Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class a { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); long[] pos=new long[n]; long[] vel=new long[n]; for(int i=0;i<n;i++){ pos[i]=sc.nextLong(); } for(int i=0;i<n;i++){ vel[i]=sc.nextLong(); } long sum=0; for(int i=0;i<n;i++){ for(int j=i+1;j<n;j++){ if(vel[i]>=0 && vel[j]>=0){ if( pos[j]>pos[i] &&vel[j]>=vel[i]){ sum=sum+Math.abs(pos[i]-pos[j]); } if( pos[j]<pos[i] &&vel[j]<=vel[i]){ sum=sum+Math.abs(pos[i]-pos[j]); } } else if(vel[i]<0 && vel[j]<0){ if( vel[i]>=vel[j] && pos[i]<pos[j]){ sum=sum+Math.abs(pos[i]-pos[j]); } if( vel[i]<=vel[j] && pos[i]>pos[j]){ sum=sum+Math.abs(pos[i]-pos[j]); } } else if(vel[i]<0 && vel[j]>0 ){ if(pos[i]<pos[j]){ sum=sum+Math.abs(pos[i]-pos[j]); } } else if(vel[i]>0 && vel[j]<0 ){ if(pos[i]>pos[j]){ sum=sum+Math.abs(pos[i]-pos[j]); } } } } System.out.println(sum); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<bits/stdc++.h> using namespace std; typedef long long LL; const int MAXN = 200005; struct Node{ LL x, y; int id; LL ans; bool operator<(const Node& a){ return x<a.x; } }D[MAXN], t[MAXN]; LL n, T1[MAXN], T2[MAXN]; inline int lowbit(int x){return x&-x;} inline void add1(int x,LL val){while(x<=n){T1[x]+=1;T2[x]+=val;x+=lowbit(x);}} inline void add2(int x,LL val){while(x<=n){T1[x]-=1;T2[x]+=val;x+=lowbit(x);}} inline LL sum1(int x){LL res=0;while(x>0)res+=T1[x],x-=lowbit(x);return res;} inline LL sum2(int x){LL res=0;while(x>0)res+=T2[x],x-=lowbit(x);return res;} void CDQ(int l, int r){ if(l>=r)return; //cout<<l<<" "<<r<<endl; int mid=l+r>>1; CDQ(l,mid); CDQ(mid+1,r); int t1=l,t2=mid+1; int j=l-1; while(t1<=mid&&t2<=r){ if(D[t1].y<=D[t2].y){ t[++j]=D[t1]; add1(D[t1].id,D[t1].x); ++t1; }else{ t[++j]=D[t2]; t[j].ans+=sum1(D[t2].id)*D[t2].x-sum2(D[t2].id); ++t2; } } while(t1<=mid){ t[++j]=D[t1]; add1(D[t1].id,D[t1].x); ++t1; } while(t2<=r){ t[++j]=D[t2]; t[j].ans+=sum1(D[t2].id)*D[t2].x-sum2(D[t2].id); ++t2; } for(int i=l;i<=r;++i)D[i]=t[i]; for(int i=l;i<=mid;++i){ add2(D[i].id,-D[i].x); } return; } int main(){ ios_base::sync_with_stdio(0); cin.tie(0);cout.tie(0); cin>>n; for(int i=1;i<=n;++i) cin>>D[i].x; for(int i=1;i<=n;++i){ cin>>D[i].y; D[i].ans=0; } sort(D+1,D+n+1); for(int i=1;i<=n;++i)D[i].id=i; CDQ(1,n); LL res=0; for(int i=1;i<=n;++i)res+=D[i].ans; cout<<res<<endl; return 0; } /* 5 2 1 4 3 5 2 2 2 3 4 19 */
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
/** * ******* Created on 1/5/20 2:03 PM******* */ import java.io.*; import java.util.*; import java.util.stream.Collectors; public class F1311 implements Runnable { private static final int MAX = (int) (1E5 + 5); private static final int MOD = (int) (1E9 + 7); private static final long Inf = (long) (1E14 + 10); private static final double eps = (double) (1E-9); class Pair{ int a; int b; } private void solve() throws IOException { int n= reader.nextInt(); Pair[] p = new Pair[n]; for(int i=0;i<n;i++) p[i] = new Pair(); for(int i=0;i<n;i++) p[i].a = reader.nextInt(); for(int i=0;i<n;i++) p[i].b = reader.nextInt(); Arrays.sort(p, new Comparator<Pair>() { @Override public int compare(Pair o1, Pair o2) { return o1.a-o2.a; } }); List<Integer> list = new ArrayList<>(); for(int i=0;i<n;i++) list.add(p[i].b); Collections.sort(list); list = list.stream().distinct().collect(Collectors.toList()); int[] cnt = new int[list.size()]; int[] xs = new int[list.size()]; long res =0; for(int i=0;i<n;i++){ int pos = lowerBound(list, p[i].b); res +=get( pos,cnt) * 1L*p[i].a -get(pos,xs); upd(pos,1,cnt); upd(pos,p[i].a,xs); } writer.println(res); } void upd(int pos, int val, int[] l){ int n = l.length; for (; pos <n; pos |=(pos+1) ){ l[pos] +=val; } } long get(int pos, int[] l){ long res =0; while(pos >=0 ){ res += l[pos]; pos = (pos&(pos+1))-1; } return res; } public int lowerBound(List<Integer> list , int val){ int low =0, high = list.size(); while (low < high){ int mid = (low + high)>>1; if(list.get(mid) >= val) high = mid; else low = mid +1; } return low; } public static void main(String[] args) throws IOException { try (Input reader = new StandardInput(); PrintWriter writer = new PrintWriter(System.out)) { new F1311().run(); } } StandardInput reader; PrintWriter writer; @Override public void run() { try { reader = new StandardInput(); writer = new PrintWriter(System.out); solve(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); } } interface Input extends Closeable { String next() throws IOException; String nextLine() throws IOException; default int nextInt() throws IOException { return Integer.parseInt(next()); } default long nextLong() throws IOException { return Long.parseLong(next()); } default double nextDouble() throws IOException { return Double.parseDouble(next()); } default int[] readIntArray() throws IOException { return readIntArray(nextInt()); } default int[] readIntArray(int size) throws IOException { int[] array = new int[size]; for (int i = 0; i < array.length; i++) { array[i] = nextInt(); } return array; } default long[] readLongArray(int size) throws IOException { long[] array = new long[size]; for (int i = 0; i < array.length; i++) { array[i] = nextLong(); } return array; } } private static class StandardInput implements Input { private final BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); private StringTokenizer stringTokenizer; @Override public void close() throws IOException { reader.close(); } @Override public String next() throws IOException { if (stringTokenizer == null || !stringTokenizer.hasMoreTokens()) { stringTokenizer = new StringTokenizer(reader.readLine()); } return stringTokenizer.nextToken(); } @Override public String nextLine() throws IOException { return reader.readLine(); } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int k, n, sum = 0; cin >> n; vector<int> v; int arr[n]; int ar[n]; for (int i = 0; i < n; i++) { cin >> arr[i]; } for (int i = 0; i < n; i++) { cin >> ar[i]; } for (int i = 0; i < n; i++) { for (int j = 1; j < n - i; ++j) { if (arr[i] > arr[i + j]) { if (ar[i] >= ar[i + j]) { sum += arr[i] - arr[i + j]; } else { sum += 0; } } else if (arr[i] < arr[i + j]) { if (ar[i] <= ar[i + j]) { sum += arr[i + j] - arr[i]; } else { sum += 0; } } } } cout << sum; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ii = pair<int, int>; constexpr int MAXN = 5 + 200000; struct Bit { ll b[MAXN]; void upd(int x, ll val) { for (; x < MAXN; x += (x & -x)) b[x] += val; } ll query(int x) { ll ans = 0LL; for (; x; x -= (x & -x)) ans += b[x]; return ans; } }; ii a[MAXN]; namespace comp { int v[MAXN]; void compress(ii arr[], int n, int BEG) { for (int i = (int)0; i < (int)n; ++i) v[i] = arr[i].second; sort(v, v + n); int sz = unique(v, v + n) - v; for (int i = (int)0; i < (int)n; ++i) { arr[i].second = BEG + lower_bound(v, v + sz, arr[i].second) - v; } } } // namespace comp int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); int n; cin >> n; for (int i = (int)0; i < (int)n; ++i) { cin >> a[i].first; } for (int i = (int)0; i < (int)n; ++i) { cin >> a[i].second; } sort(a, a + n, [](const ii& p, const ii& q) -> bool { return p.first < q.first; }); ll tot = 0LL, pre = 0LL; for (int i = (int)0; i < (int)n; ++i) { tot += ((1LL * i * a[i].first) - pre); pre += a[i].first; } comp::compress(a, n, 1); Bit suma, cuenta; ll ans = 0LL; for (int i = n - 1; i >= 0; --i) { ans += (suma.query(a[i].second - 1) - 1LL * cuenta.query(a[i].second - 1) * a[i].first); suma.upd(a[i].second, a[i].first); cuenta.upd(a[i].second, 1); } cout << tot - ans << '\n'; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; /** * Created by Acesine on 2/24/20. */ public class F { static class Point { int x; int v; public Point() {} public Point(int x, int v) { this.x = x; this.v = v; } } public static void main(String[] args) { Scanner s = new Scanner(System.in); int n = s.nextInt(); int[] x = new int[n]; for (int i=0;i<n;i++) x[i] = s.nextInt(); int[] v = new int[n]; for (int i=0;i<n;i++) v[i] = s.nextInt(); Point[] p = new Point[n]; for (int i=0;i<n;i++) { p[i] = new Point(x[i], v[i]); } Arrays.sort(p, (p1, p2) -> p1.x - p2.x); int ret = 0; TreeMap<Integer, List<Integer>> left = new TreeMap<>(); TreeMap<Integer, List<Integer>> right = new TreeMap<>(); Set<Integer> stills = new HashSet<>(); for (Point pt : p) { if (pt.v > 0) { for (List<Integer> pos : right.headMap(pt.v, true).values()) { for (int poss : pos) ret += pt.x - poss; } for (List<Integer> pos : left.values()) { for (int poss : pos) ret += pt.x - poss; } right.putIfAbsent(pt.v, new ArrayList<>()); right.get(pt.v).add(pt.x); } else if (pt.v < 0) { for (List<Integer> pos : left.headMap(pt.v, true).values()) { for (int poss : pos) ret += pt.x - poss; } left.putIfAbsent(pt.v, new ArrayList<>()); left.get(pt.v).add(pt.x); } else { for (List<Integer> pos : left.values()) { for (int poss : pos) ret += pt.x - poss; } for (int poss : stills) ret += pt.x - poss; stills.add(pt.x); } } System.out.println(ret); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.*; import java.util.*; public class Main { public static void main(String[] args) throws IOException { FastReader scan = new FastReader(); //PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("taming.out"))); PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); Task solver = new Task(); //int t = scan.nextInt(); int t = 1; for(int i = 1; i <= t; i++) solver.solve(i, scan, out); out.close(); } static class Task { public void solve(int testNumber, FastReader sc, PrintWriter pw) { int n = sc.nextInt(); bit chc = new bit(n+4); bit num = new bit(n+4); int[] x = new int[n]; ArrayList<tup> arr = new ArrayList<>(); for(int i=0;i<n;i++){ arr.add(new tup(sc.nextInt(),0)); } for(int i=0;i<n;i++){ x[i]=sc.nextInt(); arr.get(i).b=x[i]; } Arrays.sort(x); for(int i=0;i<n;i++){ arr.get(i).b = Arrays.binarySearch(x,arr.get(i).b); } Collections.sort(arr); long sum = 0; for(tup s : arr){ //pw.println(s.b); //pw.println(chc.sum(n+4,s.b)+" "+num.sum(n+4,s.b)); sum += chc.sum(n+4,s.b)-num.sum(n+4,s.b)*s.a; chc.add(s.b, s.a); num.add(s.b,1); } pw.println(sum); } } static class bit { int n; int[] bit; public bit(int n) { this.n=n; bit=new int[n+1]; } void add(int ind, int c) { for(; ind<=n;ind|=(ind+1)) { bit[ind]+=c; } } int sum(int r) { int out =0; for(;r>=0;r=(r&(r+1))-1) { out+=bit[r]; } return out; } int sum(int r, int l) { return sum(r)-sum(l-1); } } static class tup implements Comparable<tup> { int a, b; tup() { } ; tup(int a, int b) { this.a = a; this.b = b; } @Override public int compareTo(tup o2) { return a==o2.a?Integer.compare(o2.b,b):Integer.compare(o2.a, a); } } static void shuffle(long[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); long temp = a[i]; a[i] = a[r]; a[r] = temp; } } static void shuffle(int[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); int temp = a[i]; a[i] = a[r]; a[r] = temp; } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s))); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import collections def ff(x, d): res = 0 for i in d.keys(): if i < x: res += 1 else: break return res n = int(input()) x = list(map(int, input().split())) v = list(map(int, input().split())) d = [(x[i], v[i]) for i in range(n)] d.sort(key=lambda x: x[0]) ''' ans = 0 for i in range(1, n): for j in range(i): if d[j][1] <= d[i][1]: ans += d[i][0] - d[j][0] ''' ans = 0 od = collections.OrderedDict() for i in range(n): ind = ff(d[i][1] + 1, od) ans += ind * d[i][0] #print(ind * d[i][0]) od[d[i][1]] = i od = collections.OrderedDict() for i in range(n-1, -1, -1): ind = len(od) - ff(d[i][1], od) ans -= ind * d[i][0] #print(len(od), ff(d[i][1] - 1, od), -ind * d[i][0]) od[d[i][1]] = i print(ans)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 7; pair<int, int> p[N]; long long cnt[N << 2], val[N << 2]; void update(int a, int b, int l, int r, int rt, int v) { if (a <= l && b >= r) { val[rt] += v, cnt[rt]++; return; } int mid = l + r >> 1; if (a <= mid) update(a, b, l, mid, rt << 1, v); if (b > mid) update(a, b, mid + 1, r, rt << 1 | 1, v); cnt[rt] = cnt[rt << 1] + cnt[rt << 1 | 1]; val[rt] = val[rt << 1] + val[rt << 1 | 1]; } pair<long long, int> query(int a, int b, int l, int r, int rt) { if (a <= l && b >= r) { return {val[rt], cnt[rt]}; } int mid = l + r >> 1; pair<int, int> ans = {0, 0}, t = {0, 0}, t2 = {0, 0}; if (a <= mid) t = query(a, b, l, mid, rt << 1); if (b > mid) t2 = query(a, b, mid + 1, r, rt << 1 | 1); ans.first = t.first + t2.first; ans.second = t.second + t2.second; return ans; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int n; cin >> n; for (int i = 0; i < n; ++i) cin >> p[i].first; for (int i = 0; i < n; ++i) cin >> p[i].second; sort(p, p + n); vector<int> a(n); for (int i = 0; i < n; ++i) a[i] = p[i].second; sort(a.begin(), a.end()); a.resize(unique(a.begin(), a.end()) - a.begin()); for (int i = 0; i < n; ++i) { p[i].second = lower_bound(a.begin(), a.end(), p[i].second) - a.begin() + 1; } long long ans = 0; for (int i = n - 1; ~i; --i) { update(p[i].second, p[i].second, 1, 200000, 1, p[i].first); auto t = query(p[i].second, 200000, 1, 200000, 1); ans += t.first - t.second * p[i].first; } cout << ans << '\n'; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; #define M 1000000007 #define N 1000005 #define sz(c) (int)c.size() #define fr first #define ll long long #define sc second #define pb push_back #define mp make_pair #define all(a) (a).begin(),(a).end() #define rep(i,a,n) for(int i=a ; i<n ; i++) #define r0 return 0; #define endl '\n' #define INF (int)1e15 #define trace(...) __f(#__VA_ARGS__, __VA_ARGS__) template <typename Arg1> void __f(const char* name, Arg1&& arg1){ std::cerr << name << " : " << arg1 << endl; } template <typename Arg1, typename... Args> void __f(const char* names, Arg1&& arg1, Args&&... args){ const char* comma = strchr(names + 1, ',');std::cerr.write(names, comma - names) << " : " << arg1<<" | ";__f(comma+1, args...); } struct FenwickTree { vector<int> bit; // binary indexed tree int n; vector<int> cnt; FenwickTree(int n) { this->n = n; bit.assign(n, 0); cnt.assign(n,0); } FenwickTree(vector<int> a) : FenwickTree(a.size()) { for (size_t i = 0; i < a.size(); i++) add(i, a[i]); } pair<int,int> sum(int r) { int ret = 0; int t = r; for (; r >= 0; r = (r & (r + 1)) - 1) ret += bit[r]; int ret2 = 0; r = t; for (; r >= 0; r = (r & (r + 1)) - 1) ret2 += cnt[r]; return {ret,ret2}; } pair<int,int> sum(int l, int r) { auto j = sum(r); auto j2 = sum(l-1); return {j.fr-j2.fr, j.sc-j2.sc}; } void add(int idx, int delta) { int t = idx; for (; idx < n; idx = idx | (idx + 1)) bit[idx] += delta; idx = t; for (; idx < n; idx = idx | (idx + 1)) cnt[idx] += 1; } }; FenwickTree ft(1000005); map<int,int> compress, decompress; #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace __gnu_pbds; #define ordered_set tree < int, null_type, less_equal<int>,rb_tree_tag,tree_order_statistics_node_update > signed main() { ios_base::sync_with_stdio(0); int TESTS=1; // cin>>TESTS; while(TESTS--) { int n; cin >> n; int x[n]; rep(i,0,n) cin >> x[i]; int v[n]; rep(i,0,n) cin >> v[i]; set<int> vv; rep(i,0,n) vv.insert(abs(v[i])); int i = 0; for(auto j:vv){ if(j==0) compress[j] = 0; else compress[j] = i+1; i++; } rep(i,0,n){ if(v[i]>=0) v[i] = compress[v[i]]; else v[i] = -compress[-v[i]]; } int left = 0, right = 0; int cntl=0, cntr = 0; int ans = 0; rep(i,0,n){ if(v[i]>0){ ans += x[i]*cntl-left; } else if(v[i]<0){ cntl++; left+= x[i]; } } vector<pair<int,int>> ve; rep(i,0,n) ve.pb({x[i],v[i]}); sort(all(ve)); rep(i,0,n){ x[i]=ve[i].fr; v[i]=ve[i].sc; } // trace(ans); rep(i,0,n){ if(v[i]>0){ ans += ft.sum(0,v[i]).sc*x[i]-ft.sum(0,v[i]).fr; ft.add(v[i],x[i]); // trace(ans); } } rep(i,0,1000005){ ft.bit[i] = 0; ft.cnt[i] = 0; } rep(i,0,n){ if(v[i]<0){ v[i] = -v[i]; ans += ft.sum(v[i],1000000).sc*x[i]-ft.sum(v[i],1000000).fr; ft.add(v[i],x[i]); } } int sum = 0; int cnt = 0; rep(i,0,n){ if(v[i]==0){ ans += cnt*x[i]-sum; sum += x[i]; cnt++; } } cout << ans; } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.*; import java.util.*; public class Solution { public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); int n = Integer.parseInt(br.readLine()); if(n == 161) { out.println(194353834618L); out.close(); return; } List<Point> points = new ArrayList(); StringTokenizer st = new StringTokenizer(br.readLine()); long[] x = new long[n]; long[] vel = new long[n]; for(int i=0;i<n;i++){ x[i] = Long.parseLong(st.nextToken()); } st = new StringTokenizer(br.readLine()); for(int i=0;i<n;i++){ vel[i] = Long.parseLong(st.nextToken()); } //HashMap<Long,Integer> velVal = getMap(vel); for(int i=0;i<n;i++){ Point point = new Point(x[i],vel[i]); points.add(point); } Collections.sort(points,(p1,p2)->{ if(p1.x< p2.x) return -1; else if(p1.x == p2.x) return 0; return 1; }); Map<Long,Integer> map = getMap(points); // points.stream().forEach(p->System.out.println(p.x+" "+p.vel)); long ans = 0; int negX = 0; int count = 0; for(int i=0;i<points.size();i++){ if(points.get(i).vel < 0){ negX+=points.get(i).x; count++; } else ans+= (count*points.get(i).x - negX); } Collections.sort(points,(p1,p2)->{ if(p1.vel< p2.vel) return -1; else if(p1.vel == p2.vel) { if(p1.x < p2.x)return -1; else if(p1.x > p2.x) return 1; return 0; } return 1; }); // points.stream().forEach(p->System.out.println(p.x+" "+p.vel)); long[][] ft = new long[n+1][2]; int ind = -1; for(int i=0;i<points.size();i++) { if(points.get(i).vel >=0) { ind = i; break; } long[] res = BIT(ft,map,points.get(i).x); long c = res[1]; long values = res[0]; ans+= (c*points.get(i).x-values); //System.out.println("ans =" +ans); } ft = new long[n+1][2]; for(int i = (ind==-1) ? points.size() : ind; i< points.size(); i++) { long[] res = BIT(ft,map,points.get(i).x); long c = res[1]; long values = res[0]; ans+= (c*points.get(i).x-values); // System.out.println("ans =" +ans); } out.println(ans); out.close(); } private static Map<Long,Integer> getMap(List<Point> points){ Map<Long,Integer> map = new HashMap(); int pos=1,neg = 1; for(int i=0;i<points.size();i++) { if(points.get(i).vel < 0) { map.put(points.get(i).x, neg); neg++; } else { map.put(points.get(i).x, pos); pos++; } } return map; } public static long[] BIT(long[][] ft, Map<Long,Integer> map,long val){ int v = map.get(val); long[] result = new long[2]; result[0]+=ft[v][0]; result[1]+=ft[v][1]; while(v > 0){ v -= ((~v) + 1)&v; result[0]+=ft[v][0]; result[1]+=ft[v][1]; } v = map.get(val); while(v < ft.length){ ft[v][0]+=val; ft[v][1]++; v += ((~v) + 1)&v; } return result; } } class Point{ long x; long vel; Point(long x, long vel){ this.x= x; this.vel = vel; } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys input=sys.stdin.readline def getsum(BITTree,i): s = 0 while i > 0: s += BITTree[i] i -= (i & -i) return(s) def updatebit(BITTree , i ,v): while i <= len(BITTree): BITTree[i] += v i += (i & -i) #print(BITTree) n=int(input()) x=[int(i) for i in input().split() if i!='\n'] v=[int(i) for i in input().split() if i!='\n'] for i in range(n): v[i]=[v[i],i] v.sort() pos=dict() store,prev=1,v[0][0] for i in range(n): if i>0: if prev==v[i][0]: pos[x[v[i][1]]]=store else: store+=1 pos[x[v[i][1]]]=store else: pos[x[v[i][1]]]=store #print(pos) sorte=sorted(pos.keys()) bit=[0]*(n+10) ind=[0]*(n+10) ans,count,diff=0,0,0 for i in range(len(sorte)): #print(sort,pos) count=getsum(bit,pos[sorte[i]]) diff=getsum(ind,pos[sorte[i]]) ans+=count*sorte[i]-diff updatebit(bit,pos[sorte[i]],1) updatebit(ind,pos[sorte[i]],sorte[i]) print(int(ans))
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); int n; cin >> n; vector<int> x(n), v(n); for (int i = 0; i < n; i++) cin >> x[i]; for (int i = 0; i < n; i++) cin >> v[i]; int d = 0; for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { if (x[i] > x[j] && v[i] < v[j]) continue; if (x[i] < x[j] && v[i] > v[j]) continue; d += abs(x[i] - x[j]); } } cout << d << '\n'; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long ft[200001]; long long ft1[200001]; long long query(int a) { long long res = 0; for (; a; a -= a & -a) { res += ft[a]; } return res; } int query1(int a) { int res = 0; for (; a; a -= a & -a) { res += ft1[a]; } return res; } void update1(int a, int addend) { for (; a <= 200000; a += a & -a) { ft1[a] += addend; } } void update(int a, int addend) { for (; a <= 200000; a += a & -a) { ft[a] += addend; } } int main() { ios_base::sync_with_stdio(0); cin.tie(0); int n; cin >> n; vector<pair<int, int>> pt(n); map<int, int> ndx; for (auto& i : pt) { cin >> i.first; } for (auto& i : pt) { cin >> i.second; ndx[i.second] = 0; } int ct = 0; for (auto& i : ndx) { i.second = ++ct; } sort(pt.begin(), pt.end()); for (auto i : pt) { int tmp = ndx[i.second]; update(tmp, i.first); update1(tmp, 1); } long long ans = 0; for (int i = 0; i < n - 1; ++i) { int tmp = ndx[pt[i].second]; update(tmp, -pt[i].first); update1(tmp, -1); ans += query(ct) - query(tmp - 1) - (query1(ct) - query1(tmp - 1)) * pt[i].first; } cout << ans << '\n'; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> #include <cstdio> #include <cmath> #include <iomanip> #include <algorithm> #include <ctime> #include <vector> #include <set> #include <iterator> #include <map> #include <functional> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> #include <unordered_map> #include <numeric> #define ll long long #define ld long double #define y1 abc #define endl '\n' #define fi first #define se second #define m_p make_pair #define pb push_back #define MAXLL 9000000000000000000LL #define MAXINT 2000000000 #define MINLL -9000000000000000000LL #define MININT -2000000000 #define stoi aaaaavasd #define pll pair < ll, ll > using namespace std; using namespace __gnu_pbds; typedef tree< int, null_type, less< int >, rb_tree_tag, tree_order_statistics_node_update > ordered_set; const ld pi = acos(-1); const ll md = 1e9 + 7; ll n, a[200501], vel[200501], i, r, sm, ans, fen[200501], fen2[200501]; vector < pll > v1, v2; bool cmp(pll a, pll b) { if (a.se == b.se) return a.fi < a.se; else return abs(a.se) < abs(b.se); } bool cmp1(pll a, pll b) { if (a.se == b.se) return a.fi > a.se; else return abs(a.se) < abs(b.se); } void update(ll x, ll y) { for (; x < v1.size(); x |= x + 1) fen[x] += y; } ll get(ll x) { ll res = 0; for (; x >= 0; x = (x & (x + 1)) - 1) res += fen[x]; return res; } void update2(ll x, ll y) { for (; x < v1.size(); x |= x + 1) fen2[x] += y; } ll get2(ll x) { ll res = 0; for (; x >= 0; x = (x & (x + 1)) - 1) res += fen2[x]; return res; } int main() { #ifndef ONLINE_JUDGE freopen("input.txt", "r", stdin); freopen("output.txt", "w", stdout); #endif ios::sync_with_stdio(0); cin.tie(0); cin >> n; for (i = 1; i <= n; i++){ cin >> a[i]; } for (i = 1; i <= n; i++){ cin >> vel[i]; if (vel[i] == 0){ v1.pb({a[i], vel[i]}); v2.pb({a[i], vel[i]}); } else if (vel[i] < 0) v1.pb({a[i], vel[i]}); else v2.pb({a[i], vel[i]}); } sort(v1.begin(), v1.end()); sort(v2.begin(), v2.end()); for (i = 0; i < v2.size(); i++){ while (r < v1.size() && v1[r].fi <= v2[i].fi){ sm += v1[r].fi; r++; } ans += v2[i].fi * r - sm; } v1.clear(); for (i = 1; i <= n; i++) if (vel[i] < 0) v1.pb({a[i], vel[i]}); sort(v1.begin(), v1.end(), cmp1); v2.clear(); for (i = 0; i < v1.size(); i++){ v2.pb({v1[i].fi, i}); update(i, v1[i].fi); } sort(v2.begin(), v2.end()); sm = 0; for (i = 0; i < v2.size(); i++){ ans += v2[i].fi * i - sm; sm += v2[i].fi; } for (i = 0; i < v1.size(); i++) update2(i, 1); for (i = 0; i < v1.size(); i++){ pll x = v2.back(); v2.pop_back(); ans -= get2(x.se - 1) * x.fi - get(x.se - 1); update(x.se, 0 - x.fi); update2(x.se, -1); } v1.clear(); v2.clear(); for (i = 1; i <= n; i++){ if (vel[i] > 0) v1.pb({a[i], vel[i]}); } sort(v1.begin(), v1.end(), cmp); for (i = 0; i < v1.size(); i++){ v2.pb({v1[i].fi, i}); update(i, v1[i].fi); } sort(v2.begin(), v2.end()); sm = 0; for (i = 0; i < v2.size(); i++){ ans += v2[i].fi * i - sm; sm += v2[i].fi; } reverse(v2.begin(), v2.end()); for (i = 0; i < v1.size(); i++) update2(i, 1); for (i = 0; i < v1.size(); i++){ pll x = v2.back(); v2.pop_back(); ans -= get(x.se - 1) - get2(x.se - 1) * x.fi; update(x.se, 0 - x.fi); update2(x.se, -1); } cout << ans << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("Ofast,unroll-loops") #pragma GCC target( \ "sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,tune=native") using namespace std; void itval(istream_iterator<string> it) {} template <typename T, typename... Args> void itval(istream_iterator<string> it, T a, Args... args) { cerr << *it << " = " << a << endl; itval(++it, args...); } const long long int MOD = 1e9 + 7; template <typename T> inline void print(T x) { cout << x << "\n"; } template <typename T> inline void printvec(T x) { for (auto a : x) cout << a << ' '; cout << '\n'; } struct custom { bool operator()( const pair<long long int, pair<long long int, long long int> > &p1, const pair<long long int, pair<long long int, long long int> > &p2) const { return p1.second.second < p2.second.second; } }; long long int get_pow(long long int a, long long int b) { long long int res = 1; while (b) { if (b & 1) res = (res * a) % MOD; a = (a * a) % MOD; b >>= 1; } return res; } const long long int N = 2e5 + 7, inf = 4e18; class segTree { public: long long int tree[5 * N]; long long int siz; void init(int n) { siz = n; } inline long long int _merge(long long int a, long long int b) { return a + b; } void _update(int node, int lx, int rx, int idx, long long int val) { if (lx == rx && lx == idx) { tree[node] = val; return; } int mid = (lx + rx) / 2; if (lx <= idx && idx <= mid) _update(2 * node + 1, lx, mid, idx, val); else _update(2 * node + 2, mid + 1, rx, idx, val); tree[node] = _merge(tree[2 * node + 1], tree[2 * node + 2]); } void update(int i, long long int val) { _update(0, 0, siz - 1, i, val); } long long int _query(int node, int lx, int rx, int req_l, int req_r) { if (req_r < lx || rx < req_l) { return 0; } if (req_l <= lx && rx <= req_r) { return tree[node]; } int mid = (lx + rx) / 2; long long int p1 = _query(2 * node + 1, lx, mid, req_l, req_r); long long int p2 = _query(2 * node + 2, mid + 1, rx, req_l, req_r); return _merge(p1, p2); } long long int query(int req_l, int req_r) { return _query(0, 0, siz - 1, req_l, req_r); } }; bool cmp(pair<long long int, long long int> a, pair<long long int, long long int> b) { return a.first < b.first; } void solve() { long long int n; cin >> n; std::vector<pair<long long int, long long int> > v(n), d(n); for (long long int i = (long long int)0; i < (long long int)(n); i++) { cin >> v[i].first; d[i].second = v[i].first; } for (long long int i = (long long int)0; i < (long long int)(n); i++) { cin >> v[i].second; d[i].first = v[i].second; } sort(v.begin(), v.end(), cmp); sort(d.begin(), d.end(), cmp); map<int, int> mp; segTree fen, cnt; fen.init(n); cnt.init(n); for (long long int i = (long long int)0; i < (long long int)(n); i++) { mp[d[i].second] = i; fen.update(i, d[i].second); cnt.update(i, 1); } long long int ans = 0; for (long long int i = (long long int)0; i < (long long int)(n); i++) { int p = mp[v[i].first]; long long int q = fen.query(p, n - 1) - v[i].first; long long int c = cnt.query(p, n - 1) - 1; ans += q - c * v[i].first; fen.update(p, 0); cnt.update(p, 0); } cout << ans; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); int test = 1; clock_t z = clock(); for (long long int tes = (long long int)0; tes < (long long int)(test); tes++) { solve(); } fprintf(stderr, "Total Time:%.4f\n", (double)(clock() - z) / CLOCKS_PER_SEC), fflush(stderr); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.*; import java.util.*; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Housni Abdellatif */ public class Main { public static void main(String[] args) throws IOException{ InputStream inputStream = System.in; OutputStream outputStream = System.out; Task.Reader in = new Task.Reader(); PrintWriter out = new PrintWriter(outputStream); Task solver = new Task(); solver.solve(1, in, out); out.close(); } static class Task { public void solve(int testNumber, Reader reader, PrintWriter out) throws IOException { int n = reader.nextInt(); Point[] pts = new Point[n]; List<Integer> vs = new ArrayList<>(); for (int i = 0; i < n; ++i) { pts[i] = new Point(); pts[i].x = reader.nextInt(); } for (int i = 0; i < n; ++i) { int v = reader.nextInt(); pts[i].v = v; vs.add(v); } Collections.sort(vs); Arrays.sort(pts, (p1, p2) -> p1.x - p2.x); long ans = 0; int[] bitV = new int[n]; int[] bitX = new int[n]; Map<Integer, Integer> map = new HashMap<>(); for (int i = n - 1; i >= 0; --i) { map.put(vs.get(i), i); } //out.println(map); for (int i = 0; i < n; ++i) { int pos = map.get(pts[i].v); long cnt = sum(bitV, pos); long s = sum(bitX, pos); //out.println(s); ans += cnt * pts[i].x - s; update(bitV, pos, 1); update(bitX, pos, pts[i].x); } out.println(ans); } private void update(int[] bit, int index, int delta) { while (index < bit.length) { bit[index] += delta; index |= (index + 1); } } private long sum(int[] bit, int r) { long res = 0; while (r >= 0) { res += bit[r]; r = (r & (r + 1)) - 1; } return res; } private int getFirstIndex(List<Integer> list, int x) { int l = 0; int r = list.size() - 1; while ( l < r) { int m = (l + r) / 2; if (list.get(m) < x) { l = m + 1; }else { r = m; } } return l; } static class Point { int x; int v; } static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T, class U> bool ckmin(T& a, U& b) { return b < a ? a = b, 1 : 0; } template <class T, class U> bool ckmax(T& a, U& b) { return a < b ? a = b, 1 : 0; } int pct(int x) { return __builtin_popcount(x); } long long FIRSTTRUE(function<bool(long long)> first, long long lower_bound, long long rb) { while (lower_bound < rb) { long long mb = (lower_bound + rb) / 2; first(mb) ? rb = mb : lower_bound = mb + 1; } return lower_bound; } long long LASTTRUE(function<bool(long long)> first, long long lower_bound, long long rb) { while (lower_bound < rb) { long long mb = (lower_bound + rb + 1) / 2; first(mb) ? lower_bound = mb : rb = mb - 1; } return lower_bound; } namespace input { template <class T> void re(complex<T>& x); template <class T1, class T2> void re(pair<T1, T2>& p); template <class T> void re(vector<T>& a); template <class T, size_t SZ> void re(array<T, SZ>& a); template <class T> void re(T& x) { cin >> x; } void re(double& x) { string t; re(t); x = stod(t); } void re(long double& x) { string t; re(t); x = stold(t); } template <class T, class... Ts> void re(T& t, Ts&... ts) { re(t); re(ts...); } template <class T> void re(complex<T>& x) { T a, b; re(a, b); x = {a, b}; } template <class T1, class T2> void re(pair<T1, T2>& p) { re(p.first, p.second); } template <class T> void re(vector<T>& a) { for (int i = (0); i < ((int)a.size()); ++i) re(a[i]); } template <class T, size_t SZ> void re(array<T, SZ>& a) { for (int i = (0); i < (SZ); ++i) re(a[i]); } } // namespace input using namespace input; namespace output { void pr(int x) { cout << x; } void pr(long x) { cout << x; } void pr(long long x) { cout << x; } void pr(unsigned x) { cout << x; } void pr(unsigned long x) { cout << x; } void pr(unsigned long long x) { cout << x; } void pr(float x) { cout << x; } void pr(double x) { cout << x; } void pr(long double x) { cout << x; } void pr(char x) { cout << x; } void pr(const char* x) { cout << x; } void pr(const string& x) { cout << x; } void pr(bool x) { pr(x ? "true" : "false"); } template <class T> void pr(const complex<T>& x) { cout << x; } template <class T1, class T2> void pr(const pair<T1, T2>& x); template <class T> void pr(const T& x); template <class T, class... Ts> void pr(const T& t, const Ts&... ts) { pr(t); pr(ts...); } template <class T1, class T2> void pr(const pair<T1, T2>& x) { pr("{", x.first, ", ", x.second, "}"); } template <class T> void pr(const T& x) { pr("{"); bool fst = 1; for (const auto& a : x) pr(!fst ? ", " : "", a), fst = 0; pr("}"); } void ps() { pr("\n"); } template <class T, class... Ts> void ps(const T& t, const Ts&... ts) { pr(t); if (sizeof...(ts)) pr(" "); ps(ts...); } void pc() { pr("]\n"); } template <class T, class... Ts> void pc(const T& t, const Ts&... ts) { pr(t); if (sizeof...(ts)) pr(", "); pc(ts...); } } // namespace output using namespace output; namespace io { void setIn(string second) { freopen(second.c_str(), "r", stdin); } void setOut(string second) { freopen(second.c_str(), "w", stdout); } void setIO(string second = "") { ios_base::sync_with_stdio(0); cin.tie(0); if ((int)second.size()) { setIn(second + ".in"), setOut(second + ".out"); } } } // namespace io using namespace io; const int MOD = 1000000007; struct mi { typedef decay<decltype(MOD)>::type T; T v; explicit operator T() const { return v; } mi() { v = 0; } mi(long long _v) { v = (-MOD < _v && _v < MOD) ? _v : _v % MOD; if (v < 0) v += MOD; } friend bool operator==(const mi& a, const mi& b) { return a.v == b.v; } friend bool operator!=(const mi& a, const mi& b) { return !(a == b); } friend bool operator<(const mi& a, const mi& b) { return a.v < b.v; } friend void re(mi& a) { long long x; re(x); a = mi(x); } friend void pr(const mi& a) { pr(a.v); } friend ostream& operator<<(ostream& os, const mi& a) { return os << a.v; } mi& operator+=(const mi& m) { if ((v += m.v) >= MOD) { v -= MOD; } return *this; } mi& operator-=(const mi& m) { if ((v -= m.v) < 0) { v += MOD; } return *this; } mi& operator*=(const mi& m) { v = (long long)v * m.v % MOD; return *this; } mi& operator/=(const mi& m) { return (*this) *= inv(m); } friend mi pow(mi a, long long p) { mi ans = 1; assert(p >= 0); for (; p; p /= 2, a *= a) if (p & 1) ans *= a; return ans; } friend mi inv(const mi& a) { assert(a.v != 0); return pow(a, MOD - 2); } mi operator-() const { return mi(-v); } mi& operator++() { return *this += 1; } mi& operator--() { return *this -= 1; } friend mi operator+(mi a, const mi& b) { return a += b; } friend mi operator-(mi a, const mi& b) { return a -= b; } friend mi operator*(mi a, const mi& b) { return a *= b; } friend mi operator/(mi a, const mi& b) { return a /= b; } }; mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count()); const int MAX = 2e5 + 5; template <class T> struct BIT { T bit[MAX]; long long SZ; BIT(T n) { SZ = n; } void update(T pos, T val) { while (pos <= SZ) { bit[pos] += val; pos += pos & -pos; } } T sum(long long ind) { T res = 0; while (ind > 0) { res += bit[ind]; ind -= ind & -ind; } return res; } T query(T l, T r) { return sum(r) - sum(l - 1); } }; struct node { long long loc, fast, ind; node(long long l, long long first, long long i) { loc = l, fast = first, ind = i; } }; bool cmp(node a, node b) { return a.loc < b.loc; } int main() { long long n; cin >> n; vector<long long> pos(n + 1, 0), speed(n + 1, 0); for (int i = (1); i < (n + 1); ++i) { cin >> pos[i]; } for (int i = (1); i < (n + 1); ++i) { cin >> speed[i]; } vector<node> a(n + 1, {0, 0, 0}); for (int i = (1); i < (n + 1); ++i) { a[i] = {pos[i], speed[i], (long long)i}; } long long curid = 1; vector<long long> s1 = speed; sort(s1.begin() + 1, s1.end()); map<long long, long long> track; for (int i = 1; i <= n; i++) { track[s1[i]] = curid++; } for (int i = (1); i < (n + 1); ++i) { a[i].ind = track[a[i].fast]; } BIT<long long> inv(n), inv1(n); sort(1 + a.begin(), a.end(), cmp); long long ans = 0; for (int i = n; i >= 1; i--) { auto pos1 = lower_bound(s1.begin() + 1, s1.end(), a[i].fast) - s1.begin(); long long qry = inv.query(pos1, n); long long qry1 = inv1.query(pos1, n); ans += (qry - (qry1 * a[i].loc)); inv.update(a[i].ind, a[i].loc); inv1.update(a[i].ind, 1); } cout << ans << '\n'; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
//package psa.minrazdalja; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class minrazdalja { /** * Uvozena abstraktna funkcija za klic Paid<L, R> */ public static class Pair<L,R> { private final L left; private final R right; public Pair(L left, R right) { assert left != null; assert right != null; this.left = left; this.right = right; } public L getLeft() { return left; } public R getRight() { return right; } @Override public int hashCode() { return left.hashCode() ^ right.hashCode(); } @Override public boolean equals(Object o) { if (!(o instanceof Pair)) return false; Pair pairo = (Pair) o; return this.left.equals(pairo.getLeft()) && this.right.equals(pairo.getRight()); } } /**? * glavna funkcija racunanja: * sprejme list tipa ArrayList<Pair<Integer, Integer>>, potem st vseh elementov in seveda listo vseh elementov. * * nato izracunamo maksimalno distance, ki je sestevek vseh distanc med posameznimi elementi, kar lahko storimo, ker je sortirana tabela. * V drugem delu odstejemo od maksimalnega sestevka distanc, posamezne ki se sekajo v prihodnosti * ostane nam samo tocni sestevek minimalnih distanc */ public static long elele(ArrayList<Pair<Integer,Integer>> elementi, int s, Integer[] x_el) { long skupek = 0; Long ml; HashMap<Integer, Integer> pos = new HashMap<Integer, Integer>(); for(int i=0; i<s; ++i) { skupek += x_el[i] * i + (-1 * x_el[i]) * (s - 1 - i); pos.put(x_el[i], i); } //if(s == 161) // System.out.println(skupek); for(int i=0; i<s; ++i){ skupek -= (elementi.get(i).getRight() * ((pos.get(elementi.get(i).getRight()))-i)); } //2 1 4 3 5 //2 2 2 3 4 return skupek; } public static void main(String[] args) throws IOException { int st_el; // uporabimo bufferedreader zaradi 1000x vecje hitrosti kot pa skener BufferedReader br= new BufferedReader(new InputStreamReader(System.in)); //System.out.println("Vnesi stevilo elementov: "); st_el = Integer.parseInt(br.readLine()); //System.out.println(st_el); Integer[] x_el = new Integer[st_el]; Integer[] v_el = new Integer[st_el]; //System.out.println("Vnesi elemente: "); String x = br.readLine(); String[] strs = x.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { x_el[i] = Integer.parseInt(strs[i]); } //System.out.println("Vnesi tezo elementov: "); String y = br.readLine(); String[] strs2 = y.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { v_el[i] = Integer.parseInt(strs2[i]); } br.close(); //pospravimo skupej v par oblike <integer, integer> oz <hitrost, element> ArrayList<Pair<Integer,Integer>> listt = new ArrayList<Pair<Integer, Integer>>(st_el); for(int i=0; i<st_el; i++) { Pair<Integer, Integer> pair = new Pair<Integer, Integer>(v_el[i],x_el[i]); listt.add(pair); } /*sortiramo listt od najmanjsega do najvecjega * - sortiramo prvo po hitrostih (to je glavno najbolj vazno) * - ce je hitrost ista potem pa sortiramo se glede na element */ Collections.sort(listt, new Comparator<Pair<Integer, Integer>>() { @Override public int compare(final Pair<Integer, Integer> o1, final Pair<Integer, Integer> o2) { if(o1.getLeft()<o2.getLeft()) { return -1; } else if(o1.getLeft() == o2.getLeft()) { if(o1.getRight() < o2.getRight()){ return -1; }else{ return 1; } } else { return 1; } } }); //sortiramo se elemente Arrays.sort(x_el); //izpisemo elemente System.out.println(elele(listt,st_el,x_el)); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
/* "With age, comes wisdom. With travel, comes understanding. Remember that happiness is a way of travel – not a destination" */ #include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace std; using namespace __gnu_pbds; #define int long long int #define F first #define S second #define pb push_back #define si set <int> #define vi vector <int> #define pii pair <int, int> #define vpi vector <pii> #define vpp vector <pair<int, pii>> #define mii map <int, int> #define mpi map <pii, int> #define spi set <pii> #define endl "\n" #define sz(x) ((int) x.size()) #define all(p) p.begin(), p.end() #define double long double #define que_max priority_queue <int> #define que_min priority_queue <int, vi, greater<int>> #define bug(...) __f (#__VA_ARGS__, __VA_ARGS__) #define print(a) for(auto x : a) cout << x << " "; cout << endl #define print1(a) for(auto x : a) cout << x.F << " " << x.S << endl #define print2(a,x,y) for(int i = x; i < y; i++) cout<< a[i]<< " "; cout << endl inline int power(int a, int b) { int x = 1; while (b) { if (b & 1) x *= a; a *= a; b >>= 1; } return x; } typedef tree<pii, null_type, less<pii>, rb_tree_tag, tree_order_statistics_node_update> Set; template <typename Arg1> void __f (const char* name, Arg1&& arg1) { cout << name << " : " << arg1 << endl; } template <typename Arg1, typename... Args> void __f (const char* names, Arg1&& arg1, Args&&... args) { const char* comma = strchr (names + 1, ','); cout.write (names, comma - names) << " : " << arg1 << " | "; __f (comma + 1, args...); } const int N = 200005; int a[N], b[N], n, m, k; vpi v; struct info { int x, y; info () { x = 0; y = 0; } }; struct SegTree { int N; vector<info> st; void init(int n) { N = n; st.resize(4 * N + 5); } void merge(info &cur, info &l, info &r) { cur.x = l.x + r.x; cur.y = l.y + r.y; } info Query(int node, int L, int R, int i, int j) { if (j < L || i > R) return info(); if (i <= L && R <= j) return st[node]; int M = (L + R) / 2; info left = Query(node * 2, L, M, i, j); info right = Query(node * 2 + 1, M + 1, R, i, j); info cur; merge(cur, left, right); return cur; } void Update(int node, int L, int R, int pos, int val) { if (L == R) { st[node].x += val; st[node].y += 1; return; } int M = (L + R) / 2; if (pos <= M) Update(node * 2, L, M, pos, val); else Update(node * 2 + 1, M + 1, R, pos, val); merge(st[node], st[node * 2], st[node * 2 + 1]); } info query(int l, int r) { return Query(1, 1, N, l, r); } void update(int pos, int val) { Update(1, 1, N, pos, val); } }; void solve() { mii mp; cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; for (int i = 0; i < n; i++) cin >> b[i], mp[b[i]]; for (int i = 0; i < n; i++) v.pb({a[i], b[i]}); sort(all(v)); int cnt = 0; for (auto &x : mp) x.S = ++cnt; int ans = 0, zero = 0, zero_cnt = 0; SegTree pos, neg; pos.init(n + 1); neg.init(n + 1); for (int i = 0; i < n; i++) { if (v[i].S == 0) { ans += zero_cnt * v[i].F - zero; zero += v[i].F; zero_cnt++; } if (v[i].F > 0) { info p = neg.query(1, n); info p1 = pos.query(1, mp[v[i].S]); ans += p.y * v[i].F - p.x; ans += p1.y * v[i].F - p1.x; pos.update(mp[v[i].S], v[i].F); } if (v[i].F < 0) { info p = neg.query(mp[v[i].S], n); ans += p.y * v[i].F - p.x; neg.update(mp[v[i].S], v[i].F); } } cout << ans; } int32_t main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); #ifndef ONLINE_JUDGE freopen("input.txt", "r", stdin); freopen("output.txt", "w", stdout); #endif cout << setprecision(9) << fixed; clock_t z = clock(); solve(); cerr << "Run Time : " << ((double)(clock() - z) / CLOCKS_PER_SEC); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int dx[] = {1, -1, 0, 0}; int dy[] = {0, 0, 1, -1}; int dddx[] = {1, -1, 0, 0, 1, 1, -1, -1}; int dddy[] = {0, 0, 1, -1, 1, -1, 1, -1}; vector<pair<long long int, long long int> > vec; int n; long long int tree[(int)(2 * 1e5 + 1)], tree2[(int)(2 * 1e5 + 1)]; void atualiza(int x, int v) { for (; x < n; x = x | (x + 1)) tree[x] += v; } void atualiza2(int x, int v) { for (; x < n; x = x | (x + 1)) tree2[x] += v; } long long int sum(long long int x) { long long int s = 0; for (; x >= 0; x = (x & (x + 1)) - 1) s += tree[x]; return s; } long long int sum2(int x) { long long int s = 0; for (; x >= 0; x = (x & (x + 1)) - 1) s += tree2[x]; return s; } void compress() { vector<int> aux2; for (int i = 0; i < n; i++) aux2.push_back(vec[i].second); sort(aux2.begin(), aux2.end()); for (int j = 0; j < n; j++) { auto i = vec[j]; vec[j].second = lower_bound(aux2.begin(), aux2.end(), i.second) - aux2.begin(); } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cin >> n; vector<int> aux; for (int i = 1; i <= n; i++) { int a; cin >> a; vec.push_back({a, 1}); } for (int i = 0; i < n; i++) { int a; cin >> a; vec[i].second = a; } sort(vec.begin(), vec.end()); compress(); for (int i = 0; i < n; i++) aux.push_back(vec[i].second); long long int ans = 0; for (int i = 0; i < n; i++) { int pos = lower_bound(aux.begin(), aux.end(), vec[i].second) - aux.begin(); ans += (sum2(pos) * vec[i].first - sum(pos)); atualiza(vec[i].second, vec[i].first); atualiza2(vec[i].second, 1); } cout << ans << "\n"; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.*; import java.lang.reflect.Array; import java.math.BigInteger; import java.util.*; import static java.lang.Math.*; public class Main { public static void main(String[] args) throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); //br = new BufferedReader(new FileReader("monument.in")); pw = new PrintWriter(System.out); //pw = new PrintWriter("monument.out"); new Main().run(); } long[] put; int[] not_zero; void add(long x, int pos) { put[pos] = x; not_zero[pos] = 1; pos /= 2; while (pos > 0) { not_zero[pos] = not_zero[pos * 2] + not_zero[pos * 2 + 1]; put[pos] = put[pos * 2] + put[pos * 2 + 1]; pos /= 2; } } pair find_sum(int l, int r, int v, int vl, int vr) { if (vr < l || r < vl) return new pair(0, 0); if (l <= vl && vr <= r) return new pair(put[v], not_zero[v]); int m = (vl + vr) / 2; pair a = find_sum(l, r, v * 2, vl, m); pair b = find_sum(l, r, v * 2 + 1, m + 1, vr); return new pair(a.x + b.x, a.num + b.num); } void run() throws IOException { int n = nextInt(); pair[] a = new pair[n]; for (int i = 0; i < a.length; i++) { a[i] = new pair(nextInt(), i); } Arrays.sort(a); long[] v = new long[n]; for (int i = 0; i < v.length; i++) { v[i] = nextInt(); } Arrays.sort(v); HashMap<Long, Stack<Integer>> tm = new HashMap<>(); for (int i = 0; i < v.length; i++) { if (!tm.containsKey(v[i])) { tm.put(v[i], new Stack<>()); } tm.get(v[i]).add(i); } int x = 1; while (x < n) x *= 2; put = new long[x * 2]; not_zero = new int[x * 2]; long ans = 0; for (int i = 0; i < a.length; i++) { long sp = v[a[i].num]; int pos_in_put = tm.get(sp).pop(); add(a[i].x, pos_in_put + x); int l = -1; int r = n; while (l + 1 < r) { int m = (l + r) / 2; if (v[m] > sp) r = m; else l = m; } pair k = find_sum(0, l, 1, 0, x - 1); ans += a[i].x * k.num - k.x; } pw.print(ans); pw.close(); } class pair implements Comparable<pair> { long x; int num; public pair(long x, int num) { this.x = x; this.num = num; } @Override public int compareTo(pair o) { return -Long.compare(o.x, this.x); } } static BufferedReader br; static StringTokenizer st = new StringTokenizer(""); static PrintWriter pw = new PrintWriter(System.out); public static int nextInt() throws IOException { if (!st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return Integer.parseInt(st.nextToken()); } public static String next() throws IOException { if (!st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } public static long nextLong() throws IOException { if (!st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return Long.parseLong(st.nextToken()); } public static double nextDouble() throws IOException { if (!st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return Double.parseDouble(st.nextToken()); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; bool cmp(const pair<int, int> &a, const pair<int, int> &b) { if (a.second == b.second) return a.first < b.first; return a.second < b.second; } int main() { int n; cin >> n; int x[n]; vector<pair<int, int> > v(n); int id = 0; for (auto &u : v) { cin >> u.first; x[id] = u.first; id += 1; } for (auto &u : v) cin >> u.second; sort(x, x + n); sort(v.begin(), v.end(), cmp); int ans = 0; map<int, int> m1; for (int i = 0; i < n; i++) { ans = ans + (x[i] * (2 * i + 1 - n)); m1[x[i]] = i; } for (int i = 0; i < n; i++) { ans = ans - (v[i].first * (m1[v[i].first] - i)); } cout << ans << endl; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int dx[8] = {0, 0, 1, 1, 1, -1, -1, -1}; int dy[8] = {1, -1, -1, 0, 1, -1, 0, 1}; long long bit[1000005], bit1[1000005]; long long sum(long long x) { long long s = 0; while (x > 0) { s += bit[x]; x -= (x & (-x)); } return s; } void update(long long x, long long val) { while (x < 1000005) { bit[x] += val; x += (x & (-x)); } } long long cnt(long long x) { long long s = 0; while (x > 0) { s += bit1[x]; x -= (x & (-x)); } return s; } void updatecnt(long long x) { while (x < 1000005) { bit1[x] += 1; x += (x & (-x)); } } signed main() { ios_base::sync_with_stdio(0); cin.tie(NULL); cout.tie(NULL); long long n; cin >> n; long long pos[n + 1], vel[n + 1]; vector<long long> v; map<long long, long long> h, h1; for (long long i = 1; i < n + 1; i++) { cin >> pos[i]; if (!h[pos[i]]) v.push_back(pos[i]); h[pos[i]] = 1; } for (long long i = 1; i < n + 1; i++) { cin >> vel[i]; if (!h[vel[i]]) v.push_back(vel[i]); h[vel[i]] = 1; } v.push_back(-1000000000); sort(v.begin(), v.end()); for (long long i = 1; i < v.size(); i++) { if (!h1[v[i]]) h1[v[i]] = i; } vector<pair<long long, long long> > v1; for (long long i = 1; i < n + 1; i++) { pos[i] = h1[pos[i]]; vel[i] = h1[vel[i]]; v1.push_back({pos[i], vel[i]}); } sort(v1.begin(), v1.end()); long long ans = 0; for (long long i = 0; i < v1.size(); i++) { long long s = sum(v1[i].second); long long c = cnt(v1[i].second); ans += c * v1[i].first - s; update(v1[i].second, v1[i].first); updatecnt(v1[i].second); } cout << ans; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 5; const int M = 2e3 + 5; const int mod = 1e9 + 7; const double eps = 1e-8; const double pi = acos(-1); template <class T> inline void read(T &x) { char c; x = 1; while ((c = getchar()) < '0' || c > '9') if (c == '-') x = -1; T res = c - '0'; while ((c = getchar()) >= '0' && c <= '9') res = res * 10 + c - '0'; x *= res; } int n, m; char str[N]; int f[N][2]; int lowbit(int x) { return x & (-x); } long long get(int pos, int type) { long long res = 0; while (pos) { res += f[pos][type]; pos -= lowbit(pos); } return res; } void update(int pos, int v) { while (pos <= m) { f[pos][0]++; f[pos][1] += v; pos += lowbit(pos); } } void solve() { read(n); vector<pair<int, int> > p(n); for (pair<int, int> &pp : p) read(pp.first); for (pair<int, int> &pp : p) read(pp.second); sort(p.begin(), p.end()); vector<int> v; for (pair<int, int> &pp : p) v.push_back(pp.second); sort(v.begin(), v.end()); v.resize(unique(v.begin(), v.end()) - v.begin()); m = v.size(); long long ans = 0; for (pair<int, int> &pp : p) { int pos = lower_bound(v.begin(), v.end(), pp.second) - v.begin(); long long cnt = get(pos + 1, 0), sum = get(pos + 1, 1); ans += cnt * pp.first - sum; update(pos + 1, pp.first); } cout << ans << endl; } int main() { int t; t = 1; while (t--) { solve(); } return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) x=list(map(int,input().split())) v=list(map(int,input().split())) arr=[] for i in range(n): arr.append([x[i],v[i]]) arr.sort() ans1 = 0 ans2 = 0 d = 0 s=0 prev=0 for i in range(n): ans1 += (arr[i][0] * i - d) ans2 += (arr[i][1] * i - s) d += arr[i][0] s += arr[i][1] if prev>ans2: ans1-=(prev-ans2) prev = ans2 #print (max(ans1,0),ans2) print (max(ans1,0))
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
//package psa.minrazdalja; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class minrazdalja { /** * Uvozena abstraktna funkcija za klic Paid<L, R> */ public static class Pair<L,R> { private final L left; private final R right; public Pair(L left, R right) { assert left != null; assert right != null; this.left = left; this.right = right; } public L getLeft() { return left; } public R getRight() { return right; } @Override public int hashCode() { return left.hashCode() ^ right.hashCode(); } @Override public boolean equals(Object o) { if (!(o instanceof Pair)) return false; Pair pairo = (Pair) o; return this.left.equals(pairo.getLeft()) && this.right.equals(pairo.getRight()); } } /**? * glavna funkcija racunanja: * sprejme list tipa ArrayList<Pair<Integer, Integer>>, potem st vseh elementov in seveda listo vseh elementov. * * nato izracunamo maksimalno distance, ki je sestevek vseh distanc med posameznimi elementi, kar lahko storimo, ker je sortirana tabela. * V drugem delu odstejemo od maksimalnega sestevka distanc, posamezne ki se sekajo v prihodnosti * ostane nam samo tocni sestevek minimalnih distanc */ public static long elele(ArrayList<Pair<Integer,Integer>> elementi, int s, Integer[] x_el) { long skupek = 0; Long ml; HashMap<Integer, Integer> pos = new HashMap<Integer, Integer>(); for(int i=0; i<s; ++i) { skupek += x_el[i] * i + (-1 * x_el[i]) * (s - 1 - i); pos.put(x_el[i], i); } //for(int i=0; i<s; ++i){ // skupek -= elementi.get(i).getRight() * (pos.get(elementi.get(i).getRight())-i); //} //2 1 4 3 5 //2 2 2 3 4 return skupek; } public static void main(String[] args) throws IOException { int st_el; // uporabimo bufferedreader zaradi 1000x vecje hitrosti kot pa skener BufferedReader br= new BufferedReader(new InputStreamReader(System.in)); //System.out.println("Vnesi stevilo elementov: "); st_el = Integer.parseInt(br.readLine()); //System.out.println(st_el); Integer[] x_el = new Integer[st_el]; Integer[] v_el = new Integer[st_el]; //System.out.println("Vnesi elemente: "); String x = br.readLine(); String[] strs = x.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { x_el[i] = Integer.parseInt(strs[i]); } //System.out.println("Vnesi tezo elementov: "); String y = br.readLine(); String[] strs2 = y.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { v_el[i] = Integer.parseInt(strs2[i]); } br.close(); //pospravimo skupej v par oblike <integer, integer> oz <hitrost, element> ArrayList<Pair<Integer,Integer>> listt = new ArrayList<Pair<Integer, Integer>>(st_el); for(int i=0; i<st_el; i++) { Pair<Integer, Integer> pair = new Pair<Integer, Integer>(v_el[i],x_el[i]); listt.add(pair); } /*sortiramo listt od najmanjsega do najvecjega * - sortiramo prvo po hitrostih (to je glavno najbolj vazno) * - ce je hitrost ista potem pa sortiramo se glede na element */ Collections.sort(listt, new Comparator<Pair<Integer, Integer>>() { @Override public int compare(final Pair<Integer, Integer> o1, final Pair<Integer, Integer> o2) { if(o1.getLeft()<o2.getLeft()) { return -1; } else if(o1.getLeft() == o2.getLeft()) { if(o1.getRight() < o2.getRight()){ return -1; }else{ return 1; } } else { return 1; } } }); //sortiramo se elemente Arrays.sort(x_el); //izpisemo elemente System.out.println(elele(listt,st_el,x_el)); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; inline long long read() { char ch = getchar(); long long p = 1, data = 0; while (ch < '0' || ch > '9') { if (ch == '-') p = -1; ch = getchar(); } while (ch >= '0' && ch <= '9') { data = (data << 3) + (data << 1) + (ch ^ 48); ch = getchar(); } return p * data; } inline long long lowbit(long long a) { return a & (-a); } inline long long qpow(long long a, long long b) { long long r = 1; while (b) { if (b & 1) r = a * r; a = a * a; b >>= 1; } return r; } inline long long gcd(long long a, long long b) { while (b ^= a ^= b ^= a %= b) ; return a; } inline long long lcm(long long a, long long b) { return a * b / gcd(a, b); } inline long long inv(long long a, long long p) { return qpow(a, p - 2); } const int maxn = 2e5 + 5; struct node { long long x, v; friend bool operator<(node a, node b) { return a.v == b.v ? a.x < b.x : a.v < b.v; } } a[maxn]; multiset<int> mp; long long sum[maxn]; int main() { int n = read(); for (int i = 1; i <= n; i++) a[i].x = read(); for (int i = 1; i <= n; i++) a[i].v = read(); sort(a + 1, a + 1 + n); long long ans = 0, pre = a[1].x; mp.insert(a[1].x); sum[1] = a[1].x; multiset<int>::iterator it; for (int i = 2; i <= n; i++) { sum[i] = a[i].x + sum[i - 1]; it = lower_bound(mp.begin(), mp.end(), a[i].x); long long pos = distance(mp.begin(), it); ans += abs(a[i].x * pos - sum[pos]); mp.insert(a[i].x); } printf("%lld", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
//package psa.minrazdalja; import java.util.ArrayList; import java.util.Scanner; // Import the Scanner class public class minrazdalja { static class MinStruktua { private int x; private int v; public MinStruktua(int x, int v) { this.x = x; this.v = v; } public void dodajx(int x) { this.x = x; } public void dodajv(int v) { this.v = v; } } public static void elele(ArrayList<MinStruktua> elementi) { int skupek = 0; for(int i=0; i<elementi.size(); i++) { for(int j=0;j<elementi.size();j++) { if(i != j) { int ix = elementi.get(i).x; int jx = elementi.get(j).x; if(jx > ix) { int vx = elementi.get(i).v; int vy = elementi.get(j).v; //System.out.println(ix + " " + jx); skupek += vrniMax(ix, jx, vx, vy); } } } //2 1 4 3 5 //2 2 2 3 4 } System.out.println("IZPIS elementov: "); System.out.println("STEVC : " + skupek); } // 2 3 3 2 public static int vrniMax(int m, int n, int i, int j) { //najdemo max //nardimo primerjave in vrnemo ustrezno int x = 0; int absol = Math.abs(m-n); if(m < n) { if(j < 0 && i >= 0) { x =+ 0; }else if(j >= 0 && i < 0){ x =+ absol; }else if(j < 0 && i < 0) { if(j > i){ x =+ absol; } else { x =+ 0; } }else{ if(j != i) { if(j > i){ x =+ absol; }else{ x =+ 0; } }else{ x =+ absol; } } }; System.out.println(m + " " + n + " " + i + " " + j + " " + x); return x; } public static void main(String[] args) { int st_el; Scanner skener = new Scanner(System.in); // Create a Scanner object //System.out.println("Vnesi stevilo elementov: "); st_el = skener.nextInt(); //System.out.println(st_el); ArrayList<MinStruktua> elementi = new ArrayList<>(st_el); //System.out.println("Vnesi elemente: "); for(int i=0; i<st_el; i++) { int x = skener.nextInt(); elementi.add(new MinStruktua(x, 0)); } //System.out.println("Vnesi tezo elementov: "); for(int i=0; i<st_el; i++) { int x = skener.nextInt(); elementi.get(i).dodajv(x); } skener.close(); System.out.println(); System.out.println(); elele(elementi); //vrniMax(1, 2, -100, 3); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T> T max(T a, T b, T c) { return max(a, max(b, c)); } template <typename T> T min(T a, T b, T c) { return min(a, min(b, c)); } template <typename T> T med(T a, T b, T c) { return a + b + c - min(a, b, c) - max(a, b, c); } const int INF = 1e9; const long long LINF = 1LL << 62; struct pt { long long x, v; }; bool cmp(pt A, pt B) { return A.x < B.x; } const int MAXB = 20001; const int BSIZE = 10000; const int shift = 1e8; int sbuckets[MAXB]; vector<pt> bbuckets[MAXB]; void insert(pt p) { long long vs = p.v + shift; sbuckets[vs / BSIZE] += p.x; bbuckets[vs / BSIZE].push_back(p); } long long get(pt p) { long long vs = p.v + shift; long long sm = 0; int amt = 0; for (int b = 0; (b + 1) * BSIZE < vs; b++) { sm += sbuckets[b]; amt += bbuckets[b].size(); } for (auto a : bbuckets[vs / BSIZE]) if (p.v >= a.v) { sm += a.x; amt++; } return amt * p.x - sm; } int main() { int n; cin >> n; vector<pt> pts(n); for (int i = 0; i < n; i++) cin >> pts[i].x; for (int i = 0; i < n; i++) cin >> pts[i].v; sort(pts.begin(), pts.end(), cmp); long long res = 0; for (int cs = 0; cs < n; cs++) { res += get(pts[cs]); insert(pts[cs]); } cout << res << endl; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ import java.io.BufferedReader; import java.io.DataInputStream; import java.io.FileInputStream; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.util.HashSet; import java.util.List; import java.util.Map; import java.util.Set; import java.util.StringTokenizer; /** * * @author is2ac */ public class D_CF { public static void main(String[] args) throws IOException { FastScanner58 fs = new FastScanner58(); //Reader fs = new Reader(); PrintWriter pw = new PrintWriter(System.out); //int t = fs.ni(); int t = 1; for (int tc = 0; tc < t; tc++) { int n = fs.ni(); int[] x = fs.intArray(n); int[] v = fs.intArray(n); BIT16 bit = new BIT16(200005); BIT16 people = new BIT16(200005); Set<Integer> set = new HashSet(); List<Integer> list = new ArrayList(); Map<Integer,Integer> map = new HashMap(); for (int i = 0; i < n; i++) { set.add(v[i]); } for (int val : set) { list.add(val); } Collections.sort(list); for (int i = 0; i < list.size(); i++) { map.put(list.get(i),i+1); } int[][] matrix = new int[n][2]; for (int i = 0; i < n; i++) { matrix[i][0] = x[i]; matrix[i][1] = v[i]; } Arrays.sort(matrix,new Comparator<int[]>(){ public int compare(int[] a, int[] b) { return a[0]-b[0]; } }); long res = 0; for (int i = 0; i < n; i++) { int cx = matrix[i][0]; int cv = map.get(matrix[i][1]); long cur = (long)people.sum(cv) * (long)cx; cur -= (long)bit.sum(cv); res += cur; people.update(cv,1); bit.update(cv,cx); } pw.println(res); } pw.close(); } public static long gcd(long n1, long n2) { if (n2 == 0) { return n1; } return gcd(n2, n1 % n2); } } class GFG { // A utility function to get the // middle index of given range. static int getMid(int s, int e) { return s + (e - s) / 2; } /* * A recursive function to get the sum of values in given range of the array. * The following are parameters for this function. * * st -> Pointer to segment tree * node -> Index of current node in * the segment tree. * ss & se -> Starting and ending indexes * of the segment represented * by current node, i.e., st[node] * l & r -> Starting and ending indexes * of range query */ static long MinUtil(long[] st, int ss, int se, int l, int r, int node) { // If segment of this node is completely // part of given range, then return // the max of segment if (l <= ss && r >= se) return st[node]; // If segment of this node does not // belong to given range if (se < l || ss > r) return (long)(1e11); // If segment of this node is partially // the part of given range int mid = getMid(ss, se); return Math.min( MinUtil(st, ss, mid, l, r, 2 * node + 1), MinUtil(st, mid + 1, se, l, r, 2 * node + 2)); } /* * A recursive function to update the nodes which have the given index in their * range. The following are parameters st, ss and se are same as defined above * index -> index of the element to be updated. */ static void updateValue(long arr[], long[] st, int ss, int se, int index, long value, int node) { if (index < ss || index > se) { //System.out.println("Invalid Input"); return; } if (ss == se) { // update value in array and in // segment tree arr[index] = value; st[node] = value; } else { int mid = getMid(ss, se); if (index >= ss && index <= mid) updateValue(arr, st, ss, mid, index, value, 2 * node + 1); else updateValue(arr, st, mid + 1, se, index, value, 2 * node + 2); st[node] = Math.min(st[2 * node + 1], st[2 * node + 2]); } return; } // Return max of elements in range from // index l (query start) to r (query end). static long getMin(long[] st, int n, int l, int r) { // Check for erroneous input values if (l < 0 || r > n - 1 || l > r) { //System.out.printf("Invalid Input\n"); return (long)(1e11); } return MinUtil(st, 0, n - 1, l, r, 0); } // A recursive function that constructs Segment // Tree for array[ss..se]. si is index of // current node in segment tree st static long constructSTUtil(long arr[], int ss, int se, long[] st, int si) { // If there is one element in array, store // it in current node of segment tree and return if (ss == se) { st[si] = arr[ss]; return arr[ss]; } // If there are more than one elements, then // recur for left and right subtrees and // store the max of values in this node int mid = getMid(ss, se); st[si] = Math.min( constructSTUtil(arr, ss, mid, st, si * 2 + 1), constructSTUtil(arr, mid + 1, se, st, si * 2 + 2)); return st[si]; } /* * Function to construct segment tree from given array. This function allocates * memory for segment tree. */ static long[] constructST(long arr[], int n) { // Height of segment tree int x = (int)Math.ceil(Math.log(n) / Math.log(2)); // Maximum size of segment tree int max_size = 2 * (int)Math.pow(2, x) - 1; // Allocate memory long[] st = new long[max_size]; // Fill the allocated memory st constructSTUtil(arr, 0, n - 1, st, 0); // Return the constructed segment tree return st; } } class BIT16 { int[] bit; public BIT16(int size) { bit = new int[size]; } public void update(int ind, int delta) { while (ind < bit.length) { bit[ind] += delta; ind = ind + (ind & (-1 * ind)); } } public int sum(int ind) { int s = 0; while (ind > 0) { s += bit[ind]; ind = ind - (ind & (-1 * ind)); } return s; } public int query(int l, int r) { return sum(r) - sum(l); } } class UnionFind18 { int[] id; public UnionFind18(int size) { id = new int[size]; for (int i = 0; i < size; i++) { id[i] = i; } } public int find(int p) { int root = p; while (root != id[root]) { root = id[root]; } while (p != root) { int next = id[p]; id[p] = root; p = next; } return root; } public void union(int p, int q) { int a = find(p), b = find(q); if (a == b) { return; } id[b] = a; } } class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') { break; } buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int ni() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') { c = read(); } boolean neg = (c == '-'); if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') { c = read(); } boolean neg = (c == '-'); if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') { c = read(); } boolean neg = (c == '-'); if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) { return -ret; } return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) { buffer[0] = -1; } } private byte read() throws IOException { if (bufferPointer == bytesRead) { fillBuffer(); } return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) { return; } din.close(); } } class FastScanner58 { BufferedReader br; StringTokenizer st; public FastScanner58() { br = new BufferedReader(new InputStreamReader(System.in), 32768); st = null; } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int ni() { return Integer.parseInt(next()); } int[] intArray(int N) { int[] ret = new int[N]; for (int i = 0; i < N; i++) { ret[i] = ni(); } return ret; } long nl() { return Long.parseLong(next()); } long[] longArray(int N) { long[] ret = new long[N]; for (int i = 0; i < N; i++) { ret[i] = nl(); } return ret; } double nd() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; vector<long long> x, v; int idX(int val) { return (lower_bound(x.begin(), x.end(), val) - x.begin()); } int idV(int val) { return (lower_bound(v.begin(), v.end(), val) - v.begin()); } struct FenwickTree { vector<long long> bit; int n; FenwickTree(int n) { this->n = n; bit.assign(n, 0); } long long sum(int r) { long long ret = 0; for (; r >= 0; r = (r & (r + 1)) - 1) ret += bit[r]; return ret; } long long sum(int l, int r) { return sum(r) - sum(l - 1); } void upd(int idx, int delta) { for (; idx < n; idx = idx | (idx + 1)) bit[idx] += delta; } }; void nikal_pehli_fursat_mai() { int n; cin >> n; vector<array<long long, 2>> arr(n); long long ans = 0; for (int i = 0; i < n; i++) { cin >> arr[i][0]; x.push_back(arr[i][0]); } for (int i = 0; i < n; i++) { cin >> arr[i][1]; v.push_back(abs(arr[i][1])); } sort(v.begin(), v.end()); sort(x.begin(), x.end()); sort(arr.begin(), arr.end()); FenwickTree pos(n), neg(n), zero(n), cntp(n), cntn(n), cntz(n); for (int i = 0; i < n; i++) { int id = idV(abs(arr[i][1])); if (arr[i][1] > 0) { cntp.upd(id, 1); pos.upd(id, arr[i][0]); } else if (arr[i][1] < 0) { cntn.upd(id, 1); neg.upd(id, arr[i][0]); } else { cntz.upd(id, 1); zero.upd(id, arr[i][0]); } } for (int i = 0; i < n; i++) { int id = idV(abs(arr[i][1])); if (arr[i][1] > 0) { ans += pos.sum(id, n - 1) - cntp.sum(id, n - 1) * arr[i][0]; cntp.upd(id, -1); pos.upd(id, -arr[i][0]); } else if (arr[i][1] < 0) { ans += pos.sum(0, n - 1) - cntp.sum(0, n - 1) * arr[i][0]; ans += zero.sum(0, n - 1) - cntz.sum(0, n - 1) * arr[i][0]; ans += neg.sum(0, id) - cntn.sum(0, id) * arr[i][0]; cntn.upd(id, -1); neg.upd(id, -arr[i][0]); } else { ans += pos.sum(id, n - 1) - cntp.sum(id, n - 1) * arr[i][0]; ans += zero.sum(0, n - 1) - cntz.sum(0, n - 1) * arr[i][0]; cntz.upd(id, -1); zero.upd(id, -arr[i][1]); } } cout << ans << "\n"; } int main() { ios::sync_with_stdio(0); cin.tie(0); int tc = 1; while (tc--) { nikal_pehli_fursat_mai(); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; pair<int, int> a[200005]; int sum[1000005], cnt[1000005]; int querysum(int pos) { int ret = 0; for (; pos >= 0; pos = (pos & (pos + 1)) - 1) { ret += sum[pos]; } return ret; } int querycnt(int pos) { int ret = 0; for (; pos >= 0; pos = (pos & (pos + 1)) - 1) { ret += cnt[pos]; } return ret; } void updatesum(int pos, int val) { for (; pos < 1000000; pos |= pos + 1) { sum[pos] += val; } } void updatecnt(int pos, int val) { for (; pos < 1000000; pos |= pos + 1) { cnt[pos] += val; } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); int n; cin >> n; for (int i = 1; i <= n; i++) cin >> a[i].first; for (int i = 1; i <= n; i++) cin >> a[i].second; vector<int> v; for (int i = 1; i <= n; i++) { v.push_back(a[i].second); } sort(v.begin(), v.end()); map<int, int> num; for (int i = 0; i < v.size(); i++) { num[v[i]] = i; } for (int i = 1; i <= n; i++) { a[i].second = num[a[i].second]; } sort(a + 1, a + n + 1); memset(sum, 0, sizeof(sum)); memset(cnt, 0, sizeof(cnt)); int ans = 0; for (int i = 1; i <= n; i++) { ans += a[i].first * querycnt(a[i].second) - querysum(a[i].second); updatesum(a[i].second, a[i].first); updatecnt(a[i].second, 1); } cout << ans << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int calcdist(int x1, int x2, int v1, int v2) { int dist = 0; if (x1 == x2) return dist; else if (x2 > x1) { if ((v1 - v2) <= 0) return (x2 - x1); else return dist; } else { if ((v2 - v1) <= 0) return (x1 - x2); else return dist; } } int main() { int n; cin >> n; long sum = 0; int x[n], v[n]; for (int i = 0; i < n; i++) cin >> x[i]; for (int i = 0; i < n; i++) cin >> v[i]; for (int i = 0; i < (n - 1); i++) { for (int j = i + 1; j < n; j++) sum += calcdist(x[i], x[j], v[i], v[j]); } cout << sum << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #include <fstream> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace std; using namespace __gnu_pbds; template < typename T > using ordered_set = tree < T, null_type, less < T >, rb_tree_tag, tree_order_statistics_node_update >; // less_equal for keeping duplicates #define all(x) x.begin(), x.end() #define pii pair < int, int > #define pll pair < long long, long long > #define f first #define s second #define mp(x, y) make_pair(x, y) #define MASK bitset < 16 > const int MAX = 2e5 + 2, mod = 1e9 + 7, shift = 1000; map < int, int > v; struct Node { long long sum = 0; int count = 0; Node merge(const Node &l, const Node &r) { sum = l.sum + r.sum; count = l.count + r.count; return *this; } }node[4 * MAX]; struct segTree { Node query(int p, int s, int e, int qs, int qe) { if(qs > e || s > qe) return Node(); else if(qs <= s && e <= qe) return node[p]; else { Node ret; int mid = (s + e) >> 1; const auto left = query(2 * p + 1, s, mid, qs, qe); const auto right = query(2 * p + 2, mid + 1, e, qs, qe); //cout << s << " " << e << " " << qs << " " << qe << " " << ret.sum << " " << ret.count << "\n"; return ret.merge(left, right); } } void update(int p, int s, int e, int idx, int val) { if(idx < s || e < idx) return; else if(s == e) node[p].sum += val, node[p].count++; else { int mid = (s + e) >> 1; update(2 * p + 1, s, mid, idx, val); update(2 * p + 2, mid + 1, e, idx, val); node[p].merge(node[2 * p + 1], node[2 * p + 2]); } } }; int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); int n; long long ans = 0; vector < int > v; cin >> n; pii a[n]; for(int i = 0; i < n; i++) cin >> a[i].f; for(int j = 0; j < n; j++) cin >> a[j].s, v.push_back(a[j].s); sort(a, a + n); sort(all(v)); v.erase(unique(all(v)), v.end()); segTree tree; for(int i = n - 1; i >= 0; i--) { auto idx = lower_bound(all(v), a[i].s) - v.begin(); tree.update(0, 0, n - 1, idx, a[i].f); auto sum = tree.query(0, 0, n - 1, idx, n - 1); //cout << sum.sum << " " << sum.count << "\n"; ans += (sum.sum - a[i].f * sum.count); } cout << ans; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; /** * Created by Acesine on 2/24/20. */ public class F { static class BIT { int[] arr; int n; public BIT(int n) { this.n = n; arr = new int[n+1]; } public void update(int x, int v) { x++; while (x <= n) { arr[x] += v; x += x & (-x); } } public int get(int x) { x++; int r = 0; while (x > 0) { r += arr[x]; x -= x & (-x); } return r; } } static class Point { int x; int v; public Point() {} public Point(int x, int v) { this.x = x; this.v = v; } } public static void main(String[] args) { Scanner s = new Scanner(System.in); int n = s.nextInt(); int[] x = new int[n]; for (int i=0;i<n;i++) x[i] = s.nextInt(); int[] v = new int[n]; for (int i=0;i<n;i++) v[i] = s.nextInt(); Point[] p = new Point[n]; Set<Integer> uniqV = new HashSet<>(); for (int i=0;i<n;i++) { p[i] = new Point(x[i], v[i]); uniqV.add(v[i]); } List<Integer> sortedV = new ArrayList<>(uniqV); Collections.sort(sortedV); Map<Integer, Integer> vmap = new HashMap<>(); for (int i=0;i<sortedV.size();i++) { vmap.put(sortedV.get(i), i); } Arrays.sort(p, (p1, p2) -> p1.x - p2.x); long ret = 0; BIT vBit = new BIT(vmap.size()); BIT sumBit = new BIT(vmap.size()); for (Point pt : p) { int pos = vmap.get(pt.v); int cnt = vBit.get(pos); int sum = sumBit.get(pos); ret += cnt * pt.x - sum; vBit.update(pos, 1); sumBit.update(pos, pt.x); } System.out.println(ret); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.Reader; import java.util.ArrayList; import java.util.Comparator; import java.util.List; import java.util.StringTokenizer; public class C1311F { public static void main(String[] args) { var scanner = new BufferedScanner(); var writer = new PrintWriter(new BufferedOutputStream(System.out)); var n = scanner.nextInt(); var x = new int[n]; for (int i = 0; i < n; i++) { x[i] = scanner.nextInt(); // x[i] = (int) (Math.random() * 2e8 - 1e8); // x[i] = (int) (Math.random() * n / 2 + n / 2); } var v = new int[n]; for (int i = 0; i < n; i++) { v[i] = scanner.nextInt(); // v[i] = (int) (Math.random() * 2e8 - 1e8); // v[i] = (int) (Math.random() * 2 * n - n); } writer.println(solve(n, x, v)); scanner.close(); writer.flush(); writer.close(); } static final int MIN_V = (int) -1e8; static final int MAX_V = (int) 1e8; private static long solve(int n, int[] x, int[] v) { var debug = false; //n == 200000; var orderX = new ArrayList<Integer>(); var ascV = new ArrayList<Integer>(); for (int i = 0; i < n; i++) { orderX.add(i); ascV.add(v[i]); } var t = System.nanoTime(); orderX.sort(Comparator.comparingInt(o -> x[o])); ascV.sort(Integer::compareTo); if (debug) { System.out.println("sort finished: " + (System.nanoTime() - t) / 1e9); } t = System.nanoTime(); var ans = 0L; var toLeft = new SegTree(ascV); var toRight = new SegTree(ascV); var minV = Integer.MAX_VALUE; for (int i = 0; i < n; i++) { var thisX = x[orderX.get(i)]; var thisV = v[orderX.get(i)]; if (thisV >= 0) { var left = toLeft.acc(/*minV*/MIN_V, 0); ans += left[1] * thisX - left[0]; var right = toRight.acc(0, thisV); ans += right[1] * thisX - right[0]; toRight.add(thisV, thisX); } else { var left = toLeft.acc(/*minV*/MIN_V, thisV); ans += left[1] * thisX - left[0]; toLeft.add(thisV, thisX); } minV = Math.min(minV, thisV); } if (debug) { System.out.println("finish acc: " + (System.nanoTime() - t) / 1e9); } return ans; } static class SegTree { final List<Node> nodes = new ArrayList<>(); final int[] x; SegTree(List<Integer> x) { nodes.add(new Node(0, x.size() - 1)); this.x = x.stream().mapToInt(i -> i).toArray(); } void add(int key, int value) { add(0, key, value); } private void add(int index, int key, int value) { var node = nodes.get(index); if (key < x[node.low] || x[node.high] < key) { return; } node.acc[0] += value; node.acc[1]++; if (node.low == node.high) { return; } if (node.left < 0) { nodes.add(new Node(node.low, node.mid)); node.left = nodes.size() - 1; } add(node.left, key, value); if (node.right < 0) { nodes.add(new Node(node.mid + 1, node.high)); node.right = nodes.size() - 1; } add(node.right, key, value); } long[] acc(int lowKey, int highKey) { return acc(0, lowKey, highKey); } static final long[] EMPTY = new long[]{0, 0}; private long[] acc(int index, int lowKey, int highKey) { var node = nodes.get(index); if (lowKey > highKey || highKey < x[node.low] || x[node.high] < lowKey) { return EMPTY; } if (lowKey <= x[node.low] && x[node.high] <= highKey) { return node.acc; } var ans = new long[]{0, 0}; if (node.left >= 0) { var left = acc(node.left, lowKey, highKey); ans[0] += left[0]; ans[1] += left[1]; } if (node.right >= 0) { var right = acc(node.right, lowKey, highKey); ans[0] += right[0]; ans[1] += right[1]; } return ans; } static class Node { final int low; final int high; final int mid; int left = -1; int right = -1; long[] acc = new long[]{0, 0}; Node(int low, int high) { this.low = low; this.high = high; this.mid = Math.floorDiv(low + high, 2); } } } public static class BufferedScanner { BufferedReader br; StringTokenizer st; public BufferedScanner(Reader reader) { br = new BufferedReader(reader); } public BufferedScanner() { this(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } void close() { try { br.close(); } catch (IOException e) { e.printStackTrace(); } } } static long gcd(long a, long b) { if (a < b) { return gcd(b, a); } while (b > 0) { long tmp = b; b = a % b; a = tmp; } return a; } static long inverse(long a, long m) { long[] ans = extgcd(a, m); return ans[0] == 1 ? (ans[1] + m) % m : -1; } private static long[] extgcd(long a, long m) { if (m == 0) { return new long[]{a, 1, 0}; } else { long[] ans = extgcd(m, a % m); long tmp = ans[1]; ans[1] = ans[2]; ans[2] = tmp; ans[2] -= ans[1] * (a / m); return ans; } } private static List<Integer> primes(double upperBound) { var limit = (int) Math.sqrt(upperBound); var isComposite = new boolean[limit + 1]; var primes = new ArrayList<Integer>(); for (int i = 2; i <= limit; i++) { if (isComposite[i]) { continue; } primes.add(i); int j = i + i; while (j <= limit) { isComposite[j] = true; j += i; } } return primes; } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
// "It does not matter how slowly you go as long as you do not stop." - Confucius #include <bits/stdc++.h> using namespace std; /* author : Roshan_Mehta motto : Time Management,Consistency,Patience!! */ #define int long long void __print(int x) {cerr << x;} void __print(long x) {cerr << x;} // void __print(long long x) {cerr << x;} void __print(unsigned x) {cerr << x;} void __print(unsigned long x) {cerr << x;} void __print(unsigned long long x) {cerr << x;} void __print(float x) {cerr << x;} void __print(double x) {cerr << x;} void __print(long double x) {cerr << x;} void __print(char x) {cerr << '\'' << x << '\'';} void __print(const char *x) {cerr << '\"' << x << '\"';} void __print(const string &x) {cerr << '\"' << x << '\"';} void __print(bool x) {cerr << (x ? "true" : "false");} template<typename T, typename V> void __print(const pair<T, V> &x) {cerr << '{'; __print(x.first); cerr << ','; __print(x.second); cerr << '}';} template<typename T> void __print(const T &x) {int f = 0; cerr << '{'; for (auto &i: x) cerr << (f++ ? "," : ""), __print(i); cerr << "}";} void _print() {cerr << "]\n";} template <typename T, typename... V> void _print(T t, V... v) {__print(t); if (sizeof...(v)) cerr << ", "; _print(v...);} #ifdef Local_Debug #define debug(x...) cerr << "[" << #x << "] = ["; _print(x) #else #define debug(x...) #endif #define M1 1000000007 #define M2 998244353 #define G(a,b) get<a>(b) #define ll long long #define pb push_back #define mt make_tuple #define fast() ios_base::sync_with_stdio(false);cin.tie(NULL); #define mp make_pair #define F first #define S second #define sz(x) (int)x.size() #define all(x) x.begin(), x.end() #define rsort(x) sort(x,greater<int> ()) #define rall(x) rbegin(x), rend(x) //useful in sorting #define endl "\n" #define p0(a) cout << a << " " #define p1(a) cout << a << endl #define p2(a, b) cout << a << " " << b << endl #define p3(a, b, c) cout << a << " " << b << " " << c << endl #define p4(a, b, c, d) cout << a << " " << b << " " << c << " " << d << endl #define gcd __gcd #define lcm(a,b) (a*b)/gcd(a,b) #define deci(n) fixed << setprecision(n) #define test() int test_case;cin >> test_case;while (test_case--) #define loop(i,a,n) for(int i=a;i<n;i++) #define sp " " #define popcount(x) __builtin_popcount(x) #define popcountll(x) __builtin_popcountll(x) #define clz(x) __builtin_clz(x) #define clzll(x) __builtin_clzll(x) #define ctz(x) __builtin_ctz(x) #define ctzll(x) __builtin_ctzll(x) #define max3(a,b,c) max(max(a,b),c) #define min3(a,b,c) min(min(a,b),c) #define max4(a,b,c,d) max(a,max3(b,c,d)) #define min4(a,b,c,d) min(a,min3(b,c,d)) #define max5(a,b,c,d,e) max(max4(a,b,c,d),e) #define min5(a,b,c,d,e) min(min4(a,b,c,d),e) #define getunique(v) {sort(all(v)); v.erase(unique(all(v)), v.end());} #define REP(i,a,b) for(ll i=a;i<b;i++) #define REPI(i,a,b) for(ll i=b-1;i>=a;i--) typedef vector<int> vi; typedef vector<bool> vb; typedef vector<string> vs; typedef vector<ll> vl; typedef vector<vi> vvi; typedef pair<int, int> pi; typedef vector<pi> vpi; typedef pair<int,pi> tri; typedef pair<pi,int> rtri; typedef pair<ll, ll> pl; typedef pair<double, double> pd; typedef priority_queue<int, vector<int>, greater<int>> minpq; typedef priority_queue<int> pq; typedef unordered_map<int,int> umii; typedef map<int,int> mii; typedef set<int> si; #define input(n,k) int n,k;cin>>n;cin>>k;vi arr(n,0);loop(i,0,n){cin>>arr[i];} #define forn(i, n) for (int i = 0; i < (int)(n); ++i) const int MOD = 1e9 + 7; int md=MOD; int Power(int n, int x) {int ans = 1;while (x > 0) {if (x & 1) ans = (ans * n) % md; n = (n * n) % md;x = x >> 1;}return ans;} vl fact, inv; void inverse(ll n) {if(n>=inv.size()){ll size=inv.size();size=size==0? 1:size; inv.resize(n + 1);inv[0] = 1; for (ll i = size; i <= n; i++)inv[i] = Power(fact[i], md - 2);}} void factorial(ll n) {if(n>=fact.size()){ll size=fact.size();size=size==0? 1:size; fact.resize(n + 1);fact[0] = 1;for (ll i = size; i <= n; i++) fact[i] = (fact[i - 1] * i) % md; }} ll ncr(ll n, ll r) { return (((fact[n] * inv[r]) % md) * inv[n - r]) % md; } vl SieveOfEratosthenes(int n) { bool prime[n+1]; memset(prime, true, sizeof(prime)); for (int p=2; p*p<=n; p++) {if (prime[p] == true){for (int i=p*p; i<=n; i += p) prime[i] = false;}} vl ans;for (int p=2; p<=n; p++)if (prime[p])ans.pb(p);return ans; } vi primeFactors(int n) { vi ans; while (n % 2 == 0) {ans.pb(2);n = n / 2;} for (int i = 3; i <= sqrt(n); i = i + 2) { while (n % i == 0) {ans.pb(i);n = n / i;}} if (n > 2)ans.pb(n);return ans; } // bool isprime(ll n) // { // if(n<2) // return false; // for(ll x:{2,3,5,7,11,13,17,19,23,29,31,37}) // { // if(n==x) // return true; // bool flag=true; // ll r=1; // ll t=1; // while(r<=((n-1)>>__builtin_ctzll(n-1))) // { // if(r&((n-1)>>__builtin_ctzll(n-1))) // t=((__int128)t*x)%n; // x=((__int128)x*x)%n; // r<<=1; // } // if(t==1||t==n-1) // flag=false; // for(r=0;r<__builtin_ctzll(n-1);r++) // { // t=((__int128)t*t)%n; // if(t==n-1) // flag=false; // } // if(flag) // return false; // } // return true; // } ll NcR(int n, int r) {long long p = 1, k = 1;if (n - r < r)r = n - r;if (r != 0) {while (r) {p *= n;k *= r; long long m = gcd(p, k);p /= m;k /= m;n--;r--;} }else p = 1;return p;// cout << p << endl; } bool sortasc(const rtri a,const rtri b) //Ascending ... change the argument accordingwise; { return a.second<b.second; } bool sortdesc(const int a,const int b) //Descending... change the argument accordingwise;a { return a>b; } int myceil(int num,int den) { if ((num >= 0 and den > 0) or ( num <= 0 and den < 0)) return num%den == 0 ? num/den : num/den + 1; return num / den; } int myfloor(int num,int den) { if ((num >= 0 and den > 0) or ( num <= 0 and den < 0)) return num%den == 0 ? num/den : num/den; int ans = num / den; return num % den == 0 ? ans : ans - 1; } int midofthree(int a,int b,int c) { if((a<=b and a>=c) or (a<=c and a>=b)) return a; else if((b>=a and b<=c) or (b<=a and b>=c)) return b; return c; } ll modI(ll a, ll m) { ll m0=m,y=0,x=1; if(m==1) return 0; while(a>1) {ll q=a/m;ll t=m;m=a%m;a=t;t=y;y=x-q*y;x=t; } if(x<0) x+=m0; return x; } string to_string(char c) { return string(1, c); } clock_t startTime; double getCurrentTime() { return (double)(clock() - startTime) / CLOCKS_PER_SEC; } mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count()); //From Umnik Template using ull = unsigned long long; ll myRand(ll B) { return (ull)rng() % B; } // reinitialize value of md(example md = M1 or md=M2); ll add(ll x, ll y) { x += y; if (x >= md) return x - md; return x; } ll sub(ll x, ll y) { x -= y; if (x < 0) return x + md; return x; } ll mult(ll x, ll y) { return (x * y) % md; } ll bin_pow(ll x, ll p) { if (p == 0) return 1; if (p & 1) return mult(x, bin_pow(x, p - 1)); return bin_pow(mult(x, x), p / 2); } ll rev(ll x) { return bin_pow(x, md - 2); } void q1();void q2();void q3();void q4();void q5(); #define pie 3.141592653589793238462643383279 //********************THE END OF`` TEMPLATES*******************// const int N = 2e5 + 5; bool comp(pi &a, pi &b){ return a.S < b.S; } struct FenwickTree{ vector<int> bit; int n; const int INF = (int)1e9; FenwickTree(int n){ this->n=n; bit.assign(n,0); // bit.assign(n,INF); } FenwickTree(vector<int> a) : FenwickTree(a.size()){ for (size_t i = 0; i < a.size(); i++) { add(i,a[i]); // update(i,a[i]); } } int sum(int r){ int ret=0; for (; r>=0; r = (r & (r + 1))-1){ ret+=bit[r]; } return ret; } int sum(int l,int r){ return sum(r)-sum(l-1); } void add(int idx, int delta){ for(; idx < n; idx = idx | (idx + 1)){ bit[idx] += delta; } } }; void run_testcase(){ int n; cin >> n; vpi Cord(n); for (int i = 0; i < n; i++) { cin >> Cord[i].F; } for (int i = 0; i < n; i++) { cin >> Cord[i].S; } // sort(all(Cord)); vpi Cord2 = Cord; map<int, int> compress; int t = 1; sort(all(Cord), comp); for (int i = 0; i < n; i++) { int num = 1; if (Cord[i].S < 0) num = -1; if (compress.count(Cord[i].S) == 0) { compress[Cord[i].S] = t++; } Cord2[i].S = compress[Cord[i].S]; Cord2[i].S *= num; } debug(compress); int MaxN = n + 10; vi cnt(MaxN); int ans = 0; Cord = Cord2; sort(all(Cord)); FenwickTree FT(MaxN); FenwickTree FTS(MaxN); debug(Cord); int neg_num = 0, neg_sum = 0; for (int i = 0; i < n; i++) { int val = Cord[i].S; debug(i, val); if (val < 0){ neg_num++; neg_sum += abs(val); continue; } int small = FT.sum(val); ans += Cord[i].F * small; FT.add(val, 1); int val2 = FTS.sum(val); debug(small, ans, val2); // debug(val2); ans -= val2; FTS.add(val, Cord[i].F); ans += (neg_num)*Cord[i].F - neg_num; debug(i, ans); } FenwickTree FT2(MaxN); FenwickTree FTS2(MaxN); for (int i = 0; i < n; i++) { int val = Cord[i].S; if (val > 0) continue; val *= -1; int small = FT2.sum(val); ans += Cord[i].F * small; FT2.add(val, 1); int val2 = FTS2.sum(val); ans -= val2; FTS2.add(val, Cord[i].F); } cout << ans << endl; } int32_t main() { startTime = clock(); fast(); #ifdef Local_Debug freopen("input.txt", "r", stdin); // freopen("output.txt", "w", stdout); #endif // test() { run_testcase(); } return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#pragma GCC optimize("O3") #pragma comment(linker, "/stack:200000000") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace std; using namespace __gnu_pbds; #define int long long #define pb push_back #define pf push_front #define eb emplace_back #define mp make_pair #define all(v) (v).begin(),(v).end() #define rall(v) (v).rbegin(),(v).rend() #define f first #define s second #define sz(x) (int)x.size() #define endl "\n" #define forn(i,n) for(int i=0;i<n;++i) #define fore(i,l,r) for(int i=int(l);i<=int(r);++i) #define rep(i,begin,end) for(__typeof(end) i=(begin);i!=(end);i++) #define fill(a,value) memset(a,value,sizeof(a)); #define gcd(a,b) __gcd((a),(b)) #define watch1(x) cout<<(x)<<endl #define watch2(x,y) cout<<(x)<<" "<<(y)<<endl #define watch3(x,y,z) cout<<(x)<<" "<<(y)<<" "<<(z)<<endl #define fastio ios::sync_with_stdio(0);cin.tie(0);cout.tie(0); typedef long long ll; typedef long double ld; typedef pair<int,int> pii; typedef vector<int> vi; typedef vector<vi> vvi; typedef vector<pii> vpii; typedef tree<int,null_type,less<int>,rb_tree_tag,tree_order_statistics_node_update> oset; const int INF = 9e18; const int mod = 1e9 + 7; const int N = 2e5 + 5; int i,n,v[N],bit[N],val=1,ans=0; vpii x; void update(int idx,int val) { while(idx<=2*n) { bit[idx]+=val; idx+=idx&-idx; } } int query(int idx) { int ans=0; while(idx>0) { ans+=bit[idx]; idx-=idx&-idx; } return ans; } int rsum(int l,int r) { return query(r)-query(l-1); } void solve() { cin>>n; vi compress; for(i=1;i<=n;++i) { int a; cin>>a; x.pb({a,i}); } sort(all(x)); for(i=1;i<=n;++i) { cin>>v[i]; compress.pb(v[i]); } sort(all(compress)); map<int,int> mp; mp[compress[0]]=1; for(i=1;i<n;++i) { if(compress[i]!=compress[i-1]) val++; mp[compress[i]]=val; } oset s; for(i=n-1;i>=0;--i) { int idx=x[i].s; int sum=rsum(mp[v[idx]],n); int bigger=n-1-i-s.order_of_key(mp[v[idx]]); ans+=sum-bigger*x[i].f; s.insert(mp[v[idx]]); update(mp[v[idx]],x[i].f); } cout<<ans; } signed main() { fastio; int t; //cin>>t; t=1; while(t--) { solve(); } return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; bool test_cases_exist = false; class FenwickTree { public: vector<long long int> tree; long long int n; FenwickTree(long long int n) { this->n = n; tree.resize(n + 5); } void update(long long int ind, long long int delta) { while (ind <= n) { tree[ind] += delta; ind += ind & -ind; } } long long int query(long long int ind) { long long int res = 0; while (ind >= 1) { res += tree[ind]; ind -= ind & -ind; } return res; } }; void solve() { long long int n; cin >> n; vector<pair<long long int, long long int>> pnt(n); for (auto &z : pnt) cin >> z.first; for (auto &z : pnt) cin >> z.second; vector<long long int> speed; for (auto &z : pnt) speed.push_back(z.second); sort(pnt.begin(), pnt.end()); long long int ans = 0; vector<FenwickTree> ft(2, {n}); for (auto z : pnt) { int pos = lower_bound(speed.begin(), speed.end(), z.second) - speed.begin(); ans += ft[0].query(pos + 1) * z.first; ans -= ft[1].query(pos + 1); ft[0].update(pos + 1, 1); ft[1].update(pos + 1, z.first); } cout << ans << "\n"; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long int t = 1; if (test_cases_exist) cin >> t; while (t--) solve(); }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int dx[] = {1, -1, 0, 0}; int dy[] = {0, 0, 1, -1}; int dddx[] = {1, -1, 0, 0, 1, 1, -1, -1}; int dddy[] = {0, 0, 1, -1, 1, -1, 1, -1}; vector<pair<long long int, long long int> > vec; int n; long long int tree[(int)(2 * 1e5 + 1)], tree2[(int)(2 * 1e5 + 1)]; void atualiza(int x, int v) { for (; x <= n; x += (x & -x)) tree[x] += v; } void atualiza2(int x, int v) { for (; x <= n; x += (x & -x)) tree2[x] += v; } long long int sum(long long int x) { int s = 0; for (; x > 0; x -= (x & -x)) s += tree[x]; return s; } long long int sum2(int x) { int s = 0; for (; x > 0; x -= (x & -x)) s += tree2[x]; return s; } void compress() { vector<int> aux2; for (int i = 1; i <= n; i++) aux2.push_back(vec[i].second); sort(aux2.begin(), aux2.end()); for (int j = 1; j <= n; j++) { auto i = vec[j]; vec[j].second = lower_bound(aux2.begin(), aux2.end(), i.second) - aux2.begin(); } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cin >> n; vector<int> aux; vec.push_back({0, 0}); for (int i = 1; i <= n; i++) { int a; cin >> a; vec.push_back({a, 1}); } for (int i = 1; i <= n; i++) { int a; cin >> a; vec[i].second = a; } sort(vec.begin() + 1, vec.end()); compress(); long long int ans = 0; for (int i = 1; i <= n; i++) { ans += (sum2(i - 1) * vec[i].first - sum(i - 1)); atualiza(vec[i].second + 1, vec[i].first); atualiza2(vec[i].second + 1, 1); } cout << ans << "\n"; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class Ch, class Tr, class Container> basic_ostream<Ch, Tr>& operator<<(basic_ostream<Ch, Tr>& os, Container const& x) { os << "{ "; for (auto& y : x) os << y << " "; return os << "}"; } template <class X, class Y> ostream& operator<<(ostream& os, pair<X, Y> const& p) { return os << "[ " << p.first << ", " << p.second << "]"; } typedef struct { long long pos, v; } Point; long long P[200005], V[200005], sum = 0, maxNeg = 0; long long l = 0, r = 200000000; int n; vector<Point> Pos, Neg; bool sort_vel(Point a, Point b) { if (a.v == b.v) return a.pos > b.pos; return a.v > b.v; } bool sort_pos(Point a, Point b) { return a.pos < b.pos; } long long ft[200005]; void upd(int i0, long long v) { for (int i = i0 + 1; i <= 200005; i += i & -i) ft[i] += v; } long long get(int i0) { long long r = 0; for (int i = i0; i; i -= i & -i) r += ft[i]; return r; } int get_sum(int i0, int i1) { return get(i1) - get(i0); } void solve(vector<Point>& v) { int sz = v.size(); for (int i = 0; i < (200005); i++) ft[i] = 0; sort((v.begin()), (v.end()), sort_pos); for (int i = 0; i < (sz); i++) upd(i, r - v[i].pos); map<long long, long long> DondeEsta; for (int i = 0; i < (sz); i++) DondeEsta[v[i].pos] = i; sort((v.begin()), (v.end()), sort_vel); set<long long> usados; for (auto x : v) { int i = DondeEsta[x.pos]; int dif = 0; dif = distance(usados.begin(), upper_bound((usados.begin()), (usados.end()), x.pos)); sum += get_sum(0, i) - ((r - x.pos) * (i - dif)); upd(i, -1 * get_sum(i, i + 1)); usados.insert(x.pos); } } int main() { cin >> n; for (int i = 0; i < (n); i++) cin >> P[i]; for (int i = 0; i < (n); i++) { cin >> V[i]; if (V[i] >= 0) Pos.push_back({P[i], V[i]}); else { Pos.push_back({P[i], -1 * V[i]}); } } solve(Pos); cout << sum << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using LL = long long int; template <class T> struct Binary_Indexed_Tree { int maxSize; T* data; Binary_Indexed_Tree(int init_Size) : maxSize(init_Size) { data = new T[maxSize + 5]; memset(data, 0, sizeof(T) * (maxSize + 5)); } ~Binary_Indexed_Tree() { delete[] data; } void add(int loc, T val) { while (loc < maxSize) { data[loc] += val; loc += (loc & (-loc)); } return; } T query(int loc) { T ans = 0; while (loc > 0) { ans += data[loc]; loc -= (loc & (-loc)); } return ans; } }; struct point { int x, v; point(int x_ = 0, int v_ = 0) : x(x_), v(v_) {} bool operator<(const point& b) { return x < b.x; } }; const int maxn = 2e5 + 5; point p[maxn]; int n = 0, v[maxn]; int main(void) { scanf("%d", &n); for (int i = 0; i < n; ++i) scanf("%d", &p[i].x); for (int i = 0; i < n; ++i) { scanf("%d", &p[i].v); v[i] = p[i].v; } sort(p, p + n), sort(v, v + n); int cnt = unique(v, v + n) - v + 1; auto getid = [=](int val) { return lower_bound(v, v + cnt, val) - v + 1; }; Binary_Indexed_Tree<int> c(n); Binary_Indexed_Tree<LL> x(n); LL ans = 0; for (int i = 0; i < n; ++i) { int cnt = c.query(getid(p[i].v)); LL sum = x.query(getid(p[i].v)); ans += (cnt * (LL)p[i].x - sum); c.add(getid(p[i].v), 1); x.add(getid(p[i].v), p[i].x); } printf("%lld", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ii = pair<int, int>; constexpr int MAXN = 5 + 200000; constexpr int MINV = 1 + 100000000; struct Bit { ll b[MAXN]; void upd(int x, ll val) { for (; x < MAXN; x += (x & -x)) b[x] += val; } ll query(int x) { ll ans = 0LL; for (; x; x -= (x & -x)) ans += b[x]; return ans; } ll query(int l, int r) { if (l > r) return 0; return query(r) - query(l - 1); } }; ii a[MAXN]; int m[MAXN]; namespace comp { int v[MAXN]; void compress(ii arr[], int n, int BEG) { for (int i = (int)0; i < (int)n; ++i) v[i] = arr[i].second; sort(v, v + n); int sz = unique(v, v + n) - v; for (int i = (int)0; i < (int)n; ++i) { arr[i].second = BEG + lower_bound(v, v + sz, arr[i].second) - v; } } } // namespace comp int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); int n; cin >> n; for (int i = (int)0; i < (int)n; ++i) { cin >> a[i].first; } for (int i = (int)0; i < (int)n; ++i) { cin >> a[i].second; } sort(a, a + n, [](const ii& p, const ii& q) -> bool { return p.first < q.first; }); comp::compress(a, n, 1); ll tot = 0LL, pos = 0LL, pre = 0LL; for (int i = (int)0; i < (int)n; ++i) pos += a[i].first; for (int i = (int)0; i < (int)n; ++i) { pos -= a[i].first; tot += ((1LL * i * a[i].first) - 1LL * pre); pre += a[i].first; } Bit suma, cuenta; ll ans = 0LL; for (int i = n - 1; i >= 0; --i) { ans += (cuenta.query(1, a[i].second - 1) * 1LL * a[i].first - suma.query(1, a[i].second - 1)); suma.upd(a[i].second, a[i].first); cuenta.upd(a[i].second, 1); } cout << tot + ans << '\n'; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 10; int n, len; int bit[N][2]; void add(int x, int val) { while (x <= n) { bit[x][0]++; bit[x][1] += val; x += x & -x; } } long long query(int x, int k) { long long res = 0; while (x) { res += bit[x][k]; x -= x & -x; } return res; } int main() { scanf("%d", &n); vector<pair<int, int> > a(n); vector<int> v(n); for (int i = 0; i < n; i++) { scanf("%d", &a[i].first); } for (int i = 0; i < n; i++) { scanf("%d", &a[i].second); v[i] = a[i].second; } sort(a.begin(), a.end()); sort(v.begin(), v.end()); len = unique(v.begin(), v.end()) - v.begin(); long long ans = 0; for (int i = 0; i < n; i++) { int now = lower_bound(v.begin(), v.begin() + len, a[i].second) - v.begin() + 1; ans += 1LL * a[i].first * query(now, 0) - query(now, 1); add(now, a[i].first); } printf("%lld\n", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class MovingPoints { static class Pair { int first; int second; Pair(int first, int second) { this.first = first; this.second = second; } } public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); int[] coords = new int[n]; int[] vels = new int[n]; for (int i = 0; i < n; ++i) { coords[i] = scanner.nextInt(); } for (int i = 0; i < n; ++i) { vels[i] = scanner.nextInt(); } Pair[] vec = new Pair[n]; for(int i = 0; i < n; ++i) { vec[i] = new Pair(coords[i], vels[i]); } Arrays.sort(coords); Arrays.sort(vec, (o1, o2) -> { if(o1.second == o2.second) return -(o2.first - o1.first); return -(o2.second - o1.second); }); int sum = 0; Map<Integer, Integer> map = new HashMap<>(); for(int i = 0; i < n; ++i) { sum += coords[i] * (2 * i + 1 - n); map.put(coords[i], i); } for(int i = 0; i < n; i++) { sum -= vec[i].first * (map.get(vec[i].first) - i); } System.out.println(sum); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 5; int n, X[N]; int l_cnt, r_cnt; pair<int, int> L[N], R[N]; vector<int> nums; int cnt[N]; long long sum[N]; int tt, q[N]; long long dis; int get_pos(int p) { int l = 1, r = r_cnt; while (l < r) { int mid = l + r >> 1; if (R[mid].first > p) r = mid; else l = mid + 1; } if (R[l].first <= p) l = -1; return l; } void get_differ() { for (int i = r_cnt; i; i--) sum[i] = sum[i + 1] + R[i].first; for (int i = 1; i <= l_cnt; i++) { int pos = get_pos(L[i].first); if (pos == -1) continue; dis += sum[pos] - 1ll * (r_cnt - pos + 1) * L[i].first; } return; } int get_idx(int x) { return lower_bound(nums.begin(), nums.end(), x) - nums.begin() + 1; } int lowbit(int x) { return x & -x; } void add(int pos, int c) { for (int i = pos; i <= nums.size(); i += lowbit(i)) { sum[i] += c; cnt[i]++; } return; } long long get_sum(int pos) { long long s = 0; for (int i = pos; i; i -= lowbit(i)) s += sum[i]; return s; } int get_cnt(int pos) { int c = 0; for (int i = pos; i; i -= lowbit(i)) c += cnt[i]; return c; } int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d", X + i); for (int i = 1; i <= n; i++) { int v; scanf("%d", &v); if (!v) { L[++l_cnt] = {X[i], v}; R[++r_cnt] = {X[i], v}; } else if (v > 0) R[++r_cnt] = {X[i], v}; else L[++l_cnt] = {X[i], v}; nums.push_back(v); } sort(L + 1, L + l_cnt + 1); sort(R + 1, R + r_cnt + 1); get_differ(); sort(nums.begin(), nums.end()); nums.erase(unique(nums.begin(), nums.end()), nums.end()); memset(sum, 0, sizeof sum); for (int i = 1; i <= l_cnt; i++) { int pos = get_idx(L[i].second), c = get_cnt(pos); dis += 1ll * c * L[i].first - get_sum(pos); add(pos, L[i].first); } memset(sum, 0, sizeof sum); memset(cnt, 0, sizeof cnt); for (int i = r_cnt; i; i--) { int pos = get_idx(R[i].second), c = get_cnt(nums.size()) - get_cnt(pos - 1); dis += get_sum(nums.size()) - get_sum(pos - 1) - 1ll * c * R[i].first; add(pos, R[i].first); } printf("%lld\n", dis); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
//package psa.minrazdalja; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Main { /** * Uvozena abstraktna funkcija za klic Paid<L, R> */ public static class Pair<L,R> { private final L left; private final R right; public Pair(L left, R right) { assert left != null; assert right != null; this.left = left; this.right = right; } public L getLeft() { return left; } public R getRight() { return right; } @Override public int hashCode() { return left.hashCode() ^ right.hashCode(); } @Override public boolean equals(Object o) { if (!(o instanceof Pair)) return false; Pair pairo = (Pair) o; return this.left.equals(pairo.getLeft()) && this.right.equals(pairo.getRight()); } } /**? * glavna funkcija racunanja: * sprejme list tipa ArrayList<Pair<Integer, Integer>>, potem st vseh elementov in seveda listo vseh elementov. * * nato izracunamo maksimalno distance, ki je sestevek vseh distanc med posameznimi elementi, kar lahko storimo, ker je sortirana tabela. * V drugem delu odstejemo od maksimalnega sestevka distanc, posamezne ki se sekajo v prihodnosti * ostane nam samo tocni sestevek minimalnih distanc */ public static long elele(ArrayList<Pair<Long,Long>> elementi, int s, Long[] x_el) { long skupek = 0; HashMap<Long, Integer> pos = new HashMap<Long, Integer>(); for(int i=0; i<s; ++i) { skupek += x_el[i] * Long.valueOf(i) + (-1L * x_el[i]) * Long.valueOf(s - 1 - i); pos.put(x_el[i], i); } for(int i=0; i<s; ++i){ skupek -= elementi.get(i).getRight() * (pos.get(elementi.get(i).getRight()) - i); } //2 1 4 3 5 //2 2 2 3 4 return skupek; } public static void main(String[] args) throws IOException { int st_el; // uporabimo bufferedreader zaradi 1000x vecje hitrosti kot pa skener BufferedReader br= new BufferedReader(new InputStreamReader(System.in)); //System.out.println("Vnesi stevilo elementov: "); st_el = Integer.parseInt(br.readLine()); //System.out.println(st_el); Long[] x_el = new Long[st_el]; Long[] v_el = new Long[st_el]; //System.out.println("Vnesi elemente: "); String x = br.readLine(); String[] strs = x.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { x_el[i] = Long.parseLong(strs[i]); } //System.out.println("Vnesi tezo elementov: "); String y = br.readLine(); String[] strs2 = y.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { v_el[i] = Long.parseLong(strs2[i]); } br.close(); //pospravimo skupej v par oblike <integer, integer> oz <hitrost, element> ArrayList<Pair<Long,Long>> listt = new ArrayList<Pair<Long, Long>>(st_el); for(int i=0; i<st_el; i++) { Pair<Long, Long> pair = new Pair<Long, Long>(v_el[i],x_el[i]); listt.add(pair); } /*sortiramo listt od najmanjsega do najvecjega * - sortiramo prvo po hitrostih (to je glavno najbolj vazno) * - ce je hitrost ista potem pa sortiramo se glede na element * - O(n log n) */ Collections.sort(listt, new Comparator<Pair<Long, Long>>() { @Override public int compare(final Pair<Long, Long> o1, final Pair<Long, Long> o2) { if(o1.getLeft()<o2.getLeft()) { return -1; } else if(o1.getLeft() == o2.getLeft()) { if(o1.getRight() < o2.getRight()){ return -1; }else{ return 1; } } else { return 1; } } }); //sortiramo se elemente // O(n log n) Arrays.sort(x_el); //izpisemo elemente System.out.println(elele(listt,st_el,x_el)); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct hash_pair { template <class T1, class T2> size_t operator()(const pair<T1, T2>& p) const { auto hash1 = hash<T1>{}(p.first); auto hash2 = hash<T2>{}(p.second); return hash1 ^ hash2; } }; bool prime[10000001]; long long P = 1000000007 - 2; long long factorial[10000001] = {0}; long long powerFunction(long long x, long long y) { long long res = 1; long long p = 1000000007; x = x % p; while (y > 0) { if (y & 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } void sieveFunction(long long maxLimit) { memset(prime, true, sizeof(prime)); prime[0] = prime[1] = false; for (long long i = 2; maxLimit >= i; i++) { if (prime[i]) { for (long long j = 2 * i; maxLimit >= j; j += i) prime[j] = false; } } } void factorialFunction(long long maxLimit) { factorial[0] = 1; for (long long i = 1; i <= maxLimit; i++) factorial[i] = (factorial[i - 1] * i) % 1000000007; return; } long long gcd(long long a, long long b) { if (b == 0) return a; return gcd(b, a % b); } vector<pair<long long, long long>> tree[800001]; vector<long long> treesum[800001]; vector<pair<long long, long long>> v; void build(long long node, long long start, long long end) { if (start == end) { vector<pair<long long, long long>> temp; temp.push_back({v[start].second, v[start].first}); tree[node] = temp; vector<long long> sum; long long s = 0; for (long long i = 0; tree[node].size() > i; i++) { s += tree[node][i].second; treesum[node].push_back(s); } return; } long long mid = (start + end) / 2; build(2 * node, start, mid); build(2 * node + 1, mid + 1, end); long long i = 0, j = 0; while (i < tree[2 * node].size() && j < tree[2 * node + 1].size()) { if (tree[2 * node][i] <= tree[2 * node + 1][j]) { tree[node].push_back(tree[2 * node][i]); i++; } else { tree[node].push_back(tree[2 * node + 1][j]); j++; } } for (long long k = i; k < tree[2 * node].size(); k++) tree[node].push_back(tree[2 * node][k]); for (long long k = j; k < tree[2 * node + 1].size(); k++) tree[node].push_back(tree[2 * node + 1][k]); long long s = 0; for (long long k = 0; tree[node].size() > k; k++) { s += tree[node][k].second; treesum[node].push_back(s); } } long long n; pair<long long, long long> query(long long node, long long start, long long end, long long x) { if (start > x && end <= n) { pair<long long, long long> tem = {v[x].second, INT64_MIN}; long long id = lower_bound(tree[node].begin(), tree[node].end(), tem) - tree[node].begin(); if (id) { return {treesum[node].back() - treesum[node][id - 1], (long long)tree[node].size() - id}; } return {treesum[node].back(), tree[node].size()}; } if (end <= x || start > n) { return {0, 0}; } long long mid = (start + end) / 2; return {query(2 * node, start, mid, x).first + query(2 * node + 1, mid + 1, end, x).first, query(2 * node, start, mid, x).second + query(2 * node + 1, mid + 1, end, x).second}; } signed main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); ; cin >> n; long long x[n + 1], s[n + 1]; for (long long i = 1; n >= i; i++) { cin >> x[i]; } for (long long i = 1; n >= i; i++) { cin >> s[i]; } v.push_back({INT64_MIN, INT64_MIN}); for (long long i = 1; n >= i; i++) { v.push_back({x[i], s[i]}); } sort(v.begin(), v.end()); build(1, 1, n); if (n == 200000) return 0; long long ans = 0; for (long long i = 1; n >= i; i++) { long long xx = v[i].first; pair<long long, long long> temp = query(1, 1, n, i); temp.first -= xx * temp.second; ans += temp.first; } cout << ans << "\n"; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int dx[] = {1, -1, 0, 0}; int dy[] = {0, 0, 1, -1}; int dddx[] = {1, -1, 0, 0, 1, 1, -1, -1}; int dddy[] = {0, 0, 1, -1, 1, -1, 1, -1}; vector<pair<long long int, long long int> > vec; int n; long long int tree[(int)(2 * 1e5 + 1)], tree2[(int)(2 * 1e5 + 1)]; void atualiza(int x, int v) { for (; x < n; x = x | (x + 1)) tree[x] += v; } void atualiza2(int x, int v) { for (; x < n; x = x | (x + 1)) tree2[x] += v; } long long int sum(long long int x) { int s = 0; for (; x >= 0; x = (x & (x + 1)) - 1) s += tree[x]; return s; } long long int sum2(int x) { int s = 0; for (; x >= 0; x = (x & (x + 1)) - 1) s += tree2[x]; return s; } void compress() { vector<int> aux2; for (int i = 0; i < n; i++) aux2.push_back(vec[i].second); sort(aux2.begin(), aux2.end()); for (int j = 0; j < n; j++) { auto i = vec[j]; vec[j].second = lower_bound(aux2.begin(), aux2.end(), i.second) - aux2.begin(); } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cin >> n; vector<int> aux; for (int i = 1; i <= n; i++) { int a; cin >> a; vec.push_back({a, 1}); } for (int i = 0; i < n; i++) { int a; cin >> a; vec[i].second = a; } sort(vec.begin(), vec.end()); compress(); for (int i = 0; i < n; i++) aux.push_back(vec[i].second); long long int ans = 0; for (int i = 0; i < n; i++) { int pos = lower_bound(aux.begin(), aux.end(), vec[i].second) - aux.begin(); ans += (sum2(pos) * vec[i].first - sum(pos)); atualiza(vec[i].second, vec[i].first); atualiza2(vec[i].second, 1); } cout << ans << "\n"; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; int main() { int n; cin >> n; vector<long int> x(n); vector<long int> v(n); for (int i = 0; i < n; i++) { cin >> x[i]; } for (int i = 0; i < n; i++) { cin >> v[i]; } int d = 0; for (int i = 0; i < n - 1; i++) { for (int j = i + 1; j < n; j++) { if (v[j] < 0 && v[i] > 0) { if (x[i] < x[j]) d += 0; else d += abs(x[j] - x[i]); } else if (v[j] < 0 && v[i] > 0) { if (x[i] > x[j]) d += 0; else d += abs(x[j] - x[i]); } else { if ((v[j] > v[i] && x[j] > x[i]) || v[j] == v[i]) { d += abs(x[j] - x[i]); } } } } cout << d; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 2e5 + 10; struct Node { int x, v; bool operator<(const Node &rhs) const { return x < rhs.x; } } p[maxn]; int b[maxn], t[maxn], n, to, tt[maxn]; inline int lowbit(int x) { return x & -x; } void update(int *t, int x, int v) { for (; x <= n; x += lowbit(x)) { t[x] += v; } } int query(int *t, int x) { int sum = 0; for (; x; x -= lowbit(x)) { sum += t[x]; } return sum; } int find(int x) { return lower_bound(b + 1, b + to + 1, x) - b; } int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) scanf("%d", &p[i].x); for (int i = 1; i <= n; ++i) { scanf("%d", &p[i].v); b[i] = p[i].v; } sort(p + 1, p + n + 1); sort(b + 1, b + n + 1); to = unique(b + 1, b + n + 1) - b - 1; long long ans = 0; for (int i = 1; i <= n; ++i) cout << p[i].v << " "; cout << endl; for (int i = 1; i <= n; ++i) { int v = find(p[i].v); ans += 1LL * query(tt, v) * p[i].x - query(t, v); update(t, v, p[i].x); update(tt, v, 1); } printf("%lld\n", ans); }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = int(1e9) + 7; const long long int MOD64 = (long long int)(1e18) + 7; const int INF = 0x7fffffff; const long long int INF64 = 0x7fffffffffffffff; const int N = 2e5 + 10; struct node { int x, v, ind; } p[N]; bool compv(node a, node b) { if (a.v != b.v) { return a.v < b.v; } else return a.x < b.x; } bool compx(node a, node b) { return a.x < b.x; } int n; long long int sum[N], num[N]; int lowbit(int x) { return x & (-x); } void update(int i, int k) { while (i <= N) { sum[i] += k; num[i] += 1; i += lowbit(i); } } pair<int, int> getsum(int i) { long long int a = 0, b = 0; while (i > 0) { a += sum[i]; b += num[i]; i -= lowbit(i); } return make_pair(a, b); } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n; for (int i = int(1); i < int(n + 1); i++) { cin >> p[i].x; } for (int i = int(1); i < int(n + 1); i++) cin >> p[i].v; sort(p + 1, p + n + 1, compv); for (int i = int(1); i < int(n + 1); i++) p[i].ind = i; long long int ans = 0; sort(p + 1, p + n + 1, compx); memset(sum, 0, sizeof(sum)); memset(num, 0, sizeof(num)); for (int i = int(1); i < int(n + 1); i++) { pair<int, int> tmp = getsum(p[i].ind); ans += tmp.second * p[i].x - tmp.first; update(p[i].ind, p[i].x); } cout << ans << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; vector<pair<long long, long long>> t; pair<long long, long long> get(long long v, long long l, long long r, long long a, long long b) { if (l > b || a > r) { return {0, 0}; } if (a <= l && r <= b) { return t[v]; } long long m = (l + r) / 2; pair<long long, long long> tmp = get(2 * v, l, m, a, b), tmp2 = get(2 * v + 1, m + 1, r, a, b); return {tmp.first + tmp2.first, tmp.second + tmp2.second}; } void update(long long v, long long l, long long r, long long i, long long x) { if (l > i || i > r) { return; } if (l == r) { t[v] = {t[v].first + x, t[v].second + 1}; return; } long long m = (l + r) / 2; update(2 * v, l, m, i, x); update(2 * v + 1, m + 1, r, i, x); t[v].first = t[2 * v].first + t[2 * v + 1].first; t[v].second = t[2 * v].second + t[2 * v + 1].second; } signed main() { long long n; cin >> n; long long q = 1 << (long long)ceil(log2(n)); t.resize(2 * q); vector<pair<long long, long long>> x(n); for (long long i = 0; i < n; ++i) { cin >> x[i].first; } for (long long i = 0; i < n; ++i) { cin >> x[i].second; } sort(x.begin(), x.end()); vector<long long> a(n); for (long long i = 0; i < n; ++i) { a[i] = x[i].second; } unordered_map<long long, long long> b; sort(a.begin(), a.end()); a.resize(unique(a.begin(), a.end()) - a.begin()); for (long long i = 0; i < a.size(); ++i) { b[a[i]] = i; } vector<long long> c(n); for (long long i = 0; i < n; ++i) { c[i] = b[x[i].second]; } long long now = 0; long long sum = 0, kol = 0; for (long long i = 0; i < n; ++i) { if (x[i].second < 0) { sum += x[i].first; ++kol; continue; } if (x[i].second > 0) { pair<long long, long long> tmp = get(1, 0, q - 1, 0, c[i]); now += tmp.second * x[i].first - tmp.first; update(1, 0, q - 1, c[i], x[i].first); } else { now += kol * x[i].first - sum; sum += x[i].first; ++kol; } } t.assign(2 * q, {0, 0}); sum = 0; kol = 0; for (long long i = n - 1; i >= 0; --i) { if (x[i].second > 0) { sum += x[i].first; ++kol; continue; } if (x[i].second < 0) { pair<long long, long long> tmp = get(1, 0, q - 1, c[i], n - 1); now += tmp.first - tmp.second * x[i].first; update(1, 0, q - 1, c[i], x[i].first); } else { now += sum - kol * x[i].first; } } long long nowl = 0, koll = 0, nowr = 0, kolr = 0; for (long long i = 0; i < n; ++i) { if (x[i].second > 0) { now += koll * x[i].first - nowl; ++kolr; nowr += x[i].first; } else { now += kolr * x[i].first - nowr; ++koll; nowl += x[i].first; } } cout << now; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<climits> #include<cmath> #include<ctime> #include<vector> #include<queue> #include<stack> #include<list> #include<set> #include<map> #include<utility> #include<algorithm> using namespace std; #define FOR(i,a,b) for(register int i=(a);i<(b);++i) #define FORR(i,a,b) for(register int i=(a);i<=(b);++i) #define ROR(i,a,b) for(register int i=(a);i>=(b);--i) #define RORR(i,a,b) for(register int i=(a);i>(b);--i) #define PQ priority_queue #define VR vector #define MST(a,b) memset(a,b,sizeof(a)) #define FGETS(s) fgets(s,sizeof(s),stdin) #define ALL(x) x.begin(),x.end() #define INS(x) inserter(x,x.begin()) #define FI first #define SE second typedef long long LL; typedef long long unsigned LLU; typedef pair<int,int> pii; const int MAX = 2e5 + 20; int n,pos[MAX]; struct Node{ int p,v,no; bool operator < (const Node &b){ return v != b.v ? v < b.v : p < b.p; } }node[MAX],v[MAX]; struct ST{ // n-1 LL v[MAX]; LL sum(int x){ LL s = 0; while(x){ s += v[x]; x -= x&-x; } return s; } void add(int x, LL val){ while(x<=n){ v[x]+=val; x += x&-x; } } LL operator [] (int idx){ return sum(idx); } }s,c; int main(void){ scanf("%d",&n); FOR(i,0,n) scanf("%d",&node[i].p); FOR(i,0,n) scanf("%d",&node[i].v); sort(node,node+n,[](Node &a, Node &b){ return a.p < b.p; }); FOR(i,0,n) node[i].no=i; memcpy(v,node,sizeof(node)); v[0]={0,0,0}; sort(v+1,v+n); FOR(i,1,n){ pos[v[i].no]=i; s.add(i,v[i].p); c.add(i,1); } #ifdef DEBUG FOR(i,0,n) printf(" (%d, %d)",node[i].p,node[i].v); putchar('\n'); FOR(i,0,n) printf(" (%d, %d)",v[i].p,v[i].v); putchar('\n'); #endif LL ans = 0; FOR(i,0,n-1){ int j = lower_bound(v+1,v+n,node[i]) - v; if(j>=n) continue; #ifdef DEBUG FOR(i,1,n) printf(" s[%d]: %lld, c[%d]: %lld\n",i,s[i],i,c[i]); printf(" for i: %d (v %d), j: %d\n",i,node[i].v,j); printf(" s[n]:%lld, s[j-1]: %lld, c[j-1]: %lld\n",s[n],s[j-1],c[j-1]); printf(" ans += %lld\n",s[n]-s[j-1] - (n - 1ll - c[j-1])*node[i].p); #endif ans += s[n]-s[j-1] - (c[n] - c[j-1])*node[i].p; int t = pos[i+1]; s.add(t,-v[t].p); c.add(t,-1); } printf("%lld\n",ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct abc { long long pozicia; long long sichqare; }; bool comp(abc a, abc b) { return a.pozicia < b.pozicia; } int main() { long long n, cnt = 0; cin >> n; abc a[n + 1]; for (int i = 1; i <= n; i++) cin >> a[i].pozicia; for (int i = 1; i <= n; i++) cin >> a[i].sichqare; sort(a + 1, a + n + 1, comp); for (long long i = 1; i < n; i++) { for (long long j = i + 1; j <= n; j++) { if (a[i].sichqare > 0 and a[j].sichqare > 0) { if (a[i].sichqare <= a[j].sichqare) { cnt += j - i; } } else if (a[i].sichqare < 0 and a[j].sichqare < 0) { if (a[i].sichqare <= a[j].sichqare) { cnt += j - i; } } else if (a[i].sichqare <= 0 and a[j].sichqare >= 0) cnt += j - i; else if (a[i].sichqare == 0 and a[j].sichqare >= 0) cnt += j - i; else if (a[i].sichqare <= 0 and a[j].sichqare == 0) cnt += j - i; else if ((a[i].sichqare != 0 and a[j].sichqare != 0) or (a[i].sichqare == 0 and a[j].sichqare == 0)) cnt += j - i; } } cout << cnt << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class MovingPoints { static int[] pointsTree; static int[] distTree; static int[] velocity; static int[] distance; static Point[] points; static class FastScanner { StringTokenizer st; BufferedReader br; FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while(st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int nextInt() { return Integer.parseInt(next()); } double nextDouble() { return Double.parseDouble(next()); } long nextLong() { return Long.parseLong(next()); } } static class Point { int distance; int velocity; int index; Point(int distance, int velocity, int index) { this.distance = distance; this.velocity = velocity; this.index = index; } } static class PointComparator implements Comparator<Point> { @Override public int compare(Point a, Point b) { if(a.velocity != b.velocity) { return (a.velocity < b.velocity) ? -1 : 1; } if(a.distance != b.distance) { return (a.distance < b.distance) ? -1 : 1; } if(a.index != b.index) { return (a.index < b.index) ? -1 : 1; } return 0; } } static void updateIndex(int index, int dist, int n) { while(index <= n) { distTree[index] += dist; pointsTree[index] += 1; index += (index & (-index)); } } static long solve(int index, long dist) { int x = index; int nPoints = 0; while(x > 0) { nPoints += pointsTree[x]; x -= (x & (-x)); } long prefDist = 0; x = index; while(x > 0) { prefDist += distTree[x]; x -= (x & (-x)); } dist = (long) nPoints * dist; dist -= prefDist; return dist; } public static void main(String[] Args) { FastScanner sc = new FastScanner(); int n; n = sc.nextInt(); distTree = new int[n + 1]; pointsTree = new int[n + 1]; velocity = new int[n + 1]; distance = new int[n + 1]; points = new Point[n]; ArrayList<Integer> distances = new ArrayList<>(); TreeMap<Integer, Integer> treeMap = new TreeMap(); for(int i = 0; i < n; i++) { distance[i] = sc.nextInt(); distances.add(distance[i]); } Collections.sort(distances); int x = 0; for(int i = 0; i < distances.size(); i++) { if(i == 0 || distances.get(i) != distances.get(i - 1)) { treeMap.put(distances.get(i), ++x); } } for(int i = 0; i < n; i++) { velocity[i] = sc.nextInt(); } for(int i = 0; i < n; i++) { points[i] = new Point(distance[i], velocity[i], treeMap.get(distance[i])); } Arrays.sort(points, new PointComparator()); long sol = 0L; for(Point point: points) { sol += solve(point.index, point.distance); updateIndex(point.index, point.distance, treeMap.size()); } System.out.println(sol); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
//package psa.minrazdalja; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Main { /** * Uvozena abstraktna funkcija za klic Paid<L, R> */ public static class Pair<L,R> { private final L left; private final R right; public Pair(L left, R right) { assert left != null; assert right != null; this.left = left; this.right = right; } public L getLeft() { return left; } public R getRight() { return right; } @Override public int hashCode() { return left.hashCode() ^ right.hashCode(); } @Override public boolean equals(Object o) { if (!(o instanceof Pair)) return false; Pair pairo = (Pair) o; return this.left.equals(pairo.getLeft()) && this.right.equals(pairo.getRight()); } } /**? * glavna funkcija racunanja: * sprejme list tipa ArrayList<Pair<Integer, Integer>>, potem st vseh elementov in seveda listo vseh elementov. * * nato izracunamo maksimalno distance, ki je sestevek vseh distanc med posameznimi elementi, kar lahko storimo, ker je sortirana tabela. * V drugem delu odstejemo od maksimalnega sestevka distanc, posamezne ki se sekajo v prihodnosti * ostane nam samo tocni sestevek minimalnih distanc */ public static long elele(ArrayList<Pair<Long,Long>> elementi, int s, Long[] x_el) { long skupek = 0L; HashMap<Long, Integer> pos = new HashMap<Long, Integer>(); for(int i=0; i<s; ++i) { skupek += x_el[i] * Long.valueOf(i) + (-1L * x_el[i]) * Long.valueOf(s - 1 - i); pos.put(x_el[i], i); } for(int i=0; i<s; ++i){ skupek -= elementi.get(i).getRight() * (pos.get(elementi.get(i).getRight()) - i); } //2 1 4 3 5 //2 2 2 3 4 return skupek; } public static void main(String[] args) throws IOException { int st_el; // uporabimo bufferedreader zaradi 1000x vecje hitrosti kot pa skener BufferedReader br= new BufferedReader(new InputStreamReader(System.in)); //System.out.println("Vnesi stevilo elementov: "); st_el = Integer.parseInt(br.readLine()); //System.out.println(st_el); Long[] x_el = new Long[st_el]; Long[] v_el = new Long[st_el]; //System.out.println("Vnesi elemente: "); String x = br.readLine(); String[] strs = x.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { x_el[i] = Long.parseLong(strs[i]); } //System.out.println("Vnesi tezo elementov: "); String y = br.readLine(); String[] strs2 = y.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { v_el[i] = Long.parseLong(strs2[i]); } br.close(); //pospravimo skupej v par oblike <integer, integer> oz <hitrost, element> ArrayList<Pair<Long,Long>> listt = new ArrayList<Pair<Long, Long>>(st_el); for(int i=0; i<st_el; i++) { Pair<Long, Long> pair = new Pair<Long, Long>(v_el[i],x_el[i]); listt.add(pair); } /*sortiramo listt od najmanjsega do najvecjega * - sortiramo prvo po hitrostih (to je glavno najbolj vazno) * - ce je hitrost ista potem pa sortiramo se glede na element * - O(n log n) */ Collections.sort(listt, new Comparator<Pair<Long, Long>>() { @Override public int compare(final Pair<Long, Long> o1, final Pair<Long, Long> o2) { if(o1.getLeft()<o2.getLeft()) { return -1; } else if(o1.getLeft() == o2.getLeft()) { if(o1.getRight() < o2.getRight()){ return -1; }else{ return 1; } } else { return 1; } } }); //sortiramo se elemente // O(n log n) Arrays.sort(x_el); //izpisemo elemente System.out.println(elele(listt,st_el,x_el)); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class Ch, class Tr, class Container> basic_ostream<Ch, Tr>& operator<<(basic_ostream<Ch, Tr>& os, Container const& x) { os << "{ "; for (auto& y : x) os << y << " "; return os << "}"; } template <class X, class Y> ostream& operator<<(ostream& os, pair<X, Y> const& p) { return os << "[ " << p.first << ", " << p.second << "]"; } typedef struct { long long pos, v; } Point; long long P[200005], V[200005], sum = 0, maxNeg = 0; long long l = 0, r = 200000000; int n; vector<Point> Pos, Neg; bool sort_vel(Point a, Point b) { if (a.v == b.v) return a.pos > b.pos; return a.v > b.v; } bool sort_pos(Point a, Point b) { return a.pos < b.pos; } long long ft[200005]; void upd(int i0, long long v) { for (int i = i0 + 1; i <= 200005; i += i & -i) ft[i] += v; } long long get(int i0) { long long r = 0; for (int i = i0; i; i -= i & -i) r += ft[i]; return r; } int get_sum(int i0, int i1) { return get(i1) - get(i0); } void solve(vector<Point>& v) { int sz = v.size(); for (int i = 0; i < (200005); i++) ft[i] = 0; sort((v.begin()), (v.end()), sort_pos); for (int i = 0; i < (sz); i++) upd(i, r - v[i].pos); map<long long, long long> DondeEsta; for (int i = 0; i < (sz); i++) DondeEsta[v[i].pos] = i; sort((v.begin()), (v.end()), sort_vel); set<long long> usados; for (auto x : v) { int i = DondeEsta[x.pos]; int dif = 0; dif = distance(usados.begin(), upper_bound((usados.begin()), (usados.end()), x.pos)); sum += get_sum(0, i) - ((r - x.pos) * (i - dif)); upd(i, -1 * get_sum(i, i + 1)); usados.insert(x.pos); } } int main() { cin >> n; for (int i = 0; i < (n); i++) cin >> P[i]; for (int i = 0; i < (n); i++) { cin >> V[i]; if (V[i] >= 0) Pos.push_back({P[i], V[i]}); else { maxNeg = max(maxNeg, P[i]); Neg.push_back({P[i], -1 * V[i]}); Pos.push_back({P[i], -1 * V[i]}); } } for (auto& x : Neg) x.pos = maxNeg + abs(x.pos - maxNeg); solve(Pos); cout << sum << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; class FenwickTree { long long n; vector<int> BIT; public: FenwickTree(long long n) { this->n = n; BIT.assign(n + 1, 0); } void update(long long x, long long v) { while (x <= n) { BIT[x] += v; x += (x & -x); } } long long query(long long x) { long long s = 0; while (x > 0) { s += BIT[x]; x -= (x & -x); } return s; } }; class TaskF { long long n, res; vector<pair<long long, long long>> a; vector<long long> x, v; map<long long, long long> m; public: TaskF(long long n) { this->n = n; res = 0; a.assign((n + 1), {LONG_MIN, LONG_MIN}); for (long long i = 1; i <= n; i++) { cin >> a[i].first; } for (long long i = 1; i <= n; i++) { cin >> a[i].second; } } long long get() { sort(a.begin(), a.end()); for (int i = 1; i <= n; i++) { x.emplace_back(a[i].first); v.emplace_back(a[i].second); m[a[i].second]; } int k = 0; for (auto &it : m) { it.second = (++k); } for (auto &it : v) { it = m[it]; } FenwickTree F1(k), F2(k); for (long long i = 0; i < n; i++) { long long c = F1.query(v[i]); long long s = F2.query(v[i]); res += (c * x[i]) - s; F1.update(v[i], 1); F2.update(v[i], x[i]); } return res; } }; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long n; cin >> n; TaskF T(n); cout << T.get() << '\n'; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.util.*; import java.util.concurrent.LinkedBlockingDeque; public class ProblemF_SegmentTree { public static InputStream inputStream = System.in; public static OutputStream outputStream = System.out; public static void main(String[] args) { Scanner scanner = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); int n = scanner.nextInt(); List<Pair<Long, Long>> xvList = new ArrayList<>(); for (int i = 0; i < n; i++) { xvList.add(new Pair<>(scanner.nextLong(), 0L)); } for (int i = 0; i < n; i++) { xvList.get(i).second = scanner.nextLong(); } xvList.sort(Comparator.comparingLong(t -> t.first)); Map<Long, Pair<Long, Long>> map = new HashMap<>(); for (int i = 0; i < n; i++) { long x = xvList.get(i).first; long v = xvList.get(i).second; if (!map.containsKey(v)) { map.put(v, new Pair<>(0L, 0L)); } map.put(v, sum(map.get(v), new Pair<>(x, 1L))); } Map<Long, Integer> indexes = new HashMap<>(); int index = 0; for (Long key : new TreeSet<>(map.keySet())) { indexes.put(key, index); index++; } SegmentTree segmentTree = new SegmentTree(new ArrayList<>(map.values())); long ans = 0L; for (int i = 0; i < n; i++) { long x = xvList.get(i).first; long v = xvList.get(i).second; index = indexes.get(v); segmentTree.add(index, new Pair<>(-x, -1L)); Pair<Long, Long> sum = segmentTree.getSum(index, n - 1); ans += sum.first - (sum.second * x); } out.println(ans); out.flush(); } private static class SegmentTree { private Node root; private SegmentTree(List<Pair<Long, Long>> list) { root = getNode(list, 0, list.size() - 1); } private Node getNode(List<Pair<Long, Long>> list, int l, int r) { Node node = new Node(); node.left = l; node.right = r; if (l == r) { node.value = list.get(l); } else { int middle = (l + r) / 2; node.leftNode = getNode(list, l, middle); node.rightNode = getNode(list, middle + 1, r); node.value = sum(node.leftNode.value, node.rightNode.value); } return node; } private Pair<Long, Long> getSum(int l, int r) { return root.getSum(l, r); } private void add(int index, Pair<Long, Long> value) { Node node = root; while (true) { node.value = sum(node.value, value); if (node.leftNode == null) { break; } if (node.leftNode.right >= index) { node = node.leftNode; } else { node = node.rightNode; } } } } private static class Node { private Pair<Long, Long> value; private int left; private int right; private Node leftNode; private Node rightNode; private Pair<Long, Long> getSum(int l, int r) { if (left >= l && right <= r) { return value; } if (right < l || left > r) { return new Pair<>(0L, 0L); } return sum(leftNode.getSum(l, r), rightNode.getSum(l, r)); } } private static class Pair<F, S> { private F first; private S second; public Pair() {} public Pair(F first, S second) { this.first = first; this.second = second; } } private static Pair<Long, Long> sum(Pair<Long, Long> p1, Pair<Long, Long> p2) { return new Pair<>(p1.first + p2.first, p1.second + p2.second); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int kMaxN = 200001; struct E { int x, v, w; bool operator<(const E &e) const { return x < e.x; } } e[kMaxN]; struct T { int c; long long v; } t[kMaxN]; int a[kMaxN]; int n; long long ans; int LowBit(int x) { return x & (-x); } void Calc(int x) { t[0] = {0, 0}; while (x) { t[0].c += t[x].c; t[0].v += t[x].v; x -= LowBit(x); } } void Add(int x, int v) { while (x <= n) { t[x].c++; t[x].v += v; x += LowBit(x); } } void Dis() { sort(a + 1, a + 1 + n, [](int i, int j) { return e[i].v < e[j].v; }); e[0].v = 1 << 31; for (int i = 1, j = 0; i <= n; i++) { j += e[a[i]].v != e[a[i - 1]].v; e[a[i]].w = j; } } int main() { cin >> n; for (int i = 1; i <= n; i++) { cin >> e[i].x; } for (int i = 1; i <= n; i++) { cin >> e[i].v; a[i] = i; } Dis(); sort(e + 1, e + 1 + n); for (int i = 1; i <= n; i++) { Calc(e[i].w); ans += e[i].x * t[0].c - t[0].v; Add(e[i].w, e[i].x); } cout << ans << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> #include <fstream> #include <cmath> #include <random> #include <iomanip> #include <algorithm> #include <numeric> #include <functional> #include <typeinfo> #include <vector> #include <array> #include <valarray> #include <queue> #include <stack> #include <set> #include <map> #include <any> #include <unordered_map> #include <cstdio> #include <cstdlib> #include <cstring> #include <ctime> #include <cassert> using namespace std; #pragma GCC optimize("Ofast") #pragma GCC optimize ("unroll-loops") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") namespace io{ template<typename First, typename Second> ostream& operator << ( ostream &os, const pair<First, Second> &p ) { return os << p.first << " " << p.second; } template<typename First, typename Second> ostream& operator << ( ostream &os, const map<First, Second> &mp ) { for( auto it : mp ) { os << it << endl; } return os; } template<typename First> ostream& operator << ( ostream &os, const vector<First> &v ) { bool space = false; for( First x : v ) { if( space ) os << " "; space = true; os << x; } return os; } template<typename First> ostream& operator << ( ostream &os, const set<First> &st ) { bool space = false; for( First x : st ) { if( space ) os << " "; space = true; os << x; } return os; } template<typename First> ostream& operator << ( ostream &os, const multiset<First> &st ) { bool space = false; for( First x : st ) { if( space ) os << " "; space = true; os << x; } return os; } template<typename First, typename Second> istream& operator >> ( istream &is, pair<First, Second> &p ) { return is >> p.first >> p.second; } template<typename First> istream& operator >> ( istream &is, vector<First> &v ) { for( First &x : v ) { is >> x; } return is; } long long fastread(){ char c; long long d = 1, x = 0; do c = getchar(); while( c == ' ' || c == '\n' ); if( c == '-' ) c = getchar(), d = -1; while( isdigit( c ) ){ x = x * 10 + c - '0'; c = getchar(); } return d * x; } static bool sep = false; using std::to_string; string to_string( bool x ){ return ( x ? "true" : "false" ); } string to_string( const string & s ){ return "\"" + s + "\""; } string to_string( const char * s ){ return "\"" + string( s ) + "\""; } string to_string ( const char & c ) { string s; s += c; return "\'" + s + "\'"; } template<typename First, typename Second> string to_string( pair<First, Second> p ){ return "{" + to_string( p.first ) + ", " + to_string( p.second ) + "}"; } template<typename Type> string to_string( vector<Type> v ) { bool sep = false; string s = "["; for( Type x: v ){ if( sep ) s += ", "; sep = true; s += to_string( x ); } s += "]"; return s; } template<typename Collection> string to_string( Collection collection ) { bool sep = false; string s = "{"; for( auto x: collection ){ if( sep ) s += ", "; sep = true; s += to_string( x ); } s += "}"; return s; } void print() { cerr << endl; sep = false; } template <typename First, typename... Other> void print( First first, Other... other ) { if( sep ) cerr << " | "; sep = true; cerr << to_string( first ); print( other... ); } } using namespace io; namespace utils { class Range { private: const int start; const int stop; const int step; public: class iterator { private: int value; const int step; const int boundary; const bool sign; public: typedef std::forward_iterator_tag iterator_category; typedef int &reference; typedef int *pointer; iterator( int value, int step, int boundary ) : value( value ), step( step ), boundary( boundary ), sign( step > 0 ) {} iterator operator ++ () { value += step; return *this; } reference operator * () { return value; } const pointer operator -> () { return &value; } bool operator == ( const iterator& rhs ) { return sign ? ( value >= rhs.value && value > boundary ) : (value <= rhs.value && value < boundary ); } bool operator != ( const iterator& rhs ) { return sign ? ( value < rhs.value && value >= boundary ) : ( value > rhs.value && value <= boundary ); } }; Range( const int &start, const int &stop, const int &step ) : start( start ), stop( stop ), step( step ) {} iterator begin() const { return iterator( start, step, start ); } iterator end() const { return iterator( stop, step, start ); } }; Range range( const int &stop ) { return Range( 0, stop, 1 ); } Range range( const int &start, const int &stop ) { return Range( start, stop, 1 ); } Range range( const int &start, const int &stop, const int &step ) { return Range( start, stop, step ); } template<typename T> inline T max( T t ) { return t; } template<typename First, typename ...Others> inline auto max( First first, Others ...others ) { auto result = max( others... ); return result > first ? result : first; } template<typename T> inline T min( T t ) { return t; } template<typename First, typename ...Others> inline auto min( First first, Others ...others ) { auto result = min( others... ); return result < first ? result : first; } template<typename T1, typename T2> inline void updmax ( T1 &a, T2 b ) { a = a > b ? a : b; } template<typename T1, typename T2> inline void updmin ( T1 &a, T2 b ) { a = a < b ? a : b; } template<typename T1, typename T2> inline bool chkmax ( T1 &a, T2 b ) { if( a < b ) { a = b; return true; } return false; } template<typename T1, typename T2> inline bool chkmin ( T1 &a, T2 b ) { if( a > b ) { a = b; return true; } return false; } constexpr long long operator"" _E ( unsigned long long n ){ long long p = 1, a = 10; for( int i = 0; i < n; i++ ) p *= a; return p; } long double operator"" _deg ( long double deg ){ long double PI = acos( -1 ); return deg * PI / 180; } random_device rd; mt19937 mt( rd( ) ); template<typename T> T rand ( T l, T r ) { uniform_int_distribution<T> dist( l, r ); return dist( mt ); }; namespace Color { string HEADER = "\033[95m", OKBLUE = "\033[94m", OKGREEN = "\033[92m", WARNING = "\033[93m", FAIL = "\033[91m", ENDC = "\033[0m", BOLD = "\033[1m", UNDERLINE = "\033[4m", BGGREEN = "\x1b[6;30;42m"; } struct dtime { int h, m, s; dtime( int h, int m, int s ) : h( h ), m( m ), s( s ) {} dtime() { h = ( ( time( 0 ) / 60 / 60 ) % 24 + 5 ) % 24; m = ( time( 0 ) / 60 ) % 60; s = time( 0 ) % 60; } friend bool operator < ( const dtime &t1, const dtime &t2 ){ if( t1.h == t2.h ){ if( t1.m == t2.m ){ return t1.s < t2.s; } return t1.m < t2.m; } return t1.h < t2.h; } friend ostream& operator << ( ostream &os, const dtime &t ){ os << t.h << " " << t.m << " " << t.s << endl; return os; } friend string to_string( const dtime &t ){ return to_string( t.h ) + ":" + to_string( t.m ) + ":" + to_string( t.s ); } }; dtime get_current_time() { return dtime(); } } using namespace utils; template<typename T> class nparray { private: T * _data = nullptr, * _max = nullptr, * _min = nullptr, * _sum = nullptr; size_t _size; public: nparray(){} nparray( size_t size ) { __init( size ); } void __init( size_t size ){ _size = size; _data = new T[size]; fill( 0 ); } T sum() { return std::accumulate( _data, _data + _size, 0 ); } T sum( size_t stop ) { return sum( 0, stop ); } T sum( size_t start, size_t stop ){ if( _sum == nullptr ) __sumrecalc(); T sum_ = _sum[stop]; if( start ) sum_ -= _sum[start - 1]; return sum_; } T sum( size_t start, size_t stop, size_t step ) { T sum_ = 0; for( size_t i = start; i < stop; i += step ) { sum_ += _data[i]; } return sum_; } T max(){ return std::max_element( _data, _data + this -> _size ); } T max( size_t index ){ assert( index < _size ); if( _max == nullptr ) __maxrecalc(); return _max[index]; } T min(){ return std::min_element( _data, _data + _size ); } T min( size_t index ){ assert( index < _size ); if( _min == nullptr ) __minrecalc(); return _min[index]; } T* begin() { return _data; } T* end() { return _data + _size; } T* cbegin() { return _data + _size - 1; } T* cend() { return _data - 1; } void fill( int value ){ std::fill( _data, _data + _size, value ); } void reverse( ){ std::reverse( _data, _data + _size ); if( _sum != nullptr ) std::reverse( _sum, _sum + _size ); if( _max != nullptr ) std::reverse( _max, _max + _size ); if( _min != nullptr ) std::reverse( _min, _min + _size ); } void sort( ){ std::sort( _data, _data + _size ); if( _sum != nullptr ) __sumrecalc(); if( _max != nullptr ) __maxrecalc(); if( _min != nullptr ) __minrecalc(); } void shift( int count ) { count %= ( int32_t )_size; T *temp = new T[_size]; int j = ( count < 0 ? _size + count: count ); for( size_t i = 0; i < _size; i++, j++ ){ if( j == _size ) j = 0; temp[j] = _data[i]; } for( size_t i = 0; i < _size; i++ ){ _data[i] = temp[i]; } delete temp; } void random_shuffle( ){ std::random_shuffle( _data, _data + _size ); } bool is_sorted( ){ for( int i = 1; i < _size; i++ ){ if( _data[i - 1] > _data[i + 1] ){ return false; } } return true; } void resize( size_t size ) { __clear(); __init( size ); } void __clear() { _size = 0; delete _data; delete _max; delete _min; delete _sum; } void __sumrecalc(){ _sum = new T[_size]; _sum[0] = _data[0]; for( int i = 1; i < _size; i++ ){ _sum[i] = _sum[i - 1] + _data[i]; } } void __maxrecalc(){ _max = new T[_size]; _max[0] = _data[0]; for( int i = 1; i < _size; i++ ){ _max[i] = ( _data[i] > _max[i - 1] ? _data[i] : _max[i - 1]); } } void __minrecalc(){ _min = new T[_size]; _min[0] = _data[0]; for( int i = 1; i < _size; i++ ){ _min[i] = ( _data[i] < _min[i - 1] ? _data[i] : _min[i - 1]); } } T& operator [] ( int index ){ if( index < 0 ){ assert( -index <= _size ); return _data[_size + index]; } else { assert( index < _size ); return _data[index]; } } size_t size() { return _size; } bool empty(){ return ( _size == 0 ); } friend ostream& operator << ( ostream &os, nparray<T> &array ) { for( size_t i = 0; i < array.size(); i++ ) { if( i ) os << " "; os << array[i]; } return os; } friend istream& operator >> ( istream &is, nparray<T> &array ) { for( size_t i = 0; i < array.size(); i++ ) { is >> array[i]; } return is; } friend string to_string( nparray<T> &array ){ string s = "{ "; for( size_t i = 0; i < array.size(); i++ ) { if( i ) s += ", "; s += to_string( array[i] ); } s += "}"; return s; } ~nparray() { __clear(); } }; /* main */ #ifdef LOCAL_JUDGE #define print( ... ) cerr << "[" << #__VA_ARGS__ << "]: "; io::print( __VA_ARGS__ ); #else #define print( ... ) #endif const int MOD = 2000000033; // 998'244'353 const double EPS = 1e-9; const double PI = acos( -1. ); long long LLINF = 18_E + 10; int INF = 2 * 8_E + 10; const int MAXN = 3 * 5_E + 6; const int N = 5_E + 5; struct fenwick{ map<int, int> fw; void update( int i, int d ){ while( i <= 2 * INF ){ fw[i] += d; i = ( i | ( i + 1 ) ); } } int get( int n ){ int result = 0; while( n >= 0 ){ if( fw.count( n ) ){ result += fw[n]; } n = ( n & ( n + 1 ) ) - 1; } return result; } int get( int l, int r ){ return get( r ) - get( l - 1 ); } }; fenwick sum, cnt; int calc( const vector<pair<int, int>> &vc ){ int ans = 0; for( int i = 0; i < vc.size(); i++ ){ int x = vc[i].first; int v = vc[i].second; ans += x * cnt.get( v ) - sum.get( v ); sum.update( v, x ); cnt.update( v, 1 ); } return ans; } void solution( istream &cin, ostream &cout, const int &test_case ) { int n; cin >> n; vector<int> a( n ), b( n ); cin >> a >> b; vector<pair<int, int>> v; int mn = INF; for( int i: range( n ) ){ updmin( mn, a[i] ); } for( int i: range( n ) ){ a[i] -= mn; a[i]++; b[i] += INF; } for( int i: range( n ) ){ v.push_back( { a[i], b[i] } ); } sort( begin( v ), end( v ) ); print( v ); int ans = 0; ans += calc( v ); /* mn = INF; for( int i: range( n ) ){ v[i].first = INF - v[i].first; updmin( mn, v[i].first ); } for( int i: range( n ) ){ v[i].first -= mn; } reverse( begin( v ), end( v ) ); ans += calc( v ); */ cout << ans << endl; } int32_t main() { srand( time( 0 ) ); ios_base::sync_with_stdio( false ); cin.tie( nullptr ); cout.tie( nullptr ); std::istream& in( std::cin ); std::ostream& out( std::cout ); int32_t queries = 1; //cin >> queries; for( int32_t test_case: range( 1, queries + 1 ) ){ solution( cin, cout, test_case ); } return EXIT_SUCCESS; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int x[n], v[n], sum = 0; for (int i = 0; i < n; i++) cin >> x[i]; for (int i = 0; i < n; i++) cin >> v[i]; for (int i = 0; i < n; i++) { for (int j = i; j < n; j++) { if (x[i] <= x[j] && v[i] <= v[j]) sum += x[j] - x[i]; else if (v[j] <= v[i]) sum += x[i] - x[j]; } } cout << sum << endl; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; vector<int> v; int n, m; long long ans = 0; struct node { int l; int r; long long cnt; long long sum; } tree[400010]; struct no { int pos; int speed; } a[200010]; bool cmp(no c, no d) { return c.pos < d.pos; } void build(int p, int l, int r) { tree[p].l = l, tree[p].r = r; tree[p].cnt = tree[p].sum = 0; if (l == r) return; int mid = (l + r) >> 1; build(p << 1, l, mid); build(p << 1 | 1, mid + 1, r); } void update(int p, int po, int v) { int l = tree[p].l, r = tree[p].r; if (l == r) { tree[p].cnt++; tree[p].sum += v; return; } int mid = (l + r) >> 1; if (po <= mid) update(p << 1, po, v); else update(p << 1 | 1, po, v); tree[p].cnt = tree[p << 1].cnt + tree[p << 1 | 1].cnt; tree[p].sum = tree[p << 1].sum + tree[p << 1 | 1].sum; } int query1(int p, int L, int R) { int l = tree[p].l, r = tree[p].r; if (l == r || (L <= l && R >= r)) return tree[p].cnt; int res = 0; int mid = (l + r) >> 1; if (L <= mid) res += query1(p << 1, L, R); if (R > mid) res += query1(p << 1 | 1, L, R); return res; } int query2(int p, int L, int R) { int l = tree[p].l, r = tree[p].r; if (l == r || (L <= l && R >= r)) return tree[p].sum; long long res = 0; int mid = (l + r) >> 1; if (L <= mid) res += query2(p << 1, L, R); if (R > mid) res += query2(p << 1 | 1, L, R); return res; } int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d", &a[i].pos); for (int i = 1; i <= n; i++) { scanf("%d", &a[i].speed); v.push_back(a[i].speed); } sort(v.begin(), v.end()); v.erase(unique(v.begin(), v.end()), v.end()); for (int i = 1; i <= n; i++) a[i].speed = lower_bound(v.begin(), v.end(), a[i].speed) - v.begin() + 1; sort(a + 1, a + n + 1, cmp); build(1, 1, v.size()); for (int i = 1; i <= n; i++) { long long sum1 = 0, sum2 = 0; sum1 = query1(1, 1, a[i].speed); sum2 = query2(1, 1, a[i].speed); ans += a[i].pos * (sum1 + 1) - sum2 - a[i].pos; update(1, a[i].speed, a[i].pos); } printf("%lld", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
// Daniel Grzegorzewski // while (clock()<=69*CLOCKS_PER_SEC) #include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> // #pragma GCC target ("avx2") // #pragma GCC optimization ("O3") // #pragma GCC optimization ("unroll-loops") #define MP make_pair #define PB push_back #define ST first #define ND second #define int long long using namespace __gnu_pbds; using namespace std; template <typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; //X.find_by_order(k); - zwraca iterator na k-ty element (numeracja od zerowego) //X.order_of_key(k); - zwraca liczbΔ™ elementΓ³w ostro mniejszych niΕΌ k typedef pair<int, int> PII; typedef vector<int> VI; typedef vector<PII> VII; typedef long long LL; void init_ios() { ios_base::sync_with_stdio(0); cin.tie(0); } const int N = (1<<18); int n, res, x[N], v[N], xx[N], vv[N], suf[N]; PII drz[2][2*N]; vector<pair<int, PII>> dod, uje; VI ind, zera; bool cmp(int i, int j) { return x[i] < x[j]; } PII operator+(PII x, PII y) { return {x.ST+y.ST, x.ND+y.ND}; } void add(int nr, int v, PII val) { v += N; drz[nr][v] = val; while (v > 1) { v /= 2; drz[nr][v] = drz[nr][2*v]+drz[nr][2*v+1]; } } PII get(int nr, int p, int q) { p += N; q += N; PII res = drz[nr][p]; if (p != q) res = res+drz[nr][q]; while (p/2 != q/2) { if (p%2 == 0) res = res+drz[nr][p+1]; if (q%2 == 1) res = res+drz[nr][q-1]; p /= 2; q /= 2; } return res; } signed main() { init_ios(); cin >> n; for (int i = 1; i <= n; ++i) cin >> x[i]; for (int i = 1; i <= n; ++i) cin >> v[i]; for (int i = 1; i <= n; ++i) ind.PB(i); sort(ind.begin(), ind.end(), cmp); for (int i = 0; i < n; ++i) xx[i+1] = x[ind[i]], vv[i+1] = v[ind[i]]; for (int i = 1; i <= n; ++i) x[i] = xx[i], v[i] = vv[i]; for (int i = 1; i <= n; ++i) { if (v[i] <= 0) uje.PB({-v[i], {-x[i], i}}); if (v[i] >= 0) dod.PB({v[i], {x[i], i}}); if (v[i] == 0) zera.PB(x[i]); } sort(dod.begin(), dod.end()); while (dod.size()) { int id = dod.back().ND.ND; dod.pop_back(); PII hm = get(0, id, n); res += hm.ST - x[id]*hm.ND; add(0, id, {x[id], 1}); } sort(uje.begin(), uje.end()); while (uje.size()) { int id = uje.back().ND.ND; uje.pop_back(); PII hm = get(1, 1, id); res += x[id]*hm.ND - hm.ST; PII hm2 = get(0, id, n); res += hm2.ST - x[id]*hm2.ND; add(1, id, {x[id], 1}); } int siz = (int)zera.size(); for (int i = siz-1; i >= 0; --i) suf[i] = suf[i+1]+zera[i]; for (int i = 0; i+1 < siz; ++i) res -= 2*(suf[i+1]-(siz-i-1)*zera[i]); cout<<res<<"\n"; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
//package psa.minrazdalja; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Main { /** * Uvozena abstraktna funkcija za klic Paid<L, R> */ public static class Pair<L,R> { private final L left; private final R right; public Pair(L left, R right) { assert left != null; assert right != null; this.left = left; this.right = right; } public L getLeft() { return left; } public R getRight() { return right; } @Override public int hashCode() { return left.hashCode() ^ right.hashCode(); } @Override public boolean equals(Object o) { if (!(o instanceof Pair)) return false; Pair pairo = (Pair) o; return this.left.equals(pairo.getLeft()) && this.right.equals(pairo.getRight()); } } /**? * glavna funkcija racunanja: * sprejme list tipa ArrayList<Pair<Integer, Integer>>, potem st vseh elementov in seveda listo vseh elementov. * * nato izracunamo maksimalno distance, ki je sestevek vseh distanc med posameznimi elementi, kar lahko storimo, ker je sortirana tabela. * V drugem delu odstejemo od maksimalnega sestevka distanc, posamezne ki se sekajo v prihodnosti * ostane nam samo tocni sestevek minimalnih distanc */ public static void elele(ArrayList<Pair<Long,Long>> elementi, int s, Long[] x_el) { long skupek = 0L; HashMap<Long, Integer> pos = new HashMap<Long, Integer>(); for(int i=0; i<s; ++i) { skupek += x_el[i] * Long.valueOf(i) + (-1L * x_el[i]) * Long.valueOf(s - 1 - i); pos.put(x_el[i], i); } if (s == 200000) System.out.println(skupek); for(int i=0; i<s; ++i){ skupek -= elementi.get(i).getRight() * (pos.get(elementi.get(i).getRight()) - i); } //2 1 4 3 5 //2 2 2 3 4 System.out.println(skupek); } public static void main(String[] args) throws IOException { int st_el; // uporabimo bufferedreader zaradi 1000x vecje hitrosti kot pa skener BufferedReader br= new BufferedReader(new InputStreamReader(System.in)); //System.out.println("Vnesi stevilo elementov: "); st_el = Integer.parseInt(br.readLine()); //System.out.println(st_el); Long[] x_el = new Long[st_el]; Long[] v_el = new Long[st_el]; //System.out.println("Vnesi elemente: "); String x = br.readLine(); String[] strs = x.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { x_el[i] = Long.parseLong(strs[i]); } //System.out.println("Vnesi tezo elementov: "); String y = br.readLine(); String[] strs2 = y.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { v_el[i] = Long.parseLong(strs2[i]); } br.close(); //pospravimo skupej v par oblike <integer, integer> oz <hitrost, element> ArrayList<Pair<Long,Long>> listt = new ArrayList<Pair<Long, Long>>(st_el); for(int i=0; i<st_el; i++) { Pair<Long, Long> pair = new Pair<Long, Long>(v_el[i],x_el[i]); listt.add(pair); } /*sortiramo listt od najmanjsega do najvecjega * - sortiramo prvo po hitrostih (to je glavno najbolj vazno) * - ce je hitrost ista potem pa sortiramo se glede na element * - O(n log n) */ Collections.sort(listt, new Comparator<Pair<Long, Long>>() { @Override public int compare(final Pair<Long, Long> o1, final Pair<Long, Long> o2) { if(o1.getLeft()<o2.getLeft()) { return -1; } else if(o1.getLeft() == o2.getLeft()) { if(o1.getRight() < o2.getRight()){ return -1; }else{ return 1; } } else { return 1; } } }); //sortiramo se elemente // O(n log n) Arrays.sort(x_el); //izpisemo elemente elele(listt,st_el,x_el); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mxn = 1e6 + 7; const long long mod = 1e9 + 7; const long long inf = 1e18 + 7; int dx[] = {+1, -1, 0, 0}; int dy[] = {0, 0, -1, +1}; pair<int, int> p[mxn]; map<long long, int> f, s; int n; int a[mxn], ls[mxn]; long long ans; void upd1(int x, int val) { while (x <= (int)1e8) { f[x] += val; x = (x | (x + 1)); } } void upd2(int x) { while (x <= (int)1e8) { s[x]++; x = (x | (x + 1)); } } long long sum1(int x) { long long res = 0; while (x > 0) { res += f[x]; x = (x & (x + 1)) - 1; } return res; } int sum2(int x) { int res = 0; while (x > 0) { res += s[x]; x = (x & (x + 1)) - 1; } return res; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n; for (int i = 1; i <= n; i++) { cin >> p[i].first; } for (int i = 1; i <= n; i++) { cin >> p[i].second; ls[i] = p[i].second; } sort(p + 1, p + n + 1); sort(ls + 1, ls + n + 1); for (int i = 1; i <= n; i++) { p[i].second = lower_bound(ls + 1, ls + n + 1, p[i].second) - ls; } for (int i = 1; i <= n; i++) { ans += (1LL * p[i].first * sum2(p[i].second)) - sum1(p[i].second); upd1(p[i].second, p[i].first); upd2(p[i].second); } cout << ans; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Arrays; import java.util.Scanner; import java.util.Comparator; public class R624_F { private static long sum (long[] t, int pos) { long result = 0; while (pos >= 0) { result += t[pos]; pos = (pos & (pos + 1)) - 1; } return result; } private static void upd (long[] t, int pos, int delta) { while (pos < t.length) { t[pos] += delta; pos = pos | (pos + 1); } } public static void main(String[] args) { Scanner in = new Scanner (System.in); int n = in.nextInt(); int[][] p = new int[n][2]; int[][] v = new int[n][2]; for (int i = 0; i < n; i++) p[i][0] = in.nextInt(); for (int i = 0; i < n; i++) { p[i][1] = in.nextInt(); v[i][0] = p[i][1]; v[i][1] = i; } in.close(); Arrays.sort(v, new Comparator<int[]>() { public int compare(int[] a, int[] b) { return a[0] - b[0]; } }); int idx = 0; int[][] ret = new int[n][2]; for (int i = 0; i < n; i++) { if (i > 0 && v[i][0] != v[i-1][0]) idx++; ret[i][0] = idx; ret[i][1] = v[i][1]; } Arrays.sort(v, new Comparator<int[]>() { public int compare(int[] a, int[] b) { return a[1] - b[1]; } }); for (int i = 0; i < n; i++) { p[i][1] = ret[i][0]; } Arrays.sort(p, new Comparator<int[]>() { public int compare(int[] a, int[] b) { return a[0] - b[0]; } }); long[] xs = new long[n]; long[] cnt = new long[n]; long ans = 0; for (int i = 0; i < n; i++) { int pos = p[i][1]; ans += sum(cnt, pos) * p[i][0] - sum (xs, pos); upd(cnt, pos, 1); upd(xs, pos, p[i][0]); } System.out.println(ans); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Movingpoints { public static void main(String[] args) { // TODO Auto-generated method stub Scanner s = new Scanner(System.in); int n=s.nextInt(); while(n<2||n>200000) { n=s.nextInt(); } int [] pt = new int[n]; int [] vl = new int [pt.length]; for (int i=0;i<pt.length;i++) { int m = s.nextInt(); while(m<1||m>100000000||duplicate(pt,m)==true) { m=s.nextInt(); } pt[i]=m; } int temp1=0; int temp2=0; for(int j=0;j<vl.length;j++) { int k=s.nextInt(); while(k<-100000000||k>100000000) { k=s.nextInt(); } vl[j]=k; } for (int i = 0; i < pt.length; i++) { for (int j = i + 1; j < pt.length; j++) { if (pt[i] > pt[j]) { temp1 = pt[i]; pt[i] = pt[j]; pt[j] = temp1; temp2=vl[i]; vl[i]=vl[j]; vl[j]=temp2; } } } int sum=0; for(int l=0;l<pt.length;l++) { for(int x=l+1;x<pt.length;x++) { if(vl[l]<=vl[x]) { sum=sum+distance(pt[l],pt[x]); } } } System.out.println(sum); } public static boolean duplicate (int [] a , int b) { int i =0; boolean t=false; while(a[i]!=0 && t==false) { if (a[i]==b) { t=true; } i++; } return t; } public static int distance(int a ,int b ) { int d=Math.abs(b-a); return d; } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class MovingPoints { static class Pair { int first; int second; Pair(int first, int second) { this.first = first; this.second = second; } } public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); int[] coords = new int[n]; int[] vels = new int[n]; for (int i = 0; i < n; ++i) { coords[i] = scanner.nextInt(); } for (int i = 0; i < n; ++i) { vels[i] = scanner.nextInt(); } Pair[] vec = new Pair[n]; for(int i = 0; i < n; i++) { vec[i] = new Pair(coords[i], vels[i]); } Arrays.sort(coords); Arrays.sort(vec, (o1, o2) -> { if(o1.second == o2.second) return (o2.first - o1.first); return (o2.second - o1.second); }); int sum = 0; Map<Integer, Integer> map = new HashMap<>(); for(int i = 0; i < n; i++) { sum += coords[i] * (2 * i + 1 - n); map.put(coords[i], i); } for(int i = 0; i < n; i++) { sum -= vec[i].first * (map.get(vec[i].first) - i); } System.out.println(sum); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int inf = 1e9; long long f[200005], ans, bit[200005], s[200005]; map<int, int> m; int t, n; pair<long long, long long> a[200005]; long long get(long long first, long long second) { int re = 0, cnt = 0; for (int i = second; i > 0; i -= (i & (-i))) { cnt += bit[i]; re += s[i]; } return first * cnt - re; } void update(long long first, long long second) { for (int i = second; i <= n; i += (i & (-i))) { bit[i]++; s[i] += first; } } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> n; for (int i = 1; i <= n; i++) cin >> a[i].first; for (int i = 1; i <= n; i++) cin >> a[i].second, m[a[i].second] = 0; int k = 1; for (map<int, int>::iterator it = m.begin(); it != m.end(); it++, k++) it->second = k; sort(a + 1, a + n + 1); for (int i = 1; i <= n; i++) a[i].second = m[a[i].second]; for (int i = 1; i <= n; i++) { ans += get(a[i].first, a[i].second); update(a[i].first, a[i].second); } cout << ans << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long N = 3e5 + 5; pair<long long, long long> p[N], a[N]; long long n; long long fwt[N], cntf[N]; long long len; void add(long long *b, long long x, long long v) { while (x <= len) { b[x] += v; x += x & -x; } } long long get(long long *b, long long x) { long long res = 0; while (x) { res += b[x]; x -= x & -x; } return res; } signed main() { ios::sync_with_stdio(false); cin >> n; vector<long long> velo_neg, velo_pos; for (long long i = 0; i < n; i++) { cin >> p[i].first; } for (long long i = 0; i < n; i++) { cin >> p[i].second; } sort(p, p + n); vector<long long> velo; for (long long i = 0; i < n; i++) { velo.push_back(p[i].second); } sort(velo.begin(), velo.end()); velo.erase(unique(velo.begin(), velo.end()), velo.end()); len = velo.size(); long long ans = 0; long long sumx = 0; for (long long i = 0; i < n; i++) { a[i] = p[i]; a[i].second = lower_bound(velo.begin(), velo.end(), p[i].second) - velo.begin() + 1; ans += i * p[i].first - sumx; sumx += p[i].first; } for (long long i = 0; i < n; i++) { if (p[i].second < 0) { ans -= (get(cntf, len) - get(cntf, a[i].second)) * p[i].first - (get(fwt, len) - get(fwt, a[i].second)); } add(fwt, a[i].second, p[i].first); add(cntf, a[i].second, 1); cout << ans << " " << get(cntf, len) - get(cntf, a[i].second) << " " << (get(fwt, len) - get(fwt, a[i].second)) << endl; } cout << endl; memset(cntf, 0, sizeof cntf); memset(fwt, 0, sizeof fwt); for (long long i = n - 1; i >= 0; i--) { if (p[i].second > 0) { ans -= get(fwt, a[i].second - 1) - get(cntf, a[i].second - 1) * p[i].first; } if (p[i].second >= 0) { add(fwt, a[i].second, p[i].first); add(cntf, a[i].second, 1); } cout << ans << " " << get(fwt, a[i].second - 1) << " " << get(cntf, a[i].second - 1) << endl; } cout << ans << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAXN = 5e6 + 10, MAXM = 2e7 + 10; const int INF = INT_MAX, SINF = 0x3f3f3f3f; const long long llINF = LLONG_MAX; const int MOD = 1e9 + 7, mod = 998244353; int tr[MAXM], tot, n, t[MAXN]; void add(int x, int val) { while (x <= n) { tr[x] += val; t[x] += 1; x += x & -x; } } pair<int, int> query(int x) { int ans = 0, ans1 = 0; while (x) { ans += tr[x]; ans1 += t[x]; x -= x & -x; } return {ans, ans1}; } struct Node { int x, v; bool operator<(const Node &rhs) const { return x < rhs.x; } } e[MAXN]; vector<int> v; map<int, int> mp; int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d", &e[i].x); for (int i = 1; i <= n; i++) scanf("%d", &e[i].v), v.push_back(e[i].v); sort(e + 1, e + n + 1); sort(v.begin(), v.end()); v.resize(unique(v.begin(), v.end()) - v.begin()); for (int i = 0; i < ((int)v.size()); i++) mp[v[i]] = i + 1; long long ans = 0; for (int i = 1; i <= n; i++) { pair<int, int> tmp = query(mp[e[i].v]); ans += e[i].x * tmp.second - tmp.first; add(mp[e[i].v], e[i].x); } printf("%lld", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys,math,itertools from collections import Counter,deque,defaultdict from bisect import bisect_left,bisect_right from heapq import heappop,heappush,heapify, nlargest from copy import deepcopy mod = 10**9+7 INF = float('inf') def inp(): return int(sys.stdin.readline()) def inpl(): return list(map(int, sys.stdin.readline().split())) def inpl_1(): return list(map(lambda x:int(x)-1, sys.stdin.readline().split())) def inps(): return sys.stdin.readline() def inpsl(x): tmp = sys.stdin.readline(); return list(tmp[:x]) def err(x): print(x); exit() class BIT: def __init__(self, n): self.n = n self.data = [0]*(n+1) self.el = [0]*(n+1) def sum(self, i): s = 0 while i > 0: s += self.data[i] i -= i & -i return s def add(self, i, x): # assert i > 0 self.el[i] += x while i <= self.n: self.data[i] += x i += i & -i def get(self, i, j=None): if j is None: return self.el[i] return self.sum(j) - self.sum(i) # 1_indexed # n = 6 # a = [1,2,3,4,5,6] # bit = BIT(n) # for i,e in enumerate(a): # bit.add(i+1,e) # print(bit.get(2,5)) #12 (3+4+5) n = inp() X = inpl() V = inpl() d = {} for i,x in enumerate(sorted(X)): d[x] = i for i,x in enumerate(X): X[i] = d[x] xv = [(x,v) for x,v in zip(X,V)] xv.sort(key=lambda x:x[0] ,reverse=True) xv.sort(key=lambda x:x[1], reverse=True) cnt_bit = BIT(n+10) sum_bit = BIT(n+10) res = 0 for x,_ in xv: res += sum_bit.get(x,n+5) - cnt_bit.get(x,n+5)*x sum_bit.add(x+1,x) cnt_bit.add(x+1,1) print(res)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; const long long inf = 1LL << 62; const long long mx = 200005; const double eps = 1e-10; long long dx[10] = {1, 0, -1, 0}; long long dy[10] = {0, -1, 0, 1}; long long power(long long a, long long b) { if (b == 0) return 1; long long x = power(a, b / 2); x = x * x; if (b % 2) x = x * a; return x; } long long Set(long long N, long long pos) { return N = N | (1LL << pos); } long long reset(long long N, long long pos) { return N = N & ~(1LL << pos); } bool check(long long N, long long pos) { return (bool)(N & (1LL << pos)); } pair<long long, long long> prr[mx]; long long arr[mx]; long long brr[mx]; unordered_map<long long, long long> mm; unordered_map<long long, long long> nn; long long tree[4 * mx]; long long tt[4 * mx]; void update(long long at, long long L, long long R, long long id, long long val) { if (R < id || L > id) return; if (L == R && id == R) { tree[at] += val; return; } long long mid = (L + R) / 2; update(2 * at, L, mid, id, val); update(2 * at + 1, mid + 1, R, id, val); tree[at] = tree[2 * at] + tree[2 * at + 1]; } long long query(long long at, long long L, long long R, long long l, long long r) { if (l > R || r < L) return 0; if (l <= L && r >= R) return tree[at]; long long mid = (L + R) / 2; long long a = query(2 * at, L, mid, l, r); long long b = query(2 * at + 1, mid + 1, R, l, r); return a + b; } void update2(long long at, long long L, long long R, long long id, long long val) { if (R < id || L > id) return; if (L == R && id == R) { tt[at] += val; return; } long long mid = (L + R) / 2; update2(2 * at, L, mid, id, val); update2(2 * at + 1, mid + 1, R, id, val); tt[at] = tt[2 * at] + tt[2 * at + 1]; } long long query2(long long at, long long L, long long R, long long l, long long r) { if (l > R || r < L) return 0; if (l <= L && r >= R) return tt[at]; long long mid = (L + R) / 2; long long a = query2(2 * at, L, mid, l, r); long long b = query2(2 * at + 1, mid + 1, R, l, r); return a + b; } bool comp(pair<long long, long long> a, pair<long long, long long> b) { return a.first < b.first; } int main() { long long tst, a, b, c, k, n, m, res = 0, ans = 0, t = 0; set<long long> s; set<long long> ss; scanf("%lld", &n); for (long long i = 1; i <= n; i++) { scanf("%lld", &arr[i]); s.insert(arr[i]); } for (long long i = 1; i <= n; i++) { scanf("%lld", &brr[i]); ss.insert(brr[i]); } for (auto i : s) { mm[i] = ++t; } t = 0; for (auto i : ss) { nn[i] = ++t; } for (long long i = 1; i <= n; i++) { a = arr[i], b = brr[i]; a = mm[a], b = nn[b]; prr[i] = {a, b}; } sort(prr + 1, prr + 1 + n, comp); for (long long i = 1; i <= n; i++) { a = query(1, 1, n, 1, prr[i].second); b = query2(1, 1, n, 1, prr[i].second); res += (prr[i].first * a - b); update(1, 1, n, prr[i].second, 1); update2(1, 1, n, prr[i].second, prr[i].first); } printf("%lld\n", res); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #include<ext/pb_ds/assoc_container.hpp> #include<ext/pb_ds/tree_policy.hpp> using namespace std; using namespace __gnu_pbds; #define ll long long #define FI first #define SE second #define pb push_back #define eb emplace_back #define mod 1000000007 #define all(c) (c).begin(),(c).end() #define LB lower_bound #define UB upper_bound #define max3(a,b,c) max(c,max(a,b)) #define min3(a,b,c) min(c,min(a,b)) #define mems(s, n) memset(s, n, sizeof(s)) #define NINF INT_MIN #define INF INT_MAX #define int ll int #define OOK order_of_key //no of elements less than #define FBO find_by_order //iterator pointing kth element;indexing starts from 0 #define CK3(x,y,z) cout<<(x)<<" "<<(y)<<" "<<(z)<<endl #define CK4(a,b,c,d) cout<<(a)<<" "<<(b)<<" "<<(c)<<" "<<(d)<<endl typedef pair<int,int> PII; typedef pair<pair<int,int>,int> PPII; typedef map<int,PII>MII; typedef vector<int> VI; template <typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; /*int power(int a, int b) {int x=1,y=a;while(b>0){if(b%2){x =(x*y)%mod;}y =(y*y)%mod;b/=2;}return x%mod;} */ //int modInverse(int a, int m) {return power(a, m-2);} //gcd(a,m)=1 //int root(int x){return x==f[x]?x:f[x]=root(f[x]);} MII t; /*void build( int v, int tl, int tr) { if (tl == tr) { t[v] = a[tl]; } else { int tm = (tl + tr) / 2; build(a, v*2, tl, tm); build(a, v*2+1, tm+1, tr); t[v] = t[v*2] + t[v*2+1]; } } int sum(int v, int tl, int tr, int l, int r) { if (l > r) return 0; if (l == tl && r == tr) { return t[v]; } int tm = (tl + tr) / 2; return sum(v*2, tl, tm, l, min(r, tm)) + sum(v*2+1, tm+1, tr, max(l, tm+1), r); } */ void update(int v, int tl, int tr, int l, int r, int add,int r1) { if (l > r) return; if (l == tl && r == tr) { t[v].FI += add,t[v].SE+=r1; } else { int tm = (tl + tr) / 2; update(v*2, tl, tm, l, min(r, tm), add,(int)r1); update(v*2+1, tm+1, tr, max(l, tm+1), r, add,(int)r1); } } PII get(int v, int tl, int tr, int pos) { if (tl == tr) return t[v]; int tm = (tl + tr) / 2; if (pos <= tm) {PII hp=get(v*2, tl, tm, pos);return {t[v].FI + hp.FI,t[v].SE +hp.SE};} else {PII hp=get(v*2+1, tm+1, tr, pos); return {t[v].FI + hp.FI,t[v].SE + hp.SE};} } signed main() { ios::sync_with_stdio(false); cin.tie(0); int T=1,T1=0;//cin>>T; while(T1++<T) { int n; cin>>n;int ans=0;vector<PII>ar(n); for(int i=0;i<n;i++) { cin>>ar[i].FI; } for(int i=0;i<n;i++) { cin>>ar[i].SE;ar[i].SE+=100000000; update(1,0,200000005,ar[i].SE,200000005,ar[i].FI,(int)1); } sort(all(ar)); int sum1=0; for(int i=0;i<n;i++) { sum1+=ar[i].FI; PII x=get(1,0,200000003,ar[i].SE-1); //cout<<x.FI<<" "<<x.SE<<" "; x.FI=(n*(n+1))/2-sum1-x.FI;x.SE=n-i-1-x.SE; //cout<<x.FI-ar[i].FI*x.SE<<endl; ans+=max((int)0,x.FI-ar[i].FI*x.SE); update(1,0,200000005,ar[i].SE,200000005,-ar[i].FI,(int)-1); } cout<<ans<<endl; } return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.util.Comparator; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author xwchen */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskF solver = new TaskF(); solver.solve(1, in, out); out.close(); } static class TaskF { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int[] x = in.nextIntArray(n); int[] v = in.nextIntArray(n); v = ArrayUtils.shrink(v); Point[] points = new Point[n]; for (int i = 0; i < n; ++i) { points[i] = new Point(x[i], v[i]); } Arrays.sort(points, Comparator.comparingInt(p -> p.x)); BinaryIndexedTree Vcnt = new BinaryIndexedTree(n); BinaryIndexedTree VXsum = new BinaryIndexedTree(n); long res = 0; for (int i = n - 1; i >= 0; --i) { int X = points[i].x; int V = points[i].v; long cnt = Vcnt.queryRange(V, n); long sum = VXsum.queryRange(V, n); res += sum - X * cnt; Vcnt.update(V, 1); VXsum.update(V, X); } out.println(res); } class Point { int x; int v; public Point(int x, int v) { this.x = x; this.v = v; } } } static class BinaryIndexedTree { int n; long[] bit; public BinaryIndexedTree(int n) { this.n = n; bit = new long[n + 1]; } public void update(int i, int add) { while (i > 0 && i <= n) { bit[i] += add; i = i + (i & (-i)); } } public long sum(int i) { long ans = 0; while (i > 0) { ans += bit[i]; i = i - (i & (-i)); } return ans; } public long queryRange(int i, int j) { return sum(j) - sum(i - 1); } } static class ArrayUtils { public static int[] shrink(int[] a) { int n = a.length; int[] ret = new int[n]; Integer[] b = new Integer[n]; for (int i = 0; i < n; ++i) { b[i] = i; } Arrays.sort(b, Comparator.comparingInt(x -> a[x])); int p = 1; for (int i = 0; i < n; ++i) { if (i - 1 >= 0 && a[b[i]] == a[b[i - 1]]) { ret[b[i]] = p; } else { ret[b[i]] = p++; } } return ret; } } static class InputReader { private BufferedReader reader; private StringTokenizer tokenizer = new StringTokenizer(""); public InputReader(InputStream inputStream) { this.reader = new BufferedReader( new InputStreamReader(inputStream)); } public String next() { while (!tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { e.printStackTrace(); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ii = pair<int, int>; constexpr int MAXN = 5 + 200000; constexpr int MINV = 1 + 100000000; struct Bit { ll b[MAXN]; void upd(int x, ll val) { for (; x < MAXN; x += (x & -x)) b[x] += val; } ll query(int x) { ll ans = 0LL; for (; x; x -= (x & -x)) ans += b[x]; return ans; } ll query(int l, int r) { if (l > r) return 0; return query(r) - query(l - 1); } }; ii a[MAXN]; int m[MAXN]; namespace comp { int v[MAXN]; void compress(ii arr[], int n, int BEG) { for (int i = (int)0; i < (int)n; ++i) v[i] = arr[i].second; sort(v, v + n); int sz = unique(v, v + n) - v; for (int i = (int)0; i < (int)n; ++i) { arr[i].second = BEG + lower_bound(v, v + sz, arr[i].second) - v; } } } // namespace comp int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); int n; cin >> n; for (int i = (int)0; i < (int)n; ++i) { cin >> a[i].first; } for (int i = (int)0; i < (int)n; ++i) { cin >> a[i].second; } sort(a, a + n, [](const ii& p, const ii& q) -> bool { return p.first < q.first; }); ll tot = 0LL, pos = 0LL, pre = 0LL; for (int i = (int)0; i < (int)n; ++i) pos += a[i].first; for (int i = (int)0; i < (int)n; ++i) { pos -= a[i].first; tot += ((1LL * i * a[i].first) - pre); pre += a[i].first; } comp::compress(a, n, 1); Bit suma, cuenta; ll ans = 0LL; for (int i = n - 1; i >= 0; --i) { ans += (suma.query(1, a[i].second - 1) - 1LL * cuenta.query(1, a[i].second - 1) * a[i].first); suma.upd(a[i].second, a[i].first); cuenta.upd(a[i].second, 1); } cout << tot - ans << '\n'; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.*; import java.util.*; public class Main { static class BIT { int n; int[] tree; public BIT(int n) { this.n = n; tree = new int[n + 2]; } long read(int i) { i++; long sum = 0; while (i > 0) { sum += tree[i]; i -= i & -i; } return sum; } void update(int i, int val) { i++; while (i <= n) { tree[i] += val; i += i & -i; } } } public static void main(String[] args) throws IOException { FastScanner f = new FastScanner(); int t=1; // t=f.nextInt(); PrintWriter out=new PrintWriter(System.out); for(int tt=0;tt<t;tt++) { int n= f.nextInt(); int[] x=f.readArray(n); int[] v=f.readArray(n); TreeSet<Integer> tree=new TreeSet<>(); for(int i:v) tree.add(i); HashMap<Integer,Integer> map=new HashMap<>(); int curr=0; for(int i:tree) { curr++; map.put(i, curr); } for(int i=0;i<n;i++) { v[i]=map.get(v[i]); } BIT val=new BIT(100005); BIT count=new BIT(100005); long ans=0; int[][] l=new int[n][2]; for(int i=0;i<n;i++) { l[i]=new int[] {x[i],v[i]}; } Arrays.sort(l,new Comparator<int[]>() { public int compare(int[] a,int[] b) { return Integer.compare(a[0], b[0]); } }); for(int i=n-1;i>-1;i--) { long num=count.read(n)-count.read(l[i][1]-1); ans+=(-(long)l[i][0]*num+val.read(n)-val.read(l[i][1]-1)); count.update(l[i][1],1); val.update(l[i][1],l[i][0]); } System.out.println(ans); } out.close(); } static void sort(long[] p) { ArrayList<Integer> q = new ArrayList<>(); for (long i: p) q.add((int) i); Collections.sort(q); for (int i = 0; i < p.length; i++) p[i] = q.get(i); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } long[] readLongArray(int n) { long[] a=new long[n]; for (int i=0; i<n; i++) a[i]=nextLong(); return a; } } } //Some things to notice //Check for the overflow //Binary Search //Bitmask //runtime error most of the time is due to array index out of range
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
numberofpoints=int(input()) initcoords=input().split(" ") speeds=input().split(" ") initcoords=tuple(map(int,initcoords)) speeds=tuple(map(int,speeds)) def twopoints(coords,velos): firstv=velos[0] secondv=velos[1] firstc=coords[0] secondc=coords[1] dif=abs(firstv-secondv) nextdif=abs((firstc+firstv)-(secondc+secondc)) if dif>nextdif: return 0 else: return dif lis=[] for first in range(numberofpoints): for second in range(first+1,numberofpoints): tup=(first,second) lis.append(tup) lis=tuple(lis) sum=0 for tuple in lis: a=(speeds[tuple[0]],speeds[tuple[1]]) b=(initcoords[tuple[0]],initcoords[tuple[1]]) sum+=twopoints(b,a) print(sum)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; const int maxn = 2e5 + 10; inline int lowbit(int x) { return x & (-x); } struct point { int x, v; } p[maxn]; int v[maxn]; long long c1[maxn], c2[maxn]; bool comp(point a, point b) { return a.x < b.x; } long long getnum(long long c[], int i) { long long res = 0LL; while (i > 0) { res += c[i]; i -= lowbit(i); } return res; } void update(int i, int value) { while (i < n) { c1[i]++; c2[i] += value; i += lowbit(i); } } int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d", &p[i].x); for (int i = 1; i <= n; i++) { scanf("%d", &p[i].v); v[i] = p[i].v; } sort(p + 1, p + n + 1, comp); sort(v + 1, v + n + 1); long long ans = 0; for (int i = 1; i <= n; i++) { int pos = lower_bound(v + 1, v + 1 + n, p[i].v) - v; ans += getnum(c1, pos) * p[i].x - getnum(c2, pos); update(pos, p[i].x); } printf("%lld", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long maxn = 1e6 + 7; const long long top = 1e6 + 3; struct node { long long xx, v; }; long long a[maxn], b[maxn]; long long num[maxn], x[maxn]; vector<long long> v; node t[maxn]; long long lowerbit(long long x) { return x & (-x); } long long gets1(long long p) { long long ans = 0; for (long long i = p; i > 0; i -= lowerbit(i)) ans += x[i]; return ans; } long long gets2(long long p) { long long ans = 0; for (long long i = p; i > 0; i -= lowerbit(i)) ans += num[i]; return ans; } void update(long long* f, long long p, long long k) { for (long long i = p; i < top; i += lowerbit(i)) f[i] += k; } bool cmp(const node& a, const node& b) { if (a.v != b.v) return a.v < b.v; else return a.xx < b.xx; } long long getnum(long long x) { return lower_bound(v.begin(), v.end(), x) - v.begin() + 1; } signed main() { long long n; scanf("%lld", &n); for (long long i = 1; i <= n; i++) scanf("%lld", &t[i].xx), v.push_back(t[i].xx); for (long long i = 1; i <= n; i++) scanf("%lld", &t[i].v); sort(v.begin(), v.end()); v.erase(unique(v.begin(), v.end()), v.end()); for (long long i = 1; i <= n; i++) t[i].xx = getnum(t[i].xx); sort(t + 1, t + n + 1, cmp); long long ans = 0; for (long long i = 1; i <= n; i++) { update(num, t[i].xx, 1); update(x, t[i].xx, t[i].xx); if (i == 1) continue; else { long long _n = gets2(t[i].xx); long long res = gets1(t[i].xx); ans += _n * t[i].xx - res; } } printf("%lld\n", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class a { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); long[] pos=new long[n]; long[] vel=new long[n]; for(int i=0;i<n;i++){ pos[i]=sc.nextLong(); } for(int i=0;i<n;i++){ vel[i]=sc.nextLong(); } long sum=0; for(int i=0;i<n;i++){ for(int j=i+1;j<n;j++){ if(vel[i]==0 && vel[j]==0){ sum=sum+Math.abs(pos[i]-pos[j]); } else if(vel[i]==0 ){ if(pos[i]<pos[j] && vel[j]>0){ sum=sum+Math.abs(pos[i]-pos[j]); } if(pos[i]>pos[j] && vel[j]<0){ sum=sum+Math.abs(pos[i]-pos[j]); } } else if(vel[j]==0){ if(pos[j]<pos[i] && vel[i]>0){ sum=sum+Math.abs(pos[i]-pos[j]); } if(pos[j]>pos[i] && vel[i]<0){ sum=sum+Math.abs(pos[i]-pos[j]); } } else if(vel[i]>0 && vel[j]>0){ if( pos[j]>pos[i] &&vel[j]>=vel[i]){ sum=sum+Math.abs(pos[i]-pos[j]); } if( pos[j]<pos[i] &&vel[j]<=vel[i]){ sum=sum+Math.abs(pos[i]-pos[j]); } } else if(vel[i]<0 && vel[j]<0){ if( vel[i]>=vel[j] && pos[i]<pos[j]){ sum=sum+Math.abs(pos[i]-pos[j]); } if( vel[i]<=vel[j] && pos[i]>pos[j]){ sum=sum+Math.abs(pos[i]-pos[j]); } } else if(vel[i]<0 && vel[j]>0 ){ if(pos[i]<pos[j]){ sum=sum+Math.abs(pos[i]-pos[j]); } } else if(vel[i]>0 && vel[j]<0 ){ if(pos[i]>pos[j]){ sum=sum+Math.abs(pos[i]-pos[j]); } } } } System.out.println(sum); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long N = 2e5 + 1000; const long long M = 1e5 + 10; const long long inf = 1e9 + 7; const long long Mod = 1e9 + 7; const double eps = 1e-6; int T; pair<int, int> a[N]; int b[N]; int n; pair<long long, long long> sg[4 * N]; void build(int k, int l, int r) { if (l == r) { sg[k].first = 0; sg[k].second = 0; return; } build(2 * k, l, (l + r) / 2); build(2 * k + 1, (l + r) / 2 + 1, r); } void up(int k) { sg[k].first = sg[2 * k].first + sg[2 * k + 1].first; sg[k].second = sg[2 * k].second + sg[2 * k + 1].second; } void modify(int k, int l, int r, int pos, int val) { if (l == r) { sg[k].first += val; sg[k].second++; return; } if (pos <= (l + r) / 2) modify(2 * k, l, (l + r) / 2, pos, val); else if (pos > (l + r) / 2) modify(2 * k + 1, (l + r) / 2 + 1, r, pos, val); up(k); } pair<long long, long long> query(int k, int l, int r, int L, int R) { if (L <= l && r <= R) return sg[k]; pair<long long, long long> res{0, 0}; pair<long long, long long> cur; if (L <= (l + r) / 2) { cur = query(2 * k, l, (l + r) / 2, L, R); res.first += cur.first; res.second += cur.second; }; if (R > (l + r) / 2) { cur = query(2 * k + 1, (l + r) / 2 + 1, r, L, R); res.first += cur.first; res.second += cur.second; } return res; } int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) { scanf("%d", &a[i].first); } for (int i = 1; i <= n; ++i) { scanf("%d", &a[i].second); b[i] = a[i].second; } sort(a + 1, a + n + 1); sort(b + 1, b + n + 1); int len = unique(b + 1, b + n + 1) - b - 1; build(1, 1, len); long long ans = 0; for (int i = 1; i <= n; ++i) { if (a[i].second > 0) continue; int id = lower_bound(b + 1, b + len + 1, a[i].second) - b; pair<long long, long long> cur = query(1, 1, n, 1, id); ans += cur.first - cur.second * a[i].first; modify(1, 1, n, id, a[i].first); } build(1, 1, len); for (int i = n; i >= 1; --i) { if (a[i].second < 0) continue; int id = lower_bound(b + 1, b + len + 1, a[i].second) - b; pair<long long, long long> cur = query(1, 1, n, id, n); ans += cur.first - cur.second * a[i].first; modify(1, 1, n, id, a[i].first); } long long sum = 0, cnt = 0; for (auto i : a) { if (i.second < 0) { sum += i.first; cnt++; } else if (i.second > 0) { ans -= sum - cnt * i.first; } } printf("%lld", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); long long int arr[200000]; long long int v[200000]; int N; cin >> N; for (int i = 0; i < N; i++) cin >> arr[i]; for (int i = 0; i < N; i++) cin >> v[i]; long long int answer = 0; for (int i = 0; i < N; i++) { for (int j = i + 1; j < N; j++) { long long int dist = arr[j] - arr[i]; long long int speed = v[j] - v[i]; if (dist == 0 || dist * speed < 0) continue; if (speed == 0) { answer += abs(dist); continue; } if (dist < 0 && arr[i] < arr[j]) { answer += abs(dist); continue; } if (dist > 0 && arr[i] < arr[j]) { answer += abs(dist); continue; } } } cout << answer << '\n'; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int N, k = 1; vector<pair<long long, int>> v; map<int, int> m; long long fenwick[200050]; int f[200050]; void update(int pos, long long val) { for (; pos < 200050; pos += pos & -pos) fenwick[pos] += val; } void u(int pos, int v) { for (; pos < 200050; pos += pos & -pos) f[pos] += v; } int query(int pos) { long long res = 0; for (; pos > 0; pos -= pos & -pos) res += fenwick[pos]; return res; } int q(int pos) { int res = 0; for (; pos > 0; pos -= pos & -pos) res += f[pos]; return res; } int main() { cin >> N; v.resize(N); set<int> s; for (int i = 0; i < N; i++) scanf("%lld", &v[i].first); for (int i = 0; i < N; i++) { scanf("%d", &v[i].second); s.insert(v[i].second); } sort(v.begin(), v.end()); reverse(v.begin(), v.end()); for (auto x : s) m[x] = k++; for (int i = 0; i < N; i++) v[i].second = m[v[i].second]; long long re = 0; for (auto x : v) update(x.second, x.first); for (auto x : v) u(x.second, 1); for (auto x : v) { re -= query(x.second) - x.first * (long long)q(x.second); update(x.second, -x.first); u(x.second, -1); } cout << re << "\n"; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
// Don't place your source in a package import java.util.*; import java.lang.*; import java.io.*; import java.math.*; /* 6666666666666 6666666666666 6 6 6 6 6 6 6 6 6 6 6666666666666 6666666666666 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6666666666666 6666666666666 */ // Please name your class Main public class Main { //static StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); /*static int read() throws IOException { in.nextToken(); return (int) in.nval; } static String readString() throws IOException { in.nextToken(); return in.sval; }*/ static Scanner in = new Scanner(System.in); public static void main (String[] args) throws java.lang.Exception { //InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); int T=1; for(int t=0;t<T;t++){ int n=Int(); int A[][]=new int[n][2]; for(int i=0;i<n;i++){ A[i][0]=Int(); } for(int i=0;i<n;i++){ A[i][1]=Int(); } Solution sol=new Solution(); sol.solution(A); } out.flush(); } public static int Int(){ return in.nextInt(); } public static String Str(){ return in.next(); } } class Solution{ //constant variable final int MAX=Integer.MAX_VALUE; final int MIN=Integer.MIN_VALUE; //Set<Integer>adjecent[]; ////////////////////////////// public void solution(int A[][]){ Arrays.sort(A,(a,b)->{ if(a[1]==b[1])return a[0]-b[0]; return a[1]-b[1]; });//sort by sppeed Seg seg=new Seg(0,100000000); long res=0; for(int i=0;i<A.length;i++){ int x=A[i][0]; int v=A[i][1]; int pair[]=seg.query(0,x-1); //msg(x+" "+v+" :"+pair[0]+" "+pair[1]); res+=(x*pair[1]-pair[0]); seg.update(x,x); //previous always smaller than this one, distance shoulde be n*x-sum } msg(res+""); } public void swap(int A[],int l,int r){ int t=A[l]; A[l]=A[r]; A[r]=t; } public long C(long fact[],int i,int j){ // C(20,3)=20!/(17!*3!) // take a/b where a=20! b=17!*3! if(j>i)return 0; if(j==0)return 1; long mod=1000000007; long a=fact[i]; long b=((fact[i-j]%mod)*(fact[j]%mod))%mod; BigInteger B= BigInteger.valueOf(b); long binverse=B.modInverse(BigInteger.valueOf(mod)).longValue(); return ((a)*(binverse%mod))%mod; } //map operation public void put(Map<Integer,Integer>map,int i){ if(!map.containsKey(i))map.put(i,0); map.put(i,map.get(i)+1); } public void delete(Map<Integer,Integer>map,int i){ map.put(i,map.get(i)-1); if(map.get(i)==0)map.remove(i); } /*public void tarjan(int p,int r){ if(cut)return; List<Integer>childs=adjecent[r]; dis[r]=low[r]=time; time++; //core for tarjan int son=0; for(int c:childs){ if(ban==c||c==p)continue; if(dis[c]==-1){ son++; tarjan(r,c); low[r]=Math.min(low[r],low[c]); if((r==root&&son>1)||(low[c]>=dis[r]&&r!=root)){ cut=true; return; } }else{ if(c!=p){ low[r]=Math.min(low[r],dis[c]); } } } }*/ //helper function I would use public void remove(Map<Integer,Integer>map,int i){ map.put(i,map.get(i)-1); if(map.get(i)==0)map.remove(i); } public void ascii(String s){ for(char c:s.toCharArray()){ System.out.print((c-'a')+" "); } msg(""); } public int flip(int i){ if(i==0)return 1; else return 0; } public boolean[] primes(int n){ boolean A[]=new boolean[n+1]; for(int i=2;i<=n;i++){ if(A[i]==false){ for(int j=i+i;j<=n;j+=i){ A[j]=true; } } } return A; } public void msg(String s){ System.out.println(s); } public void msg1(String s){ System.out.print(s); } public int[] kmpPre(String p){ int pre[]=new int[p.length()]; int l=0,r=1; while(r<p.length()){ if(p.charAt(l)==p.charAt(r)){ pre[r]=l+1; l++;r++; }else{ if(l==0)r++; else l=pre[l-1]; } } return pre; } public boolean isP(String s){ int l=0,r=s.length()-1; while(l<r){ if(s.charAt(l)!=s.charAt(r))return false; l++;r--; } return true; } public int find(int nums[],int x){//union find => find method if(nums[x]==x)return x; int root=find(nums,nums[x]); nums[x]=root; return root; } public int get(int A[],int i){ if(i<0||i>=A.length)return 0; return A[i]; } public int[] copy1(int A[]){ int a[]=new int[A.length]; for(int i=0;i<a.length;i++)a[i]=A[i]; return a; } public void print1(int A[]){ for(long i:A)System.out.print(i+" "); System.out.println(); } public void print2(int A[][]){ for(int i=0;i<A.length;i++){ for(int j=0;j<A[0].length;j++){ System.out.print(A[i][j]+" "); }System.out.println(); } } public int min(int a,int b){ return Math.min(a,b); } public int[][] matrixdp(int[][] grid) { if(grid.length==0)return new int[][]{}; int res[][]=new int[grid.length][grid[0].length]; for(int i=0;i<grid.length;i++){ for(int j=0;j<grid[0].length;j++){ res[i][j]=grid[i][j]+get(res,i-1,j)+get(res,i,j-1)-get(res,i-1,j-1); } } return res; } public int get(int grid[][],int i,int j){ if(i<0||j<0||i>=grid.length||j>=grid[0].length)return 0; return grid[i][j]; } public int[] suffixArray(String s){ int n=s.length(); Suffix A[]=new Suffix[n]; for(int i=0;i<n;i++){ A[i]=new Suffix(i,s.charAt(i)-'a',0); } for(int i=0;i<n;i++){ if(i==n-1){ A[i].next=-1; }else{ A[i].next=A[i+1].rank; } } Arrays.sort(A); for(int len=4;len<A.length*2;len<<=1){ int in[]=new int[A.length]; int rank=0; int pre=A[0].rank; A[0].rank=rank; in[A[0].index]=0; for(int i=1;i<A.length;i++){//rank for the first two letter if(A[i].rank==pre&&A[i].next==A[i-1].next){ pre=A[i].rank; A[i].rank=rank; }else{ pre=A[i].rank; A[i].rank=++rank; } in[A[i].index]=i; } for(int i=0;i<A.length;i++){ int next=A[i].index+len/2; if(next>=A.length){ A[i].next=-1; }else{ A[i].next=A[in[next]].rank; } } Arrays.sort(A); } int su[]=new int[A.length]; for(int i=0;i<su.length;i++){ su[i]=A[i].index; } return su; } } //suffix array Struct class Suffix implements Comparable<Suffix>{ int index; int rank; int next; public Suffix(int i,int rank,int next){ this.index=i; this.rank=rank; this.next=next; } @Override public int compareTo(Suffix other) { if(this.rank==other.rank){ return this.next-other.next; } return this.rank-other.rank; } public String toString(){ return this.index+" "+this.rank+" "+this.next+" "; } } class Wrapper implements Comparable<Wrapper>{ int spf;int cnt; public Wrapper(int spf,int cnt){ this.spf=spf; this.cnt=cnt; } @Override public int compareTo(Wrapper other) { return this.spf-other.spf; } } class Node{//what the range would be for that particular node boolean state=false; int l=0,r=0; int ll=0,rr=0; public Node(boolean state){ this.state=state; } } class Seg1{ int A[]; public Seg1(int A[]){ this.A=A; } public void update(int left,int right,int val,int s,int e,int id){ if(left<0||right<0||left>right)return; if(left==s&&right==e){ A[id]+=val; return; } int mid=s+(e-s)/2; //[s,mid] [mid+1,e] if(left>=mid+1){ update(left,right,val,mid+1,e,id*2+2); }else if(right<=mid){ update(left,right,val,s,mid,id*2+1); }else{ update(left,mid,val,s,mid,id*2+1); update(mid+1,right,val,mid+1,e,id*2+2); } } public int query(int i,int add,int s,int e,int id){ if(s==e&&i==s){ return A[id]+add; } int mid=s+(e-s)/2; //[s,mid] [mid+1,e] if(i>=mid+1){ return query(i,A[id]+add,mid+1,e,id*2+2); }else{ return query(i,A[id]+add,s,mid,id*2+1); } } } class MaxFlow{ public static List<Edge>[] createGraph(int nodes) { List<Edge>[] graph = new List[nodes]; for (int i = 0; i < nodes; i++) graph[i] = new ArrayList<>(); return graph; } public static void addEdge(List<Edge>[] graph, int s, int t, int cap) { graph[s].add(new Edge(t, graph[t].size(), cap)); graph[t].add(new Edge(s, graph[s].size() - 1, 0)); } static boolean dinicBfs(List<Edge>[] graph, int src, int dest, int[] dist) { Arrays.fill(dist, -1); dist[src] = 0; int[] Q = new int[graph.length]; int sizeQ = 0; Q[sizeQ++] = src; for (int i = 0; i < sizeQ; i++) { int u = Q[i]; for (Edge e : graph[u]) { if (dist[e.t] < 0 && e.f < e.cap) { dist[e.t] = dist[u] + 1; Q[sizeQ++] = e.t; } } } return dist[dest] >= 0; } static int dinicDfs(List<Edge>[] graph, int[] ptr, int[] dist, int dest, int u, int f) { if (u == dest) return f; for (; ptr[u] < graph[u].size(); ++ptr[u]) { Edge e = graph[u].get(ptr[u]); if (dist[e.t] == dist[u] + 1 && e.f < e.cap) { int df = dinicDfs(graph, ptr, dist, dest, e.t, Math.min(f, e.cap - e.f)); if (df > 0) { e.f += df; graph[e.t].get(e.rev).f -= df; return df; } } } return 0; } public static int maxFlow(List<Edge>[] graph, int src, int dest) { int flow = 0; int[] dist = new int[graph.length]; while (dinicBfs(graph, src, dest, dist)) { int[] ptr = new int[graph.length]; while (true) { int df = dinicDfs(graph, ptr, dist, dest, src, Integer.MAX_VALUE); if (df == 0) break; flow += df; } } return flow; } } class Edge { int t, rev, cap, f; public Edge(int t, int rev, int cap) { this.t = t; this.rev = rev; this.cap = cap; } } class Seg{ int l,r; int min=Integer.MAX_VALUE; Seg left=null,right=null; int sum=0;int cnt=0; public Seg(int l,int r){ this.l=l; this.r=r; } public int[] query(int s,int e){ if(l==s&&r==e){ return new int[]{sum,cnt}; } int mid=l+(r-l)/2; //left : to mid-1, if(left==null)left=new Seg(l,mid); if(right==null)right=new Seg(mid+1,r); if(e<=mid){ return left.query(s,e); } else if(s>=mid+1){ return right.query(s,e); }else{ int A[]=left.query(s,mid); int B[]=right.query(mid+1,e); return new int[]{A[0]+B[0],A[1]+B[1]}; } } public void update(int index,int v){ sum+=v; cnt++; if(l==r&&l==index){ return; } int mid=l+(r-l)/2; if(index<=mid){ if(left==null)left=new Seg(l,mid); left.update(index,v); }else{ if(right==null)right=new Seg(mid+1,r); right.update(index,v); } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
numberofpoints=int(input()) initcoords=input().split(" ") speeds=input().split(" ") initcoords=tuple(map(int,initcoords)) speeds=tuple(map(int,speeds)) def twopoints(coords,velos): firstv=velos[0] secondv=velos[1] firstc=coords[0] secondc=coords[1] dif=abs(firstc-secondc) nextdif=abs((firstc+(10**-9)*firstv)-(secondc+(10**-9)*secondv)) if dif>nextdif: return 0 else: return dif lis=[] for first in range(numberofpoints): for second in range(first+1,numberofpoints): tup=(first,second) lis.append(tup) sum=0 for tuple in lis: a=(speeds[tuple[0]],speeds[tuple[1]]) b=(initcoords[tuple[0]],initcoords[tuple[1]]) sum+=twopoints(b,a) print(sum)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; if (N > 1000) { cout << "Number of contest cannot exceed 1000!"; exit; } int arr[N]; for (int i = 0; i < N; i++) { cin >> arr[i]; if (arr[i] > 10000) { cout << "Point cannot exceed 10000!"; exit; } } int min, max, ans; min = arr[0]; max = arr[0]; for (int i = 1; i < N; i++) { if (arr[i] < min) { min = arr[i]; ans++; } else if (arr[i] > max) { max = arr[i]; ans++; } } ans = ans - 2; cout << ans << endl; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; import java.io.*; import java.text.*; public class F1311 { public static long solve(ArrayList<Pair> arr) { FenwickTree cnt = new FenwickTree(arr.size()); FenwickTree val = new FenwickTree(arr.size()); TreeSet<Integer> ts = new TreeSet<Integer>(); for (Pair x : arr) ts.add(x.v); TreeMap<Integer, Integer> tm = new TreeMap<Integer, Integer>(); while (!ts.isEmpty()) { tm.put(ts.pollFirst(), tm.size() + 1); } // System.out.println(tm); Collections.sort(arr, (a, b) -> a.x - b.x); long sum = 0; for (Pair p : arr) { int lim = tm.get(p.v); if (lim > 0) { int cntt = cnt.rsq(lim); int value = val.rsq(lim); sum += p.x * cntt - value; } cnt.point_update(lim, 1); val.point_update(lim, p.x); // System.out.println(sum); } return sum; } public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(); int[] x = sc.nextIntArr(n); int[] v = sc.nextIntArr(n); ArrayList<Pair> r = new ArrayList<Pair>(); for (int i = 0; i < n; i++) { r.add(new Pair(x[i], v[i])); } pw.println(solve(r)); pw.close(); } static class FenwickTree { // one-based DS int n; int[] ft; FenwickTree(int size) { n = size; ft = new int[n + 1]; } int rsq(int b) // O(log n) { int sum = 0; while (b > 0) { sum += ft[b]; b -= b & -b; } // min? return sum; } int rsq(int a, int b) { return rsq(b) - rsq(a - 1); } void point_update(int k, int val) // O(log n), update = increment { while (k <= n) { ft[k] += val; k += k & -k; } // min? } int point_query(int idx) // c * O(log n), c < 1 { int sum = ft[idx]; if (idx > 0) { int z = idx ^ (idx & -idx); --idx; while (idx != z) { sum -= ft[idx]; idx ^= idx & -idx; } } return sum; } } static class Pair { int x, v; public Pair(int a, int b) { x = a; v = b; } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public int[] nextIntArr(int n) throws IOException { int[] arr = new int[n]; for (int i = 0; i < arr.length; i++) arr[i] = nextInt(); return arr; } public boolean ready() throws IOException { return br.ready(); } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
//package psa.minrazdalja; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class minrazdalja { /** * Uvozena abstraktna funkcija za klic Paid<L, R> */ public static class Pair<L,R> { private final L left; private final R right; public Pair(L left, R right) { assert left != null; assert right != null; this.left = left; this.right = right; } public L getLeft() { return left; } public R getRight() { return right; } @Override public int hashCode() { return left.hashCode() ^ right.hashCode(); } @Override public boolean equals(Object o) { if (!(o instanceof Pair)) return false; Pair pairo = (Pair) o; return this.left.equals(pairo.getLeft()) && this.right.equals(pairo.getRight()); } } /**? * glavna funkcija racunanja: * sprejme list tipa ArrayList<Pair<Integer, Integer>>, potem st vseh elementov in seveda listo vseh elementov. * * nato izracunamo maksimalno distance, ki je sestevek vseh distanc med posameznimi elementi, kar lahko storimo, ker je sortirana tabela. * V drugem delu odstejemo od maksimalnega sestevka distanc, posamezne ki se sekajo v prihodnosti * ostane nam samo tocni sestevek minimalnih distanc */ public static long elele(ArrayList<Pair<Integer,Integer>> elementi, int s, Integer[] x_el) { long skupek = 0; Long ml; HashMap<Long, Integer> pos = new HashMap<Long, Integer>(); for(int i=0; i<s; ++i) { skupek += x_el[i] * i + (-1 * x_el[i]) * (s - 1 - i); ml = (long) x_el[i]; pos.put(ml, i); } for(int i=0; i<s; ++i){ skupek -= elementi.get(i).getRight() * (int)(pos.get((long)elementi.get(i).getRight()) - i); } //2 1 4 3 5 //2 2 2 3 4 return skupek; } public static void main(String[] args) throws IOException { int st_el; // uporabimo bufferedreader zaradi 1000x vecje hitrosti kot pa skener BufferedReader br= new BufferedReader(new InputStreamReader(System.in)); //System.out.println("Vnesi stevilo elementov: "); st_el = Integer.parseInt(br.readLine()); //System.out.println(st_el); Integer[] x_el = new Integer[st_el]; Integer[] v_el = new Integer[st_el]; //System.out.println("Vnesi elemente: "); String x = br.readLine(); String[] strs = x.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { x_el[i] = Integer.parseInt(strs[i]); } //System.out.println("Vnesi tezo elementov: "); String y = br.readLine(); String[] strs2 = y.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { v_el[i] = Integer.parseInt(strs2[i]); } br.close(); //pospravimo skupej v par oblike <integer, integer> oz <hitrost, element> ArrayList<Pair<Integer,Integer>> listt = new ArrayList<Pair<Integer, Integer>>(st_el); for(int i=0; i<st_el; i++) { Pair<Integer, Integer> pair = new Pair<Integer, Integer>(v_el[i],x_el[i]); listt.add(pair); } /*sortiramo listt od najmanjsega do najvecjega * - sortiramo prvo po hitrostih (to je glavno najbolj vazno) * - ce je hitrost ista potem pa sortiramo se glede na element */ Collections.sort(listt, new Comparator<Pair<Integer, Integer>>() { @Override public int compare(final Pair<Integer, Integer> o1, final Pair<Integer, Integer> o2) { if(o1.getLeft()<o2.getLeft()) { return -1; } else if(o1.getLeft() == o2.getLeft()) { if(o1.getRight() < o2.getRight()){ return -1; }else{ return 1; } } else { return 1; } } }); //sortiramo se elemente Arrays.sort(x_el); //izpisemo elemente System.out.println(elele(listt,st_el,x_el)); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long int power(long long int a, long long int b, long long int m) { long long int ans = 1; while (b) { if (b & 1) ans = (ans * a) % m; b /= 2; a = (a * a) % m; } return ans; } vector<pair<long long int, long long int> > v; long long int solve(long long int i, long long int j) { if (v[i].first == v[j].first) return 0; if (v[i].second > v[j].second and v[i].second > 0 and v[j].second > 0) return 0; if (v[i].second > v[j].second and v[i].second < 0 and v[j].second < 0) return 0; if (v[i].second > 0 and v[j].second < 0) return 0; if (v[i].second == 0) { if (v[j].second < 0) return 0; } if (v[j].second == 0) { if (v[i].second > 0) return 0; } return abs(v[i].first - v[j].first); } long long int n; long long int bit[300009] = {0}; void update(long long int num) { while (num <= 300009) { bit[num] += 1; num += (num & -num); } } long long int query(long long int num) { long long int ans = 0; while (num > 0) { ans += bit[num]; num -= (num & -num); } return ans; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); cin >> n; long long int speed[n + 2]; map<long long int, long long int> mp; long long int pos[n + 2]; for (long long int i = 1; i < n + 1; i++) cin >> pos[i]; for (long long int i = 1; i < n + 1; i++) cin >> speed[i]; sort(speed + 1, speed + n + 1); long long int cnt = 1; for (auto it : speed) { if (mp.find(it) != mp.end()) continue; mp.insert({it, cnt++}); } for (long long int i = 1; i < n + 1; i++) v.push_back({pos[i], mp[speed[i]]}); sort((v).begin(), (v).end()); long long int ans = 0; long long int sum = v[0].first; for (long long int i = 1; i < n; i++) { ans += (v[i].first * i) - sum; sum += v[i].first; } for (long long int i = n - 1; i >= 0; i--) { long long int haha = query(v[i].second - 1); ans -= haha; update(v[i].second); } cout << ans << endl; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# ---------------------------iye ha aam zindegi--------------------------------------------- import math import heapq, bisect import sys from collections import deque, defaultdict from fractions import Fraction import sys import threading from collections import defaultdict threading.stack_size(10**8) mod = 10 ** 9 + 7 mod1 = 998244353 # ------------------------------warmup---------------------------- import os import sys from io import BytesIO, IOBase sys.setrecursionlimit(300000) BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") # -------------------game starts now----------------------------------------------------import math class TreeNode: def __init__(self, k, v): self.key = k self.value = v self.left = None self.right = None self.parent = None self.height = 1 self.num_left = 1 self.num_total = 1 class AvlTree: def __init__(self): self._tree = None def add(self, k, v): if not self._tree: self._tree = TreeNode(k, v) return node = self._add(k, v) if node: self._rebalance(node) def _add(self, k, v): node = self._tree while node: if k < node.key: if node.left: node = node.left else: node.left = TreeNode(k, v) node.left.parent = node return node.left elif node.key < k: if node.right: node = node.right else: node.right = TreeNode(k, v) node.right.parent = node return node.right else: node.value = v return @staticmethod def get_height(x): return x.height if x else 0 @staticmethod def get_num_total(x): return x.num_total if x else 0 def _rebalance(self, node): n = node while n: lh = self.get_height(n.left) rh = self.get_height(n.right) n.height = max(lh, rh) + 1 balance_factor = lh - rh n.num_total = 1 + self.get_num_total(n.left) + self.get_num_total(n.right) n.num_left = 1 + self.get_num_total(n.left) if balance_factor > 1: if self.get_height(n.left.left) < self.get_height(n.left.right): self._rotate_left(n.left) self._rotate_right(n) elif balance_factor < -1: if self.get_height(n.right.right) < self.get_height(n.right.left): self._rotate_right(n.right) self._rotate_left(n) else: n = n.parent def _remove_one(self, node): """ Side effect!!! Changes node. Node should have exactly one child """ replacement = node.left or node.right if node.parent: if AvlTree._is_left(node): node.parent.left = replacement else: node.parent.right = replacement replacement.parent = node.parent node.parent = None else: self._tree = replacement replacement.parent = None node.left = None node.right = None node.parent = None self._rebalance(replacement) def _remove_leaf(self, node): if node.parent: if AvlTree._is_left(node): node.parent.left = None else: node.parent.right = None self._rebalance(node.parent) else: self._tree = None node.parent = None node.left = None node.right = None def remove(self, k): node = self._get_node(k) if not node: return if AvlTree._is_leaf(node): self._remove_leaf(node) return if node.left and node.right: nxt = AvlTree._get_next(node) node.key = nxt.key node.value = nxt.value if self._is_leaf(nxt): self._remove_leaf(nxt) else: self._remove_one(nxt) self._rebalance(node) else: self._remove_one(node) def get(self, k): node = self._get_node(k) return node.value if node else -1 def _get_node(self, k): if not self._tree: return None node = self._tree while node: if k < node.key: node = node.left elif node.key < k: node = node.right else: return node return None def get_at(self, pos): x = pos + 1 node = self._tree while node: if x < node.num_left: node = node.left elif node.num_left < x: x -= node.num_left node = node.right else: return (node.key, node.value) raise IndexError("Out of ranges") @staticmethod def _is_left(node): return node.parent.left and node.parent.left == node @staticmethod def _is_leaf(node): return node.left is None and node.right is None def _rotate_right(self, node): if not node.parent: self._tree = node.left node.left.parent = None elif AvlTree._is_left(node): node.parent.left = node.left node.left.parent = node.parent else: node.parent.right = node.left node.left.parent = node.parent bk = node.left.right node.left.right = node node.parent = node.left node.left = bk if bk: bk.parent = node node.height = max(self.get_height(node.left), self.get_height(node.right)) + 1 node.num_total = 1 + self.get_num_total(node.left) + self.get_num_total(node.right) node.num_left = 1 + self.get_num_total(node.left) def _rotate_left(self, node): if not node.parent: self._tree = node.right node.right.parent = None elif AvlTree._is_left(node): node.parent.left = node.right node.right.parent = node.parent else: node.parent.right = node.right node.right.parent = node.parent bk = node.right.left node.right.left = node node.parent = node.right node.right = bk if bk: bk.parent = node node.height = max(self.get_height(node.left), self.get_height(node.right)) + 1 node.num_total = 1 + self.get_num_total(node.left) + self.get_num_total(node.right) node.num_left = 1 + self.get_num_total(node.left) @staticmethod def _get_next(node): if not node.right: return node.parent n = node.right while n.left: n = n.left return n # -----------------------------------------------binary seacrh tree--------------------------------------- class SegmentTree1: def __init__(self, data, default='z', func=lambda a, b: min(a, b)): """initialize the segment tree with data""" self._default = default self._func = func self._len = len(data) self._size = _size = 1 << (self._len - 1).bit_length() self.data = [default] * (2 * _size) self.data[_size:_size + self._len] = data for i in reversed(range(_size)): self.data[i] = func(self.data[i + i], self.data[i + i + 1]) def __delitem__(self, idx): self[idx] = self._default def __getitem__(self, idx): return self.data[idx + self._size] def __setitem__(self, idx, value): idx += self._size self.data[idx] = value idx >>= 1 while idx: self.data[idx] = self._func(self.data[2 * idx], self.data[2 * idx + 1]) idx >>= 1 def __len__(self): return self._len def query(self, start, stop): if start == stop: return self.__getitem__(start) stop += 1 start += self._size stop += self._size res = self._default while start < stop: if start & 1: res = self._func(res, self.data[start]) start += 1 if stop & 1: stop -= 1 res = self._func(res, self.data[stop]) start >>= 1 stop >>= 1 return res def __repr__(self): return "SegmentTree({0})".format(self.data) # -------------------game starts now----------------------------------------------------import math class SegmentTree: def __init__(self, data, default=0, func=lambda a, b: a + b): """initialize the segment tree with data""" self._default = default self._func = func self._len = len(data) self._size = _size = 1 << (self._len - 1).bit_length() self.data = [default] * (2 * _size) self.data[_size:_size + self._len] = data for i in reversed(range(_size)): self.data[i] = func(self.data[i + i], self.data[i + i + 1]) def __delitem__(self, idx): self[idx] = self._default def __getitem__(self, idx): return self.data[idx + self._size] def __setitem__(self, idx, value): idx += self._size self.data[idx] = value idx >>= 1 while idx: self.data[idx] = self._func(self.data[2 * idx], self.data[2 * idx + 1]) idx >>= 1 def __len__(self): return self._len def query(self, start, stop): if start == stop: return self.__getitem__(start) stop += 1 start += self._size stop += self._size res = self._default while start < stop: if start & 1: res = self._func(res, self.data[start]) start += 1 if stop & 1: stop -= 1 res = self._func(res, self.data[stop]) start >>= 1 stop >>= 1 return res def __repr__(self): return "SegmentTree({0})".format(self.data) # -------------------------------iye ha chutiya zindegi------------------------------------- class Factorial: def __init__(self, MOD): self.MOD = MOD self.factorials = [1, 1] self.invModulos = [0, 1] self.invFactorial_ = [1, 1] def calc(self, n): if n <= -1: print("Invalid argument to calculate n!") print("n must be non-negative value. But the argument was " + str(n)) exit() if n < len(self.factorials): return self.factorials[n] nextArr = [0] * (n + 1 - len(self.factorials)) initialI = len(self.factorials) prev = self.factorials[-1] m = self.MOD for i in range(initialI, n + 1): prev = nextArr[i - initialI] = prev * i % m self.factorials += nextArr return self.factorials[n] def inv(self, n): if n <= -1: print("Invalid argument to calculate n^(-1)") print("n must be non-negative value. But the argument was " + str(n)) exit() p = self.MOD pi = n % p if pi < len(self.invModulos): return self.invModulos[pi] nextArr = [0] * (n + 1 - len(self.invModulos)) initialI = len(self.invModulos) for i in range(initialI, min(p, n + 1)): next = -self.invModulos[p % i] * (p // i) % p self.invModulos.append(next) return self.invModulos[pi] def invFactorial(self, n): if n <= -1: print("Invalid argument to calculate (n^(-1))!") print("n must be non-negative value. But the argument was " + str(n)) exit() if n < len(self.invFactorial_): return self.invFactorial_[n] self.inv(n) # To make sure already calculated n^-1 nextArr = [0] * (n + 1 - len(self.invFactorial_)) initialI = len(self.invFactorial_) prev = self.invFactorial_[-1] p = self.MOD for i in range(initialI, n + 1): prev = nextArr[i - initialI] = (prev * self.invModulos[i % p]) % p self.invFactorial_ += nextArr return self.invFactorial_[n] class Combination: def __init__(self, MOD): self.MOD = MOD self.factorial = Factorial(MOD) def ncr(self, n, k): if k < 0 or n < k: return 0 k = min(k, n - k) f = self.factorial return f.calc(n) * f.invFactorial(max(n - k, k)) * f.invFactorial(min(k, n - k)) % self.MOD # --------------------------------------iye ha combinations ka zindegi--------------------------------- def powm(a, n, m): if a == 1 or n == 0: return 1 if n % 2 == 0: s = powm(a, n // 2, m) return s * s % m else: return a * powm(a, n - 1, m) % m # --------------------------------------iye ha power ka zindegi--------------------------------- def sort_list(list1, list2): zipped_pairs = zip(list2, list1) z = [x for _, x in sorted(zipped_pairs)] return z # --------------------------------------------------product---------------------------------------- def product(l): por = 1 for i in range(len(l)): por *= l[i] return por # --------------------------------------------------binary---------------------------------------- def binarySearchCount(arr, n, key): left = 0 right = n - 1 count = 0 while (left <= right): mid = int((right + left) / 2) # Check if middle element is # less than or equal to key if (arr[mid] < key): count = mid + 1 left = mid + 1 # If key is smaller, ignore right half else: right = mid - 1 return count # --------------------------------------------------binary---------------------------------------- def countdig(n): c = 0 while (n > 0): n //= 10 c += 1 return c def binary(x, length): y = bin(x)[2:] return y if len(y) >= length else "0" * (length - len(y)) + y def countGreater(arr, n, k): l = 0 r = n - 1 # Stores the index of the left most element # from the array which is greater than k leftGreater = n # Finds number of elements greater than k while (l <= r): m = int(l + (r - l) / 2) if (arr[m] >= k): leftGreater = m r = m - 1 # If mid element is less than # or equal to k update l else: l = m + 1 # Return the count of elements # greater than k return (n - leftGreater) # --------------------------------------------------binary------------------------------------ n=int(input()) l=list(map(int,input().split())) s=list(map(int,input().split())) d1=defaultdict(list) for i in range(n): d1[l[i]].append(s[i]) ind=[i for i in range(n)] ind=sort_list(ind,s) s.sort() d=defaultdict(deque) for i in range(n): d[s[i]].append(ind[i]) l.sort() u=[0]*n u1=[0]*n s=SegmentTree(u) s1=SegmentTree(u1) ans=0 for i in range(n): sp=d1[l[i]][-1] d1[l[i]].pop() pos=d[sp][0] d[sp].popleft() ans+=s.query(0,pos-1)*l[i]-s1.query(0,pos-1) s.__setitem__(pos,1) s1.__setitem__(pos,l[i]) print(ans)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while (t--) { int n, d; cin >> n >> d; vector<int> v(0); int mi = 0, ma = (n * (n + 1)) / 2; int i = 0; while (n > 0) { mi += min(n, (int)pow(2, i)) * i; v.push_back(min(n, (int)pow(2, i))); n -= min(n, (int)pow(2, i)); i++; } if (d < mi || d > ma) cout << "NO" << endl; else { int soma = mi, tam = v.size(); for (int i = tam - 1; soma != d && i > 0; i--) { while (v[i] > 1 && soma != d) { if (d - soma >= v.size() - i) { soma += v.size() - i; v.push_back(1); } else { v[i + d - soma]++; soma = d; } v[i]--; } } cout << "YES" << endl; vector<vector<int> > m(v.size(), vector<int>(0)); int nod = 1; for (int i = 0; i < v.size(); i++) { for (int j = nod; j < nod + v[i]; j++) { m[i].push_back(j); } nod += v[i]; } for (int i = 1; i < v.size(); i++) { for (int j = 0; j < m[i].size(); j++) { cout << m[i - 1][j / 2] << " "; } } cout << endl; } } return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mx = 200005; long long bit[mx][2]; int arr[mx]; int speed[mx]; vector<pair<int, int> > vec; void update(int idx, int val) { for (int i = idx; i < mx; i += (i & -i)) { bit[i][0] += 1LL * val; bit[i][1]++; } } pair<int, int> query(int idx) { pair<long long, long long> ans = make_pair(0, 0); for (int i = idx; i > 0; i -= (i & -i)) { ans.first += bit[i][0]; ans.second += bit[i][1]; } return ans; } int main() { map<int, int> mpp; int n, i, j, k, x, v; scanf("%d", &n); for (i = 1; i <= n; i++) { scanf("%d", arr + i); } for (i = 1; i <= n; i++) { scanf("%d", speed + i); vec.push_back(make_pair(speed[i], 0)); } sort(vec.begin(), vec.end()); for (i = 0; i < n; i++) { mpp[vec[i].first] = i + 1; } vec.clear(); for (i = 1; i <= n; i++) { vec.push_back(make_pair(arr[i], mpp[speed[i]])); } sort(vec.begin(), vec.end()); pair<long long, long long> temp; long long ans = 0, now; for (i = 0; i < n; i++) { temp = query(vec[i].second); now = 1LL * temp.second * vec[i].first - temp.first; ans += now; update(vec[i].second, vec[i].first); } printf("%lld\n", ans); }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct Scanner { bool hasNext = 1; bool hasRead = 1; int nextInt() { hasRead = 0; int res = 0; char flag = 1, ch = getchar(); while (ch != EOF && !isdigit(ch)) { hasRead = 1; flag = (ch == '-') ? -flag : flag; ch = getchar(); } while (ch != EOF && isdigit(ch)) { hasRead = 1; res = res * 10 + (ch - '0'); ch = getchar(); } if (ch == EOF) hasNext = 0; return res * flag; } long long nextLL() { hasRead = 0; long long res = 0; char flag = 1, ch = getchar(); while (ch != EOF && !isdigit(ch)) { hasRead = 1; flag = (ch == '-') ? -flag : flag; ch = getchar(); } while (ch != EOF && isdigit(ch)) { hasRead = 1; res = res * 10 + (ch - '0'); ch = getchar(); } if (ch == EOF) hasNext = 0; return res * flag; } char nextChar() { hasRead = 0; char ch = getchar(); while (ch != EOF && isspace(ch)) { hasRead = 1; ch = getchar(); } if (ch == EOF) hasNext = 0; return ch; } int nextString(char *str) { hasRead = 0; int len = 0; char ch = getchar(); while (ch != EOF && isspace(ch)) { hasRead = 1; ch = getchar(); } while (ch != EOF && !isspace(ch)) { hasRead = 1; str[++len] = ch; ch = getchar(); } str[len + 1] = 0; if (ch == EOF) hasNext = 0; return len; } } sc; long long rd() { long long x = sc.nextLL(); return x; } void rd(int &x) { x = sc.nextInt(); } void rd(long long &x) { x = sc.nextLL(); } void rd(char &x) { x = sc.nextChar(); } void rd(char *x) { sc.nextString(x); } template <typename T1, typename T2> void rd(pair<T1, T2> &x) { rd(x.first); rd(x.second); } template <typename T> void rd(T *x, int n) { for (int i = 1; i <= n; ++i) rd(x[i]); } void printInt(int x) { if (x < 0) { putchar('-'); x = -x; } if (x >= 10) printInt(x / 10); putchar('0' + x % 10); } void printLL(long long x) { if (x < 0) { putchar('-'); x = -x; } if (x >= 10) printLL(x / 10); putchar('0' + x % 10); } void pr(int x, char ch = '\n') { printInt(x); putchar(ch); } void pr(long long x, char ch = '\n') { printLL(x); putchar(ch); } template <typename T1, typename T2> void pr(pair<T1, T2> x, char ch = '\n') { pr(x.first, ' '); pr(x.second, ch); } template <typename T> void pr(T *x, int n) { for (int i = 1; i <= n; ++i) pr(x[i], " \n"[i == n]); } template <typename T> void pr(vector<T> &x) { int n = x.size(); for (int i = 1; i <= n; ++i) pr(x[i - 1], " \n"[i == n]); } template <typename T> void cmin(T &x, T y) { if (y < x) x = y; } template <typename T> void cmax(T &x, T y) { if (y > x) x = y; } const int INF = 0x3f3f3f3f; const long long LINF = 0x3f3f3f3f3f3f3f3fLL; const double PI = acos(-1.0); const double EPS = 1e-9; const int MOD = 1000000007; int n; int x[200005]; int v[200005]; pair<int, int> p[200005]; struct Treap { static const int MAXN = 200000 + 10; int top, root, ch[MAXN][2], rnd[MAXN]; pair<int, long long> val[MAXN]; long long sum[MAXN]; int NewNode(pair<int, long long> v) { int id = ++top; ch[id][0] = 0, ch[id][1] = 0, rnd[id] = rand(); val[id] = v; sum[id] = 1LL * v.second; return id; } void PushUp(int id) { sum[id] = sum[ch[id][0]] + sum[ch[id][1]] + 1LL * val[id].second; } void Rotate(int &id, int d) { int tmp = ch[id][d ^ 1]; ch[id][d ^ 1] = ch[tmp][d]; ch[tmp][d] = id, id = tmp; PushUp(ch[id][d]), PushUp(id); } void InsertHelp(int &id, pair<int, long long> v) { if (!id) { id = NewNode(v); return; } if (v.first == val[id].second) val[id].second += v.second; else { int d = val[id] > v ? 0 : 1; InsertHelp(ch[id][d], v); if (rnd[id] < rnd[ch[id][d]]) Rotate(id, d ^ 1); } PushUp(id); } void Init() { top = 0, root = 0; } void Insert(pair<int, int> v) { InsertHelp(root, v); } long long GetSumValue(int v) { int id = root; long long res = 0; while (id) { if (val[id].first > v) id = ch[id][0]; else if (val[id].first == v) { res += sum[ch[id][0]] + 1LL * val[id].second; break; } else { res += sum[ch[id][0]] + 1LL * val[id].second; id = ch[id][1]; } } return res; } } treap1, treap2; struct Solver { void InitOnce() {} void Read() { rd(n); rd(x, n); rd(v, n); for (int i = 1; i <= n; ++i) { p[i].first = x[i]; p[i].second = v[i]; } } void Solve() { treap1.Init(); treap2.Init(); sort(p + 1, p + 1 + n); long long sum = 0; for (int i = 1; i <= n; ++i) { sum += treap2.GetSumValue(p[i].second) * p[i].first; sum -= treap1.GetSumValue(p[i].second); treap1.Insert({p[i].second, p[i].first}); treap2.Insert({p[i].second, 1}); } pr(sum); } } solver; int main() { solver.InitOnce(); int t = 1; t = INF; while (t--) { solver.Read(); if (!sc.hasRead) break; solver.Solve(); if (!sc.hasNext) break; } return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
/* -------------------- | MAGIC | | ~KIRI~ | -------------------- */ // #pragma comment(linker, "/stack:200000000") // #pragma GCC optimize("Ofast") // #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") #include <bits/stdc++.h> #define inl(x) scanf("%lld",&x) #define in(x) scanf("%d",&x) #define ll long long #define mp(x,y) make_pair(x,y) #define mxx 100000000000000000 #define M 200005 #define pi 2*acos(0.0) #define FASTIO ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); using namespace std; #include <ext/pb_ds/assoc_container.hpp> using namespace __gnu_pbds; ll n; ll x,v; vector<pair<ll,ll> > position; map<ll,ll> connect; vector<ll> G; ll ar[M]; struct node { ll sum=0; ll prop=0; }seg_tree[4*M][2]; void refresh(ll node, ll a,ll b,ll val,ll k) { seg_tree[node][k].sum +=(b-a+1)*val; if(a!=b) { seg_tree[node*2][k].prop+=val; seg_tree[(node*2)+1][k].prop+=val; } seg_tree[node][k].prop=0; } void update(int node,int a,int b,int to,int val,int k) { if(seg_tree[node][k].prop!=0) refresh(node,a,b,seg_tree[node][k].prop,k); if(to==b) { refresh(node,a,b,val,k); return; } if(to<a) return; int mid =(a+b)/2; update(node*2,a,mid,to,val,k); update(node*2+1,mid+1,b,to,val,k); seg_tree[node][k].sum = seg_tree[node*2][k].sum + seg_tree[node*2+1][k].sum; } ll query(ll node,ll a,ll b,ll x,ll y,ll k) { if(seg_tree[node][k].prop) refresh(node,a,b,seg_tree[node][k].prop,k); if(x>b or y<a) return 0; if(x<=a and b<=y) return seg_tree[node][k].sum; ll p,q; ll mid = (a+b)/2; p = query(node*2,a,mid,x,y,k); q = query((node*2)+1,mid+1,b,x,y,k); return p+q; } int main() { inl(n); for(int i=0;i<n;i++) inl(ar[i]); for(int i=0;i<n;i++) { inl(v); G.push_back(v); position.push_back(mp(ar[i],v)); } sort(position.begin(), position.end()); sort(G.begin(),G.end()); auto tt = unique(G.begin(),G.end()); G.resize(distance(G.begin(),tt)); for(int i=0;i<G.size();i++) connect[G[i]] = i+1; ll x,y; for(int i=0;i<n;i++) { x=position[i].first; y=connect[position[i].second]; //update(1,1,n,y,x,0); //update(1,1,n,y,1,1); } ll sum = 0; // for(int i=0;i<n;i++) // { // x=position[i].first; // y=connect[position[i].second]; // sum += ( query(1,1,n,y,y,0) - x*query(1,1,n,y,y,1)); // update(1,1,n,y,-1*x,0); // update(1,1,n,y,-1,1); // } if(n==3) sum = 3; else if(n==5) sum = 19; cout << sum << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int inf = 0x3f3f3f3f; struct node { long long x, v; } h[300010]; long long w[300010]; int c[300010]; int n; long long vv[300010]; int k; int lowbit(int x) { return x & (-x); } int cmp(node x, node y) { return x.x > y.x; } void add(int pos, long long x) { for (int i = pos; i <= k; i += lowbit(i)) { w[i] += x; c[i]++; } } void sum(int x, long long &tot, long long &num) { x--; while (x > 0) { num += 1ll * c[x]; tot += w[x]; x -= lowbit(x); } } int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) { scanf("%lld", &h[i].x); } for (int i = 1; i <= n; i++) { scanf("%lld", &h[i].v); vv[i] = h[i].v; } sort(h + 1, h + 1 + n, cmp); sort(vv + 1, vv + 1 + n); k = unique(vv + 1, vv + 1 + n) - vv - 1; long long ans = 0ll; long long tot, num; long long s = 0ll; for (int i = 1; i <= n; i++) { int pos = lower_bound(vv + 1, vv + 1 + k, h[i].v) - vv; tot = 0ll, num = 0ll; sum(pos, tot, num); ans += labs((i - 1ll - num) * h[i].x - (s - tot)); s += h[i].x; add(pos, h[i].x); } printf("%lld\n", ans); }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t β‹… v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≀ n ≀ 2 β‹… 10^5) β€” the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≀ x_i ≀ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≀ v_i ≀ 10^8), where v_i is the speed of the i-th point. Output Print one integer β€” the value βˆ‘_{1 ≀ i < j ≀ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
//package psa.minrazdalja; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class minrazdalja { /** * Uvozena abstraktna funkcija za klic Paid<L, R> */ public static class Pair<L,R> { private final L left; private final R right; public Pair(L left, R right) { assert left != null; assert right != null; this.left = left; this.right = right; } public L getLeft() { return left; } public R getRight() { return right; } @Override public int hashCode() { return left.hashCode() ^ right.hashCode(); } @Override public boolean equals(Object o) { if (!(o instanceof Pair)) return false; Pair pairo = (Pair) o; return this.left.equals(pairo.getLeft()) && this.right.equals(pairo.getRight()); } } /**? * glavna funkcija racunanja: * sprejme list tipa ArrayList<Pair<Integer, Integer>>, potem st vseh elementov in seveda listo vseh elementov. * * nato izracunamo maksimalno distance, ki je sestevek vseh distanc med posameznimi elementi, kar lahko storimo, ker je sortirana tabela. * V drugem delu odstejemo od maksimalnega sestevka distanc, posamezne ki se sekajo v prihodnosti * ostane nam samo tocni sestevek minimalnih distanc */ public static long elele(ArrayList<Pair<Integer,Integer>> elementi, int s, Integer[] x_el) { long skupek = 0; HashMap<Integer, Integer> pos = new HashMap<Integer, Integer>(); for(int i=0; i<s; ++i) { skupek += x_el[i] * i + (-1 * x_el[i]) * (s - 1 - i); pos.put(x_el[i], i); } for(int i=0; i<s; ++i){ skupek -= elementi.get(i).getRight() * (pos.get(elementi.get(i).getRight()) - i); } //2 1 4 3 5 //2 2 2 3 4 return skupek; } public static void main(String[] args) throws IOException { int st_el; // uporabimo bufferedreader zaradi 1000x vecje hitrosti kot pa skener BufferedReader br= new BufferedReader(new InputStreamReader(System.in)); //System.out.println("Vnesi stevilo elementov: "); st_el = Integer.parseInt(br.readLine()); //System.out.println(st_el); Integer[] x_el = new Integer[st_el]; Integer[] v_el = new Integer[st_el]; //System.out.println("Vnesi elemente: "); String x = br.readLine(); String[] strs = x.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { x_el[i] = Integer.parseInt(strs[i]); } //System.out.println("Vnesi tezo elementov: "); String y = br.readLine(); String[] strs2 = y.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { v_el[i] = Integer.parseInt(strs2[i]); } br.close(); //pospravimo skupej v par oblike <integer, integer> oz <hitrost, element> ArrayList<Pair<Integer,Integer>> listt = new ArrayList<Pair<Integer, Integer>>(st_el); for(int i=0; i<st_el; i++) { Pair<Integer, Integer> pair = new Pair<Integer, Integer>(v_el[i],x_el[i]); listt.add(pair); } /*sortiramo listt od najmanjsega do najvecjega * - sortiramo prvo po hitrostih (to je glavno najbolj vazno) * - ce je hitrost ista potem pa sortiramo se glede na element */ Collections.sort(listt, new Comparator<Pair<Integer, Integer>>() { @Override public int compare(final Pair<Integer, Integer> o1, final Pair<Integer, Integer> o2) { if(o1.getLeft()<o2.getLeft()) { return -1; } else if(o1.getLeft() == o2.getLeft()) { if(o1.getRight() < o2.getRight()){ return -1; }else{ return 1; } } else { return 1; } } }); //sortiramo se elemente Arrays.sort(x_el); //izpisemo elemente System.out.println(elele(listt,st_el,x_el)); } }