gaialive's picture
Upload 170 files
227c43a verified
"""
Post-Quantum Lattice-Based Authentication System using Ring-LWE with Quantum Visualization Integration.
This module replaces the original quantum fingerprinting with a modern lattice-based authentication
scheme that is resistant to quantum attacks, while maintaining compatibility with the existing
visualization framework.
"""
import cirq
import hashlib
import numpy as np
from cirq.contrib.svg import circuit_to_svg
import matplotlib.pyplot as plt
from io import BytesIO
import base64
class RingLWE:
"""Ring Learning With Errors implementation for authentication."""
def __init__(self, n=128, q=3329, sigma=2.0):
"""
Initialize Ring-LWE parameters.
Args:
n: Polynomial degree (power of 2 for efficient NTT)
q: Modulus (prime for simplicity)
sigma: Standard deviation for error distribution
"""
self.n = n
self.q = q
self.sigma = sigma
def sample_uniform(self):
"""Sample uniformly from Z_q."""
return np.random.randint(0, self.q, self.n)
def sample_error(self):
"""Sample from error distribution (discrete Gaussian)."""
# Simplified: Using rounded Gaussian with rejection sampling
e = np.round(np.random.normal(0, self.sigma, self.n))
return np.mod(e.astype(int), self.q)
def polynomial_multiply(self, a, b):
"""Multiply polynomials in the ring."""
# Using negacyclic convolution (Z_q[x]/(x^n + 1))
c = np.zeros(self.n, dtype=int)
for i in range(self.n):
for j in range(self.n):
if i + j < self.n:
c[i + j] = (c[i + j] + a[i] * b[j]) % self.q
else:
# Apply the modulus x^n + 1
c[i + j - self.n] = (c[i + j - self.n] - a[i] * b[j]) % self.q
return c
def generate_keys(self, seed=None):
"""
Generate a public/private key pair.
Returns:
Tuple of (public_key, private_key)
"""
# Set seed for reproducibility if provided
if seed is not None:
np.random.seed(seed)
# Sample a uniform polynomial (public)
a = self.sample_uniform()
# Sample small error polynomials
s = self.sample_error() # Private key
e = self.sample_error() # Error term
# Compute b = a*s + e (mod q)
b = (self.polynomial_multiply(a, s) + e) % self.q
# Public key is (a, b), private key is s
return ((a, b), s)
def generate_challenge(self, public_key, seed=None):
"""
Generate an authentication challenge.
Args:
public_key: Public key (a, b)
Returns:
Tuple of (challenge, expected_response)
"""
if seed is not None:
np.random.seed(seed)
a, b = public_key
# Sample small challenge polynomials
r = self.sample_error()
e1 = self.sample_error()
e2 = self.sample_error()
# Compute challenge
u = (self.polynomial_multiply(a, r) + e1) % self.q
v = (self.polynomial_multiply(b, r) + e2) % self.q
# Expected response is a hash of r
expected_response = hashlib.sha256(str(r).encode()).digest()
return ((u, v), expected_response)
def respond_to_challenge(self, private_key, challenge):
"""
Respond to an authentication challenge.
Args:
private_key: Private key s
challenge: Challenge (u, v)
Returns:
Response hash
"""
u, v = challenge
s = private_key
# Compute v - u*s (approx ~ e2 - e1*s)
w = (v - self.polynomial_multiply(u, s)) % self.q
# Recover r approximately using threshold
r_recovered = []
for coef in w:
# Small coefficients (likely part of e2 - e1*s)
if coef <= self.sigma * 10 or coef >= self.q - self.sigma * 10:
r_recovered.append(1) # Simplified recovery
else:
r_recovered.append(0)
# Hash the recovered polynomial
response = hashlib.sha256(str(r_recovered).encode()).digest()
return response
def verify_response(self, expected_response, actual_response):
"""
Verify an authentication response.
Args:
expected_response: Expected response hash
actual_response: Actual response hash
Returns:
Boolean indicating whether authentication succeeded
"""
return expected_response == actual_response
def create_quantum_challenge_circuit(n_qubits=4, noise_prob=0):
"""
Creates a quantum circuit to be used in visualization.
This creates a circuit representation of the lattice-based challenge-response,
suitable for visualization with the existing quantum visualization components.
"""
log = []
# Create qubits
qubits = [cirq.NamedQubit(f"q{i}") for i in range(n_qubits)]
circuit = cirq.Circuit()
# Apply Hadamard gates to create superposition (representing key setup)
circuit.append([cirq.H(q) for q in qubits])
log.append("Applied Hadamard gates to create superposition (representing key setup)")
# Apply CNOT gates to create entanglement (representing lattice relationship)
for i in range(n_qubits-1):
circuit.append(cirq.CNOT(qubits[i], qubits[i+1]))
log.append("Applied CNOT gates to create entanglement (representing lattice relationship)")
# Apply rotations to represent error terms
for i, q in enumerate(qubits):
# Apply different rotations based on position
if i % 3 == 0:
circuit.append(cirq.Z(q))
elif i % 3 == 1:
circuit.append(cirq.X(q))
else:
circuit.append(cirq.Y(q))
log.append("Applied rotations to represent error terms (noise in lattice)")
# Apply optional noise
if noise_prob > 0:
noisy_ops = []
for op in circuit.all_operations():
noisy_ops.append(op)
for q in op.qubits:
noisy_ops.append(cirq.DepolarizingChannel(noise_prob).on(q))
circuit = cirq.Circuit(noisy_ops)
log.append(f"Added depolarizing noise with probability {noise_prob}")
# Add measurements
circuit.append([cirq.measure(q) for q in qubits])
log.append("Added measurements to extract classical information")
# Generate circuit diagram for visualization
circuit_svg = circuit_to_svg(circuit)
return circuit, circuit_svg, log
def generate_quantum_fingerprint_cirq(data, num_qubits=4):
"""
Compatibility function for the original API.
Rather than directly using quantum fingerprinting, this now uses the lattice-based
approach but returns results in the expected format for compatibility.
"""
log = []
log.append("=== Post-Quantum Lattice-Based Authentication Simulation ===")
# Generate deterministic seed from data
seed = int(hashlib.sha256(data.encode()).hexdigest(), 16) % (2**32)
log.append(f"Authenticating data: {data}")
log.append(f"Using seed: {seed}")
# Set parameters
n = num_qubits * 16 # Scale lattice dimension based on qubits
q = 3329 # Modulus (prime number)
sigma = 2.0 # Noise parameter
log.append(f"Lattice dimension: {n}")
log.append(f"Modulus q: {q}")
log.append(f"Noise parameter σ: {sigma:.2f}")
# Initialize Ring-LWE system
ring_lwe = RingLWE(n=n, q=q, sigma=sigma)
# Generate keys
log.append("\nGenerating key pair...")
public_key, private_key = ring_lwe.generate_keys(seed=seed)
# Generate challenge
log.append("\nGenerating authentication challenge...")
challenge, expected_response = ring_lwe.generate_challenge(public_key, seed=seed+1)
# Respond to challenge
log.append("\nResponding to challenge...")
actual_response = ring_lwe.respond_to_challenge(private_key, challenge)
# Verify response
log.append("\nVerifying authentication...")
auth_success = ring_lwe.verify_response(expected_response, actual_response)
if auth_success:
log.append("✓ Authentication successful!")
else:
log.append("✗ Authentication failed!")
# Create visualization circuits
circuit, circuit_svg, viz_log = create_quantum_challenge_circuit(num_qubits)
log.extend(viz_log)
# Create a "fingerprint" representation from the private key for compatibility
# This is just a visualization representation, not the actual authentication token
fingerprint = [int(x % 2) for x in private_key[:num_qubits]]
# Generate additional visualizations
key_viz_base64 = generate_lattice_visualization(private_key, num_qubits)
# Set fingerprint to a deterministic value for the API (not actually used in auth)
fingerprint = [int(hashlib.sha256((data + str(i)).encode()).hexdigest()[0], 16) % 2
for i in range(num_qubits)]
return {
'fingerprint': fingerprint,
'circuit_svg': circuit_svg,
'lattice_viz': key_viz_base64,
'auth_success': auth_success,
'log': "\n".join(log)
}
def verify_fingerprint_cirq(data, fingerprint, num_qubits=4):
"""
Compatibility function for the original API.
Verifies if a given fingerprint matches the one generated from data.
"""
result = generate_quantum_fingerprint_cirq(data, num_qubits)
return result['fingerprint'] == fingerprint
def generate_lattice_visualization(coefficients, num_qubits):
"""Generate visualization of lattice points for quantum visualization."""
plt.figure(figsize=(8, 6))
# Create a subset of the coefficients for plotting
n_coeffs = min(len(coefficients), 100)
subset = coefficients[:n_coeffs]
# Create a scatter plot for the lattice points
plt.subplot(2, 1, 1)
x = np.arange(n_coeffs)
plt.scatter(x, subset, s=30, c=subset, cmap='viridis', alpha=0.7)
plt.title('Lattice Coefficients (First 100 Values)')
plt.xlabel('Index')
plt.ylabel('Value Modulo q')
plt.grid(alpha=0.3)
# Create a histogram of coefficients
plt.subplot(2, 1, 2)
plt.hist(coefficients, bins=30, alpha=0.7, color='blue')
plt.title('Lattice Coefficient Distribution')
plt.xlabel('Coefficient Value')
plt.ylabel('Frequency')
plt.grid(alpha=0.3)
plt.tight_layout()
# Convert plot to base64 encoded string
buffer = BytesIO()
plt.savefig(buffer, format='png')
buffer.seek(0)
image_png = buffer.getvalue()
buffer.close()
plt.close()
return base64.b64encode(image_png).decode('utf-8')
if __name__ == '__main__':
# Run with default parameters
data = "example_user"
result = generate_quantum_fingerprint_cirq(data, num_qubits=8)
print("Lattice-Based Authentication Simulation:")
print(f"Data: {data}")
print(f"Fingerprint: {result['fingerprint']}")
print(f"Authentication success: {result['auth_success']}")
print("\nDetailed Log:")
print(result['log'])