?u.295436\nR : Type ?u.295439\nS : Type ?u.295442\ninst✝ : AddZeroClass M\nf : α →₀ M\na : α\nb : M\n⊢ ↑(update f a b) a = ↑(single a b + erase a f) a\n\ncase h.inr\nα : Type u_1\nβ : Type ?u.295412\nγ : Type ?u.295415\nι : Type ?u.295418\nM : Type u_2\nM' : Type ?u.295424\nN : Type ?u.295427\nP : Type ?u.295430\nG : Type ?u.295433\nH : Type ?u.295436\nR : Type ?u.295439\nS : Type ?u.295442\ninst✝ : AddZeroClass M\nf : α →₀ M\na : α\nb : M\nj : α\nh : a ≠ j\n⊢ ↑(update f a b) j = ↑(single a b + erase a f) j", "state_before": "case h\nα : Type u_1\nβ : Type ?u.295412\nγ : Type ?u.295415\nι : Type ?u.295418\nM : Type u_2\nM' : Type ?u.295424\nN : Type ?u.295427\nP : Type ?u.295430\nG : Type ?u.295433\nH : Type ?u.295436\nR : Type ?u.295439\nS : Type ?u.295442\ninst✝ : AddZeroClass M\nf : α →₀ M\na : α\nb : M\nj : α\n⊢ ↑(update f a b) j = ↑(single a b + erase a f) j", "tactic": "rcases eq_or_ne a j with (rfl | h)" }, { "state_after": "no goals", "state_before": "case h.inl\nα : Type u_1\nβ : Type ?u.295412\nγ : Type ?u.295415\nι : Type ?u.295418\nM : Type u_2\nM' : Type ?u.295424\nN : Type ?u.295427\nP : Type ?u.295430\nG : Type ?u.295433\nH : Type ?u.295436\nR : Type ?u.295439\nS : Type ?u.295442\ninst✝ : AddZeroClass M\nf : α →₀ M\na : α\nb : M\n⊢ ↑(update f a b) a = ↑(single a b + erase a f) a", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case h.inr\nα : Type u_1\nβ : Type ?u.295412\nγ : Type ?u.295415\nι : Type ?u.295418\nM : Type u_2\nM' : Type ?u.295424\nN : Type ?u.295427\nP : Type ?u.295430\nG : Type ?u.295433\nH : Type ?u.295436\nR : Type ?u.295439\nS : Type ?u.295442\ninst✝ : AddZeroClass M\nf : α →₀ M\na : α\nb : M\nj : α\nh : a ≠ j\n⊢ ↑(update f a b) j = ↑(single a b + erase a f) j", "tactic": "simp [Function.update_noteq h.symm, single_apply, h, erase_ne, h.symm]" } ]
[ 1047, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1041, 1 ]
Mathlib/Order/CompleteBooleanAlgebra.lean
iSup₂_inf_eq
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nι : Sort w\nκ : ι → Sort u_1\ninst✝ : Frame α\ns t : Set α\na✝ b : α\nf : (i : ι) → κ i → α\na : α\n⊢ (⨆ (i : ι) (j : κ i), f i j) ⊓ a = ⨆ (i : ι) (j : κ i), f i j ⊓ a", "tactic": "simp only [iSup_inf_eq]" } ]
[ 110, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 109, 1 ]
Mathlib/Order/SymmDiff.lean
sdiff_symmDiff'
[ { "state_after": "no goals", "state_before": "ι : Type ?u.61584\nα : Type u_1\nβ : Type ?u.61590\nπ : ι → Type ?u.61595\ninst✝ : GeneralizedBooleanAlgebra α\na b c d : α\n⊢ c \\ a ∆ b = c ⊓ a ⊓ b ⊔ c \\ (a ⊔ b)", "tactic": "rw [sdiff_symmDiff, sdiff_sup, sup_comm]" } ]
[ 420, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 419, 1 ]
Mathlib/Analysis/Calculus/ContDiff.lean
ContDiffAt.inv
[]
[ 1711, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1709, 8 ]
Mathlib/RingTheory/FractionalIdeal.lean
IsFractional.div_of_nonzero
[ { "state_after": "case intro.intro\nR : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\n⊢ IsFractional R₁⁰ (I / J)", "state_before": "R : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\n⊢ IsFractional R₁⁰ (I / J)", "tactic": "obtain ⟨y, mem_J, not_mem_zero⟩ :=\n SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h)" }, { "state_after": "case intro.intro.intro\nR : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\n⊢ IsFractional R₁⁰ (I / J)", "state_before": "case intro.intro\nR : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\n⊢ IsFractional R₁⁰ (I / J)", "tactic": "obtain ⟨y', hy'⟩ := hJ y mem_J" }, { "state_after": "case intro.intro.intro\nR : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\n⊢ aI * y' ∈ R₁⁰ ∧ ∀ (b : K), b ∈ I / J → IsInteger R₁ ((aI * y') • b)", "state_before": "case intro.intro.intro\nR : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\n⊢ IsFractional R₁⁰ (I / J)", "tactic": "use aI * y'" }, { "state_after": "case intro.intro.intro.left\nR : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\n⊢ aI * y' ∈ R₁⁰\n\ncase intro.intro.intro.right\nR : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\n⊢ ∀ (b : K), b ∈ I / J → IsInteger R₁ ((aI * y') • b)", "state_before": "case intro.intro.intro\nR : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\n⊢ aI * y' ∈ R₁⁰ ∧ ∀ (b : K), b ∈ I / J → IsInteger R₁ ((aI * y') • b)", "tactic": "constructor" }, { "state_after": "case intro.intro.intro.right\nR : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\nb : K\nhb : b ∈ I / J\n⊢ IsInteger R₁ ((aI * y') • b)", "state_before": "case intro.intro.intro.right\nR : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\n⊢ ∀ (b : K), b ∈ I / J → IsInteger R₁ ((aI * y') • b)", "tactic": "intro b hb" }, { "state_after": "case h.e'_6\nR : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\nb : K\nhb : b ∈ I / J\n⊢ (aI * y') • b = aI • (b * aJ • y)", "state_before": "case intro.intro.intro.right\nR : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\nb : K\nhb : b ∈ I / J\n⊢ IsInteger R₁ ((aI * y') • b)", "tactic": "convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1" }, { "state_after": "no goals", "state_before": "case h.e'_6\nR : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\nb : K\nhb : b ∈ I / J\n⊢ (aI * y') • b = aI • (b * aJ • y)", "tactic": "rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul]" }, { "state_after": "no goals", "state_before": "R : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\n⊢ 0 < J", "tactic": "simpa only using bot_lt_iff_ne_bot.mpr h" }, { "state_after": "R : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\n⊢ y' ≠ 0", "state_before": "case intro.intro.intro.left\nR : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\n⊢ aI * y' ∈ R₁⁰", "tactic": "apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _)" }, { "state_after": "R : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\ny'_eq_zero : y' = 0\n⊢ False", "state_before": "R : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\n⊢ y' ≠ 0", "tactic": "intro y'_eq_zero" }, { "state_after": "R : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\ny'_eq_zero : y' = 0\nthis : ↑(algebraMap R₁ K) aJ * y = 0\n⊢ False", "state_before": "R : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\ny'_eq_zero : y' = 0\n⊢ False", "tactic": "have : algebraMap R₁ K aJ * y = 0 := by\n rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero]" }, { "state_after": "R : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\ny'_eq_zero : y' = 0\nthis : ↑(algebraMap R₁ K) aJ * y = 0\ny_zero : y = 0\n⊢ False", "state_before": "R : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\ny'_eq_zero : y' = 0\nthis : ↑(algebraMap R₁ K) aJ * y = 0\n⊢ False", "tactic": "have y_zero :=\n (mul_eq_zero.mp this).resolve_left\n (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _)\n (mem_nonZeroDivisors_iff_ne_zero.mp haJ))" }, { "state_after": "R : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\ny'_eq_zero : y' = 0\nthis : ↑(algebraMap R₁ K) aJ * y = 0\ny_zero : y = 0\n⊢ y ∈ 0", "state_before": "R : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\ny'_eq_zero : y' = 0\nthis : ↑(algebraMap R₁ K) aJ * y = 0\ny_zero : y = 0\n⊢ False", "tactic": "apply not_mem_zero" }, { "state_after": "no goals", "state_before": "R : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\ny'_eq_zero : y' = 0\nthis : ↑(algebraMap R₁ K) aJ * y = 0\ny_zero : y = 0\n⊢ y ∈ 0", "tactic": "simpa" }, { "state_after": "no goals", "state_before": "R : Type ?u.1138684\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type ?u.1138891\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type u_1\ninst✝³ : CommRing R₁\nK : Type u_2\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\nfrac : IsFractionRing R₁ K\ninst✝ : IsDomain R₁\nI J : Submodule R₁ K\naI : R₁\nhaI : aI ∈ R₁⁰\nhI : ∀ (b : K), b ∈ I → IsInteger R₁ (aI • b)\naJ : R₁\nhaJ : aJ ∈ R₁⁰\nhJ : ∀ (b : K), b ∈ J → IsInteger R₁ (aJ • b)\nh : J ≠ 0\ny : K\nmem_J : y ∈ J\nnot_mem_zero : ¬y ∈ 0\ny' : R₁\nhy' : ↑(algebraMap R₁ K) y' = aJ • y\ny'_eq_zero : y' = 0\n⊢ ↑(algebraMap R₁ K) aJ * y = 0", "tactic": "rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero]" } ]
[ 1086, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1066, 1 ]
Mathlib/Topology/UniformSpace/UniformConvergence.lean
tendstoUniformlyOn_iff_tendsto
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝ : UniformSpace β\nF✝ : ι → α → β\nf✝ : α → β\ns✝ s' : Set α\nx : α\np✝ : Filter ι\np' : Filter α\ng : ι → α\nF : ι → α → β\nf : α → β\np : Filter ι\ns : Set α\n⊢ TendstoUniformlyOn F f p s ↔ Tendsto (fun q => (f q.snd, F q.fst q.snd)) (p ×ˢ 𝓟 s) (𝓤 β)", "tactic": "simp [tendstoUniformlyOn_iff_tendstoUniformlyOnFilter, tendstoUniformlyOnFilter_iff_tendsto]" } ]
[ 129, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 127, 1 ]
Mathlib/Data/Set/Intervals/OrderIso.lean
OrderIso.preimage_Iio
[ { "state_after": "case h\nα : Type u_1\nβ : Type u_2\ninst✝¹ : Preorder α\ninst✝ : Preorder β\ne : α ≃o β\nb : β\nx : α\n⊢ x ∈ ↑e ⁻¹' Iio b ↔ x ∈ Iio (↑(symm e) b)", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝¹ : Preorder α\ninst✝ : Preorder β\ne : α ≃o β\nb : β\n⊢ ↑e ⁻¹' Iio b = Iio (↑(symm e) b)", "tactic": "ext x" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_1\nβ : Type u_2\ninst✝¹ : Preorder α\ninst✝ : Preorder β\ne : α ≃o β\nb : β\nx : α\n⊢ x ∈ ↑e ⁻¹' Iio b ↔ x ∈ Iio (↑(symm e) b)", "tactic": "simp [← e.lt_iff_lt]" } ]
[ 40, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 38, 1 ]
Mathlib/Init/Data/Nat/Basic.lean
Nat.bit0_ne_zero
[]
[ 35, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 30, 11 ]
Std/Data/RBMap/Alter.lean
Std.RBNode.Ordered.zoom'
[]
[ 287, 38 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 282, 1 ]
Mathlib/LinearAlgebra/Matrix/NonsingularInverse.lean
Matrix.mul_inv_eq_iff_eq_mul_of_invertible
[ { "state_after": "no goals", "state_before": "l : Type ?u.235209\nm : Type u\nn : Type u'\nα : Type v\ninst✝³ : Fintype n\ninst✝² : DecidableEq n\ninst✝¹ : CommRing α\nA✝ B✝ A B C : Matrix n n α\ninst✝ : Invertible A\nh : B ⬝ A⁻¹ = C\n⊢ B = C ⬝ A", "tactic": "rw [← h, inv_mul_cancel_right_of_invertible]" }, { "state_after": "no goals", "state_before": "l : Type ?u.235209\nm : Type u\nn : Type u'\nα : Type v\ninst✝³ : Fintype n\ninst✝² : DecidableEq n\ninst✝¹ : CommRing α\nA✝ B✝ A B C : Matrix n n α\ninst✝ : Invertible A\nh : B = C ⬝ A\n⊢ B ⬝ A⁻¹ = C", "tactic": "rw [h, mul_inv_cancel_right_of_invertible]" } ]
[ 383, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 380, 1 ]
Mathlib/Order/OrdContinuous.lean
RightOrdContinuous.map_sInf'
[]
[ 238, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 237, 1 ]
Mathlib/Order/CompleteLattice.lean
iInf_false
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.105197\nβ₂ : Type ?u.105200\nγ : Type ?u.105203\nι : Sort ?u.105206\nι' : Sort ?u.105209\nκ : ι → Sort ?u.105214\nκ' : ι' → Sort ?u.105219\ninst✝ : CompleteLattice α\nf g s✝ t : ι → α\na b : α\ns : False → α\n⊢ iInf s = ⊤", "tactic": "simp" } ]
[ 1296, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1295, 1 ]
Mathlib/Data/Finset/Lattice.lean
Finset.codisjoint_inf_left
[]
[ 563, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 561, 11 ]
Mathlib/Data/Finset/Pointwise.lean
Finset.div_subset_iff
[]
[ 656, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 655, 1 ]
Mathlib/Topology/Algebra/Order/LeftRightLim.lean
Antitone.leftLim_le
[]
[ 306, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 305, 1 ]
Mathlib/Data/Finset/LocallyFinite.lean
Set.Infinite.exists_gt
[]
[ 840, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 839, 1 ]
Mathlib/Combinatorics/Pigeonhole.lean
Fintype.exists_le_card_fiber_of_nsmul_le_card
[]
[ 426, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 422, 1 ]
Mathlib/Analysis/SpecialFunctions/Bernstein.lean
bernsteinApproximation.apply
[ { "state_after": "no goals", "state_before": "n : ℕ\nf : C(↑I, ℝ)\nx : ↑I\n⊢ ↑(bernsteinApproximation n f) x = ∑ k : Fin (n + 1), ↑f k/ₙ * ↑(bernstein n ↑k) x", "tactic": "simp [bernsteinApproximation]" } ]
[ 175, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 173, 1 ]
Mathlib/Data/Semiquot.lean
Semiquot.map_def
[]
[ 154, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 153, 1 ]
Mathlib/Geometry/Euclidean/Angle/Unoriented/Affine.lean
EuclideanGeometry.continuousAt_angle
[ { "state_after": "V : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\nx : P × P × P\nhx12 : x.fst ≠ x.snd.fst\nhx32 : x.snd.snd ≠ x.snd.fst\nf : P × P × P → V × V := fun y => (y.fst -ᵥ y.snd.fst, y.snd.snd -ᵥ y.snd.fst)\n⊢ ContinuousAt (fun y => ∠ y.fst y.snd.fst y.snd.snd) x", "state_before": "V : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\nx : P × P × P\nhx12 : x.fst ≠ x.snd.fst\nhx32 : x.snd.snd ≠ x.snd.fst\n⊢ ContinuousAt (fun y => ∠ y.fst y.snd.fst y.snd.snd) x", "tactic": "let f : P × P × P → V × V := fun y => (y.1 -ᵥ y.2.1, y.2.2 -ᵥ y.2.1)" }, { "state_after": "V : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\nx : P × P × P\nhx12 : x.fst ≠ x.snd.fst\nhx32 : x.snd.snd ≠ x.snd.fst\nf : P × P × P → V × V := fun y => (y.fst -ᵥ y.snd.fst, y.snd.snd -ᵥ y.snd.fst)\nhf1 : (f x).fst ≠ 0\n⊢ ContinuousAt (fun y => ∠ y.fst y.snd.fst y.snd.snd) x", "state_before": "V : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\nx : P × P × P\nhx12 : x.fst ≠ x.snd.fst\nhx32 : x.snd.snd ≠ x.snd.fst\nf : P × P × P → V × V := fun y => (y.fst -ᵥ y.snd.fst, y.snd.snd -ᵥ y.snd.fst)\n⊢ ContinuousAt (fun y => ∠ y.fst y.snd.fst y.snd.snd) x", "tactic": "have hf1 : (f x).1 ≠ 0 := by simp [hx12]" }, { "state_after": "V : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\nx : P × P × P\nhx12 : x.fst ≠ x.snd.fst\nhx32 : x.snd.snd ≠ x.snd.fst\nf : P × P × P → V × V := fun y => (y.fst -ᵥ y.snd.fst, y.snd.snd -ᵥ y.snd.fst)\nhf1 : (f x).fst ≠ 0\nhf2 : (f x).snd ≠ 0\n⊢ ContinuousAt (fun y => ∠ y.fst y.snd.fst y.snd.snd) x", "state_before": "V : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\nx : P × P × P\nhx12 : x.fst ≠ x.snd.fst\nhx32 : x.snd.snd ≠ x.snd.fst\nf : P × P × P → V × V := fun y => (y.fst -ᵥ y.snd.fst, y.snd.snd -ᵥ y.snd.fst)\nhf1 : (f x).fst ≠ 0\n⊢ ContinuousAt (fun y => ∠ y.fst y.snd.fst y.snd.snd) x", "tactic": "have hf2 : (f x).2 ≠ 0 := by simp [hx32]" }, { "state_after": "no goals", "state_before": "V : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\nx : P × P × P\nhx12 : x.fst ≠ x.snd.fst\nhx32 : x.snd.snd ≠ x.snd.fst\nf : P × P × P → V × V := fun y => (y.fst -ᵥ y.snd.fst, y.snd.snd -ᵥ y.snd.fst)\nhf1 : (f x).fst ≠ 0\nhf2 : (f x).snd ≠ 0\n⊢ ContinuousAt (fun y => ∠ y.fst y.snd.fst y.snd.snd) x", "tactic": "exact (InnerProductGeometry.continuousAt_angle hf1 hf2).comp\n ((continuous_fst.vsub continuous_snd.fst).prod_mk\n (continuous_snd.snd.vsub continuous_snd.fst)).continuousAt" }, { "state_after": "no goals", "state_before": "V : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\nx : P × P × P\nhx12 : x.fst ≠ x.snd.fst\nhx32 : x.snd.snd ≠ x.snd.fst\nf : P × P × P → V × V := fun y => (y.fst -ᵥ y.snd.fst, y.snd.snd -ᵥ y.snd.fst)\n⊢ (f x).fst ≠ 0", "tactic": "simp [hx12]" }, { "state_after": "no goals", "state_before": "V : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\nx : P × P × P\nhx12 : x.fst ≠ x.snd.fst\nhx32 : x.snd.snd ≠ x.snd.fst\nf : P × P × P → V × V := fun y => (y.fst -ᵥ y.snd.fst, y.snd.snd -ᵥ y.snd.fst)\nhf1 : (f x).fst ≠ 0\n⊢ (f x).snd ≠ 0", "tactic": "simp [hx32]" } ]
[ 55, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 48, 1 ]
Mathlib/Algebra/Order/Group/MinMax.lean
max_one_div_max_inv_one_eq_self
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝² : Group α\ninst✝¹ : LinearOrder α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\na : α\n⊢ max a 1 / max a⁻¹ 1 = a", "tactic": "rcases le_total a 1 with (h | h) <;> simp [h]" } ]
[ 25, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 24, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.frequently_imp_distrib
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.165345\nι : Sort x\nf : Filter α\np q : α → Prop\n⊢ (∃ᶠ (x : α) in f, p x → q x) ↔ (∀ᶠ (x : α) in f, p x) → ∃ᶠ (x : α) in f, q x", "tactic": "simp [imp_iff_not_or, not_eventually, frequently_or_distrib]" } ]
[ 1356, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1354, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
Set.Countable.ae_not_mem
[ { "state_after": "no goals", "state_before": "α✝ : Type ?u.712897\nβ : Type ?u.712900\nγ : Type ?u.712903\nδ : Type ?u.712906\nι : Type ?u.712909\nR : Type ?u.712912\nR' : Type ?u.712915\nm0 : MeasurableSpace α✝\ninst✝³ : MeasurableSpace β\ninst✝² : MeasurableSpace γ\nμ✝ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α✝\ns✝ s' t : Set α✝\ninst✝¹ : NoAtoms μ✝\nα : Type u_1\nm : MeasurableSpace α\ns : Set α\nh : Set.Countable s\nμ : Measure α\ninst✝ : NoAtoms μ\n⊢ ∀ᵐ (x : α) ∂μ, ¬x ∈ s", "tactic": "simpa only [ae_iff, Classical.not_not] using h.measure_zero μ" } ]
[ 3310, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3308, 1 ]
Mathlib/MeasureTheory/Measure/Stieltjes.lean
StieltjesFunction.measure_Ioc
[ { "state_after": "f : StieltjesFunction\na b : ℝ\n⊢ ↑↑{ toOuterMeasure := StieltjesFunction.outer f,\n m_iUnion :=\n (_ :\n ∀ (_s : ℕ → Set ℝ),\n (∀ (i : ℕ), MeasurableSet (_s i)) →\n Pairwise (Disjoint on _s) →\n ↑(StieltjesFunction.outer f) (⋃ (i : ℕ), _s i) = ∑' (i : ℕ), ↑(StieltjesFunction.outer f) (_s i)),\n trimmed := (_ : OuterMeasure.trim (StieltjesFunction.outer f) = StieltjesFunction.outer f) }\n (Ioc a b) =\n ofReal (↑f b - ↑f a)", "state_before": "f : StieltjesFunction\na b : ℝ\n⊢ ↑↑(StieltjesFunction.measure f) (Ioc a b) = ofReal (↑f b - ↑f a)", "tactic": "rw [StieltjesFunction.measure]" }, { "state_after": "no goals", "state_before": "f : StieltjesFunction\na b : ℝ\n⊢ ↑↑{ toOuterMeasure := StieltjesFunction.outer f,\n m_iUnion :=\n (_ :\n ∀ (_s : ℕ → Set ℝ),\n (∀ (i : ℕ), MeasurableSet (_s i)) →\n Pairwise (Disjoint on _s) →\n ↑(StieltjesFunction.outer f) (⋃ (i : ℕ), _s i) = ∑' (i : ℕ), ↑(StieltjesFunction.outer f) (_s i)),\n trimmed := (_ : OuterMeasure.trim (StieltjesFunction.outer f) = StieltjesFunction.outer f) }\n (Ioc a b) =\n ofReal (↑f b - ↑f a)", "tactic": "exact f.outer_Ioc a b" } ]
[ 517, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 515, 1 ]
Mathlib/NumberTheory/Padics/PadicNumbers.lean
padicNormE.eq_ratNorm
[]
[ 894, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 893, 1 ]
Mathlib/Topology/MetricSpace/Isometry.lean
IsometryEquiv.mul_apply
[]
[ 555, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 555, 1 ]
Mathlib/Geometry/Manifold/LocalInvariantProperties.lean
StructureGroupoid.LocalInvariantProp.liftPropOn_chart
[]
[ 519, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 517, 1 ]
Mathlib/Data/Polynomial/Degree/TrailingDegree.lean
Polynomial.le_natTrailingDegree_mul
[ { "state_after": "R : Type u\nS : Type v\na b : R\nn m : ℕ\ninst✝ : Semiring R\np q r : R[X]\nh : p * q ≠ 0\nhp : p ≠ 0\n⊢ natTrailingDegree p + natTrailingDegree q ≤ natTrailingDegree (p * q)", "state_before": "R : Type u\nS : Type v\na b : R\nn m : ℕ\ninst✝ : Semiring R\np q r : R[X]\nh : p * q ≠ 0\n⊢ natTrailingDegree p + natTrailingDegree q ≤ natTrailingDegree (p * q)", "tactic": "have hp : p ≠ 0 := fun hp => h (by rw [hp, zero_mul])" }, { "state_after": "R : Type u\nS : Type v\na b : R\nn m : ℕ\ninst✝ : Semiring R\np q r : R[X]\nh : p * q ≠ 0\nhp : p ≠ 0\nhq : q ≠ 0\n⊢ natTrailingDegree p + natTrailingDegree q ≤ natTrailingDegree (p * q)", "state_before": "R : Type u\nS : Type v\na b : R\nn m : ℕ\ninst✝ : Semiring R\np q r : R[X]\nh : p * q ≠ 0\nhp : p ≠ 0\n⊢ natTrailingDegree p + natTrailingDegree q ≤ natTrailingDegree (p * q)", "tactic": "have hq : q ≠ 0 := fun hq => h (by rw [hq, mul_zero])" }, { "state_after": "R : Type u\nS : Type v\na b : R\nn m : ℕ\ninst✝ : Semiring R\np q r : R[X]\nh : p * q ≠ 0\nhp : p ≠ 0\nhq : q ≠ 0\nthis : ∀ (p : R[X]), ↑(natTrailingDegree p) = ↑(natTrailingDegree p)\n⊢ natTrailingDegree p + natTrailingDegree q ≤ natTrailingDegree (p * q)", "state_before": "R : Type u\nS : Type v\na b : R\nn m : ℕ\ninst✝ : Semiring R\np q r : R[X]\nh : p * q ≠ 0\nhp : p ≠ 0\nhq : q ≠ 0\n⊢ natTrailingDegree p + natTrailingDegree q ≤ natTrailingDegree (p * q)", "tactic": "have : ∀ (p : R[X]), WithTop.some (natTrailingDegree p) = Nat.cast (natTrailingDegree p) :=\n fun p ↦ rfl" }, { "state_after": "R : Type u\nS : Type v\na b : R\nn m : ℕ\ninst✝ : Semiring R\np q r : R[X]\nh : p * q ≠ 0\nhp : p ≠ 0\nhq : q ≠ 0\nthis : ∀ (p : R[X]), ↑(natTrailingDegree p) = ↑(natTrailingDegree p)\n⊢ trailingDegree p + trailingDegree q ≤ trailingDegree (p * q)", "state_before": "R : Type u\nS : Type v\na b : R\nn m : ℕ\ninst✝ : Semiring R\np q r : R[X]\nh : p * q ≠ 0\nhp : p ≠ 0\nhq : q ≠ 0\nthis : ∀ (p : R[X]), ↑(natTrailingDegree p) = ↑(natTrailingDegree p)\n⊢ natTrailingDegree p + natTrailingDegree q ≤ natTrailingDegree (p * q)", "tactic": "rw [← WithTop.coe_le_coe, WithTop.coe_add, this p, this q, this (p * q),\n ← trailingDegree_eq_natTrailingDegree hp, ← trailingDegree_eq_natTrailingDegree hq,\n ← trailingDegree_eq_natTrailingDegree h]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\na b : R\nn m : ℕ\ninst✝ : Semiring R\np q r : R[X]\nh : p * q ≠ 0\nhp : p ≠ 0\nhq : q ≠ 0\nthis : ∀ (p : R[X]), ↑(natTrailingDegree p) = ↑(natTrailingDegree p)\n⊢ trailingDegree p + trailingDegree q ≤ trailingDegree (p * q)", "tactic": "exact le_trailingDegree_mul" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\na b : R\nn m : ℕ\ninst✝ : Semiring R\np q r : R[X]\nh : p * q ≠ 0\nhp : p = 0\n⊢ p * q = 0", "tactic": "rw [hp, zero_mul]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\na b : R\nn m : ℕ\ninst✝ : Semiring R\np q r : R[X]\nh : p * q ≠ 0\nhp : p ≠ 0\nhq : q = 0\n⊢ p * q = 0", "tactic": "rw [hq, mul_zero]" } ]
[ 380, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 370, 1 ]
Mathlib/Algebra/GeomSum.lean
Odd.add_dvd_pow_add_pow
[ { "state_after": "α : Type u\ninst✝ : CommRing α\nx y : α\nn : ℕ\nh : Odd n\nh₁ : (∑ i in range n, x ^ i * (-y) ^ (n - 1 - i)) * (x - -y) = x ^ n - (-y) ^ n\n⊢ x + y ∣ x ^ n + y ^ n", "state_before": "α : Type u\ninst✝ : CommRing α\nx y : α\nn : ℕ\nh : Odd n\n⊢ x + y ∣ x ^ n + y ^ n", "tactic": "have h₁ := geom_sum₂_mul x (-y) n" }, { "state_after": "α : Type u\ninst✝ : CommRing α\nx y : α\nn : ℕ\nh : Odd n\nh₁ : (∑ i in range n, x ^ i * (-y) ^ (n - 1 - i)) * (x + y) = x ^ n + y ^ n\n⊢ x + y ∣ x ^ n + y ^ n", "state_before": "α : Type u\ninst✝ : CommRing α\nx y : α\nn : ℕ\nh : Odd n\nh₁ : (∑ i in range n, x ^ i * (-y) ^ (n - 1 - i)) * (x - -y) = x ^ n - (-y) ^ n\n⊢ x + y ∣ x ^ n + y ^ n", "tactic": "rw [Odd.neg_pow h y, sub_neg_eq_add, sub_neg_eq_add] at h₁" }, { "state_after": "no goals", "state_before": "α : Type u\ninst✝ : CommRing α\nx y : α\nn : ℕ\nh : Odd n\nh₁ : (∑ i in range n, x ^ i * (-y) ^ (n - 1 - i)) * (x + y) = x ^ n + y ^ n\n⊢ x + y ∣ x ^ n + y ^ n", "tactic": "exact Dvd.intro_left _ h₁" } ]
[ 212, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 208, 1 ]
Mathlib/Computability/Partrec.lean
Computable.to₂
[]
[ 297, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 296, 1 ]