threshold-nor / README.md
CharlesCNorton
Add optimality note: exhaustive enumeration confirms magnitude 2 is minimum
8080444
---
license: mit
tags:
- pytorch
- safetensors
- threshold-logic
- neuromorphic
- functionally-complete
---
# threshold-nor
The silence detector. Fires only when both inputs are quiet.
## Circuit
```
x y
β”‚ β”‚
β””β”€β”¬β”€β”˜
β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚w: -1,-1β”‚
β”‚ b: 0 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚
β–Ό
NOR(x,y)
```
## Mechanism
With bias 0, we start exactly at threshold. Any input subtracts, pushing us below:
| x | y | sum | output |
|---|---|-----|--------|
| 0 | 0 | 0 | 1 |
| 0 | 1 | -1 | 0 |
| 1 | 0 | -1 | 0 |
| 1 | 1 | -2 | 0 |
NOR is OR with inverted output. It's also NOT extended to two inputs: NOR(x,x) = NOT(x).
## Parameters
| | |
|---|---|
| Weights | [-1, -1] |
| Bias | 0 |
| Total | 3 parameters |
## Optimality
Exhaustive enumeration of all 7 weight configurations at magnitudes 0-2 confirms this circuit is **already at minimum magnitude (2)**. There is exactly one valid configuration at magnitude 2, and no valid configurations exist below it.
## Functional Completeness
Like NAND, NOR can build any Boolean function:
- NOT(x) = NOR(x, x)
- OR(x,y) = NOT(NOR(x,y)) = NOR(NOR(x,y), NOR(x,y))
- AND(x,y) = NOR(NOT(x), NOT(y))
NOR logic was used in the Apollo Guidance Computer.
## Usage
```python
from safetensors.torch import load_file
import torch
w = load_file('model.safetensors')
def nor_gate(x, y):
inputs = torch.tensor([float(x), float(y)])
return int((inputs * w['weight']).sum() + w['bias'] >= 0)
```
## Files
```
threshold-nor/
β”œβ”€β”€ model.safetensors
β”œβ”€β”€ model.py
β”œβ”€β”€ config.json
└── README.md
```
## License
MIT