Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeConvergence of Proximal Point and Extragradient-Based Methods Beyond Monotonicity: the Case of Negative Comonotonicity
Algorithms for min-max optimization and variational inequalities are often studied under monotonicity assumptions. Motivated by non-monotone machine learning applications, we follow the line of works [Diakonikolas et al., 2021, Lee and Kim, 2021, Pethick et al., 2022, B\"ohm, 2022] aiming at going beyond monotonicity by considering the weaker negative comonotonicity assumption. In particular, we provide tight complexity analyses for the Proximal Point, Extragradient, and Optimistic Gradient methods in this setup, closing some questions on their working guarantees beyond monotonicity.
Two Losses Are Better Than One: Faster Optimization Using a Cheaper Proxy
We present an algorithm for minimizing an objective with hard-to-compute gradients by using a related, easier-to-access function as a proxy. Our algorithm is based on approximate proximal point iterations on the proxy combined with relatively few stochastic gradients from the objective. When the difference between the objective and the proxy is delta-smooth, our algorithm guarantees convergence at a rate matching stochastic gradient descent on a delta-smooth objective, which can lead to substantially better sample efficiency. Our algorithm has many potential applications in machine learning, and provides a principled means of leveraging synthetic data, physics simulators, mixed public and private data, and more.
Stochastic model-based minimization of weakly convex functions
We consider a family of algorithms that successively sample and minimize simple stochastic models of the objective function. We show that under reasonable conditions on approximation quality and regularity of the models, any such algorithm drives a natural stationarity measure to zero at the rate O(k^{-1/4}). As a consequence, we obtain the first complexity guarantees for the stochastic proximal point, proximal subgradient, and regularized Gauss-Newton methods for minimizing compositions of convex functions with smooth maps. The guiding principle, underlying the complexity guarantees, is that all algorithms under consideration can be interpreted as approximate descent methods on an implicit smoothing of the problem, given by the Moreau envelope. Specializing to classical circumstances, we obtain the long-sought convergence rate of the stochastic projected gradient method, without batching, for minimizing a smooth function on a closed convex set.
Complexity of Block Coordinate Descent with Proximal Regularization and Applications to Wasserstein CP-dictionary Learning
We consider the block coordinate descent methods of Gauss-Seidel type with proximal regularization (BCD-PR), which is a classical method of minimizing general nonconvex objectives under constraints that has a wide range of practical applications. We theoretically establish the worst-case complexity bound for this algorithm. Namely, we show that for general nonconvex smooth objectives with block-wise constraints, the classical BCD-PR algorithm converges to an epsilon-stationary point within O(1/epsilon) iterations. Under a mild condition, this result still holds even if the algorithm is executed inexactly in each step. As an application, we propose a provable and efficient algorithm for `Wasserstein CP-dictionary learning', which seeks a set of elementary probability distributions that can well-approximate a given set of d-dimensional joint probability distributions. Our algorithm is a version of BCD-PR that operates in the dual space, where the primal problem is regularized both entropically and proximally.
On Penalty Methods for Nonconvex Bilevel Optimization and First-Order Stochastic Approximation
In this work, we study first-order algorithms for solving Bilevel Optimization (BO) where the objective functions are smooth but possibly nonconvex in both levels and the variables are restricted to closed convex sets. As a first step, we study the landscape of BO through the lens of penalty methods, in which the upper- and lower-level objectives are combined in a weighted sum with penalty parameter sigma > 0. In particular, we establish a strong connection between the penalty function and the hyper-objective by explicitly characterizing the conditions under which the values and derivatives of the two must be O(sigma)-close. A by-product of our analysis is the explicit formula for the gradient of hyper-objective when the lower-level problem has multiple solutions under minimal conditions, which could be of independent interest. Next, viewing the penalty formulation as O(sigma)-approximation of the original BO, we propose first-order algorithms that find an epsilon-stationary solution by optimizing the penalty formulation with sigma = O(epsilon). When the perturbed lower-level problem uniformly satisfies the small-error proximal error-bound (EB) condition, we propose a first-order algorithm that converges to an epsilon-stationary point of the penalty function, using in total O(epsilon^{-3}) and O(epsilon^{-7}) accesses to first-order (stochastic) gradient oracles when the oracle is deterministic and oracles are noisy, respectively. Under an additional assumption on stochastic oracles, we show that the algorithm can be implemented in a fully {\it single-loop} manner, i.e., with O(1) samples per iteration, and achieves the improved oracle-complexity of O(epsilon^{-3}) and O(epsilon^{-5}), respectively.
SGD with Clipping is Secretly Estimating the Median Gradient
There are several applications of stochastic optimization where one can benefit from a robust estimate of the gradient. For example, domains such as distributed learning with corrupted nodes, the presence of large outliers in the training data, learning under privacy constraints, or even heavy-tailed noise due to the dynamics of the algorithm itself. Here we study SGD with robust gradient estimators based on estimating the median. We first consider computing the median gradient across samples, and show that the resulting method can converge even under heavy-tailed, state-dependent noise. We then derive iterative methods based on the stochastic proximal point method for computing the geometric median and generalizations thereof. Finally we propose an algorithm estimating the median gradient across iterations, and find that several well known methods - in particular different forms of clipping - are particular cases of this framework.
Recovery Bounds on Class-Based Optimal Transport: A Sum-of-Norms Regularization Framework
We develop a novel theoretical framework for understating OT schemes respecting a class structure. For this purpose, we propose a convex OT program with a sum-of-norms regularization term, which provably recovers the underlying class structure under geometric assumptions. Furthermore, we derive an accelerated proximal algorithm with a closed-form projection and proximal operator scheme, thereby affording a more scalable algorithm for computing optimal transport plans. We provide a novel argument for the uniqueness of the optimum even in the absence of strong convexity. Our experiments show that the new regularizer not only results in a better preservation of the class structure in the data but also yields additional robustness to the data geometry, compared to previous regularizers.
What's in a Prior? Learned Proximal Networks for Inverse Problems
Proximal operators are ubiquitous in inverse problems, commonly appearing as part of algorithmic strategies to regularize problems that are otherwise ill-posed. Modern deep learning models have been brought to bear for these tasks too, as in the framework of plug-and-play or deep unrolling, where they loosely resemble proximal operators. Yet, something essential is lost in employing these purely data-driven approaches: there is no guarantee that a general deep network represents the proximal operator of any function, nor is there any characterization of the function for which the network might provide some approximate proximal. This not only makes guaranteeing convergence of iterative schemes challenging but, more fundamentally, complicates the analysis of what has been learned by these networks about their training data. Herein we provide a framework to develop learned proximal networks (LPN), prove that they provide exact proximal operators for a data-driven nonconvex regularizer, and show how a new training strategy, dubbed proximal matching, provably promotes the recovery of the log-prior of the true data distribution. Such LPN provide general, unsupervised, expressive proximal operators that can be used for general inverse problems with convergence guarantees. We illustrate our results in a series of cases of increasing complexity, demonstrating that these models not only result in state-of-the-art performance, but provide a window into the resulting priors learned from data.
Constrained Bi-Level Optimization: Proximal Lagrangian Value function Approach and Hessian-free Algorithm
This paper presents a new approach and algorithm for solving a class of constrained Bi-Level Optimization (BLO) problems in which the lower-level problem involves constraints coupling both upper-level and lower-level variables. Such problems have recently gained significant attention due to their broad applicability in machine learning. However, conventional gradient-based methods unavoidably rely on computationally intensive calculations related to the Hessian matrix. To address this challenge, we begin by devising a smooth proximal Lagrangian value function to handle the constrained lower-level problem. Utilizing this construct, we introduce a single-level reformulation for constrained BLOs that transforms the original BLO problem into an equivalent optimization problem with smooth constraints. Enabled by this reformulation, we develop a Hessian-free gradient-based algorithm-termed proximal Lagrangian Value function-based Hessian-free Bi-level Algorithm (LV-HBA)-that is straightforward to implement in a single loop manner. Consequently, LV-HBA is especially well-suited for machine learning applications. Furthermore, we offer non-asymptotic convergence analysis for LV-HBA, eliminating the need for traditional strong convexity assumptions for the lower-level problem while also being capable of accommodating non-singleton scenarios. Empirical results substantiate the algorithm's superior practical performance.
The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games
Proximal Policy Optimization (PPO) is a ubiquitous on-policy reinforcement learning algorithm but is significantly less utilized than off-policy learning algorithms in multi-agent settings. This is often due to the belief that PPO is significantly less sample efficient than off-policy methods in multi-agent systems. In this work, we carefully study the performance of PPO in cooperative multi-agent settings. We show that PPO-based multi-agent algorithms achieve surprisingly strong performance in four popular multi-agent testbeds: the particle-world environments, the StarCraft multi-agent challenge, Google Research Football, and the Hanabi challenge, with minimal hyperparameter tuning and without any domain-specific algorithmic modifications or architectures. Importantly, compared to competitive off-policy methods, PPO often achieves competitive or superior results in both final returns and sample efficiency. Finally, through ablation studies, we analyze implementation and hyperparameter factors that are critical to PPO's empirical performance, and give concrete practical suggestions regarding these factors. Our results show that when using these practices, simple PPO-based methods can be a strong baseline in cooperative multi-agent reinforcement learning. Source code is released at https://github.com/marlbenchmark/on-policy.
Coordinate Descent Methods for Fractional Minimization
We consider a class of structured fractional minimization problems, in which the numerator part of the objective is the sum of a differentiable convex function and a convex non-smooth function, while the denominator part is a convex or concave function. This problem is difficult to solve since it is non-convex. By exploiting the structure of the problem, we propose two Coordinate Descent (CD) methods for solving this problem. The proposed methods iteratively solve a one-dimensional subproblem globally, and they are guaranteed to converge to coordinate-wise stationary points. In the case of a convex denominator, under a weak locally bounded non-convexity condition, we prove that the optimality of coordinate-wise stationary point is stronger than that of the standard critical point and directional point. Under additional suitable conditions, CD methods converge Q-linearly to coordinate-wise stationary points. In the case of a concave denominator, we show that any critical point is a global minimum, and CD methods converge to the global minimum with a sublinear convergence rate. We demonstrate the applicability of the proposed methods to some machine learning and signal processing models. Our experiments on real-world data have shown that our method significantly and consistently outperforms existing methods in terms of accuracy.
A Bregman firmly nonexpansive proximal operator for baryconvex optimization
We present a generalization of the proximal operator defined through a convex combination of convex objectives, where the coefficients are updated in a minimax fashion. We prove that this new operator is Bregman firmly nonexpansive with respect to a Bregman divergence that combines Euclidean and information geometries.
ProSper -- A Python Library for Probabilistic Sparse Coding with Non-Standard Priors and Superpositions
ProSper is a python library containing probabilistic algorithms to learn dictionaries. Given a set of data points, the implemented algorithms seek to learn the elementary components that have generated the data. The library widens the scope of dictionary learning approaches beyond implementations of standard approaches such as ICA, NMF or standard L1 sparse coding. The implemented algorithms are especially well-suited in cases when data consist of components that combine non-linearly and/or for data requiring flexible prior distributions. Furthermore, the implemented algorithms go beyond standard approaches by inferring prior and noise parameters of the data, and they provide rich a-posteriori approximations for inference. The library is designed to be extendable and it currently includes: Binary Sparse Coding (BSC), Ternary Sparse Coding (TSC), Discrete Sparse Coding (DSC), Maximal Causes Analysis (MCA), Maximum Magnitude Causes Analysis (MMCA), and Gaussian Sparse Coding (GSC, a recent spike-and-slab sparse coding approach). The algorithms are scalable due to a combination of variational approximations and parallelization. Implementations of all algorithms allow for parallel execution on multiple CPUs and multiple machines for medium to large-scale applications. Typical large-scale runs of the algorithms can use hundreds of CPUs to learn hundreds of dictionary elements from data with tens of millions of floating-point numbers such that models with several hundred thousand parameters can be optimized. The library is designed to have minimal dependencies and to be easy to use. It targets users of dictionary learning algorithms and Machine Learning researchers.
Optimal Stochastic Non-smooth Non-convex Optimization through Online-to-Non-convex Conversion
We present new algorithms for optimizing non-smooth, non-convex stochastic objectives based on a novel analysis technique. This improves the current best-known complexity for finding a (delta,epsilon)-stationary point from O(epsilon^{-4}delta^{-1}) stochastic gradient queries to O(epsilon^{-3}delta^{-1}), which we also show to be optimal. Our primary technique is a reduction from non-smooth non-convex optimization to online learning, after which our results follow from standard regret bounds in online learning. For deterministic and second-order smooth objectives, applying more advanced optimistic online learning techniques enables a new complexity of O(epsilon^{-1.5}delta^{-0.5}). Our techniques also recover all optimal or best-known results for finding epsilon stationary points of smooth or second-order smooth objectives in both stochastic and deterministic settings.
Compressed Decentralized Proximal Stochastic Gradient Method for Nonconvex Composite Problems with Heterogeneous Data
We first propose a decentralized proximal stochastic gradient tracking method (DProxSGT) for nonconvex stochastic composite problems, with data heterogeneously distributed on multiple workers in a decentralized connected network. To save communication cost, we then extend DProxSGT to a compressed method by compressing the communicated information. Both methods need only O(1) samples per worker for each proximal update, which is important to achieve good generalization performance on training deep neural networks. With a smoothness condition on the expected loss function (but not on each sample function), the proposed methods can achieve an optimal sample complexity result to produce a near-stationary point. Numerical experiments on training neural networks demonstrate the significantly better generalization performance of our methods over large-batch training methods and momentum variance-reduction methods and also, the ability of handling heterogeneous data by the gradient tracking scheme.
Variational Wasserstein gradient flow
Wasserstein gradient flow has emerged as a promising approach to solve optimization problems over the space of probability distributions. A recent trend is to use the well-known JKO scheme in combination with input convex neural networks to numerically implement the proximal step. The most challenging step, in this setup, is to evaluate functions involving density explicitly, such as entropy, in terms of samples. This paper builds on the recent works with a slight but crucial difference: we propose to utilize a variational formulation of the objective function formulated as maximization over a parametric class of functions. Theoretically, the proposed variational formulation allows the construction of gradient flows directly for empirical distributions with a well-defined and meaningful objective function. Computationally, this approach replaces the computationally expensive step in existing methods, to handle objective functions involving density, with inner loop updates that only require a small batch of samples and scale well with the dimension. The performance and scalability of the proposed method are illustrated with the aid of several numerical experiments involving high-dimensional synthetic and real datasets.
Lisa: Lazy Safety Alignment for Large Language Models against Harmful Fine-tuning Attack
Recent studies show that Large Language Models (LLMs) with safety alignment can be jail-broken by fine-tuning on a dataset mixed with harmful data. First time in the literature, we show that the jail-broken effect can be mitigated by separating states in the finetuning stage to optimize the alignment and user datasets. Unfortunately, our subsequent study shows that this simple Bi-State Optimization (BSO) solution experiences convergence instability when steps invested in its alignment state is too small, leading to downgraded alignment performance. By statistical analysis, we show that the excess drift towards consensus could be a probable reason for the instability. To remedy this issue, we propose Lazy(i) safety alignment (Lisa), which introduces a proximal term to constraint the drift of each state. Theoretically, the benefit of the proximal term is supported by the convergence analysis, wherein we show that a sufficient large proximal factor is necessary to guarantee Lisa's convergence. Empirically, our results on four downstream finetuning tasks show that Lisa with a proximal term can significantly increase alignment performance while maintaining the LLM's accuracy on the user tasks. Code is available at https://github.com/git-disl/Lisa.
A Reinforcement Learning Method for Environments with Stochastic Variables: Post-Decision Proximal Policy Optimization with Dual Critic Networks
This paper presents Post-Decision Proximal Policy Optimization (PDPPO), a novel variation of the leading deep reinforcement learning method, Proximal Policy Optimization (PPO). The PDPPO state transition process is divided into two steps: a deterministic step resulting in the post-decision state and a stochastic step leading to the next state. Our approach incorporates post-decision states and dual critics to reduce the problem's dimensionality and enhance the accuracy of value function estimation. Lot-sizing is a mixed integer programming problem for which we exemplify such dynamics. The objective of lot-sizing is to optimize production, delivery fulfillment, and inventory levels in uncertain demand and cost parameters. This paper evaluates the performance of PDPPO across various environments and configurations. Notably, PDPPO with a dual critic architecture achieves nearly double the maximum reward of vanilla PPO in specific scenarios, requiring fewer episode iterations and demonstrating faster and more consistent learning across different initializations. On average, PDPPO outperforms PPO in environments with a stochastic component in the state transition. These results support the benefits of using a post-decision state. Integrating this post-decision state in the value function approximation leads to more informed and efficient learning in high-dimensional and stochastic environments.
Improved Algorithm and Bounds for Successive Projection
Given a K-vertex simplex in a d-dimensional space, suppose we measure n points on the simplex with noise (hence, some of the observed points fall outside the simplex). Vertex hunting is the problem of estimating the K vertices of the simplex. A popular vertex hunting algorithm is successive projection algorithm (SPA). However, SPA is observed to perform unsatisfactorily under strong noise or outliers. We propose pseudo-point SPA (pp-SPA). It uses a projection step and a denoise step to generate pseudo-points and feed them into SPA for vertex hunting. We derive error bounds for pp-SPA, leveraging on extreme value theory of (possibly) high-dimensional random vectors. The results suggest that pp-SPA has faster rates and better numerical performances than SPA. Our analysis includes an improved non-asymptotic bound for the original SPA, which is of independent interest.
Proximal Policy Optimization Algorithms
We propose a new family of policy gradient methods for reinforcement learning, which alternate between sampling data through interaction with the environment, and optimizing a "surrogate" objective function using stochastic gradient ascent. Whereas standard policy gradient methods perform one gradient update per data sample, we propose a novel objective function that enables multiple epochs of minibatch updates. The new methods, which we call proximal policy optimization (PPO), have some of the benefits of trust region policy optimization (TRPO), but they are much simpler to implement, more general, and have better sample complexity (empirically). Our experiments test PPO on a collection of benchmark tasks, including simulated robotic locomotion and Atari game playing, and we show that PPO outperforms other online policy gradient methods, and overall strikes a favorable balance between sample complexity, simplicity, and wall-time.
Handbook of Convergence Theorems for (Stochastic) Gradient Methods
This is a handbook of simple proofs of the convergence of gradient and stochastic gradient descent type methods. We consider functions that are Lipschitz, smooth, convex, strongly convex, and/or Polyak-{\L}ojasiewicz functions. Our focus is on ``good proofs'' that are also simple. Each section can be consulted separately. We start with proofs of gradient descent, then on stochastic variants, including minibatching and momentum. Then move on to nonsmooth problems with the subgradient method, the proximal gradient descent and their stochastic variants. Our focus is on global convergence rates and complexity rates. Some slightly less common proofs found here include that of SGD (Stochastic gradient descent) with a proximal step, with momentum, and with mini-batching without replacement.
A-3PO: Accelerating Asynchronous LLM Training with Staleness-aware Proximal Policy Approximation
Decoupled loss has been a successful reinforcement learning (RL) algorithm to deal with the high data staleness under the asynchronous RL setting. Decoupled loss improves coupled-loss style of algorithms' (e.g., PPO, GRPO) learning stability by introducing a proximal policy to decouple the off-policy corrections (importance weight) from the controlling policy updates (trust region). However, the proximal policy requires an extra forward pass through the network at each training step, creating a computational bottleneck for large language models. We observe that since the proximal policy only serves as a trust region anchor between the behavior and target policies, we can approximate it through simple interpolation without explicit computation. We call this approach A-3PO (APproximated Proximal Policy Optimization). A-3PO eliminates this overhead, reducing training time by 18% while maintaining comparable performance. Code & off-the-shelf example are available at: https://github.com/inclusionAI/AReaL/blob/main/docs/algorithms/prox_approx.md
Optimizing NOTEARS Objectives via Topological Swaps
Recently, an intriguing class of non-convex optimization problems has emerged in the context of learning directed acyclic graphs (DAGs). These problems involve minimizing a given loss or score function, subject to a non-convex continuous constraint that penalizes the presence of cycles in a graph. In this work, we delve into the optimization challenges associated with this class of non-convex programs. To address these challenges, we propose a bi-level algorithm that leverages the non-convex constraint in a novel way. The outer level of the algorithm optimizes over topological orders by iteratively swapping pairs of nodes within the topological order of a DAG. A key innovation of our approach is the development of an effective method for generating a set of candidate swapping pairs for each iteration. At the inner level, given a topological order, we utilize off-the-shelf solvers that can handle linear constraints. The key advantage of our proposed algorithm is that it is guaranteed to find a local minimum or a KKT point under weaker conditions compared to previous work and finds solutions with lower scores. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in terms of achieving a better score. Additionally, our method can also be used as a post-processing algorithm to significantly improve the score of other algorithms. Code implementing the proposed method is available at https://github.com/duntrain/topo.
Accelerated Gradient Methods for Sparse Statistical Learning with Nonconvex Penalties
Nesterov's accelerated gradient (AG) is a popular technique to optimize objective functions comprising two components: a convex loss and a penalty function. While AG methods perform well for convex penalties, such as the LASSO, convergence issues may arise when it is applied to nonconvex penalties, such as SCAD. A recent proposal generalizes Nesterov's AG method to the nonconvex setting. The proposed algorithm requires specification of several hyperparameters for its practical application. Aside from some general conditions, there is no explicit rule for selecting the hyperparameters, and how different selection can affect convergence of the algorithm. In this article, we propose a hyperparameter setting based on the complexity upper bound to accelerate convergence, and consider the application of this nonconvex AG algorithm to high-dimensional linear and logistic sparse learning problems. We further establish the rate of convergence and present a simple and useful bound to characterize our proposed optimal damping sequence. Simulation studies show that convergence can be made, on average, considerably faster than that of the conventional proximal gradient algorithm. Our experiments also show that the proposed method generally outperforms the current state-of-the-art methods in terms of signal recovery.
VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment
Large language models (LLMs) are increasingly applied to complex reasoning tasks that require executing several complex steps before receiving any reward. Properly assigning credit to these steps is essential for enhancing model performance. Proximal Policy Optimization (PPO), a state-of-the-art reinforcement learning (RL) algorithm used for LLM finetuning, employs value networks to tackle credit assignment. However, value networks face challenges in predicting the expected cumulative rewards accurately in complex reasoning tasks, often leading to high-variance updates and suboptimal performance. In this work, we systematically evaluate the efficacy of value networks and reveal their significant shortcomings in reasoning-heavy LLM tasks, showing that they barely outperform a random baseline when comparing alternative steps. To address this, we propose VinePPO, a straightforward approach that leverages the flexibility of language environments to compute unbiased Monte Carlo-based estimates, bypassing the need for large value networks. Our method consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets with fewer gradient updates (up to 9x), less wall-clock time (up to 3.0x). These results emphasize the importance of accurate credit assignment in RL finetuning of LLM and demonstrate VinePPO's potential as a superior alternative.
A Model-Based Method for Minimizing CVaR and Beyond
We develop a variant of the stochastic prox-linear method for minimizing the Conditional Value-at-Risk (CVaR) objective. CVaR is a risk measure focused on minimizing worst-case performance, defined as the average of the top quantile of the losses. In machine learning, such a risk measure is useful to train more robust models. Although the stochastic subgradient method (SGM) is a natural choice for minimizing the CVaR objective, we show that our stochastic prox-linear (SPL+) algorithm can better exploit the structure of the objective, while still providing a convenient closed form update. Our SPL+ method also adapts to the scaling of the loss function, which allows for easier tuning. We then specialize a general convergence theorem for SPL+ to our setting, and show that it allows for a wider selection of step sizes compared to SGM. We support this theoretical finding experimentally.
Approximately Optimal Core Shapes for Tensor Decompositions
This work studies the combinatorial optimization problem of finding an optimal core tensor shape, also called multilinear rank, for a size-constrained Tucker decomposition. We give an algorithm with provable approximation guarantees for its reconstruction error via connections to higher-order singular values. Specifically, we introduce a novel Tucker packing problem, which we prove is NP-hard, and give a polynomial-time approximation scheme based on a reduction to the 2-dimensional knapsack problem with a matroid constraint. We also generalize our techniques to tree tensor network decompositions. We implement our algorithm using an integer programming solver, and show that its solution quality is competitive with (and sometimes better than) the greedy algorithm that uses the true Tucker decomposition loss at each step, while also running up to 1000x faster.
REBEL: Reinforcement Learning via Regressing Relative Rewards
While originally developed for continuous control problems, Proximal Policy Optimization (PPO) has emerged as the work-horse of a variety of reinforcement learning (RL) applications including the fine-tuning of generative models. Unfortunately, PPO requires multiple heuristics to enable stable convergence (e.g. value networks, clipping) and is notorious for its sensitivity to the precise implementation of these components. In response, we take a step back and ask what a minimalist RL algorithm for the era of generative models would look like. We propose REBEL, an algorithm that cleanly reduces the problem of policy optimization to regressing the relative rewards via a direct policy parameterization between two completions to a prompt, enabling strikingly lightweight implementation. In theory, we prove that fundamental RL algorithms like Natural Policy Gradient can be seen as variants of REBEL, which allows us to match the strongest known theoretical guarantees in terms of convergence and sample complexity in the RL literature. REBEL can also cleanly incorporate offline data and handle the intransitive preferences we frequently see in practice. Empirically, we find that REBEL provides a unified approach to language modeling and image generation with stronger or similar performance as PPO and DPO, all while being simpler to implement and more computationally tractable than PPO.
Accelerated Preference Optimization for Large Language Model Alignment
Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal tool for aligning large language models (LLMs) with human preferences. Direct Preference Optimization (DPO), one of the most popular approaches, formulates RLHF as a policy optimization problem without explicitly estimating the reward function. It overcomes the stability and efficiency issues of two-step approaches, which typically involve first estimating the reward function and then optimizing the policy via proximal policy optimization (PPO). Since RLHF is essentially an optimization problem, and it is well-known that momentum techniques can accelerate optimization both theoretically and empirically, a natural question arises: Can RLHF be accelerated by momentum? This paper answers this question in the affirmative. In detail, we first show that the iterative preference optimization method can be viewed as a proximal point method. Based on this observation, we propose a general Accelerated Preference Optimization (APO) framework, which unifies many existing preference optimization algorithms and employs Nesterov's momentum technique to speed up the alignment of LLMs. Theoretically, we demonstrate that APO can achieve a faster convergence rate than the standard iterative preference optimization methods, including DPO and Self-Play Preference Optimization (SPPO). Empirically, we show the superiority of APO over DPO, iterative DPO, and other strong baselines for RLHF on the AlpacaEval 2.0 benchmark.
Turn-PPO: Turn-Level Advantage Estimation with PPO for Improved Multi-Turn RL in Agentic LLMs
Reinforcement learning (RL) has re-emerged as a natural approach for training interactive LLM agents in real-world environments. However, directly applying the widely used Group Relative Policy Optimization (GRPO) algorithm to multi-turn tasks exposes notable limitations, particularly in scenarios requiring long-horizon reasoning. To address these challenges, we investigate more stable and effective advantage estimation strategies, especially for multi-turn settings. We first explore Proximal Policy Optimization (PPO) as an alternative and find it to be more robust than GRPO. To further enhance PPO in multi-turn scenarios, we introduce turn-PPO, a variant that operates on a turn-level MDP formulation, as opposed to the commonly used token-level MDP. Our results on the WebShop and Sokoban datasets demonstrate the effectiveness of turn-PPO, both with and without long reasoning components.
Accelerated Primal-Dual Methods for Convex-Strongly-Concave Saddle Point Problems
We investigate a primal-dual (PD) method for the saddle point problem (SPP) that uses a linear approximation of the primal function instead of the standard proximal step, resulting in a linearized PD (LPD) method. For convex-strongly concave SPP, we observe that the LPD method has a suboptimal dependence on the Lipschitz constant of the primal function. To fix this issue, we combine features of Accelerated Gradient Descent with the LPD method resulting in a single-loop Accelerated Linearized Primal-Dual (ALPD) method. ALPD method achieves the optimal gradient complexity when the SPP has a semi-linear coupling function. We also present an inexact ALPD method for SPPs with a general nonlinear coupling function that maintains the optimal gradient evaluations of the primal parts and significantly improves the gradient evaluations of the coupling term compared to the ALPD method. We verify our findings with numerical experiments.
SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization
Transfer learning has fundamentally changed the landscape of natural language processing (NLP) research. Many existing state-of-the-art models are first pre-trained on a large text corpus and then fine-tuned on downstream tasks. However, due to limited data resources from downstream tasks and the extremely large capacity of pre-trained models, aggressive fine-tuning often causes the adapted model to overfit the data of downstream tasks and forget the knowledge of the pre-trained model. To address the above issue in a more principled manner, we propose a new computational framework for robust and efficient fine-tuning for pre-trained language models. Specifically, our proposed framework contains two important ingredients: 1. Smoothness-inducing regularization, which effectively manages the capacity of the model; 2. Bregman proximal point optimization, which is a class of trust-region methods and can prevent knowledge forgetting. Our experiments demonstrate that our proposed method achieves the state-of-the-art performance on multiple NLP benchmarks.
An Image-Based Path Planning Algorithm Using a UAV Equipped with Stereo Vision
This paper presents a novel image-based path planning algorithm that was developed using computer vision techniques, as well as its comparative analysis with well-known deterministic and probabilistic algorithms, namely A* and Probabilistic Road Map algorithm (PRM). The terrain depth has a significant impact on the calculated path safety. The craters and hills on the surface cannot be distinguished in a two-dimensional image. The proposed method uses a disparity map of the terrain that is generated by using a UAV. Several computer vision techniques, including edge, line and corner detection methods, as well as the stereo depth reconstruction technique, are applied to the captured images and the found disparity map is used to define candidate way-points of the trajectory. The initial and desired points are detected automatically using ArUco marker pose estimation and circle detection techniques. After presenting the mathematical model and vision techniques, the developed algorithm is compared with well-known algorithms on different virtual scenes created in the V-REP simulation program and a physical setup created in a laboratory environment. Results are promising and demonstrate effectiveness of the proposed algorithm.
Contributions to Robust and Efficient Methods for Analysis of High Dimensional Data
A ubiquitous feature of data of our era is their extra-large sizes and dimensions. Analyzing such high-dimensional data poses significant challenges, since the feature dimension is often much larger than the sample size. This thesis introduces robust and computationally efficient methods to address several common challenges associated with high-dimensional data. In my first manuscript, I propose a coherent approach to variable screening that accommodates nonlinear associations. I develop a novel variable screening method that transcends traditional linear assumptions by leveraging mutual information, with an intended application in neuroimaging data. This approach allows for accurate identification of important variables by capturing nonlinear as well as linear relationships between the outcome and covariates. Building on this foundation, I develop new optimization methods for sparse estimation using nonconvex penalties in my second manuscript. These methods address notable challenges in current statistical computing practices, facilitating computationally efficient and robust analyses of complex datasets. The proposed method can be applied to a general class of optimization problems. In my third manuscript, I contribute to robust modeling of high-dimensional correlated observations by developing a mixed-effects model based on Tsallis power-law entropy maximization and discussed the theoretical properties of such distribution. This model surpasses the constraints of conventional Gaussian models by accommodating a broader class of distributions with enhanced robustness to outliers. Additionally, I develop a proximal nonlinear conjugate gradient algorithm that accelerates convergence while maintaining numerical stability, along with rigorous statistical properties for the proposed framework.
A Simple and Effective Reinforcement Learning Method for Text-to-Image Diffusion Fine-tuning
Reinforcement learning (RL)-based fine-tuning has emerged as a powerful approach for aligning diffusion models with black-box objectives. Proximal policy optimization (PPO) is the most popular choice of method for policy optimization. While effective in terms of performance, PPO is highly sensitive to hyper-parameters and involves substantial computational overhead. REINFORCE, on the other hand, mitigates some computational complexities such as high memory overhead and sensitive hyper-parameter tuning, but has suboptimal performance due to high-variance and sample inefficiency. While the variance of the REINFORCE can be reduced by sampling multiple actions per input prompt and using a baseline correction term, it still suffers from sample inefficiency. To address these challenges, we systematically analyze the efficiency-effectiveness trade-off between REINFORCE and PPO, and propose leave-one-out PPO (LOOP), a novel RL for diffusion fine-tuning method. LOOP combines variance reduction techniques from REINFORCE, such as sampling multiple actions per input prompt and a baseline correction term, with the robustness and sample efficiency of PPO via clipping and importance sampling. Our results demonstrate that LOOP effectively improves diffusion models on various black-box objectives, and achieves a better balance between computational efficiency and performance.
Network Memory Footprint Compression Through Jointly Learnable Codebooks and Mappings
The massive interest in deep neural networks (DNNs) for both computer vision and natural language processing has been sparked by the growth in computational power. However, this led to an increase in the memory footprint, to a point where it can be challenging to simply load a model on commodity devices such as mobile phones. To address this limitation, quantization is a favored solution as it maps high precision tensors to a low precision, memory efficient format. In terms of memory footprint reduction, its most effective variants are based on codebooks. These methods, however, suffer from two limitations. First, they either define a single codebook for each tensor, or use a memory-expensive mapping to multiple codebooks. Second, gradient descent optimization of the mapping favors jumps toward extreme values, hence not defining a proximal search. In this work, we propose to address these two limitations. First, we initially group similarly distributed neurons and leverage the re-ordered structure to either apply different scale factors to the different groups, or map weights that fall in these groups to several codebooks, without any mapping overhead. Second, stemming from this initialization, we propose a joint learning of the codebook and weight mappings that bears similarities with recent gradient-based post-training quantization techniques. Third, drawing estimation from straight-through estimation techniques, we introduce a novel gradient update definition to enable a proximal search of the codebooks and their mappings. The proposed jointly learnable codebooks and mappings (JLCM) method allows a very efficient approximation of any DNN: as such, a Llama 7B can be compressed down to 2Go and loaded on 5-year-old smartphones.
Tackling Prevalent Conditions in Unsupervised Combinatorial Optimization: Cardinality, Minimum, Covering, and More
Combinatorial optimization (CO) is naturally discrete, making machine learning based on differentiable optimization inapplicable. Karalias & Loukas (2020) adapted the probabilistic method to incorporate CO into differentiable optimization. Their work ignited the research on unsupervised learning for CO, composed of two main components: probabilistic objectives and derandomization. However, each component confronts unique challenges. First, deriving objectives under various conditions (e.g., cardinality constraints and minimum) is nontrivial. Second, the derandomization process is underexplored, and the existing derandomization methods are either random sampling or naive rounding. In this work, we aim to tackle prevalent (i.e., commonly involved) conditions in unsupervised CO. First, we concretize the targets for objective construction and derandomization with theoretical justification. Then, for various conditions commonly involved in different CO problems, we derive nontrivial objectives and derandomization to meet the targets. Finally, we apply the derivations to various CO problems. Via extensive experiments on synthetic and real-world graphs, we validate the correctness of our derivations and show our empirical superiority w.r.t. both optimization quality and speed.
Near-Optimal Solutions of Constrained Learning Problems
With the widespread adoption of machine learning systems, the need to curtail their behavior has become increasingly apparent. This is evidenced by recent advancements towards developing models that satisfy robustness, safety, and fairness requirements. These requirements can be imposed (with generalization guarantees) by formulating constrained learning problems that can then be tackled by dual ascent algorithms. Yet, though these algorithms converge in objective value, even in non-convex settings, they cannot guarantee that their outcome is feasible. Doing so requires randomizing over all iterates, which is impractical in virtually any modern applications. Still, final iterates have been observed to perform well in practice. In this work, we address this gap between theory and practice by characterizing the constraint violation of Lagrangian minimizers associated with optimal dual variables, despite lack of convexity. To do this, we leverage the fact that non-convex, finite-dimensional constrained learning problems can be seen as parametrizations of convex, functional problems. Our results show that rich parametrizations effectively mitigate the issue of feasibility in dual methods, shedding light on prior empirical successes of dual learning. We illustrate our findings in fair learning tasks.
Convex Optimization: Algorithms and Complexity
This monograph presents the main complexity theorems in convex optimization and their corresponding algorithms. Starting from the fundamental theory of black-box optimization, the material progresses towards recent advances in structural optimization and stochastic optimization. Our presentation of black-box optimization, strongly influenced by Nesterov's seminal book and Nemirovski's lecture notes, includes the analysis of cutting plane methods, as well as (accelerated) gradient descent schemes. We also pay special attention to non-Euclidean settings (relevant algorithms include Frank-Wolfe, mirror descent, and dual averaging) and discuss their relevance in machine learning. We provide a gentle introduction to structural optimization with FISTA (to optimize a sum of a smooth and a simple non-smooth term), saddle-point mirror prox (Nemirovski's alternative to Nesterov's smoothing), and a concise description of interior point methods. In stochastic optimization we discuss stochastic gradient descent, mini-batches, random coordinate descent, and sublinear algorithms. We also briefly touch upon convex relaxation of combinatorial problems and the use of randomness to round solutions, as well as random walks based methods.
Gradient is All You Need?
In this paper we provide a novel analytical perspective on the theoretical understanding of gradient-based learning algorithms by interpreting consensus-based optimization (CBO), a recently proposed multi-particle derivative-free optimization method, as a stochastic relaxation of gradient descent. Remarkably, we observe that through communication of the particles, CBO exhibits a stochastic gradient descent (SGD)-like behavior despite solely relying on evaluations of the objective function. The fundamental value of such link between CBO and SGD lies in the fact that CBO is provably globally convergent to global minimizers for ample classes of nonsmooth and nonconvex objective functions, hence, on the one side, offering a novel explanation for the success of stochastic relaxations of gradient descent. On the other side, contrary to the conventional wisdom for which zero-order methods ought to be inefficient or not to possess generalization abilities, our results unveil an intrinsic gradient descent nature of such heuristics. This viewpoint furthermore complements previous insights into the working principles of CBO, which describe the dynamics in the mean-field limit through a nonlinear nonlocal partial differential equation that allows to alleviate complexities of the nonconvex function landscape. Our proofs leverage a completely nonsmooth analysis, which combines a novel quantitative version of the Laplace principle (log-sum-exp trick) and the minimizing movement scheme (proximal iteration). In doing so, we furnish useful and precise insights that explain how stochastic perturbations of gradient descent overcome energy barriers and reach deep levels of nonconvex functions. Instructive numerical illustrations support the provided theoretical insights.
Simple Policy Optimization
Model-free reinforcement learning algorithms have seen remarkable progress, but key challenges remain. Trust Region Policy Optimization (TRPO) is known for ensuring monotonic policy improvement through conservative updates within a trust region, backed by strong theoretical guarantees. However, its reliance on complex second-order optimization limits its practical efficiency. Proximal Policy Optimization (PPO) addresses this by simplifying TRPO's approach using ratio clipping, improving efficiency but sacrificing some theoretical robustness. This raises a natural question: Can we combine the strengths of both methods? In this paper, we introduce Simple Policy Optimization (SPO), a novel unconstrained first-order algorithm. By slightly modifying the policy loss used in PPO, SPO can achieve the best of both worlds. Our new objective improves upon ratio clipping, offering stronger theoretical properties and better constraining the probability ratio within the trust region. Empirical results demonstrate that SPO outperforms PPO with a simple implementation, particularly for training large, complex network architectures end-to-end.
Approximating the Convex Hull via Metric Space Magnitude
Magnitude of a finite metric space and the related notion of magnitude functions on metric spaces is an active area of research in algebraic topology. Magnitude originally arose in the context of biology, where it represents the number of effective species in an environment; when applied to a one-parameter family of metric spaces tX with scale parameter t, the magnitude captures much of the underlying geometry of the space. Prior work has mostly focussed on properties of magnitude in a global sense; in this paper we restrict the sets to finite subsets of Euclidean space and investigate its individual components. We give an explicit formula for the corrected inclusion-exclusion principle, and define a quantity associated with each point, called the moment which gives an intrinsic ordering to the points. We exploit this in order to form an algorithm which approximates the convex hull.
What's Behind PPO's Collapse in Long-CoT? Value Optimization Holds the Secret
Reinforcement learning (RL) is pivotal for enabling large language models (LLMs) to generate long chains of thought (CoT) for complex tasks like math and reasoning. However, Proximal Policy Optimization (PPO), effective in many RL scenarios, fails in long CoT tasks. This paper identifies that value initialization bias and reward signal decay are the root causes of PPO's failure. We propose Value-Calibrated PPO (VC-PPO) to address these issues. In VC-PPO, the value model is pretrained to tackle initialization bias, and the Generalized Advantage Estimation (GAE) computation is decoupled between the actor and critic to mitigate reward signal decay. Experiments on the American Invitational Mathematics Examination (AIME) show that VC-PPO significantly boosts PPO performance. Ablation studies show that techniques in VC-PPO are essential in enhancing PPO for long CoT tasks.
Dual Lagrangian Learning for Conic Optimization
This paper presents Dual Lagrangian Learning (DLL), a principled learning methodology for dual conic optimization proxies. DLL leverages conic duality and the representation power of ML models to provide high-duality, dual-feasible solutions, and therefore valid Lagrangian dual bounds, for linear and nonlinear conic optimization problems. The paper introduces a systematic dual completion procedure, differentiable conic projection layers, and a self-supervised learning framework based on Lagrangian duality. It also provides closed-form dual completion formulae for broad classes of conic problems, which eliminate the need for costly implicit layers. The effectiveness of DLL is demonstrated on linear and nonlinear conic optimization problems. The proposed methodology significantly outperforms a state-of-the-art learning-based method, and achieves 1000x speedups over commercial interior-point solvers with optimality gaps under 0.5\% on average.
Bilevel Optimization under Unbounded Smoothness: A New Algorithm and Convergence Analysis
Bilevel optimization is an important formulation for many machine learning problems. Current bilevel optimization algorithms assume that the gradient of the upper-level function is Lipschitz. However, recent studies reveal that certain neural networks such as recurrent neural networks (RNNs) and long-short-term memory networks (LSTMs) exhibit potential unbounded smoothness, rendering conventional bilevel optimization algorithms unsuitable. In this paper, we design a new bilevel optimization algorithm, namely BO-REP, to address this challenge. This algorithm updates the upper-level variable using normalized momentum and incorporates two novel techniques for updating the lower-level variable: initialization refinement and periodic updates. Specifically, once the upper-level variable is initialized, a subroutine is invoked to obtain a refined estimate of the corresponding optimal lower-level variable, and the lower-level variable is updated only after every specific period instead of each iteration. When the upper-level problem is nonconvex and unbounded smooth, and the lower-level problem is strongly convex, we prove that our algorithm requires mathcal{O}(1/epsilon^4) iterations to find an epsilon-stationary point in the stochastic setting, where each iteration involves calling a stochastic gradient or Hessian-vector product oracle. Notably, this result matches the state-of-the-art complexity results under the bounded smoothness setting and without mean-squared smoothness of the stochastic gradient, up to logarithmic factors. Our proof relies on novel technical lemmas for the periodically updated lower-level variable, which are of independent interest. Our experiments on hyper-representation learning, hyperparameter optimization, and data hyper-cleaning for text classification tasks demonstrate the effectiveness of our proposed algorithm.
Understanding and Improving Hyperbolic Deep Reinforcement Learning
The performance of reinforcement learning (RL) agents depends critically on the quality of the underlying feature representations. Hyperbolic feature spaces are well-suited for this purpose, as they naturally capture hierarchical and relational structure often present in complex RL environments. However, leveraging these spaces commonly faces optimization challenges due to the nonstationarity of RL. In this work, we identify key factors that determine the success and failure of training hyperbolic deep RL agents. By analyzing the gradients of core operations in the Poincaré Ball and Hyperboloid models of hyperbolic geometry, we show that large-norm embeddings destabilize gradient-based training, leading to trust-region violations in proximal policy optimization (PPO). Based on these insights, we introduce Hyper++, a new hyperbolic PPO agent that consists of three components: (i) stable critic training through a categorical value loss instead of regression; (ii) feature regularization guaranteeing bounded norms while avoiding the curse of dimensionality from clipping; and (iii) using a more optimization-friendly formulation of hyperbolic network layers. In experiments on ProcGen, we show that Hyper++ guarantees stable learning, outperforms prior hyperbolic agents, and reduces wall-clock time by approximately 30%. On Atari-5 with Double DQN, Hyper++ strongly outperforms Euclidean and hyperbolic baselines. We release our code at https://github.com/Probabilistic-and-Interactive-ML/hyper-rl .
Model-Based and Sample-Efficient AI-Assisted Math Discovery in Sphere Packing
Sphere packing, Hilbert's eighteenth problem, asks for the densest arrangement of congruent spheres in n-dimensional Euclidean space. Although relevant to areas such as cryptography, crystallography, and medical imaging, the problem remains unresolved: beyond a few special dimensions, neither optimal packings nor tight upper bounds are known. Even a major breakthrough in dimension n=8, later recognised with a Fields Medal, underscores its difficulty. A leading technique for upper bounds, the three-point method, reduces the problem to solving large, high-precision semidefinite programs (SDPs). Because each candidate SDP may take days to evaluate, standard data-intensive AI approaches are infeasible. We address this challenge by formulating SDP construction as a sequential decision process, the SDP game, in which a policy assembles SDP formulations from a set of admissible components. Using a sample-efficient model-based framework that combines Bayesian optimisation with Monte Carlo Tree Search, we obtain new state-of-the-art upper bounds in dimensions 4-16, showing that model-based search can advance computational progress in longstanding geometric problems. Together, these results demonstrate that sample-efficient, model-based search can make tangible progress on mathematically rigid, evaluation limited problems, pointing towards a complementary direction for AI-assisted discovery beyond large-scale LLM-driven exploration.
Discovering Hierarchical Achievements in Reinforcement Learning via Contrastive Learning
Discovering achievements with a hierarchical structure in procedurally generated environments presents a significant challenge. This requires an agent to possess a broad range of abilities, including generalization and long-term reasoning. Many prior methods have been built upon model-based or hierarchical approaches, with the belief that an explicit module for long-term planning would be advantageous for learning hierarchical dependencies. However, these methods demand an excessive number of environment interactions or large model sizes, limiting their practicality. In this work, we demonstrate that proximal policy optimization (PPO), a simple yet versatile model-free algorithm, outperforms previous methods when optimized with recent implementation practices. Moreover, we find that the PPO agent can predict the next achievement to be unlocked to some extent, albeit with limited confidence. Based on this observation, we introduce a novel contrastive learning method, called achievement distillation, which strengthens the agent's ability to predict the next achievement. Our method exhibits a strong capacity for discovering hierarchical achievements and shows state-of-the-art performance on the challenging Crafter environment in a sample-efficient manner while utilizing fewer model parameters.
Accelerating Nash Learning from Human Feedback via Mirror Prox
Traditional Reinforcement Learning from Human Feedback (RLHF) often relies on reward models, frequently assuming preference structures like the Bradley-Terry model, which may not accurately capture the complexities of real human preferences (e.g., intransitivity). Nash Learning from Human Feedback (NLHF) offers a more direct alternative by framing the problem as finding a Nash equilibrium of a game defined by these preferences. In this work, we introduce Nash Mirror Prox (Nash-MP), an online NLHF algorithm that leverages the Mirror Prox optimization scheme to achieve fast and stable convergence to the Nash equilibrium. Our theoretical analysis establishes that Nash-MP exhibits last-iterate linear convergence towards the beta-regularized Nash equilibrium. Specifically, we prove that the KL-divergence to the optimal policy decreases at a rate of order (1+2beta)^{-N/2}, where N is a number of preference queries. We further demonstrate last-iterate linear convergence for the exploitability gap and uniformly for the span semi-norm of log-probabilities, with all these rates being independent of the size of the action space. Furthermore, we propose and analyze an approximate version of Nash-MP where proximal steps are estimated using stochastic policy gradients, making the algorithm closer to applications. Finally, we detail a practical implementation strategy for fine-tuning large language models and present experiments that demonstrate its competitive performance and compatibility with existing methods.
Back to Basics: Revisiting REINFORCE Style Optimization for Learning from Human Feedback in LLMs
AI alignment in the shape of Reinforcement Learning from Human Feedback (RLHF) is increasingly treated as a crucial ingredient for high performance large language models. Proximal Policy Optimization (PPO) has been positioned by recent literature as the canonical method for the RL part of RLHF. However, it involves both high computational cost and sensitive hyperparameter tuning. We posit that most of the motivational principles that led to the development of PPO are less of a practical concern in RLHF and advocate for a less computationally expensive method that preserves and even increases performance. We revisit the formulation of alignment from human preferences in the context of RL. Keeping simplicity as a guiding principle, we show that many components of PPO are unnecessary in an RLHF context and that far simpler REINFORCE-style optimization variants outperform both PPO and newly proposed "RL-free" methods such as DPO and RAFT. Our work suggests that careful adaptation to LLMs alignment characteristics enables benefiting from online RL optimization at low cost.
Enhancing Sampling Protocol for Point Cloud Classification Against Corruptions
Established sampling protocols for 3D point cloud learning, such as Farthest Point Sampling (FPS) and Fixed Sample Size (FSS), have long been relied upon. However, real-world data often suffer from corruptions, such as sensor noise, which violates the benign data assumption in current protocols. As a result, these protocols are highly vulnerable to noise, posing significant safety risks in critical applications like autonomous driving. To address these issues, we propose an enhanced point cloud sampling protocol, PointSP, designed to improve robustness against point cloud corruptions. PointSP incorporates key point reweighting to mitigate outlier sensitivity and ensure the selection of representative points. It also introduces a local-global balanced downsampling strategy, which allows for scalable and adaptive sampling while maintaining geometric consistency. Additionally, a lightweight tangent plane interpolation method is used to preserve local geometry while enhancing the density of the point cloud. Unlike learning-based approaches that require additional model training, PointSP is architecture-agnostic, requiring no extra learning or modification to the network. This enables seamless integration into existing pipelines. Extensive experiments on synthetic and real-world corrupted datasets show that PointSP significantly improves the robustness and accuracy of point cloud classification, outperforming state-of-the-art methods across multiple benchmarks.
Online Learning with Feedback Graphs: The True Shape of Regret
Sequential learning with feedback graphs is a natural extension of the multi-armed bandit problem where the problem is equipped with an underlying graph structure that provides additional information - playing an action reveals the losses of all the neighbors of the action. This problem was introduced by mannor2011 and received considerable attention in recent years. It is generally stated in the literature that the minimax regret rate for this problem is of order alpha T, where alpha is the independence number of the graph, and T is the time horizon. However, this is proven only when the number of rounds T is larger than alpha^3, which poses a significant restriction for the usability of this result in large graphs. In this paper, we define a new quantity R^*, called the problem complexity, and prove that the minimax regret is proportional to R^* for any graph and time horizon T. Introducing an intricate exploration strategy, we define the \mainAlgorithm algorithm that achieves the minimax optimal regret bound and becomes the first provably optimal algorithm for this setting, even if T is smaller than alpha^3.
Convergence Guarantees for RMSProp and Adam in Generalized-smooth Non-convex Optimization with Affine Noise Variance
This paper provides the first tight convergence analyses for RMSProp and Adam in non-convex optimization under the most relaxed assumptions of coordinate-wise generalized smoothness and affine noise variance. We first analyze RMSProp, which is a special case of Adam with adaptive learning rates but without first-order momentum. Specifically, to solve the challenges due to dependence among adaptive update, unbounded gradient estimate and Lipschitz constant, we demonstrate that the first-order term in the descent lemma converges and its denominator is upper bounded by a function of gradient norm. Based on this result, we show that RMSProp with proper hyperparameters converges to an epsilon-stationary point with an iteration complexity of mathcal O(epsilon^{-4}). We then generalize our analysis to Adam, where the additional challenge is due to a mismatch between the gradient and first-order momentum. We develop a new upper bound on the first-order term in the descent lemma, which is also a function of the gradient norm. We show that Adam with proper hyperparameters converges to an epsilon-stationary point with an iteration complexity of mathcal O(epsilon^{-4}). Our complexity results for both RMSProp and Adam match with the complexity lower bound established in arjevani2023lower.
ProbPose: A Probabilistic Approach to 2D Human Pose Estimation
Current Human Pose Estimation methods have achieved significant improvements. However, state-of-the-art models ignore out-of-image keypoints and use uncalibrated heatmaps as keypoint location representations. To address these limitations, we propose ProbPose, which predicts for each keypoint: a calibrated probability of keypoint presence at each location in the activation window, the probability of being outside of it, and its predicted visibility. To address the lack of evaluation protocols for out-of-image keypoints, we introduce the CropCOCO dataset and the Extended OKS (Ex-OKS) metric, which extends OKS to out-of-image points. Tested on COCO, CropCOCO, and OCHuman, ProbPose shows significant gains in out-of-image keypoint localization while also improving in-image localization through data augmentation. Additionally, the model improves robustness along the edges of the bounding box and offers better flexibility in keypoint evaluation. The code and models are available on https://mirapurkrabek.github.io/ProbPose/ for research purposes.
Project and Forget: Solving Large-Scale Metric Constrained Problems
Given a set of dissimilarity measurements amongst data points, determining what metric representation is most "consistent" with the input measurements or the metric that best captures the relevant geometric features of the data is a key step in many machine learning algorithms. Existing methods are restricted to specific kinds of metrics or small problem sizes because of the large number of metric constraints in such problems. In this paper, we provide an active set algorithm, Project and Forget, that uses Bregman projections, to solve metric constrained problems with many (possibly exponentially) inequality constraints. We provide a theoretical analysis of Project and Forget and prove that our algorithm converges to the global optimal solution and that the L_2 distance of the current iterate to the optimal solution decays asymptotically at an exponential rate. We demonstrate that using our method we can solve large problem instances of three types of metric constrained problems: general weight correlation clustering, metric nearness, and metric learning; in each case, out-performing the state of the art methods with respect to CPU times and problem sizes.
Over-parametrization via Lifting for Low-rank Matrix Sensing: Conversion of Spurious Solutions to Strict Saddle Points
This paper studies the role of over-parametrization in solving non-convex optimization problems. The focus is on the important class of low-rank matrix sensing, where we propose an infinite hierarchy of non-convex problems via the lifting technique and the Burer-Monteiro factorization. This contrasts with the existing over-parametrization technique where the search rank is limited by the dimension of the matrix and it does not allow a rich over-parametrization of an arbitrary degree. We show that although the spurious solutions of the problem remain stationary points through the hierarchy, they will be transformed into strict saddle points (under some technical conditions) and can be escaped via local search methods. This is the first result in the literature showing that over-parametrization creates a negative curvature for escaping spurious solutions. We also derive a bound on how much over-parametrization is requited to enable the elimination of spurious solutions.
Fast and Robust Iterative Closest Point
The Iterative Closest Point (ICP) algorithm and its variants are a fundamental technique for rigid registration between two point sets, with wide applications in different areas from robotics to 3D reconstruction. The main drawbacks for ICP are its slow convergence as well as its sensitivity to outliers, missing data, and partial overlaps. Recent work such as Sparse ICP achieves robustness via sparsity optimization at the cost of computational speed. In this paper, we propose a new method for robust registration with fast convergence. First, we show that the classical point-to-point ICP can be treated as a majorization-minimization (MM) algorithm, and propose an Anderson acceleration approach to speed up its convergence. In addition, we introduce a robust error metric based on the Welsch's function, which is minimized efficiently using the MM algorithm with Anderson acceleration. On challenging datasets with noises and partial overlaps, we achieve similar or better accuracy than Sparse ICP while being at least an order of magnitude faster. Finally, we extend the robust formulation to point-to-plane ICP, and solve the resulting problem using a similar Anderson-accelerated MM strategy. Our robust ICP methods improve the registration accuracy on benchmark datasets while being competitive in computational time.
Pairwise Proximal Policy Optimization: Harnessing Relative Feedback for LLM Alignment
Large Language Models (LLMs) can acquire extensive world knowledge through pre-training on large corpora. However, due to exposure to low-quality data, LLMs may exhibit harmful behavior without aligning with human values. The dominant approach for steering LLMs towards beneficial behavior involves Reinforcement Learning with Human Feedback (RLHF), with Proximal Policy Optimization (PPO) serving as the default RL optimizer. Despite its effectiveness, PPO has limitations when optimizing rewards trained from comparison-based loss. Primarily, PPO is not invariant to equivalent reward functions containing identical preference information due to the need to calibrate the reward scale. Additionally, PPO's necessity for token-wise updates introduces complexity in both function approximation and algorithm design compared to trajectory-wise optimization. This paper proposes a new framework, reinforcement learning with relative feedback, and a novel trajectory-wise policy gradient algorithm, Pairwise Proximal Policy Optimization (P3O) that operates directly on comparative rewards. We show theoretically that P3O is invariant to equivalent rewards and avoids the complexity of PPO. Empirical evaluations demonstrate that P3O outperforms PPO in the KL-Reward trade-off and can align with human preferences as well as or better than prior methods. In summary, this work introduces a simpler yet effective approach for aligning LLMs to human preferences through relative feedback.
Accelerated Infeasibility Detection of Constrained Optimization and Fixed-Point Iterations
As first-order optimization methods become the method of choice for solving large-scale optimization problems, optimization solvers based on first-order algorithms are being built. Such general-purpose solvers must robustly detect infeasible or misspecified problem instances, but the computational complexity of first-order methods for doing so has yet to be formally studied. In this work, we characterize the optimal accelerated rate of infeasibility detection. We show that the standard fixed-point iteration achieves a O(1/k^2) and O(1/k) rates, respectively, on the normalized iterates and the fixed-point residual converging to the infimal displacement vector, while the accelerated fixed-point iteration achieves O(1/k^2) and mathcal{O}(1/k^2) rates. We then provide a matching complexity lower bound to establish that Theta(1/k^2) is indeed the optimal accelerated rate.
Scalable Primal-Dual Actor-Critic Method for Safe Multi-Agent RL with General Utilities
We investigate safe multi-agent reinforcement learning, where agents seek to collectively maximize an aggregate sum of local objectives while satisfying their own safety constraints. The objective and constraints are described by {\it general utilities}, i.e., nonlinear functions of the long-term state-action occupancy measure, which encompass broader decision-making goals such as risk, exploration, or imitations. The exponential growth of the state-action space size with the number of agents presents challenges for global observability, further exacerbated by the global coupling arising from agents' safety constraints. To tackle this issue, we propose a primal-dual method utilizing shadow reward and κ-hop neighbor truncation under a form of correlation decay property, where κ is the communication radius. In the exact setting, our algorithm converges to a first-order stationary point (FOSP) at the rate of Oleft(T^{-2/3}right). In the sample-based setting, we demonstrate that, with high probability, our algorithm requires mathcal{O}left(ε^{-3.5}right) samples to achieve an ε-FOSP with an approximation error of O(φ_0^{2κ}), where φ_0in (0,1). Finally, we demonstrate the effectiveness of our model through extensive numerical experiments.
Proximal Supervised Fine-Tuning
Supervised fine-tuning (SFT) of foundation models often leads to poor generalization, where prior capabilities deteriorate after tuning on new tasks or domains. Inspired by trust-region policy optimization (TRPO) and proximal policy optimization (PPO) in reinforcement learning (RL), we propose Proximal SFT (PSFT). This fine-tuning objective incorporates the benefits of trust-region, effectively constraining policy drift during SFT while maintaining competitive tuning. By viewing SFT as a special case of policy gradient methods with constant positive advantages, we derive PSFT that stabilizes optimization and leads to generalization, while leaving room for further optimization in subsequent post-training stages. Experiments across mathematical and human-value domains show that PSFT matches SFT in-domain, outperforms it in out-of-domain generalization, remains stable under prolonged training without causing entropy collapse, and provides a stronger foundation for the subsequent optimization.
Mirror Sinkhorn: Fast Online Optimization on Transport Polytopes
Optimal transport is an important tool in machine learning, allowing to capture geometric properties of the data through a linear program on transport polytopes. We present a single-loop optimization algorithm for minimizing general convex objectives on these domains, utilizing the principles of Sinkhorn matrix scaling and mirror descent. The proposed algorithm is robust to noise, and can be used in an online setting. We provide theoretical guarantees for convex objectives and experimental results showcasing it effectiveness on both synthetic and real-world data.
Constrained Optimization via Exact Augmented Lagrangian and Randomized Iterative Sketching
We consider solving equality-constrained nonlinear, nonconvex optimization problems. This class of problems appears widely in a variety of applications in machine learning and engineering, ranging from constrained deep neural networks, to optimal control, to PDE-constrained optimization. We develop an adaptive inexact Newton method for this problem class. In each iteration, we solve the Lagrangian Newton system inexactly via a randomized iterative sketching solver, and select a suitable stepsize by performing line search on an exact augmented Lagrangian merit function. The randomized solvers have advantages over deterministic linear system solvers by significantly reducing per-iteration flops complexity and storage cost, when equipped with suitable sketching matrices. Our method adaptively controls the accuracy of the randomized solver and the penalty parameters of the exact augmented Lagrangian, to ensure that the inexact Newton direction is a descent direction of the exact augmented Lagrangian. This allows us to establish a global almost sure convergence. We also show that a unit stepsize is admissible locally, so that our method exhibits a local linear convergence. Furthermore, we prove that the linear convergence can be strengthened to superlinear convergence if we gradually sharpen the adaptive accuracy condition on the randomized solver. We demonstrate the superior performance of our method on benchmark nonlinear problems in CUTEst test set, constrained logistic regression with data from LIBSVM, and a PDE-constrained problem.
Proximal Policy Gradient Arborescence for Quality Diversity Reinforcement Learning
Training generally capable agents that thoroughly explore their environment and learn new and diverse skills is a long-term goal of robot learning. Quality Diversity Reinforcement Learning (QD-RL) is an emerging research area that blends the best aspects of both fields -- Quality Diversity (QD) provides a principled form of exploration and produces collections of behaviorally diverse agents, while Reinforcement Learning (RL) provides a powerful performance improvement operator enabling generalization across tasks and dynamic environments. Existing QD-RL approaches have been constrained to sample efficient, deterministic off-policy RL algorithms and/or evolution strategies, and struggle with highly stochastic environments. In this work, we, for the first time, adapt on-policy RL, specifically Proximal Policy Optimization (PPO), to the Differentiable Quality Diversity (DQD) framework and propose additional improvements over prior work that enable efficient optimization and discovery of novel skills on challenging locomotion tasks. Our new algorithm, Proximal Policy Gradient Arborescence (PPGA), achieves state-of-the-art results, including a 4x improvement in best reward over baselines on the challenging humanoid domain.
Faster Gradient-Free Algorithms for Nonsmooth Nonconvex Stochastic Optimization
We consider the optimization problem of the form min_{x in R^d} f(x) triangleq E_{xi} [F(x; xi)], where the component F(x;xi) is L-mean-squared Lipschitz but possibly nonconvex and nonsmooth. The recently proposed gradient-free method requires at most O( L^4 d^{3/2} epsilon^{-4} + Delta L^3 d^{3/2} delta^{-1} epsilon^{-4}) stochastic zeroth-order oracle complexity to find a (delta,epsilon)-Goldstein stationary point of objective function, where Delta = f(x_0) - inf_{x in R^d} f(x) and x_0 is the initial point of the algorithm. This paper proposes a more efficient algorithm using stochastic recursive gradient estimators, which improves the complexity to O(L^3 d^{3/2} epsilon^{-3}+ Delta L^2 d^{3/2} delta^{-1} epsilon^{-3}).
Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization
The extensive need for computational resources poses a significant obstacle to deploying large-scale Deep Neural Networks (DNN) on devices with constrained resources. At the same time, studies have demonstrated that a significant number of these DNN parameters are redundant and extraneous. In this paper, we introduce a novel approach for learning structured sparse neural networks, aimed at bridging the DNN hardware deployment challenges. We develop a novel regularization technique, termed Weighted Group Sparse Envelope Function (WGSEF), generalizing the Sparse Envelop Function (SEF), to select (or nullify) neuron groups, thereby reducing redundancy and enhancing computational efficiency. The method speeds up inference time and aims to reduce memory demand and power consumption, thanks to its adaptability which lets any hardware specify group definitions, such as filters, channels, filter shapes, layer depths, a single parameter (unstructured), etc. The properties of the WGSEF enable the pre-definition of a desired sparsity level to be achieved at the training convergence. In the case of redundant parameters, this approach maintains negligible network accuracy degradation or can even lead to improvements in accuracy. Our method efficiently computes the WGSEF regularizer and its proximal operator, in a worst-case linear complexity relative to the number of group variables. Employing a proximal-gradient-based optimization technique, to train the model, it tackles the non-convex minimization problem incorporating the neural network loss and the WGSEF. Finally, we experiment and illustrate the efficiency of our proposed method in terms of the compression ratio, accuracy, and inference latency.
Efficient computation of rankings from pairwise comparisons
We study the ranking of individuals, teams, or objects, based on pairwise comparisons between them, using the Bradley-Terry model. Estimates of rankings within this model are commonly made using a simple iterative algorithm first introduced by Zermelo almost a century ago. Here we describe an alternative and similarly simple iteration that provably returns identical results but does so much faster -- over a hundred times faster in some cases. We demonstrate this algorithm with applications to a range of example data sets and derive a number of results regarding its convergence.
Robust 3D Object Detection using Probabilistic Point Clouds from Single-Photon LiDARs
LiDAR-based 3D sensors provide point clouds, a canonical 3D representation used in various scene understanding tasks. Modern LiDARs face key challenges in several real-world scenarios, such as long-distance or low-albedo objects, producing sparse or erroneous point clouds. These errors, which are rooted in the noisy raw LiDAR measurements, get propagated to downstream perception models, resulting in potentially severe loss of accuracy. This is because conventional 3D processing pipelines do not retain any uncertainty information from the raw measurements when constructing point clouds. We propose Probabilistic Point Clouds (PPC), a novel 3D scene representation where each point is augmented with a probability attribute that encapsulates the measurement uncertainty (or confidence) in the raw data. We further introduce inference approaches that leverage PPC for robust 3D object detection; these methods are versatile and can be used as computationally lightweight drop-in modules in 3D inference pipelines. We demonstrate, via both simulations and real captures, that PPC-based 3D inference methods outperform several baselines using LiDAR as well as camera-LiDAR fusion models, across challenging indoor and outdoor scenarios involving small, distant, and low-albedo objects, as well as strong ambient light. Our project webpage is at https://bhavyagoyal.github.io/ppc .
Diffusion Probabilistic Models for 3D Point Cloud Generation
We present a probabilistic model for point cloud generation, which is fundamental for various 3D vision tasks such as shape completion, upsampling, synthesis and data augmentation. Inspired by the diffusion process in non-equilibrium thermodynamics, we view points in point clouds as particles in a thermodynamic system in contact with a heat bath, which diffuse from the original distribution to a noise distribution. Point cloud generation thus amounts to learning the reverse diffusion process that transforms the noise distribution to the distribution of a desired shape. Specifically, we propose to model the reverse diffusion process for point clouds as a Markov chain conditioned on certain shape latent. We derive the variational bound in closed form for training and provide implementations of the model. Experimental results demonstrate that our model achieves competitive performance in point cloud generation and auto-encoding. The code is available at https://github.com/luost26/diffusion-point-cloud.
Probabilistic Programming with Programmable Variational Inference
Compared to the wide array of advanced Monte Carlo methods supported by modern probabilistic programming languages (PPLs), PPL support for variational inference (VI) is less developed: users are typically limited to a predefined selection of variational objectives and gradient estimators, which are implemented monolithically (and without formal correctness arguments) in PPL backends. In this paper, we propose a more modular approach to supporting variational inference in PPLs, based on compositional program transformation. In our approach, variational objectives are expressed as programs, that may employ first-class constructs for computing densities of and expected values under user-defined models and variational families. We then transform these programs systematically into unbiased gradient estimators for optimizing the objectives they define. Our design enables modular reasoning about many interacting concerns, including automatic differentiation, density accumulation, tracing, and the application of unbiased gradient estimation strategies. Additionally, relative to existing support for VI in PPLs, our design increases expressiveness along three axes: (1) it supports an open-ended set of user-defined variational objectives, rather than a fixed menu of options; (2) it supports a combinatorial space of gradient estimation strategies, many not automated by today's PPLs; and (3) it supports a broader class of models and variational families, because it supports constructs for approximate marginalization and normalization (previously introduced only for Monte Carlo inference). We implement our approach in an extension to the Gen probabilistic programming system (genjax.vi, implemented in JAX), and evaluate on several deep generative modeling tasks, showing minimal performance overhead vs. hand-coded implementations and performance competitive with well-established open-source PPLs.
Towards Gradient Free and Projection Free Stochastic Optimization
This paper focuses on the problem of constrained stochastic optimization. A zeroth order Frank-Wolfe algorithm is proposed, which in addition to the projection-free nature of the vanilla Frank-Wolfe algorithm makes it gradient free. Under convexity and smoothness assumption, we show that the proposed algorithm converges to the optimal objective function at a rate Oleft(1/T^{1/3}right), where T denotes the iteration count. In particular, the primal sub-optimality gap is shown to have a dimension dependence of Oleft(d^{1/3}right), which is the best known dimension dependence among all zeroth order optimization algorithms with one directional derivative per iteration. For non-convex functions, we obtain the Frank-Wolfe gap to be Oleft(d^{1/3}T^{-1/4}right). Experiments on black-box optimization setups demonstrate the efficacy of the proposed algorithm.
Learning to schedule job-shop problems: Representation and policy learning using graph neural network and reinforcement learning
We propose a framework to learn to schedule a job-shop problem (JSSP) using a graph neural network (GNN) and reinforcement learning (RL). We formulate the scheduling process of JSSP as a sequential decision-making problem with graph representation of the state to consider the structure of JSSP. In solving the formulated problem, the proposed framework employs a GNN to learn that node features that embed the spatial structure of the JSSP represented as a graph (representation learning) and derive the optimum scheduling policy that maps the embedded node features to the best scheduling action (policy learning). We employ Proximal Policy Optimization (PPO) based RL strategy to train these two modules in an end-to-end fashion. We empirically demonstrate that the GNN scheduler, due to its superb generalization capability, outperforms practically favored dispatching rules and RL-based schedulers on various benchmark JSSP. We also confirmed that the proposed framework learns a transferable scheduling policy that can be employed to schedule a completely new JSSP (in terms of size and parameters) without further training.
Bregman Proximal Langevin Monte Carlo via Bregman--Moreau Envelopes
We propose efficient Langevin Monte Carlo algorithms for sampling distributions with nonsmooth convex composite potentials, which is the sum of a continuously differentiable function and a possibly nonsmooth function. We devise such algorithms leveraging recent advances in convex analysis and optimization methods involving Bregman divergences, namely the Bregman--Moreau envelopes and the Bregman proximity operators, and in the Langevin Monte Carlo algorithms reminiscent of mirror descent. The proposed algorithms extend existing Langevin Monte Carlo algorithms in two aspects -- the ability to sample nonsmooth distributions with mirror descent-like algorithms, and the use of the more general Bregman--Moreau envelope in place of the Moreau envelope as a smooth approximation of the nonsmooth part of the potential. A particular case of the proposed scheme is reminiscent of the Bregman proximal gradient algorithm. The efficiency of the proposed methodology is illustrated with various sampling tasks at which existing Langevin Monte Carlo methods are known to perform poorly.
Faster Rates of Convergence to Stationary Points in Differentially Private Optimization
We study the problem of approximating stationary points of Lipschitz and smooth functions under (varepsilon,delta)-differential privacy (DP) in both the finite-sum and stochastic settings. A point w is called an alpha-stationary point of a function F:R^drightarrowR if |nabla F(w)|leq alpha. We provide a new efficient algorithm that finds an Obig(big[sqrt{d}{nvarepsilon}big]^{2/3}big)-stationary point in the finite-sum setting, where n is the number of samples. This improves on the previous best rate of Obig(big[sqrt{d}{nvarepsilon}big]^{1/2}big). We also give a new construction that improves over the existing rates in the stochastic optimization setting, where the goal is to find approximate stationary points of the population risk. Our construction finds a Obig(1{n^{1/3}} + big[sqrt{d}{nvarepsilon}big]^{1/2}big)-stationary point of the population risk in time linear in n. Furthermore, under the additional assumption of convexity, we completely characterize the sample complexity of finding stationary points of the population risk (up to polylog factors) and show that the optimal rate on population stationarity is tilde Thetabig(1{n}+sqrt{d}{nvarepsilon}big). Finally, we show that our methods can be used to provide dimension-independent rates of Obig(1{n}+minbig(big[sqrt{rank}{nvarepsilon}big]^{2/3},1{(nvarepsilon)^{2/5}}big)big) on population stationarity for Generalized Linear Models (GLM), where rank is the rank of the design matrix, which improves upon the previous best known rate.
Fat Polygonal Partitions with Applications to Visualization and Embeddings
Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in R^d. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space: we give a rm polylog(Delta)-approximation algorithm for embedding n-point ultrametrics into R^d with minimum distortion, where Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.
Escaping saddle points in zeroth-order optimization: the power of two-point estimators
Two-point zeroth order methods are important in many applications of zeroth-order optimization, such as robotics, wind farms, power systems, online optimization, and adversarial robustness to black-box attacks in deep neural networks, where the problem may be high-dimensional and/or time-varying. Most problems in these applications are nonconvex and contain saddle points. While existing works have shown that zeroth-order methods utilizing Omega(d) function valuations per iteration (with d denoting the problem dimension) can escape saddle points efficiently, it remains an open question if zeroth-order methods based on two-point estimators can escape saddle points. In this paper, we show that by adding an appropriate isotropic perturbation at each iteration, a zeroth-order algorithm based on 2m (for any 1 leq m leq d) function evaluations per iteration can not only find epsilon-second order stationary points polynomially fast, but do so using only Oleft(d{mepsilon^{2}psi}right) function evaluations, where psi geq Omegaleft(epsilonright) is a parameter capturing the extent to which the function of interest exhibits the strict saddle property.
Probabilistic Partitive Partitioning (PPP)
Clustering is a NP-hard problem. Thus, no optimal algorithm exists, heuristics are applied to cluster the data. Heuristics can be very resource-intensive, if not applied properly. For substantially large data sets computational efficiencies can be achieved by reducing the input space if a minimal loss of information can be achieved. Clustering algorithms, in general, face two common problems: 1) these converge to different settings with different initial conditions and; 2) the number of clusters has to be arbitrarily decided beforehand. This problem has become critical in the realm of big data. Recently, clustering algorithms have emerged which can speedup computations using parallel processing over the grid but face the aforementioned problems. Goals: Our goals are to find methods to cluster data which: 1) guarantee convergence to the same settings irrespective of the initial conditions; 2) eliminate the need to establish the number of clusters beforehand, and 3) can be applied to cluster large datasets. Methods: We introduce a method that combines probabilistic and combinatorial clustering methods to produce repeatable and compact clusters that are not sensitive to initial conditions. This method harnesses the power of k-means (a combinatorial clustering method) to cluster/partition very large dimensional datasets and uses the Gaussian Mixture Model (a probabilistic clustering method) to validate the k-means partitions. Results: We show that this method produces very compact clusters that are not sensitive to initial conditions. This method can be used to identify the most 'separable' set in a dataset which increases the 'clusterability' of a dataset. This method also eliminates the need to specify the number of clusters in advance.
Cyclic Block Coordinate Descent With Variance Reduction for Composite Nonconvex Optimization
Nonconvex optimization is central in solving many machine learning problems, in which block-wise structure is commonly encountered. In this work, we propose cyclic block coordinate methods for nonconvex optimization problems with non-asymptotic gradient norm guarantees. Our convergence analysis is based on a gradient Lipschitz condition with respect to a Mahalanobis norm, inspired by a recent progress on cyclic block coordinate methods. In deterministic settings, our convergence guarantee matches the guarantee of (full-gradient) gradient descent, but with the gradient Lipschitz constant being defined w.r.t.~a Mahalanobis norm. In stochastic settings, we use recursive variance reduction to decrease the per-iteration cost and match the arithmetic operation complexity of current optimal stochastic full-gradient methods, with a unified analysis for both finite-sum and infinite-sum cases. We prove a faster linear convergence result when a Polyak-{\L}ojasiewicz (P{\L}) condition holds. To our knowledge, this work is the first to provide non-asymptotic convergence guarantees -- variance-reduced or not -- for a cyclic block coordinate method in general composite (smooth + nonsmooth) nonconvex settings. Our experimental results demonstrate the efficacy of the proposed cyclic scheme in training deep neural nets.
Projections onto Spectral Matrix Cones
Semidefinite programming is a fundamental problem class in convex optimization, but despite recent advances in solvers, solving large-scale semidefinite programs remains challenging. Generally the matrix functions involved are spectral or unitarily invariant, i.e., they depend only on the eigenvalues or singular values of the matrix. This paper investigates how spectral matrix cones -- cones defined from epigraphs and perspectives of spectral or unitarily invariant functions -- can be used to enhance first-order conic solvers for semidefinite programs. Our main result shows that projecting a matrix can be reduced to projecting its eigenvalues or singular values, which we demonstrate can be done at a negligible cost compared to the eigenvalue or singular value decomposition itself. We have integrated support for spectral matrix cone projections into the Splitting Conic Solver (SCS). Numerical experiments show that SCS with this enhancement can achieve speedups of up to an order of magnitude for solving semidefinite programs arising in experimental design, robust principal component analysis, and graph partitioning.
PRDP: Proximal Reward Difference Prediction for Large-Scale Reward Finetuning of Diffusion Models
Reward finetuning has emerged as a promising approach to aligning foundation models with downstream objectives. Remarkable success has been achieved in the language domain by using reinforcement learning (RL) to maximize rewards that reflect human preference. However, in the vision domain, existing RL-based reward finetuning methods are limited by their instability in large-scale training, rendering them incapable of generalizing to complex, unseen prompts. In this paper, we propose Proximal Reward Difference Prediction (PRDP), enabling stable black-box reward finetuning for diffusion models for the first time on large-scale prompt datasets with over 100K prompts. Our key innovation is the Reward Difference Prediction (RDP) objective that has the same optimal solution as the RL objective while enjoying better training stability. Specifically, the RDP objective is a supervised regression objective that tasks the diffusion model with predicting the reward difference of generated image pairs from their denoising trajectories. We theoretically prove that the diffusion model that obtains perfect reward difference prediction is exactly the maximizer of the RL objective. We further develop an online algorithm with proximal updates to stably optimize the RDP objective. In experiments, we demonstrate that PRDP can match the reward maximization ability of well-established RL-based methods in small-scale training. Furthermore, through large-scale training on text prompts from the Human Preference Dataset v2 and the Pick-a-Pic v1 dataset, PRDP achieves superior generation quality on a diverse set of complex, unseen prompts whereas RL-based methods completely fail.
Fast and Simple Explainability for Point Cloud Networks
We propose a fast and simple explainable AI (XAI) method for point cloud data. It computes pointwise importance with respect to a trained network downstream task. This allows better understanding of the network properties, which is imperative for safety-critical applications. In addition to debugging and visualization, our low computational complexity facilitates online feedback to the network at inference. This can be used to reduce uncertainty and to increase robustness. In this work, we introduce Feature Based Interpretability (FBI), where we compute the features' norm, per point, before the bottleneck. We analyze the use of gradients and post- and pre-bottleneck strategies, showing pre-bottleneck is preferred, in terms of smoothness and ranking. We obtain at least three orders of magnitude speedup, compared to current XAI methods, thus, scalable for big point clouds or large-scale architectures. Our approach achieves SOTA results, in terms of classification explainability. We demonstrate how the proposed measure is helpful in analyzing and characterizing various aspects of 3D learning, such as rotation invariance, robustness to out-of-distribution (OOD) outliers or domain shift and dataset bias.
Delay-agnostic Asynchronous Coordinate Update Algorithm
We propose a delay-agnostic asynchronous coordinate update algorithm (DEGAS) for computing operator fixed points, with applications to asynchronous optimization. DEGAS includes novel asynchronous variants of ADMM and block-coordinate descent as special cases. We prove that DEGAS converges under both bounded and unbounded delays under delay-free parameter conditions. We also validate by theory and experiments that DEGAS adapts well to the actual delays. The effectiveness of DEGAS is demonstrated by numerical experiments on classification problems.
TurboReg: TurboClique for Robust and Efficient Point Cloud Registration
Robust estimation is essential in correspondence-based Point Cloud Registration (PCR). Existing methods using maximal clique search in compatibility graphs achieve high recall but suffer from exponential time complexity, limiting their use in time-sensitive applications. To address this challenge, we propose a fast and robust estimator, TurboReg, built upon a novel lightweight clique, TurboClique, and a highly parallelizable Pivot-Guided Search (PGS) algorithm. First, we define the TurboClique as a 3-clique within a highly-constrained compatibility graph. The lightweight nature of the 3-clique allows for efficient parallel searching, and the highly-constrained compatibility graph ensures robust spatial consistency for stable transformation estimation. Next, PGS selects matching pairs with high SC^2 scores as pivots, effectively guiding the search toward TurboCliques with higher inlier ratios. Moreover, the PGS algorithm has linear time complexity and is significantly more efficient than the maximal clique search with exponential time complexity. Extensive experiments show that TurboReg achieves state-of-the-art performance across multiple real-world datasets, with substantial speed improvements. For example, on the 3DMatch+FCGF dataset, TurboReg (1K) operates 208.22times faster than 3DMAC while also achieving higher recall. Our code is accessible at https://github.com/Laka-3DV/TurboReg{TurboReg}.
Optimal Sets and Solution Paths of ReLU Networks
We develop an analytical framework to characterize the set of optimal ReLU neural networks by reformulating the non-convex training problem as a convex program. We show that the global optima of the convex parameterization are given by a polyhedral set and then extend this characterization to the optimal set of the non-convex training objective. Since all stationary points of the ReLU training problem can be represented as optima of sub-sampled convex programs, our work provides a general expression for all critical points of the non-convex objective. We then leverage our results to provide an optimal pruning algorithm for computing minimal networks, establish conditions for the regularization path of ReLU networks to be continuous, and develop sensitivity results for minimal ReLU networks.
Complete Dictionary Learning via ell_p-norm Maximization
Dictionary learning is a classic representation learning method that has been widely applied in signal processing and data analytics. In this paper, we investigate a family of ell_p-norm (p>2,p in N) maximization approaches for the complete dictionary learning problem from theoretical and algorithmic aspects. Specifically, we prove that the global maximizers of these formulations are very close to the true dictionary with high probability, even when Gaussian noise is present. Based on the generalized power method (GPM), an efficient algorithm is then developed for the ell_p-based formulations. We further show the efficacy of the developed algorithm: for the population GPM algorithm over the sphere constraint, it first quickly enters the neighborhood of a global maximizer, and then converges linearly in this region. Extensive experiments will demonstrate that the ell_p-based approaches enjoy a higher computational efficiency and better robustness than conventional approaches and p=3 performs the best.
ColorGrid: A Multi-Agent Non-Stationary Environment for Goal Inference and Assistance
Autonomous agents' interactions with humans are increasingly focused on adapting to their changing preferences in order to improve assistance in real-world tasks. Effective agents must learn to accurately infer human goals, which are often hidden, to collaborate well. However, existing Multi-Agent Reinforcement Learning (MARL) environments lack the necessary attributes required to rigorously evaluate these agents' learning capabilities. To this end, we introduce ColorGrid, a novel MARL environment with customizable non-stationarity, asymmetry, and reward structure. We investigate the performance of Independent Proximal Policy Optimization (IPPO), a state-of-the-art (SOTA) MARL algorithm, in ColorGrid and find through extensive ablations that, particularly with simultaneous non-stationary and asymmetric goals between a ``leader'' agent representing a human and a ``follower'' assistant agent, ColorGrid is unsolved by IPPO. To support benchmarking future MARL algorithms, we release our environment code, model checkpoints, and trajectory visualizations at https://github.com/andreyrisukhin/ColorGrid.
SampleNet: Differentiable Point Cloud Sampling
There is a growing number of tasks that work directly on point clouds. As the size of the point cloud grows, so do the computational demands of these tasks. A possible solution is to sample the point cloud first. Classic sampling approaches, such as farthest point sampling (FPS), do not consider the downstream task. A recent work showed that learning a task-specific sampling can improve results significantly. However, the proposed technique did not deal with the non-differentiability of the sampling operation and offered a workaround instead. We introduce a novel differentiable relaxation for point cloud sampling that approximates sampled points as a mixture of points in the primary input cloud. Our approximation scheme leads to consistently good results on classification and geometry reconstruction applications. We also show that the proposed sampling method can be used as a front to a point cloud registration network. This is a challenging task since sampling must be consistent across two different point clouds for a shared downstream task. In all cases, our approach outperforms existing non-learned and learned sampling alternatives. Our code is publicly available at https://github.com/itailang/SampleNet.
Truncated Proximal Policy Optimization
Recently, test-time scaling Large Language Models (LLMs) have demonstrated exceptional reasoning capabilities across scientific and professional tasks by generating long chains-of-thought (CoT). As a crucial component for developing these reasoning models, reinforcement learning (RL), exemplified by Proximal Policy Optimization (PPO) and its variants, allows models to learn through trial and error. However, PPO can be time-consuming due to its inherent on-policy nature, which is further exacerbated by increasing response lengths. In this work, we propose Truncated Proximal Policy Optimization (T-PPO), a novel extension to PPO that improves training efficiency by streamlining policy update and length-restricted response generation. T-PPO mitigates the issue of low hardware utilization, an inherent drawback of fully synchronized long-generation procedures, where resources often sit idle during the waiting periods for complete rollouts. Our contributions are two-folds. First, we propose Extended Generalized Advantage Estimation (EGAE) for advantage estimation derived from incomplete responses while maintaining the integrity of policy learning. Second, we devise a computationally optimized mechanism that allows for the independent optimization of the policy and value models. By selectively filtering prompt and truncated tokens, this mechanism reduces redundant computations and accelerates the training process without sacrificing convergence performance. We demonstrate the effectiveness and efficacy of T-PPO on AIME 2024 with a 32B base model. The experimental results show that T-PPO improves the training efficiency of reasoning LLMs by up to 2.5x and outperforms its existing competitors.
Averaged Method of Multipliers for Bi-Level Optimization without Lower-Level Strong Convexity
Gradient methods have become mainstream techniques for Bi-Level Optimization (BLO) in learning fields. The validity of existing works heavily rely on either a restrictive Lower- Level Strong Convexity (LLSC) condition or on solving a series of approximation subproblems with high accuracy or both. In this work, by averaging the upper and lower level objectives, we propose a single loop Bi-level Averaged Method of Multipliers (sl-BAMM) for BLO that is simple yet efficient for large-scale BLO and gets rid of the limited LLSC restriction. We further provide non-asymptotic convergence analysis of sl-BAMM towards KKT stationary points, and the comparative advantage of our analysis lies in the absence of strong gradient boundedness assumption, which is always required by others. Thus our theory safely captures a wider variety of applications in deep learning, especially where the upper-level objective is quadratic w.r.t. the lower-level variable. Experimental results demonstrate the superiority of our method.
Two-timescale Extragradient for Finding Local Minimax Points
Minimax problems are notoriously challenging to optimize. However, we demonstrate that the two-timescale extragradient can be a viable solution. By utilizing dynamical systems theory, we show that it converges to points that satisfy the second-order necessary condition of local minimax points, under a mild condition. This work surpasses all previous results as we eliminate a crucial assumption that the Hessian, with respect to the maximization variable, is nondegenerate.
Stochastic Policy Gradient Methods: Improved Sample Complexity for Fisher-non-degenerate Policies
Recently, the impressive empirical success of policy gradient (PG) methods has catalyzed the development of their theoretical foundations. Despite the huge efforts directed at the design of efficient stochastic PG-type algorithms, the understanding of their convergence to a globally optimal policy is still limited. In this work, we develop improved global convergence guarantees for a general class of Fisher-non-degenerate parameterized policies which allows to address the case of continuous state action spaces. First, we propose a Normalized Policy Gradient method with Implicit Gradient Transport (N-PG-IGT) and derive a mathcal{O}(varepsilon^{-2.5}) sample complexity of this method for finding a global varepsilon-optimal policy. Improving over the previously known mathcal{O}(varepsilon^{-3}) complexity, this algorithm does not require the use of importance sampling or second-order information and samples only one trajectory per iteration. Second, we further improve this complexity to mathcal{mathcal{O} }(varepsilon^{-2}) by considering a Hessian-Aided Recursive Policy Gradient ((N)-HARPG) algorithm enhanced with a correction based on a Hessian-vector product. Interestingly, both algorithms are (i) simple and easy to implement: single-loop, do not require large batches of trajectories and sample at most two trajectories per iteration; (ii) computationally and memory efficient: they do not require expensive subroutines at each iteration and can be implemented with memory linear in the dimension of parameters.
Mixture cure semiparametric additive hazard models under partly interval censoring -- a penalized likelihood approach
Survival analysis can sometimes involve individuals who will not experience the event of interest, forming what is known as the cured group. Identifying such individuals is not always possible beforehand, as they provide only right-censored data. Ignoring the presence of the cured group can introduce bias in the final model. This paper presents a method for estimating a semiparametric additive hazards model that accounts for the cured fraction. Unlike regression coefficients in a hazard ratio model, those in an additive hazard model measure hazard differences. The proposed method uses a primal-dual interior point algorithm to obtain constrained maximum penalized likelihood estimates of the model parameters, including the regression coefficients and the baseline hazard, subject to certain non-negativity constraints.
Provable Training for Graph Contrastive Learning
Graph Contrastive Learning (GCL) has emerged as a popular training approach for learning node embeddings from augmented graphs without labels. Despite the key principle that maximizing the similarity between positive node pairs while minimizing it between negative node pairs is well established, some fundamental problems are still unclear. Considering the complex graph structure, are some nodes consistently well-trained and following this principle even with different graph augmentations? Or are there some nodes more likely to be untrained across graph augmentations and violate the principle? How to distinguish these nodes and further guide the training of GCL? To answer these questions, we first present experimental evidence showing that the training of GCL is indeed imbalanced across all nodes. To address this problem, we propose the metric "node compactness", which is the lower bound of how a node follows the GCL principle related to the range of augmentations. We further derive the form of node compactness theoretically through bound propagation, which can be integrated into binary cross-entropy as a regularization. To this end, we propose the PrOvable Training (POT) for GCL, which regularizes the training of GCL to encode node embeddings that follows the GCL principle better. Through extensive experiments on various benchmarks, POT consistently improves the existing GCL approaches, serving as a friendly plugin.
Transductive Few-Shot Learning: Clustering is All You Need?
We investigate a general formulation for clustering and transductive few-shot learning, which integrates prototype-based objectives, Laplacian regularization and supervision constraints from a few labeled data points. We propose a concave-convex relaxation of the problem, and derive a computationally efficient block-coordinate bound optimizer, with convergence guarantee. At each iteration,our optimizer computes independent (parallel) updates for each point-to-cluster assignment. Therefore, it could be trivially distributed for large-scale clustering and few-shot tasks. Furthermore, we provides a thorough convergence analysis based on point-to-set maps. Were port comprehensive clustering and few-shot learning experiments over various data sets, showing that our method yields competitive performances, in term of accuracy and optimization quality, while scaling up to large problems. Using standard training on the base classes, without resorting to complex meta-learning and episodic-training strategies, our approach outperforms state-of-the-art few-shot methods by significant margins, across various models, settings and data sets. Surprisingly, we found that even standard clustering procedures (e.g., K-means), which correspond to particular, non-regularized cases of our general model, already achieve competitive performances in comparison to the state-of-the-art in few-shot learning. These surprising results point to the limitations of the current few-shot benchmarks, and question the viability of a large body of convoluted few-shot learning techniques in the recent literature.
AI-SARAH: Adaptive and Implicit Stochastic Recursive Gradient Methods
We present AI-SARAH, a practical variant of SARAH. As a variant of SARAH, this algorithm employs the stochastic recursive gradient yet adjusts step-size based on local geometry. AI-SARAH implicitly computes step-size and efficiently estimates local Lipschitz smoothness of stochastic functions. It is fully adaptive, tune-free, straightforward to implement, and computationally efficient. We provide technical insight and intuitive illustrations on its design and convergence. We conduct extensive empirical analysis and demonstrate its strong performance compared with its classical counterparts and other state-of-the-art first-order methods in solving convex machine learning problems.
Learning to Relax: Setting Solver Parameters Across a Sequence of Linear System Instances
Solving a linear system Ax=b is a fundamental scientific computing primitive for which numerous solvers and preconditioners have been developed. These come with parameters whose optimal values depend on the system being solved and are often impossible or too expensive to identify; thus in practice sub-optimal heuristics are used. We consider the common setting in which many related linear systems need to be solved, e.g. during a single numerical simulation. In this scenario, can we sequentially choose parameters that attain a near-optimal overall number of iterations, without extra matrix computations? We answer in the affirmative for Successive Over-Relaxation (SOR), a standard solver whose parameter omega has a strong impact on its runtime. For this method, we prove that a bandit online learning algorithm--using only the number of iterations as feedback--can select parameters for a sequence of instances such that the overall cost approaches that of the best fixed omega as the sequence length increases. Furthermore, when given additional structural information, we show that a contextual bandit method asymptotically achieves the performance of the instance-optimal policy, which selects the best omega for each instance. Our work provides the first learning-theoretic treatment of high-precision linear system solvers and the first end-to-end guarantees for data-driven scientific computing, demonstrating theoretically the potential to speed up numerical methods using well-understood learning algorithms.
Polychromic Objectives for Reinforcement Learning
Reinforcement learning fine-tuning (RLFT) is a dominant paradigm for improving pretrained policies for downstream tasks. These pretrained policies, trained on large datasets, produce generations with a broad range of promising but unrefined behaviors. Often, a critical failure mode of RLFT arises when policies lose this diversity and collapse into a handful of easily exploitable outputs. This convergence hinders exploration, which is essential for expanding the capabilities of the pretrained policy and for amplifying the benefits of test-time compute scaling. To address this, we introduce an objective for policy gradient methods that explicitly enforces the exploration and refinement of diverse generations, which we call a polychromic objective. We then show how proximal policy optimization (PPO) can be adapted to optimize this objective. Our method (1) employs vine sampling to collect on-policy rollouts and (2) modifies the advantage function to reflect the advantage under our new objective. Experiments on BabyAI, Minigrid, and Algorithmic Creativity show that our method improves success rates by reliably solving a larger set of environment configurations and generalizes better under large perturbations. Moreover, when given multiple attempts in pass@k experiments, the policy achieves substantially higher coverage, demonstrating its ability to maintain and exploit a diverse repertoire of strategies.
EdgeGaussians -- 3D Edge Mapping via Gaussian Splatting
With their meaningful geometry and their omnipresence in the 3D world, edges are extremely useful primitives in computer vision. 3D edges comprise of lines and curves, and methods to reconstruct them use either multi-view images or point clouds as input. State-of-the-art image-based methods first learn a 3D edge point cloud then fit 3D edges to it. The edge point cloud is obtained by learning a 3D neural implicit edge field from which the 3D edge points are sampled on a specific level set (0 or 1). However, such methods present two important drawbacks: i) it is not realistic to sample points on exact level sets due to float imprecision and training inaccuracies. Instead, they are sampled within a range of levels so the points do not lie accurately on the 3D edges and require further processing. ii) Such implicit representations are computationally expensive and require long training times. In this paper, we address these two limitations and propose a 3D edge mapping that is simpler, more efficient, and preserves accuracy. Our method learns explicitly the 3D edge points and their edge direction hence bypassing the need for point sampling. It casts a 3D edge point as the center of a 3D Gaussian and the edge direction as the principal axis of the Gaussian. Such a representation has the advantage of being not only geometrically meaningful but also compatible with the efficient training optimization defined in Gaussian Splatting. Results show that the proposed method produces edges as accurate and complete as the state-of-the-art while being an order of magnitude faster. Code is released at https://github.com/kunalchelani/EdgeGaussians.
Primal and Dual Analysis of Entropic Fictitious Play for Finite-sum Problems
The entropic fictitious play (EFP) is a recently proposed algorithm that minimizes the sum of a convex functional and entropy in the space of measures -- such an objective naturally arises in the optimization of a two-layer neural network in the mean-field regime. In this work, we provide a concise primal-dual analysis of EFP in the setting where the learning problem exhibits a finite-sum structure. We establish quantitative global convergence guarantees for both the continuous-time and discrete-time dynamics based on properties of a proximal Gibbs measure introduced in Nitanda et al. (2022). Furthermore, our primal-dual framework entails a memory-efficient particle-based implementation of the EFP update, and also suggests a connection to gradient boosting methods. We illustrate the efficiency of our novel implementation in experiments including neural network optimization and image synthesis.
Damped Newton Method with Near-Optimal Global Oleft(k^{-3} right) Convergence Rate
This paper investigates the global convergence of stepsized Newton methods for convex functions. We propose several simple stepsize schedules with fast global convergence guarantees, up to O (k^{-3}), nearly matching lower complexity bounds Omega (k^{-3.5}) of second-order methods. For cases with multiple plausible smoothness parameterizations or an unknown smoothness constant, we introduce a stepsize backtracking procedure that ensures convergence as if the optimal smoothness parameters were known.
TGDPO: Harnessing Token-Level Reward Guidance for Enhancing Direct Preference Optimization
Recent advancements in reinforcement learning from human feedback have shown that utilizing fine-grained token-level reward models can substantially enhance the performance of Proximal Policy Optimization (PPO) in aligning large language models. However, it is challenging to leverage such token-level reward as guidance for Direct Preference Optimization (DPO), since DPO is formulated as a sequence-level bandit problem. To address this challenge, this work decomposes the sequence-level PPO into a sequence of token-level proximal policy optimization problems and then frames the problem of token-level PPO with token-level reward guidance, from which closed-form optimal token-level policy and the corresponding token-level reward can be derived. Using the obtained reward and Bradley-Terry model, this work establishes a framework of computable loss functions with token-level reward guidance for DPO, and proposes a practical reward guidance based on the induced DPO reward. This formulation enables different tokens to exhibit varying degrees of deviation from reference policy based on their respective rewards. Experiment results demonstrate that our method achieves substantial performance improvements over DPO, with win rate gains of up to 7.5 points on MT-Bench, 6.2 points on AlpacaEval 2, and 4.3 points on Arena-Hard. Code is available at https://github.com/dvlab-research/TGDPO.
Generalized-Smooth Nonconvex Optimization is As Efficient As Smooth Nonconvex Optimization
Various optimal gradient-based algorithms have been developed for smooth nonconvex optimization. However, many nonconvex machine learning problems do not belong to the class of smooth functions and therefore the existing algorithms are sub-optimal. Instead, these problems have been shown to satisfy certain generalized-smooth conditions, which have not been well understood in the existing literature. In this paper, we propose a notion of alpha-symmetric generalized-smoothness that extends the existing notions and covers many important functions such as high-order polynomials and exponential functions. We study the fundamental properties and establish descent lemmas for the functions in this class. Then, to solve such a large class of nonconvex problems, we design a special deterministic normalized gradient descent algorithm that achieves the optimal iteration complexity O(epsilon^{-2}), and also prove that the popular SPIDER variance reduction algorithm achieves the optimal sample complexity O(epsilon^{-3}) in the stochastic setting. Our results show that solving generalized-smooth nonconvex problems is as efficient as solving smooth nonconvex problems.
Competitive Gradient Optimization
We study the problem of convergence to a stationary point in zero-sum games. We propose competitive gradient optimization (CGO ), a gradient-based method that incorporates the interactions between the two players in zero-sum games for optimization updates. We provide continuous-time analysis of CGO and its convergence properties while showing that in the continuous limit, CGO predecessors degenerate to their gradient descent ascent (GDA) variants. We provide a rate of convergence to stationary points and further propose a generalized class of alpha-coherent function for which we provide convergence analysis. We show that for strictly alpha-coherent functions, our algorithm convergences to a saddle point. Moreover, we propose optimistic CGO (OCGO), an optimistic variant, for which we show convergence rate to saddle points in alpha-coherent class of functions.
Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order Information
We present a novel adaptive optimization algorithm for large-scale machine learning problems. Equipped with a low-cost estimate of local curvature and Lipschitz smoothness, our method dynamically adapts the search direction and step-size. The search direction contains gradient information preconditioned by a well-scaled diagonal preconditioning matrix that captures the local curvature information. Our methodology does not require the tedious task of learning rate tuning, as the learning rate is updated automatically without adding an extra hyperparameter. We provide convergence guarantees on a comprehensive collection of optimization problems, including convex, strongly convex, and nonconvex problems, in both deterministic and stochastic regimes. We also conduct an extensive empirical evaluation on standard machine learning problems, justifying our algorithm's versatility and demonstrating its strong performance compared to other start-of-the-art first-order and second-order methods.
Efficient Graph Field Integrators Meet Point Clouds
We present two new classes of algorithms for efficient field integration on graphs encoding point clouds. The first class, SeparatorFactorization(SF), leverages the bounded genus of point cloud mesh graphs, while the second class, RFDiffusion(RFD), uses popular epsilon-nearest-neighbor graph representations for point clouds. Both can be viewed as providing the functionality of Fast Multipole Methods (FMMs), which have had a tremendous impact on efficient integration, but for non-Euclidean spaces. We focus on geometries induced by distributions of walk lengths between points (e.g., shortest-path distance). We provide an extensive theoretical analysis of our algorithms, obtaining new results in structural graph theory as a byproduct. We also perform exhaustive empirical evaluation, including on-surface interpolation for rigid and deformable objects (particularly for mesh-dynamics modeling), Wasserstein distance computations for point clouds, and the Gromov-Wasserstein variant.
Robust 360-8PA: Redesigning The Normalized 8-point Algorithm for 360-FoV Images
This paper presents a novel preconditioning strategy for the classic 8-point algorithm (8-PA) for estimating an essential matrix from 360-FoV images (i.e., equirectangular images) in spherical projection. To alleviate the effect of uneven key-feature distributions and outlier correspondences, which can potentially decrease the accuracy of an essential matrix, our method optimizes a non-rigid transformation to deform a spherical camera into a new spatial domain, defining a new constraint and a more robust and accurate solution for an essential matrix. Through several experiments using random synthetic points, 360-FoV, and fish-eye images, we demonstrate that our normalization can increase the camera pose accuracy by about 20% without significantly overhead the computation time. In addition, we present further benefits of our method through both a constant weighted least-square optimization that improves further the well known Gold Standard Method (GSM) (i.e., the non-linear optimization by using epipolar errors); and a relaxation of the number of RANSAC iterations, both showing that our normalization outcomes a more reliable, robust, and accurate solution.
Online Matching with Stochastic Rewards: Advanced Analyses Using Configuration Linear Programs
Mehta and Panigrahi (2012) proposed Online Matching with Stochastic Rewards, which generalizes the Online Bipartite Matching problem of Karp, Vazirani, and Vazirani (1990) by associating the edges with success probabilities. This new feature captures the pay-per-click model in online advertising. Recently, Huang and Zhang (2020) studied this problem under the online primal dual framework using the Configuration Linear Program (LP), and got the best known competitive ratios of the Stochastic Balance algorithm. Their work suggests that the more expressive Configuration LP is more suitable for this problem than the Matching LP. This paper advances the theory of Configuration LP in two directions. Our technical contribution includes a characterization of the joint matching outcome of an offline vertex and all its neighbors. This characterization may be of independent interest, and is aligned with the spirit of Configuration LP. By contrast, previous analyses of Ranking generally focus on only one neighbor. Second, we designed a Stochastic Configuration LP that captures a stochastic benchmark proposed by Goyal and Udwani (2020), who used a Path-based LP. The Stochastic Configuration LP is smaller and simpler than the Path-based LP. Moreover, using the new LP we improved the competitive ratio of Stochastic Balance from 0.596 to 0.611 when the success probabilities are infinitesimal, and to 0.613 when the success probabilities are further equal.
Weighting vectors for machine learning: numerical harmonic analysis applied to boundary detection
Metric space magnitude, an active field of research in algebraic topology, is a scalar quantity that summarizes the effective number of distinct points that live in a general metric space. The {\em weighting vector} is a closely-related concept that captures, in a nontrivial way, much of the underlying geometry of the original metric space. Recent work has demonstrated that when the metric space is Euclidean, the weighting vector serves as an effective tool for boundary detection. We recast this result and show the weighting vector may be viewed as a solution to a kernelized SVM. As one consequence, we apply this new insight to the task of outlier detection, and we demonstrate performance that is competitive or exceeds performance of state-of-the-art techniques on benchmark data sets. Under mild assumptions, we show the weighting vector, which has computational cost of matrix inversion, can be efficiently approximated in linear time. We show how nearest neighbor methods can approximate solutions to the minimization problems defined by SVMs.
Convergent Graph Solvers
We propose the convergent graph solver (CGS), a deep learning method that learns iterative mappings to predict the properties of a graph system at its stationary state (fixed point) with guaranteed convergence. CGS systematically computes the fixed points of a target graph system and decodes them to estimate the stationary properties of the system without the prior knowledge of existing solvers or intermediate solutions. The forward propagation of CGS proceeds in three steps: (1) constructing the input dependent linear contracting iterative maps, (2) computing the fixed-points of the linear maps, and (3) decoding the fixed-points to estimate the properties. The contractivity of the constructed linear maps guarantees the existence and uniqueness of the fixed points following the Banach fixed point theorem. To train CGS efficiently, we also derive a tractable analytical expression for its gradient by leveraging the implicit function theorem. We evaluate the performance of CGS by applying it to various network-analytic and graph benchmark problems. The results indicate that CGS has competitive capabilities for predicting the stationary properties of graph systems, irrespective of whether the target systems are linear or non-linear. CGS also shows high performance for graph classification problems where the existence or the meaning of a fixed point is hard to be clearly defined, which highlights the potential of CGS as a general graph neural network architecture.
Theoretical analysis and computation of the sample Frechet mean for sets of large graphs based on spectral information
To characterize the location (mean, median) of a set of graphs, one needs a notion of centrality that is adapted to metric spaces, since graph sets are not Euclidean spaces. A standard approach is to consider the Frechet mean. In this work, we equip a set of graphs with the pseudometric defined by the norm between the eigenvalues of their respective adjacency matrix. Unlike the edit distance, this pseudometric reveals structural changes at multiple scales, and is well adapted to studying various statistical problems for graph-valued data. We describe an algorithm to compute an approximation to the sample Frechet mean of a set of undirected unweighted graphs with a fixed size using this pseudometric.
On the saddle point problem for non-convex optimization
A central challenge to many fields of science and engineering involves minimizing non-convex error functions over continuous, high dimensional spaces. Gradient descent or quasi-Newton methods are almost ubiquitously used to perform such minimizations, and it is often thought that a main source of difficulty for the ability of these local methods to find the global minimum is the proliferation of local minima with much higher error than the global minimum. Here we argue, based on results from statistical physics, random matrix theory, and neural network theory, that a deeper and more profound difficulty originates from the proliferation of saddle points, not local minima, especially in high dimensional problems of practical interest. Such saddle points are surrounded by high error plateaus that can dramatically slow down learning, and give the illusory impression of the existence of a local minimum. Motivated by these arguments, we propose a new algorithm, the saddle-free Newton method, that can rapidly escape high dimensional saddle points, unlike gradient descent and quasi-Newton methods. We apply this algorithm to deep neural network training, and provide preliminary numerical evidence for its superior performance.
BRAIn: Bayesian Reward-conditioned Amortized Inference for natural language generation from feedback
Following the success of Proximal Policy Optimization (PPO) for Reinforcement Learning from Human Feedback (RLHF), new techniques such as Sequence Likelihood Calibration (SLiC) and Direct Policy Optimization (DPO) have been proposed that are offline in nature and use rewards in an indirect manner. These techniques, in particular DPO, have recently become the tools of choice for LLM alignment due to their scalability and performance. However, they leave behind important features of the PPO approach. Methods such as SLiC or RRHF make use of the Reward Model (RM) only for ranking/preference, losing fine-grained information and ignoring the parametric form of the RM (eg., Bradley-Terry, Plackett-Luce), while methods such as DPO do not use even a separate reward model. In this work, we propose a novel approach, named BRAIn, that re-introduces the RM as part of a distribution matching approach.BRAIn considers the LLM distribution conditioned on the assumption of output goodness and applies Bayes theorem to derive an intractable posterior distribution where the RM is explicitly represented. BRAIn then distills this posterior into an amortized inference network through self-normalized importance sampling, leading to a scalable offline algorithm that significantly outperforms prior art in summarization and AntropicHH tasks. BRAIn also has interesting connections to PPO and DPO for specific RM choices.
Optimization by Directional Attacks: Solving Problems with Neural Network Surrogates
This paper tackles optimization problems whose objective and constraints involve a trained Neural Network (NN), where the goal is to maximize f(Phi(x)) subject to c(Phi(x)) leq 0, with f smooth, c general and non-stringent, and Phi an already trained and possibly nonwhite-box NN. We address two challenges regarding this problem: identifying ascent directions for local search, and ensuring reliable convergence towards relevant local solutions. To this end, we re-purpose the notion of directional NN attacks as efficient optimization subroutines, since directional NN attacks use the neural structure of Phi to compute perturbations of x that steer Phi(x) in prescribed directions. Precisely, we develop an attack operator that computes attacks of Phi at any x along the direction nabla f(Phi(x)). Then, we propose a hybrid algorithm combining the attack operator with derivative-free optimization (DFO) techniques, designed for numerical reliability by remaining oblivious to the structure of the problem. We consider the cDSM algorithm, which offers asymptotic guarantees to converge to a local solution under mild assumptions on the problem. The resulting method alternates between attack-based steps for heuristic yet fast local intensification and cDSM steps for certified convergence and numerical reliability. Experiments on three problems show that this hybrid approach consistently outperforms standard DFO baselines.
Moreau Envelope for Nonconvex Bi-Level Optimization: A Single-loop and Hessian-free Solution Strategy
This work focuses on addressing two major challenges in the context of large-scale nonconvex Bi-Level Optimization (BLO) problems, which are increasingly applied in machine learning due to their ability to model nested structures. These challenges involve ensuring computational efficiency and providing theoretical guarantees. While recent advances in scalable BLO algorithms have primarily relied on lower-level convexity simplification, our work specifically tackles large-scale BLO problems involving nonconvexity in both the upper and lower levels. We simultaneously address computational and theoretical challenges by introducing an innovative single-loop gradient-based algorithm, utilizing the Moreau envelope-based reformulation, and providing non-asymptotic convergence analysis for general nonconvex BLO problems. Notably, our algorithm relies solely on first-order gradient information, enhancing its practicality and efficiency, especially for large-scale BLO learning tasks. We validate our approach's effectiveness through experiments on various synthetic problems, two typical hyper-parameter learning tasks, and a real-world neural architecture search application, collectively demonstrating its superior performance.
Mixing predictions for online metric algorithms
A major technique in learning-augmented online algorithms is combining multiple algorithms or predictors. Since the performance of each predictor may vary over time, it is desirable to use not the single best predictor as a benchmark, but rather a dynamic combination which follows different predictors at different times. We design algorithms that combine predictions and are competitive against such dynamic combinations for a wide class of online problems, namely, metrical task systems. Against the best (in hindsight) unconstrained combination of ell predictors, we obtain a competitive ratio of O(ell^2), and show that this is best possible. However, for a benchmark with slightly constrained number of switches between different predictors, we can get a (1+epsilon)-competitive algorithm. Moreover, our algorithms can be adapted to access predictors in a bandit-like fashion, querying only one predictor at a time. An unexpected implication of one of our lower bounds is a new structural insight about covering formulations for the k-server problem.
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Computing the optimal transport distance between statistical distributions is a fundamental task in machine learning. One remarkable recent advancement is entropic regularization and the Sinkhorn algorithm, which utilizes only matrix scaling and guarantees an approximated solution with near-linear runtime. Despite the success of the Sinkhorn algorithm, its runtime may still be slow due to the potentially large number of iterations needed for convergence. To achieve possibly super-exponential convergence, we present Sinkhorn-Newton-Sparse (SNS), an extension to the Sinkhorn algorithm, by introducing early stopping for the matrix scaling steps and a second stage featuring a Newton-type subroutine. Adopting the variational viewpoint that the Sinkhorn algorithm maximizes a concave Lyapunov potential, we offer the insight that the Hessian matrix of the potential function is approximately sparse. Sparsification of the Hessian results in a fast O(n^2) per-iteration complexity, the same as the Sinkhorn algorithm. In terms of total iteration count, we observe that the SNS algorithm converges orders of magnitude faster across a wide range of practical cases, including optimal transportation between empirical distributions and calculating the Wasserstein W_1, W_2 distance of discretized densities. The empirical performance is corroborated by a rigorous bound on the approximate sparsity of the Hessian matrix.
Efficiently Computing Local Lipschitz Constants of Neural Networks via Bound Propagation
Lipschitz constants are connected to many properties of neural networks, such as robustness, fairness, and generalization. Existing methods for computing Lipschitz constants either produce relatively loose upper bounds or are limited to small networks. In this paper, we develop an efficient framework for computing the ell_infty local Lipschitz constant of a neural network by tightly upper bounding the norm of Clarke Jacobian via linear bound propagation. We formulate the computation of local Lipschitz constants with a linear bound propagation process on a high-order backward graph induced by the chain rule of Clarke Jacobian. To enable linear bound propagation, we derive tight linear relaxations for specific nonlinearities in Clarke Jacobian. This formulate unifies existing ad-hoc approaches such as RecurJac, which can be seen as a special case of ours with weaker relaxations. The bound propagation framework also allows us to easily borrow the popular Branch-and-Bound (BaB) approach from neural network verification to further tighten Lipschitz constants. Experiments show that on tiny models, our method produces comparable bounds compared to exact methods that cannot scale to slightly larger models; on larger models, our method efficiently produces tighter results than existing relaxed or naive methods, and our method scales to much larger practical models that previous works could not handle. We also demonstrate an application on provable monotonicity analysis. Code is available at https://github.com/shizhouxing/Local-Lipschitz-Constants.
Theoretical and Numerical Analysis of 3D Reconstruction Using Point and Line Incidences
We study the joint image of lines incident to points, meaning the set of image tuples obtained from fixed cameras observing a varying 3D point-line incidence. We prove a formula for the number of complex critical points of the triangulation problem that aims to compute a 3D point-line incidence from noisy images. Our formula works for an arbitrary number of images and measures the intrinsic difficulty of this triangulation. Additionally, we conduct numerical experiments using homotopy continuation methods, comparing different approaches of triangulation of such incidences. In our setup, exploiting the incidence relations gives both a faster point reconstruction and in three views more accurate.
Zonotope hit-and-run for efficient sampling from projection DPPs
Determinantal point processes (DPPs) are distributions over sets of items that model diversity using kernels. Their applications in machine learning include summary extraction and recommendation systems. Yet, the cost of sampling from a DPP is prohibitive in large-scale applications, which has triggered an effort towards efficient approximate samplers. We build a novel MCMC sampler that combines ideas from combinatorial geometry, linear programming, and Monte Carlo methods to sample from DPPs with a fixed sample cardinality, also called projection DPPs. Our sampler leverages the ability of the hit-and-run MCMC kernel to efficiently move across convex bodies. Previous theoretical results yield a fast mixing time of our chain when targeting a distribution that is close to a projection DPP, but not a DPP in general. Our empirical results demonstrate that this extends to sampling projection DPPs, i.e., our sampler is more sample-efficient than previous approaches which in turn translates to faster convergence when dealing with costly-to-evaluate functions, such as summary extraction in our experiments.
