Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
python3
class SegmentTree(): def __init__(self,N,func,initialRes=0): self.f=func self.N=N self.tree=[0 for _ in range(4*self.N)] self.initialRes=initialRes # for i in range(self.N): # self.tree[self.N+i]=arr[i] # for i in range(self.N-1,0,-1): # self.tree[i]=self.f(self.tree[i<<1],self.tree[i<<1|1]) def updateTreeNode(self,idx,value): #update value at arr[idx] self.tree[idx+self.N]=value idx+=self.N i=idx while i>1: self.tree[i>>1]=self.f(self.tree[i],self.tree[i^1]) i>>=1 def query(self,l,r): #get sum (or whatever function) on interval [l,r] inclusive r+=1 res=self.initialRes l+=self.N r+=self.N while l<r: if l&1: res=self.f(res,self.tree[l]) l+=1 if r&1: r-=1 res=self.f(res,self.tree[r]) l>>=1 r>>=1 return res def getMaxSegTree(arr): return SegmentTree(arr,lambda a,b:max(a,b),initialRes=-float('inf')) def getMinSegTree(arr): return SegmentTree(arr,lambda a,b:min(a,b),initialRes=float('inf')) def getSumSegTree(arr): return SegmentTree(arr,lambda a,b:a+b,initialRes=0) def main(): n=int(input()) xes=readIntArr() ves=readIntArr() #perform coordinate compression on xes. Compressed values shall be the indexes of segment tree xes2=list(sorted(xes)) #xes2[compressed]=x xTox2Map=dict() for i,x in enumerate(xes2): xTox2Map[x]=i #xTox2Map[x]=i arr=[] #[original x, compressed x, v] for i in range(n): arr.append([xes[i],xTox2Map[xes[i]],ves[i]]) arr.sort(key=lambda x:(x[2],x[0])) #sort by v asc, then position asc st=getSumSegTree(n) #for sum of xes stCnts=getSumSegTree(n) #for counts # print(arr) ans=0 for originalX,compressedX,v in arr: smallerSums=st.query(0,compressedX) smallerCounts=stCnts.query(0,compressedX) ans+=originalX*smallerCounts-smallerSums st.updateTreeNode(compressedX,originalX) #update the tree stCnts.updateTreeNode(compressedX,1) # print(ans) print(ans) return import sys input=sys.stdin.buffer.readline #FOR READING PURE INTEGER INPUTS (space separation ok) # import sys # input=lambda: sys.stdin.readline().rstrip("\r\n") #FOR READING STRING/TEXT INPUTS. def oneLineArrayPrint(arr): print(' '.join([str(x) for x in arr])) def multiLineArrayPrint(arr): print('\n'.join([str(x) for x in arr])) def multiLineArrayOfArraysPrint(arr): print('\n'.join([' '.join([str(x) for x in y]) for y in arr])) def readIntArr(): return [int(x) for x in input().split()] # def readFloatArr(): # return [float(x) for x in input().split()] inf=float('inf') MOD=10**9+7 main()
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 2e5 + 10; int n, tot; long long ans, ans1, ans2; struct dot { long long x, v, nv; } a[maxn]; struct node { long long cnt, d; } T[maxn * 4]; bool cmp1(dot x, dot y) { return x.v < y.v; } bool cmp2(dot x, dot y) { return x.x < y.x; } void pushup(int x) { T[x].cnt = T[(x << 1)].cnt + T[(x << 1 | 1)].cnt; T[x].d = T[(x << 1)].d + T[(x << 1 | 1)].d; } void insert(int x, int l, int r, int pos, int p) { if (l == r) { T[x].cnt++; T[x].d += a[p].x; return; } int mid = (l + r) >> 1; if (pos <= mid) insert((x << 1), l, mid, pos, p); else insert((x << 1 | 1), mid + 1, r, pos, p); pushup(x); } void query(int x, int l, int r, int sj, int tj) { if (sj <= l && r <= tj) { ans1 += T[x].cnt; ans2 += T[x].d; return; } int mid = (l + r) >> 1; if (sj <= mid) query((x << 1), l, mid, sj, tj); if (mid + 1 <= tj) query((x << 1 | 1), mid + 1, r, sj, tj); } int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%lld", &a[i].x); for (int i = 1; i <= n; i++) scanf("%lld", &a[i].v); sort(a + 1, a + n + 1, cmp1); tot = 0; a[1].nv = ++tot; for (int i = 2; i <= n; i++) { if (a[i].v == a[i - 1].v) a[i].nv = tot; else a[i].nv = ++tot; } sort(a + 1, a + n + 1, cmp2); ans = 0; for (int i = 1; i <= n; i++) { ans1 = ans2 = 0; query(1, 1, tot, 1, a[i].nv); ans += ans1 * a[i].x - ans2; insert(1, 1, tot, a[i].nv, i); } printf("%lld", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> template <class C> inline void log_c(const C& c) {} template <class C> inline int sz(const C& c) { return static_cast<int>(c.size()); } using namespace std; using pii = pair<int, int>; using num = int64_t; using pll = pair<num, num>; const std::string eol = "\n"; const int max_x = 100000000; using It = vector<int>::iterator; int64_t min_distance_sum(It begin, It end, It tmp_begin) { if (next(begin) == end) return 0; int64_t left_count = distance(begin, end) / 2; It mid = next(begin, left_count); const int64_t ans_left = min_distance_sum(begin, mid, tmp_begin); const int64_t ans_right = min_distance_sum(mid, end, next(tmp_begin, left_count)); int64_t ans_cross = 0; It it1 = begin; It it2 = mid; It tmp = tmp_begin; int64_t left_sum = 0; while (it1 != mid && it2 != end) { if (*it1 < *it2) { left_sum += *it1; *tmp++ = *it1++; } else { ans_cross += static_cast<int64_t>(*it2) * distance(begin, it1) - left_sum; *tmp++ = *it2++; } } copy(it1, mid, tmp); while (it2 != end) { ans_cross += static_cast<int64_t>(*it2) * left_count - left_sum; *tmp++ = *it2++; } copy(tmp_begin, next(tmp_begin, distance(begin, end)), begin); return ans_left + ans_right + ans_cross; } int main() { std::ios_base::sync_with_stdio(false); cin.tie(nullptr); int n; cin >> n; vector<pii> data(n); for (int k = 0; k < (n); ++k) cin >> data[k].second; for (int k = 0; k < (n); ++k) cin >> data[k].first; sort(begin(data), end(data)); vector<int> x(n), tmp(n); for (int k = 0; k < (n); ++k) x[k] = data[k].second; cout << min_distance_sum(begin(x), end(x), tmp.begin()) << eol; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int dx[] = {1, -1, 0, 0}; int dy[] = {0, 0, 1, -1}; int dddx[] = {1, -1, 0, 0, 1, 1, -1, -1}; int dddy[] = {0, 0, 1, -1, 1, -1, 1, -1}; struct FenwickTree { vector<long long int> bit; int n; FenwickTree(int n) { this->n = n; bit.assign(n, 0); } long long int sum(int r) { long long int ret = 0; for (; r >= 0; r = (r & (r + 1)) - 1) ret += bit[r]; return ret; } long long int sum(int l, int r) { return sum(r) - sum(l - 1); } void add(int idx, int delta) { for (; idx < n; idx = idx | (idx + 1)) bit[idx] += delta; } }; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int n; cin >> n; vector<pair<int, int> > vec(n + 1); vector<int> aux; vec.resize(n); for (int i = 0; i < n; i++) cin >> vec[i].first; for (int i = 0; i < n; i++) cin >> vec[i].second; sort(vec.begin(), vec.end()); FenwickTree cnt(n), soma(n); for (auto i : vec) aux.push_back(i.second); sort(aux.begin(), aux.end()); long long int ans = 0; for (auto i : vec) { int pos = lower_bound(aux.begin(), aux.end(), i.second) - aux.begin(); ans += (cnt.sum(pos) * i.first) - soma.sum(pos); cnt.add(pos, 1); soma.add(pos, i.first); } cout << ans << "\n"; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
python3
#Pye from os import path from sys import stdin, stdout from bisect import bisect_left if path.exists('inp.txt'): stdin = open("inp.txt", "r") maxn = 200005 a = []; b = []; fen = [(0, 0) for i in range(maxn)] res = 0 n = int(stdin.readline()) def update(x, val): global fen while x > 0: fen[x] = (fen[x][0] + val, fen[x][1] + 1) x -= x & (-x) def get(x, val): global n, fen A = 0; B = 0 while x < n+2: A += fen[x][0] B += fen[x][1] x += x & (-x) return A - B * val af = list(map(int, stdin.readline().split())) ad = list(map(int, stdin.readline().split())) for i in range(n): a.append((af[i], ad[i])); b.append(ad[i]) a.sort() b.sort() for i in range(n): a[i] = (a[i][0], bisect_left(b, a[i][1]) + 1) for i in range(n-1, -1, -1): res += get(a[i][1], a[i][0]) update(a[i][1], a[i][0]) print(res)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; template <class T, class U> using Pa = pair<T, U>; template <class T> using vec = vector<T>; template <class T> using vvec = vector<vec<T>>; template <typename Monoid, typename F> class SegmentTree { private: int sz; vector<Monoid> seg; const F op; const Monoid e; public: SegmentTree(int n, const F op, const Monoid &e) : op(op), e(e) { sz = 1; while (sz <= n) sz <<= 1; seg.assign(2 * sz, e); } void set(int k, const Monoid &x) { seg[k + sz] = x; } void build() { for (int i = sz - 1; i > 0; i--) { seg[i] = op(seg[2 * i], seg[2 * i + 1]); } } void update(int k, const Monoid &x) { k += sz; seg[k] = x; while (k >>= 1) { seg[k] = op(seg[2 * k], seg[2 * k + 1]); } } Monoid query(int l, int r) { Monoid L = e, R = e; for (l += sz, r += sz; l < r; l >>= 1, r >>= 1) { if (l & 1) L = op(L, seg[l++]); if (r & 1) R = op(seg[--r], R); } return op(L, R); } Monoid operator[](const int &k) const { return seg[k + sz]; } }; template <class T> class Compress { map<T, int> idx; map<int, T> value; vector<T> cmp; public: int N; Compress(vector<T> v) { for (auto &x : v) cmp.push_back(x); sort(cmp.begin(), cmp.end()); cmp.erase(unique(cmp.begin(), cmp.end()), cmp.end()); N = cmp.size(); for (int i = 0; i < N; i++) idx[cmp[i]] = i; } int id(T val) { return idx[val]; } T val(int id) { return cmp[id]; } }; int main() { cin.tie(0); ios::sync_with_stdio(false); int N; cin >> N; vec<ll> X(N), V(N); for (int i = 0; i < N; i++) cin >> X[i]; for (int i = 0; i < N; i++) cin >> V[i]; Compress<ll> cmp(X); vec<ll> P(N + 1), M(N + 1), Z(N + 1); vec<ll> PC(N + 1), MC(N + 1), ZC(N + 1); for (int i = 0; i < N; i++) { if (V[i] > 0) { P[cmp.id(X[i])] += X[i]; PC[cmp.id(X[i])]++; } else if (V[i] < 0) { M[cmp.id(X[i])] += X[i]; MC[cmp.id(X[i])]++; } else { Z[cmp.id(X[i])] += X[i]; ZC[cmp.id(X[i])]++; } } for (int i = 0; i < N; i++) { M[i + 1] += M[i]; MC[i + 1] += MC[i]; Z[i + 1] += Z[i]; ZC[i + 1] += ZC[i]; } for (int i = N - 1; i >= 0; i--) { P[i] += P[i + 1]; PC[i] += PC[i + 1]; } struct state { ll sum, cnt; }; auto op = [](state L, state R) { return (state){L.sum + R.sum, L.cnt + R.cnt}; }; SegmentTree<state, decltype(op)> seg(N, op, (state){0, 0}); vec<int> idx(N); iota(idx.begin(), idx.end(), 0); sort(idx.begin(), idx.end(), [&](int i, int j) { return (V[i] != V[j] ? V[i] > V[j] : X[i] > X[j]); }); ll ans = 0; for (int i = 0; i < N; i++) { int id = idx[i]; if (V[id] <= 0) break; int xid = cmp.id(X[id]); ans += MC[xid] * X[id] - M[xid]; state res = seg.query(xid, N); ans += res.sum - X[id] * res.cnt; seg.update(xid, {X[id], 1}); } sort(idx.begin(), idx.end(), [&](int i, int j) { return (V[i] != V[j] ? V[i] < V[j] : X[i] < X[j]); }); for (int i = 0; i < N; i++) seg.set(i, {0, 0}); seg.build(); for (int i = 0; i < N; i++) { int id = idx[i]; if (V[id] >= 0) continue; int xid = cmp.id(X[id]); state res = seg.query(0, xid); ans += X[id] * res.cnt - res.sum; seg.update(xid, {X[id], 1}); } for (int i = 0; i < N; i++) if (V[i] == 0) { int xid = cmp.id(X[i]); ans += MC[xid] * X[i] - M[xid]; ans += P[xid] - PC[xid] * X[i]; ans += ZC[xid] * X[i] - Z[xid]; } cout << ans << "\n"; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long int N = 2e5 + 2; struct Fenwick { long long int BIT[N] = {}; void update(long long int idx, long long int val) { for (long long int i = idx; i < N; i += (i & -i)) { BIT[i] += val; } } long long int query(long long int k) { long long int sum = 0; for (long long int i = k; i > 0; i -= (i & -i)) { sum += BIT[i]; } return sum; } }; signed main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); ; long long int n; cin >> n; long long int x[n + 1], v[n + 1]; vector<pair<long long int, long long int> > vp; for (long long int i = 1; i <= n; i++) cin >> x[i]; vector<pair<long long int, long long int> > rr; for (long long int i = 1; i <= n; i++) { cin >> v[i]; vp.push_back({x[i], v[i]}); } sort(vp.begin(), vp.end()); for (long long int i = 0; i < n; i++) { rr.push_back({vp[i].second, i}); } sort(rr.begin(), rr.end()); long long int rank = 1; for (auto it : rr) { long long int idx = it.second; vp[idx].second = rank++; } long long int ans = 0; Fenwick ob1, ob2; long long int leftLess[n + 5], rightBade[n + 5]; for (long long int i = 0; i < n; i++) { long long int vel = vp[i].second; leftLess[i] = ob1.query(vel - 1); ob1.update(vel, 1); } for (long long int i = n - 1; i >= 0; i--) { long long int vel = vp[i].second; long long int total = n - 1 - i; long long int less = ob2.query(vel - 1); rightBade[i] = total - less; ob2.update(vel, 1); } for (long long int i = 0; i < n; i++) { long long int val = vp[i].first; ans += val * (leftLess[i] - rightBade[i]); } cout << ans; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 10; int n, i; pair<int, int> dot[N]; long long mergeMoving(pair<int, int> arr[], pair<int, int> temp[], int left, int right); long long merge(pair<int, int> arr[], pair<int, int> temp[], int left, int mid, int right); long long movingdot(pair<int, int> arr[], int array_size) { pair<int, int> temp[array_size]; return mergeMoving(arr, temp, 0, array_size - 1); } long long mergeMoving(pair<int, int> arr[], pair<int, int> temp[], int left, int right) { int mid; long long dis = 0LL; mid = right + left >> 1; if (left != mid) dis += mergeMoving(arr, temp, left, mid); if (right != mid + 1) dis += mergeMoving(arr, temp, mid + 1, right); dis += merge(arr, temp, left, mid + 1, right); return dis; } long long merge(pair<int, int> arr[], pair<int, int> temp[], int left, int mid, int right) { int i = left; int j = mid; int k = left; long long dis = 0; long long quick[right + 1]; for (i = left; i <= right; i++) { dis += arr[i].first; quick[i] = dis; } dis = 0; i = left; while ((i < mid) && (j < right + 1)) { if (arr[i].second <= arr[j].second) { dis = dis + quick[right] - quick[j - 1] - 1LL * (right - j + 1) * arr[i].first; temp[k++] = arr[i++]; } else { temp[k++] = arr[j++]; } } while (i <= mid - 1) temp[k++] = arr[i++]; while (j <= right) temp[k++] = arr[j++]; for (i = left; i <= right; i++) arr[i] = temp[i]; return dis; } int main() { cin >> n; for (i = 0; i < n; i++) cin >> dot[i].first; for (i = 0; i < n; i++) cin >> dot[i].second; sort(dot, dot + n); cout << movingdot(dot, n); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long maxn = 500007; long long n, C1[maxn], C2[maxn]; long long ans, p1[maxn], p2[maxn]; pair<long long, long long> fk[maxn]; bool cmp2(long long u, long long v) { if (fk[u].second < fk[v].second) { return 1; } else { if (fk[u].second == fk[v].second && fk[u].first > fk[v].first) return 1; } return 0; } long long lowbit(long long u) { return u & (-u); } void update(long long u, long long w) { for (long long i = u; i <= n; i += lowbit(i)) C1[i] += w, C2[i] += 1; } pair<long long, long long> query(long long u) { long long ans = 0, ret = 0; for (long long i = u; i > 0; i -= lowbit(i)) ans += C1[i], ret += C2[i]; return {ans, ret}; } int main() { cin >> n; for (int i = 1; i <= n; ++i) { cin >> fk[i].second; p1[i] = i; } for (int i = 1; i <= n; ++i) { cin >> fk[i].first; p2[i] = i; } sort(fk + 1, fk + n + 1); sort(p1 + 1, p1 + n + 1, cmp2); for (int i = 1; i <= n; ++i) { p2[p1[i]] = i; } for (int i = 1; i <= n; ++i) { update(p2[i], fk[i].second); pair<long long, long long> ret = query(p2[i]); ans -= ret.first; ans += ret.second * fk[i].second; } cout << ans << endl; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.BufferedReader; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.util.ArrayList; import java.util.Arrays; import java.util.BitSet; import java.util.Calendar; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.PriorityQueue; import java.util.SortedSet; import java.util.Stack; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.TreeSet; /** * # * * @author pttrung */ public class F_Round_624_Div3 { public static long MOD = 1000000007; static int[][] dp; public static void main(String[] args) throws FileNotFoundException { // PrintWriter out = new PrintWriter(new FileOutputStream(new File( // "output.txt"))); PrintWriter out = new PrintWriter(System.out); Scanner in = new Scanner(); int n = in.nextInt(); int[][] data = new int[n][2]; int max = n + 2; FT total = new FT(max); FT count = new FT(max); for (int i = 0; i < 2; i++) { for (int j = 0; j < n; j++) { data[j][i] = in.nextInt(); } } Arrays.sort(data, (a, b) -> Integer.compare(a[0], b[0])); ArrayList<Integer> list = new ArrayList<>(); for (int i = 0; i < n; i++) { list.add(data[i][0]); data[i][0] = i + 1; } Arrays.sort(data, (a, b) -> { if (a[1] != b[1]) { return Integer.compare(a[1], b[1]); } return Integer.compare(a[0], b[0]); }); long result = 0; for (int[] a : data) { long c = count.get(a[0]); long t = total.get(a[0]); //System.out.println(Arrays.toString(a) + " " + c + " " + t); result += c * list.get(a[0] - 1) - t; total.update(a[0], list.get(a[0] - 1)); count.update(a[0], 1); } out.println(result); out.close(); } public static int[] KMP(String val) { int i = 0; int j = -1; int[] result = new int[val.length() + 1]; result[0] = -1; while (i < val.length()) { while (j >= 0 && val.charAt(j) != val.charAt(i)) { j = result[j]; } j++; i++; result[i] = j; } return result; } public static boolean nextPer(int[] data) { int i = data.length - 1; while (i > 0 && data[i] < data[i - 1]) { i--; } if (i == 0) { return false; } int j = data.length - 1; while (data[j] < data[i - 1]) { j--; } int temp = data[i - 1]; data[i - 1] = data[j]; data[j] = temp; Arrays.sort(data, i, data.length); return true; } public static int digit(long n) { int result = 0; while (n > 0) { n /= 10; result++; } return result; } public static double dist(long a, long b, long x, long y) { double val = (b - a) * (b - a) + (x - y) * (x - y); val = Math.sqrt(val); double other = x * x + a * a; other = Math.sqrt(other); return val + other; } public static class Point implements Comparable<Point> { int x, y; public Point(int start, int end) { this.x = start; this.y = end; } @Override public int hashCode() { int hash = 5; hash = 47 * hash + this.x; hash = 47 * hash + this.y; return hash; } @Override public boolean equals(Object obj) { if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } final Point other = (Point) obj; if (this.x != other.x) { return false; } if (this.y != other.y) { return false; } return true; } @Override public int compareTo(Point o) { if (x != o.x) { return Integer.compare(x, o.x); } return Integer.compare(y, o.y); } } public static class FT { long[] data; FT(int n) { data = new long[n]; } public void update(int index, long value) { while (index < data.length) { data[index] += value; index += (index & (-index)); } } public long get(int index) { long result = 0; while (index > 0) { result += data[index]; index -= (index & (-index)); } return result; } } public static long gcd(long a, long b) { if (b == 0) { return a; } return gcd(b, a % b); } public static long pow(long a, int b) { if (b == 0) { return 1; } if (b == 1) { return a; } long val = pow(a, b / 2); if (b % 2 == 0) { return val * val; } else { return val * (val * a); } } static class Scanner { BufferedReader br; StringTokenizer st; public Scanner() throws FileNotFoundException { // System.setOut(new PrintStream(new BufferedOutputStream(System.out), true)); br = new BufferedReader(new InputStreamReader(System.in)); // br = new BufferedReader(new InputStreamReader(new FileInputStream(new File("input.txt")))); } public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { throw new RuntimeException(); } } return st.nextToken(); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { st = null; try { return br.readLine(); } catch (Exception e) { throw new RuntimeException(); } } public boolean endLine() { try { String next = br.readLine(); while (next != null && next.trim().isEmpty()) { next = br.readLine(); } if (next == null) { return true; } st = new StringTokenizer(next); return st.hasMoreTokens(); } catch (Exception e) { throw new RuntimeException(); } } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.Random; import java.util.StringTokenizer; public class Solution{ public static void main(String[] args) throws IOException { FastScanner fs = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int tt = 1; while(tt-->0) { int n = fs.nextInt(); int[][] arr = new int[n][2]; for(int i=0;i<n;i++ ) { arr[i][0] = fs.nextInt(); } for(int i=0;i<n;i++) { arr[i][1] = fs.nextInt(); } //Randomizig the arr array for(int i=0;i<n;i++) { int ri = random.nextInt(n); int[] temp = arr[i]; arr[i] = arr[ri]; arr[ri] = temp; } Arrays.sort(arr, (x, y) -> x[0]-y[0]); int[] p = new int[n]; for(int i=0;i<n;i++) { p[i] = arr[i][1]; } ruffleSort(p); Ftree ft1 = new Ftree(n); Ftree ft2 = new Ftree(n); long ans = 0; for(int i=n-1;i>=0;i--) { int ind = lowerbound(p, arr[i][1]); ans += (ft1.query(n-1)-ft1.query(ind-1)) - (ft2.query(n-1)-ft2.query(ind-1))*(arr[i][0]); ft1.update(ind, arr[i][0]); ft2.update(ind, 1); } out.println(ans); } out.close(); } static class Ftree{ long[] bit; int n; Ftree(int n){ this.n = n; bit = new long[n+1]; } void update(int ind, int val) { ind++; while(ind<=n) { bit[ind] += val; ind += ind&(-ind); } } long query(int ind) { ind++; long sum = 0; while(ind>0) { sum += bit[ind]; ind -= ind&(-ind); } return sum; } } static int lowerbound(int[] arr, int x) { int l = 0; int r= arr.length; while(l<r) { int mid = (l+r)/2; if(arr[mid]>=x) r = mid; else l = mid+1; } return r; } static final Random random=new Random(); static void ruffleSort(int[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n); int temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static class FastScanner{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); public String next(){ while(!st.hasMoreElements()){ try{ st = new StringTokenizer(br.readLine()); } catch(IOException e){ e.printStackTrace(); } } return st.nextToken(); } public String nextLine() throws IOException { return br.readLine(); } public int nextInt(){ return Integer.parseInt(next()); } public int[] readArray(int n){ int[] a = new int[n]; for(int i=0;i<n;i++) a[i] = nextInt(); return a; } public long nextLong() { return Long.parseLong(next()); } public char nextChar() { return next().toCharArray()[0]; } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 200000; long long BIT1[200001]; long long cnt1[200001]; map<long long, long long> r, l; pair<long long, long long> arr[200001]; int n; void upd1(long long idx, long long val) { for (; idx <= N; idx = (idx | (idx + 1))) { BIT1[idx] += val; cnt1[idx]++; } } pair<long long, long long> query1(int idx) { if (idx < 0) return {0, 0}; long long sum = 0; int ct = 0; for (; idx >= 0; idx = (idx & (idx + 1)) - 1) { sum += BIT1[idx]; ct += cnt1[idx]; } return {sum, ct}; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n; for (int i = 1; i <= n; i++) cin >> arr[i].first; for (int i = 1; i <= n; i++) cin >> arr[i].second; sort(arr + 1, arr + n + 1); for (int i = 1; i <= n; i++) r[arr[i].second] = 0; long long ind = 1; for (auto &it : r) { it.second = ind; ind++; } long long ans = 0; for (int i = 1; i <= n; i++) { long long vel = r[arr[i].second]; pair<long long, long long> p = query1(vel); ans += (p.second) * (arr[i].first); ans -= p.first; upd1(vel, arr[i].first); } cout << ans; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
python3
import sys reader = (s.rstrip() for s in sys.stdin) input = reader.__next__ class RangeMinimumQuery: def __init__(self, n, inf=float("inf")): self.n0 = 2**(n-1).bit_length() self.inf = inf self.data = [self.inf]*(2*self.n0) self.cnt = [0]*(2*self.n0) def query(self, l,r): l += self.n0 r += self.n0 res = 0 cnt = 0 while l < r: if r&1: r -= 1 res += self.data[r-1] cnt += self.cnt[r-1] if l&1: res += self.data[l-1] cnt += self.cnt[l-1] l += 1 l >>=1 r >>=1 return res, cnt def update(self, i, x): i += self.n0-1 self.data[i] += x self.cnt[i] += 1 while i: i = ~-i//2 self.data[i] = self.data[2*i+1] + self.data[2*i+2] self.cnt[i] = self.cnt[2*i+1] + self.cnt[2*i+2] n = int(input()) xs = list(map(int, input().split())) vs = list(map(int, input().split())) xv = [[x,v] for x,v in zip(xs,vs)] xv.sort() d = sorted(set(vs)) dd = {j:i for i,j in enumerate(d)} m = len(dd) RSQ = RangeMinimumQuery(m, 0) ans = 0 for x, v in xv: nv = dd[v] su, cnt = RSQ.query(0, nv+1) ans += cnt*x - su RSQ.update(nv, x) print(ans)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
python3
class Points: def __init__(self, x = 0, v = 0): self.x, self.v = x, v class Fenwick_tree: def __init__(self, n = 0): self.n = n self.bit = [0] * (n + 1) def update(self, x, value): while x <= self.n: self.bit[x] += value x += x & -x def get(self, x): sum = 0; while x > 0: sum += self.bit[x]; x -= x & -x return sum # Input: n, x, v = int(input()), list(map(int,input().split())), list(map(int,input().split())) a = [Points(x[i], v[i]) for i in range(n)] a.sort(key = lambda value: value.x) # Compress data: temp = sorted(set(v)) mp = {v: k for k, v in enumerate(temp, 1)} # Solve the problem: cnt = Fenwick_tree(n) sum = Fenwick_tree(n) res, i = 0, 0 for i in range(n): a[i].v = mp[a[i].v] res += a[i].x * cnt.get(a[i].v) - sum.get(a[i].v) cnt.update(a[i].v, 1) sum.update(a[i].v, a[i].x) print(res)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.TreeMap; import java.util.InputMismatchException; import java.io.IOException; import java.util.Comparator; import java.util.TreeSet; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author KharYusuf */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastReader in = new FastReader(inputStream); PrintWriter out = new PrintWriter(outputStream); FMovingPoints solver = new FMovingPoints(); solver.solve(1, in, out); out.close(); } static class FMovingPoints { public void solve(int testNumber, FastReader s, PrintWriter w) { int n = s.nextInt(), MX = (int) 1e8; int[][] x = new int[n][2]; for (int i = 0; i < n; i++) x[i][0] = s.nextInt(); TreeSet<Integer> p = new TreeSet<>(); TreeMap<Integer, Integer> po = new TreeMap<>(); for (int i = 0; i < n; i++) { x[i][1] = s.nextInt(); p.add(x[i][1]); } int cnt = 0; for (int i : p) po.put(i, cnt++); func.sortbyColumn(x, 0); long ans = 0; bit num = new bit(p.size()), numcnt = new bit(p.size()); for (int i = 0; i < n; i++) { int cur = po.get(x[i][1]); ans += numcnt.query(cur) * x[i][0] - num.query(cur); numcnt.modify(cur, 1); num.modify(cur, x[i][0]); } w.println(ans); } public class bit { public int n; public long[] t; public bit(int n) { t = new long[n]; this.n = n; } public void modify(int ind, long val) { for (; ind < n; ind = ind | (++ind)) t[ind] += val; } public long query(int ind) { long sum = 0; for (; ind >= 0; ind = (ind & (++ind)) - 1) sum += t[ind]; return sum; } } } static class FastReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private FastReader.SpaceCharFilter filter; public FastReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class func { public static void sortbyColumn(int[][] arr, final int col) { Arrays.sort(arr, new Comparator<int[]>() { public int compare(final int[] entry1, final int[] entry2) { if (entry1[col] > entry2[col]) return 1; if (entry1[col] < entry2[col]) return -1; return 0; } }); } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
python3
# -*- coding:utf-8 -*- """ created by shuangquan.huang at 2020/3/13 """ import collections import time import os import sys import bisect import heapq from typing import List def solve(N, X, S): si = {} ss = list(sorted(set(S))) for i, s in enumerate(ss): si[s] = i xs = [(x, si[s]) for x, s in zip(X, S)] xs.sort() bitc = [0 for _ in range(N+1)] bitx = [0 for _ in range(N+1)] def add(index, val): while index <= N: bitc[index] += 1 bitx[index] += val index |= index + 1 def get(index): count, xsum = 0, 0 while index >= 0: count += bitc[index] xsum += bitx[index] index = (index & (index + 1)) - 1 return count, xsum ans = 0 for x, s in xs: count, xsum = get(s) ans += count * x - xsum add(s, x) return ans N = int(input()) X = [int(x) for x in input().split()] S = [int(x) for x in input().split()] print(solve(N, X, S))
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.*; import java.util.*; public class E implements Runnable { boolean judge = false; FastReader scn; PrintWriter out; String INPUT = ""; void solve() { int n = scn.nextInt(); int[] x = scn.nextIntArray(n); int[] v = new int[n + 1]; for(int i = 0; i < n; i++) { v[i] = scn.nextInt(); } int[] cmpX = scn.compress(Arrays.copyOf(x, n)); int[] cmpV = scn.compress(Arrays.copyOf(v, n + 1)); for(int i = 0; i < n; i++) { cmpX[i]++; } for(int i = 0; i <= n; i++) { cmpV[i]++; } long[] bit = new long[2 * n + 1]; long[] bit2 = new long[2 * n + 1]; int ninf = -(int) 1e9; int[][] need = new int[n][4]; for(int i = 0; i < n; i++) { need[i][0] = x[i]; need[i][1] = v[i]; need[i][2] = cmpX[i]; need[i][3] = cmpV[i]; add(bit, need[i][3], need[i][0] - ninf); add(bit2, need[i][3], 1); } Arrays.parallelSort(need, (o1, o2) -> o1[0] - o2[0]); long ans = 0; for(int i = 0; i < n; i++) { long diff = need[i][0] - ninf; long rv = sum(bit, 2 * n) - sum(bit, need[i][3] - 1); long pt = sum(bit2, 2 * n) - sum(bit2, need[i][3] - 1); ans += rv - pt * diff; add(bit, need[i][3], -(need[i][0] - ninf)); add(bit2, need[i][3], -1); } out.println(ans); } void add(long[] bit, int ind, long val) { while (ind < bit.length) { bit[ind] += val; ind += ind & (-ind); } } long sum(long[] bit, int ind) { long rv = 0; while (ind > 0) { rv += bit[ind]; ind -= ind & (-ind); } return rv; } public void run() { long time = System.currentTimeMillis(); boolean oj = System.getProperty("ONLINE_JUDGE") != null || judge; out = new PrintWriter(System.out); scn = new FastReader(oj); solve(); out.flush(); if (!oj) { System.out.println(Arrays.deepToString(new Object[] { System.currentTimeMillis() - time + " ms" })); } } public static void main(String[] args) { new Thread(null, new E(), "Main", 1 << 28).start(); } class FastReader { InputStream is; public FastReader(boolean onlineJudge) { is = onlineJudge ? System.in : new ByteArrayInputStream(INPUT.getBytes()); } byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; int readByte() { if (lenbuf == -1) throw new InputMismatchException(); if (ptrbuf >= lenbuf) { ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return -1; } return inbuf[ptrbuf++]; } boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } int skip() { int b; while ((b = readByte()) != -1 && isSpaceChar(b)) ; return b; } double nextDouble() { return Double.parseDouble(next()); } char nextChar() { return (char) skip(); } String next() { int b = skip(); StringBuilder sb = new StringBuilder(); while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } String nextLine() { int b = skip(); StringBuilder sb = new StringBuilder(); while ((!isSpaceChar(b) || b == ' ')) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } char[] next(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while (p < n && !(isSpaceChar(b))) { buf[p++] = (char) b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } int nextInt() { int num = 0, b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } long nextLong() { long num = 0; int b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } char[][] nextMatrix(int n, int m) { char[][] map = new char[n][]; for (int i = 0; i < n; i++) map[i] = next(m); return map; } int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } int[][] next2DInt(int n, int m) { int[][] arr = new int[n][]; for (int i = 0; i < n; i++) { arr[i] = nextIntArray(m); } return arr; } long[][] next2DLong(int n, int m) { long[][] arr = new long[n][]; for (int i = 0; i < n; i++) { arr[i] = nextLongArray(m); } return arr; } int[] shuffle(int[] arr) { Random r = new Random(); for (int i = 1, j; i < arr.length; i++) { j = r.nextInt(i); int c = arr[i]; arr[i] = arr[j]; arr[j] = c; } return arr; } long[] shuffle(long[] arr) { Random r = new Random(); for (int i = 1, j; i < arr.length; i++) { j = r.nextInt(i); long c = arr[i]; arr[i] = arr[j]; arr[j] = c; } return arr; } int[] uniq(int[] arr) { arr = scn.shuffle(arr); Arrays.sort(arr); int[] rv = new int[arr.length]; int pos = 0; rv[pos++] = arr[0]; for (int i = 1; i < arr.length; i++) { if (arr[i] != arr[i - 1]) { rv[pos++] = arr[i]; } } return Arrays.copyOf(rv, pos); } long[] uniq(long[] arr) { arr = scn.shuffle(arr); Arrays.sort(arr); long[] rv = new long[arr.length]; int pos = 0; rv[pos++] = arr[0]; for (int i = 1; i < arr.length; i++) { if (arr[i] != arr[i - 1]) { rv[pos++] = arr[i]; } } return Arrays.copyOf(rv, pos); } int[] reverse(int[] arr) { int l = 0, r = arr.length - 1; while (l < r) { arr[l] = arr[l] ^ arr[r]; arr[r] = arr[l] ^ arr[r]; arr[l] = arr[l] ^ arr[r]; l++; r--; } return arr; } long[] reverse(long[] arr) { int l = 0, r = arr.length - 1; while (l < r) { arr[l] = arr[l] ^ arr[r]; arr[r] = arr[l] ^ arr[r]; arr[l] = arr[l] ^ arr[r]; l++; r--; } return arr; } int[] compress(int[] arr) { int n = arr.length; int[] rv = Arrays.copyOf(arr, n); rv = uniq(rv); for (int i = 0; i < n; i++) { arr[i] = Arrays.binarySearch(rv, arr[i]); } return arr; } long[] compress(long[] arr) { int n = arr.length; long[] rv = Arrays.copyOf(arr, n); rv = uniq(rv); for (int i = 0; i < n; i++) { arr[i] = Arrays.binarySearch(rv, arr[i]); } return arr; } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int b[200005], m; long long c[200005][2]; struct node { int x, v; bool operator<(const node t) const { return x < t.x; } } a[200005]; int lsh(long long x) { return lower_bound(b + 1, b + 1 + m, x) - b; } long long query(int x, int k) { long long ret = 0; for (int i = x; i >= 1; i -= i & -i) ret += c[i][k]; return ret; } void update(int x, int y) { for (int i = x; i <= m; i += i & -i) { c[i][0]++; c[i][1] += y; } } int main() { int n; scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d", &a[i].x); for (int i = 1; i <= n; i++) { scanf("%d", &a[i].v); b[i] = a[i].v; } sort(b + 1, b + 1 + n); m = unique(b + 1, b + 1 + n) - b - 1; sort(a + 1, a + 1 + n); long long ans = 0; for (int i = 1; i <= n; i++) { int t = lsh(a[i].v); ans += query(t, 0) * a[i].x - query(t, 1); update(t, a[i].x); } printf("%lld", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int inf = 0x3f3f3f3f; const long long mod = 1e9 + 7; const long long maxn = 500010; long long T, n, m, p[maxn], v[maxn], mxval = 0, tree[maxn], cnt[maxn], ans = 0; struct node { int pos, val, v; } a[maxn]; void add(int pos, long long val) { pos += n; cnt[pos] += 1; tree[pos] += val; while (pos) { pos /= 2; cnt[pos] = cnt[pos << 1] + cnt[pos << 1 | 1]; tree[pos] = tree[pos << 1] + tree[pos << 1 | 1]; } } pair<long long, long long> sum(int l, int r) { long long ret = 0, p = 0; for (l += n - 1, r += n + 1; l ^ r ^ 1; l /= 2, r /= 2) { if (~l & 1) ret += tree[l ^ 1], p += cnt[l ^ 1]; if (r & 1) ret += tree[r ^ 1], p += cnt[r ^ 1]; } return make_pair(p, ret); } int main() { scanf("%lld", &n); for (int i = 1; i <= n; i++) scanf("%d", &a[i].pos); for (int i = 1; i <= n; i++) scanf("%d", &a[i].v); sort(a + 1, a + 1 + n, [](node a, node b) { return a.v < b.v; }); a[1].val = 1; for (int i = 2; i <= n; i++) { if (a[i].v > a[i - 1].v) a[i].val = a[i - 1].val + 1; else a[i].val = a[i - 1].val; } mxval = a[n].val; sort(a + 1, a + 1 + n, [](node a, node b) { return a.pos < b.pos; }); memset(tree, 0, sizeof(tree)); memset(cnt, 0, sizeof(cnt)); for (int i = 1; i <= n; i++) { pair<long long, long long> x = sum(1, a[i].val); ans += x.first * a[i].pos - x.second; add(a[i].val, a[i].pos); } memset(tree, 0, sizeof(tree)); memset(cnt, 0, sizeof(cnt)); for (int i = n; i >= 1; i--) { pair<long long, long long> x = sum(a[i].val, mxval); ans += x.second - x.first * a[i].pos; add(a[i].val, a[i].pos); } printf("%lld\n", ans / 2); }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.*; import java.util.*; public class Main{ static class pair implements Comparable<pair>{ int x,v; pair(int xx,int vv){ x=xx;v=vv; } @Override public int compareTo(pair o) { // TODO Auto-generated method stub return x-o.x; } } static class ftree{ int n; long[]ft; ftree(int z){ ft=new long[z+1]; n=z; } void updatesum(int idx,int k) { while(idx<=n) { ft[idx]+=k; idx+=(idx&(-1*idx)); } } long querysum(int idx) { long sum=0; while(idx>0) { sum+=ft[idx]; idx-=(idx&(-1*idx)); } return sum; } } public static void main(String[] args) throws Exception{ MScanner sc=new MScanner(System.in); PrintWriter pw=new PrintWriter(System.out); int n=sc.nextInt(); int[]x=sc.takearr(n); int[]v=sc.takearr(n); pair[]in=new pair[n]; Integer[]tmp=new Integer[n]; for(int i=0;i<n;i++) { tmp[i]=v[i]; } Arrays.sort(tmp); for(int i=0;i<n;i++) { in[i]=new pair(x[i], v[i]); } Arrays.sort(in); HashMap<Integer, Integer>map=new HashMap<Integer, Integer>(); for(int i=0;i<n;i++) { map.put(tmp[i], i+1); } long ans=0; ftree ftOcc=new ftree(n+7); ftree ftSum=new ftree(n+7); for(int i=0;i<n;i++) { int curx=in[i].x,curv=in[i].v; long cnt=ftOcc.querysum(map.get(curv)); long sum=ftSum.querysum(map.get(curv)); ans+=(curx*1l*cnt-sum); ftOcc.updatesum(map.get(curv), 1); ftSum.updatesum(map.get(curv), curx); } pw.println(ans); pw.flush(); } static class MScanner { StringTokenizer st; BufferedReader br; public MScanner(InputStream system) { br = new BufferedReader(new InputStreamReader(system)); } public MScanner(String file) throws Exception { br = new BufferedReader(new FileReader(file)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int[] takearr(int n) throws IOException { int[]in=new int[n];for(int i=0;i<n;i++)in[i]=nextInt(); return in; } public long[] takearrl(int n) throws IOException { long[]in=new long[n];for(int i=0;i<n;i++)in[i]=nextLong(); return in; } public Integer[] takearrobj(int n) throws IOException { Integer[]in=new Integer[n];for(int i=0;i<n;i++)in[i]=nextInt(); return in; } public Long[] takearrlobj(int n) throws IOException { Long[]in=new Long[n];for(int i=0;i<n;i++)in[i]=nextLong(); return in; } public String nextLine() throws IOException { return br.readLine(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public char nextChar() throws IOException { return next().charAt(0); } public Long nextLong() throws IOException { return Long.parseLong(next()); } public boolean ready() throws IOException { return br.ready(); } public void waitForInput() throws InterruptedException { Thread.sleep(3000); } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.Reader; import java.util.ArrayList; import java.util.Comparator; import java.util.HashSet; import java.util.List; import java.util.StringTokenizer; public class C1311F_1 { public static void main(String[] args) { var scanner = new BufferedScanner(); var writer = new PrintWriter(new BufferedOutputStream(System.out)); var n = scanner.nextInt(); var x = new int[n]; for (int i = 0; i < n; i++) { x[i] = scanner.nextInt(); // x[i] = (int) (Math.random() * 2e8 - 1e8); // x[i] = (int) (Math.random() * n / 2 + n / 2); } var v = new int[n]; for (int i = 0; i < n; i++) { v[i] = scanner.nextInt(); // v[i] = (int) (Math.random() * 2e8 - 1e8); // v[i] = (int) (Math.random() * 2 * n - n); } writer.println(solve(n, x, v)); scanner.close(); writer.flush(); writer.close(); } static final int MIN_V = (int) -1e8; static final int MAX_V = (int) 1e8; private static long solve(int n, int[] x, int[] v) { var debug = false; //n == 200000; var orderX = new ArrayList<Integer>(); for (int i = 0; i < n; i++) { orderX.add(i); } var t = System.nanoTime(); orderX.sort(Comparator.comparingInt(o -> x[o])); if (debug) { System.out.println("sort finished: " + (System.nanoTime() - t) / 1e9); } t = System.nanoTime(); var ans = 0L; var toLeft = new SegTree(v); var toRight = new SegTree(v); for (int i = 0; i < n; i++) { var thisX = x[orderX.get(i)]; var thisV = v[orderX.get(i)]; if (thisV >= 0) { var left = toLeft.acc(MIN_V, 0); ans += left[1] * thisX - left[0]; var right = toRight.acc(0, thisV); ans += right[1] * thisX - right[0]; toRight.add(thisV, thisX); } else { var left = toLeft.acc(MIN_V, thisV); ans += left[1] * thisX - left[0]; toLeft.add(thisV, thisX); } } if (debug) { System.out.println("finish acc: " + (System.nanoTime() - t) / 1e9); } return ans; } static class SegTree { final List<Node> nodes = new ArrayList<>(); /** * ζ‰€ζœ‰ζœ‰ζ•ˆηš„keyοΌŒι€’ε’žγ€‚ */ final int[] keys; SegTree(int[] keys) { this.keys = distinctAndAsc(keys); nodes.add(new Node(0, this.keys.length - 1)); } static int[] distinctAndAsc(int[] keys) { var distinct = new HashSet<Integer>(); for (int key : keys) { distinct.add(key); } var asc = new ArrayList<>(distinct); asc.sort(Integer::compareTo); return asc.stream().mapToInt(i -> i).toArray(); } void add(int key, int value) { add(0, key, value); } private void add(int index, int key, int value) { if (index < 0) { return; } var node = nodes.get(index); // debug("node %d: (low=%d,highEx=%d)", index, node.low, node.high); if (key < keys[node.low] || keys[node.high] < key) { return; } node.acc[0] += value; node.acc[1]++; if (node.isLeaf()) { return; } if (node.left < 0) { nodes.add(new Node(node.low, node.mid)); node.left = nodes.size() - 1; } add(node.left, key, value); if (node.right < 0) { nodes.add(new Node(node.mid + 1, node.high)); node.right = nodes.size() - 1; } add(node.right, key, value); } long[] acc(int lowKey, int highKey) { return acc(0, lowKey, highKey); } static final long[] EMPTY = new long[]{0, 0}; private long[] acc(int index, int lowKey, int highKey) { if (lowKey > highKey || index < 0) { return EMPTY; } var node = nodes.get(index); if (highKey < keys[node.low] || keys[node.high] < lowKey) { return EMPTY; } if (lowKey <= keys[node.low] && keys[node.high] <= highKey) { return node.acc; } var left = acc(node.left, lowKey, highKey); var right = acc(node.right, lowKey, highKey); return new long[]{left[0] + right[0], left[1] + right[1]}; } static class Node { final int low; final int high; final int mid; int left = -1; int right = -1; long[] acc = new long[]{0, 0}; Node(int low, int high) { this.low = low; this.high = high; this.mid = Math.floorDiv(low + high, 2); } public boolean isLeaf() { return low >= high; } } } static void debug(String fmt, Object... args) { System.out.println(String.format(fmt, args)); } public static class BufferedScanner { BufferedReader br; StringTokenizer st; public BufferedScanner(Reader reader) { br = new BufferedReader(reader); } public BufferedScanner() { this(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } void close() { try { br.close(); } catch (IOException e) { e.printStackTrace(); } } } static long gcd(long a, long b) { if (a < b) { return gcd(b, a); } while (b > 0) { long tmp = b; b = a % b; a = tmp; } return a; } static long inverse(long a, long m) { long[] ans = extgcd(a, m); return ans[0] == 1 ? (ans[1] + m) % m : -1; } private static long[] extgcd(long a, long m) { if (m == 0) { return new long[]{a, 1, 0}; } else { long[] ans = extgcd(m, a % m); long tmp = ans[1]; ans[1] = ans[2]; ans[2] = tmp; ans[2] -= ans[1] * (a / m); return ans; } } private static List<Integer> primes(double upperBound) { var limit = (int) Math.sqrt(upperBound); var isComposite = new boolean[limit + 1]; var primes = new ArrayList<Integer>(); for (int i = 2; i <= limit; i++) { if (isComposite[i]) { continue; } primes.add(i); int j = i + i; while (j <= limit) { isComposite[j] = true; j += i; } } return primes; } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long query(int a, vector<long long>& ft) { long long res = 0; for (; ~a; a = (a & (a + 1)) - 1) { res += ft[a]; } return res; } void update(int a, int val, vector<long long>& ft) { for (; a < ft.size(); a = a | (a + 1)) { ft[a] += val; } } int main() { ios_base::sync_with_stdio(0); cin.tie(0); int n; cin >> n; vector<pair<int, int>> pt(n); map<int, int> idx; for (auto& i : pt) { cin >> i.first; } for (auto& i : pt) { cin >> i.second; idx[i.second] = 0; } sort(pt.begin(), pt.end()); int sz = 0; for (auto& i : idx) { i.second = sz++; } long long ans = 0; vector<long long> ct(sz), coord(sz); for (auto i : pt) { int tmp = idx[i.second]; ans += i.first * query(tmp, ct) - query(tmp, coord); update(tmp, 1, ct); update(tmp, i.first, coord); } cout << ans << '\n'; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; pair<long long, long long> st[800005]; void update(long long node, long long beg, long long end, long long pos, long long dist) { if (beg == end) { st[node].first += 1; st[node].second += dist; return; } long long mid = beg + (end - beg) / 2; if (pos <= mid) update(2 * node + 1, beg, mid, pos, dist); else update(2 * node + 2, mid + 1, end, pos, dist); st[node] = {st[2 * node + 1].first + st[2 * node + 2].first, st[2 * node + 1].second + st[2 * node + 2].second}; } pair<long long, long long> query(long long node, long long beg, long long end, long long ql, long long qr) { if (beg > end || beg > qr || end < ql) return {0, 0}; if (beg >= ql && end <= qr) return st[node]; long long mid = beg + (end - beg) / 2; pair<long long, long long> a = query(2 * node + 1, beg, mid, ql, qr); pair<long long, long long> b = query(2 * node + 2, mid + 1, end, ql, qr); return {a.first + b.first, a.second + b.second}; } int main() { long long n; cin >> n; vector<pair<long long, long long> > v(n); vector<long long> vel(n); for (long long i = 0; i < n; i++) cin >> v[i].first; map<long long, long long> velocity_idx; for (long long i = 0; i < n; i++) { cin >> v[i].second; velocity_idx[v[i].second] = 1; } sort(v.begin(), v.end()); long long cnt = 0; for (auto it : velocity_idx) velocity_idx[it.first] = cnt++; memset(st, 0, sizeof(st)); long long sz = (long long)velocity_idx.size() - 1; long long ans = 0; for (long long i = 0; i < n; i++) { pair<long long, long long> p = query(0, 0, sz, 0, velocity_idx[v[i].second]); ans += (v[i].first * p.first - p.second); update(0, 0, sz, velocity_idx[v[i].second], v[i].first); } cout << ans; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; pair<long long, long long> ara[200005]; map<long long, long long> mark; long long seg[4 * 300005], seg2[4 * 300005]; long long query(long long qlo, long long qhi, long long lo, long long hi, long long pos) { if (qlo > hi || qhi < lo || qlo > qhi) return 0; if (qlo <= lo && qhi >= hi) return seg[pos]; long long mid = (lo + hi) / 2; return query(qlo, qhi, lo, mid, 2 * pos) + query(qlo, qhi, mid + 1, hi, 2 * pos + 1); } void update(long long i, long long val, long long lo, long long hi, long long pos) { if (lo > i || hi < i) return; if (lo == i && i == hi) { seg[pos] += val; return; } long long mid = (lo + hi) / 2; update(i, val, lo, mid, 2 * pos); update(i, val, mid + 1, hi, 2 * pos + 1); seg[pos] = seg[2 * pos] + seg[2 * pos + 1]; } long long query2(long long qlo, long long qhi, long long lo, long long hi, long long pos) { if (qlo > hi || qhi < lo || qlo > qhi) return 0; if (qlo <= lo && qhi >= hi) return seg2[pos]; long long mid = (lo + hi) / 2; return query2(qlo, qhi, lo, mid, 2 * pos) + query2(qlo, qhi, mid + 1, hi, 2 * pos + 1); } void update2(long long i, long long val, long long lo, long long hi, long long pos) { if (lo > i || hi < i) return; if (lo == i && i == hi) { seg2[pos] += val; return; } long long mid = (lo + hi) / 2; update2(i, val, lo, mid, 2 * pos); update2(i, val, mid + 1, hi, 2 * pos + 1); seg2[pos] = seg2[2 * pos] + seg2[2 * pos + 1]; } vector<long long> vec; int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long n; cin >> n; long long i, j, k; for (i = 1; i <= n; i++) { cin >> ara[i].second; vec.push_back(ara[i].second); } sort(vec.begin(), vec.end()); for (i = 0; i < n; i++) { mark[vec[i]] = i + 1; } for (i = 1; i <= n; i++) { cin >> ara[i].first; } sort(ara + 1, ara + n + 1); long long fin = 0; for (i = n; i >= 1; i--) { long long cur = ara[i].second; long long tmp = mark[cur]; long long ans = query(tmp + 1, n, 1, n, 1); fin += ans; ans = query2(tmp + 1, n, 1, n, 1); fin -= (ans * cur); update(tmp, cur, 1, n, 1); update2(tmp, 1, 1, n, 1); } cout << fin << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 1000000007; const int INF = 1000000007; const int MAXN = (int)2e5 + 1; void setIO(string name) { ios_base::sync_with_stdio(0); cin.tie(0); freopen((name + ".in").c_str(), "r", stdin); freopen((name + ".out").c_str(), "w", stdout); } pair<pair<long long, long long>, int> xv[MAXN]; long long n, BIT[MAXN], BIT2[MAXN]; void update(int x, long long val) { for (; x <= n; x += x & -x) { BIT[x] += val; BIT2[x]++; } } pair<long long, long long> query(int x) { long long sum = 0; long long num = 0; for (; x > 0; x -= x & -x) { sum += BIT[x]; num += BIT2[x]; } return {sum, num}; } bool comp(pair<pair<long long, long long>, int> a, pair<pair<long long, long long>, int> b) { if (a.first.second == b.first.second) return a.first.first < b.first.first; return a.first.second < b.first.second; } int main() { cin >> n; for (int i = 0; i < n; i++) { cin >> xv[i].first.first; } for (int i = 0; i < n; i++) { cin >> xv[i].first.second; } sort(xv, xv + n); for (int i = 0; i < n; i++) { xv[i].second = i + 1; } long long ans = 0; sort(xv, xv + n, comp); for (int i = 0; i < n; i++) { pair<long long, long long> res = query(xv[i].second); ans += (res.second * xv[i].first.first - res.first); update(xv[i].second, xv[i].first.first); } cout << ans; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
python3
import bisect class Bit : def __init__(self, n) : self.bit = [0 for i in range(0, n)] def add(self, pos, x) : while pos < len(self.bit) : self.bit[pos] += x pos = pos | (pos + 1) def query(self, pos) : res = 0 while pos > 0 : res += self.bit[pos - 1]; pos = pos & (pos - 1) return res n = int(input()) x = [int(i) for i in input().split()] v = [int(i) for i in input().split()] r = [i for i in range(n)] r.sort(key = lambda i : x[i]) unique = sorted(list(set(v))) tree1, tree2 = Bit(len(unique)), Bit(len(unique)) ans = 0 for i in r : ii = bisect.bisect_left(unique, v[i]) count = tree1.query(ii + 1) dsum = tree2.query(ii + 1) ans += count * x[i] - dsum tree1.add(ii, 1) tree2.add(ii, x[i]) print(ans)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int cnt[400000], cnt1[400000], a[400000], b[400000], number[800000]; map<int, int> mp; vector<pair<int, int> > v; int q(int ind) { int sum = 0; while (ind > 0) { sum += number[ind]; ind -= ind & (-ind); } return sum; } void u(int ind, int n) { int sum = 0; while (ind <= n) { number[ind]++; ind += ind & (-ind); } } int main() { { ios_base::sync_with_stdio(false); cin.tie(0); }; int i, j, n, m, k, l = 0, h, t; long long ans = 0; cin >> n; for (i = 1; i <= n; i++) cin >> a[i]; for (i = 1; i <= n; i++) { cin >> b[i]; v.push_back({a[i], b[i]}); } sort(b + 1, b + n + 1); j = 1; for (i = 1; i <= n; i++) { if (!mp[b[i]]) mp[b[i]] = j++; cnt[mp[b[i]]]++; } for (i = 1; i < j; i++) b[i] = b[i - 1] + cnt[i - 1]; sort(v.begin(), v.end()); for (i = 0; i < n; i++) { k = v[i].first; l = v[i].second; l = mp[l]; u(l, j - 1); cnt1[l]++; m = q(l); h = n - i - 1 - (cnt[l] + b[l] - m) + cnt[l] - cnt1[l]; ans += (long long)k * (m - 1 - h); } cout << ans << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long query(vector<long long>& ft, int pos) { long long ans = 0; while (pos > 0) { ans += ft[pos - 1]; pos -= (pos & (-pos)); } return ans; } void update(vector<long long>& ft, int pos, long long val, int& ceil) { while (pos <= ceil) { ft[pos - 1] += val; pos += (pos & (-pos)); } } int main() { int n; cin >> n; vector<pair<int, int>> p(n); vector<int> v(n); for (int i = 0; i < n; i++) cin >> p[i].first; for (int i = 0; i < n; i++) { cin >> p[i].second; v[i] = p[i].second; } sort(p.begin(), p.end()); sort(v.begin(), v.end()); v.resize(unique(v.begin(), v.end()) - v.begin()); int ceil = v.size(); vector<long long> ftx(ceil), ftc(ceil); long long ans = 0; for (int i = 0; i < n; i++) { int pos = lower_bound(v.begin(), v.end(), p[i].second) - v.begin(); ans += query(ftc, pos + 1) * (1ll * p[i].first) - query(ftx, pos + 1); update(ftc, pos + 1, 1, ceil); update(ftx, pos + 1, p[i].first, ceil); } cout << ans << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
CORRECT
python3
import heapq import sys input = sys.stdin.readline def make_tree(n): tree = [0] * (n + 1) return tree def get_sum(i, tree): s = 0 while i > 0: s += tree[i] i -= i & -i return s def add(i, x, tree): while i <= n: tree[i] += x i += i & -i n = int(input()) x = list(map(int, input().split())) v = list(map(int, input().split())) u = list(set(v)) u.sort(reverse = True) m = len(u) d = dict() for i in range(m): d[u[i]] = i + 2 tree = make_tree(n + 5) cnt = make_tree(n + 5) ans = 0 h = [] for i in range(n): heapq.heappush(h, (x[i], i)) sx = [] while h: xi, i = heapq.heappop(h) sx.append(xi) vi = v[i] di = d[vi] ans -= get_sum(di - 1, cnt) * xi - get_sum(di - 1, tree) add(di, xi, tree) add(di, 1, cnt) for i in range(n - 1): ans += (i + 1) * (n - i - 1) * (sx[i + 1] - sx[i]) print(ans)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T, class U> bool ckmin(T& a, U& b) { return b < a ? a = b, 1 : 0; } template <class T, class U> bool ckmax(T& a, U& b) { return a < b ? a = b, 1 : 0; } int pct(int x) { return __builtin_popcount(x); } long long FIRSTTRUE(function<bool(long long)> first, long long lower_bound, long long rb) { while (lower_bound < rb) { long long mb = (lower_bound + rb) / 2; first(mb) ? rb = mb : lower_bound = mb + 1; } return lower_bound; } long long LASTTRUE(function<bool(long long)> first, long long lower_bound, long long rb) { while (lower_bound < rb) { long long mb = (lower_bound + rb + 1) / 2; first(mb) ? lower_bound = mb : rb = mb - 1; } return lower_bound; } namespace input { template <class T> void re(complex<T>& x); template <class T1, class T2> void re(pair<T1, T2>& p); template <class T> void re(vector<T>& a); template <class T, size_t SZ> void re(array<T, SZ>& a); template <class T> void re(T& x) { cin >> x; } void re(double& x) { string t; re(t); x = stod(t); } void re(long double& x) { string t; re(t); x = stold(t); } template <class T, class... Ts> void re(T& t, Ts&... ts) { re(t); re(ts...); } template <class T> void re(complex<T>& x) { T a, b; re(a, b); x = {a, b}; } template <class T1, class T2> void re(pair<T1, T2>& p) { re(p.first, p.second); } template <class T> void re(vector<T>& a) { for (int i = (0); i < ((int)a.size()); ++i) re(a[i]); } template <class T, size_t SZ> void re(array<T, SZ>& a) { for (int i = (0); i < (SZ); ++i) re(a[i]); } } // namespace input using namespace input; namespace output { void pr(int x) { cout << x; } void pr(long x) { cout << x; } void pr(long long x) { cout << x; } void pr(unsigned x) { cout << x; } void pr(unsigned long x) { cout << x; } void pr(unsigned long long x) { cout << x; } void pr(float x) { cout << x; } void pr(double x) { cout << x; } void pr(long double x) { cout << x; } void pr(char x) { cout << x; } void pr(const char* x) { cout << x; } void pr(const string& x) { cout << x; } void pr(bool x) { pr(x ? "true" : "false"); } template <class T> void pr(const complex<T>& x) { cout << x; } template <class T1, class T2> void pr(const pair<T1, T2>& x); template <class T> void pr(const T& x); template <class T, class... Ts> void pr(const T& t, const Ts&... ts) { pr(t); pr(ts...); } template <class T1, class T2> void pr(const pair<T1, T2>& x) { pr("{", x.first, ", ", x.second, "}"); } template <class T> void pr(const T& x) { pr("{"); bool fst = 1; for (const auto& a : x) pr(!fst ? ", " : "", a), fst = 0; pr("}"); } void ps() { pr("\n"); } template <class T, class... Ts> void ps(const T& t, const Ts&... ts) { pr(t); if (sizeof...(ts)) pr(" "); ps(ts...); } void pc() { pr("]\n"); } template <class T, class... Ts> void pc(const T& t, const Ts&... ts) { pr(t); if (sizeof...(ts)) pr(", "); pc(ts...); } } // namespace output using namespace output; namespace io { void setIn(string second) { freopen(second.c_str(), "r", stdin); } void setOut(string second) { freopen(second.c_str(), "w", stdout); } void setIO(string second = "") { ios_base::sync_with_stdio(0); cin.tie(0); if ((int)second.size()) { setIn(second + ".in"), setOut(second + ".out"); } } } // namespace io using namespace io; const int MOD = 1000000007; struct mi { typedef decay<decltype(MOD)>::type T; T v; explicit operator T() const { return v; } mi() { v = 0; } mi(long long _v) { v = (-MOD < _v && _v < MOD) ? _v : _v % MOD; if (v < 0) v += MOD; } friend bool operator==(const mi& a, const mi& b) { return a.v == b.v; } friend bool operator!=(const mi& a, const mi& b) { return !(a == b); } friend bool operator<(const mi& a, const mi& b) { return a.v < b.v; } friend void re(mi& a) { long long x; re(x); a = mi(x); } friend void pr(const mi& a) { pr(a.v); } friend ostream& operator<<(ostream& os, const mi& a) { return os << a.v; } mi& operator+=(const mi& m) { if ((v += m.v) >= MOD) { v -= MOD; } return *this; } mi& operator-=(const mi& m) { if ((v -= m.v) < 0) { v += MOD; } return *this; } mi& operator*=(const mi& m) { v = (long long)v * m.v % MOD; return *this; } mi& operator/=(const mi& m) { return (*this) *= inv(m); } friend mi pow(mi a, long long p) { mi ans = 1; assert(p >= 0); for (; p; p /= 2, a *= a) if (p & 1) ans *= a; return ans; } friend mi inv(const mi& a) { assert(a.v != 0); return pow(a, MOD - 2); } mi operator-() const { return mi(-v); } mi& operator++() { return *this += 1; } mi& operator--() { return *this -= 1; } friend mi operator+(mi a, const mi& b) { return a += b; } friend mi operator-(mi a, const mi& b) { return a -= b; } friend mi operator*(mi a, const mi& b) { return a *= b; } friend mi operator/(mi a, const mi& b) { return a /= b; } }; mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count()); const int MAX = 200001; template <class T> struct BIT { T bit[MAX]; long long SZ; BIT(T n) { SZ = n; } void update(T pos, T val) { while (pos <= SZ) { bit[pos] += val; pos += pos & -pos; } } T sum(long long ind) { T res = 0; while (ind > 0) { res += bit[ind]; ind -= ind & -ind; } return res; } T query(T l, T r) { return sum(r) - sum(l - 1); } }; struct node { long long loc, fast, ind; node(long long l, long long first, long long i) { loc = l, fast = first, ind = i; } }; bool cmp(node a, node b) { return a.loc < b.loc; } int main() { long long n; cin >> n; vector<long long> pos(n + 1, 0), speed(n + 1, 0); for (int i = (1); i < (n + 1); ++i) { cin >> pos[i]; } for (int i = (1); i < (n + 1); ++i) { cin >> speed[i]; } vector<node> a(n + 1, {0, 0, 0}); for (int i = (1); i < (n + 1); ++i) { a[i] = {pos[i], speed[i], (long long)i}; } long long curid = 1; vector<long long> s1 = speed; sort(s1.begin() + 1, s1.end()); map<long long, long long> track; for (int i = 1; i <= n; i++) { track[s1[i]] = curid++; } for (int i = (1); i < (n + 1); ++i) { a[i].ind = track[a[i].fast]; } BIT<long long> inv(n), inv1(n); sort(1 + a.begin(), a.end(), cmp); long long ans = 0; for (int i = n; i >= 1; i--) { auto pos1 = lower_bound(s1.begin() + 1, s1.end(), a[i].fast) - s1.begin(); long long qry = inv.query(pos1, n); long long qry1 = inv1.query(pos1, n); ans += (qry - (qry1 * a[i].loc)); inv.update(a[i].ind, a[i].loc); inv1.update(a[i].ind, 1); } cout << ans << '\n'; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 4e5 + 1000; pair<long long, long long> p[maxn]; vector<long long> v; int getpos(long long V) { return lower_bound(v.begin(), v.end(), V) - v.begin() + 1; } long long C1[2][maxn]; long long C2[2][maxn]; void add(int x, long long K, long long C[][maxn]) { while (x < maxn) { C[0][x] += 1; C[1][x] += K; x += (x) & (-x); } } pair<long long, long long> getsum(int x, long long C[][maxn]) { long long sum = 0; int num = 0; while (x > 0) { num += C[0][x]; sum += C[1][x]; x -= (x) & (-x); } return pair<long long, long long>(num, sum); } int main() { ios::sync_with_stdio(false); int N; cin >> N; for (int i = 1; i <= N; i++) cin >> p[i].first; for (int i = 1; i <= N; i++) cin >> p[i].second, v.push_back(abs(p[i].second)); sort(p + 1, p + 1 + N); sort(v.begin(), v.end()); v.erase(unique(v.begin(), v.end()), v.end()); long long ans = 0; long long cnt2 = 0; long long cnts2 = 0; for (int i = 1; i <= N; i++) { if (p[i].second >= 0) { pair<long long, long long> s = getsum(getpos(p[i].second), C1); ans += p[i].first * s.first - s.second; add(getpos(p[i].second), p[i].first, C1); ans += p[i].first * cnt2 - cnts2; } else { pair<long long, long long> s = getsum(getpos(-p[i].second), C2); ans += -p[i].first * s.first - s.second; add(getpos(-p[i].second), p[i].first, C2); cnt2 += 1; cnts2 += p[i].first; } } cout << ans << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class Ch, class Tr, class Container> basic_ostream<Ch, Tr>& operator<<(basic_ostream<Ch, Tr>& os, Container const& x) { os << "{ "; for (auto& y : x) os << y << " "; return os << "}"; } template <class X, class Y> ostream& operator<<(ostream& os, pair<X, Y> const& p) { return os << "[ " << p.first << ", " << p.second << "]"; } typedef struct { long long pos, v; } Point; long long P[200005], V[200005], sum = 0, maxNeg = 0; long long l = 0, r = 200000000; int n; vector<Point> Pos, Neg; bool sort_vel(Point a, Point b) { if (a.v == b.v) return a.pos > b.pos; return a.v > b.v; } bool sort_pos(Point a, Point b) { return a.pos < b.pos; } long long ft[200005]; void upd(int i0, long long v) { for (int i = i0 + 1; i <= 200005; i += i & -i) ft[i] += v; } long long get(int i0) { long long r = 0; for (int i = i0; i; i -= i & -i) r += ft[i]; return r; } int get_sum(int i0, int i1) { return get(i1) - get(i0); } void solve(vector<Point>& v) { int sz = v.size(); for (int i = 0; i < (200005); i++) ft[i] = 0; sort((v.begin()), (v.end()), sort_pos); for (int i = 0; i < (sz); i++) upd(i, r - v[i].pos); map<long long, long long> DondeEsta; for (int i = 0; i < (sz); i++) DondeEsta[v[i].pos] = i; sort((v.begin()), (v.end()), sort_vel); set<long long> usados; for (auto x : v) { int i = DondeEsta[x.pos]; int dif = 0; dif = distance(usados.begin(), upper_bound((usados.begin()), (usados.end()), x.pos)); sum += get_sum(0, i) - ((r - x.pos) * (i - dif)); upd(i, -1 * get_sum(i, i + 1)); usados.insert(x.pos); } } int main() { cin >> n; for (int i = 0; i < (n); i++) cin >> P[i]; for (int i = 0; i < (n); i++) { cin >> V[i]; if (V[i] >= 0) Pos.push_back({P[i], V[i]}); else { maxNeg = max(maxNeg, P[i]); Neg.push_back({P[i], -1 * V[i]}); Pos.push_back({P[i], -1}); } } for (auto& x : Neg) x.pos = maxNeg + abs(x.pos - maxNeg); solve(Pos); solve(Neg); cout << sum << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 7; pair<int, int> p[N]; long long cnt[N], val[N]; void update(int a, int b, int l, int r, int rt, int v) { if (a <= l && b >= r) { val[rt] += v, cnt[rt]++; return; } int mid = l + r >> 1; if (a <= mid) update(a, b, l, mid, rt << 1, v); if (b > mid) update(a, b, mid + 1, r, rt << 1 | 1, v); cnt[rt] = cnt[rt << 1] + cnt[rt << 1 | 1]; val[rt] = val[rt << 1] + val[rt << 1 | 1]; } pair<long long, int> query(int a, int b, int l, int r, int rt) { if (a <= l && b >= r) { return {val[rt], cnt[rt]}; } int mid = l + r >> 1; pair<int, int> ans = {0, 0}, t = {0, 0}, t2 = {0, 0}; if (a <= mid) t = query(a, b, l, mid, rt << 1); if (b > mid) t2 = query(a, b, mid + 1, r, rt << 1 | 1); ans.first = t.first + t2.first; ans.second = t.second + t2.second; return ans; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int n; cin >> n; for (int i = 0; i < n; ++i) cin >> p[i].first; for (int i = 0; i < n; ++i) cin >> p[i].second; sort(p, p + n); vector<int> a(n); for (int i = 0; i < n; ++i) a[i] = p[i].second; sort(a.begin(), a.end()); a.resize(unique(a.begin(), a.end()) - a.begin()); for (int i = 0; i < n; ++i) { p[i].second = lower_bound(a.begin(), a.end(), p[i].second) - a.begin() + 1; } long long ans = 0; for (int i = n - 1; ~i; --i) { update(p[i].second, p[i].second, 1, 200000, 1, p[i].first); auto t = query(p[i].second, 200000, 1, 200000, 1); ans += t.first - t.second * p[i].first; } cout << ans << '\n'; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; struct dd { int gt; int x; int v; }; vector<dd> a; struct Data { long long sum; int sl; Data operator+(const Data& a) { sum = sum + a.sum; sl = sl + a.sl; return *this; } }; Data it[200009 * 8]; Data ans; long long res; void update(int i, int l, int r, int pos, int data) { if (l > pos || r < pos) return; if (l == r) { it[i].sum = data; it[i].sl = 1; return; } int mid = (l + r) / 2; update(i * 2, l, mid, pos, data); update(i * 2 + 1, mid + 1, r, pos, data); it[i] = it[i * 2] + it[i * 2 + 1]; } void find(int i, int l, int r, int u, int v) { if (l > r) return; if (l > v || r < u) return; if (u <= l && r <= v) { ans = ans + it[i]; return; } int mid = (l + r) / 2; find(i * 2, l, mid, u, v); find(i * 2 + 1, mid + 1, r, u, v); } bool cmp(const dd& a, const dd& b) { return a.v < b.v; } bool cmp1(const dd& a, const dd& b) { return a.x < b.x; } int main() { cin >> n; for (int i = 1; i <= n; i++) { dd tmp; cin >> tmp.x; a.push_back(tmp); } for (int i = 0; i < n; i++) { cin >> a[i].v; } sort(a.begin(), a.end(), cmp1); for (int i = 0; i < n; i++) { a[i].gt = i + 1; } sort(a.begin(), a.end(), cmp); update(1, 1, n, a[n - 1].gt, a[n - 1].x); for (int i = n - 2; i >= 0; i--) { long long tmp = a[i].x; ans.sl = 0; ans.sum = 0; find(1, 1, n, a[i].gt + 1, n); res = res + ans.sum - (tmp * ans.sl); update(1, 1, n, a[i].gt, a[i].x); } cout << res << endl; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Moving_Points { public static void main(String args[]) { Scanner reader = new Scanner(System.in); int n = reader.nextInt(); int[] x = new int[n]; for (int i = 0; i < n; i++) x[i] = reader.nextInt(); int[] v = new int[n]; for (int i = 0; i < n; i++) v[i] = reader.nextInt(); reader.close(); int sum = 0; for (int i = 0; i < n - 1; i++) { for (int j = i + 1; j < n; j++) { if (v[i] * v[j] < 0 || v[i] == v[j] || (v[i] * v[j] > 0 && (x[i] < x[j] && v[i] < v[j]))) { sum += Math.abs(x[i] - x[j]); } else if (v[i] * v[j] == 0) { if ((v[i] == 0 && ((x[j] > x[i] && v[j] > 0) || (x[j] < x[i] && v[j] < 0)) || (v[j] == 0 && ((x[i] > x[j] && v[i] > 0) || (x[i] < x[j] && v[i] < 0)))) ) sum += Math.abs(x[i] - x[j]); } } } System.out.print(sum); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; import java.io.*; import java.lang.reflect.Array; public class template { final static int MOD = 1000000007; final static int intMax = 1000000000; final static int intMin = -1000000000; final static int[] DX = { 0, 0, -1, 1 }; final static int[] DY = { -1, 1, 0, 0 }; static int T; static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[360]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } public static void main(String[] args) throws Exception { Reader in = new Reader(); int n = in.nextInt(); int[] x = new int[n]; int[] v = new int[n]; for(int i = 0; i < n; ++i) { x[i] = in.nextInt(); } for(int i = 0; i < n; ++i) { v[i] = in.nextInt(); } p[] points = new p[n]; for(int i = 0; i < n; ++i) { points[i] = new p(x[i], v[i]); } Arrays.sort(points, (a, b) -> a.x - b.x); for(int i = 0; i < n; ++i) { points[i].orig = i + 1; } long [] dists = new long[n]; long count = 1L; for(int i = n - 2; i >= 0; --i) { dists[i] = dists[i + 1] + (count++) * ((long) (points[i + 1].x - points[i].x)); } if(n == 161) { for(int i = 0; i < n; ++i) { System.out.println(dists[i]); } } long tot = 0; for(int i = 0; i < n; ++i) { tot += dists[i]; } BinaryIndexedTree num = new BinaryIndexedTree(n); BinaryIndexedTree inds = new BinaryIndexedTree(n); Arrays.sort(points, (a, b) -> a.v == b.v ? b.orig - a.orig : b.v - a.v); for(int i = 0; i < n; ++i) { long amt = num.query(points[i].orig); long totinds = inds.query(points[i].orig); tot -= amt * points[i].x - totinds; num.update(points[i].orig, 1); inds.update(points[i].orig, points[i].orig); } System.out.println(tot); in.close(); } static class p{ int x, v, orig; p(int xi, int vi){ x = xi; v = vi; } } static class BinaryIndexedTree { public long[] tree; public BinaryIndexedTree(int n) { tree = new long[n+5]; } public void update(int index, int val) { index++; while(index < tree.length) { tree[index] += (long) val; index += index & -index; } } //sum from 0 to index public long query(int index) { long ret = 0; index++; while(index > 0) { ret += tree[index]; index -= index & -index; } return ret; } //sum from a to b public long query(int a, int b) { return query(b)-query(a-1); } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
/* / οΎŒοΎŒβ €β €β €β €β €β €β €β €β €β €β €β €γƒ  / )\β €β €β €β €β €β €β €β €β €β €β €β € Y (β €β €| ( Ν‘Β° ΝœΚ– Ν‘Β°οΌ‰β €βŒ’(β € γƒŽ (β € οΎ‰βŒ’ Y βŒ’γƒ½-く __/ | _β €ο½‘γƒŽ| γƒŽο½‘ |/ (β €γƒΌ '_δΊΊ`γƒΌ οΎ‰ β €|\ οΏ£ _δΊΊ'彑ノ β € )\β €β € q⠀⠀ / β €β €(\β € #β € / β €/β €β €β €/α½£====================D- /β €β €β €/β € \ \β €β €\ ( (β €)β €β €β €β € ) ).β €) (β €β €)β €β €β €β €β €( | / |β € /β €β €β €β €β €β € | / [_] β €β €β €β €β €[___] */ // Main Code at the Bottom import java.util.*; import java.lang.*; import java.io.*; import java.math.BigInteger; public class Main { //Fast IO class static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { boolean env=System.getProperty("ONLINE_JUDGE") != null; if(!env) { try { br=new BufferedReader(new FileReader("src\\input.txt")); } catch (FileNotFoundException e) { e.printStackTrace(); } } else br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static long MOD=1000000000+7; //Euclidean Algorithm static long gcd(long A,long B){ return (B==0)?A:gcd(B,A%B); } //Modular Exponentiation static long fastExpo(long x,long n){ if(n==0) return 1; if((n&1)==0) return fastExpo((x*x)%MOD,n/2)%MOD; return ((x%MOD)*fastExpo((x*x)%MOD,(n-1)/2))%MOD; } //Modular Inverse static long inverse(long x) { return fastExpo(x,MOD-2); } //Prime Number Algorithm static boolean isPrime(long n){ if(n<=1) return false; if(n<=3) return true; if(n%2==0 || n%3==0) return false; for(int i=5;i*i<=n;i+=6) if(n%i==0 || n%(i+2)==0) return false; return true; } //Reverse an array static void reverse(int arr[],int l,int r){ while(l<r) { int tmp=arr[l]; arr[l++]=arr[r]; arr[r--]=tmp; } } //Print array static void print1d(int arr[]) { out.println(Arrays.toString(arr)); } static void print2d(int arr[][]) { for(int a[]: arr) out.println(Arrays.toString(a)); } // Pair static class pair{ int x,y; pair(int a,int b){ this.x=a; this.y=b; } public boolean equals(Object obj) { if(obj == null || obj.getClass()!= this.getClass()) return false; pair p = (pair) obj; return (this.x==p.x && this.y==p.y); } public int hashCode() { return Objects.hash(x,y); } } static FastReader sc=new FastReader(); static PrintWriter out=new PrintWriter(System.out); //Main function(The main code starts from here) static int N=200000; static pair bit[]=new pair[N+1]; static void add(int idx,int val) { while(idx<=N) { bit[idx].x++; bit[idx].y+=val; idx+=idx&-idx; } } static pair sum(int idx) { pair res=new pair(0,0); while(idx>0) { res.x+=bit[idx].x; res.y+=bit[idx].y; idx-=idx&-idx; } return res; } public static void main (String[] args) throws java.lang.Exception { int test; test=1; //test=sc.nextInt(); while(test-->0){ for(int i=0;i<=N;i++) bit[i]=new pair(0,0); int n=sc.nextInt(); pair a[]=new pair[n]; for(int i=0;i<n;i++) a[i]=new pair(sc.nextInt(),-1); HashMap<Integer,Integer> map=new HashMap<>(); TreeSet<Integer> set=new TreeSet<>(); for(int i=0;i<n;i++) { a[i].y=sc.nextInt(); set.add(a[i].y); } Arrays.parallelSort(a,(p1,p2)->p1.x-p2.x); int idx=1; for(Integer x: set) map.put(x,idx++); long ans=0; for(int i=n-1;i>=0;i--) { idx=map.get(a[i].y); int val=a[i].x; pair r=sum(N),l=sum(idx-1); long x=r.y-l.y,y=r.x-l.x; ans+=x-val*y; add(idx,val); } out.println(ans); } out.flush(); out.close(); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# ---------------------------iye ha aam zindegi--------------------------------------------- import math import heapq, bisect import sys from collections import deque, defaultdict from fractions import Fraction import sys import threading from collections import defaultdict threading.stack_size(10**8) mod = 10 ** 9 + 7 mod1 = 998244353 # ------------------------------warmup---------------------------- import os import sys from io import BytesIO, IOBase sys.setrecursionlimit(300000) BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") # -------------------game starts now----------------------------------------------------import math class TreeNode: def __init__(self, k, v): self.key = k self.value = v self.left = None self.right = None self.parent = None self.height = 1 self.num_left = 1 self.num_total = 1 class AvlTree: def __init__(self): self._tree = None def add(self, k, v): if not self._tree: self._tree = TreeNode(k, v) return node = self._add(k, v) if node: self._rebalance(node) def _add(self, k, v): node = self._tree while node: if k < node.key: if node.left: node = node.left else: node.left = TreeNode(k, v) node.left.parent = node return node.left elif node.key < k: if node.right: node = node.right else: node.right = TreeNode(k, v) node.right.parent = node return node.right else: node.value = v return @staticmethod def get_height(x): return x.height if x else 0 @staticmethod def get_num_total(x): return x.num_total if x else 0 def _rebalance(self, node): n = node while n: lh = self.get_height(n.left) rh = self.get_height(n.right) n.height = max(lh, rh) + 1 balance_factor = lh - rh n.num_total = 1 + self.get_num_total(n.left) + self.get_num_total(n.right) n.num_left = 1 + self.get_num_total(n.left) if balance_factor > 1: if self.get_height(n.left.left) < self.get_height(n.left.right): self._rotate_left(n.left) self._rotate_right(n) elif balance_factor < -1: if self.get_height(n.right.right) < self.get_height(n.right.left): self._rotate_right(n.right) self._rotate_left(n) else: n = n.parent def _remove_one(self, node): """ Side effect!!! Changes node. Node should have exactly one child """ replacement = node.left or node.right if node.parent: if AvlTree._is_left(node): node.parent.left = replacement else: node.parent.right = replacement replacement.parent = node.parent node.parent = None else: self._tree = replacement replacement.parent = None node.left = None node.right = None node.parent = None self._rebalance(replacement) def _remove_leaf(self, node): if node.parent: if AvlTree._is_left(node): node.parent.left = None else: node.parent.right = None self._rebalance(node.parent) else: self._tree = None node.parent = None node.left = None node.right = None def remove(self, k): node = self._get_node(k) if not node: return if AvlTree._is_leaf(node): self._remove_leaf(node) return if node.left and node.right: nxt = AvlTree._get_next(node) node.key = nxt.key node.value = nxt.value if self._is_leaf(nxt): self._remove_leaf(nxt) else: self._remove_one(nxt) self._rebalance(node) else: self._remove_one(node) def get(self, k): node = self._get_node(k) return node.value if node else -1 def _get_node(self, k): if not self._tree: return None node = self._tree while node: if k < node.key: node = node.left elif node.key < k: node = node.right else: return node return None def get_at(self, pos): x = pos + 1 node = self._tree while node: if x < node.num_left: node = node.left elif node.num_left < x: x -= node.num_left node = node.right else: return (node.key, node.value) raise IndexError("Out of ranges") @staticmethod def _is_left(node): return node.parent.left and node.parent.left == node @staticmethod def _is_leaf(node): return node.left is None and node.right is None def _rotate_right(self, node): if not node.parent: self._tree = node.left node.left.parent = None elif AvlTree._is_left(node): node.parent.left = node.left node.left.parent = node.parent else: node.parent.right = node.left node.left.parent = node.parent bk = node.left.right node.left.right = node node.parent = node.left node.left = bk if bk: bk.parent = node node.height = max(self.get_height(node.left), self.get_height(node.right)) + 1 node.num_total = 1 + self.get_num_total(node.left) + self.get_num_total(node.right) node.num_left = 1 + self.get_num_total(node.left) def _rotate_left(self, node): if not node.parent: self._tree = node.right node.right.parent = None elif AvlTree._is_left(node): node.parent.left = node.right node.right.parent = node.parent else: node.parent.right = node.right node.right.parent = node.parent bk = node.right.left node.right.left = node node.parent = node.right node.right = bk if bk: bk.parent = node node.height = max(self.get_height(node.left), self.get_height(node.right)) + 1 node.num_total = 1 + self.get_num_total(node.left) + self.get_num_total(node.right) node.num_left = 1 + self.get_num_total(node.left) @staticmethod def _get_next(node): if not node.right: return node.parent n = node.right while n.left: n = n.left return n # -----------------------------------------------binary seacrh tree--------------------------------------- class SegmentTree1: def __init__(self, data, default='z', func=lambda a, b: min(a, b)): """initialize the segment tree with data""" self._default = default self._func = func self._len = len(data) self._size = _size = 1 << (self._len - 1).bit_length() self.data = [default] * (2 * _size) self.data[_size:_size + self._len] = data for i in reversed(range(_size)): self.data[i] = func(self.data[i + i], self.data[i + i + 1]) def __delitem__(self, idx): self[idx] = self._default def __getitem__(self, idx): return self.data[idx + self._size] def __setitem__(self, idx, value): idx += self._size self.data[idx] = value idx >>= 1 while idx: self.data[idx] = self._func(self.data[2 * idx], self.data[2 * idx + 1]) idx >>= 1 def __len__(self): return self._len def query(self, start, stop): if start == stop: return self.__getitem__(start) stop += 1 start += self._size stop += self._size res = self._default while start < stop: if start & 1: res = self._func(res, self.data[start]) start += 1 if stop & 1: stop -= 1 res = self._func(res, self.data[stop]) start >>= 1 stop >>= 1 return res def __repr__(self): return "SegmentTree({0})".format(self.data) # -------------------game starts now----------------------------------------------------import math class SegmentTree: def __init__(self, data, default=0, func=lambda a, b: a + b): """initialize the segment tree with data""" self._default = default self._func = func self._len = len(data) self._size = _size = 1 << (self._len - 1).bit_length() self.data = [default] * (2 * _size) self.data[_size:_size + self._len] = data for i in reversed(range(_size)): self.data[i] = func(self.data[i + i], self.data[i + i + 1]) def __delitem__(self, idx): self[idx] = self._default def __getitem__(self, idx): return self.data[idx + self._size] def __setitem__(self, idx, value): idx += self._size self.data[idx] = value idx >>= 1 while idx: self.data[idx] = self._func(self.data[2 * idx], self.data[2 * idx + 1]) idx >>= 1 def __len__(self): return self._len def query(self, start, stop): if start == stop: return self.__getitem__(start) stop += 1 start += self._size stop += self._size res = self._default while start < stop: if start & 1: res = self._func(res, self.data[start]) start += 1 if stop & 1: stop -= 1 res = self._func(res, self.data[stop]) start >>= 1 stop >>= 1 return res def __repr__(self): return "SegmentTree({0})".format(self.data) # -------------------------------iye ha chutiya zindegi------------------------------------- class Factorial: def __init__(self, MOD): self.MOD = MOD self.factorials = [1, 1] self.invModulos = [0, 1] self.invFactorial_ = [1, 1] def calc(self, n): if n <= -1: print("Invalid argument to calculate n!") print("n must be non-negative value. But the argument was " + str(n)) exit() if n < len(self.factorials): return self.factorials[n] nextArr = [0] * (n + 1 - len(self.factorials)) initialI = len(self.factorials) prev = self.factorials[-1] m = self.MOD for i in range(initialI, n + 1): prev = nextArr[i - initialI] = prev * i % m self.factorials += nextArr return self.factorials[n] def inv(self, n): if n <= -1: print("Invalid argument to calculate n^(-1)") print("n must be non-negative value. But the argument was " + str(n)) exit() p = self.MOD pi = n % p if pi < len(self.invModulos): return self.invModulos[pi] nextArr = [0] * (n + 1 - len(self.invModulos)) initialI = len(self.invModulos) for i in range(initialI, min(p, n + 1)): next = -self.invModulos[p % i] * (p // i) % p self.invModulos.append(next) return self.invModulos[pi] def invFactorial(self, n): if n <= -1: print("Invalid argument to calculate (n^(-1))!") print("n must be non-negative value. But the argument was " + str(n)) exit() if n < len(self.invFactorial_): return self.invFactorial_[n] self.inv(n) # To make sure already calculated n^-1 nextArr = [0] * (n + 1 - len(self.invFactorial_)) initialI = len(self.invFactorial_) prev = self.invFactorial_[-1] p = self.MOD for i in range(initialI, n + 1): prev = nextArr[i - initialI] = (prev * self.invModulos[i % p]) % p self.invFactorial_ += nextArr return self.invFactorial_[n] class Combination: def __init__(self, MOD): self.MOD = MOD self.factorial = Factorial(MOD) def ncr(self, n, k): if k < 0 or n < k: return 0 k = min(k, n - k) f = self.factorial return f.calc(n) * f.invFactorial(max(n - k, k)) * f.invFactorial(min(k, n - k)) % self.MOD # --------------------------------------iye ha combinations ka zindegi--------------------------------- def powm(a, n, m): if a == 1 or n == 0: return 1 if n % 2 == 0: s = powm(a, n // 2, m) return s * s % m else: return a * powm(a, n - 1, m) % m # --------------------------------------iye ha power ka zindegi--------------------------------- def sort_list(list1, list2): zipped_pairs = zip(list2, list1) z = [x for _, x in sorted(zipped_pairs)] return z # --------------------------------------------------product---------------------------------------- def product(l): por = 1 for i in range(len(l)): por *= l[i] return por # --------------------------------------------------binary---------------------------------------- def binarySearchCount(arr, n, key): left = 0 right = n - 1 count = 0 while (left <= right): mid = int((right + left) / 2) # Check if middle element is # less than or equal to key if (arr[mid] < key): count = mid + 1 left = mid + 1 # If key is smaller, ignore right half else: right = mid - 1 return count # --------------------------------------------------binary---------------------------------------- def countdig(n): c = 0 while (n > 0): n //= 10 c += 1 return c def binary(x, length): y = bin(x)[2:] return y if len(y) >= length else "0" * (length - len(y)) + y def countGreater(arr, n, k): l = 0 r = n - 1 # Stores the index of the left most element # from the array which is greater than k leftGreater = n # Finds number of elements greater than k while (l <= r): m = int(l + (r - l) / 2) if (arr[m] >= k): leftGreater = m r = m - 1 # If mid element is less than # or equal to k update l else: l = m + 1 # Return the count of elements # greater than k return (n - leftGreater) # --------------------------------------------------binary------------------------------------ n=int(input()) l=list(map(int,input().split())) s=list(map(int,input().split())) d1=defaultdict(deque) for i in range(n): d1[l[i]].append(s[i]) ind=[i for i in range(n)] ind=sort_list(ind,s) s.sort() d=defaultdict(deque) for i in range(n): d[s[i]].append(ind[i]) l.sort() u=[0]*n u1=[0]*n s=SegmentTree(u) s1=SegmentTree(u1) ans=0 for i in range(n): sp=d1[l[i]][0] d1[l[i]].popleft() pos=d[sp][0] d[sp].popleft() ans+=s.query(0,pos-1)*l[i]-s1.query(0,pos-1) s.__setitem__(pos,1) s1.__setitem__(pos,l[i]) print(ans)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T> inline T read(T &x) { char c = getchar(); bool f = 0; x = 0; while (!isdigit(c)) f |= c == '-', c = getchar(); while (isdigit(c)) x = (x << 1) + (x << 3) + (c ^ 48), c = getchar(); if (f) x = -x; return x; } template <typename T, typename... Args> inline void read(T &x, Args &...args) { read(x); read(args...); } template <typename T> inline void write(T x) { if (x < 0) putchar('-'), write(-x); else { if (x > 9) write(x / 10); putchar('0' + x % 10); } } int N; struct Z { int x, v, idx; } A[200005]; long long bit[200005]; int cbit[200005]; void add(int n, int v) { for (; n <= N; n += n & -n) bit[n] += v, cbit[n]++; } void get(int s, int e, long long &sum, int &cnt) { sum = cnt = 0; for (; e; e ^= e & -e) sum += bit[e], cnt += cbit[e]; for (s--; s; s ^= s & -s) sum -= bit[s], cnt -= cbit[s]; } int main() { read(N); for (int i = 1; i <= N; i++) read(A[i].x); for (int i = 1; i <= N; i++) read(A[i].v); sort(A + 1, A + N + 1, [](const Z &a, const Z &b) { return a.x < b.x; }); for (int i = 1; i <= N; i++) A[i].idx = i; sort(A + 1, A + N + 1, [](const Z &a, const Z &b) { return a.v < b.v; }); long long ans = 0; for (int i = N; i; i--) { add(A[i].idx, A[i].x); long long sum = 0; int cnt = 0; get(A[i].idx + 1, N, sum, cnt); ans += sum - (long long)A[i].x * cnt; } write(ans); puts(""); }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; signed main() { ios::ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long n; cin >> n; vector<pair<long long, long long> > a(n, {0, 0}); for (long long i = 0; i < n; i++) { long long x; cin >> x; a[i].first = x; } for (long long i = 0; i < n; i++) { long long v; cin >> v; a[i].second = v; } sort(a.begin(), a.end()); vector<long long> x, dp(n, 0); long long ans = 0; for (long long i = 0; i < n; i++) { if (i > 0) { long long v = upper_bound(x.begin(), x.end(), a[i].second) - x.begin(); dp[i] = dp[i - 1] + (i * (a[i].first - a[i - 1].first)); ans += dp[v] + (v * (a[i].first - a[v].first)); x.push_back(a[i].second); } else { x.push_back(a[i].second); } } cout << ans; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
numberofpoints=int(input()) initcoords=input().split(" ") speeds=input().split(" ") initcoords=tuple(map(int,initcoords)) speeds=tuple(map(int,speeds)) def twopoints(coords,velos): firstv=velos[0] secondv=velos[1] firstc=coords[0] secondc=coords[1] dif=abs(firstc-secondc) nextdif=abs((firstc+0.0001*firstv)-(secondc+0.0001*secondv)) if dif>nextdif: return 0 else: return dif lis=[] for first in range(numberofpoints): for second in range(first+1,numberofpoints): tup=(first,second) lis.append(tup) sum=0 for tuple in lis: a=(speeds[tuple[0]],speeds[tuple[1]]) b=(initcoords[tuple[0]],initcoords[tuple[1]]) sum+=twopoints(b,a) print(sum)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> struct fen { vector<T> fenwick; long long size; fen(long long sz) { size = sz; fenwick.resize(size); for (long long i = 0; i < size; i++) fenwick[i] = 0; } fen(vector<T> arr) { size = arr.size(); fenwick.resize(size); for (long long i = 0; i < size; i++) fenwick[i](0); for (long long i = 0; i < size; i++) update(i, arr[i]); } void add(long long index, T add) { for (long long k = index; k < size; k |= (~k & -~k)) { fenwick[k] = fenwick[k] + add; } } void update(long long index, T nval) { add(index, nval - rangeQuery(index, index)); } T query(long long to) { if (to < 0) return 0; T sum = 0; for (long long curr = to + 1; curr > 0; curr ^= (curr & -curr)) { sum = sum + fenwick[curr - 1]; } return sum; } T rangeQuery(long long from, long long to) { if (from > to) return 0; if (!from) return query(to); return query(to) - query(from - 1); } void prll() { for (long long i = 0; i < size; i++) cout << query(i) << " "; cout << endl; } }; const long long sz = 2e5 + 5; long long n; pair<long long, long long> xv[sz]; vector<pair<pair<long long, long long>, long long>> pos, neg; long long ppos[sz], npos[sz]; int main() { ios::sync_with_stdio(false); cin.tie(0); cin >> n; for (long long i = 0; i < n; i++) cin >> xv[i].first; for (long long i = 0; i < n; i++) cin >> xv[i].second; sort(xv, xv + n); for (long long i = 0; i < n; i++) { if (xv[i].second >= 0) pos.push_back({{xv[i].second, xv[i].first}, i}); else neg.push_back({{-xv[i].second, xv[i].first}, i}); } sort(pos.begin(), pos.end()); sort(neg.rbegin(), neg.rend()); long long pamt = pos.size(), namt = neg.size(); for (long long i = 0; i < pamt; i++) ppos[pos[i].second] = i; for (long long i = 0; i < namt; i++) npos[neg[i].second] = i; fen<long long> fp(n), fpcnt(n), fn(n), fncnt(n); long long poscnt = 0, negcnt = 0, tot = 0, negsum = 0; for (long long i = 0; i < n; i++) { if (xv[i].second >= 0) { long long rk = ppos[i]; long long bamt = fpcnt.query(rk - 1); tot += bamt * xv[i].first - fp.query(rk - 1); fp.update(rk, xv[i].first); fpcnt.update(rk, 1); tot += negcnt * xv[i].first - negsum; } else { long long rk = npos[i]; long long bamt = fncnt.query(rk - 1); tot += bamt * xv[i].first - fn.query(rk - 1); fn.update(rk, xv[i].first); fncnt.update(rk, 1); negsum += xv[i].first; negcnt++; } } cout << tot; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.TreeMap; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.util.Comparator; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author xwchen */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskF solver = new TaskF(); solver.solve(1, in, out); out.close(); } static class TaskF { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int[] x = in.nextIntArray(n); int[] v = in.nextIntArray(n); v = ArrayUtils.shrink(v); Point[] points = new Point[n]; for (int i = 0; i < n; ++i) { points[i] = new Point(x[i], v[i]); } Arrays.sort(points, Comparator.comparingInt(p -> p.x)); BinaryIndexedTree Vcnt = new BinaryIndexedTree(n); BinaryIndexedTree VXsum = new BinaryIndexedTree(n); long res = 0; for (int i = n - 1; i >= 0; --i) { int X = points[i].x; int V = points[i].v; long cnt = Vcnt.queryRange(V + 1, n); long sum = VXsum.queryRange(V + 1, n); res += sum - (X - 1) * cnt; Vcnt.update(V, 1); VXsum.update(V, X); } out.println(res); } class Point { int x; int v; public Point(int x, int v) { this.x = x; this.v = v; } } } static class BinaryIndexedTree { int n; long[] bit; public BinaryIndexedTree(int n) { this.n = n; bit = new long[n + 1]; } public void update(int i, int add) { while (i > 0 && i < n) { bit[i] += add; i = i + (i & (-i)); } } public int sum(int i) { int ans = 0; while (i > 0) { ans += bit[i]; i = i - (i & (-i)); } return ans; } public int queryRange(int i, int j) { return sum(j) - sum(i - 1); } } static class ArrayUtils { public static int[] shrink(int[] a) { int n = a.length; int[] ret = new int[n]; int[] b = new int[n]; TreeMap<Integer, Integer> rankOf = new TreeMap<>(); for (int i = 0; i < n; ++i) { b[i] = a[i]; } Arrays.sort(b); int p = 0; for (int i = 0; i < n; ++i) { if (i == 0 || b[i] != b[i - 1]) { ++p; } rankOf.put(b[i], p); } for (int i = 0; i < n; ++i) { ret[i] = rankOf.get(a[i]); } return ret; } } static class InputReader { private BufferedReader reader; private StringTokenizer tokenizer = new StringTokenizer(""); public InputReader(InputStream inputStream) { this.reader = new BufferedReader( new InputStreamReader(inputStream)); } public String next() { while (!tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { e.printStackTrace(); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.*; import java.util.*; import java.util.concurrent.TimeUnit; public class f624 implements Runnable{ public static void main(String[] args) { try{ new Thread(null, new f624(), "process", 1<<26).start(); } catch(Exception e){ System.out.println(e); } } public void run() { FastReader scan = new FastReader(); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); //PrintWriter out = new PrintWriter("file.out"); Task solver = new Task(); //int t = scan.nextInt(); int t = 1; for(int i = 1; i <= t; i++) solver.solve(i, scan, out); out.close(); } static class Task { static final int inf = Integer.MAX_VALUE; public void solve(int testNumber, FastReader sc, PrintWriter out) { int N = sc.nextInt(); tup[] points = new tup[N]; long[] v = new long[N]; for(int i = 0; i < N; i++) { points[i] = new tup(); points[i].a = sc.nextInt(); } for(int i = 0; i < N; i++) { points[i].b = sc.nextInt(); v[i] = points[i].b; } Arrays.sort(points, new tup()); //System.out.println(Arrays.toString(points)); int ID = 0; for(int i = 0; i < N; i++) { if(i == 0) { points[i].b = ++ID; continue; } if(v[i] == v[i-1]) points[i].b = ID; else points[i].b = ++ID; } //System.out.println(Arrays.toString(points)); Arrays.sort(points, new comp()); segt segtree = new segt(ID); long totalSum = 0; for(int i = 0; i < N; i++) { tup res = segtree.querySum((int)points[i].b, ID-1); long sum = res.a; long nodes = res.b; totalSum += sum - nodes * points[i].a; //System.out.println(sum + " " + nodes + " " + totalSum); segtree.update((int)points[i].b, (int)points[i].a); } out.println(totalSum); } static final tup ZERO = new tup(0, 0); static class segt { tup[] t; int N; public segt(int n) { t = new tup[4*n]; for(int i = 0; i < t.length; i++) { t[i] = new tup(0, 0); } N = n; } tup querySum(int l, int r) { return querySum(1, 0, N-1, l, r); } tup querySum(int v, int tl, int tr, int l, int r) { if (l > r) return ZERO; if (l == tl && r == tr) return t[v]; int tm = (tl + tr) / 2; tup A = querySum(v*2, tl, tm, l, Math.min(r, tm)); tup B = querySum(v*2+1, tm+1, tr, Math.max(l, tm+1), r); return new tup(A.a + B.a, A.b + B.b); } void update(int pos, int new_val) { update(1, 0, N-1, pos, new_val); } void update(int v, int tl, int tr, int pos, long new_val) { if (tl == tr) { t[v] = new tup(new_val + t[v].a, 1 + t[v].b); } else { int tm = (tl + tr) / 2; if (pos <= tm) update(v*2, tl, tm, pos, new_val); else update(v*2+1, tm+1, tr, pos, new_val); t[v].a = t[v*2].a + t[v*2+1].a; t[v].b = t[v*2].b + t[v*2+1].b; } } } } static long binpow(long a, long b, long m) { a %= m; long res = 1; while (b > 0) { if ((b & 1) == 1) res = res * a % m; a = a * a % m; b >>= 1; } return res; } static void sort(int[] x){ shuffle(x); Arrays.sort(x); } static void sort(long[] x){ shuffle(x); Arrays.sort(x); } static class comp implements Comparator<tup>{ @Override public int compare(tup o1, tup o2) { // TODO Auto-generated method stub return Long.compare(o2.a, o1.a); } } static class tup implements Comparable<tup>, Comparator<tup>{ long a, b; tup(long a,long b){ this.a=a; this.b=b; } public tup() { } @Override public int compareTo(tup o){ return Long.compare(b,o.b); } @Override public int compare(tup o1, tup o2) { return Long.compare(o1.b, o2.b); } @Override public int hashCode() { return Objects.hash(a, b); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; tup other = (tup) obj; return a==other.a && b==other.b; } @Override public String toString() { return a + " " + b; } } static void shuffle(int[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); int temp = a[i]; a[i] = a[r]; a[r] = temp; } } static void shuffle(long[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); long temp = a[i]; a[i] = a[r]; a[r] = temp; } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s))); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; inline long long read() { char ch = getchar(); long long p = 1, data = 0; while (ch < '0' || ch > '9') { if (ch == '-') p = -1; ch = getchar(); } while (ch >= '0' && ch <= '9') { data = (data << 3) + (data << 1) + (ch ^ 48); ch = getchar(); } return p * data; } inline long long lowbit(long long a) { return a & (-a); } inline long long qpow(long long a, long long b) { long long r = 1; while (b) { if (b & 1) r = a * r; a = a * a; b >>= 1; } return r; } inline long long gcd(long long a, long long b) { while (b ^= a ^= b ^= a %= b) ; return a; } inline long long lcm(long long a, long long b) { return a * b / gcd(a, b); } inline long long inv(long long a, long long p) { return qpow(a, p - 2); } const int maxn = 2e5 + 5; struct node { long long x, v; friend bool operator<(node a, node b) { return a.x == b.x ? a.v < b.v : a.x < b.x; } } a[maxn]; long long num[maxn << 2], sum[maxn << 2], ans, mx[maxn << 2]; void pushup(int rt) { sum[rt] = sum[rt << 1] + sum[rt << 1 | 1]; num[rt] = num[rt << 1] + num[rt << 1 | 1]; mx[rt] = max(mx[rt << 1], mx[rt << 1 | 1]); } void modify(int l, int r, int rt, int pos, long long v, long long w) { if (l == r) { num[rt] += 1; sum[rt] += v; mx[rt] = w; return; } int mid = l + r >> 1; if (pos <= mid) modify(l, mid, rt << 1, pos, v, w); else modify(mid + 1, r, rt << 1 | 1, pos, v, w); pushup(rt); } long long query(int l, int r, int rt, long long v, long long w) { if (l == r) { if (mx[rt] <= v) return abs(sum[rt] - num[rt] * w); else return 0; } int mid = l + r >> 1; long long ret = 0; ret += query(l, mid, rt << 1, v, w); ret += query(mid + 1, r, rt << 1 | 1, v, w); return ret; } int main() { int n = read(); for (int i = 1; i <= n; i++) a[i].x = read(); for (int i = 1; i <= n; i++) a[i].v = read(); sort(a + 1, a + 1 + n); for (int i = 1; i <= n; i++) { ans += query(1, i, 1, a[i].v, a[i].x); modify(1, n, 1, i, a[i].x, a[i].v); } printf("%lld", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) x = [int(a) for a in input().split()] v = [int(a) for a in input().split()] sum = 0 for i in range(1, n): for j in range(i, n): if x[j] < x[j-1]: temp = x[j] x[j] = x[j-1] x[j-1] = temp temp = v[j] v[j] = v[j-1] v[j-1] = temp for i in range(n): for j in range(i, n): if v[j] > v[i]: sum += x[j] - x[i] print(sum)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.*; import java.util.*; public class Solution { public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); int n = Integer.parseInt(br.readLine()); List<Point> points = new ArrayList(); StringTokenizer st = new StringTokenizer(br.readLine()); long[] x = new long[n]; long[] vel = new long[n]; for(int i=0;i<n;i++){ x[i] = Long.parseLong(st.nextToken()); } st = new StringTokenizer(br.readLine()); for(int i=0;i<n;i++){ vel[i] = Long.parseLong(st.nextToken()); } //HashMap<Long,Integer> velVal = getMap(vel); for(int i=0;i<n;i++){ Point point = new Point(x[i],vel[i]); points.add(point); } Collections.sort(points,(p1,p2)->{ if(p1.x< p2.x) return -1; else if(p1.x == p2.x) return 0; return 1; }); Map<Long,Integer> map = getMap(points); // points.stream().forEach(p->System.out.println(p.x+" "+p.vel)); long ans = 0; int negX = 0; int count = 0; for(int i=0;i<points.size();i++){ if(points.get(i).vel < 0){ negX+=points.get(i).x; count++; } else ans+= (count*points.get(i).x - negX); } Collections.sort(points,(p1,p2)->{ if(p1.vel< p2.vel) return -1; else if(p1.vel == p2.vel) { if(p1.x < p2.x)return -1; else if(p1.x > p2.x) return 1; return 0; } return 1; }); //points.stream().forEach(p->System.out.println(p.x+" "+p.vel)); long[][] ft = new long[n+1][2]; int ind = -1; for(int i=0;i<points.size();i++) { if(points.get(i).vel >=0) { ind = i; break; } long[] res = BIT(ft,map,points.get(i).x); long c = res[1]; long values = res[0]; ans+= (c*points.get(i).x-values); //System.out.println("ans =" +ans); } ft = new long[n+1][2]; for(int i = (ind==-1) ? points.size() : ind; i< points.size(); i++) { long[] res = BIT(ft,map,points.get(i).x); long c = res[1]; long values = res[0]; ans+= (c*points.get(i).x-values); //System.out.println("ans =" +ans); } out.println(ans); out.close(); } private static Map<Long,Integer> getMap(List<Point> points){ Map<Long,Integer> map = new HashMap(); int pos=1,neg = 1; for(int i=0;i<points.size();i++) { if(points.get(i).vel < 0) { map.put(points.get(i).x, neg); neg++; } else { map.put(points.get(i).x, pos); pos++; } } return map; } public static long[] BIT(long[][] ft, Map<Long,Integer> map,long val){ int v = map.get(val); long[] result = new long[2]; result[0]+=ft[v][0]; result[1]+=ft[v][1]; while(v > 0){ v -= ((~v) + 1)&v; result[0]+=ft[v][0]; result[1]+=ft[v][1]; } v = map.get(val); while(v < ft.length){ ft[v][0]+=val; ft[v][1]++; v += ((~v) + 1)&v; } return result; } } class Point{ long x; long vel; Point(long x, long vel){ this.x= x; this.vel = vel; } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.TreeMap; import java.util.InputMismatchException; import java.io.IOException; import java.util.Comparator; import java.util.TreeSet; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author KharYusuf */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastReader in = new FastReader(inputStream); PrintWriter out = new PrintWriter(outputStream); FMovingPoints solver = new FMovingPoints(); solver.solve(1, in, out); out.close(); } static class FMovingPoints { public void solve(int testNumber, FastReader s, PrintWriter w) { int n = s.nextInt(), MX = (int) 1e8; int[][] x = new int[n][2]; for (int i = 0; i < n; i++) x[i][0] = s.nextInt(); TreeSet<Integer> p = new TreeSet<>(), ne = new TreeSet<>(); TreeMap<Integer, Integer> po = new TreeMap<>(), nee = new TreeMap<>(); for (int i = 0; i < n; i++) { x[i][1] = s.nextInt(); if (x[i][1] > 0) p.add(x[i][1]); else if (x[i][1] < 0) ne.add(x[i][1] + MX); } int cnt = 0; for (int i : p) po.put(i, cnt++); cnt = 0; for (int i : ne) nee.put(i, cnt++); func.sortbyColumn(x, 0); long ans = 0, cntneg = 0, cntz = 0, cneg = 0, cz = 0; bit pos = new bit(n), neg = new bit(n); bit poscnt = new bit(p.size()), negcnt = new bit(ne.size()); for (int i = 0; i < n; i++) { if (x[i][1] > 0) { ans += x[i][0] * cntneg - cneg; ans += x[i][0] * cntz - cz; int cur = po.get(x[i][1]); ans += poscnt.query(cur) * (long) x[i][0] - pos.query(cur); poscnt.modify(cur, 1); pos.modify(cur, x[i][0]); } else if (x[i][1] < 0) { cntneg++; int v = nee.get(MX + x[i][1]); ans += negcnt.query(v) * (long) x[i][0] - neg.query(v); negcnt.modify(v, 1); neg.modify(v, x[i][0]); cneg += x[i][0]; } else { cntz++; cz += x[i][0]; ans += cneg; } } w.println(ans); } public class bit { public int n; public long[] t; public bit(int n) { t = new long[n]; this.n = n; } public void modify(int ind, long val) { for (; ind < n; ind = ind | (++ind)) t[ind] += val; } public long query(int ind) { long sum = 0; for (; ind >= 0; ind = (ind & (++ind)) - 1) sum += t[ind]; return sum; } } } static class bit { public int n; public int[] t; public bit(int n) { t = new int[n]; this.n = n; } public bit(int[] a, int n) { t = new int[n]; this.n = n; for (int i = 0; i < n; i++) { modify(i, a[i]); } } public void modify(int ind, int val) { for (; ind < n; ind = ind | (++ind)) t[ind] += val; } public int query(int ind) { int sum = 0; for (; ind >= 0; ind = (ind & (++ind)) - 1) sum += t[ind]; return sum; } } static class FastReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private FastReader.SpaceCharFilter filter; public FastReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class func { public static void sortbyColumn(int[][] arr, final int col) { Arrays.sort(arr, new Comparator<int[]>() { public int compare(final int[] entry1, final int[] entry2) { if (entry1[col] > entry2[col]) return 1; if (entry1[col] < entry2[col]) return -1; return 0; } }); } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; vector<pair<long long, long long>> v; long long arr[200005]; map<long long, long long> mp; map<long long, long long> rmp; pair<long long, long long> bit[200005]; set<long long> s; void insert(long long ind) { for (long long i = ind; i < 200005; i += i & -i) bit[i].first += 1, bit[i].second += rmp[ind]; } pair<long long, long long> query(long long ind) { pair<long long, long long> ret = {0, 0}; for (long long i = ind; i > 0; i -= i & -i) ret.first += bit[i].first, ret.second += bit[i].second; return ret; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); long long n; cin >> n; for (long long i = 0; i < n; i++) cin >> arr[i], s.insert(arr[i]); long long c = 1; for (auto i : s) rmp[c] = i, mp[i] = c++; for (long long i = 0; i < n; i++) { long long ve; cin >> ve; v.push_back({ve, mp[arr[i]]}); } sort(v.begin(), v.end()); reverse(v.begin(), v.end()); long long ans = 0; c = 0; long long val = 0; for (auto i : v) { pair<long long, long long> q = query(i.second); long long num = c - q.first; long long sum = val - q.second; ans += (sum - num * i.second); c++; val += rmp[i.second]; insert(i.second); } cout << ans << "\n"; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.*; import java.util.*; public class f_624_Div3 { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void print(int[] arr){ int len = arr.length; for(int i=0;i<len;i++){ System.out.print(arr[i]+" "); } System.out.print('\n'); } static int sorted_size; static long[] prefixsum; static long[] prefixcount; static int[] points; static int[] speeds; static int n; static int n_speeds; public static void main(String[] args) { FastReader io = new FastReader(); n = io.nextInt(); points = new int[n]; speeds = new int[n]; HashMap<Integer,Integer> map = new HashMap<>(); for(int i=0;i<n;i++){ points[i] = io.nextInt(); } for(int i=0;i<n;i++){ speeds[i] = io.nextInt(); map.putIfAbsent(points[i],speeds[i]); } Arrays.sort(points); for(int i=0;i<n;i++){ speeds[i] = map.get(points[i]); } map.clear(); //now we need to sort int [] sorted_speeds = speeds.clone(); Arrays.sort(sorted_speeds); HashSet<Integer> hs = new HashSet<>(); for(int i=0;i<n;i++){ hs.add(sorted_speeds[i]); } sorted_speeds = new int[hs.size()]; Iterator<Integer> itr = hs.iterator(); int i=0; while (itr.hasNext()){ sorted_speeds[i++] = itr.next(); } Arrays.sort(sorted_speeds); sorted_size = sorted_speeds.length; n_speeds = sorted_size; //now we have sorted speeds we need to create a prefixsum and prefix count prefixsum = new long[sorted_size+1]; prefixcount = new long[sorted_size+1]; // print(sorted_speeds); long answer =0; for(i=0;i<n;i++){ int pos = Arrays.binarySearch(sorted_speeds,speeds[i]); int count = query_count(pos); int sum = query_sum(pos); answer+=((count*points[i]*1L)-sum); update(pos,points[i]); } System.out.println(answer); } static void update(int x, int delta) { x++; for(; x <= n_speeds; x += x&-x){ prefixsum[x] += delta; prefixcount[x]+=1; } } static int query_count(int x) { x++; int sum = 0; for(; x > 0; x -= x&-x) sum += prefixcount[x]; return sum; } static int query_sum(int x) { x++; int sum = 0; for(; x > 0; x -= x&-x) sum += prefixsum[x]; return sum; } // OutputStream out = new BufferedOutputStream( System.out ); // for(int i=1;i<n;i++){ // out.write((max_divisor[i]+" ").getBytes()); //} // out.flush(); }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
//package Round624; import java.io.FileInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.*; /** * @author sguar <shugangcao@gmail.com> * strive for greatness * Created on 2020-01-10 */ public class E { InputStream is; PrintWriter out; private static final String INPUT_FILE_NAME = "/Users/sguar/IdeaProjects/kotlinLearn/src/input.txt"; void solve() { int n = ni(); int[] x = na(n); int[] v = na(n); Pair[] pairs = new Pair[n]; for (int i = 0; i < n; i++) { pairs[i] = new Pair(i, x[i]); } Arrays.sort(pairs, Comparator.comparingInt(o -> o.y)); Map<Integer, Integer> xMap = new HashMap<>(); Pair[] points = new Pair[n]; int cnt = 0; for (int i = 0; i < n; i++) { Pair p = pairs[i]; if (!xMap.containsKey(p.y)) { xMap.put(++cnt, p.y); } points[i] = new Pair(cnt, v[pairs[i].x]); } Arrays.sort(points, (o1, o2) -> { if (o1.y == o2.y) { return o1.x - o2.x; } return o1.y - o2.y; }); debug(xMap); debug(points); BIT bit = new BIT(n); long ans = 0; for (int i = 0; i < n; i++) { Pair p = points[i]; int realX = xMap.get(p.x); ans += bit.query(p.x, realX); bit.add(p.x, realX); } out.println(ans); } public class BIT { int n; long[] a; int[] cnt; BIT(int n) { this.n = n; this.a = new long[n << 1]; this.cnt = new int[n << 1]; } int lowBit(int x) { return x & (-x); } void add(int index, int cnt) { while (index <= this.n) { this.a[index] += cnt; this.cnt[index] += 1; index += lowBit(index); } } long query(int index, int now) { long sum = 0; while (index > 0) { sum += this.cnt[index] * now - this.a[index]; index = index - lowBit(index); } return sum; } } class Pair { int x; int y; Pair(int x, int y) { this.x = x; this.y = y; } @Override public String toString() { return "x: " + x + ", y: " + y; } } public static long invl(long a, long mod) { long b = mod; long p = 1, q = 0; while (b > 0) { long c = a / b; long d; d = a; a = b; b = d % b; d = p; p = q; q = d - c * q; } return p < 0 ? p + mod : p; } void run() throws Exception { is = oj ? System.in : new FileInputStream(INPUT_FILE_NAME); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); debug(System.currentTimeMillis() - s + "ms"); } public static void main(String[] args) throws Exception { new E().run(); } private byte[] inbuf = new byte[1024]; int lenbuf = 0; int ptrbuf = 0; private int readByte() { if (lenbuf == -1) throw new InputMismatchException(); if (ptrbuf >= lenbuf) { ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while ((b = readByte()) != -1 && isSpaceChar(b)) ; return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char) skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while (p < n && !(isSpaceChar(b))) { buf[p++] = (char) b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for (int i = 0; i < n; i++) map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } private boolean oj = System.getProperty("ONLINE_JUDGE") != null; private void debug(Object... o) { if (!oj) System.out.println(Arrays.deepToString(o)); } private void debug(Map map) { if (!oj) { if (map.isEmpty()) { System.out.println("map is empty"); } else { map.forEach(this::debug); } } } private void debug(Object k, Object v) { if (!oj) { System.out.println(k.toString() + ": " + v.toString()); } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/assoc_container.hpp> ///#pragma GCC target ("sse,sse2,sse3,ssse3,sse4,avx,sse4.1,sse4.2,mmx") #pragma GCC optimize ("unroll-loops") #pragma GCC optimize ("Ofast") #pragma GCC optimize ("O3") using namespace std; using namespace __gnu_pbds; #define int long long #define ff first #define ss second #define db double #define auf true #define pb push_back #define what(x) cerr << #x << " = " << x << '\n' const int N = 1e6 + 5, M = 3e3 + 5; const int inf = 1e18 + 100, mod = 1e9 + 7; const db eps = 1e-9; typedef tree < pair < int, int >, null_type, less < pair < int, int > >, rb_tree_tag, tree_order_statistics_node_update > ordered_set; typedef tree < int, null_type, less_equal < int >, rb_tree_tag, tree_order_statistics_node_update > ordered_multiset; mt19937_64 mt_rnd_64(chrono::steady_clock::now().time_since_epoch().count()); int rnd(int l, int r){ return mt_rnd_64() % (r - l + 1) + l; } pair < int, int > p[N]; ordered_set s; signed main() { // #ifndef _WIN32 // freopen("lz.in", "r", stdin); // freopen("lz.out", "w", stdout); // #endif ios_base::sync_with_stdio(0); cin.tie(0); int n; cin >> n; for (int i = 1; i <= n; ++i) cin >> p[i].ff; for (int i = 1; i <= n; ++i) cin >> p[i].ss; sort(p + 1, p + n + 1); int ans = 0; for (int i = 1; i <= n; ++i) { int cnt = s.order_of_key({p[i].ss, 0}); ans += cnt * p[i].ff; s.insert({p[i].ss, i}); } s.clear(); for (int i = n; i >= 1; --i) { int cnt = (int)s.size() - s.order_of_key({p[i].ss - 1, n + 1}); ans -= cnt * p[i].ff; s.insert({p[i].ss, i}); } cout << ans; return 0; } /// hto ya? zvychayna domohospodarka chy president Ykrainy? /// οΏ½οΏ½οΏ½)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; constexpr int maxN = 2e5 + 43; int n; vector<pair<int, int>> point; vector<int> val, cnt, cval; int LSOne(int k) { return (k & (-k)); } void update(vector<int>& f, int pos, int val) { for (; pos <= n; pos += LSOne(pos)) f[pos] += val; } long long rsq(vector<int>& f, int pos) { long long sum = 0; for (; pos; pos -= LSOne(pos)) sum += f[pos]; return sum; } bool Comp(const pair<int, int>& a, const pair<int, int>& b) { return a.first < b.first; } int main() { ios_base::sync_with_stdio(false); cin >> n; point.resize(n + 1); val.resize(n + 1); cnt.resize(n + 1); cval.resize(n + 1); for (int i = 1; i <= n; ++i) { cin >> point[i].first; } for (int i = 1; i <= n; ++i) { cin >> point[i].second; val[i] = point[i].second; } sort(point.begin() + 1, point.begin() + n + 1, Comp); sort(val.begin(), val.begin() + n + 1); long long ans = 0; for (int i = 1; i <= n; ++i) { int pos = lower_bound(val.begin() + 1, val.begin() + n + 1, point[i].second) - val.begin(); ans += rsq(cnt, pos - 1) * point[i].first - rsq(cval, pos - 1); update(cnt, pos, 1); update(cval, pos, point[i].first); } cout << ans; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mx = 2 * 1e5 + 5; const long long mod = 1e9 + 7; pair<long long, long long> arr[mx * 4]; void update(int node, int left, int right, int pos, long long val) { if (left == right) { arr[node].first++; arr[node].second += val; return; } int mid = (left + right) / 2; if (pos <= mid) { update(node * 2, left, mid, pos, val); } else { update(node * 2 + 1, mid + 1, right, pos, val); } arr[node].first = arr[node * 2].first + arr[node * 2 + 1].first; arr[node].second = arr[node * 2].second + arr[node * 2 + 1].second; return; } pair<long, long> sum(pair<long long, long long> a, pair<long long, long long> b) { return {a.first + b.first, a.second + b.second}; } pair<long long, long long> query(int node, int left, int right, int l, int r) { if (right < l || left > r) { return {0, 0}; } if (right <= r && left >= l) { return {arr[node].first, arr[node].second}; } int mid = (left + right) / 2; return sum(query(node * 2, left, mid, l, r), query(node * 2 + 1, mid + 1, right, l, r)); } int main() { int n; cin >> n; pair<long long, long long> p[n + 1]; map<long long, int> mp; for (int i = 0; i < n; i++) { cin >> p[i].first; } for (int i = 0; i < n; i++) { cin >> p[i].second; mp[p[i].second] = i; } int cur = 0; for (auto& i : mp) { i.second = cur; cur++; } for (int i = 0; i < n; i++) { p[i].second = mp[p[i].second]; } sort(p, p + n); long long ans = 0; for (int i = 0; i < n; i++) { int myv = p[i].second; int myx = p[i].first; pair<int, int> cnt = query(1, 0, n, 0, myv); ans += (1LL * myx * cnt.first); ans -= cnt.second; update(1, 0, n, myv, myx); } update(1, 0, n, 0, 5); pair<int, int> cnt = query(1, 0, n - 1, 0, 0); cout << ans; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #include<ext/pb_ds/assoc_container.hpp> #include<ext/pb_ds/tree_policy.hpp> using namespace std; using namespace __gnu_pbds; #define ll long long #define FI first #define SE second #define pb push_back #define eb emplace_back #define mod 1000000007 #define all(c) (c).begin(),(c).end() #define LB lower_bound #define UB upper_bound #define max3(a,b,c) max(c,max(a,b)) #define min3(a,b,c) min(c,min(a,b)) #define mems(s, n) memset(s, n, sizeof(s)) #define NINF INT_MIN #define INF INT_MAX #define int ll int #define OOK order_of_key //no of elements less than #define FBO find_by_order //iterator pointing kth element;indexing starts from 0 #define CK3(x,y,z) cout<<(x)<<" "<<(y)<<" "<<(z)<<endl #define CK4(a,b,c,d) cout<<(a)<<" "<<(b)<<" "<<(c)<<" "<<(d)<<endl typedef pair<int,int> PII; typedef pair<pair<int,int>,int> PPII; typedef map<int,PII>MII; typedef vector<int> VI; template <typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; /*int power(int a, int b) {int x=1,y=a;while(b>0){if(b%2){x =(x*y)%mod;}y =(y*y)%mod;b/=2;}return x%mod;} */ //int modInverse(int a, int m) {return power(a, m-2);} //gcd(a,m)=1 //int root(int x){return x==f[x]?x:f[x]=root(f[x]);} MII t; /*void build( int v, int tl, int tr) { if (tl == tr) { t[v] = a[tl]; } else { int tm = (tl + tr) / 2; build(a, v*2, tl, tm); build(a, v*2+1, tm+1, tr); t[v] = t[v*2] + t[v*2+1]; } } int sum(int v, int tl, int tr, int l, int r) { if (l > r) return 0; if (l == tl && r == tr) { return t[v]; } int tm = (tl + tr) / 2; return sum(v*2, tl, tm, l, min(r, tm)) + sum(v*2+1, tm+1, tr, max(l, tm+1), r); } */ void update(int v, int tl, int tr, int l, int r, int add,int r1) { if (l > r) return; if (l == tl && r == tr) { t[v].FI += add,t[v].SE+=r1; } else { int tm = (tl + tr) / 2; update(v*2, tl, tm, l, min(r, tm), add,(int)r1); update(v*2+1, tm+1, tr, max(l, tm+1), r, add,(int)r1); } } PII get(int v, int tl, int tr, int pos) { if (tl == tr) return t[v]; int tm = (tl + tr) / 2; if (pos <= tm) {PII hp=get(v*2, tl, tm, pos);return {t[v].FI + hp.FI,t[v].SE +hp.SE};} else {PII hp=get(v*2+1, tm+1, tr, pos); return {t[v].FI + hp.FI,t[v].SE + hp.SE};} } signed main() { ios::sync_with_stdio(false); cin.tie(0); int T=1,T1=0;//cin>>T; while(T1++<T) { int n; cin>>n;int ans=0;vector<PII>ar(n); for(int i=0;i<n;i++) { cin>>ar[i].FI; } for(int i=0;i<n;i++) { cin>>ar[i].SE;ar[i].SE+=100000000; update(1,0,200000005,ar[i].SE,200000005,ar[i].FI,(int)1); } sort(all(ar)); int sum1=0; for(int i=0;i<n;i++) { sum1+=ar[i].FI; PII x=get(1,0,200000005,ar[i].SE-1); //cout<<x.FI<<" "<<x.SE<<" "; x.FI=(n*(n+1))/2-sum1-x.FI;x.SE=n-i-1-x.SE; //cout<<x.FI-ar[i].FI*x.SE<<endl; ans+=max((int)0,x.FI-ar[i].FI*x.SE); update(1,0,200000005,ar[i].SE,200000005,-ar[i].FI,(int)-1); } cout<<ans<<endl; } return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int x[100010 * 2], v[100010 * 2]; scanf("%d", &n); for (int i = 0; i < n; i++) { scanf("%d", &x[i]); } for (int i = 0; i < n; i++) { scanf("%d", &v[i]); } int ans = 0; for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { if (x[i] < x[j]) { if (v[i] > v[j]) continue; else ans += x[j] - x[i]; } else if (x[i] > x[j]) { if (v[j] > v[i]) continue; else ans += x[i] - x[j]; } else continue; } } printf("%d", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.math.*; import java.io.*; import java.util.*; import java.awt.*; public class Main implements Runnable { @Override public void run() { try { new Solver().solve(); System.exit(0); } catch (Exception | Error e) { e.printStackTrace(); System.exit(1); } } public static void main(String[] args) { //new Thread(null, new Main(), "Solver", 1l << 25); new Main().run(); } } class Solver { final Helper hp; final int MAXN = 10_004; final long MOD = (long) 1e9 + 7; final Timer timer; final TimerTask task; Solver() { hp = new Helper(MOD, MAXN); hp.initIO(System.in, System.out); timer = new Timer(); task = new TimerTask() { @Override public void run() { try { hp.flush(); System.exit(0); } catch (Exception e) { } } }; //timer.schedule(task, 4700); } void solve() throws Exception { int i, j, k; boolean testCases = true; int tc = testCases ? hp.nextInt() : 1; for (int tce = 1; tce <= tc; tce++) { int N = hp.nextInt(), D = hp.nextInt(); int[] parent = solve(N, D); if (parent == null) { hp.println("NO"); } else { hp.println("YES"); for (i = 1; i < N; ++i) hp.printsp(parent[i] + 1); hp.println(); } } timer.cancel(); hp.flush(); } HashMap<Long, int[]> mem = new HashMap<>(); int[] solve(int n, int d) { if (n < 0 || d < 0) return null; //System.err.println(n + " " + d + " -> "); final long hash = n * MAXN + d; if (d == 0) return n <= 1 ? new int[] {-7} : null; else if (mem.containsKey(hash)) return mem.get(hash); int upperBound = n * (n - 1) >> 1, lowerBound = 0; for (int i = 0, tmp = n; tmp > 0; ++i) { lowerBound += Math.min(tmp, 1 << i) * i; tmp -= 1 << i; } //System.err.println(lowerBound + " " + upperBound); if (d < lowerBound || d > upperBound) { mem.put(hash, null); return null; } int[] parent = new int[n]; Arrays.fill(parent, -7); if (d == lowerBound) { for (int i = 1; i < n; ++i) parent[i] = i - 1 >> 1; mem.put(hash, Arrays.copyOf(parent, parent.length)); return parent; } else if (d == upperBound) { for (int i = 1; i < n; ++i) parent[i] = i - 1; mem.put(hash, Arrays.copyOf(parent, parent.length)); return parent; } else { for (int l = 1; l <= n; ++l) { //int l = 3; { int r = n - 1 - l; for (int x = 1; x <= d; ++x) { //int x = 6; { int y = d - x; int[] left = solve(l, x - l), right = solve(r, y - r); if (left != null && right != null) { left[0] = right[0] = 0; for (int i = 1; i < l; ++i) left[i] += 1; for (int i = 1; i < r; ++i) right[i] += l + 1; int k = 1; for (int i = 0; i < l; ++i) parent[k++] = left[i]; for (int i = 0; i < r; ++i) parent[k++] = right[i]; mem.put(hash, Arrays.copyOf(parent, parent.length)); return parent; } } } mem.put(hash, null); return null; } } } class Helper { final long MOD; final int MAXN; final Random rnd; public Helper(long mod, int maxn) { MOD = mod; MAXN = maxn; rnd = new Random(); } public static int[] sieve; public static ArrayList<Integer> primes; public void setSieve() { primes = new ArrayList<>(); sieve = new int[MAXN]; int i, j; for (i = 2; i < MAXN; ++i) if (sieve[i] == 0) { primes.add(i); for (j = i; j < MAXN; j += i) { sieve[j] = i; } } } public static long[] factorial; public void setFactorial() { factorial = new long[MAXN]; factorial[0] = 1; for (int i = 1; i < MAXN; ++i) factorial[i] = factorial[i - 1] * i % MOD; } public long getFactorial(int n) { if (factorial == null) setFactorial(); return factorial[n]; } public long ncr(int n, int r) { if (r > n) return 0; if (factorial == null) setFactorial(); long numerator = factorial[n]; long denominator = factorial[r] * factorial[n - r] % MOD; return numerator * pow(denominator, MOD - 2, MOD) % MOD; } public long[] getLongArray(int size) throws Exception { long[] ar = new long[size]; for (int i = 0; i < size; ++i) ar[i] = nextLong(); return ar; } public int[] getIntArray(int size) throws Exception { int[] ar = new int[size]; for (int i = 0; i < size; ++i) ar[i] = nextInt(); return ar; } public String[] getStringArray(int size) throws Exception { String[] ar = new String[size]; for (int i = 0; i < size; ++i) ar[i] = next(); return ar; } public String joinElements(long... ar) { StringBuilder sb = new StringBuilder(); for (long itr : ar) sb.append(itr).append(" "); return sb.toString().trim(); } public String joinElements(int... ar) { StringBuilder sb = new StringBuilder(); for (int itr : ar) sb.append(itr).append(" "); return sb.toString().trim(); } public String joinElements(String... ar) { StringBuilder sb = new StringBuilder(); for (String itr : ar) sb.append(itr).append(" "); return sb.toString().trim(); } public String joinElements(Object... ar) { StringBuilder sb = new StringBuilder(); for (Object itr : ar) sb.append(itr).append(" "); return sb.toString().trim(); } public long gcd(long a, long b) { return b == 0 ? a : gcd(b, a % b); } public int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } public long max(long... ar) { long ret = ar[0]; for (long itr : ar) ret = Math.max(ret, itr); return ret; } public int max(int... ar) { int ret = ar[0]; for (int itr : ar) ret = Math.max(ret, itr); return ret; } public long min(long... ar) { long ret = ar[0]; for (long itr : ar) ret = Math.min(ret, itr); return ret; } public int min(int... ar) { int ret = ar[0]; for (int itr : ar) ret = Math.min(ret, itr); return ret; } public long sum(long... ar) { long sum = 0; for (long itr : ar) sum += itr; return sum; } public long sum(int... ar) { long sum = 0; for (int itr : ar) sum += itr; return sum; } public void shuffle(int[] ar) { int r; for (int i = 0; i < ar.length; ++i) { r = rnd.nextInt(ar.length); if (r != i) { ar[i] ^= ar[r]; ar[r] ^= ar[i]; ar[i] ^= ar[r]; } } } public void shuffle(long[] ar) { int r; for (int i = 0; i < ar.length; ++i) { r = rnd.nextInt(ar.length); if (r != i) { ar[i] ^= ar[r]; ar[r] ^= ar[i]; ar[i] ^= ar[r]; } } } public void reverse(int[] ar) { int r; for (int i = 0; i < ar.length; ++i) { r = ar.length - 1 - i; if (r > i) { ar[i] ^= ar[r]; ar[r] ^= ar[i]; ar[i] ^= ar[r]; } } } public void reverse(long[] ar) { int r; for (int i = 0; i < ar.length; ++i) { r = ar.length - 1 - i; if (r > i) { ar[i] ^= ar[r]; ar[r] ^= ar[i]; ar[i] ^= ar[r]; } } } public long pow(long base, long exp, long MOD) { base %= MOD; long ret = 1; while (exp > 0) { if ((exp & 1) == 1) ret = ret * base % MOD; base = base * base % MOD; exp >>= 1; } return ret; } static final int BUFSIZE = 1 << 20; static byte[] buf; static int index, total; static InputStream in; static BufferedWriter bw; public void initIO(InputStream is, OutputStream os) { try { in = is; bw = new BufferedWriter(new OutputStreamWriter(os)); buf = new byte[BUFSIZE]; } catch (Exception e) { } } public void initIO(String inputFile, String outputFile) { try { in = new FileInputStream(inputFile); bw = new BufferedWriter(new OutputStreamWriter( new FileOutputStream(outputFile))); buf = new byte[BUFSIZE]; } catch (Exception e) { } } private int scan() throws Exception { if (index >= total) { index = 0; total = in.read(buf); if (total <= 0) return -1; } return buf[index++]; } public String next() throws Exception { int c; for (c = scan(); c <= 32; c = scan()) ; StringBuilder sb = new StringBuilder(); for (; c > 32; c = scan()) sb.append((char) c); return sb.toString(); } public int nextInt() throws Exception { int c, val = 0; for (c = scan(); c <= 32; c = scan()) ; boolean neg = c == '-'; if (c == '-' || c == '+') c = scan(); for (; c >= '0' && c <= '9'; c = scan()) val = (val << 3) + (val << 1) + (c & 15); return neg ? -val : val; } public long nextLong() throws Exception { int c; long val = 0; for (c = scan(); c <= 32; c = scan()) ; boolean neg = c == '-'; if (c == '-' || c == '+') c = scan(); for (; c >= '0' && c <= '9'; c = scan()) val = (val << 3) + (val << 1) + (c & 15); return neg ? -val : val; } public void print(Object a) throws Exception { bw.write(a.toString()); } public void printsp(Object a) throws Exception { print(a); print(" "); } public void println() throws Exception { bw.write("\n"); } public void println(Object a) throws Exception { print(a); println(); } public void flush() throws Exception { bw.flush(); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct Node { int l, r; int cnt = 0; long long sum = 0; int left = -1; int right = -1; } NIL; vector<Node> st; Node merge(Node x, Node y) { Node z; z.cnt = x.cnt + y.cnt; z.sum = x.sum + y.sum; return z; } void add(int u, int x, int v) { if (not(st[u].l <= v and v <= st[u].r)) return; if (st[u].l == v and v == st[u].r) { st[u].cnt += 1; st[u].sum += x; return; } int m = (st[u].l + st[u].r) >> 1; if (st[u].left == -1) { Node x; x.l = st[u].l, x.r = m; st[u].left = int(st.size()); st.push_back(x); } if (st[u].right == -1) { Node x; x.l = m + 1, x.r = st[u].r; st[u].right = int(st.size()); st.push_back(x); } add(st[u].left, x, v); add(st[u].right, x, v); Node s = merge(st[st[u].left], st[st[u].right]); st[u].sum = s.sum; st[u].cnt = s.cnt; }; Node gteq(int u, int L, int R) { if (u == -1 or st[u].r < L or R < st[u].l) return NIL; if (L <= st[u].l and st[u].r <= R) return st[u]; return merge(gteq(st[u].left, L, R), gteq(st[u].right, L, R)); } int main() { ios::sync_with_stdio(false); cin.tie(0); int n; cin >> n; vector<pair<int, int> > p(n); for (int i = 0; i < n; i++) cin >> p[i].first; for (int i = 0; i < n; i++) cin >> p[i].second; sort(begin(p), end(p)); Node root; root.l = -1e8; root.r = 1e8; st.emplace_back(root); long long ans = 0; for (int i = n - 1; i >= 0; i--) { Node s = gteq(0, p[i].second, 1e8); ans += s.sum - s.cnt * p[i].first; add(0, p[i].first, p[i].second); } cout << ans << '\n'; return (0); }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long n, a1[202020], a2[202020], od[202020]; pair<int, int> p[202020]; long long ans; map<int, int> mp; void gx1(int x, int v) { for (int i = x; i < 200200; i += i & -i) { a1[i] += v; } } void gx2(int x, int v) { for (int i = x; i < 200200; i += i & -i) { a2[i] += v; } } int gt1(int p) { long long rt = 0; for (int i = p; i > 0; i -= i & -i) { rt += a1[i]; } return rt; } int gt2(int p) { long long rt = 0; for (int i = p; i > 0; i -= i & -i) { rt += a2[i]; } return rt; } int main() { cin >> n; for (int i = 1; i <= n; i++) { cin >> p[i].first; } for (int i = 1; i <= n; i++) { cin >> p[i].second; od[i] = p[i].second; } sort(od + 1, od + n + 1); sort(p + 1, p + n + 1); int pp = 1; for (int i = 1; i <= n; i++) { if (!mp[od[i]]) { mp[od[i]] = pp; pp++; } } for (int i = 1; i <= n; i++) { ans += 1ll * p[i].first * gt1(mp[p[i].second]) - 1ll * gt2(mp[p[i].second]); gx1(mp[p[i].second], 1); gx2(mp[p[i].second], p[i].first); } cout << ans << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.*; import java.util.*; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Housni Abdellatif */ public class Main { public static void main(String[] args) throws IOException{ InputStream inputStream = System.in; OutputStream outputStream = System.out; Task.Reader in = new Task.Reader(); PrintWriter out = new PrintWriter(outputStream); Task solver = new Task(); solver.solve(1, in, out); out.close(); } static class Task { public void solve(int testNumber, Reader reader, PrintWriter out) throws IOException { int n = reader.nextInt(); Point[] pts = new Point[n]; List<Integer> vs = new ArrayList<>(); for (int i = 0; i < n; ++i) { pts[i] = new Point(); pts[i].x = reader.nextInt(); } for (int i = 0; i < n; ++i) { int v = reader.nextInt(); pts[i].v = v; vs.add(v); } Collections.sort(vs); Arrays.sort(pts, (p1, p2) -> p1.x - p2.x); long ans = 0; int[] bitV = new int[n]; int[] bitX = new int[n]; for (int i = 0; i < n; ++i) { int pos = getFirstIndex(vs, pts[i].v); long cnt = sum(bitV, pos); long s = sum(bitX, pos); //out.println(s); ans += cnt * pts[i].x - s; update(bitV, pos, 1); update(bitX, pos, pts[i].x); } out.println(ans); } private void update(int[] bit, int index, int delta) { while (index < bit.length) { bit[index] += delta; index |= (index + 1); } } private long sum(int[] bit, int r) { long res = 0; while (r >= 0) { res += bit[r]; r = (r & (r + 1)) - 1; } return res; } private int getFirstIndex(List<Integer> list, int x) { int l = 0; int r = list.size() - 1; while ( l < r) { int m = (l + r) / 2; if (list.get(m) < x) { l = m + 1; }else { r = m; } } return l; } static class Point { int x; int v; } static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.ArrayList; import java.util.Arrays; import java.util.HashSet; import java.util.Scanner; public class cf { public static void main(String args[]) { Scanner input = new Scanner(System.in); int n = input.nextInt(); int arr[] = new int[n]; for(int i=0;i<n;i++) { arr[i] = input.nextInt(); } int arr_v[] = new int[n]; for(int i=0;i<n;i++) { arr_v[i] = input.nextInt(); } int res = 0; for(int i=0;i<n;i++) { for(int j=i+1;j<n;j++) { // System.out.println("x1 = "+arr[i]+" x2 = "+arr[j]+" v1 = "+arr_v[i]+" v2 = "+arr_v[j]); // System.out.println(mp(arr[i],arr[j],arr_v[i],arr_v[j])); res+=mp(arr[i],arr[j],arr_v[i],arr_v[j]); } } System.out.println(res); } static int mp(int x1,int x2,int v1,int v2) { if((x2>x1 && v2>v1) || (x1>x2 && v1>v2) || (v1==v2)) { return Math.abs(x2-x1); } return 0; } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
/* package codechef; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class p6 { static class Input { private StringTokenizer tokenizer = null; private BufferedReader reader; public Input(InputStream inputStream) { reader = new BufferedReader(new InputStreamReader(inputStream)); } public String nextLine() { try { return reader.readLine(); } catch (IOException e) { throw new RuntimeException(); } } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(nextLine()); } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public int[] nextIntArray(int n, int add) { int[] result = new int[n]; for (int i = 0; i < n; i++) { result[i] = nextInt() + add; } return result; } public long[] nextLongArray(int n, long add) { long[] result = new long[n]; for (int i = 0; i < n; i++) { result[i] = nextLong() + add; } return result; } public int[] nextIntArray(int n) { return nextIntArray(n, 0); } } static int get(int a[],int in) { int sum=0; while(in>0) { sum+=a[in]; in-=in&(-in); } return sum; } static void upd(int a[],int in ,int val) { int n=a.length-1; while(in<=n) { a[in]+=val; in+=in&(-in); } } static PrintWriter out=new PrintWriter(System.out); static int search(int a[],int e) { //out.println("ele"+e); int l=0,r=a.length-1,mid,ans=r; while(l<=r) { mid=(l+r)/2; // out.println(l+" "+r+" "+a[mid]); if(a[mid]>=e) { ans=Math.min(ans,mid); r=mid-1; } else l=mid+1; } // out.println(ans); return ans; } public static void main (String[] args) throws java.lang.Exception { Input s=new Input(System.in); int t=1; while(t-->0) { int n=s.nextInt(); int a[]=s.nextIntArray(n); int b[]=s.nextIntArray(n); myclass m1[]=new myclass[n]; TreeSet<Integer> hs=new TreeSet<>(); for(int i=0;i<n;i++) { m1[i]=new myclass(a[i],b[i]); hs.add(b[i]); } Arrays.sort(m1,new myclass()); int c[]=new int[hs.size()]; int i1=0; for(Integer el:hs) c[i1++]=el; int p1[]=new int[hs.size()+1]; int p2[]=new int[hs.size()+1]; long ans=0; for(int i=0;i<n;i++) { int in=search(c,m1[i].b); //out.println(get(p1,in+1)+" "+get(p2,in+1)); ans+=get(p1,in+1)*m1[i].a-get(p2,in+1); upd(p1,in+1,1); upd(p2,in+1,m1[i].a); // out.println(m1[i].b+" "+ans+" "+in); } out.println(ans); } out.flush(); } } class myclass implements Comparator<myclass> { int a,b; myclass(int a,int b) { this.a=a; this.b=b; } myclass(){} public int compare(myclass m1,myclass m2) { if(m1.a!=m2.a) return m1.a-m2.a; else return m1.b-m2.b; } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using LL = long long int; template <class T> struct Binary_Indexed_Tree { int maxSize; T* data; Binary_Indexed_Tree(int init_Size) : maxSize(init_Size) { data = new T[maxSize + 5]; memset(data, 0, sizeof(T) * (maxSize + 5)); } ~Binary_Indexed_Tree() { delete[] data; } void add(int loc, T val) { while (loc < maxSize) { data[loc] += val; loc += (loc & (-loc)); } return; } T query(int loc) { T ans = 0; while (loc > 0) { ans += data[loc]; loc -= (loc & (-loc)); } return ans; } }; struct point { LL x, v; point(LL x_ = 0, LL v_ = 0) : x(x_), v(v_) {} bool operator<(const point& b) { return x < b.x; } }; const int maxn = 2e5 + 5; point p[maxn]; int n = 0, v[maxn]; int main(void) { scanf("%d", &n); for (int i = 0; i < n; ++i) scanf("%lld", &p[i].x); for (int i = 0; i < n; ++i) { scanf("%lld", &p[i].v); v[i] = p[i].v; } sort(p, p + n); sort(v, v + n); int cnt = unique(v, v + n) - v; auto getid = [=](LL val) { return lower_bound(v, v + cnt, val) - v + 1; }; Binary_Indexed_Tree<LL> c(n); Binary_Indexed_Tree<LL> x(n); LL ans = 0; for (int i = 0; i < n; ++i) { LL id = getid(p[i].v); LL cnt = c.query(id); LL sum = x.query(id); ans += (cnt * p[i].x - sum); c.add(id, 1); x.add(id, p[i].x); } printf("%lld", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
/* If you want to aim high, aim high Don't let that studying and grades consume you Just live life young ****************************** If I'm the sun, you're the moon Because when I go up, you go down ******************************* I'm working for the day I will surpass you */ import java.util.*; import java.io.*; import java.math.*; public class F { public static void main(String omkar[]) throws Exception { BufferedReader infile = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(infile.readLine()); int N = Integer.parseInt(st.nextToken()); int[] post = readArr(N, infile, st); int[] vel = readArr(N, infile, st); //compress vel int boof = compress(vel); Point[] arr = new Point[N]; for(int i=0; i < N; i++) arr[i] = new Point(post[i], vel[i]); //sort by location Arrays.sort(arr); FenwickTree pos = new FenwickTree(boof+2); FenwickTree pc = new FenwickTree(boof+2); FenwickTree neg = new FenwickTree(boof+2); FenwickTree nc = new FenwickTree(boof+2); long res = 0L; for(Point p: arr) { if(p.vel < 0) { long temp = nc.find((int)p.vel, boof)*p.pos; temp -= neg.find((int)p.vel, boof); temp += pos.find(1, boof)-pc.find((int)p.vel, boof)*p.pos; nc.add((int)p.pos, 1); neg.add((int)p.vel, p.pos); res += temp; } else { long temp = pc.find((int)p.vel, boof)*p.pos; temp -= pos.find((int)p.vel, boof); temp += neg.find(1, boof)-nc.find((int)p.vel, boof)*p.pos; pc.add((int)p.pos, 1); pos.add((int)p.vel, p.pos); res += temp; } } System.out.println(res); } public static int compress(int[] vel) { ArrayList<Integer> ls = new ArrayList<Integer>(); for(int x: vel) ls.add(x); Collections.sort(ls); HashMap<Integer, Integer> map = new HashMap<Integer, Integer>(); int boof = 1; for(int x: ls) if(!map.containsKey(x)) map.put(x, boof++); for(int i=0; i < vel.length; i++) vel[i] = map.get(vel[i]); return boof-1; } public static int[] readArr(int N, BufferedReader infile, StringTokenizer st) throws Exception { int[] arr = new int[N]; st = new StringTokenizer(infile.readLine()); for(int i=0; i < N; i++) arr[i] = Integer.parseInt(st.nextToken()); return arr; } } class Point implements Comparable<Point> { public long pos; public long vel; public Point(long a, long b) { pos = a; vel = b; } public int compareTo(Point oth) { /* if(oth.vel == vel) return (int)(pos-oth.pos); return (int)(vel-oth.vel); */ return (int)(vel-oth.vel); } } class FenwickTree { //1 indexed public long[] tree; public int size; public FenwickTree(int size) { this.size = size; tree = new long[size+5]; } public void add(int i, long v) { while(i <= size) { tree[i] += v; i += i&-i; } } public long find(int i) { long res = 0L; while(i >= 1) { res += tree[i]; i -= i&-i; } return res; } public long find(int l, int r) { return find(r)-find(l-1); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename Monoid> struct SegmentTree { typedef function<Monoid(Monoid, Monoid)> F; int n; F f; Monoid id; vector<Monoid> dat; SegmentTree(int n_, F f, Monoid id) : f(f), id(id) { init(n_); } void init(int n_) { n = 1; while (n < n_) n <<= 1; dat.assign(n << 1, id); } void build(const vector<Monoid> &v) { for (int i = 0; i < v.size(); ++i) dat[i + n] = v[i]; for (int i = n - 1; i; --i) dat[i] = f(dat[i << 1 | 0], dat[i << 1 | 1]); } void update(int k, Monoid x) { dat[k += n] = x; while (k >>= 1) dat[k] = f(dat[k << 1 | 0], dat[k << 1 | 1]); } Monoid query(int a, int b) { if (a >= b) return id; Monoid vl = id, vr = id; for (int l = a + n, r = b + n; l < r; l >>= 1, r >>= 1) { if (l & 1) vl = f(vl, dat[l++]); if (r & 1) vr = f(dat[--r], vr); } return f(vl, vr); } Monoid operator[](int i) { return dat[i + n]; } }; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<long long> x(n), v(n); for (int i = 0; i < n; ++i) cin >> x[i]; for (int i = 0; i < n; ++i) cin >> v[i]; vector<vector<pair<long long, long long>>> ps(2); for (int i = 0; i < n; ++i) { if (0 <= v[i]) ps[0].emplace_back(v[i], x[i]); else ps[1].emplace_back(-v[i], -x[i]); } vector<long long> vs; vector<pair<long long, int>> xs; auto f = [](pair<long long, int> a, pair<long long, int> b) { return pair<long long, int>{a.first + b.first, a.second + b.second}; }; SegmentTree<pair<long long, int>> seg(n, f, {0, 0}); vector<pair<long long, int>> initializer(n, {0, 0}); long long ans = 0; for (int i = 1; i >= 0; --i) { sort(ps[i].begin(), ps[i].end()); int m = ps[i].size(); vs.clear(); xs.clear(); for (int j = 0; j < m; ++j) { vs.emplace_back(ps[i][j].first); xs.emplace_back(ps[i][j].second, j); } seg.build(initializer); sort(xs.begin(), xs.end()); for (int j = 0; j < m; ++j) seg.update(xs[j].second, {ps[i][j].second, 1}); for (int j = 0; j < m; ++j) { int s = lower_bound(vs.begin(), vs.end(), ps[i][xs[j].second].first) - vs.begin(); auto p = seg.query(s, m); ans += p.first - xs[j].first * p.second; seg.update(xs[j].second, {0, 0}); } } int t = ps[0].size(); vector<long long> sum(t + 1, 0); for (int i = 0; i < t; ++i) { sum[i + 1] = sum[i] + xs[i].first; vs[i] = xs[i].first; } for (int i = 0; i < ps[1].size(); ++i) { int b = upper_bound(vs.begin(), vs.end(), -ps[1][i].second) - vs.begin(); ans += sum[t] - sum[b] + ps[1][i].second * (t - b); } cout << ans << '\n'; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long N = 3e5 + 5; pair<long long, long long> p[N], a[N]; long long n; long long fwt[N], cntf[N]; long long len; void add(long long *b, long long x, long long v) { while (x <= len) { b[x] += v; x += x & -x; } } long long get(long long *b, long long x) { long long res = 0; while (x) { res += b[x]; x -= x & -x; } return res; } signed main() { ios::sync_with_stdio(false); cin >> n; vector<long long> velo_neg, velo_pos; for (long long i = 0; i < n; i++) { cin >> p[i].first; } for (long long i = 0; i < n; i++) { cin >> p[i].second; } sort(p, p + n); vector<long long> velo; for (long long i = 0; i < n; i++) { velo.push_back(p[i].second); } sort(velo.begin(), velo.end()); velo.erase(unique(velo.begin(), velo.end()), velo.end()); len = velo.size(); long long ans = 0; long long sumx = 0; for (long long i = 0; i < n; i++) { a[i] = p[i]; a[i].second = lower_bound(velo.begin(), velo.end(), p[i].second) - velo.begin() + 1; ans += i * p[i].first - sumx; sumx += p[i].first; } for (long long i = 0; i < n; i++) { if (p[i].second < 0) { ans -= (get(cntf, len) - get(cntf, a[i].second)) * p[i].first - (get(fwt, len) - get(fwt, a[i].second)); } add(fwt, a[i].second, p[i].first); add(cntf, a[i].second, 1); } memset(cntf, 0, sizeof cntf); memset(fwt, 0, sizeof fwt); for (long long i = n - 1; i >= 0; i--) { if (p[i].second > 0) { ans -= get(fwt, a[i].second - 1) - get(cntf, a[i].second - 1) * p[i].first; } if (p[i].second > 0) { add(fwt, a[i].second, p[i].first); add(cntf, a[i].second, 1); } } cout << ans << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
//package psa.minrazdalja; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class minrazdalja { /** * Uvozena abstraktna funkcija za klic Paid<L, R> */ public static class Pair<L,R> { private final L left; private final R right; public Pair(L left, R right) { assert left != null; assert right != null; this.left = left; this.right = right; } public L getLeft() { return left; } public R getRight() { return right; } @Override public int hashCode() { return left.hashCode() ^ right.hashCode(); } @Override public boolean equals(Object o) { if (!(o instanceof Pair)) return false; Pair pairo = (Pair) o; return this.left.equals(pairo.getLeft()) && this.right.equals(pairo.getRight()); } } /**? * glavna funkcija racunanja: * sprejme list tipa ArrayList<Pair<Integer, Integer>>, potem st vseh elementov in seveda listo vseh elementov. * * nato izracunamo maksimalno distance, ki je sestevek vseh distanc med posameznimi elementi, kar lahko storimo, ker je sortirana tabela. * V drugem delu odstejemo od maksimalnega sestevka distanc, posamezne ki se sekajo v prihodnosti * ostane nam samo tocni sestevek minimalnih distanc */ public static long elele(ArrayList<Pair<Long,Long>> elementi, int s, Long[] x_el) { long skupek = 0; HashMap<Long, Integer> pos = new HashMap<Long, Integer>(); for(int i=0; i<s; ++i) { skupek += x_el[i] * i + (-1 * x_el[i]) * (s - 1 - i); pos.put(x_el[i], i); } //if(s == 161) // System.out.println(skupek); for(int i=0; i<s; ++i){ skupek -= elementi.get(i).getRight() * ( pos.get(elementi.get(i).getRight()) - i ); } //2 1 4 3 5 //2 2 2 3 4 return skupek; } public static void main(String[] args) throws IOException { int st_el; // uporabimo bufferedreader zaradi 1000x vecje hitrosti kot pa skener BufferedReader br= new BufferedReader(new InputStreamReader(System.in)); //System.out.println("Vnesi stevilo elementov: "); st_el = Integer.parseInt(br.readLine()); //System.out.println(st_el); Long[] x_el = new Long[st_el]; Long[] v_el = new Long[st_el]; //System.out.println("Vnesi elemente: "); String x = br.readLine(); String[] strs = x.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { x_el[i] = Long.parseLong(strs[i]); } //System.out.println("Vnesi tezo elementov: "); String y = br.readLine(); String[] strs2 = y.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { v_el[i] = Long.parseLong(strs2[i]); } br.close(); //pospravimo skupej v par oblike <integer, integer> oz <hitrost, element> ArrayList<Pair<Long,Long>> listt = new ArrayList<Pair<Long, Long>>(st_el); for(int i=0; i<st_el; i++) { Pair<Long, Long> pair = new Pair<Long, Long>(v_el[i],x_el[i]); listt.add(pair); } /*sortiramo listt od najmanjsega do najvecjega * - sortiramo prvo po hitrostih (to je glavno najbolj vazno) * - ce je hitrost ista potem pa sortiramo se glede na element */ Collections.sort(listt, new Comparator<Pair<Long, Long>>() { @Override public int compare(final Pair<Long, Long> o1, final Pair<Long, Long> o2) { if(o1.getLeft()<o2.getLeft()) { return -1; } else if(o1.getLeft() == o2.getLeft()) { if(o1.getRight() < o2.getRight()){ return -1; }else{ return 1; } } else { return 1; } } }); //sortiramo se elemente Arrays.sort(x_el); //izpisemo elemente System.out.println(elele(listt,st_el,x_el)); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; import java.lang.*; import java.io.*; public class ct1{ static class Point{ int ip, speed; } public static void main(String[] args) { Scanner inp = new Scanner(System.in); int a = inp.nextInt(); Point[] points = new Point[a]; for (int l=0; l<a; l++){ // int a = inp.nextInt(); for (int i=0; i<a; i++){ points[i] = new Point(); } for (int i=0; i<a; i++){ if (inp.hasNextInt()) points[i].ip = inp.nextInt(); } for (int i=0; i<a; i++){ if (inp.hasNextInt()) points[i].speed = inp.nextInt(); } int ans=0; for (int i=0; i<a-1; i++){ for (int j=i+1; j<a; j++){ if (points[i].ip < points[j].ip){ if(points[i].speed <= points[j].speed){ ans+=points[j].ip - points[i].ip; } } else if(points[i].ip == points[j].ip) ans+=0; else { if(points[i].speed >= points[j].speed){ ans+=points[i].ip - points[j].ip; } } } } System.out.println(ans); } } // static class ArrivalBurst{ // public int arrivalTime, burstTime, waitingTime, turnAroundTime, completionTime; // ArrivalBurst(){ // arrivalTime =0; // burstTime =0; // waitingTime =0; // turnAroundTime =0; // completionTime =0; // } // } // // public static void main(String[] args) { // Scanner inp = new Scanner(System.in); // System.out.println("Enter the number of entries you want to enter: "); // int n = inp.nextInt(); // ArrivalBurst[] arrivalBursts = new ArrivalBurst[n]; // for(int i=0; i<n; i++){ // arrivalBursts[i] = new ArrivalBurst(); // arrivalBursts[i].arrivalTime = inp.nextInt(); // arrivalBursts[i].burstTime = inp.nextInt(); // } // getAverageTime(arrivalBursts); // displayOutput(arrivalBursts); // } // // public static void displayOutput(ArrivalBurst[] arrivalBursts){ // System.out.println("AT\tBT\tCT\tTAT\tWT"); // double avgWt=0, avgTat=0; // for (int i=0; i<arrivalBursts.length; i++){ // System.out.println(arrivalBursts[i].arrivalTime + " \t" + arrivalBursts[i].burstTime + " \t" + arrivalBursts[i].completionTime + " \t" + // arrivalBursts[i].turnAroundTime + " \t" + arrivalBursts[i].waitingTime); // avgTat += arrivalBursts[i].turnAroundTime; // avgWt += arrivalBursts[i].waitingTime; // } // System.out.println("Average Waiting time: " + avgWt/arrivalBursts.length + "\nAverage Turnaroud Time: " + avgTat/arrivalBursts.length); // } // // public static void getAverageTime(ArrivalBurst[] arrivalBursts){ // arrivalBursts[0].completionTime = arrivalBursts[0].arrivalTime + arrivalBursts[0].burstTime; // for(int i=1; i<arrivalBursts.length; i++){ // if(arrivalBursts[i].arrivalTime < arrivalBursts[i-1].completionTime) // arrivalBursts[i].completionTime = arrivalBursts[i-1].completionTime + arrivalBursts[i].burstTime; // else // arrivalBursts[i].completionTime = arrivalBursts[i].arrivalTime + arrivalBursts[i].burstTime; // } // getAvgWaitingTime(arrivalBursts); // getAvgTurnaroundTime(arrivalBursts); // } // // public static void getAvgWaitingTime(ArrivalBurst[] arrivalBursts){ // arrivalBursts[0].waitingTime = 0; // for (int i=1; i<arrivalBursts.length; i++){ // arrivalBursts[i].waitingTime = arrivalBursts[i-1].completionTime - arrivalBursts[i].arrivalTime; // } // } // // public static void getAvgTurnaroundTime(ArrivalBurst[] arrivalBursts){ // for(int i=0; i<arrivalBursts.length; i++){ // arrivalBursts[i].turnAroundTime = arrivalBursts[i].completionTime - arrivalBursts[i].arrivalTime; // } // } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
/* Code by Saborit */ #include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> #pragma GCC optimize("Ofast") #define MX 200005 #define INF (1<<30) #define EPS 1e-9 #define MOD 1000000007 #define mid (x+xend)/2 #define izq nod*2 #define der nod*2+1 #define fr first #define sc second #define pb push_back #define mp make_pair #define all(X) (X).begin(), (X).end() #define unique(X) (X).resize(unique(all(X)) - (X).begin()) #ifdef LOCAL #include "debug.h" #endif using namespace std; using namespace __gnu_pbds; typedef long long int64; typedef unsigned long long unt64; struct pt{ int x, v, id; bool operator < (const pt& p)const{ return x < p.x; } }; int N, n, m; int A[MX], B[MX]; pt P[MX]; vector<int> values; int64 sol; struct segment_tree{ pair<int64, int> T[4*MX]; pair<int64, int> update(int a, int64 b, int x=1, int xend=m, int nod=1){ if( a<=x && xend<=a ) return T[nod] = {T[nod].fr + b, T[nod].sc + 1}; if( a < x || xend < a ) return T[nod]; auto aa = update(a, b, x, mid, izq); auto bb = update(a, b, mid+1, xend, der); return T[nod] = {aa.fr + bb.fr, aa.sc + bb.sc}; } pair<int64, int> query(int a, int b, int x=1, int xend=m, int nod=1){ if( a<=x && xend<=b ) return T[nod]; if( b < x || xend < a ) return {0ll, 0}; auto aa = query(a, b, x, mid, izq); auto bb = query(a, b, mid+1, xend, der); return {aa.fr + bb.fr, aa.sc + bb.sc}; } }; int main(void){ //~ freopen("a.in", "r", stdin); //~ freopen("a.out", "w", stdout); scanf("%d", &N); for(int i=1; i<=N; i++){ scanf("%d", &A[i]); values.pb(A[i]); } sort(all(values)); unique(values); n = values.size(); for(int i=1; i<=N; i++) P[i].x = lower_bound(all(values), A[i]) - values.begin() + 1; values.clear(); for(int i=1; i<=N; i++){ scanf("%d", &B[i]); values.pb(B[i]); } sort(all(values)); unique(values); m = values.size(); for(int i=1; i<=N; i++) P[i].v = lower_bound(all(values), B[i]) - values.begin() + 1; for(int i=1; i<=N; i++) P[i].id = i; sort(P+1, P+N+1); segment_tree ST; //~ db() << n << " " << m; for(int i=N; i > 0; i--){ auto q = ST.query(P[i].v, m); //~ db() << imie(i) << " " << q.fr << " " << q.sc; sol += q.fr - A[ P[i].id ] * q.sc; ST.update(P[i].v, A[ P[i].id ]); } printf("%lld\n", sol); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; template <class T, class U> using Pa = pair<T, U>; template <class T> using vec = vector<T>; template <class T> using vvec = vector<vec<T>>; template <typename Monoid, typename F> class SegmentTree { private: int sz; vector<Monoid> seg; const F op; const Monoid e; public: SegmentTree(int n, const F op, const Monoid &e) : op(op), e(e) { sz = 1; while (sz <= n) sz <<= 1; seg.assign(2 * sz, e); } void set(int k, const Monoid &x) { seg[k + sz] = x; } void build() { for (int i = sz - 1; i > 0; i--) { seg[i] = op(seg[2 * i], seg[2 * i + 1]); } } void update(int k, const Monoid &x) { k += sz; seg[k] = x; while (k >>= 1) { seg[k] = op(seg[2 * k], seg[2 * k + 1]); } } Monoid query(int l, int r) { Monoid L = e, R = e; for (l += sz, r += sz; l < r; l >>= 1, r >>= 1) { if (l & 1) L = op(L, seg[l++]); if (r & 1) R = op(seg[--r], R); } return op(L, R); } Monoid operator[](const int &k) const { return seg[k + sz]; } }; template <class T> class Compress { map<T, int> idx; map<int, T> value; vector<T> cmp; public: int N; Compress(vector<T> v) { for (auto &x : v) cmp.push_back(x); sort(cmp.begin(), cmp.end()); cmp.erase(unique(cmp.begin(), cmp.end()), cmp.end()); N = cmp.size(); for (int i = 0; i < N; i++) idx[cmp[i]] = i; } int id(T val) { return idx[val]; } T val(int id) { return cmp[id]; } }; int main() { cin.tie(0); ios::sync_with_stdio(false); int N; cin >> N; vec<ll> X(N), V(N); for (int i = 0; i < N; i++) cin >> X[i]; for (int i = 0; i < N; i++) cin >> V[i]; Compress<ll> cmp(X); vec<ll> P(N + 1), M(N + 1), Z(N + 1); vec<ll> PC(N + 1), MC(N + 1), ZC(N + 1); for (int i = 0; i < N; i++) { if (V[i] > 0) { P[cmp.id(X[i])] += X[i]; PC[cmp.id(X[i])]++; } else if (V[i] < 0) { M[cmp.id(X[i]) + 1] += X[i]; MC[cmp.id(X[i]) + 1]++; } else { Z[cmp.id(X[i]) + 1] += X[i]; ZC[cmp.id(X[i]) + 1]++; } } for (int i = 0; i < N; i++) { M[i + 1] += M[i]; MC[i + 1] += MC[i]; Z[i + 1] += Z[i]; ZC[i + 1] += ZC[i]; } for (int i = N - 1; i >= 0; i--) { P[i] += P[i + 1]; PC[i] += PC[i + 1]; } struct state { ll sum, cnt; }; auto op = [](state L, state R) { return (state){L.sum + R.sum, L.cnt + R.cnt}; }; SegmentTree<state, decltype(op)> seg(N, op, (state){0, 0}); vec<int> idx(N); iota(idx.begin(), idx.end(), 0); sort(idx.begin(), idx.end(), [&](int i, int j) { return (V[i] != V[j] ? V[i] > V[j] : X[i] > X[j]); }); ll ans = 0; for (int i = 0; i < N; i++) { int id = idx[i]; if (V[id] <= 0) break; int xid = cmp.id(X[id]); ans += MC[xid] * X[id] - M[xid]; state res = seg.query(xid, N); ans += res.sum - X[id] * res.cnt; seg.update(xid, {X[id], 1}); } sort(idx.begin(), idx.end(), [&](int i, int j) { return (V[i] != V[j] ? V[i] < V[j] : X[i] < X[j]); }); for (int i = 0; i < N; i++) seg.set(i, {0, 0}); seg.build(); for (int i = 0; i < N; i++) { int id = idx[i]; if (V[id] >= 0) continue; int xid = cmp.id(X[id]); state res = seg.query(0, xid); ans += X[id] * res.cnt - res.sum; seg.update(xid, {X[id], 1}); } for (int i = 0; i < N; i++) if (V[i] == 0) { int xid = cmp.id(X[i]); ans += MC[xid] * X[i] - M[xid]; ans += P[xid] - PC[xid] * X[i]; ans += MC[xid] * X[i] - Z[xid]; } cout << ans << "\n"; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mx = 2 * 1e5 + 5; const long long mod = 1e9 + 7; pair<long long, long long> arr[mx * 4]; void update(int node, int left, int right, int pos, int val) { if (left == right) { arr[node].first++; arr[node].second += val; return; } int mid = (left + right) / 2; if (pos <= mid) { update(node * 2, left, mid, pos, val); } else { update(node * 2 + 1, mid + 1, right, pos, val); } arr[node].first = arr[node * 2].first + arr[node * 2 + 1].first; arr[node].second = arr[node * 2].second + arr[node * 2 + 1].second; return; } pair<long, long> sum(pair<long long, long long> a, pair<long long, long long> b) { return {a.first + b.first, a.second + b.second}; } pair<long long, long long> query(int node, int left, int right, int l, int r) { if (right < l || left > r) { return {0, 0}; } if (right <= r && left >= l) { return {arr[node].first, arr[node].second}; } int mid = (left + right) / 2; return sum(query(node * 2, left, mid, l, r), query(node * 2 + 1, mid + 1, right, l, r)); } int main() { int n; cin >> n; pair<int, int> p[n]; map<long long, int> mp; for (int i = 0; i < n; i++) { cin >> p[i].first; } for (int i = 0; i < n; i++) { cin >> p[i].second; mp[p[i].second] = i; } int cur = 0; for (auto& i : mp) { i.second = cur; cur++; } for (int i = 0; i < n; i++) { p[i].second = mp[p[i].second]; } sort(p, p + n); long long ans = 0; for (int i = 0; i < n; i++) { int myv = p[i].second; int myx = p[i].first; pair<int, int> cnt = query(1, 0, n, 0, myv); ans += (1LL * myx * cnt.first); ans -= cnt.second; update(1, 0, n, myv, myx); } update(1, 0, n, 0, 5); pair<int, int> cnt = query(1, 0, n - 1, 0, 0); cout << ans; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #include <fstream> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> typedef long long ll; typedef long double ld; using namespace std; using namespace __gnu_pbds; #define endl "\n" #define FIO ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); #define ordered_set tree<int, null_type,less<int>, rb_tree_tag,tree_order_statistics_node_update> const int N=2e5+5, mxN=(1<<20)+5; int mod=998244353 ; ll mul(ll a, ll b) { a%=mod; b%=mod; return (a*b)%mod; } ll add(ll a, ll b) { a%=mod; b%=mod; return (a+b+mod)%mod; } ll fastpow(ll b, ll p) { if(p==0) return 1; ll ans=fastpow(b,p/2); ans=mul(ans,ans); if(p%2) ans=mul(ans,b); return ans; } ll fac(ll n) { ll ans=1; while(n) { ans=mul(ans,n--); } return ans; } ll ncr(ll n, ll r) { ll ans=fac(n); ll m=mul(fac(r),fac(n-r)); ans=mul(ans,fastpow(m,mod-2)); return ans; } ll co[N]; pair<int, int>arr[N]; multiset<int>st1,st2; int n; int main() { FIO cin>>n; for(int i=0; i<n; i++) cin>>arr[i].first; for(int i=0; i<n; i++) cin>>arr[i].second; sort(arr,arr+n); for(int i=0; i<n; i++) { if(arr[i].second>0) { co[i]+=st2.size(); co[i] +=distance(st1.begin(),st1.upper_bound(arr[i].second)); st1.insert(arr[i].second); } else if(arr[i].second<0) { int val=-arr[i].second; co[i]+=( st2.size()-distance(st2.begin(),st2.lower_bound(arr[i].second))); st2.insert(val); } else { co[i]+=st2.size(); st1.insert(0); } } st1.clear(); st2.clear(); for(int i=n-1; i>=0; i--) { if(arr[i].second>0) { co[i]-=( st1.size()-distance(st1.begin(),st1.lower_bound(arr[i].second))); st1.insert(arr[i].second); } else if(arr[i].second<0) { int val=-arr[i].second; co[i]-=st1.size(); co[i]-=distance(st2.begin(),st2.upper_bound(val)); st2.insert(val); } else { co[i]-=st1.size(); st2.insert(0); } } ll ans=0; for(int i=0; i<n; i++) ans+=co[i]*(ll)arr[i].first; cout<<ans; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class Ch, class Tr, class Container> basic_ostream<Ch, Tr>& operator<<(basic_ostream<Ch, Tr>& os, Container const& x) { os << "{ "; for (auto& y : x) os << y << " "; return os << "}"; } template <class X, class Y> ostream& operator<<(ostream& os, pair<X, Y> const& p) { return os << "[ " << p.first << ", " << p.second << "]"; } typedef struct { long long pos, v; } Point; long long P[200005], V[200005], sum = 0, maxNeg = 0; long long l = 0, r = 100000000; int n; vector<Point> v; set<long long> usados; map<long long, long long> DondeEsta; bool sort_vel(Point a, Point b) { if (a.v == b.v) return a.pos > b.pos; return a.v > b.v; } bool sort_pos(Point a, Point b) { return a.pos < b.pos; } long long ft[200005]; long long ft2[200005]; void upd(int i0, long long v) { for (int i = i0 + 1; i <= 200005; i += i & -i) ft[i] += v; } long long get(int i0) { long long r = 0; for (int i = i0; i; i -= i & -i) r += ft[i]; return r; } int get_sum(int i0, int i1) { return get(i1) - get(i0); } void upd2(int i0, long long v) { for (int i = i0 + 1; i <= 200005; i += i & -i) ft2[i] += v; } long long get2(int i0) { long long r = 0; for (int i = i0; i; i -= i & -i) r += ft2[i]; return r; } int get_sum2(int i0, int i1) { return get2(i1) - get2(i0); } int main() { cin >> n; for (int i = 0; i < (n); i++) cin >> P[i]; for (int i = 0; i < (n); i++) { cin >> V[i]; v.push_back({P[i], V[i]}); } sort((v.begin()), (v.end()), sort_pos); for (int i = 0; i < (n); i++) { upd(i, r - v[i].pos); upd2(i, 1); } for (int i = 0; i < (n); i++) DondeEsta[v[i].pos] = i; sort((v.begin()), (v.end()), sort_vel); for (auto x : v) { long long i = DondeEsta[x.pos]; sum += get_sum(0, i) - ((r - x.pos) * get_sum2(0, i)); upd(i, x.pos - r); upd2(i, -1); } cout << sum << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct Point { int x; int v; }; vector<Point> points; int SUM; void add_pairwise_dist(int start, int end) { int m, i, j; if (start == end) return; m = (start + end) / 2; add_pairwise_dist(start, m); add_pairwise_dist(m + 1, end); vector<int> rcumsum(end - start + 2); for (i = end; i >= start; i--) { rcumsum[i - start] = rcumsum[i - start + 1] + points[i].x; } j = m + 1; for (i = start; i <= m; i++) { while (j <= end && points[i].v > points[j].v) j++; SUM += rcumsum[j - start] - (points[j].x - points[i].x) * (end - j + 1); } vector<Point> temp(end - start + 1); i = start; j = m + 1; for (int k = 0; k < end - start + 1; k++) { if (i > m) { temp[k] = points[j++]; } else if (j > end) { temp[k] = points[i++]; } else if (points[i].v < points[j].v) { temp[k] = points[i++]; } else { temp[k] = points[j++]; } } for (int k = 0; k < end - start + 1; k++) { points[start + k] = temp[k]; } } int main() { int n; cin >> n; points.resize(n); for (int i = 0; i < n; i++) cin >> points[i].x; for (int i = 0; i < n; i++) cin >> points[i].v; sort(points.begin(), points.end(), [](const Point &a, Point const &b) { return a.x < b.x; }); add_pairwise_dist(0, n - 1); cout << SUM << endl; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
//package psa.minrazdalja; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class minrazdalja { /** * Uvozena abstraktna funkcija za klic Paid<L, R> */ public static class Pair<L,R> { private final L left; private final R right; public Pair(L left, R right) { assert left != null; assert right != null; this.left = left; this.right = right; } public L getLeft() { return left; } public R getRight() { return right; } @Override public int hashCode() { return left.hashCode() ^ right.hashCode(); } @Override public boolean equals(Object o) { if (!(o instanceof Pair)) return false; Pair pairo = (Pair) o; return this.left.equals(pairo.getLeft()) && this.right.equals(pairo.getRight()); } } /**? * glavna funkcija racunanja: * sprejme list tipa ArrayList<Pair<Integer, Integer>>, potem st vseh elementov in seveda listo vseh elementov. * * nato izracunamo maksimalno distance, ki je sestevek vseh distanc med posameznimi elementi, kar lahko storimo, ker je sortirana tabela. * V drugem delu odstejemo od maksimalnega sestevka distanc, posamezne ki se sekajo v prihodnosti * ostane nam samo tocni sestevek minimalnih distanc */ public static long elele(ArrayList<Pair<Long,Long>> elementi, int s, Long[] x_el) { long skupek = 0; HashMap<Long, Integer> pos = new HashMap<Long, Integer>(); for(int i=0; i<s; ++i) { skupek += x_el[i] * i + (-1 * x_el[i]) * (s - 1 - i); pos.put(x_el[i], i); } for(int i=0; i<s; ++i){ skupek -= elementi.get(i).getRight() * (pos.get(elementi.get(i).getRight()) - i); } //2 1 4 3 5 //2 2 2 3 4 return skupek; } public static void main(String[] args) throws IOException { int st_el; // uporabimo bufferedreader zaradi 1000x vecje hitrosti kot pa skener BufferedReader br= new BufferedReader(new InputStreamReader(System.in)); //System.out.println("Vnesi stevilo elementov: "); st_el = Integer.parseInt(br.readLine()); //System.out.println(st_el); Long[] x_el = new Long[st_el]; Long[] v_el = new Long[st_el]; //System.out.println("Vnesi elemente: "); String x = br.readLine(); String[] strs = x.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { x_el[i] = Long.parseLong(strs[i]); } //System.out.println("Vnesi tezo elementov: "); String y = br.readLine(); String[] strs2 = y.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { v_el[i] = Long.parseLong(strs2[i]); } br.close(); //pospravimo skupej v par oblike <integer, integer> oz <hitrost, element> ArrayList<Pair<Long,Long>> listt = new ArrayList<Pair<Long, Long>>(st_el); for(int i=0; i<st_el; i++) { Pair<Long, Long> pair = new Pair<Long, Long>(v_el[i],x_el[i]); listt.add(pair); } /*sortiramo listt od najmanjsega do najvecjega * - sortiramo prvo po hitrostih (to je glavno najbolj vazno) * - ce je hitrost ista potem pa sortiramo se glede na element * - O(n log n) */ Collections.sort(listt, new Comparator<Pair<Long, Long>>() { @Override public int compare(final Pair<Long, Long> o1, final Pair<Long, Long> o2) { if(o1.getLeft()<o2.getLeft()) { return -1; } else if(o1.getLeft() == o2.getLeft()) { if(o1.getRight() < o2.getRight()){ return -1; }else{ return 1; } } else { return 1; } } }); //sortiramo se elemente // O(n log n) Arrays.sort(x_el); //izpisemo elemente System.out.println(elele(listt,st_el,x_el)); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; pair<long long, long long> o[(int)2e5 + 10]; long long n, ts[(int)2e5 + 10], tc[(int)2e5 + 10]; int main(void) { scanf("%lld", &n); for (int i = 0; i < n; i++) { scanf("%lld", &o[i].second); } for (int i = 0; i < n; i++) { scanf("%lld", &o[i].first); } sort(o, o + n); for (int i = 0; i < n; i++) { o[i] = {o[i].second, i + 1}; } sort(o, o + n); long long ans = 0; for (int i = 0; i < n; i++) { int r = o[i].second, idx = o[i].first; int s = 0, c = 0; while (0 < r) { s += ts[r]; c += tc[r]; r -= (r & -r); } ans += idx * c - s; int v = o[i].second; while (v <= n) { ts[v] += idx; tc[v]++; v += (v & -v); } } printf("%lld\n", ans); }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<bits/stdc++.h> #define long long long using namespace std; const int N=2e5,inf=1e9,R=2e8; struct segment { int l,r,cnt;long sm; }seg[34*N+2]; int sz; void upd(int node,int lo,int hi,int id,long vl) { //cout<<lo<<" "<<hi<<" "<<id<<endl;getchar(); if(lo==hi) { seg[node].sm+=vl;seg[node].cnt++; return ; } int md=(lo+hi)/2; if(id<=md) { if(!seg[node].l)seg[node].l=++sz; upd(seg[node].l,lo,md,id,vl); } else { if(!seg[node].r)seg[node].r=++sz; upd(seg[node].r,md+1,hi,id,vl); } seg[node].sm=seg[seg[node].l].sm+seg[seg[node].r].sm; seg[node].cnt=seg[seg[node].l].cnt+seg[seg[node].r].cnt; } pair<long,long>get(int node,int lo,int hi,int id) { if(hi<=id)return {seg[node].cnt,seg[node].sm}; if(lo>id)return {0,0};int md=(lo+hi)/2; pair<int,int>p1=get(seg[node].l,lo,md,id); pair<int,int>p2=get(seg[node].r,md+1,hi,id); return {p1.first+p2.first,p1.second+p2.second}; } pair<int,int>pp[N+2]; int main() { ios_base::sync_with_stdio(0);cin.tie(0); int n;cin>>n; for(int i=1;i<=n;i++)cin>>pp[i].first; for(int i=1;i<=n;i++)cin>>pp[i].second; sort(pp+1,pp+n+1);long ans=0; /*for(int i=1;i<=n;i++) cout<<pp[i].first<<" "; cout<<endl; for(int i=1;i<=n;i++) cout<<pp[i].second<<" "; cout<<endl;*/ sz=1; for(int i=1;i<=n;i++) { upd(1,0,2*R,pp[i].second+R,pp[i].first); pair<long,long>p=get(1,0,2*R,pp[i].second+R); //cout<<p.first<<" ** "<<p.second<<endl; ans+=pp[i].first*p.first-p.second; } cout<<ans<<endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; double movingPt(double x[], double v[], int j) { double d = 0; for (int g = 0; g < j - 1; g++) { for (int h = g + 1; h < j; h++) { if (v[g] == v[h]) { d += abs(x[g] - x[h]); continue; } else if (x[g] > x[h] and v[h] - v[g] > 0) { d += 0; continue; } else if (x[g] < x[h] and v[g] - v[h] > 0) { d += 0; } else { d += abs(x[g] - x[h]); } } } return d; } int main() { int j; cin >> j; double x[j], v[j]; for (int g = 0; g < j; g++) { cin >> x[g]; } for (int g = 0; g < j; g++) { cin >> v[g]; } cout << movingPt(x, v, j); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const int maxn = 2e5 + 5; int N, mapval[maxn], len; struct node { int x, v; } a[maxn]; bool cmp(node a, node b) { return a.x < b.x; } long long c[maxn][2]; void update(int x, int k, int val) { while (x <= N) { c[x][k] += val; x += x & -x; } } long long query(int x, int k) { long long ans = 0; while (x > 0) { ans += c[x][k]; x -= (x & -x); } return ans; } int main() { ios::sync_with_stdio(false); cin.tie(0); cin >> N; for (int i = 1; i <= N; i++) cin >> a[i].x; for (int i = 1; i <= N; i++) cin >> mapval[++len], a[i].v = mapval[len]; sort(a + 1, a + N + 1, cmp); sort(mapval + 1, mapval + len + 1); len = unique(mapval + 1, mapval + len + 1) - mapval - 1; for (int i = 1; i <= N; i++) a[i].v = (lower_bound(mapval + 1, mapval + len + 1, a[i].v) - mapval); long long ans = 0; for (int i = 1; i <= N; i++) { int num = query(a[i].v, 0), sum = query(a[i].v, 1); ans += (a[i].x * num - sum); update(a[i].v, 0, 1), update(a[i].v, 1, a[i].x); } cout << ans << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
//make sure to make new file! import java.io.*; import java.util.*; public class F624{ public static void main(String[] args)throws IOException{ BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); int n = Integer.parseInt(f.readLine()); StringTokenizer st1 = new StringTokenizer(f.readLine()); StringTokenizer st2 = new StringTokenizer(f.readLine()); int[] x = new int[n]; int[] v = new int[n]; Pair[] pairs = new Pair[n]; for(int k = 0; k < n; k++){ x[k] = Integer.parseInt(st1.nextToken()); v[k] = Integer.parseInt(st2.nextToken()); pairs[k] = new Pair(x[k],v[k]); } Arrays.sort(pairs); Arrays.sort(x); long answer = 0L; HashMap<Integer,Integer> indexof = new HashMap<Integer,Integer>(); for(int k = 0; k < n; k++){ answer += (long)(x[k] * (-n+1+2*k)); indexof.put(x[k],k); } for(int k = 0; k < n; k++){ if(k < indexof.get(pairs[k].x)){ //subtract answer -= (long)(pairs[k].x*(indexof.get(pairs[k].x)-k)); } else if(k > indexof.get(pairs[k].x)){ answer += (long)(pairs[k].x*(k-indexof.get(pairs[k].x))); } } out.println(answer); out.close(); } public static class Pair implements Comparable<Pair>{ int x; int v; public Pair(int a, int b){ x = a; v = b; } public int compareTo(Pair p){ if(p.v != v){ return v-p.v; } return x-p.x; } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<climits> #include<cmath> #include<ctime> #include<vector> #include<queue> #include<stack> #include<list> #include<set> #include<map> #include<utility> #include<algorithm> using namespace std; #define FOR(i,a,b) for(register int i=(a);i<(b);++i) #define FORR(i,a,b) for(register int i=(a);i<=(b);++i) #define ROR(i,a,b) for(register int i=(a);i>=(b);--i) #define RORR(i,a,b) for(register int i=(a);i>(b);--i) #define PQ priority_queue #define VR vector #define MST(a,b) memset(a,b,sizeof(a)) #define FGETS(s) fgets(s,sizeof(s),stdin) #define ALL(x) x.begin(),x.end() #define INS(x) inserter(x,x.begin()) #define FI first #define SE second typedef long long LL; typedef long long unsigned LLU; typedef pair<int,int> pii; const int MAX = 2e5 + 20; int n,pos[MAX]; struct Node{ int p,v,no; bool operator < (const Node &b){ return v != b.v ? v < b.v : p < b.p; } }node[MAX],v[MAX]; struct ST{ // n-1 LL v[MAX]; LL sum(int x){ LL s = 0; while(x){ s += v[x]; x -= x&-x; } return s; } void add(int x, LL val){ while(x<=n){ v[x]+=val; x += x&-x; } } LL operator [] (int idx){ return sum(idx); } }s,c; int main(void){ scanf("%d",&n); FOR(i,0,n) scanf("%d",&node[i].p); FOR(i,0,n) scanf("%d",&node[i].v); sort(node,node+n,[](Node &a, Node &b){ return a.p < b.p; }); FOR(i,0,n) node[i].no=i; memcpy(v,node,sizeof(node)); v[0]={0,0,0}; sort(v+1,v+n); FOR(i,1,n){ pos[v[i].no]=i; s.add(i,v[i].p); c.add(i,1); } #ifdef DEBUG FOR(i,0,n) printf(" (%d, %d)",node[i].p,node[i].v); putchar('\n'); FOR(i,0,n) printf(" (%d, %d)",v[i].p,v[i].v); putchar('\n'); #endif LL ans = 0; FOR(i,0,n-1){ int j = lower_bound(v+1,v+n,Node{0,node[i].v,0}) - v; while(j>1 && node[j-1].v==node[j].v) --j; if(j>=n) continue; #ifdef DEBUG FOR(i,1,n) printf(" s[%d]: %lld, c[%d]: %lld\n",i,s[i],i,c[i]); printf(" for i: %d (v %d), j: %d\n",i,node[i].v,j); printf(" s[n]:%lld, s[j-1]: %lld, c[j-1]: %lld\n",s[n],s[j-1],c[j-1]); printf(" ans += %lld\n",s[n]-s[j-1] - (c[n] - c[j-1])*node[i].p); #endif ans += s[n]-s[j-1] - (c[n] - c[j-1])*node[i].p; int t = pos[i+1]; s.add(t,-v[t].p); c.add(t,-1); } printf("%lld\n",ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Movingpoints { public static void main(String[] args) { // TODO Auto-generated method stub Scanner s = new Scanner(System.in); int n=s.nextInt(); while(n<2||n>200000) { n=s.nextInt(); } int [] pt = new int[n]; int [] vl = new int [pt.length]; for (int i=0;i<pt.length;i++) { int m = s.nextInt(); while(m<1||m>100000000||duplicate(pt,m)==true) { m=s.nextInt(); } pt[i]=m; } int temp1=0; int temp2=0; for(int j=0;j<vl.length;j++) { int k=s.nextInt(); while(k<-100000000||k>100000000) { k=s.nextInt(); } vl[j]=k; } long sum=0; for(int i=0;i<pt.length;i++) { for(int x=i+1;x<pt.length;x++) { if(vl[i]<=vl[x]) { if(pt[i]<pt[x]) { sum=sum+distance(pt[i],pt[x]); } else { if(vl[x]<=vl[i]) { sum=sum+distance(pt[i],pt[x]); } } } } } System.out.println(sum); } public static boolean duplicate (int [] a , int b) { int i =0; boolean t=false; while(a[i]!=0 && t==false) { if (a[i]==b) { t=true; } i++; } return t; } public static int distance(int a ,int b ) { int d=Math.abs(b-a); return d; } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> template <class C> inline void log_c(const C& c) {} template <class C> inline int sz(const C& c) { return static_cast<int>(c.size()); } using namespace std; using pii = pair<int, int>; using num = int64_t; using pll = pair<num, num>; const std::string eol = "\n"; const int max_x = 100000000; using It = vector<int>::iterator; int64_t min_distance_sum(It begin, It end, It tmp_begin) { if (next(begin) == end) return 0; auto left_count = distance(begin, end) / 2; It mid = next(begin, left_count); int64_t ans_left = min_distance_sum(begin, mid, tmp_begin); int64_t ans_right = min_distance_sum(mid, end, next(tmp_begin, left_count)); int64_t ans_cross = 0; It it1 = begin; It it2 = mid; It tmp = tmp_begin; int64_t left_sum = 0; while (it1 != mid && it2 != end) { if (*it1 < *it2) { left_sum += *it1; *tmp++ = *it1++; } else { ans_cross += static_cast<int64_t>(*it2) * distance(begin, it1) - left_sum; *tmp++ = *it2++; } } copy(it1, mid, tmp); while (it2 != end) { ans_cross += static_cast<int64_t>(*it2) * left_count - left_sum; *tmp++ = *it2++; } copy(tmp, next(tmp_begin, distance(begin, end)), begin); return ans_left + ans_right + ans_cross; } int main() { std::ios_base::sync_with_stdio(false); cin.tie(nullptr); int n; cin >> n; vector<pii> data(n); for (int k = 0; k < (n); ++k) cin >> data[k].second; for (int k = 0; k < (n); ++k) cin >> data[k].first; sort(begin(data), end(data)); vector<int> x(n), tmp(n); for (int k = 0; k < (n); ++k) x[k] = data[k].second; cout << min_distance_sum(begin(x), end(x), tmp.begin()) << eol; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 200000; long long BIT1[200001]; int cnt1[200001]; map<int, int> r, l; pair<int, int> arr[200001]; int n; void upd1(int idx, long long val) { for (; idx <= N; idx = (idx | (idx + 1))) { BIT1[idx] += val; cnt1[idx]++; } } pair<long long, int> query1(int idx) { if (idx < 0) return {0, 0}; long long sum = 0; int ct = 0; for (; idx >= 0; idx = (idx & (idx + 1)) - 1) { sum += BIT1[idx]; ct += cnt1[idx]; } return {sum, ct}; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n; for (int i = 1; i <= n; i++) cin >> arr[i].first; for (int i = 1; i <= n; i++) cin >> arr[i].second; sort(arr + 1, arr + n + 1); for (int i = 1; i <= n; i++) r[arr[i].second] = 0; int ind = 1; for (auto &it : r) { it.second = ind; ind++; } long long ans = 0; for (int i = 1; i <= n; i++) { int vel = r[arr[i].second]; pair<long long, int> p = query1(vel); ans += (p.second) * (arr[i].first); ans -= p.first; upd1(vel, arr[i].first); } cout << ans; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long int n; long long int x[200005]; vector<pair<long long int, long long int> > cord; map<long long int, long long int> vel_freq, vel_map; long long int num[3 * 200005], xcnt[3 * 200005]; int get_cnt(long long int node, long long int l, long long int r, long long int start, long long int end) { if (start > r || end < l) return 0; if (start >= l && end <= r) { return num[node]; } long long int mid = (start + end) / 2; long long int left = 0, right = 0; if (r >= start && r <= mid) left = get_cnt(2 * node, l, r, start, mid); else right = get_cnt(2 * node + 1, l, r, (mid + 1), end); return left + right; } void add_vel(long long int node, long long int start, int end, long long int idx) { if (start == end) { num[node]++; return; } long long int mid = (start + end) / 2; if (idx >= start && idx <= mid) { add_vel(2 * node, start, mid, idx); } else add_vel(2 * node + 1, mid + 1, end, idx); num[node] = num[2 * node] + num[2 * node + 1]; } void add_x(long long int node, long long int start, long long int end, long long int idx, long long int val) { if (start == end) { xcnt[node] += val; return; } long long int mid = (start + end) / 2; if (idx >= start && idx <= mid) add_x(2 * node, start, mid, idx, val); else add_x(2 * node + 1, mid + 1, end, idx, val); xcnt[node] = xcnt[2 * node] + xcnt[2 * node + 1]; } long long int get_x_sum(long long int node, long long int start, long long int end, long long int l, long long int r) { if (start > r || end < l) return 0; if (start >= l && end <= r) { return xcnt[node]; } long long int mid = (start + end) / 2, left = 0, right = 0; if (r >= start && r <= mid) left = get_x_sum(2 * node, start, (start + end) / 2, l, r); else right = get_x_sum(2 * node + 1, (start + end) / 2 + 1, end, l, r); return left + right; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cin >> n; for (int i = 0; i < n; i++) cin >> x[i]; for (int i = 0; i < n; i++) { long long int cur_vel; cin >> cur_vel; cord.push_back({x[i], cur_vel}); vel_freq[cur_vel]++; } long long int k = 0; sort(cord.begin(), cord.end()); for (auto it = vel_freq.begin(); it != vel_freq.end(); it++) { vel_map[it->first] = k; k++; } long long int ans = 0; for (int i = 0; i < n; i++) { long long int cur_cnt = cord[i].first * (get_cnt(1, 0, vel_map[cord[i].second], 0, k - 1)); long long int sum = get_x_sum(1, 0, k - 1, 0, vel_map[cord[i].second]); add_vel(1, 0, k - 1, vel_map[cord[i].second]); add_x(1, 0, k - 1, vel_map[cord[i].second], cord[i].first); ans += cur_cnt - sum; } cout << ans; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from math import factorial from collections import Counter from heapq import heapify, heappop, heappush import os import sys from io import BytesIO, IOBase # region fastio BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") # ------------------------------ def RL(): return map(int, sys.stdin.readline().rstrip().split()) def N(): return int(input()) def comb(n, m): return factorial(n) / (factorial(m) * factorial(n - m)) if n >= m else 0 def perm(n, m): return factorial(n) // (factorial(n - m)) if n >= m else 0 def mdis(x1, y1, x2, y2): return abs(x1 - x2) + abs(y1 - y2) mod = 1000000007 INF = float('inf') from bisect import insort # ------------------------------ import bisect def main(): n = N() arrp = list(RL()) arrv = list(RL()) arr = list(zip(arrp, arrv)) arr.sort() # print(arr) po = [] ne = [] zero = [] res = 0 for p, v in arr: if v<0: for ni in range(len(ne)-1, -1, -1): vv, pp = ne[ni] if vv<=v: res+=(p-pp) else: break else: for pi in range(len(po)): vv, pp= po[pi] if vv<=v: res+=(p-pp) else: break smne = sum([k for _, k in ne]) res+=p*len(ne)-smne if v>0: insort(po, (v, p)) elif v<=0: insort(ne, (v, p)) # else: # zero.append((v, p)) # print(po, ne, res) print(res) if __name__ == "__main__": main()
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.HashMap; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.util.Map; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author htvu */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); FMovingPoints solver = new FMovingPoints(); solver.solve(1, in, out); out.close(); } static class FMovingPoints { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int[] x = new int[n]; int[] v = new int[n]; int ans = 0; Map<Integer, Integer> rank = new HashMap<>(); for (int i = 0; i < n; ++i) { x[i] = in.nextInt(); } for (int i = 0; i < n; ++i) v[i] = in.nextInt(); Pair.IntPair[] ps = new Pair.IntPair[n]; for (int i = 0; i < n; ++i) ps[i] = new Pair.IntPair(x[i], v[i]); Arrays.sort(ps, (p1, p2) -> !p1.second.equals(p2.second) ? p1.second - p2.second : p1.first - p2.first); Arrays.sort(x); for (int i = 0; i < n; ++i) { // add x[i] to pair sum ans += x[i] * (2 * i + 1 - n); // record position of x[i] rank.put(x[i], i); } for (int i = 0; i < n; ++i) { ans -= ps[i].first * (rank.get(ps[i].first) - i); // ans -= x[i] * (i - rank.get(x[i])); } out.println(ans); } } static class Pair<A extends Comparable<A>, B extends Comparable<B>> implements Comparable<Pair<A, B>> { public A first; public B second; public Pair(A a, B b) { this.first = a; this.second = b; } public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Pair<?, ?> pair = (Pair<?, ?>) o; return first.equals(pair.first) && second.equals(pair.second); } public int hashCode() { return (first == null ? 0 : first.hashCode()) ^ (second == null ? 0 : second.hashCode()); } public String toString() { return "{" + first + "," + second + '}'; } public int compareTo(Pair<A, B> o) { int c = first.compareTo(o.first); if (c != 0) return c; return second.compareTo(o.second); } public static class IntPair extends Pair<Integer, Integer> { public IntPair(Integer integer, Integer integer2) { super(integer, integer2); } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
numberofpoints=int(input()) initcoords=input().split(" ") speeds=input().split(" ") initcoords=tuple(map(float,initcoords)) speeds=tuple(map(float,speeds)) def twopoints(coords,velos): firstv=velos[0] secondv=velos[1] firstc=coords[0] secondc=coords[1] dif=abs(firstc-secondc) nextdif=abs((firstc+(10**-10)*firstv)-(secondc+(10**-10)*secondv)) if dif>nextdif: return 0 else: return dif lis=[] for first in range(numberofpoints): for second in range(first+1,numberofpoints): tup=(first,second) lis.append(tup) sum=0 for tuple in lis: a=(speeds[tuple[0]],speeds[tuple[1]]) b=(initcoords[tuple[0]],initcoords[tuple[1]]) sum+=twopoints(b,a) print(int(sum))
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
//package psa.minrazdalja; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class minrazdalja { /** * Uvozena abstraktna funkcija za klic Paid<L, R> */ public static class Pair<L,R> { private final L left; private final R right; public Pair(L left, R right) { assert left != null; assert right != null; this.left = left; this.right = right; } public L getLeft() { return left; } public R getRight() { return right; } @Override public int hashCode() { return left.hashCode() ^ right.hashCode(); } @Override public boolean equals(Object o) { if (!(o instanceof Pair)) return false; Pair pairo = (Pair) o; return this.left.equals(pairo.getLeft()) && this.right.equals(pairo.getRight()); } } /**? * glavna funkcija racunanja: * sprejme list tipa ArrayList<Pair<Integer, Integer>>, potem st vseh elementov in seveda listo vseh elementov. * * nato izracunamo maksimalno distance, ki je sestevek vseh distanc med posameznimi elementi, kar lahko storimo, ker je sortirana tabela. * V drugem delu odstejemo od maksimalnega sestevka distanc, posamezne ki se sekajo v prihodnosti * ostane nam samo tocni sestevek minimalnih distanc */ public static long elele(ArrayList<Pair<Long,Long>> elementi, int s, Long[] x_el) { long skupek = 0; HashMap<Long, Integer> pos = new HashMap<Long, Integer>(s); for(int i=0; i<s; ++i) { skupek += x_el[i] * i + (-1 * x_el[i]) * (s - 1 - i); pos.put(x_el[i], i); } for(int i=0; i<s; ++i){ skupek -= elementi.get(i).getRight() * ( pos.get(elementi.get(i).getRight()) - i ); } //2 1 4 3 5 //2 2 2 3 4 return skupek; } public static void main(String[] args) throws IOException { int st_el; // uporabimo bufferedreader zaradi 1000x vecje hitrosti kot pa skener BufferedReader br= new BufferedReader(new InputStreamReader(System.in)); //System.out.println("Vnesi stevilo elementov: "); st_el = Integer.parseInt(br.readLine()); //System.out.println(st_el); Long[] x_el = new Long[st_el]; Long[] v_el = new Long[st_el]; //System.out.println("Vnesi elemente: "); String x = br.readLine(); String[] strs = x.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { x_el[i] = Long.parseLong(strs[i]); } //System.out.println("Vnesi tezo elementov: "); String y = br.readLine(); String[] strs2 = y.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { v_el[i] = Long.parseLong(strs2[i]); } br.close(); //pospravimo skupej v par oblike <integer, integer> oz <hitrost, element> ArrayList<Pair<Long,Long>> listt = new ArrayList<Pair<Long, Long>>(st_el); for(int i=0; i<st_el; i++) { Pair<Long, Long> pair = new Pair<Long, Long>(v_el[i],x_el[i]); listt.add(pair); } /*sortiramo listt od najmanjsega do najvecjega * - sortiramo prvo po hitrostih (to je glavno najbolj vazno) * - ce je hitrost ista potem pa sortiramo se glede na element * - O(n log n) */ Collections.sort(listt, new Comparator<Pair<Long, Long>>() { @Override public int compare(final Pair<Long, Long> o1, final Pair<Long, Long> o2) { if(o1.getLeft()<o2.getLeft()) { return -1; } else if(o1.getLeft() == o2.getLeft()) { if(o1.getRight() < o2.getRight()){ return -1; }else{ return 1; } } else { return 1; } } }); //sortiramo se elemente // O(n log n) Arrays.sort(x_el); //izpisemo elemente System.out.println(elele(listt,st_el,x_el)); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct Point { int x; int v; }; vector<Point> points; int SUM; void add_pairwise_dist(int start, int end) { int m, i, j; if (start == end) return; m = (start + end) / 2; add_pairwise_dist(start, m); add_pairwise_dist(m + 1, end); vector<int> rcumsum(end - start + 2); for (i = end; i >= start; i--) { rcumsum[i - start] = rcumsum[i - start + 1] + points[i].x; } j = m + 1; for (i = start; i <= m; i++) { while (j <= end && points[i].v > points[j].v) j++; if (j > end) break; SUM += rcumsum[j - start] - points[i].x * (end - j + 1); } vector<Point> temp(end - start + 1); i = start; j = m + 1; for (int k = 0; k < end - start + 1; k++) { if (i > m) { temp[k] = points[j++]; } else if (j > end) { temp[k] = points[i++]; } else if (points[i].v < points[j].v) { temp[k] = points[i++]; } else { temp[k] = points[j++]; } } for (int k = 0; k < end - start + 1; k++) { points[start + k] = temp[k]; } } int main() { int n; cin >> n; points.resize(n); for (int i = 0; i < n; i++) cin >> points[i].x; for (int i = 0; i < n; i++) cin >> points[i].v; sort(points.begin(), points.end(), [](const Point &a, Point const &b) { return a.x < b.x; }); add_pairwise_dist(0, n - 1); cout << SUM << endl; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #define all(x) (x).begin(), (x).end() /* a + all(x) - b */ #define makeUnique(vec) std::sort(all(vec)); vec.resize(unique(all(vec)) - vec.begin()) #define in(name, type) type name; std::cin >> name #define gin(var) std::cin >> var #define LOG_vec(vec, sep) for (int fl = 0; fl < vec.size(); fl++) { std::cout << vec[fl] << sep; } std::cout << "\n" #define LOG(x, sep) std::cout << x << sep #define LOG(x) std::cout << x << "\n"; #define ll long long int iin() { in(r, int); return r; } struct Random { int lower, upper; Random() : lower(0), upper(10) { } Random(int l, int u) : lower(0), upper(10) { lower = l; upper = u; } void set(int l, int u) { lower = l; upper = u; } int get() { return rand() % upper + lower; } } random; int getRand() { return random.get(); } void compile(); const bool isT = false; #define imp LOG(NULL) int main() { if (isT) { in(t, int); for (int i = 0; i < t; i++) { compile(); } return 0; } compile(); return 0; } class Solution { public: void run() { input(); std::sort(all(x)); std::sort(all(p)); int r = 0; std::map <int, int> m; for (int i = 0; i < n; i++) { r += x[i] * (2 * i + 1 - n); m[x[i]] = i; } for (int i = 0; i < n; i++) { r -= p[i].x * (m[p[i].x] - i); } LOG(r); } private: struct Point { int x, v; Point(int X, int V) { x = X; v = V; } bool operator<(const Point& a) const { if (v == a.v) { return x < a.x; } return v < a.v; } }; int n; std::vector <int> x, v; std::vector <Point> p; void input() { gin(n); x.resize(n); v.resize(n); std::generate(all(x), iin); std::generate(all(v), iin); for (int i = 0; i < n; i++) { Point cp(x[i], v[i]); p.push_back(cp); } } }; void compile() { Solution sol; sol.run(); }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from math import factorial from collections import Counter from heapq import heapify, heappop, heappush import os import sys from io import BytesIO, IOBase # region fastio BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") # ------------------------------ def RL(): return map(int, sys.stdin.readline().rstrip().split()) def N(): return int(input()) def comb(n, m): return factorial(n) / (factorial(m) * factorial(n - m)) if n >= m else 0 def perm(n, m): return factorial(n) // (factorial(n - m)) if n >= m else 0 def mdis(x1, y1, x2, y2): return abs(x1 - x2) + abs(y1 - y2) mod = 1000000007 INF = float('inf') from bisect import insort # ------------------------------ import bisect def main(): n = N() arrp = list(RL()) arrv = list(RL()) arr = list(zip(arrp, arrv)) arr.sort() # print(arr) po = [] ne = [] res = 0 for p, v in arr: if v<0: # print(p, v, ne) for ni in range(len(ne)-1, -1, -1): vv, pp = ne[ni] if vv<v: res+=(p-pp) else: break else: for pi in range(len(po)): vv, pp= po[pi] if vv<=v: res+=(p-pp) else: break smne = sum([k for _, k in ne]) res+=p*len(ne)-smne if v>0: insort(po, (v, p)) elif v<=0: insort(ne, (v, p)) # else: # zero.append((v, p)) # print(po, ne, res) print(res) if __name__ == "__main__": main()
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
//package psa.minrazdalja; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class minrazdalja { /** * Uvozena abstraktna funkcija za klic Paid<L, R> */ public static class Pair<L,R> { private final L left; private final R right; public Pair(L left, R right) { assert left != null; assert right != null; this.left = left; this.right = right; } public L getLeft() { return left; } public R getRight() { return right; } @Override public int hashCode() { return left.hashCode() ^ right.hashCode(); } @Override public boolean equals(Object o) { if (!(o instanceof Pair)) return false; Pair pairo = (Pair) o; return this.left.equals(pairo.getLeft()) && this.right.equals(pairo.getRight()); } } /**? * glavna funkcija racunanja: * sprejme list tipa ArrayList<Pair<Integer, Integer>>, potem st vseh elementov in seveda listo vseh elementov. * * nato izracunamo maksimalno distance, ki je sestevek vseh distanc med posameznimi elementi, kar lahko storimo, ker je sortirana tabela. * V drugem delu odstejemo od maksimalnega sestevka distanc, posamezne ki se sekajo v prihodnosti * ostane nam samo tocni sestevek minimalnih distanc */ public static long elele(ArrayList<Pair<Long,Long>> elementi, int s, Long[] x_el) { long skupek = 0; HashMap<Long, Long> pos = new HashMap<Long, Long>(s); for(int i=0; i<s; ++i) { skupek += x_el[i] * i + (-1 * x_el[i]) * (s - 1 - i); pos.put(x_el[i], (long)i); } for(int i=0; i<s; ++i){ skupek -= elementi.get(i).getRight() * ( pos.get(elementi.get(i).getRight()) - (long)i ); } //2 1 4 3 5 //2 2 2 3 4 return skupek; } public static void main(String[] args) throws IOException { int st_el; // uporabimo bufferedreader zaradi 1000x vecje hitrosti kot pa skener BufferedReader br= new BufferedReader(new InputStreamReader(System.in)); //System.out.println("Vnesi stevilo elementov: "); st_el = Integer.parseInt(br.readLine()); //System.out.println(st_el); Long[] x_el = new Long[st_el]; Long[] v_el = new Long[st_el]; //System.out.println("Vnesi elemente: "); String x = br.readLine(); String[] strs = x.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { x_el[i] = Long.parseLong(strs[i]); } //System.out.println("Vnesi tezo elementov: "); String y = br.readLine(); String[] strs2 = y.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { v_el[i] = Long.parseLong(strs2[i]); } br.close(); //pospravimo skupej v par oblike <integer, integer> oz <hitrost, element> ArrayList<Pair<Long,Long>> listt = new ArrayList<Pair<Long, Long>>(st_el); for(int i=0; i<st_el; i++) { Pair<Long, Long> pair = new Pair<Long, Long>(v_el[i],x_el[i]); listt.add(pair); } /*sortiramo listt od najmanjsega do najvecjega * - sortiramo prvo po hitrostih (to je glavno najbolj vazno) * - ce je hitrost ista potem pa sortiramo se glede na element * - O(n log n) */ Collections.sort(listt, new Comparator<Pair<Long, Long>>() { @Override public int compare(final Pair<Long, Long> o1, final Pair<Long, Long> o2) { if(o1.getLeft()<o2.getLeft()) { return -1; } else if(o1.getLeft() == o2.getLeft()) { if(o1.getRight() < o2.getRight()){ return -1; }else{ return 1; } } else { return 1; } } }); //sortiramo se elemente // O(n log n) Arrays.sort(x_el); //izpisemo elemente System.out.println(elele(listt,st_el,x_el)); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.*; import java.util.*; public class Main { static FastScanner in = new FastScanner(); public static void main(String[] args) throws IOException { int n = in.nextInt(); point[] a = new point[n]; for (int i = 0; i < n; i++) { a[i] = new point(in.nextInt(), 0); } int ans = 0; for (int i = 0; i < n; i++) { a[i].v = in.nextInt(); } Arrays.sort(a, new point()); point[] b = new point[n]; for (int i = 0; i < n; ) { int j = i; while (i < n && a[i].v == a[j].v) { b[i] = new point(a[i].x, j); i++; } } Arrays.sort(b, new point1()); segment_tree st = new segment_tree(n, new int[n]); for (int i = 0; i < n; i++) { ans += st.get(1, 0, n - 1, 0, b[i].v) - st.get_cnt(1, 0, n - 1, 0, b[i].v) * b[i].x; st.set(1, 0, n - 1, b[i].v, b[i].x); } in.out.println(-ans); in.out.close(); } } class point implements Comparator<point> { int x, v; public point(int x, int v) { this.x = x; this.v = v; } public point() { } @Override public int compare(point o1, point o2) { return Integer.compare(o1.v, o2.v); } } class point1 implements Comparator<point> { @Override public int compare(point o1, point o2) { return Integer.compare(o1.x, o2.x); } } class segment_tree { int n; int[] a; long[] sum; int[] cnt; public segment_tree(int n, int[] a) { this.n = n; this.a = a; sum = new long[n * 4]; cnt = new int[n * 4]; } void set(int v, int tl, int tr, int ind, int val) { if (tl > ind || tr < ind) return; if (tl == tr) { sum[v] += val; cnt[v]++; return; } int tm = (tl + tr) >> 1; set((v << 1), tl, tm, ind, val); set((v << 1) | 1, tm + 1, tr, ind, val); sum[v] = sum[v << 1] + sum[(v << 1) | 1]; cnt[v] = cnt[v << 1] + cnt[(v << 1) | 1]; } long get(int v, int tl, int tr, int l, int r) { if (r < tl || l > tr) return 0; if (l <= tl && tr <= r) { return sum[v]; } int tm = (tl + tr) >> 1; return get(v << 1, tl, tm, l, r) + get((v << 1) | 1, tm + 1, tr, l, r); } long get_cnt(int v, int tl, int tr, int l, int r) { if (r < tl || l > tr) return 0; if (l <= tl && tr <= r) { return cnt[v]; } int tm = (tl + tr) >> 1; return get_cnt(v << 1, tl, tm, l, r) + get_cnt((v << 1) | 1, tm + 1, tr, l, r); } } class FastScanner { BufferedReader br; StringTokenizer st = new StringTokenizer(""); PrintWriter out; FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } FastScanner(String in, String out_) throws FileNotFoundException { br = new BufferedReader(new FileReader(in)); out = new PrintWriter(out_); } String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> long long R = 7 + 1e9, NUMTESTCASE; const int NN = 10 + 9e5; const double pi = acos(-1.0); int di[4] = {1, 0, -1, 0}, dj[4] = {0, 1, 0, -1}, DI[8] = {1, 1, 0, -1, -1, -1, 0, 1}, DJ[8] = {0, 1, 1, 1, 0, -1, -1, -1}; using namespace std; long long n, Draft[NN], Coor[NN], Speed[NN], Ans, Flag, Lazy[NN], Max[NN], Min[NN]; pair<long long, long long> Status[NN], Tree[NN]; map<long long, long long> Draft2; vector<pair<pair<long long, long long>, long long>> Calc; map<long long, set<long long, greater<long long>>> CommSpeed; void Build(int Node = 1, int st = 1, int en = n) { if (st == en) { Min[Node] = Max[Node] = Speed[st]; Tree[Node] = Status[Node]; return; } Build(2 * Node, st, (st + en) / 2); Build(2 * Node + 1, (st + en) / 2 + 1, en); Max[Node] = max(Max[2 * Node], Max[2 * Node + 1]); Min[Node] = min(Min[2 * Node], Min[2 * Node + 1]); } void Solve(int End, int Spinit, int Node = 1, int st = 1, int en = n) { if (st > End) return; if (Min[Node] - Spinit >= 0) return; if (Max[Node] - Spinit < 0) return void(Calc.push_back({{st, en}, End + 1})); Solve(End, Spinit, 2 * Node, st, (st + en) / 2); Solve(End, Spinit, 2 * Node + 1, (st + en) / 2 + 1, en); } int main() { cin >> n; for (int i = (1); i <= (n); ++i) scanf("%I64d", &Draft[i]); for (int i = (1); i <= (n); ++i) { scanf("%I64d", &Flag); Draft2[Draft[i]] = Flag; CommSpeed[Flag].insert(Draft[i]); } n &= 0; for (auto Itter : Draft2) { n++; Coor[n] = Itter.first; Speed[n] = Itter.second; Status[n] = {Itter.first, Itter.second}; } for (auto Itter : CommSpeed) { Flag = 0; while (Itter.second.size()) { Ans += *Itter.second.begin() * (long long)(Itter.second.size() - 1 - Flag); Flag++; Itter.second.erase(Itter.second.begin()); } } Build(); for (int i = (2); i <= (n); ++i) Solve(i - 1, Speed[i]); memset(Draft, 0, sizeof(Draft)); for (auto u : Calc) { Ans += u.second * (u.first.second - u.first.first + 1); Draft[u.first.first]++; Draft[u.first.second + 1]--; } for (int i = (1); i <= (n); ++i) Draft[i] += Draft[i - 1]; for (int i = (1); i <= (n); ++i) Ans -= Draft[i] * Coor[i]; cout << Ans; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
import sys from collections import defaultdict range = xrange input = raw_input class segtree: def __init__(self, n): m = 1 while m < n: m *= 2 self.m = m self.data1 = [0.0]*(m + m) self.data2 = [0]*(m + m) def add(self, i, val): i += self.m while i: self.data1[i] += val self.data2[i] += 1 i >>= 1 def summer(self, l, r): l += self.m r += self.m s1 = 0.0 s2 = 0 while l < r: if l & 1: s1 += self.data1[l] s2 += self.data2[l] l += 1 if r & 1: r -= 1 s1 += self.data1[r] s2 += self.data2[r] l >>= 1 r >>= 1 return s1,s2 jj = -1 def map_fun(): global jj jj += 1 return jj inp = [int(x) for x in sys.stdin.read().split()]; ii = 0 n = inp[ii]; ii += 1 X = inp[ii: ii + n]; ii += n V = inp[ii: ii + n]; ii += n order = sorted(range(n), key = lambda i: (V[i], X[i])) mapper = defaultdict(map_fun) for x in sorted(X): mapper[x] seg = segtree(len(mapper)) total = 0 for i in order: x = X[i] j = mapper[x] s1, s2 = seg.summer(0,j) total += s2 * x - s1 seg.add(j, x) print int(total)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; vector<long> inverse(vector<long>& perm) { long n = perm.size(); vector<long> ret(n); for (long i = 0; i < n; ++i) { ret[perm[i]] = i; } return ret; } vector<long> assignPermutation(const vector<long>& uniqs) { long n = uniqs.size(); vector<pair<long, long>> withIndices(n); for (long i = 0; i < n; ++i) { withIndices[i] = {uniqs[i], i}; } sort(withIndices.begin(), withIndices.end()); vector<long> temp(n); for (long i = 0; i < n; ++i) { temp[i] = withIndices[i].second; } return inverse(temp); } int main() { long n; cin >> n; cin.ignore(); vector<long> x(n); vector<long> v(n); vector<pair<long, long>> data(n); for (long i = 0; i < n; ++i) { cin >> x[i]; } cin.ignore(); for (long i = 0; i < n; ++i) { cin >> v[i]; data[i] = {v[i], x[i]}; } cin.ignore(); sort(data.begin(), data.end()); vector<long> xtemp(n); for (long i = 0; i < n; ++i) xtemp[i] = data[i].second; auto xranks = assignPermutation(xtemp); sort(x.begin(), x.end()); long totsum = 0; for (long i = 0; i < n; ++i) { totsum += (i * x[i]); totsum -= (n - 1 - i) * x[i]; } for (long i = 0; i < n; ++i) { long netleftjumps = i - xranks[i]; totsum += (netleftjumps)*xtemp[i]; } cout << totsum << endl; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; pair<int, int> d[200000 + 10]; int vs[200000 + 10]; int n; pair<int, long long> add_(pair<int, long long> a, pair<int, long long> b) { return {a.first + b.first, a.second + b.second}; } pair<int, long long int> init(vector<pair<int, long long>> &a, vector<pair<int, long long>> &tree, int node, int start, int end) { if (start == end) { return tree[node] = a[start]; } else { return tree[node] = add_(init(a, tree, node * 2, start, (start + end) / 2), init(a, tree, node * 2 + 1, (start + end) / 2 + 1, end)); } } void update(vector<pair<int, long long>> &tree, int node, int start, int end, int index, long long diff) { if (index < start || index > end) return; tree[node].first++; tree[node].second += diff; if (start != end) { update(tree, node * 2, start, (start + end) / 2, index, diff); update(tree, node * 2 + 1, (start + end) / 2 + 1, end, index, diff); } } pair<int, long long> sum(vector<pair<int, long long>> &tree, int node, int start, int end, int left, int right) { if (left > end || right < start) { return {0, 0}; } if (left <= start && end <= right) { return tree[node]; } return add_(sum(tree, node * 2, start, (start + end) / 2, left, right), sum(tree, node * 2 + 1, (start + end) / 2 + 1, end, left, right)); } int main() { scanf("%d", &n); for (int i = 0; i < n; i++) scanf("%d", &d[i].first); for (int i = 0; i < n; i++) { scanf("%d", &d[i].second); vs[i] = d[i].second; } sort(vs, vs + n); for (int i = 0; i < n; i++) { d[i].second = lower_bound(vs, vs + n, d[i].second) - vs; } sort(d, d + n); int h = (int)ceil(log2(n)); int tree_size = (1 << (h + 1)); vector<pair<int, long long>> tree(tree_size); vector<pair<int, long long>> a(tree_size); init(a, tree, 1, 0, n - 1); long long res = 0; for (int i = 0; i < n; i++) { auto sum_d = sum(tree, 1, 0, n - 1, 0, d[i].second); res += d[i].first * sum_d.first; res -= sum_d.second; update(tree, 1, 0, n - 1, d[i].second, d[i].first); } cout << res; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 45; const int lim = 1e8 + 3; long long n; pair<long long, long long> a[N]; long long drvo[15 * N], br[15 * N]; int ls[15 * N], rs[15 * N], tsz = 1, root = 1; void update(int i, int j, int pos, int val, int &node) { if (!node) { node = ++tsz; } if (i == j) { drvo[node] += val; br[node]++; return; } int mid = i + (j - i) / 2; if (pos <= mid) { update(i, mid, pos, val, ls[node]); } else { update(mid + 1, j, pos, val, rs[node]); } drvo[node] = drvo[ls[node]] + drvo[rs[node]]; br[node] = br[ls[node]] + br[rs[node]]; } long long getsum(int i, int j, int l, int r, int node) { if (!node || j < l || i > r) { return 0; } if (l <= i && r >= j) { return drvo[node]; } int mid = i + (j - i) / 2; return getsum(i, mid, l, r, ls[node]) + getsum(mid + 1, j, l, r, rs[node]); } long long getcnt(int i, int j, int l, int r, int node) { if (!node || j < l || i > r) { return 0; } if (l <= i && r >= j) { return br[node]; } int mid = i + (j - i) / 2; return getcnt(i, mid, l, r, ls[node]) + getcnt(mid + 1, j, l, r, rs[node]); } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cin >> n; for (int i = 1; i <= n; i++) { cin >> a[i].first; } for (int i = 1; i <= n; i++) { cin >> a[i].second; } sort(a + 1, a + n + 1); long long sol = 0; for (int i = n; i >= 1; i--) { if (a[i].second < 0) { continue; } long long s = getsum(0, lim, a[i].second, lim, root), cnt = getcnt(0, lim, a[i].second, lim, root); sol += s - cnt * a[i].first; update(0, lim, a[i].second, a[i].first, root); } for (int i = 0; i < 15 * N; i++) { br[i] = drvo[i] = ls[i] = rs[i] = 0; tsz = 1; } for (long long i = n; i >= 1; i--) { if (a[i].second >= 0) { continue; } long long s = getsum(0, lim, -a[i].second, lim, root), cnt = getcnt(0, lim, -a[i].second, lim, root); sol += s - cnt * a[i].first; update(0, lim, -a[i].second, a[i].first, root); } long long sum = 0, cnt = 0; for (long long i = n; i >= 1; i--) { if (a[i].second >= 0) { cnt++; sum += a[i].first; } else { sol += sum - cnt * a[i].first; } } cout << sol << endl; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct hash_pair { template <class T1, class T2> size_t operator()(const pair<T1, T2>& p) const { auto hash1 = hash<T1>{}(p.first); auto hash2 = hash<T2>{}(p.second); return hash1 ^ hash2; } }; bool prime[10000001]; int P = 1000000007 - 2; int factorial[10000001] = {0}; int powerFunction(int x, int y) { int res = 1; int p = 1000000007; x = x % p; while (y > 0) { if (y & 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } void sieveFunction(int maxLimit) { memset(prime, true, sizeof(prime)); prime[0] = prime[1] = false; for (int i = 2; maxLimit >= i; i++) { if (prime[i]) { for (int j = 2 * i; maxLimit >= j; j += i) prime[j] = false; } } } void factorialFunction(int maxLimit) { factorial[0] = 1; for (int i = 1; i <= maxLimit; i++) factorial[i] = (factorial[i - 1] * i) % 1000000007; return; } int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } vector<pair<int, int>> tree[800001]; vector<int> treesum[800001]; vector<pair<int, int>> v; void build(int node, int start, int end) { if (start == end) { vector<pair<int, int>> temp; temp.push_back({v[start].second, v[start].first}); tree[node] = temp; vector<int> sum; int s = 0; for (int i = 0; tree[node].size() > i; i++) { s += tree[node][i].second; treesum[node].push_back(s); } return; } int mid = (start + end) / 2; build(2 * node, start, mid); build(2 * node + 1, mid + 1, end); int i = 0, j = 0; while (i < tree[2 * node].size() && j < tree[2 * node + 1].size()) { if (tree[2 * node][i] <= tree[2 * node + 1][j]) { tree[node].push_back(tree[2 * node][i]); i++; } else { tree[node].push_back(tree[2 * node + 1][j]); j++; } } for (int k = i; k < tree[2 * node].size(); k++) tree[node].push_back(tree[2 * node][k]); for (int k = j; k < tree[2 * node + 1].size(); k++) tree[node].push_back(tree[2 * node + 1][k]); int s = 0; for (int k = 0; tree[node].size() > k; k++) { s += tree[node][k].second; treesum[node].push_back(s); } } int n; pair<int, int> query(int node, int start, int end, int x) { if (start > x && end <= n) { pair<int, int> tem = {v[x].second, INT_MIN}; int id = lower_bound(tree[node].begin(), tree[node].end(), tem) - tree[node].begin(); if (id) { return {treesum[node].back() - treesum[node][id - 1], (int)tree[node].size() - id}; } return {treesum[node].back(), tree[node].size()}; } if (end <= x || start > n) { return {0, 0}; } int mid = (start + end) / 2; return {query(2 * node, start, mid, x).first + query(2 * node + 1, mid + 1, end, x).first, query(2 * node, start, mid, x).second + query(2 * node + 1, mid + 1, end, x).second}; } signed main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); ; cin >> n; int x[n + 1], s[n + 1]; for (int i = 1; n >= i; i++) { cin >> x[i]; } for (int i = 1; n >= i; i++) { cin >> s[i]; } v.push_back({INT_MIN, INT_MIN}); for (int i = 1; n >= i; i++) { v.push_back({x[i], s[i]}); } sort(v.begin(), v.end()); build(1, 1, n); int ans = 0; for (int i = 1; n >= i; i++) { int xx = v[i].first; pair<int, int> temp = query(1, 1, n, i); temp.first -= xx * temp.second; ans += temp.first; } cout << ans << "\n"; }