Spaces:
Sleeping
Sleeping
| """ | |
| Post-Quantum Lattice-Based Authentication System using Ring-LWE with Quantum Visualization Integration. | |
| This module replaces the original quantum fingerprinting with a modern lattice-based authentication | |
| scheme that is resistant to quantum attacks, while maintaining compatibility with the existing | |
| visualization framework. | |
| """ | |
| import cirq | |
| import hashlib | |
| import numpy as np | |
| from cirq.contrib.svg import circuit_to_svg | |
| import matplotlib.pyplot as plt | |
| from io import BytesIO | |
| import base64 | |
| class RingLWE: | |
| """Ring Learning With Errors implementation for authentication.""" | |
| def __init__(self, n=128, q=3329, sigma=2.0): | |
| """ | |
| Initialize Ring-LWE parameters. | |
| Args: | |
| n: Polynomial degree (power of 2 for efficient NTT) | |
| q: Modulus (prime for simplicity) | |
| sigma: Standard deviation for error distribution | |
| """ | |
| self.n = n | |
| self.q = q | |
| self.sigma = sigma | |
| def sample_uniform(self): | |
| """Sample uniformly from Z_q.""" | |
| return np.random.randint(0, self.q, self.n) | |
| def sample_error(self): | |
| """Sample from error distribution (discrete Gaussian).""" | |
| # Simplified: Using rounded Gaussian with rejection sampling | |
| e = np.round(np.random.normal(0, self.sigma, self.n)) | |
| return np.mod(e.astype(int), self.q) | |
| def polynomial_multiply(self, a, b): | |
| """Multiply polynomials in the ring.""" | |
| # Using negacyclic convolution (Z_q[x]/(x^n + 1)) | |
| c = np.zeros(self.n, dtype=int) | |
| for i in range(self.n): | |
| for j in range(self.n): | |
| if i + j < self.n: | |
| c[i + j] = (c[i + j] + a[i] * b[j]) % self.q | |
| else: | |
| # Apply the modulus x^n + 1 | |
| c[i + j - self.n] = (c[i + j - self.n] - a[i] * b[j]) % self.q | |
| return c | |
| def generate_keys(self, seed=None): | |
| """ | |
| Generate a public/private key pair. | |
| Returns: | |
| Tuple of (public_key, private_key) | |
| """ | |
| # Set seed for reproducibility if provided | |
| if seed is not None: | |
| np.random.seed(seed) | |
| # Sample a uniform polynomial (public) | |
| a = self.sample_uniform() | |
| # Sample small error polynomials | |
| s = self.sample_error() # Private key | |
| e = self.sample_error() # Error term | |
| # Compute b = a*s + e (mod q) | |
| b = (self.polynomial_multiply(a, s) + e) % self.q | |
| # Public key is (a, b), private key is s | |
| return ((a, b), s) | |
| def generate_challenge(self, public_key, seed=None): | |
| """ | |
| Generate an authentication challenge. | |
| Args: | |
| public_key: Public key (a, b) | |
| Returns: | |
| Tuple of (challenge, expected_response) | |
| """ | |
| if seed is not None: | |
| np.random.seed(seed) | |
| a, b = public_key | |
| # Sample small challenge polynomials | |
| r = self.sample_error() | |
| e1 = self.sample_error() | |
| e2 = self.sample_error() | |
| # Compute challenge | |
| u = (self.polynomial_multiply(a, r) + e1) % self.q | |
| v = (self.polynomial_multiply(b, r) + e2) % self.q | |
| # Expected response is a hash of r | |
| expected_response = hashlib.sha256(str(r).encode()).digest() | |
| return ((u, v), expected_response) | |
| def respond_to_challenge(self, private_key, challenge): | |
| """ | |
| Respond to an authentication challenge. | |
| Args: | |
| private_key: Private key s | |
| challenge: Challenge (u, v) | |
| Returns: | |
| Response hash | |
| """ | |
| u, v = challenge | |
| s = private_key | |
| # Compute v - u*s (approx ~ e2 - e1*s) | |
| w = (v - self.polynomial_multiply(u, s)) % self.q | |
| # Recover r approximately using threshold | |
| r_recovered = [] | |
| for coef in w: | |
| # Small coefficients (likely part of e2 - e1*s) | |
| if coef <= self.sigma * 10 or coef >= self.q - self.sigma * 10: | |
| r_recovered.append(1) # Simplified recovery | |
| else: | |
| r_recovered.append(0) | |
| # Hash the recovered polynomial | |
| response = hashlib.sha256(str(r_recovered).encode()).digest() | |
| return response | |
| def verify_response(self, expected_response, actual_response): | |
| """ | |
| Verify an authentication response. | |
| Args: | |
| expected_response: Expected response hash | |
| actual_response: Actual response hash | |
| Returns: | |
| Boolean indicating whether authentication succeeded | |
| """ | |
| return expected_response == actual_response | |
| def create_quantum_challenge_circuit(n_qubits=4, noise_prob=0): | |
| """ | |
| Creates a quantum circuit to be used in visualization. | |
| This creates a circuit representation of the lattice-based challenge-response, | |
| suitable for visualization with the existing quantum visualization components. | |
| """ | |
| log = [] | |
| # Create qubits | |
| qubits = [cirq.NamedQubit(f"q{i}") for i in range(n_qubits)] | |
| circuit = cirq.Circuit() | |
| # Apply Hadamard gates to create superposition (representing key setup) | |
| circuit.append([cirq.H(q) for q in qubits]) | |
| log.append("Applied Hadamard gates to create superposition (representing key setup)") | |
| # Apply CNOT gates to create entanglement (representing lattice relationship) | |
| for i in range(n_qubits-1): | |
| circuit.append(cirq.CNOT(qubits[i], qubits[i+1])) | |
| log.append("Applied CNOT gates to create entanglement (representing lattice relationship)") | |
| # Apply rotations to represent error terms | |
| for i, q in enumerate(qubits): | |
| # Apply different rotations based on position | |
| if i % 3 == 0: | |
| circuit.append(cirq.Z(q)) | |
| elif i % 3 == 1: | |
| circuit.append(cirq.X(q)) | |
| else: | |
| circuit.append(cirq.Y(q)) | |
| log.append("Applied rotations to represent error terms (noise in lattice)") | |
| # Apply optional noise | |
| if noise_prob > 0: | |
| noisy_ops = [] | |
| for op in circuit.all_operations(): | |
| noisy_ops.append(op) | |
| for q in op.qubits: | |
| noisy_ops.append(cirq.DepolarizingChannel(noise_prob).on(q)) | |
| circuit = cirq.Circuit(noisy_ops) | |
| log.append(f"Added depolarizing noise with probability {noise_prob}") | |
| # Add measurements | |
| circuit.append([cirq.measure(q) for q in qubits]) | |
| log.append("Added measurements to extract classical information") | |
| # Generate circuit diagram for visualization | |
| circuit_svg = circuit_to_svg(circuit) | |
| return circuit, circuit_svg, log | |
| def generate_quantum_fingerprint_cirq(data, num_qubits=4): | |
| """ | |
| Compatibility function for the original API. | |
| Rather than directly using quantum fingerprinting, this now uses the lattice-based | |
| approach but returns results in the expected format for compatibility. | |
| """ | |
| log = [] | |
| log.append("=== Post-Quantum Lattice-Based Authentication Simulation ===") | |
| # Generate deterministic seed from data | |
| seed = int(hashlib.sha256(data.encode()).hexdigest(), 16) % (2**32) | |
| log.append(f"Authenticating data: {data}") | |
| log.append(f"Using seed: {seed}") | |
| # Set parameters | |
| n = num_qubits * 16 # Scale lattice dimension based on qubits | |
| q = 3329 # Modulus (prime number) | |
| sigma = 2.0 # Noise parameter | |
| log.append(f"Lattice dimension: {n}") | |
| log.append(f"Modulus q: {q}") | |
| log.append(f"Noise parameter σ: {sigma:.2f}") | |
| # Initialize Ring-LWE system | |
| ring_lwe = RingLWE(n=n, q=q, sigma=sigma) | |
| # Generate keys | |
| log.append("\nGenerating key pair...") | |
| public_key, private_key = ring_lwe.generate_keys(seed=seed) | |
| # Generate challenge | |
| log.append("\nGenerating authentication challenge...") | |
| challenge, expected_response = ring_lwe.generate_challenge(public_key, seed=seed+1) | |
| # Respond to challenge | |
| log.append("\nResponding to challenge...") | |
| actual_response = ring_lwe.respond_to_challenge(private_key, challenge) | |
| # Verify response | |
| log.append("\nVerifying authentication...") | |
| auth_success = ring_lwe.verify_response(expected_response, actual_response) | |
| if auth_success: | |
| log.append("✓ Authentication successful!") | |
| else: | |
| log.append("✗ Authentication failed!") | |
| # Create visualization circuits | |
| circuit, circuit_svg, viz_log = create_quantum_challenge_circuit(num_qubits) | |
| log.extend(viz_log) | |
| # Create a "fingerprint" representation from the private key for compatibility | |
| # This is just a visualization representation, not the actual authentication token | |
| fingerprint = [int(x % 2) for x in private_key[:num_qubits]] | |
| # Generate additional visualizations | |
| key_viz_base64 = generate_lattice_visualization(private_key, num_qubits) | |
| # Set fingerprint to a deterministic value for the API (not actually used in auth) | |
| fingerprint = [int(hashlib.sha256((data + str(i)).encode()).hexdigest()[0], 16) % 2 | |
| for i in range(num_qubits)] | |
| return { | |
| 'fingerprint': fingerprint, | |
| 'circuit_svg': circuit_svg, | |
| 'lattice_viz': key_viz_base64, | |
| 'auth_success': auth_success, | |
| 'log': "\n".join(log) | |
| } | |
| def verify_fingerprint_cirq(data, fingerprint, num_qubits=4): | |
| """ | |
| Compatibility function for the original API. | |
| Verifies if a given fingerprint matches the one generated from data. | |
| """ | |
| result = generate_quantum_fingerprint_cirq(data, num_qubits) | |
| return result['fingerprint'] == fingerprint | |
| def generate_lattice_visualization(coefficients, num_qubits): | |
| """Generate visualization of lattice points for quantum visualization.""" | |
| plt.figure(figsize=(8, 6)) | |
| # Create a subset of the coefficients for plotting | |
| n_coeffs = min(len(coefficients), 100) | |
| subset = coefficients[:n_coeffs] | |
| # Create a scatter plot for the lattice points | |
| plt.subplot(2, 1, 1) | |
| x = np.arange(n_coeffs) | |
| plt.scatter(x, subset, s=30, c=subset, cmap='viridis', alpha=0.7) | |
| plt.title('Lattice Coefficients (First 100 Values)') | |
| plt.xlabel('Index') | |
| plt.ylabel('Value Modulo q') | |
| plt.grid(alpha=0.3) | |
| # Create a histogram of coefficients | |
| plt.subplot(2, 1, 2) | |
| plt.hist(coefficients, bins=30, alpha=0.7, color='blue') | |
| plt.title('Lattice Coefficient Distribution') | |
| plt.xlabel('Coefficient Value') | |
| plt.ylabel('Frequency') | |
| plt.grid(alpha=0.3) | |
| plt.tight_layout() | |
| # Convert plot to base64 encoded string | |
| buffer = BytesIO() | |
| plt.savefig(buffer, format='png') | |
| buffer.seek(0) | |
| image_png = buffer.getvalue() | |
| buffer.close() | |
| plt.close() | |
| return base64.b64encode(image_png).decode('utf-8') | |
| if __name__ == '__main__': | |
| # Run with default parameters | |
| data = "example_user" | |
| result = generate_quantum_fingerprint_cirq(data, num_qubits=8) | |
| print("Lattice-Based Authentication Simulation:") | |
| print(f"Data: {data}") | |
| print(f"Fingerprint: {result['fingerprint']}") | |
| print(f"Authentication success: {result['auth_success']}") | |
| print("\nDetailed Log:") | |
| print(result['log']) |