Spaces:
Running
Running
| """ | |
| High-Fidelity Quantum Approximate Optimization Algorithm (QAOA) Simulation using Google Cirq. | |
| QAOA is a hybrid quantum-classical algorithm designed for solving combinatorial optimization problems. | |
| This implementation demonstrates QAOA for solving the MaxCut problem on small graphs. | |
| """ | |
| import cirq | |
| import numpy as np | |
| import networkx as nx | |
| import sympy | |
| import random | |
| from cirq.contrib.svg import circuit_to_svg | |
| def create_maxcut_cost_operator(qubits, graph): | |
| """ | |
| Creates the cost Hamiltonian for the MaxCut problem. | |
| Args: | |
| qubits: Dictionary mapping node indices to qubits | |
| graph: NetworkX graph representing the problem | |
| Returns: | |
| A cirq.Circuit implementing the cost Hamiltonian evolution | |
| """ | |
| circuit = cirq.Circuit() | |
| # The cost Hamiltonian for MaxCut is sum_(i,j)∈E (1 - Z_i Z_j)/2 | |
| # For circuit implementation, we use ZZ rotations | |
| for i, j in graph.edges(): | |
| circuit.append(cirq.ZZ(qubits[i], qubits[j])**sympy.Symbol('gamma')) | |
| return circuit | |
| def create_mixer_operator(qubits): | |
| """ | |
| Creates the mixer Hamiltonian for QAOA. | |
| Args: | |
| qubits: List of qubits | |
| Returns: | |
| A cirq.Circuit implementing the mixer Hamiltonian evolution | |
| """ | |
| circuit = cirq.Circuit() | |
| # The mixer Hamiltonian is sum_i X_i | |
| # For circuit implementation, we use X rotations | |
| for qubit in qubits.values(): | |
| circuit.append(cirq.X(qubit)**sympy.Symbol('beta')) | |
| return circuit | |
| def create_qaoa_circuit(qubits, graph, p=1): | |
| """ | |
| Creates a QAOA circuit for the MaxCut problem. | |
| Args: | |
| qubits: Dictionary mapping node indices to qubits | |
| graph: NetworkX graph representing the problem | |
| p: Number of QAOA layers | |
| Returns: | |
| A cirq.Circuit implementing QAOA | |
| """ | |
| circuit = cirq.Circuit() | |
| # Initialize in superposition | |
| circuit.append(cirq.H.on_each(*qubits.values())) | |
| # Apply p layers of QAOA | |
| for layer in range(p): | |
| # Apply cost Hamiltonian with parameter gamma_layer | |
| gamma = sympy.Symbol(f'gamma_{layer}') | |
| for i, j in graph.edges(): | |
| circuit.append(cirq.ZZ(qubits[i], qubits[j])**gamma) | |
| # Apply mixer Hamiltonian with parameter beta_layer | |
| beta = sympy.Symbol(f'beta_{layer}') | |
| for qubit in qubits.values(): | |
| circuit.append(cirq.X(qubit)**beta) | |
| return circuit | |
| def add_noise(circuit, noise_prob): | |
| """ | |
| Adds realistic quantum noise to the circuit. | |
| Args: | |
| circuit: A Cirq circuit | |
| noise_prob: Probability of depolarizing noise | |
| Returns: | |
| A circuit with added noise operations | |
| """ | |
| if noise_prob <= 0: | |
| return circuit | |
| noisy_ops = [] | |
| for op in circuit.all_operations(): | |
| noisy_ops.append(op) | |
| for q in op.qubits: | |
| noisy_ops.append(cirq.DepolarizingChannel(noise_prob).on(q)) | |
| return cirq.Circuit(noisy_ops) | |
| def evaluate_maxcut(bitstring, graph): | |
| """ | |
| Evaluates the MaxCut value for a given bitstring. | |
| Args: | |
| bitstring: String of '0's and '1's representing the cut | |
| graph: NetworkX graph | |
| Returns: | |
| The value of the cut (number of edges between partitions) | |
| """ | |
| cut_value = 0 | |
| for i, j in graph.edges(): | |
| # Edge contributes to the cut if the endpoints are in different partitions | |
| if bitstring[i] != bitstring[j]: | |
| cut_value += 1 | |
| return cut_value | |
| def run_qaoa(n_nodes=4, edge_probability=0.5, p_layers=1, noise_prob=0.0, num_samples=100): | |
| """ | |
| Runs the QAOA algorithm for the MaxCut problem. | |
| Args: | |
| n_nodes: Number of nodes in the graph | |
| edge_probability: Probability of edge creation in random graph | |
| p_layers: Number of QAOA layers (depth) | |
| noise_prob: Probability of depolarizing noise | |
| num_samples: Number of circuit samples to take | |
| Returns: | |
| Dictionary with QAOA results and visualization | |
| """ | |
| log = [] | |
| log.append("=== Quantum Approximate Optimization Algorithm (QAOA) Simulation ===") | |
| # Create a random graph | |
| graph = nx.gnp_random_graph(n_nodes, edge_probability, seed=42) | |
| log.append(f"Created random graph with {n_nodes} nodes and {graph.number_of_edges()} edges") | |
| log.append(f"Edges: {list(graph.edges())}") | |
| # Create qubits | |
| qubits = {i: cirq.NamedQubit(f'q{i}') for i in range(n_nodes)} | |
| # Create QAOA circuit | |
| circuit = create_qaoa_circuit(qubits, graph, p=p_layers) | |
| log.append(f"Created QAOA circuit with p={p_layers} layers") | |
| # Generate random circuit parameters (in a real QAOA, these would be optimized) | |
| params = {} | |
| for layer in range(p_layers): | |
| # Typical ranges for parameters | |
| params[f'gamma_{layer}'] = random.uniform(0, 2 * np.pi) | |
| params[f'beta_{layer}'] = random.uniform(0, np.pi) | |
| log.append("Generated random parameters for demonstration:") | |
| for param, value in params.items(): | |
| log.append(f" {param} = {value:.4f}") | |
| # Resolve the circuit with the parameters | |
| resolved_circuit = cirq.resolve_parameters(circuit, params) | |
| # Add noise if specified | |
| if noise_prob > 0: | |
| resolved_circuit = add_noise(resolved_circuit, noise_prob) | |
| log.append(f"Added noise with probability {noise_prob}") | |
| # Add measurements | |
| measure_circuit = cirq.Circuit() | |
| measure_circuit.append(cirq.measure(*qubits.values(), key='cut')) | |
| # Combine circuits | |
| full_circuit = resolved_circuit + measure_circuit | |
| # Run the circuit | |
| simulator = cirq.Simulator() | |
| result = simulator.run(full_circuit, repetitions=num_samples) | |
| # Process the measurement results | |
| cut_counts = {} | |
| cut_values = {} | |
| for sample in result.measurements['cut']: | |
| bitstring = ''.join([str(bit) for bit in sample]) | |
| if bitstring not in cut_counts: | |
| cut_counts[bitstring] = 0 | |
| cut_values[bitstring] = evaluate_maxcut(bitstring, graph) | |
| cut_counts[bitstring] += 1 | |
| # Find the best cut | |
| best_bitstring = max(cut_values, key=cut_values.get) | |
| best_cut_value = cut_values[best_bitstring] | |
| best_count = cut_counts[best_bitstring] | |
| log.append(f"\nSampling Results (from {num_samples} samples):") | |
| for bitstring, count in sorted(cut_counts.items(), key=lambda x: cut_values[x[0]], reverse=True)[:5]: | |
| log.append(f" Cut {bitstring}: value = {cut_values[bitstring]}, frequency = {count}/{num_samples} ({count/num_samples:.2%})") | |
| log.append(f"\nBest cut found: {best_bitstring}") | |
| log.append(f"Cut value: {best_cut_value}") | |
| log.append(f"Frequency: {best_count}/{num_samples} ({best_count/num_samples:.2%})") | |
| # Brute force the optimal solution for comparison | |
| optimal_cut = 0 | |
| optimal_bitstring = None | |
| for i in range(2**n_nodes): | |
| bitstring = format(i, f'0{n_nodes}b') | |
| cut_value = evaluate_maxcut(bitstring, graph) | |
| if cut_value > optimal_cut: | |
| optimal_cut = cut_value | |
| optimal_bitstring = bitstring | |
| log.append(f"\nOptimal cut (brute force): {optimal_bitstring}") | |
| log.append(f"Optimal cut value: {optimal_cut}") | |
| # Calculate approximation ratio | |
| approx_ratio = best_cut_value / optimal_cut if optimal_cut > 0 else 1.0 | |
| log.append(f"Approximation ratio: {approx_ratio:.4f}") | |
| # Generate circuit SVG for visualization | |
| circuit_svg = circuit_to_svg(circuit) | |
| # Generate simple text representation of the graph and cut | |
| partition_visualization = "Graph partitioning based on best cut:\n" | |
| partition_0 = [] | |
| partition_1 = [] | |
| for i in range(n_nodes): | |
| if best_bitstring[i] == '0': | |
| partition_0.append(i) | |
| else: | |
| partition_1.append(i) | |
| partition_visualization += f" Partition 0: {partition_0}\n" | |
| partition_visualization += f" Partition 1: {partition_1}\n\n" | |
| partition_visualization += "Edge cuts:\n" | |
| for i, j in graph.edges(): | |
| if best_bitstring[i] != best_bitstring[j]: | |
| partition_visualization += f" ({i}, {j}) - Cut\n" | |
| else: | |
| partition_visualization += f" ({i}, {j}) - Not cut\n" | |
| log.append(f"\n{partition_visualization}") | |
| # Return results | |
| return { | |
| "n_nodes": n_nodes, | |
| "n_edges": graph.number_of_edges(), | |
| "p_layers": p_layers, | |
| "noise_prob": noise_prob, | |
| "num_samples": num_samples, | |
| "best_cut": best_bitstring, | |
| "best_cut_value": best_cut_value, | |
| "best_frequency": best_count/num_samples, | |
| "optimal_cut": optimal_bitstring, | |
| "optimal_cut_value": optimal_cut, | |
| "approximation_ratio": float(approx_ratio), | |
| "params": params, | |
| "circuit_svg": circuit_svg, | |
| "graph_edges": list(graph.edges()), | |
| "partition_0": partition_0, | |
| "partition_1": partition_1, | |
| "log": "\n".join(log) | |
| } | |
| if __name__ == '__main__': | |
| # Run QAOA examples | |
| qaoa_simple = run_qaoa(4, 0.5, p_layers=1) | |
| qaoa_larger = run_qaoa(6, 0.4, p_layers=2) | |
| qaoa_noisy = run_qaoa(5, 0.6, p_layers=1, noise_prob=0.01) |