Spaces:
Running
Running
| <html lang="hi-IN"> | |
| <head> | |
| <meta charset="UTF-8"> | |
| <meta name="viewport" content="width=device-width, initial-scale=1.0"> | |
| <title>Equations Solve Karna Gauss-Jordan Method Se</title> | |
| <style> | |
| body { | |
| font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; | |
| line-height: 1.8; /* Thoda zyada line height Hinglish ke liye */ | |
| margin: 0; | |
| padding: 20px; | |
| background-color: #f4f4f9; | |
| color: #333; | |
| } | |
| .container { | |
| max-width: 800px; | |
| margin: auto; | |
| background: #fff; | |
| padding: 25px; | |
| border-radius: 8px; | |
| box-shadow: 0 0 15px rgba(0,0,0,0.1); | |
| } | |
| h1, h2, h3 { | |
| color: #2c3e50; | |
| border-bottom: 2px solid #3498db; | |
| padding-bottom: 5px; | |
| } | |
| h1 { | |
| text-align: center; | |
| font-size: 2em; | |
| } | |
| h2 { | |
| font-size: 1.5em; | |
| margin-top: 30px; | |
| } | |
| h3 { | |
| font-size: 1.2em; | |
| margin-top: 20px; | |
| color: #3498db; | |
| } | |
| p { | |
| margin-bottom: 15px; | |
| } | |
| .equations, .matrix-display { | |
| background-color: #ecf0f1; | |
| border: 1px solid #bdc3c7; | |
| padding: 15px; | |
| border-radius: 5px; | |
| margin-bottom: 20px; | |
| font-family: 'Courier New', Courier, monospace; | |
| font-size: 1.1em; | |
| overflow-x: auto; /* Responsive banane ke liye */ | |
| white-space: pre; /* Whitespace aur formatting ko preserve karne ke liye */ | |
| } | |
| .matrix-display code { | |
| display: block; /* code block ko full width lene ke liye */ | |
| } | |
| .solution { | |
| background-color: #e8f6f3; | |
| border: 1px solid #1abc9c; | |
| padding: 15px; | |
| border-radius: 5px; | |
| font-size: 1.1em; | |
| font-weight: bold; | |
| color: #16a085; | |
| } | |
| .operation { | |
| font-style: italic; | |
| color: #7f8c8d; | |
| } | |
| .highlight { | |
| color: #c0392b; | |
| font-weight: bold; | |
| } | |
| </style> | |
| </head> | |
| <body> | |
| <div class="container"> | |
| <h1>Linear Equations Ko Solve Karna</h1> | |
| <h2>(a) Sawaal (Problem)</h2> | |
| <p>Yeh equations ko Gauss-Jordan method ka istemal karke solve karo:</p> | |
| <div class="equations"> | |
| x + 4y - z = -5 | |
| x + y - 6z = -12 | |
| 3x - y - z = 4 | |
| </div> | |
| <h2>Gauss-Jordan Elimination Ke Steps</h2> | |
| <p>Sabse pehle, hum in equations ka augmented matrix (sanjojit avyuh) banayenge:</p> | |
| <div class="matrix-display"><code>[ 1 4 -1 | -5 ] | |
| [ 1 1 -6 | -12 ] | |
| [ 3 -1 -1 | 4 ]</code></div> | |
| <h3>Step 1: Pehle pivot ke neeche zeros banana</h3> | |
| <p>Pehla pivot R1,C1 mein 1 hai. Iske neeche ke elements (R2,C1 aur R3,C1) ko zero karenge.</p> | |
| <p class="operation">R2 β R2 - R1 (Row 2 mein se Row 1 ko minus karo)</p> | |
| <p class="operation">R3 β R3 - 3*R1 (Row 3 mein se Row 1 ka 3 guna minus karo)</p> | |
| <div class="matrix-display"><code>[ <span class="highlight">1</span> 4 -1 | -5 ] | |
| [ 0 -3 -5 | -7 ] <-- (1-1=0, 1-4=-3, -6-(-1)=-5, -12-(-5)=-7) | |
| [ 0 -13 2 | 19 ] <-- (3-3*1=0, -1-3*4=-13, -1-3*(-1)=2, 4-3*(-5)=19)</code></div> | |
| <h3>Step 2: Dusra pivot (R2,C2) ko 1 banana</h3> | |
| <p>Ab R2,C2 wale element (-3) ko 1 banana hai.</p> | |
| <p class="operation">R2 β R2 / (-3) (Row 2 ko -3 se divide karo)</p> | |
| <div class="matrix-display"><code>[ 1 4 -1 | -5 ] | |
| [ 0 <span class="highlight">1</span> 5/3 | 7/3 ] | |
| [ 0 -13 2 | 19 ]</code></div> | |
| <h3>Step 3: Dusre pivot ke upar aur neeche zeros banana</h3> | |
| <p>Ab R2,C2 wale pivot (1) ke upar (R1,C2) aur neeche (R3,C2) zero banana hai.</p> | |
| <p class="operation">R1 β R1 - 4*R2 (Row 1 mein se Row 2 ka 4 guna minus karo)</p> | |
| <p class="operation">R3 β R3 + 13*R2 (Row 3 mein Row 2 ka 13 guna add karo)</p> | |
| <div class="matrix-display"><code>[ 1 0 -23/3 | -43/3 ] <-- R1: [1, 4-4*1, -1-4*(5/3) | -5-4*(7/3)] = [1,0,-23/3|-43/3] | |
| [ 0 1 5/3 | 7/3 ] | |
| [ 0 0 71/3 | 148/3 ] <-- R3: [0, -13+13*1, 2+13*(5/3) | 19+13*(7/3)] = [0,0,71/3|148/3]</code></div> | |
| <h3>Step 4: Teesra pivot (R3,C3) ko 1 banana</h3> | |
| <p>Ab R3,C3 wale element (71/3) ko 1 banana hai.</p> | |
| <p class="operation">R3 β R3 * (3/71) (Row 3 ko 3/71 se multiply karo)</p> | |
| <div class="matrix-display"><code>[ 1 0 -23/3 | -43/3 ] | |
| [ 0 1 5/3 | 7/3 ] | |
| [ 0 0 <span class="highlight">1</span> | 148/71 ]</code></div> | |
| <h3>Step 5: Teesre pivot ke upar zeros banana</h3> | |
| <p>Ab R3,C3 wale pivot (1) ke upar (R1,C3 aur R2,C3) zero banana hai.</p> | |
| <p class="operation">R1 β R1 + (23/3)*R3 (Row 1 mein Row 3 ka 23/3 guna add karo)</p> | |
| <p class="operation">R2 β R2 - (5/3)*R3 (Row 2 mein se Row 3 ka 5/3 guna minus karo)</p> | |
| <div class="matrix-display"><code>[ 1 0 0 | 117/71 ] <-- R1: [-23/3 + (23/3)*1 = 0], [-43/3 + (23/3)*(148/71) = 117/71] | |
| [ 0 1 0 | -81/71 ] <-- R2: [5/3 - (5/3)*1 = 0], [7/3 - (5/3)*(148/71) = -81/71] | |
| [ 0 0 1 | 148/71 ]</code></div> | |
| <p>Yeh matrix ab Reduced Row Echelon Form (RREF) mein hai.</p> | |
| <h2>Hal (Solution)</h2> | |
| <p>RREF matrix se humein solution milta hai:</p> | |
| <div class="solution"> | |
| x = 117/71 <br> | |
| y = -81/71 <br> | |
| z = 148/71 | |
| </div> | |
| <h2>Jaanch (Verification)</h2> | |
| <p>Ab x, y, aur z ki values ko original equations mein daal kar check karte hain:</p> | |
| <h3>Equation 1: x + 4y - z = -5</h3> | |
| <p>(117/71) + 4(-81/71) - (148/71) = (117 - 324 - 148) / 71 = (117 - 472) / 71 = -355 / 71 = <strong>-5</strong> (Sahi hai!)</p> | |
| <h3>Equation 2: x + y - 6z = -12</h3> | |
| <p>(117/71) + (-81/71) - 6(148/71) = (117 - 81 - 888) / 71 = (36 - 888) / 71 = -852 / 71 = <strong>-12</strong> (Sahi hai!)</p> | |
| <h3>Equation 3: 3x - y - z = 4</h3> | |
| <p>3(117/71) - (-81/71) - (148/71) = (351 + 81 - 148) / 71 = (432 - 148) / 71 = 284 / 71 = <strong>4</strong> (Sahi hai!)</p> | |
| <p>Solution sahi hai.</p> | |
| </div> | |
| </body> | |
| </html> |