Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
|---|---|---|---|---|---|---|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
python3
|
def main():
import sys
input = sys.stdin.readline
class Bit:
def __init__(self, n):
self.size = n
self.tree = [0] * (n + 1)
def sum(self, i):
s = 0
while i > 0:
s += self.tree[i]
i -= i & -i
return s
def add(self, i, x):
while i <= self.size:
self.tree[i] += x
i += i & -i
N = int(input())
X = list(map(int, input().split()))
V = list(map(int, input().split()))
info = [(x, v) for x, v in zip(X, V)]
info.sort(key=lambda p: p[0])
info.sort(key=lambda p: p[1])
X.sort()
x2i = {x: i+1 for i, x in enumerate(X)}
bit_x = Bit(N+1)
bit_cnt = Bit(N+1)
ans = 0
for x, _ in info:
i = x2i[x]
ans += bit_cnt.sum(i) * x - bit_x.sum(i)
bit_x.add(i, x)
bit_cnt.add(i, 1)
print(ans)
if __name__ == '__main__':
main()
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
python3
|
import bisect
class ft:
def __init__(self,n):
self.a = [0]*(200000)
self.n = n
def qry(self,r):
ret = 0
while r>=0:
ret+=self.a[r]
r=(r&(r+1))-1
return ret
def upd(self,i,v):
while i<self.n:
self.a[i]+=v
i=(i|(i+1))
n = int(input())
x = list(map(int,input().split()))
v = list(map(int,input().split()))
f0 = ft(n)
f1 = ft(n)
a1 = [[] for _ in range(n)]
for i in range(n):
a1[i].append(x[i])
a1[i].append(v[i])
a1.sort()
v.sort()
ans = 0
for i in range(n):
p = bisect.bisect_left(v,a1[i][1])
ans+=(f0.qry(p)*a1[i][0])-(f1.qry(p));
f0.upd(p,1)
f1.upd(p,a1[i][0])
print(ans)
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
/*package whatever //do not write package name here */
import java.io.*;
import java.util.*;
public class GFG {
static StringBuffer str=new StringBuffer("");
static int n;
static Long v[];
static int lower_bound(long val)
{
int l=0,r=v.length-1;
int ans=-1;
while(l<=r)
{
int mid=(l+r)>>>1;
if(v[mid]>=val)
{
ans=mid;
r=mid-1;
}
else
l=mid+1;
}
return ans;
}
static class BIT
{
long bit[];
int sz;
BIT(int sz)
{
this.sz=sz;
bit=new long[sz+1];
Arrays.fill(bit,0);
}
void update(int inx,long val)
{
inx++;
while(inx<=sz)
{
bit[inx]+=val;
inx+=(inx&(-inx));
}
}
long getSum(int inx)
{
inx++;
long res=0;
while(inx>0)
{
res+=bit[inx];
inx-=(inx&(-inx));
}
return res;
}
}
static class Pair implements Comparable<Pair>{
long x,v;
Pair(long x,long v)
{
this.x=x;
this.v=v;
}
public int compareTo(Pair p)
{
return (int)(this.x-p.x);
}
}
static Pair p[];
static void solve()
{
Arrays.sort(p);
Arrays.sort(v);
long ans=0;
BIT f1=new BIT(n);
BIT f2=new BIT(n);
for(int i=0;i<n;i++)
{
int inx=lower_bound(p[i].v);
ans+=f1.getSum(inx)*p[i].x-f2.getSum(inx);
f1.update(inx,1);
f2.update(inx,p[i].x);
}
System.out.println(ans);
}
public static void main (String[] args) throws Exception {
BufferedReader bf=new BufferedReader(new InputStreamReader(System.in));
n=Integer.parseInt(bf.readLine());
String s[]=bf.readLine().trim().split("\\s+");
p=new Pair[n];
v=new Long[n];
String s1[]=bf.readLine().trim().split("\\s+");
for(int i=0;i<n;i++)
{
p[i]=new Pair(Long.parseLong(s[i]),Long.parseLong(s1[i]));
v[i]=Long.parseLong(s1[i]);
}
solve();
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 5;
struct FTDown {
long long ft[N + 5];
FTDown() {
for (int i = 1; i <= N; i++) ft[i] = 0;
}
void update(int p, long long v) {
for (; p <= N; p += (p & -p)) ft[p] += v;
}
long long get(int p) {
long long sum = 0;
for (; p; p -= (p & -p)) sum += ft[p];
return sum;
}
};
int n, b[N];
pair<int, int> a[N];
FTDown sumXDown, cntDown;
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cin >> n;
for (int i = 1; i <= n; i++) cin >> a[i].first;
for (int i = 1; i <= n; i++) {
cin >> a[i].second;
b[i] = a[i].second;
}
b[n + 1] = 0;
sort(b + 1, b + n + 2);
int m = 1;
for (int i = 2; i <= n + 1; i++)
if (b[i] != b[m]) b[++m] = b[i];
for (int i = 1; i <= n; i++)
a[i].second = lower_bound(b + 1, b + m + 1, a[i].second) - b;
sort(a + 1, a + n + 1);
int ind0 = lower_bound(b + 1, b + m + 1, 0) - b;
long long ans = 0;
for (int i = 1; i <= n; i++) {
long long cnt = cntDown.get(a[i].second);
long long sumX = sumXDown.get(a[i].second);
ans += cnt * a[i].first - sumX;
cntDown.update(a[i].second, 1);
sumXDown.update(a[i].second, a[i].first);
}
cout << ans;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const long long N = 2e5 + 1000;
const long long M = 1e5 + 10;
const long long inf = 1e9 + 7;
const long long Mod = 1e9 + 7;
const double eps = 1e-6;
int T;
pair<int, int> a[N];
int b[N];
int n;
pair<long long, long long> sg[4 * N];
void build(int k, int l, int r) {
if (l == r) {
sg[k].first = 0;
sg[k].second = 0;
return;
}
build(2 * k, l, (l + r) / 2);
build(2 * k + 1, (l + r) / 2 + 1, r);
}
void up(int k) {
sg[k].first = sg[2 * k].first + sg[2 * k + 1].first;
sg[k].second = sg[2 * k].second + sg[2 * k + 1].second;
}
void modify(int k, int l, int r, int pos, int val) {
if (l == r) {
sg[k].first += val;
sg[k].second++;
return;
}
if (pos <= (l + r) / 2)
modify(2 * k, l, (l + r) / 2, pos, val);
else if (pos > (l + r) / 2)
modify(2 * k + 1, (l + r) / 2 + 1, r, pos, val);
up(k);
}
pair<long long, long long> query(int k, int l, int r, int L, int R) {
if (L <= l && r <= R) return sg[k];
pair<long long, long long> res{0, 0};
pair<long long, long long> cur;
if (L <= (l + r) / 2) {
cur = query(2 * k, l, (l + r) / 2, L, R);
res.first += cur.first;
res.second += cur.second;
};
if (R > (l + r) / 2) {
cur = query(2 * k + 1, (l + r) / 2 + 1, r, L, R);
res.first += cur.first;
res.second += cur.second;
}
return res;
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; ++i) {
scanf("%d", &a[i].first);
}
for (int i = 1; i <= n; ++i) {
scanf("%d", &a[i].second);
b[i] = a[i].second;
}
sort(a + 1, a + n + 1);
sort(b + 1, b + n + 1);
int len = unique(b + 1, b + n + 1) - b - 1;
build(1, 1, len);
long long ans = 0;
for (int i = 1; i <= n; ++i) {
int id = lower_bound(b + 1, b + len + 1, a[i].second) - b;
pair<long long, long long> cur = query(1, 1, n, 1, id);
ans -= cur.first - cur.second * a[i].first;
modify(1, 1, n, id, a[i].first);
}
printf("%lld", ans);
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
pair<long long, long long> o[(int)2e5 + 10];
long long n, ts[(int)2e5 + 10], tc[(int)2e5 + 10];
int main(void) {
scanf("%lld", &n);
for (int i = 0; i < n; i++) {
scanf("%lld", &o[i].second);
}
for (int i = 0; i < n; i++) {
scanf("%lld", &o[i].first);
}
sort(o, o + n);
for (int i = 0; i < n; i++) {
o[i] = {o[i].second, i + 1};
}
sort(o, o + n);
long long ans = 0;
for (int i = 0; i < n; i++) {
long long r = o[i].second, idx = o[i].first;
long long s = 0, c = 0;
while (0 < r) {
s += ts[r];
c += tc[r];
r -= (r & -r);
}
ans += idx * c - s;
long long v = o[i].second;
while (v <= n) {
ts[v] += idx;
tc[v]++;
v += (v & -v);
}
}
printf("%lld\n", ans);
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int n, T;
long long cnt[200010], sum[200010];
pair<int, int> a[200010];
long long getval(long long f[], int pos) {
pos++;
long long ans = 0;
for (int i = pos; i > 0; i -= (i & -i)) ans += f[i];
return ans;
}
void upd(long long f[], int pos, int val) {
pos++;
for (int i = pos; i <= n; i += (i & -i)) f[i] += val;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i].first;
for (int i = 0; i < n; i++) cin >> a[i].second;
sort(a, a + n);
vector<int> compress_v;
for (int i = 0; i < n; i++) compress_v.push_back(a[i].second);
sort(compress_v.begin(), compress_v.end());
compress_v.resize(unique(compress_v.begin(), compress_v.end()) -
compress_v.begin());
long long ans = 0;
for (int i = 0; i < n; i++) {
int pos = lower_bound(compress_v.begin(), compress_v.end(), a[i].second) -
compress_v.begin();
ans += getval(cnt, pos) * 1ll * a[i].first - getval(sum, pos);
upd(cnt, pos, 1);
upd(sum, pos, a[i].first);
}
cout << ans;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int n;
const int maxn = 2e5 + 10;
inline int lowbit(int x) { return x & (-x); }
struct point {
int x, v;
} p[maxn];
int v[maxn];
long long c1[maxn], c2[maxn];
bool comp(point a, point b) { return a.x < b.x; }
long long getnum(long long c[], int i) {
long long res = 0LL;
while (i > 0) {
res += c[i];
i -= lowbit(i);
}
return res;
}
void update(int i, int value) {
while (i <= n) {
c1[i]++;
c2[i] += value;
i += lowbit(i);
}
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &p[i].x);
for (int i = 1; i <= n; i++) {
scanf("%d", &p[i].v);
v[i] = p[i].v;
}
sort(p + 1, p + n + 1, comp);
sort(v + 1, v + n + 1);
long long ans = 0;
for (int i = 1; i <= n; i++) {
int pos = lower_bound(v + 1, v + 1 + n, p[i].v) - v;
ans += getnum(c1, pos) * p[i].x - getnum(c2, pos);
update(pos, p[i].x);
}
printf("%lld", ans);
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
using namespace std;
long long st[800001], st2[800001];
vector<long long> vx[200001], idxs[200001];
long long getMid(long long s, long long e) { return s + (e - s) / 2; }
long long SumUtil(long long* st, long long ss, long long se, long long l,
long long r, long long node) {
if (l <= ss && r >= se) return st[node];
if (se < l || ss > r) return 0ll;
long long mid = getMid(ss, se);
return SumUtil(st, ss, mid, l, r, 2 * node + 1) +
SumUtil(st, mid + 1, se, l, r, 2 * node + 2);
}
void updateValue(long long* st, long long ss, long long se, long long index,
long long value, long long node) {
if (ss == se) {
st[node] += value;
} else {
long long mid = getMid(ss, se);
if (index >= ss && index <= mid)
updateValue(st, ss, mid, index, value, 2 * node + 1);
else
updateValue(st, mid + 1, se, index, value, 2 * node + 2);
st[node] = st[2 * node + 1] + st[2 * node + 2];
}
return;
}
long long getSum(long long* st, long long n, long long l, long long r) {
if (l < 0 || r > n - 1 || l > r) {
return 0;
}
return SumUtil(st, 0, n - 1, l, r, 0);
}
void solve() {
set<long long> stt;
stt.clear();
long long n, i, j, k, x[200001], v[200001];
for (i = 0; i < 800001; i++) st[i] = st2[i] = 0;
cin >> n;
for (i = 0; i < n; i++) {
cin >> x[i];
}
for (i = 0; i < n; i++) {
cin >> v[i];
stt.insert(v[i]);
}
vector<long long> temp_vec;
temp_vec.clear();
for (auto xx : stt) temp_vec.push_back(xx);
long long velos = temp_vec.size();
for (i = 0; i < velos; i++) {
vx[i].clear();
idxs[i].clear();
}
for (i = 0; i < n; i++) {
long long sta = 0, ed = velos - 1, md;
while (sta <= ed) {
md = sta + (ed - sta) / 2;
if (temp_vec[md] == v[i]) break;
if (temp_vec[md] < v[i])
sta = md + 1;
else
ed = md - 1;
}
vx[md].push_back(x[i]);
}
for (i = 0; i < velos; i++) sort(vx[i].begin(), vx[i].end());
vector<pair<long long, long long> > temp_vec_2;
temp_vec_2.clear();
for (i = 0; i < velos; i++) {
for (auto xx : vx[i]) {
temp_vec_2.push_back({xx, i});
}
}
sort(temp_vec_2.begin(), temp_vec_2.end());
i = 0;
for (auto xx : temp_vec_2) {
idxs[xx.second].push_back(i);
i++;
}
long long ans = 0;
for (i = 0; i < velos; i++) {
for (auto xx : vx[i]) {
long long sta = 0, ed = temp_vec_2.size(), md;
ed--;
while (sta <= ed) {
md = ed + (sta - ed) / 2;
if (temp_vec_2[md].first == xx) break;
if (temp_vec_2[md].first < xx)
sta = md + 1;
else
ed = md - 1;
}
ans += (getSum(st2, n, 0, md)) * xx - getSum(st, n, 0, md);
}
for (auto xx : idxs[i]) {
updateValue(st, 0, n - 1, xx, temp_vec_2[xx].first, 0);
updateValue(st2, 0, n - 1, xx, 1, 0);
}
}
for (i = 0; i < velos; i++) {
long long p = 0, m = vx[i].size();
m--;
for (auto xx : vx[i]) {
ans += (p - m) * xx;
p++;
m--;
}
}
cout << ans << endl;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
long long t = 1;
while (t--) solve();
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
template <class Ch, class Tr, class Container>
basic_ostream<Ch, Tr>& operator<<(basic_ostream<Ch, Tr>& os,
Container const& x) {
os << "{ ";
for (auto& y : x) os << y << " ";
return os << "}";
}
template <class X, class Y>
ostream& operator<<(ostream& os, pair<X, Y> const& p) {
return os << "[ " << p.first << ", " << p.second << "]";
}
typedef struct {
long long pos, v;
} Point;
long long P[200005], V[200005], sum = 0, maxNeg = 0;
long long l = 0, r = 100000000;
int n;
vector<Point> v;
set<long long> usados;
map<long long, long long> DondeEsta;
bool sort_vel(Point a, Point b) {
if (a.v == b.v) return a.pos > b.pos;
return a.v > b.v;
}
bool sort_pos(Point a, Point b) { return a.pos < b.pos; }
long long ft[200005];
long long ft2[200005];
void upd(int i0, long long v) {
for (int i = i0 + 1; i <= 200005; i += i & -i) ft[i] += v;
}
long long get(int i0) {
long long r = 0;
for (int i = i0; i; i -= i & -i) r += ft[i];
return r;
}
long long get_sum(int i0, int i1) { return get(i1) - get(i0); }
void upd2(int i0, long long v) {
for (int i = i0 + 1; i <= 200005; i += i & -i) ft2[i] += v;
}
long long get2(int i0) {
long long r = 0;
for (int i = i0; i; i -= i & -i) r += ft2[i];
return r;
}
long long get_sum2(int i0, int i1) { return get2(i1) - get2(i0); }
int main() {
cin >> n;
for (int i = 0; i < (n); i++) cin >> P[i];
for (int i = 0; i < (n); i++) {
cin >> V[i];
v.push_back({P[i], V[i]});
}
sort((v.begin()), (v.end()), sort_pos);
for (int i = 0; i < (n); i++) {
upd(i, r - v[i].pos);
upd2(i, 1);
}
for (int i = 0; i < (n); i++) DondeEsta[v[i].pos] = i;
sort((v.begin()), (v.end()), sort_vel);
for (auto x : v) {
long long i = DondeEsta[x.pos];
sum += get_sum(0, i) - ((r - x.pos) * get_sum2(0, i));
upd(i, x.pos - r);
upd2(i, -1);
}
cout << sum << endl;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
vector<vector<long long> > mtree, msum, mpos;
void merge_sort(vector<pair<long long, long long> >& arr, long long l,
long long h, long long id) {
long long m = (l + h) / 2;
if (l == h) {
mtree[id].push_back(arr[l].second);
msum[id].push_back(arr[l].first);
mpos[id].push_back(l);
return;
}
merge_sort(arr, l, m, 2 * id);
merge_sort(arr, m + 1, h, 2 * id + 1);
long long i = 0, j = 0;
while (i < mtree[2 * id].size() && j < mtree[2 * id + 1].size()) {
if (mtree[2 * id][i] < mtree[2 * id + 1][j]) {
mtree[id].push_back(mtree[2 * id][i]);
mpos[id].push_back(mpos[2 * id][i]);
if (!msum[id].empty())
msum[id].push_back(msum[id].back() + arr[mpos[2 * id][i]].first);
else
msum[id].push_back(arr[mpos[2 * id][i]].first);
i++;
} else {
mtree[id].push_back(mtree[2 * id + 1][j]);
mpos[id].push_back(mpos[2 * id + 1][j]);
if (!msum[id].empty())
msum[id].push_back(msum[id].back() + arr[mpos[2 * id + 1][j]].first);
else
msum[id].push_back(arr[mpos[2 * id + 1][j]].first);
j++;
}
}
while (i < mtree[2 * id].size()) {
mtree[id].push_back(mtree[2 * id][i]);
mpos[id].push_back(mpos[2 * id][i]);
if (!msum[id].empty())
msum[id].push_back(msum[id].back() + arr[mpos[2 * id][i]].first);
else
msum[id].push_back(arr[mpos[2 * id][i]].first);
i++;
}
while (j < mtree[2 * id + 1].size()) {
mtree[id].push_back(mtree[2 * id + 1][j]);
mpos[id].push_back(mpos[2 * id + 1][j]);
if (!msum[id].empty())
msum[id].push_back(msum[id].back() + arr[mpos[2 * id + 1][j]].first);
else
msum[id].push_back(arr[mpos[2 * id + 1][j]].first);
j++;
}
}
long long solve(long long s, long long e, long long l, long long h,
long long id, long long x, long long v) {
long long m = (s + e) / 2;
if (s == l && e == h) {
long long p =
lower_bound(mtree[id].begin(), mtree[id].end(), v) - mtree[id].begin();
long long a = msum[id].back();
if (p != 0) a -= msum[id][p - 1];
return a - x * (mtree[id].size() - p);
} else if (l > h)
return 0;
long long r1 = solve(s, m, l, min(h, m), 2 * id, x, v);
long long r2 = solve(m + 1, e, max(m + 1, l), h, 2 * id + 1, x, v);
return r1 + r2;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
;
long long n;
cin >> n;
mtree.resize(4 * n);
msum.resize(4 * n);
mpos.resize(4 * n);
vector<pair<long long, long long> > arr(n);
for (long long i = 0; i < n; i++) cin >> arr[i].first;
for (long long i = 0; i < n; i++) cin >> arr[i].second;
sort(arr.begin(), arr.end());
merge_sort(arr, 0, n - 1, 1);
long long ans = 0;
for (long long i = 0; i < n - 1; i++)
ans += solve(0, n - 1, i + 1, n - 1, 1, arr[i].first, arr[i].second);
cout << ans << "\n";
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.util.*;
import java.io.*;
public class Main {
public static void main(String args[]) {new Main().run();}
FastReader in = new FastReader();
PrintWriter out = new PrintWriter(System.out);
void run(){
work();
out.flush();
}
long mod=1000000007;
long gcd(long a,long b) {
return a==0?b:gcd(b%a,a);
}
long[] A;
long[] B;
int n;
void work() {
n=ni();
A=new long[n+1];
B=new long[n+1];
long[] P=na(n);
long[] V=na(n);
long[][] R=new long[n][2];
for(int i=0;i<n;i++) {
R[i]=new long[] {V[i],P[i]};
}
Arrays.sort(R,new Comparator<long[]>() {
public int compare(long[] A1,long[] A2) {
return (int)(A1[1]-A2[1]);
}
});
long[][] rec=new long[n][3];
for(int i=0;i<n;i++) {
rec[i]=new long[] {R[i][0],R[i][1],i+1};
}
long ret=0;
Arrays.sort(rec,new Comparator<long[]>() {
@Override
public int compare(long[] A1, long[] A2) {
return (int)(A1[0]-A2[0]);
}
});
for(int i=0;i<n;i++) {
int idx=(int)rec[i][2];
update(idx,rec[i][1],1);
}
for(int i=0;i<n;i++) {
int idx=(int)rec[i][2];
long p=rec[i][1];
long sum=query1(idx+1,n);
long cnt=query2(idx+1,n);
ret+=sum-cnt*p;
update(idx,-p,-1);
}
out.println(ret);
}
private long query1(int s, int e) {
return query1(e)-query1(s-1);
}
private long query2(int s, int e) {
return query2(e)-query2(s-1);
}
long query1(int x) {
long ret=0;
for(;x>0;x-=lowbit(x)) {
ret+=A[x];
}
return ret;
}
long query2(int x) {
long ret=0;
for(;x>0;x-=lowbit(x)) {
ret+=B[x];
}
return ret;
}
int lowbit(int x){
return x&-x;
}
private void update(int x, long v,long c) {
for(;x<=n;x+=lowbit(x)) {
A[x]+=v;
B[x]+=c;
}
}
//input
private ArrayList<Integer>[] ng(int n, int m) {
ArrayList<Integer>[] graph=(ArrayList<Integer>[])new ArrayList[n];
for(int i=0;i<n;i++) {
graph[i]=new ArrayList<>();
}
for(int i=1;i<=m;i++) {
int s=in.nextInt()-1,e=in.nextInt()-1;
graph[s].add(e);
graph[e].add(s);
}
return graph;
}
private ArrayList<long[]>[] ngw(int n, int m) {
ArrayList<long[]>[] graph=(ArrayList<long[]>[])new ArrayList[n];
for(int i=0;i<n;i++) {
graph[i]=new ArrayList<>();
}
for(int i=1;i<=m;i++) {
long s=in.nextLong()-1,e=in.nextLong()-1,w=in.nextLong();
graph[(int)s].add(new long[] {e,w,i});
graph[(int)e].add(new long[] {s,w});
}
return graph;
}
private int ni() {
return in.nextInt();
}
private long nl() {
return in.nextLong();
}
private String ns() {
return in.next();
}
private long[] na(int n) {
long[] A=new long[n];
for(int i=0;i<n;i++) {
A[i]=in.nextLong();
}
return A;
}
private int[] nia(int n) {
int[] A=new int[n];
for(int i=0;i<n;i++) {
A[i]=in.nextInt();
}
return A;
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
public String next()
{
while(st==null || !st.hasMoreElements())//回车,空行情况
{
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
public long nextLong()
{
return Long.parseLong(next());
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
python3
|
from operator import itemgetter
class BIT():#1-indexed
def __init__(self, size):
self.table = [0 for _ in range(size+2)]
self.size = size
def Sum(self, i):#1からiまでの和
s = 0
while i > 0:
s += self.table[i]
i -= (i & -i)
return s
def PointAdd(self, i, x):#
while i <= self.size:
self.table[i] += x
i += (i & -i)
return
n = int(input())
x = list(map(int, input().split()))
v = list(map(int, input().split()))
y = sorted([(xx, vv) for xx, vv in zip(x, v)], key=itemgetter(1))
z = [[y[0][0], 1]]
for i in range(1, n):
if y[i][1] == y[i-1][1]:
z.append([y[i][0], z[-1][1]])
else:
z.append([y[i][0], z[-1][1]+1])
z.sort()
#print(z)
b_sigma, b_num = BIT(n+2), BIT(n+2)
ans = 0
for x, v in z:
num = b_num.Sum(v)
ans += x * num - b_sigma.Sum(v)
b_num.PointAdd(v, 1)
b_sigma.PointAdd(v, x)
print(ans)
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int b[200005], cnt[200005], num[800005], m;
long long sum[200005], tr[800005];
struct node {
int x, v;
bool operator<(const node t) const { return x < t.x; }
} a[200005];
int lsh(long long x) { return lower_bound(b + 1, b + 1 + m, x) - b; }
void build(int l, int r, int p) {
if (l == r) {
tr[p] = sum[l];
num[p] = cnt[l];
return;
}
int mid = l + r >> 1;
build(l, mid, p << 1);
build(mid + 1, r, p << 1 | 1);
tr[p] = tr[p << 1] + tr[p << 1 | 1];
num[p] = num[p << 1] + num[p << 1 | 1];
}
pair<long long, int> query(int l, int r, int x, int y, int p) {
if (l == x && r == y) return make_pair(tr[p], num[p]);
int mid = l + r >> 1;
if (y <= mid)
return query(l, mid, x, y, p << 1);
else if (x > mid)
return query(mid + 1, r, x, y, p << 1 | 1);
else {
pair<long long, int> v1 = query(l, mid, x, mid, p << 1),
v2 = query(mid + 1, r, mid + 1, y, p << 1 | 1);
return make_pair(v1.first + v2.first, v1.second + v2.second);
}
}
void update(int l, int r, int x, int y, int p) {
if (l == r) {
tr[p] -= y;
num[p]--;
return;
}
int mid = l + r >> 1;
if (x <= mid)
update(l, mid, x, y, p << 1);
else
update(mid + 1, r, x, y, p << 1 | 1);
tr[p] = tr[p << 1] + tr[p << 1 | 1];
num[p] = num[p << 1] + num[p << 1 | 1];
}
int main() {
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i].x);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i].v);
b[i] = a[i].v;
}
sort(b + 1, b + 1 + n);
m = unique(b + 1, b + 1 + n) - b - 1;
sort(a + 1, a + 1 + n);
for (int i = 1; i <= n; i++) {
int x = lsh(a[i].v);
sum[x] += a[i].x;
cnt[x]++;
}
build(1, m, 1);
long long ans = 0;
for (int i = 1; i <= n; i++) {
int x = lsh(a[i].v);
update(1, m, x, a[i].x, 1);
pair<long long, int> t = query(1, m, x, m, 1);
ans += t.first - (long long)a[i].x * t.second;
}
printf("%lld", ans);
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
python3
|
import sys
input = sys.stdin.readline
n=int(input())
X=list(map(int,input().split()))
V=list(map(int,input().split()))
XV=[(X[i],V[i]) for i in range(n)]
#compression_dict_x={a: ind for ind, a in enumerate(sorted(set(X)))}
compression_dict_v={a: ind+2 for ind, a in enumerate(sorted(set(V)))}
XV=[(XV[i][0], compression_dict_v[XV[i][1]]) for i in range(n)]
XV.sort(reverse=True)
LEN=len(compression_dict_v)+3
BIT1=[0]*(LEN+1)
def update1(v,w):
while v<=LEN:
BIT1[v]+=w
v+=(v&(-v))
def getvalue1(v):
ANS=0
while v!=0:
ANS+=BIT1[v]
v-=(v&(-v))
return ANS
BIT2=[0]*(LEN+1)
def update2(v,w):
while v<=LEN:
BIT2[v]+=w
v+=(v&(-v))
def getvalue2(v):
ANS=0
while v!=0:
ANS+=BIT2[v]
v-=(v&(-v))
return ANS
ANS=0
for x,v in XV:
ANS+=(getvalue2(LEN)-getvalue2(v-1))-(getvalue1(LEN)-getvalue1(v-1))*x
#print(getvalue2(LEN),getvalue2(v-1),getvalue1(LEN),getvalue1(v-1))
#print(x,v,ANS)
update1(v,1)
update2(v,x)
print(ANS)
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int INF = 1e9;
void update(vector<long long>& v, long long ind, long long val) {
ind++;
long long n = v.size();
while (ind <= n) {
v[ind] += val;
ind += ((ind) & (-ind));
}
}
long long query(vector<long long>& v, long long ind) {
ind++;
long long res = 0;
while (ind > 0) {
res += v[ind];
ind -= ((ind) & (-ind));
}
return res;
}
void solve() {
long long n;
cin >> n;
vector<pair<long long, long long>> points(n);
for (long long i = 0; i < n; i++) cin >> points[i].first;
vector<long long> vel;
for (long long i = 0; i < n; i++) {
cin >> points[i].second;
vel.push_back(points[i].second);
}
sort((vel).begin(), (vel).end());
sort((points).begin(), (points).end());
vel.resize(unique((vel).begin(), (vel).end()) - vel.begin());
vector<long long> no(vel.size() + 1, 0), csum(vel.size() + 1, 0);
long long ans = 0;
for (long long i = 0; i < n; i++) {
long long v_new =
lower_bound(vel.begin(), vel.end(), points[i].second) - vel.begin();
ans += -(query(csum, v_new)) + (points[i].first * query(no, v_new));
update(csum, v_new, points[i].first);
update(no, v_new, 1);
}
cout << ans << "\n";
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
;
solve();
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
pair<int, long long> a[200005];
int t[200005];
map<int, int> M;
pair<int, long long> f[200005];
int n;
void update(int gt) {
int x = M[gt];
while (x <= n) {
f[x] = {f[x].first + 1, f[x].second + gt};
x += (x & -x);
}
}
pair<int, long long> get(int x) {
int cnt = 0;
long long sum = 0;
while (x >= 1) {
cnt += f[x].first;
sum += f[x].second;
x -= (x & -x);
}
return make_pair(cnt, sum);
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> a[i].second;
t[i] = a[i].second;
}
for (int i = 1; i <= n; i++) cin >> a[i].first;
sort(a + 1, a + n + 1);
sort(t + 1, t + n + 1);
for (int i = 1; i <= n; i++) M[t[i]] = i;
long long ans = 0;
for (int i = 1; i <= n; i++) {
pair<int, long long> res;
res = get(M[a[i].second] - 1);
ans += (1ll * a[i].second * res.first - res.second);
update(a[i].second);
}
cout << ans;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
template <typename Arg1>
void __f(const char* name, Arg1&& arg1) {
cerr << name << " : " << arg1 << '\n';
}
template <typename Arg1, typename... Args>
void __f(const char* names, Arg1&& arg1, Args&&... args) {
const char* comma = strchr(names + 1, ',');
cerr.write(names, comma - names) << " : " << arg1 << " | ";
__f(comma + 1, args...);
}
template <class T>
void mxi(T& a, const T& b) {
a = max(a, b);
}
template <class T>
void mni(T& a, const T& b) {
a = min(a, b);
}
long double EPS = 1e-9;
mt19937 RNG(chrono::steady_clock::now().time_since_epoch().count());
struct node {
long long sum, cnt;
node() {
sum = 0;
cnt = 0;
}
};
node t[4 * 200200];
node merge(node a, node b) {
node tmp;
tmp.sum = a.sum + b.sum;
tmp.cnt = a.cnt + b.cnt;
return tmp;
}
void upd(long long id, long long l, long long r, long long pos, long long val) {
if (pos < l || pos > r)
return;
else if (l == r) {
t[id].sum += val;
t[id].cnt++;
return;
}
upd(id << 1, l, ((l + r) >> 1), pos, val);
upd(id << 1 | 1, ((l + r) >> 1) + 1, r, pos, val);
t[id] = merge(t[id << 1], t[id << 1 | 1]);
}
node query(long long id, long long l, long long r, long long lq, long long rq) {
if (lq > r || l > rq)
return node();
else if (lq <= l && rq >= r)
return t[id];
return merge(query(id << 1, l, ((l + r) >> 1), lq, rq),
query(id << 1 | 1, ((l + r) >> 1) + 1, r, lq, rq));
}
void solve() {
long long n;
cin >> n;
vector<pair<long long, long long> > v;
for (long long i = 0; i < (n); i++) {
long long x;
cin >> x;
v.push_back({x, 0});
}
set<long long> vel;
for (long long j = 0; j < (n); j++) {
long long w;
cin >> w;
vel.insert(w);
v[j].second = w;
}
sort((v).begin(), (v).end());
map<long long, long long> mp;
long long cnt = 0;
for (auto x : vel) {
mp[x] = cnt++;
}
long long an = 0;
for (long long i = n - 1; ~i; i--) {
node ans = query(1, 0, 200010, mp[v[i].second], 200010);
long long cc = ans.cnt;
an += (ans.sum - cc * v[i].first);
upd(1, 0, 200010, mp[v[i].second], v[i].first);
}
cout << an << '\n';
}
signed main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
long long t, tab;
t = 1;
tab = t;
while (t--) {
solve();
}
cerr << ((double)clock() / CLOCKS_PER_SEC);
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.util.*;
import java.io.*;
import java.math.*;
/**
*
* @Har_Har_Mahadev
*/
public class D {
private static long INF = 2000000000000000000L, M = 1000000007, MM = 998244353;
private static int N = 0;
private static ArrayList<Pair> lis;
static HashMap<Long, Integer> map = new HashMap<Long, Integer>();
public static void process() throws IOException {
int n = sc.nextInt();
long x[] = sc.readArrayLong(n);
long time[] = sc.readArrayLong(n);
lis = new ArrayList<D.Pair>();
for(int i=0; i<n; i++)lis.add(new Pair(x[i], time[i]));
Collections.sort(lis);
solve();
}
private static void solve() {
ArrayList<Long> x = new ArrayList<Long>();
ArrayList<Long> y = new ArrayList<Long>();
TreeSet<Long> set = new TreeSet<Long>();
for(Pair e : lis) {
x.add(e.x);
y.add(e.y);
set.add(e.y);
}
int num = 0;
for(long key : set)
map.put(key, ++num);
ArrayList<Integer> v = new ArrayList<Integer>();
for(long e : y)v.add(map.get(e));
long ans = 0;
int size = x.size();
BIT bit1 = new BIT(num+1);
BIT bit2 = new BIT(num+1);
for(int i = 0; i < size; i++)
{
long cnt = bit1.read(v.get(i));
long sum = bit2.read(v.get(i));
ans += cnt * x.get(i) - sum;
bit1.update(v.get(i), 1);
bit2.update(v.get(i), x.get(i));
}
System.out.println(ans);
}
static class BIT {
int n;
long[] tree;
public BIT(int n) {
this.n = n;
tree = new long[n + 2];
}
long read(int i) {
long sum = 0;
while (i > 0) {
sum += tree[i];
i -= i & -i;
}
return sum;
}
void update(int i, long val) {
while (i <= n) {
tree[i] += val;
i += i & -i;
}
}
// if the BIT is a freq array, returns the
// index of the kth item, or n if there are fewer
// than k items.
int getKth(int k) {
int e=Integer.highestOneBit(n), o=0;
for (; e!=0; e>>=1) {
if (e+o<=n && tree[e+o]<=k) {
k-=tree[e+o];
o+=e;
}
}
return o;
}
}
//=============================================================================
//--------------------------The End---------------------------------
//=============================================================================
static FastScanner sc;
static PrintWriter out;
public static void main(String[] args) throws IOException {
boolean oj = true;
if (oj) {
sc = new FastScanner();
out = new PrintWriter(System.out);
} else {
sc = new FastScanner(100);
out = new PrintWriter("output.txt");
}
int t = 1;
// t = sc.nextInt();
while (t-- > 0) {
process();
}
out.flush();
out.close();
}
static class Pair implements Comparable<Pair> {
long x, y;
Pair(long x, long y) {
this.x = x;
this.y = y;
}
@Override
public int compareTo(Pair o) {
return Long.compare(this.x, o.x);
}
// @Override
// public boolean equals(Object o) {
// if (this == o) return true;
// if (!(o instanceof Pair)) return false;
// Pair key = (Pair) o;
// return x == key.x && y == key.y;
// }
//
// @Override
// public int hashCode() {
// int result = x;
// result = 31 * result + y;
// return result;
// }
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
static void println(Object o) {
out.println(o);
}
static void println() {
out.println();
}
static void print(Object o) {
out.print(o);
}
static void pflush(Object o) {
out.println(o);
out.flush();
}
static int ceil(int x, int y) {
return (x % y == 0 ? x / y : (x / y + 1));
}
static long ceil(long x, long y) {
return (x % y == 0 ? x / y : (x / y + 1));
}
static int max(int x, int y) {
return Math.max(x, y);
}
static int min(int x, int y) {
return Math.min(x, y);
}
static int abs(int x) {
return Math.abs(x);
}
static long abs(long x) {
return Math.abs(x);
}
static int log2(int N) {
int result = (int) (Math.log(N) / Math.log(2));
return result;
}
static long max(long x, long y) {
return Math.max(x, y);
}
static long min(long x, long y) {
return Math.min(x, y);
}
public static int gcd(int a, int b) {
BigInteger b1 = BigInteger.valueOf(a);
BigInteger b2 = BigInteger.valueOf(b);
BigInteger gcd = b1.gcd(b2);
return gcd.intValue();
}
public static long gcd(long a, long b) {
BigInteger b1 = BigInteger.valueOf(a);
BigInteger b2 = BigInteger.valueOf(b);
BigInteger gcd = b1.gcd(b2);
return gcd.longValue();
}
public static long lca(long a, long b) {
return (a * b) / gcd(a, b);
}
public static int lca(int a, int b) {
return (a * b) / gcd(a, b);
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
static class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner() throws FileNotFoundException {
br = new BufferedReader(new InputStreamReader(System.in));
}
FastScanner(int a) throws FileNotFoundException {
br = new BufferedReader(new FileReader("input.txt"));
}
String next() throws IOException {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
String nextLine() throws IOException {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] readArray(int n) throws IOException {
int[] A = new int[n];
for (int i = 0; i != n; i++) {
A[i] = sc.nextInt();
}
return A;
}
long[] readArrayLong(int n) throws IOException {
long[] A = new long[n];
for (int i = 0; i != n; i++) {
A[i] = sc.nextLong();
}
return A;
}
}
static void ruffleSort(int[] a) {
Random get = new Random();
for (int i = 0; i < a.length; i++) {
int r = get.nextInt(a.length);
int temp = a[i];
a[i] = a[r];
a[r] = temp;
}
Arrays.sort(a);
}
static void ruffleSort(long[] a) {
Random get = new Random();
for (int i = 0; i < a.length; i++) {
int r = get.nextInt(a.length);
long temp = a[i];
a[i] = a[r];
a[r] = temp;
}
Arrays.sort(a);
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
python2
|
from sys import stdin
from collections import *
def fast2():
import os, sys, atexit
from cStringIO import StringIO as BytesIO
# range = xrange
sys.stdout = BytesIO()
atexit.register(lambda: os.write(1, sys.stdout.getvalue()))
return BytesIO(os.read(0, os.fstat(0).st_size)).readline
class order_tree:
def __init__(self, arr):
self.n = len(arr)
self.tree = [[0, 0] for _ in range(self.n * 2)]
self.order = defaultdict(int, {arr[i]: i for i in range(self.n)})
# get interval[l,r)
def query(self, l):
res, coun = 0, 0
l = self.order[l] + self.n
r = self.n * 2
while l < r:
if l & 1:
res += self.tree[l][0]
coun += self.tree[l][1]
l += 1
if r & 1:
r -= 1
res += self.tree[r][0]
coun += self.tree[r][1]
l >>= 1
r >>= 1
return res, coun
def update(self, ix, val):
ix = self.n + self.order[ix]
# set new value
self.tree[ix][0] += val
self.tree[ix][1] += 1
# move up
while ix > 1:
self.tree[ix >> 1][0] = self.tree[ix][0] + self.tree[ix ^ 1][0]
self.tree[ix >> 1][1] = self.tree[ix][1] + self.tree[ix ^ 1][1]
ix >>= 1
# input = fast2()
rints = lambda: [int(x) for x in stdin.readline().split()]
n, a = int(input()), sorted(map(lambda x, y: [x, y], rints(), rints()))
dis = sorted(set([x[1] for x in a]))
tree, ans = order_tree(dis), 0
for i in range(n - 1, -1, -1):
su, coun = tree.query(a[i][1])
ans += su - coun * a[i][0]
tree.update(a[i][1], a[i][0])
print(ans)
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
#pragma GCC optimize(2)
using namespace std;
const long long INF = 1e18;
const int maxn = 1e6 + 6;
const int mod = 1e9 + 7;
const double eps = 1e-9;
inline bool read(long long &num) {
char in;
bool IsN = false;
in = getchar();
if (in == EOF) return false;
while (in != '-' && (in < '0' || in > '9')) in = getchar();
if (in == '-') {
IsN = true;
num = 0;
} else
num = in - '0';
while (in = getchar(), in >= '0' && in <= '9') {
num *= 10, num += in - '0';
}
if (IsN) num = -num;
return true;
}
long long n, m;
struct node {
int x, v;
bool friend operator<(node a, node b) { return a.x < b.x; }
} save[maxn];
vector<int> v;
long long a[maxn], b[maxn];
int nn;
void update(long long *p, int pos, long long x) {
while (pos <= nn) {
p[pos] += x;
pos += pos & -pos;
}
}
long long GetSum(long long *p, long long x) {
long long ans = 0;
while (x > 0) {
ans += p[x];
x -= x & -x;
}
return ans;
}
int getid(long long x) {
return lower_bound(v.begin(), v.end(), x) - v.begin() + 1;
}
int main() {
read(n);
for (int i = 1; i <= n; i++) scanf("%d", &save[i].x);
for (int i = 1; i <= n; i++) {
scanf("%d", &save[i].v);
v.push_back(save[i].v);
}
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
nn = v.size();
sort(save + 1, save + 1 + n);
long long ans = 0;
for (int i = 1; i <= n; i++) {
int id = getid(save[i].v);
long long tempx = GetSum(b, id);
long long tempy = GetSum(a, id);
ans += tempx * save[i].x - tempy;
update(b, id, 1);
update(a, id, save[i].x);
}
printf("%lld\n", ans);
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
python3
|
import math
import sys
from collections import defaultdict, Counter
from itertools import groupby
#input = sys.stdin.readline
rt = lambda: map(int, input().split())
ri = lambda: int(input())
rl = lambda: list(map(int, input().split()))
class Bit:
def __init__(self, n):
self.size = n
self.tree = [0] * (n+1)
def sum(self, i):
s = 0
while i > 0:
s += self.tree[i]
i -= i & (-i)
return s
def add(self, i, val):
while i <= self.size:
self.tree[i] += val
i += i & (-i)
def main():
n = ri()
x = rl()
v = rl()
pts = [(xi, vi) for xi, vi in zip(x, v)]
pts.sort(key=lambda a: (a[1], a[0]))
comprX = {val: i+1 for i, val in enumerate(sorted(x))}
bit_x = Bit(n+1)
bit_cnt = Bit(n+1)
res = 0
for xi, vi in pts:
compr = comprX[xi]
res += bit_cnt.sum(compr)*xi - bit_x.sum(compr)
bit_x.add(compr, xi)
bit_cnt.add(compr, 1)
print(res)
if __name__ == '__main__':
main()
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const long long N = 2e5 + 5;
long long Bit[N][2], n;
long long get(long long i, long long k) {
long long ans = 0;
for (i; i > 0; i -= i & (-i)) {
ans += Bit[i][k];
}
return ans;
}
void update(long long i, long long val, long long k) {
for (i; i <= n; i += i & (-i)) {
Bit[i][k] += val;
}
}
int main() {
ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0);
srand(time(NULL));
;
long long k, i, t, j, m, x, y, z, c = 0, ans = 0;
cin >> n;
vector<pair<long long, long long> > v(n), v1(n);
for (i = 0; i < n; i++) cin >> v[i].first;
for (i = 0; i < n; i++) cin >> v[i].second;
sort((v).begin(), (v).end());
vector<long long> v0(n);
map<long long, long long> mp;
c = 1;
for (i = 0; i < n; i++) {
v1[i].first = v[i].second;
v1[i].second = i;
}
sort((v1).begin(), (v1).end());
for (i = 0; i < n; i++) {
if (mp[v1[i].first] == 0) {
mp[v1[i].first] = c;
c++;
}
v0[v1[i].second] = mp[v1[i].first];
}
for (i = 0; i < n; i++) {
x = get(v0[i], 0);
y = get(v0[i], 1);
ans += x * v[i].first - y;
update(v0[i], 1, 0);
update(v0[i], v[i].first, 1);
}
cout << ans;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.util.Arrays;
import java.util.Scanner;
import java.util.Comparator;
public class R624_F {
private static long sum (long[] t, int pos) {
long result = 0;
while (pos >= 0) {
result += t[pos];
pos = (pos & (pos + 1)) - 1;
}
return result;
}
private static void upd (long[] t, int pos, int delta) {
while (pos < t.length) {
t[pos] += delta;
pos = pos | (pos + 1);
}
}
public static void main(String[] args) {
Scanner in = new Scanner (System.in);
int n = in.nextInt();
int[][] p = new int[n][2];
int[] v = new int[n];
for (int i = 0; i < n; i++)
p[i][0] = in.nextInt();
for (int i = 0; i < n; i++) {
p[i][1] = in.nextInt();
v[i] = p[i][1] + 100000000;
}
in.close();
v = shrink(v);
for (int i = 0; i < n; i++) {
p[i][1] = v[i];
}
Arrays.sort(p, new Comparator<int[]>() {
public int compare(int[] a, int[] b) {
return a[0] - b[0];
}
});
long[] xs = new long[n];
long[] cnt = new long[n];
long ans = 0;
for (int i = 0; i < n; i++) {
int pos = p[i][1];
ans += sum(cnt, pos) * p[i][0] - sum (xs, pos);
upd(cnt, pos, 1);
upd(xs, pos, p[i][0]);
}
System.out.println(ans);
}
//code copied from submission 71787218 made by uwi (great thanks to him!)
public static long[] radixSort(long[] f){ return radixSort(f, f.length); }
public static long[] radixSort(long[] f, int n)
{
long[] to = new long[n];
{
int[] b = new int[65537];
for(int i = 0;i < n;i++)b[1+(int)(f[i]&0xffff)]++;
for(int i = 1;i <= 65536;i++)b[i]+=b[i-1];
for(int i = 0;i < n;i++)to[b[(int)(f[i]&0xffff)]++] = f[i];
long[] d = f; f = to;to = d;
}
{
int[] b = new int[65537];
for(int i = 0;i < n;i++)b[1+(int)(f[i]>>>16&0xffff)]++;
for(int i = 1;i <= 65536;i++)b[i]+=b[i-1];
for(int i = 0;i < n;i++)to[b[(int)(f[i]>>>16&0xffff)]++] = f[i];
long[] d = f; f = to;to = d;
}
{
int[] b = new int[65537];
for(int i = 0;i < n;i++)b[1+(int)(f[i]>>>32&0xffff)]++;
for(int i = 1;i <= 65536;i++)b[i]+=b[i-1];
for(int i = 0;i < n;i++)to[b[(int)(f[i]>>>32&0xffff)]++] = f[i];
long[] d = f; f = to;to = d;
}
{
int[] b = new int[65537];
for(int i = 0;i < n;i++)b[1+(int)(f[i]>>>48&0xffff)]++;
for(int i = 1;i <= 65536;i++)b[i]+=b[i-1];
for(int i = 0;i < n;i++)to[b[(int)(f[i]>>>48&0xffff)]++] = f[i];
long[] d = f; f = to;to = d;
}
return f;
}
public static int[] shrink(int[] a) {
int n = a.length;
long[] b = new long[n];
for (int i = 0; i < n; i++)
b[i] = (long) a[i] << 32 | i;
b = radixSort(b);
int[] ret = new int[n];
int p = 0;
for (int i = 0; i < n; i++) {
if (i > 0 && (b[i] ^ b[i - 1]) >> 32 != 0)
p++;
ret[(int) b[i]] = p;
}
return ret;
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int64_t INF = (int64_t)(2e18);
const int64_t inf = (int64_t)(1e9 + 7);
struct stree {
vector<int64_t> t;
int64_t n = 1;
stree() {}
stree(int64_t nn) {
while (n < nn) n *= 2;
t.assign(2 * n, 0);
}
void set(int64_t i, int64_t x) {
t[i += n] += x;
for (i /= 2; i; i /= 2) t[i] = t[i + i] + t[i + i + 1];
}
int64_t get(int64_t l, int64_t r) {
int64_t res = 0;
for (l += n, r += n; l <= r; l /= 2, r /= 2) {
if (l & 1) res += t[l++];
if (~r & 1) res += t[r--];
}
return res;
}
};
int32_t main() {
ios_base::sync_with_stdio(false);
cout << fixed << setprecision(10);
cin.tie(nullptr);
int64_t n;
cin >> n;
vector<int64_t> x(n);
for (auto& it : x) cin >> it;
vector<int64_t> v(n);
for (auto& it : v) cin >> it;
vector<int64_t> vs;
for (auto& it : v) vs.push_back(it);
sort((vs).begin(), (vs).end());
vs.resize(unique((vs).begin(), (vs).end()) - begin(vs));
for (auto& it : v) it = lower_bound((vs).begin(), (vs).end(), it) - begin(vs);
vector<pair<int64_t, int64_t>> pts(n);
for (int64_t i = 0; i < n; ++i) {
pts[i].first = x[i];
pts[i].second = v[i];
}
sort((pts).begin(), (pts).end());
stree ls(vs.size());
stree lc(vs.size());
stree rs(vs.size());
stree rc(vs.size());
for (auto& p : pts) {
rs.set(p.second, p.first);
rc.set(p.second, 1);
}
int64_t res = 0;
for (auto& p : pts) {
rs.set(p.second, -p.first);
rc.set(p.second, -1);
res += lc.get(0, p.second) * p.first;
res -= ls.get(0, p.second);
res -= rc.get(p.second, vs.size() - 1) * p.first;
res += rs.get(p.second, vs.size() - 1);
ls.set(p.second, p.first);
lc.set(p.second, 1);
}
cout << res / 2;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
template <class T>
bool uin(T& a, T b) {
return a > b ? (a = b, true) : false;
}
template <class T>
bool uax(T& a, T b) {
return a < b ? (a = b, true) : false;
}
template <typename T>
class fenwick {
public:
vector<T> fenw;
int n;
fenwick(int _n) : n(_n) { fenw.resize(n); }
void modify(int x, T v) {
while (x < n) {
fenw[x] += v;
x |= (x + 1);
}
}
T get(int x) {
T v{};
while (x >= 0) {
v += fenw[x];
x = (x & (x + 1)) - 1;
}
return v;
}
};
const int nax = 2e5 + 10;
int N;
vector<int> v;
vector<pair<int, int>> P;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cin >> N;
P.resize(N);
v.resize(N);
fenwick<long long> sum_tree(N), count_tree(N);
for (int i = 0; i < N; ++i) {
cin >> P[i].first;
}
for (int i = 0; i < N; ++i) {
cin >> P[i].second;
v[i] = P[i].second;
}
sort(v.begin(), v.end());
v.resize(unique(v.begin(), v.end()) - v.begin());
sort(P.begin(), P.end());
long long total = 0;
for (int i = 0; i < N; ++i) {
int id = lower_bound(v.begin(), v.end(), P[i].second) - v.begin();
long long count = count_tree.get(id);
long long sum = sum_tree.get(id);
total += count * 1LL * P[i].first - sum;
count_tree.modify(id, 1);
sum_tree.modify(id, P[i].first);
}
cout << total << '\n';
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
template <typename Monoid>
struct SegmentTree {
typedef function<Monoid(Monoid, Monoid)> F;
int n;
F f;
Monoid id;
vector<Monoid> dat;
SegmentTree(int n_, F f, Monoid id) : f(f), id(id) { init(n_); }
void init(int n_) {
n = 1;
while (n < n_) n <<= 1;
dat.assign(n << 1, id);
}
void build(const vector<Monoid> &v) {
for (int i = 0; i < v.size(); ++i) dat[i + n] = v[i];
for (int i = n - 1; i; --i) dat[i] = f(dat[i << 1 | 0], dat[i << 1 | 1]);
}
void update(int k, Monoid x) {
dat[k += n] = x;
while (k >>= 1) dat[k] = f(dat[k << 1 | 0], dat[k << 1 | 1]);
}
Monoid query(int a, int b) {
if (a >= b) return id;
Monoid vl = id, vr = id;
for (int l = a + n, r = b + n; l < r; l >>= 1, r >>= 1) {
if (l & 1) vl = f(vl, dat[l++]);
if (r & 1) vr = f(dat[--r], vr);
}
return f(vl, vr);
}
Monoid operator[](int i) { return dat[i + n]; }
};
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
cin >> n;
vector<long long> x(n), v(n);
for (int i = 0; i < n; ++i) cin >> x[i];
for (int i = 0; i < n; ++i) cin >> v[i];
vector<long long> compress(n);
for (int i = 0; i < n; ++i) compress[i] = v[i];
sort(compress.begin(), compress.end());
compress.erase(unique(compress.begin(), compress.end()), compress.end());
for (int i = 0; i < n; ++i)
v[i] =
lower_bound(compress.begin(), compress.end(), v[i]) - compress.begin();
int m = compress.size();
auto f = [](pair<long long, long long> a, pair<long long, long long> b) {
return pair<long long, long long>{a.first + b.first, a.second + b.second};
};
SegmentTree<pair<long long, long long> > seg(m, f, {0, 0});
vector<pair<long long, long long> > xv;
for (int i = 0; i < n; ++i) xv.emplace_back(x[i], v[i]);
sort(xv.begin(), xv.end());
for (int i = 0; i < n; ++i) {
auto p = seg[xv[i].second];
seg.update(xv[i].second, {p.first + xv[i].first, p.second + 1});
}
long long ans = 0;
for (int i = 0; i < n; ++i) {
auto p = seg.query(xv[i].second, m), q = seg[xv[i].second];
ans += p.first - xv[i].first * p.second;
seg.update(xv[i].second, {q.first - xv[i].first, q.second - 1});
}
cout << ans << '\n';
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 3;
const int maxm = 1e6 + 3;
const int mod = 1e9 + 7;
const int oo = 1e9 + 5;
const long double pi = 3.141592653589793238462643383279502884;
void input() {
if (fopen("abc"
".inp",
"r")) {
freopen(
"abc"
".inp",
"r", stdin);
freopen(
"abc"
".out",
"w", stdout);
}
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
}
int n;
pair<long long, long long> a[maxn], f[maxn];
vector<long long> v;
pair<long long, long long> operator+(const pair<long long, long long>& a,
const pair<long long, long long>& b) {
return {a.first + b.first, a.second + b.second};
}
void update(int p, int v) {
for (int i = p; i <= n; i += i & -i)
f[i] = f[i] + pair<long long, long long>(v, 1);
}
pair<long long, long long> get(int p) {
pair<long long, long long> ans = {0, 0};
for (int i = p; i > 0; i -= i & -i) ans = ans + f[i];
return ans;
}
int main() {
input();
cin >> n;
for (int i = 1; i <= n; ++i) cin >> a[i].first;
for (int i = 1; i <= n; ++i) {
cin >> a[i].second;
v.push_back(a[i].second);
}
sort(a + 1, a + 1 + n);
sort(v.begin(), v.end());
v.resize(unique(v.begin(), v.end()) - v.begin());
long long ans = 0;
for (int i = 1; i <= n; ++i) {
auto it = lower_bound(v.begin(), v.end(), a[i].second) - v.begin() + 1;
pair<long long, long long> cur = get(it);
ans += a[i].first * cur.second - cur.first;
update(it, a[i].first);
}
cout << ans;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.awt.*;
import java.util.*;
import java.io.*;
public class Solution {
public static void main(String[] args) throws Exception {
FastReader sc = new FastReader();
n=sc.nextInt();
bit=new long[n+1];
bit1=new int[n+2];
Point p[]=new Point[n];
for (int i=0;i<n;i++)p[i]=new Point(sc.nextInt(),0);
for (int i=0;i<n;i++)p[i].y=sc.nextInt();
Arrays.sort(p, new Comparator<Point>() {
@Override
public int compare(Point o1, Point o2) {
return o1.y-o2.y;
}
});
int x=0;
int prev=-1;
for (int i=0;i<n;i++){
if (i>0 && prev!=p[i].y)x++;
prev=p[i].y;
p[i].y=x;
}
Arrays.sort(p, new Comparator<Point>() {
@Override
public int compare(Point o1, Point o2) {
return o1.x-o2.x;
}
});
// HashMap<Integer,Integer> map=new HashMap<>();
// for (int i=0;i<n;i++)map.put(p[i].x,i);
long ans=0;
for (int i=n-1;i>=0;i--){
// System.out.println(p[i].x+" "+p[i].y);
long sum=suff(p[i].y);
long sum1=suff1(p[i].y);
up(p[i].y,p[i].x);
up1(p[i].y);
ans+=Math.abs(sum-p[i].x*sum1);
// System.out.println(sum+" "+p[i].x*sum1);
}
System.out.println(ans);
}
static long bit[];
static int bit1[];
static int n;
static void up(int i,int val){
for (i++;i<=n;i+=i&(-i)){
bit[i]+=val;
}
}
static void up1(int i){
for (i++;i<=n;i+=i&(-i)){
bit1[i]+=1;
}
}
static long sum(int i){
long res=0;
for (i++;i>0;i-=i&(-i)){
res+=bit[i];
}
return res;
}
static long sum1(int i){
long res=0;
for (i++;i>0;i-=i&(-i)){
res+=bit1[i];
}
return res;
}
static long suff(int i){
return sum(n-1)-sum(i-1);
}
static long suff1(int i){
return sum1(n-1)-sum1(i-1);
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
ll ftget(vector<ll> &ft, ll idx) {
ll ans = 0;
while (idx > 0) {
ans += ft[idx];
idx -= (idx & (-idx));
}
return ans;
}
void ftput(vector<ll> &ft, ll idx, ll value) {
while (idx < ft.size()) {
ft[idx] += value;
idx += (idx & (-idx));
}
}
void run() {
ll n;
cin >> n;
vector<pair<ll, ll>> data;
vector<ll> vx, vv;
for (int i = 0; i < n; ++i) {
int x;
cin >> x;
vx.push_back(x);
}
for (int i = 0; i < n; ++i) {
int x;
cin >> x;
vv.push_back(x);
data.emplace_back(vx[i], x);
}
vx.clear();
vx.shrink_to_fit();
sort(vv.begin(), vv.end());
map<ll, ll> comp;
for (int i = 0; i < n; ++i) {
comp[vv[i]] = i + 1;
}
vv.clear();
vv.shrink_to_fit();
for (auto &x : data) {
x.second = comp[x.second];
}
comp.clear();
vector<ll> ftdist(n + 10, 0);
vector<ll> ftcnt(n + 10, 0);
ll ans = 0;
sort(data.begin(), data.end());
for (auto pt : data) {
ll prevno = ftget(ftcnt, pt.second);
ll prevdst = ftget(ftdist, pt.second);
ans += prevno * pt.first - prevdst;
ftput(ftcnt, pt.second, 1);
ftput(ftdist, pt.second, pt.first);
}
cout << ans << endl;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
run();
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
python3
|
# -*- coding: utf-8 -*-
import sys
from collections import Counter
def input(): return sys.stdin.readline().strip()
def list2d(a, b, c): return [[c] * b for i in range(a)]
def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)]
def list4d(a, b, c, d, e): return [[[[e] * d for j in range(c)] for j in range(b)] for i in range(a)]
def ceil(x, y=1): return int(-(-x // y))
def INT(): return int(input())
def MAP(): return map(int, input().split())
def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)]
def Yes(): print('Yes')
def No(): print('No')
def YES(): print('YES')
def NO(): print('NO')
# sys.setrecursionlimit(10 ** 9)
INF = 10 ** 18
MOD = 10 ** 9 + 7
class BIT:
def __init__(self, n):
n += 1
nv = 1
while nv < n:
nv *= 2
self.size = nv
self.tree = [0] * nv
def sum(self, i):
s = 0
i += 1
while i > 0:
s += self.tree[i-1]
i -= i & -i
return s
def add(self, i, x):
i += 1
while i <= self.size:
self.tree[i-1] += x
i += i & -i
def get(self, l, r=None):
if r is None: r = l + 1
res = 0
if r: res += self.sum(r-1)
if l: res -= self.sum(l-1)
return res
def update(self, i, x):
self.add(i, x - self.get(i))
def compress(S):
zipped, unzipped = {}, {}
for i, a in enumerate(sorted(S)):
zipped[a] = i
unzipped[i] = a
return zipped, unzipped
N = INT()
A = LIST()
B = LIST()
BA = list(zip(B, A))
BA.sort()
zipped, _ = compress(set(A))
bit1 = BIT(N)
bit2 = BIT(N)
ans = 0
for b, a in BA:
sm = bit1.sum(zipped[a])
cnt = bit2.sum(zipped[a])
ans += cnt * a - sm
bit1.add(zipped[a], a)
bit2.add(zipped[a], 1)
print(ans)
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const long long int inf = 1e18, M = 1e9 + 7;
const long long int N = 2e5 + 10;
vector<pair<long long int, long long int> > tree(4 * N, make_pair(0, 0));
map<long long int, long long int> mp;
pair<long long int, long long int> combine(
pair<long long int, long long int> a,
pair<long long int, long long int> b) {
pair<long long int, long long int> z;
z.first = a.first + b.first;
z.second = a.second + b.second;
return z;
}
void update(long long int node, long long int start, long long int en,
long long int idx, long long int val) {
if (start == en) {
tree[node].first += val;
tree[node].second++;
return;
}
long long int mid = (start + en) / 2;
if (start <= idx and idx <= mid)
update(2 * node, start, mid, idx, val);
else
update(2 * node + 1, mid + 1, en, idx, val);
tree[node] = combine(tree[2 * node], tree[2 * node + 1]);
}
pair<long long int, long long int> query(long long int node,
long long int start, long long int en,
long long int l, long long int r) {
if (r < start || en < l) return {0, 0};
if (l <= start && en <= r) return tree[node];
long long int mid = (start + en) / 2;
pair<long long int, long long int> q1 = query(2 * node, start, mid, l, r);
pair<long long int, long long int> q2 =
query(2 * node + 1, mid + 1, en, l, r);
return combine(q1, q2);
}
void solve() {
long long int n;
cin >> n;
vector<pair<long long int, long long int> > v(n);
for (long long int i = 0; i < n; ++i) cin >> v[i].first;
for (long long int i = 0; i < n; ++i) cin >> v[i].second, mp[v[i].second];
long long int cnt = 0;
for (auto& c : mp) c.second = cnt++;
sort(v.begin(), v.end());
pair<long long int, long long int> p;
long long int ans = 0;
for (long long int i = 0; i < n; ++i) {
p = query(1, 0, n, 0, mp[v[i].second]);
ans += p.first * -1ll + v[i].first * p.second;
update(1, 0, n, mp[v[i].second], v[i].first);
}
cout << ans;
}
int32_t main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
;
long long int t = 1;
while (t--) {
solve();
}
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int M = 200005;
int n, m, w[M];
long long ans, c[M][2];
struct node {
int x, v;
} p[M];
bool cmp(node a, node b) { return a.x < b.x; }
long long query(int x, int t) {
long long r = 0;
for (int i = x; i; i -= i & -i) r += c[i][t];
return r;
}
void upd(int x, int y) {
for (int i = x; i <= m; i += i & -i) c[i][0]++, c[i][1] += y;
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &p[i].x);
for (int i = 1; i <= n; i++) {
scanf("%d", &p[i].v);
w[i] = p[i].v;
}
sort(p + 1, p + 1 + n, cmp);
sort(w + 1, w + 1 + n);
m = unique(w + 1, w + 1 + n) - (w + 1);
for (int i = 1; i <= n; i++) {
int a = lower_bound(w + 1, w + 1 + m, p[i].v) - w;
ans += query(a, 0) * p[i].x - query(a, 1);
upd(a, p[i].x);
}
printf("%lld", ans);
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int n, op;
pair<long long, int> tree[201000];
pair<long long, int> q[201000];
long long a[201000];
int lowbits(int x) { return x & (-x); }
void add(long long x, int pos) {
while (pos <= n) {
tree[pos].first += x;
tree[pos].second++;
pos += lowbits(pos);
}
}
pair<long long, int> getsum(int x) {
pair<long long, int> res;
while (x > 0) {
res.first += tree[x].first;
res.second += tree[x].second;
x -= lowbits(x);
}
return res;
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%lld", &q[i].first);
for (int i = 1; i <= n; i++) scanf("%d", &q[i].second), a[++op] = q[i].second;
sort(a + 1, a + 1 + n), sort(q + 1, q + 1 + n);
long long ans = 0;
for (int i = 1; i <= n; i++) {
int pos = lower_bound(a + 1, a + 1 + n, q[i].second) - a;
pair<long long, int> now = getsum(pos);
ans += now.second * q[i].first - now.first;
add(q[i].first, pos);
}
cout << ans << endl;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
python3
|
class Fenwick:
def __init__(self, size):
self.tree = [0] * size
self.size = size
def add(self, idx, delta):
while idx < self.size:
self.tree[idx] += delta
idx = (idx + 1) | idx
def getp(self, right):
res = 0
while right != -1:
res += self.tree[right]
right = ((right + 1) & right) - 1
return res
def get(self, left, right):
if left > right:
return 0
return self.getp(right) - self.getp(left - 1)
n = int(input())
X = list(map(int, input().split()))
V = list(map(int, input().split()))
XV = list(zip(X, V))
XV.sort()
order = list(range(n))
order.sort(key=lambda i: XV[i][1])
ans = 0
for i in range(n):
ans += XV[n - 1 - i][0] * (n - 1 - 2 * i)
fw = Fenwick(n)
fwcount = Fenwick(n)
for i in order:
ans -= fw.get(i + 1, n - 1) - fwcount.get(i + 1, n - 1) * XV[i][0]
fw.add(i, XV[i][0])
fwcount.add(i, 1)
print(ans)
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.io.*;
import java.util.*;
public class Main {
public static void main(String[] args) throws IOException {
FastReader scan = new FastReader();
//PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("taming.out")));
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
Task solver = new Task();
//int t = scan.nextInt();
int t = 1;
for(int i = 1; i <= t; i++) solver.solve(i, scan, out);
out.close();
}
static class Task {
public void solve(int testNumber, FastReader sc, PrintWriter pw) {
int n = sc.nextInt();
bit chc = new bit(n+4);
bit num = new bit(n+4);
int[] x = new int[n];
tup[] arr = new tup[n];
for(int i=0;i<n;i++){
arr[i]=new tup(sc.nextInt(),0);
}
for(int i=0;i<n;i++){
x[i]=sc.nextInt();
arr[i].b=x[i];
}
HashMap<Integer, Integer> hm = new HashMap<Integer,Integer>();
shuffle(x);
Arrays.sort(x);
for(int i=0;i<n;i++){
hm.put(x[i],i+1);
}
Arrays.sort(arr);
long sum = 0;
for(tup s : arr){
//pw.println(s.b);
//pw.println(chc.sum(n+4,s.b)+" "+num.sum(n+4,s.b));
int c = hm.get(s.b);
sum += chc.sum(n+4,c)- s.a * num.sum(n + 4, c);
chc.add(c, s.a);
num.add(c,1);
}
pw.println(sum);
}
}
static class bit {
int n;
long[] bit;
public bit(int n) {
this.n=n;
bit=new long[n+1];
}
void add(int ind, int c) {
for(; ind<=n;ind|=(ind+1)) {
bit[ind]+=c;
}
}
long sum(int r) {
long out =0;
for(;r>=0;r=(r&(r+1))-1) {
out+=bit[r];
}
return out;
}
long sum(int r, int l) {
return sum(r)-sum(l-1);
}
}
static class tup implements Comparable<tup> {
int a, b;
tup() {
}
;
tup(int a, int b) {
this.a = a;
this.b = b;
}
@Override
public int compareTo(tup o2) {
return a==o2.a?Integer.compare(o2.b,b):Integer.compare(o2.a, a);
}
}
static void shuffle(long[] a) {
Random get = new Random();
for (int i = 0; i < a.length; i++) {
int r = get.nextInt(a.length);
long temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
static void shuffle(int[] a) {
Random get = new Random();
for (int i = 0; i < a.length; i++) {
int r = get.nextInt(a.length);
int temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) throws FileNotFoundException {
br = new BufferedReader(new FileReader(new File(s)));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
#pragma GCC optimize("O3")
#pragma GCC optimize("no-stack-protector")
using namespace std;
const int inf = 1e9 + 7;
const int max_n = 2e5 + 1;
struct fenwick {
vector<int> sum;
fenwick(int n) {
sum.clear();
sum.resize(n, 0);
}
int f(int v) { return (v & (v + 1)); }
int h(int v) { return (v | (v + 1)); }
void add(int v) {
while (v < sum.size()) {
sum[v]++;
v = h(v);
}
}
int get(int r) {
int ans = 0;
while (r >= 0) {
ans += sum[r];
r = f(r) - 1;
}
return ans;
}
int get(int l, int r) { return get(r) - get(l - 1); }
};
int n;
pair<int, int> a[max_n];
int sq[max_n];
void scan() {
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i].first;
for (int i = 0; i < n; i++) cin >> a[i].second;
sort(a, a + n);
map<int, vector<int>> temp;
for (int i = 0; i < n; i++) temp[a[i].second].emplace_back(i);
int cnt = 0;
for (auto i : temp) {
for (int j : i.second) {
sq[j] = cnt;
cnt++;
}
}
}
void solve() {
scan();
long long ans = 0;
fenwick one = fenwick(n);
for (int i = 0; i < n; i++) {
ans += (long long)one.get(sq[i]) * a[i].first;
one.add(sq[i]);
}
fenwick two = fenwick(n);
for (int i = n - 1; i >= 0; i--) {
ans -= (long long)two.get(sq[i], n - 1) * a[i].first;
two.add(sq[i]);
}
cout << ans;
}
signed main() {
cin.tie(0);
cout.tie(0);
ios_base::sync_with_stdio(0);
solve();
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using rmain = int;
using namespace std;
long long n;
vector<pair<long long, long long>> points;
vector<long long> v, cnt, xs;
long long LSOne(long long k) { return (k & (-k)); }
void update(vector<long long>& f, long long pos, long long val) {
for (; pos <= n; pos += LSOne(pos)) f[pos] += val;
}
long long rsq(vector<long long>& f, long long pos) {
long long sum = 0;
for (; pos; pos -= LSOne(pos)) sum += f[pos];
return sum;
}
rmain main() {
ios_base::sync_with_stdio(false);
cin >> n;
points.resize(n + 1);
v.resize(n + 1);
cnt.resize(n + 1);
xs.resize(n + 1);
for (long long i = 1; i <= n; ++i) cin >> points[i].first;
for (long long i = 1; i <= n; ++i) {
cin >> points[i].second;
v[i] = points[i].second;
}
sort(points.begin() + 1, points.begin() + n + 1);
sort(v.begin() + 1, v.begin() + n + 1);
long long ans = 0;
for (long long i = 1; i <= n; ++i) {
long long pos =
lower_bound(v.begin() + 1, v.begin() + n + 1, points[i].second) -
v.begin();
ans += rsq(cnt, pos) * points[i].first - rsq(xs, pos);
update(cnt, pos, 1);
update(xs, pos, points[i].first);
}
cout << ans;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 5;
const long long mod = 998244353;
int T, n;
struct node {
long long d, v;
friend bool operator<(node a, node b) { return a.d < b.d; }
} a[maxn];
long long c[maxn], d[maxn];
int b[maxn];
void update(int x, int y) {
for (int i = x; i <= n; i += (i & (-i))) c[i] += y, d[i]++;
}
long long query1(int x) {
long long ans = 0;
for (int i = x; i > 0; i -= (i & (-i))) ans += c[i];
return ans;
}
long long query2(int x) {
long long ans = 0;
for (int i = x; i > 0; i -= (i & (-i))) ans += d[i];
return ans;
}
int main() {
cin >> n;
for (int i = 1; i <= n; ++i) scanf("%lld", &a[i].d);
for (int i = 1; i <= n; ++i) scanf("%lld", &a[i].v), b[i] = a[i].v;
sort(b + 1, b + 1 + n);
int m = unique(b + 1, b + 1 + n) - b - 1;
for (int i = 1; i <= n; ++i) {
a[i].v = lower_bound(b + 1, b + 1 + m, a[i].v) - b;
}
sort(a + 1, a + 1 + n);
long long ans = 0;
for (int i = 1; i <= n; ++i) {
ans += (query2(a[i].v) * a[i].d - query1(a[i].v));
update(a[i].v, a[i].d);
}
cout << ans;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.io.*;
import java.util.*;
public class Main {
static FastScanner in = new FastScanner();
public static void main(String[] args) throws IOException {
int n = in.nextInt();
point[] a = new point[n];
for (int i = 0; i < n; i++) {
a[i] = new point(in.nextInt(), 0);
}
long ans = 0;
for (int i = 0; i < n; i++) {
a[i].v = in.nextInt();
}
Arrays.sort(a, new point());
point[] b = new point[n];
for (int i = 0; i < n; ) {
int j = i;
while (i < n && a[i].v == a[j].v) {
b[i] = new point(a[i].x, j);
i++;
}
}
Arrays.sort(b, new point1());
segment_tree st = new segment_tree(n, new int[n]);
for (int i = 0; i < n; i++) {
ans += st.get(1, 0, n - 1, 0, b[i].v) - st.get_cnt(1, 0, n - 1, 0, b[i].v) * b[i].x;
st.set(1, 0, n - 1, b[i].v, b[i].x);
}
in.out.println(-ans);
in.out.close();
}
}
class point implements Comparator<point> {
int x, v;
public point(int x, int v) {
this.x = x;
this.v = v;
}
public point() {
}
@Override
public int compare(point o1, point o2) {
return Integer.compare(o1.v, o2.v);
}
}
class point1 implements Comparator<point> {
@Override
public int compare(point o1, point o2) {
return Integer.compare(o1.x, o2.x);
}
}
class segment_tree {
int n;
int[] a;
long[] sum;
int[] cnt;
public segment_tree(int n, int[] a) {
this.n = n;
this.a = a;
sum = new long[n * 4];
cnt = new int[n * 4];
}
void set(int v, int tl, int tr, int ind, int val) {
if (tl > ind || tr < ind) return;
if (tl == tr) {
sum[v] += val;
cnt[v]++;
return;
}
int tm = (tl + tr) >> 1;
set((v << 1), tl, tm, ind, val);
set((v << 1) | 1, tm + 1, tr, ind, val);
sum[v] = sum[v << 1] + sum[(v << 1) | 1];
cnt[v] = cnt[v << 1] + cnt[(v << 1) | 1];
}
long get(int v, int tl, int tr, int l, int r) {
if (r < tl || l > tr) return 0;
if (l <= tl && tr <= r) {
return sum[v];
}
int tm = (tl + tr) >> 1;
return get(v << 1, tl, tm, l, r) + get((v << 1) | 1, tm + 1, tr, l, r);
}
long get_cnt(int v, int tl, int tr, int l, int r) {
if (r < tl || l > tr) return 0;
if (l <= tl && tr <= r) {
return cnt[v];
}
int tm = (tl + tr) >> 1;
return get_cnt(v << 1, tl, tm, l, r) + get_cnt((v << 1) | 1, tm + 1, tr, l, r);
}
}
class FastScanner {
BufferedReader br;
StringTokenizer st = new StringTokenizer("");
PrintWriter out;
FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
FastScanner(String in, String out_) throws FileNotFoundException {
br = new BufferedReader(new FileReader(in));
out = new PrintWriter(out_);
}
String next() throws IOException {
while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine());
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class MovingPoints {
static int[] pointsTree;
static long[] distTree;
static int[] velocity;
static int[] distance;
static Point[] points;
static class FastScanner {
StringTokenizer st;
BufferedReader br;
FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while(st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int nextInt() {
return Integer.parseInt(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
long nextLong() {
return Long.parseLong(next());
}
}
static class Point {
int distance;
int velocity;
int index;
Point(int distance, int velocity, int index) {
this.distance = distance;
this.velocity = velocity;
this.index = index;
}
}
static class PointComparator implements Comparator<Point> {
@Override
public int compare(Point a, Point b) {
if(a.velocity != b.velocity) {
return (a.velocity < b.velocity) ? -1 : 1;
}
if(a.distance != b.distance) {
return (a.distance < b.distance) ? -1 : 1;
}
if(a.index != b.index) {
return (a.index < b.index) ? -1 : 1;
}
return 0;
}
}
static void updateIndex(int index, int dist, int n) {
while(index <= n) {
distTree[index] += dist;
pointsTree[index] += 1;
index += (index & (-index));
}
}
static long solve(int index, long dist) {
int x = index;
int nPoints = 0;
while(x > 0) {
nPoints += pointsTree[x];
x -= (x & (-x));
}
long prefDist = 0;
x = index;
while(x > 0) {
prefDist += distTree[x];
x -= (x & (-x));
}
dist = (long) nPoints * dist;
dist -= prefDist;
return dist;
}
public static void main(String[] Args) {
FastScanner sc = new FastScanner();
int n;
n = sc.nextInt();
distTree = new long[n + 1];
pointsTree = new int[n + 1];
velocity = new int[n + 1];
distance = new int[n + 1];
points = new Point[n];
ArrayList<Integer> distances = new ArrayList<>();
TreeMap<Integer, Integer> treeMap = new TreeMap();
for(int i = 0; i < n; i++) {
distance[i] = sc.nextInt();
distances.add(distance[i]);
}
Collections.sort(distances);
int x = 0;
for(int i = 0; i < distances.size(); i++) {
if(i == 0 || distances.get(i) != distances.get(i - 1)) {
treeMap.put(distances.get(i), ++x);
}
}
for(int i = 0; i < n; i++) {
velocity[i] = sc.nextInt();
}
for(int i = 0; i < n; i++) {
points[i] = new Point(distance[i], velocity[i], treeMap.get(distance[i]));
}
Arrays.sort(points, new PointComparator());
long sol = 0L;
for(Point point: points) {
sol += solve(point.index, point.distance);
updateIndex(point.index, point.distance, treeMap.size());
}
System.out.println(sol);
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 7;
pair<int, int> p[N];
long long cnt[N << 2], val[N << 2];
void update(int a, int b, int l, int r, int rt, int v) {
if (a <= l && b >= r) {
val[rt] += v, cnt[rt]++;
return;
}
int mid = l + r >> 1;
if (a <= mid) update(a, b, l, mid, rt << 1, v);
if (b > mid) update(a, b, mid + 1, r, rt << 1 | 1, v);
cnt[rt] = cnt[rt << 1] + cnt[rt << 1 | 1];
val[rt] = val[rt << 1] + val[rt << 1 | 1];
}
pair<long long, long long> query(int a, int b, int l, int r, int rt) {
if (a <= l && b >= r) {
return {val[rt], cnt[rt]};
}
int mid = l + r >> 1;
pair<long long, long long> ans = {0, 0}, t = {0, 0}, t2 = {0, 0};
if (a <= mid) t = query(a, b, l, mid, rt << 1);
if (b > mid) t2 = query(a, b, mid + 1, r, rt << 1 | 1);
ans.first = t.first + t2.first;
ans.second = t.second + t2.second;
return ans;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n;
cin >> n;
for (int i = 0; i < n; ++i) cin >> p[i].first;
for (int i = 0; i < n; ++i) cin >> p[i].second;
sort(p, p + n);
vector<int> a(n);
for (int i = 0; i < n; ++i) a[i] = p[i].second;
sort(a.begin(), a.end());
a.resize(unique(a.begin(), a.end()) - a.begin());
for (int i = 0; i < n; ++i) {
p[i].second = lower_bound(a.begin(), a.end(), p[i].second) - a.begin() + 1;
}
long long ans = 0;
for (int i = n - 1; ~i; --i) {
update(p[i].second, p[i].second, 1, 200000, 1, p[i].first);
auto t = query(p[i].second, 200000, 1, 200000, 1);
ans += t.first - t.second * p[i].first;
}
cout << ans << '\n';
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
python3
|
def add(sms, cns, n, v, x):
while v < n:
sms[v] += x
cns[v] += 1
v += v & ~(v - 1)
def sumtoo(sms, cns, v):
sm = 0
cn = 0
while v > 0:
sm += sms[v]
cn += cns[v]
v -= v & ~(v - 1)
return sm,cn
def go():
n = int(input())
x = list(map(int, input().split()))
v = list(map(int, input().split()))
sv = sorted(set(v))
sv = {v: k for (k, v) in enumerate(sv,1)}
v = [sv[v] for v in v]
# mnv, mxv = min(v), max(v)
# dfv = mxv - mnv
a = sorted(((xx, vv) for xx, vv in zip(x, v)), reverse=True)
len_sv = len(sv)+1
sms = [0] * len_sv
cns = [0] * len_sv
res = 0
sx = 0
for cnt, (xx, vv) in enumerate(a):
sm, cn = sumtoo(sms,cns,vv-1)
# sm, cn = tree.sum_to(vv - mnv)
sm, cn = sx - sm, cnt - cn
res += sm - xx * cn
add(sms, cns, len_sv, vv, xx)
# tree.add(vv - mnv, xx)
sx += xx
return res
print(go())
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
struct fenwick {
long long N;
vector<long long> Bit;
fenwick(long long n = 1e5) {
N = n;
n += 5;
Bit.resize(n, 0);
}
void update(long long id, long long val) {
while (id <= N) {
Bit[id] += val;
id += id & -id;
}
}
long long query(long long id) {
long long res = 0;
while (id) {
res += Bit[id];
id -= id & -id;
}
return res;
}
long long query(long long l, long long r) { return query(r) - query(l - 1); }
};
signed main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
long long n;
cin >> n;
vector<pair<long long, long long> > a(n);
for (long long i = (0); i < (n); i++) cin >> a[i].first;
for (long long i = (0); i < (n); i++) cin >> a[i].second;
sort(a.begin(), a.end());
map<long long, long long> cmp;
for (long long i = (0); i < (n); i++) cmp[a[i].second];
long long c = 1;
for (auto &i : cmp) i.second = c++;
for (long long i = (0); i < (n); i++) a[i].second = cmp[a[i].second];
fenwick f1(c + 100), f2(c + 100);
long long ans = 0;
for (long long i = (n - 1); i > (-1); i--) {
ans += f1.query(a[i].second, c + 5);
ans -= f2.query(a[i].second, c + 5) * a[i].first;
f1.update(a[i].second, a[i].first);
f2.update(a[i].second, 1);
}
cout << ans;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 7;
const int MOD = 1e9 + 7;
template <class T>
bool umin(T& a, T b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool umax(T& a, T b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool umod(T& a) {
while (a < 0) a += MOD;
a %= MOD;
return 1;
}
int n, cn, a[N], b[N], c[N];
long long T[N << 2], S[N << 2], ans;
map<int, int> mk;
pair<int, int> p[N];
void upd(int x, int val, int l, int r, int v) {
S[v]++, T[v] += val;
if (l == r) return;
if (x <= ((l + r) >> 1))
upd(x, val, l, ((l + r) >> 1), v << 1);
else
upd(x, val, ((l + r) >> 1) + 1, r, v << 1 | 1);
}
long long getT(int x, int y, int l, int r, int v) {
if (y < l || r < x) return 0LL;
if (x <= l && r <= y) return T[v];
return getT(x, y, l, ((l + r) >> 1), v << 1) +
getT(x, y, ((l + r) >> 1) + 1, r, v << 1 | 1);
}
long long getS(int x, int y, int l, int r, int v) {
if (y < l || r < x) return 0LL;
if (x <= l && r <= y) return S[v];
return getS(x, y, l, ((l + r) >> 1), v << 1) +
getS(x, y, ((l + r) >> 1) + 1, r, v << 1 | 1);
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", a + i);
for (int i = 1; i <= n; i++) scanf("%d", b + i), mk[b[i]] = 1;
for (__typeof(mk.begin()) i = (mk.begin()); i != (mk.end()); i++)
i->second = ++cn;
for (int i = 1; i <= n; i++) {
c[i] = mk[b[i]];
p[i] = {a[i], i};
}
sort(p + 1, p + n + 1);
for (int i = 1; i <= n; i++) {
long long s, t;
ans += (1LL * (s = getS(1, c[p[i].second], 1, cn, 1)) * p[i].first) -
(t = getT(1, c[p[i].second], 1, cn, 1));
upd(c[p[i].second], p[i].first, 1, cn, 1);
}
printf("%lld\n", ans);
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
void FastInputOutput() {
ios_base ::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
}
inline int D() {
int t;
scanf("%d", &t);
return t;
}
inline long long LLD() {
long long t;
scanf("%lld", &t);
return t;
}
long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; }
long long lcm(long long a, long long b) { return a / gcd(a, b) * b; }
long long power(long long x, long long p, long long m) {
long long res = 1;
while (p) {
if (p & 1) res = (res * x) % m;
x = ((x % m) * (x % m)) % m;
p >>= 1ll;
}
return res;
}
long double ModLog(long double base, long double x) {
return (logl(x) / logl(base));
}
int mod(int a, int m) { return (((a % m) + m) % m); }
const int N = 2e5 + 5, MOD = 998244353;
struct BIT {
int n;
vector<long long> sum;
BIT(int n) {
this->n = n;
sum.resize(n + 5);
for (int i = 1; i < n; ++i) sum[i] = 0;
}
long long get(int r) {
long long ret = 0;
while (r) {
ret += sum[r];
r -= (r & -r);
}
return ret;
}
long long get(int l, int r) { return get(r) - get(l - 1); }
void update(int l, long long x) {
while (l < n) {
sum[l] += x;
l += (l & -l);
}
}
};
int id[N], x[N], v[N];
bool cmp(int s, int f) { return x[f] > x[s]; }
void solve() {
int n = D();
for (int i = 0; i < n; ++i) {
id[i] = i;
x[i] = D();
}
vector<int> compress(n);
for (int i = 0; i < n; ++i) {
v[i] = D();
compress[i] = v[i];
}
sort(id, id + n, cmp);
sort(compress.begin(), compress.end());
compress.erase(unique(compress.begin(), compress.end()), compress.end());
for (int i = 0, idx; i < n; ++i) {
idx = id[i];
v[idx] = lower_bound(compress.begin(), compress.end(), v[idx]) -
compress.begin();
++v[idx];
}
BIT inv(n + 1), sum(n + 1);
long long ans = 0;
for (int i = 0, idx; i < n; ++i) {
idx = id[i];
long long cnt = inv.get(v[idx]);
long long curr = cnt * x[idx] - sum.get(v[idx]);
ans += curr;
inv.update(v[idx], 1);
sum.update(v[idx], x[idx]);
}
printf("%lld\n", ans);
}
int main() {
int t;
t = 1;
while (t--) {
solve();
}
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.util.*;
import java.io.*;
public class Main {
static boolean DEBUG;
public static void main(String[] args) {
DEBUG = args.length > 0 && args[0].equals("-DEBUG");
Solver solver = new Solver();
solver.solve();
solver.exit();
}
static class FastScanner {
private final InputStream in = System.in;
private final byte[] buffer = new byte[1024];
private int ptr = 0;
private int buflen = 0;
private boolean hasNextByte() {
if (ptr < buflen) {
return true;
}else{
ptr = 0;
try {
buflen = in.read(buffer);
} catch (IOException e) {
e.printStackTrace();
}
if (buflen <= 0) {
return false;
}
}
return true;
}
private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;}
private boolean isPrintableChar(int c) { return 33 <= c && c <= 126;}
private void skipUnprintable() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++;}
public boolean hasNext() { skipUnprintable(); return hasNextByte();}
public String next() {
if (!hasNext()) throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while(isPrintableChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public long nextLong() {
if (!hasNext()) throw new NoSuchElementException();
long n = 0;
boolean minus = false;
int b = readByte();
if (b == '-') {
minus = true;
b = readByte();
}
if (b < '0' || '9' < b) {
throw new NumberFormatException();
}
while(true){
if ('0' <= b && b <= '9') {
n *= 10;
n += b - '0';
}else if(b == -1 || !isPrintableChar(b)){
return minus ? -n : n;
}else{
throw new NumberFormatException();
}
b = readByte();
}
}
}
static class Solver {
FastScanner sc = new FastScanner();
public Solver() { }
String ns() { return sc.next(); }
String[] ns(int n) {
String a[] = new String[n];
for(int i = 0; i < n; i ++) { a[i] = ns(); }
return a;
}
String[][] ns(int n, int m) {
String a[][] = new String[n][m];
for(int i = 0; i < n; i ++) { a[i] = ns(m); }
return a;
}
char[] nc(int n) {
String str = ns();
char a[] = new char[str.length()];
for(int i = 0; i < str.length(); i ++) { a[i] = str.charAt(i); }
return a;
}
char[][] nc(int n, int m) {
char a[][] = new char[n][m];
for(int i = 0; i < n; i ++) { a[i] = nc(m); }
return a;
}
boolean[] nb(int n, char t) {
boolean a[] = new boolean[n];
char c[] = nc(n);
for(int i = 0; i < n; i ++) { a[i] = c[i] == t; }
return a;
}
boolean[][] nb(int n, int m, char t) {
boolean a[][] = new boolean[n][m];
for(int i = 0; i < n; i ++) { a[i] = nb(m, t); }
return a;
}
int ni() { return (int)sc.nextLong(); }
int[] ni(int n) {
int a[] = new int[n];
for(int i = 0; i < n; i ++) { a[i] = ni(); }
return a;
}
int[][] ni(int n, int m) {
int a[][] = new int[n][m];
for(int i = 0; i < n; i ++) { a[i] = ni(m); }
return a;
}
long nl() { return sc.nextLong(); }
long[] nl(int n) {
long a[] = new long[n];
for(int i = 0; i < n; i ++) { a[i] = nl(); }
return a;
}
long[][] nl(int n, int m) {
long a[][] = new long[n][m];
for(int i = 0; i < n; i ++) { a[i] = nl(m); }
return a;
}
double nd() { return Double.parseDouble(sc.next()); }
double[] nd(int n) {
double a[] = new double[n];
for(int i = 0; i < n; i ++) { a[i] = nd(); }
return a;
}
double[][] nd(int n, int m) {
double a[][] = new double[n][m];
for(int i = 0; i < n; i ++) { a[i] = nd(m); }
return a;
}
PrintWriter out = new PrintWriter(System.out);
PrintWriter err = new PrintWriter(System.err);
void prt() { out.print(""); }
<T> void prt(T a) { out.print(a); }
void prtln() { out.println(""); }
<T> void prtln(T a) { out.println(a); }
void prtln(int... a) {
StringBuilder sb = new StringBuilder();
for(int element : a){ sb.append(element+" "); }
prtln(sb.toString().trim());
}
void prtln(long... a) {
StringBuilder sb = new StringBuilder();
for(long element : a){ sb.append(element+" "); }
prtln(sb.toString().trim());
}
void prtln(double... a) {
StringBuilder sb = new StringBuilder();
for(double element : a){ sb.append(element+" "); }
prtln(sb.toString().trim());
}
void prtln(String... a) {
StringBuilder sb = new StringBuilder();
for(String element : a){ sb.append(element+" "); }
prtln(sb.toString().trim());
}
void prtln(char... a) {
StringBuilder sb = new StringBuilder();
for(char element : a){ sb.append(element); }
prtln(sb.toString().trim());
}
void prtln(int[][] a) { for(int[] element : a){ prtln(element); } }
void prtln(long[][] a) { for(long[] element : a){ prtln(element); } }
void prtln(double[][] a) { for(double[] element : a){ prtln(element); } }
void prtln(String[][] a) { for(String[] element : a){ prtln(element); } }
void prtln(char[][] a) { for(char[] element : a){ prtln(element); } }
String errconvert(int a) { return isINF(a) ? "_" : String.valueOf(a); }
String errconvert(long a) { return isINF(a) ? "_" : String.valueOf(a); }
void errprt(int a) { if(DEBUG) { err.print(errconvert(a)); } }
void errprt(long a) { if(DEBUG) { err.print(errconvert(a)); } }
void errprt() { if(DEBUG) { err.print(""); } }
<T> void errprt(T a) { if(DEBUG) { err.print(a); } }
void errprt(boolean a) { if(DEBUG) { errprt(a ? "#" : "."); } }
void errprtln() { if(DEBUG) { err.println(""); } }
void errprtln(int a) { if(DEBUG) { err.println(errconvert(a)); } }
void errprtln(long a) { if(DEBUG) { err.println(errconvert(a)); } }
<T> void errprtln(T a) { if(DEBUG) { err.println(a); } }
void errprtln(boolean a) { if(DEBUG) { errprtln(a ? "#" : "."); } }
void errprtln(int... a) {
if(DEBUG) {
StringBuilder sb = new StringBuilder();
for(int element : a){ sb.append(errconvert(element)+" "); }
errprtln(sb.toString().trim());
}
}
void errprtln(long... a) {
if(DEBUG) {
StringBuilder sb = new StringBuilder();
for(long element : a){ sb.append(errconvert(element)+" "); }
errprtln(sb.toString().trim());
}
}
void errprtln(double... a) {
if(DEBUG) {
StringBuilder sb = new StringBuilder();
for(double element : a){ sb.append(element+" "); }
errprtln(sb.toString().trim());
}
}
void errprtln(String... a) {
if(DEBUG) {
StringBuilder sb = new StringBuilder();
for(String element : a){ sb.append(element+" "); }
errprtln(sb.toString().trim());
}
}
void errprtln(char... a) {
if(DEBUG) {
StringBuilder sb = new StringBuilder();
for(char element : a){ sb.append(element); }
errprtln(sb.toString().trim());
}
}
void errprtln(boolean... a) {
if(DEBUG) {
StringBuilder sb = new StringBuilder();
for(boolean element : a){ sb.append((element ? "#" : ".")+" "); }
errprtln(sb.toString().trim());
}
}
void errprtln(int[][] a) { if(DEBUG) { for(int[] element : a){ errprtln(element); } } }
void errprtln(long[][] a) { if(DEBUG) { for(long[] element : a){ errprtln(element); } } }
void errprtln(double[][] a) { if(DEBUG) { for(double[] element : a){ errprtln(element); } } }
void errprtln(String[][] a) { if(DEBUG) { for(String[] element : a){ errprtln(element); } } }
void errprtln(char[][] a) { if(DEBUG) { for(char[] element : a){ errprtln(element); } } }
void errprtln(boolean[][] a) { if(DEBUG) { for(boolean[] element : a){ errprtln(element); } } }
void reply(boolean b) { prtln(b ? "Yes" : "No"); }
void REPLY(boolean b) { prtln(b ? "YES" : "NO"); }
void flush() { out.flush(); if(DEBUG) { err.flush(); } }
void exit() { flush(); System.exit(0); }
int min(int a, int b) { return Math.min(a, b); }
long min(long a, long b) { return Math.min(a, b); }
double min(double a, double b) { return Math.min(a, b); }
int min(int... x) {
int min = x[0];
for(int val : x) { min = min(min, val); }
return min;
}
long min(long... x) {
long min = x[0];
for(long val : x) { min = min(min, val); }
return min;
}
double min(double... x) {
double min = x[0];
for(double val : x) { min = min(min, val); }
return min;
}
int max(int a, int b) { return Math.max(a, b); }
long max(long a, long b) { return Math.max(a, b); }
double max(double a, double b) { return Math.max(a, b); }
int max(int... x) {
int max = x[0];
for(int val : x) { max = max(max, val); }
return max;
}
long max(long... x) {
long max = x[0];
for(long val : x) { max = max(max, val); }
return max;
}
double max(double... x) {
double max = x[0];
for(double val : x) { max = max(max, val); }
return max;
}
long sum(int... a) {
long sum = 0;
for(int element : a) { sum += element; }
return sum;
}
long sum(long... a) {
long sum = 0;
for(long element : a) { sum += element; }
return sum;
}
double sum(double... a) {
double sum = 0;
for(double element : a) { sum += element; }
return sum;
}
long[] sums(int[] a) {
long sum[] = new long[a.length + 1];
sum[0] = 0;
for(int i = 0; i < a.length; i ++) { sum[i + 1] = sum[i] + a[i]; }
return sum;
}
long[] sums(long[] a) {
long sum[] = new long[a.length + 1];
sum[0] = 0;
for(int i = 0; i < a.length; i ++) { sum[i + 1] = sum[i] + a[i]; }
return sum;
}
double[] sums(double[] a) {
double sum[] = new double[a.length + 1];
sum[0] = 0;
for(int i = 0; i < a.length; i ++) { sum[i + 1] = sum[i] + a[i]; }
return sum;
}
long abs(double x) { return (long)Math.abs(x); }
long round(double x) { return Math.round(x); }
long floor(double x) { return (long)Math.floor(x); }
long ceil(double x) { return (long)Math.ceil(x); }
double sqrt(double x) { return Math.sqrt(x); }
double pow(double x, double y) { return Math.pow(x, y); }
long pow(long x, long y) { return (long)Math.pow(x, y); }
int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); }
long gcd(long a, long b) { return b == 0 ? a : gcd(b, a % b); }
long lcm(long a, long b) { return a * b / gcd(a, b); }
int upperToInt(char a) { return a - 'A'; }
int lowerToInt(char a) { return a - 'a'; }
int numToInt(char a) { return a - '0'; }
int charToInt(char a) { return a >= 'a' ? lowerToInt(a) : a >= 'A' ? upperToInt(a) : numToInt(a); }
char intToUpper(int a) { return (char)(a + 'A'); }
char intToLower(int a) { return (char)(a + 'a'); }
char intToNum(int a) { return (char)(a + '0'); }
long[] div(long a) {
List<Long> divList = new ArrayList<Long>();
for(long i = 1; i * i <= a; i ++) {
if(a % i == 0) {
divList.add(i);
if(i * i != a) { divList.add(a / i); };
}
}
long div[] = new long[divList.size()];
for(int i = 0; i < divList.size(); i ++) { div[i] = divList.get(i); }
return div;
}
long[][] factor(long a) {
List<Long> factorList = new ArrayList<Long>();
List<Long> degreeList = new ArrayList<Long>();
for(long i = 2; i * i <= a; i ++) {
if(a % i == 0) {
long count = 0;
while(a % i == 0) {
a /= i;
count ++;
}
factorList.add(i);
degreeList.add(count);
}
}
if(a > 1) {
factorList.add(a);
degreeList.add(1L);
}
long factor[][] = new long[factorList.size()][2];
for(int i = 0; i < factorList.size(); i ++) {
factor[i][0] = factorList.get(i);
factor[i][1] = degreeList.get(i);
}
return factor;
}
long[][] countElements(long[] a, boolean sort) {
int len = a.length;
long array[] = new long[len];
for(int i = 0; i < len; i ++) {
array[i] = a[i];
}
if(sort) { Arrays.sort(array); }
List<Long> elem = new ArrayList<Long>();
List<Long> cnt = new ArrayList<Long>();
long tmp = 1;
for(int i = 1; i <= len; i ++) {
if(i == len || array[i] != array[i - 1]) {
elem.add(array[i - 1]);
cnt.add(tmp);
tmp = 1;
}else {
tmp ++;
}
}
long counts[][] = new long[elem.size()][2];
for(int i = 0; i < elem.size(); i ++) {
counts[i][0] = elem.get(i);
counts[i][1] = cnt.get(i);
}
return counts;
}
long[][] countElements(String str, boolean sort) {
int len = str.length();
char array[] = str.toCharArray();
if(sort) { Arrays.sort(array); }
List<Long> elem = new ArrayList<Long>();
List<Long> cnt = new ArrayList<Long>();
long tmp = 1;
for(int i = 1; i <= len; i ++) {
if(i == len || array[i] != array[i - 1]) {
elem.add((long)array[i - 1]);
cnt.add(tmp);
tmp = 1;
}else {
tmp ++;
}
}
long counts[][] = new long[elem.size()][2];
for(int i = 0; i < elem.size(); i ++) {
counts[i][0] = elem.get(i);
counts[i][1] = cnt.get(i);
}
return counts;
}
int numDigits(long a) { return Long.toString(a).length(); }
long bitFlag(int a) { return 1L << (long)a; }
boolean isFlagged(long x, int a) { return (x & bitFlag(a)) != 0; }
long countString(String str, String a) { return (str.length() - str.replace(a, "").length()) / a.length(); }
long countStringAll(String str, String a) { return str.length() - str.replaceAll(a, "").length(); }
void reverse(String array[]) {
String reversed[] = new String[array.length];
for(int i = 0; i < array.length; i ++) { reversed[array.length - i - 1] = array[i]; }
for(int i = 0; i < array.length; i ++) { array[i] = reversed[i]; }
}
void reverse(int array[]) {
int reversed[] = new int[array.length];
for(int i = 0; i < array.length; i ++) { reversed[array.length - i - 1] = array[i]; }
for(int i = 0; i < array.length; i ++) { array[i] = reversed[i]; }
}
void reverse(long array[]) {
long reversed[] = new long[array.length];
for(int i = 0; i < array.length; i ++) { reversed[array.length - i - 1] = array[i]; }
for(int i = 0; i < array.length; i ++) { array[i] = reversed[i]; }
}
void reverse(double array[]) {
double reversed[] = new double[array.length];
for(int i = 0; i < array.length; i ++) { reversed[array.length - i - 1] = array[i]; }
for(int i = 0; i < array.length; i ++) { array[i] = reversed[i]; }
}
void reverse(boolean array[]) {
boolean reversed[] = new boolean[array.length];
for(int i = 0; i < array.length; i ++) { reversed[array.length - i - 1] = array[i]; }
for(int i = 0; i < array.length; i ++) { array[i] = reversed[i]; }
}
void fill(int array[], int x) { Arrays.fill(array, x); }
void fill(long array[], long x) { Arrays.fill(array, x); }
void fill(double array[], double x) { Arrays.fill(array, x); }
void fill(boolean array[], boolean x) { Arrays.fill(array, x); }
void fill(int array[][], int x) { for(int a[] : array) { fill(a, x); } }
void fill(long array[][], long x) { for(long a[] : array) { fill(a, x); } }
void fill(double array[][], double x) { for(double a[] : array) { fill(a, x); } }
void fill(boolean array[][], boolean x) { for(boolean a[] : array) { fill(a, x); } }
void fill(int array[][][], int x) { for(int a[][] : array) { fill(a, x); } }
void fill(long array[][][], long x) { for(long a[][] : array) { fill(a, x); } }
void fill(double array[][][], double x) { for(double a[][] : array) { fill(a, x); } }
void fill(boolean array[][][], boolean x) { for(boolean a[][] : array) { fill(a, x); } }
long INF = (long)1e18 + 7;
boolean isINF(long a) { return abs(a) > INF / 1000; }
boolean isPlusINF(long a) { return a > 0 && isINF(a); }
boolean isMinusINF(long a) { return isPlusINF(- a); }
int I_INF = (int)1e9 + 7;
boolean isINF(int a) { return abs(a) > I_INF / 1000; }
boolean isPlusINF(int a) { return a > 0 && isINF(a); }
boolean isMinusINF(int a) { return isPlusINF(- a); }
// mods
long MOD = (long)1e9 + 7; // 998244353;
public long mod(long i) { i %= MOD; return i + (i < 0 ? MOD : 0); }
long pow_m(long x, long y) {
if (y == 0) { return 1;
}else {
long tmp = pow_m(x, y / 2);
return mod(mod(tmp * tmp) * (y % 2 == 0 ? 1 : x));
}
}
long[] pows_m(long x, int max) {
long pow[] = new long[max + 1];
pow[0] = 1;
for(int i = 0; i < max; i ++) {
pow[i + 1] = mod(pow[i] * x);
}
return pow;
}
int MAX_INV_SIZE = 100_100;
HashMap<Long, Long> invMap = new HashMap<>();
long inv(long x) {
x = mod(x);
if(invMap.containsKey(x)) { return invMap.get(x); }
if(invMap.size() >= MAX_INV_SIZE) { return calInv(x); }
invMap.put(x, calInv(x));
return invMap.get(x);
}
long calInv(long x) { return pow_m(x, MOD - 2); }
int MAX_FACT = 5_000_100;
long fact[];
long invFact[];
boolean isFactPrepared = false;
HashMap<Integer, long[]> factMap;
void prepareFact() {
fact = new long[MAX_FACT];
Arrays.fill(fact, 0);
invFact = new long[MAX_FACT];
Arrays.fill(invFact, 0);
fact[0] = 1;
int maxIndex = min(MAX_FACT, (int)MOD);
for(int i = 1; i < maxIndex; i ++) { fact[i] = mod(fact[i - 1] * i); }
invFact[maxIndex - 1] = inv(fact[maxIndex - 1]);
for(int i = maxIndex - 1; i > 0; i --) { invFact[i - 1] = mod(invFact[i] * i); }
factMap = new HashMap<>();
isFactPrepared = true;
}
long P(int n, int r) {
if(!isFactPrepared) { prepareFact(); }
if(n < 0 || r < 0 || n < r) { return 0; }
if(n >= MAX_FACT) {
if(!factMap.containsKey(n)) {
long largeFact[] = new long[MAX_FACT];
factMap.put(n, largeFact);
fill(largeFact, -INF);
largeFact[0] = 1;
}
long largeFact[] = factMap.get(n);
int i = r;
while(isINF(largeFact[i])) { i --; }
for(; i < r; i ++) { largeFact[i + 1] = mod(largeFact[i] * (n - i)); }
return largeFact[r];
}
return mod(fact[n] * invFact[n - r]);
}
long C(int n, int r) {
if(!isFactPrepared) { prepareFact(); }
if(n < 0 || r < 0 || n < r) { return 0; }
return mod(P(n, r) * invFact[r]);
}
long H(int n, int r) { return C((n - 1) + r, r); }
// grid
class Grid implements Comparable<Grid> {
int x;
int y;
int h;
int w;
int i;
boolean b;
long val;
Grid() { }
Grid(int x, int y, int h, int w) { init(x, y, h, w, false, 0); }
Grid(int x, int y, int h, int w, boolean b) { init(x, y, h, w, b, 0); }
Grid(int x, int y, int h, int w, long val) { init(x, y, h, w, false, val); }
Grid(int x, int y, int h, int w, boolean b, long val) { init(x, y, h, w, b, val); }
void init(int x, int y, int h, int w, boolean b, long val) {
this.x = x;
this.y = y;
this.h = h;
this.w = w;
this.b = b;
this.val = val;
i = x * w + y;
}
@Override
public int compareTo(Grid g) {
return Long.compare(this.val, g.val);
}
}
int dx[] = {-1, 1, 0, 0};
int dy[] = {0, 0, -1, 1};
// int dx[] = {-1, 0, 1, -1, 1, -1, 0, 1};
// int dy[] = {-1, -1, -1, 0, 0, 1, 1, 1};
boolean isValid(int x, int y, int h, int w) {
return x >= 0 && x < h && y >= 0 && y < w;
}
boolean isValid(Grid g) {
return isValid(g.x, g.y, g.h, g.w);
}
Grid next(Grid g, int i) {
return new Grid(g.x + dx[i], g.y + dy[i], g.h, g.w);
}
// graph
class Graph {
int numNode;
int numEdge;
boolean directed;
Edge edges[];
Node nodes[];
Node reversedNodes[];
Graph(int numNode, int numEdge, Edge edges[], boolean directed) {
this.numNode = numNode;
this.numEdge = numEdge;
this.directed = directed;
this.edges = edges;
nodes = new Node[numNode];
reversedNodes = new Node[numNode];
for(int i = 0; i < numNode; i ++) {
nodes[i] = new Node(i);
reversedNodes[i] = new Node(i);
}
for(Edge edge : edges) {
nodes[edge.source].add(edge.target, edge.cost);
if(directed) {
reversedNodes[edge.target].add(edge.source, edge.cost);
}else {
nodes[edge.target].add(edge.source, edge.cost);
}
}
}
void clearNodes() {
for(Node n : nodes) { n.clear(); }
for(Node n : reversedNodes) { n.clear(); }
}
}
class Node {
int id;
ArrayList<Edge> edges = new ArrayList<Edge>();
Node(int id) {
this.id = id;
}
void add(int target, long cost) {
edges.add(new Edge(id, target, cost));
}
void clear() {
edges.clear();
}
}
class Edge implements Comparable<Edge> {
int source;
int target;
long cost;
Edge(int source, int target, long cost) {
this.source = source;
this.target = target;
this.cost = cost;
}
@Override
public int compareTo(Edge e) {
return Long.compare(this.cost, e.cost);
}
}
public void solve() {
int num = ni();
long a[][] = nl(2, num);
Long a2[][] = new Long[num][4];
for(int i = 0; i < num; i ++) {
a2[i][0] = a[0][i];
a2[i][1] = a[1][i];
a2[i][2] = 0l;
}
Arrays.sort(a2, (sort1, sort2) -> Long.compare(sort1[1], sort2[1]));
int crt = 0;
for(int i = 1; i < num; i ++) {
if(a2[i][1] > a2[i - 1][1]) { crt ++; }
a2[i][2] = (long)crt;
}
crt ++;
Arrays.sort(a2, (sort1, sort2) -> Long.compare(sort1[0], sort2[0]));
long a3[][] = new long[num][2];
for(int i = 0; i < num; i ++) {
a3[i][0] = a2[i][0];
a3[i][1] = a2[i][2];
}
int b[][] = new int[num][2];
for(int i = 0; i < num; i ++) {
b[i][0] = (int)a3[i][0];
b[i][1] = (int)a3[i][1];
}
// errprtln(b);
SegTree st = new SegTree(crt);
SegTree st2 = new SegTree(crt);
long ans = 0;
for(int i = 0; i < num; i ++) {
ans += st.find(0, b[i][1] + 1) * b[i][0] - st2.find(0, b[i][1] + 1);
st.set(b[i][1], st.get(b[i][1]) + 1);
st2.set(b[i][1], st2.get(b[i][1]) + b[i][0]);
// errprtln(st2.nodes);
}
prtln(ans);
}
class SegTree {
long e = 0;
long f(long a, long b) { return sum(a, b); }
int n;
long nodes[];
SegTree(long[] a) { init(a); }
SegTree(int len, long x) {
long a[] = new long[len];
fill(a, x);
init(a);
}
SegTree(int len) { init(len); }
void init(long[] a) {
init(a.length);
for(int i = 0; i < a.length; i ++) {
nodes[i + n - 1] = a[i];
}
for(int i = n - 2; i >= 0; i --) {
nodes[i] = f(nodes[i * 2 + 1], nodes[i * 2 + 2]);
}
}
void init(int len) {
n = 1;
while(n < len) { n *= 2; }
nodes = new long[n * 2 - 1];
fill(nodes, e);
for(int i = n - 2; i >= 0; i --) {
nodes[i] = f(nodes[i * 2 + 1], nodes[i * 2 + 2]);
}
}
void set(int i, long val) {
i += n - 1;
nodes[i] = val;
while(i > 0) {
i = (i - 1) / 2;
nodes[i] = f(nodes[i * 2 + 1], nodes[i * 2 + 2]);
}
}
long get(int i) { return find(i, i + 1); }
long find(int a, int b) { return find(a, b, 0, 0, n); }
long find(int a, int b, int k, int l, int r) {
if(b <= l || r <= a) { return e; }
if(a <= l && r <= b) { return nodes[k]; }
return f(find(a, b, k * 2 + 1, l, (l + r) / 2), find(a, b, k * 2 + 2, (l + r) / 2, r));
}
}
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int kMaxN = 200001;
struct E {
int x, v, w;
bool operator<(const E &e) const { return x < e.x; }
} e[kMaxN];
struct T {
long long c, v;
} t[kMaxN];
int a[kMaxN];
int n;
long long ans;
int LowBit(int x) { return x & (-x); }
void Calc(int x) {
t[0] = {0, 0};
while (x) {
t[0].c += t[x].c;
t[0].v += t[x].v;
x -= LowBit(x);
}
}
void Add(int x, int v) {
while (x <= n) {
t[x].c++;
t[x].v += v;
x += LowBit(x);
}
}
void Dis() {
sort(a + 1, a + 1 + n, [](int i, int j) { return e[i].v < e[j].v; });
e[0].v = 1 << 31;
for (int i = 1, j = 0; i <= n; i++) {
j += e[a[i]].v != e[a[i - 1]].v;
e[a[i]].w = j;
}
}
int main() {
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> e[i].x;
}
for (int i = 1; i <= n; i++) {
cin >> e[i].v;
a[i] = i;
}
Dis();
sort(e + 1, e + 1 + n);
for (int i = 1; i <= n; i++) {
Calc(e[i].w);
ans += e[i].x * t[0].c - t[0].v;
Add(e[i].w, e[i].x);
}
cout << ans << endl;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 200200;
int n;
long long ans, bit[2][MAXN];
pair<int, int> a[MAXN];
void compress() {
map<int, int> m;
for (int i = 1; i <= n; ++i) m[a[i].second];
int cnt = 1;
for (auto& [key, val] : m) val = cnt++;
for (int i = 1; i <= n; ++i) a[i].second = m[a[i].second];
}
void add(int b, int pos, int val) {
for (; 0 < pos && pos < MAXN; pos += pos & -pos) bit[b][pos] += val;
}
long long get(int b, int pos) {
long long ret = 0;
for (; 0 < pos && pos < MAXN; pos -= pos & -pos) ret += bit[b][pos];
return ret;
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; ++i) scanf("%d", &a[i].first);
for (int i = 1; i <= n; ++i) scanf("%d", &a[i].second);
sort(a + 1, a + n + 1);
compress();
for (int i = 1; i <= n; ++i) {
auto [x, v] = a[i];
ans += 1LL * x * get(0, v) - get(1, v);
add(1, v, x);
add(0, v, 1);
}
printf("%lld\n", ans);
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.TreeMap;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.Comparator;
import java.util.TreeSet;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author KharYusuf
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastReader in = new FastReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
FMovingPoints solver = new FMovingPoints();
solver.solve(1, in, out);
out.close();
}
static class FMovingPoints {
public void solve(int testNumber, FastReader s, PrintWriter w) {
int n = s.nextInt(), MX = (int) 1e8;
int[][] x = new int[n][2];
for (int i = 0; i < n; i++) x[i][0] = s.nextInt();
TreeSet<Integer> p = new TreeSet<>(), ne = new TreeSet<>();
TreeMap<Integer, Integer> po = new TreeMap<>(), nee = new TreeMap<>();
for (int i = 0; i < n; i++) {
x[i][1] = s.nextInt();
if (x[i][1] > 0) p.add(x[i][1]);
else if (x[i][1] < 0) ne.add(x[i][1] + MX);
}
int cnt = 0;
for (int i : p) po.put(i, cnt++);
cnt = 0;
for (int i : ne) nee.put(i, cnt++);
func.sortbyColumn(x, 0);
long ans = 0, cntneg = 0, cntz = 0, cneg = 0, cz = 0, last = 0;
bit pos = new bit(n), neg = new bit(n);
bit poscnt = new bit(p.size()), negcnt = new bit(ne.size());
for (int i = 0; i < n; i++) {
cneg += (x[i][0] - last) * cntneg;
cz += (x[i][0] - last) * cntz;
last = x[i][0];
if (x[i][1] > 0) {
ans += cneg;
ans += cz;
int cur = po.get(x[i][1]);
ans += poscnt.query(cur) * (long) x[i][0] - pos.query(cur);
poscnt.modify(cur, 1);
pos.modify(cur, x[i][0]);
} else if (x[i][1] < 0) {
cntneg++;
int v = nee.get(MX + x[i][1]);
ans += negcnt.query(v) * (long) x[i][0] - neg.query(v);
negcnt.modify(v, 1);
neg.modify(v, x[i][0]);
} else {
cntz++;
ans += cneg;
ans += cz;
}
}
w.println(ans);
}
public class bit {
public int n;
public long[] t;
public bit(int n) {
t = new long[n];
this.n = n;
}
public void modify(int ind, long val) {
for (; ind < n; ind = ind | (++ind)) t[ind] += val;
}
public long query(int ind) {
long sum = 0;
for (; ind >= 0; ind = (ind & (++ind)) - 1) sum += t[ind];
return sum;
}
}
}
static class FastReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private FastReader.SpaceCharFilter filter;
public FastReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class func {
public static void sortbyColumn(int[][] arr, final int col) {
Arrays.sort(arr, new Comparator<int[]>() {
public int compare(final int[] entry1, final int[] entry2) {
if (entry1[col] > entry2[col]) return 1;
if (entry1[col] < entry2[col]) return -1;
return 0;
}
});
}
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
struct Pt {
int x, v;
bool operator<(const Pt &a) const { return x < a.x; }
};
struct BIT {
vector<long long> bit, cnt;
int n;
BIT(int sz) {
bit.resize(sz + 1);
cnt.resize(sz + 1);
n = sz;
}
void add(int x, long long v) {
while (x <= n) {
cnt[x]++;
bit[x] += v;
x += x & (-x);
}
}
pair<long long, long long> ask(int x) {
pair<long long, long long> ret(0, 0);
while (x) {
ret.first += bit[x];
ret.second += cnt[x];
x -= x & (-x);
}
return ret;
}
};
vector<int> V;
Pt arr[200005];
int n;
int main() {
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%d", &arr[i].x);
}
for (int i = 0; i < n; i++) {
scanf("%d", &arr[i].v);
V.push_back(arr[i].v);
}
long long ans = 0;
sort(arr, arr + n);
sort(begin(V), end(V));
V.erase(unique(begin(V), end(V)), end(V));
BIT loli(V.size());
for (int i = 0; i < n; i++) {
int p = lower_bound(begin(V), end(V), arr[i].v) - begin(V) + 1;
auto val = loli.ask(p);
ans = ans + arr[i].x * val.second - val.first;
loli.add(p, arr[i].x);
}
printf("%lld\n", ans);
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
python3
|
import sys
int1 = lambda x: int(x) - 1
p2D = lambda x: print(*x, sep="\n")
def II(): return int(sys.stdin.readline())
def MI(): return map(int, sys.stdin.readline().split())
def LI(): return list(map(int, sys.stdin.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def SI(): return sys.stdin.readline()[:-1]
class BitSum:
def __init__(self, n):
self.n = n + 3
self.table = [0] * (self.n + 1)
def add(self, i, x):
i += 1
while i <= self.n:
self.table[i] += x
i += i & -i
def sum(self, i):
i += 1
res = 0
while i > 0:
res += self.table[i]
i -= i & -i
return res
def main():
n = II()
xx = LI()
vv = LI()
itox = list(sorted(set(xx)))
xtoi = {x: i for i, x in enumerate(itox)}
#print(itox)
#print(xtoi)
vx = [(v, x) for x, v in zip(xx, vv)]
cnt = BitSum(len(itox))
val = BitSum(len(itox))
ans = 0
for v, x in sorted(vx):
i = xtoi[x]
if i: ans += cnt.sum(i - 1) * x - val.sum(i - 1)
cnt.add(i,1)
val.add(i,x)
print(ans)
main()
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const double PI = acos(-1.0);
const double EPS = 1e-6;
const int INF = 0x3f3f3f3f;
const int MAXN = 200005;
int n, m;
int maps[MAXN];
long long sum[MAXN][2];
pair<long long, long long> node[MAXN];
inline long long lowbit(long long x) { return x & (-x); }
void add(long long id, long long x) {
while (id <= m) {
sum[id][0]++;
sum[id][1] += x;
id += lowbit(id);
}
}
long long query(int id, int op) {
long long ans = 0;
while (id > 0) {
ans += sum[id][op];
id -= lowbit(id);
}
return ans;
}
void Solve() {
sort(node + 1, node + n + 1);
sort(maps + 1, maps + n + 1);
m = unique(maps + 1, maps + n + 1) - (maps + 1);
long long ans = 0, id = -1;
for (int i = 1; i <= n; ++i) {
id = lower_bound(maps + 1, maps + m + 1, node[i].second) - maps;
ans += node[i].first * query(id, 0) - query(id, 1);
add(id, node[i].first);
}
cout << ans << endl;
}
int main() {
cin >> n;
for (int i = 1; i <= n; ++i) cin >> node[i].first;
for (int i = 1; i <= n; ++i) {
cin >> node[i].second;
maps[i] = node[i].second;
}
Solve();
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
public class Main {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve() {
int n = ni();
int[] x = na(n);
int[] v = na(n);
for(int i = 0; i < n; i++) v[i] += 100000000;
v = shrink(v);
int[][] co = new int[n][];
for(int i = 0; i < n; i++) {
co[i] = new int[] {x[i], v[i]};
}
Arrays.sort(co, (int[] a, int[] b) -> a[0] - b[0]);
long[] ft = new long[n+5];
long[] counts = new long[n+5];
long ans = 0;
for(int i = 0; i < n; i++) {
ans += co[i][0] * sumFenwick(counts, co[i][1]) - sumFenwick(ft, co[i][1]);
addFenwick(counts, co[i][1], 1);
addFenwick(ft, co[i][1], co[i][0]);
}
out.println(ans);
}
public static long sumFenwick(long[] ft, int i)
{
long sum = 0;
for(i++;i > 0;i -= i&-i)sum += ft[i];
return sum;
}
public static void addFenwick(long[] ft, int i, long v)
{
if(v == 0)return;
int n = ft.length;
for(i++;i < n;i += i&-i)ft[i] += v;
}
public static long[] radixSort(long[] f){ return radixSort(f, f.length); }
public static long[] radixSort(long[] f, int n)
{
long[] to = new long[n];
{
int[] b = new int[65537];
for(int i = 0;i < n;i++)b[1+(int)(f[i]&0xffff)]++;
for(int i = 1;i <= 65536;i++)b[i]+=b[i-1];
for(int i = 0;i < n;i++)to[b[(int)(f[i]&0xffff)]++] = f[i];
long[] d = f; f = to;to = d;
}
{
int[] b = new int[65537];
for(int i = 0;i < n;i++)b[1+(int)(f[i]>>>16&0xffff)]++;
for(int i = 1;i <= 65536;i++)b[i]+=b[i-1];
for(int i = 0;i < n;i++)to[b[(int)(f[i]>>>16&0xffff)]++] = f[i];
long[] d = f; f = to;to = d;
}
{
int[] b = new int[65537];
for(int i = 0;i < n;i++)b[1+(int)(f[i]>>>32&0xffff)]++;
for(int i = 1;i <= 65536;i++)b[i]+=b[i-1];
for(int i = 0;i < n;i++)to[b[(int)(f[i]>>>32&0xffff)]++] = f[i];
long[] d = f; f = to;to = d;
}
{
int[] b = new int[65537];
for(int i = 0;i < n;i++)b[1+(int)(f[i]>>>48&0xffff)]++;
for(int i = 1;i <= 65536;i++)b[i]+=b[i-1];
for(int i = 0;i < n;i++)to[b[(int)(f[i]>>>48&0xffff)]++] = f[i];
long[] d = f; f = to;to = d;
}
return f;
}
public static int[] shrink(int[] a) {
int n = a.length;
long[] b = new long[n];
for (int i = 0; i < n; i++)
b[i] = (long) a[i] << 32 | i;
b = radixSort(b);
int[] ret = new int[n];
int p = 0;
for (int i = 0; i < n; i++) {
if (i > 0 && (b[i] ^ b[i - 1]) >> 32 != 0)
p++;
ret[(int) b[i]] = p;
}
return ret;
}
void run() throws Exception {
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
if (!INPUT.isEmpty())
tr(System.currentTimeMillis() - s + "ms");
}
public static void main(String[] args) throws Exception {
new Main().run();
}
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte() {
if (lenbuf == -1)
throw new InputMismatchException();
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {
lenbuf = is.read(inbuf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private int skip() {
int b;
while ((b = readByte()) != -1 && isSpaceChar(b))
;
return b;
}
private double nd() {
return Double.parseDouble(ns());
}
private char nc() {
return (char) skip();
}
private String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n) {
char[] buf = new char[n];
int b = skip(), p = 0;
while (p < n && !(isSpaceChar(b))) {
buf[p++] = (char) b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m) {
char[][] map = new char[n][];
for (int i = 0; i < n; i++)
map[i] = ns(m);
return map;
}
private int[] na(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = ni();
return a;
}
private int ni() {
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
private long nl() {
long num = 0;
int b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
private static void tr(Object... o) {
System.out.println(Arrays.deepToString(o));
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int INF32 = 1E9;
const long long INF64 = 4E18;
const long long M = 1E9 + 7;
const double EPS = 1E-9;
const double PI = 2 * acos(0);
vector<long long> suffix_sum(1E6);
bool cmp_v(pair<long long, long long> a, pair<long long, long long> b) {
return (a.second < b.second);
}
long long solve(vector<pair<long long, long long> >& points, int start,
int end) {
if ((end - start) == 1) return 0;
int mid = (start + end) / 2;
long long d1 = solve(points, start, mid);
long long d2 = solve(points, mid, end);
sort(points.begin() + mid, points.begin() + end, cmp_v);
for (int i = end - 1; i >= mid; --i) {
suffix_sum[i] = points[i].first;
if (i != end - 1) suffix_sum[i] += suffix_sum[i + 1];
}
long long d = 0;
for (int i = start; i < mid; ++i) {
int p = lower_bound(points.begin() + mid, points.begin() + end, points[i],
cmp_v) -
points.begin();
d += suffix_sum[p];
d -= (end - p) * points[i].first;
}
return d1 + d2 + d;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(NULL);
int n;
cin >> n;
vector<pair<long long, long long> > points(n);
for (int i = 0; i < n; ++i) {
cin >> points[i].first;
}
for (int i = 0; i < n; ++i) {
cin >> points[i].second;
}
sort(points.begin(), points.end());
cout << solve(points, 0, n) << '\n';
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long gcd(long long x, long long y) {
if (!y) return x;
return gcd(y, x % y);
}
const long long MOD = 1e9 + 7;
int inf = 1e9 + 7;
long long INF = 2e18 + 9;
long long power(long long x, long long y) {
long long res = 1ll;
x %= MOD;
if (x == 0) return 0;
while (y > 0) {
if (y & 1) res = (res * x) % MOD;
y = y >> 1ll;
x = (x * x) % MOD;
}
return res;
}
long long inv(long long x) {
long long r = 1ll, t = x, k = MOD - 2ll;
while (k) {
if (k & 1ll) r = (long long)r * t % MOD;
t = (long long)t * t % MOD;
k >>= 1;
}
return r;
}
bool isPrime(long long x) {
if (x == 1) return false;
for (long long i = 2; i * i <= x; i++) {
if (x % i == 0) return false;
}
return true;
}
const int nax = 5e5 + 13;
void prep() {}
void solve() {}
vector<long long> fenwick[2];
int n;
void add(int pos, long long val, int ind) {
pos++;
while (pos <= n) {
fenwick[ind][pos] += val;
pos += pos & (-pos);
}
}
long long query(int pos, int ind) {
long long res = 0;
pos++;
while (pos) {
res += fenwick[ind][pos];
pos -= pos & (-pos);
}
return res;
}
void read() {
cin >> n;
vector<pair<int, int> > xv(n);
for (int i = 0; i < n; i++) {
cin >> xv[i].first;
}
for (int i = 0; i < n; i++) {
cin >> xv[i].second;
}
vector<int> tmp;
for (int i = 0; i < n; i++) tmp.push_back(xv[i].second);
sort(tmp.begin(), tmp.end());
auto it = unique(tmp.begin(), tmp.end());
tmp.resize(distance(tmp.begin(), it));
map<int, int> M;
for (int i = 0; i < tmp.size(); i++) {
M[tmp[i]] = i;
}
for (int i = 0; i < n; i++) {
xv[i].second = M[xv[i].second];
}
sort(xv.begin(), xv.end());
int N = n;
n = tmp.size();
fenwick[0].resize(n + 1);
fenwick[1].resize(n + 1);
for (auto& el : fenwick[0]) el = 0;
for (auto& el : fenwick[1]) el = 0;
long long res = 0;
for (int i = 0; i < N; i++) {
res += xv[i].first * query(xv[i].second, 0) - query(xv[i].second, 1);
add(xv[i].second, 1, 0);
add(xv[i].second, xv[i].first, 1);
}
cout << res << endl;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie();
cout.tie();
srand(time(NULL));
int T = 1;
prep();
for (int i = 1; i <= T; i++) {
read();
solve();
}
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const double pi = acos(-1);
const int N = 2e5 + 5, mod = 998244353, M = 1e7 + 7;
const long long MAX = 5e18;
int n;
pair<int, int> a[N];
long long ans;
struct BIT {
long long s[N][2], sum[2];
void init() {
memset(s, 0, sizeof s);
sum[0] = sum[1] = 0;
}
void add(int x, int v) {
while (x < N) {
s[x][0] += v;
s[x][1]++;
x += x & -x;
}
sum[0] += v;
sum[1]++;
}
pair<long long, long long> lSum(int x) {
pair<long long, long long> c = {0, 0};
while (x) {
c.first += s[x][0];
c.second += s[x][1];
x -= x & -x;
}
return c;
}
pair<long long, long long> rSum(int x) {
pair<long long, long long> ret = lSum(x - 1);
ret.first = sum[0] - ret.first;
ret.second = sum[1] - ret.second;
return ret;
}
} p, nz;
void compress() {
map<int, int> mp[2];
set<int> s[2];
for (int i = 0; i < n; i++) {
if (a[i].second > 0)
s[0].insert(a[i].second);
else
s[1].insert(-a[i].second);
}
for (int i = 0; i < 2; i++) {
int c = 1;
for (int j : s[i]) mp[i][j] = c++;
}
for (int i = 0; i < n; i++) {
if (a[i].second > 0)
a[i].second = mp[0][a[i].second];
else
a[i].second = -mp[1][-a[i].second];
}
}
void add(pair<int, int> x) {
pair<long long, long long> s;
if (x.second > 0) {
s = p.rSum(x.second);
ans += s.first - s.second * x.first;
p.add(x.second, x.first);
} else {
x.second *= -1;
s = p.rSum(1);
ans += s.first - s.second * x.first;
s = nz.lSum(x.second);
ans += s.first - s.second * x.first;
nz.add(x.second, x.first);
}
}
int main() {
p.init();
nz.init();
scanf("%d", &n);
for (int i = 0; i < n; i++) scanf("%d", &a[i].first);
for (int i = 0; i < n; i++) scanf("%d", &a[i].second);
sort(a, a + n);
compress();
for (int i = n - 1; i >= 0; i--) add(a[i]);
cout << ans;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MX = 4e5 + 7;
int n;
long long c[MX][2];
int v[MX];
struct p {
int x, v;
inline bool operator<(const p& w) const { return x < w.x; }
} a[MX];
inline int lowbit(int x) { return x & -x; }
void add(int pos, long long k) {
while (pos <= n) {
c[pos][0]++;
c[pos][1] += k;
pos += lowbit(pos);
}
}
long long sum(int pos, int k) {
long long res = 0;
while (pos) {
res += c[pos][k];
pos -= lowbit(pos);
}
return res;
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; ++i) scanf("%d", &a[i].x);
for (int i = 1; i <= n; ++i) scanf("%d", &a[i].v), v[i] = a[i].v;
sort(a + 1, a + 1 + n);
sort(v + 1, v + 1 + n);
int m = unique(v + 1, v + 1 + n) - v - 1;
long long res = 0;
for (int i = 1; i <= n; ++i) {
int pos = lower_bound(v + 1, v + 1 + m, a[i].v) - v;
res += a[i].x * sum(pos, 0) - sum(pos, 1);
add(pos, a[i].x);
}
printf("%lld\n", res);
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const long long N = 2e6 + 7;
const long long INF = 1e18;
long long n, k, q, st[N][2];
pair<long long, long long> p[N];
map<long long, bool> m;
bool comp(pair<long long, long long>& a, pair<long long, long long>& b) {
if (a.second == b.second) return a.first < b.first;
return a.second < b.second;
}
void compress() {
long long cnt = 0;
for (long long i = 1; i <= n; i++) {
cnt += (m[p[i].second] == 0);
m[p[i].second] = 1;
p[i].second = cnt;
}
}
void update(long long node, long long s, long long e, long long ind,
long long val, bool type) {
if (s == e) {
st[node][type] += val;
} else {
long long mid = s + (e - s) / 2;
if (ind <= mid) {
update(node * 2, s, mid, ind, val, type);
} else {
update(node * 2 + 1, mid + 1, e, ind, val, type);
}
st[node][type] = st[node * 2][type] + st[node * 2 + 1][type];
}
}
long long query(long long node, long long s, long long e, long long l,
long long r, bool type) {
if (s >= l && e <= r) {
return st[node][type];
}
if (s > r || e < l) {
return 0;
}
long long mid = s + (e - s) / 2;
return query(node * 2, s, mid, l, r, type) +
query(node * 2 + 1, mid + 1, e, l, r, type);
}
int32_t main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cin >> n;
for (long long i = 1; i <= n; i++) {
cin >> p[i].first;
}
for (long long i = 1; i <= n; i++) {
cin >> p[i].second;
}
sort(p + 1, p + n + 1, comp);
compress();
sort(p + 1, p + n + 1);
long long ans = 0;
for (long long i = 1; i <= n; i++) {
ans += p[i].first * query(1, 1, n, 1, p[i].second, 0) -
query(1, 1, n, 1, p[i].second, 1);
update(1, 1, n, p[i].second, 1, 0);
update(1, 1, n, p[i].second, p[i].first, 1);
}
cout << ans << endl;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int N = 200005;
struct {
int l, r;
long long sum;
long long cnt;
} A[N * 4];
pair<pair<long long, long long>, int> pt[N];
int n;
bool cmp(pair<pair<long long, long long>, int> x1,
pair<pair<long long, long long>, int> x2) {
return x1.first.first < x2.first.first;
}
bool cmp1(pair<pair<long long, long long>, int> x1,
pair<pair<long long, long long>, int> x2) {
if (x1.first.second == x2.first.second) {
return x1.first.first > x2.first.first;
}
return x1.first.second > x2.first.second;
}
void build(int rt, int l, int r) {
A[rt].l = l;
A[rt].r = r;
if (l != r) {
build(rt * 2, l, (l + r) / 2);
build(rt * 2 + 1, (l + r) / 2 + 1, r);
}
}
void update(int rt, int index, long long v) {
if (A[rt].l > index || A[rt].r < index) {
return;
}
if (A[rt].l == A[rt].r) {
A[rt].sum = v;
if (v == 0) {
A[rt].cnt = 0;
} else
A[rt].cnt = 1;
return;
} else {
update(rt * 2, index, v);
update(rt * 2 + 1, index, v);
A[rt].sum = A[rt * 2].sum + A[rt * 2 + 1].sum;
A[rt].cnt = A[rt * 2].cnt + A[rt * 2 + 1].cnt;
}
}
long long query(int rt, int l, int r) {
if (A[rt].l > r || A[rt].r < l) {
return 0;
}
if (A[rt].l >= l && A[rt].r <= r) {
return A[rt].sum;
}
return query(rt * 2, l, r) + query(rt * 2 + 1, l, r);
}
long long query2(int rt, int l, int r) {
if (A[rt].l > r || A[rt].r < l) {
return 0;
}
if (A[rt].l >= l && A[rt].r <= r) {
return A[rt].cnt;
}
return query2(rt * 2, l, r) + query2(rt * 2 + 1, l, r);
}
int main() {
ios::sync_with_stdio(false);
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> pt[i].first.first;
}
for (int i = 1; i <= n; i++) {
cin >> pt[i].first.second;
}
sort(pt + 1, pt + 1 + n, cmp);
build(1, 1, n);
for (int i = 1; i <= n; i++) {
pt[i].second = i;
update(1, i, pt[i].first.first);
}
sort(pt + 1, pt + 1 + n, cmp1);
long long ans = 0;
for (long long i = 1; i <= n; i++) {
ans += query2(1, 1, pt[i].second - 1) * pt[i].first.first -
query(1, 1, pt[i].second - 1);
update(1, pt[i].second, 0);
}
cout << ans;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
python3
|
import sys
input=sys.stdin.readline
def getsum(BITTree,i):
s = 0
while i > 0:
s += BITTree[i]
i -= (i & -i)
return(s)
def updatebit(BITTree , i ,v):
while i <= len(BITTree):
BITTree[i] += v
i += (i & -i)
#print(BITTree)
n=int(input())
x=[int(i) for i in input().split() if i!='\n']
v=[int(i) for i in input().split() if i!='\n']
for i in range(n):
v[i]=[v[i],i]
v.sort()
pos=dict()
store,prev=1,v[0][0]
for i in range(n):
if i>0:
if prev==v[i][0]:
pos[x[v[i][1]]]=store
else:
store+=1
pos[x[v[i][1]]]=store
prev=v[i][0]
else:
pos[x[v[i][1]]]=store
#print(pos)
sorte=sorted(pos.keys())
bit=[0]*(n+10)
ind=[0]*(n+10)
ans,count,diff=0,0,0
for i in range(len(sorte)):
#print(sort,pos)
count=getsum(bit,pos[sorte[i]])
diff=getsum(ind,pos[sorte[i]])
ans+=count*sorte[i]-diff
updatebit(bit,pos[sorte[i]],1)
updatebit(ind,pos[sorte[i]],sorte[i])
print(int(ans))
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ii = pair<int, int>;
constexpr int MAXN = 5 + 200000;
struct Bit {
ll b[MAXN];
Bit() { fill(b, b + MAXN, 0); }
void upd(int x, ll val) {
for (; x < MAXN; x += (x & -x)) b[x] += val;
}
ll query(int x) {
ll ans = 0LL;
for (; x; x -= (x & -x)) ans += b[x];
return ans;
}
};
ii a[MAXN];
namespace comp {
int v[MAXN];
void compress(ii arr[], int n, int BEG) {
for (int i = (int)0; i < (int)n; ++i) v[i] = arr[i].second;
sort(v, v + n);
int sz = unique(v, v + n) - v;
for (int i = (int)0; i < (int)n; ++i) {
arr[i].second = BEG + lower_bound(v, v + sz, arr[i].second) - v;
}
}
} // namespace comp
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
int n;
cin >> n;
for (int i = (int)0; i < (int)n; ++i) {
cin >> a[i].first;
}
for (int i = (int)0; i < (int)n; ++i) {
cin >> a[i].second;
}
sort(a, a + n,
[](const ii& p, const ii& q) -> bool { return p.first < q.first; });
ll tot = 0LL, pre = 0LL;
for (int i = (int)0; i < (int)n; ++i) {
tot += ((1LL * i * a[i].first) - pre);
pre += a[i].first;
}
comp::compress(a, n, 1);
Bit suma, cuenta;
ll ans = 0LL;
for (int i = n - 1; i >= 0; --i) {
ans += (suma.query(a[i].second - 1) -
1LL * cuenta.query(a[i].second - 1) * a[i].first);
suma.upd(a[i].second, a[i].first);
cuenta.upd(a[i].second, 1);
}
cout << tot - ans << '\n';
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int MAX_N = 100011;
const long long INF = (1 << 29) + 123;
const long long MOD = 1000000007;
const long double PI = 4 * atan((long double)1);
int fenw[2 * MAX_N];
int n;
void mod(int i, int v) {
while (i <= n) {
fenw[i] += v;
i += i & -i;
}
}
int query(int i) {
int sum = 0;
while (i > 0) {
sum += fenw[i];
i -= i & -i;
}
return sum;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin >> n;
vector<pair<int, int> > p;
int x[n], v[n];
for (int i = 0; i < n; i++) cin >> x[i];
for (int i = 0; i < n; i++) {
cin >> v[i];
p.push_back(make_pair(v[i], x[i]));
}
unordered_map<int, int> m;
int rev_map[n];
sort(x, x + n);
for (int i = 0; i < n; i++) {
m[x[i]] = i + 1;
rev_map[i] = x[i];
}
for (int i = 0; i < n; i++) {
p[i].second = m[p[i].second];
}
sort(p.begin(), p.end());
long long ans = 0;
for (int i = 0; i < n; i++) {
int q = query(p[i].second);
ans += 1LL * q * rev_map[p[i].second - 1];
ans -=
1LL * ((n - i - 1) - (p[i].second - 1 - q)) * rev_map[p[i].second - 1];
mod(p[i].second, 1);
}
cout << ans << endl;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 5;
struct nod {
long long x, v;
} a[maxn];
bool cmp(nod p, nod q) { return p.x < q.x; }
int L = 0, R = 2e8, rt = 0, tot = 0;
class dsegtree {
public:
struct dsegnode {
int l, r;
long long sum1, sum2;
} node[maxn * 50];
void pushup(int now) {
node[now].sum1 = node[node[now].l].sum1 + node[node[now].r].sum1;
node[now].sum2 = node[node[now].l].sum2 + node[node[now].r].sum2;
}
void update(int pos, int &now, int x, int l = L, int r = R) {
if (!now) now = ++tot;
if (l == r) {
node[now].sum1++;
node[now].sum2 += x;
return;
}
if (pos <= (l + r) / 2)
update(pos, node[now].l, x, l, (l + r) / 2);
else
update(pos, node[now].r, x, (l + r) / 2 + 1, r);
pushup(now);
}
pair<long long, long long> query(int s, int t, int now, int l = L,
int r = R) {
if (!now) return pair<long long, long long>(0, 0);
if (s <= l && r <= t)
return pair<long long, long long>(node[now].sum1, node[now].sum2);
pair<long long, long long> temp;
temp.first = temp.second = 0;
if ((l + r) / 2 >= s) {
pair<long long, long long> tmp = query(s, t, node[now].l, l, (l + r) / 2);
temp.first += tmp.first;
temp.second += tmp.second;
}
if ((l + r) / 2 + 1 <= t) {
pair<long long, long long> tmp =
query(s, t, node[now].r, (l + r) / 2 + 1, r);
temp.first += tmp.first;
temp.second += tmp.second;
}
return temp;
}
} tree;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin >> n;
for (int i = 1; i <= n; i++) cin >> a[i].x;
for (int i = 1; i <= n; i++) cin >> a[i].v;
sort(a + 1, a + n + 1, cmp);
long long res = 0, m = 1e8;
for (int i = 1; i <= n; i++) {
pair<long long, long long> temp = tree.query(L, a[i].v + m, rt);
res += a[i].x * temp.first - temp.second;
tree.update(a[i].v + m, rt, a[i].x);
}
cout << res << endl;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashMap;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.util.Map;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author htvu
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
FMovingPoints solver = new FMovingPoints();
solver.solve(1, in, out);
out.close();
}
static class FMovingPoints {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
Integer[] x = new Integer[n];
int[] v = new int[n];
long ans = 0;
Map<Integer, Integer> rank = new HashMap<>();
for (int i = 0; i < n; ++i) {
x[i] = in.nextInt();
}
for (int i = 0; i < n; ++i)
v[i] = in.nextInt();
Pair.IntPair[] ps = new Pair.IntPair[n];
for (int i = 0; i < n; ++i)
ps[i] = new Pair.IntPair(x[i], v[i]);
Arrays.sort(ps, (p1, p2) -> !p1.second.equals(p2.second) ? p1.second - p2.second : p1.first - p2.first);
Arrays.sort(x);
for (int i = 0; i < n; ++i) {
// add x[i] to pair sum
ans += (long) x[i] * (2 * i + 1 - n);
// record position of x[i]
rank.put(x[i], i);
}
for (int i = 0; i < n; ++i) {
ans -= (long) ps[i].first * (rank.get(ps[i].first) - i);
// ans -= x[i] * (i - rank.get(x[i]));
}
out.println(ans);
}
}
static class Pair<A extends Comparable<A>, B extends Comparable<B>> implements Comparable<Pair<A, B>> {
public A first;
public B second;
public Pair(A a, B b) {
this.first = a;
this.second = b;
}
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Pair<?, ?> pair = (Pair<?, ?>) o;
return first.equals(pair.first) &&
second.equals(pair.second);
}
public int hashCode() {
return (first == null ? 0 : first.hashCode()) ^
(second == null ? 0 : second.hashCode());
}
public String toString() {
return "{" + first + "," + second + '}';
}
public int compareTo(Pair<A, B> o) {
int c = first.compareTo(o.first);
if (c != 0) return c;
return second.compareTo(o.second);
}
public static class IntPair extends Pair<Integer, Integer> {
public IntPair(Integer integer, Integer integer2) {
super(integer, integer2);
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.util.Arrays;
import java.util.Scanner;
import java.util.Comparator;
public class kretanje {
private static long zbir(long[] arr,int some) {
long result=0;
while (some>=0) {
result+=arr[some];
some=(some&(some+1))-1;
}
return result;
}
private static void poslije (long[] qqq,int some,int vv) {
while (some<qqq.length) {
qqq[some]+=vv;
some=some|(some + 1);
}
}
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
int n=in.nextInt();
int[][] xx=new int[n][2];
int[][] yy=new int[n][2];
for (int i=0;i<n;i++)
xx[i][0]=in.nextInt();
for (int i=0;i<n;i++) {
xx[i][1]=in.nextInt();
yy[i][0]=xx[i][1];
yy[i][1]=i;
}
in.close();
Arrays.sort(yy, new Comparator<int[]>() {
public int compare(int[] a, int[] b) {
return a[0] - b[0];
}
});
int somm=0;
int[][] kraj=new int[n][2];
for (int i=0;i<n;i++) {
if (i>0 && yy[i][0]!=yy[i-1][0])
somm++;
kraj[i][0]=somm;
kraj[i][1]=yy[i][1];
}
Arrays.sort(kraj,new Comparator<int[]>() {
public int compare(int[] a,int[] b) {
return a[1]-b[1];
}});
for (int i=0; i<n;i++) {
xx[i][1] = kraj[i][0];
}
Arrays.sort(xx,new Comparator<int[]>() {
public int compare(int[] a,int[] b) {
return a[0]-b[0];
}});
long[] c=new long[n];
long[] sooom=new long[n];
long totalsum=0;
for (int i=0;i<n;i++) {
int some=xx[i][1];
totalsum+=zbir(sooom,some)*xx[i][0]-zbir(c,some);
poslije(sooom,some,1);
//System.out.println();
//System.out.println(totalsum);
//System.out.println();
//System.out.println("CRDT sum");
//for (int j=0;j<c.length;j++) {
//System.out.print(c[j]);
//}
poslije(c, some, xx[i][0]);
//System.out.println();
//System.out.println("Point sum");
//for (int j=0;j<sooom.length;j++) {
//System.out.print(sooom[j]);
//}
}
//System.out.println();
System.out.println(totalsum);
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.util.*;
/**
* Created by Acesine on 2/24/20.
*/
public class F {
static class BIT {
long[] arr;
int n;
public BIT(int n) {
this.n = n;
arr = new long[n+1];
}
public void update(int x, int v) {
x++;
while (x <= n) {
arr[x] += v;
x += x & (-x);
}
}
public long get(int x) {
x++;
long r = 0;
while (x > 0) {
r += arr[x];
x -= x & (-x);
}
return r;
}
}
static class Point {
int x;
int v;
public Point() {}
public Point(int x, int v) {
this.x = x;
this.v = v;
}
}
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int n = s.nextInt();
int[] x = new int[n];
for (int i=0;i<n;i++) x[i] = s.nextInt();
int[] v = new int[n];
for (int i=0;i<n;i++) v[i] = s.nextInt();
Point[] p = new Point[n];
Set<Integer> uniqV = new HashSet<>();
for (int i=0;i<n;i++) {
p[i] = new Point(x[i], v[i]);
uniqV.add(v[i]);
}
List<Integer> sortedV = new ArrayList<>(uniqV);
Collections.sort(sortedV);
Map<Integer, Integer> vmap = new HashMap<>();
for (int i=0;i<sortedV.size();i++) {
vmap.put(sortedV.get(i), i);
}
Arrays.sort(p, (p1, p2) -> p1.x - p2.x);
long ret = 0;
BIT vBit = new BIT(vmap.size());
BIT sumBit = new BIT(vmap.size());
for (Point pt : p) {
int pos = vmap.get(pt.v);
long cnt = vBit.get(pos);
long sum = sumBit.get(pos);
ret += cnt * pt.x - sum;
vBit.update(pos, 1);
sumBit.update(pos, pt.x);
}
System.out.println(ret);
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 2e5;
int N;
pair<long long, long long> A[MAXN + 10];
long long ans;
vector<long long> comp;
long long tree1[MAXN + 10];
void update1(int i, long long v) {
for (; i <= N; i += (i & -i)) tree1[i] += v;
}
long long query1(int i) {
long long ret = 0;
for (; i > 0; i -= (i & -i)) ret += tree1[i];
return ret;
}
long long tree2[MAXN + 10];
void update2(int i, long long v) {
for (; i <= N; i += (i & -i)) tree2[i] += v;
}
long long query2(int i) {
long long ret = 0;
for (; i > 0; i -= (i & -i)) ret += tree2[i];
return ret;
}
int main() {
int i, j;
scanf("%d", &N);
for (i = 1; i <= N; i++) scanf("%lld", &A[i].first);
for (i = 1; i <= N; i++)
scanf("%lld", &A[i].second), comp.push_back(A[i].second);
sort(A + 1, A + N + 1);
sort(comp.begin(), comp.end());
comp.erase(unique(comp.begin(), comp.end()), comp.end());
for (i = 1; i <= N; i++)
A[i].second =
lower_bound(comp.begin(), comp.end(), A[i].second) - comp.begin() + 1;
for (i = 1; i <= N; i++) {
ans += query2(A[i].second) * A[i].first - query1(A[i].second);
update1(A[i].second, A[i].first);
update2(A[i].second, 1);
}
printf("%lld\n", ans);
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
python3
|
import math
import bisect
class Fenwick:
def __init__(self, n):
self.data = [[0,0] for i in range(n)]
def update(self, pos, dist):
while pos<len(self.data):
self.data[pos][0] += 1
self.data[pos][1] += dist
pos = pos | (pos+1)
def query(self, pos):
ans = [0,0]
while pos > 0:
ans[0] += self.data[pos-1][0]
ans[1] += self.data[pos-1][1]
pos = pos & (pos-1)
return ans
def rints():
return list(map(int,input().split()))
n = int(input())
x = rints()
v = rints()
ascDist = list(range(n))
ascDist.sort(key=lambda i: x[i])
uniqueSpeeds = sorted(list(set(v)))
tree = Fenwick(len(uniqueSpeeds))
ans = 0
for i in ascDist:
speedId = bisect.bisect_left(uniqueSpeeds, v[i])
count, dsum = tree.query(speedId+1)
ans += count*x[i] - dsum
tree.update(speedId, x[i])
print(ans)
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long int ans = 0;
void merger(vector<pair<long long int, long long int> > &v, long long int l,
long long int mid, long long int r) {
long long int n1 = mid - l + 1, n2 = r - mid;
pair<long long int, long long int> larr[n1], rarr[n2];
long long int lsum[n1], rsum[n2];
for (long long int i = 0; i < n1; i++) larr[i] = v[l + i];
for (long long int i = n1 - 1; i >= 0; i--) {
if (i == n1 - 1)
lsum[i] = larr[i].first;
else
lsum[i] = lsum[i + 1] + larr[i].first;
}
for (long long int i = 0; i < n2; i++) rarr[i] = v[mid + i + 1];
for (long long int i = n2 - 1; i >= 0; i--) {
if (i == n2 - 1)
rsum[i] = rarr[i].first;
else
rsum[i] = rsum[i + 1] + rarr[i].first;
}
long long int i = 0, j = 0, k = l;
while (i < n1 && j < n2) {
if (larr[i].second <= rarr[j].second) {
v[k] = larr[i];
ans += rsum[j];
ans -= ((n2 - j) * (larr[i].first));
i++;
} else {
v[k] = rarr[j++];
}
k++;
}
while (i < n1) v[k++] = larr[i++];
while (j < n2) v[k++] = rarr[j++];
}
void msort(vector<pair<long long int, long long int> > &v, long long int l,
long long int r) {
if (l < r) {
long long int mid = l + (r - l) / 2;
msort(v, l, mid);
msort(v, mid + 1, r);
merger(v, l, mid, r);
}
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
long long int n;
cin >> n;
vector<pair<long long int, long long int> > v;
long long int a[n], b[n];
for (long long int i = 0; i < n; i++) cin >> a[i];
for (long long int i = 0; i < n; i++) cin >> b[i];
for (long long int i = 0; i < n; i++) v.push_back(make_pair(a[i], b[i]));
sort(v.begin(), v.end());
msort(v, 0, n - 1);
cout << ans;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 5;
int n, m, pos, v[N];
long long tot, s[N][2];
struct node {
long long x, v;
} a[N];
bool cmp(node x, node y) { return x.x < y.x; }
int lowbit(int x) { return x & (-x); }
void update(int x, int val) {
while (x <= n) {
s[x][0]++;
s[x][1] += val;
x += lowbit(x);
}
}
long long getsum(int x, int flag) {
long long res = 0;
while (x) {
res += s[x][flag];
x -= lowbit(x);
}
return res;
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%lld", &a[i].x);
for (int i = 1; i <= n; i++) {
scanf("%lld", &a[i].v);
v[i] = a[i].v;
}
sort(a + 1, a + n + 1, cmp);
sort(v + 1, v + n + 1);
m = unique(v + 1, v + n + 1) - v - 1;
for (int i = 1; i <= n; i++) {
pos = lower_bound(v + 1, v + m + 1, a[i].v) - v;
tot += getsum(pos, 0) * a[i].x - getsum(pos, 1);
update(pos, a[i].x);
}
printf("%lld", tot);
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long get(vector<long long> &f, int pos) {
long long res = 0;
for (; pos >= 0; pos = (pos & (pos + 1)) - 1) res += f[pos];
return res;
}
void upd(vector<long long> &f, int pos, int val) {
for (; pos < int(f.size()); pos |= pos + 1) {
f[pos] += val;
}
}
int main() {
int n;
cin >> n;
vector<pair<int, int>> p(n);
for (auto &pnt : p) cin >> pnt.first;
for (auto &pnt : p) cin >> pnt.second;
sort(p.begin(), p.end());
vector<int> vs;
for (auto &pnt : p) vs.push_back(pnt.second);
sort(vs.begin(), vs.end());
vs.resize(unique(vs.begin(), vs.end()) - vs.begin());
long long ans = 0;
vector<long long> cnt(vs.size()), xs(vs.size());
for (auto &pnt : p) {
int pos = lower_bound(vs.begin(), vs.end(), pnt.second) - vs.begin();
ans += get(cnt, pos) * 1ll * pnt.first - get(xs, pos);
upd(cnt, pos, 1);
upd(xs, pos, pnt.first);
}
cout << ans << endl;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.util.Scanner;
import java.util.Stack;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Comparator;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.FileWriter;
public class F{
// static final int max = 10000;
static class Pair{
int x;
int speed;
public String toString(){
return "[" + x + ", " + speed + "]";
}
}
static class FenvikTree{
long[] arr;
long[] T;
int size;
FenvikTree(int n){
size = n;
arr = new long[n];
T = new long[n];
}
public void add(int pos, int a){
arr[pos] += a;
while(pos < size){
T[pos] += a;
pos = pos | (pos+1);
}
}
public long sum(int pos){
if(pos < 0) return 0;
if(pos == 0) return T[0];
if(pos == 1) return T[1];
// System.out.println(pos + " " + ((pos&(pos+1))-1));
return T[pos] + sum((pos&(pos+1))-1);
}
}
public static void main(String[] args){
// File file = new File("a.in");
// Scanner in = new Scanner(file);
// int t = in.nextInt();
// StringBuilder str = new StringBuilder();
// for(int u = 0;u<t;++u){
Scanner in = new Scanner(System.in);
int n = in.nextInt();
Pair[] a = new Pair[n];
// long[] speed = new long[n];
HashMap<Integer,Integer> map= new HashMap<>();
for(int i = 0;i<n;++i){
a[i] = new Pair();
a[i].x = in.nextInt();
}
// int[] b= new int[n];
for(int i = 0;i<n;++i){
a[i].speed = in.nextInt();
// b[i] = a[i].speed;
}
Comparator<Pair> comp1 = new Comparator<Pair>(){
public int compare(Pair a, Pair b){
return Integer.compare(a.speed,b.speed);
}
};
Arrays.sort(a,comp1);
// System.out.println(Arrays.toString(b));
int count = 0;
for(int i = 0;i<n;++i){
if(map.get(a[i].speed) == null){
map.put(a[i].speed,count++);
}
a[i].speed = map.get(a[i].speed);
}
// }
Comparator<Pair> comp2 = new Comparator<Pair>(){
public int compare(Pair a, Pair b){
return (a.x == b.x) ? (Integer.compare(b.speed,a.speed)) : Integer.compare(a.x,b.x);
}
};
Arrays.sort(a,comp2);
// System.out.println(Arrays.toString(a));
FenvikTree fenvikCount = new FenvikTree(n);
FenvikTree fenvikSum = new FenvikTree(n);
fenvikCount.add(a[0].speed,1);
fenvikSum.add(a[0].speed,a[0].x);
long res = 0;
for(int i = 1;i<n;++i){
int cur = a[i].speed;
res += fenvikCount.sum(cur)*a[i].x - fenvikSum.sum(cur);
fenvikCount.add(cur,1);
fenvikSum.add(cur,a[i].x);
}
System.out.println(res);
// str.append(res + "\r\n");
// File fileo =new File("out2.txt");
// FileWriter out = new FileWriter(fileo);
// out.write(str.toString(),0,str.length());
// out.close();
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
struct OrderSet {
struct Trie {
int cnt;
int next[2];
Trie() {
memset(next, -1, sizeof(next));
cnt = 0;
}
};
vector<Trie*> trie;
OrderSet() {
auto u = new Trie();
trie.push_back(u);
}
bool find(int first) {
int cur = 0;
for (int i = 30; i >= 0; i--) {
auto u = ((first >> i) & 1);
if (trie[cur]->next[u] == -1)
return 0;
else
cur = trie[cur]->next[u];
}
return 1;
}
void insert(int first) {
int cur = 0;
trie[cur]->cnt++;
for (int i = 30; i >= 0; i--) {
auto u = ((first >> i) & 1);
if (trie[cur]->next[u] == -1) {
auto newTrie = new Trie();
trie.push_back(newTrie);
trie[cur]->next[u] = trie.size() - 1;
cur = trie[cur]->next[u];
} else {
cur = trie[cur]->next[u];
}
trie[cur]->cnt++;
}
}
void deletee(int first) {
int cur = 0;
trie[cur]->cnt--;
for (int i = 30; i >= 0; i--) {
auto u = ((first >> i) & 1);
int temp = trie[cur]->next[u];
if (trie[temp]->cnt == 1) trie[cur]->next[u] = -1;
cur = temp;
trie[cur]->cnt--;
}
}
int order_of_key(int first) {
int cur = 0;
int res = 0;
for (int i = 30; i >= 0; i--) {
auto u = ((first >> i) & 1);
if (u == 1 && trie[cur]->next[0] != -1) {
int temp = trie[cur]->next[0];
res += trie[temp]->cnt;
}
if (trie[cur]->next[u] == -1) return res;
cur = trie[cur]->next[u];
}
return res;
}
int find_by_order(int k) {
int cur = 0;
int res = 0;
if (trie[cur]->cnt < k) return -1;
for (int i = 30; i >= 0; i--) {
int temp = trie[cur]->next[0];
if (temp == -1) {
cur = trie[cur]->next[1];
res += (1 << i);
continue;
}
if (trie[temp]->cnt < k) {
k -= trie[temp]->cnt;
cur = trie[cur]->next[1];
res += (1 << i);
} else {
cur = trie[cur]->next[0];
}
}
return res;
}
} os;
pair<int, int> a[200005];
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n;
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> a[i].first;
}
for (int i = 1; i <= n; i++) {
cin >> a[i].second;
a[i].second += 2e8;
}
sort(a + 1, a + n + 1);
long long ans = 0;
map<int, int> cnt;
for (int i = 1; i <= n; i++) {
ans += 1LL * (os.order_of_key(a[i].second) + cnt[a[i].second]) * a[i].first;
os.insert(a[i].second);
cnt[a[i].second]++;
}
os = OrderSet();
for (int i = n; i >= 1; i--) {
ans -= 1LL * (n - i - os.order_of_key(a[i].second)) * a[i].first;
os.insert(a[i].second);
}
cout << ans;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long get(vector<long long> &f, int pos) {
long long res = 0;
for (; pos >= 0; pos = (pos & (pos + 1)) - 1) res += f[pos];
return res;
}
void upd(vector<long long> &f, int pos, int val) {
for (; pos < int(f.size()); pos |= pos + 1) {
f[pos] += val;
}
}
int main() {
int n;
cin >> n;
vector<pair<int, int>> p(n);
for (auto &pnt : p) cin >> pnt.first;
for (auto &pnt : p) cin >> pnt.second;
sort(p.begin(), p.end());
vector<int> vs;
for (auto &pnt : p) vs.push_back(pnt.second);
sort(vs.begin(), vs.end());
vs.resize(unique(vs.begin(), vs.end()) - vs.begin());
long long ans = 0;
vector<long long> cnt(vs.size()), xs(vs.size());
for (auto &pnt : p) {
int pos = lower_bound(vs.begin(), vs.end(), pnt.second) - vs.begin();
ans += get(cnt, pos) * 1ll * pnt.first - get(xs, pos);
upd(cnt, pos, 1);
upd(xs, pos, pnt.first);
}
cout << ans << endl;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.io.*;
import java.util.*;
public class Contest1 {
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////// /////////
//////// /////////
//////// HHHH HHHH EEEEEEEEEEEEE MMMM MMMM OOOOOO SSSSSSS EEEEEEEEEEEEE /////////
//////// HHHH HHHH EEEEEEEEEEEEE MMMMMM MMMMMM OOO OOO SSSS SSS EEEEEEEEEEEEE /////////
//////// HHHH HHHH EEEEE MMMM MMM MMM MMMM OOO OOO SSSS SSS EEEEE /////////
//////// HHHH HHHH EEEEE MMMM MMMMMM MMMM OOO OOO SSSS EEEEE /////////
//////// HHHH HHHH EEEEE MMMM MMMM OOO OOO SSSSSSS EEEEE /////////
//////// HHHHHHHHHHHHHHHH EEEEEEEEEEE MMMM MMMM OOO OOO SSSSSS EEEEEEEEEEE /////////
//////// HHHHHHHHHHHHHHHH EEEEEEEEEEE MMMM MMMM OOO OOO SSSSSSS EEEEEEEEEEE /////////
//////// HHHH HHHH EEEEE MMMM MMMM OOO OOO SSSS EEEEE /////////
//////// HHHH HHHH EEEEE MMMM MMMM OOO OOO SSS SSSS EEEEE /////////
//////// HHHH HHHH EEEEEEEEEEEEE MMMM MMMM OOO OOO SSS SSSS EEEEEEEEEEEEE /////////
//////// HHHH HHHH EEEEEEEEEEEEE MMMM MMMM OOOOOO SSSSSSS EEEEEEEEEEEEE /////////
//////// /////////
//////// /////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
static class Pair{
int v,s;
Pair(int a,int b)
{
v=a;
s=b;
}
}
public static void main(String[] args) throws IOException, InterruptedException {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
int[]a = new int[n];
for (int i =0;i<n;i++)a[i]=sc.nextInt();
Pair[]pairs= new Pair[n];
TreeSet<Integer>ts= new TreeSet<>();
for (int i =0;i<n;i++) {
pairs[i] = new Pair(a[i], sc.nextInt());
ts.add(pairs[i].s);
}
Arrays.sort(pairs,(x,y)->x.v-y.v);
ts.add((int)-1e9);
ts.add((int)1e9);
TreeMap<Integer,Integer>comp = new TreeMap<>();
while (!ts.isEmpty())comp.put(ts.pollFirst(),comp.size());
FenwickTree count = new FenwickTree(comp.size());
FenwickTree sum = new FenwickTree(comp.size());
long ans=0;
for (int i =0;i<n;i++){
int id = comp.get(pairs[i].s);
long c = count.rsq(id);
ans+=c*pairs[i].v-sum.rsq(id);
count.point_update(id,1);
sum.point_update(id,pairs[i].v);
}
pw.println(ans);
pw.flush();
}
static class FenwickTree { // one-based DS
int n;
long[] ft;
FenwickTree(int size) { n = size; ft = new long[n+1]; }
long rsq(int b) //O(log n)
{
long sum = 0;
while(b > 0) { sum += ft[b]; b -= b & -b;} //min?
return sum;
}
long rsq(int a, int b) { return rsq(b) - rsq(a-1); }
void point_update(int k, int val) //O(log n), update = increment
{
while(k <= n) { ft[k] += val; k += k & -k; } //min?
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int maxn = 4e5 + 1000;
pair<long long, long long> p[maxn];
vector<long long> v;
int getpos(long long V) {
return lower_bound(v.begin(), v.end(), V) - v.begin() + 1;
}
long long C[2][maxn];
void add(int x, long long K) {
while (0 < x && x < maxn) {
C[0][x] += 1;
C[1][x] += K;
x += (x) & (-x);
}
}
pair<long long, long long> getsum(int x) {
long long sum = 0;
int num = 0;
while (0 < x && x < maxn) {
num += C[0][x];
sum += C[1][x];
x -= (x) & (-x);
}
return pair<long long, long long>(num, sum);
}
int main() {
ios::sync_with_stdio(false);
int N;
cin >> N;
for (int i = 1; i <= N; i++) cin >> p[i].first;
for (int i = 1; i <= N; i++) cin >> p[i].second, v.push_back(p[i].second);
sort(p + 1, p + 1 + N);
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
long long ans = 0;
for (int i = 1; i <= N; i++) {
pair<long long, long long> s = getsum(getpos(p[i].second));
ans += s.first * p[i].first - s.second;
add(getpos(p[i].second), p[i].first);
}
cout << ans << endl;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
/* / フフ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ム
/ )\⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Y
(⠀⠀| ( ͡° ͜ʖ ͡°)⠀⌒(⠀ ノ
(⠀ ノ⌒ Y ⌒ヽ-く __/
| _⠀。ノ| ノ。 |/
(⠀ー '_人`ー ノ
⠀|\  ̄ _人'彡ノ
⠀ )\⠀⠀ 。⠀⠀ /
⠀⠀(\⠀ #⠀ /
⠀/⠀⠀⠀/ὣ====================D-
/⠀⠀⠀/⠀ \ \⠀⠀\
( (⠀)⠀⠀⠀⠀ ) ).⠀)
(⠀⠀)⠀⠀⠀⠀⠀( | /
|⠀ /⠀⠀⠀⠀⠀⠀ | /
[_] ⠀⠀⠀⠀⠀[___] */
// Main Code at the Bottom
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.BigInteger;
public class Main {
//Fast IO class
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
boolean env=System.getProperty("ONLINE_JUDGE") != null;
if(!env) {
try {
br=new BufferedReader(new FileReader("src\\input.txt"));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
else br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static long MOD=1000000000+7;
//Euclidean Algorithm
static long gcd(long A,long B){
return (B==0)?A:gcd(B,A%B);
}
//Modular Exponentiation
static long fastExpo(long x,long n){
if(n==0) return 1;
if((n&1)==0) return fastExpo((x*x)%MOD,n/2)%MOD;
return ((x%MOD)*fastExpo((x*x)%MOD,(n-1)/2))%MOD;
}
//Modular Inverse
static long inverse(long x) {
return fastExpo(x,MOD-2);
}
//Prime Number Algorithm
static boolean isPrime(long n){
if(n<=1) return false;
if(n<=3) return true;
if(n%2==0 || n%3==0) return false;
for(int i=5;i*i<=n;i+=6) if(n%i==0 || n%(i+2)==0) return false;
return true;
}
//Reverse an array
static void reverse(int arr[],int l,int r){
while(l<r) {
int tmp=arr[l];
arr[l++]=arr[r];
arr[r--]=tmp;
}
}
//Print array
static void print1d(int arr[]) {
out.println(Arrays.toString(arr));
}
static void print2d(int arr[][]) {
for(int a[]: arr) out.println(Arrays.toString(a));
}
// Pair
static class pair{
long x,y;
pair(long a,long b){
this.x=a;
this.y=b;
}
public boolean equals(Object obj) {
if(obj == null || obj.getClass()!= this.getClass()) return false;
pair p = (pair) obj;
return (this.x==p.x && this.y==p.y);
}
public int hashCode() {
return Objects.hash(x,y);
}
}
static FastReader sc=new FastReader();
static PrintWriter out=new PrintWriter(System.out);
//Main function(The main code starts from here)
static int N=200000;
static pair bit[]=new pair[N+1];
static void add(int idx,long val) {
while(idx<=N) {
bit[idx].x++;
bit[idx].y+=val;
idx+=idx&-idx;
}
}
static pair sum(int idx) {
pair res=new pair(0,0);
while(idx>0) {
res.x+=bit[idx].x;
res.y+=bit[idx].y;
idx-=idx&-idx;
}
return res;
}
public static void main (String[] args) throws java.lang.Exception {
int test;
test=1;
//test=sc.nextInt();
while(test-->0){
for(int i=0;i<=N;i++) bit[i]=new pair(0,0);
int n=sc.nextInt();
pair a[]=new pair[n];
for(int i=0;i<n;i++) a[i]=new pair(sc.nextLong(),-1);
HashMap<Long,Integer> map=new HashMap<>();
TreeSet<Long> set=new TreeSet<>();
for(int i=0;i<n;i++) {
a[i].y=sc.nextLong();
set.add(a[i].y);
}
Arrays.parallelSort(a,(p1,p2)->(int)(p1.x-p2.x));
int idx=1;
for(Long x: set) map.put(x,idx++);
long ans=0;
for(int i=n-1;i>=0;i--) {
idx=map.get(a[i].y);
long val=a[i].x;
pair r=sum(N),l=sum(idx-1);
long x=r.y-l.y,y=r.x-l.x;
ans+=x-val*y;
add(idx,val);
}
out.println(ans);
}
out.flush();
out.close();
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const long long maxn = 2e5 + 10;
const long long maxX = 2e8 + 10;
long long n;
long long sz = 1;
pair<long long, long long> p[maxn];
long long segsum[25 * maxn];
long long segtedad[25 * maxn];
long long L[25 * maxn];
long long R[25 * maxn];
long long ans;
void in();
void solve();
void add(long long id, long long l, long long r, long long idx, long long v);
pair<long long, long long> get(long long id, long long l, long long r,
long long L, long long R);
void out();
int main() {
in();
solve();
out();
}
void in() {
ios::sync_with_stdio(false);
cout.tie(0);
cin.tie(0);
cin >> n;
for (long long i = 0; i < n; i++) cin >> p[i].first;
for (long long i = 0; i < n; i++) cin >> p[i].second;
for (long long i = 0; i < n; i++) p[i].second += 1e8;
}
void solve() {
sort(p, p + n);
for (long long i = 0; i < n; i++) {
pair<long long, long long> wow = get(0, 0, maxX, 0, p[i].second + 1);
add(0, 0, maxX, p[i].second, p[i].first);
ans += p[i].first * wow.second - wow.first;
}
}
void add(long long id, long long l, long long r, long long idx, long long v) {
if (r - l == 1) {
segsum[id] += v;
segtedad[id]++;
return;
}
long long mid = (l + r) >> 1;
if (L[id] == 0) {
L[id] = sz++;
R[id] = sz++;
}
if (idx < mid)
add(L[id], l, mid, idx, v);
else
add(R[id], mid, r, idx, v);
segtedad[id] = segtedad[L[id]] + segtedad[R[id]];
segsum[id] = segsum[L[id]] + segsum[R[id]];
}
pair<long long, long long> get(long long id, long long l, long long r,
long long second, long long e) {
if (r <= second || e <= l) return {0, 0};
if (second <= l && r <= e) return {segsum[id], segtedad[id]};
long long mid = (l + r) >> 1;
if (L[id] == 0) {
L[id] = sz++;
R[id] = sz++;
}
auto a = get(L[id], l, mid, second, e);
auto b = get(R[id], mid, r, second, e);
a.first += b.first;
a.second += b.second;
return a;
}
void out() { cout << ans; }
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const long long INF = 1e9 + 7;
const int N = 3e5 + 10;
void init(vector<pair<int, int>>& vp) {
vector<int> v;
for (auto& p : vp) v.push_back(p.second);
sort(v.begin(), v.end());
for (auto& p : vp) {
p.second = lower_bound(v.begin(), v.end(), p.second) - v.begin() + 1;
}
}
class BIT {
public:
long long a[N];
void add(int x, long long val) {
while (x < N) {
a[x] += val;
x += x & -x;
}
}
long long sum(int x) {
long long ret = 0;
while (x) {
ret += a[x];
x -= x & -x;
}
return ret;
}
} b1, b2;
int main() {
int n;
scanf("%d", &n);
vector<pair<int, int>> vp(n);
for (auto& p : vp) scanf("%d", &p.first);
for (auto& p : vp) scanf("%d", &p.second);
init(vp);
long long ans = 0;
sort(vp.begin(), vp.end());
for (auto& p : vp) {
b1.add(p.second, 1);
b2.add(p.second, p.first);
ans += b1.sum(p.second) * p.first - b2.sum(p.second);
}
printf("%lld\n", ans);
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 5;
const int M = 2e3 + 5;
const int mod = 1e9 + 7;
const double eps = 1e-8;
const double pi = acos(-1);
template <class T>
inline void read(T &x) {
char c;
x = 1;
while ((c = getchar()) < '0' || c > '9')
if (c == '-') x = -1;
T res = c - '0';
while ((c = getchar()) >= '0' && c <= '9') res = res * 10 + c - '0';
x *= res;
}
int n, m;
char str[N];
long long f[N][2];
int lowbit(int x) { return x & (-x); }
long long get(int pos, int type) {
long long res = 0;
while (pos) {
res += f[pos][type];
pos -= lowbit(pos);
}
return res;
}
void update(int pos, int v) {
while (pos <= m) {
f[pos][0]++;
f[pos][1] += v;
pos += lowbit(pos);
}
}
void solve() {
read(n);
vector<pair<int, int> > p(n);
for (pair<int, int> &pp : p) read(pp.first);
for (pair<int, int> &pp : p) read(pp.second);
sort(p.begin(), p.end());
vector<int> v;
for (pair<int, int> &pp : p) v.push_back(pp.second);
sort(v.begin(), v.end());
v.resize(unique(v.begin(), v.end()) - v.begin());
m = v.size();
long long ans = 0;
for (pair<int, int> &pp : p) {
int pos = lower_bound(v.begin(), v.end(), pp.second) - v.begin();
long long cnt = get(pos + 1, 0), sum = get(pos + 1, 1);
ans += cnt * pp.first - sum;
update(pos + 1, pp.first);
}
cout << ans << endl;
}
int main() {
int t;
t = 1;
while (t--) {
solve();
}
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 5;
int bit[N];
void add(int p, int v) {
for (p += 2; p < N; p += p & -p) bit[p] += v;
}
long long query(int p) {
int r = 0;
for (p += 2; p; p -= p & -p) r += bit[p];
return r;
}
int n;
pair<int, int> p[N];
long long l[N], r[N];
int ql[N], qr[N];
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cin >> n;
for (int i = 1; i <= n; i++) cin >> p[i].second;
for (int i = 1; i <= n; i++) cin >> p[i].first;
sort(p + 1, p + n + 1);
map<int, int> id;
int cnt = 0, last = 0x3f3f3f3f;
for (int i = 1; i <= n; i++) {
int v = p[i].first;
if (v != last) id[v] = ++cnt, last = v;
swap(p[i].first, p[i].second);
}
sort(p + 1, p + n + 1);
long long ans = 0;
for (int i = 1; i <= n; i++) {
long long x = p[i].first, v = id[p[i].second];
ans += query(v) * x;
add(v, 1);
}
memset(bit, 0, sizeof(bit));
for (int i = n; i >= 1; i--) {
long long x = p[i].first, v = id[p[i].second];
ans -= (query(n) - query(v - 1)) * x;
add(v, 1);
}
cout << ans << '\n';
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long int g[800010][2];
void up(int l, int r, int n, int x, int i, long long int val) {
if (l == r) {
g[n][i] = val;
} else {
int mid = (l + r) / 2;
if (x <= mid && x >= l)
up(l, mid, 2 * n, x, i, val);
else
up(mid + 1, r, 2 * n + 1, x, i, val);
g[n][i] = g[2 * n][i] + g[2 * n + 1][i];
}
return;
}
long long int q(int l, int r, int n, int st, int en, int i) {
if (en == 0) return 0;
if (st <= l && r <= en) {
return g[n][i];
} else if (r < st || en < l)
return 0;
else {
int mid = (l + r) / 2;
return (q(l, mid, 2 * n, st, en, i) + q(mid + 1, r, 2 * n + 1, st, en, i));
}
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
int n;
cin >> n;
vector<pair<long long int, long long int> > v(n);
vector<int> x(n);
map<int, int> m;
for (int i = 0; i < n; i++) {
cin >> v[i].second;
x[i] = v[i].second;
}
for (int i = 0; i < n; i++) cin >> v[i].first;
sort(x.begin(), x.end());
for (int i = 0; i < x.size(); i++) {
m[x[i]] = i + 1;
}
sort(v.begin(), v.end());
long long int ans = 0;
for (int i = 0; i < n; i++) {
long long int z = q(1, n, 1, 1, m[v[i].second], 0);
long long int z1 = q(1, n, 1, 1, m[v[i].second], 1);
ans += (v[i].second * z1 - z);
up(1, n, 1, m[v[i].second], 0, v[i].second);
up(1, n, 1, m[v[i].second], 1, 1);
}
cout << ans;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
#pragma comment(linker, "/stack:200000000")
#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math,-O3")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
using namespace std;
const int oo = 2e9;
const long long OO = 4e18;
const int md = 0x3b800001;
const int MD = 1e9 + 7;
inline long long time() {
return chrono ::system_clock().now().time_since_epoch().count();
}
mt19937 rnd(time());
mt19937_64 RND(time());
template <typename t>
inline void umin(t &a, t b) {
a = min(a, b);
}
template <typename t>
inline void umax(t &a, t b) {
a = max(a, b);
}
const int N = 2e5 + 228;
int n, x[N], v[N], p[N], s[N];
int f0[N];
int gf0(int i) {
int ans = 0;
for (i = s[i] + 1; i; i -= i & -i) ans += f0[i];
return ans;
}
void uf0(int i, int v) {
for (i = s[i] + 1; i < N; i += i & -i) f0[i] += v;
}
long long f1[N];
long long gf1(int i) {
long long ans = 0;
for (i = s[i] + 1; i; i -= i & -i) ans += f1[i];
return ans;
}
void uf1(int i, long long v) {
for (i = s[i] + 1; i < N; i += i & -i) f1[i] += v;
}
void solve() {
cin >> n;
for (int i = 0; i < n; ++i) cin >> x[i];
for (int i = 0; i < n; ++i) cin >> v[i], p[i] = i;
sort(p, p + n, [&](int a, int b) { return x[a] < x[b]; });
for (int i = 0; i < n; ++i) s[p[i]] = i;
sort(p, p + n,
[&](int a, int b) { return v[a] == v[b] ? x[a] < x[b] : v[a] < v[b]; });
memset(f0, 0, sizeof f0);
memset(f1, 0, sizeof f1);
long long ans = 0;
for (int j = 0; j < n; ++j) {
int i = p[j];
ans += 1ll * gf0(i) * x[i] - gf1(i);
uf0(i, 1);
uf1(i, x[i]);
}
cout << ans << endl;
}
int main() {
ios_base ::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
solve();
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.io.*;
import java.util.*;
import java.lang.*;
import java.math.*;
public class Main extends Thread {
boolean[] prime;
FastScanner sc;
PrintWriter pw;
long startTime = System.currentTimeMillis();
final class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
e.printStackTrace();
}
}
public long nlo() {
return Long.parseLong(next());
}
public String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
e.printStackTrace();
}
return st.nextToken();
}
public int ni() {
return Integer.parseInt(next());
}
public String nli() {
String line = "";
if (st.hasMoreTokens()) line = st.nextToken();
else try {
return br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
while (st.hasMoreTokens()) line += " " + st.nextToken();
return line;
}
public double nd() {
return Double.parseDouble(next());
}
}
public Main(ThreadGroup t,Runnable r,String s,long d )
{
super(t,r,s,d);
}
public void run()
{
sc=new FastScanner();
pw=new PrintWriter(System.out);
solve();
pw.flush();
pw.close();
}
public static void main(String[] args)
{
new Main(null,null,"",1<<26).start();
}
/////////////------------------------------------//////////////
////////////------------------Main-Logic--------//////////////
///////////-------------------------------------//////////////
public static class Pair implements Comparable<Pair>{
long x;
long v;
Pair(long a)
{
x=a;
}
public int compareTo(Pair b)
{
long p=x-b.x;
if(p<=0)
return -1;
return 1;
}
}
public void solve() {
int t=1;
while(t-->0)
{
ArrayList<Pair> list =new ArrayList<Pair>();
int n=sc.ni();
for(int i=0;i<n;i++)
list.add(new Pair(sc.nlo()));
TreeSet<Long> lrr=new TreeSet();
for(Pair p:list)
{long x=sc.nlo();p.v=x;lrr.add(x);}
Collections.sort(list);
HashMap<Long,Integer> map=new HashMap();
int k=0;
while(lrr.size()>0)
{
long p=lrr.first();
map.put(p,k++);
lrr.remove(p);
}
long[] seg=new long[4*k+1];
long[] seg1=new long[4*k+1];
update(list.get(n-1).x,map.get(list.get(n-1).v),1,seg,0,k-1);
update(1,map.get(list.get(n-1).v),1,seg1,0,k-1);
long ans=0;
for(int i=n-2;i>=0;i--)
{
int x=map.get(list.get(i).v);
long y=query(x,k-1,1,seg,0,k-1);
long z=query(x,k-1,1,seg1,0,k-1);
ans+=(y-(z*list.get(i).x));
update(list.get(i).x,x,1,seg,0,k-1);
update(1,x,1,seg1,0,k-1);
}
pw.println(ans);
}
}
public static void update(long x,int p,int ind,long[] seg,int s,int e)
{
if(p<s||p>e)
return;
if((s==e)&&(p==s))
seg[ind]+=x;
else {
if(p<=(s+e)/2)
update(x,p,2*ind,seg,s,(e+s)/2);
else
update(x,p,2*ind+1,seg,(s+e)/2+1,e);
seg[ind]=seg[2*ind]+seg[2*ind+1];
}
}
public static long query(int qs,int qe,int ind,long[] seg,int s,int e)
{
if(s>qe||e<qs)
return 0;
if((qs<=s)&&(qe>=e))
return seg[ind];
return query(qs,qe,2*ind,seg,s,(s+e)/2)+query(qs,qe,2*ind+1,seg,(s+e)/2+1,e);
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.util.*;
public class Solution {
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
int n=in.nextInt();
int p[][]=new int[n][2];
for (int i=0; i<n; i++)
p[i][0]=in.nextInt();
HashSet<Integer> set=new HashSet<>();
for(int i=0; i<n; i++) {
p[i][1]=in.nextInt();
set.add(p[i][1]);
}
ArrayList<Integer> list=new ArrayList<>(set);
Collections.sort(list);
HashMap<Integer, Integer> map=new HashMap<>();
for(int i=0; i<list.size(); i++)
map.put(list.get(i), i);
for(int i=0; i<n; i++)
p[i][1]=map.get(p[i][1]);
Arrays.sort(p, (p1, p2)->{
return p1[0]-p2[0];
});
System.out.println(solve(p, n));
}
public static void set(long arr[], int index, int value) {
for(; index<arr.length; index=index|(index+1))
arr[index]+=value;
}
public static long get(long arr[], int index) {
long sum=0L;
for(; index>=0; index=(index&(index+1))-1)
sum+=arr[index];
return sum;
}
public static long solve(int p[][], int n) {
long bitx[]=new long[n];
long bity[]=new long[n];
long ans=0L;
for(int i=0; i<n; i++) {
ans+=get(bitx, p[i][1])*p[i][0]-get(bity, p[i][1]);
set(bitx, p[i][1], 1);
set(bity, p[i][1], p[i][0]);
// System.out.println(Arrays.toString(p[i])+" "+Arrays.toString(bitx)+" "+Arrays.toString(bity)+" "+ans);
}
return ans;
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
python3
|
''' Hey stalker :) '''
INF = 10 ** 10
def main():
#print = out.append
''' Cook your dish here! '''
n = get_int()
points = get_list()
speeds = get_list()
point_indexes = dict()
sorted_indexes = dict()
for i, ele in enumerate(points):
point_indexes[ele] = i
for i, ele in enumerate(sorted(points)):
sorted_indexes[ele] = i
points.sort(reverse = True)
points.sort(key=lambda x: speeds[point_indexes[x]], reverse = True)
stree = SegTreeSum(n)
scount = SegTreeSum(n)
res = 0
#print(points, point_indexes, sorted_indexes)
for i in points:
index = sorted_indexes[i]
res += stree.query(index, n-1) - i*scount.query(index, n-1)
stree.modify(index, i)
scount.modify(index, 1)
#print(res)
print(res)
class SegTreeSum:
def __init__(self, size):
self.n = 1 << size.bit_length()
self.li = [0]*(self.n<<1)
def modify(self, index, ele):
index += self.n
self.li[index] = ele
while index>1:
self.li[index>>1] = self.li[index] + self.li[index^1]
index >>= 1
def get(self, index):
return self.li[self.n + index]
def query(self, l, r):
#print('L - ', l, 'R - ',r)
#[print(i, self.li[i]) for i in range(len(self.li))]
res = 0
l, r = l+self.n, r+self.n
while l<=r:
#print(l, r)
if l&1==1: res += self.li[l]
if r&1!=1: res += self.li[r]
l = (l+1)>>1
r = (r-1)>>1
return res
''' Pythonista fLite 1.1 '''
import sys
from collections import defaultdict, Counter, deque
# from bisect import bisect_left, bisect_right
# from functools import reduce
# import math
input = iter(sys.stdin.buffer.read().decode().splitlines()).__next__
out = []
get_int = lambda: int(input())
get_list = lambda: list(map(int, input().split()))
main()
#[main() for _ in range(int(input()))]
print(*out, sep='\n')
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
// package codeforce.Training1900;
import java.io.PrintWriter;
import java.util.*;
public class MovingPoints {
// well this segment tree only can do range query and point update, so if you want range update, please go to lazy segment tree
static class SegTree {
private int N;
// Let UNIQUE be a value which does NOT
// and will not appear in the segment tree
private long UNIQUE = 0;
// Segment tree values
private long[] tree;
public SegTree(int size) {
tree = new long[2 * (N = size)];
java.util.Arrays.fill(tree, UNIQUE);
}
public SegTree(long[] values) {
this(values.length);
for (int i = 0; i < N; i++) modify(i, values[i]);
}
// This is the segment tree function we are using for queries.
// The function must be an associative function, meaning
// the following property must hold: f(f(a,b),c) = f(a,f(b,c)).
// Common associative functions used with segment trees
// include: min, max, sum, product, GCD, and etc...
private long function(long a, long b) {
if (a == UNIQUE) return b;
else if (b == UNIQUE) return a;
return a + b; // sum over a range
//return (a > b) ? a : b; // maximum value over a range
//return (a < b) ? a : b; // minimum value over a range
// return a * b; // product over a range (watch out for overflow!)
}
// Adjust point i by a value, O(log(n))
public void modify(int i, long value) {
//tree[i + N] = function(tree[i + N], value);
tree[i + N] = value;
for (i += N; i > 1; i >>= 1) {
tree[i >> 1] = function(tree[i], tree[i ^ 1]);
}
}
// Query interval [l, r), O(log(n)) ----> notice the exclusion of r
public long query(int l, int r) {
long res = UNIQUE;
for (l += N, r += N; l < r; l >>= 1, r >>= 1) {
if ((l & 1) != 0) res = function(res, tree[l++]);
if ((r & 1) != 0) res = function(res, tree[--r]);
}
if (res == UNIQUE) {
//throw new IllegalStateException("UNIQUE should not be the return value.");
return 0;
}
return res;
}
}
// MUST SEE BEFORE SUBMISSION
// check whether int part would overflow or not, especially when it is a * b!!!!
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
// int t = sc.nextInt();
int t = 1;
for (int i = 0; i < t; i++) {
solve(sc, pw);
}
pw.close();
}
static long maxRight = Integer.MAX_VALUE;
static void solve(Scanner in, PrintWriter out){
int n = in.nextInt();
int[][] arr = new int[n][2];
for (int i = 0; i < n; i++) {
arr[i][0] = in.nextInt();
}
for (int i = 0; i < n; i++) {
arr[i][1] = in.nextInt();
}
LinkedList<int[]> rev = new LinkedList<>();
LinkedList<int[]> ok = new LinkedList<>();
long ans = 0;
for (int i = 0; i < n; i++) {
if (arr[i][1] < 0){
rev.add(new int[]{-arr[i][0], -arr[i][1]});
}else{
ok.add(arr[i]);
}
}
ans = sameDirection(rev) + sameDirection(ok);
LinkedList<int[]> qs = new LinkedList<>();
LinkedList<int[]> ql = new LinkedList<>();
for (int i = 0; i < n; i++) {
if (arr[i][1] < 0){
qs.add(arr[i]);
}else{
ql.add(arr[i]);
}
}
ans += differenDirection(qs, ql);
out.println(ans);
}
static long sameDirection(LinkedList<int[]> q){
long ans = 0;
int n = q.size();
SegTree sg = new SegTree(n + 5);
SegTree ct = new SegTree(n + 5);
List<int[]> qq = new ArrayList<>();
Collections.sort(q, (a, b) -> (a[0] - b[0]));
for (int i = 0; i < n; i++) {
int[] fk = q.poll();
qq.add(new int[]{fk[0], fk[1], i});
}
Collections.sort(qq, (a, b) -> (a[1] - b[1]));
for(int[] arr : qq){
int pos = arr[0], idx = arr[2];
long get = sg.query(0, idx);
long tot = ct.query(0, idx);
ans += (get - (maxRight - pos) * tot);
sg.modify(idx, maxRight - pos);
ct.modify(idx, 1);
}
return ans;
}
static long differenDirection(LinkedList<int[]> qs, LinkedList<int[]> ql){
Collections.sort(qs, (a, b) -> (a[0] - b[0]));
Collections.sort(ql, (a, b) -> (a[0] - b[0]));
long ans = 0;
int cnt = 0;
long pre = 0;
while (ql.size() > 0){
int[] shit = ql.poll();
int pos = shit[0];
while (qs.size() > 0 && qs.peek()[0] < pos){
int[] get = qs.poll();
cnt++;
pre += (maxRight - get[0]);
}
ans += (pre - cnt * (maxRight - pos));
}
return ans;
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.util.*;
import java.io.*;
import java.lang.reflect.Array;
public class template {
final static int MOD = 1000000007;
final static int intMax = 1000000000;
final static int intMin = -1000000000;
final static int[] DX = { 0, 0, -1, 1 };
final static int[] DY = { -1, 1, 0, 0 };
static int T;
static class Reader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException {
byte[] buf = new byte[360]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
if (din == null)
return;
din.close();
}
}
public static void main(String[] args) throws Exception {
Reader in = new Reader();
int n = in.nextInt();
int[] x = new int[n];
int[] v = new int[n];
for(int i = 0; i < n; ++i) {
x[i] = in.nextInt();
}
for(int i = 0; i < n; ++i) {
v[i] = in.nextInt();
}
p[] points = new p[n];
for(int i = 0; i < n; ++i) {
points[i] = new p(x[i], v[i]);
}
Arrays.sort(points, (a, b) -> a.x - b.x);
for(int i = 0; i < n; ++i) {
points[i].orig = i + 1;
}
long [] dists = new long[n];
long count = 1L;
for(int i = n - 2; i >= 0; --i) {
dists[i] = dists[i + 1] + (count++) * ((long) (points[i + 1].x - points[i].x));
}
long tot = 0;
for(int i = 0; i < n; ++i) {
tot += dists[i];
}
BinaryIndexedTree num = new BinaryIndexedTree(n);
BinaryIndexedTree inds = new BinaryIndexedTree(n);
Arrays.sort(points, (a, b) -> a.v == b.v ? b.orig - a.orig : b.v - a.v);
for(int i = 0; i < n; ++i) {
long amt = num.query(points[i].orig);
long totinds = inds.query(points[i].orig);
tot -= amt * ((long)points[i].x) - totinds;
num.update(points[i].orig, 1);
inds.update(points[i].orig, points[i].x);
}
System.out.println(tot);
in.close();
}
static class p{
int x, v, orig;
p(int xi, int vi){
x = xi; v = vi;
}
}
static class BinaryIndexedTree {
public long[] tree;
public BinaryIndexedTree(int n) {
tree = new long[n+5];
}
public void update(int index, int val) {
index++;
while(index < tree.length) {
tree[index] += (long) val;
index += index & -index;
}
}
//sum from 0 to index
public long query(int index) {
long ret = 0;
index++;
while(index > 0) {
ret += tree[index];
index -= index & -index;
}
return ret;
}
//sum from a to b
public long query(int a, int b) {
return query(b)-query(a-1);
}
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
template <typename C>
class fenwick {
vector<C> t;
int n;
public:
fenwick(int _n) : n(_n) { t.resize(n); }
fenwick(const vector<C>& a) : n(a.size()) {
t.resize(n);
for (int i = 0; i < n; ++i) {
upd(i, a[i]);
}
}
C get(int k) {
C res = 0;
for (k; k >= 0; k = (k & (k + 1)) - 1) {
res += t[k];
}
return res;
}
void upd(int k, C x) {
for (k; k < n; k |= k + 1) {
t[k] += x;
}
}
C get(int l, int r) { return get(r) - get(l - 1); }
};
int main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int n;
cin >> n;
vector<int> x(n), v(n);
for (int i = 0; i < n; ++i) {
cin >> x[i];
}
map<int, int> mapchik;
for (int i = 0; i < n; ++i) {
cin >> v[i];
mapchik[v[i]] = 1;
}
int sz = 0;
for (auto& [a, b] : mapchik) {
b = sz++;
}
for (int i = 0; i < n; ++i) {
v[i] = mapchik[v[i]];
}
vector<int> ord(n);
iota(ord.begin(), ord.end(), 0);
sort(ord.begin(), ord.end(), [&](int i, int j) { return x[i] < x[j]; });
long long ans = 0;
fenwick<int> cnt(sz);
fenwick<long long> sum(sz);
for (int i : ord) {
ans += 1ll * cnt.get(0, v[i]) * x[i] - sum.get(0, v[i]);
cnt.upd(v[i], 1);
sum.upd(v[i], x[i]);
}
cout << ans;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
vector<long long> x, v;
int idX(int val) { return (lower_bound(x.begin(), x.end(), val) - x.begin()); }
int idV(int val) { return (lower_bound(v.begin(), v.end(), val) - v.begin()); }
struct FenwickTree {
vector<long long> bit;
int n;
FenwickTree(int n) {
this->n = n;
bit.assign(n, 0);
}
long long sum(int r) {
long long ret = 0;
for (; r >= 0; r = (r & (r + 1)) - 1) ret += bit[r];
return ret;
}
long long sum(int l, int r) { return sum(r) - sum(l - 1); }
void upd(int idx, int delta) {
for (; idx < n; idx = idx | (idx + 1)) bit[idx] += delta;
}
};
void nikal_pehli_fursat_mai() {
int n;
cin >> n;
vector<array<long long, 2>> arr(n);
long long ans = 0;
for (int i = 0; i < n; i++) {
cin >> arr[i][0];
x.push_back(arr[i][0]);
}
for (int i = 0; i < n; i++) {
cin >> arr[i][1];
v.push_back(abs(arr[i][1]));
}
sort(v.begin(), v.end());
sort(x.begin(), x.end());
sort(arr.begin(), arr.end());
FenwickTree pos(n), neg(n), zero(n), cntp(n), cntn(n), cntz(n);
for (int i = 0; i < n; i++) {
int id = idV(abs(arr[i][1]));
if (arr[i][1] > 0) {
cntp.upd(id, 1);
pos.upd(id, arr[i][0]);
} else if (arr[i][1] < 0) {
cntn.upd(id, 1);
neg.upd(id, arr[i][0]);
} else {
cntz.upd(id, 1);
zero.upd(id, arr[i][0]);
}
}
for (int i = 0; i < n; i++) {
int id = idV(abs(arr[i][1]));
if (arr[i][1] > 0) {
ans += pos.sum(id, n - 1) - cntp.sum(id, n - 1) * arr[i][0];
cntp.upd(id, -1);
pos.upd(id, -arr[i][0]);
} else if (arr[i][1] < 0) {
ans += pos.sum(0, n - 1) - cntp.sum(0, n - 1) * arr[i][0];
ans += zero.sum(0, n - 1) - cntz.sum(0, n - 1) * arr[i][0];
ans += neg.sum(0, id) - cntn.sum(0, id) * arr[i][0];
cntn.upd(id, -1);
neg.upd(id, -arr[i][0]);
} else {
ans += pos.sum(id, n - 1) - cntp.sum(id, n - 1) * arr[i][0];
ans += zero.sum(0, n - 1) - cntz.sum(0, n - 1) * arr[i][0];
cntz.upd(id, -1);
zero.upd(id, -arr[i][0]);
}
}
cout << ans << "\n";
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
int tc = 1;
while (tc--) {
nikal_pehli_fursat_mai();
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
struct FT {
vector<long long> f;
FT(long long n) { f.resize(n + 1, 0); }
long long sum(long long r) {
long long res = 0;
for (; r >= 0; r = (r & (r + 1)) - 1) {
res += f[r];
}
return res;
}
long long sum(long long l, long long r) { return sum(r) - sum(l - 1); }
void upd(long long i, long long x) {
for (; i < (long long)f.size(); i = (i | (i + 1))) f[i] += x;
}
};
map<long long, long long> f;
signed main() {
ios ::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
long long n;
cin >> n;
vector<pair<long long, long long>> a(n);
for (long long i = 0; i < n; i++) cin >> a[i].first;
for (long long i = 0; i < n; i++) cin >> a[i].second, f[a[i].second] = 0;
long long s = 0;
for (auto u : f) f[u.first] = s++;
sort(a.begin(), a.end());
FT ft1(s + 1), ft2(s + 1);
long long ans = 0;
for (auto u : a) {
long long x = u.first, y = u.second;
long long v = f[y];
long long cnt = ft1.sum(0, v);
long long sum = ft2.sum(0, v);
ans += x * cnt - sum;
ft1.upd(v, 1);
ft2.upd(v, x);
}
cout << ans << '\n';
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
#pragma GCC optimize("fast-math")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC diagnostic ignored "-Woverflow"
using namespace std;
const short INF16 = ~(1 << 15);
const int INF32 = 2e9 + 11;
const int SZ = (1 << 19);
const int SZ2 = int(1e6 + 11);
const int mod = 998244353;
const int mod2 = 998244353;
const int PIVO = 5e5 + 11;
const long long INF64 = 8e18;
const long long P1 = 53;
const long long P2 = 47;
const long double eps = 1e-10;
const long double PI = acosl(-1);
inline long long MOD(long long x) {
x %= mod, x += mod;
return x % mod;
}
inline long long MOD(long long x, long long m) {
x %= m, x += m;
return x % m;
}
inline long long T(int x) { return 1ll * x * (x + 1) >> 1; }
inline long long TT(int x) { return 1ll * x * (x + 1) * (x + 2) / 6; }
inline long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; }
inline long long lcm(long long a, long long b) { return a * b / gcd(a, b); }
long long fpow(long long a, long long b, long long mod) {
if (!b) return 1;
if (b == 1) return a % mod;
if (b & 1) return fpow(a, b ^ 1, mod) * a % mod;
long long d = fpow(a, b >> 1, mod);
return d * d % mod;
}
long long fpow(long long a, long long b) {
if (!b) return 1;
if (b == 1) return a;
if (b & 1) return fpow(a, b ^ 1) * a;
long long d = fpow(a, b >> 1);
return d * d;
}
long long n;
pair<long long, long long> t[SZ << 1];
pair<long long, long long> operator+(pair<long long, long long> a,
pair<long long, long long> b) {
return {a.first + b.first, a.second + b.second};
}
void Biuld(long long v, long long l, long long r) {
if (r - l == 1) return;
long long mid = (l + r) >> 1;
Biuld(v << 1, l, mid);
Biuld(v << 1 | 1, mid, r);
t[v] = t[v << 1] + t[v << 1 | 1];
}
void upd(long long v, long long l, long long r, long long k, long long x) {
if (r - l == 1) {
t[v] = {x, 0};
return;
}
long long mid = (l + r) >> 1;
if (k < mid)
upd(v << 1, l, mid, k, x);
else
upd(v << 1 | 1, mid, r, k, x);
t[v] = t[v << 1] + t[v << 1 | 1];
}
pair<long long, long long> get(long long v, long long l, long long r,
long long ql, long long qr) {
if (qr <= l || r <= ql) return {0, 0};
if (ql <= l && r <= qr) return t[v];
long long mid = (l + r) >> 1;
return get(v << 1, l, mid, ql, qr) + get(v << 1 | 1, mid, r, ql, qr);
}
bool cmp(pair<pair<long long, long long>, long long> &a,
pair<pair<long long, long long>, long long> &b) {
if (a.first.second != b.first.second) return a.first.second < b.first.second;
return a.first.first < b.first.first;
}
void Solve(long long num_test) {
cin >> n;
vector<pair<pair<long long, long long>, long long>> v(n);
for (auto &i : v) cin >> i.first.first;
for (auto &i : v) cin >> i.first.second;
sort(v.begin(), v.end(), cmp);
for (long long i = 0; i < n; i++) {
t[SZ + i] = {v[i].first.first, 1};
v[i].second = i;
}
Biuld(1, 0, SZ);
sort(v.begin(), v.end());
long long ans = 0;
for (long long i = 0; i < n; i++) {
long long id = v[i].second;
ans += get(1, 0, SZ, id, n).first -
get(1, 0, SZ, id, n).second * v[i].first.first;
upd(1, 0, SZ, id, 0);
}
cout << ans << endl;
}
signed main() {
ios_base::sync_with_stdio(NULL);
cin.tie(NULL);
cout.tie(NULL);
cout << fixed << setprecision(10);
srand(time(NULL));
long long test = 1;
for (long long i = 1; i <= test; i++) Solve(i);
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = double;
const ll MODBASE = 1000000007LL;
const int MAXN = 200010;
const int MAXM = 1000;
const int MAXK = 16;
const int MAXQ = 200010;
struct Car {
int x, v;
Car(int x = 0, int v = 0) : x(x), v(v) {}
};
bool operator<(Car a, Car b) { return a.x < b.x; }
int n;
pair<ll, ll> t[MAXN];
Car a[MAXN];
set<int> s;
vector<int> b;
pair<ll, ll> get(int u) {
pair<ll, ll> res = pair<ll, ll>(0, 0);
while (u) {
res.first += t[u].first;
res.second += t[u].second;
u = u - (u & (-u));
}
return res;
}
void update(int u, int gt, int num) {
while (u <= 200000) {
t[u].first += gt;
t[u].second += num;
u = u + (u & (-u));
}
}
int getPos(int u) {
int dau = 0, cuoi = int((b).size()) - 1;
while (dau <= cuoi) {
int mid = (dau + cuoi) >> 1;
if (b[mid] >= u)
cuoi = mid - 1;
else
dau = mid + 1;
}
return dau + 1;
}
int main() {
ios::sync_with_stdio(0);
cin.tie(nullptr);
cin >> n;
for (int i = (1); i <= (n); i++) cin >> a[i].x;
for (int i = (1); i <= (n); i++) cin >> a[i].v;
sort(a + 1, a + n + 1);
for (int i = (1); i <= (n); i++) s.insert(a[i].v);
for (__typeof((s).begin()) it = (s).begin(); it != (s).end(); it++)
b.push_back(*it);
for (int i = (1); i <= (n); i++) a[i].v = getPos(a[i].v);
ll res = 0;
for (int i = (1); i <= (n); i++) {
pair<ll, ll> r = get(a[i].v);
res += (ll)a[i].x * r.second - r.first;
update(a[i].v, a[i].x, 1);
}
cout << res;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using ll = long long;
using namespace std;
template <class T>
class SegmentTree {
private:
int _size = 1;
T _def;
std::vector<T> _nodes;
std::function<T(T, T)> _op;
std::function<T(T, T)> _update_op;
public:
SegmentTree(int size, T default_value, std::function<T(T, T)> op,
std::function<T(T, T)> update_op)
: _def(default_value), _op(op), _update_op(update_op) {
while (_size < size) _size *= 2;
_nodes = std::vector<T>(2 * _size, default_value);
}
SegmentTree(std::vector<T> nodes, T default_value, std::function<T(T, T)> op,
std::function<T(T, T)> update_op)
: _def(default_value), _op(op), _update_op(update_op) {
int real_size = nodes.size();
while (_size < real_size) _size *= 2;
_nodes = std::vector<T>(2 * _size, default_value);
for (int i = 0; i < real_size; ++i) _nodes[i + _size] = nodes[i];
for (int i = _size - 1; i >= 0; --i)
_nodes[i] = _op(_nodes[i * 2], _nodes[i * 2 + 1]);
}
T find(int l, int r) { return find(l, r, 1, 0, _size); }
T find(int l, int r, int index, int cover_l, int cover_r) {
if (cover_r <= l || r <= cover_l) return _def;
if (l <= cover_l && cover_r <= r) return _nodes[index];
return _op(find(l, r, index * 2, cover_l, (cover_l + cover_r) >> 1),
find(l, r, index * 2 + 1, (cover_l + cover_r) >> 1, cover_r));
}
void update(int index, T value) {
index += _size;
_nodes[index] = _update_op(_nodes[index], value);
while (index > 0) {
index >>= 1;
_nodes[index] = _op(_nodes[index * 2], _nodes[index * 2 + 1]);
}
}
};
struct Point {
ll x, v;
bool operator<(const Point &other) const { return x < other.x; }
};
int main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
int n;
cin >> n;
int x, v;
set<int> vs;
vector<Point> ps;
for (ll i = 0, iLen = (n); i < iLen; ++i) {
cin >> x;
ps.push_back(Point{x, 0});
}
for (ll i = 0, iLen = (n); i < iLen; ++i) {
cin >> v;
ps[i].v = v;
vs.insert(v);
}
map<int, int> v_comp;
int i = 0;
for (auto &v : vs) {
v_comp[v] = i++;
}
int v_size = v_comp.size() + 10;
auto x_cnt = SegmentTree<ll>(
v_size, 0, [](ll x, ll y) { return x + y; },
[](ll x, ll y) { return x + y; });
auto x_acc = SegmentTree<ll>(
v_size, 0, [](ll x, ll y) { return x + y; },
[](ll x, ll y) { return x + y; });
for (ll i = 0, iLen = (n); i < iLen; ++i) {
ps[i].v = v_comp[ps[i].v];
x_cnt.update(ps[i].v, 1);
x_acc.update(ps[i].v, ps[i].x);
}
sort(ps.begin(), ps.end());
ll ans = 0;
for (auto &[x, v] : ps) {
x_cnt.update(v, -1);
x_acc.update(v, -x);
ans += x_acc.find(v, v_size) - x_cnt.find(v, v_size) * x;
}
cout << ans << endl;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
void transform(long long int a[], long long int n) {
map<long long int, vector<long long int> > m;
for (long long int i = 0; i < (n); i++) m[a[i]].push_back(i);
long long int rank = 1;
for (auto c : m) {
for (auto i : c.second) a[i] = rank;
rank++;
}
}
const long long int N = 2e5 + 5;
long long int n = -1e9;
void update(long long int B[], long long int x, long long int val) {
for (; x <= n; x += x & -x) B[x] += val;
}
long long int query(long long int B[], long long int x) {
long long int sum = 0;
for (; x > 0; x -= x & -x) sum += B[x];
return sum;
}
int main() {
long long int num;
cin >> num;
long long int x[num + 5], v[num + 5], ans = 0;
vector<pair<long long int, long long int> > pts;
for (long long int i = 0; i < (num); i++) cin >> x[i];
for (long long int i = 0; i < (num); i++) cin >> v[i];
for (long long int i = 0; i < (num); i++)
pts.push_back(make_pair(x[i], v[i]));
sort((pts).begin(), (pts).end());
for (long long int i = 0; i < (num); i++)
x[i] = pts[i].first, v[i] = pts[i].second;
transform(v, num);
n = *max_element(v, v + num);
long long int pref[N] = {0}, freq[N] = {0};
update(pref, v[num - 1], x[num - 1]);
update(freq, v[num - 1], 1);
for (long long int i = num - 2; i > (-1); i--) {
long long int sum = query(pref, n) - query(pref, v[i] - 1);
long long int nump = query(freq, n) - query(freq, v[i] - 1);
ans += (sum - nump * x[i]);
update(pref, v[i], x[i]);
update(freq, v[i], 1);
}
cout << ans << endl;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int MAX = 2e5 + 9;
int n, a[MAX], speed[MAX], b[MAX];
int idx[MAX];
vector<pair<int, int> > v;
unordered_map<int, int> startRange;
long long tree[(MAX << 2)][2], val;
int l, r, idxToUpd;
void build(int id, int low, int high, int pos) {
if (low == high) {
tree[pos][id] = b[low];
return;
}
int mid = ((low + high) >> 1);
build(id, low, mid, (pos << 1));
build(id, mid + 1, high, (pos << 1 | 1));
tree[pos][id] = tree[(pos << 1)][id] + tree[(pos << 1 | 1)][id];
}
long long qwr(int id, int low, int high, int pos) {
if (l > high || r < low) {
return 0;
}
if (l <= low && r >= high) {
return tree[pos][id];
}
int mid = ((low + high) >> 1);
return qwr(id, low, mid, (pos << 1)) + qwr(id, mid + 1, high, (pos << 1 | 1));
}
void upd(int id, int low, int high, int pos) {
if (low == high) {
tree[pos][id] = val;
return;
}
int mid = ((low + high) >> 1);
if (idxToUpd <= mid) {
upd(id, low, mid, (pos << 1));
} else {
upd(id, mid + 1, high, (pos << 1 | 1));
}
tree[pos][id] = tree[(pos << 1)][id] + tree[(pos << 1 | 1)][id];
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cin >> n;
for (int i = 1; i <= n; ++i) {
cin >> a[i];
}
for (int i = 1; i <= n; ++i) {
cin >> speed[i];
v.push_back({speed[i], i});
}
sort(v.begin(), v.end());
for (int i = 0; i < n; ++i) {
idx[v[i].second] = i + 1;
if (startRange.find(v[i].first) == startRange.end()) {
startRange[v[i].first] = i + 1;
}
}
for (int i = 1; i <= n; ++i) {
b[idx[i]] = a[i];
}
build(0, 1, n, 1);
v.clear();
for (int i = 1; i <= n; ++i) {
v.push_back({a[i], i});
}
sort(v.begin(), v.end());
long long ans = 0;
for (int i = 0; i < n; ++i) {
l = startRange[speed[v[i].second]];
r = n;
int cntRemoved = qwr(1, 1, n, 1);
long long sum = qwr(0, 1, n, 1);
long long rest = (n - startRange[speed[v[i].second]] + 1) - cntRemoved;
ans += sum - rest * (long long)v[i].first;
idxToUpd = idx[v[i].second];
val = 1;
upd(1, 1, n, 1);
val = 0;
upd(0, 1, n, 1);
}
cout << ans;
return 0;
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
java
|
import java.awt.*;
import java.util.*;
import java.io.*;
public class mp {
public static void main(String[] args) throws Exception {
Scanner sc= new Scanner(System.in);
n= sc.nextInt();
prvi= new long[n+1];
prvi1= new int[n+2];
Point p[]=new Point[n];
for (int i= 0; i< n; i++)p[i]= new Point(sc.nextInt(),0);
for (int i= 0; i< n; i++)p[i].y= sc.nextInt();
Arrays.sort(p, new Comparator<Point>() {
public int compare(Point o1, Point o2) {
return o1.y-o2.y;
}
})
;
int x= 0;
int prej= -1;
for (int i=0;i<n;i++){
if (i>0 && prej!=p[i].y)x++;
prej=p[i].y;
p[i].y=x;
}
Arrays.sort(p, new Comparator<Point>() {
public int compare(Point o1, Point o2) {
return o1.x-o2.x;
}
});
long odg=0;
for (int i=n-1;i>=0;i--){
long sestevek=polni(p[i].y);
long sestevek1=polni1(p[i].y);
gor(p[i].y,p[i].x);
gor1(p[i].y);
odg+=Math.abs(sestevek-p[i].x*sestevek1);
}
System.out.println(odg);
}
static long prvi[];
static int prvi1[];
static int n;
static void gor(int i,int val){
for (i++;i<=n;i+=i&(-i)){
prvi[i]+=val;
}
}
static void gor1(int i){
for (i++;i<=n;i+=i&(-i)){
prvi1[i]+=1;
}
}
static long sestej(int i){
long res=0;
for (i++;i>0;i-=i&(-i)){
res+=prvi[i];
}
return res;
}
static long sestej1(int i){
long res=0;
for (i++;i>0;i-=i&(-i)){
res+=prvi1[i];
}
return res;
}
static long polni(int i){
return sestej(n-1)-sestej(i-1);
}
static long polni1(int i){
return sestej1(n-1)- sestej1(i-1);
}
static class beri {
BufferedReader br;
StringTokenizer st;
public beri() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String naslj() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
} }
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(naslj());
}
long nextLong() {
return Long.parseLong(naslj());
}
double nextDouble() {
return Double.parseDouble(naslj());
}
String beriNaslj() {
String beri= "";
try {
beri= br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return beri;
}
}
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int mx = 200005;
long long bit[mx][2];
int arr[mx];
int speed[mx];
vector<pair<int, int> > vec;
void update(int idx, int val) {
for (int i = idx; i < mx; i += (i & -i)) {
bit[i][0] += 1LL * val;
bit[i][1]++;
}
}
pair<long long, long long> query(int idx) {
pair<long long, long long> ans = make_pair(0, 0);
for (int i = idx; i > 0; i -= (i & -i)) {
ans.first += bit[i][0];
ans.second += bit[i][1];
}
return ans;
}
int main() {
map<int, int> mpp;
int n, i, j, k, x, v;
scanf("%d", &n);
for (i = 1; i <= n; i++) {
scanf("%d", arr + i);
}
for (i = 1; i <= n; i++) {
scanf("%d", speed + i);
vec.push_back(make_pair(speed[i], 0));
}
sort(vec.begin(), vec.end());
for (i = 0; i < n; i++) {
mpp[vec[i].first] = i + 1;
}
vec.clear();
for (i = 1; i <= n; i++) {
vec.push_back(make_pair(arr[i], mpp[speed[i]]));
}
sort(vec.begin(), vec.end());
pair<long long, long long> temp;
long long ans = 0, now;
for (i = 0; i < n; i++) {
temp = query(vec[i].second);
now = 1LL * temp.second * vec[i].first - temp.first;
ans += now;
update(vec[i].second, vec[i].first);
}
printf("%lld\n", ans);
}
|
1311_F. Moving Points
|
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i.
Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0.
Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points.
The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct.
The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point.
Output
Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points).
Examples
Input
3
1 3 2
-100 2 3
Output
3
Input
5
2 1 4 3 5
2 2 2 3 4
Output
19
Input
2
2 1
-3 0
Output
0
|
{
"input": [
"3\n1 3 2\n-100 2 3\n",
"2\n2 1\n-3 0\n",
"5\n2 1 4 3 5\n2 2 2 3 4\n"
],
"output": [
"3\n",
"0\n",
"19\n"
]
}
|
{
"input": [],
"output": []
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
struct BIT {
vector<long long int> bit;
int n;
BIT(long long int N) {
n = N;
bit.assign(n + 1, 0);
}
void add(int idx, int delta) {
while (idx <= n) {
bit[idx] += delta;
idx += (idx & -idx);
}
}
long long int sum(int idx) {
long long int res = 0;
while (idx > 0) {
res += bit[idx];
idx -= (idx & -idx);
}
return res;
}
};
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n;
cin >> n;
vector<pair<int, int> > p(n);
for (auto &i : p) cin >> i.first;
for (auto &i : p) cin >> i.second;
sort(p.begin(), p.end());
vector<int> v;
for (auto i : p) v.push_back(i.second);
sort(v.begin(), v.end());
map<int, int> mp;
int cnt = 0;
for (auto i : v) mp[i] = ++cnt;
for (auto &i : p) i.second = mp[i.second];
long long int ans = 0;
BIT tree1(n), tree2(n);
for (auto i : p) {
long long int cnt = tree1.sum(i.second);
long long int sum_x = tree2.sum(i.second);
ans += cnt * i.first - sum_x;
tree1.add(i.second, 1);
tree2.add(i.second, i.first);
}
cout << ans << '\n';
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.