hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
cb36a6c2da0bed3033d96eb8a7773678bbd78b30
11,424
agda
Agda
test/Succeed/Issue4868.agda
LaloHao/agda
7de768bb7bc65dbe1efa35c699cfa8b8f9510573
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue4868.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue4868.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Builtin.Bool open import Agda.Builtin.Equality using (_≡_; refl) open import Agda.Builtin.Float renaming ( primFloatEquality to _≡ᵇ_ ; primFloatInequality to _≤ᵇ_ ; primFloatLess to _<ᵇ_ ; primFloatPlus to infixl 6 _+_ ; primFloatMinus to infixl 6 _-_ ; primFloatTimes to infixl 7 _*_ ; primFloatDiv to infixl 7 _÷_ ; primFloatPow to infix 8 _**_ ; primFloatNegate to infix 9 -_ ; primFloatSqrt to sqrt ; primFloatExp to e^_ ; primFloatLog to log ; primFloatSin to sin ; primFloatCos to cos ; primFloatTan to tan ; primFloatASin to asin ; primFloatACos to acos ; primFloatATan to atan ; primFloatATan2 to atan2 ; primFloatSinh to sinh ; primFloatCosh to cosh ; primFloatTanh to tanh ; primFloatASinh to asinh ; primFloatACosh to acosh ; primFloatATanh to atanh ; primFloatRound to round ; primFloatFloor to floor ; primFloatCeiling to ceiling ; primShowFloat to show ; primFloatToWord64 to toWord ; primFloatToRatio to toRatio ; primRatioToFloat to fromRatio ; primFloatDecode to decode ; primFloatEncode to encode ; primFloatIsInfinite to isInfinite ; primFloatIsNaN to isNaN ; primFloatIsNegativeZero to isNegativeZero ; primFloatIsSafeInteger to isSafeInteger ) open import Agda.Builtin.Int open import Agda.Builtin.Maybe open import Agda.Builtin.Sigma open import Agda.Builtin.Word renaming ( primWord64ToNat to toℕ ) -- Prelude data ⊥ : Set where _≢_ : {A : Set} (P Q : A) → Set P ≢ Q = P ≡ Q → ⊥ NaN : Float NaN = 0.0 ÷ 0.0 -NaN : Float -NaN = - NaN Infinity : Float Infinity = 1.0 ÷ 0.0 -Infinity : Float -Infinity = - Infinity MaxFloat : Float MaxFloat = 1.7976931348623157e308 MinFloat : Float MinFloat = 2.2250738585072014e-308 MaxSafeIntF : Float MaxSafeIntF = 9007199254740991.0 MaxSafeIntZ : Int MaxSafeIntZ = pos 9007199254740991 -- * Tests -- ** Relations _ : -NaN ≡ NaN ; _ = refl _ : -0.0 ≢ 0.0 ; _ = λ () _ : Infinity ≢ -Infinity ; _ = λ () _ : Infinity ≡ Infinity ; _ = refl _ : -Infinity ≡ -Infinity ; _ = refl _ : Infinity ≡ - -Infinity ; _ = refl _ : Infinity ≢ -Infinity ; _ = λ () _ : NaN ≡ᵇ NaN ≡ false ; _ = refl _ : -NaN ≡ᵇ NaN ≡ false ; _ = refl _ : NaN ≡ᵇ -NaN ≡ false ; _ = refl _ : -NaN ≡ᵇ -NaN ≡ false ; _ = refl _ : Infinity ≡ᵇ Infinity ≡ true ; _ = refl _ : -Infinity ≡ᵇ Infinity ≡ false ; _ = refl _ : Infinity ≡ᵇ -Infinity ≡ false ; _ = refl _ : -Infinity ≡ᵇ -Infinity ≡ true ; _ = refl _ : MaxFloat ≡ᵇ MaxFloat ≡ true ; _ = refl _ : MinFloat ≡ᵇ MinFloat ≡ true ; _ = refl _ : 1.0 ≡ᵇ 1.5 ≡ false ; _ = refl _ : 1.0 ≡ᵇ 1.0 ≡ true ; _ = refl _ : 1.5 ≡ᵇ 1.5 ≡ true ; _ = refl _ : NaN ≤ᵇ NaN ≡ false ; _ = refl _ : -NaN ≤ᵇ NaN ≡ false ; _ = refl _ : NaN ≤ᵇ -NaN ≡ false ; _ = refl _ : -NaN ≤ᵇ -NaN ≡ false ; _ = refl _ : NaN ≤ᵇ 5.0 ≡ false ; _ = refl _ : -NaN ≤ᵇ 5.0 ≡ false ; _ = refl _ : 5.0 ≤ᵇ -NaN ≡ false ; _ = refl _ : -5.0 ≤ᵇ -NaN ≡ false ; _ = refl _ : NaN ≤ᵇ Infinity ≡ false ; _ = refl _ : -NaN ≤ᵇ Infinity ≡ false ; _ = refl _ : Infinity ≤ᵇ -NaN ≡ false ; _ = refl _ : -Infinity ≤ᵇ -NaN ≡ false ; _ = refl _ : Infinity ≤ᵇ Infinity ≡ true ; _ = refl _ : -Infinity ≤ᵇ Infinity ≡ true ; _ = refl _ : Infinity ≤ᵇ -Infinity ≡ false ; _ = refl _ : -Infinity ≤ᵇ -Infinity ≡ true ; _ = refl _ : MaxFloat ≤ᵇ MaxFloat ≡ true ; _ = refl _ : MinFloat ≤ᵇ MinFloat ≡ true ; _ = refl _ : 1.0 ≤ᵇ 1.5 ≡ true ; _ = refl _ : 1.0 ≤ᵇ 1.0 ≡ true ; _ = refl _ : 1.5 ≤ᵇ 1.5 ≡ true ; _ = refl _ : NaN <ᵇ NaN ≡ false ; _ = refl _ : -NaN <ᵇ NaN ≡ false ; _ = refl _ : NaN <ᵇ -NaN ≡ false ; _ = refl _ : -NaN <ᵇ -NaN ≡ false ; _ = refl _ : NaN <ᵇ 5.0 ≡ false ; _ = refl _ : -NaN <ᵇ 5.0 ≡ false ; _ = refl _ : 5.0 <ᵇ -NaN ≡ false ; _ = refl _ : -5.0 <ᵇ -NaN ≡ false ; _ = refl _ : NaN <ᵇ Infinity ≡ false ; _ = refl _ : -NaN <ᵇ Infinity ≡ false ; _ = refl _ : Infinity <ᵇ -NaN ≡ false ; _ = refl _ : -Infinity <ᵇ -NaN ≡ false ; _ = refl _ : Infinity <ᵇ Infinity ≡ false ; _ = refl _ : -Infinity <ᵇ Infinity ≡ true ; _ = refl _ : Infinity <ᵇ -Infinity ≡ false ; _ = refl _ : -Infinity <ᵇ -Infinity ≡ false ; _ = refl _ : MaxFloat <ᵇ MaxFloat ≡ false ; _ = refl _ : MinFloat <ᵇ MinFloat ≡ false ; _ = refl _ : 1.0 <ᵇ 1.5 ≡ true ; _ = refl _ : 1.0 <ᵇ 1.0 ≡ false ; _ = refl _ : 1.5 <ᵇ 1.5 ≡ false ; _ = refl _ : isNaN NaN ≡ true ; _ = refl _ : isNaN -NaN ≡ true ; _ = refl _ : isNaN Infinity ≡ false ; _ = refl _ : isNaN -Infinity ≡ false ; _ = refl _ : isNaN 0.0 ≡ false ; _ = refl _ : isNaN -0.0 ≡ false ; _ = refl _ : isNaN 1.0 ≡ false ; _ = refl _ : isNaN 1.5 ≡ false ; _ = refl _ : isInfinite NaN ≡ false ; _ = refl _ : isInfinite -NaN ≡ false ; _ = refl _ : isInfinite Infinity ≡ true ; _ = refl _ : isInfinite -Infinity ≡ true ; _ = refl _ : isInfinite 0.0 ≡ false ; _ = refl _ : isInfinite -0.0 ≡ false ; _ = refl _ : isInfinite 1.0 ≡ false ; _ = refl _ : isInfinite 1.5 ≡ false ; _ = refl _ : isInfinite ((MaxFloat * MaxFloat) ÷ MaxFloat) ≡ true ; _ = refl _ : isNegativeZero NaN ≡ false ; _ = refl _ : isNegativeZero -NaN ≡ false ; _ = refl _ : isNegativeZero Infinity ≡ false ; _ = refl _ : isNegativeZero -Infinity ≡ false ; _ = refl _ : isNegativeZero 0.0 ≡ false ; _ = refl _ : isNegativeZero -0.0 ≡ true ; _ = refl _ : isNegativeZero 1.0 ≡ false ; _ = refl _ : isNegativeZero 1.5 ≡ false ; _ = refl _ : isSafeInteger 1.0 ≡ true ; _ = refl _ : isSafeInteger 1.5 ≡ false ; _ = refl _ : isSafeInteger MaxFloat ≡ false ; _ = refl _ : isSafeInteger MinFloat ≡ false ; _ = refl _ : isSafeInteger MaxSafeIntF ≡ true ; _ = refl -- ** Conversions _ : show NaN ≡ "NaN" ; _ = refl _ : show -NaN ≡ "NaN" ; _ = refl _ : show 0.0 ≡ "0.0" ; _ = refl _ : show -0.0 ≡ "-0.0" ; _ = refl _ : show Infinity ≡ "Infinity" ; _ = refl _ : show -Infinity ≡ "-Infinity" ; _ = refl _ : show 1.0 ≡ "1.0" ; _ = refl _ : show 1.5 ≡ "1.5" ; _ = refl _ : toℕ (toWord 1.0) ≡ 4607182418800017408 ; _ = refl _ : toℕ (toWord 1.5) ≡ 4609434218613702656 ; _ = refl _ : toℕ (toWord 0.0) ≡ 0 ; _ = refl _ : toℕ (toWord -0.0) ≡ 9223372036854775808 ; _ = refl _ : toℕ (toWord NaN) ≡ 18444492273895866368 ; _ = refl _ : toℕ (toWord -NaN) ≡ 18444492273895866368 ; _ = refl _ : toℕ (toWord Infinity) ≡ 9218868437227405312 ; _ = refl _ : toℕ (toWord -Infinity) ≡ 18442240474082181120 ; _ = refl _ : round 1.0 ≡ just (pos 1) ; _ = refl _ : round 1.5 ≡ just (pos 2) ; _ = refl _ : round NaN ≡ nothing ; _ = refl _ : round -NaN ≡ nothing ; _ = refl _ : round Infinity ≡ nothing ; _ = refl _ : round -Infinity ≡ nothing ; _ = refl _ : round MinFloat ≡ just (pos 0) ; _ = refl _ : round MaxFloat ≡ just (pos 179769313486231570814527423731704356798070567525844996598917476803157260780028538760589558632766878171540458953514382464234321326889464182768467546703537516986049910576551282076245490090389328944075868508455133942304583236903222948165808559332123348274797826204144723168738177180919299881250404026184124858368) ; _ = refl _ : floor 1.0 ≡ just (pos 1) ; _ = refl _ : floor 1.5 ≡ just (pos 1) ; _ = refl _ : floor NaN ≡ nothing ; _ = refl _ : floor -NaN ≡ nothing ; _ = refl _ : floor Infinity ≡ nothing ; _ = refl _ : floor -Infinity ≡ nothing ; _ = refl _ : floor MinFloat ≡ just (pos 0) ; _ = refl _ : floor MaxFloat ≡ just (pos 179769313486231570814527423731704356798070567525844996598917476803157260780028538760589558632766878171540458953514382464234321326889464182768467546703537516986049910576551282076245490090389328944075868508455133942304583236903222948165808559332123348274797826204144723168738177180919299881250404026184124858368) ; _ = refl _ : ceiling 1.0 ≡ just (pos 1) ; _ = refl _ : ceiling 1.5 ≡ just (pos 2) ; _ = refl _ : ceiling NaN ≡ nothing ; _ = refl _ : ceiling -NaN ≡ nothing ; _ = refl _ : ceiling Infinity ≡ nothing ; _ = refl _ : ceiling -Infinity ≡ nothing ; _ = refl _ : ceiling MinFloat ≡ just (pos 1) ; _ = refl _ : ceiling MaxFloat ≡ just (pos 179769313486231570814527423731704356798070567525844996598917476803157260780028538760589558632766878171540458953514382464234321326889464182768467546703537516986049910576551282076245490090389328944075868508455133942304583236903222948165808559332123348274797826204144723168738177180919299881250404026184124858368) ; _ = refl _ : decode NaN ≡ nothing ; _ = refl _ : decode Infinity ≡ nothing ; _ = refl _ : decode -Infinity ≡ nothing ; _ = refl _ : decode 1.0 ≡ just (pos 1 , pos 0) ; _ = refl _ : decode 1.5 ≡ just (pos 3 , negsuc 0) ; _ = refl _ : decode MaxFloat ≡ just (MaxSafeIntZ , pos 971) ; _ = refl _ : decode MinFloat ≡ just (pos 1 , negsuc 1021) ; _ = refl _ : encode (pos 1) (pos 0) ≡ just 1.0 ; _ = refl _ : encode (pos 3) (negsuc 0) ≡ just 1.5 ; _ = refl _ : encode MaxSafeIntZ (pos 0) ≡ just MaxSafeIntF ; _ = refl _ : encode MaxSafeIntZ (pos 971) ≡ just MaxFloat ; _ = refl _ : encode MaxSafeIntZ (pos 972) ≡ nothing ; _ = refl _ : encode (pos 1) (negsuc 1021) ≡ just MinFloat ; _ = refl _ : encode MaxSafeIntZ (negsuc 1075) ≡ nothing ; _ = refl _ : toRatio NaN ≡ (pos 0 , pos 0) ; _ = refl _ : toRatio Infinity ≡ (pos 1 , pos 0) ; _ = refl _ : toRatio -Infinity ≡ (negsuc 0 , pos 0) ; _ = refl _ : toRatio 1.0 ≡ (pos 1 , pos 1) ; _ = refl _ : toRatio 1.5 ≡ (pos 3 , pos 2) ; _ = refl _ : fromRatio (pos 0) (pos 0) ≡ NaN ; _ = refl _ : fromRatio (pos 1) (pos 0) ≡ Infinity ; _ = refl _ : fromRatio (negsuc 0) (pos 0) ≡ -Infinity ; _ = refl _ : fromRatio (pos 1) (pos 1) ≡ 1.0 ; _ = refl _ : fromRatio (pos 3) (pos 2) ≡ 1.5 ; _ = refl _ : e^ 1.0 ≡ 2.718281828459045 ; _ = refl _ : sin (asin 0.6) ≡ 0.6 ; _ = refl _ : cos (acos 0.6) ≡ 0.6 ; _ = refl _ : tan (atan 0.4) ≡ 0.4 ; _ = refl _ : tan (atan2 0.4 1.0) ≡ 0.4 ; _ = refl
42.786517
355
0.544468
d024c695574f5e2ea911b641290be28fbd69fa29
504
agda
Agda
prototyping/FFI/Data/Either.agda
morgoth990/luau
dbdf91f3cad8ea9e881b8cf99931f654faf65c2e
[ "MIT" ]
1
2022-02-11T21:30:17.000Z
2022-02-11T21:30:17.000Z
prototyping/FFI/Data/Either.agda
morgoth990/luau
dbdf91f3cad8ea9e881b8cf99931f654faf65c2e
[ "MIT" ]
null
null
null
prototyping/FFI/Data/Either.agda
morgoth990/luau
dbdf91f3cad8ea9e881b8cf99931f654faf65c2e
[ "MIT" ]
null
null
null
module FFI.Data.Either where {-# FOREIGN GHC import qualified Data.Either #-} data Either (A B : Set) : Set where Left : A → Either A B Right : B → Either A B {-# COMPILE GHC Either = data Data.Either.Either (Data.Either.Left|Data.Either.Right) #-} mapLeft : ∀ {A B C} → (A → B) → (Either A C) → (Either B C) mapLeft f (Left x) = Left (f x) mapLeft f (Right x) = Right x mapRight : ∀ {A B C} → (B → C) → (Either A B) → (Either A C) mapRight f (Left x) = Left x mapRight f (Right x) = Right (f x)
29.647059
89
0.617063
cb2433fa7c841a6b38923c33ba9d084c19017495
4,471
agda
Agda
test/asset/agda-stdlib-1.0/Data/Container/Combinator/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Container/Combinator/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Container/Combinator/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Correctness proofs for container combinators ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Container.Combinator.Properties where open import Axiom.Extensionality.Propositional using (Extensionality) open import Data.Container.Core open import Data.Container.Combinator open import Data.Container.Relation.Unary.Any open import Data.Empty using (⊥-elim) open import Data.Product as Prod using (∃; _,_; proj₁; proj₂; <_,_>; uncurry; curry) open import Data.Sum as S using (inj₁; inj₂; [_,_]′; [_,_]) open import Function as F using (_∘′_) open import Function.Inverse as Inv using (_↔_; inverse; module Inverse) open import Level using (_⊔_; lower) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≗_) -- I have proved some of the correctness statements under the -- assumption of functional extensionality. I could have reformulated -- the statements using suitable setoids, but I could not be bothered. module Identity where correct : ∀ {s p x} {X : Set x} → ⟦ id {s} {p} ⟧ X ↔ F.id X correct {X = X} = inverse to from (λ _ → P.refl) (λ _ → P.refl) where to : ⟦ id ⟧ X → F.id X to xs = proj₂ xs _ from : F.id X → ⟦ id ⟧ X from x = (_ , λ _ → x) module Constant (ext : ∀ {ℓ ℓ′} → Extensionality ℓ ℓ′) where correct : ∀ {x p y} (X : Set x) {Y : Set y} → ⟦ const {x} {p ⊔ y} X ⟧ Y ↔ F.const X Y correct {x} {y} X {Y} = inverse proj₁ from from∘to λ _ → P.refl where from : X → ⟦ const X ⟧ Y from = < F.id , F.const (⊥-elim ∘′ lower) > from∘to : (x : ⟦ const X ⟧ Y) → from (proj₁ x) ≡ x from∘to xs = P.cong (proj₁ xs ,_) (ext (λ x → ⊥-elim (lower x))) module Composition {s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) where correct : ∀ {x} {X : Set x} → ⟦ C₁ ∘ C₂ ⟧ X ↔ (⟦ C₁ ⟧ F.∘ ⟦ C₂ ⟧) X correct {X = X} = inverse to from (λ _ → P.refl) (λ _ → P.refl) where to : ⟦ C₁ ∘ C₂ ⟧ X → ⟦ C₁ ⟧ (⟦ C₂ ⟧ X) to ((s , f) , g) = (s , < f , curry (g ∘′ any) >) from : ⟦ C₁ ⟧ (⟦ C₂ ⟧ X) → ⟦ C₁ ∘ C₂ ⟧ X from (s , f) = ((s , proj₁ F.∘ f) , uncurry (proj₂ F.∘ f) ∘′ ◇.proof) module Product (ext : ∀ {ℓ ℓ′} → Extensionality ℓ ℓ′) {s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) where correct : ∀ {x} {X : Set x} → ⟦ C₁ × C₂ ⟧ X ↔ (⟦ C₁ ⟧ X Prod.× ⟦ C₂ ⟧ X) correct {X = X} = inverse to from from∘to (λ _ → P.refl) where to : ⟦ C₁ × C₂ ⟧ X → ⟦ C₁ ⟧ X Prod.× ⟦ C₂ ⟧ X to ((s₁ , s₂) , f) = ((s₁ , f F.∘ inj₁) , (s₂ , f F.∘ inj₂)) from : ⟦ C₁ ⟧ X Prod.× ⟦ C₂ ⟧ X → ⟦ C₁ × C₂ ⟧ X from ((s₁ , f₁) , (s₂ , f₂)) = ((s₁ , s₂) , [ f₁ , f₂ ]′) from∘to : from F.∘ to ≗ F.id from∘to (s , f) = P.cong (s ,_) (ext [ (λ _ → P.refl) , (λ _ → P.refl) ]) module IndexedProduct {i s p} {I : Set i} (Cᵢ : I → Container s p) where correct : ∀ {x} {X : Set x} → ⟦ Π I Cᵢ ⟧ X ↔ (∀ i → ⟦ Cᵢ i ⟧ X) correct {X = X} = inverse to from (λ _ → P.refl) (λ _ → P.refl) where to : ⟦ Π I Cᵢ ⟧ X → ∀ i → ⟦ Cᵢ i ⟧ X to (s , f) = λ i → (s i , λ p → f (i , p)) from : (∀ i → ⟦ Cᵢ i ⟧ X) → ⟦ Π I Cᵢ ⟧ X from f = (proj₁ F.∘ f , uncurry (proj₂ F.∘ f)) module Sum {s₁ s₂ p} (C₁ : Container s₁ p) (C₂ : Container s₂ p) where correct : ∀ {x} {X : Set x} → ⟦ C₁ ⊎ C₂ ⟧ X ↔ (⟦ C₁ ⟧ X S.⊎ ⟦ C₂ ⟧ X) correct {X = X} = inverse to from from∘to to∘from where to : ⟦ C₁ ⊎ C₂ ⟧ X → ⟦ C₁ ⟧ X S.⊎ ⟦ C₂ ⟧ X to (inj₁ s₁ , f) = inj₁ (s₁ , f) to (inj₂ s₂ , f) = inj₂ (s₂ , f) from : ⟦ C₁ ⟧ X S.⊎ ⟦ C₂ ⟧ X → ⟦ C₁ ⊎ C₂ ⟧ X from = [ Prod.map inj₁ F.id , Prod.map inj₂ F.id ]′ from∘to : from F.∘ to ≗ F.id from∘to (inj₁ s₁ , f) = P.refl from∘to (inj₂ s₂ , f) = P.refl to∘from : to F.∘ from ≗ F.id to∘from = [ (λ _ → P.refl) , (λ _ → P.refl) ] module IndexedSum {i s p} {I : Set i} (C : I → Container s p) where correct : ∀ {x} {X : Set x} → ⟦ Σ I C ⟧ X ↔ (∃ λ i → ⟦ C i ⟧ X) correct {X = X} = inverse to from (λ _ → P.refl) (λ _ → P.refl) where to : ⟦ Σ I C ⟧ X → ∃ λ i → ⟦ C i ⟧ X to ((i , s) , f) = (i , (s , f)) from : (∃ λ i → ⟦ C i ⟧ X) → ⟦ Σ I C ⟧ X from (i , (s , f)) = ((i , s) , f) module ConstantExponentiation {i s p} {I : Set i} (C : Container s p) where correct : ∀ {x} {X : Set x} → ⟦ const[ I ]⟶ C ⟧ X ↔ (I → ⟦ C ⟧ X) correct = IndexedProduct.correct (F.const C)
36.647541
87
0.5104
390a0f3eb0969b3fe847979fb117510e93911d42
7,807
agda
Agda
Cubical/Categories/NaturalTransformation/Base.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
Cubical/Categories/NaturalTransformation/Base.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
Cubical/Categories/NaturalTransformation/Base.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Categories.NaturalTransformation.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism renaming (iso to iIso) open import Cubical.Data.Sigma open import Cubical.Categories.Category open import Cubical.Categories.Functor.Base open import Cubical.Categories.Functor.Properties open import Cubical.Categories.Commutativity open import Cubical.Categories.Morphism renaming (isIso to isIsoC) private variable ℓC ℓC' ℓD ℓD' : Level module _ {C : Precategory ℓC ℓC'} {D : Precategory ℓD ℓD'} where -- syntax for sequencing in category D infixl 15 _⋆ᴰ_ private _⋆ᴰ_ : ∀ {x y z} (f : D [ x , y ]) (g : D [ y , z ]) → D [ x , z ] f ⋆ᴰ g = f ⋆⟨ D ⟩ g open Precategory open Functor -- type aliases because it gets tedious typing it out all the time N-ob-Type : (F G : Functor C D) → Type _ N-ob-Type F G = (x : C .ob) → D [(F .F-ob x) , (G .F-ob x)] N-hom-Type : (F G : Functor C D) → N-ob-Type F G → Type _ N-hom-Type F G ϕ = {x y : C .ob} (f : C [ x , y ]) → (F .F-hom f) ⋆ᴰ (ϕ y) ≡ (ϕ x) ⋆ᴰ (G .F-hom f) record NatTrans (F G : Functor C D) : Type (ℓ-max (ℓ-max ℓC ℓC') ℓD') where constructor natTrans field -- components of the natural transformation N-ob : N-ob-Type F G -- naturality condition N-hom : N-hom-Type F G N-ob record NatIso (F G : Functor C D): Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) where field trans : NatTrans F G open NatTrans trans field nIso : ∀ (x : C .ob) → isIsoC {C = D} (N-ob x) open isIsoC -- the three other commuting squares sqRL : ∀ {x y : C .ob} {f : C [ x , y ]} → F ⟪ f ⟫ ≡ (N-ob x) ⋆ᴰ G ⟪ f ⟫ ⋆ᴰ (nIso y) .inv sqRL {x} {y} {f} = invMoveR (isIso→areInv (nIso y)) (N-hom f) sqLL : ∀ {x y : C .ob} {f : C [ x , y ]} → G ⟪ f ⟫ ⋆ᴰ (nIso y) .inv ≡ (nIso x) .inv ⋆ᴰ F ⟪ f ⟫ sqLL {x} {y} {f} = invMoveL (isIso→areInv (nIso x)) (sym sqRL') where sqRL' : F ⟪ f ⟫ ≡ (N-ob x) ⋆ᴰ ( G ⟪ f ⟫ ⋆ᴰ (nIso y) .inv ) sqRL' = sqRL ∙ (D .⋆Assoc _ _ _) sqLR : ∀ {x y : C .ob} {f : C [ x , y ]} → G ⟪ f ⟫ ≡ (nIso x) .inv ⋆ᴰ F ⟪ f ⟫ ⋆ᴰ (N-ob y) sqLR {x} {y} {f} = invMoveR (symAreInv (isIso→areInv (nIso y))) sqLL open NatTrans open NatIso infix 10 NatTrans syntax NatTrans F G = F ⇒ G infix 9 NatIso syntax NatIso F G = F ≅ᶜ G -- c superscript to indicate that this is in the context of categories -- component of a natural transformation infix 30 _⟦_⟧ _⟦_⟧ : ∀ {F G : Functor C D} → (F ⇒ G) → (x : C .ob) → D [(F .F-ob x) , (G .F-ob x)] _⟦_⟧ = N-ob idTrans : (F : Functor C D) → NatTrans F F idTrans F .N-ob x = D .id (F .F-ob x) idTrans F .N-hom f = (F .F-hom f) ⋆ᴰ (idTrans F .N-ob _) ≡⟨ D .⋆IdR _ ⟩ F .F-hom f ≡⟨ sym (D .⋆IdL _) ⟩ (D .id (F .F-ob _)) ⋆ᴰ (F .F-hom f) ∎ syntax idTrans F = 1[ F ] -- vertical sequencing seqTrans : {F G H : Functor C D} (α : NatTrans F G) (β : NatTrans G H) → NatTrans F H seqTrans α β .N-ob x = (α .N-ob x) ⋆ᴰ (β .N-ob x) seqTrans {F} {G} {H} α β .N-hom f = (F .F-hom f) ⋆ᴰ ((α .N-ob _) ⋆ᴰ (β .N-ob _)) ≡⟨ sym (D .⋆Assoc _ _ _) ⟩ ((F .F-hom f) ⋆ᴰ (α .N-ob _)) ⋆ᴰ (β .N-ob _) ≡[ i ]⟨ (α .N-hom f i) ⋆ᴰ (β .N-ob _) ⟩ ((α .N-ob _) ⋆ᴰ (G .F-hom f)) ⋆ᴰ (β .N-ob _) ≡⟨ D .⋆Assoc _ _ _ ⟩ (α .N-ob _) ⋆ᴰ ((G .F-hom f) ⋆ᴰ (β .N-ob _)) ≡[ i ]⟨ (α .N-ob _) ⋆ᴰ (β .N-hom f i) ⟩ (α .N-ob _) ⋆ᴰ ((β .N-ob _) ⋆ᴰ (H .F-hom f)) ≡⟨ sym (D .⋆Assoc _ _ _) ⟩ ((α .N-ob _) ⋆ᴰ (β .N-ob _)) ⋆ᴰ (H .F-hom f) ∎ compTrans : {F G H : Functor C D} (β : NatTrans G H) (α : NatTrans F G) → NatTrans F H compTrans β α = seqTrans α β infixl 8 seqTrans syntax seqTrans α β = α ●ᵛ β -- vertically sequence natural transformations whose -- common functor is not definitional equal seqTransP : {F G G' H : Functor C D} (p : G ≡ G') → (α : NatTrans F G) (β : NatTrans G' H) → NatTrans F H seqTransP {F} {G} {G'} {H} p α β .N-ob x -- sequence morphisms with non-judgementally equal (co)domain = seqP {C = D} {p = Gx≡G'x} (α ⟦ x ⟧) (β ⟦ x ⟧) where Gx≡G'x : ∀ {x} → G ⟅ x ⟆ ≡ G' ⟅ x ⟆ Gx≡G'x {x} i = F-ob (p i) x seqTransP {F} {G} {G'} {H} p α β .N-hom {x = x} {y} f -- compose the two commuting squares -- 1. α's commuting square -- 2. β's commuting square, but extended to G since β is only G' ≡> H = compSq {C = D} (α .N-hom f) βSq where -- functor equality implies equality of actions on objects and morphisms Gx≡G'x : G ⟅ x ⟆ ≡ G' ⟅ x ⟆ Gx≡G'x i = F-ob (p i) x Gy≡G'y : G ⟅ y ⟆ ≡ G' ⟅ y ⟆ Gy≡G'y i = F-ob (p i) y Gf≡G'f : PathP (λ i → D [ Gx≡G'x i , Gy≡G'y i ]) (G ⟪ f ⟫) (G' ⟪ f ⟫) Gf≡G'f i = p i ⟪ f ⟫ -- components of β extended out to Gx and Gy respectively βx' = subst (λ a → D [ a , H ⟅ x ⟆ ]) (sym Gx≡G'x) (β ⟦ x ⟧) βy' = subst (λ a → D [ a , H ⟅ y ⟆ ]) (sym Gy≡G'y) (β ⟦ y ⟧) -- extensions are equal to originals βy'≡βy : PathP (λ i → D [ Gy≡G'y i , H ⟅ y ⟆ ]) βy' (β ⟦ y ⟧) βy'≡βy = symP (toPathP {A = λ i → D [ Gy≡G'y (~ i) , H ⟅ y ⟆ ]} refl) βx≡βx' : PathP (λ i → D [ Gx≡G'x (~ i) , H ⟅ x ⟆ ]) (β ⟦ x ⟧) βx' βx≡βx' = toPathP refl -- left wall of square left : PathP (λ i → D [ Gx≡G'x i , H ⟅ y ⟆ ]) (G ⟪ f ⟫ ⋆⟨ D ⟩ βy') (G' ⟪ f ⟫ ⋆⟨ D ⟩ β ⟦ y ⟧) left i = Gf≡G'f i ⋆⟨ D ⟩ βy'≡βy i -- right wall of square right : PathP (λ i → D [ Gx≡G'x (~ i) , H ⟅ y ⟆ ]) (β ⟦ x ⟧ ⋆⟨ D ⟩ H ⟪ f ⟫) (βx' ⋆⟨ D ⟩ H ⟪ f ⟫) right i = βx≡βx' i ⋆⟨ D ⟩ refl {x = H ⟪ f ⟫} i -- putting it all together βSq : G ⟪ f ⟫ ⋆⟨ D ⟩ βy' ≡ βx' ⋆⟨ D ⟩ H ⟪ f ⟫ βSq i = comp (λ k → D [ Gx≡G'x (~ k) , H ⟅ y ⟆ ]) (λ j → λ { (i = i0) → left (~ j) ; (i = i1) → right j }) (β .N-hom f i) module _ ⦃ isCatD : isCategory D ⦄ {F G : Functor C D} {α β : NatTrans F G} where open Precategory open Functor open NatTrans makeNatTransPath : α .N-ob ≡ β .N-ob → α ≡ β makeNatTransPath p i .N-ob = p i makeNatTransPath p i .N-hom f = rem i where rem : PathP (λ i → (F .F-hom f) ⋆ᴰ (p i _) ≡ (p i _) ⋆ᴰ (G .F-hom f)) (α .N-hom f) (β .N-hom f) rem = toPathP (isCatD .isSetHom _ _ _ _) module _ ⦃ isCatD : isCategory D ⦄ {F F' G G' : Functor C D} {α : NatTrans F G} {β : NatTrans F' G'} where open Precategory open Functor open NatTrans makeNatTransPathP : ∀ (p : F ≡ F') (q : G ≡ G') → PathP (λ i → (x : C .ob) → D [ (p i) .F-ob x , (q i) .F-ob x ]) (α .N-ob) (β .N-ob) → PathP (λ i → NatTrans (p i) (q i)) α β makeNatTransPathP p q P i .N-ob = P i makeNatTransPathP p q P i .N-hom f = rem i where rem : PathP (λ i → ((p i) .F-hom f) ⋆ᴰ (P i _) ≡ (P i _) ⋆ᴰ ((q i) .F-hom f)) (α .N-hom f) (β .N-hom f) rem = toPathP (isCatD .isSetHom _ _ _ _) private variable ℓA ℓA' ℓB ℓB' : Level module _ {B : Precategory ℓB ℓB'} {C : Precategory ℓC ℓC'} {D : Precategory ℓD ℓD'} where open NatTrans -- whiskering -- αF _∘ˡ_ : ∀ {G H : Functor C D} (α : NatTrans G H) → (F : Functor B C) → NatTrans (G ∘F F) (H ∘F F) (_∘ˡ_ {G} {H} α F) .N-ob x = α ⟦ F ⟅ x ⟆ ⟧ (_∘ˡ_ {G} {H} α F) .N-hom f = (α .N-hom) _ -- Kβ _∘ʳ_ : ∀ (K : Functor C D) → {G H : Functor B C} (β : NatTrans G H) → NatTrans (K ∘F G) (K ∘F H) (_∘ʳ_ K {G} {H} β) .N-ob x = K ⟪ β ⟦ x ⟧ ⟫ (_∘ʳ_ K {G} {H} β) .N-hom f = preserveCommF {C = C} {D = D} {K} (β .N-hom f)
35.008969
111
0.500833
cb2bed9957160994358c22a6c78b52b44e81085d
495
agda
Agda
test/Succeed/Issue3731.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3731.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3731.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2019-04-30, issue #3731 -- Compiler backend: Do not look for a main function if not the main module. open import Agda.Builtin.Nat module Issue3731 where module M where module main where record R : Set where field main : Nat data Main : Set where main : Main module N where data main : Set where module O where record main : Set where module P where postulate main : Nat module Q where abstract main : Nat main = 1 main : Nat main = 0
14.558824
76
0.674747
d0e8a986189ef20a91c1f3f72ecf748e56cda47e
5,381
agda
Agda
Structure/Category/Functor/Equiv.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Structure/Category/Functor/Equiv.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Structure/Category/Functor/Equiv.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
import Lvl open import Structure.Category module Structure.Category.Functor.Equiv {ℓₗₒ ℓᵣₒ ℓₗₘ ℓᵣₘ ℓₗₑ ℓᵣₑ : Lvl.Level} {catₗ : CategoryObject{ℓₗₒ}{ℓₗₘ}{ℓₗₑ}} {catᵣ : CategoryObject{ℓᵣₒ}{ℓᵣₘ}{ℓᵣₑ}} where open import Functional.Dependent as Fn using (_$_) import Function.Equals open Function.Equals.Dependent open import Logic open import Logic.Propositional open import Logic.Predicate open import Relator.Equals using ([≡]-intro) renaming (_≡_ to _≡ₑ_) open import Relator.Equals.Proofs open import Relator.Equals.Proofs.Equiv open import Structure.Category.Functor open import Structure.Category.Functor.Functors as Functors open import Structure.Category.Morphism.IdTransport import Structure.Categorical.Names as Names open import Structure.Category.NaturalTransformation open import Structure.Category.Proofs open import Structure.Categorical.Properties open import Structure.Function open import Structure.Operator open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Structure.Setoid open import Syntax.Transitivity open import Type open Structure.Category open Category ⦃ … ⦄ open CategoryObject open Functor ⦃ … ⦄ private instance _ = category catₗ private instance _ = category catᵣ private open module MorphismEquivₗ {x}{y} = Equiv(morphism-equiv(catₗ){x}{y}) using () renaming (_≡_ to _≡ₗₘ_) private open module MorphismEquivᵣ {x}{y} = Equiv(morphism-equiv(catᵣ){x}{y}) using () renaming (_≡_ to _≡ᵣₘ_) module _ (f₁@([∃]-intro F₁) f₂@([∃]-intro F₂) : (catₗ →ᶠᵘⁿᶜᵗᵒʳ catᵣ)) where record _≡ᶠᵘⁿᶜᵗᵒʳ_ : Type{Lvl.of(Type.of(catₗ)) Lvl.⊔ Lvl.of(Type.of(catᵣ))} where constructor intro field functor-proof : (F₁ ⊜ F₂) map-proof : NaturalTransformation(f₁)(f₂) (\x → transport(catᵣ) (_⊜_.proof functor-proof {x})) instance [≡ᶠᵘⁿᶜᵗᵒʳ]-reflexivity : Reflexivity(_≡ᶠᵘⁿᶜᵗᵒʳ_) _≡ᶠᵘⁿᶜᵗᵒʳ_.functor-proof (Reflexivity.proof [≡ᶠᵘⁿᶜᵗᵒʳ]-reflexivity) = intro [≡]-intro NaturalTransformation.natural (_≡ᶠᵘⁿᶜᵗᵒʳ_.map-proof (Reflexivity.proof [≡ᶠᵘⁿᶜᵗᵒʳ]-reflexivity {functor})) {f = f} = trans-refl ∘ map(f) 🝖[ _≡ᵣₘ_ ]-[] id ∘ map(f) 🝖[ _≡ᵣₘ_ ]-[ Morphism.identityₗ(_∘_)(id) ] map(f) 🝖[ _≡ᵣₘ_ ]-[ Morphism.identityᵣ(_∘_)(id) ]-sym map(f) ∘ id 🝖[ _≡ᵣₘ_ ]-[] map(f) ∘ trans-refl 🝖-end where trans-refl = \{x} → transport(catᵣ) ([≡]-intro {x = x}) instance [≡ᶠᵘⁿᶜᵗᵒʳ]-symmetry : Symmetry(_≡ᶠᵘⁿᶜᵗᵒʳ_) _≡ᶠᵘⁿᶜᵗᵒʳ_.functor-proof (Symmetry.proof [≡ᶠᵘⁿᶜᵗᵒʳ]-symmetry xy) = symmetry(_⊜_) (_≡ᶠᵘⁿᶜᵗᵒʳ_.functor-proof xy) NaturalTransformation.natural (_≡ᶠᵘⁿᶜᵗᵒʳ_.map-proof (Symmetry.proof [≡ᶠᵘⁿᶜᵗᵒʳ]-symmetry {[∃]-intro F₁} {[∃]-intro F₂} (intro (intro fe) (intro me)))) {x}{y} {f = f} = trans-sym(y) ∘ map(f) 🝖[ _≡ᵣₘ_ ]-[ Morphism.identityᵣ(_∘_)(id) ]-sym (trans-sym(y) ∘ map(f)) ∘ id 🝖[ _≡ᵣₘ_ ]-[ congruence₂ᵣ(_∘_)(_) ([∘]-on-transport-inverseᵣ catᵣ {ab = fe}) ]-sym (trans-sym(y) ∘ map(f)) ∘ (trans(x) ∘ trans-sym(x)) 🝖[ _≡ᵣₘ_ ]-[ associate4-213-121 (category catᵣ) ]-sym (trans-sym(y) ∘ (map(f) ∘ trans(x))) ∘ trans-sym(x) 🝖[ _≡ᵣₘ_ ]-[ congruence₂ₗ(_∘_)(_) (congruence₂ᵣ(_∘_)(_) me) ]-sym (trans-sym(y) ∘ (trans(y) ∘ map(f))) ∘ trans-sym(x) 🝖[ _≡ᵣₘ_ ]-[ associate4-213-121 (category catᵣ) ] (trans-sym(y) ∘ trans(y)) ∘ (map(f) ∘ trans-sym(x)) 🝖[ _≡ᵣₘ_ ]-[ congruence₂ₗ(_∘_)(_) ([∘]-on-transport-inverseₗ catᵣ {ab = fe}) ] id ∘ (map(f) ∘ trans-sym(x)) 🝖[ _≡ᵣₘ_ ]-[ Morphism.identityₗ(_∘_)(id) ] map(f) ∘ trans-sym(x) 🝖-end where trans = \(x : Object(catₗ)) → transport catᵣ (fe{x}) trans-sym = \(x : Object(catₗ)) → transport catᵣ (symmetry(_≡ₑ_) (fe{x})) instance [≡ᶠᵘⁿᶜᵗᵒʳ]-transitivity : Transitivity(_≡ᶠᵘⁿᶜᵗᵒʳ_) _≡ᶠᵘⁿᶜᵗᵒʳ_.functor-proof (Transitivity.proof [≡ᶠᵘⁿᶜᵗᵒʳ]-transitivity (intro fe₁ _) (intro fe₂ _)) = transitivity(_⊜_) fe₁ fe₂ NaturalTransformation.natural (_≡ᶠᵘⁿᶜᵗᵒʳ_.map-proof (Transitivity.proof [≡ᶠᵘⁿᶜᵗᵒʳ]-transitivity {[∃]-intro F₁} {[∃]-intro F₂} {[∃]-intro F₃} (intro (intro fe₁) (intro me₁)) (intro (intro fe₂) (intro me₂)))) {x}{y} {f = f} = transport catᵣ (transitivity(_≡ₑ_) (fe₁{y}) (fe₂{y})) ∘ map(f) 🝖[ _≡ᵣₘ_ ]-[ congruence₂ₗ(_∘_)(_) (transport-of-transitivity catᵣ {ab = fe₁}{bc = fe₂}) ] (transport catᵣ (fe₂{y}) ∘ transport catᵣ (fe₁{y})) ∘ map(f) 🝖[ _≡ᵣₘ_ ]-[ Morphism.associativity(_∘_) ] transport catᵣ (fe₂{y}) ∘ (transport catᵣ (fe₁{y}) ∘ map(f)) 🝖[ _≡ᵣₘ_ ]-[ congruence₂ᵣ(_∘_)(_) me₁ ] transport catᵣ (fe₂{y}) ∘ (map(f) ∘ transport catᵣ (fe₁{x})) 🝖[ _≡ᵣₘ_ ]-[ Morphism.associativity(_∘_) ]-sym (transport catᵣ (fe₂{y}) ∘ map(f)) ∘ transport catᵣ (fe₁{x}) 🝖[ _≡ᵣₘ_ ]-[ congruence₂ₗ(_∘_)(_) me₂ ] (map(f) ∘ transport catᵣ (fe₂{x})) ∘ transport catᵣ (fe₁{x}) 🝖[ _≡ᵣₘ_ ]-[ Morphism.associativity(_∘_) ] map(f) ∘ (transport catᵣ (fe₂{x}) ∘ transport catᵣ (fe₁{x})) 🝖[ _≡ᵣₘ_ ]-[ congruence₂ᵣ(_∘_)(_) (transport-of-transitivity catᵣ {ab = fe₁}{bc = fe₂}) ]-sym map(f) ∘ transport catᵣ (transitivity(_≡ₑ_) (fe₁{x}) (fe₂{x})) 🝖-end instance [≡ᶠᵘⁿᶜᵗᵒʳ]-equivalence : Equivalence(_≡ᶠᵘⁿᶜᵗᵒʳ_) [≡ᶠᵘⁿᶜᵗᵒʳ]-equivalence = intro instance [≡ᶠᵘⁿᶜᵗᵒʳ]-equiv : Equiv(catₗ →ᶠᵘⁿᶜᵗᵒʳ catᵣ) [≡ᶠᵘⁿᶜᵗᵒʳ]-equiv = intro(_≡ᶠᵘⁿᶜᵗᵒʳ_) ⦃ [≡ᶠᵘⁿᶜᵗᵒʳ]-equivalence ⦄
52.754902
225
0.644118
1c3b99907c9998a7665c70ecac7691fcb03fb23b
558
agda
Agda
test/Fail/DontPrune.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/DontPrune.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/DontPrune.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2012-05-09 module DontPrune where open import Common.Equality open import Common.Product data Bool : Set where true false : Bool test : (A : Set) → let IF : Bool → A → A → A IF = _ in (a b : A) → (IF true a b ≡ a) × (IF false a b ≡ b) test A a b = refl , refl -- Expected result: unsolved metas -- -- (unless someone implemented unification that produces definitions by case). -- -- The test case should prevent overzealous pruning: -- If the first equation pruned away the b, then the second -- would have an unbound rhs.
23.25
78
0.666667
18f32581411200f6cec8e488ce637b4a0ec2dda2
10,388
agda
Agda
Cubical/Experiments/Brunerie.agda
xekoukou/cubical
b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc
[ "MIT" ]
null
null
null
Cubical/Experiments/Brunerie.agda
xekoukou/cubical
b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc
[ "MIT" ]
null
null
null
Cubical/Experiments/Brunerie.agda
xekoukou/cubical
b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Experiments.Brunerie where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Pointed open import Cubical.Foundations.HLevels open import Cubical.Foundations.Univalence open import Cubical.Data.Bool open import Cubical.Data.Nat open import Cubical.Data.Int open import Cubical.HITs.S1 hiding (encode) open import Cubical.HITs.S2 open import Cubical.HITs.S3 open import Cubical.HITs.Join open import Cubical.HITs.SetTruncation as SetTrunc open import Cubical.HITs.GroupoidTruncation as GroupoidTrunc open import Cubical.HITs.2GroupoidTruncation as 2GroupoidTrunc open import Cubical.HITs.Truncation as Trunc open import Cubical.HITs.Susp renaming (toSusp to σ) open import Cubical.Homotopy.Loopspace open import Cubical.Homotopy.Hopf open S¹Hopf -- This code is adapted from examples/brunerie3.ctt on the pi4s3_nobug branch of cubicaltt Bool∙ S¹∙ S³∙ : Pointed₀ Bool∙ = (Bool , true) S¹∙ = (S¹ , base) S³∙ = (S³ , base) ∥_∥₃∙ ∥_∥₄∙ : Pointed₀ → Pointed₀ ∥ A , a ∥₃∙ = ∥ A ∥₃ , ∣ a ∣₃ ∥ A , a ∥₄∙ = ∥ A ∥₄ , ∣ a ∣₄ join∙ : Pointed₀ → Type₀ → Pointed₀ join∙ (A , a) B = join A B , inl a Ω² Ω³ : Pointed₀ → Pointed₀ Ω² = Ω^ 2 Ω³ = Ω^ 3 mapΩrefl : {A : Pointed₀} {B : Type₀} (f : A .fst → B) → Ω A .fst → Ω (B , f (pt A)) .fst mapΩrefl f p i = f (p i) mapΩ²refl : {A : Pointed₀} {B : Type₀} (f : A .fst → B) → Ω² A .fst → Ω² (B , f (pt A)) .fst mapΩ²refl f p i j = f (p i j) mapΩ³refl : {A : Pointed₀} {B : Type₀} (f : A .fst → B) → Ω³ A .fst → Ω³ (B , f (pt A)) .fst mapΩ³refl f p i j k = f (p i j k) meridS² : S¹ → Path S² base base meridS² base _ = base meridS² (loop i) j = surf i j alpha : join S¹ S¹ → S² alpha (inl x) = base alpha (inr y) = base alpha (push x y i) = (meridS² y ∙ meridS² x) i connectionBoth : {A : Type₀} {a : A} (p : Path A a a) → PathP (λ i → Path A (p i) (p i)) p p connectionBoth {a = a} p i j = hcomp (λ k → λ { (i = i0) → p (j ∨ ~ k) ; (i = i1) → p (j ∧ k) ; (j = i0) → p (i ∨ ~ k) ; (j = i1) → p (i ∧ k) }) a data PostTotalHopf : Type₀ where base : S¹ → PostTotalHopf loop : (x : S¹) → PathP (λ i → Path PostTotalHopf (base x) (base (rotLoop x (~ i)))) refl refl tee12 : (x : S²) → HopfS² x → PostTotalHopf tee12 base y = base y tee12 (surf i j) y = hcomp (λ k → λ { (i = i0) → base y ; (i = i1) → base y ; (j = i0) → base y ; (j = i1) → base (rotLoopInv y (~ i) k) }) (loop (unglue (i ∨ ~ i ∨ j ∨ ~ j) y) i j) tee34 : PostTotalHopf → join S¹ S¹ tee34 (base x) = inl x tee34 (loop x i j) = hcomp (λ k → λ { (i = i0) → push x x (j ∧ ~ k) ; (i = i1) → push x x (j ∧ ~ k) ; (j = i0) → inl x ; (j = i1) → push (rotLoop x (~ i)) x (~ k) }) (push x x j) tee : (x : S²) → HopfS² x → join S¹ S¹ tee x y = tee34 (tee12 x y) fibΩ : {B : Pointed₀} (P : B .fst → Type₀) → P (pt B) → Ω B .fst → Type₀ fibΩ P f p = PathP (λ i → P (p i)) f f fibΩ² : {B : Pointed₀} (P : B .fst → Type₀) → P (pt B) → Ω² B .fst → Type₀ fibΩ² P f = fibΩ (fibΩ P f) refl fibΩ³ : {B : Pointed₀} (P : B .fst → Type₀) → P (pt B) → Ω³ B .fst → Type₀ fibΩ³ P f = fibΩ² (fibΩ P f) refl Ω³Hopf : Ω³ S²∙ .fst → Type₀ Ω³Hopf = fibΩ³ HopfS² base fibContrΩ³Hopf : ∀ p → Ω³Hopf p fibContrΩ³Hopf p i j k = hcomp (λ m → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base ; (k = i0) → base ; (k = i1) → isSetΩS¹ refl refl (λ i j → transp (λ n → HopfS² (p i j n)) (i ∨ ~ i ∨ j ∨ ~ j) base) (λ _ _ → base) m i j }) (transp (λ n → HopfS² (p i j (k ∧ n))) (i ∨ ~ i ∨ j ∨ ~ j ∨ ~ k) base) h : Ω³ S²∙ .fst → Ω³ (join∙ S¹∙ S¹) .fst h p i j k = tee (p i j k) (fibContrΩ³Hopf p i j k) multTwoAux : (x : S²) → Path (Path ∥ S² ∥₄ ∣ x ∣₄ ∣ x ∣₄) refl refl multTwoAux base i j = ∣ surf i j ∣₄ multTwoAux (surf k l) i j = hcomp (λ m → λ { (i = i0) → ∣ surf k l ∣₄ ; (i = i1) → ∣ surf k l ∣₄ ; (j = i0) → ∣ surf k l ∣₄ ; (j = i1) → ∣ surf k l ∣₄ ; (k = i0) → ∣ surf i j ∣₄ ; (k = i1) → ∣ surf i j ∣₄ ; (l = i0) → ∣ surf i j ∣₄ ; (l = i1) → squash₄ _ _ _ _ _ _ (λ k i j → step₁ k i j) refl m k i j }) (step₁ k i j) where step₁ : I → I → I → ∥ S² ∥₄ step₁ k i j = hcomp {A = ∥ S² ∥₄} (λ m → λ { (i = i0) → ∣ surf k (l ∧ m) ∣₄ ; (i = i1) → ∣ surf k (l ∧ m) ∣₄ ; (j = i0) → ∣ surf k (l ∧ m) ∣₄ ; (j = i1) → ∣ surf k (l ∧ m) ∣₄ ; (k = i0) → ∣ surf i j ∣₄ ; (k = i1) → ∣ surf i j ∣₄ ; (l = i0) → ∣ surf i j ∣₄ }) ∣ surf i j ∣₄ multTwoTildeAux : (t : ∥ S² ∥₄) → Path (Path ∥ S² ∥₄ t t) refl refl multTwoTildeAux ∣ x ∣₄ = multTwoAux x multTwoTildeAux (squash₄ _ _ _ _ _ _ t u k l m n) i j = squash₄ _ _ _ _ _ _ (λ k l m → multTwoTildeAux (t k l m) i j) (λ k l m → multTwoTildeAux (u k l m) i j) k l m n multTwoEquivAux : Path (Path (∥ S² ∥₄ ≃ ∥ S² ∥₄) (idEquiv _) (idEquiv _)) refl refl multTwoEquivAux i j = ( f i j , hcomp (λ l → λ { (i = i0) → isPropIsEquiv _ (idIsEquiv _) (idIsEquiv _) l ; (i = i1) → isPropIsEquiv _ (idIsEquiv _) (idIsEquiv _) l ; (j = i0) → isPropIsEquiv _ (idIsEquiv _) (idIsEquiv _) l ; (j = i1) → isPropIsEquiv _ (transp (λ k → isEquiv (f i k)) (i ∨ ~ i) (idIsEquiv _)) (idIsEquiv _) l }) (transp (λ k → isEquiv (f i (j ∧ k))) (i ∨ ~ i ∨ ~ j) (idIsEquiv _)) ) where f : I → I → ∥ S² ∥₄ → ∥ S² ∥₄ f i j t = multTwoTildeAux t i j tHopf³ : S³ → Type₀ tHopf³ base = ∥ S² ∥₄ tHopf³ (surf i j k) = Glue ∥ S² ∥₄ (λ { (i = i0) → (∥ S² ∥₄ , idEquiv _) ; (i = i1) → (∥ S² ∥₄ , idEquiv _) ; (j = i0) → (∥ S² ∥₄ , idEquiv _) ; (j = i1) → (∥ S² ∥₄ , idEquiv _) ; (k = i0) → (∥ S² ∥₄ , multTwoEquivAux i j) ; (k = i1) → (∥ S² ∥₄ , idEquiv _) }) π₃S³ : Ω³ S³∙ .fst → Ω² ∥ S²∙ ∥₄∙ .fst π₃S³ p i j = transp (λ k → tHopf³ (p j k i)) i0 ∣ base ∣₄ codeS² : S² → hGroupoid _ codeS² s = ∥ HopfS² s ∥₃ , squash₃ codeTruncS² : ∥ S² ∥₄ → hGroupoid _ codeTruncS² = 2GroupoidTrunc.rec (isOfHLevelTypeOfHLevel 3) codeS² encodeTruncS² : Ω ∥ S²∙ ∥₄∙ .fst → ∥ S¹ ∥₃ encodeTruncS² p = transp (λ i → codeTruncS² (p i) .fst) i0 ∣ base ∣₃ codeS¹ : S¹ → hSet _ codeS¹ s = ∥ helix s ∥₂ , squash₂ codeTruncS¹ : ∥ S¹ ∥₃ → hSet _ codeTruncS¹ = GroupoidTrunc.rec (isOfHLevelTypeOfHLevel 2) codeS¹ encodeTruncS¹ : Ω ∥ S¹∙ ∥₃∙ .fst → ∥ ℤ ∥₂ encodeTruncS¹ p = transp (λ i → codeTruncS¹ (p i) .fst) i0 ∣ pos zero ∣₂ -- THE BIG GAME f3 : Ω³ S³∙ .fst → Ω³ (join∙ S¹∙ S¹) .fst f3 = mapΩ³refl S³→joinS¹S¹ f4 : Ω³ (join∙ S¹∙ S¹) .fst → Ω³ S²∙ .fst f4 = mapΩ³refl alpha f5 : Ω³ S²∙ .fst → Ω³ (join∙ S¹∙ S¹) .fst f5 = h f6 : Ω³ (join∙ S¹∙ S¹) .fst → Ω³ S³∙ .fst f6 = mapΩ³refl joinS¹S¹→S³ f7 : Ω³ S³∙ .fst → Ω² ∥ S²∙ ∥₄∙ .fst f7 = π₃S³ g8 : Ω² ∥ S²∙ ∥₄∙ .fst → Ω ∥ S¹∙ ∥₃∙ .fst g8 = mapΩrefl encodeTruncS² g9 : Ω ∥ S¹∙ ∥₃∙ .fst → ∥ ℤ ∥₂ g9 = encodeTruncS¹ g10 : ∥ ℤ ∥₂ → ℤ g10 = SetTrunc.rec isSetℤ (idfun ℤ) -- don't run me brunerie : ℤ brunerie = g10 (g9 (g8 (f7 (f6 (f5 (f4 (f3 (λ i j k → surf i j k)))))))) -- simpler tests test63 : ℕ → ℤ test63 n = g10 (g9 (g8 (f7 (63n n)))) where 63n : ℕ → Ω³ S³∙ .fst 63n zero i j k = surf i j k 63n (suc n) = f6 (f3 (63n n)) foo : Ω³ S²∙ .fst foo i j k = hcomp (λ l → λ { (i = i0) → surf l l ; (i = i1) → surf l l ; (j = i0) → surf l l ; (j = i1) → surf l l ; (k = i0) → surf l l ; (k = i1) → surf l l }) base sorghum : Ω³ S²∙ .fst sorghum i j k = hcomp (λ l → λ { (i = i0) → surf j l ; (i = i1) → surf k (~ l) ; (j = i0) → surf k (i ∧ ~ l) ; (j = i1) → surf k (i ∧ ~ l) ; (k = i0) → surf j (i ∨ l) ; (k = i1) → surf j (i ∨ l) }) (hcomp (λ l → λ { (i = i0) → base ; (i = i1) → surf j l ; (j = i0) → surf k i ; (j = i1) → surf k i ; (k = i0) → surf j (i ∧ l) ; (k = i1) → surf j (i ∧ l) }) (surf k i)) goo : Ω³ S²∙ .fst → ℤ goo x = g10 (g9 (g8 (f7 (f6 (f5 x))))) {- Computation of an alternative definition of the Brunerie number based on https://github.com/agda/cubical/pull/741. One should note that this computation by no means is comparable to the one of the term "brunerie" defined above. This computation starts in π₃S³ rather than π₃S². -} -- The brunerie element can be shown to correspond to the following map η₃ : (join S¹ S¹ , inl base) →∙ (Susp S² , north) fst η₃ (inl x) = north fst η₃ (inr x) = north fst η₃ (push a b i) = (σ (S² , base) (S¹×S¹→S² a b) ∙ σ (S² , base) (S¹×S¹→S² a b)) i where S¹×S¹→S² : S¹ → S¹ → S² S¹×S¹→S² base y = base S¹×S¹→S² (loop i) base = base S¹×S¹→S² (loop i) (loop j) = surf i j snd η₃ = refl K₂ = ∥ S² ∥₄ -- We will need a map Ω (Susp S²) → K₂. It turns out that the -- following map is fast. It need a bit of work, however. It's -- esentially the same map as you find in ZCohomology from ΩKₙ₊₁ to -- Kₙ. This gives another definition of f7 which appears to work better. module f7stuff where _+₂_ : K₂ → K₂ → K₂ _+₂_ = 2GroupoidTrunc.elim (λ _ → isOfHLevelΠ 4 λ _ → squash₄) λ { base x → x ; (surf i j) x → surfc x i j} where surfc : (x : K₂) → typ ((Ω^ 2) (K₂ , x)) surfc = 2GroupoidTrunc.elim (λ _ → isOfHLevelPath 4 (isOfHLevelPath 4 squash₄ _ _) _ _) (S²ToSetElim (λ _ → squash₄ _ _ _ _) λ i j → ∣ surf i j ∣₄) K₂≃K₂ : (x : S²) → K₂ ≃ K₂ fst (K₂≃K₂ x) y = ∣ x ∣₄ +₂ y snd (K₂≃K₂ x) = help x where help : (x : _) → isEquiv (λ y → ∣ x ∣₄ +₂ y) help = S²ToSetElim (λ _ → isProp→isSet (isPropIsEquiv _)) (idEquiv _ .snd) Code : Susp S² → Type ℓ-zero Code north = K₂ Code south = K₂ Code (merid a i) = ua (K₂≃K₂ a) i encode : (x : Susp S²) → north ≡ x → Code x encode x = J (λ x p → Code x) ∣ base ∣₄ -- We now get an alternative definition of f7 f7' : typ (Ω (Susp∙ S²)) → K₂ f7' = f7stuff.encode north -- We can define the Brunerie number by brunerie' : ℤ brunerie' = g10 (g9 (g8 λ i j → f7' λ k → η₃ .fst (push (loop i) (loop j) k))) -- Computing it takes ~1s brunerie'≡-2 : brunerie' ≡ -2 brunerie'≡-2 = refl
27.775401
96
0.533885
dcc3cd44ed240b70fd1b6d3e93def929b31c49d3
911
agda
Agda
src/Categories/GlobularSet.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/GlobularSet.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/GlobularSet.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} module Categories.GlobularSet where -- Globular sets are defined in a Categorical context, but -- should they be inside the Categories hierarchy? open import Level open import Data.Unit using (⊤) open import Relation.Binary.PropositionalEquality using (refl) open import Categories.Category open import Categories.Category.Instance.Globe open import Categories.Category.Instance.Sets open import Categories.Functor open import Categories.Functor.Presheaf private variable o ℓ e : Level GlobularSet : (o : Level) → Set (suc o) GlobularSet o = Presheaf Globe (Sets o) -- TODO? make universe polymorphic with polymorphic ⊤ Trivial : GlobularSet zero Trivial = record { F₀ = λ _ → ⊤ ; F₁ = λ _ x → x ; identity = refl ; homomorphism = refl ; F-resp-≈ = λ _ → refl } GlobularObject : Category o ℓ e → Set _ GlobularObject C = Functor (Category.op Globe) C
25.305556
62
0.735456
4a843eefe7ad4b663c1939b3725cba18567a08fe
47,288
agda
Agda
Agda/22-descent.agda
hemangandhi/HoTT-Intro
09c710bf9c31ba88be144cc950bd7bc19c22a934
[ "CC-BY-4.0" ]
null
null
null
Agda/22-descent.agda
hemangandhi/HoTT-Intro
09c710bf9c31ba88be144cc950bd7bc19c22a934
[ "CC-BY-4.0" ]
null
null
null
Agda/22-descent.agda
hemangandhi/HoTT-Intro
09c710bf9c31ba88be144cc950bd7bc19c22a934
[ "CC-BY-4.0" ]
null
null
null
{-# OPTIONS --without-K --allow-unsolved-metas --exact-split #-} module 22-descent where import 21-cubical-diagrams open 21-cubical-diagrams public -- Section 18.1 Five equivalent characterizations of pushouts dep-cocone : { l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} ( f : S → A) (g : S → B) (c : cocone f g X) (P : X → UU l5) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l5) dep-cocone {S = S} {A} {B} f g c P = Σ ((a : A) → P ((pr1 c) a)) (λ hA → Σ ((b : B) → P (pr1 (pr2 c) b)) (λ hB → (s : S) → Id (tr P (pr2 (pr2 c) s) (hA (f s))) (hB (g s)))) dep-cocone-map : { l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} ( f : S → A) (g : S → B) (c : cocone f g X) (P : X → UU l5) → ( (x : X) → P x) → dep-cocone f g c P dep-cocone-map f g c P h = pair (λ a → h (pr1 c a)) (pair (λ b → h (pr1 (pr2 c) b)) (λ s → apd h (pr2 (pr2 c) s))) {- Definition 18.1.1 The induction principle of pushouts -} Ind-pushout : { l1 l2 l3 l4 : Level} (l : Level) → { S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} → ( f : S → A) (g : S → B) (c : cocone f g X) → UU (lsuc l ⊔ l1 ⊔ l2 ⊔ l3 ⊔ l4) Ind-pushout l {X = X} f g c = (P : X → UU l) → sec (dep-cocone-map f g c P) {- Definition 18.1.2 The dependent universal property of pushouts -} dependent-universal-property-pushout : {l1 l2 l3 l4 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → UU _ dependent-universal-property-pushout l f g {X} c = (P : X → UU l) → is-equiv (dep-cocone-map f g c P) {- Remark 18.1.3. We compute the identity type of dep-cocone in order to express the computation rules of the induction principle for pushouts. -} coherence-htpy-dep-cocone : {l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (P : X → UU l5) (c' c'' : dep-cocone f g c P) (K : (pr1 c') ~ (pr1 c'')) (L : (pr1 (pr2 c')) ~ (pr1 (pr2 c''))) → UU (l1 ⊔ l5) coherence-htpy-dep-cocone {S = S} f g c P h h' K L = (s : S) → Id ( ((pr2 (pr2 h)) s) ∙ (L (g s))) ( (ap (tr P (pr2 (pr2 c) s)) (K (f s))) ∙ ((pr2 (pr2 h')) s)) htpy-dep-cocone : {l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (P : X → UU l5) → (s t : dep-cocone f g c P) → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ l5))) htpy-dep-cocone {S = S} f g c P h h' = Σ ( (pr1 h) ~ (pr1 h')) (λ K → Σ ( (pr1 (pr2 h)) ~ (pr1 (pr2 h'))) ( coherence-htpy-dep-cocone f g c P h h' K)) reflexive-htpy-dep-cocone : {l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (P : X → UU l5) → (s : dep-cocone f g c P) → htpy-dep-cocone f g c P s s reflexive-htpy-dep-cocone f g (pair i (pair j H)) P (pair hA (pair hB hS)) = pair htpy-refl (pair htpy-refl htpy-right-unit) htpy-dep-cocone-eq : {l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (P : X → UU l5) → {s t : dep-cocone f g c P} → Id s t → htpy-dep-cocone f g c P s t htpy-dep-cocone-eq f g c P {s} {.s} refl = reflexive-htpy-dep-cocone f g c P s abstract is-contr-total-htpy-dep-cocone : {l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (P : X → UU l5) → (s : dep-cocone f g c P) → is-contr ( Σ (dep-cocone f g c P) ( htpy-dep-cocone f g c P s)) is-contr-total-htpy-dep-cocone {S = S} {A} {B} f g {X} (pair i (pair j H)) P (pair hA (pair hB hS)) = is-contr-total-Eq-structure ( λ α βγ K → Σ (hB ~ (pr1 βγ)) (λ L → coherence-htpy-dep-cocone f g ( pair i (pair j H)) P (pair hA (pair hB hS)) (pair α βγ) K L)) ( is-contr-total-htpy hA) ( pair hA htpy-refl) ( is-contr-total-Eq-structure ( λ β γ L → coherence-htpy-dep-cocone f g ( pair i (pair j H)) ( P) ( pair hA (pair hB hS)) ( pair hA (pair β γ)) ( htpy-refl) ( L)) ( is-contr-total-htpy hB) ( pair hB htpy-refl) ( is-contr-is-equiv ( Σ ((s : S) → Id (tr P (H s) (hA (f s))) (hB (g s))) (λ γ → hS ~ γ)) ( tot (htpy-concat (htpy-inv htpy-right-unit))) ( is-equiv-tot-is-fiberwise-equiv ( is-equiv-htpy-concat (htpy-inv htpy-right-unit))) ( is-contr-total-htpy hS))) abstract is-equiv-htpy-dep-cocone-eq : {l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (P : X → UU l5) → (s t : dep-cocone f g c P) → is-equiv (htpy-dep-cocone-eq f g c P {s} {t}) is-equiv-htpy-dep-cocone-eq f g c P s = fundamental-theorem-id s ( reflexive-htpy-dep-cocone f g c P s) ( is-contr-total-htpy-dep-cocone f g c P s) ( λ t → htpy-dep-cocone-eq f g c P {s} {t}) eq-htpy-dep-cocone : {l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (P : X → UU l5) → (s t : dep-cocone f g c P) → htpy-dep-cocone f g c P s t → Id s t eq-htpy-dep-cocone f g c P s t = inv-is-equiv (is-equiv-htpy-dep-cocone-eq f g c P s t) issec-eq-htpy-dep-cocone : {l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (P : X → UU l5) → (s t : dep-cocone f g c P) → ( ( htpy-dep-cocone-eq f g c P {s} {t}) ∘ ( eq-htpy-dep-cocone f g c P s t)) ~ id issec-eq-htpy-dep-cocone f g c P s t = issec-inv-is-equiv ( is-equiv-htpy-dep-cocone-eq f g c P s t) isretr-eq-htpy-dep-cocone : {l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (P : X → UU l5) → (s t : dep-cocone f g c P) → ( ( eq-htpy-dep-cocone f g c P s t) ∘ ( htpy-dep-cocone-eq f g c P {s} {t})) ~ id isretr-eq-htpy-dep-cocone f g c P s t = isretr-inv-is-equiv ( is-equiv-htpy-dep-cocone-eq f g c P s t) ind-pushout : { l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} → ( f : S → A) (g : S → B) (c : cocone f g X) → Ind-pushout l f g c → (P : X → UU l) → dep-cocone f g c P → (x : X) → P x ind-pushout f g c ind-c P = pr1 (ind-c P) comp-pushout : { l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} → ( f : S → A) (g : S → B) (c : cocone f g X) → ( ind-c : Ind-pushout l f g c) (P : X → UU l) (h : dep-cocone f g c P) → htpy-dep-cocone f g c P ( dep-cocone-map f g c P (ind-pushout f g c ind-c P h)) ( h) comp-pushout f g c ind-c P h = htpy-dep-cocone-eq f g c P (pr2 (ind-c P) h) left-comp-pushout : { l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} → ( f : S → A) (g : S → B) (c : cocone f g X) → ( ind-c : Ind-pushout l f g c) (P : X → UU l) (h : dep-cocone f g c P) → ( a : A) → Id (ind-pushout f g c ind-c P h (pr1 c a)) (pr1 h a) left-comp-pushout f g c ind-c P h = pr1 (comp-pushout f g c ind-c P h) right-comp-pushout : { l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} → ( f : S → A) (g : S → B) (c : cocone f g X) → ( ind-c : Ind-pushout l f g c) (P : X → UU l) (h : dep-cocone f g c P) → ( b : B) → Id (ind-pushout f g c ind-c P h (pr1 (pr2 c) b)) (pr1 (pr2 h) b) right-comp-pushout f g c ind-c P h = pr1 (pr2 (comp-pushout f g c ind-c P h)) path-comp-pushout : { l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} → ( f : S → A) (g : S → B) (c : cocone f g X) → ( ind-c : Ind-pushout l f g c) (P : X → UU l) (h : dep-cocone f g c P) → coherence-htpy-dep-cocone f g c P ( dep-cocone-map f g c P (ind-pushout f g c ind-c P h)) ( h) ( left-comp-pushout f g c ind-c P h) ( right-comp-pushout f g c ind-c P h) path-comp-pushout f g c ind-c P h = pr2 (pr2 (comp-pushout f g c ind-c P h)) abstract uniqueness-dependent-universal-property-pushout : { l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} → ( f : S → A) (g : S → B) (c : cocone f g X) ( dup-c : dependent-universal-property-pushout l f g c) → ( P : X → UU l) ( h : dep-cocone f g c P) → is-contr ( Σ ((x : X) → P x) (λ k → htpy-dep-cocone f g c P (dep-cocone-map f g c P k) h)) uniqueness-dependent-universal-property-pushout f g c dup-c P h = is-contr-is-equiv' ( fib (dep-cocone-map f g c P) h) ( tot (λ k → htpy-dep-cocone-eq f g c P)) ( is-equiv-tot-is-fiberwise-equiv ( λ k → is-equiv-htpy-dep-cocone-eq f g c P ( dep-cocone-map f g c P k) h)) ( is-contr-map-is-equiv (dup-c P) h) {- This finishes the formalization of remark 18.1.3. -} {- Before we state the main theorem of this section, we also state a dependent version of the pullback property of pushouts. -} cone-dependent-pullback-property-pushout : {l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (P : X → UU l5) → let i = pr1 c j = pr1 (pr2 c) H = pr2 (pr2 c) in cone ( λ (h : (a : A) → P (i a)) → λ (s : S) → tr P (H s) (h (f s))) ( λ (h : (b : B) → P (j b)) → λ s → h (g s)) ( (x : X) → P x) cone-dependent-pullback-property-pushout f g (pair i (pair j H)) P = pair ( λ h → λ a → h (i a)) ( pair ( λ h → λ b → h (j b)) ( λ h → eq-htpy (λ s → apd h (H s)))) dependent-pullback-property-pushout : {l1 l2 l3 l4 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ (l4 ⊔ lsuc l)))) dependent-pullback-property-pushout l {S} {A} {B} f g {X} (pair i (pair j H)) = (P : X → UU l) → is-pullback ( λ (h : (a : A) → P (i a)) → λ s → tr P (H s) (h (f s))) ( λ (h : (b : B) → P (j b)) → λ s → h (g s)) ( cone-dependent-pullback-property-pushout f g (pair i (pair j H)) P) {- Theorem 18.1.4 The following properties are all equivalent: 1. universal-property-pushout 2. pullback-property-pushout 3. dependent-pullback-property-pushout 4. dependent-universal-property-pushout 5. Ind-pushout We have already shown that 1 ↔ 2. Therefore we will first show that 3 ↔ 4 ↔ 5. Finally, we will show that 2 ↔ 3. Here are the precise references to the proofs of those parts: Proof of 1 → 2. pullback-property-pushout-universal-property-pushout Proof of 2 → 1 universal-property-pushout-pullback-property-pushout Proof of 2 → 3 dependent-pullback-property-pullback-property-pushout Proof of 3 → 2 pullback-property-dependent-pullback-property-pushout Proof of 3 → 4 dependent-universal-property-dependent-pullback-property-pushout Proof of 4 → 3 dependent-pullback-property-dependent-universal-property-pushout Proof of 4 → 5 Ind-pushout-dependent-universal-property-pushout Proof of 5 → 4 dependent-universal-property-pushout-Ind-pushout -} {- Proof of Theorem 18.1.4, (v) implies (iv). -} dependent-naturality-square : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (f f' : (x : A) → B x) {x x' : A} (p : Id x x') {q : Id (f x) (f' x)} {q' : Id (f x') (f' x')} → Id ((apd f p) ∙ q') ((ap (tr B p) q) ∙ (apd f' p)) → Id (tr (λ y → Id (f y) (f' y)) p q) q' dependent-naturality-square f f' refl {q} {q'} s = inv (s ∙ (right-unit ∙ (ap-id q))) htpy-eq-dep-cocone-map : { l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} ( f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → ( H : Ind-pushout l f g c) { P : X → UU l} (h h' : (x : X) → P x) → Id (dep-cocone-map f g c P h) (dep-cocone-map f g c P h') → h ~ h' htpy-eq-dep-cocone-map f g c ind-c {P} h h' p = ind-pushout f g c ind-c ( λ x → Id (h x) (h' x)) ( pair ( pr1 (htpy-dep-cocone-eq f g c P p)) ( pair ( pr1 (pr2 (htpy-dep-cocone-eq f g c P p))) ( λ s → dependent-naturality-square h h' (pr2 (pr2 c) s) ( pr2 (pr2 (htpy-dep-cocone-eq f g c P p)) s)))) dependent-universal-property-pushout-Ind-pushout : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → ((l : Level) → Ind-pushout l f g c) → ((l : Level) → dependent-universal-property-pushout l f g c) dependent-universal-property-pushout-Ind-pushout f g c ind-c l P = is-equiv-has-inverse ( ind-pushout f g c (ind-c l) P) ( pr2 (ind-c l P)) ( λ h → eq-htpy (htpy-eq-dep-cocone-map f g c (ind-c l) ( ind-pushout f g c (ind-c l) P (dep-cocone-map f g c P h)) ( h) ( pr2 (ind-c l P) (dep-cocone-map f g c P h)))) {- Proof of Theorem 18.1.4, (iv) implies (v). -} Ind-pushout-dependent-universal-property-pushout : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → ((l : Level) → dependent-universal-property-pushout l f g c) → ((l : Level) → Ind-pushout l f g c) Ind-pushout-dependent-universal-property-pushout f g c dup-c l P = pr1 (dup-c l P) {- Proof of Theorem 18.1.4, (iv) implies (iii). -} triangle-dependent-pullback-property-pushout : {l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (P : X → UU l5) → let i = pr1 c j = pr1 (pr2 c) H = pr2 (pr2 c) in ( dep-cocone-map f g c P) ~ ( ( tot (λ h → tot (λ h' → htpy-eq))) ∘ ( gap ( λ (h : (a : A) → P (i a)) → λ s → tr P (H s) (h (f s))) ( λ (h : (b : B) → P (j b)) → λ s → h (g s)) ( cone-dependent-pullback-property-pushout f g c P))) triangle-dependent-pullback-property-pushout f g (pair i (pair j H)) P h = eq-pair refl (eq-pair refl (inv (issec-eq-htpy (λ x → apd h (H x))))) dependent-pullback-property-dependent-universal-property-pushout : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → ((l : Level) → dependent-universal-property-pushout l f g c) → ((l : Level) → dependent-pullback-property-pushout l f g c) dependent-pullback-property-dependent-universal-property-pushout f g (pair i (pair j H)) I l P = let c = (pair i (pair j H)) in is-equiv-right-factor ( dep-cocone-map f g c P) ( tot (λ h → tot λ h' → htpy-eq)) ( gap ( λ h x → tr P (H x) (h (f x))) ( λ h x → h (g x)) ( cone-dependent-pullback-property-pushout f g c P)) ( triangle-dependent-pullback-property-pushout f g c P) ( is-equiv-tot-is-fiberwise-equiv ( λ h → is-equiv-tot-is-fiberwise-equiv ( λ h' → funext (λ x → tr P (H x) (h (f x))) (λ x → h' (g x))))) ( I l P) {- Proof of Theorem 18.1.4, (iv) implies (iii). -} dependent-universal-property-dependent-pullback-property-pushout : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → ((l : Level) → dependent-pullback-property-pushout l f g c) → ((l : Level) → dependent-universal-property-pushout l f g c) dependent-universal-property-dependent-pullback-property-pushout f g (pair i (pair j H)) dpullback-c l P = let c = (pair i (pair j H)) in is-equiv-comp ( dep-cocone-map f g c P) ( tot (λ h → tot λ h' → htpy-eq)) ( gap ( λ h x → tr P (H x) (h (f x))) ( λ h x → h (g x)) ( cone-dependent-pullback-property-pushout f g c P)) ( triangle-dependent-pullback-property-pushout f g c P) ( dpullback-c l P) ( is-equiv-tot-is-fiberwise-equiv ( λ h → is-equiv-tot-is-fiberwise-equiv ( λ h' → funext (λ x → tr P (H x) (h (f x))) (λ x → h' (g x))))) {- Proof of Theorem 18.1.4, (iii) implies (ii). -} concat-eq-htpy : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x} (H : f ~ g) (K : g ~ h) → Id (eq-htpy (H ∙h K)) ((eq-htpy H) ∙ (eq-htpy K)) concat-eq-htpy {A = A} {B} {f} H K = ind-htpy f ( λ g H → ( h : (x : A) → B x) (K : g ~ h) → Id (eq-htpy (H ∙h K)) ((eq-htpy H) ∙ (eq-htpy K))) ( λ h K → ap (concat' f (eq-htpy K)) (inv (eq-htpy-htpy-refl _))) H _ K pullback-property-dependent-pullback-property-pushout : {l1 l2 l3 l4 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → dependent-pullback-property-pushout l f g c → pullback-property-pushout l f g c pullback-property-dependent-pullback-property-pushout l f g (pair i (pair j H)) dpb Y = is-pullback-htpy ( λ h s → tr (λ x → Y) (H s) (h (f s))) ( λ h → eq-htpy (λ s → inv (tr-triv (H s) (h (f s))))) ( λ h s → h (g s)) ( htpy-refl) { c = pair ( λ h a → h (i a)) ( pair (λ h b → h (j b)) (λ h → eq-htpy (h ·l H)))} ( cone-dependent-pullback-property-pushout f g (pair i (pair j H)) (λ x → Y)) ( pair ( λ h → refl) ( pair ( λ h → refl) ( λ h → right-unit ∙ ( ( ap eq-htpy ( eq-htpy (λ s → inv-con ( tr-triv (H s) (h (i (f s)))) ( ap h (H s)) ( apd h (H s)) ( inv (apd-triv h (H s)))))) ∙ ( concat-eq-htpy ( λ s → inv (tr-triv (H s) (h (i (f s))))) ( λ s → apd h (H s))))))) ( dpb (λ x → Y)) {- Proof of Theorem 18.1.4, (ii) implies (iii). -} {- We first define the family of lifts, which is indexed by maps Y → X. -} fam-lifts : {l1 l2 l3 : Level} (Y : UU l1) {X : UU l2} (P : X → UU l3) → (Y → X) → UU (l1 ⊔ l3) fam-lifts Y P h = (y : Y) → P (h y) tr-fam-lifts' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) → (h : B → X) {f g : A → B} (H : f ~ g) → fam-lifts A P (h ∘ f) → fam-lifts A P (h ∘ g) tr-fam-lifts' P h {f} {g} H k s = tr (P ∘ h) (H s) (k s) TR-EQ-HTPY-FAM-LIFTS : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) → (h : B → X) {f g : A → B} (H : f ~ g) → UU (l1 ⊔ l4) TR-EQ-HTPY-FAM-LIFTS {A = A} P h H = tr (fam-lifts A P) (eq-htpy (h ·l H)) ~ (tr-fam-lifts' P h H) tr-eq-htpy-fam-lifts-htpy-refl : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) → (h : B → X) (f : A → B) → TR-EQ-HTPY-FAM-LIFTS P h (htpy-refl' f) tr-eq-htpy-fam-lifts-htpy-refl P h f k = ap (λ t → tr (fam-lifts _ P) t k) (eq-htpy-htpy-refl (h ∘ f)) abstract tr-eq-htpy-fam-lifts : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) → (h : B → X) {f g : A → B} (H : f ~ g) → TR-EQ-HTPY-FAM-LIFTS P h H tr-eq-htpy-fam-lifts P h {f} = ind-htpy f ( λ g H → TR-EQ-HTPY-FAM-LIFTS P h H) ( tr-eq-htpy-fam-lifts-htpy-refl P h f) compute-tr-eq-htpy-fam-lifts : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) → (h : B → X) (f : A → B) → Id ( tr-eq-htpy-fam-lifts P h (htpy-refl' f)) ( tr-eq-htpy-fam-lifts-htpy-refl P h f) compute-tr-eq-htpy-fam-lifts P h f = comp-htpy f ( λ g H → TR-EQ-HTPY-FAM-LIFTS P h H) ( tr-eq-htpy-fam-lifts-htpy-refl P h f) {- One of the basic operations on lifts is precomposition by an ordinary function. -} precompose-lifts : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) → (f : A → B) → (h : B → X) → (fam-lifts B P h) → (fam-lifts A P (h ∘ f)) precompose-lifts P f h h' a = h' (f a) {- Given two homotopic maps, their precomposition functions have different codomains. However, there is a commuting triangle. We obtain this triangle by homotopy induction. -} TRIANGLE-PRECOMPOSE-LIFTS : { l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} ( P : X → UU l4) {f g : A → B} (H : f ~ g) → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ l4))) TRIANGLE-PRECOMPOSE-LIFTS {A = A} {B} {X} P {f} {g} H = (h : B → X) → ( (tr (fam-lifts A P) (eq-htpy (h ·l H))) ∘ (precompose-lifts P f h)) ~ ( precompose-lifts P g h) triangle-precompose-lifts-htpy-refl : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) (f : A → B) → TRIANGLE-PRECOMPOSE-LIFTS P (htpy-refl' f) triangle-precompose-lifts-htpy-refl {A = A} P f h h' = tr-eq-htpy-fam-lifts-htpy-refl P h f (λ a → h' (f a)) abstract triangle-precompose-lifts : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) {f g : A → B} (H : f ~ g) → TRIANGLE-PRECOMPOSE-LIFTS P H triangle-precompose-lifts {A = A} P {f} = ind-htpy f ( λ g H → TRIANGLE-PRECOMPOSE-LIFTS P H) ( triangle-precompose-lifts-htpy-refl P f) compute-triangle-precompose-lifts : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) (f : A → B) → Id ( triangle-precompose-lifts P (htpy-refl' f)) ( triangle-precompose-lifts-htpy-refl P f) compute-triangle-precompose-lifts P f = comp-htpy f ( λ g H → TRIANGLE-PRECOMPOSE-LIFTS P H) ( triangle-precompose-lifts-htpy-refl P f) {- There is a similar commuting triangle with the computed transport function. This time we don't use homotopy induction to construct the homotopy. We give an explicit definition instead. -} triangle-precompose-lifts' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) {f g : A → B} (H : f ~ g) → (h : B → X) → ( (tr-fam-lifts' P h H) ∘ (precompose-lifts P f h)) ~ ( precompose-lifts P g h) triangle-precompose-lifts' P H h k = eq-htpy (λ a → apd k (H a)) compute-triangle-precompose-lifts' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) (f : A → B) → (h : B → X) → ( triangle-precompose-lifts' P (htpy-refl' f) h) ~ ( htpy-refl' ( precompose-lifts P f h)) compute-triangle-precompose-lifts' P f h k = eq-htpy-htpy-refl _ {- There is a coherence between the two commuting triangles. This coherence is again constructed by homotopy induction. -} COHERENCE-TRIANGLE-PRECOMPOSE-LIFTS : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) {f g : A → B} (H : f ~ g) → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ l4))) COHERENCE-TRIANGLE-PRECOMPOSE-LIFTS {A = A} {B} {X} P {f} {g} H = (h : B → X) → ( triangle-precompose-lifts P H h) ~ ( ( ( tr-eq-htpy-fam-lifts P h H) ·r (precompose-lifts P f h)) ∙h ( triangle-precompose-lifts' P H h)) coherence-triangle-precompose-lifts-htpy-refl : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) (f : A → B) → COHERENCE-TRIANGLE-PRECOMPOSE-LIFTS P (htpy-refl' f) coherence-triangle-precompose-lifts-htpy-refl P f h = ( htpy-eq (htpy-eq (compute-triangle-precompose-lifts P f) h)) ∙h ( ( ( htpy-inv htpy-right-unit) ∙h ( htpy-ap-concat ( λ h' → tr-eq-htpy-fam-lifts-htpy-refl P h f (λ a → h' (f a))) ( htpy-refl) ( triangle-precompose-lifts' P htpy-refl h) ( htpy-inv (compute-triangle-precompose-lifts' P f h)))) ∙h ( htpy-eq ( ap ( λ t → ( t ·r (precompose-lifts P f h)) ∙h ( triangle-precompose-lifts' P htpy-refl h)) ( inv (compute-tr-eq-htpy-fam-lifts P h f))))) abstract coherence-triangle-precompose-lifts : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) {f g : A → B} (H : f ~ g) → COHERENCE-TRIANGLE-PRECOMPOSE-LIFTS P H coherence-triangle-precompose-lifts P {f} = ind-htpy f ( λ g H → COHERENCE-TRIANGLE-PRECOMPOSE-LIFTS P H) ( coherence-triangle-precompose-lifts-htpy-refl P f) compute-coherence-triangle-precompose-lifts : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) (f : A → B) → Id ( coherence-triangle-precompose-lifts P (htpy-refl' f)) ( coherence-triangle-precompose-lifts-htpy-refl P f) compute-coherence-triangle-precompose-lifts P f = comp-htpy f ( λ g H → COHERENCE-TRIANGLE-PRECOMPOSE-LIFTS P H) ( coherence-triangle-precompose-lifts-htpy-refl P f) total-lifts : {l1 l2 l3 : Level} (A : UU l1) {X : UU l2} (P : X → UU l3) → UU _ total-lifts A {X} P = type-choice-∞ {A = A} {B = λ a → X} (λ a → P) precompose-total-lifts : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) → (A → B) → total-lifts B P → total-lifts A P precompose-total-lifts {A = A} P f = toto ( λ h → (a : A) → P (h a)) ( λ h → h ∘ f) ( precompose-lifts P f) coherence-square-inv-choice-∞ : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) (f : A → B) → coherence-square ( precompose-total-lifts P f) ( inv-choice-∞ {A = B} {B = λ x → X} {C = λ x y → P y}) ( inv-choice-∞) ( λ h → h ∘ f) coherence-square-inv-choice-∞ P f = htpy-refl {- Our goal is now to produce a homotopy between (precompose-total-lifts P f) and (precompose-total-lifts P g) for homotopic maps f and g, and a coherence filling a cilinder. -} HTPY-PRECOMPOSE-TOTAL-LIFTS : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) {f g : A → B} (H : f ~ g) → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ l4))) HTPY-PRECOMPOSE-TOTAL-LIFTS P {f} {g} H = (precompose-total-lifts P f) ~ (precompose-total-lifts P g) htpy-precompose-total-lifts : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) {f g : A → B} (H : f ~ g) → HTPY-PRECOMPOSE-TOTAL-LIFTS P H htpy-precompose-total-lifts {A = A} {B} P {f} {g} H = htpy-toto { P = fam-lifts B P} ( fam-lifts A P) ( λ h → eq-htpy (h ·l H)) ( precompose-lifts P f) ( triangle-precompose-lifts P H) {- We show that when htpy-precompose-total-lifts is applied to htpy-refl, it computes to htpy-refl. -} tr-id-left-subst : {i j : Level} {A : UU i} {B : UU j} {f : A → B} {x y : A} (p : Id x y) (b : B) → (q : Id (f x) b) → Id (tr (λ (a : A) → Id (f a) b) p q) ((inv (ap f p)) ∙ q) tr-id-left-subst refl b q = refl compute-htpy-precompose-total-lifts : { l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) ( f : A → B) → ( htpy-precompose-total-lifts P (htpy-refl' f)) ~ ( htpy-refl' (toto (fam-lifts A P) (λ h → h ∘ f) (precompose-lifts P f))) compute-htpy-precompose-total-lifts {A = A} P f (pair h h') = let α = λ (t : Id (h ∘ f) (h ∘ f)) → tr (fam-lifts A P) t (λ a → h' (f a)) in ap eq-pair' ( eq-pair ( eq-htpy-htpy-refl (h ∘ f)) ( ( tr-id-left-subst { f = α} ( eq-htpy-htpy-refl (h ∘ f)) ( λ a → h' (f a)) ( triangle-precompose-lifts P htpy-refl h h')) ∙ ( ( ap ( λ t → inv (ap α (eq-htpy-htpy-refl (λ a → h (f a)))) ∙ t) ( htpy-eq ( htpy-eq (compute-triangle-precompose-lifts P f) h) h')) ∙ ( left-inv (triangle-precompose-lifts-htpy-refl P f h h'))))) COHERENCE-HTPY-INV-CHOICE-∞ : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) {f g : A → B} (H : f ~ g) → UU _ COHERENCE-HTPY-INV-CHOICE-∞ P {f} {g} H = ( ( coherence-square-inv-choice-∞ P f) ∙h ( inv-choice-∞ ·l ( htpy-precompose-total-lifts P H))) ~ ( ( ( λ h → eq-htpy (h ·l H)) ·r inv-choice-∞) ∙h ( coherence-square-inv-choice-∞ P g)) coherence-htpy-inv-choice-∞-htpy-refl : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) (f : A → B) → COHERENCE-HTPY-INV-CHOICE-∞ P (htpy-refl' f) coherence-htpy-inv-choice-∞-htpy-refl {X = X} P f = ( htpy-ap-concat ( coherence-square-inv-choice-∞ P f) ( inv-choice-∞ ·l ( htpy-precompose-total-lifts P htpy-refl)) ( htpy-refl) ( λ h → ap (ap inv-choice-∞) (compute-htpy-precompose-total-lifts P f h))) ∙h ( htpy-inv ( htpy-ap-concat' ( ( htpy-precomp htpy-refl (Σ X P)) ·r inv-choice-∞) ( htpy-refl) ( htpy-refl) ( λ h → compute-htpy-precomp f (Σ X P) (inv-choice-∞ h)))) abstract coherence-htpy-inv-choice-∞ : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) {f g : A → B} (H : f ~ g) → COHERENCE-HTPY-INV-CHOICE-∞ P H coherence-htpy-inv-choice-∞ P {f} = ind-htpy f ( λ g H → COHERENCE-HTPY-INV-CHOICE-∞ P H) ( coherence-htpy-inv-choice-∞-htpy-refl P f) cone-family-dependent-pullback-property : {l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} (f : S → A) (g : S → B) (c : cocone f g X) (P : X → UU l) → cone-family ( fam-lifts S P) ( precompose-lifts P f) ( precompose-lifts P g) ( cone-pullback-property-pushout f g c X) ( fam-lifts X P) cone-family-dependent-pullback-property f g c P γ = pair ( precompose-lifts P (pr1 c) γ) ( pair ( precompose-lifts P (pr1 (pr2 c)) γ) ( triangle-precompose-lifts P (pr2 (pr2 c)) γ)) is-pullback-cone-family-dependent-pullback-property : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} (f : S → A) (g : S → B) (c : cocone f g X) → ((l : Level) → pullback-property-pushout l f g c) → {l : Level} (P : X → UU l) (γ : X → X) → is-pullback ( ( tr (fam-lifts S P) (eq-htpy (γ ·l (pr2 (pr2 c))))) ∘ ( precompose-lifts P f (γ ∘ (pr1 c)))) ( precompose-lifts P g (γ ∘ (pr1 (pr2 c)))) ( cone-family-dependent-pullback-property f g c P γ) is-pullback-cone-family-dependent-pullback-property {S = S} {A} {B} {X} f g (pair i (pair j H)) pb-c P = let c = pair i (pair j H) in is-pullback-family-is-pullback-tot ( fam-lifts S P) ( precompose-lifts P f) ( precompose-lifts P g) ( cone-pullback-property-pushout f g c X) ( cone-family-dependent-pullback-property f g c P) ( pb-c _ X) ( is-pullback-top-is-pullback-bottom-cube-is-equiv ( precomp i (Σ X P)) ( precomp j (Σ X P)) ( precomp f (Σ X P)) ( precomp g (Σ X P)) ( toto (fam-lifts A P) (precomp i X) (precompose-lifts P i)) ( toto (fam-lifts B P) (precomp j X) (precompose-lifts P j)) ( toto (fam-lifts S P) (precomp f X) (precompose-lifts P f)) ( toto (fam-lifts S P) (precomp g X) (precompose-lifts P g)) ( inv-choice-∞) ( inv-choice-∞) ( inv-choice-∞) ( inv-choice-∞) ( htpy-precompose-total-lifts P H) ( htpy-refl) ( htpy-refl) ( htpy-refl) ( htpy-refl) ( htpy-precomp H (Σ X P)) ( coherence-htpy-inv-choice-∞ P H) ( is-equiv-inv-choice-∞) ( is-equiv-inv-choice-∞) ( is-equiv-inv-choice-∞) ( is-equiv-inv-choice-∞) ( pb-c _ (Σ X P))) dependent-pullback-property-pullback-property-pushout : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} (f : S → A) (g : S → B) (c : cocone f g X) → ((l : Level) → pullback-property-pushout l f g c) → ((l : Level) → dependent-pullback-property-pushout l f g c) dependent-pullback-property-pullback-property-pushout {S = S} {A} {B} {X} f g (pair i (pair j H)) pullback-c l P = let c = pair i (pair j H) in is-pullback-htpy' ( (tr (fam-lifts S P) (eq-htpy (id ·l H))) ∘ (precompose-lifts P f i)) ( (tr-eq-htpy-fam-lifts P id H) ·r (precompose-lifts P f i)) ( precompose-lifts P g j) ( htpy-refl) ( cone-family-dependent-pullback-property f g c P id) { c' = cone-dependent-pullback-property-pushout f g c P} ( pair htpy-refl ( pair htpy-refl ( htpy-right-unit ∙h (coherence-triangle-precompose-lifts P H id)))) ( is-pullback-cone-family-dependent-pullback-property f g c pullback-c P id) {- This concludes the proof of Theorem 18.1.4. -} {- We give some further useful implications -} dependent-universal-property-universal-property-pushout : { l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} ( f : S → A) (g : S → B) (c : cocone f g X) → ( (l : Level) → universal-property-pushout l f g c) → ( (l : Level) → dependent-universal-property-pushout l f g c) dependent-universal-property-universal-property-pushout f g c up-X = dependent-universal-property-dependent-pullback-property-pushout f g c ( dependent-pullback-property-pullback-property-pushout f g c ( λ l → pullback-property-pushout-universal-property-pushout l f g c ( up-X l))) -- Section 16.2 Families over pushouts {- Definition 18.2.1 -} Fam-pushout : {l1 l2 l3 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ lsuc l))) Fam-pushout l {S} {A} {B} f g = Σ ( A → UU l) ( λ PA → Σ (B → UU l) ( λ PB → (s : S) → PA (f s) ≃ PB (g s))) {- We characterize the identity type of Fam-pushout. -} coherence-equiv-Fam-pushout : { l1 l2 l3 l l' : Level} {S : UU l1} {A : UU l2} {B : UU l3} { f : S → A} {g : S → B} ( P : Fam-pushout l f g) (Q : Fam-pushout l' f g) → ( eA : (a : A) → (pr1 P a) ≃ (pr1 Q a)) ( eB : (b : B) → (pr1 (pr2 P) b) ≃ (pr1 (pr2 Q) b)) → UU (l1 ⊔ l ⊔ l') coherence-equiv-Fam-pushout {S = S} {f = f} {g} P Q eA eB = ( s : S) → ( (map-equiv (eB (g s))) ∘ (map-equiv (pr2 (pr2 P) s))) ~ ( (map-equiv (pr2 (pr2 Q) s)) ∘ (map-equiv (eA (f s)))) equiv-Fam-pushout : {l1 l2 l3 l l' : Level} {S : UU l1} {A : UU l2} {B : UU l3} {f : S → A} {g : S → B} → Fam-pushout l f g → Fam-pushout l' f g → UU (l1 ⊔ l2 ⊔ l3 ⊔ l ⊔ l') equiv-Fam-pushout {S = S} {A} {B} {f} {g} P Q = Σ ( (a : A) → (pr1 P a) ≃ (pr1 Q a)) ( λ eA → Σ ( (b : B) → (pr1 (pr2 P) b) ≃ (pr1 (pr2 Q) b)) ( coherence-equiv-Fam-pushout P Q eA)) reflexive-equiv-Fam-pushout : {l1 l2 l3 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {f : S → A} {g : S → B} (P : Fam-pushout l f g) → equiv-Fam-pushout P P reflexive-equiv-Fam-pushout (pair PA (pair PB PS)) = pair (λ a → equiv-id (PA a)) ( pair ( λ b → equiv-id (PB b)) ( λ s → htpy-refl)) equiv-Fam-pushout-eq : {l1 l2 l3 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {f : S → A} {g : S → B} {P Q : Fam-pushout l f g} → Id P Q → equiv-Fam-pushout P Q equiv-Fam-pushout-eq {P = P} {.P} refl = reflexive-equiv-Fam-pushout P is-contr-total-equiv-Fam-pushout : {l1 l2 l3 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {f : S → A} {g : S → B} (P : Fam-pushout l f g) → is-contr (Σ (Fam-pushout l f g) (equiv-Fam-pushout P)) is-contr-total-equiv-Fam-pushout {S = S} {A} {B} {f} {g} P = is-contr-total-Eq-structure ( λ PA' t eA → Σ ( (b : B) → (pr1 (pr2 P) b) ≃ (pr1 t b)) ( coherence-equiv-Fam-pushout P (pair PA' t) eA)) ( is-contr-total-Eq-Π ( λ a X → (pr1 P a) ≃ X) ( λ a → is-contr-total-equiv (pr1 P a)) ( pr1 P)) ( pair (pr1 P) (λ a → equiv-id (pr1 P a))) ( is-contr-total-Eq-structure ( λ PB' PS' eB → coherence-equiv-Fam-pushout P (pair (pr1 P) (pair PB' PS')) (λ a → equiv-id (pr1 P a)) eB) ( is-contr-total-Eq-Π ( λ b Y → (pr1 (pr2 P) b) ≃ Y) ( λ b → is-contr-total-equiv (pr1 (pr2 P) b)) ( pr1 (pr2 P))) ( pair (pr1 (pr2 P)) (λ b → equiv-id (pr1 (pr2 P) b))) ( is-contr-total-Eq-Π ( λ s e → (map-equiv (pr2 (pr2 P) s)) ~ (map-equiv e)) ( λ s → is-contr-total-htpy-equiv (pr2 (pr2 P) s)) ( pr2 (pr2 P)))) is-equiv-equiv-Fam-pushout-eq : {l1 l2 l3 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {f : S → A} {g : S → B} (P Q : Fam-pushout l f g) → is-equiv (equiv-Fam-pushout-eq {P = P} {Q}) is-equiv-equiv-Fam-pushout-eq P = fundamental-theorem-id P ( reflexive-equiv-Fam-pushout P) ( is-contr-total-equiv-Fam-pushout P) ( λ Q → equiv-Fam-pushout-eq {P = P} {Q}) equiv-equiv-Fam-pushout : {l1 l2 l3 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {f : S → A} {g : S → B} (P Q : Fam-pushout l f g) → Id P Q ≃ equiv-Fam-pushout P Q equiv-equiv-Fam-pushout P Q = pair ( equiv-Fam-pushout-eq) ( is-equiv-equiv-Fam-pushout-eq P Q) eq-equiv-Fam-pushout : {l1 l2 l3 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {f : S → A} {g : S → B} {P Q : Fam-pushout l f g} → (equiv-Fam-pushout P Q) → Id P Q eq-equiv-Fam-pushout {P = P} {Q} = inv-is-equiv (is-equiv-equiv-Fam-pushout-eq P Q) issec-eq-equiv-Fam-pushout : { l1 l2 l3 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} { f : S → A} {g : S → B} {P Q : Fam-pushout l f g} → ( ( equiv-Fam-pushout-eq {P = P} {Q}) ∘ ( eq-equiv-Fam-pushout {P = P} {Q})) ~ id issec-eq-equiv-Fam-pushout {P = P} {Q} = issec-inv-is-equiv (is-equiv-equiv-Fam-pushout-eq P Q) isretr-eq-equiv-Fam-pushout : {l1 l2 l3 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {f : S → A} {g : S → B} {P Q : Fam-pushout l f g} → ( ( eq-equiv-Fam-pushout {P = P} {Q}) ∘ ( equiv-Fam-pushout-eq {P = P} {Q})) ~ id isretr-eq-equiv-Fam-pushout {P = P} {Q} = isretr-inv-is-equiv (is-equiv-equiv-Fam-pushout-eq P Q) {- This concludes the characterization of the identity type of Fam-pushout. -} {- Definition 18.2.2 -} desc-fam : {l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} {f : S → A} {g : S → B} (c : cocone f g X) → (P : X → UU l) → Fam-pushout l f g desc-fam c P = pair ( P ∘ (pr1 c)) ( pair ( P ∘ (pr1 (pr2 c))) ( λ s → (pair (tr P (pr2 (pr2 c) s)) (is-equiv-tr P (pr2 (pr2 c) s))))) {- Theorem 18.2.3 -} Fam-pushout-cocone-UU : {l1 l2 l3 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3} {f : S → A} {g : S → B} → cocone f g (UU l) → Fam-pushout l f g Fam-pushout-cocone-UU l = tot (λ PA → (tot (λ PB H s → equiv-eq (H s)))) is-equiv-Fam-pushout-cocone-UU : {l1 l2 l3 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3} {f : S → A} {g : S → B} → is-equiv (Fam-pushout-cocone-UU l {f = f} {g}) is-equiv-Fam-pushout-cocone-UU l {f = f} {g} = is-equiv-tot-is-fiberwise-equiv ( λ PA → is-equiv-tot-is-fiberwise-equiv ( λ PB → is-equiv-postcomp-Π ( λ s → equiv-eq) ( λ s → univalence (PA (f s)) (PB (g s))))) htpy-equiv-eq-ap-fam : {l1 l2 : Level} {A : UU l1} (B : A → UU l2) {x y : A} (p : Id x y) → htpy-equiv (equiv-tr B p) (equiv-eq (ap B p)) htpy-equiv-eq-ap-fam B {x} {.x} refl = reflexive-htpy-equiv (equiv-id (B x)) triangle-desc-fam : {l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} {f : S → A} {g : S → B} (c : cocone f g X) → ( desc-fam {l = l} c) ~ ( ( Fam-pushout-cocone-UU l {f = f} {g}) ∘ ( cocone-map f g {Y = UU l} c)) triangle-desc-fam {l = l} {S} {A} {B} {X} (pair i (pair j H)) P = eq-equiv-Fam-pushout ( pair ( λ a → equiv-id (P (i a))) ( pair ( λ b → equiv-id (P (j b))) ( λ s → htpy-equiv-eq-ap-fam P (H s)))) is-equiv-desc-fam : {l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} {f : S → A} {g : S → B} (c : cocone f g X) → ((l' : Level) → universal-property-pushout l' f g c) → is-equiv (desc-fam {l = l} {f = f} {g} c) is-equiv-desc-fam {l = l} {f = f} {g} c up-c = is-equiv-comp ( desc-fam c) ( Fam-pushout-cocone-UU l) ( cocone-map f g c) ( triangle-desc-fam c) ( up-c (lsuc l) (UU l)) ( is-equiv-Fam-pushout-cocone-UU l) equiv-desc-fam : {l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} {f : S → A} {g : S → B} (c : cocone f g X) → ((l' : Level) → universal-property-pushout l' f g c) → (X → UU l) ≃ Fam-pushout l f g equiv-desc-fam c up-c = pair ( desc-fam c) ( is-equiv-desc-fam c up-c) {- Corollary 18.2.4 -} uniqueness-Fam-pushout : {l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} (f : S → A) (g : S → B) (c : cocone f g X) → ((l' : Level) → universal-property-pushout l' f g c) → ( P : Fam-pushout l f g) → is-contr ( Σ (X → UU l) (λ Q → equiv-Fam-pushout P (desc-fam c Q))) uniqueness-Fam-pushout {l = l} f g c up-c P = is-contr-equiv' ( fib (desc-fam c) P) ( equiv-tot (λ Q → ( equiv-equiv-Fam-pushout P (desc-fam c Q)) ∘e ( equiv-inv (desc-fam c Q) P))) ( is-contr-map-is-equiv (is-equiv-desc-fam c up-c) P) fam-Fam-pushout : {l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} {f : S → A} {g : S → B} (c : cocone f g X) → (up-X : (l' : Level) → universal-property-pushout l' f g c) → Fam-pushout l f g → (X → UU l) fam-Fam-pushout {f = f} {g} c up-X P = pr1 (center (uniqueness-Fam-pushout f g c up-X P)) issec-fam-Fam-pushout : {l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} {f : S → A} {g : S → B} (c : cocone f g X) → (up-X : (l' : Level) → universal-property-pushout l' f g c) → ((desc-fam {l = l} c) ∘ (fam-Fam-pushout c up-X)) ~ id issec-fam-Fam-pushout {f = f} {g} c up-X P = inv (eq-equiv-Fam-pushout (pr2 (center (uniqueness-Fam-pushout f g c up-X P)))) comp-left-fam-Fam-pushout : { l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} { f : S → A} {g : S → B} (c : cocone f g X) → ( up-X : (l' : Level) → universal-property-pushout l' f g c) → ( P : Fam-pushout l f g) → ( a : A) → (pr1 P a) ≃ (fam-Fam-pushout c up-X P (pr1 c a)) comp-left-fam-Fam-pushout {f = f} {g} c up-X P = pr1 (pr2 (center (uniqueness-Fam-pushout f g c up-X P))) comp-right-fam-Fam-pushout : { l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} { f : S → A} {g : S → B} (c : cocone f g X) → ( up-X : (l' : Level) → universal-property-pushout l' f g c) → ( P : Fam-pushout l f g) → ( b : B) → (pr1 (pr2 P) b) ≃ (fam-Fam-pushout c up-X P (pr1 (pr2 c) b)) comp-right-fam-Fam-pushout {f = f} {g} c up-X P = pr1 (pr2 (pr2 (center (uniqueness-Fam-pushout f g c up-X P)))) comp-path-fam-Fam-pushout : { l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} { f : S → A} {g : S → B} (c : cocone f g X) → ( up-X : (l' : Level) → universal-property-pushout l' f g c) → ( P : Fam-pushout l f g) → ( s : S) → ( ( map-equiv (comp-right-fam-Fam-pushout c up-X P (g s))) ∘ ( map-equiv (pr2 (pr2 P) s))) ~ ( ( tr (fam-Fam-pushout c up-X P) (pr2 (pr2 c) s)) ∘ ( map-equiv (comp-left-fam-Fam-pushout c up-X P (f s)))) comp-path-fam-Fam-pushout {f = f} {g} c up-X P = pr2 (pr2 (pr2 (center (uniqueness-Fam-pushout f g c up-X P)))) {- -- Section 18.3 The Flattening lemma for pushouts {- Definition 18.3.1 -} cocone-flattening-pushout : { l1 l2 l3 l4 l5 : Level} { S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} ( f : S → A) (g : S → B) (c : cocone f g X) ( P : Fam-pushout l5 f g) ( Q : X → UU l5) ( e : equiv-Fam-pushout P (desc-fam f g c Q)) → cocone ( toto (pr1 P) f (λ s → id)) ( toto (pr1 (pr2 P)) g (λ s → map-equiv (pr2 (pr2 P) s))) ( Σ X Q) cocone-flattening-pushout f g c P Q e = pair ( toto Q ( pr1 c) ( λ a → map-equiv (pr1 e a))) ( pair ( toto Q ( pr1 (pr2 c)) ( λ b → map-equiv (pr1 (pr2 e) b))) ( htpy-toto Q ( pr2 (pr2 c)) ( λ s → map-equiv (pr1 e (f s))) ( λ s → htpy-inv (pr2 (pr2 e) s)))) {- Theorem 18.3.2 The flattening lemma -} coherence-bottom-flattening-lemma' : {l1 l2 l3 : Level} {B : UU l1} {Q : B → UU l2} {T : UU l3} {b b' : B} (α : Id b b') {y : Q b} {y' : Q b'} (β : Id (tr Q α y) y') (h : (b : B) → Q b → T) → Id (h b y) (h b' y') coherence-bottom-flattening-lemma' refl refl h = refl coherence-bottom-flattening-lemma : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {P : A → UU l3} {Q : B → UU l4} {T : UU l5} {f f' : A → B} (H : f ~ f') {g : (a : A) → P a → Q (f a)} {g' : (a : A) → P a → Q (f' a)} (K : (a : A) → ((tr Q (H a)) ∘ (g a)) ~ (g' a)) (h : (b : B) → Q b → T) → (a : A) (p : P a) → Id (h (f a) (g a p)) (h (f' a) (g' a p)) coherence-bottom-flattening-lemma H K h a p = coherence-bottom-flattening-lemma' (H a) (K a p) h coherence-cube-flattening-lemma : {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {P : A → UU l3} {Q : B → UU l4} {T : UU l5} {f f' : A → B} (H : f ~ f') {g : (a : A) → P a → Q (f a)} {g' : (a : A) → P a → Q (f' a)} (K : (a : A) → ((tr Q (H a)) ∘ (g a)) ~ (g' a)) (h : Σ B Q → T) → Id ( eq-htpy ( λ a → eq-htpy ( coherence-bottom-flattening-lemma H K (ev-pair h) a))) ( ap ev-pair ( htpy-precomp (htpy-toto Q H g K) T h)) coherence-cube-flattening-lemma {A = A} {B} {P} {Q} {T} {f = f} {f'} H {g} {g'} K = ind-htpy f ( λ f' H' → (g : (a : A) → P a → Q (f a)) (g' : (a : A) → P a → Q (f' a)) (K : (a : A) → ((tr Q (H' a)) ∘ (g a)) ~ (g' a)) (h : Σ B Q → T) → Id ( eq-htpy ( λ a → eq-htpy ( coherence-bottom-flattening-lemma H' K (ev-pair h) a))) ( ap ev-pair ( htpy-precomp (htpy-toto Q H' g K) T h))) ( λ g g' K h → {!ind-htpy g (λ g' K' → (h : Σ B Q → T) → Id ( eq-htpy ( λ a → eq-htpy ( coherence-bottom-flattening-lemma htpy-refl (λ a → htpy-eq (K' a)) (ev-pair h) a))) ( ap ev-pair ( htpy-precomp (htpy-toto Q htpy-refl g (λ a → htpy-eq (K' a))) T h))) ? (λ a → eq-htpy (K a)) h!}) H g g' K flattening-pushout' : {l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} (f : S → A) (g : S → B) (c : cocone f g X) → ( P : Fam-pushout l5 f g) ( Q : X → UU l5) ( e : equiv-Fam-pushout P (desc-fam f g c Q)) → (l : Level) → pullback-property-pushout l ( toto (pr1 P) f (λ s → id)) ( toto (pr1 (pr2 P)) g (λ s → map-equiv (pr2 (pr2 P) s))) ( cocone-flattening-pushout f g c P Q e) flattening-pushout' f g c P Q e l T = is-pullback-top-is-pullback-bottom-cube-is-equiv ( ( postcomp-Π (λ x → precomp-Π (map-equiv (pr1 e x)) (λ q → T))) ∘ ( precomp-Π (pr1 c) (λ x → (Q x) → T))) ( ( postcomp-Π (λ x → precomp-Π (map-equiv (pr1 (pr2 e) x)) (λ q → T))) ∘ ( precomp-Π (pr1 (pr2 c)) (λ x → (Q x) → T))) ( precomp-Π f (λ a → (pr1 P a) → T)) ( ( postcomp-Π (λ s → precomp (map-equiv (pr2 (pr2 P) s)) T)) ∘ ( precomp-Π g (λ b → (pr1 (pr2 P) b) → T))) ( precomp (toto Q (pr1 c) (λ a → map-equiv (pr1 e a))) T) ( precomp (toto Q (pr1 (pr2 c)) (λ b → map-equiv (pr1 (pr2 e) b))) T) ( precomp (toto (pr1 P) f (λ s → id)) T) ( precomp (toto (pr1 (pr2 P)) g (λ s → map-equiv (pr2 (pr2 P) s))) T) ev-pair ev-pair ev-pair ev-pair ( htpy-precomp ( htpy-toto Q ( pr2 (pr2 c)) ( λ s → map-equiv (pr1 e (f s))) ( λ s → htpy-inv (pr2 (pr2 e) s))) ( T)) htpy-refl htpy-refl htpy-refl htpy-refl ( λ h → eq-htpy (λ s → eq-htpy ( coherence-bottom-flattening-lemma ( pr2 (pr2 c)) ( λ s → htpy-inv (pr2 (pr2 e) s)) ( h) ( s)))) {!!} is-equiv-ev-pair is-equiv-ev-pair is-equiv-ev-pair is-equiv-ev-pair {!!} flattening-pushout : {l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} (f : S → A) (g : S → B) (c : cocone f g X) → ( P : Fam-pushout l5 f g) ( Q : X → UU l5) ( e : equiv-Fam-pushout P (desc-fam f g c Q)) → (l : Level) → universal-property-pushout l ( toto (pr1 P) f (λ s → id)) ( toto (pr1 (pr2 P)) g (λ s → map-equiv (pr2 (pr2 P) s))) ( cocone-flattening-pushout f g c P Q e) flattening-pushout f g c P Q e l = universal-property-pushout-pullback-property-pushout l ( toto (pr1 P) f (λ s → id)) ( toto (pr1 (pr2 P)) g (λ s → map-equiv (pr2 (pr2 P) s))) ( cocone-flattening-pushout f g c P Q e) ( flattening-pushout' f g c P Q e l) -}
38.135484
110
0.528739
10497dbedce13a630521f9e8d3ed2b4ace62cad0
2,746
agda
Agda
BasicIS4/Syntax/HilbertSequential.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicIS4/Syntax/HilbertSequential.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicIS4/Syntax/HilbertSequential.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇. -- Hilbert-style formalisation of syntax. -- Sequences of terms. module BasicIS4.Syntax.HilbertSequential where open import BasicIS4.Syntax.Common public -- Derivations. infix 3 _⊦⊢_ data _⊦⊢_ (Γ : Cx Ty) : Cx Ty → Set where nil : Γ ⊦⊢ ∅ var : ∀ {Ξ A} → A ∈ Γ → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , A mp : ∀ {Ξ A B} → A ▻ B ∈ Ξ → A ∈ Ξ → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , B ci : ∀ {Ξ A} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , A ▻ A ck : ∀ {Ξ A B} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , A ▻ B ▻ A cs : ∀ {Ξ A B C} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C nec : ∀ {Ξ Ξ′ A} → ∅ ⊦⊢ Ξ′ , A → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , □ A cdist : ∀ {Ξ A B} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , □ (A ▻ B) ▻ □ A ▻ □ B cup : ∀ {Ξ A} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , □ A ▻ □ □ A cdown : ∀ {Ξ A} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , □ A ▻ A cpair : ∀ {Ξ A B} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , A ▻ B ▻ A ∧ B cfst : ∀ {Ξ A B} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , A ∧ B ▻ A csnd : ∀ {Ξ A B} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , A ∧ B ▻ B unit : ∀ {Ξ} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ , ⊤ infix 3 _⊢_ _⊢_ : Cx Ty → Ty → Set Γ ⊢ A = ∃ (λ Ξ → Γ ⊦⊢ Ξ , A) -- Monotonicity with respect to context inclusion. mono⊦⊢ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊦⊢ Ξ → Γ′ ⊦⊢ Ξ mono⊦⊢ η nil = nil mono⊦⊢ η (var i ts) = var (mono∈ η i) (mono⊦⊢ η ts) mono⊦⊢ η (mp i j ts) = mp i j (mono⊦⊢ η ts) mono⊦⊢ η (ci ts) = ci (mono⊦⊢ η ts) mono⊦⊢ η (ck ts) = ck (mono⊦⊢ η ts) mono⊦⊢ η (cs ts) = cs (mono⊦⊢ η ts) mono⊦⊢ η (nec ss ts) = nec ss (mono⊦⊢ η ts) mono⊦⊢ η (cdist ts) = cdist (mono⊦⊢ η ts) mono⊦⊢ η (cup ts) = cup (mono⊦⊢ η ts) mono⊦⊢ η (cdown ts) = cdown (mono⊦⊢ η ts) mono⊦⊢ η (cpair ts) = cpair (mono⊦⊢ η ts) mono⊦⊢ η (cfst ts) = cfst (mono⊦⊢ η ts) mono⊦⊢ η (csnd ts) = csnd (mono⊦⊢ η ts) mono⊦⊢ η (unit ts) = unit (mono⊦⊢ η ts) mono⊢ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ A → Γ′ ⊢ A mono⊢ η (Ξ , ts) = Ξ , mono⊦⊢ η ts -- Concatenation of derivations. _⧺⊦_ : ∀ {Γ Ξ Ξ′} → Γ ⊦⊢ Ξ → Γ ⊦⊢ Ξ′ → Γ ⊦⊢ Ξ ⧺ Ξ′ us ⧺⊦ nil = us us ⧺⊦ var i ts = var i (us ⧺⊦ ts) us ⧺⊦ mp i j ts = mp (mono∈ weak⊆⧺₂ i) (mono∈ weak⊆⧺₂ j) (us ⧺⊦ ts) us ⧺⊦ ci ts = ci (us ⧺⊦ ts) us ⧺⊦ ck ts = ck (us ⧺⊦ ts) us ⧺⊦ cs ts = cs (us ⧺⊦ ts) us ⧺⊦ nec ss ts = nec ss (us ⧺⊦ ts) us ⧺⊦ cdist ts = cdist (us ⧺⊦ ts) us ⧺⊦ cup ts = cup (us ⧺⊦ ts) us ⧺⊦ cdown ts = cdown (us ⧺⊦ ts) us ⧺⊦ cpair ts = cpair (us ⧺⊦ ts) us ⧺⊦ cfst ts = cfst (us ⧺⊦ ts) us ⧺⊦ csnd ts = csnd (us ⧺⊦ ts) us ⧺⊦ unit ts = unit (us ⧺⊦ ts) -- Modus ponens and necessitation in expanded form. app : ∀ {A B Γ} → Γ ⊢ A ▻ B → Γ ⊢ A → Γ ⊢ B app {A} {B} (Ξ , ts) (Ξ′ , us) = Ξ″ , vs where Ξ″ = (Ξ′ , A) ⧺ (Ξ , A ▻ B) vs = mp top (mono∈ (weak⊆⧺₁ (Ξ , A ▻ B)) top) (us ⧺⊦ ts) box : ∀ {A Γ} → ∅ ⊢ A → Γ ⊢ □ A box (Ξ , ts) = ∅ , nec ts nil
32.690476
71
0.430444
0e7d98bad3c8f34707e803cb02a2986b6eab6bb1
48
agda
Agda
Task/Matrix-transposition/Agda/matrix-transposition-2.agda
mullikine/RosettaCodeData
4f0027c6ce83daa36118ee8b67915a13cd23ab67
[ "Info-ZIP" ]
1
2018-11-09T22:08:38.000Z
2018-11-09T22:08:38.000Z
Task/Matrix-transposition/Agda/matrix-transposition-2.agda
mullikine/RosettaCodeData
4f0027c6ce83daa36118ee8b67915a13cd23ab67
[ "Info-ZIP" ]
null
null
null
Task/Matrix-transposition/Agda/matrix-transposition-2.agda
mullikine/RosettaCodeData
4f0027c6ce83daa36118ee8b67915a13cd23ab67
[ "Info-ZIP" ]
1
2018-11-09T22:08:40.000Z
2018-11-09T22:08:40.000Z
(1 ∷ 4 ∷ []) ∷ (2 ∷ 5 ∷ []) ∷ (3 ∷ 6 ∷ []) ∷ []
24
47
0.125
18bab93b5fde75c87bb04c90c5fafe79e40b25aa
1,288
agda
Agda
src/fot/FOTC/Data/List/WF-Relation/LT-Cons/Induction/Acc/WF-I.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Data/List/WF-Relation/LT-Cons/Induction/Acc/WF-I.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Data/List/WF-Relation/LT-Cons/Induction/Acc/WF-I.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Well-founded induction on the relation LTC ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.List.WF-Relation.LT-Cons.Induction.Acc.WF-I where open import FOTC.Base open import FOTC.Data.List open import FOTC.Data.List.WF-Relation.LT-Cons open import FOTC.Data.List.WF-Relation.LT-Cons.PropertiesI open import FOTC.Data.List.WF-Relation.LT-Length open import FOTC.Data.List.WF-Relation.LT-Length.Induction.Acc.WF-I open import FOTC.Induction.WF -- Parametrized modules open module S = FOTC.Induction.WF.Subrelation {List} {LTC} LTC→LTL ------------------------------------------------------------------------------ -- The relation LTL is well-founded (using the subrelation combinator). LTC-wf : WellFounded LTC LTC-wf Lxs = well-founded LTL-wf Lxs -- Well-founded induction on the relation LTC. LTC-wfind : (A : D → Set) → (∀ {xs} → List xs → (∀ {ys} → List ys → LTC ys xs → A ys) → A xs) → ∀ {xs} → List xs → A xs LTC-wfind A = WellFoundedInduction LTC-wf
39.030303
79
0.552019
df2464b9fb4275ed6a0ad252d4255dd40751af90
8,154
agda
Agda
Cubical/Experiments/ZCohomologyOld/KcompPrelims.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Experiments/ZCohomologyOld/KcompPrelims.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Experiments/ZCohomologyOld/KcompPrelims.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Experiments.ZCohomologyOld.KcompPrelims where open import Cubical.ZCohomology.Base open import Cubical.Homotopy.Connected open import Cubical.HITs.Hopf -- open import Cubical.Homotopy.Freudenthal hiding (encode) open import Cubical.HITs.Sn open import Cubical.HITs.S1 open import Cubical.HITs.Truncation renaming (elim to trElim ; rec to trRec ; map to trMap) open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Transport open import Cubical.Foundations.Path open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Univalence open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Data.Int renaming (_+_ to +Int) hiding (_·_) open import Cubical.Data.Nat hiding (_·_) open import Cubical.Data.Unit open import Cubical.HITs.Susp open import Cubical.HITs.Nullification open import Cubical.Data.Prod.Base open import Cubical.Homotopy.Loopspace open import Cubical.Data.Bool open import Cubical.Data.Sum.Base open import Cubical.Data.Sigma hiding (_×_) open import Cubical.Foundations.Function open import Cubical.Foundations.Pointed open import Cubical.HITs.S3 private variable ℓ : Level A : Type ℓ {- We want to prove that Kn≃ΩKn+1. For this we use the map ϕ-} -- Proof of Kₙ ≃ ∥ ΩSⁿ⁺¹ ∥ₙ for $n ≥ 2$ -- Entirely based on Cavallos proof of Freudenthal in Cubical.Homotopy.Freudenthal module miniFreudenthal (n : HLevel) where σ : S₊ (2 + n) → typ (Ω (S₊∙ (3 + n))) σ a = merid a ∙ merid north ⁻¹ S2+n = S₊ (2 + n) 4n+2 = (2 + n) + (2 + n) module WC-S (p : north ≡ north) where P : (a b : S₊ (2 + n)) → Type₀ P a b = σ b ≡ p → hLevelTrunc 4n+2 (fiber (λ x → merid x ∙ merid a ⁻¹) p) hLevelP : (a b : S₊ (2 + n)) → isOfHLevel 4n+2 (P a b) hLevelP _ _ = isOfHLevelΠ 4n+2 λ _ → isOfHLevelTrunc 4n+2 leftFun : (a : S₊ (2 + n)) → P a north leftFun a r = ∣ a , (rCancel' (merid a) ∙ rCancel' (merid north) ⁻¹) ∙ r ∣ rightFun : (b : S₊ (2 + n)) → P north b rightFun b r = ∣ b , r ∣ funsAgree : leftFun north ≡ rightFun north funsAgree = funExt λ r → (λ i → ∣ north , rCancel' (rCancel' (merid north)) i ∙ r ∣) ∙ λ i → ∣ north , lUnit r (~ i) ∣ totalFun : (a b : S2+n) → P a b totalFun = wedgeconFun (suc n) (suc n) hLevelP rightFun leftFun funsAgree leftId : (λ x → totalFun x north) ≡ leftFun leftId x i = wedgeconRight (suc n) (suc n) hLevelP rightFun leftFun funsAgree i x fwd : (p : north ≡ north) (a : S2+n) → hLevelTrunc 4n+2 (fiber σ p) → hLevelTrunc 4n+2 (fiber (λ x → merid x ∙ merid a ⁻¹) p) fwd p a = trRec (isOfHLevelTrunc 4n+2) (uncurry (WC-S.totalFun p a)) fwdnorth : (p : north ≡ north) → fwd p north ≡ idfun _ fwdnorth p = funExt (trElim (λ _ → isOfHLevelPath 4n+2 (isOfHLevelTrunc 4n+2) _ _) λ p → refl) isEquivFwd : (p : north ≡ north) (a : S2+n) → isEquiv (fwd p a) isEquivFwd p = suspToPropElim (ptSn (suc n)) (λ _ → isPropIsEquiv _) helper where helper : isEquiv (fwd p north) helper = subst isEquiv (sym (fwdnorth p)) (idIsEquiv _) interpolate : (a : S2+n) → PathP (λ i → S2+n → north ≡ merid a i) (λ x → merid x ∙ merid a ⁻¹) merid interpolate a i x j = compPath-filler (merid x) (merid a ⁻¹) (~ i) j Code : (y : Susp S2+n) → north ≡ y → Type₀ Code north p = hLevelTrunc 4n+2 (fiber σ p) Code south q = hLevelTrunc 4n+2 (fiber merid q) Code (merid a i) p = Glue (hLevelTrunc 4n+2 (fiber (interpolate a i) p)) (λ { (i = i0) → _ , (fwd p a , isEquivFwd p a) ; (i = i1) → _ , idEquiv _ }) encodeS : (y : S₊ (3 + n)) (p : north ≡ y) → Code y p encodeS y = J Code ∣ north , rCancel' (merid north) ∣ encodeMerid : (a : S2+n) → encodeS south (merid a) ≡ ∣ a , refl ∣ encodeMerid a = cong (transport (λ i → gluePath i)) (funExt⁻ (funExt⁻ (WC-S.leftId refl) a) _ ∙ λ i → ∣ a , lem (rCancel' (merid a)) (rCancel' (merid north)) i ∣) ∙ transport (PathP≡Path gluePath _ _) (λ i → ∣ a , (λ j k → rCancel-filler' (merid a) i j k) ∣) where gluePath : I → Type _ gluePath i = hLevelTrunc 4n+2 (fiber (interpolate a i) (λ j → merid a (i ∧ j))) lem : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : z ≡ y) → (p ∙ q ⁻¹) ∙ q ≡ p lem p q = assoc p (q ⁻¹) q ⁻¹ ∙ cong (p ∙_) (lCancel q) ∙ rUnit p ⁻¹ contractCodeSouth : (p : north ≡ south) (c : Code south p) → encodeS south p ≡ c contractCodeSouth p = trElim (λ _ → isOfHLevelPath 4n+2 (isOfHLevelTrunc 4n+2) _ _) (uncurry λ a → J (λ p r → encodeS south p ≡ ∣ a , r ∣) (encodeMerid a)) isConnectedMerid : isConnectedFun 4n+2 (merid {A = S2+n}) isConnectedMerid p = encodeS south p , contractCodeSouth p isConnectedσ : isConnectedFun 4n+2 σ isConnectedσ = transport (λ i → isConnectedFun 4n+2 (interpolate north (~ i))) isConnectedMerid isConnectedσ-Sn : (n : ℕ) → isConnectedFun (4 + n) (miniFreudenthal.σ n) isConnectedσ-Sn n = isConnectedFunSubtr _ n _ (subst (λ x → isConnectedFun x (miniFreudenthal.σ n)) helper (miniFreudenthal.isConnectedσ n)) where helper : 2 + (n + (2 + n)) ≡ n + (4 + n) helper = cong suc (sym (+-suc n _)) ∙ sym (+-suc n _) stabSpheres-n≥2 : (n : ℕ) → Iso (hLevelTrunc (4 + n) (S₊ (2 + n))) (hLevelTrunc (4 + n) (typ (Ω (S₊∙ (3 + n))))) stabSpheres-n≥2 n = connectedTruncIso (4 + n) (miniFreudenthal.σ n) (isConnectedσ-Sn n) -- ϕ : (pt a : A) → typ (Ω (Susp A , north)) ϕ pt a = (merid a) ∙ sym (merid pt) private Kn→ΩKn+1 : (n : ℕ) → coHomK n → typ (Ω (coHomK-ptd (suc n))) Kn→ΩKn+1 zero x i = ∣ intLoop x i ∣ Kn→ΩKn+1 (suc zero) = trRec (isOfHLevelTrunc 4 ∣ north ∣ ∣ north ∣) λ a i → ∣ ϕ base a i ∣ Kn→ΩKn+1 (suc (suc n)) = trRec (isOfHLevelTrunc (2 + (3 + n)) ∣ north ∣ ∣ north ∣) λ a i → ∣ ϕ north a i ∣ d-map : typ (Ω ((Susp S¹) , north)) → S¹ d-map p = subst HopfSuspS¹ p base d-mapId : (r : S¹) → d-map (ϕ base r) ≡ r d-mapId r = substComposite HopfSuspS¹ (merid r) (sym (merid base)) base ∙ rotLemma r where rotLemma : (r : S¹) → r · base ≡ r rotLemma base = refl rotLemma (loop i) = refl sphereConnectedSpecCase : isConnected 4 (Susp (Susp S¹)) sphereConnectedSpecCase = sphereConnected 3 d-mapComp : Iso (fiber d-map base) (Path (S₊ 3) north north) d-mapComp = compIso (IsoΣPathTransportPathΣ {B = HopfSuspS¹} _ _) (congIso (invIso IsoS³TotalHopf)) is1Connected-dmap : isConnectedFun 3 d-map is1Connected-dmap = toPropElim (λ _ → isPropIsOfHLevel 0) (isConnectedRetractFromIso 3 d-mapComp (isOfHLevelRetractFromIso 0 (invIso (PathIdTruncIso 3)) contrHelper)) where contrHelper : isContr (Path (∥ Susp (Susp S¹) ∥ 4) ∣ north ∣ ∣ north ∣) fst contrHelper = refl snd contrHelper = isOfHLevelPlus {n = 0} 2 (sphereConnected 3) ∣ north ∣ ∣ north ∣ refl d-Iso : Iso (∥ Path (S₊ 2) north north ∥ 3) (coHomK 1) d-Iso = connectedTruncIso _ d-map is1Connected-dmap d-mapId2 : Iso.fun d-Iso ∘ trMap (ϕ base) ≡ idfun (coHomK 1) d-mapId2 = funExt (trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) λ a i → ∣ d-mapId a i ∣) Iso∥ϕ₁∥ : Iso (coHomK 1) (∥ Path (S₊ 2) north north ∥ 3) Iso∥ϕ₁∥ = composesToId→Iso d-Iso (trMap (ϕ base)) d-mapId2 Iso-Kn-ΩKn+1 : (n : HLevel) → Iso (coHomK n) (typ (Ω (coHomK-ptd (suc n)))) Iso-Kn-ΩKn+1 zero = invIso (compIso (congIso (truncIdempotentIso _ isGroupoidS¹)) ΩS¹Isoℤ) Iso-Kn-ΩKn+1 (suc zero) = compIso Iso∥ϕ₁∥ (invIso (PathIdTruncIso 3)) Iso-Kn-ΩKn+1 (suc (suc n)) = compIso (stabSpheres-n≥2 n) (invIso (PathIdTruncIso (4 + n))) where helper : n + (4 + n) ≡ 2 + (n + (2 + n)) helper = +-suc n (3 + n) ∙ (λ i → suc (+-suc n (2 + n) i))
38.28169
116
0.607555
39670e80ffc78217b40b010adbd152576e1c0eeb
11,306
agda
Agda
StructurallyRecursiveDescentParsing/Lib.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
7
2016-12-13T05:23:14.000Z
2021-06-22T05:35:31.000Z
StructurallyRecursiveDescentParsing/Lib.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
1
2018-01-22T22:21:41.000Z
2018-01-24T16:39:37.000Z
StructurallyRecursiveDescentParsing/Lib.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- A library of parser combinators ------------------------------------------------------------------------ -- This module also provides examples of parsers for which the indices -- cannot be inferred. module StructurallyRecursiveDescentParsing.Lib where open import StructurallyRecursiveDescentParsing.Grammar open import StructurallyRecursiveDescentParsing.Index open import Data.Nat hiding (_≟_) open import Data.Vec as Vec using (Vec; []; _∷_) open import Data.List using (List; []; _∷_; foldr; foldl; reverse) open import Data.Product open import Data.Bool using (Bool; true; false; _∧_; _∨_) open import Function open import Data.Maybe open import Data.Unit using (⊤) import Data.Char as Char open Char using (Char; _==_) open import Coinduction open import Algebra import Data.Bool.Properties as Bool private module BCS = CommutativeSemiring Bool.commutativeSemiring-∨-∧ open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality import Level ------------------------------------------------------------------------ -- Some important derived combinators infixl 10 _>>=_ _>>=_ : ∀ {NT Tok e₁ c₁ i₂ R₁ R₂} → let i₁ = e₁ ◇ c₁ in Parser NT Tok i₁ R₁ → (R₁ → Parser NT Tok i₂ R₂) → Parser NT Tok (i₁ · i₂) R₂ _>>=_ {e₁ = true } p₁ p₂ = p₁ ?>>= p₂ _>>=_ {e₁ = false} p₁ p₂ = p₁ !>>= λ x → ♯ p₂ x cast : ∀ {NT Tok e₁ e₂ c₁ c₂ R} → e₁ ≡ e₂ → c₁ ≡ c₂ → Parser NT Tok (e₁ ◇ c₁) R → Parser NT Tok (e₂ ◇ c₂) R cast refl refl p = p ------------------------------------------------------------------------ -- Applicative functor parsers -- We could get these for free with better library support. infixl 50 _⊛_ _⊛!_ _<⊛_ _⊛>_ _<$>_ _<$_ _⊗_ _⊗!_ _⊛_ : ∀ {NT Tok i₁ i₂ R₁ R₂} → Parser NT Tok i₁ (R₁ → R₂) → Parser NT Tok i₂ R₁ → Parser NT Tok _ R₂ p₁ ⊛ p₂ = p₁ >>= λ f → p₂ >>= λ x → return (f x) -- A variant: If the second parser does not accept the empty string, -- then neither does the combination. (This is immediate for the first -- parser, but for the second one a small lemma is needed, hence this -- variant.) _⊛!_ : ∀ {NT Tok i₁ c₂ R₁ R₂} → Parser NT Tok i₁ (R₁ → R₂) → Parser NT Tok (false ◇ c₂) R₁ → Parser NT Tok (false ◇ _) R₂ _⊛!_ {i₁ = i₁} p₁ p₂ = cast (BCS.*-comm (empty i₁) false) refl (p₁ ⊛ p₂) _<$>_ : ∀ {NT Tok i R₁ R₂} → (R₁ → R₂) → Parser NT Tok i R₁ → Parser NT Tok _ R₂ f <$> p = return f ⊛ p _<⊛_ : ∀ {NT Tok i₁ i₂ R₁ R₂} → Parser NT Tok i₁ R₁ → Parser NT Tok i₂ R₂ → Parser NT Tok _ R₁ p₁ <⊛ p₂ = const <$> p₁ ⊛ p₂ _⊛>_ : ∀ {NT Tok i₁ i₂ R₁ R₂} → Parser NT Tok i₁ R₁ → Parser NT Tok i₂ R₂ → Parser NT Tok _ R₂ p₁ ⊛> p₂ = flip const <$> p₁ ⊛ p₂ _<$_ : ∀ {NT Tok i R₁ R₂} → R₁ → Parser NT Tok i R₂ → Parser NT Tok _ R₁ x <$ p = const x <$> p _⊗_ : ∀ {NT Tok i₁ i₂ R₁ R₂} → Parser NT Tok i₁ R₁ → Parser NT Tok i₂ R₂ → Parser NT Tok _ (R₁ × R₂) p₁ ⊗ p₂ = (_,_) <$> p₁ ⊛ p₂ _⊗!_ : ∀ {NT Tok i₁ c₂ R₁ R₂} → Parser NT Tok i₁ R₁ → Parser NT Tok (false ◇ c₂) R₂ → Parser NT Tok (false ◇ _) (R₁ × R₂) p₁ ⊗! p₂ = (_,_) <$> p₁ ⊛! p₂ ------------------------------------------------------------------------ -- Parsing sequences infix 55 _⋆ _+ -- Not accepted by the productivity checker: -- mutual -- _⋆ : ∀ {NT Tok R c} → -- Parser NT Tok (false ◇ c) R → -- Parser NT Tok _ (List R) -- p ⋆ = return [] ∣ p + -- _+ : ∀ {NT Tok R c} → -- Parser NT Tok (false ◇ c) R → -- Parser NT Tok _ (List R) -- p + = _∷_ <$> p ⊛ p ⋆ -- In fact the code above risks leading to infinite loops in the -- current version of Agda (Mar 2009), since it does not contain any -- coinductive constructors. The following code is OK, though: mutual _⋆ : ∀ {NT Tok R c} → Parser NT Tok (false ◇ c) R → Parser NT Tok _ (List R) p ⋆ = return [] ∣ p + _+ : ∀ {NT Tok R c} → Parser NT Tok (false ◇ c) R → Parser NT Tok _ (List R) p + = p !>>= λ x → ♯ (p ⋆ ?>>= λ xs → return (x ∷ xs)) -- p sepBy⟨ ne ⟩ sep and p sepBy sep parse one or more ps separated by -- seps. _sepBy⟨_⟩_ : ∀ {NT Tok i i′ R R′} → Parser NT Tok i R → (empty i′ ∧ true) ∧ (empty i ∧ true) ≡ false → Parser NT Tok i′ R′ → Parser NT Tok _ (List R) p sepBy⟨ non-empty ⟩ sep = _∷_ <$> p ⊛ cast₁ (sep ⊛> p) ⋆ where cast₁ = cast non-empty refl -- _sepBy_ could be implemented by using _sepBy⟨_⟩_, but the following -- definition is handled more efficiently by the current version of -- Agda (Dec 2008). _sepBy_ : ∀ {NT Tok i c R R′} → Parser NT Tok i R → Parser NT Tok (false ◇ c) R′ → Parser NT Tok _ (List R) p sepBy sep = _∷_ <$> p ⊛ (sep ⊛> p) ⋆ mutual -- Note that the index of atLeast is only partly inferred; the -- recursive structure of atLeast-index is given manually. atLeast-index : Corners → ℕ → Index atLeast-index c zero = _ atLeast-index c (suc n) = _ -- At least n occurrences of p. atLeast : ∀ {NT Tok c R} (n : ℕ) → Parser NT Tok (false ◇ c) R → Parser NT Tok (atLeast-index c n) (List R) atLeast zero p = p ⋆ atLeast (suc n) p = _∷_ <$> p ⊛ atLeast n p -- exactly n p parses n occurrences of p. -- -- (Note that, unlike what is written in "Structurally Recursive -- Descent Parsing", Agda as of 2012-03-16 can no longer infer -- exactly-index's second right-hand side.) exactly-index : Index → ℕ → Index exactly-index i zero = 1I exactly-index i (suc n) = (1I · i · 1I) · exactly-index i n · 1I exactly : ∀ {NT Tok i R} n → Parser NT Tok i R → Parser NT Tok (exactly-index i n) (Vec R n) exactly zero p = return [] exactly (suc n) p = _∷_ <$> p ⊛ exactly n p -- A function with a similar type: sequence : ∀ {NT Tok i R n} → Vec (Parser NT Tok i R) n → Parser NT Tok (exactly-index i n) (Vec R n) sequence [] = return [] sequence (p ∷ ps) = _∷_ <$> p ⊛ sequence ps mutual -- p between ps parses p repeatedly, between the elements of ps: -- ∙ between (x ∷ y ∷ z ∷ []) ≈ x ∙ y ∙ z. between-corners : Corners → ℕ → Corners between-corners c′ zero = _ between-corners c′ (suc n) = _ _between_ : ∀ {NT Tok i R c′ R′ n} → Parser NT Tok i R → Vec (Parser NT Tok (false ◇ c′) R′) (suc n) → Parser NT Tok (false ◇ between-corners c′ n) (Vec R n) p between (x ∷ []) = [] <$ x p between (x ∷ y ∷ xs) = _∷_ <$> (x ⊛> p) ⊛ (p between (y ∷ xs)) ------------------------------------------------------------------------ -- Chaining -- Associativity. Used to specify how chain≥ should apply the parsed -- operators: left or right associatively. data Assoc : Set where left : Assoc right : Assoc -- Application. appʳ : {R : Set} → R × (R → R → R) → R → R appʳ (x , _•_) y = x • y appˡ : {R : Set} → R → (R → R → R) × R → R appˡ x (_•_ , y) = x • y -- Shifting. See Examples below for an illuminating example. shiftʳ : {A B : Set} → A → List (B × A) → List (A × B) × A shiftʳ x [] = ([] , x) shiftʳ x₁ ((x₂ , x₃) ∷ xs₄) = ((x₁ , x₂) ∷ proj₁ xs₃x₄ , proj₂ xs₃x₄) where xs₃x₄ = shiftʳ x₃ xs₄ -- Post-processing for the chain≥ parser. chain≥-combine : {R : Set} → Assoc → R → List ((R → R → R) × R) → R chain≥-combine left x ys = foldl appˡ x ys chain≥-combine right x ys with shiftʳ x ys ... | (xs , y) = foldr appʳ y xs -- Chains at least n occurrences of op, in an a-associative -- manner. The ops are surrounded by ps. chain≥ : ∀ {NT Tok c₁ i₂ R} (n : ℕ) → Assoc → Parser NT Tok (false ◇ c₁) R → Parser NT Tok i₂ (R → R → R) → Parser NT Tok _ R chain≥ n a p op = chain≥-combine a <$> p ⊛ atLeast n (op ⊗! p) private module Examples {R S : Set} (x y z : R) (a b : S) (_+_ _*_ : R → R → R) where ex : shiftʳ x ((a , y) ∷ (b , z) ∷ []) ≡ ((x , a) ∷ (y , b) ∷ [] , z) ex = refl exʳ : chain≥-combine right x ((_+_ , y) ∷ (_*_ , z) ∷ []) ≡ (x + (y * z)) exʳ = refl exˡ : chain≥-combine left x ((_+_ , y) ∷ (_*_ , z) ∷ []) ≡ ((x + y) * z) exˡ = refl ------------------------------------------------------------------------ -- N-ary variants of _∣_ -- choice ps parses one of the elements in ps. choice-corners : Corners → ℕ → Corners choice-corners c zero = ε choice-corners c (suc n) = c ∪ choice-corners c n choice : ∀ {NT Tok c R n} → Vec (Parser NT Tok (false ◇ c) R) n → Parser NT Tok (false ◇ choice-corners c n) R choice [] = fail choice (p ∷ ps) = p ∣ choice ps -- choiceMap f xs ≈ choice (map f xs), but avoids use of Vec and -- fromList. choiceMap-corners : {A : Set} → (A → Corners) → List A → Corners choiceMap-corners c [] = ε choiceMap-corners c (x ∷ xs) = c x ∪ choiceMap-corners c xs choiceMap : ∀ {NT Tok R} {A : Set} {c : A → Corners} → ((x : A) → Parser NT Tok (false ◇ c x) R) → (xs : List A) → Parser NT Tok (false ◇ choiceMap-corners c xs) R choiceMap f [] = fail choiceMap f (x ∷ xs) = f x ∣ choiceMap f xs ------------------------------------------------------------------------ -- sat and friends sat : ∀ {NT Tok R} → (Tok → Maybe R) → Parser NT Tok (0I · 1I) R sat {NT} {Tok} {R} p = token !>>= λ c → ♯ ok (p c) where mutual okIndex : Maybe R → Index okIndex nothing = _ okIndex (just _) = _ ok : (x : Maybe R) → Parser NT Tok (okIndex x) R ok nothing = fail ok (just x) = return x sat' : ∀ {NT Tok} → (Tok → Bool) → Parser NT Tok _ ⊤ sat' p = sat (boolToMaybe ∘ p) any : ∀ {NT Tok} → Parser NT Tok _ Tok any = sat just ------------------------------------------------------------------------ -- Token parsers module Token (A : DecSetoid Level.zero Level.zero) where open DecSetoid A using (_≟_) renaming (Carrier to Tok) -- Parses a given token (or, really, a given equivalence class of -- tokens). tok : ∀ {NT} → Tok → Parser NT Tok _ Tok tok tok = sat p where p : Tok → Maybe Tok p tok′ with tok ≟ tok′ ... | yes _ = just tok′ ... | no _ = nothing -- Parses a sequence of tokens. theString : ∀ {NT n} → Vec Tok n → Parser NT Tok _ (Vec Tok n) theString cs = sequence (Vec.map tok cs) ------------------------------------------------------------------------ -- Character parsers digit : ∀ {NT} → Parser NT Char _ ℕ digit = 0 <$ tok '0' ∣ 1 <$ tok '1' ∣ 2 <$ tok '2' ∣ 3 <$ tok '3' ∣ 4 <$ tok '4' ∣ 5 <$ tok '5' ∣ 6 <$ tok '6' ∣ 7 <$ tok '7' ∣ 8 <$ tok '8' ∣ 9 <$ tok '9' where open Token Char.decSetoid number : ∀ {NT} → Parser NT Char _ ℕ number = toNum <$> digit + where toNum = foldr (λ n x → 10 * x + n) 0 ∘ reverse -- whitespace recognises an incomplete but useful list of whitespace -- characters. whitespace : ∀ {NT} → Parser NT Char _ ⊤ whitespace = sat' isSpace where isSpace = λ c → (c == ' ') ∨ (c == '\t') ∨ (c == '\n') ∨ (c == '\r')
29.366234
72
0.520609
cb4356a68f1524a6a0f21bba8f508cc61ce09453
1,698
agda
Agda
huffman/huffman-main.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
29
2019-02-06T13:09:31.000Z
2022-03-04T15:05:12.000Z
huffman/huffman-main.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
8
2018-07-09T22:53:38.000Z
2022-03-22T03:43:34.000Z
huffman/huffman-main.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
17
2018-12-03T22:38:15.000Z
2021-11-28T20:13:21.000Z
module huffman-main where import parse open import lib open import huffman-types import huffman module parsem = parse huffman.gratr2-nt ptr open parsem open parsem.pnoderiv huffman.rrs huffman.huffman-rtn open import run ptr open noderiv {- from run.agda -} process-start : start → string process-start s = "" process : Run → string process (ParseTree (parsed-start p) :: []) = process-start p process r = "Parsing failure (run with -" ^ "-showParsed).\n" putStrRunIf : 𝔹 → Run → IO ⊤ putStrRunIf tt r = putStr (Run-to-string r) >> putStr "\n" putStrRunIf ff r = return triv processArgs : (showRun : 𝔹) → (showParsed : 𝔹) → 𝕃 string → IO ⊤ processArgs showRun showParsed (input-filename :: []) = (readFiniteFile input-filename) >>= processText where processText : string → IO ⊤ processText x with runRtn (string-to-𝕃char x) processText x | s with s processText x | s | inj₁ cs = putStr "Characters left before failure : " >> putStr (𝕃char-to-string cs) >> putStr "\nCannot proceed to parsing.\n" processText x | s | inj₂ r with putStrRunIf showRun r | rewriteRun r processText x | s | inj₂ r | sr | r' with putStrRunIf showParsed r' processText x | s | inj₂ r | sr | r' | sr' = sr >> sr' >> putStr (process r') processArgs showRun showParsed ("--showRun" :: xs) = processArgs tt showParsed xs processArgs showRun showParsed ("--showParsed" :: xs) = processArgs showRun tt xs processArgs showRun showParsed (x :: xs) = putStr ("Unknown option " ^ x ^ "\n") processArgs showRun showParsed [] = putStr "Please run with the name of a file to process.\n" main : IO ⊤ main = getArgs >>= processArgs ff ff
39.488372
154
0.671378
d07a0ac8c6c56a18cacd0af990dfbd2e6b05fb86
1,005
agda
Agda
out/Sum/Signature.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
39
2021-11-09T20:39:55.000Z
2022-03-19T17:33:12.000Z
out/Sum/Signature.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
1
2021-11-21T12:19:32.000Z
2021-11-21T12:19:32.000Z
out/Sum/Signature.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
4
2021-11-09T20:39:59.000Z
2022-01-24T12:49:17.000Z
{- This second-order signature was created from the following second-order syntax description: syntax Sum | S type _⊕_ : 2-ary | l30 term inl : α -> α ⊕ β inr : β -> α ⊕ β case : α ⊕ β α.γ β.γ -> γ theory (lβ) a : α f : α.γ g : β.γ |> case (inl(a), x.f[x], y.g[y]) = f[a] (rβ) b : β f : α.γ g : β.γ |> case (inr(b), x.f[x], y.g[y]) = g[b] (cη) s : α ⊕ β c : (α ⊕ β).γ |> case (s, x.c[inl(x)], y.c[inr(y)]) = c[s] -} module Sum.Signature where open import SOAS.Context -- Type declaration data ST : Set where _⊕_ : ST → ST → ST infixl 30 _⊕_ open import SOAS.Syntax.Signature ST public open import SOAS.Syntax.Build ST public -- Operator symbols data Sₒ : Set where inlₒ inrₒ : {α β : ST} → Sₒ caseₒ : {α β γ : ST} → Sₒ -- Term signature S:Sig : Signature Sₒ S:Sig = sig λ { (inlₒ {α}{β}) → (⊢₀ α) ⟼₁ α ⊕ β ; (inrₒ {α}{β}) → (⊢₀ β) ⟼₁ α ⊕ β ; (caseₒ {α}{β}{γ}) → (⊢₀ α ⊕ β) , (α ⊢₁ γ) , (β ⊢₁ γ) ⟼₃ γ } open Signature S:Sig public
21.382979
91
0.527363
2344862cd0eed24a7ff2328669aa008c40600243
346
agda
Agda
test/Succeed/Issue152.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue152.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue152.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue152 where data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} f : ℕ → ℕ f 0 with zero f 0 | n = n f 1 with zero f 1 | n = n f n = n g : ℕ → ℕ g 0 with zero g zero | n = n g 1 with zero g (suc zero) | n = n g n = n h : ℕ → ℕ h zero with zero h 0 | n = n h (suc zero) with zero h 1 | n = n h n = n
11.16129
28
0.511561
395c53ec9815250dd53eae9c732124bbe7ea2400
396
agda
Agda
examples/instance-arguments/05-equality-std2.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
examples/instance-arguments/05-equality-std2.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/instance-arguments/05-equality-std2.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
{-# OPTIONS --universe-polymorphism #-} -- {-# OPTIONS --verbose tc.rec:15 #-} -- {-# OPTIONS --verbose tc.records.ifs:15 #-} -- {-# OPTIONS --verbose tc.constr.findInScope:15 #-} -- {-# OPTIONS --verbose tc.term.args.ifs:15 #-} module 05-equality-std2 where open import Relation.Binary open import Data.Bool hiding (_≟_) open DecSetoid {{...}} test = isDecEquivalence test2 = false ≟ false
24.75
53
0.664141
d0b05d7a4a3dc47a9ecd01af2f7313dc1cc9dc81
1,483
agda
Agda
Cubical/Algebra/CommRing/Instances/Polynomials/UnivariatePolyFun.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Instances/Polynomials/UnivariatePolyFun.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Instances/Polynomials/UnivariatePolyFun.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.CommRing.Instances.Polynomials.UnivariatePolyFun where open import Cubical.Foundations.Prelude open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Nat hiding (_·_) renaming (_+_ to _+n_) open import Cubical.Data.Nat.Order open import Cubical.Data.Sigma open import Cubical.Algebra.Monoid open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.GradedRing.DirectSumFun private variable ℓ : Level module _ (ACommRing@(A , Astr) : CommRing ℓ) where open CommRingStr Astr open RingTheory (CommRing→Ring ACommRing) UnivariatePolyFun-CommRing : CommRing ℓ UnivariatePolyFun-CommRing = ⊕FunGradedRing-CommRing _+n_ (makeIsMonoid isSetℕ +-assoc +-zero λ _ → refl) (λ _ _ → refl) (λ _ → A) (λ _ → snd (Ring→AbGroup (CommRing→Ring ACommRing))) 1r _·_ 0LeftAnnihilates 0RightAnnihilates (λ a b c → ΣPathP ((+-assoc _ _ _) , (·Assoc _ _ _))) (λ a → ΣPathP ((+-zero _) , (·IdR _))) (λ a → ΣPathP (refl , (·IdL _))) ·DistR+ ·DistL+ λ x y → ΣPathP ((+-comm _ _) , (·Comm _ _)) nUnivariatePolyFun : (A' : CommRing ℓ) → (n : ℕ) → CommRing ℓ nUnivariatePolyFun A' zero = A' nUnivariatePolyFun A' (suc n) = UnivariatePolyFun-CommRing (nUnivariatePolyFun A' n)
35.309524
86
0.634525
dc639fb4abbc7f08ee0c2cc64d6a6b60c0435dd1
10,783
agda
Agda
src/Categories/NaturalTransformation/NaturalIsomorphism/Monoidal/Braided.agda
o1lo01ol1o/agda-categories
5fc007768264a270b8ff319570225986773da601
[ "MIT" ]
null
null
null
src/Categories/NaturalTransformation/NaturalIsomorphism/Monoidal/Braided.agda
o1lo01ol1o/agda-categories
5fc007768264a270b8ff319570225986773da601
[ "MIT" ]
null
null
null
src/Categories/NaturalTransformation/NaturalIsomorphism/Monoidal/Braided.agda
o1lo01ol1o/agda-categories
5fc007768264a270b8ff319570225986773da601
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} -- Monoidal natural isomorphisms between lax and strong braided -- monoidal functors. -- -- NOTE. Braided monoidal natural isomorphisms are really just -- monoidal natural isomorphisms that happen to go between braided -- monoidal functors. No additional conditions are necessary. -- Nevertheless, the definitions in this module are useful when one is -- working in a braided monoidal setting. They also help Agda's type -- checker by bundling the (braided monoidal) categories and functors -- involved. module Categories.NaturalTransformation.NaturalIsomorphism.Monoidal.Braided where open import Level open import Relation.Binary using (IsEquivalence) open import Categories.Category.Monoidal using (BraidedMonoidalCategory) import Categories.Functor.Monoidal.Braided as BMF open import Categories.Functor.Monoidal.Properties using () renaming ( idF-BraidedMonoidal to idFˡ ; idF-StrongBraidedMonoidal to idFˢ ; ∘-BraidedMonoidal to _∘Fˡ_ ; ∘-StrongBraidedMonoidal to _∘Fˢ_ ) open import Categories.NaturalTransformation.NaturalIsomorphism as NI using (NaturalIsomorphism) import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal as MNI module Lax where open BMF.Lax using (BraidedMonoidalFunctor) open MNI.Lax using (IsMonoidalNaturalIsomorphism) open BraidedMonoidalFunctor using () renaming (F to UF; monoidalFunctor to MF) private module U = MNI.Lax module _ {o ℓ e o′ ℓ′ e′} {C : BraidedMonoidalCategory o ℓ e} {D : BraidedMonoidalCategory o′ ℓ′ e′} where -- Monoidal natural isomorphisms between lax braided monoidal functors. record BraidedMonoidalNaturalIsomorphism (F G : BraidedMonoidalFunctor C D) : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where field U : NaturalIsomorphism (UF F) (UF G) F⇒G-isMonoidal : IsMonoidalNaturalIsomorphism (MF F) (MF G) U ⌊_⌋ : U.MonoidalNaturalIsomorphism (MF F) (MF G) ⌊_⌋ = record { U = U ; F⇒G-isMonoidal = F⇒G-isMonoidal } open U.MonoidalNaturalIsomorphism ⌊_⌋ public hiding (U; F⇒G-isMonoidal) infix 4 _≃_ _≃_ = BraidedMonoidalNaturalIsomorphism -- "Strengthening" ⌈_⌉ : {F G : BraidedMonoidalFunctor C D} → U.MonoidalNaturalIsomorphism (MF F) (MF G) → F ≃ G ⌈ α ⌉ = record { U = U ; F⇒G-isMonoidal = F⇒G-isMonoidal } where open U.MonoidalNaturalIsomorphism α open BraidedMonoidalNaturalIsomorphism -- Identity and compositions infixr 9 _ⓘᵥ_ id : {F : BraidedMonoidalFunctor C D} → F ≃ F id = ⌈ U.id ⌉ _ⓘᵥ_ : {F G H : BraidedMonoidalFunctor C D} → G ≃ H → F ≃ G → F ≃ H α ⓘᵥ β = ⌈ ⌊ α ⌋ U.ⓘᵥ ⌊ β ⌋ ⌉ isEquivalence : IsEquivalence _≃_ isEquivalence = record { refl = id ; sym = λ α → record { U = NI.sym (U α) ; F⇒G-isMonoidal = F⇐G-isMonoidal α } ; trans = λ α β → β ⓘᵥ α } where open BraidedMonoidalNaturalIsomorphism module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″} {C : BraidedMonoidalCategory o ℓ e} {D : BraidedMonoidalCategory o′ ℓ′ e′} {E : BraidedMonoidalCategory o″ ℓ″ e″} where infixr 9 _ⓘₕ_ _ⓘˡ_ _ⓘʳ_ _ⓘₕ_ : {F G : BraidedMonoidalFunctor C D} {H I : BraidedMonoidalFunctor D E} → H ≃ I → F ≃ G → (H ∘Fˡ F) ≃ (I ∘Fˡ G) -- NOTE: this definition is clearly equivalent to -- -- α ⓘₕ β = ⌈ ⌊ α ⌋ U.ⓘₕ ⌊ β ⌋ ⌉ -- -- but the latter takes an unreasonably long time to typecheck, -- while the unfolded version typechecks almost immediately. α ⓘₕ β = record { U = C.U ; F⇒G-isMonoidal = record { ε-compat = C.ε-compat ; ⊗-homo-compat = C.⊗-homo-compat } } where module C = U.MonoidalNaturalIsomorphism (⌊ α ⌋ U.ⓘₕ ⌊ β ⌋) _ⓘˡ_ : {F G : BraidedMonoidalFunctor C D} (H : BraidedMonoidalFunctor D E) → F ≃ G → (H ∘Fˡ F) ≃ (H ∘Fˡ G) H ⓘˡ α = id {F = H} ⓘₕ α _ⓘʳ_ : {G H : BraidedMonoidalFunctor D E} → G ≃ H → (F : BraidedMonoidalFunctor C D) → (G ∘Fˡ F) ≃ (H ∘Fˡ F) α ⓘʳ F = α ⓘₕ id {F = F} -- Left and right unitors. module _ {o ℓ e o′ ℓ′ e′} {C : BraidedMonoidalCategory o ℓ e} {D : BraidedMonoidalCategory o′ ℓ′ e′} {F : BraidedMonoidalFunctor C D} where -- NOTE: Again, manual expansion seems necessary to type check in -- reasonable time. unitorˡ : idFˡ D ∘Fˡ F ≃ F unitorˡ = record { U = LU.U ; F⇒G-isMonoidal = record { ε-compat = LU.ε-compat ; ⊗-homo-compat = LU.⊗-homo-compat } } where module LU = U.MonoidalNaturalIsomorphism (U.unitorˡ {F = MF F}) unitorʳ : F ∘Fˡ idFˡ C ≃ F unitorʳ = record { U = RU.U ; F⇒G-isMonoidal = record { ε-compat = RU.ε-compat ; ⊗-homo-compat = RU.⊗-homo-compat } } where module RU = U.MonoidalNaturalIsomorphism (U.unitorʳ {F = MF F}) -- Associator. module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ o‴ ℓ‴ e‴} {B : BraidedMonoidalCategory o ℓ e} {C : BraidedMonoidalCategory o′ ℓ′ e′} {D : BraidedMonoidalCategory o″ ℓ″ e″} {E : BraidedMonoidalCategory o‴ ℓ‴ e‴} {F : BraidedMonoidalFunctor B C} {G : BraidedMonoidalFunctor C D} {H : BraidedMonoidalFunctor D E} where -- NOTE: Again, manual expansion seems necessary to type check in -- reasonable time. associator : (H ∘Fˡ G) ∘Fˡ F ≃ H ∘Fˡ (G ∘Fˡ F) associator = record { U = AU.U ; F⇒G-isMonoidal = record { ε-compat = AU.ε-compat ; ⊗-homo-compat = AU.⊗-homo-compat } } where module AU = U.MonoidalNaturalIsomorphism (U.associator {F = MF F} {MF G} {MF H}) module Strong where open BMF.Strong using (BraidedMonoidalFunctor) open MNI.Strong using (IsMonoidalNaturalIsomorphism) open BraidedMonoidalFunctor using () renaming ( F to UF ; monoidalFunctor to MF ; laxBraidedMonoidalFunctor to laxBMF ) private module U = MNI.Strong module _ {o ℓ e o′ ℓ′ e′} {C : BraidedMonoidalCategory o ℓ e} {D : BraidedMonoidalCategory o′ ℓ′ e′} where -- Monoidal natural isomorphisms between strong braided monoidal functors. record BraidedMonoidalNaturalIsomorphism (F G : BraidedMonoidalFunctor C D) : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where field U : NaturalIsomorphism (UF F) (UF G) F⇒G-isMonoidal : IsMonoidalNaturalIsomorphism (MF F) (MF G) U ⌊_⌋ : U.MonoidalNaturalIsomorphism (MF F) (MF G) ⌊_⌋ = record { U = U ; F⇒G-isMonoidal = F⇒G-isMonoidal } laxBNI : Lax.BraidedMonoidalNaturalIsomorphism (laxBMF F) (laxBMF G) laxBNI = record { U = U ; F⇒G-isMonoidal = F⇒G-isMonoidal } open Lax.BraidedMonoidalNaturalIsomorphism laxBNI public hiding (U; F⇒G-isMonoidal; ⌊_⌋) infix 4 _≃_ _≃_ = BraidedMonoidalNaturalIsomorphism -- "Strengthening" ⌈_⌉ : {F G : BraidedMonoidalFunctor C D} → U.MonoidalNaturalIsomorphism (MF F) (MF G) → F ≃ G ⌈ α ⌉ = record { U = U ; F⇒G-isMonoidal = F⇒G-isMonoidal } where open U.MonoidalNaturalIsomorphism α open BraidedMonoidalNaturalIsomorphism -- Identity and compositions infixr 9 _ⓘᵥ_ id : {F : BraidedMonoidalFunctor C D} → F ≃ F id = ⌈ U.id ⌉ _ⓘᵥ_ : {F G H : BraidedMonoidalFunctor C D} → G ≃ H → F ≃ G → F ≃ H α ⓘᵥ β = ⌈ ⌊ α ⌋ U.ⓘᵥ ⌊ β ⌋ ⌉ isEquivalence : IsEquivalence _≃_ isEquivalence = record { refl = id ; sym = λ α → record { U = NI.sym (U α) ; F⇒G-isMonoidal = F⇐G-isMonoidal α } ; trans = λ α β → β ⓘᵥ α } where open BraidedMonoidalNaturalIsomorphism module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″} {C : BraidedMonoidalCategory o ℓ e} {D : BraidedMonoidalCategory o′ ℓ′ e′} {E : BraidedMonoidalCategory o″ ℓ″ e″} where infixr 9 _ⓘₕ_ _ⓘˡ_ _ⓘʳ_ _ⓘₕ_ : {F G : BraidedMonoidalFunctor C D} {H I : BraidedMonoidalFunctor D E} → H ≃ I → F ≃ G → (H ∘Fˢ F) ≃ (I ∘Fˢ G) -- NOTE: this definition is clearly equivalent to -- -- α ⓘₕ β = ⌈ ⌊ α ⌋ U.ⓘₕ ⌊ β ⌋ ⌉ -- -- but the latter takes an unreasonably long time to typecheck, -- while the unfolded version typechecks almost immediately. α ⓘₕ β = record { U = C.U ; F⇒G-isMonoidal = record { ε-compat = C.ε-compat ; ⊗-homo-compat = C.⊗-homo-compat } } where module C = U.MonoidalNaturalIsomorphism (⌊ α ⌋ U.ⓘₕ ⌊ β ⌋) _ⓘˡ_ : {F G : BraidedMonoidalFunctor C D} (H : BraidedMonoidalFunctor D E) → F ≃ G → (H ∘Fˢ F) ≃ (H ∘Fˢ G) H ⓘˡ α = id {F = H} ⓘₕ α _ⓘʳ_ : {G H : BraidedMonoidalFunctor D E} → G ≃ H → (F : BraidedMonoidalFunctor C D) → (G ∘Fˢ F) ≃ (H ∘Fˢ F) α ⓘʳ F = α ⓘₕ id {F = F} -- Left and right unitors. module _ {o ℓ e o′ ℓ′ e′} {C : BraidedMonoidalCategory o ℓ e} {D : BraidedMonoidalCategory o′ ℓ′ e′} {F : BraidedMonoidalFunctor C D} where -- NOTE: Again, manual expansion seems necessary to type check in -- reasonable time. unitorˡ : idFˢ D ∘Fˢ F ≃ F unitorˡ = record { U = LU.U ; F⇒G-isMonoidal = record { ε-compat = LU.ε-compat ; ⊗-homo-compat = LU.⊗-homo-compat } } where module LU = U.MonoidalNaturalIsomorphism (U.unitorˡ {F = MF F}) unitorʳ : F ∘Fˢ idFˢ C ≃ F unitorʳ = record { U = RU.U ; F⇒G-isMonoidal = record { ε-compat = RU.ε-compat ; ⊗-homo-compat = RU.⊗-homo-compat } } where module RU = U.MonoidalNaturalIsomorphism (U.unitorʳ {F = MF F}) -- Associator. module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ o‴ ℓ‴ e‴} {B : BraidedMonoidalCategory o ℓ e} {C : BraidedMonoidalCategory o′ ℓ′ e′} {D : BraidedMonoidalCategory o″ ℓ″ e″} {E : BraidedMonoidalCategory o‴ ℓ‴ e‴} {F : BraidedMonoidalFunctor B C} {G : BraidedMonoidalFunctor C D} {H : BraidedMonoidalFunctor D E} where -- NOTE: Again, manual expansion seems necessary to type check in -- reasonable time. associator : (H ∘Fˢ G) ∘Fˢ F ≃ H ∘Fˢ (G ∘Fˢ F) associator = record { U = AU.U ; F⇒G-isMonoidal = record { ε-compat = AU.ε-compat ; ⊗-homo-compat = AU.⊗-homo-compat } } where module AU = U.MonoidalNaturalIsomorphism (U.associator {F = MF F} {MF G} {MF H})
32.577039
80
0.58008
c5856fe59e30c160bdfd614aa8657a2145049de3
2,656
agda
Agda
src/SecondOrder/VRelMonMorphism.agda
cilinder/formaltt
0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb
[ "MIT" ]
21
2021-02-16T14:07:06.000Z
2021-11-19T15:50:08.000Z
src/SecondOrder/VRelMonMorphism.agda
cilinder/formaltt
0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb
[ "MIT" ]
1
2021-04-30T14:18:25.000Z
2021-05-14T16:15:17.000Z
src/SecondOrder/VRelMonMorphism.agda
cilinder/formaltt
0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb
[ "MIT" ]
6
2021-02-16T13:43:07.000Z
2021-05-24T02:51:43.000Z
open import Agda.Primitive using (lzero; lsuc; _⊔_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; cong₂; subst; setoid) open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂; zip; map; <_,_>; swap) import Function.Equality open import Relation.Binary using (Setoid) import Relation.Binary.Reasoning.Setoid as SetoidR import Categories.Category import Categories.Functor import Categories.Category.Instance.Setoids import Categories.Monad.Relative import Categories.Category.Equivalence import Categories.Category.Cocartesian import Categories.Category.Construction.Functors import Categories.Category.Product import Categories.NaturalTransformation import Categories.NaturalTransformation.NaturalIsomorphism import SecondOrder.Arity import SecondOrder.Signature import SecondOrder.Metavariable import SecondOrder.VRenaming import SecondOrder.MRenaming import SecondOrder.Term import SecondOrder.Substitution import SecondOrder.RelativeMonadMorphism import SecondOrder.Instantiation import SecondOrder.IndexedCategory import SecondOrder.RelativeKleisli import SecondOrder.Mslot import SecondOrder.MRelativeMonad import SecondOrder.VRelativeMonad module SecondOrder.VRelMonMorphism {ℓ} {𝔸 : SecondOrder.Arity.Arity} (Σ : SecondOrder.Signature.Signature ℓ 𝔸) where open SecondOrder.RelativeMonadMorphism open SecondOrder.Metavariable Σ open SecondOrder.VRelativeMonad Σ open SecondOrder.Instantiation Σ open SecondOrder.MRenaming Σ open SecondOrder.VRenaming Σ open SecondOrder.Term Σ open SecondOrder.Substitution Σ -- In this file, the goal is to show that given two variable relative monads -- on different metacontexts, metarenaming from one of the metacontexts to the other -- we can define a relative monad morphism between the two variable relative monads Fⱽ : ∀ (Θ Θ′ : MContext) (μ : Θ ⇒ᵐ Θ′) → RMonadMorph (VMonad {Θ}) (VMonad {Θ′}) Fⱽ Θ Θ′ μ = record { morph = λ A → record { _⟨$⟩_ = [ μ ]ᵐ_ ; cong = λ s≈t → []ᵐ-resp-≈ s≈t } ; law-unit = λ A x≡y → ≈-≡ (σ-resp-≡ {σ = tm-var} x≡y) ; law-extend = λ {Γ} {Δ} {k} A {s} {t} s≈t → ≈-trans (≈-sym ([ᵐ∘ˢ] s)) (≈-trans ([]ˢ-resp-≈ˢ ([ μ ]ᵐ s) λ x → ≈-refl ) ([]ˢ-resp-≈ (λ {B} x → [ μ ]ᵐ (k B Function.Equality.⟨$⟩ x)) ([]ᵐ-resp-≈ s≈t))) }
38.492754
126
0.649849
dc05e6fd4b05274954c479ced93162f8b2818054
2,262
agda
Agda
examples/AIM6/Path/Span.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/AIM6/Path/Span.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/AIM6/Path/Span.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Span where open import Prelude open import Star open import Modal data SpanView {A : Set}{R : Rel A}(p : {a b : A} -> R a b -> Bool) : EdgePred (Star R) where oneFalse : {a b c d : A}(xs : Star R a b)(pxs : All (\x -> IsTrue (p x)) xs) (x : R b c)(¬px : IsFalse (p x))(ys : Star R c d) -> SpanView p (xs ++ x • ys) allTrue : {a b : A}{xs : Star R a b}(ts : All (\x -> IsTrue (p x)) xs) -> SpanView p xs span : {A : Set}{R : Rel A}(p : {a b : A} -> R a b -> Bool){a b : A} (xs : Star R a b) -> SpanView p xs span p ε = allTrue ε span p (x • xs) with inspect (p x) span p (x • xs) | itsFalse ¬px = oneFalse ε ε x ¬px xs span p (x • xs) | itsTrue px with span p xs span p (x • .(xs ++ y • ys)) | itsTrue px | oneFalse xs pxs y ¬py ys = oneFalse (x • xs) (check px • pxs) y ¬py ys span p (x • xs) | itsTrue px | allTrue pxs = allTrue (check px • pxs) _│_ : {A : Set}(R : Rel A)(P : EdgePred R) -> Rel A (R │ P) a b = Σ (R a b) P forget : {A : Set}{R : Rel A}{P : EdgePred R} -> Star (R │ P) =[ id ]=> Star R forget = map id fst data SpanView' {A : Set}{R : Rel A}(p : {a b : A} -> R a b -> Bool) : EdgePred (Star R) where oneFalse' : {a b c d : A}(xs : Star (R │ \{a b} x -> IsTrue (p x)) a b) (x : R b c)(¬px : IsFalse (p x))(ys : Star R c d) -> SpanView' p (forget xs ++ x • ys) allTrue' : {a b : A}(xs : Star (R │ \{a b} x -> IsTrue (p x)) a b) -> SpanView' p (forget xs) span' : {A : Set}{R : Rel A}(p : {a b : A} -> R a b -> Bool){a b : A} (xs : Star R a b) -> SpanView' p xs span' p ε = allTrue' ε span' p (x • xs) with inspect (p x) span' p (x • xs) | itsFalse ¬px = oneFalse' ε x ¬px xs span' p (x • xs) | itsTrue px with span' p xs span' p (x • .(forget xs ++ y • ys)) | itsTrue px | oneFalse' xs y ¬py ys = oneFalse' ((x ,, px) • xs) y ¬py ys span' p (x • .(forget xs)) | itsTrue px | allTrue' xs = allTrue' ((x ,, px) • xs) -- Can't seem to define it as 'map Some.a (\x -> (_ ,, uncheck x))' all│ : {A : Set}{R : Rel A}{P : EdgePred R}{a b : A}{xs : Star R a b} -> All P xs -> Star (R │ P) a b all│ (check p • pxs) = (_ ,, p) • all│ pxs all│ ε = ε
39
78
0.486737
c5fe48d8d2c76906974f390c40b8e666838025bb
593
agda
Agda
test/fail/Issue512.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/fail/Issue512.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/Issue512.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module Issue512 where postulate Level : Set {-# BUILTIN LEVEL Level #-} data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ #-} {-# BUILTIN REFL refl #-} data A : Set where a b : A proof : a ≡ a proof = refl f : A → A → A f x y rewrite proof = ? -- gave error below (now complains about LEVELZERO instead of STRING) {- {- No binding for builtin thing STRING, use {-# BUILTIN STRING name #-} to bind it to 'name' when checking that the type of the generated with function (w : A) → _≡_ {"Max []"} {A} w w → (x y : A) → A is well-formed -} -}
18.53125
93
0.607083
4ae5066f215b86f79ea967bd0ee01c6a391ebb3d
8,225
agda
Agda
complexity-drafts/Preliminaries.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
2
2016-04-26T20:22:22.000Z
2019-08-08T12:27:18.000Z
complexity-drafts/Preliminaries.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
1
2020-03-23T08:39:04.000Z
2020-05-12T00:32:45.000Z
complexity-drafts/Preliminaries.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
null
null
null
module Preliminaries where open import Agda.Primitive using (Level) renaming (lzero to lZ; lsuc to lS; _⊔_ to lmax) -- ---------------------------------------------------------------------- -- functions _o_ : {A B C : Set} → (B → C) → (A → B) → A → C g o f = \ x → g (f x) infixr 10 _o_ -- ---------------------------------------------------------------------- -- identity type data _==_ {l : Level} {A : Set l} (M : A) : A → Set l where Refl : M == M Id : {l : Level} {A : Set l} (M : A) → A → Set l Id M N = M == N {-# BUILTIN EQUALITY _==_ #-} {-# BUILTIN REFL Refl #-} transport : {l1 : Level} {l2 : Level} {A : Set l1} (B : A → Set l2) {a1 a2 : A} → a1 == a2 → (B a1 → B a2) transport B Refl = λ x → x ! : {l : Level} {A : Set l} {M N : A} → M == N → N == M ! Refl = Refl _∘_ : {l : Level} {A : Set l} {M N P : A} → N == P → M == N → M == P β ∘ Refl = β ap : {l1 l2 : Level} {A : Set l1} {B : Set l2} {M N : A} (f : A → B) → M == N → (f M) == (f N) ap f Refl = Refl ap2 : {l1 l2 l3 : Level} {A : Set l1} {B : Set l2} {C : Set l3} {M N : A} {M' N' : B} (f : A -> B -> C) -> M == N -> M' == N' -> (f M M') == (f N N') ap2 f Refl Refl = Refl ap3 : {l1 l2 l3 l4 : Level} {A : Set l1} {B : Set l2} {C : Set l3} {D : Set l4} {M N : A} {M' N' : B} {M'' N'' : C} (f : A → B → C → D) → M == N → M' == N' → M'' == N'' → (f M M' M'') == (f N N' N'') ap3 f Refl Refl Refl = Refl postulate -- function extensionality λ= : {l1 l2 : Level} {A : Set l1} {B : A -> Set l2} {f g : (x : A) -> B x} -> ((x : A) -> (f x) == (g x)) -> f == g -- function extensionality for implicit functions λ=i : {l1 l2 : Level} {A : Set l1} {B : A -> Set l2} {f g : {x : A} -> B x} -> ((x : A) -> (f {x}) == (g {x})) -> _==_ {_}{ {x : A} → B x } f g private primitive primTrustMe : {l : Level} {A : Set l} {x y : A} -> x == y infixr 9 _==_ infix 2 _∎ infixr 2 _=⟨_⟩_ _=⟨_⟩_ : {l : Level} {A : Set l} (x : A) {y z : A} → x == y → y == z → x == z _ =⟨ p1 ⟩ p2 = (p2 ∘ p1) _∎ : {l : Level} {A : Set l} (x : A) → x == x _∎ _ = Refl -- ---------------------------------------------------------------------- -- product types record Unit : Set where constructor <> record Σ {l1 l2 : Level} {A : Set l1} (B : A -> Set l2) : Set (lmax l1 l2) where constructor _,_ field fst : A snd : B fst open Σ public infixr 0 _,_ _×_ : {l1 l2 : Level} → Set l1 -> Set l2 -> Set (lmax l1 l2) A × B = Σ (\ (_ : A) -> B) infixr 10 _×_ -- ---------------------------------------------------------------------- -- booleans data Bool : Set where True : Bool False : Bool {-# COMPILED_DATA Bool Bool True False #-} {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE True #-} {-# BUILTIN FALSE False #-} -- ---------------------------------------------------------------------- -- order data Order : Set where Less : Order Equal : Order Greater : Order -- ---------------------------------------------------------------------- -- sums data Void : Set where abort : {A : Set} → Void → A abort () data Either (A B : Set) : Set where Inl : A → Either A B Inr : B → Either A B DecEq : Set → Set DecEq A = (x y : A) → Either (x == y) (x == y → Void) -- ---------------------------------------------------------------------- -- natural numbers module Nat where data Nat : Set where Z : Nat S : Nat -> Nat -- let's you use numerals for Nat {-# BUILTIN NATURAL Nat #-} _+_ : Nat → Nat → Nat Z + n = n (S m) + n = S (m + n) max : Nat → Nat → Nat max Z n = n max m Z = m max (S m) (S n) = S (max m n) equal : Nat → Nat → Bool equal Z Z = True equal Z (S _) = False equal (S _) Z = False equal (S m) (S n) = equal m n compare : Nat → Nat → Order compare Z Z = Equal compare Z (S m) = Less compare (S n) Z = Greater compare (S n) (S m) = compare n m open Nat public using (Nat ; Z ; S) -- ---------------------------------------------------------------------- -- monad module Monad where record Monad : Set1 where field T : Set → Set return : ∀ {A} → A → T A _>>=_ : ∀ {A B} → T A → (A → T B) -> T B -- ---------------------------------------------------------------------- -- options module Maybe where data Maybe {l : Level} (A : Set l) : Set l where Some : A → Maybe A None : Maybe A Monad : Monad.Monad Monad = record { T = Maybe; return = Some; _>>=_ = (λ {None _ → None; (Some v) f → f v}) } open Maybe public using (Maybe;Some;None) -- ---------------------------------------------------------------------- -- lists module List where data List {l : Level} (A : Set l) : Set l where [] : List A _::_ : A -> List A -> List A {-# COMPILED_DATA List [] [] (:) #-} {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _::_ #-} infixr 99 _::_ _++_ : {A : Set} → List A → List A → List A [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) infixr 10 _++_ map : {l1 l2 : Level} {A : Set l1} {B : Set l2} → (A → B) → List A → List B map f [] = [] map f (x :: xs) = f x :: map f xs map-id : {l : Level} {A : Set l} (l : List A) → map (\ (x : A) → x) l == l map-id [] = Refl map-id (x :: l) with map (\ x -> x) l | map-id l ... | ._ | Refl = Refl ++-assoc : ∀ {A} (l1 l2 l3 : List A) → (l1 ++ l2) ++ l3 == l1 ++ (l2 ++ l3) ++-assoc [] l2 l3 = Refl ++-assoc (x :: xs) l2 l3 = ap (_::_ x) (++-assoc xs l2 l3) open List public using (List ; [] ; _::_) -- ---------------------------------------------------------------------- -- characters module Char where postulate {- Agda Primitive -} Char : Set {-# BUILTIN CHAR Char #-} {-# COMPILED_TYPE Char Char #-} private primitive primCharToNat : Char → Nat primCharEquality : Char → Char → Bool toNat : Char → Nat toNat = primCharToNat equalb : Char -> Char -> Bool equalb = primCharEquality -- need to go outside the real language a little to give the primitives good types, -- but from the outside this should be safe equal : DecEq Char equal x y with equalb x y ... | True = Inl primTrustMe ... | False = Inr canthappen where postulate canthappen : _ open Char public using (Char) -- ---------------------------------------------------------------------- -- vectors module Vector where data Vec (A : Set) : Nat → Set where [] : Vec A 0 _::_ : ∀ {n} → A → Vec A n → Vec A (S n) infixr 99 _::_ Vec-elim : {A : Set} (P : {n : Nat} → Vec A n → Set) → (P []) → ({n : Nat} (x : A) (xs : Vec A n) → P xs → P (x :: xs)) → {n : Nat} (v : Vec A n) → P v Vec-elim P n c [] = n Vec-elim P n c (y :: ys) = c y ys (Vec-elim P n c ys) fromList : {A : Set} → List A → Σ \n → Vec A n fromList [] = _ , [] fromList (x :: xs) = _ , x :: snd (fromList xs) toList : {A : Set} {n : Nat} → Vec A n → List A toList [] = [] toList (x :: xs) = x :: (toList xs) toList' : {A : Set} → (Σ \ n → Vec A n) → List A toList' (._ , []) = [] toList' (._ , (x :: xs)) = x :: (toList' (_ , xs)) -- ---------------------------------------------------------------------- -- strings module String where postulate {- Agda Primitive -} String : Set {-# BUILTIN STRING String #-} {-# COMPILED_TYPE String String #-} private primitive primStringToList : String -> List Char primStringFromList : List Char -> String primStringAppend : String -> String -> String primStringEquality : String -> String -> Bool equal : String -> String -> Bool equal = primStringEquality toList = primStringToList fromList = primStringFromList append = primStringAppend toVec : String -> Σ \ m → Vector.Vec Char m toVec = Vector.fromList o toList
26.446945
151
0.42079
dc864e727832d05fa81fcda58808b3c5350429c8
3,313
agda
Agda
vendor/stdlib/src/Relation/Binary/Consequences.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Relation/Binary/Consequences.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Relation/Binary/Consequences.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- Some properties imply others ------------------------------------------------------------------------ module Relation.Binary.Consequences where open import Relation.Binary.Core hiding (refl) open import Relation.Nullary.Core open import Relation.Binary.PropositionalEquality.Core open import Data.Function open import Data.Sum open import Data.Product open import Data.Empty -- Some of the definitions can be found in the following module: open import Relation.Binary.Consequences.Core public trans∧irr⟶asym : ∀ {a} → {≈ < : Rel a} → Reflexive ≈ → Transitive < → Irreflexive ≈ < → Asymmetric < trans∧irr⟶asym refl trans irrefl = λ x<y y<x → irrefl refl (trans x<y y<x) irr∧antisym⟶asym : ∀ {a} → {≈ < : Rel a} → Irreflexive ≈ < → Antisymmetric ≈ < → Asymmetric < irr∧antisym⟶asym irrefl antisym = λ x<y y<x → irrefl (antisym x<y y<x) x<y asym⟶antisym : ∀ {a} → {≈ < : Rel a} → Asymmetric < → Antisymmetric ≈ < asym⟶antisym asym x<y y<x = ⊥-elim (asym x<y y<x) asym⟶irr : ∀ {a} → {≈ < : Rel a} → < Respects₂ ≈ → Symmetric ≈ → Asymmetric < → Irreflexive ≈ < asym⟶irr {< = _<_} resp sym asym {x} {y} x≈y x<y = asym x<y y<x where y<y : y < y y<y = proj₂ resp x≈y x<y y<x : y < x y<x = proj₁ resp (sym x≈y) y<y total⟶refl : ∀ {a} → {≈ ∼ : Rel a} → ∼ Respects₂ ≈ → Symmetric ≈ → Total ∼ → ≈ ⇒ ∼ total⟶refl {≈ = ≈} {∼ = ∼} resp sym total = refl where refl : ≈ ⇒ ∼ refl {x} {y} x≈y with total x y ... | inj₁ x∼y = x∼y ... | inj₂ y∼x = proj₁ resp x≈y (proj₂ resp (sym x≈y) y∼x) total+dec⟶dec : ∀ {a} → {≈ ≤ : Rel a} → ≈ ⇒ ≤ → Antisymmetric ≈ ≤ → Total ≤ → Decidable ≈ → Decidable ≤ total+dec⟶dec {≈ = ≈} {≤ = ≤} refl antisym total _≟_ = dec where dec : Decidable ≤ dec x y with total x y ... | inj₁ x≤y = yes x≤y ... | inj₂ y≤x with x ≟ y ... | yes x≈y = yes (refl x≈y) ... | no ¬x≈y = no (λ x≤y → ¬x≈y (antisym x≤y y≤x)) tri⟶asym : ∀ {a} → {≈ < : Rel a} → Trichotomous ≈ < → Asymmetric < tri⟶asym tri {x} {y} x<y x>y with tri x y ... | tri< _ _ x≯y = x≯y x>y ... | tri≈ _ _ x≯y = x≯y x>y ... | tri> x≮y _ _ = x≮y x<y tri⟶irr : ∀ {a} → {≈ < : Rel a} → < Respects₂ ≈ → Symmetric ≈ → Trichotomous ≈ < → Irreflexive ≈ < tri⟶irr resp sym tri = asym⟶irr resp sym (tri⟶asym tri) tri⟶dec≈ : ∀ {a} → {≈ < : Rel a} → Trichotomous ≈ < → Decidable ≈ tri⟶dec≈ compare x y with compare x y ... | tri< _ x≉y _ = no x≉y ... | tri≈ _ x≈y _ = yes x≈y ... | tri> _ x≉y _ = no x≉y tri⟶dec< : ∀ {a} → {≈ < : Rel a} → Trichotomous ≈ < → Decidable < tri⟶dec< compare x y with compare x y ... | tri< x<y _ _ = yes x<y ... | tri≈ x≮y _ _ = no x≮y ... | tri> x≮y _ _ = no x≮y subst⟶cong : {≈ : ∀ {a} → Rel a} → (∀ {a} → Reflexive {a} ≈) → (∀ {a} → Substitutive {a} ≈) → Congruential ≈ subst⟶cong {≈ = _≈_} refl subst f {x} x≈y = subst (λ y → f x ≈ f y) x≈y refl cong+trans⟶cong₂ : {≈ : ∀ {a} → Rel a} → Congruential ≈ → (∀ {a} → Transitive {a} ≈) → Congruential₂ ≈ cong+trans⟶cong₂ cong trans f {x = x} {v = v} x≈y u≈v = cong (f x) u≈v ⟨ trans ⟩ cong (flip f v) x≈y map-NonEmpty : ∀ {I} {P Q : Rel I} → P ⇒ Q → NonEmpty P → NonEmpty Q map-NonEmpty f x = nonEmpty (f (NonEmpty.proof x))
27.380165
72
0.520374
1c6b9cd31933ad90cfa35ba7259e104213e20d1c
2,721
agda
Agda
lemmas-consistency.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
lemmas-consistency.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
lemmas-consistency.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
open import Prelude open import dynamics-core module lemmas-consistency where -- type consistency is symmetric ~sym : {t1 t2 : htyp} → t1 ~ t2 → t2 ~ t1 ~sym TCRefl = TCRefl ~sym TCHole1 = TCHole2 ~sym TCHole2 = TCHole1 ~sym (TCArr p1 p2) = TCArr (~sym p1) (~sym p2) ~sym (TCSum p1 p2) = TCSum (~sym p1) (~sym p2) ~sym (TCProd p1 p2) = TCProd (~sym p1) (~sym p2) -- type consistency isn't transitive not-trans : ((t1 t2 t3 : htyp) → t1 ~ t2 → t2 ~ t3 → t1 ~ t3) → ⊥ not-trans t with t (num ==> num) ⦇-⦈ num TCHole1 TCHole2 ... | () -- every pair of types is either consistent or not consistent ~dec : (t1 t2 : htyp) → ((t1 ~ t2) + (t1 ~̸ t2)) -- this takes care of all hole cases, so we don't consider them below ~dec _ ⦇-⦈ = Inl TCHole1 ~dec ⦇-⦈ _ = Inl TCHole2 ~dec num num = Inl TCRefl ~dec num (t2 ==> t3) = Inr (λ ()) ~dec num (t2 ⊕ t3) = Inr (λ ()) ~dec (t1 ==> t3) num = Inr (λ ()) ~dec (t1 ==> t3) (t2 ==> t4) with ~dec t1 t2 | ~dec t3 t4 ... | Inl x | Inl x₁ = Inl (TCArr x x₁) ... | Inl x | Inr x₁ = Inr λ{ TCRefl → x₁ TCRefl ; (TCArr x₂ x₃) → x₁ x₃} ... | Inr x | w = Inr λ{ TCRefl → x TCRefl ; (TCArr x₁ x₂) → x x₁} ~dec (t1 ==> t3) (t2 ⊕ t4) = Inr (λ ()) ~dec (t1 ⊕ t3) num = Inr (λ ()) ~dec (t1 ⊕ t3) (t2 ==> t4) = Inr (λ ()) ~dec (t1 ⊕ t3) (t2 ⊕ t4) with ~dec t1 t2 | ~dec t3 t4 ... | Inl x | Inl x₁ = Inl (TCSum x x₁) ... | Inl x | Inr x₁ = Inr λ{ TCRefl → x₁ TCRefl ; (TCSum x₂ x₃) → x₁ x₃} ... | Inr x | w = Inr λ{ TCRefl → x TCRefl ; (TCSum x₁ x₂) → x x₁} ~dec num (t2 ⊠ t4) = Inr (λ ()) ~dec (t1 ==> t3) (t2 ⊠ t4) = Inr (λ ()) ~dec (t1 ⊕ t3) (t2 ⊠ t4) = Inr (λ ()) ~dec (t1 ⊠ t3) num = Inr (λ ()) ~dec (t1 ⊠ t3) (t2 ==> t4) = Inr (λ ()) ~dec (t1 ⊠ t3) (t2 ⊕ t4) = Inr (λ ()) ~dec (t1 ⊠ t3) (t2 ⊠ t4) with ~dec t1 t2 | ~dec t3 t4 ... | Inl x | Inl x₁ = Inl (TCProd x x₁) ... | Inl x | Inr x₁ = Inr λ{ TCRefl → x₁ TCRefl ; (TCProd x₂ x₃) → x₁ x₃} ... | Inr x | w = Inr λ{ TCRefl → x TCRefl ; (TCProd x₁ x₂) → x x₁} -- if arrows are consistent, their components are consistent ~arr : ∀{τ1 τ2 τ3 τ4} → (τ1 ==> τ2) ~ (τ3 ==> τ4) → (τ1 ~ τ3) × (τ2 ~ τ4) ~arr TCRefl = TCRefl , TCRefl ~arr (TCArr con con₁) = con , con₁ -- if sums are consistent, their components are consistent ~sum : ∀{τ1 τ2 τ3 τ4} → (τ1 ⊕ τ2) ~ (τ3 ⊕ τ4) → (τ1 ~ τ3) × (τ2 ~ τ4) ~sum TCRefl = TCRefl , TCRefl ~sum (TCSum con con₁) = con , con₁ -- if products are consistent, their components are consistent ~prod : ∀{τ1 τ2 τ3 τ4} → (τ1 ⊠ τ2) ~ (τ3 ⊠ τ4) → (τ1 ~ τ3) × (τ2 ~ τ4) ~prod TCRefl = TCRefl , TCRefl ~prod (TCProd con con₁) = con , con₁
37.273973
76
0.519294
df81469c4ebaf5ff47d733345f6b7d09f7d03506
3,862
agda
Agda
examples/examplesPaperJFP/BasicIO.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
23
2016-06-19T12:57:55.000Z
2020-10-12T23:15:25.000Z
examples/examplesPaperJFP/BasicIO.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
null
null
null
examples/examplesPaperJFP/BasicIO.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
2
2018-09-01T15:02:37.000Z
2022-03-12T11:41:00.000Z
module examplesPaperJFP.BasicIO where open import Data.Maybe hiding ( _>>=_ ) open import Data.Sum renaming (inj₁ to left; inj₂ to right; [_,_]′ to either) open import Function open import examplesPaperJFP.NativeIOSafe open import examplesPaperJFP.triangleRightOperator module _ where -- for indentation record IOInterface : Set₁ where field Command : Set Response : (c : Command) → Set open IOInterface public module _ {C : Set} {R : C → Set} (let I = record { Command = C; Response = R } ) where module Postulated {I : IOInterface} (let C = Command I) (let R = Response I) where postulate IO : (I : IOInterface) (A : Set) → Set exec : ∀{A} (c : C) (f : R c → IO I A) → IO I A return : ∀{A} (a : A) → IO I A _>>=_ : ∀{A B} (m : IO I A) (k : A → IO I B) → IO I B mutual record IO I A : Set where coinductive constructor delay field force : IO′ I A data IO′ I A : Set where exec′ : (c : Command I) (f : Response I c → IO I A) → IO′ I A return′ : (a : A) → IO′ I A open IO public delay′ : ∀{I A} → IO′ I A → IO I A force (delay′ x) = x module _ {I : IOInterface} (let C = Command I) (let R = Response I) where -- module _ {I : IOInterface} (let record { Command = C; Response = R } = I) where -- module _ {I : IOInterface} (let ioInterface C R = I) where exec : ∀{A} (c : C) (f : R c → IO I A) → IO I A force (exec c f) = exec′ c f return : ∀{A} (a : A) → IO I A force (return a) = return′ a infixl 2 _>>=_ _>>=_ : ∀{A B} (m : IO I A) (k : A → IO I B) → IO I B force (m >>= k) with force m ... | exec′ c f = exec′ c λ x → f x >>= k ... | return′ a = force (k a) module _ {I : IOInterface} (let C = Command I) (let R = Response I) where {-# NON_TERMINATING #-} translateIO : ∀ {A} (tr : (c : C) → NativeIO (R c)) → IO I A → NativeIO A translateIO tr m = force m ▹ λ { (exec′ c f) → (tr c) native>>= λ r → translateIO tr (f r) ; (return′ a) → nativeReturn a } -- Recursion -- trampoline provides a generic form of loop (generalizing while/repeat). -- Starting at state s : S, step function f is iterated until it returns -- a result in A. module _ (I : IOInterface)(let C = Command I) (let R = Response I) where data IO+ (A : Set) : Set where exec′ : (c : C) (f : R c → IO I A) → IO+ A module _ {I : IOInterface}(let C = Command I) (let R = Response I) where fromIO+′ : ∀{A} → IO+ I A → IO′ I A fromIO+′ (exec′ c f) = exec′ c f fromIO+ : ∀{A} → IO+ I A → IO I A force (fromIO+ (exec′ c f)) = exec′ c f _>>=+′_ : ∀{A B} (m : IO+ I A) (k : A → IO I B) → IO′ I B exec′ c f >>=+′ k = exec′ c λ x → f x >>= k _>>=+_ : ∀{A B} (m : IO+ I A) (k : A → IO I B) → IO I B force (m >>=+ k) = m >>=+′ k mutual _>>+_ : ∀{A B} (m : IO I (A ⊎ B)) (k : A → IO I B) → IO I B force (m >>+ k) = force m >>+′ k _>>+′_ : ∀{A B} (m : IO′ I (A ⊎ B)) (k : A → IO I B) → IO′ I B exec′ c f >>+′ k = exec′ c λ x → f x >>+ k return′ (left a) >>+′ k = force (k a) return′ (right b) >>+′ k = return′ b -- loop {-# TERMINATING #-} trampoline : ∀{A S} (f : S → IO+ I (S ⊎ A)) (s : S) → IO I A force (trampoline f s) = case (f s) of \ { (exec′ c k) → exec′ c λ r → k r >>+ trampoline f } -- simple infinite loop {-# TERMINATING #-} forever : ∀{A B} → IO+ I A → IO I B force (forever (exec′ c f)) = exec′ c λ r → f r >>= λ _ → forever (exec′ c f) whenJust : {A : Set} → Maybe A → (A → IO I Unit) → IO I Unit whenJust nothing k = return _ whenJust (just a) k = k a main : NativeIO Unit main = nativePutStrLn "Hello, world!"
30.171875
82
0.503884
39e3e950bcf0c59bb227ee8f23da272657f64490
245
agda
Agda
test/Fail/Issue5238.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue5238.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue5238.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --rewriting #-} open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite data ⊥ : Set where postulate T : Set t0 : T t1 : T postulate foo : ⊥ → t0 ≡ t1 {-# REWRITE foo #-} test : t0 ≡ t1 test = refl
12.894737
41
0.628571
203aa9469741fbdf41b86000b9e5e81d000cef59
8,436
agda
Agda
theorems/homotopy/Cogroup.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/homotopy/Cogroup.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/homotopy/Cogroup.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.CoHSpace module homotopy.Cogroup where record CogroupStructure {i} (X : Ptd i) : Type i where field co-h-struct : CoHSpaceStructure X ⊙inv : X ⊙→ X open CoHSpaceStructure co-h-struct public inv : de⊙ X → de⊙ X inv = fst ⊙inv field ⊙inv-l : ⊙Wedge-rec ⊙inv (⊙idf X) ⊙∘ ⊙coμ ⊙∼ ⊙cst ⊙assoc : ⊙–> (⊙∨-assoc X X X) ⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ ⊙∼ ⊙∨-fmap (⊙idf X) ⊙coμ ⊙∘ ⊙coμ {- module _ {i j : ULevel} {X : Ptd i} (CGS : CogroupStructure X) where open CogroupStructure CGS private lemma-inv : ⊙Wedge-rec (⊙Lift-fmap ⊙inv) (⊙idf (⊙Lift {j = j} X)) ⊙∘ ⊙∨-fmap (⊙lift {j = j}) (⊙lift {j = j}) ⊙∘ ⊙coμ ⊙∘ ⊙lower {j = j} == ⊙cst abstract lemma-inv = ! (⊙λ= (⊙∘-assoc (⊙Wedge-rec (⊙Lift-fmap ⊙inv) (⊙idf (⊙Lift {j = j} X))) (⊙∨-fmap ⊙lift ⊙lift) (⊙coμ ⊙∘ ⊙lower))) ∙ ap (_⊙∘ ⊙coμ ⊙∘ ⊙lower) (⊙λ= (⊙Wedge-rec-fmap (⊙Lift-fmap ⊙inv) (⊙idf _) ⊙lift ⊙lift)) ∙ ap (_⊙∘ ⊙coμ ⊙∘ ⊙lower) (! (⊙λ= (⊙Wedge-rec-post∘ ⊙lift ⊙inv (⊙idf _)))) ∙ ⊙λ= (⊙∘-assoc ⊙lift (⊙Wedge-rec ⊙inv (⊙idf X)) (⊙coμ ⊙∘ ⊙lower)) ∙ ap ⊙Lift-fmap (⊙λ= ⊙inv-l) private ⊙coμ' : ⊙Lift {j = j} X ⊙→ ⊙Lift {j = j} X ⊙∨ ⊙Lift {j = j} X ⊙coμ' = ⊙∨-fmap (⊙lift {j = j}) (⊙lift {j = j}) ⊙∘ ⊙coμ ⊙∘ ⊙lower {j = j} private lemma-assoc' : ⊙–> (⊙∨-assoc (⊙Lift {j = j} X) (⊙Lift {j = j} X) (⊙Lift {j = j} X)) ⊙∘ ⊙∨-fmap ⊙coμ' (⊙idf (⊙Lift {j = j} X)) ⊙∘ ⊙∨-fmap (⊙lift {j = j}) (⊙lift {j = j}) ⊙∘ ⊙coμ == ⊙∨-fmap (⊙idf (⊙Lift {j = j} X)) ⊙coμ' ⊙∘ ⊙∨-fmap (⊙lift {j = j}) (⊙lift {j = j}) ⊙∘ ⊙coμ abstract lemma-assoc' = ⊙–> (⊙∨-assoc (⊙Lift X) (⊙Lift X) (⊙Lift X)) ⊙∘ ⊙∨-fmap ⊙coμ' (⊙idf (⊙Lift {j = j} X)) ⊙∘ ⊙∨-fmap ⊙lift ⊙lift ⊙∘ ⊙coμ =⟨ ! $ ap (⊙–> (⊙∨-assoc _ _ _) ⊙∘_) $ ⊙λ= $ ⊙∘-assoc (⊙∨-fmap ⊙coμ' (⊙idf (⊙Lift X))) (⊙∨-fmap ⊙lift ⊙lift) ⊙coμ ⟩ ⊙–> (⊙∨-assoc (⊙Lift X) (⊙Lift X) (⊙Lift X)) ⊙∘ (⊙∨-fmap ⊙coμ' (⊙idf (⊙Lift X)) ⊙∘ ⊙∨-fmap ⊙lift ⊙lift) ⊙∘ ⊙coμ =⟨ ap (λ f → ⊙–> (⊙∨-assoc _ _ _ ) ⊙∘ f ⊙∘ ⊙coμ) $ ! (⊙λ= $ ⊙∨-fmap-∘ ⊙coμ' ⊙lift (⊙idf (⊙Lift X)) ⊙lift) ∙ (⊙λ= $ ⊙∨-fmap-∘ (⊙∨-fmap ⊙lift ⊙lift) ⊙coμ ⊙lift (⊙idf X)) ⟩ ⊙–> (⊙∨-assoc (⊙Lift X) (⊙Lift X) (⊙Lift X)) ⊙∘ (⊙∨-fmap (⊙∨-fmap ⊙lift ⊙lift) ⊙lift ⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X)) ⊙∘ ⊙coμ =⟨ ap (⊙–> (⊙∨-assoc _ _ _ ) ⊙∘_) $ ⊙λ= $ ⊙∘-assoc (⊙∨-fmap (⊙∨-fmap ⊙lift ⊙lift) ⊙lift) (⊙∨-fmap ⊙coμ (⊙idf X)) ⊙coμ ⟩ ⊙–> (⊙∨-assoc (⊙Lift X) (⊙Lift X) (⊙Lift X)) ⊙∘ ⊙∨-fmap (⊙∨-fmap ⊙lift ⊙lift) ⊙lift ⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ =⟨ ! $ ⊙λ= $ ⊙∘-assoc (⊙–> (⊙∨-assoc (⊙Lift X) (⊙Lift X) (⊙Lift X))) (⊙∨-fmap (⊙∨-fmap ⊙lift ⊙lift) ⊙lift) (⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ) ⟩ (⊙–> (⊙∨-assoc (⊙Lift X) (⊙Lift X) (⊙Lift X)) ⊙∘ ⊙∨-fmap (⊙∨-fmap ⊙lift ⊙lift) ⊙lift) ⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ =⟨ ap (_⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ) $ ⊙λ= $ ⊙∨-assoc-nat ⊙lift ⊙lift ⊙lift ⟩ (⊙∨-fmap ⊙lift (⊙∨-fmap ⊙lift ⊙lift) ⊙∘ ⊙–> (⊙∨-assoc X X X)) ⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ =⟨ ⊙λ= $ ⊙∘-assoc (⊙∨-fmap ⊙lift (⊙∨-fmap ⊙lift ⊙lift)) (⊙–> (⊙∨-assoc X X X)) (⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ) ⟩ ⊙∨-fmap ⊙lift (⊙∨-fmap ⊙lift ⊙lift) ⊙∘ ⊙–> (⊙∨-assoc X X X) ⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ =⟨ ap (⊙∨-fmap ⊙lift (⊙∨-fmap ⊙lift ⊙lift) ⊙∘_) $ ⊙λ= ⊙assoc ⟩ ⊙∨-fmap ⊙lift (⊙∨-fmap ⊙lift ⊙lift) ⊙∘ ⊙∨-fmap (⊙idf X) ⊙coμ ⊙∘ ⊙coμ =⟨ ! $ ⊙λ= $ ⊙∘-assoc (⊙∨-fmap ⊙lift (⊙∨-fmap ⊙lift ⊙lift)) (⊙∨-fmap (⊙idf X) ⊙coμ) ⊙coμ ⟩ (⊙∨-fmap ⊙lift (⊙∨-fmap ⊙lift ⊙lift) ⊙∘ ⊙∨-fmap (⊙idf X) ⊙coμ) ⊙∘ ⊙coμ =⟨ ap (_⊙∘ ⊙coμ) $ ! (⊙λ= $ ⊙∨-fmap-∘ ⊙lift (⊙idf X) (⊙∨-fmap ⊙lift ⊙lift) ⊙coμ) ∙ (⊙λ= $ ⊙∨-fmap-∘ (⊙idf (⊙Lift X)) ⊙lift ⊙coμ' ⊙lift) ⟩ (⊙∨-fmap (⊙idf (⊙Lift X)) ⊙coμ' ⊙∘ ⊙∨-fmap ⊙lift ⊙lift) ⊙∘ ⊙coμ =⟨ ⊙λ= $ ⊙∘-assoc (⊙∨-fmap (⊙idf (⊙Lift X)) ⊙coμ') (⊙∨-fmap ⊙lift ⊙lift) ⊙coμ ⟩ ⊙∨-fmap (⊙idf (⊙Lift X)) ⊙coμ' ⊙∘ ⊙∨-fmap ⊙lift ⊙lift ⊙∘ ⊙coμ =∎ private lemma-assoc : ⊙–> (⊙∨-assoc (⊙Lift {j = j} X) (⊙Lift {j = j} X) (⊙Lift {j = j} X)) ⊙∘ ⊙∨-fmap ⊙coμ' (⊙idf (⊙Lift {j = j} X)) ⊙∘ ⊙coμ' == ⊙∨-fmap (⊙idf (⊙Lift {j = j} X)) ⊙coμ' ⊙∘ ⊙coμ' abstract lemma-assoc = ap (_⊙∘ ⊙lower) lemma-assoc' Lift-cogroup-structure : CogroupStructure (⊙Lift {j = j} X) Lift-cogroup-structure = record { co-h-struct = Lift-co-h-space-structure {j = j} co-h-struct ; ⊙inv = ⊙lift ⊙∘ ⊙inv ⊙∘ ⊙lower ; ⊙inv-l = ⊙app= lemma-inv ; ⊙assoc = ⊙app= lemma-assoc } -} module _ {i j} {X : Ptd i} (cogroup-struct : CogroupStructure X) (Y : Ptd j) where private module CGS = CogroupStructure cogroup-struct ⊙coμ = CGS.⊙coμ comp : (X ⊙→ Y) → (X ⊙→ Y) → (X ⊙→ Y) comp f g = ⊙Wedge-rec f g ⊙∘ ⊙coμ inv : (X ⊙→ Y) → (X ⊙→ Y) inv = _⊙∘ CGS.⊙inv abstract unit-l : ∀ f → comp ⊙cst f == f unit-l f = ⊙Wedge-rec ⊙cst f ⊙∘ ⊙coμ =⟨ ap2 (λ f g → ⊙Wedge-rec f g ⊙∘ ⊙coμ) (! $ ⊙λ= (⊙∘-cst-r f)) (! $ ⊙λ= (⊙∘-unit-r f)) ⟩ ⊙Wedge-rec (f ⊙∘ ⊙cst) (f ⊙∘ ⊙idf X) ⊙∘ ⊙coμ =⟨ ap (_⊙∘ ⊙coμ) (! $ ⊙λ= $ ⊙Wedge-rec-post∘ f ⊙cst (⊙idf X)) ⟩ (f ⊙∘ ⊙Wedge-rec ⊙cst (⊙idf X)) ⊙∘ ⊙coμ =⟨ ⊙λ= $ ⊙∘-assoc f (⊙Wedge-rec ⊙cst (⊙idf X)) ⊙coμ ⟩ f ⊙∘ (⊙Wedge-rec ⊙cst (⊙idf X) ⊙∘ ⊙coμ) =⟨ ap (f ⊙∘_) (⊙λ= CGS.⊙unit-l) ⟩ f ⊙∘ ⊙idf X =⟨ ⊙λ= (⊙∘-unit-r f) ⟩ f =∎ assoc : ∀ f g h → comp (comp f g) h == comp f (comp g h) assoc f g h = ⊙Wedge-rec (⊙Wedge-rec f g ⊙∘ ⊙coμ) h ⊙∘ ⊙coμ =⟨ ! $ ⊙λ= (⊙∘-unit-r h) |in-ctx (λ h → ⊙Wedge-rec (⊙Wedge-rec f g ⊙∘ ⊙coμ) h ⊙∘ ⊙coμ) ⟩ ⊙Wedge-rec (⊙Wedge-rec f g ⊙∘ ⊙coμ) (h ⊙∘ ⊙idf X) ⊙∘ ⊙coμ =⟨ ! $ ⊙λ= (⊙Wedge-rec-fmap (⊙Wedge-rec f g) h ⊙coμ (⊙idf X)) |in-ctx _⊙∘ ⊙coμ ⟩ (⊙Wedge-rec (⊙Wedge-rec f g) h ⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X)) ⊙∘ ⊙coμ =⟨ ⊙λ= $ ⊙∘-assoc (⊙Wedge-rec (⊙Wedge-rec f g) h) (⊙∨-fmap ⊙coμ (⊙idf X)) ⊙coμ ⟩ ⊙Wedge-rec (⊙Wedge-rec f g) h ⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ =⟨ ⊙λ= (⊙Wedge-rec-assoc f g h) |in-ctx _⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ ⟩ (⊙Wedge-rec f (⊙Wedge-rec g h) ⊙∘ ⊙–> (⊙∨-assoc X X X)) ⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ =⟨ ⊙λ= $ ⊙∘-assoc (⊙Wedge-rec f (⊙Wedge-rec g h)) (⊙–> (⊙∨-assoc X X X)) (⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ) ⟩ ⊙Wedge-rec f (⊙Wedge-rec g h) ⊙∘ ⊙–> (⊙∨-assoc X X X) ⊙∘ ⊙∨-fmap ⊙coμ (⊙idf X) ⊙∘ ⊙coμ =⟨ ⊙λ= CGS.⊙assoc |in-ctx ⊙Wedge-rec f (⊙Wedge-rec g h) ⊙∘_ ⟩ ⊙Wedge-rec f (⊙Wedge-rec g h) ⊙∘ ⊙∨-fmap (⊙idf X) ⊙coμ ⊙∘ ⊙coμ =⟨ ! $ ⊙λ= $ ⊙∘-assoc (⊙Wedge-rec f (⊙Wedge-rec g h)) (⊙∨-fmap (⊙idf X) ⊙coμ) ⊙coμ ⟩ (⊙Wedge-rec f (⊙Wedge-rec g h) ⊙∘ ⊙∨-fmap (⊙idf X) ⊙coμ) ⊙∘ ⊙coμ =⟨ ⊙λ= (⊙Wedge-rec-fmap f (⊙Wedge-rec g h) (⊙idf X) ⊙coμ) |in-ctx _⊙∘ ⊙coμ ⟩ ⊙Wedge-rec (f ⊙∘ ⊙idf X) (⊙Wedge-rec g h ⊙∘ ⊙coμ) ⊙∘ ⊙coμ =⟨ ⊙λ= (⊙∘-unit-r f) |in-ctx (λ f → ⊙Wedge-rec f (⊙Wedge-rec g h ⊙∘ ⊙coμ) ⊙∘ ⊙coμ) ⟩ ⊙Wedge-rec f (⊙Wedge-rec g h ⊙∘ ⊙coμ) ⊙∘ ⊙coμ =∎ inv-l : ∀ f → comp (inv f) f == ⊙cst inv-l f = ⊙Wedge-rec (f ⊙∘ CGS.⊙inv) f ⊙∘ ⊙coμ =⟨ ap (λ g → ⊙Wedge-rec (f ⊙∘ CGS.⊙inv) g ⊙∘ ⊙coμ) (! $ ⊙λ= (⊙∘-unit-r f)) ⟩ ⊙Wedge-rec (f ⊙∘ CGS.⊙inv) (f ⊙∘ ⊙idf X) ⊙∘ ⊙coμ =⟨ ap (_⊙∘ ⊙coμ) (! $ ⊙λ= $ ⊙Wedge-rec-post∘ f CGS.⊙inv (⊙idf X)) ⟩ (f ⊙∘ ⊙Wedge-rec CGS.⊙inv (⊙idf X)) ⊙∘ ⊙coμ =⟨ ⊙λ= $ ⊙∘-assoc f (⊙Wedge-rec CGS.⊙inv (⊙idf X)) ⊙coμ ⟩ f ⊙∘ (⊙Wedge-rec CGS.⊙inv (⊙idf X) ⊙∘ ⊙coμ) =⟨ ap (f ⊙∘_) (⊙λ= CGS.⊙inv-l) ⟩ f ⊙∘ ⊙cst =⟨ ⊙λ= (⊙∘-cst-r f) ⟩ ⊙cst =∎ cogroup⊙→-group-structure : GroupStructure (X ⊙→ Y) cogroup⊙→-group-structure = record { ident = ⊙cst ; inv = inv ; comp = comp ; unit-l = unit-l ; assoc = assoc ; inv-l = inv-l }
40.363636
116
0.411095
102791ab74cb8a13c7e30b0781353639f6bb5391
31,541
agda
Agda
Cubical/Homotopy/BlakersMassey.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-02-05T01:25:02.000Z
2022-02-05T01:25:02.000Z
Cubical/Homotopy/BlakersMassey.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Homotopy/BlakersMassey.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{- A Cubical proof of Blakers-Massey Theorem (KANG Rongji, Oct. 2021) Based on the previous type-theoretic proof described in Kuen-Bang Hou (Favonia), Eric Finster, Dan Licata, Peter LeFanu Lumsdaine, "A Mechanization of the Blakers–Massey Connectivity Theorem in Homotopy Type Theory" (https://arxiv.org/abs/1605.03227) Also the HoTT-Agda formalization by Favonia: (https://github.com/HoTT/HoTT-Agda/blob/master/theorems/homotopy/BlakersMassey.agda) Using cubes explicitly as much as possible. -} {-# OPTIONS --safe #-} module Cubical.Homotopy.BlakersMassey where open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Transport open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.Properties open import Cubical.Foundations.Isomorphism open Iso open import Cubical.Foundations.Univalence open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Data.Nat hiding (elim) open import Cubical.Data.Sigma open import Cubical.Data.Unit open import Cubical.HITs.Truncation renaming (hLevelTrunc to Trunc) open import Cubical.HITs.Pushout hiding (PushoutGenFib) open import Cubical.Homotopy.Connected open import Cubical.Homotopy.WedgeConnectivity module BlakersMassey {ℓ₁ ℓ₂ ℓ₃ : Level} (X : Type ℓ₁)(Y : Type ℓ₂)(Q : X → Y → Type ℓ₃) {m : HLevel} (leftConn : (x : X) → isConnected (1 + m) (Σ[ y ∈ Y ] Q x y)) {n : HLevel} (rightConn : (y : Y) → isConnected (1 + n) (Σ[ x ∈ X ] Q x y)) where ℓ : Level ℓ = ℓ-max (ℓ-max ℓ₁ ℓ₂) ℓ₃ leftFiber : X → Type (ℓ-max ℓ₂ ℓ₃) leftFiber x = Σ[ y ∈ Y ] Q x y rightFiber : Y → Type (ℓ-max ℓ₁ ℓ₃) rightFiber y = Σ[ x ∈ X ] Q x y {- We use the alternative formulation of pushout with fewer parameters -} PushoutQ = PushoutGen Q {- Some preliminary definitions for convenience -} fiberSquare : {x₀ x₁ : X}{y₀ : Y}{p : PushoutQ}(q₀₀ : Q x₀ y₀)(q₁₀ : Q x₁ y₀) → inl x₁ ≡ p → inl x₀ ≡ p → Type ℓ fiberSquare q₀₀ q₁₀ r' r = PathP (λ i → push q₀₀ (~ i) ≡ r' i) (sym (push q₁₀)) r fiberSquarePush : {x₀ x₁ : X}{y₀ y₁ : Y}(q₀₀ : Q x₀ y₀)(q₁₀ : Q x₁ y₀)(q₁₁ : Q x₁ y₁) → inl x₀ ≡ inr y₁ → Type ℓ fiberSquarePush q₀₀ q₁₀ q₁₁ = fiberSquare q₀₀ q₁₀ (push q₁₁) fiber' : {x₀ : X}{y₀ : Y}(q₀₀ : Q x₀ y₀){x₁ : X}{p : PushoutQ} → inl x₁ ≡ p → inl x₀ ≡ p → Type ℓ fiber' {y₀ = y₀} q₀₀ {x₁ = x₁} r' r = Σ[ q₁₀ ∈ Q x₁ y₀ ] fiberSquare q₀₀ q₁₀ r' r fiber'Push : {x₀ x₁ : X}{y₀ y₁ : Y}(q₀₀ : Q x₀ y₀)(q₁₁ : Q x₁ y₁) → inl x₀ ≡ inr y₁ → Type ℓ fiber'Push q₀₀ q₁₁ = fiber' q₀₀ (push q₁₁) leftCodeExtended : {x₀ : X}{y₀ : Y}(q₀₀ : Q x₀ y₀) → (x₁ : X){p : PushoutQ} → inl x₁ ≡ p → inl x₀ ≡ p → Type ℓ leftCodeExtended {y₀ = y₀} q₀₀ x₁ r' r = Trunc (m + n) (fiber' q₀₀ r' r) rightCode : {x₀ : X}(y : Y) → Path PushoutQ (inl x₀) (inr y) → Type ℓ rightCode y r = Trunc (m + n) (fiber push r) {- Bunch of coherence data that will be used to construct Code -} {- Definitions of fiber→ -} module _ {x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀) where {- (x₀ , q₀₀) = (x₁ , q₁₀) -} module _ {y₁ : Y}(q₁₁ : Q x₁ y₁) (r : inl x₁ ≡ inr y₁) (p : fiberSquarePush q₁₀ q₁₀ q₁₁ r) where fiber→[q₀₀=q₁₀]-filler : (i j k : I) → PushoutQ fiber→[q₀₀=q₁₀]-filler i j k' = hfill (λ k → λ { (i = i0) → push q₁₁ (j ∧ k) ; (i = i1) → p k j ; (j = i0) → push q₁₀ (i ∧ ~ k) ; (j = i1) → push q₁₁ k }) (inS (push q₁₀ (i ∧ ~ j))) k' fiber→[q₀₀=q₁₀] : fiber push r fiber→[q₀₀=q₁₀] .fst = q₁₁ fiber→[q₀₀=q₁₀] .snd i j = fiber→[q₀₀=q₁₀]-filler i j i1 ∣fiber→[q₀₀=q₁₀]∣ : rightCode _ r ∣fiber→[q₀₀=q₁₀]∣ = ∣ fiber→[q₀₀=q₁₀] ∣ₕ {- (y₁ , q₁₁) = (y₀ , q₁₀) -} module _ {x₀ : X}(q₀₀ : Q x₀ y₀) (r : inl x₀ ≡ inr y₀) (p : fiberSquarePush q₀₀ q₁₀ q₁₀ r) where fiber→[q₁₁=q₁₀]-filler : (i j k : I) → PushoutQ fiber→[q₁₁=q₁₀]-filler i j k' = hfill (λ k → λ { (i = i0) → push q₀₀ (j ∨ ~ k) ; (i = i1) → p k j ; (j = i0) → push q₀₀ (~ k) ; (j = i1) → push q₁₀ (~ i ∨ k) }) (inS (push q₁₀ (~ i ∨ ~ j))) k' fiber→[q₁₁=q₁₀] : fiber push r fiber→[q₁₁=q₁₀] .fst = q₀₀ fiber→[q₁₁=q₁₀] .snd i j = fiber→[q₁₁=q₁₀]-filler i j i1 ∣fiber→[q₁₁=q₁₀]∣ : rightCode _ r ∣fiber→[q₁₁=q₁₀]∣ = ∣ fiber→[q₁₁=q₁₀] ∣ₕ {- q₀₀ = q₁₁ = q₁₀ -} fiber→[q₀₀=q₁₀=q₁₁]-filler : (r : inl x₁ ≡ inr y₀) → (p : fiberSquarePush q₁₀ q₁₀ q₁₀ r) → (i j k l : I) → PushoutQ fiber→[q₀₀=q₁₀=q₁₁]-filler r p i j k l' = hfill (λ l → λ { (i = i0) → fiber→[q₀₀=q₁₀]-filler q₁₀ r p j k l ; (i = i1) → fiber→[q₁₁=q₁₀]-filler q₁₀ r p j k l ; (j = i0) → push q₁₀ ((i ∨ (k ∧ l)) ∧ (k ∨ (i ∧ ~ l))) ; (j = i1) → p l k ; (k = i0) → push q₁₀ ((i ∨ j) ∧ ~ l) ; (k = i1) → push q₁₀ ((i ∧ ~ j) ∨ l) }) (inS (push q₁₀ ((i ∨ (~ k ∧ j)) ∧ (~ k ∨ (i ∧ ~ j))))) l' fiber→[q₀₀=q₁₀=q₁₁] : fiber→[q₀₀=q₁₀] q₁₀ ≡ fiber→[q₁₁=q₁₀] q₁₀ fiber→[q₀₀=q₁₀=q₁₁] i r p .fst = q₁₀ fiber→[q₀₀=q₁₀=q₁₁] i r p .snd j k = fiber→[q₀₀=q₁₀=q₁₁]-filler r p i j k i1 ∣fiber→[q₀₀=q₁₀=q₁₁]∣ : ∣fiber→[q₀₀=q₁₀]∣ q₁₀ ≡ ∣fiber→[q₁₁=q₁₀]∣ q₁₀ ∣fiber→[q₀₀=q₁₀=q₁₁]∣ i r p = ∣ fiber→[q₀₀=q₁₀=q₁₁] i r p ∣ₕ {- Definitions of fiber← -} module _ {x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁) where {- (x₁ , q₁₁) = (x₀ , q₀₁) -} module _ {y₀ : Y}(q₀₀ : Q x₀ y₀) (r : inl x₀ ≡ inr y₁) (p : push q₀₁ ≡ r) where fiber←[q₁₁=q₀₁]-filler : (i j k : I) → PushoutQ fiber←[q₁₁=q₀₁]-filler i j k' = hfill (λ k → λ { (i = i0) → push q₀₀ (~ j ∧ k) ; (i = i1) → p k j ; (j = i0) → push q₀₀ (~ i ∧ k) ; (j = i1) → push q₀₁ i }) (inS (push q₀₁ (i ∧ j))) k' fiber←[q₁₁=q₀₁] : fiber'Push q₀₀ q₀₁ r fiber←[q₁₁=q₀₁] .fst = q₀₀ fiber←[q₁₁=q₀₁] .snd i j = fiber←[q₁₁=q₀₁]-filler i j i1 ∣fiber←[q₁₁=q₀₁]∣ : leftCodeExtended q₀₀ _ (push q₀₁) r ∣fiber←[q₁₁=q₀₁]∣ = ∣ fiber←[q₁₁=q₀₁] ∣ₕ {- (y₀ , q₀₀) = (y₁ , q₀₁) -} module _ {x₁ : X}(q₁₁ : Q x₁ y₁) (r : inl x₀ ≡ inr y₁) (p : push q₀₁ ≡ r) where fiber←[q₀₀=q₀₁]-filler : (i j k : I) → PushoutQ fiber←[q₀₀=q₀₁]-filler i j k' = hfill (λ k → λ { (i = i0) → push q₁₁ (~ j ∨ ~ k) ; (i = i1) → p k j ; (j = i0) → push q₀₁ (~ i) ; (j = i1) → push q₁₁ (i ∨ ~ k) }) (inS (push q₀₁ (~ i ∨ j))) k' fiber←[q₀₀=q₀₁] : fiber'Push q₀₁ q₁₁ r fiber←[q₀₀=q₀₁] .fst = q₁₁ fiber←[q₀₀=q₀₁] .snd i j = fiber←[q₀₀=q₀₁]-filler i j i1 ∣fiber←[q₀₀=q₀₁]∣ : leftCodeExtended q₀₁ _ (push q₁₁) r ∣fiber←[q₀₀=q₀₁]∣ = ∣ fiber←[q₀₀=q₀₁] ∣ₕ {- q₀₀ = q₀₁ = q₁₁ -} fiber←[q₀₀=q₀₁=q₁₁]-filler : (r : inl x₀ ≡ inr y₁) → (p : push q₀₁ ≡ r) → (i j k l : I) → PushoutQ fiber←[q₀₀=q₀₁=q₁₁]-filler r p i j k l' = hfill (λ l → λ { (i = i0) → fiber←[q₁₁=q₀₁]-filler q₀₁ r p j k l ; (i = i1) → fiber←[q₀₀=q₀₁]-filler q₀₁ r p j k l ; (j = i0) → push q₀₁ ((i ∨ (~ k ∧ l)) ∧ (~ k ∨ (i ∧ ~ l))) ; (j = i1) → p l k ; (k = i0) → push q₀₁ ((i ∨ l) ∧ ~ j) ; (k = i1) → push q₀₁ ((i ∧ ~ l) ∨ j) }) (inS (push q₀₁ ((i ∨ (k ∧ j)) ∧ (k ∨ (i ∧ ~ j))))) l' fiber←[q₀₀=q₀₁=q₁₁] : fiber←[q₁₁=q₀₁] q₀₁ ≡ fiber←[q₀₀=q₀₁] q₀₁ fiber←[q₀₀=q₀₁=q₁₁] i r p .fst = q₀₁ fiber←[q₀₀=q₀₁=q₁₁] i r p .snd j k = fiber←[q₀₀=q₀₁=q₁₁]-filler r p i j k i1 ∣fiber←[q₀₀=q₀₁=q₁₁]∣ : ∣fiber←[q₁₁=q₀₁]∣ q₀₁ ≡ ∣fiber←[q₀₀=q₀₁]∣ q₀₁ ∣fiber←[q₀₀=q₀₁=q₁₁]∣ i r p = ∣ fiber←[q₀₀=q₀₁=q₁₁] i r p ∣ₕ {- Definitions of fiber→← -} module _ {x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀) where {- (x₀ , q₀₀) = (x₁ , q₁₀) -} module _ {y₁ : Y}(q₁₁ : Q x₁ y₁) (r : inl x₁ ≡ inr y₁) (p : fiberSquarePush q₁₀ q₁₀ q₁₁ r) where fiber→←[q₀₀=q₁₀]-filler : (i j k l : I) → PushoutQ fiber→←[q₀₀=q₁₀]-filler i j k l' = let p' = fiber→[q₀₀=q₁₀] q₁₀ q₁₁ r p .snd in hfill (λ l → λ { (i = i0) → fiber←[q₁₁=q₀₁]-filler q₁₁ q₁₀ r p' j k l ; (i = i1) → fiber→[q₀₀=q₁₀]-filler q₁₀ q₁₁ r p l k j ; (j = i0) → push q₁₀ (~ k ∧ l) ; (j = i1) → p' l k ; (k = i0) → push q₁₀ (~ j ∧ l) ; (k = i1) → push q₁₁ j }) (inS (push q₁₁ (j ∧ k))) l' fiber→←[q₀₀=q₁₀] : fiber←[q₁₁=q₀₁] q₁₁ q₁₀ r (fiber→[q₀₀=q₁₀] q₁₀ q₁₁ r p .snd) .snd ≡ p fiber→←[q₀₀=q₁₀] i j k = fiber→←[q₀₀=q₁₀]-filler i j k i1 {- (y₁ , q₁₁) = (y₀ , q₁₀) -} module _ {x₀ : X}(q₀₀ : Q x₀ y₀) (r : inl x₀ ≡ inr y₀) (p : fiberSquarePush q₀₀ q₁₀ q₁₀ r) where fiber→←[q₁₁=q₁₀]-filler : (i j k l : I) → PushoutQ fiber→←[q₁₁=q₁₀]-filler i j k l' = let p' = fiber→[q₁₁=q₁₀] q₁₀ q₀₀ r p .snd in hfill (λ l → λ { (i = i0) → fiber←[q₀₀=q₀₁]-filler q₀₀ q₁₀ r p' j k l ; (i = i1) → fiber→[q₁₁=q₁₀]-filler q₁₀ q₀₀ r p l k j ; (j = i0) → push q₁₀ (~ k ∨ ~ l) ; (j = i1) → p' l k ; (k = i0) → push q₀₀ (~ j) ; (k = i1) → push q₁₀ (j ∨ ~ l) }) (inS (push q₀₀ (~ j ∨ k))) l' fiber→←[q₁₁=q₁₀] : fiber←[q₀₀=q₀₁] q₀₀ q₁₀ r (fiber→[q₁₁=q₁₀] q₁₀ q₀₀ r p .snd) .snd ≡ p fiber→←[q₁₁=q₁₀] i j k = fiber→←[q₁₁=q₁₀]-filler i j k i1 {- q₀₀ = q₁₀ = q₁₁ -} fiber→←hypercube : (r : inl x₁ ≡ inr y₀) → (p : fiberSquarePush q₁₀ q₁₀ q₁₀ r) → PathP (λ i → fiber←[q₀₀=q₀₁=q₁₁] q₁₀ i r (fiber→[q₀₀=q₁₀=q₁₁] q₁₀ i r p .snd) .snd ≡ p) (fiber→←[q₀₀=q₁₀] q₁₀ r p) (fiber→←[q₁₁=q₁₀] q₁₀ r p) fiber→←hypercube r p i j u v = hcomp (λ l → λ { (i = i0) → fiber→←[q₀₀=q₁₀]-filler q₁₀ r p j u v l ; (i = i1) → fiber→←[q₁₁=q₁₀]-filler q₁₀ r p j u v l ; (j = i0) → fiber←[q₀₀=q₀₁=q₁₁]-filler q₁₀ r (fiber→[q₀₀=q₁₀=q₁₁] q₁₀ i r p .snd) i u v l ; (j = i1) → fiber→[q₀₀=q₁₀=q₁₁]-filler q₁₀ r p i l v u ; (u = i0) → push q₁₀ ((i ∨ (~ v ∧ l)) ∧ (~ v ∨ (i ∧ ~ l))) ; (u = i1) → fiber→[q₀₀=q₁₀=q₁₁] q₁₀ i r p .snd l v ; (v = i0) → push q₁₀ ((i ∨ l) ∧ ~ u) ; (v = i1) → push q₁₀ ((i ∧ ~ l) ∨ u) }) (push q₁₀ ((i ∨ (v ∧ u)) ∧ (v ∨ (i ∧ ~ u)))) {- Definitions of fiber←→ -} module _ {x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁) where {- (x₁ , q₁₁) = (x₀ , q₀₁) -} module _ {y₀ : Y}(q₀₀ : Q x₀ y₀) (r : inl x₀ ≡ inr y₁) (p : push q₀₁ ≡ r) where fiber←→[q₁₁=q₀₁]-filler : (i j k l : I) → PushoutQ fiber←→[q₁₁=q₀₁]-filler i j k l' = let p' = fiber←[q₁₁=q₀₁] q₀₁ q₀₀ r p .snd in hfill (λ l → λ { (i = i0) → fiber→[q₀₀=q₁₀]-filler q₀₀ q₀₁ r p' j k l ; (i = i1) → fiber←[q₁₁=q₀₁]-filler q₀₁ q₀₀ r p l k j ; (j = i0) → push q₀₁ (k ∧ l) ; (j = i1) → p' l k ; (k = i0) → push q₀₀ (j ∧ ~ l) ; (k = i1) → push q₀₁ l }) (inS (push q₀₀ (j ∧ ~ k))) l' fiber←→[q₁₁=q₀₁] : fiber→[q₀₀=q₁₀] q₀₀ q₀₁ r (fiber←[q₁₁=q₀₁] q₀₁ q₀₀ r p .snd) .snd ≡ p fiber←→[q₁₁=q₀₁] i j k = fiber←→[q₁₁=q₀₁]-filler i j k i1 {- (y₀ , q₀₀) = (y₁ , q₀₁) -} module _ {x₁ : X}(q₁₁ : Q x₁ y₁) (r : inl x₀ ≡ inr y₁) (p : push q₀₁ ≡ r) where fiber←→[q₀₀=q₀₁]-filler : (i j k l : I) → PushoutQ fiber←→[q₀₀=q₀₁]-filler i j k l' = let p' = fiber←[q₀₀=q₀₁] q₀₁ q₁₁ r p .snd in hfill (λ l → λ { (i = i0) → fiber→[q₁₁=q₁₀]-filler q₁₁ q₀₁ r p' j k l ; (i = i1) → fiber←[q₀₀=q₀₁]-filler q₀₁ q₁₁ r p l k j ; (j = i0) → push q₀₁ (k ∨ ~ l) ; (j = i1) → p' l k ; (k = i0) → push q₀₁ (~ l) ; (k = i1) → push q₁₁ (~ j ∨ l) }) (inS (push q₁₁ (~ j ∨ ~ k))) l' fiber←→[q₀₀=q₀₁] : fiber→[q₁₁=q₁₀] q₁₁ q₀₁ r (fiber←[q₀₀=q₀₁] q₀₁ q₁₁ r p .snd) .snd ≡ p fiber←→[q₀₀=q₀₁] i j k = fiber←→[q₀₀=q₀₁]-filler i j k i1 {- q₀₀ = q₀₁ = q₁₁ -} fiber←→hypercube : (r : inl x₀ ≡ inr y₁) → (p : push q₀₁ ≡ r) → PathP (λ i → fiber→[q₀₀=q₁₀=q₁₁] q₀₁ i r (fiber←[q₀₀=q₀₁=q₁₁] q₀₁ i r p .snd) .snd ≡ p) (fiber←→[q₁₁=q₀₁] q₀₁ r p) (fiber←→[q₀₀=q₀₁] q₀₁ r p) fiber←→hypercube r p i j u v = hcomp (λ l → λ { (i = i0) → fiber←→[q₁₁=q₀₁]-filler q₀₁ r p j u v l ; (i = i1) → fiber←→[q₀₀=q₀₁]-filler q₀₁ r p j u v l ; (j = i0) → fiber→[q₀₀=q₁₀=q₁₁]-filler q₀₁ r (fiber←[q₀₀=q₀₁=q₁₁] q₀₁ i r p .snd) i u v l ; (j = i1) → fiber←[q₀₀=q₀₁=q₁₁]-filler q₀₁ r p i l v u ; (u = i0) → push q₀₁ ((i ∨ (v ∧ l)) ∧ (v ∨ (i ∧ ~ l))) ; (u = i1) → fiber←[q₀₀=q₀₁=q₁₁] q₀₁ i r p .snd l v ; (v = i0) → push q₀₁ ((i ∨ u) ∧ ~ l) ; (v = i1) → push q₀₁ ((i ∧ ~ u) ∨ l) }) (push q₀₁ ((i ∨ (~ v ∧ u)) ∧ (~ v ∨ (i ∧ ~ u)))) module Fiber→ {x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀) = WedgeConnectivity m n (leftFiber x₁ , (y₀ , q₁₀)) (leftConn x₁) (rightFiber y₀ , (x₁ , q₁₀)) (rightConn y₀) (λ (y₁ , q₁₁) (x₀ , q₀₀) → (((r : inl x₀ ≡ inr y₁) → fiberSquarePush q₀₀ q₁₀ q₁₁ r → rightCode _ r) , isOfHLevelΠ2 _ (λ x y → isOfHLevelTrunc _))) (λ (y₁ , q₁₁) → ∣fiber→[q₀₀=q₁₀]∣ q₁₀ q₁₁) (λ (x₀ , q₀₀) → ∣fiber→[q₁₁=q₁₀]∣ q₁₀ q₀₀) (∣fiber→[q₀₀=q₁₀=q₁₁]∣ q₁₀) fiber→ : {x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀) → {x₀ : X}(q₀₀ : Q x₀ y₀) → {y₁ : Y}(q₁₁ : Q x₁ y₁) → (r : inl x₀ ≡ inr y₁) → fiberSquarePush q₀₀ q₁₀ q₁₁ r → rightCode _ r fiber→ q₁₀ q₀₀ q₁₁ = Fiber→.extension q₁₀ (_ , q₁₁) (_ , q₀₀) module Fiber← {x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁) = WedgeConnectivity m n (leftFiber x₀ , (y₁ , q₀₁)) (leftConn x₀) (rightFiber y₁ , (x₀ , q₀₁)) (rightConn y₁) (λ (y₀ , q₀₀) (x₁ , q₁₁) → (((r : inl x₀ ≡ inr y₁) → push q₀₁ ≡ r → leftCodeExtended q₀₀ _ (push q₁₁) r) , isOfHLevelΠ2 _ (λ x y → isOfHLevelTrunc _))) (λ (y₀ , q₀₀) → ∣fiber←[q₁₁=q₀₁]∣ q₀₁ q₀₀) (λ (x₁ , q₁₁) → ∣fiber←[q₀₀=q₀₁]∣ q₀₁ q₁₁) (∣fiber←[q₀₀=q₀₁=q₁₁]∣ q₀₁) fiber← : {x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁) → {y₀ : Y}(q₀₀ : Q x₀ y₀) → {x₁ : X}(q₁₁ : Q x₁ y₁) → (r : inl x₀ ≡ inr y₁) → push q₀₁ ≡ r → leftCodeExtended q₀₀ _ (push q₁₁) r fiber← q₀₁ q₀₀ q₁₁ = Fiber←.extension q₀₁ (_ , q₀₀) (_ , q₁₁) module _ {x₀ x₁ : X}{y₀ y₁ : Y} (q₀₀ : Q x₀ y₀)(q₁₁ : Q x₁ y₁) (r : inl x₀ ≡ inr y₁) where left→rightCodeExtended : leftCodeExtended q₀₀ _ (push q₁₁) r → rightCode _ r left→rightCodeExtended = rec (isOfHLevelTrunc _) (λ (q₁₀ , p) → fiber→ q₁₀ q₀₀ q₁₁ r p) right→leftCodeExtended : rightCode _ r → leftCodeExtended q₀₀ _ (push q₁₁) r right→leftCodeExtended = rec (isOfHLevelTrunc _) (λ (q₀₁ , p) → fiber← q₀₁ q₀₀ q₁₁ r p) {- Definition of one-side homotopy -} module _ {x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀) where {- (x₀ , q₀₀) = (x₁ , q₁₀) -} module _ {y₁ : Y}(q₁₁ : Q x₁ y₁) (r : inl x₁ ≡ inr y₁) (p : fiberSquarePush q₁₀ q₁₀ q₁₁ r) where ∣fiber→←[q₀₀=q₁₀]∣ : right→leftCodeExtended q₁₀ q₁₁ r (fiber→ q₁₀ q₁₀ q₁₁ r p) ≡ ∣ q₁₀ , p ∣ₕ ∣fiber→←[q₀₀=q₁₀]∣ = (λ i → right→leftCodeExtended q₁₀ q₁₁ r (Fiber→.left q₁₀ (_ , q₁₁) i r p)) ∙ recUniq {n = m + n} _ _ _ ∙ (λ i → Fiber←.left q₁₁ (_ , q₁₀) i r (fiber→[q₀₀=q₁₀] q₁₀ q₁₁ r p .snd)) ∙ (λ i → ∣ q₁₀ , fiber→←[q₀₀=q₁₀] q₁₀ q₁₁ r p i ∣ₕ) {- (y₁ , q₁₁) = (y₀ , q₁₀) -} module _ {x₀ : X}(q₀₀ : Q x₀ y₀) (r : inl x₀ ≡ inr y₀) (p : fiberSquarePush q₀₀ q₁₀ q₁₀ r) where ∣fiber→←[q₁₁=q₁₀]∣ : right→leftCodeExtended q₀₀ q₁₀ r (fiber→ q₁₀ q₀₀ q₁₀ r p) ≡ ∣ q₁₀ , p ∣ₕ ∣fiber→←[q₁₁=q₁₀]∣ = (λ i → right→leftCodeExtended q₀₀ q₁₀ r (Fiber→.right q₁₀ (_ , q₀₀) i r p)) ∙ recUniq {n = m + n} _ _ _ ∙ (λ i → Fiber←.right q₀₀ (_ , q₁₀) i r (fiber→[q₁₁=q₁₀] q₁₀ q₀₀ r p .snd)) ∙ (λ i → ∣ q₁₀ , fiber→←[q₁₁=q₁₀] q₁₀ q₀₀ r p i ∣ₕ) {- q₀₀ = q₁₁ = q₁₀ -} module _ (r : inl x₁ ≡ inr y₀) (p : fiberSquarePush q₁₀ q₁₀ q₁₀ r) where path→←Square = (λ i j → right→leftCodeExtended q₁₀ q₁₀ r (Fiber→.homSquare q₁₀ i j r p)) ∙₂ (λ i → recUniq {n = m + n} _ _ _) ∙₂ (λ i j → Fiber←.homSquare q₁₀ i j r (fiber→[q₀₀=q₁₀=q₁₁] q₁₀ i r p .snd)) ∙₂ (λ i j → ∣ (q₁₀ , fiber→←hypercube q₁₀ r p i j) ∣ₕ) ∣fiber→←[q₀₀=q₁₀=q₁₁]∣ : ∣fiber→←[q₀₀=q₁₀]∣ q₁₀ ≡ ∣fiber→←[q₁₁=q₁₀]∣ q₁₀ ∣fiber→←[q₀₀=q₁₀=q₁₁]∣ i r p = path→←Square r p i fiber→← : {x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀) → {x₀ : X}(q₀₀ : Q x₀ y₀) → {y₁ : Y}(q₁₁ : Q x₁ y₁) → (r : inl x₀ ≡ inr y₁) → (p : fiberSquarePush q₀₀ q₁₀ q₁₁ r) → right→leftCodeExtended q₀₀ q₁₁ r (fiber→ q₁₀ q₀₀ q₁₁ r p) ≡ ∣ q₁₀ , p ∣ₕ fiber→← {x₁ = x₁} {y₀ = y₀} q₁₀ q₀₀' q₁₁' = WedgeConnectivity.extension m n (leftFiber x₁ , (y₀ , q₁₀)) (leftConn x₁) (rightFiber y₀ , (x₁ , q₁₀)) (rightConn y₀) (λ (y₁ , q₁₁) (x₀ , q₀₀) → (( (r : inl x₀ ≡ inr y₁) → (p : fiberSquarePush q₀₀ q₁₀ q₁₁ r) → right→leftCodeExtended q₀₀ q₁₁ r (fiber→ q₁₀ q₀₀ q₁₁ r p) ≡ ∣ q₁₀ , p ∣ₕ ) , isOfHLevelΠ2 _ (λ x y → isOfHLevelTruncPath))) (λ (y₁ , q₁₁) → ∣fiber→←[q₀₀=q₁₀]∣ q₁₀ q₁₁) (λ (x₀ , q₀₀) → ∣fiber→←[q₁₁=q₁₀]∣ q₁₀ q₀₀) (∣fiber→←[q₀₀=q₁₀=q₁₁]∣ q₁₀) (_ , q₁₁') (_ , q₀₀') {- Definition of the other side homotopy -} module _ {x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁) where {- (x₁ , q₁₁) = (x₀ , q₀₁) -} module _ {y₀ : Y}(q₀₀ : Q x₀ y₀) (r : inl x₀ ≡ inr y₁) (p : push q₀₁ ≡ r) where ∣fiber←→[q₁₁=q₀₁]∣ : left→rightCodeExtended q₀₀ q₀₁ r (fiber← q₀₁ q₀₀ q₀₁ r p) ≡ ∣ q₀₁ , p ∣ₕ ∣fiber←→[q₁₁=q₀₁]∣ = (λ i → left→rightCodeExtended q₀₀ q₀₁ r (Fiber←.left q₀₁ (_ , q₀₀) i r p)) ∙ recUniq {n = m + n} _ _ _ ∙ (λ i → Fiber→.left q₀₀ (_ , q₀₁) i r (fiber←[q₁₁=q₀₁] q₀₁ q₀₀ r p .snd)) ∙ (λ i → ∣ q₀₁ , fiber←→[q₁₁=q₀₁] q₀₁ q₀₀ r p i ∣ₕ) {- (y₀ , q₀₀) = (y₁ , q₀₁) -} module _ {x₁ : X}(q₁₁ : Q x₁ y₁) (r : inl x₀ ≡ inr y₁) (p : push q₀₁ ≡ r) where ∣fiber←→[q₀₀=q₀₁]∣ : left→rightCodeExtended q₀₁ q₁₁ r (fiber← q₀₁ q₀₁ q₁₁ r p) ≡ ∣ q₀₁ , p ∣ₕ ∣fiber←→[q₀₀=q₀₁]∣ = (λ i → left→rightCodeExtended q₀₁ q₁₁ r (Fiber←.right q₀₁ (_ , q₁₁) i r p)) ∙ recUniq {n = m + n} _ _ _ ∙ (λ i → Fiber→.right q₁₁ (_ , q₀₁) i r (fiber←[q₀₀=q₀₁] q₀₁ q₁₁ r p .snd)) ∙ (λ i → ∣ q₀₁ , fiber←→[q₀₀=q₀₁] q₀₁ q₁₁ r p i ∣ₕ) {- q₀₀ = q₀₁ = q₁₁ -} module _ (r : inl x₀ ≡ inr y₁) (p : push q₀₁ ≡ r) where path←→Square = (λ i j → left→rightCodeExtended q₀₁ q₀₁ r (Fiber←.homSquare q₀₁ i j r p)) ∙₂ (λ i → recUniq {n = m + n} _ _ _) ∙₂ (λ i j → Fiber→.homSquare q₀₁ i j r (fiber←[q₀₀=q₀₁=q₁₁] q₀₁ i r p .snd)) ∙₂ (λ i j → ∣ q₀₁ , fiber←→hypercube q₀₁ r p i j ∣ₕ) ∣fiber←→[q₀₀=q₀₁=q₁₁]∣ : ∣fiber←→[q₁₁=q₀₁]∣ q₀₁ ≡ ∣fiber←→[q₀₀=q₀₁]∣ q₀₁ ∣fiber←→[q₀₀=q₀₁=q₁₁]∣ i r p = path←→Square r p i fiber←→ : {x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁) → {y₀ : Y}(q₀₀ : Q x₀ y₀) → {x₁ : X}(q₁₁ : Q x₁ y₁) → (r : inl x₀ ≡ inr y₁) → (p : push q₀₁ ≡ r) → left→rightCodeExtended q₀₀ q₁₁ r (fiber← q₀₁ q₀₀ q₁₁ r p) ≡ ∣ q₀₁ , p ∣ₕ fiber←→ {x₀ = x₀} {y₁ = y₁} q₀₁ q₀₀' q₁₁' = WedgeConnectivity.extension m n (leftFiber x₀ , (y₁ , q₀₁)) (leftConn x₀) (rightFiber y₁ , (x₀ , q₀₁)) (rightConn y₁) (λ (y₀ , q₀₀) (x₁ , q₁₁) → (( (r : inl x₀ ≡ inr y₁) → (p : push q₀₁ ≡ r) → left→rightCodeExtended q₀₀ q₁₁ r (fiber← q₀₁ q₀₀ q₁₁ r p) ≡ ∣ q₀₁ , p ∣ₕ ) , isOfHLevelΠ2 _ (λ x y → isOfHLevelTruncPath))) (λ (y₀ , q₀₀) → ∣fiber←→[q₁₁=q₀₁]∣ q₀₁ q₀₀) (λ (x₁ , q₁₁) → ∣fiber←→[q₀₀=q₀₁]∣ q₀₁ q₁₁) (∣fiber←→[q₀₀=q₀₁=q₁₁]∣ q₀₁) (_ , q₀₀') (_ , q₁₁') module _ {x₀ x₁ : X}{y₀ y₁ : Y} (q₀₀ : Q x₀ y₀)(q₁₁ : Q x₁ y₁) (r : inl x₀ ≡ inr y₁) where left→right→leftCodeExtended : (a : leftCodeExtended q₀₀ _ (push q₁₁) r) → right→leftCodeExtended q₀₀ q₁₁ r (left→rightCodeExtended q₀₀ q₁₁ r a) ≡ a left→right→leftCodeExtended a = sym (∘rec _ _ _ (right→leftCodeExtended q₀₀ q₁₁ r) a) ∙ (λ i → recId _ (λ (q₁₀ , p) → fiber→← q₁₀ q₀₀ q₁₁ r p) i a) right→left→rightCodeExtended : (a : rightCode _ r) → left→rightCodeExtended q₀₀ q₁₁ r (right→leftCodeExtended q₀₀ q₁₁ r a) ≡ a right→left→rightCodeExtended a = sym (∘rec _ _ _ (left→rightCodeExtended q₀₀ q₁₁ r) a) ∙ (λ i → recId _ (λ (q₀₁ , p) → fiber←→ q₀₁ q₀₀ q₁₁ r p) i a) left≃rightCodeExtended : leftCodeExtended q₀₀ _ (push q₁₁) r ≃ rightCode y₁ r left≃rightCodeExtended = isoToEquiv (iso (left→rightCodeExtended _ _ _) (right→leftCodeExtended _ _ _) right→left→rightCodeExtended left→right→leftCodeExtended) {- Definition and properties of Code -} module _ (x₀ : X)(y₀ : Y)(q₀₀ : Q x₀ y₀) where leftCode' : (x : X){p : PushoutQ} → inl x ≡ p → inl x₀ ≡ p → Type ℓ leftCode' x r' = leftCodeExtended q₀₀ x r' leftCode : (x : X) → inl x₀ ≡ inl x → Type ℓ leftCode x = leftCode' x refl fiberPath : {x : X}{y : Y} → (q : Q x y) → leftCode' x (push q) ≡ rightCode y fiberPath q i r = ua (left≃rightCodeExtended q₀₀ q r) i pushCode : {x : X}{y : Y} → (q : Q x y) → PathP (λ i → inl x₀ ≡ push q i → Type ℓ) (leftCode x) (rightCode y) pushCode q i = hcomp (λ j → λ { (i = i0) → leftCode _ ; (i = i1) → fiberPath q j }) (leftCode' _ (λ j → push q (i ∧ j))) Code : (p : PushoutQ) → inl x₀ ≡ p → Type ℓ Code (inl x) = leftCode x Code (inr y) = rightCode y Code (push q i) = pushCode q i {- Transportation rule of pushCode -} transpLeftCode : (y : Y) → (q : Q x₀ y) → (q' : leftCodeExtended q₀₀ _ refl refl) → leftCode' _ (push q) (push q) transpLeftCode y q q' = transport (λ i → leftCode' _ (λ j → push q (i ∧ j)) (λ j → push q (i ∧ j))) q' transpPushCodeβ' : (y : Y) → (q : Q x₀ y) → (q' : leftCodeExtended q₀₀ _ refl refl) → transport (λ i → pushCode q i (λ j → push q (i ∧ j))) q' ≡ left→rightCodeExtended _ _ _ (transpLeftCode y q q') transpPushCodeβ' y q q' i = transportRefl (left→rightCodeExtended _ _ _ (transpLeftCode y q (transportRefl q' i))) i module _ {p : PushoutQ}(r : inl x₀ ≡ p) where fiber-filler : I → Type ℓ fiber-filler i = fiber' q₀₀ (λ j → r (i ∧ j)) (λ j → r (i ∧ j)) module _ (q : fiberSquare q₀₀ q₀₀ refl refl) where transpLeftCode-filler : (i j k : I) → PushoutQ transpLeftCode-filler i j k' = hfill (λ k → λ { (i = i0) → push q₀₀ (~ j) ; (i = i1) → r (j ∧ k) ; (j = i0) → push q₀₀ (~ i) ; (j = i1) → r (i ∧ k) }) (inS (q i j)) k' transpLeftCodeβ' : {p : PushoutQ} → (r : inl x₀ ≡ p) → (q : fiberSquare q₀₀ q₀₀ refl refl) → transport (λ i → fiber-filler r i) (q₀₀ , q) ≡ (q₀₀ , λ i j → transpLeftCode-filler r q i j i1) transpLeftCodeβ' r q = J (λ p r → transport (λ i → fiber-filler r i) (q₀₀ , q) ≡ (q₀₀ , λ i j → transpLeftCode-filler r q i j i1)) (transportRefl _ ∙ (λ k → (q₀₀ , λ i j → transpLeftCode-filler refl q i j k))) r transpLeftCodeβ : (y : Y) → (q : Q x₀ y) → (q' : fiberSquare q₀₀ q₀₀ refl refl) → transpLeftCode y q ∣ q₀₀ , q' ∣ₕ ≡ ∣ q₀₀ , (λ i j → transpLeftCode-filler (push q) q' i j i1) ∣ₕ transpLeftCodeβ y q q' = transportTrunc _ ∙ (λ i → ∣ transpLeftCodeβ' _ q' i ∣ₕ) transpPushCodeβ : (y : Y) → (q : Q x₀ y) → (q' : fiberSquare q₀₀ q₀₀ refl refl) → transport (λ i → pushCode q i (λ j → push q (i ∧ j))) ∣ q₀₀ , q' ∣ₕ ≡ ∣fiber→[q₀₀=q₁₀]∣ q₀₀ q (push q) (λ i j → transpLeftCode-filler (push q) q' i j i1) transpPushCodeβ y q q' = transpPushCodeβ' _ _ _ ∙ (λ i → left→rightCodeExtended _ _ _ (transpLeftCodeβ _ _ q' i)) ∙ recUniq {n = m + n} _ _ _ ∙ (λ i' → Fiber→.left q₀₀ (_ , q) i' (push q) (λ i j → transpLeftCode-filler (push q) q' i j i1)) {- The contractibility of Code -} centerCode : {p : PushoutQ} → (r : inl x₀ ≡ p) → Code p r centerCode r = transport (λ i → Code _ (λ j → r (i ∧ j))) ∣ q₀₀ , (λ i j → push q₀₀ (~ i ∧ ~ j)) ∣ₕ module _ (y : Y)(q : Q x₀ y) where transp-filler : (i j k : I) → PushoutQ transp-filler = transpLeftCode-filler (push q) (λ i' j' → push q₀₀ (~ i' ∧ ~ j')) transp-square : fiberSquare q₀₀ q₀₀ (push q) (push q) transp-square i j = transp-filler i j i1 contractionCodeRefl' : fiber→[q₀₀=q₁₀] q₀₀ q (push q) transp-square .snd ≡ refl contractionCodeRefl' i j k = hcomp (λ l → λ { (i = i0) → fiber→[q₀₀=q₁₀]-filler q₀₀ q (push q) transp-square j k l ; (i = i1) → transp-square (~ j ∨ l) k ; (j = i0) → push q (k ∧ (i ∨ l)) ; (j = i1) → transp-square l k ; (k = i0) → push q₀₀ (j ∧ ~ l) ; (k = i1) → push q ((i ∧ ~ j) ∨ l) }) (transp-filler (~ j) k i) contractionCodeRefl : centerCode (push q) ≡ ∣ q , refl ∣ₕ contractionCodeRefl = transpPushCodeβ _ _ _ ∙ (λ i → ∣ q , contractionCodeRefl' i ∣ₕ) module _ (y : Y)(r : inl x₀ ≡ inr y) where contractionCode' : (a : fiber push r) → centerCode r ≡ ∣ a ∣ₕ contractionCode' (q , p') = J (λ r' p → centerCode r' ≡ ∣ q , p ∣ₕ) (contractionCodeRefl _ q) p' contractionCode : (a : Code _ r) → centerCode r ≡ a contractionCode = elim (λ _ → isOfHLevelTruncPath) contractionCode' isContrCode : isContr (Code _ r) isContrCode = centerCode r , contractionCode excision-helper : (x : X) → Trunc (1 + m) (Σ[ y₀ ∈ Y ] Q x y₀) → (y : Y) → (r : inl x ≡ inr y) → isContr (Trunc (m + n) (fiber push r)) excision-helper x y' y r = rec (isProp→isOfHLevelSuc m isPropIsContr) (λ (y₀ , q₀₀) → isContrCode x y₀ q₀₀ y r ) y' {- The Main Result : Blakers-Massey Homotopy Excision Theorem -} Excision : (x : X)(y : Y) → isConnectedFun (m + n) (push {x = x} {y = y}) Excision x y = excision-helper x (leftConn x .fst) y {- We also give the following version of the theorem: Given a square g A --------------> B |\ ↗ | | \ ↗ | | \ ↗ | f | X | inr | / | | / | | / | v / v B -----------> Pushout f g inl where X is the pullback of inl and inr (X := Σ[ (b , c) ∈ B × C ] (inl b ≡ inr c)). If f in n-connected and g in m-connected, then the diagonal map A → X is (n+m)-connected -} private shuffleFibIso₁ : {ℓ ℓ' ℓ'' : Level} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} (f : A → B) (g : A → C) (b : B) → Iso (Σ[ c ∈ C ] Σ[ a ∈ A ] (f a ≡ b) × (g a ≡ c)) (Σ[ a ∈ A ] ((Σ[ c ∈ C ] (g a ≡ c)) × (f a ≡ b))) shuffleFibIso₁ f g b = compIso (invIso Σ-assoc-Iso) (compIso (Σ-cong-iso-fst Σ-swap-Iso) (compIso (Σ-cong-iso-snd (λ y → Σ-swap-Iso)) (compIso Σ-assoc-Iso (Σ-cong-iso-snd λ a → invIso Σ-assoc-Iso)))) shuffleFibIso₂ : {ℓ ℓ' ℓ'' : Level} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} (f : A → B) (g : A → C) (x : _) → Iso (Σ[ a ∈ A ] ((Σ[ c ∈ C ] (g a ≡ c)) × (f a ≡ x))) (fiber f x) shuffleFibIso₂ f g x = Σ-cong-iso-snd λ a → compIso (Σ-cong-iso-fst (isContr→Iso (isContrSingl (g a)) isContrUnit)) lUnit×Iso module BlakersMassey□ {ℓ ℓ' ℓ'' : Level} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} (f : A → B) (g : A → C) (n m : ℕ) (con-f : isConnectedFun (suc n) f) (con-g : isConnectedFun (suc m) g) where {- Some abbreviations and connectivity -} private fib = doubleFib f g B-con : (x : B) → isConnected (suc n) (Σ[ c ∈ C ] (fib x c)) B-con x = isConnectedRetractFromIso (suc n) (compIso (shuffleFibIso₁ f g x) (shuffleFibIso₂ f g x)) (con-f x) C-con : (c : C) → isConnected (suc m) (Σ[ b ∈ B ] (fib b c)) C-con c = isConnectedRetractFromIso (suc m) (compIso (compIso (Σ-cong-iso-snd (λ _ → Σ-cong-iso-snd λ _ → Σ-swap-Iso)) (shuffleFibIso₁ g f c)) (shuffleFibIso₂ g f c)) (con-g c) open module BM-f-g = BlakersMassey B C fib {m = n} B-con {n = m} C-con fib× : (B × C) → Type _ fib× (b , c) = fib b c PushoutGenPath× : B × C → Type _ PushoutGenPath× (b , c) = Path (PushoutGen fib) (inl b) (inr c) PushoutPath× : B × C → Type _ PushoutPath× (b , c) = Path (Pushout f g) (inl b) (inr c) {- The function in question -} toPullback : A → Σ (B × C) PushoutPath× toPullback a = (f a , g a) , push a {- We redescribe toPullback as a composition of three maps, two of which are equivs and one of which is (n+m)-connected -} Totalfib×→Total : Σ (B × C) fib× → Σ (B × C) PushoutGenPath× Totalfib×→Total = TotalFun {A = B × C} {B = fib×} {C = PushoutGenPath×} (λ a → push) isConnectedTotalFun : isConnectedFun (n + m) Totalfib×→Total isConnectedTotalFun = FunConnected→TotalFunConnected (λ _ → push) (n + m) (uncurry BM-f-g.Excision) TotalPathGen×Iso : Iso (Σ (B × C) PushoutGenPath×) (Σ (B × C) PushoutPath×) TotalPathGen×Iso = Σ-cong-iso-snd λ x → congIso (invIso (IsoPushoutPushoutGen f g)) Totalfib×Iso : Iso (Σ (B × C) fib×) A fun Totalfib×Iso ((b , c) , a , p) = a inv Totalfib×Iso a = (f a , g a) , a , refl , refl rightInv Totalfib×Iso _ = refl leftInv Totalfib×Iso ((b , c) , a , (p , q)) i = ((p i) , (q i)) , (a , ((λ j → p (i ∧ j)) , (λ j → q (i ∧ j)))) toPullback' : A → Σ (B × C) PushoutPath× toPullback' = (fun TotalPathGen×Iso ∘ Totalfib×→Total) ∘ inv Totalfib×Iso toPullback'≡toPullback : toPullback' ≡ toPullback toPullback'≡toPullback = funExt λ x → ΣPathP (refl , (sym (rUnit (push x)))) isConnected-toPullback : isConnectedFun (n + m) toPullback isConnected-toPullback = subst (isConnectedFun (n + m)) toPullback'≡toPullback (isConnectedComp (fun TotalPathGen×Iso ∘ Totalfib×→Total) (inv Totalfib×Iso) (n + m) (isConnectedComp (fun TotalPathGen×Iso) Totalfib×→Total (n + m) (isEquiv→isConnected _ (isoToIsEquiv TotalPathGen×Iso) (n + m)) isConnectedTotalFun) (isEquiv→isConnected _ (isoToIsEquiv (invIso Totalfib×Iso)) (n + m)))
38.939506
120
0.502394
4ad3f66ced588ee98c6d0e9aafe26563ffd4df87
925
agda
Agda
theorems/homotopy/PathSetIsInitalCover.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/homotopy/PathSetIsInitalCover.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/homotopy/PathSetIsInitalCover.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT module homotopy.PathSetIsInitalCover {i} (X : Ptd i) -- and an arbitrary covering {k} (⊙cov : ⊙Cover X k) where open Cover private univ-cover = path-set-cover X module ⊙cov = ⊙Cover ⊙cov -- Weak initiality by transport. quotient-cover : CoverHom univ-cover ⊙cov.cov quotient-cover _ p = cover-trace ⊙cov.cov ⊙cov.pt p -- Strong initiality by path induction. module Uniqueness (cover-hom : CoverHom univ-cover ⊙cov.cov) (pres-pt : cover-hom (pt X) idp₀ == ⊙cov.pt) where private lemma₁ : ∀ a p → cover-hom a [ p ] == quotient-cover a [ p ] lemma₁ ._ idp = pres-pt lemma₂ : ∀ a p → cover-hom a p == quotient-cover a p lemma₂ a = Trunc-elim (λ p → =-preserves-set (⊙cov.Fiber-level a)) (lemma₁ a) theorem : cover-hom == quotient-cover theorem = λ= λ a → λ= $ lemma₂ a
25.694444
66
0.60973
df9190f8cd5e848276bd51406937d4cdb602de8c
7,369
agda
Agda
core/lib/groups/TensorProduct.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
core/lib/groups/TensorProduct.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
core/lib/groups/TensorProduct.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Group open import lib.types.List open import lib.types.Pi open import lib.types.Sigma open import lib.types.Word open import lib.groups.Homomorphism open import lib.groups.GeneratedGroup open import lib.groups.GeneratedAbelianGroup open import lib.groups.Isomorphism module lib.groups.TensorProduct where module TensorProduct₀ {i} {j} (G : AbGroup i) (H : AbGroup j) where private module G = AbGroup G module H = AbGroup H ⊗-pair : Type (lmax i j) ⊗-pair = G.El × H.El data ⊗-rel : Word ⊗-pair → Word ⊗-pair → Type (lmax i j) where linear-l : (g₁ g₂ : G.El) (h : H.El) → ⊗-rel (inl (G.comp g₁ g₂ , h) :: nil) (inl (g₁ , h) :: inl (g₂ , h) :: nil) linear-r : (g : G.El) (h₁ h₂ : H.El) → ⊗-rel (inl (g , H.comp h₁ h₂) :: nil) (inl (g , h₁) :: inl (g , h₂) :: nil) private module Gen = GeneratedAbelianGroup ⊗-pair ⊗-rel open Gen hiding (GenGroup; GenAbGroup; El) public abstract abgroup : AbGroup (lmax i j) abgroup = Gen.GenAbGroup open AbGroup abgroup public abstract infixr 80 _⊗_ _⊗_ : G.El → H.El → El _⊗_ g h = insert (g , h) ⊗-lin-l : ∀ g₁ g₂ h → G.comp g₁ g₂ ⊗ h == comp (g₁ ⊗ h) (g₂ ⊗ h) ⊗-lin-l g₁ g₂ h = rel-holds (linear-l g₁ g₂ h) ⊗-lin-r : ∀ g h₁ h₂ → g ⊗ H.comp h₁ h₂ == comp (g ⊗ h₁) (g ⊗ h₂) ⊗-lin-r g h₁ h₂ = rel-holds (linear-r g h₁ h₂) ⊗-unit-l : ∀ h → G.ident ⊗ h == ident ⊗-unit-l h = cancel-l (G.ident ⊗ h) $ comp (G.ident ⊗ h) (G.ident ⊗ h) =⟨ ! (⊗-lin-l G.ident G.ident h) ⟩ G.comp G.ident G.ident ⊗ h =⟨ ap (_⊗ h) (G.unit-l G.ident) ⟩ G.ident ⊗ h =⟨ ! (unit-r (G.ident ⊗ h)) ⟩ comp (G.ident ⊗ h) ident =∎ ⊗-unit-r : ∀ g → g ⊗ H.ident == ident ⊗-unit-r g = cancel-r (g ⊗ H.ident) $ comp (g ⊗ H.ident) (g ⊗ H.ident) =⟨ ! (⊗-lin-r g H.ident H.ident) ⟩ g ⊗ H.comp H.ident H.ident =⟨ ap (g ⊗_) (H.unit-l H.ident) ⟩ g ⊗ H.ident =⟨ ! (unit-r (g ⊗ H.ident)) ⟩ comp (g ⊗ H.ident) ident =∎ ins-l-hom : H.El → G.grp →ᴳ grp ins-l-hom h = group-hom (_⊗ h) (λ g₁ g₂ → ⊗-lin-l g₁ g₂ h) ins-r-hom : G.El → H.grp →ᴳ grp ins-r-hom g = group-hom (g ⊗_) (⊗-lin-r g) module BilinearMaps {k} (L : AbGroup k) where private module L = AbGroup L module HE = Gen.HomomorphismEquiv L is-linear-l : (G.El → H.El → L.El) → Type (lmax i (lmax j k)) is-linear-l b = ∀ g₁ g₂ h → b (G.comp g₁ g₂) h == L.comp (b g₁ h) (b g₂ h) is-linear-l-is-prop : (b : G.El → H.El → L.El) → is-prop (is-linear-l b) is-linear-l-is-prop b = Π-level $ λ g₁ → Π-level $ λ g₂ → Π-level $ λ h → has-level-apply L.El-level _ _ is-linear-r : (G.El → H.El → L.El) → Type (lmax i (lmax j k)) is-linear-r b = ∀ g h₁ h₂ → b g (H.comp h₁ h₂) == L.comp (b g h₁) (b g h₂) is-linear-r-is-prop : (b : G.El → H.El → L.El) → is-prop (is-linear-r b) is-linear-r-is-prop b = Π-level $ λ g → Π-level $ λ h₁ → Π-level $ λ h₂ → has-level-apply L.El-level _ _ record BilinearMap : Type (lmax i (lmax j k)) where field bmap : G.El → H.El → L.El linearity-l : is-linear-l bmap linearity-r : is-linear-r bmap BilinearMap= : {b b' : BilinearMap} → BilinearMap.bmap b == BilinearMap.bmap b' → b == b' BilinearMap= {b} {b'} idp = ap2 mk-bilinear-map (prop-path (is-linear-l-is-prop b.bmap) b.linearity-l b'.linearity-l) (prop-path (is-linear-r-is-prop b.bmap) b.linearity-r b'.linearity-r) where module b = BilinearMap b module b' = BilinearMap b' mk-bilinear-map : is-linear-l b.bmap → is-linear-r b.bmap → BilinearMap mk-bilinear-map lin-l lin-r = record { bmap = b.bmap; linearity-l = lin-l; linearity-r = lin-r } bilinear-to-legal-equiv : BilinearMap ≃ HE.RelationRespectingFunction bilinear-to-legal-equiv = equiv to from (λ lf → HE.RelationRespectingFunction= idp) (λ b → BilinearMap= idp) where to : BilinearMap → HE.RelationRespectingFunction to b = HE.rel-res-fun f f-respects where module b = BilinearMap b f : ⊗-pair → L.El f (g , h) = b.bmap g h f-respects : HE.respects-rel f f-respects (linear-l g₁ g₂ h) = b.linearity-l g₁ g₂ h f-respects (linear-r g h₁ h₂) = b.linearity-r g h₁ h₂ from : HE.RelationRespectingFunction → BilinearMap from (HE.rel-res-fun f f-respects) = record { bmap = bmap; linearity-l = linearity-l; linearity-r = linearity-r } where bmap : G.El → H.El → L.El bmap g h = f (g , h) linearity-l : is-linear-l bmap linearity-l g₁ g₂ h = f-respects (linear-l g₁ g₂ h) linearity-r : is-linear-r bmap linearity-r g h₁ h₂ = f-respects (linear-r g h₁ h₂) module UniversalProperty {k} (L : AbGroup k) where open BilinearMaps L public private module HE = Gen.HomomorphismEquiv L abstract extend-equiv : BilinearMap ≃ (grp →ᴳ AbGroup.grp L) extend-equiv = HE.extend-equiv ∘e bilinear-to-legal-equiv extend : BilinearMap → (grp →ᴳ AbGroup.grp L) extend = –> extend-equiv restrict : (grp →ᴳ AbGroup.grp L) → BilinearMap restrict = <– extend-equiv extend-β : ∀ b g h → GroupHom.f (extend b) (g ⊗ h) == BilinearMap.bmap b g h extend-β b g h = idp hom= : ∀ {ϕ ψ : grp →ᴳ AbGroup.grp L} → (∀ g h → GroupHom.f ϕ (g ⊗ h) == GroupHom.f ψ (g ⊗ h)) → ϕ == ψ hom= {ϕ} {ψ} e = ϕ =⟨ ! (<–-inv-r extend-equiv ϕ) ⟩ extend (restrict ϕ) =⟨ ap extend (BilinearMap= (λ= (λ g → λ= (λ h → e g h)))) ⟩ extend (restrict ψ) =⟨ <–-inv-r extend-equiv ψ ⟩ ψ =∎ module TensorProduct₁ {i} {j} (G : AbGroup i) (H : AbGroup j) where private module G⊗H = TensorProduct₀ G H module H⊗G = TensorProduct₀ H G module F = G⊗H.UniversalProperty H⊗G.abgroup b : F.BilinearMap b = record { bmap = λ g h → h H⊗G.⊗ g ; linearity-l = λ g₁ g₂ h → H⊗G.⊗-lin-r h g₁ g₂ ; linearity-r = λ g h₁ h₂ → H⊗G.⊗-lin-l h₁ h₂ g } swap : (G⊗H.grp →ᴳ H⊗G.grp) swap = F.extend b swap-β : ∀ g h → GroupHom.f swap (g G⊗H.⊗ h) == h H⊗G.⊗ g swap-β g h = F.extend-β b g h open G⊗H public module TensorProduct₂ {i} {j} (G : AbGroup i) (H : AbGroup j) where private module G⊗H = TensorProduct₁ G H module H⊗G = TensorProduct₁ H G swap-swap : ∀ s → GroupHom.f (H⊗G.swap ∘ᴳ G⊗H.swap) s == s swap-swap s = ap (λ ϕ → GroupHom.f ϕ s) $ G⊗H.UniversalProperty.hom= G⊗H.abgroup {ϕ = H⊗G.swap ∘ᴳ G⊗H.swap} {ψ = idhom _} $ λ g h → ap (GroupHom.f H⊗G.swap) (G⊗H.swap-β g h) ∙ H⊗G.swap-β h g swap-swap-idhom : H⊗G.swap ∘ᴳ G⊗H.swap == idhom G⊗H.grp swap-swap-idhom = group-hom= (λ= swap-swap) open G⊗H public module TensorProduct {i} {j} (G : AbGroup i) (H : AbGroup j) where private module G⊗H = TensorProduct₂ G H module H⊗G = TensorProduct₂ H G swap-is-equiv : is-equiv (GroupHom.f G⊗H.swap) swap-is-equiv = is-eq _ (GroupHom.f H⊗G.swap) H⊗G.swap-swap G⊗H.swap-swap commutative : G⊗H.grp ≃ᴳ H⊗G.grp commutative = G⊗H.swap , swap-is-equiv open G⊗H public
31.224576
85
0.56032
dfb94dd87badab311fd37147053d85fde37ab24c
384
agda
Agda
test/Succeed/NonConjectures/Foo.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
10
2015-09-03T20:54:16.000Z
2019-12-03T13:44:25.000Z
test/Succeed/NonConjectures/Foo.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
121
2015-01-25T13:22:12.000Z
2018-04-22T06:01:44.000Z
test/Succeed/NonConjectures/Foo.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
4
2016-05-10T23:06:19.000Z
2016-08-03T03:54:55.000Z
------------------------------------------------------------------------------ -- Foo module ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Foo where postulate foo : Set
29.538462
78
0.307292
dcb120169094163c31b226995e21346bf823fae2
12,801
agda
Agda
src/FOmegaInt/Undecidable/SK.agda
Blaisorblade/f-omega-int-agda
ae20dac2a5e0c18dff2afda4c19954e24d73a24f
[ "MIT" ]
12
2017-06-13T16:05:35.000Z
2021-09-27T05:53:06.000Z
src/FOmegaInt/Undecidable/SK.agda
Blaisorblade/f-omega-int-agda
ae20dac2a5e0c18dff2afda4c19954e24d73a24f
[ "MIT" ]
1
2021-05-14T08:09:40.000Z
2021-05-14T08:54:39.000Z
src/FOmegaInt/Undecidable/SK.agda
Blaisorblade/f-omega-int-agda
ae20dac2a5e0c18dff2afda4c19954e24d73a24f
[ "MIT" ]
2
2021-05-13T22:29:48.000Z
2021-05-14T10:25:05.000Z
------------------------------------------------------------------------ -- The untyped SKI combinator calculus ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module FOmegaInt.Undecidable.SK where open import Data.Bool open import Data.Product as Prod using (_,_; ∃; _×_) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Relation.Binary.Construct.Closure.ReflexiveTransitive open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------ -- The untyped SK(I) combinator calculus infixl 9 _·_ infixl 4 _≡SK_ _≤SK?_ _⇛[_]_ _⇛[_]*_ _⇛≤_ _⇛≤*_ _⇛≥_ _⇛≥*_ _⇛≤*≤⇚_ -- Terms of the SK combinator calculus. data SKTerm : Set where S : SKTerm K : SKTerm _·_ : SKTerm → SKTerm → SKTerm -- Equality of SK terms. data _≡SK_ : SKTerm → SKTerm → Set where ≡-refl : ∀ {t} → t ≡SK t ≡-trans : ∀ {s t u} → s ≡SK t → t ≡SK u → s ≡SK u ≡-sym : ∀ {s t} → s ≡SK t → t ≡SK s ≡-Sred : ∀ {s t u} → S · s · t · u ≡SK s · u · (t · u) ≡-Kred : ∀ {s t} → K · s · t ≡SK s ≡-· : ∀ {s₁ s₂ t₁ t₂} → s₁ ≡SK s₂ → t₁ ≡SK t₂ → s₁ · t₁ ≡SK s₂ · t₂ -- A well-known encoding of the I combinator. I : SKTerm I = S · K · K -- Some admissible equality rules. ≡-Ired : ∀ {t} → I · t ≡SK t ≡-Ired = ≡-trans ≡-Sred ≡-Kred ≡-Sexp : ∀ {s t u} → s · u · (t · u) ≡SK S · s · t · u ≡-Sexp = ≡-sym ≡-Sred ≡-Kexp : ∀ {s t} → s ≡SK K · s · t ≡-Kexp = ≡-sym ≡-Kred ≡-Iexp : ∀ {t} → t ≡SK I · t ≡-Iexp = ≡-sym ≡-Ired ------------------------------------------------------------------------ -- A variant of the untyped SK calculus with extra term formers data SK?Term : Set where ⊥ : SK?Term -- degenerate term ⊤ : SK?Term -- degenerate term S : SK?Term K : SK?Term _·_ : SK?Term → SK?Term → SK?Term -- An SK? term is pure if it is an SK term. data Pure : SK?Term → Set where S : Pure S K : Pure K _·_ : ∀ {s t} → Pure s → Pure t → Pure (s · t) -- A partial order on SK? terms that resembles subtyping. data _≤SK?_ : SK?Term → SK?Term → Set where ≤?-refl : ∀ {t} → t ≤SK? t ≤?-trans : ∀ {s t u} → s ≤SK? t → t ≤SK? u → s ≤SK? u ≤?-⊥ : ∀ {t} → ⊥ ≤SK? t ≤?-⊤ : ∀ {t} → t ≤SK? ⊤ ≤?-Sred : ∀ {s t u} → S · s · t · u ≤SK? s · u · (t · u) ≤?-Kred : ∀ {s t} → K · s · t ≤SK? s ≤?-Sexp : ∀ {s t u} → s · u · (t · u) ≤SK? S · s · t · u ≤?-Kexp : ∀ {s t} → s ≤SK? K · s · t ≤?-· : ∀ {s₁ s₂ t₁ t₂} → s₁ ≤SK? s₂ → t₁ ≤SK? t₂ → s₁ · t₁ ≤SK? s₂ · t₂ -- Parallel one-step and multi-step reduction of SK? terms, possibly -- containing instances of ⊥-elim and ⊤-intro. -- -- The `i' index in `_⇛[ i ]_' indicates whether the relation is -- increasing (true) or decreasing (false). The increasing -- single/multi-step relations are (strict) subrelations of _≤SK?_, -- while the decreasing ones are subrelations of _≥SK?_ (i.e. the -- inverse of _≤SK?_). data _⇛[_]_ : SK?Term → Bool → SK?Term → Set where ⇛-refl : ∀ {t i} → t ⇛[ i ] t ⇛-Sred : ∀ {s₁ s₂ t₁ t₂ u₁ u₂ i} → s₁ ⇛[ i ] s₂ → t₁ ⇛[ i ] t₂ → u₁ ⇛[ i ] u₂ → S · s₁ · t₁ · u₁ ⇛[ i ] s₂ · u₂ · (t₂ · u₂) ⇛-Kred : ∀ {s₁ s₂ t i} → s₁ ⇛[ i ] s₂ → K · s₁ · t ⇛[ i ] s₂ ⇛-· : ∀ {s₁ s₂ t₁ t₂ i} → s₁ ⇛[ i ] s₂ → t₁ ⇛[ i ] t₂ → s₁ · t₁ ⇛[ i ] s₂ · t₂ ⇛-⊥ : ∀ {t} → ⊥ ⇛[ true ] t ⇛-⊤ : ∀ {t} → ⊤ ⇛[ false ] t _⇛[_]*_ : SK?Term → Bool → SK?Term → Set s ⇛[ i ]* t = (Star _⇛[ i ]_) s t _⇛≤_ : SK?Term → SK?Term → Set _⇛≤_ = _⇛[ true ]_ _⇛≤*_ : SK?Term → SK?Term → Set _⇛≤*_ = _⇛[ true ]*_ _⇛≥_ : SK?Term → SK?Term → Set _⇛≥_ = _⇛[ false ]_ _⇛≥*_ : SK?Term → SK?Term → Set _⇛≥*_ = _⇛[ false ]*_ -- A combination of the two multi-step reductions that is equivalent -- to _≤SK?_ modulo "squashing" of intermediate terms (see ≤SK?--⇛≤*≤⇚ -- below). _⇛≤*≤⇚_ : SK?Term → SK?Term → Set s ⇛≤*≤⇚ t = ∃ λ u → s ⇛≤* u × t ⇛≥* u -- SK terms are SK? terms inject : SKTerm → SK?Term inject S = S inject K = K inject (s · t) = inject s · inject t inject-Pure : ∀ t → Pure (inject t) inject-Pure S = S inject-Pure K = K inject-Pure (s · t) = inject-Pure s · inject-Pure t -- The inverse of inject on pure terms. inject⁻¹ : ∀ {t} → Pure t → SKTerm inject⁻¹ S = S inject⁻¹ K = K inject⁻¹ (p · q) = inject⁻¹ p · inject⁻¹ q inject⁻¹-inject-Pure : ∀ t → inject⁻¹ (inject-Pure t) ≡ t inject⁻¹-inject-Pure S = refl inject⁻¹-inject-Pure K = refl inject⁻¹-inject-Pure (s · t) = cong₂ _·_ (inject⁻¹-inject-Pure s) (inject⁻¹-inject-Pure t) inject⁻¹-unique : ∀ {t} → (p q : Pure t) → inject⁻¹ p ≡ inject⁻¹ q inject⁻¹-unique S S = refl inject⁻¹-unique K K = refl inject⁻¹-unique (p₁ · p₂) (q₁ · q₂) = cong₂ _·_ (inject⁻¹-unique p₁ q₁) (inject⁻¹-unique p₂ q₂) -- Equality of SK terms is a subrelation of the SK? term order and its -- inverse. mutual ≡SK-≤SK? : ∀ {s t} → s ≡SK t → inject s ≤SK? inject t ≡SK-≤SK? ≡-refl = ≤?-refl ≡SK-≤SK? (≡-trans s≡t t≡u) = ≤?-trans (≡SK-≤SK? s≡t) (≡SK-≤SK? t≡u) ≡SK-≤SK? (≡-sym s≡t) = ≡SK-≥SK? s≡t ≡SK-≤SK? ≡-Sred = ≤?-Sred ≡SK-≤SK? ≡-Kred = ≤?-Kred ≡SK-≤SK? (≡-· s₁≡t₁ s₂≡t₂) = ≤?-· (≡SK-≤SK? s₁≡t₁) (≡SK-≤SK? s₂≡t₂) ≡SK-≥SK? : ∀ {s t} → s ≡SK t → inject t ≤SK? inject s ≡SK-≥SK? ≡-refl = ≤?-refl ≡SK-≥SK? (≡-trans s≡t t≡u) = ≤?-trans (≡SK-≥SK? t≡u) (≡SK-≥SK? s≡t) ≡SK-≥SK? (≡-sym s≡t) = ≡SK-≤SK? s≡t ≡SK-≥SK? ≡-Sred = ≤?-Sexp ≡SK-≥SK? ≡-Kred = ≤?-Kexp ≡SK-≥SK? (≡-· s₁≡t₁ s₂≡t₂) = ≤?-· (≡SK-≥SK? s₁≡t₁) (≡SK-≥SK? s₂≡t₂) -- Admissible constructors for multi-step reduction ⇛*-· : ∀ {ab s₁ s₂ t₁ t₂} → s₁ ⇛[ ab ]* s₂ → t₁ ⇛[ ab ]* t₂ → s₁ · t₁ ⇛[ ab ]* s₂ · t₂ ⇛*-· ε ε = ε ⇛*-· ε (t₁⇛t₂ ◅ t₂⇛*t₃) = (⇛-· ⇛-refl t₁⇛t₂) ◅ (⇛*-· ε t₂⇛*t₃) ⇛*-· (s₁⇛s₂ ◅ s₂⇛*s₃) ε = (⇛-· s₁⇛s₂ ⇛-refl) ◅ (⇛*-· s₂⇛*s₃ ε) ⇛*-· (s₁⇛s₂ ◅ s₂⇛*s₃) (t₁⇛t₂ ◅ t₂⇛*t₃) = (⇛-· s₁⇛s₂ t₁⇛t₂) ◅ (⇛*-· s₂⇛*s₃ t₂⇛*t₃) -- A Church-Rosser theorem for SK? reductions. ⇛-CR : ∀ {s t₁ t₂} → s ⇛≤ t₁ → s ⇛≥ t₂ → ∃ λ u → t₁ ⇛≥ u × t₂ ⇛≤ u ⇛-CR ⇛-refl s⇛t₂ = _ , s⇛t₂ , ⇛-refl ⇛-CR (⇛-Sred s₁⇛t₁₁ s₂⇛t₂₁ s₃⇛t₃₁) (⇛-Sred s₁⇛t₁₂ s₂⇛t₂₂ s₃⇛t₃₂) = let u₁ , t₁₁⇛u₁ , t₁₂⇛u₁ = ⇛-CR s₁⇛t₁₁ s₁⇛t₁₂ u₂ , t₂₁⇛u₂ , t₂₂⇛u₂ = ⇛-CR s₂⇛t₂₁ s₂⇛t₂₂ u₃ , t₃₁⇛u₃ , t₃₂⇛u₃ = ⇛-CR s₃⇛t₃₁ s₃⇛t₃₂ in u₁ · u₃ · (u₂ · u₃) , ⇛-· (⇛-· t₁₁⇛u₁ t₃₁⇛u₃) (⇛-· t₂₁⇛u₂ t₃₁⇛u₃) , ⇛-· (⇛-· t₁₂⇛u₁ t₃₂⇛u₃) (⇛-· t₂₂⇛u₂ t₃₂⇛u₃) ⇛-CR (⇛-Sred s₁⇛t₁₁ s₂⇛t₂₁ s₃⇛t₃₁) (⇛-· ⇛-refl s₃⇛t₃₂) = let u₃ , t₃₁⇛u₃ , t₃₂⇛u₃ = ⇛-CR s₃⇛t₃₁ s₃⇛t₃₂ in _ · u₃ · (_ · u₃) , ⇛-· (⇛-· ⇛-refl t₃₁⇛u₃) (⇛-· ⇛-refl t₃₁⇛u₃) , ⇛-Sred s₁⇛t₁₁ s₂⇛t₂₁ t₃₂⇛u₃ ⇛-CR (⇛-Sred s₁⇛t₁₁ s₂⇛t₂₁ s₃⇛t₃₁) (⇛-· (⇛-· ⇛-refl s₂⇛t₂₂) s₃⇛t₃₂) = let u₂ , t₂₁⇛u₂ , t₂₂⇛u₂ = ⇛-CR s₂⇛t₂₁ s₂⇛t₂₂ u₃ , t₃₁⇛u₃ , t₃₂⇛u₃ = ⇛-CR s₃⇛t₃₁ s₃⇛t₃₂ in _ · u₃ · (u₂ · u₃) , ⇛-· (⇛-· ⇛-refl t₃₁⇛u₃) (⇛-· t₂₁⇛u₂ t₃₁⇛u₃) , ⇛-Sred s₁⇛t₁₁ t₂₂⇛u₂ t₃₂⇛u₃ ⇛-CR (⇛-Sred s₁⇛t₁₁ s₂⇛t₂₁ s₃⇛t₃₁) (⇛-· (⇛-· (⇛-· ⇛-refl s₁⇛t₁₂) s₂⇛t₂₂) s₃⇛t₃₂) = let u₁ , t₁₁⇛u₁ , t₁₂⇛u₁ = ⇛-CR s₁⇛t₁₁ s₁⇛t₁₂ u₂ , t₂₁⇛u₂ , t₂₂⇛u₂ = ⇛-CR s₂⇛t₂₁ s₂⇛t₂₂ u₃ , t₃₁⇛u₃ , t₃₂⇛u₃ = ⇛-CR s₃⇛t₃₁ s₃⇛t₃₂ in u₁ · u₃ · (u₂ · u₃) , ⇛-· (⇛-· t₁₁⇛u₁ t₃₁⇛u₃) (⇛-· t₂₁⇛u₂ t₃₁⇛u₃) , ⇛-Sred t₁₂⇛u₁ t₂₂⇛u₂ t₃₂⇛u₃ ⇛-CR (⇛-Kred s⇛t₁) (⇛-Kred s⇛t₂) = let u , t₁⇛u , t₂⇛u = ⇛-CR s⇛t₁ s⇛t₂ in u , t₁⇛u , t₂⇛u ⇛-CR (⇛-Kred s₁⇛t₁₁) (⇛-· ⇛-refl _) = _ , ⇛-refl , ⇛-Kred s₁⇛t₁₁ ⇛-CR (⇛-Kred s₁⇛t₁₁) (⇛-· (⇛-· ⇛-refl s₁⇛t₂₁) _) = let u₁ , t₁₁⇛u₁ , t₂₁⇛u₁ = ⇛-CR s₁⇛t₁₁ s₁⇛t₂₁ in u₁ , t₁₁⇛u₁ , ⇛-Kred t₂₁⇛u₁ ⇛-CR (⇛-· ⇛-refl s₃⇛t₃₁) (⇛-Sred s₁⇛t₁₂ s₂⇛t₂₂ s₃⇛t₃₂) = let u₃ , t₃₁⇛u₃ , t₃₂⇛u₃ = ⇛-CR s₃⇛t₃₁ s₃⇛t₃₂ in _ · u₃ · (_ · u₃) , ⇛-Sred s₁⇛t₁₂ s₂⇛t₂₂ t₃₁⇛u₃ , ⇛-· (⇛-· ⇛-refl t₃₂⇛u₃) (⇛-· ⇛-refl t₃₂⇛u₃) ⇛-CR (⇛-· (⇛-· ⇛-refl s₂⇛t₂₁) s₃⇛t₃₁) (⇛-Sred s₁⇛t₁₂ s₂⇛t₂₂ s₃⇛t₃₂) = let u₂ , t₂₁⇛u₂ , t₂₂⇛u₂ = ⇛-CR s₂⇛t₂₁ s₂⇛t₂₂ u₃ , t₃₁⇛u₃ , t₃₂⇛u₃ = ⇛-CR s₃⇛t₃₁ s₃⇛t₃₂ in _ · u₃ · (u₂ · u₃) , ⇛-Sred s₁⇛t₁₂ t₂₁⇛u₂ t₃₁⇛u₃ , ⇛-· (⇛-· ⇛-refl t₃₂⇛u₃) (⇛-· t₂₂⇛u₂ t₃₂⇛u₃) ⇛-CR (⇛-· (⇛-· (⇛-· ⇛-refl s₁⇛t₁₁) s₂⇛t₂₁) s₃⇛t₃₁) (⇛-Sred s₁⇛t₁₂ s₂⇛t₂₂ s₃⇛t₃₂) = let u₁ , t₁₁⇛u₁ , t₁₂⇛u₁ = ⇛-CR s₁⇛t₁₁ s₁⇛t₁₂ u₂ , t₂₁⇛u₂ , t₂₂⇛u₂ = ⇛-CR s₂⇛t₂₁ s₂⇛t₂₂ u₃ , t₃₁⇛u₃ , t₃₂⇛u₃ = ⇛-CR s₃⇛t₃₁ s₃⇛t₃₂ in u₁ · u₃ · (u₂ · u₃) , ⇛-Sred t₁₁⇛u₁ t₂₁⇛u₂ t₃₁⇛u₃ , ⇛-· (⇛-· t₁₂⇛u₁ t₃₂⇛u₃) (⇛-· t₂₂⇛u₂ t₃₂⇛u₃) ⇛-CR (⇛-· ⇛-refl _) (⇛-Kred s₁⇛t₂₁) = _ , ⇛-Kred s₁⇛t₂₁ , ⇛-refl ⇛-CR (⇛-· (⇛-· ⇛-refl s₁⇛t₁₁) _) (⇛-Kred s₁⇛t₂₁) = let u₁ , t₁₁⇛u₁ , t₂₁⇛u₁ = ⇛-CR s₁⇛t₁₁ s₁⇛t₂₁ in u₁ , ⇛-Kred t₁₁⇛u₁ , t₂₁⇛u₁ {-# CATCHALL #-} ⇛-CR (⇛-· s₁⇛t₁₁ s₂⇛t₂₁) (⇛-· s₁⇛t₁₂ s₂⇛t₂₂) = let u₁ , t₁₁⇛u₁ , t₁₂⇛u₁ = ⇛-CR s₁⇛t₁₁ s₁⇛t₁₂ u₂ , t₂₁⇛u₂ , t₂₂⇛u₂ = ⇛-CR s₂⇛t₂₁ s₂⇛t₂₂ in u₁ · u₂ , ⇛-· t₁₁⇛u₁ t₂₁⇛u₂ , ⇛-· t₁₂⇛u₁ t₂₂⇛u₂ {-# CATCHALL #-} ⇛-CR s⇛t₁ ⇛-refl = _ , ⇛-refl , s⇛t₁ ⇛-⇛*-CR : ∀ {s t₁ t₂} → s ⇛≤ t₁ → s ⇛≥* t₂ → ∃ λ u → t₁ ⇛≥* u × t₂ ⇛≤ u ⇛-⇛*-CR s⇛≤t ε = _ , ε , s⇛≤t ⇛-⇛*-CR s⇛≤u₁ (s⇛≥t₁ ◅ t₁⇛≥*t₂) = let u₂ , u₁⇛≥u₂ , t₁⇛≤u₂ = ⇛-CR s⇛≤u₁ s⇛≥t₁ u₃ , u₂⇛≥*u₃ , t₂⇛≤u₃ = ⇛-⇛*-CR t₁⇛≤u₂ t₁⇛≥*t₂ in u₃ , u₁⇛≥u₂ ◅ u₂⇛≥*u₃ , t₂⇛≤u₃ ⇛*-CR : ∀ {s t₁ t₂} → s ⇛≤* t₁ → s ⇛≥* t₂ → ∃ λ u → t₁ ⇛≥* u × t₂ ⇛≤* u ⇛*-CR ε s⇛≥*t = _ , s⇛≥*t , ε ⇛*-CR (s⇛≤t₁ ◅ t₁⇛≤*t₂) s⇛≥*u₁ = let u₂ , t₁⇛≥*u₂ , u₁⇛≤u₂ = ⇛-⇛*-CR s⇛≤t₁ s⇛≥*u₁ u₃ , t₂⇛≥*u₃ , u₂⇛≤*u₃ = ⇛*-CR t₁⇛≤*t₂ t₁⇛≥*u₂ in u₃ , t₂⇛≥*u₃ , u₁⇛≤u₂ ◅ u₂⇛≤*u₃ -- Thanks to Church-Rosser, thee combined multi-step reduction is -- transitive. ⇛≤*≤⇚-trans : ∀ {s t u} → s ⇛≤*≤⇚ t → t ⇛≤*≤⇚ u → s ⇛≤*≤⇚ u ⇛≤*≤⇚-trans (v , s⇛≤*v , t⇛≥*v) (w , t⇛≤*w , u⇛≥*w) = let u′ , w⇛≥*u′ , v⇛≤*u′ = ⇛*-CR t⇛≤*w t⇛≥*v in u′ , (s⇛≤*v ◅◅ v⇛≤*u′ , u⇛≥*w ◅◅ w⇛≥*u′) -- The order on SK? terms is a subrelation of the combined multi-step -- reduction (modulo squashing). -- -- The two orders are in fact equivalent, but we don't need that -- result here, so we omit its proof. Instead we will establish that -- the two relations are both equivalent to _≡SK_ on pure SK terms -- (see inject-⇛≤*≤⇚-≡SK below). ≤SK?--⇛≤*≤⇚ : ∀ {s t} → s ≤SK? t → s ⇛≤*≤⇚ t ≤SK?--⇛≤*≤⇚ ≤?-refl = (_ , ε , ε) ≤SK?--⇛≤*≤⇚ (≤?-trans s≤t t≤u) = ⇛≤*≤⇚-trans (≤SK?--⇛≤*≤⇚ s≤t) (≤SK?--⇛≤*≤⇚ t≤u) ≤SK?--⇛≤*≤⇚ ≤?-⊥ = (_ , ⇛-⊥ ◅ ε , ε) ≤SK?--⇛≤*≤⇚ ≤?-⊤ = (_ , ε , ⇛-⊤ ◅ ε) ≤SK?--⇛≤*≤⇚ ≤?-Sred = _ , ⇛-Sred ⇛-refl ⇛-refl ⇛-refl ◅ ε , ε ≤SK?--⇛≤*≤⇚ ≤?-Kred = _ , ⇛-Kred ⇛-refl ◅ ε , ε ≤SK?--⇛≤*≤⇚ ≤?-Sexp = _ , ε , ⇛-Sred ⇛-refl ⇛-refl ⇛-refl ◅ ε ≤SK?--⇛≤*≤⇚ ≤?-Kexp = _ , ε , ⇛-Kred ⇛-refl ◅ ε ≤SK?--⇛≤*≤⇚ (≤?-· s₁≤t₁ s₂≤t₂) = let u₁ , s₁⇛u₁ , t₁⇛u₁ = ≤SK?--⇛≤*≤⇚ s₁≤t₁ u₂ , s₂⇛u₂ , t₂⇛u₂ = ≤SK?--⇛≤*≤⇚ s₂≤t₂ in u₁ · u₂ , ⇛*-· s₁⇛u₁ s₂⇛u₂ , ⇛*-· t₁⇛u₁ t₂⇛u₂ -- Reduction preserves pure terms. ⇛-Pure : ∀ {ab s t} (ps : Pure s) → s ⇛[ ab ] t → ∃ λ pt → inject⁻¹ ps ≡SK inject⁻¹ {t} pt ⇛-Pure p ⇛-refl = p , ≡-refl ⇛-Pure (S · ps₁ · pt₁ · pu₁) (⇛-Sred s₁⇛s₂ t₁⇛t₂ u₁⇛u₂) = let ps₂ , s₁≡s₂ = ⇛-Pure ps₁ s₁⇛s₂ pt₂ , t₁≡t₂ = ⇛-Pure pt₁ t₁⇛t₂ pu₂ , u₁≡u₂ = ⇛-Pure pu₁ u₁⇛u₂ in ps₂ · pu₂ · (pt₂ · pu₂) , ≡-trans (≡-· (≡-· (≡-· ≡-refl s₁≡s₂) t₁≡t₂) u₁≡u₂) ≡-Sred ⇛-Pure (K · ps₁ · _) (⇛-Kred s₁⇛s₂) = let ps₂ , s₁≡s₂ = ⇛-Pure ps₁ s₁⇛s₂ in ps₂ , ≡-trans ≡-Kred s₁≡s₂ ⇛-Pure (ps · pt) (⇛-· s₁⇛s₂ t₁⇛t₂) = Prod.zip _·_ ≡-· (⇛-Pure ps s₁⇛s₂) (⇛-Pure pt t₁⇛t₂) ⇛*-Pure : ∀ {ab s t} (ps : Pure s) → s ⇛[ ab ]* t → ∃ λ pt → inject⁻¹ ps ≡SK inject⁻¹ {t} pt ⇛*-Pure p ε = p , ≡-refl ⇛*-Pure ps (s⇛t ◅ t⇛*u) = let pt , s≡t = ⇛-Pure ps s⇛t pu , t≡u = ⇛*-Pure pt t⇛*u in pu , ≡-trans s≡t t≡u -- The combined multi-step reduction is a subrelation of ≡SK on pure terms. inject-⇛≤*≤⇚-≡SK : ∀ {s t} → inject s ⇛≤*≤⇚ inject t → s ≡SK t inject-⇛≤*≤⇚-≡SK {s} {t} (u , s⇛≤*u , t⇛≥*u) = let pu , s≡u = ⇛*-Pure (inject-Pure s) s⇛≤*u pu′ , t≡u = ⇛*-Pure (inject-Pure t) t⇛≥*u in ≡-trans (subst (_≡SK (inject⁻¹ pu)) (inject⁻¹-inject-Pure s) s≡u) (subst₂ (_≡SK_) (inject⁻¹-unique pu′ pu) (inject⁻¹-inject-Pure t) (≡-sym t≡u)) -- The order on SK? terms is a subrelation of the equality on pure SK -- terms. -- -- NOTE. This establishes a circular equivalence between the three -- relations _≡SK_, _⇛≤*≤⇚_ and _≤SK?_ when restricted to pure SK -- terms: -- -- _≡SK_ ⊆ _≤SK?_ ⊆ _⇛≤*≤⇚_ ⊆ _≡SK_ -- -- This equivalence will allow us to encode/extract equivalence proofs -- on (pure) SK terms from typing derivations. inject-≤SK?-≡SK : ∀ {s t} → inject s ≤SK? inject t → s ≡SK t inject-≤SK?-≡SK {s} {t} s≤t = inject-⇛≤*≤⇚-≡SK (≤SK?--⇛≤*≤⇚ s≤t)
35.857143
81
0.470588
3995c525e88e6de9e3abb8acffe3a2fba707a220
404
agda
Agda
Cubical/HITs/Truncation/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/HITs/Truncation/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/HITs/Truncation/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.Truncation.Base where open import Cubical.Data.NatMinusOne open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.HITs.Sn data ∥_∥_ {ℓ} (A : Type ℓ) (n : ℕ₋₁) : Type ℓ where ∣_∣ : A → ∥ A ∥ n hub : (f : S (1+ n) → ∥ A ∥ n) → ∥ A ∥ n spoke : (f : S (1+ n) → ∥ A ∥ n) (x : S (1+ n)) → hub f ≡ f x
28.857143
63
0.596535
18c46be68d78cbf01303c446f74c94f8832c8148
384
agda
Agda
Cubical/Data/NatMinusTwo/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Data/NatMinusTwo/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Data/NatMinusTwo/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-exact-split --safe #-} module Cubical.Data.NatMinusTwo.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Data.Nat open import Cubical.Data.NatMinusOne using (ℕ₋₁) open import Cubical.Data.NatMinusTwo.Base -2+Path : ℕ ≡ ℕ₋₂ -2+Path = isoToPath (iso -2+_ 2+_ (λ _ → refl) (λ _ → refl))
32
60
0.747396
2361a0c96969340cb498a86dbc385c823a478277
316
agda
Agda
src/SizedIO/ConsoleObject.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
23
2016-06-19T12:57:55.000Z
2020-10-12T23:15:25.000Z
src/SizedIO/ConsoleObject.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
null
null
null
src/SizedIO/ConsoleObject.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
2
2018-09-01T15:02:37.000Z
2022-03-12T11:41:00.000Z
module SizedIO.ConsoleObject where open import Size open import SizedIO.Console open import SizedIO.Object open import SizedIO.IOObject -- A console object is an IO object for the IO interface of console ConsoleObject : (i : Size) → (iface : Interface) → Set ConsoleObject i iface = IOObject consoleI iface i
22.571429
68
0.775316
cb987957c6a6f310a18aebe2450a5bf498d659cc
28,991
agda
Agda
Cubical/Data/Int/Properties.agda
mchristianl/cubical
cc6ad25d5ffbe4f20ea7020474f266d24b97caa0
[ "MIT" ]
null
null
null
Cubical/Data/Int/Properties.agda
mchristianl/cubical
cc6ad25d5ffbe4f20ea7020474f266d24b97caa0
[ "MIT" ]
null
null
null
Cubical/Data/Int/Properties.agda
mchristianl/cubical
cc6ad25d5ffbe4f20ea7020474f266d24b97caa0
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} {- This file defines sucPred : ∀ (i : Int) → sucInt (predInt i) ≡ i predSuc : ∀ (i : Int) → predInt (sucInt i) ≡ i discreteInt : discrete Int isSetInt : isSet Int addition of Int is defined _+_ : Int → Int → Int as well as its commutativity and associativity +-comm : ∀ (m n : Int) → m + n ≡ n + m +-assoc : ∀ (m n o : Int) → m + (n + o) ≡ (m + n) + o An alternate definition of _+_ is defined via ua, namely _+'_, which helps us to easily prove isEquivAddInt : (m : Int) → isEquiv (λ n → n + m) -} module Cubical.Data.Int.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Transport open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Unit renaming (Unit to ⊤) open import Cubical.Data.Nat as ℕ using (ℕ; zero; suc; discreteℕ) renaming ( _·_ to _·ⁿ_ ; _+_ to _+ⁿ_ ; _⊓_ to _⊓ⁿ_ ; _⊔_ to _⊔ⁿ_ ) open import Cubical.Data.Nat.Order as ℕᵒ using () renaming ( _<_ to _<ⁿ_ ) open import Cubical.Data.Bool hiding (_≟_) open import Cubical.Data.Sum open import Cubical.Data.Int.Base open import Cubical.Functions.Logic using (pathTo⇒; ⊔-comm) open import Cubical.HITs.PropositionalTruncation as PropTrunc using (propTruncIsProp) open import Cubical.Foundations.Function using (_∘_) open import Cubical.Reflection.Base using (_$_) -- TODO: add this to Foundation.Function open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.DecidableEq abs : Int → ℕ abs (pos n) = n abs (negsuc n) = suc n Sign : Type₀ Sign = Bool pattern spos = Bool.false pattern sneg = Bool.true _·ˢ_ : Sign → Sign → Sign _·ˢ_ = _⊕_ sgn : Int → Bool sgn (pos n) = spos sgn (negsuc n) = sneg signed : Sign → ℕ → Int signed spos x = pos x signed sneg zero = pos 0 signed sneg (suc x) = neg (suc x) sgn-signed : ∀ s n → sgn (signed s (suc n)) ≡ s sgn-signed spos n = refl sgn-signed sneg n = refl abs-signed : ∀ s n → abs (signed s n) ≡ n abs-signed spos n = refl abs-signed sneg zero = refl abs-signed sneg (suc n) = refl signed-inv : ∀ a → signed (sgn a) (abs a) ≡ a signed-inv (pos n) = refl signed-inv (negsuc n) = refl signed-zero : ∀ s → signed s 0 ≡ 0 signed-zero spos = refl signed-zero sneg = refl signed-reflects-sgn : ∀ s₁ s₂ n m → signed s₁ (suc n) ≡ signed s₂ (suc m) → s₁ ≡ s₂ signed-reflects-sgn s₁ s₂ n m p = sym (sgn-signed s₁ n) ∙ (λ i → sgn (p i)) ∙ sgn-signed s₂ m signed-reflects-abs : ∀ s₁ s₂ n m → signed s₁ n ≡ signed s₂ m → n ≡ m signed-reflects-abs s₁ s₂ n m p = sym (abs-signed s₁ n) ∙ (λ i → abs (p i)) ∙ abs-signed s₂ m sign-abs-≡ : ∀ a b → sgn a ≡ sgn b → abs a ≡ abs b → a ≡ b sign-abs-≡ a b p q = transport (λ i → signed-inv a i ≡ signed-inv b i) λ i → signed (p i) (q i) sucPred : ∀ i → sucInt (predInt i) ≡ i sucPred (pos zero) = refl sucPred (pos (suc n)) = refl sucPred (negsuc n) = refl predSuc : ∀ i → predInt (sucInt i) ≡ i predSuc (pos n) = refl predSuc (negsuc zero) = refl predSuc (negsuc (suc n)) = refl predInt-inj : ∀ a b → predInt a ≡ predInt b → a ≡ b predInt-inj a b p = sym (sucPred a) ∙ cong sucInt p ∙ sucPred b injPos : ∀ {a b : ℕ} → pos a ≡ pos b → a ≡ b injPos {a} h = subst T h refl where T : Int → Type₀ T (pos x) = a ≡ x T (negsuc _) = ⊥ injNegsuc : ∀ {a b : ℕ} → negsuc a ≡ negsuc b → a ≡ b injNegsuc {a} h = subst T h refl where T : Int → Type₀ T (pos _) = ⊥ T (negsuc x) = a ≡ x posNotnegsuc : ∀ (a b : ℕ) → ¬ (pos a ≡ negsuc b) posNotnegsuc a b h = subst T h 0 where T : Int → Type₀ T (pos _) = ℕ T (negsuc _) = ⊥ negsucNotpos : ∀ (a b : ℕ) → ¬ (negsuc a ≡ pos b) negsucNotpos a b h = subst T h 0 where T : Int → Type₀ T (pos _) = ⊥ T (negsuc _) = ℕ discreteInt : Discrete Int discreteInt (pos n) (pos m) with discreteℕ n m ... | yes p = yes (cong pos p) ... | no p = no (λ x → p (injPos x)) discreteInt (pos n) (negsuc m) = no (posNotnegsuc n m) discreteInt (negsuc n) (pos m) = no (negsucNotpos n m) discreteInt (negsuc n) (negsuc m) with discreteℕ n m ... | yes p = yes (cong negsuc p) ... | no p = no (λ x → p (injNegsuc x)) isSetInt : isSet Int isSetInt = Discrete→isSet discreteInt _ℕ-_ : ℕ → ℕ → Int a ℕ- 0 = pos a 0 ℕ- suc b = negsuc b suc a ℕ- suc b = a ℕ- b _+pos_ : Int → ℕ → Int z +pos 0 = z z +pos (suc n) = sucInt (z +pos n) _+negsuc_ : Int → ℕ → Int z +negsuc 0 = predInt z z +negsuc (suc n) = predInt (z +negsuc n) infix 8 -_ infixl 7 _·_ _⊓_ infixl 6 _+_ _-_ _⊔_ infix 4 _<_ -- _≤_ _+_ : Int → Int → Int m + pos n = m +pos n m + negsuc n = m +negsuc n -- TODO: in `Cubical.Papers.RepresentationIndependence` we have -- -_ : ℤ → ℤ -- - x = 0 - x -- there might be an advantage of defining -_ by _-_ and not the other way around -- e.g. in Cubical.HITs.QuoInt we have -- -_ : ℤ → ℤ -- - signed s n = signed (not s) n -- - posneg i = posneg (~ i) -_ : Int → Int - pos zero = pos zero - pos (suc n) = negsuc n - negsuc n = pos (suc n) _-_ : Int → Int → Int m - n = m + (- n) _·_ : Int → Int → Int x · y = signed (sgn x ⊕ sgn y) (abs x ·ⁿ abs y) _<_ : ∀(x y : Int) → Type₀ pos x < pos y = x <ⁿ y pos x < negsuc y = ⊥ negsuc x < pos y = ⊤ negsuc x < negsuc y = y <ⁿ x _⊓_ : Int → Int → Int (pos x) ⊓ (pos y) = pos (x ⊓ⁿ y) (pos x) ⊓ (negsuc y) = negsuc y (negsuc x) ⊓ (pos y) = negsuc x (negsuc x) ⊓ (negsuc y) = negsuc (x ⊔ⁿ y) _⊔_ : Int → Int → Int (pos x) ⊔ (pos y) = pos (x ⊔ⁿ y) (pos x) ⊔ (negsuc y) = pos x (negsuc x) ⊔ (pos y) = pos y (negsuc x) ⊔ (negsuc y) = negsuc (x ⊓ⁿ y) neg-involutive : ∀ n → - - n ≡ n neg-involutive (pos zero ) = refl neg-involutive (pos (suc n)) = refl neg-involutive (negsuc n ) = refl neg-signed-not : ∀ s n → - signed s n ≡ signed (not s) n neg-signed-not spos zero = refl neg-signed-not sneg zero = refl neg-signed-not spos (suc n) = refl neg-signed-not sneg (suc n) = refl neg-abs : ∀ a → abs (- a) ≡ abs a neg-abs (pos zero) = refl neg-abs (pos (suc n)) = refl neg-abs (negsuc n) = refl neg-reflects-≡ : ∀ a b → - a ≡ - b → a ≡ b neg-reflects-≡ a b p = sym (neg-involutive a) ∙ (λ i → - p i) ∙ neg-involutive b abs-preserves-· : ∀ a b → abs (a · b) ≡ abs a ℕ.· abs b abs-preserves-· a b = abs-signed (sgn a ⊕ sgn b) _ sucInt+pos : ∀ n m → sucInt (m +pos n) ≡ (sucInt m) +pos n sucInt+pos zero m = refl sucInt+pos (suc n) m = cong sucInt (sucInt+pos n m) predInt+negsuc : ∀ n m → predInt (m +negsuc n) ≡ (predInt m) +negsuc n predInt+negsuc zero m = refl predInt+negsuc (suc n) m = cong predInt (predInt+negsuc n m) sucInt+negsuc : ∀ n m → sucInt (m +negsuc n) ≡ (sucInt m) +negsuc n sucInt+negsuc zero m = (sucPred _) ∙ (sym (predSuc _)) sucInt+negsuc (suc n) m = _ ≡⟨ sucPred _ ⟩ m +negsuc n ≡[ i ]⟨ predSuc m (~ i) +negsuc n ⟩ (predInt (sucInt m)) +negsuc n ≡⟨ sym (predInt+negsuc n (sucInt m)) ⟩ predInt (sucInt m +negsuc n) ∎ predInt+pos : ∀ n m → predInt (m +pos n) ≡ (predInt m) +pos n predInt+pos zero m = refl predInt+pos (suc n) m = _ ≡⟨ predSuc _ ⟩ m +pos n ≡[ i ]⟨ sucPred m (~ i) + pos n ⟩ (sucInt (predInt m)) +pos n ≡⟨ sym (sucInt+pos n (predInt m))⟩ (predInt m) +pos (suc n) ∎ predInt+ : ∀ m n → predInt (m + n) ≡ (predInt m) + n predInt+ m (pos n) = predInt+pos n m predInt+ m (negsuc n) = predInt+negsuc n m +predInt : ∀ m n → predInt (m + n) ≡ m + (predInt n) +predInt m (pos zero) = refl +predInt m (pos (suc n)) = (predSuc (m + pos n)) ∙ (cong (_+_ m) (sym (predSuc (pos n)))) +predInt m (negsuc n) = refl sucInt+ : ∀ m n → sucInt (m + n) ≡ (sucInt m) + n sucInt+ m (pos n) = sucInt+pos n m sucInt+ m (negsuc n) = sucInt+negsuc n m +sucInt : ∀ m n → sucInt (m + n) ≡ m + (sucInt n) +sucInt m (pos n) = refl +sucInt m (negsuc zero) = sucPred _ +sucInt m (negsuc (suc n)) = (sucPred (m +negsuc n)) ∙ (cong (_+_ m) (sym (sucPred (negsuc n)))) pos0+ : ∀ z → z ≡ pos 0 + z pos0+ (pos zero) = refl pos0+ (pos (suc n)) = cong sucInt (pos0+ (pos n)) pos0+ (negsuc zero) = refl pos0+ (negsuc (suc n)) = cong predInt (pos0+ (negsuc n)) negsuc0+ : ∀ z → predInt z ≡ negsuc 0 + z negsuc0+ (pos zero) = refl negsuc0+ (pos (suc n)) = (sym (sucPred (pos n))) ∙ (cong sucInt (negsuc0+ _)) negsuc0+ (negsuc zero) = refl negsuc0+ (negsuc (suc n)) = cong predInt (negsuc0+ (negsuc n)) ind-comm : {A : Type₀} (_∙_ : A → A → A) (f : ℕ → A) (g : A → A) (p : ∀ {n} → f (suc n) ≡ g (f n)) (g∙ : ∀ a b → g (a ∙ b) ≡ g a ∙ b) (∙g : ∀ a b → g (a ∙ b) ≡ a ∙ g b) (base : ∀ z → z ∙ f 0 ≡ f 0 ∙ z) → ∀ z n → z ∙ f n ≡ f n ∙ z ind-comm _∙_ f g p g∙ ∙g base z 0 = base z ind-comm _∙_ f g p g∙ ∙g base z (suc n) = z ∙ f (suc n) ≡[ i ]⟨ z ∙ p {n} i ⟩ z ∙ g (f n) ≡⟨ sym ( ∙g z (f n)) ⟩ g (z ∙ f n) ≡⟨ cong g IH ⟩ g (f n ∙ z) ≡⟨ g∙ (f n) z ⟩ g (f n) ∙ z ≡[ i ]⟨ p {n} (~ i) ∙ z ⟩ f (suc n) ∙ z ∎ where IH = ind-comm _∙_ f g p g∙ ∙g base z n ind-assoc : {A : Type₀} (_·_ : A → A → A) (f : ℕ → A) (g : A → A) (p : ∀ a b → g (a · b) ≡ a · (g b)) (q : ∀ {c} → f (suc c) ≡ g (f c)) (base : ∀ m n → (m · n) · (f 0) ≡ m · (n · (f 0))) (m n : A) (o : ℕ) → m · (n · (f o)) ≡ (m · n) · (f o) ind-assoc _·_ f g p q base m n 0 = sym (base m n) ind-assoc _·_ f g p q base m n (suc o) = m · (n · (f (suc o))) ≡[ i ]⟨ m · (n · q {o} i) ⟩ m · (n · (g (f o))) ≡[ i ]⟨ m · (p n (f o) (~ i)) ⟩ m · (g (n · (f o))) ≡⟨ sym (p m (n · (f o)))⟩ g (m · (n · (f o))) ≡⟨ cong g IH ⟩ g ((m · n) · (f o)) ≡⟨ p (m · n) (f o) ⟩ (m · n) · (g (f o)) ≡[ i ]⟨ (m · n) · q {o} (~ i) ⟩ (m · n) · (f (suc o)) ∎ where IH = ind-assoc _·_ f g p q base m n o +-comm : ∀ m n → m + n ≡ n + m +-comm m (pos n) = ind-comm _+_ pos sucInt refl sucInt+ +sucInt pos0+ m n +-comm m (negsuc n) = ind-comm _+_ negsuc predInt refl predInt+ +predInt negsuc0+ m n +-assoc : ∀ m n o → m + (n + o) ≡ (m + n) + o +-assoc m n (pos o) = ind-assoc _+_ pos sucInt +sucInt refl (λ _ _ → refl) m n o +-assoc m n (negsuc o) = ind-assoc _+_ negsuc predInt +predInt refl +predInt m n o ·-nullifiesʳ : ∀ x → x · 0 ≡ 0 ·-nullifiesʳ (pos n) i = signed spos (ℕ.·-nullifiesʳ n i) ·-nullifiesʳ (negsuc n) i = signed sneg (ℕ.·-nullifiesʳ n i) ·-nullifiesˡ : ∀ x → 0 · x ≡ 0 ·-nullifiesˡ (pos n) i = pos (ℕ.·-nullifiesˡ n i) ·-nullifiesˡ (negsuc n) = refl +-identityʳ : ∀ x → x + 0 ≡ x +-identityʳ x = refl +-identityˡ : ∀ x → 0 + x ≡ x +-identityˡ x = +-comm 0 x ·-identityʳ : ∀ x → x · 1 ≡ x ·-identityʳ x = cong₂ signed (⊕-comm (sgn x) spos) (ℕ.·-identityʳ (abs x)) ∙ signed-inv x ·-identityˡ : ∀ x → 1 · x ≡ x ·-identityˡ x = (λ i → signed (sgn x) (ℕ.+-comm (abs x) 0 i)) ∙ signed-inv x ·-comm : ∀ m n → m · n ≡ n · m ·-comm (pos m) n = cong₂ signed (⊕-comm spos (sgn n)) (ℕ.·-comm m (abs n)) ·-comm (negsuc m) n = cong₂ signed (⊕-comm sneg (sgn n)) (ℕ.·-comm (suc m) (abs n)) predInt-neg : ∀ a → predInt (- a) ≡ - (sucInt a) predInt-neg (pos zero ) = refl predInt-neg (pos (suc n)) = refl predInt-neg (negsuc zero ) = refl predInt-neg (negsuc (suc n)) = refl sucInt-neg : ∀ a → sucInt (- a) ≡ - (predInt a) sucInt-neg (pos zero ) = refl sucInt-neg (pos (suc zero) ) = refl sucInt-neg (pos (suc (suc n))) = refl sucInt-neg (negsuc zero ) = refl sucInt-neg (negsuc (suc n) ) = refl private lem : ∀ n → -(0 + n) ≡ 0 - n lem n i = +-identityˡ (- +-identityˡ n i) (~ i) negate-+ : ∀ m n → - (m + n) ≡ (- m) + (- n) negate-+ (pos zero) = lem negate-+ (pos (suc m)) n = (λ i → - sucInt+ (pos m) n (~ i)) ∙ sym (predInt-neg (pos m + n)) ∙ (λ i → predInt (negate-+ (pos m) n i)) ∙ predInt+ (- pos m) (- n) ∙ λ i → predInt-neg (pos m) i + - n negate-+ (negsuc zero) n = predInt-inj (- (negsuc zero + n)) (pos 1 + - n) $ predInt-neg (negsuc 0 + n) ∙ (λ i → - sucInt+ (negsuc 0) n i) ∙ lem n ∙ sym (predInt+ (pos 1) (- n)) negate-+ (negsuc (suc m)) n = (λ i → - predInt+ (negsuc m) n (~ i)) ∙ sym (sucInt-neg (negsuc m + n)) ∙ (λ i → sucInt (negate-+ (negsuc m) n i)) ∙ sucInt+ (pos (suc m)) (- n) negate-·ˡ : ∀ a b → -(a · b) ≡ (- a) · b negate-·ˡ (pos zero) b = neg-signed-not (sgn b) 0 ∙ signed-zero (not (sgn b)) ∙ sym (signed-zero (sgn b)) negate-·ˡ (pos (suc n)) b = neg-signed-not (sgn b) _ negate-·ˡ (negsuc n) b = neg-signed-not (not (sgn b)) _ ∙ cong₂ signed (notnot (sgn b)) refl negate-·ʳ : ∀ a b → -(a · b) ≡ a · (- b) negate-·ʳ a b = (λ i → - ·-comm a b i) ∙ negate-·ˡ b a ∙ ·-comm (- b) a negsuc+negsuc : ∀ a x → (negsuc a +negsuc x) ≡ negsuc (suc (a +ⁿ x)) negsuc+negsuc a zero = λ i → negsuc $ suc $ ℕ.+-comm 0 a i negsuc+negsuc a (suc x) = let r = negsuc+negsuc a x in predInt (negsuc a +negsuc x) ≡⟨ (λ i → predInt (r i)) ⟩ predInt (negsuc (suc (a +ⁿ x))) ≡⟨ refl ⟩ negsuc (suc (suc (a +ⁿ x))) ≡⟨ (λ i → negsuc $ suc $ ℕ.+-suc a x (~ i)) ⟩ negsuc (suc (a +ⁿ suc x)) ∎ signed-distrib : ∀ s m n → signed s (m +ⁿ n) ≡ signed s m + signed s n signed-distrib s zero n = (sym $ +-identityˡ (signed s n)) ∙ λ i → signed-zero s (~ i) + signed s n signed-distrib spos (suc m) n = cong sucInt (signed-distrib spos m n) ∙ sucInt+pos n (pos m) signed-distrib sneg (suc m) zero i = negsuc (ℕ.+-comm m 0 i) signed-distrib sneg (suc m) (suc n) = (λ i → negsuc (ℕ.+-suc m n i)) ∙ sym (negsuc+negsuc m n) ·-pos-suc : ∀ m n → pos (suc m) · n ≡ n + pos m · n ·-pos-suc m n = signed-distrib (sgn n) (abs n) (m ℕ.· abs n) ∙ λ i → signed-inv n i + signed (sgn n) (m ·ⁿ abs n) ·-negsuc-suc : ∀ m n → negsuc (suc m) · n ≡ - n + negsuc m · n ·-negsuc-suc m n = signed-distrib (not (sgn n)) (abs n) (suc m ℕ.· abs n) ∙ λ i → γ i + negsuc m · n where γ = sym (neg-signed-not (sgn n) (abs n)) ∙ cong -_ (signed-inv n) -- this is a similar proof to the one in Cubical.HITs.QuoInt.Properties -- but we have less definitional equalities -- ·-assoc : ∀ m n o → m · (n · o) ≡ m · n · o -- ·-assoc m n o with abs m | signed-inv m -- ... | zero | pm = {! !} -- ... | suc mⁿ | pm with abs n | signed-inv n -- ... | zero | pn = (λ i → signed s₁ (γ₁ i)) ∙ signed-zero s₁ ∙ sym (signed-zero s₂) ∙ (λ i → signed s₂ (γ₂ i)) where -- s₁ = sgn m ⊕ sgn (signed (sgn n ⊕ sgn o) 0) -- s₂ = sgn (signed (sgn m ⊕ sgn n) (mⁿ ·ⁿ 0)) ⊕ sgn o -- γ₁ = suc mⁿ ·ⁿ abs (signed (sgn n ⊕ sgn o) 0) ≡⟨ {! !} ⟩ -- suc mⁿ ·ⁿ 0 ≡⟨ {! !} ⟩ -- 0 ∎ -- γ₂ = 0 ≡⟨ {! !} ⟩ -- 0 ·ⁿ abs o ≡⟨ {! !} ⟩ -- (mⁿ ·ⁿ 0) ·ⁿ abs o ≡⟨ {! !} ⟩ -- abs (signed (sgn m ⊕ sgn n) (mⁿ ·ⁿ 0)) ·ⁿ abs o ∎ -- ... | suc nⁿ | pn with abs o | signed-inv o -- ... | zero | po = (λ i → signed s₁ (γ₁ i)) ∙ signed-zero s₁ ∙ sym (signed-zero s₂) ∙ (λ i → signed s₂ (γ₂ i)) where -- s₁ = sgn m ⊕ sgn (signed (sgn n ⊕ sgn o) (nⁿ ·ⁿ zero)) -- s₂ = sgn (signed (sgn m ⊕ sgn n) (suc mⁿ ·ⁿ suc nⁿ)) ⊕ sgn o -- γ₁ = suc mⁿ ·ⁿ abs (signed (sgn n ⊕ sgn o) (nⁿ ·ⁿ 0)) ≡[ i ]⟨ suc mⁿ ·ⁿ abs-signed (sgn n ⊕ sgn o) (nⁿ ·ⁿ 0) i ⟩ -- suc mⁿ ·ⁿ (nⁿ ·ⁿ 0) ≡[ i ]⟨ suc mⁿ ·ⁿ (ℕ.·-nullifiesʳ nⁿ i) ⟩ -- suc mⁿ ·ⁿ 0 ≡⟨ ℕ.·-nullifiesʳ (suc mⁿ) ⟩ -- 0 ∎ -- γ₂ = 0 ≡⟨ sym $ ℕ.·-nullifiesʳ (abs (signed (sgn m ⊕ sgn n) (suc mⁿ ·ⁿ suc nⁿ))) ⟩ -- abs (signed (sgn m ⊕ sgn n) (suc mⁿ ·ⁿ suc nⁿ)) ·ⁿ 0 ∎ -- ... | suc oⁿ | po = cong₂ signed γ₁ γ₂ where -- γ₁ = sgn m ⊕ sgn (signed (sgn n ⊕ sgn o) (suc nⁿ ·ⁿ suc oⁿ)) ≡[ i ]⟨ sgn m ⊕ sgn-signed (sgn n ⊕ sgn o) (oⁿ +ⁿ nⁿ ·ⁿ suc oⁿ) i ⟩ -- sgn m ⊕ (sgn n ⊕ sgn o) ≡⟨ ⊕-assoc (sgn m) (sgn n) (sgn o) ⟩ -- (sgn m ⊕ sgn n) ⊕ sgn o ≡[ i ]⟨ sgn-signed (sgn m ⊕ sgn n) (nⁿ +ⁿ mⁿ ·ⁿ suc nⁿ) (~ i) ⊕ sgn o ⟩ -- sgn (signed (sgn m ⊕ sgn n) (suc mⁿ ·ⁿ suc nⁿ)) ⊕ sgn o ∎ -- γ₂ = suc mⁿ ·ⁿ abs (signed (sgn n ⊕ sgn o) (suc nⁿ ·ⁿ suc oⁿ)) ≡[ i ]⟨ suc mⁿ ·ⁿ abs-signed (sgn n ⊕ sgn o) (suc nⁿ ·ⁿ suc oⁿ) i ⟩ -- suc mⁿ ·ⁿ (suc nⁿ ·ⁿ suc oⁿ) ≡⟨ ℕ.·-assoc (suc mⁿ) (suc nⁿ) (suc oⁿ) ⟩ -- (suc mⁿ ·ⁿ suc nⁿ) ·ⁿ suc oⁿ ≡[ i ]⟨ abs-signed (sgn m ⊕ sgn n) (suc mⁿ ·ⁿ suc nⁿ) (~ i) ·ⁿ suc oⁿ ⟩ -- abs (signed (sgn m ⊕ sgn n) (suc mⁿ ·ⁿ suc nⁿ)) ·ⁿ suc oⁿ ∎ private lemma2 : ∀ a b c → c +ⁿ (b +ⁿ a ·ⁿ suc b) ·ⁿ suc c ≡ (c +ⁿ b ·ⁿ suc c) +ⁿ a ·ⁿ suc (c +ⁿ b ·ⁿ suc c) lemma2 a b c = c +ⁿ (b +ⁿ a ·ⁿ suc b) ·ⁿ suc c ≡⟨ (λ i → c +ⁿ ℕ.·-distribʳ b (a ·ⁿ suc b) (suc c) (~ i)) ⟩ c +ⁿ (b ·ⁿ suc c +ⁿ (a ·ⁿ suc b) ·ⁿ suc c) ≡⟨ ℕ.+-assoc c _ _ ⟩ (c +ⁿ b ·ⁿ suc c) +ⁿ (a ·ⁿ suc b) ·ⁿ suc c ≡⟨ (λ i → (c +ⁿ b ·ⁿ suc c) +ⁿ ℕ.·-assoc a (suc b) (suc c) (~ i)) ⟩ (c +ⁿ b ·ⁿ suc c) +ⁿ a ·ⁿ (suc b ·ⁿ suc c) ≡⟨ refl ⟩ (c +ⁿ b ·ⁿ suc c) +ⁿ a ·ⁿ suc (c +ⁿ b ·ⁿ suc c) ∎ -- this is a proof ported from the non-cubical standard library ·-assoc : ∀ x y z → (x · y) · z ≡ x · (y · z) ·-assoc (pos 0) y z = (λ i → ·-nullifiesˡ y i · z) ∙ ·-nullifiesˡ z ∙ sym (·-nullifiesˡ (y · z)) ·-assoc x (pos 0) z = (λ i → ·-nullifiesʳ x i · z) ∙ ·-nullifiesˡ z ∙ sym (·-nullifiesʳ x) ∙ (λ i → x · ·-nullifiesˡ z (~ i)) ·-assoc x y (pos 0) = ·-nullifiesʳ (x · y) ∙ sym (·-nullifiesʳ x) ∙ (λ i → x · ·-nullifiesʳ y (~ i)) ·-assoc (negsuc a ) (negsuc b ) (pos (suc c)) i = (pos (suc (lemma2 a b c i))) ·-assoc (negsuc a ) (pos (suc b)) (negsuc c ) i = (pos (suc (lemma2 a b c i))) ·-assoc (pos (suc a)) (pos (suc b)) (pos (suc c)) i = (pos (suc (lemma2 a b c i))) ·-assoc (pos (suc a)) (negsuc b ) (negsuc c ) i = (pos (suc (lemma2 a b c i))) ·-assoc (negsuc a ) (negsuc b ) (negsuc c ) i = (negsuc (lemma2 a b c i) ) ·-assoc (negsuc a ) (pos (suc b)) (pos (suc c)) i = (negsuc (lemma2 a b c i) ) ·-assoc (pos (suc a)) (negsuc b ) (pos (suc c)) i = (negsuc (lemma2 a b c i) ) ·-assoc (pos (suc a)) (pos (suc b)) (negsuc c ) i = (negsuc (lemma2 a b c i) ) -- this is a similar proof to the one in Cubical.HITs.QuoInt.Properties ·-distribˡ-pos : ∀ o m n → (pos o · m) + (pos o · n) ≡ pos o · (m + n) ·-distribˡ-pos zero m n = (λ i → ·-nullifiesˡ m i + ·-nullifiesˡ n i) ∙ sym (·-nullifiesˡ (m + n)) ·-distribˡ-pos (suc o) m n = pos (suc o) · m + pos (suc o) · n ≡[ i ]⟨ ·-pos-suc o m i + ·-pos-suc o n i ⟩ m + pos o · m + (n + pos o · n) ≡⟨ +-assoc (m + pos o · m) n (pos o · n) ⟩ m + pos o · m + n + pos o · n ≡[ i ]⟨ +-assoc m (pos o · m) n (~ i) + pos o · n ⟩ m + (pos o · m + n) + pos o · n ≡[ i ]⟨ m + +-comm (pos o · m) n i + pos o · n ⟩ m + (n + pos o · m) + pos o · n ≡[ i ]⟨ +-assoc m n (pos o · m) i + pos o · n ⟩ m + n + pos o · m + pos o · n ≡⟨ sym (+-assoc (m + n) (pos o · m) (pos o · n)) ⟩ m + n + (pos o · m + pos o · n) ≡⟨ cong ((m + n) +_) (·-distribˡ-pos o m n) ⟩ m + n + pos o · (m + n) ≡⟨ sym (·-pos-suc o (m + n)) ⟩ pos (suc o) · (m + n) ∎ neg-pos-neg : ∀ x → - pos x ≡ neg x neg-pos-neg zero = refl neg-pos-neg (suc x) = refl ·-distribˡ-neg : ∀ o m n → (neg o · m) + (neg o · n) ≡ neg o · (m + n) ·-distribˡ-neg o m n = neg o · m + neg o · n ≡[ i ]⟨ neg-pos-neg o (~ i) · m + neg-pos-neg o (~ i) · n ⟩ - pos o · m + - pos o · n ≡[ i ]⟨ negate-·ˡ (pos o) m (~ i) + negate-·ˡ (pos o) n (~ i) ⟩ - (pos o · m) + - (pos o · n) ≡⟨ sym (negate-+ (pos o · m) (pos o · n)) ⟩ - (pos o · m + pos o · n) ≡⟨ cong -_ (·-distribˡ-pos o m n) ⟩ - (pos o · (m + n)) ≡⟨ negate-·ˡ (pos o) (m + n) ⟩ - pos o · (m + n) ≡[ i ]⟨ neg-pos-neg o i · (m + n) ⟩ neg o · (m + n) ∎ ·-distribˡ : ∀ o m n → (o · m) + (o · n) ≡ o · (m + n) ·-distribˡ (pos o) m n = ·-distribˡ-pos o m n ·-distribˡ (negsuc o) m n = ·-distribˡ-neg (suc o) m n ·-distribʳ : ∀ m n o → (m · o) + (n · o) ≡ (m + n) · o ·-distribʳ m n o = (λ i → ·-comm m o i + ·-comm n o i) ∙ ·-distribˡ o m n ∙ ·-comm o (m + n) ·-neg1 : ∀ x → -1 · x ≡ - x ·-neg1 x = sym (neg-signed-not (sgn x) (abs x +ⁿ 0)) ∙ (λ i → - signed (sgn x) (ℕ.+-comm (abs x) 0 i)) ∙ cong -_ (signed-inv x) private possuc+negsuc≡0 : ∀ n → (pos (suc n) +negsuc n) ≡ pos 0 possuc+negsuc≡0 zero = refl possuc+negsuc≡0 (suc n) = sym ind ∙ possuc+negsuc≡0 n where ind = pos (suc n) +negsuc n ≡⟨ refl ⟩ predInt (pos (suc (suc n))) +negsuc n ≡⟨ sym $ predInt+negsuc n (pos (suc (suc n))) ⟩ predInt (pos (suc (suc n)) +negsuc n) ∎ sucInt[negsuc+pos]≡0 : ∀ n → sucInt (negsuc n +pos n) ≡ pos 0 sucInt[negsuc+pos]≡0 zero = refl sucInt[negsuc+pos]≡0 (suc n) = let r = sucInt[negsuc+pos]≡0 n in sym ind ∙ r where ind = sucInt ( negsuc n +pos n ) ≡⟨ refl ⟩ sucInt (sucInt (negsuc (suc n)) +pos n ) ≡⟨ (λ i → sucInt $ sucInt+pos n (negsuc (suc n)) (~ i)) ⟩ sucInt (sucInt (negsuc (suc n) +pos n)) ∎ +-inverseʳ : ∀ a → a + (- a) ≡ 0 +-inverseʳ (pos zero ) = refl +-inverseʳ (pos (suc n)) = possuc+negsuc≡0 n +-inverseʳ (negsuc n ) = sucInt[negsuc+pos]≡0 n +-inverseˡ : ∀ a → (- a) + a ≡ 0 +-inverseˡ a = +-comm (- a) a ∙ +-inverseʳ a -- Compose sucPathInt with itself n times. Transporting along this -- will be addition, transporting with it backwards will be subtraction. -- Use this to define _+'_ for which is easier to prove -- isEquiv (λ n → n +' m) since _+'_ is defined by transport sucPathInt : Int ≡ Int sucPathInt = ua (sucInt , isoToIsEquiv (iso sucInt predInt sucPred predSuc)) addEq : ℕ → Int ≡ Int addEq zero = refl addEq (suc n) = (addEq n) ∙ sucPathInt predPathInt : Int ≡ Int predPathInt = ua (predInt , isoToIsEquiv (iso predInt sucInt predSuc sucPred)) subEq : ℕ → Int ≡ Int subEq zero = refl subEq (suc n) = (subEq n) ∙ predPathInt _+'_ : Int → Int → Int m +' pos n = transport (addEq n) m m +' negsuc n = transport (subEq (suc n)) m +'≡+ : _+'_ ≡ _+_ +'≡+ i m (pos zero) = m +'≡+ i m (pos (suc n)) = sucInt (+'≡+ i m (pos n)) +'≡+ i m (negsuc zero) = predInt m +'≡+ i m (negsuc (suc n)) = predInt (+'≡+ i m (negsuc n)) -- -- compPath (λ i → (+'≡+ i (predInt m) (negsuc n))) (sym (predInt+negsuc n m)) i isEquivAddInt' : (m : Int) → isEquiv (λ n → n +' m) isEquivAddInt' (pos n) = isEquivTransport (addEq n) isEquivAddInt' (negsuc n) = isEquivTransport (subEq (suc n)) isEquivAddInt : (m : Int) → isEquiv (λ n → n + m) isEquivAddInt = subst (λ add → (m : Int) → isEquiv (λ n → add n m)) +'≡+ isEquivAddInt' -- below is an alternate proof of isEquivAddInt for comparison -- We also have two useful lemma here. minusPlus : ∀ m n → (n - m) + m ≡ n minusPlus (pos zero) n = refl minusPlus (pos 1) = sucPred minusPlus (pos (suc (suc m))) n = sucInt ((n +negsuc (suc m)) +pos (suc m)) ≡⟨ sucInt+pos (suc m) _ ⟩ sucInt (n +negsuc (suc m)) +pos (suc m) ≡[ i ]⟨ sucPred (n +negsuc m) i +pos (suc m) ⟩ (n - pos (suc m)) +pos (suc m) ≡⟨ minusPlus (pos (suc m)) n ⟩ n ∎ minusPlus (negsuc zero) = predSuc minusPlus (negsuc (suc m)) n = predInt (sucInt (sucInt (n +pos m)) +negsuc m) ≡⟨ predInt+negsuc m _ ⟩ predInt (sucInt (sucInt (n +pos m))) +negsuc m ≡[ i ]⟨ predSuc (sucInt (n +pos m)) i +negsuc m ⟩ sucInt (n +pos m) +negsuc m ≡⟨ minusPlus (negsuc m) n ⟩ n ∎ plusMinus : ∀ m n → (n + m) - m ≡ n plusMinus (pos zero) n = refl plusMinus (pos (suc m)) = minusPlus (negsuc m) plusMinus (negsuc m) = minusPlus (pos (suc m)) private alternateProof : (m : Int) → isEquiv (λ n → n + m) alternateProof m = isoToIsEquiv (iso (λ n → n + m) (λ n → n - m) (minusPlus m) (plusMinus m)) <-irrefl : ∀ a → ¬ (a < a) <-irrefl (pos zero ) = ℕᵒ.<-irrefl 0 <-irrefl (pos (suc n)) = ℕᵒ.<-irrefl (suc n) <-irrefl (negsuc n ) = ℕᵒ.<-irrefl n <-trans : ∀ a b c → a < b → b < c → a < c <-trans (pos a) (pos b) (pos c) a<b b<c = ℕᵒ.<-trans a<b b<c <-trans (negsuc a) (pos b) (pos c) a<b b<c = tt <-trans (negsuc a) (negsuc b) (pos c) a<b b<c = tt <-trans (negsuc a) (negsuc b) (negsuc c) a<b b<c = ℕᵒ.<-trans b<c a<b <-asym : ∀ a b → a < b → ¬(b < a) <-asym a b p q = <-irrefl _ (<-trans _ _ _ p q) private swap-∥⊎∥ : ∀{ℓ ℓ'} (a : Type ℓ) (b : Type ℓ') → ∥ a ⊎ b ∥ → ∥ b ⊎ a ∥ swap-∥⊎∥ a b = PropTrunc.elim (λ _ → propTruncIsProp) λ{ (inl p) → ∣ inr p ∣ ; (inr p) → ∣ inl p ∣ } <-cotrans : ∀ a b x → a < b → ∥ (a < x) ⊎ (x < b) ∥ <-cotrans (pos a) (pos b) (pos x) a<b = ℕᵒ.<-cotrans _ _ x a<b <-cotrans (pos a) (pos b) (negsuc x) a<b = ∣ inr tt ∣ <-cotrans (negsuc a) (pos b) (pos x) a<b = ∣ inl tt ∣ <-cotrans (negsuc a) (pos b) (negsuc x) a<b = ∣ inr tt ∣ <-cotrans (negsuc a) (negsuc b) (pos x) a<b = ∣ inl tt ∣ <-cotrans (negsuc a) (negsuc b) (negsuc x) a<b = swap-∥⊎∥ _ _ (ℕᵒ.<-cotrans _ _ x a<b) data Trichotomy (m n : Int) : Type₀ where lt : m < n → Trichotomy m n eq : m ≡ n → Trichotomy m n gt : n < m → Trichotomy m n _≟_ : ∀ m n → Trichotomy m n pos a ≟ pos b with a ℕᵒ.≟ b ... | ℕᵒ.lt p = lt p ... | ℕᵒ.eq p = eq λ i → pos (p i) ... | ℕᵒ.gt p = gt p pos a ≟ negsuc b = gt tt negsuc a ≟ pos b = lt tt negsuc a ≟ negsuc b with a ℕᵒ.≟ b ... | ℕᵒ.lt p = gt p ... | ℕᵒ.eq p = eq λ i → negsuc (p i) ... | ℕᵒ.gt p = lt p sucInt-reflects-< : ∀ x y → sucInt x < sucInt y → x < y sucInt-reflects-< (pos x ) (pos y ) p = ℕᵒ.suc-reflects-< x y p sucInt-reflects-< (pos x ) (negsuc zero ) p = ℕᵒ.¬-<-zero p sucInt-reflects-< (negsuc x ) (pos y ) p = tt sucInt-reflects-< (negsuc zero ) (negsuc zero ) p = p sucInt-reflects-< (negsuc (suc x)) (negsuc zero ) p = ℕᵒ.zero-<-suc x sucInt-reflects-< (negsuc (suc x)) (negsuc (suc y)) p = ℕᵒ.suc-preserves-< y x p predInt-reflects-< : ∀ x y → predInt x < predInt y → x < y predInt-reflects-< (pos zero ) (pos zero ) p = p predInt-reflects-< (pos zero ) (pos (suc y)) p = ℕᵒ.zero-<-suc y predInt-reflects-< (pos (suc x)) (pos (suc y)) p = ℕᵒ.suc-preserves-< x y p predInt-reflects-< (pos zero ) (negsuc y ) p = ℕᵒ.¬-<-zero p predInt-reflects-< (negsuc x ) (pos y ) p = tt predInt-reflects-< (negsuc x ) (negsuc y ) p = ℕᵒ.suc-reflects-< y x p sucInt-preserves-< : ∀ x y → x < y → sucInt x < sucInt y sucInt-preserves-< (pos x ) (pos y ) p = ℕᵒ.suc-preserves-< x y p sucInt-preserves-< (negsuc zero ) (pos y ) p = ℕᵒ.zero-<-suc y sucInt-preserves-< (negsuc (suc x)) (pos y ) p = tt sucInt-preserves-< (negsuc zero ) (negsuc zero ) p = p sucInt-preserves-< (negsuc zero ) (negsuc (suc y)) p = ℕᵒ.¬-<-zero p sucInt-preserves-< (negsuc (suc x)) (negsuc zero ) p = tt sucInt-preserves-< (negsuc (suc x)) (negsuc (suc y)) p = ℕᵒ.suc-reflects-< y x p predInt-preserves-< : ∀ x y → x < y → predInt x < predInt y predInt-preserves-< (pos zero ) (pos zero ) p = p predInt-preserves-< (pos zero ) (pos (suc y)) p = tt predInt-preserves-< (pos (suc x)) (pos zero ) p = ℕᵒ.¬-<-zero p predInt-preserves-< (pos (suc x)) (pos (suc y)) p = ℕᵒ.suc-reflects-< x y p predInt-preserves-< (negsuc x ) (pos zero ) p = ℕᵒ.zero-<-suc x predInt-preserves-< (negsuc x ) (pos (suc y)) p = tt predInt-preserves-< (negsuc x ) (negsuc y ) p = ℕᵒ.suc-preserves-< y x p +-preserves-<ʳ : ∀ a b x → a < b → (a + x) < (b + x) +-preserves-<ʳ a b (pos zero ) a<b = a<b +-preserves-<ʳ a b (pos (suc n)) a<b = sucInt-preserves-< (a +pos n) (b +pos n) (+-preserves-<ʳ a b (pos n) a<b) +-preserves-<ʳ a b (negsuc zero ) a<b = predInt-preserves-< a b a<b +-preserves-<ʳ a b (negsuc (suc n)) a<b = predInt-preserves-< (a +negsuc n) (b +negsuc n) (+-preserves-<ʳ a b (negsuc n) a<b) +-reflects-<ʳ : ∀ a b x → (a + x) < (b + x) → a < b +-reflects-<ʳ a b x = a + x < b + x →⟨ +-preserves-<ʳ (a + x) (b + x) (- x) ⟩ a + x - x < b + x - x →⟨ transp (λ i → +-assoc a x (- x) (~ i) < +-assoc b x (- x) (~ i)) i0 ⟩ a + (x - x) < b + (x - x) →⟨ transp (λ i → (a + +-inverseʳ x i) < (b + +-inverseʳ x i)) i0 ⟩ a + 0 < b + 0 →⟨⟩ a < b ◼ +-reflects-<ˡ : ∀ a b x → (x + a) < (x + b) → a < b +-reflects-<ˡ a b x p = +-reflects-<ʳ a b x (transport (λ i → +-comm x a i < +-comm x b i) p) +-<-extensional : ∀ w x y z → (w + x) < (y + z) → ∥ (w < y) ⊎ (x < z) ∥ +-<-extensional w x y z r with w ≟ y | x ≟ z ... | lt w<y | q = ∣ inl w<y ∣ ... | eq w≡y | q = ∣ inr $ +-reflects-<ˡ x z y (transport (λ i → (w≡y i + x) < (y + z)) r) ∣ ... | gt y<w | q = PropTrunc.elim (λ _ → propTruncIsProp) γ (<-cotrans (w + x) (y + z) (y + x) r) where γ : _ ⊎ _ → _ γ (inl p) = ∣ inr (⊥.elim {A = λ _ → x < z} (<-asym y w y<w (+-reflects-<ʳ w y x p))) ∣ γ (inr p) = ∣ inr (+-reflects-<ˡ x z y p) ∣
41.238976
196
0.522921
3914361e87d13bd7aa5e1f021ac1d752e92f4007
7,242
agda
Agda
StructurallyRecursiveDescentParsing/Simplified/Semantics.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
7
2016-12-13T05:23:14.000Z
2021-06-22T05:35:31.000Z
StructurallyRecursiveDescentParsing/Simplified/Semantics.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
1
2018-01-22T22:21:41.000Z
2018-01-24T16:39:37.000Z
StructurallyRecursiveDescentParsing/Simplified/Semantics.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Semantics of the simplified parsers ------------------------------------------------------------------------ module StructurallyRecursiveDescentParsing.Simplified.Semantics where open import Algebra open import Coinduction open import Data.Bool open import Data.List import Data.List.Properties private module LM {Tok : Set} = Monoid (Data.List.Properties.++-monoid Tok) open import Data.Product as Prod open import Function open import Data.Empty open import Relation.Binary.PropositionalEquality as P using (_≡_) open import StructurallyRecursiveDescentParsing.Simplified open import TotalParserCombinators.Parser using (○; ◌) open import TotalParserCombinators.Semantics as Semantics using ([_-_]_>>=_) renaming (_∈_·_ to _∈′_·_) open Semantics._∈_·_ ------------------------------------------------------------------------ -- Semantics -- The semantics of the parsers. x ∈ p · s means that x can be the -- result of applying the parser p to the string s. Note that the -- semantics is defined inductively. infixl 10 _?>>=_ _!>>=_ infix 4 _∈_·_ data _∈_·_ {Tok} : ∀ {R e} → R → Parser Tok e R → List Tok → Set1 where return : ∀ {R} {x : R} → x ∈ return x · [] token : ∀ {x} → x ∈ token · [ x ] ∣ˡ : ∀ {R x e₁ e₂ s} {p₁ : Parser Tok e₁ R} {p₂ : Parser Tok e₂ R} (x∈p₁ : x ∈ p₁ · s) → x ∈ p₁ ∣ p₂ · s ∣ʳ : ∀ {R x e₂ s} e₁ {p₁ : Parser Tok e₁ R} {p₂ : Parser Tok e₂ R} (x∈p₂ : x ∈ p₂ · s) → x ∈ p₁ ∣ p₂ · s _?>>=_ : ∀ {R₁ R₂ x y e₂ s₁ s₂} {p₁ : Parser Tok true R₁} {p₂ : R₁ → Parser Tok e₂ R₂} (x∈p₁ : x ∈ p₁ · s₁) (y∈p₂x : y ∈ p₂ x · s₂) → y ∈ p₁ ?>>= p₂ · s₁ ++ s₂ _!>>=_ : ∀ {R₁ R₂ x y} {e₂ : R₁ → Bool} {s₁ s₂} {p₁ : Parser Tok false R₁} {p₂ : (x : R₁) → ∞ (Parser Tok (e₂ x) R₂)} (x∈p₁ : x ∈ p₁ · s₁) (y∈p₂x : y ∈ ♭ (p₂ x) · s₂) → y ∈ p₁ !>>= p₂ · s₁ ++ s₂ ------------------------------------------------------------------------ -- _∈_·_ is correct with respect to _∈′_·_ sound : ∀ {Tok e R} {p : Parser Tok e R} {x s} → x ∈ p · s → x ∈′ ⟦ p ⟧ · s sound return = return sound token = token sound (∣ˡ x∈p₁) = cast (∣-left (sound x∈p₁)) sound (∣ʳ _ {p₁} x∈p₂) = cast (∣-right (initial p₁) (sound x∈p₂)) sound (_?>>=_ {p₂ = p₂} x∈p₁ y∈p₂x) = cast ([_-_]_>>=_ ○ ○ {p₂ = λ x → ⟦ p₂ x ⟧} (sound x∈p₁) (sound y∈p₂x)) sound (x∈p₁ !>>= y∈p₂x) = [ ○ - ◌ ] sound x∈p₁ >>= sound y∈p₂x complete : ∀ {Tok e R} (p : Parser Tok e R) {x s} → x ∈′ ⟦ p ⟧ · s → x ∈ p · s complete (return x) return = return complete fail () complete token token = token complete (p₁ ∣ p₂) (cast (∣-left x∈p₁)) = ∣ˡ (complete p₁ x∈p₁) complete (_∣_ {e₁} p₁ p₂) (cast (∣-right ._ x∈p₂)) = ∣ʳ e₁ (complete p₂ x∈p₂) complete (p₁ ?>>= p₂) (cast (x∈p₁ >>= y∈p₂x)) = complete p₁ x∈p₁ ?>>= complete (p₂ _) y∈p₂x complete (p₁ !>>= p₂) (x∈p₁ >>= y∈p₂x) = complete p₁ x∈p₁ !>>= complete (♭ (p₂ _)) y∈p₂x ------------------------------------------------------------------------ -- A lemma -- A simple cast lemma. cast∈ : ∀ {Tok e R} {p p′ : Parser Tok e R} {x x′ s s′} → x ≡ x′ → p ≡ p′ → s ≡ s′ → x ∈ p · s → x′ ∈ p′ · s′ cast∈ P.refl P.refl P.refl x∈ = x∈ ------------------------------------------------------------------------ -- A variant of the semantics -- The statement x ⊕ s₂ ∈ p · s means that there is some s₁ such that -- s ≡ s₁ ++ s₂ and x ∈ p · s₁. This variant of the semantics is -- perhaps harder to understand, but sometimes easier to work with -- (and it is proved equivalent to the semantics above). infix 4 _⊕_∈_·_ data _⊕_∈_·_ {Tok} : ∀ {R e} → R → List Tok → Parser Tok e R → List Tok → Set1 where return : ∀ {R} {x : R} {s} → x ⊕ s ∈ return x · s token : ∀ {x s} → x ⊕ s ∈ token · x ∷ s ∣ˡ : ∀ {R x e₁ e₂ s s₁} {p₁ : Parser Tok e₁ R} {p₂ : Parser Tok e₂ R} (x∈p₁ : x ⊕ s₁ ∈ p₁ · s) → x ⊕ s₁ ∈ p₁ ∣ p₂ · s ∣ʳ : ∀ {R x e₂ s s₁} e₁ {p₁ : Parser Tok e₁ R} {p₂ : Parser Tok e₂ R} (x∈p₂ : x ⊕ s₁ ∈ p₂ · s) → x ⊕ s₁ ∈ p₁ ∣ p₂ · s _?>>=_ : ∀ {R₁ R₂ x y e₂ s s₁ s₂} {p₁ : Parser Tok true R₁} {p₂ : R₁ → Parser Tok e₂ R₂} (x∈p₁ : x ⊕ s₁ ∈ p₁ · s) (y∈p₂x : y ⊕ s₂ ∈ p₂ x · s₁) → y ⊕ s₂ ∈ p₁ ?>>= p₂ · s _!>>=_ : ∀ {R₁ R₂ x y} {e₂ : R₁ → Bool} {s s₁ s₂} {p₁ : Parser Tok false R₁} {p₂ : (x : R₁) → ∞ (Parser Tok (e₂ x) R₂)} (x∈p₁ : x ⊕ s₁ ∈ p₁ · s) (y∈p₂x : y ⊕ s₂ ∈ ♭ (p₂ x) · s₁) → y ⊕ s₂ ∈ p₁ !>>= p₂ · s -- The definition is sound and complete with respect to the one above. ⊕-sound′ : ∀ {Tok R e x s₂ s} {p : Parser Tok e R} → x ⊕ s₂ ∈ p · s → ∃ λ s₁ → (s ≡ s₁ ++ s₂) × (x ∈ p · s₁) ⊕-sound′ return = ([] , P.refl , return) ⊕-sound′ {x = x} token = ([ x ] , P.refl , token) ⊕-sound′ (∣ˡ x∈p₁) with ⊕-sound′ x∈p₁ ⊕-sound′ (∣ˡ x∈p₁) | (s₁ , P.refl , x∈p₁′) = (s₁ , P.refl , ∣ˡ x∈p₁′) ⊕-sound′ (∣ʳ e₁ x∈p₁) with ⊕-sound′ x∈p₁ ⊕-sound′ (∣ʳ e₁ x∈p₁) | (s₁ , P.refl , x∈p₁′) = (s₁ , P.refl , ∣ʳ e₁ x∈p₁′) ⊕-sound′ (x∈p₁ ?>>= y∈p₂x) with ⊕-sound′ x∈p₁ | ⊕-sound′ y∈p₂x ⊕-sound′ (x∈p₁ ?>>= y∈p₂x) | (s₁ , P.refl , x∈p₁′) | (s₂ , P.refl , y∈p₂x′) = (s₁ ++ s₂ , P.sym (LM.assoc s₁ s₂ _) , x∈p₁′ ?>>= y∈p₂x′) ⊕-sound′ (x∈p₁ !>>= y∈p₂x) with ⊕-sound′ x∈p₁ | ⊕-sound′ y∈p₂x ⊕-sound′ (x∈p₁ !>>= y∈p₂x) | (s₁ , P.refl , x∈p₁′) | (s₂ , P.refl , y∈p₂x′) = (s₁ ++ s₂ , P.sym (LM.assoc s₁ s₂ _) , x∈p₁′ !>>= y∈p₂x′) ⊕-sound : ∀ {Tok R e x s} {p : Parser Tok e R} → x ⊕ [] ∈ p · s → x ∈ p · s ⊕-sound x∈p with ⊕-sound′ x∈p ⊕-sound x∈p | (s , P.refl , x∈p′) with s ++ [] | proj₂ LM.identity s ⊕-sound x∈p | (s , P.refl , x∈p′) | .s | P.refl = x∈p′ extend : ∀ {Tok R e x s s′ s″} {p : Parser Tok e R} → x ⊕ s′ ∈ p · s → x ⊕ s′ ++ s″ ∈ p · s ++ s″ extend return = return extend token = token extend (∣ˡ x∈p₁) = ∣ˡ (extend x∈p₁) extend (∣ʳ e₁ x∈p₂) = ∣ʳ e₁ (extend x∈p₂) extend (x∈p₁ ?>>= y∈p₂x) = extend x∈p₁ ?>>= extend y∈p₂x extend (x∈p₁ !>>= y∈p₂x) = extend x∈p₁ !>>= extend y∈p₂x ⊕-complete : ∀ {Tok R e x s} {p : Parser Tok e R} → x ∈ p · s → x ⊕ [] ∈ p · s ⊕-complete return = return ⊕-complete token = token ⊕-complete (∣ˡ x∈p₁) = ∣ˡ (⊕-complete x∈p₁) ⊕-complete (∣ʳ e₁ x∈p₂) = ∣ʳ e₁ (⊕-complete x∈p₂) ⊕-complete (x∈p₁ ?>>= y∈p₂x) = extend (⊕-complete x∈p₁) ?>>= ⊕-complete y∈p₂x ⊕-complete (x∈p₁ !>>= y∈p₂x) = extend (⊕-complete x∈p₁) !>>= ⊕-complete y∈p₂x ⊕-complete′ : ∀ {Tok R e x s₂ s} {p : Parser Tok e R} → (∃ λ s₁ → s ≡ s₁ ++ s₂ × x ∈ p · s₁) → x ⊕ s₂ ∈ p · s ⊕-complete′ (s₁ , P.refl , x∈p) = extend (⊕-complete x∈p)
44.158537
100
0.443386
18bcf3edd1216e277401e7a87d224ba333d98f8d
14,744
agda
Agda
Cubical/Algebra/CommRing/Ideal.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/Algebra/CommRing/Ideal.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Ideal.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{- This is mostly for convenience, when working with ideals (which are defined for general rings) in a commutative ring. -} {-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.Ideal where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Powerset renaming ( _∈_ to _∈p_ ; _⊆_ to _⊆p_ ; subst-∈ to subst-∈p ) open import Cubical.Functions.Logic open import Cubical.Data.Nat using (ℕ ; zero ; suc ; tt) renaming ( --zero to ℕzero ; suc to ℕsuc _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; +-assoc to +ℕ-assoc ; +-comm to +ℕ-comm ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm) open import Cubical.Data.FinData hiding (rec ; elim) open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation open import Cubical.Algebra.CommRing open import Cubical.Algebra.Ring open import Cubical.Algebra.Ring.Ideal renaming (IdealsIn to IdealsInRing) open import Cubical.Algebra.Ring.BigOps open import Cubical.Algebra.RingSolver.Reflection private variable ℓ : Level IdealsIn : (R : CommRing ℓ) → Type _ IdealsIn R = IdealsInRing (CommRing→Ring R) module _ (Ring@(R , str) : CommRing ℓ) where open CommRingStr str makeIdeal : (I : R → hProp ℓ) → (+-closed : {x y : R} → x ∈p I → y ∈p I → (x + y) ∈p I) → (0r-closed : 0r ∈p I) → (·-closedLeft : {x : R} → (r : R) → x ∈p I → r · x ∈p I) → IdealsIn (R , str) makeIdeal I +-closed 0r-closed ·-closedLeft = I , (record { +-closed = +-closed ; -closed = λ x∈pI → subst-∈p I (useSolver _) (·-closedLeft (- 1r) x∈pI) ; 0r-closed = 0r-closed ; ·-closedLeft = ·-closedLeft ; ·-closedRight = λ r x∈pI → subst-∈p I (·Comm r _) (·-closedLeft r x∈pI) }) where useSolver : (x : R) → - 1r · x ≡ - x useSolver = solve Ring -- better? module CommIdeal (R' : CommRing ℓ) where private R = fst R' open CommRingStr (snd R') open Sum (CommRing→Ring R') open CommRingTheory R' open RingTheory (CommRing→Ring R') record isCommIdeal (I : ℙ R) : Type ℓ where constructor makeIsCommIdeal field +Closed : ∀ {x y : R} → x ∈p I → y ∈p I → (x + y) ∈p I contains0 : 0r ∈p I ·Closed : ∀ {x : R} (r : R) → x ∈p I → r · x ∈p I ·RClosed : ∀ {x : R} (r : R) → x ∈p I → x · r ∈p I ·RClosed r x∈pI = subst-∈p I (·Comm _ _) (·Closed r x∈pI) open isCommIdeal isPropIsCommIdeal : (I : ℙ R) → isProp (isCommIdeal I) +Closed (isPropIsCommIdeal I ici₁ ici₂ i) x∈pI y∈pI = I _ .snd (ici₁ .+Closed x∈pI y∈pI) (ici₂ .+Closed x∈pI y∈pI) i contains0 (isPropIsCommIdeal I ici₁ ici₂ i) = I 0r .snd (ici₁ .contains0) (ici₂ .contains0) i ·Closed (isPropIsCommIdeal I ici₁ ici₂ i) r x∈pI = I _ .snd (ici₁ .·Closed r x∈pI) (ici₂ .·Closed r x∈pI) i CommIdeal : Type (ℓ-suc ℓ) CommIdeal = Σ[ I ∈ ℙ R ] isCommIdeal I isSetCommIdeal : isSet CommIdeal isSetCommIdeal = isSetΣSndProp isSetℙ isPropIsCommIdeal --inclusion and containment of ideals _⊆_ : CommIdeal → CommIdeal → Type ℓ I ⊆ J = I .fst ⊆p J .fst infix 5 _∈_ _∈_ : R → CommIdeal → Type ℓ x ∈ I = x ∈p I .fst subst-∈ : (I : CommIdeal) {x y : R} → x ≡ y → x ∈ I → y ∈ I subst-∈ I = subst-∈p (I .fst) CommIdeal≡Char : {I J : CommIdeal} → I ⊆ J → J ⊆ I → I ≡ J CommIdeal≡Char I⊆J J⊆I = Σ≡Prop isPropIsCommIdeal (⊆-extensionality _ _ (I⊆J , J⊆I)) ∑Closed : (I : CommIdeal) {n : ℕ} (V : FinVec R n) → (∀ i → V i ∈ I) → ∑ V ∈ I ∑Closed I {n = zero} _ _ = I .snd .contains0 ∑Closed I {n = suc n} V h = I .snd .+Closed (h zero) (∑Closed I (V ∘ suc) (h ∘ suc)) 0Ideal : CommIdeal fst 0Ideal x = (x ≡ 0r) , is-set _ _ +Closed (snd 0Ideal) x≡0 y≡0 = cong₂ (_+_) x≡0 y≡0 ∙ +Rid _ contains0 (snd 0Ideal) = refl ·Closed (snd 0Ideal) r x≡0 = cong (r ·_) x≡0 ∙ 0RightAnnihilates _ 1Ideal : CommIdeal fst 1Ideal x = ⊤ +Closed (snd 1Ideal) _ _ = lift tt contains0 (snd 1Ideal) = lift tt ·Closed (snd 1Ideal) _ _ = lift tt contains1Is1 : (I : CommIdeal) → 1r ∈ I → I ≡ 1Ideal contains1Is1 I 1∈I = CommIdeal≡Char (λ _ _ → lift tt) λ x _ → subst-∈ I (·Rid _) (I .snd .·Closed x 1∈I) -- x≡x·1 ∈ I _+i_ : CommIdeal → CommIdeal → CommIdeal fst (I +i J) x = (∃[ (y , z) ∈ (R × R) ] ((y ∈ I) × (z ∈ J) × (x ≡ y + z))) --have a record for this? , isPropPropTrunc +Closed (snd (I +i J)) {x = x₁} {y = x₂} = map2 +ClosedΣ where +ClosedΣ : Σ[ (y₁ , z₁) ∈ (R × R) ] ((y₁ ∈ I) × (z₁ ∈ J) × (x₁ ≡ y₁ + z₁)) → Σ[ (y₂ , z₂) ∈ (R × R) ] ((y₂ ∈ I) × (z₂ ∈ J) × (x₂ ≡ y₂ + z₂)) → Σ[ (y₃ , z₃) ∈ (R × R) ] ((y₃ ∈ I) × (z₃ ∈ J) × (x₁ + x₂ ≡ y₃ + z₃)) +ClosedΣ ((y₁ , z₁) , y₁∈I , z₁∈J , x₁≡y₁+z₁) ((y₂ , z₂) , y₂∈I , z₂∈J , x₂≡y₂+z₂) = (y₁ + y₂ , z₁ + z₂) , +Closed (snd I) y₁∈I y₂∈I , +Closed (snd J) z₁∈J z₂∈J , cong₂ (_+_) x₁≡y₁+z₁ x₂≡y₂+z₂ ∙ +ShufflePairs _ _ _ _ contains0 (snd (I +i J)) = ∣ (0r , 0r) , contains0 (snd I) , contains0 (snd J) , sym (+Rid _) ∣ ·Closed (snd (I +i J)) {x = x} r = map ·ClosedΣ where ·ClosedΣ : Σ[ (y₁ , z₁) ∈ (R × R) ] ((y₁ ∈ I) × (z₁ ∈ J) × (x ≡ y₁ + z₁)) → Σ[ (y₂ , z₂) ∈ (R × R) ] ((y₂ ∈ I) × (z₂ ∈ J) × (r · x ≡ y₂ + z₂)) ·ClosedΣ ((y₁ , z₁) , y₁∈I , z₁∈J , x≡y₁+z₁) = (r · y₁ , r · z₁) , ·Closed (snd I) r y₁∈I , ·Closed (snd J) r z₁∈J , cong (r ·_) x≡y₁+z₁ ∙ ·Rdist+ _ _ _ infixl 6 _+i_ +iComm⊆ : ∀ (I J : CommIdeal) → (I +i J) ⊆ (J +i I) +iComm⊆ I J x = map λ ((y , z) , y∈I , z∈J , x≡y+z) → (z , y) , z∈J , y∈I , x≡y+z ∙ +Comm _ _ +iComm : ∀ (I J : CommIdeal) → I +i J ≡ J +i I +iComm I J = CommIdeal≡Char (+iComm⊆ I J) (+iComm⊆ J I) +iLidLIncl : ∀ (I : CommIdeal) → (0Ideal +i I) ⊆ I +iLidLIncl I x = rec (I .fst x .snd) λ ((y , z) , y≡0 , z∈I , x≡y+z) → subst-∈ I (sym (x≡y+z ∙∙ cong (_+ z) y≡0 ∙∙ +Lid z)) z∈I +iLidRIncl : ∀ (I : CommIdeal) → I ⊆ (0Ideal +i I) +iLidRIncl I x x∈I = ∣ (0r , x) , refl , x∈I , sym (+Lid _) ∣ +iLid : ∀ (I : CommIdeal) → 0Ideal +i I ≡ I +iLid I = CommIdeal≡Char (+iLidLIncl I) (+iLidRIncl I) +iLincl : ∀ (I J : CommIdeal) → I ⊆ (I +i J) +iLincl I J x x∈I = ∣ (x , 0r) , x∈I , J .snd .contains0 , sym (+Rid x) ∣ +iRincl : ∀ (I J : CommIdeal) → J ⊆ (I +i J) +iRincl I J x x∈J = ∣ (0r , x) , I .snd .contains0 , x∈J , sym (+Lid x) ∣ +iRespLincl : ∀ (I J K : CommIdeal) → I ⊆ J → (I +i K) ⊆ (J +i K) +iRespLincl I J K I⊆J x = map λ ((y , z) , y∈I , z∈K , x≡y+z) → ((y , z) , I⊆J y y∈I , z∈K , x≡y+z) +iAssocLIncl : ∀ (I J K : CommIdeal) → (I +i (J +i K)) ⊆ ((I +i J) +i K) +iAssocLIncl I J K x = elim (λ _ → ((I +i J) +i K) .fst x .snd) (uncurry3 λ (y , z) y∈I → elim (λ _ → isPropΠ λ _ → ((I +i J) +i K) .fst x .snd) λ ((u , v) , u∈J , v∈K , z≡u+v) x≡y+z → ∣ (y + u , v) , ∣ _ , y∈I , u∈J , refl ∣ , v∈K , x≡y+z ∙∙ cong (y +_) z≡u+v ∙∙ +Assoc _ _ _ ∣) +iAssocRIncl : ∀ (I J K : CommIdeal) → ((I +i J) +i K) ⊆ (I +i (J +i K)) +iAssocRIncl I J K x = elim (λ _ → (I +i (J +i K)) .fst x .snd) (uncurry3 λ (y , z) → elim (λ _ → isPropΠ2 λ _ _ → (I +i (J +i K)) .fst x .snd) λ ((u , v) , u∈I , v∈J , y≡u+v) z∈K x≡y+z → ∣ (u , v + z) , u∈I , ∣ _ , v∈J , z∈K , refl ∣ , x≡y+z ∙∙ cong (_+ z) y≡u+v ∙∙ sym (+Assoc _ _ _) ∣) +iAssoc : ∀ (I J K : CommIdeal) → I +i (J +i K) ≡ (I +i J) +i K +iAssoc I J K = CommIdeal≡Char (+iAssocLIncl I J K) (+iAssocRIncl I J K) +iIdemLIncl : ∀ (I : CommIdeal) → (I +i I) ⊆ I +iIdemLIncl I x = rec (I .fst x .snd) λ ((y , z) , y∈I , z∈I , x≡y+z) → subst-∈ I (sym x≡y+z) (I .snd .+Closed y∈I z∈I) +iIdemRIncl : ∀ (I : CommIdeal) → I ⊆ (I +i I) +iIdemRIncl I x x∈I = ∣ (0r , x) , I .snd .contains0 , x∈I , sym (+Lid _) ∣ +iIdem : ∀ (I : CommIdeal) → I +i I ≡ I +iIdem I = CommIdeal≡Char (+iIdemLIncl I) (+iIdemRIncl I) -- where to put this? mul++dist : ∀ {n m : ℕ} (α U : FinVec R n) (β V : FinVec R m) (j : Fin (n +ℕ m)) → ((λ i → α i · U i) ++Fin (λ i → β i · V i)) j ≡ (α ++Fin β) j · (U ++Fin V) j mul++dist {n = zero} α U β V j = refl mul++dist {n = suc n} α U β V zero = refl mul++dist {n = suc n} α U β V (suc j) = mul++dist (α ∘ suc) (U ∘ suc) β V j -- define multiplication of ideals _·i_ : CommIdeal → CommIdeal → CommIdeal fst (I ·i J) x = (∃[ n ∈ ℕ ] Σ[ (α , β) ∈ (FinVec R n × FinVec R n) ] (∀ i → α i ∈ I) × (∀ i → β i ∈ J) × (x ≡ ∑ λ i → α i · β i)) , isPropPropTrunc +Closed (snd (I ·i J)) = map2 λ (n , (α , β) , ∀αi∈I , ∀βi∈J , x≡∑αβ) (m , (γ , δ) , ∀γi∈I , ∀δi∈J , y≡∑γδ) → n +ℕ m , (α ++Fin γ , β ++Fin δ) , ++FinPres∈ (I .fst) ∀αi∈I ∀γi∈I , ++FinPres∈ (J .fst) ∀βi∈J ∀δi∈J , cong₂ (_+_) x≡∑αβ y≡∑γδ ∙∙ sym (∑Split++ (λ i → α i · β i) (λ i → γ i · δ i)) ∙∙ ∑Ext (mul++dist α β γ δ) contains0 (snd (I ·i J)) = ∣ 0 , ((λ ()) , (λ ())) , (λ ()) , (λ ()) , refl ∣ ·Closed (snd (I ·i J)) r = map λ (n , (α , β) , ∀αi∈I , ∀βi∈J , x≡∑αβ) → n , ((λ i → r · α i) , β) , (λ i → I .snd .·Closed r (∀αi∈I i)) , ∀βi∈J , cong (r ·_) x≡∑αβ ∙ ∑Mulrdist r (λ i → α i · β i) ∙ ∑Ext λ i → ·Assoc r (α i) (β i) infixl 7 _·i_ prodInProd : ∀ (I J : CommIdeal) (x y : R) → x ∈ I → y ∈ J → (x · y) ∈ (I ·i J) prodInProd _ _ x y x∈I y∈J = ∣ 1 , ((λ _ → x) , λ _ → y) , (λ _ → x∈I) , (λ _ → y∈J) , sym (+Rid _) ∣ ·iLincl : ∀ (I J : CommIdeal) → (I ·i J) ⊆ I ·iLincl I J x = elim (λ _ → I .fst x .snd) λ (_ , (α , β) , α∈I , _ , x≡∑αβ) → subst-∈ I (sym x≡∑αβ) (∑Closed I (λ i → α i · β i) λ i → ·RClosed (I .snd) _ (α∈I i)) ·iComm⊆ : ∀ (I J : CommIdeal) → (I ·i J) ⊆ (J ·i I) ·iComm⊆ I J x = map λ (n , (α , β) , ∀αi∈I , ∀βi∈J , x≡∑αβ) → (n , (β , α) , ∀βi∈J , ∀αi∈I , x≡∑αβ ∙ ∑Ext (λ i → ·Comm (α i) (β i))) ·iComm : ∀ (I J : CommIdeal) → I ·i J ≡ J ·i I ·iComm I J = CommIdeal≡Char (·iComm⊆ I J) (·iComm⊆ J I) I⊆I1 : ∀ (I : CommIdeal) → I ⊆ (I ·i 1Ideal) I⊆I1 I x x∈I = ∣ 1 , ((λ _ → x) , λ _ → 1r) , (λ _ → x∈I) , (λ _ → lift tt) , useSolver x ∣ where useSolver : ∀ x → x ≡ x · 1r + 0r useSolver = solve R' ·iRid : ∀ (I : CommIdeal) → I ·i 1Ideal ≡ I ·iRid I = CommIdeal≡Char (·iLincl I 1Ideal) (I⊆I1 I) -- a useful corollary ·iRContains1id : ∀ (I J : CommIdeal) → 1r ∈ J → I ·i J ≡ I ·iRContains1id I J 1∈J = cong (I ·i_) (contains1Is1 J 1∈J) ∙ ·iRid I ·iAssocLIncl : ∀ (I J K : CommIdeal) → (I ·i (J ·i K)) ⊆ ((I ·i J) ·i K) ·iAssocLIncl I J K x = rec isPropPropTrunc λ (_ , (α , β) , α∈I , β∈JK , x≡∑αβ) → subst-∈ ((I ·i J) ·i K) (sym x≡∑αβ) (∑Closed ((I ·i J) ·i K) (λ i → α i · β i) λ i → rec isPropPropTrunc (λ (_ , (γ , δ) , γ∈J , δ∈K , βi≡∑γδ) → subst-∈ ((I ·i J) ·i K) -- each αᵢβᵢ ≡...≡ ∑αᵢγⱼδⱼ ∈IJK (sym (cong (α i ·_) βi≡∑γδ ∙∙ ∑Mulrdist (α i) (λ j → γ j · δ j) ∙∙ ∑Ext (λ j → ·Assoc (α i) (γ j) (δ j)))) (∑Closed ((I ·i J) ·i K) (λ j → α i · γ j · δ j) -- each αᵢγⱼδⱼ∈IJK λ j → prodInProd (I ·i J) K _ _ (prodInProd I J _ _ (α∈I i) (γ∈J j)) (δ∈K j))) (β∈JK i)) ·iAssocRIncl : ∀ (I J K : CommIdeal) → ((I ·i J) ·i K) ⊆ (I ·i (J ·i K)) ·iAssocRIncl I J K x = rec isPropPropTrunc λ (_ , (α , β) , α∈IJ , β∈K , x≡∑αβ) → subst-∈ (I ·i (J ·i K)) (sym x≡∑αβ) (∑Closed (I ·i (J ·i K)) (λ i → α i · β i) λ i → rec isPropPropTrunc (λ (_ , (γ , δ) , γ∈I , δ∈J , αi≡∑γδ) → subst-∈ (I ·i (J ·i K)) (sym (cong (_· β i) αi≡∑γδ ∙∙ ∑Mulldist (β i) (λ j → γ j · δ j) ∙∙ ∑Ext (λ j → sym (·Assoc (γ j) (δ j) (β i))))) (∑Closed (I ·i (J ·i K)) (λ j → γ j · (δ j · β i)) λ j → prodInProd I (J ·i K) _ _ (γ∈I j) (prodInProd J K _ _ (δ∈J j) (β∈K i)))) (α∈IJ i)) ·iAssoc : ∀ (I J K : CommIdeal) → I ·i (J ·i K) ≡ (I ·i J) ·i K ·iAssoc I J K = CommIdeal≡Char (·iAssocLIncl I J K) (·iAssocRIncl I J K) ·iRdist+iLIncl : ∀ (I J K : CommIdeal) → (I ·i (J +i K)) ⊆ (I ·i J +i I ·i K) ·iRdist+iLIncl I J K x = rec isPropPropTrunc λ (n , (α , β) , α∈I , β∈J+K , x≡∑αβ) → subst-∈ ((I ·i J) +i (I ·i K)) (sym x≡∑αβ) (∑Closed ((I ·i J) +i (I ·i K)) (λ i → α i · β i) -- each αi·βi ∈ IJ+IK λ i → rec isPropPropTrunc (λ ((γi , δi) , γi∈J , δi∈K , βi≡γi+δi) → ∣ (α i · γi , α i · δi) , prodInProd I J _ _ (α∈I i) γi∈J , prodInProd I K _ _ (α∈I i) δi∈K , cong (α i ·_) βi≡γi+δi ∙ ·Rdist+ _ _ _ ∣) (β∈J+K i)) ·iRdist+iRIncl : ∀ (I J K : CommIdeal) → ((I ·i J) +i (I ·i K)) ⊆ (I ·i (J +i K)) ·iRdist+iRIncl I J K x = rec isPropPropTrunc λ ((y , z) , y∈IJ , z∈IK , x≡y+z) → subst-∈ (I ·i (J +i K)) (sym x≡y+z) ((I ·i (J +i K)) .snd .+Closed (inclHelperLeft _ y∈IJ) (inclHelperRight _ z∈IK)) where inclHelperLeft : (I ·i J) ⊆ (I ·i (J +i K)) inclHelperLeft x' = map (λ (n , (α , β) , α∈I , β∈J , x'≡∑αβ) → n , (α , β) , α∈I , (λ i → +iLincl J K _ (β∈J i)) , x'≡∑αβ) inclHelperRight : (I ·i K) ⊆ (I ·i (J +i K)) inclHelperRight x' = map (λ (n , (α , β) , α∈I , β∈K , x'≡∑αβ) → n , (α , β) , α∈I , (λ i → +iRincl J K _ (β∈K i)) , x'≡∑αβ) ·iRdist+i : ∀ (I J K : CommIdeal) → I ·i (J +i K) ≡ I ·i J +i I ·i K ·iRdist+i I J K = CommIdeal≡Char (·iRdist+iLIncl I J K) (·iRdist+iRIncl I J K) -- only one absorption law, i.e. CommIdeal , +i , ·i does not form a dist. lattice ·iAbsorb+iLIncl : ∀ (I J : CommIdeal) → (I +i (I ·i J)) ⊆ I ·iAbsorb+iLIncl I J x = rec (I .fst x .snd) λ ((y , z) , y∈I , z∈IJ , x≡y+z) → subst-∈ I (sym x≡y+z) (I .snd .+Closed y∈I (·iLincl I J _ z∈IJ)) ·iAbsorb+iRIncl : ∀ (I J : CommIdeal) → I ⊆ (I +i (I ·i J)) ·iAbsorb+iRIncl I J = +iLincl I (I ·i J) ·iAbsorb+i : ∀ (I J : CommIdeal) → I +i (I ·i J) ≡ I ·iAbsorb+i I J = CommIdeal≡Char (·iAbsorb+iLIncl I J) (·iAbsorb+iRIncl I J)
44.409639
100
0.46134
1c2557630e16713cfd25cafd018df3bd630d35bd
2,847
agda
Agda
test/interaction/Highlighting.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2021-06-14T11:08:59.000Z
2021-06-14T11:08:59.000Z
test/interaction/Highlighting.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2020-05-29T19:45:38.000Z
2020-05-29T19:45:38.000Z
test/interaction/Highlighting.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2021-06-14T11:07:38.000Z
2021-06-14T11:07:38.000Z
module Highlighting where Set-one : Set₂ Set-one = Set₁ record R (A : Set) : Set-one where constructor con field X : Set F : Set → Set → Set F A B = B field P : F A X → Set -- highlighting of non-terminating definition Q : F A X → Set Q = Q postulate P : _ open import Highlighting.M using (ℕ) renaming ( _+_ to infixl 5 _⊕_ ; _*_ to infixl 7 _⊗_ ) data D (A : Set) : Set-one where d : let X = D in X A postulate _+_ _×_ : Set → Set → Set infixl 4 _×_ _+_ -- Issue #2140: the operators should be highlighted also in the -- fixity declaration. -- Issue #3120, jump-to-definition for record field tags -- in record expressions and patterns. anR : ∀ A → R A anR A = record { X = A ; P = λ _ → A } idR : ∀ A → R A → R A idR A r@record { X = X; P = P } = record r { X = X } record S (A : Set) : Set where field X : A idR' : ∀ A → R A → R A idR' A r@record { X = X; P = P } = record r { X = X } open S bla : ∀{A} → A → S A bla x .X = x -- Issue #3825: highlighting of unsolved metas in record{M} expressions record R₂ (A : Set) : Set where field impl : {a : A} → A module M {A : Set} where impl : {a : A} → A -- yellow should not be here impl {a} = a r₂ : ∀{A} → R₂ A r₂ = record {M} -- just because there is an unsolved meta here -- End issue #3825 -- Issue #3855: highlighting of quantity attributes. -- @0 and @erased should be highlighted as symbols. idPoly0 : {@0 A : Set} → A → A idPoly0 x = x idPolyE : {@erased A : Set} → A → A idPolyE x = x -- Issue #3989: Shadowed repeated variables in telescopes should by -- default /not/ be highlighted. Issue-3989 : (A A : Set) → Set Issue-3989 _ A = A -- Issue #4356. open import Agda.Builtin.Sigma Issue-4356₁ : Σ Set (λ _ → Set) → Σ Set (λ _ → Set) Issue-4356₁ = λ P@(A , B) → P Issue-4356₂ : Σ Set (λ _ → Set) → Set Issue-4356₂ = λ (A , B) → A Issue-4356₃ : Σ Set (λ _ → Set) → Σ Set (λ _ → Set) Issue-4356₃ P = let Q@(A , B) = P in Q Issue-4356₄ : Σ Set (λ _ → Set) → Set Issue-4356₄ P = let (A , B) = P in B Issue-4356₅ : Σ Set (λ _ → Set) → Σ Set (λ _ → Set) Issue-4356₅ P@(A , B) = P Issue-4356₆ : Σ Set (λ _ → Set) → Set Issue-4356₆ (A , B) = B -- Issue #4361: Highlighting builtins. data Nat : Set where zero : Nat suc : Nat → Nat {-# BUILTIN NATURAL Nat #-} -- NATURAL should be highlighted as keyword. module Issue3432 where pattern con′ x y = con x y pattern d′ = d open Issue3432 using (con′; d′) -- These pattern synonyms should be highlighted -- in inductive constructor color. module Issue4604 where record RR : Set₁ where field A : Set postulate rr : RR open RR rr rr₁ : RR rr₁ = record { A = A } -- Second A should /not/ be highlighted as projection. rr₂ : RR rr₂ = record { A = RR.A rr } -- All other As should have field/projection color.
20.049296
83
0.60274
182592552899978b9473244fda99c811a34f13de
800
agda
Agda
test/Succeed/RewriteExt.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/RewriteExt.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/RewriteExt.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --rewriting #-} -- Let us assume that extensionality of functions cannot be proved -- inside "plain" Agda. In that case the code below shows that the -- REWRITE functionality is not a conservative extension, even if we -- only use propositional equality as the rewriting relation, and do -- not use any postulates. module RewriteExt where open import Common.Equality {-# BUILTIN REWRITE _≡_ #-} data Unit : Set where unit : Unit module _ {a b} {A : Set a} {B : A → Set b} {f g : (x : A) → B x} (f≡g : ∀ x → f x ≡ g x) where private id : Unit → (x : A) → B x → B x id unit _ x = x f≡g′ : ∀ u x → id u x (f x) ≡ g x f≡g′ unit = f≡g {-# REWRITE f≡g′ #-} ext′ : ∀ u → (λ x → id u x (f x)) ≡ g ext′ u = refl ext : f ≡ g ext = ext′ unit
22.222222
68
0.58
dfac09952cde29acbeeda4165ead2fa1142bab6d
1,746
agda
Agda
src/Categories/Category/Construction/LT-Models.agda
yourboynico/agda-categories
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Category/Construction/LT-Models.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Category/Construction/LT-Models.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Category.Construction.LT-Models where -- Given a fixed Lawvere Theory LT and a fixed category C, -- the Functors [LT , C] form a category. -- The proof is basically the same as that of Functors. open import Level open import Categories.Category.Core using (Category) open import Categories.Category.Cartesian.Bundle using (CartesianCategory) open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-CartesianCategory) open import Categories.NaturalTransformation using (NaturalTransformation; _∘ᵥ_) renaming (id to idN) open import Categories.NaturalTransformation.Equivalence using (_≃_; ≃-isEquivalence) open import Categories.Theory.Lawvere using (LawvereTheory; ModelsOf_In_) private variable o ℓ e o′ ℓ′ e′ : Level -- The reason the proofs below are so easy is that _∘ᵥ_ 'computes' all the way down into -- expressions in C, from which the properties follow. LT-Models : LawvereTheory ℓ e → CartesianCategory o′ ℓ′ e′ → Category (ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) (ℓ ⊔ ℓ′ ⊔ e′) e′ LT-Models LT C = record { Obj = ModelsOf LT In C ; _⇒_ = λ m₁ m₂ → NaturalTransformation (ModelsOf_In_.mod m₁) (ModelsOf_In_.mod m₂) ; _≈_ = _≃_ ; id = idN ; _∘_ = _∘ᵥ_ ; assoc = assoc ; sym-assoc = sym-assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; equiv = ≃-isEquivalence ; ∘-resp-≈ = λ eq eq′ → ∘-resp-≈ eq eq′ } where module C = CartesianCategory C using (U) open Category C.U LT-SetoidsModels : {ℓ′ e′ : Level} → LawvereTheory ℓ e → Category (ℓ ⊔ e ⊔ suc (ℓ′ ⊔ e′)) (ℓ ⊔ ℓ′ ⊔ e′) (ℓ′ ⊔ e′) LT-SetoidsModels {ℓ′ = ℓ′} {e′} LT = LT-Models LT (Setoids-CartesianCategory ℓ′ e′)
37.956522
113
0.67984
0ed9f8f71aa031d23e01cf143fe8f6c055fa21d0
700
agda
Agda
test/fail/Test2.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
test/fail/Test2.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
test/fail/Test2.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Base module test.fail.Test2 where module _ where private data #I : Type₀ where #zero : #I #one : #I I : Type₀ I = #I zero : I zero = #zero one : I one = #one postulate seg : zero == one I-elim : ∀ {i} {P : I → Type i} (zero* : P zero) (one* : P one) (seg* : zero* == one* [ P ↓ seg ]) → Π I P I-elim {i} {P} zero* one* seg* = I-elim-aux phantom where I-elim-aux : Phantom seg* → Π I P I-elim-aux phantom #zero = zero* I-elim-aux phantom #one = one* postulate P : I → Type₀ z : P zero o : P one s s' : z == o [ P ↓ seg ] absurd : I-elim z o s == I-elim z o s' absurd = idp
16.666667
65
0.518571
4ae6881b739baafb17439590a32112ce22cc232e
439
agda
Agda
test/asset/agda-stdlib-1.0/Data/Plus.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Plus.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Plus.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Transitive closures -- -- This module is DEPRECATED. Please use the -- Relation.Binary.Construct.Closure.Transitive module directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Plus where open import Relation.Binary.Construct.Closure.Transitive public
29.266667
72
0.505695
d0b7c977bc49c33c943f6c86e87586eb5133e9c2
1,969
agda
Agda
src/prototyping/term/examples/Nested.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
src/prototyping/term/examples/Nested.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
src/prototyping/term/examples/Nested.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
{-# OPTIONS --type-in-type #-} module Nested where open import Prelude record Sigma1 (A : Set)(B : A -> Set) : Set record Sigma1 A B where constructor pair field fst : A snd : B fst open Sigma1 record Sigma (A : Set)(B : A -> Set) : Set record Sigma A B where constructor inn field out : Sigma1 A B open Sigma data Unit : Set data Unit where tt : Unit Cat : Set Cat = Sigma Set (\ Obj -> Sigma (Obj -> Obj -> Set) (\ Hom -> Sigma ((X : _) -> Hom X X) (\ id -> Sigma ((X Y Z : _) -> Hom Y Z -> Hom X Y -> Hom X Z) (\ comp -> Sigma ((X Y : _)(f : Hom X Y) -> comp _ _ _ (id Y) f == f) (\ idl -> Sigma ((X Y : _)(f : Hom X Y) -> comp _ _ _ f (id X) == f) (\ idr -> Sigma ((W X Y Z : _) (f : Hom W X)(g : Hom X Y)(h : Hom Y Z) -> comp _ _ _ (comp _ _ _ h g) f == comp _ _ _ h (comp _ _ _ g f)) (\ assoc -> Unit))))))) Obj : (C : Cat) -> Set Obj C = fst (out C) Hom : (C : Cat) -> Obj C -> Obj C -> Set Hom C = fst (out (snd (out C))) id : (C : Cat) -> (X : _) -> Hom C X X id C = fst (out (snd (out (snd (out C))))) comp : (C : Cat) -> (X Y Z : _) -> Hom C Y Z -> Hom C X Y -> Hom C X Z comp C = fst (out (snd (out (snd (out (snd (out C))))))) idl : (C : Cat) -> (X Y : _)(f : Hom C X Y) -> comp C _ _ _ (id C Y) f == f idl C = fst (out (snd (out (snd (out (snd (out (snd (out C))))))))) idr : (C : Cat) -> (X Y : _)(f : Hom C X Y) -> comp C _ _ _ f (id C X) == f idr C = fst (out (snd (out (snd (out (snd (out (snd (out (snd (out C))))))))))) assoc : (C : Cat) -> (W X Y Z : _) (f : Hom C W X)(g : Hom C X Y)(h : Hom C Y Z) -> comp C _ _ _ (comp C _ _ _ h g) f == comp C _ _ _ h (comp C _ _ _ g f) assoc C = fst (out (snd (out (snd (out (snd (out (snd (out (snd (out (snd (out C)))))))))))))
28.955882
72
0.439309
cbbff044d27e518a5bb6861e7bcb56cf776b3706
9,294
agda
Agda
agda/book/Programming_Language_Foundations_in_Agda/x05-747Isomorphism.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
36
2015-01-29T14:37:15.000Z
2021-07-30T06:55:03.000Z
agda/book/Programming_Language_Foundations_in_Agda/x05-747Isomorphism.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
null
null
null
agda/book/Programming_Language_Foundations_in_Agda/x05-747Isomorphism.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
8
2015-04-13T21:40:15.000Z
2021-09-21T15:58:10.000Z
module 747Isomorphism where -- Library import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; cong-app; sym) -- added last open Eq.≡-Reasoning open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Nat.Properties using (+-comm; +-suc; +-identityʳ) -- added last -- Function composition. _∘_ : ∀ {A B C : Set} → (B → C) → (A → B) → (A → C) (g ∘ f) x = g (f x) _∘′_ : ∀ {A B C : Set} → (B → C) → (A → B) → (A → C) g ∘′ f = λ x → g (f x) postulate extensionality : ∀ {A B : Set} {f g : A → B} → (∀ (x : A) → f x ≡ g x) ----------------------- → f ≡ g -- Another definition of addition. _+′_ : ℕ → ℕ → ℕ -- split on n instead, get different code m +′ n = {!!} same-app : ∀ (m n : ℕ) → m +′ n ≡ m + n same-app m n = {!!} same : _+′_ ≡ _+_ -- this requires extensionality same = {!!} -- Isomorphism. infix 0 _≃_ record _≃_ (A B : Set) : Set where constructor mk-≃ -- This has been added, not in PLFA field to : A → B from : B → A from∘to : ∀ (x : A) → from (to x) ≡ x to∘from : ∀ (y : B) → to (from y) ≡ y open _≃_ -- Equivalent to the following: data _≃′_ (A B : Set): Set where mk-≃′ : ∀ (to : A → B) → ∀ (from : B → A) → ∀ (from∘to : (∀ (x : A) → from (to x) ≡ x)) → ∀ (to∘from : (∀ (y : B) → to (from y) ≡ y)) → A ≃′ B to′ : ∀ {A B : Set} → (A ≃′ B) → (A → B) to′ (mk-≃′ f g g∘f f∘g) = f from′ : ∀ {A B : Set} → (A ≃′ B) → (B → A) from′ (mk-≃′ f g g∘f f∘g) = g from∘to′ : ∀ {A B : Set} → (A≃B : A ≃′ B) → (∀ (x : A) → from′ A≃B (to′ A≃B x) ≡ x) from∘to′ (mk-≃′ f g g∘f f∘g) = g∘f to∘from′ : ∀ {A B : Set} → (A≃B : A ≃′ B) → (∀ (y : B) → to′ A≃B (from′ A≃B y) ≡ y) to∘from′ (mk-≃′ f g g∘f f∘g) = f∘g -- End of equivalent formulation (records are faster!) -- Properties of isomorphism. -- Reflexivity. ≃-refl : ∀ {A : Set} ----- → A ≃ A -- in empty hole, split on result, get copatterns (not in PLFA) ≃-refl = {!!} -- Symmetry. ≃-sym : ∀ {A B : Set} → A ≃ B ----- → B ≃ A ≃-sym A≃B = {!!} -- Transitivity. ≃-trans : ∀ {A B C : Set} → A ≃ B → B ≃ C ----- → A ≃ C ≃-trans A≃B B≃C = {!!} -- Isomorphism is an equivalence relation. -- We can create syntax for equational reasoning. module ≃-Reasoning where infix 1 ≃-begin_ infixr 2 _≃⟨_⟩_ infix 3 _≃-∎ ≃-begin_ : ∀ {A B : Set} → A ≃ B ----- → A ≃ B ≃-begin A≃B = A≃B _≃⟨_⟩_ : ∀ (A : Set) {B C : Set} → A ≃ B → B ≃ C ----- → A ≃ C A ≃⟨ A≃B ⟩ B≃C = ≃-trans A≃B B≃C _≃-∎ : ∀ (A : Set) ----- → A ≃ A A ≃-∎ = ≃-refl open ≃-Reasoning -- Embedding (weaker than isomorphism) infix 0 _≲_ record _≲_ (A B : Set) : Set where field to : A → B from : B → A from∘to : ∀ (x : A) → from (to x) ≡ x open _≲_ ≲-refl : ∀ {A : Set} → A ≲ A ≲-refl = {!!} ≲-trans : ∀ {A B C : Set} → A ≲ B → B ≲ C → A ≲ C ≲-trans A≲B B≲C = {!!} ≲-antisym : ∀ {A B : Set} → (A≲B : A ≲ B) → (B≲A : B ≲ A) → (to A≲B ≡ from B≲A) → (from A≲B ≡ to B≲A) ------------------- → A ≃ B ≲-antisym A≲B B≲A to≡from from≡to = {!!} -- Tabular reasoning for embedding. module ≲-Reasoning where infix 1 ≲-begin_ infixr 2 _≲⟨_⟩_ infix 3 _≲-∎ ≲-begin_ : ∀ {A B : Set} → A ≲ B ----- → A ≲ B ≲-begin A≲B = A≲B _≲⟨_⟩_ : ∀ (A : Set) {B C : Set} → A ≲ B → B ≲ C ----- → A ≲ C A ≲⟨ A≲B ⟩ B≲C = ≲-trans A≲B B≲C _≲-∎ : ∀ (A : Set) ----- → A ≲ A A ≲-∎ = ≲-refl open ≲-Reasoning -- PLFA exercise: Isomorphism implies embedding. ≃-implies-≲ : ∀ {A B : Set} → A ≃ B ----- → A ≲ B ≃-implies-≲ a≃b = {!!} -- PLFA exercise: propositional equivalence (weaker than embedding). record _⇔_ (A B : Set) : Set where field to : A → B from : B → A open _⇔_ -- added -- This is also an equivalence relation. ⇔-refl : ∀ {A : Set} ----- → A ⇔ A ⇔-refl = {!!} ⇔-sym : ∀ {A B : Set} → A ⇔ B ----- → B ⇔ A ⇔-sym A⇔B = {!!} ⇔-trans : ∀ {A B C : Set} → A ⇔ B → B ⇔ C ----- → A ⇔ C ⇔-trans A⇔B B⇔C = {!!} -- 747/PLFA extended exercise: Canonical bitstrings. -- Modified and extended from Bin-predicates exercise in PLFA Relations. -- Copied from 747Naturals. data Bin-ℕ : Set where bits : Bin-ℕ _x0 : Bin-ℕ → Bin-ℕ _x1 : Bin-ℕ → Bin-ℕ dbl : ℕ → ℕ dbl zero = zero dbl (suc n) = suc (suc (dbl n)) -- Copy your versions of 'inc', 'tob', and 'fromb' over from earlier files. -- You may choose to change the definitions here to make proofs easier. -- But make sure to test them if you do! -- You may also copy over any theorems that prove useful. inc : Bin-ℕ → Bin-ℕ inc n = {!!} tob : ℕ → Bin-ℕ tob n = {!!} dblb : Bin-ℕ → Bin-ℕ dblb n = {!!} fromb : Bin-ℕ → ℕ fromb n = {!!} -- The reason that we couldn't prove ∀ {n : Bin-ℕ} → tob (fromb n) ≡ n -- is because of the possibility of leading zeroes in a Bin-ℕ value. -- 'bits x0 x0 x1' is such a value that gives a counterexample. -- However, the theorem is true is true for n without leading zeroes. -- We define a predicate to be able to state this in a theorem. -- A value of type One n is evidence that n has a leading one. data One : Bin-ℕ → Set where [bitsx1] : One (bits x1) _[x0] : ∀ {n : Bin-ℕ} → One n → One (n x0) _[x1] : ∀ {n : Bin-ℕ} → One n → One (n x1) -- Here's a proof that 'bits x1 x0 x0' has a leading one. _ : One (bits x1 x0 x0) _ = [bitsx1] [x0] [x0] -- There is no value of type One (bits x0 x0 x1). -- But we can't state and prove this yet, because we don't know -- how to express negation. That comes in the Connectives chapter. -- A canonical binary representation is either zero or has a leading one. data Can : Bin-ℕ → Set where [zero] : Can bits [pos] : ∀ {n : Bin-ℕ} → One n → Can n -- Some obvious examples: _ : Can bits _ = [zero] _ : Can (bits x1 x0) _ = [pos] ([bitsx1] [x0]) -- The Bin-predicates exercise in PLFA Relations gives three properties of canonicity. -- The first is that the increment of a canonical number is canonical. -- Most of the work is done in the following lemma. -- 747/PLFA exercise: IncCanOne (2 points) -- The increment of a canonical number has a leading one. one-inc : ∀ {n : Bin-ℕ} → Can n → One (inc n) one-inc cn = {!!} -- The first canonicity property is now an easy corollary. -- 747/PLFA exercise: OneInc (1 point) can-inc : ∀ {n : Bin-ℕ} → Can n → Can (inc n) can-inc cn = {!!} -- The second canonicity property is that converting a unary number -- to binary produces a canonical number. -- 747/PLFA exercise: CanToB (1 point) to-can : ∀ (n : ℕ) → Can (tob n) to-can n = {!!} -- The third canonicity property is that converting a canonical number -- from binary and back to unary produces the same number. -- This takes more work, and some helper lemmas from 747Induction. -- You will need to discover which ones. -- 747/PLFA exercise: OneDblbX0 (1 point) -- This helper function relates binary double to the x0 constructor, -- for numbers with a leading one. dblb-x0 : ∀ {n : Bin-ℕ} → One n → dblb n ≡ n x0 dblb-x0 on = {!!} -- We can now prove the third property for numbers with a leading one. -- 747/PLFA exercise: OneToFrom (3 points) one-to∘from : ∀ {n : Bin-ℕ} → One n → tob (fromb n) ≡ n one-to∘from on = {!!} -- The third property is now an easy corollary. -- 747/PLFA exercise: CanToFrom (1 point) can-to∘from : ∀ {n : Bin-ℕ} → Can n → tob (fromb n) ≡ n can-to∘from cn = {!!} -- 747/PLFA exercise: OneUnique (2 points) -- Proofs of positivity are unique. one-unique : ∀ {n : Bin-ℕ} → (x y : One n) → x ≡ y one-unique x y = {!!} -- 747/PLFA exercise: CanUnique (1 point) -- Proofs of canonicity are unique. can-unique : ∀ {n : Bin-ℕ} → (x y : Can n) → x ≡ y can-unique x y = {!!} -- Do we have an isomorphism between ℕ (unary) and canonical binary representations? -- Can is not a set, but a family of sets, so it doesn't quite fit -- into our framework for isomorphism. -- But we can roll all the values into one set which is isomorphic to ℕ. -- A CanR value wraps up a Bin-ℕ and proof it has a canonical representation. data CanR : Set where wrap : ∀ (n : Bin-ℕ) → Can n → CanR -- We can show that there is an isomorphism between ℕ and CanR. -- 747/PLFA exercise: IsoNCanR (3 points) iso-ℕ-CanR : ℕ ≃ CanR iso-ℕ-CanR = {!!} -- Can we get an isomorphism between ℕ and some binary encoding, -- without the awkwardness of non-canonical values? -- Yes: we use digits 1 and 2, instead of 0 and 1 (multiplier/base is still 2). -- This is known as bijective binary numbering. -- The counting sequence goes <empty>, 1, 2, 11, 12, 21, 22, 111... data Bij-ℕ : Set where bits : Bij-ℕ _x1 : Bij-ℕ → Bij-ℕ _x2 : Bij-ℕ → Bij-ℕ -- There is an isomorphism between ℕ and Bij-ℕ. -- The proof largely follows the outline of what we did above, -- and is left as an optional exercise. -- See PLFA for remarks on standard library definitions similar to those here. -- Unicode introduced in this chapter: {- ∘ U+2218 RING OPERATOR (\o, \circ, \comp) λ U+03BB GREEK SMALL LETTER LAMBDA (\lambda, \Gl) ≃ U+2243 ASYMPTOTICALLY EQUAL TO (\~-) ≲ U+2272 LESS-THAN OR EQUIVALENT TO (\<~) ⇔ U+21D4 LEFT RIGHT DOUBLE ARROW (\<=>) -}
22.891626
87
0.561222
1c3cacb01ebe3bf43f85d17a1489ceae3d9a62b1
2,689
agda
Agda
src/Pf/Ip.agda
mietek/formal-logic
2dd761bfa96ccda089888e8defa6814776fa2922
[ "X11" ]
26
2015-08-31T09:49:52.000Z
2021-11-13T12:37:44.000Z
src/Pf/Ip.agda
mietek/formal-logic
2dd761bfa96ccda089888e8defa6814776fa2922
[ "X11" ]
null
null
null
src/Pf/Ip.agda
mietek/formal-logic
2dd761bfa96ccda089888e8defa6814776fa2922
[ "X11" ]
null
null
null
-- Intuitionistic propositional logic, PHOAS approach, final encoding module Pf.Ip where -- Types infixl 2 _&&_ infixl 1 _||_ infixr 0 _=>_ data Ty : Set where UNIT : Ty _=>_ : Ty -> Ty -> Ty _&&_ : Ty -> Ty -> Ty _||_ : Ty -> Ty -> Ty FALSE : Ty infixr 0 _<=>_ _<=>_ : Ty -> Ty -> Ty a <=> b = (a => b) && (b => a) NOT : Ty -> Ty NOT a = a => FALSE TRUE : Ty TRUE = FALSE => FALSE -- Context and truth judgement Cx : Set1 Cx = Ty -> Set isTrue : Ty -> Cx -> Set isTrue a tc = tc a -- Terms TmRepr : Set1 TmRepr = Cx -> Ty -> Set module ArrMp where record Tm (tr : TmRepr) : Set1 where infixl 1 _$_ field var : forall {tc a} -> isTrue a tc -> tr tc a lam' : forall {tc a b} -> (isTrue a tc -> tr tc b) -> tr tc (a => b) _$_ : forall {tc a b} -> tr tc (a => b) -> tr tc a -> tr tc b lam'' : forall {tc a b} -> (tr tc a -> tr tc b) -> tr tc (a => b) lam'' f = lam' \x -> f (var x) syntax lam'' (\a -> b) = lam a => b open Tm {{...}} public module Mp where record Tm (tr : TmRepr) : Set1 where field pair' : forall {tc a b} -> tr tc a -> tr tc b -> tr tc (a && b) fst : forall {tc a b} -> tr tc (a && b) -> tr tc a snd : forall {tc a b} -> tr tc (a && b) -> tr tc b left : forall {tc a b} -> tr tc a -> tr tc (a || b) right : forall {tc a b} -> tr tc b -> tr tc (a || b) case' : forall {tc a b c} -> tr tc (a || b) -> (isTrue a tc -> tr tc c) -> (isTrue b tc -> tr tc c) -> tr tc c isArrMp : ArrMp.Tm tr open ArrMp.Tm isArrMp public case'' : forall {tc a b c} -> tr tc (a || b) -> (tr tc a -> tr tc c) -> (tr tc b -> tr tc c) -> tr tc c case'' xy f g = case' xy (\x -> f (var x)) (\y -> g (var y)) syntax pair' x y = [ x , y ] syntax case'' xy (\x -> z1) (\y -> z2) = case xy of x => z1 or y => z2 open Tm {{...}} public module Ip where record Tm (tr : TmRepr) : Set1 where field abort : forall {tc a} -> tr tc FALSE -> tr tc a isMp : Mp.Tm tr open Mp.Tm isMp public open Tm {{...}} public Thm : Ty -> Set1 Thm a = forall {tr tc} {{_ : Tm tr}} -> tr tc a open Ip public -- Example theorems t1 : forall {a b} -> Thm (a => NOT a => b) t1 = lam x => lam f => abort (f $ x) t2 : forall {a b} -> Thm (NOT a => a => b) t2 = lam f => lam x => abort (f $ x) t3 : forall {a} -> Thm (a => NOT (NOT a)) t3 = lam x => lam f => f $ x t4 : forall {a} -> Thm (NOT a <=> NOT (NOT (NOT a))) t4 = [ lam f => lam g => g $ f , lam g => lam x => g $ (lam f => f $ x) ]
23.382609
116
0.462626
2360614957271cf794edfcef3809bcbca96c8e77
1,501
agda
Agda
test/Succeed/FlexibleFunArity.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/FlexibleFunArity.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/FlexibleFunArity.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- {-# OPTIONS -v tc.lhs:40 #-} module FlexibleFunArity where open import Common.Equality open import Common.Prelude Case : {A : Set} → Maybe A → Set → Set → Set Case nothing B C = B Case (just _) B C = C sample : {A : Set} (m : Maybe A) → Case m Bool (Maybe A → Bool) sample (just a) (just b) = true sample (just a) nothing = false sample nothing = true g : Bool -> Bool -> Bool g false true = false g true = \ x -> true g false false = true -- g true false = false -- Unreachable clause testg1 : ∀ {x} → g true x ≡ true testg1 = refl testg2 : g false true ≡ false testg2 = refl testg3 : g false false ≡ true testg3 = refl T : Bool -> Set T true = Bool T false = Bool -> Bool f : (b : Bool) -> T b f false true = false f false false = true f true = true testf1 : f true ≡ true testf1 = refl testf2 : f false true ≡ false testf2 = refl testf3 : f false false ≡ true testf3 = refl {- checking clause f false true starts with f (b : Bool) : T b splits on b f true -- no match, discard f false -- matches instantiate type f false : T false = Bool -> Bool extend clause f false (y : Bool) : Bool split on y f false true -- matches f false false -- no match, discard done -} {- coverage check starts with f (x : Bool) splits on x f true -- finds clause 1 f false NEW: remaing clauses have bigger arity, so expands to f false (y : Bool) splits on y f false true -- finds clause 2 f false false -- finds clause 3 done -}
14.861386
63
0.62958
4a7750658ab26edf112dd926f681e5e30ed0f828
1,589
agda
Agda
Setoids/Orders/Partial/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Setoids/Orders/Partial/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Setoids/Orders/Partial/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import Sets.EquivalenceRelations open import LogicalFormulae open import Orders.Total.Definition open import Orders.Partial.Definition open import Setoids.Setoids open import Functions.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Setoids.Orders.Partial.Definition where record SetoidPartialOrder {a b c : _} {A : Set a} (S : Setoid {a} {b} A) (_<_ : Rel {a} {c} A) : Set (a ⊔ b ⊔ c) where open Setoid S field <WellDefined : {a b c d : A} → (a ∼ b) → (c ∼ d) → a < c → b < d irreflexive : {x : A} → (x < x) → False <Transitive : {a b c : A} → (a < b) → (b < c) → (a < c) _<=_ : Rel {a} {b ⊔ c} A a <= b = (a < b) || (a ∼ b) <=Transitive : {a b c : A} → (a <= b) → (b <= c) → (a <= c) <=Transitive (inl a<b) (inl b<c) = inl (<Transitive a<b b<c) <=Transitive (inl a<b) (inr b=c) = inl (<WellDefined (Equivalence.reflexive eq) b=c a<b) <=Transitive (inr a=b) (inl b<c) = inl (<WellDefined (Equivalence.symmetric eq a=b) (Equivalence.reflexive eq) b<c) <=Transitive (inr a=b) (inr b=c) = inr (Equivalence.transitive eq a=b b=c) partialOrderToSetoidPartialOrder : {a b : _} {A : Set a} (P : PartialOrder {a} A {b}) → SetoidPartialOrder (reflSetoid A) (PartialOrder._<_ P) SetoidPartialOrder.<WellDefined (partialOrderToSetoidPartialOrder P) a=b c=d a<c rewrite a=b | c=d = a<c SetoidPartialOrder.irreflexive (partialOrderToSetoidPartialOrder P) = PartialOrder.irreflexive P SetoidPartialOrder.<Transitive (partialOrderToSetoidPartialOrder P) = PartialOrder.<Transitive P
49.65625
142
0.660164
20ac5003c7b2da29153235a8dd73c7d08b6f39ca
44
agda
Agda
test/Succeed/Imports/A.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Imports/A.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Imports/A.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Imports.A where postulate A : Set
7.333333
22
0.727273
1cce8fbcfcd7886656ecbfaeb3542f4d79abdaf8
11,560
agda
Agda
src/Container/List.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Container/List.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Container/List.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The list container ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Container.List {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where open Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_; module _⇔_) open import Prelude as P hiding (List; []; _∷_; id; _∘_) open import Bag-equivalence eq using () renaming (_≈-bag_ to _≈-bagL_; _∈_ to _∈L_; Any to AnyL) open import Bijection eq using (_↔_; module _↔_; Σ-≡,≡↔≡) open import Container eq open import Fin eq open import Function-universe eq open import H-level.Closure eq import List eq as L open import Surjection eq using (_↠_) ------------------------------------------------------------------------ -- The type -- Lists. List : Container lzero List = ℕ ▷ Fin ------------------------------------------------------------------------ -- The definitions of lists and bag equivalence for lists given in -- Container/Container.List and in Prelude/Bag-equivalence are closely -- related -- There is a split surjection from ⟦ List ⟧ A to P.List A. List↠List : {A : Type} → ⟦ List ⟧ A ↠ P.List A List↠List {A} = record { logical-equivalence = record { to = uncurry to ; from = from } ; right-inverse-of = to∘from } where to : (n : ℕ) → (Fin n → A) → P.List A to zero f = P.[] to (suc n) f = P._∷_ (f fzero) (to n (f ∘ fsuc)) from = λ xs → (L.length xs , L.index xs) to∘from : ∀ xs → uncurry to (from xs) ≡ xs to∘from P.[] = refl _ to∘from (P._∷_ x xs) = cong (P._∷_ x) (to∘from xs) -- If we assume that equality of functions is extensional, then we can -- also prove that the two definitions are isomorphic. List↔List : Extensionality lzero lzero → {A : Type} → ⟦ List ⟧ A ↔ P.List A List↔List ext {A} = record { surjection = List↠List ; left-inverse-of = uncurry from∘to } where open _↠_ List↠List from∘to : ∀ n f → from (to (n , f)) ≡ (n , f) from∘to zero f = cong (_,_ _) (apply-ext ext λ ()) from∘to (suc n) f = (suc (L.length (to xs)) , L.index (P._∷_ x (to xs))) ≡⟨ elim¹ (λ {ys} _ → _≡_ {A = ⟦ List ⟧ A} (suc (L.length (to xs)) , L.index (P._∷_ x (to xs))) (suc (proj₁ ys) , [ (λ _ → x) , proj₂ ys ])) (cong (suc (L.length (to xs)) ,_) $ apply-ext ext [ (λ _ → refl _) , (λ _ → refl _) ]) (from∘to n (f ∘ inj₂)) ⟩ (suc n , [ (λ _ → x) , f ∘ inj₂ ]) ≡⟨ cong (_,_ _) (apply-ext ext [ (λ _ → refl _) , (λ _ → refl _) ]) ⟩∎ (suc n , f) ∎ where x = f (inj₁ tt) xs = (n , f ∘ inj₂) -- The two definitions of Any are isomorphic (both via "to" and -- "from"). Any↔Any-to : {A : Type} (P : A → Type) (xs : ⟦ List ⟧ A) → Any P xs ↔ AnyL P (_↠_.to List↠List xs) Any↔Any-to {A} P = uncurry Any↔Any-to′ where Any↔Any-to′ : (n : ℕ) (lkup : Fin n → A) → Any {C = List} P (n , lkup) ↔ AnyL P (_↠_.to List↠List (n , lkup)) Any↔Any-to′ zero lkup = (∃ λ (p : Fin zero) → P (lkup p)) ↔⟨ ∃-Fin-zero _ ⟩ ⊥ □ Any↔Any-to′ (suc n) lkup = (∃ λ (p : Fin (suc n)) → P (lkup p)) ↔⟨ ∃-Fin-suc _ ⟩ P (lkup fzero) ⊎ Any {C = List} P (n , lkup ∘ fsuc) ↔⟨ id ⊎-cong Any↔Any-to′ n (lkup ∘ fsuc) ⟩ P (lkup fzero) ⊎ AnyL P (_↠_.to List↠List (n , lkup ∘ fsuc)) □ Any-from↔Any : {A : Type} (P : A → Type) (xs : P.List A) → Any P (_↠_.from List↠List xs) ↔ AnyL P xs Any-from↔Any P P.[] = (∃ λ (p : Fin zero) → P (L.index P.[] p)) ↔⟨ ∃-Fin-zero _ ⟩ ⊥ □ Any-from↔Any P (P._∷_ x xs) = (∃ λ (p : Fin (suc (L.length xs))) → P (L.index (P._∷_ x xs) p)) ↔⟨ ∃-Fin-suc _ ⟩ P x ⊎ Any {C = List} P (_↠_.from List↠List xs) ↔⟨ id ⊎-cong Any-from↔Any P xs ⟩ P x ⊎ AnyL P xs □ -- The definition of bag equivalence in Bag-equivalence and the one in -- Container, instantiated with the List container, are logically -- equivalent (both via "to" and "from"). ≈-⇔-to-≈-to : {A : Type} {xs ys : ⟦ List ⟧ A} → xs ≈-bag ys ⇔ _↠_.to List↠List xs ≈-bagL _↠_.to List↠List ys ≈-⇔-to-≈-to {xs = xs} {ys} = record { to = λ xs≈ys z → z ∈L (_↠_.to List↠List xs) ↔⟨ inverse $ Any↔Any-to _ xs ⟩ z ∈ xs ↔⟨ xs≈ys z ⟩ z ∈ ys ↔⟨ Any↔Any-to _ ys ⟩ z ∈L (_↠_.to List↠List ys) □ ; from = λ xs≈ys z → z ∈ xs ↔⟨ Any↔Any-to _ xs ⟩ z ∈L (_↠_.to List↠List xs) ↔⟨ xs≈ys z ⟩ z ∈L (_↠_.to List↠List ys) ↔⟨ inverse $ Any↔Any-to _ ys ⟩ z ∈ ys □ } ≈-⇔-from-≈-from : {A : Type} {xs ys : P.List A} → xs ≈-bagL ys ⇔ _↠_.from List↠List xs ≈-bag _↠_.from List↠List ys ≈-⇔-from-≈-from {xs = xs} {ys} = record { to = λ xs≈ys z → z ∈ (_↠_.from List↠List xs) ↔⟨ Any-from↔Any _ xs ⟩ z ∈L xs ↔⟨ xs≈ys z ⟩ z ∈L ys ↔⟨ inverse $ Any-from↔Any _ ys ⟩ z ∈ (_↠_.from List↠List ys) □ ; from = λ xs≈ys z → z ∈L xs ↔⟨ inverse $ Any-from↔Any _ xs ⟩ z ∈ (_↠_.from List↠List xs) ↔⟨ xs≈ys z ⟩ z ∈ (_↠_.from List↠List ys) ↔⟨ Any-from↔Any _ ys ⟩ z ∈L ys □ } ------------------------------------------------------------------------ -- Constructors [] : {A : Type} → ⟦ List ⟧ A [] = (zero , λ ()) infixr 5 _∷_ _∷_ : {A : Type} → A → ⟦ List ⟧ A → ⟦ List ⟧ A x ∷ (n , lkup) = (suc n , [ (λ _ → x) , lkup ]) -- Even if we don't assume extensionality we can prove that -- intensionally distinct implementations of the constructors are bag -- equivalent. []≈ : {A : Type} {lkup : _ → A} → _≈-bag_ {C₂ = List} [] (zero , lkup) []≈ _ = record { surjection = record { logical-equivalence = record { to = λ { (() , _) } ; from = λ { (() , _) } } ; right-inverse-of = λ { (() , _) } } ; left-inverse-of = λ { (() , _) } } ∷≈ : ∀ {A : Type} {n} {lkup : _ → A} → _≈-bag_ {C₂ = List} (lkup (inj₁ tt) ∷ (n , lkup ∘ inj₂)) (suc n , lkup) ∷≈ _ = record { surjection = record { logical-equivalence = record { to = λ { (inj₁ tt , eq) → (inj₁ tt , eq) ; (inj₂ s , eq) → (inj₂ s , eq) } ; from = λ { (inj₁ tt , eq) → (inj₁ tt , eq) ; (inj₂ s , eq) → (inj₂ s , eq) } } ; right-inverse-of = λ { (inj₁ tt , eq) → refl _ ; (inj₂ s , eq) → refl _ } } ; left-inverse-of = λ { (inj₁ tt , eq) → refl _ ; (inj₂ s , eq) → refl _ } } -- Any lemmas for the constructors. Any-[] : {A : Type} (P : A → Type) → Any P [] ↔ ⊥₀ Any-[] _ = record { surjection = record { logical-equivalence = record { to = λ { (() , _) } ; from = λ () } ; right-inverse-of = λ () } ; left-inverse-of = λ { (() , _) } } Any-∷ : ∀ {A : Type} (P : A → Type) {x xs} → Any P (x ∷ xs) ↔ P x ⊎ Any P xs Any-∷ _ = record { surjection = record { logical-equivalence = record { to = λ { (inj₁ tt , eq) → inj₁ eq ; (inj₂ s , eq) → inj₂ (s , eq) } ; from = λ { (inj₁ eq) → (inj₁ tt , eq) ; (inj₂ (s , eq)) → (inj₂ s , eq) } } ; right-inverse-of = λ { (inj₁ eq) → refl _ ; (inj₂ (s , eq)) → refl _ } } ; left-inverse-of = λ { (inj₁ tt , eq) → refl _ ; (inj₂ s , eq) → refl _ } } ------------------------------------------------------------------------ -- More functions -- A fold for lists. (Well, this is not a catamorphism, it is a -- paramorphism.) fold : {A B : Type} → B → (A → ⟦ List ⟧ A → B → B) → ⟦ List ⟧ A → B fold {A} {B} nl cns = uncurry fold′ where fold′ : (n : ℕ) → (Fin n → A) → B fold′ zero lkup = nl fold′ (suc n) lkup = cns (lkup fzero) (n , lkup ∘ fsuc) (fold′ n (lkup ∘ fsuc)) -- A lemma which can be used to prove properties about fold. -- -- The "respects bag equivalence" argument could be omitted if -- equality of functions were extensional. fold-lemma : ∀ {A B : Type} {nl : B} {cns : A → ⟦ List ⟧ A → B → B} (P : ⟦ List ⟧ A → B → Type) → (∀ xs ys → xs ≈-bag ys → ∀ b → P xs b → P ys b) → P [] nl → (∀ x xs b → P xs b → P (x ∷ xs) (cns x xs b)) → ∀ xs → P xs (fold nl cns xs) fold-lemma {A} {nl = nl} {cns} P resp P-nl P-cns = uncurry fold′-lemma where fold′-lemma : ∀ n (lkup : Fin n → A) → P (n , lkup) (fold nl cns (n , lkup)) fold′-lemma zero lkup = resp _ _ []≈ _ P-nl fold′-lemma (suc n) lkup = resp _ _ ∷≈ _ $ P-cns _ _ _ $ fold′-lemma n (lkup ∘ fsuc) -- Why have I included both fold and fold-lemma rather than simply a -- dependent eliminator? I tried this, and could easily define the -- functions I wanted to define. However, the functions were defined -- together with (partial) correctness proofs, and were unnecessarily -- hard to read. I wanted to be able to define functions which were -- easy to read, like the _++_ function below, and then have the -- option to prove properties about them, like Any-++. -- -- Unfortunately this turned out to be harder than expected. When -- proving the Any-++ lemma it seemed as if I had to prove that _++_ -- preserves bag equivalence in its first argument in order to -- instantiate the "respects bag equivalence" argument. However, my -- preferred proof of this property uses Any-++… -- -- An alternative could be to assume that equality of functions is -- extensional, in which case the "respects bag equivalence" argument -- could be removed. Another option would be to listen to Conor -- McBride and avoid higher-order representations of first-order data. -- Append. infixr 5 _++_ _++_ : {A : Type} → ⟦ List ⟧ A → ⟦ List ⟧ A → ⟦ List ⟧ A xs ++ ys = fold ys (λ z _ zs → z ∷ zs) xs -- An Any lemma for append. Any-++ : ∀ {A : Type} (P : A → Type) xs ys → Any P (xs ++ ys) ↔ Any P xs ⊎ Any P ys Any-++ P xs ys = fold-lemma (λ xs xs++ys → Any P xs++ys ↔ Any P xs ⊎ Any P ys) (λ us vs us≈vs us++ys hyp → Any P us++ys ↔⟨ hyp ⟩ Any P us ⊎ Any P ys ↔⟨ _⇔_.to (∼⇔∼″ us vs) us≈vs P ⊎-cong id ⟩ Any P vs ⊎ Any P ys □) (Any P ys ↔⟨ inverse ⊎-left-identity ⟩ ⊥ ⊎ Any P ys ↔⟨ inverse (Any-[] P) ⊎-cong id ⟩ Any P [] ⊎ Any P ys □) (λ x xs xs++ys ih → Any P (x ∷ xs++ys) ↔⟨ Any-∷ P ⟩ P x ⊎ Any P xs++ys ↔⟨ id ⊎-cong ih ⟩ P x ⊎ Any P xs ⊎ Any P ys ↔⟨ ⊎-assoc ⟩ (P x ⊎ Any P xs) ⊎ Any P ys ↔⟨ inverse (Any-∷ P) ⊎-cong id ⟩ Any P (x ∷ xs) ⊎ Any P ys □) xs
35.900621
135
0.455882
0e1f9dfb331e8140010a7fa11b30235421adef7b
1,316
agda
Agda
src/fot/LTC-PCF/Program/GCD/Partial/GreatestAnyCommonDivisor.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/LTC-PCF/Program/GCD/Partial/GreatestAnyCommonDivisor.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/LTC-PCF/Program/GCD/Partial/GreatestAnyCommonDivisor.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
--------------------------------------------------------------------------- -- The gcd is greatest that any common divisor --------------------------------------------------------------------------- {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} open import LTC-PCF.Base open import LTC-PCF.Data.Nat.Divisibility.NotBy0 open import LTC-PCF.Data.Nat.Inequalities open import LTC-PCF.Data.Nat.Type module LTC-PCF.Program.GCD.Partial.GreatestAnyCommonDivisor (x∣Sy→x≤Sy : ∀ {m n} → N m → N n → m ∣ (succ₁ n) → m ≤ succ₁ n) (0∤x : ∀ {n} → ¬ (zero ∣ n)) where open import LTC-PCF.Program.GCD.Partial.Definitions --------------------------------------------------------------------------- -- Knowing that gcd is a common divisor of m and n and that any other -- common divisor of m and n divides it, we can prove that gcd is the -- largest common divisor. -- It requires the totality of gcd, ie. N gcd. gcdGACD : ∀ {m n gcd} → N gcd → CD m n gcd → Divisible m n gcd → GACD m n gcd gcdGACD nzero (0∣m , _) = ⊥-elim (0∤x 0∣m) gcdGACD (nsucc {gcd} Ngcd) _ = λ Divisible-mnSgcd c Nc CDmnc → x∣Sy→x≤Sy Nc Ngcd (Divisible-mnSgcd c Nc CDmnc)
39.878788
77
0.515198
dcc5fcdaec5f5250c89050cb93ae6ea9c3b95453
2,225
agda
Agda
src/Tactic/Reflection/Free.agda
L-TChen/agda-prelude
158d299b1b365e186f00d8ef5b8c6844235ee267
[ "MIT" ]
111
2015-01-05T11:28:15.000Z
2022-02-12T23:29:26.000Z
src/Tactic/Reflection/Free.agda
L-TChen/agda-prelude
158d299b1b365e186f00d8ef5b8c6844235ee267
[ "MIT" ]
59
2016-02-09T05:36:44.000Z
2022-01-14T07:32:36.000Z
src/Tactic/Reflection/Free.agda
L-TChen/agda-prelude
158d299b1b365e186f00d8ef5b8c6844235ee267
[ "MIT" ]
24
2015-03-12T18:03:45.000Z
2021-04-22T06:10:41.000Z
module Tactic.Reflection.Free where open import Prelude open import Prelude.Variables open import Builtin.Reflection open import Tactic.Reflection.DeBruijn VarSet = List Nat -- ordered private _∪_ : VarSet → VarSet → VarSet [] ∪ ys = ys xs ∪ [] = xs (x ∷ xs) ∪ (y ∷ ys) = case-cmp compare x y less _ => x ∷ (xs ∪ (y ∷ ys)) equal _ => x ∷ (xs ∪ ys) greater _ => y ∷ ((x ∷ xs) ∪ ys) ∅ : VarSet ∅ = [] record FreeVars {a} (A : Set a) : Set a where field freeVars : A → VarSet open FreeVars {{...}} public -- Instances -- private freeTerm : Nat → Term → VarSet freeSort : Nat → Sort → VarSet freeArgTerm : Nat → Arg Term → VarSet freeArgs : Nat → List (Arg Term) → VarSet freeClauses : Nat → List Clause → VarSet freeClause : Nat → Clause → VarSet freeTerm n (var x args) = freeArgs n args ∪ (case compare (suc x) n of λ { (greater (diff k _)) → [ k ] ; _ → ∅ }) freeTerm n (con c args) = freeArgs n args freeTerm n (def f args) = freeArgs n args freeTerm n (meta x args) = freeArgs n args freeTerm n (lam _ (abs _ v)) = freeTerm (suc n) v freeTerm n (pat-lam cs args) = freeClauses n cs ∪ freeArgs n args freeTerm n (pi a (abs _ b)) = freeArgTerm n a ∪ freeTerm (suc n) b freeTerm n (agda-sort s) = freeSort n s freeTerm n (lit l) = ∅ freeTerm n unknown = ∅ freeSort n (set t) = freeTerm n t freeSort _ (lit n) = ∅ freeSort n (prop t) = freeTerm n t freeSort _ (propLit n) = ∅ freeSort _ (inf n) = ∅ freeSort _ unknown = ∅ freeArgTerm n (arg i x) = freeTerm n x freeArgs n [] = ∅ freeArgs n (a ∷ as) = freeArgTerm n a ∪ freeArgs n as freeClauses n [] = ∅ freeClauses n (c ∷ cs) = freeClause n c ∪ freeClauses n cs freeClause n (clause tel ps b) = freeTerm (length tel + n) b freeClause n (absurd-clause tel _) = ∅ instance FreeTerm : FreeVars Term freeVars {{FreeTerm}} = freeTerm 0 FreeSort : FreeVars Sort freeVars {{FreeSort}} = freeSort 0 FreeArg : {{_ : FreeVars A}} → FreeVars (Arg A) freeVars {{FreeArg}} (arg _ x) = freeVars x FreeList : {{_ : FreeVars A}} → FreeVars (List A) freeVars {{FreeList}} = foldr (λ x → freeVars x ∪_) ∅
26.807229
69
0.603596
df3bb1cd5118a062009d37a02c874f119fdd5ae2
2,761
agda
Agda
src/Impure/STLCRef/Eval.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
src/Impure/STLCRef/Eval.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
src/Impure/STLCRef/Eval.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
module Impure.STLCRef.Eval where open import Prelude open import Data.Product open import Data.List open import Data.List.Reverse open import Data.Nat open import Data.Fin hiding (_<_) open import Extensions.List as L open import Impure.STLCRef.Syntax open import Impure.STLCRef.Welltyped _!!_ : ∀ {n i} → (μ : Store n) → i < length μ → ∃ (Val {n}) _!!_ {i = i} [] () _!!_ {i = zero} (x ∷ μ) (s≤s p) = x _!!_ {i = suc i} (x ∷ μ) (s≤s p) = μ !! p Config : (n : ℕ) → Set Config n = Exp n × Store n infixl 1 _≻_ data _≻_ : ∀ {n} → Config n → Config n → Set where --------------------------------------- -- Reduction rules --------------------------------------- -- β AppAbs : ∀ {n} {A x} {e : Exp (suc n)} {μ : Store n} → --------------------------------- (ƛ A e) · x , μ ≻ e / (sub x) , μ -- new RefVal : ∀ {n e} {μ : Store n} → (v : Val e) → -------------------------------------------- (ref e , μ) ≻ (loc (length μ) , μ ∷ʳ (, v)) -- load DerefLoc : ∀ {n i} {μ : Store n} → (p : i < length μ) → --------------------------------------------------- (! (loc i) , μ) ≻ (proj₁ (μ !! p) , μ) -- store Assign : ∀ {i n e} {μ : Store n} → (p : i < length μ) → (v : Val e) → ---------------------------------------------- loc i ≔ e , μ ≻ unit , (μ L.[ fromℕ≤ p ]≔ (, v)) --------------------------------------- -- contextual closure --------------------------------------- Ref : ∀ {n e'} {e : Exp n} {μ μ'} → (e , μ) ≻ (e' , μ') → --------------------------------------- (ref e) , μ ≻ (ref e') , μ' Appₗ : ∀ {n f' e} {f : Exp n} {μ μ'} → (f , μ) ≻ (f' , μ') → --------------------------------------- (f · e) , μ ≻ (f' · e) , μ' Appᵣ : ∀ {n e' e} {f : Exp n} {μ μ'} → (e , μ) ≻ (e' , μ') → --------------------------------------- (f · e) , μ ≻ (f · e') , μ' Deref : ∀ {n} {e : Exp n} {e'} {μ μ'} → e , μ ≻ e' , μ' → --------------------------------------- ! e , μ ≻ ! e' , μ' Assign₁ : ∀ {n} {e₁ : Exp n} {e₁' e₂} {μ μ'} → e₁ , μ ≻ e₁' , μ' → --------------------------------------- e₁ ≔ e₂ , μ ≻ e₁' ≔ e₂ , μ' Assign₂ : ∀ {n} {e₁ : Exp n} {e₂' e₂} {μ μ'} → e₂ , μ ≻ e₂' , μ' → --------------------------------------- e₁ ≔ e₂ , μ ≻ e₁ ≔ e₂' , μ' ------------------------------------------------ -- Reflexive-transitive closure of step relation ------------------------------------------------ open import Data.Star infixl 1 _≻*_ _≻*_ : ∀ {n} → Config n → Config n → Set c ≻* c' = Star _≻_ c c'
28.463918
64
0.300254
1817b7cfa784dbe71d462476fb3d99089fa681db
2,115
agda
Agda
src/Tactic/Reflection/Free.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
null
null
null
src/Tactic/Reflection/Free.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
null
null
null
src/Tactic/Reflection/Free.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
null
null
null
module Tactic.Reflection.Free where open import Prelude open import Prelude.Variables open import Builtin.Reflection open import Tactic.Reflection.DeBruijn VarSet = List Nat -- ordered private _∪_ : VarSet → VarSet → VarSet [] ∪ ys = ys xs ∪ [] = xs (x ∷ xs) ∪ (y ∷ ys) = case-cmp compare x y less _ => x ∷ (xs ∪ (y ∷ ys)) equal _ => x ∷ (xs ∪ ys) greater _ => y ∷ ((x ∷ xs) ∪ ys) ∅ : VarSet ∅ = [] record FreeVars {a} (A : Set a) : Set a where field freeVars : A → VarSet open FreeVars {{...}} public -- Instances -- private freeTerm : Nat → Term → VarSet freeSort : Nat → Sort → VarSet freeArgTerm : Nat → Arg Term → VarSet freeArgs : Nat → List (Arg Term) → VarSet freeClauses : Nat → List Clause → VarSet freeClause : Nat → Clause → VarSet freeTerm n (var x args) = freeArgs n args ∪ (case compare (suc x) n of λ { (greater (diff k _)) → [ k ] ; _ → ∅ }) freeTerm n (con c args) = freeArgs n args freeTerm n (def f args) = freeArgs n args freeTerm n (meta x args) = freeArgs n args freeTerm n (lam _ (abs _ v)) = freeTerm (suc n) v freeTerm n (pat-lam cs args) = freeClauses n cs ∪ freeArgs n args freeTerm n (pi a (abs _ b)) = freeArgTerm n a ∪ freeTerm (suc n) b freeTerm n (agda-sort s) = freeSort n s freeTerm n (lit l) = ∅ freeTerm n unknown = ∅ freeSort n (set t) = freeTerm n t freeSort _ (lit n) = ∅ freeSort _ unknown = ∅ freeArgTerm n (arg i x) = freeTerm n x freeArgs n [] = ∅ freeArgs n (a ∷ as) = freeArgTerm n a ∪ freeArgs n as freeClauses n [] = ∅ freeClauses n (c ∷ cs) = freeClause n c ∪ freeClauses n cs freeClause n (clause tel ps b) = freeTerm (length tel + n) b freeClause n (absurd-clause tel _) = ∅ instance FreeTerm : FreeVars Term freeVars {{FreeTerm}} = freeTerm 0 FreeSort : FreeVars Sort freeVars {{FreeSort}} = freeSort 0 FreeArg : {{_ : FreeVars A}} → FreeVars (Arg A) freeVars {{FreeArg}} (arg _ x) = freeVars x FreeList : {{_ : FreeVars A}} → FreeVars (List A) freeVars {{FreeList}} = foldr (λ x → freeVars x ∪_) ∅
26.4375
69
0.609456
23e52eace7bc4a5a21fb4859fd5931bdddb59d6f
4,734
agda
Agda
Cubical/Relation/Binary/Base.agda
dan-iel-lee/cubical
fd8059ec3eed03f8280b4233753d00ad123ffce8
[ "MIT" ]
null
null
null
Cubical/Relation/Binary/Base.agda
dan-iel-lee/cubical
fd8059ec3eed03f8280b4233753d00ad123ffce8
[ "MIT" ]
null
null
null
Cubical/Relation/Binary/Base.agda
dan-iel-lee/cubical
fd8059ec3eed03f8280b4233753d00ad123ffce8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Binary.Base where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.Fiberwise open import Cubical.Data.Sigma open import Cubical.HITs.SetQuotients.Base open import Cubical.HITs.PropositionalTruncation.Base private variable ℓA ℓ≅A ℓA' ℓ≅A' : Level Rel : ∀ {ℓ} (A B : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) Rel A B ℓ' = A → B → Type ℓ' PropRel : ∀ {ℓ} (A B : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) PropRel A B ℓ' = Σ[ R ∈ Rel A B ℓ' ] ∀ a b → isProp (R a b) idPropRel : ∀ {ℓ} (A : Type ℓ) → PropRel A A ℓ idPropRel A .fst a a' = ∥ a ≡ a' ∥ idPropRel A .snd _ _ = squash invPropRel : ∀ {ℓ ℓ'} {A B : Type ℓ} → PropRel A B ℓ' → PropRel B A ℓ' invPropRel R .fst b a = R .fst a b invPropRel R .snd b a = R .snd a b compPropRel : ∀ {ℓ ℓ' ℓ''} {A B C : Type ℓ} → PropRel A B ℓ' → PropRel B C ℓ'' → PropRel A C (ℓ-max ℓ (ℓ-max ℓ' ℓ'')) compPropRel R S .fst a c = ∥ Σ[ b ∈ _ ] (R .fst a b × S .fst b c) ∥ compPropRel R S .snd _ _ = squash graphRel : ∀ {ℓ} {A B : Type ℓ} → (A → B) → Rel A B ℓ graphRel f a b = f a ≡ b module BinaryRelation {ℓ ℓ' : Level} {A : Type ℓ} (R : Rel A A ℓ') where isRefl : Type (ℓ-max ℓ ℓ') isRefl = (a : A) → R a a isSym : Type (ℓ-max ℓ ℓ') isSym = (a b : A) → R a b → R b a isTrans : Type (ℓ-max ℓ ℓ') isTrans = (a b c : A) → R a b → R b c → R a c record isEquivRel : Type (ℓ-max ℓ ℓ') where constructor equivRel field reflexive : isRefl symmetric : isSym transitive : isTrans isPropValued : Type (ℓ-max ℓ ℓ') isPropValued = (a b : A) → isProp (R a b) isEffective : Type (ℓ-max ℓ ℓ') isEffective = (a b : A) → isEquiv (eq/ {R = R} a b) impliesIdentity : Type _ impliesIdentity = {a a' : A} → (R a a') → (a ≡ a') -- the total space corresponding to the binary relation w.r.t. a relSinglAt : (a : A) → Type (ℓ-max ℓ ℓ') relSinglAt a = Σ[ a' ∈ A ] (R a a') -- the statement that the total space is contractible at any a contrRelSingl : Type (ℓ-max ℓ ℓ') contrRelSingl = (a : A) → isContr (relSinglAt a) isUnivalent : Type (ℓ-max ℓ ℓ') isUnivalent = (a a' : A) → (R a a') ≃ (a ≡ a') contrRelSingl→isUnivalent : isRefl → contrRelSingl → isUnivalent contrRelSingl→isUnivalent ρ c a a' = isoToEquiv i where h : isProp (relSinglAt a) h = isContr→isProp (c a) aρa : relSinglAt a aρa = a , ρ a Q : (y : A) → a ≡ y → _ Q y _ = R a y i : Iso (R a a') (a ≡ a') Iso.fun i r = cong fst (h aρa (a' , r)) Iso.inv i = J Q (ρ a) Iso.rightInv i = J (λ y p → cong fst (h aρa (y , J Q (ρ a) p)) ≡ p) (J (λ q _ → cong fst (h aρa (a , q)) ≡ refl) (J (λ α _ → cong fst α ≡ refl) refl (isContr→isProp (isProp→isContrPath h aρa aρa) refl (h aρa aρa))) (sym (JRefl Q (ρ a)))) Iso.leftInv i r = J (λ w β → J Q (ρ a) (cong fst β) ≡ snd w) (JRefl Q (ρ a)) (h aρa (a' , r)) isUnivalent→contrRelSingl : isUnivalent → contrRelSingl isUnivalent→contrRelSingl u a = q where abstract f : (x : A) → a ≡ x → R a x f x p = invEq (u a x) p t : singl a → relSinglAt a t (x , p) = x , f x p q = isOfHLevelRespectEquiv 0 (t , totalEquiv _ _ f λ x → invEquiv (u a x) .snd) (isContrSingl a) EquivRel : ∀ {ℓ} (A : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) EquivRel A ℓ' = Σ[ R ∈ Rel A A ℓ' ] BinaryRelation.isEquivRel R EquivPropRel : ∀ {ℓ} (A : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) EquivPropRel A ℓ' = Σ[ R ∈ PropRel A A ℓ' ] BinaryRelation.isEquivRel (R .fst) record RelIso {A : Type ℓA} (_≅_ : Rel A A ℓ≅A) {A' : Type ℓA'} (_≅'_ : Rel A' A' ℓ≅A') : Type (ℓ-max (ℓ-max ℓA ℓA') (ℓ-max ℓ≅A ℓ≅A')) where constructor reliso field fun : A → A' inv : A' → A rightInv : (a' : A') → fun (inv a') ≅' a' leftInv : (a : A) → inv (fun a) ≅ a open BinaryRelation RelIso→Iso : {A : Type ℓA} {A' : Type ℓA'} (_≅_ : Rel A A ℓ≅A) (_≅'_ : Rel A' A' ℓ≅A') (uni : impliesIdentity _≅_) (uni' : impliesIdentity _≅'_) (f : RelIso _≅_ _≅'_) → Iso A A' Iso.fun (RelIso→Iso _ _ _ _ f) = RelIso.fun f Iso.inv (RelIso→Iso _ _ _ _ f) = RelIso.inv f Iso.rightInv (RelIso→Iso _ _ uni uni' f) a' = uni' (RelIso.rightInv f a') Iso.leftInv (RelIso→Iso _ _ uni uni' f) a = uni (RelIso.leftInv f a)
33.814286
106
0.55112
df46b10637ea05aaea3039714179a9a28d7cc912
1,084
agda
Agda
test/Succeed/ImproveInertRHS.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/ImproveInertRHS.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/ImproveInertRHS.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
data Nat : Set where zero : Nat suc : Nat → Nat data Id (A : Set) : Set where mkId : A → Id A data Monad (M : Set → Set) : Set where postulate return : ∀ {M} {{Mon : Monad M}} {A} → A → M A _>>=_ : ∀ {M} {{Mon : Monad M}} {A B} → M A → (A → M B) → M B State : (S A : Set) → Set instance MonadState : ∀ {S} → Monad (State S) MonadId : Monad Id -- Yields -- _M Nat == State Nat Nat, -- which inert improvement solves by -- _M x := State (_S x) (_A x) -- with _S Nat == Nat -- _A Nat == Nat -- This allows instance search to pick the right instance. rz : State Nat Nat rz = return zero postulate StateT : (S : Set) (M : Set → Set) (A : Set) → Set instance MonadStateT : ∀ {S M} {{_ : Monad M}} → Monad (StateT S M) stateT₁ : ∀ {M} {{Mon : Monad M}} → StateT Nat M Nat stateT₁ = return zero stateT₂ : ∀ {M} {{Mon : Monad M}} → StateT Nat M Nat stateT₂ = return zero >>= λ n → return (suc n) postulate _<$_ : ∀ {A B M} {{Mon : Monad M}} → A → M B → M A record ⊤ : Set where constructor tt foo : Id ⊤ foo = _ <$ return zero
21.68
64
0.551661
0efc88077473e2e573a86d9ded19a3b0b02297a0
321
agda
Agda
src/data/lib/prim/Agda/Builtin/Cubical/Sub.agda
bennn/agda
f77b563d328513138d6c88bf0a3e350a9b91f8ed
[ "BSD-3-Clause" ]
null
null
null
src/data/lib/prim/Agda/Builtin/Cubical/Sub.agda
bennn/agda
f77b563d328513138d6c88bf0a3e350a9b91f8ed
[ "BSD-3-Clause" ]
null
null
null
src/data/lib/prim/Agda/Builtin/Cubical/Sub.agda
bennn/agda
f77b563d328513138d6c88bf0a3e350a9b91f8ed
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --cubical #-} module Agda.Builtin.Cubical.Sub where open import Agda.Primitive.Cubical {-# BUILTIN SUB Sub #-} postulate inc : ∀ {ℓ} {A : Set ℓ} {φ} (x : A) → Sub A φ (λ _ → x) {-# BUILTIN SUBIN inc #-} primitive primSubOut : ∀ {ℓ} {A : Set ℓ} {φ : I} {u : Partial φ A} → Sub _ φ u → A
21.4
76
0.551402
18a83aaca243a5165f4043cd961ce5df2ec2e057
191
agda
Agda
test/fail/Issue328.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T04:41:05.000Z
2019-11-27T04:41:05.000Z
test/fail/Issue328.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/Issue328.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module Issue328 where mutual postulate D : Set -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/Syntax/Concrete/Definitions.hs:398
21.222222
74
0.759162
10c98468dd70135bd5ff3ec0f98284cf4d934782
2,726
agda
Agda
src/Sessions/Semantics/Expr.agda
laMudri/linear.agda
461077552d88141ac1bba044aa55b65069c3c6c0
[ "MIT" ]
34
2019-12-20T13:57:50.000Z
2021-02-03T15:22:33.000Z
src/Sessions/Semantics/Expr.agda
laMudri/linear.agda
461077552d88141ac1bba044aa55b65069c3c6c0
[ "MIT" ]
null
null
null
src/Sessions/Semantics/Expr.agda
laMudri/linear.agda
461077552d88141ac1bba044aa55b65069c3c6c0
[ "MIT" ]
2
2020-01-30T14:15:14.000Z
2020-05-23T00:34:36.000Z
module Sessions.Semantics.Expr where open import Prelude open import Data.Fin open import Relation.Unary.PredicateTransformer hiding (_⊔_) open import Relation.Ternary.Separation.Morphisms open import Relation.Ternary.Separation.Monad open import Relation.Ternary.Separation.Monad.Reader open import Sessions.Syntax.Types open import Sessions.Syntax.Values open import Sessions.Syntax.Expr open import Sessions.Semantics.Commands open import Sessions.Semantics.Runtime open import Relation.Ternary.Separation.Construct.List Type open import Relation.Ternary.Separation.Monad.Free Cmd δ hiding (⟪_⟫) open import Relation.Ternary.Separation.Monad.Error open ErrorTrans Free {{monad = free-monad}} public open ReaderTransformer id-morph Val (ErrorT Free) {{error-monad}} renaming (Reader to M) public open Monads using (Monad; str; _&_) open Monad reader-monad mutual eval⊸ : ∀ {Γ} → ℕ → Exp (a ⊸ b) Γ → ∀[ Val a ⇒ⱼ M Γ [] (Val b) ] eval⊸ n e v = do (clos e env) ×⟨ σ₂ ⟩ v ← ►eval n e & v empty ← append (cons (v ×⟨ ⊎-comm σ₂ ⟩ env)) ►eval n e ►eval : ℕ → Exp a Γ → ε[ M Γ [] (Val a) ] app (►eval zero e) _ _ = partial (pure (inj₁ err)) ►eval (suc n) e = eval n e ⟪_⟫ : ∀ {Γ Φ} → (c : Cmd Φ) → M Γ Γ (δ c) Φ app (⟪_⟫ c) (inj E) σ = partial (impure (c ×⟨ σ ⟩ wand λ r σ' → pure (inj₂ (r ×⟨ ⊎-comm σ' ⟩ E)))) eval : ℕ → Exp a Γ → ε[ M Γ [] (Val a) ] eval n unit = do return tt eval n (var refl) = do (v :⟨ σ ⟩: nil) ← ask case ⊎-id⁻ʳ σ of λ where refl → return v eval n (lam a e) = do env ← ask return (clos e env) eval n (ap (f ×⟨ Γ≺ ⟩ e)) = do v ← frame (⊎-comm Γ≺) (►eval n e) eval⊸ n f v eval n (pairs (e₁ ×⟨ Γ≺ ⟩ e₂)) = do v₁ ← frame Γ≺ (►eval n e₁) v₂⋆v₂ ← ►eval n e₂ & v₁ return (pairs (✴-swap v₂⋆v₂)) eval n (letunit (e₁ ×⟨ Γ≺ ⟩ e₂)) = do tt ← frame Γ≺ (►eval n e₁) ►eval n e₂ eval n (letpair (e₁ ×⟨ Γ≺ ⟩ e₂)) = do pairs (v₁ ×⟨ σ ⟩ v₂) ← frame Γ≺ (►eval n e₁) empty ← prepend (cons (v₁ ×⟨ σ ⟩ singleton v₂)) ►eval n e₂ eval n (send (e₁ ×⟨ Γ≺ ⟩ e₂)) = do v₁ ← frame Γ≺ (►eval n e₁) cref φ ×⟨ σ ⟩ v₁ ← ►eval n e₂ & v₁ φ' ← ⟪ send (φ ×⟨ σ ⟩ v₁) ⟫ return (cref φ') eval n (recv e) = do cref φ ← ►eval n e v ×⟨ σ ⟩ φ' ← ⟪ receive φ ⟫ return (pairs (cref φ' ×⟨ ⊎-comm σ ⟩ v)) eval n (mkchan α) = do φₗ ×⟨ σ ⟩ φᵣ ← ⟪ mkchan α ⟫ return (pairs (cref φₗ ×⟨ σ ⟩ cref φᵣ)) eval n (fork e) = do clos body env ← ►eval n e empty ← ⟪ fork (app (runReader (cons (tt ×⟨ ⊎-idˡ ⟩ env))) (►eval n body) ⊎-idʳ) ⟫ return tt eval n (terminate e) = do cref φ ← ►eval n e empty ← ⟪ close φ ⟫ return tt
26.72549
80
0.573734
10e42b4931be0c9da9c844afe1a70fbdd39e98e3
3,060
agda
Agda
src/Categories/Category/Core.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
src/Categories/Category/Core.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
src/Categories/Category/Core.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Categories.Category.Core where open import Level open import Function.Base using (flip) open import Relation.Binary using (Rel; IsEquivalence; Setoid) import Relation.Binary.Reasoning.Setoid as SetoidR -- Basic definition of a |Category| with a Hom setoid. -- Also comes with some reasoning combinators (see HomReasoning) record Category (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where eta-equality infix 4 _≈_ _⇒_ infixr 9 _∘_ field Obj : Set o _⇒_ : Rel Obj ℓ _≈_ : ∀ {A B} → Rel (A ⇒ B) e id : ∀ {A} → (A ⇒ A) _∘_ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C) field assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D} → (h ∘ g) ∘ f ≈ h ∘ (g ∘ f) -- We add a symmetric proof of associativity so that the opposite category of the -- opposite category is definitionally equal to the original category. See how -- `op` is implemented. sym-assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D} → h ∘ (g ∘ f) ≈ (h ∘ g) ∘ f identityˡ : ∀ {A B} {f : A ⇒ B} → id ∘ f ≈ f identityʳ : ∀ {A B} {f : A ⇒ B} → f ∘ id ≈ f -- We add a proof of "neutral" identity proof, in order to ensure the opposite of -- constant functor is definitionally equal to itself. identity² : ∀ {A} → id ∘ id {A} ≈ id {A} equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B}) ∘-resp-≈ : ∀ {A B C} {f h : B ⇒ C} {g i : A ⇒ B} → f ≈ h → g ≈ i → f ∘ g ≈ h ∘ i module Equiv {A B : Obj} = IsEquivalence (equiv {A} {B}) open Equiv ∘-resp-≈ˡ : ∀ {A B C} {f h : B ⇒ C} {g : A ⇒ B} → f ≈ h → f ∘ g ≈ h ∘ g ∘-resp-≈ˡ pf = ∘-resp-≈ pf refl ∘-resp-≈ʳ : ∀ {A B C} {f h : A ⇒ B} {g : B ⇒ C} → f ≈ h → g ∘ f ≈ g ∘ h ∘-resp-≈ʳ pf = ∘-resp-≈ refl pf hom-setoid : ∀ {A B} → Setoid _ _ hom-setoid {A} {B} = record { Carrier = A ⇒ B ; _≈_ = _≈_ ; isEquivalence = equiv } -- Reasoning combinators. _≈⟨_⟩_ and _≈˘⟨_⟩_ from SetoidR. -- Also some useful combinators for doing reasoning on _∘_ chains module HomReasoning {A B : Obj} where open SetoidR (hom-setoid {A} {B}) public -- open Equiv {A = A} {B = B} public infixr 4 _⟩∘⟨_ refl⟩∘⟨_ infixl 5 _⟩∘⟨refl _⟩∘⟨_ : ∀ {M} {f h : M ⇒ B} {g i : A ⇒ M} → f ≈ h → g ≈ i → f ∘ g ≈ h ∘ i _⟩∘⟨_ = ∘-resp-≈ refl⟩∘⟨_ : ∀ {M} {f : M ⇒ B} {g i : A ⇒ M} → g ≈ i → f ∘ g ≈ f ∘ i refl⟩∘⟨_ = Equiv.refl ⟩∘⟨_ _⟩∘⟨refl : ∀ {M} {f h : M ⇒ B} {g : A ⇒ M} → f ≈ h → f ∘ g ≈ h ∘ g _⟩∘⟨refl = _⟩∘⟨ Equiv.refl -- convenient inline versions infix 2 ⟺ infixr 3 _○_ ⟺ : {f g : A ⇒ B} → f ≈ g → g ≈ f ⟺ = Equiv.sym _○_ : {f g h : A ⇒ B} → f ≈ g → g ≈ h → f ≈ h _○_ = Equiv.trans op : Category o ℓ e op = record { Obj = Obj ; _⇒_ = flip _⇒_ ; _≈_ = _≈_ ; _∘_ = flip _∘_ ; id = id ; assoc = sym-assoc ; sym-assoc = assoc ; identityˡ = identityʳ ; identityʳ = identityˡ ; identity² = identity² ; equiv = equiv ; ∘-resp-≈ = flip ∘-resp-≈ }
31.875
91
0.493791
4a4423f17d49d7de62a12b074cb1ecb7fd1dd595
3,582
agda
Agda
src/Pi/I.agda
mietek/formal-logic
2dd761bfa96ccda089888e8defa6814776fa2922
[ "X11" ]
26
2015-08-31T09:49:52.000Z
2021-11-13T12:37:44.000Z
src/Pi/I.agda
mietek/formal-logic
2dd761bfa96ccda089888e8defa6814776fa2922
[ "X11" ]
null
null
null
src/Pi/I.agda
mietek/formal-logic
2dd761bfa96ccda089888e8defa6814776fa2922
[ "X11" ]
null
null
null
-- Intuitionistic logic, PHOAS approach, initial encoding module Pi.I (Indiv : Set) where -- Types data Ty : Set Pred : Set Pred = Indiv -> Ty infixl 2 _&&_ infixl 1 _||_ infixr 0 _=>_ data Ty where UNIT : Ty _=>_ : Ty -> Ty -> Ty _&&_ : Ty -> Ty -> Ty _||_ : Ty -> Ty -> Ty FALSE : Ty FORALL : Pred -> Ty EXISTS : Pred -> Ty infixr 0 _<=>_ _<=>_ : Ty -> Ty -> Ty a <=> b = (a => b) && (b => a) NOT : Ty -> Ty NOT a = a => FALSE TRUE : Ty TRUE = FALSE => FALSE -- Context and truth/individual judgement data El : Set where mkTrue : Ty -> El mkIndiv : Indiv -> El Cx : Set1 Cx = El -> Set isTrue : Ty -> Cx -> Set isTrue a tc = tc (mkTrue a) isIndiv : Indiv -> Cx -> Set isIndiv x tc = tc (mkIndiv x) -- Terms module I where infixl 2 _$$_ infixl 1 _$_ data Tm (tc : Cx) : Ty -> Set where var : forall {a} -> isTrue a tc -> Tm tc a lam' : forall {a b} -> (isTrue a tc -> Tm tc b) -> Tm tc (a => b) _$_ : forall {a b} -> Tm tc (a => b) -> Tm tc a -> Tm tc b pair' : forall {a b} -> Tm tc a -> Tm tc b -> Tm tc (a && b) fst : forall {a b} -> Tm tc (a && b) -> Tm tc a snd : forall {a b} -> Tm tc (a && b) -> Tm tc b left : forall {a b} -> Tm tc a -> Tm tc (a || b) right : forall {a b} -> Tm tc b -> Tm tc (a || b) case' : forall {a b c} -> Tm tc (a || b) -> (isTrue a tc -> Tm tc c) -> (isTrue b tc -> Tm tc c) -> Tm tc c pi' : forall {p} -> (forall {x} -> isIndiv x tc -> Tm tc (p x)) -> Tm tc (FORALL p) _$$_ : forall {p x} -> Tm tc (FORALL p) -> isIndiv x tc -> Tm tc (p x) sig' : forall {p x} -> isIndiv x tc -> Tm tc (p x) -> Tm tc (EXISTS p) split' : forall {p x a} -> Tm tc (EXISTS p) -> (isTrue (p x) tc -> Tm tc a) -> Tm tc a abort : forall {a} -> Tm tc FALSE -> Tm tc a lam'' : forall {tc a b} -> (Tm tc a -> Tm tc b) -> Tm tc (a => b) lam'' f = lam' \x -> f (var x) case'' : forall {tc a b c} -> Tm tc (a || b) -> (Tm tc a -> Tm tc c) -> (Tm tc b -> Tm tc c) -> Tm tc c case'' xy f g = case' xy (\x -> f (var x)) (\y -> g (var y)) split'' : forall {tc p x a} -> Tm tc (EXISTS p) -> (Tm tc (p x) -> Tm tc a) -> Tm tc a split'' x f = split' x \y -> f (var y) syntax lam'' (\a -> b) = lam a => b syntax pair' x y = [ x , y ] syntax case'' xy (\x -> z1) (\y -> z2) = case xy of x => z1 or y => z2 syntax pi' (\x -> px) = pi x => px syntax sig' x px = [ x ,, px ] syntax split'' x (\y -> z) = split x as y => z Thm : Ty -> Set1 Thm a = forall {tc} -> Tm tc a open I public -- Example theorems t214 : forall {p q : Pred} -> Thm ( FORALL (\x -> p x || NOT (p x)) && FORALL (\x -> p x => EXISTS (\y -> q y)) => FORALL (\x -> EXISTS (\y -> p x => q y))) t214 = lam fg => pi x => case fst fg $$ x of px => split snd fg $$ x $ px as qy => [ x ,, lam _ => qy ] or npx => [ x ,, lam px => abort (npx $ px) ] l5 : forall {a} -> Thm (a && FALSE <=> FALSE) l5 = [ lam xnt => snd xnt , lam nt => abort nt ] l10 : forall {a} -> Thm (a || FALSE <=> a) l10 = [ lam xnt => case xnt of x => x or nt => abort nt , lam x => left x ] l20 : forall {a} -> Thm ((FALSE => a) <=> TRUE) l20 = [ lam _ => lam nt => nt , lam _ => lam nt => abort nt ]
27.553846
114
0.434953
1c3088415d4db04bb71cccceabd8041240a41015
1,214
agda
Agda
Syntax/List.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Syntax/List.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Syntax/List.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
-- Opening this module allows lists to be written using "list notation". -- Examples: -- [] = ∅ -- [ a ] = a ⊰ ∅ -- [ a , b ] = a ⊰ b ⊰ ∅ -- [ a , b , c ] = a ⊰ b ⊰ c ⊰ ∅ module Syntax.List where open import Data.List {- infixl 1 [_ infixr 1000 _,_ infixl 100000 _] pattern [] = ∅ pattern [_ l = l pattern _,_ x l = x ⊰ l pattern _] x = x ⊰ ∅ -} pattern [] = ∅ pattern [_] x₁ = x₁ ⊰ ∅ pattern [_,_] x₁ x₂ = x₁ ⊰ x₂ ⊰ ∅ pattern [_,_,_] x₁ x₂ x₃ = x₁ ⊰ x₂ ⊰ x₃ ⊰ ∅ pattern [_,_,_,_] x₁ x₂ x₃ x₄ = x₁ ⊰ x₂ ⊰ x₃ ⊰ x₄ ⊰ ∅ pattern [_,_,_,_,_] x₁ x₂ x₃ x₄ x₅ = x₁ ⊰ x₂ ⊰ x₃ ⊰ x₄ ⊰ x₅ ⊰ ∅ pattern [_,_,_,_,_,_] x₁ x₂ x₃ x₄ x₅ x₆ = x₁ ⊰ x₂ ⊰ x₃ ⊰ x₄ ⊰ x₅ ⊰ x₆ ⊰ ∅ pattern [_,_,_,_,_,_,_] x₁ x₂ x₃ x₄ x₅ x₆ x₇ = x₁ ⊰ x₂ ⊰ x₃ ⊰ x₄ ⊰ x₅ ⊰ x₆ ⊰ x₇ ⊰ ∅ pattern [_,_,_,_,_,_,_,_] x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈ = x₁ ⊰ x₂ ⊰ x₃ ⊰ x₄ ⊰ x₅ ⊰ x₆ ⊰ x₇ ⊰ x₈ ⊰ ∅ pattern [_,_,_,_,_,_,_,_,_] x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₉ = x₁ ⊰ x₂ ⊰ x₃ ⊰ x₄ ⊰ x₅ ⊰ x₆ ⊰ x₇ ⊰ x₈ ⊰ x₉ ⊰ ∅
37.9375
103
0.397858
1c2f39bd02752ad5115c4e1d41b89aa2bf6c9c0b
351
agda
Agda
Categories/Terminal.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
21
2015-07-30T01:25:12.000Z
2021-02-13T18:02:18.000Z
Categories/Terminal.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
3
2019-01-13T13:12:33.000Z
2019-05-29T09:50:26.000Z
Categories/Terminal.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
1
2019-11-04T21:33:13.000Z
2019-11-04T21:33:13.000Z
module Categories.Terminal where open import Library open import Categories open import Categories.Sets open Cat record Term {a b} (C : Cat {a}{b})(T : Obj C) : Set (a ⊔ b) where constructor term field t : ∀{X} → Hom C X T law : ∀{X}{f : Hom C X T} → t {X} ≅ f OneSet : Term Sets ⊤ OneSet = record {t = λ _ → _; law = ext (λ _ → refl)}
23.4
65
0.609687
cb260a46db03f960209d8b5747026cbb8a41487f
10,743
agda
Agda
Formalization/PredicateLogic/Constructive/SequentCalculus.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Formalization/PredicateLogic/Constructive/SequentCalculus.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Formalization/PredicateLogic/Constructive/SequentCalculus.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical #-} open import Formalization.PredicateLogic.Signature module Formalization.PredicateLogic.Constructive.SequentCalculus (𝔏 : Signature) where open Signature(𝔏) open import Data.Option open import Data.List open import Data.List.Functions using (map) renaming (singleton to · ; _++_ to _∪_) open import Data.List.Relation.Permutation import Data.ListSized as S open import Formalization.PredicateLogic.Syntax(𝔏) open import Formalization.PredicateLogic.Syntax.Substitution(𝔏) open import Functional as Fn using () import Lvl open import Numeral.Natural open import Type private variable ℓ : Lvl.Level private variable args n vars vars₁ vars₂ : ℕ private variable Γ Γ₁ Γ₂ Γ₃ : List(Formula(vars)) private variable Δ Δ₁ Δ₂ Δ₃ : Option(Formula(vars)) private variable φ φ₁ φ₂ ψ A B C : Formula(vars) private variable p : Prop(n) private variable f : Prop(args) private variable x : S.List(Term(vars))(args) _∪·_ : ∀{T : Type{ℓ}} → List(T) → T → List(T) _∪·_ = Fn.swap(_⊰_) infixl 1000 _∪·_ module Variant1 where data _⇒_ : List(Formula(vars)) → Option(Formula(vars)) → Type{Lvl.𝐒(ℓₚ Lvl.⊔ ℓₒ)} where axiom : ((· φ) ⇒ Some(φ)) weakenₗ : (Γ ⇒ Δ) → ((Γ ∪· A) ⇒ Δ) permuteₗ : (Γ₁ permutes Γ₂) → (Γ₁ ⇒ Δ) → (Γ₂ ⇒ Δ) contractₗ : ((Γ ∪· A ∪· A) ⇒ Δ) → ((Γ ∪· A) ⇒ Δ) ⊥ₗ : (Γ ∪· ⊥) ⇒ None ∧ₗₗ : ((Γ ∪· A) ⇒ Δ) → ((Γ ∪· (A ∧ B)) ⇒ Δ) ∧ₗᵣ : ((Γ ∪· B) ⇒ Δ) → ((Γ ∪· (A ∧ B)) ⇒ Δ) ∨ₗ : ((Γ ∪· A) ⇒ Δ) → ((Γ ∪· B) ⇒ Δ) → ((Γ ∪· (A ∨ B)) ⇒ Δ) ⟶ₗ : (Γ ⇒ Some(A)) → ((Γ ∪· B) ⇒ Δ) → ((Γ ∪· (A ⟶ B)) ⇒ Δ) Ɐₗ : ∀{t} → ((Γ ∪· (substitute0 t A)) ⇒ Δ) → ((Γ ∪· (Ɐ A)) ⇒ Δ) ∃ₗ : ∀{v}{n} → ((Γ ∪· (substituteN n (var v) A)) ⇒ Δ) → ((Γ ∪· (∃ A)) ⇒ Δ) weakenᵣ : (Γ ⇒ None) → (Γ ⇒ Some(A)) ⊤ᵣ : ∅ ⇒ Some(⊤ {vars}) ∧ᵣ : (Γ ⇒ Some(A)) → (Γ ⇒ Some(B)) → (Γ ⇒ Some(A ∧ B)) ∨ᵣₗ : (Γ ⇒ Some(A)) → (Γ ⇒ Some(A ∨ B)) ∨ᵣᵣ : (Γ ⇒ Some(B)) → (Γ ⇒ Some(A ∨ B)) ⟶ᵣ : ((Γ ∪· A) ⇒ Some(B)) → (Γ ⇒ Some(A ⟶ B)) Ɐᵣ : ∀{v}{n} → (Γ ⇒ Some((substituteN n (var v) A))) → (Γ ⇒ Some(Ɐ A)) ∃ᵣ : ∀{t} → (Γ ⇒ Some((substitute0 t A))) → (Γ ⇒ Some(∃ A)) import Logic.Propositional as Meta no-empty-refl : Meta.¬(∅ ⇒ None{T = Formula vars}) no-empty-refl (permuteₗ perm p) rewrite Proofs.permutes-on-empty perm = no-empty-refl p {- no-callCC : Meta.¬(∅ ⇒ Some(((A ⟶ B) ⟶ A) ⟶ A)) no-callCC (permuteₗ perm p) rewrite permutes-on-empty perm = no-callCC p no-callCC (weakenᵣ (permuteₗ perm p)) rewrite permutes-on-empty perm = no-empty-refl p no-callCC (⟶ᵣ p) = no-callCC {!!} {-no-callCC (⟶ᵣ (weakenₗ p)) = {!!} no-callCC (⟶ᵣ (permuteₗ x p)) = {!!} no-callCC (⟶ᵣ (contractₗ p)) = {!!} no-callCC (⟶ᵣ (⟶ₗ p p₁)) = {!!} no-callCC (⟶ᵣ (weakenᵣ p)) = {!!} no-callCC (⟶ᵣ (∧ᵣ p p₁)) = {!!} no-callCC (⟶ᵣ (∨ᵣₗ p)) = {!!} no-callCC (⟶ᵣ (∨ᵣᵣ p)) = {!!} no-callCC (⟶ᵣ (⟶ᵣ p)) = {!!} no-callCC (⟶ᵣ (Ɐᵣ p)) = {!!} no-callCC (⟶ᵣ (∃ᵣ p)) = {!!} -} -} module Variant3 where -- Note: Because this formalization is non-standard, a problem arises for Formula(𝟎): It it missing some of the quantification rules because it has no variables. data _⇒_ : List(Formula(vars)) → Formula(vars) → Type{Lvl.𝐒(ℓₚ Lvl.⊔ ℓₒ)} where axiom : ((Γ ∪· (f $ x)) ⇒ (f $ x)) permuteₗ : (Γ₁ permutes Γ₂) → (Γ₁ ⇒ C) → (Γ₂ ⇒ C) ⊥ₗ : (Γ ∪· ⊥) ⇒ A ∧ₗ : ((Γ ∪· A ∪· B) ⇒ C) → ((Γ ∪· (A ∧ B)) ⇒ C) ∨ₗ : ((Γ ∪· A) ⇒ C) → ((Γ ∪· B) ⇒ C) → ((Γ ∪· (A ∨ B)) ⇒ C) ⟶ₗ : ((Γ ∪· (A ⟶ B)) ⇒ A) → ((Γ ∪· B) ⇒ C) → ((Γ ∪· (A ⟶ B)) ⇒ C) Ɐₗ : ∀{t} → ((Γ ∪· (substitute0 t A) ∪· (Ɐ A)) ⇒ C) → ((Γ ∪· (Ɐ A)) ⇒ C) ∃ₗ : ∀{n}{v} → ((Γ ∪· (substituteN n (var v) A)) ⇒ C) → ((Γ ∪· (∃ A)) ⇒ C) ⊤ᵣ : Γ ⇒ (⊤ {vars}) ∧ᵣ : (Γ ⇒ A) → (Γ ⇒ B) → (Γ ⇒ (A ∧ B)) ∨ᵣₗ : (Γ ⇒ A) → (Γ ⇒ (A ∨ B)) ∨ᵣᵣ : (Γ ⇒ B) → (Γ ⇒ (A ∨ B)) ⟶ᵣ : ((Γ ∪· A) ⇒ B) → (Γ ⇒ (A ⟶ B)) Ɐᵣ : ∀{n}{v} → (Γ ⇒ (substituteN n (var v) A)) → (Γ ⇒ (Ɐ A)) ∃ᵣ : ∀{t} → (Γ ⇒ (substitute0 t A)) → (Γ ⇒ (∃ A)) import Logic.Propositional as Meta open import Numeral.Finite open import Type.Properties.Inhabited weakenₗ : (Γ ⇒ ψ) → ((Γ ∪· φ) ⇒ ψ) weakenₗ axiom = permuteₗ swap axiom weakenₗ (permuteₗ x p) = permuteₗ (prepend x) (weakenₗ p) weakenₗ ⊥ₗ = permuteₗ swap ⊥ₗ weakenₗ (∧ₗ p) = permuteₗ swap (∧ₗ(permuteₗ (trans swap (prepend swap)) (weakenₗ p))) weakenₗ (∨ₗ p q) = permuteₗ swap (∨ₗ (permuteₗ swap (weakenₗ p)) (permuteₗ swap (weakenₗ q))) weakenₗ (⟶ₗ p q) = permuteₗ swap (⟶ₗ (permuteₗ swap (weakenₗ p)) (permuteₗ swap (weakenₗ q))) weakenₗ (Ɐₗ p) = permuteₗ swap (Ɐₗ (permuteₗ (trans swap (prepend swap)) (weakenₗ p))) weakenₗ (∃ₗ{n = n} p) = permuteₗ swap (∃ₗ{n = n} (permuteₗ swap (weakenₗ p))) weakenₗ ⊤ᵣ = ⊤ᵣ weakenₗ (∧ᵣ p q) = ∧ᵣ (weakenₗ p) (weakenₗ q) weakenₗ (∨ᵣₗ p) = ∨ᵣₗ (weakenₗ p) weakenₗ (∨ᵣᵣ p) = ∨ᵣᵣ (weakenₗ p) weakenₗ (⟶ᵣ p) = ⟶ᵣ (permuteₗ swap (weakenₗ p)) weakenₗ (Ɐᵣ{n = n} p) = Ɐᵣ{n = n} (weakenₗ p) weakenₗ (∃ᵣ p) = ∃ᵣ (weakenₗ p) weaken-union : (Γ₂ ⇒ φ) → ((Γ₁ ∪ Γ₂) ⇒ φ) weaken-union {Γ₁ = ∅} p = p weaken-union {Γ₁ = φ ⊰ Γ₁} p = weakenₗ (weaken-union {Γ₁ = Γ₁} p) open import Formalization.PredicateLogic.Syntax.Tree(𝔏) open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Proofs open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Function open import Structure.Relator.Properties open import Syntax.Function direct₊ : ∀{φ : Formula(𝐒(vars))} → ((Γ ∪· φ) ⇒ φ) direct₊{Γ = Γ}{φ = φ} = induction-on-height(P) (\{vars}{φ} → proof{vars}{φ}) \() where P = \{vars} (φ : Formula(vars)) → (vars ≢ 𝟎) → ∀{Γ} → (Γ ∪· φ) ⇒ φ proof : ∀{φ : Formula(vars)} → (∀{vars}{ψ : Formula(vars)} → (height ψ < height φ) → P(ψ)) → P(φ) proof {𝟎} _ nz with () ← nz [≡]-intro proof {𝐒 _} {φ = f $ x} prev _ = axiom proof {𝐒 _} {φ = ⊤} prev _ = weakenₗ ⊤ᵣ proof {𝐒 _} {φ = ⊥} prev _ = ⊥ₗ proof {𝐒 _} {φ = φ ∧ ψ} prev nz = ∧ᵣ (∧ₗ (permuteₗ swap (prev (∧-height-orderₗ{φ = φ}{ψ = ψ}) nz))) (∧ₗ (prev (∧-height-orderᵣ{ψ = ψ}{φ = φ}) nz)) proof {𝐒 _} {φ = φ ∨ ψ} prev nz = ∨ₗ (∨ᵣₗ (prev (∨-height-orderₗ{φ = φ}{ψ = ψ}) nz)) (∨ᵣᵣ (prev (∨-height-orderᵣ{ψ = ψ}{φ = φ}) nz)) proof {𝐒 _} {φ = φ ⟶ ψ} prev nz = ⟶ᵣ (permuteₗ swap (⟶ₗ (permuteₗ swap (prev (⟶-height-orderₗ{φ = φ}{ψ = ψ}) nz)) (prev (⟶-height-orderᵣ{ψ = ψ}{φ = φ}) nz))) proof {𝐒 v} {φ = Ɐ φ} prev nz = Ɐᵣ{n = 𝟎}{v = 𝟎} (Ɐₗ{t = var 𝟎} (weakenₗ (prev (subtransitivityₗ(_≤_)(_≡_) (congruence₁(𝐒) (substitute-height{φ = φ})) (Ɐ-height-order{φ = φ})) nz))) proof {𝐒 v} {φ = ∃ φ} prev nz = ∃ᵣ{t = var 𝟎} (∃ₗ{n = 𝟎}{v = 𝟎} (prev (subtransitivityₗ(_≤_)(_≡_) (congruence₁(𝐒) (substitute-height{φ = φ})) (Ɐ-height-order{φ = φ})) nz)) no-empty-refl : Meta.¬(∅ ⇒ (⊥ {vars})) no-empty-refl (permuteₗ perm p) rewrite Proofs.permutes-on-empty perm = no-empty-refl p no-empty-axiomₗ : Meta.¬(·(p $ x) ⇒ ⊥) no-empty-axiomₗ (permuteₗ perm p) rewrite Proofs.permutes-on-singleton perm = no-empty-axiomₗ p no-empty-axiomᵣ : Meta.¬(∅ ⇒ (p $ x)) no-empty-axiomᵣ (permuteₗ perm p) rewrite Proofs.permutes-on-empty perm = no-empty-axiomᵣ p no-negated-axiomᵣ : Meta.¬(∅ ⇒ (¬(p $ x))) no-negated-axiomᵣ (permuteₗ perm p) rewrite Proofs.permutes-on-empty perm = no-negated-axiomᵣ p no-negated-axiomᵣ (⟶ᵣ p) = no-empty-axiomₗ p -- 3.5.2 substitute-proof : ∀{t : 𝕟(vars₁) → Term(vars₂)} → (Γ ⇒ φ) → ((map(substitute t) Γ) ⇒ (substitute t φ)) substitute-proof p = {!!} module _ ⦃ pos-prop : ◊(Prop(0)) ⦄ where no-excludedMiddle : Meta.¬(∀{A : Formula(vars)} → (∅ ⇒ (A ∨ (¬ A)))) no-excludedMiddle as = proof(as{[◊]-existence $ S.∅}) where proof : Meta.¬(∅ ⇒ ((p $ x) ∨ ¬(p $ x))) proof (permuteₗ perm q) rewrite Proofs.permutes-on-empty perm = proof q proof (∨ᵣₗ (permuteₗ perm q)) rewrite Proofs.permutes-on-empty perm = no-empty-axiomᵣ q proof (∨ᵣᵣ (permuteₗ perm q)) rewrite Proofs.permutes-on-empty perm = no-negated-axiomᵣ q proof (∨ᵣᵣ (permuteₗ perm (⟶ᵣ q))) rewrite Proofs.permutes-on-empty perm = no-empty-axiomₗ q proof (∨ᵣᵣ (⟶ᵣ (permuteₗ perm q))) rewrite Proofs.permutes-on-singleton perm = no-empty-axiomₗ q no-doubleNegation : Meta.¬(∀{A : Formula(vars)} → (∅ ⇒ ((¬ ¬ A) ⟶ A))) no-doubleNegation as = proof(as{[◊]-existence $ S.∅}) where proof : Meta.¬(∅ ⇒ ((¬ ¬(p $ x)) ⟶ (p $ x))) proof (permuteₗ perm q) rewrite Proofs.permutes-on-empty perm = proof q proof (⟶ᵣ (permuteₗ perm q)) = {!!} proof (⟶ᵣ (⟶ₗ q (permuteₗ perm q₁))) = {!!} proof (⟶ᵣ (⟶ₗ (permuteₗ perm q) ⊥ₗ)) = {!!} proof (⟶ᵣ (⟶ₗ (⟶ₗ q q₁) ⊥ₗ)) = {!!} proof (⟶ᵣ (⟶ₗ (⟶ᵣ q) ⊥ₗ)) = {!!} test : ∀{T : Type{ℓ}} → (Γ₁ permutes Γ₂) → ((Γ₁ ⇒ φ) → T) → ((Γ₂ ⇒ φ) → T) test perm p1 p2 = p1 (permuteₗ (symmetry(_permutes_) perm) p2) {-# INLINE test #-} no-callCC : Meta.¬(∀{A B : Formula(vars)} → (∅ ⇒ ((A ⟶ B) ⟶ A) ⟶ A)) no-callCC as = proof(as{[◊]-existence $ S.∅}{⊥}) where proof2 : Meta.¬((∅ ∪· ((p $ x ⟶ ⊥) ⟶ p $ x) ∪· p $ x) ⇒ ⊥) proof2 (permuteₗ x t) = {!t!} proof3 : Meta.¬((∅ ∪· p $ x ∪· ((p $ x ⟶ ⊥) ⟶ p $ x)) ⇒ ⊥) proof3 (permuteₗ perm p) = {!!} proof3 (⟶ₗ p q) = {!!} proof : Meta.¬(∅ ⇒ (((p $ x) ⟶ ⊥) ⟶ (p $ x)) ⟶ (p $ x)) proof (permuteₗ perm q) rewrite Proofs.permutes-on-empty perm = proof q proof (⟶ᵣ (permuteₗ perm q)) rewrite Proofs.permutes-on-singleton perm = {!!} proof (⟶ᵣ (⟶ₗ (permuteₗ perm q) q₁)) = {!!} proof (⟶ᵣ (⟶ₗ (⟶ₗ q (permuteₗ x r)) s)) = {!!} proof (⟶ᵣ (⟶ₗ (⟶ₗ q (⟶ᵣ r)) s)) = no-empty-axiomₗ (contract-axiom-bottom r) where contract-axiom-bottom : ((·(p $ x) ∪· (p $ x)) ⇒ ⊥) → (·(p $ x) ⇒ ⊥) contract-axiom-bottom (permuteₗ x p) = {!!} proof (⟶ᵣ (⟶ₗ (⟶ᵣ (permuteₗ perm q)) r)) = proof2 (permuteₗ perm q) -- proof (⟶ᵣ (⟶ₗ (⟶ᵣ (permuteₗ perm q)) r)) = test (trans swap (symmetry(_permutes_) perm)) (proof ↦ {!⟶ᵣ proof!}) q {-proof (⟶ᵣ (⟶ₗ (⟶ᵣ (permuteₗ perm q)) r)) = test (symmetry(_permutes_) perm) proof2 q where proof2 : Meta.¬((∅ ∪· ((p $ x ⟶ ⊥) ⟶ p $ x) ∪· p $ x) ⇒ ⊥) proof2 (permuteₗ perm p) = test (symmetry(_permutes_) perm) proof2 p-} {-proof (⟶ᵣ (⟶ₗ (⟶ᵣ (permuteₗ (prepend perm) q)) r)) rewrite permutes-on-singleton perm = {!!} proof (⟶ᵣ (⟶ₗ (⟶ᵣ (permuteₗ swap (permuteₗ perm q))) r)) = {!!} proof (⟶ᵣ (⟶ₗ (⟶ᵣ (permuteₗ swap (⟶ₗ q₁ (permuteₗ perm q₂)))) r)) = {!!} proof (⟶ᵣ (⟶ₗ (⟶ᵣ (permuteₗ (trans perm₁ perm₂) q)) r)) = {!!}-} --⟶ₗ : ((Γ ∪· (A ⟶ B)) ⇒ A) → ((Γ ∪· B) ⇒ A) → ((Γ ∪· (A ⟶ B)) ⇒ A)
48.61086
187
0.528344
1028a561a94590a76c4c79c6a7b0aa39848b5d21
337
agda
Agda
agda/BHeap/Order.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/BHeap/Order.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/BHeap/Order.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
module BHeap.Order {A : Set}(_≤_ : A → A → Set) where open import BHeap _≤_ open import Bound.Lower A open import Bound.Lower.Order _≤_ open import Data.Nat _≺_ : {b b' : Bound} → BHeap b → BHeap b' → Set h ≺ h' = # h <′ # h' data Acc {b' : Bound}(h' : BHeap b') : Set where acc : (∀ {b} h → (_≺_ {b} {b'} h h') → Acc h) → Acc h'
24.071429
56
0.560831
d0922624bf2304a946c23bab21f382eab02e79c7
512
agda
Agda
test/Fail/IdiomBracketsImplicit.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/IdiomBracketsImplicit.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/IdiomBracketsImplicit.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where open import Agda.Builtin.Nat postulate F : Set → Set pure : ∀ {A} → A → F A _<*>_ : ∀ {A B} → F (A → B) → F A → F B data Vec (A : Set) : Nat → Set where [] : Vec A zero _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) ok : ∀ n → F Nat → F (Vec Nat n) → F (Vec Nat (suc n)) ok n a as = (| a ∷ as |) ok₂ : ∀ n → F Nat → F (Vec Nat n) → F (Vec Nat (suc n)) ok₂ n a as = (| (_∷_ {n = n}) a as |) fail : ∀ n → F Nat → F (Vec Nat n) → F (Vec Nat (suc n)) fail n a as = (| _∷_ {n = n} a as |)
22.26087
56
0.462891
10931b7314d8dc41b12d1f56b7726357c9e8a332
168
agda
Agda
test/Fail/NoTerminationCheck2.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/NoTerminationCheck2.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Fail/NoTerminationCheck2.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
-- 2012-03-08 Andreas module NoTerminationCheck2 where {-# NON_TERMINATING #-} data D : Set where lam : (D -> D) -> D -- error: works only for function definitions
18.666667
45
0.684524
20bffa998f42584346e9a9aea0a76f580bcac2dc
6,593
agda
Agda
test/Succeed/Issue906EtAl.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2021-06-14T11:08:59.000Z
2021-06-14T11:08:59.000Z
test/Succeed/Issue906EtAl.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T15:49:15.000Z
2015-09-15T15:49:15.000Z
test/Succeed/Issue906EtAl.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- Andreas, 2020-02-06, issue #906, and #942 #2068 #3136 #3431 #4391 #4418 -- -- Termination checker now tries to reduce calls away -- using non-recursive clauses. -- -- This fixes the problem that for dependent copattern definitions -- the earlier, non-recursive clauses get into non-guarded positions -- in later clauses via Agda's constraint solver, and there confuse -- the termination checker. module Issue906EtAl where module Issue906 where {- Globular types as a coinductive record -} record Glob : Set1 where coinductive field Ob : Set Hom : (a b : Ob) → Glob open Glob record Unit : Set where data _==_ {A : Set} (a : A) : A → Set where refl : a == a {- The terminal globular type -} Unit-glob : Glob Ob Unit-glob = Unit Hom Unit-glob _ _ = Unit-glob {- The tower of identity types -} Id-glob : (A : Set) → Glob Ob (Id-glob A) = A Hom (Id-glob A) a b = Id-glob (a == b) module Issue907 where data _==_ {A : Set} (a : A) : A → Set where idp : a == a -- Coinductive equivalences record CoEq (A B : Set) : Set where coinductive constructor coEq field to : A → B from : B → A eq : (a : A) (b : B) → CoEq (a == from b) (to a == b) open CoEq public id-CoEq : (A : Set) → CoEq A A to (id-CoEq A) a = a from (id-CoEq A) b = b eq (id-CoEq A) a b = id-CoEq _ -- Keep underscore! -- Solution: (a == from (id-CoEq A) b) -- contains recursive call module Issue942 where record Sigma (A : Set)(P : A → Set) : Set where constructor _,_ field fst : A snd : P fst open Sigma postulate A : Set x : A P Q : A → Set Px : P x f : ∀ {x} → P x → Q x ex : Sigma A Q ex = record { fst = x ; snd = f Px -- goal: P x } ex' : Sigma A Q ex' = x , f Px -- goal: P x ex'' : Sigma A Q fst ex'' = x snd ex'' = f Px -- goal: P (fst ex'') module Issue2068-OP where data _==_ {A : Set} : A → A → Set where refl : {a : A} → a == a data Bool : Set where tt : Bool ff : Bool record TwoEqualFunctions : Set₁ where field A : Set B : Set f : A → B g : A → B p : f == g postulate funext : {A B : Set} {f g : A → B} → ((a : A) → f a == g a) → f == g identities : TwoEqualFunctions TwoEqualFunctions.A identities = Bool TwoEqualFunctions.B identities = Bool TwoEqualFunctions.f identities x = x TwoEqualFunctions.g identities = λ{tt → tt ; ff → ff} TwoEqualFunctions.p identities = funext (λ{tt → refl ; ff → refl}) module Issue2068b where data _==_ {A : Set} : (a : A) → A → Set where refl : (a : A) → a == a data Unit : Set where unit : Unit record R : Set₁ where field f : Unit → Unit p : f == λ x → x postulate extId : (f : Unit → Unit) → (∀ a → f a == a) → f == λ x → x test : R R.f test = λ{ unit → unit } R.p test = extId _ λ{ unit → refl _ } -- R.p test = extId {! R.f test !} λ{unit → refl {! R.f test unit !}} module Issue2068c where record _×_ (A B : Set) : Set where field fst : A snd : B open _×_ test : ∀{A} (a : A) → (A → A) × (A → A) fst (test a) x = a snd (test a) x = fst (test a) (snd (test a) x) module Issue3136 (A : Set) where -- Andreas, 2018-07-22, issue #3136 -- WAS: Internal error when printing termination errors postulate any : {X : Set} → X x : A P : A → Set record C : Set where field a : A b : P a c : C c = λ where .C.a → x .C.b → λ where → any -- NOW: succeeds module Issue3413 where open import Agda.Builtin.Sigma open import Agda.Builtin.Equality postulate A : Set P : ∀{X : Set} → X → Set record Bob : Set₁ where field RE : Set resp : RE → Set open Bob bob : Bob bob .RE = A bob .resp e = Σ (P e) λ {x → A} module Issue4391 where record GlobSet : Set₁ where coinductive field cells : Set morphisms : cells → cells → GlobSet open GlobSet public record GlobSetMorphism (G H : GlobSet) : Set where coinductive field func : cells G → cells H funcMorphisms : (x y : cells G) → GlobSetMorphism (morphisms G x y) (morphisms H (func x) (func y)) open GlobSetMorphism public gComp : {G H I : GlobSet} → GlobSetMorphism H I → GlobSetMorphism G H → GlobSetMorphism G I func (gComp ϕ ψ) x = func ϕ (func ψ x) funcMorphisms (gComp ϕ ψ) x y = gComp (funcMorphisms ϕ (func ψ x) (func ψ y)) (funcMorphisms ψ x y) module Issue4391Nisse where record GlobSet : Set₁ where coinductive field cells : Set morphisms : cells → cells → GlobSet open GlobSet public mutual record GlobSetMorphism (G H : GlobSet) : Set where inductive field func : cells G → cells H funcMorphisms : (x y : cells G) → GlobSetMorphism′ (morphisms G x y) (morphisms H (func x) (func y)) record GlobSetMorphism′ (G H : GlobSet) : Set where coinductive field force : GlobSetMorphism G H open GlobSetMorphism public open GlobSetMorphism′ public works fails : {G H I : GlobSet} → GlobSetMorphism H I → GlobSetMorphism G H → GlobSetMorphism G I works ϕ ψ = record { func = λ x → func ϕ (func ψ x) ; funcMorphisms = λ { x y .force → works (funcMorphisms ϕ (func ψ x) (func ψ y) .force) (funcMorphisms ψ x y .force) } } fails ϕ ψ .func = λ x → func ϕ (func ψ x) fails ϕ ψ .funcMorphisms = λ { x y .force → fails (funcMorphisms ϕ (func ψ x) (func ψ y) .force) (funcMorphisms ψ x y .force) } module Issue4418 {l} (Index : Set l) (Shape : Index → Set l) (Position : (i : Index) → Shape i → Set l) (index : (i : Index) → (s : Shape i) → Position i s → Index) where record M (i : Index) : Set l where coinductive field shape : Shape i field children : (p : Position i shape) → M (index i shape p) open M record MBase (Rec : Index → Set l) (i : Index) : Set l where coinductive field shapeB : Shape i field childrenB : (p : Position i shapeB) → Rec (index i shapeB p) open MBase module _ (S : Index → Set l) (u : ∀ {i} → S i → MBase S i) where unroll : ∀ i → S i → M i unroll i s .shape = u s .shapeB unroll i s .children p = unroll _ (u s .childrenB p) -- Underscore solved as: index i (u s .shapeB) p
22.892361
101
0.559381
cba18ad0c2195c0a1b7fa3e0d38c62844e91fa93
248
agda
Agda
cohesion/david_jaz_261/Axiom/C1.agda
glangmead/formalization
497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a
[ "CC0-1.0" ]
6
2021-10-06T17:39:22.000Z
2022-02-13T05:51:12.000Z
cohesion/david_jaz_261/Axiom/C1.agda
glangmead/formalization
497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a
[ "CC0-1.0" ]
null
null
null
cohesion/david_jaz_261/Axiom/C1.agda
glangmead/formalization
497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a
[ "CC0-1.0" ]
null
null
null
{-# OPTIONS --without-K --rewriting #-} open import Basics open import lib.Basics open import Flat module Axiom.C1 {@♭ i j : ULevel} (@♭ I : Type i) (@♭ R : I → Type j) where open import Axiom.C0 I R postulate C1 : (index : I) → R index
22.545455
75
0.620968
0e3e8265200a5b4def54f58a7667f0a8c7078c3d
7,106
agda
Agda
src/LinearLogic.agda
wenkokke/msla2014
b880cf25ed8e81b9a965ea9aad18377008d68a9f
[ "MIT" ]
5
2018-11-17T23:04:39.000Z
2020-10-29T09:07:45.000Z
src/LinearLogic.agda
wenkokke/msla2014
b880cf25ed8e81b9a965ea9aad18377008d68a9f
[ "MIT" ]
null
null
null
src/LinearLogic.agda
wenkokke/msla2014
b880cf25ed8e81b9a965ea9aad18377008d68a9f
[ "MIT" ]
null
null
null
open import Function using (case_of_; _∘_) open import Data.List using (List; _++_; map) renaming (_∷_ to _,_; _∷ʳ_ to _,′_; [] to ∅) open import Data.List.Properties using (map-++-commute) open import Data.Product using () renaming (_×_ to _x'_) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl; sym; cong) module LinearLogic (U : Set) (R : U) (⟦_⟧ᵁ : U → Set) where infixr 40 ¬_ infix 30 _⊗_ infixr 20 _⊸_ infix 4 _⊢_ data Type : Set where el : (A : U) → Type ⊥ : Type _⊗_ : Type → Type → Type _⊸_ : Type → Type → Type data _⊢_ : ∀ (X : List Type) (A : Type) → Set where var : ∀ {A} → A , ∅ ⊢ A abs : ∀ {X A B} → A , X ⊢ B → X ⊢ A ⊸ B app : ∀ {X Y A B} → X ⊢ A ⊸ B → Y ⊢ A → X ++ Y ⊢ B pair : ∀ {X Y A B} → X ⊢ A → Y ⊢ B → X ++ Y ⊢ A ⊗ B case : ∀ {X Y A B C } → X ⊢ A ⊗ B → A , B , Y ⊢ C → X ++ Y ⊢ C exch : ∀ {X Y Z W A} → (X ++ Z) ++ (Y ++ W) ⊢ A → (X ++ Y) ++ (Z ++ W) ⊢ A ¬_ : Type → Type ¬ A = A ⊸ ⊥ exch₀ : ∀ {A B C X} → A , B , X ⊢ C → B , A , X ⊢ C exch₀ {A} {B} {X = X} t = exch {∅} {B , ∅} {A , ∅} {X} t swap : ∀ {A B} → ∅ ⊢ A ⊗ B ⊸ B ⊗ A swap {A} {B} = abs (case var (exch₀ (pair var var))) raise : ∀ {A B X} → X ⊢ A → X ⊢ (A ⊸ B) ⊸ B raise t = abs (app var t) ++-assoc : ∀ {a} {A : Set a} (X Y Z : List A) → X ++ (Y ++ Z) ≡ (X ++ Y) ++ Z ++-assoc ∅ Y Z = refl ++-assoc (x , X) Y Z = cong (_,_ x) (++-assoc X Y Z) xs++[]=xs : ∀ {a} {A : Set a} (xs : List A) → xs ++ ∅ ≡ xs xs++[]=xs ∅ = refl xs++[]=xs (x , xs) = cong (_,_ x) (xs++[]=xs xs) to-front : ∀ {X A B} → A , X ⊢ B → X ,′ A ⊢ B to-front {X} {A} {B} t = lem1 lem2 where lem1 : A , (X ++ ∅) ⊢ B → X ,′ A ⊢ B lem1 = exch {∅} {X} {A , ∅} {∅} lem2 : A , (X ++ ∅) ⊢ B lem2 rewrite xs++[]=xs X = t to-back : ∀ {X A B} → X ,′ A ⊢ B → A , X ⊢ B to-back {X} {A} {B} t = lem2 where lem1 : A , X ++ ∅ ⊢ B lem1 = exch {∅} {A , ∅} {X} {∅} t lem2 : A , X ⊢ B lem2 rewrite sym (xs++[]=xs (A , X)) = lem1 YX↝XY : ∀ {A} X Y → Y ++ X ⊢ A → X ++ Y ⊢ A YX↝XY {A} X Y t = lem₃ where lem₁ : Y ++ X ++ ∅ ⊢ A lem₁ rewrite xs++[]=xs X = t lem₂ : X ++ Y ++ ∅ ⊢ A lem₂ = exch {∅} {X} {Y} {∅} lem₁ lem₃ : X ++ Y ⊢ A lem₃ = PropEq.subst (λ Y → X ++ Y ⊢ A) (xs++[]=xs Y) lem₂ Y[XZ]↝X[YZ] : ∀ {A} X Y Z → Y ++ (X ++ Z) ⊢ A → X ++ (Y ++ Z) ⊢ A Y[XZ]↝X[YZ] {A} X Y Z t = exch {∅} {X} {Y} {Z} t [YX]Z↝[XY]Z : ∀ {A} X Y Z → (Y ++ X) ++ Z ⊢ A → (X ++ Y) ++ Z ⊢ A [YX]Z↝[XY]Z {A} X Y Z t = lem₃ where lem₁ : Y ++ (X ++ Z) ⊢ A lem₁ rewrite ++-assoc Y X Z = t lem₂ : X ++ (Y ++ Z) ⊢ A lem₂ = Y[XZ]↝X[YZ] X Y Z lem₁ lem₃ : (X ++ Y) ++ Z ⊢ A lem₃ rewrite sym (++-assoc X Y Z) = lem₂ [XZ]Y↝[XY]Z : ∀ {A} X Y Z → (X ++ Z) ++ Y ⊢ A → (X ++ Y) ++ Z ⊢ A [XZ]Y↝[XY]Z {A} X Y Z t = lem₃ where lem₁ : (X ++ Z) ++ Y ++ ∅ ⊢ A lem₁ rewrite xs++[]=xs Y = t lem₂ : (X ++ Y) ++ Z ++ ∅ ⊢ A lem₂ = exch {X} {Y} {Z} {∅} lem₁ lem₃ : (X ++ Y) ++ Z ⊢ A lem₃ = PropEq.subst (λ Z → (X ++ Y) ++ Z ⊢ A) (xs++[]=xs Z) lem₂ X[ZY]↝X[YZ] : ∀ {A} X Y Z → X ++ (Z ++ Y) ⊢ A → X ++ (Y ++ Z) ⊢ A X[ZY]↝X[YZ] {A} X Y Z t = lem₃ where lem₁ : (X ++ Z) ++ Y ⊢ A lem₁ rewrite sym (++-assoc X Z Y) = t lem₂ : (X ++ Y) ++ Z ⊢ A lem₂ = [XZ]Y↝[XY]Z X Y Z lem₁ lem₃ : X ++ Y ++ Z ⊢ A lem₃ rewrite ++-assoc X Y Z = lem₂ XYZW↝XWZY : ∀ {A} X Y Z W → (X ++ Y) ++ (Z ++ W) ⊢ A → (X ++ W) ++ (Z ++ Y) ⊢ A XYZW↝XWZY {A} X Y Z W t = lem₃ where lem₁ : (X ++ Y) ++ (W ++ Z) ⊢ A lem₁ = X[ZY]↝X[YZ] (X ++ Y) W Z t lem₂ : (X ++ W) ++ (Y ++ Z) ⊢ A lem₂ = exch {X} {W} {Y} {Z} lem₁ lem₃ : (X ++ W) ++ (Z ++ Y) ⊢ A lem₃ = X[ZY]↝X[YZ] (X ++ W) Z Y lem₂ XYZW↝YWXZ : ∀ {A} X Y Z W → (X ++ Y) ++ (Z ++ W) ⊢ A → (Y ++ W) ++ (X ++ Z) ⊢ A XYZW↝YWXZ {A} X Y Z W t = lem₃ where lem₁ : (Y ++ X) ++ (Z ++ W) ⊢ A lem₁ = [YX]Z↝[XY]Z Y X (Z ++ W) t lem₂ : (Y ++ X) ++ (W ++ Z) ⊢ A lem₂ = X[ZY]↝X[YZ] (Y ++ X) W Z lem₁ lem₃ : (Y ++ W) ++ (X ++ Z) ⊢ A lem₃ = exch {Y} {W} {X} {Z} lem₂ XYZW↝ZXWY : ∀ {A} X Y Z W → (X ++ Y) ++ (Z ++ W) ⊢ A → (Z ++ X) ++ (W ++ Y) ⊢ A XYZW↝ZXWY {A} X Y Z W t = lem₃ where lem₁ : (X ++ Z) ++ (Y ++ W) ⊢ A lem₁ = exch {X} {Z} {Y} {W} t lem₂ : (Z ++ X) ++ (Y ++ W) ⊢ A lem₂ = [YX]Z↝[XY]Z Z X (Y ++ W) lem₁ lem₃ : (Z ++ X) ++ (W ++ Y) ⊢ A lem₃ = X[ZY]↝X[YZ] (Z ++ X) W Y lem₂ XYZW↝ZYXW : ∀ {A} X Y Z W → (X ++ Y) ++ (Z ++ W) ⊢ A → (Z ++ Y) ++ (X ++ W) ⊢ A XYZW↝ZYXW {A} X Y Z W t = lem₃ where lem₁ : (Y ++ X) ++ (Z ++ W) ⊢ A lem₁ = [YX]Z↝[XY]Z Y X (Z ++ W) t lem₂ : (Y ++ Z) ++ (X ++ W) ⊢ A lem₂ = exch {Y} {Z} {X} {W} lem₁ lem₃ : (Z ++ Y) ++ (X ++ W) ⊢ A lem₃ = [YX]Z↝[XY]Z Z Y (X ++ W) lem₂ pair-left : ∀ {X A B C} → A , B , X ⊢ C → A ⊗ B , X ⊢ C pair-left t = case var t pair-left′ : ∀ {X A B C} → X ++ (A , B , ∅) ⊢ C → X ,′ A ⊗ B ⊢ C pair-left′ {X} {A} {B} {C} = lem₃ where lem₁ : X ,′ A ,′ B ⊢ C → X ,′ A ⊗ B ⊢ C lem₁ t = to-front (pair-left (to-back {B , X} {A} (to-back {X ,′ A} {B} t))) lem₂ : ∀ {a} {A : Set a} xs (y z : A) → xs ,′ y ,′ z ≡ xs ++ (y , z , ∅) lem₂ ∅ y z = refl lem₂ (x , xs) y z = cong (_,_ x) (lem₂ xs y z) lem₃ : X ++ (A , B , ∅) ⊢ C → X ,′ A ⊗ B ⊢ C lem₃ rewrite sym (lem₂ X A B) = lem₁ open import IntuitionisticLogic U ⟦_⟧ᵁ as IL renaming (Type to TypeIL; _⊗_ to _×_) open IL.Explicit hiding (swap; swap′) renaming (_⊢_ to _⊢IL_; ReifyType to ReifyTypeIL; ReifyCtxt to ReiftCtxtIL; [_] to reifyIL) instance ReifyType : Reify Type TypeIL ReifyType = record { ⟦_⟧ = ⟦_⟧ } where ⟦_⟧ : Type → TypeIL ⟦ ⊥ ⟧ = el R ⟦ el A ⟧ = el A ⟦ A ⊗ B ⟧ = ⟦ A ⟧ × ⟦ B ⟧ ⟦ A ⊸ B ⟧ = ⟦ A ⟧ ⇒ ⟦ B ⟧ open Reify {{...}} using (⟦_⟧) instance ReifyCtxt : Reify (List Type) (List TypeIL) ReifyCtxt = record { ⟦_⟧ = map ⟦_⟧ } ⟦X++Y⟧=⟦X⟧++⟦Y⟧ : (X Y : List Type) → ⟦ X ++ Y ⟧ ≡ ⟦ X ⟧ ++ ⟦ Y ⟧ ⟦X++Y⟧=⟦X⟧++⟦Y⟧ X Y = map-++-commute ⟦_⟧ X Y toIL : ∀ {X A} → X ⊢ A → ⟦ X ⟧ ⊢IL ⟦ A ⟧ toIL var = var toIL (abs t) = abs (toIL t) toIL (app {X} {Y} s t) rewrite ⟦X++Y⟧=⟦X⟧++⟦Y⟧ X Y = app (toIL s) (toIL t) toIL (pair {X} {Y} s t) rewrite ⟦X++Y⟧=⟦X⟧++⟦Y⟧ X Y = pair (toIL s) (toIL t) toIL (case {X} {Y} s t) rewrite ⟦X++Y⟧=⟦X⟧++⟦Y⟧ X Y = case (toIL s) (toIL t) toIL (exch {X} {Y} {Z} {W} {A} t) = lem4 where lem1 : ⟦ (X ++ Z) ++ (Y ++ W) ⟧ ⊢IL ⟦ A ⟧ lem1 = toIL t lem2 : (⟦ X ⟧ ++ ⟦ Z ⟧) ++ (⟦ Y ⟧ ++ ⟦ W ⟧) ⊢IL ⟦ A ⟧ lem2 rewrite sym (⟦X++Y⟧=⟦X⟧++⟦Y⟧ X Z) | sym (⟦X++Y⟧=⟦X⟧++⟦Y⟧ Y W) | sym (⟦X++Y⟧=⟦X⟧++⟦Y⟧ (X ++ Z) (Y ++ W)) = lem1 lem3 : (⟦ X ⟧ ++ ⟦ Y ⟧) ++ (⟦ Z ⟧ ++ ⟦ W ⟧) ⊢IL ⟦ A ⟧ lem3 = exch {⟦ X ⟧} {⟦ Y ⟧} {⟦ Z ⟧} {⟦ W ⟧} lem2 lem4 : ⟦ (X ++ Y) ++ (Z ++ W) ⟧ ⊢IL ⟦ A ⟧ lem4 rewrite ⟦X++Y⟧=⟦X⟧++⟦Y⟧ (X ++ Y) (Z ++ W) | ⟦X++Y⟧=⟦X⟧++⟦Y⟧ X Y | ⟦X++Y⟧=⟦X⟧++⟦Y⟧ Z W = lem3 [_] : {A : Type} {X : List Type} → X ⊢ A → (Ctxt ⟦ ⟦ X ⟧ ⟧ → ⟦ ⟦ A ⟧ ⟧) [_] = reifyIL ∘ toIL swap′ : {A B : Type} → ⟦ ⟦ A ⟧ ⟧ x' ⟦ ⟦ B ⟧ ⟧ → ⟦ ⟦ B ⟧ ⟧ x' ⟦ ⟦ A ⟧ ⟧ swap′ {A} {B} = [ swap {A} {B} ] ∅
33.205607
93
0.40121
c5a4983c8a50f4eb6104aab757e103b74f2a6539
10,863
agda
Agda
Cubical/HITs/PropositionalTruncation/Properties.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/HITs/PropositionalTruncation/Properties.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
Cubical/HITs/PropositionalTruncation/Properties.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
{- This file contains: - Eliminator for propositional truncation -} {-# OPTIONS --cubical --safe #-} module Cubical.HITs.PropositionalTruncation.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation.Base private variable ℓ : Level A B C : Type ℓ rec : ∀ {P : Type ℓ} → isProp P → (A → P) → ∥ A ∥ → P rec Pprop f ∣ x ∣ = f x rec Pprop f (squash x y i) = Pprop (rec Pprop f x) (rec Pprop f y) i rec2 : ∀ {P : Type ℓ} → isProp P → (A → A → P) → ∥ A ∥ → ∥ A ∥ → P rec2 Pprop f = rec (isPropΠ (λ _ → Pprop)) (λ a → rec Pprop (f a)) elim : ∀ {P : ∥ A ∥ → Type ℓ} → ((a : ∥ A ∥) → isProp (P a)) → ((x : A) → P ∣ x ∣) → (a : ∥ A ∥) → P a elim Pprop f ∣ x ∣ = f x elim Pprop f (squash x y i) = isOfHLevel→isOfHLevelDep 1 Pprop (elim Pprop f x) (elim Pprop f y) (squash x y) i elim2 : {P : ∥ A ∥ → ∥ A ∥ → Type ℓ} (Bset : ((x y : ∥ A ∥) → isProp (P x y))) (g : (a b : A) → P ∣ a ∣ ∣ b ∣) (x y : ∥ A ∥) → P x y elim2 Pprop g = elim (λ _ → isPropΠ (λ _ → Pprop _ _)) (λ a → elim (λ _ → Pprop _ _) (g a)) elim3 : {P : ∥ A ∥ → ∥ A ∥ → ∥ A ∥ → Type ℓ} (Bset : ((x y z : ∥ A ∥) → isProp (P x y z))) (g : (a b c : A) → P (∣ a ∣) ∣ b ∣ ∣ c ∣) (x y z : ∥ A ∥) → P x y z elim3 Pprop g = elim2 (λ _ _ → isPropΠ (λ _ → Pprop _ _ _)) (λ a b → elim (λ _ → Pprop _ _ _) (g a b)) propTruncIsProp : isProp ∥ A ∥ propTruncIsProp x y = squash x y propTruncIdempotent≃ : isProp A → ∥ A ∥ ≃ A propTruncIdempotent≃ {A = A} hA = isoToEquiv f where f : Iso ∥ A ∥ A Iso.fun f = rec hA (idfun A) Iso.inv f x = ∣ x ∣ Iso.rightInv f _ = refl Iso.leftInv f = elim (λ _ → isProp→isSet propTruncIsProp _ _) (λ _ → refl) propTruncIdempotent : isProp A → ∥ A ∥ ≡ A propTruncIdempotent hA = ua (propTruncIdempotent≃ hA) -- We could also define the eliminator using the recursor elim' : ∀ {P : ∥ A ∥ → Type ℓ} → ((a : ∥ A ∥) → isProp (P a)) → ((x : A) → P ∣ x ∣) → (a : ∥ A ∥) → P a elim' {P = P} Pprop f a = rec (Pprop a) (λ x → transp (λ i → P (squash ∣ x ∣ a i)) i0 (f x)) a map : (A → B) → (∥ A ∥ → ∥ B ∥) map f = rec squash (∣_∣ ∘ f) map2 : (A → B → C) → (∥ A ∥ → ∥ B ∥ → ∥ C ∥) map2 f = rec (isPropΠ λ _ → squash) (map ∘ f) -- The propositional truncation can be eliminated into non-propositional -- types as long as the function used in the eliminator is 'coherently -- constant.' The details of this can be found in the following paper: -- -- https://arxiv.org/pdf/1411.2682.pdf module SetElim (Bset : isSet B) where Bset' : isSet' B Bset' = isSet→isSet' Bset rec→Set : (f : A → B) (kf : 2-Constant f) → ∥ A ∥ → B helper : (f : A → B) (kf : 2-Constant f) → (t u : ∥ A ∥) → rec→Set f kf t ≡ rec→Set f kf u rec→Set f kf ∣ x ∣ = f x rec→Set f kf (squash t u i) = helper f kf t u i helper f kf ∣ x ∣ ∣ y ∣ = kf x y helper f kf (squash t u i) v = Bset' (helper f kf t v) (helper f kf u v) (helper f kf t u) refl i helper f kf t (squash u v i) = Bset' (helper f kf t u) (helper f kf t v) refl (helper f kf u v) i kcomp : ∀(f : ∥ A ∥ → B) → 2-Constant (f ∘ ∣_∣) kcomp f x y = cong f (squash ∣ x ∣ ∣ y ∣) Fset : isSet (A → B) Fset = isSetΠ (const Bset) Kset : (f : A → B) → isSet (2-Constant f) Kset f = isSetΠ (λ _ → isSetΠ (λ _ → isProp→isSet (Bset _ _))) setRecLemma : (f : ∥ A ∥ → B) → rec→Set (f ∘ ∣_∣) (kcomp f) ≡ f setRecLemma f i t = elim {P = λ t → rec→Set (f ∘ ∣_∣) (kcomp f) t ≡ f t} (λ t → Bset _ _) (λ x → refl) t i mkKmap : (∥ A ∥ → B) → Σ (A → B) 2-Constant mkKmap f = f ∘ ∣_∣ , kcomp f fib : (g : Σ (A → B) 2-Constant) → fiber mkKmap g fib (g , kg) = rec→Set g kg , refl eqv : (g : Σ (A → B) 2-Constant) → ∀ fi → fib g ≡ fi eqv g (f , p) = ΣProp≡ (λ f → isOfHLevelΣ 2 Fset Kset _ _) (cong (uncurry rec→Set) (sym p) ∙ setRecLemma f) trunc→Set≃ : (∥ A ∥ → B) ≃ (Σ (A → B) 2-Constant) trunc→Set≃ .fst = mkKmap trunc→Set≃ .snd .equiv-proof g = fib g , eqv g -- The strategy of this equivalence proof follows the paper more closely. -- It is used further down for the groupoid version, because the above -- strategy does not generalize so easily. e : B → Σ (A → B) 2-Constant e b = const b , λ _ _ → refl eval : A → (γ : Σ (A → B) 2-Constant) → B eval a₀ (g , _) = g a₀ e-eval : ∀ (a₀ : A) γ → e (eval a₀ γ) ≡ γ e-eval a₀ (g , kg) i .fst a₁ = kg a₀ a₁ i e-eval a₀ (g , kg) i .snd a₁ a₂ = Bset' refl (kg a₁ a₂) (kg a₀ a₁) (kg a₀ a₂) i e-isEquiv : A → isEquiv (e {A = A}) e-isEquiv a₀ = isoToIsEquiv (iso e (eval a₀) (e-eval a₀) λ _ → refl) preEquiv₁ : ∥ A ∥ → B ≃ Σ (A → B) 2-Constant preEquiv₁ t = e , rec (isPropIsEquiv e) e-isEquiv t preEquiv₂ : (∥ A ∥ → Σ (A → B) 2-Constant) ≃ Σ (A → B) 2-Constant preEquiv₂ = isoToEquiv (iso to const (λ _ → refl) retr) where to : (∥ A ∥ → Σ (A → B) 2-Constant) → Σ (A → B) 2-Constant to f .fst x = f ∣ x ∣ .fst x to f .snd x y i = f (squash ∣ x ∣ ∣ y ∣ i) .snd x y i retr : retract to const retr f i t .fst x = f (squash ∣ x ∣ t i) .fst x retr f i t .snd x y = Bset' (λ j → f (squash ∣ x ∣ ∣ y ∣ j) .snd x y j) (f t .snd x y) (λ j → f (squash ∣ x ∣ t j) .fst x) (λ j → f (squash ∣ y ∣ t j) .fst y) i trunc→Set≃₂ : (∥ A ∥ → B) ≃ Σ (A → B) 2-Constant trunc→Set≃₂ = compEquiv (equivPi preEquiv₁) preEquiv₂ open SetElim public using (rec→Set; trunc→Set≃) elim→Set : {P : ∥ A ∥ → Set ℓ} → (∀ t → isSet (P t)) → (f : (x : A) → P ∣ x ∣) → (kf : ∀ x y → PathP (λ i → P (squash ∣ x ∣ ∣ y ∣ i)) (f x) (f y)) → (t : ∥ A ∥) → P t elim→Set {A = A} {P = P} Pset f kf t = rec→Set (Pset t) g gk t where g : A → P t g x = transp (λ i → P (squash ∣ x ∣ t i)) i0 (f x) gk : 2-Constant g gk x y i = transp (λ j → P (squash (squash ∣ x ∣ ∣ y ∣ i) t j)) i0 (kf x y i) RecHProp : (P : A → hProp ℓ) (kP : ∀ x y → P x ≡ P y) → ∥ A ∥ → hProp ℓ RecHProp P kP = rec→Set isSetHProp P kP module GpdElim (Bgpd : isGroupoid B) where Bgpd' : isGroupoid' B Bgpd' = isGroupoid→isGroupoid' Bgpd module _ (f : A → B) (3kf : 3-Constant f) where open 3-Constant 3kf rec→Gpd : ∥ A ∥ → B pathHelper : (t u : ∥ A ∥) → rec→Gpd t ≡ rec→Gpd u triHelper₁ : (t u v : ∥ A ∥) → Square (pathHelper t u) (pathHelper t v) refl (pathHelper u v) triHelper₂ : (t u v : ∥ A ∥) → Square (pathHelper t v) (pathHelper u v) (pathHelper t u) refl rec→Gpd ∣ x ∣ = f x rec→Gpd (squash t u i) = pathHelper t u i pathHelper ∣ x ∣ ∣ y ∣ = link x y pathHelper (squash t u j) v = triHelper₂ t u v j pathHelper ∣ x ∣ (squash u v j) = triHelper₁ ∣ x ∣ u v j triHelper₁ ∣ x ∣ ∣ y ∣ ∣ z ∣ = coh₁ x y z triHelper₁ (squash s t i) u v = Bgpd' (triHelper₁ s u v) (triHelper₁ t u v) (triHelper₂ s t u) (triHelper₂ s t v) (λ i → refl) (λ i → pathHelper u v) i triHelper₁ ∣ x ∣ (squash t u i) v = Bgpd' (triHelper₁ ∣ x ∣ t v) (triHelper₁ ∣ x ∣ u v) (triHelper₁ ∣ x ∣ t u) (λ i → pathHelper ∣ x ∣ v) (λ i → refl) (triHelper₂ t u v) i triHelper₁ ∣ x ∣ ∣ y ∣ (squash u v i) = Bgpd' (triHelper₁ ∣ x ∣ ∣ y ∣ u) (triHelper₁ ∣ x ∣ ∣ y ∣ v) (λ i → link x y) (triHelper₁ ∣ x ∣ u v) (λ i → refl) (triHelper₁ ∣ y ∣ u v) i triHelper₂ ∣ x ∣ ∣ y ∣ ∣ z ∣ = coh₂ x y z triHelper₂ (squash s t i) u v = Bgpd' (triHelper₂ s u v) (triHelper₂ t u v) (triHelper₂ s t v) (λ i → pathHelper u v) (triHelper₂ s t u) (λ i → refl) i triHelper₂ ∣ x ∣ (squash t u i) v = Bgpd' (triHelper₂ ∣ x ∣ t v) (triHelper₂ ∣ x ∣ u v) (λ i → pathHelper ∣ x ∣ v) (triHelper₂ t u v) (triHelper₁ ∣ x ∣ t u) (λ i → refl) i triHelper₂ ∣ x ∣ ∣ y ∣ (squash u v i) = Bgpd' (triHelper₂ ∣ x ∣ ∣ y ∣ u) (triHelper₂ ∣ x ∣ ∣ y ∣ v) (triHelper₁ ∣ x ∣ u v) (triHelper₁ ∣ y ∣ u v) (λ i → link x y) (λ i → refl) i preEquiv₁ : (∥ A ∥ → Σ (A → B) 3-Constant) ≃ Σ (A → B) 3-Constant preEquiv₁ = isoToEquiv (iso fn const (λ _ → refl) retr) where open 3-Constant fn : (∥ A ∥ → Σ (A → B) 3-Constant) → Σ (A → B) 3-Constant fn f .fst x = f ∣ x ∣ .fst x fn f .snd .link x y i = f (squash ∣ x ∣ ∣ y ∣ i) .snd .link x y i fn f .snd .coh₁ x y z i j = f (squash ∣ x ∣ (squash ∣ y ∣ ∣ z ∣ i) j) .snd .coh₁ x y z i j retr : retract fn const retr f i t .fst x = f (squash ∣ x ∣ t i) .fst x retr f i t .snd .link x y j = f (squash (squash ∣ x ∣ ∣ y ∣ j) t i) .snd .link x y j retr f i t .snd .coh₁ x y z = Bgpd' (λ k j → f (cb k j i0) .snd .coh₁ x y z k j ) (λ k j → f (cb k j i1) .snd .coh₁ x y z k j) (λ k j → f (cb i0 j k) .snd .link x y j) (λ k j → f (cb i1 j k) .snd .link x z j) (λ _ → refl) (λ k j → f (cb j i1 k) .snd .link y z j) i where cb : I → I → I → ∥ _ ∥ cb i j k = squash (squash ∣ x ∣ (squash ∣ y ∣ ∣ z ∣ i) j) t k e : B → Σ (A → B) 3-Constant e b .fst _ = b e b .snd = record { link = λ _ _ _ → b ; coh₁ = λ _ _ _ _ _ → b } eval : A → Σ (A → B) 3-Constant → B eval a₀ (g , _) = g a₀ module _ where open 3-Constant e-eval : ∀(a₀ : A) γ → e (eval a₀ γ) ≡ γ e-eval a₀ (g , 3kg) i .fst x = 3kg .link a₀ x i e-eval a₀ (g , 3kg) i .snd .link x y = λ j → 3kg .coh₁ a₀ x y j i e-eval a₀ (g , 3kg) i .snd .coh₁ x y z = Bgpd' (λ _ _ → g a₀) (3kg .coh₁ x y z) (λ k j → 3kg .coh₁ a₀ x y j k) (λ k j → 3kg .coh₁ a₀ x z j k) (λ _ → refl) (λ k j → 3kg .coh₁ a₀ y z j k) i e-isEquiv : A → isEquiv (e {A = A}) e-isEquiv a₀ = isoToIsEquiv (iso e (eval a₀) (e-eval a₀) λ _ → refl) preEquiv₂ : ∥ A ∥ → B ≃ Σ (A → B) 3-Constant preEquiv₂ t = e , rec (isPropIsEquiv e) e-isEquiv t trunc→Gpd≃ : (∥ A ∥ → B) ≃ Σ (A → B) 3-Constant trunc→Gpd≃ = compEquiv (equivPi preEquiv₂) preEquiv₁ open GpdElim using (rec→Gpd; trunc→Gpd≃) public RecHSet : (P : A → HLevel ℓ 2) → 3-Constant P → ∥ A ∥ → HLevel ℓ 2 RecHSet P 3kP = rec→Gpd (isOfHLevelHLevel 2) P 3kP
31.486957
81
0.499862
2386f724726d26053dad8dcedd8326775b6f25d4
659
agda
Agda
extra/extra/DecidableFixed.agda
krzygorz/plfa.github.io
10a3203624f2ea937b3892176db5de825d0c46b4
[ "CC-BY-4.0" ]
1,003
2018-07-05T18:15:14.000Z
2022-03-27T07:03:28.000Z
extra/extra/DecidableFixed.agda
krzygorz/plfa.github.io
10a3203624f2ea937b3892176db5de825d0c46b4
[ "CC-BY-4.0" ]
323
2018-07-05T22:34:34.000Z
2022-03-30T07:42:57.000Z
extra/extra/DecidableFixed.agda
krzygorz/plfa.github.io
10a3203624f2ea937b3892176db5de825d0c46b4
[ "CC-BY-4.0" ]
304
2018-07-16T18:24:59.000Z
2022-03-28T11:35:02.000Z
import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open import Data.Nat using (ℕ; zero; suc) open import Relation.Nullary using (¬_; Dec; yes; no) data _≤_ : ℕ → ℕ → Set where z≤n : ∀ {n : ℕ} → zero ≤ n s≤s : ∀ {m n : ℕ} → m ≤ n → suc m ≤ suc n ¬s≤z : ∀ {m : ℕ} → ¬ (suc m ≤ zero) ¬s≤z () ¬s≤s : ∀ {m n : ℕ} → ¬ (m ≤ n) → ¬ (suc m ≤ suc n) ¬s≤s ¬m≤n (s≤s m≤n) = ¬m≤n m≤n _≤?_ : ∀ (m n : ℕ) → Dec (m ≤ n) zero ≤? n = yes z≤n suc m ≤? zero = no ¬s≤z suc m ≤? suc n with m ≤? n ... | yes m≤n = yes (s≤s m≤n) ... | no ¬m≤n = no (¬s≤s ¬m≤n) _ : 2 ≤? 4 ≡ yes (s≤s (s≤s z≤n)) _ = refl _ : 4 ≤? 2 ≡ no (¬s≤s (¬s≤s ¬s≤z)) _ = refl
22.724138
53
0.474962
23bf6900e23f426a0841a665861d5f2ebfc69779
3,345
agda
Agda
WeakArrows.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
21
2015-07-30T01:25:12.000Z
2021-02-13T18:02:18.000Z
WeakArrows.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
3
2019-01-13T13:12:33.000Z
2019-05-29T09:50:26.000Z
WeakArrows.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
1
2019-11-04T21:33:13.000Z
2019-11-04T21:33:13.000Z
module WeakArrows where open import Library open import Categories record Arrow {l m}(J : Cat {l}{m}) : Set (lsuc (l ⊔ m)) where constructor arrow open Cat J field R : Obj → Obj → Set m pure : ∀{X Y} -> Hom X Y -> R X Y _<<<_ : ∀{X Y Z} → R Y Z -> R X Y -> R X Z alaw1 : ∀{X Y Z}(g : Hom Y Z)(f : Hom X Y) -> pure (comp g f) ≅ pure g <<< pure f alaw2 : ∀{X Y}(s : R X Y) -> s <<< pure iden ≅ s alaw3 : ∀{X Y}(r : R X Y) -> pure iden <<< r ≅ r alaw4 : ∀{W X Y Z}(t : R Y Z)(s : R X Y)(r : R W X) -> t <<< (s <<< r) ≅ (t <<< s) <<< r open import Functors open import Naturals open import Categories.Sets open import YonedaLemma open import RMonads module Arrow2RMonad {l m}(C : Cat {l}{m})(A : Arrow C) where open Cat C open Arrow A T : Cat.Obj C -> Fun (C Op) (Sets {m}) T X = functor (λ Y -> R Y X) (λ f s -> s <<< pure f) (ext alaw2) (ext (λ s -> trans (cong (s <<<_) (alaw1 _ _)) (alaw4 _ _ _))) η : {X : Obj} -> NatT HomF[-, X ] (T X) η = natural pure (ext λ _ -> sym (alaw1 _ _)) bind : {X Y : Obj} -> NatT HomF[-, X ] (T Y) -> NatT (T X) (T Y) bind α = natural (λ s -> cmp iden <<< s) (ext λ _ -> sym (alaw4 _ _ _)) where open NatT α -- cmp iden is one direction of the yoneda lemma law1 : {X : Obj} → bind (η {X}) ≅ idNat {F = T X} law1 = NatTEq (iext (\ _ -> ext alaw3)) law2 : {X Y : Obj}{f : NatT HomF[-, X ] (T Y)} → compNat (bind f) η ≅ f law2 {f = f} = NatTEq (iext \ _ -> ext \ s -> trans (fcong iden (nat {f = s})) (cong cmp idl)) where open NatT f law3 : {X Y Z : Obj} {f : NatT HomF[-, X ] (T Y)} → {g : NatT HomF[-, Y ] (T Z)} → bind (compNat (bind g) f) ≅ compNat (bind g) (bind f) law3 = NatTEq (iext \ W -> ext (\ s -> sym (alaw4 _ _ s))) ArrowRMonad : RMonad (y C) ArrowRMonad = rmonad T η bind law1 law2 (λ {_ _ _ f g} -> law3 {f = f}{g = g}) module RMonad2Arrow {l m}(C : Cat {l}{m})(M : RMonad (y C)) where open Cat C open RMonad M open Fun open NatT R : Obj → Obj → Set m R X Y = OMap (T Y) X pure : {X Y : Obj} → Hom X Y → R X Y pure f = cmp η f _<<<_ : ∀{X Y Z} → R Y Z → R X Y → R X Z s <<< t = cmp (bind (ylem C (T _) _ s)) t alaw1 : ∀{X Y Z}(g : Hom Y Z)(f : Hom X Y) → pure (comp g f) ≅ (pure g <<< pure f) alaw1 g f = trans (sym (fcong g (nat η))) (sym (fcong f (ifcong _ (cong cmp law2)))) alaw2 : ∀{X Y} -> (s : R X Y) → (s <<< pure iden) ≅ s alaw2 s = trans (fcong iden (ifcong _ (cong cmp law2))) (fcong s (fid (T _))) alaw3 : ∀{X Y}(r : R X Y) → (pure iden <<< r) ≅ r alaw3 r = trans (cong (\ α -> cmp (bind α) r) (NatTEq (iext \ Z -> ext \ f -> trans (fcong iden (nat η)) (cong (cmp η) idl)))) (fcong r (ifcong _ (cong cmp law1))) alaw4 : ∀{W X Y Z}(t : R Y Z)(s : R X Y)(r : R W X) → (t <<< (s <<< r)) ≅ ((t <<< s) <<< r) alaw4 t s r = trans (sym (fcong r (ifcong _ (cong cmp law3)))) (cong (\ α -> cmp (bind α) r) (NatTEq (iext \ _ -> ext \ _ -> sym (fcong s (nat (bind (ylem C (T _) _ t))))))) RMonadArrow : Arrow C RMonadArrow = arrow R pure _<<<_ alaw1 alaw2 alaw3 alaw4
27.875
76
0.472646
18297f0de5b28fb73a771ff60edb13d63a914171
10,532
agda
Agda
Cubical/Algebra/CommRing/Localisation/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Algebra/CommRing/Localisation/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Localisation/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
-- We define the localisation of a commutative ring -- at a multiplicatively closed subset and show that it -- has a commutative ring structure. {-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.CommRing.Localisation.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Powerset open import Cubical.Foundations.Transport open import Cubical.Functions.FunExtEquiv import Cubical.Data.Empty as ⊥ open import Cubical.Data.Bool open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; _^_ to _^ℕ_ ; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm) open import Cubical.Data.Vec open import Cubical.Data.Sigma.Base open import Cubical.Data.Sigma.Properties open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Relation.Binary open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRingSolver.Reflection open import Cubical.HITs.SetQuotients as SQ open import Cubical.HITs.PropositionalTruncation as PT open Iso private variable ℓ ℓ' : Level A : Type ℓ -- A multiplicatively closed subset is assumed to contain 1 record isMultClosedSubset (R' : CommRing ℓ) (S' : ℙ (fst R')) : Type ℓ where constructor multclosedsubset field containsOne : (R' .snd .CommRingStr.1r) ∈ S' multClosed : ∀ {s t} → s ∈ S' → t ∈ S' → ((snd R') .CommRingStr._·_ s t) ∈ S' module Loc (R' : CommRing ℓ) (S' : ℙ (fst R')) (SMultClosedSubset : isMultClosedSubset R' S') where open isMultClosedSubset private R = fst R' open CommRingStr (snd R') open RingTheory (CommRing→Ring R') open CommRingTheory R' S = Σ[ s ∈ R ] (s ∈ S') -- We define the localisation of R by S by quotienting by the following relation: _≈_ : R × S → R × S → Type ℓ (r₁ , s₁) ≈ (r₂ , s₂) = Σ[ s ∈ S ] (fst s · r₁ · fst s₂ ≡ fst s · r₂ · fst s₁) S⁻¹R = (R × S) / _≈_ -- now define addition for S⁻¹R open BinaryRelation locRefl : isRefl _≈_ locRefl _ = (1r , SMultClosedSubset .containsOne) , refl locSym : isSym _≈_ locSym (r , s , s∈S') (r' , s' , s'∈S') (u , p) = u , sym p locTrans : isTrans _≈_ locTrans (r , s , s∈S') (r' , s' , s'∈S') (r'' , s'' , s''∈S') ((u , u∈S') , p) ((v , v∈S') , q) = ((u · v · s') , SMultClosedSubset .multClosed (SMultClosedSubset .multClosed u∈S' v∈S') s'∈S') , path where eq1 : (r s r' s' r'' s'' u v : R) → u · v · s' · r · s'' ≡ u · r · s' · v · s'' eq1 = solve R' eq2 : (r s r' s' r'' s'' u v : R) → u · r' · s · v · s'' ≡ u · s · (v · r' · s'') eq2 = solve R' eq3 : (r s r' s' r'' s'' u v : R) → u · s · (v · r'' · s') ≡ u · v · s' · r'' · s eq3 = solve R' path : u · v · s' · r · s'' ≡ u · v · s' · r'' · s path = u · v · s' · r · s'' ≡⟨ eq1 r s r' s' r'' s'' u v ⟩ -- not just ≡⟨ solve R' ⟩ u · r · s' · v · s'' ≡⟨ cong (λ x → x · v · s'') p ⟩ u · r' · s · v · s'' ≡⟨ eq2 r s r' s' r'' s'' u v ⟩ u · s · (v · r' · s'') ≡⟨ cong (u · s ·_) q ⟩ u · s · (v · r'' · s') ≡⟨ eq3 r s r' s' r'' s'' u v ⟩ u · v · s' · r'' · s ∎ locIsEquivRel : isEquivRel _≈_ isEquivRel.reflexive locIsEquivRel = locRefl isEquivRel.symmetric locIsEquivRel = locSym isEquivRel.transitive locIsEquivRel = locTrans _+ₗ_ : S⁻¹R → S⁻¹R → S⁻¹R _+ₗ_ = setQuotSymmBinOp locRefl locTrans _+ₚ_ (λ a b → subst (λ x → (a +ₚ b) ≈ x) (+ₚ-symm a b) (locRefl (a +ₚ b))) θ where _+ₚ_ : R × S → R × S → R × S (r₁ , s₁ , s₁∈S) +ₚ (r₂ , s₂ , s₂∈S) = (r₁ · s₂ + r₂ · s₁) , (s₁ · s₂) , SMultClosedSubset .multClosed s₁∈S s₂∈S +ₚ-symm : (a b : R × S) → (a +ₚ b) ≡ (b +ₚ a) +ₚ-symm (r₁ , s₁ , s₁∈S) (r₂ , s₂ , s₂∈S) = ΣPathP (+Comm _ _ , Σ≡Prop (λ x → S' x .snd) (·Comm _ _)) θ : (a a' b : R × S) → a ≈ a' → (a +ₚ b) ≈ (a' +ₚ b) θ (r₁ , s₁ , s₁∈S) (r'₁ , s'₁ , s'₁∈S) (r₂ , s₂ , s₂∈S) ((s , s∈S) , p) = (s , s∈S) , path where eq1 : (r₁ s₁ r'₁ s'₁ s'₁ r₂ s₂ s : R) → s · (r₁ · s₂ + r₂ · s₁) · (s'₁ · s₂) ≡ s · r₁ · s'₁ · s₂ · s₂ + s · r₂ · s₁ · s'₁ · s₂ eq1 = solve R' eq2 : (r₁ s₁ r'₁ s'₁ s'₁ r₂ s₂ s : R) → s · r'₁ · s₁ · s₂ · s₂ + s · r₂ · s₁ · s'₁ · s₂ ≡ s · (r'₁ · s₂ + r₂ · s'₁) · (s₁ · s₂) eq2 = solve R' path : s · (r₁ · s₂ + r₂ · s₁) · (s'₁ · s₂) ≡ s · (r'₁ · s₂ + r₂ · s'₁) · (s₁ · s₂) path = s · (r₁ · s₂ + r₂ · s₁) · (s'₁ · s₂) ≡⟨ eq1 r₁ s₁ r'₁ s'₁ s'₁ r₂ s₂ s ⟩ s · r₁ · s'₁ · s₂ · s₂ + s · r₂ · s₁ · s'₁ · s₂ ≡⟨ cong (λ x → x · s₂ · s₂ + s · r₂ · s₁ · s'₁ · s₂) p ⟩ s · r'₁ · s₁ · s₂ · s₂ + s · r₂ · s₁ · s'₁ · s₂ ≡⟨ eq2 r₁ s₁ r'₁ s'₁ s'₁ r₂ s₂ s ⟩ s · (r'₁ · s₂ + r₂ · s'₁) · (s₁ · s₂) ∎ -- check group-laws for addition +ₗ-assoc : (x y z : S⁻¹R) → x +ₗ (y +ₗ z) ≡ (x +ₗ y) +ₗ z +ₗ-assoc = SQ.elimProp3 (λ _ _ _ → squash/ _ _) +ₗ-assoc[] where +ₗ-assoc[] : (a b c : R × S) → [ a ] +ₗ ([ b ] +ₗ [ c ]) ≡ ([ a ] +ₗ [ b ]) +ₗ [ c ] +ₗ-assoc[] (r , s , s∈S) (r' , s' , s'∈S) (r'' , s'' , s''∈S) = cong [_] (ΣPathP ((path r s r' s' r'' s'') , Σ≡Prop (λ x → ∈-isProp S' x) (·Assoc _ _ _))) where path : (r s r' s' r'' s'' : R) → r · (s' · s'') + (r' · s'' + r'' · s') · s ≡ (r · s' + r' · s) · s'' + r'' · (s · s') path = solve R' 0ₗ : S⁻¹R 0ₗ = [ 0r , 1r , SMultClosedSubset .containsOne ] +ₗ-rid : (x : S⁻¹R) → x +ₗ 0ₗ ≡ x +ₗ-rid = SQ.elimProp (λ _ → squash/ _ _) +ₗ-rid[] where +ₗ-rid[] : (a : R × S) → [ a ] +ₗ 0ₗ ≡ [ a ] +ₗ-rid[] (r , s , s∈S) = path where eq1 : (r s : R) → r · 1r + 0r · s ≡ r eq1 = solve R' path : [ r · 1r + 0r · s , s · 1r , SMultClosedSubset .multClosed s∈S (SMultClosedSubset .containsOne) ] ≡ [ r , s , s∈S ] path = cong [_] (ΣPathP (eq1 r s , Σ≡Prop (λ x → ∈-isProp S' x) (·Rid _))) -ₗ_ : S⁻¹R → S⁻¹R -ₗ_ = SQ.rec squash/ -ₗ[] -ₗWellDef where -ₗ[] : R × S → S⁻¹R -ₗ[] (r , s) = [ - r , s ] -ₗWellDef : (a b : R × S) → a ≈ b → -ₗ[] a ≡ -ₗ[] b -ₗWellDef (r , s , _) (r' , s' , _) ((u , u∈S) , p) = eq/ _ _ ((u , u∈S) , path) where eq1 : (u r s' : R) → u · - r · s' ≡ - (u · r · s') eq1 = solve R' eq2 : (u r' s : R) → - (u · r' · s) ≡ u · - r' · s eq2 = solve R' path : u · - r · s' ≡ u · - r' · s path = eq1 u r s' ∙∙ cong -_ p ∙∙ eq2 u r' s +ₗ-rinv : (x : S⁻¹R) → x +ₗ (-ₗ x) ≡ 0ₗ +ₗ-rinv = SQ.elimProp (λ _ → squash/ _ _) +ₗ-rinv[] where +ₗ-rinv[] : (a : R × S) → ([ a ] +ₗ (-ₗ [ a ])) ≡ 0ₗ +ₗ-rinv[] (r , s , s∈S) = eq/ _ _ ((1r , SMultClosedSubset .containsOne) , path r s) where path : (r s : R) → 1r · (r · s + - r · s) · 1r ≡ 1r · 0r · (s · s) path = solve R' +ₗ-comm : (x y : S⁻¹R) → x +ₗ y ≡ y +ₗ x +ₗ-comm = SQ.elimProp2 (λ _ _ → squash/ _ _) +ₗ-comm[] where +ₗ-comm[] : (a b : R × S) → ([ a ] +ₗ [ b ]) ≡ ([ b ] +ₗ [ a ]) +ₗ-comm[] (r , s , s∈S) (r' , s' , s'∈S) = cong [_] (ΣPathP ((+Comm _ _) , Σ≡Prop (λ x → ∈-isProp S' x) (·Comm _ _))) -- Now for multiplication _·ₗ_ : S⁻¹R → S⁻¹R → S⁻¹R _·ₗ_ = setQuotSymmBinOp locRefl locTrans _·ₚ_ (λ a b → subst (λ x → (a ·ₚ b) ≈ x) (·ₚ-symm a b) (locRefl (a ·ₚ b))) θ where _·ₚ_ : R × S → R × S → R × S (r₁ , s₁ , s₁∈S) ·ₚ (r₂ , s₂ , s₂∈S) = (r₁ · r₂) , ((s₁ · s₂) , SMultClosedSubset .multClosed s₁∈S s₂∈S) ·ₚ-symm : (a b : R × S) → (a ·ₚ b) ≡ (b ·ₚ a) ·ₚ-symm (r₁ , s₁ , s₁∈S) (r₂ , s₂ , s₂∈S) = ΣPathP (·Comm _ _ , Σ≡Prop (λ x → S' x .snd) (·Comm _ _)) θ : (a a' b : R × S) → a ≈ a' → (a ·ₚ b) ≈ (a' ·ₚ b) θ (r₁ , s₁ , s₁∈S) (r'₁ , s'₁ , s'₁∈S) (r₂ , s₂ , s₂∈S) ((s , s∈S) , p) = (s , s∈S) , path where eq1 : (r₁ s₁ r'₁ s'₁ r₂ s₂ s : R) → s · (r₁ · r₂) · (s'₁ · s₂) ≡ s · r₁ · s'₁ · r₂ · s₂ eq1 = solve R' eq2 : (r₁ s₁ r'₁ s'₁ r₂ s₂ s : R) → s · r'₁ · s₁ · r₂ · s₂ ≡ s · (r'₁ · r₂) · (s₁ · s₂) eq2 = solve R' path : s · (r₁ · r₂) · (s'₁ · s₂) ≡ s · (r'₁ · r₂) · (s₁ · s₂) path = eq1 r₁ s₁ r'₁ s'₁ r₂ s₂ s ∙∙ cong (λ x → x · r₂ · s₂) p ∙∙ eq2 r₁ s₁ r'₁ s'₁ r₂ s₂ s -- checking laws for multiplication 1ₗ : S⁻¹R 1ₗ = [ 1r , 1r , SMultClosedSubset .containsOne ] ·ₗ-assoc : (x y z : S⁻¹R) → x ·ₗ (y ·ₗ z) ≡ (x ·ₗ y) ·ₗ z ·ₗ-assoc = SQ.elimProp3 (λ _ _ _ → squash/ _ _) ·ₗ-assoc[] where ·ₗ-assoc[] : (a b c : R × S) → [ a ] ·ₗ ([ b ] ·ₗ [ c ]) ≡ ([ a ] ·ₗ [ b ]) ·ₗ [ c ] ·ₗ-assoc[] (r , s , s∈S) (r' , s' , s'∈S) (r'' , s'' , s''∈S) = cong [_] (ΣPathP ((·Assoc _ _ _) , Σ≡Prop (λ x → ∈-isProp S' x) (·Assoc _ _ _))) ·ₗ-rid : (x : S⁻¹R) → x ·ₗ 1ₗ ≡ x ·ₗ-rid = SQ.elimProp (λ _ → squash/ _ _) ·ₗ-rid[] where ·ₗ-rid[] : (a : R × S) → ([ a ] ·ₗ 1ₗ) ≡ [ a ] ·ₗ-rid[] (r , s , s∈S) = cong [_] (ΣPathP ((·Rid _) , Σ≡Prop (λ x → ∈-isProp S' x) (·Rid _))) ·ₗ-rdist-+ₗ : (x y z : S⁻¹R) → x ·ₗ (y +ₗ z) ≡ (x ·ₗ y) +ₗ (x ·ₗ z) ·ₗ-rdist-+ₗ = SQ.elimProp3 (λ _ _ _ → squash/ _ _) ·ₗ-rdist-+ₗ[] where ·ₗ-rdist-+ₗ[] : (a b c : R × S) → [ a ] ·ₗ ([ b ] +ₗ [ c ]) ≡ ([ a ] ·ₗ [ b ]) +ₗ ([ a ] ·ₗ [ c ]) ·ₗ-rdist-+ₗ[] (r , s , s∈S) (r' , s' , s'∈S) (r'' , s'' , s''∈S) = eq/ _ _ ((1r , (SMultClosedSubset .containsOne)) , path r s r' s' r'' s'') where -- could be shortened even further path : (r s r' s' r'' s'' : R) → 1r · (r · (r' · s'' + r'' · s')) · (s · s' · (s · s'')) ≡ 1r · (r · r' · (s · s'') + r · r'' · (s · s')) · (s · (s' · s'')) path = solve R' ·ₗ-comm : (x y : S⁻¹R) → x ·ₗ y ≡ y ·ₗ x ·ₗ-comm = SQ.elimProp2 (λ _ _ → squash/ _ _) ·ₗ-comm[] where ·ₗ-comm[] : (a b : R × S) → [ a ] ·ₗ [ b ] ≡ [ b ] ·ₗ [ a ] ·ₗ-comm[] (r , s , s∈S) (r' , s' , s'∈S) = cong [_] (ΣPathP ((·Comm _ _) , Σ≡Prop (λ x → ∈-isProp S' x) (·Comm _ _))) -- Commutative ring structure on S⁻¹R S⁻¹RAsCommRing : CommRing ℓ S⁻¹RAsCommRing = S⁻¹R , S⁻¹RCommRingStr where open CommRingStr S⁻¹RCommRingStr : CommRingStr S⁻¹R 0r S⁻¹RCommRingStr = 0ₗ 1r S⁻¹RCommRingStr = 1ₗ _+_ S⁻¹RCommRingStr = _+ₗ_ _·_ S⁻¹RCommRingStr = _·ₗ_ - S⁻¹RCommRingStr = -ₗ_ isCommRing S⁻¹RCommRingStr = makeIsCommRing squash/ +ₗ-assoc +ₗ-rid +ₗ-rinv +ₗ-comm ·ₗ-assoc ·ₗ-rid ·ₗ-rdist-+ₗ ·ₗ-comm
36.442907
101
0.476738
180ca8484684ee5226c5f2d92646f50268782a40
1,096
agda
Agda
Cubical/WithK.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/WithK.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/WithK.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{- Cubical Agda with K This file demonstrates the incompatibility of the --cubical and --with-K flags, relying on the well-known incosistency of K with univalence. The --safe flag can be used to prevent accidentally mixing such incompatible flags. -} {-# OPTIONS --cubical --no-import-sorts --with-K #-} module Cubical.WithK where open import Cubical.Data.Equality open import Cubical.Data.Bool open import Cubical.Data.Empty private variable ℓ : Level A : Type ℓ x y : A uip : (prf : x ≡p x) → prf ≡c reflp uip reflp i = reflp transport-uip : (prf : A ≡p A) → transport (ptoc prf) x ≡c x transport-uip {x = x} prf = cong (λ m → transport (ptoc m) x) (uip prf) ∙ transportRefl x transport-not : transport (ptoc (ctop notEq)) true ≡c false transport-not = cong (λ a → transport a true) (ptoc-ctop notEq) false-true : false ≡c true false-true = sym transport-not ∙ transport-uip (ctop notEq) absurd : (X : Type) → X absurd X = transport (cong sel false-true) true where sel : Bool → Type sel false = Bool sel true = X inconsistency : ⊥ inconsistency = absurd ⊥
22.367347
68
0.691606
1c784558a6fe9352bc4444ee45edc81b84b59aca
312
agda
Agda
test/js/TestHarness.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/js/TestHarness.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/js/TestHarness.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
open import Common.Prelude module TestHarness where record ⊤ : Set where data ⊥ : Set where T : Bool → Set T true = ⊤ T false = ⊥ infixr 4 _,_ data Asserts : Set where ε : Asserts _,_ : Asserts → Asserts → Asserts assert : (b : Bool) → {b✓ : T b} → String → Asserts Tests : Set Tests = ⊤ → Asserts
14.181818
53
0.628205
105c7164becd4b6826627277e8c8f55e33ac35ac
159
agda
Agda
test/Fail/Issue2833.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2833.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2833.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Builtin.Nat record R : Set where field r₁ : Nat r₂ : Nat open R h : (n : Nat) → R r₁ (h zero) = {!!} r₂ (h zero) = {!!} h = {!!}
11.357143
28
0.503145
0ef76df24f9f99e53508ec9ff8a902fcad67b186
1,780
agda
Agda
agda-stdlib/src/Data/These/Categorical/Right/Base.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/These/Categorical/Right/Base.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/These/Categorical/Right/Base.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Base definitions for the right-biased universe-sensitive functor and -- monad instances for These. -- -- To minimize the universe level of the RawFunctor, we require that -- elements of B are "lifted" to a copy of B at a higher universe level -- (a ⊔ b). -- See the Data.Product.Categorical.Examples for how this is done in a -- Product-based similar setting. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Level module Data.These.Categorical.Right.Base (a : Level) {b} (B : Set b) where open import Data.These.Base open import Category.Functor open import Category.Applicative open import Category.Monad open import Function Theseᵣ : Set (a ⊔ b) → Set (a ⊔ b) Theseᵣ A = These A B functor : RawFunctor Theseᵣ functor = record { _<$>_ = map₁ } ------------------------------------------------------------------------ -- Get access to other monadic functions module _ {F} (App : RawApplicative {a ⊔ b} F) where open RawApplicative App sequenceA : ∀ {A} → Theseᵣ (F A) → F (Theseᵣ A) sequenceA (this a) = this <$> a sequenceA (that b) = pure (that b) sequenceA (these a b) = flip these b <$> a mapA : ∀ {A B} → (A → F B) → Theseᵣ A → F (Theseᵣ B) mapA f = sequenceA ∘ map₁ f forA : ∀ {A B} → Theseᵣ A → (A → F B) → F (Theseᵣ B) forA = flip mapA module _ {M} (Mon : RawMonad {a ⊔ b} M) where private App = RawMonad.rawIApplicative Mon sequenceM : ∀ {A} → Theseᵣ (M A) → M (Theseᵣ A) sequenceM = sequenceA App mapM : ∀ {A B} → (A → M B) → Theseᵣ A → M (Theseᵣ B) mapM = mapA App forM : ∀ {A B} → Theseᵣ A → (A → M B) → M (Theseᵣ B) forM = forA App
28.709677
74
0.566292
cbd8139fa8f8ca34d2bbd498ec148b47f3eae425
21,304
agda
Agda
prototyping/Properties/TypeNormalization.agda
Libertus-Lab/luau
f1b46f4b967f11fabe666da1de0e71b225368260
[ "MIT" ]
1
2021-11-06T08:03:00.000Z
2021-11-06T08:03:00.000Z
prototyping/Properties/TypeNormalization.agda
sthagen/Roblox-luau
39fbd2146a379fb0878369b48764cd7e8772c0fb
[ "MIT" ]
null
null
null
prototyping/Properties/TypeNormalization.agda
sthagen/Roblox-luau
39fbd2146a379fb0878369b48764cd7e8772c0fb
[ "MIT" ]
null
null
null
{-# OPTIONS --rewriting #-} module Properties.TypeNormalization where open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_) open import Luau.Subtyping using (Tree; Language; ¬Language; function; scalar; unknown; left; right; function-ok₁; function-ok₂; function-err; function-tgt; scalar-function; scalar-function-ok; scalar-function-err; scalar-function-tgt; function-scalar; _,_) open import Luau.TypeNormalization using (_∪ⁿ_; _∩ⁿ_; _∪ᶠ_; _∪ⁿˢ_; _∩ⁿˢ_; normalize) open import Luau.Subtyping using (_<:_; _≮:_; witness; never) open import Properties.Subtyping using (<:-trans; <:-refl; <:-unknown; <:-never; <:-∪-left; <:-∪-right; <:-∪-lub; <:-∩-left; <:-∩-right; <:-∩-glb; <:-∩-symm; <:-function; <:-function-∪-∩; <:-function-∩-∪; <:-function-∪; <:-everything; <:-union; <:-∪-assocl; <:-∪-assocr; <:-∪-symm; <:-intersect; ∪-distl-∩-<:; ∪-distr-∩-<:; <:-∪-distr-∩; <:-∪-distl-∩; ∩-distl-∪-<:; <:-∩-distl-∪; <:-∩-distr-∪; scalar-∩-function-<:-never; scalar-≢-∩-<:-never) -- Normal forms for types data FunType : Type → Set data Normal : Type → Set data FunType where _⇒_ : ∀ {S T} → Normal S → Normal T → FunType (S ⇒ T) _∩_ : ∀ {F G} → FunType F → FunType G → FunType (F ∩ G) data Normal where _⇒_ : ∀ {S T} → Normal S → Normal T → Normal (S ⇒ T) _∩_ : ∀ {F G} → FunType F → FunType G → Normal (F ∩ G) _∪_ : ∀ {S T} → Normal S → Scalar T → Normal (S ∪ T) never : Normal never unknown : Normal unknown data OptScalar : Type → Set where never : OptScalar never number : OptScalar number boolean : OptScalar boolean string : OptScalar string nil : OptScalar nil -- Top function type fun-top : ∀ {F} → (FunType F) → (F <: (never ⇒ unknown)) fun-top (S ⇒ T) = <:-function <:-never <:-unknown fun-top (F ∩ G) = <:-trans <:-∩-left (fun-top F) -- function types are inhabited fun-function : ∀ {F} → FunType F → Language F function fun-function (S ⇒ T) = function fun-function (F ∩ G) = (fun-function F , fun-function G) fun-≮:-never : ∀ {F} → FunType F → (F ≮: never) fun-≮:-never F = witness function (fun-function F) never -- function types aren't scalars fun-¬scalar : ∀ {F S t} → (s : Scalar S) → FunType F → Language F t → ¬Language S t fun-¬scalar s (S ⇒ T) function = scalar-function s fun-¬scalar s (S ⇒ T) (function-ok₁ p) = scalar-function-ok s fun-¬scalar s (S ⇒ T) (function-ok₂ p) = scalar-function-ok s fun-¬scalar s (S ⇒ T) (function-err p) = scalar-function-err s fun-¬scalar s (S ⇒ T) (function-tgt p) = scalar-function-tgt s fun-¬scalar s (F ∩ G) (p₁ , p₂) = fun-¬scalar s G p₂ ¬scalar-fun : ∀ {F S} → FunType F → (s : Scalar S) → ¬Language F (scalar s) ¬scalar-fun (S ⇒ T) s = function-scalar s ¬scalar-fun (F ∩ G) s = left (¬scalar-fun F s) scalar-≮:-fun : ∀ {F S} → FunType F → Scalar S → S ≮: F scalar-≮:-fun F s = witness (scalar s) (scalar s) (¬scalar-fun F s) unknown-≮:-fun : ∀ {F} → FunType F → unknown ≮: F unknown-≮:-fun F = witness (scalar nil) unknown (¬scalar-fun F nil) -- Normalization produces normal types normal : ∀ T → Normal (normalize T) normalᶠ : ∀ {F} → FunType F → Normal F normal-∪ⁿ : ∀ {S T} → Normal S → Normal T → Normal (S ∪ⁿ T) normal-∩ⁿ : ∀ {S T} → Normal S → Normal T → Normal (S ∩ⁿ T) normal-∪ⁿˢ : ∀ {S T} → Normal S → OptScalar T → Normal (S ∪ⁿˢ T) normal-∩ⁿˢ : ∀ {S T} → Normal S → Scalar T → OptScalar (S ∩ⁿˢ T) normal-∪ᶠ : ∀ {F G} → FunType F → FunType G → FunType (F ∪ᶠ G) normal nil = never ∪ nil normal (S ⇒ T) = (normal S) ⇒ (normal T) normal never = never normal unknown = unknown normal boolean = never ∪ boolean normal number = never ∪ number normal string = never ∪ string normal (S ∪ T) = normal-∪ⁿ (normal S) (normal T) normal (S ∩ T) = normal-∩ⁿ (normal S) (normal T) normalᶠ (S ⇒ T) = S ⇒ T normalᶠ (F ∩ G) = F ∩ G normal-∪ⁿ S (T₁ ∪ T₂) = (normal-∪ⁿ S T₁) ∪ T₂ normal-∪ⁿ S never = S normal-∪ⁿ S unknown = unknown normal-∪ⁿ never (T ⇒ U) = T ⇒ U normal-∪ⁿ never (G₁ ∩ G₂) = G₁ ∩ G₂ normal-∪ⁿ unknown (T ⇒ U) = unknown normal-∪ⁿ unknown (G₁ ∩ G₂) = unknown normal-∪ⁿ (R ⇒ S) (T ⇒ U) = normalᶠ (normal-∪ᶠ (R ⇒ S) (T ⇒ U)) normal-∪ⁿ (R ⇒ S) (G₁ ∩ G₂) = normalᶠ (normal-∪ᶠ (R ⇒ S) (G₁ ∩ G₂)) normal-∪ⁿ (F₁ ∩ F₂) (T ⇒ U) = normalᶠ (normal-∪ᶠ (F₁ ∩ F₂) (T ⇒ U)) normal-∪ⁿ (F₁ ∩ F₂) (G₁ ∩ G₂) = normalᶠ (normal-∪ᶠ (F₁ ∩ F₂) (G₁ ∩ G₂)) normal-∪ⁿ (S₁ ∪ S₂) (T₁ ⇒ T₂) = normal-∪ⁿ S₁ (T₁ ⇒ T₂) ∪ S₂ normal-∪ⁿ (S₁ ∪ S₂) (G₁ ∩ G₂) = normal-∪ⁿ S₁ (G₁ ∩ G₂) ∪ S₂ normal-∩ⁿ S never = never normal-∩ⁿ S unknown = S normal-∩ⁿ S (T ∪ U) = normal-∪ⁿˢ (normal-∩ⁿ S T) (normal-∩ⁿˢ S U ) normal-∩ⁿ never (T ⇒ U) = never normal-∩ⁿ unknown (T ⇒ U) = T ⇒ U normal-∩ⁿ (R ⇒ S) (T ⇒ U) = (R ⇒ S) ∩ (T ⇒ U) normal-∩ⁿ (R ∩ S) (T ⇒ U) = (R ∩ S) ∩ (T ⇒ U) normal-∩ⁿ (R ∪ S) (T ⇒ U) = normal-∩ⁿ R (T ⇒ U) normal-∩ⁿ never (T ∩ U) = never normal-∩ⁿ unknown (T ∩ U) = T ∩ U normal-∩ⁿ (R ⇒ S) (T ∩ U) = (R ⇒ S) ∩ (T ∩ U) normal-∩ⁿ (R ∩ S) (T ∩ U) = (R ∩ S) ∩ (T ∩ U) normal-∩ⁿ (R ∪ S) (T ∩ U) = normal-∩ⁿ R (T ∩ U) normal-∪ⁿˢ S never = S normal-∪ⁿˢ never number = never ∪ number normal-∪ⁿˢ unknown number = unknown normal-∪ⁿˢ (R ⇒ S) number = (R ⇒ S) ∪ number normal-∪ⁿˢ (R ∩ S) number = (R ∩ S) ∪ number normal-∪ⁿˢ (R ∪ number) number = R ∪ number normal-∪ⁿˢ (R ∪ boolean) number = normal-∪ⁿˢ R number ∪ boolean normal-∪ⁿˢ (R ∪ string) number = normal-∪ⁿˢ R number ∪ string normal-∪ⁿˢ (R ∪ nil) number = normal-∪ⁿˢ R number ∪ nil normal-∪ⁿˢ never boolean = never ∪ boolean normal-∪ⁿˢ unknown boolean = unknown normal-∪ⁿˢ (R ⇒ S) boolean = (R ⇒ S) ∪ boolean normal-∪ⁿˢ (R ∩ S) boolean = (R ∩ S) ∪ boolean normal-∪ⁿˢ (R ∪ number) boolean = normal-∪ⁿˢ R boolean ∪ number normal-∪ⁿˢ (R ∪ boolean) boolean = R ∪ boolean normal-∪ⁿˢ (R ∪ string) boolean = normal-∪ⁿˢ R boolean ∪ string normal-∪ⁿˢ (R ∪ nil) boolean = normal-∪ⁿˢ R boolean ∪ nil normal-∪ⁿˢ never string = never ∪ string normal-∪ⁿˢ unknown string = unknown normal-∪ⁿˢ (R ⇒ S) string = (R ⇒ S) ∪ string normal-∪ⁿˢ (R ∩ S) string = (R ∩ S) ∪ string normal-∪ⁿˢ (R ∪ number) string = normal-∪ⁿˢ R string ∪ number normal-∪ⁿˢ (R ∪ boolean) string = normal-∪ⁿˢ R string ∪ boolean normal-∪ⁿˢ (R ∪ string) string = R ∪ string normal-∪ⁿˢ (R ∪ nil) string = normal-∪ⁿˢ R string ∪ nil normal-∪ⁿˢ never nil = never ∪ nil normal-∪ⁿˢ unknown nil = unknown normal-∪ⁿˢ (R ⇒ S) nil = (R ⇒ S) ∪ nil normal-∪ⁿˢ (R ∩ S) nil = (R ∩ S) ∪ nil normal-∪ⁿˢ (R ∪ number) nil = normal-∪ⁿˢ R nil ∪ number normal-∪ⁿˢ (R ∪ boolean) nil = normal-∪ⁿˢ R nil ∪ boolean normal-∪ⁿˢ (R ∪ string) nil = normal-∪ⁿˢ R nil ∪ string normal-∪ⁿˢ (R ∪ nil) nil = R ∪ nil normal-∩ⁿˢ never number = never normal-∩ⁿˢ never boolean = never normal-∩ⁿˢ never string = never normal-∩ⁿˢ never nil = never normal-∩ⁿˢ unknown number = number normal-∩ⁿˢ unknown boolean = boolean normal-∩ⁿˢ unknown string = string normal-∩ⁿˢ unknown nil = nil normal-∩ⁿˢ (R ⇒ S) number = never normal-∩ⁿˢ (R ⇒ S) boolean = never normal-∩ⁿˢ (R ⇒ S) string = never normal-∩ⁿˢ (R ⇒ S) nil = never normal-∩ⁿˢ (R ∩ S) number = never normal-∩ⁿˢ (R ∩ S) boolean = never normal-∩ⁿˢ (R ∩ S) string = never normal-∩ⁿˢ (R ∩ S) nil = never normal-∩ⁿˢ (R ∪ number) number = number normal-∩ⁿˢ (R ∪ boolean) number = normal-∩ⁿˢ R number normal-∩ⁿˢ (R ∪ string) number = normal-∩ⁿˢ R number normal-∩ⁿˢ (R ∪ nil) number = normal-∩ⁿˢ R number normal-∩ⁿˢ (R ∪ number) boolean = normal-∩ⁿˢ R boolean normal-∩ⁿˢ (R ∪ boolean) boolean = boolean normal-∩ⁿˢ (R ∪ string) boolean = normal-∩ⁿˢ R boolean normal-∩ⁿˢ (R ∪ nil) boolean = normal-∩ⁿˢ R boolean normal-∩ⁿˢ (R ∪ number) string = normal-∩ⁿˢ R string normal-∩ⁿˢ (R ∪ boolean) string = normal-∩ⁿˢ R string normal-∩ⁿˢ (R ∪ string) string = string normal-∩ⁿˢ (R ∪ nil) string = normal-∩ⁿˢ R string normal-∩ⁿˢ (R ∪ number) nil = normal-∩ⁿˢ R nil normal-∩ⁿˢ (R ∪ boolean) nil = normal-∩ⁿˢ R nil normal-∩ⁿˢ (R ∪ string) nil = normal-∩ⁿˢ R nil normal-∩ⁿˢ (R ∪ nil) nil = nil normal-∪ᶠ (R ⇒ S) (T ⇒ U) = (normal-∩ⁿ R T) ⇒ (normal-∪ⁿ S U) normal-∪ᶠ (R ⇒ S) (G ∩ H) = normal-∪ᶠ (R ⇒ S) G ∩ normal-∪ᶠ (R ⇒ S) H normal-∪ᶠ (E ∩ F) G = normal-∪ᶠ E G ∩ normal-∪ᶠ F G scalar-∩-fun-<:-never : ∀ {F S} → FunType F → Scalar S → (F ∩ S) <: never scalar-∩-fun-<:-never (T ⇒ U) S = scalar-∩-function-<:-never S scalar-∩-fun-<:-never (F ∩ G) S = <:-trans (<:-intersect <:-∩-left <:-refl) (scalar-∩-fun-<:-never F S) flipper : ∀ {S T U} → ((S ∪ T) ∪ U) <: ((S ∪ U) ∪ T) flipper = <:-trans <:-∪-assocr (<:-trans (<:-union <:-refl <:-∪-symm) <:-∪-assocl) ∩-<:-∩ⁿ : ∀ {S T} → Normal S → Normal T → (S ∩ T) <: (S ∩ⁿ T) ∩ⁿ-<:-∩ : ∀ {S T} → Normal S → Normal T → (S ∩ⁿ T) <: (S ∩ T) ∩-<:-∩ⁿˢ : ∀ {S T} → Normal S → Scalar T → (S ∩ T) <: (S ∩ⁿˢ T) ∩ⁿˢ-<:-∩ : ∀ {S T} → Normal S → Scalar T → (S ∩ⁿˢ T) <: (S ∩ T) ∪ᶠ-<:-∪ : ∀ {F G} → FunType F → FunType G → (F ∪ᶠ G) <: (F ∪ G) ∪ⁿ-<:-∪ : ∀ {S T} → Normal S → Normal T → (S ∪ⁿ T) <: (S ∪ T) ∪-<:-∪ⁿ : ∀ {S T} → Normal S → Normal T → (S ∪ T) <: (S ∪ⁿ T) ∪ⁿˢ-<:-∪ : ∀ {S T} → Normal S → OptScalar T → (S ∪ⁿˢ T) <: (S ∪ T) ∪-<:-∪ⁿˢ : ∀ {S T} → Normal S → OptScalar T → (S ∪ T) <: (S ∪ⁿˢ T) ∩-<:-∩ⁿ S never = <:-∩-right ∩-<:-∩ⁿ S unknown = <:-∩-left ∩-<:-∩ⁿ S (T ∪ U) = <:-trans <:-∩-distl-∪ (<:-trans (<:-union (∩-<:-∩ⁿ S T) (∩-<:-∩ⁿˢ S U)) (∪-<:-∪ⁿˢ (normal-∩ⁿ S T) (normal-∩ⁿˢ S U)) ) ∩-<:-∩ⁿ never (T ⇒ U) = <:-∩-left ∩-<:-∩ⁿ unknown (T ⇒ U) = <:-∩-right ∩-<:-∩ⁿ (R ⇒ S) (T ⇒ U) = <:-refl ∩-<:-∩ⁿ (R ∩ S) (T ⇒ U) = <:-refl ∩-<:-∩ⁿ (R ∪ S) (T ⇒ U) = <:-trans <:-∩-distr-∪ (<:-trans (<:-union (∩-<:-∩ⁿ R (T ⇒ U)) (<:-trans <:-∩-symm (∩-<:-∩ⁿˢ (T ⇒ U) S))) (<:-∪-lub <:-refl <:-never)) ∩-<:-∩ⁿ never (T ∩ U) = <:-∩-left ∩-<:-∩ⁿ unknown (T ∩ U) = <:-∩-right ∩-<:-∩ⁿ (R ⇒ S) (T ∩ U) = <:-refl ∩-<:-∩ⁿ (R ∩ S) (T ∩ U) = <:-refl ∩-<:-∩ⁿ (R ∪ S) (T ∩ U) = <:-trans <:-∩-distr-∪ (<:-trans (<:-union (∩-<:-∩ⁿ R (T ∩ U)) (<:-trans <:-∩-symm (∩-<:-∩ⁿˢ (T ∩ U) S))) (<:-∪-lub <:-refl <:-never)) ∩ⁿ-<:-∩ S never = <:-never ∩ⁿ-<:-∩ S unknown = <:-∩-glb <:-refl <:-unknown ∩ⁿ-<:-∩ S (T ∪ U) = <:-trans (∪ⁿˢ-<:-∪ (normal-∩ⁿ S T) (normal-∩ⁿˢ S U)) (<:-trans (<:-union (∩ⁿ-<:-∩ S T) (∩ⁿˢ-<:-∩ S U)) ∩-distl-∪-<:) ∩ⁿ-<:-∩ never (T ⇒ U) = <:-never ∩ⁿ-<:-∩ unknown (T ⇒ U) = <:-∩-glb <:-unknown <:-refl ∩ⁿ-<:-∩ (R ⇒ S) (T ⇒ U) = <:-refl ∩ⁿ-<:-∩ (R ∩ S) (T ⇒ U) = <:-refl ∩ⁿ-<:-∩ (R ∪ S) (T ⇒ U) = <:-trans (∩ⁿ-<:-∩ R (T ⇒ U)) (<:-∩-glb (<:-trans <:-∩-left <:-∪-left) <:-∩-right) ∩ⁿ-<:-∩ never (T ∩ U) = <:-never ∩ⁿ-<:-∩ unknown (T ∩ U) = <:-∩-glb <:-unknown <:-refl ∩ⁿ-<:-∩ (R ⇒ S) (T ∩ U) = <:-refl ∩ⁿ-<:-∩ (R ∩ S) (T ∩ U) = <:-refl ∩ⁿ-<:-∩ (R ∪ S) (T ∩ U) = <:-trans (∩ⁿ-<:-∩ R (T ∩ U)) (<:-∩-glb (<:-trans <:-∩-left <:-∪-left) <:-∩-right) ∩-<:-∩ⁿˢ never number = <:-∩-left ∩-<:-∩ⁿˢ never boolean = <:-∩-left ∩-<:-∩ⁿˢ never string = <:-∩-left ∩-<:-∩ⁿˢ never nil = <:-∩-left ∩-<:-∩ⁿˢ unknown T = <:-∩-right ∩-<:-∩ⁿˢ (R ⇒ S) T = scalar-∩-fun-<:-never (R ⇒ S) T ∩-<:-∩ⁿˢ (F ∩ G) T = scalar-∩-fun-<:-never (F ∩ G) T ∩-<:-∩ⁿˢ (R ∪ number) number = <:-∩-right ∩-<:-∩ⁿˢ (R ∪ boolean) number = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R number) (scalar-≢-∩-<:-never boolean number (λ ()))) ∩-<:-∩ⁿˢ (R ∪ string) number = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R number) (scalar-≢-∩-<:-never string number (λ ()))) ∩-<:-∩ⁿˢ (R ∪ nil) number = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R number) (scalar-≢-∩-<:-never nil number (λ ()))) ∩-<:-∩ⁿˢ (R ∪ number) boolean = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R boolean) (scalar-≢-∩-<:-never number boolean (λ ()))) ∩-<:-∩ⁿˢ (R ∪ boolean) boolean = <:-∩-right ∩-<:-∩ⁿˢ (R ∪ string) boolean = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R boolean) (scalar-≢-∩-<:-never string boolean (λ ()))) ∩-<:-∩ⁿˢ (R ∪ nil) boolean = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R boolean) (scalar-≢-∩-<:-never nil boolean (λ ()))) ∩-<:-∩ⁿˢ (R ∪ number) string = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R string) (scalar-≢-∩-<:-never number string (λ ()))) ∩-<:-∩ⁿˢ (R ∪ boolean) string = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R string) (scalar-≢-∩-<:-never boolean string (λ ()))) ∩-<:-∩ⁿˢ (R ∪ string) string = <:-∩-right ∩-<:-∩ⁿˢ (R ∪ nil) string = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R string) (scalar-≢-∩-<:-never nil string (λ ()))) ∩-<:-∩ⁿˢ (R ∪ number) nil = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R nil) (scalar-≢-∩-<:-never number nil (λ ()))) ∩-<:-∩ⁿˢ (R ∪ boolean) nil = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R nil) (scalar-≢-∩-<:-never boolean nil (λ ()))) ∩-<:-∩ⁿˢ (R ∪ string) nil = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R nil) (scalar-≢-∩-<:-never string nil (λ ()))) ∩-<:-∩ⁿˢ (R ∪ nil) nil = <:-∩-right ∩ⁿˢ-<:-∩ never T = <:-never ∩ⁿˢ-<:-∩ unknown T = <:-∩-glb <:-unknown <:-refl ∩ⁿˢ-<:-∩ (R ⇒ S) T = <:-never ∩ⁿˢ-<:-∩ (F ∩ G) T = <:-never ∩ⁿˢ-<:-∩ (R ∪ number) number = <:-∩-glb <:-∪-right <:-refl ∩ⁿˢ-<:-∩ (R ∪ boolean) number = <:-trans (∩ⁿˢ-<:-∩ R number) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ string) number = <:-trans (∩ⁿˢ-<:-∩ R number) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ nil) number = <:-trans (∩ⁿˢ-<:-∩ R number) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ number) boolean = <:-trans (∩ⁿˢ-<:-∩ R boolean) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ boolean) boolean = <:-∩-glb <:-∪-right <:-refl ∩ⁿˢ-<:-∩ (R ∪ string) boolean = <:-trans (∩ⁿˢ-<:-∩ R boolean) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ nil) boolean = <:-trans (∩ⁿˢ-<:-∩ R boolean) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ number) string = <:-trans (∩ⁿˢ-<:-∩ R string) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ boolean) string = <:-trans (∩ⁿˢ-<:-∩ R string) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ string) string = <:-∩-glb <:-∪-right <:-refl ∩ⁿˢ-<:-∩ (R ∪ nil) string = <:-trans (∩ⁿˢ-<:-∩ R string) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ number) nil = <:-trans (∩ⁿˢ-<:-∩ R nil) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ boolean) nil = <:-trans (∩ⁿˢ-<:-∩ R nil) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ string) nil = <:-trans (∩ⁿˢ-<:-∩ R nil) (<:-intersect <:-∪-left <:-refl) ∩ⁿˢ-<:-∩ (R ∪ nil) nil = <:-∩-glb <:-∪-right <:-refl ∪ᶠ-<:-∪ (R ⇒ S) (T ⇒ U) = <:-trans (<:-function (∩-<:-∩ⁿ R T) (∪ⁿ-<:-∪ S U)) <:-function-∪-∩ ∪ᶠ-<:-∪ (R ⇒ S) (G ∩ H) = <:-trans (<:-intersect (∪ᶠ-<:-∪ (R ⇒ S) G) (∪ᶠ-<:-∪ (R ⇒ S) H)) ∪-distl-∩-<: ∪ᶠ-<:-∪ (E ∩ F) G = <:-trans (<:-intersect (∪ᶠ-<:-∪ E G) (∪ᶠ-<:-∪ F G)) ∪-distr-∩-<: ∪-<:-∪ᶠ : ∀ {F G} → FunType F → FunType G → (F ∪ G) <: (F ∪ᶠ G) ∪-<:-∪ᶠ (R ⇒ S) (T ⇒ U) = <:-trans <:-function-∪ (<:-function (∩ⁿ-<:-∩ R T) (∪-<:-∪ⁿ S U)) ∪-<:-∪ᶠ (R ⇒ S) (G ∩ H) = <:-trans <:-∪-distl-∩ (<:-intersect (∪-<:-∪ᶠ (R ⇒ S) G) (∪-<:-∪ᶠ (R ⇒ S) H)) ∪-<:-∪ᶠ (E ∩ F) G = <:-trans <:-∪-distr-∩ (<:-intersect (∪-<:-∪ᶠ E G) (∪-<:-∪ᶠ F G)) ∪ⁿˢ-<:-∪ S never = <:-∪-left ∪ⁿˢ-<:-∪ never number = <:-refl ∪ⁿˢ-<:-∪ never boolean = <:-refl ∪ⁿˢ-<:-∪ never string = <:-refl ∪ⁿˢ-<:-∪ never nil = <:-refl ∪ⁿˢ-<:-∪ unknown number = <:-∪-left ∪ⁿˢ-<:-∪ unknown boolean = <:-∪-left ∪ⁿˢ-<:-∪ unknown string = <:-∪-left ∪ⁿˢ-<:-∪ unknown nil = <:-∪-left ∪ⁿˢ-<:-∪ (R ⇒ S) number = <:-refl ∪ⁿˢ-<:-∪ (R ⇒ S) boolean = <:-refl ∪ⁿˢ-<:-∪ (R ⇒ S) string = <:-refl ∪ⁿˢ-<:-∪ (R ⇒ S) nil = <:-refl ∪ⁿˢ-<:-∪ (R ∩ S) number = <:-refl ∪ⁿˢ-<:-∪ (R ∩ S) boolean = <:-refl ∪ⁿˢ-<:-∪ (R ∩ S) string = <:-refl ∪ⁿˢ-<:-∪ (R ∩ S) nil = <:-refl ∪ⁿˢ-<:-∪ (R ∪ number) number = <:-union <:-∪-left <:-refl ∪ⁿˢ-<:-∪ (R ∪ boolean) number = <:-trans (<:-union (∪ⁿˢ-<:-∪ R number) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ string) number = <:-trans (<:-union (∪ⁿˢ-<:-∪ R number) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ nil) number = <:-trans (<:-union (∪ⁿˢ-<:-∪ R number) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ number) boolean = <:-trans (<:-union (∪ⁿˢ-<:-∪ R boolean) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ boolean) boolean = <:-union <:-∪-left <:-refl ∪ⁿˢ-<:-∪ (R ∪ string) boolean = <:-trans (<:-union (∪ⁿˢ-<:-∪ R boolean) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ nil) boolean = <:-trans (<:-union (∪ⁿˢ-<:-∪ R boolean) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ number) string = <:-trans (<:-union (∪ⁿˢ-<:-∪ R string) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ boolean) string = <:-trans (<:-union (∪ⁿˢ-<:-∪ R string) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ string) string = <:-union <:-∪-left <:-refl ∪ⁿˢ-<:-∪ (R ∪ nil) string = <:-trans (<:-union (∪ⁿˢ-<:-∪ R string) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ number) nil = <:-trans (<:-union (∪ⁿˢ-<:-∪ R nil) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ boolean) nil = <:-trans (<:-union (∪ⁿˢ-<:-∪ R nil) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ string) nil = <:-trans (<:-union (∪ⁿˢ-<:-∪ R nil) <:-refl) flipper ∪ⁿˢ-<:-∪ (R ∪ nil) nil = <:-union <:-∪-left <:-refl ∪-<:-∪ⁿˢ T never = <:-∪-lub <:-refl <:-never ∪-<:-∪ⁿˢ never number = <:-refl ∪-<:-∪ⁿˢ never boolean = <:-refl ∪-<:-∪ⁿˢ never string = <:-refl ∪-<:-∪ⁿˢ never nil = <:-refl ∪-<:-∪ⁿˢ unknown number = <:-unknown ∪-<:-∪ⁿˢ unknown boolean = <:-unknown ∪-<:-∪ⁿˢ unknown string = <:-unknown ∪-<:-∪ⁿˢ unknown nil = <:-unknown ∪-<:-∪ⁿˢ (R ⇒ S) number = <:-refl ∪-<:-∪ⁿˢ (R ⇒ S) boolean = <:-refl ∪-<:-∪ⁿˢ (R ⇒ S) string = <:-refl ∪-<:-∪ⁿˢ (R ⇒ S) nil = <:-refl ∪-<:-∪ⁿˢ (R ∩ S) number = <:-refl ∪-<:-∪ⁿˢ (R ∩ S) boolean = <:-refl ∪-<:-∪ⁿˢ (R ∩ S) string = <:-refl ∪-<:-∪ⁿˢ (R ∩ S) nil = <:-refl ∪-<:-∪ⁿˢ (R ∪ number) number = <:-∪-lub <:-refl <:-∪-right ∪-<:-∪ⁿˢ (R ∪ boolean) number = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R number) <:-refl) ∪-<:-∪ⁿˢ (R ∪ string) number = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R number) <:-refl) ∪-<:-∪ⁿˢ (R ∪ nil) number = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R number) <:-refl) ∪-<:-∪ⁿˢ (R ∪ number) boolean = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R boolean) <:-refl) ∪-<:-∪ⁿˢ (R ∪ boolean) boolean = <:-∪-lub <:-refl <:-∪-right ∪-<:-∪ⁿˢ (R ∪ string) boolean = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R boolean) <:-refl) ∪-<:-∪ⁿˢ (R ∪ nil) boolean = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R boolean) <:-refl) ∪-<:-∪ⁿˢ (R ∪ number) string = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R string) <:-refl) ∪-<:-∪ⁿˢ (R ∪ boolean) string = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R string) <:-refl) ∪-<:-∪ⁿˢ (R ∪ string) string = <:-∪-lub <:-refl <:-∪-right ∪-<:-∪ⁿˢ (R ∪ nil) string = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R string) <:-refl) ∪-<:-∪ⁿˢ (R ∪ number) nil = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R nil) <:-refl) ∪-<:-∪ⁿˢ (R ∪ boolean) nil = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R nil) <:-refl) ∪-<:-∪ⁿˢ (R ∪ string) nil = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R nil) <:-refl) ∪-<:-∪ⁿˢ (R ∪ nil) nil = <:-∪-lub <:-refl <:-∪-right ∪ⁿ-<:-∪ S never = <:-∪-left ∪ⁿ-<:-∪ S unknown = <:-∪-right ∪ⁿ-<:-∪ never (T ⇒ U) = <:-∪-right ∪ⁿ-<:-∪ unknown (T ⇒ U) = <:-∪-left ∪ⁿ-<:-∪ (R ⇒ S) (T ⇒ U) = ∪ᶠ-<:-∪ (R ⇒ S) (T ⇒ U) ∪ⁿ-<:-∪ (R ∩ S) (T ⇒ U) = ∪ᶠ-<:-∪ (R ∩ S) (T ⇒ U) ∪ⁿ-<:-∪ (R ∪ S) (T ⇒ U) = <:-trans (<:-union (∪ⁿ-<:-∪ R (T ⇒ U)) <:-refl) (<:-∪-lub (<:-∪-lub (<:-trans <:-∪-left <:-∪-left) <:-∪-right) (<:-trans <:-∪-right <:-∪-left)) ∪ⁿ-<:-∪ never (T ∩ U) = <:-∪-right ∪ⁿ-<:-∪ unknown (T ∩ U) = <:-∪-left ∪ⁿ-<:-∪ (R ⇒ S) (T ∩ U) = ∪ᶠ-<:-∪ (R ⇒ S) (T ∩ U) ∪ⁿ-<:-∪ (R ∩ S) (T ∩ U) = ∪ᶠ-<:-∪ (R ∩ S) (T ∩ U) ∪ⁿ-<:-∪ (R ∪ S) (T ∩ U) = <:-trans (<:-union (∪ⁿ-<:-∪ R (T ∩ U)) <:-refl) (<:-∪-lub (<:-∪-lub (<:-trans <:-∪-left <:-∪-left) <:-∪-right) (<:-trans <:-∪-right <:-∪-left)) ∪ⁿ-<:-∪ S (T ∪ U) = <:-∪-lub (<:-trans (∪ⁿ-<:-∪ S T) (<:-union <:-refl <:-∪-left)) (<:-trans <:-∪-right <:-∪-right) ∪-<:-∪ⁿ S never = <:-∪-lub <:-refl <:-never ∪-<:-∪ⁿ S unknown = <:-unknown ∪-<:-∪ⁿ never (T ⇒ U) = <:-∪-lub <:-never <:-refl ∪-<:-∪ⁿ unknown (T ⇒ U) = <:-unknown ∪-<:-∪ⁿ (R ⇒ S) (T ⇒ U) = ∪-<:-∪ᶠ (R ⇒ S) (T ⇒ U) ∪-<:-∪ⁿ (R ∩ S) (T ⇒ U) = ∪-<:-∪ᶠ (R ∩ S) (T ⇒ U) ∪-<:-∪ⁿ (R ∪ S) (T ⇒ U) = <:-trans <:-∪-assocr (<:-trans (<:-union <:-refl <:-∪-symm) (<:-trans <:-∪-assocl (<:-union (∪-<:-∪ⁿ R (T ⇒ U)) <:-refl))) ∪-<:-∪ⁿ never (T ∩ U) = <:-∪-lub <:-never <:-refl ∪-<:-∪ⁿ unknown (T ∩ U) = <:-unknown ∪-<:-∪ⁿ (R ⇒ S) (T ∩ U) = ∪-<:-∪ᶠ (R ⇒ S) (T ∩ U) ∪-<:-∪ⁿ (R ∩ S) (T ∩ U) = ∪-<:-∪ᶠ (R ∩ S) (T ∩ U) ∪-<:-∪ⁿ (R ∪ S) (T ∩ U) = <:-trans <:-∪-assocr (<:-trans (<:-union <:-refl <:-∪-symm) (<:-trans <:-∪-assocl (<:-union (∪-<:-∪ⁿ R (T ∩ U)) <:-refl))) ∪-<:-∪ⁿ never (T ∪ U) = <:-trans <:-∪-assocl (<:-union (∪-<:-∪ⁿ never T) <:-refl) ∪-<:-∪ⁿ unknown (T ∪ U) = <:-trans <:-∪-assocl (<:-union (∪-<:-∪ⁿ unknown T) <:-refl) ∪-<:-∪ⁿ (R ⇒ S) (T ∪ U) = <:-trans <:-∪-assocl (<:-union (∪-<:-∪ⁿ (R ⇒ S) T) <:-refl) ∪-<:-∪ⁿ (R ∩ S) (T ∪ U) = <:-trans <:-∪-assocl (<:-union (∪-<:-∪ⁿ (R ∩ S) T) <:-refl) ∪-<:-∪ⁿ (R ∪ S) (T ∪ U) = <:-trans <:-∪-assocl (<:-union (∪-<:-∪ⁿ (R ∪ S) T) <:-refl) normalize-<: : ∀ T → normalize T <: T <:-normalize : ∀ T → T <: normalize T <:-normalize nil = <:-∪-right <:-normalize (S ⇒ T) = <:-function (normalize-<: S) (<:-normalize T) <:-normalize never = <:-refl <:-normalize unknown = <:-refl <:-normalize boolean = <:-∪-right <:-normalize number = <:-∪-right <:-normalize string = <:-∪-right <:-normalize (S ∪ T) = <:-trans (<:-union (<:-normalize S) (<:-normalize T)) (∪-<:-∪ⁿ (normal S) (normal T)) <:-normalize (S ∩ T) = <:-trans (<:-intersect (<:-normalize S) (<:-normalize T)) (∩-<:-∩ⁿ (normal S) (normal T)) normalize-<: nil = <:-∪-lub <:-never <:-refl normalize-<: (S ⇒ T) = <:-function (<:-normalize S) (normalize-<: T) normalize-<: never = <:-refl normalize-<: unknown = <:-refl normalize-<: boolean = <:-∪-lub <:-never <:-refl normalize-<: number = <:-∪-lub <:-never <:-refl normalize-<: string = <:-∪-lub <:-never <:-refl normalize-<: (S ∪ T) = <:-trans (∪ⁿ-<:-∪ (normal S) (normal T)) (<:-union (normalize-<: S) (normalize-<: T)) normalize-<: (S ∩ T) = <:-trans (∩ⁿ-<:-∩ (normal S) (normal T)) (<:-intersect (normalize-<: S) (normalize-<: T))
52.08802
443
0.505492
2056c72923f35045e758c4b46d613608c209cc9e
410
agda
Agda
test/Succeed/UnquoteWithArgs.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/UnquoteWithArgs.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/UnquoteWithArgs.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where open import Common.Prelude open import Common.Reflection const : ∀ {a b} {A : Set a} {B : Set b} → A → B → A const x _ = x id : ∀ {a} {A : Set a} → A → A id x = x first : Tactic first = give (def (quote const) []) second : Tactic second = give (def (quote const) (vArg (def (quote id) []) ∷ [])) number : Nat number = unquote first 6 false boolean : Bool boolean = unquote second 5 true
17.083333
65
0.619512
fb2eeb0535466434b913d3ba7d796f8360cc86bc
523
agda
Agda
LibraBFT/Impl/Base/Types.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
LibraBFT/Impl/Base/Types.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
LibraBFT/Impl/Base/Types.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} module LibraBFT.Impl.Base.Types where open import LibraBFT.Prelude open import LibraBFT.Hash NodeId : Set NodeId = ℕ _≟NodeId_ : (n1 n2 : NodeId) → Dec (n1 ≡ n2) _≟NodeId_ = _≟ℕ_ UID : Set UID = Hash _≟UID_ : (u₀ u₁ : UID) → Dec (u₀ ≡ u₁) _≟UID_ = _≟Hash_
23.772727
111
0.686424
20020918d95cfb5153353a96d255d339ec473410
4,617
agda
Agda
src/Categories/Category/CartesianClosed/Canonical.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
src/Categories/Category/CartesianClosed/Canonical.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
src/Categories/Category/CartesianClosed/Canonical.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Core using (Category) -- A "canonical" presentation of cartesian closed categories. -- -- This presentation is equivalent to the one in -- Categories.Category.CartesianClosed but it is easier to work with -- in some circumstances. -- -- Here, exponentials are not defined in terms of arbitrary products, -- but in terms of a family of "canonical" products. Since products -- are defined only up to isomorphism the choice of product does not -- matter for the property of being cartesian closed, but working with -- a fixed choice of representatives simplifies the constructions of -- some instances of CCCs (e.g. Cats). module Categories.Category.CartesianClosed.Canonical {o ℓ e} (𝒞 : Category o ℓ e) where open import Level using (levelOfTerm) open import Function using (flip) open import Categories.Category.Cartesian 𝒞 using (Cartesian) import Categories.Category.CartesianClosed 𝒞 as 𝒞-CC open import Categories.Object.Exponential 𝒞 using (Exponential) open import Categories.Object.Product 𝒞 open import Categories.Object.Terminal 𝒞 using (Terminal) open import Categories.Morphism.Reasoning 𝒞 private open Category 𝒞 open HomReasoning variable A B C : Obj f g h : A ⇒ B -- A (canonical) cartesian closed category is a category with all -- (canonical) products and exponentials -- -- This presentation is equivalent to the one in -- Categories.Category.CartesianClosed.CartesianClosed. record CartesianClosed : Set (levelOfTerm 𝒞) where infixr 7 _×_ infixr 9 _^_ infix 10 ⟨_,_⟩ field -- Canonical products ⊤ : Obj _×_ : Obj → Obj → Obj ! : A ⇒ ⊤ π₁ : A × B ⇒ A π₂ : A × B ⇒ B ⟨_,_⟩ : C ⇒ A → C ⇒ B → C ⇒ A × B !-unique : (f : A ⇒ ⊤) → ! ≈ f π₁-comp : π₁ ∘ ⟨ f , g ⟩ ≈ f π₂-comp : π₂ ∘ ⟨ f , g ⟩ ≈ g ⟨,⟩-unique : ∀ {f g} {h : C ⇒ A × B} → π₁ ∘ h ≈ f → π₂ ∘ h ≈ g → ⟨ f , g ⟩ ≈ h -- The above defines canonical finite products, making 𝒞 cartesian. ⊤-terminal : Terminal ⊤-terminal = record { !-unique = !-unique } ×-product : ∀ {A B} → Product A B ×-product {A} {B} = record { project₁ = π₁-comp; project₂ = π₂-comp; unique = ⟨,⟩-unique } isCartesian : Cartesian isCartesian = record { terminal = ⊤-terminal ; products = record { product = ×-product } } open Cartesian isCartesian public hiding (_×_; π₁; π₂; ⟨_,_⟩) renaming (⟨⟩-cong₂ to ⟨,⟩-resp-≈) field -- Canonical exponentials (w.r.t. the canonical products) _^_ : Obj → Obj → Obj eval : B ^ A × A ⇒ B curry : C × A ⇒ B → C ⇒ B ^ A eval-comp : eval ∘ (curry f ⁂ id) ≈ f curry-resp-≈ : f ≈ g → curry f ≈ curry g curry-unique : eval ∘ (f ⁂ id) ≈ g → f ≈ curry g -- The above defines canonical exponentials, making 𝒞 cartesian closed. -- -- NOTE: below we use "⊗" to indicate "non-canonical" products. ^-exponential : ∀ {A B} → Exponential A B ^-exponential {A} {B} = record { B^A = B ^ A ; product = ×-product ; eval = eval ; λg = λ C⊗A f → curry (f ∘ repack ×-product C⊗A) ; β = λ {C} C⊗A {g} → begin eval ∘ [ C⊗A ⇒ ×-product ] curry (g ∘ repack ×-product C⊗A) ×id ≈˘⟨ pullʳ [ ×-product ⇒ ×-product ]×∘⟨⟩ ⟩ (eval ∘ (curry (g ∘ repack ×-product C⊗A) ⁂ id)) ∘ repack C⊗A ×-product ≈⟨ eval-comp ⟩∘⟨refl ⟩ (g ∘ repack ×-product C⊗A) ∘ repack C⊗A ×-product ≈⟨ cancelʳ (repack∘repack≈id ×-product C⊗A) ⟩ g ∎ ; λ-unique = λ {C} C⊗A {g} {f} hyp → curry-unique (begin eval ∘ (f ⁂ id) ≈˘⟨ pullʳ [ C⊗A ⇒ ×-product ]×∘⟨⟩ ⟩ (eval ∘ [ C⊗A ⇒ ×-product ] f ×id) ∘ repack ×-product C⊗A ≈⟨ hyp ⟩∘⟨refl ⟩ g ∘ repack ×-product C⊗A ∎) } module Equivalence where open 𝒞-CC using () renaming (CartesianClosed to CartesianClosed′) -- The two presentations of CCCs are equivalent fromCanonical : CartesianClosed → CartesianClosed′ fromCanonical cc = record { cartesian = CartesianClosed.isCartesian cc ; exp = CartesianClosed.^-exponential cc } toCanonical : CartesianClosed′ → CartesianClosed toCanonical cc = record { ⊤ = ⊤ ; _×_ = _×_ ; ! = ! ; π₁ = π₁ ; π₂ = π₂ ; ⟨_,_⟩ = ⟨_,_⟩ ; !-unique = !-unique ; π₁-comp = project₁ ; π₂-comp = project₂ ; ⟨,⟩-unique = unique ; _^_ = _^_ ; eval = eval′ ; curry = λg ; eval-comp = β′ ; curry-resp-≈ = λ-cong ; curry-unique = λ-unique′ } where open CartesianClosed′ cc
28.85625
87
0.591726
dcc3a5f2104d29a2a2174d1569cbdd9d5f17d566
222
agda
Agda
vendor/stdlib/src/Data/Unit1.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Data/Unit1.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Data/Unit1.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- The unit type (in Set₁) ------------------------------------------------------------------------ module Data.Unit1 where record ⊤₁ : Set₁ where
27.75
72
0.238739
4ad3bef4a1cfdd9fd68ea3cdb4162d1bdc99dfb2
169
agda
Agda
test/Succeed/Issue3361.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3361.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3361.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2018-11-03, issue #3361 -- -- Empty variable blocks should trigger warning rather than parse error. variable -- Expected warning: -- Empty variable block.
18.777778
72
0.733728
cb04edf53b0fd2baf06b20321ebdbcb40b7a6e98
576
agda
Agda
test/Succeed/Issue679.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/Issue679.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/Issue679.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- Andreas, 2012-07-31 no eager introduction of hidden abstractions {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.conv.coerce:100 #-} -- {-# OPTIONS -v tc.with:100 #-} module Issue679 where data Unit : Set where unit : Unit -- works also now: test : {u : Unit} → Unit test = λ {u} → u T : Unit → Set T unit = {u : Unit} → Unit works : (u : Unit) → T u works unit = λ {u} → u fails : (u : Unit) → T u fails unit with unit ... | _ = λ {u} → u -- Error was: -- {u : _14 _} → _16 _ !=< Unit of type Set -- when checking that the expression λ {u} → u has type Unit
20.571429
67
0.590278
1063e053cfb047cd0ccb797d94ec6486b4afeb4f
15,868
agda
Agda
lib/Explore/Old/Sum/sum-properties.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
2
2016-06-05T09:25:32.000Z
2017-06-28T19:19:29.000Z
lib/Explore/Old/Sum/sum-properties.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
1
2019-03-16T14:24:04.000Z
2019-03-16T14:24:04.000Z
lib/Explore/Old/Sum/sum-properties.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K #-} module sum-properties where open import Type import Level as L open L using (Lift) open import Data.Zero using (𝟘) open import Data.Bool.NP open Data.Bool.NP.Indexed open import Data.Nat.NP open import Data.Nat.Properties open import Data.Product renaming (map to pmap) open import Data.Sum open import Relation.Binary.Product.Pointwise open import Data.Maybe open import Data.One using (𝟙) open import Function.NP import Function.Inverse as Inv open Inv using (_↔_) open import Function.Related open import Function.Related.TypeIsomorphisms.NP open import Function.Equality using (_⟨$⟩_) --open import sum open import Search.Type open import Search.Sum open import Search.Derived using (sum-swap) open import Search.Searchable renaming (Searchable to SumProp) open import Search.Searchable.Fin open import Search.Searchable.Product open import Search.Searchable.Sum open import Relation.Binary.Sum import Relation.Binary.PropositionalEquality.NP as ≡ open ≡ using (_≡_ ; _≗_ ; _≗₂_) module _M2 {A : ★} (μA : SumProp A) (f g : A → Bool) where sum-ext₂ : ∀ {A B}{f g : A → B → ℕ}(μA : SumProp A)(μB : SumProp B) → f ≗₂ g → sum μA (sum μB ∘ f) ≡ sum μA (sum μB ∘ g) sum-ext₂ μA μB f≗g = sum-ext μA (sum-ext μB ∘ f≗g) CountStableUnderInjection : ∀ {A} → SumProp A → Set CountStableUnderInjection μ = ∀ p → Injective p → CountStableUnder (count μ) p #-StableUnderInjection : ∀ {A}{μ : SumProp A} → SumStableUnderInjection (sum μ) → CountStableUnderInjection μ #-StableUnderInjection sui p p-inj f = sui p p-inj (toℕ ∘ f) 𝟙SUI : SumStableUnderInjection (sum μ𝟙) 𝟙SUI f p x = ≡.refl {- stableMaybe : ∀ {A} (μA : SumProp A) → StableUnderInjection μA → StableUnderInjection (μMaybe μA) stableMaybe {A} μA suiA f p p-inj with p nothing | ≡.inspect p nothing ... | nothing | ≡.[ eq ] = {!!} where h : ∀ x → p (just x) ≡ just {!!} h = {!!} p' : A → A p' x = {!p (just x)!} p'-inj : Injective p' p'-inj = {!!} ... | just pn | ≡.[ eq ] = ≡.trans (≡.cong (λ x → f nothing + x) (suiA (f ∘ just) p' p'-inj)) {!!} where p' : A → A p' x = maybe id pn (p (just x)) p'-inj : Injective p' p'-inj = {!!} SumsOk : ∀ {A B} → SumProp A → SumProp B → A ↔ B → ★ SumsOk μA μB iso = ∀ f → sum μA f ≡ sum μB (f ∘ from) where from = _⟨$⟩_ (Inv.Inverse.from iso) module StableIso {A B}(μA : SumProp A)(μB : SumProp B)(iso : A ↔ B) (sums-ok : SumsOk μA μB iso) (suiB : StableUnderInjection μB) where to : A → B to x = Inv.Inverse.to iso ⟨$⟩ x from : B → A from x = Inv.Inverse.from iso ⟨$⟩ x from-inj : Injective from from-inj = Inv.Inverse.injective (Inv.sym iso) to-inj : Injective to to-inj = Inv.Inverse.injective iso left-inv : from ∘ to ≗ id left-inv = Inv.Inverse.left-inverse-of iso stable : StableUnderInjection μA stable f p p-inj = sum μA f ≡⟨ sums-ok f ⟩ sum μB (f ∘ from) ≡⟨ suiB (f ∘ from) (to ∘ p ∘ from) (from-inj ∘ p-inj ∘ to-inj) ⟩ sum μB (f ∘ from ∘ to ∘ p ∘ from) ≡⟨ sum-ext μB (λ x → ≡.cong f (left-inv (p (from x)))) ⟩ sum μB (f ∘ p ∘ from) ≡⟨ ≡.sym (sums-ok (f ∘ p)) ⟩ sum μA (f ∘ p) ∎ where open ≡.≡-Reasoning record Iso1+ {A : Set}(μA : SumProp A) : ★₁ where constructor mk field B : ★ μB : SumProp B iso : A ↔ Maybe B toMaybe : A → Maybe B toMaybe x = Inv.Inverse.to iso ⟨$⟩ x fromMaybe : Maybe B → A fromMaybe x = Inv.Inverse.from iso ⟨$⟩ x field sums-ok : ∀ f → sum μA f ≡ sum (μMaybe μB) (f ∘ fromMaybe) from-inj : Injective fromMaybe from-inj = Inv.Inverse.injective (Inv.sym iso) to-inj : Injective toMaybe to-inj = Inv.Inverse.injective iso left-inv : fromMaybe ∘ toMaybe ≗ id left-inv = Inv.Inverse.left-inverse-of iso stable : StableUnderInjection (μMaybe μB) → StableUnderInjection μA stable suiMB = StableIso.stable μA (μMaybe μB) iso sums-ok suiMB -- iso1+𝟙 : Iso1+ μ𝟙 -- iso1+𝟙 = {!mk !} iso1+Maybe : ∀ {A} (μA : SumProp A) → Iso1+ μA → Iso1+ (μMaybe μA) iso1+Maybe {A} μA A≅1+ = mk A μA Inv.id (λ f → ≡.refl) iso1+FinSuc : ∀ n → Iso1+ (μFinSuc (suc n)) iso1+FinSuc n = mk (Fin (suc n)) (μFinSuc n) Fin∘suc↔Maybe∘Fin (λ f → ≡.refl) -} infix 4 _≈_ record _≈_ {A B} (μA : SumProp A)(μB : SumProp B) : Set where constructor mk field iso : A ↔ B from : B → A from x = Inv.Inverse.from iso ⟨$⟩ x to : A → B to x = Inv.Inverse.to iso ⟨$⟩ x from-inj : Injective from from-inj = Inv.Inverse.injective (Inv.sym iso) to-inj : Injective to to-inj = Inv.Inverse.injective iso field sums-ok : ∀ f → sum μA f ≡ sum μB (f ∘ from) sums-ok' : ∀ f → sum μB f ≡ sum μA (f ∘ to) sums-ok' f = sum μB f ≡⟨ sum-ext μB (≡.cong f ∘ ≡.sym ∘ Inv.Inverse.right-inverse-of iso) ⟩ sum μB (f ∘ to ∘ from) ≡⟨ ≡.sym (sums-ok (f ∘ to)) ⟩ sum μA (f ∘ to) ∎ where open ≡.≡-Reasoning StableUnder≈ : SumStableUnderInjection (sum μA) → SumStableUnderInjection (sum μB) StableUnder≈ μA-SUI p p-inj f = sum μB f ≡⟨ sums-ok' f ⟩ sum μA (f ∘ to) ≡⟨ μA-SUI (from ∘ p ∘ to) (to-inj ∘ p-inj ∘ from-inj) (f ∘ to) ⟩ sum μA (f ∘ to ∘ from ∘ p ∘ to) ≡⟨ ≡.sym (sums-ok' (f ∘ to ∘ from ∘ p)) ⟩ sum μB (f ∘ to ∘ from ∘ p) ≡⟨ sum-ext μB (≡.cong f ∘ Inv.Inverse.right-inverse-of iso ∘ p) ⟩ sum μB (f ∘ p) ∎ where open ≡.≡-Reasoning ≈-refl : ∀ {A} (μA : SumProp A) → μA ≈ μA ≈-refl μA = mk Inv.id (λ f → ≡.refl) ≈-id : ∀ {A} {μA : SumProp A} → μA ≈ μA ≈-id = ≈-refl _ ≈-sym : ∀ {A B}{μA : SumProp A}{μB : SumProp B} → μA ≈ μB → μB ≈ μA ≈-sym A≈B = mk (Inv.sym iso) sums-ok' where open _≈_ A≈B ≈-trans : ∀ {A B C}{μA : SumProp A}{μB : SumProp B}{μC : SumProp C} → μA ≈ μB → μB ≈ μC → μA ≈ μC ≈-trans A≈B B≈C = mk (iso B≈C Inv.∘ iso A≈B) (λ f → ≡.trans (sums-ok A≈B f) (sums-ok B≈C (f ∘ from A≈B))) where open _≈_ infix 2 _≈∎ infixr 2 _≈⟨_⟩_ _≈∎ : ∀ {A} (μA : SumProp A) → μA ≈ μA _≈∎ = ≈-refl _≈⟨_⟩_ : ∀ {A B C} (μA : SumProp A){μB : SumProp B}{μC : SumProp C} → μA ≈ μB → μB ≈ μC → μA ≈ μC _ ≈⟨ A≈B ⟩ B≈C = ≈-trans A≈B B≈C {- Fin1≈𝟙 : μFin 1 ≈ μ𝟙 Fin1≈𝟙 = mk iso sums-ok where open import Relation.Binary.Sum iso : _ iso = (A⊎𝟘↔A Inv.∘ Inv.id ⊎-cong Fin0↔𝟘) Inv.∘ Fin∘suc↔𝟙⊎Fin sums-ok : (_ : _) → _ sums-ok f = ≡.refl -} 𝟙+Fin : ∀ {n pf} → μ𝟙 ⊎-μ μFinSuc n ≈ μFinSuc (suc n) 𝟙+Fin {zero} {()} 𝟙+Fin {suc n} = mk iso sums-ok where iso : _ iso = Inv.sym Fin∘suc↔𝟙⊎Fin sums-ok : (_ : _) → _ sums-ok f = ≡.refl 𝟙×A≈A : ∀ {A}{μA : SumProp A} → μ𝟙 ×-μ μA ≈ μA 𝟙×A≈A = mk iso sums-ok where iso : _ iso = 𝟙×A↔A sums-ok : (_ : _) → _ sums-ok f = ≡.refl μFinSucPres : ∀ {m n} → m ≡ n → μFinSuc m ≈ μFinSuc n μFinSucPres eq rewrite eq = ≈-refl _ μFinPres : ∀ {m n pfm pfn} → m ≡ n → μFinSuc m {pfm} ≈ μFinSuc n {pfn} μFinPres eq rewrite eq = ≈-refl _ {- Maybe-Finable : ∀ {A} (μA : SumProp A) → Finable μA → Finable (μMaybe μA) Maybe-Finable {A} μA finA = mk card iso sums-ok where module FinA = Finable finA card = suc FinA.FinCard |A| : ℕ |A| = suc (Finable.FinCard finA) iso : _ iso = (𝟙 ⊎ A) ↔⟨ Inv.id ⊎-cong FinA.iso ⟩ (𝟙 ⊎ Fin |A|) ↔⟨ sym Fin∘suc↔𝟙⊎Fin ⟩ Fin (suc |A|) ∎ where open EquationalReasoning sums-ok : (_ : _) → _ sums-ok f = ≡.cong (λ x → f (inj₁ _) + x) (FinA.sums-ok _) -} _+μ-cong_ : ∀ {A B C D}{μA : SumProp A}{μB : SumProp B}{μC : SumProp C}{μD : SumProp D} → μA ≈ μC → μB ≈ μD → μA ⊎-μ μB ≈ μC ⊎-μ μD A≈C +μ-cong B≈D = mk iso sums-ok where open import Relation.Binary.Sum iso : _ iso = (_≈_.iso A≈C) ⊎-cong (_≈_.iso B≈D) sums-ok : (_ : _) → _ sums-ok f = ≡.cong₂ _+_ (_≈_.sums-ok A≈C (f ∘ inj₁)) (_≈_.sums-ok B≈D (f ∘ inj₂)) +μ-assoc : ∀ {A B C}(μA : SumProp A)(μB : SumProp B)(μC : SumProp C) → (μA ⊎-μ μB) ⊎-μ μC ≈ μA ⊎-μ (μB ⊎-μ μC) +μ-assoc μA μB μC = mk iso sums-ok where iso : _ iso = ⊎-CMon.assoc _ _ _ sums-ok : (_ : _) → _ sums-ok f = ℕ°.+-assoc (sum μA (f ∘ inj₁ ∘ inj₁)) (sum μB (f ∘ inj₁ ∘ inj₂)) (sum μC (f ∘ inj₂)) +μ-comm : ∀ {A B}(μA : SumProp A)(μB : SumProp B) → μA ⊎-μ μB ≈ μB ⊎-μ μA +μ-comm μA μB = mk iso sums-ok where iso : _ iso = ⊎-CMon.comm _ _ sums-ok : (_ : _) → _ sums-ok f = ℕ°.+-comm (sum μA (f ∘ inj₁)) (sum μB (f ∘ inj₂)) _×μ-cong_ : ∀ {A B C D}{μA : SumProp A}{μB : SumProp B}{μC : SumProp C}{μD : SumProp D} → μA ≈ μC → μB ≈ μD → μA ×-μ μB ≈ μC ×-μ μD _×μ-cong_ {μA = μA}{μD = μD} A≈C B≈D = mk iso sums-ok where open import Relation.Binary.Product.Pointwise iso : _ iso = _≈_.iso A≈C ×-cong _≈_.iso B≈D sums-ok : (_ : _) → _ sums-ok f = ≡.trans (sum-ext μA (_≈_.sums-ok B≈D ∘ curry f)) (_≈_.sums-ok A≈C (λ a → sum μD (curry f a ∘ (_≈_.from B≈D)))) ×μ-assoc : ∀ {A B C}(μA : SumProp A)(μB : SumProp B)(μC : SumProp C) → (μA ×-μ μB) ×-μ μC ≈ μA ×-μ (μB ×-μ μC) ×μ-assoc μA μB μC = mk iso sums-ok where iso : _ iso = ×-CMon.assoc _ _ _ sums-ok : (_ : _) → _ sums-ok f = ≡.refl ×μ-comm : ∀ {A B}(μA : SumProp A)(μB : SumProp B) → μA ×-μ μB ≈ μB ×-μ μA ×μ-comm μA μB = mk iso sums-ok where iso : _ iso = ×-CMon.comm _ _ sums-ok : (_ : _) → _ sums-ok f = sum-swap μA μB (curry f) ×+-distrib : ∀ {A B C}(μA : SumProp A)(μB : SumProp B)(μC : SumProp C) → (μA ⊎-μ μB) ×-μ μC ≈ (μA ×-μ μC) ⊎-μ (μB ×-μ μC) ×+-distrib μA μB μC = mk iso sums-ok where iso : _ iso = ×⊎°.distribʳ _ _ _ sums-ok : (_ : _) → _ sums-ok f = ≡.refl {- _Suc-+_ : ∀ {m} → Suc m → ∀ n → Suc (m + n) _Suc-+_ {zero} () _ _Suc-+_ {suc m} _ _ = _ +-≈ : ∀ m n {pfm pfn} → (μFin m {pfm}) +μ (μFin n {pfn}) ≈ μFin (m + n) {pfm Suc-+ n} +-≈ zero _ {()} +-≈ _ zero {_} {()} +-≈ (suc m) (suc n) = μFin (suc m) +μ μFin (suc n) ≈⟨ {!!} ⟩ μFin (suc m + suc n) ≈∎ -} {- +-≈ (suc zero) (suc n) = μFin 1 +μ μFin (suc n) ≈⟨ Fin1≈𝟙 +μ-cong ≈-refl (μFin (suc n)) ⟩ μ𝟙 +μ μFinSuc n ≈⟨ 𝟙+Fin ⟩ μFinSuc (suc n) ≈∎ +-≈ (suc (suc m)) (suc n) = μFinSuc (suc m) +μ μFinSuc n ≈⟨ ≈-sym 𝟙+Fin +μ-cong ≈-refl (μFinSuc n) ⟩ (μ𝟙 +μ μFinSuc m) +μ μFinSuc n ≈⟨ +μ-assoc μ𝟙 (μFinSuc m) (μFinSuc n) ⟩ μ𝟙 +μ (μFinSuc m +μ μFinSuc n) ≈⟨ ≈-refl μ𝟙 +μ-cong +-≈ (suc m) (suc n) ⟩ μ𝟙 +μ μFinSuc (m + suc n) ≈⟨ 𝟙+Fin ⟩ μFinSuc (suc m + suc n) ≈∎ -} {- +-≈ : ∀ m n → (μFinSuc m) +μ (μFinSuc n) ≈ μFinSuc (m + suc n) +-≈ zero n = μFinSuc zero +μ μFinSuc n ≈⟨ Fin1≈𝟙 +μ-cong ≈-refl (μFinSuc n) ⟩ μ𝟙 +μ μFinSuc n ≈⟨ 𝟙+Fin ⟩ μFinSuc (suc n) ≈∎ +-≈ (suc m) n = μFinSuc (suc m) +μ μFinSuc n ≈⟨ ≈-sym 𝟙+Fin +μ-cong ≈-refl (μFinSuc n) ⟩ (μ𝟙 +μ μFinSuc m) +μ μFinSuc n ≈⟨ +μ-assoc μ𝟙 (μFinSuc m) (μFinSuc n) ⟩ μ𝟙 +μ (μFinSuc m +μ μFinSuc n) ≈⟨ ≈-refl μ𝟙 +μ-cong +-≈ m n ⟩ μ𝟙 +μ μFinSuc (m + suc n) ≈⟨ 𝟙+Fin ⟩ μFinSuc (suc m + suc n) ≈∎ ×-≈ : ∀ m n → μFinSuc m ×μ μFinSuc n ≈ μFinSuc (n + m * suc n) ×-≈ zero n = μFinSuc 0 ×μ μFinSuc n ≈⟨ Fin1≈𝟙 ×μ-cong (≈-refl (μFinSuc n)) ⟩ μ𝟙 ×μ μFinSuc n ≈⟨ 𝟙×A≈A ⟩ μFinSuc n ≈⟨ μFinSucPres (ℕ°.+-comm 0 n) ⟩ μFinSuc (n + 0) ≈∎ ×-≈ (suc m) n = μFinSuc (suc m) ×μ μFinSuc n ≈⟨ ≈-sym 𝟙+Fin ×μ-cong ≈-refl (μFinSuc n) ⟩ (μ𝟙 +μ μFinSuc m) ×μ μFinSuc n ≈⟨ ×+-distrib μ𝟙 (μFinSuc m) (μFinSuc n) ⟩ (μ𝟙 ×μ μFinSuc n) +μ (μFinSuc m ×μ μFinSuc n) ≈⟨ 𝟙×A≈A {μA = μFinSuc n} +μ-cong ×-≈ m n ⟩ μFinSuc n +μ μFinSuc (n + m * suc n) ≈⟨ +-≈ n (n + m * suc n) ⟩ μFinSuc (n + suc m * suc n) ≈∎ -- μA→B ≈ μFinSuc (m ^ n) -- μB ≈ μFinSuc m -- μMaybe→ μA→B μB ≈ μFinSuc (m * m ^ n) open import Data.Fin using (Fin ; zero ; suc) Finable : ∀ {A} → SumProp A → Set Finable μA = Σ ℕ λ FinCard → μA ≈ μFinSuc FinCard 𝟙-Finable : Finable μ𝟙 𝟙-Finable = 0 , ≈-sym Fin1≈𝟙 Fin-Finable : ∀ {n} → Finable (μFinSuc n) Fin-Finable {n} = n , ≈-refl (μFinSuc n) +-Finable : ∀ {A B}(μA : SumProp A)(μB : SumProp B) → Finable μA → Finable μB → Finable (μA +μ μB) +-Finable μA μB (|A| , A≈) (|B| , B≈) = (|A| + suc |B|) , ( μA +μ μB ≈⟨ A≈ +μ-cong B≈ ⟩ μFinSuc |A| +μ μFinSuc |B| ≈⟨ +-≈ |A| |B| ⟩ μFinSuc (|A| + suc |B|) ≈∎) ×-Finable : ∀ {A B}(μA : SumProp A)(μB : SumProp B) → Finable μA → Finable μB → Finable (μA ×μ μB) ×-Finable μA μB (|A| , A≈) (|B| , B≈) = (|B| + |A| * suc |B|) , ( μA ×μ μB ≈⟨ A≈ ×μ-cong B≈ ⟩ μFinSuc |A| ×μ μFinSuc |B| ≈⟨ ×-≈ |A| |B| ⟩ μFinSuc (|B| + |A| * suc |B|) ≈∎) module _M3 where open import bijection-fin open import Data.Fin using (Fin; zero; suc) open import Data.Vec.NP renaming (sum to vsum) sumFin : ∀ n → Sum (Fin n) sumFin n f = vsum (tabulate f) sumFin-spec : ∀ n → sumFin (suc n) ≗ sum (μFinSuc n) sumFin-spec zero f = ℕ°.+-comm (f zero) 0 sumFin-spec (suc n) f = ≡.cong (_+_ (f zero)) (sumFin-spec n (f ∘ suc)) sumFinSUI : ∀ n f p → Injective p → sumFin n f ≡ sumFin n (f ∘ p) sumFinSUI n f p p-inj = count-perm f p (λ _ _ → p-inj) μFinSUI : ∀ {n} → StableUnderInjection (μFinSuc n) μFinSUI {n} p p-inj f rewrite ≡.sym (sumFin-spec n f) | ≡.sym (sumFin-spec n (f ∘ p)) = sumFinSUI (suc n) f p p-inj open _M3 public StableIfFinable : ∀ {A} (μA : SumProp A) → Finable μA → StableUnderInjection μA StableIfFinable μA (_ , A≈Fin) = _≈_.StableUnder≈ (≈-sym A≈Fin) μFinSUI Decomposable : ★ → ★₁ Decomposable A = (A ↔ 𝟙) ⊎ (∃ λ (B : ★) → A ↔ Maybe B) open EquationalReasoning dec-iso : ∀ {A B} → (A ↔ B) → Decomposable A → Decomposable B dec-iso A↔B (inj₁ A↔𝟙) = inj₁ (A↔𝟙 Inv.∘ sym A↔B) dec-iso A↔B (inj₂ (C , A↔MaybeC)) = inj₂ (C , A↔MaybeC Inv.∘ sym A↔B) Maybe×⊎ : ∀ {A B : ★} → (Maybe A × B) ↔ (B ⊎ (A × B)) Maybe×⊎ {A} {B} = (Maybe A × B) ↔⟨ Maybe↔𝟙⊎ ×-cong Inv.id ⟩ ((𝟙 ⊎ A) × B) ↔⟨ ×⊎°.distribʳ B 𝟙 A ⟩ (𝟙 × B ⊎ A × B) ↔⟨ 𝟙×A↔A ⊎-cong Inv.id ⟩ (B ⊎ (A × B)) ∎ dec× : ∀ {A B} → Decomposable A → Decomposable B → Decomposable (A × B) dec× {A} {B} (inj₁ A↔𝟙) dB = dec-iso (B ↔⟨ sym 𝟙×A↔A ⟩ (𝟙 × B) ↔⟨ sym A↔𝟙 ×-cong Inv.id ⟩ (A × B) ∎) dB dec× {A} {B} dA (inj₁ B↔𝟙) = dec-iso (A ↔⟨ sym A×𝟙↔A ⟩ (A × 𝟙) ↔⟨ Inv.id ×-cong sym B↔𝟙 ⟩ (A × B) ∎) dA dec× {A} {B} (inj₂ (C , A↔1+C)) (inj₂ (D , B↔1+D)) = inj₂ (_ , Maybe-⊎ Inv.∘ Maybe×⊎ Inv.∘ A↔1+C ×-cong B↔1+D) dec+ : ∀ {A B} → Decomposable A → Decomposable B → Decomposable (A ⊎ B) dec+ {A} {B} (inj₁ A↔𝟙) dB = inj₂ (B , sym Maybe↔𝟙⊎ Inv.∘ A↔𝟙 ⊎-cong Inv.id) dec+ {A} {B} (inj₂ (C , A↔1+C)) dB = inj₂ ((C ⊎ B) , sym Maybe↔𝟙⊎ Inv.∘ ⊎-CMon.assoc 𝟙 C B Inv.∘ (Maybe↔𝟙⊎ Inv.∘ A↔1+C) ⊎-cong Inv.id) {- dB = dec-iso {!!} dB where dec : Decomposable (A × B) {- -- B + C×B -- 1×B + C×B -- (1+C) × B -- A × B -} Stable× : ∀ {A} (μA : SumProp A) {B} (μB : SumProp B) (suiA : StableUnderInjection μA) (suiB : StableUnderInjection μB) → StableUnderInjection (μA ×μ μB) Stable× μA μB suiA suiB = {!!} -- -} -- -} -- -} -- -}
31.29783
120
0.509201
399b223705ba7d86dea1dcabd99d0ce14e3391d8
14,271
agda
Agda
Cubical/Foundations/Path.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-02-05T01:25:02.000Z
2022-02-05T01:25:02.000Z
Cubical/Foundations/Path.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Foundations/Path.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Foundations.Path where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Reflection.StrictEquiv private variable ℓ ℓ' : Level A : Type ℓ -- Less polymorphic version of `cong`, to avoid some unresolved metas cong′ : ∀ {B : Type ℓ'} (f : A → B) {x y : A} (p : x ≡ y) → Path B (f x) (f y) cong′ f = cong f {-# INLINE cong′ #-} PathP≡Path : ∀ (P : I → Type ℓ) (p : P i0) (q : P i1) → PathP P p q ≡ Path (P i1) (transport (λ i → P i) p) q PathP≡Path P p q i = PathP (λ j → P (i ∨ j)) (transport-filler (λ j → P j) p i) q PathP≡Path⁻ : ∀ (P : I → Type ℓ) (p : P i0) (q : P i1) → PathP P p q ≡ Path (P i0) p (transport⁻ (λ i → P i) q) PathP≡Path⁻ P p q i = PathP (λ j → P (~ i ∧ j)) p (transport⁻-filler (λ j → P j) q i) PathPIsoPath : ∀ (A : I → Type ℓ) (x : A i0) (y : A i1) → Iso (PathP A x y) (transport (λ i → A i) x ≡ y) PathPIsoPath A x y .Iso.fun = fromPathP PathPIsoPath A x y .Iso.inv = toPathP PathPIsoPath A x y .Iso.rightInv q k i = hcomp (λ j → λ { (i = i0) → slide (j ∨ ~ k) ; (i = i1) → q j ; (k = i0) → transp (λ l → A (i ∨ l)) i (fromPathPFiller j) ; (k = i1) → ∧∨Square i j }) (transp (λ l → A (i ∨ ~ k ∨ l)) (i ∨ ~ k) (transp (λ l → (A (i ∨ (~ k ∧ l)))) (k ∨ i) (transp (λ l → A (i ∧ l)) (~ i) x))) where fromPathPFiller : _ fromPathPFiller = hfill (λ j → λ { (i = i0) → x ; (i = i1) → q j }) (inS (transp (λ j → A (i ∧ j)) (~ i) x)) slide : I → _ slide i = transp (λ l → A (i ∨ l)) i (transp (λ l → A (i ∧ l)) (~ i) x) ∧∨Square : I → I → _ ∧∨Square i j = hcomp (λ l → λ { (i = i0) → slide j ; (i = i1) → q (j ∧ l) ; (j = i0) → slide i ; (j = i1) → q (i ∧ l) }) (slide (i ∨ j)) PathPIsoPath A x y .Iso.leftInv q k i = outS (hcomp-unique (λ j → λ { (i = i0) → x ; (i = i1) → transp (λ l → A (j ∨ l)) j (q j) }) (inS (transp (λ l → A (i ∧ l)) (~ i) x)) (λ j → inS (transp (λ l → A (i ∧ (j ∨ l))) (~ i ∨ j) (q (i ∧ j))))) k PathP≃Path : (A : I → Type ℓ) (x : A i0) (y : A i1) → PathP A x y ≃ (transport (λ i → A i) x ≡ y) PathP≃Path A x y = isoToEquiv (PathPIsoPath A x y) PathP≡compPath : ∀ {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : y ≡ z) (r : x ≡ z) → (PathP (λ i → x ≡ q i) p r) ≡ (p ∙ q ≡ r) PathP≡compPath p q r k = PathP (λ i → p i0 ≡ q (i ∨ k)) (λ j → compPath-filler p q k j) r -- a quick corollary for 3-constant functions 3-ConstantCompChar : {A : Type ℓ} {B : Type ℓ'} (f : A → B) (link : 2-Constant f) → (∀ x y z → link x y ∙ link y z ≡ link x z) → 3-Constant f 3-Constant.link (3-ConstantCompChar f link coh₂) = link 3-Constant.coh₁ (3-ConstantCompChar f link coh₂) _ _ _ = transport⁻ (PathP≡compPath _ _ _) (coh₂ _ _ _) PathP≡doubleCompPathˡ : ∀ {A : Type ℓ} {w x y z : A} (p : w ≡ y) (q : w ≡ x) (r : y ≡ z) (s : x ≡ z) → (PathP (λ i → p i ≡ s i) q r) ≡ (p ⁻¹ ∙∙ q ∙∙ s ≡ r) PathP≡doubleCompPathˡ p q r s k = PathP (λ i → p (i ∨ k) ≡ s (i ∨ k)) (λ j → doubleCompPath-filler (p ⁻¹) q s k j) r PathP≡doubleCompPathʳ : ∀ {A : Type ℓ} {w x y z : A} (p : w ≡ y) (q : w ≡ x) (r : y ≡ z) (s : x ≡ z) → (PathP (λ i → p i ≡ s i) q r) ≡ (q ≡ p ∙∙ r ∙∙ s ⁻¹) PathP≡doubleCompPathʳ p q r s k = PathP (λ i → p (i ∧ (~ k)) ≡ s (i ∧ (~ k))) q (λ j → doubleCompPath-filler p r (s ⁻¹) k j) compPathl-cancel : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : x ≡ z) → p ∙ (sym p ∙ q) ≡ q compPathl-cancel p q = p ∙ (sym p ∙ q) ≡⟨ assoc p (sym p) q ⟩ (p ∙ sym p) ∙ q ≡⟨ cong (_∙ q) (rCancel p) ⟩ refl ∙ q ≡⟨ sym (lUnit q) ⟩ q ∎ compPathr-cancel : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : z ≡ y) (q : x ≡ y) → (q ∙ sym p) ∙ p ≡ q compPathr-cancel {x = x} p q i j = hcomp-equivFiller (doubleComp-faces (λ _ → x) (sym p) j) (inS (q j)) (~ i) compPathl-isEquiv : {x y z : A} (p : x ≡ y) → isEquiv (λ (q : y ≡ z) → p ∙ q) compPathl-isEquiv p = isoToIsEquiv (iso (p ∙_) (sym p ∙_) (compPathl-cancel p) (compPathl-cancel (sym p))) compPathlEquiv : {x y z : A} (p : x ≡ y) → (y ≡ z) ≃ (x ≡ z) compPathlEquiv p = (p ∙_) , compPathl-isEquiv p compPathr-isEquiv : {x y z : A} (p : y ≡ z) → isEquiv (λ (q : x ≡ y) → q ∙ p) compPathr-isEquiv p = isoToIsEquiv (iso (_∙ p) (_∙ sym p) (compPathr-cancel p) (compPathr-cancel (sym p))) compPathrEquiv : {x y z : A} (p : y ≡ z) → (x ≡ y) ≃ (x ≡ z) compPathrEquiv p = (_∙ p) , compPathr-isEquiv p -- Variations of isProp→isSet for PathP isProp→SquareP : ∀ {B : I → I → Type ℓ} → ((i j : I) → isProp (B i j)) → {a : B i0 i0} {b : B i0 i1} {c : B i1 i0} {d : B i1 i1} → (r : PathP (λ j → B j i0) a c) (s : PathP (λ j → B j i1) b d) → (t : PathP (λ j → B i0 j) a b) (u : PathP (λ j → B i1 j) c d) → SquareP B t u r s isProp→SquareP {B = B} isPropB {a = a} r s t u i j = hcomp (λ { k (i = i0) → isPropB i0 j (base i0 j) (t j) k ; k (i = i1) → isPropB i1 j (base i1 j) (u j) k ; k (j = i0) → isPropB i i0 (base i i0) (r i) k ; k (j = i1) → isPropB i i1 (base i i1) (s i) k }) (base i j) where base : (i j : I) → B i j base i j = transport (λ k → B (i ∧ k) (j ∧ k)) a isProp→isPropPathP : ∀ {ℓ} {B : I → Type ℓ} → ((i : I) → isProp (B i)) → (b0 : B i0) (b1 : B i1) → isProp (PathP (λ i → B i) b0 b1) isProp→isPropPathP {B = B} hB b0 b1 = isProp→SquareP (λ _ → hB) refl refl isProp→isContrPathP : {A : I → Type ℓ} → (∀ i → isProp (A i)) → (x : A i0) (y : A i1) → isContr (PathP A x y) isProp→isContrPathP h x y = isProp→PathP h x y , isProp→isPropPathP h x y _ -- Flipping a square along its diagonal flipSquare : {a₀₀ a₀₁ : A} {a₀₋ : a₀₀ ≡ a₀₁} {a₁₀ a₁₁ : A} {a₁₋ : a₁₀ ≡ a₁₁} {a₋₀ : a₀₀ ≡ a₁₀} {a₋₁ : a₀₁ ≡ a₁₁} → Square a₀₋ a₁₋ a₋₀ a₋₁ → Square a₋₀ a₋₁ a₀₋ a₁₋ flipSquare sq i j = sq j i module _ {a₀₀ a₀₁ : A} {a₀₋ : a₀₀ ≡ a₀₁} {a₁₀ a₁₁ : A} {a₁₋ : a₁₀ ≡ a₁₁} {a₋₀ : a₀₀ ≡ a₁₀} {a₋₁ : a₀₁ ≡ a₁₁} where flipSquareEquiv : Square a₀₋ a₁₋ a₋₀ a₋₁ ≃ Square a₋₀ a₋₁ a₀₋ a₁₋ unquoteDef flipSquareEquiv = defStrictEquiv flipSquareEquiv flipSquare flipSquare flipSquarePath : Square a₀₋ a₁₋ a₋₀ a₋₁ ≡ Square a₋₀ a₋₁ a₀₋ a₁₋ flipSquarePath = ua flipSquareEquiv module _ {a₀₀ a₁₁ : A} {a₋ : a₀₀ ≡ a₁₁} {a₁₀ : A} {a₁₋ : a₁₀ ≡ a₁₁} {a₋₀ : a₀₀ ≡ a₁₀} where slideSquareFaces : (i j k : I) → Partial (i ∨ ~ i ∨ j ∨ ~ j) A slideSquareFaces i j k (i = i0) = a₋ (j ∧ ~ k) slideSquareFaces i j k (i = i1) = a₁₋ j slideSquareFaces i j k (j = i0) = a₋₀ i slideSquareFaces i j k (j = i1) = a₋ (i ∨ ~ k) slideSquare : Square a₋ a₁₋ a₋₀ refl → Square refl a₁₋ a₋₀ a₋ slideSquare sq i j = hcomp (slideSquareFaces i j) (sq i j) slideSquareEquiv : (Square a₋ a₁₋ a₋₀ refl) ≃ (Square refl a₁₋ a₋₀ a₋) slideSquareEquiv = isoToEquiv (iso slideSquare slideSquareInv fillerTo fillerFrom) where slideSquareInv : Square refl a₁₋ a₋₀ a₋ → Square a₋ a₁₋ a₋₀ refl slideSquareInv sq i j = hcomp (λ k → slideSquareFaces i j (~ k)) (sq i j) fillerTo : ∀ p → slideSquare (slideSquareInv p) ≡ p fillerTo p k i j = hcomp-equivFiller (λ k → slideSquareFaces i j (~ k)) (inS (p i j)) (~ k) fillerFrom : ∀ p → slideSquareInv (slideSquare p) ≡ p fillerFrom p k i j = hcomp-equivFiller (slideSquareFaces i j) (inS (p i j)) (~ k) -- The type of fillers of a square is equivalent to the double composition identites Square≃doubleComp : {a₀₀ a₀₁ a₁₀ a₁₁ : A} (a₀₋ : a₀₀ ≡ a₀₁) (a₁₋ : a₁₀ ≡ a₁₁) (a₋₀ : a₀₀ ≡ a₁₀) (a₋₁ : a₀₁ ≡ a₁₁) → Square a₀₋ a₁₋ a₋₀ a₋₁ ≃ (a₋₀ ⁻¹ ∙∙ a₀₋ ∙∙ a₋₁ ≡ a₁₋) Square≃doubleComp a₀₋ a₁₋ a₋₀ a₋₁ = transportEquiv (PathP≡doubleCompPathˡ a₋₀ a₀₋ a₁₋ a₋₁) -- Flipping a square in Ω²A is the same as inverting it sym≡flipSquare : {x : A} (P : Square (refl {x = x}) refl refl refl) → sym P ≡ flipSquare P sym≡flipSquare {x = x} P = sym (main refl P) where B : (q : x ≡ x) → I → Type _ B q i = PathP (λ j → x ≡ q (i ∨ j)) (λ k → q (i ∧ k)) refl main : (q : x ≡ x) (p : refl ≡ q) → PathP (λ i → B q i) (λ i j → p j i) (sym p) main q = J (λ q p → PathP (λ i → B q i) (λ i j → p j i) (sym p)) refl -- Inverting both interval arguments of a square in Ω²A is the same as doing nothing sym-cong-sym≡id : {x : A} (P : Square (refl {x = x}) refl refl refl) → P ≡ λ i j → P (~ i) (~ j) sym-cong-sym≡id {x = x} P = sym (main refl P) where B : (q : x ≡ x) → I → Type _ B q i = Path (x ≡ q i) (λ j → q (i ∨ ~ j)) λ j → q (i ∧ j) main : (q : x ≡ x) (p : refl ≡ q) → PathP (λ i → B q i) (λ i j → p (~ i) (~ j)) p main q = J (λ q p → PathP (λ i → B q i) (λ i j → p (~ i) (~ j)) p) refl -- Applying cong sym is the same as flipping a square in Ω²A flipSquare≡cong-sym : ∀ {ℓ} {A : Type ℓ} {x : A} (P : Square (refl {x = x}) refl refl refl) → flipSquare P ≡ λ i j → P i (~ j) flipSquare≡cong-sym P = sym (sym≡flipSquare P) ∙ sym (sym-cong-sym≡id (cong sym P)) -- Applying cong sym is the same as inverting a square in Ω²A sym≡cong-sym : ∀ {ℓ} {A : Type ℓ} {x : A} (P : Square (refl {x = x}) refl refl refl) → sym P ≡ cong sym P sym≡cong-sym P = sym-cong-sym≡id (sym P) -- sym induces an equivalence on identity types of paths symIso : {a b : A} (p q : a ≡ b) → Iso (p ≡ q) (q ≡ p) symIso p q = iso sym sym (λ _ → refl) λ _ → refl -- J is an equivalence Jequiv : {x : A} (P : ∀ y → x ≡ y → Type ℓ') → P x refl ≃ (∀ {y} (p : x ≡ y) → P y p) Jequiv P = isoToEquiv isom where isom : Iso _ _ Iso.fun isom = J P Iso.inv isom f = f refl Iso.rightInv isom f = implicitFunExt λ {_} → funExt λ t → J (λ _ t → J P (f refl) t ≡ f t) (JRefl P (f refl)) t Iso.leftInv isom = JRefl P -- Action of PathP on equivalences (without relying on univalence) congPathIso : ∀ {ℓ ℓ'} {A : I → Type ℓ} {B : I → Type ℓ'} (e : ∀ i → A i ≃ B i) {a₀ : A i0} {a₁ : A i1} → Iso (PathP A a₀ a₁) (PathP B (e i0 .fst a₀) (e i1 .fst a₁)) congPathIso {A = A} {B} e {a₀} {a₁} .Iso.fun p i = e i .fst (p i) congPathIso {A = A} {B} e {a₀} {a₁} .Iso.inv q i = hcomp (λ j → λ { (i = i0) → retEq (e i0) a₀ j ; (i = i1) → retEq (e i1) a₁ j }) (invEq (e i) (q i)) congPathIso {A = A} {B} e {a₀} {a₁} .Iso.rightInv q k i = hcomp (λ j → λ { (i = i0) → commSqIsEq (e i0 .snd) a₀ j k ; (i = i1) → commSqIsEq (e i1 .snd) a₁ j k ; (k = i0) → e i .fst (hfill (λ j → λ { (i = i0) → retEq (e i0) a₀ j ; (i = i1) → retEq (e i1) a₁ j }) (inS (invEq (e i) (q i))) j) ; (k = i1) → q i }) (secEq (e i) (q i) k) where b = commSqIsEq congPathIso {A = A} {B} e {a₀} {a₁} .Iso.leftInv p k i = hcomp (λ j → λ { (i = i0) → retEq (e i0) a₀ (j ∨ k) ; (i = i1) → retEq (e i1) a₁ (j ∨ k) ; (k = i1) → p i }) (retEq (e i) (p i) k) congPathEquiv : ∀ {ℓ ℓ'} {A : I → Type ℓ} {B : I → Type ℓ'} (e : ∀ i → A i ≃ B i) {a₀ : A i0} {a₁ : A i1} → PathP A a₀ a₁ ≃ PathP B (e i0 .fst a₀) (e i1 .fst a₁) congPathEquiv e = isoToEquiv (congPathIso e) -- Characterizations of dependent paths in path types doubleCompPath-filler∙ : {a b c d : A} (p : a ≡ b) (q : b ≡ c) (r : c ≡ d) → PathP (λ i → p i ≡ r (~ i)) (p ∙ q ∙ r) q doubleCompPath-filler∙ {A = A} {b = b} p q r j i = hcomp (λ k → λ { (i = i0) → p j ; (i = i1) → side j k ; (j = i1) → q (i ∧ k)}) (p (j ∨ i)) where side : I → I → A side i j = hcomp (λ k → λ { (i = i1) → q j ; (j = i0) → b ; (j = i1) → r (~ i ∧ k)}) (q j) PathP→compPathL : {a b c d : A} {p : a ≡ c} {q : b ≡ d} {r : a ≡ b} {s : c ≡ d} → PathP (λ i → p i ≡ q i) r s → sym p ∙ r ∙ q ≡ s PathP→compPathL {p = p} {q = q} {r = r} {s = s} P j i = hcomp (λ k → λ { (i = i0) → p (j ∨ k) ; (i = i1) → q (j ∨ k) ; (j = i0) → doubleCompPath-filler∙ (sym p) r q (~ k) i ; (j = i1) → s i }) (P j i) PathP→compPathR : {a b c d : A} {p : a ≡ c} {q : b ≡ d} {r : a ≡ b} {s : c ≡ d} → PathP (λ i → p i ≡ q i) r s → r ≡ p ∙ s ∙ sym q PathP→compPathR {p = p} {q = q} {r = r} {s = s} P j i = hcomp (λ k → λ { (i = i0) → p (j ∧ (~ k)) ; (i = i1) → q (j ∧ (~ k)) ; (j = i0) → r i ; (j = i1) → doubleCompPath-filler∙ p s (sym q) (~ k) i}) (P j i) -- Other direction compPathL→PathP : {a b c d : A} {p : a ≡ c} {q : b ≡ d} {r : a ≡ b} {s : c ≡ d} → sym p ∙ r ∙ q ≡ s → PathP (λ i → p i ≡ q i) r s compPathL→PathP {p = p} {q = q} {r = r} {s = s} P j i = hcomp (λ k → λ { (i = i0) → p (~ k ∨ j) ; (i = i1) → q (~ k ∨ j) ; (j = i0) → doubleCompPath-filler∙ (sym p) r q k i ; (j = i1) → s i}) (P j i) compPathR→PathP : {a b c d : A} {p : a ≡ c} {q : b ≡ d} {r : a ≡ b} {s : c ≡ d} → r ≡ p ∙ s ∙ sym q → PathP (λ i → p i ≡ q i) r s compPathR→PathP {p = p} {q = q} {r = r} {s = s} P j i = hcomp (λ k → λ { (i = i0) → p (k ∧ j) ; (i = i1) → q (k ∧ j) ; (j = i0) → r i ; (j = i1) → doubleCompPath-filler∙ p s (sym q) k i}) (P j i) compPathR→PathP∙∙ : {a b c d : A} {p : a ≡ c} {q : b ≡ d} {r : a ≡ b} {s : c ≡ d} → r ≡ p ∙∙ s ∙∙ sym q → PathP (λ i → p i ≡ q i) r s compPathR→PathP∙∙ {p = p} {q = q} {r = r} {s = s} P j i = hcomp (λ k → λ { (i = i0) → p (k ∧ j) ; (i = i1) → q (k ∧ j) ; (j = i0) → r i ; (j = i1) → doubleCompPath-filler p s (sym q) (~ k) i}) (P j i)
39.31405
106
0.474879
d07511ba5696cc5ba7b2cd5a9ff365c898d073f7
8,342
agda
Agda
src/OPair.agda
shinji-kono/zf-in-agda
031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0
[ "MIT" ]
5
2019-10-02T13:46:23.000Z
2021-01-10T13:27:48.000Z
src/OPair.agda
shinji-kono/zf-in-agda
031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0
[ "MIT" ]
null
null
null
src/OPair.agda
shinji-kono/zf-in-agda
031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0
[ "MIT" ]
null
null
null
{-# OPTIONS --allow-unsolved-metas #-} open import Level open import Ordinals module OPair {n : Level } (O : Ordinals {n}) where open import zf open import logic import OD import ODUtil import OrdUtil open import Relation.Nullary open import Relation.Binary open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open OD O open OD.OD open OD.HOD open ODAxiom odAxiom open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext open OrdUtil O open ODUtil O open _∧_ open _∨_ open Bool open _==_ <_,_> : (x y : HOD) → HOD < x , y > = (x , x ) , (x , y ) exg-pair : { x y : HOD } → (x , y ) =h= ( y , x ) exg-pair {x} {y} = record { eq→ = left ; eq← = right } where left : {z : Ordinal} → odef (x , y) z → odef (y , x) z left (case1 t) = case2 t left (case2 t) = case1 t right : {z : Ordinal} → odef (y , x) z → odef (x , y) z right (case1 t) = case2 t right (case2 t) = case1 t ord≡→≡ : { x y : HOD } → & x ≡ & y → x ≡ y ord≡→≡ eq = subst₂ (λ j k → j ≡ k ) *iso *iso ( cong ( λ k → * k ) eq ) od≡→≡ : { x y : Ordinal } → * x ≡ * y → x ≡ y od≡→≡ eq = subst₂ (λ j k → j ≡ k ) &iso &iso ( cong ( λ k → & k ) eq ) eq-prod : { x x' y y' : HOD } → x ≡ x' → y ≡ y' → < x , y > ≡ < x' , y' > eq-prod refl refl = refl xx=zy→x=y : {x y z : HOD } → ( x , x ) =h= ( z , y ) → x ≡ y xx=zy→x=y {x} {y} eq with trio< (& x) (& y) xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c with eq← eq {& y} (case2 refl) xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c | case1 s = ⊥-elim ( o<¬≡ (sym s) a ) xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c | case2 s = ⊥-elim ( o<¬≡ (sym s) a ) xx=zy→x=y {x} {y} eq | tri≈ ¬a b ¬c = ord≡→≡ b xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c with eq← eq {& y} (case2 refl) xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c | case1 s = ⊥-elim ( o<¬≡ s c ) xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c | case2 s = ⊥-elim ( o<¬≡ s c ) prod-eq : { x x' y y' : HOD } → < x , y > =h= < x' , y' > → (x ≡ x' ) ∧ ( y ≡ y' ) prod-eq {x} {x'} {y} {y'} eq = ⟪ lemmax , lemmay ⟫ where lemma2 : {x y z : HOD } → ( x , x ) =h= ( z , y ) → z ≡ y lemma2 {x} {y} {z} eq = trans (sym (xx=zy→x=y lemma3 )) ( xx=zy→x=y eq ) where lemma3 : ( x , x ) =h= ( y , z ) lemma3 = ==-trans eq exg-pair lemma1 : {x y : HOD } → ( x , x ) =h= ( y , y ) → x ≡ y lemma1 {x} {y} eq with eq← eq {& y} (case2 refl) lemma1 {x} {y} eq | case1 s = ord≡→≡ (sym s) lemma1 {x} {y} eq | case2 s = ord≡→≡ (sym s) lemma4 : {x y z : HOD } → ( x , y ) =h= ( x , z ) → y ≡ z lemma4 {x} {y} {z} eq with eq← eq {& z} (case2 refl) lemma4 {x} {y} {z} eq | case1 s with ord≡→≡ s -- x ≡ z ... | refl with lemma2 (==-sym eq ) ... | refl = refl lemma4 {x} {y} {z} eq | case2 s = ord≡→≡ (sym s) -- y ≡ z lemmax : x ≡ x' lemmax with eq→ eq {& (x , x)} (case1 refl) lemmax | case1 s = lemma1 (ord→== s ) -- (x,x)≡(x',x') lemmax | case2 s with lemma2 (ord→== s ) -- (x,x)≡(x',y') with x'≡y' ... | refl = lemma1 (ord→== s ) lemmay : y ≡ y' lemmay with lemmax ... | refl with lemma4 eq -- with (x,y)≡(x,y') ... | eq1 = lemma4 (ord→== (cong (λ k → & k ) eq1 )) -- -- unlike ordered pair, ZFProduct is not a HOD data ord-pair : (p : Ordinal) → Set n where pair : (x y : Ordinal ) → ord-pair ( & ( < * x , * y > ) ) ZFProduct : OD ZFProduct = record { def = λ x → ord-pair x } -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- eq-pair : { x x' y y' : Ordinal } → x ≡ x' → y ≡ y' → pair x y ≅ pair x' y' -- eq-pair refl refl = HE.refl pi1 : { p : Ordinal } → ord-pair p → Ordinal pi1 ( pair x y) = x π1 : { p : HOD } → def ZFProduct (& p) → HOD π1 lt = * (pi1 lt ) pi2 : { p : Ordinal } → ord-pair p → Ordinal pi2 ( pair x y ) = y π2 : { p : HOD } → def ZFProduct (& p) → HOD π2 lt = * (pi2 lt ) op-cons : { ox oy : Ordinal } → def ZFProduct (& ( < * ox , * oy > )) op-cons {ox} {oy} = pair ox oy def-subst : {Z : OD } {X : Ordinal }{z : OD } {x : Ordinal }→ def Z X → Z ≡ z → X ≡ x → def z x def-subst df refl refl = df p-cons : ( x y : HOD ) → def ZFProduct (& ( < x , y >)) p-cons x y = def-subst {_} {_} {ZFProduct} {& (< x , y >)} (pair (& x) ( & y )) refl ( let open ≡-Reasoning in begin & < * (& x) , * (& y) > ≡⟨ cong₂ (λ j k → & < j , k >) *iso *iso ⟩ & < x , y > ∎ ) op-iso : { op : Ordinal } → (q : ord-pair op ) → & < * (pi1 q) , * (pi2 q) > ≡ op op-iso (pair ox oy) = refl p-iso : { x : HOD } → (p : def ZFProduct (& x) ) → < π1 p , π2 p > ≡ x p-iso {x} p = ord≡→≡ (op-iso p) p-pi1 : { x y : HOD } → (p : def ZFProduct (& < x , y >) ) → π1 p ≡ x p-pi1 {x} {y} p = proj1 ( prod-eq ( ord→== (op-iso p) )) p-pi2 : { x y : HOD } → (p : def ZFProduct (& < x , y >) ) → π2 p ≡ y p-pi2 {x} {y} p = proj2 ( prod-eq ( ord→== (op-iso p))) ω-pair : {x y : HOD} → {m : Ordinal} → & x o< next m → & y o< next m → & (x , y) o< next m ω-pair lx ly = next< (omax<nx lx ly ) ho< ω-opair : {x y : HOD} → {m : Ordinal} → & x o< next m → & y o< next m → & < x , y > o< next m ω-opair {x} {y} {m} lx ly = lemma0 where lemma0 : & < x , y > o< next m lemma0 = osucprev (begin osuc (& < x , y >) <⟨ osuc<nx ho< ⟩ next (omax (& (x , x)) (& (x , y))) ≡⟨ cong (λ k → next k) (sym ( omax≤ _ _ pair-xx<xy )) ⟩ next (osuc (& (x , y))) ≡⟨ sym (nexto≡) ⟩ next (& (x , y)) ≤⟨ x<ny→≤next (ω-pair lx ly) ⟩ next m ∎ ) where open o≤-Reasoning O _⊗_ : (A B : HOD) → HOD A ⊗ B = Union ( Replace B (λ b → Replace A (λ a → < a , b > ) )) product→ : {A B a b : HOD} → A ∋ a → B ∋ b → ( A ⊗ B ) ∋ < a , b > product→ {A} {B} {a} {b} A∋a B∋b = λ t → t (& (Replace A (λ a → < a , b >))) ⟪ lemma1 , subst (λ k → odef k (& < a , b >)) (sym *iso) lemma2 ⟫ where lemma1 : odef (Replace B (λ b₁ → Replace A (λ a₁ → < a₁ , b₁ >))) (& (Replace A (λ a₁ → < a₁ , b >))) lemma1 = replacement← B b B∋b lemma2 : odef (Replace A (λ a₁ → < a₁ , b >)) (& < a , b >) lemma2 = replacement← A a A∋a x<nextA : {A x : HOD} → A ∋ x → & x o< next (odmax A) x<nextA {A} {x} A∋x = ordtrans (c<→o< {x} {A} A∋x) ho< A<Bnext : {A B x : HOD} → & A o< & B → A ∋ x → & x o< next (odmax B) A<Bnext {A} {B} {x} lt A∋x = osucprev (begin osuc (& x) <⟨ osucc (c<→o< A∋x) ⟩ osuc (& A) <⟨ osucc lt ⟩ osuc (& B) <⟨ osuc<nx ho< ⟩ next (odmax B) ∎ ) where open o≤-Reasoning O ZFP : (A B : HOD) → HOD ZFP A B = record { od = record { def = λ x → ord-pair x ∧ ((p : ord-pair x ) → odef A (pi1 p) ∧ odef B (pi2 p) )} ; odmax = omax (next (odmax A)) (next (odmax B)) ; <odmax = λ {y} px → lemma y px } where lemma : (y : Ordinal) → ( ord-pair y ∧ ((p : ord-pair y) → odef A (pi1 p) ∧ odef B (pi2 p))) → y o< omax (next (odmax A)) (next (odmax B)) lemma y lt with proj1 lt lemma p lt | pair x y with trio< (& A) (& B) lemma p lt | pair x y | tri< a ¬b ¬c = ordtrans (ω-opair (A<Bnext a (subst (λ k → odef A k ) (sym &iso) (proj1 (proj2 lt (pair x y))))) (lemma1 (proj2 (proj2 lt (pair x y))))) (omax-y _ _ ) where lemma1 : odef B y → & (* y) o< next (HOD.odmax B) lemma1 lt = x<nextA {B} (d→∋ B lt) lemma p lt | pair x y | tri≈ ¬a b ¬c = ordtrans (ω-opair (x<nextA {A} (d→∋ A ((proj1 (proj2 lt (pair x y)))))) lemma2 ) (omax-x _ _ ) where lemma2 : & (* y) o< next (HOD.odmax A) lemma2 = ordtrans ( subst (λ k → & (* y) o< k ) (sym b) (c<→o< (d→∋ B ((proj2 (proj2 lt (pair x y))))))) ho< lemma p lt | pair x y | tri> ¬a ¬b c = ordtrans (ω-opair (x<nextA {A} (d→∋ A ((proj1 (proj2 lt (pair x y)))))) (A<Bnext c (subst (λ k → odef B k ) (sym &iso) (proj2 (proj2 lt (pair x y)))))) (omax-x _ _ ) ZFP⊆⊗ : {A B : HOD} {x : Ordinal} → odef (ZFP A B) x → odef (A ⊗ B) x ZFP⊆⊗ {A} {B} {px} ⟪ (pair x y) , p2 ⟫ = product→ (d→∋ A (proj1 (p2 (pair x y) ))) (d→∋ B (proj2 (p2 (pair x y) ))) -- axiom of choice required -- ⊗⊆ZFP : {A B x : HOD} → ( A ⊗ B ) ∋ x → def ZFProduct (& x) -- ⊗⊆ZFP {A} {B} {x} lt = subst (λ k → ord-pair (& k )) {!!} op-cons
38.981308
146
0.474706
1077065d9c430a8b22e67e5e8c48345f8b2a6239
2,414
agda
Agda
Data/FixedTree/Properties.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Data/FixedTree/Properties.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Data/FixedTree/Properties.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Data.FixedTree.Properties where import Lvl open import Data using (Unit ; <>) open import Data.Boolean open import Data.FixedTree open import Data.Tuple.Raise import Data.Tuple.Raiseᵣ.Functions as Raise open import Functional as Fn open import Logic.Propositional open import Numeral.Finite open import Numeral.Finite.Oper.Comparisons open import Numeral.Natural open import Type private variable ℓ ℓᵢ ℓₗ ℓₙ ℓₒ : Lvl.Level private variable n : ℕ private variable N N₁ N₂ L T A B : Type{ℓ} -- A tree is full when every node has no or all children. data Full {L : Type{ℓₗ}}{N : Type{ℓₙ}}{n} : FixedTree(n) L N → Type{ℓₗ Lvl.⊔ ℓₙ} where leaf : ∀{l} → Full(Leaf l) single : ∀{a}{l} → Full(Node a (Raise.repeat(n) (Leaf l))) -- TODO: All the leaves should not be forced to all have the same data step : ∀{a : N}{ca : N ^ n}{cc : ((FixedTree(n) L N) ^ n) ^ n} → (∀{i : 𝕟(n)} → Full(Node (Raise.index i ca) (Raise.index i cc))) → Full(Node a (Raise.map₂{n} Node ca cc)) -- step : ∀{a : T}{ca : T ^ n}{cc : (FixedTree(n)(T) ^ n) ^ n} → Raise.reduceOrᵣ{n}(_⨯_) Unit (Raise.map₂(Full ∘₂ Node) ca cc) → Full(Node a (Raise.map₂{n} Node ca cc)) -- A tree is perfect at depth `n` when all leaves are at height `n`. -- In other words, a tree is perfect when all leaves are at the same height. data Perfect {L : Type{ℓₗ}}{N : Type{ℓₙ}}{n} : FixedTree(n) L N → ℕ → Type{ℓₗ Lvl.⊔ ℓₙ} where leaf : ∀{l} → Perfect(Leaf l)(𝟎) step : ∀{a}{c}{h} → (∀{i : 𝕟(n)} → Perfect(Raise.index i c)(h)) → Perfect(Node a c)(𝐒(h)) data Complete {L : Type{ℓₗ}}{N : Type{ℓₙ}}{n} : FixedTree(n) L N → ℕ → Bool → Type{ℓₗ Lvl.⊔ ℓₙ} where perfect-leaf : ∀{l} → Complete(Leaf l)(𝟎)(𝑇) imperfect-leaf : ∀{l} → Complete(Leaf l)(𝐒(𝟎))(𝐹) step : ∀{a}{c}{h}{t : 𝕟(n)} → (∀{i : 𝕟(n)} → Complete(Raise.index i c)(h)(i ≤? t)) → Complete(Node a c)(𝐒(h))(t ≤? maximum{n}) data DepthOrdered {L : Type{ℓₗ}}{N : Type{ℓₙ}} (_≤_ : N → N → Type{ℓₒ}) {n} : FixedTree(n) L N → Type{ℓₗ Lvl.⊔ ℓₙ Lvl.⊔ ℓₒ} where leaf : ∀{l} → DepthOrdered(_≤_)(Leaf l) step : ∀{p}{c : (FixedTree(n) L N) ^ n} → (∀{i : 𝕟(n)} → (\{(Leaf _) → Unit ; (Node a c) → (p ≤ a) ∧ DepthOrdered(_≤_)(Node a c)}) $ (Raise.index i c)) → DepthOrdered(_≤_)(Node p c) Heap : ∀{L : Type{ℓₗ}}{N : Type{ℓₙ}} → (N → N → Type{ℓₒ}) → ∀{n} → FixedTree(n) L N → ℕ → Bool → Type Heap(_≤_) tree height perfect = DepthOrdered(_≤_)(tree) ∧ Complete(tree)(height)(perfect)
54.863636
183
0.613919
dc2928fee3f2c57256a46b24f9eb4fc51a369d01
2,055
agda
Agda
src/Bi/BoxMp.agda
mietek/formal-logic
2dd761bfa96ccda089888e8defa6814776fa2922
[ "X11" ]
26
2015-08-31T09:49:52.000Z
2021-11-13T12:37:44.000Z
src/Bi/BoxMp.agda
mietek/formal-logic
2dd761bfa96ccda089888e8defa6814776fa2922
[ "X11" ]
null
null
null
src/Bi/BoxMp.agda
mietek/formal-logic
2dd761bfa96ccda089888e8defa6814776fa2922
[ "X11" ]
null
null
null
-- Minimal implicational modal logic, de Bruijn approach, initial encoding module Bi.BoxMp where open import Lib using (List; []; _,_; LMem; lzero; lsuc) -- Types infixr 0 _=>_ data Ty : Set where UNIT : Ty _=>_ : Ty -> Ty -> Ty BOX : Ty -> Ty -- Context and truth/validity judgements Cx : Set Cx = List Ty isTrue : Ty -> Cx -> Set isTrue a tc = LMem a tc isValid : Ty -> Cx -> Set isValid a vc = LMem a vc -- Terms module BoxMp where infixl 1 _$_ infixr 0 lam=>_ data Tm (vc tc : Cx) : Ty -> Set where var : forall {a} -> isTrue a tc -> Tm vc tc a lam=>_ : forall {a b} -> Tm vc (tc , a) b -> Tm vc tc (a => b) _$_ : forall {a b} -> Tm vc tc (a => b) -> Tm vc tc a -> Tm vc tc b var# : forall {a} -> isValid a vc -> Tm vc tc a box : forall {a} -> Tm vc [] a -> Tm vc tc (BOX a) unbox' : forall {a b} -> Tm vc tc (BOX a) -> Tm (vc , a) tc b -> Tm vc tc b syntax unbox' x' x = unbox x' => x v0 : forall {vc tc a} -> Tm vc (tc , a) a v0 = var lzero v1 : forall {vc tc a b} -> Tm vc (tc , a , b) a v1 = var (lsuc lzero) v2 : forall {vc tc a b c} -> Tm vc (tc , a , b , c) a v2 = var (lsuc (lsuc lzero)) v0# : forall {vc tc a} -> Tm (vc , a) tc a v0# = var# lzero v1# : forall {vc tc a b} -> Tm (vc , a , b) tc a v1# = var# (lsuc lzero) v2# : forall {vc tc a b c} -> Tm (vc , a , b , c) tc a v2# = var# (lsuc (lsuc lzero)) Thm : Ty -> Set Thm a = forall {vc tc} -> Tm vc tc a open BoxMp public -- Example theorems rNec : forall {a} -> Thm a -> Thm (BOX a) rNec x = box x aK : forall {a b} -> Thm (BOX (a => b) => BOX a => BOX b) aK = lam=> lam=> (unbox v1 => unbox v0 => box (v1# $ v0#)) aT : forall {a} -> Thm (BOX a => a) aT = lam=> (unbox v0 => v0#) a4 : forall {a} -> Thm (BOX a => BOX (BOX a)) a4 = lam=> (unbox v0 => box (box v0#)) t1 : forall {a} -> Thm (a => BOX (a => a)) t1 = lam=> box (lam=> v0)
21.861702
81
0.487591
d01d8f32909e72df3ea23d1c33933750c88f0926
4,507
agda
Agda
Groups/FirstIsomorphismTheorem.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Groups/FirstIsomorphismTheorem.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Groups/FirstIsomorphismTheorem.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import Groups.Definition open import Setoids.Setoids open import LogicalFormulae open import Sets.EquivalenceRelations open import Groups.Homomorphisms.Definition open import Groups.Homomorphisms.Lemmas open import Groups.Isomorphisms.Definition open import Groups.Subgroups.Definition open import Groups.Lemmas module Groups.FirstIsomorphismTheorem {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+G_ : A → A → A} {_+H_ : B → B → B} {G : Group S _+G_} {H : Group T _+H_} {f : A → B} (fHom : GroupHom G H f) where open import Groups.Homomorphisms.Image fHom open import Groups.Homomorphisms.Kernel fHom open import Groups.Cosets G groupKernelIsSubgroup open import Groups.QuotientGroup.Definition G fHom open Setoid T open Equivalence eq open import Setoids.Subset T groupFirstIsomorphismTheoremWellDefined : {x y : A} → groupKernelPred (Group.inverse G y +G x) → Setoid._∼_ (subsetSetoid imageGroupSubset) (f x , (x , reflexive)) (f y , (y , reflexive)) groupFirstIsomorphismTheoremWellDefined {x} {y} pr = transitive (symmetric (invTwice H _)) (transitive (symmetric u) (invTwice H _)) where t : Setoid._∼_ T (Group.inverse H (f y) +H (f x)) (Group.0G H) t = transitive (transitive (Group.+WellDefined H (symmetric (homRespectsInverse fHom)) reflexive) (symmetric (GroupHom.groupHom fHom))) pr u : Setoid._∼_ T (Group.inverse H (Group.inverse H (f y))) (Group.inverse H (Group.inverse H (f x))) u = inverseWellDefined H (transferToRight' H t) groupFirstIsomorphismTheorem : GroupsIsomorphic (cosetGroup groupKernelIsNormalSubgroup) (subgroupIsGroup H imageGroupSubgroup) GroupsIsomorphic.isomorphism groupFirstIsomorphismTheorem x = f x , (x , reflexive) GroupHom.groupHom (GroupIso.groupHom (GroupsIsomorphic.proof groupFirstIsomorphismTheorem)) {x} {y} = GroupHom.groupHom fHom GroupHom.wellDefined (GroupIso.groupHom (GroupsIsomorphic.proof groupFirstIsomorphismTheorem)) {x} {y} = groupFirstIsomorphismTheoremWellDefined {x} {y} SetoidInjection.wellDefined (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof groupFirstIsomorphismTheorem))) = groupFirstIsomorphismTheoremWellDefined SetoidInjection.injective (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof groupFirstIsomorphismTheorem))) fx=fy = transitive (GroupHom.groupHom fHom) (transitive (Group.+WellDefined H reflexive fx=fy) (transitive (symmetric (GroupHom.groupHom fHom)) (transitive (GroupHom.wellDefined fHom (Group.invLeft G)) (imageOfIdentityIsIdentity fHom)))) SetoidSurjection.wellDefined (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof groupFirstIsomorphismTheorem))) = groupFirstIsomorphismTheoremWellDefined SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof groupFirstIsomorphismTheorem))) {b , (a , fa=b)} = a , fa=b groupFirstIsomorphismTheoremWellDefined' : {x y : A} → f (x +G (Group.inverse G y)) ∼ Group.0G H → Setoid._∼_ (subsetSetoid imageGroupSubset) (f x , (x , reflexive)) (f y , (y , reflexive)) groupFirstIsomorphismTheoremWellDefined' {x} {y} pr = transferToRight H (transitive (symmetric (transitive (GroupHom.groupHom fHom) (Group.+WellDefined H reflexive (homRespectsInverse fHom)))) pr) groupFirstIsomorphismTheorem' : GroupsIsomorphic (quotientGroupByHom) (subgroupIsGroup H imageGroupSubgroup) GroupsIsomorphic.isomorphism groupFirstIsomorphismTheorem' a = f a , (a , reflexive) GroupHom.groupHom (GroupIso.groupHom (GroupsIsomorphic.proof groupFirstIsomorphismTheorem')) {x} {y} = GroupHom.groupHom fHom GroupHom.wellDefined (GroupIso.groupHom (GroupsIsomorphic.proof groupFirstIsomorphismTheorem')) {x} {y} = groupFirstIsomorphismTheoremWellDefined' SetoidInjection.wellDefined (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof groupFirstIsomorphismTheorem'))) {x} {y} = groupFirstIsomorphismTheoremWellDefined' {x} {y} SetoidInjection.injective (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof groupFirstIsomorphismTheorem'))) {x} {y} fx=fy = transitive (GroupHom.groupHom fHom) (transitive (Group.+WellDefined H reflexive (homRespectsInverse fHom)) (transferToRight'' H fx=fy)) SetoidSurjection.wellDefined (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof groupFirstIsomorphismTheorem'))) {x} {y} = groupFirstIsomorphismTheoremWellDefined' SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof groupFirstIsomorphismTheorem'))) {b , (a , fa=b)} = a , fa=b
86.673077
354
0.786554
dfd228d98359e63e65f85540a38690c6aef9398d
4,721
agda
Agda
test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Supremum/Strict.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Supremum/Strict.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Add/Supremum/Strict.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- The lifting of a strict order to incorporate a new supremum ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- This module is designed to be used with -- Relation.Nullary.Construct.Add.Supremum open import Relation.Binary module Relation.Binary.Construct.Add.Supremum.Strict {a r} {A : Set a} (_<_ : Rel A r) where open import Level using (_⊔_) open import Data.Product open import Function open import Relation.Nullary import Relation.Nullary.Decidable as Dec import Relation.Binary.PropositionalEquality as P open import Relation.Nullary.Construct.Add.Supremum import Relation.Binary.Construct.Add.Supremum.Equality as Equality import Relation.Binary.Construct.Add.Supremum.NonStrict as NonStrict ------------------------------------------------------------------------ -- Definition infix 4 _<⁺_ data _<⁺_ : Rel (A ⁺) (a ⊔ r) where [_] : {k l : A} → k < l → [ k ] <⁺ [ l ] [_]<⊤⁺ : (k : A) → [ k ] <⁺ ⊤⁺ ------------------------------------------------------------------------ -- Relational properties [<]-injective : ∀ {k l} → [ k ] <⁺ [ l ] → k < l [<]-injective [ p ] = p <⁺-asym : Asymmetric _<_ → Asymmetric _<⁺_ <⁺-asym <-asym [ p ] [ q ] = <-asym p q <⁺-asym <-asym [ k ]<⊤⁺ () <⁺-trans : Transitive _<_ → Transitive _<⁺_ <⁺-trans <-trans [ p ] [ q ] = [ <-trans p q ] <⁺-trans <-trans [ p ] [ k ]<⊤⁺ = [ _ ]<⊤⁺ <⁺-dec : Decidable _<_ → Decidable _<⁺_ <⁺-dec _<?_ [ k ] [ l ] = Dec.map′ [_] [<]-injective (k <? l) <⁺-dec _<?_ [ k ] ⊤⁺ = yes [ k ]<⊤⁺ <⁺-dec _<?_ ⊤⁺ [ l ] = no (λ ()) <⁺-dec _<?_ ⊤⁺ ⊤⁺ = no (λ ()) <⁺-irrelevant : Irrelevant _<_ → Irrelevant _<⁺_ <⁺-irrelevant <-irr [ p ] [ q ] = P.cong _ (<-irr p q) <⁺-irrelevant <-irr [ k ]<⊤⁺ [ k ]<⊤⁺ = P.refl module _ {e} {_≈_ : Rel A e} where open Equality _≈_ <⁺-cmp : Trichotomous _≈_ _<_ → Trichotomous _≈⁺_ _<⁺_ <⁺-cmp <-cmp ⊤⁺ ⊤⁺ = tri≈ (λ ()) ⊤⁺≈⊤⁺ (λ ()) <⁺-cmp <-cmp ⊤⁺ [ l ] = tri> (λ ()) (λ ()) [ l ]<⊤⁺ <⁺-cmp <-cmp [ k ] ⊤⁺ = tri< [ k ]<⊤⁺ (λ ()) (λ ()) <⁺-cmp <-cmp [ k ] [ l ] with <-cmp k l ... | tri< a ¬b ¬c = tri< [ a ] (¬b ∘ [≈]-injective) (¬c ∘ [<]-injective) ... | tri≈ ¬a b ¬c = tri≈ (¬a ∘ [<]-injective) [ b ] (¬c ∘ [<]-injective) ... | tri> ¬a ¬b c = tri> (¬a ∘ [<]-injective) (¬b ∘ [≈]-injective) [ c ] <⁺-irrefl : Irreflexive _≈_ _<_ → Irreflexive _≈⁺_ _<⁺_ <⁺-irrefl <-irrefl [ p ] [ q ] = <-irrefl p q <⁺-irrefl <-irrefl ⊤⁺≈⊤⁺ () <⁺-respˡ-≈⁺ : _<_ Respectsˡ _≈_ → _<⁺_ Respectsˡ _≈⁺_ <⁺-respˡ-≈⁺ <-respˡ-≈ [ p ] [ q ] = [ <-respˡ-≈ p q ] <⁺-respˡ-≈⁺ <-respˡ-≈ [ p ] ([ l ]<⊤⁺) = [ _ ]<⊤⁺ <⁺-respˡ-≈⁺ <-respˡ-≈ ⊤⁺≈⊤⁺ q = q <⁺-respʳ-≈⁺ : _<_ Respectsʳ _≈_ → _<⁺_ Respectsʳ _≈⁺_ <⁺-respʳ-≈⁺ <-respʳ-≈ [ p ] [ q ] = [ <-respʳ-≈ p q ] <⁺-respʳ-≈⁺ <-respʳ-≈ ⊤⁺≈⊤⁺ q = q <⁺-resp-≈⁺ : _<_ Respects₂ _≈_ → _<⁺_ Respects₂ _≈⁺_ <⁺-resp-≈⁺ = map <⁺-respʳ-≈⁺ <⁺-respˡ-≈⁺ module _ {r} {_≤_ : Rel A r} where open NonStrict _≤_ <⁺-transʳ : Trans _≤_ _<_ _<_ → Trans _≤⁺_ _<⁺_ _<⁺_ <⁺-transʳ <-transʳ [ p ] [ q ] = [ <-transʳ p q ] <⁺-transʳ <-transʳ [ p ] [ k ]<⊤⁺ = [ _ ]<⊤⁺ <⁺-transˡ : Trans _<_ _≤_ _<_ → Trans _<⁺_ _≤⁺_ _<⁺_ <⁺-transˡ <-transˡ [ p ] [ q ] = [ <-transˡ p q ] <⁺-transˡ <-transˡ [ p ] ([ _ ] ≤⊤⁺) = [ _ ]<⊤⁺ <⁺-transˡ <-transˡ [ k ]<⊤⁺ (⊤⁺ ≤⊤⁺) = [ k ]<⊤⁺ ------------------------------------------------------------------------ -- Structures module _ {e} {_≈_ : Rel A e} where open Equality _≈_ <⁺-isStrictPartialOrder : IsStrictPartialOrder _≈_ _<_ → IsStrictPartialOrder _≈⁺_ _<⁺_ <⁺-isStrictPartialOrder strict = record { isEquivalence = ≈⁺-isEquivalence isEquivalence ; irrefl = <⁺-irrefl irrefl ; trans = <⁺-trans trans ; <-resp-≈ = <⁺-resp-≈⁺ <-resp-≈ } where open IsStrictPartialOrder strict <⁺-isDecStrictPartialOrder : IsDecStrictPartialOrder _≈_ _<_ → IsDecStrictPartialOrder _≈⁺_ _<⁺_ <⁺-isDecStrictPartialOrder dectot = record { isStrictPartialOrder = <⁺-isStrictPartialOrder isStrictPartialOrder ; _≟_ = ≈⁺-dec _≟_ ; _<?_ = <⁺-dec _<?_ } where open IsDecStrictPartialOrder dectot <⁺-isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_ → IsStrictTotalOrder _≈⁺_ _<⁺_ <⁺-isStrictTotalOrder strictot = record { isEquivalence = ≈⁺-isEquivalence isEquivalence ; trans = <⁺-trans trans ; compare = <⁺-cmp compare } where open IsStrictTotalOrder strictot
35.496241
75
0.481042
20312437129636aaf746bd044c7c4e354bbead92
1,051
agda
Agda
src/Categories/Category/Exact.agda
Trebor-Huang/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
5
2019-05-21T17:07:19.000Z
2019-05-22T03:54:24.000Z
src/Categories/Category/Exact.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
null
null
null
src/Categories/Category/Exact.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} -- Exact category (https://ncatlab.org/nlab/show/exact+category) -- is a regular category -- in which every internal equivalence is a kernel pair module Categories.Category.Exact where open import Level open import Categories.Category.Core open import Categories.Diagram.Pullback open import Categories.Category.Cocartesian open import Categories.Object.Coproduct open import Categories.Morphism open import Categories.Diagram.Coequalizer open import Categories.Diagram.KernelPair open import Categories.Category.Regular open import Categories.Morphism.Regular open import Categories.Object.InternalRelation record Exact {o ℓ e : Level} (𝒞 : Category o ℓ e) : Set (suc (o ⊔ ℓ ⊔ e)) where open Category 𝒞 open Pullback open Coequalizer open Equivalence field regular : Regular 𝒞 quotient : ∀ {X : Obj} (E : Equivalence 𝒞 X) → Coequalizer 𝒞 (R.p₁ E) (R.p₂ E) effective : ∀ {X : Obj} (E : Equivalence 𝒞 X) → IsPullback 𝒞 (R.p₁ E) (R.p₂ E) (arr (quotient E)) (arr (quotient E))
30.028571
84
0.733587
0eeb700e339592853af4c1c387fd6ae464451274
222
agda
Agda
test/Fail/MultipleFrontEnds.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/MultipleFrontEnds.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/MultipleFrontEnds.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2020-12-15, re PR #5020 -- Test error message "Must not specify multiple frontends" -- See respective .flags file -- Expected error: -- Must not specify multiple frontends (--interaction, --interaction-json)
27.75
74
0.72973
df85c29c5187ddd884cb638d816e4787448442fc
5,325
agda
Agda
Definition/Conversion/Weakening.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/Conversion/Weakening.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/Conversion/Weakening.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Definition.Conversion.Weakening where open import Definition.Untyped as U hiding (wk) open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Weakening open import Definition.Typed.Consequences.Syntactic open import Definition.Conversion open import Definition.Conversion.Soundness import Tools.PropositionalEquality as PE open import Tools.Product mutual -- Weakening of algorithmic equality of neutrals. wk~↑ : ∀ {ρ t u A Γ Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) → ⊢ Δ → Γ ⊢ t ~ u ↑ A → Δ ⊢ U.wk ρ t ~ U.wk ρ u ↑ U.wk ρ A wk~↑ {ρ} [ρ] ⊢Δ (var-refl x₁ x≡y) = var-refl (wkTerm [ρ] ⊢Δ x₁) (PE.cong (wkVar ρ) x≡y) wk~↑ ρ ⊢Δ (app-cong {G = G} t~u x) = PE.subst (λ x → _ ⊢ _ ~ _ ↑ x) (PE.sym (wk-β G)) (app-cong (wk~↓ ρ ⊢Δ t~u) (wkConv↑Term ρ ⊢Δ x)) wk~↑ ρ ⊢Δ (fst-cong p~r) = fst-cong (wk~↓ ρ ⊢Δ p~r) wk~↑ ρ ⊢Δ (snd-cong {G = G} p~r) = PE.subst (λ x → _ ⊢ _ ~ _ ↑ x) (PE.sym (wk-β G)) (snd-cong (wk~↓ ρ ⊢Δ p~r)) wk~↑ {ρ} {Δ = Δ} [ρ] ⊢Δ (natrec-cong {k} {l} {h} {g} {a₀} {b₀} {F} {G} x x₁ x₂ t~u) = PE.subst (λ x → _ ⊢ U.wk ρ (natrec F a₀ h k) ~ _ ↑ x) (PE.sym (wk-β F)) (natrec-cong (wkConv↑ (lift [ρ]) (⊢Δ ∙ ℕⱼ ⊢Δ) x) (PE.subst (λ x → _ ⊢ _ [conv↑] _ ∷ x) (wk-β F) (wkConv↑Term [ρ] ⊢Δ x₁)) (PE.subst (λ x → Δ ⊢ U.wk ρ h [conv↑] U.wk ρ g ∷ x) (wk-β-natrec _ F) (wkConv↑Term [ρ] ⊢Δ x₂)) (wk~↓ [ρ] ⊢Δ t~u)) wk~↑ {ρ} {Δ = Δ} [ρ] ⊢Δ (Emptyrec-cong {k} {l} {F} {G} x t~u) = Emptyrec-cong (wkConv↑ [ρ] ⊢Δ x) (wk~↓ [ρ] ⊢Δ t~u) -- Weakening of algorithmic equality of neutrals in WHNF. wk~↓ : ∀ {ρ t u A Γ Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) → ⊢ Δ → Γ ⊢ t ~ u ↓ A → Δ ⊢ U.wk ρ t ~ U.wk ρ u ↓ U.wk ρ A wk~↓ {ρ} [ρ] ⊢Δ ([~] A₁ D whnfA k~l) = [~] (U.wk ρ A₁) (wkRed* [ρ] ⊢Δ D) (wkWhnf ρ whnfA) (wk~↑ [ρ] ⊢Δ k~l) -- Weakening of algorithmic equality of types. wkConv↑ : ∀ {ρ A B Γ Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) → ⊢ Δ → Γ ⊢ A [conv↑] B → Δ ⊢ U.wk ρ A [conv↑] U.wk ρ B wkConv↑ {ρ} [ρ] ⊢Δ ([↑] A′ B′ D D′ whnfA′ whnfB′ A′<>B′) = [↑] (U.wk ρ A′) (U.wk ρ B′) (wkRed* [ρ] ⊢Δ D) (wkRed* [ρ] ⊢Δ D′) (wkWhnf ρ whnfA′) (wkWhnf ρ whnfB′) (wkConv↓ [ρ] ⊢Δ A′<>B′) -- Weakening of algorithmic equality of types in WHNF. wkConv↓ : ∀ {ρ A B Γ Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) → ⊢ Δ → Γ ⊢ A [conv↓] B → Δ ⊢ U.wk ρ A [conv↓] U.wk ρ B wkConv↓ ρ ⊢Δ (U-refl x) = U-refl ⊢Δ wkConv↓ ρ ⊢Δ (ℕ-refl x) = ℕ-refl ⊢Δ wkConv↓ ρ ⊢Δ (Empty-refl x) = Empty-refl ⊢Δ wkConv↓ ρ ⊢Δ (Unit-refl x) = Unit-refl ⊢Δ wkConv↓ ρ ⊢Δ (ne x) = ne (wk~↓ ρ ⊢Δ x) wkConv↓ ρ ⊢Δ (Π-cong x A<>B A<>B₁) = let ⊢ρF = wk ρ ⊢Δ x in Π-cong ⊢ρF (wkConv↑ ρ ⊢Δ A<>B) (wkConv↑ (lift ρ) (⊢Δ ∙ ⊢ρF) A<>B₁) wkConv↓ ρ ⊢Δ (Σ-cong x A<>B A<>B₁) = let ⊢ρF = wk ρ ⊢Δ x in Σ-cong ⊢ρF (wkConv↑ ρ ⊢Δ A<>B) (wkConv↑ (lift ρ) (⊢Δ ∙ ⊢ρF) A<>B₁) -- Weakening of algorithmic equality of terms. wkConv↑Term : ∀ {ρ t u A Γ Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) → ⊢ Δ → Γ ⊢ t [conv↑] u ∷ A → Δ ⊢ U.wk ρ t [conv↑] U.wk ρ u ∷ U.wk ρ A wkConv↑Term {ρ} [ρ] ⊢Δ ([↑]ₜ B t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u) = [↑]ₜ (U.wk ρ B) (U.wk ρ t′) (U.wk ρ u′) (wkRed* [ρ] ⊢Δ D) (wkRed*Term [ρ] ⊢Δ d) (wkRed*Term [ρ] ⊢Δ d′) (wkWhnf ρ whnfB) (wkWhnf ρ whnft′) (wkWhnf ρ whnfu′) (wkConv↓Term [ρ] ⊢Δ t<>u) -- Weakening of algorithmic equality of terms in WHNF. wkConv↓Term : ∀ {ρ t u A Γ Δ} ([ρ] : ρ ∷ Δ ⊆ Γ) → ⊢ Δ → Γ ⊢ t [conv↓] u ∷ A → Δ ⊢ U.wk ρ t [conv↓] U.wk ρ u ∷ U.wk ρ A wkConv↓Term ρ ⊢Δ (ℕ-ins x) = ℕ-ins (wk~↓ ρ ⊢Δ x) wkConv↓Term ρ ⊢Δ (Empty-ins x) = Empty-ins (wk~↓ ρ ⊢Δ x) wkConv↓Term ρ ⊢Δ (Unit-ins x) = Unit-ins (wk~↓ ρ ⊢Δ x) wkConv↓Term {ρ} [ρ] ⊢Δ (ne-ins t u x x₁) = ne-ins (wkTerm [ρ] ⊢Δ t) (wkTerm [ρ] ⊢Δ u) (wkNeutral ρ x) (wk~↓ [ρ] ⊢Δ x₁) wkConv↓Term ρ ⊢Δ (univ x x₁ x₂) = univ (wkTerm ρ ⊢Δ x) (wkTerm ρ ⊢Δ x₁) (wkConv↓ ρ ⊢Δ x₂) wkConv↓Term ρ ⊢Δ (zero-refl x) = zero-refl ⊢Δ wkConv↓Term ρ ⊢Δ (suc-cong t<>u) = suc-cong (wkConv↑Term ρ ⊢Δ t<>u) wkConv↓Term {ρ} {Δ = Δ} [ρ] ⊢Δ (η-eq {F = F} {G = G} x₁ x₂ y y₁ t<>u) = let ⊢F , _ = syntacticΠ (syntacticTerm x₁) ⊢ρF = wk [ρ] ⊢Δ ⊢F in η-eq (wkTerm [ρ] ⊢Δ x₁) (wkTerm [ρ] ⊢Δ x₂) (wkFunction ρ y) (wkFunction ρ y₁) (PE.subst₃ (λ x y z → Δ ∙ U.wk ρ F ⊢ x [conv↑] y ∷ z) (PE.cong₂ _∘_ (PE.sym (wk1-wk≡lift-wk1 _ _)) PE.refl) (PE.cong₂ _∘_ (PE.sym (wk1-wk≡lift-wk1 _ _)) PE.refl) PE.refl (wkConv↑Term (lift [ρ]) (⊢Δ ∙ ⊢ρF) t<>u)) wkConv↓Term {ρ} [ρ] ⊢Δ (Σ-η {G = G} ⊢p ⊢r pProd rProd fstConv sndConv) = Σ-η (wkTerm [ρ] ⊢Δ ⊢p) (wkTerm [ρ] ⊢Δ ⊢r) (wkProduct ρ pProd) (wkProduct ρ rProd) (wkConv↑Term [ρ] ⊢Δ fstConv) (PE.subst (λ x → _ ⊢ _ [conv↑] _ ∷ x) (wk-β G) (wkConv↑Term [ρ] ⊢Δ sndConv)) wkConv↓Term {ρ} [ρ] ⊢Δ (η-unit [t] [u] tWhnf uWhnf) = η-unit (wkTerm [ρ] ⊢Δ [t]) (wkTerm [ρ] ⊢Δ [u]) (wkWhnf ρ tWhnf) (wkWhnf ρ uWhnf)
44.008264
89
0.477183
3962c9998a7498c086f6f5eb260a88b09f310a3b
9,707
agda
Agda
agda-stdlib/src/Data/List/Categorical.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/List/Categorical.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/List/Categorical.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- A categorical view of List ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Categorical where open import Category.Functor open import Category.Applicative open import Category.Monad open import Data.Bool.Base using (false; true) open import Data.List.Base open import Data.List.Properties open import Function open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; _≗_; refl) open P.≡-Reasoning ------------------------------------------------------------------------ -- List applicative functor functor : ∀ {ℓ} → RawFunctor {ℓ} List functor = record { _<$>_ = map } applicative : ∀ {ℓ} → RawApplicative {ℓ} List applicative = record { pure = [_] ; _⊛_ = λ fs as → concatMap (λ f → map f as) fs } applicativeZero : ∀ {ℓ} → RawApplicativeZero {ℓ} List applicativeZero = record { applicative = applicative ; ∅ = [] } alternative : ∀ {ℓ} → RawAlternative {ℓ} List alternative = record { applicativeZero = applicativeZero ; _∣_ = _++_ } ------------------------------------------------------------------------ -- List monad monad : ∀ {ℓ} → RawMonad {ℓ} List monad = record { return = [_] ; _>>=_ = flip concatMap } monadZero : ∀ {ℓ} → RawMonadZero {ℓ} List monadZero = record { monad = monad ; applicativeZero = applicativeZero } monadPlus : ∀ {ℓ} → RawMonadPlus {ℓ} List monadPlus = record { monad = monad ; alternative = alternative } ------------------------------------------------------------------------ -- Get access to other monadic functions module TraversableA {f F} (App : RawApplicative {f} F) where open RawApplicative App sequenceA : ∀ {A} → List (F A) → F (List A) sequenceA [] = pure [] sequenceA (x ∷ xs) = _∷_ <$> x ⊛ sequenceA xs mapA : ∀ {a} {A : Set a} {B} → (A → F B) → List A → F (List B) mapA f = sequenceA ∘ map f forA : ∀ {a} {A : Set a} {B} → List A → (A → F B) → F (List B) forA = flip mapA module TraversableM {m M} (Mon : RawMonad {m} M) where open RawMonad Mon open TraversableA rawIApplicative public renaming ( sequenceA to sequenceM ; mapA to mapM ; forA to forM ) ------------------------------------------------------------------------ -- List monad transformer monadT : ∀ {ℓ} → RawMonadT {ℓ} (_∘′ List) monadT M = record { return = pure ∘′ [_] ; _>>=_ = λ mas f → mas >>= λ as → concat <$> mapM f as } where open RawMonad M; open TraversableM M ------------------------------------------------------------------------ -- The list monad. private open module LMP {ℓ} = RawMonadPlus (monadPlus {ℓ = ℓ}) module MonadProperties where left-identity : ∀ {ℓ} {A B : Set ℓ} (x : A) (f : A → List B) → (return x >>= f) ≡ f x left-identity x f = ++-identityʳ (f x) right-identity : ∀ {ℓ} {A : Set ℓ} (xs : List A) → (xs >>= return) ≡ xs right-identity [] = refl right-identity (x ∷ xs) = P.cong (x ∷_) (right-identity xs) left-zero : ∀ {ℓ} {A B : Set ℓ} (f : A → List B) → (∅ >>= f) ≡ ∅ left-zero f = refl right-zero : ∀ {ℓ} {A B : Set ℓ} (xs : List A) → (xs >>= const ∅) ≡ ∅ {A = B} right-zero [] = refl right-zero (x ∷ xs) = right-zero xs private not-left-distributive : let xs = true ∷ false ∷ []; f = return; g = return in (xs >>= λ x → f x ∣ g x) ≢ ((xs >>= f) ∣ (xs >>= g)) not-left-distributive () right-distributive : ∀ {ℓ} {A B : Set ℓ} (xs ys : List A) (f : A → List B) → (xs ∣ ys >>= f) ≡ ((xs >>= f) ∣ (ys >>= f)) right-distributive [] ys f = refl right-distributive (x ∷ xs) ys f = begin f x ∣ (xs ∣ ys >>= f) ≡⟨ P.cong (f x ∣_) $ right-distributive xs ys f ⟩ f x ∣ ((xs >>= f) ∣ (ys >>= f)) ≡⟨ P.sym $ ++-assoc (f x) _ _ ⟩ ((f x ∣ (xs >>= f)) ∣ (ys >>= f)) ∎ associative : ∀ {ℓ} {A B C : Set ℓ} (xs : List A) (f : A → List B) (g : B → List C) → (xs >>= λ x → f x >>= g) ≡ (xs >>= f >>= g) associative [] f g = refl associative (x ∷ xs) f g = begin (f x >>= g) ∣ (xs >>= λ x → f x >>= g) ≡⟨ P.cong ((f x >>= g) ∣_) $ associative xs f g ⟩ (f x >>= g) ∣ (xs >>= f >>= g) ≡⟨ P.sym $ right-distributive (f x) (xs >>= f) g ⟩ (f x ∣ (xs >>= f) >>= g) ∎ cong : ∀ {ℓ} {A B : Set ℓ} {xs₁ xs₂} {f₁ f₂ : A → List B} → xs₁ ≡ xs₂ → f₁ ≗ f₂ → (xs₁ >>= f₁) ≡ (xs₂ >>= f₂) cong {xs₁ = xs} refl f₁≗f₂ = P.cong concat (map-cong f₁≗f₂ xs) ------------------------------------------------------------------------ -- The applicative functor derived from the list monad. -- Note that these proofs (almost) show that RawIMonad.rawIApplicative -- is correctly defined. The proofs can be reused if proof components -- are ever added to RawIMonad and RawIApplicative. module Applicative where private module MP = MonadProperties -- A variant of flip map. pam : ∀ {ℓ} {A B : Set ℓ} → List A → (A → B) → List B pam xs f = xs >>= return ∘ f -- ∅ is a left zero for _⊛_. left-zero : ∀ {ℓ} {A B : Set ℓ} (xs : List A) → (∅ ⊛ xs) ≡ ∅ {A = B} left-zero xs = begin ∅ ⊛ xs ≡⟨⟩ (∅ >>= pam xs) ≡⟨ MonadProperties.left-zero (pam xs) ⟩ ∅ ∎ -- ∅ is a right zero for _⊛_. right-zero : ∀ {ℓ} {A B : Set ℓ} (fs : List (A → B)) → (fs ⊛ ∅) ≡ ∅ right-zero {ℓ} fs = begin fs ⊛ ∅ ≡⟨⟩ (fs >>= pam ∅) ≡⟨ (MP.cong (refl {x = fs}) λ f → MP.left-zero (return ∘ f)) ⟩ (fs >>= λ _ → ∅) ≡⟨ MP.right-zero fs ⟩ ∅ ∎ -- _⊛_ distributes over _∣_ from the right. right-distributive : ∀ {ℓ} {A B : Set ℓ} (fs₁ fs₂ : List (A → B)) xs → ((fs₁ ∣ fs₂) ⊛ xs) ≡ (fs₁ ⊛ xs ∣ fs₂ ⊛ xs) right-distributive fs₁ fs₂ xs = begin (fs₁ ∣ fs₂) ⊛ xs ≡⟨⟩ (fs₁ ∣ fs₂ >>= pam xs) ≡⟨ MonadProperties.right-distributive fs₁ fs₂ (pam xs) ⟩ (fs₁ >>= pam xs) ∣ (fs₂ >>= pam xs) ≡⟨⟩ (fs₁ ⊛ xs ∣ fs₂ ⊛ xs) ∎ -- _⊛_ does not distribute over _∣_ from the left. private not-left-distributive : let fs = id ∷ id ∷ []; xs₁ = true ∷ []; xs₂ = true ∷ false ∷ [] in (fs ⊛ (xs₁ ∣ xs₂)) ≢ (fs ⊛ xs₁ ∣ fs ⊛ xs₂) not-left-distributive () -- Applicative functor laws. identity : ∀ {a} {A : Set a} (xs : List A) → (return id ⊛ xs) ≡ xs identity xs = begin return id ⊛ xs ≡⟨⟩ (return id >>= pam xs) ≡⟨ MonadProperties.left-identity id (pam xs) ⟩ (xs >>= return) ≡⟨ MonadProperties.right-identity xs ⟩ xs ∎ private pam-lemma : ∀ {ℓ} {A B C : Set ℓ} (xs : List A) (f : A → B) (fs : B → List C) → (pam xs f >>= fs) ≡ (xs >>= λ x → fs (f x)) pam-lemma xs f fs = begin (pam xs f >>= fs) ≡⟨ P.sym $ MP.associative xs (return ∘ f) fs ⟩ (xs >>= λ x → return (f x) >>= fs) ≡⟨ MP.cong (refl {x = xs}) (λ x → MP.left-identity (f x) fs) ⟩ (xs >>= λ x → fs (f x)) ∎ composition : ∀ {ℓ} {A B C : Set ℓ} (fs : List (B → C)) (gs : List (A → B)) xs → (return _∘′_ ⊛ fs ⊛ gs ⊛ xs) ≡ (fs ⊛ (gs ⊛ xs)) composition {ℓ} fs gs xs = begin return _∘′_ ⊛ fs ⊛ gs ⊛ xs ≡⟨⟩ (return _∘′_ >>= pam fs >>= pam gs >>= pam xs) ≡⟨ MP.cong (MP.cong (MP.left-identity _∘′_ (pam fs)) (λ f → refl {x = pam gs f})) (λ fg → refl {x = pam xs fg}) ⟩ (pam fs _∘′_ >>= pam gs >>= pam xs) ≡⟨ MP.cong (pam-lemma fs _∘′_ (pam gs)) (λ _ → refl) ⟩ ((fs >>= λ f → pam gs (f ∘′_)) >>= pam xs) ≡⟨ P.sym $ MP.associative fs (λ f → pam gs (_∘′_ f)) (pam xs) ⟩ (fs >>= λ f → pam gs (f ∘′_) >>= pam xs) ≡⟨ (MP.cong (refl {x = fs}) λ f → pam-lemma gs (f ∘′_) (pam xs)) ⟩ (fs >>= λ f → gs >>= λ g → pam xs (f ∘′ g)) ≡⟨ (MP.cong (refl {x = fs}) λ f → MP.cong (refl {x = gs}) λ g → P.sym $ pam-lemma xs g (return ∘ f)) ⟩ (fs >>= λ f → gs >>= λ g → pam (pam xs g) f) ≡⟨ (MP.cong (refl {x = fs}) λ f → MP.associative gs (pam xs) (return ∘ f)) ⟩ (fs >>= pam (gs >>= pam xs)) ≡⟨⟩ fs ⊛ (gs ⊛ xs) ∎ homomorphism : ∀ {ℓ} {A B : Set ℓ} (f : A → B) x → (return f ⊛ return x) ≡ return (f x) homomorphism f x = begin return f ⊛ return x ≡⟨⟩ (return f >>= pam (return x)) ≡⟨ MP.left-identity f (pam (return x)) ⟩ pam (return x) f ≡⟨ MP.left-identity x (return ∘ f) ⟩ return (f x) ∎ interchange : ∀ {ℓ} {A B : Set ℓ} (fs : List (A → B)) {x} → (fs ⊛ return x) ≡ (return (λ f → f x) ⊛ fs) interchange fs {x} = begin fs ⊛ return x ≡⟨⟩ (fs >>= pam (return x)) ≡⟨ (MP.cong (refl {x = fs}) λ f → MP.left-identity x (return ∘ f)) ⟩ (fs >>= λ f → return (f x)) ≡⟨⟩ (pam fs (λ f → f x)) ≡⟨ P.sym $ MP.left-identity (λ f → f x) (pam fs) ⟩ (return (λ f → f x) >>= pam fs) ≡⟨⟩ return (λ f → f x) ⊛ fs ∎
35.951852
115
0.435974
18592afb355e366aded400b98ebf16b5bf5e8b24
122
agda
Agda
04-cubical-type-theory/material/ExerciseSession3.agda
tomdjong/EPIT-2020
54b18e4adf890b3533bbefda373912423be7f490
[ "MIT" ]
null
null
null
04-cubical-type-theory/material/ExerciseSession3.agda
tomdjong/EPIT-2020
54b18e4adf890b3533bbefda373912423be7f490
[ "MIT" ]
null
null
null
04-cubical-type-theory/material/ExerciseSession3.agda
tomdjong/EPIT-2020
54b18e4adf890b3533bbefda373912423be7f490
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical #-} module Exercises where open import Part2 open import Part3 open import Part4 open import Part5
15.25
25
0.770492