Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
/** * BaZ :D */ import java.util.*; import java.io.*; import static java.lang.Math.*; public class ACMIND { static FastReader scan; static PrintWriter pw; static long MOD = 1_000_000_007; static long INF = 2_000_000_000_000_000_000L; static long inf = 2_000_000_000; public static void main(String[] args) { new Thread(null,null,"BaZ",1<<27) { public void run() { try { solve(); } catch(Exception e) { e.printStackTrace(); System.exit(1); } } }.start(); } static int n; static Integer[] map; static long BIT[], BIT_count[]; static void solve() throws IOException { scan = new FastReader(); pw = new PrintWriter(System.out,true); StringBuilder sb = new StringBuilder(); n = ni(); int x[] = new int[n]; for(int i=0;i<n;++i) { x[i] = ni(); } compress1(x, n); Pair arr[] = new Pair[n]; for(int i=0;i<n;++i) { arr[i] = new Pair(ni(), x[i]); } Arrays.sort(arr); BIT = new long[n+1]; BIT_count = new long[n+1]; long ans = 0; for(int i=n-1;i>=0;--i) { long total[] = query(n); long less_equal[] = query(arr[i].y); long resultant[] = new long[]{total[0] - less_equal[0], total[1] - less_equal[1]}; ans+=resultant[0] - resultant[1] * map[arr[i].y]; update(arr[i].y, map[arr[i].y]); } pl(ans); pw.flush(); pw.close(); } static void update(int index,long val) { for(int i=index;i<=n;i+=i&-i) { BIT[i]+=val; BIT_count[i]++; } } static long[] query(int index) { long res[] = new long[2]; for(int i=index;i>0;i-=i&-i) { res[0]+=BIT[i]; res[1]+=BIT_count[i]; } return res; } static void compress1(int arr[],int n) { map = new Integer[n+1]; for(int i=0;i<n;++i) map[i+1] = arr[i]; map[0] = Integer.MIN_VALUE; Arrays.sort(map); int low,high,mid; for(int i=0;i<n;++i) { low = 1; high = n; while(low<high) { mid = (low+high)>>1; if(map[mid]==arr[i]) { low = mid; break; } if(map[mid]>arr[i]) high = --mid; else low = ++mid; } arr[i] = low; } } static class Pair implements Comparable<Pair> { int x,y; Pair(int x,int y) { this.x=x; this.y=y; } public int compareTo(Pair other) { if(this.x!=other.x) return this.x-other.x; return this.y-other.y; } public String toString() { return "("+x+","+y+")"; } } static int ni() throws IOException { return scan.nextInt(); } static long nl() throws IOException { return scan.nextLong(); } static double nd() throws IOException { return scan.nextDouble(); } static void pl() { pw.println(); } static void p(Object o) { pw.print(o+" "); } static void pl(Object o) { pw.println(o); } static void psb(StringBuilder sb) { pw.print(sb); } static void pa(String arrayName, Object arr[]) { pl(arrayName+" : "); for(Object o : arr) p(o); pl(); } static void pa(String arrayName, int arr[]) { pl(arrayName+" : "); for(int o : arr) p(o); pl(); } static void pa(String arrayName, long arr[]) { pl(arrayName+" : "); for(long o : arr) p(o); pl(); } static void pa(String arrayName, double arr[]) { pl(arrayName+" : "); for(double o : arr) p(o); pl(); } static void pa(String arrayName, char arr[]) { pl(arrayName+" : "); for(char o : arr) p(o); pl(); } static void pa(String listName, List list) { pl(listName+" : "); for(Object o : list) p(o); pl(); } static void pa(String arrayName, Object[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(Object o : arr[i]) p(o); pl(); } } static void pa(String arrayName, int[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(int o : arr[i]) p(o); pl(); } } static void pa(String arrayName, long[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(long o : arr[i]) p(o); pl(); } } static void pa(String arrayName, char[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(char o : arr[i]) p(o); pl(); } } static void pa(String arrayName, double[][] arr) { pl(arrayName+" : "); for(int i=0;i<arr.length;++i) { for(double o : arr[i]) p(o); pl(); } } static class FastReader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public FastReader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public FastReader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[1000000]; int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10); if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long maxn = 1e6 + 100, mod = 1e9 + 7, inf = 1e16 + 7; pair<long long, long long> a[maxn]; long long get(long long l, long long r) { if (r - l == 1) return 0; long long m = (r + l) / 2; long long ans = 0; ans += get(l, m); ans += get(m, r); long long ptr = m; vector<long long> pref(r - m + 2, 0); for (long long i = r - 1; i >= m; --i) { pref[i - m] = pref[i + 1 - m] + a[i].first; } vector<pair<long long, long long> > tmp; for (long long i = l; i < m; ++i) { while (ptr < r && a[i].second > a[ptr].second) { tmp.push_back(a[ptr]); ptr++; } tmp.push_back(a[i]); ans += pref[ptr - m]; ans -= (r - ptr) * a[i].first; } while (ptr < r) tmp.push_back(a[ptr]), ptr++; for (long long i = l; i < r; ++i) { a[i] = tmp[i - l]; } return ans; } void solve() { long long n; cin >> n; for (long long i = 0; i < n; ++i) { cin >> a[i].first; } for (long long i = 0; i < n; ++i) { cin >> a[i].second; } sort(a, a + n); cout << get(0, n); } signed main() { ios_base::sync_with_stdio(false); cin.tie(0); srand(10); cout << fixed << setprecision(2); long long t = 1; while (t--) { solve(); cout << endl; } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = (int)2e5 + 100; const int mod = (int)1e9 + 7; int n, c[maxn]; long long ans; pair<int, int> a[maxn]; int main() { scanf("%d", &n); for (auto i = (1); i <= (n); ++i) scanf("%d", &a[i].second), c[i] = a[i].second; for (auto i = (1); i <= (n); ++i) scanf("%d", &a[i].first); sort(a + 1, a + 1 + n); sort(c + 1, c + 1 + n); for (auto i = (1); i <= (n); ++i) ans += (i - 1 - n + lower_bound(c + 1, c + 1 + n, a[i].second) - c) * (long long)a[i].second; printf("%lld\n", ans); }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int b[200005], m; long long tr[800005][2]; struct node { int x, v; bool operator<(const node t) const { return x < t.x; } } a[200005]; int lsh(long long x) { return lower_bound(b + 1, b + 1 + m, x) - b; } long long query(int l, int r, int x, int y, int z, int p) { if (l == x && r == y) return tr[p][z]; int mid = l + r >> 1; if (y <= mid) return query(l, mid, x, y, z, p << 1); else if (x > mid) return query(mid + 1, r, x, y, z, p << 1 | 1); else return query(l, mid, x, mid, z, p << 1) + query(mid + 1, r, mid + 1, y, z, p << 1 | 1); } void update(int l, int r, int x, int y, int p) { if (l == r) { tr[p][0]++; tr[p][1] += y; return; } int mid = l + r >> 1; if (x <= mid) update(l, mid, x, y, p << 1); else update(mid + 1, r, x, y, p << 1 | 1); tr[p][0] = tr[p << 1][0] + tr[p << 1 | 1][0]; tr[p][1] = tr[p << 1][1] + tr[p << 1 | 1][1]; } int main() { int n; scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d", &a[i].x); for (int i = 1; i <= n; i++) { scanf("%d", &a[i].v); b[i] = a[i].v; } sort(b + 1, b + 1 + n); m = unique(b + 1, b + 1 + n) - b - 1; sort(a + 1, a + 1 + n); long long ans = 0; for (int i = 1; i <= n; i++) { int x = lsh(a[i].v); ans += query(1, m, 1, x, 0, 1) * a[i].x - query(1, m, 1, x, 1, 1); update(1, m, x, a[i].x, 1); } printf("%lld", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 2e5 + 5; const int inf = 0x3f3f3f3f; const long long INF = 0x7f7f7f7f7f7f7f7f; const int mod = 1e9 + 7; const double PI = acos(-1.0); const double eps = 1e-5; int n; pair<long long, long long> a[maxn]; long long b[maxn]; long long s1[maxn], s2[maxn]; int lb(int x) { return x & (-x); } void add(int x, long long w) { for (int i = x; i <= n; i += lb(i)) { s1[i]++; s2[i] += w; } } long long sum1(int x) { long long res = 0; for (int i = x; i >= 1; i -= lb(i)) res += s1[i]; return res; } long long sum2(int x) { long long res = 0; for (int i = x; i >= 1; i -= lb(i)) res += s2[i]; return res; } int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) { scanf("%lld", &a[i].first); } for (int i = 1; i <= n; i++) { scanf("%lld", &a[i].second); b[i] = a[i].second; } sort(a + 1, a + 1 + n); sort(b + 1, b + 1 + n); int len = unique(b + 1, b + 1 + n) - (b + 1); long long ans = 0; for (int i = 1; i <= n; i++) { int pos = lower_bound(b + 1, b + 1 + len, a[i].second) - b; long long res1 = sum1(pos); long long res2 = sum2(pos); ans += res1 * a[i].first - res2; add(pos, a[i].first); } printf("%lld", ans); }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; const long long INF = 4e18 + 10; long long power(long long a, long long b, long long in_mod) { long long ans = 1; long long prod = a; while (b) { if (b % 2) ans = (ans * prod) % in_mod; prod = (prod * prod) % in_mod; b /= 2; } return ans; } long long mod_inv(long long q, long long in_mod) { return power(q, in_mod - 2, in_mod); } long long gcd(long long a, long long b) { if (b == 0) return a; return gcd(b, a % b); } long long fact(long long n, long long in_mod) { long long f = 1; for (long long i = 1; i <= n; i++) f = (f * i) % in_mod; return f; } long long ncr(long long n, long long r, long long in_mod) { return (((fact(n, in_mod) * mod_inv(fact(r, in_mod), in_mod)) % in_mod) * mod_inv(fact(n - r, in_mod), in_mod)) % in_mod; } long long A[200005] = {}; long long tree[4 * 200005] = {}; long long cnt[4 * 200005] = {}; void update(long long node, long long start, long long end, long long idx, long long val) { if (start == end) { A[idx] += val; tree[node] += val; cnt[node] += 1; } else { long long mid = (start + end) / 2; if (start <= idx and idx <= mid) { update(2 * node, start, mid, idx, val); } else { update(2 * node + 1, mid + 1, end, idx, val); } tree[node] = tree[2 * node] + tree[2 * node + 1]; cnt[node] = cnt[2 * node] + cnt[2 * node + 1]; } } long long query1(long long node, long long start, long long end, long long l, long long r) { if (r < start or end < l) { return 0; } if (l <= start and end <= r) { return tree[node]; } long long mid = (start + end) / 2; long long p1 = query1(2 * node, start, mid, l, r); long long p2 = query1(2 * node + 1, mid + 1, end, l, r); return (p1 + p2); } long long query2(long long node, long long start, long long end, long long l, long long r) { if (r < start or end < l) { return 0; } if (l <= start and end <= r) { return cnt[node]; } long long mid = (start + end) / 2; long long p1 = query2(2 * node, start, mid, l, r); long long p2 = query2(2 * node + 1, mid + 1, end, l, r); return (p1 + p2); } void solve() { long long n; cin >> n; map<long long, long long> mp; vector<long long> dis(n); vector<pair<long long, long long> > v(n); for (long long i = 0; i < n; i++) { cin >> v[i].second; dis[i] = v[i].second; } for (long long i = 0; i < n; i++) cin >> v[i].first; sort((v).begin(), (v).end()); sort((dis).begin(), (dis).end()); for (long long i = 0; i < n; i++) mp[dis[i]] = i; update(1, 0, 200005 - 1, mp[v[0].second], v[0].second); long long ans = 0; for (long long i = 1; i < n; i++) { long long _sum = query1(1, 0, 200005 - 1, 0, mp[v[i].second]); long long _cnt = query2(1, 0, 200005 - 1, 0, mp[v[i].second]); ans += _cnt * (v[i].second) - _sum; update(1, 0, 200005 - 1, mp[v[i].second], v[i].second); } cout << ans << '\n'; } signed main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); cout << fixed << setprecision(10); auto clk = clock(); mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); long long t = 1; for (long long test = 1; test <= t; test++) { solve(); } clk = clock() - clk; cerr << fixed << setprecision(6) << "Time: " << ((long double)clk) / CLOCKS_PER_SEC << "\n"; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int Z = (int)1e3 + 228; const int N = (int)2e5 + 228; const int INF = (int)1e9 + 228; const int MOD = (int)998244353; const long long LLINF = (long long)1e18 + 228; const long double eps = (long double)1e-6; pair<long long, long long> t[4 * N]; void update(int v, int tl, int tr, int pos, int x) { if (tl == tr) { t[v].first += x; t[v].second++; return; } int mid = (tl + tr) / 2; if (pos <= mid) update(2 * v, tl, mid, pos, x); else update(2 * v + 1, mid + 1, tr, pos, x); t[v].first = t[2 * v].first + t[2 * v + 1].first; t[v].second = t[2 * v].second + t[2 * v + 1].second; } pair<long long, long long> get_sum(int v, int tl, int tr, int l, int r) { if (tl >= l && tr <= r) { return t[v]; } if (tl > r || tr < l) { return {0, 0}; } int mid = (tl + tr) / 2; pair<long long, long long> ql = get_sum(2 * v, tl, mid, l, r); pair<long long, long long> qr = get_sum(2 * v + 1, mid + 1, tr, l, r); return {ql.first + qr.first, ql.second + qr.second}; } signed main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); int n; cin >> n; vector<pair<int, int> > a(n); for (int i = 0; i < n; i++) { cin >> a[i].first; } vector<int> v; for (int i = 0; i < n; i++) { cin >> a[i].second; v.push_back(a[i].second); } sort(v.begin(), v.end()); v.erase(unique(v.begin(), v.end()), v.end()); sort(a.begin(), a.end()); long long ans = 0; for (int i = 0; i < n; i++) { int pos = lower_bound(v.begin(), v.end(), a[i].second) - v.begin(); pair<long long, long long> p = get_sum(1, 0, v.size() - 1, 0, pos); ans += p.second * a[i].first - p.first; update(1, 0, v.size() - 1, pos, a[i].first); } cout << ans; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.Arrays; import java.util.Scanner; import java.util.Comparator; public class R624_F { private static long sum (long[] t, int pos) { long result = 0; while (pos >= 0) { result += t[pos]; pos = (pos & (pos + 1)) - 1; } return result; } private static void upd (long[] t, int pos, int delta) { while (pos < t.length) { t[pos] += delta; pos = pos | (pos + 1); } } public static void main(String[] args) { Scanner in = new Scanner (System.in); int n = in.nextInt(); int[][] p = new int[n][2]; Integer[] v = new Integer[n]; for (int i = 0; i < n; i++) p[i][0] = in.nextInt(); for (int i = 0; i < n; i++) { p[i][1] = in.nextInt(); v[i] = p[i][1]; } in.close(); Arrays.sort(v); Arrays.sort(p, new Comparator<int[]>() { public int compare(int[] a, int[] b) { return a[0] - b[0]; } }); long[] xs = new long[n]; long[] cnt = new long[n]; long ans = 0; for (int i = 0; i < n; i++) { int pos = Arrays.binarySearch(v, p[i][1]); ans += sum(cnt, pos) * p[i][0] - sum (xs, pos); upd(cnt, pos, 1); upd(xs, pos, p[i][0]); } System.out.println(ans); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mxn = 2e5 + 100; pair<int, long long> a[mxn]; long long r[mxn], b1[mxn], b2[mxn], ans; void add(long long *b, int idx, int val, int n) { for (; idx <= n; idx += idx & -idx) b[idx] += val; } long long ask(long long *b, int idx) { long long ret = 0; for (; idx > 0; idx -= idx & -idx) ret += b[idx]; return ret; } int main() { int n, m; scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d", &a[i].first); for (int i = 1; i <= n; i++) scanf("%lld", &a[i].second), r[i - 1] = a[i].second; sort(r, r + n), m = unique(r, r + n) - r; for (int i = 1; i <= n; i++) a[i].second = lower_bound(r, r + m, a[i].second) - r + 1; sort(a + 1, a + n + 1); for (int i = 1; i <= n; ++i) { long long x = ask(b2, a[i].second), y = ask(b1, a[i].second); ans += 1LL * y * a[i].first - x; add(b2, a[i].second, a[i].first, n); add(b1, a[i].second, 1, n); } printf("%lld\n", ans); }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long ans, n, a1[202020], a2[202020], od[202020]; pair<long long, long long> p[202020]; map<long long, long long> mp; void gx1(long long x, long long v) { for (long long i = x; i < 200200; i += i & -i) { a1[i] += v; } } void gx2(long long x, long long v) { for (long long i = x; i < 200200; i += i & -i) { a2[i] += v; } } long long gt1(long long p) { long long rt = 0; for (long long i = p; i > 0; i -= i & -i) { rt += a1[i]; } return rt; } long long gt2(long long p) { long long rt = 0; for (long long i = p; i > 0; i -= i & -i) { rt += a2[i]; } return rt; } signed main() { cin >> n; for (long long i = 1; i <= n; i++) { cin >> p[i].first; } for (long long i = 1; i <= n; i++) { cin >> p[i].second; od[i] = p[i].second; } sort(od + 1, od + n + 1); sort(p + 1, p + n + 1); long long pp = 1; for (long long i = 1; i <= n; i++) { if (!mp[od[i]]) { mp[od[i]] = pp; pp++; } } for (long long i = 1; i <= n; i++) { ans += p[i].first * gt1(mp[p[i].second]) - gt2(mp[p[i].second]); gx1(mp[p[i].second], 1ll); gx2(mp[p[i].second], p[i].first); } cout << ans << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
/* Author: Anthony Ngene Created: 30/09/2020 - 12:31 */ import java.io.*; import java.util.*; public class F { // checks: 1. edge cases 2. overflow 3. possible errors (e.g 1/0, arr[out]) 4. time/space complexity void solver() throws IOException { int n = in.intNext(); long[] dists = in.nextLongArray(n); long mxDist = max(dists) + 1; long[] speeds = in.nextLongArray(n); Tuple[] items = new Tuple[n]; HashSet<Long> posSpeeds = new HashSet<>(); HashSet<Long> negSpeeds = new HashSet<>(); // List<Long> posSpeeds = new ArrayList<>(); // List<Long> negSpeeds = new ArrayList<>(); for (int i = 0; i < n; i++) { items[i] = new Tuple(dists[i], speeds[i]); long num = speeds[i]; posSpeeds.add(max(-1, num)); negSpeeds.add(max(-1, -num)); } Arrays.sort(items); // out.println(items); // out.println(posSpeeds); // out.println(negSpeeds); List<Long> posList = new ArrayList<>(posSpeeds); Collections.sort(posList); HashMap<Long, Integer> posMap = new HashMap<>(); for (int i = 0; i < posList.size(); i++) posMap.put(posList.get(i), i + 1); // out.println(posMap); List<Long> negList = new ArrayList<>(negSpeeds); Collections.sort(negList); HashMap<Long, Integer> negMap = new HashMap<>(); for (int i = 0; i < negList.size(); i++) negMap.put(negList.get(i), i + 1); // out.println(negMap); BIT counts = new BIT(posList.size() + 2); BIT distances = new BIT(posList.size() + 2); long forward = 0; for (int i = 0; i < n; i++) { Tuple node = items[i]; long dist = node.a; int speed = posMap.get(max(-1, node.b)); long prevCount = counts.getSum(speed); long prevDist = distances.getSum(speed); if (node.b >= 0) forward += dist * prevCount - prevDist; // out.pp(i, speed, prevCount, prevDist); counts.update(speed, 1); distances.update(speed, dist); } // out.println(forward); int last = negList.size() + 1; counts = new BIT(negList.size() + 2); distances = new BIT(negList.size() + 2); long backward = 0; for (int i = n - 1; i >= 0; i--) { Tuple node = items[i]; if (node.b >= 0) continue; long dist = mxDist - node.a; int speed = negMap.get(-node.b); long prevCount = counts.getSum(speed); long prevDist = distances.getSum(speed); backward += dist * prevCount - prevDist; counts.update(speed, 1); distances.update(speed, dist); } // out.println(backward); out.println(forward + backward); } static class BIT { long[] tree; int n; public BIT(int n) { tree = new long[n + 1]; this.n = n; } public BIT(long[] arr) { this.n = arr.length; tree = new long[n + 1]; for (int i = 1; i < n + 1; i++) { tree[i] += arr[i-1]; int parent = i + (i & -i); if (parent <= n) tree[parent] += tree[i]; } } public long getSum(int idx) { // one indexed long total = 0; while (idx > 0) { total += tree[idx]; idx = idx - (idx & -idx); } return total; } public long rangeSum(int a, int b) { // a-b inclusive: b > a and one indexed. return getSum(b) - getSum(a - 1); } public void update(int idx, long valueToAdd) { // one indexed while (idx <= n) { tree[idx] += valueToAdd; idx = idx + (idx & -idx); } } } // Generated Code Below: private static final FastWriter out = new FastWriter(); private static FastScanner in; static ArrayList<Integer>[] adj; private static long e97 = (long)1e9 + 7; public static void main(String[] args) throws IOException { in = new FastScanner(); new F().solver(); out.close(); } static class FastWriter { private static final int IO_BUFFERS = 128 * 1024; private final StringBuilder out; public FastWriter() { out = new StringBuilder(IO_BUFFERS); } public FastWriter p(Object object) { out.append(object); return this; } public FastWriter p(String format, Object... args) { out.append(String.format(format, args)); return this; } public FastWriter pp(Object... args) { for (Object ob : args) { out.append(ob).append(" "); } out.append("\n"); return this; } public FastWriter pp(int[] args) { for (int ob : args) { out.append(ob).append(" "); } out.append("\n"); return this; } public FastWriter pp(long[] args) { for (long ob : args) { out.append(ob).append(" "); } out.append("\n"); return this; } public FastWriter pp(char[] args) { for (char ob : args) { out.append(ob).append(" "); } out.append("\n"); return this; } public void println(long[] arr) { for(long e: arr) out.append(e).append(" "); out.append("\n"); } public void println(int[] arr) { for(int e: arr) out.append(e).append(" "); out.append("\n"); } public void println(char[] arr) { for(char e: arr) out.append(e).append(" "); out.append("\n"); } public void println(double[] arr) { for(double e: arr) out.append(e).append(" "); out.append("\n"); } public void println(boolean[] arr) { for(boolean e: arr) out.append(e).append(" "); out.append("\n"); } public <T>void println(T[] arr) { for(T e: arr) out.append(e).append(" "); out.append("\n"); } public void println(long[][] arr) { for (long[] row: arr) out.append(Arrays.toString(row)).append("\n"); } public void println(int[][] arr) { for (int[] row: arr) out.append(Arrays.toString(row)).append("\n"); } public void println(char[][] arr) { for (char[] row: arr) out.append(Arrays.toString(row)).append("\n"); } public void println(double[][] arr) { for (double[] row: arr) out.append(Arrays.toString(row)).append("\n"); } public <T>void println(T[][] arr) { for (T[] row: arr) out.append(Arrays.toString(row)).append("\n"); } public FastWriter println(Object object) { out.append(object).append("\n"); return this; } public void toFile(String fileName) throws IOException { BufferedWriter writer = new BufferedWriter(new FileWriter(fileName)); writer.write(out.toString()); writer.close(); } public void close() throws IOException { System.out.print(out); } } static class FastScanner { private InputStream sin = System.in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; public FastScanner(){} public FastScanner(String filename) throws FileNotFoundException { File file = new File(filename); sin = new FileInputStream(file); } private boolean hasNextByte() { if (ptr < buflen) { return true; }else{ ptr = 0; try { buflen = sin.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;} private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126;} public boolean hasNext() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte();} public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while(isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long longNext() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while(true){ if ('0' <= b && b <= '9') { n *= 10; n += b - '0'; }else if(b == -1 || !isPrintableChar(b) || b == ':'){ return minus ? -n : n; }else{ throw new NumberFormatException(); } b = readByte(); } } public int intNext() { long nl = longNext(); if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException(); return (int) nl; } public double doubleNext() { return Double.parseDouble(next());} public long[] nextLongArray(final int n){ final long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = longNext(); return a; } public int[] nextIntArray(final int n){ final int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = intNext(); return a; } public double[] nextDoubleArray(final int n){ final double[] a = new double[n]; for (int i = 0; i < n; i++) a[i] = doubleNext(); return a; } public ArrayList<Integer>[] getAdj(int n) { ArrayList<Integer>[] adj = new ArrayList[n + 1]; for (int i = 1; i <= n; i++) adj[i] = new ArrayList<>(); return adj; } public ArrayList<Integer>[] adjacencyList(int nodes, int edges) throws IOException { return adjacencyList(nodes, edges, false); } public ArrayList<Integer>[] adjacencyList(int nodes, int edges, boolean isDirected) throws IOException { adj = getAdj(nodes); for (int i = 0; i < edges; i++) { int a = intNext(), b = intNext(); adj[a].add(b); if (!isDirected) adj[b].add(a); } return adj; } } static class u { public static int upperBound(long[] array, long obj) { int l = 0, r = array.length - 1; while (r - l >= 0) { int c = (l + r) / 2; if (obj < array[c]) { r = c - 1; } else { l = c + 1; } } return l; } public static int upperBound(ArrayList<Long> array, long obj) { int l = 0, r = array.size() - 1; while (r - l >= 0) { int c = (l + r) / 2; if (obj < array.get(c)) { r = c - 1; } else { l = c + 1; } } return l; } public static int lowerBound(long[] array, long obj) { int l = 0, r = array.length - 1; while (r - l >= 0) { int c = (l + r) / 2; if (obj <= array[c]) { r = c - 1; } else { l = c + 1; } } return l; } public static int lowerBound(ArrayList<Long> array, long obj) { int l = 0, r = array.size() - 1; while (r - l >= 0) { int c = (l + r) / 2; if (obj <= array.get(c)) { r = c - 1; } else { l = c + 1; } } return l; } static <T> T[][] deepCopy(T[][] matrix) { return Arrays.stream(matrix).map(el -> el.clone()).toArray($ -> matrix.clone()); } static int[][] deepCopy(int[][] matrix) { return Arrays.stream(matrix).map(int[]::clone).toArray($ -> matrix.clone()); } static long[][] deepCopy(long[][] matrix) { return Arrays.stream(matrix).map(long[]::clone).toArray($ -> matrix.clone()); } private static void sort(int[][] arr){ Arrays.sort(arr, Comparator.comparingDouble(o -> o[0])); } private static void sort(long[][] arr){ Arrays.sort(arr, Comparator.comparingDouble(o -> o[0])); } private static <T>void rSort(T[] arr) { Arrays.sort(arr, Collections.reverseOrder()); } private static void customSort(int[][] arr) { Arrays.sort(arr, new Comparator<int[]>() { public int compare(int[] a, int[] b) { if (a[0] == b[0]) return Integer.compare(a[1], b[1]); return Integer.compare(a[0], b[0]); } }); } public static int[] swap(int[] arr, int left, int right) { int temp = arr[left]; arr[left] = arr[right]; arr[right] = temp; return arr; } public static char[] swap(char[] arr, int left, int right) { char temp = arr[left]; arr[left] = arr[right]; arr[right] = temp; return arr; } public static int[] reverse(int[] arr, int left, int right) { while (left < right) { int temp = arr[left]; arr[left++] = arr[right]; arr[right--] = temp; } return arr; } public static boolean findNextPermutation(int[] data) { if (data.length <= 1) return false; int last = data.length - 2; while (last >= 0) { if (data[last] < data[last + 1]) break; last--; } if (last < 0) return false; int nextGreater = data.length - 1; for (int i = data.length - 1; i > last; i--) { if (data[i] > data[last]) { nextGreater = i; break; } } data = swap(data, nextGreater, last); data = reverse(data, last + 1, data.length - 1); return true; } public static int biSearch(int[] dt, int target){ int left=0, right=dt.length-1; int mid=-1; while(left<=right){ mid = (right+left)/2; if(dt[mid] == target) return mid; if(dt[mid] < target) left=mid+1; else right=mid-1; } return -1; } public static int biSearchMax(long[] dt, long target){ int left=-1, right=dt.length; int mid=-1; while((right-left)>1){ mid = left + (right-left)/2; if(dt[mid] <= target) left=mid; else right=mid; } return left; } public static int biSearchMaxAL(ArrayList<Integer> dt, long target){ int left=-1, right=dt.size(); int mid=-1; while((right-left)>1){ mid = left + (right-left)/2; if(dt.get(mid) <= target) left=mid; else right=mid; } return left; } private static <T>void fill(T[][] ob, T res){for(int i=0;i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(boolean[][] ob,boolean res){for(int i=0;i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(int[][] ob, int res){ for(int i=0; i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(long[][] ob, long res){ for(int i=0; i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(char[][] ob, char res){ for(int i=0; i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(double[][] ob, double res){for(int i=0; i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}} private static void fill(int[][][] ob,int res){for(int i=0;i<ob.length;i++){for(int j=0;j<ob[0].length;j++){for(int k=0;k<ob[0][0].length;k++){ob[i][j][k]=res;}}}} private static void fill(long[][][] ob,long res){for(int i=0;i<ob.length;i++){for(int j=0;j<ob[0].length;j++){for(int k=0;k<ob[0][0].length;k++){ob[i][j][k]=res;}}}} private static <T>void fill(T[][][] ob,T res){for(int i=0;i<ob.length;i++){for(int j=0;j<ob[0].length;j++){for(int k=0;k<ob[0][0].length;k++){ob[i][j][k]=res;}}}} private static void fill_parent(int[] ob){ for(int i=0; i<ob.length; i++) ob[i]=i; } private static boolean same3(long a, long b, long c){ if(a!=b) return false; if(b!=c) return false; if(c!=a) return false; return true; } private static boolean dif3(long a, long b, long c){ if(a==b) return false; if(b==c) return false; if(c==a) return false; return true; } private static double hypotenuse(double a, double b){ return Math.sqrt(a*a+b*b); } private static long factorial(int n) { long ans=1; for(long i=n; i>0; i--){ ans*=i; } return ans; } private static long facMod(int n, long mod) { long ans=1; for(long i=n; i>0; i--) ans = (ans * i) % mod; return ans; } private static long lcm(long m, long n){ long ans = m/gcd(m,n); ans *= n; return ans; } private static long gcd(long m, long n) { if(m < n) return gcd(n, m); if(n == 0) return m; return gcd(n, m % n); } private static boolean isPrime(long a){ if(a==1) return false; for(int i=2; i<=Math.sqrt(a); i++){ if(a%i == 0) return false; } return true; } static long modInverse(long a, long mod) { /* Fermat's little theorem: a^(MOD-1) => 1 Therefore (divide both sides by a): a^(MOD-2) => a^(-1) */ return binpowMod(a, mod - 2, mod); } static long binpowMod(long a, long b, long mod) { long res = 1; while (b > 0) { if (b % 2 == 1) res = (res * a) % mod; a = (a * a) % mod; b /= 2; } return res; } private static int getDigit2(long num){ long cf = 1; int d=0; while(num >= cf){ d++; cf = 1<<d; } return d; } private static int getDigit10(long num){ long cf = 1; int d=0; while(num >= cf){ d++; cf*=10; } return d; } private static boolean isInArea(int y, int x, int h, int w){ if(y<0) return false; if(x<0) return false; if(y>=h) return false; if(x>=w) return false; return true; } private static ArrayList<Integer> generatePrimes(int n) { int[] lp = new int[n + 1]; ArrayList<Integer> pr = new ArrayList<>(); for (int i = 2; i <= n; ++i) { if (lp[i] == 0) { lp[i] = i; pr.add(i); } for (int j = 0; j < pr.size() && pr.get(j) <= lp[i] && i * pr.get(j) <= n; ++j) { lp[i * pr.get(j)] = pr.get(j); } } return pr; } static long nPrMod(int n, int r, long MOD) { long res = 1; for (int i = (n - r + 1); i <= n; i++) { res = (res * i) % MOD; } return res; } static long nCr(int n, int r) { if (r > (n - r)) r = n - r; long ans = 1; for (int i = 1; i <= r; i++) { ans *= n; ans /= i; n--; } return ans; } static long nCrMod(int n, int r, long MOD) { long rFactorial = nPrMod(r, r, MOD); long first = nPrMod(n, r, MOD); long second = binpowMod(rFactorial, MOD-2, MOD); return (first * second) % MOD; } static void printBitRepr(int n) { StringBuilder res = new StringBuilder(); for (int i = 0; i < 32; i++) { int mask = (1 << i); res.append((mask & n) == 0 ? "0" : "1"); } out.println(res); } static String bitString(int n) {return Integer.toBinaryString(n);} static int setKthBitToOne(int n, int k) { return (n | (1 << k)); } // zero indexed static int setKthBitToZero(int n, int k) { return (n & ~(1 << k)); } static int invertKthBit(int n, int k) { return (n ^ (1 << k)); } static boolean isPowerOfTwo(int n) { return (n & (n - 1)) == 0; } static HashMap<Character, Integer> counts(String word) { HashMap<Character, Integer> counts = new HashMap<>(); for (int i = 0; i < word.length(); i++) counts.merge(word.charAt(i), 1, Integer::sum); return counts; } static HashMap<Integer, Integer> counts(int[] arr) { HashMap<Integer, Integer> counts = new HashMap<>(); for (int value : arr) counts.merge(value, 1, Integer::sum); return counts; } static HashMap<Long, Integer> counts(long[] arr) { HashMap<Long, Integer> counts = new HashMap<>(); for (long l : arr) counts.merge(l, 1, Integer::sum); return counts; } static HashMap<Character, Integer> counts(char[] arr) { HashMap<Character, Integer> counts = new HashMap<>(); for (char c : arr) counts.merge(c, 1, Integer::sum); return counts; } static long hash(int x, int y) { return x* 1_000_000_000L +y; } static final Random random = new Random(); static void sort(int[] a) { int n = a.length;// shuffle, then sort for (int i = 0; i < n; i++) { int oi = random.nextInt(n), temp = a[oi]; a[oi] = a[i]; a[i] = temp; } Arrays.sort(a); } static void sort(long[] arr) { shuffleArray(arr); Arrays.sort(arr); } static void shuffleArray(long[] arr) { int n = arr.length; for(int i=0; i<n; ++i){ long tmp = arr[i]; int randomPos = i + random.nextInt(n-i); arr[i] = arr[randomPos]; arr[randomPos] = tmp; } } } static class Tuple implements Comparable<Tuple> { long a; long b; long c; public Tuple(long a, long b) { this.a = a; this.b = b; this.c = 0; } public Tuple(long a, long b, long c) { this.a = a; this.b = b; this.c = c; } public long getA() { return a; } public long getB() { return b; } public long getC() { return c; } public int compareTo(Tuple other) { if (this.a == other.a) { if (this.b == other.b) return Long.compare(this.c, other.c); return Long.compare(this.b, other.b); } return Long.compare(this.a, other.a); } @Override public int hashCode() { return Arrays.deepHashCode(new Long[]{a, b, c}); } @Override public boolean equals(Object o) { if (!(o instanceof Tuple)) return false; Tuple pairo = (Tuple) o; return (this.a == pairo.a && this.b == pairo.b && this.c == pairo.c); } @Override public String toString() { return String.format("(%d %d %d) ", this.a, this.b, this.c); } } private static int abs(int a){ return (a>=0) ? a: -a; } private static int min(int... ins){ int min = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] < min) min = ins[i]; } return min; } private static int max(int... ins){ int max = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] > max) max = ins[i]; } return max; } private static int sum(int... ins){ int total = 0; for (int v : ins) { total += v; } return total; } private static long abs(long a){ return (a>=0) ? a: -a; } private static long min(long... ins){ long min = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] < min) min = ins[i]; } return min; } private static long max(long... ins){ long max = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] > max) max = ins[i]; } return max; } private static long sum(long... ins){ long total = 0; for (long v : ins) { total += v; } return total; } private static double abs(double a){ return (a>=0) ? a: -a; } private static double min(double... ins){ double min = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] < min) min = ins[i]; } return min; } private static double max(double... ins){ double max = ins[0]; for(int i=1; i<ins.length; i++){ if(ins[i] > max) max = ins[i]; } return max; } private static double sum(double... ins){ double total = 0; for (double v : ins) { total += v; } return total; } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
python3
import sys input = sys.stdin.readline from heapq import heappush, heappop, heapify def query(f, i): ret = [0, 0] while i: ret[0] += f[i][0] ret[1] += f[i][1] i -= (i & -i) return ret def update(f, i, d): n = len(f) while i < n: f[i][0] += d[0] f[i][1] += d[1] i += (i & -i) n = int(input()) x = list(map(int, input().split())) v = list(map(int, input().split())) a = [()] * (n+1) for i in range(1, n+1): a[i] = (x[i-1], v[i-1]) a.sort() f = [[0, 0] for i in range(n+1)] for i in range(1, n+1): update(f, i, [a[i][0], 1]) b = [] for i in range(1, n+1): b.append((-a[i][1], -i)) heapify(b) ans = 0 while b: v, i = heappop(b) v, i = -v, -i x = a[i][0] if i > 1: sum, cnt = query(f, i-1) ans += x * cnt - sum update(f, i, [-x, -1]) print(ans)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int dx[] = {1, -1, 0, 0}; int dy[] = {0, 0, 1, -1}; int dddx[] = {1, -1, 0, 0, 1, 1, -1, -1}; int dddy[] = {0, 0, 1, -1, 1, -1, 1, -1}; vector<pair<long long int, long long int> > vec; int n; long long int tree[(int)(2 * 1e5 + 1)], tree2[(int)(2 * 1e5 + 1)]; void atualiza(int x, int v) { for (; x < n; x = x | (x + 1)) tree[x] += v; } void atualiza2(int x, int v) { for (; x < n; x = x | (x + 1)) tree2[x] += v; } long long int sum(long long int x) { long long int s = 0; for (; x >= 0; x = (x & (x + 1)) - 1) s += tree[x]; return s; } long long int sum2(int x) { long long int s = 0; for (; x >= 0; x = (x & (x + 1)) - 1) s += tree2[x]; return s; } void compress() { vector<int> aux2; for (int i = 0; i < n; i++) aux2.push_back(vec[i].second); sort(aux2.begin(), aux2.end()); for (int j = 0; j < n; j++) { auto i = vec[j]; vec[j].second = lower_bound(aux2.begin(), aux2.end(), i.second) - aux2.begin(); } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cin >> n; vector<int> aux; for (int i = 0; i < n; i++) { int a; cin >> a; vec.push_back({a, 1}); } for (int i = 0; i < n; i++) { int a; cin >> a; vec[i].second = a; } sort(vec.begin(), vec.end()); compress(); for (int i = 0; i < n; i++) aux.push_back(vec[i].second); sort(aux.begin(), aux.end()); long long int ans = 0; for (int i = 0; i < n; i++) { int pos = lower_bound(aux.begin(), aux.end(), vec[i].second) - aux.begin(); ans += (sum2(pos) * vec[i].first - sum(pos)); atualiza(pos, vec[i].first); atualiza2(pos, 1); } cout << ans << "\n"; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.HashMap; import java.io.IOException; import java.util.Comparator; import java.util.TreeSet; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); FMovingPoints solver = new FMovingPoints(); solver.solve(1, in, out); out.close(); } static class FMovingPoints { PrintWriter out; InputReader in; long[][] segtree; final Comparator<Tuple> com = new Comparator<Tuple>() { public int compare(Tuple t1, Tuple t2) { if (t1.x != t2.x) return Integer.compare(t1.x, t2.x); else return Integer.compare(t1.y, t2.y); } }; long merge(long x, long y) { return x + y; } void segtree_update(int ind, long val, int n) { ind += n; for (segtree[0][ind] += val, segtree[1][ind]++; ind > 1; ind >>= 1) { segtree[0][ind >> 1] = merge(segtree[0][ind], segtree[0][ind ^ 1]); segtree[1][ind >> 1] = merge(segtree[1][ind], segtree[1][ind ^ 1]); } } long[] segtree_query(int l, int r, int n) { long res = 0; long cnt = 0; for (l += n, r += n; l < r; l >>= 1, r >>= 1) { if ((l & 1) == 1) { res = merge(res, segtree[0][l]); cnt = merge(cnt, segtree[1][l]); l++; } if ((r & 1) == 1) { --r; res = merge(res, segtree[0][r]); cnt = merge(cnt, segtree[1][r]); } } return new long[]{res, cnt}; } public void solve(int testNumber, InputReader in, PrintWriter out) { this.out = out; this.in = in; int n = ni(); Tuple[] arr = new Tuple[n]; int i = 0; segtree = new long[2][2 * n]; HashMap<Integer, Integer> hmap = new HashMap<>(); for (i = 0; i < n; i++) arr[i] = new Tuple(ni(), -1); TreeSet<Integer> tset = new TreeSet<>(); for (i = 0; i < n; i++) { arr[i] = new Tuple(arr[i].x, ni()); tset.add(arr[i].y); } Arrays.sort(arr, com); int c = 0; for (int x : tset) hmap.put(x, c++); long ans = 0; for (i = n - 1; i >= 0; i--) { long[] curr_query = segtree_query(hmap.get(arr[i].y), c, c); ans += curr_query[0] - arr[i].x * curr_query[1]; segtree_update(hmap.get(arr[i].y), arr[i].x, c); } pn(ans); } int ni() { return in.nextInt(); } void pn(long zx) { out.println(zx); } class Tuple { int x; int y; Tuple(int a, int b) { x = a; y = b; } } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new UnknownError(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new UnknownError(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { return Integer.parseInt(next()); } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.*; import java.util.*; public class CF1311F extends PrintWriter { CF1311F() { super(System.out, true); } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF1311F o = new CF1311F(); o.main(); o.flush(); } int[] ll, rr, zz, key, val, cnt; long[] sum; int l_, r_, __ = 1; Random rand = new Random(); void init(int n) { ll = new int[1 + n]; rr = new int[1 + n]; zz = new int[1 + n]; key = new int[1 + n]; val = new int[1 + n]; cnt = new int[1 + n]; sum = new long[1 + n]; } int node(int v, int x) { zz[__] = rand.nextInt(); key[__] = v; val[__] = x; cnt[__] = 1; sum[__] = x; return __++; } void pul(int u) { int l = ll[u], r = rr[u]; cnt[u] = cnt[l] + 1 + cnt[r]; sum[u] = sum[l] + val[u] + sum[r]; } void split(int u, int k) { if (u == 0) { l_ = r_ = 0; return; } if (key[u] <= k) { split(rr[u], k); rr[u] = l_; l_ = u; } else { split(ll[u], k); ll[u] = r_; r_ = u; } pul(u); } int merge(int u, int v) { if (u == 0) return v; if (v == 0) return u; if (zz[u] < zz[v]) { rr[u] = merge(rr[u], v); pul(u); return u; } else { ll[v] = merge(u, ll[v]); pul(v); return v; } } static class P { int x, v; } void main() { int n = sc.nextInt(); P[] pp = new P[n]; for (int i = 0; i < n; i++) pp[i] = new P(); for (int i = 0; i < n; i++) pp[i].x = sc.nextInt(); for (int i = 0; i < n; i++) pp[i].v = sc.nextInt(); Arrays.sort(pp, (p, q) -> p.x - q.x); init(n); long ans = 0; int u_ = 0; for (int i = 0; i < n; i++) { int x = pp[i].x, v = pp[i].v; split(u_, v); ans += (long) cnt[l_] * x - sum[l_]; u_ = merge(l_, merge(node(v, x), r_)); } println(ans); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.*; import java.util.*; public class C { static int a, b, c; static int solve(int[] ans, int min, int i, int d) { int curr = Math.abs(i - b); curr += Math.abs(d - a); int r = c % i; if (c < i) curr += i - c; else curr += Math.min(r, i - r); if (curr < min) { ans[0] = d; ans[1] = i; if (c < i) ans[2] = i; else ans[2] = r < i - r ? c - r : c - r + i; } return curr; } public static void main(String[] args) throws IOException { Scanner sc = new Scanner(); PrintWriter out = new PrintWriter(System.out); int n = sc.nextInt(); int[][] a = new int[n][2]; TreeMap<Integer, Integer> map = new TreeMap(); for (int i = 0; i < n; i++) { a[i][0] = sc.nextInt(); } for (int i = 0; i < n; i++) { a[i][1] = sc.nextInt(); map.put(a[i][1], 1); } int id = 1; for (int x : map.keySet()) map.put(x, id++); FenwickTree ft = new FenwickTree(map.size()); Arrays.sort(a, (x, y) -> x[0] - y[0]); long ans = 0; for (int[] pair : a) { int x = pair[0], v = pair[1]; long[] less = ft.query(map.get(v)); long cnt = less[0]; ans += x * cnt - less[1]; ft.udpate(map.get(v), new int[] { 1, x }); } out.println(ans); out.close(); } static class FenwickTree { long[][] bit; FenwickTree(int n) { bit = new long[n + 1][2]; } void udpate(int idx, int[] a) { while (idx < bit.length) { for (int j = 0; j < 2; j++) bit[idx][j] += a[j]; idx += idx & -idx; } } long[] query(int idx) { long[] ans = new long[2]; while (idx > 0) { for (int j = 0; j < 2; j++) ans[j] += bit[idx][j]; idx -= idx & -idx; } return ans; } } static class Scanner { BufferedReader br; StringTokenizer st; Scanner() { br = new BufferedReader(new InputStreamReader(System.in)); } Scanner(String fileName) throws FileNotFoundException { br = new BufferedReader(new FileReader(fileName)); } String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } String nextLine() throws IOException { return br.readLine(); } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws NumberFormatException, IOException { return Long.parseLong(next()); } double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(next()); } boolean ready() throws IOException { return br.ready(); } } static void sort(int[] a) { shuffle(a); Arrays.sort(a); } static void shuffle(int[] a) { int n = a.length; Random rand = new Random(); for (int i = 0; i < n; i++) { int tmpIdx = rand.nextInt(n); int tmp = a[i]; a[i] = a[tmpIdx]; a[tmpIdx] = tmp; } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct hash_pair { template <class T1, class T2> size_t operator()(const pair<T1, T2>& p) const { auto hash1 = hash<T1>{}(p.first); auto hash2 = hash<T2>{}(p.second); return hash1 ^ hash2; } }; bool prime[10000001]; long long P = 1000000007 - 2; long long factorial[10000001] = {0}; long long powerFunction(long long x, long long y) { long long res = 1; long long p = 1000000007; x = x % p; while (y > 0) { if (y & 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } void sieveFunction(long long maxLimit) { memset(prime, true, sizeof(prime)); prime[0] = prime[1] = false; for (long long i = 2; maxLimit >= i; i++) { if (prime[i]) { for (long long j = 2 * i; maxLimit >= j; j += i) prime[j] = false; } } } void factorialFunction(long long maxLimit) { factorial[0] = 1; for (long long i = 1; i <= maxLimit; i++) factorial[i] = (factorial[i - 1] * i) % 1000000007; return; } long long gcd(long long a, long long b) { if (b == 0) return a; return gcd(b, a % b); } vector<pair<long long, long long>> tree[800001]; vector<long long> treesum[800001]; vector<pair<long long, long long>> v; void build(long long node, long long start, long long end) { if (start == end) { vector<pair<long long, long long>> temp; temp.push_back({v[start].second, v[start].first}); tree[node] = temp; vector<long long> sum; long long s = 0; for (long long i = 0; tree[node].size() > i; i++) { s += tree[node][i].second; treesum[node].push_back(s); } return; } long long mid = (start + end) / 2; build(2 * node, start, mid); build(2 * node + 1, mid + 1, end); long long i = 0, j = 0; while (i < tree[2 * node].size() && j < tree[2 * node + 1].size()) { if (tree[2 * node][i] <= tree[2 * node + 1][j]) { tree[node].push_back(tree[2 * node][i]); i++; } else { tree[node].push_back(tree[2 * node + 1][j]); j++; } } for (long long k = i; k < tree[2 * node].size(); k++) tree[node].push_back(tree[2 * node][k]); for (long long k = j; k < tree[2 * node + 1].size(); k++) tree[node].push_back(tree[2 * node + 1][k]); long long s = 0; for (long long k = 0; tree[node].size() > k; k++) { s += tree[node][k].second; treesum[node].push_back(s); } } long long n; long long SEC; long long query(long long node, long long start, long long end, long long x) { if (start > x && end <= n) { pair<long long, long long> tem = {v[x].second, INT64_MIN}; long long id = lower_bound(tree[node].begin(), tree[node].end(), tem) - tree[node].begin(); if (id) { SEC += (long long)tree[node].size() - id; return treesum[node].back() - treesum[node][id - 1]; } SEC += tree[node].size(); return treesum[node].back(); } if (end <= x || start > n) { return 0; } long long mid = (start + end) / 2; return query(2 * node, start, mid, x) + query(2 * node + 1, mid + 1, end, x); } signed main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); ; cin >> n; long long x[n + 1], s[n + 1]; for (long long i = 1; n >= i; i++) { cin >> x[i]; } for (long long i = 1; n >= i; i++) { cin >> s[i]; } v.push_back({INT64_MIN, INT64_MIN}); for (long long i = 1; n >= i; i++) { v.push_back({x[i], s[i]}); } sort(v.begin(), v.end()); build(1, 1, n); long long ans = 0; for (long long i = 1; n >= i; i++) { SEC = 0; long long xx = v[i].first; long long temp = query(1, 1, n, i); temp -= xx * SEC; ans += temp; } cout << ans << "\n"; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
python3
import bisect import sys class ft: def __init__(self,n): self.a = [0]*(200000) self.n = n def qry(self,r): ret = 0 while r>=0: ret+=self.a[r] r=(r&(r+1))-1 return ret def upd(self,i,v): while i<self.n: self.a[i]+=v i=(i|(i+1)) input = iter(sys.stdin.buffer.read().decode().splitlines()).__next__ n = int(input()) x = list(map(int,input().split())) v = list(map(int,input().split())) f0 = ft(n) f1 = ft(n) a1 = [[] for _ in range(n)] for i in range(n): a1[i].append(x[i]) a1[i].append(v[i]) a1.sort() v.sort() ans = 0 for i in range(n): p = bisect.bisect_left(v,a1[i][1]) ans+=(f0.qry(p)*a1[i][0])-(f1.qry(p)); f0.upd(p,1) f1.upd(p,a1[i][0]) print(ans)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
/* If you want to aim high, aim high Don't let that studying and grades consume you Just live life young ****************************** If I'm the sun, you're the moon Because when I go up, you go down ******************************* I'm working for the day I will surpass you https://www.a2oj.com/Ladder16.html */ import java.util.*; import java.io.*; import java.math.*; public class x1311F { public static void main(String omkar[]) throws Exception { BufferedReader infile = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(infile.readLine()); int N = Integer.parseInt(st.nextToken()); int[] pos = new int[N]; st = new StringTokenizer(infile.readLine()); for(int i=0; i < N; i++) pos[i] = Integer.parseInt(st.nextToken()); int[] vel = new int[N]; st = new StringTokenizer(infile.readLine()); for(int i=0; i < N; i++) vel[i] = Integer.parseInt(st.nextToken()); //int maxVel = compress(vel); //sort by position //count how many velocities are greater Point[] arr = new Point[N]; for(int i=0; i < N; i++) arr[i] = new Point(pos[i], vel[i]); Arrays.sort(arr); sort(pos); HashMap<Integer,Integer> map = new HashMap<Integer,Integer>(); long res = 0L; for(int k=0; k < N; k++) { map.put(pos[k],k); res += (long)pos[k]*(long)(-1*N+1+2*k); } for(int k=0; k < N; k++) { if(k < map.get(arr[k].pos)) res -= (long)arr[k].pos*(long)(map.get(arr[k].pos)-k); else if(k > map.get(arr[k].pos)) res += (long)arr[k].pos*(long)(k-map.get(arr[k].pos)); } System.out.println(res); } public static int compress(int[] vel) { ArrayList<Integer> ls = new ArrayList<Integer>(); for(int x: vel) ls.add(x); Collections.sort(ls); HashMap<Integer, Integer> map = new HashMap<Integer, Integer>(); int boof = 1; for(int x: ls) if(!map.containsKey(x)) map.put(x, boof++); for(int i=0; i < vel.length; i++) vel[i] = map.get(vel[i]); return boof-1; } public static void sort(int[] arr) { //stable heap sort PriorityQueue<Integer> pq = new PriorityQueue<Integer>(); for(int a: arr) pq.add(a); for(int i=0; i < arr.length; i++) arr[i] = pq.poll(); } } class Point implements Comparable<Point> { public int pos; public int vel; public Point(int a, int b) { pos = a; vel = b; } public int compareTo(Point oth) { if(vel != oth.vel) return vel-oth.vel; return pos-oth.pos; } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 2e5 + 10; long long int savev[maxn]; struct node { long long int x, v; node(){}; node(long long int x, long long int v) : x(x), v(v){}; bool operator<(const node& n) const { return x < n.x; } } save[maxn]; map<long long int, long long int> getv; long long int stree[maxn]; long long int vtree[maxn]; long long int n; void add(long long int x, long long int d, long long int* tree) { while (x <= n) { tree[x] += d; x += (x & (-x)); } } long long int sum(long long int x, long long int* tree) { long long int sum = 0; while (x > 0) { sum += tree[x]; x -= (x & (-x)); } return sum; } int main() { cin >> n; for (int i = 1; i <= n; i++) { scanf("%lld", &save[i].x); } for (int i = 1; i <= n; i++) { scanf("%lld", &save[i].v); savev[i] = save[i].v; } sort(savev + 1, savev + 1 + n); sort(save + 1, save + 1 + n); int vcnt = 0; for (int i = 1; i <= n; i++) { if (!getv[savev[i]]) { getv[savev[i]] = ++vcnt; } } long long int ans = 0; for (int i = 1; i <= n; i++) { node& nownode = save[i]; long long int nowv = getv[nownode.v]; long long int sumdis = sum(nowv, vtree); long long int sumsmall = sum(nowv, stree); ans += nownode.x * sumsmall - sumdis; add(nowv, nownode.x, vtree); add(nowv, 1, stree); } printf("%lld", ans); }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long max(long long a, long long b) { return a > b ? a : b; } void swap(long long& a, long long& b) { long long tmp = a; a = b; b = tmp; } long long t, n; long long x[200006], v[200006]; pair<long long, long long> xv[200006]; long long prfxSum[200006]; pair<long long, long long> sgmTree[4 * 200006]; pair<long long, long long> get(long long node, long long st, long long en, long long pos) { if (st > en) { return make_pair(0, 0); } if (en == pos) { return sgmTree[node]; } if ((st + en) / 2 >= pos) { return get(2 * node, st, (st + en) / 2, pos); } else { pair<long long, long long> to_ret = get(2 * node + 1, (st + en) / 2 + 1, en, pos); return make_pair(sgmTree[2 * node].first + to_ret.first, sgmTree[2 * node].second + to_ret.second); } } void remove(long long node, long long st, long long en, long long pos) { if (st > en) { return; } if (st == en) { sgmTree[node] = make_pair(0, 0); return; } if ((st + en) / 2 >= pos) { remove(2 * node, st, (st + en) / 2, pos); } else { remove(2 * node + 1, (st + en) / 2 + 1, en, pos); } sgmTree[node].first = sgmTree[2 * node].first + sgmTree[2 * node + 1].first; sgmTree[node].second = sgmTree[2 * node].second + sgmTree[2 * node + 1].second; } void buildtree(long long node, long long st, long long en) { if (st > en) { return; } if (st == en) { sgmTree[node] = make_pair(x[st], 1); return; } buildtree(2 * node, st, (st + en) / 2); buildtree(2 * node + 1, (st + en) / 2 + 1, en); sgmTree[node].first = sgmTree[2 * node].first + sgmTree[2 * node + 1].first; sgmTree[node].second = sgmTree[2 * node].second + sgmTree[2 * node + 1].second; } void solve() { cin >> n; for (int i = 1; i <= 4 * n; ++i) { sgmTree[i] = make_pair(0, 0); } for (int i = 1; i <= n; ++i) { cin >> x[i]; } for (int i = 1; i <= n; ++i) { cin >> v[i]; } for (int i = 1; i <= n; ++i) { xv[i] = make_pair(x[i], v[i]); } sort(xv + 1, xv + 1 + n); for (int i = 1; i <= n; ++i) { x[i] = xv[i].first; } for (int i = 1; i <= n; ++i) { v[i] = xv[i].second; } priority_queue<pair<long long, long long> > pq; for (int i = 1; i <= n; ++i) { pq.push(make_pair(v[i], i)); } prfxSum[1] = x[1]; for (int i = 2; i <= n; ++i) { prfxSum[i] = prfxSum[i - 1] + x[i]; } buildtree(1, 1, n); long long ans = 0; while (!pq.empty()) { pair<long long, long long> pair = pq.top(); long long mxv = pair.first; long long pos = pair.second; pq.pop(); long long val = 0; val += get(1, 1, n, pos).first; val -= get(1, 1, n, pos).second * x[pos]; remove(1, 1, n, pos); if (val < 0) { val *= -1; } ans += val; } cout << ans << endl; return; } int main(int argc, char const* argv[]) { t = 1; while (t--) { solve(); } return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.awt.*; import java.io.*; import java.io.IOException; import java.util.*; import java.text.DecimalFormat; public class Exam { public static long mod = (long)Math.pow(10, 9)+7 ; public static double epsilon=0.00000000008854;//value of epsilon public static InputReader sc = new InputReader(System.in); public static PrintWriter pw = new PrintWriter(System.out); public static long gcd(long a,long b){ while(b>0){ long t=b; b=a%b; a=t; } return a; } static void dfs(Point p[],int v,boolean vis[]){ if (vis[v])return; vis[v]=true; for (int i=0;i<p.length;i++){ if (p[i].x==p[v].x || p[i].y==p[v].y){ dfs(p,i,vis); } } } public static long bSearch(Pair[]d, int l, int r, int a) { if(d[l].d > a) return 0; if(l == r) return d[l].g; int m = (l + r + 1) / 2; if(d[m].d > a) return bSearch(d, l, m - 1, a); return bSearch(d, m, r, a); } static class Pair implements Comparable<Pair> { int d, i; long g; public Pair(int D, long G, int I) { d = D; g = G; i = I; } public int compareTo(Pair p) { if(d == p.d) return i - p.i; return d - p.d; } } public static long pow(long x,long y,long mod){ long ans=1; while(y>0){ if((y&1)==1){ ans=(ans*x)%mod; } y=y>>1; x=(x*x)%mod; } return ans; } public static boolean isPalindrome(String s1,String s2){ s2=reverseString(s2); if(s1.equals(s2)){ return true; } else return false; /* boolean f=true; for(int i=0;i<s.length();i++){ if(i>s.length()-i-1) break; if(s.charAt(i)!=s.charAt(s.length()-i-1)){ f=false; break; } } return f;*/ } public static HashSet<Long> query(int root,int l,int r,int st,int en,ArrayList<HashSet<Long>>s){ if(l>=st&&r<=en){ return s.get(root); } else if(r<st||l>en) return new HashSet<Long>(); else{ HashSet<Long> h1=query(2*root+1, l, (l+r)/2, st, en, s); HashSet<Long> h2=query(2*root+2, (l+r)/2+1, r, st, en, s); HashSet<Long> h=new HashSet<>(); h.addAll(h1);h.addAll(h2); return h; } } public static void main(String[] args) { // code starts.. //int q=sc.nextInt(); //while(q-->0){ int n=sc.nextInt(); //int m=sc.nextInt(); Long a[][]=new Long[n][3]; for(int i=0;i<n;i++){ a[i][0]=sc.nextLong(); } for(int i=0;i<n;i++){ a[i][1]=sc.nextLong(); } Arrays.sort(a,column(0)); for(int i=0;i<n;i++){ a[i][2]=(long)i+1; } Arrays.sort(a,column()); Bit co=new Bit(1000000); Bit sum=new Bit(1000000); long tot=0; for(int i=0;i<n;i++){ //if(i>0&&a[i][1]==a[i-1][1]){ // if(a[i][0]>a[i-1][0]) // tot-=a[i][0]-a[i-1][0]; //} long count=co.query(a[i][2]); long s=sum.query(a[i][2]); tot+=(long)count*a[i][0]-s; co.update(a[i][2], 1); sum.update(a[i][2], a[i][0]); } pw.println(tot); //} // Code ends... pw.flush(); pw.close(); } static class tripletL implements Comparable<tripletL> { Long x, y, z; tripletL(long x, long y, long z) { this.x = x; this.y = y; this.z = z; } public int compareTo(tripletL o) { int result = x.compareTo(o.x); if (result == 0) result = y.compareTo(o.y); if (result == 0) result = z.compareTo(o.z); return result; } public boolean equlas(Object o) { if (o instanceof tripletL) { tripletL p = (tripletL) o; return (x - p.x == 0) && (y - p.y ==0 ) && (z - p.z == 0); } return false; } public String toString() { return x + " " + y + " " + z; } public int hashCode() { return new Long(x).hashCode() * 31 + new Long(y).hashCode() + new Long(z).hashCode(); } } public static String Doubleformate(double a,int n){ String s=""; while(n-->0){ s+='0'; } DecimalFormat f =new DecimalFormat("#0."+s); return f.format(a); } public static Comparator<Long[]> column(int i){ return new Comparator<Long[]>() { @Override public int compare(Long[] o1, Long[] o2) { return o1[i].compareTo(o2[i]);//for ascending //return o2[i].compareTo(o1[i]);//for descending } }; } public static Comparator<Long[]> column(){ return new Comparator<Long[]>() { @Override public int compare(Long[] o1, Long[] o2) { if(o1[1]!=o2[1]) return o1[1].compareTo(o2[1]);//for ascending //return o2[i].compareTo(o1[i]);//for descending else return o1[0].compareTo(o2[0]); } }; } public static Comparator<Long[]> pair(){ return new Comparator<Long[]>() { @Override public int compare(Long[] o1, Long[] o2) { int result=o1[0].compareTo(o2[0]); if(result==0) result=o1[1].compareTo(o2[1]); return result; } }; } public static Comparator<Long[]> Triplet(){ return new Comparator<Long[]>() { @Override public int compare(Long[] o1, Long[] o2) { for(int i=0;i<3;i++){ for(int j=i+1;j<3;j++){ for(int k=0;k<3;k++){ for(int p=k+1;p<3;p++){ if((o1[i]==o2[k]&&o1[j]==o2[p])||(o1[j]==o2[k]&&o1[i]==o2[p])){ } } } } } int result=o1[0].compareTo(o2[0]); if(result==0) result=o1[1].compareTo(o2[1]); if(result==0) result=o1[2].compareTo(o2[2]); return result; } }; } public static String reverseString(String s){ StringBuilder input1 = new StringBuilder(); input1.append(s); input1 = input1.reverse(); return input1.toString(); } public static int[] scanArray(int n){ int a[]=new int [n]; for(int i=0;i<n;i++) a[i]=sc.nextInt(); return a; } public static long[] scanLongArray(int n){ long a[]=new long [n]; for(int i=0;i<n;i++) a[i]=sc.nextLong(); return a; } public static String [] scanStrings(int n){ String a[]=new String [n]; for(int i=0;i<n;i++) a[i]=sc.nextLine(); return a; } static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public String readString() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = snext(); while (isSpaceChar(c)) c = snext(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } } class Bit{//1...n long a[]; Bit(int n){ a=new long[n+1]; } void update(long f,long delta){ int i=(int)f; while(i<a.length){ a[i]+=delta; i+=i&(-i); } } long query(long f){ int i=(int)f; long sum=0; while(i>0){ sum+=a[i]; i-=i&(-i); } return sum; } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 2e5 + 10; struct Node { int x, v; bool operator<(const Node &rhs) const { return x < rhs.x; } } p[maxn]; int b[maxn], n, to; long long t[maxn], tt[maxn]; inline int lowbit(int x) { return x & -x; } void update(long long *t, int x, int v) { for (; x <= n; x += lowbit(x)) { t[x] += v; } } long long query(long long *t, int x) { long long sum = 0; for (; x; x -= lowbit(x)) { sum += t[x]; } return sum; } int find(int x) { return lower_bound(b + 1, b + to + 1, x) - b; } int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) scanf("%d", &p[i].x); for (int i = 1; i <= n; ++i) { scanf("%d", &p[i].v); b[i] = p[i].v; } sort(p + 1, p + n + 1); sort(b + 1, b + n + 1); to = unique(b + 1, b + n + 1) - b - 1; long long ans = 0; for (int i = 1; i <= n; ++i) { int v = find(p[i].v); ans += 1LL * query(tt, v) * p[i].x - query(t, v); update(t, v, p[i].x); update(tt, v, 1); } printf("%lld\n", ans); }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void dout() { cerr << '\n'; } template <typename Head, typename... Tail> void dout(Head H, Tail... T) { cerr << " " << H; dout(T...); } mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); const int N = 2e5 + 7; int n, m, cnt[N]; long long sum[N]; pair<int, int> p[N]; void upd(int x, int y) { for (; x <= m; x |= (x + 1)) { cnt[x]++; sum[x] += y; } } int getnum(int x) { int res = 0; for (; x >= 0; x = (x & (x + 1)) - 1) { res += cnt[x]; } return res; } long long getsum(int x) { long long res = 0; for (; x >= 0; x = (x & (x + 1)) - 1) { res += sum[x]; } return res; } int main() { ios_base::sync_with_stdio(false), cin.tie(NULL); cin >> n; vector<int> vec, v; for (int i = 1; i <= n; i++) { cin >> p[i].first; } for (int i = 1; i <= n; i++) { cin >> p[i].second; vec.push_back(p[i].second); } sort((vec).begin(), (vec).end()); map<int, int> ind; for (int i = 1; i <= n; i++) { if (!ind.count(vec[i - 1])) { ind[vec[i - 1]] = ++m; } } for (int i = 1; i <= n; i++) { p[i].second = ind[p[i].second]; } sort(p + 1, p + n + 1); long long ans = 0; for (int i = 1; i <= n; i++) { ans += (long long)getnum(p[i].second) * p[i].first - getsum(p[i].second); upd(p[i].second, p[i].first); } cout << ans; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
python3
# ---------------------------iye ha aam zindegi--------------------------------------------- import math import heapq, bisect import sys from collections import deque, defaultdict from fractions import Fraction import sys #import threading from collections import defaultdict #threading.stack_size(10**8) mod = 10 ** 9 + 7 mod1 = 998244353 # ------------------------------warmup---------------------------- import os import sys from io import BytesIO, IOBase #sys.setrecursionlimit(300000) BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") # -------------------game starts now----------------------------------------------------import math class TreeNode: def __init__(self, k, v): self.key = k self.value = v self.left = None self.right = None self.parent = None self.height = 1 self.num_left = 1 self.num_total = 1 class AvlTree: def __init__(self): self._tree = None def add(self, k, v): if not self._tree: self._tree = TreeNode(k, v) return node = self._add(k, v) if node: self._rebalance(node) def _add(self, k, v): node = self._tree while node: if k < node.key: if node.left: node = node.left else: node.left = TreeNode(k, v) node.left.parent = node return node.left elif node.key < k: if node.right: node = node.right else: node.right = TreeNode(k, v) node.right.parent = node return node.right else: node.value = v return @staticmethod def get_height(x): return x.height if x else 0 @staticmethod def get_num_total(x): return x.num_total if x else 0 def _rebalance(self, node): n = node while n: lh = self.get_height(n.left) rh = self.get_height(n.right) n.height = max(lh, rh) + 1 balance_factor = lh - rh n.num_total = 1 + self.get_num_total(n.left) + self.get_num_total(n.right) n.num_left = 1 + self.get_num_total(n.left) if balance_factor > 1: if self.get_height(n.left.left) < self.get_height(n.left.right): self._rotate_left(n.left) self._rotate_right(n) elif balance_factor < -1: if self.get_height(n.right.right) < self.get_height(n.right.left): self._rotate_right(n.right) self._rotate_left(n) else: n = n.parent def _remove_one(self, node): """ Side effect!!! Changes node. Node should have exactly one child """ replacement = node.left or node.right if node.parent: if AvlTree._is_left(node): node.parent.left = replacement else: node.parent.right = replacement replacement.parent = node.parent node.parent = None else: self._tree = replacement replacement.parent = None node.left = None node.right = None node.parent = None self._rebalance(replacement) def _remove_leaf(self, node): if node.parent: if AvlTree._is_left(node): node.parent.left = None else: node.parent.right = None self._rebalance(node.parent) else: self._tree = None node.parent = None node.left = None node.right = None def remove(self, k): node = self._get_node(k) if not node: return if AvlTree._is_leaf(node): self._remove_leaf(node) return if node.left and node.right: nxt = AvlTree._get_next(node) node.key = nxt.key node.value = nxt.value if self._is_leaf(nxt): self._remove_leaf(nxt) else: self._remove_one(nxt) self._rebalance(node) else: self._remove_one(node) def get(self, k): node = self._get_node(k) return node.value if node else -1 def _get_node(self, k): if not self._tree: return None node = self._tree while node: if k < node.key: node = node.left elif node.key < k: node = node.right else: return node return None def get_at(self, pos): x = pos + 1 node = self._tree while node: if x < node.num_left: node = node.left elif node.num_left < x: x -= node.num_left node = node.right else: return (node.key, node.value) raise IndexError("Out of ranges") @staticmethod def _is_left(node): return node.parent.left and node.parent.left == node @staticmethod def _is_leaf(node): return node.left is None and node.right is None def _rotate_right(self, node): if not node.parent: self._tree = node.left node.left.parent = None elif AvlTree._is_left(node): node.parent.left = node.left node.left.parent = node.parent else: node.parent.right = node.left node.left.parent = node.parent bk = node.left.right node.left.right = node node.parent = node.left node.left = bk if bk: bk.parent = node node.height = max(self.get_height(node.left), self.get_height(node.right)) + 1 node.num_total = 1 + self.get_num_total(node.left) + self.get_num_total(node.right) node.num_left = 1 + self.get_num_total(node.left) def _rotate_left(self, node): if not node.parent: self._tree = node.right node.right.parent = None elif AvlTree._is_left(node): node.parent.left = node.right node.right.parent = node.parent else: node.parent.right = node.right node.right.parent = node.parent bk = node.right.left node.right.left = node node.parent = node.right node.right = bk if bk: bk.parent = node node.height = max(self.get_height(node.left), self.get_height(node.right)) + 1 node.num_total = 1 + self.get_num_total(node.left) + self.get_num_total(node.right) node.num_left = 1 + self.get_num_total(node.left) @staticmethod def _get_next(node): if not node.right: return node.parent n = node.right while n.left: n = n.left return n # -----------------------------------------------binary seacrh tree--------------------------------------- class SegmentTree1: def __init__(self, data, default='z', func=lambda a, b: min(a, b)): """initialize the segment tree with data""" self._default = default self._func = func self._len = len(data) self._size = _size = 1 << (self._len - 1).bit_length() self.data = [default] * (2 * _size) self.data[_size:_size + self._len] = data for i in reversed(range(_size)): self.data[i] = func(self.data[i + i], self.data[i + i + 1]) def __delitem__(self, idx): self[idx] = self._default def __getitem__(self, idx): return self.data[idx + self._size] def __setitem__(self, idx, value): idx += self._size self.data[idx] = value idx >>= 1 while idx: self.data[idx] = self._func(self.data[2 * idx], self.data[2 * idx + 1]) idx >>= 1 def __len__(self): return self._len def query(self, start, stop): if start == stop: return self.__getitem__(start) stop += 1 start += self._size stop += self._size res = self._default while start < stop: if start & 1: res = self._func(res, self.data[start]) start += 1 if stop & 1: stop -= 1 res = self._func(res, self.data[stop]) start >>= 1 stop >>= 1 return res def __repr__(self): return "SegmentTree({0})".format(self.data) # -------------------game starts now----------------------------------------------------import math class SegmentTree: def __init__(self, data, default=0, func=lambda a, b: a + b): """initialize the segment tree with data""" self._default = default self._func = func self._len = len(data) self._size = _size = 1 << (self._len - 1).bit_length() self.data = [default] * (2 * _size) self.data[_size:_size + self._len] = data for i in reversed(range(_size)): self.data[i] = func(self.data[i + i], self.data[i + i + 1]) def __delitem__(self, idx): self[idx] = self._default def __getitem__(self, idx): return self.data[idx + self._size] def __setitem__(self, idx, value): idx += self._size self.data[idx] = value idx >>= 1 while idx: self.data[idx] = self._func(self.data[2 * idx], self.data[2 * idx + 1]) idx >>= 1 def __len__(self): return self._len def query(self, start, stop): if start == stop: return self.__getitem__(start) stop += 1 start += self._size stop += self._size res = self._default while start < stop: if start & 1: res = self._func(res, self.data[start]) start += 1 if stop & 1: stop -= 1 res = self._func(res, self.data[stop]) start >>= 1 stop >>= 1 return res def __repr__(self): return "SegmentTree({0})".format(self.data) # -------------------------------iye ha chutiya zindegi------------------------------------- class Factorial: def __init__(self, MOD): self.MOD = MOD self.factorials = [1, 1] self.invModulos = [0, 1] self.invFactorial_ = [1, 1] def calc(self, n): if n <= -1: print("Invalid argument to calculate n!") print("n must be non-negative value. But the argument was " + str(n)) exit() if n < len(self.factorials): return self.factorials[n] nextArr = [0] * (n + 1 - len(self.factorials)) initialI = len(self.factorials) prev = self.factorials[-1] m = self.MOD for i in range(initialI, n + 1): prev = nextArr[i - initialI] = prev * i % m self.factorials += nextArr return self.factorials[n] def inv(self, n): if n <= -1: print("Invalid argument to calculate n^(-1)") print("n must be non-negative value. But the argument was " + str(n)) exit() p = self.MOD pi = n % p if pi < len(self.invModulos): return self.invModulos[pi] nextArr = [0] * (n + 1 - len(self.invModulos)) initialI = len(self.invModulos) for i in range(initialI, min(p, n + 1)): next = -self.invModulos[p % i] * (p // i) % p self.invModulos.append(next) return self.invModulos[pi] def invFactorial(self, n): if n <= -1: print("Invalid argument to calculate (n^(-1))!") print("n must be non-negative value. But the argument was " + str(n)) exit() if n < len(self.invFactorial_): return self.invFactorial_[n] self.inv(n) # To make sure already calculated n^-1 nextArr = [0] * (n + 1 - len(self.invFactorial_)) initialI = len(self.invFactorial_) prev = self.invFactorial_[-1] p = self.MOD for i in range(initialI, n + 1): prev = nextArr[i - initialI] = (prev * self.invModulos[i % p]) % p self.invFactorial_ += nextArr return self.invFactorial_[n] class Combination: def __init__(self, MOD): self.MOD = MOD self.factorial = Factorial(MOD) def ncr(self, n, k): if k < 0 or n < k: return 0 k = min(k, n - k) f = self.factorial return f.calc(n) * f.invFactorial(max(n - k, k)) * f.invFactorial(min(k, n - k)) % self.MOD # --------------------------------------iye ha combinations ka zindegi--------------------------------- def powm(a, n, m): if a == 1 or n == 0: return 1 if n % 2 == 0: s = powm(a, n // 2, m) return s * s % m else: return a * powm(a, n - 1, m) % m # --------------------------------------iye ha power ka zindegi--------------------------------- def sort_list(list1, list2): zipped_pairs = zip(list2, list1) z = [x for _, x in sorted(zipped_pairs)] return z # --------------------------------------------------product---------------------------------------- def product(l): por = 1 for i in range(len(l)): por *= l[i] return por # --------------------------------------------------binary---------------------------------------- def binarySearchCount(arr, n, key): left = 0 right = n - 1 count = 0 while (left <= right): mid = int((right + left) / 2) # Check if middle element is # less than or equal to key if (arr[mid] < key): count = mid + 1 left = mid + 1 # If key is smaller, ignore right half else: right = mid - 1 return count # --------------------------------------------------binary---------------------------------------- def countdig(n): c = 0 while (n > 0): n //= 10 c += 1 return c def binary(x, length): y = bin(x)[2:] return y if len(y) >= length else "0" * (length - len(y)) + y def countGreater(arr, n, k): l = 0 r = n - 1 # Stores the index of the left most element # from the array which is greater than k leftGreater = n # Finds number of elements greater than k while (l <= r): m = int(l + (r - l) / 2) if (arr[m] >= k): leftGreater = m r = m - 1 # If mid element is less than # or equal to k update l else: l = m + 1 # Return the count of elements # greater than k return (n - leftGreater) # --------------------------------------------------binary------------------------------------ n=int(input()) l=list(map(int,input().split())) s=list(map(int,input().split())) d1=defaultdict(list) for i in range(n): d1[l[i]].append(s[i]) s.sort() d=defaultdict(list) for i in range(n): d[s[i]].append(i) for i in d: d[i].sort() d[i]=deque(d[i]) l.sort() u=[0]*n u1=[0]*n s=SegmentTree(u) s1=SegmentTree(u1) ans=0 for i in range(n): sp=d1[l[i]][-1] d1[l[i]].pop() pos=d[sp][0] #print(pos,sp) d[sp].popleft() ans+=s.query(0,pos-1)*l[i]-s1.query(0,pos-1) s.__setitem__(pos,1) s1.__setitem__(pos,l[i]) #print(ans) print(ans)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 2e5 + 5; int n; pair<int, int> a[maxn]; int m; vector<int> v; struct fenwick { long long val[maxn]; void init() { fill(begin(val), end(val), 0); } void upd(int x, int k) { for (; x < maxn; x += x & -x) val[x] += k; } long long get(int x) { long long res = 0; for (; x > 0; x -= x & -x) res += val[x]; return res; } long long get(int l, int r) { if (l > r) return 0; return get(r) - get(l - 1); } } tree_tot, tree_cnt; void read_input() { cin >> n; for (int i = 1; i <= n; ++i) cin >> a[i].first; for (int i = 1; i <= n; ++i) cin >> a[i].second; } void init() { sort(a + 1, a + n + 1); for (int i = 1; i <= n; ++i) v.push_back(a[i].second); sort(v.begin(), v.end()); v.erase(unique(v.begin(), v.end()), v.end()); m = v.size(); for (int i = 1; i <= n; ++i) a[i].second = lower_bound(v.begin(), v.end(), a[i].second) - v.begin() + 1; tree_tot.init(); tree_cnt.init(); for (int i = 1; i <= n; ++i) { tree_tot.upd(a[i].second, a[i].first); tree_cnt.upd(a[i].second, 1); } } void solve() { long long ans = 0; for (int i = 1; i <= n; ++i) { tree_tot.upd(a[i].second, -a[i].first); tree_cnt.upd(a[i].second, -1); ans += tree_tot.get(a[i].second, m) - a[i].first * 1LL * tree_cnt.get(a[i].second, m); } cout << ans << '\n'; } int main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); read_input(); init(); solve(); }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int N; pair<signed long long, signed long long> P[202020]; pair<signed long long, signed long long> Q[202020]; template <class V, int ME> class BIT { public: V bit[1 << ME]; V operator()(int e) { if (e < 0) return 0; V s = 0; e++; while (e) s += bit[e - 1], e -= e & -e; return s; } void add(int e, V v) { e++; while (e <= 1 << ME) bit[e - 1] += v, e += e & -e; } }; BIT<signed long long, 20> bt, bt2; void solve() { int i, j, k, l, r, x, y; string s; cin >> N; for (i = 0; i < (N); i++) cin >> P[i].first; for (i = 0; i < (N); i++) cin >> P[i].second; sort(P, P + N); signed long long ret = 0; for (i = 0; i < (N); i++) Q[i] = {P[i].second, i}; sort(Q, Q + N); for (i = 0; i < (N); i++) { ret += bt(Q[i].second) * P[Q[i].second].first; bt.add(Q[i].second, 1); } reverse(Q, Q + N); for (i = 0; i < (N); i++) { ret -= (bt2(N) - bt2(Q[i].second)) * P[Q[i].second].first; bt2.add(Q[i].second, 1); } cout << ret << endl; } int main(int argc, char** argv) { string s; int i; if (argc == 1) ios::sync_with_stdio(false), cin.tie(0); for (i = 0; i < (argc - 1); i++) s += argv[i + 1], s += '\n'; for (i = 0; i < (s.size()); i++) ungetc(s[s.size() - 1 - i], stdin); cout.tie(0); solve(); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; bool comp(pair<long long, long long> p1, pair<long long, long long> p2) { if (p1.second == p2.second) return p1.first < p2.first; return p1.second < p2.second; } signed main() { long long n; cin >> n; vector<pair<long long, long long> > v(n); for (long long i = 0; i < n; i++) { cin >> v[i].first; } for (long long i = 0; i < n; i++) { cin >> v[i].second; } sort(v.begin(), v.end()); map<long long, long long> mp; long long ans = 0; for (long long i = 0; i < n; i++) { ans += (2 * i - n + 1) * v[i].first; mp[v[i].first] = i; } sort(v.begin(), v.end(), comp); for (long long i = 0; i < n; i++) { ans += (i - mp[v[i].first]) * v[i].first; } cout << ans << endl; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long get(vector<long long> &f, int pos) { long long res = 0; for (; pos >= 0; pos = (pos & (pos + 1)) - 1) res += f[pos]; return res; } void upd(vector<long long> &f, int pos, int val) { for (; pos < int(f.size()); pos |= pos + 1) { f[pos] += val; } } int main() { int n; cin >> n; vector<pair<int, int>> p(n); for (auto &pnt : p) cin >> pnt.first; for (auto &pnt : p) cin >> pnt.second; sort(p.begin(), p.end()); vector<int> vs; for (auto &pnt : p) vs.push_back(pnt.second); sort(vs.begin(), vs.end()); vs.resize(unique(vs.begin(), vs.end()) - vs.begin()); long long ans = 0; vector<long long> cnt(vs.size()), xs(vs.size()); for (auto &pnt : p) { int pos = lower_bound(vs.begin(), vs.end(), pnt.second) - vs.begin(); ans += get(cnt, pos) * 1ll * pnt.first - get(xs, pos); upd(cnt, pos, 1); upd(xs, pos, pnt.first); } cout << ans << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; pair<long long, long long> o[(int)2e5 + 10]; long long n, ts[(int)2e5 + 10], tc[(int)2e5 + 10]; int main(void) { scanf("%lld", &n); for (long long i = 0; i < n; i++) { scanf("%lld", &o[i].second); } for (long long i = 0; i < n; i++) { scanf("%lld", &o[i].first); } sort(o, o + n); for (long long i = 0; i < n; i++) { o[i] = {o[i].second, i + 1}; } sort(o, o + n); long long ans = 0; for (long long i = 0; i < n; i++) { long long r = o[i].second, idx = o[i].first; long long s = 0, c = 0; while (0 < r) { s += ts[r]; c += tc[r]; r -= (r & -r); } ans += idx * c - s; long long v = o[i].second; while (v <= n) { ts[v] += idx; tc[v]++; v += (v & -v); } } printf("%lld\n", ans); }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long maxn = 200000 + 50; const long long LIM = 17; const long long INF = (long long)1e9 + 7; long long N; long long h[maxn]; long long sum[maxn << 1], cnt[maxn << 1]; struct node { long long x, v; } a[maxn]; bool cmp(const node& a, const node& b) { return a.x < b.x; } inline long long lowerbit(long long x) { return x & -x; } void updata(long long x, long long val, long long tree[]) { while (x <= N) { tree[x] += val; x += lowerbit(x); } } long long query(long long x, long long tree[]) { long long sum = 0; while (x > 0) { sum += tree[x]; x -= lowerbit(x); } return sum; } int main() { scanf("%lld", &N); for (long long i = 1; i <= N; i++) { scanf("%lld", &a[i].x); } for (long long i = 1; i <= N; i++) { scanf("%lld", &a[i].v); } sort(a + 1, a + 1 + N, cmp); long long l = -1e8; for (long long i = 1; i <= N; i++) { h[i] = a[i].v; } sort(h + 1, h + 1 + N); long long d = unique(h + 1, h + 1 + N) - h - 1; long long ans = 0; for (long long i = 1; i <= N; i++) { long long x = lower_bound(h + 1, h + 1 + d, a[i].v) - h; ans += (query(x, cnt) * (a[i].x - l) - query(x, sum)); updata(x, 1, cnt); updata(x, a[i].x - l, sum); } cout << ans << endl; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.*; import java.math.*; import java.util.*; import java.lang.*; public class Main implements Runnable { static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; private BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static void main(String args[]) throws Exception { new Thread(null, new Main(), "Main", 1 << 26).start(); } long modPow(long a, long p, long m) { if (a == 1) return 1; long ans = 1; while (p > 0) { if (p % 2 == 1) ans = (ans * a) % m; a = (a * a) % m; p >>= 1; } return ans; } long modInv(long a, long m) { return modPow(a, m - 2, m); } long gcd(long a,long b){ if(b==0)return a; return gcd(b,a%b); } class DSU { int par[], size[], connectedComponent; DSU(int n) { par = new int[n]; size = new int[n]; for (int i = 0; i < n; i++) { size[i] = 1; par[i] = i; } connectedComponent = n; } int root(int n) { if (n == par[n]) return n; return par[n] = root(par[n]); } boolean union(int u, int v) { return f_union(root(u), root(v)); } boolean f_union(int u, int v) { if (u == v) return false; if (size[u] > size[v]) { size[u] += size[v]; par[v] = u; } else { size[v] += size[u]; par[u] = v; } connectedComponent--; return true; } DSU clone_DSU() { DSU t = new DSU(par.length); t.connectedComponent = connectedComponent; for (int i = 0; i < par.length; i++) { t.par[i] = par[i]; t.size[i] = size[i]; } return t; } } //taken from KharYusuf static class LCA { public int[][] par; public int[] lvl; public final int LOG; public final int n; public ArrayList<Integer>[] a; public LCA(int n, ArrayList<Integer>[] aa) { a = aa; this.n = n; LOG = log2(n) + 1; par = new int[n][LOG]; lvl = new int[n]; } public void build(int u) { dfs(u, -1, 0); for (int j = 1; j < LOG; j++) for (int i = 0; i < n; i++) { par[i][j] = -1; if (par[i][j - 1] != -1) par[i][j] = par[par[i][j - 1]][j - 1]; } } public void dfs(int cur, int p, int l) { par[cur][0] = p; lvl[cur] = l; for (int i : a[cur]) if (i != p) dfs(i, cur, l + 1); } public int query(int u, int v) { if (lvl[u] < lvl[v]) { int t = u; u = v; v = t; } int dis = lvl[u] - lvl[v]; while (dis > 0) { int raise = log2(dis); u = par[u][raise]; dis ^= 1 << raise; } if (u == v) return u; for (int i = LOG - 1; i >= 0; i--) { if (par[u][i] != -1 && par[u][i] != par[v][i]) { u = par[u][i]; v = par[v][i]; } } return par[u][0]; } public int dist(int u, int v) { return lvl[u] + lvl[v] - (lvl[query(u, v)] << 1); } public int log2(int i) { int cnt = -1; while (i > 0) { i >>= 1; cnt++; } return cnt; } } PrintWriter out; InputReader sc; public void run() { sc = new InputReader(System.in); // Scanner sc=new Scanner(System.in); // Random sc=new Random(); out = new PrintWriter(System.out); int n=sc.nextInt(); int a[]=new int[n]; int b[]=new int[n]; ArrayList<Integer> temp=new ArrayList(); for (int i = 0; i <n ; i++) { a[i]=sc.nextInt(); } for (int i = 0; i <n ; i++) { b[i]=sc.nextInt(); temp.add(b[i]); } Collections.sort(temp); HashMap<Integer,Integer> map=new HashMap<>(); int counter=0; for (int i = 0; i <n ; i++) { if(!map.containsKey(temp.get(i))){ map.put(temp.get(i),counter++); } } Node c[]=new Node[n]; for (int i = 0; i <n ; i++) { c[i]=new Node(a[i],b[i]); } Arrays.sort(c, new Comparator<Node>() { @Override public int compare(Node o1, Node o2) { return Integer.compare(o2.a,o1.a); } }); // for(int key:map.keySet()){ //// out.println(key+" "+map.get(ke)); // } long ans=0; tree=new segNode[4*counter]; for (int i = 0; i <4*counter ; i++) { tree[i]=new segNode(0,0); } for (int i = 0; i <n ; i++) { segNode tempNode=query(0,0,counter-1,map.get(c[i].b),counter-1); ans+=Math.abs(1l*c[i].a*tempNode.fre-tempNode.sum); update(0,0,counter-1,map.get(c[i].b),c[i].a); } out.println(ans); out.close(); } class Node{ int a,b; public Node(int a, int b) { this.a = a; this.b = b; } } class segNode{ long sum; int fre; public segNode(long sum, int fre) { this.sum = sum; this.fre = fre; } } segNode query(int cur,int l,int r,int start,int end){ if(l>end || r<start)return new segNode(0,0); if(l>=start && r<=end)return tree[cur]; int mid=(l+r)>>1; segNode p1=query(2*cur+1,l,mid,start,end); segNode p2=query(2*cur+2,mid+1,r,start,end); return merge(p1,p2); } segNode tree[]; void update(int cur,int l,int r,int ind,int val){ if(l==r){ tree[cur].fre++; tree[cur].sum+=val; return; } int mid=(l+r)>>1; if(ind<=mid)update(2*cur+1,l,mid,ind,val); else update(2*cur+2,mid+1,r,ind,val); tree[cur]=merge(tree[2*cur+1],tree[2*cur+2]); } segNode merge(segNode o1,segNode o2){ return new segNode(o1.sum+o2.sum,o1.fre+o2.fre); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.TreeMap; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.TreeSet; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author prem_cse */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastReader in = new FastReader(inputStream); PrintWriter out = new PrintWriter(outputStream); FMovingPoints solver = new FMovingPoints(); solver.solve(1, in, out); out.close(); } static class FMovingPoints { public void solve(int testNumber, FastReader sc, PrintWriter out) { int n = sc.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = sc.nextInt(); FMovingPoints.Pair[] p = new FMovingPoints.Pair[n]; TreeSet<Integer> set = new TreeSet<>(); for (int i = 0; i < n; i++) { p[i] = new FMovingPoints.Pair(a[i], sc.nextInt()); set.add(p[i].s); } Arrays.sort(p, (x, y) -> x.v - y.v); set.add((int) -1e9); set.add((int) 1e9); TreeMap<Integer, Integer> map = new TreeMap<>(); while (!set.isEmpty()) map.put(set.pollFirst(), map.size()); FMovingPoints.FenwickTree count = new FMovingPoints.FenwickTree(map.size()); FMovingPoints.FenwickTree sum = new FMovingPoints.FenwickTree(map.size()); long ans = 0; for (int i = 0; i < n; i++) { int val = map.get(p[i].s); long c = count.query(val); ans += c * p[i].v - sum.query(val); count.update(val, 1); sum.update(val, p[i].v); } out.println(ans); } static class Pair { int v; int s; public Pair(int v, int s) { this.v = v; this.s = s; } } static class FenwickTree { int n; long[] ft; FenwickTree(int size) { n = size; ft = new long[n + 1]; } long query(int b) { long sum = 0; while (b > 0) { sum += ft[b]; b -= b & -b; } return sum; } void update(int k, int val) { while (k <= n) { ft[k] += val; k += k & -k; } } } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader(InputStream stream) { br = new BufferedReader(new InputStreamReader(stream), 32768); st = null; } public String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 7; const int MOD = 1e9 + 7; template <class T> bool umin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } template <class T> bool umax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool umod(T& a) { while (a < 0) a += MOD; a %= MOD; return 1; } int n, cn, a[N], b[N], c[N]; long long T[N << 2], S[N << 2], ans; map<int, int> mk; pair<int, int> p[N]; void upd(int x, int val, int l, int r, int v) { S[v]++, T[v] += val; if (l == r) return; if (x <= ((l + r) >> 1)) upd(x, val, l, ((l + r) >> 1), v << 1); else upd(x, val, ((l + r) >> 1) + 1, r, v << 1 | 1); } long long getT(int x, int y, int l, int r, int v) { if (y < l || r < x) return 0LL; if (x <= l && r <= y) return T[v]; return getT(x, y, l, ((l + r) >> 1), v << 1) + getT(x, y, ((l + r) >> 1) + 1, r, v << 1 | 1); } long long getS(int x, int y, int l, int r, int v) { if (y < l || r < x) return 0LL; if (x <= l && r <= y) return S[v]; return getS(x, y, l, ((l + r) >> 1), v << 1) + getS(x, y, ((l + r) >> 1) + 1, r, v << 1 | 1); } int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d", a + i); for (int i = 1; i <= n; i++) scanf("%d", b + i), mk[b[i]] = 1; for (__typeof(mk.begin()) i = (mk.begin()); i != (mk.end()); i++) i->second = ++cn; for (int i = 1; i <= n; i++) { c[i] = mk[b[i]]; p[i] = {a[i], i}; } sort(p + 1, p + n + 1); for (int i = 1; i <= n; i++) { long long s, t; ans += (1LL * (s = getS(1, c[p[i].second], 1, cn, 1)) * p[i].first) - (t = getT(1, c[p[i].second], 1, cn, 1)); upd(c[p[i].second], p[i].first, 1, cn, 1); } printf("%lld\n", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct tree { tree* l; tree* r; long long sum; long long cnt; tree() { l = r = nullptr; sum = cnt = 0; } }* rt = new tree; tree* get_l(tree* v) { if (!v->l) { v->l = new tree; } return v->l; } tree* get_r(tree* v) { if (!v->r) { v->r = new tree; } return v->r; } void add(tree* v, long long l, long long r, long long V, long long x) { v->cnt++; v->sum += x; if (l == r - 1) { return; } long long m = (l + r) / 2; if (V < m) add(get_l(v), l, m, V, x); else add(get_r(v), m, r, V, x); } pair<long long, long long> get_sum(tree* v, long long l, long long r, long long L, long long R) { if (r <= L || l >= R) return {0, 0}; if (L <= l && r <= R) return {v->sum, v->cnt}; long long m = (l + r) / 2; pair<long long, long long> t1 = get_sum(get_l(v), l, m, L, R); pair<long long, long long> t2 = get_sum(get_r(v), m, r, L, R); return {t1.first + t2.first, t1.second + t2.second}; } int32_t main() { ios_base::sync_with_stdio(false); cin.tie(NULL); long long n; cin >> n; vector<pair<long long, long long>> xv(n); for (long long i = 0; i < n; ++i) { cin >> xv[i].first; } for (long long i = 0; i < n; ++i) { cin >> xv[i].second; xv[i].second += 1e8; } long long MX_V = 2e8 + 10; sort(xv.begin(), xv.end()); long long res = 0; for (long long i = 0; i < n; ++i) { pair<long long, long long> k = get_sum(rt, 0, MX_V, 0, xv[i].second + 1); res += xv[i].first * k.second - k.first; add(rt, 0, MX_V, xv[i].second, xv[i].first); } cout << res << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAX_SIZE = 200010; pair<int, int> arr[MAX_SIZE], backup[MAX_SIZE]; long long prefix[MAX_SIZE]; int N; void sortX(int l, int r) { if (l >= r) return; int mi = (l + r) / 2; sortX(l, mi); sortX(mi + 1, r); int i = l, j = mi + 1, k = l; while (i <= mi && j <= r) { if (arr[i] < arr[j]) { backup[k++] = arr[i++]; } else { backup[k++] = arr[j++]; } } while (i <= mi) { backup[k++] = arr[i++]; } while (j <= r) { backup[k++] = arr[j++]; } for (int i = l; i <= r; i++) { arr[i] = backup[i]; } } int lowerBound(int l, int r, int val) { while (l <= r) { int mi = (l + r) / 2; if (arr[mi].second <= val) { l = mi + 1; } else { r = mi - 1; } } int mi = (l + r) / 2; if (mi >= l && arr[mi].second > val) return mi - 1; return mi; } long long mergeSortV(int l, int r) { if (l >= r) return 0; int mi = (l + r) / 2; long long left = mergeSortV(l, mi); long long right = mergeSortV(mi + 1, r); long long mix = 0LL; prefix[l] = 0LL; for (int i = l; i <= mi; i++) { prefix[i + 1] = prefix[i] + (long long)arr[i].first; } for (int i = mi + 1; i <= r; i++) { int pos = lowerBound(l, mi, arr[i].second); long long cnt = pos - l + 1; mix += ((long long)arr[i].first * cnt - (prefix[pos + 1] - prefix[l])); } int i = l, j = mi + 1, k = l; while (i <= mi && j <= r) { if (arr[i].second < arr[j].second) { backup[k++] = arr[i++]; } else { backup[k++] = arr[j++]; } } while (i <= mi) { backup[k++] = arr[i++]; } while (j <= r) { backup[k++] = arr[j++]; } for (i = l; i <= r; i++) { arr[i] = backup[i]; } return left + right + mix; } long long solveBruteforce() { long long sum = 0LL; for (int i = 0; i < N; i++) { for (int j = i + 1; j < N; j++) { if (arr[i].second > arr[j].second) { sum += (long long)max(arr[i].first - arr[j].first, 0); } else if (arr[i].second < arr[j].second) { sum += (long long)max(arr[j].first - arr[i].first, 0); } else { sum += (long long)max(arr[j].first - arr[i].first, arr[i].first - arr[j].first); } } } return sum; } int main() { cin >> N; for (int i = 0; i < N; i++) { int x; cin >> x; arr[i].first = x; } for (int i = 0; i < N; i++) { int v; cin >> v; arr[i].second = v; } sortX(0, N - 1); cout << mergeSortV(0, N - 1) << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.Arrays; import java.util.Scanner; import java.util.Comparator; public class MovingPoints { private static long sumaj(long[] arr,int index) { long result=0; while (index>=0) { result+=arr[index]; index=(index&(index+1))-1; } return result; } private static void apdejt (long[] t,int index,int vv) { while (index<t.length) { t[index]+=vv; index=index|(index + 1); } } public static void main(String[] args) { Scanner in=new Scanner(System.in); int n=in.nextInt(); int[][] pm=new int[n][2]; int[][] vm=new int[n][2]; for (int i=0;i<n;i++) pm[i][0]=in.nextInt(); for (int i=0;i<n;i++) { pm[i][1]=in.nextInt(); vm[i][0]=pm[i][1]; vm[i][1]=i; } in.close(); Arrays.sort(vm, new Comparator<int[]>() { public int compare(int[] a, int[] b) { return a[0] - b[0]; } }); int nss=0; int[][] finar=new int[n][2]; for (int i=0;i<n;i++) { if (i>0 && vm[i][0]!=vm[i-1][0]) nss++; finar[i][0]=nss; finar[i][1]=vm[i][1]; } Arrays.sort(finar,new Comparator<int[]>() { public int compare(int[] a,int[] b) { return a[1]-b[1]; }}); for (int i=0; i<n;i++) { pm[i][1] = finar[i][0]; } Arrays.sort(pm,new Comparator<int[]>() { public int compare(int[] a,int[] b) { return a[0]-b[0]; }}); long[] c=new long[n]; long[] pts=new long[n]; long totalsum=0; for (int i=0;i<n;i++) { int index=pm[i][1]; totalsum+=sumaj(pts,index)*pm[i][0]-sumaj(c,index); apdejt(pts,index,1); //System.out.println(); //System.out.println(totalsum); //System.out.println(); //System.out.println("coordtsum"); //for (int j=0;j<c.length;j++) { //System.out.print(c[j]); //} apdejt(c, index, pm[i][0]); //System.out.println(); //System.out.println("pointsum"); //for (int j=0;j<pts.length;j++) { //System.out.print(pts[j]); //} } //System.out.println(); System.out.println(totalsum); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> int xx[200000], vv[200000]; int compare_v(const void *a, const void *b) { int i = *(int *)a; int j = *(int *)b; return vv[i] - vv[j]; } int compare_x(const void *a, const void *b) { int i = *(int *)a; int j = *(int *)b; return xx[i] - xx[j]; } void sort(int *ii, int n, int (*compare)(const void *, const void *)) { qsort(ii, n, sizeof *ii, compare); } void update(long long *ft, int i, int n, int x) { while (i < n) { ft[i] += x; i |= i + 1; } } long long query(long long *ft, int i) { long long x = 0; while (i >= 0) { x += ft[i]; i &= i + 1, i--; } return x; } int main() { static long long ft_cnt[200000], ft_sum[200000]; static int ii[200000]; int n, n_, i; long long ans; scanf("%d", &n); for (i = 0; i < n; i++) scanf("%d", &xx[i]); for (i = 0; i < n; i++) scanf("%d", &vv[i]); for (i = 0; i < n; i++) ii[i] = i; sort(ii, n, compare_v); n_ = 0; for (i = 0; i < n; i++) vv[ii[i]] = i + 1 == n || vv[ii[i + 1]] != vv[ii[i]] ? n_++ : n_; sort(ii, n, compare_x); ans = 0; for (i = 0; i < n; i++) { int i_ = ii[i], x = xx[i_], v = vv[i_]; ans += query(ft_cnt, v) * x - query(ft_sum, v); update(ft_cnt, v, n_, 1); update(ft_sum, v, n_, x); } printf("%lld\n", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
python3
import sys input = sys.stdin.readline from collections import defaultdict def compress(l): l = list(set(l)) l.sort() idx = defaultdict(int) c = 0 for li in l: idx[li] = c c += 1 return idx class BIT: #n:要素数 def __init__(self, n): self.n = n self.bit = [0]*(n+1) #i番目(0-indexed)の値にxを足す def add(self, i, x): i += 1 while i<=self.n: self.bit[i] += x i += i&(-i) #0からi番目までの値の和を求める def acc(self, i): i += 1 s = 0 while i>0: s += self.bit[i] i -= i&(-i) return s n = int(input()) x = list(map(int, input().split())) v = list(map(int, input().split())) xv = [(xi, vi) for xi, vi in zip(x, v)] xv.sort(key=lambda t: t[0]) idx = compress(v) sum_bit = BIT(len(idx)) cnt_bit = BIT(len(idx)) ans = 0 for xi, vi in xv: ans += cnt_bit.acc(idx[vi])*xi-sum_bit.acc(idx[vi]) sum_bit.add(idx[vi], xi) cnt_bit.add(idx[vi], 1) print(ans)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long N = 2e5 + 1000; const long long M = 1e5 + 10; const long long inf = 1e9 + 7; const long long Mod = 1e9 + 7; const double eps = 1e-6; int T; pair<int, int> a[N]; int b[N]; int n; pair<long long, long long> bt[N]; pair<long long, long long> query(int first) { pair<long long, long long> res{0, 0}; while (first) { res.first += bt[first].first; res.second += bt[first].second; first -= ((first) & (-first)); } return res; } void modify(int first, int val) { while (first <= n) { bt[first].first += val; bt[first].second++; first += ((first) & (-first)); } } int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) { scanf("%d", &a[i].first); } for (int i = 1; i <= n; ++i) { scanf("%d", &a[i].second); b[i] = a[i].second; } sort(a + 1, a + n + 1); sort(b + 1, b + n + 1); int len = unique(b + 1, b + n + 1) - b - 1; long long ans = 0; for (int i = 1; i <= n; ++i) { int id = lower_bound(b + 1, b + len + 1, a[i].second) - b; pair<long long, long long> cur = query(id); ans -= cur.first - cur.second * a[i].first; modify(id, a[i].first); } printf("%lld", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct treap { treap* l = nullptr; treap* r = nullptr; long long int pos; long long int vel; long long int y; long long int sum; int ch; static long long int s(treap* A) { if (A == nullptr) return 0; return A->sum; } static int c(treap* A) { if (A == nullptr) return 0; return A->ch; } static void re(treap* A) { if (A == nullptr) return; A->sum = s(A->l) + s(A->r) + A->pos; A->ch = c(A->l) + c(A->r) + 1; } treap(long long int pos, long long int vel) { this->vel = vel; this->pos = pos; this->y = rand() % 1000000000; re(this); } static treap* merge(treap* A, treap* B) { if (A == nullptr) return B; if (B == nullptr) return A; if (A->y > B->y) { A->r = merge(A->r, B); re(A); return A; } else { B->l = merge(A, B->l); re(B); return B; } } static pair<treap*, treap*> split(treap* A, long long int x) { if (A == nullptr) return {nullptr, nullptr}; if (A->vel <= x) { auto T1 = split(A->r, x); A->r = T1.first; re(A); return {A, T1.second}; } else { auto T1 = split(A->l, x); A->l = T1.second; re(A); return {T1.first, A}; } } static treap* insert(treap* A, long long int pos, long long int vel) { auto T1 = split(A, vel); auto T2 = merge(T1.first, new treap(pos, vel)); return merge(T2, T1.second); } static void func(treap* A, long long int x, long long int& cnt, long long int& sum) { auto T1 = split(A, x); cnt = c(T1.first); sum = s(T1.first); merge(T1.first, T1.second); } }; const int le = 2 * 1e5; struct point { long long int pos = 0; long long int vel = 0; point(int pos = 0, int vel = 0) { this->pos = pos; this->vel = vel; } bool operator<(const point& other) const { return this->pos < other.pos; } }; point arr[le]; int main() { iostream::sync_with_stdio(0); cin.tie(0); cout.tie(0); srand(time(0)); int n; cin >> n; for (int i = 0; i < n; i++) { cin >> arr[i].pos; } for (int i = 0; i < n; i++) { cin >> arr[i].vel; } sort(arr, arr + n); long long int ans = 0; treap* cur = nullptr; for (int i = 0; i < n; i++) { long long int cnt, sum; treap::func(cur, arr[i].vel, cnt, sum); cur = treap::insert(cur, arr[i].pos, arr[i].vel); ans += cnt * arr[i].pos - sum; } cout << ans << '\n'; ; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct Node { int X, V; inline friend bool operator<(Node x, Node y) { if (x.V == y.V) { return x.X < y.X; } return x.V < y.V; } } p[200000]; map<int, int> A; set<int> B; int ct; long long c1[200001]; int c2[200001]; inline void Add(int x, int d) { for (register int i = x; i <= ct; i += i & -i) { c1[i] += d; c2[i]++; } } inline pair<long long, int> Get(int x) { int s2 = 0; long long s1 = 0; for (register int i = x; i != 0; i -= i & -i) { s1 += c1[i]; s2 += c2[i]; } return make_pair(s1, s2); } int main() { int n, k; scanf("%d", &n); for (register int i = 0; i != n; i++) { scanf("%d", &p[i].X); B.insert(p[i].X); } for (register int i = 0; i != n; i++) { scanf("%d", &p[i].V); } sort(p, p + n); for (set<int>::iterator T = B.begin(); T != B.end(); T++) { ct++; A[*T] = ct; } long long ans = 0; for (register int i = 0; i != n; i++) { k = A[p[i].X]; pair<long long, int> Tem = Get(k); ans += (long long)p[i].X * Tem.second - Tem.first; Add(k, p[i].X); } printf("%lld", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long n, m, ans[200005 << 2], tag[200005 << 2], cnt[200005 << 2], tagg[200005 << 2]; struct p { long long x, v, vv; } a[200005]; int cmp(p a, p b) { return a.v < b.v; } int cmpp(p a, p b) { return a.x < b.x; } inline long long ls(long long x) { return x << 1; } inline long long rs(long long x) { return x << 1 | 1; } inline void push_up(long long p) { cnt[p] = cnt[ls(p)] + cnt[rs(p)]; ans[p] = ans[ls(p)] + ans[rs(p)]; } void build(long long p, long long l, long long r) { tag[p] = 0; if (l == r) { ans[p] = 0; return; } long long mid = (l + r) >> 1; build(ls(p), l, mid); build(rs(p), mid + 1, r); push_up(p); } inline void f(long long p, long long l, long long r, long long k) { tag[p] = tag[p] + k; ans[p] = ans[p] + k * (r - l + 1); } inline void push_down(long long p, long long l, long long r) { long long mid = (l + r) >> 1; f(ls(p), l, mid, tag[p]); f(rs(p), mid + 1, r, tag[p]); tag[p] = 0; } inline void update(long long nl, long long nr, long long l, long long r, long long p, long long k) { if (nl <= l && r <= nr) { ans[p] += k * (r - l + 1); tag[p] += k; cnt[p]++; return; } push_down(p, l, r); long long mid = (l + r) >> 1; if (nl <= mid) update(nl, nr, l, mid, ls(p), k); if (nr > mid) update(nl, nr, mid + 1, r, rs(p), k); push_up(p); } long long query(long long q_x, long long q_y, long long l, long long r, long long p) { long long res = 0; if (q_x <= l && r <= q_y) return ans[p]; long long mid = (l + r) >> 1; push_down(p, l, r); if (q_x <= mid) res += query(q_x, q_y, l, mid, ls(p)); if (q_y > mid) res += query(q_x, q_y, mid + 1, r, rs(p)); return res; } long long query2(long long q_x, long long q_y, long long l, long long r, long long p) { long long res = 0; if (q_x <= l && r <= q_y) return cnt[p]; long long mid = (l + r) >> 1; push_down(p, l, r); if (q_x <= mid) res += query2(q_x, q_y, l, mid, ls(p)); if (q_y > mid) res += query2(q_x, q_y, mid + 1, r, rs(p)); return res; } int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) { scanf("%lld", &a[i].x); } for (int i = 1; i <= n; i++) { scanf("%lld", &a[i].v); } build(1, 1, n); sort(a + 1, a + 1 + n, cmp); long long tmp = 1; a[1].vv = 1; for (int i = 2; i <= n; i++) { if (a[i].v != a[i - 1].v) tmp++; a[i].vv = tmp; } long long ans = 0; sort(a + 1, a + 1 + n, cmpp); vector<long long> v; for (int i = 1; i <= n; i++) { long long tmpp = query(1, a[i].vv, 1, n, 1); long long cntt = query2(1, a[i].vv, 1, n, 1); ans += a[i].x * cntt - tmpp; update(a[i].vv, a[i].vv, 1, n, 1, a[i].x); } cout << ans; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.TreeMap; import java.util.InputMismatchException; import java.io.IOException; import java.util.Comparator; import java.util.TreeSet; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author KharYusuf */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastReader in = new FastReader(inputStream); PrintWriter out = new PrintWriter(outputStream); FMovingPoints solver = new FMovingPoints(); solver.solve(1, in, out); out.close(); } static class FMovingPoints { public void solve(int testNumber, FastReader s, PrintWriter w) { int n = s.nextInt(), MX = (int) 1e8; int[][] x = new int[n][2]; for (int i = 0; i < n; i++) x[i][0] = s.nextInt(); TreeSet<Integer> p = new TreeSet<>(), ne = new TreeSet<>(); TreeMap<Integer, Integer> po = new TreeMap<>(), nee = new TreeMap<>(); for (int i = 0; i < n; i++) { x[i][1] = s.nextInt(); if (x[i][1] > 0) p.add(x[i][1]); else if (x[i][1] < 0) ne.add(x[i][1] + MX); } int cnt = 0; for (int i : p) po.put(i, cnt++); cnt = 0; for (int i : ne) nee.put(i, cnt++); func.sortbyColumn(x, 0); long ans = 0, cntneg = 0, cntz = 0, cneg = 0, cz = 0; bit pos = new bit(p.size()), neg = new bit(nee.size()), poscnt = new bit(p.size()), negcnt = new bit(nee.size()); for (int i = 0; i < n; i++) { if (x[i][1] > 0) { ans += x[i][0] * cntneg - cneg; ans += x[i][0] * cntz - cz; int cur = po.get(x[i][1]); ans += poscnt.query(cur) * x[i][0] - pos.query(cur); poscnt.modify(cur, 1); pos.modify(cur, x[i][0]); } else if (x[i][1] < 0) { cntneg++; cneg += x[i][0]; int cur = nee.get(MX + x[i][1]); ans += negcnt.query(cur) * x[i][0] - neg.query(cur); negcnt.modify(cur, 1); neg.modify(cur, x[i][0]); } else { cntz++; cz += x[i][0]; ans += x[i][0] * cntneg - cneg; ans += x[i][0] * cntz - cz; } } w.println(ans); } public class bit { public int n; public long[] t; public bit(int n) { t = new long[n]; this.n = n; } public void modify(int ind, long val) { for (; ind < n; ind = ind | (++ind)) t[ind] += val; } public long query(int ind) { long sum = 0; for (; ind >= 0; ind = (ind & (++ind)) - 1) sum += t[ind]; return sum; } } } static class FastReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private FastReader.SpaceCharFilter filter; public FastReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class func { public static void sortbyColumn(int[][] arr, final int col) { Arrays.sort(arr, new Comparator<int[]>() { public int compare(final int[] entry1, final int[] entry2) { if (entry1[col] > entry2[col]) return 1; if (entry1[col] < entry2[col]) return -1; return 0; } }); } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.TreeMap; import java.io.IOException; import java.util.Comparator; import java.util.TreeSet; import java.io.InputStream; public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); FMovingPoints solver = new FMovingPoints(); solver.solve(1, in, out); out.close(); } static class FMovingPoints { int n; PrintWriter out; InputReader in; final Comparator<Entity> com = new Comparator<Entity>() { public int compare(Entity x, Entity y) { int xx = Integer.compare(x.a, y.a); return xx; } }; public void solve(int testNumber, InputReader in, PrintWriter out) { int t, i, j, tt, k; this.out = out; this.in = in; n = in.nextInt(); Entity en[] = new Entity[n]; TreeSet<Long> ts = new TreeSet<>(); for (i = 0; i < n; i++) { en[i] = new Entity(in.nextInt(), 0); } for (i = 0; i < n; i++) { en[i].b = in.nextInt(); ts.add(en[i].b); } Arrays.sort(en, com); TreeMap<Long, Integer> tm = new TreeMap<>(); int cc = 0; for (Long it : ts) { tm.put(it, cc); cc++; } SegmenTree sg = new SegmenTree(); SegmenTree count = new SegmenTree(); sg.build(cc); count.build(cc); long ans = 0; long ss = 0; for (i = 0; i < n; i++) { ans += (i - count.query(tm.get(en[i].b) + 1, cc)) * en[i].a - (ss - sg.query(tm.get(en[i].b) + 1, cc)); count.updateTreeNode(tm.get(en[i].b), 1); sg.updateTreeNode(tm.get(en[i].b), en[i].a); ss += en[i].a; } pn(ans); } void pn(long a) { out.println(a); } class SegmenTree { int n; long[] tree; void build(int x) { n = x; tree = new long[2 * n + 1]; } void updateTreeNode(int p, long value) { tree[p + n] += value; p = p + n; for (int i = p; i > 1; i >>= 1) tree[i >> 1] = tree[i] + tree[i ^ 1]; } long query(int l, int r) { long res = 0; for (l += n, r += n; l < r; l >>= 1, r >>= 1) { if ((l & 1) > 0) res += tree[l++]; if ((r & 1) > 0) res += tree[--r]; } return res; } } class Entity { int a; long b; Entity(int p, int q) { a = p; b = q; } } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new UnknownError(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new UnknownError(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { return Integer.parseInt(next()); } public String next() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct data { long long x, v, pos; } p[200005]; struct seg { long long val, cnt; } f[1000005]; long n; bool cmp(data a, data b) { if (a.v == b.v) return a.x < b.x; else return a.v < b.v; } bool cmp2(data a, data b) { return a.x < b.x; } void update(long id, long l, long r, long u, long long k) { if (l > u || r < u) return; if (l == r) { f[id].val = k; f[id].cnt = 1; return; } long mid = (l + r) >> 1; update(id * 2, l, mid, u, k); update(id * 2 + 1, mid + 1, r, u, k); f[id].val = f[id * 2].val + f[id * 2 + 1].val; f[id].cnt = f[id * 2].cnt + f[id * 2 + 1].cnt; } seg get(long id, long l, long r, long u, long v) { if (l > v || r < u) return {0, 0}; if (l >= u && r <= v) return f[id]; long mid = (l + r) >> 1; seg res, res1, res2; res1 = get(id * 2, l, mid, u, v); res2 = get(id * 2 + 1, mid + 1, r, u, v); res.val = res1.val + res2.val; res.cnt = res1.cnt + res2.cnt; return res; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n; for (long i = 1; i <= n; i++) cin >> p[i].x; for (long i = 1; i <= n; i++) cin >> p[i].v; sort(p + 1, p + n + 1, cmp); for (long i = 1; i <= n; i++) p[i].pos = i; sort(p + 1, p + n + 1, cmp2); long long res = 0; for (long i = 1; i <= n; i++) { seg tmp = get(1, 1, n, 1, p[i].pos - 1); res += p[i].x * tmp.cnt - tmp.val; update(1, 1, n, p[i].pos, p[i].x); } cout << res; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.*; import java.util.*; public class Main { public static void main(String args[]) { FastReader input=new FastReader(); PrintWriter out=new PrintWriter(System.out); int T=1; while(T-->0) { int n=input.nextInt(); int p[][]=new int[n][2]; for(int i=0;i<n;i++) { p[i][0]=input.nextInt(); } int v[]=new int[n]; HashSet<Integer> set=new HashSet<>(); for(int i=0;i<n;i++) { p[i][1]=input.nextInt(); v[i]=p[i][1]; } mergeSort(p,0,n-1); mergeSort(v,0,n-1); long xs[]=new long[n+1]; HashMap<Integer,Integer> map=new HashMap<>(); for(int i=0;i<n;i++) { map.put(v[i],(i+1)); } long cnt[]=new long[n+1]; long ans=0; for(int i=0;i<n;i++) { int ve=p[i][1]; int in=map.get(ve); long sum=sum(xs,in); long count=sum(cnt,in); long val=p[i][0]*count-sum; ans+=val; update(xs,in,p[i][0],n); update(cnt,in,1,n); } out.println(ans); } out.close(); } public static void mergeSort(int a[],int p,int r) { if(p<r) { int q=(p+r)/2; mergeSort(a,p,q); mergeSort(a,q+1,r); merge(a,p,q,r); } } public static void merge(int a[],int p,int q,int r) { int n1=q-p+2; int L[]=new int[n1]; int n2=r-q+1; int R[]=new int[n2]; for(int i=p;i<=q;i++) { L[i-p]=a[i]; } L[n1-1]=Integer.MAX_VALUE; for(int i=q+1;i<=r;i++) { R[i-q-1]=a[i]; } R[n2-1]=Integer.MAX_VALUE; int x=0,y=0; for(int i=p;i<=r;i++) { if(L[x]<=R[y]) { a[i]=L[x]; x++; } else { a[i]=R[y]; y++; } } } public static void mergeSort(int a[][],int p,int r) { if(p<r) { int q=(p+r)/2; mergeSort(a,p,q); mergeSort(a,q+1,r); merge(a,p,q,r); } } public static void merge(int a[][],int p,int q,int r) { int n1=q-p+2; int L[][]=new int[n1][2]; int n2=r-q+1; int R[][]=new int[n2][2]; for(int i=p;i<=q;i++) { L[i-p]=a[i]; } L[n1-1][0]=Integer.MAX_VALUE; for(int i=q+1;i<=r;i++) { R[i-q-1]=a[i]; } R[n2-1][0]=Integer.MAX_VALUE; int x=0,y=0; for(int i=p;i<=r;i++) { if(L[x][0]<=R[y][0]) { a[i]=L[x]; x++; } else { a[i]=R[y]; y++; } } } public static long sum(long xs[],int k) { long sum=0; while(k>0) { sum+=xs[k]; k-=k&-k; } return sum; } public static void update(long xs[],int k,int d,int n) { while(k<=n) { xs[k]+=d; k+=k&-k; } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str=""; try { str=br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.*; import java.util.*; import java.math.*; /** * Built using CHelper plug-in * Actual solution is at the top */ public class MovingPoints { public static void main(String[] args) throws IOException { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } static class TaskA { long mod = (long)(1000000007); public void solve(int testNumber, InputReader in, PrintWriter out) throws IOException { while(testNumber-->0){ int n = in.nextInt(); Combine a[] = new Combine[n]; TreeSet<Integer> s = new TreeSet<>(); for(int i=0;i<n;i++) a[i] = new Combine(in.nextInt() , 0); for(int i=0;i<n;i++){ a[i].delete = in.nextInt(); s.add(a[i].delete); } Arrays.sort(a , new Sort2()); HashMap<Integer , Integer> index = new HashMap<>(); int b = 1; for(int i:s) index.put(i , b++); long count[] = new long[b+1]; long sum[] = new long[b+1]; long ans = 0; for(int i=0;i<n;i++){ long getCount = get(count , index.get(a[i].delete)); long getSum = get(sum , index.get(a[i].delete)); ans += a[i].value*getCount - getSum; update(count , index.get(a[i].delete) , 1); update(sum , index.get(a[i].delete) , a[i].value); } out.println(ans); } } public void update(long a[] , int index , long value){ for(int i=index;i<a.length;i += i&(-i)) a[i] += value; } public long get(long a[] , int index){ long res = 0; for(int i=index;i>0;i-=i&(-i)) res += a[i]; return res; } public int[] nextGreater(int a[] , int n){ int ng[] = new int[n+1]; Deque<Combine> s = new LinkedList<>(); for(int i=n;i>0;i--){ int k = i; Combine c = new Combine(a[k] , k); while(s.size()>0 && s.peekLast().value <= c.value){ Combine d = s.pollLast(); ng[d.delete] = c.delete; } s.addLast(c); } return ng; } public void sieve(int a[]){ a[0] = a[1] = 1; int i; for(i=2;i*i<=a.length;i++){ if(a[i] != 0) continue; a[i] = i; for(int k = (i)*(i);k<a.length;k+=i){ if(a[k] != 0) continue; a[k] = i; } } } public int [][] matrixExpo(int c[][] , int n){ int a[][] = new int[c.length][c[0].length]; int b[][] = new int[a.length][a[0].length]; for(int i=0;i<c.length;i++) for(int j=0;j<c[0].length;j++) a[i][j] = c[i][j]; for(int i=0;i<a.length;i++) b[i][i] = 1; while(n!=1){ if(n%2 == 1){ b = matrixMultiply(a , a); n--; } a = matrixMultiply(a , a); n/=2; } return matrixMultiply(a , b); } public int [][] matrixMultiply(int a[][] , int b[][]){ int r1 = a.length; int c1 = a[0].length; int c2 = b[0].length; int c[][] = new int[r1][c2]; for(int i=0;i<r1;i++){ for(int j=0;j<c2;j++){ for(int k=0;k<c1;k++) c[i][j] += a[i][k]*b[k][j]; } } return c; } public long nCrPFermet(int n , int r , long p){ if(r==0) return 1l; long fact[] = new long[n+1]; fact[0] = 1; for(int i=1;i<=n;i++) fact[i] = (i*fact[i-1])%p; long modInverseR = pow(fact[r] , p-2 , 1l , p); long modInverseNR = pow(fact[n-r] , p-2 , 1l , p); long w = (((fact[n]*modInverseR)%p)*modInverseNR)%p; return w; } public long pow(long a , long b , long res , long mod){ if(b==0) return res; if(b==1) return (res*a)%mod; if(b%2==1){ res *= a; res %= mod; b--; } // System.out.println(a + " " + b + " " + res); return pow((a*a)%mod , b/2 , res , mod); } public long pow(long a , long b , long res){ if(b == 0) return res; if(b==1) return res*a; if(b%2==1){ res *= a; b--; } return pow(a*a , b/2 , res); } public void swap(int a[] , int p1 , int p2){ int x = a[p1]; a[p1] = a[p2]; a[p2] = x; } public void sortedArrayToBST(TreeSet<Integer> a , int start, int end) { if (start > end) { return; } int mid = (start + end) / 2; a.add(mid); sortedArrayToBST(a, start, mid - 1); sortedArrayToBST(a, mid + 1, end); } class Combine{ int value; int delete; Combine(int val , int delete){ this.value = val; this.delete = delete; } } class Sort2 implements Comparator<Combine>{ public int compare(Combine a , Combine b){ if(a.value > b.value) return 1; else if(a.value == b.value && a.delete>b.delete) return 1; else if(a.value == b.value && a.delete == b.delete) return 0; return -1; } } public int lowerLastBound(ArrayList<Integer> a , int x){ int l = 0; int r = a.size()-1; if(a.get(l)>=x) return -1; if(a.get(r)<x) return r; int mid = -1; while(l<=r){ mid = (l+r)/2; if(a.get(mid) == x && a.get(mid-1)<x) return mid-1; else if(a.get(mid)>=x) r = mid-1; else if(a.get(mid)<x && a.get(mid+1)>=x) return mid; else if(a.get(mid)<x && a.get(mid+1)<x) l = mid+1; } return mid; } public int upperFirstBound(ArrayList<Integer> a , Integer x){ int l = 0; int r = a.size()-1; if(a.get(l)>x) return l; if(a.get(r)<=x) return r+1; int mid = -1; while(l<=r){ mid = (l+r)/2; if(a.get(mid) == x && a.get(mid+1)>x) return mid+1; else if(a.get(mid)<=x) l = mid+1; else if(a.get(mid)>x && a.get(mid-1)<=x) return mid; else if(a.get(mid)>x && a.get(mid-1)>x) r = mid-1; } return mid; } public int lowerLastBound(int a[] , int x){ int l = 0; int r = a.length-1; if(a[l]>=x) return -1; if(a[r]<x) return r; int mid = -1; while(l<=r){ mid = (l+r)/2; if(a[mid] == x && a[mid-1]<x) return mid-1; else if(a[mid]>=x) r = mid-1; else if(a[mid]<x && a[mid+1]>=x) return mid; else if(a[mid]<x && a[mid+1]<x) l = mid+1; } return mid; } public int upperFirstBound(long a[] , long x){ int l = 0; int r = a.length-1; if(a[l]>x) return l; if(a[r]<=x) return r+1; int mid = -1; while(l<=r){ mid = (l+r)/2; if(a[mid] == x && a[mid+1]>x) return mid+1; else if(a[mid]<=x) l = mid+1; else if(a[mid]>x && a[mid-1]<=x) return mid; else if(a[mid]>x && a[mid-1]>x) r = mid-1; } return mid; } public long log(float number , int base){ return (long) Math.floor((Math.log(number) / Math.log(base))); } public long gcd(long a , long b){ if(a<b){ long c = b; b = a; a = c; } if(b == 0) return a; return gcd(b , a%b); } public void print2d(long a[][] , PrintWriter out){ for(int i=0;i<a.length;i++){ for(int j=0;j<a[i].length;j++) out.print(a[i][j] + " "); out.println(); } out.println(); } public void print1d(int a[] , PrintWriter out){ for(int i=0;i<a.length;i++) out.print(a[i] + " "); out.println(); out.println(); } class Node{ int index; Node right; Node left; public Node(int index){ this.index = index; right = null; left = null; } } class AVLTree{ Node root; public AVLTree(){ this.root = null; } public int height(Node n){ return (n == null ? 0 : n.height); } public int getBalance(Node n){ return (n == null ? 0 : height(n.left) - height(n.right)); } public Node rotateRight(Node a){ Node b = a.left; Node br = b.right; a.lSum -= b.lSum; a.lCount -= b.lCount; b.rSum += a.rSum; b.rCount += a.rCount; b.right = a; a.left = br; a.height = 1 + Math.max(height(a.left) , height(a.right)); b.height = 1 + Math.max(height(b.left) , height(b.right)); return b; } public Node rotateLeft(Node a){ Node b = a.right; Node bl = b.left; a.rSum -= b.rSum; a.rCount -= b.rCount; b.lSum += a.lSum; b.lCount += a.lCount; b.left = a; a.right = bl; a.height = 1 + Math.max(height(a.left) , height(a.right)); b.height = 1 + Math.max(height(b.left) , height(b.right)); return b; } public Node insert(Node root , long value){ if(root == null){ return new Node(value); } if(value<=root.value){ root.lCount++; root.lSum += value; root.left = insert(root.left , value); } if(value>root.value){ root.rCount++; root.rSum += value; root.right = insert(root.right , value); } // updating the height of the root root.height = 1 + Math.max(height(root.left) , height(root.right)); int balance = getBalance(root); //ll if(balance>1 && value<=root.left.value) return rotateRight(root); //rr if(balance<-1 && value>root.right.value) return rotateLeft(root); //lr if(balance>1 && value>root.left.value){ root.left = rotateLeft(root.left); return rotateRight(root); } //rl if(balance<-1 && value<=root.right.value){ root.right = rotateRight(root.right); return rotateLeft(root); } return root; } public void insertElement(long value){ this.root = insert(root , value); } public int getElementLessThanK(long k){ int count = 0; Node temp = root; while(temp!=null){ if(temp.value == k){ if(temp.left == null || temp.left.value<k){ count += temp.lCount; return count-1; } else temp = temp.left; } else if(temp.value>k){ temp = temp.left; } else{ count += temp.lCount; temp = temp.right; } } return count; } public void inorder(Node root , PrintWriter out){ Node temp = root; if(temp!=null){ inorder(temp.left , out); out.println(temp.value + " " + temp.lCount + " " + temp.rCount); inorder(temp.right , out); } } class Node{ long value; long lCount , rCount; long lSum , rSum; Node left , right; int height; public Node(long value){ this.value = value; left = null; right = null; lCount = 1; rCount = 1; lSum = value; rSum = value; height = 1; } } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.TreeMap; import java.util.InputMismatchException; import java.io.IOException; import java.util.Comparator; import java.util.TreeSet; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author KharYusuf */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastReader in = new FastReader(inputStream); PrintWriter out = new PrintWriter(outputStream); FMovingPoints solver = new FMovingPoints(); solver.solve(1, in, out); out.close(); } static class FMovingPoints { public void solve(int testNumber, FastReader s, PrintWriter w) { int n = s.nextInt(), MX = (int) 1e8; int[][] x = new int[n][2]; for (int i = 0; i < n; i++) x[i][0] = s.nextInt(); TreeSet<Integer> p = new TreeSet<>(), ne = new TreeSet<>(); TreeMap<Integer, Integer> po = new TreeMap<>(), nee = new TreeMap<>(); for (int i = 0; i < n; i++) { x[i][1] = s.nextInt(); if (x[i][1] > 0) p.add(x[i][1]); else if (x[i][1] < 0) ne.add(x[i][1] + MX); } int cnt = 0; for (int i : p) po.put(i, cnt++); cnt = 0; for (int i : ne) nee.put(i, cnt++); func.sortbyColumn(x, 0); long ans = 0, cntneg = 0, cntz = 0, cneg = 0, cz = 0; bit pos = new bit(p.size()), neg = new bit(nee.size()); bit poscnt = new bit(p.size()), negcnt = new bit(ne.size()); for (int i = 0; i < n; i++) { if (x[i][1] > 0) { ans += x[i][0] * cntneg - cneg; ans += x[i][0] * cntz - cz; int cur = po.get(x[i][1]); ans += poscnt.query(cur) * (long) x[i][0] - pos.query(cur); poscnt.modify(cur, 1); pos.modify(cur, x[i][0]); } else if (x[i][1] < 0) { cntneg++; cneg += x[i][0]; int cur = nee.get(MX + x[i][1]); ans += negcnt.query(cur) * (long) x[i][0] - neg.query(cur); negcnt.modify(cur, 1); neg.modify(cur, x[i][0]); } else { cntz++; cz += x[i][0]; ans += x[i][0] * cntneg - cneg; ans += x[i][0] * cntz - cz; } } w.println(ans); } public class bit { public int n; public long[] t; public bit(int n) { t = new long[n]; this.n = n; } public void modify(int ind, long val) { for (; ind < n; ind = ind | (++ind)) t[ind] += val; } public long query(int ind) { long sum = 0; for (; ind >= 0; ind = (ind & (++ind)) - 1) sum += t[ind]; return sum; } } } static class func { public static void sortbyColumn(int[][] arr, final int col) { Arrays.sort(arr, new Comparator<int[]>() { public int compare(final int[] entry1, final int[] entry2) { if (entry1[col] > entry2[col]) return 1; if (entry1[col] < entry2[col]) return -1; return 0; } }); } } static class bit { public int n; public int[] t; public bit(int n) { t = new int[n]; this.n = n; } public bit(int[] a, int n) { t = new int[n]; this.n = n; for (int i = 0; i < n; i++) { modify(i, a[i]); } } public void modify(int ind, int val) { for (; ind < n; ind = ind | (++ind)) t[ind] += val; } public int query(int ind) { int sum = 0; for (; ind >= 0; ind = (ind & (++ind)) - 1) sum += t[ind]; return sum; } } static class FastReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private FastReader.SpaceCharFilter filter; public FastReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long int MOD = 100000007; long long int MX = 1000000000; long long int n; pair<long long int, long long int> a[200200]; map<long long int, long long int> sor; map<long long int, long long int> val; long long int tree[600005]; long long int lazy[600005]; long long int tree1[600005]; long long int lazy1[600005]; void construct(long long int low, long long int high, long long int pos) { if (low == high) { tree[pos] = 0; return; } long long int mid = (low + high) / 2; construct(low, mid, 2 * pos + 1); construct(mid + 1, high, 2 * pos + 2); tree[pos] = tree[2 * pos + 1] + tree[2 * pos + 2]; } long long int MRQ(long long int ql, long long int qh, long long int low, long long int high, long long int pos) { if (lazy[pos] != 0) { tree[pos] += lazy[pos] * (high - low + 1); if (low != high) { lazy[2 * pos + 1] += lazy[pos]; lazy[2 * pos + 2] += lazy[pos]; } lazy[pos] = 0; } if (low > qh || high < ql) return 0; if (ql <= low && qh >= high) return tree[pos]; long long int mid = (low + high) / 2; return MRQ(ql, qh, low, mid, 2 * pos + 1) + MRQ(ql, qh, mid + 1, high, 2 * pos + 2); } void update(long long int ql, long long int qh, long long int val, long long int low, long long int high, long long int pos) { if (lazy[pos] != 0) { tree[pos] += lazy[pos] * (high - low + 1); if (low != high) { lazy[2 * pos + 1] += lazy[pos]; lazy[2 * pos + 2] += lazy[pos]; } lazy[pos] = 0; } if (low > qh || high < ql) return; if (ql <= low && qh >= high) { tree[pos] += val * (high - low + 1); if (low != high) { lazy[2 * pos + 1] += val; lazy[2 * pos + 2] += val; } return; } long long int mid = (low + high) / 2; update(ql, qh, val, low, mid, 2 * pos + 1); update(ql, qh, val, mid + 1, high, 2 * pos + 2); tree[pos] = tree[2 * pos + 1] + tree[2 * pos + 2]; } void construct1(long long int low, long long int high, long long int pos) { if (low == high) { tree1[pos] = 0; return; } long long int mid = (low + high) / 2; construct1(low, mid, 2 * pos + 1); construct1(mid + 1, high, 2 * pos + 2); tree1[pos] = tree1[2 * pos + 1] + tree1[2 * pos + 2]; } long long int MRQ1(long long int ql, long long int qh, long long int low, long long int high, long long int pos) { if (lazy1[pos] != 0) { tree1[pos] += lazy1[pos] * (high - low + 1); if (low != high) { lazy1[2 * pos + 1] += lazy1[pos]; lazy1[2 * pos + 2] += lazy1[pos]; } lazy1[pos] = 0; } if (low > qh || high < ql) return 0; if (ql <= low && qh >= high) return tree1[pos]; long long int mid = (low + high) / 2; return MRQ1(ql, qh, low, mid, 2 * pos + 1) + MRQ1(ql, qh, mid + 1, high, 2 * pos + 2); } void update1(long long int ql, long long int qh, long long int val, long long int low, long long int high, long long int pos) { if (lazy1[pos] != 0) { tree1[pos] += lazy1[pos] * (high - low + 1); if (low != high) { lazy1[2 * pos + 1] += lazy1[pos]; lazy1[2 * pos + 2] += lazy1[pos]; } lazy1[pos] = 0; } if (low > qh || high < ql) return; if (ql <= low && qh >= high) { tree1[pos] += val * (high - low + 1); if (low != high) { lazy1[2 * pos + 1] += val; lazy1[2 * pos + 2] += val; } return; } long long int mid = (low + high) / 2; update1(ql, qh, val, low, mid, 2 * pos + 1); update1(ql, qh, val, mid + 1, high, 2 * pos + 2); tree1[pos] = tree1[2 * pos + 1] + tree1[2 * pos + 2]; } int main() { ios::sync_with_stdio(false), cin.tie(NULL), cout.tie(NULL); cin >> n; for (int i = 1; i <= n; i++) cin >> a[i].first; for (int i = 1; i <= n; i++) cin >> a[i].second; for (int i = n; i >= 1; i--) { sor[a[i].second]++; } map<long long int, long long int>::iterator itr; int cnt = 0; for (itr = sor.begin(); itr != sor.end(); itr++) { cnt++; val[itr->first] = cnt; } for (int i = 1; i <= n; i++) a[i].second = val[a[i].second]; sort(a + 1, a + n + 1); construct(0, n, 0); construct1(0, n, 0); long long int res = 0; for (int i = n; i >= 1; i--) { res += MRQ(a[i].second, n, 0, n, 0) - MRQ1(a[i].second, n, 0, n, 0) * a[i].first; update1(a[i].second, a[i].second, 1, 0, n, 0); update(a[i].second, a[i].second, a[i].first, 0, n, 0); } cout << res << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 2e5 + 10, mod = 1e9 + 7, INF = 0x3f3f3f3f; long long fwk[maxn], cnt[maxn]; void upd(int p, int c) { for (; p < maxn; p += p & -p) fwk[p] += c, cnt[p]++; } void qry(int p, long long& sum, long long& c) { sum = c = 0; for (; p; p -= p & -p) sum += fwk[p], c += cnt[p]; } vector<int> d; inline int hs(int x) { return lower_bound(d.begin(), d.end(), x) - d.begin() + 1; } pair<int, int> p[maxn]; int main() { int n; cin >> n; for (int i = 1; i <= n; ++i) scanf("%d", &p[i].first); for (int i = 1; i <= n; ++i) { scanf("%d", &p[i].second); d.push_back(p[i].second); } sort(p + 1, p + 1 + n); sort(d.begin(), d.end()); d.erase(unique(d.begin(), d.end()), d.end()); long long ans = 0, sum, c; for (int i = 1; i <= n; ++i) { qry(hs(p[i].second), sum, c); ans += c * p[i].first - sum; upd(hs(p[i].second), p[i].first); } cout << ans; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; constexpr long long maxN = 2e5 + 43; long long n; vector<pair<long long, long long>> point; vector<long long> val, cnt, cval; long long LSOne(long long k) { return (k & (-k)); } void update(vector<long long>& f, long long pos, long long val) { for (; pos <= n; pos += LSOne(pos)) f[pos] += val; } long long rsq(vector<long long>& f, long long pos) { long long sum = 0; for (; pos; pos -= LSOne(pos)) sum += f[pos]; return sum; } bool Comp(const pair<long long, long long>& a, const pair<long long, long long>& b) { return a.first < b.first; } signed main() { ios_base::sync_with_stdio(false); cin >> n; point.resize(n + 1); val.resize(n + 1); cnt.resize(n + 1); cval.resize(n + 1); for (long long i = 1; i <= n; ++i) { cin >> point[i].first; } for (long long i = 1; i <= n; ++i) { cin >> point[i].second; val[i] = point[i].second; } sort(point.begin() + 1, point.begin() + n + 1); sort(val.begin() + 1, val.begin() + n + 1); long long ans = 0; for (long long i = 1; i <= n; ++i) { long long pos = lower_bound(val.begin() + 1, val.begin() + n + 1, point[i].second) - val.begin(); ans += rsq(cnt, pos) * point[i].first - rsq(cval, pos); update(cnt, pos, 1); update(cval, pos, point[i].first); } cout << ans; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int MOD = 1000000000 + 7; long long int inverse(long long int i) { if (i == 1) return 1; return (MOD - ((MOD / i) * inverse(MOD % i)) % MOD + MOD) % MOD; } long long int calc(vector<pair<long long int, long long int>>& v1, int st, int fn) { if (fn - st + 1 <= 1) return 0; vector<pair<int, int>> temp(fn - st + 1); int mid = (st + fn) / 2; long long int r1 = calc(v1, st, mid); r1 = r1 + calc(v1, mid + 1, fn); long long int sum3 = 0; for (int i = mid + 1; i <= fn; ++i) sum3 += v1[i].first; int j = mid + 1; for (int i = st; i <= mid; ++i) { while (j <= fn && v1[j].second < v1[i].second) { sum3 -= v1[j].first; j++; } r1 = r1 + (sum3 - (fn - j + 1) * v1[i].first); } int st1 = st, st2 = mid + 1; int count1 = 0; while (st1 <= mid && st2 <= fn) { if (v1[st1].second <= v1[st2].second) { temp[count1].first = v1[st1].first; temp[count1].second = v1[st1].second; count1++; st1++; } else { temp[count1].first = v1[st2].first; temp[count1].second = v1[st2].second; count1++; st2++; } } for (int i = st1; i <= mid; ++i) { temp[count1].first = v1[i].first; temp[count1].second = v1[i].second; count1++; } for (int i = st2; i <= fn; ++i) { temp[count1].first = v1[i].first; temp[count1].second = v1[i].second; count1++; } for (int i = st; i <= fn; ++i) { v1[i].first = temp[i - st].first; v1[i].second = temp[i - st].second; } return r1; } int main() { int n; cin >> n; vector<pair<long long int, long long int>> v1, v2; vector<long long int> temp1, temp2; long long int x[n], v[n]; for (int i = 0; i < n; ++i) scanf("%lld", x + i); for (int i = 0; i < n; ++i) scanf("%lld", v + i); for (int i = 0; i < n; ++i) { if (v[i] >= 0) { v1.push_back({x[i], v[i]}); temp1.push_back(x[i]); } else { v2.push_back({x[i], v[i]}); temp2.push_back(x[i]); } } sort(v1.begin(), v1.end()); sort(v2.begin(), v2.end()); long long int y = 0; int n1 = v1.size(); int n2 = v2.size(); y = y + calc(v1, 0, n1 - 1); y = y + calc(v2, 0, n2 - 1); sort(temp1.begin(), temp1.end()); sort(temp2.begin(), temp2.end()); int n3 = temp2.size(); long long int sum4 = 0; int st1 = 0; for (int i = 0; i < temp1.size(); ++i) { while (st1 < n3 && temp2[st1] < temp1[i]) { sum4 += temp2[st1]; st1++; } y = y + st1 * temp1[i] - sum4; } printf("%lld\n", y); }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize(2) using namespace std; using ll = long long; using ull = unsigned long long; using pli = pair<ll, int>; using pii = pair<int, int>; constexpr ll mod = 1e9 + 7; constexpr int N = 200010; struct node { ll x; int v, id; bool operator<(const node &o) const { return x < o.x; } } q[N]; int n, nn, b[N]; ll fw[2][N]; int lowbit(int x) { return x & -x; } void update(int op, int k, int x) { for (; k <= n; k += lowbit(k)) fw[op][k] += x; } ll query(int op, int k) { ll res = 0; for (; k; k -= lowbit(k)) res += fw[op][k]; return res; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); int T = 1; while (T--) { cin >> n; for (int i = 1; i <= n; i++) cin >> q[i].x; for (int i = 1; i <= n; i++) { cin >> q[i].v; b[i] = q[i].v; q[i].id = i; } sort(b + 1, b + 1 + n); nn = unique(b + 1, b + 1 + n) - b - 1; for (int i = 1; i <= n; i++) q[i].v = lower_bound(b + 1, b + 1 + nn, q[i].v) - b; sort(q + 1, q + 1 + n); ll res = 0; for (int i = 1; i <= n; i++) { res += q[i].x * query(0, q[i].v) - query(1, q[i].v); update(0, q[i].v, 1); update(1, q[i].v, q[i].x); } cout << res << '\n'; } return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
python2
from sys import stdin from collections import * def fast2(): import os, sys, atexit from cStringIO import StringIO as BytesIO # range = xrange sys.stdout = BytesIO() atexit.register(lambda: os.write(1, sys.stdout.getvalue())) return BytesIO(os.read(0, os.fstat(0).st_size)).readline class order_tree: def __init__(self, arr): self.n = len(arr) self.tree = [[0, 0] for _ in range(self.n * 2)] self.order = {arr[i]: i for i in range(self.n)} # get interval[l,r) def query(self, l): res, coun = 0, 0 l = self.order[l] + self.n r = self.n * 2 while l < r: if l & 1: res += self.tree[l][0] coun += self.tree[l][1] l += 1 if r & 1: r -= 1 res += self.tree[r][0] coun += self.tree[r][1] l >>= 1 r >>= 1 return res, coun def update(self, ix, val): ix = self.n + self.order[ix] # set new value self.tree[ix][0] += val self.tree[ix][1] += 1 # move up while ix > 1: self.tree[ix >> 1][0] = self.tree[ix][0] + self.tree[ix ^ 1][0] self.tree[ix >> 1][1] = self.tree[ix][1] + self.tree[ix ^ 1][1] ix >>= 1 # input = fast2() rints = lambda: [int(x) for x in stdin.readline().split()] n, a = int(input()), sorted(map(lambda x, y: [x, y], rints(), rints())) dis = sorted(set([x[1] for x in a])) tree, ans = order_tree(dis), 0 for i in range(n - 1, -1, -1): su, coun = tree.query(a[i][1]) ans += su - coun * a[i][0] tree.update(a[i][1], a[i][0]) print(ans)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.*; import java.io.*; import java.text.*; public class F1311 { public static long solve(ArrayList<Pair> arr) { FenwickTree cnt = new FenwickTree(arr.size()); FenwickTree val = new FenwickTree(arr.size()); TreeSet<Integer> ts = new TreeSet<Integer>(); for (Pair x : arr) ts.add(x.v); TreeMap<Integer, Integer> tm = new TreeMap<Integer, Integer>(); while (!ts.isEmpty()) { tm.put(ts.pollFirst(), tm.size() + 1); } // System.out.println(tm); Collections.sort(arr, (a, b) -> a.x - b.x); long sum = 0; for (Pair p : arr) { int lim = tm.get(p.v); if (lim > 0) { long cntt = cnt.rsq(lim); long value = val.rsq(lim); sum += p.x * cntt - value; } cnt.point_update(lim, 1); val.point_update(lim, p.x); // System.out.println(sum); } return sum; } public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(); int[] x = sc.nextIntArr(n); int[] v = sc.nextIntArr(n); ArrayList<Pair> r = new ArrayList<Pair>(); for (int i = 0; i < n; i++) { r.add(new Pair(x[i], v[i])); } pw.println(solve(r)); pw.close(); } static class FenwickTree { // one-based DS int n; long[] ft; FenwickTree(int size) { n = size; ft = new long[n + 1]; } long rsq(int b) // O(log n) { long sum = 0; while (b > 0) { sum += ft[b]; b -= b & -b; } // min? return sum; } long rsq(int a, int b) { return rsq(b) - rsq(a - 1); } void point_update(int k, int val) // O(log n), update = increment { while (k <= n) { ft[k] += val; k += k & -k; } // min? } long point_query(int idx) // c * O(log n), c < 1 { long sum = ft[idx]; if (idx > 0) { int z = idx ^ (idx & -idx); --idx; while (idx != z) { sum -= ft[idx]; idx ^= idx & -idx; } } return sum; } } static class Pair { int x, v; public Pair(int a, int b) { x = a; v = b; } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public int[] nextIntArr(int n) throws IOException { int[] arr = new int[n]; for (int i = 0; i < arr.length; i++) arr[i] = nextInt(); return arr; } public boolean ready() throws IOException { return br.ready(); } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.BufferedOutputStream; import java.io.Closeable; import java.io.DataInputStream; import java.io.Flushable; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintStream; import java.util.Arrays; import java.util.Comparator; import java.util.InputMismatchException; import java.util.Objects; import java.util.function.BiFunction; import java.util.function.BinaryOperator; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { static class TaskAdapter implements Runnable { @Override public void run() { long startTime = System.currentTimeMillis(); InputStream inputStream = System.in; OutputStream outputStream = System.out; FastReader in = new FastReader(inputStream); Output out = new Output(outputStream); FMovingPoints solver = new FMovingPoints(); solver.solve(1, in, out); out.close(); System.err.println(System.currentTimeMillis()-startTime+"ms"); } } public static void main(String[] args) throws Exception { Thread thread = new Thread(null, new TaskAdapter(), "", 1<<28); thread.start(); thread.join(); } static class FMovingPoints { private final int iinf = 1_000_000_000; public FMovingPoints() { } public static Pair<Long, Long> add(Pair<Long, Long> a, Pair<Long, Long> b) { return new Pair<>(a.a+b.a, a.b+b.b); } public static Pair<Long, Long> subtract(Pair<Long, Long> a, Pair<Long, Long> b) { return new Pair<>(a.a-b.a, a.b-b.b); } public void solve(int kase, InputReader in, Output pw) { int n = in.nextInt(); int[][] arr = new int[n][2]; for(int i = 0; i<2; i++) { for(int j = 0; j<n; j++) { arr[j][i] = in.nextInt(); } } Arrays.sort(arr, Comparator.comparingInt(o -> o[1])); { int prev = -iinf, ind = -1; for(int i = 0; i<n; i++) { if(arr[i][1]!=prev) { prev = arr[i][1]; arr[i][1] = ++ind; }else { arr[i][1] = ind; } } } Arrays.sort(arr, Comparator.comparingInt(o -> o[0])); TFenwickTree<Pair<Long, Long>> ft; { Pair<Long, Long>[] tmp = new Pair[n]; for(int i = 0; i<n; i++) { tmp[i] = new Pair<>(0L, 0L); } ft = new TFenwickTree<>(tmp, new Pair<>(0L, 0L), FMovingPoints::add, FMovingPoints::subtract); } for(int i = 0; i<n; i++) { ft.set(arr[i][1], add(ft.get(arr[i][1]), new Pair<>((long) arr[i][0]-arr[0][0], 1L))); } long sum = 0, ans = 0; for(int i = 0; i<n; i++) { ft.set(arr[i][1], subtract(ft.get(arr[i][1]), new Pair<>((long) arr[i][0]-arr[0][0], 1L))); Utilities.Debug.dbg(ft.arr); var p = ft.query(arr[i][1], n-1); ans += p.a-(arr[i][0]-arr[0][0])*p.b; } pw.println(ans); } } static class Pair<T1, T2> implements Comparable<Pair<T1, T2>> { public T1 a; public T2 b; public Pair(Pair<T1, T2> p) { this(p.a, p.b); } public Pair(T1 a, T2 b) { this.a = a; this.b = b; } public String toString() { return a+" "+b; } public int hashCode() { return Objects.hash(a, b); } public boolean equals(Object o) { if(o instanceof Pair) { Pair p = (Pair) o; return a.equals(p.a)&&b.equals(p.b); } return false; } public int compareTo(Pair<T1, T2> p) { int cmp = ((Comparable<T1>) a).compareTo(p.a); if(cmp==0) { return ((Comparable<T2>) b).compareTo(p.b); } return cmp; } } static class Output implements Closeable, Flushable { public StringBuilder sb; public OutputStream os; public int BUFFER_SIZE; public String lineSeparator; public Output(OutputStream os) { this(os, 1<<16); } public Output(OutputStream os, int bs) { BUFFER_SIZE = bs; sb = new StringBuilder(BUFFER_SIZE); this.os = new BufferedOutputStream(os, 1<<17); lineSeparator = System.lineSeparator(); } public void println(long l) { println(String.valueOf(l)); } public void println(String s) { sb.append(s); println(); } public void println() { sb.append(lineSeparator); } private void flushToBuffer() { try { os.write(sb.toString().getBytes()); }catch(IOException e) { e.printStackTrace(); } sb = new StringBuilder(BUFFER_SIZE); } public void flush() { try { flushToBuffer(); os.flush(); }catch(IOException e) { e.printStackTrace(); } } public void close() { flush(); try { os.close(); }catch(IOException e) { e.printStackTrace(); } } } static class FastReader implements InputReader { final private int BUFFER_SIZE = 1<<16; private DataInputStream din; private byte[] buffer; private int bufferPointer; private int bytesRead; public FastReader(InputStream is) { din = new DataInputStream(is); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public int nextInt() { int ret = 0; byte c = skipToDigit(); boolean neg = (c=='-'); if(neg) { c = read(); } do { ret = ret*10+c-'0'; } while((c = read())>='0'&&c<='9'); if(neg) { return -ret; } return ret; } private boolean isDigit(byte b) { return b>='0'&&b<='9'; } private byte skipToDigit() { byte ret; while(!isDigit(ret = read())&&ret!='-') ; return ret; } private void fillBuffer() { try { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); }catch(IOException e) { e.printStackTrace(); throw new InputMismatchException(); } if(bytesRead==-1) { buffer[0] = -1; } } private byte read() { if(bytesRead==-1) { throw new InputMismatchException(); }else if(bufferPointer==bytesRead) { fillBuffer(); } return buffer[bufferPointer++]; } } static class Utilities { public static class Debug { public static final boolean LOCAL = System.getProperty("ONLINE_JUDGE")==null; private static <T> String ts(T t) { if(t==null) { return "null"; } try { return ts((Iterable) t); }catch(ClassCastException e) { if(t instanceof int[]) { String s = Arrays.toString((int[]) t); return "{"+s.substring(1, s.length()-1)+"}"; }else if(t instanceof long[]) { String s = Arrays.toString((long[]) t); return "{"+s.substring(1, s.length()-1)+"}"; }else if(t instanceof char[]) { String s = Arrays.toString((char[]) t); return "{"+s.substring(1, s.length()-1)+"}"; }else if(t instanceof double[]) { String s = Arrays.toString((double[]) t); return "{"+s.substring(1, s.length()-1)+"}"; }else if(t instanceof boolean[]) { String s = Arrays.toString((boolean[]) t); return "{"+s.substring(1, s.length()-1)+"}"; } try { return ts((Object[]) t); }catch(ClassCastException e1) { return t.toString(); } } } private static <T> String ts(T[] arr) { StringBuilder ret = new StringBuilder(); ret.append("{"); boolean first = true; for(T t: arr) { if(!first) { ret.append(", "); } first = false; ret.append(ts(t)); } ret.append("}"); return ret.toString(); } private static <T> String ts(Iterable<T> iter) { StringBuilder ret = new StringBuilder(); ret.append("{"); boolean first = true; for(T t: iter) { if(!first) { ret.append(", "); } first = false; ret.append(ts(t)); } ret.append("}"); return ret.toString(); } public static void dbg(Object... o) { if(LOCAL) { System.err.print("Line #"+Thread.currentThread().getStackTrace()[2].getLineNumber()+": ["); for(int i = 0; i<o.length; i++) { if(i!=0) { System.err.print(", "); } System.err.print(ts(o[i])); } System.err.println("]"); } } } } static class TFenwickTree<T> { int n; T initialValue; public T[] arr; public T[] value; BinaryOperator<T> operation; BinaryOperator<T> undo; public TFenwickTree(T[] arr, T initialValue, BinaryOperator<T> operation, BinaryOperator<T> undo) { n = arr.length; this.initialValue = initialValue; this.arr = (T[]) new Object[n]; value = (T[]) new Object[n+1]; Arrays.fill(value, initialValue); Arrays.fill(this.arr, initialValue); this.operation = operation; this.undo = undo; for(int i = 0; i<n; i++) { set(i, arr[i]); } } public void set(int ind, T val) { T old = arr[ind]; arr[ind] = val; ind++; while(ind<=n) { value[ind] = operation.apply(undo.apply(value[ind], old), val); ind += ind&-ind; } } private T psum(int ind) { T ret = initialValue; while(ind>0) { ret = operation.apply(ret, value[ind]); ind -= ind&-ind; } return ret; } public T query(int l, int r) { return undo.apply(psum(r+1), psum(l)); } public T get(int ind) { return arr[ind]; } } static interface InputReader { int nextInt(); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int M = 2e5 + 5; int n, t[M], k; long long ans; struct node { long long p; int v; } a[M]; struct BIT { long long s[M]; void add(int i, long long x) { for (; i <= k; i += i & -i) s[i] += x; } long long ask(int i) { long long res = 0; for (; i > 0; i -= i & -i) res += s[i]; return res; } } f1, f2; inline int find(int x) { int l = 1, r = k, mid; while (l < r) { mid = (l + r) >> 1; if (t[mid] < x) l = mid + 1; else r = mid; } return l; } int cmp(node x, node y) { return x.p < y.p; } int main() { cin >> n; for (int i = 1; i <= n; i++) scanf("%lld", &a[i].p); for (int i = 1; i <= n; i++) { scanf("%d", &a[i].v); t[i] = a[i].v; } sort(a + 1, a + n + 1, cmp); sort(t + 1, t + n + 1); k++; for (int i = 2; i <= n; i++) if (t[i] != t[i - 1]) t[++k] = t[i]; for (int i = 1; i <= n; i++) { int w = find(a[i].v); ans += a[i].p * f1.ask(w) - f2.ask(w); f1.add(w, 1); f2.add(w, a[i].p); } cout << ans << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int dx[] = {0, 0, 1, -1, -1, -1, 1, 1}; int dy[] = {1, -1, 0, 0, -1, 1, 1, -1}; template <class T> inline T biton(T n, T pos) { return n | ((T)1 << pos); } template <class T> inline T bitoff(T n, T pos) { return n & ~((T)1 << pos); } template <class T> inline T ison(T n, T pos) { return (bool)(n & ((T)1 << pos)); } template <class T> inline T gcd(T a, T b) { while (b) { a %= b; swap(a, b); } return a; } inline int nxt() { int aaa; scanf("%d", &aaa); return aaa; } inline long long lxt() { long long aaa; scanf("%lld", &aaa); return aaa; } inline double dxt() { double aaa; scanf("%lf", &aaa); return aaa; } template <class T> inline T bigmod(T p, T e, T m) { T ret = 1; for (; e > 0; e >>= 1) { if (e & 1) ret = (ret * p) % m; p = (p * p) % m; } return (T)ret; } class fenwick { public: long long tree[200005] = {0}; void Update(int pos, long long val, int limit) { while (pos <= limit) { tree[pos] += val; pos += pos & (-pos); } } long long Query(int pos) { long long sum = 0; while (pos > 0) { sum += tree[pos]; pos -= pos & (-pos); } return sum; } } past, pastSum; void solve() { vector<pair<long long, long long>> v; int n = nxt(); for (int i = 0; i < n; i++) { v.emplace_back(lxt(), 0); } for (int i = 0; i < n; i++) { v[i].second = lxt(); } sort(v.begin(), v.end()); set<long long> st; for (int i = 0; i < n; i++) st.insert(v[i].second); vector<long long> velocity(st.begin(), st.end()); n = (int)(velocity).size(); long long ans = 0; for (int i = 0; i < (int)(v).size(); i++) { int pos = lower_bound(velocity.begin(), velocity.end(), v[i].second) - velocity.begin(); ans += past.Query(pos + 1) * v[i].first - pastSum.Query(pos + 1); past.Update(pos + 1, 1LL, n); pastSum.Update(pos + 1, v[i].first, n); } printf("%lld\n", ans); } int main() { cout.setf(ios::fixed); cout.precision(10); int tc = 1; while (tc--) { solve(); } return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long bit1[200005], bit2[200005]; inline void upd(long long idx, long long val, long long bit[]) { while (idx < 200005) { bit[idx] += val; idx += (idx & -idx); } } inline long long que(long long idx, long long bit[]) { long long ans = 0; while (idx > 0) { ans += bit[idx]; idx -= (idx & -idx); } return ans; } signed main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long n; cin >> n; vector<long long> v; map<long long, long long> m; pair<long long, long long> arr[n]; for (long long i = 0; i < n; i++) cin >> arr[i].first; for (long long i = 0; i < n; i++) { cin >> arr[i].second; if (m[arr[i].second] == 0) { m[arr[i].second]++; v.push_back(arr[i].second); } } sort(v.begin(), v.end()); sort(arr, arr + n); for (long long i = 0; i < n; i++) { long long x = lower_bound(v.begin(), v.end(), arr[i].second) - v.begin(); arr[i].second = x + 1; } long long ans = 0; for (long long i = 0; i < n; i++) { long long x = que(arr[i].second, bit1), y = que(arr[i].second, bit2); ans += (x * arr[i].first - y); upd(arr[i].second, 1, bit1); upd(arr[i].second, arr[i].first, bit2); } cout << ans << '\n'; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long n; pair<long long, long long> p[200005]; long long v[200005]; map<long long, long long> m; long long f0[200005]; long long f1[200005]; void up0(long long x, long long val) { for (long long i = x; i <= 200000; i += i & -i) f0[i] += val; } void up1(long long x, long long val) { for (long long i = x; i <= 200000; i += i & -i) f1[i] += val; } long long get0(long long pos) { long long ans = 0; for (long long i = pos; i > 0; i -= i & -i) ans += f0[i]; return ans; } long long get1(long long pos) { long long ans = 0; for (long long i = pos; i > 0; i -= i & -i) ans += f1[i]; return ans; } int32_t main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n; for (long long i = 1; i <= n; i++) cin >> p[i].first; for (long long i = 1; i <= n; i++) { cin >> p[i].second; v[i] = p[i].second; } sort(v + 1, v + 1 + n); sort(p + 1, p + 1 + n); long long c = 0; for (long long i = 1; i <= n; i++) { if (m[v[i]] == 0) { m[v[i]] = ++c; } } long long ans = 0; for (long long i = 1; i <= n; i++) { long long x = p[i].first; long long sp = p[i].second; long long c = get0(m[sp]); long long cur = get1(m[sp]); ans += x * c - cur; up0(m[sp], 1); up1(m[sp], x); } cout << ans; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> int dr[] = {2, 2, -2, -2, 1, -1, 1, -1}; int dc[] = {1, -1, 1, -1, 2, 2, -2, -2}; int dr1[] = {0, 0, 1, 1, 1, -1, -1, -1}; int dc1[] = {1, -1, 1, 0, -1, 0, 1, -1}; int dr2[] = {0, 0, 1, -1}; int dc2[] = {1, -1, 0, 0}; using namespace std; long long a[200005]; long long dp[200005]; long long tr[2][200005]; void update(long long f, long long x, long long val) { while (x < 200005) { tr[f][x] += val; x += x & (-x); } } long long query(long long f, long long x) { long long s = 0; while (x > 0) { s += tr[f][x]; x -= x & (-x); } return s; } int main() { long long n, i, j; string t; while (cin >> n) { for (i = 1; i <= n; i++) cin >> a[i]; vector<pair<long long, long long> > v; map<long long, long long> mp; for (i = 1; i <= n; i++) { long long x; cin >> x; v.push_back(make_pair(a[i], x)); mp[x]; } map<long long, long long>::iterator it; sort(v.begin(), v.end()); long long cn = 0; for (it = mp.begin(); it != mp.end(); it++) it->second = ++cn; long long ans = 0; reverse(v.begin(), v.end()); for (i = 0; i < v.size(); i++) { long long p = v[i].first; long long q = mp[v[i].second]; long long r = query(0, cn) - query(0, q - 1); long long r1 = query(1, cn) - query(1, q - 1); update(0, q, 1); update(1, q, p); ans += (r1 - p * r); } cout << ans << endl; } return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
python2
from sys import stdin from collections import * def fast2(): import os, sys, atexit from cStringIO import StringIO as BytesIO # range = xrange sys.stdout = BytesIO() atexit.register(lambda: os.write(1, sys.stdout.getvalue())) return BytesIO(os.read(0, os.fstat(0).st_size)).readline class order_tree: def __init__(self, arr): self.n = len(arr) self.tree = [[0, 0] for _ in range(self.n * 2)] self.order = defaultdict(int, {arr[i]: i for i in range(self.n)}) # get interval[l,r) def query(self, l): res, coun = 0, 0 l = self.order[l] + self.n r = self.n * 2 while l < r: if l & 1: res += self.tree[l][0] coun += self.tree[l][1] l += 1 if r & 1: r -= 1 res += self.tree[r][0] coun += self.tree[r][1] l >>= 1 r >>= 1 return res, coun def update(self, ix, val): ix = self.n + self.order[ix] # set new value self.tree[ix][0] += val self.tree[ix][1] += 1 # move up while ix > 1: self.tree[ix >> 1][0] = self.tree[ix][0] + self.tree[ix ^ 1][0] self.tree[ix >> 1][1] = self.tree[ix][1] + self.tree[ix ^ 1][1] ix >>= 1 input = fast2() rints = lambda: [int(x) for x in input().split()] n, a = int(input()), sorted(map(lambda x, y: [x, y], rints(), rints())) dis = sorted(set([x[1] for x in a])) tree, ans = order_tree(dis), 0 for i in range(n - 1, -1, -1): su, coun = tree.query(a[i][1]) ans += su - coun * a[i][0] tree.update(a[i][1], a[i][0]) print(ans)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int tab_x[200000 + 5]; int tab_v[200000 + 5]; long long D_dist[550000 + 5]; int D_ile[550000 + 5]; int zakresy[550000 + 5][2]; int max_pot = 1; int QUERRY_ile(int L, int R, int w) { if (zakresy[w][0] > R || L > zakresy[w][1]) return 0; if (L <= zakresy[w][0] && zakresy[w][1] <= R) return D_ile[w]; return QUERRY_ile(L, R, w * 2) + QUERRY_ile(L, R, w * 2 + 1); } long long QUERRY_dist(int L, int R, int w) { if (zakresy[w][0] > R || L > zakresy[w][1]) return 0; if (L <= zakresy[w][0] && zakresy[w][1] <= R) return D_dist[w]; return QUERRY_dist(L, R, w * 2) + QUERRY_dist(L, R, w * 2 + 1); } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); int n; cin >> n; for (int i = 0; i < n; i++) cin >> tab_x[i]; for (int i = 0; i < n; i++) cin >> tab_v[i]; vector<pair<int, int> > V_0; for (int i = 0; i < n; i++) V_0.push_back({tab_x[i], tab_v[i]}); sort(V_0.begin(), V_0.end()); for (int i = 0; i < n; i++) { tab_x[i] = V_0[i].first; tab_v[i] = V_0[i].second; } priority_queue<pair<int, int> > PQ; for (int i = 0; i < n; i++) PQ.push({-tab_v[i], i}); int last_ = INT_MIN; int name_num = 0; while (!PQ.empty()) { int top_val = -PQ.top().first; int top_place = PQ.top().second; PQ.pop(); if (top_val != last_) { name_num++; last_ = top_val; } tab_v[top_place] = name_num; } while (max_pot < name_num) max_pot *= 2; for (int i = max_pot; i < 2 * max_pot; i++) zakresy[i][0] = zakresy[i][1] = i - max_pot + 1; for (int i = max_pot - 1; i >= 1; i--) { zakresy[i][0] = zakresy[2 * i][0]; zakresy[i][1] = zakresy[2 * i + 1][1]; } long long RESULT = 0; for (int i = 0; i < n; i++) { long long akt_x = tab_x[i]; int akt_v = tab_v[i]; int ile_ = QUERRY_ile(1, akt_v, 1); long long suma_dist = QUERRY_dist(1, akt_v, 1); long long bazowy_koszt = ile_; bazowy_koszt *= akt_x; bazowy_koszt -= suma_dist; RESULT += bazowy_koszt; int w = max_pot + akt_v - 1; while (w) { D_ile[w]++; D_dist[w] += akt_x; w /= 2; } } cout << RESULT; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
python3
def bitadd(a,w,bit): x = a while x <= (len(bit)-1): bit[x] += w x += x & (-1 * x) def bitsum(a,bit): ret = 0 x = a while x > 0: ret += bit[x] x -= x & (-1 * x) return ret n = int(input()) x = list(map(int,input().split())) v = list(map(int,input().split())) vlis = [] for i in v: vlis.append(i) vlis.sort() vdic = {} for i in range(n): vdic[vlis[i]] = i+1 #print (vdic) xv = [] for i in range(n): xv.append([x[i],v[i]]) xv.sort() ans = 0 BIT = [0] * (n+1) BIT2 = [0] * (n+1) for i in range(n): x,v = xv[i] ans += x * bitsum(vdic[v],BIT2) - bitsum(vdic[v],BIT) bitadd(vdic[v] , x , BIT) bitadd(vdic[v] , 1 , BIT2) print (ans)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long md = 1e9 + 7; const int xn = 2e5 + 10; const int xm = 5e5; const int SQ = 750; const int sq = 1e3 + 10; const long long inf = 1e18 + 10; long long power(long long a, long long b) { return (!b ? 1 : (b & 1 ? a * power(a * a % md, b / 2) % md : power(a * a % md, b / 2) % md)); } int n; map<int, int> mp; pair<long long, long long> X[xn]; long long x[xn], v[xn], PS[xn], t[xn], ans; void Get(int l, int r, int ind) { for (int i = l; i <= r;) { if (i % SQ == 0 && i + SQ - 1 <= r) { ans -= PS[i / SQ] - x[ind] * t[i / SQ]; i += SQ; } else { if (v[i] <= v[ind]) ans += x[ind] - x[i]; i++; } } } void Update(int ind) { PS[ind / SQ] += x[ind]; t[ind / SQ]++; } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); ; cin >> n; for (int i = 0; i < n; i++) cin >> x[i]; for (int i = 0; i < n; i++) cin >> v[i]; for (int i = 0; i < n; i++) X[i] = {x[i], v[i]}; sort(X, X + n); for (int i = 0; i < n; i++) x[i] = X[i].first, v[i] = X[i].second, swap(X[i].first, X[i].second), mp[x[i]] = i; sort(X, X + n); for (int i = 0; i < n; i++) { Get(0, mp[X[i].second] - 1, mp[X[i].second]); Update(mp[X[i].second]); } cout << ans << '\n'; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long gcd(long long a, long long b) { return b == 0 ? a : gcd(b, a % b); } long long ppow(long long a, long long b, long long mod) { a %= mod; long long ans = 1; while (b) { if (b & 1) ans = ans * a % mod; a = a * a % mod; b >>= 1; } return ans; } long long readdd() { long long x = 0, f = 1; char c = getchar(); while (!isdigit(c) && c != '-') c = getchar(); if (c == '-') f = -1, c = getchar(); while (isdigit(c)) x = x * 10 + c - '0', c = getchar(); return f * x; } void printtt(long long x) { if (x < 0) putchar('-'), x = -x; if (x >= 10) printtt(x / 10); putchar(x % 10 + '0'); } const long long maxm = 1e6 + 5; long long c[maxm]; long long cc[maxm]; long long xx[maxm]; struct Node { long long x, v; } e[maxm]; bool cmp(Node a, Node b) { if (a.v != b.v) { return a.v < b.v; } else { return a.x < b.x; } } long long lowbit(long long i) { return i & -i; } void add(long long i, long long c[], long long t) { while (i < maxm) { c[i] += t; i += lowbit(i); } } long long ask(long long i, long long c[]) { long long ans = 0; while (i) { ans += c[i]; i -= lowbit(i); } return ans; } signed main() { long long n; cin >> n; for (long long i = 1; i <= n; i++) { cin >> e[i].x; xx[i] = e[i].x; } for (long long i = 1; i <= n; i++) { cin >> e[i].v; } sort(xx + 1, xx + 1 + n); long long num = unique(xx + 1, xx + 1 + n) - xx - 1; for (long long i = 1; i <= n; i++) { e[i].x = lower_bound(xx + 1, xx + 1 + num, e[i].x) - xx; } sort(e + 1, e + 1 + n, cmp); long long ans = 0; for (long long i = 1; i <= n; i++) { if (e[i].x != 1) { long long mi = ask(e[i].x, c); long long temp = ask(e[i].x, cc); temp -= mi * ((long long)1e9 - xx[e[i].x]); ans += temp; } add(e[i].x, c, 1); add(e[i].x, cc, ((long long)1e9 - xx[e[i].x])); } cout << ans << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.*; import java.util.*; public class Main { static class BIT { int n; long[] tree; public BIT(int n) { this.n = n; tree = new long[n + 2]; } long read(int i) { i++; long sum = 0; while (i > 0) { sum += tree[i]; i -= i & -i; } return sum; } void update(int i, int val) { i++; while (i <= n) { tree[i] += val; i += i & -i; } } } public static void main(String[] args) throws IOException { FastScanner f = new FastScanner(); int t=1; // t=f.nextInt(); PrintWriter out=new PrintWriter(System.out); for(int tt=0;tt<t;tt++) { int n= f.nextInt(); int[] x=f.readArray(n); int[] v=f.readArray(n); TreeSet<Integer> tree=new TreeSet<>(); for(int i:v) tree.add(i); HashMap<Integer,Integer> map=new HashMap<>(); int curr=0; for(int i:tree) { curr++; map.put(i, curr); } for(int i=0;i<n;i++) { v[i]=map.get(v[i]); } BIT val=new BIT(200005); BIT count=new BIT(200005); long ans=0; int[][] l=new int[n][2]; for(int i=0;i<n;i++) { l[i]=new int[] {x[i],v[i]}; } Arrays.sort(l,new Comparator<int[]>() { public int compare(int[] a,int[] b) { return Integer.compare(a[0], b[0]); } }); for(int i=n-1;i>-1;i--) { long num=count.read(n)-count.read(l[i][1]-1); ans+=(-(long)l[i][0]*num+val.read(n)-val.read(l[i][1]-1)); count.update(l[i][1],1); val.update(l[i][1],l[i][0]); } System.out.println(ans); } out.close(); } static void sort(long[] p) { ArrayList<Integer> q = new ArrayList<>(); for (long i: p) q.add((int) i); Collections.sort(q); for (int i = 0; i < p.length; i++) p[i] = q.get(i); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } long[] readLongArray(int n) { long[] a=new long[n]; for (int i=0; i<n; i++) a[i]=nextLong(); return a; } } } //Some things to notice //Check for the overflow //Binary Search //Bitmask //runtime error most of the time is due to array index out of range
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 2e5 + 15; int tot = 1, N; const int L = -2e8; const int R = 2e8; struct Node { int l, r, num; long long sum; Node() { l = 0, r = 0, num = 0, sum = 0; } } E[maxn * 40]; struct Point { long long x, v; bool operator<(const Point &T) const { return x > T.x; } } P[maxn]; void update(int l, int r, int x, int v, int id) { if (l == r) { E[id].num++; E[id].sum += x; return; } int mid = (l + r) >> 1; if (v <= mid) { if (!E[id].l) E[id].l = ++tot; update(l, mid, x, v, E[id].l); } else { if (!E[id].r) E[id].r = ++tot; update(mid + 1, r, x, v, E[id].r); } E[id].num = E[E[id].l].num + E[E[id].r].num; E[id].sum = E[E[id].l].sum + E[E[id].r].sum; } void getSum(int l, int r, int ln, int rn, int id, int &num, long long &sum) { if (ln > rn) return; if (ln == l && rn == r) { num += E[id].num; sum += E[id].sum; return; } int mid = (l + r) >> 1; if (ln > mid && E[id].r) getSum(mid + 1, r, ln, rn, E[id].r, num, sum); else if (rn <= mid && E[id].l) getSum(l, mid, ln, rn, E[id].l, num, sum); else { if (E[id].r) getSum(mid + 1, r, mid + 1, rn, E[id].r, num, sum); if (E[id].l) getSum(l, mid, ln, mid, E[id].l, num, sum); } } int main() { scanf("%d", &N); for (int i = 1; i <= N; i++) scanf("%lld", &P[i].x); for (int i = 1; i <= N; i++) scanf("%lld", &P[i].v); sort(P + 1, P + 1 + N); long long ans = 0; for (int i = 1; i <= N; i++) { int num = 0; long long sum = 0; getSum(L, R, P[i].v, R, 1, num, sum); ans += (sum - 1LL * num * P[i].x); update(L, R, P[i].x, P[i].v, 1); } printf("%lld\n", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ import java.io.BufferedReader; import java.io.DataInputStream; import java.io.FileInputStream; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.util.HashSet; import java.util.List; import java.util.Map; import java.util.Set; import java.util.StringTokenizer; /** * * @author is2ac */ public class D_CF { public static void main(String[] args) throws IOException { FastScanner58 fs = new FastScanner58(); //Reader fs = new Reader(); PrintWriter pw = new PrintWriter(System.out); //int t = fs.ni(); int t = 1; for (int tc = 0; tc < t; tc++) { int n = fs.ni(); long[] x = fs.longArray(n); long[] v = fs.longArray(n); BIT16 bit = new BIT16(200005); BIT16 people = new BIT16(200005); Set<Long> set = new HashSet(); List<Long> list = new ArrayList(); Map<Long,Integer> map = new HashMap(); for (int i = 0; i < n; i++) { set.add(v[i]); } for (long val : set) { list.add(val); } Collections.sort(list); for (int i = 0; i < list.size(); i++) { map.put(list.get(i),i+1); } long[][] matrix = new long[n][2]; for (int i = 0; i < n; i++) { matrix[i][0] = x[i]; matrix[i][1] = v[i]; } Arrays.sort(matrix,new Comparator<long[]>(){ public int compare(long[] a, long[] b) { return Long.compare(a[0],b[0]); } }); long res = 0; for (int i = 0; i < n; i++) { long cx = matrix[i][0]; int cv = map.get(matrix[i][1]); long cur = (long)people.sum(cv) * (long)cx; cur -= (long)bit.sum(cv); res += cur; people.update(cv,1); bit.update(cv,cx); } pw.println(res); } pw.close(); } public static long gcd(long n1, long n2) { if (n2 == 0) { return n1; } return gcd(n2, n1 % n2); } } class GFG { // A utility function to get the // middle index of given range. static int getMid(int s, int e) { return s + (e - s) / 2; } /* * A recursive function to get the sum of values in given range of the array. * The following are parameters for this function. * * st -> Pointer to segment tree * node -> Index of current node in * the segment tree. * ss & se -> Starting and ending indexes * of the segment represented * by current node, i.e., st[node] * l & r -> Starting and ending indexes * of range query */ static long MinUtil(long[] st, int ss, int se, int l, int r, int node) { // If segment of this node is completely // part of given range, then return // the max of segment if (l <= ss && r >= se) return st[node]; // If segment of this node does not // belong to given range if (se < l || ss > r) return (long)(1e11); // If segment of this node is partially // the part of given range int mid = getMid(ss, se); return Math.min( MinUtil(st, ss, mid, l, r, 2 * node + 1), MinUtil(st, mid + 1, se, l, r, 2 * node + 2)); } /* * A recursive function to update the nodes which have the given index in their * range. The following are parameters st, ss and se are same as defined above * index -> index of the element to be updated. */ static void updateValue(long arr[], long[] st, int ss, int se, int index, long value, int node) { if (index < ss || index > se) { //System.out.println("Invalid Input"); return; } if (ss == se) { // update value in array and in // segment tree arr[index] = value; st[node] = value; } else { int mid = getMid(ss, se); if (index >= ss && index <= mid) updateValue(arr, st, ss, mid, index, value, 2 * node + 1); else updateValue(arr, st, mid + 1, se, index, value, 2 * node + 2); st[node] = Math.min(st[2 * node + 1], st[2 * node + 2]); } return; } // Return max of elements in range from // index l (query start) to r (query end). static long getMin(long[] st, int n, int l, int r) { // Check for erroneous input values if (l < 0 || r > n - 1 || l > r) { //System.out.printf("Invalid Input\n"); return (long)(1e11); } return MinUtil(st, 0, n - 1, l, r, 0); } // A recursive function that constructs Segment // Tree for array[ss..se]. si is index of // current node in segment tree st static long constructSTUtil(long arr[], int ss, int se, long[] st, int si) { // If there is one element in array, store // it in current node of segment tree and return if (ss == se) { st[si] = arr[ss]; return arr[ss]; } // If there are more than one elements, then // recur for left and right subtrees and // store the max of values in this node int mid = getMid(ss, se); st[si] = Math.min( constructSTUtil(arr, ss, mid, st, si * 2 + 1), constructSTUtil(arr, mid + 1, se, st, si * 2 + 2)); return st[si]; } /* * Function to construct segment tree from given array. This function allocates * memory for segment tree. */ static long[] constructST(long arr[], int n) { // Height of segment tree int x = (int)Math.ceil(Math.log(n) / Math.log(2)); // Maximum size of segment tree int max_size = 2 * (int)Math.pow(2, x) - 1; // Allocate memory long[] st = new long[max_size]; // Fill the allocated memory st constructSTUtil(arr, 0, n - 1, st, 0); // Return the constructed segment tree return st; } } class BIT16 { long[] bit; public BIT16(int size) { bit = new long[size]; } public void update(int ind, long delta) { while (ind < bit.length) { bit[ind] += delta; ind = ind + (ind & (-1 * ind)); } } public long sum(int ind) { long s = 0; while (ind > 0) { s += bit[ind]; ind = ind - (ind & (-1 * ind)); } return s; } public long query(int l, int r) { return sum(r) - sum(l); } } class UnionFind18 { int[] id; public UnionFind18(int size) { id = new int[size]; for (int i = 0; i < size; i++) { id[i] = i; } } public int find(int p) { int root = p; while (root != id[root]) { root = id[root]; } while (p != root) { int next = id[p]; id[p] = root; p = next; } return root; } public void union(int p, int q) { int a = find(p), b = find(q); if (a == b) { return; } id[b] = a; } } class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') { break; } buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int ni() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') { c = read(); } boolean neg = (c == '-'); if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') { c = read(); } boolean neg = (c == '-'); if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') { c = read(); } boolean neg = (c == '-'); if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) { return -ret; } return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) { buffer[0] = -1; } } private byte read() throws IOException { if (bufferPointer == bytesRead) { fillBuffer(); } return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) { return; } din.close(); } } class FastScanner58 { BufferedReader br; StringTokenizer st; public FastScanner58() { br = new BufferedReader(new InputStreamReader(System.in), 32768); st = null; } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int ni() { return Integer.parseInt(next()); } int[] intArray(int N) { int[] ret = new int[N]; for (int i = 0; i < N; i++) { ret[i] = ni(); } return ret; } long nl() { return Long.parseLong(next()); } long[] longArray(int N) { long[] ret = new long[N]; for (int i = 0; i < N; i++) { ret[i] = nl(); } return ret; } double nd() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.HashMap; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.util.Map; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author htvu */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); FMovingPoints solver = new FMovingPoints(); solver.solve(1, in, out); out.close(); } static class FMovingPoints { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); Integer[] x = new Integer[n]; int[] v = new int[n]; long ans = 0; Map<Integer, Integer> rank = new HashMap<>(); for (int i = 0; i < n; ++i) { x[i] = in.nextInt(); } for (int i = 0; i < n; ++i) v[i] = in.nextInt(); Pair.IntPair[] ps = new Pair.IntPair[n]; for (int i = 0; i < n; ++i) ps[i] = new Pair.IntPair(x[i], v[i]); Arrays.sort(ps, (p1, p2) -> !p1.second.equals(p2.second) ? p1.second - p2.second : p1.first - p2.first); Arrays.sort(x); for (int i = 0; i < n; ++i) { // add x[i] to pair sum ans += (long) x[i] * (2 * i + 1 - n); // record position of x[i] rank by v[i] rank.put(ps[i].first, i); } for (int i = 0; i < n; ++i) { // delta = how many times x[i] get overtaken (rank by x[i] - rank by v[i]) ans -= (long) x[i] * (i - rank.get(x[i])); } out.println(ans); } } static class Pair<A extends Comparable<A>, B extends Comparable<B>> implements Comparable<Pair<A, B>> { public A first; public B second; public Pair(A a, B b) { this.first = a; this.second = b; } public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Pair<?, ?> pair = (Pair<?, ?>) o; return first.equals(pair.first) && second.equals(pair.second); } public int hashCode() { return (first == null ? 0 : first.hashCode()) ^ (second == null ? 0 : second.hashCode()); } public String toString() { return "{" + first + "," + second + '}'; } public int compareTo(Pair<A, B> o) { int c = first.compareTo(o.first); if (c != 0) return c; return second.compareTo(o.second); } public static class IntPair extends Pair<Integer, Integer> { public IntPair(Integer integer, Integer integer2) { super(integer, integer2); } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
python3
class Points: def __init__(self, x = 0, v = 0): self.x, self.v = x, v class Fenwick_tree: def __init__(self, n = 0): self.n = n self.bit = [0] * (n + 1) def update(self, x, value): while x <= self.n: self.bit[x] += value x += x & -x def get(self, x): sum = 0; while x > 0: sum += self.bit[x]; x -= x & -x return sum # Input: n, x, v = int(input()), list(map(int,input().split())), list(map(int,input().split())) a = [Points(x[i], v[i]) for i in range(n)] a.sort(key = lambda value: value.x) # Compress data: v = [a[i].v for i in range(n)] v.sort() data = {} cnt = 1 for i in range(n): if not data.__contains__(v[i]): data[v[i]] = cnt cnt += 1 # Solve the problem: cnt = Fenwick_tree(n) sum = Fenwick_tree(n) res, i = 0, 0 for i in range(n): a[i].v = data[a[i].v] res += a[i].x * cnt.get(a[i].v) - sum.get(a[i].v) cnt.update(a[i].v, 1) sum.update(a[i].v, a[i].x) print(res)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAXN = 2e5 + 10; const int MOD = 998244353; const int INF = 0x3f3f3f3f; struct Node { int x; int v; } a[MAXN]; bool cmp(Node a, Node b) { if (a.v == b.v) { return a.x < b.x; } return a.v < b.v; } int N, M; vector<int> dic; int main() { int now; long long ans; while (~scanf("%d", &N)) { dic.clear(); for (int i = 0; i < N; i++) { scanf("%d", &a[i].x); dic.push_back(a[i].x); } for (int i = 0; i < N; i++) { scanf("%d", &a[i].v); } sort(a, a + N, cmp); sort(dic.begin(), dic.end()); ans = 0; for (int i = 0; i < N; i++) { now = upper_bound(dic.begin(), dic.end(), a[i].x) - dic.begin(); ans += (long long)(now - N + i) * a[i].x; } printf("%lld\n", ans); } return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
python3
class SegmentTree(): def __init__(self,arr,func,initialRes=0): self.f=func self.N=len(arr) self.tree=[0 for _ in range(4*self.N)] self.initialRes=initialRes for i in range(self.N): self.tree[self.N+i]=arr[i] for i in range(self.N-1,0,-1): self.tree[i]=self.f(self.tree[i<<1],self.tree[i<<1|1]) def updateTreeNode(self,idx,value): #update value at arr[idx] self.tree[idx+self.N]=value idx+=self.N i=idx while i>1: self.tree[i>>1]=self.f(self.tree[i],self.tree[i^1]) i>>=1 def query(self,l,r): #get sum (or whatever function) on interval [l,r] inclusive r+=1 res=self.initialRes l+=self.N r+=self.N while l<r: if l&1: res=self.f(res,self.tree[l]) l+=1 if r&1: r-=1 res=self.f(res,self.tree[r]) l>>=1 r>>=1 return res def getMaxSegTree(arr): return SegmentTree(arr,lambda a,b:max(a,b),initialRes=-float('inf')) def getMinSegTree(arr): return SegmentTree(arr,lambda a,b:min(a,b),initialRes=float('inf')) def getSumSegTree(arr): return SegmentTree(arr,lambda a,b:a+b,initialRes=0) def main(): n=int(input()) xes=readIntArr() ves=readIntArr() #perform coordinate compression on xes. Compressed values shall be the indexes of segment tree xes2=list(sorted(xes)) #xes2[compressed]=x xTox2Map=dict() for i,x in enumerate(xes2): xTox2Map[x]=i #xTox2Map[x]=i arr=[] #[original x, compressed x, v] for i in range(n): arr.append([xes[i],xTox2Map[xes[i]],ves[i]]) arr.sort(key=lambda x:(x[2],x[0])) #sort by v asc, then position asc segArray=[0 for _ in range(n)] #index shall be compressed x, value is actual x st=getSumSegTree(segArray) #for sum of xes stCnts=getSumSegTree(segArray.copy()) #for counts # print(arr) ans=0 for originalX,compressedX,v in arr: smallerSums=st.query(0,compressedX) smallerCounts=stCnts.query(0,compressedX) ans+=originalX*smallerCounts-smallerSums st.updateTreeNode(compressedX,originalX) #update the tree stCnts.updateTreeNode(compressedX,1) # print(ans) print(ans) return import sys input=sys.stdin.buffer.readline #FOR READING PURE INTEGER INPUTS (space separation ok) # import sys # input=lambda: sys.stdin.readline().rstrip("\r\n") #FOR READING STRING/TEXT INPUTS. def oneLineArrayPrint(arr): print(' '.join([str(x) for x in arr])) def multiLineArrayPrint(arr): print('\n'.join([str(x) for x in arr])) def multiLineArrayOfArraysPrint(arr): print('\n'.join([' '.join([str(x) for x in y]) for y in arr])) def readIntArr(): return [int(x) for x in input().split()] # def readFloatArr(): # return [float(x) for x in input().split()] inf=float('inf') MOD=10**9+7 main()
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.Arrays; import java.util.Scanner; import java.util.Comparator; public class MovingPoints { private static long sumaj(long[] arr,int index) { long result=0; while (index>=0) { result+=arr[index]; index=(index&(index+1))-1; } return result; } private static void apdejt (long[] t,int index,int vv) { while (index<t.length) { t[index]+=vv; index=index|(index + 1); } } public static void main(String[] args) { Scanner in=new Scanner(System.in); int n=in.nextInt(); int[][] pm=new int[n][2]; int[][] vm=new int[n][2]; for (int i=0;i<n;i++) pm[i][0]=in.nextInt(); for (int i=0;i<n;i++) { pm[i][1]=in.nextInt(); vm[i][0]=pm[i][1]; vm[i][1]=i; } in.close(); Arrays.sort(vm, new Comparator<int[]>() { public int compare(int[] a, int[] b) { return a[0] - b[0]; } }); int nss=0; int[][] finar=new int[n][2]; for (int i=0;i<n;i++) { if (i>0 && vm[i][0]!=vm[i-1][0]) nss++; finar[i][0]=nss; finar[i][1]=vm[i][1]; } Arrays.sort(finar,new Comparator<int[]>() { public int compare(int[] a,int[] b) { return a[1]-b[1]; }}); for (int i=0; i<n;i++) { pm[i][1] = finar[i][0]; } Arrays.sort(pm,new Comparator<int[]>() { public int compare(int[] a,int[] b) { return a[0]-b[0]; }}); long[] c=new long[n]; long[] pts=new long[n]; long totalsum=0; for (int i=0;i<n;i++) { int index=pm[i][1]; totalsum+=sumaj(pts,index)*pm[i][0]-sumaj(c,index); apdejt(pts,index,1); apdejt(c, index, pm[i][0]); } System.out.println(totalsum); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void coordinatecompress(vector<int> &data) { int n = data.size(); vector<pair<int, int> > tempdata(n); for (int i = 0; i < n; i++) tempdata[i] = {data[i], i}; sort(tempdata.begin(), tempdata.end()); data[tempdata[0].second] = 0; for (int i = 1; i < n; i++) data[tempdata[i].second] = data[tempdata[i - 1].second] + (tempdata[i - 1].first != tempdata[i].first); } struct segTree { long long cnt, sum; }; const int N = 2e5; segTree tree[4 * N + 1], lazy[4 * N + 1]; void updt(int s, int e, int node, int l, int r, int val) { tree[node].sum += lazy[node].sum * (e - s + 1); tree[node].cnt += lazy[node].cnt * (e - s + 1); int mid = (s + e) / 2; if (s != e) { lazy[2 * node + 1].sum += lazy[node].sum; lazy[2 * node + 2].sum += lazy[node].sum; lazy[2 * node + 1].cnt += lazy[node].cnt; lazy[2 * node + 2].cnt += lazy[node].cnt; } lazy[node] = {0, 0}; if (r < s || l > e) return; if (s >= l && e <= r) { tree[node].sum += val * (e - s + 1); tree[node].cnt += e - s + 1; if (s != e) { lazy[2 * node + 1].sum += val; lazy[2 * node + 2].sum += val; lazy[2 * node + 1].cnt++; ; lazy[2 * node + 2].cnt++; ; } return; } updt(s, mid, 2 * node + 1, l, r, val); updt(mid + 1, e, 2 * node + 2, l, r, val); tree[node].sum = tree[2 * node + 1].sum + tree[2 * node + 2].sum; tree[node].cnt = tree[2 * node + 1].cnt + tree[2 * node + 2].cnt; } segTree qry(int s, int e, int node, int i, int j) { tree[node].sum += lazy[node].sum * (e - s + 1); tree[node].cnt += lazy[node].cnt * (e - s + 1); int mid = (s + e) / 2; if (s != e) { lazy[2 * node + 1].sum += lazy[node].sum; lazy[2 * node + 2].sum += lazy[node].sum; lazy[2 * node + 1].cnt += lazy[node].cnt; lazy[2 * node + 2].cnt += lazy[node].cnt; } lazy[node] = {0, 0}; if (e < i || s > j) return {0, 0}; if (s >= i && e <= j) { return tree[node]; } segTree ans1 = qry(s, mid, 2 * node + 1, i, j), ans2 = qry(mid + 1, e, 2 * node + 2, i, j); tree[node].sum = ans1.sum + ans2.sum; tree[node].cnt = ans1.cnt + ans2.cnt; return tree[node]; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); int n; cin >> n; vector<pair<int, int> > point(n); vector<int> p(n), v(n), tmp, org(n); for (int i = 0; i < n; i++) cin >> p[i]; for (int i = 0; i < n; i++) cin >> v[i]; tmp = p; coordinatecompress(p); for (int i = 0; i < n; i++) { org[p[i]] = tmp[i]; point[i] = {v[i], p[i]}; } long long ans = 0; sort(point.begin(), point.end()); for (auto [s, x] : point) { segTree res = qry(0, n - 1, 0, x, x); ans += res.cnt * org[x] - res.sum; updt(0, n - 1, 0, x + 1, n - 1, org[x]); } cout << ans; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
python3
# -*- coding: utf-8 -*- import sys from collections import Counter from bisect import bisect_left def input(): return sys.stdin.readline().strip() def list2d(a, b, c): return [[c] * b for i in range(a)] def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)] def list4d(a, b, c, d, e): return [[[[e] * d for j in range(c)] for j in range(b)] for i in range(a)] def ceil(x, y=1): return int(-(-x // y)) def INT(): return int(input()) def MAP(): return map(int, input().split()) def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)] def Yes(): print('Yes') def No(): print('No') def YES(): print('YES') def NO(): print('NO') # sys.setrecursionlimit(10 ** 9) INF = 10 ** 18 MOD = 10 ** 9 + 7 class BIT: def __init__(self, n): n += 1 nv = 1 while nv < n: nv *= 2 self.size = nv self.tree = [0] * nv def sum(self, i): s = 0 i += 1 while i > 0: s += self.tree[i-1] i -= i & -i return s def add(self, i, x): i += 1 while i <= self.size: self.tree[i-1] += x i += i & -i def get(self, l, r=None): if r is None: r = l + 1 res = 0 if r: res += self.sum(r-1) if l: res -= self.sum(l-1) return res def update(self, i, x): self.add(i, x - self.get(i)) N = INT() A = LIST() B = LIST() AB = list(zip(A, B)) AB.sort() B = sorted(set(B)) M = len(B) bit1 = BIT(M) bit2 = BIT(M) ans = 0 for a, b in AB: pos = bisect_left(B, b) sm = bit1.sum(pos) cnt = bit2.sum(pos) ans += cnt * a - sm bit1.add(pos, a) bit2.add(pos, 1) print(ans)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.*; import java.util.*; public class Main { static class Pair implements Comparable<Pair> { int x, v; Pair(int x, int v) { this.x = x; this.v = v; } public int compareTo(Pair p) { return x - p.x; } } static class SegmentTree { int n; long[] t; SegmentTree(int n) { this.n = n; int h = (int)(Math.ceil(Math.log(n) / Math.log(2))); t = new long[1 << (h + 1)]; } void update(int idx, long diff) { update(1, 0, n - 1, idx, diff); } void update(int n, int s, int e, int idx, long diff) { if (idx < s || e < idx) { return; } t[n] += diff; if (s != e) { update(2 * n, s, (s + e) / 2, idx, diff); update(2 * n + 1, (s + e) / 2 + 1, e, idx, diff); } } long sum(int l, int r) { return sum(1, 0, n - 1, l, r); } long sum(int n, int s, int e, int l, int r) { if (r < s || e < l) { return 0; } else if (l <= s && e <= r) { return t[n]; } else { return sum(2 * n, s, (s + e) / 2, l, r) + sum(2 * n + 1, (s + e) / 2 + 1, e, l, r); } } } public static void main(String[] args) { InputReader in = new InputReader(); int N = in.nextInt(); int[] x = new int[N]; int[] v = new int[N]; Pair[] p = new Pair[N]; for (int i = 0; i < N; i++) { x[i] = in.nextInt(); } for (int i = 0; i < N; i++) { v[i] = in.nextInt(); } for (int i = 0; i < N; i++) { p[i] = new Pair(x[i], v[i]); } Arrays.sort(p, new Comparator<Pair>() { public int compare(Pair p1, Pair p2) { return Integer.compare(p1.v, p2.v); } }); Map<Integer, Integer> map = new HashMap<>(); int idx = 0; for (int i = 0; i < N; i++) { if (map.containsKey(p[i].v)) { continue; } map.put(p[i].v, idx++); } Arrays.sort(p); SegmentTree seg1 = new SegmentTree(N); SegmentTree seg2 = new SegmentTree(N); long ans = 0; for (int i = 0; i < N; i++) { ans += seg2.sum(0, map.get(p[i].v)) * p[i].x; ans -= seg1.sum(0, map.get(p[i].v)); seg1.update(map.get(p[i].v), p[i].x); seg2.update(map.get(p[i].v), 1); } System.out.println(ans); } static class InputReader { public BufferedReader reader; public StringTokenizer st; public InputReader() { reader = new BufferedReader(new InputStreamReader(System.in)); } public String next() { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(nextLine()); } return st.nextToken(); } public String nextLine() { try { return reader.readLine(); } catch (IOException e) { e.printStackTrace(); } return null; } public int nextInt() { return Integer.parseInt(next()); } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; vector<pair<long long, long long>> v; long long arr[200005]; map<long long, long long> mp; map<long long, long long> rmp; pair<long long, long long> bit[200005]; set<long long> s; void insert(long long ind) { for (long long i = ind; i < 200005; i += i & -i) bit[i].first += 1, bit[i].second += rmp[ind]; } pair<long long, long long> query(long long ind) { pair<long long, long long> ret = {0, 0}; if (ind == 0) return ret; for (long long i = ind; i > 0; i -= i & -i) ret.first += bit[i].first, ret.second += bit[i].second; return ret; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); long long n; cin >> n; for (long long i = 0; i < n; i++) cin >> arr[i], s.insert(arr[i]); long long c = 1; for (auto i : s) rmp[c] = i, mp[i] = c++; for (long long i = 0; i < n; i++) { long long ve; cin >> ve; v.push_back({ve, mp[arr[i]]}); } sort(v.begin(), v.end(), greater<pair<long long, long long>>()); long long ans = 0; c = 0; long long val = 0; for (auto i : v) { pair<long long, long long> q = query(i.second); long long num = c - q.first; long long sum = val - q.second; ans += (sum - num * rmp[i.second]); c++; val += rmp[i.second]; insert(i.second); } cout << ans << "\n"; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
// package Quarantine; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class MovingPoints { public static void update(int tree[],int val,int ind,int size){ while(ind<=size){ tree[ind]+=val; ind+=(ind&(-ind)); } return; } public static void update(long tree[],int val,int ind,int size){ while(ind<=size){ tree[ind]+=val; ind+=(ind&(-ind)); } return; } public static long query(long tree[],int ind){ long sum=0; while(ind>0){ sum+=tree[ind]; ind-=(ind&(-ind)); } return sum; } public static long query(int tree[],int ind){ long sum=0; while(ind>0){ sum+=tree[ind]; ind-=(ind&(-ind)); } return sum; } public static void main(String[] args)throws IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int n=Integer.parseInt(br.readLine()); StringTokenizer st=new StringTokenizer(br.readLine()); int x[]=new int[n+1]; for(int i=1;i<=n;i++){ x[i]=Integer.parseInt(st.nextToken()); } st=new StringTokenizer(br.readLine()); int v[]=new int[n+1]; for(int i=1;i<=n;i++){ v[i]=Integer.parseInt(st.nextToken()); } ArrayList<Particle> particles=new ArrayList<>(); TreeSet<Integer> set=new TreeSet<>(); HashMap<Integer,Integer> map=new HashMap<>(); for(int i=1;i<=n;i++){ particles.add(new Particle(x[i],v[i])); set.add(v[i]); } Collections.sort(particles); int count=1; for(int k:set){ map.put(k,count++); } int numtree[]=new int[count]; long coordi[]=new long[count]; count--; // System.out.println(map.toString()); long ans=0; for(int i=n-1;i>=0;i--){ Particle curr=particles.get(i); int vt=map.get(curr.v); long num=query(numtree,count)-query(numtree,vt-1); long sum=query(coordi,count)-query(coordi,vt-1); // System.out.println(curr.x+" "+num+" "+sum); long temp=sum-num*curr.x; ans+=temp; update(numtree,1,vt,count); update(coordi,curr.x,vt,count); } System.out.println(ans); } } class Particle implements Comparable<Particle>{ int x,v; public Particle(int x,int v){ this.x=x; this.v=v; } @Override public int compareTo(Particle o) { return this.x-o.x; } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma comment(linker, "/stack:200000000") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") using namespace std; using ll = long long; using ull = unsigned long long; using pii = pair<int, int>; using pll = pair<ll, ll>; const ll INF = static_cast<ll>(1e18); struct FlowEdge { int v, u; long long cap, flow = 0; FlowEdge(int v, int u, long long cap) : v(v), u(u), cap(cap) {} }; struct Dinic { const long long flow_inf = 1e18; vector<FlowEdge> edges; vector<vector<int>> adj; int n, m = 0; int s, t; vector<int> level, ptr; queue<int> q; Dinic(int n, int s, int t) : n(n), s(s), t(t) { adj.resize(n); level.resize(n); ptr.resize(n); } void add_edge(int v, int u, long long cap) { edges.emplace_back(v, u, cap); edges.emplace_back(u, v, 0); adj[v].push_back(m); adj[u].push_back(m + 1); m += 2; } bool bfs() { while (!q.empty()) { int v = q.front(); q.pop(); for (int id : adj[v]) { if (edges[id].cap - edges[id].flow < 1) continue; if (level[edges[id].u] != -1) continue; level[edges[id].u] = level[v] + 1; q.push(edges[id].u); } } return level[t] != -1; } long long dfs(int v, long long pushed) { if (pushed == 0) return 0; if (v == t) return pushed; for (int& cid = ptr[v]; cid < (int)adj[v].size(); cid++) { int id = adj[v][cid]; int u = edges[id].u; if (level[v] + 1 != level[u] || edges[id].cap - edges[id].flow < 1) continue; long long tr = dfs(u, min(pushed, edges[id].cap - edges[id].flow)); if (tr == 0) continue; edges[id].flow += tr; edges[id ^ 1].flow -= tr; return tr; } return 0; } long long flow() { long long f = 0; while (true) { fill(level.begin(), level.end(), -1); level[s] = 0; q.push(s); if (!bfs()) break; fill(ptr.begin(), ptr.end(), 0); while (long long pushed = dfs(s, flow_inf)) { f += pushed; } } return f; } }; template <typename T> struct FenwickTree { vector<T> bit; FenwickTree(int sz) : bit(sz + 1) {} void update(int x, T delta) { for (int i = ++x; i < bit.size(); i += i & -i) bit[i] += delta; } T query(int x) { T ans{}; for (int i = ++x; i > 0; i -= i & -i) ans += bit[i]; return ans; } }; int main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); srand(time(nullptr)); int n; cin >> n; vector<pair<int, int>> P(n); for (int i = 0; i < n; i++) cin >> P[i].first; set<int> speeds, pos; for (int i = 0; i < n; i++) { cin >> P[i].second; speeds.insert(P[i].second); pos.insert(P[i].first); } int cnt = 0; map<int, int> mp; for (int s : speeds) mp[s] = cnt++; sort(P.begin(), P.end()); ll tot = 0, pt = 0; for (int i = 0; i < n; i++) { tot += 1LL * i * P[i].first - pt; pt += P[i].first; } const int MAXS = cnt + 10; FenwickTree<ll> fenw(MAXS); FenwickTree<int> fpos(MAXS); for (int i = 0; i < n; i++) { ll times = fpos.query(MAXS - 1) - fpos.query(mp[P[i].second]); tot -= (1LL * P[i].first * times); tot += fenw.query(MAXS - 1) - fenw.query(mp[P[i].second]); fenw.update(mp[P[i].second], P[i].first); fpos.update(mp[P[i].second], +1); } cout << tot << '\n'; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
python3
import sys input=sys.stdin.readline def getsum(BITTree,i): s = 0 while i > 0: s += BITTree[i] i -= i & (-i) return(s) def updatebit(BITTree , n , i ,v): while i <= n: BITTree[i] += v i += i & (-i) n=int(input()) x=[int(i) for i in input().split() if i!='\n'] v=[int(i) for i in input().split() if i!='\n'] for i in range(n): v[i]=[v[i],i] v.sort() pos=dict() store,prev=1,v[0][0] for i in range(n): if i>0: if prev==v[i][0]: pos[x[v[i][1]]]=store else: store+=1 pos[x[v[i][1]]]=store prev=v[i][0] else: pos[x[v[i][1]]]=store sort=sorted(pos.keys()) bit=[0]*(n+1) ind=[0]*(n+1) ans,count,diff=0,0,0 length=max(sort) total=0 for i in range(len(sort)-1,-1,-1): count=getsum(bit,pos[sort[i]]-1) diff=getsum(ind,pos[sort[i]]-1) if i<(n-1): total+=(sort[i+1]-sort[i])*(n-1-i) ans+=total-(diff-count*sort[i]) updatebit(bit,len(bit)-1,pos[sort[i]],1) updatebit(ind,len(ind)-1,pos[sort[i]],sort[i]) print(int(ans))
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mx = 2 * 1e5 + 5; const long long mod = 1e9 + 7; long long sum[mx]; long long num[mx]; void update(int pos, int value) { while (pos <= mx) { sum[pos] += value; num[pos]++; pos += (pos & -pos); } } pair<int, long long> query(int pos) { long long summ = 0; long long numm = 0; while (pos >= 1) { summ += sum[pos]; numm += num[pos]; pos -= (pos & -pos); } return {numm, summ}; } int main() { int n; cin >> n; pair<long long, long long> p[n]; map<long long, int> mp; for (int i = 0; i < n; i++) { cin >> p[i].first; } for (int i = 0; i < n; i++) { cin >> p[i].second; mp[p[i].second] = i; } int cur = 1LL; for (auto& i : mp) { i.second = cur; cur++; } for (int i = 0; i < n; i++) { p[i].second = mp[p[i].second]; } sort(p, p + n); long long ans = 0; for (int i = 0; i < n; i++) { long long myv = p[i].second; long long myx = p[i].first; pair<long long, long long> cnt = query(myv); ans += (1LL * myx * cnt.first); ans -= cnt.second; update(myv, myx); } cout << ans; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long N = 2e5 + 10; struct node { long long a; long long t; } w[N]; bool cmp(node a, node b) { return a.a < b.a; } long long c[N][2], cnt[N], n; long long lowbit(long long x) { return x & (-x); } void add(long long x, long long val) { while (x <= n) c[x][0]++, c[x][1] += val, x += lowbit(x); } long long ask(long long x, long long k) { long long res = 0; while (x) res += c[x][k], x -= lowbit(x); return res; } long long ans = 0, len = 0; struct EDGE { long long to, next; long long dis; } edge[N]; struct ha { long long pos; long long dis; friend bool operator<(ha a, ha b) { return a.dis > b.dis; } }; long long tot; long long head[N]; long long dis[N]; bool vis[N]; void Init(long long n) { for (long long i = 1; i <= n; ++i) dis[i] = 1; } void add(long long from, long long to, long long cost) { ++tot; edge[tot].to = to; edge[tot].dis = cost; edge[tot].next = head[from]; head[from] = tot; } priority_queue<ha> q; void Dijkstra(long long s) { dis[s] = 0; q.push({s, 0}); while (!q.empty()) { ha tmp = q.top(); q.pop(); long long x = tmp.pos; if (vis[x]) continue; vis[x] = 1; for (long long i = head[x]; i; i = edge[i].next) { long long y = edge[i].to; if (dis[y] > dis[x] + edge[i].dis) { dis[y] = dis[x] + edge[i].dis; if (!vis[y]) { q.push({y, dis[y]}); } } } } } void solve() { ios::sync_with_stdio(false), cin.tie(0); cin >> n; for (long long i = 1; i <= n; i++) cin >> w[i].a; for (long long i = 1; i <= n; i++) cin >> w[i].t, cnt[++len] = w[i].t; sort(w + 1, w + 1 + n, cmp); sort(cnt + 1, cnt + 1 + len); len = unique(cnt + 1, cnt + 1 + len) - cnt - 1; for (long long i = 1; i <= n; i++) { long long now = lower_bound(cnt + 1, cnt + 1 + len, w[i].t) - cnt; ans += w[i].a * ask(now, 0) - ask(now, 1); add(now, w[i].a); } cout << ans << '\n'; } signed main() { solve(); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; class STlazy { private: int n; vector<long long> node, lazy; public: STlazy(vector<long long> v) { int siz = v.size(); n = 1; while (n < siz) n *= 2; node.resize(2 * n - 1, 0); lazy.resize(2 * n - 1, 0); for (int i = 0; i < siz; i++) node[n - 1 + i] = v[i]; for (int i = n - 2; i >= 0; i--) node[i] = node[2 * i + 1] + node[2 * i + 2]; } void eval(int k, int l, int r) { if (lazy[k] == 0) return; node[k] += lazy[k]; if (r - l > 1) { lazy[2 * k + 1] += lazy[k] / 2; lazy[2 * k + 2] += lazy[k] / 2; } lazy[k] = 0; } void add(int a, int b, long long x, int k = 0, int l = 0, int r = -1) { if (r < 0) r = n; eval(k, l, r); if (r <= a || b <= l) return; if (a <= l && r <= b) { lazy[k] += (r - l) * x; eval(k, l, r); return; } add(a, b, x, 2 * k + 1, l, (l + r) / 2); add(a, b, x, 2 * k + 2, (l + r) / 2, r); node[k] = node[2 * k + 1] + node[2 * k + 2]; } long long query(int a, int b, int k = 0, int l = 0, int r = -1) { if (r < 0) r = n; if (r <= a || b <= l) return 0; eval(k, l, r); if (a <= l && r <= b) return node[k]; long long lx = query(a, b, 2 * k + 1, l, (l + r) / 2); long long rx = query(a, b, 2 * k + 2, (l + r) / 2, r); return lx + rx; } }; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<pair<int, int> > vp(n); for (int i = 0; i < n; i++) { cin >> vp[i].first; } for (int i = 0; i < n; i++) { cin >> vp[i].second; } sort(vp.begin(), vp.end()); vector<long long> vel; for (pair<int, int> &p : vp) vel.push_back(p.second); sort(vel.begin(), vel.end()); vel.erase(unique(vel.begin(), vel.end()), vel.end()); auto f = [&](long long x) -> int { return lower_bound(vel.begin(), vel.end(), x) - vel.begin(); }; int siz = vel.size(); vector<long long> tmp(siz, 0), cnt(siz, 0); for (pair<int, int> &p : vp) { int pos = f(p.second); tmp[pos] += p.first; cnt[pos]++; } STlazy A(tmp), B(cnt); long long ans = 0; for (int i = 0; i < n; i++) { int v = vp[i].second; int pos = f(v); A.add(pos, pos + 1, -vp[i].first); B.add(pos, pos + 1, -1); if (v == 0) { ans += A.query(pos, siz + 1) - B.query(pos, siz + 1) * vp[i].first; } else if (v > 0) { ans += A.query(pos, siz + 1) - B.query(pos, siz + 1) * vp[i].first; } else if (v < 0) { ans += A.query(pos, siz + 1) - B.query(pos, siz + 1) * vp[i].first; } } cout << ans << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long maxn = 200005; map<long long, long long> g; map<long long, long long> invG; long long tree[8][maxn]; long long sum(long long k, long long t) { long long res = 0; for (long long i = k; i >= 1; i -= i & -i) res += tree[t][i]; return res; } void add(long long k, long long v, long long t) { for (long long i = k; i < maxn; i += i & -i) tree[t][i] += v; } signed main() { ios_base::sync_with_stdio(0); cin.tie(0); for (long long i = 0; i < maxn; i++) for (long long j = 0; j < 8; j++) tree[j][i] = 0; long long n; cin >> n; priority_queue<pair<long long, pair<long long, long long>>> pq; vector<long long> xs; vector<long long> vs; set<long long> distinct; for (long long i = 0; i < n; i++) { long long x; cin >> x; xs.push_back(x); distinct.emplace(x); } for (long long i = 0; i < n; i++) { long long v; cin >> v; vs.push_back(v); } vector<long long> vec(distinct.begin(), distinct.end()); for (long long i = 0; i < n; i++) { g[vec[i]] = i + 1; invG[i + 1] = vec[i]; } for (long long i = 0; i < n; i++) { long long dir = 0; if (vs[i] < 0) dir = 1; pq.emplace(abs(vs[i]), make_pair(g[xs[i]], dir)); } long long res = 0; while (!pq.empty()) { pair<long long, pair<long long, long long>> t = pq.top(); queue<pair<long long, long long>> q; queue<pair<long long, long long>> q2; while (!pq.empty() && pq.top().first == t.first) { pair<long long, pair<long long, long long>> p = pq.top(); pq.pop(); q.emplace(p.second); } while (!q.empty()) { pair<long long, long long> p = q.front(); q.pop(); q2.emplace(p); long long x = p.first; long long dir = p.second; long long sumRight = sum(maxn - 1, 0) - sum(x, 0); sumRight -= invG[x] * (sum(maxn - 1, 0 + 2) - sum(x, 0 + 2)); long long sumLeft = sum(x - 1, 1); sumLeft -= invG[x] * sum(x - 1, 1 + 2); res += abs(sumRight) + abs(sumLeft); } vector<pair<long long, long long>> same; while (!q2.empty()) { pair<long long, long long> p = q2.front(); q2.pop(); long long x = p.first; long long dir = p.second; add(x, invG[x], dir); add(x, 1, dir + 2); same.push_back(make_pair(x, dir)); add(x, invG[x], dir + 4); add(x, 1, dir + 4 + 2); } long long cnt = 0; for (pair<long long, long long> p : same) { long long x = p.first; long long dir = p.second; if (dir == 0) { long long sumRight = sum(maxn - 1, 4) - sum(x, 4); sumRight -= invG[x] * (sum(maxn - 1, 4 + 2) - sum(x, 4 + 2)); long long sumLeft = sum(x - 1, 5); sumLeft -= invG[x] * sum(x - 1, 5 + 2); long long extra = sum(x - 1, 4); extra -= invG[x] * sum(x - 1, 4 + 2); cnt += abs(sumRight) + abs(sumLeft) + abs(extra); } else { long long sumRight = sum(maxn - 1, 4) - sum(x, 4); sumRight -= invG[x] * (sum(maxn - 1, 4 + 2) - sum(x, 4 + 2)); long long sumLeft = sum(x - 1, 5); sumLeft -= invG[x] * sum(x - 1, 5 + 2); long long extra = sum(maxn - 1, 5) - sum(x, 5); extra -= invG[x] * (sum(maxn - 1, 5 + 2) - sum(x, 5 + 2)); cnt += abs(sumRight) + abs(sumLeft) + abs(extra); } } cnt /= 2; res += cnt; for (pair<long long, long long> p : same) { long long x = p.first; long long dir = p.second; add(x, -invG[x], dir + 4); add(x, -1, dir + 4 + 2); } } cout << res << '\n'; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 22, inf = 1e9 + 7; int n; long long s[4 * N], cursum; vector<pair<int, int> > t[4 * N]; vector<long long> p[4 * N]; pair<int, int> a[N]; void build(int v, int tl, int tr) { if (tl == tr) { s[v] = a[tl].first; t[v].push_back({a[tl].second, a[tl].first}); p[v].push_back(a[tl].first); return; } int tm = (tl + tr) / 2; build(v * 2, tl, tm); build(v * 2 + 1, tm + 1, tr); s[v] = s[v * 2] + s[v * 2 + 1]; t[v].resize(tr - tl + 1); p[v].resize(tr - tl + 1); merge(t[v * 2].begin(), t[v * 2].end(), t[v * 2 + 1].begin(), t[v * 2 + 1].end(), t[v].begin()); for (int i = 0; i < t[v].size(); i++) { if (i == 0) p[v][i] = t[v][i].second; else p[v][i] = p[v][i - 1] + t[v][i].second; } } long long sum(int v, int tl, int tr, int l, int r) { if (l <= tl && tr <= r) { return s[v]; } if (tl > r || tr < l) return 0LL; int tm = (tl + tr) / 2; return sum(v * 2, tl, tm, l, r) + sum(v * 2 + 1, tm + 1, tr, l, r); } int get(int v, int tl, int tr, int l, int r, int val) { if (l <= tl && tr <= r) { int id = lower_bound(t[v].begin(), t[v].end(), make_pair(val, -inf)) - t[v].begin(); if (id != 0) cursum += p[v][id - 1]; return id; } if (tl > r || tr < l) { return 0; } int tm = (tl + tr) / 2; return get(v * 2, tl, tm, l, r, val) + get(v * 2 + 1, tm + 1, tr, l, r, val); } signed main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n; for (int i = 1; i <= n; i++) { cin >> a[i].first; } for (int i = 1; i <= n; i++) { cin >> a[i].second; } sort(a + 1, a + n + 1); build(1, 1, n); long long ans = 0; for (int i = 1; i <= n; i++) { cursum = 0; int cnt = get(1, 1, n, i + 1, n, a[i].second); long long cur = 0; cur += sum(1, 1, n, i + 1, n); cur -= cursum; cur -= a[i].first * 1LL * (n - i - cnt); ans += cur; } cout << endl; cout << ans; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
//package codeforces.round624div3; import java.io.*; import java.util.*; public class MovingPoints { private static int UNVISITED = 0; private static int VISITING = -1; private static int VISITED = 1; public static void main(String[] args) { // try { // FastScanner in = new FastScanner(new FileInputStream("src/input.in")); // PrintWriter out = new PrintWriter(new FileOutputStream("src/output.out")); FastScanner in = new FastScanner(System.in); PrintWriter out = new PrintWriter(System.out); solve(1, in, out); // } catch (IOException e) { // e.printStackTrace(); // } } private static void solve(int q, FastScanner in, PrintWriter out) { for (int qq = 0; qq < q; qq++) { int n = in.nextInt(); int[] x = new int[n]; for(int i = 0; i < n; i++) { x[i] = in.nextInt(); } Integer[] v = new Integer[n]; for(int i = 0;i < n; i++) { v[i] = in.nextInt(); } v = ArrayUtils.compress(v); BinaryIndexedTree cntBit = new BinaryIndexedTree(n); BinaryIndexedTree sumBit = new BinaryIndexedTree(n); int[][] p = new int[n][2]; for(int i = 0; i < n; i++) { p[i][0] = x[i]; p[i][1] = v[i]; } Arrays.sort(p, Comparator.comparingInt(a -> a[0])); long sum = 0; for(int i = 0; i < n; i++) { long prevCnt = cntBit.rangeSum(p[i][1]); long prevSum = sumBit.rangeSum(p[i][1]); sum += (prevCnt * p[i][0] - prevSum); cntBit.adjust(p[i][1], 1); sumBit.adjust(p[i][1], p[i][0]); } out.println(sum); } out.close(); } private static class ArrayUtils { /* Compress all values of a to its rank in [1, a.length] */ private static Integer[] compress(Integer[] a) { int n = a.length; Integer[] ret = new Integer[n]; Integer[] copy = Arrays.copyOf(a, n); Arrays.sort(copy); int rank = 1; Map<Integer, Integer> map = new HashMap<>(); for(int v : copy) { if(!map.containsKey(v)) { map.put(v, rank); rank++; } } for(int i = 0; i < n; i++) { ret[i] = map.get(a[i]); } return ret; } } private static class BinaryIndexedTree { private long[] ft; private BinaryIndexedTree(int n) { ft = new long[n + 1]; } private long rangeSum(int l, int r) { return rangeSum(r) - (l == 1 ? 0 : rangeSum(l - 1)); } private long rangeSum(int r) { long sum = 0; for(; r > 0; r -= leastSignificantOne(r)) { sum += ft[r]; } return sum; } private void adjust(int k, int diff) { for(; k < ft.length; k += leastSignificantOne(k)) { ft[k] += diff; } } private int leastSignificantOne(int i) { return i & (-i); } } private static long modularAdd(long a, long b, int mod) { long sum = a + b; if (sum >= mod) { sum -= mod; } return sum; } private static long modularSubtract(long a, long b, int mod) { long diff = a - b; if (diff < 0) { diff += mod; } return diff; } private static Stack<Integer> topologicalSort(Set<Integer>[] g) { Stack<Integer> stack = new Stack<>(); int[] state = new int[g.length]; for (int node = 0; node < g.length; node++) { if (!topoSortHelper(g, stack, state, node)) { return null; } } return stack; } private static boolean topoSortHelper(Set<Integer>[] g, Stack<Integer> stack, int[] state, int currNode) { if (state[currNode] == VISITED) { return true; } else if (state[currNode] == VISITING) { return false; } state[currNode] = VISITING; for (int neighbor : g[currNode]) { if (!topoSortHelper(g, stack, state, neighbor)) { return false; } } state[currNode] = VISITED; stack.push(currNode); return true; } static class FastScanner { BufferedReader br; StringTokenizer st; FastScanner(InputStream stream) { try { br = new BufferedReader(new InputStreamReader(stream)); } catch (Exception e) { e.printStackTrace(); } } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 2e5 + 10; long long c1[maxn], c2[maxn]; void add(long long *c, int x, int y) { for (; x < maxn; x += x & -x) c[x] += y; } long long ask(long long *c, int x) { long long ret = 0; for (; x > 0; x -= x & -x) ret += c[x]; return ret; } struct node { int x, v; } p[maxn]; int b[maxn]; bool cmp(node a, node b) { if (a.x == b.x) return a.v < b.v; return a.x < b.x; } int main() { int n; cin >> n; int m = 0; for (int i = 0; i < n; i++) scanf("%d", &p[i].x); for (int i = 0; i < n; i++) { scanf("%d", &p[i].v); b[m++] = p[i].v; } sort(b, b + m); m = unique(b, b + m) - b; for (int i = 0; i < n; i++) { p[i].v = lower_bound(b, b + m, p[i].v) - b + 1; } sort(p, p + n, cmp); long long Ans = 0; for (int i = 0; i < n; i++) { long long cnt = ask(c1, p[i].v), sum = ask(c2, p[i].v); Ans += cnt * p[i].x - sum; add(c1, p[i].v, 1); add(c2, p[i].v, p[i].x); } cout << Ans << endl; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 10; int n, i; pair<int, int> dot[N]; long long mergeMoving(pair<int, int> arr[], pair<int, int> temp[], int left, int right); long long merge(pair<int, int> arr[], pair<int, int> temp[], int left, int mid, int right); long long movingdot(pair<int, int> arr[], int array_size) { pair<int, int> temp[array_size]; return mergeMoving(arr, temp, 0, array_size - 1); } long long mergeMoving(pair<int, int> arr[], pair<int, int> temp[], int left, int right) { int mid; long long dis = 0LL; mid = right + left >> 1; if (left != mid) dis += mergeMoving(arr, temp, left, mid); if (right != mid + 1) dis += mergeMoving(arr, temp, mid + 1, right); dis += merge(arr, temp, left, mid + 1, right); return dis; } long long merge(pair<int, int> arr[], pair<int, int> temp[], int left, int mid, int right) { int i = left; int j = mid; int k = left; long long dis = 0; long long quick[right + 1]; for (i = left; i <= right; i++) { dis += arr[i].first; quick[i] = dis; } dis = 0; i = left; while ((i < mid) && (j < right + 1)) { if (arr[i].second <= arr[j].second) { dis = dis + quick[right] - quick[j - 1] - 1LL * (right - j + 1) * arr[i].first; temp[k++] = arr[i++]; } else { temp[k++] = arr[j++]; } } while (i <= mid - 1) temp[k++] = arr[i++]; while (j <= right) temp[k++] = arr[j++]; for (i = left; i <= right; i++) arr[i] = temp[i]; return dis; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cin >> n; for (i = 0; i < n; i++) cin >> dot[i].first; for (i = 0; i < n; i++) cin >> dot[i].second; sort(dot, dot + n); cout << movingdot(dot, n); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long N = 2e5 + 5, MOD = 1e9 + 7; pair<long long, long long> a[N]; vector<pair<long long, long long> > tree[4 * N]; void build(long long node, long long st, long long en) { if (st == en) { tree[node].push_back({a[st].first, a[st].first}); return; } long long mid = (st + en) / 2; build(2 * node, st, mid); build(2 * node + 1, mid + 1, en); long long x = tree[2 * node].size(); long long y = tree[2 * node + 1].size(); long long i = 0, j = 0; while (i < x && j < y) { if (tree[2 * node][i].first < tree[2 * node + 1][j].first) { tree[node].push_back(tree[2 * node][i]); i++; } else { tree[node].push_back(tree[2 * node + 1][j]); j++; } } while (i < x) { tree[node].push_back(tree[2 * node][i]); i++; } while (j < y) { tree[node].push_back(tree[2 * node + 1][j]); j++; } long long z = x + y; tree[node][z - 1].second = tree[node][z - 1].first; for (long long k = z - 2; k >= 0; k--) { tree[node][k].second = tree[node][k + 1].second + tree[node][k].first; } } pair<long long, long long> query(long long node, long long st, long long en, long long l, long long r, long long val) { if (l > en || r < st) return {0, 0}; if (l <= st && en <= r) { long long lo = 0, hi = tree[node].size() - 1, idx = MOD; while (lo <= hi) { long long m = (lo + hi) / 2; if (tree[node][m].first > val) { idx = min(idx, m); hi = m - 1; } else lo = m + 1; } if (idx == MOD) return {0, 0}; else return {tree[node][idx].second, tree[node].size() - idx}; } long long mid = (st + en) / 2; long long ans = 0; pair<long long, long long> p1 = query(2 * node, st, mid, l, r, val); pair<long long, long long> p2 = query(2 * node + 1, mid + 1, en, l, r, val); pair<long long, long long> p; p.first = p1.first + p2.first; p.second = p1.second + p2.second; return p; } bool compare(pair<long long, long long> p1, pair<long long, long long> p2) { if (p1.second == p2.second) return p1.first > p2.first; return p1.second > p2.second; } void solve() { long long n; cin >> n; for (long long i = 0; i < n; i++) cin >> a[i].first; for (long long i = 0; i < n; i++) cin >> a[i].second; sort(a, a + n, compare); build(1, 0, n - 1); long long ans = 0; for (long long i = 1; i < n; i++) { pair<long long, long long> p = query(1, 0, n - 1, 0, i - 1, a[i].first); long long temp = abs(p.first - p.second * a[i].first); ans += temp; } cout << ans << "\n"; } signed main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); solve(); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename Monoid> struct SegmentTree { typedef function<Monoid(Monoid, Monoid)> F; int n; F f; Monoid id; vector<Monoid> dat; SegmentTree(int n_, F f, Monoid id) : f(f), id(id) { init(n_); } void init(int n_) { n = 1; while (n < n_) n <<= 1; dat.assign(n << 1, id); } void build(const vector<Monoid> &v) { for (int i = 0; i < v.size(); ++i) dat[i + n] = v[i]; for (int i = n - 1; i; --i) dat[i] = f(dat[i << 1 | 0], dat[i << 1 | 1]); } void update(int k, Monoid x) { dat[k += n] = x; while (k >>= 1) dat[k] = f(dat[k << 1 | 0], dat[k << 1 | 1]); } Monoid query(int a, int b) { if (a >= b) return id; Monoid vl = id, vr = id; for (int l = a + n, r = b + n; l < r; l >>= 1, r >>= 1) { if (l & 1) vl = f(vl, dat[l++]); if (r & 1) vr = f(dat[--r], vr); } return f(vl, vr); } Monoid operator[](int i) { return dat[i + n]; } }; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<long long> x(n), v(n); for (int i = 0; i < n; ++i) cin >> x[i]; for (int i = 0; i < n; ++i) cin >> v[i]; vector<vector<pair<long long, long long>>> ps(2); for (int i = 0; i < n; ++i) { if (0 <= v[i]) ps[0].emplace_back(v[i], x[i]); else ps[1].emplace_back(-v[i], -x[i]); } vector<long long> vs; vector<pair<long long, int>> xs; auto f = [](pair<long long, int> a, pair<long long, int> b) { return pair<long long, int>{a.first + b.first, a.second + b.second}; }; SegmentTree<pair<long long, int>> seg(n, f, {0, 0}); vector<pair<long long, int>> initializer(n, {0, 0}); long long ans = 0; for (int i = 1; i >= 0; --i) { sort(ps[i].begin(), ps[i].end()); int m = ps[i].size(); vs.clear(); xs.clear(); for (int j = 0; j < m; ++j) { vs.emplace_back(ps[i][j].first); xs.emplace_back(ps[i][j].second, j); } if (!i) seg.build(initializer); sort(xs.begin(), xs.end()); for (int j = 0; j < m; ++j) seg.update(xs[j].second, {xs[j].first, 1}); for (int j = 0; j < m; ++j) { int s = lower_bound(vs.begin(), vs.end(), ps[i][xs[j].second].first) - vs.begin(); auto p = seg.query(s, m); ans += p.first - xs[j].first * p.second; seg.update(xs[j].second, {0, 0}); } } int t = ps[0].size(); vector<long long> sum(t + 1, 0); for (int i = 0; i < t; ++i) { sum[i + 1] = sum[i] + xs[i].first; vs[i] = xs[i].first; } for (int i = 0; i < ps[1].size(); ++i) { int b = upper_bound(vs.begin(), vs.end(), -ps[1][i].second) - vs.begin(); ans += sum[t] - sum[b] + ps[1][i].second * (t - b); } cout << ans << '\n'; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n, i; cin >> n; pair<long long, long long> p[n]; long long a[n]; for (i = 0; i < n; i++) { cin >> a[i]; p[i].second = a[i]; } for (i = 0; i < n; i++) cin >> p[i].first; sort(a, a + n); sort(p, p + n); map<long long, long long> mp; long long ans = 0; for (i = 0; i < n; i++) { ans += a[i] * (2 * i + 1 - n); mp[a[i]] = i; } for (i = 0; i < n; i++) { ans -= p[i].second * (mp[p[i].second] - i); } cout << ans << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize(2) #pragma GCC optimize(3) using namespace std; inline int read() { int x = 0, neg = 1; char op = getchar(); while (!isdigit(op)) { if (op == '-') neg = -1; op = getchar(); } while (isdigit(op)) { x = 10 * x + op - '0'; op = getchar(); } return neg * x; } inline void print(int x) { if (x < 0) { putchar('-'); x = -x; } if (x >= 10) print(x / 10); putchar(x % 10 + '0'); } const int N = 200005; struct ele { int x; long long v; friend bool operator<(const ele &a, const ele &b) { return a.x < b.x; } } a[N]; int b[N], tot; int n; struct Bitcount { int c[N]; void add(int x, int v) { while (x < N) { c[x] += v; x += (x & -x); } } int qry(int x) { int ret = 0; if (x < 0) return 0; while (x > 0) { ret += c[x]; x -= (x & -x); } return ret; } int query(int l, int r) { return qry(r) - qry(l - 1); } } bitc; struct Bitsum { long long c[N]; void add(int x, long long v) { while (x < N) { c[x] += v; x += (x & -x); } } long long qry(int x) { long long ret = 0; if (x < 0) return 0; while (x > 0) { ret += c[x]; x -= (x & -x); } return ret; } long long query(int l, int r) { return qry(r) - qry(l - 1); } } bits; int main() { n = read(); for (register int i = 1; i <= n; i++) { a[i].x = read(); } for (register int i = 1; i <= n; i++) { a[i].v = read(); b[++tot] = a[i].v; } sort(b + 1, b + tot + 1); tot = unique(b + 1, b + tot + 1) - (b + 1); sort(a + 1, a + n + 1); for (register int i = 1; i <= n; i++) { a[i].v = lower_bound(b + 1, b + tot + 1, a[i].v) - b; } long long ans = 0ll; for (register int i = n; i >= 1; i--) { long long possum = bits.query(a[i].v, N - 1); long long posnum = bitc.query(a[i].v, N - 1); ans += possum - 1ll * a[i].x * posnum; bits.add(a[i].v, a[i].x); bitc.add(a[i].v, 1); } printf("%lld\n", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.TreeMap; import java.util.InputMismatchException; import java.io.IOException; import java.util.Comparator; import java.util.TreeSet; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author KharYusuf */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastReader in = new FastReader(inputStream); PrintWriter out = new PrintWriter(outputStream); FMovingPoints solver = new FMovingPoints(); solver.solve(1, in, out); out.close(); } static class FMovingPoints { public void solve(int testNumber, FastReader s, PrintWriter w) { int n = s.nextInt(), MX = (int) 1e8; int[][] x = new int[n][2]; for (int i = 0; i < n; i++) x[i][0] = s.nextInt(); TreeSet<Integer> p = new TreeSet<>(), ne = new TreeSet<>(); TreeMap<Integer, Integer> po = new TreeMap<>(), nee = new TreeMap<>(); for (int i = 0; i < n; i++) { x[i][1] = s.nextInt(); if (x[i][1] > 0) p.add(x[i][1]); else if (x[i][1] < 0) ne.add(x[i][1] + MX); } int cnt = 0; for (int i : p) po.put(i, cnt++); cnt = 0; for (int i : ne) nee.put(i, cnt++); func.sortbyColumn(x, 0); long ans = 0, cntneg = 0, cntz = 0, cneg = 0, cz = 0; bit pos = new bit(p.size()), neg = new bit(nee.size()); bit poscnt = new bit(p.size()), negcnt = new bit(nee.size()); for (int i = 0; i < n; i++) { if (x[i][1] > 0) { ans += x[i][0] * cntneg - cneg; ans += x[i][0] * cntz - cz; int cur = po.get(x[i][1]); ans += poscnt.query(cur) * x[i][0] - pos.query(cur); poscnt.modify(cur, 1); pos.modify(cur, x[i][0]); } else if (x[i][1] < 0) { cntneg++; cneg += x[i][0]; int cur = nee.get(MX + x[i][1]); ans += negcnt.query(cur) * x[i][0] - neg.query(cur); negcnt.modify(cur, 1); neg.modify(cur, x[i][0]); } else { cntz++; cz += x[i][0]; ans += x[i][0] * cntneg - cneg; ans += x[i][0] * cntz - cz; } } w.println(ans); } public class bit { public int n; public long[] t; public bit(int n) { t = new long[n]; this.n = n; } public void modify(int ind, long val) { for (; ind < n; ind = ind | (++ind)) t[ind] += val; } public long query(int ind) { long sum = 0; for (; ind >= 0; ind = (ind & (++ind)) - 1) sum += t[ind]; return sum; } } } static class func { public static void sortbyColumn(int[][] arr, final int col) { Arrays.sort(arr, new Comparator<int[]>() { public int compare(final int[] entry1, final int[] entry2) { if (entry1[col] > entry2[col]) return 1; if (entry1[col] < entry2[col]) return -1; return 0; } }); } } static class bit { public int n; public int[] t; public bit(int n) { t = new int[n]; this.n = n; } public bit(int[] a, int n) { t = new int[n]; this.n = n; for (int i = 0; i < n; i++) { modify(i, a[i]); } } public void modify(int ind, int val) { for (; ind < n; ind = ind | (++ind)) t[ind] += val; } public int query(int ind) { int sum = 0; for (; ind >= 0; ind = (ind & (++ind)) - 1) sum += t[ind]; return sum; } } static class FastReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private FastReader.SpaceCharFilter filter; public FastReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.*; public class Main { static class comp implements Comparator<long []> { public int compare(long a1[],long a2[]) { if(a1[1]!=a2[1]) { if(a1[1]>a2[1]) return 1; else return -1; } if(a1[0]>a2[0]) return 1; else return -1; } } public static void update(long val,int in,long b[],int i,int cnt[]) { for(int j=i;j<in;j+=(j&(-j))) { b[j]+=val; cnt[j]++; } } public static long query(int i,long b[],long val,int cnt[]) { long sum=0; for(int j=i-1;j>0;j-=(j&(-j))) sum=sum+val*cnt[j]-b[j]; return sum; } public static void main(String args[]) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); long arr[][]=new long[n][2]; TreeSet<Long> ts=new TreeSet<>(); for(int i=0;i<n;i++) { arr[i][0]=sc.nextLong(); ts.add(arr[i][0]); } TreeMap<Long,Integer> ind=new TreeMap<>(); long b[]=new long[ts.size()+1]; int cnt[]=new int[ts.size()+1]; int in=1; while(!ts.isEmpty()) { long node=ts.pollFirst(); ind.put(node,in); in++; } for(int i=0;i<n;i++) arr[i][1]=sc.nextLong(); Arrays.sort(arr,new comp()); long ans=0; for(int i=0;i<n;i++) { ans=ans+query(ind.get(arr[i][0]),b,arr[i][0],cnt); update(arr[i][0],in,b,ind.get(arr[i][0]),cnt); } System.out.println(ans); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long maxn = 6e6; const long long inf = 1e9; const long long maxv = 2e8 + 100; void init() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); } struct point { long long x, v; point() {} }; vector<point> foo; unordered_map<long long, pair<long long, long long>> tree(maxn); const long long toadd = 1e8 + 1; inline long long f(long long i) { return i & (i + 1); } void inc(long long st) { long long ind = foo[st].v + toadd; while (ind < maxv) { tree[ind].first++; tree[ind].second += foo[st].x; ind |= (ind + 1); } } pair<long long, long long> operator+(const pair<long long, long long> &a, const pair<long long, long long> &b) { return {a.first + b.first, a.second + b.second}; } pair<long long, long long> prefsum(long long ind) { pair<long long, long long> res = {0, 0}; while (ind >= 0) { res = res + tree[ind]; ind = f(ind) - 1; } return res; } int main() { init(); tree.rehash(maxn); long long n; cin >> n; foo.resize(n); for (long long i = 0; i < n; i++) { cin >> foo[i].x; } for (long long i = 0; i < n; i++) { cin >> foo[i].v; } sort(foo.begin(), foo.end(), [&](point &p1, point &p2) { return p1.x < p2.x; }); long long ans = 0; for (long long i = 0; i < n; i++) { auto cur = prefsum(foo[i].v + toadd); ans += (cur.first * foo[i].x - cur.second); inc(i); } cout << ans << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
python3
# BIT def add(bit, x, v): while x < len(bit): bit[x] += v x += x & (-x) def query(bit, x): ans = 0 while x > 0: ans += bit[x] x -= x & (-x) return ans def relabel(arr): srt = sorted(set(arr)) mp = {v:k for k, v in enumerate(srt, 1)} arr = [mp[a] for a in arr] return arr # main n = int(input()) x = list(map(int, input().split())) v = relabel(list(map(int, input().split()))) arr = sorted(list(zip(x, v))); ans = 0 bitSum = [0]*(n+1) bitCnt = [0]*(n+1) for x, v in arr: ans += query(bitCnt, v)*x - query(bitSum, v) add(bitSum, v, x) add(bitCnt, v, 1) print(ans)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 1000007, inf = 0x3f3f3f3f; int x[N], v[N]; pair<long long, int> seg[N + N]; pair<long long, int> soma(pair<long long, int> x, pair<long long, int> y) { return pair<long long, int>(x.first + y.first, x.second + y.second); } pair<long long, int> query(int l, int r) { pair<long long, int> tot = pair<long long, int>(0ll, 0); for (l += N, r += N; l < r; l >>= 1, r >>= 1) { if (l & 1) tot = soma(tot, seg[l++]); if (r & 1) tot = soma(tot, seg[--r]); } return tot; } void update(int p, int val) { p += N; for (seg[p] = pair<long long, int>(seg[p].first + val, seg[p].second + 1); p > 1; p >>= 1) { seg[p >> 1] = soma(seg[p], seg[p ^ 1]); } } int main() { ios::sync_with_stdio(0); cin.tie(0); int n; cin >> n; for (int i = 0; i < n; ++i) { cin >> x[i]; } vector<int> vec; for (int i = 0; i < n; ++i) { cin >> v[i]; vec.push_back(v[i]); } sort(vec.begin(), vec.end()); vec.erase(unique(vec.begin(), vec.end()), vec.end()); vector<int> id(n); iota(id.begin(), id.end(), 0); sort(id.begin(), id.end(), [](int i, int j) { return x[i] < x[j]; }); long long ans = 0; for (int i : id) { int j = lower_bound(vec.begin(), vec.end(), v[i]) - vec.begin(); long long sx; int cnt; tie(sx, cnt) = query(0, j + 1); ans += (long long)x[i] * cnt - sx; update(j, x[i]); } memset(seg, 0, sizeof seg); reverse(id.begin(), id.end()); for (int i : id) { int j = lower_bound(vec.begin(), vec.end(), v[i]) - vec.begin(); long long sx; int cnt; tie(sx, cnt) = query(j, vec.size()); ans += sx - (long long)x[i] * cnt; update(j, x[i]); } cout << ans / 2 << endl; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long int tree[800005], sree[800005]; struct sc { long long int a, b; }; bool comp(sc x, sc y) { if (x.a < y.a) return 1; return 0; } void update(long long int node, long long int s, long long int e, long long int ind, long long int val) { if (s == e) { tree[node] += val; sree[node] += 1; } else { long long int m = (s + e) / 2; if (s <= ind && ind <= m) update(2 * node, s, m, ind, val); else update(2 * node + 1, m + 1, e, ind, val); tree[node] = tree[2 * node] + tree[2 * node + 1]; sree[node] = sree[2 * node] + sree[2 * node + 1]; } } long long int q_sum(long long int node, long long int s, long long int e, long long int l, long long int r) { if (r < s || e < l) return 0; if (l <= s && e <= r) return tree[node]; long long int m = (s + e) / 2; long long int ans1 = q_sum(2 * node, s, m, l, r); long long int ans2 = q_sum(2 * node + 1, m + 1, e, l, r); long long int ans = ans1 + ans2; return ans; } long long int q_cnt(long long int node, long long int s, long long int e, long long int l, long long int r) { if (r < s || e < l) return 0; if (l <= s && e <= r) return sree[node]; long long int m = (s + e) / 2; long long int ans1 = q_cnt(2 * node, s, m, l, r); long long int ans2 = q_cnt(2 * node + 1, m + 1, e, l, r); long long int ans = ans1 + ans2; return ans; } int main() { long long int n, i, j, ans = 0; cin >> n; sc e[n + 1]; long long int c[n + 1]; for (i = 1; i <= n; ++i) { cin >> e[i].a; } for (i = 1; i <= n; ++i) { cin >> e[i].b; c[i] = e[i].b; } sort(e + 1, e + n + 1, comp); sort(c + 1, c + n + 1); long long int l = 1; map<long long int, long long int> mp; for (i = 1; i <= n; ++i) if (mp.find(c[i]) == mp.end()) mp[c[i]] = l++; for (i = n; i >= 1; --i) { update(1, 1, n, mp[e[i].b], e[i].a); ans = ans + (q_sum(1, 1, n, mp[e[i].b], l) - (q_cnt(1, 1, n, mp[e[i].b], l) * e[i].a)); } cout << ans << "\n"; return 0; }