file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Analysis/Calculus/BumpFunctionInner.lean
ContDiffAt.contDiffBump
[]
[ 453, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 449, 18 ]
Mathlib/InformationTheory/Hamming.lean
hammingNorm_eq_zero
[]
[ 192, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 191, 1 ]
Mathlib/Data/Set/Intervals/ProjIcc.lean
Set.projIcc_right
[]
[ 56, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 55, 1 ]
Mathlib/Analysis/NormedSpace/ENorm.lean
ENorm.coeFn_injective
[ { "state_after": "case mk\n𝕜 : Type u_2\nV : Type u_1\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup V\ninst✝ : Module 𝕜 V\ne e₂ : ENorm 𝕜 V\ntoFun✝ : V → ℝ≥0∞\neq_zero'✝ : ∀ (x : V), toFun✝ x = 0 → x = 0\nmap_add_le'✝ : ∀ (x y : V), toFun✝ (x + y) ≤ toFun✝ x + toFun✝ y\nmap_smul_le'✝ : ∀ (c : 𝕜) (x : V), toFun✝ (c • x) ≤ ↑‖c‖₊ * toFun✝ x\nh : ↑{ toFun := toFun✝, eq_zero' := eq_zero'✝, map_add_le' := map_add_le'✝, map_smul_le' := map_smul_le'✝ } = ↑e₂\n⊢ { toFun := toFun✝, eq_zero' := eq_zero'✝, map_add_le' := map_add_le'✝, map_smul_le' := map_smul_le'✝ } = e₂", "state_before": "𝕜 : Type u_2\nV : Type u_1\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup V\ninst✝ : Module 𝕜 V\ne e₁ e₂ : ENorm 𝕜 V\nh : ↑e₁ = ↑e₂\n⊢ e₁ = e₂", "tactic": "cases e₁" }, { "state_after": "case mk.mk\n𝕜 : Type u_2\nV : Type u_1\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup V\ninst✝ : Module 𝕜 V\ne : ENorm 𝕜 V\ntoFun✝¹ : V → ℝ≥0∞\neq_zero'✝¹ : ∀ (x : V), toFun✝¹ x = 0 → x = 0\nmap_add_le'✝¹ : ∀ (x y : V), toFun✝¹ (x + y) ≤ toFun✝¹ x + toFun✝¹ y\nmap_smul_le'✝¹ : ∀ (c : 𝕜) (x : V), toFun✝¹ (c • x) ≤ ↑‖c‖₊ * toFun✝¹ x\ntoFun✝ : V → ℝ≥0∞\neq_zero'✝ : ∀ (x : V), toFun✝ x = 0 → x = 0\nmap_add_le'✝ : ∀ (x y : V), toFun✝ (x + y) ≤ toFun✝ x + toFun✝ y\nmap_smul_le'✝ : ∀ (c : 𝕜) (x : V), toFun✝ (c • x) ≤ ↑‖c‖₊ * toFun✝ x\nh :\n ↑{ toFun := toFun✝¹, eq_zero' := eq_zero'✝¹, map_add_le' := map_add_le'✝¹, map_smul_le' := map_smul_le'✝¹ } =\n ↑{ toFun := toFun✝, eq_zero' := eq_zero'✝, map_add_le' := map_add_le'✝, map_smul_le' := map_smul_le'✝ }\n⊢ { toFun := toFun✝¹, eq_zero' := eq_zero'✝¹, map_add_le' := map_add_le'✝¹, map_smul_le' := map_smul_le'✝¹ } =\n { toFun := toFun✝, eq_zero' := eq_zero'✝, map_add_le' := map_add_le'✝, map_smul_le' := map_smul_le'✝ }", "state_before": "case mk\n𝕜 : Type u_2\nV : Type u_1\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup V\ninst✝ : Module 𝕜 V\ne e₂ : ENorm 𝕜 V\ntoFun✝ : V → ℝ≥0∞\neq_zero'✝ : ∀ (x : V), toFun✝ x = 0 → x = 0\nmap_add_le'✝ : ∀ (x y : V), toFun✝ (x + y) ≤ toFun✝ x + toFun✝ y\nmap_smul_le'✝ : ∀ (c : 𝕜) (x : V), toFun✝ (c • x) ≤ ↑‖c‖₊ * toFun✝ x\nh : ↑{ toFun := toFun✝, eq_zero' := eq_zero'✝, map_add_le' := map_add_le'✝, map_smul_le' := map_smul_le'✝ } = ↑e₂\n⊢ { toFun := toFun✝, eq_zero' := eq_zero'✝, map_add_le' := map_add_le'✝, map_smul_le' := map_smul_le'✝ } = e₂", "tactic": "cases e₂" }, { "state_after": "no goals", "state_before": "case mk.mk\n𝕜 : Type u_2\nV : Type u_1\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup V\ninst✝ : Module 𝕜 V\ne : ENorm 𝕜 V\ntoFun✝¹ : V → ℝ≥0∞\neq_zero'✝¹ : ∀ (x : V), toFun✝¹ x = 0 → x = 0\nmap_add_le'✝¹ : ∀ (x y : V), toFun✝¹ (x + y) ≤ toFun✝¹ x + toFun✝¹ y\nmap_smul_le'✝¹ : ∀ (c : 𝕜) (x : V), toFun✝¹ (c • x) ≤ ↑‖c‖₊ * toFun✝¹ x\ntoFun✝ : V → ℝ≥0∞\neq_zero'✝ : ∀ (x : V), toFun✝ x = 0 → x = 0\nmap_add_le'✝ : ∀ (x y : V), toFun✝ (x + y) ≤ toFun✝ x + toFun✝ y\nmap_smul_le'✝ : ∀ (c : 𝕜) (x : V), toFun✝ (c • x) ≤ ↑‖c‖₊ * toFun✝ x\nh :\n ↑{ toFun := toFun✝¹, eq_zero' := eq_zero'✝¹, map_add_le' := map_add_le'✝¹, map_smul_le' := map_smul_le'✝¹ } =\n ↑{ toFun := toFun✝, eq_zero' := eq_zero'✝, map_add_le' := map_add_le'✝, map_smul_le' := map_smul_le'✝ }\n⊢ { toFun := toFun✝¹, eq_zero' := eq_zero'✝¹, map_add_le' := map_add_le'✝¹, map_smul_le' := map_smul_le'✝¹ } =\n { toFun := toFun✝, eq_zero' := eq_zero'✝, map_add_le' := map_add_le'✝, map_smul_le' := map_smul_le'✝ }", "tactic": "congr" } ]
[ 67, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 64, 1 ]
Mathlib/Order/Max.lean
NoBotOrder.to_noMinOrder
[ { "state_after": "no goals", "state_before": "α✝ : Type ?u.3482\nβ : Type ?u.3485\nα : Type u_1\ninst✝¹ : LinearOrder α\ninst✝ : NoBotOrder α\na : α\n⊢ ∃ b, b < a", "tactic": "simpa [not_le] using exists_not_ge a" } ]
[ 145, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 144, 1 ]
Mathlib/ModelTheory/Basic.lean
FirstOrder.Language.Equiv.bijective
[]
[ 845, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 844, 1 ]
Mathlib/GroupTheory/Subgroup/Basic.lean
Subgroup.normal_le_normalCore
[]
[ 2550, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2548, 1 ]
Mathlib/Analysis/Convex/Topology.lean
Convex.combo_interior_self_subset_interior
[]
[ 136, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 131, 1 ]
Mathlib/Data/Multiset/FinsetOps.lean
Multiset.Nodup.ndinsert
[]
[ 91, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 90, 1 ]
Mathlib/Topology/Semicontinuous.lean
upperSemicontinuous_ciInf
[]
[ 1054, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1052, 1 ]
Mathlib/Algebra/Order/WithZero.lean
mul_lt_right₀
[ { "state_after": "α : Type u_1\na b c✝ d x y z : α\ninst✝ : LinearOrderedCommGroupWithZero α\nc : α\nhc : c ≠ 0\nh : b * c ≤ a * c\n⊢ b ≤ a", "state_before": "α : Type u_1\na b c✝ d x y z : α\ninst✝ : LinearOrderedCommGroupWithZero α\nc : α\nh : a < b\nhc : c ≠ 0\n⊢ a * c < b * c", "tactic": "contrapose! h" }, { "state_after": "no goals", "state_before": "α : Type u_1\na b c✝ d x y z : α\ninst✝ : LinearOrderedCommGroupWithZero α\nc : α\nhc : c ≠ 0\nh : b * c ≤ a * c\n⊢ b ≤ a", "tactic": "exact le_of_le_mul_right hc h" } ]
[ 205, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 203, 1 ]
Mathlib/Analysis/Convex/SimplicialComplex/Basic.lean
Geometry.SimplicialComplex.subset_space
[]
[ 96, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 95, 11 ]
Mathlib/Order/WithBot.lean
WithBot.strictMono_map_iff
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.33858\nδ : Type ?u.33861\na b : α\ninst✝¹ : Preorder α\ninst✝ : Preorder β\nf : α → β\n⊢ ((StrictMono fun a => map f ↑a) ∧ ∀ (x : α), map f ⊥ < map f ↑x) ↔ StrictMono f", "tactic": "simp [StrictMono, bot_lt_coe]" } ]
[ 370, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 368, 1 ]
Mathlib/Topology/MetricSpace/MetrizableUniformity.lean
PseudoMetricSpace.dist_ofPreNNDist_le
[ { "state_after": "no goals", "state_before": "X : Type u_1\nd : X → X → ℝ≥0\ndist_self : ∀ (x : X), d x x = 0\ndist_comm : ∀ (x y : X), d x y = d y x\nx y : X\n⊢ sum (zipWith d [x] ([] ++ [y])) = d x y", "tactic": "simp" } ]
[ 103, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 98, 1 ]
Mathlib/Algebra/Category/ModuleCat/Monoidal/Basic.lean
ModuleCat.MonoidalCategory.tensor_comp
[ { "state_after": "case H\nR : Type u\ninst✝ : CommRing R\nX₁ Y₁ Z₁ : ModuleCat R\nX₂ Y₂ Z₂ : ModuleCat R\nf₁ : X₁ ⟶ Y₁\nf₂ : X₂ ⟶ Y₂\ng₁ : Y₁ ⟶ Z₁\ng₂ : Y₂ ⟶ Z₂\n⊢ LinearMap.compr₂ (TensorProduct.mk R ↑X₁ ↑X₂) (tensorHom (f₁ ≫ g₁) (f₂ ≫ g₂)) =\n LinearMap.compr₂ (TensorProduct.mk R ↑X₁ ↑X₂) (tensorHom f₁ f₂ ≫ tensorHom g₁ g₂)", "state_before": "R : Type u\ninst✝ : CommRing R\nX₁ Y₁ Z₁ : ModuleCat R\nX₂ Y₂ Z₂ : ModuleCat R\nf₁ : X₁ ⟶ Y₁\nf₂ : X₂ ⟶ Y₂\ng₁ : Y₁ ⟶ Z₁\ng₂ : Y₂ ⟶ Z₂\n⊢ tensorHom (f₁ ≫ g₁) (f₂ ≫ g₂) = tensorHom f₁ f₂ ≫ tensorHom g₁ g₂", "tactic": "apply TensorProduct.ext" }, { "state_after": "no goals", "state_before": "case H\nR : Type u\ninst✝ : CommRing R\nX₁ Y₁ Z₁ : ModuleCat R\nX₂ Y₂ Z₂ : ModuleCat R\nf₁ : X₁ ⟶ Y₁\nf₂ : X₂ ⟶ Y₂\ng₁ : Y₁ ⟶ Z₁\ng₂ : Y₂ ⟶ Z₂\n⊢ LinearMap.compr₂ (TensorProduct.mk R ↑X₁ ↑X₂) (tensorHom (f₁ ≫ g₁) (f₂ ≫ g₂)) =\n LinearMap.compr₂ (TensorProduct.mk R ↑X₁ ↑X₂) (tensorHom f₁ f₂ ≫ tensorHom g₁ g₂)", "tactic": "rfl" } ]
[ 77, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 73, 1 ]
Mathlib/LinearAlgebra/Matrix/IsDiag.lean
Matrix.isDiag_smul_one
[]
[ 116, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 114, 1 ]
Mathlib/Data/Real/NNReal.lean
NNReal.coe_sum
[]
[ 330, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 329, 1 ]
Mathlib/Analysis/NormedSpace/HahnBanach/Separation.lean
iInter_halfspaces_eq
[ { "state_after": "𝕜 : Type ?u.130888\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns t : Set E\nx y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsClosed s\n⊢ {x | ∀ (i : E →L[ℝ] ℝ), ∃ y, y ∈ s ∧ ↑i x ≤ ↑i y} = s", "state_before": "𝕜 : Type ?u.130888\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns t : Set E\nx y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsClosed s\n⊢ (⋂ (l : E →L[ℝ] ℝ), {x | ∃ y, y ∈ s ∧ ↑l x ≤ ↑l y}) = s", "tactic": "rw [Set.iInter_setOf]" }, { "state_after": "𝕜 : Type ?u.130888\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns t : Set E\nx✝ y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsClosed s\nx : E\nhx : x ∈ {x | ∀ (i : E →L[ℝ] ℝ), ∃ y, y ∈ s ∧ ↑i x ≤ ↑i y}\n⊢ x ∈ s", "state_before": "𝕜 : Type ?u.130888\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns t : Set E\nx y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsClosed s\n⊢ {x | ∀ (i : E →L[ℝ] ℝ), ∃ y, y ∈ s ∧ ↑i x ≤ ↑i y} = s", "tactic": "refine' Set.Subset.antisymm (fun x hx => _) fun x hx l => ⟨x, hx, le_rfl⟩" }, { "state_after": "𝕜 : Type ?u.130888\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns t : Set E\nx✝ y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsClosed s\nx : E\nhx : x ∈ {x | ∀ (i : E →L[ℝ] ℝ), ∃ y, y ∈ s ∧ ↑i x ≤ ↑i y}\nh : ¬x ∈ s\n⊢ False", "state_before": "𝕜 : Type ?u.130888\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns t : Set E\nx✝ y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsClosed s\nx : E\nhx : x ∈ {x | ∀ (i : E →L[ℝ] ℝ), ∃ y, y ∈ s ∧ ↑i x ≤ ↑i y}\n⊢ x ∈ s", "tactic": "by_contra h" }, { "state_after": "case intro.intro.intro\n𝕜 : Type ?u.130888\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns✝ t : Set E\nx✝ y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s✝\nhs₂ : IsClosed s✝\nx : E\nhx : x ∈ {x | ∀ (i : E →L[ℝ] ℝ), ∃ y, y ∈ s✝ ∧ ↑i x ≤ ↑i y}\nh : ¬x ∈ s✝\nl : E →L[ℝ] ℝ\ns : ℝ\nhlA : ∀ (a : E), a ∈ s✝ → ↑l a < s\nhl : s < ↑l x\n⊢ False", "state_before": "𝕜 : Type ?u.130888\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns t : Set E\nx✝ y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsClosed s\nx : E\nhx : x ∈ {x | ∀ (i : E →L[ℝ] ℝ), ∃ y, y ∈ s ∧ ↑i x ≤ ↑i y}\nh : ¬x ∈ s\n⊢ False", "tactic": "obtain ⟨l, s, hlA, hl⟩ := geometric_hahn_banach_closed_point hs₁ hs₂ h" }, { "state_after": "case intro.intro.intro.intro.intro\n𝕜 : Type ?u.130888\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns✝ t : Set E\nx✝ y✝ : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s✝\nhs₂ : IsClosed s✝\nx : E\nhx : x ∈ {x | ∀ (i : E →L[ℝ] ℝ), ∃ y, y ∈ s✝ ∧ ↑i x ≤ ↑i y}\nh : ¬x ∈ s✝\nl : E →L[ℝ] ℝ\ns : ℝ\nhlA : ∀ (a : E), a ∈ s✝ → ↑l a < s\nhl : s < ↑l x\ny : E\nhy : y ∈ s✝\nhxy : ↑l x ≤ ↑l y\n⊢ False", "state_before": "case intro.intro.intro\n𝕜 : Type ?u.130888\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns✝ t : Set E\nx✝ y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s✝\nhs₂ : IsClosed s✝\nx : E\nhx : x ∈ {x | ∀ (i : E →L[ℝ] ℝ), ∃ y, y ∈ s✝ ∧ ↑i x ≤ ↑i y}\nh : ¬x ∈ s✝\nl : E →L[ℝ] ℝ\ns : ℝ\nhlA : ∀ (a : E), a ∈ s✝ → ↑l a < s\nhl : s < ↑l x\n⊢ False", "tactic": "obtain ⟨y, hy, hxy⟩ := hx l" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro\n𝕜 : Type ?u.130888\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns✝ t : Set E\nx✝ y✝ : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s✝\nhs₂ : IsClosed s✝\nx : E\nhx : x ∈ {x | ∀ (i : E →L[ℝ] ℝ), ∃ y, y ∈ s✝ ∧ ↑i x ≤ ↑i y}\nh : ¬x ∈ s✝\nl : E →L[ℝ] ℝ\ns : ℝ\nhlA : ∀ (a : E), a ∈ s✝ → ↑l a < s\nhl : s < ↑l x\ny : E\nhy : y ∈ s✝\nhxy : ↑l x ≤ ↑l y\n⊢ False", "tactic": "exact ((hxy.trans_lt (hlA y hy)).trans hl).not_le le_rfl" } ]
[ 215, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 208, 1 ]
Mathlib/SetTheory/Cardinal/Basic.lean
Cardinal.mk'_def
[]
[ 150, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 149, 1 ]
Mathlib/Order/Heyting/Basic.lean
toDual_hnot
[]
[ 1147, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1146, 1 ]
Mathlib/Data/Polynomial/Div.lean
Polynomial.rootMultiplicity_pos'
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\nA : Type z\na b : R\nn : ℕ\ninst✝ : CommRing R\np✝ q p : R[X]\nx : R\n⊢ 0 < rootMultiplicity x p ↔ p ≠ 0 ∧ IsRoot p x", "tactic": "rw [pos_iff_ne_zero, Ne.def, rootMultiplicity_eq_zero_iff, not_imp, and_comm]" } ]
[ 574, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 573, 1 ]
Mathlib/NumberTheory/Padics/PadicIntegers.lean
PadicInt.norm_p
[]
[ 312, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 312, 1 ]
Mathlib/RingTheory/GradedAlgebra/HomogeneousIdeal.lean
HomogeneousIdeal.toIdeal_sSup
[]
[ 385, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 384, 1 ]
Mathlib/Data/List/Forall2.lean
List.forall₂_nil_right_iff
[ { "state_after": "case nil\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.15064\nδ : Type ?u.15067\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\n⊢ [] = []", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.15064\nδ : Type ?u.15067\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl : List α\nH : Forall₂ R l []\n⊢ l = []", "tactic": "cases H" }, { "state_after": "no goals", "state_before": "case nil\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.15064\nδ : Type ?u.15067\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\n⊢ [] = []", "tactic": "rfl" }, { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.15064\nδ : Type ?u.15067\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\n⊢ Forall₂ R [] []", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.15064\nδ : Type ?u.15067\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl : List α\n⊢ l = [] → Forall₂ R l []", "tactic": "rintro rfl" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.15064\nδ : Type ?u.15067\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\n⊢ Forall₂ R [] []", "tactic": "exact Forall₂.nil" } ]
[ 87, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 86, 1 ]
Mathlib/MeasureTheory/Function/LpSeminorm.lean
MeasureTheory.snorm_smul_measure_of_ne_zero
[ { "state_after": "case pos\nα : Type u_1\nE : Type ?u.2146317\nF : Type u_2\nG : Type ?u.2146323\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → F\nc : ℝ≥0∞\nhc : c ≠ 0\nhp0 : p = 0\n⊢ snorm f p (c • μ) = c ^ ENNReal.toReal (1 / p) • snorm f p μ\n\ncase neg\nα : Type u_1\nE : Type ?u.2146317\nF : Type u_2\nG : Type ?u.2146323\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → F\nc : ℝ≥0∞\nhc : c ≠ 0\nhp0 : ¬p = 0\n⊢ snorm f p (c • μ) = c ^ ENNReal.toReal (1 / p) • snorm f p μ", "state_before": "α : Type u_1\nE : Type ?u.2146317\nF : Type u_2\nG : Type ?u.2146323\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → F\nc : ℝ≥0∞\nhc : c ≠ 0\n⊢ snorm f p (c • μ) = c ^ ENNReal.toReal (1 / p) • snorm f p μ", "tactic": "by_cases hp0 : p = 0" }, { "state_after": "case pos\nα : Type u_1\nE : Type ?u.2146317\nF : Type u_2\nG : Type ?u.2146323\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → F\nc : ℝ≥0∞\nhc : c ≠ 0\nhp0 : ¬p = 0\nhp_top : p = ⊤\n⊢ snorm f p (c • μ) = c ^ ENNReal.toReal (1 / p) • snorm f p μ\n\ncase neg\nα : Type u_1\nE : Type ?u.2146317\nF : Type u_2\nG : Type ?u.2146323\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → F\nc : ℝ≥0∞\nhc : c ≠ 0\nhp0 : ¬p = 0\nhp_top : ¬p = ⊤\n⊢ snorm f p (c • μ) = c ^ ENNReal.toReal (1 / p) • snorm f p μ", "state_before": "case neg\nα : Type u_1\nE : Type ?u.2146317\nF : Type u_2\nG : Type ?u.2146323\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → F\nc : ℝ≥0∞\nhc : c ≠ 0\nhp0 : ¬p = 0\n⊢ snorm f p (c • μ) = c ^ ENNReal.toReal (1 / p) • snorm f p μ", "tactic": "by_cases hp_top : p = ∞" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_1\nE : Type ?u.2146317\nF : Type u_2\nG : Type ?u.2146323\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → F\nc : ℝ≥0∞\nhc : c ≠ 0\nhp0 : ¬p = 0\nhp_top : ¬p = ⊤\n⊢ snorm f p (c • μ) = c ^ ENNReal.toReal (1 / p) • snorm f p μ", "tactic": "exact snorm_smul_measure_of_ne_zero_of_ne_top hp0 hp_top c" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nE : Type ?u.2146317\nF : Type u_2\nG : Type ?u.2146323\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → F\nc : ℝ≥0∞\nhc : c ≠ 0\nhp0 : p = 0\n⊢ snorm f p (c • μ) = c ^ ENNReal.toReal (1 / p) • snorm f p μ", "tactic": "simp [hp0]" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nE : Type ?u.2146317\nF : Type u_2\nG : Type ?u.2146323\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nf : α → F\nc : ℝ≥0∞\nhc : c ≠ 0\nhp0 : ¬p = 0\nhp_top : p = ⊤\n⊢ snorm f p (c • μ) = c ^ ENNReal.toReal (1 / p) • snorm f p μ", "tactic": "simp [hp_top, snormEssSup_smul_measure hc]" } ]
[ 631, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 625, 1 ]
Mathlib/Data/ZMod/Basic.lean
ZMod.valMinAbs_natCast_eq_self
[ { "state_after": "n a : ℕ\ninst✝ : NeZero n\nha : valMinAbs ↑a = ↑a\n⊢ a ≤ n / 2", "state_before": "n a : ℕ\ninst✝ : NeZero n\n⊢ valMinAbs ↑a = ↑a ↔ a ≤ n / 2", "tactic": "refine' ⟨fun ha => _, valMinAbs_natCast_of_le_half⟩" }, { "state_after": "n a : ℕ\ninst✝ : NeZero n\nha : valMinAbs ↑a = ↑a\n⊢ Int.natAbs (valMinAbs ↑a) ≤ n / 2", "state_before": "n a : ℕ\ninst✝ : NeZero n\nha : valMinAbs ↑a = ↑a\n⊢ a ≤ n / 2", "tactic": "rw [← Int.natAbs_ofNat a, ← ha]" }, { "state_after": "no goals", "state_before": "n a : ℕ\ninst✝ : NeZero n\nha : valMinAbs ↑a = ↑a\n⊢ Int.natAbs (valMinAbs ↑a) ≤ n / 2", "tactic": "exact natAbs_valMinAbs_le a" } ]
[ 1087, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1084, 1 ]
Mathlib/Analysis/SpecialFunctions/Pow/Deriv.lean
Real.deriv_rpow_const'
[]
[ 369, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 367, 1 ]
Mathlib/Data/List/Infix.lean
List.inits_eq_tails
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.42454\nl l₁ l₂ l₃ : List α\na b : α\nm n : ℕ\n⊢ inits [] = reverse (map reverse (tails (reverse [])))", "tactic": "simp" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.42454\nl✝ l₁ l₂ l₃ : List α\na✝ b : α\nm n : ℕ\na : α\nl : List α\n⊢ inits (a :: l) = reverse (map reverse (tails (reverse (a :: l))))", "tactic": "simp [inits_eq_tails l, map_eq_map_iff, reverse_map]" } ]
[ 397, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 395, 1 ]
Mathlib/Topology/MetricSpace/HausdorffDistance.lean
EMetric.continuous_infEdist
[ { "state_after": "no goals", "state_before": "ι : Sort ?u.10627\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx y : α\ns t : Set α\nΦ : α → β\n⊢ 1 ≠ ⊤", "tactic": "simp" }, { "state_after": "no goals", "state_before": "ι : Sort ?u.10627\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx y : α\ns t : Set α\nΦ : α → β\n⊢ ∀ (x y : α), infEdist x s ≤ infEdist y s + 1 * edist x y", "tactic": "simp only [one_mul, infEdist_le_infEdist_add_edist, forall₂_true_iff]" } ]
[ 131, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 129, 1 ]
Mathlib/MeasureTheory/Constructions/BorelSpace/Basic.lean
AEMeasurable.ennreal_toNNReal
[]
[ 1899, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1897, 1 ]
Mathlib/Algebra/Lie/Subalgebra.lean
LieSubalgebra.inf_coe
[]
[ 489, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 488, 1 ]
Mathlib/MeasureTheory/Measure/GiryMonad.lean
MeasureTheory.Measure.join_eq_bind
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.41117\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSpace β\nμ : Measure (Measure α)\n⊢ join μ = bind μ id", "tactic": "rw [bind, map_id]" } ]
[ 211, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 211, 1 ]
Mathlib/Analysis/Calculus/Deriv/Prod.lean
HasDerivAt.prod
[]
[ 71, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 69, 8 ]
Mathlib/LinearAlgebra/FreeModule/PID.lean
Ideal.selfBasis_def
[]
[ 614, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 612, 1 ]
Mathlib/Data/Set/Intervals/Basic.lean
Set.Ioo_insert_right
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.48593\ninst✝ : PartialOrder α\na b c : α\nh : a < b\n⊢ insert b (Ioo a b) = Ioc a b", "tactic": "rw [insert_eq, union_comm, Ioo_union_right h]" } ]
[ 892, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 891, 1 ]
Mathlib/Data/Fin/Basic.lean
Fin.range_succ
[ { "state_after": "n✝ m n : ℕ\n⊢ Set.range ↑(succAbove 0) = {0}ᶜ", "state_before": "n✝ m n : ℕ\n⊢ Set.range succ = {0}ᶜ", "tactic": "rw [← succAbove_zero]" }, { "state_after": "no goals", "state_before": "n✝ m n : ℕ\n⊢ Set.range ↑(succAbove 0) = {0}ᶜ", "tactic": "exact range_succAbove (0 : Fin (n + 1))" } ]
[ 2176, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2174, 1 ]
Mathlib/Algebra/CovariantAndContravariant.lean
act_rel_act_of_rel
[]
[ 154, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 153, 1 ]
Mathlib/GroupTheory/GroupAction/FixingSubgroup.lean
fixingSubmonoid_antitone
[]
[ 76, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 75, 1 ]
Mathlib/Data/Real/CauSeq.lean
CauSeq.sub_limZero
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝² : LinearOrderedField α\ninst✝¹ : Ring β\nabv : β → α\ninst✝ : IsAbsoluteValue abv\nf g : CauSeq β abv\nhf : LimZero f\nhg : LimZero g\n⊢ LimZero (f - g)", "tactic": "simpa only [sub_eq_add_neg] using add_limZero hf (neg_limZero hg)" } ]
[ 447, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 446, 1 ]
Mathlib/LinearAlgebra/Matrix/BilinearForm.lean
Matrix.isAdjointPair_equiv'
[ { "state_after": "R : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\n⊢ IsAdjointPair (Pᵀ ⬝ J ⬝ P) (Pᵀ ⬝ J ⬝ P) A A' ↔ IsAdjointPair J J (P ⬝ A ⬝ P⁻¹) (P ⬝ A' ⬝ P⁻¹)", "state_before": "R : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\n⊢ IsAdjointPair (Pᵀ ⬝ J ⬝ P) (Pᵀ ⬝ J ⬝ P) A A' ↔ IsAdjointPair J J (P ⬝ A ⬝ P⁻¹) (P ⬝ A' ⬝ P⁻¹)", "tactic": "have h' : IsUnit P.det := P.isUnit_iff_isUnit_det.mp h" }, { "state_after": "R : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\n⊢ IsAdjointPair (Pᵀ ⬝ J ⬝ P) (Pᵀ ⬝ J ⬝ P) A A' ↔ IsAdjointPair J J (P ⬝ A ⬝ P⁻¹) (P ⬝ A' ⬝ P⁻¹)", "state_before": "R : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\n⊢ IsAdjointPair (Pᵀ ⬝ J ⬝ P) (Pᵀ ⬝ J ⬝ P) A A' ↔ IsAdjointPair J J (P ⬝ A ⬝ P⁻¹) (P ⬝ A' ⬝ P⁻¹)", "tactic": "let u := P.nonsingInvUnit h'" }, { "state_after": "R : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\n⊢ IsAdjointPair (Pᵀ ⬝ J ⬝ P) (Pᵀ ⬝ J ⬝ P) A A' ↔ IsAdjointPair J J (P ⬝ A ⬝ P⁻¹) (P ⬝ A' ⬝ P⁻¹)", "state_before": "R : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\n⊢ IsAdjointPair (Pᵀ ⬝ J ⬝ P) (Pᵀ ⬝ J ⬝ P) A A' ↔ IsAdjointPair J J (P ⬝ A ⬝ P⁻¹) (P ⬝ A' ⬝ P⁻¹)", "tactic": "have coe_u : (u : Matrix n n R₃) = P := rfl" }, { "state_after": "R : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\ncoe_u_inv : ↑u⁻¹ = P⁻¹\n⊢ IsAdjointPair (Pᵀ ⬝ J ⬝ P) (Pᵀ ⬝ J ⬝ P) A A' ↔ IsAdjointPair J J (P ⬝ A ⬝ P⁻¹) (P ⬝ A' ⬝ P⁻¹)", "state_before": "R : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\n⊢ IsAdjointPair (Pᵀ ⬝ J ⬝ P) (Pᵀ ⬝ J ⬝ P) A A' ↔ IsAdjointPair J J (P ⬝ A ⬝ P⁻¹) (P ⬝ A' ⬝ P⁻¹)", "tactic": "have coe_u_inv : (↑u⁻¹ : Matrix n n R₃) = P⁻¹ := rfl" }, { "state_after": "R : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\ncoe_u_inv : ↑u⁻¹ = P⁻¹\nv : (Matrix n n R₃)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ))\n⊢ IsAdjointPair (Pᵀ ⬝ J ⬝ P) (Pᵀ ⬝ J ⬝ P) A A' ↔ IsAdjointPair J J (P ⬝ A ⬝ P⁻¹) (P ⬝ A' ⬝ P⁻¹)", "state_before": "R : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\ncoe_u_inv : ↑u⁻¹ = P⁻¹\n⊢ IsAdjointPair (Pᵀ ⬝ J ⬝ P) (Pᵀ ⬝ J ⬝ P) A A' ↔ IsAdjointPair J J (P ⬝ A ⬝ P⁻¹) (P ⬝ A' ⬝ P⁻¹)", "tactic": "let v := Pᵀ.nonsingInvUnit (P.isUnit_det_transpose h')" }, { "state_after": "R : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\ncoe_u_inv : ↑u⁻¹ = P⁻¹\nv : (Matrix n n R₃)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ))\ncoe_v : ↑v = Pᵀ\n⊢ IsAdjointPair (Pᵀ ⬝ J ⬝ P) (Pᵀ ⬝ J ⬝ P) A A' ↔ IsAdjointPair J J (P ⬝ A ⬝ P⁻¹) (P ⬝ A' ⬝ P⁻¹)", "state_before": "R : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\ncoe_u_inv : ↑u⁻¹ = P⁻¹\nv : (Matrix n n R₃)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ))\n⊢ IsAdjointPair (Pᵀ ⬝ J ⬝ P) (Pᵀ ⬝ J ⬝ P) A A' ↔ IsAdjointPair J J (P ⬝ A ⬝ P⁻¹) (P ⬝ A' ⬝ P⁻¹)", "tactic": "have coe_v : (v : Matrix n n R₃) = Pᵀ := rfl" }, { "state_after": "R : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\ncoe_u_inv : ↑u⁻¹ = P⁻¹\nv : (Matrix n n R₃)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ))\ncoe_v : ↑v = Pᵀ\ncoe_v_inv : ↑v⁻¹ = P⁻¹ᵀ\n⊢ IsAdjointPair (Pᵀ ⬝ J ⬝ P) (Pᵀ ⬝ J ⬝ P) A A' ↔ IsAdjointPair J J (P ⬝ A ⬝ P⁻¹) (P ⬝ A' ⬝ P⁻¹)", "state_before": "R : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\ncoe_u_inv : ↑u⁻¹ = P⁻¹\nv : (Matrix n n R₃)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ))\ncoe_v : ↑v = Pᵀ\n⊢ IsAdjointPair (Pᵀ ⬝ J ⬝ P) (Pᵀ ⬝ J ⬝ P) A A' ↔ IsAdjointPair J J (P ⬝ A ⬝ P⁻¹) (P ⬝ A' ⬝ P⁻¹)", "tactic": "have coe_v_inv : (↑v⁻¹ : Matrix n n R₃) = P⁻¹ᵀ := P.transpose_nonsing_inv.symm" }, { "state_after": "R : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\ncoe_u_inv : ↑u⁻¹ = P⁻¹\nv : (Matrix n n R₃)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ))\ncoe_v : ↑v = Pᵀ\ncoe_v_inv : ↑v⁻¹ = P⁻¹ᵀ\nx : Matrix n n R₃ := Aᵀ * Pᵀ * J\nx_def : x = Aᵀ * Pᵀ * J\n⊢ IsAdjointPair (Pᵀ ⬝ J ⬝ P) (Pᵀ ⬝ J ⬝ P) A A' ↔ IsAdjointPair J J (P ⬝ A ⬝ P⁻¹) (P ⬝ A' ⬝ P⁻¹)", "state_before": "R : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\ncoe_u_inv : ↑u⁻¹ = P⁻¹\nv : (Matrix n n R₃)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ))\ncoe_v : ↑v = Pᵀ\ncoe_v_inv : ↑v⁻¹ = P⁻¹ᵀ\n⊢ IsAdjointPair (Pᵀ ⬝ J ⬝ P) (Pᵀ ⬝ J ⬝ P) A A' ↔ IsAdjointPair J J (P ⬝ A ⬝ P⁻¹) (P ⬝ A' ⬝ P⁻¹)", "tactic": "set x := Aᵀ * Pᵀ * J with x_def" }, { "state_after": "R : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\ncoe_u_inv : ↑u⁻¹ = P⁻¹\nv : (Matrix n n R₃)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ))\ncoe_v : ↑v = Pᵀ\ncoe_v_inv : ↑v⁻¹ = P⁻¹ᵀ\nx : Matrix n n R₃ := Aᵀ * Pᵀ * J\nx_def : x = Aᵀ * Pᵀ * J\ny : Matrix n n R₃ := J * P * A'\ny_def : y = J * P * A'\n⊢ IsAdjointPair (Pᵀ ⬝ J ⬝ P) (Pᵀ ⬝ J ⬝ P) A A' ↔ IsAdjointPair J J (P ⬝ A ⬝ P⁻¹) (P ⬝ A' ⬝ P⁻¹)", "state_before": "R : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\ncoe_u_inv : ↑u⁻¹ = P⁻¹\nv : (Matrix n n R₃)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ))\ncoe_v : ↑v = Pᵀ\ncoe_v_inv : ↑v⁻¹ = P⁻¹ᵀ\nx : Matrix n n R₃ := Aᵀ * Pᵀ * J\nx_def : x = Aᵀ * Pᵀ * J\n⊢ IsAdjointPair (Pᵀ ⬝ J ⬝ P) (Pᵀ ⬝ J ⬝ P) A A' ↔ IsAdjointPair J J (P ⬝ A ⬝ P⁻¹) (P ⬝ A' ⬝ P⁻¹)", "tactic": "set y := J * P * A' with y_def" }, { "state_after": "R : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\ncoe_u_inv : ↑u⁻¹ = P⁻¹\nv : (Matrix n n R₃)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ))\ncoe_v : ↑v = Pᵀ\ncoe_v_inv : ↑v⁻¹ = P⁻¹ᵀ\nx : Matrix n n R₃ := Aᵀ * Pᵀ * J\nx_def : x = Aᵀ * Pᵀ * J\ny : Matrix n n R₃ := J * P * A'\ny_def : y = J * P * A'\n⊢ Aᵀ * (Pᵀ * J * P) = Pᵀ * J * P * A' ↔ (P * A * P⁻¹)ᵀ * J = J * (P * A' * P⁻¹)", "state_before": "R : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\ncoe_u_inv : ↑u⁻¹ = P⁻¹\nv : (Matrix n n R₃)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ))\ncoe_v : ↑v = Pᵀ\ncoe_v_inv : ↑v⁻¹ = P⁻¹ᵀ\nx : Matrix n n R₃ := Aᵀ * Pᵀ * J\nx_def : x = Aᵀ * Pᵀ * J\ny : Matrix n n R₃ := J * P * A'\ny_def : y = J * P * A'\n⊢ IsAdjointPair (Pᵀ ⬝ J ⬝ P) (Pᵀ ⬝ J ⬝ P) A A' ↔ IsAdjointPair J J (P ⬝ A ⬝ P⁻¹) (P ⬝ A' ⬝ P⁻¹)", "tactic": "simp only [Matrix.IsAdjointPair, ← Matrix.mul_eq_mul]" }, { "state_after": "case calc_1\nR : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\ncoe_u_inv : ↑u⁻¹ = P⁻¹\nv : (Matrix n n R₃)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ))\ncoe_v : ↑v = Pᵀ\ncoe_v_inv : ↑v⁻¹ = P⁻¹ᵀ\nx : Matrix n n R₃ := Aᵀ * Pᵀ * J\nx_def : x = Aᵀ * Pᵀ * J\ny : Matrix n n R₃ := J * P * A'\ny_def : y = J * P * A'\n⊢ Aᵀ * (Pᵀ * J * P) = Pᵀ * J * P * A' ↔ x * ↑u = ↑v * y\n\ncase calc_2\nR : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\ncoe_u_inv : ↑u⁻¹ = P⁻¹\nv : (Matrix n n R₃)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ))\ncoe_v : ↑v = Pᵀ\ncoe_v_inv : ↑v⁻¹ = P⁻¹ᵀ\nx : Matrix n n R₃ := Aᵀ * Pᵀ * J\nx_def : x = Aᵀ * Pᵀ * J\ny : Matrix n n R₃ := J * P * A'\ny_def : y = J * P * A'\n⊢ x * ↑u = ↑v * y ↔ ↑v⁻¹ * x = y * ↑u⁻¹\n\ncase calc_3\nR : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\ncoe_u_inv : ↑u⁻¹ = P⁻¹\nv : (Matrix n n R₃)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ))\ncoe_v : ↑v = Pᵀ\ncoe_v_inv : ↑v⁻¹ = P⁻¹ᵀ\nx : Matrix n n R₃ := Aᵀ * Pᵀ * J\nx_def : x = Aᵀ * Pᵀ * J\ny : Matrix n n R₃ := J * P * A'\ny_def : y = J * P * A'\n⊢ ↑v⁻¹ * x = y * ↑u⁻¹ ↔ (P * A * P⁻¹)ᵀ * J = J * (P * A' * P⁻¹)", "state_before": "R : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\ncoe_u_inv : ↑u⁻¹ = P⁻¹\nv : (Matrix n n R₃)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ))\ncoe_v : ↑v = Pᵀ\ncoe_v_inv : ↑v⁻¹ = P⁻¹ᵀ\nx : Matrix n n R₃ := Aᵀ * Pᵀ * J\nx_def : x = Aᵀ * Pᵀ * J\ny : Matrix n n R₃ := J * P * A'\ny_def : y = J * P * A'\n⊢ Aᵀ * (Pᵀ * J * P) = Pᵀ * J * P * A' ↔ (P * A * P⁻¹)ᵀ * J = J * (P * A' * P⁻¹)", "tactic": "calc (Aᵀ * (Pᵀ * J * P) = Pᵀ * J * P * A')\n ↔ (x * ↑u = ↑v * y) := ?_\n _ ↔ (↑v⁻¹ * x = y * ↑u⁻¹) := ?_\n _ ↔ ((P * A * P⁻¹)ᵀ * J = J * (P * A' * P⁻¹)) := ?_" }, { "state_after": "no goals", "state_before": "case calc_1\nR : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\ncoe_u_inv : ↑u⁻¹ = P⁻¹\nv : (Matrix n n R₃)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ))\ncoe_v : ↑v = Pᵀ\ncoe_v_inv : ↑v⁻¹ = P⁻¹ᵀ\nx : Matrix n n R₃ := Aᵀ * Pᵀ * J\nx_def : x = Aᵀ * Pᵀ * J\ny : Matrix n n R₃ := J * P * A'\ny_def : y = J * P * A'\n⊢ Aᵀ * (Pᵀ * J * P) = Pᵀ * J * P * A' ↔ x * ↑u = ↑v * y", "tactic": "simp only [mul_assoc, x_def, y_def, coe_u, coe_v]" }, { "state_after": "no goals", "state_before": "case calc_2\nR : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\ncoe_u_inv : ↑u⁻¹ = P⁻¹\nv : (Matrix n n R₃)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ))\ncoe_v : ↑v = Pᵀ\ncoe_v_inv : ↑v⁻¹ = P⁻¹ᵀ\nx : Matrix n n R₃ := Aᵀ * Pᵀ * J\nx_def : x = Aᵀ * Pᵀ * J\ny : Matrix n n R₃ := J * P * A'\ny_def : y = J * P * A'\n⊢ x * ↑u = ↑v * y ↔ ↑v⁻¹ * x = y * ↑u⁻¹", "tactic": "rw [Units.eq_mul_inv_iff_mul_eq, mul_assoc ↑v⁻¹ x, Units.inv_mul_eq_iff_eq_mul]" }, { "state_after": "case calc_3\nR : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\ncoe_u_inv : ↑u⁻¹ = P⁻¹\nv : (Matrix n n R₃)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ))\ncoe_v : ↑v = Pᵀ\ncoe_v_inv : ↑v⁻¹ = P⁻¹ᵀ\nx : Matrix n n R₃ := Aᵀ * Pᵀ * J\nx_def : x = Aᵀ * Pᵀ * J\ny : Matrix n n R₃ := J * P * A'\ny_def : y = J * P * A'\n⊢ P⁻¹ᵀ * (Aᵀ * Pᵀ * J) = J * P * A' * P⁻¹ ↔ (P * A * P⁻¹)ᵀ * J = J * (P * A' * P⁻¹)", "state_before": "case calc_3\nR : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\ncoe_u_inv : ↑u⁻¹ = P⁻¹\nv : (Matrix n n R₃)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ))\ncoe_v : ↑v = Pᵀ\ncoe_v_inv : ↑v⁻¹ = P⁻¹ᵀ\nx : Matrix n n R₃ := Aᵀ * Pᵀ * J\nx_def : x = Aᵀ * Pᵀ * J\ny : Matrix n n R₃ := J * P * A'\ny_def : y = J * P * A'\n⊢ ↑v⁻¹ * x = y * ↑u⁻¹ ↔ (P * A * P⁻¹)ᵀ * J = J * (P * A' * P⁻¹)", "tactic": "rw [x_def, y_def, coe_u_inv, coe_v_inv]" }, { "state_after": "no goals", "state_before": "case calc_3\nR : Type ?u.2171788\nM : Type ?u.2171791\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nR₁ : Type ?u.2171827\nM₁ : Type ?u.2171830\ninst✝¹³ : Ring R₁\ninst✝¹² : AddCommGroup M₁\ninst✝¹¹ : Module R₁ M₁\nR₂ : Type ?u.2172439\nM₂ : Type ?u.2172442\ninst✝¹⁰ : CommSemiring R₂\ninst✝⁹ : AddCommMonoid M₂\ninst✝⁸ : Module R₂ M₂\nR₃ : Type u_2\nM₃ : Type ?u.2172632\ninst✝⁷ : CommRing R₃\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R₃ M₃\nV : Type ?u.2173220\nK : Type ?u.2173223\ninst✝⁴ : Field K\ninst✝³ : AddCommGroup V\ninst✝² : Module K V\nB : BilinForm R M\nB₁ : BilinForm R₁ M₁\nB₂ : BilinForm R₂ M₂\nn : Type u_1\ninst✝¹ : Fintype n\nb : Basis n R₃ M₃\nJ J₃ A A' : Matrix n n R₃\ninst✝ : DecidableEq n\nP : Matrix n n R₃\nh : IsUnit P\nh' : IsUnit (det P)\nu : (Matrix n n R₃)ˣ := nonsingInvUnit P h'\ncoe_u : ↑u = P\ncoe_u_inv : ↑u⁻¹ = P⁻¹\nv : (Matrix n n R₃)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ))\ncoe_v : ↑v = Pᵀ\ncoe_v_inv : ↑v⁻¹ = P⁻¹ᵀ\nx : Matrix n n R₃ := Aᵀ * Pᵀ * J\nx_def : x = Aᵀ * Pᵀ * J\ny : Matrix n n R₃ := J * P * A'\ny_def : y = J * P * A'\n⊢ P⁻¹ᵀ * (Aᵀ * Pᵀ * J) = J * P * A' * P⁻¹ ↔ (P * A * P⁻¹)ᵀ * J = J * (P * A' * P⁻¹)", "tactic": "simp only [Matrix.mul_eq_mul, Matrix.mul_assoc, Matrix.transpose_mul]" } ]
[ 494, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 473, 1 ]
Mathlib/Data/QPF/Multivariate/Constructions/Fix.lean
MvQPF.recF_eq_of_wEquiv
[ { "state_after": "n : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\n⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α)\n (f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α),\n WEquiv (MvPFunctor.wMk (P F) a f' f) y → recF u (MvPFunctor.wMk (P F) a f' f) = recF u y", "state_before": "n : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\n⊢ WEquiv x y → recF u x = recF u y", "tactic": "apply q.P.w_cases _ x" }, { "state_after": "n : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\n⊢ WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) y → recF u (MvPFunctor.wMk (P F) a₀ f'₀ f₀) = recF u y", "state_before": "n : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\n⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α)\n (f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α),\n WEquiv (MvPFunctor.wMk (P F) a f' f) y → recF u (MvPFunctor.wMk (P F) a f' f) = recF u y", "tactic": "intro a₀ f'₀ f₀" }, { "state_after": "n : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\n⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α)\n (f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α),\n WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a f' f) →\n recF u (MvPFunctor.wMk (P F) a₀ f'₀ f₀) = recF u (MvPFunctor.wMk (P F) a f' f)", "state_before": "n : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\n⊢ WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) y → recF u (MvPFunctor.wMk (P F) a₀ f'₀ f₀) = recF u y", "tactic": "apply q.P.w_cases _ y" }, { "state_after": "n : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\n⊢ WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁) →\n recF u (MvPFunctor.wMk (P F) a₀ f'₀ f₀) = recF u (MvPFunctor.wMk (P F) a₁ f'₁ f₁)", "state_before": "n : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\n⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α)\n (f : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α),\n WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a f' f) →\n recF u (MvPFunctor.wMk (P F) a₀ f'₀ f₀) = recF u (MvPFunctor.wMk (P F) a f' f)", "tactic": "intro a₁ f'₁ f₁" }, { "state_after": "n : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁)\n⊢ recF u (MvPFunctor.wMk (P F) a₀ f'₀ f₀) = recF u (MvPFunctor.wMk (P F) a₁ f'₁ f₁)", "state_before": "n : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\n⊢ WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁) →\n recF u (MvPFunctor.wMk (P F) a₀ f'₀ f₀) = recF u (MvPFunctor.wMk (P F) a₁ f'₁ f₁)", "tactic": "intro h" }, { "state_after": "case refine'_1\nn : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁)\n⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α)\n (f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α)\n (a_1 : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)),\n (∀ (x : PFunctor.B (MvPFunctor.last (P F)) a),\n (fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x))) →\n (fun a a' x => recF u a = recF u a') (MvPFunctor.wMk (P F) a f' f₀) (MvPFunctor.wMk (P F) a f' f₁)\n (_ : WEquiv (MvPFunctor.wMk (P F) a f' f₀) (MvPFunctor.wMk (P F) a f' f₁))\n\ncase refine'_2\nn : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁)\n⊢ ∀ (a₀ : (P F).A) (f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α)\n (f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α) (a₁ : (P F).A)\n (f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α)\n (f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α)\n (a :\n abs { fst := a₀, snd := MvPFunctor.appendContents (P F) f'₀ f₀ } =\n abs { fst := a₁, snd := MvPFunctor.appendContents (P F) f'₁ f₁ }),\n (fun a a' x => recF u a = recF u a') (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁)\n (_ : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁))\n\ncase refine'_3\nn : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁)\n⊢ ∀ (u_1 v w : MvPFunctor.W (P F) α) (a : WEquiv u_1 v) (a_1 : WEquiv v w),\n (fun a a' x => recF u a = recF u a') u_1 v a →\n (fun a a' x => recF u a = recF u a') v w a_1 → (fun a a' x => recF u a = recF u a') u_1 w (_ : WEquiv u_1 w)", "state_before": "n : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁)\n⊢ recF u (MvPFunctor.wMk (P F) a₀ f'₀ f₀) = recF u (MvPFunctor.wMk (P F) a₁ f'₁ f₁)", "tactic": "refine' @WEquiv.recOn _ _ _ _ _ (λ a a' _ => recF u a = recF u a') _ _ h _ _ _" }, { "state_after": "case refine'_1\nn : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝)\na : (P F).A\nf' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α\nf₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α\n_h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)\nih :\n ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a),\n (fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x))\n⊢ recF u (MvPFunctor.wMk (P F) a f' f₀) = recF u (MvPFunctor.wMk (P F) a f' f₁)", "state_before": "case refine'_1\nn : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁)\n⊢ ∀ (a : (P F).A) (f' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α)\n (f₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α)\n (a_1 : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)),\n (∀ (x : PFunctor.B (MvPFunctor.last (P F)) a),\n (fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x))) →\n (fun a a' x => recF u a = recF u a') (MvPFunctor.wMk (P F) a f' f₀) (MvPFunctor.wMk (P F) a f' f₁)\n (_ : WEquiv (MvPFunctor.wMk (P F) a f' f₀) (MvPFunctor.wMk (P F) a f' f₁))", "tactic": "intros a f' f₀ f₁ _h ih" }, { "state_after": "case refine'_1\nn : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝)\na : (P F).A\nf' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α\nf₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α\n_h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)\nih :\n ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a),\n (fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x))\n⊢ u (abs { fst := a, snd := splitFun f' fun x => recF u (f₀ x) }) =\n u (abs { fst := a, snd := splitFun f' fun x => recF u (f₁ x) })", "state_before": "case refine'_1\nn : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝)\na : (P F).A\nf' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α\nf₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α\n_h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)\nih :\n ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a),\n (fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x))\n⊢ recF u (MvPFunctor.wMk (P F) a f' f₀) = recF u (MvPFunctor.wMk (P F) a f' f₁)", "tactic": "simp only [recF_eq, Function.comp]" }, { "state_after": "case refine'_1.e_a.e_a.e_snd\nn : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝)\na : (P F).A\nf' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α\nf₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α\n_h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)\nih :\n ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a),\n (fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x))\n⊢ (splitFun f' fun x => recF u (f₀ x)) = splitFun f' fun x => recF u (f₁ x)", "state_before": "case refine'_1\nn : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝)\na : (P F).A\nf' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α\nf₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α\n_h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)\nih :\n ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a),\n (fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x))\n⊢ u (abs { fst := a, snd := splitFun f' fun x => recF u (f₀ x) }) =\n u (abs { fst := a, snd := splitFun f' fun x => recF u (f₁ x) })", "tactic": "congr" }, { "state_after": "case refine'_1.e_a.e_a.e_snd.h.h\nn : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝)\na : (P F).A\nf' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α\nf₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α\n_h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)\nih :\n ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a),\n (fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x))\nx✝¹ : Fin2 (n + 1)\nx✝ : MvPFunctor.B (P F) a x✝¹\n⊢ splitFun f' (fun x => recF u (f₀ x)) x✝¹ x✝ = splitFun f' (fun x => recF u (f₁ x)) x✝¹ x✝", "state_before": "case refine'_1.e_a.e_a.e_snd\nn : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝)\na : (P F).A\nf' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α\nf₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α\n_h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)\nih :\n ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a),\n (fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x))\n⊢ (splitFun f' fun x => recF u (f₀ x)) = splitFun f' fun x => recF u (f₁ x)", "tactic": "funext" }, { "state_after": "case refine'_1.e_a.e_a.e_snd.h.h.e_g\nn : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝)\na : (P F).A\nf' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α\nf₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α\n_h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)\nih :\n ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a),\n (fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x))\nx✝¹ : Fin2 (n + 1)\nx✝ : MvPFunctor.B (P F) a x✝¹\n⊢ (fun x => recF u (f₀ x)) = fun x => recF u (f₁ x)", "state_before": "case refine'_1.e_a.e_a.e_snd.h.h\nn : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝)\na : (P F).A\nf' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α\nf₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α\n_h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)\nih :\n ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a),\n (fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x))\nx✝¹ : Fin2 (n + 1)\nx✝ : MvPFunctor.B (P F) a x✝¹\n⊢ splitFun f' (fun x => recF u (f₀ x)) x✝¹ x✝ = splitFun f' (fun x => recF u (f₁ x)) x✝¹ x✝", "tactic": "congr" }, { "state_after": "case refine'_1.e_a.e_a.e_snd.h.h.e_g.h\nn : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝)\na : (P F).A\nf' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α\nf₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α\n_h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)\nih :\n ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a),\n (fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x))\nx✝² : Fin2 (n + 1)\nx✝¹ : MvPFunctor.B (P F) a x✝²\nx✝ : last (MvPFunctor.B (P F) a)\n⊢ recF u (f₀ x✝) = recF u (f₁ x✝)", "state_before": "case refine'_1.e_a.e_a.e_snd.h.h.e_g\nn : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝)\na : (P F).A\nf' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α\nf₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α\n_h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)\nih :\n ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a),\n (fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x))\nx✝¹ : Fin2 (n + 1)\nx✝ : MvPFunctor.B (P F) a x✝¹\n⊢ (fun x => recF u (f₀ x)) = fun x => recF u (f₁ x)", "tactic": "funext" }, { "state_after": "no goals", "state_before": "case refine'_1.e_a.e_a.e_snd.h.h.e_g.h\nn : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀✝) (MvPFunctor.wMk (P F) a₁ f'₁ f₁✝)\na : (P F).A\nf' : MvPFunctor.B (MvPFunctor.drop (P F)) a ⟹ α\nf₀ f₁ : PFunctor.B (MvPFunctor.last (P F)) a → MvPFunctor.W (P F) α\n_h : ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a), WEquiv (f₀ x) (f₁ x)\nih :\n ∀ (x : PFunctor.B (MvPFunctor.last (P F)) a),\n (fun a a' x => recF u a = recF u a') (f₀ x) (f₁ x) (_ : WEquiv (f₀ x) (f₁ x))\nx✝² : Fin2 (n + 1)\nx✝¹ : MvPFunctor.B (P F) a x✝²\nx✝ : last (MvPFunctor.B (P F) a)\n⊢ recF u (f₀ x✝) = recF u (f₁ x✝)", "tactic": "apply ih" }, { "state_after": "case refine'_2\nn : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀✝ : (P F).A\nf'₀✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀✝ ⟹ α\nf₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀✝ → MvPFunctor.W (P F) α\na₁✝ : (P F).A\nf'₁✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁✝ ⟹ α\nf₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁✝ → MvPFunctor.W (P F) α\nh✝ : WEquiv (MvPFunctor.wMk (P F) a₀✝ f'₀✝ f₀✝) (MvPFunctor.wMk (P F) a₁✝ f'₁✝ f₁✝)\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh :\n abs { fst := a₀, snd := MvPFunctor.appendContents (P F) f'₀ f₀ } =\n abs { fst := a₁, snd := MvPFunctor.appendContents (P F) f'₁ f₁ }\n⊢ recF u (MvPFunctor.wMk (P F) a₀ f'₀ f₀) = recF u (MvPFunctor.wMk (P F) a₁ f'₁ f₁)", "state_before": "case refine'_2\nn : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁)\n⊢ ∀ (a₀ : (P F).A) (f'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α)\n (f₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α) (a₁ : (P F).A)\n (f'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α)\n (f₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α)\n (a :\n abs { fst := a₀, snd := MvPFunctor.appendContents (P F) f'₀ f₀ } =\n abs { fst := a₁, snd := MvPFunctor.appendContents (P F) f'₁ f₁ }),\n (fun a a' x => recF u a = recF u a') (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁)\n (_ : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁))", "tactic": "intros a₀ f'₀ f₀ a₁ f'₁ f₁ h" }, { "state_after": "no goals", "state_before": "case refine'_2\nn : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀✝ : (P F).A\nf'₀✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀✝ ⟹ α\nf₀✝ : PFunctor.B (MvPFunctor.last (P F)) a₀✝ → MvPFunctor.W (P F) α\na₁✝ : (P F).A\nf'₁✝ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁✝ ⟹ α\nf₁✝ : PFunctor.B (MvPFunctor.last (P F)) a₁✝ → MvPFunctor.W (P F) α\nh✝ : WEquiv (MvPFunctor.wMk (P F) a₀✝ f'₀✝ f₀✝) (MvPFunctor.wMk (P F) a₁✝ f'₁✝ f₁✝)\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh :\n abs { fst := a₀, snd := MvPFunctor.appendContents (P F) f'₀ f₀ } =\n abs { fst := a₁, snd := MvPFunctor.appendContents (P F) f'₁ f₁ }\n⊢ recF u (MvPFunctor.wMk (P F) a₀ f'₀ f₀) = recF u (MvPFunctor.wMk (P F) a₁ f'₁ f₁)", "tactic": "simp only [recF_eq', abs_map, MvPFunctor.wDest'_wMk, h]" }, { "state_after": "case refine'_3\nn : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx✝ y✝ : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁)\nx y z : MvPFunctor.W (P F) α\n_e₁ : WEquiv x y\n_e₂ : WEquiv y z\nih₁ : recF u x = recF u y\nih₂ : recF u y = recF u z\n⊢ recF u x = recF u z", "state_before": "case refine'_3\nn : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx y : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁)\n⊢ ∀ (u_1 v w : MvPFunctor.W (P F) α) (a : WEquiv u_1 v) (a_1 : WEquiv v w),\n (fun a a' x => recF u a = recF u a') u_1 v a →\n (fun a a' x => recF u a = recF u a') v w a_1 → (fun a a' x => recF u a = recF u a') u_1 w (_ : WEquiv u_1 w)", "tactic": "intros x y z _e₁ _e₂ ih₁ ih₂" }, { "state_after": "no goals", "state_before": "case refine'_3\nn : ℕ\nF : TypeVec (n + 1) → Type u\ninst✝ : MvFunctor F\nq : MvQPF F\nα : TypeVec n\nβ : Type u\nu : F (α ::: β) → β\nx✝ y✝ : MvPFunctor.W (P F) α\na₀ : (P F).A\nf'₀ : MvPFunctor.B (MvPFunctor.drop (P F)) a₀ ⟹ α\nf₀ : PFunctor.B (MvPFunctor.last (P F)) a₀ → MvPFunctor.W (P F) α\na₁ : (P F).A\nf'₁ : MvPFunctor.B (MvPFunctor.drop (P F)) a₁ ⟹ α\nf₁ : PFunctor.B (MvPFunctor.last (P F)) a₁ → MvPFunctor.W (P F) α\nh : WEquiv (MvPFunctor.wMk (P F) a₀ f'₀ f₀) (MvPFunctor.wMk (P F) a₁ f'₁ f₁)\nx y z : MvPFunctor.W (P F) α\n_e₁ : WEquiv x y\n_e₂ : WEquiv y z\nih₁ : recF u x = recF u y\nih₂ : recF u y = recF u z\n⊢ recF u x = recF u z", "tactic": "exact Eq.trans ih₁ ih₂" } ]
[ 107, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 95, 1 ]
Mathlib/LinearAlgebra/Prod.lean
LinearMap.fst_surjective
[]
[ 87, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 87, 1 ]
Mathlib/Algebra/Algebra/Subalgebra/Basic.lean
Algebra.comap_top
[]
[ 938, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 937, 1 ]
Mathlib/RingTheory/FiniteType.lean
AddMonoidAlgebra.mvPolynomial_aeval_of_surjective_of_closure
[ { "state_after": "R : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nf : AddMonoidAlgebra R M\n⊢ ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = f", "state_before": "R : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\n⊢ Surjective ↑(MvPolynomial.aeval fun s => of' R M ↑s)", "tactic": "intro f" }, { "state_after": "case hM\nR : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nm : M\n⊢ ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = ↑(of R M) (↑Multiplicative.ofAdd m)\n\ncase hadd\nR : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nf g : AddMonoidAlgebra R M\nihf : ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = f\nihg : ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = g\n⊢ ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = f + g\n\ncase hsmul\nR : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nr : R\nf : AddMonoidAlgebra R M\nih : ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = f\n⊢ ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = r • f", "state_before": "R : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nf : AddMonoidAlgebra R M\n⊢ ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = f", "tactic": "induction' f using induction_on with m f g ihf ihg r f ih" }, { "state_after": "case hM\nR : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nm : M\nthis : m ∈ closure S\n⊢ ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = ↑(of R M) (↑Multiplicative.ofAdd m)", "state_before": "case hM\nR : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nm : M\n⊢ ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = ↑(of R M) (↑Multiplicative.ofAdd m)", "tactic": "have : m ∈ closure S := hS.symm ▸ mem_top _" }, { "state_after": "case hM.refine'_1\nR : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nm✝ : M\nthis : m✝ ∈ closure S\nm : M\nhm : m ∈ S\n⊢ ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = ↑(of R M) (↑Multiplicative.ofAdd m)\n\ncase hM.refine'_2\nR : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nm : M\nthis : m ∈ closure S\n⊢ ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = ↑(of R M) (↑Multiplicative.ofAdd 0)\n\ncase hM.refine'_3\nR : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nm : M\nthis : m ∈ closure S\n⊢ ∀ (x y : M),\n (∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = ↑(of R M) (↑Multiplicative.ofAdd x)) →\n (∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = ↑(of R M) (↑Multiplicative.ofAdd y)) →\n ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = ↑(of R M) (↑Multiplicative.ofAdd (x + y))", "state_before": "case hM\nR : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nm : M\nthis : m ∈ closure S\n⊢ ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = ↑(of R M) (↑Multiplicative.ofAdd m)", "tactic": "refine' closure_induction this (fun m hm => _) _ _" }, { "state_after": "no goals", "state_before": "case hM.refine'_1\nR : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nm✝ : M\nthis : m✝ ∈ closure S\nm : M\nhm : m ∈ S\n⊢ ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = ↑(of R M) (↑Multiplicative.ofAdd m)", "tactic": "exact ⟨MvPolynomial.X ⟨m, hm⟩, MvPolynomial.aeval_X _ _⟩" }, { "state_after": "no goals", "state_before": "case hM.refine'_2\nR : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nm : M\nthis : m ∈ closure S\n⊢ ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = ↑(of R M) (↑Multiplicative.ofAdd 0)", "tactic": "exact ⟨1, AlgHom.map_one _⟩" }, { "state_after": "case hM.refine'_3.intro.intro\nR : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nm : M\nthis : m ∈ closure S\nm₁ m₂ : M\nP₁ : MvPolynomial (↑S) R\nhP₁ : ↑(MvPolynomial.aeval fun s => of' R M ↑s) P₁ = ↑(of R M) (↑Multiplicative.ofAdd m₁)\nP₂ : MvPolynomial (↑S) R\nhP₂ : ↑(MvPolynomial.aeval fun s => of' R M ↑s) P₂ = ↑(of R M) (↑Multiplicative.ofAdd m₂)\n⊢ ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = ↑(of R M) (↑Multiplicative.ofAdd (m₁ + m₂))", "state_before": "case hM.refine'_3\nR : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nm : M\nthis : m ∈ closure S\n⊢ ∀ (x y : M),\n (∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = ↑(of R M) (↑Multiplicative.ofAdd x)) →\n (∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = ↑(of R M) (↑Multiplicative.ofAdd y)) →\n ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = ↑(of R M) (↑Multiplicative.ofAdd (x + y))", "tactic": "rintro m₁ m₂ ⟨P₁, hP₁⟩ ⟨P₂, hP₂⟩" }, { "state_after": "no goals", "state_before": "case hM.refine'_3.intro.intro\nR : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nm : M\nthis : m ∈ closure S\nm₁ m₂ : M\nP₁ : MvPolynomial (↑S) R\nhP₁ : ↑(MvPolynomial.aeval fun s => of' R M ↑s) P₁ = ↑(of R M) (↑Multiplicative.ofAdd m₁)\nP₂ : MvPolynomial (↑S) R\nhP₂ : ↑(MvPolynomial.aeval fun s => of' R M ↑s) P₂ = ↑(of R M) (↑Multiplicative.ofAdd m₂)\n⊢ ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = ↑(of R M) (↑Multiplicative.ofAdd (m₁ + m₂))", "tactic": "exact\n ⟨P₁ * P₂, by\n rw [AlgHom.map_mul, hP₁, hP₂, of_apply, of_apply, of_apply, single_mul_single,\n one_mul]; rfl⟩" }, { "state_after": "R : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nm : M\nthis : m ∈ closure S\nm₁ m₂ : M\nP₁ : MvPolynomial (↑S) R\nhP₁ : ↑(MvPolynomial.aeval fun s => of' R M ↑s) P₁ = ↑(of R M) (↑Multiplicative.ofAdd m₁)\nP₂ : MvPolynomial (↑S) R\nhP₂ : ↑(MvPolynomial.aeval fun s => of' R M ↑s) P₂ = ↑(of R M) (↑Multiplicative.ofAdd m₂)\n⊢ single (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m₁) + ↑Multiplicative.toAdd (↑Multiplicative.ofAdd m₂)) 1 =\n single (↑Multiplicative.toAdd (↑Multiplicative.ofAdd (m₁ + m₂))) 1", "state_before": "R : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nm : M\nthis : m ∈ closure S\nm₁ m₂ : M\nP₁ : MvPolynomial (↑S) R\nhP₁ : ↑(MvPolynomial.aeval fun s => of' R M ↑s) P₁ = ↑(of R M) (↑Multiplicative.ofAdd m₁)\nP₂ : MvPolynomial (↑S) R\nhP₂ : ↑(MvPolynomial.aeval fun s => of' R M ↑s) P₂ = ↑(of R M) (↑Multiplicative.ofAdd m₂)\n⊢ ↑(MvPolynomial.aeval fun s => of' R M ↑s) (P₁ * P₂) = ↑(of R M) (↑Multiplicative.ofAdd (m₁ + m₂))", "tactic": "rw [AlgHom.map_mul, hP₁, hP₂, of_apply, of_apply, of_apply, single_mul_single,\n one_mul]" }, { "state_after": "no goals", "state_before": "R : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nm : M\nthis : m ∈ closure S\nm₁ m₂ : M\nP₁ : MvPolynomial (↑S) R\nhP₁ : ↑(MvPolynomial.aeval fun s => of' R M ↑s) P₁ = ↑(of R M) (↑Multiplicative.ofAdd m₁)\nP₂ : MvPolynomial (↑S) R\nhP₂ : ↑(MvPolynomial.aeval fun s => of' R M ↑s) P₂ = ↑(of R M) (↑Multiplicative.ofAdd m₂)\n⊢ single (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m₁) + ↑Multiplicative.toAdd (↑Multiplicative.ofAdd m₂)) 1 =\n single (↑Multiplicative.toAdd (↑Multiplicative.ofAdd (m₁ + m₂))) 1", "tactic": "rfl" }, { "state_after": "case hadd.intro\nR : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\ng : AddMonoidAlgebra R M\nihg : ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = g\nP : MvPolynomial (↑S) R\n⊢ ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = ↑(MvPolynomial.aeval fun s => of' R M ↑s) P + g", "state_before": "case hadd\nR : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nf g : AddMonoidAlgebra R M\nihf : ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = f\nihg : ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = g\n⊢ ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = f + g", "tactic": "rcases ihf with ⟨P, rfl⟩" }, { "state_after": "case hadd.intro.intro\nR : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nP Q : MvPolynomial (↑S) R\n⊢ ∃ a,\n ↑(MvPolynomial.aeval fun s => of' R M ↑s) a =\n ↑(MvPolynomial.aeval fun s => of' R M ↑s) P + ↑(MvPolynomial.aeval fun s => of' R M ↑s) Q", "state_before": "case hadd.intro\nR : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\ng : AddMonoidAlgebra R M\nihg : ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = g\nP : MvPolynomial (↑S) R\n⊢ ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = ↑(MvPolynomial.aeval fun s => of' R M ↑s) P + g", "tactic": "rcases ihg with ⟨Q, rfl⟩" }, { "state_after": "no goals", "state_before": "case hadd.intro.intro\nR : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nP Q : MvPolynomial (↑S) R\n⊢ ∃ a,\n ↑(MvPolynomial.aeval fun s => of' R M ↑s) a =\n ↑(MvPolynomial.aeval fun s => of' R M ↑s) P + ↑(MvPolynomial.aeval fun s => of' R M ↑s) Q", "tactic": "exact ⟨P + Q, AlgHom.map_add _ _ _⟩" }, { "state_after": "case hsmul.intro\nR : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nr : R\nP : MvPolynomial (↑S) R\n⊢ ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = r • ↑(MvPolynomial.aeval fun s => of' R M ↑s) P", "state_before": "case hsmul\nR : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nr : R\nf : AddMonoidAlgebra R M\nih : ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = f\n⊢ ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = r • f", "tactic": "rcases ih with ⟨P, rfl⟩" }, { "state_after": "no goals", "state_before": "case hsmul.intro\nR : Type u_1\nM : Type u_2\ninst✝¹ : AddCommMonoid M\ninst✝ : CommSemiring R\nS : Set M\nhS : closure S = ⊤\nr : R\nP : MvPolynomial (↑S) R\n⊢ ∃ a, ↑(MvPolynomial.aeval fun s => of' R M ↑s) a = r • ↑(MvPolynomial.aeval fun s => of' R M ↑s) P", "tactic": "exact ⟨r • P, AlgHom.map_smul _ _ _⟩" } ]
[ 443, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 424, 1 ]
Mathlib/Algebra/BigOperators/Multiset/Basic.lean
Multiset.prod_map_le_prod_map
[]
[ 407, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 405, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean
Real.Angle.abs_cos_eq_abs_sin_of_two_nsmul_add_two_nsmul_eq_pi
[ { "state_after": "θ ψ : Angle\nh : θ = ↑(π / 2) - ψ ∨ θ = ↑(π / 2) - ψ + ↑π\n⊢ abs (cos θ) = abs (sin ψ)", "state_before": "θ ψ : Angle\nh : 2 • θ + 2 • ψ = ↑π\n⊢ abs (cos θ) = abs (sin ψ)", "tactic": "rw [← eq_sub_iff_add_eq, ← two_nsmul_coe_div_two, ← nsmul_sub, two_nsmul_eq_iff] at h" }, { "state_after": "no goals", "state_before": "θ ψ : Angle\nh : θ = ↑(π / 2) - ψ ∨ θ = ↑(π / 2) - ψ + ↑π\n⊢ abs (cos θ) = abs (sin ψ)", "tactic": "rcases h with (rfl | rfl) <;> simp [cos_pi_div_two_sub]" } ]
[ 765, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 762, 1 ]
Mathlib/Algebra/Hom/Group.lean
MonoidHom.congr_fun
[]
[ 684, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 683, 1 ]
Std/Data/List/Lemmas.lean
List.nil_sublist
[]
[ 320, 37 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 318, 9 ]
Mathlib/InformationTheory/Hamming.lean
Hamming.dist_eq_hammingDist
[]
[ 416, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 414, 1 ]
Mathlib/MeasureTheory/Measure/NullMeasurable.lean
MeasureTheory.NullMeasurableSet.sUnion
[ { "state_after": "ι : Type ?u.3562\nα : Type u_1\nβ : Type ?u.3568\nγ : Type ?u.3571\nm0 : MeasurableSpace α\nμ : Measure α\ns✝ t : Set α\ns : Set (Set α)\nhs : Set.Countable s\nh : ∀ (t : Set α), t ∈ s → NullMeasurableSet t\n⊢ NullMeasurableSet (⋃ (i : Set α) (_ : i ∈ s), i)", "state_before": "ι : Type ?u.3562\nα : Type u_1\nβ : Type ?u.3568\nγ : Type ?u.3571\nm0 : MeasurableSpace α\nμ : Measure α\ns✝ t : Set α\ns : Set (Set α)\nhs : Set.Countable s\nh : ∀ (t : Set α), t ∈ s → NullMeasurableSet t\n⊢ NullMeasurableSet (⋃₀ s)", "tactic": "rw [sUnion_eq_biUnion]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.3562\nα : Type u_1\nβ : Type ?u.3568\nγ : Type ?u.3571\nm0 : MeasurableSpace α\nμ : Measure α\ns✝ t : Set α\ns : Set (Set α)\nhs : Set.Countable s\nh : ∀ (t : Set α), t ∈ s → NullMeasurableSet t\n⊢ NullMeasurableSet (⋃ (i : Set α) (_ : i ∈ s), i)", "tactic": "exact MeasurableSet.biUnion hs h" } ]
[ 168, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 165, 11 ]
Mathlib/Analysis/BoxIntegral/Partition/Measure.lean
BoxIntegral.Box.volume_apply'
[ { "state_after": "no goals", "state_before": "ι : Type u_1\ninst✝ : Fintype ι\nI : Box ι\n⊢ ENNReal.toReal (↑↑volume ↑I) = ∏ i : ι, (upper I i - lower I i)", "tactic": "rw [coe_eq_pi, Real.volume_pi_Ioc_toReal I.lower_le_upper]" } ]
[ 132, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 130, 1 ]
Mathlib/CategoryTheory/Sites/DenseSubsite.lean
CategoryTheory.CoverDense.Types.pushforwardFamily_def
[]
[ 175, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 173, 9 ]
Mathlib/CategoryTheory/Limits/Shapes/BinaryProducts.lean
CategoryTheory.Limits.coprod.map_map
[ { "state_after": "case h₁\nC : Type u\ninst✝³ : Category C\nX Y A₁ A₂ A₃ B₁ B₂ B₃ : C\ninst✝² : HasBinaryCoproduct A₁ B₁\ninst✝¹ : HasBinaryCoproduct A₂ B₂\ninst✝ : HasBinaryCoproduct A₃ B₃\nf : A₁ ⟶ A₂\ng : B₁ ⟶ B₂\nh : A₂ ⟶ A₃\nk : B₂ ⟶ B₃\n⊢ inl ≫ map f g ≫ map h k = inl ≫ map (f ≫ h) (g ≫ k)\n\ncase h₂\nC : Type u\ninst✝³ : Category C\nX Y A₁ A₂ A₃ B₁ B₂ B₃ : C\ninst✝² : HasBinaryCoproduct A₁ B₁\ninst✝¹ : HasBinaryCoproduct A₂ B₂\ninst✝ : HasBinaryCoproduct A₃ B₃\nf : A₁ ⟶ A₂\ng : B₁ ⟶ B₂\nh : A₂ ⟶ A₃\nk : B₂ ⟶ B₃\n⊢ inr ≫ map f g ≫ map h k = inr ≫ map (f ≫ h) (g ≫ k)", "state_before": "C : Type u\ninst✝³ : Category C\nX Y A₁ A₂ A₃ B₁ B₂ B₃ : C\ninst✝² : HasBinaryCoproduct A₁ B₁\ninst✝¹ : HasBinaryCoproduct A₂ B₂\ninst✝ : HasBinaryCoproduct A₃ B₃\nf : A₁ ⟶ A₂\ng : B₁ ⟶ B₂\nh : A₂ ⟶ A₃\nk : B₂ ⟶ B₃\n⊢ map f g ≫ map h k = map (f ≫ h) (g ≫ k)", "tactic": "apply coprod.hom_ext" }, { "state_after": "case h₂\nC : Type u\ninst✝³ : Category C\nX Y A₁ A₂ A₃ B₁ B₂ B₃ : C\ninst✝² : HasBinaryCoproduct A₁ B₁\ninst✝¹ : HasBinaryCoproduct A₂ B₂\ninst✝ : HasBinaryCoproduct A₃ B₃\nf : A₁ ⟶ A₂\ng : B₁ ⟶ B₂\nh : A₂ ⟶ A₃\nk : B₂ ⟶ B₃\n⊢ inr ≫ map f g ≫ map h k = inr ≫ map (f ≫ h) (g ≫ k)", "state_before": "case h₁\nC : Type u\ninst✝³ : Category C\nX Y A₁ A₂ A₃ B₁ B₂ B₃ : C\ninst✝² : HasBinaryCoproduct A₁ B₁\ninst✝¹ : HasBinaryCoproduct A₂ B₂\ninst✝ : HasBinaryCoproduct A₃ B₃\nf : A₁ ⟶ A₂\ng : B₁ ⟶ B₂\nh : A₂ ⟶ A₃\nk : B₂ ⟶ B₃\n⊢ inl ≫ map f g ≫ map h k = inl ≫ map (f ≫ h) (g ≫ k)\n\ncase h₂\nC : Type u\ninst✝³ : Category C\nX Y A₁ A₂ A₃ B₁ B₂ B₃ : C\ninst✝² : HasBinaryCoproduct A₁ B₁\ninst✝¹ : HasBinaryCoproduct A₂ B₂\ninst✝ : HasBinaryCoproduct A₃ B₃\nf : A₁ ⟶ A₂\ng : B₁ ⟶ B₂\nh : A₂ ⟶ A₃\nk : B₂ ⟶ B₃\n⊢ inr ≫ map f g ≫ map h k = inr ≫ map (f ≫ h) (g ≫ k)", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case h₂\nC : Type u\ninst✝³ : Category C\nX Y A₁ A₂ A₃ B₁ B₂ B₃ : C\ninst✝² : HasBinaryCoproduct A₁ B₁\ninst✝¹ : HasBinaryCoproduct A₂ B₂\ninst✝ : HasBinaryCoproduct A₃ B₃\nf : A₁ ⟶ A₂\ng : B₁ ⟶ B₂\nh : A₂ ⟶ A₃\nk : B₂ ⟶ B₃\n⊢ inr ≫ map f g ≫ map h k = inr ≫ map (f ≫ h) (g ≫ k)", "tactic": "simp" } ]
[ 885, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 882, 1 ]
Mathlib/Data/Part.lean
Part.mem_assert_iff
[]
[ 471, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 468, 1 ]
Mathlib/LinearAlgebra/TensorProduct.lean
LinearMap.map_comp_rTensor
[ { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝¹⁴ : CommSemiring R\nR' : Type ?u.1281534\ninst✝¹³ : Monoid R'\nR'' : Type ?u.1281540\ninst✝¹² : Semiring R''\nM : Type u_2\nN : Type u_4\nP : Type u_3\nQ : Type u_5\nS : Type u_6\ninst✝¹¹ : AddCommMonoid M\ninst✝¹⁰ : AddCommMonoid N\ninst✝⁹ : AddCommMonoid P\ninst✝⁸ : AddCommMonoid Q\ninst✝⁷ : AddCommMonoid S\ninst✝⁶ : Module R M\ninst✝⁵ : Module R N\ninst✝⁴ : Module R P\ninst✝³ : Module R Q\ninst✝² : Module R S\ninst✝¹ : DistribMulAction R' M\ninst✝ : Module R'' M\ng✝ : P →ₗ[R] Q\nf✝ : N →ₗ[R] P\nf : M →ₗ[R] P\ng : N →ₗ[R] Q\nf' : S →ₗ[R] M\n⊢ comp (map f g) (rTensor N f') = map (comp f f') g", "tactic": "simp only [lTensor, rTensor, ← map_comp, id_comp, comp_id]" } ]
[ 1131, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1129, 1 ]
Mathlib/Topology/Algebra/FilterBasis.lean
ModuleFilterBasis.smul_left
[]
[ 362, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 361, 1 ]
Mathlib/LinearAlgebra/FiniteDimensional.lean
LinearMap.injective_iff_surjective_of_finrank_eq_finrank
[ { "state_after": "K : Type u\nV : Type v\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nV₂ : Type v'\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : FiniteDimensional K V\ninst✝ : FiniteDimensional K V₂\nH : finrank K V = finrank K V₂\nf : V →ₗ[K] V₂\nthis : finrank K { x // x ∈ range f } + finrank K { x // x ∈ ker f } = finrank K V\n⊢ Injective ↑f ↔ Surjective ↑f", "state_before": "K : Type u\nV : Type v\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nV₂ : Type v'\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : FiniteDimensional K V\ninst✝ : FiniteDimensional K V₂\nH : finrank K V = finrank K V₂\nf : V →ₗ[K] V₂\n⊢ Injective ↑f ↔ Surjective ↑f", "tactic": "have := finrank_range_add_finrank_ker f" }, { "state_after": "K : Type u\nV : Type v\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nV₂ : Type v'\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : FiniteDimensional K V\ninst✝ : FiniteDimensional K V₂\nH : finrank K V = finrank K V₂\nf : V →ₗ[K] V₂\nthis : finrank K { x // x ∈ range f } + finrank K { x // x ∈ ker f } = finrank K V\n⊢ ker f = ⊥ ↔ range f = ⊤", "state_before": "K : Type u\nV : Type v\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nV₂ : Type v'\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : FiniteDimensional K V\ninst✝ : FiniteDimensional K V₂\nH : finrank K V = finrank K V₂\nf : V →ₗ[K] V₂\nthis : finrank K { x // x ∈ range f } + finrank K { x // x ∈ ker f } = finrank K V\n⊢ Injective ↑f ↔ Surjective ↑f", "tactic": "rw [← ker_eq_bot, ← range_eq_top]" }, { "state_after": "case refine'_1\nK : Type u\nV : Type v\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nV₂ : Type v'\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : FiniteDimensional K V\ninst✝ : FiniteDimensional K V₂\nH : finrank K V = finrank K V₂\nf : V →ₗ[K] V₂\nthis : finrank K { x // x ∈ range f } + finrank K { x // x ∈ ker f } = finrank K V\nh : ker f = ⊥\n⊢ range f = ⊤\n\ncase refine'_2\nK : Type u\nV : Type v\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nV₂ : Type v'\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : FiniteDimensional K V\ninst✝ : FiniteDimensional K V₂\nH : finrank K V = finrank K V₂\nf : V →ₗ[K] V₂\nthis : finrank K { x // x ∈ range f } + finrank K { x // x ∈ ker f } = finrank K V\nh : range f = ⊤\n⊢ ker f = ⊥", "state_before": "K : Type u\nV : Type v\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nV₂ : Type v'\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : FiniteDimensional K V\ninst✝ : FiniteDimensional K V₂\nH : finrank K V = finrank K V₂\nf : V →ₗ[K] V₂\nthis : finrank K { x // x ∈ range f } + finrank K { x // x ∈ ker f } = finrank K V\n⊢ ker f = ⊥ ↔ range f = ⊤", "tactic": "refine' ⟨fun h => _, fun h => _⟩" }, { "state_after": "case refine'_1\nK : Type u\nV : Type v\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nV₂ : Type v'\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : FiniteDimensional K V\ninst✝ : FiniteDimensional K V₂\nH : finrank K V = finrank K V₂\nf : V →ₗ[K] V₂\nthis : finrank K { x // x ∈ range f } = finrank K V₂\nh : ker f = ⊥\n⊢ range f = ⊤", "state_before": "case refine'_1\nK : Type u\nV : Type v\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nV₂ : Type v'\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : FiniteDimensional K V\ninst✝ : FiniteDimensional K V₂\nH : finrank K V = finrank K V₂\nf : V →ₗ[K] V₂\nthis : finrank K { x // x ∈ range f } + finrank K { x // x ∈ ker f } = finrank K V\nh : ker f = ⊥\n⊢ range f = ⊤", "tactic": "rw [h, finrank_bot, add_zero, H] at this" }, { "state_after": "no goals", "state_before": "case refine'_1\nK : Type u\nV : Type v\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nV₂ : Type v'\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : FiniteDimensional K V\ninst✝ : FiniteDimensional K V₂\nH : finrank K V = finrank K V₂\nf : V →ₗ[K] V₂\nthis : finrank K { x // x ∈ range f } = finrank K V₂\nh : ker f = ⊥\n⊢ range f = ⊤", "tactic": "exact eq_top_of_finrank_eq this" }, { "state_after": "case refine'_2\nK : Type u\nV : Type v\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nV₂ : Type v'\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : FiniteDimensional K V\ninst✝ : FiniteDimensional K V₂\nH : finrank K V = finrank K V₂\nf : V →ₗ[K] V₂\nthis : finrank K V₂ + finrank K { x // x ∈ ker f } = finrank K V₂\nh : range f = ⊤\n⊢ ker f = ⊥", "state_before": "case refine'_2\nK : Type u\nV : Type v\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nV₂ : Type v'\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : FiniteDimensional K V\ninst✝ : FiniteDimensional K V₂\nH : finrank K V = finrank K V₂\nf : V →ₗ[K] V₂\nthis : finrank K { x // x ∈ range f } + finrank K { x // x ∈ ker f } = finrank K V\nh : range f = ⊤\n⊢ ker f = ⊥", "tactic": "rw [h, finrank_top, H] at this" }, { "state_after": "no goals", "state_before": "case refine'_2\nK : Type u\nV : Type v\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nV₂ : Type v'\ninst✝³ : AddCommGroup V₂\ninst✝² : Module K V₂\ninst✝¹ : FiniteDimensional K V\ninst✝ : FiniteDimensional K V₂\nH : finrank K V = finrank K V₂\nf : V →ₗ[K] V₂\nthis : finrank K V₂ + finrank K { x // x ∈ ker f } = finrank K V₂\nh : range f = ⊤\n⊢ ker f = ⊥", "tactic": "exact finrank_eq_zero.1 (add_right_injective _ this)" } ]
[ 1053, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1045, 1 ]
Mathlib/Algebra/Category/Ring/Colimits.lean
CommRingCat.Colimits.quot_mul
[]
[ 239, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 237, 1 ]
Mathlib/Algebra/Order/Ring/Defs.lean
StrictMono.const_mul_of_neg
[]
[ 736, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 734, 1 ]
Mathlib/Order/Filter/Partial.lean
Filter.rmap_compose
[]
[ 88, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 87, 1 ]
Mathlib/MeasureTheory/MeasurableSpace.lean
measurable_inclusion
[]
[ 580, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 579, 1 ]
Mathlib/Topology/Category/TopCat/Opens.lean
TopologicalSpace.Opens.map_obj
[]
[ 161, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 160, 1 ]
Mathlib/Algebra/Order/Field/Basic.lean
div_lt_div_of_lt
[ { "state_after": "ι : Type ?u.63758\nα : Type u_1\nβ : Type ?u.63764\ninst✝ : LinearOrderedSemifield α\na b c d e : α\nm n : ℤ\nhc : 0 < c\nh : a < b\n⊢ a * (1 / c) < b * (1 / c)", "state_before": "ι : Type ?u.63758\nα : Type u_1\nβ : Type ?u.63764\ninst✝ : LinearOrderedSemifield α\na b c d e : α\nm n : ℤ\nhc : 0 < c\nh : a < b\n⊢ a / c < b / c", "tactic": "rw [div_eq_mul_one_div a c, div_eq_mul_one_div b c]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.63758\nα : Type u_1\nβ : Type ?u.63764\ninst✝ : LinearOrderedSemifield α\na b c d e : α\nm n : ℤ\nhc : 0 < c\nh : a < b\n⊢ a * (1 / c) < b * (1 / c)", "tactic": "exact mul_lt_mul_of_pos_right h (one_div_pos.2 hc)" } ]
[ 362, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 360, 1 ]
Mathlib/Algebra/Hom/Ring.lean
RingHom.coe_mul
[]
[ 744, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 743, 1 ]
Mathlib/FieldTheory/PerfectClosure.lean
PerfectClosure.int_cast
[ { "state_after": "case negSucc\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\na✝ : ℕ\n⊢ -mk K p (0, ↑(a✝ + 1)) = mk K p (0, -↑(a✝ + 1))", "state_before": "K : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx : ℤ\n⊢ ↑x = mk K p (0, ↑x)", "tactic": "induction x <;> simp only [Int.ofNat_eq_coe, Int.cast_ofNat, Int.cast_negSucc, nat_cast K p 0]" }, { "state_after": "no goals", "state_before": "case negSucc\nK : Type u\ninst✝² : CommRing K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\na✝ : ℕ\n⊢ -mk K p (0, ↑(a✝ + 1)) = mk K p (0, -↑(a✝ + 1))", "tactic": "rfl" } ]
[ 434, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 432, 1 ]
Mathlib/Algebra/TrivSqZeroExt.lean
TrivSqZeroExt.liftAux_apply_inr
[ { "state_after": "no goals", "state_before": "S : Type ?u.861406\nR R' : Type u\nM : Type v\ninst✝¹⁷ : CommSemiring S\ninst✝¹⁶ : Semiring R\ninst✝¹⁵ : CommSemiring R'\ninst✝¹⁴ : AddCommMonoid M\ninst✝¹³ : Algebra S R\ninst✝¹² : Algebra S R'\ninst✝¹¹ : Module S M\ninst✝¹⁰ : Module R M\ninst✝⁹ : Module Rᵐᵒᵖ M\ninst✝⁸ : SMulCommClass R Rᵐᵒᵖ M\ninst✝⁷ : IsScalarTower S R M\ninst✝⁶ : IsScalarTower S Rᵐᵒᵖ M\ninst✝⁵ : Module R' M\ninst✝⁴ : Module R'ᵐᵒᵖ M\ninst✝³ : IsCentralScalar R' M\ninst✝² : IsScalarTower S R' M\nA : Type u_1\ninst✝¹ : Semiring A\ninst✝ : Algebra R' A\nf : M →ₗ[R'] A\nhf : ∀ (x y : M), ↑f x * ↑f y = 0\nm : M\n⊢ ↑(algebraMap R' A) 0 + ↑f m = ↑f m", "tactic": "rw [RingHom.map_zero, zero_add]" } ]
[ 821, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 819, 1 ]
Mathlib/GroupTheory/Subsemigroup/Basic.lean
Subsemigroup.closure_eq_of_le
[]
[ 346, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 345, 1 ]
Mathlib/LinearAlgebra/Dimension.lean
rank_range_of_surjective
[ { "state_after": "no goals", "state_before": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.83941\nR : Type u\ninst✝⁶ : Ring R\nM : Type v\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : Module R M\nM' : Type v'\ninst✝³ : AddCommGroup M'\ninst✝² : Module R M'\nM₁ : Type v\ninst✝¹ : AddCommGroup M₁\ninst✝ : Module R M₁\nf : M →ₗ[R] M'\nh : Surjective ↑f\n⊢ Module.rank R { x // x ∈ LinearMap.range f } = Module.rank R M'", "tactic": "rw [LinearMap.range_eq_top.2 h, rank_top]" } ]
[ 227, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 225, 1 ]
Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
csInf_insert
[]
[ 714, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 713, 1 ]
Mathlib/GroupTheory/Submonoid/Membership.lean
Submonoid.log_pow_eq_self
[]
[ 487, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 485, 1 ]
Mathlib/Data/Fin/Interval.lean
Fin.card_fintypeIoo
[ { "state_after": "no goals", "state_before": "n : ℕ\na b : Fin n\n⊢ Fintype.card ↑(Set.Ioo a b) = ↑b - ↑a - 1", "tactic": "rw [← card_Ioo, Fintype.card_ofFinset]" } ]
[ 119, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 118, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.mem_iInf_of_finite
[ { "state_after": "α✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.76872\nι✝ : Sort x\nf✝ g : Filter α✝\ns✝ t : Set α✝\nι : Type u_1\ninst✝ : Finite ι\nα : Type u_2\nf : ι → Filter α\ns : Set α\n⊢ (∃ t, (∀ (i : ι), t i ∈ f i) ∧ s = ⋂ (i : ι), t i) → s ∈ ⨅ (i : ι), f i", "state_before": "α✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.76872\nι✝ : Sort x\nf✝ g : Filter α✝\ns✝ t : Set α✝\nι : Type u_1\ninst✝ : Finite ι\nα : Type u_2\nf : ι → Filter α\ns : Set α\n⊢ (s ∈ ⨅ (i : ι), f i) ↔ ∃ t, (∀ (i : ι), t i ∈ f i) ∧ s = ⋂ (i : ι), t i", "tactic": "refine' ⟨exists_iInter_of_mem_iInf, _⟩" }, { "state_after": "case intro.intro\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.76872\nι✝ : Sort x\nf✝ g : Filter α✝\ns t✝ : Set α✝\nι : Type u_1\ninst✝ : Finite ι\nα : Type u_2\nf : ι → Filter α\nt : ι → Set α\nht : ∀ (i : ι), t i ∈ f i\n⊢ (⋂ (i : ι), t i) ∈ ⨅ (i : ι), f i", "state_before": "α✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.76872\nι✝ : Sort x\nf✝ g : Filter α✝\ns✝ t : Set α✝\nι : Type u_1\ninst✝ : Finite ι\nα : Type u_2\nf : ι → Filter α\ns : Set α\n⊢ (∃ t, (∀ (i : ι), t i ∈ f i) ∧ s = ⋂ (i : ι), t i) → s ∈ ⨅ (i : ι), f i", "tactic": "rintro ⟨t, ht, rfl⟩" }, { "state_after": "no goals", "state_before": "case intro.intro\nα✝ : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.76872\nι✝ : Sort x\nf✝ g : Filter α✝\ns t✝ : Set α✝\nι : Type u_1\ninst✝ : Finite ι\nα : Type u_2\nf : ι → Filter α\nt : ι → Set α\nht : ∀ (i : ι), t i ∈ f i\n⊢ (⋂ (i : ι), t i) ∈ ⨅ (i : ι), f i", "tactic": "exact iInter_mem.2 fun i => mem_iInf_of_mem i (ht i)" } ]
[ 641, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 637, 1 ]
Mathlib/Order/Atoms/Finite.lean
Fintype.IsSimpleOrder.card
[]
[ 56, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 55, 1 ]
Mathlib/RingTheory/UniqueFactorizationDomain.lean
Associates.dvd_of_mem_factors
[ { "state_after": "case pos\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na p : Associates α\nhp : Irreducible p\nhm : p ∈ factors a\nha0 : a = 0\n⊢ p ∣ a\n\ncase neg\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na p : Associates α\nhp : Irreducible p\nhm : p ∈ factors a\nha0 : ¬a = 0\n⊢ p ∣ a", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na p : Associates α\nhp : Irreducible p\nhm : p ∈ factors a\n⊢ p ∣ a", "tactic": "by_cases ha0 : a = 0" }, { "state_after": "case neg.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na p : Associates α\nhp : Irreducible p\nhm : p ∈ factors a\nha0 : ¬a = 0\na0 : α\nnza : a0 ≠ 0\nha' : Associates.mk a0 = a\n⊢ p ∣ a", "state_before": "case neg\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na p : Associates α\nhp : Irreducible p\nhm : p ∈ factors a\nha0 : ¬a = 0\n⊢ p ∣ a", "tactic": "obtain ⟨a0, nza, ha'⟩ := exists_non_zero_rep ha0" }, { "state_after": "case neg.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na p : Associates α\nhp : Irreducible p\nhm : p ∈ factors a\nha0 : ¬a = 0\na0 : α\nnza : a0 ≠ 0\nha' : Associates.mk a0 = a\n⊢ p ∣ FactorSet.prod (factors a)", "state_before": "case neg.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na p : Associates α\nhp : Irreducible p\nhm : p ∈ factors a\nha0 : ¬a = 0\na0 : α\nnza : a0 ≠ 0\nha' : Associates.mk a0 = a\n⊢ p ∣ a", "tactic": "rw [← Associates.factors_prod a]" }, { "state_after": "case neg.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na p : Associates α\nhp : Irreducible p\nha0 : ¬a = 0\na0 : α\nhm : p ∈ ↑(factors' a0)\nnza : a0 ≠ 0\nha' : Associates.mk a0 = a\n⊢ p ∣ FactorSet.prod ↑(factors' a0)", "state_before": "case neg.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na p : Associates α\nhp : Irreducible p\nhm : p ∈ factors a\nha0 : ¬a = 0\na0 : α\nnza : a0 ≠ 0\nha' : Associates.mk a0 = a\n⊢ p ∣ FactorSet.prod (factors a)", "tactic": "rw [← ha', factors_mk a0 nza] at hm⊢" }, { "state_after": "case neg.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na p : Associates α\nhp : Irreducible p\nha0 : ¬a = 0\na0 : α\nhm : p ∈ ↑(factors' a0)\nnza : a0 ≠ 0\nha' : Associates.mk a0 = a\n⊢ p ∣ prod (map Subtype.val (factors' a0))", "state_before": "case neg.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na p : Associates α\nhp : Irreducible p\nha0 : ¬a = 0\na0 : α\nhm : p ∈ ↑(factors' a0)\nnza : a0 ≠ 0\nha' : Associates.mk a0 = a\n⊢ p ∣ FactorSet.prod ↑(factors' a0)", "tactic": "rw [prod_coe]" }, { "state_after": "case neg.intro.intro.a\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na p : Associates α\nhp : Irreducible p\nha0 : ¬a = 0\na0 : α\nhm : p ∈ ↑(factors' a0)\nnza : a0 ≠ 0\nha' : Associates.mk a0 = a\n⊢ p ∈ map Subtype.val (factors' a0)", "state_before": "case neg.intro.intro\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na p : Associates α\nhp : Irreducible p\nha0 : ¬a = 0\na0 : α\nhm : p ∈ ↑(factors' a0)\nnza : a0 ≠ 0\nha' : Associates.mk a0 = a\n⊢ p ∣ prod (map Subtype.val (factors' a0))", "tactic": "apply Multiset.dvd_prod" }, { "state_after": "case neg.intro.intro.a\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na p : Associates α\nhp : Irreducible p\nha0 : ¬a = 0\na0 : α\nhm : p ∈ ↑(factors' a0)\nnza : a0 ≠ 0\nha' : Associates.mk a0 = a\n⊢ ∃ a, a ∈ factors' a0 ∧ ↑a = p", "state_before": "case neg.intro.intro.a\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na p : Associates α\nhp : Irreducible p\nha0 : ¬a = 0\na0 : α\nhm : p ∈ ↑(factors' a0)\nnza : a0 ≠ 0\nha' : Associates.mk a0 = a\n⊢ p ∈ map Subtype.val (factors' a0)", "tactic": "apply Multiset.mem_map.mpr" }, { "state_after": "no goals", "state_before": "case neg.intro.intro.a\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na p : Associates α\nhp : Irreducible p\nha0 : ¬a = 0\na0 : α\nhm : p ∈ ↑(factors' a0)\nnza : a0 ≠ 0\nha' : Associates.mk a0 = a\n⊢ ∃ a, a ∈ factors' a0 ∧ ↑a = p", "tactic": "exact ⟨⟨p, hp⟩, mem_factorSet_some.mp hm, rfl⟩" }, { "state_after": "case pos\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na p : Associates α\nhp : Irreducible p\nhm : p ∈ factors a\nha0 : a = 0\n⊢ p ∣ 0", "state_before": "case pos\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na p : Associates α\nhp : Irreducible p\nhm : p ∈ factors a\nha0 : a = 0\n⊢ p ∣ a", "tactic": "rw [ha0]" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na p : Associates α\nhp : Irreducible p\nhm : p ∈ factors a\nha0 : a = 0\n⊢ p ∣ 0", "tactic": "exact dvd_zero p" } ]
[ 1593, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1583, 1 ]
Mathlib/CategoryTheory/Abelian/LeftDerived.lean
CategoryTheory.Abelian.Functor.leftDerivedZeroToSelfApp_comp_inv
[ { "state_after": "C : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\n⊢ ((leftDerivedObjIso F 0 P).hom ≫\n homology.desc' (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)\n (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n kernel.lift (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n kernel.ι (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0)) ≫\n inv\n (cokernel.desc (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0)) ≫\n cokernel.map (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))\n (𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0) =\n 𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) ≫\n (homologyIsoCokernelLift\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)).inv ≫\n (leftDerivedObjIso F 0 P).inv =\n 𝟙 ((leftDerived F 0).obj X)", "state_before": "C : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\n⊢ leftDerivedZeroToSelfApp F P ≫ leftDerivedZeroToSelfAppInv F P = 𝟙 ((leftDerived F 0).obj X)", "tactic": "dsimp [leftDerivedZeroToSelfApp, leftDerivedZeroToSelfAppInv]" }, { "state_after": "C : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\n⊢ ((((leftDerivedObjIso F 0 P).hom ≫\n homology.desc' (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)\n (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n kernel.lift (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n kernel.ι\n (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0)) ≫\n inv\n (cokernel.desc (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0))) ≫\n cokernel.map (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))\n (𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0) =\n 𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))) ≫\n (homologyIsoCokernelLift (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)).inv =\n 𝟙 ((leftDerived F 0).obj X) ≫ (leftDerivedObjIso F 0 P).hom", "state_before": "C : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\n⊢ ((leftDerivedObjIso F 0 P).hom ≫\n homology.desc' (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)\n (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n kernel.lift (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n kernel.ι (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0)) ≫\n inv\n (cokernel.desc (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0)) ≫\n cokernel.map (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))\n (𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0) =\n 𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) ≫\n (homologyIsoCokernelLift\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)).inv ≫\n (leftDerivedObjIso F 0 P).inv =\n 𝟙 ((leftDerived F 0).obj X)", "tactic": "rw [← Category.assoc, ← Category.assoc, ← Category.assoc, Iso.comp_inv_eq]" }, { "state_after": "C : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\n⊢ ((((leftDerivedObjIso F 0 P).hom ≫\n homology.desc' (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)\n (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n kernel.lift (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n kernel.ι\n (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0)) ≫\n inv\n (cokernel.desc (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0))) ≫\n cokernel.map (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))\n (𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0) =\n 𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))) ≫\n (homologyIsoCokernelLift (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)).inv =\n (leftDerivedObjIso F 0 P).hom", "state_before": "C : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\n⊢ ((((leftDerivedObjIso F 0 P).hom ≫\n homology.desc' (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)\n (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n kernel.lift (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n kernel.ι\n (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0)) ≫\n inv\n (cokernel.desc (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0))) ≫\n cokernel.map (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))\n (𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0) =\n 𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))) ≫\n (homologyIsoCokernelLift (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)).inv =\n 𝟙 ((leftDerived F 0).obj X) ≫ (leftDerivedObjIso F 0 P).hom", "tactic": "simp only [Category.id_comp]" }, { "state_after": "C : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\n⊢ (leftDerivedObjIso F 0 P).hom ≫\n homology.desc' (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)\n (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n kernel.lift (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n kernel.ι (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0) ≫\n inv\n (cokernel.desc (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0)) ≫\n cokernel.map (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))\n (𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0) =\n 𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) ≫\n (homologyIsoCokernelLift\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)).inv =\n (leftDerivedObjIso F 0 P).hom", "state_before": "C : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\n⊢ ((((leftDerivedObjIso F 0 P).hom ≫\n homology.desc' (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)\n (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n kernel.lift (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n kernel.ι\n (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0)) ≫\n inv\n (cokernel.desc (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0))) ≫\n cokernel.map (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))\n (𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0) =\n 𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))) ≫\n (homologyIsoCokernelLift (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)).inv =\n (leftDerivedObjIso F 0 P).hom", "tactic": "rw [Category.assoc, Category.assoc, Category.assoc]" }, { "state_after": "case h.e'_2.h.h.e'_7.h\nC : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\ne_1✝ :\n ((leftDerived F 0).obj X ⟶\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n ((leftDerived F 0).obj X ⟶\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))\ne_4✝ :\n HomologicalComplex.homology ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\ne_5✝ :\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\n⊢ homology.desc' (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)\n (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n kernel.lift (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n kernel.ι (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0) ≫\n inv\n (cokernel.desc (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0)) ≫\n cokernel.map (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))\n (𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0) =\n 𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) ≫\n (homologyIsoCokernelLift\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)).inv =\n 𝟙 ((homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))", "state_before": "C : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\n⊢ (leftDerivedObjIso F 0 P).hom ≫\n homology.desc' (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)\n (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n kernel.lift (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n kernel.ι (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0) ≫\n inv\n (cokernel.desc (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0)) ≫\n cokernel.map (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))\n (𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0) =\n 𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) ≫\n (homologyIsoCokernelLift\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)).inv =\n (leftDerivedObjIso F 0 P).hom", "tactic": "convert Category.comp_id (leftDerivedObjIso F 0 P).hom" }, { "state_after": "case h.e'_2.h.h.e'_7.h\nC : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\ne_1✝ :\n ((leftDerived F 0).obj X ⟶\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n ((leftDerived F 0).obj X ⟶\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))\ne_4✝ :\n HomologicalComplex.homology ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\ne_5✝ :\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\n⊢ (homology.desc' (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)\n (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n kernel.lift (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n kernel.ι (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0) ≫\n inv\n (cokernel.desc (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0))) ≫\n cokernel.map (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))\n (𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0) =\n 𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n 𝟙\n ((homologyFunctor D (ComplexShape.down ℕ) 0).obj\n ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)) ≫\n (homologyIsoCokernelLift (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)).hom", "state_before": "case h.e'_2.h.h.e'_7.h\nC : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\ne_1✝ :\n ((leftDerived F 0).obj X ⟶\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n ((leftDerived F 0).obj X ⟶\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))\ne_4✝ :\n HomologicalComplex.homology ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\ne_5✝ :\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\n⊢ homology.desc' (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)\n (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n kernel.lift (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n kernel.ι (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0) ≫\n inv\n (cokernel.desc (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0)) ≫\n cokernel.map (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))\n (𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0) =\n 𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) ≫\n (homologyIsoCokernelLift\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)).inv =\n 𝟙 ((homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))", "tactic": "rw [← Category.assoc, ← Category.assoc, Iso.comp_inv_eq]" }, { "state_after": "case h.e'_2.h.h.e'_7.h\nC : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\ne_1✝ :\n ((leftDerived F 0).obj X ⟶\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n ((leftDerived F 0).obj X ⟶\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))\ne_4✝ :\n HomologicalComplex.homology ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\ne_5✝ :\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\n⊢ (homology.desc' (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)\n (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n kernel.lift (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n kernel.ι (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0) ≫\n inv\n (cokernel.desc (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0))) ≫\n cokernel.map (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))\n (𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0) =\n 𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n 𝟙\n ((homologyFunctor D (ComplexShape.down ℕ) 0).obj\n ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)) ≫\n (homologyIsoCokernelLift (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)).hom", "state_before": "case h.e'_2.h.h.e'_7.h\nC : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\ne_1✝ :\n ((leftDerived F 0).obj X ⟶\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n ((leftDerived F 0).obj X ⟶\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))\ne_4✝ :\n HomologicalComplex.homology ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\ne_5✝ :\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\n⊢ (homology.desc' (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)\n (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n kernel.lift (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n kernel.ι (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0) ≫\n inv\n (cokernel.desc (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0))) ≫\n cokernel.map (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))\n (𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0) =\n 𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n 𝟙\n ((homologyFunctor D (ComplexShape.down ℕ) 0).obj\n ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)) ≫\n (homologyIsoCokernelLift (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)).hom", "tactic": "simp only [Category.id_comp]" }, { "state_after": "case h.e'_2.h.h.e'_7.h.h\nC : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\ne_1✝ :\n ((leftDerived F 0).obj X ⟶\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n ((leftDerived F 0).obj X ⟶\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))\ne_4✝ :\n HomologicalComplex.homology ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\ne_5✝ :\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\n⊢ homology.π' (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n (homology.desc' (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)\n (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n kernel.lift (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n kernel.ι\n (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0) ≫\n inv\n (cokernel.desc (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0))) ≫\n cokernel.map (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))\n (𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0) =\n 𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n homology.π' (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n 𝟙\n ((homologyFunctor D (ComplexShape.down ℕ) 0).obj\n ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)) ≫\n (homologyIsoCokernelLift (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)).hom", "state_before": "case h.e'_2.h.h.e'_7.h\nC : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\ne_1✝ :\n ((leftDerived F 0).obj X ⟶\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n ((leftDerived F 0).obj X ⟶\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))\ne_4✝ :\n HomologicalComplex.homology ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\ne_5✝ :\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\n⊢ (homology.desc' (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)\n (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n kernel.lift (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n kernel.ι (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0) ≫\n inv\n (cokernel.desc (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0))) ≫\n cokernel.map (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))\n (𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0) =\n 𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n 𝟙\n ((homologyFunctor D (ComplexShape.down ℕ) 0).obj\n ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)) ≫\n (homologyIsoCokernelLift (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)).hom", "tactic": "apply homology.hom_from_ext" }, { "state_after": "case h.e'_2.h.h.e'_7.h.h\nC : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\ne_1✝ :\n ((leftDerived F 0).obj X ⟶\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n ((leftDerived F 0).obj X ⟶\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))\ne_4✝ :\n HomologicalComplex.homology ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\ne_5✝ :\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\n⊢ ((homology.π' (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n homology.desc' (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)\n (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n kernel.lift (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n kernel.ι\n (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0)) ≫\n inv\n (cokernel.desc (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0))) ≫\n cokernel.map (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))\n (𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0) =\n 𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n (homology.π' (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n 𝟙\n ((homologyFunctor D (ComplexShape.down ℕ) 0).obj\n ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))) ≫\n (homologyIsoCokernelLift (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)).hom", "state_before": "case h.e'_2.h.h.e'_7.h.h\nC : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\ne_1✝ :\n ((leftDerived F 0).obj X ⟶\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n ((leftDerived F 0).obj X ⟶\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))\ne_4✝ :\n HomologicalComplex.homology ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\ne_5✝ :\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\n⊢ homology.π' (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n (homology.desc' (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)\n (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n kernel.lift (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n kernel.ι\n (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0) ≫\n inv\n (cokernel.desc (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0))) ≫\n cokernel.map (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))\n (𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0) =\n 𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n homology.π' (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n 𝟙\n ((homologyFunctor D (ComplexShape.down ℕ) 0).obj\n ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)) ≫\n (homologyIsoCokernelLift (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)).hom", "tactic": "simp only [← Category.assoc]" }, { "state_after": "case h.e'_2.h.h.e'_7.h.h\nC : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\ne_1✝ :\n ((leftDerived F 0).obj X ⟶\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n ((leftDerived F 0).obj X ⟶\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))\ne_4✝ :\n HomologicalComplex.homology ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\ne_5✝ :\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\n⊢ (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0)) ≫\n cokernel.π\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n cokernel.π\n (kernel.lift (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))", "state_before": "case h.e'_2.h.h.e'_7.h.h\nC : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\ne_1✝ :\n ((leftDerived F 0).obj X ⟶\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n ((leftDerived F 0).obj X ⟶\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))\ne_4✝ :\n HomologicalComplex.homology ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\ne_5✝ :\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\n⊢ ((homology.π' (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n homology.desc' (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)\n (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n kernel.lift (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n kernel.ι\n (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0)) ≫\n inv\n (cokernel.desc (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.Hom.f P.π 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n F.map (HomologicalComplex.Hom.f P.π 0) =\n 0))) ≫\n cokernel.map (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))\n (𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))))\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0))\n (_ :\n F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0) =\n 𝟙 (F.obj (HomologicalComplex.X P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n (homology.π' (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) ≫\n 𝟙\n ((homologyFunctor D (ComplexShape.down ℕ) 0).obj\n ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))) ≫\n (homologyIsoCokernelLift (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)).hom", "tactic": "erw [homology.π'_desc', Category.assoc, Category.assoc, ←\n Category.assoc (F.map _), Abelian.cokernel.desc.inv _ _ (exact_of_map_projectiveResolution F P),\n cokernel.π_desc, homology.π', Category.comp_id, Category.assoc (cokernel.π _), Iso.inv_hom_id,\n Category.comp_id, ← Category.assoc]" }, { "state_after": "case h.e'_2.h.h.e'_7.h.h\nC : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\ne_1✝ :\n ((leftDerived F 0).obj X ⟶\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n ((leftDerived F 0).obj X ⟶\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))\ne_4✝ :\n HomologicalComplex.homology ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\ne_5✝ :\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\n⊢ (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0)) ≫\n cokernel.π\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n 𝟙 (kernel (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)) ≫\n cokernel.π\n (kernel.lift (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))", "state_before": "case h.e'_2.h.h.e'_7.h.h\nC : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\ne_1✝ :\n ((leftDerived F 0).obj X ⟶\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n ((leftDerived F 0).obj X ⟶\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))\ne_4✝ :\n HomologicalComplex.homology ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\ne_5✝ :\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\n⊢ (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0)) ≫\n cokernel.π\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n cokernel.π\n (kernel.lift (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))", "tactic": "conv_rhs => rw [← Category.id_comp (cokernel.π _)]" }, { "state_after": "case h.e'_2.h.h.e'_7.h.h.e_a\nC : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\ne_1✝ :\n ((leftDerived F 0).obj X ⟶\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n ((leftDerived F 0).obj X ⟶\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))\ne_4✝ :\n HomologicalComplex.homology ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\ne_5✝ :\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\n⊢ kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0) =\n 𝟙 (kernel (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0))", "state_before": "case h.e'_2.h.h.e'_7.h.h\nC : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\ne_1✝ :\n ((leftDerived F 0).obj X ⟶\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n ((leftDerived F 0).obj X ⟶\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))\ne_4✝ :\n HomologicalComplex.homology ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\ne_5✝ :\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\n⊢ (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0)) ≫\n cokernel.π\n (kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n 𝟙 (kernel (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)) ≫\n cokernel.π\n (kernel.lift (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0))", "tactic": "congr" }, { "state_after": "case h.e'_2.h.h.e'_7.h.h.e_a.h\nC : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\ne_1✝ :\n ((leftDerived F 0).obj X ⟶\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n ((leftDerived F 0).obj X ⟶\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))\ne_4✝ :\n HomologicalComplex.homology ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\ne_5✝ :\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\n⊢ (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0)) ≫\n equalizer.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) 0 =\n 𝟙 (kernel (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)) ≫\n equalizer.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) 0", "state_before": "case h.e'_2.h.h.e'_7.h.h.e_a\nC : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\ne_1✝ :\n ((leftDerived F 0).obj X ⟶\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n ((leftDerived F 0).obj X ⟶\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))\ne_4✝ :\n HomologicalComplex.homology ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\ne_5✝ :\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\n⊢ kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0) =\n 𝟙 (kernel (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0))", "tactic": "apply equalizer.hom_ext" }, { "state_after": "case h.e'_2.h.h.e'_7.h.h.e_a.h\nC : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\ne_1✝ :\n ((leftDerived F 0).obj X ⟶\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n ((leftDerived F 0).obj X ⟶\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))\ne_4✝ :\n HomologicalComplex.homology ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\ne_5✝ :\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\n⊢ (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0)) ≫\n equalizer.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) 0 =\n equalizer.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) 0", "state_before": "case h.e'_2.h.h.e'_7.h.h.e_a.h\nC : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\ne_1✝ :\n ((leftDerived F 0).obj X ⟶\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n ((leftDerived F 0).obj X ⟶\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))\ne_4✝ :\n HomologicalComplex.homology ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\ne_5✝ :\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\n⊢ (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0)) ≫\n equalizer.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) 0 =\n 𝟙 (kernel (HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0)) ≫\n equalizer.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) 0", "tactic": "simp only [Category.id_comp]" }, { "state_after": "case h.e'_2.h.h.e'_7.h.h.e_a.h\nC : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\ne_1✝ :\n ((leftDerived F 0).obj X ⟶\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n ((leftDerived F 0).obj X ⟶\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))\ne_4✝ :\n HomologicalComplex.homology ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\ne_5✝ :\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\n⊢ kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) =\n kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))", "state_before": "case h.e'_2.h.h.e'_7.h.h.e_a.h\nC : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\ne_1✝ :\n ((leftDerived F 0).obj X ⟶\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n ((leftDerived F 0).obj X ⟶\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))\ne_4✝ :\n HomologicalComplex.homology ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\ne_5✝ :\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\n⊢ (kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n kernel.lift (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (𝟙 (F.obj (HomologicalComplex.X P.complex 0)))\n (_ :\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) ≫\n F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)) =\n 0)) ≫\n equalizer.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) 0 =\n equalizer.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) 0", "tactic": "rw [Category.assoc, equalizer_as_kernel, kernel.lift_ι]" }, { "state_after": "no goals", "state_before": "case h.e'_2.h.h.e'_7.h.h.e_a.h\nC : Type u\ninst✝⁶ : Category C\nD : Type u\ninst✝⁵ : Category D\nF : C ⥤ D\nX✝ Y Z : C\nf : X✝ ⟶ Y\ng : Y ⟶ Z\ninst✝⁴ : Abelian C\ninst✝³ : Abelian D\ninst✝² : Functor.Additive F\ninst✝¹ : EnoughProjectives C\ninst✝ : PreservesFiniteColimits F\nX : C\nP : ProjectiveResolution X\ne_1✝ :\n ((leftDerived F 0).obj X ⟶\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0)) =\n ((leftDerived F 0).obj X ⟶\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex))\ne_4✝ :\n HomologicalComplex.homology ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\ne_5✝ :\n homology (F.map (HomologicalComplex.d P.complex (ComplexShape.prev (ComplexShape.down ℕ) 0) 0))\n (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))\n (_ :\n HomologicalComplex.dTo ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 ≫\n HomologicalComplex.dFrom ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex) 0 =\n 0) =\n (homologyFunctor D (ComplexShape.down ℕ) 0).obj ((mapHomologicalComplex F (ComplexShape.down ℕ)).obj P.complex)\n⊢ kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0))) ≫\n 𝟙 (F.obj (HomologicalComplex.X P.complex 0)) =\n kernel.ι (F.map (HomologicalComplex.d P.complex 0 (ComplexShape.next (ComplexShape.down ℕ) 0)))", "tactic": "simp only [Category.comp_id]" } ]
[ 124, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 98, 1 ]
Mathlib/Topology/MetricSpace/EMetricSpace.lean
EMetric.diam_le_iff
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nX : Type ?u.283736\ninst✝ : PseudoEMetricSpace α\nx y z : α\nε ε₁ ε₂ : ℝ≥0∞\ns t : Set α\nd : ℝ≥0∞\n⊢ diam s ≤ d ↔ ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → edist x y ≤ d", "tactic": "simp only [diam, iSup_le_iff]" } ]
[ 879, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 878, 1 ]
Mathlib/RingTheory/Subsemiring/Basic.lean
RingEquiv.ofLeftInverseS_symm_apply
[]
[ 1301, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1299, 1 ]
Mathlib/Topology/Algebra/InfiniteSum/Basic.lean
Set.Finite.summable
[ { "state_after": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.35832\nδ : Type ?u.35835\ninst✝¹ : AddCommMonoid α\ninst✝ : TopologicalSpace α\nf✝ g : β → α\na b : α\ns✝ : Finset β\ns : Set β\nhs : Set.Finite s\nf : β → α\nthis : Summable (f ∘ Subtype.val)\n⊢ Summable (f ∘ Subtype.val)", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.35832\nδ : Type ?u.35835\ninst✝¹ : AddCommMonoid α\ninst✝ : TopologicalSpace α\nf✝ g : β → α\na b : α\ns✝ : Finset β\ns : Set β\nhs : Set.Finite s\nf : β → α\n⊢ Summable (f ∘ Subtype.val)", "tactic": "have := hs.toFinset.summable f" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.35832\nδ : Type ?u.35835\ninst✝¹ : AddCommMonoid α\ninst✝ : TopologicalSpace α\nf✝ g : β → α\na b : α\ns✝ : Finset β\ns : Set β\nhs : Set.Finite s\nf : β → α\nthis : Summable (f ∘ Subtype.val)\n⊢ Summable (f ∘ Subtype.val)", "tactic": "rwa [hs.coe_toFinset] at this" } ]
[ 191, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 188, 11 ]
Mathlib/FieldTheory/RatFunc.lean
RatFunc.intDegree_zero
[ { "state_after": "no goals", "state_before": "K : Type u\ninst✝ : Field K\n⊢ intDegree 0 = 0", "tactic": "rw [intDegree, num_zero, natDegree_zero, denom_zero, natDegree_one, sub_self]" } ]
[ 1572, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1571, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Arctan.lean
Real.tan_add
[ { "state_after": "no goals", "state_before": "x y : ℝ\nh :\n ((∀ (k : ℤ), x ≠ (2 * ↑k + 1) * π / 2) ∧ ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * π / 2) ∨\n (∃ k, x = (2 * ↑k + 1) * π / 2) ∧ ∃ l, y = (2 * ↑l + 1) * π / 2\n⊢ tan (x + y) = (tan x + tan y) / (1 - tan x * tan y)", "tactic": "simpa only [← Complex.ofReal_inj, Complex.ofReal_sub, Complex.ofReal_add, Complex.ofReal_div,\n Complex.ofReal_mul, Complex.ofReal_tan] using\n @Complex.tan_add (x : ℂ) (y : ℂ) (by convert h <;> norm_cast)" }, { "state_after": "no goals", "state_before": "x y : ℝ\nh :\n ((∀ (k : ℤ), x ≠ (2 * ↑k + 1) * π / 2) ∧ ∀ (l : ℤ), y ≠ (2 * ↑l + 1) * π / 2) ∨\n (∃ k, x = (2 * ↑k + 1) * π / 2) ∧ ∃ l, y = (2 * ↑l + 1) * π / 2\n⊢ ((∀ (k : ℤ), ↑x ≠ (2 * ↑k + 1) * ↑π / 2) ∧ ∀ (l : ℤ), ↑y ≠ (2 * ↑l + 1) * ↑π / 2) ∨\n (∃ k, ↑x = (2 * ↑k + 1) * ↑π / 2) ∧ ∃ l, ↑y = (2 * ↑l + 1) * ↑π / 2", "tactic": "convert h <;> norm_cast" } ]
[ 37, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 31, 1 ]
Mathlib/Data/Set/Intervals/Basic.lean
Set.Ioi_def
[]
[ 116, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 115, 1 ]
Mathlib/Data/Fintype/Basic.lean
Finset.univ_filter_mem_range
[ { "state_after": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.29339\ninst✝³ : Fintype α\ns t : Finset α\nf : α → β\ninst✝² : Fintype β\ninst✝¹ : DecidablePred fun y => y ∈ Set.range f\ninst✝ : DecidableEq β\nthis : DecidablePred fun y => ∃ x, f x = y := inst✝¹\n⊢ filter (fun y => y ∈ Set.range f) univ = image f univ", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.29339\ninst✝³ : Fintype α\ns t : Finset α\nf : α → β\ninst✝² : Fintype β\ninst✝¹ : DecidablePred fun y => y ∈ Set.range f\ninst✝ : DecidableEq β\n⊢ filter (fun y => y ∈ Set.range f) univ = image f univ", "tactic": "letI : DecidablePred (fun y => ∃ x, f x = y) := by simpa using ‹_›" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.29339\ninst✝³ : Fintype α\ns t : Finset α\nf : α → β\ninst✝² : Fintype β\ninst✝¹ : DecidablePred fun y => y ∈ Set.range f\ninst✝ : DecidableEq β\nthis : DecidablePred fun y => ∃ x, f x = y := inst✝¹\n⊢ filter (fun y => y ∈ Set.range f) univ = image f univ", "tactic": "exact univ_filter_exists f" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.29339\ninst✝³ : Fintype α\ns t : Finset α\nf : α → β\ninst✝² : Fintype β\ninst✝¹ : DecidablePred fun y => y ∈ Set.range f\ninst✝ : DecidableEq β\n⊢ DecidablePred fun y => ∃ x, f x = y", "tactic": "simpa using ‹_›" } ]
[ 318, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 315, 1 ]
Mathlib/Analysis/Convex/Function.lean
ConvexOn.lt_left_of_right_lt
[ { "state_after": "case intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.610093\nα : Type ?u.610096\nβ : Type u_3\nι : Type ?u.610102\ninst✝⁶ : OrderedSemiring 𝕜\ninst✝⁵ : AddCommMonoid E\ninst✝⁴ : AddCommMonoid F\ninst✝³ : LinearOrderedCancelAddCommMonoid β\ninst✝² : Module 𝕜 E\ninst✝¹ : Module 𝕜 β\ninst✝ : OrderedSMul 𝕜 β\ns : Set E\nf g : E → β\nhf : ConvexOn 𝕜 s f\nx y : E\nhx : x ∈ s\nhy : y ∈ s\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\nhyz : f y < f (a • x + b • y)\n⊢ f (a • x + b • y) < f x", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.610093\nα : Type ?u.610096\nβ : Type u_3\nι : Type ?u.610102\ninst✝⁶ : OrderedSemiring 𝕜\ninst✝⁵ : AddCommMonoid E\ninst✝⁴ : AddCommMonoid F\ninst✝³ : LinearOrderedCancelAddCommMonoid β\ninst✝² : Module 𝕜 E\ninst✝¹ : Module 𝕜 β\ninst✝ : OrderedSMul 𝕜 β\ns : Set E\nf g : E → β\nhf : ConvexOn 𝕜 s f\nx y z : E\nhx : x ∈ s\nhy : y ∈ s\nhz : z ∈ openSegment 𝕜 x y\nhyz : f y < f z\n⊢ f z < f x", "tactic": "obtain ⟨a, b, ha, hb, hab, rfl⟩ := hz" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.610093\nα : Type ?u.610096\nβ : Type u_3\nι : Type ?u.610102\ninst✝⁶ : OrderedSemiring 𝕜\ninst✝⁵ : AddCommMonoid E\ninst✝⁴ : AddCommMonoid F\ninst✝³ : LinearOrderedCancelAddCommMonoid β\ninst✝² : Module 𝕜 E\ninst✝¹ : Module 𝕜 β\ninst✝ : OrderedSMul 𝕜 β\ns : Set E\nf g : E → β\nhf : ConvexOn 𝕜 s f\nx y : E\nhx : x ∈ s\nhy : y ∈ s\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\nhyz : f y < f (a • x + b • y)\n⊢ f (a • x + b • y) < f x", "tactic": "exact hf.lt_left_of_right_lt' hx hy ha hb hab hyz" } ]
[ 806, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 803, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/ZeroMorphisms.lean
CategoryTheory.Limits.nonzero_image_of_nonzero
[]
[ 155, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 154, 1 ]
Mathlib/Topology/UniformSpace/Basic.lean
uniformContinuousOn_iff_restrict
[ { "state_after": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort ?u.149530\ninst✝¹ : UniformSpace α\ninst✝ : UniformSpace β\nf : α → β\ns : Set α\n⊢ Tendsto (fun x => (f x.fst, f x.snd)) (𝓤 α ⊓ 𝓟 (s ×ˢ s)) (𝓤 β) ↔\n Tendsto (fun x => (restrict s f x.fst, restrict s f x.snd)) (𝓤 ↑s) (𝓤 β)", "state_before": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort ?u.149530\ninst✝¹ : UniformSpace α\ninst✝ : UniformSpace β\nf : α → β\ns : Set α\n⊢ UniformContinuousOn f s ↔ UniformContinuous (restrict s f)", "tactic": "delta UniformContinuousOn UniformContinuous" }, { "state_after": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort ?u.149530\ninst✝¹ : UniformSpace α\ninst✝ : UniformSpace β\nf : α → β\ns : Set α\n⊢ Tendsto ((fun x => (f x.fst, f x.snd)) ∘ Prod.map Subtype.val Subtype.val) (𝓤 ↑s) (𝓤 β) ↔\n Tendsto (fun x => (restrict s f x.fst, restrict s f x.snd)) (𝓤 ↑s) (𝓤 β)", "state_before": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort ?u.149530\ninst✝¹ : UniformSpace α\ninst✝ : UniformSpace β\nf : α → β\ns : Set α\n⊢ Tendsto (fun x => (f x.fst, f x.snd)) (𝓤 α ⊓ 𝓟 (s ×ˢ s)) (𝓤 β) ↔\n Tendsto (fun x => (restrict s f x.fst, restrict s f x.snd)) (𝓤 ↑s) (𝓤 β)", "tactic": "rw [← map_uniformity_set_coe, tendsto_map'_iff]" }, { "state_after": "no goals", "state_before": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort ?u.149530\ninst✝¹ : UniformSpace α\ninst✝ : UniformSpace β\nf : α → β\ns : Set α\n⊢ Tendsto ((fun x => (f x.fst, f x.snd)) ∘ Prod.map Subtype.val Subtype.val) (𝓤 ↑s) (𝓤 β) ↔\n Tendsto (fun x => (restrict s f x.fst, restrict s f x.snd)) (𝓤 ↑s) (𝓤 β)", "tactic": "rfl" } ]
[ 1504, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1501, 1 ]
Mathlib/Topology/ContinuousFunction/Bounded.lean
BoundedContinuousFunction.embedding_coeFn
[]
[ 291, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 290, 1 ]
Mathlib/Topology/MetricSpace/IsometricSMul.lean
Metric.smul_closedBall
[]
[ 444, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 443, 1 ]
Mathlib/RingTheory/Ideal/LocalRing.lean
LocalRing.ResidueField.map_comp
[]
[ 426, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 423, 1 ]
Mathlib/Combinatorics/Configuration.lean
Configuration.HasLines.card_le
[ { "state_after": "P : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhc₂ : ¬Fintype.card P ≤ Fintype.card L\n⊢ False", "state_before": "P : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\n⊢ Fintype.card P ≤ Fintype.card L", "tactic": "by_contra hc₂" }, { "state_after": "case intro.intro\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhc₂ : ¬Fintype.card P ≤ Fintype.card L\nf : L → P\nhf₁ : Function.Injective f\nhf₂ : ∀ (l : L), ¬f l ∈ l\n⊢ False", "state_before": "P : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhc₂ : ¬Fintype.card P ≤ Fintype.card L\n⊢ False", "tactic": "obtain ⟨f, hf₁, hf₂⟩ := Nondegenerate.exists_injective_of_card_le (le_of_not_le hc₂)" }, { "state_after": "no goals", "state_before": "case intro.intro\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhc₂ : ¬Fintype.card P ≤ Fintype.card L\nf : L → P\nhf₁ : Function.Injective f\nhf₂ : ∀ (l : L), ¬f l ∈ l\nthis : ∑ p : P, lineCount L p < ∑ p : P, lineCount L p\n⊢ False", "tactic": "exact lt_irrefl _ this" }, { "state_after": "P : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhc₂ : ¬Fintype.card P ≤ Fintype.card L\nf : L → P\nhf₁ : Function.Injective f\nhf₂ : ∀ (l : L), ¬f l ∈ l\np : P\n⊢ (∃ a, a ∈ Finset.univ ∧ f a = p) → ∃ a ha, p = (fun l x => f l) a ha", "state_before": "P : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhc₂ : ¬Fintype.card P ≤ Fintype.card L\nf : L → P\nhf₁ : Function.Injective f\nhf₂ : ∀ (l : L), ¬f l ∈ l\np : P\n⊢ p ∈ Finset.image f Finset.univ → ∃ a ha, p = (fun l x => f l) a ha", "tactic": "rw [Finset.mem_image]" }, { "state_after": "no goals", "state_before": "P : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhc₂ : ¬Fintype.card P ≤ Fintype.card L\nf : L → P\nhf₁ : Function.Injective f\nhf₂ : ∀ (l : L), ¬f l ∈ l\np : P\n⊢ (∃ a, a ∈ Finset.univ ∧ f a = p) → ∃ a ha, p = (fun l x => f l) a ha", "tactic": "exact fun ⟨a, ⟨h, h'⟩⟩ => ⟨a, ⟨h, h'.symm⟩⟩" }, { "state_after": "case intro\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhc₂ : ¬Fintype.card P ≤ Fintype.card L\nf : L → P\nhf₁ : Function.Injective f\nhf₂ : ∀ (l : L), ¬f l ∈ l\np : P\nhp : ¬∃ a, f a = p\n⊢ ∑ p in Finset.image f Finset.univ, lineCount L p < ∑ p : P, lineCount L p", "state_before": "P : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhc₂ : ¬Fintype.card P ≤ Fintype.card L\nf : L → P\nhf₁ : Function.Injective f\nhf₂ : ∀ (l : L), ¬f l ∈ l\n⊢ ∑ p in Finset.image f Finset.univ, lineCount L p < ∑ p : P, lineCount L p", "tactic": "obtain ⟨p, hp⟩ := not_forall.mp (mt (Fintype.card_le_of_surjective f) hc₂)" }, { "state_after": "case intro.refine'_1\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhc₂ : ¬Fintype.card P ≤ Fintype.card L\nf : L → P\nhf₁ : Function.Injective f\nhf₂ : ∀ (l : L), ¬f l ∈ l\np : P\nhp : ¬∃ a, f a = p\n⊢ ¬p ∈ Finset.image f Finset.univ\n\ncase intro.refine'_2\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhc₂ : ¬Fintype.card P ≤ Fintype.card L\nf : L → P\nhf₁ : Function.Injective f\nhf₂ : ∀ (l : L), ¬f l ∈ l\np : P\nhp : ¬∃ a, f a = p\n⊢ 0 < lineCount L p", "state_before": "case intro\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhc₂ : ¬Fintype.card P ≤ Fintype.card L\nf : L → P\nhf₁ : Function.Injective f\nhf₂ : ∀ (l : L), ¬f l ∈ l\np : P\nhp : ¬∃ a, f a = p\n⊢ ∑ p in Finset.image f Finset.univ, lineCount L p < ∑ p : P, lineCount L p", "tactic": "refine'\n Finset.sum_lt_sum_of_subset (Finset.univ.image f).subset_univ (Finset.mem_univ p) _ _\n fun p _ _ => zero_le (lineCount L p)" }, { "state_after": "no goals", "state_before": "case intro.refine'_1\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhc₂ : ¬Fintype.card P ≤ Fintype.card L\nf : L → P\nhf₁ : Function.Injective f\nhf₂ : ∀ (l : L), ¬f l ∈ l\np : P\nhp : ¬∃ a, f a = p\n⊢ ¬p ∈ Finset.image f Finset.univ", "tactic": "simpa only [Finset.mem_image, exists_prop, Finset.mem_univ, true_and_iff]" }, { "state_after": "case intro.refine'_2\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhc₂ : ¬Fintype.card P ≤ Fintype.card L\nf : L → P\nhf₁ : Function.Injective f\nhf₂ : ∀ (l : L), ¬f l ∈ l\np : P\nhp : ¬∃ a, f a = p\n⊢ Nonempty { l // p ∈ l }", "state_before": "case intro.refine'_2\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhc₂ : ¬Fintype.card P ≤ Fintype.card L\nf : L → P\nhf₁ : Function.Injective f\nhf₂ : ∀ (l : L), ¬f l ∈ l\np : P\nhp : ¬∃ a, f a = p\n⊢ 0 < lineCount L p", "tactic": "rw [lineCount, Nat.card_eq_fintype_card, Fintype.card_pos_iff]" }, { "state_after": "case intro.refine'_2.intro\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhc₂ : ¬Fintype.card P ≤ Fintype.card L\nf : L → P\nhf₁ : Function.Injective f\nhf₂ : ∀ (l : L), ¬f l ∈ l\np : P\nhp : ¬∃ a, f a = p\nl : L\nh✝ : ¬p ∈ l\n⊢ Nonempty { l // p ∈ l }", "state_before": "case intro.refine'_2\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhc₂ : ¬Fintype.card P ≤ Fintype.card L\nf : L → P\nhf₁ : Function.Injective f\nhf₂ : ∀ (l : L), ¬f l ∈ l\np : P\nhp : ¬∃ a, f a = p\n⊢ Nonempty { l // p ∈ l }", "tactic": "obtain ⟨l, _⟩ := @exists_line P L _ _ p" }, { "state_after": "no goals", "state_before": "case intro.refine'_2.intro\nP : Type u_1\nL : Type u_2\ninst✝³ : Membership P L\ninst✝² : HasLines P L\ninst✝¹ : Fintype P\ninst✝ : Fintype L\nhc₂ : ¬Fintype.card P ≤ Fintype.card L\nf : L → P\nhf₁ : Function.Injective f\nhf₂ : ∀ (l : L), ¬f l ∈ l\np : P\nhp : ¬∃ a, f a = p\nl : L\nh✝ : ¬p ∈ l\n⊢ Nonempty { l // p ∈ l }", "tactic": "exact\n let this := not_exists.mp hp l\n ⟨⟨mkLine this, (mkLine_ax this).2⟩⟩" } ]
[ 256, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 230, 1 ]
Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
ciSup_unique
[ { "state_after": "α : Type u_2\nβ : Type ?u.59227\nγ : Type ?u.59230\nι : Sort u_1\ninst✝¹ : ConditionallyCompleteLattice α\ns✝ t : Set α\na b : α\ninst✝ : Unique ι\ns : ι → α\nthis : ∀ (i : ι), s i = s default\n⊢ (⨆ (i : ι), s i) = s default", "state_before": "α : Type u_2\nβ : Type ?u.59227\nγ : Type ?u.59230\nι : Sort u_1\ninst✝¹ : ConditionallyCompleteLattice α\ns✝ t : Set α\na b : α\ninst✝ : Unique ι\ns : ι → α\n⊢ (⨆ (i : ι), s i) = s default", "tactic": "have : ∀ i, s i = s default := fun i => congr_arg s (Unique.eq_default i)" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type ?u.59227\nγ : Type ?u.59230\nι : Sort u_1\ninst✝¹ : ConditionallyCompleteLattice α\ns✝ t : Set α\na b : α\ninst✝ : Unique ι\ns : ι → α\nthis : ∀ (i : ι), s i = s default\n⊢ (⨆ (i : ι), s i) = s default", "tactic": "simp only [this, ciSup_const]" } ]
[ 843, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 841, 1 ]
Mathlib/Analysis/SpecialFunctions/Log/Base.lean
Real.lt_logb_iff_rpow_lt_of_base_lt_one
[ { "state_after": "no goals", "state_before": "b x y : ℝ\nb_pos : 0 < b\nb_lt_one : b < 1\nhy : 0 < y\n⊢ x < logb b y ↔ y < b ^ x", "tactic": "rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy]" } ]
[ 285, 101 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 284, 1 ]
Mathlib/Analysis/InnerProductSpace/Calculus.lean
differentiableAt_euclidean
[ { "state_after": "𝕜 : Type u_1\nι : Type u_3\nH : Type u_2\ninst✝³ : IsROrC 𝕜\ninst✝² : NormedAddCommGroup H\ninst✝¹ : NormedSpace 𝕜 H\ninst✝ : Fintype ι\nf : H → EuclideanSpace 𝕜 ι\nf' : H →L[𝕜] EuclideanSpace 𝕜 ι\nt : Set H\ny : H\n⊢ (∀ (i : ι), DifferentiableAt 𝕜 (fun x => (↑(EuclideanSpace.equiv ι 𝕜) ∘ f) x i) y) ↔\n ∀ (i : ι), DifferentiableAt 𝕜 (fun x => f x i) y", "state_before": "𝕜 : Type u_1\nι : Type u_3\nH : Type u_2\ninst✝³ : IsROrC 𝕜\ninst✝² : NormedAddCommGroup H\ninst✝¹ : NormedSpace 𝕜 H\ninst✝ : Fintype ι\nf : H → EuclideanSpace 𝕜 ι\nf' : H →L[𝕜] EuclideanSpace 𝕜 ι\nt : Set H\ny : H\n⊢ DifferentiableAt 𝕜 f y ↔ ∀ (i : ι), DifferentiableAt 𝕜 (fun x => f x i) y", "tactic": "rw [← (EuclideanSpace.equiv ι 𝕜).comp_differentiableAt_iff, differentiableAt_pi]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nι : Type u_3\nH : Type u_2\ninst✝³ : IsROrC 𝕜\ninst✝² : NormedAddCommGroup H\ninst✝¹ : NormedSpace 𝕜 H\ninst✝ : Fintype ι\nf : H → EuclideanSpace 𝕜 ι\nf' : H →L[𝕜] EuclideanSpace 𝕜 ι\nt : Set H\ny : H\n⊢ (∀ (i : ι), DifferentiableAt 𝕜 (fun x => (↑(EuclideanSpace.equiv ι 𝕜) ∘ f) x i) y) ↔\n ∀ (i : ι), DifferentiableAt 𝕜 (fun x => f x i) y", "tactic": "rfl" } ]
[ 308, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 305, 1 ]
Mathlib/CategoryTheory/Preadditive/Opposite.lean
CategoryTheory.op_add
[]
[ 65, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 64, 1 ]
Mathlib/Combinatorics/SimpleGraph/Connectivity.lean
SimpleGraph.Connected.map
[]
[ 1959, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1956, 1 ]
Mathlib/Topology/PathConnected.lean
pathComponent.nonempty
[]
[ 909, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 908, 1 ]
Mathlib/RingTheory/AlgebraicIndependent.lean
AlgebraicIndependent.aeval_comp_repr
[]
[ 411, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 410, 1 ]
Mathlib/Data/Set/Pointwise/Basic.lean
Set.isUnit_singleton
[]
[ 1188, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1187, 1 ]
Mathlib/Data/Nat/Parity.lean
Nat.bit0_div_bit0
[ { "state_after": "no goals", "state_before": "m n : ℕ\n⊢ bit0 n / bit0 m = n / m", "tactic": "rw [bit0_eq_two_mul m, ← Nat.div_div_eq_div_mul, bit0_div_two]" } ]
[ 255, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 254, 1 ]
Std/Data/List/Lemmas.lean
List.infix_append
[]
[ 1563, 83 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1563, 1 ]
Mathlib/Topology/Algebra/Module/Basic.lean
ContinuousLinearEquiv.image_symm_image
[]
[ 2058, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2057, 1 ]