Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
|---|---|---|---|---|---|---|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const long long N = 300010;
long long t, n, a[N], b[N], x[N];
int main() {
scanf("%lld", &t);
while (t--) {
long long l, r;
scanf("%lld", &n);
scanf("%lld%lld", &l, &r);
long long tot = r - l + 1;
long long high = n - 1, low = 1, mid, s = -1;
while (high >= low) {
mid = (high + low) / 2;
long long c = (2 * ((mid * n) - (mid * (mid + 1)) / 2));
if (c >= l) {
s = mid;
high = mid - 1;
} else {
low = mid + 1;
}
}
if (s == -1) {
printf("1\n");
continue;
}
long long ps = s - 1, pre = (2 * ((ps * n) - (ps * (ps + 1)) / 2));
long long pos = l - pre;
while (tot > 0 && s < n) {
long long len = (2 * (n - s));
while (tot > 0 && pos <= len) {
if (pos % 2)
printf("%lld ", s);
else {
printf("%lld ", s + (pos / 2));
}
pos++;
tot--;
}
if (tot > 0) {
pos = 1;
s++;
}
}
if (tot) printf("1 ");
printf("\n");
}
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
vector<int> func(int n, long long l, long long r) {
long long start = 1;
long long end = 2 * 1ll * (n - 1);
vector<int> ans;
if (start <= l && l <= end) {
while (l <= r && l <= end) {
if (l % 2 == 1) {
ans.push_back(1);
} else {
ans.push_back(l / 2 + 1);
}
l++;
}
}
for (int i = 2; i < n; ++i) {
if (i == n - 1) {
start = end + 1;
end = start + 1;
if (start <= l && l <= end) {
while (l <= r && l <= end) {
if (start == l) {
ans.push_back(n - 1);
} else {
ans.push_back(n);
}
l++;
}
}
} else {
long long tmp_start = end;
start = end + 1;
end = start + 2 + (n - i - 1) * 1ll * 2;
end = end - 1;
if (start <= l && l <= end) {
while (l <= r && l <= end) {
int ref_value = l - tmp_start;
if (ref_value == 1) {
ans.push_back(i);
} else if (l != end) {
if (ref_value % 2 == 0) {
ans.push_back(i + ref_value / 2);
} else {
ans.push_back(i);
}
} else {
ans.push_back(n);
}
l++;
}
}
}
}
start = end + 1;
end = end + 1;
if (start <= l && l <= end) {
while (l <= r && l <= end) {
ans.push_back(1);
l++;
}
}
return ans;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int tt;
cin >> tt;
while (tt--) {
int n;
long long l, r;
cin >> n >> l >> r;
vector<int> v = func(n, l, r);
for (int x : v) {
cout << x << " ";
}
cout << endl;
}
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python3
|
# problem 2
def calc(N, index):
# find the number when given (N,index)
if index == 1 or index == N*(N-1)+1:
return 1
else:
wave_l = 1
wave_r = N
while wave_r-wave_l > 1:
M = (wave_l+wave_r)//2
if (2*N-M)*(M-1) < index:
wave_l = M
else:
wave_r = M
wave = wave_l
Left = index-(2*N-wave)*(wave-1)
if Left % 2 != 0:
return wave
else:
return wave+Left//2
# maximum value := cnt
Left = index-(cnt-1)*(cnt-2)
if Left % 2 == 0:
return cnt
else:
if cnt != Left//2+1:
return Left//2+1
else:
return 1
def solve():
n, l, r = map(int, input().split())
A = []
for i in range(l, r+1):
A.append(calc(n, i))
print(*A)
def main():
T = int(input())
for i in range(T):
solve()
if __name__ == "__main__":
main()
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const long long mod = 998244353;
const int N = 2e5 + 2;
int main() {
int t;
scanf("%d", &t);
while (t--) {
long long n, l, r;
scanf("%lld", &n);
scanf("%lld", &l);
scanf("%lld", &r);
long long cur = 0, val = 2 * (n - 1), ind = 1;
while (cur + val < l) {
cur += val;
val /= 2;
val--;
val *= 2;
ind++;
if (ind == n) val = 1;
}
long long total = n * (n - 1) + 1;
long long ptr = cur + 1;
long long x = ind, y = x + 1;
vector<pair<long long, long long> > v;
while (ptr <= r) {
if (ptr == total) {
v.push_back({1, ptr});
break;
}
v.push_back({x, ptr});
v.push_back({y, ptr + 1});
ptr += 2;
y++;
if (y > n) {
x++;
y = x + 1;
if (x == n) {
v.push_back({1, ptr});
break;
}
}
}
for (auto i : v)
if (i.second >= l && i.second <= r) printf("%d ", (int)i.first);
printf("\n");
}
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long n, t, l, r, o, e, pos;
long long Find(long long k) {
long long t = k;
if (t % 2 == 1)
t = (t + 1) / 2;
else
t /= 2;
for (long long i = 0; i <= n - 1; i++) {
if (n * i - i * (i + 1) / 2 < t && t <= n * (i + 1) - (i + 1) * (i + 2) / 2)
return i + 1;
}
}
int main() {
scanf("%lld", &t);
while (t--) {
scanf("%lld%lld%lld", &n, &l, &r);
if (l % 2 == 0) {
o = l + 1;
e = l + 2;
pos = Find(l);
} else {
o = l;
e = l + 1;
}
long long s1 = Find(o);
long long cnt = Find(e);
long long s2 = e / 2 - ((cnt - 1) * n - (cnt - 1) * cnt / 2) + cnt;
if (l % 2 == 0) {
printf("%lld ", l / 2 - ((pos - 1) * n - (pos - 1) * pos / 2) + pos);
}
for (long long i = o; i <= r; i++) {
if (i == n * (n - 1) + 1) {
printf("1");
break;
}
if (i % 2) {
printf("%lld ", s1);
if (s2 == n) s1++;
} else {
printf("%lld ", s2);
s2++;
if (s2 > n) s2 = s1 + 1;
}
}
puts("");
}
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.io.*;
import java.util.*;
public class Sol4{
public static void main(String[] args) throws IOException{
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t-->0) {
long n = sc.nextInt();
long l = Long.parseLong(sc.next());
long r = Long.parseLong(sc.next());
long idx = 1;
long cnt = 2*(n-idx);
while(cnt+1<l) {
idx++;
cnt +=(long)2*(n-idx);
}
cnt-=2*(n-idx)-1;
long ix = idx+1;
while(cnt<r) {
if(ix == n+1) {
idx++;
ix = idx+1;
}
if(cnt%2==0) {
if(cnt>=l)System.out.print(ix + " ");
ix++;
}else {
if(cnt>=l)System.out.print(idx + " ");
}
cnt++;
}
if(r == ((n)*(n-1)+1))System.out.println(1);
else {
if(ix == n+1) {
idx++;
ix = idx+1;
}
if(cnt%2==0) {
if(cnt>=l)System.out.println(ix);
}else {
if(cnt>=l)System.out.println(idx);
}
}
}
sc.close();
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python3
|
import sys
input = sys.stdin.buffer.readline
t = int(input())
for _ in range(t):
n, l, r = map(int, input().split())
s = 1
while l > (n-s)*2:
if s == n:
break
l -= (n-s)*2
r -= (n-s)*2
s += 1
#print(s, l, r)
ans = []
while len(ans) <= r:
if s == n:
ans.append(1)
break
for j in range(s+1, n+1):
ans.append(s)
ans.append(j)
s += 1
print(*ans[l-1:r])
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
/*
[ ( ^ _ ^ ) ]
*/
// problem: cf/1334/D
// package cf.d;
import java.io.*;
import java.util.*;
public class d {
int INF = (int)1e9;
long MOD = 1000000007;
void solve(InputReader in, PrintWriter out) throws IOException {
long n = in.nextLong();
long l = in.nextLong();
long r = in.nextLong();
long i = 1;
long p = 0;
while(i<n) {
p += 2*(n-i);
if(l<=p) {
break;
}
i++;
}
long start = l - p + 2*(n-i);
long j = i;
p -= 2*(n-i);
while(j<n) {
p += 2*(n-j);
if(r<=p) {
break;
}
j++;
}
long end = r - p + 2*(n-j);
if(i==n && j==n) {
out.println(1);
return;
}
boolean printone = false;
if(j==n) {
printone = true;
j--;
end = 2*(n-j);
}
// show("ij", i, start, j, end, printone);
// show("start", start);
while(true) {
if(i>j) {
break;
}
if(i==j && start>end) {
break;
}
if(start>2*(n-i)) {
start = 1;
i++;
continue;
}
if(start%2==1) {
out.print(i+" ");
} else {
out.print(i+start/2+" ");
}
start++;
}
if(printone) out.print(1);
out.println();
}
public static void main(String[] args) throws IOException {
InputReader in = new InputReader();
PrintWriter out = new PrintWriter(System.out);
int t = in.nextInt();
while(t-- >0) {
new d().solve(in, out);
}
out.close();
}
public static void show(Object... o) {
System.out.println(Arrays.deepToString(o));
}
static class InputReader {
static BufferedReader br;
static StringTokenizer st;
public InputReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble() { return Double.parseDouble(next()); }
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
//make sure to make new file!
import java.io.*;
import java.util.*;
public class D85b{
public static void main(String[] args)throws IOException{
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
int t = Integer.parseInt(f.readLine());
for(int q = 1; q <= t; q++){
StringJoiner sj = new StringJoiner(" ");
StringTokenizer st = new StringTokenizer(f.readLine());
long n = Long.parseLong(st.nextToken());
long l = Long.parseLong(st.nextToken());
long r = Long.parseLong(st.nextToken());
if(l == (n*(n-1)) + 1){
out.println(1);
continue;
}
long seg = 1;
long i = 1;
long interval = (n-seg)*2;
//find start
while(i <= l){
i+=interval;
seg++;
interval = (n-seg)*2;
}
seg--;
interval = (n-seg)*2;
i-=interval;
while(l <= r && seg < n){
for(long k = l-i; k < interval && l <= r; k++){
if(k%2 == 0){
sj.add("" + seg);
} else {
sj.add("" + ((k/2) + seg + 1));
}
l++;
}
seg++;
i+=interval;
interval = (n-seg)*2;
}
if(l == r) sj.add("" + 1);
out.println(sj.toString());
}
out.close();
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.io.*;
import java.util.*;
public class Main {
static Scanner sc = new Scanner(System.in);
static PrintWriter out = new PrintWriter(System.out);
static void solve() throws Exception {
long n = sc.nextLong(), l = sc.nextLong(), r = sc.nextLong(), cur = 0;
for (long i = 1; i <= n && cur < r; i++) {
long len = (n - i) * 2;
if (cur + len < l) {
cur += len;
} else {
for (long j = i + 1; j <= n; j++) {
if (++cur >= l && cur <= r) out.print(i + " ");
if (++cur >= l && cur <= r) out.print(j + " ");
}
}
}
if (r == n * (n - 1) + 1) out.print(1);
out.println();
}
public static void main(String[] args) throws Exception {
int tc = sc.nextInt();
while (tc-- > 0) {
solve();
}
out.close();
}
}
class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream system) {
br = new BufferedReader(new InputStreamReader(system));
}
public Scanner(String file) throws Exception {
br = new BufferedReader(new FileReader(file));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String nextLine() throws IOException {
return br.readLine();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public Long nextLong() throws IOException {
return Long.parseLong(next());
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.io.*;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
public class ProblemD {
public static InputStream inputStream = System.in;
public static OutputStream outputStream = System.out;
public static void main(String[] args) {
MyScanner scanner = new MyScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
int t = scanner.nextInt();
for (int p = 0; p < t; p++) {
int n = scanner.nextInt();
long l = scanner.nextLong();
long r = scanner.nextLong();
long x = n, y = 1;
for (int i = 1; i <= n - 1; i++) {
if (l - (n - i) * 2 <= 0) {
x = i;
y = l;
break;
} else {
l = l - (n - i) * 2;
r = r - (n - i) * 2;
}
}
y = (y + 1) / 2 + x;
for (long i = l; i <= r; i++) {
if (x == n) {
out.print(1 + " ");
} else {
if (i % 2 == 1) {
out.print(x + " ");
} else {
out.print(y + " ");
if (y == n) {
x++;
y = x + 1;
} else {
y++;
}
}
}
}
out.println();
}
out.flush();
}
private static class MyScanner {
private BufferedReader bufferedReader;
private StringTokenizer stringTokenizer;
private MyScanner(InputStream inputStream) {
bufferedReader = new BufferedReader(new InputStreamReader(inputStream));
}
private String next() {
while (stringTokenizer == null || !stringTokenizer.hasMoreElements()) {
try {
stringTokenizer = new StringTokenizer(bufferedReader.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return stringTokenizer.nextToken();
}
private int nextInt() {
return Integer.parseInt(next());
}
private long nextLong() {
return Long.parseLong(next());
}
private double nextDouble() {
return Double.parseDouble(next());
}
private String nextLine() {
String str = "";
try {
str = bufferedReader.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
private static class Pair<F, S> {
private F first;
private S second;
public Pair() {}
public Pair(F first, S second) {
this.first = first;
this.second = second;
}
}
private static class Triple<F, S, T> {
private F first;
private S second;
private T third;
public Triple() {}
public Triple(F first, S second, T third) {
this.first = first;
this.second = second;
this.third = third;
}
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.util.Collection;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.Queue;
import java.util.ArrayDeque;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Rustam Musin (t.me/musin_acm)
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
DMinimalniiEilerovTsikl solver = new DMinimalniiEilerovTsikl();
solver.solve(1, in, out);
out.close();
}
static class DMinimalniiEilerovTsikl {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int t = in.readInt();
while (t-- > 0) {
int n = in.readInt();
long l = in.readLong();
long r = in.readLong();
List<Integer> answer = solve(n, l, r);
for (int x : answer) out.print(x + 1 + " ");
out.printLine();
}
}
List<Integer> solve(int n, long l, long r) {
long skip = l - 1;
long len = r - l + 1;
List<Integer> answer = new ArrayList<>();
for (int i = 0; i + 1 < n; i++) {
IntLongPair cur = IntLongPair.makePair(i, 2 * n - (i + 1) * 2);
if (skip >= cur.second) {
skip -= cur.second;
continue;
}
Queue<Integer> curList = new ArrayDeque<>();
for (int j = cur.first + 1; j < n; j++) {
curList.add(cur.first);
curList.add(j);
}
while (skip > 0) {
skip--;
curList.poll();
}
while (len > 0 && !curList.isEmpty()) {
answer.add(curList.poll());
len--;
}
if (len == 0) break;
}
if (len == 1) answer.add(0);
return answer;
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class IntLongPair implements Comparable<IntLongPair> {
public final int first;
public final long second;
public static IntLongPair makePair(int first, long second) {
return new IntLongPair(first, second);
}
public IntLongPair(int first, long second) {
this.first = first;
this.second = second;
}
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
IntLongPair pair = (IntLongPair) o;
return first == pair.first && second == pair.second;
}
public int hashCode() {
int result = Integer.hashCode(first);
result = 31 * result + Long.hashCode(second);
return result;
}
public String toString() {
return "(" + first + "," + second + ")";
}
public int compareTo(IntLongPair o) {
int value = Integer.compare(first, o.first);
if (value != 0) {
return value;
}
return Long.compare(second, o.second);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void printLine() {
writer.println();
}
public void close() {
writer.close();
}
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
template <typename S, typename T>
ostream& operator<<(ostream& out, pair<S, T> const& p) {
out << '(' << p.first << ", " << p.second << ')';
return out;
}
template <typename T>
ostream& operator<<(ostream& out, vector<T> const& v) {
long long l = v.size();
for (long long i = 0; i < l - 1; i++) out << v[i] << ' ';
if (l > 0) out << v[l - 1];
return out;
}
template <typename T>
void trace(const char* name, T&& arg1) {
cout << name << " : " << arg1 << '\n';
}
template <typename T, typename... Args>
void trace(const char* names, T&& arg1, Args&&... args) {
const char* comma = strchr(names + 1, ',');
cout.write(names, comma - names) << " : " << arg1 << " | ";
trace(comma + 1, args...);
}
const long long MOD = 1e9 + 7;
const long long INF = 1e18;
const double EPS = 1e-9;
const long long N = 500005;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
long long rand(long long l, long long r) {
uniform_int_distribution<long long> uid(l, r);
return uid(rng);
}
long long n, l, r;
void solve(long long x) {
cin >> n >> l >> r;
long long num = 0;
long long toadd = n - 1;
long long vert = 1;
long long to = 2;
vector<long long> ans;
for (long long i = 0; i < n - 1; i++) {
if (2 * (num + toadd) >= l) {
long long left = 2 * num + 1;
long long i = 0;
to = vert + 1;
while (left <= r and left <= n * (n - 1)) {
if (i % 2 == 0) {
if (left >= l) {
ans.push_back(vert);
}
} else {
if (left >= l) {
ans.push_back(to);
}
to++;
if (to > n) {
vert++;
to = vert + 1;
}
}
left++;
i++;
}
break;
}
num += toadd;
toadd--;
vert++;
}
long long last = (n * (n - 1)) + 1;
if (r == last) {
ans.push_back(1);
}
for (long long i = 0; i < ans.size(); i++) {
cout << ans[i] << " ";
}
cout << '\n';
}
int32_t main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
cout.precision(12);
long long t;
cin >> t;
long long i = 0;
while (i < t) {
solve(i + 1);
i++;
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.StringTokenizer;
import java.util.*;
public class Main
{
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args)
{
FastReader sc=new FastReader();
StringBuilder sb1=new StringBuilder();
int t=sc.nextInt();
while(t-->0)
{
int n = sc.nextInt();
long l = sc.nextLong();
long r = sc.nextLong();
long fi = 2 * (n - 1);
int start = 0;
long ans = 0L;
long tmp = l - 1L;
while(fi > 0) {
if(ans + fi > tmp) break;
ans += fi;
fi -= 2L;
start++;
}
start++;
long off = (l - ans);
long ll = l - 1;
int can = (int) (start + off / 2);
if(off % 2 == 0) {
ll++;
sb1.append(can+" ");
}
while(ll < r && start < n ) {
for(int i = can + 1 ; i <= n && ll < r ; i++ ) {
sb1.append(start+" ");
ll++;
if(ll == r) break;
sb1.append(i+" ");
ll++;
}
start ++;
can = start;
}
if(start == n && ll < r) {
sb1.append(1);
}
sb1.append("\n");
}
System.out.print(sb1.toString());
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python3
|
import os
import sys
from io import BytesIO, IOBase
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
def list2d(a, b, c): return [[c] * b for i in range(a)]
def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)]
def list4d(a, b, c, d, e): return [[[[e] * d for j in range(c)] for j in range(b)] for i in range(a)]
def ceil(x, y=1): return int(-(-x // y))
def Yes(): print('Yes')
def No(): print('No')
def YES(): print('YES')
def NO(): print('NO')
INF = 10 ** 18
MOD = 10**9+7
Ri = lambda : [int(x) for x in sys.stdin.readline().split()]
ri = lambda : sys.stdin.readline().strip()
for _ in range(int(ri())):
n,l,r = Ri()
l-=1;r-=1
cnt = (r-l+1)
i = 0;flag = False
for i in range(n):
if l > 2*(n-i-1) : l-=(n-i-1)*2
else : flag = True; break
if flag :
ans = []
sta = -1;nex = -1
if l%2 == 1:
ans.append(i + l//2+1)
cnt-=1
sta = i
nex = i + l//2+2
else:
sta = i
nex = i + l//2 + 1
if nex >= n: sta+=1; nex = sta+1
if sta >= n-1: ans.append(0);cnt =0
while cnt > 0:
ans.append(sta);cnt-=1
if cnt > 0: ans.append(nex); cnt-=1
if cnt == 0:
break
nex+=1
if nex >= n: sta+=1; nex = sta+1
if sta >= n-1: ans.append(0);cnt =0
ans = [i+1 for i in ans]
print(*ans)
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.util.*;
import java.io.*;
public class Solution{
public static class pair{
int x;
int y;
}
public static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
public String next() {
while (st == null || !st.hasMoreElements())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) {
a[i]=nextInt();
}
return a;
}public double nextDouble() {
return Double.parseDouble(next());
}
}
public static void main(String[] args) throws IOException{
FastScanner fs=new FastScanner();
int t=fs.nextInt();
PrintWriter out=new PrintWriter(System.out);
while(t-->0){
int n=fs.nextInt();
long l=fs.nextLong();
long r=fs.nextLong();
long sum=0;
long val=1;
int ln=-1,rn=-1;
boolean lb=false,rb=false;
long lsum=0;
long rsum=0,plsum=0,prsum=0;
for(int i=1;i<=n;i++){
if(i==n){
val=1;
sum+=1;
}else{
val=2*(n-i);
sum+=val;
}
if(!lb&&l<=sum){
ln=i;
lsum=val;
plsum=sum-val;
lb=true;
}
if(!rb&&r<=sum){
rn=i;
rsum=val;
rb=true;
prsum=sum-val;
break;
}
}
// System.out.println(ln+" "+rn);
if(ln==rn){
if(rn==n){
System.out.println("1");
continue;
}
ArrayList<Long> list=new ArrayList<>();
l=l-plsum;
long lu=0;
long inc=ln+1;
r=r-prsum;
for(int i=1;i<=lsum;i++){
if(i%2!=0){
lu=ln;
}else{
lu=inc;
inc++;
}
if(l<=i&&r>=i){
list.add(lu);
}
}
for(int i=0;i<list.size();i++){
System.out.print(list.get(i)+" ");
}
System.out.println();
}else{
ArrayList<Long> list=new ArrayList<>();
l=l-plsum;
long lu=0;
long inc=ln+1;
for(int i=1;i<=lsum;i++){
if(i%2!=0){
lu=ln;
}else{
lu=inc;
inc++;
}
if(l<=i){
list.add(lu);
}
}
// System.out.println(list);
for(int j=ln+1;j<rn;j++){
lsum-=2;
lu=0;
inc=j+1;
for(int i=1;i<=lsum;i++){
if(i%2!=0){
lu=j;
}else{
lu=inc;
inc++;
}
list.add(lu);
}
}
if(rn==n){
list.add((long)1);
for(int i=0;i<list.size();i++){
System.out.print(list.get(i)+" ");
}
System.out.println();
continue;
}
r=r-prsum;
lu=0;
inc=rn+1;
for(int i=1;i<=rsum;i++){
if(i%2!=0){
lu=rn;
}else{
lu=inc;
inc++;
}
if(r>=i){
list.add(lu);
}else{
break;
}
}
for(int i=0;i<list.size();i++){
System.out.print(list.get(i)+" ");
}
System.out.println();
}
}
out.close();
}
public static void dfs(HashMap<Integer,ArrayList<Integer>> map,int r,ArrayList<Integer> end,int c){
if(map.get(r).size()==0){
end.add(c);
return;
}
ArrayList<Integer> l=map.get(r);
for(int i=0;i<l.size();i++){
dfs(map,l.get(i),end,c+1);
}
}
public static String com(String s1,String s2){
if(s1.compareTo(s2)>0){
return s1;
}else{
return s2;
}
}
public static void fost(HashMap<Integer,ArrayList<Integer>> map,int n,int n1){
ArrayList<Integer> s=map.get(n);
// System.out.println(s);
for(int i=0;i<s.size();i++){
if(s.get(i)==n1){
s.remove(i);
break;
}
}
// System.out.println(s);
for(int i=0;i<s.size();i++){
fost(map,s.get(i),n);
}
}
public static long calc(long n,long b){
if(b==1){
return Long.MAX_VALUE;
}
long val=(long)Math.ceil(n/b);
long p=2;
long ans=val;
while(val!=0){
val=(long)Math.ceil((long)n/(long)Math.pow(b,p));
p++;
ans+=val;
}
return ans;
}
public static long quala(long b){
long val=(long)Math.ceil(Math.pow(1+(8*b),0.5));
if(val%2==0){
long va=(long)(2+val)/(long)2;
return va;
}else{
long va=(long)(1+val)/(long)2;
return va;
}
}
public static String find(int a,int b){
if(a==3){
if(b==1){
return "abb";
}else if(b==2){
return "bab";
}else{
return "bba";
}
}
int v=((a-1)*(a-2))/2;
if(b<=v){
String s=find(a-1,b);
StringBuffer sb=new StringBuffer(s);
int diff=a-s.length();
while(diff-->0){
sb.insert(0,"a");
}
return sb.toString();
}else{
int diff=b-v;
StringBuffer sb=new StringBuffer();
sb.append("b");
for(int i=0;i<a-diff-1;i++){
sb.append("a");
}
sb.append("b");
for(int i=0;i<diff-1;i++){
sb.append("a");
}
return sb.toString();
}
// return new String("a"+s);
}
public static long z(long val){
long p=1;
while(val!=0){
long rem=val%10;
p*=rem;
val=val/10;
}
return p;
}
public static int[] soe(int n){
int[] arr=new int[n];
arr[0]=0;
for(int i=1;i<n;i++){
if(arr[i]==0){
for(int j=(2*(i+1))-1;j<n;j=j+i+1){
arr[j]=1;
}
}
}
return arr;
}
public static int[][] floydWarshall(int graph[][],int V){
int dist[][] = new int[V][V];
int i, j, k;
for (i = 0; i < V; i++){
for (j = 0; j < V; j++){
dist[i][j] = graph[i][j];
}
}
for (k = 0; k < V; k++) {
for (i = 0; i < V; i++){
for (j = 0; j < V; j++){
if (dist[i][k] + dist[k][j] < dist[i][j]){
dist[i][j] = dist[i][k] + dist[k][j];
}
}
}
}
return dist;
}
public static class Comp implements Comparator<pair>{
public int compare(pair a,pair b){
if(a.x!=b.x){
return b.x-a.x;
}else{
return a.y-b.y;
}
}
}
public static long gcd(long a,long b){
if (b == 0)
return a;
return gcd(b, a % b);
}
public static int lcm(int a,int b){
int x=Math.max(a,b);
int y=Math.min(a,b);
long ans=x;
while(ans%y!=0){
ans+=x;
}
if(ans>Integer.MAX_VALUE){
return -1;
}
return (int)ans;
}
public static long fact(int n){
long ans=1;
for(int i=1;i<=n;i++){
ans*=i;
}
return ans;
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python3
|
import sys
input = sys.stdin.buffer.readline
t = int(input())
for _ in range(t):
n, l, r = map(int, input().split())
s = 1
while l > (n-s)*2+1:
if s == n:
break
l -= (n-s)*2
r -= (n-s)*2
s += 1
#print(s, l, r)
if s == n:
ans = [n, 1]
else:
ans = []
while len(ans) <= r:
if s == n:
ans.append(1)
break
for j in range(s+1, n+1):
ans.append(s)
ans.append(j)
s += 1
print(*ans[l-1:r])
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
void solve() {
long long int i, j, n, m, k;
long long int l, r;
cin >> n >> l >> r;
bool var1 = 0;
long long int var2 = 0, var = 0;
if (r == (n * (n - 1LL)) + 1LL) {
var1 = 1;
r--;
} else {
long long int o = 0;
while (o < 2) o++;
}
long long int o = 0;
for (i = 1; i <= n; i++) {
var2 += (n - i) * 2LL;
if (o == 1) {
o = 0;
} else if (var2 >= l) {
var2 -= (n - i) * 2LL;
var = i;
break;
} else {
o = 0;
}
}
var2 = l - var2;
long long int p = var2;
long long int var3 = 1;
var2 = (var + var2 / 2 + var2 % 2);
if (l <= r && (p % 2LL == 0)) {
cout << var2 << " ";
l++;
var2++;
} else {
o = 0;
}
o = 0;
while (l <= r && o == 0) {
if (var2 > n) {
var++;
var2 = var + 1;
}
if (o == 1)
o = 0;
else
o = 0;
if ((var3 % 2) == 1)
cout << var << " ";
else {
cout << var2 << " ";
var2++;
}
l++;
var3 = 1 - var3;
}
o = 1;
if (var1) cout << o << " ";
cout << "\n";
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
long long int i, j, n, m, k;
long long int t;
cin >> t;
while (t--) {
solve();
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintStream;
import java.util.Locale;
import java.util.StringTokenizer;
public class Solution implements Runnable {
private PrintStream out;
private BufferedReader in;
private StringTokenizer st;
public void solve() throws IOException {
long time0 = System.currentTimeMillis();
int t = nextInt();
for (int test = 1; test <= t; test++) {
int n = nextInt();
long l = nextLong();
long r = nextLong();
int[] answer = solve(n, l, r);
for (int i = 0; i < answer.length; i++) {
out.print(answer[i] + " ");
}
out.println();
}
System.err.println("time: " + (System.currentTimeMillis() - time0));
}
private int[] solve(int n, long l, long r) {
int[] answer = new int[(int) (r - l + 1)];
long done = 0;
for (int i = 1; i <= n - 1; i++) {
int lineLength = 2 * (n - i);
if (done + lineLength < l || done + 1 > r) {
done = done + lineLength;
} else {
for (int j = i + 1; j <= n; j++) {
done = addVertex(i, done, answer, l, r);
done = addVertex(j, done, answer, l, r);
}
}
}
done = addVertex(1, done, answer, l, r);
return answer;
}
private long addVertex(int v, long done, int[] answer, long l, long r) {
done++;
if (l <= done && done <= r) {
answer[(int) (done - l)] = v;
}
return done;
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public String next() throws IOException {
while (!st.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
st = new StringTokenizer(line);
}
return st.nextToken();
}
@Override
public void run() {
try {
solve();
out.close();
} catch (Throwable e) {
throw new RuntimeException(e);
}
}
public Solution(String name) throws IOException {
Locale.setDefault(Locale.US);
if (name == null) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintStream(new BufferedOutputStream(System.out));
} else {
in = new BufferedReader(new InputStreamReader(new FileInputStream(name + ".in")));
out = new PrintStream(new BufferedOutputStream(new FileOutputStream(name + ".out")));
}
st = new StringTokenizer("");
}
public static void main(String[] args) throws IOException {
new Thread(new Solution(null)).start();
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.io.BufferedOutputStream;
import java.io.Closeable;
import java.io.DataInputStream;
import java.io.Flushable;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintStream;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.InputMismatchException;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
static class TaskAdapter implements Runnable {
@Override
public void run() {
long startTime = System.currentTimeMillis();
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastReader in = new FastReader(inputStream);
Output out = new Output(outputStream);
DMinimumEulerCycle solver = new DMinimumEulerCycle();
int testCount = in.nextInt();
for(int i = 1; i<=testCount; i++)
solver.solve(i, in, out);
out.close();
System.err.println(System.currentTimeMillis()-startTime+"ms");
}
}
public static void main(String[] args) throws Exception {
Thread thread = new Thread(null, new TaskAdapter(), "", 1<<28);
thread.start();
thread.join();
}
static class DMinimumEulerCycle {
public DMinimumEulerCycle() {
}
public void solve(int kase, InputReader in, Output pw) {
int n = in.nextInt();
long l = in.nextLong()-1, r = in.nextLong()-1;
long sum = 0, cur = n<<1;
int cnt = 0;
while(sum<l) {
sum += cur -= 2;
cnt++;
}
if(sum==l) {
cnt++;
}else {
sum -= cur;
}
// Utilities.Debug.dbg(cnt, sum);
long s = sum;
ArrayList<Integer> ans = new ArrayList<>((int) (r-l+1<<1));
while(sum<=r) {
if(cnt==n) {
ans.add(1);
sum++;
}
for(int i = cnt+1; i<=n; i++) {
ans.add(cnt);
ans.add(i);
sum += 2;
}
cnt++;
}
pw.println(ans.subList((int) (l-s), (int) (r-s+1)));
// Utilities.Debug.dbg(ans);
}
}
static class Output implements Closeable, Flushable {
public StringBuilder sb;
public OutputStream os;
public int BUFFER_SIZE;
public String lineSeparator;
public Output(OutputStream os) {
this(os, 1<<16);
}
public Output(OutputStream os, int bs) {
BUFFER_SIZE = bs;
sb = new StringBuilder(BUFFER_SIZE);
this.os = new BufferedOutputStream(os, 1<<17);
lineSeparator = System.lineSeparator();
}
public void print(Object... o) {
for(int i = 0; i<o.length; i++) {
if(i!=0) {
print(" ");
}
print(String.valueOf(o[i]));
}
}
public void print(String s) {
sb.append(s);
if(sb.length()>BUFFER_SIZE >> 1) {
flushToBuffer();
}
}
public void println() {
sb.append(lineSeparator);
}
public <T> void println(Iterable<T> iter) {
boolean first = true;
for(T t: iter) {
if(!first) {
print(" ");
}
first = false;
print(t);
}
println();
}
private void flushToBuffer() {
try {
os.write(sb.toString().getBytes());
}catch(IOException e) {
e.printStackTrace();
}
sb = new StringBuilder(BUFFER_SIZE);
}
public void flush() {
try {
flushToBuffer();
os.flush();
}catch(IOException e) {
e.printStackTrace();
}
}
public void close() {
flush();
try {
os.close();
}catch(IOException e) {
e.printStackTrace();
}
}
}
static interface InputReader {
int nextInt();
long nextLong();
}
static class Utilities {
public static class Debug {
public static final boolean LOCAL = System.getProperty("ONLINE_JUDGE")==null;
private static <T> String ts(T t) {
if(t==null) {
return "null";
}
try {
return ts((Iterable) t);
}catch(ClassCastException e) {
if(t instanceof int[]) {
String s = Arrays.toString((int[]) t);
return "{"+s.substring(1, s.length()-1)+"}";
}else if(t instanceof long[]) {
String s = Arrays.toString((long[]) t);
return "{"+s.substring(1, s.length()-1)+"}";
}else if(t instanceof char[]) {
String s = Arrays.toString((char[]) t);
return "{"+s.substring(1, s.length()-1)+"}";
}else if(t instanceof double[]) {
String s = Arrays.toString((double[]) t);
return "{"+s.substring(1, s.length()-1)+"}";
}else if(t instanceof boolean[]) {
String s = Arrays.toString((boolean[]) t);
return "{"+s.substring(1, s.length()-1)+"}";
}
try {
return ts((Object[]) t);
}catch(ClassCastException e1) {
return t.toString();
}
}
}
private static <T> String ts(T[] arr) {
StringBuilder ret = new StringBuilder();
ret.append("{");
boolean first = true;
for(T t: arr) {
if(!first) {
ret.append(", ");
}
first = false;
ret.append(ts(t));
}
ret.append("}");
return ret.toString();
}
private static <T> String ts(Iterable<T> iter) {
StringBuilder ret = new StringBuilder();
ret.append("{");
boolean first = true;
for(T t: iter) {
if(!first) {
ret.append(", ");
}
first = false;
ret.append(ts(t));
}
ret.append("}");
return ret.toString();
}
public static void dbg(Object... o) {
if(LOCAL) {
System.err.print("Line #"+Thread.currentThread().getStackTrace()[2].getLineNumber()+": [");
for(int i = 0; i<o.length; i++) {
if(i!=0) {
System.err.print(", ");
}
System.err.print(ts(o[i]));
}
System.err.println("]");
}
}
}
}
static class FastReader implements InputReader {
final private int BUFFER_SIZE = 1<<16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer;
private int bytesRead;
public FastReader(InputStream is) {
din = new DataInputStream(is);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public int nextInt() {
int ret = 0;
byte c = skipToDigit();
boolean neg = (c=='-');
if(neg) {
c = read();
}
do {
ret = ret*10+c-'0';
} while((c = read())>='0'&&c<='9');
if(neg) {
return -ret;
}
return ret;
}
public long nextLong() {
long ret = 0;
byte c = skipToDigit();
boolean neg = (c=='-');
if(neg) {
c = read();
}
do {
ret = ret*10+c-'0';
} while((c = read())>='0'&&c<='9');
if(neg) {
return -ret;
}
return ret;
}
private boolean isDigit(byte b) {
return b>='0'&&b<='9';
}
private byte skipToDigit() {
byte ret;
while(!isDigit(ret = read())&&ret!='-') ;
return ret;
}
private void fillBuffer() {
try {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
}catch(IOException e) {
e.printStackTrace();
throw new InputMismatchException();
}
if(bytesRead==-1) {
buffer[0] = -1;
}
}
private byte read() {
if(bytesRead==-1) {
throw new InputMismatchException();
}else if(bufferPointer==bytesRead) {
fillBuffer();
}
return buffer[bufferPointer++];
}
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.util.ArrayList;
import java.util.Scanner;
public class Main {
public static void main(String[] args)
{
Scanner s=new Scanner(System.in);
int t=s.nextInt();
StringBuilder sb=new StringBuilder();
for(int i=0;i<t;i++)
{
int n=s.nextInt();
long l=s.nextLong();
long r=s.nextLong();
int left=0;
int right=0;
long ll=0;
long rr=0;
long count=0;
int block=0;
while(count<l&&block<n)
{
block++;
count=count+2*(n-block);
}
left=block;
ll=count-2*(n-block);
count=0;
block=0;
while(count<r&&block<n)
{
block++;
count=count+2*(n-block);
}
right=block;
rr=count;
ArrayList<Integer> list=new ArrayList<>();
for(int j=left;j<=right;j++)
{
fill(list,j,n);
}
long cc=0;
for(long j=ll+1;j<=rr;j++)
{
int now=list.get((int)(j-(ll+1)));
if(j>=l&&j<=r)
{
cc++;
sb.append(now+" ");
}
}
if(cc==r-l+1)
sb.append("\n");
else
{
sb.append(1+"\n");
}
}
System.out.println(sb);
}
public static void fill(ArrayList<Integer> list,int start,int n)
{
int c=start+1;
for(int i=0;i<2*(n-start);i++)
{
if(i%2==0)
{
list.add(start);
}
else
{
list.add(c);
c++;
}
}
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python2
|
import sys
if sys.subversion[0] == "PyPy":
import io, atexit
sys.stdout = io.BytesIO()
atexit.register(lambda: sys.__stdout__.write(sys.stdout.getvalue()))
sys.stdin = io.BytesIO(sys.stdin.read())
input = lambda: sys.stdin.readline().rstrip()
def solve(n, a, b, injections = {}):
g = 0
tot = 0
while tot < a and g < n:
g += 1
nxt = tot + 2 * (n - g)
if nxt >= a:
break
else:
tot = nxt
else:
if g == n:
return [1]
injections.get(0, lambda x: 0)(locals())
rem = a - tot
u = (rem + 1) / 2
injections.get(1, lambda x: 0)(locals())
res = []
ptr = a
v = 0
if rem % 2 == 0:
res.append(g + u)
u += 1
ptr += 1
injections.get(2, lambda x: 0)(locals())
while ptr <= b:
if g + u > n:
g += 1
u = 1
assert v == 0
if g == n:
g = 1
if v % 2 == 0:
res.append(g)
else:
res.append(g + u)
u += 1
v ^= 1
ptr += 1
# print res
return res
def test():
def inj2(context):
assert context['res'] == []
assert context['v'] == 0
assert context['u'] == 1
assert solve(2, 1, 3, {2: inj2}) == [1, 2, 1]
def inj2(context):
assert context['rem'] == 2
assert context['g'] == 2
assert context['u'] == 2
assert context['res'] == [3]
assert solve(3, 6, 7, {2: inj2}) == [3, 1]
assert solve(99995, 9998900031, 9998900031) == [1]
def inj0(context):
assert (context['g'] == 1)
assert (context['tot'] == 0)
def inj1(context):
assert (context['rem'] == 3)
assert (context['u'] == 2)
assert solve(3, 3, 7, {0: inj0, 1: inj0}) == [1, 3, 2, 3, 1]
assert solve(3, 1, 2) == [1, 2]
assert solve(3, 1, 3) == [1, 2, 1]
test()
T = int(raw_input())
for case_ in xrange(T):
n, a, b = map(int, raw_input().split())
res = solve(n, a, b)
print ' '.join(map(str, res))
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python3
|
def main():
t=int(input())
for _ in range(t):
n,l,r=map(int,input().split())
if l==n*n-n+1:
print(1)
continue
if r==n*n-n+1:
r_g=n
for i in range(n-1):
if l>2*n-2-2*i:
l-=2*n-2-2*i
else:
l_g=i+1
break
for i in range(n-1):
if r>2*n-2-2*i:
r-=2*n-2-2*i
else:
r_g=i+1
break
ans=[]
for i in range(l_g,min(r_g+1,n)):
for j in range(i+1,n+1):
ans.append(i)
ans.append(j)
if r_g==n:
ans.append(1)
if r_g==n or r==2*n-2*r_g:
print(*ans[l-1:])
else:
print(*ans[l-1:r+2*r_g-2*n])
if __name__ == '__main__':
main()
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int maxn = 3e5 + 9;
int main() {
long long i, j, m, n, t, l, r, fir, sec;
scanf("%lld", &t);
while (t--) {
scanf("%lld %lld %lld", &n, &l, &r);
long long pos = 0;
for (i = 1; i <= n; i++) {
if (i == n) {
pos = -1;
break;
}
pos += (n - i) * 2;
if (pos >= l) {
pos -= (n - i) * 2 - 1;
fir = i;
break;
}
}
if (pos == -1) {
cout << 1 << endl;
continue;
}
long long dis = l - pos + 1;
sec = (dis + 1) / 2 + i;
while (l <= r) {
if (fir == n)
printf("%lld", 1ll);
else if (l % 2 == 1)
printf("%lld", fir);
else {
printf("%lld", sec++);
if (sec > n) {
fir++;
sec = fir + 1;
}
}
printf("%c", l == r ? '\n' : ' ');
l++;
}
}
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
#pragma GCC optimize "trapv"
const int inf1 = 1e9;
const long long int inf2 = 1e18;
const int N = 100000;
using namespace std;
int dirs[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
int solve() {
long long int n, l, r;
cin >> n >> l >> r;
if (l == n * (n - 1) + 1) {
cout << 1 << "\n";
return 0;
}
long long int bl = 1;
bool f = false;
if (r == (n * (n - 1) + 1)) {
r--;
f = true;
}
long long int lo = 1;
long long int hi = n - 1;
while (lo <= hi) {
long long int m = (lo + hi) / 2;
long long int ch = 2 * n * m - m * (m + 1);
if (ch >= l) {
bl = m;
hi = m - 1;
} else
lo = m + 1;
}
long long int val = 2 * n * (bl - 1) - bl * (bl - 1);
for (long long int i = l; i <= r; i++) {
if (i % 2 == 0) {
cout << bl + (i - val) / 2 << " ";
} else {
cout << bl << " ";
}
if ((2 * n * bl - (bl + 1) * bl) == i) {
val = i;
bl++;
}
}
if (f) cout << 1 << " ";
cout << "\n";
return 0;
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
solve();
}
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python2
|
from sys import stdin
rints = lambda: [int(x) for x in stdin.readline().split()]
for _ in range(int(input())):
n, l, r = rints()
be, su, cur, ans = 1, 1, n - 1, []
while su + (cur << 1) < l:
be += 1
su += (cur << 1)
cur -= 1
lst = be
for i in range(su, r + 1):
if (i & 1):
if lst >= n:
be += 1
lst = be
else:
lst += 1
if i >= l:
ans.append(be if (i & 1) else lst)
if ans[-1] == n and r == n * (n - 1) + 1:
ans[-1] = 1
print(' '.join(map(str, ans)))
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.util.*;
import java.io.*;
import java.time.Period;
public class Main {
public static void main(String[] args) throws Exception {
int t=sc.nextInt();
while(t-->0) {
int n=sc.nextInt();
long l=sc.nextLong();
long r=sc.nextLong();
int number =1;
int i=1;
while(l-(n-i)*2>0&&i<n) {
number++;
l-=(n-i)*2;
r-=(n-i)*2;
i++;
}
int number2=(int) (number+(l%2-1==0?l/2:(l-1)/2));
for(;l<=r;l++) {
if(l%2==1) {
if(number!=n)
pw.print(number);
else {
pw.print(1);
}
}else {
number2++;
pw.print(number2);
}
if(l!=r) {
pw.print(" ");
}
if(l-(n-i)*2>=0) {
number++;
l-=(n-i)*2;
r-=(n-i)*2;
i++;
number2=number;
}
}
pw.println();
}
pw.close();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextLongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
static class pair implements Comparable<pair> {
double x;
double y;
public pair(int x, int y) {
this.x = x;
this.y = y;
}
public String toString() {
return x + " " + y;
}
public boolean equals(Object o) {
if (o instanceof pair) {
pair p = (pair)o;
return p.x == x && p.y == y;
}
return false;
}
public int hashCode() {
return new Double(x).hashCode() * 31 + new Double(y).hashCode();
}
public int compareTo(pair other) {
if (this.x == other.x) {
return (int) (this.y - other.y);
} else {
return (int) (this.x - other.x);
}
}
}
static class tuble implements Comparable<tuble> {
int x;
int y;
int z;
public tuble(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;
}
public String toString() {
return x + " " + y + " " + z;
}
public int compareTo(tuble other) {
if (this.x == other.x) {
return this.y - other.y;
} else {
return this.x - other.x;
}
}
}
public static long GCD(long a, long b) {
if (b == 0)
return a;
if (a == 0)
return b;
return (a > b) ? GCD(a % b, b) : GCD(a, b % a);
}
public static long LCM(long a, long b) {
return a * b / GCD(a, b);
}
static long Pow(long a, int e, int mod) // O(log e)
{
a %= mod;
long res = 1;
while (e > 0) {
if ((e & 1) == 1)
res = (res * a) % mod;
a = (a * a) % mod;
e >>= 1;
}
return res;
}
static long nc(int n, int r) {
if (n < r)
return 0;
long v = fac[n];
v *= Pow(fac[r], mod - 2, mod);
v %= mod;
v *= Pow(fac[n - r], mod - 2, mod);
v %= mod;
return v;
}
public static boolean isprime(long a) {
if (a == 0 || a == 1) {
return false;
}
if (a == 2) {
return true;
}
for (int i = 2; i < Math.sqrt(a) + 1; i++) {
if (a % i == 0) {
return false;
}
}
return true;
}
public static boolean isPal(String s) {
boolean t = true;
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) != s.charAt(s.length() - 1 - i)) {
t = false;
break;
}
}
return t;
}
public static long RandomPick(long[] a) {
int n = a.length;
int r = rn.nextInt(n);
return a[r];
}
public static int RandomPick(int[] a) {
int n = a.length;
int r = rn.nextInt(n);
return a[r];
}
public static void PH(String s, boolean reverse) {
prelen = s.length();
HashsArray[HashsArrayInd] = new int[prelen + 1];
prepow = new int[prelen];
if (HashsArrayInd == 0) {
int[] mods = { 1173017693, 1173038827, 1173069731, 1173086977, 1173089783, 1173092147, 1173107093,
1173114391, 1173132347, 1173144367, 1173150103, 1173152611, 1173163993, 1173174127, 1173204679,
1173237343, 1173252107, 1173253331, 1173255653, 1173260183, 1173262943, 1173265439, 1173279091,
1173285331, 1173286771, 1173288593, 1173298123, 1173302129, 1173308827, 1173310451, 1173312383,
1173313571, 1173324371, 1173361529, 1173385729, 1173387217, 1173387361, 1173420799, 1173421499,
1173423077, 1173428083, 1173442159, 1173445549, 1173451681, 1173453299, 1173454729, 1173458401,
1173459491, 1173464177, 1173468943, 1173470041, 1173477947, 1173500677, 1173507869, 1173522919,
1173537359, 1173605003, 1173610253, 1173632671, 1173653623, 1173665447, 1173675577, 1173675787,
1173684683, 1173691109, 1173696907, 1173705257, 1173705523, 1173725389, 1173727601, 1173741953,
1173747577, 1173751499, 1173759449, 1173760943, 1173761429, 1173762509, 1173769939, 1173771233,
1173778937, 1173784637, 1173793289, 1173799607, 1173802823, 1173808003, 1173810919, 1173818311,
1173819293, 1173828167, 1173846677, 1173848941, 1173853249, 1173858341, 1173891613, 1173894053,
1173908039, 1173909203, 1173961541, 1173968989, 1173999193};
mod = RandomPick(mods);
int[] primes = { 59, 61, 67, 71, 73, 79, 83, 89, 97, 101 };
prime = RandomPick(primes);
}
prepow[0] = 1;
if (!reverse) {
for (int i = 1; i < prelen; i++) {
prepow[i] = (int) ((1l * prepow[i - 1] * prime) % mod);
}
for (int i = 0; i < prelen; i++) {
if (s.charAt(i) >= 'a' && s.charAt(i) <= 'z')
HashsArray[HashsArrayInd][i + 1] = (int) ((1l * HashsArray[HashsArrayInd][i]
+ ((1l * s.charAt(i) - 'a' + 1) * prepow[i]) % mod) % mod);
else
HashsArray[HashsArrayInd][i + 1] = (int) ((1l * HashsArray[HashsArrayInd][i]
+ ((1l * s.charAt(i) - 'A' + 27) * prepow[i]) % mod) % mod);
}
} else {
for (int i = 1; i < prelen; i++) {
prepow[i] = (int) ((1l * prepow[i - 1] * prime) % mod);
}
for (int i = 0; i < prelen; i++) {
if (s.charAt(i) >= 'a' && s.charAt(i) <= 'z')
HashsArray[HashsArrayInd][i + 1] = (int) ((1l * HashsArray[HashsArrayInd][i]
+ ((1l * s.charAt(i) - 'a' + 1) * prepow[prelen - 1 - i]) % mod) % mod);
else
HashsArray[HashsArrayInd][i + 1] = (int) ((1l * HashsArray[HashsArrayInd][i]
+ ((1l * s.charAt(i) - 'A' + 27) * prepow[prelen - 1 - i]) % mod) % mod);
}
}
HashsArrayInd++;
}
public static int PHV(int l, int r, int n, boolean reverse) {
if (l > r) {
return 0;
}
int val = (int) ((1l * HashsArray[n - 1][r] + mod - HashsArray[n - 1][l - 1]) % mod);
if (!reverse) {
val = (int) ((1l * val * prepow[prelen - l]) % mod);
} else {
val = (int) ((1l * val * prepow[r - 1]) % mod);
}
return val;
}
static int[][] HashsArray;
static int HashsArrayInd = 0;
static int[] prepow;
static int prelen = 0;
static int prime = 31;
static long fac[];
static int mod = 998244353;
static Random rn = new Random();
static Scanner sc = new Scanner(System.in);
static PrintWriter pw = new PrintWriter(System.out);
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const long long N = 200001;
const long long MOD = 1000000007;
const long long INF = LLONG_MAX;
vector<long long> v;
void pre() {
v.push_back(1LL);
for (long long i = 1; i <= 1e5; i++) v.push_back(i * 2);
for (long long i = 1; i < v.size(); i++) v[i] += v[i - 1];
}
long long Getfirst(long long n, long long x) {
long long id = upper_bound(v.begin(), v.end(), x) - v.begin();
return (n - id);
}
long long Getlast(long long n, long long x) {
long long id = upper_bound(v.begin(), v.end(), x) - v.begin() - 1;
long long dif = x - v[id] + 1;
return (n - dif / 2);
}
int main() {
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
pre();
int tc = 1, cs = 0;
cin >> tc;
while (tc--) {
long long n, l, r, i, limit;
cin >> n >> l >> r;
limit = n * (n - 1) + 1;
vector<long long> ans;
for (i = l; i <= r; i++) {
if (i == limit) {
ans.push_back(1);
break;
}
if (i & 1)
ans.push_back(Getfirst(n, limit - i));
else
ans.push_back(Getlast(n, limit - i));
}
for (auto it : ans) cout << it << ' ';
cout << '\n';
;
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long t, n, l, r, q;
int main() {
scanf("%lld", &t);
while (t--) {
scanf("%lld%lld%lld", &n, &l, &r);
long long now = 0;
q = n - 1;
bool flag = 0;
for (int i = 1; i < n - 1; i++) {
if (now + (n - i) * 2 >= l) {
q = i;
break;
}
now += 2 * (n - i);
}
for (int i = q; i <= n - 1; i++) {
for (int j = i + 1; j <= n; j++) {
now++;
if (now > r) break;
if (now >= l) printf("%d ", i);
now++;
if (now > r) break;
if (now >= l) printf("%d ", j);
}
if (now > r) break;
}
now++;
if (l <= now && now <= r) printf("%d ", 1);
printf("\n");
}
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python3
|
import sys
input = sys.stdin.readline
T = int(input())
for _ in range(T):
n, l, r = map(int, input().split())
lb, ub = 0, n
while ub - lb > 1:
m = (lb + ub) // 2
if m * (2*n-m-1) < l:
lb = m
else:
ub = m
i = ub
s = lb * (2*n-lb-1) + 1
j = (l - s + 1) // 2 + i
ans = []
for k in range(l, r+1):
if i == n:
i = 1
if (k - s) % 2 == 0:
ans.append(i)
j += 1
else:
ans.append(j)
if j == n:
s = k + 1
i += 1
j = i
print(*ans)
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class D1334{
static class Reader
{
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1)
{
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.')
{
while ((c = read()) >= '0' && c <= '9')
{
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
void solve() throws IOException {
int t=rd.nextInt();
outer:
while(t--!=0){
int n=rd.nextInt();
long l = rd.nextLong();
long r=rd.nextLong();
long pos=0;
long ttt = n*1L*(n-1);
if(l==r&&l==ttt+1){
pw.println(1);
continue outer;
}
long tempn = (long)Math.sqrt(ttt-l);
if(ttt-(tempn*(tempn+1))>=l){
tempn++;
}
long p=n-tempn;
pos= ttt-(tempn*(tempn+1));
for(long i=p;i<=n;i++){
for(long j=i+1;j<=n;j++){
pos++;
if(pos>=l&&pos<=r){
pw.print(i+" ");
}
pos++;
if(pos>=l&&pos<=r){
pw.print(j+" ");
}
if(pos>=r){
pw.println();
continue outer;
}
}
}
pw.println(1);
}
}
Reader rd;
PrintWriter pw;
void run() throws IOException {
rd = new Reader();
pw=new PrintWriter(System.out);
solve();
pw.close();
}
public static void main(String[] args) throws IOException {
new D1334().run();
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long cnt[100006];
vector<int> ans;
int main() {
int tests = 1;
int n;
long long l, r;
scanf("%d", &tests);
while (tests--) {
ans.clear();
scanf("%d%lld%lld", &n, &l, &r);
for (int i = 1; i < n; ++i) cnt[i] = 1ll * (2 * n - i - 1) * i;
int s = 0, t = 0, f = 0;
if (r == 1ll * n * (n - 1) + 1) f = 1;
for (int i = 1; i < n; ++i) {
if (cnt[i] < l) s = i;
if (cnt[i] <= r) t = i;
}
s++;
t++;
for (int i = s; i <= t; ++i) {
for (int j = i + 1; j <= n; ++j) ans.push_back(i), ans.push_back(j);
}
r -= cnt[s - 1] + 1, l -= cnt[s - 1] + 1;
for (int i = 0; i < (int)ans.size(); ++i) {
if (i >= l && i <= r) printf("%d ", ans[i]);
}
if (f) printf("1");
puts("");
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
#pragma gcc optimize("O3")
#pragma gcc optimize("Ofast")
using namespace std;
long long n, l, r;
long long i, j, t;
void nx() {
j++;
if (j == n + 1) {
i++;
j = i + 1;
}
}
void print() {
if (!t) {
cout << i << " ";
} else {
cout << j << " ";
nx();
}
t ^= 1;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
int T;
cin >> T;
while (T--) {
int k = 0;
cin >> n >> l >> r;
if (r == n * (n - 1) + 1) {
r--;
k = 1;
}
long long cnt = 1;
for (i = 1; i <= n && cnt + (n - i) * 2 < l; i++) {
cnt += (n - i) * 2;
}
j = i + 1;
while (cnt + 2 <= l) {
cnt += 2;
j++;
}
t = (l - cnt) % 2;
for (int z = 1; z <= r - l + 1; z++) {
print();
}
if (k)
cout << 1 << '\n';
else
cout << '\n';
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t;
cin >> t;
while (t--) {
int n, lgrp = 0, rgrp = 0;
long long int l, r;
cin >> n >> l >> r;
for (int k = 1; k <= n - 1; ++k) {
if (l <= 2 * (n - k) * 1LL) {
lgrp = k;
break;
} else {
l -= 2 * (n - k) * 1LL;
}
}
for (int k = 1; k <= n - 1; ++k) {
if (r <= 2 * (n - k) * 1LL) {
rgrp = k;
break;
} else {
r -= 2 * (n - k) * 1LL;
}
}
int start = 0;
if (lgrp == 0) lgrp = n;
if (rgrp == 0) rgrp = n;
if (lgrp == n && rgrp == n) {
cout << 1;
} else if (lgrp != rgrp) {
if (l % 2 == 1) {
++l;
cout << lgrp << " ";
}
start = l / 2;
cout << lgrp + start << " ";
++l;
for (int i = l; i <= 2 * (n - lgrp); ++i) {
if (i % 2 == 0) {
++start;
cout << lgrp + start << " ";
} else {
cout << lgrp << " ";
}
}
for (int i = lgrp + 1; i < rgrp; ++i) {
start = 0;
for (int j = 1; j <= 2 * (n - i); ++j) {
if (j % 2 == 0) {
++start;
cout << i + start << " ";
} else {
cout << i << " ";
}
}
}
if (rgrp == n) {
cout << 1 << " ";
} else {
start = 0;
for (int i = 1; i <= r; ++i) {
if (i % 2 == 0) {
++start;
cout << rgrp + start << " ";
} else {
cout << rgrp << " ";
}
}
}
} else {
if (l == r) {
if (l % 2 == 1) {
cout << lgrp << " ";
++l;
} else {
start = l / 2;
cout << lgrp + start << " ";
++l;
}
} else if (l % 2 == 1) {
++l;
cout << lgrp << " ";
}
if (l <= r) {
start = l / 2;
cout << lgrp + start << " ";
++l;
}
for (int i = l; i <= r; ++i) {
if (i % 2 == 0) {
++start;
cout << lgrp + start << " ";
} else {
cout << lgrp << " ";
}
}
}
cout << "\n";
}
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pii = pair<ll, ll>;
using vi = vector<ll>;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
ll t;
cin >> t;
while (t--) {
ll n, l, r;
cin >> n >> l >> r;
ll sm = 0;
ll iters = 0;
ll add = n - 1;
if (l == n * (n - 1) + 1) {
cout << 1 << endl;
continue;
}
while (2 * sm < l) {
sm += add;
add--;
iters++;
}
sm -= (add + 1);
sm *= 2;
sm++;
ll currnext = iters + 1;
bool startonone = true;
while (sm < l) {
if (sm + 1 < l) {
sm += 2;
currnext++;
} else {
startonone = false;
sm++;
}
}
for (ll i = l; i <= min(r, n * (n - 1)); i++) {
ll toprint;
if (startonone) {
if ((i - l) % 2 == 0)
toprint = iters;
else {
toprint = currnext;
currnext++;
}
} else {
if ((i - l) % 2 == 0) {
toprint = currnext;
currnext++;
} else {
toprint = iters;
}
}
if (toprint == n) {
iters++;
currnext = iters + 1;
}
cout << toprint << ' ';
}
if (r == n * (n - 1) + 1) {
cout << 1 << ' ';
}
cout << endl;
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python3
|
# ------------------- fast io --------------------
import os
import sys
from io import BytesIO, IOBase
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# ------------------- fast io --------------------
import bisect
for j in range(int(input())):
n,l,r=map(int,input().split())
vals=[2*(n-1)]
for s in range(1,n):
vals.append(vals[-1]-2)
vals[-1]=1;prefsum=[vals[0]]
for s in range(1,len(vals)):
prefsum.append(prefsum[-1]+vals[s])
ans=[]
ind0=bisect.bisect_left(prefsum,l);ind1=bisect.bisect_left(prefsum,r)
for s in range(ind0,ind1+1):
for i in range(s+1,n):
ans.append(s+1);ans.append(i+1)
if s+1==n:
ans.append(1)
lbound=l
if ind0>0:
lbound-=prefsum[ind0-1]
if len(ans)>0:
print(*ans[lbound-1:(r-l)+lbound])
else:
print(1)
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.InputMismatchException;
/**
* @author Mubtasim Shahriar
*/
public class MinEu {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader sc = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Solver solver = new Solver();
int t = sc.nextInt();
// int t = 1;
while(t--!=0) {
solver.solve(sc, out);
}
out.close();
}
static long[] sum;
static int n;
static class Solver {
public void solve(InputReader sc, PrintWriter out) {
n = sc.nextInt();
long l = sc.nextLong();
long r = sc.nextLong();
long[] cnt = new long[n+1];
for(int i = 1; i <= n; i++) {
cnt[i] = ((long)(n-i))*2l;
}
sum = new long[n+1];
sum[1] = cnt[1];
for(int i = 2; i <= n; i++) {
sum[i] = sum[i-1]+cnt[i];
}
for(long i = l; i <= r; i++) {
out.print(calc(i) + " ");
}
out.println();
}
private long calc(long i) {
if(i>sum[n]) return 1;
int idx = get(i);
long b = i - sum[idx-1];
if(b%2!=0) return idx;
else return b/2+idx;
}
private int get(long i) {
int l = 1;
int r = n;
int ret = -1;
while(l<=r) {
int mid = (l+r)/2;
if(sum[mid]>=i) {
ret = mid;
r = mid-1;
} else {
l = mid+1;
}
}
return ret;
}
}
static class InputReader {
private boolean finished = false;
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int peek() {
if (numChars == -1) {
return -1;
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
return -1;
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String nextString() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
if (Character.isValidCodePoint(c)) {
res.appendCodePoint(c);
}
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuilder buf = new StringBuilder();
int c = read();
while (c != '\n' && c != -1) {
if (c != '\r') {
buf.appendCodePoint(c);
}
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0) {
s = readLine0();
}
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines) {
return readLine();
} else {
return readLine0();
}
}
public BigInteger readBigInteger() {
try {
return new BigInteger(nextString());
} catch (NumberFormatException e) {
throw new InputMismatchException();
}
}
public char nextCharacter() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
return (char) c;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E') {
return res * Math.pow(10, nextInt());
}
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E') {
return res * Math.pow(10, nextInt());
}
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public boolean isExhausted() {
int value;
while (isSpaceChar(value = peek()) && value != -1) {
read();
}
return value == -1;
}
public String next() {
return nextString();
}
public SpaceCharFilter getFilter() {
return filter;
}
public void setFilter(SpaceCharFilter filter) {
this.filter = filter;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
public int[] nextIntArray(int n){
int[] array=new int[n];
for(int i=0;i<n;++i)array[i]=nextInt();
return array;
}
public int[] nextSortedIntArray(int n){
int array[]=nextIntArray(n);
Arrays.sort(array);
return array;
}
public int[] nextSumIntArray(int n){
int[] array=new int[n];
array[0]=nextInt();
for(int i=1;i<n;++i)array[i]=array[i-1]+nextInt();
return array;
}
public long[] nextLongArray(int n){
long[] array=new long[n];
for(int i=0;i<n;++i)array[i]=nextLong();
return array;
}
public long[] nextSumLongArray(int n){
long[] array=new long[n];
array[0]=nextInt();
for(int i=1;i<n;++i)array[i]=array[i-1]+nextInt();
return array;
}
public long[] nextSortedLongArray(int n){
long array[]=nextLongArray(n);
Arrays.sort(array);
return array;
}
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python3
|
for nt in range(int(input())):
w,a,b=map(int,input().split())
if w==2:
l=[1,2,1]
print (*l[a-1:b])
continue
k=w
prev=0
for j in range(a,b+1):
i=j-prev
while k>1:
if i<=2*(k-1):
if i%2:
print (w-k+1,end=" ")
else:
print (i//2+(w-k+1),end=" ")
break
else:
i-=2*(k-1)
prev+=2*(k-1)
k-=1
if k==1:
print (1,end=" ")
print ()
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python2
|
import sys
range = xrange
input = raw_input
t = int(input())
for _ in range(t):
n,l,r = [int(x) for x in input().split()]
l -= 1
ind = l
val = 1
ans = []
while len(ans) < r - l:
while ind >= 2 * (n - val) and val < n:
ind -= 2 * (n - val)
val += 1
if val == n:
ans += [1]
else:
ans += [val if i & 1 == 0 else val + (i + 1)//2 for i in range(2 * (n - val))][ind:]
val += 1
ind = 0
print ' '.join(str(x) for x in ans[:r-l])
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python3
|
from sys import stdin
input = stdin.readline
q = int(input())
for _ in range(q):
n,l,r = map(int,input().split())
tab = [-1,1]
cyk = 0
for i in range(n):
cyk += 2*(n-i-1)
tab.append(cyk + 1)
tab.append(1012809128301279797787789798789798798)
i = 0
start = i
while True:
if tab[i + 1] > l:
start = i
break
else:
i += 1
#zaczynamy od i X i (x+1) ...
ind = l
dlug = 0
koniec = 0
while True:
if koniec:
break
target = tab[start+1]
while ind < target:
if koniec:
break
if ind == (n*(n-1) + 1):
print(1, end = " ")
dlug += 1
else:
dlug += 1
if ind%2==1:
print(i, end = " ")
else:
print(n-((target-ind)-1)//2, end = " ")
ind += 1
if dlug >= (r-l+1):
koniec = 1
start += 1
i += 1
print()
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python3
|
t=int(input())
for _ in range(t):
n,l,r=map(int,input().split())
L=[0]
tt=2*(n-1)
for i in range(n):
L.append(tt)
tt-=2
L[-1]=1
temp=0
ct=r-l+1
c=0
tot=0
for i in range(1,len(L)):
if(tot+L[i]<l):
tot+=L[i]
else:
rem=l-tot
p1=i
p2=rem//2
if(rem%2!=0):
p2+=1
temp=1
p2+=i
break
if(temp==0):
print(p2,end=" ")
p2+=1
if(p2==n+1):
p1+=1
if(p1==n):
p1=1
p2=p1+1
c+=1
if(p1==n):
p1=1
while(c<ct):
print(p1,end=" ")
c+=1
if(c==ct):
break
print(p2,end=" ")
c+=1
p2+=1
if(p2==n+1):
p1+=1
if(p1==n):
p1=1
p2=p1+1
print(" ")
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long v[100010];
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int t;
cin >> t;
while (t--) {
long long n, l, r;
cin >> n >> l >> r;
for (int i = 1; i < n; ++i) v[i] = 2 * (n - i);
v[n] = 1;
for (int i = 1; i <= n; ++i) v[i] += v[i - 1];
int a = 0, b = n + 1;
while (b - a > 1) {
int mid = (a + b) / 2;
if (v[mid] >= l)
b = mid;
else
a = mid;
}
long long current = v[a];
long long pos = a + 1;
while (current < l) {
current += 2;
pos++;
}
bool flag = current != l;
long long lim = 1ll * n * (n - 1) + 1;
for (long long i = l; i <= min(lim - 1, r); ++i) {
if (flag)
cout << a + 1 << " ";
else
cout << pos++ << " ";
if (pos > n) {
a++;
pos = a + 2;
}
flag ^= 1;
}
if (lim == r) cout << "1";
cout << "\n";
}
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.io.*;
import java.util.*;
public class ER85D {
public static void main(String[] args) throws Exception {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringBuilder out = new StringBuilder();
int T = Integer.parseInt(in.readLine());
for (int t = 0; t < T; t++) {
StringTokenizer tok=new StringTokenizer(in.readLine());
long N=Long.parseLong(tok.nextToken()),
L=Long.parseLong(tok.nextToken())-1,
R=Long.parseLong(tok.nextToken())-1;
long nc2=N*(N-1)/2;
//0,1,0,2,0,3,...,0,N-1
//1,2,1,3,1,4,....1,N-1
//2,3,2,4,2,5,...,2,N-1
//3,4,3,5,...
//...
//N-2,N-1
//0
//--> (0,1),(0,2),(0,3),...,(0,N-1)
// (1,2),(1,3),...,(1,N-1)
// (2,3),...
// ...
// (N-2,N-1)
// 0
//(0,i+1) for i in [0,N-1)
//(1,i+2) for i in [0,N-2)
long A=L/2, B=R/2;
//if (A<nc2) {
List<long[]> pairs=new ArrayList<>();
if (A<nc2)
pairs.add(pair(N,A));
for (long i=A+1; i<=B && i<nc2; i++) {
long[] prev=pairs.get(pairs.size()-1);
long[] cur=prev.clone();
cur[1]++;
if (cur[1]==N) {
cur[0]++;
cur[1]=cur[0]+1;
}
pairs.add(cur);
}
/*System.out.println(N+" "+L+" "+R+" "+A+" "+B);
for (long[] a:pairs)
System.out.println(Arrays.toString(a));*/
//pairs.get(j) represents idxs 2*(A+j),2*(A+j)+1
for (long i=L; i<=R; i++) {
if (i/2<nc2) {
long pi = i / 2 - A;//(i-L)/2;
//2*(A+j) or 2*(A+j)+1==i
//A+j==i/2
//System.out.println("pi="+pi);
out.append(pairs.get((int) pi)[(int) (i % 2)]+1);
}
else
out.append(1);
out.append(i<R?" ":"\n");
}
//if (B<nc2) {
//long[] lp = pair(N, A);//, rp = pair(N, B);
//}
//}
}
System.out.print(out);
/*int N=50;
for (int i=0; i<N*(N-1)/2; i++)
System.out.println(Arrays.toString(pair(N,i)));*/
}
private static long[] pair(long N, long idx) {
long a=0;
long cnt=0;
while (cnt+N-1-a<=idx) {
cnt+=N-1-a;
a++;
}
return new long[] {a,a+1+idx-cnt};
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.io.*;
import java.util.*;
import java.util.zip.Adler32;
public class Contest1 {
static long[]memo;
static long[]cc;
static long[][]a;
static long dp(int idx){
if (idx>=a.length)
return 0;
if (memo[idx]!=-1)
return memo[idx];
long ans = Math.max(0,a[idx][0]-a[idx-1][1])+dp(idx+1);
return memo[idx]=ans;
}
static void clac(){
cc[0]=a[0][0];
for (int j =1;j<a.length;j++){
cc[j]=Math.max(0,a[j][0]-a[j-1][1])+cc[j-1];
}
}
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int t = sc.nextInt();
while (t-->0){
int n = sc.nextInt();
long l = sc.nextLong();
long r = sc.nextLong();
long ss=-1;
long ee=-1;
ArrayList<Integer>gen = new ArrayList<>();
long here=0;
for (int i =1;i<n;i++){
long cur = 2*(n-i);
if (cur+here>=l){
if (ss==-1) {
ss = here + 1;
here += cur;
ee = here;
for (int f = i + 1; f <= n; f++) {
gen.add(i);
gen.add(f);
}
}
else if (here<r){
here += cur;
ee = here;
for (int f = i + 1; f <= n; f++) {
gen.add(i);
gen.add(f);
}
}
else here+=cur;
}
else {
here += cur;
}
}
if (ee<r){
if (ss==-1) {
ss = here + 1;
ee=here;
}
ee++;
gen.add(1);
}
// System.err.println(ss+" "+ee);
int start= (int)(l-ss);
int end = (int) (start+(r-l+1));
for (;start<end;start++)
pw.print(gen.get(start)+" ");
pw.println();
}
pw.flush();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
void solve() {
long long n, l, r;
cin >> n >> l >> r;
long long printed = 0;
long long num = 0;
while (printed < l) {
num++;
printed += (2 * (n - num));
if (num == n - 1) {
break;
}
}
printed -= 2 * (n - num);
num--;
vector<int> nums;
while (nums.size() < r - printed) {
for (int q = num + 2; q <= n; q++) {
nums.push_back(num + 1);
nums.push_back(q);
}
num++;
if (num == n - 1) {
nums.push_back(1);
}
}
for (int q = l - printed - 1; q <= r - printed - 1; q++) {
cout << nums[q] << " ";
}
cout << "\n";
}
int main() {
int t;
cin >> t;
for (int q = 0; q < t; q++) {
solve();
}
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python3
|
import bisect
t=int(input())
for _ in range(t):
n,l,r=map(int,input().split())
ans=[]
sums=[]
tmp=0
for i in range(n-1,0,-1):
tmp+=i
sums.append(tmp)
for i in range(l-1,r):
if i%2==0:
k=i//2
g=bisect.bisect_right(sums,k)
tmp=0
if g==n-1:
ans.append(1)
else:
ans.append(g+1)
else:
k=(i-1)//2
g=bisect.bisect_right(sums,k)
tmp=(g*(2*(n-1)-(g-1)))//2
ans.append(2+g+k-tmp)
print(*ans)
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
long long q, n, i, j, sum, sum2, l, r, pos;
cin >> q;
while (q--) {
cin >> n >> l >> r;
sum = 1;
for (i = 1; i <= n; i++) {
sum2 = max((n - 1 - i), 0 * 1LL) + (n - i) + 1;
if (sum + sum2 >= l) {
pos = i;
while (sum <= r && pos < n) {
for (j = pos + 1; j <= n - 1; j++) {
if (sum >= l && sum <= r) cout << pos << " ";
sum++;
if (sum >= l && sum <= r) cout << j << " ";
sum++;
}
if (sum >= l && sum <= r) cout << pos << " ";
sum++;
if (sum >= l && sum <= r) cout << n << " ";
sum++;
pos++;
}
if (sum <= r) cout << 1 << " ";
break;
} else
sum += sum2;
}
cout << '\n';
}
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const long long maxn = 2e5 + 100;
const long long mod = 1e9 + 7;
const long long inf = 1e18;
long long q, n, l, r, s, t;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
;
cin >> q;
while (q--) {
cin >> n >> l >> r;
s = 0;
t = 1;
for (long long i = 1; i <= n; i++) {
s += 2 * (n - i);
if (s >= l) {
s -= 2 * (n - i);
t = i;
break;
}
}
bool f = 0;
if (r == n * (n - 1) + 1) f = 1, r--;
while (s < r) {
for (long long i = t + 1; i <= n; i++) {
if (++s >= l) cout << t << " ";
if (s == r) break;
if (++s >= l) cout << i << " ";
if (s == r) break;
}
t++;
}
if (f) cout << 1;
cout << '\n';
}
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.util.*;
import java.io.*;
public class D1334 {
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int t = sc.nextInt();
while(t-->0) {
int n = sc.nextInt();
long l = sc.nextLong(), r = sc.nextLong();
int i;
long c = 0;
for(i = 1; i < n; i++) {
c += 2l * (n - i);
if(l <= c) {
c -= 2l * (n - i);
break;
}
}
if(i == n) {
pw.println("1");
continue;
}
long max = c + 2l * (n - i);
StringBuilder sb = new StringBuilder("");
for(long j = l; j <= r; j++) {
if(j > max) {
if(i == n - 1) {
sb.append("1 ");
break;
} else {
c += 2l * (n - i);
i++;
max += 2l * (n - i);
}
}
if(j % 2 == 1) {
sb.append(i + " ");
} else {
sb.append((i + (1l * (j - c) / 2)) + " ");
}
}
pw.println(sb.substring(0, sb.length() - 1));
}
pw.flush();
}
public static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream system) {
br = new BufferedReader(new InputStreamReader(system));
}
public Scanner(String file) throws Exception {
br = new BufferedReader(new FileReader(file));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String nextLine() throws IOException {
return br.readLine();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public char nextChar() throws IOException {
return next().charAt(0);
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public int[] nextIntArray(int n) throws IOException {
int[] array = new int[n];
for (int i = 0; i < n; i++)
array[i] = nextInt();
return array;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] array = new Integer[n];
for (int i = 0; i < n; i++)
array[i] = new Integer(nextInt());
return array;
}
public long[] nextLongArray(int n) throws IOException {
long[] array = new long[n];
for (int i = 0; i < n; i++)
array[i] = nextLong();
return array;
}
public double[] nextDoubleArray(int n) throws IOException {
double[] array = new double[n];
for (int i = 0; i < n; i++)
array[i] = nextDouble();
return array;
}
public boolean ready() throws IOException {
return br.ready();
}
public void waitForInput() throws InterruptedException {
Thread.sleep(3000);
}
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(0);
size_t T;
cin >> T;
while (T--) {
long long int n, l, r;
cin >> n >> l >> r;
long long int t = 1;
long long int k = 1;
while (k < l && t != n) {
k += 2 * (n - t++);
}
if (k > l) {
k -= 2 * (n - --t);
}
if (t == n) {
cout << 1 << endl;
continue;
}
long long int difference = l - k;
long long int c = difference / 2 + t + 1;
if (difference % 2) {
cout << c << " ";
++l;
difference = l - k;
c = difference / 2 + t + 1;
if (c > n) {
c = ++t + 1;
if (t == n) {
cout << 1 << endl;
break;
}
}
}
if (difference % 2 == 0) {
long long int current = l;
while (current <= r) {
cout << t << " ";
++current;
if (current <= r) {
cout << c++ << " ";
++current;
if (c > n) {
c = ++t + 1;
if (t == n) {
if (current <= r) cout << 1;
break;
}
}
}
}
}
cout << endl;
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 10;
using ll = long long;
long long arr[N];
ll n;
int solve(ll x) {
if (x == n * (n - 1) + 1) {
return 1;
}
auto p = lower_bound(arr + 1, arr + n + 1, x) - arr - 1;
x -= arr[p];
if (x & 1) {
return p + 1;
}
return (p + 1 + x / 2);
}
int main() {
int T;
cin >> T;
while (T--) {
ll l, r;
cin >> n >> l >> r;
for (int i = 1; i <= n; i++) {
arr[i] = arr[i - 1] + 2 * (n - i);
}
for (ll i = l; i <= r; i++) {
cout << solve(i) << " ";
}
cout << "\n";
}
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.io.*;
import java.util.*;
import java.math.*;
import java.lang.*;
import static java.lang.Math.*;
public class Solution implements Runnable
{
static class InputReader
{
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int read()
{
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars)
{
curChar = 0;
try
{
numChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
public int nextInt()
{
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
int res = 0;
do
{
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.')
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.')
{
c = read();
double m = 1;
while (!isSpaceChar(c))
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString()
{
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next()
{
return readString();
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
public static void main(String args[]) throws Exception
{
new Thread(null, new Solution(),"Main",1<<27).start();
}
public static long gcd(long a, long b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
public static long findGCD(long arr[], int n)
{
long result = arr[0];
for (int i = 1; i < n; i++)
result = gcd(arr[i], result);
return result;
}
static void sortbycolumn(int[][] arr, int col) {
Arrays.sort(arr, new Comparator<int[]>() {
public int compare(final int[] entry1, final int[] entry2) {
if (entry1[col] > entry2[col]) return 1;
if (entry1[col] < entry2[col]) return -1;
return 0;
}
});
}
public void run()
{
InputReader in = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
int t=in.nextInt();
while(t--!=0)
{
int n=in.nextInt();
long l=in.nextLong();
long r=in.nextLong();
if(n==1){
w.println("1");
continue;
}
else if(n==2){
if(l==1 && r==1) w.println("1");
else if(l==1 && r==2) w.println("1 2");
else if(l==1 && r==3) w.println("1 2 1");
else if(l==2 && r==2) w.println("2");
else if(l==2 && r==3) w.println("2 1");
else if(l==3 && r==3) w.println("1");
continue;
}
int e=0;
long g=0;
int flag=0;
for(int i=n-1;i>0;i--){
if((l-(long)2*i)<=0){
e=i;
flag=1;
break;
}
else{
l=(l-(long)(2*i));
r=(r-(long)(2*i));
}
}
if(flag==0){
w.println("1");
continue;
}
e=n-e;
if(l%2==0){
g=(l/2+e);
}
else{
g=((l+1)/2)+e;
}
// w.println(l);
// w.println(e);
// w.println(g);
for(long i=l;i<=r;i++){
if(i%2==0){
w.print(g+" ");
g++;
if(g>n){
e++;
if(e==n)
e=1;
g=e+1;
}
}
else
w.print(e+" ");
}
w.println();
}
w.flush();
w.close();
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
int t;
cin >> t;
for (int i = (0); i < (t); i += 1) {
long long n, l, r;
cin >> n >> l >> r;
bool z = false;
if (r == n * (n - 1) + 1) {
r--;
z = true;
}
vector<int> arr;
long long cnt = 0;
bool stop = false;
for (int j = (1); j < (n + 1); j += 1) {
if (cnt + (2 * (n - j)) < l) {
cnt += (2 * (n - j));
continue;
} else {
for (int a = (j); a < (n + 1); a += 1) {
if (stop) break;
for (int k = (a + 1); k < (n + 1); k += 1) {
cnt++;
if (cnt > r) {
stop = true;
break;
}
if (cnt >= l) {
arr.push_back(a);
}
cnt++;
if (cnt > r) {
stop = true;
break;
}
if (cnt >= l) {
arr.push_back(k);
}
}
}
break;
}
}
if (z) arr.push_back(1);
for (int j = (0); j < (arr.size()); j += 1) cout << arr[j] << " ";
cout << "\n";
}
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
int t;
ll n, st, dr;
cin >> t;
while (t--) {
cin >> n >> st >> dr;
int deAfisat = 0;
if (dr == n * (n - 1) + 1) {
deAfisat = 1;
dr--;
}
if (st == 1 && dr == 1) {
cout << 1 << '\n';
continue;
}
if (dr < st) {
cout << 1 << '\n';
continue;
}
ll i;
for (i = 1;; i++) {
if (2 * (n - i) >= st) break;
st -= 2 * (n - i);
dr -= 2 * (n - i);
}
ll j = i + (st - 1) / 2 + 1;
if (st % 2 == 0) {
cout << j << ' ';
dr--;
} else {
cout << i << ' ' << j << ' ';
dr -= 2;
}
j++;
if (j == n + 1) {
i++;
j = i + 1;
}
while (dr >= st) {
if (dr == st) {
cout << i << ' ';
break;
}
cout << i << ' ' << j << ' ';
dr -= 2;
j++;
if (j == n + 1) {
i++;
j = i + 1;
}
}
if (deAfisat) cout << 1;
cout << '\n';
}
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.io.*;
import java.util.HashMap;
import java.util.Map;
import java.util.StringTokenizer;
import java.util.TreeSet;
/**
* Created by Katushka on 11.03.2020.
*/
public class C {
static int[] readArray(int size, InputReader in) {
int[] a = new int[size];
for (int i = 0; i < size; i++) {
a[i] = in.nextInt();
}
return a;
}
static long[] readLongArray(int size, InputReader in) {
long[] a = new long[size];
for (int i = 0; i < size; i++) {
a[i] = in.nextLong();
}
return a;
}
public static void main(String[] args) throws FileNotFoundException {
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
int t = in.nextInt();
for (int k = 0; k < t; k++) {
int n = in.nextInt();
long l = in.nextLong();
long r = in.nextLong();
long i = 1;
long s = 0;
long kk = 0;
while (s < l && i > 0) {
kk++;
i = n - kk + n - kk;
s += i;
}
long s0 = s - i;
long j = s0 + 1;
long a = kk;
long j1 = 0;
StringBuilder ans = new StringBuilder();
while (j <= r) {
if (j == ((long) n) * (n - 1) + 1) {
a = 1;
}
if (j >= l) {
ans.append(a).append(' ');
}
j++;
j1++;
if (j1 >= i) {
kk++;
i = n - kk + n - kk;
j1 = 0;
a = kk;
} else {
if (j1 == i - 1) {
a = n;
} else if (j1 % 2 == 0) {
a = kk;
} else {
a = kk + j1 / 2 + 1;
}
}
}
out.println(ans.toString());
}
out.close();
}
private static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public String nextString() {
try {
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public char nextChar() {
return next().charAt(0);
}
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class Main {
static Parser parser = new Parser();
public static void main(String[] args) throws IOException {
int T = parser.parseInt();
for(int i = 0; i < T; i++){
solve();
}
}
static void solve() throws IOException{
int n = parser.parseInt();
long l = parser.parseLong();
long r = parser.parseLong();
int idx = 1;
long curr = 0;
while(curr + (n - idx) * 2 < l){
if(idx == n){
break;
}
curr += (n - idx) * 2;
idx += 1;
}
List<Integer> cycle = new ArrayList<>();
while(cycle.size() < r - curr + 1){
if(idx == n){
break;
}
for(int i = idx + 1; i <= n; i++){
cycle.add(idx);
cycle.add(i);
}
idx += 1;
}
cycle.add(1);
for(long i = l; i <= r; i++){
System.out.printf("%d ", cycle.get((int)(i - curr - 1)));
}
System.out.println();
}
}
class Parser {
private static final BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
private static final Iterator<String> stringIterator = br.lines().iterator();
private static final Deque<String> inputs = new ArrayDeque<>();
void fill() throws IOException {
if(inputs.isEmpty()){
if(!stringIterator.hasNext()) throw new IOException();
inputs.addAll(Arrays.asList(stringIterator.next().split(" ")));
}
}
Integer parseInt() throws IOException {
fill();
if(!inputs.isEmpty()) {
return Integer.parseInt(inputs.pollFirst());
}
throw new IOException();
}
Long parseLong() throws IOException {
fill();
if(!inputs.isEmpty()) {
return Long.parseLong(inputs.pollFirst());
}
throw new IOException();
}
Double parseDouble() throws IOException {
fill();
if(!inputs.isEmpty()) {
return Double.parseDouble(inputs.pollFirst());
}
throw new IOException();
}
String parseString() throws IOException {
fill();
return inputs.pollFirst();
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python2
|
for _ in range(input()):
n,l,r = map(int,raw_input().split())
i = 1
s = 0
while s+(n-i)*2<l:
s+=(n-i)*2
i+=1
if n==i and s<l:
s+=1
break
c = 0
j = i+1
while c<(r-l+1):
if c==0:
for x in range(1,2*(n-i)+1):
if x+s<l:
if x%2==0:
j+=1
continue
if c<(r-l+1):
if x%2:
print i,
else:
print j,
j+=1
c+=1
else:
for x in range(1,2*(n-i)+1):
if c<(r-l+1):
if x%2:
print i,
else:
print j,
j+=1
c+=1
if c==r-l and r==n*(n-1)+1:
print 1,
break
i+=1
j = i+1
print
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using ll = long long;
using namespace std;
const ll N = 2e5 + 5, mod = 1e9 + 7;
const ll inf = 1e18;
struct cmp {
bool operator()(pair<int, int> a, pair<int, int> b) {
if (a.first == b.first) return a.second < b.second;
return a.first > b.first;
}
};
ll power(ll x, ll p) {
ll r = 1ll;
x = x % mod;
while (p > 0) {
if (p & 1) r = (r * x) % mod;
p = p >> 1;
x = (x * x) % mod;
}
return r;
}
void solve() {
ll n, l, r;
cin >> n >> l >> r;
ll firstrow = n + (n - 2);
ll ele = 0, i = 0;
bool edge = 0;
while (ele < l) {
if (firstrow - 2ll * i > 0)
ele += firstrow - 2ll * i;
else {
ele++;
edge = 1;
}
i++;
}
if (!edge) ele -= firstrow - 2ll * (i - 1);
bool flag = 0;
ll j = 1;
if (!edge) ele++;
while (ele <= r) {
ll ans;
if (flag == 0)
ans = i;
else {
ans = i + j;
j++;
}
flag = 1 - flag;
if (ele >= l && !edge) cout << ans << " ";
if (edge) {
cout << 1 << endl;
return;
}
if (i + j - 1 >= n) {
i++;
j = 1;
flag = 0;
if (i >= n) i = 1;
}
ele++;
}
cout << endl;
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
int t = 1, p;
cin >> t;
for (p = 1; p <= t; p++) {
solve();
}
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python3
|
import sys;input=sys.stdin.readline
t, = map(int, input().split())
def gen(k):
return [k+(i+1)//2 if i%2 else k for i in range(2*(n-k))]
for _ in range(t):
n, s, e = map(int, input().split())
k, sm = 0, 0
while sm < s and k < n-1:
k += 1
sm += 2*(n-k)
if sm < s:
k+=1
k2, sm2 = 0, 0
while sm2 < e and k2 < n-1:
k2 += 1
sm2 += 2*(n-k2)
if sm2 < e:
k2+=1
if k == n:
print(1)
elif k == k2:
L = gen(k)
tt, tt2 = sm-2*(n-k), sm2-2*(n-k2)
print(*L[s-tt-1:e-tt2])
else:
tt, tt2 = sm-2*(n-k), sm2-2*(n-k2)
L = gen(k)[s-tt-1:]
L2 = gen(k2)[:e-tt2]
for l in range(k+1, k2):
L += gen(l)
L += L2
if k2 == n:
L.append(1)
print(*L)
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python3
|
from collections import *
import sys
try: inp = raw_input
except: inp = input
def err(s):
sys.stderr.write('{}\n'.format(s))
def ni():
return int(inp())
def nl():
return [int(_) for _ in inp().split()]
def solve():
n, L, R = nl()
L -= 1
R -= 1
SM = 0
out = []
for i in range(1, n):
no = (n - i)*2
if no + SM <= L:
SM += no
continue
if SM > R: continue
ARR = [i if j%2 == 0 else i + j//2 + 1 for j in range(no)]
start = max(0, L - SM)
end = R - SM + 1
out.extend(ARR[start:end])
SM += no
if R == SM:
out.append(1)
print(' '.join(map(str, out)))
T = ni()
for _ in range(T):
solve()
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const long long INF = 1e13 + 5;
const int mod = 1e9 + 7;
const int maxn = 1e5 + 5;
long long n, l, r, s[maxn];
int calc(long long x) {
if (x > s[n - 1]) return 1;
long long a = lower_bound(s + 1, s + n, x) - s;
long long b = x - s[a - 1];
if (b % 2)
return a;
else
return b / 2 + a;
}
int main() {
int T;
cin >> T;
while (T--) {
cin >> n >> l >> r;
for (int i = 1; i <= n; i++) s[i] = s[i - 1] + 2 * (n - i);
for (long long i = l; i <= r; i++) {
cout << calc(i) << " ";
}
puts("");
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python3
|
import sys
d = []
def bins(k, n):
l = 0
r = n-2
while l != r:
mid = (l+r+1)//2
if d[mid] <= k:
l = mid
else:
r = mid-1
# print("debug:", l)
ex = k - d[l]
if ex &1:
f = ex//2
return f + l + 2
else:
return l+1
for q in range(int(sys.stdin.readline())):
n, l, r = [int(j) for j in sys.stdin.readline().split()]
mx = n*(n-1)
d = [0]*(n-1)
for i in range(1, n-1):
d[i] = d[i-1] + 2*(n-i)
# print(d[-15:])
ret = []
# print("degug2:",bins(9998900028, n),bins(9998900029, n), bins(9998900030, n), bins(9998900031, n) )
for i in range(l-1, r):
ret.append(str(bins(0 if i == mx else i, n)))
sys.stdout.write(" ".join(ret) + '\n')
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.util.*;
import java.util.stream.*;
import java.io.*;
import java.math.*;
public class Main {
static boolean FROM_FILE = false;
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
if (FROM_FILE) {
try {
br = new BufferedReader(new FileReader("input.txt"));
} catch (IOException error) {
}
} else {
br = new BufferedReader(new InputStreamReader(System.in));
}
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static int max(int... nums) {
int res = Integer.MIN_VALUE;
for (int num: nums) res = Math.max(res, num);
return res;
}
static int min(int... nums) {
int res = Integer.MAX_VALUE;
for (int num: nums) res = Math.min(res, num);
return res;
}
static long max(long... nums) {
long res = Long.MIN_VALUE;
for (long num: nums) res = Math.max(res, num);
return res;
}
static long min(long... nums) {
long res = Long.MAX_VALUE;
for (long num: nums) res = Math.min(res, num);
return res;
}
static FastReader fr = new FastReader();
static PrintWriter out;
public static void main(String[] args) {
if (FROM_FILE) {
try {
out = new PrintWriter(new FileWriter("output.txt"));
} catch (IOException error) {
}
} else {
out = new PrintWriter(new OutputStreamWriter(System.out));
}
new Main().run();
out.flush();
out.close();
}
long getLevel(long n, long idx) {
for (long i = 1; i <= n; i += 1) {
if ((2 * n - 1 - i) * i >= idx) return i;
}
return -1;
}
void run() {
int t = fr.nextInt();
while (t-- > 0) {
long n = fr.nextLong(), l = fr.nextLong(), r = fr.nextLong();
if (l == n * (n - 1) + 1) {
out.println(1);
continue;
}
int len = (int)(r - l) + 1;
long[] res = new long[len];
int idx = 0;
long k = getLevel(n, l), pre = (2 * n - 1 - (k - 1)) * (k - 1), col = k + (l - pre) / 2;
if ((l - pre) % 2 == 0) res[idx++] = col;
// out.println(col);
for (long i = col + 1; i <= n && idx + 1 < len; i += 1) { res[idx++] = k; res[idx++] = i; }
// out.println(Arrays.toString(res));
boolean finalOne = false;
if (r == n * (n - 1) + 1) {
r -= 1;
finalOne = true;
}
long k2 = getLevel(n, r);
// out.println(k + " " + k2);
for (long level = k + 1; level < k2; level += 1) {
for (long i = level + 1; i <= n; i += 1) { res[idx++] = level; res[idx++] = i; }
}
// out.println(Arrays.toString(res));
long last_x = k2, last_y = last_x + 1;
while (idx + 1 < len) {
res[idx++] = last_x;
res[idx++] = last_y++;
}
if (idx < len) {
res[idx] = finalOne ? 1 : last_x;
}
out.println(LongStream.of(res).mapToObj(e -> "" + e).collect(Collectors.joining(" ")));
}
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.util.Scanner;
public class D {
public static void main(String[] args) {
Scanner file = new Scanner(System.in);
int inputs = file.nextInt();
while(inputs-->0) {
int n = file.nextInt();
long l = file.nextLong();
long r = file.nextLong();
long[] changes = new long[n+1];
changes[1] = 2*(n-1);
for(int i = 2; i <= n; i++) {
changes[i] = changes[i-1] + Math.max(2*(n-i), 1);
}
int level = 1;
while(l > changes[level])
level++;
long curr = (l-changes[level-1]+1)/2+level;
StringBuilder ans = new StringBuilder();
for(long index = l; index <= r; index++) {
if(index == changes[n])
ans.append(1);
else {
if(index > changes[level]) {
level++;
curr = level+1;
}
if(index % 2 == 0) {
ans.append(curr + " ");
curr++;
}
else {
ans.append(level + " ");
}
}
}
System.out.println(ans);
}
file.close();
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python3
|
for t in range(int(input())):
n,l,r=map(int,input().split())
b=1
for i in range(1,n):
a=b
b+=2*(n-i)
if l<b:
break
x,y=i,(l-a)//2+i+1
b=(l-a)%2
for _ in range(r-l):
if b:
print(y,end=" ")
y+=1
if y==n+1:
x+=1
y=x+1
else:
print(x,end=" ")
b^=1
if r==n*(n-1)+1:
print(1)
else:
print(y if b else x)
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
/*
*created by Kraken on 02-05-2020 at 14:27
*/
//package com.kraken.cf.practice;
import java.util.*;
import java.io.*;
public class D1334 {
public static void main(String[] args) {
FastReader sc = new FastReader();
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
long l = sc.nextLong(), r = sc.nextLong();
long[] block = new long[n + 1];
block[0] = 0;
for (int i = 1; i <= n; i++) block[i] = 2 * (n - i) + block[i - 1];
block[n] += 2;
// System.out.println(Arrays.toString(block));
long left = findBlock(block, l);
long right = findBlock(block, r);
// System.out.printf("left: %d, right: %d\n", left, right);
long curr = left;
ArrayList<Long> path = new ArrayList<>();
while (curr <= right) {
for (long i = curr + 1; i <= n; i++) {
path.add(curr);
path.add(i);
}
curr++;
}
if (right == n) path.add(1L);
// System.out.println(path.toString());
StringBuilder sb = new StringBuilder();
long lidx = l - block[(int) (left - 1)] - 1;
for (int i = 0; i < r - l + 1; i++) {
sb.append(path.get((int) (lidx + i))).append(" ");
}
System.out.println(sb.toString());
}
}
private static int findBlock(long[] a, long key) {
int l = 1, r = a.length - 1;
while (l < r) {
int mid = l + (r - l) / 2;
if (a[mid] >= key) r = mid;
else l = mid + 1;
}
return r;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long a[1000006];
long long n;
map<long long, long long> mp;
int main() {
long long Q;
cin >> Q;
while (Q--) {
cin >> n;
long long l, r;
cin >> l >> r;
a[0] = (n - 1) * 2;
long long k = a[0] - 2;
long long po = 0;
for (int i = 1; i < 1000006; i++) {
a[i] = a[i - 1] + k;
k -= 2;
if (k == 0) {
po = i + 1;
break;
}
}
long long qq, q = lower_bound(a, a + po, l) - a;
if (q == 0)
qq = 0;
else
qq = a[q - 1] + 1;
long long qqq = a[q] + 1;
q++;
while (l <= r) {
if (l == n * (n - 1) + 1) {
cout << 1;
break;
}
if (l == qqq) {
q = lower_bound(a, a + po, l) - a;
qq = a[q - 1] + 1;
qqq = a[q] + 1;
q++;
cout << q << ' ';
l++;
continue;
}
if (l % 2 == 1)
cout << q << ' ';
else
cout << (l - qq + 1) / 2 + q << ' ';
l++;
}
cout << endl;
}
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python3
|
for _ in range(int(input())):
n, l, r = map(int, input().split())
cursum = 0
curn = n - 1
while curn > 0 and (cursum + (curn << 1)) < l:
cursum += curn << 1
curn -= 1
fix = n - curn
d = False
i = fix
nexti = fix + 1
# print(cursum, l, i, nexti)
for _ in range(cursum + 1, l):
if d:
nexti += 1
if nexti > n:
fix += 1
nexti = fix + 1
i = fix
else:
i = nexti
d ^= True
ans = [i]
for _ in range(l, r):
if d:
nexti += 1
if nexti > n:
fix += 1
nexti = fix + 1
i = fix
else:
i = nexti
ans.append(i)
d ^= True
if r == n * (n - 1) + 1:
ans[-1] = 1
elif nexti > n:
ans[-1] = fix + 1
print(' '.join(map(str, ans)))
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.util.*;
import java.io.*;
public class D {
static class Reader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException {
byte[] buf = new byte[360]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
if (din == null)
return;
din.close();
}
}
public static void main(String[] args) throws IOException {
Reader in = new Reader();
int T = in.nextInt();
for (int i = 0; i < T; i++) {
long n = in.nextLong();
long l = in.nextLong();
long r = in.nextLong();
long idx = 2 * (n - 2) + 1;
if (l - 1 <= idx) {
int anchor = 0;
idx = 0;
long loc = -1;
if ((l - 1 - idx) % 2 == 0)
loc = anchor;
else
loc = anchor + (l - 1 - idx + 1) / 2;
while (anchor == 0 && l <= r) {
if (l - 1 == idx + 2 * (n - 2) + 1) {
idx += 2 * (n - 2) + 1;
anchor++;
loc = n;
System.out.print(n + ((l == r) ? "\n" : " "));
l++;
continue;
}
if ((l - 1 - idx) % 2 == 0) {
loc = anchor;
System.out.print((loc + 1) + ((l == r) ? "\n" : " "));
l++;
continue;
}
loc = anchor + (l - 1 - idx + 1) / 2;
System.out.print((loc + 1) + ((l == r) ? "\n" : " "));
l++;
}
while (l <= r) {
if (l - 1 == n * (n - 1)) {
loc = 1;
System.out.print(1 + ((l == r) ? "\n" : " "));
l++;
continue;
}
if (l - 1 == idx + 2 * (n - anchor - 1)) {
idx += 2 * (n - anchor - 1);
anchor++;
loc = n;
System.out.print(n + ((l == r) ? "\n" : " "));
l++;
continue;
}
if ((l - 1 - idx) % 2 == 1) {
loc = anchor;
System.out.print((loc + 1) + ((l == r) ? "\n" : " "));
l++;
continue;
}
loc = anchor + (l - 1 - idx + 1) / 2;
System.out.print((loc + 1) + ((l == r) ? "\n" : " "));
l++;
}
} else if (l - 1 != n * (n - 1)) {
int anchor = 2;
while (l - 1 > idx) {
idx += 2 * (n - anchor);
anchor++;
}
anchor--;
idx -= 2 * (n - anchor);
long loc = -1;
if (l - 1 - idx == 0)
loc = n;
else if ((l - 1 - idx) % 2 == 1)
loc = anchor;
else
loc = anchor + (l - 1 - idx) / 2;
while (l <= r) {
if (l - 1 == n * (n - 1)) {
loc = 1;
System.out.print(1 + ((l == r) ? "\n" : " "));
l++;
continue;
}
if (l - 1 == idx + 2 * (n - anchor)) {
idx += 2 * (n - anchor);
anchor++;
loc = n;
System.out.print(n + ((l == r) ? "\n" : " "));
l++;
continue;
}
if ((l - 1 - idx) % 2 == 1) {
loc = anchor;
System.out.print(loc + ((l == r) ? "\n" : " "));
l++;
continue;
}
loc = anchor + (l - 1 - idx) / 2;
System.out.print(loc + ((l == r) ? "\n" : " "));
l++;
}
} else {
System.out.println(1);
}
}
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
public class Prac{
static class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
public InputReader(InputStream st) {
this.stream = st;
}
public int read() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
}
catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int ni() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nl() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nia(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = ni();
}
return a;
}
public String rs() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
}
public static class Key {
private final int x;
private final int y;
public Key(int x, int y) {
this.x = x;
this.y = y;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (!(o instanceof Key)) return false;
Key key = (Key) o;
return x == key.x && y == key.y;
}
@Override
public int hashCode() {
int result = x;
result = 31 * result + y;
return result;
}
}
static class Pair{
long x,y,z;
public Pair(long x,long y,long z){
this.x=x;
this.y=y;
this.z=z;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (!(o instanceof Pair)) return false;
Pair key = (Pair) o;
return x == key.x && y == key.y && z==key.z;
}
}
static class Pair1{
long x,y;
public Pair1(long x,long y){
this.x=x;
this.y=y;
}
}
static PrintWriter w = new PrintWriter(System.out);
static long mod=998244353L,mod1=1000000007;
public static void main(String [] args){
InputReader sc=new InputReader(System.in);
int t=sc.ni();
int cou=0;
while(t-->0){
long n=sc.nl(),l=sc.nl(),r=sc.nl();
long i=1,num=n-1,sx=1,sy=1,ran=r-l+1;
while((i+2*num)<l&&num>0){
i+=2*(num);
num--;
sx++;
}
sy=sx+1;
while((i+2)<=l){
i+=2;
sy++;
}
if(i<l){
w.print(sy+" ");
sy++;
ran--;
}
outer:
while(sx<n){
while(sy<=n){
if(ran>0){
w.print(sx+" ");
ran--;
}
else break;
if(ran>0){
w.print(sy+" ");
sy++;
ran--;
}
else break;
}
sx++;
sy=sx+1;
}
if(ran>0)w.print(1);
w.println();
}
w.close();
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
// 21:35.396 + 2:22.250 + 2:29.637
public class cf1334d {
public static void main(String[] args) throws IOException {
int t = ri();
while(t --> 0) {
int n = rni();
long l = nl() - 1, r = nl();
List<Long> ans = new ArrayList<>();
long start = 0;
for(long i = 1; i < n; ++i) {
for(long j = max(start, l); j < start + (n - i) * 2 && j < r; ++j) {
if((j - start) % 2 == 0) {
ans.add(i);
} else {
ans.add(i + (j - start + 1) / 2);
}
}
start += (n - i) * 2;
}
for(long j = max(start++, l); j < start && j < r; ++j) {
ans.add(1L);
}
/* // wrong pattern again
long start = 0;
for(long i = max(start++, l); i < 1 && i < r; ++i) {
ans.add(1L);
}
for(long i = max(start, l); i < start + 2 * (n - 2) && i < r; ++i) {
if(i % 2 == 0) {
ans.add(1L);
} else {
ans.add(2 + i / 2);
}
}
start += 2 * (n - 2);
for(long i = n; i >= 3; --i) {
for(long j = max(start++, l); j < start && j < r; ++j) {
ans.add(i);
}
for(long j = max(start, l), parity = (j - start) % 2; j < start + 2 * (i - 3) && j < r; ++j, parity = 1 - parity) {
if(parity == 0) {
ans.add(2 + (j - start) / 2);
} else {
ans.add(i);
}
}
start += 2 * (i - 3);
}
for(long i = max(start, l); i < start + n - 1 && i < r; ++i) {
ans.add(2 + i - start);
}
start += n - 1;
for(long i = max(start++, l); i < start && i < r; ++i) {
ans.add(1L);
} */
/* // wrong pattern
if(l == 0) {
ans.add(1L);
++l;
}
long ind = 1, start = 1;
while(ind + 2 * start <= l) {
ind += 2 * start++;
}
long st = l - ind;
ind = l;
for(long i = st; i < 2 * start && ind < r; ++i, ++ind) {
if(i % 2 == 0) {
ans.add(start + 1);
} else {
ans.add((i + 1) / 2 == start ? 1 : (i + 3) / 2);
}
}
while(ind < r) {
++start;
for(long i = 0; i < 2 * start && ind < r; ++i, ++ind) {
if(i % 2 == 0) {
ans.add(start + 1);
} else {
ans.add((i + 1) / 2 == start ? 1 : (i + 3) / 2);
}
}
} */
prln(ans);
}
close();
}
static BufferedReader __in = new BufferedReader(new InputStreamReader(System.in));
static PrintWriter __out = new PrintWriter(new OutputStreamWriter(System.out));
static StringTokenizer input;
static Random rand = new Random();
// references
// IBIG = 1e9 + 7
// IRAND ~= 3e8
// IMAX ~= 2e10
// LMAX ~= 9e18
// constants
static final int IBIG = 1000000007;
static final int IRAND = 327859546;
static final int IMAX = 2147483647;
static final int IMIN = -2147483648;
static final long LMAX = 9223372036854775807L;
static final long LMIN = -9223372036854775808L;
// util
static int minof(int a, int b, int c) {return min(a, min(b, c));}
static int minof(int... x) {if(x.length == 1) return x[0]; if(x.length == 2) return min(x[0], x[1]); if(x.length == 3) return min(x[0], min(x[1], x[2])); int min = x[0]; for(int i = 1; i < x.length; ++i) if(x[i] < min) min = x[i]; return min;}
static long minof(long a, long b, long c) {return min(a, min(b, c));}
static long minof(long... x) {if(x.length == 1) return x[0]; if(x.length == 2) return min(x[0], x[1]); if(x.length == 3) return min(x[0], min(x[1], x[2])); long min = x[0]; for(int i = 1; i < x.length; ++i) if(x[i] < min) min = x[i]; return min;}
static int maxof(int a, int b, int c) {return max(a, max(b, c));}
static int maxof(int... x) {if(x.length == 1) return x[0]; if(x.length == 2) return max(x[0], x[1]); if(x.length == 3) return max(x[0], max(x[1], x[2])); int max = x[0]; for(int i = 1; i < x.length; ++i) if(x[i] > max) max = x[i]; return max;}
static long maxof(long a, long b, long c) {return max(a, max(b, c));}
static long maxof(long... x) {if(x.length == 1) return x[0]; if(x.length == 2) return max(x[0], x[1]); if(x.length == 3) return max(x[0], max(x[1], x[2])); long max = x[0]; for(int i = 1; i < x.length; ++i) if(x[i] > max) max = x[i]; return max;}
static int powi(int a, int b) {if(a == 0) return 0; int ans = 1; while(b > 0) {if((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;}
static long powl(long a, int b) {if(a == 0) return 0; long ans = 1; while(b > 0) {if((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;}
static int floori(double d) {return (int)d;}
static int ceili(double d) {return (int)ceil(d);}
static long floorl(double d) {return (long)d;}
static long ceill(double d) {return (long)ceil(d);}
static void shuffle(int[] a) {int n = a.length - 1; for(int i = 0; i < n; ++i) {int ind = randInt(i, n); int swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void shuffle(long[] a) {int n = a.length - 1; for(int i = 0; i < n; ++i) {int ind = randInt(i, n); long swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void shuffle(double[] a) {int n = a.length - 1; for(int i = 0; i < n; ++i) {int ind = randInt(i, n); double swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static <T> void shuffle(T[] a) {int n = a.length - 1; for(int i = 0; i < n; ++i) {int ind = randInt(i, n); T swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void rsort(int[] a) {shuffle(a); sort(a);}
static void rsort(long[] a) {shuffle(a); sort(a);}
static void rsort(double[] a) {shuffle(a); sort(a);}
static int randInt(int min, int max) {return rand.nextInt(max - min + 1) + min;}
// input
static void r() throws IOException {input = new StringTokenizer(__in.readLine());}
static int ri() throws IOException {return Integer.parseInt(__in.readLine());}
static long rl() throws IOException {return Long.parseLong(__in.readLine());}
static int[] ria(int n) throws IOException {int[] a = new int[n]; input = new StringTokenizer(__in.readLine()); for(int i = 0; i < n; ++i) a[i] = Integer.parseInt(input.nextToken()); return a;}
static long[] rla(int n) throws IOException {long[] a = new long[n]; input = new StringTokenizer(__in.readLine()); for(int i = 0; i < n; ++i) a[i] = Long.parseLong(input.nextToken()); return a;}
static char[] rcha() throws IOException {return __in.readLine().toCharArray();}
static String rline() throws IOException {return __in.readLine();}
static int rni() throws IOException {input = new StringTokenizer(__in.readLine()); return Integer.parseInt(input.nextToken());}
static int ni() {return Integer.parseInt(input.nextToken());}
static long rnl() throws IOException {input = new StringTokenizer(__in.readLine()); return Long.parseLong(input.nextToken());}
static long nl() {return Long.parseLong(input.nextToken());}
// output
static void pr(int i) {__out.print(i);}
static void prln(int i) {__out.println(i);}
static void pr(long l) {__out.print(l);}
static void prln(long l) {__out.println(l);}
static void pr(double d) {__out.print(d);}
static void prln(double d) {__out.println(d);}
static void pr(char c) {__out.print(c);}
static void prln(char c) {__out.println(c);}
static void pr(char[] s) {__out.print(new String(s));}
static void prln(char[] s) {__out.println(new String(s));}
static void pr(String s) {__out.print(s);}
static void prln(String s) {__out.println(s);}
static void pr(Object o) {__out.print(o);}
static void prln(Object o) {__out.println(o);}
static void prln() {__out.println();}
static void pryes() {__out.println("yes");}
static void pry() {__out.println("Yes");}
static void prY() {__out.println("YES");}
static void prno() {__out.println("no");}
static void prn() {__out.println("No");}
static void prN() {__out.println("NO");}
static void pryesno(boolean b) {__out.println(b ? "yes" : "no");};
static void pryn(boolean b) {__out.println(b ? "Yes" : "No");}
static void prYN(boolean b) {__out.println(b ? "YES" : "NO");}
static void prln(int... a) {for(int i = 0, len = a.length - 1; i < len; __out.print(a[i]), __out.print(' '), ++i); __out.println(a[a.length - 1]);}
static void prln(long... a) {for(int i = 0, len = a.length - 1; i < len; __out.print(a[i]), __out.print(' '), ++i); __out.println(a[a.length - 1]);}
static <T> void prln(Collection<T> c) {int n = c.size() - 1; Iterator<T> iter = c.iterator(); for(int i = 0; i < n; __out.print(iter.next()), __out.print(' '), ++i); if(n >= 0) __out.println(iter.next());}
static void h() {__out.println("hlfd");}
static void flush() {__out.flush();}
static void close() {__out.close();}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python3
|
import sys
input = sys.stdin.buffer.readline
t = int(input())
for _ in range(t):
n, l, r = map(int, input().split())
s = 1
while l > (n-s)*2+1:
#if s == n:
#break
l -= (n-s)*2
r -= (n-s)*2
s += 1
#print(s, l, r)
if s == n:
ans = [n, 1]
else:
ans = []
while len(ans) <= r:
if s == n:
ans.append(1)
break
for j in range(s+1, n+1):
ans.append(s)
ans.append(j)
s += 1
print(*ans[l-1:r])
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python3
|
import sys
from collections import defaultdict
from copy import copy
R = lambda t = int: t(input())
RL = lambda t = int: [t(x) for x in input().split()]
RLL = lambda n, t = int: [RL(t) for _ in range(n)]
def solve():
n, l, r = RL()
if l == n*(n-1)+1:
print(1)
return
l -= 1
r -= 1
D = ((2*n-1)**2-4*l)**.5
a = (2*n-1-D)/2
a = int(a)
x = a*((n-1)+(n-a))
l -= x
r -= x
i = 0
s = []
a += 1
b = a + 1
while i <= r and a < n:
s += [str(a),str(b)]
b += 1
if b > n:
a += 1
b = a + 1
i += 2
s += "1"
for c in s[l:r+1]:
print(str(c),end = " ")
print()
T = R()
for _ in range(T):
solve()
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.util.*;
import java.io.*;
public class A
{
public static void main(String ar[]) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int t=Integer.parseInt(br.readLine());
for(int p=0;p<t;p++)
{
String s1[]=br.readLine().split(" ");
int n=Integer.parseInt(s1[0]);
long l=Long.parseLong(s1[1]);
long r=Long.parseLong(s1[2]);
int u=1;
long x=0;
while(x<l && u<n)
{
x+=2*n-2*u;
if(x<l)
u++;
else
{ x-=2*n-2*u; break; }
}
//System.out.println(x+" "+u);
StringBuffer sb=new StringBuffer();
while(x<r)
{
for(int i=u+1;i<=n;i++)
{
x++;
if(x>=l && x<=r)
sb.append(u).append(" ");
x++;
if(x>=l && x<=r)
sb.append(i).append(" ");
// if(i!=n || (i==n && u==n-1))
// x++;
// if(i!=n && x>=l && x<=r)
// System.out.println(u);
// if(i==n && u==n-1 && x+1>=l && x+1<=r)
// { System.out.print("1 "); x++; }
}
u++;
if(u>=n && x+1>=l && x+1<=r)
{ sb.append("1 "); x++; }
//System.out.println("fcgjh");
}
//System.out.println(sb);
System.out.println(sb);
}
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long f(long long N, long long x) { return (2 * N - 1 - x) * x; }
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int t;
cin >> t;
while (t--) {
long long N;
cin >> N;
long long l, r;
cin >> l >> r;
long long ng = 0, ok = N;
while (ok - ng > 1) {
long long mid = (ok + ng) / 2;
if (f(N, mid) >= l)
ok = mid;
else
ng = mid;
}
long long p = ok;
long long stage = N - p;
p--;
long long cnt = (l - f(N, p) - 1) / 2,
s = ((l - f(N, p) - 1) % 2 == 0 ? N - stage
: N - stage + cnt + 1);
for (int i = 0; i <= (r - l); i++) {
if (i == r - l && r == N * (N - 1) + 1)
cout << 1;
else
cout << s << " ";
if (s == N - stage) {
s = N - stage + cnt + 1;
} else {
if (cnt == stage - 1) {
stage--;
cnt = 0;
} else
cnt++;
s = N - stage;
}
}
cout << "\n";
}
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
#pragma GCC optimize("O3", "unroll-all-loops")
using namespace std;
ifstream in;
ofstream out;
const long long kk = 1000;
const long long ml = kk * kk;
const long long mod = ml * kk + 7;
const long long inf = ml * ml * ml + 7;
long long n, l, r;
bool viv = false;
vector<long long> v;
void solve() {
cin >> n >> l >> r;
l--, r--;
vector<pair<long long, long long> > v;
for (int i = 0; i < n; i++) {
v.push_back({i, 2 * (n - 1 - i)});
}
long long sl = 0;
vector<long long> ans;
for (int i = 0; i < n; i++) {
long long sr = sl + v[i].second - 1;
if (max(l, sl) <= min(r, sr)) {
vector<long long> loc;
for (int j = 0; j < v[i].second / 2; j++) {
loc.push_back(i);
loc.push_back(i + j + 1);
}
for (int j = 0; j < loc.size(); j++)
if (sl + j >= l && sl + j <= r) ans.push_back(loc[j]);
}
sl = sr + 1;
}
if (r == sl) ans.push_back(0);
for (auto i : ans) cout << i + 1 << ' ';
cout << '\n';
}
int main() {
viv = true;
srand(time(0));
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
long long t = 1;
cin >> t;
while (t--) solve();
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
#pragma GCC optimize("-O3")
using namespace std;
const double PI = acos(-1);
long long gcd() { return 0ll; }
template <typename T, typename... Args>
T gcd(T a, Args... args) {
return __gcd(a, (__typeof(a))gcd(args...));
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
int T;
cin >> T;
while (T--) {
long long n, l, r;
cin >> n >> l >> r;
l--;
r--;
long long a[2 * n - 3];
for (__typeof(2 * n - 3) i = (0) - ((0) > (2 * n - 3));
i != (2 * n - 3) - ((0) > (2 * n - 3));
i += 1 - 2 * ((0) > (2 * n - 3))) {
if (i & 1)
a[i] = 1 + ((i + 1) / 2);
else
a[i] = 1;
}
while (l < (2 * n - 3) && l <= r) cout << a[l++] << " ";
long long st[n - 1], x = 2;
st[n - 2] = n * (n - 1) - 1;
for (__typeof(0) i = (n - 2) - ((n - 2) > (0)); i != (0) - ((n - 2) > (0));
i += 1 - 2 * ((n - 2) > (0))) {
st[i] = st[i + 1] - x;
x += 2;
}
long long j = -1;
while (st[j + 1] < l) j++;
while (l <= r) {
if (l == (n * (n - 1))) {
cout << "1";
break;
}
if (st[j + 1] == l) {
j++;
l++;
cout << n << " ";
continue;
}
if (!(l & 1))
cout << (j + 2) << " ";
else
cout << (j + 2) + (l - st[j]) / 2 << " ";
l++;
}
cout << "\n";
}
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long gcd(long long a, long long b) {
if (b == 0) return a;
return gcd(b, a % b);
}
long long T;
signed main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cin >> T;
while (T--) {
long long n, l, r;
cin >> n >> l >> r;
long long g = n * (n - 1) + 1;
if (l == g - 1) {
if (r == g)
cout << n << " 1" << '\n';
else
cout << "1" << '\n';
continue;
}
if (l == g) {
cout << "1" << '\n';
continue;
}
long long k = (l + 1) / 2, ls = 2, ln, p = 0;
while (p + (n - ls + 1) < k) p += (n - ls + 1), ls++;
ln = ls;
while (p + 1 < k) ln++, p++;
long long lo, los = 1, loo;
p = 0;
k = l / 2 + 1;
while (p + (n - los) < k) p += (n - los), los++;
loo = los;
lo = n - los;
while (p + 1 < k) p++, lo--;
for (long long i = l; i <= r; i++) {
if (i & 1) {
cout << loo << " ";
lo--;
if (!lo) loo++, lo = n - loo;
if (loo == n) loo = 1;
} else {
cout << ln << " ";
if (ln == n) {
ln = (++ls);
} else
ln++;
}
}
cout << '\n';
}
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
template <typename T>
T InvMod(T a, T b, T &x, T &y) {
if (a == 0) {
x = 0;
y = 1;
return b;
}
T x1, y1;
T g = InvMod(b % a, a, x1, y1);
x = y1 - (b / a) * x1;
y = x1;
return g;
}
long long fact(long long n) {
if (n == 1) return 1;
return (n % 1000000007 * fact(n - 1) % 1000000007) % 1000000007;
}
void sieve(vector<int> &v) {
bool arr[1000004];
memset(arr, true, sizeof arr);
for (int i = 2; i * i <= 1000002; i++) {
if (arr[i] == true) {
v.push_back(i);
for (int j = i * i; j <= 1000002; j += i) {
arr[j] = false;
}
}
}
}
bool cmp(pair<int, int> a, pair<int, int> b) { return a.first > b.first; }
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t;
cin >> t;
while (t--) {
long long n, l, r;
cin >> n >> l >> r;
int i = 1;
long long tmp = l;
for (long long j = l; j <= r; j++) {
while (2 * (n - i) < tmp && i <= n) {
tmp -= 2 * (n - i);
i++;
}
if (i > n) {
cout << 1 << " ";
continue;
}
long long rem = tmp;
if (rem % 2 == 1) {
cout << i << " ";
} else {
cout << i + (rem / 2) << " ";
}
tmp++;
}
cout << endl;
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python3
|
#Code by Sounak, IIESTS
#------------------------------warmup----------------------------
import os
import sys
import math
from io import BytesIO, IOBase
from fractions import Fraction
import collections
from itertools import permutations
from collections import defaultdict
from collections import deque
import threading
#sys.setrecursionlimit(300000)
#threading.stack_size(10**8)
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
#-------------------------------------------------------------------------
#mod = 9223372036854775807
class SegmentTree:
def __init__(self, data, default=10**10, func=lambda a, b: min(a,b)):
"""initialize the segment tree with data"""
self._default = default
self._func = func
self._len = len(data)
self._size = _size = 1 << (self._len - 1).bit_length()
self.data = [default] * (2 * _size)
self.data[_size:_size + self._len] = data
for i in reversed(range(_size)):
self.data[i] = func(self.data[i + i], self.data[i + i + 1])
def __delitem__(self, idx):
self[idx] = self._default
def __getitem__(self, idx):
return self.data[idx + self._size]
def __setitem__(self, idx, value):
idx += self._size
self.data[idx] = value
idx >>= 1
while idx:
self.data[idx] = self._func(self.data[2 * idx], self.data[2 * idx + 1])
idx >>= 1
def __len__(self):
return self._len
def query(self, start, stop):
if start == stop:
return self.__getitem__(start)
stop += 1
start += self._size
stop += self._size
res = self._default
while start < stop:
if start & 1:
res = self._func(res, self.data[start])
start += 1
if stop & 1:
stop -= 1
res = self._func(res, self.data[stop])
start >>= 1
stop >>= 1
return res
def __repr__(self):
return "SegmentTree({0})".format(self.data)
class SegmentTree1:
def __init__(self, data, default=10**6, func=lambda a, b: min(a,b)):
"""initialize the segment tree with data"""
self._default = default
self._func = func
self._len = len(data)
self._size = _size = 1 << (self._len - 1).bit_length()
self.data = [default] * (2 * _size)
self.data[_size:_size + self._len] = data
for i in reversed(range(_size)):
self.data[i] = func(self.data[i + i], self.data[i + i + 1])
def __delitem__(self, idx):
self[idx] = self._default
def __getitem__(self, idx):
return self.data[idx + self._size]
def __setitem__(self, idx, value):
idx += self._size
self.data[idx] = value
idx >>= 1
while idx:
self.data[idx] = self._func(self.data[2 * idx], self.data[2 * idx + 1])
idx >>= 1
def __len__(self):
return self._len
def query(self, start, stop):
if start == stop:
return self.__getitem__(start)
stop += 1
start += self._size
stop += self._size
res = self._default
while start < stop:
if start & 1:
res = self._func(res, self.data[start])
start += 1
if stop & 1:
stop -= 1
res = self._func(res, self.data[stop])
start >>= 1
stop >>= 1
return res
def __repr__(self):
return "SegmentTree({0})".format(self.data)
MOD=10**9+7
class Factorial:
def __init__(self, MOD):
self.MOD = MOD
self.factorials = [1, 1]
self.invModulos = [0, 1]
self.invFactorial_ = [1, 1]
def calc(self, n):
if n <= -1:
print("Invalid argument to calculate n!")
print("n must be non-negative value. But the argument was " + str(n))
exit()
if n < len(self.factorials):
return self.factorials[n]
nextArr = [0] * (n + 1 - len(self.factorials))
initialI = len(self.factorials)
prev = self.factorials[-1]
m = self.MOD
for i in range(initialI, n + 1):
prev = nextArr[i - initialI] = prev * i % m
self.factorials += nextArr
return self.factorials[n]
def inv(self, n):
if n <= -1:
print("Invalid argument to calculate n^(-1)")
print("n must be non-negative value. But the argument was " + str(n))
exit()
p = self.MOD
pi = n % p
if pi < len(self.invModulos):
return self.invModulos[pi]
nextArr = [0] * (n + 1 - len(self.invModulos))
initialI = len(self.invModulos)
for i in range(initialI, min(p, n + 1)):
next = -self.invModulos[p % i] * (p // i) % p
self.invModulos.append(next)
return self.invModulos[pi]
def invFactorial(self, n):
if n <= -1:
print("Invalid argument to calculate (n^(-1))!")
print("n must be non-negative value. But the argument was " + str(n))
exit()
if n < len(self.invFactorial_):
return self.invFactorial_[n]
self.inv(n) # To make sure already calculated n^-1
nextArr = [0] * (n + 1 - len(self.invFactorial_))
initialI = len(self.invFactorial_)
prev = self.invFactorial_[-1]
p = self.MOD
for i in range(initialI, n + 1):
prev = nextArr[i - initialI] = (prev * self.invModulos[i % p]) % p
self.invFactorial_ += nextArr
return self.invFactorial_[n]
class Combination:
def __init__(self, MOD):
self.MOD = MOD
self.factorial = Factorial(MOD)
def ncr(self, n, k):
if k < 0 or n < k:
return 0
k = min(k, n - k)
f = self.factorial
return f.calc(n) * f.invFactorial(max(n - k, k)) * f.invFactorial(min(k, n - k)) % self.MOD
mod=10**9+7
omod=998244353
#-------------------------------------------------------------------------
prime = [True for i in range(200001)]
pp=[]
def SieveOfEratosthenes(n=200000):
p = 2
c=0
while (p * p <= n):
if (prime[p] == True):
c+=1
pp.append(p)
for i in range(p * p, n+1, p):
prime[i] = False
p += 1
#---------------------------------Binary Search------------------------------------------
def binarySearch(arr, n, key):
left = 0
right = n-1
mid = 0
res=0
while (left <= right):
mid = (right + left)//2
if (arr[mid] > key):
right = mid-1
else:
res=mid+1
left = mid + 1
return res
#---------------------------------running code------------------------------------------
for _ in range (int(input())):
n,l,r=map(int,input().split())
a=[0]
start=2*(n-1)
while start>0:
a.append(a[-1]+start)
start-=2
a.append(a[-1]+1)
#print(*a)
if l==1+(n*(n-1)):
print(1)
continue
res=[]
k=0
for i in range (len(a)):
if a[i]>=l:
start=i
k=n-((a[i]-l)//2)
break
#print(start,k)
for i in range (l,r+1):
if k>n:
start+=1
if start==n:
start=1
k=start+1
if i%2:
res.append(start)
else:
res.append(k)
k+=1
print(*res)
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Itwazonce
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
scan in = new scan(inputStream);
PrintWriter out = new PrintWriter(outputStream);
minimumeulercycle solver = new minimumeulercycle();
solver.solve(1, in, out);
out.close();
}
static class minimumeulercycle {
public void solve(int testNumber, scan in, PrintWriter out) {
int t = in.scanInt();
while (t-- > 0) {
long n = in.scanLong();
long l = in.scanLong();
long r = in.scanLong();
int len = (int) (r - l + 1);
long ans[] = new long[len];
int k = 0;
long total = 0;
for (long i = 1; k < len && i <= n; i++) {
total = 2 * (i * n - (i * (i + 1)) / 2);
if (l <= total) {
total -= 2 * (n - i);
for (long j = i + 1; k < ans.length && j <= n; j++) {
total++;
if (l <= total && total <= r) {
ans[k++] = i;
}
total++;
if (l <= total && total <= r) {
ans[k++] = j;
}
}
}
}
for (int i = 0; i < ans.length; i++) {
if (ans[i] == 0)
ans[i] = 1;
out.print(ans[i] + " ");
}
out.println();
}
}
}
static class scan {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public scan(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0)
return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n))
n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
// else throw new InputMismatchException();
}
return neg * integer;
}
public long scanLong() {
long lon = 0;
int n = scan();
while (isWhiteSpace(n))
n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n) && n != '.') {
if (n >= '0' && n <= '9') {
lon *= 10;
lon += n - '0';
n = scan();
}
// else throw new InputMismatchException();
}
return lon * neg;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1)
return true;
return false;
}
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
const long long int maxn = 1e10;
const long long mod = 1e9 + 7;
using namespace std;
long long int power(long long int a, long long int b) {
long long int res = 1;
while (b > 0) {
if (b % 2 == 1) res = res * a;
a = a * a;
b = b / 2;
}
return res;
}
long long po(long long x, long long y) {
long long res = 1;
x = x % mod;
while (y > 0) {
if (y & 1) res = ((res % mod) * (x % mod)) % mod;
y = y >> 1;
x = ((x % mod) * (x % mod)) % mod;
}
return res;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
int t = 1;
cin >> t;
while (t--) {
long long int n, l, r;
cin >> n >> l >> r;
long long int count = 0;
int i = 1;
long long int ini = 2 * (n - 1);
while (1) {
if (count + ini >= l || i == n) break;
count += ini;
ini -= 2;
i++;
}
count++;
vector<pair<long long int, long long int> > p;
while (count <= r) {
if (count == n * (n - 1) + 1) {
p.push_back({1, count});
count++;
continue;
}
int it = i + 1, flag = 1;
for (int j = 0; j < ini; j++) {
if (flag) {
p.push_back({i, count});
count++;
flag = 0;
} else {
p.push_back({it, count});
count++;
it++;
flag = 1;
}
}
ini -= 2;
i++;
}
for (int j = 0; j < p.size(); j++) {
if (p[j].second <= r && p[j].second >= l) cout << p[j].first << " ";
}
cout << endl;
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
const int mn = 1 * (int)(1e5) + 10;
const int mod = 1 * (int)(1e9) + 7;
const int mm = 1 * (int)(1e3) + 10;
const int base = 1 * (int)(1e9);
const bool aNs = 0;
int tt, ntest = 1;
void docfile() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
if (ifstream("test.inp")) {
freopen("test.inp", "r", stdin);
if (!aNs)
freopen("test.out", "w", stdout);
else
freopen("test.ans", "w", stdout);
} else if (ifstream("1334d.inp")) {
freopen("1334d.inp", "r", stdin);
freopen("1334d.out", "w", stdout);
}
}
template <typename T>
void read(T& x) {
x = 0;
T f = 1;
char ch = getchar();
while (!isdigit(ch)) f = ch == '-' ? -f : f, ch = getchar();
while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar();
x *= f;
}
template <typename T>
void write(T a) {
if (a < 0) {
putchar('-');
write(-a);
return;
}
if (a < 10) {
putchar('0' + a);
return;
}
write(a / 10);
putchar((char)('0' + (a % 10)));
}
void enter() {
int n;
long long l, r;
cin >> n >> l >> r;
long long s = 0;
for (int i = 1; i < n; ++i) {
if (s + 2 * (n - i) >= l) {
vector<int> v;
for (int j = i + 1; j <= n; ++j) {
v.emplace_back(i);
v.emplace_back(j);
}
for (int k = max(l - 1 - s, 0ll); k < min(r - s, 2ll * (n - i)); ++k)
cout << v[k] << " ";
}
if (s + 2 * (n - i) >= r) {
break;
}
s += 2 * (n - i);
}
if (r == 1ll * n * (n - 1) + 1) cout << 1;
}
void solve() { cout << "\n"; }
void print_result() {}
int main() {
docfile();
cin >> ntest;
for (tt = 1; tt <= ntest; ++tt) {
enter();
solve();
print_result();
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0);
srand(time(NULL));
;
long long int p;
cin >> p;
while (p--) {
long long int a, b, c, d, e, l, r, f, cnt = 1;
vector<long long int> Ans;
cin >> a >> l >> r;
f = l;
long long int fuck = a - 1;
while (f - (2 * fuck) >= 0 && fuck > 0) {
f -= (2 * fuck);
fuck--;
cnt++;
}
if (f == 0) Ans.push_back(a), f++, l++;
f = (f - 1) / 2;
f++;
f += cnt;
for (c = l; c <= r; c++) {
if (c % 2 == 1)
Ans.push_back(cnt);
else
Ans.push_back(f), f++;
if (f == a + 1) cnt++, f = cnt + 1;
}
if (r == (a * (a - 1)) + 1) Ans[Ans.size() - 1] = 1;
for (c = 0; c < Ans.size(); c++) cout << Ans[c] << " ";
cout << endl;
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class Practice {
public static long mod = (long) Math.pow(10, 9) + 7;
public static long mod2 = 998244353;
public static int tt = 1;
public static ArrayList<Integer> prime;
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(System.out);
int t = Integer.parseInt(br.readLine());
while (t-- > 0) {
String[] s1 = br.readLine().split(" ");
int n = Integer.valueOf(s1[0]);
long l = Long.valueOf(s1[1]);
long r = Long.valueOf(s1[2]);
long curr = 1;
long no = 1;
StringBuilder str = new StringBuilder();
while (true) {
long h = (n - no) * 2;
if (h == 0) {
break;
}
// System.out.println(h);
if (h + curr < l) {
// System.out.println("999");
} else {
long k = l - curr;
// System.out.println(k);
long st = -1;
if (k % 2 == 0) {
k = k / 2;
st = no + k + 1;
} else {
k = k / 2;
str.append((no + k + 1) + " ");
l++;
if (l > r) {
break;
}
st = no + k + 2;
}
// System.out.println(st + " " + no + " " + l);
while (st <= n) {
str.append((no) + " ");
l++;
if (l > r) {
break;
}
str.append((st) + " ");
l++;
// System.out.println(l);
if (l > r) {
break;
}
st++;
}
if (l > r) {
break;
}
// System.out.println(str);
}
// System.out.println(curr + " " + no + " " + h + " " + str);
// if (no == 3) {
// break;
// }
curr += h;
no++;
}
if (l == r) {
str.append(1 + " ");
}
pw.println(str.toString());
}
pw.close();
}
}
// private static void getFac(long n, PrintWriter pw) {
// // TODO Auto-generated method stub
// int a = 0;
// while (n % 2 == 0) {
// a++;
// n = n / 2;
// }
// if (n == 1) {
// a--;
// }
// for (int i = 3; i <= Math.sqrt(n); i += 2) {
// while (n % i == 0) {
// n = n / i;
// a++;
// }
// }
// if (n > 1) {
// a++;
// }
// if (a % 2 == 0) {
// pw.println("Bob");
// } else {
// pw.println("Alice");
// }
// //System.out.println(a);
// return;
// }
// private static long power(long a, long p) {
// // TODO Auto-generated method stub
// long res = 1;
// while (p > 0) {
// if (p % 2 == 1) {
// res = (res * a) % mod;
// }
// p = p / 2;
// a = (a * a) % mod;
// }
// return res;
// }
//
// private static void fac() {
// fac[0] = 1;
// // TODO Auto-generated method stub
// for (int i = 1; i < fac.length; i++) {
// if (i == 1) {
// fac[i] = 1;
// } else {
// fac[i] = i * fac[i - 1];
// }
// if (fac[i] > mod) {
// fac[i] = fac[i] % mod;
// }
// }
// }
//
// private static int getLower(Long long1, Long[] st) {
// // TODO Auto-generated method stub
// int left = 0, right = st.length - 1;
// int ans = -1;
// while (left <= right) {
// int mid = (left + right) / 2;
// if (st[mid] <= long1) {
// ans = mid;
// left = mid + 1;
// } else {
// right = mid - 1;
// }
// }
// return ans;
// }
// private static long getGCD(long l, long m) {
//
// long t1 = Math.min(l, m);
// long t2 = Math.max(l, m);
// while (true) {
// long temp = t2 % t1;
// if (temp == 0) {
// return t1;
// }
// t2 = t1;
// t1 = temp;
// }
// }
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.*;
import java.util.Arrays;
import java.io.IOException;
import java.io.InputStream;
import java.util.Comparator;
import java.util.PriorityQueue;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main1 {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
FKateAndImperfection solver = new FKateAndImperfection();
solver.solve(1, in, out);
out.close();
}
static class FKateAndImperfection {
PrintWriter out;
InputReader in;
int[] vis;
public void solve(int testNumber, InputReader in, PrintWriter out) {
this.out = out;
this.in = in;
int t = ni();
while(t-->0){
long n = nl();
long l = nl();
long r = nl();
long sum = 0;
long i = 1;
while(sum + (n - i) * 2 < l && i < n){
sum += (n - i) * 2L;
i++;
//System.out.println(sum);
}
long j = i + 1;
while(sum + 2 < l && j <= n){
sum += 2;
j++;
//System.out.println(sum);
}
//pn(i +" "+j);
ArrayList<Long> ans = new ArrayList<>();
if(l % 2 == 0) {
ans.add(j);
j++;
l++;
}
//pn(ans);
if(j == n + 1) {
i++;
j = i + 1;
}
boolean ok = true;
if(r == n * (n - 1) + 1){
ok = false;
r--;
}
while (l <= r){
l++;
ans.add(i);
if(l <= r) {
ans.add(j);
l++;
}
j++;
if(j == n + 1) {
i++;
j = i + 1;
}
}
if(!ok)
ans.add(1L);
for(long x : ans)
p(x +" ");
pn("");
}
}
/* final Comparator<Tuple> com = new Comparator<Tuple>() {
@Override
public int compare(Tuple t1, Tuple t2) {
if(t1.x != t2.x)
return Long.compare(t1.x, t2.x);
else if(t1.y != t2.y)
return Long.compare(t2.y, t1.y);
else if(vis[(t1.id + 1) % n] != vis[(t2.id + 1) % n])
return Integer.compare(vis[(t1.id + 1) % n], vis[(t2.id + 1) % n]);
else
return Integer.compare(t1.id, t2.id);
}
};*/
class Tuple{
long x, y;
int id;
Tuple(long x, long y, int id){
this.x = x;
this.y = y;
this.id = id;
}
}
int ni() {
return in.nextInt();
}
long nl() {
return in.nextLong();
}
void pn(Object o) {
out.println(o);
}
void p(Object o) {
out.print(o);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new UnknownError();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new UnknownError();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.util.*;
import java.io.*;
public class Main {
static FastReader in=new FastReader();
static StringBuilder Sd=new StringBuilder();
static List<Integer>Gr[];
static long Mod=998244353;
static Map<Integer,Integer>map=new HashMap<>();
public static void main(String [] args) {
//Dir by MohammedElkady
int t=in.nextInt();
while(t-->0) {
long n=in.nextLong(),l=in.nextLong(),r=in.nextLong();
long ans=1,res=0;
l-=1;r-=1;
int lol=0;
if(r>=n*(n-1)) {lol=1;r--;
}
for(long i=1;i<=n;i++) {
ans=i;
if(res+((n-i)*2)<l)
{
res+=(n-i)*2;
}else break;
}
long vov=ans+1;
if(!(lol>0&&l>r))
for(;l<=r;) {
if(res>l) {
Sout(vov-1+" ");
l++;
}
if(res==l&&l<=r) {
if(vov>n) {
ans+=1;vov=ans+1;
}
Sout(ans+" ");
if(r-l>0) {Soutln(vov+" ");}
vov++;
res+=2;
l+=2;
}
else {
vov++;
res+=2;
}
}
if(lol>0) {Soutln("1 ");}
else Soutln("");
}
Sclose();
}
static long power(long x, long y, long p)
{
// Initialize result
long res = 1;
// Update x if it is more than or
// equal to p
x = x % p;
while (y > 0)
{
// If y is odd, multiply x
// with result
if (y % 2 == 1)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns n^(-1) mod p
static long modInverse(long n, long p)
{
return power(n, p-2, p);
}
// Returns nCr % p using Fermat's
// little theorem.
static long nCrModPFermat(int n, int r,
long p)
{
// Base case
if (r == 0)
return 1;
// Fill factorial array so that we
// can find all factorial of r, n
// and n-r
long[] fac = new long[n+1];
fac[0] = 1;
for (int i = 1 ;i <= n; i++)
fac[i] = fac[i-1] * i % p;
return (fac[n]* modInverse(fac[r], p)
% p * modInverse(fac[n-r], p)
% p) % p;
}
static long fac(int n , int m,int l) {
long res=1;
for(int i=l,u=1;i<=n||u<=m;i++,u++) {
if(i<=n) {res*=i;}
if(u<=m) {res/=u;}
while(res>Mod)
res-=Mod;
}
return res;
}
static long posation(int n) {
long res=1;
for(int i=0;i<n-3;i++) {res*=2L;
while(res>Mod)
res-=Mod;
while(res<=0)res+=Mod;}
return res;
}
static long gcd(long g,long x){
if(x<1)return g;
else return gcd(x,g%x);
}
//array fill
static long[]filllong(int n){long a[]=new long[n];for(int i=0;i<n;i++)a[i]=in.nextLong();return a;}
static int[]fillint(int n){int a[]=new int[n];for(int i=0;i<n;i++)a[i]=in.nextInt();return a;}
//OutPut Line
static void Sout(String S) {Sd.append(S);}
static void Soutln(String S) {Sd.append(S+"\n");}
static void Soutf(String S) {Sd.insert(0, S);}
static void Sclose() {System.out.println(Sd);}
static void Sclean() {Sd=new StringBuilder();}
}
class node implements Comparable<node>{
int x,t;
node(int x,int p){
this.x=x;
this.t=p;
}
@Override
public int compareTo(node o) {
return (t-o.t);
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
class Sorting{
public static node[] bucketSort(node[] array, int bucketCount) {
if (bucketCount <= 0) throw new IllegalArgumentException("Invalid bucket count");
if (array.length <= 1) return array; //trivially sorted
int high = array[0].t;
int low = array[0].t;
for (int i = 1; i < array.length; i++) { //find the range of input elements
if (array[i].t > high) high = array[i].t;
if (array[i].t < low) low = array[i].t;
}
double interval = ((double)(high - low + 1))/bucketCount; //range of one bucket
ArrayList<node> buckets[] = new ArrayList[bucketCount];
for (int i = 0; i < bucketCount; i++) { //initialize buckets
buckets[i] = new ArrayList();
}
for (int i = 0; i < array.length; i++) { //partition the input array
buckets[(int)((array[i].t - low)/interval)].add(array[i]);
}
int pointer = 0;
for (int i = 0; i < buckets.length; i++) {
Collections.sort(buckets[i]); //mergeSort
for (int j = 0; j < buckets[i].size(); j++) { //merge the buckets
array[pointer] = buckets[i].get(j);
pointer++;
}
}
return array;
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
long long n, l, r;
long long num;
vector<long long> ans;
bool intersect(long long l1, long long r1, long long l2, long long r2) {
return min(r1, r2) >= max(l1, l2);
}
void cal(long long left) {
if (left == n) return;
if (intersect(l, r, num + 1, num + 2 * (n - left))) {
for (long long i = left + 1; i <= n; ++i) {
num++;
if (num >= l && num <= r) ans.push_back(left);
num++;
if (num >= l && num <= r) ans.push_back(i);
}
} else
num += 2 * (n - left);
cal(left + 1);
}
int main(void) {
int t;
cin >> t;
while (t--) {
ans.clear();
num = 0;
cin >> n >> l >> r;
cal(1);
for (auto x : ans) cout << x << " ";
if (r == n * (n - 1) + 1) cout << 1 << " ";
cout << endl;
}
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int T;
cin >> T;
for (int t = 0; t < T; ++t) {
long long n, l, r;
cin >> n;
cin >> l;
cin >> r;
long long curr_position = 0;
for (long long i1 = 1; i1 < n; ++i1) {
long long x = curr_position + 1;
long long y = curr_position + 2 * (n - i1);
curr_position += 2 * (n - i1);
if (r < x || y < l) {
continue;
}
for (long long i2 = 1; i2 <= y - x + 1; ++i2) {
if (i2 + x - 1 < l || i2 + x - 1 > r) {
continue;
}
if (i2 & 1)
cout << i1 << " ";
else
cout << i2 / 2 + i1 << " ";
}
}
if (r >= n * (n - 1) + 1) cout << 1 << " ";
cout << "\n";
}
return 0;
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.io.*;
import java.util.*;
public class Task {
public static void main(String[] args) throws Exception {
new Task().go();
}
PrintWriter out;
Reader in;
BufferedReader br;
Task() throws IOException {
try {
//br = new BufferedReader( new FileReader("input.txt") );
//in = new Reader("input.txt");
in = new Reader("input.txt");
out = new PrintWriter( new BufferedWriter(new FileWriter("output.txt")) );
}
catch (Exception e) {
//br = new BufferedReader( new InputStreamReader( System.in ) );
in = new Reader();
out = new PrintWriter( new BufferedWriter(new OutputStreamWriter(System.out)) );
}
}
void go() throws Exception {
//int t = in.nextInt();
int t = 1;
while (t > 0) {
solve();
t--;
}
out.flush();
out.close();
}
int inf = 2000000000;
int mod = 1000000007;
double eps = 0.000000001;
int n;
int m;
ArrayList<Integer>[] g;
void solve() throws IOException {
int t = in.nextInt();
while (t > 0) {
int n = in.nextInt();
long l = in.nextLong();
long r = in.nextLong();
long cur = 1;
int x = n - 1;
int first = 1;
while (x > 0 && cur + x * 2 <= l) {
cur += x * 2;
first++;
x--;
}
if (first == n) {
first = 1;
}
int flag = 0;
int lv = first;
int cnt = first + 1;
while (cur < l) {
if (flag == 1) {
lv = first;
cnt++;
}
else {
lv = cnt;
}
flag ^= 1;
cur++;
}
while (l <= r) {
out.print(lv + " ");
if (flag == 1) {
flag = 0;
cnt++;
if (cnt > n) {
first++;
cnt = first + 1;
if (first == n) first = 1;
}
lv = first;
} else {
lv = cnt;
flag = 1;
}
l++;
}
out.println();
t--;
}
}
class Pair implements Comparable<Pair> {
int a;
int b;
Pair(int a, int b) {
this.a = a;
this.b = b;
}
public int compareTo(Pair p) {
if (a != p.a)
return Integer.compare(a, p.a);
else
return Integer.compare(-b, -p.b);
}
}
class Item {
int a;
int b;
int c;
Item(int a, int b, int c) {
this.a = a;
this.b = b;
this.c = c;
}
}
class Reader {
BufferedReader br;
StringTokenizer tok;
Reader(String file) throws IOException {
br = new BufferedReader( new FileReader(file) );
}
Reader() throws IOException {
br = new BufferedReader( new InputStreamReader(System.in) );
}
String next() throws IOException {
while (tok == null || !tok.hasMoreElements())
tok = new StringTokenizer(br.readLine());
return tok.nextToken();
}
int nextInt() throws NumberFormatException, IOException {
return Integer.valueOf(next());
}
long nextLong() throws NumberFormatException, IOException {
return Long.valueOf(next());
}
double nextDouble() throws NumberFormatException, IOException {
return Double.valueOf(next());
}
String nextLine() throws IOException {
return br.readLine();
}
}
static class InputReader
{
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public InputReader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public InputReader(String file_name) throws IOException
{
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1)
{
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.')
{
while ((c = read()) >= '0' && c <= '9')
{
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
#pragma GCC optimize("Ofast")
int T;
int n, L;
long long l, r;
vector<int> v = {1, 2, 1};
long long cyc(int x) {
if (x == n - 1) return 3;
long long res = 2 * (n - x);
return res;
}
void printcyc(int nr, long long start, int len) {
if (nr == n - 1) {
int step = 1;
int x = n - 1;
while (len > 0) {
if (start > 0)
start--;
else {
printf("%d ", x);
len--;
}
if (step == 1) x = n;
if (step == 2) x = 1;
step++;
}
return;
}
int loops = start / 2;
int c = nr + 1 + loops;
int x = c;
if (start % 2 == 0) x = nr;
while (len > 0) {
printf("%d ", x);
len--;
if (x != nr) {
if (c == n) {
printcyc(nr + 1, 0, len);
break;
} else {
c++;
x = nr;
}
} else {
x = c;
}
}
}
void solve() {
long long t = 1;
for (int i = 1; i <= n - 1; i++) {
if (t + cyc(i) < l)
t += cyc(i);
else {
printcyc(i, l - t, L);
break;
}
}
printf("\n");
}
int main() {
scanf("%d", &T);
for (int test = 1; test <= T; test++) {
scanf("%d%lld%lld", &n, &l, &r);
if (n == 2) {
for (int i = l - 1; i < r; i++) printf("%d ", v[i]);
printf("\n");
continue;
}
L = r - l + 1;
solve();
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python3
|
CASES = int(input())
answers = []
while (CASES):
CASES -= 1
num, begin, end = [int(x) for x in input().split(" ")]
sequence = []
index = 1
tempB = begin
tempE = end
temp = 2*(num - index)
while (tempB > temp and index < num):
tempB -= temp
tempE -= temp
index += 1
temp = 2*(num - index)
i = 0
while (i < tempE and index <= num):
if index == num:
sequence.append(1)
i += 1
else:
for x in range(index, num):
sequence.append(index)
sequence.append(x + 1)
i += 2
index += 1
tempE = tempE if tempE > tempB else (tempB)
answers.append(" ".join([str(x) for x in sequence[tempB - 1:tempE]]))
for ans in answers:
print(ans)
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
//package codeforces.educational85;
import java.io.*;
import java.util.*;
public class MinimumEulerCycle {
public static void main(String[] args) {
// try {
// FastScanner in = new FastScanner(new FileInputStream("src/input.in"));
// PrintWriter out = new PrintWriter(new FileOutputStream("src/output.out"));
FastScanner in = new FastScanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int t = in.nextInt();
solve(t, in, out);
// } catch (IOException e) {
// e.printStackTrace();
// }
}
private static void solve(int q, FastScanner in, PrintWriter out) {
for (int qq = 0; qq < q; qq++) {
Long n = in.nextLong(), l = in.nextLong(), r = in.nextLong();
if(l == r && r == n * (n - 1) + 1) {
out.println(1);
}
else {
long startRow = bsCompute(n, l);
long[] ans = new long[(int)(r - l + 1)];
int i = 0;
long currRow = startRow;
while(currRow < n && i < ans.length) {
long j1 = (currRow - 1) * n * 2 - (currRow - 1) * currRow + 1;
long j2 = currRow * n * 2 - (currRow + 1) * currRow;
long next = currRow + 1;
for(long j = j1; j <= j2; j++) {
long currNode = (j % 2 != 0 ? currRow : next);
next += (j % 2 != 0 ? 0 : 1);
if(j >= l) {
ans[i] = currNode;
i++;
if(i == ans.length) {
break;
}
}
}
currRow++;
}
if(i == ans.length - 1) {
ans[i] = 1;
}
for(int k = 0; k < ans.length; k++) {
out.print(ans[k] + " ");
}
out.println();
}
}
out.close();
}
private static long bsCompute(long n, long target) {
long left = 1, right = n - 1;
while(left < right - 1) {
long mid = left + (right - left) / 2;
if(mid * n * 2 - mid * (mid + 1) <= target) {
left = mid;
}
else {
right = mid - 1;
}
}
if(right * n * 2 - right * (right + 1) <= target) {
return right;
}
return left;
}
private static class BinarySearch {
// return the right most index i such that a[i] <= t
private static int rightMostUpperBound(Integer[] a, int t) {
int l = 0, r = a.length - 1;
while (l < r - 1) {
int mid = l + (r - l) / 2;
if (a[mid] <= t) {
l = mid;
} else {
r = mid - 1;
}
}
if (a[r] <= t) {
return r;
} else if (a[l] <= t) {
return l;
}
return -1;
}
// return the left most index i such that a[i] >= t
private static int leftMostLowerBound(Integer[] a, int t) {
int l = 0, r = a.length - 1;
while (l < r - 1) {
int mid = l + (r - l) / 2;
if (a[mid] >= t) {
r = mid;
} else {
l = mid + 1;
}
}
if (a[l] >= t) {
return l;
} else if (a[r] >= t) {
return r;
}
return -1;
}
// Find the start and end index of a given t in a sorted(ascending) array; return [-1, -1] is t is not found
private static int[] searchRange(Integer[] a, int t) {
int first = firstPos(a, t);
int last = firstPos(a, t + 1) - 1;
if (first <= last) {
return new int[]{first, last};
}
return new int[]{-1, -1};
}
private static int firstPos(Integer[] a, int t) {
int first = a.length;
int l = 0, r = a.length - 1;
while (l <= r) {
int mid = l + (r - l) / 2;
if (a[mid] >= t) {
first = mid;
r = mid - 1;
} else {
l = mid + 1;
}
}
return first;
}
}
private static class NumberTheory {
private static long modularAdd(long a, long b, int mod) {
long sum = a + b;
if (sum >= mod) {
sum -= mod;
}
return sum;
}
private static long modularSubtract(long a, long b, int mod) {
long diff = a - b;
if (diff < 0) {
diff += mod;
}
return diff;
}
private static long fastModPow(long x, int n, long mod) {
if (n == 0) {
return 1;
}
long coeff = 1, base = x;
while (n > 1) {
if (n % 2 != 0) {
coeff = (coeff * base % mod);
}
base = (base * base % mod);
n = n / 2;
}
long res = coeff * base % mod;
return res;
}
private static long gcd(long a, long b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
private static long[] factorial(int n, long mod) {
long[] factor = new long[n + 1];
factor[0] = 1;
for (int i = 1; i <= n; i++) {
factor[i] = factor[i - 1] * i % mod;
}
return factor;
}
private static long modInv_EEA(long a, long mod) {
long[] res = solveGcdEquation(a, mod);
if (res[2] != 1) {
// a and m are not coprime, modular inverse of a by m does not exist.
return -1;
}
return (res[0] % mod + mod) % mod;
}
private static long[] solveGcdEquation(long a, long b) {
if (b == 0) {
return new long[]{1, 0, a};
}
long[] res = solveGcdEquation(b, a % b);
return new long[]{res[1], res[0] - (a / b) * res[1], res[2]};
}
private static long binomialCoefficient(long[] factorial, long n, long k, long mod) {
return factorial[(int) n] * modInv_EEA(factorial[(int) k], mod) % mod
* modInv_EEA(factorial[(int) (n - k)], mod) % mod;
}
}
private static class Graph {
private static int UNVISITED = 0;
private static int VISITING = -1;
private static int VISITED = 1;
private static Stack<Integer> topologicalSort(Set<Integer>[] g) {
Stack<Integer> stack = new Stack<>();
int[] state = new int[g.length];
for (int node = 0; node < g.length; node++) {
if (!topoSortHelper(g, stack, state, node)) {
return null;
}
}
return stack;
}
private static boolean topoSortHelper(Set<Integer>[] g, Stack<Integer> stack, int[] state, int currNode) {
if (state[currNode] == VISITED) {
return true;
} else if (state[currNode] == VISITING) {
return false;
}
state[currNode] = VISITING;
for (int neighbor : g[currNode]) {
if (!topoSortHelper(g, stack, state, neighbor)) {
return false;
}
}
state[currNode] = VISITED;
stack.push(currNode);
return true;
}
}
private static class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner(InputStream stream) {
try {
br = new BufferedReader(new InputStreamReader(stream));
} catch (Exception e) {
e.printStackTrace();
}
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
Integer[] nextIntArray(int n) {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
Long[] nextLongArray(int n) {
Long[] a = new Long[n];
for (int i = 0; i < n; i++) {
a[i] = nextLong();
}
return a;
}
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python3
|
import sys
input = sys.stdin.buffer.readline
for t in range(int(input())):
n,l,r = map(int,input().split())
for i in range(l,min(2*(n-2)+1,r) + 1):
print('1' if i & 1 else i//2 + 1 , end = ' ')
n_set = n
set_idx = 2*(n-2) + 2
while(n_set > 2):
ls = l - set_idx + 1
rs = r - set_idx + 1
set_idx += 2*(n_set - 2)
set_par = n - n_set + 2
if ls < 2 and rs >= 1:print(n , end = ' ')
for i in range(max(2,ls) , min(2*(n_set - 2),rs) + 1):
print(set_par + (i-1)//2 if i & 1 else set_par , end = ' ')
n_set -= 1
l -= set_idx
r -= set_idx
if l <= 0 and r>=0:print(n , end = ' ')
if r == 1: print(1 , end = ' ')
print()
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python2
|
from sys import stdout
from bisect import bisect_left as bl
# large output
out = []
def solve(l, r, n):
if l == n * (n - 1) + 1:
out.append('1')
return
occs = [i for i in xrange(n - 1, 0, -1)]
pref = [occs[i] for i in xrange(n - 1)]
for i in xrange(1, n - 1): pref[i] = pref[i - 1] + occs[i]
# pair number
k = (l + 1) // 2
# find the kth pair
idx = bl(pref, k)
# first element of each pair
a = n - occs[idx]
relpos = k
if idx > 0: relpos -= pref[idx - 1]
# second element of this pair
b = a + relpos
# time to print the answer
ans = []
cnt = r - l + 1
x, y = a, b
if l % 2 == 0:
ans.append(str(b))
cnt -= 1
x, y = a, b + 1
if y > n:
x += 1
y = x + 1
if x == n: x = 1
while cnt > 0:
if cnt >= 2:
ans.append(str(x))
ans.append(str(y))
cnt -= 2
elif cnt == 1:
ans.append(str(x))
cnt -= 1
y += 1
if y > n:
x += 1
y = x + 1
if x == n: x = 1
out.append(' '.join(ans))
def main():
for _ in xrange(input()):
n, l, r = map(int, raw_input().strip().split())
solve(l, r, n)
stdout.write('\n'.join(out))
if __name__ == "__main__": main()
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
python3
|
def find(a):
global k, tot
if a > n * (n - 1):
return 1
while a > tot + (n - k) * 2:
tot += (n - k) * 2
k += 1
if a & 1:
return k
return (a - tot) // 2 + k
for _ in range(int(input())):
n, l, r = map(int, input().split())
global k, tot
k = 1
tot = 0
li = []
for i in range(l, r + 1):
li.append(find(i))
print(*li)
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.io.BufferedInputStream;
import java.util.Scanner;
public class Main {
private static Scanner sc = new Scanner(new BufferedInputStream(System.in));
public static void main(String[] args) {
work();
}
private static void work() {
int t = sc.nextInt();
for (int i = 0; i < t; i++) {
long n = sc.nextLong();
long l = sc.nextLong(), r = sc.nextLong();
printResult(n, l, r);
}
}
private static void printResult(long n, long l, long r) {
StringBuffer stringBuffer = new StringBuffer();
long k = (long) ((double) (2 * n - 1) - Math.sqrt((2 * n - 1) * (2 * n - 1) - 4 * l)) / 2;
int cnt = 0;
long p = l, bias;
while (cnt < r - l + 1) {
if (p == n * (n - 1) + 1) {
stringBuffer.append(1).append(' ');
break;
}
bias = p - (2 * n - k - 1) * k;
if (bias != 0) {
if (bias % 2 == 1)
stringBuffer.append(k + 1).append(' ');
else
stringBuffer.append(bias / 2 + k + 1).append(' ');
} else {
k--;
stringBuffer.append(n).append(' ');
}
p++;
cnt++;
if (p > (2 * n - k - 2) * (k + 1))
k++;
}
System.out.println(stringBuffer);
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.io.*;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) throws IOException {
Scanner scn = new Scanner(System.in);
OutputWriter out = new OutputWriter(System.out);
// Always print a trailing "\n" and close the OutputWriter as shown at the end of your output
// example:
int t=scn.nextInt();
for(int i1=0;i1<t;i1++){
int n=scn.nextInt();long l=scn.nextLong();long r=scn.nextLong();
long max=(long)(n)*(n-1)+1;
if(l==max){
out.print(1+" ");continue;
}
long i=binroot(n,l);
long b=2*n*(i-1)-(i-1)*i;
long b1=2*n*(i)-(i+1)*i;
while(l<=r){
if(l==max){
out.print(1+" ");break;
}
if((l-b)%2==0){
out.print((i+(l-b)/2)+" ");
}
else{
out.print(i+" ");
}
l++;
if(l>b1){
i++;b=b1;b1+=2*n-2*i;
}
}
out.print("\n");
}
out.close();
}
public static long binroot(long n,long l1){
long l=0;long r=n-1;
while(r-l>1){
long m=(l+r)/2;
if((2*n-1-m)*m<l1){
l=m;
}
else{
r=m;
}
}
return(r);
}
// fast input
static class Scanner {
public BufferedReader reader;
public StringTokenizer tokenizer;
public Scanner(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
String line = reader.readLine();
if (line == null)
return null;
tokenizer = new StringTokenizer(line);
} catch (Exception e) {
throw(new RuntimeException());
}
}
return tokenizer.nextToken();
}
public int nextInt() { return Integer.parseInt(next()); }
public long nextLong() { return Long.parseLong(next()); }
public double nextDouble() { return Double.parseDouble(next()); }
}
// fast output
static class OutputWriter {
BufferedWriter writer;
public OutputWriter(OutputStream stream) {
writer = new BufferedWriter(new OutputStreamWriter(stream));
}
public void print(int i) throws IOException { writer.write(i); }
public void print(String s) throws IOException { writer.write(s); }
public void print(char[] c) throws IOException { writer.write(c); }
public void close() throws IOException { writer.close(); }
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
java
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.PriorityQueue;
import java.util.Stack;
import java.util.StringTokenizer;
/**
* http://codeforces.com/contest/1334/problem/D
*/
public class TaskD {
public static void main(String[] arg) {
final FastScanner in = new FastScanner(System.in);
final PrintWriter out = new PrintWriter(System.out);
final int T = in.nextInt();
for(int t=0;t<T;t++){
final int n = in.nextInt();
final long l = in.nextLong();
final long r = in.nextLong();
//final int [] result = naive(n, l, r);
final int [] result = sol(n, l, r);
StringBuilder sb = new StringBuilder();
for(int i=0;i<result.length;i++){
sb.append(result[i]).append(" ");
}
out.printf("%s%n",sb.toString());
}
out.close();
in.close();
}
private static int [] sol(final int n, final long l, final long r){
final int [] result = new int[(int)(r-l+1)];
long ind = 1;
long s = 1;
for(int i=1;i<n;i++){
long e = s+2*(n-i)-1;
if(s<=l&&e>=l){
ind = s;
while(ind<=r&&i<n) {
for (int j = i + 1; j <= n; j++) {
if (ind >= l && ind <= r) {
result[(int) (ind - l)] = i;
}
ind++;
if (ind >= l && ind <= r) {
result[(int) (ind - l)] = j;
}
ind++;
}
i++;
}
break;
}
s=e+1;
}
if(result[result.length-1]==0){
result[result.length-1]=1;
}
return result;
}
private static int [] naive(final int n, final long l, final long r){
final int [] result = new int[(int)(r-l+1)];
long ind = 1;
for(int i=1;i<=n;i++){
for(int j=i+1;j<=n;j++){
if(ind>=l&&ind<=r){
result[(int)(ind-l)]=i;
}
ind++;
if(ind>=l&&ind<=r){
result[(int)(ind-l)]=j;
}
ind++;
}
}
if(ind>=l&&ind<=r){
result[(int)(ind-l)]=1;
}
ind++;
return result;
}
private static class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner(InputStream stream) {
try {
br = new BufferedReader(new InputStreamReader(stream));
} catch (Exception e) {
e.printStackTrace();
}
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readIntArr(int n) {
int[] result = new int[n];
for (int i = 0; i < n; i++) {
result[i] = Integer.parseInt(next());
}
return result;
}
void close() {
try {
br.close();
} catch (IOException e) {
e.printStackTrace();
}
}
long nextLong() {
return Long.parseLong(next());
}
}
}
|
1334_D. Minimum Euler Cycle
|
You are given a complete directed graph K_n with n vertices: each pair of vertices u β v in K_n have both directed edges (u, v) and (v, u); there are no self-loops.
You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices).
We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 β a visiting order, where each (v_i, v_{i + 1}) occurs exactly once.
Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists.
Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r.
Input
The first line contains the single integer T (1 β€ T β€ 100) β the number of test cases.
Next T lines contain test cases β one per line. The first and only line of each test case contains three integers n, l and r (2 β€ n β€ 10^5, 1 β€ l β€ r β€ n(n - 1) + 1, r - l + 1 β€ 10^5) β the number of vertices in K_n, and segment of the cycle to print.
It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5.
Output
For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once.
Example
Input
3
2 1 3
3 3 6
99995 9998900031 9998900031
Output
1 2 1
1 3 2 3
1
Note
In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1.
In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
|
{
"input": [
"3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n"
],
"output": [
"1 2 1 \n1 3 2 3 \n1 \n"
]
}
|
{
"input": [
"1\n2 2 3\n",
"1\n4 13 13\n",
"1\n3 1 1\n",
"10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n",
"1\n3 7 7\n",
"1\n25 30 295\n",
"1\n4 12 13\n",
"5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n",
"1\n5 4 4\n"
],
"output": [
"2 1 \n",
"1 \n",
"1 \n",
"1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n",
"1 \n",
"16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n",
"4 1 \n",
"1 \n1 \n1 \n1 \n7 1 \n",
"3 \n"
]
}
|
CORRECT
|
cpp
|
#include <bits/stdc++.h>
using namespace std;
class Solution {
public:
void solve() {
long long n, l, r;
cin >> n >> l >> r;
long long rngIdx = 0;
long long begin = 0, end = n;
while (begin < end) {
long long mid = begin + (end - begin) / 2;
if (2 * n * mid - mid * (mid + 1) >= l) {
end = mid;
} else {
begin = mid + 1;
}
}
rngIdx = end - 1;
long long totalRng = 2 * n * rngIdx - rngIdx * (rngIdx + 1);
for (long long i = l; i <= r; i++) {
if (2 * n * (rngIdx + 1) - (rngIdx + 1) * (rngIdx + 2) < i) {
rngIdx++;
totalRng = 2 * n * rngIdx - rngIdx * (rngIdx + 1);
}
if (i == n * (n - 1) + 1) {
cout << 1 << " ";
} else if (i % 2 == 1) {
cout << rngIdx + 1 << " ";
} else {
cout << (i - totalRng) / 2 + rngIdx + 1 << " ";
}
}
cout << endl;
}
};
int main(int argc, const char* argv[]) {
int t;
Solution sol;
cin >> t;
while (t--) {
sol.solve();
}
return 0;
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.