text
stringlengths
1
298
R
F−1(α)
−∞
F−1(α)
−∞
(1 −α)(F−1(α)−y)G(dy)+
(F−1(α) −y)G(dy)−α
(F−1(α) −y)G(dy)
R
F−1(α)
G−1(α)
+∞
(y −G−1(α))G(dy) .
(−α)(F−1(α) −y)G(dy)
F−1(α)
36
Then,usingF−1(α)−y=(F−1(α)−G−1(α))+(G−1(α)−y),
EG[QSα(F,Y)]= F−1(α)
−∞
(F−1(α)−G−1(α))G(dy)−α
R
(F−1(α)−G−1(α))G(dy)
+ F−1(α)
−∞
(G−1(α)−y)G(dy)−α
R
(G−1(α)−y)G(dy)
=(G(F−1(α))−α)(F−1(α)−G−1(α))
+ F−1(α)
−∞
(G−1(α)−y)G(dy)−α
R
(G−1(α)−y)G(dy)
=(G(F−1(α))−α)(F−1(α)−G−1(α))
+ G−1(α)
−∞
(G−1(α)−y)G(dy)+ F−1(α)
G−1(α)
(G−1(α)−y)G(dy)−α
R
(G−1(α)−y)G(dy)
=(G(F−1(α))−α)(F−1(α)−G−1(α))+EG[QSα(G,Y)])− F−1(α)
G−1(α)
(y−G−1(α))G(dy)
A.3 AbsoluteError
Firstof all, forF∈P1(R)andy∈R, theabsoluteerror (3) isequal totwicethequantilescoreof level
α=0.5:
AE(F,y)=|med(F)−y|=2QS0.5(F,y),
wheremed(F) isthemedianofthedistributionF.
Itcanbededucedthat, foranyF,G∈P1(R), theexpectationoftheabsoluteerroris:
EG[AE(F,Y)]=EG[|med(F)−Y|];
=2 med(F)
−∞
(med(F)−y)G(dy)−2α
R
(med(F)−y)G(dy);
=EG[AE(G,Y)]+2 (G(med(F))−α)(med(F)−med(G))− med(F)
med(G)
(y−med(G))G(dy) .
A.4 Brierscore
ForanyF,G∈P(R), theexpectationoftheBrierscore(5) is:
EG[BSt(F,Y)]=(F(t)−G(t))2+G(t)(1−G(t)).
Proof.
EG[BSt(F,Y)]=EG[(F(t)−1Y≤t)2]
=F(t)2−2F(t)EG[1Y≤t]+EG[1Y≤t2]
=F(t)2−2F(t)G(t)+G(t)
=F(t)2−2F(t)G(t)+G(t)2−G(t)2+G(t)
=(F(t)−G(t))2+G(t)(1−G(t))
37
A.5 ContinuousRankedProbabilityScore
ForanyF,G∈P1(R), theexpectationoftheCRPS(7) is:
EG[CRPS(F,Y)]=EF,G|X−Y|−1
2EF|X−X′|;
=
R
(F(z)−G(z))2dz+
R
G(z)(1−G(z))dz,
wherethesecondtermofthelast lineistheentropyoftheCRPS.
Proof.
EG[CRPS(F,Y)]=EG
R
(F(z)−1y≤z)2dz
=
R
EG (F(z)−1y≤z)2 dz
=
R
EG F(z)2−2F(z)1y≤z+12
y≤z dz
=
R
F(z)2−2F(z)EG[1y≤z]+EG[1y≤z] dz
=
R
F(z)2−2F(z)G(z)+G(z) dz
=
R
F(z)2−2F(z)G(z)+G(z)2−G(z)2+G(z) dz
=