|
|
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.set_page_config(
|
|
|
page_title="Pili-Pili Quantum Solver | Ahilan Kumaresan",
|
|
|
page_icon="🍟",
|
|
|
layout="wide",
|
|
|
initial_sidebar_state="expanded"
|
|
|
)
|
|
|
|
|
|
import numpy as np
|
|
|
import matplotlib.pyplot as plt
|
|
|
import math
|
|
|
import time
|
|
|
|
|
|
try:
|
|
|
import mediapipe as mp
|
|
|
import cv2
|
|
|
import plotly.graph_objects as go
|
|
|
from plotly.subplots import make_subplots
|
|
|
except ImportError as e:
|
|
|
st.error(f"CRITICAL ERROR: Failed to import required libraries. {e}")
|
|
|
st.stop()
|
|
|
|
|
|
|
|
|
try:
|
|
|
import functions as f
|
|
|
except ImportError as e:
|
|
|
st.error(f"CRITICAL ERROR: Failed to import physics engine. {e}")
|
|
|
st.stop()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if 'countdown_finished' not in st.session_state:
|
|
|
st.session_state.countdown_finished = False
|
|
|
if 'V_user_defined' not in st.session_state:
|
|
|
st.session_state.V_user_defined = None
|
|
|
|
|
|
|
|
|
st.markdown("""
|
|
|
<style>
|
|
|
.main {
|
|
|
background-color: #0e1117;
|
|
|
}
|
|
|
.stButton>button {
|
|
|
width: 100%;
|
|
|
border-radius: 5px;
|
|
|
height: 3em;
|
|
|
background-color: #262730;
|
|
|
color: white;
|
|
|
border: 1px solid #4b4b4b;
|
|
|
}
|
|
|
.stButton>button:hover {
|
|
|
border-color: #00ADB5;
|
|
|
color: #00ADB5;
|
|
|
}
|
|
|
h1, h2, h3 {
|
|
|
color: #00ADB5;
|
|
|
font-family: 'Helvetica Neue', sans-serif;
|
|
|
}
|
|
|
</style>
|
|
|
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with st.sidebar:
|
|
|
st.title("Quantum Solver 2.0")
|
|
|
st.caption("v2.1 - HF Fix")
|
|
|
st.markdown("---")
|
|
|
|
|
|
|
|
|
page = st.radio("Navigation", ["Simulator", "Benchmarks & Verification", "Theory & Method"])
|
|
|
|
|
|
st.markdown("---")
|
|
|
|
|
|
|
|
|
st.markdown("### About Moi")
|
|
|
st.markdown("""
|
|
|
**Ahilan Kumaresan**
|
|
|
|
|
|
*Aspiring Mathematical & Computational Physicist*
|
|
|
|
|
|
Developing Interative and accurate numerical tools for quantum mechanics.
|
|
|
""")
|
|
|
|
|
|
st.info("Verified against Analytical Solutions & QMSolve Package.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def plot_interactive(E, psi, V, x, nos=5):
|
|
|
"""
|
|
|
Creates a professional interactive Plotly chart for wavefunctions and energy levels.
|
|
|
"""
|
|
|
|
|
|
states = min(nos, len(E))
|
|
|
|
|
|
|
|
|
fig = make_subplots(
|
|
|
rows=1, cols=2,
|
|
|
column_widths=[0.8, 0.2],
|
|
|
shared_yaxes=True,
|
|
|
horizontal_spacing=0.02,
|
|
|
subplot_titles=("Wavefunctions & Potential", "Energy Spectrum")
|
|
|
)
|
|
|
|
|
|
|
|
|
if len(E) >= 2:
|
|
|
scale = (E[1] - E[0]) * 0.4
|
|
|
else:
|
|
|
scale = max(E[0] * 0.1, 0.5)
|
|
|
|
|
|
max_E = E[states-1] if states > 0 else 10
|
|
|
window_height = max_E * 1.5
|
|
|
|
|
|
|
|
|
x_internal = x[1:-1]
|
|
|
V_internal = V[1:-1]
|
|
|
|
|
|
|
|
|
V_clipped = np.clip(V_internal, 0, window_height)
|
|
|
|
|
|
fig.add_trace(
|
|
|
go.Scatter(
|
|
|
x=x_internal.tolist() if hasattr(x_internal, 'tolist') else x_internal,
|
|
|
y=V_clipped.tolist() if hasattr(V_clipped, 'tolist') else V_clipped,
|
|
|
mode='lines',
|
|
|
name='V(x)',
|
|
|
line=dict(color='#FFFFFF', width=2.5),
|
|
|
hovertemplate='V(x): %{y:.2f}<extra></extra>'
|
|
|
),
|
|
|
row=1, col=1
|
|
|
)
|
|
|
|
|
|
|
|
|
colors = ['#00ADB5', '#FF2E63', '#F38181', '#FCE38A', '#EAFFD0',
|
|
|
'#95E1D3', '#FFB6C1', '#DDA0DD', '#87CEEB', '#98FB98']
|
|
|
|
|
|
for n in range(states):
|
|
|
|
|
|
psi_n = psi[:, n]
|
|
|
max_amp = np.max(np.abs(psi_n))
|
|
|
if max_amp > 1e-9:
|
|
|
psi_n = psi_n / max_amp
|
|
|
else:
|
|
|
psi_n = psi_n
|
|
|
|
|
|
|
|
|
y_shifted = psi_n * scale + E[n]
|
|
|
|
|
|
|
|
|
y_shifted[V_internal > 1e5] = np.nan
|
|
|
|
|
|
color = colors[n % len(colors)]
|
|
|
|
|
|
|
|
|
if len(x_internal) != len(y_shifted):
|
|
|
|
|
|
min_len = min(len(x_internal), len(y_shifted))
|
|
|
x_plot = x_internal[:min_len]
|
|
|
y_plot = y_shifted[:min_len]
|
|
|
else:
|
|
|
x_plot = x_internal
|
|
|
y_plot = y_shifted
|
|
|
|
|
|
fig.add_trace(
|
|
|
go.Scatter(
|
|
|
x=x_plot.tolist() if hasattr(x_plot, 'tolist') else x_plot,
|
|
|
y=y_plot.tolist() if hasattr(y_plot, 'tolist') else y_plot,
|
|
|
mode='lines',
|
|
|
name=f'n={n+1}, E={E[n]:.4f}',
|
|
|
line=dict(color=color, width=2),
|
|
|
hovertemplate=f'n={n+1}<br>E={E[n]:.4f}<br>x: %{{x:.2f}}<br>ψ: %{{y:.2f}}<extra></extra>'
|
|
|
),
|
|
|
row=1, col=1
|
|
|
)
|
|
|
|
|
|
|
|
|
fig.add_trace(
|
|
|
go.Scatter(
|
|
|
x=[0, 1], y=[E[n], E[n]],
|
|
|
mode='lines',
|
|
|
line=dict(color=color, width=3),
|
|
|
showlegend=False,
|
|
|
hovertemplate=f'E_{n+1}={E[n]:.4f}<extra></extra>'
|
|
|
),
|
|
|
row=1, col=2
|
|
|
)
|
|
|
|
|
|
|
|
|
fig.update_layout(
|
|
|
template="plotly_dark",
|
|
|
height=600,
|
|
|
margin=dict(l=20, r=20, t=50, b=20),
|
|
|
legend=dict(
|
|
|
orientation="h",
|
|
|
yanchor="bottom",
|
|
|
y=1.02,
|
|
|
xanchor="right",
|
|
|
x=1,
|
|
|
font=dict(size=10)
|
|
|
),
|
|
|
hovermode="closest",
|
|
|
plot_bgcolor='#0e1117',
|
|
|
paper_bgcolor='#0e1117',
|
|
|
font=dict(color='#FAFAFA')
|
|
|
)
|
|
|
|
|
|
fig.update_xaxes(
|
|
|
title_text="Position (a.u.)",
|
|
|
row=1, col=1,
|
|
|
gridcolor='#2a2a2a',
|
|
|
showgrid=True
|
|
|
)
|
|
|
fig.update_xaxes(
|
|
|
showticklabels=False,
|
|
|
row=1, col=2,
|
|
|
showgrid=False
|
|
|
)
|
|
|
fig.update_yaxes(
|
|
|
title_text="Energy (Hartree)",
|
|
|
range=[0, max_E * 1.2],
|
|
|
row=1, col=1,
|
|
|
gridcolor='#2a2a2a',
|
|
|
showgrid=True
|
|
|
)
|
|
|
|
|
|
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def process_frame_to_potential(frame):
|
|
|
"""
|
|
|
Takes a BGR frame (OpenCV) and returns:
|
|
|
pot_profile: 1D array in [0,1] representing V(x) profile
|
|
|
msg: human-friendly label
|
|
|
Modes:
|
|
|
- 2 hands → Square well (0 inside, 1 outside)
|
|
|
- 1 hand → QHO-like parabola
|
|
|
"""
|
|
|
try:
|
|
|
mp_hands = mp.solutions.hands
|
|
|
with mp_hands.Hands(max_num_hands=2, min_detection_confidence=0.5) as hands:
|
|
|
h, w, _ = frame.shape
|
|
|
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
res = hands.process(rgb)
|
|
|
|
|
|
if not res.multi_hand_landmarks:
|
|
|
return None, "No Hands Detected, But Cute Smile :)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(res.multi_hand_landmarks) >= 2:
|
|
|
INDEX_TIP_ID = 8
|
|
|
x_coords = [lm.landmark[INDEX_TIP_ID].x * w for lm in res.multi_hand_landmarks]
|
|
|
x_coords.sort()
|
|
|
|
|
|
xL_hand, xR_hand = x_coords[0], x_coords[1]
|
|
|
well_width = xR_hand - xL_hand
|
|
|
|
|
|
center_screen = w / 2
|
|
|
centered_L = center_screen - (well_width / 2)
|
|
|
centered_R = center_screen + (well_width / 2)
|
|
|
|
|
|
x_space = np.linspace(0, w, 400)
|
|
|
pot_profile = np.ones_like(x_space)
|
|
|
pot_profile[(x_space > centered_L) & (x_space < centered_R)] = 0
|
|
|
|
|
|
return pot_profile, "Square Well (Captured)"
|
|
|
|
|
|
|
|
|
elif len(res.multi_hand_landmarks) == 1:
|
|
|
lm = res.multi_hand_landmarks[0]
|
|
|
THUMB = lm.landmark[4]
|
|
|
INDEX = lm.landmark[8]
|
|
|
|
|
|
dx = INDEX.x - THUMB.x
|
|
|
dy = INDEX.y - THUMB.y
|
|
|
dist = math.sqrt(dx**2 + dy**2)
|
|
|
|
|
|
|
|
|
A = np.interp(dist, [0.05, 0.3], [100.0, 1.0])
|
|
|
|
|
|
x_space = np.linspace(-1, 1, 400)
|
|
|
pot_profile = A * (x_space**2)
|
|
|
|
|
|
pot_profile = np.clip(pot_profile, 0, 100)
|
|
|
pot_profile = pot_profile / 100.0
|
|
|
|
|
|
return pot_profile, f"Harmonic Oscillator (k={A:.1f})"
|
|
|
|
|
|
except Exception as e:
|
|
|
return None, f"MediaPipe Error: {e}"
|
|
|
|
|
|
return None, "Error"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if page == "Simulator":
|
|
|
st.title("Pili-Pili - Quantum Potential Solver")
|
|
|
st.markdown("Show a potential with your hands or select a preset to solve the **Time-Independent Schrödinger Equation**.")
|
|
|
|
|
|
|
|
|
L = 50
|
|
|
N_GRID = 1000
|
|
|
x_full, dx, x_internal = f.make_grid(L, N_GRID)
|
|
|
|
|
|
V_full_to_solve = None
|
|
|
status_msg = ""
|
|
|
|
|
|
col1, col2 = st.columns([1, 3])
|
|
|
|
|
|
with col1:
|
|
|
st.subheader("Controls")
|
|
|
|
|
|
|
|
|
potential_mode = st.selectbox(
|
|
|
"Potential Type",
|
|
|
[
|
|
|
"Static Square Well",
|
|
|
"Static Harmonic Oscillator",
|
|
|
"Double Well",
|
|
|
"Hand Gesture (Camera)"
|
|
|
]
|
|
|
)
|
|
|
|
|
|
nos_user = st.slider("Eigenstates to Plot", 1, 10, 5)
|
|
|
|
|
|
|
|
|
if potential_mode == "Static Square Well":
|
|
|
width = st.slider("Well Width", 1.0, 20.0, 10.0)
|
|
|
V_physics = np.zeros_like(x_internal)
|
|
|
V_physics[np.abs(x_internal) > width/2] = 200
|
|
|
V_full_to_solve = np.pad(V_physics, (1,1), constant_values=1e10)
|
|
|
status_msg = f"Static Square Well (width = {width:.1f})"
|
|
|
|
|
|
elif potential_mode == "Static Harmonic Oscillator":
|
|
|
k = st.slider("Spring Constant (k)", 0.1, 50.0, 5.0)
|
|
|
V_physics = 0.5 * k * x_internal**2
|
|
|
|
|
|
V_physics = V_physics / np.max(V_physics) * 50
|
|
|
V_full_to_solve = np.pad(V_physics, (1,1), constant_values=1e10)
|
|
|
status_msg = f"Static Harmonic Oscillator (k = {k:.2f})"
|
|
|
|
|
|
elif potential_mode == "Double Well":
|
|
|
sep = st.slider("Separation", 0.5, 5.0, 2.0)
|
|
|
depth = st.slider("Depth", 0.1, 5.0, 1.0)
|
|
|
V_physics = depth * ((x_internal**2 - sep**2)**2)
|
|
|
V_physics = V_physics / np.max(V_physics) * 50
|
|
|
V_full_to_solve = np.pad(V_physics, (1,1), constant_values=1e10)
|
|
|
status_msg = f"Double Well (sep = {sep:.2f}, depth = {depth:.2f})"
|
|
|
|
|
|
|
|
|
elif potential_mode == "Hand Gesture (Camera)":
|
|
|
st.subheader("Hand Gesture Controls")
|
|
|
st.info(
|
|
|
"1. Click **'Start Countdown'**. (IGNORE)\n"
|
|
|
"2. Get your **two hands** ready for a Square Well, "
|
|
|
"or **one-hand pinch** for a Harmonic Oscillator.\n"
|
|
|
"3. When you'r ready, use **'Take a snapshot'**."
|
|
|
)
|
|
|
|
|
|
|
|
|
st.subheader("Hand Gesture Input")
|
|
|
|
|
|
img_file = st.camera_input("Take a Snapshot")
|
|
|
|
|
|
if img_file:
|
|
|
file_bytes = np.asarray(bytearray(img_file.read()), dtype=np.uint8)
|
|
|
frame = cv2.imdecode(file_bytes, 1)
|
|
|
frame = cv2.flip(frame, 1)
|
|
|
|
|
|
V_raw, msg = process_frame_to_potential(frame)
|
|
|
|
|
|
if V_raw is not None:
|
|
|
st.success(f"Detected: {msg}")
|
|
|
st.session_state.V_user_defined = V_raw
|
|
|
|
|
|
|
|
|
V_interpolated = np.interp(
|
|
|
np.linspace(0, 1, len(x_internal)),
|
|
|
np.linspace(0, 1, len(V_raw)),
|
|
|
V_raw
|
|
|
)
|
|
|
V_physics = V_interpolated * 200.0
|
|
|
V_full_to_solve = np.pad(V_physics, (1,1), constant_values=1e10)
|
|
|
status_msg = f"Camera Potential: {msg}"
|
|
|
else:
|
|
|
st.error(msg)
|
|
|
|
|
|
|
|
|
|
|
|
with col2:
|
|
|
if V_full_to_solve is not None:
|
|
|
start_time = time.time()
|
|
|
T = f.kinetic_operator(len(x_internal), dx)
|
|
|
E, psi = f.solve(T, V_full_to_solve, dx)
|
|
|
solve_time = time.time() - start_time
|
|
|
|
|
|
if status_msg:
|
|
|
st.markdown(f"**Potential:** {status_msg}")
|
|
|
st.markdown(f"**Solver Status:** ✅ Converged in {solve_time:.3f} s")
|
|
|
|
|
|
fig = plot_interactive(E, psi, V_full_to_solve, x_full, nos=nos_user)
|
|
|
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
|
|
|
|
|
st.markdown("### Eigenenergies")
|
|
|
cols = st.columns(nos_user)
|
|
|
for i in range(nos_user):
|
|
|
if i < len(E):
|
|
|
cols[i].metric(f"n={i}", f"{E[i]:.4f} Ha")
|
|
|
else:
|
|
|
if potential_mode == "Hand Gesture (Camera)":
|
|
|
st.info("Follow the instructions on the left to capture a potential from your hands.")
|
|
|
else:
|
|
|
st.info("Select parameters on the left to generate a potential and solve.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif page == "Benchmarks & Verification":
|
|
|
st.title("🛡️ Verification & Accuracy")
|
|
|
st.markdown("""
|
|
|
This solver has been rigorously tested against known analytical solutions and external libraries to ensure physical accuracy.
|
|
|
""")
|
|
|
|
|
|
tab1, tab2, tab3 = st.tabs(["Analytical Benchmarks", "QMSolve Comparison", "Code"])
|
|
|
|
|
|
with tab1:
|
|
|
st.subheader("1. Infinite Square Well")
|
|
|
st.markdown("Particle in a box of length $L=20$. Error < 0.003%.")
|
|
|
st.table({
|
|
|
"State (n)": [1, 2, 3, 4, 5],
|
|
|
"Analytic E": [0.012337, 0.049348, 0.111033, 0.197392, 0.308425],
|
|
|
"Numerical E": [0.012337, 0.049348, 0.111032, 0.197389, 0.308419],
|
|
|
"% Error": ["0.0001%", "0.0003%", "0.0007%", "0.0013%", "0.0021%"]
|
|
|
})
|
|
|
|
|
|
st.subheader("2. Harmonic Oscillator")
|
|
|
st.markdown("Standard QHO with $k=1$. Error < 0.02%.")
|
|
|
st.table({
|
|
|
"State (n)": [0, 1, 2, 3, 4],
|
|
|
"Analytic E": [0.5, 1.5, 2.5, 3.5, 4.5],
|
|
|
"Numerical E": [0.499980, 1.499902, 2.499746, 3.499512, 4.499200],
|
|
|
"% Error": ["0.0039%", "0.0065%", "0.0101%", "0.0139%", "0.0178%"]
|
|
|
})
|
|
|
|
|
|
with tab2:
|
|
|
st.subheader("Cross-Verification: Double Well Potential")
|
|
|
st.markdown("""
|
|
|
Comparison with the Python package `QMSolve` for a Double Well potential (no simple analytic solution).
|
|
|
**Agreement within 0.25%**.
|
|
|
""")
|
|
|
|
|
|
col_a, col_b = st.columns(2)
|
|
|
with col_a:
|
|
|
st.markdown("**Parameters:** $V(x) = 2(x^2 - 1)^2$")
|
|
|
st.table({
|
|
|
"State (n)": [0, 1, 2, 3, 4],
|
|
|
"psi_solve2 (Ha)": [1.400886, 2.092533, 4.455252, 6.917808, 9.872632],
|
|
|
"QMSolve (Ha)": [1.402472, 2.097767, 4.466368, 6.936807, 9.900227],
|
|
|
"% Difference": ["0.11%", "0.25%", "0.25%", "0.27%", "0.28%"]
|
|
|
})
|
|
|
with col_b:
|
|
|
st.info("Note: QMSolve uses eV units. Results were converted to Hartree (1 Ha ≈ 27.211 eV) for comparison.")
|
|
|
|
|
|
with tab3:
|
|
|
st.subheader("Code Verification")
|
|
|
st.code("""
|
|
|
def kinetic_operator(N, dx, hbar=1, m=1):
|
|
|
# 3-point central difference stencil for 2nd derivative
|
|
|
main_diagonal = (1/dx**2) * np.diag(-2 * np.ones(N))
|
|
|
off_diagonal1 = (1/dx**2) * np.diag(np.ones(N-1), -1)
|
|
|
off_diagonal2 = (1/dx**2) * np.diag(np.ones(N-1), 1)
|
|
|
D2 = (main_diagonal + off_diagonal1 + off_diagonal2)
|
|
|
|
|
|
# Kinetic Energy Operator T = -hbar^2 / 2m * d^2/dx^2
|
|
|
T = (-(hbar**2 / (2*m)) * D2)
|
|
|
return T
|
|
|
""", language="python")
|
|
|
st.code("""
|
|
|
def harmonic(x,k,center=0.0):
|
|
|
# A Parabola, setting the global k-value.
|
|
|
global Last_k_value
|
|
|
Last_k_value = k
|
|
|
|
|
|
constant_factor = 1
|
|
|
potential = 0.5*k*(x - center)**2
|
|
|
return constant_factor * potential
|
|
|
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif page == "Theory & Method":
|
|
|
st.title("📖 Theory & Methodology")
|
|
|
|
|
|
st.markdown("### The Time-Independent Schrödinger Equation")
|
|
|
st.latex(r" \hat{H}\psi(x) = E\psi(x) ")
|
|
|
st.latex(r" \left[ -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x) \right]\psi(x) = E\psi(x) ")
|
|
|
|
|
|
st.markdown("### Numerical Method: Finite Difference")
|
|
|
st.markdown(r"""
|
|
|
We discretize the spatial domain $x$ into a grid of $N$ points. The second derivative is approximated using the **Central Difference Formula**:
|
|
|
""")
|
|
|
st.latex(r" \frac{d^2\psi}{dx^2} \approx \frac{\psi_{i+1} - 2\psi_i + \psi_{i-1}}{\Delta x^2} ")
|
|
|
|
|
|
st.markdown(r"""
|
|
|
This transforms the differential operator into a **Tridiagonal Matrix** equation:
|
|
|
""")
|
|
|
st.latex(r" \mathbf{H}\mathbf{\psi} = E\mathbf{\psi} ")
|
|
|
|
|
|
st.markdown(r"""
|
|
|
Where $\mathbf{H}$ is an $N \times N$ matrix. We then use `numpy.linalg.eigh` to solve for the eigenvalues ($E$) and eigenvectors ($\psi$).
|
|
|
""")
|
|
|
|
|
|
st.markdown("### Implementation Details")
|
|
|
st.markdown(r"""
|
|
|
- **Grid Size:** Dynamic (default 1000–2000 points)
|
|
|
- **Boundary Conditions:** Dirichlet ($ \psi(0) = \psi(L) = 0 $) via infinite walls at grid edges.
|
|
|
- **Units:** Hartree Atomic Units ($\hbar=1, m=1$).
|
|
|
""")
|
|
|
|