Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
|---|---|---|---|---|---|---|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
inline int lowbit(int x) { return x & (-x); }
long long getsum(vector<long long> &V, int pos) {
long long ret = 0;
for (; pos; pos -= lowbit(pos)) ret += V[pos];
return ret;
}
void add(vector<long long> &V, int pos, int k) {
for (; pos < (int)V.size(); pos += lowbit(pos)) V[pos] += k;
}
int main() {
int n;
cin >> n;
vector<pair<int, int>> p(n);
for (auto &pnt : p) {
int x;
scanf("%d", &x);
pnt.first = x;
}
for (auto &pnt : p) {
int v;
scanf("%d", &v);
pnt.second = v;
}
sort(p.begin(), p.end());
vector<int> vs{(int)(-1e9)};
for (auto pnt : p) vs.push_back(pnt.second);
sort(vs.begin(), vs.end());
vs.resize(unique(vs.begin(), vs.end()) - vs.begin());
long long ans = 0;
vector<long long> cnt(vs.size()), xs(vs.size());
for (auto pnt : p) {
int pos = lower_bound(vs.begin(), vs.end(), pnt.second) - vs.begin();
ans += getsum(cnt, pos) * pnt.first - getsum(xs, pos);
add(cnt, pos, 1), add(xs, pos, pnt.first);
}
printf("%lld\n", ans);
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 10;
int x[N];
long long ans;
pair<int, int> a[N];
int main(void) {
std::ios::sync_with_stdio(false);
int n;
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i].second, x[i] = a[i].second;
for (int i = 0; i < n; i++) cin >> a[i].first;
sort(a, a + n), sort(x, x + n);
for (int i = 0; i < n; i++)
ans += (long long)(lower_bound(x, x + n, a[i].second) - x - n + 1 + i) *
a[i].second;
cout << ans << endl;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int b[200005], m;
long long tr[800005][2];
struct node {
int x, v;
bool operator<(const node t) const { return x < t.x; }
} a[200005];
int lsh(long long x) { return lower_bound(b + 1, b + 1 + m, x) - b; }
long long query(int l, int r, int x, int y, int k, int p) {
if (l == x && r == y) return tr[p][k];
int mid = l + r >> 1;
if (y <= mid)
return query(l, mid, x, y, k, p << 1);
else if (x > mid)
return query(mid + 1, r, x, y, k, p << 1 | 1);
else
return query(l, mid, x, mid, k, p << 1) +
query(mid + 1, r, mid + 1, y, k, p << 1 | 1);
}
void update(int l, int r, int x, int y, int p) {
if (l == r) {
tr[p][0]++;
tr[p][1] += y;
return;
}
int mid = l + r >> 1;
if (x <= mid)
update(l, mid, x, y, p << 1);
else
update(mid + 1, r, x, y, p << 1 | 1);
tr[p][0] = tr[p << 1][0] + tr[p << 1 | 1][0];
tr[p][1] = tr[p << 1][1] + tr[p << 1 | 1][1];
}
int main() {
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i].x);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i].v);
b[i] = a[i].v;
}
sort(b + 1, b + 1 + n);
m = unique(b + 1, b + 1 + n) - b - 1;
sort(a + 1, a + 1 + n);
long long ans = 0;
for (int i = 1; i <= n; i++) {
int t = lsh(a[i].v);
ans += query(1, m, 1, t, 0, 1) * a[i].x - query(1, m, 1, t, 1, 1);
update(1, m, t, a[i].x, 1);
}
printf("%lld", ans);
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const long long int infinity = 9e18;
pair<long long int, long long int> t1[4 * 200005] = {};
pair<long long int, long long int> t2[4 * 200005] = {};
struct SegmentTree {
void update(pair<long long int, long long int> t[], int v, int tl, int tr,
int pos, int x) {
if (tl == tr) {
t[v].first += x;
t[v].second += 1;
} else {
int tm = (tl + tr) / 2;
if (pos <= tm)
update(t, 2 * v, tl, tm, pos, x);
else
update(t, 2 * v + 1, tm + 1, tr, pos, x);
t[v].first = (t[2 * v].first + t[2 * v + 1].first);
t[v].second = (t[2 * v].second + t[2 * v + 1].second);
}
}
pair<long long int, long long int> query(
pair<long long int, long long int> t[], int v, int tl, int tr, int l,
int r) {
if (l > r) return {0, 0};
if (tl == l && tr == r) {
return t[v];
} else {
int tm = (tl + tr) / 2;
pair<long long int, long long int> left =
query(t, 2 * v, tl, tm, l, min(tm, r));
pair<long long int, long long int> right =
query(t, 2 * v + 1, tm + 1, tr, max(tm + 1, l), r);
pair<long long int, long long int> p;
p.first = left.first + right.first;
p.second = left.second + right.second;
return p;
}
}
};
long long int func(vector<pair<long long int, long long int> > &vp,
pair<long long int, long long int> t[]) {
long long int n = vp.size();
set<long long int> s;
for (auto i : vp) {
s.insert(i.second);
}
long long int speed = 0;
map<long long int, long long int> m;
for (auto i : s) {
m[i] = speed++;
}
for (int i = 0; i < n; i++) {
vp[i].second = m[vp[i].second];
}
SegmentTree st;
long long int total = 0;
for (int i = 0; i < n; i++) {
pair<long long int, long long int> p =
st.query(t, 1, 0, n - 1, 0, vp[i].second);
total = total + (vp[i].first) * p.second - p.first;
st.update(t, 1, 0, n - 1, vp[i].second, vp[i].first);
}
return total;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
long long int n;
cin >> n;
vector<pair<long long int, long long int> > vp(n);
for (int i = 0; i < n; i++) {
cin >> vp[i].first;
}
for (int i = 0; i < n; i++) {
cin >> vp[i].second;
}
sort(vp.begin(), vp.end());
vector<pair<long long int, long long int> > pos, neg;
long long int sum = 0;
long long int total = 0;
long long int count = 0;
for (int i = n - 1; i >= 0; i--) {
if (vp[i].second >= 0) {
sum += vp[i].first;
count++;
pos.push_back({vp[i].first, vp[i].second});
} else {
total = total + sum - vp[i].first * count;
neg.push_back({vp[i].first, vp[i].second});
}
}
sort(pos.begin(), pos.end());
sort(neg.begin(), neg.end());
total = total + func(pos, t1) + func(neg, t2);
cout << total;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 5;
int n;
int b[maxn];
struct node {
int x, v;
} a[maxn];
bool cmp(node q1, node q2) { return q1.v == q2.v ? q1.x < q2.x : q1.v < q2.v; }
struct BIT {
long long c[maxn][2];
void init() { memset(c, 0, sizeof(c)); }
int lowbit(int x) { return x & (-x); }
void update(int k, int x, int y) {
for (int i = k; i <= n; i += lowbit(i)) {
c[i][0] += x;
c[i][1] += y;
}
}
pair<long long, long long> query(int k) {
long long ans1 = 0, ans2 = 0;
for (int i = k; i; i -= lowbit(i)) {
ans1 += c[i][0];
ans2 += c[i][1];
}
return make_pair(ans1, ans2);
}
pair<long long, long long> ask(int l, int r) {
pair<long long, long long> tmp1 = query(r);
pair<long long, long long> tmp2 = query(l - 1);
pair<long long, long long> tmp =
make_pair(tmp1.first - tmp2.first, tmp1.second - tmp2.second);
return tmp;
}
} T[2];
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i].x);
int cnt = 0;
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i].v);
b[++cnt] = a[i].x;
}
sort(b + 1, b + cnt + 1);
sort(a + 1, a + n + 1, cmp);
cnt = unique(b + 1, b + cnt + 1) - b - 1;
for (int i = 1; i <= n; i++) {
a[i].x = lower_bound(b + 1, b + cnt + 1, a[i].x) - b;
T[1].update(a[i].x, 1, b[a[i].x]);
}
long long ans = 0;
pair<long long, long long> tmp;
for (int i = 1; i <= n; i++) {
T[0].update(a[i].x, 1, b[a[i].x]);
T[1].update(a[i].x, -1, -b[a[i].x]);
tmp = T[0].ask(1, a[i].x);
ans += tmp.first * b[a[i].x] - tmp.second;
tmp = T[1].ask(a[i].x, n);
ans += tmp.second - tmp.first * b[a[i].x];
}
printf("%lld\n", ans / 2);
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e6 + 5;
pair<int, int> p[maxn];
int n;
long long d[maxn];
long long e[maxn];
void add(long long *c, int i, int k) {
while (i <= n) {
c[i] += k;
i += i & (-i);
}
}
long long sum(long long *c, int i) {
long long res = 0;
while (i > 0) {
res += c[i];
i -= i & (-i);
}
return res;
}
int main() {
cin >> n;
for (int i = 0; i <= n - 1; i++) cin >> p[i].first;
for (int i = 0; i <= n - 1; i++) cin >> p[i].second;
sort(p, p + n);
vector<int> es(n);
for (int i = 0; i <= n - 1; i++) es[i] = p[i].second;
sort(es.begin(), es.end());
long long res = 0;
for (int i = 0; i <= n - 1; i++) {
int pp1 = lower_bound(es.begin(), es.end(), p[i].second) - es.begin() + 1;
int pp2 = upper_bound(es.begin(), es.end(), p[i].second) - es.begin() + 1;
res += sum(d, pp2 - 1) * p[i].first - sum(e, pp2 - 1);
add(d, pp1, 1);
add(e, pp1, p[i].first);
}
cout << res;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int II() {
int q;
scanf("%d", &q);
return q;
}
long long LII() {
long long q;
scanf("%lld", &q);
return q;
}
const long long Mx = 200005;
long long N;
vector<long long> tree[Mx * 4], cum[Mx * 4];
vector<pair<long long, long long> > v(Mx + 1);
void update(long long node, long long b, long long e) {
if (b == e) {
tree[node].push_back(v[b].first);
cum[node].push_back(v[b].first);
return;
}
update((node * 2), b, (b + e) / 2);
update((node * 2) + 1, (b + e) / 2 + 1, e);
for (auto it : tree[(node * 2)]) tree[node].push_back(it);
for (auto it : tree[(node * 2) + 1]) tree[node].push_back(it);
sort(tree[node].begin(), tree[node].end());
cum[node] = tree[node];
for (long long i = cum[node].size() - 2; i >= 0; i--) {
cum[node][i] += cum[node][i + 1];
}
}
long long query(long long node, long long b, long long e, long long l,
long long r, long long val) {
if (r < l) return 0;
if (b > r or e < l) return 0;
if (b >= l and e <= r) {
long long up = upper_bound(tree[node].begin(), tree[node].end(), val) -
tree[node].begin();
if (up == tree[node].size()) return 0;
long long q = tree[node].size() - up;
return cum[node][up] - ((q * val));
}
return query((node * 2), b, (b + e) / 2, l, r, val) +
query((node * 2) + 1, (b + e) / 2 + 1, e, l, r, val);
}
void solve() {
cin >> N;
for (long long i = 1; i <= N; i++) cin >> v[i].first;
for (long long i = 1; i <= N; i++) cin >> v[i].second;
sort(v.begin() + 1, v.begin() + 1 + N,
[](pair<long long, long long> a, pair<long long, long long> b) {
if (a.second == b.second) return a.first < b.first;
return a.second < b.second;
});
update(1, 1, N);
long long ans = 0;
for (long long i = 1; i <= N; i++) {
ans += query(1, 1, N, i + 1, N, v[i].first);
}
cout << ans << endl;
}
int32_t main() {
long long tt;
tt = 1;
long long cas = 1;
while (tt--) {
solve();
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pii = pair<int, int>;
using db = double;
using vi = vector<int>;
const int inf = 0x3f3f3f3f;
const db eps = 1e-8;
const int mod = 1e9 + 7;
ll qpow(ll a, ll b) {
ll ret = 1;
while (a) {
if (b & 1) ret = ret * a % mod;
a = a * a % mod;
b >>= 1;
}
return ret;
}
int n, m, k;
vector<pii> a;
const int maxn = 2e5 + 7;
struct node {
ll b[maxn];
void update(int i, ll v) {
for (; i < maxn; i += (i & -i)) b[i] += v;
}
ll query(int i) {
ll ret = 0;
for (; i > 0; i -= (i & -i)) ret += b[i];
return ret;
}
} bit1, bit2;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n;
a.resize(n);
vector<ll> co(n);
for (int i = 0; i < n; ++i) {
cin >> a[i].first;
}
for (int i = 0; i < n; i++) {
cin >> a[i].second;
co[i] = a[i].second;
}
sort(co.begin(), co.end());
sort(a.begin(), a.end());
co.erase(unique(co.begin(), co.end()), co.end());
for (int i = 0; i < n; i++)
a[i].second =
lower_bound(co.begin(), co.end(), a[i].second) - co.begin() + 1;
ll ans = 0;
for (int i = 0; i < n; i++) {
ans += bit2.query(a[i].second) * a[i].first - bit1.query(a[i].second);
bit1.update(a[i].second, a[i].first);
bit2.update(a[i].second, 1);
}
cout << ans;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const long long maxn = 200010;
const long long N = 200000;
long long n;
struct Node {
long long v, x;
bool operator<(const Node& b) const { return x < b.x; }
} p[maxn];
struct BIT {
long long b[maxn];
inline long long lowbit(long long x) { return x & (-x); }
void update(long long x, long long v) {
for (long long i = x; i <= N; i += lowbit(i)) b[i] += v;
}
long long query(long long x) {
long long ans = 0;
for (long long i = x; i > 0; i -= lowbit(i)) ans += b[i];
return ans;
}
} a, b;
long long tot[maxn], len[maxn];
long long c[maxn], l[maxn];
map<long long, long long> mm;
long long ans;
signed main() {
cin >> n;
for (long long i = 1; i <= n; i++) cin >> p[i].x;
for (long long i = 1; i <= n; i++) cin >> p[i].v, mm[p[i].v]++;
long long id = 0;
for (map<long long, long long>::iterator it = mm.begin(); it != mm.end();
it++)
it->second = ++id;
for (long long i = 1; i <= n; i++) p[i].v = mm[p[i].v];
sort(p + 1, p + n + 1);
for (long long i = 1; i <= n; i++) {
ans += a.query(p[i].v) * p[i].x - b.query(p[i].v);
a.update(p[i].v, 1);
b.update(p[i].v, p[i].x);
}
cout << ans << endl;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const long long mod = 998244353;
const int N = 2e5 + 2;
const int inf = 2e9;
const long long linf = 4e18;
long long val[N], cnt[N];
void upd(int x, long long v) {
int z = 0;
if (v < 0)
z--;
else
z++;
for (; x < N; x += x & (-x)) {
cnt[x] += z;
val[x] += v;
}
}
array<long long, 2> get(int x) {
array<long long, 2> data;
data = {0, 0};
for (; x > 0; x -= x & (-x)) {
data[0] += cnt[x];
data[1] += val[x];
}
return data;
}
array<long long, 2> get2(int x) {
array<long long, 2> a = get(N - 1);
array<long long, 2> b = get(x - 1);
return {a[0] - b[0], a[1] - b[1]};
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cerr.tie(0);
int n;
cin >> n;
vector<array<long long, 2>> data(n), v(n);
for (int i = 0; i < n; i++) cin >> data[i][0];
for (int i = 0; i < n; i++) {
cin >> data[i][1];
v[i] = {data[i][1], i};
}
sort(v.begin(), v.end());
int h = 0;
data[v[0][1]][1] = ++h;
for (int i = 1; i < n; i++) {
data[v[i][1]][1] = h;
if (v[i][0] != v[i - 1][0]) data[v[i][1]][1] = ++h;
}
sort(data.begin(), data.end());
for (int i = 0; i < n; i++) {
upd(data[i][1], data[i][0]);
}
long long ans = 0;
for (int i = 0; i < n; i++) {
upd(data[i][1], -data[i][0]);
array<long long, 2> d = get2(data[i][1]);
ans += d[1] - (d[0] * data[i][0]);
}
cout << ans;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
template <class T>
struct fen {
vector<T> fenwick;
long long size;
fen(long long sz) {
size = sz;
fenwick.resize(size);
for (long long i = 0; i < size; i++) fenwick[i] = 0;
}
fen(vector<T> arr) {
size = arr.size();
fenwick.resize(size);
for (long long i = 0; i < size; i++) fenwick[i](0);
for (long long i = 0; i < size; i++) update(i, arr[i]);
}
void add(long long index, T add) {
for (long long k = index; k < size; k |= (~k & -~k)) {
fenwick[k] = fenwick[k] + add;
}
}
void update(long long index, T nval) {
add(index, nval - rangeQuery(index, index));
}
T query(long long to) {
if (to < 0) return 0;
T sum = 0;
for (long long curr = to + 1; curr > 0; curr ^= (curr & -curr)) {
sum = sum + fenwick[curr - 1];
}
return sum;
}
T rangeQuery(long long from, long long to) {
if (from > to) return 0;
if (!from) return query(to);
return query(to) - query(from - 1);
}
void prll() {
for (long long i = 0; i < size; i++) cout << query(i) << " ";
cout << endl;
}
};
const long long sz = 2e5 + 5;
long long n;
pair<long long, long long> xv[sz];
vector<int> tmp;
map<int, int> rkspeed;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n;
for (long long i = 0; i < n; i++) cin >> xv[i].first;
for (long long i = 0; i < n; i++) cin >> xv[i].second;
sort(xv, xv + n);
for (long long i = 0; i < n; i++) tmp.push_back(xv[i].second);
sort(tmp.begin(), tmp.end());
vector<int> t2{tmp[0]};
for (long long i = 1; i < n; i++) {
if (tmp[i] != t2.back()) t2.push_back(tmp[i]);
}
for (long long i = 0; i < t2.size(); i++) rkspeed[t2[i]] = i;
fen<int> fcnt(n);
fen<long long> sums(n);
long long tot = 0;
for (long long i = 0; i < n; i++) {
int mrk = rkspeed[xv[i].second];
long long bamt = fcnt.query(mrk);
tot += bamt * xv[i].first - sums.query(mrk);
fcnt.add(mrk, 1);
sums.add(mrk, xv[i].first);
}
cout << tot;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long int get(vector<long long int> &arr, long long int ind,
long long int n) {
long long int ans = 0;
for (; ind > 0; ind -= (ind & (-ind))) ans += arr[ind];
return ans;
}
void upd(vector<long long int> &arr, long long int ind, long long int x,
long long int n) {
for (; ind <= n; ind += (ind & (-ind))) arr[ind] += x;
}
int main() {
long long int n;
cin >> n;
pair<long long int, long long int> arr[n];
for (long long int i = 0; i < n; i++) cin >> arr[i].first;
for (long long int i = 0; i < n; i++) cin >> arr[i].second;
vector<int> vec(n);
for (long long int i = 0; i < n; i++) vec.push_back(arr[i].second);
sort(vec.begin(), vec.end());
vec.resize(unique(vec.begin(), vec.end()) - vec.begin());
vector<long long int> cnt(vec.size() + 1), cs(vec.size() + 1);
sort(arr, arr + n);
long long int ans = 0;
long long int n1 = vec.size();
for (long long int i = 0; i < n; i++) {
long long int pos =
lower_bound(vec.begin(), vec.end(), arr[i].second) - vec.begin();
ans += get(cnt, pos + 1, n1) * arr[i].first - get(cs, pos + 1, n1);
upd(cnt, pos + 1, 1, n1);
upd(cs, pos + 1, arr[i].first, n1);
}
cout << ans << endl;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
//package com.netease.music.codeforces.round624.div3;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import java.util.Scanner;
/**
* Created by dezhonger on 2020/2/27
*/
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int[][] xv = new int[n][2];
Integer[] v = new Integer[n];
for (int i = 0; i < n; i++) {
xv[i][0] = scanner.nextInt();
}
for (int i = 0; i < n; i++) {
xv[i][1] = scanner.nextInt();
v[i] = xv[i][1];
}
Arrays.sort(v);
Arrays.sort(xv, (o1, o2) -> {
if (o1[0] != o2[0]) return Integer.compare(o1[0], o2[0]);
return Integer.compare(o1[1], o2[1]);
});
FenwickTreeLong f1 = new FenwickTreeLong(n);
FenwickTreeLong f2 = new FenwickTreeLong(n);
long result = 0;
for (int i = 0; i < n; i++) {
//按照x坐标从小到大进行枚举
//找到离散化后v的位置
int pos = Arrays.binarySearch(v, xv[i][1]);
pos++;
//速度比当前速度小的有贡献,贡献为距离之差
//有num个点的速度为当前速度小
long num = f1.sum(pos);
//这num个点的位置的坐标之和为xsum
long xsum = f2.sum(pos);
//计算对答案的贡献
result += num * xv[i][0] - xsum;
f1.change(pos, 1);
f2.change(pos, xv[i][0]);
}
System.out.println(result);
}
}
class FenwickTreeLong {
long[] t;
int n;
public FenwickTreeLong(int n) {
this.n = n;
this.t = new long[n + 1];
}
void change(int pos, int val) {
while (pos <= n) {
t[pos] += val;
pos += lowbit(pos);
}
}
int lowbit(int k) {
return k & (-k);
}
long sum(int pos) {
long ans = 0;
while (pos > 0) {
ans += t[pos];
pos -= lowbit(pos);
}
return ans;
}
long ask(int l, int r) {
return sum(r) - sum(l);
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
long double pi = acos(-1.0);
const int mod = 1e9 + 7;
using namespace std;
const int N = 2e5 + 5;
vector<long long> F(N), F2(N);
long long sum(int r, vector<long long> &t) {
long long result = 0;
for (; r >= 0; r = (r & (r + 1)) - 1) result += t[r];
return result;
}
void inc(int i, long long delta, vector<long long> &t) {
for (; i < N; i = (i | (i + 1))) t[i] += delta;
}
long long sum(int l, int r, vector<long long> &t) {
return sum(r, t) - sum(l - 1, t);
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cout.precision(20);
cout.setf(ios::fixed);
int n;
cin >> n;
vector<pair<int, int> > pts(n);
for (int(i) = 0; (i) < n; (i)++) {
cin >> pts[i].first;
}
vector<int> vv;
for (int(i) = 0; (i) < n; (i)++) {
cin >> pts[i].second;
vv.push_back(pts[i].second);
}
sort((vv).begin(), (vv).end());
vv.resize(unique((vv).begin(), (vv).end()) - vv.begin());
for (int(i) = 0; (i) < n; (i)++) {
pts[i].second =
lower_bound((vv).begin(), (vv).end(), pts[i].second) - vv.begin();
}
sort((pts).begin(), (pts).end());
for (int(i) = 0; (i) < n; (i)++) {
inc(pts[i].second, pts[i].first, F);
inc(pts[i].second, 1, F2);
}
long long ans = 0;
for (int(i) = 0; (i) < n; (i)++) {
int v = pts[i].second;
inc(v, -pts[i].first, F);
inc(v, -1, F2);
long long sum1 = sum(v, N - 1, F);
long long cnt = sum(v, N - 1, F2);
ans += sum1 - cnt * (long long)pts[i].first;
}
cout << ans;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
#pragma GCC optimize("Ofast")
#pragma GCC target("avx,avx2,fma")
#pragma GCC optimization("unroll-loops")
using namespace std;
using namespace chrono;
template <typename Arg1>
void __f(const char* name, Arg1&& arg1) {
cout << name << " : " << arg1 << "\n";
}
template <typename Arg1, typename... Args>
void __f(const char* names, Arg1&& arg1, Args&&... args) {
const char* comma = strchr(names + 1, ',');
cout.write(names, comma - names) << " : " << arg1 << " | ";
__f(comma + 1, args...);
}
long long int advceil(long long int num, long long int den) {
return (num % den == 0 ? num / den : num / den + 1);
}
long long int lstbt(long long int val) {
long long int msk = val & (val - 1);
return log2(val ^ msk);
}
long long int modmul(long long int a, long long int b) {
a %= 1000000007;
b %= 1000000007;
long long int res = 0;
while (b > 0) {
if (b & 1) res = (res + a) % 1000000007;
a = (a * 2) % 1000000007;
b /= 2;
}
return res;
}
long long int modexpo(long long int a, long long int b) {
long long int res = 1;
while (b > 0) {
if (b & 1) res = modmul(res, a);
a = modmul(a, a);
b /= 2;
}
return res;
}
long long int gcd(long long int a, long long int b) {
return a == 0 ? b : gcd(b % a, a);
}
vector<long long int> CALCfactor(long long int n) {
vector<long long int> factor(n + 2, 0);
for (long long int i = 4; i <= n; i += 2) factor[i] = 2;
for (long long int j = 3; j <= n; j += 2) {
if (factor[j]) continue;
for (long long int i = 2 * j; i <= n; i += j) factor[i] = j;
}
return factor;
}
vector<long long int> CALCprimeNUM(long long int n) {
vector<long long int> factor = CALCfactor(n);
vector<long long int> primeNUM;
primeNUM.reserve(n + 2);
for (long long int i = 2; i <= n; i++)
if (!factor[i]) primeNUM.push_back(i);
return primeNUM;
}
vector<long long int> CALCprimeFACTOR(long long int n) {
vector<long long int> factor = CALCfactor(n);
vector<long long int> ans;
while (factor[n] != 0) {
ans.push_back(factor[n]);
n /= factor[n];
}
if (n > 1) ans.push_back(n);
return ans;
}
vector<long long int> unique(vector<long long int> x) {
sort(x.begin(), x.end());
set<long long int> s;
vector<long long int> ans;
ans.reserve(x.size());
for (auto elem : x) s.insert(elem);
for (auto elem : s) ans.push_back(elem);
return ans;
}
pair<vector<long long int>, vector<long long int> > getFact(long long int n) {
vector<long long int> fact(n + 1, 1), invfact(n + 1, 1);
for (long long int i = 1; i <= n; i++)
fact[i] = (i * (fact[i - 1])) % 1000000007;
for (long long int i = 1; i <= n; i++)
invfact[i] = (modexpo(i, 1000000007 - 2) * invfact[i - 1]) % 1000000007;
return {fact, invfact};
}
long long int BIT[300001][2] = {};
long long int N;
void update(long long int idx, long long int val, long long int typ) {
for (long long int i = idx; i <= N; i += (i & (-i))) BIT[i][typ] += val;
}
long long int query(long long int idx, long long int typ) {
long long int res = 0;
for (long long int i = idx; i > 0; i -= (i & (-i))) res += BIT[i][typ];
return res;
}
long long int sum(long long int l, long long int r, long long int typ) {
return query(r, typ) - query(l - 1, typ);
}
map<long long int, long long int> fmap;
void solve() {
long long int n;
cin >> n;
vector<pair<long long int, long long int> > arr;
arr.resize(n);
for (long long int i = 0; i < n; i++) cin >> arr[i].first;
for (long long int i = 0; i < n; i++) cin >> arr[i].second;
sort(arr.begin(), arr.end());
vector<long long int> temp;
temp.reserve(n);
for (auto elem : arr) temp.push_back(elem.second);
long long int cnt = 1;
sort(temp.begin(), temp.end());
for (auto elem : temp) {
fmap[elem] = cnt;
cnt++;
}
N = cnt;
long long int ans = 0;
for (long long int i = 0; i < n; i++) {
long long int c1 = sum(1, fmap[arr[i].second], 0);
c1 = (arr[i].first * sum(1, fmap[arr[i].second], 1) - c1);
ans += (c1);
update(fmap[arr[i].second], arr[i].first, 0);
update(fmap[arr[i].second], 1, 1);
}
cout << ans << "\n";
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
auto start1 = high_resolution_clock::now();
solve();
auto stop1 = high_resolution_clock::now();
auto duration = duration_cast<microseconds>(stop1 - start1);
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
struct Point {
long long x;
long long v;
};
vector<Point> points;
long long SUM;
void add_pairwise_dist(long long start, long long end) {
int m, i, j;
if (start == end) return;
m = start + (end - start) / 2;
add_pairwise_dist(start, m);
add_pairwise_dist(m + 1, end);
vector<long long> rcumsum(end - start + 2);
for (i = end; i >= start; i--) {
rcumsum[i - start] = rcumsum[i - start + 1] + points[i].x;
}
j = m + 1;
for (i = start; i <= m; i++) {
while (j <= end && points[i].v > points[j].v) j++;
if (j > end) break;
SUM += rcumsum[j - start] - points[i].x * (end - j + 1);
}
vector<Point> temp(end - start + 1);
i = start;
j = m + 1;
for (int k = 0; k < end - start + 1; k++) {
if (i > m) {
temp[k] = points[j++];
} else if (j > end) {
temp[k] = points[i++];
} else if (points[i].v < points[j].v) {
temp[k] = points[i++];
} else {
temp[k] = points[j++];
}
}
for (int k = 0; k < end - start + 1; k++) {
points[start + k] = temp[k];
}
}
int main() {
int n;
cin >> n;
points.resize(n);
for (int i = 0; i < n; i++) cin >> points[i].x;
for (int i = 0; i < n; i++) cin >> points[i].v;
sort(points.begin(), points.end(),
[](const Point &a, Point const &b) { return a.x < b.x; });
add_pairwise_dist(0, n - 1);
cout << SUM << endl;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int N = 200000;
int x[N + 5], v[N + 5], _v[N + 5];
pair<int, int> point[N + 5];
template <typename T, int N>
struct Binary_Indexed_Tree {
int n;
T sumv[N + 5];
void init(int _n) {
n = _n;
memset(sumv, 0, (n + 4) * sizeof(T));
}
void build(T A[], int _n) {
init(_n);
for (int i = 1; i <= n; ++i) {
sumv[i] += A[i];
int j = i + (i & -i);
if (j <= n) sumv[j] += sumv[i];
}
}
void add(int p, T k) {
while (p <= n) {
sumv[p] += k;
p += p & -p;
}
}
T sum(int p) {
T res = 0;
while (p) {
res += sumv[p];
p -= p & -p;
}
return res;
}
};
Binary_Indexed_Tree<long long, N> bit, bitr, cbit, cbitr;
int main() {
int n;
scanf("%d", &n);
for (int i = 1; i <= n; ++i) scanf("%d", x + i);
for (int i = 1; i <= n; ++i) scanf("%d", v + i);
memcpy(_v, v, sizeof(v));
sort(_v + 1, _v + n + 1);
auto ed = unique(_v + 1, _v + n + 1);
for (int i = 1; i <= n; ++i) {
v[i] = lower_bound(_v + 1, ed, v[i]) - _v;
point[i] = {x[i], v[i]};
}
sort(point + 1, point + n + 1);
bit.init(n);
bitr.init(n);
cbit.init(n);
cbitr.init(n);
for (int i = 1; i <= n; ++i) {
int xi = point[i].first, vi = point[i].second;
bitr.add(vi, xi);
cbitr.add(vi, 1);
}
long long ans = 0;
for (int i = 1; i <= n; ++i) {
int xi = point[i].first, vi = point[i].second;
bitr.add(vi, -xi);
cbitr.add(vi, -1);
ans += xi * cbit.sum(vi) - bit.sum(vi) + bitr.sum(n) - bitr.sum(vi - 1) -
(cbitr.sum(n) - cbitr.sum(vi - 1)) * xi;
bit.add(vi, xi);
cbit.add(vi, 1);
}
printf("%lld\n", ans / 2);
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
python3
|
import sys
input = sys.stdin.readline
from heapq import heappush, heappop, heapify
def query(f, i):
ret = 0
while i:
ret += f[i]
i -= (i & -i)
return ret
def update(f, i, d):
n = len(f)
while i < n:
f[i] += d
i += (i & -i)
n = int(input())
X = list(map(int, input().split()))
V = list(map(int, input().split()))
r = list(range(n))
r.sort(key=lambda i: X[i])
f = [0] * (n+1)
f2 = [0] * (n+1)
b = []
for i, k in enumerate(r):
b.append((V[k], i))
heapify(b)
ans = 0
while b:
v, i = heappop(b)
x = X[r[i]]
sum = query(f, i)
cnt = query(f2, i)
ans += x * cnt - sum
update(f, i+1, x)
update(f2, i+1, 1)
print(ans)
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
template <class C>
inline void log_c(const C& c) {}
template <class C>
inline int sz(const C& c) {
return static_cast<int>(c.size());
}
using namespace std;
using pii = pair<int, int>;
using num = int64_t;
using pll = pair<num, num>;
const std::string eol = "\n";
using Ft = map<int, pair<int, int64_t>>;
const int max_x = 100000000;
void ft_inc(Ft& ft, int x, const pair<int, int64_t>& p) {
for (; x <= max_x; x |= x + 1) {
ft[x].first += p.first;
ft[x].second += p.second;
}
}
pair<int, int64_t> ft_sum(Ft& ft, int x) {
pair<int, int64_t> res;
for (; x >= 0; x = (x & (x + 1)) - 1) {
res.first += ft[x].first;
res.second += ft[x].second;
}
return res;
}
int main() {
std::ios_base::sync_with_stdio(false);
cin.tie(nullptr);
int n;
cin >> n;
vector<pii> data(n);
for (int k = 0; k < (n); ++k) cin >> data[k].second;
for (int k = 0; k < (n); ++k) cin >> data[k].first;
sort(begin(data), end(data));
Ft ft_slow;
int64_t ans = 0;
for (int k = 0; k < (sz(data)); ++k) {
const auto [v, x] = data[k];
const auto [c_slow, s_slow] = ft_sum(ft_slow, x);
ans += static_cast<int64_t>(x) * c_slow - s_slow;
ft_inc(ft_slow, x, {1, x});
}
cout << ans << eol;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 5;
int n, x[N], v[N];
vector<pair<int, int>> p;
long long bit1[N], bit2[N], ans;
void add(int p, int v, long long *bit) {
for (p += 2; p < N; p += p & -p) bit[p] += v;
}
long long query(int p, long long *bit) {
long long r = 0;
for (p += 2; p; p -= p & -p) r += bit[p];
return r;
}
int main() {
ios_base::sync_with_stdio(0), cin.tie(0);
cin >> n;
for (int i = 0; i < n; i++) cin >> x[i];
for (int i = 0; i < n; i++) cin >> v[i];
for (int i = 0; i < n; i++) p.push_back({x[i], v[i]});
sort(p.begin(), p.end());
sort(v, v + n);
for (auto &x : p) {
x.second = lower_bound(v, v + n, x.second) - v + 1;
ans += 1ll * x.first * query(x.second, bit1) - query(x.second, bit2);
add(x.second, 1, bit1);
add(x.second, x.first, bit2);
}
cout << ans << "\n";
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
python3
|
import sys, math
import io, os
#data = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline
#from bisect import bisect_left as bl, bisect_right as br, insort
#from heapq import heapify, heappush, heappop
from collections import defaultdict as dd, deque, Counter
#from itertools import permutations,combinations
def data(): return sys.stdin.readline().strip()
def mdata(): return list(map(int, data().split()))
def outl(var) : sys.stdout.write(' '.join(map(str, var))+'\n')
def out(var) : sys.stdout.write(str(var)+'\n')
#from decimal import Decimal
#from fractions import Fraction
#sys.setrecursionlimit(100000)
#INF = float('inf')
mod = int(1e9)+7
def update(BIT,v, w):
while v <= n:
BIT[v] += w
v += (v & (-v))
def getvalue(BIT,v):
ANS = 0
while v != 0:
ANS += BIT[v]
v -= (v & (-v))
return ANS
def bisect_on_BIT(BIT,x):
if x <= 0:
return 0
ANS = 0
h = 1 << (n - 1)
while h > 0:
if ANS + h <= n and BIT[ANS + h] < x:
x -= BIT[ANS + h]
ANS += h
h //= 2
return ANS + 1
n=int(data())
x=mdata()
v=mdata()
a=[[v[i],x[i]] for i in range(n)]
a.sort()
s=[0]*(n+1)
cnt=[0]*(n+1)
pos=dd(int)
for i in range(n):
pos[a[i][1]]=i+1
for i in range(n):
update(s,i+1,a[i][1])
update(cnt,i+1,1)
ans=0
x.sort()
for i in range(n):
ind=pos[x[i]]
ans+=getvalue(s,n)-getvalue(s,ind)-(getvalue(cnt,n)-getvalue(cnt,ind))*x[i]
update(s,ind,-x[i])
update(cnt,ind,-1)
out(ans)
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.util.Arrays;
import java.util.Scanner;
import java.util.Comparator;
public class movinpoints {
private static long sumaj(long[] arr,int index) {
long result=0;
while (index>=0) {
result+=arr[index];
index=(index&(index+1))-1;
}
return result;
}
private static void apdejt (long[] t,int index,int vv) {
while (index<t.length) {
t[index]+=vv;
index=index|(index + 1);
}
}
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
int n=in.nextInt();
int[][] pm=new int[n][2];
int[][] vm=new int[n][2];
for (int i=0;i<n;i++)
pm[i][0]=in.nextInt();
for (int i=0;i<n;i++) {
pm[i][1]=in.nextInt();
vm[i][0]=pm[i][1];
vm[i][1]=i;
}
in.close();
Arrays.sort(vm, new Comparator<int[]>() {
public int compare(int[] a, int[] b) {
return a[0] - b[0];
}
});
int nss=0;
int[][] finar=new int[n][2];
for (int i=0;i<n;i++) {
if (i>0 && vm[i][0]!=vm[i-1][0])
nss++;
finar[i][0]=nss;
finar[i][1]=vm[i][1];
}
Arrays.sort(finar,new Comparator<int[]>() {
public int compare(int[] a,int[] b) {
return a[1]-b[1];
}});
for (int i=0; i<n;i++) {
pm[i][1] = finar[i][0];
}
Arrays.sort(pm,new Comparator<int[]>() {
public int compare(int[] a,int[] b) {
return a[0]-b[0];
}});
long[] c=new long[n];
long[] pts=new long[n];
long totalsum=0;
for (int i=0;i<n;i++) {
int index=pm[i][1];
totalsum+=sumaj(pts,index)*pm[i][0]-sumaj(c,index);
apdejt(pts,index,1);
//System.out.println();
//System.out.println(totalsum);
//System.out.println();
//System.out.println("coordtsum");
//for (int j=0;j<c.length;j++) {
//System.out.print(c[j]);
//}
apdejt(c, index, pm[i][0]);
//System.out.println();
//System.out.println("pointsum");
//for (int j=0;j<pts.length;j++) {
//System.out.print(pts[j]);
//}
}
//System.out.println();
System.out.println(totalsum);
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
void dout() { cerr << '\n'; }
template <typename Head, typename... Tail>
void dout(Head H, Tail... T) {
cerr << " " << H;
dout(T...);
}
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
const int N = 2e5 + 7;
int n, m, cnt[N];
long long sum[N];
pair<int, int> p[N];
void upd(int x, int y) {
for (; x <= m; x |= (x + 1)) {
cnt[x]++;
sum[x] += y;
}
}
int getnum(int x) {
int res = 0;
for (; x >= 0; x = (x & (x + 1)) - 1) {
res += cnt[x];
}
return res;
}
long long getsum(int x) {
long long res = 0;
for (; x >= 0; x = (x & (x + 1)) - 1) {
res += sum[x];
}
return res;
}
int main() {
ios_base::sync_with_stdio(false), cin.tie(NULL);
cin >> n;
vector<int> vec;
for (int i = 1; i <= n; i++) {
cin >> p[i].first;
}
for (int i = 1; i <= n; i++) {
cin >> p[i].second;
vec.push_back(p[i].second);
}
sort((vec).begin(), (vec).end());
map<int, int> ind;
for (int i = 1; i <= n; i++) {
if (!ind.count(vec[i - 1])) {
ind[vec[i - 1]] = ++m;
}
}
for (int i = 1; i <= n; i++) {
p[i].second = ind[p[i].second];
}
sort(p + 1, p + n + 1);
long long ans = 0;
for (int i = 1; i <= n; i++) {
ans += (long long)getnum(p[i].second) * p[i].first - getsum(p[i].second);
upd(p[i].second, p[i].first);
}
cout << ans;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.util.*;
import java.io.*;
import java.text.*;
public class Main{
//SOLUTION BEGIN
//Into the Hardware Mode
void pre() throws Exception{}
void solve(int TC)throws Exception {
int n = ni();
TreeSet<Long> v = new TreeSet<>();
long[][] p = new long[n][2];
for(int i = 0; i< n; i++)p[i][0] = nl();for(int i = 0; i< n; i++){p[i][1] = nl();v.add(p[i][1]);}
HashMap<Long, Integer> mp = new HashMap<>();
int c = 1;
for(long l:v)mp.put(l, c++);
Arrays.sort(p, (long[] l1, long[] l2) -> Long.compare(l1[0], l2[0]));
for(int i = 0; i< n; i++)p[i][1] = mp.get(p[i][1]);
SegTree le = new SegTree(c+1);
long ans = 0;
for(int i = 0; i< n; i++){
long[] o = le.sum(0, (int)p[i][1]);
ans += p[i][0]*o[1]-o[0];
le.u((int)p[i][1], p[i][0]);
}
pn(ans);
}
class SegTree{
int m = 1;
long[] t, cnt;
public SegTree(int n){
while(m<n)m<<=1;
t = new long[m<<1];
cnt= new long[m<<1];
}
void u(int p, long a){
t[p+=m] += a;
cnt[p] ++;
for(p>>=1; p>0; p>>=1){
t[p] = t[p<<1]+t[p<<1|1];
cnt[p] = cnt[p<<1]+cnt[p<<1|1];
}
}
long[] sum(int l, int r){
long ans = 0, cc = 0;
for(l += m, r += m+1; l< r; l>>=1, r>>=1){
if((l&1)==1){ans += t[l];cc += cnt[l++];}
if((r&1)==1){ans += t[--r];cc += cnt[r];}
}
return new long[]{ans, cc};
}
}
//SOLUTION END
void hold(boolean b)throws Exception{if(!b)throw new Exception("Hold right there, Sparky!");}
void exit(boolean b){if(!b)System.exit(0);}
long IINF = (long)1e15;
final int INF = (int)1e9+2, MX = (int)2e6+5;
DecimalFormat df = new DecimalFormat("0.00000000000");
double PI = 3.141592653589793238462643383279502884197169399, eps = 1e-8;
static boolean multipleTC = false, memory = false, fileIO = false;
FastReader in;PrintWriter out;
void run() throws Exception{
long ct = System.currentTimeMillis();
if (fileIO) {
in = new FastReader("");
out = new PrintWriter("");
} else {
in = new FastReader();
out = new PrintWriter(System.out);
}
//Solution Credits: Taranpreet Singh
int T = (multipleTC) ? ni() : 1;
pre();
for (int t = 1; t <= T; t++) solve(t);
out.flush();
out.close();
System.err.println(System.currentTimeMillis() - ct);
}
public static void main(String[] args) throws Exception{
if(memory)new Thread(null, new Runnable() {public void run(){try{new Main().run();}catch(Exception e){e.printStackTrace();}}}, "1", 1 << 28).start();
else new Main().run();
}
int find(int[] set, int u){return set[u] = (set[u] == u?u:find(set, set[u]));}
int digit(long s){int ans = 0;while(s>0){s/=10;ans++;}return ans;}
long gcd(long a, long b){return (b==0)?a:gcd(b,a%b);}
int gcd(int a, int b){return (b==0)?a:gcd(b,a%b);}
int bit(long n){return (n==0)?0:(1+bit(n&(n-1)));}
void p(Object o){out.print(o);}
void pn(Object o){out.println(o);}
void pni(Object o){out.println(o);out.flush();}
String n()throws Exception{return in.next();}
String nln()throws Exception{return in.nextLine();}
int ni()throws Exception{return Integer.parseInt(in.next());}
long nl()throws Exception{return Long.parseLong(in.next());}
double nd()throws Exception{return Double.parseDouble(in.next());}
class FastReader{
BufferedReader br;
StringTokenizer st;
public FastReader(){
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) throws Exception{
br = new BufferedReader(new FileReader(s));
}
String next() throws Exception{
while (st == null || !st.hasMoreElements()){
try{
st = new StringTokenizer(br.readLine());
}catch (IOException e){
throw new Exception(e.toString());
}
}
return st.nextToken();
}
String nextLine() throws Exception{
String str;
try{
str = br.readLine();
}catch (IOException e){
throw new Exception(e.toString());
}
return str;
}
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 10, inf = 1e9;
const long long mod = (long long)1e9 + 7;
set<int> setV;
map<int, int> idV;
pair<int, int> p[N];
int n;
int treenum[N], num;
long long treesum[N], sum;
long long qry(long long tree[], int id) {
long long ans = 0LL;
for (; id; id -= (id & (-id))) ans += tree[id];
return ans;
}
int qry(int tree[], int id) {
int ans = 0LL;
for (; id; id -= (id & (-id))) ans += tree[id];
return ans;
}
int GetNum(int v) { return num - qry(treenum, idV[v] - 1); }
long long GetSum(int v) { return sum - qry(treesum, idV[v] - 1); }
void upd(int tree[], int id, int val) {
for (; id < N; id += (id & -id)) tree[id] += val;
}
void upd(long long tree[], int id, int val) {
for (; id < N; id += (id & -id)) tree[id] += val;
}
void Update(int v, int x) {
upd(treenum, idV[v], +1);
upd(treesum, idV[v], +x);
num++;
sum += x;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n;
for (int i = 1; i <= n; ++i) {
cin >> p[i].first;
}
for (int i = 1; i <= n; ++i) {
cin >> p[i].second;
setV.insert(p[i].second);
}
sort(p + 1, p + n + 1);
int k = 0;
for (int x : setV) idV[x] = ++k;
num = 0;
sum = 0LL;
long long ans = 0LL;
for (int i = n; i >= 1; --i) {
int m = GetNum(p[i].second);
long long y = GetSum(p[i].second);
ans += y - 1LL * m * p[i].first;
Update(p[i].second, p[i].first);
}
cout << ans << endl;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long powmod(long long a, long long b, long long mod) {
if (b == 0 || a == 1) {
if (mod == 1)
return 0;
else
return 1;
}
if (b % 2 == 0) {
long long k = powmod(a, b / 2, mod);
return (k * k) % mod;
} else {
long long k = powmod(a, b / 2, mod);
return ((k * k) % mod * a) % mod;
}
}
long long gcd(long long a, long long b) {
if (a == 0) return b;
if (b == 0) return a;
if (a > b)
return gcd(a % b, b);
else
return gcd(b % a, a);
}
long long prime(long long p) {
for (long long i = 2; i * i <= p; i++) {
if (p % i == 0 && i < p) return i;
}
return 1;
}
long long inv(long long a, long long mod) { return powmod(a, mod - 2, mod); }
long long tree[1000000];
long long sum1(long long v, long long tl, long long tr, long long l,
long long r) {
if (l > r) return 0;
if (l == tl && r == tr) return tree[v];
long long tm = (tl + tr) / 2;
return sum1(2 * v, tl, tm, l, min(r, tm)) +
sum1(2 * v + 1, tm + 1, tr, max(l, tm + 1), r);
}
void update(long long v, long long tl, long long tr, long long pos,
long long new_val) {
if (tl == tr)
tree[v] += new_val;
else {
long long tm = (tl + tr) / 2;
if (pos <= tm)
update(v * 2, tl, tm, pos, new_val);
else
update(v * 2 + 1, tm + 1, tr, pos, new_val);
tree[v] = tree[v * 2] + tree[v * 2 + 1];
}
}
long long tree2[1000000];
long long sum2(long long v, long long tl, long long tr, long long l,
long long r) {
if (l > r) return 0;
if (l == tl && r == tr) return tree2[v];
long long tm = (tl + tr) / 2;
return sum2(2 * v, tl, tm, l, min(r, tm)) +
sum2(2 * v + 1, tm + 1, tr, max(l, tm + 1), r);
}
void update2(long long v, long long tl, long long tr, long long pos,
long long new_val) {
if (tl == tr)
tree2[v] += new_val;
else {
long long tm = (tl + tr) / 2;
if (pos <= tm)
update2(v * 2, tl, tm, pos, new_val);
else
update2(v * 2 + 1, tm + 1, tr, pos, new_val);
tree2[v] = tree2[v * 2] + tree2[v * 2 + 1];
}
}
void solve() {
long long a;
cin >> a;
vector<pair<long long, long long>> m(a);
for (long long i = 0; i < a; i++) cin >> m[i].first;
for (long long i = 0; i < a; i++) cin >> m[i].second;
sort(m.begin(), m.end());
long long ans = 0;
long long sum = 0;
long long col = 0;
vector<long long> copy(a);
for (long long i = 0; i < a; i++) copy[i] = m[i].second;
sort(copy.begin(), copy.end());
map<long long, long long> zamena;
for (long long i = 0; i < a; i++) zamena[copy[i]] = i;
for (long long i = 0; i < a; i++) m[i].second = zamena[m[i].second];
long long cur = 0;
for (long long i = 0; i < a; i++)
if (m[i].second > cur) {
update2(1, 1, 200000, m[i].second, m[i].first);
update(1, 1, 200000, m[i].second, 1);
}
for (long long i = 0; i < a; i++) {
if (m[i].second > cur) {
ans += m[i].first * col - sum;
ans += sum2(1LL, 1LL, 200000LL, m[i].second, 200000LL) -
sum1(1LL, 1LL, 200000LL, m[i].second, 200000LL) * m[i].first;
update(1, 1, 200000, m[i].second, -1);
update2(1, 1, 200000, m[i].second, -m[i].first);
} else {
col++;
sum += m[i].first;
}
}
cout << ans << " ";
return;
}
signed main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
long long tututu;
tututu = 1;
for (long long qwerty = 0; qwerty < tututu; qwerty++) solve();
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
python3
|
from bisect import bisect_right, bisect_left
# instead of AVLTree
class BITbisect():
def __init__(self, InputProbNumbers):
# 座圧
self.ind_to_co = [-10**18]
self.co_to_ind = {}
for ind, num in enumerate(sorted(list(set(InputProbNumbers)))):
self.ind_to_co.append(num)
self.co_to_ind[num] = ind+1
self.max = len(self.co_to_ind)
self.data = [0]*(self.max+1)
def __str__(self):
retList = []
for i in range(1, self.max+1):
x = self.ind_to_co[i]
if self.count(x):
c = self.count(x)
for _ in range(c):
retList.append(x)
return "[" + ", ".join([str(a) for a in retList]) + "]"
def __getitem__(self, key):
key += 1
s = 0
ind = 0
l = self.max.bit_length()
for i in reversed(range(l)):
if ind + (1<<i) <= self.max:
if s + self.data[ind+(1<<i)] < key:
s += self.data[ind+(1<<i)]
ind += (1<<i)
if ind == self.max or key < 0:
raise IndexError("BIT index out of range")
return self.ind_to_co[ind+1]
def __len__(self):
return self._query_sum(self.max)
def __contains__(self, num):
if not num in self.co_to_ind:
return False
return self.count(num) > 0
# 0からiまでの区間和
# 左に進んでいく
def _query_sum(self, i):
s = 0
while i > 0:
s += self.data[i]
i -= i & -i
return s
# i番目の要素にxを足す
# 上に登っていく
def _add(self, i, x):
while i <= self.max:
self.data[i] += x
i += i & -i
# 値xを挿入
def push(self, x):
if not x in self.co_to_ind:
raise KeyError("The pushing number didnt initialized")
self._add(self.co_to_ind[x], 1)
# 値xを削除
def delete(self, x):
if not x in self.co_to_ind:
raise KeyError("The deleting number didnt initialized")
if self.count(x) <= 0:
raise ValueError("The deleting number doesnt exist")
self._add(self.co_to_ind[x], -1)
# 要素xの個数
def count(self, x):
return self._query_sum(self.co_to_ind[x]) - self._query_sum(self.co_to_ind[x]-1)
# 値xを超える最低ind
def bisect_right(self, x):
if x in self.co_to_ind:
i = self.co_to_ind[x]
else:
i = bisect_right(self.ind_to_co, x) - 1
return self._query_sum(i)
# 値xを下回る最低ind
def bisect_left(self, x):
if x in self.co_to_ind:
i = self.co_to_ind[x]
else:
i = bisect_left(self.ind_to_co, x)
if i == 1:
return 0
return self._query_sum(i-1)
# 足す時はi番目に足し、返すのは累積和
class sumBIT():
def __init__(self, N):
self.N = N
self.bit = [0 for _ in range(self.N+1)]
def __str__(self):
ret = []
for i in range(1, self.N+1):
ret.append(self.__getitem__(i))
return "[" + ", ".join([str(a) for a in ret]) + "]"
def __getitem__(self, i):
s = 0
while i > 0:
s += self.bit[i]
i -= i & -i
return s
def add(self, i, x):
while i <= self.N:
self.bit[i] += x
i += i & -i
import sys
input = sys.stdin.buffer.readline
from operator import itemgetter
def main():
N = int(input())
X = list(map(int, input().split()))
V = list(map(int, input().split()))
XV = [(x, v) for x, v in zip(X, V)]
XV.sort()
XV.sort(key=itemgetter(1))
co_to_ind1 = {}
#co_to_ind2 = {}
for i, (x, v) in enumerate(XV):
co_to_ind1[x] = i+1
XV.sort()
sumbit = sumBIT(N+1)
bit = sumBIT(N+1)
ans = 0
for x, v in XV:
ind1 = co_to_ind1[x]
#ind2 = co_to_ind2[v]
count = bit[ind1]
s = sumbit[ind1]
ans += count*x - s
bit.add(ind1, 1)
sumbit.add(ind1, x)
print(ans)
if __name__ == "__main__":
main()
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long int max(long long int a, long long int b) {
if (a > b)
return a;
else
return b;
}
long long int min(long long int a, long long int b) {
if (a < b)
return a;
else
return b;
}
const int dx[4] = {-1, 1, 0, 0};
const int dy[4] = {0, 0, -1, 1};
int XX[] = {-1, -1, -1, 0, 0, 1, 1, 1};
int YY[] = {-1, 0, 1, -1, 1, -1, 0, 1};
long long int fen1[200005] = {0};
long long int maxi = 200003;
void update1(long long int ind, long long int val) {
for (long long int i = ind; i <= maxi; i += i & -i) fen1[i] += val;
}
long long int sum1(long long int ind) {
long long int s = 0;
for (long long int i = ind; i; i -= i & -i) s += fen1[i];
return s;
}
long long int fen2[200005] = {0};
void update2(long long int ind, long long int val) {
for (long long int i = ind; i <= maxi; i += i & -i) fen2[i] += val;
}
long long int sum2(long long int ind) {
long long int s = 0;
for (long long int i = ind; i; i -= i & -i) s += fen2[i];
return s;
}
void convert(long long int arr[], long long int n) {
long long int temp[n];
memcpy(temp, arr, n * sizeof(long long int));
sort(temp, temp + n);
unordered_map<long long int, long long int> umap;
long long int val = 1;
for (long long int i = 0; i < n; i++) umap[temp[i]] = val++;
for (long long int i = 0; i < n; i++) arr[i] = umap[arr[i]];
}
int main() {
ios_base::sync_with_stdio(false), cin.tie(NULL), cout.tie(NULL);
long long int i, j, n, k, x, v;
cin >> n;
long long int arr1[n];
for (i = 0; i < n; i++) {
cin >> arr1[i];
}
long long int arr2[n];
for (i = 0; i < n; i++) {
cin >> arr2[i];
}
convert(arr2, n);
vector<pair<long long int, long long int> > vec;
for (i = 0; i < n; i++) {
vec.push_back(make_pair(arr1[i], arr2[i]));
}
sort(vec.begin(), vec.end());
long long int ans = 0;
for (i = 0; i < vec.size(); i++) {
x = vec[i].first;
v = vec[i].second;
update1(v, 1);
update2(v, x);
}
for (i = vec.size() - 1; i >= 0; i--) {
x = vec[i].first;
v = vec[i].second;
update1(v, -1);
update2(v, -x);
long long int z = sum2(v);
long long int count = sum1(v);
ans += (x * count - z);
}
cout << ans;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
template <class T>
T sqr(T x) {
return x * x;
}
template <class T>
T lcm(T a, T b) {
return a / __gcd(a, b) * b;
}
const long long mod = 1e9 + 7, oo = 1e12, N = 2e5 + 5;
using namespace std;
long long n, b[N], res, bit1[N], bit2[N];
pair<long long, long long> a[N];
inline long long lowbit(long long x) { return x & -x; }
void update(long long pos, long long val, long long *arr) {
while (pos <= n) {
arr[pos] += val;
pos += lowbit(pos);
}
}
long long get(long long pos, long long *arr) {
long long ret = 0;
while (pos > 0) {
ret += arr[pos];
pos -= lowbit(pos);
}
return ret;
}
signed main() {
ios_base::sync_with_stdio(0);
cin.tie();
cout.tie();
cin >> n;
for (__typeof(n - 1) i = (0); i <= (n - 1); ++i) cin >> a[i].first;
for (__typeof(n - 1) i = (0); i <= (n - 1); ++i) {
cin >> a[i].second;
b[i] = a[i].second;
}
sort(b, b + n);
for (__typeof(n - 1) i = (0); i <= (n - 1); ++i)
a[i].second = lower_bound(b, b + n, a[i].second) - b + 1;
sort(a, a + n);
for (__typeof(n - 1) i = (0); i <= (n - 1); ++i) {
long long tmp1 = get(a[i].second, bit1);
long long tmp2 = get(a[i].second, bit2);
res += a[i].first * tmp1 - tmp2;
update(a[i].second, 1, bit1);
update(a[i].second, a[i].first, bit2);
}
cout << res;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
python3
|
import sys
input = sys.stdin.readline
import bisect
def query(f, i):
ret = 0
while i:
ret += f[i]
i -= (i & -i)
return ret
def update(f, i, d):
n = len(f)
while i < n:
f[i] += d
i += (i & -i)
n = int(input())
X = list(map(int, input().split()))
V = list(map(int, input().split()))
a = [(X[i], V[i]) for i in range(n)]
a.sort()
# r = list(range(n))
# r.sort(key=lambda i: X[i])
vlist = sorted(set(V))
f = [0] * (len(vlist) + 1)
f2 = [0] * (len(vlist) + 1)
ans = 0
for x, v in a:
# x, v = X[i], V[i]
ii = bisect.bisect_left(vlist, v)
sm = query(f, ii + 1)
cnt = query(f2, ii + 1)
ans += x * cnt - sm
update(f, ii+1, x)
update(f2, ii+1, 1)
print(ans)
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
template <typename Arg1>
void __f(const char* name, Arg1&& arg1) {
std::cerr << name << " : " << arg1 << '\n';
}
template <typename Arg1, typename... Args>
void __f(const char* names, Arg1&& arg1, Args&&... args) {
const char* comma = strchr(names + 1, ',');
std::cerr.write(names, comma - names) << " : " << arg1 << " | ";
__f(comma + 1, args...);
}
struct FenwickTree {
vector<long long> bit;
long long n;
vector<long long> cnt;
FenwickTree(long long n) {
this->n = n;
bit.assign(n, 0);
cnt.assign(n, 0);
}
FenwickTree(vector<long long> a) : FenwickTree(a.size()) {
for (size_t i = 0; i < a.size(); i++) add(i, a[i]);
}
pair<long long, long long> sum(long long r) {
long long ret = 0;
long long t = r;
for (; r >= 0; r = (r & (r + 1)) - 1) ret += bit[r];
long long ret2 = 0;
r = t;
for (; r >= 0; r = (r & (r + 1)) - 1) ret2 += cnt[r];
return {ret, ret2};
}
pair<long long, long long> sum(long long l, long long r) {
auto j = sum(r);
auto j2 = sum(l - 1);
return {j.first - j2.first, j.second - j2.second};
}
void add(long long idx, long long delta) {
long long t = idx;
for (; idx < n; idx = idx | (idx + 1)) bit[idx] += delta;
idx = t;
for (; idx < n; idx = idx | (idx + 1)) cnt[idx] += 1;
}
};
FenwickTree ft(1000005);
map<long long, long long> compress;
signed main() {
ios_base::sync_with_stdio(0);
long long TESTS = 1;
while (TESTS--) {
long long n;
cin >> n;
long long x[n];
for (long long i = 0; i < n; i++) cin >> x[i];
long long v[n];
for (long long i = 0; i < n; i++) cin >> v[i];
set<long long> vv;
for (long long i = 0; i < n; i++) {
vv.insert(abs(v[i]));
}
long long i = 0;
for (auto j : vv) {
if (j == 0)
compress[j] = 0;
else {
compress[j] = i + 1;
i++;
}
}
for (long long i = 0; i < n; i++) {
if (v[i] >= 0)
v[i] = compress[v[i]];
else
v[i] = -compress[-v[i]];
}
vector<pair<long long, long long>> ve;
for (long long i = 0; i < n; i++) ve.push_back({x[i], v[i]});
sort((ve).begin(), (ve).end());
for (long long i = 0; i < n; i++) {
x[i] = ve[i].first;
v[i] = ve[i].second;
}
long long left = 0, right = 0;
long long cntl = 0, cntr = 0;
long long ans = 0;
for (long long i = 0; i < n; i++) {
if (v[i] > 0) {
ans += x[i] * cntl - left;
} else if (v[i] < 0) {
cntl++;
left += x[i];
}
}
for (long long i = 0; i < n; i++) {
if (v[i] >= 0) {
ans += ft.sum(0, v[i]).second * x[i] - ft.sum(0, v[i]).first;
ft.add(v[i], x[i]);
}
}
for (long long i = 0; i < 1000005; i++) {
ft.bit[i] = 0;
ft.cnt[i] = 0;
}
for (long long i = 0; i < n; i++) {
if (v[i] <= 0) {
v[i] = -v[i];
ans +=
ft.sum(v[i], 1000000).second * x[i] - ft.sum(v[i], 1000000).first;
ft.add(v[i], x[i]);
}
}
long long sum = 0;
long long cnt = 0;
for (long long i = 0; i < n; i++) {
if (v[i] == 0) {
ans -= cnt * x[i] - sum;
sum += x[i];
cnt++;
}
}
cout << ans;
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.*;
public class ProblemF {
public static InputStream inputStream = System.in;
public static OutputStream outputStream = System.out;
public static void main(String[] args) {
Scanner scanner = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
int n = scanner.nextInt();
List<ProblemF.Pair<Long, Long>> xvList = new ArrayList<>();
TreeSet<Long> treeSet = new TreeSet<>();
for (int i = 0; i < n; i++) {
xvList.add(new ProblemF.Pair<>(scanner.nextLong(), 0L));
}
for (int i = 0; i < n; i++) {
long v = scanner.nextLong();
xvList.get(i).second = v;
treeSet.add(v);
}
Map<Long, Integer> indexesMap = new HashMap<>();
int index = treeSet.size() - 1;
for (long x : treeSet) {
indexesMap.put(x, index--);
}
xvList.sort((a, b) -> {
int x = Long.compare(b.first, a.first);
if (x != 0) {
return x;
}
return Long.compare(b.second, a.second);
});
BinaryIndexedTree xSumTree = new BinaryIndexedTree(n);
BinaryIndexedTree countSumTree = new BinaryIndexedTree(n);
long ans = 0;
for (int i = 0; i < n; i++) {
long x = xvList.get(i).first;
long v = xvList.get(i).second;
index = indexesMap.get(v);
ans += (xSumTree.getSum(index) - x * countSumTree.getSum(index));
xSumTree.update(index, x);
countSumTree.update(index, 1);
}
out.println(ans);
out.flush();
}
private static class BinaryIndexedTree {
private long[] bit;
private int n;
private BinaryIndexedTree(int n) {
this.bit = new long[n + 1];
this.n = n;
}
private void update(int index, long delta) {
index++;
while (index <= n) {
bit[index] += delta;
index += (index & (-index));
}
}
private long getSum(int index) {
index++;
long sum = 0;
while (index > 0) {
sum += bit[index];
index = index - (index & (-index));
}
return sum;
}
}
private static class Pair<F, S> {
private F first;
private S second;
public Pair() {}
public Pair(F first, S second) {
this.first = first;
this.second = second;
}
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
pair<long long, long long> o[(int)2e5 + 10];
long long n, ts[(int)2e5 + 10], tc[(int)2e5 + 10];
int main(void) {
scanf("%lld", &n);
for (int i = 0; i < n; i++) {
scanf("%lld", &o[i].second);
}
for (int i = 0; i < n; i++) {
scanf("%lld", &o[i].first);
}
sort(o, o + n);
for (int i = 0; i < n; i++) {
o[i] = {o[i].second, i + 1};
}
sort(o, o + n);
long long ans = 0;
for (int i = n - 1; - 1 < i; i--) {
long long l = o[i].second - 1, r = n, idx = o[i].first;
long long s = 0, c = 0;
while (0 < r) {
s += ts[r];
c += tc[r];
r -= (r & -r);
}
while (0 < l) {
s -= ts[l];
c -= tc[l];
l -= (l & -l);
}
ans += s - c * idx;
int v = o[i].second;
while (v <= n) {
ts[v] += idx;
tc[v]++;
v += (v & -v);
}
}
printf("%lld\n", ans);
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const long long N = 1e5 + 7;
int n;
vector<pair<int, int>> p;
vector<int> vv1;
long long get(vector<long long> &f, int pos) {
long long res = 0;
for (; pos >= 0; pos = (pos & (pos + 1)) - 1) {
res += f[pos];
}
return res;
}
void upd(vector<long long> &f, int pos, int val) {
for (; pos < f.size(); pos |= pos + 1) f[pos] += val;
}
int main() {
scanf("%d", &n);
p.resize(n);
for (int i = 0; i < n; i++) scanf("%d", &p[i].first);
for (int i = 0; i < n; i++) {
scanf("%d", &p[i].second);
vv1.push_back(p[i].second);
}
sort(vv1.begin(), vv1.end());
vv1.resize(unique(vv1.begin(), vv1.end()) - vv1.begin());
sort(p.begin(), p.end());
long long ans = 0;
vector<long long> tmpv1(vv1.size()), tmpv2(vv1.size());
for (int i = 0; i < n; i++) {
int pos = lower_bound(vv1.begin(), vv1.end(), p[i].second) - vv1.begin();
ans += get(tmpv1, pos) * 1ll * p[i].first - get(tmpv2, pos);
upd(tmpv1, pos, 1);
upd(tmpv2, pos, p[i].first);
}
printf("%lld\n", ans);
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 1;
const int NN = 1e3 + 1;
const long long MOD = 1e9 + 7;
const long long oo = 1e18 + 7;
const int BASE = 10000;
void solve() {
int n;
cin >> n;
vector<int> x(n + 1);
for (int i = 1; i <= n; i++) {
cin >> x[i];
}
vector<int> v(n + 1);
for (int i = 1; i <= n; i++) {
cin >> v[i];
}
vector<int> pos(n + 1);
iota(1 + (pos).begin(), (pos).end(), 1);
sort(1 + (pos).begin(), (pos).end(),
[&](int a, int b) { return x[a] < x[b]; });
vector<int> val = v;
sort(1 + (val).begin(), (val).end());
val.resize(unique((val).begin(), (val).end()) - val.begin());
map<int, int> Pos;
for (int i = 1; i < val.size(); i++) {
Pos[val[i]] = i;
}
vector<pair<long long, long long> > BIT(val.size());
auto update = [&](int pos, int _val) {
for (int i = pos; i < BIT.size(); i += i & -i) {
BIT[i].first += 1LL * _val;
BIT[i].second++;
}
};
auto get = [&](int pos) {
long long res = 0, cnt = 0;
for (int i = pos; i; i -= i & -i) {
res += BIT[i].first;
cnt += BIT[i].second;
}
pair<long long, long long> t = {res, cnt};
return t;
};
long long res = 0;
for (int i = 1; i <= n; i++) {
pair<long long, long long> cur = get(Pos[v[pos[i]]]);
res += x[pos[i]] * cur.second - cur.first;
update(Pos[v[pos[i]]], x[pos[i]]);
}
cout << res;
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(nullptr);
cout.tie(nullptr);
cout.precision(10);
solve();
cerr << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.\n";
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int n;
long long BIT[515151];
int BIT2[515151];
map<int, int> hs;
void update(int x, int y) {
for (int i = x; i <= 5e5; i += (i & (-i))) BIT[i] += y, BIT2[i]++;
}
long long query(int x) {
long long tmp = 0;
for (int i = x; i >= 1; i -= (i & (-i))) tmp += BIT[i];
return tmp;
}
long long query2(int x) {
int tmp = 0;
for (int i = x; i >= 1; i -= (i & (-i))) tmp += BIT2[i];
return tmp;
}
int main() {
scanf("%d", &n);
int x[n + 5], v[n + 5];
for (int i = 0; i < n; i++) {
scanf("%d", &x[i]);
}
vector<int> tmp;
for (int i = 0; i < n; i++) {
scanf("%d", &v[i]);
tmp.push_back(v[i]);
}
sort(tmp.begin(), tmp.end());
int idx = 1;
for (auto i : tmp) {
hs[i] = idx;
idx++;
}
for (int i = 0; i < n; i++) {
v[i] = hs[v[i]];
}
vector<pair<int, int> > data;
for (int i = 0; i < n; i++) {
data.push_back(make_pair(x[i], v[i]));
}
sort(data.begin(), data.end());
long long ans = 0;
for (auto i : data) {
long long cnt1 = query(i.second);
long long cnt2 = query2(i.second);
ans += (cnt2 * i.first - cnt1);
update(i.second, i.first);
}
printf("%I64d\n", ans);
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int N = 200009;
int n, b[N], p[N], tot;
long long c1[N], c2[N];
struct P {
int x, v;
bool operator<(const P &A) const { return x < A.x; }
} a[N];
int lowbit(int x) { return x & (x ^ (x - 1)); }
void add(int x, int k, long long c[]) {
while (x <= tot) {
c[x] += k;
x += lowbit(x);
}
}
long long getsum(int x, long long c[]) {
long long ans = 0;
while (x) {
ans += c[x];
x -= lowbit(x);
}
return ans;
}
void init() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i].x);
for (int i = 1; i <= n; i++) scanf("%d", &a[i].v);
sort(a + 1, a + 1 + n);
}
void work() {
for (int i = 1; i <= n; i++) p[i] = a[i].v;
sort(p + 1, p + 1 + n);
tot = unique(p + 1, p + 1 + n) - (p + 1);
for (int i = 1; i <= n; i++)
b[i] = lower_bound(p + 1, p + 1 + tot, a[i].v) - p;
long long ans = 0;
for (int i = 1; i <= n; i++) {
ans += getsum(b[i], c1) * a[i].x - getsum(b[i], c2);
add(b[i], 1, c1), add(b[i], a[i].x, c2);
}
printf("%lld\n", ans);
}
int main() {
init();
work();
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 5;
long long positions[maxn], speeds[maxn];
pair<long long, long long> pairs[maxn];
map<long long, long long> m;
bool comp(pair<long long, long long>& a, pair<long long, long long>& b) {
if (a.second == b.second) return a.first < b.first;
return a.second < b.second;
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int n;
cin >> n;
for (int i = 0; i < n; ++i) cin >> positions[i];
for (int i = 0; i < n; ++i) cin >> speeds[i];
for (long long i = 0; i < n; ++i) pairs[i] = {positions[i], speeds[i]};
sort(positions, positions + n);
sort(pairs, pairs + n, comp);
long long ans = 0;
for (long long i = 0; i < n; ++i) {
ans += ((2 * i) - n + 1) * positions[i];
m[positions[i]] = i;
}
for (int i = 0; i < n; ++i) ans -= pairs[i].first * (m[pairs[i].first] - i);
cout << ans;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
pair<long long, long long> a[200005];
long long sum[1000005], cnt[1000005];
long long querysum(long long pos) {
long long ret = 0;
for (; pos >= 0; pos = (pos & (pos + 1)) - 1) {
ret += sum[pos];
}
return ret;
}
long long querycnt(long long pos) {
long long ret = 0;
for (; pos >= 0; pos = (pos & (pos + 1)) - 1) {
ret += cnt[pos];
}
return ret;
}
void updatesum(long long pos, long long val) {
for (; pos < 1000000; pos |= pos + 1) {
sum[pos] += val;
}
}
void updatecnt(long long pos, long long val) {
for (; pos < 1000000; pos |= pos + 1) {
cnt[pos] += val;
}
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
long long n;
cin >> n;
for (long long i = 1; i <= n; i++) cin >> a[i].first;
for (long long i = 1; i <= n; i++) cin >> a[i].second;
vector<long long> v;
for (long long i = 1; i <= n; i++) {
v.push_back(a[i].second);
}
sort(v.begin(), v.end());
map<long long, long long> num;
for (long long i = 0; i < v.size(); i++) {
num[v[i]] = i;
}
for (long long i = 1; i <= n; i++) {
a[i].second = num[a[i].second];
}
sort(a + 1, a + n + 1);
memset(sum, 0, sizeof(sum));
memset(cnt, 0, sizeof(cnt));
long long ans = 0;
for (long long i = 1; i <= n; i++) {
ans += a[i].first * querycnt(a[i].second) - querysum(a[i].second);
updatesum(a[i].second, a[i].first);
updatecnt(a[i].second, 1);
}
cout << ans << endl;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 20;
int n;
pair<int, int> p[N];
struct node {
long long sum, count;
node(long long s = 0, long long c = 0) : sum(s), count(c) {}
} bit[N];
void update(int x, int delta) {
for (; x <= n; x += x & -x) {
auto &[sum, count] = bit[x];
sum += delta;
count++;
}
}
node query(int x) {
auto ans = node();
for (; x > 0; x -= x & -x) {
auto &[sum, count] = bit[x];
ans.sum += sum;
ans.count += count;
}
return ans;
}
int compress(vector<int> &v) {
if (v.empty()) return 0;
vector<int> s = v;
sort(s.begin(), s.end());
s.resize(unique(s.begin(), s.end()) - s.begin());
int mx = 1;
for (int &x : v) {
x = lower_bound(s.begin(), s.end(), x) - s.begin() + 1;
mx = max(mx, x);
}
return mx;
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cin >> n;
for (int i = 0; i < n; i++) cin >> p[i].first;
for (int i = 0; i < n; i++) cin >> p[i].second;
sort(p, p + n);
vector<int> vec(n);
for (int i = 0; i < n; i++) vec[i] = p[i].second;
compress(vec);
long long ans = 0;
for (int i = 0; i < n; i++) {
auto [sum, cnt] = query(vec[i]);
ans += cnt * p[i].first - sum;
update(vec[i], p[i].first);
}
cout << ans;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
//make sure to make new file!
import java.io.*;
import java.util.*;
public class F624{
public static void main(String[] args)throws IOException{
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
int n = Integer.parseInt(f.readLine());
StringTokenizer st1 = new StringTokenizer(f.readLine());
StringTokenizer st2 = new StringTokenizer(f.readLine());
Integer[] x = new Integer[n];
int[] v = new int[n];
Pair[] pairs = new Pair[n];
for(int k = 0; k < n; k++){
x[k] = Integer.parseInt(st1.nextToken());
v[k] = Integer.parseInt(st2.nextToken());
pairs[k] = new Pair(x[k],v[k]);
}
Arrays.sort(pairs);
Arrays.sort(x);
long answer = 0L;
HashMap<Integer,Integer> indexof = new HashMap<Integer,Integer>();
for(int k = 0; k < n; k++){
answer += (long)x[k] * (long)(-n+1+2*k);
indexof.put(x[k],k);
}
for(int k = 0; k < n; k++){
if(k < indexof.get(pairs[k].x)){
//subtract
answer -= (long)pairs[k].x*(long)(indexof.get(pairs[k].x)-k);
} else if(k > indexof.get(pairs[k].x)){
answer += (long)pairs[k].x*(long)(k-indexof.get(pairs[k].x));
}
}
out.println(answer);
out.close();
}
public static class Pair implements Comparable<Pair>{
int x;
int v;
public Pair(int a, int b){
x = a;
v = b;
}
public int compareTo(Pair p){
if(p.v != v){
return v-p.v;
}
return x-p.x;
}
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long read() {
long long a = 0, b = getchar(), c = 1;
while (!isdigit(b)) c = b == '-' ? -1 : 1, b = getchar();
while (isdigit(b)) a = a * 10 + b - '0', b = getchar();
return a * c;
}
long long n, ans, p[200005];
pair<long long, long long> a[200005];
int main() {
n = read();
for (int i = 1; i <= n; i++) {
a[i].second = read();
p[i] = a[i].second;
}
for (int i = 1; i <= n; i++) a[i].first = read();
sort(a + 1, a + n + 1);
sort(p + 1, p + n + 1);
for (int i = 1; i <= n; i++)
ans += (lower_bound(p + 1, p + n + 1, a[i].second) - p - n + i - 1) *
a[i].second;
cout << ans;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const long long N = 2e5 + 500;
long long n, t1[N], t2[N];
void upd1(long long val, long long pos) {
while (pos < n) {
t1[pos] += val;
pos = (pos | (pos + 1));
}
}
void upd2(long long val, long long pos) {
while (pos < n) {
t2[pos] += val;
pos = (pos | (pos + 1));
}
}
long long get1(long long pos) {
long long res = 0;
while (pos >= 0) {
res += t1[pos];
pos = (pos & (pos + 1)) - 1;
}
return res;
}
long long get2(long long pos) {
long long res = 0;
while (pos >= 0) {
res += t2[pos];
pos = (pos & (pos + 1)) - 1;
}
return res;
}
int main() {
cin >> n;
vector<pair<long long, long long> > a(n);
vector<long long> comp;
map<long long, long long> new_val;
for (int i = 0; i < n; i++) {
cin >> a[i].first;
}
for (int i = 0; i < n; i++) {
cin >> a[i].second;
comp.push_back(a[i].second);
}
sort(a.begin(), a.end());
sort(comp.begin(), comp.end());
long long k = 0;
new_val[comp[0]] = k;
for (int i = 1; i < comp.size(); i++) {
if (comp[i] != comp[i - 1]) k++;
new_val[comp[i]] = k;
}
for (int i = 0; i < n; i++) {
a[i].second = new_val[a[i].second];
}
long long ans = 0;
for (int i = 0; i < n; i++) {
long long pos = a[i].second;
long long cnt = get1(pos);
long long sum = get2(pos);
ans += ((cnt * a[i].first) - sum);
upd1(1, pos);
upd2(a[i].first, pos);
}
cout << ans << endl;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
void __print(int x) { cerr << x; }
void __print(long x) { cerr << x; }
void __print(long long x) { cerr << x; }
void __print(unsigned x) { cerr << x; }
void __print(unsigned long x) { cerr << x; }
void __print(unsigned long long x) { cerr << x; }
void __print(float x) { cerr << x; }
void __print(double x) { cerr << x; }
void __print(long double x) { cerr << x; }
void __print(char x) { cerr << '\'' << x << '\''; }
void __print(const char *x) { cerr << '\"' << x << '\"'; }
void __print(const string &x) { cerr << '\"' << x << '\"'; }
void __print(bool x) { cerr << (x ? "true" : "false"); }
template <typename T, typename V>
void __print(const pair<T, V> &x) {
cerr << '{';
__print(x.first);
cerr << ',';
__print(x.second);
cerr << '}';
}
template <typename T>
void __print(const T &x) {
int f = 0;
cerr << '{';
for (auto &i : x) cerr << (f++ ? "," : ""), __print(i);
cerr << "}";
}
void _print() { cerr << "]\n"; }
template <typename T, typename... V>
void _print(T t, V... v) {
__print(t);
if (sizeof...(v)) cerr << ", ";
_print(v...);
}
long long int power(long long int x, long long int y) {
long long int ans = 1;
x %= 1000000007;
while (y) {
if (y & 1) ans = (x * ans) % 1000000007;
x = (x * x) % 1000000007;
y >>= 1;
}
return ans;
}
const int dx[4] = {1, 0, -1, 0};
const int dy[4] = {0, 1, 0, -1};
struct FenwickTree {
vector<long long int> bit;
int n;
FenwickTree(int n) {
this->n = n;
bit.assign(n, 0);
}
FenwickTree(vector<int> a) : FenwickTree(a.size()) {
for (size_t i = 0; i < a.size(); i++) add(i, a[i]);
}
long long int sum(int r) {
long long int ret = 0;
for (; r >= 0; r = (r & (r + 1)) - 1) ret += bit[r];
return ret;
}
long long int sum(int l, int r) { return sum(r) - sum(l - 1); }
void add(int idx, int delta) {
for (; idx < n; idx = idx | (idx + 1)) bit[idx] += delta;
}
};
void solve() {
long long int n;
cin >> n;
vector<pair<long long int, long long int> > arr(n);
vector<long long int> vel(n);
for (int i = 0; i < n; i++) {
cin >> arr[i].first;
}
for (int i = 0; i < n; i++) {
cin >> arr[i].second;
vel[i] = arr[i].second;
}
sort(arr.begin(), arr.end());
sort(vel.begin(), vel.end());
map<long long int, long long int> mp;
for (int i = 0; i < n; i++) {
long long int in =
lower_bound(vel.begin(), vel.end(), vel[i]) - vel.begin();
mp[vel[i]] = in;
}
long long int ans = 0;
FenwickTree count(n + 10), dist(n + 10);
for (int i = 0; i < n; i++) {
long long int v = mp[arr[i].second];
long long int cnt = count.sum(v);
long long int sum = dist.sum(v);
ans += (cnt * arr[i].first - sum);
count.add(v, 1);
dist.add(v, arr[i].first);
}
cout << ans << '\n';
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int t = 1;
while (t--) {
solve();
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 5e5 + 10, MAXM = 2e6 + 10;
const int INF = INT_MAX, SINF = 0x3f3f3f3f;
const long long llINF = LLONG_MAX;
const int MOD = 1e9 + 7, mod = 998244353;
long long tr[MAXN], tot, n, t[MAXN];
void add(int x, long long val) {
while (x <= n) {
tr[x] += val;
t[x] += 1;
x += x & -x;
}
}
pair<long long, long long> query(int x) {
long long ans = 0, ans1 = 0;
while (x) {
ans += tr[x];
ans1 += t[x];
x -= x & -x;
}
return {ans, ans1};
}
struct Node {
long long x, v;
bool operator<(const Node &rhs) const { return x < rhs.x; }
} e[MAXN];
vector<long long> v;
map<long long, long long> mp;
int main() {
scanf("%lld", &n);
for (int i = 1; i <= n; i++) scanf("%lld", &e[i].x);
for (int i = 1; i <= n; i++) scanf("%lld", &e[i].v), v.push_back(e[i].v);
sort(e + 1, e + n + 1);
sort(v.begin(), v.end());
v.resize(unique(v.begin(), v.end()) - v.begin());
for (int i = 0; i < ((int)v.size()); i++) mp[v[i]] = i + 1;
long long ans = 0;
for (int i = 1; i <= n; i++) {
pair<long long, long long> tmp = query(mp[e[i].v]);
ans += e[i].x * tmp.second - tmp.first;
add(mp[e[i].v], e[i].x);
}
printf("%lld", ans);
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
python3
|
import sys
input = sys.stdin.readline
import bisect
def query(f, i):
ret = 0
while i:
ret += f[i]
i -= (i & -i)
return ret
def update(f, i, d):
n = len(f)
while i < n:
f[i] += d
i += (i & -i)
n = int(input())
X = list(map(int, input().split()))
V = list(map(int, input().split()))
r = list(range(n))
r.sort(key=lambda i: X[i])
vlist = sorted(set(V))
f = [0] * (len(vlist) + 1)
f2 = [0] * (len(vlist) + 1)
ans = 0
for i in r:
x, v = X[i], V[i]
ii = bisect.bisect_left(vlist, v)
sm = query(f, ii + 1)
cnt = query(f2, ii + 1)
ans += x * cnt - sm
update(f, ii+1, x)
update(f2, ii+1, 1)
print(ans)
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int b[200005], m;
long long c[200005][2];
struct node {
int x, v;
bool operator<(const node t) const { return x < t.x; }
} a[200005];
int lsh(long long x) { return lower_bound(b + 1, b + 1 + m, x) - b; }
long long query(int x, int k) {
long long ret = 0;
for (int i = x; i >= 1; i -= i & -i) ret += c[i][k];
return ret;
}
void update(int x, int y) {
for (int i = x; i <= m; i += i & -i) {
c[i][0]++;
c[i][1] += y;
}
}
int main() {
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i].x);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i].v);
b[i] = a[i].v;
}
sort(b + 1, b + 1 + n);
m = unique(b + 1, b + 1 + n) - b - 1;
sort(a + 1, a + 1 + n);
long long ans = 0;
for (int i = 1; i <= n; i++) {
int t = lsh(a[i].v);
ans += query(t, 0) * a[i].x - query(t, 1);
update(t, a[i].x);
}
printf("%lld", ans);
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.io.*;
import java.util.*;
public class Solution {
public static void main(String[] args) throws Exception
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
int n = Integer.parseInt(br.readLine());
List<Point> points = new ArrayList();
StringTokenizer st = new StringTokenizer(br.readLine());
long[] x = new long[n];
long[] vel = new long[n];
for(int i=0;i<n;i++){
x[i] = Long.parseLong(st.nextToken());
}
st = new StringTokenizer(br.readLine());
for(int i=0;i<n;i++){
vel[i] = Long.parseLong(st.nextToken());
}
//HashMap<Long,Integer> velVal = getMap(vel);
for(int i=0;i<n;i++){
Point point = new Point(x[i],vel[i]);
points.add(point);
}
Collections.sort(points,(p1,p2)->{
if(p1.x< p2.x) return -1;
else if(p1.x == p2.x) return 0;
return 1;
});
Map<Long,Integer> map = getMap(points);
// points.stream().forEach(p->System.out.println(p.x+" "+p.vel));
long ans = 0;
long negX = 0;
long count = 0;
for(int i=0;i<points.size();i++){
if(points.get(i).vel < 0){
negX+=points.get(i).x;
count++;
}
else ans+= (count*points.get(i).x - negX);
}
Collections.sort(points,(p1,p2)->{
if(p1.vel< p2.vel) return -1;
else if(p1.vel == p2.vel) {
if(p1.x < p2.x)return -1;
else if(p1.x > p2.x) return 1;
return 0;
}
return 1;
});
// points.stream().forEach(p->System.out.println(p.x+" "+p.vel));
long[][] ft = new long[n+1][2];
int ind = -1;
for(int i=0;i<points.size();i++) {
if(points.get(i).vel >=0) {
ind = i;
break;
}
long[] res = BIT(ft,map,points.get(i).x);
long c = res[1];
long values = res[0];
ans+= (c*points.get(i).x-values);
//System.out.println("ans =" +ans);
}
ft = new long[n+1][2];
for(int i = (ind==-1) ? points.size() : ind; i< points.size(); i++) {
long[] res = BIT(ft,map,points.get(i).x);
long c = res[1];
long values = res[0];
ans+= (c*points.get(i).x-values);
// System.out.println("ans =" +ans);
}
out.println(ans);
out.close();
}
private static Map<Long,Integer> getMap(List<Point> points){
Map<Long,Integer> map = new HashMap();
int pos=1,neg = 1;
for(int i=0;i<points.size();i++) {
if(points.get(i).vel < 0) {
map.put(points.get(i).x, neg);
neg++;
}
else {
map.put(points.get(i).x, pos);
pos++;
}
}
return map;
}
public static long[] BIT(long[][] ft, Map<Long,Integer> map,long val){
int v = map.get(val);
long[] result = new long[2];
result[0]+=ft[v][0];
result[1]+=ft[v][1];
while(v > 0){
v -= ((~v) + 1)&v;
result[0]+=ft[v][0];
result[1]+=ft[v][1];
}
v = map.get(val);
while(v < ft.length){
ft[v][0]+=val;
ft[v][1]++;
v += ((~v) + 1)&v;
}
return result;
}
}
class Point{
long x;
long vel;
Point(long x, long vel){
this.x= x;
this.vel = vel;
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const long long mx = 105;
const long long mod = 1000000007;
const long long maxn = 1e17;
vector<long long> v1;
vector<long long> v2;
long long get(long long x, long long vt) {
long long i, j, k;
long long res = 0;
for (i = x; i > 0; i -= (i & -i)) {
if (vt == 1) {
res += v1[i];
} else {
res += v2[i];
}
}
return res;
}
void upd(long long x, long long vt, long long val) {
long long i, j, k;
long long si = (vt == 1 ? (int)v1.size() : (int)v2.size());
for (i = x; i < si; i += (i & -i)) {
if (vt == 1) {
v1[i] += val;
} else {
v2[i] += val;
}
}
}
void solve() {
long long n, i, j, k;
cin >> n;
long long x[n + 1], v[n + 1];
vector<pair<long long, long long>> v4;
for (i = 1; i <= n; i++) {
cin >> x[i];
}
for (i = 1; i <= n; i++) {
cin >> v[i];
}
for (i = 1; i <= n; i++) {
v4.push_back({x[i], v[i]});
}
sort(v4.begin(), v4.end());
for (i = 1; i <= n; i++) {
x[i] = v4[i - 1].first;
v[i] = v4[i - 1].second;
}
vector<long long> disx;
for (i = 1; i <= n; i++) {
disx.push_back(v[i]);
}
sort(disx.begin(), disx.end());
disx.resize(unique(disx.begin(), disx.end()) - disx.begin());
v1.resize(disx.size() + 1);
v2.resize(disx.size() + 1);
long long res = 0;
for (i = 1; i <= n; i++) {
long long pos = lower_bound(disx.begin(), disx.end(), v[i]) - disx.begin();
res += get(pos + 1, 1) * x[i] - get(pos + 1, 2);
upd(pos + 1, 1, 1);
upd(pos + 1, 2, x[i]);
}
cout << res << "\n";
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
long long t = 1;
while (t--) {
solve();
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.io.*;
import java.util.*;
import java.math.*;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class MovingPoints {
public static void main(String[] args) throws IOException {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
long mod = (long)(1000000007);
public void solve(int testNumber, InputReader in, PrintWriter out) throws IOException {
while(testNumber-->0){
int n = in.nextInt();
Combine a[] = new Combine[n];
TreeSet<Integer> s = new TreeSet<>();
for(int i=0;i<n;i++)
a[i] = new Combine(in.nextInt() , 0);
for(int i=0;i<n;i++){
a[i].delete = in.nextInt();
s.add(a[i].delete);
}
Arrays.sort(a , new Sort2());
// for(int i=0;i<n;i++){
// out.println(a[i].value + " " + a[i].delete);
// }
HashMap<Integer , Integer> index = new HashMap<>();
int b = 1;
for(int i:s)
index.put(i , b++);
int count[] = new int[b+1];
long sum[] = new long[b+1];
long ans = 0;
for(int i=0;i<n;i++){
int getCount = get(count , index.get(a[i].delete));
long getSum = get(sum , index.get(a[i].delete));
ans += (long)a[i].value*getCount - getSum;
update(count , index.get(a[i].delete) , 1);
update(sum , index.get(a[i].delete) , a[i].value);
}
out.println(ans);
}
}
public void update(long a[] , int index , long value){
for(int i=index;i<a.length;i += i&(-i))
a[i] += value;
}
public long get(long a[] , int index){
long res = 0;
for(int i=index;i>0;i-=i&(-i))
res += a[i];
return res;
}
public void update(int a[] , int index , int value){
for(int i=index;i<a.length;i += i&(-i))
a[i] += value;
}
public int get(int a[] , int index){
int res = 0;
for(int i=index;i>0;i-=i&(-i))
res += a[i];
return res;
}
public int[] nextGreater(int a[] , int n){
int ng[] = new int[n+1];
Deque<Combine> s = new LinkedList<>();
for(int i=n;i>0;i--){
int k = i;
Combine c = new Combine(a[k] , k);
while(s.size()>0 && s.peekLast().value <= c.value){
Combine d = s.pollLast();
ng[d.delete] = c.delete;
}
s.addLast(c);
}
return ng;
}
public void sieve(int a[]){
a[0] = a[1] = 1;
int i;
for(i=2;i*i<=a.length;i++){
if(a[i] != 0)
continue;
a[i] = i;
for(int k = (i)*(i);k<a.length;k+=i){
if(a[k] != 0)
continue;
a[k] = i;
}
}
}
public int [][] matrixExpo(int c[][] , int n){
int a[][] = new int[c.length][c[0].length];
int b[][] = new int[a.length][a[0].length];
for(int i=0;i<c.length;i++)
for(int j=0;j<c[0].length;j++)
a[i][j] = c[i][j];
for(int i=0;i<a.length;i++)
b[i][i] = 1;
while(n!=1){
if(n%2 == 1){
b = matrixMultiply(a , a);
n--;
}
a = matrixMultiply(a , a);
n/=2;
}
return matrixMultiply(a , b);
}
public int [][] matrixMultiply(int a[][] , int b[][]){
int r1 = a.length;
int c1 = a[0].length;
int c2 = b[0].length;
int c[][] = new int[r1][c2];
for(int i=0;i<r1;i++){
for(int j=0;j<c2;j++){
for(int k=0;k<c1;k++)
c[i][j] += a[i][k]*b[k][j];
}
}
return c;
}
public long nCrPFermet(int n , int r , long p){
if(r==0)
return 1l;
long fact[] = new long[n+1];
fact[0] = 1;
for(int i=1;i<=n;i++)
fact[i] = (i*fact[i-1])%p;
long modInverseR = pow(fact[r] , p-2 , 1l , p);
long modInverseNR = pow(fact[n-r] , p-2 , 1l , p);
long w = (((fact[n]*modInverseR)%p)*modInverseNR)%p;
return w;
}
public long pow(long a , long b , long res , long mod){
if(b==0)
return res;
if(b==1)
return (res*a)%mod;
if(b%2==1){
res *= a;
res %= mod;
b--;
}
// System.out.println(a + " " + b + " " + res);
return pow((a*a)%mod , b/2 , res , mod);
}
public long pow(long a , long b , long res){
if(b == 0)
return res;
if(b==1)
return res*a;
if(b%2==1){
res *= a;
b--;
}
return pow(a*a , b/2 , res);
}
public void swap(int a[] , int p1 , int p2){
int x = a[p1];
a[p1] = a[p2];
a[p2] = x;
}
public void sortedArrayToBST(TreeSet<Integer> a , int start, int end) {
if (start > end) {
return;
}
int mid = (start + end) / 2;
a.add(mid);
sortedArrayToBST(a, start, mid - 1);
sortedArrayToBST(a, mid + 1, end);
}
class Combine{
int value;
int delete;
Combine(int val , int delete){
this.value = val;
this.delete = delete;
}
}
class Sort2 implements Comparator<Combine>{
public int compare(Combine a , Combine b){
if(a.value > b.value)
return 1;
else if(a.value == b.value && a.delete>b.delete)
return 1;
else if(a.value == b.value && a.delete == b.delete)
return 0;
return -1;
}
}
public int lowerLastBound(ArrayList<Integer> a , int x){
int l = 0;
int r = a.size()-1;
if(a.get(l)>=x)
return -1;
if(a.get(r)<x)
return r;
int mid = -1;
while(l<=r){
mid = (l+r)/2;
if(a.get(mid) == x && a.get(mid-1)<x)
return mid-1;
else if(a.get(mid)>=x)
r = mid-1;
else if(a.get(mid)<x && a.get(mid+1)>=x)
return mid;
else if(a.get(mid)<x && a.get(mid+1)<x)
l = mid+1;
}
return mid;
}
public int upperFirstBound(ArrayList<Integer> a , Integer x){
int l = 0;
int r = a.size()-1;
if(a.get(l)>x)
return l;
if(a.get(r)<=x)
return r+1;
int mid = -1;
while(l<=r){
mid = (l+r)/2;
if(a.get(mid) == x && a.get(mid+1)>x)
return mid+1;
else if(a.get(mid)<=x)
l = mid+1;
else if(a.get(mid)>x && a.get(mid-1)<=x)
return mid;
else if(a.get(mid)>x && a.get(mid-1)>x)
r = mid-1;
}
return mid;
}
public int lowerLastBound(int a[] , int x){
int l = 0;
int r = a.length-1;
if(a[l]>=x)
return -1;
if(a[r]<x)
return r;
int mid = -1;
while(l<=r){
mid = (l+r)/2;
if(a[mid] == x && a[mid-1]<x)
return mid-1;
else if(a[mid]>=x)
r = mid-1;
else if(a[mid]<x && a[mid+1]>=x)
return mid;
else if(a[mid]<x && a[mid+1]<x)
l = mid+1;
}
return mid;
}
public int upperFirstBound(long a[] , long x){
int l = 0;
int r = a.length-1;
if(a[l]>x)
return l;
if(a[r]<=x)
return r+1;
int mid = -1;
while(l<=r){
mid = (l+r)/2;
if(a[mid] == x && a[mid+1]>x)
return mid+1;
else if(a[mid]<=x)
l = mid+1;
else if(a[mid]>x && a[mid-1]<=x)
return mid;
else if(a[mid]>x && a[mid-1]>x)
r = mid-1;
}
return mid;
}
public long log(float number , int base){
return (long) Math.floor((Math.log(number) / Math.log(base)));
}
public long gcd(long a , long b){
if(a<b){
long c = b;
b = a;
a = c;
}
if(b == 0)
return a;
return gcd(b , a%b);
}
public void print2d(long a[][] , PrintWriter out){
for(int i=0;i<a.length;i++){
for(int j=0;j<a[i].length;j++)
out.print(a[i][j] + " ");
out.println();
}
out.println();
}
public void print1d(int a[] , PrintWriter out){
for(int i=0;i<a.length;i++)
out.print(a[i] + " ");
out.println();
out.println();
}
class Node{
int index;
Node right;
Node left;
public Node(int index){
this.index = index;
right = null;
left = null;
}
}
class AVLTree{
Node root;
public AVLTree(){
this.root = null;
}
public int height(Node n){
return (n == null ? 0 : n.height);
}
public int getBalance(Node n){
return (n == null ? 0 : height(n.left) - height(n.right));
}
public Node rotateRight(Node a){
Node b = a.left;
Node br = b.right;
a.lSum -= b.lSum;
a.lCount -= b.lCount;
b.rSum += a.rSum;
b.rCount += a.rCount;
b.right = a;
a.left = br;
a.height = 1 + Math.max(height(a.left) , height(a.right));
b.height = 1 + Math.max(height(b.left) , height(b.right));
return b;
}
public Node rotateLeft(Node a){
Node b = a.right;
Node bl = b.left;
a.rSum -= b.rSum;
a.rCount -= b.rCount;
b.lSum += a.lSum;
b.lCount += a.lCount;
b.left = a;
a.right = bl;
a.height = 1 + Math.max(height(a.left) , height(a.right));
b.height = 1 + Math.max(height(b.left) , height(b.right));
return b;
}
public Node insert(Node root , long value){
if(root == null){
return new Node(value);
}
if(value<=root.value){
root.lCount++;
root.lSum += value;
root.left = insert(root.left , value);
}
if(value>root.value){
root.rCount++;
root.rSum += value;
root.right = insert(root.right , value);
}
// updating the height of the root
root.height = 1 + Math.max(height(root.left) , height(root.right));
int balance = getBalance(root);
//ll
if(balance>1 && value<=root.left.value)
return rotateRight(root);
//rr
if(balance<-1 && value>root.right.value)
return rotateLeft(root);
//lr
if(balance>1 && value>root.left.value){
root.left = rotateLeft(root.left);
return rotateRight(root);
}
//rl
if(balance<-1 && value<=root.right.value){
root.right = rotateRight(root.right);
return rotateLeft(root);
}
return root;
}
public void insertElement(long value){
this.root = insert(root , value);
}
public int getElementLessThanK(long k){
int count = 0;
Node temp = root;
while(temp!=null){
if(temp.value == k){
if(temp.left == null || temp.left.value<k){
count += temp.lCount;
return count-1;
}
else
temp = temp.left;
}
else if(temp.value>k){
temp = temp.left;
}
else{
count += temp.lCount;
temp = temp.right;
}
}
return count;
}
public void inorder(Node root , PrintWriter out){
Node temp = root;
if(temp!=null){
inorder(temp.left , out);
out.println(temp.value + " " + temp.lCount + " " + temp.rCount);
inorder(temp.right , out);
}
}
class Node{
long value;
long lCount , rCount;
long lSum , rSum;
Node left , right;
int height;
public Node(long value){
this.value = value;
left = null;
right = null;
lCount = 1;
rCount = 1;
lSum = value;
rSum = value;
height = 1;
}
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashMap;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.util.Map;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author htvu
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
FMovingPoints solver = new FMovingPoints();
solver.solve(1, in, out);
out.close();
}
static class FMovingPoints {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
Integer[] x = new Integer[n];
int[] v = new int[n];
long ans = 0;
Map<Integer, Integer> rank = new HashMap<>();
for (int i = 0; i < n; ++i) {
x[i] = in.nextInt();
}
for (int i = 0; i < n; ++i)
v[i] = in.nextInt();
Pair.IntPair[] ps = new Pair.IntPair[n];
for (int i = 0; i < n; ++i)
ps[i] = new Pair.IntPair(x[i], v[i]);
Arrays.sort(ps, (p1, p2) -> !p1.second.equals(p2.second) ? p1.second - p2.second : p1.first - p2.first);
Arrays.sort(x);
for (int i = 0; i < n; ++i) {
// add x[i] to pair sum
ans += (long) x[i] * (2 * i + 1 - n);
// record position of x[i] sorted by v[i]
rank.put(ps[i].first, i);
}
for (int i = 0; i < n; ++i) {
// ans -= (long)ps[i].first * (rank.get(ps[i].first) - i);
ans -= (long) x[i] * (i - rank.get(x[i]));
}
out.println(ans);
}
}
static class Pair<A extends Comparable<A>, B extends Comparable<B>> implements Comparable<Pair<A, B>> {
public A first;
public B second;
public Pair(A a, B b) {
this.first = a;
this.second = b;
}
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Pair<?, ?> pair = (Pair<?, ?>) o;
return first.equals(pair.first) &&
second.equals(pair.second);
}
public int hashCode() {
return (first == null ? 0 : first.hashCode()) ^
(second == null ? 0 : second.hashCode());
}
public String toString() {
return "{" + first + "," + second + '}';
}
public int compareTo(Pair<A, B> o) {
int c = first.compareTo(o.first);
if (c != 0) return c;
return second.compareTo(o.second);
}
public static class IntPair extends Pair<Integer, Integer> {
public IntPair(Integer integer, Integer integer2) {
super(integer, integer2);
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
void dout() { cerr << '\n'; }
template <typename Head, typename... Tail>
void dout(Head H, Tail... T) {
cerr << " " << H;
dout(T...);
}
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
const int N = 2e5 + 7;
int n, m, cnt[N];
long long sum[N];
pair<int, int> p[N];
void upd(int x, int y) {
for (; x <= m; x |= (x + 1)) {
cnt[x]++;
sum[x] += y;
}
}
int getnum(int x) {
int res = 0;
for (; x >= 0; x = (x & (x + 1)) - 1) {
res += cnt[x];
}
return res;
}
long long getsum(int x) {
long long res = 0;
for (; x >= 0; x = (x & (x + 1)) - 1) {
res += sum[x];
}
return res;
}
int main() {
ios_base::sync_with_stdio(false), cin.tie(NULL);
cin >> n;
vector<int> vec;
for (int i = 1; i <= n; i++) {
cin >> p[i].first;
}
for (int i = 1; i <= n; i++) {
cin >> p[i].second;
vec.push_back(p[i].second);
}
sort((vec).begin(), (vec).end());
map<int, int> ind;
for (int i = 1; i <= n; i++) {
if (!ind.count(vec[i - 1])) {
ind[vec[i - 1]] = ++m;
}
}
for (int i = 1; i <= n; i++) {
p[i].second = ind[p[i].second];
}
sort(p + 1, p + n + 1);
long long ans = 0;
for (int i = 1; i <= n; i++) {
ans += (long long)getnum(p[i].second) * p[i].first - getsum(p[i].second);
upd(p[i].second, p[i].first);
}
cout << ans;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.io.*;
import java.util.*;
import java.math.*;
import java.awt.Point;
public class Main {
//static final long MOD = 998244353L;
//static final long INF = -1000000000000000007L;
static final long MOD = 1000000007L;
//static final int INF = 1000000007;
//static long[] factorial;
public static void main(String[] args) {
FastScanner sc = new FastScanner();
PrintWriter pw = new PrintWriter(System.out);
int N = sc.ni();
int[][] points = new int[N][3]; //x,v,i
SegmentTree left = new SegmentTree(N);
SegmentTree right = new SegmentTree(N);
for (int i = 0; i < N; i++) {
points[i][0] = sc.ni();
}
for (int i = 0; i < N; i++)
points[i][1] = sc.ni();
//sort by increasing position
points = shuffle(points);
points = sort(points);
for (int i = 0; i < N; i++)
points[i][2] = i;
//pw.println(Arrays.deepToString(points));
SegmentTree leftSize = new SegmentTree(N);
SegmentTree rightSize = new SegmentTree(N);
for (int i = 0; i < N; i++) {
if (points[i][1] < 0) {
leftSize.update(0, 0, N-1, i, 1);
} else {
rightSize.update(0, 0, N-1, i, 1);
}
}
for (int i = 0; i < N; i++) {
if (points[i][1] < 0) {
left.update(0, 0, N-1, i, points[i][0]);
} else {
right.update(0, 0, N-1, i, points[i][0]);
}
}
long ans = 0;
for (int i = 0; i < N; i++) {
if (right.arr[i] > 0) {
ans += (points[i][0]*leftSize.query(0, 0, N-1, 0, i)-left.query(0, 0, N-1, 0, i));
}
}
PriorityQueue<int[]> pqR = new PriorityQueue<int[]>(new Comparator<int[]>(){
public int compare(int[] a, int[] b) {
if (b[1] != a[1]) {
return b[1] - a[1];
} else {
return b[2] - a[2];
}
}
});
for (int[] point: points) {
if (point[1] >= 0) {
pqR.add(point);
}
}
while (! pqR.isEmpty()) {
int[] point = pqR.poll();
ans += (point[0]*rightSize.query(0, 0, N-1, 0, point[2]) - right.query(0, 0, N-1, 0, point[2]));
right.update(0, 0, N-1, point[2], 0);
rightSize.update(0, 0, N-1, point[2], 0);
}
PriorityQueue<int[]> pqL = new PriorityQueue<int[]>(new Comparator<int[]>(){
public int compare(int[] a, int[] b) {
if (b[1] != a[1]) {
return a[1] - b[1];
} else {
return a[2] - b[2];
}
}
});
for (int[] point: points) {
if (point[1] < 0) {
pqL.add(point);
}
}
while (! pqL.isEmpty()) {
int[] point = pqL.poll();
ans += (left.query(0, 0, N-1, point[2], N-1)-point[0]*leftSize.query(0, 0, N-1, point[2], N-1));
left.update(0, 0, N-1, point[2], 0);
leftSize.update(0, 0, N-1, point[2], 0);
}
pw.println(ans);
pw.close();
}
static class SegmentTree {
public long[] arr;
public long[] tree;
public SegmentTree(int N) {
//0 indexed seg tree
arr = new long[N];
tree = new long[4*N+1];
}
public void buildSegTree(int treeIndex, int lo, int hi) {
if (lo == hi) {
tree[treeIndex] = arr[lo];
return;
}
int mid = lo + (hi - lo) / 2;
buildSegTree(2 * treeIndex + 1, lo, mid);
buildSegTree(2 * treeIndex + 2, mid + 1, hi);
tree[treeIndex] = merge(tree[2 * treeIndex + 1], tree[2 * treeIndex + 2]);
}
public long query(int treeIndex, int lo, int hi, int i, int j) {
// query for arr[i..j]
if (lo > j || hi < i)
return 0;
if (i <= lo && j >= hi)
return tree[treeIndex];
int mid = lo + (hi - lo) / 2;
if (i > mid)
return query(2 * treeIndex + 2, mid + 1, hi, i, j);
else if (j <= mid)
return query(2 * treeIndex + 1, lo, mid, i, j);
long leftQuery = query(2 * treeIndex + 1, lo, mid, i, mid);
long rightQuery = query(2 * treeIndex + 2, mid + 1, hi, mid + 1, j);
// merge query results
return merge(leftQuery, rightQuery);
}
public void update(int treeIndex, int lo, int hi, int arrIndex, long val) {
if (lo == hi) {
tree[treeIndex] = val;
arr[arrIndex] = val;
return;
}
int mid = lo + (hi - lo) / 2;
if (arrIndex > mid)
update(2 * treeIndex + 2, mid + 1, hi, arrIndex, val);
else if (arrIndex <= mid)
update(2 * treeIndex + 1, lo, mid, arrIndex, val);
// merge updates
tree[treeIndex] = merge(tree[2 * treeIndex + 1], tree[2 * treeIndex + 2]);
}
public long merge(long a, long b) {
return (a+b);
}
}
public static long dist(long[] p1, long[] p2) {
return (Math.abs(p2[0]-p1[0])+Math.abs(p2[1]-p1[1]));
}
//Find the GCD of two numbers
public static long gcd(long a, long b) {
if (a < b) return gcd(b,a);
if (b == 0)
return a;
else
return gcd(b,a%b);
}
//Fast exponentiation (x^y mod m)
public static long power(long x, long y, long m) {
if (y < 0) return 0L;
long ans = 1;
x %= m;
while (y > 0) {
if(y % 2 == 1)
ans = (ans * x) % m;
y /= 2;
x = (x * x) % m;
}
return ans;
}
public static int[][] shuffle(int[][] array) {
Random rgen = new Random();
for (int i = 0; i < array.length; i++) {
int randomPosition = rgen.nextInt(array.length);
int[] temp = array[i];
array[i] = array[randomPosition];
array[randomPosition] = temp;
}
return array;
}
public static int[][] sort(int[][] array) {
//Sort an array (immune to quicksort TLE)
Arrays.sort(array, new Comparator<int[]>() {
@Override
public int compare(int[] a, int[] b) {
return a[0]-b[0]; //ascending order
}
});
return array;
}
public static long[][] sort(long[][] array) {
//Sort an array (immune to quicksort TLE)
Random rgen = new Random();
for (int i = 0; i < array.length; i++) {
int randomPosition = rgen.nextInt(array.length);
long[] temp = array[i];
array[i] = array[randomPosition];
array[randomPosition] = temp;
}
Arrays.sort(array, new Comparator<long[]>() {
@Override
public int compare(long[] a, long[] b) {
if (a[0] < b[0])
return -1;
else
return 1;
}
});
return array;
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int ni() {
return Integer.parseInt(next());
}
long nl() {
return Long.parseLong(next());
}
double nd() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int[][] xv = new int[n][2];
Integer[] v = new Integer[n];
for (int i = 0; i < n; i++) {
xv[i][0] = scanner.nextInt();
}
for (int i = 0; i < n; i++) {
xv[i][1] = scanner.nextInt();
v[i] = xv[i][1];
}
Arrays.sort(v);
Arrays.sort(xv, (o1, o2) -> {
if (o1[0] != o2[0]) return Integer.compare(o1[0], o2[0]);
return Integer.compare(o1[1], o2[1]);
});
FenwickTreeLong f1 = new FenwickTreeLong(n);
FenwickTreeLong f2 = new FenwickTreeLong(n);
long result = 0;
for (int i = 0; i < n; i++) {
//Enumerate according to the x coordinate from small to large
//Find the position of v after discretization
int pos = Arrays.binarySearch(v, xv[i][1]);
pos++;
//The speed is smaller than the current speed and the contribution is the difference in distance
//The speed with num points is lower than the current speed
long num = f1.sum(pos);
//The sum of the coordinates of the num points is xsum
long xsum = f2.sum(pos);
//Calculate the contribution to the answer
result += num * xv[i][0] - xsum;
f1.change(pos, 1);
f2.change(pos, xv[i][0]);
}
System.out.println(result);
}
}
class FenwickTreeLong {
long[] t;
int n;
public FenwickTreeLong(int n) {
this.n = n;
this.t = new long[n + 1];
}
void change(int pos, int val) {
while (pos <= n) {
t[pos] += val;
pos += lowbit(pos);
}
}
int lowbit(int k) {
return k & (-k);
}
long sum(int pos) {
long ans = 0;
while (pos > 0) {
ans += t[pos];
pos -= lowbit(pos);
}
return ans;
}
long ask(int l, int r) {
return sum(r) - sum(l);
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5;
int m;
long long val[maxn + 11];
int cnt[maxn + 11];
pair<int, int> p[maxn + 11];
vector<int> v;
int lowbit(int x) { return x & (-x); }
void add(int x, int o) {
for (; x <= m; x += lowbit(x)) {
cnt[x] += 1;
val[x] += o;
}
}
pair<int, long long> query(int x) {
int resc = 0;
long long resv = 0;
for (; x; x -= lowbit(x)) {
resc += cnt[x];
resv += val[x];
}
return make_pair(resc, resv);
}
int main() {
int n;
cin >> n;
for (int i = 1; i <= n; i++) cin >> p[i].first;
for (int i = 1; i <= n; i++) {
cin >> p[i].second;
v.emplace_back(p[i].second);
}
sort(p + 1, p + 1 + n);
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
m = v.size();
long long ans = 0;
for (int i = 1; i <= n; i++) {
int pos = lower_bound(v.begin(), v.end(), p[i].second) - v.begin() + 1;
pair<int, long long> pi = query(pos);
ans += 1ll * pi.first * p[i].first - pi.second;
add(pos, p[i].first);
}
cout << ans << endl;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e6 + 5;
pair<int, int> p[maxn];
int n;
long long d[maxn];
long long e[maxn];
void add(long long *c, int i, int k) {
while (i <= n) {
c[i] += k;
i += i & (-i);
}
}
long long sum(long long *c, int i) {
long long res = 0;
while (i > 0) {
res += c[i];
i -= i & (-i);
}
return res;
}
int main() {
cin >> n;
for (int i = 0; i <= n - 1; i++) cin >> p[i].first;
for (int i = 0; i <= n - 1; i++) cin >> p[i].second;
sort(p, p + n);
vector<int> es(n);
for (int i = 0; i <= n - 1; i++) es[i] = p[i].second;
sort(es.begin(), es.end());
long long res = 0;
for (int i = 0; i <= n - 1; i++) {
int pp = lower_bound(es.begin(), es.end(), p[i].second) - es.begin() + 1;
res += sum(d, pp) * p[i].first - sum(e, pp);
add(d, pp, 1);
add(e, pp, p[i].first);
}
cout << res << "\n";
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long BIT[200009][4], N = 200009, n, ans, I;
struct st {
long long x, v;
} a[200009];
bool cmp(st a, st b) {
if (a.v == b.v) return a.x > b.x;
return a.v > b.v;
}
bool cmp2(st a, st b) {
if (a.v == b.v) return a.x > b.x;
return a.v > b.v;
}
set<long long> s;
map<long long, long long> mp;
void update(long long x, long long val, long long zz) {
for (; x < N; x += x & -x) BIT[x][zz] += val;
}
long long query(long long x, long long zz) {
long long sum = 0;
for (; x > 0; x -= x & -x) sum += BIT[x][zz];
return sum;
}
long long q(long long l, long long r, long long zz) {
return query(r, zz) - query(l - 1, zz);
}
int main() {
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i].x;
s.insert(a[i].x);
}
for (int i = 0; i < n; i++) {
cin >> a[i].v;
}
for (auto x : s) mp[x] = ++I;
sort(a, a + n, cmp);
for (int i = 0; i < n; i++) {
ans += q(mp[a[i].x] + 1, I, 1) - a[i].x * q(mp[a[i].x] + 1, I, 2);
update(mp[a[i].x], a[i].x, 1);
update(mp[a[i].x], 1, 2);
}
cout << ans << endl;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 7;
pair<int, int> p[N];
struct fenwick {
long long fen[N];
void add(int first, int d) {
for (int i = first + 1; i < N; i += i & -i) {
fen[i] += d;
}
}
long long sum(int first) {
long long ans = 0;
for (int i = first + 1; i; i -= i & -i) {
ans += fen[i];
}
return ans;
}
long long sum(int l, int r) { return sum(r) - sum(l - 1); }
} val, cnt;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n;
cin >> n;
for (int i = 0; i < n; ++i) cin >> p[i].first;
for (int i = 0; i < n; ++i) cin >> p[i].second;
sort(p, p + n);
vector<int> a(n);
for (int i = 0; i < n; ++i) a[i] = p[i].second;
sort(a.begin(), a.end());
a.resize(unique(a.begin(), a.end()) - a.begin());
for (int i = 0; i < n; ++i) {
p[i].second = lower_bound(a.begin(), a.end(), p[i].second) - a.begin();
}
long long ans = 0;
for (int i = n - 1; ~i; --i) {
val.add(p[i].second, p[i].first);
cnt.add(p[i].second, 1);
ans += val.sum(p[i].second, 2e5) - cnt.sum(p[i].second, 2e5) * p[i].first;
}
cout << ans << '\n';
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
vector<pair<long long, long long>> t;
pair<long long, long long> get(long long v, long long l, long long r,
long long a, long long b) {
if (l > b || a > r) {
return {0, 0};
}
if (a <= l && r <= b) {
return t[v];
}
long long m = (l + r) / 2;
pair<long long, long long> tmp = get(2 * v, l, m, a, b),
tmp2 = get(2 * v + 1, m + 1, r, a, b);
return {tmp.first + tmp2.first, tmp.second + tmp2.second};
}
void update(long long v, long long l, long long r, long long i, long long x) {
if (l > i || i > r) {
return;
}
if (l == r) {
t[v] = {t[v].first + x, t[v].second + 1};
return;
}
long long m = (l + r) / 2;
update(2 * v, l, m, i, x);
update(2 * v + 1, m + 1, r, i, x);
t[v].first = t[2 * v].first + t[2 * v + 1].first;
t[v].second = t[2 * v].second + t[2 * v + 1].second;
}
signed main() {
long long n;
cin >> n;
long long q = 1 << (long long)ceil(log2(n));
t.resize(2 * q);
vector<pair<long long, long long>> x(n);
for (long long i = 0; i < n; ++i) {
cin >> x[i].first;
}
for (long long i = 0; i < n; ++i) {
cin >> x[i].second;
}
sort(x.begin(), x.end());
vector<long long> a(n);
for (long long i = 0; i < n; ++i) {
a[i] = x[i].second;
}
unordered_map<long long, long long> b;
sort(a.begin(), a.end());
a.resize(unique(a.begin(), a.end()) - a.begin());
for (long long i = 0; i < a.size(); ++i) {
b[a[i]] = i;
}
vector<long long> c(n);
for (long long i = 0; i < n; ++i) {
c[i] = b[x[i].second];
}
long long now = 0;
long long sum = 0, kol = 0;
for (long long i = 0; i < n; ++i) {
if (x[i].second < 0) {
sum += x[i].first;
++kol;
continue;
}
if (x[i].second > 0) {
pair<long long, long long> tmp = get(1, 0, q - 1, 0, c[i]);
now += tmp.second * x[i].first - tmp.first;
update(1, 0, q - 1, c[i], x[i].first);
} else {
now += kol * x[i].first - sum;
sum += x[i].first;
++kol;
}
}
t.assign(2 * q, {0, 0});
sum = 0;
kol = 0;
for (long long i = n - 1; i >= 0; --i) {
if (x[i].second > 0) {
sum += x[i].first;
++kol;
continue;
}
if (x[i].second < 0) {
pair<long long, long long> tmp = get(1, 0, q - 1, c[i], n - 1);
now += tmp.first - tmp.second * x[i].first;
update(1, 0, q - 1, c[i], x[i].first);
} else {
now += sum - kol * x[i].first;
}
}
long long nowl = 0, koll = 0, nowr = 0, kolr = 0;
for (long long i = 0; i < n; ++i) {
if (x[i].second > 0) {
now += koll * x[i].first - nowl;
++kolr;
nowr += x[i].first;
} else if (x[i].second < 0) {
++koll;
nowl += x[i].first;
}
}
cout << now;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
python3
|
class BIT():
def __init__(self, array):
self.n = len(array)
self.bit = [0] + array
self.build()
def build(self):
for i in range(1, self.n):
if i + (i & -i) > self.n:
continue
self.bit[i + (i & -i)] += self.bit[i]
def _sum(self, i):
s = 0
while i > 0:
s += self.bit[i]
i -= i & -i
return s
def add(self, i, val):
i += 1
while i <= self.n:
self.bit[i] += val
i += i & -i
def get_sum(self, l, r):
return self._sum(r) - self._sum(l)
from operator import itemgetter
import sys
input = sys.stdin.readline
n = int(input())
x = list(map(int, input().split()))
v = list(map(int, input().split()))
sorted_x = sorted(x)
bit = BIT(sorted_x)
bit_ind = BIT([1] * n)
to_ind = {v: i for i, v in enumerate(sorted_x)}
info = [None] * n
for i in range(n):
info[i] = (v[i] + 10**18, x[i])
info = sorted(info, key=itemgetter(1), reverse=True)
info = sorted(info, key=itemgetter(0), reverse=True)
ans = 0
for i in range(n):
_, pos = info[i]
ind = to_ind[pos]
sum_ = bit.get_sum(0, ind)
num = bit_ind.get_sum(0, ind)
ans += num * pos - sum_
bit.add(ind, -pos)
bit_ind.add(ind, -1)
print(ans)
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.util.Comparator;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author xwchen
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskF solver = new TaskF();
solver.solve(1, in, out);
out.close();
}
static class TaskF {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] x = in.nextIntArray(n);
int[] v = in.nextIntArray(n);
v = ArrayUtils.shrink(v);
Point[] points = new Point[n];
for (int i = 0; i < n; ++i) {
points[i] = new Point(x[i], v[i]);
}
Arrays.sort(points, Comparator.comparingInt(p -> p.x));
BinaryIndexedTree Vcnt = new BinaryIndexedTree(n);
BinaryIndexedTree VXsum = new BinaryIndexedTree(n);
long res = 0;
for (int i = n - 1; i >= 0; --i) {
int X = points[i].x;
int V = points[i].v;
long cnt = Vcnt.queryRange(V, n);
long sum = VXsum.queryRange(V, n);
res += sum - X * cnt;
Vcnt.update(V, 1);
VXsum.update(V, X);
}
out.println(res);
}
class Point {
int x;
int v;
public Point(int x, int v) {
this.x = x;
this.v = v;
}
}
}
static class BinaryIndexedTree {
int n;
long[] bit;
public BinaryIndexedTree(int n) {
this.n = n;
bit = new long[n + 1];
}
public void update(int i, int add) {
while (i > 0 && i <= n) {
bit[i] += add;
i = i + (i & (-i));
}
}
public long sum(int i) {
long ans = 0;
while (i > 0) {
ans += bit[i];
i = i - (i & (-i));
}
return ans;
}
public long queryRange(int i, int j) {
return sum(j) - sum(i - 1);
}
}
static class ArrayUtils {
public static int[] shrink(int[] a) {
int n = a.length;
int[] ret = new int[n];
Integer[] b = new Integer[n];
for (int i = 0; i < n; ++i) {
b[i] = i;
}
Arrays.sort(b, Comparator.comparingInt(x -> a[x]));
int p = 0;
for (int i = 0; i < n; ++i) {
if (i - 1 >= 0 && a[b[i]] == a[b[i - 1]]) {
ret[b[i]] = p;
} else {
ret[b[i]] = ++p;
}
}
return ret;
}
}
static class InputReader {
private BufferedReader reader;
private StringTokenizer tokenizer = new StringTokenizer("");
public InputReader(InputStream inputStream) {
this.reader = new BufferedReader(
new InputStreamReader(inputStream));
}
public String next() {
while (!tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.util.Arrays;
import java.util.Scanner;
import java.util.Comparator;
public class R624_F {
private static long sum (long[] t, int pos) {
long result = 0;
while (pos >= 0) {
result += t[pos];
pos = (pos & (pos + 1)) - 1;
}
return result;
}
private static void upd (long[] t, int pos, int delta) {
while (pos < t.length) {
t[pos] += delta;
pos = pos | (pos + 1);
}
}
public static void main(String[] args) {
Scanner in = new Scanner (System.in);
int n = in.nextInt();
int[][] p = new int[n][2];
int[][] v = new int[n][2];
for (int i = 0; i < n; i++)
p[i][0] = in.nextInt();
for (int i = 0; i < n; i++) {
p[i][1] = in.nextInt();
v[i][0] = p[i][1];
v[i][1] = i;
}
in.close();
Arrays.sort(v, new Comparator<int[]>() {
public int compare(int[] a, int[] b) {
return a[0] - b[0];
}
});
int idx = 0;
int[][] ret = new int[n][2];
for (int i = 0; i < n; i++) {
if (i > 0 && v[i][0] != v[i-1][0])
idx++;
ret[i][0] = idx;
ret[i][1] = v[i][1];
}
Arrays.sort(ret, new Comparator<int[]>() {
public int compare(int[] a, int[] b) {
return a[1] - b[1];
}
});
for (int i = 0; i < n; i++) {
p[i][1] = ret[i][0];
}
Arrays.sort(p, new Comparator<int[]>() {
public int compare(int[] a, int[] b) {
return a[0] - b[0];
}
});
long[] xs = new long[n];
long[] cnt = new long[n];
long ans = 0;
for (int i = 0; i < n; i++) {
int pos = p[i][1];
ans += sum(cnt, pos) * p[i][0] - sum (xs, pos);
upd(cnt, pos, 1);
upd(xs, pos, p[i][0]);
}
System.out.println(ans);
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int b[200005], m;
long long c[200005][2];
struct node {
int x, v;
bool operator<(const node t) const { return x < t.x; }
} a[200005];
int lsh(long long x) { return lower_bound(b + 1, b + 1 + m, x) - b; }
long long query(int x, int k) {
long long ret = 0;
for (int i = x; i >= 1; i -= i & -i) ret += c[i][k];
return ret;
}
void update(int x, int y) {
for (int i = x; i <= m; i += i & -i) {
c[i][0]++;
c[i][1] += y;
}
}
int main() {
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i].x);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i].v);
b[i] = a[i].v;
}
sort(b + 1, b + 1 + n);
m = unique(b + 1, b + 1 + n) - b - 1;
sort(a + 1, a + 1 + n);
long long ans = 0;
for (int i = 1; i <= n; i++) {
int t = lsh(a[i].v);
ans += query(t, 0) * a[i].x - query(t, 1);
update(t, a[i].x);
}
printf("%lld", ans);
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.Random;
import java.util.ArrayList;
import java.util.Objects;
import java.util.List;
import java.io.InputStream;
/**
* Built using CHelper plug-in Actual solution is at the top
*
* @author MaxHeap
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
FMovingPoints solver = new FMovingPoints();
solver.solve(1, in, out);
out.close();
}
static class FMovingPoints {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] x = in.nextIntArray(n);
int[] v = in.nextIntArray(n);
// v = Arr.compress(v);
int[] so = v.clone();
Sort.sort(so);
int ne = 0;
HashMap<Integer, Integer> map = new HashMap<>();
for (int i : so) {
if (i < 0) {
ne++;
}
}
int st = -ne;
for (int i : so) {
if (st == 0) {
++st;
}
if (!map.containsKey(i)) {
map.put(i, st++);
}
}
for (int i = 0; i < n; ++i) {
v[i] = map.get(v[i]);
}
int pt = 0;
IntPair[] pts = new IntPair[n];
for (int i = 0; i < n; ++i) {
pts[i] = new IntPair(x[i], v[i]);
}
Arrays.sort(pts);
long ans = 0;
// <- ->
// out.println(Arrays.toString(pts));
long sum = 0, cnt = 0;
for (int i = 0; i < n; ++i) {
if (pts[i].y < 0) {
sum += pts[i].x;
++cnt;
} else {
ans += cnt * pts[i].x - sum;
}
}
// same direction different speed
List<IntPair> pos = new ArrayList<>();
List<IntPair> neg = new ArrayList<>();
for (int i = 0; i < n; ++i) {
if (pts[i].y < 0) {
neg.add(pts[i]);
} else {
pos.add(pts[i]);
}
}
FMovingPoints.FenTree tree = new FMovingPoints.FenTree(2 * n);
FMovingPoints.FenTree treeCount = new FMovingPoints.FenTree(2 * n);
for (int i = pos.size() - 1; i >= 0; --i) {
IntPair cur = pos.get(i);
long has = tree.get(cur.y, 2 * n - 1);
long count = treeCount.get(cur.y, 2 * n - 1);
ans += has - count * cur.x;
tree.update(cur.y, cur.x);
treeCount.update(cur.y, 1);
}
tree = new FMovingPoints.FenTree(2 * n);
treeCount = new FMovingPoints.FenTree(2 * n);
for (int i = 0; i < neg.size(); ++i) {
IntPair cur = neg.get(i);
cur.y *= -1;
long has = tree.get(cur.y, 2 * n - 1);
long count = treeCount.get(cur.y, 2 * n - 1);
ans += count * cur.x - has;
tree.update(cur.y, cur.x);
treeCount.update(cur.y, 1);
}
out.println(ans);
}
static class FenTree {
long[] values;
int n;
public FenTree(int n) {
values = new long[n];
this.n = n;
}
void update(int index, long value) {
while (index < n) {
values[index] += value;
index += (index & -index);
}
}
long get(int index) {
long res = 0;
while (index > 0) {
res += values[index];
index -= (index & -index);
}
return res;
}
long get(int l, int r) {
return get(r) - get(l - 1);
}
}
}
static final class Sort {
final static Random rand = new Random();
public static void shuffle(int[] arr) {
for (int i = 0; i < arr.length; ++i) {
int index = rand.nextInt(arr.length);
swap(arr, index, i);
}
}
public static void sort(int[] arr) {
shuffle(arr);
Arrays.sort(arr);
}
public static void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
static class IntPair implements Comparable<IntPair> {
public int x;
public int y;
public IntPair(int x, int y) {
this.x = x;
this.y = y;
}
public IntPair(IntPair that) {
this.x = that.x;
this.y = that.y;
}
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
IntPair intPair = (IntPair) o;
return x == intPair.x &&
y == intPair.y;
}
public int hashCode() {
return Objects.hash(x, y);
}
public String toString() {
return "IntPair{" +
"x=" + x +
", y=" + y +
'}';
}
public int compareTo(IntPair o) {
int c = Integer.compare(x, o.x);
if (c == 0) {
return Integer.compare(y, o.y);
}
return c;
}
}
static class InputReader {
private InputStream stream;
private static final int DEFAULT_BUFFER_SIZE = 1 << 16;
private static final int EOF = -1;
private byte[] buf = new byte[DEFAULT_BUFFER_SIZE];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (this.numChars == EOF) {
throw new UnknownError();
} else {
if (this.curChar >= this.numChars) {
this.curChar = 0;
try {
this.numChars = this.stream.read(this.buf);
} catch (IOException ex) {
throw new InputMismatchException();
}
if (this.numChars <= 0) {
return EOF;
}
}
return this.buf[this.curChar++];
}
}
public int nextInt() {
int c;
for (c = this.read(); isSpaceChar(c); c = this.read()) {
}
byte sgn = 1;
if (c == 45) {
sgn = -1;
c = this.read();
}
int res = 0;
while (c >= 48 && c <= 57) {
res *= 10;
res += c - 48;
c = this.read();
if (isSpaceChar(c)) {
return res * sgn;
}
}
throw new InputMismatchException();
}
public static boolean isSpaceChar(int c) {
return c == 32 || c == 10 || c == 13 || c == 9 || c == EOF;
}
public int[] nextIntArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
struct segtree {
long long int M = 1, INIT;
vector<long long int> dat;
segtree(long long int N, long long int num) {
INIT = num;
while (M < N) M *= 2;
for (int i = 0; i < M * 2 - 1; i++) dat.push_back(num);
}
void update(long long int x, long long int k, long long int l = 0,
int r = -1) {
if (r == -1) r = M;
k += M - 1;
dat[k] += x;
while (k > 0) k = (k - 1) / 2, dat[k] = dat[k * 2 + 1] + dat[k * 2 + 2];
}
long long int query(long long int a, long long int b = -1,
long long int k = 0, long long int l = 0,
long long int r = -1) {
if (r == -1) r = M;
if (b == -1) b = M;
if (r <= a || b <= l) return INIT;
if (a <= l && r <= b) return dat[k];
long long int A = query(a, b, k * 2 + 1, l, (l + r) / 2);
long long int B = query(a, b, k * 2 + 2, (l + r) / 2, r);
return A + B;
}
};
int main(int argc, char const *argv[]) {
long long int n;
scanf("%lld", &n);
vector<vector<long long int> > l = vector<vector<long long int> >(
0, vector<long long int>(3, 0)),
r = vector<vector<long long int> >(
0, vector<long long int>(3, 0));
long long int b;
map<long long int, long long int> mp, point;
vector<long long int> x(n);
for (long long int i = 0; i < n; i++) scanf("%lld", &x[i]);
vector<vector<long long int> > d =
vector<vector<long long int> >(n, vector<long long int>(3, 0));
for (long long int i = 0; i < n; i++) {
scanf("%lld", &b);
d[i][0] = x[i], d[i][1] = b;
if (b <= 0) l.push_back(vector<long long int>{x[i], abs(b), 0});
if (b >= 0) r.push_back(vector<long long int>{x[i], abs(b), 0});
mp.emplace(abs(b), 0);
point.emplace(x[i], 0);
}
long long int c = 0;
for (auto itr = mp.begin(); itr != mp.end(); itr++, c++) (*itr).second = c;
c = 0;
for (auto itr = point.begin(); itr != point.end(); itr++, c++)
(*itr).second = c;
long long int ans = 0;
for (long long int i = 0; i < l.size(); i++) l[i][2] = mp.at(l[i][1]);
for (long long int i = 0; i < r.size(); i++) r[i][2] = mp.at(r[i][1]);
for (long long int i = 0; i < n; i++) d[i][2] = point.at(d[i][0]);
segtree seg_l(mp.size(), 0), seg_r(mp.size(), 0), p(point.size(), 0);
segtree seg_l_num(mp.size(), 0), seg_r_num(mp.size(), 0),
p_num(point.size(), 0);
sort((l).begin(), (l).end());
sort((r).begin(), (r).end());
sort((d).begin(), (d).end());
for (int i = r.size() - 1; i >= 0; i--) {
long long int SUM = seg_r.query(r[i][2], mp.size() + 1);
long long int NUM = seg_r_num.query(r[i][2], mp.size() + 1);
ans += (SUM - r[i][0] * NUM);
if (r[i][1] != 0)
seg_r.update(r[i][0], r[i][2]), seg_r_num.update(1, r[i][2]);
}
for (long long int i = 0; i < l.size(); i++) {
long long int SUM = seg_l.query(l[i][2], mp.size() + 1);
long long int NUM = seg_l_num.query(l[i][2], mp.size() + 1);
ans += (l[i][0] * NUM - SUM);
seg_l.update(l[i][0], l[i][2]), seg_l_num.update(1, l[i][2]);
}
for (long long int i = 0; i < n; i++) {
if (d[i][1] < 0) p.update(d[i][0], d[i][2]), p_num.update(1, d[i][2]);
if (d[i][1] > 0) {
long long int SUM = p.query(0, d[i][2]);
long long int NUM = p_num.query(0, d[i][2]);
ans += (d[i][0] * NUM - SUM);
}
}
std::cout << ans << '\n';
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
vector<vector<pair<long long, long long>>> mt(4 * 200005);
vector<pair<long long, long long>> a;
void buildTree(long long idx, long long second, long long se) {
if (second == se) {
mt[idx].push_back({a[second].second, a[second].first});
return;
}
long long mid = (second + se) / 2;
buildTree(2 * idx + 1, second, mid);
buildTree(2 * idx + 2, mid + 1, se);
merge(mt[2 * idx + 1].begin(), mt[2 * idx + 1].end(), mt[2 * idx + 2].begin(),
mt[2 * idx + 2].end(), back_inserter(mt[idx]));
}
pair<long long, long long> query(long long node, long long qs, long long qe,
long long second, long long se,
long long diff) {
if (qs > se || qe < second) return {0, 0};
if (qs <= second && qe >= se) {
long long l = 0, r = mt[node].size() - 1, ind = 1e9;
while (l <= r) {
long long mid = (l + r) / 2;
if (mt[node][mid].first >= diff) {
ind = min(ind, mid);
r = mid - 1;
} else {
l = mid + 1;
}
}
pair<long long, long long> ans = {0, 0};
if (ind != 1e9) {
ans.second = mt[node].size() - ind;
ans.first = mt[node][mt[node].size() - 1].second;
if (ind != 0) ans.first -= mt[node][ind - 1].second;
}
return ans;
}
long long mid = (second + se) / 2;
pair<long long, long long> p1 =
query(2 * node + 1, qs, qe, second, mid, diff);
pair<long long, long long> p2 =
query(2 * node + 2, qs, qe, mid + 1, se, diff);
p1.first += p2.first;
p1.second += p2.second;
return p1;
}
int32_t main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
;
long long n;
cin >> n;
a.resize(n);
for (int i = 0; i < n; i++) cin >> a[i].first;
for (int i = 0; i < n; i++) cin >> a[i].second;
sort(a.begin(), a.end());
buildTree(0, 0, n - 1);
for (int i = 0; i < (4 * n) + 5; i++) {
for (int j = 1; j < mt[i].size(); j++)
mt[i][j].second += mt[i][j - 1].second;
}
long long ans = 0;
for (int i = 0; i < n; i++) {
pair<long long, long long> q =
query(0, i + 1, n - 1, 0, n - 1, a[i].second);
ans += (q.first - (q.second * a[i].first));
}
cout << ans << "\n";
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int num[800005], m;
long long b[200005], sum[200005], cnt[200005], tr[800005];
struct node {
int x, v;
bool operator<(const node t) const { return x < t.x; }
} a[200005];
int lsh(long long x) { return lower_bound(b + 1, b + 1 + m, x) - b; }
void build(int l, int r, int p) {
if (l == r) {
tr[p] = sum[l];
num[p] = cnt[l];
return;
}
int mid = l + r >> 1;
build(l, mid, p << 1);
build(mid + 1, r, p << 1 | 1);
tr[p] = tr[p << 1] + tr[p << 1 | 1];
num[p] = num[p << 1] + num[p << 1 | 1];
}
pair<long long, int> query(int l, int r, int x, int y, int p) {
if (l == x && r == y) return make_pair(tr[p], num[p]);
int mid = l + r >> 1;
if (y <= mid)
return query(l, mid, x, y, p << 1);
else if (x > mid)
return query(mid + 1, r, x, y, p << 1 | 1);
else {
pair<long long, int> v1 = query(l, mid, x, mid, p << 1),
v2 = query(mid + 1, r, mid + 1, y, p << 1 | 1);
return make_pair(v1.first + v2.first, v1.second + v2.second);
}
}
void update(int l, int r, int x, int y, int p) {
if (l == r) {
tr[p] -= y;
num[p]--;
return;
}
int mid = l + r >> 1;
if (x <= mid)
update(l, mid, x, y, p << 1);
else
update(mid + 1, r, x, y, p << 1 | 1);
tr[p] = tr[p << 1] + tr[p << 1 | 1];
num[p] = num[p << 1] + num[p << 1 | 1];
}
int main() {
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i].x);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i].v);
b[i] = a[i].v;
}
sort(b + 1, b + 1 + n);
m = unique(b + 1, b + 1 + n) - b - 1;
sort(a + 1, a + 1 + n);
for (int i = 1; i <= n; i++) {
int x = lsh(a[i].v);
sum[x] += a[i].x;
cnt[x]++;
}
build(1, m, 1);
long long ans = 0;
for (int i = 1; i <= n; i++) {
int x = lsh(a[i].v);
update(1, m, x, a[i].x, 1);
pair<long long, int> t = query(1, m, x, m, 1);
ans += t.first - (long long)a[i].x * t.second;
}
printf("%lld", ans);
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
template <class T>
class BIT {
private:
vector<T> dat;
int n;
public:
BIT(int _n) : dat(_n + 1), n(_n) {}
T sum(int i) {
T s = 0;
while (i > 0) s += dat[i], i -= i & -i;
return s;
}
T sum(int l, int r) { return l > r ? 0 : sum(r) - sum(l - 1); }
void add(int i, T x) {
while (i <= n) dat[i] += x, i += i & -i;
}
};
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int N;
cin >> N;
vector<pair<int64_t, int64_t>> P(N);
for (auto &p : P) cin >> p.second;
for (auto &p : P) cin >> p.first;
sort(P.begin(), P.end());
vector<int> vs;
for (auto &p : P) vs.push_back(p.first);
P[0].first = 1;
for (int i = 1; i < N; ++i) {
P[i].first = P[i - 1].first + (vs[i - 1] != vs[i]);
}
for (auto &p : P) swap(p.first, p.second);
sort(P.begin(), P.end(), greater<pair<int, int>>());
int64_t ans = 0LL;
BIT<int64_t> bit(N), cnt(N);
for (auto &p : P) {
int x, v;
tie(x, v) = p;
ans += bit.sum(v, N) - x * cnt.sum(v, N);
bit.add(v, x);
cnt.add(v, 1);
}
cout << ans << '\n';
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int n;
long long bit[200005][2];
void update(int x, long long val) {
for (int i = x; i <= n; i += (i & -i)) bit[i][0] += val;
for (int i = x; i <= n; i += (i & -i)) bit[i][1] += 1;
}
pair<long long, long long> query(int x) {
long long ret1 = 0;
long long ret2 = 0;
for (int i = x; i > 0; i -= (i & -i)) ret1 += bit[i][0];
for (int i = x; i > 0; i -= (i & -i)) ret2 += bit[i][1];
return {ret1, ret2};
}
int main() {
cin >> n;
vector<long long> vel, tmp;
vector<pair<long long, int> > pos;
map<long long, int> mp;
for (int i = 0; i < n; i++) {
long long x;
cin >> x;
pos.push_back({x, i});
}
sort(pos.begin(), pos.end());
for (int i = 0; i < n; i++) {
long long x;
cin >> x;
vel.push_back(x);
tmp.push_back(x);
}
sort(tmp.begin(), tmp.end());
for (int i = 0; i < n; i++) {
mp[tmp[i]] = i + 1;
}
long long ans = 0;
for (int i = 0; i < n; i++) {
int posnow = pos[i].second;
long long xnow = pos[i].first;
int now = mp[vel[posnow]];
pair<long long, long long> q = query(now);
long long val = xnow * q.second - q.first;
ans += val;
update(now, xnow);
}
cout << ans << endl;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
map<int, int> mp;
set<int> st;
set<int>::iterator it;
pair<int, int> arr[200005];
pair<long long, long long> tree[4 * 200005];
void update(int node, int b, int e, int i, long long v) {
if (b > i || e < i) return;
if (b == e && b == i) {
tree[node].first += v;
tree[node].second++;
return;
}
int left = 2 * node, right = left + 1, mid = (b + e) / 2;
update(left, b, mid, i, v);
update(right, mid + 1, e, i, v);
tree[node].first = tree[left].first + tree[right].first;
tree[node].second = tree[left].second + tree[right].second;
}
pair<long long, long long> query(int node, int b, int e, int l, int r) {
if (b > r || e < l) return make_pair(0ll, 0ll);
if (b >= l && e <= r) return tree[node];
int left = 2 * node, right = left + 1, mid = (b + e) / 2;
pair<long long, long long> ret;
pair<long long, long long> p = query(left, b, mid, l, r);
pair<long long, long long> q = query(right, mid + 1, e, l, r);
ret.first = p.first + q.first;
ret.second = p.second + q.second;
return ret;
}
int main() {
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &arr[i].first);
for (int i = 1; i <= n; i++) {
scanf("%d", &arr[i].second);
st.insert(arr[i].second);
}
int N = 1;
for (it = st.begin(); it != st.end(); it++) {
mp[*it] = ++N;
}
for (int i = 1; i <= n; i++) arr[i].second = mp[arr[i].second];
sort(arr + 1, arr + n + 1);
long long ans = 0;
for (int i = 1; i <= n; i++) {
pair<long long, long long> z = query(1, 1, N, 1, arr[i].second);
long long p = ((long long)arr[i].first) * z.second;
p -= z.first;
ans += p;
update(1, 1, N, arr[i].second, arr[i].first);
}
cout << ans << endl;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
//package psa.minrazdalja;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.math.BigInteger;
public class minrazdalja {
/**
* Uvozena abstraktna funkcija za klic Paid<L, R>
*/
public static class Pair<L,R> {
private final L left;
private final R right;
public Pair(L left, R right) {
assert left != null;
assert right != null;
this.left = left;
this.right = right;
}
public L getLeft() { return left; }
public R getRight() { return right; }
@Override
public int hashCode() { return left.hashCode() ^ right.hashCode(); }
@Override
public boolean equals(Object o) {
if (!(o instanceof Pair)) return false;
Pair pairo = (Pair) o;
return this.left.equals(pairo.getLeft()) &&
this.right.equals(pairo.getRight());
}
}
/**?
* glavna funkcija racunanja:
* sprejme list tipa ArrayList<Pair<Integer, Integer>>, potem st vseh elementov in seveda listo vseh elementov.
*
* nato izracunamo maksimalno distance, ki je sestevek vseh distanc med posameznimi elementi, kar lahko storimo, ker je sortirana tabela.
* V drugem delu odstejemo od maksimalnega sestevka distanc, posamezne ki se sekajo v prihodnosti
* ostane nam samo tocni sestevek minimalnih distanc
*/
public static BigInteger elele(ArrayList<Pair<BigInteger,BigInteger>> elementi, int s, BigInteger[] x_el) {
BigInteger skupek = new BigInteger("0");
HashMap<BigInteger, Integer> pos = new HashMap<BigInteger, Integer>();
for(int i=0; i<s; ++i) {
skupek = skupek.add( (x_el[i].multiply( new BigInteger(Integer.toString(i) ))).add( (x_el[i].negate()).multiply(new BigInteger(Integer.toString(s - 1 - i)))));
pos.put(x_el[i], i);
}
for(int i=0; i<s; ++i){
skupek = skupek.subtract( (elementi.get(i).getRight()).multiply( new BigInteger( Integer.toString( (pos.get(elementi.get(i).getRight()) - i) ) ) ) );
}
// //2 1 4 3 5
// //2 2 2 3 4
return skupek;
}
public static void main(String[] args) throws IOException {
int st_el;
// uporabimo bufferedreader zaradi 1000x vecje hitrosti kot pa skener
BufferedReader br= new BufferedReader(new InputStreamReader(System.in));
//System.out.println("Vnesi stevilo elementov: ");
st_el = Integer.parseInt(br.readLine());
//System.out.println(st_el);
BigInteger[] x_el = new BigInteger[st_el];
BigInteger[] v_el = new BigInteger[st_el];
//System.out.println("Vnesi elemente: ");
String x = br.readLine();
String[] strs = x.trim().split("\\s+");
for(int i=0; i<st_el; ++i) {
x_el[i] = new BigInteger(strs[i]);
}
//System.out.println("Vnesi tezo elementov: ");
String y = br.readLine();
String[] strs2 = y.trim().split("\\s+");
for(int i=0; i<st_el; ++i) {
v_el[i] = new BigInteger(strs2[i]);
}
br.close();
//pospravimo skupej v par oblike <integer, integer> oz <hitrost, element>
ArrayList<Pair<BigInteger,BigInteger>> listt = new ArrayList<Pair<BigInteger, BigInteger>>(st_el);
for(int i=0; i<st_el; i++) {
Pair<BigInteger, BigInteger> pair = new Pair<BigInteger, BigInteger>(v_el[i],x_el[i]);
listt.add(pair);
}
/*sortiramo listt od najmanjsega do najvecjega
* - sortiramo prvo po hitrostih (to je glavno najbolj vazno)
* - ce je hitrost ista potem pa sortiramo se glede na element
* - O(n log n)
*/
Collections.sort(listt, new Comparator<Pair<BigInteger, BigInteger>>() {
@Override
public int compare(final Pair<BigInteger, BigInteger> o1, final Pair<BigInteger, BigInteger> o2) {
int oo = o1.getLeft().compareTo(o2.getLeft());
if(oo == -1) {
return -1;
} else if(oo == 0) {
int ooo = o1.getRight().compareTo(o2.getRight());
if(ooo == -1){
return -1;
}else{
return 1;
}
} else {
return 1;
}
}
});
//sortiramo se elemente
// O(n log n)
Arrays.sort(x_el);
//izpisemo elemente
System.out.println(elele(listt,st_el,x_el));
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
struct node {
int loc, v;
} a[200010];
int n, m, b[200010];
long long c[200010], e[200010];
int cmp(node a, node b) { return a.loc < b.loc; }
int lowbit(int x) { return x & -x; }
void update(int pos, int delta, long long *d) {
for (int i = pos; i <= n; i += lowbit(i)) d[i] += delta;
}
long long sum(int pos, long long *d) {
long long ret = 0;
for (int i = pos; i > 0; i -= lowbit(i)) ret += d[i];
return ret;
}
int main() {
int i;
long long ans = 0;
scanf("%d", &n);
for (i = 1; i <= n; i++) scanf("%d", &a[i].loc);
for (i = 1; i <= n; i++) scanf("%d", &a[i].v), b[i] = a[i].v;
sort(b + 1, b + 1 + n);
m = unique(b + 1, b + 1 + n) - (b + 1);
for (i = 1; i <= n; i++) a[i].v = lower_bound(b + 1, b + 1 + m, a[i].v) - b;
sort(a + 1, a + 1 + n, cmp);
for (i = 1; i <= n; i++) {
ans += abs(sum(a[i].v, e) - sum(a[i].v, c) * a[i].loc);
update(a[i].v, 1, c), update(a[i].v, a[i].loc, e);
}
printf("%lld\n", ans);
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
void dout() { cerr << '\n'; }
template <typename Head, typename... Tail>
void dout(Head H, Tail... T) {
cerr << " " << H;
dout(T...);
}
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
const int N = 2e5 + 7;
int n, m, cnt[N];
long long sum[N];
pair<int, int> p[N];
void upd(int x, int y) {
for (; x <= m; x |= (x + 1)) {
cnt[x]++;
sum[x] += y;
}
}
int getnum(int x) {
int res = 0;
for (; x >= 0; x = (x & (x + 1)) - 1) {
res += cnt[x];
}
return res;
}
long long getsum(int x) {
long long res = 0;
for (; x >= 0; x = (x & (x + 1)) - 1) {
res += sum[x];
}
return res;
}
int main() {
ios_base::sync_with_stdio(false), cin.tie(NULL);
cin >> n;
vector<int> vec, v;
for (int i = 1; i <= n; i++) {
cin >> p[i].first;
}
for (int i = 1; i <= n; i++) {
cin >> p[i].second;
vec.push_back(p[i].second);
}
sort((vec).begin(), (vec).end());
m = unique((vec).begin(), (vec).end()) - vec.begin();
for (int i = 1; i <= n; i++) {
p[i].second = lower_bound(vec.begin(), vec.begin() + m, p[i].second) -
vec.begin() + 1;
}
sort(p + 1, p + n + 1);
long long ans = 0;
for (int i = 1; i <= n; i++) {
ans += (long long)getnum(p[i].second) * p[i].first - getsum(p[i].second);
upd(p[i].second, p[i].first);
}
cout << ans;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const long long LINF = 0x3f3f3f3f3f3f3f3fll;
const int MAX = 2e5 + 10;
vector<pair<int, int>> v(MAX);
vector<int> spdv(MAX), compress(MAX);
long long n, bit[2][MAX];
void poe(int a, long long x, long long p) {
for (; p <= n; p += p & -p) bit[a][p] += x;
}
long long pref(int a, long long p) {
long long ret = 0;
for (; p; p -= p & -p) ret += bit[a][p];
return ret;
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cin >> n;
for (int i = 0; i < n; i++) {
cin >> v[i].first;
v[i].second = i;
}
for (int i = 0; i < n; i++) {
cin >> spdv[i];
compress[i] = spdv[i];
}
sort(v.begin(), v.begin() + n);
sort(compress.begin(), compress.begin() + n);
map<int, int> newidx;
for (int i = 0; i < n; i++) newidx[compress[i]] = i;
long long ans = 0;
for (int i = 0; i < n; i++) {
int pos = newidx[spdv[v[i].second]] + 1;
ans += v[i].first * pref(0, pos) - pref(1, pos);
poe(0, 1, pos);
poe(1, v[i].first, pos);
}
cout << ans << '\n';
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long ts[(int)8e5 + 10], tc[(int)8e5 + 10], n;
pair<long long, long long> o[(int)2e5 + 10];
void update(long long i, long long v, long long t = 1, long long nl = 1,
long long nr = n) {
if (i < nl || nr < i) return;
if (nl == nr) {
ts[t] += v;
tc[t] += 1;
return;
}
long long mid = nl + nr >> 1;
update(i, v, t * 2, nl, mid);
update(i, v, t * 2 + 1, mid + 1, nr);
ts[t] = ts[t * 2] + ts[t * 2 + 1];
tc[t] = tc[t * 2] + tc[t * 2 + 1];
}
long long ans = 0;
void get(long long x, long long ql, long long qr = n, long long t = 1,
long long nl = 1, long long nr = n) {
if (nr < ql || qr < nl) return;
if (ql <= nl && nr <= qr) {
ans += ts[t] - x * tc[t];
return;
}
long long mid = nl + nr >> 1;
get(x, ql, qr, t * 2, nl, mid);
get(x, ql, qr, t * 2 + 1, mid + 1, nr);
}
int main(void) {
scanf("%lld", &n);
for (long long i = 1; i <= n; i++) {
scanf("%lld", &o[i].second);
}
for (long long i = 1; i <= n; i++) {
scanf("%lld", &o[i].first);
}
sort(o + 1, o + 1 + n);
for (long long i = 1; i <= n; i++) {
o[i].first = i;
swap(o[i].first, o[i].second);
}
sort(o + 1, o + 1 + n);
for (long long i = n; 0 < i; i--) {
long long idx = o[i].first, v = o[i].second;
get(idx, v);
update(v, idx);
}
printf("%lld\n", ans);
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int dx[4] = {1, -1, 0, 0};
int dy[4] = {0, 0, 1, -1};
long long gcd(long long a, long long b) {
for (; b; a %= b, swap(a, b))
;
return a;
}
const int N = 200002;
pair<long long, long long> segTree[N * 4];
vector<long long> vIdx;
void update(int ptr, int s, int e, int i, pair<long long, long long> val) {
if (i < s || e < i) return;
if (s == e) {
segTree[ptr].first += val.first;
segTree[ptr].second += val.second;
return;
}
update(ptr * 2, s, (s + e) / 2, i, val);
update(ptr * 2 + 1, (s + e) / 2 + 1, e, i, val);
segTree[ptr].first = segTree[ptr * 2].first + segTree[ptr * 2 + 1].first;
segTree[ptr].second = segTree[ptr * 2].second + segTree[ptr * 2 + 1].second;
}
pair<long long, long long> getVal(int ptr, int s, int e, int l, int r) {
if (r < s || e < l) return {0, 0};
if (l <= s && e <= r) return segTree[ptr];
pair<long long, long long> r1 = getVal(ptr * 2, s, (s + e) / 2, l, r);
pair<long long, long long> r2 = getVal(ptr * 2 + 1, (s + e) / 2 + 1, e, l, r);
return {r1.first + r2.first, r1.second + r2.second};
}
int main(void) {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int n;
cin >> n;
vector<pair<long long, long long> > a(n);
for (int i = 0; i < n; i++) cin >> a[i].first;
for (int i = 0; i < n; i++) {
cin >> a[i].second;
vIdx.push_back(a[i].second);
}
sort(a.begin(), a.end());
sort(vIdx.begin(), vIdx.end());
vIdx.erase(unique(vIdx.begin(), vIdx.end()), vIdx.end());
for (int i = 0; i < n; i++) {
int idx = lower_bound(vIdx.begin(), vIdx.end(), a[i].second) - vIdx.begin();
a[i].second = idx;
}
long long ans = 0;
for (int i = 0; i < n; i++) {
pair<long long, long long> res =
getVal(1, 0, vIdx.size() - 1, 0, a[i].second);
long long cnt = res.first, x_total = res.second;
ans += a[i].first * cnt - x_total;
update(1, 0, vIdx.size() - 1, a[i].second, {1, a[i].first});
}
cout << ans;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
template <class T>
using minheap = priority_queue<T, vector<T>, greater<T>>;
template <typename T>
void setmax(T& a, T b) {
a = max(a, b);
};
template <typename T>
void setmin(T& a, T b) {
a = min(a, b);
};
template <typename T>
bool in(T v, T lo, T hi) {
return lo <= v && v <= hi;
};
const int N = 2e5 + 10;
int n;
long long fena[N], fenb[N];
void add(long long* first, int i, long long delta) {
for (int j = i; j < N; j += j & -j) {
first[j] += delta;
}
}
long long sum(long long* first, int i) {
long long res = 0;
for (int j = i; j; j -= j & -j) {
res += first[j];
}
return res;
}
struct FastCoordinateCompression {
vector<int> a;
void add(int x) { a.push_back(x); }
void compress() {
sort(a.begin(), a.end());
a.resize(unique(a.begin(), a.end()) - a.begin());
}
int operator[](int x) {
return lower_bound(a.begin(), a.end(), x) - a.begin() + 1;
}
};
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n;
vector<pair<int, int>> xv(n);
for (auto& [x, v] : xv) {
cin >> x;
}
for (auto& [x, v] : xv) {
cin >> v;
}
FastCoordinateCompression compr;
for (auto& [x, v] : xv) {
compr.add(x);
}
compr.compress();
sort(xv.begin(), xv.end(), [&](pair<int, int>& a, pair<int, int>& b) {
if (a.second != b.second) return a.second < b.second;
return a.first < b.first;
});
long long ans = 0;
for (auto& [x, v] : xv) {
long long num = sum(fena, compr[x]);
long long tot = sum(fenb, compr[x]);
ans += x * num - tot;
add(fena, compr[x], 1);
add(fenb, compr[x], x);
}
cout << ans << '\n';
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long int n, bit1[200050], bit2[200050];
vector<pair<long long int, long long int> > arr(200050);
map<long long int, long long int> mp;
long long int get1(int idx) {
long long int ans = 0;
while (idx > 0) {
ans += bit1[idx];
idx -= (idx & -idx);
}
return ans;
}
long long int get2(int idx) {
long long int ans = 0;
while (idx > 0) {
ans += bit2[idx];
idx -= (idx & -idx);
}
return ans;
}
void update1(int idx, int inc) {
while (idx <= n) {
bit1[idx] += inc;
idx += (idx & -idx);
}
}
void update2(int idx, int inc) {
while (idx <= n) {
bit2[idx] += inc;
idx += (idx & -idx);
}
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cin >> n;
arr.resize(n);
for (int i = 0; i < n; i++) cin >> arr[i].first;
for (int i = 0; i < n; i++) cin >> arr[i].second;
sort(arr.begin(), arr.end());
vector<long long int> v;
for (auto a : arr) v.push_back(a.second);
sort(v.begin(), v.end());
int p = 1;
for (auto x : v) mp[x] = p++;
long long int ans = 0;
for (int i = 0; i < n; i++) {
long long int cnt = get1(mp[arr[i].second]);
long long int sum = get2(mp[arr[i].second]);
ans += cnt * arr[i].first - sum;
update1(mp[arr[i].second], 1);
update2(mp[arr[i].second], arr[i].first);
}
cout << ans;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 5;
pair<int, int> p[N];
long long sum[N];
long long ans = 0;
int n;
pair<long long, long long> tree[N];
inline int lowbit(int x) { return x & (-x); }
void update(int x, int v) {
while (x <= n) {
tree[x].first++;
tree[x].second += v;
x += lowbit(x);
}
}
pair<long long, long long> ask(int x) {
pair<long long, long long> res;
res.first = res.second = 0;
while (x) {
res.first += tree[x].first;
res.second += tree[x].second;
x -= lowbit(x);
}
return res;
}
int x[N];
int main() {
cin >> n;
for (int i = 0; i < n; i++) cin >> p[i].first;
for (int i = 0; i < n; i++) cin >> p[i].second, x[i] = p[i].second;
sort(x, x + n);
sort(p, p + n);
for (int i = 0; i < n; i++)
p[i].second = lower_bound(x, x + n, p[i].second) - x + 1;
for (int i = 0; i < n; i++) {
pair<long long, long long> pai = ask(p[i].second);
ans += pai.first * p[i].first - pai.second;
update(p[i].second, p[i].first);
}
cout << ans << "\n";
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
mt19937_64 mt_rnd_64(chrono::steady_clock::now().time_since_epoch().count());
long long rnd(long long l, long long r) {
return (mt_rnd_64() % (r - l + 1)) + l;
}
using ll = long long;
using ld = long double;
using ull = unsigned long long;
const double PI = acos(-1.0);
const ll mod = 1e9 + 7;
const ll INF = 1e17;
ll n;
unordered_map<ll, ll> q;
void add(ll pos, ll val, vector<ll> &t) {
while (pos < n) {
t[pos] += val;
pos = (pos | (pos + 1));
}
}
ll sum(ll pos, vector<ll> &t) {
ll ans = 0;
while (pos >= 0) {
ans += t[pos];
pos = (pos & (pos + 1)) - 1;
}
return ans;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cout << setprecision(10) << fixed;
cin >> n;
vector<pair<ll, ll> > x(n);
for (ll i = 0; i < n; ++i) {
cin >> x[i].first;
x[i].second = i;
}
vector<ll> v(n);
set<ll> SET;
for (ll i = 0; i < n; ++i) {
cin >> v[i];
SET.insert(v[i]);
}
ll c = 0;
for (ll i : SET) {
q[i] = c;
++c;
}
vector<ll> t(n * 2, 0), t1(n * 2, 0);
sort(begin(x), end(x));
ll ans = 0;
for (ll i = 0; i < n; ++i) {
ans += sum(q[v[x[i].second]], t) * x[i].first - sum(q[v[x[i].second]], t1);
add(q[v[x[i].second]], 1, t);
add(q[v[x[i].second]], x[i].first, t1);
}
cout << ans << endl;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
python3
|
import operator
import collections
from sys import stdin
N = int(input())
pos = list(map(int, stdin.readline().split()))
speed = list(map(int, stdin.readline().split()))
A = []
for i in range(N):
A.append((pos[i], speed[i]))
# organized A by position from least to greatest
# We want to count, at each x_i, the number of j such that x_j < x_i and
# v_j <= x_i
dist = {}
for i in pos:
dist[i] = 0
A.sort(key = operator.itemgetter(0))
# Now we do merge sort on the speeds but with comparing...
# if right is chosen over left, then we record [right] += right.pos - left.pos
count = [0]
def merge_compare(p, r):
if p < r:
q = (r + p)//2
merge_compare(p, q)
merge_compare(q + 1, r)
merge(p, q, r)
# A is POSITION, SPEED
# merging two sorted subsets A[p:q + 1], A[q + 1:r + 1] into a sorted
# subset A[p:r + 1]
def merge(p, q, r):
n_1 = q - p + 1
n_2 = r - q
temp = []
L = A[p:q + 1]
R = A[q + 1:r + 1]
i = 0
j = 0
# calculatin the sum of all the positions in R
sum_pos_right = 0
for e, f in R:
sum_pos_right += e
while i < n_1 and j < n_2:
if L[i][1] <= R[j][1]:
temp.append(L[i])
count[0] += sum_pos_right - L[i][0]*(n_2 - j)
i += 1
else:
temp.append(R[j])
sum_pos_right -= R[j][0]
j += 1
if i == n_1:
temp += R[j:]
else:
temp += L[i:]
A[p:r + 1] = temp
merge_compare(0, N - 1)
print (count[0])
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashMap;
import java.util.StringTokenizer;
public class Round624F {
public static class node{
int pos;
int neg;
long negsum;
long possum;
public node(int pos, int neg, long possum, long negsum) {
this.pos = pos;
this.neg = neg;
this.negsum = negsum;
this.possum = possum;
}
}
public static node merge(node l, node r) {
return new node(l.pos + r.pos, l.neg + r.neg, l.possum + r.possum, l.negsum + r.negsum);
}
public static void Update(node[] tree, int start, int end, int index, int i, int type, long speed) {
if(start > end || i < start || i > end) {
return;
}
if(start == end) {
tree[index] = new node(type == 1? 1:0, type == -1? 1:0, type == 1 ? speed : 0, type == -1 ? speed : 0);
return;
}
int mid = (start + end)>>1;
Update(tree, start, mid, index<<1, i, type, speed);
Update(tree, mid+1, end, index<<1|1, i, type, speed);
tree[index] = merge(tree[index<<1], tree[index<<1|1]);
}
public static node Query(node[] tree, int start, int end, int index, int i, int j) {
if(start > end || j < start || i > end) {
return new node(0,0,0,0);
}
if(i <= start && j >= end) {
return tree[index];
}
int mid = (start + end)>>1;
node left = Query(tree, start, mid, index<<1, i, j);
node right = Query(tree, mid + 1, end, index<<1|1, i , j);
return merge(left, right);
}
public static class Pair implements Comparable<Pair>{
int x;
int v;
public Pair(int x, int v) {
this.x = x;
this.v = v;
}
public int compareTo(Pair x) {
return this.x - x.x;
}
}
public static class Triple{
int start;
int end;
int idx;
public Triple(int start, int end, int idx) {
this.start = start;
this.end = end;
this.idx = idx;
}
}
public static void solve() {
int n = s.nextInt();
Pair[] points = new Pair[n];
Pair[] reverse = new Pair[n];
int[] xs = new int[n];
for(int i = 0; i < n; i++) {
xs[i] = s.nextInt();
}
int[] vs = new int[n];
for(int i = 0; i < n; i++) {
vs[i] = s.nextInt();
}
for(int i = 0; i < n; i++) {
int x = xs[i], v = vs[i];
points[i] = new Pair(x, v);
reverse[i] = new Pair(Math.abs(v), Math.abs(v)==v?1:-1);
}
Arrays.sort(points);
Arrays.sort(reverse);
HashMap<Integer,Triple> helper = new HashMap<>();
for(int i = 0; i < n; i++) {
if(helper.containsKey(reverse[i].x)) {
helper.get(reverse[i].x).end = i;
}else {
helper.put(reverse[i].x, new Triple(i, i, i));
}
}
node[] tree = new node[4 * n + 1];
Arrays.fill(tree, new node(0,0,0,0));
long ans = 0;
for(int i = 0; i < points.length; i++) {
int v = points[i].v;
int id = helper.get(Math.abs(v)).idx;
helper.get(Math.abs(v)).idx++;
int mid = helper.get(Math.abs(v)).end;
int start = helper.get(Math.abs(v)).start;
int end = helper.get(Math.abs(v)).end;
node left = Query(tree, 0, n - 1, 1, 0, start - 1);
node mid_ = Query(tree, 0, n - 1, 1 , start, end);
node right = Query(tree, 0, n - 1, 1, mid + 1, n - 1);
long val = points[i].x;
if(Math.abs(v) == v) {
ans += - left.possum + (long)left.pos * val;
ans += - left.negsum + (long)left.neg * val;
ans += - right.negsum + (long)right.neg * val;
ans += -mid_.possum + (long)mid_.pos * val;
ans += -mid_.negsum + (long)mid_.neg * val;
}else {
ans += - right.negsum + (long)right.neg * val;
ans += - mid_.negsum + (long)mid_.neg * val;
}
Update(tree, 0, n - 1, 1, id, v < 0 ? -1 : 1, val);
}
out.println(ans);
}
public static void main(String[] args) {
out = new PrintWriter(new BufferedOutputStream(System.out));
s = new FastReader();
solve();
out.close();
}
public static FastReader s;
public static PrintWriter out;
public static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
long nextLong() {
return Long.parseLong(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (Exception e) {
e.printStackTrace();
}
return str;
}
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long n;
pair<long long, long long> a[200001];
long long cnt[200001], sum[200001];
void update(long long x, long long val) {
for (; x <= 200000; x += x & (-x)) {
cnt[x]++;
sum[x] += val;
}
}
long long query(long long x, long long val) {
long long ans = 0;
for (; x > 0; x -= x & (-x)) ans += (cnt[x] * val - sum[x]);
return ans;
}
int32_t main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin >> n;
for (long long i = 1; i <= n; i++) cin >> a[i].first;
vector<pair<long long, long long> > val;
for (long long i = 1; i <= n; i++) cin >> a[i].second;
sort(a + 1, a + 1 + n);
for (long long i = 1; i <= n; i++)
val.push_back(pair<long long, long long>(a[i].second, i));
sort(val.begin(), val.end());
long long pre = -1e9, top = 0;
for (long long i = 0; i < val.size(); i++) {
if (val[i].first != pre) {
pre = val[i].first;
top++;
}
a[val[i].second].second = top;
}
long long ans = 0;
for (long long i = 1; i <= n; i++) {
ans += query(a[i].second, a[i].first);
update(a[i].second, a[i].first);
}
cout << ans;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.util.*;
import java.io.*;
public class MovingPoints {
public static void main(String[] args) {
JS scan = new JS();
int n = scan.nextInt();
long[] xs = new long[n];
int[] vs = new int[n];
TreeSet<Integer> set = new TreeSet<Integer>();
HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
for(int i = 0; i < n; i++) xs[i] = scan.nextLong();
for(int i = 0; i < n; i++) {
vs[i] = scan.nextInt();
set.add(vs[i]);
}
int curr = 0;
for(int i : set) map.put(i, curr++);
BIT[][] b = new BIT[2][2];
for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)
b[i][j] = new BIT(curr);
Point[] pts = new Point[n];
for(int i = 0; i < n; i++)
pts[i] = new Point(xs[i], map.get(vs[i]));
Arrays.sort(pts);
long ans = 0;
for(int i = 0; i < n; i++) {
long x = b[0][0].query(0, pts[i].v); // the sum
long s = b[0][1].query(0, pts[i].v)*pts[i].x; // the count
ans += s-x;
b[0][0].update(pts[i].v, pts[i].x);
b[0][1].update(pts[i].v, 1);
}
// for(int i = n-1; i >= 0; i--) {
// long x = b[1][0].query(pts[i].v, curr-1);
// long s = b[1][1].query(pts[i].v, curr-1)*pts[i].x; // the count
// ans += x-s;
// b[1][0].update(pts[i].v, pts[i].x);
// b[1][1].update(pts[i].v, 1);
// }
System.out.println(ans);
}
static class Point implements Comparable<Point>{
long x;
int v;
public Point(long x, int v) {
this.x = x;
this.v = v;
}
public int compareTo(Point o) {
return Long.compare(this.x, o.x);
}
}
static class BIT {
int n;
long[] tree;
public BIT(int n) {
this.n = n;
tree = new long[n + 2];
}
long read(int i) {
i++;
long sum = 0;
while (i > 0) {
sum += tree[i];
i -= i & -i;
}
return sum;
}
void update(int i, long val) {
i++;
while (i <= n) {
tree[i] += val;
i += i & -i;
}
}
long query(int left, int right) { return read(right)-read(left-1); }
}
static class JS{
public int BS = 1<<16;
public char NC = (char)0;
byte[] buf = new byte[BS];
int bId = 0, size = 0;
char c = NC;
double num = 1;
BufferedInputStream in;
public JS() {
in = new BufferedInputStream(System.in, BS);
}
public JS(String s) throws FileNotFoundException {
in = new BufferedInputStream(new FileInputStream(new File(s)), BS);
}
public char nextChar(){
while(bId==size) {
try {
size = in.read(buf);
}catch(Exception e) {
return NC;
}
if(size==-1)return NC;
bId=0;
}
return (char)buf[bId++];
}
public int nextInt() {
return (int)nextLong();
}
public long nextLong() {
num=1;
boolean neg = false;
if(c==NC)c=nextChar();
for(;(c<'0' || c>'9'); c = nextChar()) {
if(c=='-')neg=true;
}
long res = 0;
for(; c>='0' && c <='9'; c=nextChar()) {
res = (res<<3)+(res<<1)+c-'0';
num*=10;
}
return neg?-res:res;
}
public double nextDouble() {
double cur = nextLong();
return c!='.' ? cur:cur+nextLong()/num;
}
public String next() {
StringBuilder res = new StringBuilder();
while(c<=32)c=nextChar();
while(c>32) {
res.append(c);
c=nextChar();
}
return res.toString();
}
public String nextLine() {
StringBuilder res = new StringBuilder();
while(c<=32)c=nextChar();
while(c!='\n') {
res.append(c);
c=nextChar();
}
return res.toString();
}
public boolean hasNext() {
if(c>32)return true;
while(true) {
c=nextChar();
if(c==NC)return false;
else if(c>32)return true;
}
}
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
vector<pair<long long, long long>> t[2 * 200004];
vector<long long> tpre[2 * 200004];
long long ans = 0;
int cntlo = 0, cnthi = 0;
void build(int n) {
for (int i = n - 1; i > 0; i--)
merge(t[i << 1].begin(), t[i << 1].end(), t[i << 1 | 1].begin(),
t[i << 1 | 1].end(), back_inserter(t[i]));
}
void buildpre(int n) {
for (int i = 1, up = 2 * n; i < up; i++) {
int sz = (int)t[i].size() + 1;
tpre[i].resize(sz);
for (int j = sz - 2; j >= 0; j--) {
tpre[i][j] = tpre[i][j + 1] + t[i][j].second;
}
}
}
void queryhi(int n, int l, int r, long long v) {
l += n;
r += n;
while (l < r) {
if (l & 1) {
int dist = lower_bound(t[l].begin(), t[l].end(),
pair<long long, long long>(v, 1ll * INT_MIN)) -
t[l].begin();
if (dist > (int)t[l].size()) dist = (int)t[l].size();
cnthi += (t[l].size() - dist);
ans += tpre[l][dist];
l++;
}
if (r & 1) {
int dist = lower_bound(t[r - 1].begin(), t[r - 1].end(),
pair<long long, long long>(v, 1ll * INT_MIN)) -
t[r - 1].begin();
if (dist > (int)t[r - 1].size()) dist = (int)t[r - 1].size();
cnthi += (t[r - 1].size() - dist);
ans += tpre[r - 1][dist];
r--;
}
l >>= 1;
r >>= 1;
}
}
void querylo(int n, int l, int r, long long v) {
l += n;
r += n;
while (l < r) {
if (l & 1) {
int dist = upper_bound(t[l].begin(), t[l].end(),
pair<long long, long long>(v, 1ll * INT_MAX)) -
t[l].begin();
if (dist > (int)t[l].size()) dist = (int)t[l].size();
cntlo += dist;
ans -= (tpre[l][0] - tpre[l][dist]);
l++;
}
if (r & 1) {
int dist = upper_bound(t[r - 1].begin(), t[r - 1].end(),
pair<long long, long long>(v, 1ll * INT_MAX)) -
t[r - 1].begin();
if (dist > (int)t[r - 1].size()) dist = (int)t[r - 1].size();
cntlo += dist;
ans -= (tpre[r - 1][0] - tpre[r - 1][dist]);
r--;
}
l >>= 1;
r >>= 1;
}
}
int v[200004];
long long x[200004];
pair<long long, long long> xv[200004];
int main() {
int n;
scanf("%d", &n);
for (int i = 0; i < n; i++) scanf("%lld", &x[i]);
for (int i = 0; i < n; i++) scanf("%d", &v[i]);
for (int i = 0; i < n; i++)
xv[i] = pair<long long, long long>(x[i], 1ll * v[i]);
sort(xv, xv + n);
for (int i = n, up = n << 1; i < up; i++)
t[i] = vector<pair<long long, long long>>(
{pair<long long, long long>(xv[i - n].second, xv[i - n].first)});
build(n);
buildpre(n);
long long res = 0;
for (int i = 0; i < n; i++) {
ans = 0;
cntlo = cnthi = 0;
queryhi(n, i + 1, n, xv[i].second);
querylo(n, 0, i, xv[i].second);
res += ans;
res += (1ll * (cntlo - cnthi) * xv[i].first);
}
cout << res / 2;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 7;
int n;
long long ans = 0;
vector<long long> T1(N, 0), T2(N, 0);
pair<int, int> a[N];
vector<int> b;
void update(vector<long long>& T, int x, long long v) {
for (; x <= (int)b.size(); x += (x & (-x))) T[x] += v;
}
long long get(const vector<long long>& T, int x) {
long long res = 0;
for (; x; x -= (x & (-x))) res += T[x];
return res;
}
int main() {
ios::sync_with_stdio(false), cin.tie(NULL), cout.tie(NULL);
cin >> n;
for (int i = (0); i < (n); i++) cin >> a[i].first;
for (int i = (0); i < (n); i++) {
cin >> a[i].second;
b.push_back(a[i].second);
}
sort(a, a + n);
sort(b.begin(), b.end());
b.resize(unique(b.begin(), b.end()) - b.begin());
int vt = lower_bound(b.begin(), b.end(), a[0].second) - b.begin() + 1;
update(T1, vt, 1ll * a[0].first);
update(T2, vt, 1);
for (int i = (1); i < (n); i++) {
vt = lower_bound(b.begin(), b.end(), a[i].second) - b.begin() + 1;
ans += get(T2, vt) * a[i].first - get(T1, vt);
update(T1, vt, 1ll * a[i].first);
update(T2, vt, 1);
}
cout << ans;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const long long N = 200005;
long long n;
pair<long long, long long> x[N];
long long ans;
struct seg {
long long vals[2 * N];
long long q(long long l, long long r) {
long long ret = 0;
for (l += n, r += n; l < r; l >>= 1, r >>= 1) {
if (l & 1) ret += vals[l++];
if (r & 1) ret += vals[--r];
}
return ret;
}
void inc(long long i, long long v) {
i += n;
vals[i] += v;
while (i > 1) {
vals[i >> 1] = vals[i] + vals[i ^ 1];
i >>= 1;
}
}
void print() {
for (long long i = 1; i < 2 * n; ++i) {
cerr << vals[i] << ' ';
}
cerr << endl;
}
} sm, ct;
bool compSecond(pair<long long, long long>& a, pair<long long, long long>& b) {
if (a.second != b.second) return a.second < b.second;
return a.first < b.first;
}
void doMapping() {
sort(x, x + n, compSecond);
for (long long i = 0; i < n; ++i) {
x[i].second = i;
}
}
int32_t main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cin >> n;
for (long long i = 0; i < n; ++i) {
cin >> x[i].first;
}
for (long long i = 0; i < n; ++i) {
cin >> x[i].second;
}
doMapping();
sort(x, x + n);
for (long long i = 0; i < n; ++i) {
long long pt = x[i].first;
long long cur = x[i].second;
long long cur_sum = sm.q(0, cur), cur_ct = ct.q(0, cur);
ans += pt * cur_ct - cur_sum;
sm.inc(cur, pt);
ct.inc(cur, 1);
}
cout << ans << '\n';
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
struct seg {
vector<long long> tree;
int n;
seg(int n) {
tree = vector<long long>(n);
for (int i = 0; i < n; i++) tree[i] = 0;
}
void update(int node, int l, int r, int x, int y) {
if (l > r) return;
if (x > r || x < l) return;
if (l == x && r == x) {
tree[node] += y;
return;
}
update(2 * node + 1, l, (l + r) / 2, x, y);
update(2 * node + 2, (l + r) / 2 + 1, r, x, y);
tree[node] = tree[2 * node + 1] + tree[2 * node + 2];
}
long long get(int node, int l, int r, int x, int y) {
if (x > y) return 0;
if (l > r) return 0;
if (x > r || y < l) return 0;
if (l >= x && r <= y) return tree[node];
return get(2 * node + 1, l, (l + r) / 2, x, y) +
get(2 * node + 2, (l + r) / 2 + 1, r, x, y);
}
};
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int n;
cin >> n;
vector<long long> x(n), v(n);
for (int i = 0; i < n; i++) {
cin >> x[i];
}
set<int> D;
vector<int> Z;
for (int i = 0; i < n; i++) {
cin >> v[i];
if (D.count(v[i]) == 0) Z.push_back(v[i]);
D.insert(v[i]);
}
sort(Z.begin(), Z.end());
map<int, int> dp;
for (int i = 0; i < Z.size(); i++) {
dp[Z[i]] = i;
}
for (int i = 0; i < n; i++) {
v[i] = dp[v[i]];
}
vector<pair<int, int>> S;
seg t1(3 * 2000000), t2(3 * 2000000);
for (int i = 0; i < n; i++) {
S.push_back(make_pair(x[i], v[i]));
}
sort(S.begin(), S.end());
long long ans = 0;
for (int i = 0; i < n; i++) {
long long x1 = t1.get(0, 0, 2000000 - 1, 0, S[i].second);
long long x2 = t2.get(0, 0, 2000000 - 1, 0, S[i].second);
ans += (S[i].first * x1 - x2);
t1.update(0, 0, 2000000 - 1, S[i].second, 1);
t2.update(0, 0, 2000000 - 1, S[i].second, S[i].first);
}
cout << ans << '\n';
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int N = 200005;
int n;
long long ans;
pair<long long, long long> a[N];
bool cmp(pair<long long, long long> x, pair<long long, long long> y) {
if (x.second != y.second) {
return x.second < y.second;
} else {
return x.first < y.first;
}
}
vector<long long> segmenttree[4 * N], segmenttree2[4 * N];
void build(int id, int l, int r) {
if (l == r) {
segmenttree[id] = {a[l].first};
segmenttree2[id] = {a[l].first};
return;
}
int mid = (l + r) >> 1;
build(id << 1, l, mid);
build(id << 1 | 1, mid + 1, r);
merge(segmenttree[id << 1].begin(), segmenttree[id << 1].end(),
segmenttree[id << 1 | 1].begin(), segmenttree[id << 1 | 1].end(),
back_inserter(segmenttree[id]));
segmenttree2[id].resize(r - l + 1);
segmenttree2[id][r - l] = segmenttree[id][r - l];
for (int i = r - l - 1; i >= 0; i--) {
segmenttree2[id][i] = segmenttree2[id][i + 1] + segmenttree[id][i];
}
}
long long get(int id, int l, int r, int u, int v, long long val) {
if (v < l || r < u) {
return 0;
}
if (u <= l && r <= v) {
long long idx =
lower_bound(segmenttree[id].begin(), segmenttree[id].end(), val) -
segmenttree[id].begin();
if (idx == r - l + 1) {
return 0;
} else {
return segmenttree2[id][idx] - (r - l + 1 - idx) * val;
}
}
int mid = (l + r) >> 1;
return get(id << 1, l, mid, u, v, val) +
get(id << 1 | 1, mid + 1, r, u, v, val);
}
signed main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> a[i].first;
}
for (int i = 1; i <= n; i++) {
cin >> a[i].second;
}
sort(a + 1, a + 1 + n, cmp);
build(1, 1, n);
for (int i = 1; i < n; i++) {
ans += get(1, 1, n, i + 1, n, a[i].first);
}
cout << ans;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
vector<pair<long long, long long> > v;
vector<long long> v1;
long long a[200005], b[200005], c[200005], d[200005], n, m;
map<long long, long long> mp;
long long get(long long f[], long long pos) {
long long res = 0;
for (; pos >= 0; pos = (pos & (pos + 1)) - 1) res += f[pos];
return res;
}
void upd(long long f[], long long pos, long long val) {
for (; pos < m; pos |= pos + 1) f[pos] += val;
}
int main() {
long long i;
cin >> n;
for (i = 0; i < n; i++) cin >> a[i];
for (i = 0; i < n; i++) cin >> b[i];
for (i = 0; i < n; i++) {
v.push_back({a[i], b[i]});
if (!mp[b[i]]) v1.push_back(b[i]);
mp[b[i]] = 1;
}
sort(v.begin(), v.end());
sort(v1.begin(), v1.end());
m = v1.size();
long long s = 0;
for (auto x : v) {
long long y = lower_bound(v1.begin(), v1.end(), x.second) - v1.begin();
s += get(c, y) * x.first - get(d, y);
upd(c, y, 1);
upd(d, y, x.first);
}
cout << s;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
template <class c>
struct rge {
c b, e;
};
template <class c>
rge<c> range(c i, c j) {
return rge<c>{i, j};
}
template <class c>
auto dud(c* x) -> decltype(cerr << *x, 0);
template <class c>
char dud(...);
struct debug {
template <class c>
debug& operator<<(const c&) {
return *this;
}
};
const int MOD = 1000000007;
const long long INFLL = 1e18;
const int INF = 1e9;
const int NMAX = 2e5 + 5;
int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
int n;
array<int, 2> a[NMAX];
struct BIT {
long long aib[NMAX];
void update(int pos, int val) {
for (int i = pos + 1; i <= n; i += (i & (-i))) {
aib[i] += val;
}
}
long long query(int pos) {
long long sum = 0;
for (int i = pos; i >= 1; i -= (i & (-i))) {
sum += aib[i];
}
return sum;
}
} f0, f1;
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cin >> n;
for (int i = 0; i < n; ++i) {
cin >> a[i][0];
}
vector<int> v;
for (int i = 0; i < n; ++i) {
cin >> a[i][1];
v.push_back(a[i][1]);
}
long long ans = 0;
sort(v.begin(), v.end());
sort(a, a + n);
for (int i = 0; i < n; ++i) {
int pos = lower_bound(v.begin(), v.end(), a[i][1]) - v.begin();
ans += f0.query(pos + 1) * a[i][0] - f1.query(pos + 1);
f0.update(pos, 1);
f1.update(pos, a[i][0]);
}
cout << ans;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int dx[8] = {0, 0, 1, 1, 1, -1, -1, -1};
int dy[8] = {1, -1, -1, 0, 1, -1, 0, 1};
long long bit[1000005], bit1[1000005];
long long sum(long long x) {
long long s = 0;
while (x > 0) {
s += bit[x];
x -= (x & (-x));
}
return s;
}
void update(long long x, long long val) {
while (x < 1000005) {
bit[x] += val;
x += (x & (-x));
}
}
long long cnt(long long x) {
long long s = 0;
while (x > 0) {
s += bit1[x];
x -= (x & (-x));
}
return s;
}
void updatecnt(long long x) {
while (x < 1000005) {
bit1[x] += 1;
x += (x & (-x));
}
}
signed main() {
ios_base::sync_with_stdio(0);
cin.tie(NULL);
cout.tie(NULL);
long long n;
cin >> n;
long long pos[n + 1], vel[n + 1];
vector<long long> v;
map<long long, long long> h, h1;
for (long long i = 1; i < n + 1; i++) cin >> pos[i];
for (long long i = 1; i < n + 1; i++) {
cin >> vel[i];
if (!h[vel[i]]) v.push_back(vel[i]);
h[vel[i]] = 1;
}
v.push_back(-1000000000);
sort(v.begin(), v.end());
for (long long i = 1; i < v.size(); i++) {
if (!h1[v[i]]) h1[v[i]] = i;
}
vector<pair<long long, long long> > v1;
for (long long i = 1; i < n + 1; i++) {
vel[i] = h1[vel[i]];
v1.push_back({pos[i], vel[i]});
}
sort(v1.begin(), v1.end());
long long ans = 0;
for (long long i = 0; i < v1.size(); i++) {
long long s = sum(v1[i].second);
long long c = cnt(v1[i].second);
ans += c * v1[i].first - s;
update(v1[i].second, v1[i].first);
updatecnt(v1[i].second);
}
cout << ans;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class backup {
public static void main(String[] args) throws IOException {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
PrintWriter out = new PrintWriter(outputStream);
InputReader in = new InputReader(inputStream);
// for(int i=4;i<=4;i++) {
// InputStream uinputStream = new FileInputStream("milkvisits.in");
// String f = "threesum.in";
// InputStream uinputStream = new FileInputStream(f);
// InputReader in = new InputReader(uinputStream);
// PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("threesum.out")));
// }
Task t = new Task();
t.solve(in, out);
out.close();
}
static class Task{
public void solve(InputReader in, PrintWriter out) throws IOException {
int n = in.nextInt();
int pos[] = in.readIntArray(n);
int speed[] = in.readIntArray(n);
int tmp[] = new int[n];
for(int i=0;i<n;i++) {
tmp[i] = speed[i];
}
ArrayUtils.sort(tmp);
HashMap<Integer,Integer> mp = new HashMap<Integer,Integer>();
int c = 1;
for(int i=0;i<n;i++) {
if(!mp.containsKey(tmp[i])) mp.put(tmp[i], c++);
}
pair arr[] = new pair[n];
for(int i=0;i<n;i++) {
arr[i] = new pair(pos[i],mp.get(speed[i]));
}
Arrays.sort(arr);
long pre[] = new long[n];
for(int i=n-2;i>=0;i--) {
pre[i] = pre[i+1] + (arr[i+1].pos-arr[i].pos)*(n-1-i);
}
int f = 200005;
//f=10;
BIT bit = new BIT(f);
BIT cnt = new BIT(f);
long ret = 0;
for(int i=n-1;i>=0;i--) {
ret += pre[i];
ret -= (bit.sum(arr[i].speed-1) - cnt.sum(arr[i].speed-1)*arr[i].pos);
bit.add(arr[i].speed, arr[i].pos);
cnt.add(arr[i].speed, 1);
}
out.println(ret);
}
class pair implements Comparable<pair>{
long pos; int speed;
public pair(int a, int b) {
pos=a;speed=b;
}
@Override
public int compareTo(pair t) {
if(this.pos>t.pos) return 1;
else if(this.pos==t.pos) return 0;
else return -1;
}
}
class edge implements Comparable<edge>{
int f,t,len;
public edge(int a, int b, int c) {
f=a;t=b;len=c;
}
@Override
public int compareTo(edge t) {
return t.len-this.len;
}
}
class sgt{
sgt lt;
sgt rt;
int l,r;
long sum, max, min, lazy;
public sgt(int L, int R, int arr[]) {
l=L;r=R;
if(l==r-1) {
sum = max = min = arr[l];
lazy = 0;
return;
}
lt = new sgt(l, l+r>>1, arr);
rt = new sgt(l+r>>1, r, arr);
pop_up();
}
void pop_up() {
this.sum = lt.sum + rt.sum;
this.max = Math.max(lt.max, rt.max);
this.min = Math.min(lt.min, rt.min);
}
void push_down() {
if(this.lazy!=0) {
lt.sum+=lazy;
rt.sum+=lazy;
lt.max+=lazy;
lt.min+=lazy;
rt.max+=lazy;
rt.min+=lazy;
lt.lazy+=this.lazy;
rt.lazy+=this.lazy;
this.lazy = 0;
}
}
void change(int L, int R, int v) {
if(R<=l||r<=L) return;
if(L<=l&&r<=R) {
this.max+=v;
this.min+=v;
this.sum+=v*(r-l);
this.lazy+=v;
return;
}
push_down();
lt.change(L, R, v);
rt.change(L, R, v);
pop_up();
}
long query_max(int L, int R) {
if(L<=l&&r<=R) return this.max;
if(r<=L||R<=l) return Long.MIN_VALUE;
push_down();
return Math.max(lt.query_max(L, R), rt.query_max(L, R));
}
long[] query_min(int L, int R) {
if(L<=l&&r<=R) return new long[] {this.min, this.l};
if(r<=L||R<=l) return new long[] {Long.MAX_VALUE, 99999999};
push_down();
long a[] = lt.query_min(L, R);
long b[] = rt.query_min(L, R);
if(a[0]<b[0]) return a;
else if(a[0]>b[0]) return b;
else return new long[] {a[0], Math.min(a[1], b[1])};
//return Math.min(lt.query_min(L, R), rt.query_min(L, R));
}
long query_sum(int L, int R) {
if(L<=l&&r<=R) return this.sum;
if(r<=L||R<=l) return 0;
push_down();
return lt.query_sum(L, R) + rt.query_sum(L, R);
}
}
// List<List<String>> convert(String arr[][]){
// int n = arr.length;
// List<List<String>> ret = new ArrayList<>();
// for(int i=0;i<n;i++) {
// ArrayList<String> tmp = new ArrayList<String>();
// for(int j=0;j<arr[i].length;j++) tmp.add(arr[i][j]);
// ret.add(tmp);
// }
// return ret;
// }
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) { val = x; }
}
public int GCD(int a, int b) {
if (b==0) return a;
return GCD(b,a%b);
}
public long GCD(long a, long b) {
if (b==0) return a;
return GCD(b,a%b);
}
}
static class ArrayUtils {
static final long seed = System.nanoTime();
static final Random rand = new Random(seed);
public static void sort(int[] a) {
shuffle(a);
Arrays.sort(a);
}
public static void shuffle(int[] a) {
for (int i = 0; i < a.length; i++) {
int j = rand.nextInt(i + 1);
int t = a[i];
a[i] = a[j];
a[j] = t;
}
}
public static void sort(long[] a) {
shuffle(a);
Arrays.sort(a);
}
public static void shuffle(long[] a) {
for (int i = 0; i < a.length; i++) {
int j = rand.nextInt(i + 1);
long t = a[i];
a[i] = a[j];
a[j] = t;
}
}
}
static class BIT{
long arr[];
int n;
public BIT(int a) {
n=a;
arr = new long[n];
}
long sum(int p) {
long s=0;
while(p>0) {
s+=arr[p];
p-=p&(-p);
}
return s;
}
void add(int p, long v) {
while(p<n) {
arr[p]+=v;
p+=p&(-p);
}
}
}
static class DSU{
int[] arr;
int[] sz;
public DSU(int n) {
arr = new int[n];
sz = new int[n];
for(int i=0;i<n;i++) arr[i] = i;
Arrays.fill(sz, 1);
}
public int find(int a) {
if(arr[a]!=a) arr[a] = find(arr[a]);
return arr[a];
}
public void union(int a, int b) {
int x = find(a);
int y = find(b);
if(x==y) return;
arr[y] = x;
sz[x] += sz[y];
}
public int size(int x) {
return sz[find(x)];
}
}
static class MinHeap<Key> implements Iterable<Key> {
private int maxN;
private int n;
private int[] pq;
private int[] qp;
private Key[] keys;
private Comparator<Key> comparator;
public MinHeap(int capacity){
if (capacity < 0) throw new IllegalArgumentException();
this.maxN = capacity;
n=0;
pq = new int[maxN+1];
qp = new int[maxN+1];
keys = (Key[]) new Object[capacity+1];
Arrays.fill(qp, -1);
}
public MinHeap(int capacity, Comparator<Key> c){
if (capacity < 0) throw new IllegalArgumentException();
this.maxN = capacity;
n=0;
pq = new int[maxN+1];
qp = new int[maxN+1];
keys = (Key[]) new Object[capacity+1];
Arrays.fill(qp, -1);
comparator = c;
}
public boolean isEmpty() { return n==0; }
public int size() { return n; }
public boolean contains(int i) {
if (i < 0 || i >= maxN) throw new IllegalArgumentException();
return qp[i] != -1;
}
public int peekIdx() {
if (n == 0) throw new NoSuchElementException("Priority queue underflow");
return pq[1];
}
public Key peek(){
if(isEmpty()) throw new NoSuchElementException("Priority queue underflow");
return keys[pq[1]];
}
public int poll(){
if(isEmpty()) throw new NoSuchElementException("Priority queue underflow");
int min = pq[1];
exch(1,n--);
down(1);
assert min==pq[n+1];
qp[min] = -1;
keys[min] = null;
pq[n+1] = -1;
return min;
}
public void update(int i, Key key) {
if (i < 0 || i >= maxN) throw new IllegalArgumentException();
if (!contains(i)) {
this.add(i, key);
}else {
keys[i] = key;
up(qp[i]);
down(qp[i]);
}
}
private void add(int i, Key x){
if (i < 0 || i >= maxN) throw new IllegalArgumentException();
if (contains(i)) throw new IllegalArgumentException("index is already in the priority queue");
n++;
qp[i] = n;
pq[n] = i;
keys[i] = x;
up(n);
}
private void up(int k){
while(k>1&&less(k,k/2)){
exch(k,k/2);
k/=2;
}
}
private void down(int k){
while(2*k<=n){
int j=2*k;
if(j<n&&less(j+1,j)) j++;
if(less(k,j)) break;
exch(k,j);
k=j;
}
}
public boolean less(int i, int j){
if (comparator == null) {
return ((Comparable<Key>) keys[pq[i]]).compareTo(keys[pq[j]]) < 0;
}
else {
return comparator.compare(keys[pq[i]], keys[pq[j]]) < 0;
}
}
public void exch(int i, int j){
int swap = pq[i];
pq[i] = pq[j];
pq[j] = swap;
qp[pq[i]] = i;
qp[pq[j]] = j;
}
@Override
public Iterator<Key> iterator() {
// TODO Auto-generated method stub
return null;
}
}
private static class InputReader
{
private InputStream stream;
private byte[] buf = new byte[1024];
private int zcurChar;
private int znumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int read()
{
if (znumChars == -1)
throw new InputMismatchException();
if (zcurChar >= znumChars)
{
zcurChar = 0;
try
{
znumChars = stream.read(buf);
} catch (IOException e)
{
throw new InputMismatchException();
}
if (znumChars <= 0)
return -1;
}
return buf[zcurChar++];
}
public int nextInt()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
int res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String nextString()
{
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public double nextDouble()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.')
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.')
{
c = read();
double m = 1;
while (!isSpaceChar(c))
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public long nextLong()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next()
{
return nextString();
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
public int[] readIntArray(int n) {
int[] ret = new int[n];
for (int i = 0; i < n; i++) {
ret[i] = nextInt();
}
return ret;
}
}
static class Dumper {
static void print_int_arr(int[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
System.out.println("---------------------");
}
static void print_char_arr(char[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
System.out.println("---------------------");
}
static void print_double_arr(double[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
System.out.println("---------------------");
}
static void print_2d_arr(int[][] arr, int x, int y) {
for (int i = 0; i < x; i++) {
for (int j = 0; j < y; j++) {
System.out.print(arr[i][j] + " ");
}
System.out.println();
}
System.out.println();
System.out.println("---------------------");
}
static void print_2d_arr(boolean[][] arr, int x, int y) {
for (int i = 0; i < x; i++) {
for (int j = 0; j < y; j++) {
System.out.print(arr[i][j] + " ");
}
System.out.println();
}
System.out.println();
System.out.println("---------------------");
}
static void print(Object o) {
System.out.println(o.toString());
}
static void getc() {
System.out.println("here");
}
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
python2
|
import sys
from collections import defaultdict
range = xrange
input = raw_input
class segtree:
def __init__(self, n):
m = 1
while m < n: m *= 2
self.m = m
self.data1 = [0.0]*(m + m)
self.data2 = [0]*(m + m)
def add(self, i, val):
i += self.m
while i:
self.data1[i] += val
self.data2[i] += 1
i >>= 1
def summer(self, l, r):
l += self.m
r += self.m
s1 = 0.0
s2 = 0
while l < r:
if l & 1:
s1 += self.data1[l]
s2 += self.data2[l]
l += 1
if r & 1:
r -= 1
s1 += self.data1[r]
s2 += self.data2[r]
l >>= 1
r >>= 1
return s1,s2
jj = -1
def map_fun():
global jj
jj += 1
return jj
inp = [int(x) for x in sys.stdin.read().split()]; ii = 0
n = inp[ii]; ii += 1
X = inp[ii: ii + n]; ii += n
V = inp[ii: ii + n]; ii += n
order = sorted(range(n), key = lambda i: (V[i], X[i]))
mapper = defaultdict(map_fun)
for x in sorted(X):
mapper[x]
seg = segtree(len(mapper))
total = 0
for i in order:
x = X[i]
j = mapper[x]
s1, s2 = seg.summer(0,j)
total += int(s2 * x - s1)
seg.add(j, x)
print int(total)
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
bool test_cases_exist = false;
class FenwickTree {
public:
vector<long long int> tree;
long long int n;
FenwickTree(long long int n) {
this->n = n;
tree.resize(n + 5);
}
void update(long long int ind, long long int delta) {
while (ind <= n) {
tree[ind] += delta;
ind += ind & -ind;
}
}
long long int query(long long int ind) {
long long int res = 0;
while (ind >= 1) {
res += tree[ind];
ind -= ind & -ind;
}
return res;
}
};
void solve() {
long long int n;
cin >> n;
vector<pair<long long int, long long int>> pnt(n);
for (auto &z : pnt) cin >> z.first;
for (auto &z : pnt) cin >> z.second;
vector<long long int> speed;
for (auto &z : pnt) speed.push_back(z.second);
sort(pnt.begin(), pnt.end());
sort(speed.begin(), speed.end());
long long int ans = 0;
vector<FenwickTree> ft(2, {n});
for (auto z : pnt) {
int pos = lower_bound(speed.begin(), speed.end(), z.second) - speed.begin();
ans += ft[0].query(pos + 1) * z.first;
ans -= ft[1].query(pos + 1);
ft[0].update(pos + 1, 1);
ft[1].update(pos + 1, z.first);
}
cout << ans << "\n";
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
long long int t = 1;
if (test_cases_exist) cin >> t;
while (t--) solve();
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int b[200005], m;
long long c[200005][2];
struct node {
int x, v;
bool operator<(const node t) const { return x < t.x; }
} a[200005];
int lsh(int x) { return lower_bound(b + 1, b + 1 + m, x) - b; }
long long query(int x, int k) {
long long ret = 0;
for (int i = x; i > 0; i -= i & -i) ret += c[i][k];
return ret;
}
void update(int x, int y) {
for (int i = x; i <= m; i += i & -i) {
c[i][0]++;
c[i][1] += y;
}
}
int main() {
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i].x);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i].v);
b[i] = a[i].v;
}
sort(a + 1, a + 1 + n);
sort(b + 1, b + 1 + n);
m = unique(b + 1, b + 1 + n) - b - 1;
long long ans = 0;
for (int i = 1; i <= n; i++) {
int x = lsh(a[i].v);
ans += query(x, 0) * a[i].x - query(x, 1);
update(x, a[i].x);
}
printf("%lld", ans);
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int maxn = 4e5 + 1000;
pair<long long, long long> p[maxn];
vector<long long> v;
int getpos(long long V) {
return lower_bound(v.begin(), v.end(), V) - v.begin() + 1;
}
long long C1[2][maxn];
long long C2[2][maxn];
void add(int x, long long K, long long C[][maxn], int flag) {
while (0 < x && x < maxn) {
C[0][x] += 1;
C[1][x] += K;
if (flag == -1)
x += (x) & (-x);
else
x -= (x) & (-x);
}
}
pair<long long, long long> getsum(int x, long long C[][maxn], int flag) {
long long sum = 0;
int num = 0;
while (0 < x && x < maxn) {
num += C[0][x];
sum += C[1][x];
if (flag == -1)
x -= (x) & (-x);
else
x += (x) & (-x);
}
return pair<long long, long long>(num, sum);
}
int main() {
ios::sync_with_stdio(false);
int N;
cin >> N;
for (int i = 1; i <= N; i++) cin >> p[i].first;
for (int i = 1; i <= N; i++)
cin >> p[i].second, v.push_back(abs(p[i].second));
sort(p + 1, p + 1 + N);
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
long long ans = 0;
long long cnt2 = 0;
long long cnts2 = 0;
for (int i = 1; i <= N; i++) {
if (p[i].second >= 0) {
pair<long long, long long> s = getsum(getpos(p[i].second), C1, -1);
ans += p[i].first * s.first - s.second;
add(getpos(p[i].second), p[i].first, C1, -1);
ans += p[i].first * cnt2 - cnts2;
} else {
pair<long long, long long> s = getsum(getpos(-p[i].second), C2, 1);
ans += p[i].first * s.first - s.second;
add(getpos(-p[i].second), p[i].first, C2, 1);
cnt2 += 1;
cnts2 += p[i].first;
}
}
cout << ans << endl;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
struct Scanner {
bool hasNext = 1;
bool hasRead = 1;
int nextInt() {
hasRead = 0;
int res = 0;
char flag = 1, ch = getchar();
while (ch != EOF && !isdigit(ch)) {
hasRead = 1;
flag = (ch == '-') ? -flag : flag;
ch = getchar();
}
while (ch != EOF && isdigit(ch)) {
hasRead = 1;
res = res * 10 + (ch - '0');
ch = getchar();
}
if (ch == EOF) hasNext = 0;
return res * flag;
}
long long nextLL() {
hasRead = 0;
long long res = 0;
char flag = 1, ch = getchar();
while (ch != EOF && !isdigit(ch)) {
hasRead = 1;
flag = (ch == '-') ? -flag : flag;
ch = getchar();
}
while (ch != EOF && isdigit(ch)) {
hasRead = 1;
res = res * 10 + (ch - '0');
ch = getchar();
}
if (ch == EOF) hasNext = 0;
return res * flag;
}
char nextChar() {
hasRead = 0;
char ch = getchar();
while (ch != EOF && isspace(ch)) {
hasRead = 1;
ch = getchar();
}
if (ch == EOF) hasNext = 0;
return ch;
}
int nextString(char *str) {
hasRead = 0;
int len = 0;
char ch = getchar();
while (ch != EOF && isspace(ch)) {
hasRead = 1;
ch = getchar();
}
while (ch != EOF && !isspace(ch)) {
hasRead = 1;
str[++len] = ch;
ch = getchar();
}
str[len + 1] = 0;
if (ch == EOF) hasNext = 0;
return len;
}
} sc;
long long rd() {
long long x = sc.nextLL();
return x;
}
void rd(int &x) { x = sc.nextInt(); }
void rd(long long &x) { x = sc.nextLL(); }
void rd(char &x) { x = sc.nextChar(); }
void rd(char *x) { sc.nextString(x); }
template <typename T1, typename T2>
void rd(pair<T1, T2> &x) {
rd(x.first);
rd(x.second);
}
template <typename T>
void rd(T *x, int n) {
for (int i = 1; i <= n; ++i) rd(x[i]);
}
void printInt(int x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x >= 10) printInt(x / 10);
putchar('0' + x % 10);
}
void printLL(long long x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x >= 10) printLL(x / 10);
putchar('0' + x % 10);
}
void pr(int x, char ch = '\n') {
printInt(x);
putchar(ch);
}
void pr(long long x, char ch = '\n') {
printLL(x);
putchar(ch);
}
template <typename T1, typename T2>
void pr(pair<T1, T2> x, char ch = '\n') {
pr(x.first, ' ');
pr(x.second, ch);
}
template <typename T>
void pr(T *x, int n) {
for (int i = 1; i <= n; ++i) pr(x[i], " \n"[i == n]);
}
template <typename T>
void pr(vector<T> &x) {
int n = x.size();
for (int i = 1; i <= n; ++i) pr(x[i - 1], " \n"[i == n]);
}
template <typename T>
void cmin(T &x, T y) {
if (y < x) x = y;
}
template <typename T>
void cmax(T &x, T y) {
if (y > x) x = y;
}
const int INF = 0x3f3f3f3f;
const long long LINF = 0x3f3f3f3f3f3f3f3fLL;
const double PI = acos(-1.0);
const double EPS = 1e-9;
const int MOD = 1000000007;
int n;
int x[200005];
int v[200005];
pair<int, int> p[200005];
struct Treap {
static const int MAXN = 200000 + 10;
int top, root, ch[MAXN][2], rnd[MAXN];
pair<int, long long> val[MAXN];
long long sum[MAXN];
int NewNode(pair<int, long long> v) {
int id = ++top;
ch[id][0] = 0, ch[id][1] = 0, rnd[id] = rand();
val[id] = v;
sum[id] = 1LL * v.second;
return id;
}
void PushUp(int id) {
sum[id] = sum[ch[id][0]] + sum[ch[id][1]] + 1LL * val[id].second;
}
void Rotate(int &id, int d) {
int tmp = ch[id][d ^ 1];
ch[id][d ^ 1] = ch[tmp][d];
ch[tmp][d] = id, id = tmp;
PushUp(ch[id][d]), PushUp(id);
}
void InsertHelp(int &id, pair<int, long long> v) {
if (!id) {
id = NewNode(v);
return;
}
if (v.first == val[id].first)
val[id].second += v.second;
else {
int d = val[id].first > v.first ? 0 : 1;
InsertHelp(ch[id][d], v);
if (rnd[id] < rnd[ch[id][d]]) Rotate(id, d ^ 1);
}
PushUp(id);
}
void Init() { top = 0, root = 0; }
void Insert(pair<int, int> v) { InsertHelp(root, v); }
long long GetSumValue(int v) {
int id = root;
long long res = 0;
while (id) {
if (val[id].first > v)
id = ch[id][0];
else if (val[id].first == v) {
res += sum[ch[id][0]] + 1LL * val[id].second;
break;
} else {
res += sum[ch[id][0]] + 1LL * val[id].second;
id = ch[id][1];
}
}
return res;
}
} treap1, treap2;
struct Solver {
void InitOnce() {}
void Read() {
rd(n);
rd(x, n);
rd(v, n);
for (int i = 1; i <= n; ++i) {
p[i].first = x[i];
p[i].second = v[i];
}
}
void Solve() {
treap1.Init();
treap2.Init();
sort(p + 1, p + 1 + n);
long long sum = 0;
for (int i = 1; i <= n; ++i) {
sum += treap2.GetSumValue(p[i].second) * p[i].first;
sum -= treap1.GetSumValue(p[i].second);
treap1.Insert({p[i].second, p[i].first});
treap2.Insert({p[i].second, 1});
}
pr(sum);
}
} solver;
int main() {
solver.InitOnce();
int t = 1;
t = INF;
while (t--) {
solver.Read();
if (!sc.hasRead) break;
solver.Solve();
if (!sc.hasNext) break;
}
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
template <typename T>
using pr = pair<T, T>;
const int mod = 1e9 + 7;
struct SegTree {
vector<pr<long long>> segtree;
long long N;
SegTree(long long n) {
N = 1;
while (N < n) N <<= 1;
segtree = vector<pr<long long>>(2 * N);
}
void modify(long long k, long long x) {
k += N;
segtree[k].second += x;
segtree[k].first += 1;
for (k /= 2; k > 0; k /= 2) {
segtree[k].first = segtree[k * 2].first + segtree[k * 2 + 1].first;
segtree[k].second = segtree[k * 2].second + segtree[k * 2 + 1].second;
}
}
pr<long long> query(long long b) {
long long a = 0;
long long ansx = 0, ansy = 0;
for (a += N, b += N; a <= b; a /= 2, b /= 2) {
if (a % 2 == 1) ansx += segtree[a].first, ansy += segtree[a++].second;
if (b % 2 == 0) ansx += segtree[b].first, ansy += segtree[b--].second;
}
return make_pair(ansx, ansy);
}
};
void solve() {
long long n;
cin >> n;
vector<pr<long long>> xv(n);
vector<long long> v(n);
for (signed i = 0; i < n; ++i) cin >> xv[i].first;
for (signed i = 0; i < n; ++i) cin >> xv[i].second, v[i] = xv[i].second;
sort((xv).begin(), (xv).end());
sort((v).begin(), (v).end());
map<long long, int> cmp;
for (signed i = 0; i < n; ++i) cmp[v[i]] = i;
long long ans = 0;
SegTree x(n);
x.modify(cmp[xv[0].second], xv[0].first);
for (signed i = 1; i < n; ++i) {
pr<long long> qa = x.query(cmp[xv[i].second]);
ans += qa.first * xv[i].first - qa.second;
x.modify(cmp[xv[i].second], xv[i].first);
}
cout << ans << endl;
}
signed main() {
signed t = 1;
while (t--) solve();
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
template <typename T>
struct BIT {
int n;
vector<T> bit;
BIT(int n_ = 0) : n(n_), bit(n_ + 1) {}
T sum(int i) {
T ans = 0;
for (; i > 0; i -= i & -i) ans += bit[i];
return ans;
}
void add(int i, T a) {
if (i == 0) return;
for (; i <= n; i += i & -i) bit[i] += a;
}
int lower_bound(T k) {
if (k <= 0) return 0;
int ret = 0, i = 1;
while ((i << 1) <= n) i <<= 1;
for (; i; i >>= 1)
if (ret + i <= n && bit[ret + i] < k) k -= bit[ret += i];
return ret + 1;
}
};
int N;
int main() {
scanf("%d", &N);
vector<int> X(N);
vector<pair<int, int> > vs(N);
for (int i = 0; i < N; i++) {
scanf("%d", &X[i]);
}
for (int i = 0; i < N; i++) {
scanf("%d", &vs[i].first);
vs[i].second = X[i];
}
sort(X.begin(), X.end());
sort(vs.begin(), vs.end());
reverse(vs.begin(), vs.end());
BIT<long long> P(N);
BIT<int> cnt(N);
long long ans = 0;
for (pair<int, int> p : vs) {
int v = p.first, x = p.second;
int id = lower_bound(X.begin(), X.end(), x) - X.begin() + 1;
ans += P.sum(N) - P.sum(id) - (long long)x * (cnt.sum(N) - cnt.sum(id));
cnt.add(id, 1);
P.add(id, x);
}
printf("%lld\n", ans);
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.