text
stringlengths 0
2.18k
|
|---|
25°S 30°S NE Australia 35°S SE Australia Great Australian Bight Bass Strait 40°S 250 km Tasman Sea 130°E 135°E 140°E 145°E 150°E 155°E
|
--------------------------------------------------- Unstructured Image End
|
--------------------------------------------------- Unstructured Caption Begin
|
FIGURE 1 Map of sample sites (red) and net primary production (NPP) around southern and eastern Australia
|
--------------------------------------------------- Unstructured Caption End
|
& Dunstan, 2010). These covariates included oceanographic variables such as seafloor water temperature, salinity and dissolved oxygen, carbon flux to the seafloor, mean annual and seasonal variation of net primary productivity at the sea surface, as well as geographical variables latitude, longitude and depth.
|
--------------------------------------------------- Unstructured Title Begin
|
2 | METHODS
|
--------------------------------------------------- Unstructured Title End
|
--------------------------------------------------- Unstructured Sub-Title Begin
|
2.1 | Samples
|
--------------------------------------------------- Unstructured Sub-Title End
|
All samples were collected using an identical 4-m-wide beam trawl with a 25-mm mesh net on soft-sediment substrata in several expeditions to the Great Australian Bight and the eastern continental margin of Australia on the RV Investigator (Table 1, Figure 1). The GAB expeditions included two that formed part of the Great Australian Bight Deepwater Marine Program (IN2015_C01 and IN2017_C01), a partnership of CSIRO and Chevron Australia, and a third that was part of the Great Australian Bight (GAB) Research Program, a
|
collaboration of CSIRO, BP Australia, the South Australian Research and Development Institute, University of Adelaide and Flinders University. The eastern Australian samples were collected as part of the “Sampling the Abyss” voyage (IN2017_V03) that collected samples every 1.5° of latitude from 42° to 23°S. On all voyages, sites were mapped (bathymetry and backscatter) prior to deployment using a Kongsberg EM 122 multibeam sonar. Samples were sorted, weighed and preserved (95% ethanol and/or formalin) on-board into broad taxonomic groups, but subsequently sent to taxonomic experts for post-voyage identification.
|
For this study, we have restricted samples to those that were collected at seafloor depths between 1,900 and 5,000 m to ensure inter-regional comparability. The depth of 1,900 m was chosen as the lower limit so as to include two samples from the GAB, whose mean depth along the tow was slightly shallower than the target depth of 2,000 m. We restricted the taxonomic scope to the following megafauna groups that were identified by the same experts (see acknowledgements) across voyages: hexactinellid and demospongid sponges, anthozoans, barnacles, decapods, pycnogonids,
|
--------------------------------------------------- Unstructured Plain Text Format 1.0.4
|
--------------------------------------------------- Unstructured Page Header Begin
|
--------------------------------------------------- Unstructured Page Number Block Begin
|
4 |
|
--------------------------------------------------- Unstructured Page Number Block End
|
WILEY
|
Diversity and Distributions
|
O'HARA ET AL.
|
--------------------------------------------------- Unstructured Page Header End
|
--------------------------------------------------- Unstructured Caption Begin
|
TABLE 1 Beam trawl sample location and modelled environmental data
|
--------------------------------------------------- Unstructured Caption End
|
--------------------------------------------------- Unstructured Table Begin
|
Survey Stn Region Location Latitude Longitude Mid depth (m) Date (day/month/year) Area (m²) Temp. (°C) Salinity (‰) Oxygen (ml/L) C flux (g m⁻² year⁻¹)
|
IN2015_C01 016 GAB OR02, Area25 −36.069 132.637 4,607 31/10/15 5,666 0.953 34.710 4.708 0.735
|
IN2015_C01 026 GAB OR07, Area19 −35.794 131.711 4,517 2/11/15 10,927 0.971 34.712 4.709 0.718
|
IN2015_C01 036 GAB SZ02, Area20 −35.555 132.283 2,242 5/11/15 17,687 2.112 34.725 4.014 1.266
|
IN2015_C01 064 GAB OR13, Area05 −34.074 129.182 2,726 13/11/15 15,221 1.787 34.733 4.245 0.974
|
IN2015_C01 079 GAB SZ08, Area08 −34.341 129.942 2,079 16/11/15 7,129 2.245 34.708 3.988 1.192
|
IN2015_C01 080 GAB SZ08, Area08 −34.408 130.024 2,114 17/11/15 7,916 2.214 34.712 4.002 1.197
|
IN2015_C02 137 GAB Transect 5 −35.550 134.082 1,961 5/12/15 11,564 2.286 34.707 3.893 1.433
|
IN2015_C02 141 GAB Transect 5 −35.818 134.109 2,826 5/12/15 12,341 1.761 34.732 4.214 1.067
|
IN2015_C02 151 GAB Transect 4 −35.798 132.693 2,725 6/12/15 12,867 1.766 34.734 4.201 1.054
|
IN2015_C02 155 GAB Transect 4 −35.722 132.681 1,933 7/12/15 10,814 2.286 34.714 3.907 1.423
|
IN2015_C02 207 GAB Transect 3 −35.352 131.077 2,014 9/12/15 14,282 2.288 34.709 3.943 1.282
|
IN2015_C02 216 GAB Transect 3 −35.262 131.042 3,021 10/12/15 12,056 1.723 34.734 4.234 0.950
|
IN2015_C02 227 GAB Transect 1 −35.009 130.317 2,839 11/12/15 9,508 1.726 34.734 4.238 0.938
|
IN2015_C02 274 GAB Transect 2 −35.165 130.665 3,002 12/12/15 11,273 1.647 34.734 4.279 0.910
|
IN2015_C02 276 GAB Transect 2 −34.853 130.687 2,004 12/12/15 10,440 2.299 34.705 3.949 1.279
|
IN2015_C02 449 GAB Transect 1 −34.625 130.280 2,037 18/12/15 14,233 2.305 34.703 3.954 1.251
|
IN2017_C01 175 GAB OR21 −35.815 132.021 4,090 15/04/17 22,871 1.156 34.721 4.570 0.763
|
IN2017_C01 178 GAB OR21 −35.716 131.656 3,883 16/04/17 21,483 1.242 34.724 4.531 0.777
|
IN2017_C01 179 GAB OR21 −35.814 131.703 4,684 17/04/17 29,787 0.925 34.709 4.715 0.706
|
IN2017_C01 182 GAB OR26 −35.487 130.378 4,961 17/04/17 18,706 0.852 34.704 4.814 0.664
|
IN2017_C01 192 GAB OR11, Area07 −34.550 129.403 3,793 20/04/17 18,320 1.258 34.725 4.508 0.745
|
IN2017_C01 197 GAB OR11, Area07 −34.447 129.532 3,292 21/04/17 14,740 1.481 34.732 4.383 0.827
|
IN2017_C01 198 GAB OR11, Area07 −34.549 129.602 3,464 21/04/17 15,875 1.392 34.730 4.455 0.796
|
IN2017_V03 004 SE Freycinet MP −41.731 149.120 2,785 18/05/17 29,584 1.746 34.735 4.277 1.998
|
IN2017_V03 006 SE Freycinet MP −41.626 149.552 4,037 18/05/17 30,344 1.041 34.715 4.571 1.260
|
IN2017_V03 014 SE Flinders MP −40.464 149.102 2,392 20/05/17 15,348 1.988 34.721 4.051 2.352
|
IN2017_V03 015 SE Flinders MP −40.473 149.397 4,126 20/05/17 10,572 1.045 34.714 4.587 1.198
|
IN2017_V03 022 SE Bass Strait −39.462 149.276 2,726 22/05/17 11,756 1.788 34.731 4.204 2.049
|
IN2017_V03 030 SE Bass Strait −39.552 149.553 4,165 23/05/17 29,312 1.077 34.714 4.563 1.181
|
IN2017_V03 032 SE East Gippsland MP −38.479 150.184 3,851 24/05/17 11,580 1.132 34.718 4.501 1.290
|
IN2017_V03 035 SE East Gippsland MP −37.792 150.382 2,459 25/05/17 15,352 1.985 34.720 4.108 2.264
|
--------------------------------------------------- Unstructured Table End
|
(Continues)
|
--------------------------------------------------- Unstructured Plain Text Format 1
|
--------------------------------------------------- Unstructured Title Begin
|
2.1.2. Weak Identification Aspects
|
--------------------------------------------------- Unstructured Title End
|
In particular, Martínez-Iriarte et al. (2020) develops an asymptotic theory framework based on fixed- smoothing asymptotics for the test statistics in order to account for the estimation uncertainty in the underlying LRV estimators. Consider the following long-run variance estimator
|
--------------------------------------------------- Unstructured Formula Begin
|
V f f (θ)= limT→∞ Var( 1/√T∑ T t=1 f(Y t ,θ) ).
|
--------------------------------------------------- Unstructured Formula End
|
(2.8)
|
Therefore, a non-parametric estimator of the LRV takes the quadratic form below
|
--------------------------------------------------- Unstructured Formula Begin
|
V^ f f (θ)= 1/T∑ T t=1 ∑ T s=1 ω h ( t/T,t/T ) [f(Y t ,θ)−fˉ (Y t ,θ)] [f(Y t ,θ)−fˉ (Y t ,θ)]′
|
--------------------------------------------------- Unstructured Formula End
|
(2.9)
|
--------------------------------------------------- Unstructured Formula Begin
|
fˉ (Y t ,θ)= 1/T ∑ T s=1 f(Y t ,θ),
|
--------------------------------------------------- Unstructured Formula End
|
(2.10)
|
such that ω(.,.) is a weighting function, and h is the smoothing parameter indicating the amount of nonparametric smoothing. For example, we can estimate the kernel density the following way
|
--------------------------------------------------- Unstructured Formula Begin
|
ω h (t/T , t/T) = k ((t − s)/hT)
|
--------------------------------------------------- Unstructured Formula End
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.