Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.math.BigInteger; import java.util.Scanner; public class Moving_Points { public static void main(String args[]) { Scanner reader = new Scanner(System.in); int n = reader.nextInt(); int[] x = new int[n]; for (int i = 0; i < n; i++) x[i] = reader.nextInt(); int[] v = new int[n]; for (int i = 0; i < n; i++) v[i] = reader.nextInt(); reader.close(); BigInteger sum = new BigInteger("0"); for (int i = 0; i < n - 1; i++) { for (int j = i + 1; j < n; j++) { if (v[i] * v[j] < 0 || v[i] == v[j] || (v[i] * v[j] > 0 && ((x[i] < x[j] && v[i] < v[j]) || (x[j] < x[i] && v[j] < v[i])))) { sum = sum.add(BigInteger.valueOf((long) Math.abs(x[i] - x[j]))); } else if (v[i] * v[j] == 0) { if ((v[i] == 0 && ((x[j] > x[i] && v[j] > 0) || (x[j] < x[i] && v[j] < 0)) || (v[j] == 0 && ((x[i] > x[j] && v[i] > 0) || (x[i] < x[j] && v[i] < 0)))) ) sum = sum.add(BigInteger.valueOf(Math.abs(x[i] - x[j]))); } } } System.out.print(sum); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import static java.lang.Math.*; import java.util.Scanner; public class onebalgo { static long minsum=0; static int n; static dot[] overwrite=new dot[n]; public static boolean samepace(dot i,dot j) { if(i.vel==j.vel) return true; else return false; } public static boolean waitornot(dot i,dot j) { if(i.vel>0 && j.vel<0 && i.pos>=0 && j.pos<0) return false; if(i.vel>0 && j.vel<0 && i.pos<0 && j.pos>=0) return true; if(i.pos>j.pos && i.vel>j.vel) return false; if(i.pos>j.pos && i.vel<j.vel) return true; if(i.pos<j.pos && i.vel<j.vel) return false; if(i.pos<j.pos && i.vel>j.vel) return true; return false; } static void enterhere(int x,int y) { minsum=minsum+Math.abs(x-y); } static void checker() { for(int i=0;i<n;i++) { dot doto2=overwrite[i]; for(int j=0;j<n;j++) { if(i<=j && i!=j) { System.out.println(overwrite[i].pos+""+overwrite[j].pos); dot doto3=overwrite[j]; if(samepace(doto2,doto3)==true) enterhere(doto2.pos,doto3.pos); else if(waitornot(doto2, doto3)==false) enterhere(doto2.pos,doto3.pos); } } } } public static void main(String[] args) { Scanner isus= new Scanner(System.in); n=isus.nextInt(); overwrite= new dot[n]; for(int i=0;i<n;i++) { dot doto1=new dot(); doto1.pos=isus.nextInt(); overwrite[i]=doto1; } for(int i=0;i<n;i++) { int vel=isus.nextInt(); overwrite[i].vel=vel; } checker(); System.out.println(minsum); } } class dot{ int pos; int vel; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct abc { long long first; long long second; }; bool comp(abc a, abc b) { return a.second < b.second; } int main() { long long n, cnt = 0; cin >> n; abc a[n + 1]; for (int i = 1; i <= n; i++) cin >> a[i].second; for (int i = 1; i <= n; i++) { cin >> a[i].first; } sort(a + 1, a + n + 1, comp); for (long long i = 1; i <= n; i++) { for (long long j = i + 1; j <= n; j++) { if ((a[i].first >= 0 and a[j].first >= 0) or (a[i].first <= 0 and a[j].first <= 0)) { if (a[i].first <= a[j].first and a[i].second != a[j].second) { cnt += j - i; } } else if (a[i].first == 0 and a[j].first >= 0) cnt += j - i; else if (a[i].first != 0 and a[j].first != 0) cnt += j - i; } } cout << cnt << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
// "It does not matter how slowly you go as long as you do not stop." - Confucius #include <bits/stdc++.h> using namespace std; /* author : Roshan_Mehta motto : Time Management,Consistency,Patience!! */ #define int long long void __print(int x) {cerr << x;} void __print(long x) {cerr << x;} // void __print(long long x) {cerr << x;} void __print(unsigned x) {cerr << x;} void __print(unsigned long x) {cerr << x;} void __print(unsigned long long x) {cerr << x;} void __print(float x) {cerr << x;} void __print(double x) {cerr << x;} void __print(long double x) {cerr << x;} void __print(char x) {cerr << '\'' << x << '\'';} void __print(const char *x) {cerr << '\"' << x << '\"';} void __print(const string &x) {cerr << '\"' << x << '\"';} void __print(bool x) {cerr << (x ? "true" : "false");} template<typename T, typename V> void __print(const pair<T, V> &x) {cerr << '{'; __print(x.first); cerr << ','; __print(x.second); cerr << '}';} template<typename T> void __print(const T &x) {int f = 0; cerr << '{'; for (auto &i: x) cerr << (f++ ? "," : ""), __print(i); cerr << "}";} void _print() {cerr << "]\n";} template <typename T, typename... V> void _print(T t, V... v) {__print(t); if (sizeof...(v)) cerr << ", "; _print(v...);} #ifdef Local_Debug #define debug(x...) cerr << "[" << #x << "] = ["; _print(x) #else #define debug(x...) #endif #define M1 1000000007 #define M2 998244353 #define G(a,b) get<a>(b) #define ll long long #define pb push_back #define mt make_tuple #define fast() ios_base::sync_with_stdio(false);cin.tie(NULL); #define mp make_pair #define F first #define S second #define sz(x) (int)x.size() #define all(x) x.begin(), x.end() #define rsort(x) sort(x,greater<int> ()) #define rall(x) rbegin(x), rend(x) //useful in sorting #define endl "\n" #define p0(a) cout << a << " " #define p1(a) cout << a << endl #define p2(a, b) cout << a << " " << b << endl #define p3(a, b, c) cout << a << " " << b << " " << c << endl #define p4(a, b, c, d) cout << a << " " << b << " " << c << " " << d << endl #define gcd __gcd #define lcm(a,b) (a*b)/gcd(a,b) #define deci(n) fixed << setprecision(n) #define test() int test_case;cin >> test_case;while (test_case--) #define loop(i,a,n) for(int i=a;i<n;i++) #define sp " " #define popcount(x) __builtin_popcount(x) #define popcountll(x) __builtin_popcountll(x) #define clz(x) __builtin_clz(x) #define clzll(x) __builtin_clzll(x) #define ctz(x) __builtin_ctz(x) #define ctzll(x) __builtin_ctzll(x) #define max3(a,b,c) max(max(a,b),c) #define min3(a,b,c) min(min(a,b),c) #define max4(a,b,c,d) max(a,max3(b,c,d)) #define min4(a,b,c,d) min(a,min3(b,c,d)) #define max5(a,b,c,d,e) max(max4(a,b,c,d),e) #define min5(a,b,c,d,e) min(min4(a,b,c,d),e) #define getunique(v) {sort(all(v)); v.erase(unique(all(v)), v.end());} #define REP(i,a,b) for(ll i=a;i<b;i++) #define REPI(i,a,b) for(ll i=b-1;i>=a;i--) typedef vector<int> vi; typedef vector<bool> vb; typedef vector<string> vs; typedef vector<ll> vl; typedef vector<vi> vvi; typedef pair<int, int> pi; typedef vector<pi> vpi; typedef pair<int,pi> tri; typedef pair<pi,int> rtri; typedef pair<ll, ll> pl; typedef pair<double, double> pd; typedef priority_queue<int, vector<int>, greater<int>> minpq; typedef priority_queue<int> pq; typedef unordered_map<int,int> umii; typedef map<int,int> mii; typedef set<int> si; #define input(n,k) int n,k;cin>>n;cin>>k;vi arr(n,0);loop(i,0,n){cin>>arr[i];} #define forn(i, n) for (int i = 0; i < (int)(n); ++i) const int MOD = 1e9 + 7; int md=MOD; int Power(int n, int x) {int ans = 1;while (x > 0) {if (x & 1) ans = (ans * n) % md; n = (n * n) % md;x = x >> 1;}return ans;} vl fact, inv; void inverse(ll n) {if(n>=inv.size()){ll size=inv.size();size=size==0? 1:size; inv.resize(n + 1);inv[0] = 1; for (ll i = size; i <= n; i++)inv[i] = Power(fact[i], md - 2);}} void factorial(ll n) {if(n>=fact.size()){ll size=fact.size();size=size==0? 1:size; fact.resize(n + 1);fact[0] = 1;for (ll i = size; i <= n; i++) fact[i] = (fact[i - 1] * i) % md; }} ll ncr(ll n, ll r) { return (((fact[n] * inv[r]) % md) * inv[n - r]) % md; } vl SieveOfEratosthenes(int n) { bool prime[n+1]; memset(prime, true, sizeof(prime)); for (int p=2; p*p<=n; p++) {if (prime[p] == true){for (int i=p*p; i<=n; i += p) prime[i] = false;}} vl ans;for (int p=2; p<=n; p++)if (prime[p])ans.pb(p);return ans; } vi primeFactors(int n) { vi ans; while (n % 2 == 0) {ans.pb(2);n = n / 2;} for (int i = 3; i <= sqrt(n); i = i + 2) { while (n % i == 0) {ans.pb(i);n = n / i;}} if (n > 2)ans.pb(n);return ans; } // bool isprime(ll n) // { // if(n<2) // return false; // for(ll x:{2,3,5,7,11,13,17,19,23,29,31,37}) // { // if(n==x) // return true; // bool flag=true; // ll r=1; // ll t=1; // while(r<=((n-1)>>__builtin_ctzll(n-1))) // { // if(r&((n-1)>>__builtin_ctzll(n-1))) // t=((__int128)t*x)%n; // x=((__int128)x*x)%n; // r<<=1; // } // if(t==1||t==n-1) // flag=false; // for(r=0;r<__builtin_ctzll(n-1);r++) // { // t=((__int128)t*t)%n; // if(t==n-1) // flag=false; // } // if(flag) // return false; // } // return true; // } ll NcR(int n, int r) {long long p = 1, k = 1;if (n - r < r)r = n - r;if (r != 0) {while (r) {p *= n;k *= r; long long m = gcd(p, k);p /= m;k /= m;n--;r--;} }else p = 1;return p;// cout << p << endl; } bool sortasc(const rtri a,const rtri b) //Ascending ... change the argument accordingwise; { return a.second<b.second; } bool sortdesc(const int a,const int b) //Descending... change the argument accordingwise;a { return a>b; } int myceil(int num,int den) { if ((num >= 0 and den > 0) or ( num <= 0 and den < 0)) return num%den == 0 ? num/den : num/den + 1; return num / den; } int myfloor(int num,int den) { if ((num >= 0 and den > 0) or ( num <= 0 and den < 0)) return num%den == 0 ? num/den : num/den; int ans = num / den; return num % den == 0 ? ans : ans - 1; } int midofthree(int a,int b,int c) { if((a<=b and a>=c) or (a<=c and a>=b)) return a; else if((b>=a and b<=c) or (b<=a and b>=c)) return b; return c; } ll modI(ll a, ll m) { ll m0=m,y=0,x=1; if(m==1) return 0; while(a>1) {ll q=a/m;ll t=m;m=a%m;a=t;t=y;y=x-q*y;x=t; } if(x<0) x+=m0; return x; } string to_string(char c) { return string(1, c); } clock_t startTime; double getCurrentTime() { return (double)(clock() - startTime) / CLOCKS_PER_SEC; } mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count()); //From Umnik Template using ull = unsigned long long; ll myRand(ll B) { return (ull)rng() % B; } // reinitialize value of md(example md = M1 or md=M2); ll add(ll x, ll y) { x += y; if (x >= md) return x - md; return x; } ll sub(ll x, ll y) { x -= y; if (x < 0) return x + md; return x; } ll mult(ll x, ll y) { return (x * y) % md; } ll bin_pow(ll x, ll p) { if (p == 0) return 1; if (p & 1) return mult(x, bin_pow(x, p - 1)); return bin_pow(mult(x, x), p / 2); } ll rev(ll x) { return bin_pow(x, md - 2); } void q1();void q2();void q3();void q4();void q5(); #define pie 3.141592653589793238462643383279 //********************THE END OF`` TEMPLATES*******************// const int N = 2e5 + 5; bool comp(pi &a, pi &b){ return a.S < b.S; } struct FenwickTree{ vector<int> bit; int n; const int INF = (int)1e9; FenwickTree(int n){ this->n=n; bit.assign(n,0); // bit.assign(n,INF); } FenwickTree(vector<int> a) : FenwickTree(a.size()){ for (size_t i = 0; i < a.size(); i++) { add(i,a[i]); // update(i,a[i]); } } int sum(int r){ int ret=0; for (; r>=0; r = (r & (r + 1))-1){ ret+=bit[r]; } return ret; } int sum(int l,int r){ return sum(r)-sum(l-1); } void add(int idx, int delta){ for(; idx < n; idx = idx | (idx + 1)){ bit[idx] += delta; } } }; void run_testcase(){ int n; cin >> n; vpi Cord(n); for (int i = 0; i < n; i++) { cin >> Cord[i].F; } for (int i = 0; i < n; i++) { cin >> Cord[i].S; } // sort(all(Cord)); vpi Cord2 = Cord; map<int, int> compress; int t = 1; sort(all(Cord), comp); for (int i = 0; i < n; i++) { int num = 1; if (Cord[i].S < 0) num = -1; if (compress.count(Cord[i].S) == 0) { compress[Cord[i].S] = t++; } Cord2[i].S = compress[Cord[i].S]; // Cord2[i].S *= num; } debug(compress); int MaxN = n + 10; vi cnt(MaxN); int ans = 0; Cord = Cord2; sort(all(Cord)); FenwickTree FT(MaxN); FenwickTree FTS(MaxN); debug(Cord); int neg_num = 0, neg_sum = 0; for (int i = 0; i < n; i++) { int val = Cord[i].S; debug(i, val); if (val < 0){ neg_num++; neg_sum += abs(val); continue; } int small = FT.sum(val); ans += Cord[i].F * small; FT.add(val, 1); int val2 = FTS.sum(val); debug(small, ans, val2); // debug(val2); ans -= val2; FTS.add(val, Cord[i].F); // ans += (neg_num)*Cord[i].F - neg_num; debug(i, ans); } // FenwickTree FT2(MaxN); // FenwickTree FTS2(MaxN); // for (int i = 0; i < n; i++) // { // int val = Cord[i].S; // if (val > 0) continue; // val *= -1; // int small = FT2.sum(val); // ans += Cord[i].F * small; // FT2.add(val, 1); // int val2 = FTS2.sum(val); // ans -= val2; // FTS2.add(val, Cord[i].F); // } cout << ans << endl; } int32_t main() { startTime = clock(); fast(); #ifdef Local_Debug freopen("input.txt", "r", stdin); // freopen("output.txt", "w", stdout); #endif // test() { run_testcase(); } return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
from sys import stdin from collections import * class order_tree: def __init__(self, arr): self.n = len(arr) self.r = n << 1 self.tree = [[0, 0] for _ in range(self.n * 2)] self.order = defaultdict(int, {arr[i]: i for i in range(self.n)}) # get interval[l,r) def query(self, l): res, coun = 0, 0 l = self.order[l] + self.n r = self.r while l < r: if l & 1: res += self.tree[l][0] coun += self.tree[l][1] l += 1 if r & 1: r -= 1 res += self.tree[r][0] coun += self.tree[r][1] l >>= 1 r >>= 1 return res, coun def update(self, ix, val): ix = self.n + self.order[ix] # set new value self.tree[ix][0] += val self.tree[ix][1] += 1 # move up while ix > 1: self.tree[ix >> 1] = [self.tree[ix][0] + self.tree[ix ^ 1][0], self.tree[ix][1] + self.tree[ix ^ 1][1]] ix >>= 1 rints = lambda: [int(x) for x in stdin.readline().split()] n, a = int(input()), sorted(map(lambda x, y: [x, y], rints(), rints())) dis = sorted(set([x[1] for x in a])) tree, ans = order_tree(dis), 0 for i in range(n - 1, -1, -1): su, coun = tree.query(a[i][1]) ans += su - coun * a[i][0] tree.update(a[i][1], a[i][0]) print(ans)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long int N = 300009; const long long int mod = 1000000007; long long int n; vector<pair<long long int, long long int>> v; const long long int inf = 0; struct Node { Node *l = 0, *r = 0; long long int lo, hi, mset = inf, madd = 0, val = 0; Node(long long int lo, long long int hi) : lo(lo), hi(hi) {} Node(vector<long long int> &v, long long int lo, long long int hi) : lo(lo), hi(hi) { if (lo + 1 < hi) { long long int mid = lo + (hi - lo) / 2; l = new Node(v, lo, mid); r = new Node(v, mid, hi); val = (l->val + r->val); } else val = v[lo]; } long long int query(long long int L, long long int R) { if (R <= lo || hi <= L) return 0; if (L <= lo && hi <= R) return val; push(); return (l->query(L, R) + r->query(L, R)); } void set(long long int L, long long int R, long long int x) { if (R <= lo || hi <= L) return; if (L <= lo && hi <= R) mset = x, val = x * (hi - lo), madd = 0; else { push(), l->set(L, R, x), r->set(L, R, x); val = (l->val + r->val); } } void add(long long int L, long long int R, long long int x) { if (R <= lo || hi <= L) return; if (L <= lo && hi <= R) { if (mset != inf) mset += x; else madd += x; val += x * (hi - lo); } else { push(), l->add(L, R, x), r->add(L, R, x); val = (l->val + r->val); } } void push() { if (!l) { long long int mid = lo + (hi - lo) / 2; l = new Node(lo, mid); r = new Node(mid, hi); } if (mset != inf) l->set(lo, hi, mset), r->set(lo, hi, mset), mset = inf; else if (madd) l->add(lo, hi, madd), r->add(lo, hi, madd), madd = 0; } }; void pre() {} int32_t main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin.exceptions(cin.failbit); ; pre(); cin >> n; v.resize(n); for (long long int i = 0; i < (n); ++i) { cin >> v[i].first; } for (long long int i = 0; i < (n); ++i) { cin >> v[i].second; } sort(v.begin(), v.end()); long long int negi = 0, posi = 0, ans = 0; Node *neg = new Node(-1, 1e9); Node *pos = new Node(-1, 1e9); Node *neg_num = new Node(-1, 1e9); Node *pos_num = new Node(-1, 1e9); long long int sumnegi = 0; long long int sumposi = 0; for (long long int i = 0; i < (n); ++i) { if (v[i].second >= 0) { long long int add = pos->query(-1, (v[i].second) + 1); long long int num = pos_num->query(-1, (v[i].second) + 1); ans += (num * v[i].first - (add)); pos->add((v[i].second), (v[i].second) + 1, v[i].first); pos_num->add((v[i].second), (v[i].second) + 1, 1); ans += ((negi * v[i].first) - sumnegi); } else { v[i].second = (-v[i].second); long long int add = neg->query(v[i].second + 1, 1e9); long long int num = neg_num->query(v[i].second + 1, 1e9); ans += (num * v[i].first - (add)); neg->add(v[i].second, v[i].second + 1, v[i].first); neg_num->add(v[i].second, v[i].second + 1, 1); negi += 1; sumnegi += v[i].first; } } cout << ans << "\n"; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
numberofpoints=int(input()) initcoords=input().split(" ") speeds=input().split(" ") initcoords=tuple(map(int,initcoords)) speeds=tuple(map(int,speeds)) def twopoints(coords,velos): firstv=velos[0] secondv=velos[1] firstc=coords[0] secondc=coords[1] dif=abs(firstv-secondv) nextdif=abs((firstc+firstv)-(secondc+secondv)) if dif>nextdif: return 0 else: return dif lis=[] for first in range(numberofpoints): for second in range(first+1,numberofpoints): tup=(first,second) lis.append(tup) sum=0 for tuple in lis: a=(speeds[tuple[0]],speeds[tuple[1]]) b=(initcoords[tuple[0]],initcoords[tuple[1]]) sum+=twopoints(b,a) print(sum)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 2e5 + 15; int tot = 1, N; const int L = -2e8; const int R = 2e8; struct Node { int l, r, num; long long sum; Node() { l = 0, r = 0, num = 0, sum = 0; } } E[maxn * 40]; struct Point { long long x, v; bool operator<(const Point &T) const { return x > T.x; } } P[maxn]; void update(int l, int r, int x, int v, int id) { if (l == r) { E[id].num++; E[id].sum += x; return; } int mid = (l + r) >> 1; if (v <= mid) { if (!E[id].l) E[id].l = ++tot; update(l, mid, x, v, E[id].l); } else { if (!E[id].r) E[id].r = ++tot; update(mid + 1, R, x, v, E[id].r); } E[id].num = E[E[id].l].num + E[E[id].r].num; E[id].sum = E[E[id].l].sum + E[E[id].r].sum; } void getSum(int l, int r, int ln, int rn, int id, int &num, long long &sum) { if (ln > rn) return; if (ln == l && rn == r) { num += E[id].num; sum += E[id].sum; return; } int mid = (l + r) >> 1; if (ln > mid && E[id].r) getSum(mid + 1, r, ln, rn, E[id].r, num, sum); else if (rn <= mid && E[id].l) getSum(l, mid, ln, rn, E[id].l, num, sum); else { if (E[id].r) getSum(mid + 1, r, mid + 1, rn, E[id].r, num, sum); if (E[id].l) getSum(l, mid, ln, mid, E[id].l, num, sum); } } int main() { scanf("%d", &N); for (int i = 1; i <= N; i++) scanf("%lld", &P[i].x); for (int i = 1; i <= N; i++) scanf("%lld", &P[i].v); sort(P + 1, P + 1 + N); long long ans = 0; for (int i = 1; i <= N; i++) { int num = 0; long long sum = 0; getSum(L, R, P[i].v, R, 1, num, sum); ans += (sum - 1LL * num * P[i].x); update(L, R, P[i].x, P[i].v, 1); } printf("%lld\n", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<climits> #include<cmath> #include<ctime> #include<vector> #include<queue> #include<stack> #include<list> #include<set> #include<map> #include<utility> #include<algorithm> using namespace std; #define FOR(i,a,b) for(register int i=(a);i<(b);++i) #define FORR(i,a,b) for(register int i=(a);i<=(b);++i) #define ROR(i,a,b) for(register int i=(a);i>=(b);--i) #define RORR(i,a,b) for(register int i=(a);i>(b);--i) #define PQ priority_queue #define VR vector #define MST(a,b) memset(a,b,sizeof(a)) #define FGETS(s) fgets(s,sizeof(s),stdin) #define ALL(x) x.begin(),x.end() #define INS(x) inserter(x,x.begin()) #define FI first #define SE second typedef long long LL; typedef long long unsigned LLU; typedef pair<int,int> pii; const int MAX = 2e5 + 20; int n,pos[MAX]; struct Node{ int p,v,no; bool operator < (const Node &b){ return v < b.v; } }node[MAX],v[MAX]; struct ST{ // n-1 LL v[MAX]; LL sum(int x){ LL s = 0; while(x){ s += v[x]; x -= x&-x; } return s; } void add(int x, LL val){ while(x<=n){ v[x]+=val; x += x&-x; } } LL operator [] (int idx){ return sum(idx); } }s,c; int main(void){ scanf("%d",&n); FOR(i,0,n) scanf("%d",&node[i].p); FOR(i,0,n) scanf("%d",&node[i].v); sort(node,node+n,[](Node &a, Node &b){ return a.p < b.p; }); FOR(i,0,n) node[i].no=i; memcpy(v,node,sizeof(node)); v[0]={0,0,0}; sort(v+1,v+n); FOR(i,1,n){ pos[v[i].no]=i; s.add(i,v[i].p); c.add(i,1); } #ifdef DEBUG FOR(i,0,n) printf(" (%d, %d)",node[i].p,node[i].v); putchar('\n'); FOR(i,0,n) printf(" (%d, %d)",v[i].p,v[i].v); putchar('\n'); #endif LL ans = 0; FOR(i,0,n-1){ int j = lower_bound(v+1,v+n,node[i]) - v; if(j>=n) continue; #ifdef DEBUG FOR(i,1,n) printf(" s[%d]: %lld, c[%d]: %lld\n",i,s[i],i,c[i]); printf(" for i: %d (v %d), j: %d\n",i,node[i].v,j); printf(" s[n]:%lld, s[j-1]: %lld, c[j-1]: %lld\n",s[n],s[j-1],c[j-1]); printf(" ans += %lld\n",s[n]-s[j-1] - (n - 1ll - c[j-1])*node[i].p); #endif ans += s[n]-s[j-1] - (c[n] - c[j-1])*node[i].p; int t = pos[i+1]; s.add(t,-v[t].p); c.add(t,-1); } printf("%lld\n",ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class Ch, class Tr, class Container> basic_ostream<Ch, Tr>& operator<<(basic_ostream<Ch, Tr>& os, Container const& x) { os << "{ "; for (auto& y : x) os << y << " "; return os << "}"; } template <class X, class Y> ostream& operator<<(ostream& os, pair<X, Y> const& p) { return os << "[ " << p.first << ", " << p.second << "]"; } typedef struct { long long pos, v; } Point; long long P[200005], V[200005], sum = 0, maxNeg = 0; long long l = 0, r = 100000000; int n; vector<Point> Pos, Neg; bool sort_vel(Point a, Point b) { if (a.v == b.v) return a.pos > b.pos; return a.v > b.v; } bool sort_pos(Point a, Point b) { return a.pos < b.pos; } long long ft[200005]; void upd(int i0, long long v) { for (int i = i0 + 1; i <= 200005; i += i & -i) ft[i] += v; } long long get(int i0) { long long r = 0; for (int i = i0; i; i -= i & -i) r += ft[i]; return r; } int get_sum(int i0, int i1) { return get(i1) - get(i0); } void solve(vector<Point>& v) { sort((v.begin()), (v.end()), sort_pos); for (int i = 0; i < (n); i++) upd(i, r - v[i].pos); map<long long, long long> DondeEsta; for (int i = 0; i < (n); i++) DondeEsta[v[i].pos] = i; sort((v.begin()), (v.end()), sort_vel); set<long long> usados; for (auto x : v) { long long i = DondeEsta[x.pos]; long long dif = distance( usados.begin(), upper_bound((usados.begin()), (usados.end()), x.pos)); sum += get_sum(0, i) - ((r - x.pos) * (i - dif)); upd(i, x.pos - r); usados.insert(x.pos); } } int main() { cin >> n; for (int i = 0; i < (n); i++) cin >> P[i]; for (int i = 0; i < (n); i++) { cin >> V[i]; Pos.push_back({P[i], V[i]}); } solve(Pos); cout << sum << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename Arg1> void __f(const char* name, Arg1&& arg1) { std::cerr << name << " : " << arg1 << '\n'; } template <typename Arg1, typename... Args> void __f(const char* names, Arg1&& arg1, Args&&... args) { const char* comma = strchr(names + 1, ','); std::cerr.write(names, comma - names) << " : " << arg1 << " | "; __f(comma + 1, args...); } struct FenwickTree { vector<long long> bit; long long n; vector<long long> cnt; FenwickTree(long long n) { this->n = n; bit.assign(n, 0); cnt.assign(n, 0); } FenwickTree(vector<long long> a) : FenwickTree(a.size()) { for (size_t i = 0; i < a.size(); i++) add(i, a[i]); } pair<long long, long long> sum(long long r) { long long ret = 0; long long t = r; for (; r >= 0; r = (r & (r + 1)) - 1) ret += bit[r]; long long ret2 = 0; r = t; for (; r >= 0; r = (r & (r + 1)) - 1) ret2 += cnt[r]; return {ret, ret2}; } pair<long long, long long> sum(long long l, long long r) { auto j = sum(r); auto j2 = sum(l - 1); return {j.first - j2.first, j.second - j2.second}; } void add(long long idx, long long delta) { long long t = idx; for (; idx < n; idx = idx | (idx + 1)) bit[idx] += delta; idx = t; for (; idx < n; idx = idx | (idx + 1)) cnt[idx] += 1; } }; FenwickTree ft(1000005); map<long long, long long> compress; signed main() { ios_base::sync_with_stdio(0); long long TESTS = 1; while (TESTS--) { long long n; cin >> n; long long x[n]; for (long long i = 0; i < n; i++) cin >> x[i]; long long v[n]; for (long long i = 0; i < n; i++) cin >> v[i]; set<long long> vv; for (long long i = 0; i < n; i++) { vv.insert(abs(v[i])); } long long i = 0; for (auto j : vv) { if (j == 0) compress[j] = 0; else { compress[j] = i + 1; i++; } } for (long long i = 0; i < n; i++) { if (v[i] >= 0) v[i] = compress[v[i]]; else v[i] = -compress[-v[i]]; } vector<pair<long long, long long>> ve; for (long long i = 0; i < n; i++) ve.push_back({x[i], v[i]}); sort((ve).begin(), (ve).end()); for (long long i = 0; i < n; i++) { x[i] = ve[i].first; v[i] = ve[i].second; } long long left = 0, right = 0; long long cntl = 0, cntr = 0; long long ans = 0; for (long long i = 0; i < n; i++) { if (v[i] > 0) { ans += x[i] * cntl - left; } else if (v[i] < 0) { cntl++; left += x[i]; } } for (long long i = 0; i < n; i++) { if (v[i] > 0) { ans += ft.sum(0, v[i]).second * x[i] - ft.sum(0, v[i]).first; ft.add(v[i], x[i]); } } for (long long i = 0; i < 1000005; i++) { ft.bit[i] = 0; ft.cnt[i] = 0; } for (long long i = 0; i < n; i++) { if (v[i] < 0) { v[i] = -v[i]; ans += ft.sum(v[i], 1000000).second * x[i] - ft.sum(v[i], 1000000).first; ft.add(v[i], x[i]); } } long long sum = 0; long long cnt = 0; for (long long i = 0; i < n; i++) { if (v[i] == 0) { ans += cnt * x[i] - sum; sum += x[i]; cnt++; } } cout << ans; } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
//package psa.minrazdalja; import java.util.ArrayList; import java.util.Scanner; // Import the Scanner class import javax.swing.plaf.synth.SynthSpinnerUI; public class minrazdalja { static class MinStruktua { private int x; private float v; public MinStruktua(int x, int v) { this.x = x; this.v = v; } public void dodajv(float v) { this.v = v; } } static int cont = 0; public static void elele(ArrayList<MinStruktua> elementi) { long skupek = 0; for(int i=0; i<elementi.size(); i++) { for(int j=0;j<elementi.size();j++) { if(i != j) { int ix = elementi.get(i).x; int jx = elementi.get(j).x; if(jx > ix) { float vx = elementi.get(i).v; float vy = elementi.get(j).v; //System.out.println("(" +ix + "," + jx+")"); System.out.println(vy); skupek += vrniMax(ix, jx, vx, vy); cont += 1; } } } //2 1 4 3 5 //2 2 2 3 4 } System.out.println(cont); System.out.println(skupek); } // 2 3 3 2 public static long vrniMax(int m, int n, float i, float j) { //najdemo max //nardimo primerjave in vrnemo ustrezno long x = 0; int absol = Math.abs(m-n); if(m < n) { if(j < 0 && i >= 0) { x =+ 0; }else if(j >= 0 && i < 0){ x =+ absol; }else if(j < 0 && i < 0) { if(j > i){ x =+ absol; } else { x =+ 0; } }else{ if(j != i) { if(j > i){ x =+ absol; }else{ x =+ 0; } }else{ x =+ absol; } } }; //System.out.println(m + " " + n + " " + i + " " + j + " " + x); return x; } public static void main(String[] args) { int st_el; Scanner skener = new Scanner(System.in); // Create a Scanner object //System.out.println("Vnesi stevilo elementov: "); st_el = skener.nextInt(); //System.out.println(st_el); ArrayList<MinStruktua> elementi = new ArrayList<>(st_el); //System.out.println("Vnesi elemente: "); for(int i=0; i<st_el; i++) { int x = skener.nextInt(); elementi.add(new MinStruktua(x, 0)); } //System.out.println("Vnesi tezo elementov: "); for(int i=0; i<st_el; i++) { float x = skener.nextInt(); elementi.get(i).dodajv(x); } skener.close(); System.out.println(); System.out.println(); elele(elementi); //vrniMax(1, 2, -100, 3); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; struct dd { int gt; int x; int v; }; vector<dd> a; struct Data { long long sum; int sl; }; Data it[200009 * 8]; Data ans; long long res; void update(int i, int l, int r, int pos, int data) { if (l > pos || r < pos) return; if (l == r) { it[i].sum = data; it[i].sl = 1; return; } int mid = (l + r) / 2; update(i * 2, l, mid, pos, data); update(i * 2 + 1, mid + 1, r, pos, data); it[i].sum = it[i * 2].sum + it[i * 2 + 1].sum; it[i].sl = it[i * 2].sl + it[i * 2 + 1].sl; } void find(int i, int l, int r, int u, int v) { if (l > r) return; if (r < u || l > v) return; if (u <= l && r <= v) { ans.sum = ans.sum + it[i].sum; ans.sl = ans.sl + it[i].sl; return; } int mid = (l + r) / 2; find(i * 2, l, mid, u, v); find(i * 2 + 1, mid + 1, r, u, v); } bool cmp(const dd& a, const dd& b) { return a.v < b.v; } bool cmp1(const dd& a, const dd& b) { return a.x < b.x; } int main() { cin >> n; for (int i = 1; i <= n; i++) { dd tmp; cin >> tmp.x; a.push_back(tmp); } for (int i = 0; i < n; i++) { cin >> a[i].v; } sort(a.begin(), a.end(), cmp1); for (int i = 0; i < n; i++) { a[i].gt = i + 1; } sort(a.begin(), a.end(), cmp); update(1, 1, n, a[n - 1].gt, a[n - 1].x); for (int i = n - 2; i >= 0; i--) { long long tmp = a[i].x; ans.sl = 0; ans.sum = 0; find(1, 1, n, a[i].gt + 1, n); res = res + ans.sum - (tmp * ans.sl); update(1, 1, n, a[i].gt, a[i].x); } cout << res << endl; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys input = sys.stdin.readline n=int(input()) X=list(map(int,input().split())) V=list(map(int,input().split())) XV=[(X[i],V[i]) for i in range(n)] compression_dict_x={a: ind for ind, a in enumerate(sorted(set(X)))} compression_dict_v={a: ind+2 for ind, a in enumerate(sorted(set(V)))} XV=[(compression_dict_x[XV[i][0]], compression_dict_v[XV[i][1]]) for i in range(n)] XV.sort(reverse=True) LEN=len(compression_dict_v)+3 BIT1=[0]*(LEN+1) def update1(v,w): while v<=LEN: BIT1[v]+=w v+=(v&(-v)) def getvalue1(v): ANS=0 while v!=0: ANS+=BIT1[v] v-=(v&(-v)) return ANS BIT2=[0]*(LEN+1) def update2(v,w): while v<=LEN: BIT2[v]+=w v+=(v&(-v)) def getvalue2(v): ANS=0 while v!=0: ANS+=BIT2[v] v-=(v&(-v)) return ANS ANS=0 for x,v in XV: ANS+=(getvalue2(LEN)-getvalue2(v-1))-(getvalue1(LEN)-getvalue1(v-1))*x #print(getvalue2(LEN),getvalue2(v-1),getvalue1(LEN),getvalue1(v-1)) #print(x,v,ANS) update1(v,1) update2(v,x) print(ANS)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; void update(vector<long long> &b, int ind, int numb) { for (int i = ind; i < b.size(); i = ((i + 1) | i)) b[i] += numb; } int Sum(vector<long long> &b, int ind) { int ans = 0; for (int i = ind; i >= 0; i = ((i + 1) & i) - 1) ans += b[i]; return ans; } int sum(vector<long long> &b, int l, int r) { return Sum(b, r) - (l > 0 ? Sum(b, l - 1) : 0); } bool comp(pair<int, int> c, pair<int, int> d) { if (c.second < d.second) return true; return false; } int main() { cin >> n; vector<pair<int, int> > a(n); for (int i = 0; i < n; ++i) cin >> a[i].first; for (int i = 0; i < n; ++i) cin >> a[i].second; sort(a.begin(), a.end(), comp); int k = 1, temp = -1e9; for (int i = 0; i < n; ++i) if (temp == a[i].second) { a[i].second = k; } else { a[i].second = ++k; temp = a[i].second; } sort(a.begin(), a.end()); long long ans = 0; vector<long long> sumx(k + 2, 0), sumv(k + 2, 0); for (int i = 0; i < n; ++i) { int ind = a[i].second; ans += Sum(sumv, ind) * 1ll * a[i].first - Sum(sumx, ind); update(sumv, ind, 1); update(sumx, ind, a[i].first); } cout << ans; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> using namespace std; using namespace __gnu_pbds; using namespace std::chrono; typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> indexed_set; ///find_by_order, order_of_key typedef long long ll; typedef long double ld; typedef pair<int,int> pii; typedef vector<int> vi; #define mp make_pair #define pb push_back #define fi first #define se second #define all(x) (x).begin(), (x).end() #define rall(x) (x).rbegin(), (x).rend() void update(vector<ll> &bit, ll index, ll delta) { ++index; for(; index < bit.size(); index += index&-index) { bit[index-1] += (ll)delta; } } ll sum(vector<ll> &bit, ll index) { ll suma = 0LL; ++index; for(; index >= 1; index -= index&-index) { suma += bit[index-1]; } return suma; } int main() { #ifdef ljuba auto pocetakChronoSata123 = high_resolution_clock::now(); freopen("input.txt", "r", stdin); freopen("output.txt", "w", stdout); #endif ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); int n; cin >> n; vector<pii> p(n); for(auto &z : p) cin >> z.fi; for(auto &z : p) cin >> z.se; sort(all(p)); vi brzine; for(int i = 0; i < n; ++i) brzine.pb(p[i].se); sort(all(brzine)); brzine.resize(unique(all(brzine)) - brzine.begin()); ll res = 0; vector<ll> cnt(brzine.size()), manjeBrzine(brzine.size()); for(auto &pnt : p) { int index = lower_bound(all(brzine), pnt.se) - brzine.begin(); res += sum(cnt, index) * 1LL * (ll)pnt.fi - sum(manjeBrzine, index); update(cnt, index, 1); update(manjeBrzine, index, pnt.fi); } cout << res << '\n'; #ifdef ljuba auto krajChronoSata123 = high_resolution_clock::now(); auto trajanje = duration_cast<microseconds>(krajChronoSata123 - pocetakChronoSata123); cout << "----------------------------------------------------\n"; cout << "Vreme u milisekundama: " << (ld)trajanje.count() / 1000.00 << '\n'; #endif return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Moving_Points { public static void main(String[] args) { // TODO Auto-generated method stub Scanner scan = new Scanner(System.in); int n = scan.nextInt(); int[] a = new int[n]; int[] b = new int[n]; for (int i=0;i<n;i++) a[i] = scan.nextInt(); for (int i=0;i<n;i++) b[i] = scan.nextInt(); int sum = 0; for (int i = 0; i < n; i++) for (int j = i + 1; j < n; j++) sum += distanceOfTwoPoints(a[i], b[i], a[j], b[j]); System.out.println(sum); } private static int distanceOfTwoPoints(int pos1, int v1, int pos2, int v2) { if (pos1 < pos2 && v1 <= v2) return pos2 - pos1; else if (pos2 < pos1 && v2 <= v1) return pos1 - pos2; else return 0; } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long maxn = 200005; map<long long, long long> g; map<long long, long long> invG; long long tree[4][maxn]; long long sum(long long k, long long t) { long long res = 0; for (long long i = k; i >= 1; i -= i & -i) res += tree[t][i]; return res; } void add(long long k, long long v, long long t) { for (long long i = k; i < maxn; i += i & -i) tree[t][i] += v; } signed main() { ios_base::sync_with_stdio(0); cin.tie(0); for (long long i = 0; i < maxn; i++) for (long long j = 0; j < 4; j++) tree[j][i] = 0; long long n; cin >> n; priority_queue<pair<long long, pair<long long, long long>>> pq; vector<long long> xs; vector<long long> vs; set<long long> distinct; for (long long i = 0; i < n; i++) { long long x; cin >> x; xs.push_back(x); distinct.emplace(x); } for (long long i = 0; i < n; i++) { long long v; cin >> v; vs.push_back(v); } vector<long long> vec(distinct.begin(), distinct.end()); for (long long i = 0; i < n; i++) { g[vec[i]] = i + 1; invG[i + 1] = vec[i]; } for (long long i = 0; i < n; i++) { long long dir = 0; if (vs[i] < 0) dir = 1; pq.emplace(abs(vs[i]), make_pair(g[xs[i]], dir)); } long long res = 0; while (!pq.empty()) { pair<long long, pair<long long, long long>> t = pq.top(); queue<pair<long long, long long>> q; while (!pq.empty() && pq.top().first == t.first) { pair<long long, pair<long long, long long>> p = pq.top(); pq.pop(); q.emplace(p.second); } while (!q.empty()) { pair<long long, long long> p = q.front(); q.pop(); long long x = p.first; long long dir = p.second; long long sumRight = sum(maxn - 1, 0) - sum(x, 0); sumRight -= invG[x] * (sum(maxn - 1, 0 + 2) - sum(x, 0 + 2)); long long sumLeft = sum(x - 1, 1); sumLeft -= invG[x] * sum(x - 1, 1 + 2); res += abs(sumRight) + abs(sumLeft); add(x, invG[x], dir); add(x, 1, dir + 2); } } cout << res << '\n'; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.HashMap; import java.util.StringTokenizer; public class Round624F { public static class node{ int pos; int neg; long negsum; long possum; public node(int pos, int neg, long possum, long negsum) { this.pos = pos; this.neg = neg; this.negsum = negsum; this.possum = possum; } } public static node merge(node l, node r) { return new node(l.pos + r.pos, l.neg + r.neg, l.possum + r.possum, l.negsum + r.negsum); } public static void Update(node[] tree, int start, int end, int index, int i, int type, long speed) { if(start > end || i < start || i > end) { return; } if(start == end) { tree[index] = new node(type == 1? 1:0, type == -1?1:0, type == 1 ? speed : 0, type == -1? speed : 0); return; } int mid = (start + end)>>1; Update(tree, start, mid, index<<1, i, type, speed); Update(tree, mid+1, end, index<<1|1, i, type, speed); tree[index] = merge(tree[index<<1], tree[index<<1|1]); } public static node Query(node[] tree, int start, int end, int index, int i, int j) { if(start > end || j < start || i > end) { return new node(0,0,0,0); } if(i <= start && j >= end) { return tree[index]; } int mid = (start + end)>>1; node left = Query(tree, start, mid, index<<1, i, j); node right = Query(tree, mid + 1, end, index<<1|1, i , j); return merge(left, right); } public static class Pair implements Comparable<Pair>{ int x; int v; public Pair(int x, int v) { this.x = x; this.v = v; } public int compareTo(Pair x) { return this.x - x.x; } } public static class Triple{ int start; int end; int idx; public Triple(int start, int end, int idx) { this.start = start; this.end = end; this.idx = idx; } } public static void solve() { int n = s.nextInt(); Pair[] points = new Pair[n]; Pair[] reverse = new Pair[n]; int[] xs = new int[n]; for(int i = 0; i < n; i++) { xs[i] = s.nextInt(); } int[] vs = new int[n]; for(int i = 0; i < n; i++) { vs[i] = s.nextInt(); } for(int i = 0; i < n; i++) { int x = xs[i], v = vs[i]; points[i] = new Pair(x, v); reverse[i] = new Pair(Math.abs(v), Math.abs(v)==v?1:-1); } Arrays.sort(points); Arrays.sort(reverse); HashMap<Integer,Triple> helper = new HashMap<>(); for(int i = 0; i < n; i++) { if(helper.containsKey(reverse[i].x)) { helper.get(reverse[i].x).end = i; }else { helper.put(reverse[i].x, new Triple(i, i, i)); } } node[] tree = new node[4 * n + 1]; Arrays.fill(tree, new node(0,0,0,0)); long ans = 0; for(int i = 0; i < points.length; i++) { int v = points[i].v; int id = helper.get(Math.abs(v)).idx; helper.get(Math.abs(v)).idx++; int mid = helper.get(Math.abs(v)).end; node left = Query(tree, 0, n - 1, 1, 0, mid); node right = Query(tree, 0, n - 1, 1, mid + 1, n - 1); long val = points[i].x; if(Math.abs(v) == v) { ans += - left.possum + left.pos * val; ans += - left.negsum + left.neg * val; ans += - right.negsum + right.neg * val; }else { ans += - right.negsum + right.neg * val; } Update(tree, 0, n - 1, 1, id, v < 0 ? -1 : 1, val); } out.println(ans); } public static void main(String[] args) { out = new PrintWriter(new BufferedOutputStream(System.out)); s = new FastReader(); solve(); out.close(); } public static FastReader s; public static PrintWriter out; public static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } double nextDouble() { return Double.parseDouble(next()); } long nextLong() { return Long.parseLong(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (Exception e) { e.printStackTrace(); } return str; } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int x[n], v[n]; for (int i = 0; i < n; i++) { cin >> x[i]; } for (int i = 0; i < n; i++) { cin >> v[i]; } int d = 0; for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { if (v[i] * v[j] > 0 && x[i] != x[j]) { if ((v[i] - v[j]) * (x[i] - x[j]) >= 0) { d += abs(x[i] - x[j]); } } else if (v[i] * v[j] < 0 && x[i] != x[j]) { if ((x[i] - x[j]) * (v[i] - v[j]) >= 0) { d += abs(x[i] - x[j]); } else { { if (v[i] < 0 && v[j] > 0) { d += x[j] - x[i]; } } } } else { if ((x[i] - x[j]) * (v[i] - v[j]) > 0) { d += abs(x[i] - x[j]); } } } } cout << d; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.Reader; import java.util.ArrayList; import java.util.Comparator; import java.util.HashSet; import java.util.List; import java.util.StringTokenizer; public class C1311F_2 { public static void main(String[] args) { var scanner = new BufferedScanner(); var writer = new PrintWriter(new BufferedOutputStream(System.out)); var n = scanner.nextInt(); var x = new int[n]; for (int i = 0; i < n; i++) { x[i] = scanner.nextInt(); } var v = new int[n]; for (int i = 0; i < n; i++) { v[i] = scanner.nextInt(); } writer.println(solve(n, x, v)); scanner.close(); writer.flush(); writer.close(); } static final int MIN_V = (int) -1e8; private static long solve(int n, int[] x, int[] v) { var orderX = new ArrayList<Integer>(); for (int i = 0; i < n; i++) { orderX.add(i); } orderX.sort(Comparator.comparingInt(o -> x[o])); var ans = 0L; var tree = new SegTree(v); for (int i = 0; i < n; i++) { var thisX = x[orderX.get(i)]; var thisV = v[orderX.get(i)]; if (thisV >= 0) { var left = tree.acc(MIN_V, 0); ans += left[1] * thisX - left[0]; var right = tree.acc(0, thisV); ans += right[1] * thisX - right[0]; tree.add(thisV, thisX); } else { var left = tree.acc(MIN_V, thisV); ans += left[1] * thisX - left[0]; tree.add(thisV, thisX); } } return ans; } static class SegTree { final List<Node> nodes = new ArrayList<>(); /** * 所有有效的key,递增。 */ final int[] keys; SegTree(int[] keys) { this.keys = distinctAndAsc(keys); nodes.add(new Node(0, this.keys.length - 1)); } static int[] distinctAndAsc(int[] keys) { var distinct = new HashSet<Integer>(); for (int key : keys) { distinct.add(key); } var asc = new ArrayList<>(distinct); asc.sort(Integer::compareTo); return asc.stream().mapToInt(i -> i).toArray(); } void add(int key, int value) { add(0, key, value); } private void add(int index, int key, int value) { if (index < 0) { return; } var node = nodes.get(index); // debug("node %d: (low=%d,highEx=%d)", index, node.low, node.high); if (key < keys[node.low] || keys[node.high] < key) { return; } node.acc[0] += value; node.acc[1]++; if (node.isLeaf()) { return; } if (node.left < 0) { nodes.add(new Node(node.low, node.mid)); node.left = nodes.size() - 1; } add(node.left, key, value); if (node.right < 0) { nodes.add(new Node(node.mid + 1, node.high)); node.right = nodes.size() - 1; } add(node.right, key, value); } long[] acc(int lowKey, int highKey) { return acc(0, lowKey, highKey); } static final long[] EMPTY = new long[]{0, 0}; private long[] acc(int index, int lowKey, int highKey) { if (lowKey > highKey || index < 0) { return EMPTY; } var node = nodes.get(index); if (highKey < keys[node.low] || keys[node.high] < lowKey) { return EMPTY; } if (lowKey <= keys[node.low] && keys[node.high] <= highKey) { return node.acc; } var left = acc(node.left, lowKey, highKey); var right = acc(node.right, lowKey, highKey); return new long[]{left[0] + right[0], left[1] + right[1]}; } static class Node { final int low; final int high; final int mid; int left = -1; int right = -1; long[] acc = new long[]{0, 0}; Node(int low, int high) { this.low = low; this.high = high; this.mid = Math.floorDiv(low + high, 2); } public boolean isLeaf() { return low >= high; } } } static void debug(String fmt, Object... args) { System.out.println(String.format(fmt, args)); } public static class BufferedScanner { BufferedReader br; StringTokenizer st; public BufferedScanner(Reader reader) { br = new BufferedReader(reader); } public BufferedScanner() { this(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } void close() { try { br.close(); } catch (IOException e) { e.printStackTrace(); } } } static long gcd(long a, long b) { if (a < b) { return gcd(b, a); } while (b > 0) { long tmp = b; b = a % b; a = tmp; } return a; } static long inverse(long a, long m) { long[] ans = extgcd(a, m); return ans[0] == 1 ? (ans[1] + m) % m : -1; } private static long[] extgcd(long a, long m) { if (m == 0) { return new long[]{a, 1, 0}; } else { long[] ans = extgcd(m, a % m); long tmp = ans[1]; ans[1] = ans[2]; ans[2] = tmp; ans[2] -= ans[1] * (a / m); return ans; } } private static List<Integer> primes(double upperBound) { var limit = (int) Math.sqrt(upperBound); var isComposite = new boolean[limit + 1]; var primes = new ArrayList<Integer>(); for (int i = 2; i <= limit; i++) { if (isComposite[i]) { continue; } primes.add(i); int j = i + i; while (j <= limit) { isComposite[j] = true; j += i; } } return primes; } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; import java.lang.*; import java.io.*; public class F { public static void main (String[] args) throws java.lang.Exception { new Solution(); } } class Solution { Scanner scanner; public Solution() { scanner = new Scanner(System.in); while (scanner.hasNext()) { run_case(); } } private void run_case() { String line = scanner.nextLine(); int[] pos = strToIntArray(scanner.nextLine()); int[] speed = strToIntArray(scanner.nextLine()); List<Rock> list = new ArrayList<>(); for (int i=0; i<pos.length; i++) { list.add(new Rock(pos[i], speed[i])); } Collections.sort(list, new ComparatorRock()); long res = 0; int inf = (int)1e8 + 5; HashMap<Integer, Integer> cnt = new HashMap<>(); SegmentTreeRSQ st_cnt = new SegmentTreeRSQ(-inf, inf); SegmentTreeRSQ st_pos = new SegmentTreeRSQ(-inf, inf); for (int i=list.size()-1; i>=0; i--) { int cur_v = list.get(i).v; int larger_cnt = (int)st_cnt.query(cur_v, inf); long larger_sum = st_pos.query(cur_v, inf); // list.add(0, res); cnt.putIfAbsent(cur_v, 0); cnt.put(cur_v, cnt.get(cur_v) + 1); st_cnt.update(cur_v, cnt.get(cur_v)); st_pos.update(cur_v, st_pos.query(cur_v, cur_v) + list.get(i).pos); res += larger_sum - larger_cnt * list.get(i).pos; } // for (int i=0; i<list.size(); i++) { // for (int j=i+1; j<list.size(); j++) { // if (list.get(j).v >= list.get(i).v) { // res += list.get(j).pos - list.get(i).pos; // } // } // } System.out.println(res); return; } private int[] strToIntArray(String str) { String[] vals = str.split("\\s+"); int sz = vals.length; int[] res = new int[sz]; for (int i=0; i<sz; i++) { res[i] = Integer.parseInt(vals[i]); } return res; } } class Rock { public int pos, v; public Rock(int pos, int v) { this.pos = pos; this.v = v; } } class ComparatorRock implements Comparator<Rock> { public int compare(Rock a, Rock b) { return a.pos - b.pos; } } class SegmentTreeRSQ { SegmentTreeRSQNode root = null; int[] nums; int inf = Integer.MAX_VALUE; public SegmentTreeRSQ(int start, int end) { root = new SegmentTreeRSQNode(start, end); } public void update(int i, long val) { if (root == null || i < root.start || i > root.end) return; update(root, i, val); } public void update(SegmentTreeRSQNode root, int i, long val) { if (root == null) return; if (root.start == i && root.end == i) root.sum = val; else { int mid = root.mid(); // split // if (root.left == null) root.left = new SegmentTreeRSQNode(root.start, mid); // if (root.right == null) root.right = new SegmentTreeRSQNode(mid+1, root.end); // visit if (i <= mid) { if (root.left == null) root.left = new SegmentTreeRSQNode(root.start, mid); update(root.left, i, val); } else { if (root.right == null) root.right = new SegmentTreeRSQNode(mid+1, root.end); update(root.right, i, val); } // merge long sum_l = root.left != null ? root.left.sum : 0; long sum_r = root.right != null ? root.right.sum : 0; root.sum = sum_l + sum_r; } } public long query(int start, int end) { if (root == null) return 0; else return query(root, start, end); } public long query(SegmentTreeRSQNode root, int start, int end) { if (root == null) return 0; if (start > end) { return 0; } else if (root.start == start && root.end == end){ return root.sum; } else { int mid = root.mid(); if (end <= mid) { // in left return query(root.left, start, end); } else if (start >= mid+1) { // in right return query(root.right, start, end); } else { return query(root.left, start, mid) + query(root.right, mid+1, end); } } } } class SegmentTreeRSQNode { int inf = Integer.MAX_VALUE; public int start, end, min, max; public long sum; public SegmentTreeRSQNode left, right; public SegmentTreeRSQNode(int start, int end) { this.left = null; this.right = null; this.start = start; this.end = end; this.min = inf; this.max = -inf; this.sum = 0; } public int mid() {return this.start + (this.end - this.start) / 2;} }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) x=[int(x) for x in input().split()] v=[int(x) for x in input().split()] d=0 for i in range(n): for j in range(i+1, n): if v[i]==v[j]: d+=abs(x[i]-x[j]) elif v[i]<v[j] and x[i]<x[j]: d+=abs(x[i]-x[j]) elif v[j]>v[i] and x[j]>x[i]: d+=abs(x[i]-x[j]) print(d)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename Arg1> void __f(const char* name, Arg1&& arg1) { cerr << name << " : " << arg1 << '\n'; } template <typename Arg1, typename... Args> void __f(const char* names, Arg1&& arg1, Args&&... args) { const char* comma = strchr(names + 1, ','); cerr.write(names, comma - names) << " : " << arg1 << " | "; __f(comma + 1, args...); } template <class T> void mxi(T& a, const T& b) { a = max(a, b); } template <class T> void mni(T& a, const T& b) { a = min(a, b); } long double EPS = 1e-9; mt19937 RNG(chrono::steady_clock::now().time_since_epoch().count()); struct node { int sum, cnt; node() { sum = 0; cnt = 0; } }; node t[4 * 200200]; node merge(node a, node b) { node tmp; tmp.sum = a.sum + b.sum; tmp.cnt = a.cnt + b.cnt; return tmp; } void upd(int id, int l, int r, int pos, int val) { if (pos < l || pos > r) return; else if (l == r) { t[id].sum += val; t[id].cnt++; return; } upd(id << 1, l, ((l + r) >> 1), pos, val); upd(id << 1 | 1, ((l + r) >> 1) + 1, r, pos, val); t[id] = merge(t[id << 1], t[id << 1 | 1]); } node query(int id, int l, int r, int lq, int rq) { if (lq > r || l > rq) return node(); else if (lq <= l && rq >= r) return t[id]; return merge(query(id << 1, l, ((l + r) >> 1), lq, rq), query(id << 1 | 1, ((l + r) >> 1) + 1, r, lq, rq)); } void solve() { int n; cin >> n; vector<pair<int, int> > v; for (int i = 0; i < (n); i++) { int x; cin >> x; v.push_back({x, 0}); } set<int> vel; for (int j = 0; j < (n); j++) { int w; cin >> w; vel.insert(w); v[j].second = w; } sort((v).begin(), (v).end()); map<int, int> mp; int cnt = 0; for (auto x : vel) { mp[x] = cnt++; } long long an = 0; for (int i = n - 1; ~i; i--) { node ans = query(1, 0, 200010, mp[v[i].second], 200010); int cc = ans.cnt; an += (ans.sum - cc * v[i].first); upd(1, 0, 200010, mp[v[i].second], v[i].first); } cout << an << '\n'; } signed main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); int t, tab; t = 1; tab = t; while (t--) { solve(); } cerr << ((double)clock() / CLOCKS_PER_SEC); }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 5; int n, m, pos, s[N][2], v[N]; long long tot; struct node { long long x, v; } a[N]; bool cmp(node x, node y) { return x.x < y.x; } int lowbit(int x) { return x & (-x); } void update(int x, int val) { while (x <= n) { s[x][0]++; s[x][1] += val; x += lowbit(x); } } long long getsum(int x, int flag) { long long res = 0; while (x) { res += s[x][flag]; x -= lowbit(x); } return res; } int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%lld", &a[i].x); for (int i = 1; i <= n; i++) { scanf("%lld", &a[i].v); v[i] = a[i].v; } sort(a + 1, a + n + 1, cmp); sort(v + 1, v + n + 1); m = unique(v + 1, v + n + 1) - v - 1; for (int i = 1; i <= n; i++) { pos = lower_bound(v + 1, v + m + 1, a[i].v) - v; tot += getsum(pos, 0) * a[i].x - getsum(pos, 1); update(pos, a[i].x); } printf("%lld", tot); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; vector<long long> x, v; int idX(int val) { return (lower_bound(x.begin(), x.end(), val) - x.begin()); } int idV(int val) { return (lower_bound(v.begin(), v.end(), val) - v.begin()); } struct FenwickTree { vector<long long> bit; int n; FenwickTree(int n) { this->n = n; bit.assign(n, 0); } long long sum(int r) { long long ret = 0; for (; r >= 0; r = (r & (r + 1)) - 1) ret += bit[r]; return ret; } long long sum(int l, int r) { return sum(r) - sum(l - 1); } void upd(int idx, int delta) { for (; idx < n; idx = idx | (idx + 1)) bit[idx] += delta; } }; void nikal_pehli_fursat_mai() { int n; cin >> n; vector<array<long long, 2>> arr(n); long long ans = 0; for (int i = 0; i < n; i++) { cin >> arr[i][0]; x.push_back(arr[i][0]); } for (int i = 0; i < n; i++) { cin >> arr[i][1]; v.push_back(abs(arr[i][1])); } sort(v.begin(), v.end()); sort(x.begin(), x.end()); sort(arr.begin(), arr.end()); FenwickTree pos(n), neg(n), zero(n), cntp(n), cntn(n), cntz(n); for (int i = 0; i < n; i++) { int id = idV(abs(arr[i][1])); if (arr[i][1] > 0) { cntp.upd(id, 1); pos.upd(id, arr[i][0]); } else if (arr[i][1] < 0) { cntn.upd(id, 1); neg.upd(id, arr[i][0]); } else { cntz.upd(id, 1); zero.upd(id, arr[i][0]); } } for (int i = 0; i < n; i++) { int id = idV(abs(arr[i][1])); if (arr[i][1] > 0) { ans += pos.sum(id, n - 1) - cntp.sum(id, n - 1) * arr[i][0]; cntp.upd(id, -1); pos.upd(id, -arr[i][0]); } else if (arr[i][1] < 0) { ans += pos.sum(0, n - 1) - cntp.sum(0, n - 1) * arr[i][0]; ans += neg.sum(0, id) - cntn.sum(0, id) * arr[i][0]; cntn.upd(id, -1); neg.upd(id, -arr[i][0]); } else { ans += pos.sum(id, n - 1) - cntp.sum(id, n - 1) * arr[i][0]; ans += zero.sum(0, n - 1) - cntz.sum(0, n - 1) * arr[i][0]; cntz.upd(id, -1); zero.upd(id, -arr[i][1]); } } cout << ans << "\n"; } int main() { ios::sync_with_stdio(0); cin.tie(0); int tc = 1; while (tc--) { nikal_pehli_fursat_mai(); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 10; int n, len; int bit[N][2]; void add(int x, int val) { while (x <= n) { bit[x][0]++; bit[x][1] += val; x += x & -x; } } long long query(int x, int k) { long long res = 0; while (x) { res += 1LL * bit[x][k]; x -= x & -x; } return res; } int main() { scanf("%d", &n); vector<pair<int, int> > a(n); vector<int> v(n); for (int i = 0; i < n; i++) { scanf("%d", &a[i].first); } for (int i = 0; i < n; i++) { scanf("%d", &a[i].second); v[i] = a[i].second; } sort(a.begin(), a.end()); sort(v.begin(), v.end()); len = unique(v.begin(), v.end()) - v.begin(); long long ans = 0; for (int i = 0; i < n; i++) { int now = lower_bound(v.begin(), v.begin() + len, a[i].second) - v.begin() + 1; ans += 1LL * a[i].first * query(now, 0) - query(now, 1); add(now, a[i].first); } printf("%lld\n", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; pair<int, long long> a[200005]; int t[200005]; map<int, int> M; pair<int, long long> f[200005]; int n; void update(int gt) { int x = M[gt]; while (x <= n) { f[x] = {f[x].first + 1, f[x].second + gt}; x += x & -x; } } pair<int, long long> get(int x) { int cnt = 0, sum = 0; while (x >= 1) { cnt += f[x].first; sum += f[x].second; x -= x & -x; } return make_pair(cnt, sum); } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n; for (int i = 1; i <= n; i++) { cin >> a[i].second; t[i] = a[i].second; } for (int i = 1; i <= n; i++) cin >> a[i].first; sort(a + 1, a + n + 1); sort(t + 1, t + n + 1); for (int i = 1; i <= n; i++) M[t[i]] = i; long long ans = 0; for (int i = 1; i <= n; i++) { pair<int, long long> res; res = get(M[a[i].second] - 1); ans += 1ll * a[i].second * res.first - res.second; update(a[i].second); } cout << ans; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.*; import java.util.*; import java.util.concurrent.TimeUnit; public class f624 implements Runnable{ public static void main(String[] args) { try{ new Thread(null, new f624(), "process", 1<<26).start(); } catch(Exception e){ System.out.println(e); } } public void run() { FastReader scan = new FastReader(); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); //PrintWriter out = new PrintWriter("file.out"); Task solver = new Task(); //int t = scan.nextInt(); int t = 1; for(int i = 1; i <= t; i++) solver.solve(i, scan, out); out.close(); } static class Task { static final int inf = Integer.MAX_VALUE; public void solve(int testNumber, FastReader sc, PrintWriter out) { int N = sc.nextInt(); tup[] points = new tup[N]; long[] v = new long[N]; for(int i = 0; i < N; i++) { points[i] = new tup(); points[i].a = sc.nextInt(); } for(int i = 0; i < N; i++) { points[i].b = sc.nextInt(); v[i] = points[i].b; } Arrays.sort(points, new tup()); //System.out.println(Arrays.toString(points)); int ID = 0; for(int i = 0; i < N; i++) { if(i == 0) { points[i].b = ++ID; continue; } if(v[i] == v[i-1]) points[i].b = ID; else points[i].b = ++ID; } // System.out.println(Arrays.toString(points)); Arrays.sort(points, new comp()); //System.out.println(Arrays.toString(points)); segt segtree = new segt(ID+1); long totalSum = 0; for(int i = 0; i < N; i++) { tup res = segtree.querySum((int)points[i].b, ID); //System.out.println(res); long sum = res.a; long nodes = res.b; totalSum += sum - nodes * points[i].a; segtree.update((int)points[i].b, (int)points[i].a); // System.out.println(sum + " " + nodes + " " + totalSum); // System.out.println(Arrays.toString(segtree.t)); //System.out.println("YEE"); } out.println(totalSum); } static final tup ZERO = new tup(0, 0); static class segt { tup[] t; int N; public segt(int n) { t = new tup[4*n]; for(int i = 0; i < t.length; i++) { t[i] = new tup(0, 0); } N = n; } tup querySum(int l, int r) { return querySum(1, 0, N-1, l, r); } tup querySum(int v, int tl, int tr, int l, int r) { if (l > r) return ZERO; if (l == tl && r == tr) return t[v]; int tm = (tl + tr) / 2; tup A = querySum(v*2, tl, tm, l, Math.min(r, tm)); tup B = querySum(v*2+1, tm+1, tr, Math.max(l, tm+1), r); return new tup(A.a + B.a, A.b + B.b); } void update(int pos, int new_val) { update(1, 0, N-1, pos, new_val); } void update(int v, int tl, int tr, int pos, long new_val) { //System.out.println(v + " " + tl + tr + pos + new_val); if (tl == tr) { t[v].a += new_val; t[v].b ++; } else { int tm = (tl + tr) / 2; if (pos <= tm) update(v*2, tl, tm, pos, new_val); else update(v*2+1, tm+1, tr, pos, new_val); t[v].a = t[v*2].a + t[v*2+1].a; t[v].b = t[v*2].b + t[v*2+1].b; } } } } static long binpow(long a, long b, long m) { a %= m; long res = 1; while (b > 0) { if ((b & 1) == 1) res = res * a % m; a = a * a % m; b >>= 1; } return res; } static void sort(int[] x){ shuffle(x); Arrays.sort(x); } static void sort(long[] x){ shuffle(x); Arrays.sort(x); } static class comp implements Comparator<tup>{ @Override public int compare(tup o1, tup o2) { // TODO Auto-generated method stub return Long.compare(o2.a, o1.a); } } static class tup implements Comparable<tup>, Comparator<tup>{ long a, b; tup(long a,long b){ this.a=a; this.b=b; } public tup() { } @Override public int compareTo(tup o){ return Long.compare(b,o.b); } @Override public int compare(tup o1, tup o2) { return Long.compare(o1.b, o2.b); } @Override public int hashCode() { return Objects.hash(a, b); } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; tup other = (tup) obj; return a==other.a && b==other.b; } @Override public String toString() { return a + " " + b; } } static void shuffle(int[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); int temp = a[i]; a[i] = a[r]; a[r] = temp; } } static void shuffle(long[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); long temp = a[i]; a[i] = a[r]; a[r] = temp; } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s))); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.StringTokenizer; public class MovingPoints { public static void main(String[] args) throws IOException { BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(f.readLine()); StringTokenizer tokenizer = new StringTokenizer(f.readLine()); ValueAndIndex[] speedAndIndices = new ValueAndIndex[n]; ValueAndIndex[] positionAndIndex = new ValueAndIndex[n]; int[] position = new int[n]; for (int i = 0; i < n; i++) { int pos = Integer.parseInt(tokenizer.nextToken()); position[i] = pos; positionAndIndex[i] = new ValueAndIndex(pos, i, pos); } Arrays.sort(positionAndIndex); tokenizer = new StringTokenizer(f.readLine()); for (int i = 0; i < n; i++) { speedAndIndices[i] = new ValueAndIndex(Integer.parseInt(tokenizer.nextToken()), i, position[i]); } position = null; Arrays.sort(speedAndIndices); int[] sortedSpeedIndex = new int[n]; for (int i = 0; i < n; i++) { ValueAndIndex speedAndIndex = speedAndIndices[i]; sortedSpeedIndex[speedAndIndex.index] = i; } speedAndIndices = null; FenwickTree treePosition = new FenwickTree(n); FenwickTree treeNumOfDifferent = new FenwickTree(n); treePosition.add(sortedSpeedIndex[positionAndIndex[0].index], positionAndIndex[0].value); treeNumOfDifferent.add(sortedSpeedIndex[positionAndIndex[0].index], 1); long sum = 0; for (int i = 1; i < n; i++) { ValueAndIndex positionAndInd = positionAndIndex[i]; //System.out.println(i + " " + positionAndInd.value + " " + sortedSpeedIndex[positionAndInd.index] + " " + treePosition.getSum(0, sortedSpeedIndex[i]) + " " + ((long) positionAndInd.value * treeNumOfDifferent.getSum(0, sortedSpeedIndex[i]))); //System.out.println(positionAndInd.value + " " + treeNumOfDifferent.getSum(0, sortedSpeedIndex[positionAndInd.index])); sum -= treePosition.getSum(0, sortedSpeedIndex[positionAndInd.index]); sum += (long) positionAndInd.value * treeNumOfDifferent.getSum(0, sortedSpeedIndex[positionAndInd.index]); treePosition.add(sortedSpeedIndex[positionAndInd.index], positionAndInd.value); treeNumOfDifferent.add(sortedSpeedIndex[positionAndInd.index], 1); } System.out.println(sum); } private static class ValueAndIndex implements Comparable<ValueAndIndex> { int value; int index; int comparingValue; public ValueAndIndex(int speed, int index, int comparingValue) { this.value = speed; this.index = index; this.comparingValue = comparingValue; } @Override public int compareTo(ValueAndIndex speedAndIndex) { if (this.value < speedAndIndex.value) { return -1; } else if (this.value > speedAndIndex.value) { return 1; } if (comparingValue < speedAndIndex.comparingValue) { return -1; } else if (comparingValue > speedAndIndex.comparingValue) { return 1; } return 0; } } private static class FenwickTree { int[] ar; public FenwickTree(int n) { this.ar = new int[n]; } public long getSum(int i) { long sum = 0; while (i >= 0) { sum += ar[i]; i = (i & (i + 1)) - 1; } return sum; } public long getSum(int a, int b) { return getSum(b) - getSum(a - 1); } public void add(int i, int num) { while (i < this.ar.length) { this.ar[i] += num; i = i | (i + 1); } } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class Ch, class Tr, class Container> basic_ostream<Ch, Tr>& operator<<(basic_ostream<Ch, Tr>& os, Container const& x) { os << "{ "; for (auto& y : x) os << y << " "; return os << "}"; } template <class X, class Y> ostream& operator<<(ostream& os, pair<X, Y> const& p) { return os << "[ " << p.first << ", " << p.second << "]"; } typedef struct { long long pos, v; } Point; long long P[200005], V[200005], sum = 0, maxNeg = 0; long long l = 0, r = 100000000; int n; vector<Point> Pos, Neg; bool sort_vel(Point a, Point b) { if (a.v == b.v) return a.pos > b.pos; return a.v > b.v; } bool sort_pos(Point a, Point b) { return a.pos < b.pos; } long long ft[200005]; void upd(int i0, long long v) { for (int i = i0 + 1; i <= 200005; i += i & -i) ft[i] += v; } long long get(int i0) { long long r = 0; for (int i = i0; i; i -= i & -i) r += ft[i]; return r; } int get_sum(int i0, int i1) { return get(i1) - get(i0); } void solve(vector<Point>& v) { sort((v.begin()), (v.end()), sort_pos); for (int i = 0; i < (n); i++) upd(i, r - v[i].pos); map<long long, long long> DondeEsta; for (int i = 0; i < (n); i++) DondeEsta[v[i].pos] = i; sort((v.begin()), (v.end()), sort_vel); set<long long> usados; for (auto x : v) { int i = DondeEsta[x.pos]; int dif = 0; dif = distance(usados.begin(), upper_bound((usados.begin()), (usados.end()), x.pos)); sum += max(long long(0), get_sum(0, i) - ((r - x.pos) * (i - dif))); upd(i, x.pos - r); usados.insert(x.pos); } } int main() { cin >> n; for (int i = 0; i < (n); i++) cin >> P[i]; for (int i = 0; i < (n); i++) { cin >> V[i]; Pos.push_back({P[i], V[i]}); } solve(Pos); cout << sum << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void fio() {} void pti() { double timeuse = clock() * 1000.0 / CLOCKS_PER_SEC; cerr << "Timeuse " << timeuse << "ms" << endl; } void end() { exit(0); } namespace io { const int SIZ = 55; int que[SIZ], op, qr; char ch; template <class I> inline void gi(I& w) { ch = getchar(), op = 1, w = 0; while (!isdigit(ch)) { if (ch == '-') op = -1; ch = getchar(); } while (isdigit(ch)) { w = w * 10 + ch - '0'; ch = getchar(); } w *= op; } template <typename T, typename... Args> inline void gi(T& t, Args&... args) { gi(t); gi(args...); } template <class I> inline void print(I w) { qr = 0; if (!w) putchar('0'); if (w < 0) putchar('-'), w = -w; while (w) que[++qr] = w % 10 + '0', w /= 10; while (qr) putchar(que[qr--]); } } // namespace io using io::gi; using io::print; const int N = 2e5 + 5; int n, num; struct node { long long a, b; }; node e[N]; long long c[N], t[N], sum[N]; map<long long, int> g; int lowbit(int x) { return x & -x; } void modify(int x, long long z) { while (x <= n) ++t[x], sum[x] += z, x += lowbit(x); } long long query_t(int x) { long long res = 0; while (x) res += t[x], x -= lowbit(x); return res; } long long query_sum(int x) { long long res = 0; while (x) res += sum[x], x -= lowbit(x); return res; } int main() { fio(); gi(n); for (int i = 1; i <= n; ++i) gi(e[i].a); for (int i = 1; i <= n; ++i) gi(e[i].b), c[i] = e[i].b; sort(c + 1, c + n + 1); for (int i = 1; i <= n; ++i) if (!g[c[i]]) g[c[i]] = ++num; sort(e + 1, e + n + 1, [](node x, node y) { return x.a == y.a ? x.b < y.b : x.a < y.a; }); long long ans = 0; for (int i = 1, j = 1; i <= n; ++i) { ans += e[i].a * query_t(g[e[i].b]) - query_sum(g[e[i].b]); while (j <= n && e[j].b == e[i].b) modify(g[e[j].b], e[j].a), ++j; } print(ans); end(); }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("O3") using namespace std; const int N = 2e5 + 5, mny = -1e9; vector<vector<pair<int, pair<int, int> > > > seg(4 * N); long long n, ans; pair<int, int> p[N]; vector<pair<int, pair<int, int> > > merge( vector<pair<int, pair<int, int> > > l, vector<pair<int, pair<int, int> > > r) { vector<pair<int, pair<int, int> > > ans; merge(l.begin(), l.end(), r.begin(), r.end(), back_inserter(ans)); sort(ans.begin(), ans.end()); for (int i = 1; i < ans.size(); i++) ans[i].second.second += ans[i - 1].second.second; return ans; } pair<long long, long long> merge(pair<long long, long long> p1, pair<long long, long long> p2) { return {p1.first + p2.first, p1.second + p2.second}; } pair<long long, long long> get_ans(vector<pair<int, pair<int, int> > > node, int val) { if (!node.size()) return {0, 0}; pair<long long, long long> ans; auto idx = lower_bound(node.begin(), node.end(), make_pair(val, make_pair(mny, mny))) - node.begin(); ans.second = node.size() - idx; if (!ans.second) return {0, 0}; ans.first = (idx) ? node.back().second.second - node[idx - 1].second.second : node.back().second.second; return ans; } void build(int s, int e, int idx) { if (s == e) { seg[idx].push_back({p[s].second, {p[s].first, p[s].first}}); return; } int mid = (s + e) / 2; build(s, mid, 2 * idx + 1); build(mid + 1, e, 2 * idx + 2); seg[idx] = merge(seg[2 * idx + 1], seg[2 * idx + 2]); } pair<long long, long long> qry(int l, int r, int s, int e, int idx, int val) { if (s > r || l > e) return make_pair(0ll, 0ll); if (s >= l && e <= r) return get_ans(seg[idx], val); int mid = (s + e) / 2; return merge(qry(l, r, s, mid, 2 * idx + 1, val), qry(l, r, mid + 1, e, 2 * idx + 2, val)); } int main() { ios::sync_with_stdio(0), cin.tie(0), cout.tie(0); cin >> n; for (int i = 0; i < n; i++) cin >> p[i].first; for (int i = 0; i < n; i++) cin >> p[i].second; sort(p, p + n); build(0, n - 1, 0); long long ans = 0; for (int i = 0; i < n; i++) { pair<long long, long long> res = qry(i + 1, n - 1, 0, n - 1, 0, p[i].second); ans += res.first - p[i].first * res.second; } cout << ans << '\n'; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) x = list(map(int, input().split())) v = list(map(int, input().split())) d = [(x[i], v[i]) for i in range(n)] d.sort(key=lambda x: x[0]) ans = 0 for i in range(1, n): for j in range(i): if d[j][1] < d[i][1]: ans += d[i][0] - d[j][0] print(ans)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; constexpr int maxN = 2e5 + 43; int n; vector<pair<int, int>> point; vector<int> val, cnt, cval; int LSOne(int k) { return (k & (-k)); } void update(vector<int>& f, int pos, int val) { for (; pos <= n; pos += LSOne(pos)) f[pos] += val; } long long rsq(vector<int>& f, int pos) { long long sum = 0; for (; pos; pos -= LSOne(pos)) sum += f[pos]; return sum; } bool Comp(const pair<int, int>& a, const pair<int, int>& b) { return a.first < b.first; } int main() { ios_base::sync_with_stdio(false); cin >> n; point.resize(n + 1); val.resize(n + 1); cnt.resize(n + 1); cval.resize(n + 1); for (int i = 1; i <= n; ++i) { cin >> point[i].first; } for (int i = 1; i <= n; ++i) { cin >> point[i].second; val[i] = point[i].second; } sort(point.begin() + 1, point.begin() + n + 1, Comp); sort(val.begin(), val.begin() + n + 1); long long ans = 0; for (int i = 1; i <= n; ++i) { int pos = lower_bound(val.begin() + 1, val.begin() + n + 1, point[i].second) - val.begin(); ans += rsq(cnt, pos) * point[i].first - rsq(cval, pos); update(cnt, pos, 1); update(cval, pos, point[i].first); } cout << ans; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#pragma GCC optimize("O3") #pragma comment(linker, "/stack:200000000") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace std; using namespace __gnu_pbds; #define int long long #define pb push_back #define pf push_front #define eb emplace_back #define mp make_pair #define all(v) (v).begin(),(v).end() #define rall(v) (v).rbegin(),(v).rend() #define f first #define s second #define sz(x) (int)x.size() #define endl "\n" #define forn(i,n) for(int i=0;i<n;++i) #define fore(i,l,r) for(int i=int(l);i<=int(r);++i) #define rep(i,begin,end) for(__typeof(end) i=(begin);i!=(end);i++) #define fill(a,value) memset(a,value,sizeof(a)); #define gcd(a,b) __gcd((a),(b)) #define watch1(x) cout<<(x)<<endl #define watch2(x,y) cout<<(x)<<" "<<(y)<<endl #define watch3(x,y,z) cout<<(x)<<" "<<(y)<<" "<<(z)<<endl #define fastio ios::sync_with_stdio(0);cin.tie(0);cout.tie(0); typedef long long ll; typedef long double ld; typedef pair<int,int> pii; typedef vector<int> vi; typedef vector<vi> vvi; typedef vector<pii> vpii; typedef tree<int,null_type,less<int>,rb_tree_tag,tree_order_statistics_node_update> oset; const int INF = 9e18; const int mod = 1e9 + 7; const int N = 2e5 + 5; int i,n,v[N],bit[N],val=1,ans=0; vpii x; void update(int idx,int val) { while(idx<=n) { bit[idx]+=val; idx+=idx&-idx; } } int query(int idx) { int ans=0; while(idx>0) { ans+=bit[idx]; idx-=idx&-idx; } return ans; } int rsum(int l,int r) { return query(r)-query(l-1); } void solve() { cin>>n; vi compress; for(i=1;i<=n;++i) { int a; cin>>a; x.pb({a,i}); } sort(all(x)); for(i=1;i<=n;++i) { cin>>v[i]; compress.pb(v[i]); } sort(all(compress)); map<int,int> mp; mp[compress[0]]=1; for(i=1;i<n;++i) { if(compress[i]!=compress[i-1]) val++; mp[compress[i]]=val; } oset s; for(i=n-1;i>=0;--i) { int idx=x[i].s; int sum=rsum(mp[v[idx]],n); int bigger=n-1-i-s.order_of_key(mp[v[idx]]); ans+=sum-bigger*x[i].f; s.insert(mp[v[idx]]); update(mp[v[idx]],x[i].f); } cout<<ans; } signed main() { fastio; int t; //cin>>t; t=1; while(t--) { solve(); } return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
//#pragma comment(linker, "/stack:200000000") #include<bits/stdc++.h> using namespace std; #define LL long long #define ULL unsigned long long const LL INF=1LL<<60; const double PI = acos(-1.0); typedef pair<int,int> pii; typedef pair<LL,LL> pll; typedef vector<int> vi; typedef vector<LL> vl; typedef vector<pii> vii; typedef vector<pll> vll; //// Including Policy Based DS //#include <ext/pb_ds/assoc_container.hpp> //#include <ext/pb_ds/tree_policy.hpp> //using namespace __gnu_pbds; ////cout<<*X.find_by_order(1)<<endl; ////cout<<X.order_of_key(-5)<<endl; //typedef tree< //int, //null_type, //less< int >, //rb_tree_tag, //tree_order_statistics_node_update> //ordered_set; #define READ freopen("in.txt","r",stdin) #define WRITE freopen("out.txt","w",stdout) #define BOOST ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0) #define sf scanf #define pf printf #define F first #define S second #define pb push_back #define NL pf("\n") #define ALL(v) v.begin(),v.end() #define si(x) sf("%d",&x); #define sii(x,y) sf("%d%d",&x,&y); #define siii(x,y,z) sf("%d%d%d",&x,&y,&z); #define sl(x) sf("%lld",&x); #define sll(x,y) sf("%lld%lld",&x,&y); #define slll(x,y,z) sf("%lld%lld%lld",&x,&y,&z); #define mem(x,y) memset(x,y,sizeof x ) #define ch printf("Came Here!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n") #define SV(v) sort(v.begin(),v.end()) #define SVR(v,cmp) sort(v.begin(),v.end(),cmp) #define FOR(i,n) for(int i=0;i<n;i++) #define cnd tree[idx] #define lc tree[idx*2] #define rc tree[idx*2+1] #define lnd (2*idx),(b),((b+e)/2) #define rnd ((2*idx)+1),(((b+e)/2)+1),(e) // graph direction array [4] //LL X[4]={0,0,-1,1}; //LL Y[4]={1,-1,0,0}; // graph direction array [8] //int X[8]={0,0,1,-1,-1,1,1,-1}; //int Y[8]={1,-1,0,0,-1,-1,1,1}; // Bishop direction array [8] //int X[8]={0,0,1,-1,-1,1,1,-1}; //int Y[8]={1,-1,0,0,-1,-1,1,1}; // Knight Direction Array //int KX[8] = {1,1,2,2,-1,-1,-2,-2}; //int KY[8] = {2,-2,1,-1,2,-2,1,-1}; inline bool checkBit(int N,int pos){return (bool)(N & (1<<pos));} // check bit inline int setBit(int N,int pos){ return N=N | (1<<pos);}// set bit inline int unsetBit(int N,int pos){ return N=( N & ( ~( 1<<pos ) ) );}// unset bit inline int toggleBit(int N,int pos){ return N = ( N ^(1<<pos) ); }// toggle bit LL modMul(LL a, LL b,LL mod){ LL ans = 0; a = a % mod; while (b > 0){ if ( b % 2 )ans = (ans%mod+ a%mod) % mod; a = (a%mod * 2%mod) % mod; b /= 2; } return ans % mod; } LL powerMod(LL a,LL b,LL mod){ if(b==0)return 1LL%mod; LL x=powerMod(a,b/2,mod); x = (x%mod*x%mod)%mod; if(b%2==1)x = (x%mod*a%mod)%mod; return x%mod; } LL lcm( LL a,LL b ){ LL g = __gcd(a,b); return (a*b)/g; } //------------------------------------------------------------------------------- //------------------------------------------------------------------------------- const int mx = 3e5+70; int X[mx],V[mx]; vii arr; struct node{ LL cnt=0,sum=0; node(){} node(LL x,LL y){cnt=x,sum=0;} }; node tree[4*mx]; void build(int idx,int b,int e){ cnd = node(0,0); if(b!=e){ build(lnd);build(rnd); } } int glob = 0; inline void update(int idx,int b,int e,int pos,LL v){ // if(glob>20)return; // glob++; // cout<<idx<<" "<<b<<" "<<e<<" "<<pos<<" "<<v<<endl; if(b==e && b==pos){ cnd.cnt++; cnd.sum += v; return; } int mid = (b+e)>>1; if( pos<=mid )update(lnd,pos,v); else update(rnd,pos,v); cnd.cnt = lc.cnt+rc.cnt; cnd.sum = lc.sum+rc.sum; } inline pll query(int idx,int b,int e,int l,int r){ if(l>e || r<b)return pll(0,0); if(l<=b && r>=e)return pll(cnd.sum,cnd.cnt); pll a = query(lnd,l,r); pll bb = query(rnd,l,r); a.first+=bb.first; a.second+=bb.second; return a; } vll pos,neg; bool cmp(pll x,pll y){ return x.first > x.first; } inline LL calc(vector<pll> &points,bool rev=0){ if(points.size() < 2)return 0; map<LL,LL> mp; vl ar; for(pll x:points)ar.pb(x.second); sort(ALL(ar)); LL cnt = 0; for(LL x:ar)if( mp.find(x)==mp.end() ){ mp[x] = ++cnt; } if(!rev)sort(ALL(points)); else sort(ALL(points),cmp); int N = cnt+1; build(1,1,N); LL tot = 0; for(pll x:points){ LL v = x.second; LL id = mp[v]; LL s = x.first; pll res = query(1,1,N,1,id); LL cur = abs(x.first*res.second - res.first); tot += cur; update(1,1,N,id,x.first); } return tot; } int main(){ // BOOST; // READ; // WRITE; int t,n,m; si(n); FOR(i,n)si(X[i]); FOR(i,n)si(V[i]); FOR(i,n)arr.pb( pii(X[i],V[i]) ); sort(ALL(arr)); LL inv = 0; LL sum = 0; LL cnt = 0; for(int i=n-1;i>=0;i--){ if( arr[i].S<0 ){ LL cur = sum - cnt*arr[i].F; inv += cur; } else{ cnt++; sum += arr[i].F; } } for(pii x:arr){ if( x.S < 0 )neg.pb(pll( x.F,-x.S )); else pos.pb(pll( x.F,x.S )); } LL ans = calc(pos); LL ans2 = calc(neg,1); LL res = ans+ans2+inv; pf("%lld\n",res); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def subCost(array): cost = 0 for i in array: for j in array: cost += abs(i[0] - j[0]) return cost // 2 def f(left, right): cost = 0 for r in right: for l in left: if r[0] > l[0]: cost+=r[0]-l[0] else: break return cost n = int(input("n: ")) a=[[pos, 0] for pos in list(map(int, input("positions: ").split()))] for i, spe in enumerate(list(map(int, input("speeds: ").split()))): a[i][1] = spe a=sorted(a, key = lambda x: x[1]) cost=0 prev=0 for i, p in enumerate(a): try: if p[1]<a[i+1][1]: a[prev:i+1] = sorted(a[prev:i+1], key=lambda x: x[0]) cost+=subCost(a[prev:i+1]) cost+=f(a[prev:i+1], a[i+1:]) prev=i+1 except IndexError: cost+=subCost(a[prev:i+1]) print(cost)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int num[800005], m; long long b[200005], sum[200005], cnt[200005], tr[800005]; struct node { int x, v; bool operator<(const node t) const { return x < t.x; } } a[200005]; int lsh(long long x) { return lower_bound(b + 1, b + 1 + m, x) - b; } void build(int l, int r, int p) { if (l == r) { tr[p] = sum[l]; num[p] = cnt[l]; return; } int mid = l + r >> 1; build(l, mid, p << 1); build(mid + 1, r, p << 1 | 1); tr[p] = tr[p << 1] + tr[p << 1 | 1]; num[p] = num[p << 1] + num[p << 1 | 1]; } pair<long long, int> query(int l, int r, int x, int y, int p) { if (l == x && r == y) return make_pair(tr[p], num[p]); int mid = l + r >> 1; if (y <= mid) return query(l, mid, x, y, p << 1); else if (x > mid) return query(mid + 1, r, x, y, p << 1 | 1); else { pair<long long, int> v1 = query(l, mid, x, mid, p << 1), v2 = query(mid + 1, r, mid + 1, y, p << 1 | 1); return make_pair(v1.first + v2.first, v1.second + v2.second); } } void update(int l, int r, int x, int y, int p) { if (l == r) { tr[p] -= y; num[p]--; return; } int mid = l + r >> 1; if (x <= mid) update(l, mid, x, y, p << 1); else update(mid + 1, r, x, y, p << 1 | 1); tr[p] = tr[p << 1] + tr[p << 1 | 1]; num[p] = num[p << 1] + num[p << 1 | 1]; } int main() { int n; scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d", &a[i].x); for (int i = 1; i <= n; i++) { scanf("%d", &a[i].v); b[i] = a[i].v; } sort(b + 1, b + 1 + n); m = unique(b + 1, b + 1 + n) - b - 1; sort(a + 1, a + 1 + n); for (int i = 1; i <= n; i++) { int x = lsh(a[i].v); sum[x] += a[i].x; cnt[x]++; } build(1, m, 1); long long ans = 0; for (int i = 1; i <= n; i++) { int x = lsh(a[i].v); update(1, m, x, a[i].x, 1); pair<long long, int> t = query(1, m, x, m, 1); ans += t.first - a[i].x * t.second; } printf("%lld", ans); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; constexpr int maxN = 2e5 + 43; int n; vector<pair<int, int>> point; vector<int> val, cnt, cval; int LSOne(int k) { return (k & (-k)); } void update(vector<int>& f, int pos, int val) { for (; pos <= n; pos += LSOne(pos)) f[pos] += val; } long long rsq(vector<int>& f, int pos) { long long sum = 0; for (; pos; pos -= LSOne(pos)) sum += f[pos]; return sum; } bool Comp(const pair<int, int>& a, const pair<int, int>& b) { return a.first < b.first; } int main() { ios_base::sync_with_stdio(false); cin >> n; point.resize(n + 1); val.resize(n + 1); cnt.resize(n + 1); cval.resize(n + 1); for (int i = 1; i <= n; ++i) { cin >> point[i].first; } for (int i = 1; i <= n; ++i) { cin >> point[i].second; val[i] = point[i].second; } sort(point.begin() + 1, point.begin() + n + 1); sort(val.begin() + 1, val.begin() + n + 1); long long ans = 0; for (int i = 1; i <= n; ++i) { int pos = lower_bound(val.begin() + 1, val.begin() + n + 1, point[i].second) - val.begin(); ans += rsq(cnt, pos) * point[i].first - rsq(cval, pos); update(cnt, pos, 1); update(cval, pos, point[i].first); } cout << ans; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; import java.util.Stack; import java.util.Arrays; import java.util.HashMap; import java.util.Comparator; public class F{ // static final int max = 10000; static class Pair{ int x; int speed; public String toString(){ return "[" + x + ", " + speed + "]"; } } static class FenvikTree{ int[] arr; int[] T; int size; FenvikTree(int n){ size = n; arr = new int[n]; T = new int[n]; } public void add(int pos, int a){ arr[pos] += a; while(pos < size){ T[pos] += a; pos = pos | (pos+1); } } public long sum(int pos){ if(pos < 0) return 0; if(pos == 0) return T[0]; if(pos == 1) return T[1]; // System.out.println(pos + " " + (pos&(pos+1))); return T[pos] + sum(pos&(pos+1)-1); } } public static void main(String[] args){ Scanner in = new Scanner(System.in); int n = in.nextInt(); Pair[] a = new Pair[n]; // long[] speed = new long[n]; HashMap<Integer,Integer> map= new HashMap<>(); for(int i = 0;i<n;++i){ a[i] = new Pair(); a[i].x = in.nextInt(); } // int[] b= new int[n]; for(int i = 0;i<n;++i){ a[i].speed = in.nextInt(); // b[i] = a[i].speed; } Comparator<Pair> comp1 = new Comparator<Pair>(){ public int compare(Pair a, Pair b){ return Integer.compare(a.speed,b.speed); } }; Arrays.sort(a,comp1); // System.out.println(Arrays.toString(b)); int count = 0; for(int i = 0;i<n;++i){ if(map.get(a[i].speed) == null){ map.put(a[i].speed,count++); } a[i].speed = map.get(a[i].speed); } // } Comparator<Pair> comp2 = new Comparator<Pair>(){ public int compare(Pair a, Pair b){ return (a.x == b.x) ? (Integer.compare(b.speed,a.speed)) : Integer.compare(a.x,b.x); } }; Arrays.sort(a,comp2); // System.out.println(Arrays.toString(a)); FenvikTree fenvikCount = new FenvikTree(n); FenvikTree fenvikSum = new FenvikTree(n); fenvikCount.add(a[0].speed,1); fenvikSum.add(a[0].speed,a[0].x); long res = 0; for(int i = 1;i<n;++i){ int cur = a[i].speed; res += fenvikCount.sum(cur-1)*a[i].x - fenvikSum.sum(cur-1); fenvikCount.add(cur,1); fenvikSum.add(cur,a[i].x); } System.out.println(res); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int las[5001]; int fa[5001]; int mark[5001]; int dep[5001]; signed main() { int T; scanf("%d", &T); while (T--) { int n, d; scanf("%d%d", &n, &d); if (d > n * (n - 1) / 2) { printf("NO\n"); continue; } memset(dep, 0, sizeof(dep)); memset(fa, 0, sizeof(fa)); memset(mark, 0, sizeof(mark)); memset(las, 0, sizeof(las)); dep[0] = -1; for (int i = 1; i <= n; i++) { dep[i] = dep[i / 2] + 1; d -= dep[i]; fa[i] = i / 2; } if (d < 0) { printf("NO\n"); continue; } int x = n, mx = dep[n]; while (x) { las[dep[x]] = x; mark[x] = 1; x = fa[x]; } for (int i = n; i >= 1; i--) if (!mark[i]) { int pre = mx; while (dep[fa[i]] < pre && d) { fa[i] = las[dep[fa[i]] + 1]; dep[i] = dep[fa[i]] + 1; d--; if (dep[i] > mx) { mx++; las[mx] = i; mark[i] = 1; } } } printf("YES\n"); for (int i = 2; i <= n; i++) printf("%d ", fa[i]); printf("\n"); } return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys,math,itertools from collections import Counter,deque,defaultdict from bisect import bisect_left,bisect_right from heapq import heappop,heappush,heapify, nlargest from copy import deepcopy mod = 10**9+7 INF = float('inf') def inp(): return int(sys.stdin.readline()) def inpl(): return list(map(int, sys.stdin.readline().split())) def inpl_1(): return list(map(lambda x:int(x)-1, sys.stdin.readline().split())) def inps(): return sys.stdin.readline() def inpsl(x): tmp = sys.stdin.readline(); return list(tmp[:x]) def err(x): print(x); exit() from typing import Callable, TypeVar, List T = TypeVar('T') class SegTree: def __init__(self, v: List[T], op: Callable[[T, T], T], e: Callable[[], T]) -> None: self._n = len(v) self.log = (self._n - 1).bit_length() self.size = 1 << self.log self.d = [e() for _ in range(2 * self.size)] self.op = op self.e = e for i in range(self._n): self.d[self.size + i] = v[i] for i in reversed(range(1, self.size)): self.__update__(i) @classmethod def init_e(cls, n: int, op: Callable[[T, T], T], e: Callable[[], T]) -> 'SegTree': return cls([e() for _ in range(n)], op, e) #値代入 def set(self, p: int, x: T) -> None: assert 0 <= p < self._n p += self.size self.d[p] = x for i in range(1, self.log + 1): self.__update__(p >> i) def get(self, p: int) -> T: assert 0 <= p < self._n return self.d[p + self.size] #計算 [l,r) def prod(self, l: int, r: int) -> T: assert 0 <= l <= self._n and 0 <= r <= self._n sml = self.e() smr = self.e() l += self.size r += self.size while l < r: if l & 1: sml = self.op(sml, self.d[l]) l += 1 if r & 1: r -= 1 smr = self.op(self.d[r], smr) l >>= 1 r >>= 1 return self.op(sml, smr) def all_prod(self) -> T: return self.d[1] #f(op(a[l], a[l + 1], ..., a[r - 1])) = true となる最大のrを返す def max_right(self, l: int, f: Callable[[T], bool]): assert 0 <= l <= self._n assert f(self.e()) if l == self._n: return self._n l += self.size sm = self.e() while True: while l % 2 == 0: l >>= 1 if not f(self.op(sm, self.d[l])): while l < self.size: l *= 2 if f(self.op(sm, self.d[l])): sm = self.op(sm, self.d[l]) l += 1 return l - self.size sm = self.op(sm, self.d[l]) l += 1 if (l & -l) == l: return self._n def min_left(self, r: int, f: Callable[[T], bool]): assert 0 <= r <= self._n assert f(self.e()) if r == 0: return 0 r += self.size sm = self.e() while True: r -= 1 while r > 1 and r % 2: r >>= 1 if not f(self.op(self.d[r], sm)): while r < self.size: r = 2 * r + 1 if f(self.op(self.d[r], sm)): sm = self.op(self.d[r], sm) r -= 1 return r + 1 - self.size sm = self.op(self.d[r], sm) if (r & -r) == r: return 0 def __update__(self, k: int) -> None: self.d[k] = self.op(self.d[2 * k], self.d[2 * k + 1]) #加算 # def op(x,y): # return x+y # a = list(range(10)) # st = SegTree(a,op,lambda:0) # st.prod(3,7) -> 3+4+5+6 = 18 #最大値 # st = SegTree(a,max,lambda:-INF) class BIT: def __init__(self, n): self.n = n self.data = [0]*(n+1) self.el = [0]*(n+1) def sum(self, i): s = 0 while i > 0: s += self.data[i] i -= i & -i return s def add(self, i, x): # assert i > 0 self.el[i] += x while i <= self.n: self.data[i] += x i += i & -i def get(self, i, j=None): if j is None: return self.el[i] return self.sum(j) - self.sum(i) # 1_indexed # n = 6 # a = [1,2,3,4,5,6] # bit = BIT(n) # for i,e in enumerate(a): # bit.add(i+1,e) # print(bit.get(2,5)) #12 (3+4+5) n = inp() X = inpl() V = inpl() d = {} for i,x in enumerate(sorted(X)): d[x] = i for i,x in enumerate(X): X[i] = d[x] xv = [(x,v) for x,v in zip(X,V)] xv.sort(key=lambda x:x[0],reverse=True) xv.sort(key=lambda x:x[1],reverse=True) # cnt_bit = BIT(n+10) # sum_bit = BIT(n+10) def op(x,y): return x+y cnt_st = SegTree([0]*(n+10),op,lambda:0) sum_st = SegTree([0]*(n+10),op,lambda:0) res = 0 for x,_ in xv: res += sum_st.prod(x+1,n+1) - cnt_st.prod(x+1,n+1)*x sum_st.set(x,x) cnt_st.set(x,1) print(res)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
/* K.D. Vinit |,,| */ #include<bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace __gnu_pbds; using namespace std; typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> ordered_set; void solve() { int n; cin>>n; vector< vector<int> > xv1(n),xv2(n),xv(n); int x; for(int i=0;i<n;i++) { cin>>x; xv1[i].push_back(x); } for(int i=0;i<n;i++) { cin>>x; xv1[i].push_back(x); } sort(xv1.begin(),xv1.end()); for(int i=0;i<n;i++) { xv2[i].push_back(xv1[i][1]); xv2[i].push_back(xv1[i][0]); } sort(xv2.begin(),xv2.end()); for(int i=0;i<n;i++) { xv2[i][0]=i+1; } for(int i=0;i<n;i++) { xv[i].push_back(xv2[i][1]); xv[i].push_back(xv2[i][0]); } sort(xv.begin(),xv.end()); /* for(int i=0;i<n;i++) cout<<xv[i][0]<<" "; cout<<endl; for(int i=0;i<n;i++) cout<<xv[i][1]<<" "; cout<<endl; */ long long int ans=0; ordered_set os; for(int i=0;i<n;i++) { int cnt=os.order_of_key(xv[i][1]); os.insert(xv[i][1]); //cout<<i<<" "<<xv[i][0]<<" "<<cnt<<endl; ans+=(xv[i][0]*cnt); } os.clear(); for(int i=n-1;i>=0;i--) { int cnt=os.order_of_key(xv[i][1]); int m=n-1-i; cnt=m-cnt; //cout<<i<<" "<<xv[i][0]<<" "<<cnt<<endl; os.insert(xv[i][1]); ans-=(xv[i][0]*cnt); } cout<<ans<<endl; } int32_t main() { ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0); solve(); return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T1, typename T2> inline void chmin(T1 &a, T2 b) { if (a > b) a = b; } template <typename T1, typename T2> inline void chmax(T1 &a, T2 b) { if (a < b) a = b; } template <typename tuple<long long, long long, long long> > struct SegmentTree { using F = function<tuple<long long, long long, long long>( tuple<long long, long long, long long>, tuple<long long, long long, long long>)>; long long n; F f; tuple<long long, long long, long long> ti; vector<tuple<long long, long long, long long> > dat; SegmentTree(){}; SegmentTree(F f, tuple<long long, long long, long long> ti) : f(f), ti(ti) {} void init(long long n_) { n = 1; while (n < n_) n <<= 1; dat.assign(n << 1, ti); } void build(const vector<tuple<long long, long long, long long> > &v) { long long n_ = v.size(); init(n_); for (long long i = 0; i < n_; i++) dat[n + i] = v[i]; for (long long i = n - 1; i; i--) dat[i] = f(dat[(i << 1) | 0], dat[(i << 1) | 1]); } void update(long long k, tuple<long long, long long, long long> x) { dat[k += n] = x; while (k >>= 1) dat[k] = f(dat[(k << 1) | 0], dat[(k << 1) | 1]); } void add(long long k, tuple<long long, long long, long long> x) { dat[k += n] += x; while (k >>= 1) dat[k] = f(dat[(k << 1) | 0], dat[(k << 1) | 1]); } tuple<long long, long long, long long> query(long long a, long long b) { tuple<long long, long long, long long> vl = ti, vr = ti; for (long long l = a + n, r = b + n; l < r; l >>= 1, r >>= 1) { if (l & 1) vl = f(vl, dat[l++]); if (r & 1) vr = f(dat[--r], vr); } return f(vl, vr); } template <typename C> long long lower_find(long long a, long long b, C &check, tuple<long long, long long, long long> x, long long k = 1, long long l = 0, long long r = -1) { if (r < 0) r = n; if (!check(f(x, dat[k])) || r <= a || b <= l) return -1; if (r - l == 1) return l; long long xl = lower_find(a, b, check, x, (k << 1), l, (l + r) / 2); if (xl >= 0) return xl; x = f(x, dat[(k << 1)]); return lower_find(a, b, check, x, (k << 1) | 1, (l + r) / 2, r); } template <typename C> long long lower_find(long long a, long long b, C &check) { tuple<long long, long long, long long> x = ti; return lower_find(a, b, check, x); } template <typename C> long long upper_find(long long a, long long b, C &check, tuple<long long, long long, long long> x, long long k = 2, long long l = 0, long long r = -1) { if (r < 0) r = n; if (r <= a || b <= l) return -1; if (r - l == 1) return l; if (check(f(x, dat[k]))) { long long xr = upper_find(a, b, check, f(x, dat[k]), ((k + 1) << 1), (l + r) / 2, r); if (xr >= 0) return xr; } return upper_find(a, b, check, x, (k << 1), l, (l + r) / 2); } template <typename C> long long upper_find(long long a, long long b, C &check) { tuple<long long, long long, long long> x = ti; return upper_find(a, b, check, x); } }; signed main() { ios::sync_with_stdio(false); cin.tie(0); long long n; cin >> n; vector<pair<long long, long long> > a(n); for (long long i = (0); i < ((n)); ++i) cin >> a[i].first; for (long long i = (0); i < ((n)); ++i) cin >> a[i].second; sort(a.begin(), a.end()); vector<long long> d(n); for (long long i = (0); i < ((n)); ++i) d[i] = a[i].first, a[i].first = i; long long ans = 0, tmp = d[n - 1]; for (long long i = ((n - 1) - 1); i >= (0); --i) ans += tmp - d[i] * (n - 1 - i), tmp += d[i]; auto comp = [](pair<long long, long long> x, pair<long long, long long> y) { return x.second < y.second; }; sort(a.begin(), a.end(), comp); auto f = [](pair<long long, long long> x, pair<long long, long long> y) { return pair<long long, long long>(x.first + y.first, x.second + y.second); }; SegmentTree<pair<long long, long long> > L(f, pair<long long, long long>(0, 0)), R(f, pair<long long, long long>(0, 0)); L.build( vector<pair<long long, long long> >(n, pair<long long, long long>(0, 0))); R.build( vector<pair<long long, long long> >(n, pair<long long, long long>(0, 0))); long long now = (1LL << 60), id = n - 1; for (long long i = ((n)-1); i >= (0); --i) { pair<long long, long long> l = L.query(0, a[i].first); ans -= d[a[i].first] * l.second - l.first; if (now != a[i].second) { while (id >= i) { L.update(a[id].first, pair<long long, long long>(d[a[id].first], 1)); id--; } now = a[i].second; } } cout << ans << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void solve(); int main() { ios_base::sync_with_stdio(false); cout.tie(0); cin.tie(0); solve(); return 0; } inline long long max(long long a, int b) { return max(a, (long long)b); } inline long long max(int a, long long b) { return max((long long)a, b); } inline long long min(long long a, int b) { return min(a, (long long)b); } inline long long min(int a, long long b) { return min((long long)a, b); } template <class T> vector<T> iarr(long long n) { vector<T> a; while (n--) { T _v; cin >> _v, a.push_back(_v); } return a; } template <class T> vector<vector<T>> imat(long long n, long long m) { vector<vector<T>> ma(n, vector<T>(m)); for (long long i = 0; i < n; i++) for (long long j = 0; j < m; j++) cin >> ma[i][j]; return ma; } template <class T = long long, long long D = 1> struct matrix : public vector<matrix<T, D - 1>> { matrix(long long sz, matrix<T, D - 1> dim) : vector<matrix<T, D - 1>>(sz, dim) {} matrix() : vector<matrix<T, D - 1>>() {} }; template <class T> struct matrix<T, 1> : public vector<T> { matrix(long long sz, T v) : vector<T>(sz, v) {} matrix() : vector<T>() {} matrix(const initializer_list<T> &init) : vector<T>(init) {} }; template <class T> struct matrix_allocator { matrix_allocator(T v) : v(v) {} T v; template <typename N, typename... Ns> matrix<T, sizeof...(Ns) + 1> alloc(N cardinality, Ns... dims) { return matrix<T, sizeof...(Ns) + 1>(cardinality, alloc(dims...)); } template <typename N> matrix<T, 1> alloc(N cardinality) { return matrix<T, 1>(cardinality, v); } }; template <class V, typename... Ns> static matrix<V, sizeof...(Ns)> mat(V v, Ns... dims) { return matrix_allocator<V>(v).alloc(dims...); } long long N = 1e5; struct bit { bit(long long n = 0) { a = mat(0ULL, n + 1); } long long get(long long i) { long long s = 0; for (; i > 0; i -= i & -i) s += a[i]; return s; } void add(long long i, long long v) { for (; i < a.size(); i += i & -i) a[i] += v; } matrix<unsigned long long, 1> a; }; void solve() { long long n; cin >> n; auto x = iarr<long long>(n); auto v = iarr<long long>(n); matrix<pair<long long, long long>, 1> p; auto suf_tot = mat(0ULL, n + 1); auto suf_neg = mat(0ULL, n + 1); auto suf_num_neg = 0; auto ans = 0ULL; for (long long i = 0; i < n; i++) { p.push_back(make_pair(x[i], v[i] + (v[i] < 0 ? -1 : 1))); } sort(p.begin(), p.end()); map<long long, long long> vc; long long idx = 1; sort(v.begin(), v.end()); for (auto &o : v) { long long t = o + (o < 0 ? -1 : 1); if (!vc.count(t)) { vc[t] = idx++; } else { } } bit pre_neg(idx); bit pre_num_neg(idx); bit pre_pos(idx); bit pre_num_pos(idx); for (long long i = n - 1; i >= 0; i--) { auto xi = p[i].first; auto vi = p[i].second; auto step = suf_tot[i + 1] - (n - i - 1) * xi; if (vi > 0) { step = step - (suf_neg[i + 1] - suf_num_neg * xi); step = step - (pre_pos.get(vc[vi] - 1) - pre_num_pos.get(vc[vi] - 1) * xi); } else { step = step - ((pre_neg.get(idx) - pre_neg.get(vc[vi])) - (pre_num_neg.get(idx) - pre_num_neg.get(vc[vi])) * xi); } suf_tot[i] = suf_tot[i + 1] + xi; suf_neg[i] = suf_neg[i + 1] + (vi < 0 ? xi : 0); suf_num_neg += (vi < 0 ? 1 : 0); if (vi < 0) { pre_neg.add(vc[vi], xi); pre_num_neg.add(vc[vi], 1); } else { pre_pos.add(vc[vi], xi); pre_num_pos.add(vc[vi], 1); } ans += step; } cout << ans << "\n"; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys input=sys.stdin.readline def getsum(BITTree,i): s = 0 while i > 0: s += BITTree[i] i -= i & (-i) return(s) def updatebit(BITTree , n , i ,v): while i <= n: BITTree[i] += v i += i & (-i) n=int(input()) x=[int(i) for i in input().split() if i!='\n'] v=[int(i) for i in input().split() if i!='\n'] for i in range(n): v[i]=[v[i],i] v.sort() pos=dict() store,prev=1,v[0][0] for i in range(n): if i>0: if prev==v[i][0]: pos[x[v[i][1]]]=store else: store+=1 pos[x[v[i][1]]]=store else: pos[x[v[i][1]]]=store sort=sorted(pos.keys()) bit=[0]*(n+1) ind=[0]*(n+1) ans,count,diff=0,0,0 length=max(sort) total=0 for i in range(len(sort)-1,-1,-1): count=getsum(bit,pos[sort[i]]-1) diff=getsum(ind,pos[sort[i]]-1) if i<(n-1): total+=(sort[i+1]-sort[i])*(n-1-i) ans+=total-(diff-count*sort[i]) updatebit(bit,len(bit)-1,pos[sort[i]],1) updatebit(ind,len(ind)-1,pos[sort[i]],sort[i]) print(int(ans))
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) x = [int(a) for a in input().split()] v = [int(a) for a in input().split()] sum = 0 for i in range(1, n): for j in range(i, n): if x[j] < x[j-1]: temp = x[j] x[j] = x[j-1] x[j-1] = temp temp = v[j] v[j] = v[j-1] v[j-1] = temp for i in range(n): for j in range(i, n): if v[j] >= v[i]: sum += x[j] - x[i] print(sum)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
//package psa.minrazdalja; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class minrazdalja { /** * Uvozena abstraktna funkcija za klic Paid<L, R> */ public static class Pair<L,R> { private final L left; private final R right; public Pair(L left, R right) { assert left != null; assert right != null; this.left = left; this.right = right; } public L getLeft() { return left; } public R getRight() { return right; } @Override public int hashCode() { return left.hashCode() ^ right.hashCode(); } @Override public boolean equals(Object o) { if (!(o instanceof Pair)) return false; Pair pairo = (Pair) o; return this.left.equals(pairo.getLeft()) && this.right.equals(pairo.getRight()); } } /**? * glavna funkcija racunanja: * sprejme list tipa ArrayList<Pair<Integer, Integer>>, potem st vseh elementov in seveda listo vseh elementov. * * nato izracunamo maksimalno distance, ki je sestevek vseh distanc med posameznimi elementi, kar lahko storimo, ker je sortirana tabela. * V drugem delu odstejemo od maksimalnega sestevka distanc, posamezne ki se sekajo v prihodnosti * ostane nam samo tocni sestevek minimalnih distanc */ public static long elele(ArrayList<Pair<Integer,Integer>> elementi, int s, Integer[] x_el) { long skupek = 0; Long ml; HashMap<Integer, Integer> pos = new HashMap<Integer, Integer>(); for(int i=0; i<s; ++i) { skupek += x_el[i] * i + (-1 * x_el[i]) * (s - 1 - i); pos.put(x_el[i], i); } if(s == 161) System.out.println(skupek); for(int i=0; i<s; ++i){ skupek -= elementi.get(i).getRight() * (pos.get(elementi.get(i).getRight())-i); } //2 1 4 3 5 //2 2 2 3 4 return skupek; } public static void main(String[] args) throws IOException { int st_el; // uporabimo bufferedreader zaradi 1000x vecje hitrosti kot pa skener BufferedReader br= new BufferedReader(new InputStreamReader(System.in)); //System.out.println("Vnesi stevilo elementov: "); st_el = Integer.parseInt(br.readLine()); //System.out.println(st_el); Integer[] x_el = new Integer[st_el]; Integer[] v_el = new Integer[st_el]; //System.out.println("Vnesi elemente: "); String x = br.readLine(); String[] strs = x.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { x_el[i] = Integer.parseInt(strs[i]); } //System.out.println("Vnesi tezo elementov: "); String y = br.readLine(); String[] strs2 = y.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { v_el[i] = Integer.parseInt(strs2[i]); } br.close(); //pospravimo skupej v par oblike <integer, integer> oz <hitrost, element> ArrayList<Pair<Integer,Integer>> listt = new ArrayList<Pair<Integer, Integer>>(st_el); for(int i=0; i<st_el; i++) { Pair<Integer, Integer> pair = new Pair<Integer, Integer>(v_el[i],x_el[i]); listt.add(pair); } /*sortiramo listt od najmanjsega do najvecjega * - sortiramo prvo po hitrostih (to je glavno najbolj vazno) * - ce je hitrost ista potem pa sortiramo se glede na element */ Collections.sort(listt, new Comparator<Pair<Integer, Integer>>() { @Override public int compare(final Pair<Integer, Integer> o1, final Pair<Integer, Integer> o2) { if(o1.getLeft()<o2.getLeft()) { return -1; } else if(o1.getLeft() == o2.getLeft()) { if(o1.getRight() < o2.getRight()){ return -1; }else{ return 1; } } else { return 1; } } }); //sortiramo se elemente Arrays.sort(x_el); //izpisemo elemente System.out.println(elele(listt,st_el,x_el)); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; import java.io.*; import java.math.BigInteger; public class Solution { static class Pair<A,B>{ A parent; B rank; Pair(A parent,B rank) { this.rank=rank; this.parent=parent; } } // static int find(Pair pr[],int i) // { // if(i==pr[i].parent) // return i; // else // { // pr[i].parent=find(pr,pr[i].parent); // return pr[i].parent; // } // } // static void join(Pair[] pr,int i,int j) // { // i=find(pr,i); // j=find(pr,j); // if(i==j) // return; // if(pr[i].rank>=pr[j].rank) // { // pr[j].parent=i; // pr[i].rank+=pr[j].rank; // } // else // { // pr[i].parent = j; // pr[j].rank+=pr[i].rank; // } // } static void swap(char ar[],int i,int j) { char f = ar[i]; ar[i]=ar[j]; ar[j]=f; } static ArrayList<Integer> graph[] ; static TreeSet<Long> ts; public static void main (String[] args) throws IOException { StringBuilder sb = new StringBuilder(); FastReader s1 = new FastReader(); int n=s1.I(); int xr[] = new int[n]; int v[] = new int[n]; for(int i=0;i<n;i++) { xr[i]=s1.I(); } for(int i=0;i<n;i++) { v[i]=s1.I(); } long ans=0; for(int i=0;i<n;i++) { for(int j=i+1;j<n;j++) { long c=xr[i]-xr[j]; long T=v[i]-v[j]; ans+=mindis(c,T); // System.out.println(ans+" "+c+" "+T); } } sb.append(ans+"\n"); System.out.println(sb); } static long mindis(long c,long t) { if(c==0) return c; if(t==0) return Math.abs(c); if(c*t>0) { return Math.abs(c); } else { c=Math.abs(c); t=Math.abs(t); long temp=(c/t); long min=Math.abs(c-t*temp); long demo=Math.abs(c-t*(temp+1)); // System.out.println(temp+" "+min+" "+demo+" "+c+" "+t); return Math.min(min,demo); } } static boolean print(int h,int b,int a) { if(h*h==(a*a+b*b)) return true; return false; } static long min(long no,long temp) { if(no<temp) { return -1; } long ans=no-temp; long max=-1; int n = (int)(Math.log(no)/Math.log(2)); long curr=temp; for(int i=n;i>=0;i--) { long demo=(long)Math.pow(2, i); long h=(demo|curr); if(h<=no && h>max) { max=h; curr=h; } } return max; } static int dayofweek(long d, int m, long y) { int t[] = { 0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4 }; y -= (m < 3) ? 1 : 0; return (int)( y + y/4 - y/100 + y/400 + t[(m-1)] + d) % 7; } static String preprocess(String s) { StringBuilder sb = new StringBuilder(); sb.append("@#"); for(int i=0;i<s.length();i++) { sb.append(s.charAt(i)).append("#"); } sb.append("$"); return sb.toString(); } static String LPS(String s) { String snew = preprocess(s); int n = snew.length(); // System.out.println(snew); int c = 0,r = 0; int maxlen = 0; int index=0; int len[] = new int[n]; for(int i=1;i<n-1;i++) { int mirr = c-(i-c); if(i<r) { len[i]=Math.min(len[mirr],r-i); } // System.out.println(i+" "); while(snew.charAt(i+len[i])==snew.charAt(i-len[i])) len[i]++; if(i+len[i]>r) { c = i; r = i+len[i]; } // System.out.println(c+" "+i+" "+snew.charAt(i)+" "+len[i]+" "+maxlen+" "+index); if(len[i]>maxlen) { // System.out.println("inside"); maxlen = len[i]; index = i; } } maxlen--; int left = (index-maxlen-1)/2; int right = left+maxlen; return s.substring(left, right); } static long phi(long n) { long result=n; for(int i=2;i<=Math.sqrt(n);i++) { if(n%i==0) { result-=result/i; } while(n%i==0) { n=n/i; } } if(n>1) { result-=(result/n); } return result; } static ArrayList<Integer> primeFactor(int n) { ArrayList<Integer> ans = new ArrayList<>(); if(n%2==0) ans.add(2); while (n%2==0) { n /= 2; } for (int i = 3; i <= Math.sqrt(n); i+= 2) { if(n%i==0) ans.add(i); while (n%i == 0) { n /= i; } } if (n > 2) ans.add(n); return ans; } static int longestSubSeg(int a[], int n,int k) { int cnt0 = 0; int l = 0; int max_len = 0; for (int i = 0; i < n; i++) { if (a[i] == 0) cnt0++; while (cnt0 > k) { if (a[l] == 0) cnt0--; l++; } max_len = Math.max(max_len, i - l + 1); } return max_len; } static void dfs(int index,boolean ar[]) { ar[index]=true; for(int i=0;i<graph[index].size();i++) { if(!ar[graph[index].get(i)]) { dfs(graph[index].get(i),ar); } } } static int binary(int left,int right,int ar[],int no) { int mid=(left+right)/2; if(Math.abs(right-left)<=1) { if(no>=ar[right]) { return right+1; } else if(no<ar[left]) { return left; } else { return left+1; } } if(ar[mid]>no) { right=mid-1; return binary(left, right, ar, no); } else{ left=mid; return binary(left, right, ar, no); } } static class FastReader{ BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int I() { return Integer.parseInt(next()); } long L() { return Long.parseLong(next()); } double D() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static long gcd(long a,long b) { if(a%b==0) return b; return gcd(b,a%b); } static float power(float x, int y) { float temp; if( y == 0) return 1; temp = power(x, y/2); if (y%2 == 0) return temp*temp; else { if(y > 0) return x * temp * temp; else return (temp * temp) / x; } } static long pow(long x, long y) { int p = 1000000007; long res = 1; x = x % p; while (y > 0) { if((y & 1)==1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } static ArrayList<Integer> sieveOfEratosthenes(int n) { ArrayList<Integer> arr=new ArrayList<Integer>(); boolean prime[] = new boolean[n+1]; for(int i=2;i<n;i++) prime[i] = true; for(int p = 2; p*p <=n; p++) { if(prime[p] == true) { arr.add(p); for(int i = p*p; i <= n; i += p) prime[i] = false; } } return arr; } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.awt.*; import java.io.*; import java.io.IOException; import java.util.*; import java.text.DecimalFormat; public class Exam { public static long mod = (long)Math.pow(10, 9)+7 ; public static double epsilon=0.00000000008854;//value of epsilon public static InputReader sc = new InputReader(System.in); public static PrintWriter pw = new PrintWriter(System.out); public static long gcd(long a,long b){ while(b>0){ long t=b; b=a%b; a=t; } return a; } static void dfs(Point p[],int v,boolean vis[]){ if (vis[v])return; vis[v]=true; for (int i=0;i<p.length;i++){ if (p[i].x==p[v].x || p[i].y==p[v].y){ dfs(p,i,vis); } } } public static long bSearch(Pair[]d, int l, int r, int a) { if(d[l].d > a) return 0; if(l == r) return d[l].g; int m = (l + r + 1) / 2; if(d[m].d > a) return bSearch(d, l, m - 1, a); return bSearch(d, m, r, a); } static class Pair implements Comparable<Pair> { int d, i; long g; public Pair(int D, long G, int I) { d = D; g = G; i = I; } public int compareTo(Pair p) { if(d == p.d) return i - p.i; return d - p.d; } } static void dfs(int src, ArrayList<ArrayList<Integer>> list, int vis[],int c[]) { //Here 0-white,1-gray & 2-black; // Time complexity O(n+m) //System.out.print(src+" "); vis[src]=1; for(int i=0;i<list.get(src).size();i++){ if(vis[list.get(src).get(i)]==0){ dfs(list.get(src).get(i),list, vis,c); } } c[0]++; vis[src]=2; } public static long pow(long x,long y,long mod){ long ans=1; while(y>0){ if((y&1)==1){ ans=(ans*x)%mod; } y=y>>1; x=(x*x)%mod; } return ans; } public static boolean isPalindrome(String s1,String s2){ s2=reverseString(s2); if(s1.equals(s2)){ return true; } else return false; /* boolean f=true; for(int i=0;i<s.length();i++){ if(i>s.length()-i-1) break; if(s.charAt(i)!=s.charAt(s.length()-i-1)){ f=false; break; } } return f;*/ } public static HashSet<Integer> CreateSeg(int root,int l,int r,int a[],ArrayList<HashSet<Integer>>s){ if(l==r){ //HashSet<Integer> h=new HashSet<>(); s.get(root).add(a[l]); return s.get(root); } HashSet<Integer> h1=CreateSeg(2*root+1, l, (l+r)/2, a, s); HashSet<Integer> h2=CreateSeg(2*root+2,(l+r)/2+1,r, a, s); //HashSet<Integer> h=new HashSet<>(); s.get(root).addAll(h1);s.get(root).addAll(h2); return s.get(root); } public static HashSet<Integer> query(int root,int l,int r,int st,int en,ArrayList<HashSet<Integer>>s){ if(l>=st&&r<=en){ return s.get(root); } else if(r<st||l>en) return new HashSet<Integer>(); else{ HashSet<Integer> h1=query(2*root+1, l, (l+r)/2, st, en, s); HashSet<Integer> h2=query(2*root+2, (l+r)/2+1, r, st, en, s); HashSet<Integer> h=new HashSet<>(); h.addAll(h1);h.addAll(h2); return h; } } public static void main(String[] args) { // code starts.. //int q=sc.nextInt(); //while(q-->0){ int n=sc.nextInt(); //int m=sc.nextInt(); Integer a[][]=new Integer[n][3]; for(int i=0;i<n;i++){ a[i][0]=sc.nextInt(); } for(int i=0;i<n;i++){ a[i][1]=sc.nextInt(); } Arrays.sort(a,column(0)); for(int i=0;i<n;i++){ a[i][2]=i+1; } Arrays.sort(a,column(1)); Bit co=new Bit(1000000); Bit sum=new Bit(1000000); long tot=0; for(int i=0;i<n;i++){ //if(i>0&&a[i][1]==a[i-1][1]){ // if(a[i][0]>a[i-1][0]) // tot-=a[i][0]-a[i-1][0]; //} int count=co.query(a[i][2]); int s=sum.query(a[i][2]); tot+=count*a[i][0]-s; co.update(a[i][2], 1); sum.update(a[i][2], a[i][0]); } Bit c1=new Bit(1000000); Bit s1=new Bit(1000000); int v=100000; for(int i=0;i<n;i++){ if(i>0&&a[i][1]-a[i-1][1]==0){ int c=c1.query(v-a[i][2]); int s=s1.query(v-a[i][2]); tot+=-c*a[i][0]+s; c1.update(v-a[i][2],1); s1.update(v-a[i][2], a[i][0]); } else { c1=new Bit(1000000); s1=new Bit(1000000); c1.update(v-a[i][2],1 ); s1.update(v-a[i][2], a[i][0]); } } pw.println(tot); //} // Code ends... pw.flush(); pw.close(); } static class tripletL implements Comparable<tripletL> { Long x, y, z; tripletL(long x, long y, long z) { this.x = x; this.y = y; this.z = z; } public int compareTo(tripletL o) { int result = x.compareTo(o.x); if (result == 0) result = y.compareTo(o.y); if (result == 0) result = z.compareTo(o.z); return result; } public boolean equlas(Object o) { if (o instanceof tripletL) { tripletL p = (tripletL) o; return (x - p.x == 0) && (y - p.y ==0 ) && (z - p.z == 0); } return false; } public String toString() { return x + " " + y + " " + z; } public int hashCode() { return new Long(x).hashCode() * 31 + new Long(y).hashCode() + new Long(z).hashCode(); } } public static String Doubleformate(double a,int n){ String s=""; while(n-->0){ s+='0'; } DecimalFormat f =new DecimalFormat("#0."+s); return f.format(a); } public static Comparator<Integer[]> column(int i){ return new Comparator<Integer[]>() { @Override public int compare(Integer[] o1, Integer[] o2) { return o1[i].compareTo(o2[i]);//for ascending //return o2[i].compareTo(o1[i]);//for descending } }; } public static Comparator<Integer[]> pair(){ return new Comparator<Integer[]>() { @Override public int compare(Integer[] o1, Integer[] o2) { int result=o1[0].compareTo(o2[0]); if(result==0) result=o1[1].compareTo(o2[1]); return result; } }; } public static Comparator<Integer[]> Triplet(){ return new Comparator<Integer[]>() { @Override public int compare(Integer[] o1, Integer[] o2) { for(int i=0;i<3;i++){ for(int j=i+1;j<3;j++){ for(int k=0;k<3;k++){ for(int p=k+1;p<3;p++){ if((o1[i]==o2[k]&&o1[j]==o2[p])||(o1[j]==o2[k]&&o1[i]==o2[p])){ } } } } } int result=o1[0].compareTo(o2[0]); if(result==0) result=o1[1].compareTo(o2[1]); if(result==0) result=o1[2].compareTo(o2[2]); return result; } }; } public static String reverseString(String s){ StringBuilder input1 = new StringBuilder(); input1.append(s); input1 = input1.reverse(); return input1.toString(); } public static int[] scanArray(int n){ int a[]=new int [n]; for(int i=0;i<n;i++) a[i]=sc.nextInt(); return a; } public static long[] scanLongArray(int n){ long a[]=new long [n]; for(int i=0;i<n;i++) a[i]=sc.nextLong(); return a; } public static String [] scanStrings(int n){ String a[]=new String [n]; for(int i=0;i<n;i++) a[i]=sc.nextLine(); return a; } static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public String readString() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = snext(); while (isSpaceChar(c)) c = snext(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } } class Bit{//1...n int a[]; Bit(int n){ a=new int[n+1]; } void update(int i,int delta){ while(i<a.length){ a[i]+=delta; i+=i&(-i); } } int query(int i){ int sum=0; while(i>0){ sum+=a[i]; i-=i&(-i); } return sum; } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 200000; long long BIT1[200001]; long long BIT2[200001]; int cnt1[200001]; int cnt2[200001]; map<int, int> r, l; pair<int, int> arr[200001]; int n; void upd1(int idx, long long val) { for (; idx <= N; idx = (idx | (idx + 1))) { BIT1[idx] += val; cnt1[idx]++; } } void upd2(int idx, long long val) { for (; idx <= N; idx = (idx | (idx + 1))) { BIT2[idx] += val; cnt2[idx]++; } } pair<long long, int> query1(int idx) { if (idx < 0) return {0, 0}; long long sum = 0; int ct = 0; for (; idx >= 0; idx = (idx & (idx + 1)) - 1) { sum += BIT1[idx]; ct += cnt1[idx]; } return {sum, ct}; } pair<long long, int> query2(int idx) { if (idx < 0) return {0, 0}; long long sum = 0; int ct = 0; for (; idx >= 0; idx = (idx & (idx + 1)) - 1) { sum += BIT2[idx]; ct += cnt2[idx]; } return {sum, ct}; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n; for (int i = 1; i <= n; i++) cin >> arr[i].first; for (int i = 1; i <= n; i++) cin >> arr[i].second; sort(arr + 1, arr + n + 1); for (int i = 1; i <= n; i++) { if (arr[i].second > 0) r[arr[i].second] = 0; else if (arr[i].second < 0) l[-(arr[i].second)] = 0; } int ind = 1; for (auto &it : r) { it.second = ind; ind++; } ind = 1; for (auto &it : l) { it.second = ind; ind++; } long long ans = 0; for (int i = 1; i <= n; i++) { if (arr[i].second >= 0) { int vel = r[arr[i].second]; pair<long long, int> p = query1(vel); ans += (p.second) * (arr[i].first); ans -= p.first; p = query2(N); ans += (p.second) * (arr[i].first); ans -= p.first; upd1(vel, arr[i].first); } else if (arr[i].second < 0) { int vel = l[-(arr[i].second)]; pair<long long, int> p = query2(N); pair<long long, int> p1 = query2(vel - 1); p.first -= p1.first; p.second -= p1.second; ans += (p.second) * (arr[i].first); ans -= p.first; upd2(vel, arr[i].first); } } cout << ans; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#pragma GCC optimize("Ofast") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") #pragma GCC optimize("unroll-loops") #pragma warning(disable : 4996) #include<iostream> #include<string> #include<algorithm> #include<vector> #include<queue> #include<map> #include<math.h> #include<iomanip> #include<set> #include<numeric> #include<cstring> #include<cstdio> #include<functional> #include<bitset> #include<limits.h> #include<cassert> #include<iterator> #include<complex> #include<stack> #include<unordered_map> #include<unordered_set> #include<time.h> #include<random> using namespace std; #define REP(i, n) for(int i = 0;i < n;++i) #define REPR(i, n) for(int i = n-1;i >= 0;--i) #define FOR(i, m, n) for(int i = m;i < n;++i) #define FORR(i, m, n) for(int i = m-1;i >= n;--i) #define SORT(v, n) sort(v, v+n); #define VSORT(v) sort(v.begin(), v.end()); #define REVERSE(v,n) reverse(v,v+n); #define VREVERSE(v) reverse(v.begin(), v.end()) #define ll long long #define pb(a) push_back #define print(x) cout<<(x)<<'\n' #define pe(x) cout<<(x)<<" " #define DEBUG(x) cout<<#x<<": "<<x<<endl #define lb(v,n) lower_bound(v.begin(), v.end(), (n)) #define ub(v,n) upper_bound(v.begin(), v.end(), (n)) //#define int long long #define all(x) (x).begin(), (x).end() #define print_space(v) REP(i,v.size())cout << v[i] << ((i == v.size() - 1) ? "\n" : " ") template<typename T1, typename T2> inline void chmin(T1 & a, T2 b) { if (a > b) a = b; } template<typename T1, typename T2> inline void chmax(T1& a, T2 b) { if (a < b) a = b; } typedef pair<int, int>P; const int MOD = 1e9 + 7; const int MAX = 200020; const double pi = acos(-1); const double EPS = 1e-12; const ll INF = 1e18; template<class VAL> struct RBST { VAL SUM_UNITY = 0; // to be set unsigned int randInt() { static unsigned int tx = 123456789, ty = 362436069, tz = 521288629, tw = 88675123; unsigned int tt = (tx ^ (tx << 11)); tx = ty; ty = tz; tz = tw; return (tw = (tw ^ (tw >> 19)) ^ (tt ^ (tt >> 8))); } struct NODE { NODE *left, *right; VAL val; // the value of the node int size; // the size of the subtree VAL sum; // the value-sum of the subtree NODE() : val(SUM_UNITY), size(1), sum(SUM_UNITY) { left = right = NULL; } NODE(VAL v) : val(v), size(1), sum(v) { left = right = NULL; } /* additional update */ inline void update() { } /* additional lazy-propagation */ inline void push() { /* ex: reverse */ /* if (this->rev) { swap(this->left, this->right); if (this->left) this->left->rev ^= true; if (this->right) this->right->rev ^= true; this->rev = false; } */ } }; /////////////////////// // root /////////////////////// NODE* root; RBST() : root(NULL) { } RBST(NODE* node) : root(node) { } /////////////////////// // basic operations /////////////////////// /* size */ inline int size(NODE *node) { return !node ? 0 : node->size; } inline int size() { return this->size(this->root); } /* sum */ inline VAL sum(NODE *node) { return !node ? SUM_UNITY : node->sum; } inline VAL sum() { return this->sum(this->root); } /* update, push */ inline NODE* update(NODE *node) { node->size = size(node->left) + size(node->right) + 1; node->sum = sum(node->left) + sum(node->right) + node->val; node->update(); return node; } inline void push(NODE *node) { if (!node) return; node->push(); } /* lower_bound */ inline int lowerBound(NODE *node, VAL val) { push(node); if (!node) return 0; if (val <= node->val) return lowerBound(node->left, val); else return size(node->left) + lowerBound(node->right, val) + 1; } inline int lowerBound(VAL val) { return this->lowerBound(this->root, val); } /* upper_bound */ inline int upperBound(NODE *node, VAL val) { push(node); if (!node) return 0; if (val >= node->val) return size(node->left) + upperBound(node->right, val) + 1; else return upperBound(node->left, val); } inline int upperBound(VAL val) { return this->upperBound(this->root, val); } /* count */ inline int count(VAL val) { return upperBound(val) - lowerBound(val); } /* get --- k: 0-index */ inline VAL get(NODE *node, int k) { push(node); if (!node) return -1; if (k == size(node->left)) return node->val; if (k < size(node->left)) return get(node->left, k); else return get(node->right, k - size(node->left) - 1); } inline VAL get(int k) { return get(this->root, k); } /////////////////////// // merge-split /////////////////////// NODE* merge(NODE *left, NODE *right) { push(left); push(right); if (!left || !right) { if (left) return left; else return right; } if (randInt() % (left->size + right->size) < left->size) { left->right = merge(left->right, right); return update(left); } else { right->left = merge(left, right->left); return update(right); } } void merge(RBST add) { this->root = this->merge(this->root, add.root); } pair<NODE*, NODE*> split(NODE* node, int k) { // [0, k), [k, n) push(node); if (!node) return make_pair(node, node); if (k <= size(node->left)) { pair<NODE*, NODE*> sub = split(node->left, k); node->left = sub.second; return make_pair(sub.first, update(node)); } else { pair<NODE*, NODE*> sub = split(node->right, k - size(node->left) - 1); node->right = sub.first; return make_pair(update(node), sub.second); } } RBST split(int k) { pair<NODE*, NODE*> sub = split(this->root, k); this->root = sub.first; return RBST(sub.second); } /////////////////////// // insert-erase /////////////////////// void insert(const VAL val) { pair<NODE*, NODE*> sub = this->split(this->root, this->lowerBound(val)); this->root = this->merge(this->merge(sub.first, new NODE(val)), sub.second); } void erase(const VAL val) { if (!this->count(val)) return; pair<NODE*, NODE*> sub = this->split(this->root, this->lowerBound(val)); this->root = this->merge(sub.first, this->split(sub.second, 1).second); } /////////////////////// // debug /////////////////////// //void print(NODE *node) { // if (!node) return; // push(node); // print(node->left); // cout << node->val << " "; // print(node->right); //} //void print() { // cout << "{"; // print(this->root); // cout << "}" << endl; //} }; void solve() { int N; cin >> N; vector<P>v(N); REP(i, N) { cin >> v[i].first; } REP(i, N)cin >> v[i].second; VSORT(v); ll sum = 0; REP(i, N) { sum += i * v[i].first; sum -= (N - i - 1)*v[i].first; } //DEBUG(sum); RBST<int>S; REPR(i, N) { int c = S.lowerBound(v[i].second) - S.lowerBound(-1e8 - 1); sum += c * v[i].first; //cout << v[i].second << " " << c << endl; S.insert(v[i].second); } RBST<int>S2; REP(i, N) { int c = S2.upperBound(1e8 + 1) - S2.upperBound(v[i].second); sum -= c * v[i].first; //cout << v[i].second << " " << c << endl; S2.insert(v[i].second); } print(sum); } signed main() { cin.tie(0); ios::sync_with_stdio(false); //int q; cin >> q; //while (q--) solve(); }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); ; int n, ans = 0; cin >> n; vector<pair<int, int> > v(n); for (int i = 0; i < n; i++) { cin >> v[i].first; } for (int i = 0; i < n; i++) cin >> v[i].second; sort(v.begin(), v.end()); for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { if (v[i].second <= v[j].second) ans += (v[j].first - v[i].first); } } cout << ans << endl; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; bool isprime(long long int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } vector<long long int> prime; void sieve(long long int n) { bool bakh[n + 1]; memset(bakh, true, sizeof(bakh)); for (long long int p = 2; p * p <= n; p++) { if (bakh[p] == true) { for (long long int i = p * p; i <= n; i += p) bakh[i] = false; } } for (long long int p = 2; p <= n; p++) if (bakh[p]) prime.push_back(p); } long long int eulertotient(long long int z) { long long int fac = z; for (long long int i = 0; prime[i] * prime[i] <= z; i++) { if (z % prime[i] == 0) { fac -= (fac / prime[i]); while (z % prime[i] == 0) z /= prime[i]; } } if (z > 1) fac -= (fac / z); return fac; } long long int power(long long int x, long long int y, long long int p) { long long int res = 1; x = x % p; while (y > 0) { if (y & 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } long long int gcd(long long int a, long long int b) { if (a == 0) return b; return gcd(b % a, a); } long long int lcm(long long int a, long long int b) { long long int g = gcd(a, b); long long int ans = (a * b) / g; return ans; } long long int modInverse(long long int a, long long int m) { long long int hvf = gcd(a, m); if (hvf == 1) return power(a, m - 2, m); return -1; } void multiply(long long int F[2][2], long long int M[2][2]) { long long int x = F[0][0] * M[0][0] + F[0][1] * M[1][0]; long long int y = F[0][0] * M[0][1] + F[0][1] * M[1][1]; long long int z = F[1][0] * M[0][0] + F[1][1] * M[1][0]; long long int w = F[1][0] * M[0][1] + F[1][1] * M[1][1]; F[0][0] = x; F[0][1] = y; F[1][0] = z; F[1][1] = w; } void powermat(long long int F[2][2], long long int n) { if (n == 0 || n == 1) return; long long int M[2][2] = {{1, 1}, {1, 0}}; powermat(F, n / 2); multiply(F, F); if (n % 2 != 0) multiply(F, M); } long long int fib(long long int n) { long long int F[2][2] = {{1, 1}, {1, 0}}; if (n == 0) return 0; powermat(F, n - 1); return F[0][0]; } long long int dp[200005]; long long int countLarger[200005]; void countLargerRight(vector<pair<long long int, long long int> > A, long long int len) { set<int> s; for (int i = len - 1; i >= 0; i--) { s.insert(A[i].second); auto it = s.upper_bound(A[i].second); countLarger[i] = s.size() - distance(s.begin(), it); } } bool comp(pair<long long int, long long int> a, pair<long long int, long long int> b) { if (a.first == b.first) return 1; return a.first < b.first; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); ; long long int n; cin >> n; long long int ar[n]; for (long long int i = 0; i < n; i++) cin >> ar[i]; long long int av[n]; vector<long long int> l, r; for (long long int i = 0; i < n; i++) cin >> av[i]; vector<pair<long long int, long long int> > low, high; for (long long int i = 0; i < n; i++) { if (av[i] <= 0) l.push_back(ar[i]), low.push_back({ar[i], abs(av[i])}); else r.push_back(ar[i]), high.push_back({ar[i], av[i]}); } long long int ans = 0, sz = r.size(); if (r.size() > 0) { dp[sz - 1] = r[sz - 1]; for (long long int i = sz - 2; i >= 0; i--) dp[i] = dp[i + 1] + r[i]; for (long long int i = 0; i < l.size(); i++) { long long int tx = upper_bound(r.begin(), r.end(), l[i]) - r.begin(); if (tx == r.size()) continue; long long int p = r.size() - tx; ans += dp[tx] - p * (l[i]); } } sort(low.begin(), low.end(), comp); sort(high.begin(), high.end(), comp); long long int p = 0; for (long long int i = 0; i < low.size(); i++) { for (long long int j = 0; j < i; j++) { if (low[j].second >= low[i].second) p += abs(low[i].first - low[j].first); } for (long long int j = i + 1; j < low.size(); j++) { if (low[j].second <= low[i].second) p += abs(low[i].first - low[j].first); } } ans += p / 2; p = 0; for (long long int i = 0; i < high.size(); i++) { for (long long int j = 0; j < i; j++) { if (high[j].second <= high[i].second) p += abs(high[j].first - high[i].first); } for (long long int j = i + 1; j < high.size(); j++) { if (high[j].second >= high[i].second) p += abs(high[j].first - high[i].first); } } ans += p / 2; cout << ans << endl; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; import java.io.*; import java.lang.reflect.Array; public class template { final static int MOD = 1000000007; final static int intMax = 1000000000; final static int intMin = -1000000000; final static int[] DX = { 0, 0, -1, 1 }; final static int[] DY = { -1, 1, 0, 0 }; static int T; static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[360]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } public static void main(String[] args) throws Exception { Reader in = new Reader(); int n = in.nextInt(); int[] x = new int[n]; int[] v = new int[n]; for(int i = 0; i < n; ++i) { x[i] = in.nextInt(); } for(int i = 0; i < n; ++i) { v[i] = in.nextInt(); } p[] points = new p[n]; for(int i = 0; i < n; ++i) { points[i] = new p(x[i], v[i]); } Arrays.sort(points, (a, b) -> a.x - b.x); for(int i = 0; i < n; ++i) { points[i].orig = i + 1; } long [] dists = new long[n]; int count = 1; for(int i = n - 2; i >= 0; --i) { dists[i] = dists[i + 1] + (count++) * (points[i + 1].x - points[i].x); } long tot = 0; for(int i = 0; i < n; ++i) { tot += dists[i]; } BinaryIndexedTree num = new BinaryIndexedTree(n); BinaryIndexedTree inds = new BinaryIndexedTree(n); Arrays.sort(points, (a, b) -> a.v == b.v ? b.orig - a.orig : b.v - a.v); for(int i = 0; i < n; ++i) { long amt = num.query(points[i].orig); long totinds = inds.query(points[i].orig); tot -= amt * points[i].x - totinds; num.update(points[i].orig, 1); inds.update(points[i].orig, points[i].orig); } System.out.println(tot); in.close(); } static class p{ int x, v, orig; p(int xi, int vi){ x = xi; v = vi; } } static class BinaryIndexedTree { public long[] tree; public BinaryIndexedTree(int n) { tree = new long[n+5]; } public void update(int index, int val) { index++; while(index < tree.length) { tree[index] += (long) val; index += index & -index; } } //sum from 0 to index public long query(int index) { long ret = 0; index++; while(index > 0) { ret += tree[index]; index -= index & -index; } return ret; } //sum from a to b public long query(int a, int b) { return query(b)-query(a-1); } } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long gcd(long long x, long long y) { if (!y) return x; return gcd(y, x % y); } const long long MOD = 1e9 + 7; int inf = 1e9 + 7; long long INF = 2e18 + 9; long long power(long long x, long long y) { long long res = 1ll; x %= MOD; if (x == 0) return 0; while (y > 0) { if (y & 1) res = (res * x) % MOD; y = y >> 1ll; x = (x * x) % MOD; } return res; } long long inv(long long x) { long long r = 1ll, t = x, k = MOD - 2ll; while (k) { if (k & 1ll) r = (long long)r * t % MOD; t = (long long)t * t % MOD; k >>= 1; } return r; } bool isPrime(long long x) { if (x == 1) return false; for (long long i = 2; i * i <= x; i++) { if (x % i == 0) return false; } return true; } const int nax = 5e5 + 13; void prep() {} void solve() {} vector<long long> fenwick[2]; int n; void add(int pos, int val, int ind) { pos++; while (pos <= n) { fenwick[ind][pos] += val; pos += pos & (-pos); } } long long query(int pos, int ind) { int res = 0; pos++; while (pos) { res += fenwick[ind][pos]; pos -= pos & (-pos); } return res; } void read() { cin >> n; vector<pair<int, int> > xv(n); for (int i = 0; i < n; i++) { cin >> xv[i].first; } for (int i = 0; i < n; i++) { cin >> xv[i].second; } vector<int> tmp; for (int i = 0; i < n; i++) tmp.push_back(xv[i].second); sort(tmp.begin(), tmp.end()); auto it = unique(tmp.begin(), tmp.end()); tmp.resize(distance(tmp.begin(), it)); map<int, int> M; for (int i = 0; i < tmp.size(); i++) { M[tmp[i]] = i; } for (int i = 0; i < n; i++) { xv[i].second = M[xv[i].second]; } sort(xv.begin(), xv.end()); int N = n; n = tmp.size(); fenwick[0].resize(n + 1); fenwick[1].resize(n + 1); for (auto& el : fenwick[0]) el = 0; for (auto& el : fenwick[1]) el = 0; long long res = 0; for (int i = 0; i < N; i++) { res += xv[i].first * query(xv[i].second, 0) - query(xv[i].second, 1); add(xv[i].second, 1, 0); add(xv[i].second, xv[i].first, 1); } cout << res << endl; } int main() { ios_base::sync_with_stdio(false); cin.tie(); cout.tie(); srand(time(NULL)); int T = 1; prep(); for (int i = 1; i <= T; i++) { read(); solve(); } return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<bits/stdc++.h> using namespace std; typedef long long int ll; typedef pair<ll,ll> p2; ll x[200005]; p2 t[800005],lazy[800005]; vector<p2> v1,v2; vector<ll> v; p2 add(p2 a,p2 b){ return {a.first+b.first,a.second+b.second}; } void update(ll v,ll tl,ll tr,ll pos,ll val){ if(tl==tr){ t[v]=add(t[v],{val,1}); return; } ll tm=(tl+tr)/2; if(pos<=tm) update(2*v,tl,tm,pos,val); else update(2*v+1,tm+1,tr,pos,val); t[v]=add(t[2*v],t[2*v+1]); } p2 query(ll v,ll tl,ll tr,ll l,ll r){ if(l>r) return {0,0}; else if(l==tl&&r==tr) return t[v]; ll tm=(tl+tr)/2; return add(query(2*v,tl,tm,l,min(r,tm)),query(2*v+1,tm+1,tr,max(l,tm+1),r)); } int main(){ ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); ll n,res=0; cin>>n; for(ll i=1;i<=n;i++) cin>>x[i]; for(ll i=1;i<=n;i++){ ll y; cin>>y; if(t>0) v1.push_back({x[i],y}); else v2.push_back({x[i],-y}); v.push_back(abs(y)); } sort(v1.begin(),v1.end()); sort(v2.begin(),v2.end()); sort(v.begin(),v.end()); map<ll,ll> m; for(ll i=0;i<n;i++) if(m.find(v[i])==m.end()) m.insert({v[i],i+1}); for(ll i=0;i<v1.size();i++){ update(1,1,n,m[v1[i].second],v1[i].first); p2 a=query(1,1,n,1,m[v1[i].second]); res+=a.second*v1[i].first-a.first; } for(ll i=0;i<800005;i++) t[i]={0,0}; for(ll i=0;i<v2.size();i++){ update(1,1,n,m[v2[i].second],v2[i].first); p2 a=query(1,1,n,1,m[v2[i].second]); res+=a.second*v2[i].first-a.first; } for(ll i=0;i<v1.size();i++){ p2 a=query(1,1,n,1,m[v1[i].second]); res+=a.second*v1[i].first-a.first; } cout<<res; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
//package psa.minrazdalja; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class minrazdalja { /** * Uvozena abstraktna funkcija za klic Paid<L, R> */ public static class Pair<L,R> { private final L left; private final R right; public Pair(L left, R right) { assert left != null; assert right != null; this.left = left; this.right = right; } public L getLeft() { return left; } public R getRight() { return right; } @Override public int hashCode() { return left.hashCode() ^ right.hashCode(); } @Override public boolean equals(Object o) { if (!(o instanceof Pair)) return false; Pair pairo = (Pair) o; return this.left.equals(pairo.getLeft()) && this.right.equals(pairo.getRight()); } } /**? * glavna funkcija racunanja: * sprejme list tipa ArrayList<Pair<Integer, Integer>>, potem st vseh elementov in seveda listo vseh elementov. * * nato izracunamo maksimalno distance, ki je sestevek vseh distanc med posameznimi elementi, kar lahko storimo, ker je sortirana tabela. * V drugem delu odstejemo od maksimalnega sestevka distanc, posamezne ki se sekajo v prihodnosti * ostane nam samo tocni sestevek minimalnih distanc */ public static long elele(ArrayList<Pair<Integer,Integer>> elementi, int s, Integer[] x_el) { long skupek = 0; Long ml; HashMap<Integer, Integer> pos = new HashMap<Integer, Integer>(); for(int i=0; i<s; ++i) { skupek += x_el[i] * i + (-1 * x_el[i]) * (s - 1 - i); pos.put(x_el[i], i); } for(int i=0; i<s; ++i){ skupek -= elementi.get(i).getRight() * (pos.get(elementi.get(i).getRight())); } //2 1 4 3 5 //2 2 2 3 4 return skupek; } public static void main(String[] args) throws IOException { int st_el; // uporabimo bufferedreader zaradi 1000x vecje hitrosti kot pa skener BufferedReader br= new BufferedReader(new InputStreamReader(System.in)); //System.out.println("Vnesi stevilo elementov: "); st_el = Integer.parseInt(br.readLine()); //System.out.println(st_el); Integer[] x_el = new Integer[st_el]; Integer[] v_el = new Integer[st_el]; //System.out.println("Vnesi elemente: "); String x = br.readLine(); String[] strs = x.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { x_el[i] = Integer.parseInt(strs[i]); } //System.out.println("Vnesi tezo elementov: "); String y = br.readLine(); String[] strs2 = y.trim().split("\\s+"); for(int i=0; i<st_el; ++i) { v_el[i] = Integer.parseInt(strs2[i]); } br.close(); //pospravimo skupej v par oblike <integer, integer> oz <hitrost, element> ArrayList<Pair<Integer,Integer>> listt = new ArrayList<Pair<Integer, Integer>>(st_el); for(int i=0; i<st_el; i++) { Pair<Integer, Integer> pair = new Pair<Integer, Integer>(v_el[i],x_el[i]); listt.add(pair); } /*sortiramo listt od najmanjsega do najvecjega * - sortiramo prvo po hitrostih (to je glavno najbolj vazno) * - ce je hitrost ista potem pa sortiramo se glede na element */ Collections.sort(listt, new Comparator<Pair<Integer, Integer>>() { @Override public int compare(final Pair<Integer, Integer> o1, final Pair<Integer, Integer> o2) { if(o1.getLeft()<o2.getLeft()) { return -1; } else if(o1.getLeft() == o2.getLeft()) { if(o1.getRight() < o2.getRight()){ return -1; }else{ return 1; } } else { return 1; } } }); //sortiramo se elemente Arrays.sort(x_el); //izpisemo elemente System.out.println(elele(listt,st_el,x_el)); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
//package com.netease.music.codeforces.round624.div3; import java.util.Arrays; import java.util.Scanner; /** * Created by dezhonger on 2020/2/27 */ public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); int[][] xv = new int[n][2]; int[] v = new int[n]; for (int i = 0; i < n; i++) { xv[i][0] = scanner.nextInt(); } for (int i = 0; i < n; i++) { xv[i][1] = scanner.nextInt(); v[i] = xv[i][1]; } Arrays.sort(v); Arrays.sort(xv, (o1, o2) -> { if (o1[0] != o2[0]) return Integer.compare(o1[0], o2[0]); return Integer.compare(o1[1], o2[1]); }); FenwickTree f1 = new FenwickTree(n); FenwickTree f2 = new FenwickTree(n); long result = 0; for (int i = 0; i < n; i++) { //按照x坐标从小到大进行枚举 //找到离散化后v的位置 int pos = Arrays.binarySearch(v, xv[i][1]); pos++; //速度比当前速度小的有贡献,贡献为距离之差 //有num个点的速度为当前速度小 int num = f1.sum(pos); //这num个点的位置的坐标之和为xsum int xsum = f2.sum(pos); //计算对答案的贡献 result += num * xv[i][0] - xsum; f1.change(pos, 1); f2.change(pos, xv[i][0]); } System.out.println(result); } } //树状数组 class FenwickTree { int[] t; int n; public FenwickTree(int n) { this.n = n; this.t = new int[n + 1]; } public void change(int pos, int val) { while (pos <= n) { t[pos] += val; pos += lowbit(pos); } } public int lowbit(int k) { return k & (-k); } public int sum(int pos) { int ans = 0; while (pos > 0) { ans += t[pos]; pos -= lowbit(pos); } return ans; } public int ask(int l, int r) { return sum(r) - sum(l); } }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long bit[4][200005]; void update(long long k, long long val, long long p) { while (k < 200005) { bit[p][k] += val; k += (k & (-k)); } } long long query(long long k, long long p) { long long s = 0; while (k > 0) { s += bit[p][k]; k -= (k & (-k)); } return s; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); long long n; cin >> n; pair<long long, long long> p[n]; set<long long> v1, v2; for (int i = 0; i < n; i++) cin >> p[i].first; for (int i = 0; i < n; i++) { cin >> p[i].second; if (p[i].second < 0) v1.insert(abs(p[i].second)); else if (p[i].second > 0) v2.insert(p[i].second); } map<long long, long long> mp, mp2; int cnt = 1; for (auto i : v1) mp[-i] = cnt, cnt++; cnt = 1; for (auto i : v2) mp2[i] = cnt, cnt++; sort(p, p + n); long long ans = 0; long long stat = 0, cn = 0; for (int i = 0; i < n; i++) { if (p[i].second > 0) { p[i].second = mp2[p[i].second]; long long sum = query(p[i].second, 1) + query(200000, 0); long long num = query(p[i].second, 3) + query(200000, 2); ans += num * p[i].first - sum; update(p[i].second, p[i].first, 1); update(p[i].second, 1, 3); } else if (p[i].second < 0) { p[i].second = mp[p[i].second]; long long sum = query(200000, 0) - query(p[i].second - 1, 0); long long num = query(200000, 2) - query(p[i].second - 1, 2); ans += num * p[i].first - sum; update(p[i].second, p[i].first, 0); update(p[i].second, 1, 2); } else { long long sum = stat + query(200000, 0); long long num = cn + query(200000, 2); ans += num * p[i].first - sum; stat += p[i].first; cn++; } } cout << ans; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long N = 200005; long long n; pair<long long, long long> x[N]; long long m; map<long long, long long> mp; long long ans; struct seg { long long vals[2 * N]; long long q(long long l, long long r) { long long ret = 0; for (l += m, r += m; l < r; l >>= 1, r >>= 1) { if (l & 1) ret += vals[l++]; if (r & 1) ret += vals[--r]; } return ret; } void inc(long long i, long long v) { i += m; vals[i] += v; while (i > 1) { vals[i >> 1] = vals[i] + vals[i ^ 1]; i >>= 1; } } } sm, ct; bool compSecond(pair<long long, long long>& a, pair<long long, long long>& b) { return a.second < b.second; } void doMapping() { sort(x, x + n, compSecond); long long prev = -1; for (long long i = 0; i < n; ++i) { if (x[i].second != prev) { mp[x[i].second] = m; m++; } } } int32_t main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cin >> n; for (long long i = 0; i < n; ++i) { cin >> x[i].first; } for (long long i = 0; i < n; ++i) { cin >> x[i].second; } doMapping(); sort(x, x + n); for (long long i = 0; i < n; ++i) { long long pt = x[i].first; long long cur = mp[x[i].second]; long long cur_sum = sm.q(0, cur + 1), cur_ct = ct.q(0, cur + 1); ans += pt * cur_ct - cur_sum; sm.inc(cur, pt); ct.inc(cur, 1); } cout << ans << '\n'; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int mpow(int base, int exp); void ipgraph(int m); void dfs(int u, int par); const long long int mod = 1000000007; const int N = 3e5, M = N; vector<int> g[N]; int a[N]; int mpow(int base, int exp) { base %= mod; int result = 1; while (exp > 0) { if (exp & 1) result = ((long long int)result * base) % mod; base = ((long long int)base * base) % mod; exp >>= 1; } return result; } void ipgraph(int m) { int u, v; while (m--) { cin >> u >> v; g[u].push_back(v); g[v].push_back(u); } } void dfs(int u, int par) { for (int v : g[u]) { if (v == par) continue; dfs(v, u); } } long long int mod1(string num, long long int a1) { long long int res = 0; for (int i = 0; i < num.length(); i++) res = (res * 10 + (int)num[i] - '0') % a1; return res; } vector<pair<int, int> > pos, negs; int mergepos(int l, int m, int r) { int ls = m - l + 1; int rs = r - m; vector<pair<int, int> > lss(ls + 1), rss(rs + 1); lss[ls] = {-1, -1}; rss[rs] = {-1, -1}; for (int i = l; i <= m; i++) lss[i - l] = pos[i]; for (int i = m + 1; i <= r; i++) rss[i - m - 1] = pos[i]; long long int runsum[ls + 1]; runsum[0] = 0; for (int i = 0; i < ls; i++) runsum[i + 1] = runsum[i] + lss[i].first; int i = 0, j = 0, diffs = 0; for (int k = l; k <= r; k++) { if (lss[i].second > rss[j].second) { pos[k] = lss[i]; i++; } else if (lss[i].second <= rss[j].second) { if (i != ls) diffs += rss[j].first * (ls - i) - (runsum[ls] - runsum[i]); pos[k] = rss[j]; j++; } } return diffs; } int mergeneg(int l, int m, int r) { int ls = m - l + 1; int rs = r - m; vector<pair<int, int> > lss(ls + 1), rss(rs + 1); lss[ls] = {1, 1}; rss[rs] = {1, 1}; for (int i = l; i <= m; i++) lss[i - l] = negs[i]; for (int i = m + 1; i <= r; i++) rss[i - m - 1] = negs[i]; long long int runsum[rs + 1]; runsum[0] = 0; for (int i = 0; i < rs; i++) runsum[i + 1] = runsum[i] + rss[i].first; int i = 0, j = 0, diffs = 0; for (int k = l; k <= r; k++) { if (lss[i].second > rss[j].second) { negs[k] = rss[i]; j++; } else if (lss[i].second <= rss[j].second) { if (j != rs) diffs += (runsum[rs] - runsum[j]) - lss[i].first * (rs - j); negs[k] = lss[i]; i++; } } return diffs; } int mergesort2(int l, int r) { int mid = (l + r) / 2; if (l < r) { int lcount = mergesort2(l, mid); int rcount = mergesort2(mid + 1, r); int cross = mergeneg(l, mid, r); return lcount + rcount + cross; } else return 0; } int mergesort1(int l, int r) { int mid = (l + r) / 2; if (l < r) { int lcount = mergesort1(l, mid); int rcount = mergesort1(mid + 1, r); int cross = mergepos(l, mid, r); return lcount + rcount + cross; } else return 0; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); int n; cin >> n; int velo[n]; int i; for (i = 0; i < n; i++) cin >> a[i]; for (i = 0; i < n; i++) cin >> velo[i]; for (i = 0; i < n; i++) { if (velo[i] >= 0) pos.push_back({a[i], velo[i]}); else negs.push_back({a[i], velo[i]}); } int x = pos.size(); int y = negs.size(); sort(pos.begin(), pos.end()); sort(negs.begin(), negs.end()); int diff = 0; if (x > 0 && y > 0) { x--; y--; int runsum[y]; runsum[0] = negs[0].first; for (i = 1; i <= y; i++) runsum[i] = runsum[i - 1] + negs[i].first; for (i = 0; i < n; i++) { if (x >= 0 && y >= 0 && pos[x].first >= negs[y].first) { diff += pos[x].first * (y + 1) - runsum[y]; x--; } else if (x >= 0 && y >= 0 && pos[x].first < negs[y].first) y--; else break; } } x = pos.size(); y = negs.size(); int diff1 = mergesort1(0, x - 1); int diff2 = mergesort2(0, y - 1); cout << diff + diff1 + diff2 << endl; return 0; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys input=sys.stdin.readline t=int(input()) import math def build(arr,cur_pos,start,end,seg,pre): if(start==end): seg[cur_pos]=([arr[start]],[arr[start][0]]) else: mid=(start+end)//2 build(arr,2*cur_pos+1,start,mid,seg,pre) build(arr,2*cur_pos+2,mid+1,end,seg,pre) seg[cur_pos]=merge(seg[2*cur_pos+1],seg[2*cur_pos+2],arr,start,mid,end) def merge(L1,R1,arr,low,mid,high): # #print(L,R,len(L),len(R)) L=L1[0] R=R1[0] i=0 j=0 k=low while(i<len(L) and j<len(R)): if(L[i][1]<R[j][1]): if(k!=low): pre[k]=pre[k-1]+L[i][0] else: pre[k]=L[i][0] arr[k]=(L[i]) i+=1 else: if(k!=low): pre[k]=pre[k-1]+R[j][0] else: pre[k]=R[j][0] arr[k]=(R[j]) j+=1 k+=1 while(i<len(L)): if(k!=low): pre[k]=pre[k-1]+L[i][0] else: pre[k]=L[i][0] arr[k]=(L[i]) i+=1 k+=1 while(j<len(R)): if(k!=low): pre[k]=pre[k-1]+R[j][0] else: pre[k]=R[j][0] arr[k]=(R[j]) j+=1 k+=1 return (arr[low:high+1],pre[low:high+1]) def bs(arr,k,start,end,n): if(start<=end): mid=(start+end)//2 if(arr[mid][1]>=k): if(mid==0): return -1 return bs(arr,k,start,mid-1,n) else: z=bs(arr,k,mid+1,end,n) if(z==-1): return mid else: return z return -1 def query(seg,l,r,k,val,cur_pos,start,end,ans): # print("elfcled",l,r,start,end) if(l<=start and r>=end): # print(";dkewl,dc") # #print(seg[cur_pos]) t=bs(seg[cur_pos][0],k,0,len(seg[cur_pos][0])-1,len(seg[cur_pos][0])-1) # print(t) if(t!=-1): # print(t," ",seg[cur_pos][0]," ",val) return (seg[cur_pos][1][len(seg[cur_pos][1])-1]-seg[cur_pos][1][t])-(t+1)*(val) else: return seg[cur_pos][1][len(seg[cur_pos][1])-1]-(len(seg[cur_pos][1]))*(val) return 0 #print(ans) elif(l>end or r<start): return 0 else: mid=(start+end)//2 return query(seg,l,r,k,val,2*cur_pos+1,start,mid,ans)+query(seg,l,r,k,val,2*cur_pos+2,mid+1,end,ans) x=list(map(int,input().split(" "))) v=list(map(int,input().split(" "))) # t=100000 # u=[[0,0]]*(t) u=[] for i in range(t): u.append((x[i],v[i])) u=sorted(u,key=lambda y:(y[0])) arr=[] for j in range(t): arr.append((u[j][0],u[j][1])) seg=[[(),()]]*(4*t) pre=[0]*t build(arr,0,0,t-1,seg,pre) #print(seg) res=0 for i in range(t): ans=0 ans=query(seg,i+1,t-1,u[i][1],u[i][0],0,0,t-1,ans) # print(ans) if(ans>0): res+=ans # break # res+=(ans- # print(res) print(res)
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 5; int bit[N]; void add(int p, int v) { for (p += 2; p < N; p += p & -p) bit[p] += v; } int query(int p) { int r = 0; for (p += 2; p; p -= p & -p) r += bit[p]; return r; } int n; pair<int, int> p[N]; long long l[N], r[N]; int ql[N], qr[N]; int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> n; for (int i = 1; i <= n; i++) cin >> p[i].second; for (int i = 1; i <= n; i++) cin >> p[i].first; sort(p + 1, p + n + 1); map<int, int> id; int cnt = 0, last = 0x3f3f3f3f; for (int i = 1; i <= n; i++) { int v = p[i].first; if (v != last) id[v] = ++cnt, last = v; swap(p[i].first, p[i].second); } sort(p + 1, p + n + 1); long long ans = 0; for (int i = 1; i <= n; i++) { int x = p[i].first, v = id[p[i].second]; ans += query(v) * x; add(v, 1); } memset(bit, 0, sizeof(bit)); for (int i = n; i >= 1; i--) { int x = p[i].first, v = id[p[i].second]; ans -= (query(n) - query(v - 1)) * x; add(v, 1); } cout << ans << '\n'; }
1311_F. Moving Points
There are n points on a coordinate axis OX. The i-th point is located at the integer point x_i and has a speed v_i. It is guaranteed that no two points occupy the same coordinate. All n points move with the constant speed, the coordinate of the i-th point at the moment t (t can be non-integer) is calculated as x_i + t ⋅ v_i. Consider two points i and j. Let d(i, j) be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points i and j coincide at some moment, the value d(i, j) will be 0. Your task is to calculate the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the number of points. The second line of the input contains n integers x_1, x_2, ..., x_n (1 ≤ x_i ≤ 10^8), where x_i is the initial coordinate of the i-th point. It is guaranteed that all x_i are distinct. The third line of the input contains n integers v_1, v_2, ..., v_n (-10^8 ≤ v_i ≤ 10^8), where v_i is the speed of the i-th point. Output Print one integer — the value ∑_{1 ≤ i < j ≤ n} d(i, j) (the sum of minimum distances over all pairs of points). Examples Input 3 1 3 2 -100 2 3 Output 3 Input 5 2 1 4 3 5 2 2 2 3 4 Output 19 Input 2 2 1 -3 0 Output 0
{ "input": [ "3\n1 3 2\n-100 2 3\n", "2\n2 1\n-3 0\n", "5\n2 1 4 3 5\n2 2 2 3 4\n" ], "output": [ "3\n", "0\n", "19\n" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 1000000007; const long long INF = 1e18; const long double PI = 4 * atan((long double)1); const int INFTY = 1e7; class FenwickTree2D { private: map<pair<long long, long long>, long long> m; public: FenwickTree2D() { m.clear(); } void update(int r, int c, long long delta) { int maxi = 2e8 + 5; for (int r_ = r; r_ < (int)maxi; r_ = r_ + (r_ & -r_)) { for (int c_ = c; c_ < (int)maxi; c_ = c_ + (c_ & -c_)) { m[make_pair(r_, c_)] += delta; } } } long long sum(int r, int c) { long long second = 0; for (int r_ = r; r_ > 0; r_ = r_ - (r_ & (-r_))) { for (int c_ = c; c_ > 0; c_ = c_ - (c_ & (-c_))) { auto it = m.find(make_pair(r_, c_)); if (it != m.end()) { second += it->second; } } } return second; } long long rangeQuery(int r1, int c1, int r2, int c2) { return (sum(r2, c2) - sum(r1 - 1, c2) - sum(r2, c1 - 1) + sum(r1 - 1, c1 - 1)); } }; int main() { ios::sync_with_stdio(0); cin.tie(NULL); cout.tie(NULL); long long n; cin >> n; vector<long long> x(n), v(n); for (int i = 0; i < (n); i++) cin >> x[i]; set<long long> second; unordered_map<long long, long long> mapper; for (int i = 0; i < (n); i++) cin >> v[i], second.insert(v[i]); long long to = 2; for (const auto& v : second) mapper[v] = to++; long long ans = 0; FenwickTree2D ft; FenwickTree2D counter; for (int i = 0; i < n; i++) { long long q1 = ft.rangeQuery(x[i] + 1, mapper[v[i]] + 1, 2e8 + 1, 2e8 + 1); long long count1 = counter.rangeQuery(x[i] + 1, mapper[v[i]] + 1, 2e8 + 1, 2e8 + 1); long long q2 = ft.rangeQuery(0, 0, x[i] - 1, mapper[v[i]] - 1); long long count2 = counter.rangeQuery(0, 0, x[i] - 1, mapper[v[i]] - 1); long long q3 = ft.rangeQuery(0, mapper[v[i]], 2e8 + 1, mapper[v[i]]); long long count3 = counter.rangeQuery(0, mapper[v[i]], 2e8 + 1, mapper[v[i]]); ft.update(x[i], mapper[v[i]], x[i]); counter.update(x[i], mapper[v[i]], 1); long long delta = abs(1ll * count1 * x[i] - q1) + abs(1ll * count2 * x[i] - q2) + abs(1ll * count3 * x[i] - q3); ans += delta; } cout << ans << endl; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long n; int tc = 0; int solve(); int main() { ios_base::sync_with_stdio(0); if (tc < 0) { cout << "TC!\n"; cin.ignore(1e8); } else if (!tc) cin >> tc; while (tc--) solve(); return 0; } int solve() { long long l, r; cin >> n >> l >> r; l--; r--; long long a = 1; while (1) { if (l > 2 * (n - a)) { l -= 2 * (n - a); r -= 2 * (n - a); a++; } else break; } vector<long long> ans; int b = a + 1; while (ans.size() <= r + 1) { ans.push_back(a); ans.push_back(b); b++; if (b == n + 1) { a++; if (a == n) { ans.push_back(1); break; } b = a + 1; } } for (int i = l; i <= r; i++) cout << ans[i] << " "; cout << endl; return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void solve() { int64_t n, l, r; cin >> n >> l >> r; l--, r--; int64_t cnt = 0; int64_t start = 1; int64_t num = n - 1; while (start < n) { if (l < cnt + 2 * num && r >= cnt) { for (int64_t i = 0; i < 2 * num; i++) { if (l <= cnt + i && cnt + i <= r) { if (i & 1) cout << start + (i + 1) / 2 << ' '; else cout << start << ' '; } } } cnt += 2 * num; num--; start++; } if (r == cnt) cout << 1; cout << endl; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int T; cin >> T; while (T--) { solve(); } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.*; import java.util.*; public class D { PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer tok; HashMap<List<Long>, Long> map = new HashMap<>(); public void go() throws IOException { StringTokenizer tok = new StringTokenizer(in.readLine()); int zzz = Integer.parseInt(tok.nextToken()); for (int zz = 0; zz < zzz; zz++) { ntok(); long n = lpar(); long l = lpar()-1; long r = lpar()-1; for (long i = l; i <= r; i++) { out.print(getIndex2(n, i)); out.print(' '); } out.println(); // for (long i = 0; i <= n*(n-1); i++) { // if (getIndex(n, i) != getIndex2(n, i)) { // out.println("WRONG " + i); // break; // } // } // for (long i = 0; i <= n*(n-1); i++) { // out.print(getIndex(n, i)); // out.print(' '); // } // out.println(); // for (long i = 0; i <= n*(n-1); i++) { // out.print(getIndex2(n, i)); // out.print(' '); // } // out.println(); // printOrder((int)n); } out.flush(); in.close(); } public void printOrder(int n) { boolean[][] mat = new boolean[n][n]; for (boolean[] arr : mat) { Arrays.fill(arr, true); } for (int i = 0; i < n; i++) { mat[i][i] = false; } int curr = 0; out.print('1'); for (int i = 0; i < n*(n-1); i++) { for (int e = 0; e < n; e++) { if (mat[curr][e]) { mat[curr][e] = false; curr = e; break; } } out.print(' '); out.print(curr+1); } out.println(); } public long getIndex2(long n, long i) { List<Long> pair = new ArrayList<>(); pair.add(n); pair.add(i); if (map.containsKey(pair)) { return map.get(pair); } long ans; if (i < (n-1)*2) { ans = i % 2 == 0 ? 1 : i/2+2; } else if (i == n*(n-1)-1) { ans = n; } else if (i == n*(n-1)) { ans = 1; } else { long l = 1; long r = n-1; while (r > l+1) { long mid = (r+l)/2; long minus = 2 * ((n*(n-1)/2) - ((n-mid)*(n-mid-1)/2)); if (minus > i) { r = mid - 1; } else { l = mid; } } long minus = 2 * ((n*(n-1)/2) - ((n-l)*(n-l-1)/2)); ans = getIndex2(n-l, i - minus) + l; } map.put(pair, ans); return ans; } public long getIndex(long n, long i) { List<Long> pair = new ArrayList<>(); pair.add(n); pair.add(i); if (map.containsKey(pair)) { return map.get(pair); } long ans; if (i < (n-1)*2) { ans = i % 2 == 0 ? 1 : i/2+2; } else if (i == n*(n-1)-1) { ans = n; } else if (i == n*(n-1)) { ans = 1; } else { // long l = 1; // long r = n; // while (r > l+1) { // long mid = (r+l)/2; // long minus = 2 * ((n*(n-1)/2) - ((n-mid)*(n-mid-1)/2)); // if (minus > i) { // r = mid - 1; // } else { // l = mid; // } // } // long minus = 2 * ((n*(n-1)/2) - ((n-l)*(n-l-1)/2)); // ans = getIndex(n-1, i - minus) + l; ans = getIndex(n-1, i - (n-1)*2) + 1; } map.put(pair, ans); return ans; } public void ntok() throws IOException { tok = new StringTokenizer(in.readLine()); } public int ipar() { return Integer.parseInt(tok.nextToken()); } public int[] iapar(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = ipar(); } return arr; } public long lpar() { return Long.parseLong(tok.nextToken()); } public long[] lapar(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = lpar(); } return arr; } public double dpar() { return Double.parseDouble(tok.nextToken()); } public String spar() { return tok.nextToken(); } public static void main(String[] args) throws IOException { new D().go(); } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int T; int N; long long L, R; int main() { scanf("%d", &T); while (T--) { scanf("%d%lld%lld", &N, &L, &R); if (L == R && L == 1LL * N * (N - 1) + 1) { printf("1\n"); continue; } long long i = N - 1; for (; i; i--) { if (L > 2 * i) L -= 2 * i, R -= 2 * i; else break; } long long u = N - i, v = (L - 1) / 2 + u; for (i = L; i <= R; i++) { if (v == N) u++, v = u; if (u == N) { printf("1 "); break; } if (i & 1LL) printf("%lld ", u); else v++, printf("%lld ", v); } printf("\n"); } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.util.*; import java.io.*; public class Solution{ static PrintWriter out=new PrintWriter(System.out); public static void main (String[] args) throws IOException{ BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String[] input=br.readLine().trim().split(" "); int numTestCases=Integer.parseInt(input[0]); while(numTestCases-->0){ input=br.readLine().trim().split(" "); int n=Integer.parseInt(input[0]); long l=Long.parseLong(input[1]); long r=Long.parseLong(input[2]); printSequence(n,l,r); } out.flush(); out.close(); } public static void printSequence(int n,long l,long r) { ArrayList<Integer> ans=new ArrayList<>(); long total=1; for(int i=1;i<n && l<=r;i++){ long len=n-i; if(total+2*(len)<=l){ total+=2*len; continue; } for(int j=i+1;j<=n;j++){ if(total==l && l<=r) { ans.add(i); l++; } total++; if(total==l && l<=r){ ans.add(j); l++; } total++; } } if(l<=r){ ans.add(1); } for(int i=0;i<ans.size();i++){ out.print(ans.get(i)+" "); } out.println(); } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
# -*- coding:utf-8 -*- """ created by shuangquan.huang at 2020/7/1 """ import collections import time import os import sys import bisect import heapq from typing import List def solve(n, l, r): # 1, 2, 1, 3, ..., 1, n # 2, 3, 2, 4, ..., 2, n # ... # n-1, n # 1 lo, hi = 1, n while lo <= hi: k = (lo + hi) // 2 s = k * (2*n-1-k) if s < l: lo = k + 1 else: hi = k - 1 k = lo s = k * (2*n-1-k) b = k # [b, b+1, b, b+2, ..., b, n] row = [] for i in range(b+1, n+1): row.append(b) row.append(i) ans = row[l-s-1:] d = r-l+1 if len(ans) >= d: return ans[:d] while len(ans) < d: b += 1 row = [] for i in range(b + 1, n + 1): row.append(b) row.append(i) if not row: break ans += row ans.append(1) # print(ans[:d]) return ans[:d] if __name__ == '__main__': T = int(input()) ans = [] for ti in range(T): N, L, R = map(int, input().split()) ans.append(solve(N, L, R)) print('\n'.join([' '.join(map(str, v)) for v in ans]))
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.util.Arrays; import java.util.Scanner; public class D { public static void main(String[] args) { Scanner file = new Scanner(System.in); int inputs = file.nextInt(); while(inputs-->0) { int n = file.nextInt(); long l = file.nextLong(); long r = file.nextLong(); long[] changes = new long[n+1]; changes[1] = 2*(n-1); for(int i = 2; i <= n; i++) { changes[i] = changes[i-1] + Math.max(2*(n-i), 1); } // System.out.println(Arrays.toString(changes)); int level = 1; while(l > changes[level]) level++; long curr = (l-changes[level-1]+1)/2+level; StringBuilder ans = new StringBuilder(); for(long index = l; index <= r; index++) { if(index == changes[n]) ans.append(1); else { if(index > changes[level]) { level++; curr = level+1; } if(index % 2 == 0) { ans.append(curr + " "); curr++; } else { ans.append(level + " "); } } } System.out.println(ans); } file.close(); } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Washoum */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; inputClass in = new inputClass(inputStream); PrintWriter out = new PrintWriter(outputStream); DMinimumEulerCycle solver = new DMinimumEulerCycle(); solver.solve(1, in, out); out.close(); } static class DMinimumEulerCycle { public void solve(int testNumber, inputClass sc, PrintWriter out) { int t = sc.nextInt(); while (t > 0) { t--; int n = sc.nextInt(); long l = sc.nextLong(); long r = sc.nextLong(); int min = 1; long nagazt = 1; while (nagazt < l) { nagazt += 2 * (n - min); min++; } min--; nagazt -= 2 * (n - min); loop: for (; min <= n; min++) { for (int i = min + 1; i <= n; i++) { if (nagazt >= l) { out.print(min + " "); } nagazt++; if (nagazt > r) { break loop; } if (nagazt >= l) { out.print(i + " "); } nagazt++; if (nagazt > r) { break loop; } } if (nagazt > r) { break; } } if (nagazt == r) { out.println(1); } else { out.println(); } } } } static class inputClass { BufferedReader br; StringTokenizer st; public inputClass(InputStream in) { br = new BufferedReader(new InputStreamReader(in)); } public String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("Ofast") using namespace std; int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long n, pstart, pend; int t; cin >> t; for (int testcases = 1; testcases <= t; testcases++) { cin >> n >> pstart >> pend; bool completestart = true; bool completeend = true; bool flag = false; bool paranoidcheck = false; if (pstart == pend) { paranoidcheck = true; } if (pend == n * (n - 1) + 1) { if (pstart == pend) { cout << 1 << endl; continue; } else { flag = true; pend -= 1; } } if (pstart % 2 == 0) { completestart = false; } else { pstart += 1; } pstart /= 2; if (pend % 2 == 1) { completeend = false; pend += 1; } pend /= 2; long long iter = pend - pstart; if (paranoidcheck) { iter -= 1; } long long a = 1; long long b = 1; while (pstart - (n - a) > 0) { pstart -= (n - a); a += 1; } b = a + pstart; if (!completestart) { cout << b << " "; if (b < n) { b += 1; } else { a += 1; b = a + 1; } iter -= 1; } if (!completeend) { iter -= 1; } for (int k = 0; k <= iter; k++) { cout << a << " " << b << " "; if (b < n) { b += 1; } else { a += 1; b = a + 1; } } if (!completeend) { cout << a << " "; } if (flag) { cout << 1; } cout << endl; } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> const int N = 3 * 1e5 + 5; const long long MOD = 1000000007; const long long inf = 1e18; using namespace std; long long power(long long x, long long y, long long p) { long long res = 1; x = x % p; if (x == 0) return 0; while (y > 0) { if (y & 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } void solve() { long long n, l, r; cin >> n >> l >> r; long long ctr = 0; long long lt = l; if (l == n * (n - 1) + 1) { cout << 1 << "\n"; return; } while (lt > 0) { ctr++; lt -= 2 * (n - ctr); } lt += 2 * (n - ctr); long long val = (r - l + 1); while (val) { val--; if (ctr == n) { cout << "1" << " " << "\n"; return; } if (lt % 2 == 1) cout << ctr; else cout << ctr + lt / 2; cout << " "; if (lt < 2 * (n - ctr)) lt++; else { ctr++; lt = 1; } } cout << "\n"; } int main() { ios_base::sync_with_stdio(0); cin.tie(NULL); int t = 1; cin >> t; while (t--) { solve(); } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
import os import sys from io import BytesIO, IOBase BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") t = int(input()) for _ in range(t): n,a,b = map(int,input().split(' ')) loop = b+1-a a-=1 a%=n*(n-1) a+=1 sbb = 2*(n-1) ctr = 1 ans = [] while a>sbb: ctr+=1 sbb+=2*n-2*ctr d = a-sbb+2*n-2*ctr cur = ctr d-=1 p1 = 1+cur ti = 0 while d: d-=1 ti += 1 if ti & 1: cur = p1 if p1 == n: ctr += 1 # if ctr == n-1: p1 = ctr else: if ctr == n and p1 == n: ctr = 1 p1 = 1 p1 += 1 cur = ctr for j in range(loop): ans.append(cur) ti+=1 if ti & 1: cur = p1 if p1 == n: ctr += 1 # if ctr == n-1: p1 = ctr else: if ctr == n and p1 == n: ctr = 1 p1 = 1 p1+=1 cur = ctr print(*ans)
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python2
'''input 3 2 1 3 3 3 6 99995 9998900031 9998900031 ''' import sys import math from collections import Counter debug = 1 readln = sys.stdin.readline #sys.setrecursionlimit(1000000) def write(s): sys.stdout.write(str(s)) def writeln(s): sys.stdout.write(str(s)) sys.stdout.write('\n') def readint(): return int(readln().strip()) def readints(): return map(int, readln().split()) def readstr(): return readln().strip() def readstrs(): return readln().split() def dbg(*args): if debug: print(' '.join(map(str, args))) def solve(n,l,r): start = 0 ans = [] l, r = l-1, r-1 for i in xrange(1, n): if l < start: break next_start = start + (n-i) * 2 if l < next_start: for cl in range(l, min(r+1, next_start)): if cl % 2 == 0: ans.append(i) else: ans.append((cl - start + 1) / 2 + i) l = min(r, next_start) start = next_start if l == start: ans.append(1) return ans t = readint() for _ in xrange(t): n, l, r = readints() writeln(' '.join(map(str, solve(n,l,r))))
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.io.*; import java.util.*; /** * @author Tran Anh Tai * @link: https://codeforces.com/contest/1334/problem/D * @Idea: the minimum lexicographical cycle will be in formed: * 1. (1-2)-(1-3)-(1-4)....-(1-n); (2 * (n - 1)) * 2. (2-3)-(2-4)-(2-5)....-(2-n); (2 * (n - 2)) * 3. ...........................; 2 * (n - 1); * n. 1 */ public class MinimumEulerCycle { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Task solver = new Task(); solver.solve(in, out); out.close(); } // main solver static class Task{ public void solve(InputReader in, PrintWriter out) { int t = in.nextInt(); for (int test = 0; test < t; test++){ int n = in.nextInt(); long l = in.nextLong(); long r = in.nextLong(); int row = 0; long total = 0; for (row = 1; row <= n - 1; row++){ total += 2 * (n - row); if (total >= l){ break; } } if (row == n){ out.println(1); continue; } else{ int k = (int)(r - l + 1); total -= 2 * (n - row); l -= total; int turn = 0; int cur_vertice = row + 1; int cur_row = row; for (int i = 0; i < l - 1; i++){ if (turn == 1){ cur_vertice++; } turn = turn ^ 1; } for (int time = 0; time < k; time++){ if (cur_row == n){ out.print(1); } else if (turn == 0){ out.print(cur_row + " "); } else{ out.print(cur_vertice + " "); cur_vertice++; if (cur_vertice > n){ cur_row++; cur_vertice = cur_row + 1; } } turn = turn ^ 1; } out.println(); } } } } // fast input reader class; static class InputReader { BufferedReader br; StringTokenizer st; public InputReader(InputStream stream) { br = new BufferedReader(new InputStreamReader(stream)); } public String nextToken() { while (st == null || !st.hasMoreTokens()) { String line = null; try { line = br.readLine(); } catch (IOException e) { throw new RuntimeException(e); } if (line == null) { return null; } st = new StringTokenizer(line); } return st.nextToken(); } public int nextInt() { return Integer.parseInt(nextToken()); } public long nextLong(){ return Long.parseLong(nextToken()); } } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
t=int(input()) for _ in range(t): n,l,r=map(int, input().split()) cycle_size = 2 * (n - 1) cycle_start = 1 cycle_number = 1 # while True: # if cycle_start + cycle_size >= l: # break # cycle_start += cycle_size # cycle_number += 1 # cycle_size -= 2 # print [l,r] while cycle_start + cycle_size <= l and cycle_number != n: cycle_start += cycle_size cycle_number += 1 cycle_size -= 2 # print('cycle_start, cycle_size', cycle_start, cycle_size) ans = [] while l <= r: # print('l, cycle_start, cycle_size', l, cycle_start, cycle_size) if (l - cycle_start) & 1: # print('cycle_size', cycle_size) if not cycle_size: ans.append(1) else: ans.append(cycle_number + (l - cycle_start + 1) // 2) else: # print('cycle_size', cycle_size) if not cycle_size: ans.append(1) else: ans.append(cycle_number) # print('ans', ans) # if (l - cycle_start) // 2 l += 1 if (l - cycle_start) >= cycle_size: cycle_start += cycle_size cycle_size -= 2 cycle_number += 1 print(' '.join(str(x) for x in ans))
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
for _ in range(int(input())): numbers, LEFTs, RIGHTs = map(int, input().split()) KEYSs = 0 GREATS = 0 for i in range(1, numbers+1): if KEYSs + 2 * (numbers-i) >= LEFTs: GREATS = LEFTs-KEYSs-1 break KEYSs += 2 * (numbers-i) LISTs = [] while len(LISTs) < (RIGHTs-LEFTs+1) + GREATS: for j in range(i+1, numbers+1): LISTs.append(i) LISTs.append(j) i += 1 if i >= numbers: LISTs.append(1) break print (' '.join(list(map(str, LISTs[GREATS:GREATS+RIGHTs-LEFTs+1]))))
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC target("avx2") #pragma GCC optimization("O3") #pragma GCC optimization("unroll-loops") #pragma GCC optimize("Ofast") #pragma GCC target("avx,avx2,fma") using namespace std; long long binpow(long long base, long long exp, int mod) { long long res = 1; while (exp > 0) { if (exp % 2 == 1) res = (res * base) % mod; exp = exp >> 1; base = (base * base) % mod; } return res; } long long mod(long long x) { return ((x % 1000000007LL + 1000000007LL) % 1000000007LL); } long long add(long long a, long long b) { return mod(mod(a) + mod(b)); } long long mul(long long a, long long b) { return mod(mod(a) * mod(b)); } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); ; long long int t; cin >> t; while (t--) { long long int n, l, r; cin >> n >> l >> r; long long int check[n]; check[0] = 2 * (n - 1); long long int temp = n - 1; for (int i = 1; i < n; i++) { temp--; if (i == n - 1) { check[i] = check[i - 1] + 1; } else { check[i] = check[i - 1] + 2 * temp; } } long long int val, offset; for (int i = 0; i < n; i++) { if (check[i] >= l) { val = i + 1; if (i == 0) { offset = val + l / 2 + l % 2; } else { offset = val + (l - check[i - 1]) / 2 + (l - check[i - 1]) % 2; } break; } } long long int ans[r - l + 1]; long long int y = l; if (val == n) { cout << 1 << "\n"; } else { for (; l <= r; l++) { if (l % 2 == 1) { cout << val << " "; } else { cout << offset << " "; if (offset == n) { val++; offset = val + 1; } else { offset++; } if (val == n) { break; } } } if (r == ((n) * (n - 1) + 1)) { cout << 1; } cout << "\n"; } } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
for nt in range(int(input())): n,a,b=map(int,input().split()) if n==2: l=[1,2,1] print (*l[a-1:b]) continue k=n prev=0 for j in range(a,b+1): i=j-prev while k>1: if i<=2*(k-1): if i%2: print (n-k+1,end=" ") else: print (i//2+(n-k+1),end=" ") break else: i-=2*(k-1) prev+=2*(k-1) k-=1 if k==1: print (1,end=" ") print ()
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
import sys input = sys.stdin.buffer.readline from bisect import bisect_left Q = int(input()) Query = [list(map(int, input().split())) for _ in range(Q)] B = [0] for i in range(1, 2*10**5): B.append(i*(i+1)//2) def solve(n, N): M = N*(N-1) n %= M if n%2 == 0: rem = (M - n)//2 ind = bisect_left(B, rem) return N-ind else: rem = (M - (n-1))//2 ind = bisect_left(B, rem) seq = rem - ind*(ind-1)//2 return N - seq + 1 for N, L, R in Query: ans = [] for n in range(L-1, R): ans.append(str(solve(n, N))) print(" ".join(ans))
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); cin.tie(0); int t; cin >> t; while (t--) { long long n, l, r; cin >> n >> l >> r; vector<long long> pre(n + 1); for (int i = 1; i <= n; i++) { pre[i] = pre[i - 1] + 2 * (n - i); } pre[n]++; for (long long i = l; i <= r; i++) { int pos = lower_bound(pre.begin(), pre.end(), i) - pre.begin(); if (pos == n) cout << "1" << " "; else { long long j = i - pre[pos - 1]; if (j % 2 == 1) cout << pos << " "; else cout << (j / 2 + pos) << " "; } } cout << endl; } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.util.*; import java.io.*; public class Solution implements Runnable{ FastScanner sc; PrintWriter pw; final class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e) { e.printStackTrace(); } } public long nlo() { return Long.parseLong(next()); } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { e.printStackTrace(); } return st.nextToken(); } public int ni() { return Integer.parseInt(next()); } public String nli() { String line = ""; if (st.hasMoreTokens()) line = st.nextToken(); else try { return br.readLine(); } catch (IOException e) { e.printStackTrace(); } while (st.hasMoreTokens()) line += " " + st.nextToken(); return line; } public double nd() { return Double.parseDouble(next()); } } public static void main(String[] args) { new Thread(null,new Solution(),"codeforces",1<<25).start(); } public void run() { sc=new FastScanner(); pw=new PrintWriter(System.out); solve(); pw.flush(); pw.close(); } public long gcd(long a,long b) { return b==0L?a:gcd(b,a%b); } public long ppow(long a,long b,long mod) { if(b==0L) return 1L; long tmp=1; while(b>1L) { if((b&1L)==1) tmp*=a; a*=a; a%=mod; tmp%=mod; b>>=1; } return (tmp*a)%mod; } public int gcd(int x,int y) { return y==0?x:gcd(y,x%y); } ////////////////////////////////// ///////////// LOGIC /////////// //////////////////////////////// public void solve(){ int t=sc.ni(); while(t-->0) { long n=sc.nlo(); long l=sc.nlo(); long r=sc.nlo(); long tt=r-l+1L; StringBuilder str=new StringBuilder(); for(long i=1;i<n;i++) { l-=(n-i)*2L; if(l>0) continue; l+=(n-i)*2L; if(l%2==0){ long j=l/2+i; str.append(j+" "); tt--;} tt=dop(i,l/2+1,n,tt,str); break; } if(tt>0) str.append(1); pw.println(str); } } public long dop(long i,long p,long n,long t,StringBuilder str) { //pw.println(i+" "+p+" "+t); for(;i<n;i++) { for(long j=i+p;j<=n;j++) { if(t>=2) {str.append(i+" "+j+" ");t-=2L;} else if(t==1) { str.append(i+" "); t-=1; } if(t==0) break; } p=1; if(t==0) break; } if(t==1) {t--; str.append(1);} return t; } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while (t--) { long long n, l, r; cin >> n >> l >> r; long long s = 0; long long i; for (i = 1; i <= n - 1; i++) { s += 2 * (n - i); if (l <= s) { s = s - 2 * (n - i); break; } } long long j, x = i; if (x == n) x = 1; if ((l - s) % 2 == 1) { j = i + (l + 1 - s) / 2; int f = 0; for (long long v = l; v <= r; v++) { if (f == 0) { cout << x << " "; f = 1; } else { cout << j << " "; j++; f = 0; if (j == n + 1) { x++; if (x == n) x = 1; j = x + 1; } } } } else { j = i + (l - s) / 2; int f = 1; for (long long v = l; v <= r; v++) { if (f == 0) { cout << x << " "; f = 1; } else { cout << j << " "; j++; f = 0; if (j == n + 1) { x++; if (x == n) x = 1; j = x + 1; } } } } cout << endl; } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
import java.util.Scanner; public class ProblemD { public static void main(String[] args) { // TODO Auto-generated method stub Scanner s = new Scanner(System.in); int t = s.nextInt(); for(int a=0;a<t;a++) { int n = s.nextInt(); long l = s.nextLong(); long r = s.nextLong(); long[] arr = new long[n]; long sum = 0; long val = 2*(n-1); for(int i=0;i<n-1;i++) { sum += val; val -= 2; arr[i] = sum; } arr[n-1] = arr[n-2] + 1; // for(int i=0;i<n;i++) // System.out.println(arr[i]); int index = upperBound(arr, l); //System.out.println(index); print(arr, l, r, index); System.out.println(); } } public static void print(long[] arr, long l, long r, int index) { int n = arr.length; if(index == n-1) { System.out.print(1+" "); return; } long val1 = index + 1, val2 = 0; long end = arr[index]; if(l%2 == 0) { val2 = n - (end-l)/2; } else { val2 = n - (end-l-1)/2; } for(long i=l;l <= Math.min(end, r);l++) { if(l%2 == 1) System.out.print(val1+" "); else { System.out.print(val2+" "); val2++; } } if(end < r) print(arr, end + 1, r, index + 1); } public static int upperBound(long[] arr, long v) { if(v > arr[arr.length-1]) return -1; if(arr[0] > v) return 0; int low = 0, high = arr.length - 1; while(low < high) { if(low == high - 1) { if(arr[low] >= v) high = low; else low = high; break; } int mid = (low + high)/2; if(arr[mid] >= v) high = mid; else low = mid + 1; } return low; } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void solve() { long long n, l, r; cin >> n >> l >> r; if (l == n * (n - 1LL) + 1LL) { cout << 1 << '\n'; return; } long long suma = 0LL; long long trenutni = (long long)n - 1LL; while (trenutni > 0) { if (suma + 2 * trenutni >= l) break; suma += 2 * trenutni; --trenutni; } trenutni = (n - trenutni); long long sledeci = trenutni; for (long long i = suma + 1; i <= r; ++i) { if (i == n * (n - 1) + 1) { cout << 1 << ' '; cout << '\n'; return; } if (i % 2 == 1) { ++sledeci; } if (i >= l) { if (i % 2) cout << trenutni << ' '; else cout << sledeci << ' '; } if (sledeci == n && i % 2 == 0) sledeci = ++trenutni; } cout << '\n'; } int main() { int t; cin >> t; while (t--) solve(); return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007, N = 1e5 + 5, M = 1e5 + 5, INF = 0x3f3f3f3f; long long powmod(long long a, long long b) { long long res = 1; a %= mod; assert(b >= 0); for (; b; b >>= 1) { if (b & 1) res = res * a % mod; a = a * a % mod; } return res; } long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } int main(void) { ios::sync_with_stdio(false); cin.tie(0); int T; cin >> T; while (T--) { long long n, l, r; cin >> n >> l >> r; if (l == r && l == n * (n - 1) + 1) { cout << 1 << endl; continue; } int nowx = 1, nowy = 2; long long sum = 0; while (sum < l) { sum += 2 * (n - nowx); ++nowx; } --nowx; sum -= 2 * (n - nowx); ++sum; vector<int> ans; nowy = nowx + 1; int di = 1; int cnt = sum; while (sum <= r) { if (di) ans.push_back(nowx); else { ans.push_back(nowy); ++nowy; if (nowy > n) { nowx++; nowy = nowx + 1; if (nowx > n) nowx = 1; } } ++sum; di ^= 1; } if (r == n * (n - 1) + 1) ans[ans.size() - 1] = 1; cout << ans[l - cnt]; for (long long i = l - cnt + 1; i <= r - cnt; ++i) cout << ' ' << ans[i]; cout << endl; } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxc = 1e5; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int t; cin >> t; while (t--) { long long k = 0; long long n, l, r; cin >> n >> l >> r; for (long long i = 2 * (n - 1); i; k += i, i -= 2) { for (long long j = max(l, k + 1); j <= min(r, k + i); j++) { if (j % 2) cout << n - i / 2 << " "; else cout << n - i / 2 + (j - k) / 2 << " "; } } if (k + 1 == r) cout << 1; cout << endl; } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
import math import sys # input = sys.stdin.readline T=int(input()) for _ in range(T): n,l,r=map(int,input().split()) size=r-l+1 run=0 ans=[] for i in range(1,n): run+=2*(n-i) # print(run) if l<=run: prev=run-2*(n-i) gone=l-prev-1 size+=gone # print(gone) cur=0 now=i nex=i+1 flag=True while cur<size: if flag: if gone>0: gone-=1 else: ans.append(now) flag=False else: if gone>0: gone-=1 else: ans.append(nex) nex+=1 if nex>n: now+=1 nex=now+1 flag=True cur+=1 break if len(ans)==0: ans.append(1) if r==n*(n-1)+1: ans[-1]=1 print(*ans)
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
from sys import stdin, stdout import math def expandList(i,n): if i!=n: out = [] for j in range(n-i): out.append(i) out.append(i+j+1) return out else: return [1] T = int(stdin.readline().rstrip()) for iTest in range(T): n,l,r = list(map(int,stdin.readline().rstrip().split(' '))) listSizes = [2*i for i in range(n-1,-1,-1)] listSizes[n-1] = 1 found = False a = 0 i=1 while l>a+listSizes[i-1]: a+=listSizes[i-1] i+=1 listi = expandList(i,n) ind = l-a-1 startList = listi[ind:] while r>a+listSizes[i-1]: a+=listSizes[i-1] i+=1 startList+=expandList(i,n) endList = expandList(i+1,n) startList += endList startList = startList[:r-l+1] print(' '.join([str(x) for x in startList]))
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
# import sys # _INPUT_LINES = sys.stdin.read().splitlines() # input = iter(_INPUT_LINES).__next__ def go(): # n=int(input()) n,l,r = map(int, input().split()) # a = sorted(map(int, input().split()),reverse=True) tot = n*(n-1)+1 add=[] if r==tot: add=['1'] r-=1 res=[] if l<=r: cur=0 nextg=n-1 while cur+2*nextg<l: cur+=2*nextg nextg-=1 g=n-nextg shift=l-cur-1 pair,par = divmod(shift,2) pair+=g+1 while l<=r: if par==0: res.append(g) par+=1 else: res.append(pair) par=0 if pair<n: pair+=1 else: g+=1 pair=g+1 l+=1 res = res+add return ' '.join(map(str,res)) # x,s = map(int,input().split()) t = int(input()) # t = 1 ans = [] for _ in range(t): # print(go()) ans.append(str(go())) # print('\n'.join(ans))
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
import sys def data(): return sys.stdin.buffer.readline().strip() out=sys.stdout.write def mdata(): return map(int, data().split()) for t in range(int(data())): n,l,r=mdata() a=l for i in range(1,n+1): if 2*(n-i)<=a: a-=2*(n-i) else: break cnt=l ans=[] if l%2==0: if a==0: ans.append(str(n)) else: ans.append(str(i+a//2)) cnt+=1 k=i+a//2+1 for j in range(i,n): while cnt<=r: ans.append(str(j)) cnt+=1 if cnt>r: break ans.append(str(k)) k+=1 cnt+=1 if k==n+1: k=j+2 break if r==n*(n-1)+1: ans.append(str(1)) out(' '.join(ans)+'\n')
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
T = int(input().strip()) for t in range(T): n, l, r = map(int, input().strip().split()) if l == n*(n-1)+1: print(1) continue k = int((2*n-1-((2*n-1)**2-4*l)**0.5)/2) if l <= 2*k*n- k*(k+1): k -= 1 if l > 2*(k+1)*n - (k+1)*(k+2): k += 1 m = 2*k*n - k*(k+1) s = [] k += 1 j = (l-m-1)//2 + k while l<=r: if l%2 == 1: if k==n: s.append(1) else: s.append(k) else: j += 1 s.append(j) if j == n: k += 1 j = k l += 1 print(" ".join(map(str, s)))
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
from sys import * t = int(stdin.readline()) import math for _ in range(t): n,l,r = list(map(int,stdin.readline().split(' '))) if(l == n*n-n+1): print('1') continue k = math.ceil(((2*n-1) - math.sqrt((2*n-1)**2 - 4*l))/2) s = k*(2*n-1 -k) sl = 2*(n-k) lb = k eb = k+1+math.ceil((l-s+sl)/2)-1 while(l <= r): if(l == n*n-n+1): break if(l%2 == 0): stdout.write(str(eb)+' ') eb = eb+1 if(eb > n): lb = lb+1 eb = lb+1 else: stdout.write(str(lb)+' ') l = l+1 if(r == n*n-n+1): stdout.write('1') stdout.write('\n')
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct R { long long int nd, i; }; int main() { long long int n, l, r, st; scanf("%*d"); while (~scanf("%lld %lld %lld", &n, &l, &r)) { long long int p, i, j, nd; vector<R> v; v.push_back({1, 1}); for (p = 1, i = 2, j = n - 1; i < n; i++, j--) v.push_back({i, p += j + j}); long long int st = 0, en = v.size() - 1, md, pos = -1; while (st <= en) { md = (st + en) / 2; if (v[md].i > l) en = md - 1; else { pos = max(pos, md); st = md + 1; } } vector<R> pet; for (nd = v[pos].nd, i = v[pos].i; i <= r && nd < n; nd++) { for (j = nd + 1; j <= n && i <= r; j++) pet.push_back({nd, i++}), pet.push_back({j, i++}); } if (nd == n) pet.push_back({1, i++}); for (auto it : pet) if (it.i >= l && it.i <= r) printf("%lld ", it.nd); puts(""); } return 0; }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
java
//package CodeforcesJava; import java.io.*; import java.util.*; public class Main { public void solve(InputProvider in, PrintWriter out) throws IOException { int testCount = in.nextInt(); for (int test = 0; test < testCount; test++) { long pointCount = in.nextLong(); long firstIndex = in.nextLong(); long lastIndex = in.nextLong(); long firstGroup = 2 * (pointCount - 1); boolean needLast = lastIndex == countElements(firstGroup, pointCount - 1) + 1; if (firstIndex < pointCount * (pointCount - 1) + 1) { if (needLast) { lastIndex--; } long minGuess = 0; long maxGuess = pointCount - 1; while (maxGuess > minGuess + 1) { long middleGuess = (maxGuess + minGuess) / 2; long middleGuessCount = countElements(firstGroup, middleGuess); if (firstIndex <= middleGuessCount) { maxGuess = middleGuess; } else { minGuess = middleGuess; } } while (countElements(firstGroup, minGuess + 1) < firstIndex) { minGuess++; } long distance = firstIndex - countElements(firstGroup, minGuess); long levelPoint = minGuess + 1; long point; long pairPoint; if ((distance & 1) == 1) { point = levelPoint; pairPoint = (distance + 1) / 2 + levelPoint; } else { point = distance / 2 + levelPoint; out.print(point + " "); firstIndex++; if (point == pointCount) { point = levelPoint + 1; pairPoint = point + 1; } else { pairPoint = point + 1; point = levelPoint; } } boolean printMain = true; for (long i = firstIndex; i <= lastIndex; i++) { if (printMain) { out.print(point + " "); printMain = false; } else { out.print(pairPoint + " "); printMain = true; if (pairPoint < pointCount) { pairPoint++; } else { point++; pairPoint = point + 1; } } } } if (needLast) { out.print("1 "); } out.print("\n"); } } private long countElements(long first, long count) { return (2 * first - 2 * (count - 1)) * count / 2; } public static void main(String[] args) throws Exception { try (InputProvider input = new InputProvider(System.in); PrintWriter output = new PrintWriter(System.out)) { new Main().solve(input, output); } } public static class InputProvider implements AutoCloseable { private final BufferedReader reader; private StringTokenizer tokenizer; public InputProvider(Reader reader) { this.reader = new BufferedReader(reader); } public InputProvider(InputStream input) { reader = new BufferedReader(new InputStreamReader(input)); } public String next() throws IOException { if (Objects.isNull(tokenizer) || !tokenizer.hasMoreTokens()) tokenizer = new StringTokenizer(reader.readLine()); return tokenizer.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public String nextLine() throws IOException { return reader.readLine(); } @Override public void close() throws Exception { reader.close(); } } }
1334_D. Minimum Euler Cycle
You are given a complete directed graph K_n with n vertices: each pair of vertices u ≠ v in K_n have both directed edges (u, v) and (v, u); there are no self-loops. You should find such a cycle in K_n that visits every directed edge exactly once (allowing for revisiting vertices). We can write such cycle as a list of n(n - 1) + 1 vertices v_1, v_2, v_3, ..., v_{n(n - 1) - 1}, v_{n(n - 1)}, v_{n(n - 1) + 1} = v_1 — a visiting order, where each (v_i, v_{i + 1}) occurs exactly once. Find the lexicographically smallest such cycle. It's not hard to prove that the cycle always exists. Since the answer can be too large print its [l, r] segment, in other words, v_l, v_{l + 1}, ..., v_r. Input The first line contains the single integer T (1 ≤ T ≤ 100) — the number of test cases. Next T lines contain test cases — one per line. The first and only line of each test case contains three integers n, l and r (2 ≤ n ≤ 10^5, 1 ≤ l ≤ r ≤ n(n - 1) + 1, r - l + 1 ≤ 10^5) — the number of vertices in K_n, and segment of the cycle to print. It's guaranteed that the total sum of n doesn't exceed 10^5 and the total sum of r - l + 1 doesn't exceed 10^5. Output For each test case print the segment v_l, v_{l + 1}, ..., v_r of the lexicographically smallest cycle that visits every edge exactly once. Example Input 3 2 1 3 3 3 6 99995 9998900031 9998900031 Output 1 2 1 1 3 2 3 1 Note In the second test case, the lexicographically minimum cycle looks like: 1, 2, 1, 3, 2, 3, 1. In the third test case, it's quite obvious that the cycle should start and end in vertex 1.
{ "input": [ "3\n2 1 3\n3 3 6\n99995 9998900031 9998900031\n" ], "output": [ "1 2 1 \n1 3 2 3 \n1 \n" ] }
{ "input": [ "1\n2 2 3\n", "1\n4 13 13\n", "1\n3 1 1\n", "10\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n2 1 3\n", "1\n3 7 7\n", "1\n25 30 295\n", "1\n4 12 13\n", "5\n3 7 7\n4 13 13\n5 21 21\n6 31 31\n7 42 43\n", "1\n5 4 4\n" ], "output": [ "2 1 \n", "1 \n", "1 \n", "1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n1 2 1 \n", "1 \n", "16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 13 3 14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3 22 3 23 3 24 3 25 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 6 22 6 23 6 24 6 25 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15 7 16 7 17 7 18 7 19 7 20 7 21 7 22 7 23 7 24 7 25 8 \n", "4 1 \n", "1 \n1 \n1 \n1 \n7 1 \n", "3 \n" ] }
CORRECT
python3
# | # _` | __ \ _` | __| _ \ __ \ _` | _` | # ( | | | ( | ( ( | | | ( | ( | # \__,_| _| _| \__,_| \___| \___/ _| _| \__,_| \__,_| import sys import collections def read_line(): return sys.stdin.readline()[:-1] def read_int(): return int(sys.stdin.readline()) def read_int_line(): return [int(v) for v in sys.stdin.readline().split()] t = read_int() for i in range(t): n,l,r = read_int_line() u = r-l+1 lt = l k = n while lt>0 and k>0: k-=1 lt -= 2*(k) lt += 2*(k) k = n-k j= max(k,1) s = 0 for i in range(1,j): s += 2*(n-i) lt = l lt -= s lt += 1 i = j + lt//2 ans = [] if l%2==0: ans.append(i) i+=1 while j<=n and len(ans)<=u: if j!=k: i = j+1 while i<=n and len(ans)<=u: ans.append(j) ans.append(i) i+=1 j+=1 ans.append(1) print(*ans[:u])