text
stringlengths 1
298
|
|---|
David D. Jackson, Sum Mak, David A. Rhoades, Matthew C. Gerstenberger, Naoshi Hirata, Maria Liukis,
|
Philip J. Maechling, Anne Strader, Matteo Taroni, Stefan Wiemer, Jeremy D. Zechar, and Jiancang
|
Zhuang. The collaboratory for the study of earthquake predictability: Achievements and priorities. Seis
|
mological Research Letters, 89(4):1305–1313, June 2018. ISSN 1938-2057. https://doi.org/10.1785/
|
0220180053.
|
Benedikt Schulz and Sebastian Lerch. Machine learning methods for postprocessing ensemble forecasts of
|
wind gusts: A systematic comparison. Monthly Weather Review, 150(1):235–257, January 2022. ISSN
|
1520-0493. https://doi.org/10.1175/mwr-d-21-0150.1.
|
C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27(4):623–656,
|
October 1948. ISSN 0005-8580. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x.
|
Alex Smola, Arthur Gretton, Le Song, and Bernhard Schölkopf. A hilbert space embedding for distributions.
|
In Marcus Hutter, Rocco A. Servedio, and Eiji Takimoto, editors, Algorithmic Learning Theory, pages 13
|
31, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-75225-7.
|
Joël Stein and Fabien Stoop. Neighborhood-based ensemble evaluation using the crps. Monthly Weather
|
Review, 150(8):1901–1914, August 2022. ISSN 1520-0493. https://doi.org/10.1175/mwr-d-21-0224.1.
|
Ingo Steinwart and Andreas Christmann. Support Vector Machines. Information Science and Statistics.
|
Springer, New York, 2008. ISBN 978-0-387-77241-7.
|
Ingo Steinwart and Johanna F. Ziegel. Strictly proper kernel scores and characteristic kernels on compact
|
spaces. Applied and Computational Harmonic Analysis, 51:510–542, 2021. ISSN 1063-5203. https:
|
//doi.org/10.1016/j.acha.2019.11.005. URL https://www.sciencedirect.com/science/article/
|
pii/S1063520317301483.
|
Gábor Székely. E-statistics: The energy of statistical samples. techreport, Bowling Green State University,
|
2003.
|
Maxime Taillardat. Skewed and mixture of gaussian distributions for ensemble postprocessing. Atmosphere,
|
12(8):966, July 2021. ISSN 2073-4433. https://doi.org/10.3390/atmos12080966.
|
Maxime Taillardat and Olivier Mestre. From research to applications– examples of operational ensemble
|
post-processing in france using machine learning. Nonlinear Processes in Geophysics, 27(2):329–347, May
|
2020. ISSN 1607-7946. https://doi.org/10.5194/npg-27-329-2020.
|
34
|
Maxime Taillardat, Olivier Mestre, Michaël Zamo, and Philippe Naveau. Calibrated ensemble forecasts
|
using quantile regression forests and ensemble model output statistics. Monthly Weather Review, 144(6):
|
2375–2393, June 2016. ISSN 1520-0493. https://doi.org/10.1175/mwr-d-15-0260.1.
|
O. Talagrand, R. Vautard, and B Strauss. Evaluation of probabilistic prediction systems. In Workshop on
|
Predictability, 20-22 October 1997, pages 1–26, Shinfield Park, Reading, 1997. ECMWF.
|
Thordis L. Thorarinsdottir and Nina Schuhen. Verification: Assessment of Calibration and Accuracy, pages
|
155–186. Elsevier, 2018. https://doi.org/10.1016/b978-0-12-812372-0.00006-6.
|
Thordis L. Thorarinsdottir, Tilmann Gneiting, and Nadine Gissibl. Using proper divergence functions to
|
evaluate climate models. SIAM/ASA Journal on Uncertainty Quantification, 1(1):522–534, January 2013.
|
ISSN 2166-2525. https://doi.org/10.1137/130907550.
|
Alexander Tsyplakov. Evaluating density forecasts: A comment. SSRN Electronic Journal, 2011. ISSN
|
1556-5068. https://doi.org/10.2139/ssrn.1907799.
|
Alexander Tsyplakov. Evaluation of probabilistic forecasts: Proper scoring rules and moments. SSRN
|
Electronic Journal, 2013. ISSN 1556-5068. https://doi.org/10.2139/ssrn.2236605.
|
Alexander Tsyplakov. Evaluation of probabilistic forecasts: Conditional auto-calibration, 2020. URL https:
|
//www.sas.upenn.edu/~fdiebold/papers2/Tsyplakov_Auto_calibration_sent_eswc2020.pdf.
|
Stéphane Vannitsem, John Bjørnar Bremnes, Jonathan Demaeyer, Gavin R. Evans, Jonathan Flowerdew,
|
Stephan Hemri, Sebastian Lerch, Nigel Roberts, Susanne Theis, Aitor Atencia, Zied Ben Bouallègue,
|
Jonas Bhend, Markus Dabernig, Lesley De Cruz, Leila Hieta, Olivier Mestre, Lionel Moret, Iris Odak
|
Plenković, Maurice Schmeits, Maxime Taillardat, Joris Van den Bergh, Bert Van Schaeybroeck, Kirien
|
Whan, and Jussi Ylhaisi. Statistical postprocessing for weather forecasts: Review, challenges, and avenues
|
in a big data world. Bulletin of the American Meteorological Society, 102(3):E681–E699, March 2021.
|
ISSN 1520-0477. https://doi.org/10.1175/bams-d-19-0308.1.
|
Heini Wernli, Marcus Paulat, Martin Hagen, and Christoph Frei. Sal—a novel quality measure for the
|
verification of quantitative precipitation forecasts. Monthly Weather Review, 136(11):4470–4487, November
|
2008. ISSN 0027-0644. https://doi.org/10.1175/2008mwr2415.1.
|
Andreas Winkelbauer. Moments and absolute moments of the normal distribution. September 2014. https:
|
//doi.org/10.48550/ARXIV.1209.4340.
|
R. L. Winkler, Javier Muñoz, José L. Cervera, José M. Bernardo, Gail Blattenberger, Joseph B. Kadane,
|
Dennis V. Lindley, Allan H. Murphy, Robert M Oliver, and David Ríos-Insua. Scoring rules and the
|
evaluation of probabilities. Test, 5(1):1–60, June 1996. ISSN 1863-8260. https://doi.org/10.1007/
|
bf02562681.
|
Robert L. Winkler. Rewarding Expertise in Probability Assessment, pages 127–140. Springer Netherlands,
|
1977. ISBN 9789401012768. https://doi.org/10.1007/978-94-010-1276-8_10.
|
Michaël Zamo and Philippe Naveau. Estimation of the continuous ranked probability score with limited
|
information and applications to ensemble weather forecasts. Mathematical Geosciences, 50(2):209–234,
|
November 2017. ISSN 1874-8953. https://doi.org/10.1007/s11004-017-9709-7.
|
Florian Ziel and Kevin Berk. Multivariate forecasting evaluation: On sensitive and strictly proper scoring
|
rules. 2019.
|
35
|
A Expected univariate scoring rules
|
A.1 Squared Error
|
For any F,G ∈ P2(R), the expectation of the squared error (2) is :
|
EG[SE(F,Y )] = (µF −µG)2 +σG2,
|
where µF is the mean of the distribution F and µG and σG2 are the mean and the variance of the distribution
|
G.
|
Proof.
|
EG[SE(F,Y )] = EG[(µF −Y)2]
|
=µ2
|
F −2 µFEG[Y]+EG[Y2]
|
Using the fact that E[X2] = Var(X)+E[X]2,
|
EG[SE(F,Y )] = µ2
|
F −2 µFµG +σ2
|
G +µ2
|
G
|
=(µF −µG)2 +σ2
|
G
|
A.2 Quantile Score
|
For any F,G ∈ P1(R), the expectation of the quantile score of level α (4) is :
|
F−1(α)
|
EG[QSα(F,Y)] =
|
−∞
|
(F−1(α) −y)G(dy)−α
|
(F−1(α) −y)G(dy);
|
R
|
=EG[QSα(G,Y)]+ (G(F−1(α))−α)(F−1(α)−G−1(α))−
|
Proof. Inspired by the proof of the propriety of the quantile score in Friederichs and Hense (2008).
|
EG[QSα(F,Y)] =
|
=
|
=
|
(1y≤F−1(α) − α)(F−1(α) −y)G(dy)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.