file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/ModelTheory/Definability.lean
FirstOrder.Language.DefinableSet.coe_inf
[]
[ 361, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 359, 1 ]
Mathlib/LinearAlgebra/Finsupp.lean
Finsupp.domLCongr_apply
[]
[ 778, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 776, 1 ]
Mathlib/Analysis/NormedSpace/AffineIsometry.lean
AffineIsometryEquiv.coe_vaddConst
[]
[ 702, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 701, 1 ]
Mathlib/Topology/MetricSpace/Basic.lean
Metric.ball_eq_ball'
[ { "state_after": "case h\nα : Type u\nβ : Type v\nX : Type ?u.28557\nι : Type ?u.28560\ninst✝ : PseudoMetricSpace α\nx✝¹ y z : α\nδ ε✝ ε₁ ε₂ : ℝ\ns : Set α\nε : ℝ\nx x✝ : α\n⊢ x✝ ∈ UniformSpace.ball x {p | dist p.fst p.snd < ε} ↔ x✝ ∈ ball x ε", "state_before": "α : Type u\nβ : Type v\nX : Type ?u.28557\nι : Type ?u.28560\ninst✝ : PseudoMetricSpace α\nx✝ y z : α\nδ ε✝ ε₁ ε₂ : ℝ\ns : Set α\nε : ℝ\nx : α\n⊢ UniformSpace.ball x {p | dist p.fst p.snd < ε} = ball x ε", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nα : Type u\nβ : Type v\nX : Type ?u.28557\nι : Type ?u.28560\ninst✝ : PseudoMetricSpace α\nx✝¹ y z : α\nδ ε✝ ε₁ ε₂ : ℝ\ns : Set α\nε : ℝ\nx x✝ : α\n⊢ x✝ ∈ UniformSpace.ball x {p | dist p.fst p.snd < ε} ↔ x✝ ∈ ball x ε", "tactic": "simp [dist_comm, UniformSpace.ball]" } ]
[ 463, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 460, 1 ]
Mathlib/Analysis/LocallyConvex/BalancedCoreHull.lean
subset_balancedHull
[]
[ 144, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 143, 1 ]
Mathlib/Topology/UniformSpace/Basic.lean
UniformSpace.comap_inf
[]
[ 1285, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1283, 1 ]
Std/Data/Int/DivMod.lean
Int.emod_add_emod
[ { "state_after": "m n k : Int\nthis : (m % n + k) % n = (m % n + k + n * (m / n)) % n\n⊢ (m % n + k) % n = (m + k) % n", "state_before": "m n k : Int\n⊢ (m % n + k) % n = (m + k) % n", "tactic": "have := (add_mul_emod_self_left (m % n + k) n (m / n)).symm" }, { "state_after": "no goals", "state_before": "m n k : Int\nthis : (m % n + k) % n = (m % n + k + n * (m / n)) % n\n⊢ (m % n + k) % n = (m + k) % n", "tactic": "rwa [Int.add_right_comm, emod_add_ediv] at this" } ]
[ 422, 50 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 420, 9 ]
Mathlib/Topology/MetricSpace/Basic.lean
Metric.ediam_eq_top_iff_unbounded
[]
[ 2657, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2656, 1 ]
Mathlib/MeasureTheory/Integral/SetIntegral.lean
MeasureTheory.norm_Lp_toLp_restrict_le
[ { "state_after": "α : Type u_1\nβ : Type ?u.334371\nE : Type u_2\nF : Type ?u.334377\ninst✝⁴ : MeasurableSpace α\ninst✝³ : NormedAddCommGroup E\n𝕜 : Type ?u.334386\ninst✝² : NormedField 𝕜\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\np : ℝ≥0∞\nμ : Measure α\ns : Set α\nf : { x // x ∈ Lp E p }\n⊢ snorm (↑↑(Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p))) p (Measure.restrict μ s) ≤ snorm (↑↑f) p μ", "state_before": "α : Type u_1\nβ : Type ?u.334371\nE : Type u_2\nF : Type ?u.334377\ninst✝⁴ : MeasurableSpace α\ninst✝³ : NormedAddCommGroup E\n𝕜 : Type ?u.334386\ninst✝² : NormedField 𝕜\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\np : ℝ≥0∞\nμ : Measure α\ns : Set α\nf : { x // x ∈ Lp E p }\n⊢ ‖Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p)‖ ≤ ‖f‖", "tactic": "rw [Lp.norm_def, Lp.norm_def, ENNReal.toReal_le_toReal (Lp.snorm_ne_top _) (Lp.snorm_ne_top _)]" }, { "state_after": "case refine'_1\nα : Type u_1\nβ : Type ?u.334371\nE : Type u_2\nF : Type ?u.334377\ninst✝⁴ : MeasurableSpace α\ninst✝³ : NormedAddCommGroup E\n𝕜 : Type ?u.334386\ninst✝² : NormedField 𝕜\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\np : ℝ≥0∞\nμ : Measure α\ns : Set α\nf : { x // x ∈ Lp E p }\n⊢ snorm (↑↑(Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p))) p (Measure.restrict μ s) =\n snorm (↑↑f) p (Measure.restrict μ ?refine'_2)\n\ncase refine'_2\nα : Type u_1\nβ : Type ?u.334371\nE : Type u_2\nF : Type ?u.334377\ninst✝⁴ : MeasurableSpace α\ninst✝³ : NormedAddCommGroup E\n𝕜 : Type ?u.334386\ninst✝² : NormedField 𝕜\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\np : ℝ≥0∞\nμ : Measure α\ns : Set α\nf : { x // x ∈ Lp E p }\n⊢ Set α", "state_before": "α : Type u_1\nβ : Type ?u.334371\nE : Type u_2\nF : Type ?u.334377\ninst✝⁴ : MeasurableSpace α\ninst✝³ : NormedAddCommGroup E\n𝕜 : Type ?u.334386\ninst✝² : NormedField 𝕜\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\np : ℝ≥0∞\nμ : Measure α\ns : Set α\nf : { x // x ∈ Lp E p }\n⊢ snorm (↑↑(Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p))) p (Measure.restrict μ s) ≤ snorm (↑↑f) p μ", "tactic": "refine' (le_of_eq _).trans (snorm_mono_measure _ Measure.restrict_le_self)" }, { "state_after": "no goals", "state_before": "case refine'_1\nα : Type u_1\nβ : Type ?u.334371\nE : Type u_2\nF : Type ?u.334377\ninst✝⁴ : MeasurableSpace α\ninst✝³ : NormedAddCommGroup E\n𝕜 : Type ?u.334386\ninst✝² : NormedField 𝕜\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\np : ℝ≥0∞\nμ : Measure α\ns : Set α\nf : { x // x ∈ Lp E p }\n⊢ snorm (↑↑(Memℒp.toLp ↑↑f (_ : Memℒp (↑↑f) p))) p (Measure.restrict μ s) =\n snorm (↑↑f) p (Measure.restrict μ ?refine'_2)\n\ncase refine'_2\nα : Type u_1\nβ : Type ?u.334371\nE : Type u_2\nF : Type ?u.334377\ninst✝⁴ : MeasurableSpace α\ninst✝³ : NormedAddCommGroup E\n𝕜 : Type ?u.334386\ninst✝² : NormedField 𝕜\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\np : ℝ≥0∞\nμ : Measure α\ns : Set α\nf : { x // x ∈ Lp E p }\n⊢ Set α", "tactic": "exact snorm_congr_ae (Memℒp.coeFn_toLp _)" } ]
[ 906, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 902, 1 ]
Mathlib/Data/Fin/Tuple/Basic.lean
Fin.append_assoc
[ { "state_after": "case h\nm n : ℕ\nα✝ : Fin (n + 1) → Type u\nx : α✝ 0\nq : (i : Fin (n + 1)) → α✝ i\np✝ : (i : Fin n) → α✝ (succ i)\ni✝ : Fin n\ny : α✝ (succ i✝)\nz : α✝ 0\np : ℕ\nα : Type u_1\na : Fin m → α\nb : Fin n → α\nc : Fin p → α\ni : Fin (m + n + p)\n⊢ append (append a b) c i = (append a (append b c) ∘ ↑(cast (_ : m + n + p = m + (n + p)))) i", "state_before": "m n : ℕ\nα✝ : Fin (n + 1) → Type u\nx : α✝ 0\nq : (i : Fin (n + 1)) → α✝ i\np✝ : (i : Fin n) → α✝ (succ i)\ni : Fin n\ny : α✝ (succ i)\nz : α✝ 0\np : ℕ\nα : Type u_1\na : Fin m → α\nb : Fin n → α\nc : Fin p → α\n⊢ append (append a b) c = append a (append b c) ∘ ↑(cast (_ : m + n + p = m + (n + p)))", "tactic": "ext i" }, { "state_after": "case h\nm n : ℕ\nα✝ : Fin (n + 1) → Type u\nx : α✝ 0\nq : (i : Fin (n + 1)) → α✝ i\np✝ : (i : Fin n) → α✝ (succ i)\ni✝ : Fin n\ny : α✝ (succ i✝)\nz : α✝ 0\np : ℕ\nα : Type u_1\na : Fin m → α\nb : Fin n → α\nc : Fin p → α\ni : Fin (m + n + p)\n⊢ append (append a b) c i = append a (append b c) (↑(cast (_ : m + n + p = m + (n + p))) i)", "state_before": "case h\nm n : ℕ\nα✝ : Fin (n + 1) → Type u\nx : α✝ 0\nq : (i : Fin (n + 1)) → α✝ i\np✝ : (i : Fin n) → α✝ (succ i)\ni✝ : Fin n\ny : α✝ (succ i✝)\nz : α✝ 0\np : ℕ\nα : Type u_1\na : Fin m → α\nb : Fin n → α\nc : Fin p → α\ni : Fin (m + n + p)\n⊢ append (append a b) c i = (append a (append b c) ∘ ↑(cast (_ : m + n + p = m + (n + p)))) i", "tactic": "rw [Function.comp_apply]" }, { "state_after": "case h.refine'_1\nm n : ℕ\nα✝ : Fin (n + 1) → Type u\nx : α✝ 0\nq : (i : Fin (n + 1)) → α✝ i\np✝ : (i : Fin n) → α✝ (succ i)\ni✝ : Fin n\ny : α✝ (succ i✝)\nz : α✝ 0\np : ℕ\nα : Type u_1\na : Fin m → α\nb : Fin n → α\nc : Fin p → α\ni : Fin (m + n + p)\nl : Fin (m + n)\n⊢ append (append a b) c (↑(castAdd p) l) =\n append a (append b c) (↑(cast (_ : m + n + p = m + (n + p))) (↑(castAdd p) l))\n\ncase h.refine'_2\nm n : ℕ\nα✝ : Fin (n + 1) → Type u\nx : α✝ 0\nq : (i : Fin (n + 1)) → α✝ i\np✝ : (i : Fin n) → α✝ (succ i)\ni✝ : Fin n\ny : α✝ (succ i✝)\nz : α✝ 0\np : ℕ\nα : Type u_1\na : Fin m → α\nb : Fin n → α\nc : Fin p → α\ni : Fin (m + n + p)\nr : Fin p\n⊢ append (append a b) c (↑(natAdd (m + n)) r) =\n append a (append b c) (↑(cast (_ : m + n + p = m + (n + p))) (↑(natAdd (m + n)) r))", "state_before": "case h\nm n : ℕ\nα✝ : Fin (n + 1) → Type u\nx : α✝ 0\nq : (i : Fin (n + 1)) → α✝ i\np✝ : (i : Fin n) → α✝ (succ i)\ni✝ : Fin n\ny : α✝ (succ i✝)\nz : α✝ 0\np : ℕ\nα : Type u_1\na : Fin m → α\nb : Fin n → α\nc : Fin p → α\ni : Fin (m + n + p)\n⊢ append (append a b) c i = append a (append b c) (↑(cast (_ : m + n + p = m + (n + p))) i)", "tactic": "refine' Fin.addCases (fun l => _) (fun r => _) i" }, { "state_after": "case h.refine'_1\nm n : ℕ\nα✝ : Fin (n + 1) → Type u\nx : α✝ 0\nq : (i : Fin (n + 1)) → α✝ i\np✝ : (i : Fin n) → α✝ (succ i)\ni✝ : Fin n\ny : α✝ (succ i✝)\nz : α✝ 0\np : ℕ\nα : Type u_1\na : Fin m → α\nb : Fin n → α\nc : Fin p → α\ni : Fin (m + n + p)\nl : Fin (m + n)\n⊢ append a b l = append a (append b c) (↑(cast (_ : m + n + p = m + (n + p))) (↑(castAdd p) l))", "state_before": "case h.refine'_1\nm n : ℕ\nα✝ : Fin (n + 1) → Type u\nx : α✝ 0\nq : (i : Fin (n + 1)) → α✝ i\np✝ : (i : Fin n) → α✝ (succ i)\ni✝ : Fin n\ny : α✝ (succ i✝)\nz : α✝ 0\np : ℕ\nα : Type u_1\na : Fin m → α\nb : Fin n → α\nc : Fin p → α\ni : Fin (m + n + p)\nl : Fin (m + n)\n⊢ append (append a b) c (↑(castAdd p) l) =\n append a (append b c) (↑(cast (_ : m + n + p = m + (n + p))) (↑(castAdd p) l))", "tactic": "rw [append_left]" }, { "state_after": "case h.refine'_1.refine'_1\nm n : ℕ\nα✝ : Fin (n + 1) → Type u\nx : α✝ 0\nq : (i : Fin (n + 1)) → α✝ i\np✝ : (i : Fin n) → α✝ (succ i)\ni✝ : Fin n\ny : α✝ (succ i✝)\nz : α✝ 0\np : ℕ\nα : Type u_1\na : Fin m → α\nb : Fin n → α\nc : Fin p → α\ni : Fin (m + n + p)\nl : Fin (m + n)\nll : Fin m\n⊢ append a b (↑(castAdd n) ll) =\n append a (append b c) (↑(cast (_ : m + n + p = m + (n + p))) (↑(castAdd p) (↑(castAdd n) ll)))\n\ncase h.refine'_1.refine'_2\nm n : ℕ\nα✝ : Fin (n + 1) → Type u\nx : α✝ 0\nq : (i : Fin (n + 1)) → α✝ i\np✝ : (i : Fin n) → α✝ (succ i)\ni✝ : Fin n\ny : α✝ (succ i✝)\nz : α✝ 0\np : ℕ\nα : Type u_1\na : Fin m → α\nb : Fin n → α\nc : Fin p → α\ni : Fin (m + n + p)\nl : Fin (m + n)\nlr : Fin n\n⊢ append a b (↑(natAdd m) lr) =\n append a (append b c) (↑(cast (_ : m + n + p = m + (n + p))) (↑(castAdd p) (↑(natAdd m) lr)))", "state_before": "case h.refine'_1\nm n : ℕ\nα✝ : Fin (n + 1) → Type u\nx : α✝ 0\nq : (i : Fin (n + 1)) → α✝ i\np✝ : (i : Fin n) → α✝ (succ i)\ni✝ : Fin n\ny : α✝ (succ i✝)\nz : α✝ 0\np : ℕ\nα : Type u_1\na : Fin m → α\nb : Fin n → α\nc : Fin p → α\ni : Fin (m + n + p)\nl : Fin (m + n)\n⊢ append a b l = append a (append b c) (↑(cast (_ : m + n + p = m + (n + p))) (↑(castAdd p) l))", "tactic": "refine' Fin.addCases (fun ll => _) (fun lr => _) l" }, { "state_after": "case h.refine'_1.refine'_1\nm n : ℕ\nα✝ : Fin (n + 1) → Type u\nx : α✝ 0\nq : (i : Fin (n + 1)) → α✝ i\np✝ : (i : Fin n) → α✝ (succ i)\ni✝ : Fin n\ny : α✝ (succ i✝)\nz : α✝ 0\np : ℕ\nα : Type u_1\na : Fin m → α\nb : Fin n → α\nc : Fin p → α\ni : Fin (m + n + p)\nl : Fin (m + n)\nll : Fin m\n⊢ a ll = append a (append b c) (↑(cast (_ : m + n + p = m + (n + p))) (↑(castAdd p) (↑(castAdd n) ll)))", "state_before": "case h.refine'_1.refine'_1\nm n : ℕ\nα✝ : Fin (n + 1) → Type u\nx : α✝ 0\nq : (i : Fin (n + 1)) → α✝ i\np✝ : (i : Fin n) → α✝ (succ i)\ni✝ : Fin n\ny : α✝ (succ i✝)\nz : α✝ 0\np : ℕ\nα : Type u_1\na : Fin m → α\nb : Fin n → α\nc : Fin p → α\ni : Fin (m + n + p)\nl : Fin (m + n)\nll : Fin m\n⊢ append a b (↑(castAdd n) ll) =\n append a (append b c) (↑(cast (_ : m + n + p = m + (n + p))) (↑(castAdd p) (↑(castAdd n) ll)))", "tactic": "rw [append_left]" }, { "state_after": "no goals", "state_before": "case h.refine'_1.refine'_1\nm n : ℕ\nα✝ : Fin (n + 1) → Type u\nx : α✝ 0\nq : (i : Fin (n + 1)) → α✝ i\np✝ : (i : Fin n) → α✝ (succ i)\ni✝ : Fin n\ny : α✝ (succ i✝)\nz : α✝ 0\np : ℕ\nα : Type u_1\na : Fin m → α\nb : Fin n → α\nc : Fin p → α\ni : Fin (m + n + p)\nl : Fin (m + n)\nll : Fin m\n⊢ a ll = append a (append b c) (↑(cast (_ : m + n + p = m + (n + p))) (↑(castAdd p) (↑(castAdd n) ll)))", "tactic": "simp [castAdd_castAdd]" }, { "state_after": "case h.refine'_1.refine'_2\nm n : ℕ\nα✝ : Fin (n + 1) → Type u\nx : α✝ 0\nq : (i : Fin (n + 1)) → α✝ i\np✝ : (i : Fin n) → α✝ (succ i)\ni✝ : Fin n\ny : α✝ (succ i✝)\nz : α✝ 0\np : ℕ\nα : Type u_1\na : Fin m → α\nb : Fin n → α\nc : Fin p → α\ni : Fin (m + n + p)\nl : Fin (m + n)\nlr : Fin n\n⊢ b lr = append a (append b c) (↑(cast (_ : m + n + p = m + (n + p))) (↑(castAdd p) (↑(natAdd m) lr)))", "state_before": "case h.refine'_1.refine'_2\nm n : ℕ\nα✝ : Fin (n + 1) → Type u\nx : α✝ 0\nq : (i : Fin (n + 1)) → α✝ i\np✝ : (i : Fin n) → α✝ (succ i)\ni✝ : Fin n\ny : α✝ (succ i✝)\nz : α✝ 0\np : ℕ\nα : Type u_1\na : Fin m → α\nb : Fin n → α\nc : Fin p → α\ni : Fin (m + n + p)\nl : Fin (m + n)\nlr : Fin n\n⊢ append a b (↑(natAdd m) lr) =\n append a (append b c) (↑(cast (_ : m + n + p = m + (n + p))) (↑(castAdd p) (↑(natAdd m) lr)))", "tactic": "rw [append_right]" }, { "state_after": "no goals", "state_before": "case h.refine'_1.refine'_2\nm n : ℕ\nα✝ : Fin (n + 1) → Type u\nx : α✝ 0\nq : (i : Fin (n + 1)) → α✝ i\np✝ : (i : Fin n) → α✝ (succ i)\ni✝ : Fin n\ny : α✝ (succ i✝)\nz : α✝ 0\np : ℕ\nα : Type u_1\na : Fin m → α\nb : Fin n → α\nc : Fin p → α\ni : Fin (m + n + p)\nl : Fin (m + n)\nlr : Fin n\n⊢ b lr = append a (append b c) (↑(cast (_ : m + n + p = m + (n + p))) (↑(castAdd p) (↑(natAdd m) lr)))", "tactic": "simp [castAdd_natAdd]" }, { "state_after": "case h.refine'_2\nm n : ℕ\nα✝ : Fin (n + 1) → Type u\nx : α✝ 0\nq : (i : Fin (n + 1)) → α✝ i\np✝ : (i : Fin n) → α✝ (succ i)\ni✝ : Fin n\ny : α✝ (succ i✝)\nz : α✝ 0\np : ℕ\nα : Type u_1\na : Fin m → α\nb : Fin n → α\nc : Fin p → α\ni : Fin (m + n + p)\nr : Fin p\n⊢ c r = append a (append b c) (↑(cast (_ : m + n + p = m + (n + p))) (↑(natAdd (m + n)) r))", "state_before": "case h.refine'_2\nm n : ℕ\nα✝ : Fin (n + 1) → Type u\nx : α✝ 0\nq : (i : Fin (n + 1)) → α✝ i\np✝ : (i : Fin n) → α✝ (succ i)\ni✝ : Fin n\ny : α✝ (succ i✝)\nz : α✝ 0\np : ℕ\nα : Type u_1\na : Fin m → α\nb : Fin n → α\nc : Fin p → α\ni : Fin (m + n + p)\nr : Fin p\n⊢ append (append a b) c (↑(natAdd (m + n)) r) =\n append a (append b c) (↑(cast (_ : m + n + p = m + (n + p))) (↑(natAdd (m + n)) r))", "tactic": "rw [append_right]" }, { "state_after": "no goals", "state_before": "case h.refine'_2\nm n : ℕ\nα✝ : Fin (n + 1) → Type u\nx : α✝ 0\nq : (i : Fin (n + 1)) → α✝ i\np✝ : (i : Fin n) → α✝ (succ i)\ni✝ : Fin n\ny : α✝ (succ i✝)\nz : α✝ 0\np : ℕ\nα : Type u_1\na : Fin m → α\nb : Fin n → α\nc : Fin p → α\ni : Fin (m + n + p)\nr : Fin p\n⊢ c r = append a (append b c) (↑(cast (_ : m + n + p = m + (n + p))) (↑(natAdd (m + n)) r))", "tactic": "simp [← natAdd_natAdd]" } ]
[ 349, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 337, 1 ]
Mathlib/Topology/Bases.lean
TopologicalSpace.isOpen_of_mem_countableBasis
[]
[ 651, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 649, 1 ]
Mathlib/Order/SuccPred/Limit.lean
Order.IsSuccLimit.succ_lt_iff
[]
[ 157, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 156, 1 ]
Mathlib/Algebra/EuclideanDomain/Defs.lean
EuclideanDomain.gcd_zero_left
[ { "state_after": "R : Type u\ninst✝¹ : EuclideanDomain R\ninst✝ : DecidableEq R\na : R\n⊢ (fun b =>\n if a0 : 0 = 0 then b\n else\n let_fun x := (_ : b % 0 ≺ 0);\n gcd (b % 0) 0)\n a =\n a", "state_before": "R : Type u\ninst✝¹ : EuclideanDomain R\ninst✝ : DecidableEq R\na : R\n⊢ gcd 0 a = a", "tactic": "rw [gcd]" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝¹ : EuclideanDomain R\ninst✝ : DecidableEq R\na : R\n⊢ (fun b =>\n if a0 : 0 = 0 then b\n else\n let_fun x := (_ : b % 0 ≺ 0);\n gcd (b % 0) 0)\n a =\n a", "tactic": "exact if_pos rfl" } ]
[ 214, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 212, 1 ]
Mathlib/Analysis/NormedSpace/Extr.lean
IsLocalMax.norm_add_sameRay
[]
[ 93, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 91, 1 ]
Mathlib/Order/CompleteBooleanAlgebra.lean
PUnit.sSup_eq
[]
[ 401, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 400, 1 ]
Mathlib/Algebra/Hom/Centroid.lean
CentroidHom.coe_toAddMonoidHom_injective
[]
[ 134, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 131, 1 ]
Mathlib/Order/Circular.lean
sbtw_trans_right
[]
[ 244, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 243, 1 ]
Mathlib/Combinatorics/SimpleGraph/Subgraph.lean
SimpleGraph.Subgraph.coe_deleteEdges_eq
[ { "state_after": "case Adj.h.mk.h.mk.a\nι : Sort ?u.246328\nV : Type u\nW : Type v\nG : SimpleGraph V\nG' : Subgraph G\ns✝ s : Set (Sym2 V)\nv : V\nhv : v ∈ (deleteEdges G' s).verts\nw : V\nhw : w ∈ (deleteEdges G' s).verts\n⊢ SimpleGraph.Adj (Subgraph.coe (deleteEdges G' s)) { val := v, property := hv } { val := w, property := hw } ↔\n SimpleGraph.Adj (SimpleGraph.deleteEdges (Subgraph.coe G') (Sym2.map Subtype.val ⁻¹' s))\n { val := v, property := hv } { val := w, property := hw }", "state_before": "ι : Sort ?u.246328\nV : Type u\nW : Type v\nG : SimpleGraph V\nG' : Subgraph G\ns✝ s : Set (Sym2 V)\n⊢ Subgraph.coe (deleteEdges G' s) = SimpleGraph.deleteEdges (Subgraph.coe G') (Sym2.map Subtype.val ⁻¹' s)", "tactic": "ext ⟨v, hv⟩ ⟨w, hw⟩" }, { "state_after": "no goals", "state_before": "case Adj.h.mk.h.mk.a\nι : Sort ?u.246328\nV : Type u\nW : Type v\nG : SimpleGraph V\nG' : Subgraph G\ns✝ s : Set (Sym2 V)\nv : V\nhv : v ∈ (deleteEdges G' s).verts\nw : V\nhw : w ∈ (deleteEdges G' s).verts\n⊢ SimpleGraph.Adj (Subgraph.coe (deleteEdges G' s)) { val := v, property := hv } { val := w, property := hw } ↔\n SimpleGraph.Adj (SimpleGraph.deleteEdges (Subgraph.coe G') (Sym2.map Subtype.val ⁻¹' s))\n { val := v, property := hv } { val := w, property := hw }", "tactic": "simp" } ]
[ 1084, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1081, 1 ]
Mathlib/GroupTheory/FreeGroup.lean
FreeGroup.Red.cons_cons_iff
[ { "state_after": "α : Type u\nL L₁ L₂ L₃ L₄ : List (α × Bool)\np : α × Bool\nLL₁ : List (α × Bool)\neq₁ : p :: L₁ = LL₁\n⊢ Red LL₁ (p :: L₂) → Red L₁ L₂", "state_before": "α : Type u\nL L₁ L₂ L₃ L₄ : List (α × Bool)\np : α × Bool\n⊢ Red (p :: L₁) (p :: L₂) → Red L₁ L₂", "tactic": "generalize eq₁ : (p :: L₁ : List _) = LL₁" }, { "state_after": "α : Type u\nL L₁ L₂ L₃ L₄ : List (α × Bool)\np : α × Bool\nLL₁ : List (α × Bool)\neq₁ : p :: L₁ = LL₁\nLL₂ : List (α × Bool)\neq₂ : p :: L₂ = LL₂\n⊢ Red LL₁ LL₂ → Red L₁ L₂", "state_before": "α : Type u\nL L₁ L₂ L₃ L₄ : List (α × Bool)\np : α × Bool\nLL₁ : List (α × Bool)\neq₁ : p :: L₁ = LL₁\n⊢ Red LL₁ (p :: L₂) → Red L₁ L₂", "tactic": "generalize eq₂ : (p :: L₂ : List _) = LL₂" }, { "state_after": "α : Type u\nL L₁ L₂ L₃ L₄ : List (α × Bool)\np : α × Bool\nLL₁ : List (α × Bool)\neq₁ : p :: L₁ = LL₁\nLL₂ : List (α × Bool)\neq₂ : p :: L₂ = LL₂\nh : Red LL₁ LL₂\n⊢ Red L₁ L₂", "state_before": "α : Type u\nL L₁ L₂ L₃ L₄ : List (α × Bool)\np : α × Bool\nLL₁ : List (α × Bool)\neq₁ : p :: L₁ = LL₁\nLL₂ : List (α × Bool)\neq₂ : p :: L₂ = LL₂\n⊢ Red LL₁ LL₂ → Red L₁ L₂", "tactic": "intro h" }, { "state_after": "case refl\nα : Type u\nL L₁✝ L₂✝ L₃ L₄ : List (α × Bool)\np : α × Bool\nLL₁ : List (α × Bool)\neq₁✝ : p :: L₁✝ = LL₁\nLL₂ : List (α × Bool)\neq₂✝ : p :: L₂✝ = LL₂\nL₁ L₂ : List (α × Bool)\neq₁ : p :: L₁ = LL₂\neq₂ : p :: L₂ = LL₂\n⊢ Red L₁ L₂\n\ncase head\nα : Type u\nL L₁✝¹ L₂✝¹ L₃ L₄ : List (α × Bool)\np : α × Bool\nLL₁ : List (α × Bool)\neq₁✝ : p :: L₁✝¹ = LL₁\nLL₂ : List (α × Bool)\neq₂✝ : p :: L₂✝¹ = LL₂\nL₁✝ L₂✝ : List (α × Bool)\nh₁₂ : Step L₁✝ L₂✝\nh : ReflTransGen Step L₂✝ LL₂\nih : ∀ {L₁ L₂ : List (α × Bool)}, p :: L₁ = L₂✝ → p :: L₂ = LL₂ → Red L₁ L₂\nL₁ L₂ : List (α × Bool)\neq₁ : p :: L₁ = L₁✝\neq₂ : p :: L₂ = LL₂\n⊢ Red L₁ L₂", "state_before": "α : Type u\nL L₁ L₂ L₃ L₄ : List (α × Bool)\np : α × Bool\nLL₁ : List (α × Bool)\neq₁ : p :: L₁ = LL₁\nLL₂ : List (α × Bool)\neq₂ : p :: L₂ = LL₂\nh : Red LL₁ LL₂\n⊢ Red L₁ L₂", "tactic": "induction' h using Relation.ReflTransGen.head_induction_on\n with L₁ L₂ h₁₂ h ih\n generalizing L₁ L₂" }, { "state_after": "case refl\nα : Type u\nL L₁✝ L₂✝ L₃ L₄ : List (α × Bool)\np : α × Bool\nL₁ L₂ : List (α × Bool)\neq₁ : p :: L₁ = p :: L₂✝\neq₂ : p :: L₂ = p :: L₂✝\n⊢ Red L₁ L₂", "state_before": "case refl\nα : Type u\nL L₁✝ L₂✝ L₃ L₄ : List (α × Bool)\np : α × Bool\nLL₁ : List (α × Bool)\neq₁✝ : p :: L₁✝ = LL₁\nLL₂ : List (α × Bool)\neq₂✝ : p :: L₂✝ = LL₂\nL₁ L₂ : List (α × Bool)\neq₁ : p :: L₁ = LL₂\neq₂ : p :: L₂ = LL₂\n⊢ Red L₁ L₂", "tactic": "subst_vars" }, { "state_after": "case refl.refl\nα : Type u\nL L₁✝ L₂ L₃ L₄ : List (α × Bool)\np : α × Bool\nL₁ : List (α × Bool)\neq₁ : p :: L₁ = p :: L₂\n⊢ Red L₁ L₂", "state_before": "case refl\nα : Type u\nL L₁✝ L₂✝ L₃ L₄ : List (α × Bool)\np : α × Bool\nL₁ L₂ : List (α × Bool)\neq₁ : p :: L₁ = p :: L₂✝\neq₂ : p :: L₂ = p :: L₂✝\n⊢ Red L₁ L₂", "tactic": "cases eq₂" }, { "state_after": "case refl.refl.refl\nα : Type u\nL L₁ L₂ L₃ L₄ : List (α × Bool)\np : α × Bool\n⊢ Red L₂ L₂", "state_before": "case refl.refl\nα : Type u\nL L₁✝ L₂ L₃ L₄ : List (α × Bool)\np : α × Bool\nL₁ : List (α × Bool)\neq₁ : p :: L₁ = p :: L₂\n⊢ Red L₁ L₂", "tactic": "cases eq₁" }, { "state_after": "no goals", "state_before": "case refl.refl.refl\nα : Type u\nL L₁ L₂ L₃ L₄ : List (α × Bool)\np : α × Bool\n⊢ Red L₂ L₂", "tactic": "constructor" }, { "state_after": "case head\nα : Type u\nL L₁✝ L₂✝¹ L₃ L₄ : List (α × Bool)\np : α × Bool\nL₂✝ L₁ L₂ : List (α × Bool)\nh : ReflTransGen Step L₂✝ (p :: L₂✝¹)\nih : ∀ {L₁ L₂ : List (α × Bool)}, p :: L₁ = L₂✝ → p :: L₂ = p :: L₂✝¹ → Red L₁ L₂\neq₂ : p :: L₂ = p :: L₂✝¹\nh₁₂ : Step (p :: L₁) L₂✝\n⊢ Red L₁ L₂", "state_before": "case head\nα : Type u\nL L₁✝¹ L₂✝¹ L₃ L₄ : List (α × Bool)\np : α × Bool\nLL₁ : List (α × Bool)\neq₁✝ : p :: L₁✝¹ = LL₁\nLL₂ : List (α × Bool)\neq₂✝ : p :: L₂✝¹ = LL₂\nL₁✝ L₂✝ : List (α × Bool)\nh₁₂ : Step L₁✝ L₂✝\nh : ReflTransGen Step L₂✝ LL₂\nih : ∀ {L₁ L₂ : List (α × Bool)}, p :: L₁ = L₂✝ → p :: L₂ = LL₂ → Red L₁ L₂\nL₁ L₂ : List (α × Bool)\neq₁ : p :: L₁ = L₁✝\neq₂ : p :: L₂ = LL₂\n⊢ Red L₁ L₂", "tactic": "subst_vars" }, { "state_after": "case head.refl\nα : Type u\nL L₁✝ L₂✝ L₃ L₄ : List (α × Bool)\np : α × Bool\nL₂ L₁ : List (α × Bool)\nh : ReflTransGen Step L₂ (p :: L₂✝)\nih : ∀ {L₁ L₂_1 : List (α × Bool)}, p :: L₁ = L₂ → p :: L₂_1 = p :: L₂✝ → Red L₁ L₂_1\nh₁₂ : Step (p :: L₁) L₂\n⊢ Red L₁ L₂✝", "state_before": "case head\nα : Type u\nL L₁✝ L₂✝¹ L₃ L₄ : List (α × Bool)\np : α × Bool\nL₂✝ L₁ L₂ : List (α × Bool)\nh : ReflTransGen Step L₂✝ (p :: L₂✝¹)\nih : ∀ {L₁ L₂ : List (α × Bool)}, p :: L₁ = L₂✝ → p :: L₂ = p :: L₂✝¹ → Red L₁ L₂\neq₂ : p :: L₂ = p :: L₂✝¹\nh₁₂ : Step (p :: L₁) L₂✝\n⊢ Red L₁ L₂", "tactic": "cases eq₂" }, { "state_after": "case head.refl.mk\nα : Type u\nL L₁✝ L₂✝ L₃ L₄ L₂ L₁ : List (α × Bool)\na : α\nb : Bool\nh : ReflTransGen Step L₂ ((a, b) :: L₂✝)\nih : ∀ {L₁ L₂_1 : List (α × Bool)}, (a, b) :: L₁ = L₂ → (a, b) :: L₂_1 = (a, b) :: L₂✝ → Red L₁ L₂_1\nh₁₂ : Step ((a, b) :: L₁) L₂\n⊢ Red L₁ L₂✝", "state_before": "case head.refl\nα : Type u\nL L₁✝ L₂✝ L₃ L₄ : List (α × Bool)\np : α × Bool\nL₂ L₁ : List (α × Bool)\nh : ReflTransGen Step L₂ (p :: L₂✝)\nih : ∀ {L₁ L₂_1 : List (α × Bool)}, p :: L₁ = L₂ → p :: L₂_1 = p :: L₂✝ → Red L₁ L₂_1\nh₁₂ : Step (p :: L₁) L₂\n⊢ Red L₁ L₂✝", "tactic": "cases' p with a b" }, { "state_after": "case head.refl.mk\nα : Type u\nL L₁✝ L₂✝ L₃ L₄ L₂ L₁ : List (α × Bool)\na : α\nb : Bool\nh : ReflTransGen Step L₂ ((a, b) :: L₂✝)\nih : ∀ {L₁ L₂_1 : List (α × Bool)}, (a, b) :: L₁ = L₂ → (a, b) :: L₂_1 = (a, b) :: L₂✝ → Red L₁ L₂_1\nh₁₂ : (∃ L, Step L₁ L ∧ L₂ = (a, b) :: L) ∨ L₁ = (a, !b) :: L₂\n⊢ Red L₁ L₂✝", "state_before": "case head.refl.mk\nα : Type u\nL L₁✝ L₂✝ L₃ L₄ L₂ L₁ : List (α × Bool)\na : α\nb : Bool\nh : ReflTransGen Step L₂ ((a, b) :: L₂✝)\nih : ∀ {L₁ L₂_1 : List (α × Bool)}, (a, b) :: L₁ = L₂ → (a, b) :: L₂_1 = (a, b) :: L₂✝ → Red L₁ L₂_1\nh₁₂ : Step ((a, b) :: L₁) L₂\n⊢ Red L₁ L₂✝", "tactic": "rw [Step.cons_left_iff] at h₁₂" }, { "state_after": "case head.refl.mk.inl.intro.intro\nα : Type u\nL✝ L₁✝ L₂ L₃ L₄ L₁ : List (α × Bool)\na : α\nb : Bool\nL : List (α × Bool)\nh₁₂ : Step L₁ L\nh : ReflTransGen Step ((a, b) :: L) ((a, b) :: L₂)\nih : ∀ {L₁ L₂_1 : List (α × Bool)}, (a, b) :: L₁ = (a, b) :: L → (a, b) :: L₂_1 = (a, b) :: L₂ → Red L₁ L₂_1\n⊢ Red L₁ L₂\n\ncase head.refl.mk.inr\nα : Type u\nL L₁ L₂✝ L₃ L₄ L₂ : List (α × Bool)\na : α\nb : Bool\nh : ReflTransGen Step L₂ ((a, b) :: L₂✝)\nih : ∀ {L₁ L₂_1 : List (α × Bool)}, (a, b) :: L₁ = L₂ → (a, b) :: L₂_1 = (a, b) :: L₂✝ → Red L₁ L₂_1\n⊢ Red ((a, !b) :: L₂) L₂✝", "state_before": "case head.refl.mk\nα : Type u\nL L₁✝ L₂✝ L₃ L₄ L₂ L₁ : List (α × Bool)\na : α\nb : Bool\nh : ReflTransGen Step L₂ ((a, b) :: L₂✝)\nih : ∀ {L₁ L₂_1 : List (α × Bool)}, (a, b) :: L₁ = L₂ → (a, b) :: L₂_1 = (a, b) :: L₂✝ → Red L₁ L₂_1\nh₁₂ : (∃ L, Step L₁ L ∧ L₂ = (a, b) :: L) ∨ L₁ = (a, !b) :: L₂\n⊢ Red L₁ L₂✝", "tactic": "rcases h₁₂ with (⟨L, h₁₂, rfl⟩ | rfl)" }, { "state_after": "no goals", "state_before": "case head.refl.mk.inl.intro.intro\nα : Type u\nL✝ L₁✝ L₂ L₃ L₄ L₁ : List (α × Bool)\na : α\nb : Bool\nL : List (α × Bool)\nh₁₂ : Step L₁ L\nh : ReflTransGen Step ((a, b) :: L) ((a, b) :: L₂)\nih : ∀ {L₁ L₂_1 : List (α × Bool)}, (a, b) :: L₁ = (a, b) :: L → (a, b) :: L₂_1 = (a, b) :: L₂ → Red L₁ L₂_1\n⊢ Red L₁ L₂", "tactic": "exact (ih rfl rfl).head h₁₂" }, { "state_after": "no goals", "state_before": "case head.refl.mk.inr\nα : Type u\nL L₁ L₂✝ L₃ L₄ L₂ : List (α × Bool)\na : α\nb : Bool\nh : ReflTransGen Step L₂ ((a, b) :: L₂✝)\nih : ∀ {L₁ L₂_1 : List (α × Bool)}, (a, b) :: L₁ = L₂ → (a, b) :: L₂_1 = (a, b) :: L₂✝ → Red L₁ L₂_1\n⊢ Red ((a, !b) :: L₂) L₂✝", "tactic": "exact (cons_cons h).tail Step.cons_not_rev" } ]
[ 275, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 255, 1 ]
Mathlib/Algebra/Symmetrized.lean
SymAlg.sym_injective
[]
[ 103, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 102, 1 ]
Mathlib/GroupTheory/Commutator.lean
Subgroup.commutator_le
[]
[ 94, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 92, 1 ]
Mathlib/Algebra/Module/Projective.lean
Module.Projective.of_basis
[ { "state_after": "R : Type u_2\ninst✝² : Ring R\nP : Type u_3\ninst✝¹ : AddCommGroup P\ninst✝ : Module R P\nι : Type u_1\nb : Basis ι R P\n⊢ Function.LeftInverse ↑(Finsupp.total P P R id) ↑(↑(Basis.constr b ℕ) fun i => Finsupp.single (↑b i) 1)", "state_before": "R : Type u_2\ninst✝² : Ring R\nP : Type u_3\ninst✝¹ : AddCommGroup P\ninst✝ : Module R P\nι : Type u_1\nb : Basis ι R P\n⊢ Projective R P", "tactic": "use b.constr ℕ fun i => Finsupp.single (b i) (1 : R)" }, { "state_after": "R : Type u_2\ninst✝² : Ring R\nP : Type u_3\ninst✝¹ : AddCommGroup P\ninst✝ : Module R P\nι : Type u_1\nb : Basis ι R P\nm : P\n⊢ ↑(Finsupp.total P P R id) (↑(↑(Basis.constr b ℕ) fun i => Finsupp.single (↑b i) 1) m) = m", "state_before": "R : Type u_2\ninst✝² : Ring R\nP : Type u_3\ninst✝¹ : AddCommGroup P\ninst✝ : Module R P\nι : Type u_1\nb : Basis ι R P\n⊢ Function.LeftInverse ↑(Finsupp.total P P R id) ↑(↑(Basis.constr b ℕ) fun i => Finsupp.single (↑b i) 1)", "tactic": "intro m" }, { "state_after": "R : Type u_2\ninst✝² : Ring R\nP : Type u_3\ninst✝¹ : AddCommGroup P\ninst✝ : Module R P\nι : Type u_1\nb : Basis ι R P\nm : P\n⊢ (sum (↑b.repr m) fun i d => d • ↑b i) = m", "state_before": "R : Type u_2\ninst✝² : Ring R\nP : Type u_3\ninst✝¹ : AddCommGroup P\ninst✝ : Module R P\nι : Type u_1\nb : Basis ι R P\nm : P\n⊢ ↑(Finsupp.total P P R id) (↑(↑(Basis.constr b ℕ) fun i => Finsupp.single (↑b i) 1) m) = m", "tactic": "simp only [b.constr_apply, mul_one, id.def, Finsupp.smul_single', Finsupp.total_single,\n LinearMap.map_finsupp_sum]" }, { "state_after": "no goals", "state_before": "R : Type u_2\ninst✝² : Ring R\nP : Type u_3\ninst✝¹ : AddCommGroup P\ninst✝ : Module R P\nι : Type u_1\nb : Basis ι R P\nm : P\n⊢ (sum (↑b.repr m) fun i d => d • ↑b i) = m", "tactic": "exact b.total_repr m" } ]
[ 165, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 158, 1 ]
Mathlib/CategoryTheory/Limits/HasLimits.lean
CategoryTheory.Limits.colimit.pre_eq
[ { "state_after": "no goals", "state_before": "J : Type u₁\ninst✝⁶ : Category J\nK : Type u₂\ninst✝⁵ : Category K\nC : Type u\ninst✝⁴ : Category C\nF : J ⥤ C\ninst✝³ : HasColimit F\nE : K ⥤ J\ninst✝² : HasColimit (E ⋙ F)\nL : Type u₃\ninst✝¹ : Category L\nD : L ⥤ K\ninst✝ : HasColimit (D ⋙ E ⋙ F)\ns : ColimitCocone (E ⋙ F)\nt : ColimitCocone F\n⊢ pre F E = (isoColimitCocone s).hom ≫ IsColimit.desc s.isColimit (Cocone.whisker E t.cocone) ≫ (isoColimitCocone t).inv", "tactic": "aesop_cat" } ]
[ 1009, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1005, 1 ]
Mathlib/Algebra/Module/Torsion.lean
Submodule.torsionBy_le_torsionBy_of_dvd
[ { "state_after": "R : Type u_1\nM : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\ns : Set R\na✝ a b : R\ndvd : a ∣ b\n⊢ torsionBySet R M ↑(span R {a}) ≤ torsionBySet R M {b}", "state_before": "R : Type u_1\nM : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\ns : Set R\na✝ a b : R\ndvd : a ∣ b\n⊢ torsionBy R M a ≤ torsionBy R M b", "tactic": "rw [← torsionBySet_span_singleton_eq, ← torsionBySet_singleton_eq]" }, { "state_after": "case st\nR : Type u_1\nM : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\ns : Set R\na✝ a b : R\ndvd : a ∣ b\n⊢ {b} ⊆ ↑(span R {a})", "state_before": "R : Type u_1\nM : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\ns : Set R\na✝ a b : R\ndvd : a ∣ b\n⊢ torsionBySet R M ↑(span R {a}) ≤ torsionBySet R M {b}", "tactic": "apply torsionBySet_le_torsionBySet_of_subset" }, { "state_after": "case st\nR : Type u_1\nM : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\ns : Set R\na✝ a c : R\ndvd : a ∣ c\n⊢ c ∈ ↑(span R {a})", "state_before": "case st\nR : Type u_1\nM : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\ns : Set R\na✝ a b : R\ndvd : a ∣ b\n⊢ {b} ⊆ ↑(span R {a})", "tactic": "rintro c (rfl : c = b)" }, { "state_after": "no goals", "state_before": "case st\nR : Type u_1\nM : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\ns : Set R\na✝ a c : R\ndvd : a ∣ c\n⊢ c ∈ ↑(span R {a})", "tactic": "exact Ideal.mem_span_singleton.mpr dvd" } ]
[ 300, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 296, 1 ]
Mathlib/Topology/UniformSpace/UniformConvergence.lean
UniformContinuous.comp_tendstoUniformly
[]
[ 272, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 270, 1 ]
Mathlib/Analysis/Normed/Group/HomCompletion.lean
NormedAddGroupHom.completion_coe
[]
[ 83, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.comap_neBot_iff_compl_range
[]
[ 2352, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2351, 1 ]
Mathlib/Logic/Equiv/Defs.lean
Equiv.conj_comp
[ { "state_after": "no goals", "state_before": "α : Sort u\nβ : Sort v\nγ : Sort w\ne : α ≃ β\nf₁ f₂ : α → α\n⊢ ↑(conj e) (f₁ ∘ f₂) = ↑(conj e) f₁ ∘ ↑(conj e) f₂", "tactic": "apply arrowCongr_comp" } ]
[ 586, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 585, 1 ]
src/lean/Init/SizeOfLemmas.lean
Fin.sizeOf
[ { "state_after": "case mk\nn val✝ : Nat\nisLt✝ : val✝ < n\n⊢ SizeOf.sizeOf { val := val✝, isLt := isLt✝ } = { val := val✝, isLt := isLt✝ }.val + 1", "state_before": "n : Nat\na : Fin n\n⊢ SizeOf.sizeOf a = a.val + 1", "tactic": "cases a" }, { "state_after": "no goals", "state_before": "case mk\nn val✝ : Nat\nisLt✝ : val✝ < n\n⊢ SizeOf.sizeOf { val := val✝, isLt := isLt✝ } = { val := val✝, isLt := isLt✝ }.val + 1", "tactic": "simp_arith" } ]
[ 12, 22 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 11, 9 ]
Mathlib/Topology/UniformSpace/UniformConvergence.lean
TendstoUniformly.comp
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng✝ : ι → α\nh : TendstoUniformlyOnFilter F f p ⊤\ng : γ → α\n⊢ TendstoUniformlyOnFilter (fun n => F n ∘ g) (f ∘ g) p ⊤", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng✝ : ι → α\nh : TendstoUniformly F f p\ng : γ → α\n⊢ TendstoUniformly (fun n => F n ∘ g) (f ∘ g) p", "tactic": "rw [tendstoUniformly_iff_tendstoUniformlyOnFilter] at h⊢" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝ : UniformSpace β\nF : ι → α → β\nf : α → β\ns s' : Set α\nx : α\np : Filter ι\np' : Filter α\ng✝ : ι → α\nh : TendstoUniformlyOnFilter F f p ⊤\ng : γ → α\n⊢ TendstoUniformlyOnFilter (fun n => F n ∘ g) (f ∘ g) p ⊤", "tactic": "simpa [principal_univ, comap_principal] using h.comp g" } ]
[ 252, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 249, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.IsCycle.ne_one
[ { "state_after": "no goals", "state_before": "ι : Type ?u.306885\nα : Type u_1\nβ : Type ?u.306891\nf g : Perm α\nx y : α\nh : IsCycle f\nhf : f = 1\n⊢ False", "tactic": "simp [hf, IsCycle] at h" } ]
[ 291, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 291, 1 ]
Mathlib/CategoryTheory/MorphismProperty.lean
CategoryTheory.MorphismProperty.monomorphisms.iff
[ { "state_after": "no goals", "state_before": "C : Type u\ninst✝¹ : Category C\nD : Type ?u.59403\ninst✝ : Category D\nX Y : C\nf : X ⟶ Y\n⊢ monomorphisms C f ↔ Mono f", "tactic": "rfl" } ]
[ 408, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 408, 1 ]
Mathlib/RingTheory/OreLocalization/Basic.lean
OreLocalization.div_eq_one'
[ { "state_after": "R : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr : R\nhr : r ∈ S\n⊢ ∃ u v, 1 * ↑u = r * v ∧ ↑1 * ↑u = ↑{ val := r, property := hr } * v", "state_before": "R : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr : R\nhr : r ∈ S\n⊢ r /ₒ { val := r, property := hr } = 1", "tactic": "rw [OreLocalization.one_def, oreDiv_eq_iff]" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr : R\nhr : r ∈ S\n⊢ ∃ u v, 1 * ↑u = r * v ∧ ↑1 * ↑u = ↑{ val := r, property := hr } * v", "tactic": "exact ⟨⟨r, hr⟩, 1, by simp, by simp⟩" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr : R\nhr : r ∈ S\n⊢ 1 * ↑{ val := r, property := hr } = r * 1", "tactic": "simp" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝¹ : Monoid R\nS : Submonoid R\ninst✝ : OreSet S\nr : R\nhr : r ∈ S\n⊢ ↑1 * ↑{ val := r, property := hr } = ↑{ val := r, property := hr } * 1", "tactic": "simp" } ]
[ 287, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 285, 11 ]
Mathlib/Analysis/Normed/Field/Basic.lean
Filter.tendsto_mul_left_cobounded
[]
[ 611, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 608, 1 ]
Mathlib/Data/Polynomial/Inductions.lean
Polynomial.divX_C
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\nA : Type z\na✝ b : R\nn✝ : ℕ\ninst✝ : Semiring R\np q : R[X]\na : R\nn : ℕ\n⊢ coeff (divX (↑C a)) n = coeff 0 n", "tactic": "simp [coeff_divX, coeff_C, Finsupp.single_eq_of_ne _]" } ]
[ 59, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 58, 1 ]
Mathlib/Order/SymmDiff.lean
inf_symmDiff_symmDiff
[ { "state_after": "no goals", "state_before": "ι : Type ?u.34523\nα : Type u_1\nβ : Type ?u.34529\nπ : ι → Type ?u.34534\ninst✝ : GeneralizedCoheytingAlgebra α\na b c d : α\n⊢ (a ⊓ b) ∆ (a ∆ b) = a ⊔ b", "tactic": "rw [symmDiff_comm, symmDiff_symmDiff_inf]" } ]
[ 214, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 213, 1 ]
Mathlib/Data/List/Pairwise.lean
List.pwFilter_map
[ { "state_after": "α : Type u_2\nβ : Type u_1\nR S T : α → α → Prop\na : α\nl : List α\ninst✝ : DecidableRel R\nf : β → α\nx : β\nxs : List β\nh : ∀ (b : α), b ∈ pwFilter R (map f xs) → R (f x) b\nh' : ∀ (b : β), b ∈ pwFilter (fun x y => R (f x) (f y)) xs → R (f x) (f b)\n⊢ pwFilter R (map f (x :: xs)) = map f (pwFilter (fun x y => R (f x) (f y)) (x :: xs))", "state_before": "α : Type u_2\nβ : Type u_1\nR S T : α → α → Prop\na : α\nl : List α\ninst✝ : DecidableRel R\nf : β → α\nx : β\nxs : List β\nh : ∀ (b : α), b ∈ pwFilter R (map f xs) → R (f x) b\n⊢ pwFilter R (map f (x :: xs)) = map f (pwFilter (fun x y => R (f x) (f y)) (x :: xs))", "tactic": "have h' : ∀ b : β, b ∈ pwFilter (fun x y : β => R (f x) (f y)) xs → R (f x) (f b) :=\n fun b hb => h _ (by rw [pwFilter_map f xs]; apply mem_map_of_mem _ hb)" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nR S T : α → α → Prop\na : α\nl : List α\ninst✝ : DecidableRel R\nf : β → α\nx : β\nxs : List β\nh : ∀ (b : α), b ∈ pwFilter R (map f xs) → R (f x) b\nh' : ∀ (b : β), b ∈ pwFilter (fun x y => R (f x) (f y)) xs → R (f x) (f b)\n⊢ pwFilter R (map f (x :: xs)) = map f (pwFilter (fun x y => R (f x) (f y)) (x :: xs))", "tactic": "rw [map, pwFilter_cons_of_pos h, pwFilter_cons_of_pos h', pwFilter_map f xs, map]" }, { "state_after": "α : Type u_2\nβ : Type u_1\nR S T : α → α → Prop\na : α\nl : List α\ninst✝ : DecidableRel R\nf : β → α\nx : β\nxs : List β\nh : ∀ (b : α), b ∈ pwFilter R (map f xs) → R (f x) b\nb : β\nhb : b ∈ pwFilter (fun x y => R (f x) (f y)) xs\n⊢ f b ∈ map f (pwFilter (fun x y => R (f x) (f y)) xs)", "state_before": "α : Type u_2\nβ : Type u_1\nR S T : α → α → Prop\na : α\nl : List α\ninst✝ : DecidableRel R\nf : β → α\nx : β\nxs : List β\nh : ∀ (b : α), b ∈ pwFilter R (map f xs) → R (f x) b\nb : β\nhb : b ∈ pwFilter (fun x y => R (f x) (f y)) xs\n⊢ f b ∈ pwFilter R (map f xs)", "tactic": "rw [pwFilter_map f xs]" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nR S T : α → α → Prop\na : α\nl : List α\ninst✝ : DecidableRel R\nf : β → α\nx : β\nxs : List β\nh : ∀ (b : α), b ∈ pwFilter R (map f xs) → R (f x) b\nb : β\nhb : b ∈ pwFilter (fun x y => R (f x) (f y)) xs\n⊢ f b ∈ map f (pwFilter (fun x y => R (f x) (f y)) xs)", "tactic": "apply mem_map_of_mem _ hb" }, { "state_after": "α : Type u_2\nβ : Type u_1\nR S T : α → α → Prop\na : α\nl : List α\ninst✝ : DecidableRel R\nf : β → α\nx : β\nxs : List β\nh : ¬∀ (b : α), b ∈ pwFilter R (map f xs) → R (f x) b\nh' : ¬∀ (b : β), b ∈ pwFilter (fun x y => R (f x) (f y)) xs → R (f x) (f b)\n⊢ pwFilter R (map f (x :: xs)) = map f (pwFilter (fun x y => R (f x) (f y)) (x :: xs))", "state_before": "α : Type u_2\nβ : Type u_1\nR S T : α → α → Prop\na : α\nl : List α\ninst✝ : DecidableRel R\nf : β → α\nx : β\nxs : List β\nh : ¬∀ (b : α), b ∈ pwFilter R (map f xs) → R (f x) b\n⊢ pwFilter R (map f (x :: xs)) = map f (pwFilter (fun x y => R (f x) (f y)) (x :: xs))", "tactic": "have h' : ¬∀ b : β, b ∈ pwFilter (fun x y : β => R (f x) (f y)) xs → R (f x) (f b) :=\n fun hh =>\n h fun a ha => by\n rw [pwFilter_map f xs, mem_map] at ha\n rcases ha with ⟨b, hb₀, hb₁⟩\n subst a\n exact hh _ hb₀" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nR S T : α → α → Prop\na : α\nl : List α\ninst✝ : DecidableRel R\nf : β → α\nx : β\nxs : List β\nh : ¬∀ (b : α), b ∈ pwFilter R (map f xs) → R (f x) b\nh' : ¬∀ (b : β), b ∈ pwFilter (fun x y => R (f x) (f y)) xs → R (f x) (f b)\n⊢ pwFilter R (map f (x :: xs)) = map f (pwFilter (fun x y => R (f x) (f y)) (x :: xs))", "tactic": "rw [map, pwFilter_cons_of_neg h, pwFilter_cons_of_neg h', pwFilter_map f xs]" }, { "state_after": "α : Type u_2\nβ : Type u_1\nR S T : α → α → Prop\na✝ : α\nl : List α\ninst✝ : DecidableRel R\nf : β → α\nx : β\nxs : List β\nh : ¬∀ (b : α), b ∈ pwFilter R (map f xs) → R (f x) b\nhh : ∀ (b : β), b ∈ pwFilter (fun x y => R (f x) (f y)) xs → R (f x) (f b)\na : α\nha : ∃ a_1, a_1 ∈ pwFilter (fun x y => R (f x) (f y)) xs ∧ f a_1 = a\n⊢ R (f x) a", "state_before": "α : Type u_2\nβ : Type u_1\nR S T : α → α → Prop\na✝ : α\nl : List α\ninst✝ : DecidableRel R\nf : β → α\nx : β\nxs : List β\nh : ¬∀ (b : α), b ∈ pwFilter R (map f xs) → R (f x) b\nhh : ∀ (b : β), b ∈ pwFilter (fun x y => R (f x) (f y)) xs → R (f x) (f b)\na : α\nha : a ∈ pwFilter R (map f xs)\n⊢ R (f x) a", "tactic": "rw [pwFilter_map f xs, mem_map] at ha" }, { "state_after": "case intro.intro\nα : Type u_2\nβ : Type u_1\nR S T : α → α → Prop\na✝ : α\nl : List α\ninst✝ : DecidableRel R\nf : β → α\nx : β\nxs : List β\nh : ¬∀ (b : α), b ∈ pwFilter R (map f xs) → R (f x) b\nhh : ∀ (b : β), b ∈ pwFilter (fun x y => R (f x) (f y)) xs → R (f x) (f b)\na : α\nb : β\nhb₀ : b ∈ pwFilter (fun x y => R (f x) (f y)) xs\nhb₁ : f b = a\n⊢ R (f x) a", "state_before": "α : Type u_2\nβ : Type u_1\nR S T : α → α → Prop\na✝ : α\nl : List α\ninst✝ : DecidableRel R\nf : β → α\nx : β\nxs : List β\nh : ¬∀ (b : α), b ∈ pwFilter R (map f xs) → R (f x) b\nhh : ∀ (b : β), b ∈ pwFilter (fun x y => R (f x) (f y)) xs → R (f x) (f b)\na : α\nha : ∃ a_1, a_1 ∈ pwFilter (fun x y => R (f x) (f y)) xs ∧ f a_1 = a\n⊢ R (f x) a", "tactic": "rcases ha with ⟨b, hb₀, hb₁⟩" }, { "state_after": "case intro.intro\nα : Type u_2\nβ : Type u_1\nR S T : α → α → Prop\na : α\nl : List α\ninst✝ : DecidableRel R\nf : β → α\nx : β\nxs : List β\nh : ¬∀ (b : α), b ∈ pwFilter R (map f xs) → R (f x) b\nhh : ∀ (b : β), b ∈ pwFilter (fun x y => R (f x) (f y)) xs → R (f x) (f b)\nb : β\nhb₀ : b ∈ pwFilter (fun x y => R (f x) (f y)) xs\n⊢ R (f x) (f b)", "state_before": "case intro.intro\nα : Type u_2\nβ : Type u_1\nR S T : α → α → Prop\na✝ : α\nl : List α\ninst✝ : DecidableRel R\nf : β → α\nx : β\nxs : List β\nh : ¬∀ (b : α), b ∈ pwFilter R (map f xs) → R (f x) b\nhh : ∀ (b : β), b ∈ pwFilter (fun x y => R (f x) (f y)) xs → R (f x) (f b)\na : α\nb : β\nhb₀ : b ∈ pwFilter (fun x y => R (f x) (f y)) xs\nhb₁ : f b = a\n⊢ R (f x) a", "tactic": "subst a" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u_2\nβ : Type u_1\nR S T : α → α → Prop\na : α\nl : List α\ninst✝ : DecidableRel R\nf : β → α\nx : β\nxs : List β\nh : ¬∀ (b : α), b ∈ pwFilter R (map f xs) → R (f x) b\nhh : ∀ (b : β), b ∈ pwFilter (fun x y => R (f x) (f y)) xs → R (f x) (f b)\nb : β\nhb₀ : b ∈ pwFilter (fun x y => R (f x) (f y)) xs\n⊢ R (f x) (f b)", "tactic": "exact hh _ hb₀" } ]
[ 388, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 372, 1 ]
Mathlib/Data/Real/Sqrt.lean
Real.sqrt_inj
[ { "state_after": "no goals", "state_before": "x y : ℝ\nhx : 0 ≤ x\nhy : 0 ≤ y\n⊢ sqrt x = sqrt y ↔ x = y", "tactic": "simp [le_antisymm_iff, hx, hy]" } ]
[ 333, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 332, 1 ]
Mathlib/Topology/Maps.lean
IsOpenMap.preimage_frontier_eq_frontier_preimage
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.196791\nδ : Type ?u.196794\ninst✝² : TopologicalSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : TopologicalSpace γ\nf : α → β\nhf : IsOpenMap f\nhfc : Continuous f\ns : Set β\n⊢ f ⁻¹' frontier s = frontier (f ⁻¹' s)", "tactic": "simp only [frontier_eq_closure_inter_closure, preimage_inter, preimage_compl,\n hf.preimage_closure_eq_closure_preimage hfc]" } ]
[ 440, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 437, 1 ]
Mathlib/Tactic/NormNum/Core.lean
Mathlib.Meta.NormNum.IsNat.of_raw
[]
[ 54, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 54, 1 ]
Mathlib/Data/Finset/LocallyFinite.lean
BddBelow.finite
[]
[ 464, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 462, 1 ]
Mathlib/Order/Height.lean
Set.le_chainHeight_TFAE
[ { "state_after": "case tfae_1_to_2\nα : Type u_1\nβ : Type ?u.5660\ninst✝¹ : LT α\ninst✝ : LT β\ns t : Set α\nl : List α\na : α\nn : ℕ\n⊢ ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n\n\nα : Type u_1\nβ : Type ?u.5660\ninst✝¹ : LT α\ninst✝ : LT β\ns t : Set α\nl : List α\na : α\nn : ℕ\ntfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n\n⊢ TFAE [↑n ≤ chainHeight s, ∃ l, l ∈ subchain s ∧ length l = n, ∃ l, l ∈ subchain s ∧ n ≤ length l]", "state_before": "α : Type u_1\nβ : Type ?u.5660\ninst✝¹ : LT α\ninst✝ : LT β\ns t : Set α\nl : List α\na : α\nn : ℕ\n⊢ TFAE [↑n ≤ chainHeight s, ∃ l, l ∈ subchain s ∧ length l = n, ∃ l, l ∈ subchain s ∧ n ≤ length l]", "tactic": "tfae_have 1 → 2" }, { "state_after": "case tfae_2_to_3\nα : Type u_1\nβ : Type ?u.5660\ninst✝¹ : LT α\ninst✝ : LT β\ns t : Set α\nl : List α\na : α\nn : ℕ\ntfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n\n⊢ (∃ l, l ∈ subchain s ∧ length l = n) → ∃ l, l ∈ subchain s ∧ n ≤ length l\n\nα : Type u_1\nβ : Type ?u.5660\ninst✝¹ : LT α\ninst✝ : LT β\ns t : Set α\nl : List α\na : α\nn : ℕ\ntfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n\ntfae_2_to_3 : (∃ l, l ∈ subchain s ∧ length l = n) → ∃ l, l ∈ subchain s ∧ n ≤ length l\n⊢ TFAE [↑n ≤ chainHeight s, ∃ l, l ∈ subchain s ∧ length l = n, ∃ l, l ∈ subchain s ∧ n ≤ length l]", "state_before": "α : Type u_1\nβ : Type ?u.5660\ninst✝¹ : LT α\ninst✝ : LT β\ns t : Set α\nl : List α\na : α\nn : ℕ\ntfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n\n⊢ TFAE [↑n ≤ chainHeight s, ∃ l, l ∈ subchain s ∧ length l = n, ∃ l, l ∈ subchain s ∧ n ≤ length l]", "tactic": "tfae_have 2 → 3" }, { "state_after": "case tfae_3_to_1\nα : Type u_1\nβ : Type ?u.5660\ninst✝¹ : LT α\ninst✝ : LT β\ns t : Set α\nl : List α\na : α\nn : ℕ\ntfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n\ntfae_2_to_3 : (∃ l, l ∈ subchain s ∧ length l = n) → ∃ l, l ∈ subchain s ∧ n ≤ length l\n⊢ (∃ l, l ∈ subchain s ∧ n ≤ length l) → ↑n ≤ chainHeight s\n\nα : Type u_1\nβ : Type ?u.5660\ninst✝¹ : LT α\ninst✝ : LT β\ns t : Set α\nl : List α\na : α\nn : ℕ\ntfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n\ntfae_2_to_3 : (∃ l, l ∈ subchain s ∧ length l = n) → ∃ l, l ∈ subchain s ∧ n ≤ length l\ntfae_3_to_1 : (∃ l, l ∈ subchain s ∧ n ≤ length l) → ↑n ≤ chainHeight s\n⊢ TFAE [↑n ≤ chainHeight s, ∃ l, l ∈ subchain s ∧ length l = n, ∃ l, l ∈ subchain s ∧ n ≤ length l]", "state_before": "α : Type u_1\nβ : Type ?u.5660\ninst✝¹ : LT α\ninst✝ : LT β\ns t : Set α\nl : List α\na : α\nn : ℕ\ntfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n\ntfae_2_to_3 : (∃ l, l ∈ subchain s ∧ length l = n) → ∃ l, l ∈ subchain s ∧ n ≤ length l\n⊢ TFAE [↑n ≤ chainHeight s, ∃ l, l ∈ subchain s ∧ length l = n, ∃ l, l ∈ subchain s ∧ n ≤ length l]", "tactic": "tfae_have 3 → 1" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.5660\ninst✝¹ : LT α\ninst✝ : LT β\ns t : Set α\nl : List α\na : α\nn : ℕ\ntfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n\ntfae_2_to_3 : (∃ l, l ∈ subchain s ∧ length l = n) → ∃ l, l ∈ subchain s ∧ n ≤ length l\ntfae_3_to_1 : (∃ l, l ∈ subchain s ∧ n ≤ length l) → ↑n ≤ chainHeight s\n⊢ TFAE [↑n ≤ chainHeight s, ∃ l, l ∈ subchain s ∧ length l = n, ∃ l, l ∈ subchain s ∧ n ≤ length l]", "tactic": "tfae_finish" }, { "state_after": "no goals", "state_before": "case tfae_1_to_2\nα : Type u_1\nβ : Type ?u.5660\ninst✝¹ : LT α\ninst✝ : LT β\ns t : Set α\nl : List α\na : α\nn : ℕ\n⊢ ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n", "tactic": "exact s.exists_chain_of_le_chainHeight" }, { "state_after": "case tfae_2_to_3.intro.intro\nα : Type u_1\nβ : Type ?u.5660\ninst✝¹ : LT α\ninst✝ : LT β\ns t : Set α\nl✝ : List α\na : α\nn : ℕ\ntfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n\nl : List α\nhls : l ∈ subchain s\nhe : length l = n\n⊢ ∃ l, l ∈ subchain s ∧ n ≤ length l", "state_before": "case tfae_2_to_3\nα : Type u_1\nβ : Type ?u.5660\ninst✝¹ : LT α\ninst✝ : LT β\ns t : Set α\nl : List α\na : α\nn : ℕ\ntfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n\n⊢ (∃ l, l ∈ subchain s ∧ length l = n) → ∃ l, l ∈ subchain s ∧ n ≤ length l", "tactic": "rintro ⟨l, hls, he⟩" }, { "state_after": "no goals", "state_before": "case tfae_2_to_3.intro.intro\nα : Type u_1\nβ : Type ?u.5660\ninst✝¹ : LT α\ninst✝ : LT β\ns t : Set α\nl✝ : List α\na : α\nn : ℕ\ntfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n\nl : List α\nhls : l ∈ subchain s\nhe : length l = n\n⊢ ∃ l, l ∈ subchain s ∧ n ≤ length l", "tactic": "exact ⟨l, hls, he.ge⟩" }, { "state_after": "case tfae_3_to_1.intro.intro\nα : Type u_1\nβ : Type ?u.5660\ninst✝¹ : LT α\ninst✝ : LT β\ns t : Set α\nl✝ : List α\na : α\nn : ℕ\ntfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n\ntfae_2_to_3 : (∃ l, l ∈ subchain s ∧ length l = n) → ∃ l, l ∈ subchain s ∧ n ≤ length l\nl : List α\nhs : l ∈ subchain s\nhn : n ≤ length l\n⊢ ↑n ≤ chainHeight s", "state_before": "case tfae_3_to_1\nα : Type u_1\nβ : Type ?u.5660\ninst✝¹ : LT α\ninst✝ : LT β\ns t : Set α\nl : List α\na : α\nn : ℕ\ntfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n\ntfae_2_to_3 : (∃ l, l ∈ subchain s ∧ length l = n) → ∃ l, l ∈ subchain s ∧ n ≤ length l\n⊢ (∃ l, l ∈ subchain s ∧ n ≤ length l) → ↑n ≤ chainHeight s", "tactic": "rintro ⟨l, hs, hn⟩" }, { "state_after": "no goals", "state_before": "case tfae_3_to_1.intro.intro\nα : Type u_1\nβ : Type ?u.5660\ninst✝¹ : LT α\ninst✝ : LT β\ns t : Set α\nl✝ : List α\na : α\nn : ℕ\ntfae_1_to_2 : ↑n ≤ chainHeight s → ∃ l, l ∈ subchain s ∧ length l = n\ntfae_2_to_3 : (∃ l, l ∈ subchain s ∧ length l = n) → ∃ l, l ∈ subchain s ∧ n ≤ length l\nl : List α\nhs : l ∈ subchain s\nhn : n ≤ length l\n⊢ ↑n ≤ chainHeight s", "tactic": "exact le_iSup₂_of_le l hs (WithTop.coe_le_coe.2 hn)" } ]
[ 117, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 112, 1 ]
Mathlib/CategoryTheory/Bicategory/Basic.lean
CategoryTheory.Bicategory.pentagon_hom_hom_inv_inv_hom
[ { "state_after": "no goals", "state_before": "B : Type u\ninst✝ : Bicategory B\na b c d e : B\nf : a ⟶ b\ng : b ⟶ c\nh : c ⟶ d\ni : d ⟶ e\n⊢ inv ((α_ f (g ≫ h) i).hom ≫ f ◁ (α_ g h i).hom ≫ (α_ f g (h ≫ i)).inv) =\n inv ((α_ f g h).inv ▷ i ≫ (α_ (f ≫ g) h i).hom)", "tactic": "simp" } ]
[ 304, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 301, 1 ]
Mathlib/Data/Finsupp/Basic.lean
Finsupp.sum_curry_index
[ { "state_after": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.536703\nι : Type ?u.536706\nM : Type u_3\nM' : Type ?u.536712\nN : Type u_4\nP : Type ?u.536718\nG : Type ?u.536721\nH : Type ?u.536724\nR : Type ?u.536727\nS : Type ?u.536730\ninst✝¹ : AddCommMonoid M\ninst✝ : AddCommMonoid N\nf : α × β →₀ M\ng : α → β → M → N\nhg₀ : ∀ (a : α) (b : β), g a b 0 = 0\nhg₁ : ∀ (a : α) (b : β) (c₀ c₁ : M), g a b (c₀ + c₁) = g a b c₀ + g a b c₁\n⊢ (sum (sum f fun p c => single p.fst (single p.snd c)) fun a f => sum f (g a)) = sum f fun p c => g p.fst p.snd c", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.536703\nι : Type ?u.536706\nM : Type u_3\nM' : Type ?u.536712\nN : Type u_4\nP : Type ?u.536718\nG : Type ?u.536721\nH : Type ?u.536724\nR : Type ?u.536727\nS : Type ?u.536730\ninst✝¹ : AddCommMonoid M\ninst✝ : AddCommMonoid N\nf : α × β →₀ M\ng : α → β → M → N\nhg₀ : ∀ (a : α) (b : β), g a b 0 = 0\nhg₁ : ∀ (a : α) (b : β) (c₀ c₁ : M), g a b (c₀ + c₁) = g a b c₀ + g a b c₁\n⊢ (sum (Finsupp.curry f) fun a f => sum f (g a)) = sum f fun p c => g p.fst p.snd c", "tactic": "rw [Finsupp.curry]" }, { "state_after": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.536703\nι : Type ?u.536706\nM : Type u_3\nM' : Type ?u.536712\nN : Type u_4\nP : Type ?u.536718\nG : Type ?u.536721\nH : Type ?u.536724\nR : Type ?u.536727\nS : Type ?u.536730\ninst✝¹ : AddCommMonoid M\ninst✝ : AddCommMonoid N\nf : α × β →₀ M\ng : α → β → M → N\nhg₀ : ∀ (a : α) (b : β), g a b 0 = 0\nhg₁ : ∀ (a : α) (b : β) (c₀ c₁ : M), g a b (c₀ + c₁) = g a b c₀ + g a b c₁\n⊢ (sum (sum f fun p c => single p.fst (single p.snd c)) fun a f => sum f (g a)) = ?m.540167\n\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.536703\nι : Type ?u.536706\nM : Type u_3\nM' : Type ?u.536712\nN : Type u_4\nP : Type ?u.536718\nG : Type ?u.536721\nH : Type ?u.536724\nR : Type ?u.536727\nS : Type ?u.536730\ninst✝¹ : AddCommMonoid M\ninst✝ : AddCommMonoid N\nf : α × β →₀ M\ng : α → β → M → N\nhg₀ : ∀ (a : α) (b : β), g a b 0 = 0\nhg₁ : ∀ (a : α) (b : β) (c₀ c₁ : M), g a b (c₀ + c₁) = g a b c₀ + g a b c₁\n⊢ ?m.540167 = sum f fun p c => g p.fst p.snd c\n\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.536703\nι : Type ?u.536706\nM : Type u_3\nM' : Type ?u.536712\nN : Type u_4\nP : Type ?u.536718\nG : Type ?u.536721\nH : Type ?u.536724\nR : Type ?u.536727\nS : Type ?u.536730\ninst✝¹ : AddCommMonoid M\ninst✝ : AddCommMonoid N\nf : α × β →₀ M\ng : α → β → M → N\nhg₀ : ∀ (a : α) (b : β), g a b 0 = 0\nhg₁ : ∀ (a : α) (b : β) (c₀ c₁ : M), g a b (c₀ + c₁) = g a b c₀ + g a b c₁\n⊢ N", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.536703\nι : Type ?u.536706\nM : Type u_3\nM' : Type ?u.536712\nN : Type u_4\nP : Type ?u.536718\nG : Type ?u.536721\nH : Type ?u.536724\nR : Type ?u.536727\nS : Type ?u.536730\ninst✝¹ : AddCommMonoid M\ninst✝ : AddCommMonoid N\nf : α × β →₀ M\ng : α → β → M → N\nhg₀ : ∀ (a : α) (b : β), g a b 0 = 0\nhg₁ : ∀ (a : α) (b : β) (c₀ c₁ : M), g a b (c₀ + c₁) = g a b c₀ + g a b c₁\n⊢ (sum (sum f fun p c => single p.fst (single p.snd c)) fun a f => sum f (g a)) = sum f fun p c => g p.fst p.snd c", "tactic": "trans" }, { "state_after": "case e_g\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.536703\nι : Type ?u.536706\nM : Type u_3\nM' : Type ?u.536712\nN : Type u_4\nP : Type ?u.536718\nG : Type ?u.536721\nH : Type ?u.536724\nR : Type ?u.536727\nS : Type ?u.536730\ninst✝¹ : AddCommMonoid M\ninst✝ : AddCommMonoid N\nf : α × β →₀ M\ng : α → β → M → N\nhg₀ : ∀ (a : α) (b : β), g a b 0 = 0\nhg₁ : ∀ (a : α) (b : β) (c₀ c₁ : M), g a b (c₀ + c₁) = g a b c₀ + g a b c₁\n⊢ (fun a b => sum (single a.fst (single a.snd b)) fun a f => sum f (g a)) = fun p c => g p.fst p.snd c", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.536703\nι : Type ?u.536706\nM : Type u_3\nM' : Type ?u.536712\nN : Type u_4\nP : Type ?u.536718\nG : Type ?u.536721\nH : Type ?u.536724\nR : Type ?u.536727\nS : Type ?u.536730\ninst✝¹ : AddCommMonoid M\ninst✝ : AddCommMonoid N\nf : α × β →₀ M\ng : α → β → M → N\nhg₀ : ∀ (a : α) (b : β), g a b 0 = 0\nhg₁ : ∀ (a : α) (b : β) (c₀ c₁ : M), g a b (c₀ + c₁) = g a b c₀ + g a b c₁\n⊢ (sum f fun a b => sum (single a.fst (single a.snd b)) fun a f => sum f (g a)) = sum f fun p c => g p.fst p.snd c", "tactic": "congr" }, { "state_after": "case e_g.h.h\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.536703\nι : Type ?u.536706\nM : Type u_3\nM' : Type ?u.536712\nN : Type u_4\nP : Type ?u.536718\nG : Type ?u.536721\nH : Type ?u.536724\nR : Type ?u.536727\nS : Type ?u.536730\ninst✝¹ : AddCommMonoid M\ninst✝ : AddCommMonoid N\nf : α × β →₀ M\ng : α → β → M → N\nhg₀ : ∀ (a : α) (b : β), g a b 0 = 0\nhg₁ : ∀ (a : α) (b : β) (c₀ c₁ : M), g a b (c₀ + c₁) = g a b c₀ + g a b c₁\np : α × β\nc : M\n⊢ (sum (single p.fst (single p.snd c)) fun a f => sum f (g a)) = g p.fst p.snd c", "state_before": "case e_g\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.536703\nι : Type ?u.536706\nM : Type u_3\nM' : Type ?u.536712\nN : Type u_4\nP : Type ?u.536718\nG : Type ?u.536721\nH : Type ?u.536724\nR : Type ?u.536727\nS : Type ?u.536730\ninst✝¹ : AddCommMonoid M\ninst✝ : AddCommMonoid N\nf : α × β →₀ M\ng : α → β → M → N\nhg₀ : ∀ (a : α) (b : β), g a b 0 = 0\nhg₁ : ∀ (a : α) (b : β) (c₀ c₁ : M), g a b (c₀ + c₁) = g a b c₀ + g a b c₁\n⊢ (fun a b => sum (single a.fst (single a.snd b)) fun a f => sum f (g a)) = fun p c => g p.fst p.snd c", "tactic": "funext p c" }, { "state_after": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.536703\nι : Type ?u.536706\nM : Type u_3\nM' : Type ?u.536712\nN : Type u_4\nP : Type ?u.536718\nG : Type ?u.536721\nH : Type ?u.536724\nR : Type ?u.536727\nS : Type ?u.536730\ninst✝¹ : AddCommMonoid M\ninst✝ : AddCommMonoid N\nf : α × β →₀ M\ng : α → β → M → N\nhg₀ : ∀ (a : α) (b : β), g a b 0 = 0\nhg₁ : ∀ (a : α) (b : β) (c₀ c₁ : M), g a b (c₀ + c₁) = g a b c₀ + g a b c₁\np : α × β\nc : M\n⊢ (sum (single p.fst (single p.snd c)) fun a f => sum f (g a)) = ?m.541818\n\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.536703\nι : Type ?u.536706\nM : Type u_3\nM' : Type ?u.536712\nN : Type u_4\nP : Type ?u.536718\nG : Type ?u.536721\nH : Type ?u.536724\nR : Type ?u.536727\nS : Type ?u.536730\ninst✝¹ : AddCommMonoid M\ninst✝ : AddCommMonoid N\nf : α × β →₀ M\ng : α → β → M → N\nhg₀ : ∀ (a : α) (b : β), g a b 0 = 0\nhg₁ : ∀ (a : α) (b : β) (c₀ c₁ : M), g a b (c₀ + c₁) = g a b c₀ + g a b c₁\np : α × β\nc : M\n⊢ ?m.541818 = g p.fst p.snd c\n\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.536703\nι : Type ?u.536706\nM : Type u_3\nM' : Type ?u.536712\nN : Type u_4\nP : Type ?u.536718\nG : Type ?u.536721\nH : Type ?u.536724\nR : Type ?u.536727\nS : Type ?u.536730\ninst✝¹ : AddCommMonoid M\ninst✝ : AddCommMonoid N\nf : α × β →₀ M\ng : α → β → M → N\nhg₀ : ∀ (a : α) (b : β), g a b 0 = 0\nhg₁ : ∀ (a : α) (b : β) (c₀ c₁ : M), g a b (c₀ + c₁) = g a b c₀ + g a b c₁\np : α × β\nc : M\n⊢ N", "state_before": "case e_g.h.h\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.536703\nι : Type ?u.536706\nM : Type u_3\nM' : Type ?u.536712\nN : Type u_4\nP : Type ?u.536718\nG : Type ?u.536721\nH : Type ?u.536724\nR : Type ?u.536727\nS : Type ?u.536730\ninst✝¹ : AddCommMonoid M\ninst✝ : AddCommMonoid N\nf : α × β →₀ M\ng : α → β → M → N\nhg₀ : ∀ (a : α) (b : β), g a b 0 = 0\nhg₁ : ∀ (a : α) (b : β) (c₀ c₁ : M), g a b (c₀ + c₁) = g a b c₀ + g a b c₁\np : α × β\nc : M\n⊢ (sum (single p.fst (single p.snd c)) fun a f => sum f (g a)) = g p.fst p.snd c", "tactic": "trans" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.536703\nι : Type ?u.536706\nM : Type u_3\nM' : Type ?u.536712\nN : Type u_4\nP : Type ?u.536718\nG : Type ?u.536721\nH : Type ?u.536724\nR : Type ?u.536727\nS : Type ?u.536730\ninst✝¹ : AddCommMonoid M\ninst✝ : AddCommMonoid N\nf : α × β →₀ M\ng : α → β → M → N\nhg₀ : ∀ (a : α) (b : β), g a b 0 = 0\nhg₁ : ∀ (a : α) (b : β) (c₀ c₁ : M), g a b (c₀ + c₁) = g a b c₀ + g a b c₁\np : α × β\nc : M\n⊢ sum (single p.snd c) (g p.fst) = g p.fst p.snd c", "tactic": "exact sum_single_index (hg₀ _ _)" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.536703\nι : Type ?u.536706\nM : Type u_3\nM' : Type ?u.536712\nN : Type u_4\nP : Type ?u.536718\nG : Type ?u.536721\nH : Type ?u.536724\nR : Type ?u.536727\nS : Type ?u.536730\ninst✝¹ : AddCommMonoid M\ninst✝ : AddCommMonoid N\nf : α × β →₀ M\ng : α → β → M → N\nhg₀ : ∀ (a : α) (b : β), g a b 0 = 0\nhg₁ : ∀ (a : α) (b : β) (c₀ c₁ : M), g a b (c₀ + c₁) = g a b c₀ + g a b c₁\n⊢ (sum (sum f fun p c => single p.fst (single p.snd c)) fun a f => sum f (g a)) = ?m.540167", "tactic": "exact\n sum_sum_index (fun a => sum_zero_index) fun a b₀ b₁ =>\n sum_add_index' (fun a => hg₀ _ _) fun c d₀ d₁ => hg₁ _ _ _ _" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.536703\nι : Type ?u.536706\nM : Type u_3\nM' : Type ?u.536712\nN : Type u_4\nP : Type ?u.536718\nG : Type ?u.536721\nH : Type ?u.536724\nR : Type ?u.536727\nS : Type ?u.536730\ninst✝¹ : AddCommMonoid M\ninst✝ : AddCommMonoid N\nf : α × β →₀ M\ng : α → β → M → N\nhg₀ : ∀ (a : α) (b : β), g a b 0 = 0\nhg₁ : ∀ (a : α) (b : β) (c₀ c₁ : M), g a b (c₀ + c₁) = g a b c₀ + g a b c₁\np : α × β\nc : M\n⊢ (sum (single p.fst (single p.snd c)) fun a f => sum f (g a)) = ?m.541818", "tactic": "exact sum_single_index sum_zero_index" } ]
[ 1240, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1228, 1 ]
Mathlib/RingTheory/PowerSeries/Basic.lean
MvPowerSeries.constantCoeff_invOfUnit
[ { "state_after": "no goals", "state_before": "σ : Type u_1\nR : Type u_2\ninst✝ : Ring R\nφ : MvPowerSeries σ R\nu : Rˣ\n⊢ ↑(constantCoeff σ R) (invOfUnit φ u) = ↑u⁻¹", "tactic": "rw [← coeff_zero_eq_constantCoeff_apply, coeff_invOfUnit, if_pos rfl]" } ]
[ 856, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 854, 1 ]
Mathlib/Data/Finset/Sigma.lean
Finset.not_mem_sigmaLift_of_ne_right
[ { "state_after": "ι : Type u_2\nα : ι → Type u_3\nβ : ι → Type u_4\nγ : ι → Type u_1\ninst✝ : DecidableEq ι\nf : ⦃i : ι⦄ → α i → β i → Finset (γ i)\na : Sigma α\nb : Sigma β\nx : Sigma γ\nh : b.fst ≠ x.fst\n⊢ ¬∃ ha hb, x.snd ∈ f (ha ▸ a.snd) (hb ▸ b.snd)", "state_before": "ι : Type u_2\nα : ι → Type u_3\nβ : ι → Type u_4\nγ : ι → Type u_1\ninst✝ : DecidableEq ι\nf : ⦃i : ι⦄ → α i → β i → Finset (γ i)\na : Sigma α\nb : Sigma β\nx : Sigma γ\nh : b.fst ≠ x.fst\n⊢ ¬x ∈ sigmaLift f a b", "tactic": "rw [mem_sigmaLift]" }, { "state_after": "no goals", "state_before": "ι : Type u_2\nα : ι → Type u_3\nβ : ι → Type u_4\nγ : ι → Type u_1\ninst✝ : DecidableEq ι\nf : ⦃i : ι⦄ → α i → β i → Finset (γ i)\na : Sigma α\nb : Sigma β\nx : Sigma γ\nh : b.fst ≠ x.fst\n⊢ ¬∃ ha hb, x.snd ∈ f (ha ▸ a.snd) (hb ▸ b.snd)", "tactic": "exact fun H => h H.snd.fst" } ]
[ 164, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 161, 1 ]
Mathlib/AlgebraicTopology/SplitSimplicialObject.lean
SimplicialObject.Splitting.IndexSet.eqId_iff_len_le
[ { "state_after": "C : Type ?u.4924\ninst✝ : Category C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\n⊢ len A.fst.unop = len Δ.unop ↔ len Δ.unop ≤ len A.fst.unop", "state_before": "C : Type ?u.4924\ninst✝ : Category C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\n⊢ EqId A ↔ len Δ.unop ≤ len A.fst.unop", "tactic": "rw [eqId_iff_len_eq]" }, { "state_after": "case mp\nC : Type ?u.4924\ninst✝ : Category C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\n⊢ len A.fst.unop = len Δ.unop → len Δ.unop ≤ len A.fst.unop\n\ncase mpr\nC : Type ?u.4924\ninst✝ : Category C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\n⊢ len Δ.unop ≤ len A.fst.unop → len A.fst.unop = len Δ.unop", "state_before": "C : Type ?u.4924\ninst✝ : Category C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\n⊢ len A.fst.unop = len Δ.unop ↔ len Δ.unop ≤ len A.fst.unop", "tactic": "constructor" }, { "state_after": "case mp\nC : Type ?u.4924\ninst✝ : Category C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\nh : len A.fst.unop = len Δ.unop\n⊢ len Δ.unop ≤ len A.fst.unop", "state_before": "case mp\nC : Type ?u.4924\ninst✝ : Category C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\n⊢ len A.fst.unop = len Δ.unop → len Δ.unop ≤ len A.fst.unop", "tactic": "intro h" }, { "state_after": "no goals", "state_before": "case mp\nC : Type ?u.4924\ninst✝ : Category C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\nh : len A.fst.unop = len Δ.unop\n⊢ len Δ.unop ≤ len A.fst.unop", "tactic": "rw [h]" }, { "state_after": "no goals", "state_before": "case mpr\nC : Type ?u.4924\ninst✝ : Category C\nΔ : SimplexCategoryᵒᵖ\nA : IndexSet Δ\n⊢ len Δ.unop ≤ len A.fst.unop → len A.fst.unop = len Δ.unop", "tactic": "exact le_antisymm (len_le_of_epi (inferInstance : Epi A.e))" } ]
[ 163, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 158, 1 ]
Mathlib/Analysis/BoxIntegral/Partition/Basic.lean
BoxIntegral.Prepartition.eq_of_le
[]
[ 91, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 90, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Pullbacks.lean
CategoryTheory.Limits.pullbackComparison_comp_snd
[]
[ 1457, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1454, 1 ]
Mathlib/Topology/Order/Basic.lean
exists_Icc_mem_subset_of_mem_nhds
[ { "state_after": "case intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : LinearOrder α\ninst✝ : OrderTopology α\na : α\ns : Set α\nhs : s ∈ 𝓝 a\nb : α\nhba : b ≤ a\nhb_nhds : Icc b a ∈ 𝓝[Iic a] a\nhbs : Icc b a ⊆ s\n⊢ ∃ b c, a ∈ Icc b c ∧ Icc b c ∈ 𝓝 a ∧ Icc b c ⊆ s", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : LinearOrder α\ninst✝ : OrderTopology α\na : α\ns : Set α\nhs : s ∈ 𝓝 a\n⊢ ∃ b c, a ∈ Icc b c ∧ Icc b c ∈ 𝓝 a ∧ Icc b c ⊆ s", "tactic": "rcases exists_Icc_mem_subset_of_mem_nhdsWithin_Iic (nhdsWithin_le_nhds hs) with\n ⟨b, hba, hb_nhds, hbs⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : LinearOrder α\ninst✝ : OrderTopology α\na : α\ns : Set α\nhs : s ∈ 𝓝 a\nb : α\nhba : b ≤ a\nhb_nhds : Icc b a ∈ 𝓝[Iic a] a\nhbs : Icc b a ⊆ s\nc : α\nhac : a ≤ c\nhc_nhds : Icc a c ∈ 𝓝[Ici a] a\nhcs : Icc a c ⊆ s\n⊢ ∃ b c, a ∈ Icc b c ∧ Icc b c ∈ 𝓝 a ∧ Icc b c ⊆ s", "state_before": "case intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : LinearOrder α\ninst✝ : OrderTopology α\na : α\ns : Set α\nhs : s ∈ 𝓝 a\nb : α\nhba : b ≤ a\nhb_nhds : Icc b a ∈ 𝓝[Iic a] a\nhbs : Icc b a ⊆ s\n⊢ ∃ b c, a ∈ Icc b c ∧ Icc b c ∈ 𝓝 a ∧ Icc b c ⊆ s", "tactic": "rcases exists_Icc_mem_subset_of_mem_nhdsWithin_Ici (nhdsWithin_le_nhds hs) with\n ⟨c, hac, hc_nhds, hcs⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : LinearOrder α\ninst✝ : OrderTopology α\na : α\ns : Set α\nhs : s ∈ 𝓝 a\nb : α\nhba : b ≤ a\nhb_nhds : Icc b a ∈ 𝓝[Iic a] a\nhbs : Icc b a ⊆ s\nc : α\nhac : a ≤ c\nhc_nhds : Icc a c ∈ 𝓝[Ici a] a\nhcs : Icc a c ⊆ s\n⊢ Icc b c ∈ 𝓝 a ∧ Icc b c ⊆ s", "state_before": "case intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : LinearOrder α\ninst✝ : OrderTopology α\na : α\ns : Set α\nhs : s ∈ 𝓝 a\nb : α\nhba : b ≤ a\nhb_nhds : Icc b a ∈ 𝓝[Iic a] a\nhbs : Icc b a ⊆ s\nc : α\nhac : a ≤ c\nhc_nhds : Icc a c ∈ 𝓝[Ici a] a\nhcs : Icc a c ⊆ s\n⊢ ∃ b c, a ∈ Icc b c ∧ Icc b c ∈ 𝓝 a ∧ Icc b c ⊆ s", "tactic": "refine' ⟨b, c, ⟨hba, hac⟩, _⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : LinearOrder α\ninst✝ : OrderTopology α\na : α\ns : Set α\nhs : s ∈ 𝓝 a\nb : α\nhba : b ≤ a\nhb_nhds : Icc b a ∈ 𝓝[Iic a] a\nhbs : Icc b a ⊆ s\nc : α\nhac : a ≤ c\nhc_nhds : Icc a c ∈ 𝓝[Ici a] a\nhcs : Icc a c ⊆ s\n⊢ Icc b a ∪ Icc a c ∈ 𝓝[Iic a] a ⊔ 𝓝[Ici a] a ∧ Icc b a ∪ Icc a c ⊆ s", "state_before": "case intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : LinearOrder α\ninst✝ : OrderTopology α\na : α\ns : Set α\nhs : s ∈ 𝓝 a\nb : α\nhba : b ≤ a\nhb_nhds : Icc b a ∈ 𝓝[Iic a] a\nhbs : Icc b a ⊆ s\nc : α\nhac : a ≤ c\nhc_nhds : Icc a c ∈ 𝓝[Ici a] a\nhcs : Icc a c ⊆ s\n⊢ Icc b c ∈ 𝓝 a ∧ Icc b c ⊆ s", "tactic": "rw [← Icc_union_Icc_eq_Icc hba hac, ← nhds_left_sup_nhds_right]" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\ninst✝² : TopologicalSpace α\ninst✝¹ : LinearOrder α\ninst✝ : OrderTopology α\na : α\ns : Set α\nhs : s ∈ 𝓝 a\nb : α\nhba : b ≤ a\nhb_nhds : Icc b a ∈ 𝓝[Iic a] a\nhbs : Icc b a ⊆ s\nc : α\nhac : a ≤ c\nhc_nhds : Icc a c ∈ 𝓝[Ici a] a\nhcs : Icc a c ⊆ s\n⊢ Icc b a ∪ Icc a c ∈ 𝓝[Iic a] a ⊔ 𝓝[Ici a] a ∧ Icc b a ∪ Icc a c ⊆ s", "tactic": "exact ⟨union_mem_sup hb_nhds hc_nhds, union_subset hbs hcs⟩" } ]
[ 1275, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1267, 1 ]
Mathlib/RingTheory/Multiplicity.lean
multiplicity.one_left
[]
[ 190, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 189, 1 ]
Mathlib/Tactic/NormNum/Basic.lean
Mathlib.Meta.NormNum.isRat_pow
[ { "state_after": "case mk.mk\nα : Type u_1\ninst✝ : Ring α\nan : ℤ\nad b : ℕ\ninv✝ : Invertible ↑ad\n⊢ IsRat ((↑an * ⅟↑ad) ^ b) (an ^ b) (ad ^ b)", "state_before": "α : Type u_1\ninst✝ : Ring α\nf : α → ℕ → α\na : α\nan cn : ℤ\nad b b' cd : ℕ\n⊢ f = HPow.hPow → IsRat a an ad → IsNat b b' → Int.pow an b' = cn → Nat.pow ad b' = cd → IsRat (f a b) cn cd", "tactic": "rintro rfl ⟨_, rfl⟩ ⟨rfl⟩ (rfl : an ^ b = _) (rfl : ad ^ b = _)" }, { "state_after": "case mk.mk\nα : Type u_1\ninst✝ : Ring α\nan : ℤ\nad b : ℕ\ninv✝ : Invertible ↑ad\nthis : Invertible (↑ad ^ b)\n⊢ IsRat ((↑an * ⅟↑ad) ^ b) (an ^ b) (ad ^ b)", "state_before": "case mk.mk\nα : Type u_1\ninst✝ : Ring α\nan : ℤ\nad b : ℕ\ninv✝ : Invertible ↑ad\n⊢ IsRat ((↑an * ⅟↑ad) ^ b) (an ^ b) (ad ^ b)", "tactic": "have := invertiblePow (ad:α) b" }, { "state_after": "case mk.mk\nα : Type u_1\ninst✝ : Ring α\nan : ℤ\nad b : ℕ\ninv✝ : Invertible ↑ad\nthis : Invertible ↑(ad ^ b)\n⊢ IsRat ((↑an * ⅟↑ad) ^ b) (an ^ b) (ad ^ b)", "state_before": "case mk.mk\nα : Type u_1\ninst✝ : Ring α\nan : ℤ\nad b : ℕ\ninv✝ : Invertible ↑ad\nthis : Invertible (↑ad ^ b)\n⊢ IsRat ((↑an * ⅟↑ad) ^ b) (an ^ b) (ad ^ b)", "tactic": "rw [← Nat.cast_pow] at this" }, { "state_after": "case mk.mk\nα : Type u_1\ninst✝ : Ring α\nan : ℤ\nad b : ℕ\ninv✝ : Invertible ↑ad\nthis : Invertible ↑(ad ^ b)\n⊢ (↑an * ⅟↑ad) ^ b = ↑(an ^ b) * ⅟↑(ad ^ b)", "state_before": "case mk.mk\nα : Type u_1\ninst✝ : Ring α\nan : ℤ\nad b : ℕ\ninv✝ : Invertible ↑ad\nthis : Invertible ↑(ad ^ b)\n⊢ IsRat ((↑an * ⅟↑ad) ^ b) (an ^ b) (ad ^ b)", "tactic": "use this" }, { "state_after": "no goals", "state_before": "case mk.mk\nα : Type u_1\ninst✝ : Ring α\nan : ℤ\nad b : ℕ\ninv✝ : Invertible ↑ad\nthis : Invertible ↑(ad ^ b)\n⊢ (↑an * ⅟↑ad) ^ b = ↑(an ^ b) * ⅟↑(ad ^ b)", "tactic": "simp [invOf_pow, Commute.mul_pow]" } ]
[ 442, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 435, 1 ]
Mathlib/Algebra/Hom/Group.lean
MonoidHom.comp_mul
[ { "state_after": "case h\nα : Type ?u.215866\nβ : Type ?u.215869\nM : Type u_1\nN : Type u_2\nP : Type u_3\nG : Type ?u.215881\nH : Type ?u.215884\nF : Type ?u.215887\ninst✝⁴ : Group G\ninst✝³ : CommGroup H\ninst✝² : MulOneClass M\ninst✝¹ : CommMonoid N\ninst✝ : CommMonoid P\ng : N →* P\nf₁ f₂ : M →* N\nx✝ : M\n⊢ ↑(comp g (f₁ * f₂)) x✝ = ↑(comp g f₁ * comp g f₂) x✝", "state_before": "α : Type ?u.215866\nβ : Type ?u.215869\nM : Type u_1\nN : Type u_2\nP : Type u_3\nG : Type ?u.215881\nH : Type ?u.215884\nF : Type ?u.215887\ninst✝⁴ : Group G\ninst✝³ : CommGroup H\ninst✝² : MulOneClass M\ninst✝¹ : CommMonoid N\ninst✝ : CommMonoid P\ng : N →* P\nf₁ f₂ : M →* N\n⊢ comp g (f₁ * f₂) = comp g f₁ * comp g f₂", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nα : Type ?u.215866\nβ : Type ?u.215869\nM : Type u_1\nN : Type u_2\nP : Type u_3\nG : Type ?u.215881\nH : Type ?u.215884\nF : Type ?u.215887\ninst✝⁴ : Group G\ninst✝³ : CommGroup H\ninst✝² : MulOneClass M\ninst✝¹ : CommMonoid N\ninst✝ : CommMonoid P\ng : N →* P\nf₁ f₂ : M →* N\nx✝ : M\n⊢ ↑(comp g (f₁ * f₂)) x✝ = ↑(comp g f₁ * comp g f₂) x✝", "tactic": "simp only [mul_apply, Function.comp_apply, map_mul, coe_comp]" } ]
[ 1531, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1528, 1 ]
Mathlib/LinearAlgebra/Basic.lean
LinearEquiv.coe_curry_symm
[]
[ 1992, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1991, 1 ]
Mathlib/Analysis/InnerProductSpace/Basic.lean
OrthogonalFamily.comp
[]
[ 2065, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2063, 1 ]
Mathlib/Algebra/GroupWithZero/Power.lean
Commute.zpow_right₀
[]
[ 124, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 123, 1 ]
Mathlib/Analysis/NormedSpace/PiLp.lean
PiLp.dist_eq_iSup
[ { "state_after": "p : ℝ≥0∞\n𝕜 : Type ?u.22498\n𝕜' : Type ?u.22501\nι : Type u_1\nα : ι → Type u_2\nβ : ι → Type ?u.22514\ninst✝¹ : Fintype ι\ninst✝ : (i : ι) → Dist (α i)\nf g : PiLp ⊤ α\n⊢ (if ⊤ = 0 then ↑(Finset.card (Finite.toFinset (_ : Set.Finite {i | f i ≠ g i})))\n else if ⊤ = ⊤ then ⨆ (i : ι), dist (f i) (g i) else (∑ i : ι, dist (f i) (g i) ^ 0) ^ (1 / 0)) =\n ⨆ (i : ι), dist (f i) (g i)", "state_before": "p : ℝ≥0∞\n𝕜 : Type ?u.22498\n𝕜' : Type ?u.22501\nι : Type u_1\nα : ι → Type u_2\nβ : ι → Type ?u.22514\ninst✝¹ : Fintype ι\ninst✝ : (i : ι) → Dist (α i)\nf g : PiLp ⊤ α\n⊢ dist f g = ⨆ (i : ι), dist (f i) (g i)", "tactic": "dsimp [dist]" }, { "state_after": "no goals", "state_before": "p : ℝ≥0∞\n𝕜 : Type ?u.22498\n𝕜' : Type ?u.22501\nι : Type u_1\nα : ι → Type u_2\nβ : ι → Type ?u.22514\ninst✝¹ : Fintype ι\ninst✝ : (i : ι) → Dist (α i)\nf g : PiLp ⊤ α\n⊢ (if ⊤ = 0 then ↑(Finset.card (Finite.toFinset (_ : Set.Finite {i | f i ≠ g i})))\n else if ⊤ = ⊤ then ⨆ (i : ι), dist (f i) (g i) else (∑ i : ι, dist (f i) (g i) ^ 0) ^ (1 / 0)) =\n ⨆ (i : ι), dist (f i) (g i)", "tactic": "exact if_neg ENNReal.top_ne_zero" } ]
[ 221, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 219, 1 ]
Mathlib/Analysis/Normed/Group/AddCircle.lean
AddCircle.norm_coe_mul
[ { "state_after": "p x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\n⊢ ‖↑(t * x)‖ = abs t * ‖↑x‖", "state_before": "p x t : ℝ\n⊢ ‖↑(t * x)‖ = abs t * ‖↑x‖", "tactic": "have aux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b) := fun {a b c} h => by\n simp only [mem_zmultiples_iff] at h⊢\n obtain ⟨n, rfl⟩ := h\n exact ⟨n, (mul_smul_comm n c b).symm⟩" }, { "state_after": "case inl\np x : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\n⊢ ‖↑(0 * x)‖ = abs 0 * ‖↑x‖\n\ncase inr\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\n⊢ ‖↑(t * x)‖ = abs t * ‖↑x‖", "state_before": "p x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\n⊢ ‖↑(t * x)‖ = abs t * ‖↑x‖", "tactic": "rcases eq_or_ne t 0 with (rfl | ht)" }, { "state_after": "case inr\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\n⊢ ‖↑(t * x)‖ = abs t * ‖↑x‖", "state_before": "case inr\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\n⊢ ‖↑(t * x)‖ = abs t * ‖↑x‖", "tactic": "have ht' : |t| ≠ 0 := (not_congr abs_eq_zero).mpr ht" }, { "state_after": "case inr\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\n⊢ sInf ((fun a => abs a) '' {m | ↑m = ↑(t * x)}) = abs t * sInf ((fun a => abs a) '' {m | ↑m = ↑x})", "state_before": "case inr\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\n⊢ ‖↑(t * x)‖ = abs t * ‖↑x‖", "tactic": "simp only [quotient_norm_eq, Real.norm_eq_abs]" }, { "state_after": "case inr\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\n⊢ sInf ((fun a => abs a) '' {m | ↑m = ↑(t * x)}) = sInf (abs t • (fun a => abs a) '' {m | ↑m = ↑x})", "state_before": "case inr\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\n⊢ sInf ((fun a => abs a) '' {m | ↑m = ↑(t * x)}) = abs t * sInf ((fun a => abs a) '' {m | ↑m = ↑x})", "tactic": "conv_rhs => rw [← smul_eq_mul, ← Real.sInf_smul_of_nonneg (abs_nonneg t)]" }, { "state_after": "case inr\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\n⊢ sInf ((fun a => abs a) '' {m | m - t * x ∈ zmultiples (t * p)}) =\n sInf (abs t • (fun a => abs a) '' {m | m - x ∈ zmultiples p})", "state_before": "case inr\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\n⊢ sInf ((fun a => abs a) '' {m | ↑m = ↑(t * x)}) = sInf (abs t • (fun a => abs a) '' {m | ↑m = ↑x})", "tactic": "simp only [QuotientAddGroup.mk'_apply, QuotientAddGroup.eq_iff_sub_mem]" }, { "state_after": "case inr.e_a\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\n⊢ (fun a => abs a) '' {m | m - t * x ∈ zmultiples (t * p)} = abs t • (fun a => abs a) '' {m | m - x ∈ zmultiples p}", "state_before": "case inr\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\n⊢ sInf ((fun a => abs a) '' {m | m - t * x ∈ zmultiples (t * p)}) =\n sInf (abs t • (fun a => abs a) '' {m | m - x ∈ zmultiples p})", "tactic": "congr 1" }, { "state_after": "case inr.e_a.h\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\nz : ℝ\n⊢ z ∈ (fun a => abs a) '' {m | m - t * x ∈ zmultiples (t * p)} ↔\n z ∈ abs t • (fun a => abs a) '' {m | m - x ∈ zmultiples p}", "state_before": "case inr.e_a\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\n⊢ (fun a => abs a) '' {m | m - t * x ∈ zmultiples (t * p)} = abs t • (fun a => abs a) '' {m | m - x ∈ zmultiples p}", "tactic": "ext z" }, { "state_after": "case inr.e_a.h\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\nz : ℝ\n⊢ z ∈ (fun a => abs a) '' {m | m - t * x ∈ zmultiples (t * p)} ↔\n (abs t)⁻¹ • z ∈ (fun a => abs a) '' {m | m - x ∈ zmultiples p}", "state_before": "case inr.e_a.h\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\nz : ℝ\n⊢ z ∈ (fun a => abs a) '' {m | m - t * x ∈ zmultiples (t * p)} ↔\n z ∈ abs t • (fun a => abs a) '' {m | m - x ∈ zmultiples p}", "tactic": "rw [mem_smul_set_iff_inv_smul_mem₀ ht']" }, { "state_after": "case inr.e_a.h\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\nz : ℝ\n⊢ (∃ y, y - t * x ∈ zmultiples (t * p) ∧ abs y = z) ↔ ∃ w, w - x ∈ zmultiples p ∧ abs w = (abs t)⁻¹ * z", "state_before": "case inr.e_a.h\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\nz : ℝ\n⊢ z ∈ (fun a => abs a) '' {m | m - t * x ∈ zmultiples (t * p)} ↔\n (abs t)⁻¹ • z ∈ (fun a => abs a) '' {m | m - x ∈ zmultiples p}", "tactic": "show\n (∃ y, y - t * x ∈ zmultiples (t * p) ∧ |y| = z) ↔ ∃ w, w - x ∈ zmultiples p ∧ |w| = (|t|)⁻¹ * z" }, { "state_after": "case inr.e_a.h.mp\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\nz : ℝ\n⊢ (∃ y, y - t * x ∈ zmultiples (t * p) ∧ abs y = z) → ∃ w, w - x ∈ zmultiples p ∧ abs w = (abs t)⁻¹ * z\n\ncase inr.e_a.h.mpr\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\nz : ℝ\n⊢ (∃ w, w - x ∈ zmultiples p ∧ abs w = (abs t)⁻¹ * z) → ∃ y, y - t * x ∈ zmultiples (t * p) ∧ abs y = z", "state_before": "case inr.e_a.h\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\nz : ℝ\n⊢ (∃ y, y - t * x ∈ zmultiples (t * p) ∧ abs y = z) ↔ ∃ w, w - x ∈ zmultiples p ∧ abs w = (abs t)⁻¹ * z", "tactic": "constructor" }, { "state_after": "p x t a b c : ℝ\nh : ∃ k, k • b = a\n⊢ ∃ k, k • (c * b) = c * a", "state_before": "p x t a b c : ℝ\nh : a ∈ zmultiples b\n⊢ c * a ∈ zmultiples (c * b)", "tactic": "simp only [mem_zmultiples_iff] at h⊢" }, { "state_after": "case intro\np x t b c : ℝ\nn : ℤ\n⊢ ∃ k, k • (c * b) = c * n • b", "state_before": "p x t a b c : ℝ\nh : ∃ k, k • b = a\n⊢ ∃ k, k • (c * b) = c * a", "tactic": "obtain ⟨n, rfl⟩ := h" }, { "state_after": "no goals", "state_before": "case intro\np x t b c : ℝ\nn : ℤ\n⊢ ∃ k, k • (c * b) = c * n • b", "tactic": "exact ⟨n, (mul_smul_comm n c b).symm⟩" }, { "state_after": "no goals", "state_before": "case inl\np x : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\n⊢ ‖↑(0 * x)‖ = abs 0 * ‖↑x‖", "tactic": "simp" }, { "state_after": "case inr.e_a.h.mp.intro.intro\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\ny : ℝ\nhy : y - t * x ∈ zmultiples (t * p)\n⊢ ∃ w, w - x ∈ zmultiples p ∧ abs w = (abs t)⁻¹ * abs y", "state_before": "case inr.e_a.h.mp\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\nz : ℝ\n⊢ (∃ y, y - t * x ∈ zmultiples (t * p) ∧ abs y = z) → ∃ w, w - x ∈ zmultiples p ∧ abs w = (abs t)⁻¹ * z", "tactic": "rintro ⟨y, hy, rfl⟩" }, { "state_after": "case inr.e_a.h.mp.intro.intro\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\ny : ℝ\nhy : y - t * x ∈ zmultiples (t * p)\n⊢ t⁻¹ * y - x ∈ zmultiples p", "state_before": "case inr.e_a.h.mp.intro.intro\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\ny : ℝ\nhy : y - t * x ∈ zmultiples (t * p)\n⊢ ∃ w, w - x ∈ zmultiples p ∧ abs w = (abs t)⁻¹ * abs y", "tactic": "refine' ⟨t⁻¹ * y, _, by rw [abs_mul, abs_inv]⟩" }, { "state_after": "case inr.e_a.h.mp.intro.intro\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\ny : ℝ\nhy : y - t * x ∈ zmultiples (t * p)\n⊢ t⁻¹ * (y - t * x) ∈ zmultiples (t⁻¹ * (t * p))", "state_before": "case inr.e_a.h.mp.intro.intro\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\ny : ℝ\nhy : y - t * x ∈ zmultiples (t * p)\n⊢ t⁻¹ * y - x ∈ zmultiples p", "tactic": "rw [← inv_mul_cancel_left₀ ht x, ← inv_mul_cancel_left₀ ht p, ← mul_sub]" }, { "state_after": "no goals", "state_before": "case inr.e_a.h.mp.intro.intro\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\ny : ℝ\nhy : y - t * x ∈ zmultiples (t * p)\n⊢ t⁻¹ * (y - t * x) ∈ zmultiples (t⁻¹ * (t * p))", "tactic": "exact aux hy" }, { "state_after": "no goals", "state_before": "p x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\ny : ℝ\nhy : y - t * x ∈ zmultiples (t * p)\n⊢ abs (t⁻¹ * y) = (abs t)⁻¹ * abs y", "tactic": "rw [abs_mul, abs_inv]" }, { "state_after": "case inr.e_a.h.mpr.intro.intro\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\nz w : ℝ\nhw : w - x ∈ zmultiples p\nhw' : abs w = (abs t)⁻¹ * z\n⊢ ∃ y, y - t * x ∈ zmultiples (t * p) ∧ abs y = z", "state_before": "case inr.e_a.h.mpr\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\nz : ℝ\n⊢ (∃ w, w - x ∈ zmultiples p ∧ abs w = (abs t)⁻¹ * z) → ∃ y, y - t * x ∈ zmultiples (t * p) ∧ abs y = z", "tactic": "rintro ⟨w, hw, hw'⟩" }, { "state_after": "case inr.e_a.h.mpr.intro.intro\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\nz w : ℝ\nhw : w - x ∈ zmultiples p\nhw' : abs w = (abs t)⁻¹ * z\n⊢ t * w - t * x ∈ zmultiples (t * p)", "state_before": "case inr.e_a.h.mpr.intro.intro\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\nz w : ℝ\nhw : w - x ∈ zmultiples p\nhw' : abs w = (abs t)⁻¹ * z\n⊢ ∃ y, y - t * x ∈ zmultiples (t * p) ∧ abs y = z", "tactic": "refine' ⟨t * w, _, by rw [← (eq_inv_mul_iff_mul_eq₀ ht').mp hw', abs_mul]⟩" }, { "state_after": "case inr.e_a.h.mpr.intro.intro\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\nz w : ℝ\nhw : w - x ∈ zmultiples p\nhw' : abs w = (abs t)⁻¹ * z\n⊢ t * (w - x) ∈ zmultiples (t * p)", "state_before": "case inr.e_a.h.mpr.intro.intro\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\nz w : ℝ\nhw : w - x ∈ zmultiples p\nhw' : abs w = (abs t)⁻¹ * z\n⊢ t * w - t * x ∈ zmultiples (t * p)", "tactic": "rw [← mul_sub]" }, { "state_after": "no goals", "state_before": "case inr.e_a.h.mpr.intro.intro\np x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\nz w : ℝ\nhw : w - x ∈ zmultiples p\nhw' : abs w = (abs t)⁻¹ * z\n⊢ t * (w - x) ∈ zmultiples (t * p)", "tactic": "exact aux hw" }, { "state_after": "no goals", "state_before": "p x t : ℝ\naux : ∀ {a b c : ℝ}, a ∈ zmultiples b → c * a ∈ zmultiples (c * b)\nht : t ≠ 0\nht' : abs t ≠ 0\nz w : ℝ\nhw : w - x ∈ zmultiples p\nhw' : abs w = (abs t)⁻¹ * z\n⊢ abs (t * w) = z", "tactic": "rw [← (eq_inv_mul_iff_mul_eq₀ ht').mp hw', abs_mul]" } ]
[ 71, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 47, 1 ]
Mathlib/Data/Dfinsupp/Basic.lean
Dfinsupp.mk_of_mem
[]
[ 588, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 587, 1 ]
Mathlib/Computability/TuringMachine.lean
Turing.TM1to1.supportsStmt_write
[ { "state_after": "no goals", "state_before": "Γ : Type u_3\ninst✝² : Inhabited Γ\nΛ : Type u_2\ninst✝¹ : Inhabited Λ\nσ : Type u_1\ninst✝ : Inhabited σ\nn : ℕ\nenc : Γ → Vector Bool n\ndec : Vector Bool n → Γ\nS : Finset Λ'\nl : List Bool\nq : Stmt Bool Λ' σ\n⊢ SupportsStmt S (write l q) = SupportsStmt S q", "tactic": "induction' l with _ l IH <;> simp only [write, SupportsStmt, *]" } ]
[ 1718, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1716, 1 ]
Mathlib/MeasureTheory/Measure/OuterMeasure.lean
MeasureTheory.extend_mono
[ { "state_after": "α : Type u_1\ninst✝ : MeasurableSpace α\nm : (s : Set α) → MeasurableSet s → ℝ≥0∞\nm0 : m ∅ (_ : MeasurableSet ∅) = 0\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), MeasurableSet (f i)),\n Pairwise (Disjoint on f) →\n m (⋃ (i : ℕ), f i) (_ : MeasurableSet (⋃ (b : ℕ), f b)) = ∑' (i : ℕ), m (f i) (_ : MeasurableSet (f i))\ns₁ s₂ : Set α\nh₁ : MeasurableSet s₁\nhs : s₁ ⊆ s₂\n⊢ ∀ (i : (fun s => MeasurableSet s) s₂), extend m s₁ ≤ m s₂ i", "state_before": "α : Type u_1\ninst✝ : MeasurableSpace α\nm : (s : Set α) → MeasurableSet s → ℝ≥0∞\nm0 : m ∅ (_ : MeasurableSet ∅) = 0\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), MeasurableSet (f i)),\n Pairwise (Disjoint on f) →\n m (⋃ (i : ℕ), f i) (_ : MeasurableSet (⋃ (b : ℕ), f b)) = ∑' (i : ℕ), m (f i) (_ : MeasurableSet (f i))\ns₁ s₂ : Set α\nh₁ : MeasurableSet s₁\nhs : s₁ ⊆ s₂\n⊢ extend m s₁ ≤ extend m s₂", "tactic": "refine' le_iInf _" }, { "state_after": "α : Type u_1\ninst✝ : MeasurableSpace α\nm : (s : Set α) → MeasurableSet s → ℝ≥0∞\nm0 : m ∅ (_ : MeasurableSet ∅) = 0\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), MeasurableSet (f i)),\n Pairwise (Disjoint on f) →\n m (⋃ (i : ℕ), f i) (_ : MeasurableSet (⋃ (b : ℕ), f b)) = ∑' (i : ℕ), m (f i) (_ : MeasurableSet (f i))\ns₁ s₂ : Set α\nh₁ : MeasurableSet s₁\nhs : s₁ ⊆ s₂\nh₂ : (fun s => MeasurableSet s) s₂\n⊢ extend m s₁ ≤ m s₂ h₂", "state_before": "α : Type u_1\ninst✝ : MeasurableSpace α\nm : (s : Set α) → MeasurableSet s → ℝ≥0∞\nm0 : m ∅ (_ : MeasurableSet ∅) = 0\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), MeasurableSet (f i)),\n Pairwise (Disjoint on f) →\n m (⋃ (i : ℕ), f i) (_ : MeasurableSet (⋃ (b : ℕ), f b)) = ∑' (i : ℕ), m (f i) (_ : MeasurableSet (f i))\ns₁ s₂ : Set α\nh₁ : MeasurableSet s₁\nhs : s₁ ⊆ s₂\n⊢ ∀ (i : (fun s => MeasurableSet s) s₂), extend m s₁ ≤ m s₂ i", "tactic": "intro h₂" }, { "state_after": "α : Type u_1\ninst✝ : MeasurableSpace α\nm : (s : Set α) → MeasurableSet s → ℝ≥0∞\nm0 : m ∅ (_ : MeasurableSet ∅) = 0\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), MeasurableSet (f i)),\n Pairwise (Disjoint on f) →\n m (⋃ (i : ℕ), f i) (_ : MeasurableSet (⋃ (b : ℕ), f b)) = ∑' (i : ℕ), m (f i) (_ : MeasurableSet (f i))\ns₁ s₂ : Set α\nh₁ : MeasurableSet s₁\nhs : s₁ ⊆ s₂\nh₂ : (fun s => MeasurableSet s) s₂\nthis : extend m (s₁ ∪ s₂ \\ s₁) = extend m s₁ + extend m (s₂ \\ s₁)\n⊢ extend m s₁ ≤ m s₂ h₂", "state_before": "α : Type u_1\ninst✝ : MeasurableSpace α\nm : (s : Set α) → MeasurableSet s → ℝ≥0∞\nm0 : m ∅ (_ : MeasurableSet ∅) = 0\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), MeasurableSet (f i)),\n Pairwise (Disjoint on f) →\n m (⋃ (i : ℕ), f i) (_ : MeasurableSet (⋃ (b : ℕ), f b)) = ∑' (i : ℕ), m (f i) (_ : MeasurableSet (f i))\ns₁ s₂ : Set α\nh₁ : MeasurableSet s₁\nhs : s₁ ⊆ s₂\nh₂ : (fun s => MeasurableSet s) s₂\n⊢ extend m s₁ ≤ m s₂ h₂", "tactic": "have :=\n extend_union MeasurableSet.empty m0 MeasurableSet.iUnion mU disjoint_sdiff_self_right h₁\n (h₂.diff h₁)" }, { "state_after": "α : Type u_1\ninst✝ : MeasurableSpace α\nm : (s : Set α) → MeasurableSet s → ℝ≥0∞\nm0 : m ∅ (_ : MeasurableSet ∅) = 0\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), MeasurableSet (f i)),\n Pairwise (Disjoint on f) →\n m (⋃ (i : ℕ), f i) (_ : MeasurableSet (⋃ (b : ℕ), f b)) = ∑' (i : ℕ), m (f i) (_ : MeasurableSet (f i))\ns₁ s₂ : Set α\nh₁ : MeasurableSet s₁\nhs : s₁ ⊆ s₂\nh₂ : (fun s => MeasurableSet s) s₂\nthis : extend m s₂ = extend m s₁ + extend m (s₂ \\ s₁)\n⊢ extend m s₁ ≤ m s₂ h₂", "state_before": "α : Type u_1\ninst✝ : MeasurableSpace α\nm : (s : Set α) → MeasurableSet s → ℝ≥0∞\nm0 : m ∅ (_ : MeasurableSet ∅) = 0\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), MeasurableSet (f i)),\n Pairwise (Disjoint on f) →\n m (⋃ (i : ℕ), f i) (_ : MeasurableSet (⋃ (b : ℕ), f b)) = ∑' (i : ℕ), m (f i) (_ : MeasurableSet (f i))\ns₁ s₂ : Set α\nh₁ : MeasurableSet s₁\nhs : s₁ ⊆ s₂\nh₂ : (fun s => MeasurableSet s) s₂\nthis : extend m (s₁ ∪ s₂ \\ s₁) = extend m s₁ + extend m (s₂ \\ s₁)\n⊢ extend m s₁ ≤ m s₂ h₂", "tactic": "rw [union_diff_cancel hs] at this" }, { "state_after": "α : Type u_1\ninst✝ : MeasurableSpace α\nm : (s : Set α) → MeasurableSet s → ℝ≥0∞\nm0 : m ∅ (_ : MeasurableSet ∅) = 0\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), MeasurableSet (f i)),\n Pairwise (Disjoint on f) →\n m (⋃ (i : ℕ), f i) (_ : MeasurableSet (⋃ (b : ℕ), f b)) = ∑' (i : ℕ), m (f i) (_ : MeasurableSet (f i))\ns₁ s₂ : Set α\nh₁ : MeasurableSet s₁\nhs : s₁ ⊆ s₂\nh₂ : (fun s => MeasurableSet s) s₂\nthis : extend m s₂ = extend m s₁ + extend m (s₂ \\ s₁)\n⊢ extend m s₁ ≤ extend m s₂", "state_before": "α : Type u_1\ninst✝ : MeasurableSpace α\nm : (s : Set α) → MeasurableSet s → ℝ≥0∞\nm0 : m ∅ (_ : MeasurableSet ∅) = 0\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), MeasurableSet (f i)),\n Pairwise (Disjoint on f) →\n m (⋃ (i : ℕ), f i) (_ : MeasurableSet (⋃ (b : ℕ), f b)) = ∑' (i : ℕ), m (f i) (_ : MeasurableSet (f i))\ns₁ s₂ : Set α\nh₁ : MeasurableSet s₁\nhs : s₁ ⊆ s₂\nh₂ : (fun s => MeasurableSet s) s₂\nthis : extend m s₂ = extend m s₁ + extend m (s₂ \\ s₁)\n⊢ extend m s₁ ≤ m s₂ h₂", "tactic": "rw [← extend_eq m]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : MeasurableSpace α\nm : (s : Set α) → MeasurableSet s → ℝ≥0∞\nm0 : m ∅ (_ : MeasurableSet ∅) = 0\nmU :\n ∀ ⦃f : ℕ → Set α⦄ (hm : ∀ (i : ℕ), MeasurableSet (f i)),\n Pairwise (Disjoint on f) →\n m (⋃ (i : ℕ), f i) (_ : MeasurableSet (⋃ (b : ℕ), f b)) = ∑' (i : ℕ), m (f i) (_ : MeasurableSet (f i))\ns₁ s₂ : Set α\nh₁ : MeasurableSet s₁\nhs : s₁ ⊆ s₂\nh₂ : (fun s => MeasurableSet s) s₂\nthis : extend m s₂ = extend m s₁ + extend m (s₂ \\ s₁)\n⊢ extend m s₁ ≤ extend m s₂", "tactic": "exact le_iff_exists_add.2 ⟨_, this⟩" } ]
[ 1571, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1563, 1 ]
Mathlib/Data/Set/Prod.lean
Set.prod_inter_prod
[ { "state_after": "case h.mk\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.13537\nδ : Type ?u.13540\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\na : α\nb : β\nx : α\ny : β\n⊢ (x, y) ∈ s₁ ×ˢ t₁ ∩ s₂ ×ˢ t₂ ↔ (x, y) ∈ (s₁ ∩ s₂) ×ˢ (t₁ ∩ t₂)", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.13537\nδ : Type ?u.13540\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\na : α\nb : β\n⊢ s₁ ×ˢ t₁ ∩ s₂ ×ˢ t₂ = (s₁ ∩ s₂) ×ˢ (t₁ ∩ t₂)", "tactic": "ext ⟨x, y⟩" }, { "state_after": "no goals", "state_before": "case h.mk\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.13537\nδ : Type ?u.13540\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\na : α\nb : β\nx : α\ny : β\n⊢ (x, y) ∈ s₁ ×ˢ t₁ ∩ s₂ ×ˢ t₂ ↔ (x, y) ∈ (s₁ ∩ s₂) ×ˢ (t₁ ∩ t₂)", "tactic": "simp [and_assoc, and_left_comm]" } ]
[ 173, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 171, 1 ]
Mathlib/Order/Hom/Bounded.lean
BotHom.coe_comp
[]
[ 452, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 451, 1 ]
Mathlib/Data/ZMod/Basic.lean
ZMod.int_cast_zmod_eq_zero_iff_dvd
[ { "state_after": "no goals", "state_before": "a : ℤ\nb : ℕ\n⊢ ↑a = 0 ↔ ↑b ∣ a", "tactic": "rw [← Int.cast_zero, ZMod.int_cast_eq_int_cast_iff, Int.modEq_zero_iff_dvd]" } ]
[ 475, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 474, 1 ]
Mathlib/CategoryTheory/Abelian/NonPreadditive.lean
CategoryTheory.NonPreadditiveAbelian.sub_add
[ { "state_after": "no goals", "state_before": "C : Type u\ninst✝¹ : Category C\ninst✝ : NonPreadditiveAbelian C\nX Y : C\na b c : X ⟶ Y\n⊢ a - b + c = a - (b - c)", "tactic": "rw [add_def, neg_def, sub_sub_sub, sub_zero]" } ]
[ 419, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 418, 1 ]
Mathlib/Topology/Basic.lean
AccPt.mono
[]
[ 1197, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1196, 1 ]
Mathlib/Data/Option/Basic.lean
Option.map_comp_some
[]
[ 76, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 75, 1 ]
Mathlib/Order/BooleanAlgebra.lean
inf_sdiff_eq_bot_iff
[ { "state_after": "α : Type u\nβ : Type ?u.14724\nw x y z : α\ninst✝ : GeneralizedBooleanAlgebra α\nhz : z ≤ y\nhx : x ≤ y\n⊢ Disjoint z (y \\ x) ↔ z ≤ x", "state_before": "α : Type u\nβ : Type ?u.14724\nw x y z : α\ninst✝ : GeneralizedBooleanAlgebra α\nhz : z ≤ y\nhx : x ≤ y\n⊢ z ⊓ y \\ x = ⊥ ↔ z ≤ x", "tactic": "rw [← disjoint_iff]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type ?u.14724\nw x y z : α\ninst✝ : GeneralizedBooleanAlgebra α\nhz : z ≤ y\nhx : x ≤ y\n⊢ Disjoint z (y \\ x) ↔ z ≤ x", "tactic": "exact disjoint_sdiff_iff_le hz hx" } ]
[ 265, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 263, 1 ]
Mathlib/Data/Fintype/Card.lean
Finite.of_surjective
[]
[ 444, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 443, 1 ]
Mathlib/Analysis/Calculus/Deriv/Star.lean
deriv.star
[]
[ 63, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 62, 11 ]
Mathlib/MeasureTheory/Group/Integration.lean
MeasureTheory.Integrable.comp_inv
[]
[ 42, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 40, 1 ]
Mathlib/Data/Finset/Pi.lean
Finset.pi_empty
[]
[ 91, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 90, 1 ]
Mathlib/MeasureTheory/Function/L1Space.lean
MeasureTheory.integrable_smul_const
[ { "state_after": "α : Type u_2\nβ : Type ?u.1111558\nγ : Type ?u.1111561\nδ : Type ?u.1111564\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝⁶ : MeasurableSpace δ\ninst✝⁵ : NormedAddCommGroup β\ninst✝⁴ : NormedAddCommGroup γ\n𝕜 : Type u_3\ninst✝³ : NontriviallyNormedField 𝕜\ninst✝² : CompleteSpace 𝕜\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf : α → 𝕜\nc : E\nhc : c ≠ 0\n⊢ AEStronglyMeasurable f μ → ((∫⁻ (a : α), ↑‖f a‖₊ * ↑‖c‖₊ ∂μ) < ⊤ ↔ (∫⁻ (a : α), ↑‖f a‖₊ ∂μ) < ⊤)", "state_before": "α : Type u_2\nβ : Type ?u.1111558\nγ : Type ?u.1111561\nδ : Type ?u.1111564\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝⁶ : MeasurableSpace δ\ninst✝⁵ : NormedAddCommGroup β\ninst✝⁴ : NormedAddCommGroup γ\n𝕜 : Type u_3\ninst✝³ : NontriviallyNormedField 𝕜\ninst✝² : CompleteSpace 𝕜\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf : α → 𝕜\nc : E\nhc : c ≠ 0\n⊢ (Integrable fun x => f x • c) ↔ Integrable f", "tactic": "simp_rw [Integrable, aestronglyMeasurable_smul_const_iff (f := f) hc, and_congr_right_iff,\n HasFiniteIntegral, nnnorm_smul, ENNReal.coe_mul]" }, { "state_after": "α : Type u_2\nβ : Type ?u.1111558\nγ : Type ?u.1111561\nδ : Type ?u.1111564\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝⁶ : MeasurableSpace δ\ninst✝⁵ : NormedAddCommGroup β\ninst✝⁴ : NormedAddCommGroup γ\n𝕜 : Type u_3\ninst✝³ : NontriviallyNormedField 𝕜\ninst✝² : CompleteSpace 𝕜\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf : α → 𝕜\nc : E\nhc : c ≠ 0\na✝ : AEStronglyMeasurable f μ\n⊢ (∫⁻ (a : α), ↑‖f a‖₊ * ↑‖c‖₊ ∂μ) < ⊤ ↔ (∫⁻ (a : α), ↑‖f a‖₊ ∂μ) < ⊤", "state_before": "α : Type u_2\nβ : Type ?u.1111558\nγ : Type ?u.1111561\nδ : Type ?u.1111564\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝⁶ : MeasurableSpace δ\ninst✝⁵ : NormedAddCommGroup β\ninst✝⁴ : NormedAddCommGroup γ\n𝕜 : Type u_3\ninst✝³ : NontriviallyNormedField 𝕜\ninst✝² : CompleteSpace 𝕜\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf : α → 𝕜\nc : E\nhc : c ≠ 0\n⊢ AEStronglyMeasurable f μ → ((∫⁻ (a : α), ↑‖f a‖₊ * ↑‖c‖₊ ∂μ) < ⊤ ↔ (∫⁻ (a : α), ↑‖f a‖₊ ∂μ) < ⊤)", "tactic": "intro _" }, { "state_after": "α : Type u_2\nβ : Type ?u.1111558\nγ : Type ?u.1111561\nδ : Type ?u.1111564\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝⁶ : MeasurableSpace δ\ninst✝⁵ : NormedAddCommGroup β\ninst✝⁴ : NormedAddCommGroup γ\n𝕜 : Type u_3\ninst✝³ : NontriviallyNormedField 𝕜\ninst✝² : CompleteSpace 𝕜\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf : α → 𝕜\nc : E\nhc : c ≠ 0\na✝ : AEStronglyMeasurable f μ\n⊢ (∫⁻ (a : α), ↑‖f a‖₊ ∂μ) < ⊤ ∧ ↑‖c‖₊ < ⊤ ∨ (∫⁻ (a : α), ↑‖f a‖₊ ∂μ) = 0 ∨ ↑‖c‖₊ = 0 ↔ (∫⁻ (a : α), ↑‖f a‖₊ ∂μ) < ⊤", "state_before": "α : Type u_2\nβ : Type ?u.1111558\nγ : Type ?u.1111561\nδ : Type ?u.1111564\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝⁶ : MeasurableSpace δ\ninst✝⁵ : NormedAddCommGroup β\ninst✝⁴ : NormedAddCommGroup γ\n𝕜 : Type u_3\ninst✝³ : NontriviallyNormedField 𝕜\ninst✝² : CompleteSpace 𝕜\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf : α → 𝕜\nc : E\nhc : c ≠ 0\na✝ : AEStronglyMeasurable f μ\n⊢ (∫⁻ (a : α), ↑‖f a‖₊ * ↑‖c‖₊ ∂μ) < ⊤ ↔ (∫⁻ (a : α), ↑‖f a‖₊ ∂μ) < ⊤", "tactic": "rw [lintegral_mul_const' _ _ ENNReal.coe_ne_top, ENNReal.mul_lt_top_iff]" }, { "state_after": "α : Type u_2\nβ : Type ?u.1111558\nγ : Type ?u.1111561\nδ : Type ?u.1111564\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝⁶ : MeasurableSpace δ\ninst✝⁵ : NormedAddCommGroup β\ninst✝⁴ : NormedAddCommGroup γ\n𝕜 : Type u_3\ninst✝³ : NontriviallyNormedField 𝕜\ninst✝² : CompleteSpace 𝕜\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf : α → 𝕜\nc : E\nhc : c ≠ 0\na✝ : AEStronglyMeasurable f μ\nthis : ∀ (x : ℝ≥0∞), x = 0 → x < ⊤\n⊢ (∫⁻ (a : α), ↑‖f a‖₊ ∂μ) < ⊤ ∧ ↑‖c‖₊ < ⊤ ∨ (∫⁻ (a : α), ↑‖f a‖₊ ∂μ) = 0 ∨ ↑‖c‖₊ = 0 ↔ (∫⁻ (a : α), ↑‖f a‖₊ ∂μ) < ⊤", "state_before": "α : Type u_2\nβ : Type ?u.1111558\nγ : Type ?u.1111561\nδ : Type ?u.1111564\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝⁶ : MeasurableSpace δ\ninst✝⁵ : NormedAddCommGroup β\ninst✝⁴ : NormedAddCommGroup γ\n𝕜 : Type u_3\ninst✝³ : NontriviallyNormedField 𝕜\ninst✝² : CompleteSpace 𝕜\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf : α → 𝕜\nc : E\nhc : c ≠ 0\na✝ : AEStronglyMeasurable f μ\n⊢ (∫⁻ (a : α), ↑‖f a‖₊ ∂μ) < ⊤ ∧ ↑‖c‖₊ < ⊤ ∨ (∫⁻ (a : α), ↑‖f a‖₊ ∂μ) = 0 ∨ ↑‖c‖₊ = 0 ↔ (∫⁻ (a : α), ↑‖f a‖₊ ∂μ) < ⊤", "tactic": "have : ∀ x : ℝ≥0∞, x = 0 → x < ∞ := by simp" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type ?u.1111558\nγ : Type ?u.1111561\nδ : Type ?u.1111564\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝⁶ : MeasurableSpace δ\ninst✝⁵ : NormedAddCommGroup β\ninst✝⁴ : NormedAddCommGroup γ\n𝕜 : Type u_3\ninst✝³ : NontriviallyNormedField 𝕜\ninst✝² : CompleteSpace 𝕜\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf : α → 𝕜\nc : E\nhc : c ≠ 0\na✝ : AEStronglyMeasurable f μ\nthis : ∀ (x : ℝ≥0∞), x = 0 → x < ⊤\n⊢ (∫⁻ (a : α), ↑‖f a‖₊ ∂μ) < ⊤ ∧ ↑‖c‖₊ < ⊤ ∨ (∫⁻ (a : α), ↑‖f a‖₊ ∂μ) = 0 ∨ ↑‖c‖₊ = 0 ↔ (∫⁻ (a : α), ↑‖f a‖₊ ∂μ) < ⊤", "tactic": "simp [hc, or_iff_left_of_imp (this _)]" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type ?u.1111558\nγ : Type ?u.1111561\nδ : Type ?u.1111564\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝⁶ : MeasurableSpace δ\ninst✝⁵ : NormedAddCommGroup β\ninst✝⁴ : NormedAddCommGroup γ\n𝕜 : Type u_3\ninst✝³ : NontriviallyNormedField 𝕜\ninst✝² : CompleteSpace 𝕜\nE : Type u_1\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf : α → 𝕜\nc : E\nhc : c ≠ 0\na✝ : AEStronglyMeasurable f μ\n⊢ ∀ (x : ℝ≥0∞), x = 0 → x < ⊤", "tactic": "simp" } ]
[ 1068, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1062, 1 ]
Mathlib/Order/GaloisConnection.lean
sSup_image2_eq_sSup_sInf
[]
[ 389, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 386, 1 ]
Mathlib/Analysis/Normed/Group/HomCompletion.lean
NormedAddGroupHom.extension_coe
[]
[ 222, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 221, 1 ]
Mathlib/Data/Complex/Exponential.lean
Complex.sin_add
[ { "state_after": "no goals", "state_before": "x y : ℂ\n⊢ sin (x + y) = sin x * cos y + cos x * sin y", "tactic": "rw [← mul_left_inj' I_ne_zero, ← sinh_mul_I, add_mul, add_mul, mul_right_comm, ← sinh_mul_I,\n mul_assoc, ← sinh_mul_I, ← cosh_mul_I, ← cosh_mul_I, sinh_add]" } ]
[ 849, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 847, 1 ]
Mathlib/Data/Complex/Exponential.lean
Complex.isCauSeq_abs_exp
[ { "state_after": "no goals", "state_before": "z : ℂ\nn : ℕ\nhn : ↑abs z < ↑n\nhn0 : 0 < ↑n\n⊢ ↑abs z / ↑n < 1", "tactic": "rwa [div_lt_iff hn0, one_mul]" }, { "state_after": "z : ℂ\nn : ℕ\nhn : ↑abs z < ↑n\nhn0 : 0 < ↑n\nm : ℕ\nhm : n ≤ m\n⊢ ↑abs z / ↑(Nat.succ m) * ↑abs (z ^ m / ↑(Nat.factorial m)) ≤ ↑abs z / ↑n * ↑abs (z ^ m / ↑(Nat.factorial m))", "state_before": "z : ℂ\nn : ℕ\nhn : ↑abs z < ↑n\nhn0 : 0 < ↑n\nm : ℕ\nhm : n ≤ m\n⊢ abs' (↑abs (z ^ Nat.succ m / ↑(Nat.factorial (Nat.succ m)))) ≤ ↑abs z / ↑n * abs' (↑abs (z ^ m / ↑(Nat.factorial m)))", "tactic": "rw [abs_abs, abs_abs, Nat.factorial_succ, pow_succ, mul_comm m.succ, Nat.cast_mul, ← div_div,\n mul_div_assoc, mul_div_right_comm, map_mul, map_div₀, abs_cast_nat]" }, { "state_after": "case h.h.h\nz : ℂ\nn : ℕ\nhn : ↑abs z < ↑n\nhn0 : 0 < ↑n\nm : ℕ\nhm : n ≤ m\n⊢ n ≤ Nat.succ m", "state_before": "z : ℂ\nn : ℕ\nhn : ↑abs z < ↑n\nhn0 : 0 < ↑n\nm : ℕ\nhm : n ≤ m\n⊢ ↑abs z / ↑(Nat.succ m) * ↑abs (z ^ m / ↑(Nat.factorial m)) ≤ ↑abs z / ↑n * ↑abs (z ^ m / ↑(Nat.factorial m))", "tactic": "gcongr" }, { "state_after": "no goals", "state_before": "case h.h.h\nz : ℂ\nn : ℕ\nhn : ↑abs z < ↑n\nhn0 : 0 < ↑n\nm : ℕ\nhm : n ≤ m\n⊢ n ≤ Nat.succ m", "tactic": "exact le_trans hm (Nat.le_succ _)" } ]
[ 363, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 354, 1 ]
Mathlib/Topology/Homeomorph.lean
Homeomorph.trans_apply
[]
[ 124, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 123, 1 ]
Mathlib/Data/List/Rotate.lean
List.rotate_append_length_eq
[ { "state_after": "α : Type u\nl l' : List α\n⊢ rotate' (l ++ l') (length l) = l' ++ l", "state_before": "α : Type u\nl l' : List α\n⊢ rotate (l ++ l') (length l) = l' ++ l", "tactic": "rw [rotate_eq_rotate']" }, { "state_after": "case nil\nα : Type u\nl' : List α\n⊢ rotate' ([] ++ l') (length []) = l' ++ []\n\ncase cons\nα : Type u\nhead✝ : α\ntail✝ : List α\ntail_ih✝ : ∀ (l' : List α), rotate' (tail✝ ++ l') (length tail✝) = l' ++ tail✝\nl' : List α\n⊢ rotate' (head✝ :: tail✝ ++ l') (length (head✝ :: tail✝)) = l' ++ head✝ :: tail✝", "state_before": "α : Type u\nl l' : List α\n⊢ rotate' (l ++ l') (length l) = l' ++ l", "tactic": "induction l generalizing l'" }, { "state_after": "no goals", "state_before": "case nil\nα : Type u\nl' : List α\n⊢ rotate' ([] ++ l') (length []) = l' ++ []", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case cons\nα : Type u\nhead✝ : α\ntail✝ : List α\ntail_ih✝ : ∀ (l' : List α), rotate' (tail✝ ++ l') (length tail✝) = l' ++ tail✝\nl' : List α\n⊢ rotate' (head✝ :: tail✝ ++ l') (length (head✝ :: tail✝)) = l' ++ head✝ :: tail✝", "tactic": "simp_all [rotate']" } ]
[ 159, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 155, 1 ]
Mathlib/Algebra/Star/Pointwise.lean
Set.mem_star
[]
[ 62, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 62, 1 ]
Mathlib/Data/List/Card.lean
List.card_le_card_cons
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Sort ?u.22986\ninst✝¹ : DecidableEq α\ninst✝ : DecidableEq β\na : α\nas : List α\n⊢ card as ≤ card (a :: as)", "tactic": "cases Decidable.em (a ∈ as) with\n| inl h => simp [h, Nat.le_refl]\n| inr h => simp [h, Nat.le_succ]" }, { "state_after": "no goals", "state_before": "case inl\nα : Type u_1\nβ : Sort ?u.22986\ninst✝¹ : DecidableEq α\ninst✝ : DecidableEq β\na : α\nas : List α\nh : a ∈ as\n⊢ card as ≤ card (a :: as)", "tactic": "simp [h, Nat.le_refl]" }, { "state_after": "no goals", "state_before": "case inr\nα : Type u_1\nβ : Sort ?u.22986\ninst✝¹ : DecidableEq α\ninst✝ : DecidableEq β\na : α\nas : List α\nh : ¬a ∈ as\n⊢ card as ≤ card (a :: as)", "tactic": "simp [h, Nat.le_succ]" } ]
[ 90, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 87, 1 ]
Mathlib/Analysis/Convex/Jensen.lean
ConcaveOn.exists_le_of_centerMass
[]
[ 125, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 123, 1 ]
Mathlib/Analysis/Complex/Arg.lean
Complex.abs_sub_eq_iff
[]
[ 57, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 56, 1 ]
Mathlib/LinearAlgebra/TensorProduct.lean
LinearMap.lTensor_id
[]
[ 1096, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1095, 1 ]
Mathlib/Topology/Algebra/Group/Basic.lean
QuotientGroup.isOpenMap_coe
[ { "state_after": "α : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝² : TopologicalSpace G\ninst✝¹ : Group G\ninst✝ : TopologicalGroup G\nN : Subgroup G\nn : Subgroup.Normal N\ns : Set G\ns_op : IsOpen s\n⊢ IsOpen (mk '' s)", "state_before": "α : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝² : TopologicalSpace G\ninst✝¹ : Group G\ninst✝ : TopologicalGroup G\nN : Subgroup G\nn : Subgroup.Normal N\n⊢ IsOpenMap mk", "tactic": "intro s s_op" }, { "state_after": "α : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝² : TopologicalSpace G\ninst✝¹ : Group G\ninst✝ : TopologicalGroup G\nN : Subgroup G\nn : Subgroup.Normal N\ns : Set G\ns_op : IsOpen s\n⊢ IsOpen (mk ⁻¹' (mk '' s))", "state_before": "α : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝² : TopologicalSpace G\ninst✝¹ : Group G\ninst✝ : TopologicalGroup G\nN : Subgroup G\nn : Subgroup.Normal N\ns : Set G\ns_op : IsOpen s\n⊢ IsOpen (mk '' s)", "tactic": "change IsOpen (((↑) : G → G ⧸ N) ⁻¹' ((↑) '' s))" }, { "state_after": "α : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝² : TopologicalSpace G\ninst✝¹ : Group G\ninst✝ : TopologicalGroup G\nN : Subgroup G\nn : Subgroup.Normal N\ns : Set G\ns_op : IsOpen s\n⊢ IsOpen (⋃ (x : { x // x ∈ N }), (fun y => y * ↑x) ⁻¹' s)", "state_before": "α : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝² : TopologicalSpace G\ninst✝¹ : Group G\ninst✝ : TopologicalGroup G\nN : Subgroup G\nn : Subgroup.Normal N\ns : Set G\ns_op : IsOpen s\n⊢ IsOpen (mk ⁻¹' (mk '' s))", "tactic": "rw [QuotientGroup.preimage_image_mk N s]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝² : TopologicalSpace G\ninst✝¹ : Group G\ninst✝ : TopologicalGroup G\nN : Subgroup G\nn : Subgroup.Normal N\ns : Set G\ns_op : IsOpen s\n⊢ IsOpen (⋃ (x : { x // x ∈ N }), (fun y => y * ↑x) ⁻¹' s)", "tactic": "exact isOpen_iUnion fun n => (continuous_mul_right _).isOpen_preimage s s_op" } ]
[ 980, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 976, 1 ]
Mathlib/Algebra/GroupPower/Lemmas.lean
zmultiplesAddHom_symm_apply
[]
[ 1016, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1014, 1 ]
Mathlib/Init/Algebra/Order.lean
lt_or_eq_of_le
[]
[ 233, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 232, 1 ]
Mathlib/Topology/Order.lean
TopologicalSpace.gc_generateFrom
[]
[ 191, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 188, 1 ]
Mathlib/Data/MvPolynomial/Supported.lean
MvPolynomial.supported_le_supported_iff
[ { "state_after": "case mp\nσ : Type u_1\nτ : Type ?u.129141\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ns t : Set σ\ninst✝ : Nontrivial R\n⊢ supported R s ≤ supported R t → s ⊆ t\n\ncase mpr\nσ : Type u_1\nτ : Type ?u.129141\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ns t : Set σ\ninst✝ : Nontrivial R\n⊢ s ⊆ t → supported R s ≤ supported R t", "state_before": "σ : Type u_1\nτ : Type ?u.129141\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ns t : Set σ\ninst✝ : Nontrivial R\n⊢ supported R s ≤ supported R t ↔ s ⊆ t", "tactic": "constructor" }, { "state_after": "case mp\nσ : Type u_1\nτ : Type ?u.129141\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ns t : Set σ\ninst✝ : Nontrivial R\nh : supported R s ≤ supported R t\ni : σ\n⊢ i ∈ s → i ∈ t", "state_before": "case mp\nσ : Type u_1\nτ : Type ?u.129141\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ns t : Set σ\ninst✝ : Nontrivial R\n⊢ supported R s ≤ supported R t → s ⊆ t", "tactic": "intro h i" }, { "state_after": "no goals", "state_before": "case mp\nσ : Type u_1\nτ : Type ?u.129141\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ns t : Set σ\ninst✝ : Nontrivial R\nh : supported R s ≤ supported R t\ni : σ\n⊢ i ∈ s → i ∈ t", "tactic": "simpa using @h (X i)" }, { "state_after": "no goals", "state_before": "case mpr\nσ : Type u_1\nτ : Type ?u.129141\nR : Type u\nS : Type v\nr : R\ne : ℕ\nn m : σ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ns t : Set σ\ninst✝ : Nontrivial R\n⊢ s ⊆ t → supported R s ≤ supported R t", "tactic": "exact supported_mono" } ]
[ 130, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 126, 1 ]
Mathlib/Algebra/Group/Basic.lean
div_mul
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.36695\nG : Type ?u.36698\ninst✝ : DivisionCommMonoid α\na b c d : α\n⊢ a / b * c = a / (b / c)", "tactic": "simp" } ]
[ 545, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 545, 1 ]
Mathlib/Order/PartialSups.lean
partialSups_mono
[ { "state_after": "α : Type u_1\ninst✝ : SemilatticeSup α\nf g : ℕ → α\nh : f ≤ g\nn : ℕ\n⊢ ↑(partialSups f) n ≤ ↑(partialSups g) n", "state_before": "α : Type u_1\ninst✝ : SemilatticeSup α\n⊢ Monotone partialSups", "tactic": "rintro f g h n" }, { "state_after": "case zero\nα : Type u_1\ninst✝ : SemilatticeSup α\nf g : ℕ → α\nh : f ≤ g\n⊢ ↑(partialSups f) Nat.zero ≤ ↑(partialSups g) Nat.zero\n\ncase succ\nα : Type u_1\ninst✝ : SemilatticeSup α\nf g : ℕ → α\nh : f ≤ g\nn : ℕ\nih : ↑(partialSups f) n ≤ ↑(partialSups g) n\n⊢ ↑(partialSups f) (Nat.succ n) ≤ ↑(partialSups g) (Nat.succ n)", "state_before": "α : Type u_1\ninst✝ : SemilatticeSup α\nf g : ℕ → α\nh : f ≤ g\nn : ℕ\n⊢ ↑(partialSups f) n ≤ ↑(partialSups g) n", "tactic": "induction' n with n ih" }, { "state_after": "no goals", "state_before": "case zero\nα : Type u_1\ninst✝ : SemilatticeSup α\nf g : ℕ → α\nh : f ≤ g\n⊢ ↑(partialSups f) Nat.zero ≤ ↑(partialSups g) Nat.zero", "tactic": "exact h 0" }, { "state_after": "no goals", "state_before": "case succ\nα : Type u_1\ninst✝ : SemilatticeSup α\nf g : ℕ → α\nh : f ≤ g\nn : ℕ\nih : ↑(partialSups f) n ≤ ↑(partialSups g) n\n⊢ ↑(partialSups f) (Nat.succ n) ≤ ↑(partialSups g) (Nat.succ n)", "tactic": "exact sup_le_sup ih (h _)" } ]
[ 106, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 102, 1 ]
Std/Data/Option/Lemmas.lean
Option.join_map_eq_map_join
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nf : α → β\nx : Option (Option α)\n⊢ join (Option.map (Option.map f) x) = Option.map f (join x)", "tactic": "cases x <;> simp" } ]
[ 160, 70 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 159, 1 ]
Mathlib/Data/PNat/Prime.lean
PNat.coprime_one
[]
[ 255, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 254, 1 ]
Mathlib/CategoryTheory/Iso.lean
CategoryTheory.Iso.eq_inv_comp
[]
[ 226, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 225, 1 ]
Mathlib/Algebra/Quaternion.lean
QuaternionAlgebra.mul_imJ
[]
[ 337, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 337, 1 ]
Mathlib/Computability/Primrec.lean
Primrec.option_orElse
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.139430\nγ : Type ?u.139433\nδ : Type ?u.139436\nσ : Type ?u.139439\ninst✝⁴ : Primcodable α\ninst✝³ : Primcodable β\ninst✝² : Primcodable γ\ninst✝¹ : Primcodable δ\ninst✝ : Primcodable σ\nx✝ : Option α × Option α\no₁ o₂ : Option α\n⊢ (Option.casesOn (o₁, o₂).fst (o₁, o₂).snd fun b => ((o₁, o₂), b).fst.fst) =\n (fun x x_1 => HOrElse.hOrElse x fun x => x_1) (o₁, o₂).fst (o₁, o₂).snd", "tactic": "cases o₁ <;> cases o₂ <;> rfl" } ]
[ 765, 101 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 764, 1 ]
Mathlib/LinearAlgebra/Basis.lean
Basis.repr_sum_self
[ { "state_after": "case h\nι : Type u_1\nι' : Type ?u.673229\nR : Type u_2\nR₂ : Type ?u.673235\nK : Type ?u.673238\nM : Type u_3\nM' : Type ?u.673244\nM'' : Type ?u.673247\nV : Type u\nV' : Type ?u.673252\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : AddCommMonoid M'\ninst✝¹ : Module R M'\ninst✝ : Fintype ι\nb : Basis ι R M\nc : ι → R\nj : ι\n⊢ ↑(↑b.repr (∑ i : ι, c i • ↑b i)) j = c j", "state_before": "ι : Type u_1\nι' : Type ?u.673229\nR : Type u_2\nR₂ : Type ?u.673235\nK : Type ?u.673238\nM : Type u_3\nM' : Type ?u.673244\nM'' : Type ?u.673247\nV : Type u\nV' : Type ?u.673252\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : AddCommMonoid M'\ninst✝¹ : Module R M'\ninst✝ : Fintype ι\nb : Basis ι R M\nc : ι → R\n⊢ ↑(↑b.repr (∑ i : ι, c i • ↑b i)) = c", "tactic": "ext j" }, { "state_after": "case h\nι : Type u_1\nι' : Type ?u.673229\nR : Type u_2\nR₂ : Type ?u.673235\nK : Type ?u.673238\nM : Type u_3\nM' : Type ?u.673244\nM'' : Type ?u.673247\nV : Type u\nV' : Type ?u.673252\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : AddCommMonoid M'\ninst✝¹ : Module R M'\ninst✝ : Fintype ι\nb : Basis ι R M\nc : ι → R\nj : ι\n⊢ ∑ x : ι, ↑(Finsupp.single x (c x)) j = c j", "state_before": "case h\nι : Type u_1\nι' : Type ?u.673229\nR : Type u_2\nR₂ : Type ?u.673235\nK : Type ?u.673238\nM : Type u_3\nM' : Type ?u.673244\nM'' : Type ?u.673247\nV : Type u\nV' : Type ?u.673252\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : AddCommMonoid M'\ninst✝¹ : Module R M'\ninst✝ : Fintype ι\nb : Basis ι R M\nc : ι → R\nj : ι\n⊢ ↑(↑b.repr (∑ i : ι, c i • ↑b i)) j = c j", "tactic": "simp only [map_sum, LinearEquiv.map_smul, repr_self, Finsupp.smul_single, smul_eq_mul, mul_one,\n Finset.sum_apply']" }, { "state_after": "case h.h₀\nι : Type u_1\nι' : Type ?u.673229\nR : Type u_2\nR₂ : Type ?u.673235\nK : Type ?u.673238\nM : Type u_3\nM' : Type ?u.673244\nM'' : Type ?u.673247\nV : Type u\nV' : Type ?u.673252\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : AddCommMonoid M'\ninst✝¹ : Module R M'\ninst✝ : Fintype ι\nb : Basis ι R M\nc : ι → R\nj : ι\n⊢ ∀ (b : ι), b ∈ Finset.univ → b ≠ j → ↑(Finsupp.single b (c b)) j = 0\n\ncase h.h₁\nι : Type u_1\nι' : Type ?u.673229\nR : Type u_2\nR₂ : Type ?u.673235\nK : Type ?u.673238\nM : Type u_3\nM' : Type ?u.673244\nM'' : Type ?u.673247\nV : Type u\nV' : Type ?u.673252\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : AddCommMonoid M'\ninst✝¹ : Module R M'\ninst✝ : Fintype ι\nb : Basis ι R M\nc : ι → R\nj : ι\n⊢ ¬j ∈ Finset.univ → ↑(Finsupp.single j (c j)) j = 0", "state_before": "case h\nι : Type u_1\nι' : Type ?u.673229\nR : Type u_2\nR₂ : Type ?u.673235\nK : Type ?u.673238\nM : Type u_3\nM' : Type ?u.673244\nM'' : Type ?u.673247\nV : Type u\nV' : Type ?u.673252\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : AddCommMonoid M'\ninst✝¹ : Module R M'\ninst✝ : Fintype ι\nb : Basis ι R M\nc : ι → R\nj : ι\n⊢ ∑ x : ι, ↑(Finsupp.single x (c x)) j = c j", "tactic": "rw [Finset.sum_eq_single j, Finsupp.single_eq_same]" }, { "state_after": "case h.h₀\nι : Type u_1\nι' : Type ?u.673229\nR : Type u_2\nR₂ : Type ?u.673235\nK : Type ?u.673238\nM : Type u_3\nM' : Type ?u.673244\nM'' : Type ?u.673247\nV : Type u\nV' : Type ?u.673252\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : AddCommMonoid M'\ninst✝¹ : Module R M'\ninst✝ : Fintype ι\nb : Basis ι R M\nc : ι → R\nj i : ι\nhi : i ≠ j\n⊢ ↑(Finsupp.single i (c i)) j = 0", "state_before": "case h.h₀\nι : Type u_1\nι' : Type ?u.673229\nR : Type u_2\nR₂ : Type ?u.673235\nK : Type ?u.673238\nM : Type u_3\nM' : Type ?u.673244\nM'' : Type ?u.673247\nV : Type u\nV' : Type ?u.673252\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : AddCommMonoid M'\ninst✝¹ : Module R M'\ninst✝ : Fintype ι\nb : Basis ι R M\nc : ι → R\nj : ι\n⊢ ∀ (b : ι), b ∈ Finset.univ → b ≠ j → ↑(Finsupp.single b (c b)) j = 0", "tactic": "rintro i - hi" }, { "state_after": "no goals", "state_before": "case h.h₀\nι : Type u_1\nι' : Type ?u.673229\nR : Type u_2\nR₂ : Type ?u.673235\nK : Type ?u.673238\nM : Type u_3\nM' : Type ?u.673244\nM'' : Type ?u.673247\nV : Type u\nV' : Type ?u.673252\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : AddCommMonoid M'\ninst✝¹ : Module R M'\ninst✝ : Fintype ι\nb : Basis ι R M\nc : ι → R\nj i : ι\nhi : i ≠ j\n⊢ ↑(Finsupp.single i (c i)) j = 0", "tactic": "exact Finsupp.single_eq_of_ne hi" }, { "state_after": "case h.h₁\nι : Type u_1\nι' : Type ?u.673229\nR : Type u_2\nR₂ : Type ?u.673235\nK : Type ?u.673238\nM : Type u_3\nM' : Type ?u.673244\nM'' : Type ?u.673247\nV : Type u\nV' : Type ?u.673252\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : AddCommMonoid M'\ninst✝¹ : Module R M'\ninst✝ : Fintype ι\nb : Basis ι R M\nc : ι → R\nj : ι\na✝ : ¬j ∈ Finset.univ\n⊢ ↑(Finsupp.single j (c j)) j = 0", "state_before": "case h.h₁\nι : Type u_1\nι' : Type ?u.673229\nR : Type u_2\nR₂ : Type ?u.673235\nK : Type ?u.673238\nM : Type u_3\nM' : Type ?u.673244\nM'' : Type ?u.673247\nV : Type u\nV' : Type ?u.673252\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : AddCommMonoid M'\ninst✝¹ : Module R M'\ninst✝ : Fintype ι\nb : Basis ι R M\nc : ι → R\nj : ι\n⊢ ¬j ∈ Finset.univ → ↑(Finsupp.single j (c j)) j = 0", "tactic": "intros" }, { "state_after": "case h.h₁\nι : Type u_1\nι' : Type ?u.673229\nR : Type u_2\nR₂ : Type ?u.673235\nK : Type ?u.673238\nM : Type u_3\nM' : Type ?u.673244\nM'' : Type ?u.673247\nV : Type u\nV' : Type ?u.673252\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : AddCommMonoid M'\ninst✝¹ : Module R M'\ninst✝ : Fintype ι\nb : Basis ι R M\nc : ι → R\nj : ι\na✝ : ¬j ∈ Finset.univ\nthis : j ∈ Finset.univ\n⊢ ↑(Finsupp.single j (c j)) j = 0", "state_before": "case h.h₁\nι : Type u_1\nι' : Type ?u.673229\nR : Type u_2\nR₂ : Type ?u.673235\nK : Type ?u.673238\nM : Type u_3\nM' : Type ?u.673244\nM'' : Type ?u.673247\nV : Type u\nV' : Type ?u.673252\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : AddCommMonoid M'\ninst✝¹ : Module R M'\ninst✝ : Fintype ι\nb : Basis ι R M\nc : ι → R\nj : ι\na✝ : ¬j ∈ Finset.univ\n⊢ ↑(Finsupp.single j (c j)) j = 0", "tactic": "have := Finset.mem_univ j" }, { "state_after": "no goals", "state_before": "case h.h₁\nι : Type u_1\nι' : Type ?u.673229\nR : Type u_2\nR₂ : Type ?u.673235\nK : Type ?u.673238\nM : Type u_3\nM' : Type ?u.673244\nM'' : Type ?u.673247\nV : Type u\nV' : Type ?u.673252\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\ninst✝² : AddCommMonoid M'\ninst✝¹ : Module R M'\ninst✝ : Fintype ι\nb : Basis ι R M\nc : ι → R\nj : ι\na✝ : ¬j ∈ Finset.univ\nthis : j ∈ Finset.univ\n⊢ ↑(Finsupp.single j (c j)) j = 0", "tactic": "contradiction" } ]
[ 950, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 941, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Biproducts.lean
CategoryTheory.Limits.biproduct.components_matrix
[ { "state_after": "case w.w\nJ : Type\ninst✝⁴ : Fintype J\nK : Type\ninst✝³ : Fintype K\nC : Type u\ninst✝² : Category C\ninst✝¹ : HasZeroMorphisms C\ninst✝ : HasFiniteBiproducts C\nf : J → C\ng : K → C\nm : ⨁ f ⟶ ⨁ g\nj✝¹ : J\nj✝ : K\n⊢ (ι (fun j => f j) j✝¹ ≫ matrix fun j k => components m j k) ≫ π (fun k => g k) j✝ =\n (ι (fun j => f j) j✝¹ ≫ m) ≫ π (fun k => g k) j✝", "state_before": "J : Type\ninst✝⁴ : Fintype J\nK : Type\ninst✝³ : Fintype K\nC : Type u\ninst✝² : Category C\ninst✝¹ : HasZeroMorphisms C\ninst✝ : HasFiniteBiproducts C\nf : J → C\ng : K → C\nm : ⨁ f ⟶ ⨁ g\n⊢ (matrix fun j k => components m j k) = m", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case w.w\nJ : Type\ninst✝⁴ : Fintype J\nK : Type\ninst✝³ : Fintype K\nC : Type u\ninst✝² : Category C\ninst✝¹ : HasZeroMorphisms C\ninst✝ : HasFiniteBiproducts C\nf : J → C\ng : K → C\nm : ⨁ f ⟶ ⨁ g\nj✝¹ : J\nj✝ : K\n⊢ (ι (fun j => f j) j✝¹ ≫ matrix fun j k => components m j k) ≫ π (fun k => g k) j✝ =\n (ι (fun j => f j) j✝¹ ≫ m) ≫ π (fun k => g k) j✝", "tactic": "simp [biproduct.components]" } ]
[ 858, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 855, 1 ]
Mathlib/MeasureTheory/MeasurableSpace.lean
measurable_of_subsingleton_codomain
[]
[ 254, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 253, 1 ]
Mathlib/GroupTheory/Subgroup/Pointwise.lean
Subgroup.smul_inf
[ { "state_after": "no goals", "state_before": "α : Type u_2\nG : Type u_1\nA : Type ?u.151816\nS✝ : Type ?u.151819\ninst✝³ : Group G\ninst✝² : AddGroup A\ns : Set G\ninst✝¹ : Group α\ninst✝ : MulDistribMulAction α G\na : α\nS T : Subgroup G\n⊢ a • (S ⊓ T) = a • S ⊓ a • T", "tactic": "simp [SetLike.ext_iff, mem_pointwise_smul_iff_inv_smul_mem]" } ]
[ 367, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 366, 1 ]