publicationDate
stringlengths
1
2.79k
title
stringlengths
1
36.5k
abstract
stringlengths
1
37.3k
id
stringlengths
9
47
2017-09-13
Effects of pressure on suspended micromechanical membrane arrays
The effects of pressure on micromechanical air-filled cavities made by a pair of suspended, parallel silicon nitride membranes are investigated in the free molecular and quasi-molecular regimes. Variations of the fundamental drummode mechanical resonant frequencies and damping with air pressure are determined by means of optical interferometry. A kinetic damping linear friction force and a positive resonant frequency shift due to the compression of the fluid between the membranes are observed to be proportional with pressure in the range 0.01-10 mbars. For resonators with near-degenerate modes hybridization of the modes due to this squeeze film effect is also observed and well accounted for by a simple spring-coupled oscillator model.
1710.00043v2
2017-10-11
Parametric Decay Instability and Dissipation of Low-frequency Alfvén Waves in Low-beta Turbulent Plasmas
Evolution of the parametric decay instability (PDI) of a circularly polarized Aflv\'en wave in a turbulent low-beta plasma background is investigated using 3D hybrid simulations. It is shown that the turbulence reduces the growth rate of PDI as compared to the linear theory predictions, but PDI can still exist. Interestingly, the damping rate of ion acoustic mode (as the product of PDI) is also reduced as compared to the linear Vlasov predictions. Nonetheless, significant heating of ions in the direction parallel to the background magnetic field is observed due to resonant Landau damping of the ion acoustic waves. In low-beta turbulent plasmas, PDI can provide an important channel for energy dissipation of low-frequency Alfv\'en waves at a scale much larger than the ion kinetic scales, different from the traditional turbulence dissipation models.
1710.04149v3
2017-10-14
Doubly Damped Stochastic Parallel Translations and Hessian Formulas
We study the Hessian of the solutions of time-independent Schr\"odinger equations, aiming to obtain as large a class as possible of complete Riemannian manifolds for which the estimate $C(\frac 1 t +\frac {d^2}{t^2})$ holds. For this purpose we introduce the doubly damped stochastic parallel transport equation, study them and make exponential estimates on them, deduce a second order Feynman-Kac formula and obtain the desired estimates. Our aim here is to explain the intuition, the basic techniques, and the formulas which might be useful in other studies.
1710.05169v1
2017-10-20
Magnetic field amplification in supernova remnants
Based on the new findings on the turbulent dynamo in \citet{XL16}, we examine the magnetic field amplification in the context of supernova remnants. Due to the strong ion-neutral collisional damping in the weakly-ionized interstellar medium, the dynamo in the preshock turbulence remains in the damping kinematic regime, which leads to {\it a linear-in-time growth of the magnetic field strength}. The resultant magnetic field structure enables effective diffusion upstream and shock acceleration of cosmic rays to energies above the "knee". Differently, the nonlinear dynamo in the postshock turbulence leads to {\it a linear-in-time growth of the magnetic energy} due to the turbulent magnetic diffusion. Given a weak initial field strength in the postshock region, the magnetic field saturates at a significant distance from the shock front as a result of the inefficiency of the nonlinear dynamo. This result is in a good agreement with existing numerical simulations and well explains the X-ray spots detected far behind the shock front.
1710.07717v1
2017-10-26
Coarse-graining in the derivation of Markovian master equations and its significance in quantum thermodynamics
The coarse-graining approach to deriving the quantum Markovian master equation is revisited, with close attention given to the underlying approximations. It is further argued that the time interval over which the coarse-graining is performed is a free parameter that can be given a physical measurement-based interpretation. In the case of the damping of composite systems to reservoirs of different temperatures, currently of much interest in the study of quantum thermal machines with regard to the validity of `local' and `global' forms of these equations, the coupling of the subsystems leads to a further timescale with respect to which the coarse-graining time interval can be chosen. Different choices lead to different master equations that correspond to the local and global forms. These can be then understood as having different physical interpretations based on the role of the coarse-graining, as well as different limitations in application.
1710.09939v2
2017-10-27
The Marangoni effect on small-amplitude capillary waves in viscous fluids
We derive a general integrodifferential equation for the transient behaviour of small-amplitude capillary waves on the planar surface of a viscous fluid in the presence of the Marangoni effect. The equation is solved for an insoluble surfactant solution in concentration below the critical micelle concentration (cmc) undergoing convective-diffusive surface transport. The special case of a diffusion-driven surfactant is considered near the the critical damping wavelength. The Marangoni effect is shown to contribute to the overall damping mechanism and a first-order term correction to the critical wavelength with respect to the surfactant concentration difference and the Schmidt number is proposed.
1710.10137v1
2017-11-03
Remark on upper bound for lifespan of solutions to semilinear evolution equations in a two-dimensional exterior domain
In this paper we consider the initial-boundary value problem for the heat, damped wave, complex-Ginzburg-Landau and Schr"odinger equations with the power type nonlinearity $|u|^p$ with $p in (1,2]$ in a two-dimensional exterior domain. Remark that $2=1+2/N$ is well-known as the Fujita exponent. If $p>2$, then there exists a small global-in-time solution of the damped wave equation for some initial data small enough (see Ikehata'05), and if $p<2$, then global-in-time solutions cannot exist for any positive initial data (see Ogawa-Takeda'09 and Lai-Yin'17). The result is that for given initial data $(f,tau g)in H^1_0(Omega)times L^2(Omega)$ satisfying $(f+tau g)log |x|in L^1(Omega)$ with some requirement, the solution blows up at finite time, and moreover, the upper bound for lifespan of solutions to the problem is given as the following {it double exponential type} when $p=2$: [ lifespan(u) leq exp[exp(Cep^{-1})] . ] The crucial idea is to use test functions which approximates the harmonic function $log |x|$ satisfying Dirichlet boundary condition and the technique for derivation of lifespan estimate in Ikeda-Sobajima(arXiv:1710.06780).
1711.00994v1
2017-11-03
A flowing pair of particles in inertial microfluidics
A flowing pair of particles in inertial microfluidics gives important insights into understanding and controlling the collective dynamics of particles like cells or droplets in microfluidic devices. They are applied in medical cell analysis and engineering. We study the dynamics of a pair of solid particles flowing through a rectangular microchannel using lattice Boltzmann simulations. We determine the inertial lift force profiles as a function of the two particle positions, their axial distance, and the Reynolds number. Generally, the profiles strongly differ between particles leading and lagging in flow and the lift forces are enhanced due to the presence of a second particle. At small axial distances, they are determined by viscous forces, while inertial forces dominate at large separations. Depending on the initial conditions, the two-particle lift forces in combination with the Poiseuille flow give rise to three types of unbound particle trajectories, called moving-apart, passing, and swapping, and one type of bound trajectories, where the particles perform damped oscillations. The damping rate scales with Reynolds number squared, since inertial forces are responsible for driving the particles to their steady-state positions.
1711.01148v2
2017-11-07
Application of the coupled classical oscillators model to the Fano resonance build-up in a plasmonic nanosystem
We study the excitation dynamics of Fano resonance within the classical model framework of two linear coupled oscillators. An exact solution for the model with a damped harmonic force is obtained. The details of growth a Fano profile under the harmonic excitation is shown. For incident ultra-wideband pulse, the reaction of a system becomes universal and coincides with the time-dependent response function. The results of numerical calculations clarify two alternative ways for experimental measurement of the complete characteristics of a system: direct observation of the system response to a monochromatic force by frequency scanning or recording of time-dependent response to the delta-pulse. As a specific example, time-dependent excitation in a system consisting of a quantum dot and a metal nanoparticle is calculated. Then it is shown the applicability of the extended model of damped oscillators with radiative correction to describe the build-up a plasmon Fano resonance in a scattering of a femtosecond laser pulse by nanoantenna.
1711.02498v2
2017-11-11
Quantum Thermodynamics for Driven Dissipative Bosonic Systems
We investigate two prototypical dissipative bosonic systems under slow driving and arbitrary system-bath coupling strength, recovering their dynamic evolution as well as the heat and work rates, and we verify that thermodynamic laws are respected. Specifically, we look at the damped harmonic oscillator and the damped two-level system. For the former, we study independently the slow time- dependent perturbation in the oscillator frequency and in the coupling strength. For the latter, we concentrate on the slow modulation of the energy gap between the two levels. Importantly, we are able to find the entropy production rates for each case without explicitly defining nonequilibrium extensions for the entropy functional. This analysis also permits the definition of phenomenological friction coefficients in terms of structural properties of the system-bath composite.
1711.04077v1
2017-11-29
Constraints on box-shaped cosmic ray electron feature from dark matter annihilation with the AMS-02 and DAMPE data
Precise measurements of spectra of cosmic ray electrons and positrons can effectively probe the nature of dark matter (DM) particles. In a class of models where DM particles initially annihilate into a pair of intermediate particles which then decay into standard model particles, box-shaped spectra can be generated. Such a kind of spectra are distinct from astrophysical backgrounds, and can probably be regarded as characteristic features of the DM annihilation. In this work, we search for such a feature in the total electron plus positron spectrum measured by AMS-02 and DAMPE. No significant evidence for such a DM annihilation component has been found. The 95\% confidence level upper limits of the velocity-weighted annihilation cross section are derived, which range from $\sim 10^{-26}~{\rm cm^3~s^{-1}}$ for DM mass of 50 GeV to $\sim 10^{-23}~{\rm cm^3~s^{-1}}$ for DM mass of 10 TeV.
1711.11052v2
2017-11-30
TeV dark matter and the DAMPE electron excess
The recent high energy electron and positron flux observed by the DAMPE experiment indicates possible excess events near 1.4 TeV. Such an excess may be evidence of dark matter annihilations or decays in a dark matter subhalo that is located close to the solar system. We give here an analysis of this excess from annihilations of Dirac fermion dark matter which is charged under a new $U(1)_X$ gauge symmetry. The interactions between dark matter and the standard model particles are mediated the $U(1)_X$ gauge boson. We show that dark matter annihilations from a local subhalo can explain the excess with the canonical thermal annihilation cross section. We further discuss the constraints from the relic density, from the dark matter direct detection, from the dark matter indirect detection, from the cosmic microwave background, and from the particle colliders.
1711.11579v1
2017-12-04
Quasi-degenerate dark matter for DAMPE excess and $3.5\,\textrm{keV}$ line
We propose a quasi-degenerate dark matter scenario to simultaneously explain the $1.4\,\textrm{TeV}$ peak in the high-energy cosmic-ray electron-positron spectrum reported by the DAMPE collaboration very recently and the $3.5\,\textrm{keV}$ X-ray line observed in galaxies clusters and from the Galactic centre and confirmed by the Chandra and NuSTAR satellites. We consider a dark $SU(2)'\times U(1)'$ gauge symmetry under which the dark matter is a Dirac fermion doublet composed of two $SU(2)'$ doublets with non-trivial $U(1)'$ charges. At one-loop level the two dark fermion components can have a mass split as a result of the dark gauge symmetry breaking. Through the exchange of a mediator scalar doublet the two quasi-degenerate dark fermions can mostly annihilate into the electron-positron pairs at tree level for explaining the $1.4\,\textrm{TeV}$ positron anomaly, meanwhile, the heavy dark fermion can very slowly decay into the light dark fermion with a photon at one-loop level for explaining the $3.5\,\textrm{keV}$ X-ray line. Our dark fermions can be also verified in the direct detection experiments.
1712.00922v1
2017-12-06
Collective modes of an imbalanced unitary Fermi gas
We study theoretically the collective mode spectrum of a strongly imbalanced two-component unitary Fermi gas in a cigar-shaped trap, where the minority species forms a gas of polarons. We describe the collective breathing mode of the gas in terms of the Fermi liquid kinetic equation taking collisions into account using the method of moments. Our results for the frequency and damping of the longitudinal in-phase breathing mode are in good quantitative agreement with an experiment by Nascimb\`ene et al. [Phys. Rev. Lett. 103, 170402 (2009)] and interpolate between a hydrodynamic and a collisionless regime as the polarization is increased. A separate out-of phase breathing mode, which for a collisionless gas is sensitive to the effective mass of the polaron, however, is strongly damped at finite temperature, whereas the experiment observes a well-defined oscillation.
1712.02181v1
2017-12-07
Bias of Damped Lyman-$α$ systems from their cross-correlation with CMB lensing
We cross-correlate the positions of damped Lyman-$\alpha$ systems (DLAs) and their parent quasar catalog with a convergence map derived from the Planck cosmic microwave background (CMB) temperature data. We make consistent measurements of the lensing signal of both samples in both Fourier and configuration space. By interpreting the excess signal present in the DLA catalog with respect to the parent quasar catalog as caused by the large scale structure traced by DLAs, we are able to infer the bias of these objects: $b_{\rm DLA}=2.6\pm0.9$. These results are consistent with previous measurements made in cross-correlation with the Lyman-$\alpha$ forest, although the current noise in the lensing data and the low number density of DLAs limits the constraining power of this measurement. We discuss the robustness of the analysis with respect to a number different systematic effects and forecast prospects of carrying out this measurement with data from future experiments.
1712.02738v2
2017-12-08
Viscoelastic optical nonlocality of low-loss epsilon-near-zero nanofilms
Optical nonlocalities are elusive and hardly observable in traditional plasmonic materials like noble and alkali metals. Here we report experimental observation of viscoelastic nonlocalities in the infrared optical response of doped cadmium-oxide, epsilon-near-zero nanofilms. The nonlocality is detectable thanks to the low damping rate of conduction electrons and the virtual absence of interband transitions at infrared wavelengths. We describe the motion of conduction electrons using a hydrodynamic model for a viscoelastic fluid, and find excellent agreement with experimental results. The electrons elasticity blue-shifts the infrared plasmonic resonance associated with the main epsilon-near-zero mode, and triggers the onset of higher-order resonances due to the excitation of electron-pressure modes above the bulk plasma frequency. We also provide evidence of the existence of nonlocal damping, i.e., viscosity, in the motion of optically-excited conduction electrons using a combination of spectroscopic ellipsometry data and predictions based on the viscoelastic hydrodynamic model.
1712.03169v2
2017-12-08
A Strong Test of the Dark Matter Origin of the 1.4 TeV DAMPE Signal Using IceCube Neutrinos
A tentative excess in the electron spectrum at 1.4 TeV was recently reported by the DArk Matter Particle Explorer (DAMPE). A non-astrophysical scenario in which dark matter particles annihilate or decay in a local clump has been invoked to explain the excess. If $e^\pm$ annihilation channels in the final states are mediated by left-handed leptons as a component in the $SU(2)_L$ doublet, neutrinos with similar energies should have been simultaneously produced. We demonstrate that generic dark matter models can be decisively tested by the existing IceCube data. In case of a non-detection, such models would be excluded at the $5\sigma$ level by the five-year data for a point-like source and by the ten-year data for an extended source of dark matter particles with left-handed leptons.
1712.03210v2
2017-12-11
Prospects of type-II seesaw at future colliders in light of the DAMPE $e^+ e^-$ excess
The DAMPE $e^+ e^-$ excess at around 1.4 TeV could be explained in the type-II seesaw model with a scalar dark mater $D$ which is stabilized by a discrete $Z_2$ symmetry. The simplest scenario is the annihilation $DD \to H^{++} H^{--}$ followed by the subsequent decay $H^{\pm\pm} \to e^\pm e^\pm$, with both the DM and triplet scalars roughly 3 TeV with a small mass splitting. In addition to the Drell-Yan process at future 100 TeV hadron colliders, the doubly-charged components could also be produced at lepton colliders like ILC and CLIC in the off-shell mode, and mediate lepton flavor violating processes $e^+ e^- \to \ell_i^\pm \ell_j^\mp$ (with $i \neq j$). A wide range of parameter space of the type-II seesaw could be probed, which are well below the current stringent lepton flavor constraints.
1712.03642v3
2017-12-12
Thermal decoherence in a strongly correlated Bose liquid
We compute the single particle spectral function of a Bose liquid on a lattice, at integer filling, close to the superfluid-Mott transition. We use a `static path approximation' that retains all the classical thermal fluctuations in the problem, and a real space implementation of the random phase approximation (RPA) for the Green's functions on the thermally fluctuating backgrounds. This leads to the standard RPA answers in the ground state but captures the progressive damping of the excitations with increasing temperature. We focus on the momentum resolved lineshape across the superfluid to Bose liquid thermal transition. In the superfluid regime we observe a gapped `amplitude' mode, and gapless `phase' modes of positive and negative energy. The dispersion and weight of these modes changes with interaction but are almost temperature independent, even into the normal state, except near critical coupling. The damping of the modes varies roughly as $T^{\alpha} f_{\bf k}$, where $T$ is the temperature and ${\bf k}$ the momentum, with $\alpha \sim 0.5$ and $f_{\bf k}$ having non trivial momentum dependence. The Mott phase has gapped dispersive spectra. Near critical coupling the thermal Bose `liquid' is gapped, with progressive widening of the gap with increasing temperature, a feature that it shares with the Mott insulator.
1712.04433v1
2017-12-17
Oscillation energy based sensitivity analysis and control for multi-mode oscillation systems
This paper describes a novel approach to analyze and control systems with multi-mode oscillation problems. Traditional single dominant mode analysis fails to provide effective control actions when several modes have similar low damping ratios. This work addresses this problem by considering all modes in the formulation of the system kinetic oscillation energy. The integral of energy over time defines the total action as a measure of dynamic performance, and its sensitivity allows comparing the performance of different actuators/locations in the system to select the most effective one to damp the oscillation energy. Time domain simulations in the IEEE 9-bus system and IEEE 39-bus system verify the findings obtained by the oscillation energy based analysis. Applications of the proposed method in control and system planning are discussed.
1712.06157v1
2017-12-19
Nonequilibrium quantum solvation with a time-dependent Onsager cavity
We formulate a theory of nonequilibrium quantum solvation in which parameters of the solvent are explicitly depending on time. We assume in a simplest approach a spherical molecular Onsager cavity with a time-dependent radius. We analyze the relaxation properties of a test molecular point dipole in a dielectric solvent and consider two cases: (i) a shrinking Onsager sphere, and, (ii) a breathing Onsager sphere. Due to the time-dependent solvent, the frequency-dependent response function of the dipole becomes time-dependent. For a shrinking Onsager sphere, the dipole relaxation is in general enhanced. This is reflected in a temporally increasing line width of the absorptive part of the response. Furthermore, the effective frequency-dependent response function shows two peaks in the absorptive part which are symmetrically shifted around the eigenfrequency. In contrast, a breathing sphere reduces damping as compared to the static sphere. Interestingly, we find a non-monotonous dependence of the relaxation rate on the breathing rate and a resonant suppression of damping when both rates are comparable. Moreover, the line width of the absorptive part of the response function is strongly reduced for times when the breathing sphere reaches its maximal extension.
1712.06973v2
2017-12-26
Newton's equation of motion with quadratic drag force and Toda's potential as a solvable one
The family of exactly solvable potentials for Newton's equation of motion in the one-dimensional system with quadratic drag force has been determined completely. The determination is based on the implicit inverse-function solution valid for any potential shape, and hence exhaustive. This solvable family includes the exponential potential appearing in the Toda lattice as a special limit. The global solution is constructed by matching the solutions applicable for positive and negative velocity, yielding the piecewise analytic function with a cusp in the third-order derivative, i.e., the jerk. These procedures and features can be regarded as a generalization of Gorder's construction [Phys. Scr. 2015, {\bf 90}, 085208] to the energy-dissipating damped oscillators. We also derive the asymptotic formulae by solving the matching equation, and prove that the damping of the oscillation amplitude is proportional to $ t^{-1} $.
1712.09189v4
2017-12-23
Density Fluctuations in the Solar Wind Driven by Alfvén Wave Parametric Decay
Measurements and simulations of inertial compressive turbulence in the solar wind are characterized by anti-correlated magnetic fluctuations parallel to the mean field and density structures. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures (PBS), kinetic ion acoustic waves, as well as the MHD slow-mode. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising, and suggestive of a local driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is Alfv\'en wave parametric instability. Here we test the parametric decay process as a source of compressive waves in the solar wind by comparing the collisionless damping rates of compressive fluctuations with the growth rates of the parametric decay instability daughter waves. Our results suggest that generation of compressive waves through parametric decay is overdamped at 1 AU, but that the presence of slow-mode like density fluctuations is correlated with the parametric decay of Alfv\'en waves.
1712.09336v2
2018-01-15
A radiative neutrino mass model in light of DAMPE excess with hidden gauged $U(1)$ symmetry
We propose a one-loop induced neutrino mass model with hidden $U(1)$ gauge symmetry, in which we successfully involve a bosonic dark matter (DM) candidate propagating inside a loop diagram in neutrino mass generation to explain the $e^+e^-$ excess recently reported by the DArk Matter Particle Explorer (DAMPE) experiment. In our scenario dark matter annihilates into four leptons through $Z'$ boson as DM DM $\to Z' Z' (Z' \to \ell^+ \ell^-)$ and $Z'$ decays into leptons via one-loop effect. We then investigate branching ratios of $Z'$ taking into account lepton flavor violations and neutrino oscillation data.
1801.04729v2
2018-01-22
A port-Hamiltonian approach to the control of nonholonomic systems
In this paper a method of controlling nonholonomic systems within the port-Hamiltonian (pH) framework is presented. It is well known that nonholonomic systems can be represented as pH systems without Lagrange multipliers by considering a reduced momentum space. Here, we revisit the modelling of these systems for the purpose of identifying the role that physical damping plays. Using this representation, a geometric structure generalising the well known chained form is identified as \textit{chained structure}. A discontinuous control law is then proposed for pH systems with chained structure such that the configuration of the system asymptotically approaches the origin. The proposed control law is robust against the damping and inertial of the open-loop system. The results are then demonstrated numerically on a car-like vehicle.
1801.06954v1
2018-01-23
Temperature gradient driven heat flux closure in fluid simulations of collisionless reconnection
Recent efforts to include kinetic effects in fluid simulations of plasmas have been very promising. Concerning collisionless magnetic reconnection, it has been found before that damping of the pressure tensor to isotropy leads to good agreement with kinetic runs in certain scenarios. An accurate representation of kinetic effects in reconnection was achieved in a study by Wang et al. (Phys. Plasmas, volume 22, 2015, 012108) with a closure derived from earlier work by Hammett and Perkins (PRL, volume 64, 1990, 3019). Here, their approach is analyzed on the basis of heat flux data from a Vlasov simulation. As a result, we propose a new local closure in which heat flux is driven by temperature gradients. That way, a more realistic approximation of Landau damping in the collisionless regime is achieved. Previous issues are addressed and the agreement with kinetic simulations in different reconnection setups is improved significantly. To the authors' knowledge, the new fluid model is the first to perform well in simulations of the coalescence of large magnetic islands.
1801.07628v1
2018-01-29
Oscillatory relaxation of zonal flows in a multi-species stellarator plasma
The low frequency oscillatory relaxation of zonal potential perturbations is studied numerically in the TJ-II stellarator (where it was experimentally detected for the first time). It is studied in full global gyrokinetic simulations of multi-species plasmas. The oscillation frequency obtained is compared with predictions based on single-species simulations using simplified analytical relations. It is shown that the frequency of this oscillation for a multi-species plasma can be accurately obtained from single-species calculations using extrapolation formulas. The damping of the oscillation and the influence of the different inter-species collisions is studied in detail. It is concluded that taking into account multiple kinetic ions and electrons with impurity concentrations realistic for TJ-II plasmas allows to account for the values of frequency and damping rate in zonal flows relaxations observed experimentally.
1801.09495v1
2018-01-30
Input / Output Stability of a Damped String Equation coupled with Ordinary Differential System
The input/output stability of an interconnected system composed of an ordinary differential equation and a damped string equation is studied. Issued from the literature on time-delay systems, an exact stability result is firstly derived using pole locations. Then, based on the Small-Gain theorem and on the Quadratic Separation framework, some robust stability criteria are provided. The latter follows from a projection of the infinite dimensional state on an orthogonal basis of Legendre polynomials. Numerical examples comparing these results with the ones in the literature are proposed and a comparison of its efficiency is made.
1801.09916v2
2018-02-05
Intrinsic spin-orbit torque arising from Berry curvature in metallic-magnet/Cu-oxide interface
We report the observation of the intrinsic damping-like spin-orbit torque (SOT) arising from the Berry curvature in metallic-magnet/CuO$_x$ heterostructures. We show that a robust damping-like SOT, an order of magnitude larger than a field-like SOT, is generated in the heterostructure despite the absence of the bulk spin-orbit effect in the CuO$_x$ layer. Furthermore, by tuning the interface oxidation level, we demonstrate that the field-like SOT changes drastically and even switches its sign, which originates from oxygen modulated spin-dependent disorder. These results provide an important information for fundamental understanding of the physics of the SOTs.
1802.01285v2
2018-02-12
Selective Phonon Damping in Topological Semimetals
Topological semimetals are characterized by their intriguing Fermi surfaces (FSs) such as Weyl and Dirac points, or nodal FS, and their associated surface states. Among them, topological crystalline semimetals, in the presence of strong spin-orbit coupling, possess a nodal FS protected by non-symmorphic lattice symmetries. In particular, it was theoretically proposed that $\mathrm{SrIrO}_{3}$ exhibits a bulk nodal ring due to glide symmetries, as well as flat two-dimensional surface states related to chiral and mirror symmetries. However, due to the semimetallic nature of the bulk, direct observation of these surface states is difficult. Here we study the effect of flat-surface states on phonon modes for $\mathrm{SrIrO}_{3}$ side surfaces. We show that particular phonon modes, based on mirror symmetry, have qualitatively different damping mechanisms due to the surface states which could be used to infer their existence. Experimental techniques for such measurements are also discussed.
1802.04300v2
2018-02-14
Motion of interfaces for a damped hyperbolic Allen-Cahn equation
Consider the Allen-Cahn equation $u_t=\varepsilon^2\Delta u-F'(u)$, where $F$ is a double well potential with wells of equal depth, located at $\pm1$. There are a lot of papers devoted to the study of the limiting behavior of the solutions as the diffusion coefficient $\varepsilon\to0^+$, and it is well known that, if the initial datum $u(\cdot,0)$ takes the values $+1$ and $-1$ in the regions $\Omega_+$ and $\Omega_-$, then the "interface" connecting $\Omega_+$ and $\Omega_-$ moves with normal velocity equal to the sum of its principal curvatures, i.e. the interface moves by mean curvature flow. This paper concerns with the motion of the inteface for a damped hyperbolic Allen-Cahn equation, in a bounded domain of $\mathbb{R}^n$, for $n=2$ or $n=3$. In particular, we focus the attention on radially simmetric solutions, studying in detail the differences with the classic parabolic case, and we prove that, under appropriate assumptions on the initial data $u(\cdot,0)$ and $u_t(\cdot,0)$, the interface moves by mean curvature as $\varepsilon\to0^+$ also in the hyperbolic framework.
1802.05038v1
2018-02-23
Blow up of solutions for semilinear wave equations with noneffective damping
In this paper, we study the finite-time blow up of solutions to the following semilinear wave equation with time-dependent damping \[ \partial_t^2u-\Delta u+\frac{\mu}{1+t}\partial_tu=|u|^p \] in $\mathbb{R}_{+}\times\mathbb{R}^n$. More precisely, for $0\leq\mu\leq 2,\mu \neq1$ and $n\geq 2$, there is no global solution for $1<p<p_S(n+\mu)$, where $p_S(k)$ is the $k$-dimensional Strauss exponent and a life-span of the blow up solution will be obtained. Our work is an extension of \cite{IS}, where the authors proved a similar blow up result with a larger range of $\mu$. However, we obtain a better life-span estimate when $\mu\in(0,1)\cup(1,2)$ by using a different method.
1802.08403v2
2018-03-04
Optimization of Time-Resolved Magneto-optical Kerr Effect Signals for Magnetization Dynamics Measurements
Recently magnetic storage and magnetic memory have shifted towards the use of magnetic thin films with perpendicular magnetic anisotropy (PMA). Understanding the magnetic damping in these materials is crucial, but normal Ferromagnetic Resonance (FMR) measurements face some limitations. The desire to quantify the damping in materials with PMA has resulted in the adoption of Time-Resolved Magneto-optical Kerr Effect (TR-MOKE) measurements. In this paper, we discuss the angle and field dependent signals in TR-MOKE, and utilize a numerical algorithm based on the Landau-Lifshitz-Gilbert (LLG) equation to provide information on the optimal conditions to run TR-MOKE measurements.
1803.01280v2
2018-03-06
A comparison of semi-Lagrangian discontinuous Galerkin and spline based Vlasov solvers in four dimensions
The purpose of the present paper is to compare two semi-Lagrangian methods in the context of the four-dimensional Vlasov--Poisson equation. More specifically, our goal is to compare the performance of the more recently developed semi-Lagrangian discontinuous Galerkin scheme with the de facto standard in Eulerian Vlasov simulation (i.e. using cubic spline interpolation). To that end, we perform simulations for nonlinear Landau damping and a two-stream instability and provide benchmarks for the SeLaLib and sldg codes (both on a workstation and using MPI on a cluster). We find that the semi-Lagrangian discontinuous Galerkin scheme shows a moderate improvement in run time for nonlinear Landau damping and a substantial improvement for the two-stream instability. It should be emphasized that these results are markedly different from results obtained in the asymptotic regime (which favor spline interpolation). Thus, we conclude that the traditional approach of evaluating numerical methods is misleading, even for short time simulations. In addition, the absence of any All-to-All communication in the semi-Lagrangian discontinuous Galerkin method gives it a decisive advantage for scaling to more than 256 cores.
1803.02143v1
2018-03-06
Kak's three-stage protocol of secure quantum communication revisited: Hitherto unknown strengths and weaknesses of the protocol
Kak's three-stage protocol for quantum key distribution is revisited with special focus on its hitherto unknown strengths and weaknesses. It is shown that this protocol can be used for secure direct quantum communication. Further, the implementability of this protocol in the realistic situation is analyzed by considering various Markovian noise models. It is found that the Kak's protocol and its variants in their original form can be implemented only in a restricted class of noisy channels, where the protocols can be transformed to corresponding protocols based on logical qubits in decoherence free subspace. Specifically, it is observed that Kak's protocol can be implemented in the presence of collective rotation and collective dephasing noise, but cannot be implemented in its original form in the presence of other types of noise, like amplitude damping and phase damping noise. Further, the performance of the protocol in the noisy environment is quantified by computing average fidelity under various noise models, and subsequently a set of preferred states for secure communication in noisy environment have also been identified.
1803.02157v1
2018-03-09
Dynamical evolutions in non-Hermitian triple-well system with complex potential
We investigate the dynamical properties for non-Hermitian triple-well system with a loss in the middle well. When chemical potentials in two end wells are uniform and nonlinear interactions are neglected, there always exists a dark state, whose eigenenergy becomes zero, and the projections onto which do not change over time and the loss factor. The increasing of loss factor only makes the damping form from the oscillating decay to over-damping decay. However, when the nonlinear interaction is introduced, even interactions in the two end wells are also uniform, the projection of the dark state will be obviously diminished. Simultaneously the increasing of loss factor will also aggravate the loss. In this process the interaction in the middle well plays no role. When two chemical potentials or interactions in two end wells are not uniform all disappear with time. In addition, when we extend the triple-well system to a general (2n + 1)-well, the loss is reduced greatly by the factor 1=2n in the absence of the nonlinear interaction.
1803.03360v1
2018-03-11
Graph Laplacian Spectrum and Primary Frequency Regulation
We present a framework based on spectral graph theory that captures the interplay among network topology, system inertia, and generator and load damping in determining the overall grid behavior and performance. Specifically, we show that the impact of network topology on a power system can be quantified through the network Laplacian eigenvalues, and such eigenvalues determine the grid robustness against low frequency disturbances. Moreover, we can explicitly decompose the frequency signal along scaled Laplacian eigenvectors when damping-inertia ratios are uniform across buses. The insight revealed by this framework partially explains why load-side participation in frequency regulation not only makes the system respond faster, but also helps lower the system nadir after a disturbance. Finally, by presenting a new controller specifically tailored to suppress high frequency disturbances, we demonstrate that our results can provide useful guidelines in the controller design for load-side primary frequency regulation. This improved controller is simulated on the IEEE 39-bus New England interconnection system to illustrate its robustness against high frequency oscillations compared to both the conventional droop control and a recent controller design.
1803.03905v3
2018-03-15
Control Inversion: A Clustering-Based Method for Distributed Wide-Area Control of Power Systems
Wide-area control (WAC) has been shown to be an effective tool for damping low-frequency oscillations in power systems. In the current state of art, WAC is challenged by two main factors - namely, scalability of design and complexity of implementation. In this paper we present a control design called control inversion that bypasses both of these challenges using the idea of clustering. The basic philosophy behind this method is to project the original power system model into a lower-dimensional state-space through clustering and aggregation of generator states, and then designing an LQR controller for the lower-dimensional model. This controller is finally projected back to the original coordinates for wide-area implementation. The main problem is, therefore, posed as finding the projection which best matches the closed-loop performance of the WAC controller with that of a reference LQR controller for damping low-frequency oscillations. We verify the effectiveness of the proposed design using the NPCC 48-machine power system model.
1803.05947v1
2018-03-18
Damped Anderson acceleration with restarts and monotonicity control for accelerating EM and EM-like algorithms
The expectation-maximization (EM) algorithm is a well-known iterative method for computing maximum likelihood estimates from incomplete data. Despite its numerous advantages, a main drawback of the EM algorithm is its frequently observed slow convergence which often hinders the application of EM algorithms in high-dimensional problems or in other complex settings.To address the need for more rapidly convergent EM algorithms, we describe a new class of acceleration schemes that build on the Anderson acceleration technique for speeding fixed-point iterations. Our approach is effective at greatly accelerating the convergence of EM algorithms and is automatically scalable to high dimensional settings. Through the introduction of periodic algorithm restarts and a damping factor, our acceleration scheme provides faster and more robust convergence when compared to un-modified Anderson acceleration while also improving global convergence. Crucially, our method works as an "off-the-shelf" method in that it may be directly used to accelerate any EM algorithm without relying on the use of any model-specific features or insights. Through a series of simulation studies involving five representative problems, we show that our algorithm is substantially faster than the existing state-of-art acceleration schemes.
1803.06673v2
2018-03-21
Connectivity-Preserving Coordination Control of Multi-Agent Systems with Time-Varying Delays
This paper presents a distributed position synchronization strategy that also preserves the initial communication links for single-integrator multi-agent systems with time-varying delays. The strategy employs a coordinating proportional control derived from a specific type of potential energy, augmented with damping injected through a dynamic filter. The injected damping maintains all agents within the communication distances of their neighbours, and asymptotically stabilizes the multi-agent system, in the presence of time delays. Regarding the closed-loop single-integrator multi-agent system as a double-integrator system suggests an extension of the proposed strategy to connectivity-preserving coordination of Euler-Lagrange networks with time-varying delays. Lyapunov stability analysis and simulation results validate the two designs.
1803.08152v1
2018-03-23
A Novel Approach to Resonant Absorption of the Fast MHD Eigenmodes of a Coronal Arcade
The arched field lines forming coronal arcades are often observed to undulate as magnetohydrodynamic (MHD) waves propagate both across and along the magnetic field. These waves are most likely a combination of resonantly coupled fast magnetoacoustic waves and Alfv\'en waves. The coupling results in resonant absorption of the fast waves, converting fast wave energy into Alfv\'en waves. The fast eigenmodes of the arcade have proven difficult to compute or derive analytically, largely because of the mathematical complexity that the coupling introduces. When a traditional spectral decomposition is employed, the discrete spectrum associated with the fast eigenmodes is often subsumed into the continuous Alfv\'en spectrum. Thus fast eigenmodes, become collective modes or quasi-modes. Here we present a spectral decomposition that treats the eigenmodes as having real frequencies but complex wavenumbers. Using this procedure we derive dispersion relations, spatial damping rates, and eigenfunctions for the resonant, fast eigenmodes of the arcade. We demonstrate that resonant absorption introduces a fast mode that would not exist otherwise. This new mode is heavily damped by resonant absorption, only travelling a few wavelengths before losing most of its energy.
1803.08948v1
2018-03-25
Parareal exponential $θ$-scheme for longtime simulation of stochastic Schrödinger equations with weak damping
A parareal algorithm based on an exponential $\theta$-scheme is proposed for the stochastic Schr\"odinger equation with weak damping and additive noise. It proceeds as a two-level temporal parallelizable integrator with the exponential $\theta$-scheme as the propagator on the coarse grid. The proposed algorithm in the linear case increases the convergence order from one to $k$ for $\theta\in[0,1]\setminus\{\frac12\}$. In particular, the convergence order increases to $2k$ when $\theta=\frac12$ due to the symmetry of the algorithm. Furthermore, the algorithm is proved to be suitable for longtime simulation based on the analysis of the invariant distributions for the exponential $\theta$-scheme. The convergence condition for longtime simulation is also established for the proposed algorithm in the nonlinear case, which indicates the superiority of implicit schemes. Numerical experiments are dedicated to illustrate the best choice of the iteration number $k$, as well as the convergence order of the algorithm for different choices of $\theta$.
1803.09188v1
2018-04-01
Aggregated Momentum: Stability Through Passive Damping
Momentum is a simple and widely used trick which allows gradient-based optimizers to pick up speed along low curvature directions. Its performance depends crucially on a damping coefficient $\beta$. Large $\beta$ values can potentially deliver much larger speedups, but are prone to oscillations and instability; hence one typically resorts to small values such as 0.5 or 0.9. We propose Aggregated Momentum (AggMo), a variant of momentum which combines multiple velocity vectors with different $\beta$ parameters. AggMo is trivial to implement, but significantly dampens oscillations, enabling it to remain stable even for aggressive $\beta$ values such as 0.999. We reinterpret Nesterov's accelerated gradient descent as a special case of AggMo and analyze rates of convergence for quadratic objectives. Empirically, we find that AggMo is a suitable drop-in replacement for other momentum methods, and frequently delivers faster convergence.
1804.00325v3
2018-04-03
Damped perturbations in the no-boundary state
We evaluate the no-boundary path integral exactly in a Bianchi IX minisuperspace with two scale factors. In this model the no-boundary proposal can be implemented by requiring one scale factor to be zero initially together with a judiciously chosen regularity condition on the momentum conjugate to the second scale factor. Taking into account the non-linear backreaction of the perturbations we recover the predictions of the original semiclassical no-boundary proposal. In particular we find that large perturbations are strongly damped, consistent with vacuum state wave functions.
1804.01102v2
2018-09-14
Nonequilibrium polariton dynamics in a Bose-Einstein condensate coupled to an optical cavity
We study quasiparticle scattering effects on the dynamics of a homogeneous Bose-Einstein condensate of ultracold atoms coupled to a single mode of an optical cavity. The relevant excitations, which are polariton-like mixed excitations of photonic and atomic density-wave modes, are identified. All the first-order correlation functions are presented by means of the Keldysh Green's function technique. Beyond confirming the existence of the resonant enhancement of Beliaev damping, we find a very structured spectrum of fluctuations. There is a spectral hole burning at half of the recoil frequency reflecting the singularity of the Beliaev scattering process. The effects of the photon-loss dissipation channel and that of the Beliaev damping due to atom-atom collisions can be well separated. We show that the Beliaev process does not influence the properties of the self-organization criticality.
1809.05427v2
2018-09-26
The influence of oscillations on energy estimates for damped wave models with time-dependent propagation speed and dissipation
The aim of this paper is to derive higher order energy estimates for solutions to the Cauchy problem for damped wave models with time-dependent propagation speed and dissipation. The model of interest is \begin{equation*} u_{tt}-\lambda^2(t)\omega^2(t)\Delta u +\rho(t)\omega(t)u_t=0, \quad u(0,x)=u_0(x), \,\, u_t(0,x)=u_1(x). \end{equation*} The coefficients $\lambda=\lambda(t)$ and $\rho=\rho(t)$ are shape functions and $\omega=\omega(t)$ is an oscillating function. If $\omega(t)\equiv1$ and $\rho(t)u_t$ is an "effective" dissipation term, then $L^2-L^2$ energy estimates are proved in [2]. In contrast, the main goal of the present paper is to generalize the previous results to coefficients including an oscillating function in the time-dependent coefficients. We will explain how the interplay between the shape functions and oscillating behavior of the coefficient will influence energy estimates.
1809.10179v2
2018-09-27
Non-equilibrium Quantum Langevin dynamics of orbital diamagnetic moment
We investigate the time dependent orbital diamagnetic moment of a charged particle in a magnetic field in a viscous medium via the Quantum Langevin Equation. We study how the interplay between the cyclotron frequency and the viscous damping rate governs the dynamics of the orbital magnetic moment in the high temperature classical domain and the low temperature quantum domain for an Ohmic bath. These predictions can be tested via state of the art cold atom experiments with hybrid traps for ions and neutral atoms. We also study the effect of a confining potential on the dynamics of the magnetic moment. We obtain the expected Bohr Van Leeuwen limit in the high temperature, asymptotic time ($ \gamma t\longrightarrow \infty$, where $ \gamma $ is the viscous damping coefficient) limit.
1809.10370v1
2018-10-31
AGN Variability Analysis Handbook
This work develops application techniques for stochastic modelling of Active Galactic Nuclei (AGN) variability as a probe of accretion disk physics. Stochastic models, specifically Continuous Auto-Regressive Moving Average (CARMA) models, characterize lightcurves by estimating delay timescales that describe movements away from and toward equilibrium (mean flux) as well as an amplitude and frequency of intrinsic perturbations to the AGN flux. We begin this tutorial by reviewing discrete auto-regressive (AR) and moving-average (MA) processes, we bridge these components to their continuous analogs, and lastly we investigate the significance of timescales from direct stochastic modelling of a lightcurve projected in power spectrum (PSD) and structure function (SF) space. We determine that higher order CARMA models, for example the Damped Harmonic Oscillator (DHO or CARMA(2,1)) are more sensitive to deviations from a single-slope power-law description of AGN variability; unlike Damped Random Walks (DRW or CAR(1)) where the PSD slope is fixed, the DHO slope is not. Higher complexity stochastic models than the DRW capture additional covariance in data and output additional characteristic timescales that probe the driving mechanisms of variability.
1811.00154v1
2018-11-15
Unique ergodicity for a class of stochastic hyperbolic equations with additive space-time white noise
In this paper, we consider a certain class of second order nonlinear PDEs with damping and space-time white noise forcing, posed on the $d$-dimensional torus. This class includes the wave equation for $d=1$ and the beam equation for $d\le 3$. We show that the Gibbs measure of the equation without forcing and damping is the unique invariant measure for the flow of this system. Since the flow does not satisfy the Strong Feller property, we introduce a new technique for showing unique ergodicity. This approach may be also useful in situations in which finite-time blowup is possible.
1811.06294v4
2018-12-04
Optical excitation of single- and multi-mode magnetization precession in Galfenol nanolayers
We demonstrate a variety of precessional responses of the magnetization to ultrafast optical excitation in nanolayers of Galfenol (Fe,Ga), which is a ferromagnetic material with large saturation magnetization and enhanced magnetostriction. The particular properties of Galfenol, including cubic magnetic anisotropy and weak damping, allow us to detect up to 6 magnon modes in a 120-nm layer, and a single mode with effective damping ${\alpha}_{eff}$ = 0.005 and frequency up to 100 GHz in a 4-nm layer. This is the highest frequency observed to date in time-resolved experiments with metallic ferromagnets. We predict that detection of magnetization precession approaching THz frequencies should be possible with Galfenol nanolayers.
1812.01237v1
2018-12-10
Assessment of skin-friction-reduction techniques on a turbulent wing section
The scope of the present project is to quantify the effects of uniform blowing and body-force damping on turbulent boundary layers subjected to a non-uniform adverse-pressure-gradient distribution. To this end, well-resolved large-eddy simulations are employed to describe the flow around the NACA4412 airfoil at moderate Reynolds number 200, 000 based on freestream velocity and chord length. In the present paper we focus on uniform blowing and the conference presentation will include a comparison with body-force damping applied in the same region. The inner-scaled profiles of the mean velocity and of selected components of the Reynolds-stress tensor are examined and compared with the uncontrolled cases. It is known that uniform blowing and adverse-pressure gradients share some similarities in their effect on the boundary layers, and our results will show that these effects are not independent. The behaviour of the skin-friction coefficient is analyzed through the FIK decomposition, and the impact of this control strategy on the aerodynamic efficiency of the airfoil is discussed.
1812.03762v1
2018-12-18
Gravitational quasinormal modes of black holes in Einstein-aether theory
The local Lorentz violation (LV) in gravity sector should show itself in derivation of the characteristic quasinormal modes (QNMs) of black hole mergers from their general relativity case. In this paper, I study QNMs of the gravitational field perturbations to Einstein-aether black holes and, at first compare them to those in Schwarzschild black hole, and then some other known LV gravity theories. By comparing to Schwarzschild black hole, the first kind aether black holes have larger damping rate and the second ones have lower damping rate. And they all have smaller real oscillation frequency of QNMs. By comparing to some other LV theories, the QNMs of the first kind aether black hole are similar to that of the QED-extension limit of standard model extension, non-minimal coupling to Einstein's tensor and massive gravity theories. While as to the second kind aether black hole, they are similar to those of the noncommutative gravity theories and Einstein-Born-Infeld theories. These similarities may imply that LV in gravity sector and LV in matter sector have some intrinsic connections.
1812.07994v1
2018-12-19
Rain Calms the Sea - The Impact of Entrained Air
We propose a mechanism for the damping of short ocean gravity waves during rainstorms associated with the injection of air bubbles by rain drops. The mechanism is proposed as one of the possible explanations that ascribe to rain a calming effect on ocean surface waves. A model is developed that shows how wave attenuation increases with the presence of air bubbles in the upper reaches of the ocean. The model makes predictions of the effective wave dissipation coefficient, as a function of the volumetric ratio of air to water, as well as to the rainfall rate. The model predicts dissipation rates that are in line with experimental estimates of the effective wave damping rate.
1812.08200v2
2018-12-25
Blow-up for a weakly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities
In this work we study the blow-up of solutions of a weakly coupled system of damped semilinear wave equations in the scattering case with power nonlinearities. We apply an iteration method to study both the subcritical case and the critical case. In the subcritical case our approach is based on lower bounds for the space averages of the components of local solutions. In the critical case we use the slicing method and a couple of auxiliary functions, recently introduced by Wakasa-Yordanov, to modify the definition of the functionals with the introduction of weight terms. In particular, we find as critical curve for the pair (p, q) of the exponents in the nonlinear terms the same one as for the weakly coupled system of semilinear wave equations with power nonlinearities.
1812.10086v1
2018-12-27
Global existence of solutions to semilinear damped wave equation with slowly decaying inital data in exterior domain
In this paper, we discuss the global existence of weak solutions to the semilinear damped wave equation \begin{equation*} \begin{cases} \partial_t^2u-\Delta u + \partial_tu = f(u) & \text{in}\ \Omega\times (0,T), \\ u=0 & \text{on}\ \partial\Omega\times (0,T), \\ u(0)=u_0, \partial_tu(0)=u_1 & \text{in}\ \Omega, \end{cases} \end{equation*} in an exterior domain $\Omega$ in $\mathbb{R}^N$ $(N\geq 2)$, where $f:\mathbb{R}\to \mathbb{R}$ is a smooth function behaves like $f(u)\sim |u|^p$. From the view point of weighted energy estimates given by Sobajima--Wakasugi \cite{SoWa4}, the existence of global-in-time solutions with small initial data in the sense of $(1+|x|^2)^{\lambda/2}u_0$, $(1+|x|^2)^{\lambda/2}\nabla u_0$, $(1+|x|^2)^{\lambda/2}u_1\in L^2(\Omega)$ with $\lambda\in (0,\frac{N}{2})$ is shown under the condition $p\geq 1+\frac{4}{N+2\lambda}$. The sharp lower bound for the lifespan of blowup solutions with small initial data $(\varepsilon u_0,\varepsilon u_1)$ is also given.
1812.10664v1
2019-02-08
Milky Way Halo Vibrations and Incommensurate Stream Velocities
Collisionless dark matter galactic halos are expected to exhibit damped oscillations as a result of ongoing late time accretion. An n-body model of the cosmological assembly of a Milky Way-like halo is used to quantify the time dependence of its gravitational field. The simulation contains stellar streams whose incommensurate perpendicular velocities are found to have an approximately exponential distribution with a scale of 10-20\kms, depending on how the stars are selected, comparable to those reported for the Orphan stream. The fluctuations in the quadrupole moment of the dark matter halo are sufficient to largely explain the tangential velocities. If velocity measurements of a larger sample of Milky Way streams finds (or does not find) the expected distribution of transverse velocities it will lead to limits on the cross-section of self-interacting dark matter, in which kinetic viscosity can damp the oscillations more rapidly than the mixing processes of collisionless dark matter alone.
1902.03275v2
2019-02-20
Dark matter gets DAMPE at high energies
The DArk Matter Particle Explorer (DAMPE) mission revealed a break in the spectrum of cosmic-ray electons and positrons. This is associated with an excess above the expected backgrounds at energies around 1 TeV. Several authors have argued that such an excess can be explained in terms of dark matter models that feature heavy leptophilic WIMPs. These models, however, require some form annihilation enchancement above that expected from the Milky-Way galactic centre. This can take the form of either a local over-density near to our solar system or some form of Sommerfeld enhancement of the annihilation rate. In this work we will explore the detectability of local over-densities using gamma-ray and neutrino observatories. We conclude that KM3NET may be the only up-coming high-energy instrument capable of ruling out the presence of such objects. However, in the case where the local over-density is an Ultra-Compact Mini Halo, CTA can also explore the parameter space of these proposed dark matter models.
1902.07468v1
2019-02-23
General symmetry in the reduced dynamics of two-level system
We study general transformation on the density matrix of two-level system that keeps the expectation value of observable invariant. We introduce a set of generators that yields hermiticity and trace preserving general transformation which casts the transformation into simple form. The general transformation is in general not factorized and not completely positive. Consequently, either the parameter of transformation or the density matrix it acts on needs to be restricted. It can transform the system in the forward and backward direction with regard to its parameter, not as a semigroup in the time translation symmetry of dynamical maps. The general transformation can rotate the Bloch vector circularly or hyperbolically, dilate it or translate it. We apply the general transformation to study the general symmetry of amplitude damping and phase damping in two-level system. We generalize the generators to higher level systems.
1902.08714v2
2019-02-25
Interpretation of the cosmic ray positron and electron excesses with an annihilating-decaying dark matter scenario
The precise measurements of energy spectra of cosmic ray positrons and/or electrons by recent experiments show clear excesses above 10 GeV. Moreover, a potential sharp spectral feature was suggested by the Dark Matter Particle Explorer (DAMPE) data. These results inspire quite a number of discussions on the connection with either the annihilation/decay of dark matter (DM) or the astrophysical origins. Here we discuss a DM scenario in which DM particles could annihilate and decay into standard model particle pairs simultaneously. In this model, the peak structure is due to the DM annihilation in a nearby subhalo and the broad positron/electron excesses are due to the decay of DM in the Milky Way. This model can reasonably explain the DAMPE and AMS-02 data of the total $e^+e^-$ spectra and the positron fraction, with model parameters being consistent with existing constraints. A simple realization of such a DM model is the spin-1 vector DM model.
1902.09235v2
2019-02-27
Necessary and Sufficient Conditions for Passivity of Velocity-Sourced Impedance Control of Series Elastic Actuators
Series Elastic Actuation (SEA) has become prevalent in applications involving physical human-robot interaction as it provides considerable advantages over traditional stiff actuators in terms of stability robustness and fidelity of force control. Several impedance control architectures have been proposed for SEA. Among these alternatives, the cascaded controller with an inner-most velocity loop, an intermediate torque loop and an outer-most impedance loop is particularly favoured for its simplicity, robustness, and performance. In this paper, we derive the \emph{necessary and sufficient conditions} to ensure the passivity of this cascade-controller architecture for rendering two most common virtual impedance models. Based on the newly established passivity conditions, we provide non-conservative design guidelines to haptically display a null impedance and a pure spring while ensuring the passivity of interaction. We also demonstrate the importance of including physical damping in the actuator model during derivation of passivity conditions, when integral controllers are utilized. In particular, we show the adversary effect of physical damping on system passivity.
1902.10607v2
2019-03-01
Response to: [Comment on Quantization of the damped harmonic oscillator [Serhan et al, J. Math. Phys. 59, 082105 (2018)]]
This is a response to a recently reported comment [1] on paper [J. Math. Phys.59, 082105 (2018)] regarding the quantization of damped harmonic oscillator using a non-Hermitian Hamiltonian with real energy eigenvalues. We assert here that the calculation of Eq. (29) of [2] is incorrect, and thus the subsequent steps via the Nikiforov-Uvarov method are affected, and the energy eigenvalues should have been complex. However, we show here that the Hermiticity of the Hamiltonian should be firstly achieved to make the correct transition from classical Hamiltonian to quantum counterpart, and this can be reached using the symmetrization rule. Applying the canonical quantization on the resulted Hermitian Hamiltonian and then using the Nikiforov-Uvarov method correctly, the energy eigenvalues will be real and exactly as given by Eq. (35) of [2].
1903.00352v2
2019-03-07
Current-induced motion of twisted skyrmions
Twisted skyrmions, whose helicity angles are different from that of Bloch skyrmions and N\'eel skyrmions, have already been demonstrated in experiments recently. In this work, we first contrast the magnetic structure and origin of the twisted skyrmion with other three types of skyrmion including Bloch skyrmion, N\'eel skyrmion and antiskyrmion. Following, we investigate the dynamics of twisted skyrmions driven by the spin transfer toque (STT) and the spin Hall effect (SHE) by using micromagnetic simulations. It is found that the spin Hall angle of the twisted skyrmion is related to the dissipative force tensor and the Gilbert damping both for the motions induced by the STT and the SHE, especially for the SHE induced motion, the skyrmion Hall angle depends substantially on the skyrmion helicity. At last, we demonstrate that the trajectory of the twisted skyrmion can be controlled in a two dimensional plane with a Gilbert damping gradient. Our results provide the understanding of current-induced motion of twisted skyrmions, which may contribute to the applications of skyrmion-based racetrack memories.
1903.02812v1
2019-03-08
Protecting quantum correlations in presence of generalised amplitude damping channel: the two-qubit case
Any kind of quantum resource useful in different information processing tasks is vulnerable to several types of environmental noise. Here we study the behaviour of quantum correlations such as entanglement and steering in two-qubit systems under the application of the generalised amplitude damping channel and propose some protocols towards preserving them under this type of noise. First, we employ the technique of weak measurement and reversal for the purpose of preservation of correlations. We then show how the evolution under the channel action can be seen as an unitary process. We use the technique of weak measurement and most general form of selective positive operator valued measure (POVM) to achieve preservation of correlations for a significantly large range of parameter values.
1903.03550v2
2019-03-17
Generalized Euler, Smoluchowski and Schrödinger equations admitting self-similar solutions with a Tsallis invariant profile
The damped isothermal Euler equations, the Smoluchowski equation and the damped logarithmic Schr\"odinger equation with a harmonic potential admit stationary and self-similar solutions with a Gaussian profile. They satisfy an $H$-theorem for a free energy functional involving the von Weizs\"acker functional and the Boltzmann functional. We derive generalized forms of these equations in order to obtain stationary and self-similar solutions with a Tsallis profile. In particular, we introduce a nonlinear Schr\"odinger equation involving a generalized kinetic term characterized by an index $q$ and a power-law nonlinearity characterized by an index $\gamma$. We derive an $H$-theorem satisfied by a generalized free energy functional involving a generalized von Weizs\"acker functional (associated with $q$) and a Tsallis functional (associated with $\gamma$). This leads to a notion of generalized quantum mechanics and generalized thermodynamics. When $q=2\gamma-1$, our nonlinear Schr\"odinger equation admits an exact self-similar solution with a Tsallis invariant profile. Standard quantum mechanics (Schr\"odinger) and standard thermodynamics (Boltzmann) are recovered for $q=\gamma=1$.
1903.07111v1
2019-03-21
Creating localized plasma wave by ionization of doped semiconductors
Localized plasma waves can be generated by suddenly ionizing extrinsic semiconductors with spatially periodic dopant densities. The built-in electrostatic potentials at the metallurgical junctions, combined with electron density ripples, offer the exact initial condition for exciting long-lasting plasma waves upon ionization. This method can create plasma waves with a frequency between a few terahertz to sub-petahertz without substantial damping. The lingering plasma waves can seed backward Raman amplification in a wide range of resonance frequencies up to the extreme ultraviolet regime. Chirped wavevectors and curved wavefronts allow focusing the amplified beam in both longitudinal and transverse dimensions. The main limitation to this method appears to be obtaining sufficiently low plasma density from solid-state materials to avoid collisional damping.
1903.09013v2
2019-03-22
Noncommutative approach to diagnose degenerate Higgs bosons at 125 GeV
We propose a noncommutative (NC) version for a global O(2) scalar field theory, whose damping feature is introduced into the scalar field theory through the NC parameter. In this context, we investigate how noncommutative drives spontaneous symmetry breaking (SSB) and Higgs-Kibble mechanisms and how the damping feature workout. Indeed, we show that the noncommutativity plays an important role in such mechanisms, i.e., the Higgs mass and VEV dependent on NC parameter. After that, it is explored the consequences of noncommutativity dependence of Higgs mass and VEV: for the first, it is shown that there are a mass-degenerate Higgs bosons near 126.5 GeV, parametrized by the noncommutativity; for the second, the gauge fields gain masses that present a noncommutativity contribution.
1903.09727v2
2019-05-02
The floatability of aerosols and waves damping on Titan's seas
Titan, Saturn's largest moon, has a dense atmosphere, together with lakes and seas of liquid hydrocarbons. These liquid bodies, which are in polar regions and up to several hundred kilometres in diameter, generally have smooth surfaces despite evidence of near-surface winds. Photochemically generated organic aerosols form a haze that can settle and potentially interact with the liquid surface. Here we investigate the floatability of these aerosols on Titan's seas and their potential to dampen waves. We find that the majority of aerosols are denser than the liquid hydrocarbons, but that some could have liquid-repelling properties. From calculation of the capillary forces, we propose that these 'liquidophobic' aerosols could float and form a persistent film on Titan's seas. We numerically model the wave damping efficiency of such a film under the conditions on Titan, demonstrating that even a film one molecule thick may inhibit formation of waves larger than a few centimetres in wavelength. We conclude that the presence of a floating film of aerosols deposited on Titan's lakes and seas could explain the remarkable smoothness of their surfaces.
1905.00760v1
2019-05-02
Holographic Plasmon Relaxation with and without Broken Translations
We study the dynamics and the relaxation of bulk plasmons in strongly coupled and quantum critical systems using the holographic framework. We analyze the dispersion relation of the plasmonic modes in detail for an illustrative class of holographic bottom-up models. Comparing to a simple hydrodynamic formula, we entangle the complicated interplay between the three least damped modes and shed light on the underlying physical processes. Such as the dependence of the plasma frequency and the effective relaxation time in terms of the electromagnetic coupling, the charge and the temperature of the system. Introducing momentum dissipation, we then identify its additional contribution to the damping. Finally, we consider the spontaneous symmetry breaking (SSB) of translational invariance. Upon dialing the strength of the SSB, we observe an increase of the longitudinal sound speed controlled by the elastic moduli and a decrease in the plasma frequency of the gapped plasmon. We comment on the condensed matter interpretation of this mechanism.
1905.00804v2
2019-05-05
Effective spin-mixing conductance of heavy-metal-ferromagnet interfaces
The effective spin-mixing conductance (G_eff) of a heavy metal/ferromagnet (HM/FM) interface characterizes the efficiency of the interfacial spin transport.Accurately determining G_eff is critical to the quantitative understanding of measurements of direct and inverse spin Hall effects. G_eff is typically ascertained from the inverse dependence of magnetic damping on the FM thickness under the assumption that spin pumping is the dominant mechanism affecting this dependence.Here we report that, this assumption fails badly in many in-plane magnetized prototypical HM/FM systems in the nm-scale thickness regime. Instead, the majority of the damping is from two-magnon scattering at the FM interface, while spin-memory-loss scattering at the interface can also be significant.If these two effects are neglected, the results will be an unphysical "giant" apparent G_eff and hence considerable underestimation of both the spin Hall ratio and the spin Hall conductivity in inverse/direct spin Hall experiments.
1905.01577v2
2019-05-07
Integral representation formulae for the solution of a wave equation with time-dependent damping and mass in the scale-invariant case
This paper is devoted to derive integral representation formulae for the solution of an inhomogeneous linear wave equation with time-dependent damping and mass terms, that are scale-invariant with respect to the so-called hyperbolic scaling. Yagdjian's integral transform approach is employed for this purpose. The main step in our argument consists in determining the kernel functions for the different integral terms, which are related to the source term and to initial data. We will start with the one dimensional case (in space). We point out that we may not apply in a straightforward way Duhamel's principle to deal with the source term since the coefficients of lower order terms make our model not invariant by time translation. On the contrary, we shall begin with the representation formula for the inhomogeneous equation with vanishing data by using a revised Duhamel's principle. Then, we will derive the representation of the solution in the homogeneous case with nontrivial data. After deriving the formula in the one dimensional case, the classical approach by spherical means is used in order to deal with the odd dimensional case. Finally, using the method of descent, the representation formula in the even dimensional case is proved.
1905.02408v1
2019-05-07
Optimal decay for the $n$-dimensional incompressible Oldroyd-B model without damping mechanism
By a new energy approach involved in the high frequencies and low frequencies decomposition in the Besov spaces, we obtain the optimal decay for the incompressible Oldroyd-B model without damping mechanism in $\mathbb{R}^n$ ($n\ge 2$). More precisely, let $(u,\tau)$ be the global small solutions constructed in [18], we prove for any $(u_0,\tau_0)\in{\dot{B}_{2,1}^{-s}}(\mathbb{R}^n)$ that \begin{eqnarray*} \big\|\Lambda^{\alpha}(u,\Lambda^{-1}\mathbb{P}\mathrm{div}\tau)\big\|_{L^q} \le C (1+t)^{-\frac n4-\frac {(\alpha+s)q-n}{2q}}, \quad\Lambda\stackrel{\mathrm{def}}{=}\sqrt{-\Delta}, \end{eqnarray*} with $\frac n2-1<s<\frac np, $ $2\leq p \leq \min(4,{2n}/({n-2})),\ p\not=4\ \hbox{ if }\ n=2,$ and $p\leq q\leq\infty$, $\frac nq-\frac np-s<\alpha \leq\frac nq-1$. The proof relies heavily on the special dissipative structure of the equations and some commutator estimates and various interpolations between Besov type spaces. The method also works for other parabolic-hyperbolic systems in which the Fourier splitting technique is invalid.
1905.02604v1
2019-05-12
Transport and Phonon Damping in $^{\bf 4}$He
The dynamic structure function $S(k,\omega)$ informs about the dispersion and damping of excitations. We have recently (Phys. Rev. B {\bf 97}, 184520 (2018)) compared experimental results for $S(k,\omega)$ from high-precision neutron scattering experiment and theoretical results using the ``dynamic many-body theory'' (DMBT), showing excellent agreement over the whole experimentally accessible pressure regime. This paper focuses on the specific aspect of the propagation of low-energy phonons. We report calculations of the phonon mean-free path and phonon life time in liquid \he4 as a function of wave length and pressure. Historically, the question was of interest for experiments of quantum evaporation. More recently, there is interest in the potential use of $^4$He as a detector for low-energy dark matter (K. Schulz and Kathryn M. Zurek, Phys. Rev. Lett. {\bf 117}, 121302 (2016)). While the mean free path of long wave length phonons is large, phonons of intermediate energy can have a short mean free path of the order of $\mu$m. Comparison of different levels of theory indicate that reliable predictions of the phonon mean free path can be made only by using the most advanced many--body method available, namely, DMBT.
1905.04759v1
2019-05-15
Nearly Markovian maps and entanglement-based bound on corresponding non-Markovianity
We identify a set of dynamical maps of open quantum system, and refer to them as "$ \epsilon $-Markovian" maps. It is constituted of maps which, in a higher dimensional system-environment Hilbert space, possibly violate Born approximation but only a "little". We characterize the "$\epsilon$-nonmarkovianity" of a general dynamical map by the minimum distance of that map from the set of $\epsilon$-Markovian maps. We analytically derive an inequality which gives a bound on the $ \epsilon$-nonmarkovianity of the dynamical map, in terms of an entanglement-like resource generated between the system and its "immediate" environment. In the special case of a vanishing $\epsilon$, this inequality gives a relation between the $\epsilon$-nonmarkovianity of the reduced dynamical map on the system and the entanglement generated between the system and its immediate environment. We numerically investigate the behavior of the similar distant based measures of non-Markovianity for classes of amplitude damping and phase damping channels.
1905.06198v3
2019-05-15
A remark on triviality for the two-dimensional stochastic nonlinear wave equation
We consider the two-dimensional stochastic damped nonlinear wave equation (SdNLW) with the cubic nonlinearity, forced by a space-time white noise. In particular, we investigate the limiting behavior of solutions to SdNLW with regularized noises and establish triviality results in the spirit of the work by Hairer, Ryser, and Weber (2012). More precisely, without renormalization of the nonlinearity, we establish the following two limiting behaviors; (i) in the strong noise regime, we show that solutions to SdNLW with regularized noises tend to 0 as the regularization is removed and (ii) in the weak noise regime, we show that solutions to SdNLW with regularized noises converge to a solution to a deterministic damped nonlinear wave equation with an additional mass term.
1905.06278v3
2019-05-17
Chiral p-wave superconductors have complex coherence and magnetic field penetration lengths
We show that in superconductors that break time reversal symmetry and have anisotropy, such as p+ip materials, all order parameters and magnetic modes are mixed. Excitation of the gap fields produces an excitation of the magnetic field and vice versa. Correspondingly the long-range decay of the magnetic field and order parameter are in general given by the same exponent. Thus one cannot characterize p+ip superconductors by the usual coherence and magnetic field penetration lengths. Instead the system has normal modes that are associated with linear combinations of magnetic fields, moduli of and phases of the order parameter components. Each such normal mode has its own decay length that plays the role of a hybridized coherence/magnetic field penetration length. On a large part of the parameter space these exponents are complex. Therefore the system in general has damped oscillatory decay of the magnetic field accompanied by damped oscillatory variation of the order parameter fields.
1905.07296v2
2019-05-20
Short time blow-up by negative mass term for semilinear wave equations with small data and scattering damping
In this paper we study blow-up and lifespan estimate for solutions to the Cauchy problem with small data for semilinear wave equations with scattering damping and negative mass term. We show that the negative mass term will play a dominant role when the decay of its coefficients is not so fast, thus the solutions will blow up in a finite time. What is more, we establish a lifespan estimate from above which is much shorter than the usual one.
1905.08100v1
2019-05-21
Low-pass-filter-based shock response spectrum and the evaluation method of transmissibility between equipment and sensitive components interfaces
According to the features of the sources of pyroshock and ballistic shock, this study considers the pyroshock and ballistic shock generated by their respective impulsive sources as damped harmonic waves with different frequencies. According to the linear superposition assumption of damped harmonic waves in a linear elastic structure, a shock analysis method based on low-pass-filtered shock signals and their corresponding shock response spectrum (SRS), termed as low-pass-filter-based shock response spectrum (LPSRS), is proposed. LPSRS contains rich information of the frequency distribution of the shock excitation signal. A method to calculate shock transmissibility is proposed based on LPSRS and basic modal information of the equipment structure. LPSRS and SRS curves can be predicted at any given position of the equipment structure. The prediction method is validated by finite element method (FEM) simulation.
1905.10190v1
2019-05-24
Sound damping in glasses: interplay between anharmonicities and elastic heterogeneities
Some facets of the way sound waves travel through glasses are still unclear. Recent works have shown that in the low-temperature harmonic limit a crucial role in controlling sound damping is played by local elastic heterogeneity. Sound waves propagation has been demonstrated to be strongly affected by inhomogeneous mechanical features of the materials, which add to the anharmonic couplings at finite temperatures. We describe the interplay between these two effects by molecular dynamics simulation of a model glass. In particular, we focus on the transverse components of the vibrational excitations in terms of dynamic structure factors, and characterize the temperature dependence of sound attenuation rates in an extended frequency range. We provide a complete picture of all phenomena, in terms encompassing both theory and experiments.
1905.10235v2
2019-05-27
A blow-up result for a semilinear wave equation with scale-invariant damping and mass and nonlinearity of derivative type
In this note, we prove blow-up results for semilinear wave models with damping and mass in the scale-invariant case and with nonlinear terms of derivative type. We consider the single equation and the weakly coupled system. In the first case we get a blow-up result for exponents below a certain shift of the Glassey exponent. For the weakly coupled system we find as critical curve a shift of the corresponding curve for the weakly coupled system of semilinear wave equations with the same kind of nonlinearities. Our approach follows the one for the respective classical wave equation by Zhou Yi. In particular, an explicit integral representation formula for a solution of the corresponding linear scale-invariant wave equation, which is derived by using Yagdjian's integral transform approach, is employed in the blow-up argument. While in the case of the single equation we may use a comparison argument, for the weakly coupled system an iteration argument is applied.
1905.11025v2
2019-05-28
Stationary states for underdamped anharmonic oscillators driven by Cauchy noise
Using methods of stochastic dynamics, we have studied stationary states in the underdamped anharmonic stochastic oscillators driven by Cauchy noise. Shape of stationary states depend both on the potential type and the damping. If the damping is strong enough, for potential wells which in the overdamped regime produce multimodal stationary states, stationary states in the underdamped regime can be multimodal with the same number of modes like in the overdamped regime. For the parabolic potential, the stationary density is always unimodal and it is given by the two dimensional $\alpha$-stable density. For the mixture of quartic and parabolic single-well potentials the stationary density can be bimodal. Nevertheless, the parabolic addition, which is strong enough, can destroy bimodlity of the stationary state.
1905.12078v2
2019-08-01
The $J$-method for the Gross-Pitaevskii eigenvalue problem
This paper studies the $J$-method of [E. Jarlebring, S. Kvaal, W. Michiels. SIAM J. Sci. Comput. 36-4:A1978-A2001, 2014] for nonlinear eigenvector problems in a general Hilbert space framework. This is the basis for variational discretization techniques and a mesh-independent numerical analysis. A simple modification of the method mimics an energy-decreasing discrete gradient flow. In the case of the Gross-Pitaevskii eigenvalue problem, we prove global convergence towards an eigenfunction for a damped version of the $J$-method. More importantly, when the iterations are sufficiently close to an eigenfunction, the damping can be switched off and we recover a local linear convergence rate previously known from the discrete setting. This quantitative convergence analysis is closely connected to the~$J$-method's unique feature of sensitivity with respect to spectral shifts. Contrary to classical gradient flows, this allows both the selective approximation of excited states as well as the amplification of convergence beyond linear rates in the spirit of the Rayleigh quotient iteration for linear eigenvalue problems. These advantageous convergence properties are demonstrated in a series of numerical experiments involving exponentially localized states under disorder potentials and vortex lattices in rotating traps.
1908.00333v2
2019-08-02
How do Conservative Backbone Curves Perturb into Forced Responses? A Melnikov Function Analysis
Weakly damped mechanical systems under small periodic forcing tend to exhibit periodic response in a close vicinity of certain periodic orbits of their conservative limit. Specifically, amplitude frequency plots for the conservative limit have often been noted, both numerically and experimentally, to serve as backbone curves for the near resonance peaks of the forced response. In other cases, such a relationship between the unforced and forced response was not observed. Here we provide a systematic mathematical analysis that predicts which members of conservative periodic orbit families will serve as backbone curves for the forced-damped response. We also obtain mathematical conditions under which approximate numerical and experimental approaches, such as energy balance and force appropriation, are justifiable. Finally, we derive analytic criteria for the birth of isolated response branches (isolas) whose identification is otherwise challenging from numerical continuation.
1908.00721v3
2019-08-05
Tunable strong coupling of two adjacent optical λ/2 Fabry-Pérot microresonators
Optical half-wave microresonators enable to control the optical mode density around a quantum system and thus to modify the temporal emission properties. If the coupling rate exceeds the damping rate, strong coupling between a microresonator and a quantum system can be achieved, leading to a coherent energy exchange and the creation of new hybrid modes. Here, we investigate strong coupling between two adjacent lambda/2 Fabry-P\'erot microresonators, where the resonance of one microresonator can be actively tuned across the resonance of the other microresonator. The transmission spectra of the coupled microresonators show a clear anticrossing behavior, which proves that the two cavity modes are strongly coupled. Additionally, we can vary the coupling rate by changing the resonator geometry and thereby investigate the basic principles of strong coupling with a well-defined model system. Finally, we will show that such a coupled system can theoretically be modelled by coupled damped harmonic oscillators.
1908.01566v1
2019-07-27
An extension of the second order dynamical system that models Nesterov's convex gradient method
In this paper we deal with a general second order continuous dynamical system associated to a convex minimization problem with a Fr\`echet differentiable objective function. We show that inertial algorithms, such as Nesterov's algorithm, can be obtained via the natural explicit discretization from our dynamical system. Our dynamical system can be viewed as a perturbed version of the heavy ball method with vanishing damping, however the perturbation is made in the argument of the gradient of the objective function. This perturbation seems to have a smoothing effect for the energy error and eliminates the oscillations obtained for this error in the case of the heavy ball method with vanishing damping, as some numerical experiments show. We prove that the value of the objective function in a generated trajectory converges in order O(1/t^2) to the global minimum of the objective function. Moreover, we obtain that a trajectory generated by the dynamical system converges to a minimum point of the objective function.
1908.02574v1
2019-08-07
Interfacial contributions to spin-orbit torque and magnetoresistance in ferromagnet/heavy-metal bilayers
The thickness dependence of spin-orbit torque and magnetoresistance in ferromagnet/heavy-metal bilayers is studied using the first-principles non-equilibrium Green's function formalism combined with the Anderson disorder model. A systematic expansion in orthogonal vector spherical harmonics is used for the angular dependence of the torque. The damping-like torque in Co/Pt and Co/Au bilayers can be described as a sum of the spin-Hall contribution, which increases with thickness in agreement with the spin-diffusion model, and a comparable interfacial contribution. The magnetoconductance in the plane perpendicular to the current in Co/Pt bilayers is of the order of a conductance quantum per interfacial atom, exceeding the prediction of the spin-Hall model by more than an order of magnitude. This suggests that the "spin-Hall magnetoresistance," similarly to the damping-like torque, has a large interfacial contribution unrelated to the spin-Hall effect.
1908.02680v2
2019-08-16
Dynamics of Hot Bose-Einstein Condensates: stochastic Ehrenfest relations for number and energy damping
Describing partially-condensed Bose gases poses a long-standing theoretical challenge. We present exact stochastic Ehrenfest relations for the stochastic projected Gross-Pitaevskii equation, including both number and energy damping mechanisms, and all projector terms that arise from the energy cutoff separating system from reservoir. We test the theory by applying it to the centre of mass fluctuations of a harmonically trapped prolate system, finding close agreement between c-field simulations and analytical results. The formalism lays the foundation to analytically explore experimentally accessible hot Bose-Einstein condensates.
1908.05809v3
2019-08-12
On a simple derivation of the very low damping escape rate for classical spins by modifying the method of Kramers
The original perturbative Kramers' method (starting from the phase space coordinates) (Kramers, 1940) of determining the energy-controlled-diffusion equation for Newtonian particles with separable and additive Hamiltonians is generalized to yield the energy-controlled diffusion equation and thus the very low damping (VLD) escape rate including spin-transfer torque for classical giant magnetic spins with two degrees of freedom. These have dynamics governed by the magnetic Langevin and Fokker-Planck equations and thus are generally based on non-separable and non-additive Hamiltonians. The derivation of the VLD escape rate directly from the (magnetic) Fokker-Planck equation for the surface distribution of magnetization orientations in the configuration space of the polar and azimuthal angles $(\vartheta, \varphi)$ is much simpler than those previously used.
1908.06747v1
2019-08-22
Improving the dynamics of quantum sensors with reinforcement learning
Recently proposed quantum-chaotic sensors achieve quantum enhancements in measurement precision by applying nonlinear control pulses to the dynamics of the quantum sensor while using classical initial states that are easy to prepare. Here, we use the cross-entropy method of reinforcement learning to optimize the strength and position of control pulses. Compared to the quantum-chaotic sensors with periodic control pulses in the presence of superradiant damping, we find that decoherence can be fought even better and measurement precision can be enhanced further by optimizing the control. In some examples, we find enhancements in sensitivity by more than an order of magnitude. By visualizing the evolution of the quantum state, the mechanism exploited by the reinforcement learning method is identified as a kind of spin-squeezing strategy that is adapted to the superradiant damping.
1908.08416v2
2019-08-28
Spin functional renormalization group for quantum Heisenberg ferromagnets: Magnetization and magnon damping in two dimensions
We use the spin functional renormalization group recently developed by two of us [J. Krieg and P. Kopietz, Phys. Rev. B $\bf{99}$, 060403(R) (2019)] to calculate the magnetization $M ( H , T )$ and the damping of magnons due to classical longitudinal fluctuations of quantum Heisenberg ferromagnets. In order to guarantee that for vanishing magnetic field $H \rightarrow 0$ the magnon spectrum is gapless when the spin rotational invariance is spontaneously broken, we use a Ward identity to express the magnon self-energy in terms of the magnetization. In two dimensions our approach correctly predicts the absence of long-range magnetic order for $H=0$ at finite temperature $T$. The magnon spectrum then exhibits a gap from which we obtain the transverse correlation length. We also calculate the wave-function renormalization factor of the magnons. As a mathematical by-product, we derive a recursive form of the generalized Wick theorem for spin operators in frequency space which facilitates the calculation of arbitrary time-ordered connected correlation functions of an isolated spin in a magnetic field.
1908.10753v2
2019-09-03
Learning Elastic Constitutive Material and Damping Models
Commonly used linear and nonlinear constitutive material models in deformation simulation contain many simplifications and only cover a tiny part of possible material behavior. In this work we propose a framework for learning customized models of deformable materials from example surface trajectories. The key idea is to iteratively improve a correction to a nominal model of the elastic and damping properties of the object, which allows new forward simulations with the learned correction to more accurately predict the behavior of a given soft object. Space-time optimization is employed to identify gentle control forces with which we extract necessary data for model inference and to finally encapsulate the material correction into a compact parametric form. Furthermore, a patch based position constraint is proposed to tackle the challenge of handling incomplete and noisy observations arising in real-world examples. We demonstrate the effectiveness of our method with a set of synthetic examples, as well with data captured from real world homogeneous elastic objects.
1909.01875v2
2019-09-06
Effect of Tantalum spacer thickness and deposition conditions on the properties of MgO/CoFeB/Ta/CoFeB/MgO free layers
To get stable perpendicularly magnetized tunnel junctions at small device dimensions, composite free layers that comprise two MgO/FeCoB interfaces as sources of interface anisotropy are generally used. Proper cristallisation and annealing robustness is typically ensured by the insertion of a spacer layer of the early transition metal series within the FeCoB layer. We study the influence of the spacer thickness and growth condition on the switching metrics of tunnel junctions thermally annealed at 400$^\circ$C for the case of 1-4 \r{A} Ta spacers. Thick Ta spacer results in a large anisotropies indicative of a better defined top FeCoB/MgO interface, but this is achieved at the systematic expense of a stronger damping. For the best anisotropy-damping compromise, junctions of diameter 22 nm can still be stable and spin-torque switched. Coercivity and inhomogeneous linewidth broadening, likely arising from roughness at the FeCoB/Ta interface, can be reduced if a sacrificial Mg layer is inserted before the Ta spacer deposition.
1909.02741v1
2019-09-10
Spin Pumping from Permalloy into Uncompensated Antiferromagnetic Co doped Zinc Oxide
Heterostructures of Co-doped ZnO and Permalloy were investigated for their static and dynamic magnetic interaction. The highly Co-doped ZnO is paramagentic at room temperature and becomes an uncompensated antiferromagnet at low temperatures, showing a narrowly opened hysteresis and a vertical exchange bias shift even in the absence of any ferromagnetic layer. At low temperatures in combination with Permalloy an exchange bias is found causing a horizontal as well as vertical shift of the hysteresis of the heterostructure together with an increase in coercive field. Furthermore, an increase in the Gilbert damping parameter at room temperature was found by multifrequency FMR evidencing spin pumping. Temperature dependent FMR shows a maximum in magnetic damping close to the magnetic phase transition. These measurements also evidence the exchange bias interaction of Permalloy and long-range ordered Co-O-Co structures in ZnO, that are barely detectable by SQUID due to the shorter probing times in FMR.
1909.04362v3
2019-09-19
Blow-up for Strauss type wave equation with damping and potential
We study a kind of nonlinear wave equations with damping and potential, whose coefficients are both critical in the sense of the scaling and depend only on the spatial variables. Based on the earlier works, one may think there are two kinds of blow-up phenomenons when the exponent of the nonlinear term is small. It also means there are two kinds of law to determine the critical exponent. In this paper, we obtain a blow-up result and get the estimate of the upper bound of the lifespan in critical and sub-critical cases. All of the results support such a conjecture, although for now, the existence part is still open.
1909.08885v3
2019-09-23
Inference of modes for linear stochastic processes
For dynamical systems that can be modelled as asymptotically stable linear systems forced by Gaussian noise, this paper develops methods to infer or estimate their modes from observations in real time. The modes can be real or complex. For a real mode, we wish to infer its damping rate and mode shape. For a complex mode, we wish to infer its frequency, damping rate and (complex) mode shape. Their amplitudes and correlations are encoded in a mode covariance matrix. The work is motivated and illustrated by the problem of detection of oscillations in power flow in AC electrical networks. Suggestions of other applications are given.
1909.10247v2
2019-11-06
High spin mixing conductance and spin interface transparency at $Co_2Fe_{0.4}Mn_{0.6}Si$ Heusler alloy and Pt interface
Ferromagnetic materials exhibiting low magnetic damping ($\alpha$) and moderately high saturation magnetization are required from the viewpoints of generation, transmission and detection of spin wave. Since spin-to-charge conversion efficiency is another important parameter, high spin mixing conductance ($g_{r}^{\uparrow \downarrow}$) is the key for efficient spin-to-charge conversion. Full Heusler alloys e.g. $Co_2Fe_{0.4}Mn_{0.6}Si$ (CFMS), which are predicted to be 100$\%$ spin polarized, possess low $\alpha$. However, the $g_{r}^{\uparrow \downarrow}$ at the interface between CFMS and a paramagnet has not fully been understood. Here, we report the investigations of spin pumping and inverse spin Hall effect in $CFMS/Pt$ bilayers. Damping analysis indicates the presence of significant spin pumping at the interface of CFMS and Pt, which is also confirmed by the detection of inverse spin Hall voltage. We show that in CFMS/Pt the $g_{r}^{\uparrow \downarrow}$ (1.77$\times$10$^{20}$m$^{-2}$) and interface transparency (84$\%$) are higher compared to values reported for other ferromagnet/heavy metal systems.
1911.02230v1
2019-11-10
Influence of resonances on the noise performance of SQUID susceptometers
Scanning Superconducting Quantum Interference Device (SQUID) Susceptometry simultaneously images the local magnetic fields and susceptibilities above a sample with sub-micron spatial resolution. Further development of this technique requires a thorough understanding of the current, voltage, and flux characteristics of scanning SQUID susceptometers. These sensors often have striking anomalies in their current-voltage characteristics, which we believe to be due to electromagnetic resonances. The effect of these resonances on the performance of these SQUIDs is unknown. To explore the origin and impact of the resonances, we have developed a model that qualitatively reproduces the experimentally-determined current-voltage characteristics of our scanning SQUID susceptometers. We use this model to calculate the noise characteristics of SQUIDs of different designs. We find that the calculated ultimate flux noise is better in susceptometers with damping resistors that diminish the resonances than susceptometers without damping resistors. Such calculations will enable the optimization of the signal-to-noise characteristics of scanning SQUID susceptometers.
1911.03836v2
2019-11-13
Impact of the crystal orientation on spin-orbit torques in Fe/Pd bilayers
Spin-orbit torques in ferromagnetic (FM)/non-magnetic (NM) heterostructures offer more energy-efficient means to realize spin-logic devices; however, their strengths are determined by the heterostructure interface. This work examines crystal orientation impact on the spin-orbit torque efficiency in different Fe/Pd bilayer systems. Spin torque ferromagnetic measurements evidence that the damping-like torque efficiency is higher in epitaxial than in polycrystalline bilayer structures while the field-like torque is negligible in all bilayer structures. The strength of the damping-like torque decreases with deterioration of the bilayer epitaxial quality. The present finding provides fresh insight for the enhancement of spin-orbit torques in magnetic heterostructures.
1911.05487v1
2020-01-04
Finite Difference/Galerkin Finite Element Simulation of the Semi-Linear Wave Equation with Scale-Invariant Damping and Mass and Power Non-Linearity
This study is concern with the numerical solution of the initial boundary value problem (IBVP) for the semilinear scale-invariant wave equation with damping and mass and power non-linearity. Numerical results of the aforementioned IBVP is obtained by using standart Galerkin finite element method (GFEM) for the spatial variable and the temporal variable is discretized with the finite difference method (FDM). The FDM is also used for the discretization of the spatial variable for the accuracy of the numerical results. The obtained numerical results with different numerical schemes are observed compatible. Numerical simulation of the considered problem is given for the different initial conditions.
2001.01075v2
2020-01-05
Quantifying quantum non-Markovianity based on quantum coherence via skew information
Based on the nonincreasing property of quantum coherence via skew information under incoherent completely positive and trace-preserving maps, we propose a non-Markovianity measure for open quantum processes. As applications, by applying the proposed measure to some typical noisy channels, we find that it is equivalent to the three previous measures of non-Markovianity for phase damping and amplitude damping channels, i.e., the measures based on the quantum trace distance, dynamical divisibility, and quantum mutual information. For the random unitary channel, it is equivalent to the non-Markovianity measure based on $l_1$ norm of coherence for a class of output states and it is incompletely equivalent to the measure based on dynamical divisibility. We also use the modified Tsallis relative $\alpha$ entropy of coherence to detect the non-Markovianity of dynamics of quantum open systems, the results show that the modified Tsallis relative $\alpha$ entropy of coherence are more comfortable than the original Tsallis relative $\alpha$ entropy of coherence for small $\alpha$.
2001.01261v1
2020-01-07
von Neumann entropy and the entropy production of a damped harmonic oscillator
In this paper we analyze the entropy and entropy production of a non-isolated quantum system described within the quantum Brownian motion framework. This is a very general and paradigmatic framework for describing non-isolated quantum systems and can be used in any kind of coupling regime. We start by considering the application of von Neumann entropy to an arbitrarily damped quantum system making use of its reduced density operator. We argue that this application is formally valid and develop a path integral method to evaluate that quantity analytically. We apply this technique to a harmonic oscillator in contact with a heat bath and obtain an exact form for its entropy. Then we study the entropy production of this system and enlighten important characteristics of its thermodynamical behavior on the pure quantum realm and also address their transition to the classical limit.
2001.02261v1