hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
df500824729e0f7fae70202e096bfe9f5807fc5c
12,612
agda
Agda
Cubical/Relation/ZigZag/Applications/MultiSet.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Relation/ZigZag/Applications/MultiSet.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Relation/ZigZag/Applications/MultiSet.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
-- We apply the theory of quasi equivalence relations (QERs) to finite multisets and association lists. {-# OPTIONS --safe #-} module Cubical.Relation.ZigZag.Applications.MultiSet where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Foundations.RelationalStructure open import Cubical.Foundations.Structure open import Cubical.Foundations.SIP open import Cubical.Foundations.Univalence open import Cubical.Data.Unit open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Nat open import Cubical.Data.List hiding ([_]) open import Cubical.Data.Sigma open import Cubical.HITs.SetQuotients open import Cubical.HITs.FiniteMultiset as FMS hiding ([_] ; _++_) open import Cubical.HITs.FiniteMultiset.CountExtensionality open import Cubical.HITs.PropositionalTruncation open import Cubical.Relation.Nullary open import Cubical.Relation.ZigZag.Base open import Cubical.Structures.MultiSet open import Cubical.Structures.Relational.Auto open import Cubical.Structures.Relational.Macro -- we define simple association lists without any higher constructors data AList {ℓ} (A : Type ℓ) : Type ℓ where ⟨⟩ : AList A ⟨_,_⟩∷_ : A → ℕ → AList A → AList A infixr 5 ⟨_,_⟩∷_ private variable ℓ : Level -- We have a CountStructure on List and AList and use these to get a QER between the two module Lists&ALists {A : Type ℓ} (discA : Discrete A) where multisetShape : Type ℓ → Type ℓ multisetShape X = X × (A → X → X) × (X → X → X) × (A → X → Const[ ℕ , isSetℕ ]) module S = RelMacro ℓ (autoRelDesc multisetShape) addIfEq : (a x : A) → ℕ → ℕ → ℕ addIfEq a x m n with discA a x ... | yes _ = m + n ... | no _ = n module _ {a x : A} {n : ℕ} where addIfEq≡ : {m : ℕ} → a ≡ x → addIfEq a x m n ≡ m + n addIfEq≡ a≡x with discA a x ... | yes _ = refl ... | no a≢x = ⊥.rec (a≢x a≡x) addIfEq≢ : {m : ℕ} → ¬ (a ≡ x) → addIfEq a x m n ≡ n addIfEq≢ a≢x with discA a x ... | yes a≡x = ⊥.rec (a≢x a≡x) ... | no _ = refl addIfEq0 : addIfEq a x 0 n ≡ n addIfEq0 with discA a x ... | yes _ = refl ... | no _ = refl addIfEq+ : {m : ℕ} (n' : ℕ) → addIfEq a x m (n + n') ≡ addIfEq a x m n + n' addIfEq+ n' with discA a x ... | yes _ = +-assoc _ n n' ... | no _ = refl module L where emp : List A emp = [] insert : A → List A → List A insert x xs = x ∷ xs union : List A → List A → List A union xs ys = xs ++ ys count : A → List A → ℕ count a [] = zero count a (x ∷ xs) = addIfEq a x 1 (count a xs) structure : S.structure (List A) structure = emp , insert , union , count countUnion : ∀ a xs ys → count a (union xs ys) ≡ count a xs + count a ys countUnion a [] ys = refl countUnion a (x ∷ xs) ys = cong (addIfEq a x 1) (countUnion a xs ys) ∙ addIfEq+ (count a ys) module AL where emp : AList A emp = ⟨⟩ insert* : ℕ → A → AList A → AList A insert* m a ⟨⟩ = ⟨ a , m ⟩∷ ⟨⟩ insert* m a (⟨ y , n ⟩∷ ys) with (discA a y) ... | yes _ = ⟨ y , m + n ⟩∷ ys ... | no _ = ⟨ y , n ⟩∷ insert* m a ys insert : A → AList A → AList A insert = insert* 1 union : AList A → AList A → AList A union ⟨⟩ ys = ys union (⟨ x , n ⟩∷ xs) ys = insert* n x (union xs ys) count : A → AList A → ℕ count a ⟨⟩ = zero count a (⟨ y , n ⟩∷ ys) = addIfEq a y n (count a ys) structure : S.structure (AList A) structure = emp , insert , union , count countInsert* : ∀ m a x ys → count a (insert* m x ys) ≡ addIfEq a x m (count a ys) countInsert* m a x ⟨⟩ = refl countInsert* m a x (⟨ y , n ⟩∷ ys) with discA a x | discA a y | discA x y ... | yes a≡x | yes a≡y | yes x≡y = addIfEq≡ a≡y ∙ sym (+-assoc m n _) ... | yes a≡x | yes a≡y | no x≢y = ⊥.rec (x≢y (sym a≡x ∙ a≡y)) ... | yes a≡x | no a≢y | yes x≡y = ⊥.rec (a≢y (a≡x ∙ x≡y)) ... | yes a≡x | no a≢y | no x≢y = addIfEq≢ a≢y ∙ countInsert* m a x ys ∙ addIfEq≡ a≡x ... | no a≢x | yes a≡y | yes x≡y = ⊥.rec (a≢x (a≡y ∙ sym x≡y)) ... | no a≢x | yes a≡y | no x≢y = addIfEq≡ a≡y ∙ cong (n +_) (countInsert* m a x ys ∙ addIfEq≢ a≢x) ... | no a≢x | no a≢y | yes x≡y = addIfEq≢ a≢y ... | no a≢x | no a≢y | no x≢y = addIfEq≢ a≢y ∙ countInsert* m a x ys ∙ addIfEq≢ a≢x countInsert = countInsert* 1 countUnion : ∀ a xs ys → count a (union xs ys) ≡ count a xs + count a ys countUnion a ⟨⟩ ys = refl countUnion a (⟨ x , n ⟩∷ xs) ys = countInsert* n a x (union xs ys) ∙ cong (addIfEq a x n) (countUnion a xs ys) ∙ addIfEq+ (count a ys) -- now for the QER between List and Alist R : List A → AList A → Type ℓ R xs ys = ∀ a → L.count a xs ≡ AL.count a ys φ : List A → AList A φ [] = ⟨⟩ φ (x ∷ xs) = AL.insert x (φ xs) ψ : AList A → List A ψ ⟨⟩ = [] ψ (⟨ x , zero ⟩∷ xs) = ψ xs ψ (⟨ x , suc n ⟩∷ xs) = x ∷ ψ (⟨ x , n ⟩∷ xs) η : ∀ xs → R xs (φ xs) η [] a = refl η (x ∷ xs) a = cong (addIfEq a x 1) (η xs a) ∙ sym (AL.countInsert a x (φ xs)) -- for the other direction we need a little helper function ε : ∀ y → R (ψ y) y ε' : (x : A) (n : ℕ) (xs : AList A) (a : A) → L.count a (ψ (⟨ x , n ⟩∷ xs)) ≡ AL.count a (⟨ x , n ⟩∷ xs) ε ⟨⟩ a = refl ε (⟨ x , n ⟩∷ xs) a = ε' x n xs a ε' x zero xs a = ε xs a ∙ sym addIfEq0 ε' x (suc n) xs a with discA a x ... | yes a≡x = cong suc (ε' x n xs a ∙ addIfEq≡ a≡x) ... | no a≢x = ε' x n xs a ∙ addIfEq≢ a≢x -- Induced quotients and equivalence open isQuasiEquivRel -- R is a QER QuasiR : QuasiEquivRel _ _ ℓ QuasiR .fst .fst = R QuasiR .fst .snd _ _ = isPropΠ λ _ → isSetℕ _ _ QuasiR .snd .zigzag r r' r'' a = (r a) ∙∙ sym (r' a) ∙∙ (r'' a) QuasiR .snd .fwd a = ∣ φ a , η a ∣ QuasiR .snd .bwd b = ∣ ψ b , ε b ∣ isStructuredInsert : (x : A) {xs : List A} {ys : AList A} → R xs ys → R (L.insert x xs) (AL.insert x ys) isStructuredInsert x {xs} {ys} r a = cong (addIfEq a x 1) (r a) ∙ sym (AL.countInsert a x ys) isStructuredUnion : {xs : List A} {ys : AList A} (r : R xs ys) {xs' : List A} {ys' : AList A} (r' : R xs' ys') → R (L.union xs xs') (AL.union ys ys') isStructuredUnion {xs} {ys} r {xs'} {ys'} r' a = L.countUnion a xs xs' ∙ cong₂ _+_ (r a) (r' a) ∙ sym (AL.countUnion a ys ys') -- R is structured isStructuredR : S.relation R L.structure AL.structure isStructuredR .fst a = refl isStructuredR .snd .fst = isStructuredInsert isStructuredR .snd .snd .fst {xs} {ys} = isStructuredUnion {xs} {ys} isStructuredR .snd .snd .snd a r = r a module E = QER→Equiv QuasiR open E renaming (Rᴸ to Rᴸ; Rᴿ to Rᴬᴸ) List/Rᴸ = (List A) / Rᴸ AList/Rᴬᴸ = (AList A) / Rᴬᴸ List/Rᴸ≃AList/Rᴬᴸ : List/Rᴸ ≃ AList/Rᴬᴸ List/Rᴸ≃AList/Rᴬᴸ = E.Thm main : QERDescends _ S.relation (List A , L.structure) (AList A , AL.structure) QuasiR main = structuredQER→structuredEquiv S.suitable _ _ QuasiR isStructuredR open QERDescends LQstructure : S.structure List/Rᴸ LQstructure = main .quoᴸ .fst ALQstructure : S.structure AList/Rᴬᴸ ALQstructure = main .quoᴿ .fst -- We get a path between structure over the equivalence from the fact that the QER is structured List/Rᴸ≡AList/Rᴬᴸ : Path (TypeWithStr ℓ S.structure) (List/Rᴸ , LQstructure) (AList/Rᴬᴸ , ALQstructure) List/Rᴸ≡AList/Rᴬᴸ = sip S.univalent _ _ (E.Thm , S.matches (List/Rᴸ , LQstructure) (AList/Rᴬᴸ , ALQstructure) E.Thm .fst (main .rel)) -- Deriving associativity of union for association list multisets LQunion = LQstructure .snd .snd .fst ALQunion = ALQstructure .snd .snd .fst hasAssociativeUnion : TypeWithStr ℓ S.structure → Type ℓ hasAssociativeUnion (_ , _ , _ , _⊔_ , _) = ∀ xs ys zs → (xs ⊔ ys) ⊔ zs ≡ xs ⊔ (ys ⊔ zs) LQassoc : hasAssociativeUnion (List/Rᴸ , LQstructure) LQassoc = elimProp3 (λ _ _ _ → squash/ _ _) (λ xs ys zs i → [ ++-assoc xs ys zs i ]) ALQassoc : hasAssociativeUnion (AList/Rᴬᴸ , ALQstructure) ALQassoc = subst hasAssociativeUnion List/Rᴸ≡AList/Rᴬᴸ LQassoc -- We now show that List/Rᴸ≃FMSet _∷/_ : A → List/Rᴸ → List/Rᴸ _∷/_ = LQstructure .snd .fst multisetShape' : Type ℓ → Type ℓ multisetShape' X = X × (A → X → X) × (A → X → Const[ ℕ , isSetℕ ]) FMSstructure : S.structure (FMSet A) FMSstructure = [] , _∷_ , FMS._++_ , FMScount discA infixr 5 _∷/_ FMSet→List/Rᴸ : FMSet A → List/Rᴸ FMSet→List/Rᴸ = FMS.Rec.f squash/ [ [] ] _∷/_ β where δ : ∀ c a b xs → L.count c (a ∷ b ∷ xs) ≡ L.count c (b ∷ a ∷ xs) δ c a b xs with discA c a | discA c b δ c a b xs | yes _ | yes _ = refl δ c a b xs | yes _ | no _ = refl δ c a b xs | no _ | yes _ = refl δ c a b xs | no _ | no _ = refl γ : ∀ a b xs → Rᴸ (a ∷ b ∷ xs) (b ∷ a ∷ xs) γ a b xs = ∣ φ (a ∷ b ∷ xs) , η (a ∷ b ∷ xs) , (λ c → δ c b a xs ∙ η (a ∷ b ∷ xs) c) ∣ β : ∀ a b [xs] → a ∷/ b ∷/ [xs] ≡ b ∷/ a ∷/ [xs] β a b = elimProp (λ _ → squash/ _ _) (λ xs → eq/ _ _ (γ a b xs)) -- The inverse is induced by the standard projection of lists into finite multisets, -- which is a morphism of CountStructures -- Moreover, we need 'count-extensionality' for finite multisets List→FMSet : List A → FMSet A List→FMSet [] = [] List→FMSet (x ∷ xs) = x ∷ List→FMSet xs List→FMSet-count : ∀ a xs → L.count a xs ≡ FMScount discA a (List→FMSet xs) List→FMSet-count a [] = refl List→FMSet-count a (x ∷ xs) with discA a x ... | yes _ = cong suc (List→FMSet-count a xs) ... | no _ = List→FMSet-count a xs List/Rᴸ→FMSet : List/Rᴸ → FMSet A List/Rᴸ→FMSet [ xs ] = List→FMSet xs List/Rᴸ→FMSet (eq/ xs ys r i) = path i where countsAgree : ∀ a → L.count a xs ≡ L.count a ys countsAgree a = cong (LQstructure .snd .snd .snd a) (eq/ xs ys r) θ : ∀ a → FMScount discA a (List→FMSet xs) ≡ FMScount discA a (List→FMSet ys) θ a = sym (List→FMSet-count a xs) ∙∙ countsAgree a ∙∙ List→FMSet-count a ys path : List→FMSet xs ≡ List→FMSet ys path = FMScountExt.Thm discA _ _ θ List/Rᴸ→FMSet (squash/ xs/ xs/' p q i j) = trunc (List/Rᴸ→FMSet xs/) (List/Rᴸ→FMSet xs/') (cong List/Rᴸ→FMSet p) (cong List/Rᴸ→FMSet q) i j List/Rᴸ→FMSet-insert : (x : A) (ys : List/Rᴸ) → List/Rᴸ→FMSet (x ∷/ ys) ≡ x ∷ List/Rᴸ→FMSet ys List/Rᴸ→FMSet-insert x = elimProp (λ _ → FMS.trunc _ _) λ xs → refl List→FMSet-union : (xs ys : List A) → List→FMSet (xs ++ ys) ≡ FMS._++_ (List→FMSet xs) (List→FMSet ys) List→FMSet-union [] ys = refl List→FMSet-union (x ∷ xs) ys = cong (x ∷_) (List→FMSet-union xs ys) List/Rᴸ≃FMSet : List/Rᴸ ≃ FMSet A List/Rᴸ≃FMSet = isoToEquiv (iso List/Rᴸ→FMSet FMSet→List/Rᴸ τ σ) where σ' : (xs : List A) → FMSet→List/Rᴸ (List/Rᴸ→FMSet [ xs ]) ≡ [ xs ] σ' [] = refl σ' (x ∷ xs) = cong (x ∷/_) (σ' xs) σ : section FMSet→List/Rᴸ List/Rᴸ→FMSet σ = elimProp (λ _ → squash/ _ _) σ' τ' : ∀ x {xs} → List/Rᴸ→FMSet (FMSet→List/Rᴸ xs) ≡ xs → List/Rᴸ→FMSet (FMSet→List/Rᴸ (x ∷ xs)) ≡ x ∷ xs τ' x {xs} p = List/Rᴸ→FMSet-insert x (FMSet→List/Rᴸ xs) ∙ cong (x ∷_) p τ : retract FMSet→List/Rᴸ List/Rᴸ→FMSet τ = FMS.ElimProp.f (FMS.trunc _ _) refl τ' List/Rᴸ≃FMSet-EquivStr : S.equiv (List/Rᴸ , LQstructure) (FMSet A , FMSstructure) List/Rᴸ≃FMSet List/Rᴸ≃FMSet-EquivStr .fst = refl List/Rᴸ≃FMSet-EquivStr .snd .fst a xs = List/Rᴸ→FMSet-insert a xs List/Rᴸ≃FMSet-EquivStr .snd .snd .fst = elimProp2 (λ _ _ → trunc _ _) List→FMSet-union List/Rᴸ≃FMSet-EquivStr .snd .snd .snd a = elimProp (λ _ → isSetℕ _ _) (List→FMSet-count a) {- Putting everything together we get: ≃ List/Rᴸ ------------> AList/Rᴬᴸ | |≃ | ∨ ≃ FMSet A ------------> AssocList A We thus get that AList/Rᴬᴸ≃AssocList. Constructing such an equivalence directly requires count extensionality for association lists, which should be even harder to prove than for finite multisets. This strategy should work for all implementations of multisets with HITs. We just have to show that: ∙ The HIT is equivalent to FMSet (like AssocList) ∙ There is a QER between lists and the basic data type of the HIT with the higher constructors removed (like AList) Then we get that this HIT is equivalent to the corresponding set quotient that identifies elements that give the same count on each a : A. TODO: Show that all the equivalences are indeed isomorphisms of multisets not only of CountStructures! -}
35.130919
107
0.595544
4af0d01466e4690c5ba23edd5e399a3acca3ad93
2,219
agda
Agda
Cubical/HITs/MappingCones/Properties.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/MappingCones/Properties.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/HITs/MappingCones/Properties.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.MappingCones.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Data.Unit open import Cubical.Data.Sum open import Cubical.HITs.Pushout open import Cubical.HITs.MappingCones.Base private variable ℓ ℓ' ℓ'' : Level PushoutUnit-iso-Cone : ∀ {X : Type ℓ} {Y : Type ℓ'} (f : X → Y) → Iso (Pushout (const tt) f) (Cone f) Iso.fun (PushoutUnit-iso-Cone f) (inl tt) = hub Iso.fun (PushoutUnit-iso-Cone f) (inr x) = inj x Iso.fun (PushoutUnit-iso-Cone f) (push x i) = spoke x i Iso.inv (PushoutUnit-iso-Cone f) (inj x) = inr x Iso.inv (PushoutUnit-iso-Cone f) hub = inl tt Iso.inv (PushoutUnit-iso-Cone f) (spoke x i) = push x i Iso.rightInv (PushoutUnit-iso-Cone f) (inj x) = refl Iso.rightInv (PushoutUnit-iso-Cone f) hub = refl Iso.rightInv (PushoutUnit-iso-Cone f) (spoke x i) = refl Iso.leftInv (PushoutUnit-iso-Cone f) (inl tt) = refl Iso.leftInv (PushoutUnit-iso-Cone f) (inr x) = refl Iso.leftInv (PushoutUnit-iso-Cone f) (push x i) = refl PushoutUnit≡Cone : ∀ {X : Type ℓ} {Y : Type ℓ'} (f : X → Y) → Pushout (const tt) f ≡ Cone f PushoutUnit≡Cone f = isoToPath (PushoutUnit-iso-Cone f) ConesUnit-iso-Cone : ∀ {X : Type ℓ} {Y : Type ℓ'} (f : X → Y) → Iso (Cones Unit (λ { tt → f })) (Cone f) Iso.fun (ConesUnit-iso-Cone f) (inj x) = inj x Iso.fun (ConesUnit-iso-Cone f) (hub tt) = hub Iso.fun (ConesUnit-iso-Cone f) (spoke tt x i) = spoke x i Iso.inv (ConesUnit-iso-Cone f) (inj x) = inj x Iso.inv (ConesUnit-iso-Cone f) hub = hub tt Iso.inv (ConesUnit-iso-Cone f) (spoke x i) = spoke tt x i Iso.rightInv (ConesUnit-iso-Cone f) (inj x) = refl Iso.rightInv (ConesUnit-iso-Cone f) hub = refl Iso.rightInv (ConesUnit-iso-Cone f) (spoke x i) = refl Iso.leftInv (ConesUnit-iso-Cone f) (inj x) = refl Iso.leftInv (ConesUnit-iso-Cone f) (hub x) = refl Iso.leftInv (ConesUnit-iso-Cone f) (spoke a x i) = refl ConesUnit≡Cone : ∀ {X : Type ℓ} {Y : Type ℓ'} (f : X → Y) → (Cones Unit (λ { tt → f })) ≡ (Cone f) ConesUnit≡Cone f = isoToPath (ConesUnit-iso-Cone f)
42.673077
104
0.66201
2092b58c42b91594f67ac8e3a9f7e71470503791
455
agda
Agda
test/interaction/Issue800.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue800.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue800.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2013-02-18 problem with 'with'-display, see also issue 295 -- {-# OPTIONS -v tc.with:50 #-} module Issue800 where data ⊤ : Set where tt : ⊤ data I⊤ : ⊤ → Set where itt : ∀ r → I⊤ r bug : ∀ l → ∀ k → I⊤ l → ⊤ bug .l k (itt l) with itt k ... | foo = {! foo!} {- Current rewriting: bug .l l (itt k) | itt .k = ? Desired rewriting: bug .l k (itt l) | itt .k = ? Jesper, 2019-11-21, new rewriting: ... | itt .k = ? -}
18.2
70
0.523077
cbc9ee1ecbd03c8506efee2aae3688d958616273
2,521
agda
Agda
LibraBFT/Impl/Consensus/Liveness/ProposalGenerator.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
4
2020-12-16T19:43:41.000Z
2021-12-18T19:24:05.000Z
LibraBFT/Impl/Consensus/Liveness/ProposalGenerator.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
72
2021-02-04T05:04:33.000Z
2022-03-25T05:36:11.000Z
LibraBFT/Impl/Consensus/Liveness/ProposalGenerator.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
6
2020-12-16T19:43:52.000Z
2022-02-18T01:04:32.000Z
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Encode as Encode open import LibraBFT.Base.Types import LibraBFT.Impl.Consensus.ConsensusTypes.Block as Block import LibraBFT.Impl.Consensus.ConsensusTypes.BlockData as BlockData import LibraBFT.Impl.Types.BlockInfo as BlockInfo open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Util.Util open import LibraBFT.Prelude open import Optics.All module LibraBFT.Impl.Consensus.Liveness.ProposalGenerator where ensureHighestQuorumCertM : Round → LBFT (Either ErrLog QuorumCert) generateNilBlockM : Round → LBFT (Either ErrLog Block) generateNilBlockM round = ensureHighestQuorumCertM round ∙?∙ (ok ∘ Block.newNil round) generateProposalM : Instant → Round → LBFT (Either ErrLog BlockData) generateProposalM _now round = do lrg ← use (lProposalGenerator ∙ pgLastRoundGenerated) ifD lrg <?ℕ round then (do lProposalGenerator ∙ pgLastRoundGenerated ∙= round ensureHighestQuorumCertM round ∙?∙ λ hqc -> do payload ← ifD BlockInfo.hasReconfiguration (hqc ^∙ qcCertifiedBlock) -- IMPL-DIFF : create a fake TX then pure (Encode.encode 0) -- (Payload []) else pure (Encode.encode 0) -- use pgTxnManager <*> use (rmEpochState ∙ esEpoch) <*> pure round use (lRoundManager ∙ pgAuthor) >>= λ where nothing → bail fakeErr -- ErrL (here ["lRoundManager.pgAuthor", "Nothing"]) (just author) → ok (BlockData.newProposal payload author round {-pure blockTimestamp <*>-} hqc)) else bail fakeErr -- where -- here t = "ProposalGenerator" ∷ "generateProposal" ∷ t ensureHighestQuorumCertM round = do hqc ← use (lBlockStore ∙ bsHighestQuorumCert) ifD‖ (hqc ^∙ qcCertifiedBlock ∙ biRound) ≥?ℕ round ≔ bail fakeErr {- ErrL (here [ "given round is lower than hqc round" , show (hqc^.qcCertifiedBlock.biRound) ]) -} ‖ hqc ^∙ qcEndsEpoch ≔ bail fakeErr {-ErrEpochEndedNoProposals (here ["further proposals not allowed"])-} ‖ otherwise≔ ok hqc -- where -- here t = "ProposalGenerator":"ensureHighestQuorumCertM":lsR round:t
44.22807
117
0.685839
c5644280fc3efdfb808b740e50126e163a61a726
1,022
agda
Agda
Common/ContextPair.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
Common/ContextPair.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
Common/ContextPair.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
module Common.ContextPair where open import Common.Context public -- Context pairs. infix 4 _⁏_ record Cx² (U V : Set) : Set where constructor _⁏_ field int : Cx U mod : Cx V open Cx² public ∅² : ∀ {U V} → Cx² U V ∅² = ∅ ⁏ ∅ -- Context inclusion. module _ {U V : Set} where infix 3 _⊆²_ _⊆²_ : Cx² U V → Cx² U V → Set Γ ⁏ Δ ⊆² Γ′ ⁏ Δ′ = Γ ⊆ Γ′ × Δ ⊆ Δ′ refl⊆² : ∀ {Π} → Π ⊆² Π refl⊆² = refl⊆ , refl⊆ trans⊆² : ∀ {Π Π′ Π″} → Π ⊆² Π′ → Π′ ⊆² Π″ → Π ⊆² Π″ trans⊆² (η , θ) (η′ , θ′) = trans⊆ η η′ , trans⊆ θ θ′ weak⊆²₁ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊆² Γ , A ⁏ Δ weak⊆²₁ = weak⊆ , refl⊆ weak⊆²₂ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊆² Γ ⁏ Δ , A weak⊆²₂ = refl⊆ , weak⊆ bot⊆² : ∀ {Π} → ∅² ⊆² Π bot⊆² = bot⊆ , bot⊆ -- Context concatenation. module _ {U V : Set} where _⧺²_ : Cx² U V → Cx² U V → Cx² U V (Γ ⁏ Δ) ⧺² (Γ′ ⁏ Δ′) = Γ ⧺ Γ′ ⁏ Δ ⧺ Δ′ weak⊆²⧺₁ : ∀ {Π} Π′ → Π ⊆² Π ⧺² Π′ weak⊆²⧺₁ (Γ′ ⁏ Δ′) = weak⊆⧺₁ Γ′ , weak⊆⧺₁ Δ′ weak⊆²⧺₂ : ∀ {Π Π′} → Π′ ⊆² Π ⧺² Π′ weak⊆²⧺₂ = weak⊆⧺₂ , weak⊆⧺₂
18.581818
55
0.473581
1076cdbc1ee33d0a77e7aabb5c9721d2df620273
791
agda
Agda
archive/agda-2/Oscar/Class/Equivalence.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-2/Oscar/Class/Equivalence.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-2/Oscar/Class/Equivalence.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module Oscar.Class.Equivalence where open import Oscar.Class.Reflexivity open import Oscar.Class.Symmetry open import Oscar.Class.Transitivity open import Oscar.Function open import Oscar.Level record Equivalence {a} {A : Set a} {ℓ} (_≋_ : A → A → Set ℓ) : Set (a ⊔ ℓ) where field ⦃ ′reflexivity ⦄ : Reflexivity _≋_ ⦃ ′symmetry ⦄ : Symmetry _≋_ ⦃ ′transitivity ⦄ : Transitivity _≋_ open Equivalence ⦃ … ⦄ public hiding (′reflexivity; ′symmetry; ′transitivity) instance Equivalence⋆ : ∀ {a} {A : Set a} {ℓ} {_≋_ : A → A → Set ℓ} ⦃ _ : Reflexivity _≋_ ⦄ ⦃ _ : Symmetry _≋_ ⦄ ⦃ _ : Transitivity _≋_ ⦄ → Equivalence _≋_ Equivalence.′reflexivity Equivalence⋆ = it Equivalence.′symmetry Equivalence⋆ = it Equivalence.′transitivity Equivalence⋆ = it
27.275862
80
0.668774
183342e4e44018aea301f8552001d389ba2ee53e
662
agda
Agda
test/Fail/ImplicitRecordFields.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/ImplicitRecordFields.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/ImplicitRecordFields.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- This file tests that implicit record fields are not printed out (by -- default). -- Andreas, 2016-07-20 Repaired this long disfunctional test case. module ImplicitRecordFields where record R : Set₁ where field {A} : Set f : A → A {B C} D {E} : Set g : B → C → E postulate A : Set r : R data _≡_ {A : Set₁} (x : A) : A → Set where refl : x ≡ x foo : r ≡ record { A = A ; f = λ x → x ; B = A ; C = A ; D = A ; g = λ x _ → x } foo = refl -- EXPECTED ERROR: -- .R.A r != A of type Set -- when checking that the expression refl has type -- r ≡ record { f = λ x → x ; D = A ; g = λ x _ → x }
18.388889
70
0.521148
3925e485ffa3e9fbecbca0328ff56c819f75532d
417
agda
Agda
test/Succeed/Issue376Loop.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue376Loop.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue376Loop.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- 2014-01-01 Andreas, test case constructed by Christian Sattler {-# OPTIONS --allow-unsolved-metas #-} -- unguarded recursive record record R : Set where eta-equality inductive constructor cons field r : R postulate F : (R → Set) → Set q : (∀ P → F P) → (∀ P → F P) q h P = h (λ {(cons x) → {!!}}) -- ISSUE WAS: Bug in implementation of eta-expansion of projected var, -- leading to loop in Agda.
19.857143
70
0.63789
0e0aec86c63521d6419d820930d962a56bfb94ca
733
agda
Agda
Graph.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Graph.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Graph.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
open import Type module Graph {ℓ₁ ℓ₂} (V : Type{ℓ₁}) where -- A graph is represented by a binary relation which states whether there is an edge from one vertex to another. -- In other words, a graph is here defined by only its adjacency relation. -- This is by default (without any assumptions) a directed multigraph which is possibly infinite. -- -- An object of type Graph is the adjacency relation. -- For (_⟶_ : Graph), (a b : V), an object of type (a ⟶ b) is an edge from vertices a to b, and its existence means that there is an edge from a to b. Graph : Type Graph = (V → V → Type{ℓ₂}) module _ (_⟶_ : Graph) where -- Two vertices are adjacent when there is an edge from the first one to the second one. Adjacent = _⟶_
43.117647
150
0.713506
fb8fa29be8724704d44f828758163bdb91a475e3
362
agda
Agda
test/interaction/Issue2537.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue2537.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue2537.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2017-04-10, issue #2537 reported by xekoukou -- Preserve named args when splitting in a where clause. -- {-# OPTIONS -v reify:100 #-} data Bool : Set where true false : Bool fun : {a b c d e f g : Bool} → Bool → Bool fun {g = g} x with x ... | r = {!g!} -- C-c C-c g -- Expected result: -- fun {g = true} x | r = ? -- fun {g = false} x | r = ?
22.625
56
0.569061
23da4995c2722f0f2a5c0c20748d5189313caa10
5,614
agda
Agda
Cubical/Data/Maybe/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Data/Maybe/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Data/Maybe/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Data.Maybe.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Functions.Embedding open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Unit open import Cubical.Data.Nat open import Cubical.Relation.Nullary open import Cubical.Data.Sum open import Cubical.Data.Maybe.Base map-Maybe-id : ∀ {ℓ} {A : Type ℓ} → ∀ m → map-Maybe (idfun A) m ≡ m map-Maybe-id nothing = refl map-Maybe-id (just _) = refl -- Path space of Maybe type module MaybePath {ℓ} {A : Type ℓ} where Cover : Maybe A → Maybe A → Type ℓ Cover nothing nothing = Lift Unit Cover nothing (just _) = Lift ⊥ Cover (just _) nothing = Lift ⊥ Cover (just a) (just a') = a ≡ a' reflCode : (c : Maybe A) → Cover c c reflCode nothing = lift tt reflCode (just b) = refl encode : ∀ c c' → c ≡ c' → Cover c c' encode c _ = J (λ c' _ → Cover c c') (reflCode c) encodeRefl : ∀ c → encode c c refl ≡ reflCode c encodeRefl c = JRefl (λ c' _ → Cover c c') (reflCode c) decode : ∀ c c' → Cover c c' → c ≡ c' decode nothing nothing _ = refl decode (just _) (just _) p = cong just p decodeRefl : ∀ c → decode c c (reflCode c) ≡ refl decodeRefl nothing = refl decodeRefl (just _) = refl decodeEncode : ∀ c c' → (p : c ≡ c') → decode c c' (encode c c' p) ≡ p decodeEncode c _ = J (λ c' p → decode c c' (encode c c' p) ≡ p) (cong (decode c c) (encodeRefl c) ∙ decodeRefl c) encodeDecode : ∀ c c' → (d : Cover c c') → encode c c' (decode c c' d) ≡ d encodeDecode nothing nothing _ = refl encodeDecode (just a) (just a') = J (λ a' p → encode (just a) (just a') (cong just p) ≡ p) (encodeRefl (just a)) Cover≃Path : ∀ c c' → Cover c c' ≃ (c ≡ c') Cover≃Path c c' = isoToEquiv (iso (decode c c') (encode c c') (decodeEncode c c') (encodeDecode c c')) Cover≡Path : ∀ c c' → Cover c c' ≡ (c ≡ c') Cover≡Path c c' = isoToPath (iso (decode c c') (encode c c') (decodeEncode c c') (encodeDecode c c')) isOfHLevelCover : (n : HLevel) → isOfHLevel (suc (suc n)) A → ∀ c c' → isOfHLevel (suc n) (Cover c c') isOfHLevelCover n p nothing nothing = isOfHLevelLift (suc n) (isOfHLevelUnit (suc n)) isOfHLevelCover n p nothing (just a') = isOfHLevelLift (suc n) (isProp→isOfHLevelSuc n isProp⊥) isOfHLevelCover n p (just a) nothing = isOfHLevelLift (suc n) (isProp→isOfHLevelSuc n isProp⊥) isOfHLevelCover n p (just a) (just a') = p a a' isOfHLevelMaybe : ∀ {ℓ} (n : HLevel) {A : Type ℓ} → isOfHLevel (suc (suc n)) A → isOfHLevel (suc (suc n)) (Maybe A) isOfHLevelMaybe n lA c c' = isOfHLevelRetract (suc n) (MaybePath.encode c c') (MaybePath.decode c c') (MaybePath.decodeEncode c c') (MaybePath.isOfHLevelCover n lA c c') private variable ℓ : Level A : Type ℓ fromJust-def : A → Maybe A → A fromJust-def a nothing = a fromJust-def _ (just a) = a just-inj : (x y : A) → just x ≡ just y → x ≡ y just-inj x _ eq = cong (fromJust-def x) eq isEmbedding-just : isEmbedding (just {A = A}) isEmbedding-just w z = MaybePath.Cover≃Path (just w) (just z) .snd ¬nothing≡just : ∀ {x : A} → ¬ (nothing ≡ just x) ¬nothing≡just {A = A} {x = x} p = lower (subst (caseMaybe (Maybe A) (Lift ⊥)) p (just x)) ¬just≡nothing : ∀ {x : A} → ¬ (just x ≡ nothing) ¬just≡nothing {A = A} {x = x} p = lower (subst (caseMaybe (Lift ⊥) (Maybe A)) p (just x)) isProp-x≡nothing : (x : Maybe A) → isProp (x ≡ nothing) isProp-x≡nothing nothing x w = subst isProp (MaybePath.Cover≡Path nothing nothing) (isOfHLevelLift 1 isPropUnit) x w isProp-x≡nothing (just _) p _ = ⊥.rec (¬just≡nothing p) isProp-nothing≡x : (x : Maybe A) → isProp (nothing ≡ x) isProp-nothing≡x nothing x w = subst isProp (MaybePath.Cover≡Path nothing nothing) (isOfHLevelLift 1 isPropUnit) x w isProp-nothing≡x (just _) p _ = ⊥.rec (¬nothing≡just p) isContr-nothing≡nothing : isContr (nothing {A = A} ≡ nothing) isContr-nothing≡nothing = inhProp→isContr refl (isProp-x≡nothing _) discreteMaybe : Discrete A → Discrete (Maybe A) discreteMaybe eqA nothing nothing = yes refl discreteMaybe eqA nothing (just a') = no ¬nothing≡just discreteMaybe eqA (just a) nothing = no ¬just≡nothing discreteMaybe eqA (just a) (just a') with eqA a a' ... | yes p = yes (cong just p) ... | no ¬p = no (λ p → ¬p (just-inj _ _ p)) module SumUnit where Maybe→SumUnit : Maybe A → Unit ⊎ A Maybe→SumUnit nothing = inl tt Maybe→SumUnit (just a) = inr a SumUnit→Maybe : Unit ⊎ A → Maybe A SumUnit→Maybe (inl _) = nothing SumUnit→Maybe (inr a) = just a Maybe→SumUnit→Maybe : (x : Maybe A) → SumUnit→Maybe (Maybe→SumUnit x) ≡ x Maybe→SumUnit→Maybe nothing = refl Maybe→SumUnit→Maybe (just _) = refl SumUnit→Maybe→SumUnit : (x : Unit ⊎ A) → Maybe→SumUnit (SumUnit→Maybe x) ≡ x SumUnit→Maybe→SumUnit (inl _) = refl SumUnit→Maybe→SumUnit (inr _) = refl Maybe≡SumUnit : Maybe A ≡ Unit ⊎ A Maybe≡SumUnit = isoToPath (iso SumUnit.Maybe→SumUnit SumUnit.SumUnit→Maybe SumUnit.SumUnit→Maybe→SumUnit SumUnit.Maybe→SumUnit→Maybe) congMaybeEquiv : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → A ≃ B → Maybe A ≃ Maybe B congMaybeEquiv e = isoToEquiv isom where open Iso isom : Iso _ _ isom .fun = map-Maybe (equivFun e) isom .inv = map-Maybe (invEq e) isom .rightInv nothing = refl isom .rightInv (just b) = cong just (secEq e b) isom .leftInv nothing = refl isom .leftInv (just a) = cong just (retEq e a)
35.308176
133
0.654792
18669f7511e4e7a85d6021c69a312010bdae1f1a
30,021
agda
Agda
complexity/Complexity.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
2
2016-04-26T20:22:22.000Z
2019-08-08T12:27:18.000Z
complexity/Complexity.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
1
2020-03-23T08:39:04.000Z
2020-05-12T00:32:45.000Z
complexity/Complexity.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
null
null
null
{- COMPLEXITY LANGUAGE -} open import Preliminaries open import Preorder-Max module Complexity where data CTp : Set where unit : CTp nat : CTp _->c_ : CTp → CTp → CTp _×c_ : CTp → CTp → CTp list : CTp → CTp bool : CTp C : CTp -- represent a context as a list of types Ctx = List CTp -- de Bruijn indices (for free variables) data _∈_ : CTp → Ctx → Set where i0 : ∀ {Γ τ} → τ ∈ (τ :: Γ) iS : ∀ {Γ τ τ1} → τ ∈ Γ → τ ∈ (τ1 :: Γ) data _|-_ : Ctx → CTp → Set where unit : ∀ {Γ} → Γ |- unit 0C : ∀ {Γ} → Γ |- C 1C : ∀ {Γ} → Γ |- C plusC : ∀ {Γ} → Γ |- C → Γ |- C → Γ |- C var : ∀ {Γ τ} → τ ∈ Γ → Γ |- τ z : ∀ {Γ} → Γ |- nat suc : ∀ {Γ} → (e : Γ |- nat) → Γ |- nat rec : ∀ {Γ τ} → Γ |- nat → Γ |- τ → (nat :: (τ :: Γ)) |- τ → Γ |- τ lam : ∀ {Γ τ ρ} → (ρ :: Γ) |- τ → Γ |- (ρ ->c τ) app : ∀ {Γ τ1 τ2} → Γ |- (τ2 ->c τ1) → Γ |- τ2 → Γ |- τ1 prod : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → Γ |- (τ1 ×c τ2) l-proj : ∀ {Γ τ1 τ2} → Γ |- (τ1 ×c τ2) → Γ |- τ1 r-proj : ∀ {Γ τ1 τ2} → Γ |- (τ1 ×c τ2) → Γ |- τ2 nil : ∀ {Γ τ} → Γ |- list τ _::c_ : ∀ {Γ τ} → Γ |- τ → Γ |- list τ → Γ |- list τ listrec : ∀ {Γ τ τ'} → Γ |- list τ → Γ |- τ' → (τ :: (list τ :: (τ' :: Γ))) |- τ' → Γ |- τ' true : ∀ {Γ} → Γ |- bool false : ∀ {Γ} → Γ |- bool _+C_ : ∀ {Γ τ} → Γ |- C → Γ |- (C ×c τ)→ Γ |- (C ×c τ) c +C e = prod (plusC c (l-proj e)) (r-proj e) ------weakening and substitution lemmas -- renaming = variable for variable substitution --functional view: --avoids induction, --some associativity/unit properties for free -- read: you can rename Γ' as Γ rctx : Ctx → Ctx → Set rctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → τ ∈ Γ rename-var : ∀ {Γ Γ' τ} → rctx Γ Γ' → τ ∈ Γ' → τ ∈ Γ rename-var ρ a = ρ a idr : ∀ {Γ} → rctx Γ Γ idr x = x -- weakening with renaming p∙ : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) Γ' p∙ ρ = λ x → iS (ρ x) p : ∀ {Γ τ} → rctx (τ :: Γ) Γ p = p∙ idr _∙rr_ : ∀ {A B C} → rctx A B → rctx B C → rctx A C ρ1 ∙rr ρ2 = ρ1 o ρ2 -- free stuff rename-var-ident : ∀ {Γ τ} → (x : τ ∈ Γ) → rename-var idr x == x rename-var-ident _ = Refl rename-var-∙ : ∀ {A B C τ} → (r1 : rctx A B) (r2 : rctx B C) (x : τ ∈ C) → rename-var r1 (rename-var r2 x) == rename-var (r1 ∙rr r2) x rename-var-∙ _ _ _ = Refl ∙rr-assoc : ∀ {A B C D} → (r1 : rctx A B) (r2 : rctx B C) (r3 : rctx C D) → _==_ {_} {rctx A D} (r1 ∙rr (r2 ∙rr r3)) ((r1 ∙rr r2) ∙rr r3) ∙rr-assoc r1 r2 r3 = Refl r-extend : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) (τ :: Γ') r-extend ρ i0 = i0 r-extend ρ (iS x) = iS (ρ x) ren : ∀ {Γ Γ' τ} → Γ' |- τ → rctx Γ Γ' → Γ |- τ ren unit ρ = unit ren 0C ρ = 0C ren 1C ρ = 1C ren (plusC e e₁) ρ = plusC (ren e ρ) (ren e₁ ρ) ren (var x) ρ = var (ρ x) ren z ρ = z ren (suc e) ρ = suc (ren e ρ) ren (rec e e₁ e₂) ρ = rec (ren e ρ) (ren e₁ ρ) (ren e₂ (r-extend (r-extend ρ))) ren (lam e) ρ = lam (ren e (r-extend ρ)) ren (app e e₁) ρ = app (ren e ρ) (ren e₁ ρ) ren (prod e1 e2) ρ = prod (ren e1 ρ) (ren e2 ρ) ren (l-proj e) ρ = l-proj (ren e ρ) ren (r-proj e) ρ = r-proj (ren e ρ) ren nil ρ = nil ren (x ::c xs) ρ = ren x ρ ::c ren xs ρ ren true ρ = true ren false ρ = false ren (listrec e e₁ e₂) ρ = listrec (ren e ρ) (ren e₁ ρ) (ren e₂ (r-extend (r-extend (r-extend ρ)))) extend-ren-comp-lemma : ∀ {Γ Γ' Γ'' τ τ'} → (x : τ ∈ τ' :: Γ'') (ρ1 : rctx Γ Γ') (ρ2 : rctx Γ' Γ'') → Id {_} {_} ((r-extend ρ1 ∙rr r-extend ρ2) x) (r-extend (ρ1 ∙rr ρ2) x) extend-ren-comp-lemma i0 ρ1 ρ2 = Refl extend-ren-comp-lemma (iS x) ρ1 ρ2 = Refl extend-ren-comp : ∀ {Γ Γ' Γ'' τ} → (ρ1 : rctx Γ Γ') → (ρ2 : rctx Γ' Γ'') → Id {_} {rctx (τ :: Γ) (τ :: Γ'')} (r-extend ρ1 ∙rr r-extend ρ2) (r-extend (ρ1 ∙rr ρ2)) extend-ren-comp ρ1 ρ2 = λ=i (λ τ → λ= (λ x → extend-ren-comp-lemma x ρ1 ρ2)) ren-comp : ∀ {Γ Γ' Γ'' τ} → (ρ1 : rctx Γ Γ') → (ρ2 : rctx Γ' Γ'') → (e : Γ'' |- τ) → (ren (ren e ρ2) ρ1) == (ren e (ρ1 ∙rr ρ2)) ren-comp ρ1 ρ2 unit = Refl ren-comp ρ1 ρ2 0C = Refl ren-comp ρ1 ρ2 1C = Refl ren-comp ρ1 ρ2 (plusC e e₁) = ap2 plusC (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) ren-comp ρ1 ρ2 (var x) = ap var (rename-var-∙ ρ1 ρ2 x) ren-comp ρ1 ρ2 z = Refl ren-comp ρ1 ρ2 (suc e) = ap suc (ren-comp ρ1 ρ2 e) ren-comp ρ1 ρ2 (rec e e₁ e₂) = ap3 rec (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) (ap (ren e₂) (ap r-extend (extend-ren-comp ρ1 ρ2) ∘ extend-ren-comp (r-extend ρ1) (r-extend ρ2)) ∘ ren-comp (r-extend (r-extend ρ1)) (r-extend (r-extend ρ2)) e₂) ren-comp ρ1 ρ2 (lam e) = ap lam ((ap (ren e) (extend-ren-comp ρ1 ρ2)) ∘ ren-comp (r-extend ρ1) (r-extend ρ2) e) ren-comp ρ1 ρ2 (app e e₁) = ap2 app (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) ren-comp ρ1 ρ2 (prod e e₁) = ap2 prod (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) ren-comp ρ1 ρ2 (l-proj e) = ap l-proj (ren-comp ρ1 ρ2 e) ren-comp ρ1 ρ2 (r-proj e) = ap r-proj (ren-comp ρ1 ρ2 e) ren-comp ρ1 ρ2 nil = Refl ren-comp ρ1 ρ2 (e ::c e₁) = ap2 _::c_ (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) ren-comp ρ1 ρ2 (listrec e e₁ e₂) = ap3 listrec (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) (ap (ren e₂) (ap r-extend (ap r-extend (extend-ren-comp ρ1 ρ2)) ∘ (ap r-extend (extend-ren-comp (r-extend ρ1) (r-extend ρ2)) ∘ extend-ren-comp (r-extend (r-extend ρ1)) (r-extend (r-extend ρ2)))) ∘ ren-comp (r-extend (r-extend (r-extend ρ1))) (r-extend (r-extend (r-extend ρ2))) e₂) ren-comp ρ1 ρ2 true = Refl ren-comp ρ1 ρ2 false = Refl -- weakening a context wkn : ∀ {Γ τ1 τ2} → Γ |- τ2 → (τ1 :: Γ) |- τ2 wkn e = ren e iS sctx : Ctx → Ctx → Set sctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → Γ |- τ --lem2 (addvar) s-extend : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) (τ :: Γ') s-extend Θ i0 = var i0 s-extend Θ (iS x) = wkn (Θ x) ids : ∀ {Γ} → sctx Γ Γ ids x = var x -- weakening with substitution q∙ : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) Γ' q∙ Θ = λ x → wkn (Θ x) lem3' : ∀ {Γ Γ' τ} → sctx Γ Γ' → Γ |- τ → sctx Γ (τ :: Γ') lem3' Θ e i0 = e lem3' Θ e (iS i) = Θ i --lem3 q : ∀ {Γ τ} → Γ |- τ → sctx Γ (τ :: Γ) q e = lem3' ids e -- subst-var svar : ∀ {Γ1 Γ2 τ} → sctx Γ1 Γ2 → τ ∈ Γ2 → Γ1 |- τ svar Θ i = q (Θ i) i0 lem4' : ∀ {Γ Γ' τ1 τ2} → sctx Γ Γ' → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ')) lem4' Θ a b = lem3' (lem3' Θ b) a lem4 : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ)) lem4 e1 e2 = lem4' ids e1 e2 lem5' : ∀ {Γ Γ' τ1 τ2 τ3} → sctx Γ Γ' → Γ |- τ1 → Γ |- τ2 → Γ |- τ3 → sctx Γ (τ1 :: (τ2 :: (τ3 :: Γ'))) lem5' Θ a b c = lem3' (lem3' (lem3' Θ c) b) a lem5 : ∀ {Γ τ1 τ2 τ3} → Γ |- τ1 → Γ |- τ2 → Γ |- τ3 → sctx Γ (τ1 :: (τ2 :: (τ3 :: Γ))) lem5 e1 e2 e3 = lem5' ids e1 e2 e3 subst : ∀ {Γ Γ' τ} → Γ' |- τ → sctx Γ Γ' → Γ |- τ subst unit Θ = unit subst 0C Θ = 0C subst 1C Θ = 1C subst (plusC e e₁) Θ = plusC (subst e Θ) (subst e₁ Θ) subst (var x) Θ = Θ x subst z Θ = z subst (suc e) Θ = suc (subst e Θ) subst (rec e e₁ e₂) Θ = rec (subst e Θ) (subst e₁ Θ) (subst e₂ (s-extend (s-extend Θ))) subst (lam e) Θ = lam (subst e (s-extend Θ)) subst (app e e₁) Θ = app (subst e Θ) (subst e₁ Θ) subst (prod e1 e2) Θ = prod (subst e1 Θ) (subst e2 Θ) subst (l-proj e) Θ = l-proj (subst e Θ) subst (r-proj e) Θ = r-proj (subst e Θ) subst nil Θ = nil subst (x ::c xs) Θ = subst x Θ ::c subst xs Θ subst true Θ = true subst false Θ = false subst (listrec e e₁ e₂) Θ = listrec (subst e Θ) (subst e₁ Θ) (subst e₂ (s-extend (s-extend (s-extend Θ)))) subst1 : ∀ {Γ τ τ1} → Γ |- τ1 → (τ1 :: Γ) |- τ → Γ |- τ subst1 e e' = subst e' (q e) _rs_ : ∀ {A B C} → rctx A B → sctx B C → sctx A C _rs_ ρ Θ x = ren (subst (var x) Θ) ρ _ss_ : ∀ {A B C} → sctx A B → sctx B C → sctx A C _ss_ Θ1 Θ2 x = subst (subst (var x) Θ2) Θ1 _sr_ : ∀ {A B C} → sctx A B → rctx B C → sctx A C _sr_ Θ ρ x = subst (ren (var x) ρ) Θ --free stuff svar-rs : ∀ {A B C τ} (ρ : rctx A B) (Θ : sctx B C) (x : τ ∈ C) → svar (ρ rs Θ) x == ren (svar Θ x) ρ svar-rs = λ ρ Θ x → Refl svar-ss : ∀ {A B C τ} (Θ1 : sctx A B) (Θ2 : sctx B C) (x : τ ∈ C) → svar (Θ1 ss Θ2) x == subst (svar Θ2 x) Θ1 svar-ss = λ Θ1 Θ2 x → Refl svar-sr : ∀ {A B C τ} (Θ : sctx A B) (ρ : rctx B C) (x : τ ∈ C) → svar Θ (rename-var ρ x) == svar (Θ sr ρ) x svar-sr = λ Θ ρ x → Refl svar-id : ∀ {Γ τ} → (x : τ ∈ Γ) → var x == svar ids x svar-id = λ x → Refl rsr-assoc : ∀ {A B C D} → (ρ1 : rctx A B) (Θ : sctx B C) (ρ2 : rctx C D) → Id {_} {sctx A D} ((ρ1 rs Θ) sr ρ2) (ρ1 rs (Θ sr ρ2)) rsr-assoc = λ ρ1 Θ ρ2 → Refl extend-id-once-lemma : ∀ {Γ τ τ'} → (x : τ ∈ τ' :: Γ) → _==_ {_} {τ' :: Γ |- τ} (ids {τ' :: Γ} {τ} x) (s-extend {Γ} {Γ} {τ'} (ids {Γ}) {τ} x) extend-id-once-lemma i0 = Refl extend-id-once-lemma (iS x) = Refl extend-id-once : ∀ {Γ τ} → Id {_} {sctx (τ :: Γ) (τ :: Γ)} (ids {τ :: Γ}) (s-extend ids) extend-id-once = λ=i (λ τ → λ= (λ x → extend-id-once-lemma x)) extend-id-twice : ∀ {Γ τ1 τ2} → Id {_} {sctx (τ1 :: τ2 :: Γ) (τ1 :: τ2 :: Γ)} (ids {τ1 :: τ2 :: Γ}) (s-extend (s-extend ids)) extend-id-twice = ap s-extend extend-id-once ∘ extend-id-once subst-id : ∀ {Γ τ} (e : Γ |- τ) → e == subst e ids subst-id unit = Refl subst-id 0C = Refl subst-id 1C = Refl subst-id (plusC e e₁) = ap2 plusC (subst-id e) (subst-id e₁) subst-id (var x) = svar-id x subst-id z = Refl subst-id (suc e) = ap suc (subst-id e) subst-id (rec e e₁ e₂) = ap3 rec (subst-id e) (subst-id e₁) (ap (subst e₂) extend-id-twice ∘ subst-id e₂) subst-id (lam e) = ap lam (ap (subst e) extend-id-once ∘ subst-id e) subst-id (app e e₁) = ap2 app (subst-id e) (subst-id e₁) subst-id (prod e e₁) = ap2 prod (subst-id e) (subst-id e₁) subst-id (l-proj e) = ap l-proj (subst-id e) subst-id (r-proj e) = ap r-proj (subst-id e) subst-id nil = Refl subst-id (e ::c e₁) = ap2 _::c_ (subst-id e) (subst-id e₁) subst-id true = Refl subst-id false = Refl subst-id (listrec e e₁ e₂) = ap3 listrec (subst-id e) (subst-id e₁) (ap (subst e₂) (ap s-extend (ap s-extend extend-id-once) ∘ extend-id-twice) ∘ subst-id e₂) extend-rs-once-lemma : ∀ {A B C τ τ'} → (x : τ ∈ τ' :: B) (ρ : rctx C A) (Θ : sctx A B) → _==_ {_} {τ' :: C |- τ} (_rs_ {τ' :: C} {τ' :: A} {τ' :: B} (r-extend {C} {A} {τ'} ρ) (s-extend {A} {B} {τ'} Θ) {τ} x) (s-extend {C} {B} {τ'} (_rs_ {C} {A} {B} ρ Θ) {τ} x) extend-rs-once-lemma i0 ρ Θ = Refl extend-rs-once-lemma (iS x) ρ Θ = ! (ren-comp iS ρ (Θ x)) ∘ ren-comp (r-extend ρ) iS (Θ x) extend-rs-once : ∀ {A B C τ} → (ρ : rctx C A) (Θ : sctx A B) → Id {_} {sctx (τ :: C) (τ :: B)} (r-extend ρ rs s-extend Θ) (s-extend (ρ rs Θ)) extend-rs-once ρ Θ = λ=i (λ τ → λ= (λ x → extend-rs-once-lemma x ρ Θ)) extend-rs-twice : ∀ {A B C τ τ'} → (ρ : rctx C A) (Θ : sctx A B) → Id {_} {sctx (τ :: τ' :: C) (τ :: τ' :: B)} ((r-extend (r-extend ρ)) rs (s-extend (s-extend Θ))) ((s-extend (s-extend (ρ rs Θ)))) extend-rs-twice ρ Θ = ap s-extend (extend-rs-once ρ Θ) ∘ extend-rs-once (r-extend ρ) (s-extend Θ) subst-rs : ∀ {A B C τ} → (ρ : rctx C A) (Θ : sctx A B) (e : B |- τ) → ren (subst e Θ) ρ == subst e (ρ rs Θ) subst-rs ρ Θ unit = Refl subst-rs ρ Θ 0C = Refl subst-rs ρ Θ 1C = Refl subst-rs ρ Θ (plusC e e₁) = ap2 plusC (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) subst-rs ρ Θ (var x) = svar-rs ρ Θ x subst-rs ρ Θ z = Refl subst-rs ρ Θ (suc e) = ap suc (subst-rs ρ Θ e) subst-rs ρ Θ (rec e e₁ e₂) = ap3 rec (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) (ap (subst e₂) (extend-rs-twice ρ Θ) ∘ subst-rs (r-extend (r-extend ρ)) (s-extend (s-extend Θ)) e₂) subst-rs ρ Θ (lam e) = ap lam (ap (subst e) (extend-rs-once ρ Θ) ∘ subst-rs (r-extend ρ) (s-extend Θ) e) subst-rs ρ Θ (app e e₁) = ap2 app (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) subst-rs ρ Θ (prod e e₁) = ap2 prod (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) subst-rs ρ Θ (l-proj e) = ap l-proj (subst-rs ρ Θ e) subst-rs ρ Θ (r-proj e) = ap r-proj (subst-rs ρ Θ e) subst-rs ρ Θ nil = Refl subst-rs ρ Θ (e ::c e₁) = ap2 _::c_ (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) subst-rs ρ Θ true = Refl subst-rs ρ Θ false = Refl subst-rs ρ Θ (listrec e e₁ e₂) = ap3 listrec (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) (ap (subst e₂) (ap s-extend (ap s-extend (extend-rs-once ρ Θ)) ∘ extend-rs-twice (r-extend ρ) (s-extend Θ)) ∘ subst-rs (r-extend (r-extend (r-extend ρ))) (s-extend (s-extend (s-extend Θ))) e₂) rs-comp : ∀ {Γ Γ' Γ'' τ} → (ρ : rctx Γ Γ') → (Θ : sctx Γ' Γ'') → (e : Γ'' |- τ) → (ren (subst e Θ) ρ) == subst e (ρ rs Θ) rs-comp ρ Θ unit = Refl rs-comp ρ Θ 0C = Refl rs-comp ρ Θ 1C = Refl rs-comp ρ Θ (plusC e e₁) = ap2 plusC (rs-comp ρ Θ e) (rs-comp ρ Θ e₁) rs-comp ρ Θ (var x) = svar-rs ρ Θ x rs-comp ρ Θ z = Refl rs-comp ρ Θ (suc e) = ap suc (rs-comp ρ Θ e) rs-comp ρ Θ (rec e e₁ e₂) = ap3 rec (rs-comp ρ Θ e) (rs-comp ρ Θ e₁) (ap (subst e₂) (extend-rs-twice ρ Θ) ∘ rs-comp (r-extend (r-extend ρ)) (s-extend (s-extend Θ)) e₂) rs-comp ρ Θ (lam e) = ap lam (ap (subst e) (extend-rs-once ρ Θ) ∘ rs-comp (r-extend ρ) (s-extend Θ) e) rs-comp ρ Θ (app e e₁) = ap2 app (rs-comp ρ Θ e) (rs-comp ρ Θ e₁) rs-comp ρ Θ (prod e e₁) = ap2 prod (rs-comp ρ Θ e) (rs-comp ρ Θ e₁) rs-comp ρ Θ (l-proj e) = ap l-proj (rs-comp ρ Θ e) rs-comp ρ Θ (r-proj e) = ap r-proj (rs-comp ρ Θ e) rs-comp ρ Θ nil = Refl rs-comp ρ Θ (e ::c e₁) = ap2 _::c_ (rs-comp ρ Θ e) (rs-comp ρ Θ e₁) rs-comp ρ Θ (listrec e e₁ e₂) = ap3 listrec (rs-comp ρ Θ e) (rs-comp ρ Θ e₁) (ap (subst e₂) (ap s-extend (ap s-extend (extend-rs-once ρ Θ)) ∘ extend-rs-twice (r-extend ρ) (s-extend Θ)) ∘ rs-comp (r-extend (r-extend (r-extend ρ))) (s-extend (s-extend (s-extend Θ))) e₂) rs-comp ρ Θ true = Refl rs-comp ρ Θ false = Refl extend-sr-once-lemma : ∀ {A B C τ τ'} → (Θ : sctx A B) (ρ : rctx B C) (x : τ ∈ τ' :: C) → _==_ {_} {τ' :: A |- τ} (s-extend (_sr_ Θ ρ) x) (_sr_ (s-extend Θ) (r-extend ρ) x) extend-sr-once-lemma Θ ρ i0 = Refl extend-sr-once-lemma Θ ρ (iS x) = Refl extend-sr-once : ∀ {A B C τ} → (Θ : sctx A B) (ρ : rctx B C) → Id {_} {sctx (τ :: A) (τ :: C)} (s-extend Θ sr r-extend ρ) (s-extend (Θ sr ρ)) extend-sr-once Θ ρ = λ=i (λ τ → λ= (λ x → ! (extend-sr-once-lemma Θ ρ x))) extend-sr-twice : ∀ {A B C τ τ'} → (Θ : sctx A B) (ρ : rctx B C) → Id {_} {sctx (τ' :: τ :: A) (τ' :: τ :: C)} (s-extend (s-extend Θ) sr r-extend (r-extend ρ)) (s-extend (s-extend (Θ sr ρ))) extend-sr-twice Θ ρ = ap s-extend (extend-sr-once Θ ρ) ∘ extend-sr-once (s-extend Θ) (r-extend ρ) sr-comp : ∀ {Γ Γ' Γ'' τ} → (Θ : sctx Γ Γ') → (ρ : rctx Γ' Γ'') → (e : Γ'' |- τ) → (subst (ren e ρ) Θ) == subst e (Θ sr ρ) sr-comp Θ ρ unit = Refl sr-comp Θ ρ 0C = Refl sr-comp Θ ρ 1C = Refl sr-comp Θ ρ (plusC e e₁) = ap2 plusC (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) sr-comp Θ ρ (var x) = svar-sr Θ ρ x sr-comp Θ ρ z = Refl sr-comp Θ ρ (suc e) = ap suc (sr-comp Θ ρ e) sr-comp Θ ρ (rec e e₁ e₂) = ap3 rec (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) (ap (subst e₂) (ap s-extend (extend-sr-once Θ ρ) ∘ extend-sr-once (s-extend Θ) (r-extend ρ)) ∘ sr-comp (s-extend (s-extend Θ)) (r-extend (r-extend ρ)) e₂) sr-comp Θ ρ (lam e) = ap lam (ap (subst e) (extend-sr-once Θ ρ) ∘ sr-comp (s-extend Θ) (r-extend ρ) e) sr-comp Θ ρ (app e e₁) = ap2 app (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) sr-comp Θ ρ (prod e e₁) = ap2 prod (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) sr-comp Θ ρ (l-proj e) = ap l-proj (sr-comp Θ ρ e) sr-comp Θ ρ (r-proj e) = ap r-proj (sr-comp Θ ρ e) sr-comp Θ ρ nil = Refl sr-comp Θ ρ (e ::c e₁) = ap2 _::c_ (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) sr-comp Θ ρ (listrec e e₁ e₂) = ap3 listrec (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) (ap (subst e₂) (ap s-extend (ap s-extend (extend-sr-once Θ ρ)) ∘ extend-sr-twice (s-extend Θ) (r-extend ρ)) ∘ sr-comp (s-extend (s-extend (s-extend Θ))) (r-extend (r-extend (r-extend ρ))) e₂) sr-comp Θ ρ true = Refl sr-comp Θ ρ false = Refl extend-ss-once-lemma : ∀ {A B C τ τ'} → (Θ1 : sctx A B) (Θ2 : sctx B C) (x : τ ∈ τ' :: C) → _==_ {_} {τ' :: A |- τ} (s-extend (_ss_ Θ1 Θ2) x) (_ss_ (s-extend Θ1) (s-extend Θ2) x) extend-ss-once-lemma Θ1 Θ2 i0 = Refl extend-ss-once-lemma Θ1 Θ2 (iS x) = ! (sr-comp (s-extend Θ1) iS (Θ2 x)) ∘ rs-comp iS Θ1 (Θ2 x) extend-ss-once : ∀ {A B C τ} → (Θ1 : sctx A B) (Θ2 : sctx B C) → _==_ {_} {sctx (τ :: A) (τ :: C)} (s-extend (Θ1 ss Θ2)) ((s-extend Θ1) ss (s-extend Θ2)) extend-ss-once Θ1 Θ2 = λ=i (λ τ → λ= (λ x → extend-ss-once-lemma Θ1 Θ2 x)) subst-ss : ∀ {A B C τ} → (Θ1 : sctx A B) (Θ2 : sctx B C) (e : C |- τ) → subst e (Θ1 ss Θ2) == subst (subst e Θ2) Θ1 subst-ss Θ1 Θ2 unit = Refl subst-ss Θ1 Θ2 0C = Refl subst-ss Θ1 Θ2 1C = Refl subst-ss Θ1 Θ2 (plusC e e₁) = ap2 plusC (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) subst-ss Θ1 Θ2 (var x) = svar-ss Θ1 Θ2 x subst-ss Θ1 Θ2 z = Refl subst-ss Θ1 Θ2 (suc e) = ap suc (subst-ss Θ1 Θ2 e) subst-ss Θ1 Θ2 (rec e e₁ e₂) = ap3 rec (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) (subst-ss (s-extend (s-extend Θ1)) (s-extend (s-extend Θ2)) e₂ ∘ ap (subst e₂) (extend-ss-once (s-extend Θ1) (s-extend Θ2) ∘ ap s-extend (extend-ss-once Θ1 Θ2))) subst-ss Θ1 Θ2 (lam e) = ap lam (subst-ss (s-extend Θ1) (s-extend Θ2) e ∘ ap (subst e) (extend-ss-once Θ1 Θ2)) subst-ss Θ1 Θ2 (app e e₁) = ap2 app (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) subst-ss Θ1 Θ2 (prod e e₁) = ap2 prod (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) subst-ss Θ1 Θ2 (l-proj e) = ap l-proj (subst-ss Θ1 Θ2 e) subst-ss Θ1 Θ2 (r-proj e) = ap r-proj (subst-ss Θ1 Θ2 e) subst-ss Θ1 Θ2 nil = Refl subst-ss Θ1 Θ2 (e ::c e₁) = ap2 _::c_ (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) subst-ss Θ1 Θ2 true = Refl subst-ss Θ1 Θ2 false = Refl subst-ss Θ1 Θ2 (listrec e e₁ e₂) = ap3 listrec (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) (subst-ss (s-extend (s-extend (s-extend Θ1))) (s-extend (s-extend (s-extend Θ2))) e₂ ∘ ap (subst e₂) (extend-ss-once (s-extend (s-extend Θ1)) (s-extend (s-extend Θ2)) ∘ ap s-extend (extend-ss-once (s-extend Θ1) (s-extend Θ2) ∘ ap s-extend (extend-ss-once Θ1 Θ2)))) throw : ∀ {Γ Γ' τ} → sctx Γ (τ :: Γ') → sctx Γ Γ' throw Θ x = Θ (iS x) fuse1 : ∀ {Γ Γ' τ τ'} (v : Γ |- τ') (Θ : sctx Γ Γ') (x : τ ∈ Γ') → (q v ss q∙ Θ) x == Θ x fuse1 v Θ x = subst (ren (Θ x) iS) (q v) =⟨ sr-comp (q v) iS (Θ x) ⟩ subst (Θ x) (q v sr iS) =⟨ Refl ⟩ subst (Θ x) ids =⟨ ! (subst-id (Θ x)) ⟩ (Θ x ∎) subst-compose-lemma-lemma : ∀ {Γ Γ' τ τ'} (v : Γ |- τ') (Θ : sctx Γ Γ') (x : τ ∈ τ' :: Γ') → _==_ {_} {Γ |- τ} (_ss_ (q v) (s-extend Θ) x) (lem3' Θ v x) subst-compose-lemma-lemma v Θ i0 = Refl subst-compose-lemma-lemma v Θ (iS x) = fuse1 v Θ x subst-compose-lemma : ∀ {Γ Γ' τ} (v : Γ |- τ) (Θ : sctx Γ Γ') → _==_ {_} {sctx Γ (τ :: Γ')} ((q v) ss (s-extend Θ)) (lem3' Θ v) subst-compose-lemma v Θ = λ=i (λ τ → λ= (λ x → subst-compose-lemma-lemma v Θ x)) subst-compose : ∀ {Γ Γ' τ τ1} (Θ : sctx Γ Γ') (v : Γ |- τ) (e : (τ :: Γ' |- τ1) ) → subst (subst e (s-extend Θ)) (q v) == subst e (lem3' Θ v) subst-compose Θ v e = ap (subst e) (subst-compose-lemma v Θ) ∘ (! (subst-ss (q v) (s-extend Θ) e)) fuse2 : ∀ {Γ Γ' τ τ1 τ2} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (Θ : sctx Γ Γ') (x : τ ∈ τ2 :: Γ') → (lem4 v1 v2 ss throw (s-extend (s-extend Θ))) x == (lem3' Θ v2) x fuse2 v1 v2 Θ x = subst (ren (s-extend Θ x) iS) (lem4 v1 v2) =⟨ sr-comp (lem4 v1 v2) iS (s-extend Θ x) ⟩ subst (s-extend Θ x) (lem4 v1 v2 sr iS) =⟨ Refl ⟩ subst (s-extend Θ x) (lem3' ids v2) =⟨ subst-compose-lemma-lemma v2 Θ x ⟩ (lem3' Θ v2 x ∎) subst-compose2-lemma-lemma : ∀ {Γ Γ' τ τ1 τ2 τ'} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (e1 : τ1 :: τ2 :: Γ' |- τ) (Θ : sctx Γ Γ') (x : τ' ∈ τ1 :: τ2 :: Γ') → _==_ {_} {_} ((lem4 v1 v2 ss s-extend (s-extend Θ)) x) (lem4' Θ v1 v2 x) subst-compose2-lemma-lemma v1 v2 e1 Θ i0 = Refl subst-compose2-lemma-lemma v1 v2 e1 Θ (iS x) = fuse2 v1 v2 Θ x subst-compose2-lemma : ∀ {Γ Γ' τ τ1 τ2} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (e1 : τ1 :: τ2 :: Γ' |- τ) (Θ : sctx Γ Γ') → _==_ {_} {sctx Γ (τ1 :: τ2 :: Γ')} (lem4 v1 v2 ss s-extend (s-extend Θ)) (lem4' Θ v1 v2) subst-compose2-lemma v1 v2 e1 Θ = λ=i (λ τ → λ= (λ x → subst-compose2-lemma-lemma v1 v2 e1 Θ x)) fuse3 : ∀ {Γ Γ' τ1 τ2 τ'} (Θ : sctx Γ Γ') (v1 : Γ' |- τ1) (v2 : Γ' |- τ2) (x : τ' ∈ τ2 :: Γ') → subst (lem3' ids v2 x) Θ == lem3' Θ (subst v2 Θ) x fuse3 Θ v1 v2 i0 = Refl fuse3 Θ v1 v2 (iS x) = Refl subst-compose3-lemma-lemma : ∀ {Γ Γ' τ τ1 τ2 τ'} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ' |- τ1) (v2 : Γ' |- τ2) (x : τ' ∈ τ1 :: τ2 :: Γ') → _==_ {_} {_} ((Θ ss lem4 v1 v2) x) (lem4' Θ (subst v1 Θ) (subst v2 Θ) x) subst-compose3-lemma-lemma Θ e1 v1 v2 i0 = Refl subst-compose3-lemma-lemma Θ e1 v1 v2 (iS x) = fuse3 Θ v1 v2 x subst-compose3-lemma : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ' |- τ1) (v2 : Γ' |- τ2) → _==_ {_} {sctx Γ (τ1 :: τ2 :: Γ')} (Θ ss lem4 v1 v2) (lem4' Θ (subst v1 Θ) (subst v2 Θ)) subst-compose3-lemma Θ e1 v1 v2 = λ=i (λ τ → λ= (λ x → subst-compose3-lemma-lemma Θ e1 v1 v2 x)) subst-compose2 : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) → subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2) == subst e1 (lem4' Θ v1 v2) subst-compose2 Θ e1 v1 v2 = ap (subst e1) (subst-compose2-lemma v1 v2 e1 Θ) ∘ ! (subst-ss (lem4 v1 v2) (s-extend (s-extend Θ)) e1) subst-compose3 : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ' |- τ1) (v2 : Γ' |- τ2) → subst (subst e1 (lem4 v1 v2)) Θ == subst e1 (lem4' Θ (subst v1 Θ) (subst v2 Θ)) subst-compose3 Θ e1 v1 v2 = ap (subst e1) (subst-compose3-lemma Θ e1 v1 v2) ∘ ! (subst-ss Θ (lem4 v1 v2) e1) subst-compose4 : ∀ {Γ Γ' τ} (Θ : sctx Γ Γ') (v' : Γ |- nat) (r : Γ |- τ) (e2 : (nat :: (τ :: Γ')) |- τ) → subst (subst e2 (s-extend (s-extend Θ))) (lem4 v' r) == subst e2 (lem4' Θ v' r) subst-compose4 Θ v' r e2 = subst-compose2 Θ e2 v' r fuse4-lemma : ∀ {Γ Γ' τ τ1 τ2 τ3} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) (Θ : sctx Γ Γ') (x : τ ∈ Γ') → (lem3' (lem3' ids v3) v2 ss q∙ (q∙ Θ)) x == Θ x fuse4-lemma v1 v2 v3 Θ x = subst (ren (wkn (Θ x)) iS) (lem3' (q v3) v2) =⟨ sr-comp (lem3' (q v3) v2) iS (wkn (Θ x)) ⟩ subst (wkn (Θ x)) (lem3' (q v3) v2 sr iS) =⟨ Refl ⟩ subst (ren (Θ x) iS) (lem3' (q v3) v2 sr iS) =⟨ sr-comp (lem3' (q v3) v2 sr iS) iS (Θ x) ⟩ subst (Θ x) ((lem3' (q v3) v2 sr iS) sr iS) =⟨ Refl ⟩ subst (Θ x) ids =⟨ ! (subst-id (Θ x)) ⟩ (Θ x ∎) fuse4 : ∀ {Γ Γ' τ τ1 τ2 τ3} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) (Θ : sctx Γ Γ') (x : τ ∈ τ2 :: τ3 :: Γ') → subst (s-extend (s-extend Θ) x) (lem3' (lem3' ids v3) v2) == lem3' (lem3' Θ v3) v2 x fuse4 v1 v2 v3 Θ i0 = Refl fuse4 v1 v2 v3 Θ (iS i0) = Refl fuse4 v1 v2 v3 Θ (iS (iS x)) = subst (wkn (wkn (Θ x))) (lem3' (lem3' ids v3) v2) =⟨ subst-ss (lem3' (lem3' ids v3) v2) (q∙ (q∙ Θ)) (var x) ⟩ subst (var x) (lem3' (lem3' ids v3) v2 ss q∙ (q∙ Θ)) =⟨ fuse4-lemma v1 v2 v3 Θ x ⟩ subst (var x) Θ =⟨ Refl ⟩ (Θ x ∎) subst-compose5-lemma-lemma : ∀ {Γ Γ' τ τ1 τ2 τ3 τ'} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) (e1 : τ1 :: τ2 :: τ3 :: Γ' |- τ) (Θ : sctx Γ Γ') (x : τ' ∈ τ1 :: τ2 :: τ3 :: Γ') → _==_ {_} {_} ((lem5 v1 v2 v3 ss s-extend (s-extend (s-extend Θ))) x) (lem5' Θ v1 v2 v3 x) subst-compose5-lemma-lemma v1 v2 v3 e Θ i0 = Refl subst-compose5-lemma-lemma v1 v2 v3 e Θ (iS x) = (lem5 v1 v2 v3 ss s-extend (s-extend (s-extend Θ))) (iS x) =⟨ sr-comp (lem5 v1 v2 v3) iS (s-extend (s-extend Θ) x) ⟩ subst (s-extend (s-extend Θ) x) (lem3' (lem3' ids v3) v2) =⟨ fuse4 v1 v2 v3 Θ x ⟩ (lem3' (lem3' Θ v3) v2 x ∎) subst-compose5-lemma : ∀ {Γ Γ' τ τ1 τ2 τ3} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) (e : τ1 :: τ2 :: τ3 :: Γ' |- τ) (Θ : sctx Γ Γ') → _==_ {_} {sctx Γ (τ1 :: τ2 :: τ3 :: Γ')} (lem5 v1 v2 v3 ss (s-extend (s-extend (s-extend Θ)))) (lem5' Θ v1 v2 v3) subst-compose5-lemma v1 v2 v3 e Θ = λ=i (λ τ → λ= (λ x → subst-compose5-lemma-lemma v1 v2 v3 e Θ x)) subst-compose5 : ∀ {Γ Γ' τ τ1 τ2 τ3} (Θ : sctx Γ Γ') (e : (τ1 :: (τ2 :: (τ3 :: Γ'))) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) → subst (subst e (s-extend (s-extend (s-extend (Θ))))) (lem5 v1 v2 v3) == subst e (lem5' Θ v1 v2 v3) subst-compose5 Θ e v1 v2 v3 = ap (subst e) (subst-compose5-lemma v1 v2 v3 e Θ) ∘ ! (subst-ss (lem5 v1 v2 v3) (s-extend (s-extend (s-extend Θ))) e) ------- -- define 'stepping' as a datatype (fig. 1 of proof) data _≤s_ : ∀ {Γ T} → Γ |- T → Γ |- T → Set where refl-s : ∀ {Γ T} → {e : Γ |- T} → e ≤s e trans-s : ∀ {Γ T} → {e e' e'' : Γ |- T} → e ≤s e' → e' ≤s e'' → e ≤s e'' plus-s : ∀ {Γ} → {e1 e2 n1 n2 : Γ |- C} → e1 ≤s n1 → e2 ≤s n2 → (plusC e1 e2) ≤s (plusC n1 n2) cong-refl : ∀ {Γ τ} {e e' : Γ |- τ} → e == e' → e ≤s e' +-unit-l : ∀ {Γ} {e : Γ |- C} → (plusC 0C e) ≤s e +-unit-l' : ∀ {Γ} {e : Γ |- C} → e ≤s (plusC 0C e) +-unit-r : ∀ {Γ} {e : Γ |- C} → (plusC e 0C) ≤s e +-unit-r' : ∀ {Γ} {e : Γ |- C} → e ≤s (plusC e 0C) +-1-r : ∀ {Γ} {e : Γ |- C} → e ≤s (plusC e 1C) +-assoc : ∀ {Γ} {e1 e2 e3 : Γ |- C} → (plusC e1 (plusC e2 e3)) ≤s (plusC (plusC e1 e2) e3) +-assoc' : ∀ {Γ} {e1 e2 e3 : Γ |- C} → (plusC e1 (plusC e2 e3)) ≤s (plusC (plusC e1 e2) e3) refl-+ : ∀ {Γ} {e0 e1 : Γ |- C} → (plusC e0 e1) ≤s (plusC e1 e0) cong-+ : ∀ {Γ} {e0 e1 e0' e1' : Γ |- C} → e0 ≤s e0' → e1 ≤s e1' → (plusC e0 e1) ≤s (plusC e0' e1') cong-lproj : ∀ {Γ τ τ'} {e e' : Γ |- (τ ×c τ')} → e ≤s e' → (l-proj e) ≤s (l-proj e') cong-rproj : ∀ {Γ τ τ'} {e e' : Γ |- (τ ×c τ')} → e ≤s e' → (r-proj e) ≤s (r-proj e') cong-app : ∀ {Γ τ τ'} {e e' : Γ |- (τ ->c τ')} {e1 : Γ |- τ} → e ≤s e' → (app e e1) ≤s (app e' e1) cong-rec : ∀ {Γ τ} {e e' : Γ |- nat} {e0 : Γ |- τ} {e1 : (nat :: (τ :: Γ)) |- τ} → e ≤s e' → rec e e0 e1 ≤s rec e' e0 e1 cong-listrec : ∀ {Γ τ τ'} {e e' : Γ |- list τ} {e0 : Γ |- τ'} {e1 : (τ :: (list τ :: (τ' :: Γ))) |- τ'} → e ≤s e' → listrec e e0 e1 ≤s listrec e' e0 e1 lam-s : ∀ {Γ T T'} → {e : (T :: Γ) |- T'} → {e2 : Γ |- T} → subst e (q e2) ≤s app (lam e) e2 l-proj-s : ∀ {Γ T1 T2} → {e1 : Γ |- T1} {e2 : Γ |- T2} → e1 ≤s (l-proj (prod e1 e2)) r-proj-s : ∀ {Γ T1 T2} → {e1 : Γ |- T1} → {e2 : Γ |- T2} → e2 ≤s (r-proj (prod e1 e2)) rec-steps-z : ∀ {Γ T} → {e0 : Γ |- T} → {e1 : (nat :: (T :: Γ)) |- T} → e0 ≤s (rec z e0 e1) rec-steps-s : ∀ {Γ T} → {e : Γ |- nat} → {e0 : Γ |- T} → {e1 : (nat :: (T :: Γ)) |- T} → subst e1 (lem4 e (rec e e0 e1)) ≤s (rec (suc e) e0 e1) listrec-steps-nil : ∀ {Γ τ τ'} → {e0 : Γ |- τ'} → {e1 : (τ :: (list τ :: (τ' :: Γ))) |- τ'} → e0 ≤s (listrec nil e0 e1) listrec-steps-cons : ∀ {Γ τ τ'} → {h : Γ |- τ} {t : Γ |- list τ} → {e0 : Γ |- τ'} → {e1 : (τ :: (list τ :: (τ' :: Γ))) |- τ'} → subst e1 (lem5 h t (listrec t e0 e1)) ≤s (listrec (h ::c t) e0 e1) _trans_ : ∀ {Γ T} → {e e' e'' : Γ |- T} → e ≤s e' → e' ≤s e'' → e ≤s e'' _trans_ = trans-s infixr 10 _trans_
48.342995
179
0.461111
2368e995ee5c5449d9308baeccda21314a82a308
316
agda
Agda
test/Succeed/Issue2686.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2686.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2686.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2017-08-13, issue #2686 -- Overloaded constructor where only one alternative is not abstract. -- Not ambiguous, since abstract constructors are not in scope! -- {-# OPTIONS -v tc.check.term:40 #-} abstract data A : Set where c : A data D : Set where c : D test = c match : D → D match c = c
17.555556
69
0.661392
df48ebfb6513c4a6460af1fa21e9e1c7eacff68b
3,724
agda
Agda
Example-03.agda
ashinkarov/agda-extractor
c8954c8acd8089ced82af9e05084fbbc7fedb36c
[ "0BSD" ]
1
2021-01-11T14:52:59.000Z
2021-01-11T14:52:59.000Z
Example-03.agda
ashinkarov/agda-extractor
c8954c8acd8089ced82af9e05084fbbc7fedb36c
[ "0BSD" ]
null
null
null
Example-03.agda
ashinkarov/agda-extractor
c8954c8acd8089ced82af9e05084fbbc7fedb36c
[ "0BSD" ]
null
null
null
open import ExtractSac as ES using () open import Extract (ES.kompile-fun) open import Data.Nat as N using (ℕ; zero; suc; _≤_; _≥_; _<_; s≤s; z≤n) import Data.Nat.DivMod as N open import Data.Nat.Properties as N open import Data.List as L using (List; []; _∷_) open import Data.Vec as V using (Vec; []; _∷_) import Data.Vec.Properties as V open import Data.Fin using (Fin; zero; suc; #_) open import Data.Product as Prod using (Σ; _,_; curry; uncurry) renaming (_×_ to _⊗_) open import Relation.Binary.PropositionalEquality open import Reflection open import Structures open import Function open import Array.Base open import Array.Properties open import APL2 open import Agda.Builtin.Float v→a : ∀ {a}{X : Set a}{n} → Vec X n → Ar X 1 (n ∷ []) v→a s = imap (λ iv → V.lookup s $ ix-lookup iv zero ) a→v : ∀ {a}{X : Set a}{s} → Ar X 1 (s ∷ []) → Vec X s a→v (imap x) = V.tabulate λ i → x (i ∷ []) -- blog←{⍺×⍵×1-⍵} blog : ∀ {n s} → Ar Float n s → Ar Float n s → Ar Float n s blog α ω = α ×ᵣ ω ×ᵣ 1.0 -ᵣ ω test-blog = a→v $ blog (v→a $ 3.0 ∷ 4.0 ∷ []) (v→a $ 5.0 ∷ 6.0 ∷ []) kblog = kompile blog [] [] test₃₆ : kblog ≡ ok _ test₃₆ = refl -- backbias←{+/,⍵} backbias : ∀ {n s} → Ar Float n s → Scal Float backbias ω = --(▾_ ∘₂ _+ᵣ_) / , ω _+ᵣ′_ / , ω where --_+ᵣ′_ : Float → Float → Float --a +ᵣ′ b = ▾ (a +ᵣ b) _+ᵣ′_ = primFloatPlus kbackbias = kompile backbias (quote prod ∷ []) (quote prod ∷ quote off→idx ∷ quote reduce-custom.reduce-1d ∷ []) --test₃₇ : kbackbias ≡ ok _ --test₃₇ = refl -- logistic←{÷1+*-⍵} logistic : ∀ {n s} → Ar Float n s → Ar Float n s logistic ω = ÷ᵣ 1.0 +ᵣ *ᵣ -ᵣ ω klogistic = kompile logistic [] [] test₃₈ : klogistic ≡ ok _ test₃₈ = refl -- meansqerr←{÷∘2+/,(⍺-⍵)*2} meansqerr : ∀ {n s} → Ar Float n s → Ar Float n s → Scal Float meansqerr α ω = _÷ᵣ 2.0 $ _+ᵣ′_ / , (α +ᵣ ω) ×ᵣ (α -ᵣ ω) where _+ᵣ′_ = primFloatPlus kmeansqerr = kompile meansqerr (quote prod ∷ []) (quote prod ∷ quote off→idx ∷ quote reduce-custom.reduce-1d ∷ []) test₃₉ : klogistic ≡ ok _ test₃₉ = refl -- backavgpool←{2⌿2/⍵÷4}⍤2 backavgpool : ∀ {s} → Ar Float 2 s → Ar Float 2 $ ▾ (2 × s) backavgpool {s = _ ∷ _ ∷ []} ω = 2 /ᵣ′ 2 ⌿ᵣ ω ×ᵣ 4.0 where infixr 20 _/ᵣ′_ _/ᵣ′_ = _/ᵣ_ {s = _ ∷ []} kbackavgpool = kompile backavgpool [] [] test₄₀ : kbackavgpool ≡ ok _ test₄₀ = refl -- Something that could go in Stdlib. ≡⇒≤ : ∀ {a b} → a ≡ b → a N.≤ b ≡⇒≤ refl = ≤-refl -- This should be perfectly generaliseable --- instead of 2 -- we can use any m>0 a<b⇒k<2⇒a*2+k<b*2 : ∀ {a b k} → a N.< b → k N.< 2 → a N.* 2 N.+ k N.< b N.* 2 a<b⇒k<2⇒a*2+k<b*2 {a} {b} {zero} a<b k<2 rewrite (+-identityʳ (a N.* 2)) | (*-comm a 2) | (*-comm b 2) = *-monoʳ-< 1 a<b a<b⇒k<2⇒a*2+k<b*2 {a} {b} {suc zero} a<b k<2 = ≤-trans (N.s≤s (≡⇒≤ (+-comm _ 1))) (*-monoˡ-≤ 2 a<b) a<b⇒k<2⇒a*2+k<b*2 {a} {b} {suc (suc k)} a<b (N.s≤s (N.s≤s ())) A<B⇒K<2⇒A*2+K<B*2 : ∀ {n s}{a b k : Ar ℕ n s} → a <a b → k <a (cst 2) → ((a × 2) + k) <a (b × 2) A<B⇒K<2⇒A*2+K<B*2 {a = imap a} {imap b} {imap k} a<b k<2 = λ iv → a<b⇒k<2⇒a*2+k<b*2 (a<b iv) (k<2 iv) avgpool : ∀ {s} → Ar Float 2 $ ▾ (s × 2) → Ar Float 2 s avgpool {s} (imap p) = imap body where body : _ → _ body iv = ▾ (_÷ᵣ 4.0 $ _+ᵣ′_ / , f ̈ ι [2,2]) where [2,2] = cst {s = 2 ∷ []} 2 f : _ → _ f (i , pf) = let ix , ix<s = ix→a iv in p $ a→ix ((ix × 2) + i) (s × 2) $ A<B⇒K<2⇒A*2+K<B*2 ix<s pf _+ᵣ′_ = primFloatPlus kavgpool = kompile avgpool [] [] open import ReflHelper fin-id : ∀ {n} → Fin n → Fin n fin-id x = x
27.382353
114
0.523899
cb00f04e827e78a43534a84b9f16a48412cbf8fa
734
agda
Agda
agda/PLRTree/Complete/Correctness/Base.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/PLRTree/Complete/Correctness/Base.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/PLRTree/Complete/Correctness/Base.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
module PLRTree.Complete.Correctness.Base {A : Set} where open import BTree.Complete.Base {A} open import BTree.Complete.Alternative.Correctness {A} renaming (lemma-complete'-complete to lemma-complete''-complete) open import Function using (_∘_) open import PLRTree {A} open import PLRTree.Complete {A} renaming (Complete to Complete' ; _⋗_ to _⋗'_ ; _⋘_ to _⋘'_ ; _⋙_ to _⋙'_) open import PLRTree.Complete.Correctness.Alternative {A} renaming (lemma-complete'-complete to lemma-complete'-complete'') open import PLRTree.Equality.Correctness {A} lemma-complete'-complete : {t : PLRTree} → Complete' t → Complete (forget t) lemma-complete'-complete = lemma-complete''-complete ∘ lemma-complete'-complete''
52.428571
122
0.731608
106bbf45d16dfafa4673b19f5eb8aefff1ec2dbd
3,491
agda
Agda
Numeral/Natural/Oper/Proofs/Multiplication.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Numeral/Natural/Oper/Proofs/Multiplication.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Numeral/Natural/Oper/Proofs/Multiplication.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Numeral.Natural.Oper.Proofs.Multiplication where open import Logic.Propositional open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Proofs open import Numeral.Natural.Oper.Proofs.Order open import Numeral.Natural.Relation open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Classical open import Numeral.Natural.Relation.Order.Proofs open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Operator import Structure.Operator.Names as Names open import Structure.Operator.Properties open import Structure.Relator.Properties open import Syntax.Transitivity instance [⋅][−₀]-distributivityᵣ : Distributivityᵣ(_⋅_)(_−₀_) Distributivityᵣ.proof([⋅][−₀]-distributivityᵣ) {x}{y}{z} = p{x}{y}{z} where p : ∀{x y z : ℕ} → ((x −₀ y) ⋅ z) ≡ (x ⋅ z) −₀ (y ⋅ z) p {x} {y} {𝟎} = [≡]-intro p {x} {y} {𝐒 z} with [≥]-or-[<] {x}{y} ... | [∨]-introₗ gt = (x −₀ y) ⋅ 𝐒(z) 🝖[ _≡_ ]-[] (x −₀ y) + ((x −₀ y) ⋅ z) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(x −₀ y) (p {x}{y}{z}) ] (x −₀ y) + ((x ⋅ z) −₀ (y ⋅ z)) 🝖[ _≡_ ]-[ [+][−₀]-almost-associativity {x −₀ y} ([≤]-with-[⋅]ᵣ {c = z} gt) ]-sym ((x −₀ y) + (x ⋅ z)) −₀ (y ⋅ z) 🝖[ _≡_ ]-[ congruence₂ₗ(_−₀_)(y ⋅ z) (commutativity(_+_) {x −₀ y}{x ⋅ z}) ] ((x ⋅ z) + (x −₀ y)) −₀ (y ⋅ z) 🝖[ _≡_ ]-[ congruence₂ₗ(_−₀_)(y ⋅ z) ([+][−₀]-almost-associativity {x ⋅ z} gt) ]-sym (((x ⋅ z) + x) −₀ y) −₀ (y ⋅ z) 🝖[ _≡_ ]-[ congruence₂ₗ(_−₀_)(y ⋅ z) (congruence₂ₗ(_−₀_)(y) (commutativity(_+_) {x ⋅ z}{x})) ] ((x + (x ⋅ z)) −₀ y) −₀ (y ⋅ z) 🝖[ _≡_ ]-[ [−₀][−₀]-to-[−₀][+] {x + (x ⋅ z)}{y}{y ⋅ z} ] (x + (x ⋅ z)) −₀ (y + (y ⋅ z)) 🝖[ _≡_ ]-[] (x ⋅ 𝐒(z)) −₀ (y ⋅ 𝐒(z)) 🝖-end ... | [∨]-introᵣ lt = (x −₀ y) ⋅ 𝐒(z) 🝖[ _≡_ ]-[ congruence₂ₗ(_⋅_)(𝐒(z)) ([↔]-to-[→] [−₀]-when-0 (sub₂(_<_)(_≤_) lt)) ] 𝟎 ⋅ 𝐒(z) 🝖[ _≡_ ]-[ absorberₗ(_⋅_)(𝟎) {𝐒(z)} ] 𝟎 🝖[ _≡_ ]-[ [↔]-to-[→] [−₀]-when-0 ([≤]-with-[+] ⦃ sub₂(_<_)(_≤_) lt ⦄ ⦃ [≤]-with-[⋅]ᵣ {c = z} (sub₂(_<_)(_≤_) lt) ⦄) ]-sym (x + (x ⋅ z)) −₀ (y + (y ⋅ z)) 🝖-end -- TODO: This is a specialized distributivity-equivalence-by-commutativity instance [⋅][−₀]-distributivityₗ : Distributivityₗ(_⋅_)(_−₀_) Distributivityₗ.proof([⋅][−₀]-distributivityₗ) {x}{y}{z} = p{x}{y}{z} where p : ∀{x y z : ℕ} → (x ⋅ (y −₀ z)) ≡ (x ⋅ y) −₀ (x ⋅ z) p{x}{y}{z} = x ⋅ (y −₀ z) 🝖[ _≡_ ]-[ commutativity(_⋅_) {x}{y −₀ z} ] (y −₀ z) ⋅ x 🝖[ _≡_ ]-[ distributivityᵣ(_⋅_)(_−₀_) {y}{z}{x} ] (y ⋅ x) −₀ (z ⋅ x) 🝖[ _≡_ ]-[ congruence₂(_−₀_) (commutativity(_⋅_) {y}{x}) (commutativity(_⋅_) {z}{x}) ] (x ⋅ y) −₀ (x ⋅ z) 🝖-end [⋅]-cancellationₗ : ∀{x} → ⦃ pos : Positive(x) ⦄ → (Names.CancellationOnₗ(_⋅_)(x)) [⋅]-cancellationₗ {𝐒 a}{b}{c} p with [<]-trichotomy {b}{c} ... | [∨]-introₗ ([∨]-introₗ lt) with () ← [<]-to-[≢] ([<]-with-[⋅]ₗ {a = a} lt) p ... | [∨]-introₗ ([∨]-introᵣ eq) = eq ... | [∨]-introᵣ gt with () ← [>]-to-[≢] ([<]-with-[⋅]ₗ {a = a} gt) p [⋅]-cancellationᵣ : ∀{x} → ⦃ pos : Positive(x) ⦄ → (Names.CancellationOnᵣ(_⋅_)(x)) [⋅]-cancellationᵣ {𝐒 c}{a}{b} p with [<]-trichotomy {a}{b} ... | [∨]-introₗ ([∨]-introₗ lt) with () ← [<]-to-[≢] ([<]-with-[⋅]ᵣ {c = c} lt) p ... | [∨]-introₗ ([∨]-introᵣ eq) = eq ... | [∨]-introᵣ gt with () ← [>]-to-[≢] ([<]-with-[⋅]ᵣ {c = c} gt) p
54.546875
159
0.49069
dc9c96efe7a8b5d3a16232c6a5a6c8b0594dbf83
7,109
agda
Agda
src/Categories/Diagram/Pullback.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/Diagram/Pullback.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/Diagram/Pullback.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Diagram.Pullback {o ℓ e} (C : Category o ℓ e) where open Category C open HomReasoning open import Level open import Data.Product using (_,_; ∃) open import Function using (flip; _$_) renaming (_∘_ to _●_) open import Categories.Morphism C open import Categories.Object.Product C open import Categories.Diagram.Equalizer C open import Categories.Morphism.Reasoning C as Square renaming (glue to glue-square) hiding (id-unique) private variable A B X Y Z : Obj f g h h₁ h₂ i i₁ i₂ j : A ⇒ B -- Pullback of two arrows with a common codomain record Pullback (f : X ⇒ Z) (g : Y ⇒ Z) : Set (o ⊔ ℓ ⊔ e) where field {P} : Obj p₁ : P ⇒ X p₂ : P ⇒ Y field commute : f ∘ p₁ ≈ g ∘ p₂ universal : ∀ {h₁ : A ⇒ X} {h₂ : A ⇒ Y} → f ∘ h₁ ≈ g ∘ h₂ → A ⇒ P unique : ∀ {eq : f ∘ h₁ ≈ g ∘ h₂} → p₁ ∘ i ≈ h₁ → p₂ ∘ i ≈ h₂ → i ≈ universal eq p₁∘universal≈h₁ : ∀ {eq : f ∘ h₁ ≈ g ∘ h₂} → p₁ ∘ universal eq ≈ h₁ p₂∘universal≈h₂ : ∀ {eq : f ∘ h₁ ≈ g ∘ h₂} → p₂ ∘ universal eq ≈ h₂ unique′ : (eq eq′ : f ∘ h₁ ≈ g ∘ h₂) → universal eq ≈ universal eq′ unique′ eq eq′ = unique p₁∘universal≈h₁ p₂∘universal≈h₂ id-unique : id ≈ universal commute id-unique = unique identityʳ identityʳ unique-diagram : p₁ ∘ h ≈ p₁ ∘ i → p₂ ∘ h ≈ p₂ ∘ i → h ≈ i unique-diagram {h = h} {i = i} eq₁ eq₂ = begin h ≈⟨ unique eq₁ eq₂ ⟩ universal eq ≈˘⟨ unique refl refl ⟩ i ∎ where eq = extendʳ commute swap : Pullback f g → Pullback g f swap p = record { p₁ = p₂ ; p₂ = p₁ ; commute = ⟺ commute ; universal = universal ● ⟺ ; unique = flip unique ; p₁∘universal≈h₁ = p₂∘universal≈h₂ ; p₂∘universal≈h₂ = p₁∘universal≈h₁ } where open Pullback p glue : (p : Pullback f g) → Pullback h (Pullback.p₁ p) → Pullback (f ∘ h) g glue {h = h} p q = record { p₁ = q.p₁ ; p₂ = p.p₂ ∘ q.p₂ ; commute = glue-square p.commute q.commute ; universal = λ eq → q.universal (⟺ (p.p₁∘universal≈h₁ {eq = sym-assoc ○ eq})) ; unique = λ {_ h₁ h₂ i} eq eq′ → q.unique eq (p.unique (begin p.p₁ ∘ q.p₂ ∘ i ≈˘⟨ extendʳ q.commute ⟩ h ∘ q.p₁ ∘ i ≈⟨ refl⟩∘⟨ eq ⟩ h ∘ h₁ ∎) (sym-assoc ○ eq′)) ; p₁∘universal≈h₁ = q.p₁∘universal≈h₁ ; p₂∘universal≈h₂ = assoc ○ ∘-resp-≈ʳ q.p₂∘universal≈h₂ ○ p.p₂∘universal≈h₂ } where module p = Pullback p module q = Pullback q unglue : (p : Pullback f g) → Pullback (f ∘ h) g → Pullback h (Pullback.p₁ p) unglue {f = f} {g = g} {h = h} p q = record { p₁ = q.p₁ ; p₂ = p₂′ ; commute = ⟺ p.p₁∘universal≈h₁ ; universal = λ {_ h₁ h₂} eq → q.universal $ begin (f ∘ h) ∘ h₁ ≈⟨ pullʳ eq ⟩ f ∘ p.p₁ ∘ h₂ ≈⟨ extendʳ p.commute ⟩ g ∘ p.p₂ ∘ h₂ ∎ ; unique = λ {_ h₁ h₂ i} eq eq′ → q.unique eq $ begin q.p₂ ∘ i ≈⟨ pushˡ (⟺ p.p₂∘universal≈h₂) ⟩ p.p₂ ∘ p₂′ ∘ i ≈⟨ refl⟩∘⟨ eq′ ⟩ p.p₂ ∘ h₂ ∎ ; p₁∘universal≈h₁ = q.p₁∘universal≈h₁ ; p₂∘universal≈h₂ = λ {_ _ _ eq} → p.unique-diagram ((pullˡ p.p₁∘universal≈h₁) ○ pullʳ q.p₁∘universal≈h₁ ○ eq) (pullˡ p.p₂∘universal≈h₂ ○ q.p₂∘universal≈h₂) } where module p = Pullback p module q = Pullback q p₂′ = p.universal (sym-assoc ○ q.commute) -- used twice above Product×Equalizer⇒Pullback : (p : Product A B) → Equalizer (f ∘ Product.π₁ p) (g ∘ Product.π₂ p) → Pullback f g Product×Equalizer⇒Pullback {f = f} {g = g} p e = record { p₁ = π₁ ∘ arr ; p₂ = π₂ ∘ arr ; commute = sym-assoc ○ equality ○ assoc ; universal = λ {_ h₁ h₂} eq → equalize $ begin (f ∘ π₁) ∘ ⟨ h₁ , h₂ ⟩ ≈⟨ pullʳ project₁ ⟩ f ∘ h₁ ≈⟨ eq ⟩ g ∘ h₂ ≈˘⟨ pullʳ project₂ ⟩ (g ∘ π₂) ∘ ⟨ h₁ , h₂ ⟩ ∎ ; unique = λ eq eq′ → e.unique (p.unique (sym-assoc ○ eq) (sym-assoc ○ eq′)) ; p₁∘universal≈h₁ = pullʳ (⟺ e.universal) ○ project₁ ; p₂∘universal≈h₂ = pullʳ (⟺ e.universal) ○ project₂ } where module p = Product p module e = Equalizer e open p open e Product×Pullback⇒Equalizer : (p : Product A B) → Pullback f g → Equalizer (f ∘ Product.π₁ p) (g ∘ Product.π₂ p) Product×Pullback⇒Equalizer {f = f} {g = g} p pu = record { arr = ⟨ p₁ , p₂ ⟩ ; equality = begin (f ∘ π₁) ∘ ⟨ p₁ , p₂ ⟩ ≈⟨ pullʳ project₁ ⟩ f ∘ p₁ ≈⟨ commute ⟩ g ∘ p₂ ≈˘⟨ pullʳ project₂ ⟩ (g ∘ π₂) ∘ ⟨ p₁ , p₂ ⟩ ∎ ; equalize = λ eq → pu.universal (sym-assoc ○ eq ○ assoc) ; universal = λ {_ h} → begin h ≈˘⟨ p.unique (⟺ p₁∘universal≈h₁) (⟺ p₂∘universal≈h₂) ⟩ ⟨ p₁ ∘ _ , p₂ ∘ _ ⟩ ≈⟨ p.unique (pullˡ project₁) (pullˡ project₂) ⟩ ⟨ p₁ , p₂ ⟩ ∘ _ ∎ ; unique = λ eq → pu.unique (pushˡ (⟺ project₁) ○ ⟺ (∘-resp-≈ʳ eq)) (pushˡ (⟺ project₂) ○ ⟺ (∘-resp-≈ʳ eq)) } where module p = Product p module pu = Pullback pu open p open pu module _ (p : Pullback f g) where open Pullback p Pullback-resp-≈ : h ≈ f → i ≈ g → Pullback h i Pullback-resp-≈ eq eq′ = record { p₁ = p₁ ; p₂ = p₂ ; commute = ∘-resp-≈ˡ eq ○ commute ○ ⟺ (∘-resp-≈ˡ eq′) ; universal = λ eq″ → universal (∘-resp-≈ˡ (⟺ eq) ○ eq″ ○ ∘-resp-≈ˡ eq′) ; unique = unique ; p₁∘universal≈h₁ = p₁∘universal≈h₁ ; p₂∘universal≈h₂ = p₂∘universal≈h₂ } Pullback-resp-Mono : Mono g → Mono p₁ Pullback-resp-Mono mg h i eq = unique-diagram eq (mg _ _ eq′) where eq′ : g ∘ p₂ ∘ h ≈ g ∘ p₂ ∘ i eq′ = begin g ∘ p₂ ∘ h ≈⟨ extendʳ (sym commute) ⟩ f ∘ p₁ ∘ h ≈⟨ refl⟩∘⟨ eq ⟩ f ∘ p₁ ∘ i ≈⟨ extendʳ commute ⟩ g ∘ p₂ ∘ i ∎ Pullback-resp-Iso : Iso g h → ∃ λ i → Iso p₁ i Pullback-resp-Iso {h = h} iso = universal eq , record { isoˡ = unique-diagram eq₁ eq₂ ; isoʳ = p₁∘universal≈h₁ } where open Iso iso eq = begin f ∘ id ≈⟨ introˡ refl ⟩ id ∘ f ∘ id ≈⟨ pushˡ (⟺ isoʳ) ⟩ g ∘ h ∘ f ∘ id ∎ eq₁ = begin p₁ ∘ universal eq ∘ p₁ ≈⟨ cancelˡ p₁∘universal≈h₁ ⟩ p₁ ≈˘⟨ identityʳ ⟩ p₁ ∘ id ∎ eq₂ = begin p₂ ∘ universal eq ∘ p₁ ≈⟨ extendʳ p₂∘universal≈h₂ ⟩ h ∘ (f ∘ id) ∘ p₁ ≈⟨ refl ⟩∘⟨ identityʳ ⟩∘⟨ refl ⟩ h ∘ f ∘ p₁ ≈⟨ refl ⟩∘⟨ commute ⟩ h ∘ g ∘ p₂ ≈⟨ cancelˡ isoˡ ⟩ p₂ ≈˘⟨ identityʳ ⟩ p₂ ∘ id ∎
36.086294
87
0.478548
392ccdff6016bc66ec0028558d639ef55de62c9d
1,223
agda
Agda
agda/hott/types/coproduct.agda
piyush-kurur/hott
876ecdcfddca1abf499e8f00db321c6dc3d5b2bc
[ "BSD-3-Clause" ]
null
null
null
agda/hott/types/coproduct.agda
piyush-kurur/hott
876ecdcfddca1abf499e8f00db321c6dc3d5b2bc
[ "BSD-3-Clause" ]
null
null
null
agda/hott/types/coproduct.agda
piyush-kurur/hott
876ecdcfddca1abf499e8f00db321c6dc3d5b2bc
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K #-} module hott.types.coproduct where open import hott.core.universe data _∐_ {ℓ₀ ℓ₁ : Level} (A : Type ℓ₀) (B : Type ℓ₁) : Type (ℓ₀ ⊔ ℓ₁) where inl : (a : A) → A ∐ B -- left introduction inr : (b : B) → A ∐ B -- right introduction -- A more suggestive way of building elements of nested co-product -- types. For example if we have a : A, b : B and c : C then the -- expressions, a ∣∙, ∙∣ b ∣∙ and ∙∣ ∙∣ c are elements inl a, inr (inl -- b) and inr (inr c) of A ∐ B ∐ C respectively. _∣∙ : {ℓ₀ ℓ₁ : Level}{A : Type ℓ₀}{B : Type ℓ₁} → A → A ∐ B _∣∙ = inl ∙∣_ : {ℓ₀ ℓ₁ : Level}{A : Type ℓ₀}{B : Type ℓ₁} → B → A ∐ B ∙∣_ = inr infixr 0 ∙∣_ infixr 0 _∣∙ -- A more suggestive way of building a case by case analysis. -- For example, one can just write f1 ∣ f2 ∣ f3 _∣_ : {a b c : Level} {A : Type a} {B : Type b} {C : Type c} → (A → C) → (B → C) → (A ∐ B → C) (f ∣ g) (inl a) = f a (f ∣ g) (inr b) = g b infixr 0 _∐_ infixr 0 _∣_ -- Case by case analysis. either : {ℓ₀ ℓ₁ ℓ₃ : Level} {A : Type ℓ₀}{B : Type ℓ₁}{C : Type ℓ₃} → (A → C) → (B → C) → (A ∐ B → C) either f g (inl a) = f a either f g (inr b) = g b
23.075472
70
0.51758
18039b6fcd49e856c4f7bc31dd2a9e8fb2dfe67e
319
agda
Agda
test/LibSucceed/InstanceArguments/08-higherOrder.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/LibSucceed/InstanceArguments/08-higherOrder.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/LibSucceed/InstanceArguments/08-higherOrder.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module InstanceArguments.08-higherOrder where explicitize : ∀ {A : Set} {B : A → Set} → ({{x : A}} → B x) → (x : A) → B x explicitize f x = f {{x}} implicitize : ∀ {A : Set} {B : A → Set} → ((x : A) → B x) → {{x : A}} → B x implicitize f {{x}} = f x data T : Set where tt : T test = explicitize (λ {{t : T}} → t)
24.538462
75
0.507837
0ef0fe6c942d9307706017cf7f178fb23a5e9581
2,373
agda
Agda
agda/List/Permutation/Base/Bag.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/List/Permutation/Base/Bag.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/List/Permutation/Base/Bag.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
module List.Permutation.Base.Bag (A : Set) where open import Data.List open import Data.List.Any as Any open import Data.List.Any.BagAndSetEquality open import Data.List.Any.Properties open import Data.Sum renaming (_⊎_ to _∨_) open import Function open import Function.Inverse hiding (sym ; _∘_ ; id) open import Function.Related as Related hiding (_∼[_]_) open import List.Permutation.Base A import Relation.Binary.EqReasoning as EqR open import Relation.Binary.PropositionalEquality as P hiding (sym) open Any.Membership-≡ open EqR ([ bag ]-Equality A) open Related.EquationalReasoning renaming (_∎ to _□) infix 4 _≈-bag_ _≈-bag_ : ∀ {a} {A : Set a} → List A → List A → Set a xs ≈-bag ys = xs ∼[ bag ] ys sym-≈-bag : {xs ys : List A} → xs ≈-bag ys → ys ≈-bag xs sym-≈-bag {xs} {ys} xs≈ys {z} = record { to = Inverse.from xs≈ys ; from = Inverse.to xs≈ys ; inverse-of = record { left-inverse-of = Inverse.right-inverse-of xs≈ys ; right-inverse-of = Inverse.left-inverse-of xs≈ys } } refl-≈-bag : {xs : List A} → xs ≈-bag xs refl-≈-bag {xs} = begin xs ∎ ∨↔ : ∀{a b}{A : Set a}{B : Set b} → (A ∨ B) ↔ (B ∨ A) ∨↔ = record { to = P.→-to-⟶ ∨→ ; from = P.→-to-⟶ ∨→ ; inverse-of = record { left-inverse-of = v→∘v→ ; right-inverse-of = v→∘v→ } } where ∨→ : ∀{a b}{A : Set a}{B : Set b} → (A ∨ B) → (B ∨ A) ∨→ (inj₁ x) = inj₂ x ∨→ (inj₂ x) = inj₁ x v→∘v→ : ∀{a b}{A : Set a}{B : Set b}(a∨b : A ∨ B) → ∨→ (∨→ a∨b) ≡ a∨b v→∘v→ (inj₁ _) = refl v→∘v→ (inj₂ _) = refl xy≈-bag-yx : {x y : A} → x ∷ y ∷ [] ≈-bag y ∷ x ∷ [] xy≈-bag-yx {x} {y} {z} = z ∈ x ∷ y ∷ [] ↔⟨ sym $ ++↔ {xs = x ∷ []} {ys = y ∷ []} ⟩ (z ∈ x ∷ [] ∨ z ∈ y ∷ []) ↔⟨ ∨↔ ⟩ (z ∈ y ∷ [] ∨ z ∈ x ∷ []) ↔⟨ ++↔ ⟩ z ∈ y ∷ x ∷ [] □ lemma-/-≈-bag : {y : A}{xs ys : List A} → xs / y ⟶ ys → xs ≈-bag (y ∷ ys) lemma-/-≈-bag /head = refl-≈-bag lemma-/-≈-bag (/tail {x} {y} {xs} {ys} xs/y⟶ys) = begin x ∷ xs ≈⟨ ∷-cong refl (lemma-/-≈-bag xs/y⟶ys) ⟩ x ∷ y ∷ ys ≈⟨ ++-cong xy≈-bag-yx refl-≈-bag ⟩ y ∷ x ∷ ys ∎ lemma-∼-≈-bag : {xs ys : List A} → xs ∼ ys → xs ≈-bag ys lemma-∼-≈-bag ∼[] = refl-≈-bag lemma-∼-≈-bag (∼x {x} {xs} {ys} {xs'} {ys'} xs/x⟶xs' ys/x⟶ys' xs'∼ys') = begin xs ≈⟨ lemma-/-≈-bag xs/x⟶xs' ⟩ x ∷ xs' ≈⟨ ∷-cong refl (lemma-∼-≈-bag xs'∼ys') ⟩ x ∷ ys' ≈⟨ sym-≈-bag (lemma-/-≈-bag ys/x⟶ys') ⟩ ys ∎
30.818182
78
0.51791
fb1f0a56381527397ac671970ed167d14590e804
30,984
agda
Agda
Definitional.agda
kztk-m/sparcl-agda
e2fb3a669e733a9020a51b24244d89abd8fcf725
[ "BSD-3-Clause" ]
null
null
null
Definitional.agda
kztk-m/sparcl-agda
e2fb3a669e733a9020a51b24244d89abd8fcf725
[ "BSD-3-Clause" ]
null
null
null
Definitional.agda
kztk-m/sparcl-agda
e2fb3a669e733a9020a51b24244d89abd8fcf725
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K #-} -- Approx. 15-20 min are required to typecheck this file (for Agda 2.6.1) on -- my MacBook 13-inch 2017 with 3.5 GHz Core i7 CPU and 16 GB memory. -- -- Since most of the time was spent for termination analysis, please -- uncomment {-# TERMINATING #-} before evalR and eval to remove the -- termination checks. module Definitional where open import Syntax open import Data.Nat open import Data.Fin using (Fin ; suc; zero) open import Data.List using (length ; [] ; _∷_ ) open import Data.List.Properties using (length-++) open import Data.Vec using ([] ; _∷_) open import Data.Vec.Relation.Unary.All using (All ; [] ; _∷_) open import Data.Product open import Relation.Binary.PropositionalEquality open import Level renaming (zero to lzero ; suc to lsuc) open ≡-Reasoning open import Function using () renaming (case_of_ to CASE_OF_) open import Value open import Size open import Codata.Thunk module Interpreter where open import Codata.Delay renaming (length to dlength ; map to dmap ) open import PInj open _⊢_⇔_ -- A variant of the Delay monad in which the bind operator is -- frozen. While we cannot restrict levels in general, using Set is -- enough for enough for our purpose. data DELAY : (A : Set) -> (i : Size) -> Set₁ where Now : ∀ {A i} -> A -> DELAY A i Later : ∀ {A i} -> Thunk (DELAY A) i -> DELAY A i Bind : ∀ {A B i} -> (m : DELAY A i) -> (f : A -> DELAY B i) -> DELAY B i Never : ∀ {A i} -> DELAY A i Never = Later λ where .force -> Never Dmap : ∀ {A B i} -> (A -> B) -> DELAY A i -> DELAY B i Dmap f d = Bind d (λ x -> Now (f x)) -- The function runD thaws the frozen operations. runD : ∀ {A : Set} {i : Size} -> DELAY A i -> Delay A i runD (Now x) = now x runD (Later x) = later λ where .force -> runD (force x) runD (Bind d f) = bind (runD d) (λ x -> runD (f x)) -- The frozen version of _⊢_⇔_ record _⊢F_⇔_ (i : Size) (A B : Set) : Set₁ where field Forward : A -> DELAY B i Backward : B -> DELAY A i open _⊢F_⇔_ forwardF : ∀ {A B i} -> i ⊢F A ⇔ B -> A -> Delay B i forwardF h a = runD (Forward h a) backwardF : ∀ {A B i} -> i ⊢F A ⇔ B -> B -> Delay A i backwardF h b = runD (Backward h b) -- Similarly to runD, runD⇔ thawas the frozen operations in -- _⊢F_⇔_. runD⇔ : ∀ {A B i} -> i ⊢F A ⇔ B -> i ⊢ A ⇔ B forward (runD⇔ f) = forwardF f backward (runD⇔ f) = backwardF f -- Environments handled by the forward and backward evaluations, -- which correponds to μ in the paper. data RValEnv : (Θ : TyEnv) (Ξ : MultEnv (length Θ)) -> Set where [] : RValEnv [] [] skip : ∀ {Θ Ξ A} -> RValEnv Θ Ξ -> RValEnv (A ∷ Θ) (zero ∷ Ξ) _∷_ : ∀ {Θ Ξ A} -> Value [] ∅ A -> RValEnv Θ Ξ -> RValEnv (A ∷ Θ) (one ∷ Ξ) emptyRValEnv : ∀ {Θ} -> RValEnv Θ ∅ emptyRValEnv {[]} = [] emptyRValEnv {_ ∷ _} = skip emptyRValEnv splitRValEnv : ∀ {Θ Ξ₁ Ξ₂} -> RValEnv Θ (Ξ₁ +ₘ Ξ₂) -> RValEnv Θ Ξ₁ × RValEnv Θ Ξ₂ splitRValEnv {[]} {[]} {[]} [] = [] , [] splitRValEnv {_ ∷ Θ} {zero ∷ Ξ₁} {zero ∷ Ξ₂} (skip ρ) with splitRValEnv ρ ... | ρ₁ , ρ₂ = skip ρ₁ , skip ρ₂ splitRValEnv {_ ∷ Θ} {zero ∷ Ξ₁} {one ∷ Ξ₂} (x ∷ ρ) with splitRValEnv ρ ... | ρ₁ , ρ₂ = skip ρ₁ , x ∷ ρ₂ splitRValEnv {_ ∷ Θ} {one ∷ Ξ₁} {zero ∷ Ξ₂} (x ∷ ρ) with splitRValEnv ρ ... | ρ₁ , ρ₂ = x ∷ ρ₁ , skip ρ₂ -- An inverse of splitRValEnv. mergeRValEnv : ∀ {Θ Ξ₁ Ξ₂} -> all-no-omega (Ξ₁ +ₘ Ξ₂) -> RValEnv Θ Ξ₁ -> RValEnv Θ Ξ₂ -> RValEnv Θ (Ξ₁ +ₘ Ξ₂) mergeRValEnv {.[]} {.[]} {.[]} _ [] [] = [] mergeRValEnv {.(_ ∷ _)} {.(zero ∷ _)} {.(zero ∷ _)} (_ ∷ ano) (skip ρ₁) (skip ρ₂) = skip (mergeRValEnv ano ρ₁ ρ₂) mergeRValEnv {.(_ ∷ _)} {.(zero ∷ _)} {.(one ∷ _)} (_ ∷ ano) (skip ρ₁) (x ∷ ρ₂) = x ∷ (mergeRValEnv ano ρ₁ ρ₂) mergeRValEnv {.(_ ∷ _)} {.(one ∷ _)} {.(zero ∷ _)} (_ ∷ ano) (x ∷ ρ₁) (skip ρ₂) = x ∷ mergeRValEnv ano ρ₁ ρ₂ mergeRValEnv {.(_ ∷ _)} {.(one ∷ _)} {.(one ∷ _)} (() ∷ ano) (x ∷ ρ₁) (x₁ ∷ ρ₂) -- Construction of the empty value environment. from-all-zero : ∀ {Θ Ξ} -> all-zero Ξ -> RValEnv Θ Ξ from-all-zero {[]} {[]} [] = [] from-all-zero {_ ∷ Θ} {.(zero ∷ _)} (refl ∷ az) = skip (from-all-zero az) -- Value environments conforms to an empty invertible environment must be empty. all-zero-canon : ∀ {Θ Ξ} -> (az : all-zero Ξ) -> (θ : RValEnv Θ Ξ) -> θ ≡ (from-all-zero az) all-zero-canon {[]} {[]} [] [] = refl all-zero-canon {_ ∷ Θ} {_ ∷ Ξ} (refl ∷ az) (skip θ) = cong skip (all-zero-canon az θ) -- Looking-up function for RValEnv lkup : ∀ {Θ A} {x : Θ ∋ A} {Ξ} -> varOk● Θ x Ξ -> RValEnv Θ Ξ -> Value [] ∅ A lkup (there ok) (skip ρ) = lkup ok ρ lkup (here ad) (x ∷ ρ) = x -- ad asserts ρ consists only of skip and [] -- An inverse of lkup; the linearity matters here. unlkup : ∀ {Θ A} {x : Θ ∋ A} {Ξ} -> varOk● Θ x Ξ -> Value [] ∅ A -> RValEnv Θ Ξ unlkup (there ok) v = skip (unlkup ok v) unlkup (here ad) v = v ∷ from-all-zero ad -- Some utility functions. var●₀ : ∀ {A Θ} -> Residual (A ∷ Θ) (one ∷ ∅) (A ●) var●₀ = var● vz (here all-zero-∅) BindR : ∀ {i Θ Ξ A} {r : Set} -> DELAY (Value Θ Ξ (A ●)) i -> (Residual Θ Ξ (A ●) -> DELAY r i) -> DELAY r i BindR x f = Bind x λ { (red r) -> f r } -- For the do trick for the pattern matching -- See https://github.com/agda/agda/issues/2298 _>>=_ : ∀ {a b : Level} {A : Set a} {B : A -> Set b} -> ∀ (x : A) -> (∀ x -> B x) -> B x x >>= f = f x -- Function application. apply : ∀ {Θ Ξ₁ Ξ₂ A m B} i -> all-no-omega (Ξ₁ +ₘ m ×ₘ Ξ₂) -> Value Θ Ξ₁ (A # m ~> B) -> Value Θ Ξ₂ A -> DELAY (Value Θ (Ξ₁ +ₘ m ×ₘ Ξ₂) B) i -- Forward, backward and unidirectional evalautions are given as -- mutually recursive functions. Notice that, the existence of these -- functions essentially proves the type safety (i.e., the -- preservation and progree prperty). Thus, in a sense, they are -- generalizations of Lemma 3.1 and Lemma 3.2 in the paper. -- Forward and backward evaluation. -- {-# TERMINATING #-} evalR : ∀ {Θ Ξ A} i -> all-no-omega Ξ -> Residual Θ Ξ (A ●) -> i ⊢F (RValEnv Θ Ξ) ⇔ Value [] ∅ A -- Unidirectional evaluation. Also, an important thing is that this function keeps -- the invariant all-no-omega (Ξₑ +ₘ Ξ) for recursive calls, which essentially supports -- the claim in Section 3.4: "This assumption is actually an invariant in our system ...". -- {-# TERMINATING #-} eval : ∀ {Θ Ξₑ Γ Δ Ξ A} i -> all-no-omega (Ξₑ +ₘ Ξ) -> ValEnv Γ Δ Θ Ξₑ -> Term Γ Δ Θ Ξ A -> DELAY (Value Θ (Ξₑ +ₘ Ξ) A) i apply {Θ} {Ξ₁} {Ξ₂} i ano (clo {Ξ' = Ξ'} {Ξₜ = Ξₜ} m refl θ t) v with all-no-omega-dist _ _ ano ... | ano-'t , ano-m2 = Later λ { .force {j} -> let T = eval j (subst all-no-omega lemma ano) (tup _ _ refl (value-to-multM ano-m2 v) θ) t in subst (λ x -> DELAY (Value Θ x _) j) (sym lemma) T } where lemma : Ξ' +ₘ Ξₜ +ₘ m ×ₘ Ξ₂ ≡ m ×ₘ Ξ₂ +ₘ Ξ' +ₘ Ξₜ lemma = trans (+ₘ-comm _ _) (sym (+ₘ-assoc (m ×ₘ Ξ₂) Ξ' _)) -- evalR is defined so that evalR ∞ ano r actually defines a -- bijection. See Invertiblity.agda for its proof. Forward (evalR i ano unit●) _ = Now (unit refl) Backward (evalR i ano unit●) _ = Now emptyRValEnv Forward (evalR i ano (letunit● r₁ r₂)) ρ = do ano₁ , ano₂ <- all-no-omega-dist _ _ ano ρ₁ , ρ₂ <- splitRValEnv ρ Bind (Forward (evalR i ano₁ r₁) ρ₁) λ { (unit eq) -> Forward (evalR i ano₂ r₂) ρ₂ } Backward (evalR i ano (letunit● r₁ r₂)) v = do ano₁ , ano₂ <- all-no-omega-dist _ _ ano Bind (Backward (evalR i ano₂ r₂) v) λ ρ₂ -> Bind (Backward (evalR i ano₁ r₁) (unit refl)) λ ρ₁ -> Now (mergeRValEnv ano ρ₁ ρ₂) Forward (evalR i ano (pair● r₁ r₂)) ρ = do ano₁ , ano₂ <- all-no-omega-dist _ _ ano ρ₁ , ρ₂ <- splitRValEnv ρ Bind (Forward (evalR i ano₁ r₁) ρ₁) λ v₁ -> Bind (Forward (evalR i ano₂ r₂) ρ₂) λ v₂ -> Now (pair refl v₁ v₂) Backward (evalR i ano (pair● {A = A} {B} r₁ r₂)) (pair {Ξ₁ = []} {[]} spΞ v₁ v₂) = do ano₁ , ano₂ <- all-no-omega-dist _ _ ano Bind (Backward (evalR i ano₁ r₁) v₁) λ ρ₁ -> Bind (Backward (evalR i ano₂ r₂) v₂) λ ρ₂ -> Now (mergeRValEnv ano ρ₁ ρ₂) Forward (evalR i ano (letpair● r₁ r₂)) ρ = do ano₁ , ano₂ <- all-no-omega-dist _ _ ano ρ₁ , ρ₂ <- splitRValEnv ρ Bind (Forward (evalR i ano₁ r₁) ρ₁) λ { (pair {Ξ₁ = []} {[]} spΞ v₁ v₂ ) -> Forward (evalR i (one ∷ one ∷ ano₂) r₂) (v₁ ∷ v₂ ∷ ρ₂) } Backward (evalR i ano (letpair● r₁ r₂)) v = do ano₁ , ano₂ <- all-no-omega-dist _ _ ano Bind (Backward (evalR i (one ∷ one ∷ ano₂) r₂) v) λ { (v₁ ∷ v₂ ∷ ρ₂) -> Bind (Backward (evalR i ano₁ r₁) (pair refl v₁ v₂)) λ ρ₁ -> Now (mergeRValEnv ano ρ₁ ρ₂) } Forward (evalR i ano (inl● r)) ρ = Bind (Forward (evalR i ano r) ρ) λ x -> Now (inl x) Backward (evalR i ano (inl● r)) v = CASE v OF λ { (inl v₁) -> Backward (evalR i ano r) v₁ ; (inr v₂) -> Never } Forward (evalR i ano (inr● r)) ρ = Bind (Forward (evalR i ano r) ρ) λ x -> Now (inr x) Backward (evalR i ano (inr● r)) v = CASE v OF λ { (inl v₁) -> Never ; (inr v₂) -> Backward (evalR i ano r) v₂ } Forward (evalR i ano (case● {Γ₁ = Γ₁} {Γ₂} r refl θ₁ t₁ θ₂ t₂ f)) ρ = do ano₀ , ano- <- all-no-omega-dist _ _ ano ρ₀ , ρ- <- splitRValEnv ρ Bind (Forward (evalR i ano₀ r) ρ₀) λ { (inl v₁) -> Bind (eval i (one ∷ ano-) (weakenΘ-valEnv Γ₁ (compat-ext-here ext-id) θ₁) t₁) λ { (red r₁) -> Later λ { .force {j} -> Bind (Forward (evalR j (one ∷ ano-) r₁) (v₁ ∷ ρ-)) λ v -> Bind (apply j [] f v) λ { (inl _) -> Now v ; (inr _) -> Never } } } ; (inr v₂) -> Bind (eval i (one ∷ ano-) (weakenΘ-valEnv Γ₂ (compat-ext-here ext-id) θ₂) t₂) λ { (red r₂) -> Later λ { .force {j} -> Bind (Forward (evalR j (one ∷ ano-) r₂) (v₂ ∷ ρ-)) λ v -> Bind (apply j [] f v) λ { (inl _) -> Never ; (inr _) -> Now v } } } } Backward (evalR i ano (case● {Γ₁ = Γ₁} {Γ₂} r refl θ₁ t₁ θ₂ t₂ f)) v = do ano₀ , ano- <- all-no-omega-dist _ _ ano Bind (apply i [] f v) λ { (inl _) -> Bind (eval i (one ∷ ano-) (weakenΘ-valEnv Γ₁ (compat-ext-here ext-id) θ₁) t₁) λ { (red r₁) -> Later λ { .force {j} -> Bind (Backward (evalR j (one ∷ ano-) r₁) v) λ { (v₁ ∷ ρ-) -> Bind (Backward (evalR j ano₀ r) (inl v₁)) λ ρ₀ -> Now (mergeRValEnv ano ρ₀ ρ-) } } } ; (inr _) -> Bind (eval i (one ∷ ano-) (weakenΘ-valEnv Γ₂ (compat-ext-here ext-id) θ₂) t₂) λ { (red r₂) -> Later λ where .force {j} -> Bind (Backward (evalR j (one ∷ ano-) r₂) v) λ { (v₂ ∷ ρ-) -> Bind (Backward (evalR j ano₀ r) (inr v₂)) λ ρ₀ -> Now (mergeRValEnv ano ρ₀ ρ-) } } } Forward (evalR i ano (var● x ok)) ρ = Now (lkup ok ρ) Backward (evalR i ano (var● x ok)) v = Now (unlkup ok v) Forward (evalR i ano (pin r f)) ρ = do ano₁ , ano₂ <- all-no-omega-dist _ _ ano ρ₁ , ρ₂ <- splitRValEnv ρ Bind (Forward (evalR i ano₁ r) ρ₁) λ v₁ -> CASE f OF λ { (clo .omega refl θ t) → Later λ { .force {j} -> Bind (eval j ano₂ (tup ∅ _ (∅-lid _) (mult-omega (weakenΘ-value extendΘ v₁) refl) θ) t) λ { (red r₂) -> -- maybe another delaying would be needed here Bind (Forward (evalR j ano₂ r₂) ρ₂) λ v₂ -> Now (pair refl v₁ v₂) } } } Backward (evalR i ano (pin r (clo .omega refl θ t))) (pair {Ξ₁ = []} {[]} refl v₁ v₂) = do ano₁ , ano₂ <- all-no-omega-dist _ _ ano Later λ { .force {j} -> BindR (eval j ano₂ (tup ∅ _ (∅-lid _) (mult-omega (weakenΘ-value extendΘ v₁) refl) θ) t) λ r₂ -> Bind (Backward (evalR j ano₂ r₂) v₂) λ ρ₂ -> Bind (Backward (evalR j ano₁ r) v₁) λ ρ₁ -> Now (mergeRValEnv ano ρ₁ ρ₂) } -- The unidirectional evaluation, of which definition would be -- routine except for rather tedious manipulation of value -- environments. eval {Θ} _ ano θ (var x ok) = Now (subst (λ x -> Value Θ x _) (sym (∅-rid _)) (lookupVar θ ok)) eval _ ano θ (abs m t) = Now (clo m refl θ t) eval {Θ} {Γ = Γ} i ano θ (app {Δ₁ = Δ₁} {Δ₂} {Ξ₁ = Ξ₁} {Ξ₂} {m = m} t₁ t₂) with separateEnv {Γ} Δ₁ (m ×ₘ Δ₂) θ ... | tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ with eval i (proj₁ lemma) θ₁ t₁ | proj₂ lemma | un×ₘ-valEnv Γ θ₂ where lemma' : Ξₑ₁ +ₘ Ξₑ₂ +ₘ (Ξ₁ +ₘ m ×ₘ Ξ₂) ≡ (Ξₑ₁ +ₘ Ξ₁) +ₘ (Ξₑ₂ +ₘ m ×ₘ Ξ₂) lemma' = +ₘ-transpose Ξₑ₁ Ξₑ₂ Ξ₁ (m ×ₘ Ξ₂) lemma : all-no-omega (Ξₑ₁ +ₘ Ξ₁) × all-no-omega (Ξₑ₂ +ₘ m ×ₘ Ξ₂) lemma = all-no-omega-dist (Ξₑ₁ +ₘ Ξ₁) _ (subst all-no-omega lemma' ano) ... | T₁ | ano-e2m2 | Ξₑ₂' , θ₂' , refl with (subst all-no-omega (sym (×ₘ-dist m Ξₑ₂' _)) ano-e2m2) ... | ano-m[e2'2] with eval i (all-no-omega-dist-×ₘ m (Ξₑ₂' +ₘ Ξ₂) ano-m[e2'2]) θ₂' t₂ ... | T₂ = Bind T₁ (λ { (clo {Ξ' = Ξ'} {Ξₜ = Ξₜ} m spΞ θf t) → Bind T₂ λ v₂ -> Later λ { .force -> let lemma : m ×ₘ (Ξₑ₂' +ₘ Ξ₂) +ₘ Ξ' +ₘ Ξₜ ≡ Ξₑ₁ +ₘ m ×ₘ Ξₑ₂' +ₘ (Ξ₁ +ₘ m ×ₘ Ξ₂) lemma = begin m ×ₘ (Ξₑ₂' +ₘ Ξ₂) +ₘ Ξ' +ₘ Ξₜ ≡⟨ +ₘ-assoc (m ×ₘ (Ξₑ₂' +ₘ Ξ₂)) Ξ' _ ⟩ m ×ₘ (Ξₑ₂' +ₘ Ξ₂) +ₘ (Ξ' +ₘ Ξₜ) ≡⟨ cong (_ +ₘ_) spΞ ⟩ m ×ₘ (Ξₑ₂' +ₘ Ξ₂) +ₘ (Ξₑ₁ +ₘ Ξ₁) ≡⟨ cong (_+ₘ _) (×ₘ-dist m Ξₑ₂' Ξ₂) ⟩ m ×ₘ Ξₑ₂' +ₘ m ×ₘ Ξ₂ +ₘ (Ξₑ₁ +ₘ Ξ₁) ≡⟨ +ₘ-transpose (m ×ₘ Ξₑ₂') (m ×ₘ Ξ₂) Ξₑ₁ _ ⟩ m ×ₘ Ξₑ₂' +ₘ Ξₑ₁ +ₘ (m ×ₘ Ξ₂ +ₘ Ξ₁) ≡⟨ cong₂ (_+ₘ_) (+ₘ-comm _ _) (+ₘ-comm _ _) ⟩ Ξₑ₁ +ₘ m ×ₘ Ξₑ₂' +ₘ (Ξ₁ +ₘ m ×ₘ Ξ₂) ∎ lemma-ano : all-no-omega (m ×ₘ (Ξₑ₂' +ₘ Ξ₂) +ₘ Ξ' +ₘ Ξₜ) lemma-ano = subst all-no-omega (sym lemma) ano in (Bind (eval _ lemma-ano (tup (m ×ₘ (Ξₑ₂' +ₘ Ξ₂)) Ξ' refl (value-to-multM ano-m[e2'2] v₂) θf) t) λ v -> Now (subst (λ Ξ -> Value Θ Ξ _) lemma v) )} }) eval {Γ = Γ} _ ano θ (unit ad) with discardable-has-no-resources {Γ} θ ad ... | refl = Now (substV (sym (∅-lid _)) (unit refl)) eval {Θ} {Ξₑ} {Γ} i ano θ (letunit {Δ₀ = Δ₀} {Δ} {Ξ₀ = Ξ₀} {Ξ} m t₀ t) with separateEnv {Γ} (m ×ₘ Δ₀) Δ θ ... | tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ with un×ₘ-valEnv Γ θ₁ ... | Ξₑ₁' , θ₁' , refl with subst all-no-omega (+ₘ-transpose (m ×ₘ Ξₑ₁') Ξₑ₂ (m ×ₘ Ξ₀) _) ano ... | ano' with all-no-omega-dist (m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀) _ ano' ... | ano-me1'm0 , ano-e2 with eval i (all-no-omega-dist-×ₘ m (Ξₑ₁' +ₘ Ξ₀) (subst all-no-omega (sym (×ₘ-dist m Ξₑ₁' Ξ₀)) ano-me1'm0)) θ₁' t₀ ... | T₀ = Bind T₀ λ { (unit emp-e1'0) → let lemma : Ξₑ₂ +ₘ Ξ ≡ (m ×ₘ Ξₑ₁' +ₘ Ξₑ₂) +ₘ ((m ×ₘ Ξ₀) +ₘ Ξ) lemma = begin Ξₑ₂ +ₘ Ξ ≡⟨ sym (∅-lid _) ⟩ ∅ +ₘ (Ξₑ₂ +ₘ Ξ) ≡⟨ cong (_+ₘ (Ξₑ₂ +ₘ Ξ)) (sym (×ₘ∅ m)) ⟩ m ×ₘ ∅ +ₘ (Ξₑ₂ +ₘ Ξ) ≡⟨ cong (λ h -> m ×ₘ h +ₘ (Ξₑ₂ +ₘ Ξ)) (emp-e1'0) ⟩ m ×ₘ (Ξₑ₁' +ₘ Ξ₀) +ₘ (Ξₑ₂ +ₘ Ξ) ≡⟨ cong (_+ₘ _) (×ₘ-dist m Ξₑ₁' Ξ₀) ⟩ m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀ +ₘ (Ξₑ₂ +ₘ Ξ) ≡⟨ +ₘ-transpose (m ×ₘ Ξₑ₁') (m ×ₘ Ξ₀) Ξₑ₂ Ξ ⟩ (m ×ₘ Ξₑ₁' +ₘ Ξₑ₂) +ₘ ((m ×ₘ Ξ₀) +ₘ Ξ) ∎ in Dmap (substV lemma) (eval i ano-e2 θ₂ t) } eval {Θ} {Ξₑ} {Γ} i ano θ (pair {Δ₁ = Δ₁} {Δ₂} {Ξ₁ = Ξ₁} {Ξ₂} t₁ t₂) with separateEnv {Γ} Δ₁ Δ₂ θ ... | tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ with subst all-no-omega (+ₘ-transpose Ξₑ₁ Ξₑ₂ Ξ₁ _) ano ... | ano' with all-no-omega-dist (Ξₑ₁ +ₘ Ξ₁) _ ano' ... | ano-e11 , ano-e22 with eval i ano-e11 θ₁ t₁ | eval i ano-e22 θ₂ t₂ ... | T₁ | T₂ = Bind T₁ λ v₁ -> Bind T₂ λ v₂ -> Now (pair (+ₘ-transpose Ξₑ₁ Ξ₁ Ξₑ₂ _) v₁ v₂) eval {Θ} {Ξₑ} {Γ} i ano θ (letpair {Δ₀ = Δ₀} {Δ} {Ξ₀ = Ξ₀} {Ξ} m t₀ t) with separateEnv {Γ} (m ×ₘ Δ₀) Δ θ ... | tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ with un×ₘ-valEnv Γ θ₁ ... | Ξₑ₁' , θ₁' , refl with subst all-no-omega (+ₘ-transpose (m ×ₘ Ξₑ₁') Ξₑ₂ (m ×ₘ Ξ₀) Ξ) ano ... | ano' with all-no-omega-dist (m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀) _ ano' ... | ano-me1'm0 , ano-e2- with subst all-no-omega (sym (×ₘ-dist m Ξₑ₁' _)) ano-me1'm0 ... | ano-m[e1'0] with all-no-omega-dist-×ₘ m _ ano-m[e1'0] ... | ano-e1'0 with eval i ano-e1'0 θ₁' t₀ ... | T₀ = Bind T₀ λ { (pair {Ξ₁ = Ξ₁} {Ξ₂} spΞ v₁ v₂) → let ano-m[12] : all-no-omega (m ×ₘ (Ξ₁ +ₘ Ξ₂)) ano-m[12] = subst all-no-omega (cong (m ×ₘ_) (sym spΞ)) ano-m[e1'0] ano-m1m2 : all-no-omega (m ×ₘ Ξ₁ +ₘ m ×ₘ Ξ₂) ano-m1m2 = subst all-no-omega (×ₘ-dist m Ξ₁ Ξ₂) ano-m[12] an : all-no-omega (m ×ₘ Ξ₁) × all-no-omega (m ×ₘ Ξ₂) an = all-no-omega-dist (m ×ₘ Ξ₁) _ ano-m1m2 eq : m ×ₘ Ξ₁ +ₘ (m ×ₘ Ξ₂ +ₘ Ξₑ₂) ≡ m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀ +ₘ Ξₑ₂ eq = begin m ×ₘ Ξ₁ +ₘ (m ×ₘ Ξ₂ +ₘ Ξₑ₂) ≡⟨ sym (+ₘ-assoc (m ×ₘ Ξ₁) (m ×ₘ Ξ₂) _) ⟩ m ×ₘ Ξ₁ +ₘ m ×ₘ Ξ₂ +ₘ Ξₑ₂ ≡⟨ cong (_+ₘ Ξₑ₂) (sym (×ₘ-dist m Ξ₁ Ξ₂)) ⟩ m ×ₘ (Ξ₁ +ₘ Ξ₂) +ₘ Ξₑ₂ ≡⟨ cong (_+ₘ Ξₑ₂) (cong (m ×ₘ_) spΞ) ⟩ m ×ₘ (Ξₑ₁' +ₘ Ξ₀) +ₘ Ξₑ₂ ≡⟨ cong (_+ₘ Ξₑ₂) (×ₘ-dist m _ _) ⟩ m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀ +ₘ Ξₑ₂ ∎ θ' : ValEnv (_ ∷ _ ∷ Γ) (M→M₀ m ∷ M→M₀ m ∷ Δ) Θ (m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀ +ₘ Ξₑ₂) θ' = tup (m ×ₘ Ξ₁) _ eq (value-to-multM (proj₁ an) v₁) (tup (m ×ₘ Ξ₂) Ξₑ₂ refl (value-to-multM (proj₂ an) v₂) θ₂) eq' : m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀ +ₘ Ξₑ₂ +ₘ Ξ ≡ (m ×ₘ Ξₑ₁' +ₘ Ξₑ₂) +ₘ (m ×ₘ Ξ₀ +ₘ Ξ) eq' = begin m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀ +ₘ Ξₑ₂ +ₘ Ξ ≡⟨ +ₘ-assoc (m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀) Ξₑ₂ _ ⟩ m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀ +ₘ (Ξₑ₂ +ₘ Ξ) ≡⟨ +ₘ-transpose (m ×ₘ Ξₑ₁') (m ×ₘ Ξ₀) Ξₑ₂ _ ⟩ (m ×ₘ Ξₑ₁' +ₘ Ξₑ₂) +ₘ (m ×ₘ Ξ₀ +ₘ Ξ) ∎ -- solve 4 (λ a b c d -> -- ((a ⊞ b) ⊞ c) ⊞ d ⊜ -- (a ⊞ c) ⊞ (b ⊞ d)) refl (m ×ₘ Ξₑ₁') (m ×ₘ Ξ₀) Ξₑ₂ Ξ in Dmap (substV eq') (eval i (subst all-no-omega (sym eq') ano) θ' t) } eval {Θ} {Ξₑ} {Γ} i ano θ (many m t) = do (Ξₑ' , θ' , refl) <- un×ₘ-valEnv Γ θ ano-m[e'-] <- subst all-no-omega (sym (×ₘ-dist m Ξₑ' _)) ano ano-e'- <- all-no-omega-dist-×ₘ m _ ano-m[e'-] Bind (eval i ano-e'- θ' t) λ v -> Now (many m (×ₘ-dist m Ξₑ' _) v) eval {Θ} {Ξₑ} {Γ} i ano θ (unmany {Δ₀ = Δ₀} {Δ} {Ξ₀ = Ξ₀} {Ξ} {m₀ = m₀} {A} m t₀ t) = do tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ <- separateEnv {Γ} (m ×ₘ Δ₀) Δ θ Ξₑ₁' , θ₁' , refl <- un×ₘ-valEnv Γ θ₁ ano' <- subst all-no-omega (+ₘ-transpose (m ×ₘ Ξₑ₁') Ξₑ₂ (m ×ₘ Ξ₀) Ξ) ano ano-me1'm0 , ano-e2 <- all-no-omega-dist (m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀) _ ano' ano-m[e1'0] <- subst all-no-omega (sym (×ₘ-dist m Ξₑ₁' _)) ano-me1'm0 ano-e1'0 <- all-no-omega-dist-×ₘ m _ ano-m[e1'0] Bind (eval i ano-e1'0 θ₁' t₀ ) λ where (many {Ξ₀ = Ξ''} .m₀ sp v₀) -> do let ano-mm₀[e1'0] : all-no-omega (m ×ₘ m₀ ×ₘ Ξ'') ano-mm₀[e1'0] = subst all-no-omega (cong (m ×ₘ_) (sym sp)) ano-m[e1'0] ano-mul[e1'0] : all-no-omega (mul m m₀ ×ₘ Ξ'') ano-mul[e1'0] = subst all-no-omega (sym (mul-×ₘ m m₀ Ξ'')) ano-mm₀[e1'0] eq : m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀ +ₘ (Ξₑ₂ +ₘ Ξ) ≡ mul m m₀ ×ₘ Ξ'' +ₘ Ξₑ₂ +ₘ Ξ eq = begin m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀ +ₘ (Ξₑ₂ +ₘ Ξ) ≡⟨ cong (_+ₘ _) (sym (×ₘ-dist m Ξₑ₁' _)) ⟩ m ×ₘ (Ξₑ₁' +ₘ Ξ₀) +ₘ (Ξₑ₂ +ₘ Ξ) ≡⟨ cong (λ e -> m ×ₘ e +ₘ _) (sym sp) ⟩ m ×ₘ m₀ ×ₘ Ξ'' +ₘ (Ξₑ₂ +ₘ Ξ) ≡⟨ cong (_+ₘ _) (sym (mul-×ₘ m m₀ Ξ'')) ⟩ mul m m₀ ×ₘ Ξ'' +ₘ (Ξₑ₂ +ₘ Ξ) ≡⟨ sym (+ₘ-assoc _ _ _) ⟩ mul m m₀ ×ₘ Ξ'' +ₘ Ξₑ₂ +ₘ Ξ ∎ ano'' : all-no-omega (mul m m₀ ×ₘ Ξ'' +ₘ Ξₑ₂ +ₘ Ξ) ano'' = subst all-no-omega eq ano' θ' : ValEnv (A ∷ Γ) (M→M₀ (mul m m₀) ∷ Δ) Θ (mul m m₀ ×ₘ Ξ'' +ₘ Ξₑ₂) θ' = tup _ Ξₑ₂ refl (value-to-multM ano-mul[e1'0] v₀) θ₂ Bind (eval i ano'' θ' t) λ v -> Now (substV (trans (sym eq) (sym (+ₘ-transpose (m ×ₘ Ξₑ₁') Ξₑ₂ (m ×ₘ Ξ₀) Ξ))) v) eval i ano θ (inl t) = Dmap inl (eval i ano θ t) eval i ano θ (inr t) = Dmap inr (eval i ano θ t) eval {Θ} {Ξₑ = Ξₑ} {Γ} i ano θ (case {Δ₀ = Δ₀} {Δ} {Ξ₀ = Ξ₀} {Ξ} m t₀ t₁ t₂) with separateEnv {Γ} (m ×ₘ Δ₀) Δ θ ... | tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ with un×ₘ-valEnv Γ θ₁ ... | Ξₑ₁' , θ₁' , refl with subst all-no-omega (+ₘ-transpose (m ×ₘ Ξₑ₁') Ξₑ₂ (m ×ₘ Ξ₀) Ξ) ano ... | ano' with all-no-omega-dist (m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀) _ ano' ... | ano-me1'm0 , ano-e2- with subst all-no-omega (sym (×ₘ-dist m Ξₑ₁' _)) ano-me1'm0 ... | ano-m[e1'0] with all-no-omega-dist-×ₘ m _ ano-m[e1'0] ... | ano-e1'0 with eval i ano-e1'0 θ₁' t₀ ... | T₀ = Bind T₀ λ { (inl v) → let θ' : ValEnv (_ ∷ Γ) (M→M₀ m ∷ Δ) Θ (m ×ₘ (Ξₑ₁' +ₘ Ξ₀) +ₘ Ξₑ₂) θ' = tup (m ×ₘ (Ξₑ₁' +ₘ Ξ₀)) Ξₑ₂ refl (value-to-multM ano-m[e1'0] v) θ₂ in Dmap (substV lemma) (eval i (subst all-no-omega (sym lemma) ano) θ' t₁) ; (inr v) → let θ' : ValEnv (_ ∷ Γ) (M→M₀ m ∷ Δ) Θ (m ×ₘ (Ξₑ₁' +ₘ Ξ₀) +ₘ Ξₑ₂) θ' = tup (m ×ₘ (Ξₑ₁' +ₘ Ξ₀)) Ξₑ₂ refl (value-to-multM ano-m[e1'0] v) θ₂ in Dmap (substV lemma) (eval i (subst all-no-omega (sym lemma) ano) θ' t₂) } where lemma : m ×ₘ (Ξₑ₁' +ₘ Ξ₀) +ₘ Ξₑ₂ +ₘ Ξ ≡ (m ×ₘ Ξₑ₁' +ₘ Ξₑ₂) +ₘ (m ×ₘ Ξ₀ +ₘ Ξ) lemma = begin m ×ₘ (Ξₑ₁' +ₘ Ξ₀) +ₘ Ξₑ₂ +ₘ Ξ ≡⟨ cong (λ x -> x +ₘ Ξₑ₂ +ₘ Ξ) (×ₘ-dist m Ξₑ₁' _) ⟩ m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀ +ₘ Ξₑ₂ +ₘ Ξ ≡⟨ +ₘ-assoc (m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀) Ξₑ₂ _ ⟩ m ×ₘ Ξₑ₁' +ₘ m ×ₘ Ξ₀ +ₘ (Ξₑ₂ +ₘ Ξ) ≡⟨ +ₘ-transpose _ _ _ _ ⟩ (m ×ₘ Ξₑ₁' +ₘ Ξₑ₂) +ₘ (m ×ₘ Ξ₀ +ₘ Ξ) ∎ eval i ano θ (roll t) = Dmap roll (eval i ano θ t) eval i ano θ (unroll t) = Bind (eval i ano θ t) λ { (roll v) → Later λ where .force -> Now v } eval {Γ = Γ} i ano θ (unit● ad) with discardable-has-no-resources {Γ} θ ad ... | refl = Now (red (substR (sym (∅-lid _)) unit●)) eval {Θ} {Ξₑ} {Γ} i ano θ (letunit● {Δ₀ = Δ₀} {Δ} {Ξ₀ = Ξ₀} {Ξ} t₀ t) = do tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ <- separateEnv {Γ} Δ₀ Δ θ let lemma : Ξₑ₁ +ₘ Ξₑ₂ +ₘ (Ξ₀ +ₘ Ξ) ≡ Ξₑ₁ +ₘ Ξ₀ +ₘ (Ξₑ₂ +ₘ Ξ) lemma = +ₘ-transpose _ _ _ _ let ano' = subst all-no-omega lemma ano ano-e10 , ano-e2- <- all-no-omega-dist (Ξₑ₁ +ₘ Ξ₀) _ ano' BindR (eval i ano-e10 θ₁ t₀) λ E₀ -> BindR (eval i ano-e2- θ₂ t) λ E -> Now (red (substR (sym lemma) (letunit● E₀ E))) eval {Θ} {Ξₑ} {Γ} i ano θ (pair● {Δ₁ = Δ₁} {Δ₂} {Ξ₁ = Ξ₁} {Ξ₂} t₁ t₂) = do tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ <- separateEnv {Γ} Δ₁ Δ₂ θ let lemma : Ξₑ₁ +ₘ Ξₑ₂ +ₘ (Ξ₁ +ₘ Ξ₂) ≡ Ξₑ₁ +ₘ Ξ₁ +ₘ (Ξₑ₂ +ₘ Ξ₂) lemma = +ₘ-transpose _ _ _ _ let ano' = subst all-no-omega lemma ano ano-e11 , ano-e22 <- all-no-omega-dist (Ξₑ₁ +ₘ Ξ₁) _ ano' BindR (eval i ano-e11 θ₁ t₁) λ E₁ -> BindR (eval i ano-e22 θ₂ t₂) λ E₂ -> Now (red (substR (sym lemma) (pair● E₁ E₂))) eval {Θ} {Ξₑ} {Γ} i ano θ (letpair● {Δ₀ = Δ₀} {Δ} {Ξ₀ = Ξ₀} {Ξ} t₀ t) with separateEnv {Γ} Δ₀ Δ θ ... | tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ with subst all-no-omega (+ₘ-transpose Ξₑ₁ Ξₑ₂ Ξ₀ _) ano ... | ano' with all-no-omega-dist (Ξₑ₁ +ₘ Ξ₀) _ ano' ... | ano-e10 , ano-e2- with eval i ano-e10 θ₁ t₀ | eval i (one ∷ one ∷ ano-e2-) (weakenΘ-valEnv Γ (compat-ext-here (compat-ext-here ext-id)) θ₂) t ... | T₁ | T = Bind T₁ λ { (red E₁) -> Bind T λ { (red E ) -> Now (red (substR (+ₘ-transpose Ξₑ₁ Ξ₀ _ _) (letpair● E₁ E))) }} eval i ano θ (inl● t) = BindR (eval i ano θ t) λ E -> Now (red (inl● E)) eval i ano θ (inr● t) = BindR (eval i ano θ t) λ E -> Now (red (inr● E)) eval {Θ} {Ξₑ} {Γ} i ano θ (case● {Δ₀ = Δ₀} {Δ} {Δ'} {Ξ₀ = Ξ₀} {Ξ} {Ξ'} t t₁ t₂ t₃) with separateEnv {Γ} (Δ₀ +ₘ Δ) _ θ ... | tup Ξₑ₁₂ Ξₑ₃ refl θ' θ₃ with discardable-has-no-resources {Γ} θ₃ (omega×ₘ-discardable Δ') ... | refl with un×ₘ-valEnv Γ θ₃ ... | Ξₑ₃' , θ₃' , eq with omega×ₘ∅-inv Ξₑ₃' eq ... | refl with separateEnv {Γ} Δ₀ Δ θ' ... | tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ with subst all-no-omega lemma ano | lemma where open import Algebra.Solver.CommutativeMonoid (+ₘ-commutativeMonoid (length Θ)) renaming (_⊕_ to _⊞_) lemma : Ξₑ₁ +ₘ Ξₑ₂ +ₘ ∅ +ₘ (Ξ₀ +ₘ Ξ +ₘ omega ×ₘ Ξ') ≡ (Ξₑ₁ +ₘ Ξ₀) +ₘ (Ξₑ₂ +ₘ Ξ) +ₘ omega ×ₘ Ξ' lemma = solve 5 (\a b c d e -> ((a ⊞ b) ⊞ id) ⊞ ((c ⊞ d) ⊞ e) ⊜ ((a ⊞ c) ⊞ (b ⊞ d)) ⊞ e) refl Ξₑ₁ Ξₑ₂ Ξ₀ Ξ (omega ×ₘ Ξ') ... | ano' | lemma with all-no-omega-dist ((Ξₑ₁ +ₘ Ξ₀) +ₘ (Ξₑ₂ +ₘ Ξ)) _ ano' ... | ano'' , ano₃ with all-no-omega-dist (Ξₑ₁ +ₘ Ξ₀) _ ano'' ... | ano-e10 , ano-e2- with all-no-omega-omega×ₘ Ξ' ano₃ ... | refl with eval i ano-e10 θ₁ t | eval i (subst all-no-omega (sym (∅-lid _)) all-no-omega-∅) θ₃' t₃ ... | T | T₃ = Bind T λ { (red r) -> Bind T₃ λ { f -> Now (red (substR (trans lemma' (sym lemma)) let f' = weakenΘ-value smashΘ (subst (λ x -> Value Θ x _) (∅-lid ∅) f) in (case● r refl θ₂ t₁ θ₂ t₂ f'))) } } where lemma' : Ξₑ₁ +ₘ Ξ₀ +ₘ (Ξₑ₂ +ₘ Ξ) ≡ Ξₑ₁ +ₘ Ξ₀ +ₘ (Ξₑ₂ +ₘ Ξ) +ₘ omega ×ₘ ∅ lemma' = sym (trans (cong (λ x -> Ξₑ₁ +ₘ Ξ₀ +ₘ (Ξₑ₂ +ₘ Ξ) +ₘ x) (×ₘ∅ omega)) (∅-rid (Ξₑ₁ +ₘ Ξ₀ +ₘ (Ξₑ₂ +ₘ Ξ) ))) eval {Θ} {Ξₑ} {Γ} i ano θ (var● x ad ok) with discardable-has-no-resources {Γ} θ ad ... | refl = Now (red (substR (sym (∅-lid _)) (var● x ok))) eval {Θ} {Ξₑ} {Γ} i ano θ (pin {Δ₁ = Δ₁} {Δ₂} {Ξ₁ = Ξ₁} {Ξ₂} t₁ t₂) = do tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ <- separateEnv {Γ} Δ₁ Δ₂ θ let ano' = subst all-no-omega (+ₘ-transpose Ξₑ₁ Ξₑ₂ Ξ₁ _) ano ano-e11 , ano-e22 <- all-no-omega-dist (Ξₑ₁ +ₘ Ξ₁) _ ano' BindR (eval i ano-e11 θ₁ t₁) λ r -> Bind (eval i ano-e22 θ₂ t₂) λ v -> Now (red (substR (+ₘ-transpose _ _ _ _) (pin r v))) eval {Γ = Γ} i ano θ (unlift e) = do Ξ' , θ' , refl <- un×ₘ-valEnv Γ θ ano₁ , ano₂ <- all-no-omega-dist _ _ ano refl <- all-no-omega-omega×ₘ _ ano₁ refl <- all-no-omega-omega×ₘ _ ano₂ Bind (eval i (subst all-no-omega (sym (∅-lid ∅)) all-no-omega-∅ ) θ' e) λ v -> BindR (apply i (one ∷ subst all-no-omega (sym lemma₁) all-no-omega-∅) (weakenΘ-value (compat-ext-here ext-id) v) (red var●₀)) λ r -> Now (substV (sym lemma₂) (inj refl (weakenΘ-residual (compat-skip smashΘ) (substR (cong (one ∷_) lemma₁) r) ))) where open import Data.Vec.Properties using (map-id) lemma₁ : ∀ {n} -> ∅ +ₘ ∅ +ₘ Data.Vec.map (λ y -> y) ∅ ≡ ∅ {n} lemma₁ {n} rewrite map-id (∅ {n}) | ∅-rid {n} ∅ = ∅-lid ∅ lemma₂ : ∀ {n} -> omega ×ₘ ∅ +ₘ omega ×ₘ ∅ ≡ ∅ {n} lemma₂ {n} rewrite ×ₘ∅ {n} omega | ∅-lid {n} ∅ = refl eval {Γ = Γ} i ano θ (fapp e₁ e₂) = do anoₑ , ano' <- all-no-omega-dist _ _ ano ano₁ , ano'' <- all-no-omega-dist _ _ ano' refl <- all-no-omega-omega×ₘ _ ano'' tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ <- separateEnv {Γ} _ _ θ Ξₑ₂' , θ₂' , refl <- un×ₘ-valEnv Γ θ₂ ano₁' , _ <- all-no-omega-dist _ _ (subst all-no-omega lemma' ano) Bind (eval i ano₁' θ₁ e₁) λ { (inj spΞ r) → do refl , refl <- ∅+ₘ∅-inv _ _ (sym spΞ) refl <- all-no-omega-omega×ₘ _ (subst all-no-omega (∅-lid _) anoₑ) Bind (eval i (subst all-no-omega (sym (∅-lid ∅)) all-no-omega-∅) θ₂' e₂) λ v -> Later λ { .force {j} -> Bind (Forward (evalR j (one ∷ all-no-omega-∅) r) (weakenΘ-value smashΘ (substV (∅-lid ∅) v) ∷ [])) λ v' -> Now (substV (sym lemma) (weakenΘ-value extendΘ v')) } } where lemma' : ∀ {n} {Ξₑ₁ Ξ₁ X Y : MultEnv n} -> Ξₑ₁ +ₘ X +ₘ (Ξ₁ +ₘ Y) ≡ Ξₑ₁ +ₘ Ξ₁ +ₘ (X +ₘ Y) lemma' {n} {A} {B} {C} {D} = +ₘ-transpose A C B D lemma : ∀ {n} -> ∅ +ₘ omega ×ₘ ∅ +ₘ (∅ +ₘ omega ×ₘ ∅) ≡ ∅ {n} lemma {n} rewrite ×ₘ∅ {n} omega | ∅-lid {n} ∅ = ∅-lid ∅ eval {Γ = Γ} i ano θ (bapp e₁ e₂) = do anoₑ , ano' <- all-no-omega-dist _ _ ano ano₁ , ano'' <- all-no-omega-dist _ _ ano' refl <- all-no-omega-omega×ₘ _ ano'' tup Ξₑ₁ Ξₑ₂ refl θ₁ θ₂ <- separateEnv {Γ} _ _ θ Ξₑ₂' , θ₂' , refl <- un×ₘ-valEnv Γ θ₂ ano₁' , _ <- all-no-omega-dist _ _ (subst all-no-omega lemma' ano) Bind (eval i ano₁' θ₁ e₁) λ { (inj spΞ r) → do refl , refl <- ∅+ₘ∅-inv _ _ (sym spΞ) refl <- all-no-omega-omega×ₘ _ (subst all-no-omega (∅-lid _) anoₑ) Bind (eval i (subst all-no-omega (sym (∅-lid ∅)) all-no-omega-∅) θ₂' e₂) λ v -> Later λ { .force {j} -> Bind (Backward (evalR j (one ∷ all-no-omega-∅) r) (weakenΘ-value smashΘ (substV (∅-lid ∅) v))) λ { (v' ∷ []) -> Now (substV (sym lemma) (weakenΘ-value extendΘ v')) } } } where lemma' : ∀ {n} {Ξₑ₁ Ξ₁ X Y : MultEnv n} -> Ξₑ₁ +ₘ X +ₘ (Ξ₁ +ₘ Y) ≡ Ξₑ₁ +ₘ Ξ₁ +ₘ (X +ₘ Y) lemma' {n} {A} {B} {C} {D} = +ₘ-transpose A C B D lemma : ∀ {n} -> ∅ +ₘ omega ×ₘ ∅ +ₘ (∅ +ₘ omega ×ₘ ∅) ≡ ∅ {n} lemma {n} rewrite ×ₘ∅ {n} omega | ∅-lid {n} ∅ = ∅-lid ∅ open Interpreter public
42.677686
157
0.481991
cbac082a07b0ea51feba646378d293b3ccd40d59
2,295
agda
Agda
vendor/stdlib/src/Data/Fin/Subset/Props.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Data/Fin/Subset/Props.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Data/Fin/Subset/Props.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- Some properties about subsets ------------------------------------------------------------------------ module Data.Fin.Subset.Props where open import Data.Nat open import Data.Vec hiding (_∈_) open import Data.Empty open import Data.Function open import Data.Fin open import Data.Fin.Subset open import Data.Product open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------ -- Constructor mangling drop-there : ∀ {s n x} {p : Subset n} → suc x ∈ s ∷ p → x ∈ p drop-there (there x∈p) = x∈p drop-∷-⊆ : ∀ {n s₁ s₂} {p₁ p₂ : Subset n} → s₁ ∷ p₁ ⊆ s₂ ∷ p₂ → p₁ ⊆ p₂ drop-∷-⊆ p₁s₁⊆p₂s₂ x∈p₁ = drop-there $ p₁s₁⊆p₂s₂ (there x∈p₁) drop-∷-Empty : ∀ {n s} {p : Subset n} → Empty (s ∷ p) → Empty p drop-∷-Empty ¬¬∅ (x , x∈p) = ¬¬∅ (suc x , there x∈p) ------------------------------------------------------------------------ -- More interesting properties allInside : ∀ {n} (x : Fin n) → x ∈ all inside allInside zero = here allInside (suc x) = there (allInside x) allOutside : ∀ {n} (x : Fin n) → x ∉ all outside allOutside zero () allOutside (suc x) (there x∈) = allOutside x x∈ ⊆⊇⟶≡ : ∀ {n} {p₁ p₂ : Subset n} → p₁ ⊆ p₂ → p₂ ⊆ p₁ → p₁ ≡ p₂ ⊆⊇⟶≡ = helper _ _ where helper : ∀ {n} (p₁ p₂ : Subset n) → p₁ ⊆ p₂ → p₂ ⊆ p₁ → p₁ ≡ p₂ helper [] [] _ _ = refl helper (s₁ ∷ p₁) (s₂ ∷ p₂) ₁⊆₂ ₂⊆₁ with ⊆⊇⟶≡ (drop-∷-⊆ ₁⊆₂) (drop-∷-⊆ ₂⊆₁) helper (outside ∷ p) (outside ∷ .p) ₁⊆₂ ₂⊆₁ | refl = refl helper (inside ∷ p) (inside ∷ .p) ₁⊆₂ ₂⊆₁ | refl = refl helper (outside ∷ p) (inside ∷ .p) ₁⊆₂ ₂⊆₁ | refl with ₂⊆₁ here ... | () helper (inside ∷ p) (outside ∷ .p) ₁⊆₂ ₂⊆₁ | refl with ₁⊆₂ here ... | () ∅⟶allOutside : ∀ {n} {p : Subset n} → Empty p → p ≡ all outside ∅⟶allOutside {p = []} ¬¬∅ = refl ∅⟶allOutside {p = s ∷ ps} ¬¬∅ with ∅⟶allOutside (drop-∷-Empty ¬¬∅) ∅⟶allOutside {p = outside ∷ .(all outside)} ¬¬∅ | refl = refl ∅⟶allOutside {p = inside ∷ .(all outside)} ¬¬∅ | refl = ⊥-elim (¬¬∅ (zero , here))
37.016129
72
0.44793
fb7e84152b2edac030360c7a2f2abdca512ed45b
708
agda
Agda
src/Ints.agda
ice1k/Theorems
7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc
[ "Apache-2.0" ]
1
2020-04-15T15:28:03.000Z
2020-04-15T15:28:03.000Z
src/Ints.agda
ice1k/Theorems
7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc
[ "Apache-2.0" ]
null
null
null
src/Ints.agda
ice1k/Theorems
7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc
[ "Apache-2.0" ]
null
null
null
module Ints where open import Nats public using (ℕ; zero; _∸_) renaming (suc to nsuc; _+_ to _:+:_; _*_ to _:*:_) open import Agda.Builtin.Int public renaming (Int to ℤ; negsuc to -[1+_]; pos to +_) infix 8 -_ -- infixl 7 _*_ _⊓_ infixl 6 _+_ _-_ _⊖_ ∣_∣ : ℤ → ℕ ∣ + n ∣ = n ∣ -[1+ n ] ∣ = nsuc n -_ : ℤ → ℤ - (+ nsuc n) = -[1+ n ] - (+ zero) = + zero - -[1+ n ] = + nsuc n _⊖_ : ℕ → ℕ → ℤ m ⊖ zero = + m zero ⊖ nsuc n = -[1+ n ] nsuc m ⊖ nsuc n = m ⊖ n _+_ : ℤ → ℤ → ℤ -[1+ m ] + -[1+ n ] = -[1+ nsuc (m :+: n) ] -[1+ m ] + + n = n ⊖ nsuc m + m + -[1+ n ] = m ⊖ nsuc n + m + + n = + (m :+: n) _-_ : ℤ → ℤ → ℤ i - j = i + - j suc : ℤ → ℤ suc i = + 1 + i
18.153846
52
0.418079
1052f7cceed60f3f4a0ae7baab8301b05d632a3d
586
agda
Agda
test/Succeed/Issue1944-UnappliedOverloadedProjection.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1944-UnappliedOverloadedProjection.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1944-UnappliedOverloadedProjection.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, Bentfest 2016-04-28 Marsstrand -- Issue 1944: also resolve overloaded projections in checking position module _ (A : Set) (a : A) where record R (B : Set) : Set where field f : B open R record S (B : Set) : Set where field f : B open S test : R A → A test = f test1 : ∀{A} → R A → A test1 = f test2 : ∀ A → R A → A test2 A = f {A} postulate F : Set → Set mapF : ∀{A B} (f : A → B) → F A → F B fr : F (R A) test3 : F (R A) → F A test3 = mapF f test4 : F (R _) → F A test4 = mapF f test5 : ∀{A} → F (F (R A)) → F _ test5 = mapF (mapF f) test6 = mapF f fr
15.421053
71
0.559727
1c0974f1d7a7fa7fd5eeb236a9de6a99743f92d5
7,916
agda
Agda
src/SyntaxMap.agda
andrejbauer/dependent-type-theory-syntax
9b634d284a0ec5108c68489575194cd573f38908
[ "MIT" ]
7
2021-05-25T11:14:42.000Z
2021-10-14T01:48:00.000Z
src/SyntaxMap.agda
andrejbauer/dependent-type-theory-syntax
9b634d284a0ec5108c68489575194cd573f38908
[ "MIT" ]
null
null
null
src/SyntaxMap.agda
andrejbauer/dependent-type-theory-syntax
9b634d284a0ec5108c68489575194cd573f38908
[ "MIT" ]
null
null
null
open import Level import Categories.Category open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst; cong) open import Syntax open import Renaming open import Substitution open import Instantiation module SyntaxMap where open Signature open Expression open Equality infix 5 _→ᵐ_ -- syntax map _→ᵐ_ : Signature → Signature → Set 𝕊 →ᵐ 𝕋 = ∀ {cl} (S : symb 𝕊 cl) → Expr 𝕋 (obj cl) (symb-arg 𝕊 S) 𝟘 -- equality of syntax maps infix 4 _≈ᵐ_ _≈ᵐ_ : ∀ {𝕊 𝕋} (f g : 𝕊 →ᵐ 𝕋) → Set _≈ᵐ_ {𝕊 = 𝕊} {𝕋 = 𝕋} f g = ∀ {cl} (S : symb 𝕊 cl) → f S ≈ g S -- equality is an equivalence relation ≈ᵐ-refl : ∀ {𝕊 𝕋} {f : 𝕊 →ᵐ 𝕋} → f ≈ᵐ f ≈ᵐ-refl {𝕋 = 𝕋} S = ≈-refl ≈ᵐ-sym : ∀ {𝕊 𝕋} {f g : 𝕊 →ᵐ 𝕋} → f ≈ᵐ g → g ≈ᵐ f ≈ᵐ-sym {𝕋 = 𝕋} ξ S = ≈-sym (ξ S) ≈ᵐ-trans : ∀ {𝕊 𝕋} {f g h : 𝕊 →ᵐ 𝕋} → f ≈ᵐ g → g ≈ᵐ h → f ≈ᵐ h ≈ᵐ-trans {𝕋 = 𝕋} ζ ξ S = ≈-trans (ζ S) (ξ S) -- The identity raw syntax map 𝟙ᵐ : ∀ {𝕊} → (𝕊 →ᵐ 𝕊) 𝟙ᵐ {𝕊} S = expr-symb S (expr-meta-generic 𝕊) -- Action of a raw syntax map infixr 10 [_]ᵐ_ [_]ᵐ_ : ∀ {𝕊 𝕋} → (𝕊 →ᵐ 𝕋) → ∀ {cl 𝕄 γ} → Expr 𝕊 𝕄 cl γ → Expr 𝕋 𝕄 cl γ [ f ]ᵐ (expr-var x) = expr-var x [_]ᵐ_ {𝕋 = 𝕋} f {𝕄 = 𝕄} (expr-symb S es) = [ (λ M → [ f ]ᵐ es M) ]ⁱ ([ 𝟘-initial ]ʳ f S) [ f ]ᵐ (expr-meta M ts) = expr-meta M (λ i → [ f ]ᵐ (ts i)) [ f ]ᵐ expr-eqty = expr-eqty [ f ]ᵐ expr-eqtm = expr-eqtm -- Action preserves equality []ᵐ-resp-≈ : ∀ {𝕊 𝕋} {cl 𝕄 γ} (f : 𝕊 →ᵐ 𝕋) {t u : Expr 𝕊 𝕄 cl γ} → t ≈ u → [ f ]ᵐ t ≈ [ f ]ᵐ u []ᵐ-resp-≈ f (≈-≡ ξ) = ≈-≡ (cong ([ f ]ᵐ_) ξ) []ᵐ-resp-≈ {𝕋 = 𝕋} f (≈-symb {S = S} ξ) = []ⁱ-resp-≈ⁱ ([ 𝟘-initial ]ʳ f S) λ M → []ᵐ-resp-≈ f (ξ M) []ᵐ-resp-≈ f (≈-meta ξ) = ≈-meta (λ i → []ᵐ-resp-≈ f (ξ i)) []ᵐ-resp-≈ᵐ : ∀ {𝕊 𝕋} {cl 𝕄 γ} {f g : 𝕊 →ᵐ 𝕋} (t : Expr 𝕊 𝕄 cl γ) → f ≈ᵐ g → [ f ]ᵐ t ≈ [ g ]ᵐ t []ᵐ-resp-≈ᵐ (expr-var x) ξ = ≈-refl []ᵐ-resp-≈ᵐ {f = f} {g = g} (expr-symb S es) ξ = []ⁱ-resp-≈ⁱ-≈ {I = λ M → [ f ]ᵐ es M} {J = λ M → [ g ]ᵐ es M} (λ M → []ᵐ-resp-≈ᵐ (es M) ξ) ([]ʳ-resp-≈ 𝟘-initial (ξ S)) []ᵐ-resp-≈ᵐ (expr-meta M ts) ξ = ≈-meta (λ i → []ᵐ-resp-≈ᵐ (ts i) ξ) []ᵐ-resp-≈ᵐ expr-eqty ξ = ≈-eqty []ᵐ-resp-≈ᵐ expr-eqtm ξ = ≈-eqtm []ᵐ-resp-≈ᵐ-≈ : ∀ {𝕊 𝕋} {cl 𝕄 γ} {f g : 𝕊 →ᵐ 𝕋} {t u : Expr 𝕊 𝕄 cl γ} → f ≈ᵐ g → t ≈ u → [ f ]ᵐ t ≈ [ g ]ᵐ u []ᵐ-resp-≈ᵐ-≈ {g = g} {t = t} ζ ξ = ≈-trans ([]ᵐ-resp-≈ᵐ t ζ) ([]ᵐ-resp-≈ g ξ) -- Composition of raw syntax maps infixl 7 _∘ᵐ_ _∘ᵐ_ : ∀ {𝕊 𝕋 𝕌} → (𝕋 →ᵐ 𝕌) → (𝕊 →ᵐ 𝕋) → (𝕊 →ᵐ 𝕌) (g ∘ᵐ f) S = [ g ]ᵐ (f S) -- Action preserves identity module _ {𝕊} where open Equality open Renaming open Substitution [𝟙ᵐ] : ∀ {cl 𝕄 γ} (t : Expr 𝕊 cl 𝕄 γ) → [ 𝟙ᵐ ]ᵐ t ≈ t [𝟙ᵐ] (expr-var x) = ≈-refl [𝟙ᵐ] (expr-symb S es) = ≈-symb (λ {cⁱ γⁱ} i → [𝟙ᵐ]-arg cⁱ γⁱ i) where [𝟙ᵐ]-arg : ∀ cⁱ γⁱ (i : [ cⁱ , γⁱ ]∈ symb-arg 𝕊 S) → _ [𝟙ᵐ]-arg (obj x) γⁱ i = ≈-trans ([]ˢ-resp-≈ _ ([]ʳ-resp-≈ _ ([𝟙ᵐ] (es i)))) (≈-trans (≈-sym ([ˢ∘ʳ] (es i))) ([]ˢ-id (λ { (var-left _) → ≈-refl ; (var-right _) → ≈-refl }))) [𝟙ᵐ]-arg EqTy γⁱ i = ≈-eqty [𝟙ᵐ]-arg EqTm γⁱ i = ≈-eqtm [𝟙ᵐ] (expr-meta M ts) = ≈-meta λ i → [𝟙ᵐ] (ts i) [𝟙ᵐ] expr-eqty = ≈-eqty [𝟙ᵐ] expr-eqtm = ≈-eqtm -- interaction of maps with instantiation and substitution module _ {𝕊 𝕋} where open Substitution infixl 7 _ᵐ∘ˢ_ _ᵐ∘ˢ_ : ∀ {𝕊 𝕋} {𝕄 γ δ} (f : 𝕊 →ᵐ 𝕋) (σ : 𝕊 % 𝕄 ∥ γ →ˢ δ) → (𝕋 % 𝕄 ∥ γ →ˢ δ) (f ᵐ∘ˢ σ) x = [ f ]ᵐ σ x []ᵐ-[]ʳ : ∀ {f : 𝕊 →ᵐ 𝕋} {cl 𝕄 γ δ} {ρ : γ →ʳ δ} (t : Expr 𝕊 cl 𝕄 γ) → ([ f ]ᵐ ([ ρ ]ʳ t)) ≈ ([ ρ ]ʳ [ f ]ᵐ t) []ᵐ-[]ʳ (expr-var x) = ≈-refl []ᵐ-[]ʳ {f = f} {ρ = ρ} (expr-symb S es) = ≈-trans ([]ⁱ-resp-≈ⁱ ([ 𝟘-initial ]ʳ f S) λ M → []ᵐ-[]ʳ (es M)) (≈-trans ([]ⁱ-resp-≈ⁱ-≈ {t = [ 𝟘-initial ]ʳ f S} {u = [ ρ ]ʳ ([ 𝟘-initial ]ʳ f S)} (λ M → ≈-refl) (≈-trans ([]ʳ-resp-≡ʳ (f S) (λ {()})) ([∘ʳ] (f S)))) (≈-sym ([ʳ∘ⁱ] ([ 𝟘-initial ]ʳ f S)))) []ᵐ-[]ʳ (expr-meta M ts) = ≈-meta (λ i → []ᵐ-[]ʳ (ts i)) []ᵐ-[]ʳ expr-eqty = ≈-eqty []ᵐ-[]ʳ expr-eqtm = ≈-eqtm []ᵐ-[]ˢ : ∀ {cl 𝕄 γ δ} {f : 𝕊 →ᵐ 𝕋} {σ : 𝕊 % 𝕄 ∥ γ →ˢ δ} (t : Expr 𝕊 cl 𝕄 γ) → [ f ]ᵐ ([ σ ]ˢ t) ≈ [ f ᵐ∘ˢ σ ]ˢ [ f ]ᵐ t []ᵐ-[]ˢ (expr-var x) = ≈-refl []ᵐ-[]ˢ {f = f} {σ = σ} (expr-symb S es) = ≈-trans ([]ⁱ-resp-≈ⁱ ([ 𝟘-initial ]ʳ f S) (λ M → []ᵐ-[]ˢ (es M))) (≈-trans ([]ⁱ-resp-≈ⁱ ([ 𝟘-initial ]ʳ f S) (λ M → []ˢ-resp-≈ˢ (λ { (var-left x) → []ᵐ-[]ʳ (σ x) ; (var-right _) → ≈-refl}) ([ f ]ᵐ es M))) (≈-sym ([]ˢ-[]ⁱ {ρ = 𝟘-initial} (f S) λ {()}))) []ᵐ-[]ˢ (expr-meta M ts) = ≈-meta (λ i → []ᵐ-[]ˢ (ts i)) []ᵐ-[]ˢ expr-eqty = ≈-eqty []ᵐ-[]ˢ expr-eqtm = ≈-eqtm infixl 7 _ᵐ∘ⁱ_ _ᵐ∘ⁱ_ : ∀ {𝕂 𝕄 γ} (f : 𝕊 →ᵐ 𝕋) (I : 𝕊 % 𝕂 →ⁱ 𝕄 ∥ γ) → 𝕋 % 𝕂 →ⁱ 𝕄 ∥ γ (f ᵐ∘ⁱ I) M = [ f ]ᵐ I M ⇑ⁱ-resp-ᵐ∘ⁱ : ∀ {𝕂 𝕄 γ δ} {f : 𝕊 →ᵐ 𝕋} {I : 𝕊 % 𝕂 →ⁱ 𝕄 ∥ γ} → ⇑ⁱ {δ = δ} (f ᵐ∘ⁱ I) ≈ⁱ f ᵐ∘ⁱ ⇑ⁱ I ⇑ⁱ-resp-ᵐ∘ⁱ {I = I} M = ≈-sym ([]ᵐ-[]ʳ (I M)) []ᵐ-[]ⁱ : ∀ {cl 𝕂 𝕄 γ} {f : 𝕊 →ᵐ 𝕋} {I : 𝕊 % 𝕂 →ⁱ 𝕄 ∥ γ} (t : Expr 𝕊 cl 𝕂 γ) → [ f ]ᵐ ([ I ]ⁱ t) ≈ [ f ᵐ∘ⁱ I ]ⁱ [ f ]ᵐ t []ᵐ-[]ⁱ (expr-var x) = ≈-refl []ᵐ-[]ⁱ {f = f} {I = I} (expr-symb S es) = ≈-trans ([]ⁱ-resp-≈ⁱ ([ 𝟘-initial ]ʳ f S) λ M → ≈-trans ([]ᵐ-[]ⁱ (es M)) ([]ⁱ-resp-≈ⁱ ([ f ]ᵐ es M) (≈ⁱ-sym (⇑ⁱ-resp-ᵐ∘ⁱ {I = I})))) ([∘ⁱ] ([ 𝟘-initial ]ʳ f S)) []ᵐ-[]ⁱ {f = f} {I = I} (expr-meta M ts) = ≈-trans ([]ᵐ-[]ˢ (I M)) ([]ˢ-resp-≈ˢ (λ { (var-left _) → ≈-refl ; (var-right x) → []ᵐ-[]ⁱ (ts x)}) ([ f ]ᵐ I M)) []ᵐ-[]ⁱ expr-eqty = ≈-eqty []ᵐ-[]ⁱ expr-eqtm = ≈-eqtm -- idenity is right-neutral []ᵐ-meta-generic : ∀ {𝕊 𝕋} {𝕄 γ} {f : 𝕊 →ᵐ 𝕋} {clᴹ γᴹ} {M : [ clᴹ , γᴹ ]∈ 𝕄} → [ f ]ᵐ (expr-meta-generic 𝕊 {γ = γ} M) ≈ expr-meta-generic 𝕋 M []ᵐ-meta-generic {clᴹ = obj _} = ≈-refl []ᵐ-meta-generic {clᴹ = EqTy} = ≈-eqty []ᵐ-meta-generic {clᴹ = EqTm} = ≈-eqtm 𝟙ᵐ-right : ∀ {𝕊 𝕋} {f : 𝕊 →ᵐ 𝕋} → f ∘ᵐ 𝟙ᵐ ≈ᵐ f 𝟙ᵐ-right {f = f} S = ≈-trans ([]ⁱ-resp-≈ⁱ ([ 𝟘-initial ]ʳ (f S)) λ M → []ᵐ-meta-generic {M = M}) (≈-trans ([𝟙ⁱ] ([ 𝟘-initial ]ʳ f S)) ([]ʳ-id (λ { ()}))) -- Action preserves composition module _ {𝕊 𝕋 𝕌} where [∘ᵐ] : ∀ {f : 𝕊 →ᵐ 𝕋} {g : 𝕋 →ᵐ 𝕌} {cl 𝕄 γ} (t : Expr 𝕊 cl 𝕄 γ) → [ g ∘ᵐ f ]ᵐ t ≈ [ g ]ᵐ [ f ]ᵐ t [∘ᵐ] (expr-var x) = ≈-refl [∘ᵐ] {f = f} {g = g} (expr-symb S es) = ≈-trans ([]ⁱ-resp-≈ⁱ-≈ (λ M → [∘ᵐ] (es M)) (≈-sym ([]ᵐ-[]ʳ (f S)))) (≈-sym ([]ᵐ-[]ⁱ ([ 𝟘-initial ]ʳ f S))) [∘ᵐ] (expr-meta M ts) = ≈-meta (λ i → [∘ᵐ] (ts i)) [∘ᵐ] expr-eqty = ≈-eqty [∘ᵐ] expr-eqtm = ≈-eqtm -- Associativity of composition assocᵐ : ∀ {𝕊 𝕋 𝕌 𝕍} {f : 𝕊 →ᵐ 𝕋} {g : 𝕋 →ᵐ 𝕌} {h : 𝕌 →ᵐ 𝕍} → (h ∘ᵐ g) ∘ᵐ f ≈ᵐ h ∘ᵐ (g ∘ᵐ f) assocᵐ {f = f} S = [∘ᵐ] (f S) -- The category of signatures and syntax maps module _ where open Categories.Category SyntaxMaps : Category (suc zero) zero zero SyntaxMaps = record { Obj = Signature ; _⇒_ = _→ᵐ_ ; _≈_ = _≈ᵐ_ ; id = 𝟙ᵐ ; _∘_ = _∘ᵐ_ ; assoc = λ {_} {_} {_} {_} {f} {_} {_} {_} S → [∘ᵐ] (f S) ; sym-assoc = λ {_} {_} {_} {𝕍} {f} {_} {_} {_} S → ≈-sym ([∘ᵐ] (f S)) ; identityˡ = λ S → [𝟙ᵐ] _ ; identityʳ = λ {_} {_} {f} {_} → 𝟙ᵐ-right {f = f} ; identity² = λ _ → [𝟙ᵐ] _ ; equiv = record { refl = λ _ → ≈-refl ; sym = ≈ᵐ-sym ; trans = ≈ᵐ-trans } ; ∘-resp-≈ = λ ζ ξ S → []ᵐ-resp-≈ᵐ-≈ ζ (ξ S) }
33.685106
114
0.41334
d0b74f91299c53bfac300cabd6fc521a21172e82
112
agda
Agda
papers/unraveling-recursion/code/src/Type.agda
imikushin/plutus
2c5bda20fb94b0f3737ba1a236ef5d7a7fd9f631
[ "Apache-2.0" ]
1,299
2018-10-02T13:41:39.000Z
2022-03-28T01:10:02.000Z
papers/unraveling-recursion/code/src/Type.agda
imikushin/plutus
2c5bda20fb94b0f3737ba1a236ef5d7a7fd9f631
[ "Apache-2.0" ]
2,493
2018-09-28T19:28:17.000Z
2022-03-31T15:31:31.000Z
papers/unraveling-recursion/code/src/Type.agda
imikushin/plutus
2c5bda20fb94b0f3737ba1a236ef5d7a7fd9f631
[ "Apache-2.0" ]
399
2018-10-05T09:36:10.000Z
2022-03-31T11:18:25.000Z
module Type where open import Type.Core public open import Type.NbE public open import Type.Lemmas public
18.666667
30
0.785714
0e8c5cd932f5bfaa7d51e7e2351899e93bffb61c
1,228
agda
Agda
Cubical/Data/Prod/Base.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Data/Prod/Base.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
Cubical/Data/Prod/Base.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Prod.Base where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function -- Here we define an inductive version of the product type, see below -- for its uses. -- See `Cubical.Data.Sigma` for `_×_` defined as a special case of -- sigma types, which is the generally preferred one. -- If × is defined using Σ then transp/hcomp will be compute -- "negatively", that is, they won't reduce unless we project out the -- first of second component. This is not always what we want so this -- implementation is done using a datatype which computes positively. private variable ℓ ℓ' : Level data _×_ (A : Type ℓ) (B : Type ℓ') : Type (ℓ-max ℓ ℓ') where _,_ : A → B → A × B infixr 5 _×_ proj₁ : {A : Type ℓ} {B : Type ℓ'} → A × B → A proj₁ (x , _) = x proj₂ : {A : Type ℓ} {B : Type ℓ'} → A × B → B proj₂ (_ , x) = x private variable A : Type ℓ B C : A → Type ℓ intro : (∀ a → B a) → (∀ a → C a) → ∀ a → B a × C a intro f g a = f a , g a map : {B : Type ℓ} {D : B → Type ℓ'} → (∀ a → C a) → (∀ b → D b) → (x : A × B) → C (proj₁ x) × D (proj₂ x) map f g = intro (f ∘ proj₁) (g ∘ proj₂)
25.583333
72
0.612378
0eb14ac353548178662986188b4124fbfa3bd01e
484
agda
Agda
OutsideIn/TopLevel.agda
liamoc/outside-in
fc1fc1bba2af95806d9075296f9ed1074afa4c24
[ "BSD-3-Clause" ]
2
2015-09-14T05:22:15.000Z
2020-11-19T14:30:07.000Z
OutsideIn/TopLevel.agda
liamoc/outside-in
fc1fc1bba2af95806d9075296f9ed1074afa4c24
[ "BSD-3-Clause" ]
null
null
null
OutsideIn/TopLevel.agda
liamoc/outside-in
fc1fc1bba2af95806d9075296f9ed1074afa4c24
[ "BSD-3-Clause" ]
null
null
null
open import OutsideIn.Prelude open import OutsideIn.X module OutsideIn.TopLevel(x : X) where import OutsideIn.Expressions as E open E(x) open X(x) data Program (ev : Set)(tv : Set) : Set where end : Program ev tv bind₁_,_ : ∀ {s} → Expression ev tv s → Program (Ⓢ ev) tv → Program ev tv bind₂_·_∷_⇒_,_ : ∀ {s} → (n : ℕ) → Expression ev (tv ⨁ n) s → QConstraint (tv ⨁ n) → Type (tv ⨁ n) → Program (Ⓢ ev) tv → Program ev tv
34.571429
77
0.572314
4a7b5dfce4c7b1560fd21ec55ad7b002c11bde29
3,284
agda
Agda
src/Const.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Const.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Const.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Some properties related to the const function ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Const {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Logical-equivalence using (_⇔_) open import Prelude import Bijection eq as Bijection open Derived-definitions-and-properties eq open import Embedding eq open import Equivalence eq as Eq using (_≃_) open import Fin eq open import Function-universe eq open import H-level eq open import H-level.Closure eq open import Injection eq using (Injective) import Nat eq as Nat open import Univalence-axiom eq -- If A is inhabited, then the function const : B → (A → B) is -- injective. const-is-injective : ∀ {a b} → {A : Type a} {B : Type b} → A → Injective {B = A → B} const const-is-injective x {y} {z} = const y ≡ const z ↝⟨ cong (_$ x) ⟩□ y ≡ z □ -- Thus, if B is a set, then const is also an embedding (assuming -- extensionality). const-is-embedding : ∀ {a b} → Extensionality (a ⊔ b) (a ⊔ b) → {A : Type a} {B : Type b} → Is-set B → A → Is-embedding {B = A → B} const const-is-embedding {a} {b} ext B-set x = _≃_.to (Injective≃Is-embedding ext B-set (Π-closure (lower-extensionality b a ext) 2 λ _ → B-set) const) (const-is-injective x) -- However, if B is not a set, then one can construct a counterexample -- (assuming extensionality and univalence). -- -- This example is due to Thierry Coquand. (His proof was not -- identical to the one below.) const-is-not-embedding : ∀ {a b} → Extensionality (a ⊔ b) (lsuc b) → Univalence b → Univalence (# 0) → ¬ ({A : Type a} {B : Type (lsuc b)} → A → Is-embedding {B = A → B} const) const-is-not-embedding {a} {b} ext univ univ₀ hyp = from-⊎ (2 Nat.≟ 4) 2≡4 where ext-b : Extensionality b b ext-b = lower-extensionality a (lsuc b) ext ext-ab₊ : Extensionality a (lsuc b) ext-ab₊ = lower-extensionality b lzero ext ext₁ : Extensionality (# 0) (# 1) ext₁ = lower-extensionality _ (lsuc b) ext ext₀ : Extensionality (# 0) (# 0) ext₀ = lower-extensionality _ _ ext emb : Is-embedding {B = ↑ a (Fin 2) → Type b} const emb = hyp (lift true) 2≡4 : 2 ≡ 4 2≡4 = _⇔_.to isomorphic-same-size ( Fin 2 ↝⟨ inverse $ [Fin≡Fin]↔Fin! ext₀ univ₀ 2 ⟩ Fin 2 ≡ Fin 2 ↔⟨ inverse $ ≡-preserves-≃ ext-b univ univ₀ (Eq.↔⇒≃ Bijection.↑↔) (Eq.↔⇒≃ Bijection.↑↔) ⟩ ↑ b (Fin 2) ≡ ↑ b (Fin 2) ↔⟨ Eq.⟨ _ , emb (↑ b (Fin 2)) (↑ b (Fin 2)) ⟩ ⟩ const (↑ b (Fin 2)) ≡ const (↑ b (Fin 2)) ↔⟨ inverse $ Eq.extensionality-isomorphism ext-ab₊ ⟩ (↑ a (Fin 2) → ↑ b (Fin 2) ≡ ↑ b (Fin 2)) ↔⟨ →-cong ext-ab₊ (Eq.↔⇒≃ Bijection.↑↔) (≡-preserves-≃ ext-b univ univ₀ (Eq.↔⇒≃ Bijection.↑↔) (Eq.↔⇒≃ Bijection.↑↔)) ⟩ (Fin 2 → Fin 2 ≡ Fin 2) ↝⟨ ∀-cong ext₁ (λ _ → [Fin≡Fin]↔Fin! ext₀ univ₀ 2) ⟩ (Fin 2 → Fin 2) ↝⟨ [Fin→Fin]↔Fin^ ext₀ 2 2 ⟩□ Fin 4 □)
33.85567
136
0.53715
5001f7fd3970ecd535630486444afe464e9bdad7
628
agda
Agda
notes/papers/implicit/examples/Loop.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
notes/papers/implicit/examples/Loop.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
notes/papers/implicit/examples/Loop.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Loop where {- data _=>_ (A, B : Set) : Set where lam : (A -> B) -> A => B app : {A, B : Set} -> (A => B) -> A -> B app (lam f) = f delta = lam (\x -> app x x) loop = app delta delta -} lam : (A, B : Set) -> (A -> B) -> A -> B lam A B f = f app : (A, B : Set) -> (A -> B) -> A -> B app A B f = f postulate Nat : Set zero : Nat wrap : (F : Nat -> Set) -> F zero -> F zero wrap F x = x delta : (Nat -> Nat) -> Nat delta = \x -> x (wrap _ x) loop : Nat loop = delta (wrap _ delta) -- delta : _ -> _ -- delta = \x -> app _ _ x x -- lam _ _ (\x -> app _ _ x x) -- -- loop = app _ _ delta (wrap _ delta)
16.526316
59
0.461783
4aed98737d2fd903b59c1c48c0f76673612034b3
19,149
agda
Agda
LibraBFT/Yasm/System.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
LibraBFT/Yasm/System.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
LibraBFT/Yasm/System.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Base.Types import LibraBFT.Yasm.Base as LYB -- This module defines a model of a distributed system, parameterized by -- SystemParameters, which establishes various application-dependent types, -- handlers, etc. The model supports a set of peers executing handlers in -- response to messages received; these handlers can update the peer's -- local state and/or send additional messages. The model also enables -- "cheat" steps, which can send arbitrary messages, except that they are -- constrained to prevent a cheat step from introducing a new signature for -- an "honest" public key. The module also contains some structures for -- proving properties of executions of the modeled system. module LibraBFT.Yasm.System (ℓ-EC : Level) (EpochConfig : Set ℓ-EC) (epochId : EpochConfig → EpochId) (authorsN : EpochConfig → ℕ) (parms : LYB.SystemParameters ℓ-EC EpochConfig epochId authorsN) where data InitStatus : Set where uninitd : InitStatus initd : InitStatus open import LibraBFT.Yasm.Base ℓ-EC EpochConfig epochId authorsN open SystemParameters parms open import LibraBFT.Yasm.AvailableEpochs PeerId ℓ-EC EpochConfig epochId authorsN using (AvailableEpochs) renaming (lookup'' to EC-lookup) import LibraBFT.Yasm.AvailableEpochs PeerId ℓ-EC EpochConfig epochId authorsN as AE open import Util.FunctionOverride PeerId _≟PeerId_ open import LibraBFT.Base.PKCS SenderMsgPair : Set SenderMsgPair = PeerId × Msg SentMessages : Set SentMessages = List SenderMsgPair -- The model supports sending messages that contain some fields that are -- /not/ covered by the message's signature. Therefore, given a message -- with a verifiable signature, it is possible for a propositionally -- different message that verifies against the same signature to have been -- sent before, which is captured by the following definition. record MsgWithSig∈ (pk : PK)(sig : Signature)(pool : SentMessages) : Set where constructor mkMsgWithSig∈ field msgWhole : Msg msgPart : Part msg⊆ : msgPart ⊂Msg msgWhole msgSender : PeerId msg∈pool : (msgSender , msgWhole) ∈ pool msgSigned : WithVerSig pk msgPart msgSameSig : ver-signature msgSigned ≡ sig open MsgWithSig∈ public postulate -- TODO-1: prove it MsgWithSig∈? : ∀ {pk} {sig} {pool} → Dec (MsgWithSig∈ pk sig pool) MsgWithSig∈-++ʳ : ∀{pk sig pool ms} → MsgWithSig∈ pk sig pool → MsgWithSig∈ pk sig (ms ++ pool) MsgWithSig∈-++ʳ {ms = pre} msig = record { msgWhole = msgWhole msig ; msgPart = msgPart msig ; msg⊆ = msg⊆ msig ; msg∈pool = Any-++ʳ pre (msg∈pool msig) ; msgSigned = msgSigned msig ; msgSameSig = msgSameSig msig } MsgWithSig∈-++ˡ : ∀{pk sig pool ms} → MsgWithSig∈ pk sig ms → MsgWithSig∈ pk sig (ms ++ pool) MsgWithSig∈-++ˡ {ms = pre} msig = record { msgWhole = msgWhole msig ; msgPart = msgPart msig ; msg⊆ = msg⊆ msig ; msg∈pool = Any-++ˡ (msg∈pool msig) ; msgSigned = msgSigned msig ; msgSameSig = msgSameSig msig } MsgWithSig∈-transp : ∀{pk sig pool pool'} → (mws : MsgWithSig∈ pk sig pool) → (msgSender mws , msgWhole mws) ∈ pool' → MsgWithSig∈ pk sig pool' MsgWithSig∈-transp msig ∈pool' = record { msgWhole = msgWhole msig ; msgPart = msgPart msig ; msg⊆ = msg⊆ msig ; msg∈pool = ∈pool' ; msgSigned = msgSigned msig ; msgSameSig = msgSameSig msig } -- * Forbidding the Forging of Signatures -- -- Whenever our reasoning must involve digital signatures, it is standard -- to talk about EUF-CMA resistant signature schemes. Informally, this captures -- signatures schemes that cannot be compromised by certain adversaries. -- Formally, it means that for any probabilistic-polynomial-time adversary 𝓐, -- and some security parameter k: -- -- Pr[ EUF-CMA(k) ] ≤ ε(k) for ε a negigible function. -- -- EUF-CMA is defined as: -- -- EUF-CMA(k): | O(m): -- L ← ∅ | σ ← Sign(sk , m) -- (pk, sk) ← Gen(k) | L ← L ∪ { m } -- (m , σ) ← 𝓐ᴼ(pk) | return σ -- return (Verify(pk, m, σ) ∧ m ∉ L) | -- -- This says that 𝓐 cannot create a message that has /not yet been signed/ and -- forge a signature for it. The list 'L' keeps track of the messages that 𝓐 -- asked to be signed by the oracle. -- -- Because the probability of the adversary to win the EUF-CMA(k) game -- approaches 0 as k increases; it is reasonable to assume that winning -- the game is /impossible/ for realistic security parameters. -- -- EUF-CMA security is incorporated into our model by constraining messages -- sent by a cheat step to ensure that for every verifiably signed part of -- such a message, if there is a signature on the part, then it is either for -- a dishonest public key (in which cases it's secret key may have been leaked), -- or a message has been sent with the same signature before (in which case the -- signature is simply being "replayed" from a previous message). -- -- Dishonest (or "cheat") messages are those that are not the result of -- a /handle/ or /init/ call, but rather are the result of a /cheat/ step. -- -- A part of a cheat message can contain a verifiable signature only if it -- is for a dishonest public key, or a message with the same signature has -- been sent before (a cheater can "reuse" an honest signature sent -- before; it just can't produce a new one). Note that this constraint -- precludes a peer sending a message that contains a new verifiable -- signature for an honest PK, even if the PK is the peer's own PK for -- some epoch (implying that the peer possesses the associated secret -- key). In other words, a peer that is honest for a given epoch (by -- virtue of being a member of that epoch and being assigned an honest PK -- for the epoch), cannot send a message for that epoch using a cheat -- step. CheatPartConstraint : SentMessages → Part → Set CheatPartConstraint pool m = ∀{pk} → (ver : WithVerSig pk m) → Meta-Dishonest-PK pk ⊎ MsgWithSig∈ pk (ver-signature ver) pool -- The only constraints on messages sent by cheat steps are that: -- * the sender is not an honest member in the epoch of any part of the message -- * the signature on any part of the message satisfies CheatCanSign, meaning -- that it is not a new signature for an honest public key CheatMsgConstraint : SentMessages → Msg → Set CheatMsgConstraint pool m = ∀{part} → part ⊂Msg m → CheatPartConstraint pool part -- * The System State -- -- A system consists in a partial map from PeerId to PeerState, a pool -- of sent messages and a number of available epochs. record SystemState (e : ℕ) : Set ℓ-EC where field peerStates : PeerId → PeerState initialised : PeerId → InitStatus msgPool : SentMessages -- All messages ever sent availEpochs : AvailableEpochs e open SystemState public initialState : SystemState 0 initialState = record { peerStates = const initPS ; initialised = const uninitd ; msgPool = [] ; availEpochs = [] } -- Convenience function for appending an epoch to the system state pushEpoch : ∀{e} → EpochConfigFor e → SystemState e → SystemState (suc e) pushEpoch 𝓔 st = record { peerStates = peerStates st ; initialised = initialised st ; msgPool = msgPool st ; availEpochs = AE.append 𝓔 (availEpochs st) } -- * Small Step Semantics -- -- The small step semantics are divided into three datatypes: -- -- i) StepPeerState executes a step through init or handle -- ii) StepPeer executes a step through StepPeerState or cheat -- iii) Step transitions the system state by a StepPeer or by -- bringing a new epoch into existence -- The pre and post states of Honest peers are related iff data StepPeerState {e}(pid : PeerId)(𝓔s : AvailableEpochs e)(pool : SentMessages) (peerInits : PeerId → InitStatus) (ps : PeerState) : (PeerId → InitStatus) → (PeerState × List Msg) → Set where -- The peer receives an "initialization package"; for now, this consists -- of the actual EpochConfig for the epoch being initialized. Later, we -- may move to a more general scheme, enabled by assuming a function -- 'render : InitPackage -> EpochConfig'. step-init : ∀ (ix : Fin e) → StepPeerState pid 𝓔s pool peerInits ps ⟦ peerInits , pid ← initd ⟧ (init pid (AE.lookup' 𝓔s ix) ps) -- The peer processes a message in the pool step-msg : ∀{m} → m ∈ pool → peerInits pid ≡ initd → StepPeerState pid 𝓔s pool peerInits ps peerInits (handle pid (proj₂ m) ps) -- The pre-state of the suplied PeerId is related to the post-state and list of output messages iff: data StepPeer {e}(pre : SystemState e) : PeerId → PeerState → List Msg → Set where -- it can be obtained by a handle or init call. step-honest : ∀{pid st outs init'} → StepPeerState pid (availEpochs pre) (msgPool pre) (initialised pre) (peerStates pre pid) init' (st , outs) → StepPeer pre pid st outs -- or the peer decides to cheat. CheatMsgConstraint ensures it cannot -- forge signatures by honest peers. Cheat steps do not modify peer -- state: these are maintained exclusively by the implementation -- handlers. step-cheat : ∀{pid} → (fm : SentMessages → PeerState → Msg) → let m = fm (msgPool pre) (peerStates pre pid) in CheatMsgConstraint (msgPool pre) m → StepPeer pre pid (peerStates pre pid) (m ∷ []) isCheat : ∀ {e pre pid ms outs} → StepPeer {e} pre pid ms outs → Set isCheat (step-honest _) = ⊥ isCheat (step-cheat _ _) = Unit -- Computes the post-sysstate for a given step-peer. StepPeer-post : ∀{e pid st' outs}{pre : SystemState e} → StepPeer pre pid st' outs → SystemState e StepPeer-post {e} {pid} {st'} {outs} {pre} _ = record pre { peerStates = ⟦ peerStates pre , pid ← st' ⟧ ; msgPool = List-map (pid ,_) outs ++ msgPool pre } StepPeer-post-lemma : ∀{e pid st' outs}{pre : SystemState e} → (pstep : StepPeer pre pid st' outs) → st' ≡ peerStates (StepPeer-post pstep) pid StepPeer-post-lemma pstep = sym override-target-≡ cheatStepDNMPeerStates : ∀{e pid st' outs}{pre : SystemState e} → (theStep : StepPeer pre pid st' outs) → isCheat theStep → peerStates (StepPeer-post theStep) ≡ peerStates pre cheatStepDNMPeerStates {pid = pid} {pre = pre} (step-cheat _ _) _ = overrideSameVal-correct-ext {f = peerStates pre} {pid} cheatStepDNMPeerStates₁ : ∀{e pid pid' st' outs}{pre : SystemState e} → (theStep : StepPeer pre pid st' outs) → isCheat theStep → peerStates (StepPeer-post theStep) pid' ≡ peerStates pre pid' cheatStepDNMPeerStates₁ {_} {pid} {pid'} (step-cheat fm x₁) x = overrideSameVal-correct pid pid' data Step : ∀{e e'} → SystemState e → SystemState e' → Set ℓ-EC where step-epoch : ∀{e}{pre : SystemState e} → (𝓔 : EpochConfigFor e) -- TODO-3: Eventually, we'll condition this step to only be -- valid when peers on the previous epoch have agreed that 𝓔 -- is the new one. → ∃EnoughValidCommitMsgsFor pre 𝓔 → Step pre (pushEpoch 𝓔 pre) step-peer : ∀{e pid st' outs}{pre : SystemState e} → (pstep : StepPeer pre pid st' outs) → Step pre (StepPeer-post pstep) msgs-stable : ∀ {e e'} {pre : SystemState e} {post : SystemState e'} {m} → (theStep : Step pre post) → m ∈ msgPool pre → m ∈ msgPool post msgs-stable (step-epoch _) m∈ = m∈ msgs-stable (step-peer {pid = pid} {outs = outs} _) m∈ = Any-++ʳ (List-map (pid ,_) outs) m∈ peersRemainInitialized : ∀ {pid} {e e'} {pre : SystemState e} {post : SystemState e'} → (theStep : Step pre post) → initialised pre pid ≡ initd → initialised post pid ≡ initd peersRemainInitialized (step-epoch _) isInitd = isInitd peersRemainInitialized {pid} (step-peer step) isInitd with step ... | step-cheat _ _ = isInitd ... | step-honest {pidS} {st} {outs} stp with pid ≟PeerId pidS ...| yes refl = isInitd ...| no imp = isInitd -- not used yet, but some proofs could probably be cleaned up using this, -- e.g., prevVoteRnd≤-pred-step in Impl.VotesOnce sendMessages-target : ∀ {m : SenderMsgPair} {sm : SentMessages} {ml : List SenderMsgPair} → ¬ (m ∈ sm) → m ∈ (ml ++ sm) → m ∈ ml sendMessages-target {ml = ml} ¬m∈sm m∈++ with Any-++⁻ ml m∈++ ...| inj₁ m∈ml = m∈ml ...| inj₂ m∈sm = ⊥-elim (¬m∈sm m∈sm) step-epoch-does-not-send : ∀ {e} (pre : SystemState e) (𝓔 : EpochConfigFor e) → msgPool (pushEpoch 𝓔 pre) ≡ msgPool pre step-epoch-does-not-send _ _ = refl -- * Reflexive-Transitive Closure data Step* : ∀{e e'} → SystemState e → SystemState e' → Set ℓ-EC where step-0 : ∀{e}{pre : SystemState e} → Step* pre pre step-s : ∀{e e' e''}{fst : SystemState e}{pre : SystemState e'}{post : SystemState e''} → Step* fst pre → Step pre post → Step* fst post ReachableSystemState : ∀{e} → SystemState e → Set ℓ-EC ReachableSystemState = Step* initialState eventProcessorPostSt : ∀ {pid s' s outs init'} {e} {st : SystemState e} → (r : ReachableSystemState st) → (stP : StepPeerState pid (availEpochs st) (msgPool st) (initialised st) (peerStates st pid) init' (s' , outs)) → peerStates (StepPeer-post {pre = st} (step-honest stP)) pid ≡ s → s ≡ s' eventProcessorPostSt _ _ ps≡s = trans (sym ps≡s) override-target-≡ Step*-mono : ∀{e e'}{st : SystemState e}{st' : SystemState e'} → Step* st st' → e ≤ e' Step*-mono step-0 = ≤-refl Step*-mono (step-s tr (step-peer _)) = Step*-mono tr Step*-mono (step-s tr (step-epoch _)) = ≤-step (Step*-mono tr) MsgWithSig∈-Step* : ∀{e e' sig pk}{st : SystemState e}{st' : SystemState e'} → Step* st st' → MsgWithSig∈ pk sig (msgPool st) → MsgWithSig∈ pk sig (msgPool st') MsgWithSig∈-Step* step-0 msig = msig MsgWithSig∈-Step* (step-s tr (step-epoch _)) msig = MsgWithSig∈-Step* tr msig MsgWithSig∈-Step* (step-s tr (step-peer ps)) msig = MsgWithSig∈-++ʳ (MsgWithSig∈-Step* tr msig) MsgWithSig∈-Step*-part : ∀{e e' sig pk}{st : SystemState e}{st' : SystemState e'} → (tr : Step* st st') → (msig : MsgWithSig∈ pk sig (msgPool st)) → msgPart msig ≡ msgPart (MsgWithSig∈-Step* tr msig) MsgWithSig∈-Step*-part step-0 msig = refl MsgWithSig∈-Step*-part (step-s tr (step-epoch _)) msig = MsgWithSig∈-Step*-part tr msig MsgWithSig∈-Step*-part (step-s tr (step-peer ps)) msig = MsgWithSig∈-Step*-part tr msig MsgWithSig∈-Step*-sender : ∀{e e' sig pk}{st : SystemState e}{st' : SystemState e'} → (tr : Step* st st') → (msig : MsgWithSig∈ pk sig (msgPool st)) → msgSender msig ≡ msgSender (MsgWithSig∈-Step* tr msig) MsgWithSig∈-Step*-sender step-0 msig = refl MsgWithSig∈-Step*-sender (step-s tr (step-epoch _)) msig = MsgWithSig∈-Step*-sender tr msig MsgWithSig∈-Step*-sender (step-s tr (step-peer ps)) msig = MsgWithSig∈-Step*-sender tr msig ------------------------------------------ -- Type synonym to express a relation over system states; SystemStateRel : (∀{e e'} → SystemState e → SystemState e' → Set ℓ-EC) → Set (ℓ+1 ℓ-EC) SystemStateRel P = ∀{e e'}{st : SystemState e}{st' : SystemState e'} → P st st' → Set ℓ-EC -- Just like Data.List.Any maps a predicate over elements to a predicate over lists, -- Any-step maps a relation over steps to a relation over steps in a trace. data Any-Step (P : SystemStateRel Step) : SystemStateRel Step* where step-here : ∀{e e' e''}{fst : SystemState e}{pre : SystemState e'}{post : SystemState e''} → (cont : Step* fst pre) → {this : Step pre post}(prf : P this) → Any-Step P (step-s cont this) step-there : ∀{e e' e''}{fst : SystemState e}{pre : SystemState e'}{post : SystemState e''} → {cont : Step* fst pre} → {this : Step pre post} → (prf : Any-Step P cont) → Any-Step P (step-s cont this) Any-Step-⇒ : ∀ {P Q : SystemStateRel Step} → (∀ {e e'}{pre : SystemState e}{post : SystemState e'} → (x : Step pre post) → P {e} {e'} x → Q {e} {e'} x) → ∀ {e e' fst lst} {tr : Step* {e} {e'} fst lst} → Any-Step P tr → Any-Step Q tr Any-Step-⇒ p⇒q (step-here cont {this} prf) = step-here cont (p⇒q this prf) Any-Step-⇒ p⇒q (step-there anyStep) = step-there (Any-Step-⇒ p⇒q anyStep) Any-Step-elim : ∀{e₀ e₁}{st₀ : SystemState e₀}{st₁ : SystemState e₁}{P : SystemStateRel Step}{Q : Set ℓ-EC} → {r : Step* st₀ st₁} → (P⇒Q : ∀{d d'}{s : SystemState d}{s' : SystemState d'}{st : Step s s'} → P st → Step* s' st₁ → Q) → Any-Step P r → Q Any-Step-elim P⇒Q (step-here cont prf) = P⇒Q prf step-0 Any-Step-elim P⇒Q (step-there {this = this} f) = Any-Step-elim (λ p s → P⇒Q p (step-s s this)) f ------------------------------------------ module _ (P : ∀{e} → SystemState e → Set) where Step*-Step-fold : (∀{e}{st : SystemState e} → ReachableSystemState st → (𝓔 : EpochConfigFor e) → P st → P (pushEpoch 𝓔 st)) → (∀{e pid st' outs}{st : SystemState e} → ReachableSystemState st → (pstep : StepPeer st pid st' outs) → P st → P (StepPeer-post pstep)) → P initialState → ∀{e}{st : SystemState e} → (tr : ReachableSystemState st) → P st Step*-Step-fold fe fs p₀ step-0 = p₀ Step*-Step-fold fe fs p₀ (step-s tr (step-epoch 𝓔)) = fe tr 𝓔 (Step*-Step-fold fe fs p₀ tr) Step*-Step-fold fe fs p₀ (step-s tr (step-peer p)) = fs tr p (Step*-Step-fold fe fs p₀ tr)
44.636364
123
0.610998
fb84c22338e401385d3103d963258c82d7975884
5,594
agda
Agda
src/fot/FOTC/Program/GCD/Partial/DivisibleATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Program/GCD/Partial/DivisibleATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Program/GCD/Partial/DivisibleATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- The gcd is divisible by any common divisor ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.GCD.Partial.DivisibleATP where open import FOTC.Base open import FOTC.Base.PropertiesATP open import FOTC.Data.Nat open import FOTC.Data.Nat.Divisibility.NotBy0 open import FOTC.Data.Nat.Divisibility.NotBy0.PropertiesATP open import FOTC.Data.Nat.Induction.NonAcc.LexicographicATP open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.EliminationPropertiesATP open import FOTC.Data.Nat.Inequalities.PropertiesATP open import FOTC.Data.Nat.PropertiesATP open import FOTC.Program.GCD.Partial.Definitions open import FOTC.Program.GCD.Partial.GCD ------------------------------------------------------------------------------ -- The gcd 0 (succ n) is Divisible. postulate gcd-0S-Divisible : ∀ {n} → N n → Divisible zero (succ₁ n) (gcd zero (succ₁ n)) {-# ATP prove gcd-0S-Divisible #-} postulate gcd-S0-Divisible : ∀ {n} → N n → Divisible (succ₁ n) zero (gcd (succ₁ n) zero) {-# ATP prove gcd-S0-Divisible #-} ------------------------------------------------------------------------------ -- The gcd (succ₁ m) (succ₁ n) when succ₁ m > succ₁ n is Divisible. -- For the proof using the ATP we added the helper hypothesis -- c | succ₁ m → c | succ₁ c → c | succ₁ m ∸ succ₁ n. postulate gcd-S>S-Divisible-ah : ∀ {m n} → N m → N n → (Divisible (succ₁ m ∸ succ₁ n) (succ₁ n) (gcd (succ₁ m ∸ succ₁ n) (succ₁ n))) → succ₁ m > succ₁ n → ∀ c → N c → CD (succ₁ m) (succ₁ n) c → (c ∣ succ₁ m ∸ succ₁ n) → c ∣ gcd (succ₁ m) (succ₁ n) {-# ATP prove gcd-S>S-Divisible-ah #-} gcd-S>S-Divisible : ∀ {m n} → N m → N n → (Divisible (succ₁ m ∸ succ₁ n) (succ₁ n) (gcd (succ₁ m ∸ succ₁ n) (succ₁ n))) → succ₁ m > succ₁ n → Divisible (succ₁ m) (succ₁ n) (gcd (succ₁ m) (succ₁ n)) gcd-S>S-Divisible {m} {n} Nm Nn acc Sm>Sn c Nc (c∣Sm , c∣Sn) = gcd-S>S-Divisible-ah Nm Nn acc Sm>Sn c Nc (c∣Sm , c∣Sn) (x∣y→x∣z→x∣y∸z Nc (nsucc Nm) (nsucc Nn) c∣Sm c∣Sn) ------------------------------------------------------------------------------ -- The gcd (succ₁ m) (succ₁ n) when succ₁ m ≯ succ₁ n is Divisible. -- For the proof using the ATP we added the helper hypothesis -- c | succ₁ n → c | succ₁ m → c | succ₁ n ∸ succ₁ m. postulate gcd-S≯S-Divisible-ah : ∀ {m n} → N m → N n → (Divisible (succ₁ m) (succ₁ n ∸ succ₁ m) (gcd (succ₁ m) (succ₁ n ∸ succ₁ m))) → succ₁ m ≯ succ₁ n → ∀ c → N c → CD (succ₁ m) (succ₁ n) c → (c ∣ succ₁ n ∸ succ₁ m) → c ∣ gcd (succ₁ m) (succ₁ n) {-# ATP prove gcd-S≯S-Divisible-ah #-} gcd-S≯S-Divisible : ∀ {m n} → N m → N n → (Divisible (succ₁ m) (succ₁ n ∸ succ₁ m) (gcd (succ₁ m) (succ₁ n ∸ succ₁ m))) → succ₁ m ≯ succ₁ n → Divisible (succ₁ m) (succ₁ n) (gcd (succ₁ m) (succ₁ n)) gcd-S≯S-Divisible {m} {n} Nm Nn acc Sm≯Sn c Nc (c∣Sm , c∣Sn) = gcd-S≯S-Divisible-ah Nm Nn acc Sm≯Sn c Nc (c∣Sm , c∣Sn) (x∣y→x∣z→x∣y∸z Nc (nsucc Nn) (nsucc Nm) c∣Sn c∣Sm) ------------------------------------------------------------------------------ -- The gcd m n when m > n is Divisible. gcd-x>y-Divisible : ∀ {m n} → N m → N n → (∀ {o p} → N o → N p → Lexi o p m n → x≢0≢y o p → Divisible o p (gcd o p)) → m > n → x≢0≢y m n → Divisible m n (gcd m n) gcd-x>y-Divisible nzero Nn _ 0>n _ _ _ = ⊥-elim (0>x→⊥ Nn 0>n) gcd-x>y-Divisible (nsucc Nm) nzero _ _ _ c Nc = gcd-S0-Divisible Nm c Nc gcd-x>y-Divisible (nsucc {m} Nm) (nsucc {n} Nn) ah Sm>Sn _ c Nc = gcd-S>S-Divisible Nm Nn ih Sm>Sn c Nc where -- Inductive hypothesis. ih : Divisible (succ₁ m ∸ succ₁ n) (succ₁ n) (gcd (succ₁ m ∸ succ₁ n) (succ₁ n)) ih = ah {succ₁ m ∸ succ₁ n} {succ₁ n} (∸-N (nsucc Nm) (nsucc Nn)) (nsucc Nn) ([Sx∸Sy,Sy]<[Sx,Sy] Nm Nn) (λ p → ⊥-elim (S≢0 (∧-proj₂ p))) ------------------------------------------------------------------------------ -- The gcd m n when m ≯ n is Divisible. gcd-x≯y-Divisible : ∀ {m n} → N m → N n → (∀ {o p} → N o → N p → Lexi o p m n → x≢0≢y o p → Divisible o p (gcd o p)) → m ≯ n → x≢0≢y m n → Divisible m n (gcd m n) gcd-x≯y-Divisible nzero nzero _ _ h _ _ = ⊥-elim (h (refl , refl)) gcd-x≯y-Divisible nzero (nsucc Nn) _ _ _ c Nc = gcd-0S-Divisible Nn c Nc gcd-x≯y-Divisible (nsucc _) nzero _ Sm≯0 _ _ _ = ⊥-elim (S≯0→⊥ Sm≯0) gcd-x≯y-Divisible (nsucc {m} Nm) (nsucc {n} Nn) ah Sm≯Sn _ c Nc = gcd-S≯S-Divisible Nm Nn ih Sm≯Sn c Nc where -- Inductive hypothesis. ih : Divisible (succ₁ m) (succ₁ n ∸ succ₁ m) (gcd (succ₁ m) (succ₁ n ∸ succ₁ m)) ih = ah {succ₁ m} {succ₁ n ∸ succ₁ m} (nsucc Nm) (∸-N (nsucc Nn) (nsucc Nm)) ([Sx,Sy∸Sx]<[Sx,Sy] Nm Nn) (λ p → ⊥-elim (S≢0 (∧-proj₁ p))) ------------------------------------------------------------------------------ -- The gcd is Divisible. gcdDivisible : ∀ {m n} → N m → N n → x≢0≢y m n → Divisible m n (gcd m n) gcdDivisible = Lexi-wfind A h where A : D → D → Set A i j = x≢0≢y i j → Divisible i j (gcd i j) h : ∀ {i j} → N i → N j → (∀ {k l} → N k → N l → Lexi k l i j → A k l) → A i j h Ni Nj ah = case (gcd-x>y-Divisible Ni Nj ah) (gcd-x≯y-Divisible Ni Nj ah) (x>y∨x≯y Ni Nj)
39.673759
83
0.510011
df867fde78127db5d16213cab2089c4430147030
3,498
agda
Agda
04-cubical-type-theory/material/SolutionsSession2.agda
williamdemeo/EPIT-2020
19d72759e18e05d2c509f62d23a998573270140c
[ "MIT" ]
null
null
null
04-cubical-type-theory/material/SolutionsSession2.agda
williamdemeo/EPIT-2020
19d72759e18e05d2c509f62d23a998573270140c
[ "MIT" ]
null
null
null
04-cubical-type-theory/material/SolutionsSession2.agda
williamdemeo/EPIT-2020
19d72759e18e05d2c509f62d23a998573270140c
[ "MIT" ]
1
2021-08-02T16:16:34.000Z
2021-08-02T16:16:34.000Z
-- Solutions to ExerciseSession2 {-# OPTIONS --cubical #-} module SolutionsSession2 where open import Part1 open import Part2 open import ExerciseSession1 -- Exercise 1 JEq : {x : A} (P : (z : A) → x ≡ z → Type ℓ'') (d : P x refl) → J P d refl ≡ d JEq P p d = transportRefl p d -- Exercise 2 isContr→isProp : isContr A → isProp A isContr→isProp (x , p) a b = sym (p a) ∙ p b -- Exercise 3 isProp→isProp' : isProp A → isProp' A isProp→isProp' p x y = p x y , isProp→isSet p _ _ (p x y) -- Exercise 4 isContr→isContr≡ : isContr A → (x y : A) → isContr (x ≡ y) isContr→isContr≡ h = isProp→isProp' (isContr→isProp h) -- Exercise 5 fromPathP : {A : I → Type ℓ} {x : A i0} {y : A i1} → PathP A x y → transport (λ i → A i) x ≡ y fromPathP {A = A} p i = transp (λ j → A (i ∨ j)) i (p i) -- The converse is harder to prove so we give it: toPathP : {A : I → Type ℓ} {x : A i0} {y : A i1} → transport (λ i → A i) x ≡ y → PathP A x y toPathP {A = A} {x = x} p i = hcomp (λ j → λ { (i = i0) → x ; (i = i1) → p j }) (transp (λ j → A (i ∧ j)) (~ i) x) -- Exercise 6 Σ≡Prop : {B : A → Type ℓ'} {u v : Σ A B} (h : (x : A) → isProp (B x)) → (p : fst u ≡ fst v) → u ≡ v Σ≡Prop {B = B} {u = u} {v = v} h p = ΣPathP (p , toPathP (h _ (transport (λ i → B (p i)) (snd u)) (snd v))) -- Exercice 7 (thanks Loïc for the slick proof!) isPropIsContr : isProp (isContr A) isPropIsContr (c0 , h0) (c1 , h1) j = h0 c1 j , λ y i → hcomp (λ k → λ { (i = i0) → h0 (h0 c1 j) k; (i = i1) → h0 y k; (j = i0) → h0 (h0 y i) k; (j = i1) → h0 (h1 y i) k}) c0 -- Exercises about Part 3: -- Exercise 8 (a bit longer, but very good): open import Cubical.Data.Nat open import Cubical.Data.Int hiding (addEq ; subEq) -- Compose sucPathInt with itself n times. Transporting along this -- will be addition, transporting with it backwards will be subtraction. -- a) Define a path "addEq n" by composing sucPathInt with itself n -- times. addEq : ℕ → Int ≡ Int addEq zero = refl addEq (suc n) = (addEq n) ∙ sucPathInt -- b) Define another path "subEq n" by composing "sym sucPathInt" with -- itself n times. subEq : ℕ → Int ≡ Int subEq zero = refl subEq (suc n) = (subEq n) ∙ sym sucPathInt -- c) Define addition on integers by pattern-matching and transporting -- along addEq/subEq appropriately. _+Int_ : Int → Int → Int m +Int pos n = transport (addEq n) m m +Int negsuc n = transport (subEq (suc n)) m -- d) Do some concrete computations using _+Int_ (this would not work -- in HoTT as the transport would be stuck!) -- Exercise 9: prove that hSet is not an hSet open import Cubical.Data.Bool renaming (notEq to notPath) open import Cubical.Data.Empty -- Just define hSets of level 0 for simplicity hSet : Type₁ hSet = Σ[ A ∈ Type₀ ] isSet A -- Bool is an hSet BoolSet : hSet BoolSet = Bool , isSetBool notPath≢refl : (notPath ≡ refl) → ⊥ notPath≢refl e = true≢false (transport (λ i → transport (e i) true ≡ false) refl) ¬isSet-hSet : isSet hSet → ⊥ ¬isSet-hSet h = notPath≢refl (cong (cong fst) (h BoolSet BoolSet p refl)) where p : BoolSet ≡ BoolSet p = Σ≡Prop (λ A → isPropIsSet {A = A}) notPath -- Exercise 10: squivalence between FinData and Fin -- Thanks to Elies for the PR with the code. On the development -- version of the library there is now: -- -- open import Cubical.Data.Fin using (FinData≡Fin)
27.761905
81
0.598914
1c2e7a2ff9cba91efdaf88898ea32932c8d41a2b
15,406
agda
Agda
Cubical/Algebra/CommRing/FGIdeal.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/FGIdeal.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/FGIdeal.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
{- Define finitely generated ideals of commutative rings and show that they are an ideal. Parts of this should be reusable for explicit constructions of free modules over a finite set. -} {-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.FGIdeal where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Transport open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Data.Sum hiding (map ; elim ; rec) open import Cubical.Data.FinData hiding (elim ; rec) open import Cubical.Data.Nat renaming ( zero to ℕzero ; suc to ℕsuc ; _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; _^_ to _^ℕ_ ; +-assoc to +ℕ-assoc ; +-comm to +ℕ-comm ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm) hiding (elim ; _choose_) open import Cubical.Data.Nat.Order open import Cubical.HITs.PropositionalTruncation open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Ideal open import Cubical.Algebra.CommRing.BinomialThm open import Cubical.Algebra.Ring.QuotientRing open import Cubical.Algebra.Ring.Properties open import Cubical.Algebra.Ring.BigOps open import Cubical.Algebra.RingSolver.Reflection open import Cubical.Algebra.Matrix private variable ℓ : Level module _ (Ring@(R , str) : CommRing ℓ) where infixr 5 _holds _holds : hProp ℓ → Type ℓ P holds = fst P open CommRingStr str open RingTheory (CommRing→Ring Ring) open Sum (CommRing→Ring Ring) linearCombination : {n : ℕ} → FinVec R n → FinVec R n → R linearCombination α V = ∑ (λ i → α i · V i) sumDist+ : ∀ {n : ℕ} (α β V : FinVec R n) → linearCombination (λ i → α i + β i) V ≡ linearCombination α V + linearCombination β V sumDist+ α β V = ∑Ext (λ i → ·Ldist+ (α i) (β i) (V i)) ∙ ∑Split (λ i → α i · V i) (λ i → β i · V i) dist- : ∀ {n : ℕ} (α V : FinVec R n) → linearCombination (λ i → - α i) V ≡ - linearCombination α V dist- α V = ∑Ext (λ i → -DistL· (α i) (V i)) ∙ ∑Dist- (λ i → α i · V i) dist0 : ∀ {n : ℕ} (V : FinVec R n) → linearCombination (replicateFinVec n 0r) V ≡ 0r dist0 {n = n} V = ∑Ext (λ i → 0LeftAnnihilates (V i)) ∙ ∑0r n isLinearCombination : {n : ℕ} → FinVec R n → R → Type ℓ isLinearCombination V x = ∃[ α ∈ FinVec R _ ] x ≡ linearCombination α V {- If x and y are linear combinations of l, then (x + y) is a linear combination. -} isLinearCombination+ : {n : ℕ} {x y : R} (V : FinVec R n) → isLinearCombination V x → isLinearCombination V y → isLinearCombination V (x + y) isLinearCombination+ V = map2 λ α β → (λ i → α .fst i + β .fst i) , cong₂ (_+_) (α .snd) (β .snd) ∙ sym (sumDist+ _ _ V) {- If x is a linear combinations of l, then -x is a linear combination. -} isLinearCombination- : {n : ℕ} {x : R} (V : FinVec R n) → isLinearCombination V x → isLinearCombination V (- x) isLinearCombination- V = map λ α → (λ i → - α .fst i) , cong (-_) (α .snd) ∙ sym (dist- _ V) {- 0r is the trivial linear Combination -} isLinearCombination0 : {n : ℕ} (V : FinVec R n) → isLinearCombination V 0r isLinearCombination0 V = ∣ _ , sym (dist0 V) ∣ {- Linear combinations are stable under left multiplication -} isLinearCombinationL· : {n : ℕ} (V : FinVec R n) (r : R) {x : R} → isLinearCombination V x → isLinearCombination V (r · x) isLinearCombinationL· V r = map λ α → (λ i → r · α .fst i) , cong (r ·_) (α .snd) ∙∙ ∑Mulrdist r (λ i → α .fst i · V i) ∙∙ ∑Ext λ i → ·Assoc r (α .fst i) (V i) generatedIdeal : {n : ℕ} → FinVec R n → IdealsIn Ring fst (generatedIdeal V) = λ x → isLinearCombination V x , isPropPropTrunc CommIdeal.isCommIdeal.+Closed (snd (generatedIdeal V)) = isLinearCombination+ V CommIdeal.isCommIdeal.contains0 (snd (generatedIdeal V)) = isLinearCombination0 V CommIdeal.isCommIdeal.·Closed (snd (generatedIdeal V)) = λ r → isLinearCombinationL· V r open CommIdeal.isCommIdeal genIdeal : {n : ℕ} (R : CommRing ℓ) → FinVec (fst R) n → CommIdeal.CommIdeal R fst (genIdeal R V) x = isLinearCombination R V x , isPropPropTrunc +Closed (snd (genIdeal R V)) = isLinearCombination+ R V contains0 (snd (genIdeal R V)) = isLinearCombination0 R V ·Closed (snd (genIdeal R V)) r = isLinearCombinationL· R V r syntax genIdeal R V = ⟨ V ⟩[ R ] FGIdealIn : (R : CommRing ℓ) → Type (ℓ-suc ℓ) FGIdealIn R = Σ[ I ∈ CommIdeal.CommIdeal R ] ∃[ nV ∈ Σ[ n ∈ ℕ ] FinVec (fst R) n ] I ≡ ⟨ nV .snd ⟩[ R ] -- The lattice laws module _ (R' : CommRing ℓ) where open CommRingStr (snd R') open RingTheory (CommRing→Ring R') open CommIdeal R' open Sum (CommRing→Ring R') open KroneckerDelta (CommRing→Ring R') private R = fst R' ⟨_⟩ : {n : ℕ} → FinVec R n → CommIdeal ⟨ V ⟩ = ⟨ V ⟩[ R' ] inclOfFGIdeal : {n : ℕ} (V : FinVec R n) (I : CommIdeal) → (∀ i → V i ∈ I) → ⟨ V ⟩ ⊆ I inclOfFGIdeal V I ∀i→Vi∈I x = elim (λ _ → I .fst x .snd) inclOfFGIdealΣ where inclOfFGIdealΣ : Σ[ α ∈ FinVec R _ ] x ≡ linearCombination R' α V → x ∈ I inclOfFGIdealΣ (α , x≡α·V) = subst-∈ I (sym x≡α·V) (∑Closed I (λ i → α i · V i) λ i → ·Closed (I .snd) _ (∀i→Vi∈I i)) indInIdeal : ∀ {n : ℕ} (U : FinVec R n) (i : Fin n) → U i ∈ ⟨ U ⟩ indInIdeal U i = ∣ (δ i) , sym (∑Mul1r _ U i) ∣ sucIncl : ∀ {n : ℕ} (U : FinVec R (ℕsuc n)) → ⟨ U ∘ suc ⟩ ⊆ ⟨ U ⟩ sucIncl U x = map λ (α , x≡∑αUsuc) → (λ { zero → 0r ; (suc i) → α i }) , x≡∑αUsuc ∙ path _ _ where path : ∀ s u₀ → s ≡ 0r · u₀ + s path = solve R' emptyFGIdeal : ∀ (V : FinVec R 0) → ⟨ V ⟩ ≡ 0Ideal emptyFGIdeal V = CommIdeal≡Char (λ _ → rec (is-set _ _) snd) (λ _ x≡0 → ∣ (λ ()) , x≡0 ∣) 0FGIdealLIncl : {n : ℕ} → ⟨ replicateFinVec n 0r ⟩ ⊆ 0Ideal 0FGIdealLIncl x = elim (λ _ → is-set _ _) λ (α , x≡∑α0) → subst-∈ 0Ideal (sym x≡∑α0) (∑Closed 0Ideal (λ i → α i · 0r) λ i → subst-∈ 0Ideal (sym (0RightAnnihilates _)) refl) 0FGIdealRIncl : {n : ℕ} → 0Ideal ⊆ ⟨ replicateFinVec n 0r ⟩ 0FGIdealRIncl x x≡0 = subst-∈ ⟨ replicateFinVec _ 0r ⟩ (sym x≡0) (⟨ replicateFinVec _ 0r ⟩ .snd .contains0) 0FGIdeal : {n : ℕ} → ⟨ replicateFinVec n 0r ⟩ ≡ 0Ideal 0FGIdeal = CommIdeal≡Char 0FGIdealLIncl 0FGIdealRIncl FGIdealAddLemmaLIncl : {n m : ℕ} (U : FinVec R n) (V : FinVec R m) → ⟨ U ++Fin V ⟩ ⊆ (⟨ U ⟩ +i ⟨ V ⟩) FGIdealAddLemmaLIncl {n = ℕzero} U V x x∈⟨V⟩ = ∣ (0r , x) , ⟨ U ⟩ .snd .contains0 , x∈⟨V⟩ , sym (+Lid x) ∣ FGIdealAddLemmaLIncl {n = ℕsuc n} U V x = rec isPropPropTrunc helperΣ where helperΣ : Σ[ α ∈ FinVec R _ ] (x ≡ ∑ λ i → α i · (U ++Fin V) i) → x ∈ (⟨ U ⟩ +i ⟨ V ⟩) helperΣ (α , p) = subst-∈ (⟨ U ⟩ +i ⟨ V ⟩) (sym p) ((⟨ U ⟩ +i ⟨ V ⟩) .snd .+Closed zeroIncl sumIncl) where zeroIncl : (α zero · U zero) ∈ (⟨ U ⟩ +i ⟨ V ⟩) zeroIncl = +iLincl ⟨ U ⟩ ⟨ V ⟩ (α zero · U zero) (⟨ U ⟩ .snd .·Closed (α zero) (indInIdeal U zero)) sumIncl : (∑ λ i → (α ∘ suc) i · ((U ∘ suc) ++Fin V) i) ∈ (⟨ U ⟩ +i ⟨ V ⟩) sumIncl = let sum = ∑ λ i → (α ∘ suc) i · ((U ∘ suc) ++Fin V) i in +iRespLincl ⟨ U ∘ suc ⟩ ⟨ U ⟩ ⟨ V ⟩ (sucIncl U) sum (FGIdealAddLemmaLIncl (U ∘ suc) V _ ∣ (α ∘ suc) , refl ∣) FGIdealAddLemmaRIncl : {n m : ℕ} (U : FinVec R n) (V : FinVec R m) → (⟨ U ⟩ +i ⟨ V ⟩) ⊆ ⟨ U ++Fin V ⟩ FGIdealAddLemmaRIncl U V x = rec isPropPropTrunc (uncurry3 helper) where helperΣ : ((y , z) : R × R) → Σ[ α ∈ FinVec R _ ] (y ≡ ∑ λ i → α i · U i) → Σ[ β ∈ FinVec R _ ] (z ≡ ∑ λ i → β i · V i) → x ≡ y + z → x ∈ ⟨ U ++Fin V ⟩ helperΣ (y , z) (α , y≡∑αU) (β , z≡∑βV) x≡y+z = ∣ (α ++Fin β) , path ∣ where path : x ≡ ∑ λ i → (α ++Fin β) i · (U ++Fin V) i path = x ≡⟨ x≡y+z ⟩ y + z ≡⟨ cong₂ (_+_) y≡∑αU z≡∑βV ⟩ (∑ λ i → α i · U i) + (∑ λ i → β i · V i) ≡⟨ sym (∑Split++ (λ i → α i · U i) _) ⟩ (∑ ((λ i → α i · U i) ++Fin (λ i → β i · V i))) ≡⟨ ∑Ext (mul++dist α U β V) ⟩ (∑ λ i → (α ++Fin β) i · (U ++Fin V) i) ∎ helper : ((y , z) : R × R) → ∃[ α ∈ FinVec R _ ] (y ≡ ∑ λ i → α i · U i) → ∃[ β ∈ FinVec R _ ] (z ≡ ∑ λ i → β i · V i) → x ≡ y + z → x ∈ ⟨ U ++Fin V ⟩ helper _ = rec2 (isPropΠ (λ _ → isPropPropTrunc)) (helperΣ _) FGIdealAddLemma : {n m : ℕ} (U : FinVec R n) (V : FinVec R m) → ⟨ U ++Fin V ⟩ ≡ ⟨ U ⟩ +i ⟨ V ⟩ FGIdealAddLemma U V = CommIdeal≡Char (FGIdealAddLemmaLIncl U V) (FGIdealAddLemmaRIncl U V) IdealAddAssoc : {n m k : ℕ} (U : FinVec R n) (V : FinVec R m) (W : FinVec R k) → ⟨ U ++Fin (V ++Fin W) ⟩ ≡ ⟨ (U ++Fin V) ++Fin W ⟩ IdealAddAssoc {n = n} {m = m} {k = k} U V W = let genIdealExpl : (n : ℕ) → FinVec R n → CommIdeal genIdealExpl _ V = ⟨ V ⟩ in cong₂ genIdealExpl (+ℕ-assoc n m k) (++FinAssoc U V W) ++FinComm : ∀ {n m : ℕ} (V : FinVec R n) (W : FinVec R m) → ⟨ V ++Fin W ⟩ ≡ ⟨ W ++Fin V ⟩ ++FinComm V W = FGIdealAddLemma V W ∙∙ +iComm ⟨ V ⟩ ⟨ W ⟩ ∙∙ sym (FGIdealAddLemma W V) open ProdFin R' prodIn··Ideal : {n m : ℕ} (U : FinVec R n) (V : FinVec R m) (x y : R) → (x ∈ ⟨ U ⟩) → (y ∈ ⟨ V ⟩) → (x · y) ∈ ⟨ U ··Fin V ⟩ prodIn··Ideal {n = n} {m = m} U V x y = map2 Σhelper where Σhelper : Σ[ α ∈ FinVec R n ] x ≡ linearCombination R' α U → Σ[ β ∈ FinVec R m ] y ≡ linearCombination R' β V → Σ[ γ ∈ FinVec R (n ·ℕ m) ] (x · y) ≡ linearCombination R' γ (U ··Fin V) Σhelper (α , x≡∑αU) (β , y≡∑βV) = α ··Fin β , path where path : x · y ≡ ∑ λ i → (α ··Fin β) i · (U ··Fin V) i path = x · y ≡⟨ cong₂ (_·_) x≡∑αU y≡∑βV ⟩ (∑ λ i → α i · U i) · (∑ λ i → β i · V i) ≡⟨ ∑Dist··Fin (λ i → α i · U i) _ ⟩ (∑ λ j → ((λ i → α i · U i) ··Fin (λ i → β i · V i)) j) ≡⟨ ∑Ext (·Dist··Fin α U β V) ⟩ (∑ λ i → (α ··Fin β) i · (U ··Fin V) i) ∎ FGIdealMultLemmaLIncl : {n m : ℕ} (U : FinVec R n) (V : FinVec R m) → ⟨ U ··Fin V ⟩ ⊆ (⟨ U ⟩ ·i ⟨ V ⟩) FGIdealMultLemmaLIncl U V x = elim (λ _ → isPropPropTrunc) λ (α , x≡∑αUV) → subst-∈ (⟨ U ⟩ ·i ⟨ V ⟩) (sym x≡∑αUV) --replace x by ∑αᵢⱼUᵢVⱼ (∑Closed (⟨ U ⟩ ·i ⟨ V ⟩) (λ i → α i · (U ··Fin V) i) --show that each αᵢ(U··V)ᵢ is in product λ i → (⟨ U ⟩ ·i ⟨ V ⟩) .snd .·Closed (α i) --drop the α's (flattenElim {P = _∈ (⟨ U ⟩ ·i ⟨ V ⟩)} (toMatrix U V) --show theat UᵢVⱼ is in product (λ j k → prodInProd ⟨ U ⟩ ⟨ V ⟩ (U j) (V k) (indInIdeal U j) (indInIdeal V k)) i)) FGIdealMultLemmaRIncl : {n m : ℕ} (U : FinVec R n) (V : FinVec R m) → (⟨ U ⟩ ·i ⟨ V ⟩) ⊆ ⟨ U ··Fin V ⟩ FGIdealMultLemmaRIncl U V x = elim (λ _ → isPropPropTrunc) λ (_ , (α , β) , ∀α∈⟨U⟩ , ∀β∈⟨V⟩ , x≡∑αβ) → subst-∈ ⟨ U ··Fin V ⟩ (sym x≡∑αβ) (∑Closed ⟨ U ··Fin V ⟩ _ (λ i → prodIn··Ideal U V (α i) (β i) (∀α∈⟨U⟩ i) (∀β∈⟨V⟩ i))) FGIdealMultLemma : {n m : ℕ} (U : FinVec R n) (V : FinVec R m) → ⟨ U ··Fin V ⟩ ≡ ⟨ U ⟩ ·i ⟨ V ⟩ FGIdealMultLemma U V = CommIdeal≡Char (FGIdealMultLemmaLIncl U V) (FGIdealMultLemmaRIncl U V) -- A useful lemma for constructing the structure sheaf module GeneratingPowers (R' : CommRing ℓ) (n : ℕ) where open CommRingStr (snd R') open CommRingTheory R' open RingTheory (CommRing→Ring R') open Sum (CommRing→Ring R') open Exponentiation R' open BinomialThm R' open CommIdeal R' private R = fst R' ⟨_⟩ : {n : ℕ} → FinVec R n → CommIdeal ⟨ V ⟩ = ⟨ V ⟩[ R' ] _ⁿ : {m : ℕ} → FinVec R m → FinVec R m U ⁿ = λ i → U i ^ n lemma : (m : ℕ) (α U : FinVec R (ℕsuc m)) → (linearCombination R' α U) ^ ((ℕsuc m) ·ℕ n) ∈ ⟨ U ⁿ ⟩ lemma ℕzero α U = ∣ α ⁿ , path ∣ where path : (α zero · U zero + 0r) ^ (n +ℕ 0) ≡ α zero ^ n · U zero ^ n + 0r path = (α zero · U zero + 0r) ^ (n +ℕ 0) ≡⟨ cong (_^ (n +ℕ 0)) (+Rid _) ⟩ (α zero · U zero) ^ (n +ℕ 0) ≡⟨ cong ((α zero · U zero) ^_) (+-zero n) ⟩ (α zero · U zero) ^ n ≡⟨ ^-ldist-· _ _ n ⟩ α zero ^ n · U zero ^ n ≡⟨ sym (+Rid _) ⟩ α zero ^ n · U zero ^ n + 0r ∎ lemma (ℕsuc m) α U = subst-∈ ⟨ U ⁿ ⟩ (sym (BinomialThm (n +ℕ (ℕsuc m) ·ℕ n) x y)) ∑Binomial∈⟨Uⁿ⟩ where x = α zero · U zero y = linearCombination R' (α ∘ suc) (U ∘ suc) binomialSummand∈⟨Uⁿ⟩ : ∀ (i : Fin _) → BinomialVec (n +ℕ (ℕsuc m) ·ℕ n) x y i ∈ ⟨ U ⁿ ⟩ binomialSummand∈⟨Uⁿ⟩ i with ≤-+-split n ((ℕsuc m) ·ℕ n) (toℕ i) (pred-≤-pred (toℕ<n i)) ... | inl n≤i = subst-∈ ⟨ U ⁿ ⟩ (·CommAssocr _ _ (x ^ (toℕ i))) (⟨ U ⁿ ⟩ .snd .·Closed _ (xHelper (toℕ i) n≤i)) where xHelper : ∀ k → n ≤ k → x ^ k ∈ ⟨ U ⁿ ⟩ xHelper k n≤k = subst-∈ ⟨ U ⁿ ⟩ path (⟨ U ⁿ ⟩ .snd .·Closed _ (indInIdeal R' (U ⁿ) zero)) where path : α zero ^ k · U zero ^ (k ∸ n) · U zero ^ n ≡ x ^ k path = α zero ^ k · U zero ^ (k ∸ n) · U zero ^ n ≡⟨ sym (·Assoc _ _ _) ⟩ α zero ^ k · (U zero ^ (k ∸ n) · U zero ^ n) ≡⟨ cong ((α zero ^ k) ·_) (·-of-^-is-^-of-+ (U zero) (k ∸ n) n) ⟩ α zero ^ k · U zero ^ ((k ∸ n) +ℕ n) ≡⟨ cong (λ l → (α zero ^ k) · (U zero ^ l)) (≤-∸-+-cancel n≤k) ⟩ α zero ^ k · U zero ^ k ≡⟨ sym (^-ldist-· (α zero) (U zero) k) ⟩ x ^ k ∎ ... | inr [m+1]n≤n+[m+1]n-i = ⟨ U ⁿ ⟩ .snd .·Closed _ (yHelper (toℕ i) [m+1]n≤n+[m+1]n-i) where powSucIncl : ⟨ (U ∘ suc) ⁿ ⟩ ⊆ ⟨ U ⁿ ⟩ powSucIncl = inclOfFGIdeal R' ((U ∘ suc) ⁿ) ⟨ U ⁿ ⟩ (λ i → indInIdeal R' (U ⁿ) (suc i)) inductiveStep : y ^ ((ℕsuc m) ·ℕ n) ∈ ⟨ U ⁿ ⟩ inductiveStep = powSucIncl _ (lemma m (α ∘ suc) (U ∘ suc)) yHelper : ∀ k → (ℕsuc m) ·ℕ n ≤ n +ℕ (ℕsuc m) ·ℕ n ∸ k → y ^ (n +ℕ (ℕsuc m) ·ℕ n ∸ k) ∈ ⟨ U ⁿ ⟩ yHelper k [m+1]n≤n+[m+1]n-k = subst-∈ ⟨ U ⁿ ⟩ path (⟨ U ⁿ ⟩ .snd .·Closed _ inductiveStep) where n+[m+1]n-k = n +ℕ (ℕsuc m) ·ℕ n ∸ k [m+1]n = (ℕsuc m) ·ℕ n path : y ^ (n+[m+1]n-k ∸ [m+1]n) · y ^ [m+1]n ≡ y ^ n+[m+1]n-k path = y ^ (n+[m+1]n-k ∸ [m+1]n) · y ^ [m+1]n ≡⟨ ·-of-^-is-^-of-+ y (n+[m+1]n-k ∸ [m+1]n) [m+1]n ⟩ y ^ ((n+[m+1]n-k ∸ [m+1]n) +ℕ [m+1]n) ≡⟨ cong (y ^_) (≤-∸-+-cancel [m+1]n≤n+[m+1]n-k) ⟩ y ^ n+[m+1]n-k ∎ ∑Binomial∈⟨Uⁿ⟩ : ∑ (BinomialVec (n +ℕ (ℕsuc m) ·ℕ n) x y) ∈ ⟨ U ⁿ ⟩ ∑Binomial∈⟨Uⁿ⟩ = ∑Closed ⟨ U ⁿ ⟩ _ binomialSummand∈⟨Uⁿ⟩ thm : ∀ (m : ℕ) (U : FinVec R m) → 1r ∈ ⟨ U ⟩ → 1r ∈ ⟨ U ⁿ ⟩ thm ℕzero U 1∈⟨U⟩ = 1∈⟨U⟩ thm (ℕsuc m) U = elim (λ _ → isPropPropTrunc) Σhelper where Σhelper : Σ[ α ∈ FinVec R (ℕsuc m) ] 1r ≡ linearCombination R' α U → 1r ∈ ⟨ U ⁿ ⟩ Σhelper (α , p) = subst-∈ ⟨ U ⁿ ⟩ path (lemma m α U) where path : linearCombination R' α U ^ ((ℕsuc m) ·ℕ n) ≡ 1r path = linearCombination R' α U ^ ((ℕsuc m) ·ℕ n) ≡⟨ cong (_^ ((ℕsuc m) ·ℕ n)) (sym p) ⟩ 1r ^ ((ℕsuc m) ·ℕ n) ≡⟨ 1ⁿ≡1 ((ℕsuc m) ·ℕ n) ⟩ 1r ∎
44.655072
102
0.503245
1c84edb3a211005e4955daa25f33bf49ba622384
8,302
agda
Agda
test/Fail/Issue1560.agda
alex-mckenna/agda
78b62cd24bbd570271a7153e44ad280e52ef3e29
[ "BSD-3-Clause" ]
1
2016-03-17T01:45:59.000Z
2016-03-17T01:45:59.000Z
test/Fail/Issue1560.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue1560.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- Andreas, 2015-06-11, issue #1560 reported by Peter Thiemann -- Ulf, 2015-09-23: -- This test was still taking 12s, which is annoyingly much. -- I commented out a few of the constructors to bring it down -- to 2s. With agda-2.4.2 it checks in 18s, which should be long -- enough to notice. open import Common.Coinduction -- Andreas, 2017-04-26: removing fake mutual speeds up from 1.8s to 1.3s -- However, the purpose of this test is to be slow on old versions of Agda -- which shows if the fake mutual is present. -- module _ where mutual -- an stype data SType' : Set where Skip : SType' Semi : ∞ SType' → ∞ SType' → SType' Case : ∞ SType' → ∞ SType' → SType' c : (SType' → SType') → SType' -- equivalence data _∼_ : SType' → SType' → Set where ∼-Skip : Skip ∼ Skip ∼-Case : ∀ {s₁ s₁' s₂ s₂'} → ∞ (♭ s₁ ∼ ♭ s₁') → ∞ (♭ s₂ ∼ ♭ s₂') → Case s₁ s₂ ∼ Case s₁' s₂' ∼-Semi : ∀ {s₁ s₁' s₂ s₂'} → ∞ (♭ s₁ ∼ ♭ s₁') → ∞ (♭ s₂ ∼ ♭ s₂') → Semi s₁ s₂ ∼ Semi s₁' s₂' ∼-Semi-Skip-Left-Left : ∀ {s₁ s₂ s₃} → ∞ (♭ s₁ ∼ Skip) → ∞ (♭ s₂ ∼ s₃) → Semi s₁ s₂ ∼ s₃ -- ∼-Semi-Skip-Right-Left : ∀ {s₁ s₂ s₃} → ∞ (♭ s₂ ∼ Skip) → ∞ (♭ s₁ ∼ s₃) → Semi s₁ s₂ ∼ s₃ -- ∼-Semi-Skip-Left-Right : ∀ {s₁ s₂ s₃} → ∞ (♭ s₁ ∼ Skip) → ∞ (♭ s₂ ∼ s₃) → s₃ ∼ Semi s₁ s₂ -- ∼-Semi-Skip-Right-Right : ∀ {s₁ s₂ s₃} → ∞ (♭ s₂ ∼ Skip) → ∞ (♭ s₁ ∼ s₃) → s₃ ∼ Semi s₁ s₂ ∼-Semi-Case-Left : ∀ {s₁ s₂ s₃ sl1 sl2 sr} → ∞ (♭ sl1 ∼ Semi s₁ s₃) → ∞ (♭ sl2 ∼ Semi s₂ s₃) → ∞ (♭ sr ∼ Case s₁ s₂) → Case sl1 sl2 ∼ Semi sr s₃ ∼-Semi-Case-Right : ∀ {s₁ s₂ s₃ sl1 sl2 sr} → ∞ (♭ sl1 ∼ Semi s₁ s₃) → ∞ (♭ sl2 ∼ Semi s₂ s₃) → ∞ (♭ sr ∼ Case s₁ s₂) → Semi sr s₃ ∼ Case sl1 sl2 -- reflexivity ∼-refl : (s : SType') → s ∼ s ∼-refl Skip = ∼-Skip ∼-refl (Semi x x₁) = ∼-Semi (♯ ∼-refl (♭ x)) (♯ ∼-refl (♭ x₁)) ∼-refl (Case s₁ s₂) = ∼-Case (♯ ∼-refl (♭ s₁)) (♯ ∼-refl (♭ s₂)) ∼-refl (c f) = {!!} -- symmetry ∼-sym : ∀ {s₁ s₂} → s₁ ∼ s₂ → s₂ ∼ s₁ ∼-sym ∼-Skip = ∼-Skip ∼-sym (∼-Case s₁' s₂') = ∼-Case (♯ ∼-sym (♭ s₁')) (♯ ∼-sym (♭ s₂')) ∼-sym (∼-Semi s₁' s₂') = ∼-Semi (♯ ∼-sym (♭ s₁')) (♯ ∼-sym (♭ s₂')) ∼-sym (∼-Semi-Skip-Left-Left s₁∼s₂ s₁∼s₃) = {!∼-Semi-Skip-Left-Right s₁∼s₂ s₁∼s₃!} -- ∼-sym (∼-Semi-Skip-Right-Left s₁∼s₂ s₁∼s₃) = ∼-Semi-Skip-Right-Right s₁∼s₂ s₁∼s₃ -- ∼-sym (∼-Semi-Skip-Left-Right s₁∼s₂ s₁∼s₃) = ∼-Semi-Skip-Left-Left s₁∼s₂ s₁∼s₃ -- ∼-sym (∼-Semi-Skip-Right-Right s₁∼s₂ s₁∼s₃) = ∼-Semi-Skip-Right-Left s₁∼s₂ s₁∼s₃ ∼-sym (∼-Semi-Case-Left sl1 sl2 sr) = ∼-Semi-Case-Right sl1 sl2 sr ∼-sym (∼-Semi-Case-Right sl1 sl2 sr) = ∼-Semi-Case-Left sl1 sl2 sr -- transitivity ∼-trans : ∀ {s₁ s₂ s₃} → s₁ ∼ s₂ → s₂ ∼ s₃ → s₁ ∼ s₃ ∼-trans ∼-Skip ∼-Skip = ∼-Skip -- ∼-trans ∼-Skip (∼-Semi-Skip-Left-Right x x₁) = ∼-Semi-Skip-Left-Right x x₁ -- ∼-trans ∼-Skip (∼-Semi-Skip-Right-Right x x₁) = ∼-Semi-Skip-Right-Right x x₁ ∼-trans (∼-Case x x₁) (∼-Case x₂ x₃) = ∼-Case (♯ ∼-trans (♭ x) (♭ x₂)) (♯ ∼-trans (♭ x₁) (♭ x₃)) -- ∼-trans (∼-Case x x₁) (∼-Semi-Skip-Left-Right x₂ x₃) = ∼-Semi-Skip-Left-Right x₂ (♯ ∼-trans (♭ x₃) (∼-Case (♯ ∼-sym (♭ x)) (♯ ∼-sym (♭ x₁)))) -- ∼-trans (∼-Case x x₁) (∼-Semi-Skip-Right-Right x₂ x₃) = ∼-Semi-Skip-Right-Right x₂ (♯ ∼-trans (♭ x₃) (∼-Case (♯ ∼-sym (♭ x)) (♯ ∼-sym (♭ x₁)))) ∼-trans (∼-Case x x₁) (∼-Semi-Case-Left x₂ x₃ x₄) = ∼-Semi-Case-Left (♯ ∼-trans (♭ x) (♭ x₂)) (♯ ∼-trans (♭ x₁) (♭ x₃)) x₄ ∼-trans (∼-Semi x x₁) (∼-Semi x₂ x₃) = ∼-Semi (♯ ∼-trans (♭ x) (♭ x₂)) (♯ ∼-trans (♭ x₁) (♭ x₃)) ∼-trans (∼-Semi x x₁) (∼-Semi-Skip-Left-Left x₂ x₃) = ∼-Semi-Skip-Left-Left (♯ ∼-trans (♭ x) (♭ x₂)) (♯ ∼-trans (♭ x₁) (♭ x₃)) -- ∼-trans (∼-Semi x x₁) (∼-Semi-Skip-Right-Left x₂ x₃) = ∼-Semi-Skip-Right-Left (♯ ∼-trans (♭ x₁) (♭ x₂)) (♯ ∼-trans (♭ x) (♭ x₃)) -- ∼-trans (∼-Semi x x₁) (∼-Semi-Skip-Left-Right x₂ x₃) = ∼-Semi-Skip-Left-Right x₂ (♯ ∼-trans (♭ x₃) (∼-Semi (♯ ∼-sym (♭ x)) (♯ ∼-sym (♭ x₁)))) -- ∼-trans (∼-Semi x x₁) (∼-Semi-Skip-Right-Right x₂ x₃) = ∼-Semi-Skip-Right-Right x₂ (♯ ∼-trans (♭ x₃) (∼-Semi (♯ ∼-sym (♭ x)) (♯ ∼-sym (♭ x₁)))) ∼-trans (∼-Semi x x₁) (∼-Semi-Case-Right x₂ x₃ x₄) = ∼-Semi-Case-Right (♯ ∼-trans (♭ x₂) (∼-Semi (♯ ∼-refl _) (♯ ∼-sym (♭ x₁)))) (♯ ∼-trans (♭ x₃) (∼-Semi (♯ ∼-refl _) (♯ ∼-sym (♭ x₁)))) (♯ ∼-trans (♭ x) (♭ x₄)) ∼-trans (∼-Semi-Skip-Left-Left x x₁) ∼-Skip = ∼-Semi-Skip-Left-Left x x₁ ∼-trans (∼-Semi-Skip-Left-Left x x₁) (∼-Case x₂ x₃) = ∼-Semi-Skip-Left-Left x (♯ ∼-trans (♭ x₁) (∼-Case x₂ x₃)) ∼-trans (∼-Semi-Skip-Left-Left x x₁) (∼-Semi x₂ x₃) = ∼-Semi-Skip-Left-Left x (♯ ∼-trans (♭ x₁) (∼-Semi x₂ x₃)) ∼-trans (∼-Semi-Skip-Left-Left x x₁) (∼-Semi-Skip-Left-Left x₂ x₃) = ∼-Semi-Skip-Left-Left x (♯ ∼-trans (♭ x₁) (∼-Semi-Skip-Left-Left x₂ x₃)) -- ∼-trans (∼-Semi-Skip-Left-Left x x₁) (∼-Semi-Skip-Right-Left x₂ x₃) = ∼-Semi-Skip-Left-Left x (♯ ∼-trans (♭ x₁) (∼-Semi-Skip-Right-Left x₂ x₃)) -- ∼-trans (∼-Semi-Skip-Left-Left x x₁) (∼-Semi-Skip-Left-Right x₂ x₃) = ∼-Semi-Skip-Left-Left x (♯ ∼-trans (♭ x₁) (∼-Semi-Skip-Left-Right x₂ x₃)) -- ∼-trans (∼-Semi-Skip-Left-Left x x₁) (∼-Semi-Skip-Right-Right x₂ x₃) = ∼-Semi-Skip-Left-Left x (♯ ∼-trans (♭ x₁) (∼-Semi-Skip-Right-Right x₂ x₃)) ∼-trans (∼-Semi-Skip-Left-Left x x₁) (∼-Semi-Case-Left x₂ x₃ x₄) = ∼-Semi-Skip-Left-Left x (♯ ∼-trans (♭ x₁) (∼-Semi-Case-Left x₂ x₃ x₄)) ∼-trans (∼-Semi-Skip-Left-Left x x₁) (∼-Semi-Case-Right x₂ x₃ x₄) = ∼-Semi-Skip-Left-Left x (♯ ∼-trans (♭ x₁) (∼-Semi-Case-Right x₂ x₃ x₄)) -- ∼-trans (∼-Semi-Skip-Right-Left x x₁) ∼-Skip = ∼-Semi-Skip-Right-Left x x₁ -- ∼-trans (∼-Semi-Skip-Right-Left x x₁) (∼-Case x₂ x₃) = ∼-Semi-Skip-Right-Left x (♯ ∼-trans (♭ x₁) (∼-Case x₂ x₃)) -- ∼-trans (∼-Semi-Skip-Right-Left x x₁) (∼-Semi x₂ x₃) = ∼-Semi-Skip-Right-Left x (♯ ∼-trans (♭ x₁) (∼-Semi x₂ x₃)) -- ∼-trans (∼-Semi-Skip-Right-Left x x₁) (∼-Semi-Skip-Left-Left x₂ x₃) = {!!} -- ∼-trans (∼-Semi-Skip-Right-Left x x₁) (∼-Semi-Skip-Right-Left x₂ x₃) = {!!} -- ∼-trans (∼-Semi-Skip-Right-Left x x₁) (∼-Semi-Skip-Left-Right x₂ x₃) = {!!} -- ∼-trans (∼-Semi-Skip-Right-Left x x₁) (∼-Semi-Skip-Right-Right x₂ x₃) = {!!} -- ∼-trans (∼-Semi-Skip-Right-Left x x₁) (∼-Semi-Case-Left x₂ x₃ x₄) = {!!} -- ∼-trans (∼-Semi-Skip-Right-Left x x₁) (∼-Semi-Case-Right x₂ x₃ x₄) = {!!} --∼-trans (∼-Semi-Skip-Left-Right x x₁) (∼-Semi x₂ x₃) = ∼-Semi-Skip-Left-Right (♯ ∼-trans (∼-sym (♭ x₂)) (♭ x)) (♯ ∼-trans (∼-sym (♭ x₃)) (♭ x₁)) -- ∼-trans (∼-Semi-Skip-Left-Right x x₁) (∼-Semi-Skip-Left-Left x₂ x₃) = {!!} -- ∼-trans (∼-Semi-Skip-Left-Right x x₁) (∼-Semi-Skip-Right-Left x₂ x₃) = {!!} -- ∼-trans (∼-Semi-Skip-Left-Right x x₁) (∼-Semi-Skip-Left-Right x₂ x₃) = {!!} -- ∼-trans (∼-Semi-Skip-Left-Right x x₁) (∼-Semi-Skip-Right-Right x₂ x₃) = {!!} -- ∼-trans (∼-Semi-Skip-Left-Right x x₁) (∼-Semi-Case-Right x₂ x₃ x₄) = {!!} -- ∼-trans (∼-Semi-Skip-Right-Right x x₁) (∼-Semi x₂ x₃) = ∼-Semi-Skip-Right-Right (♯ ∼-trans (∼-sym (♭ x₃)) (♭ x)) (♯ ∼-trans (∼-sym (♭ x₂)) (♭ x₁)) -- ∼-trans (∼-Semi-Skip-Right-Right x x₁) (∼-Semi-Skip-Left-Left x₂ x₃) = {!!} -- ∼-trans (∼-Semi-Skip-Right-Right x x₁) (∼-Semi-Skip-Right-Left x₂ x₃) = {!!} -- ∼-trans (∼-Semi-Skip-Right-Right x x₁) (∼-Semi-Skip-Left-Right x₂ x₃) = {!!} -- ∼-trans (∼-Semi-Skip-Right-Right x x₁) (∼-Semi-Skip-Right-Right x₂ x₃) = {!!} -- ∼-trans (∼-Semi-Skip-Right-Right x x₁) (∼-Semi-Case-Right x₂ x₃ x₄) = {!!} ∼-trans (∼-Semi-Case-Left x x₁ x₂) (∼-Semi x₃ x₄) = ∼-Semi-Case-Left {!!} (♯ ∼-trans (♭ x₁) (∼-Semi (♯ ∼-refl _) x₄)) (♯ ∼-trans (∼-sym (♭ x₃)) (♭ x₂)) ∼-trans (∼-Semi-Case-Left x x₁ x₂) (∼-Semi-Skip-Left-Left x₃ x₄) = {!!} -- ∼-trans (∼-Semi-Case-Left x x₁ x₂) (∼-Semi-Skip-Right-Left x₃ x₄) = {!!} -- ∼-trans (∼-Semi-Case-Left x x₁ x₂) (∼-Semi-Skip-Left-Right x₃ x₄) = {!!} -- ∼-trans (∼-Semi-Case-Left x x₁ x₂) (∼-Semi-Skip-Right-Right x₃ x₄) = {!!} ∼-trans (∼-Semi-Case-Left x x₁ x₂) (∼-Semi-Case-Right x₃ x₄ x₅) = {!!} ∼-trans (∼-Semi-Case-Right x x₁ x₂) (∼-Case x₃ x₄) = ∼-Semi-Case-Right (♯ ∼-trans (∼-sym (♭ x₃)) (♭ x)) (♯ ∼-trans (∼-sym (♭ x₄)) (♭ x₁)) x₂ -- ∼-trans (∼-Semi-Case-Right x x₁ x₂) (∼-Semi-Skip-Left-Right x₃ x₄) = {!!} -- ∼-trans (∼-Semi-Case-Right x x₁ x₂) (∼-Semi-Skip-Right-Right x₃ x₄) = {!!} ∼-trans (∼-Semi-Case-Right x x₁ x₂) (∼-Semi-Case-Left x₃ x₄ x₅) = {!!}
70.957265
213
0.538545
dc5fe645668fab5976352aab372cdf553e27d977
1,282
agda
Agda
LibraBFT/Yasm/Yasm.agda
cwjnkins/bft-consensus-agda
71aa2168e4875ffdeece9ba7472ee3cee5fa9084
[ "UPL-1.0" ]
null
null
null
LibraBFT/Yasm/Yasm.agda
cwjnkins/bft-consensus-agda
71aa2168e4875ffdeece9ba7472ee3cee5fa9084
[ "UPL-1.0" ]
null
null
null
LibraBFT/Yasm/Yasm.agda
cwjnkins/bft-consensus-agda
71aa2168e4875ffdeece9ba7472ee3cee5fa9084
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Base.PKCS open import LibraBFT.Base.Types import LibraBFT.Yasm.Base as LYB import LibraBFT.Yasm.System as LYS -- This module provides a single import for all Yasm modules module LibraBFT.Yasm.Yasm (ℓ-PeerState : Level) (ℓ-VSFP : Level) (parms : LYB.SystemParameters ℓ-PeerState) (ValidSenderForPK : LYS.ValidSenderForPK-type ℓ-PeerState ℓ-VSFP parms) (ValidSenderForPK-stable : LYS.ValidSenderForPK-stable-type ℓ-PeerState ℓ-VSFP parms ValidSenderForPK) where open LYB.SystemParameters parms open import LibraBFT.Yasm.Base public open import LibraBFT.Yasm.System ℓ-PeerState ℓ-VSFP parms public open import LibraBFT.Yasm.Properties ℓ-PeerState ℓ-VSFP parms ValidSenderForPK ValidSenderForPK-stable public open import Util.FunctionOverride PeerId _≟PeerId_ public
49.307692
111
0.670047
18608b8e57adf4b5a29c02ab9f26ebdea686e5b1
2,852
agda
Agda
src/Magma/Bundles.agda
Akshobhya1234/agda-NonAssociativeAlgebra
443e831e536b756acbd1afd0d6bae7bc0d288048
[ "MIT" ]
2
2021-08-15T06:16:13.000Z
2021-08-17T09:14:03.000Z
src/Magma/Bundles.agda
Akshobhya1234/agda-NonAssociativeAlgebra
443e831e536b756acbd1afd0d6bae7bc0d288048
[ "MIT" ]
2
2021-10-04T05:30:30.000Z
2021-10-09T08:24:56.000Z
src/Magma/Bundles.agda
Akshobhya1234/agda-NonAssociativeAlgebra
443e831e536b756acbd1afd0d6bae7bc0d288048
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Magma.Bundles where open import Algebra.Bundles open import Algebra.Core open import Magma.Structures open import Relation.Binary open import Level record IdempotentMagma c ℓ : Set (suc (c ⊔ ℓ)) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier isIdempotentMagma : IsIdempotentMagma _≈_ _∙_ open IsIdempotentMagma isIdempotentMagma public magma : Magma c ℓ magma = record { isMagma = isMagma } open Magma magma public using (rawMagma) record AlternateMagma c ℓ : Set (suc (c ⊔ ℓ)) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier isAlternateMagma : IsAlternateMagma _≈_ _∙_ open IsAlternateMagma isAlternateMagma public magma : Magma c ℓ magma = record { isMagma = isMagma } open Magma magma public using (rawMagma) record FlexibleMagma c ℓ : Set (suc (c ⊔ ℓ)) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier isFlexibleMagma : IsFlexibleMagma _≈_ _∙_ open IsFlexibleMagma isFlexibleMagma public magma : Magma c ℓ magma = record { isMagma = isMagma } open Magma magma public using (rawMagma) record MedialMagma c ℓ : Set (suc (c ⊔ ℓ)) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier isMedialMagma : IsMedialMagma _≈_ _∙_ open IsMedialMagma isMedialMagma public magma : Magma c ℓ magma = record { isMagma = isMagma } open Magma magma public using (rawMagma) record SemimedialMagma c ℓ : Set (suc (c ⊔ ℓ)) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier isSemimedialMagma : IsSemimedialMagma _≈_ _∙_ open IsSemimedialMagma isSemimedialMagma public magma : Magma c ℓ magma = record { isMagma = isMagma } open Magma magma public using (rawMagma) record LeftUnitalMagma c ℓ : Set (suc (c ⊔ ℓ)) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier ε : Carrier isLeftUnitalMagma : IsLeftUnitalMagma _≈_ _∙_ ε open IsLeftUnitalMagma isLeftUnitalMagma public magma : Magma c ℓ magma = record { isMagma = isMagma } open Magma magma public using (rawMagma) record RightUnitalMagma c ℓ : Set (suc (c ⊔ ℓ)) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier ε : Carrier isRightUnitalMagma : IsRightUnitalMagma _≈_ _∙_ ε open IsRightUnitalMagma isRightUnitalMagma public magma : Magma c ℓ magma = record { isMagma = isMagma } open Magma magma public using (rawMagma)
21.443609
54
0.652525
dfc774397ad32f666efc78bb596a2fe7320fbd8f
1,583
agda
Agda
agda-stdlib-0.9/src/Function/Injection.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Function/Injection.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Function/Injection.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Injections ------------------------------------------------------------------------ module Function.Injection where open import Function as Fun using () renaming (_∘_ to _⟨∘⟩_) open import Level open import Relation.Binary open import Function.Equality as F using (_⟶_; _⟨$⟩_) renaming (_∘_ to _⟪∘⟫_) import Relation.Binary.PropositionalEquality as P -- Injective functions. Injective : ∀ {a₁ a₂ b₁ b₂} {A : Setoid a₁ a₂} {B : Setoid b₁ b₂} → A ⟶ B → Set _ Injective {A = A} {B} f = ∀ {x y} → f ⟨$⟩ x ≈₂ f ⟨$⟩ y → x ≈₁ y where open Setoid A renaming (_≈_ to _≈₁_) open Setoid B renaming (_≈_ to _≈₂_) -- The set of all injections between two setoids. record Injection {f₁ f₂ t₁ t₂} (From : Setoid f₁ f₂) (To : Setoid t₁ t₂) : Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where field to : From ⟶ To injective : Injective to -- The set of all injections from one set to another. infix 3 _↣_ _↣_ : ∀ {f t} → Set f → Set t → Set _ From ↣ To = Injection (P.setoid From) (P.setoid To) -- Identity and composition. infixr 9 _∘_ id : ∀ {s₁ s₂} {S : Setoid s₁ s₂} → Injection S S id = record { to = F.id; injective = Fun.id } _∘_ : ∀ {f₁ f₂ m₁ m₂ t₁ t₂} {F : Setoid f₁ f₂} {M : Setoid m₁ m₂} {T : Setoid t₁ t₂} → Injection M T → Injection F M → Injection F T f ∘ g = record { to = to f ⟪∘⟫ to g ; injective = (λ {_} → injective g) ⟨∘⟩ injective f } where open Injection
28.781818
72
0.534428
1057a1d82f92305b828b67318535e11bf656b564
50
agda
Agda
test/interaction/Imports/Issue5357-D.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Imports/Issue5357-D.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Imports/Issue5357-D.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Imports.Issue5357-D where A : Set₁ A = Set
12.5
32
0.74
202ba845295e52dce13a39588e81f56a3cdfcb15
436
agda
Agda
Cubical/HITs/SetQuotients/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/SetQuotients/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/HITs/SetQuotients/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{- This file contains: - Definition of set quotients -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.SetQuotients.Base where open import Cubical.Core.Primitives -- Set quotients as a higher inductive type: data _/_ {ℓ ℓ'} (A : Type ℓ) (R : A → A → Type ℓ') : Type (ℓ-max ℓ ℓ') where [_] : (a : A) → A / R eq/ : (a b : A) → (r : R a b) → [ a ] ≡ [ b ] squash/ : (x y : A / R) → (p q : x ≡ y) → p ≡ q
24.222222
76
0.557339
fb44fa0b638b6549c4403a61b8f1d5778d0cc2d6
5,532
agda
Agda
test/asset/agda-stdlib-1.0/Relation/Binary/Construct/NonStrictToStrict.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Binary/Construct/NonStrictToStrict.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Binary/Construct/NonStrictToStrict.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Conversion of _≤_ to _<_ ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.Construct.NonStrictToStrict {a ℓ₁ ℓ₂} {A : Set a} (_≈_ : Rel A ℓ₁) (_≤_ : Rel A ℓ₂) where open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Data.Sum using (inj₁; inj₂) open import Function using (_∘_; flip) open import Relation.Nullary using (¬_; yes; no) ------------------------------------------------------------------------ -- _≤_ can be turned into _<_ as follows: _<_ : Rel A _ x < y = (x ≤ y) × ¬ (x ≈ y) ------------------------------------------------------------------------ -- The converted relations have certain properties -- (if the original relations have certain other properties) <⇒≤ : _<_ ⇒ _≤_ <⇒≤ = proj₁ <-irrefl : Irreflexive _≈_ _<_ <-irrefl x≈y (_ , x≉y) = x≉y x≈y <-trans : IsPartialOrder _≈_ _≤_ → Transitive _<_ <-trans po (x≤y , x≉y) (y≤z , y≉z) = (trans x≤y y≤z , x≉y ∘ antisym x≤y ∘ trans y≤z ∘ reflexive ∘ Eq.sym) where open IsPartialOrder po <-≤-trans : Symmetric _≈_ → Transitive _≤_ → Antisymmetric _≈_ _≤_ → _≤_ Respectsʳ _≈_ → Trans _<_ _≤_ _<_ <-≤-trans sym trans antisym respʳ (x≤y , x≉y) y≤z = trans x≤y y≤z , (λ x≈z → x≉y (antisym x≤y (respʳ (sym x≈z) y≤z))) ≤-<-trans : Transitive _≤_ → Antisymmetric _≈_ _≤_ → _≤_ Respectsˡ _≈_ → Trans _≤_ _<_ _<_ ≤-<-trans trans antisym respʳ x≤y (y≤z , y≉z) = trans x≤y y≤z , (λ x≈z → y≉z (antisym y≤z (respʳ x≈z x≤y))) <-asym : Antisymmetric _≈_ _≤_ → Asymmetric _<_ <-asym antisym (x≤y , x≉y) (y≤x , _) = x≉y (antisym x≤y y≤x) <-respˡ-≈ : Transitive _≈_ → _≤_ Respectsˡ _≈_ → _<_ Respectsˡ _≈_ <-respˡ-≈ trans respˡ y≈z (y≤x , y≉x) = (respˡ y≈z y≤x) , (λ z≈x → y≉x (trans y≈z z≈x)) <-respʳ-≈ : Symmetric _≈_ → Transitive _≈_ → _≤_ Respectsʳ _≈_ → _<_ Respectsʳ _≈_ <-respʳ-≈ sym trans respʳ {x} {y} {z} y≈z (x≤y , x≉y) = (respʳ y≈z x≤y) , λ x≈z → x≉y (trans x≈z (sym y≈z)) <-resp-≈ : IsEquivalence _≈_ → _≤_ Respects₂ _≈_ → _<_ Respects₂ _≈_ <-resp-≈ eq (respʳ , respˡ) = <-respʳ-≈ sym trans respʳ , <-respˡ-≈ trans respˡ where open IsEquivalence eq <-trichotomous : Symmetric _≈_ → Decidable _≈_ → Antisymmetric _≈_ _≤_ → Total _≤_ → Trichotomous _≈_ _<_ <-trichotomous ≈-sym _≟_ antisym total x y with x ≟ y ... | yes x≈y = tri≈ (<-irrefl x≈y) x≈y (<-irrefl (≈-sym x≈y)) ... | no x≉y with total x y ... | inj₁ x≤y = tri< (x≤y , x≉y) x≉y (x≉y ∘ antisym x≤y ∘ proj₁) ... | inj₂ x≥y = tri> (x≉y ∘ flip antisym x≥y ∘ proj₁) x≉y (x≥y , x≉y ∘ ≈-sym) <-decidable : Decidable _≈_ → Decidable _≤_ → Decidable _<_ <-decidable _≟_ _≤?_ x y with x ≟ y | x ≤? y ... | yes x≈y | _ = no (flip proj₂ x≈y) ... | no x≉y | yes x≤y = yes (x≤y , x≉y) ... | no x≉y | no x≰y = no (x≰y ∘ proj₁) <-isStrictPartialOrder : IsPartialOrder _≈_ _≤_ → IsStrictPartialOrder _≈_ _<_ <-isStrictPartialOrder po = record { isEquivalence = isEquivalence ; irrefl = <-irrefl ; trans = <-trans po ; <-resp-≈ = <-resp-≈ isEquivalence ≤-resp-≈ } where open IsPartialOrder po <-isStrictTotalOrder₁ : Decidable _≈_ → IsTotalOrder _≈_ _≤_ → IsStrictTotalOrder _≈_ _<_ <-isStrictTotalOrder₁ ≟ tot = record { isEquivalence = isEquivalence ; trans = <-trans isPartialOrder ; compare = <-trichotomous Eq.sym ≟ antisym total } where open IsTotalOrder tot <-isStrictTotalOrder₂ : IsDecTotalOrder _≈_ _≤_ → IsStrictTotalOrder _≈_ _<_ <-isStrictTotalOrder₂ dtot = <-isStrictTotalOrder₁ _≟_ isTotalOrder where open IsDecTotalOrder dtot ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.16 irrefl = <-irrefl {-# WARNING_ON_USAGE irrefl "Warning: irrefl was deprecated in v0.16. Please use <-irrefl instead." #-} trans = <-trans {-# WARNING_ON_USAGE trans "Warning: trans was deprecated in v0.16. Please use <-trans instead." #-} antisym⟶asym = <-asym {-# WARNING_ON_USAGE antisym⟶asym "Warning: antisym⟶asym was deprecated in v0.16. Please use <-asym instead." #-} decidable = <-decidable {-# WARNING_ON_USAGE decidable "Warning: decidable was deprecated in v0.16. Please use <-decidable instead." #-} trichotomous = <-trichotomous {-# WARNING_ON_USAGE trichotomous "Warning: trichotomous was deprecated in v0.16. Please use <-trichotomous instead." #-} isPartialOrder⟶isStrictPartialOrder = <-isStrictPartialOrder {-# WARNING_ON_USAGE isPartialOrder⟶isStrictPartialOrder "Warning: isPartialOrder⟶isStrictPartialOrder was deprecated in v0.16. Please use <-isStrictPartialOrder instead." #-} isTotalOrder⟶isStrictTotalOrder = <-isStrictTotalOrder₁ {-# WARNING_ON_USAGE isTotalOrder⟶isStrictTotalOrder "Warning: isTotalOrder⟶isStrictTotalOrder was deprecated in v0.16. Please use <-isStrictTotalOrder₁ instead." #-} isDecTotalOrder⟶isStrictTotalOrder = <-isStrictTotalOrder₂ {-# WARNING_ON_USAGE isDecTotalOrder⟶isStrictTotalOrder "Warning: isDecTotalOrder⟶isStrictTotalOrder was deprecated in v0.16. Please use <-isStrictTotalOrder₂ instead." #-}
35.922078
72
0.58966
23d1fa57d3b4ef354ab711e7c61f3553d59addb0
38,058
agda
Agda
agda/Esterel/Lang/Binding.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
3
2020-04-16T10:58:53.000Z
2020-07-01T03:59:31.000Z
agda/Esterel/Lang/Binding.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
null
null
null
agda/Esterel/Lang/Binding.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
1
2020-04-15T20:02:49.000Z
2020-04-15T20:02:49.000Z
module Esterel.Lang.Binding where open import utility open import Data.List open import Data.Empty using (⊥ ; ⊥-elim) open import Data.Bool using (Bool ; true ; false ; if_then_else_) open import Esterel.Lang open import Esterel.Environment as Env using (Env ; VarList ; Dom ; Θ ; _←_) open import Esterel.Context using (Context1 ; EvaluationContext1 ; _≐_⟦_⟧e ; _⟦_⟧e ; _≐_⟦_⟧c ; _⟦_⟧c) open import Esterel.Context.Properties using (plug) open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) renaming (_≟ₛₜ_ to _≟ₛₜₛ_ ; unwrap to Sunwrap) open import Esterel.Variable.Shared as SharedVar using (SharedVar ; _ₛₕ) renaming (_≟ₛₜ_ to _≟ₛₜₛₕ_ ; unwrap to sunwrap) open import Esterel.Variable.Sequential as SeqVar using (SeqVar ; _ᵥ) renaming (unwrap to vunwrap) open import Data.Product using (_×_ ; _,_ ; _,′_ ; proj₁ ; proj₂ ; ∃ ; Σ) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Data.Maybe using (Maybe ; just ; nothing) open import Data.Nat using (ℕ ; _≟_ ; zero ; suc) open import Relation.Nullary using (Dec ; yes ; no ; ¬_) open import Function using (_∘_ ; id ; _∋_) open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; setoid) open import Relation.Nullary.Decidable using (⌊_⌋) open import Data.Bool using (not) open import Data.List.Any as ListAny using (Any ; any ; here ; there) open import Data.List.Any.Properties using (∷↔) renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ) open ListSet Data.Nat._≟_ open _≐_⟦_⟧e open _≐_⟦_⟧c open Context1 open EvaluationContext1 base : VarList base = [] ,′ [] ,′ [] +S : Signal -> VarList -> VarList +S S' (S , s , v) = ((Sunwrap S') ∷ S , s , v) +s : SharedVar -> VarList -> VarList +s s' (S , s , v) = (S , sunwrap s' ∷ s , v) +x : SeqVar -> VarList -> VarList +x x' (S , s , v) = (S , s , vunwrap x' ∷ v) Xs : VarList -> List ℕ Xs (_ , _ , v) = v Ss : VarList -> List ℕ Ss (S , _ , _) = S FVₑ : Expr -> VarList FVₑ (plus []) = base FVₑ (plus (num x ∷ x₁)) = FVₑ (plus x₁) FVₑ (plus (seq-ref x ∷ x₁)) = +x x (FVₑ (plus x₁)) FVₑ (plus (shr-ref s ∷ x₁)) = +s s (FVₑ (plus x₁)) dist++ˡ : ∀{VL1 VL2 VL3} → (distinct VL1 (VL2 U̬ VL3)) → (distinct VL1 VL2) dist++ˡ (a , b , c) = (dist'++ˡ a) ,(dist'++ˡ b) ,(dist'++ˡ c) dist++ʳ : ∀{VL1 VL2 VL3} → (distinct VL1 (VL2 U̬ VL3)) → (distinct VL1 VL3) dist++ʳ{VL1}{VL2 = (v1 , v2 , v3)}{VL3 = (V1 , V2 , V3)} (a , b , c) = (dist'++ʳ{V2 = v1}{V3 = V1} a) , (dist'++ʳ{V2 = v2}{V3 = V2} b) , (dist'++ʳ{V2 = v3}{V3 = V3} c) dist++b : ∀{VL1 VL2 VL3 VL4} → (distinct (VL1 U̬ VL2) (VL3 U̬ VL4)) → (distinct VL1 VL3) dist++b (a , b , c) = (dist'++b a) , (dist'++b b) , (dist'++b c) dist:: : ∀{VL1 VL2 S} → (distinct VL1 (+S S VL2)) → (distinct VL1 VL2) dist::{VL1}{(Ss , s , v)}{S} (a , b , c) = dist':: a , b , c {- This definition of CorrectBinding accumulates the bound and free variables to make it easier to work with. The definition of `CB` (below) matches the one in the paper. -} data CorrectBinding : Term → (BV : VarList) → (FV : VarList) → Set where CBnothing : CorrectBinding nothin base base CBpause : CorrectBinding pause base base CBsig : ∀{p S BV FV} → CorrectBinding p BV FV → CorrectBinding (signl S p) (+S S BV) (FV |̌ (+S S base)) CBpresent : ∀{S p q BVp FVp BVq FVq} → (cbp : CorrectBinding p BVp FVp) → (cbq : CorrectBinding q BVq FVq) → CorrectBinding (present S ∣⇒ p ∣⇒ q) (BVp U̬ BVq) (+S S (FVp U̬ FVq)) CBemit : ∀{S} → CorrectBinding (emit S) base (+S S base) CBpar : ∀{p q BVp FVp BVq FVq} → (cbp : CorrectBinding p BVp FVp) → (cbq : CorrectBinding q BVq FVq) → (BVp≠BVq : distinct BVp BVq) → (FVp≠BVq : distinct FVp BVq) → (BVp≠FVq : distinct BVp FVq) → (Xp≠Xq : distinct' (Xs FVp) (Xs FVq)) → CorrectBinding (p ∥ q) (BVp U̬ BVq) (FVp U̬ FVq) CBloop : ∀{p BV FV} → CorrectBinding p BV FV → (BV≠FV : distinct BV FV) → CorrectBinding (loop p) BV FV CBloopˢ : ∀{p q BVp FVp BVq FVq} → CorrectBinding p BVp FVp → CorrectBinding q BVq FVq → (BVp≠FVq : distinct BVp FVq) → (BVq≠FVq : distinct BVq FVq) → CorrectBinding (loopˢ p q) (BVp U̬ BVq) (FVp U̬ FVq) CBseq : ∀{p q BVp BVq FVp FVq} → (cbp : CorrectBinding p BVp FVp) → (cbq : CorrectBinding q BVq FVq) → (BVp≠FVq : distinct BVp FVq) → CorrectBinding (p >> q) (BVp U̬ BVq) (FVp U̬ FVq) CBsusp : ∀{S p BV FV} → (cbp : CorrectBinding p BV FV) → ([S]≠BVp : distinct' [ (Sunwrap S) ] (Ss BV)) → CorrectBinding (suspend p S) BV (+S S FV) CBexit : ∀{n} → CorrectBinding (exit n) base base CBtrap : ∀{p BV FV} → CorrectBinding p BV FV → CorrectBinding (trap p) BV FV CBshared : ∀{s e p BV FV} → CorrectBinding p BV FV → CorrectBinding (shared s ≔ e in: p) (+s s BV) ((FVₑ e) U̬ (FV |̌ (+s s base))) CBsset : ∀{s e} → CorrectBinding (s ⇐ e) base (+s s (FVₑ e)) CBvar : ∀{x e p BV FV} → CorrectBinding p BV FV → CorrectBinding (var x ≔ e in: p) (+x x BV) ((FVₑ e) U̬ (FV |̌ (+x x base))) CBvset : ∀{x e} → CorrectBinding (x ≔ e) base (+x x (FVₑ e)) CBif : ∀{x p q BVp BVq FVp FVq} → (cbp : CorrectBinding p BVp FVp) → (cbq : CorrectBinding q BVq FVq) → CorrectBinding (if x ∣⇒ p ∣⇒ q) (BVp U̬ BVq) (+x x (FVp U̬ FVq)) CBρ : ∀{θ A p BV FV} → CorrectBinding p BV FV → CorrectBinding (ρ⟨ θ , A ⟩· p) (((Dom θ) U̬ BV)) (FV |̌ (Dom θ)) binding-is-function : ∀{p BV₁ FV₁ BV₂ FV₂} → CorrectBinding p BV₁ FV₁ → CorrectBinding p BV₂ FV₂ → BV₁ ≡ BV₂ × FV₁ ≡ FV₂ binding-is-function CBnothing CBnothing = refl , refl binding-is-function CBpause CBpause = refl , refl binding-is-function (CBsig cb₁) (CBsig cb₂) with binding-is-function cb₁ cb₂ ... | (refl , refl) = refl , refl binding-is-function (CBpresent cbp₁ cbq₁) (CBpresent cbp₂ cbq₂) with binding-is-function cbp₁ cbp₂ | binding-is-function cbq₁ cbq₂ ... | (refl , refl) | (refl , refl) = refl , refl binding-is-function CBemit CBemit = refl , refl binding-is-function (CBpar cbp₁ cbq₁ BVp≠BVq₁ FVp≠BVq₁ BVp≠FVq₁ Xp≠Xq₁) (CBpar cbp₂ cbq₂ BVp≠BVq₂ FVp≠BVq₂ BVp≠FVq₂ Xp≠Xq₂) with binding-is-function cbp₁ cbp₂ | binding-is-function cbq₁ cbq₂ ... | (refl , refl) | (refl , refl) = refl , refl binding-is-function (CBloop cb₁ BV≠FV₁) (CBloop cb₂ BV≠FVV₂) with binding-is-function cb₁ cb₂ ... | (refl , refl) = refl , refl binding-is-function (CBloopˢ cbp₁ cbq₁ BVp≠FVq₁ BVq≠FVq₁) (CBloopˢ cbp₂ cbq₂ BVp≠FVq₂ BVq≠FVq₂) with binding-is-function cbp₁ cbp₂ | binding-is-function cbq₁ cbq₂ ... | (refl , refl) | (refl , refl) = refl , refl binding-is-function (CBseq cbp₁ cbq₁ BV≠FV₁) (CBseq cbp₂ cbq₂ BV≠FV₂) with binding-is-function cbp₁ cbp₂ | binding-is-function cbq₁ cbq₂ ... | (refl , refl) | (refl , refl) = refl , refl binding-is-function (CBsusp cb₁ S∉BV₁) (CBsusp cb₂ S∉BV₂) with binding-is-function cb₁ cb₂ ... | (refl , refl) = refl , refl binding-is-function CBexit CBexit = refl , refl binding-is-function (CBtrap cb₁) (CBtrap cb₂) with binding-is-function cb₁ cb₂ ... | (refl , refl) = refl , refl binding-is-function (CBshared cb₁) (CBshared cb₂) with binding-is-function cb₁ cb₂ ... | (refl , refl) = refl , refl binding-is-function CBsset CBsset = refl , refl binding-is-function (CBvar cb₁) (CBvar cb₂) with binding-is-function cb₁ cb₂ ... | (refl , refl) = refl , refl binding-is-function CBvset CBvset = refl , refl binding-is-function (CBif cbp₁ cbq₁) (CBif cbp₂ cbq₂) with binding-is-function cbp₁ cbp₂ | binding-is-function cbq₁ cbq₂ ... | (refl , refl) | (refl , refl) = refl , refl binding-is-function (CBρ cb₁) (CBρ cb₂) with binding-is-function cb₁ cb₂ ... | (refl , refl) = refl , refl binding-dec : ∀ p → Dec (∃ \ BV -> ∃ \ FV -> CorrectBinding p BV FV) binding-dec nothin = yes (base , base , CBnothing) binding-dec pause = yes (base , base , CBpause) binding-dec (signl S p) with binding-dec p binding-dec (signl S p) | yes (BV , FV , CBp) = yes (+S S BV , (FV |̌ (+S S base)) , CBsig CBp) binding-dec (signl S p) | no ¬p = no (\ { (BV , FV , CBsig proj₃) → ¬p (_ , _ , proj₃) }) binding-dec (present S ∣⇒ p ∣⇒ q) with binding-dec p binding-dec (present S ∣⇒ p ∣⇒ q) | yes p₂ with binding-dec q binding-dec (present S ∣⇒ p ∣⇒ q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) = yes (BVp U̬ BVq , +S S (FVp U̬ FVq) , CBpresent CBp CBq) binding-dec (present S ∣⇒ p ∣⇒ p₁) | yes p₂ | (no ¬p) = no (\ { (BV , FV , CBpresent BD BD₁) → ¬p (_ , _ , BD₁) } ) binding-dec (present S ∣⇒ p ∣⇒ p₁) | no ¬p = no (\ { (BV , FV , CBpresent BD BD₁) → ¬p (_ , _ , BD) } ) binding-dec (emit S) = yes (base , (Sunwrap S ∷ [] , [] , []) , CBemit) binding-dec (p ∥ q) with binding-dec p binding-dec (p ∥ q) | yes (BVp , FVp , CBp) with binding-dec q binding-dec (p ∥ q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) with distinct-dec BVp BVq binding-dec (p ∥ q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) | yes BVp≠BVq = no ¬CB where ¬CB : ¬ (∃ \ BV -> ∃ \ FV -> CorrectBinding (p ∥ q) BV FV) ¬CB (BV₂ , FV₂ , CBpar CBp₂ CBq₂ BVp≠BVq' FVp≠BVq' BVp≠FVq' Xp≠Xq') with (binding-is-function CBp CBp₂ , binding-is-function CBq CBq₂) ... | ((refl , refl) , (refl , refl)) = distinct-not-distinct-dec BVp≠BVq' BVp≠BVq binding-dec (p ∥ q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) | no ¬BVp≠BVq with distinct-dec FVp BVq binding-dec (p ∥ q) | yes (BVp , FVp , CBp) | (yes (BVq , FVq , CBq)) | (no ¬BVp≠BVq) | (yes FVp≠BVq) = no ¬CB where ¬CB : ¬ (∃ \ BV -> ∃ \ FV -> CorrectBinding (p ∥ q) BV FV) ¬CB (BV₂ , FV₂ , CBpar CBp₂ CBq₂ BVp≠BVq' FVp≠BVq' BVp≠FVq' Xp≠Xq') with (binding-is-function CBp CBp₂ , binding-is-function CBq CBq₂) ... | ((refl , refl) , (refl , refl)) = distinct-not-distinct-dec FVp≠BVq' FVp≠BVq binding-dec (p ∥ q) | yes (BVp , FVp , CBp) | (yes (BVq , FVq , CBq)) | (no ¬BVp≠BVq) | (no ¬FVp≠BVq) with distinct-dec BVp FVq binding-dec (p ∥ q) | yes (BVp , FVp , CBp) | (yes (BVq , FVq , CBq)) | (no ¬BVp≠BVq) | (no ¬FVp≠BVq) | (yes BVp≠FVq) = no ¬CB where ¬CB : ¬ (∃ \ BV -> ∃ \ FV -> CorrectBinding (p ∥ q) BV FV) ¬CB (BV₂ , FV₂ , CBpar CBp₂ CBq₂ BVp≠BVq' FVp≠BVq' BVp≠FVq' Xp≠Xq') with (binding-is-function CBp CBp₂ , binding-is-function CBq CBq₂) ... | ((refl , refl) , (refl , refl)) = distinct-not-distinct-dec BVp≠FVq' BVp≠FVq binding-dec (p ∥ q) | yes (BVp , FVp , CBp) | (yes (BVq , FVq , CBq)) | (no ¬BVp≠BVq) | (no ¬FVp≠BVq) | (no ¬BVp≠FVq) with distinct'-dec (Xs FVp) (Xs FVq) binding-dec (p ∥ q) | yes (BVp , FVp , CBp) | (yes (BVq , FVq , CBq)) | (no ¬BVp≠BVq) | (no ¬FVp≠BVq) | (no ¬BVp≠FVq) | (yes Xp≠Xq) = no ¬CB where ¬CB : ¬ (∃ \ BV -> ∃ \ FV -> CorrectBinding (p ∥ q) BV FV) ¬CB (BV₂ , FV₂ , CBpar CBp₂ CBq₂ BVp≠BVq' FVp≠BVq' BVp≠FVq' Xp≠Xq') with (binding-is-function CBp CBp₂ , binding-is-function CBq CBq₂) ... | ((refl , refl) , (refl , refl)) = Xp≠Xq' (proj₁ Xp≠Xq) (proj₁ (proj₂ Xp≠Xq)) (proj₂ (proj₂ Xp≠Xq)) binding-dec (p ∥ q) | yes (BVp , FVp , CBp) | (yes (BVq , FVq , CBq)) | (no ¬BVp≠BVq) | (no ¬FVp≠BVq) | (no ¬BVp≠FVq) | (no ¬Xp≠Xq) = yes (BVp U̬ BVq , FVp U̬ FVq , CBpar CBp CBq (distinct-dec-is-distinct ¬BVp≠BVq) (distinct-dec-is-distinct ¬FVp≠BVq) (distinct-dec-is-distinct ¬BVp≠FVq) (λ z z∈xs z∈ys → ¬Xp≠Xq (z , z∈xs , z∈ys))) binding-dec (p ∥ q) | yes (BVp , FVp , CBp) | no ¬p = no (\ { (BV , FV , CBpar X X₁ BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) → ¬p (_ , _ , X₁ ) } ) binding-dec (p ∥ q) | no ¬p = no (\ { (BV , FV , CBpar X X₁ BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) → ¬p (_ , _ , X) } ) binding-dec (loop p) with binding-dec p binding-dec (loop p) | yes (BV , FV , CB) with distinct-dec BV FV binding-dec (loop p) | yes (BV , FV , CB) | yes dec = no ¬CB where ¬CB : ¬ (∃ \ BV -> ∃ \ FV -> CorrectBinding (loop p) BV FV) ¬CB (BV₂ , FV₂ , CBloop CB₂ BV≠FV') with binding-is-function CB CB₂ ... | (refl , refl) = distinct-not-distinct-dec BV≠FV' dec binding-dec (loop p) | yes (BV , FV , CB) | no dec = yes (BV , (FV , (CBloop CB (distinct-dec-is-distinct dec)))) binding-dec (loop p) | no ¬p = no (\ { (BV , FV , CBloop CB BV≠FV) -> ¬p (_ , _ , CB) } ) binding-dec (loopˢ p q) with binding-dec p binding-dec (loopˢ p q) | yes (BVp , FVq , CBp ) with binding-dec q binding-dec (loopˢ p q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) with distinct-dec BVp FVq binding-dec (loopˢ p q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) | yes BVp≠FVq = no ¬CB where ¬CB : ¬ (∃ \ BV -> ∃ \ FV -> CorrectBinding (loopˢ p q) BV FV) ¬CB (BV₂ , FV₂ , CBloopˢ CBp₂ CBq₂ BVp≠FVq₂ BVq≠FVq₂) with (binding-is-function CBp CBp₂ , binding-is-function CBq CBq₂) ... | ((refl , refl) , (refl , refl)) = distinct-not-distinct-dec BVp≠FVq₂ BVp≠FVq binding-dec (loopˢ p q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) | no ¬BVp≠FVq with distinct-dec BVq FVq binding-dec (loopˢ p q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) | no ¬BVp≠FVq | yes ¬BVq≠FVq = no ¬CB where ¬CB : ¬ (∃ \ BV -> ∃ \ FV -> CorrectBinding (loopˢ p q) BV FV) ¬CB (BV₂ , FV₂ , CBloopˢ CBp₂ CBq₂ BVp≠FVq₂ BVq≠FVq₂) with (binding-is-function CBp CBp₂ , binding-is-function CBq CBq₂) ... | ((refl , refl) , (refl , refl)) = distinct-not-distinct-dec BVq≠FVq₂ ¬BVq≠FVq binding-dec (loopˢ p q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) | no BVp≠FVq | no BVq≠FVq = yes (BVp U̬ BVq , FVp U̬ FVq , CBloopˢ CBp CBq (distinct-dec-is-distinct BVp≠FVq) (distinct-dec-is-distinct BVq≠FVq)) binding-dec (loopˢ p q) | yes (BVp , FVq , CBp) | (no ¬CBq) = no (\ { (BV , FV , CBloopˢ CBp CBq BVp≠FVq BVq≠FVq) -> ¬CBq (_ , _ , CBq) } ) binding-dec (loopˢ p q) | no ¬CBp = no (\ { (BV , FV , CBloopˢ CBp CBq BVp≠FVq BVq≠FVq) -> ¬CBp (_ , _ , CBp) }) binding-dec (p >> q) with binding-dec p binding-dec (p >> q) | yes (BVp , FVq , CBp ) with binding-dec q binding-dec (p >> q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) with distinct-dec BVp FVq binding-dec (p >> q) | yes (BVp , FVp , CBp) | (yes (BVq , FVq , CBq)) | (yes BVp≠FVq) = no ¬CB where ¬CB : ¬ (∃ \ BV -> ∃ \ FV -> CorrectBinding (p >> q) BV FV) ¬CB (BV₂ , FV₂ , CBseq CBp₂ CBq₂ BVp≠FVq') with (binding-is-function CBp CBp₂ , binding-is-function CBq CBq₂) ... | ((refl , refl) , (refl , refl)) = distinct-not-distinct-dec BVp≠FVq' BVp≠FVq binding-dec (p >> q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) | no ¬BVp≠FVq = yes (BVp U̬ BVq , FVp U̬ FVq , CBseq CBp CBq (distinct-dec-is-distinct ¬BVp≠FVq)) binding-dec (p >> q) | yes (BVp , FVq , CBp) | (no ¬CBq) = no (\ { (BV , FV , CBseq CBp CBq BVp≠FVq) -> ¬CBq (_ , _ , CBq) } ) binding-dec (p >> q) | no ¬CBp = no (\ { (BV , FV , CBseq CBp CBq BVp≠FVq) -> ¬CBp (_ , _ , CBp) }) binding-dec (suspend p S) with binding-dec p binding-dec (suspend p S) | yes (BV , FV , CB) with distinct'-dec [ (Sunwrap S) ] (Ss BV) binding-dec (suspend p S) | yes (BV₁ , FV₁ , CB₁) | yes ([S]≠BVp₁ , [S]≠BVp₂ , [S]≠BVp₃) = no ¬CB where ¬CB : ¬ (∃ \ BV -> ∃ \ FV -> CorrectBinding (suspend p S) BV FV) ¬CB (BV₂ , FV₂ , CBsusp CB₃ [S]≠BVp') with (binding-is-function CB₁ CB₃) ... | refl , refl = [S]≠BVp' [S]≠BVp₁ [S]≠BVp₂ [S]≠BVp₃ binding-dec (suspend p S) | yes (BV , FV , CB) | (no ¬[S]≠BVp) = yes (BV , +S S FV , CBsusp CB (λ z z∈xs z∈ys → ¬[S]≠BVp (z , z∈xs , z∈ys))) binding-dec (suspend p S) | no ¬p = no (\ { (BV , FV , CBsusp CB [S]≠BVp) -> ¬p (_ , _ , CB)}) binding-dec (trap p) with binding-dec p binding-dec (trap p) | yes (BV , FV , CB) = yes (BV , FV , CBtrap CB) binding-dec (trap p) | no ¬p = no (\ { (BV , FV , CBtrap CB ) -> ¬p (BV , FV , CB) }) binding-dec (exit x) = yes (base , base , CBexit) binding-dec (shared s ≔ e in: p) with binding-dec p binding-dec (shared s ≔ e in: p) | yes (BV , FV , CB) = yes (+s s BV , (FVₑ e) U̬ (FV |̌ (+s s base)) , CBshared CB) binding-dec (shared s ≔ e in: p) | no ¬p = no (\ { (BV , FV , CBshared CB) -> ¬p (_ , _ , CB) }) binding-dec (s ⇐ e) = yes (base , +s s (FVₑ e) , CBsset) binding-dec (var x ≔ e in: p) with binding-dec p binding-dec (var x ≔ e in: p) | yes (BV , FV , CB) = yes (+x x BV , (FVₑ e) U̬ (FV |̌ (+x x base)) , CBvar CB) binding-dec (var x ≔ e in: p) | no ¬p = no (\ { (BV , FV , CBvar CB) -> ¬p (_ , _ , CB) } ) binding-dec (x ≔ e) = yes (base , (+x x (FVₑ e)) , CBvset) binding-dec (if x ∣⇒ p ∣⇒ q) with binding-dec p binding-dec (if x ∣⇒ p ∣⇒ q) | yes p₁ with binding-dec q binding-dec (if x ∣⇒ p₁ ∣⇒ q) | yes (BVp , FVp , CBp) | yes (BVq , FVq , CBq) = yes (BVp U̬ BVq , +x x (FVp U̬ FVq) , CBif CBp CBq) binding-dec (if x ∣⇒ p ∣⇒ q) | yes p₁ | (no ¬p) = no (\ { (BV , FV , CBif CBp CBq) -> ¬p (_ , _ , CBq) }) binding-dec (if x ∣⇒ p ∣⇒ q) | no ¬p = no (\ { (BV , FV , CBif CBp CBq) -> ¬p (_ , _ , CBp) }) binding-dec (ρ⟨ θ , A ⟩· p) with binding-dec p binding-dec (ρ⟨ θ , A ⟩· p) | yes (BV , FV , BP) = yes (((Dom θ) U̬ BV) , FV |̌ (Dom θ) , CBρ BP) binding-dec (ρ⟨ θ , A ⟩· p) | no ¬p = no (\ { (BV , FV , CBρ p ) -> ¬p (_ , _ , p) } ) binding-extract : ∀{p BV FV p' E} → CorrectBinding p BV FV → p ≐ E ⟦ p' ⟧e → Σ (VarList × VarList) λ { (BV' , FV') → (BV' ⊆ BV × FV' ⊆ FV) × CorrectBinding p' BV' FV' } binding-extract cb dehole = _ , (⊆-refl , ⊆-refl) , cb binding-extract (CBpar cbp cbq _ _ _ _) (depar₁ p≐E⟦p'⟧) with binding-extract cbp p≐E⟦p'⟧ ... | (BV' , FV') , (BV'⊆BV , FV'⊆FV) , cb* = _ , (∪ˡ BV'⊆BV , ∪ˡ FV'⊆FV) , cb* binding-extract {_} (CBpar {BVp = BVp} {FVp = FVp} cbp cbq _ _ _ _) (depar₂ q≐E⟦q'⟧) with binding-extract cbq q≐E⟦q'⟧ ... | (BV' , FV') , (BV'⊆BV , FV'⊆FV) , cb* = _ , (∪ʳ BVp BV'⊆BV , ∪ʳ FVp FV'⊆FV) , cb* binding-extract (CBseq cbp cbq _) (deseq p≐E⟦p'⟧) with binding-extract cbp p≐E⟦p'⟧ ... | (BV' , FV') , (BV'⊆BV , FV'⊆FV) , cb* = _ , (∪ˡ BV'⊆BV , ∪ˡ FV'⊆FV) , cb* binding-extract (CBloopˢ cbp cbq _ _) (deloopˢ p≐E⟦p'⟧) with binding-extract cbp p≐E⟦p'⟧ ... | (BV' , FV') , (BV'⊆BV , FV'⊆FV) , cb* = _ , (∪ˡ BV'⊆BV , ∪ˡ FV'⊆FV) , cb* binding-extract (CBsusp {S = S} cb _) (desuspend p≐E⟦p'⟧) with binding-extract cb p≐E⟦p'⟧ ... | (BV' , FV') , (BV'⊆BV , FV'⊆FV) , cb* = _ , (BV'⊆BV , ∪ʳ (+S S base) FV'⊆FV) , cb* binding-extract (CBtrap cb) (detrap p≐E⟦p'⟧) with binding-extract cb p≐E⟦p'⟧ ... | (BV' , FV') , (BV'⊆BV , FV'⊆FV) , cb* = _ , (BV'⊆BV , FV'⊆FV) , cb* binding-subst : ∀{p BVp FVp q BVq FVq r BVr FVr E} → CorrectBinding p BVp FVp → p ≐ E ⟦ q ⟧e → CorrectBinding q BVq FVq → BVr ⊆ BVq → FVr ⊆ FVq → CorrectBinding r BVr FVr → Σ (VarList × VarList) λ { (BV' , FV') → (BV' ⊆ BVp × FV' ⊆ FVp) × CorrectBinding (E ⟦ r ⟧e) BV' FV' } binding-subst (CBpar {BVq = BVq'} {FVq = FVq'} cbp' cbq' BVp'≠BVq' FVp'≠BVq' BVp'≠FVq' Xp'≠Xq') (depar₁ p'≐E⟦q⟧) cbq BVr⊆BVq FVr⊆FVq cbr with binding-subst cbp' p'≐E⟦q⟧ cbq BVr⊆BVq FVr⊆FVq cbr ... | (BVp'' , FVp'') , (BVp''⊆BVp' , FVp''⊆FVp') , cbp'' = _ , (∪-respect-⊆-left BVp''⊆BVp' , ∪-respect-⊆-left FVp''⊆FVp') , CBpar cbp'' cbq' (⊆-respect-distinct-left BVp''⊆BVp' BVp'≠BVq') (⊆-respect-distinct-left FVp''⊆FVp' FVp'≠BVq') (⊆-respect-distinct-left BVp''⊆BVp' BVp'≠FVq') (⊆¹-respect-distinct'-left (proj₂ (proj₂ FVp''⊆FVp')) Xp'≠Xq') binding-subst (CBpar {BVp = BVp'} {FVp = FVp'} cbp' cbq' BVp'≠BVq' FVp'≠BVq' BVp'≠FVq' Xp'≠Xq') (depar₂ q'≐E⟦q⟧) cbq BVr⊆BVq FVr⊆FVq cbr with binding-subst cbq' q'≐E⟦q⟧ cbq BVr⊆BVq FVr⊆FVq cbr ... | (BVq'' , FVq'') , (BVq''⊆BVq' , FVq''⊆FVq') , cbq'' = _ , (∪-respect-⊆-right BVp' BVq''⊆BVq' , ∪-respect-⊆-right FVp' FVq''⊆FVq') , CBpar cbp' cbq'' (⊆-respect-distinct-right BVq''⊆BVq' BVp'≠BVq') (⊆-respect-distinct-right BVq''⊆BVq' FVp'≠BVq') (⊆-respect-distinct-right FVq''⊆FVq' BVp'≠FVq') (⊆¹-respect-distinct'-right (proj₂ (proj₂ FVq''⊆FVq')) Xp'≠Xq') binding-subst (CBseq {BVq = BVq'} {FVq = FVq'} cbp' cbq' BV≠FV) (deseq p'≐E⟦q⟧) cbq BVr⊆BVq FVr⊆FVq cbr with binding-subst cbp' p'≐E⟦q⟧ cbq BVr⊆BVq FVr⊆FVq cbr ... | (BVp'' , FVp'') , (BVp''⊆BVp' , FVp''⊆FVp') , cbp'' = _ , (∪-respect-⊆-left BVp''⊆BVp' , ∪-respect-⊆-left FVp''⊆FVp') , CBseq cbp'' cbq' (⊆-respect-distinct-left BVp''⊆BVp' BV≠FV) binding-subst (CBloopˢ {BVq = BVq'} {FVq = FVq'} cbp' cbq' BVp≠FVq BVq≠FVq) (deloopˢ p'≐E⟦q⟧) cbq BVr⊆BVq FVr⊆FVq cbr with binding-subst cbp' p'≐E⟦q⟧ cbq BVr⊆BVq FVr⊆FVq cbr ... | (BVp'' , FVp'') , (BVp''⊆BVp' , FVp''⊆FVp') , cbp'' = _ , (∪-respect-⊆-left BVp''⊆BVp' , ∪-respect-⊆-left FVp''⊆FVp') , CBloopˢ cbp'' cbq' (⊆-respect-distinct-left BVp''⊆BVp' BVp≠FVq) BVq≠FVq binding-subst (CBsusp {S} {FV = FVp'} cbp' S∉BVp') (desuspend p'≐E⟦q⟧) cbq BVr⊆BVq FVr⊆FVq cbr with binding-subst cbp' p'≐E⟦q⟧ cbq BVr⊆BVq FVr⊆FVq cbr ... | (BVp'' , FVP'') , (BVp''⊆BVp' , FVp''⊆FVp') , cbp'' = _ , (BVp''⊆BVp' , (∪¹-respect-⊆¹-right [ Signal.unwrap S ] ,′ id ,′ id # FVp''⊆FVp')) , CBsusp cbp'' (⊆¹-respect-distinct'-right (proj₁ BVp''⊆BVp') S∉BVp') binding-subst (CBtrap cbp') (detrap p'≐E⟦q⟧) cbq BVr⊆BVq FVr⊆FVq cbr with binding-subst cbp' p'≐E⟦q⟧ cbq BVr⊆BVq FVr⊆FVq cbr ... | (BVp'' , FVp'') , ⟨BVp''⊆BVp'⟩×⟨FVp''⊆FVp'⟩ , cbp'' = _ , ⟨BVp''⊆BVp'⟩×⟨FVp''⊆FVp'⟩ , CBtrap cbp'' binding-subst cbp dehole cbq BVr⊆BVq FVr⊆FVq cbr with binding-is-function cbp cbq ... | (refl , refl) = _ , (BVr⊆BVq , FVr⊆FVq) , cbr binding-extractc' : ∀{p BV FV p' C} → CorrectBinding p BV FV → p ≐ C ⟦ p' ⟧c → Σ (VarList × VarList) λ { (BV' , FV') → CorrectBinding p' BV' FV' } binding-extractc' cbp dchole = _ , cbp binding-extractc' (CBsig cbp) (dcsignl p≐C⟦p'⟧) = binding-extractc' cbp p≐C⟦p'⟧ binding-extractc' (CBpresent cbp cbp₁) (dcpresent₁ p≐C⟦p'⟧) = binding-extractc' cbp p≐C⟦p'⟧ binding-extractc' (CBpresent cbp cbp₁) (dcpresent₂ p≐C⟦p'⟧) = binding-extractc' cbp₁ p≐C⟦p'⟧ binding-extractc' (CBpar cbp cbp₁ BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) (dcpar₁ p≐C⟦p'⟧) = binding-extractc' cbp p≐C⟦p'⟧ binding-extractc' (CBpar cbp cbp₁ BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) (dcpar₂ p≐C⟦p'⟧) = binding-extractc' cbp₁ p≐C⟦p'⟧ binding-extractc' (CBloop cbp BV≠FV) (dcloop p≐C⟦p'⟧) = binding-extractc' cbp p≐C⟦p'⟧ binding-extractc' (CBloopˢ CBp CBq BVp≠FVq BVq≠FVq) (dcloopˢ₁ p≐C⟦p'⟧) = binding-extractc' CBp p≐C⟦p'⟧ binding-extractc' (CBloopˢ CBp CBq BVp≠FVq BVq≠FVq) (dcloopˢ₂ q≐C⟦q'⟧) = binding-extractc' CBq q≐C⟦q'⟧ binding-extractc' (CBseq cbp cbp₁ BVp≠FVq) (dcseq₁ p≐C⟦p'⟧) = binding-extractc' cbp p≐C⟦p'⟧ binding-extractc' (CBseq cbp cbp₁ BVp≠FVq) (dcseq₂ p≐C⟦p'⟧) = binding-extractc' cbp₁ p≐C⟦p'⟧ binding-extractc' (CBsusp cbp [S]≠BVp) (dcsuspend p≐C⟦p'⟧) = binding-extractc' cbp p≐C⟦p'⟧ binding-extractc' (CBtrap cbp) (dctrap p≐C⟦p'⟧) = binding-extractc' cbp p≐C⟦p'⟧ binding-extractc' (CBshared cbp) (dcshared p≐C⟦p'⟧) = binding-extractc' cbp p≐C⟦p'⟧ binding-extractc' (CBvar cbp) (dcvar p≐C⟦p'⟧) = binding-extractc' cbp p≐C⟦p'⟧ binding-extractc' (CBif cbp cbp₁) (dcif₁ p≐C⟦p'⟧) = binding-extractc' cbp p≐C⟦p'⟧ binding-extractc' (CBif cbp cbp₁) (dcif₂ p≐C⟦p'⟧) = binding-extractc' cbp₁ p≐C⟦p'⟧ binding-extractc' (CBρ cbp) (dcenv p≐C⟦p'⟧) = binding-extractc' cbp p≐C⟦p'⟧ binding-substc' : ∀{p BVp FVp q BVq FVq r BVr FVr C} → CorrectBinding p BVp FVp → p ≐ C ⟦ q ⟧c → CorrectBinding q BVq FVq → BVr ⊆ BVq → FVr ⊆ FVq → CorrectBinding r BVr FVr → Σ (VarList × VarList) λ { (BV' , FV') → (BV' ⊆ BVp × FV' ⊆ FVp) × CorrectBinding (C ⟦ r ⟧c) BV' FV' } binding-substc' CBp dchole CBq BVr⊆BVq FVr⊆FVq CBr with binding-is-function CBp CBq ... | refl , refl = _ , (BVr⊆BVq , FVr⊆FVq) , CBr binding-substc' (CBpar cbp cbp₁ BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) (dcpar₁ dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-left bvsub , ∪-respect-⊆-left fvsub) , CBpar cb1 cbp₁ (⊆-respect-distinct-left bvsub BVp≠BVq) (⊆-respect-distinct-left fvsub FVp≠BVq) (⊆-respect-distinct-left bvsub BVp≠FVq) (⊆¹-respect-distinct'-left (thd fvsub) Xp≠Xq) binding-substc' (CBpar{BVp = BVp}{FVp = FVp} cbp cbp₁ BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) (dcpar₂ dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp₁ dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-right BVp bvsub , ∪-respect-⊆-right FVp fvsub) , CBpar cbp cb1 (⊆-respect-distinct-right bvsub BVp≠BVq) (⊆-respect-distinct-right bvsub FVp≠BVq) (⊆-respect-distinct-right fvsub BVp≠FVq) (⊆¹-respect-distinct'-right (thd fvsub) Xp≠Xq) binding-substc' (CBseq cbp cbp₁ BVp≠FVq) (dcseq₁ dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-left bvsub , ∪-respect-⊆-left fvsub) , CBseq cb1 cbp₁ (⊆-respect-distinct-left bvsub BVp≠FVq) binding-substc' (CBseq{BVp = BVp}{FVp = FVp} cbp cbp₁ BVp≠FVq) (dcseq₂ dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp₁ dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-right BVp bvsub , ∪-respect-⊆-right FVp fvsub) , CBseq cbp cb1 (⊆-respect-distinct-right fvsub BVp≠FVq) binding-substc' (CBsusp{S = S} cbp [S]≠BVp) (dcsuspend dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (bvsub , ((∷-respect-⊆¹ (Signal.unwrap S)) , id , id # fvsub)) , CBsusp cb1 (⊆¹-respect-distinct'-right (fst bvsub) [S]≠BVp) binding-substc' (CBtrap CBp) (dctrap dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' CBp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (bvsub , fvsub) , CBtrap cb1 binding-substc' (CBsig{S = S ₛ} cbp) (dcsignl dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (((∷-respect-⊆¹ S) , id , id # bvsub) , ⊆-respect-|̌ (+S (S ₛ) base) fvsub), CBsig cb1 binding-substc' (CBpresent{S = S ₛ} cbp cbp₁) (dcpresent₁ dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-left bvsub , ((∷-respect-⊆¹ S) , id , id # (∪-respect-⊆-left fvsub))) , CBpresent cb1 cbp₁ binding-substc' (CBpresent{S = S ₛ}{BVp = BVp}{FVp = FVp} cbp cbp₁) (dcpresent₂ dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp₁ dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-right BVp bvsub , ((∷-respect-⊆¹ S) , id , id # (∪-respect-⊆-right FVp fvsub))) , CBpresent cbp cb1 binding-substc' (CBloop cbp BV≠FV) (dcloop dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-right base bvsub , fvsub) , CBloop cb1 (⊆-respect-distinct-left bvsub (⊆-respect-distinct-right fvsub BV≠FV)) binding-substc' (CBloopˢ cbp cbp₁ BVp≠FVq BVq≠FVq) (dcloopˢ₁ dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-left bvsub , ∪-respect-⊆-left fvsub) , CBloopˢ cb1 cbp₁ (⊆-respect-distinct-left bvsub BVp≠FVq) BVq≠FVq binding-substc' (CBloopˢ{BVp = BVp}{FVp = FVp} cbp cbp₁ BVp≠FVq BVq≠FVq) (dcloopˢ₂ dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp₁ dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-right BVp bvsub , ∪-respect-⊆-right FVp fvsub) , CBloopˢ cbp cb1 (⊆-respect-distinct-right fvsub BVp≠FVq) (⊆-respect-distinct-left bvsub (⊆-respect-distinct-right fvsub BVq≠FVq)) binding-substc' (CBshared{s = s}{e = e} cbp) (dcshared dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (((id , (∷-respect-⊆¹ (SharedVar.unwrap s)) , id # bvsub)) , ∪-respect-⊆-right (FVₑ e) (⊆-respect-|̌ (+s s base) fvsub)) , CBshared cb1 binding-substc' (CBvar{x = x}{e = e} cbp) (dcvar dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (((id , id , (∷-respect-⊆¹ (SeqVar.unwrap x)) # bvsub)) , ∪-respect-⊆-right (FVₑ e) (⊆-respect-|̌ (+x x base) fvsub)) , CBvar cb1 binding-substc' (CBif{x = x ᵥ} cbp cbp₁) (dcif₁ dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-left bvsub , (id , id , (∷-respect-⊆¹ x) # (∪-respect-⊆-left fvsub))) , CBif cb1 cbp₁ binding-substc' (CBif{x = x ᵥ}{BVp = BVp}{FVp = FVp} cbp cbp₁) (dcif₂ dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp₁ dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-right BVp bvsub , (id , id , (∷-respect-⊆¹ x) # (∪-respect-⊆-right FVp fvsub))) , CBif cbp cb1 binding-substc' (CBρ{θ = θ} cbp) (dcenv dc) CBq BVr⊆BVq FVr⊆FVq CBr with binding-substc' cbp dc CBq BVr⊆BVq FVr⊆FVq CBr ... | _ , (bvsub , fvsub) , cb1 = _ , (∪-respect-⊆-right (Dom θ) bvsub , ⊆-respect-|̌ (Dom θ) fvsub) , CBρ cb1 -- In the decomposition E ⟦ p ⟧e, the bound variables in p and the free -- variables in E must be disjoint. distinct-term-context-help : ∀ {BV FV BVp FVp BVnothin FVnothin} p E → CorrectBinding (E ⟦ p ⟧e) BV FV → CorrectBinding p BVp FVp → (BVp ⊆ BV) → CorrectBinding (E ⟦ nothin ⟧e) BVnothin FVnothin → distinct BVp FVnothin distinct-term-context-help p [] cb cbp BVp⊆BV CBnothing = (λ _ _ ()) ,′ (λ _ _ ()) ,′ (λ _ _ ()) distinct-term-context-help p (epar₁ q ∷ E) (CBpar cbp' cbq' BVp'≠BVq' FVp'≠BVq' BVp'≠FVq' Xp'≠Xq') cbp BVp⊆BV (CBpar cbnothinp cbnothinq BVp≠BVq₁ FVp≠BVq₁ BVp≠FVq₁ Xp≠Xq₁) with binding-extract cbp' (((E ⟦ p ⟧e) ≐ E ⟦ p ⟧e) ∋ plug refl) ... | (BV' , FV') , (BV'⊆BVE⟦p⟧ , FV'⊆FVE⟦p⟧) , cbp* with binding-is-function cbp cbp* | binding-is-function cbq' cbnothinq ... | refl , refl | refl , refl = distinct-union-right (distinct-term-context-help p E cbp' cbp BV'⊆BVE⟦p⟧ cbnothinp) (⊆-respect-distinct-left BV'⊆BVE⟦p⟧ BVp'≠FVq') distinct-term-context-help p (epar₂ p₁ ∷ E) (CBpar cbp' cbq' BVp'≠BVq' FVp'≠BVq' BVp'≠FVq' Xp'≠Xq') cbp BVp⊆BV (CBpar {FVq = FVnothinq} cbnothinp cbnothinq BVp≠BVq₁ FVp≠BVq₁ BVp≠FVq₁ Xp≠Xq₁) with binding-extract cbq' (((E ⟦ p ⟧e) ≐ E ⟦ p ⟧e) ∋ plug refl) ... | (BV' , FV') , (BV'⊆BVE⟦p⟧ , FV'⊆FVE⟦p⟧) , cbp* with binding-is-function cbp cbp* | binding-is-function cbp' cbnothinp ... | refl , refl | refl , refl = ⊆-respect-distinct-right (∪-comm-⊆-right FVnothinq ⊆-refl) (distinct-union-right (distinct-term-context-help p E cbq' cbp BV'⊆BVE⟦p⟧ cbnothinq) (⊆-respect-distinct-left BV'⊆BVE⟦p⟧ (distinct-sym FVp'≠BVq'))) distinct-term-context-help p (eseq q ∷ E) (CBseq {BVp = BVE⟦p⟧p} {FVp = FVE⟦p⟧p} cbp' cbq' BVp'≠FVq') cbp BVp⊆BV (CBseq {BVp = BVnothinp} {BVq = BVnothinq} {FVp = FVnothinp} {FVq = FVnothinq} cbnothinp cbnothinq BVp≠FVq) with binding-extract cbp' (((E ⟦ p ⟧e) ≐ E ⟦ p ⟧e) ∋ plug refl) ... | (BV' , FV') , (BV'⊆BVE⟦p⟧ , FV'⊆FVE⟦p⟧) , cbp* with binding-is-function cbp cbp* | binding-is-function cbq' cbnothinq ... | refl , refl | refl , refl = distinct-union-right (distinct-term-context-help p E cbp' cbp BV'⊆BVE⟦p⟧ cbnothinp) (⊆-respect-distinct-left BV'⊆BVE⟦p⟧ (distinct-sym (dist++ˡ (distinct-sym (distinct-union-left BVp'≠FVq' BVp≠FVq))))) distinct-term-context-help p (eloopˢ q ∷ E) (CBloopˢ {BVp = BVE⟦p⟧p} {FVp = FVE⟦p⟧p} cbp' cbq' BVp'≠FVq' BVq'≠FVq') cbp BVp⊆BV (CBloopˢ {BVp = BVnothinp} {FVp = FVnothinp} {BVq = BVnothinq} {FVq = FVnothinq} cbnothinp cbnothinq BVp≠FVq BVq≠FVq) with binding-extract cbp' (((E ⟦ p ⟧e) ≐ E ⟦ p ⟧e) ∋ plug refl) ... | (BV' , FV') , (BV'⊆BVE⟦p⟧ , FV'⊆FVE⟦p⟧) , cbp* with binding-is-function cbp cbp* | binding-is-function cbq' cbnothinq ... | refl , refl | refl , refl = distinct-union-right (distinct-term-context-help p E cbp' cbp BV'⊆BVE⟦p⟧ cbnothinp) (⊆-respect-distinct-left BV'⊆BVE⟦p⟧ (distinct-sym (dist++ˡ (distinct-sym (distinct-union-left BVp'≠FVq' BVp≠FVq))))) distinct-term-context-help {BVp = BVp} p (esuspend S ∷ E) (CBsusp cb [S]≠BVp) cbp BVp⊆BV (CBsusp {FV = FV} cbnothin [S]≠BVp₁) = BVp≠S∷FV ,′ id ,′ id # dist where dist = distinct-term-context-help p E cb cbp BVp⊆BV cbnothin BVp≠S∷FV : (typeof (proj₁ dist)) → ∀ S' → S' ∈ (proj₁ BVp) → S' ∈ (Signal.unwrap S ∷ proj₁ FV) → ⊥ BVp≠S∷FV BVp≠FV S' S'∈BVp (here refl) = [S]≠BVp S' (here refl) (proj₁ BVp⊆BV S' S'∈BVp) BVp≠S∷FV BVp≠FV S' S'∈BVp (there S'∈FV) = BVp≠FV S' S'∈BVp S'∈FV distinct-term-context-help p (etrap ∷ E) (CBtrap cb) cbp BVp⊆BV (CBtrap cbnothin) = distinct-term-context-help p E cb cbp BVp⊆BV cbnothin BVars : ∀ (p : Term) -> VarList BVars nothin = base BVars pause = base BVars (signl S p) = +S S (BVars p) BVars (present S ∣⇒ p ∣⇒ q) = BVp U̬ BVq where BVp = BVars p BVq = BVars q BVars (emit S) = base BVars (p ∥ q) = BVp U̬ BVq where BVp = BVars p BVq = BVars q BVars (loop p) = BV where BV = BVars p BVars (loopˢ p q) = BVp U̬ BVq where BVp = BVars p BVq = BVars q BVars (p >> q) = BVp U̬ BVq where BVp = BVars p BVq = BVars q BVars (suspend p S) = BVars p BVars (trap p) = BVars p BVars (exit x) = base BVars (shared s ≔ e in: p) = +s s (BVars p) BVars (s ⇐ e) = base BVars (var x ≔ e in: p) = +x x (BVars p) BVars (x ≔ e) = base BVars (if x ∣⇒ p ∣⇒ q) = BVp U̬ BVq where BVp = BVars p BVq = BVars q BVars (ρ⟨ θ , A ⟩· p) = (Dom θ) U̬ BV where BV = BVars p FVars : ∀ (p : Term) -> VarList FVars nothin = base FVars pause = base FVars (signl S p) = FV |̌ (+S S base) where FV = FVars p FVars (present S ∣⇒ p ∣⇒ q) = +S S (FVp U̬ FVq) where FVp = FVars p FVq = FVars q FVars (emit S) = +S S base FVars (p ∥ q) = FVp U̬ FVq where FVp = FVars p FVq = FVars q FVars (loop p) = FVars p FVars (loopˢ p q) = FVp U̬ FVq where FVp = FVars p FVq = FVars q FVars (p >> q) = FVp U̬ FVq where FVp = FVars p FVq = FVars q FVars (suspend p S) = +S S (FVars p) FVars (trap p) = FVars p FVars (exit x) = base FVars (shared s ≔ e in: p) = (FVₑ e) U̬ (FV |̌ (+s s base)) where FV = FVars p FVars (s ⇐ e) = +s s (FVₑ e) where FVars (var x ≔ e in: p) = (FVₑ e) U̬ (FV |̌ (+x x base)) where FV = FVars p FVars (x ≔ e) = +x x (FVₑ e) FVars (if x ∣⇒ p ∣⇒ q) = +x x (FVp U̬ FVq) where FVp = FVars p FVq = FVars q FVars (ρ⟨ θ , A ⟩· p) = FV |̌ (Dom θ) where FV = FVars p CB : Term -> Set CB p = CorrectBinding p (BVars p) (FVars p) BVFVcorrect : ∀ p BV FV -> CorrectBinding p BV FV -> BVars p ≡ BV × FVars p ≡ FV BVFVcorrect .nothin .([] , [] , []) .([] , [] , []) CBnothing = refl , refl BVFVcorrect .pause .([] , [] , []) .([] , [] , []) CBpause = refl , refl BVFVcorrect .(signl _ _) .(+S S BV) .(FV |̌ (+S S base)) (CBsig{p}{S}{BV}{FV} CB) with BVFVcorrect p BV FV CB ... | refl , refl = refl , refl BVFVcorrect .(present _ ∣⇒ _ ∣⇒ _) .(BVp U̬ BVq) .(+S S (FVp U̬ FVq)) (CBpresent{S}{p}{q}{BVp}{FVp}{BVq}{FVq} CBp CBq) with BVFVcorrect p BVp FVp CBp | BVFVcorrect q BVq FVq CBq ... | refl , refl | refl , refl = refl , refl BVFVcorrect .(emit _) _ _ CBemit = refl , refl BVFVcorrect .(_ ∥ _) .(BVp U̬ BVq) .(FVp U̬ FVq) (CBpar{p}{q}{BVp}{FVp}{BVq}{FVq} CBp CBq BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) with BVFVcorrect p BVp FVp CBp | BVFVcorrect q BVq FVq CBq ... | refl , refl | refl , refl = refl , refl BVFVcorrect .(loop _) .BV .FV (CBloop{p}{BV}{FV} CB BV≠FV) with BVFVcorrect p BV FV CB ... | refl , refl = refl , refl BVFVcorrect .(loopˢ _ _) .(BVp U̬ BVq) .(FVp U̬ FVq) (CBloopˢ{p}{q}{BVp}{FVp}{BVq}{FVq} CBp CBq BVp≠FVq BVq≠FVq) with BVFVcorrect p BVp FVp CBp | BVFVcorrect q BVq FVq CBq ... | refl , refl | refl , refl = refl , refl BVFVcorrect .(_ >> _) .(BVp U̬ BVq) .(FVp U̬ FVq) (CBseq{p}{q}{BVp}{BVq}{FVp}{FVq} CBp CBq BVp≠FVq) with BVFVcorrect p BVp FVp CBp | BVFVcorrect q BVq FVq CBq ... | refl , refl | refl , refl = refl , refl BVFVcorrect .(suspend _ _) .BV .(+S S FV) (CBsusp{S}{p}{BV}{FV} CB [S]≠BVp) with BVFVcorrect p BV FV CB ... | refl , refl = refl , refl BVFVcorrect .(trap _) .BV .FV (CBtrap{p}{BV}{FV} CB) with BVFVcorrect p BV FV CB ... | refl , refl = refl , refl BVFVcorrect .(exit _) .([] , [] , []) .([] , [] , []) CBexit = refl , refl BVFVcorrect .(shared _ ≔ _ in: _) .(+s s BV) .((FVₑ e) U̬ (FV |̌ (+s s base))) (CBshared{s}{e}{p}{BV}{FV} CB) with BVFVcorrect p BV FV CB ... | refl , refl = refl , refl BVFVcorrect .(_ ⇐ _) .([] , [] , []) .(+s s (FVₑ e)) (CBsset{s}{e}) = refl , refl BVFVcorrect .(var _ ≔ _ in: _) .(+x x BV) .((FVₑ e) U̬ (FV |̌ (+x x base))) (CBvar{x}{e}{p}{BV}{FV} CB) with BVFVcorrect p BV FV CB ... | refl , refl = refl , refl BVFVcorrect .(_ ≔ _) .([] , [] , []) .(+x x (FVₑ e)) (CBvset{x}{e}) = refl , refl BVFVcorrect .(if _ ∣⇒ _ ∣⇒ _) .(BVp U̬ BVq) .(+x x (FVp U̬ FVq)) (CBif{x}{p}{q}{BVp}{BVq}{FVp}{FVq} CBp CBq) with BVFVcorrect p BVp FVp CBp | BVFVcorrect q BVq FVq CBq ... | refl , refl | refl , refl = refl , refl BVFVcorrect .(ρ⟨ _ , _ ⟩· _) .(((Dom θ) U̬ BV)) .(FV |̌ (Dom θ)) (CBρ{θ}{A}{p}{BV}{FV} CB) with BVFVcorrect p BV FV CB ... | refl , refl = refl , refl
47.043263
154
0.575043
dfe66f556d425d1efaebc85a51135359670aff0c
4,965
agda
Agda
braun-tree.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
29
2019-02-06T13:09:31.000Z
2022-03-04T15:05:12.000Z
braun-tree.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
8
2018-07-09T22:53:38.000Z
2022-03-22T03:43:34.000Z
braun-tree.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
17
2018-12-03T22:38:15.000Z
2021-11-28T20:13:21.000Z
open import bool module braun-tree{ℓ} (A : Set ℓ) (_<A_ : A → A → 𝔹) where open import bool-thms open import eq open import list open import nat open import nat-thms open import product open import sum -- the index n is the size of the tree (number of elements of type A) data braun-tree : (n : ℕ) → Set ℓ where bt-empty : braun-tree 0 bt-node : ∀ {n m : ℕ} → A → braun-tree n → braun-tree m → n ≡ m ∨ n ≡ suc m → braun-tree (suc (n + m)) {- we will keep smaller (_<A_) elements closer to the root of the Braun tree as we insert -} bt-insert : ∀ {n : ℕ} → A → braun-tree n → braun-tree (suc n) bt-insert a bt-empty = bt-node a bt-empty bt-empty (inj₁ refl) bt-insert a (bt-node{n}{m} a' l r p) rewrite +comm n m with p | if a <A a' then (a , a') else (a' , a) bt-insert a (bt-node{n}{m} a' l r _) | inj₁ p | (a1 , a2) rewrite p = (bt-node a1 (bt-insert a2 r) l (inj₂ refl)) bt-insert a (bt-node{n}{m} a' l r _) | inj₂ p | (a1 , a2) = (bt-node a1 (bt-insert a2 r) l (inj₁ (sym p))) bt-replace-min : ∀{n : ℕ} → A → braun-tree (suc n) → braun-tree (suc n) bt-replace-min a (bt-node _ bt-empty bt-empty u) = (bt-node a bt-empty bt-empty u) bt-replace-min a (bt-node _ bt-empty (bt-node _ _ _ _) (inj₁ ())) bt-replace-min a (bt-node _ bt-empty (bt-node _ _ _ _) (inj₂ ())) bt-replace-min a (bt-node _ (bt-node _ _ _ _) bt-empty (inj₁ ())) bt-replace-min a (bt-node a' (bt-node x l r u) bt-empty (inj₂ y)) with a <A x bt-replace-min a (bt-node a' (bt-node x l r u) bt-empty (inj₂ y)) | tt = (bt-node a (bt-node x l r u) bt-empty (inj₂ y)) bt-replace-min a (bt-node a' (bt-node x l r u) bt-empty (inj₂ y)) | ff = (bt-node x (bt-replace-min a (bt-node x l r u)) bt-empty (inj₂ y)) bt-replace-min a (bt-node a' (bt-node x l r u) (bt-node x' l' r' u') v) with a <A x && a <A x' bt-replace-min a (bt-node a' (bt-node x l r u) (bt-node x' l' r' u') v) | tt = (bt-node a (bt-node x l r u) (bt-node x' l' r' u') v) bt-replace-min a (bt-node a' (bt-node x l r u) (bt-node x' l' r' u') v) | ff with x <A x' bt-replace-min a (bt-node a' (bt-node x l r u) (bt-node x' l' r' u') v) | ff | tt = (bt-node x (bt-replace-min a (bt-node x l r u)) (bt-node x' l' r' u') v) bt-replace-min a (bt-node a' (bt-node x l r u) (bt-node x' l' r' u') v) | ff | ff = (bt-node x' (bt-node x l r u) (bt-replace-min a (bt-node x' l' r' u')) v) {- thanks to Matías Giovannini for the excellent post http://alaska-kamtchatka.blogspot.com/2010/02/braun-trees.html explaining how to do delete -} bt-delete-min : ∀ {p : ℕ} → braun-tree (suc p) → braun-tree p bt-delete-min (bt-node a bt-empty bt-empty u) = bt-empty bt-delete-min (bt-node a bt-empty (bt-node _ _ _ _) (inj₁ ())) bt-delete-min (bt-node a bt-empty (bt-node _ _ _ _) (inj₂ ())) bt-delete-min (bt-node a (bt-node{n'}{m'} a' l' r' u') bt-empty u) rewrite +0 (n' + m') = bt-node a' l' r' u' bt-delete-min (bt-node a (bt-node{n}{m} x l1 r1 u1) (bt-node{n'}{m'} x' l2 r2 u2) u) rewrite +suc(n + m)(n' + m') | +suc n (m + (n' + m')) | +comm(n + m)(n' + m') = if (x <A x') then (bt-node x (bt-node x' l2 r2 u2) (bt-delete-min (bt-node x l1 r1 u1)) (lem{n}{m}{n'}{m'} u)) else (bt-node x' (bt-replace-min x (bt-node x' l2 r2 u2)) (bt-delete-min (bt-node x l1 r1 u1)) (lem{n}{m}{n'}{m'} u)) where lem : {n m n' m' : ℕ} → suc (n + m) ≡ suc (n' + m') ∨ suc (n + m) ≡ suc (suc (n' + m')) → suc (n' + m') ≡ n + m ∨ suc (n' + m') ≡ suc (n + m) lem{n}{m}{n'}{m'} (inj₁ x) = inj₂ (sym x) lem (inj₂ y) = inj₁ (sym (suc-inj y)) bt-remove-min : ∀ {p : ℕ} → braun-tree (suc p) → A × braun-tree p bt-remove-min (bt-node a l r u) = a , bt-delete-min (bt-node a l r u) ---------------------------------------------------------------------- -- this version stores data at the leaves instead of at the nodes ---------------------------------------------------------------------- data braun-tree' : (n : ℕ) → Set ℓ where bt'-leaf : A → braun-tree' 1 bt'-node : ∀ {n m : ℕ} → braun-tree' n → braun-tree' m → n =ℕ m ≡ tt ⊎ n =ℕ m + 1 ≡ tt → braun-tree' (n + m) bt'-insert : ∀ {n : ℕ} → A → braun-tree' n → braun-tree' (suc n) bt'-insert a (bt'-leaf a') = bt'-node (bt'-leaf a) (bt'-leaf a') (inj₁ refl) bt'-insert a (bt'-node{n}{m} l r p) rewrite +comm n m with p bt'-insert a (bt'-node{n}{m} l r p) | inj₁ p' rewrite =ℕ-to-≡{n} p' = (bt'-node (bt'-insert a r) l (inj₂ lem)) where lem : suc m =ℕ m + 1 ≡ tt lem rewrite +comm m 1 = =ℕ-refl m bt'-insert a (bt'-node{n}{m} l r p) | inj₂ p' = (bt'-node (bt'-insert a r) l (inj₁ (lem n m p'))) where lem : ∀ n m → n =ℕ m + 1 ≡ tt → suc m =ℕ n ≡ tt lem n m p' rewrite =ℕ-to-≡{n} p' | +comm m 1 = =ℕ-refl m 𝕃-to-braun-tree' : A → (l : 𝕃 A) → braun-tree' (suc (length l)) 𝕃-to-braun-tree' a [] = bt'-leaf a 𝕃-to-braun-tree' a (a' :: as) = bt'-insert a (𝕃-to-braun-tree' a' as)
48.676471
120
0.536354
cb43bef5b1b2ed07e5c6f3a7649d243ad431013b
7,522
agda
Agda
Categories/Yoneda.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Yoneda.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Yoneda.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Categories.Yoneda where -- Yoneda Lemma. In total, provides: -- * the Yoneda Embedding (called embed here) from any Category C into Presheaves C -- Worth noticing that there is no 'locally small' condition here; however, if one looks at -- the levels involved, there is indeed a raise from that of C to that of Presheaves C. -- * The traditional Yoneda lemma (yoneda-inverse) which says that for any object a of C, and -- any Presheaf F over C (where our presheaves are over Setoids), then -- Hom[ Presheaves C] (Functor.F₀ embed a , F) ≅ Functor.F₀ F a -- as Setoids. In addition, Yoneda (yoneda) also says that this isomorphism is natural in a and F. open import Level open import Function using (_$_; Inverse) -- else there's a conflict with the import below open import Function.Equality using (Π; _⟨$⟩_; cong) open import Relation.Binary using (module Setoid) import Relation.Binary.Reasoning.Setoid as SetoidR open import Data.Product using (_,_; Σ) open import Categories.Category using (Category; _[_,_]) open import Categories.Category.Product open import Categories.Category.Construction.Presheaves open import Categories.Category.Construction.Functors open import Categories.Category.Instance.Setoids open import Categories.Functor renaming (id to idF) open import Categories.Functor.Hom using (module Hom; Hom[_][-,_]; Hom[_][-,-]) open import Categories.Functor.Bifunctor open import Categories.Functor.Presheaf open import Categories.Functor.Construction.LiftSetoids open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) renaming (id to idN) open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism) import Categories.Morphism as Mor import Categories.Morphism.Reasoning as MR import Categories.NaturalTransformation.Hom as NT-Hom private variable o ℓ e : Level module Yoneda (C : Category o ℓ e) where open Category C open HomReasoning open MR C open Functor open NaturalTransformation open NT-Hom C private module CE = Category.Equiv C module C = Category C -- The Yoneda embedding functor embed : Functor C (Presheaves C) embed = record { F₀ = Hom[ C ][-,_] ; F₁ = Hom[A,C]⇒Hom[B,C] -- A⇒B induces a NatTrans on the Homs. ; identity = identityˡ ○_ ; homomorphism = λ h₁≈h₂ → ∘-resp-≈ʳ h₁≈h₂ ○ assoc ; F-resp-≈ = λ f≈g h≈i → ∘-resp-≈ f≈g h≈i } -- Using the adjunction between product and product, we get a kind of contravariant Bifunctor yoneda-inverse : (a : Obj) (F : Presheaf C (Setoids ℓ e)) → Inverse (Category.hom-setoid (Presheaves C) {Functor.F₀ embed a} {F}) (Functor.F₀ F a) yoneda-inverse a F = record { f = λ nat → η nat a ⟨$⟩ id ; f⁻¹ = λ x → ntHelper record { η = λ X → record { _⟨$⟩_ = λ X⇒a → F₁ F X⇒a ⟨$⟩ x ; cong = λ i≈j → F-resp-≈ F i≈j SE.refl } ; commute = λ {X} {Y} Y⇒X {f} {g} f≈g → let module SFY = Setoid (F₀ F Y) in let module SR = SetoidR (F₀ F Y) in SR.begin F₁ F (id ∘ f ∘ Y⇒X) ⟨$⟩ x SR.≈⟨ F-resp-≈ F (identityˡ ○ ∘-resp-≈ˡ f≈g) (SE.refl {x}) ⟩ F₁ F (g ∘ Y⇒X) ⟨$⟩ x SR.≈⟨ homomorphism F SE.refl ⟩ F₁ F Y⇒X ⟨$⟩ (F₁ F g ⟨$⟩ x) SR.∎ } ; cong₁ = λ i≈j → i≈j CE.refl ; cong₂ = λ i≈j y≈z → F-resp-≈ F y≈z i≈j ; inverse = (λ Fa → identity F SE.refl) , λ nat {x} {z} z≈y → let module S = Setoid (F₀ F x) in S.trans (S.sym (commute nat z CE.refl)) (cong (η nat x) (identityˡ ○ identityˡ ○ z≈y)) } where module SE = Setoid (F₀ F a) private -- in this bifunctor, a presheaf from Presheaves C goes from C to Setoids ℓ e, -- but the over Setoids has higher level than the hom setoids. Nat[Hom[C][-,c],F] : Bifunctor (Presheaves C) (Category.op C) (Setoids _ _) Nat[Hom[C][-,c],F] = Hom[ Presheaves C ][-,-] ∘F (Functor.op embed ∘F πʳ ※ πˡ) -- in this bifunctor, it needs to go from Presheaves which maps C to Setoids ℓ e, -- so the universe level needs to be lifted. FC : Bifunctor (Presheaves C) (Category.op C) (Setoids _ _) FC = LiftSetoids (o ⊔ ℓ ⊔ e) (o ⊔ ℓ) ∘F eval {C = Category.op C} {D = Setoids ℓ e} module yoneda-inverse {a} {F} = Inverse (yoneda-inverse a F) -- the two bifunctors above are naturally isomorphic. -- it is easy to show yoneda-inverse first then to yoneda. yoneda : NaturalIsomorphism Nat[Hom[C][-,c],F] FC yoneda = record { F⇒G = ntHelper record { η = λ where (F , A) → record { _⟨$⟩_ = λ α → lift (yoneda-inverse.f α) ; cong = λ i≈j → lift (i≈j CE.refl) } ; commute = λ where {_} {G , B} (α , f) {β} {γ} β≈γ → lift $ cong (η α B) (helper f β γ β≈γ) } ; F⇐G = ntHelper record { η = λ where (F , A) → record { _⟨$⟩_ = λ where (lift x) → yoneda-inverse.f⁻¹ x ; cong = λ where (lift i≈j) y≈z → F-resp-≈ F y≈z i≈j } ; commute = λ where (α , f) (lift eq) eq′ → helper′ α f eq eq′ } ; iso = λ where (F , A) → record { isoˡ = λ {α β} i≈j {X} y≈z → let module S = Setoid (F₀ F X) in S.trans ( yoneda-inverse.inverseʳ α {x = X} y≈z) (i≈j CE.refl) ; isoʳ = λ where (lift eq) → let module S = Setoid (F₀ F A) in lift (S.trans ( yoneda-inverse.inverseˡ {F = F} _) eq) } } where helper : ∀ {F : Functor (Category.op C) (Setoids ℓ e)} {A B : Obj} (f : B ⇒ A) (β γ : NaturalTransformation Hom[ C ][-, A ] F) → Setoid._≈_ (F₀ Nat[Hom[C][-,c],F] (F , A)) β γ → Setoid._≈_ (F₀ F B) (η β B ⟨$⟩ f ∘ id) (F₁ F f ⟨$⟩ (η γ A ⟨$⟩ id)) helper {F} {A} {B} f β γ β≈γ = S.begin η β B ⟨$⟩ f ∘ id S.≈⟨ cong (η β B) (id-comm ○ (⟺ identityˡ)) ⟩ η β B ⟨$⟩ id ∘ id ∘ f S.≈⟨ commute β f CE.refl ⟩ F₁ F f ⟨$⟩ (η β A ⟨$⟩ id) S.≈⟨ cong (F₁ F f) (β≈γ CE.refl) ⟩ F₁ F f ⟨$⟩ (η γ A ⟨$⟩ id) S.∎ where module S where open Setoid (F₀ F B) public open SetoidR (F₀ F B) public helper′ : ∀ {F G : Functor (Category.op C) (Setoids ℓ e)} {A B Z : Obj} {h i : Z ⇒ B} {X Y : Setoid.Carrier (F₀ F A)} (α : NaturalTransformation F G) (f : B ⇒ A) → Setoid._≈_ (F₀ F A) X Y → h ≈ i → Setoid._≈_ (F₀ G Z) (F₁ G h ⟨$⟩ (η α B ⟨$⟩ (F₁ F f ⟨$⟩ X))) (η α Z ⟨$⟩ (F₁ F (f ∘ i) ⟨$⟩ Y)) helper′ {F} {G} {A} {B} {Z} {h} {i} {X} {Y} α f eq eq′ = S.begin F₁ G h ⟨$⟩ (η α B ⟨$⟩ (F₁ F f ⟨$⟩ X)) S.≈˘⟨ commute α h (S′.sym (cong (F₁ F f) eq)) ⟩ η α Z ⟨$⟩ (F₁ F h ⟨$⟩ (F₁ F f ⟨$⟩ Y)) S.≈⟨ cong (η α Z) (F-resp-≈ F eq′ S′.refl) ⟩ η α Z ⟨$⟩ (F₁ F i ⟨$⟩ (F₁ F f ⟨$⟩ Y)) S.≈˘⟨ cong (η α Z) (homomorphism F (Setoid.refl (F₀ F A))) ⟩ η α Z ⟨$⟩ (F₁ F (f ∘ i) ⟨$⟩ Y) S.∎ where module S where open Setoid (F₀ G Z) public open SetoidR (F₀ G Z) public module S′ = Setoid (F₀ F B) module yoneda = NaturalIsomorphism yoneda
43.732558
110
0.541345
1ca4300ec7654b51b3cfd2bfc2c904178e5facc8
2,146
agda
Agda
src/FLA/Algebra/Properties/Field.agda
iblech/functional-linear-algebra
0ba4d1d145575f1d23806a7c0e57bc8800554c16
[ "BSD-3-Clause" ]
21
2020-09-22T20:49:34.000Z
2022-01-07T05:28:00.000Z
src/FLA/Algebra/Properties/Field.agda
iblech/functional-linear-algebra
0ba4d1d145575f1d23806a7c0e57bc8800554c16
[ "BSD-3-Clause" ]
6
2020-09-01T01:42:12.000Z
2022-01-07T05:27:53.000Z
src/FLA/Algebra/Properties/Field.agda
iblech/functional-linear-algebra
0ba4d1d145575f1d23806a7c0e57bc8800554c16
[ "BSD-3-Clause" ]
3
2021-04-12T20:34:17.000Z
2021-09-07T19:55:59.000Z
{-# OPTIONS --without-K --safe #-} open import Level using (Level) open import FLA.Algebra.Structures open import Relation.Binary.PropositionalEquality open ≡-Reasoning module FLA.Algebra.Properties.Field {ℓ : Level } {A : Set ℓ} ⦃ F : Field A ⦄ where open Field F 0ᶠ+0ᶠ≡0ᶠ : 0ᶠ + 0ᶠ ≡ 0ᶠ 0ᶠ+0ᶠ≡0ᶠ = +0ᶠ 0ᶠ 0ᶠ+ : (a : A) → 0ᶠ + a ≡ a 0ᶠ+ a rewrite +-comm 0ᶠ a = +0ᶠ a a*0ᶠ≡0ᶠ : (a : A) → a * 0ᶠ ≡ 0ᶠ a*0ᶠ≡0ᶠ a = begin a * 0ᶠ ≡˘⟨ 0ᶠ+ (a * 0ᶠ) ⟩ 0ᶠ + a * 0ᶠ ≡⟨ cong (_+ a * 0ᶠ) (sym (+-inv a)) ⟩ - a + a + a * 0ᶠ ≡⟨ cong (λ x → - a + x + a * 0ᶠ) (sym (*1ᶠ a)) ⟩ - a + a * 1ᶠ + a * 0ᶠ ≡˘⟨ +-assoc (- a) (a * 1ᶠ) (a * 0ᶠ) ⟩ - a + (a * 1ᶠ + a * 0ᶠ) ≡⟨ cong (- a +_) (sym (*-distr-+ a 1ᶠ 0ᶠ)) ⟩ - a + (a * (1ᶠ + 0ᶠ)) ≡⟨ cong (λ x → - a + (a * x)) (+0ᶠ 1ᶠ) ⟩ - a + (a * 1ᶠ) ≡⟨ cong (- a +_) (*1ᶠ a) ⟩ - a + a ≡⟨ +-inv a ⟩ 0ᶠ ∎ 0ᶠ*a≡0ᶠ : (a : A) → 0ᶠ * a ≡ 0ᶠ 0ᶠ*a≡0ᶠ a = trans (*-comm 0ᶠ a) (a*0ᶠ≡0ᶠ a) -a≡-1ᶠ*a : (a : A) → - a ≡ - 1ᶠ * a -a≡-1ᶠ*a a = begin - a ≡˘⟨ +0ᶠ (- a) ⟩ - a + 0ᶠ ≡⟨ cong (- a +_) (sym (a*0ᶠ≡0ᶠ a)) ⟩ - a + (a * 0ᶠ) ≡⟨ cong (λ x → - a + (a * x)) (sym (+-inv 1ᶠ)) ⟩ - a + (a * (- 1ᶠ + 1ᶠ)) ≡⟨ cong (- a +_) (*-distr-+ a (- 1ᶠ) 1ᶠ) ⟩ - a + (a * - 1ᶠ + a * 1ᶠ) ≡⟨ cong (- a +_) (+-comm (a * - 1ᶠ) (a * 1ᶠ)) ⟩ - a + (a * 1ᶠ + a * - 1ᶠ ) ≡⟨ +-assoc (- a) (a * 1ᶠ) (a * - 1ᶠ) ⟩ - a + a * 1ᶠ + a * - 1ᶠ ≡⟨ cong (λ x → - a + x + a * - 1ᶠ) (*1ᶠ a) ⟩ - a + a + a * - 1ᶠ ≡⟨ cong (_+ a * - 1ᶠ) (+-inv a) ⟩ 0ᶠ + a * - 1ᶠ ≡⟨ 0ᶠ+ (a * - 1ᶠ) ⟩ a * - 1ᶠ ≡⟨ *-comm a (- 1ᶠ) ⟩ - 1ᶠ * a ∎ -a*b≡-[a*b] : (a b : A) → - a * b ≡ - (a * b) -a*b≡-[a*b] a b = begin - a * b ≡⟨ cong (_* b) (-a≡-1ᶠ*a a) ⟩ (- 1ᶠ * a) * b ≡˘⟨ *-assoc (- 1ᶠ) a b ⟩ - 1ᶠ * (a * b) ≡˘⟨ -a≡-1ᶠ*a ((a * b)) ⟩ - (a * b) ∎ a*-b≡-[a*b] : (a b : A) → a * - b ≡ - (a * b) a*-b≡-[a*b] a b = begin a * - b ≡⟨ *-comm a (- b) ⟩ - b * a ≡⟨ -a*b≡-[a*b] b a ⟩ - (b * a) ≡⟨ cong -_ (*-comm b a) ⟩ - (a * b) ∎
35.180328
82
0.345294
d0da2b5459e2a7ad28aec724e69b113e1ad50379
8,505
agda
Agda
Cubical/Foundations/Prelude.agda
oisdk/cubical
a01973ef7264f9454a40697313a2073c51a6b77a
[ "MIT" ]
null
null
null
Cubical/Foundations/Prelude.agda
oisdk/cubical
a01973ef7264f9454a40697313a2073c51a6b77a
[ "MIT" ]
null
null
null
Cubical/Foundations/Prelude.agda
oisdk/cubical
a01973ef7264f9454a40697313a2073c51a6b77a
[ "MIT" ]
null
null
null
{- This file proves a variety of basic results about paths: - refl, sym, cong and composition of paths. This is used to set up equational reasoning. - Transport, subst and functional extensionality - J and its computation rule (up to a path) - Σ-types and contractibility of singletons - Converting PathP to and from a homogeneous path with transp - Direct definitions of lower h-levels - Export natural numbers - Export universe lifting -} {-# OPTIONS --cubical --safe #-} module Cubical.Foundations.Prelude where open import Cubical.Core.Primitives public infixr 30 _∙_ infix 3 _∎ infixr 2 _≡⟨_⟩_ -- Basic theory about paths. These proofs should typically be -- inlined. This module also makes equational reasoning work with -- (non-dependent) paths. private variable ℓ ℓ' : Level A : Type ℓ B : A → Type ℓ x y z : A refl : x ≡ x refl {x = x} = λ _ → x sym : x ≡ y → y ≡ x sym p i = p (~ i) symP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) → PathP (λ i → A (~ i)) y x symP p j = p (~ j) cong : ∀ (f : (a : A) → B a) (p : x ≡ y) → PathP (λ i → B (p i)) (f x) (f y) cong f p i = f (p i) cong₂ : ∀ {C : (a : A) → (b : B a) → Type ℓ} → (f : (a : A) → (b : B a) → C a b) → (p : x ≡ y) → {u : B x} {v : B y} (q : PathP (λ i → B (p i)) u v) → PathP (λ i → C (p i) (q i)) (f x u) (f y v) cong₂ f p q i = f (p i) (q i) -- The filler of homogeneous path composition: -- compPath-filler p q = PathP (λ i → x ≡ q i) p (p ∙ q) compPath-filler : ∀ {x y z : A} → x ≡ y → y ≡ z → I → I → A compPath-filler {x = x} p q j i = hfill (λ j → λ { (i = i0) → x ; (i = i1) → q j }) (inS (p i)) j _∙_ : x ≡ y → y ≡ z → x ≡ z (p ∙ q) j = compPath-filler p q i1 j -- The filler of heterogeneous path composition: -- compPathP-filler p q = PathP (λ i → PathP (λ j → (compPath-filler (λ i → A i) B i j)) x (q i)) p (compPathP p q) compPathP-filler : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → {B_i1 : Type ℓ} {B : A i1 ≡ B_i1} → {z : B i1} → (p : PathP A x y) → (q : PathP (λ i → B i) y z) → ∀ (i j : I) → compPath-filler (λ i → A i) B j i compPathP-filler {A = A} {x = x} {B = B} p q i = fill (λ j → compPath-filler (λ i → A i) B j i) (λ j → λ { (i = i0) → x ; (i = i1) → q j }) (inS (p i)) compPathP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → {B_i1 : Type ℓ} {B : (A i1) ≡ B_i1} → {z : B i1} → (p : PathP A x y) → (q : PathP (λ i → B i) y z) → PathP (λ j → ((λ i → A i) ∙ B) j) x z compPathP p q j = compPathP-filler p q j i1 _≡⟨_⟩_ : (x : A) → x ≡ y → y ≡ z → x ≡ z _ ≡⟨ x≡y ⟩ y≡z = x≡y ∙ y≡z ≡⟨⟩-syntax : (x : A) → x ≡ y → y ≡ z → x ≡ z ≡⟨⟩-syntax = _≡⟨_⟩_ infixr 2 ≡⟨⟩-syntax syntax ≡⟨⟩-syntax x (λ i → B) y = x ≡[ i ]⟨ B ⟩ y _∎ : (x : A) → x ≡ x _ ∎ = refl -- another definition of composition, useful for some proofs compPath'-filler : ∀ {x y z : A} → x ≡ y → y ≡ z → I → I → A compPath'-filler {z = z} p q j i = hfill (λ j → λ { (i = i0) → p (~ j) ; (i = i1) → z }) (inS (q i)) j _□_ : x ≡ y → y ≡ z → x ≡ z (p □ q) j = compPath'-filler p q i1 j □≡∙ : (p : x ≡ y) (q : y ≡ z) → p □ q ≡ p ∙ q □≡∙ {x = x} {y = y} {z = z} p q i j = hcomp (λ k → \ { (i = i0) → compPath'-filler p q k j ; (i = i1) → compPath-filler p q k j ; (j = i0) → p ( ~ i ∧ ~ k) ; (j = i1) → q (k ∨ ~ i) }) (helper i j) where helper : PathP (λ i → p (~ i) ≡ q (~ i)) q p helper i j = hcomp (λ k → \ { (i = i0) → q (k ∧ j) ; (i = i1) → p (~ k ∨ j) ; (j = i0) → p (~ i ∨ ~ k) ; (j = i1) → q (~ i ∧ k) }) y -- Transport, subst and functional extensionality -- transport is a special case of transp transport : {A B : Type ℓ} → A ≡ B → A → B transport p a = transp (λ i → p i) i0 a -- Transporting in a constant family is the identity function (up to a -- path). If we would have regularity this would be definitional. transportRefl : (x : A) → transport refl x ≡ x transportRefl {A = A} x i = transp (λ _ → A) i x -- We want B to be explicit in subst subst : (B : A → Type ℓ') (p : x ≡ y) → B x → B y subst B p pa = transport (λ i → B (p i)) pa substRefl : (px : B x) → subst B refl px ≡ px substRefl px = transportRefl px funExt : {f g : (x : A) → B x} → ((x : A) → f x ≡ g x) → f ≡ g funExt p i x = p x i -- J for paths and its computation rule module _ (P : ∀ y → x ≡ y → Type ℓ') (d : P x refl) where J : (p : x ≡ y) → P y p J p = transport (λ i → P (p i) (λ j → p (i ∧ j))) d JRefl : J refl ≡ d JRefl = transportRefl d -- Contractibility of singletons singl : (a : A) → Type _ singl {A = A} a = Σ[ x ∈ A ] (a ≡ x) contrSingl : (p : x ≡ y) → Path (singl x) (x , refl) (y , p) contrSingl p i = (p i , λ j → p (i ∧ j)) -- Converting to and from a PathP module _ {A : I → Type ℓ} {x : A i0} {y : A i1} where toPathP : transp A i0 x ≡ y → PathP A x y toPathP p i = hcomp (λ j → λ { (i = i0) → x ; (i = i1) → p j }) (transp (λ j → A (i ∧ j)) (~ i) x) fromPathP : PathP A x y → transp A i0 x ≡ y fromPathP p i = transp (λ j → A (i ∨ j)) i (p i) -- Direct definitions of lower h-levels isContr : Type ℓ → Type ℓ isContr A = Σ[ x ∈ A ] (∀ y → x ≡ y) isProp : Type ℓ → Type ℓ isProp A = (x y : A) → x ≡ y isSet : Type ℓ → Type ℓ isSet A = (x y : A) → isProp (x ≡ y) Square : {a₀₀ a₀₁ : A} (a₀₋ : a₀₀ ≡ a₀₁) {a₁₀ a₁₁ : A} (a₁₋ : a₁₀ ≡ a₁₁) (a₋₀ : a₀₀ ≡ a₁₀) (a₋₁ : a₀₁ ≡ a₁₁) → Type _ Square a₀₋ a₁₋ a₋₀ a₋₁ = PathP (λ i → a₋₀ i ≡ a₋₁ i) a₀₋ a₁₋ isSet' : Type ℓ → Type ℓ isSet' A = {a₀₀ a₀₁ : A} (a₀₋ : a₀₀ ≡ a₀₁) {a₁₀ a₁₁ : A} (a₁₋ : a₁₀ ≡ a₁₁) (a₋₀ : a₀₀ ≡ a₁₀) (a₋₁ : a₀₁ ≡ a₁₁) → Square a₀₋ a₁₋ a₋₀ a₋₁ isGroupoid : Type ℓ → Type ℓ isGroupoid A = ∀ a b → isSet (Path A a b) Cube : {a₀₀₀ a₀₀₁ : A} {a₀₀₋ : a₀₀₀ ≡ a₀₀₁} {a₀₁₀ a₀₁₁ : A} {a₀₁₋ : a₀₁₀ ≡ a₀₁₁} {a₀₋₀ : a₀₀₀ ≡ a₀₁₀} {a₀₋₁ : a₀₀₁ ≡ a₀₁₁} (a₀₋₋ : Square a₀₀₋ a₀₁₋ a₀₋₀ a₀₋₁) {a₁₀₀ a₁₀₁ : A} {a₁₀₋ : a₁₀₀ ≡ a₁₀₁} {a₁₁₀ a₁₁₁ : A} {a₁₁₋ : a₁₁₀ ≡ a₁₁₁} {a₁₋₀ : a₁₀₀ ≡ a₁₁₀} {a₁₋₁ : a₁₀₁ ≡ a₁₁₁} (a₁₋₋ : Square a₁₀₋ a₁₁₋ a₁₋₀ a₁₋₁) {a₋₀₀ : a₀₀₀ ≡ a₁₀₀} {a₋₀₁ : a₀₀₁ ≡ a₁₀₁} (a₋₀₋ : Square a₀₀₋ a₁₀₋ a₋₀₀ a₋₀₁) {a₋₁₀ : a₀₁₀ ≡ a₁₁₀} {a₋₁₁ : a₀₁₁ ≡ a₁₁₁} (a₋₁₋ : Square a₀₁₋ a₁₁₋ a₋₁₀ a₋₁₁) (a₋₋₀ : Square a₀₋₀ a₁₋₀ a₋₀₀ a₋₁₀) (a₋₋₁ : Square a₀₋₁ a₁₋₁ a₋₀₁ a₋₁₁) → Type _ Cube a₀₋₋ a₁₋₋ a₋₀₋ a₋₁₋ a₋₋₀ a₋₋₁ = PathP (λ i → Square (a₋₀₋ i) (a₋₁₋ i) (a₋₋₀ i) (a₋₋₁ i)) a₀₋₋ a₁₋₋ isGroupoid' : Set ℓ → Set ℓ isGroupoid' A = {a₀₀₀ a₀₀₁ : A} {a₀₀₋ : a₀₀₀ ≡ a₀₀₁} {a₀₁₀ a₀₁₁ : A} {a₀₁₋ : a₀₁₀ ≡ a₀₁₁} {a₀₋₀ : a₀₀₀ ≡ a₀₁₀} {a₀₋₁ : a₀₀₁ ≡ a₀₁₁} (a₀₋₋ : Square a₀₀₋ a₀₁₋ a₀₋₀ a₀₋₁) {a₁₀₀ a₁₀₁ : A} {a₁₀₋ : a₁₀₀ ≡ a₁₀₁} {a₁₁₀ a₁₁₁ : A} {a₁₁₋ : a₁₁₀ ≡ a₁₁₁} {a₁₋₀ : a₁₀₀ ≡ a₁₁₀} {a₁₋₁ : a₁₀₁ ≡ a₁₁₁} (a₁₋₋ : Square a₁₀₋ a₁₁₋ a₁₋₀ a₁₋₁) {a₋₀₀ : a₀₀₀ ≡ a₁₀₀} {a₋₀₁ : a₀₀₁ ≡ a₁₀₁} (a₋₀₋ : Square a₀₀₋ a₁₀₋ a₋₀₀ a₋₀₁) {a₋₁₀ : a₀₁₀ ≡ a₁₁₀} {a₋₁₁ : a₀₁₁ ≡ a₁₁₁} (a₋₁₋ : Square a₀₁₋ a₁₁₋ a₋₁₀ a₋₁₁) (a₋₋₀ : Square a₀₋₀ a₁₋₀ a₋₀₀ a₋₁₀) (a₋₋₁ : Square a₀₋₁ a₁₋₁ a₋₀₁ a₋₁₁) → Cube a₀₋₋ a₁₋₋ a₋₀₋ a₋₁₋ a₋₋₀ a₋₋₁ is2Groupoid : Type ℓ → Type ℓ is2Groupoid A = ∀ a b → isGroupoid (Path A a b) -- Essential consequences of isProp and isContr isProp→PathP : ∀ {B : I → Type ℓ} → ((i : I) → isProp (B i)) → (b0 : B i0) (b1 : B i1) → PathP (λ i → B i) b0 b1 isProp→PathP hB b0 b1 = toPathP (hB _ _ _) isPropIsContr : isProp (isContr A) isPropIsContr z0 z1 j = ( z0 .snd (z1 .fst) j , λ x i → hcomp (λ k → λ { (i = i0) → z0 .snd (z1 .fst) j ; (i = i1) → z0 .snd x (j ∨ k) ; (j = i0) → z0 .snd x (i ∧ k) ; (j = i1) → z1 .snd x i }) (z0 .snd (z1 .snd x i) j)) isContr→isProp : isContr A → isProp A isContr→isProp (x , p) a b i = hcomp (λ j → λ { (i = i0) → p a j ; (i = i1) → p b j }) x isProp→isSet : isProp A → isSet A isProp→isSet h a b p q j i = hcomp (λ k → λ { (i = i0) → h a a k ; (i = i1) → h a b k ; (j = i0) → h a (p i) k ; (j = i1) → h a (q i) k }) a -- Universe lifting record Lift {i j} (A : Type i) : Type (ℓ-max i j) where constructor lift field lower : A open Lift public
30.703971
115
0.483363
cb4ace3702e716f4ae3a0ff907f09dad7f8b415b
445
agda
Agda
prototyping/FFI/Data/HaskellString.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
1
2021-12-05T21:53:03.000Z
2021-12-05T21:53:03.000Z
prototyping/FFI/Data/HaskellString.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
prototyping/FFI/Data/HaskellString.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
module FFI.Data.HaskellString where open import Agda.Builtin.String using (String) {-# FOREIGN GHC import qualified Data.String #-} {-# FOREIGN GHC import qualified Data.Text #-} postulate HaskellString : Set {-# COMPILE GHC HaskellString = type Data.String.String #-} postulate pack : HaskellString → String {-# COMPILE GHC pack = Data.Text.pack #-} postulate unpack : String → HaskellString {-# COMPILE GHC unpack = Data.Text.unpack #-}
26.176471
59
0.734831
d0d38d0f4a6938430aeacc047283871f70e2a763
739
agda
Agda
test/Fail/Issue964.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue964.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue964.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-08-04, issue #964 -- Allow open metas and interaction points in imported files -- {-# OPTIONS -v import:100 #-} -- {-# OPTIONS -v meta.postulate:20 #-} -- {-# OPTIONS -v tc.conv.level:50 #-} open import Common.Level open import Common.Equality postulate something : Set₁ open import Common.Issue964.UnsolvedMetas something test = M.N.meta3 shouldFail : _≡_ {A = Level} meta (lsuc (lsuc lzero)) shouldFail = refl -- WAS: WEIRD ERROR: -- Set (Set .Issue964.UnsolvedMetas.1) != Set₂ -- when checking that the expression refl has type -- meta ≡ lsuc (lsuc lzero) -- NOW: -- Set (.Issue964.UnsolvedMetas.unsolved#meta.1 something) != Set₂ -- when checking that the expression refl has type -- meta ≡ lsuc (lsuc lzero)
25.482759
66
0.700947
cbf319525e2f26e06bb9cf5ef4e579110ce06579
1,267
agda
Agda
test/Succeed/Issue1648.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1648.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1648.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2015-09-18 Andreas, issue reported by Gillaume Brunerie {- Problem WAS The following code doesn’t typecheck but it should. I have no idea what’s going on. Replacing the definition of PathOver-rewr by a question mark and asking for full normalisation of the goal (C-u C-u C-c C-t), I obtain HetEq idp u v == (u == v), so it seems that the term PathOver (λ _ → B) p u v) is rewritten as HetEq idp u v using ap-cst (as expected), but then for some reason HetEq idp u v isn’t reduced to u == v. -} {-# OPTIONS --rewriting --confluence-check #-} -- {-# OPTIONS --show-implicit #-} data _==_ {i} {A : Set i} (a : A) : A → Set where idp : a == a {-# BUILTIN REWRITE _==_ #-} ap : ∀ {i j} {A : Set i} {B : Set j} (f : A → B) {x y : A} → x == y → f x == f y ap f idp = idp ap-cst : ∀ {a} {b} {A : Set a} {B : Set b} (b : B) {x y : A} (p : x == y) → ap (λ _ → b) p == idp ap-cst b idp = idp {-# REWRITE ap-cst #-} HetEq : {A B : Set} (e : A == B) (a : A) (b : B) → Set HetEq idp a b = (a == b) PathOver : {A : Set} (B : A → Set) {x y : A} (p : x == y) (u : B x) (v : B y) → Set PathOver B p u v = HetEq (ap B p) u v PathOver-rewr : {A B : Set} {x y : A} (p : x == y) (u v : B) → (PathOver (λ _ → B) p u v) == (u == v) PathOver-rewr p u v = idp
31.675
83
0.552486
234a6affb8e5961024afba6d03f3eee8693eabf4
35,702
agda
Agda
src/DualLMRefined.agda
kcaliban/dual-session
cd41919582013e75463308c32750e2712cf2de86
[ "BSD-2-Clause" ]
null
null
null
src/DualLMRefined.agda
kcaliban/dual-session
cd41919582013e75463308c32750e2712cf2de86
[ "BSD-2-Clause" ]
null
null
null
src/DualLMRefined.agda
kcaliban/dual-session
cd41919582013e75463308c32750e2712cf2de86
[ "BSD-2-Clause" ]
null
null
null
{-# OPTIONS --rewriting #-} module DualLMRefined where open import Data.Bool open import Data.Nat hiding (compare) open import Data.Nat.Properties open import Data.Fin hiding (_+_) open import Data.Product open import Function open import Relation.Binary.PropositionalEquality hiding (Extensionality) open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite open import Extensionality open import Direction -- variables variable n m : ℕ ---------------------------------------------------------------------- -- auxiliaries for automatic rewriting n+1=suc-n : n + 1 ≡ suc n n+1=suc-n {zero} = refl n+1=suc-n {suc n} = cong suc (n+1=suc-n {n}) {-# REWRITE n+1=suc-n #-} n+0=n : n + 0 ≡ n n+0=n {zero} = refl n+0=n {suc n} = cong suc (n+0=n {n}) {-# REWRITE n+0=n #-} inject+0-x=x : {x : Fin m} → inject+ 0 x ≡ x inject+0-x=x {x = zero} = refl inject+0-x=x {x = suc x} = cong suc inject+0-x=x {-# REWRITE inject+0-x=x #-} n+sucm : n + suc m ≡ suc (n + m) n+sucm {0} = refl n+sucm {suc n} = cong suc (n+sucm{n}) {-# REWRITE n+sucm #-} n=fromℕtoℕn : (toℕ (fromℕ n)) ≡ n n=fromℕtoℕn {zero} = refl n=fromℕtoℕn {suc n} = cong suc (n=fromℕtoℕn {n}) {-# REWRITE n=fromℕtoℕn #-} sucn∸suctoℕx≡n∸toℕx : {n : ℕ} {x : Fin n} → suc (n ∸ suc (toℕ x)) ≡ n ∸ (toℕ x) sucn∸suctoℕx≡n∸toℕx {suc n} {zero} = refl sucn∸suctoℕx≡n∸toℕx {suc n} {suc x} = sucn∸suctoℕx≡n∸toℕx{n}{x} sym-sucn∸suctoℕx≡n∸toℕx : {n : ℕ} {x : Fin n} → n ∸ (toℕ x) ≡ suc (n ∸ suc (toℕ x)) sym-sucn∸suctoℕx≡n∸toℕx {n} {x} = sym (sucn∸suctoℕx≡n∸toℕx{n}{x}) {-# REWRITE sym-sucn∸suctoℕx≡n∸toℕx #-} n∸n≡0F : n ∸ n ≡ 0 n∸n≡0F {0} = refl n∸n≡0F {suc n} = n∸n≡0F{n} {-# REWRITE n∸n≡0F #-} {-# REWRITE m+n∸n≡m #-} ---------------------------------------------------------------------- -- some more required properties on natural numbers and fin toℕx≤n : {n : ℕ} {x : Fin n} → Data.Nat._≤_ (toℕ x) n toℕx≤n {suc n} {zero} = z≤n toℕx≤n {suc n} {suc x} = s≤s toℕx≤n toℕx≤n' : {n : ℕ} {x : Fin (suc n)} → Data.Nat._≤_ (toℕ x) n toℕx≤n' {0} {zero} = z≤n toℕx≤n' {suc n} {zero} = z≤n toℕx≤n' {suc n} {suc x} = s≤s (toℕx≤n'{n}{x}) n∸x+x≡n : {n x : ℕ} → Data.Nat._≤_ x n → n ∸ x + x ≡ n n∸x+x≡n {0} {zero} le = refl n∸x+x≡n {0} {suc x} () n∸x+x≡n {suc n} {zero} le = refl n∸x+x≡n {suc n} {suc x} (s≤s le) = cong suc (n∸x+x≡n le) toℕx<n : {n : ℕ} {x : Fin n} → Data.Nat._<_ (toℕ x) n toℕx<n {suc n} {zero} = s≤s z≤n toℕx<n {suc n} {suc x} = s≤s toℕx<n n∸x≡suc[n∸sucx] : {n x : ℕ} → Data.Nat._<_ x n → n ∸ x ≡ suc (n ∸ (suc x)) n∸x≡suc[n∸sucx] {suc n} {0} le = refl n∸x≡suc[n∸sucx] {suc n} {suc x} (s≤s le) = n∸x≡suc[n∸sucx] le suc[n+x]≡n+sucx : {n x : ℕ} → suc (n + x) ≡ (n + suc x) suc[n+x]≡n+sucx {0} {x} = refl suc[n+x]≡n+sucx {suc n} {x} = refl suc[n∸sucx+x]≡n : {n x : ℕ} → Data.Nat._<_ x n → suc (n ∸ (suc x) + x) ≡ n suc[n∸sucx+x]≡n {suc n} {0} le = refl suc[n∸sucx+x]≡n {suc n} {suc x} (s≤s le) = cong suc (suc[n∸sucx+x]≡n {n} {x} le) suc[n∸suc[toℕi]+toℕi]≡n : {n : ℕ} {i : Fin n} → suc (n ∸ (suc (toℕ i)) + toℕ i) ≡ n suc[n∸suc[toℕi]+toℕi]≡n {n} {i} = suc[n∸sucx+x]≡n{n}{toℕ i} toℕx<n {-# REWRITE suc[n∸suc[toℕi]+toℕi]≡n #-} m∸toℕ+toℕ≡m : {n : ℕ} {i : Fin (suc n)} → n ∸ (toℕ i) + (toℕ i) ≡ n m∸toℕ+toℕ≡m {n} {i} = m∸n+n≡m{n}{toℕ i} toℕx≤n' {-# REWRITE m∸toℕ+toℕ≡m #-} <suc : {n x : ℕ} → Data.Nat._<_ x n → Data.Nat._<_ x (suc n) <suc {suc n} {0} le = s≤s z≤n <suc {suc n} {suc x} (s≤s le) = s≤s (<suc {n} {x} le) ≤suc : {n x : ℕ} → Data.Nat._≤_ x n → Data.Nat._≤_ x (suc n) ≤suc {n} {0} le = z≤n ≤suc {suc n} {suc x} (s≤s le) = s≤s (≤suc {n} {x} le) ---------------------------------------------------------------------- module IND where mutual data Type (n : ℕ) : Set where TUnit TInt : Type n TPair : Type n → Type n → Type n TChan : SType n → Type n data SType (n : ℕ) : Set where gdd : (gst : GType n) → SType n rec : (gst : GType (suc n)) → SType n var : (x : Fin n) → SType n data GType (n : ℕ) : Set where transmit : (d : Dir) (t : Type n) (s : SType n) → GType n choice : (d : Dir) (m : ℕ) (alt : Fin m → SType n) → GType n end : GType n data MClType (n : ℕ) : Set where MClTUnit MClTInt : MClType n MClTPair : MClType n → MClType n → MClType n MClTChan : SType 0 → MClType n data MClSType (n : ℕ) : Set where tgdd : (tgst : MClGType n) → MClSType n trec : (tgst : MClGType (suc n)) → MClSType n tvar : (x : Fin n) → MClSType n data MClGType (n : ℕ) : Set where ttransmit : (d : Dir) (t : MClType n) (s : MClSType n) → MClGType n tchoice : (d : Dir) (m : ℕ) (alt : Fin m → MClSType n) → MClGType n end : MClGType n ---------------------------------------------------------------------- weaken1'N : Fin (suc n) → Fin n → Fin (suc n) weaken1'N zero x = suc x weaken1'N (suc i) zero = zero weaken1'N (suc i) (suc x) = suc (weaken1'N i x) weaken1'S : Fin (suc n) → SType n → SType (suc n) weaken1'G : Fin (suc n) → GType n → GType (suc n) weaken1'T : Fin (suc n) → Type n → Type (suc n) weaken1'S i (gdd gst) = gdd (weaken1'G i gst) weaken1'S i (rec gst) = rec (weaken1'G (suc i) gst) weaken1'S i (var x) = var (weaken1'N i x) weaken1'G i (transmit d t s) = transmit d (weaken1'T i t) (weaken1'S i s) weaken1'G i (choice d m alt) = choice d m (weaken1'S i ∘ alt) weaken1'G i end = end weaken1'T i TUnit = TUnit weaken1'T i TInt = TInt weaken1'T i (TPair t₁ t₂) = TPair (weaken1'T i t₁) (weaken1'T i t₂) weaken1'T i (TChan x) = TChan (weaken1'S i x) weaken1S : SType n → SType (suc n) weaken1G : GType n → GType (suc n) weaken1T : Type n → Type (suc n) weaken1S = weaken1'S zero weaken1G = weaken1'G zero weaken1T = weaken1'T zero weakenS : (n : ℕ) → SType m → SType (m + n) weakenG : (n : ℕ) → GType m → GType (m + n) weakenT : (n : ℕ) → Type m → Type (m + n) weakenS n (gdd gst) = gdd (weakenG n gst) weakenS n (rec gst) = rec (weakenG n gst) weakenS n (var x) = var (inject+ n x) weakenG n (transmit d t s) = transmit d (weakenT n t) (weakenS n s) weakenG n (choice d m alt) = choice d m (λ i → weakenS n (alt i)) weakenG n end = end weakenT n TUnit = TUnit weakenT n TInt = TInt weakenT n (TPair ty ty₁) = TPair (weakenT n ty) (weakenT n ty₁) weakenT n (TChan x) = TChan (weakenS n x) ---------------------------------------------------------------------- -- Single substitution with SType 0 st-substS : SType (suc n) → Fin (suc n) → SType 0 → SType n st-substG : GType (suc n) → Fin (suc n) → SType 0 → GType n st-substT : Type (suc n) → Fin (suc n) → SType 0 → Type n st-substS (gdd gst) i st0 = gdd (st-substG gst i st0) st-substS (rec gst) i st0 = rec (st-substG gst (suc i) st0) st-substS {n} (var zero) zero st0 = weakenS n st0 st-substS {suc n} (var zero) (suc i) st0 = var zero st-substS {suc n} (var (suc x)) zero st0 = var x st-substS {suc n} (var (suc x)) (suc i) st0 = weaken1S (st-substS (var x) i st0) st-substG (transmit d t s) i st0 = transmit d (st-substT t i st0) (st-substS s i st0) st-substG (choice d m alt) i st0 = choice d m (λ j → st-substS (alt j) i st0) st-substG end i st0 = end st-substT TUnit i st0 = TUnit st-substT TInt i st0 = TInt st-substT (TPair ty ty₁) i st0 = TPair (st-substT ty i st0) (st-substT ty₁ i st0) st-substT (TChan st) i st0 = TChan (st-substS st i st0) -- Single substitution with SType n st-substS' : Fin (suc n) → SType n → SType (suc n) → SType n st-substG' : Fin (suc n) → SType n → GType (suc n) → GType n st-substT' : Fin (suc n) → SType n → Type (suc n) → Type n st-substS' i st (gdd gst) = gdd (st-substG' i st gst) st-substS' i st (rec gst) = rec (st-substG' (suc i) (weaken1S st) gst) st-substS' i st (var x) with compare x i st-substS' i st (var .(inject least)) | less .i least = var (inject! least) st-substS' .x st (var x) | equal .x = st st-substS' .(inject least) st (var (suc x)) | greater .(suc x) least = var x st-substG' i st (transmit d t s) = transmit d (st-substT' i st t) (st-substS' i st s) st-substG' i st (choice d m alt) = choice d m (λ j → st-substS' i st (alt j)) st-substG' i st end = end st-substT' i st TUnit = TUnit st-substT' i st TInt = TInt st-substT' i st (TPair ty ty₁) = TPair (st-substT' i st ty) (st-substT' i st ty₁) st-substT' i st (TChan s) = TChan (st-substS' i st s) ---------------------------------------------------------------------- ---------------------------------------------------------------------- ---------------------------------------------------------------------- open IND data Stack : ℕ → Set where ε : Stack 0 ⟪_,_⟫ : Stack n → IND.GType (suc n) → Stack (suc n) data StackS : ℕ → Set where ε : StackS 0 ⟪_,_⟫ : StackS n → IND.SType n → StackS (suc n) data StackS0 : ℕ → Set where ε : StackS0 0 ⟪_,_⟫ : StackS0 n → IND.SType 0 → StackS0 (suc n) data StackMCl : ℕ → Set where ε : StackMCl 0 ⟪_,_⟫ : StackMCl n → IND.MClGType (suc n) → StackMCl (suc n) -- Stack of length m starting at arbitrary type size n data Stack' : ℕ → ℕ → Set where ε : Stack' n 0 ⟪_,_⟫ : Stack' n m → IND.GType (suc (n + m)) → Stack' n (suc m) data Stack'S : ℕ → ℕ → Set where ε : Stack'S n 0 ⟪_,_⟫ : Stack'S n m → IND.SType (n + m) → Stack'S n (suc m) data Stack'Sn : ℕ → ℕ → Set where ε : Stack'Sn n 0 ⟪_,_⟫ : Stack'Sn n m → IND.SType n → Stack'Sn n (suc m) get : {n : ℕ} → (i : Fin n) → Stack n → Stack (n ∸ (suc (toℕ i))) × IND.GType (n ∸ (toℕ i)) get {suc n} zero ⟪ σ , x ⟫ = σ , x get {suc n} (suc i) ⟪ σ , x ⟫ = get i σ getS : {n : ℕ} → (i : Fin n) → StackS n → StackS (n ∸ (suc (toℕ i))) × IND.SType (n ∸ (suc (toℕ i))) getS {suc n} zero ⟪ σ , x ⟫ = σ , x getS {suc n} (suc i) ⟪ σ , x ⟫ = getS i σ getS0 : {n : ℕ} → (i : Fin n) → StackS0 n → StackS0 (n ∸ (suc (toℕ i))) × IND.SType 0 getS0 {suc n} zero ⟪ σ , x ⟫ = σ , x getS0 {suc n} (suc i) ⟪ σ , x ⟫ = getS0 i σ getMCl : {n : ℕ} → (i : Fin n) → StackMCl n → StackMCl (n ∸ (suc (toℕ i))) × IND.MClGType (n ∸ (toℕ i)) getMCl {suc n} zero ⟪ σ , x ⟫ = σ , x getMCl {suc n} (suc i) ⟪ σ , x ⟫ = getMCl i σ get' : {n m : ℕ} → (i : Fin m) → Stack' n m → Stack' n (m ∸ (suc (toℕ i))) × IND.GType (n + (m ∸ (toℕ i))) get' {n} {suc m} zero ⟪ σ , x ⟫ = σ , x get' {n} {suc m} (suc i) ⟪ σ , x ⟫ = get' i σ get'S : {n m : ℕ} → (i : Fin m) → Stack'S n m → Stack'S n (m ∸ (suc (toℕ i))) × IND.SType (n + (m ∸ (suc (toℕ i)))) get'S {n} {suc m} zero ⟪ σ , x ⟫ = σ , x get'S {n} {suc m} (suc i) ⟪ σ , x ⟫ = get'S i σ get'Sn : {n m : ℕ} → (i : Fin m) → Stack'Sn n m → Stack'Sn n (m ∸ (suc (toℕ i))) × IND.SType n get'Sn {n} {suc m} zero ⟪ σ , x ⟫ = σ , x get'Sn {n} {suc m} (suc i) ⟪ σ , x ⟫ = get'Sn i σ ---------------------------------------------------------------------- stack-split : (i : Fin (suc n)) → Stack n → Stack (n ∸ toℕ i) × Stack' (n ∸ toℕ i) (toℕ i) stack-split zero σ = σ , ε stack-split{n} (suc i) ⟪ σ , x ⟫ with stack-split i σ ... | σ' , σ'' = σ' , ⟪ σ'' , x ⟫ -- couldn't achieve this by rewriting alone suc[n+[m∸sucx]+x]≡n+m : {n m x : ℕ} → Data.Nat._<_ x m → suc (n + (m ∸ suc x) + x) ≡ n + m suc[n+[m∸sucx]+x]≡n+m {0} {m} {x} le = suc[n∸sucx+x]≡n{m}{x} le suc[n+[m∸sucx]+x]≡n+m {suc n} {suc m} {0} le = refl suc[n+[m∸sucx]+x]≡n+m {suc n} {suc m} {suc x} (s≤s le) = cong suc (cong suc (suc[n+[m∸sucx]+x]≡n+m le)) -- i from the top of the stack stack'-m-i : {n m : ℕ} → (i : Fin m) → Stack' n m → Stack' (n + (m ∸ (toℕ i))) (toℕ i) stack'-m-i {n} {m} zero σ = ε stack'-m-i {n} {suc m} (suc i) ⟪ σ , x ⟫ rewrite (sym (suc[n+[m∸sucx]+x]≡n+m{n}{m}{toℕ i} toℕx<n)) = ⟪ (stack'-m-i i σ) , x ⟫ weaken1-Stack' : (i : Fin (suc n)) → Stack' n m → Stack' (suc n) m weaken1-Stack' i ε = ε weaken1-Stack'{n}{m} i ⟪ σ , x ⟫ = ⟪ (weaken1-Stack' i σ) , (weaken1'G (inject+ m i) x) ⟫ weaken1-Stack'Sn : (i : Fin (suc n)) → Stack'Sn n m → Stack'Sn (suc n) m weaken1-Stack'Sn i ε = ε weaken1-Stack'Sn{n}{m} i ⟪ σ , x ⟫ = ⟪ (weaken1-Stack'Sn i σ) , (weaken1'S i x) ⟫ -- substitute after index i, required for rec case stack-sim-substS-i> : (i : Fin n) → StackS0 (n ∸ (toℕ (suc i))) → SType n → SType (toℕ (suc i)) stack-sim-substG-i> : (i : Fin n) → StackS0 (n ∸ (toℕ (suc i))) → GType n → GType (toℕ (suc i)) stack-sim-substT-i> : (i : Fin n) → StackS0 (n ∸ (toℕ (suc i))) → Type n → Type (toℕ (suc i)) stack-sim-substS-i> i σ (gdd gst) = gdd (stack-sim-substG-i> i σ gst) stack-sim-substS-i> i σ (rec gst) = rec (stack-sim-substG-i> (suc i) σ gst) stack-sim-substS-i>{suc n} zero σ (var zero) = var zero stack-sim-substS-i> zero σ (var (suc x)) with getS0 x σ ... | σ' , s = weaken1S s stack-sim-substS-i> (suc i) σ (var zero) = var zero stack-sim-substS-i> (suc i) σ (var (suc x)) = weaken1S (stack-sim-substS-i> i σ (var x)) stack-sim-substG-i> i σ (transmit d t s) = transmit d (stack-sim-substT-i> i σ t) (stack-sim-substS-i> i σ s) stack-sim-substG-i> i σ (choice d m alt) = choice d m (λ x → stack-sim-substS-i> i σ (alt x)) stack-sim-substG-i> i σ end = end stack-sim-substT-i> i σ TUnit = TUnit stack-sim-substT-i> i σ TInt = TInt stack-sim-substT-i> i σ (TPair t t₁) = TPair (stack-sim-substT-i> i σ t) (stack-sim-substT-i> i σ t₁) stack-sim-substT-i> i σ (TChan x) = TChan (stack-sim-substS-i> i σ x) -- substitute stack stack-sim-substS : StackS0 n → SType n → SType 0 stack-sim-substG : StackS0 n → GType n → GType 0 stack-sim-substT : StackS0 n → Type n → Type 0 stack-sim-substS σ (gdd gst) = gdd (stack-sim-substG σ gst) stack-sim-substS σ (rec gst) = rec (stack-sim-substG-i> zero σ gst) -- Apply stack substitution to variables 1, ..., suc n; keep 0F; can't extend StackS0 since only SType 0F allowed stack-sim-substS σ (var x) with getS0 x σ ... | σ' , s = s stack-sim-substG σ (transmit d t s) = transmit d (stack-sim-substT σ t) (stack-sim-substS σ s) stack-sim-substG σ (choice d m alt) = choice d m (λ x → stack-sim-substS σ (alt x)) stack-sim-substG σ end = end stack-sim-substT σ TUnit = TUnit stack-sim-substT σ TInt = TInt stack-sim-substT σ (TPair t t₁) = TPair (stack-sim-substT σ t) (stack-sim-substT σ t₁) stack-sim-substT σ (TChan x) = TChan (stack-sim-substS σ x) stack-sim-substS'-i≥ : (i : Fin (suc m)) → Stack'Sn n (m ∸ toℕ i) → SType m → SType (n + toℕ i) stack-sim-substG'-i≥ : (i : Fin (suc m)) → Stack'Sn n (m ∸ toℕ i) → GType m → GType (n + toℕ i) stack-sim-substT'-i≥ : (i : Fin (suc m)) → Stack'Sn n (m ∸ toℕ i) → Type m → Type (n + toℕ i) stack-sim-substS'-i≥ i σ (gdd gst) = gdd (stack-sim-substG'-i≥ i σ gst) stack-sim-substS'-i≥ i σ (rec gst) = rec (stack-sim-substG'-i≥ (suc i) σ gst) stack-sim-substS'-i≥ zero σ (var x) with get'Sn x σ ... | σ' , y = y stack-sim-substS'-i≥ (suc i) σ (var zero) = var zero stack-sim-substS'-i≥ (suc i) σ (var (suc x)) = weaken1S (stack-sim-substS'-i≥ i σ (var x)) stack-sim-substG'-i≥ i σ (transmit d t s) = transmit d (stack-sim-substT'-i≥ i σ t) (stack-sim-substS'-i≥ i σ s) stack-sim-substG'-i≥ i σ (choice d m alt) = choice d m (λ x → stack-sim-substS'-i≥ i σ (alt x)) stack-sim-substG'-i≥ i σ end = end stack-sim-substT'-i≥ i σ TUnit = TUnit stack-sim-substT'-i≥ i σ TInt = TInt stack-sim-substT'-i≥ i σ (TPair t t₁) = TPair (stack-sim-substT'-i≥ i σ t) (stack-sim-substT'-i≥ i σ t₁) stack-sim-substT'-i≥ i σ (TChan x) = TChan (stack-sim-substS'-i≥ i σ x) -- substitute stack' stack-sim-substS' : Stack'Sn n m → SType m → SType n stack-sim-substG' : Stack'Sn n m → GType m → GType n stack-sim-substT' : Stack'Sn n m → Type m → Type n stack-sim-substS' σ (gdd gst) = gdd (stack-sim-substG' σ gst) stack-sim-substS'{n}{m} σ (rec gst) = rec (stack-sim-substG'-i≥ (suc zero) σ gst) stack-sim-substS' σ (var x) with get'Sn x σ ... | σ' , s = s stack-sim-substG' σ (transmit d t s) = transmit d (stack-sim-substT' σ t) (stack-sim-substS' σ s) stack-sim-substG' σ (choice d m alt) = choice d m (λ x → stack-sim-substS' σ (alt x)) stack-sim-substG' σ end = end stack-sim-substT' σ TUnit = TUnit stack-sim-substT' σ TInt = TInt stack-sim-substT' σ (TPair t t₁) = TPair (stack-sim-substT' σ t) (stack-sim-substT' σ t₁) stack-sim-substT' σ (TChan x) = TChan (stack-sim-substS' σ x) {- required for alt. def. of rec case of stack-sim-substS'-top stack-sim-substS'-top-i≥ : (i : Fin (suc m)) → Stack'Sn n (m ∸ toℕ i) → SType (n + m) → SType (n + toℕ i) stack-sim-substG'-top-i≥ : (i : Fin (suc m)) → Stack'Sn n (m ∸ toℕ i) → GType (n + m) → GType (n + toℕ i) stack-sim-substT'-top-i≥ : (i : Fin (suc m)) → Stack'Sn n (m ∸ toℕ i) → Type (n + m) → Type (n + toℕ i) stack-sim-substS'-top-i≥ i σ (gdd gst) = {!!} stack-sim-substS'-top-i≥ i σ (rec gst) = rec (stack-sim-substG'-top-i≥ (suc i) σ gst) stack-sim-substS'-top-i≥ i σ (var x) = {!!} stack-sim-substS'-top-i≥' : (i : Fin (suc m)) → Stack'Sn (n + toℕ i) (toℕ i) → SType (n + m) → SType (n + m ∸ toℕ i) stack-sim-substG'-top-i≥' : (i : Fin (suc m)) → Stack'Sn (n + toℕ i) (toℕ i) → GType (n + m) → GType (n + m ∸ toℕ i) stack-sim-substS'-top-i≥'{m = m}{n = suc n} i σ (rec gst) = rec (stack-sim-substG'-top-i≥' {!!} {!!} gst) -} -- substitute top variables from stack' stack-sim-substS'-top : Stack'Sn n m → SType (n + m) → SType n stack-sim-substG'-top : Stack'Sn n m → GType (n + m) → GType n stack-sim-substT'-top : Stack'Sn n m → Type (n + m) → Type n stack-sim-substS'-top σ (gdd gst) = gdd (stack-sim-substG'-top σ gst) stack-sim-substS'-top{n}{m} σ (rec gst) = rec (stack-sim-substG'-top{m = m} (weaken1-Stack'Sn zero σ) gst) -- alternative: rec (stack-sim-substG'-top-i≥ 1 σ gst) stack-sim-substS'-top{n}{m} σ (var x) = {!!} -- <= n => var n, > n => substitute -- Transform Stack of STypes to Stack of closed STypes by substitution -- ⟪ ε , SType 0 , SType 1 , SType 2 , ⋯ ⟫ -- ⟪ ε , SType 0 , SType 1 [0 ↦ SType 0], SType 2 [0 ↦ SType 0, 1 ↦ SType 1 [0 ↦ SType 0]], ⋯ ⟫ -- ⟪ ε , SType 0 , SType 0 , SType 0 , ⋯ ⟫ stack-transform : StackS n → StackS0 n stack-transform ε = ε stack-transform ⟪ σ , x ⟫ with stack-transform σ ... | σ' = ⟪ σ' , (stack-sim-substS σ' x) ⟫ stack-transform' : Stack'S n m → Stack'Sn n m stack-transform' ε = ε stack-transform'{n} ⟪ σ , x ⟫ with stack-transform' σ ... | σ' = ⟪ σ' , stack-sim-substS'-top σ' x ⟫ stack-cat : Stack n → Stack' n m → Stack (n + m) stack-cat σ ε = σ stack-cat σ ⟪ σ' , x ⟫ = ⟪ (stack-cat σ σ') , x ⟫ stack-cat' : Stack' 0 n → Stack' n m → Stack' 0 (n + m) stack-cat' σ ε = σ stack-cat' σ ⟪ σ' , x ⟫ = ⟪ (stack-cat' σ σ') , x ⟫ stack-sim-substS-refl : (s : SType 0) → stack-sim-substS ε s ≡ s stack-sim-substG-refl : (g : GType 0) → stack-sim-substG ε g ≡ g stack-sim-substT-refl : (t : Type 0) → stack-sim-substT ε t ≡ t stack-sim-substS-refl (gdd gst) = cong gdd (stack-sim-substG-refl gst) stack-sim-substS-refl (rec gst) = {!!} -- requires stack-sim-substG-i>-refl stack-sim-substG-refl (transmit d t s) = cong₂ (transmit d) (stack-sim-substT-refl t) (stack-sim-substS-refl s) stack-sim-substG-refl (choice d m alt) = cong (choice d m) (ext (λ x → stack-sim-substS-refl (alt x))) stack-sim-substG-refl end = refl stack-sim-substT-refl TUnit = refl stack-sim-substT-refl TInt = refl stack-sim-substT-refl (TPair t t₁) = cong₂ TPair (stack-sim-substT-refl t) (stack-sim-substT-refl t₁) stack-sim-substT-refl (TChan x) = cong TChan (stack-sim-substS-refl x) ---------------------------------------------------------------------- -- Message closure mclS : (σ : StackS n) → SType n → MClSType n mclG : (σ : StackS n) → GType n → MClGType n mclT : (σ : StackS n) → Type n → MClType n mclS σ (gdd gst) = tgdd (mclG σ gst) mclS σ (rec gst) = trec (mclG ⟪ σ , (rec gst) ⟫ gst) mclS σ (var x) = tvar x mclG σ (transmit d t s) = ttransmit d (mclT σ t) (mclS σ s) mclG σ (choice d m alt) = tchoice d m (λ x → mclS σ (alt x)) mclG σ end = end mclT σ TUnit = MClTUnit mclT σ TInt = MClTInt mclT σ (TPair t t₁) = MClTPair (mclT σ t) (mclT σ t₁) mclT σ (TChan x) = MClTChan (stack-sim-substS (stack-transform σ) x) ---------------------------------------------------------------------- -- Any mcl type is a normal type with weakening mcl2indS : MClSType n → SType n mcl2indG : MClGType n → GType n mcl2indT : MClType n → Type n mcl2indS (tgdd tgst) = gdd (mcl2indG tgst) mcl2indS (trec tgst) = rec (mcl2indG tgst) mcl2indS (tvar x) = var x mcl2indG (ttransmit d t s) = transmit d (mcl2indT t) (mcl2indS s) mcl2indG (tchoice d m alt) = choice d m (λ x → mcl2indS (alt x)) mcl2indG end = end mcl2indT MClTUnit = TUnit mcl2indT MClTInt = TInt mcl2indT (MClTPair t t₁) = TPair (mcl2indT t) (mcl2indT t₁) mcl2indT{n} (MClTChan x) = TChan (weakenS n x) ---------------------------------------------------------------------- stack2StackS : Stack n → StackS n stack2StackS ε = ε stack2StackS ⟪ σ , x ⟫ = ⟪ (stack2StackS σ) , (rec x) ⟫ stackMCl2Stack : StackMCl n → Stack n stackMCl2Stack ε = ε stackMCl2Stack ⟪ σ , x ⟫ = ⟪ (stackMCl2Stack σ) , (mcl2indG x) ⟫ stackMCl2StackS : StackMCl n → StackS n stackMCl2StackS ε = ε stackMCl2StackS ⟪ σ , x ⟫ = ⟪ (stackMCl2StackS σ) , (rec (mcl2indG x)) ⟫ stack2StackMCl : Stack n → StackMCl n stack2StackMCl ε = ε stack2StackMCl ⟪ σ , x ⟫ = ⟪ (stack2StackMCl σ) , (mclG ⟪ stack2StackS σ , rec x ⟫ x) ⟫ stack2Stack' : Stack n → Stack' 0 n stack2Stack' ε = ε stack2Stack' ⟪ σ , x ⟫ = ⟪ stack2Stack' σ , x ⟫ stack'2Stack : Stack' 0 n → Stack n stack'2Stack ε = ε stack'2Stack ⟪ σ , x ⟫ = ⟪ stack'2Stack σ , x ⟫ stack'2Stack'S : Stack' n m → Stack'S n m stack'2Stack'S ε = ε stack'2Stack'S ⟪ σ , x ⟫ = ⟪ (stack'2Stack'S σ) , (rec x) ⟫ stack-stack'-refl : (σ : Stack n) → (stack'2Stack (stack2Stack' σ)) ≡ σ stack-stack'-refl ε = refl stack-stack'-refl ⟪ σ , x ⟫ rewrite (stack-stack'-refl σ) = refl {-# REWRITE stack-stack'-refl #-} ---------------------------------------------------------------------- naive-dualS : SType n → SType n naive-dualG : GType n → GType n naive-dualT : Type n → Type n naive-dualS (gdd gst) = gdd (naive-dualG gst) naive-dualS (rec gst) = rec (naive-dualG gst) naive-dualS (var x) = var x naive-dualG (transmit d t s) = transmit (dual-dir d) (naive-dualT t) (naive-dualS s) naive-dualG (choice d m alt) = choice (dual-dir d) m (λ x → naive-dualS (alt x)) naive-dualG end = end naive-dualT TUnit = TUnit naive-dualT TInt = TInt naive-dualT (TPair t t₁) = TPair (naive-dualT t) (naive-dualT t₁) naive-dualT (TChan x) = TChan (naive-dualS x) naive-dualSt : MClSType n → MClSType n naive-dualGt : MClGType n → MClGType n naive-dualTt : MClType n → MClType n naive-dualSt (tgdd tgst) = tgdd (naive-dualGt tgst) naive-dualSt (trec tgst) = trec (naive-dualGt tgst) naive-dualSt (tvar x) = tvar x naive-dualGt (ttransmit d t s) = ttransmit (dual-dir d) (naive-dualTt t) (naive-dualSt s) naive-dualGt (tchoice d m alt) = tchoice (dual-dir d) m (λ x → naive-dualSt (alt x)) naive-dualGt end = end naive-dualTt MClTUnit = MClTUnit naive-dualTt MClTInt = MClTInt naive-dualTt (MClTPair t t₁) = MClTPair (naive-dualTt t) (naive-dualTt t₁) naive-dualTt (MClTChan x) = MClTChan (naive-dualS x) ---------------------------------------------------------------------- dualS : (σ : StackS n) → SType n → MClSType n dualG : (σ : StackS n) → GType n → MClGType n dualT : (σ : StackS n) → Type n → MClType n dualS σ (gdd gst) = tgdd (dualG σ gst) dualS σ (rec gst) = trec (dualG ⟪ σ , (rec gst) ⟫ gst) dualS σ (var x) = (tvar x) dualG{n} σ (transmit d t s) = ttransmit (dual-dir d) (dualT σ t) (dualS σ s) dualG σ (choice d m alt) = tchoice (dual-dir d) m ((dualS σ) ∘ alt) dualG σ end = end dualT σ TUnit = MClTUnit dualT σ TInt = MClTInt dualT σ (TPair t t₁) = MClTPair (dualT σ t) (dualT σ t₁) dualT σ (TChan x) = MClTChan (stack-sim-substS (stack-transform σ) x) module sanity-check where -- μx.!x.x → μx.?(μx.!x.x).x S : SType 0 S = rec (transmit SND (TChan (var zero)) (var zero)) DS = rec (transmit RCV (weaken1T (TChan S)) (var zero)) _ : mclS ε DS ≡ dualS ε S _ = refl -- μx.!x.!x.x → μx.?(μx.!x.!x.x).?(μx.!x.!x.x).x S' : SType 0 S' = rec (transmit SND (TChan (var zero)) (gdd ((transmit SND (TChan (var zero)) (var zero))))) DS' = rec (transmit RCV (weaken1T (TChan S')) (gdd ((transmit RCV (weaken1T (TChan S')) (var zero))))) _ : mclS ε DS' ≡ dualS ε S' _ = refl -- μx.!x.(μy.!y.y) → μx.?(μx.!x.(μy.!y.y)).(μy.?(μy.!y.y).y) S'' : SType 0 S'' = rec (transmit SND (TChan (var zero)) (rec (transmit SND (TChan (var zero)) (var zero)))) DS'' = rec (transmit RCV (weaken1T (TChan S'')) (weaken1S DS)) _ : mclS ε DS'' ≡ dualS ε S'' _ = refl ---------------------------------------------------------------------- open import DualCoinductive hiding (n ; m) _≈_ = COI._≈_ _≈'_ = COI._≈'_ _≈ᵗ_ = COI._≈ᵗ_ -- IND to Coinductive using two stacks -- e.g. i = 0 => σ -- i = 1 => σ , g -- g = get σ' 0 -- i = 2F => σ , g' , g -- g = get σ' 0; g' = get σ' 1 -- i = n => σ' ind2coiS' : (i : Fin (suc n)) → Stack (n ∸ toℕ i) → Stack' (n ∸ toℕ i) (toℕ i) → IND.SType n → COI.SType ind2coiG' : (i : Fin (suc n)) → Stack (n ∸ toℕ i) → Stack' (n ∸ toℕ i) (toℕ i) → IND.GType n → COI.STypeF COI.SType ind2coiT' : (i : Fin (suc n)) → Stack (n ∸ toℕ i) → Stack' (n ∸ toℕ i) (toℕ i) → IND.Type n → COI.Type COI.SType.force (ind2coiS' i σ σ' (gdd gst)) = ind2coiG' i σ σ' gst COI.SType.force (ind2coiS'{n} i σ σ' (rec gst)) = ind2coiG' (suc i) σ ⟪ σ' , gst ⟫ gst COI.SType.force (ind2coiS' i σ σ' (var x)) = {!!} -- IND to Coinductive ind2coiS : Stack n → IND.SType n → COI.SType ind2coiG : Stack n → IND.GType n → COI.STypeF COI.SType ind2coiT : Stack n → IND.Type n → COI.Type ind2coiT σ TUnit = COI.TUnit ind2coiT σ TInt = COI.TInt ind2coiT σ (TPair t t₁) = COI.TPair (ind2coiT σ t) (ind2coiT σ t₁) ind2coiT σ (TChan x) = COI.TChan (ind2coiS σ x) COI.SType.force (ind2coiS σ (gdd gst)) = ind2coiG σ gst COI.SType.force (ind2coiS σ (rec gst)) = ind2coiG ⟪ σ , gst ⟫ gst COI.SType.force (ind2coiS{n} σ (var x)) with get x σ ... | σ' , gxs rewrite (n∸x≡suc[n∸sucx]{n}{toℕ x} toℕx<n) = ind2coiG ⟪ σ' , gxs ⟫ gxs ind2coiG σ (transmit d t s) = COI.transmit d (ind2coiT σ t) (ind2coiS σ s) ind2coiG σ (choice d m alt) = COI.choice d m (λ x → ind2coiS σ (alt x)) ind2coiG σ end = COI.end -- IND to Coinductive using StackS0 ind2coiS'' : StackS0 n → IND.SType n → COI.SType ind2coiG'' : StackS0 n → IND.GType n → COI.STypeF COI.SType COI.SType.force (ind2coiS'' σ (gdd gst)) = ind2coiG'' σ gst COI.SType.force (ind2coiS''{n} σ (rec gst)) = ind2coiG''{suc n} ⟪ σ , stack-sim-substS σ (rec gst) ⟫ gst ind2coiS'' σ (var x) with getS0 x σ ... | σ' , gxs = ind2coiS'' ε gxs -- Equivalence of IND to COI with one stack and IND to COI with two stacks ind2coiS≈ind2coiS' : (σ : Stack' 0 n) (s : IND.SType n) → ind2coiS' (fromℕ n) ε σ s ≈ ind2coiS (stack'2Stack σ) s ind2coiG≈ind2coiG' : (σ : Stack' 0 n) (g : IND.GType n) → ind2coiG' (fromℕ n) ε σ g ≈' ind2coiG (stack'2Stack σ) g COI.Equiv.force (ind2coiS≈ind2coiS' σ (gdd gst)) = ind2coiG≈ind2coiG' σ gst COI.Equiv.force (ind2coiS≈ind2coiS'{n} σ (rec gst)) = ind2coiG≈ind2coiG'{suc n} ⟪ σ , gst ⟫ gst COI.Equiv.force (ind2coiS≈ind2coiS' σ (var x)) = {!!} -- Message closure to Coinductive mcl2coiT : StackMCl n → MClType n → COI.Type mcl2coiS : StackMCl n → MClSType n → COI.SType mcl2coiG : StackMCl n → MClGType n → COI.STypeF COI.SType mcl2coiT σ MClTUnit = COI.TUnit mcl2coiT σ MClTInt = COI.TInt mcl2coiT σ (MClTPair t t₁) = COI.TPair (mcl2coiT σ t) (mcl2coiT σ t₁) mcl2coiT σ (MClTChan s) = COI.TChan (ind2coiS ε s) COI.SType.force (mcl2coiS σ (tgdd g)) = mcl2coiG σ g COI.SType.force (mcl2coiS σ (trec g)) = mcl2coiG ⟪ σ , g ⟫ g COI.SType.force (mcl2coiS{n} σ (tvar x)) with getMCl x σ ... | σ' , gxs rewrite (n∸x≡suc[n∸sucx]{n}{toℕ x} toℕx<n) = mcl2coiG ⟪ σ' , gxs ⟫ gxs mcl2coiG σ (ttransmit d t s) = COI.transmit d (mcl2coiT σ t) (mcl2coiS σ s) mcl2coiG σ (tchoice d m alt) = COI.choice d m (mcl2coiS σ ∘ alt) mcl2coiG σ end = COI.end ---------------------------------------------------------------------- -- lemm 1 -- stack-sim-substS (stack-transform ⟪ stack2StackS σ , (rec x) ⟫) s ≡ stack-sim-substS (stack-transform (stack2StackS σ)) (st-substS' 0 (rec x) s) -- lemm 2 -- ind2coiS ⟪ σ , x ⟫ s ≈ ind2coiS σ (st-substS' 0 (rec x) s) -- unfolding vs single substitution ind2coi-substS : (σ : Stack n) (g : GType (suc n)) (s : SType (suc n)) → ind2coiS ⟪ σ , g ⟫ s ≈ ind2coiS σ (st-substS' zero (rec g) s) ind2coi-substG : (σ : Stack n) (g : GType (suc n)) (g' : GType (suc n)) → ind2coiG ⟪ σ , g ⟫ g' ≈' ind2coiG σ (st-substG' zero (rec g) g') COI.Equiv.force (ind2coi-substS σ g (gdd gst)) = ind2coi-substG σ g gst COI.Equiv.force (ind2coi-substS σ g (rec gst)) = {!!} -- the following line for rec-case is a contradiction for gst = transmit d t (var 1) -- COI.≈'-trans (COI.≈'-trans (ind2coi-substG ⟪ σ , g ⟫ gst gst) (ind2coi-substG σ g (st-substG' 0 (rec gst) gst))) (COI.≈'-trans {!!} (COI.≈'-symm (ind2coi-substG σ (st-substG' 1 (weaken1S (rec g)) gst) (st-substG' 1 (weaken1S (rec g)) gst)))) COI.Equiv.force (ind2coi-substS σ g (var zero)) = COI.≈'-refl COI.Equiv.force (ind2coi-substS {n} σ g (var (suc x))) = {!!} ind2coi-substG σ g (transmit d t s) = COI.eq-transmit d {!!} (ind2coi-substS σ g s) ind2coi-substG σ g (choice d m alt) = COI.eq-choice d λ i → ind2coi-substS σ g (alt i) ind2coi-substG σ g end = COI.eq-end -- unfolding vs simultaneous substitution: special, needed case st-unfold : {n : ℕ} (σ : Stack n) (s : IND.SType n) → ind2coiS ε (stack-sim-substS (stack-transform (stack2StackS σ)) s) ≈ ind2coiS σ s st-unfold {0} ε s rewrite (stack-sim-substS-refl s) = COI.≈-refl st-unfold {suc n} ⟪ σ , x ⟫ s = {!st-unfold σ (st-substS' 0 (rec x) s)!} -- provable if lemm 1 & lemm 2 hold -- unfolding vs simultaneous substitution: general case stack-unfoldS : (σ : Stack n) (σ' : Stack' n m) (s : IND.SType (n + m)) → ind2coiS σ (stack-sim-substS'-top (stack-transform' (stack'2Stack'S σ')) s) ≈ ind2coiS (stack-cat σ σ') s COI.Equiv.force (stack-unfoldS {n} σ σ' (gdd gst)) = {!!} COI.Equiv.force (stack-unfoldS σ σ' (rec gst)) = {!!} COI.Equiv.force (stack-unfoldS {n} σ σ' (var x)) = {!!} -- unfolding vs simultaneous substition: general case w/ alt. def. for ind2coiS stack-unfoldS' : (i : Fin (suc n)) (σ : Stack (n ∸ toℕ i)) (σ' : Stack' (n ∸ toℕ i) (toℕ i)) (s : IND.SType n) → ind2coiS σ (stack-sim-substS'-top (stack-transform' (stack'2Stack'S σ')) s) ≈ ind2coiS' i σ σ' s COI.Equiv.force (stack-unfoldS' i σ σ' (gdd gst)) = {!!} COI.Equiv.force (stack-unfoldS' i σ σ' (rec gst)) = {!!} -- req. first lemma from graveyard of lemmas COI.Equiv.force (stack-unfoldS' i σ σ' (var x)) = {!!} ---------------------------------------------------------------------- -- proof idea for var case: -- mcl2coiS (stack2StackMCl σ) (tvar x) -------- getMCl x (stack2StackMCl σ) = σ' , g -- => mcl2coiG ⟪ σ' , g ⟫ g -------- getMCl x (stack2StackMCl σ) = (stack2StackMCl (get x σ).1 , mclG ⟪ stack2StackS (get x σ).1 , rec (get x σ).2 ⟫ (get x σ).2 -- => mcl2coiG ⟪ (stack2StackMCl (get x σ).1 , mclG ⟪ stack2StackS (get x σ).1 , rec (get x σ).2 ⟫ (get x σ).2 ⟫ (mclG ⟪ stack2StackS (get x σ).1 , rec (get x σ).2 ⟫ (get x σ).2) ------- which by definition of stack2StackMCl and stack2StackS is equivalent to -- = mcl2coiG (stack2StackMCl ⟪ (get x σ).1 , (get x σ).2 ⟫) (mclG (stack2StackS ⟪ (get x σ).1 , (get x σ).2 ⟫) g) ------- which, by mcl-equiv-G -- ≈' ind2coiG ⟪ (get x σ).1 , (get x σ).2 ⟫ (get x σ).2 -- = ind2coiG σ (var x) getMCl-get : (x : Fin n) (σ : Stack n) → getMCl x (stack2StackMCl σ) ≡ (stack2StackMCl (proj₁ (get x σ)) , mclG ⟪ stack2StackS (proj₁ (get x σ)) , rec (proj₂ (get x σ)) ⟫ (proj₂ (get x σ))) getMCl-get zero ⟪ σ , x ⟫ = refl getMCl-get (suc x) ⟪ σ , x₁ ⟫ = getMCl-get x σ ---------------------------------------------------------------------- mcl-equiv-S : (σ : Stack n) (s : IND.SType n) → mcl2coiS (stack2StackMCl σ) (mclS (stack2StackS σ) s) ≈ ind2coiS σ s mcl-equiv-G : (σ : Stack n) (g : IND.GType n) → mcl2coiG (stack2StackMCl σ) (mclG (stack2StackS σ) g) ≈' ind2coiG σ g mcl-equiv-T : (σ : Stack n) (t : IND.Type n) → mcl2coiT (stack2StackMCl σ) (mclT (stack2StackS σ) t) ≈ᵗ ind2coiT σ t COI.Equiv.force (mcl-equiv-S σ (gdd gst)) = mcl-equiv-G σ gst COI.Equiv.force (mcl-equiv-S σ (rec gst)) = mcl-equiv-G ⟪ σ , gst ⟫ gst COI.Equiv.force (mcl-equiv-S{n} σ (var x)) rewrite (getMCl-get x σ) with (proj₁ (get x σ)) | (proj₂ (get x σ)) ... | σ' | g rewrite (n∸x≡suc[n∸sucx]{n}{toℕ x} toℕx<n) = mcl-equiv-G ⟪ σ' , g ⟫ g mcl-equiv-G σ (transmit d t s) = COI.eq-transmit d (mcl-equiv-T σ t) (mcl-equiv-S σ s) mcl-equiv-G σ (choice d m alt) = COI.eq-choice d (λ i → mcl-equiv-S σ (alt i)) mcl-equiv-G σ end = COI.eq-end mcl-equiv-T σ TUnit = COI.eq-unit mcl-equiv-T σ TInt = COI.eq-int mcl-equiv-T σ (TPair t t₁) = COI.eq-pair (mcl-equiv-T σ t) (mcl-equiv-T σ t₁) mcl-equiv-T {n} σ (TChan x) = COI.eq-chan {!!} σ : Stack 1 σ = ⟪ ε , end ⟫ g : GType 2 g = transmit SND TInt (var (suc zero)) s : COI.SType s = ind2coiS σ (rec g) s' : COI.SType s' = ind2coiS ε (stack-sim-substS (stack-transform (stack2StackS σ)) (rec g)) s≈s' : s ≈ s' COI.Equiv.force s≈s' = COI.eq-transmit SND COI.eq-int (record { force = COI.eq-end }) -- naive-mcl-dual : (σ : StackMCl n) (s : IND.SType n) → -- mcl2coiS σ (naive-dualSt (mclS (stackTail2StackS σ) s)) ≈ mcl2coiS σ (dualS (stackTail2StackS σ) s) {- graveyard of attempted lemmas -- idea: "move" a substitution that is done at stack unfolding to a simultaneous subtitution before unfolding -- problem: cannot formulate this for SType since Stack requires a GType stack-unfold-lemmaG : {m n : ℕ} (σ : Stack n) (σ' : Stack' n m) (g : GType (suc (n + m))) → ind2coiG ⟪ σ , stack-sim-substG'-top (weaken1-Stack'Sn 0 (stack-transform' (stack'2Stack'S σ'))) g ⟫ (stack-sim-substG'-top (weaken1-Stack'Sn 0 (stack-transform' (stack'2Stack'S σ'))) g) ≈' ind2coiG σ (stack-sim-substG'-top (stack-transform' (stack'2Stack'S ⟪ σ' , g ⟫)) g) stack-unfold-lemmaG {m} {n} σ σ' (transmit d t s) = {!!} stack-unfold-lemmaG {m} {n} σ σ' (choice d m₁ alt) = {!!} stack-unfold-lemmaG {m} {n} σ σ' end = {!!} ------------------------------------------------------------ -- won't work for the same reason as below stack-unfoldS-i : (i : Fin n) (σ : Stack n) (s : IND.SType (suc (n ∸ suc (toℕ i) + toℕ i))) → ind2coiS (proj₁ (stack-split i σ)) (stack-sim-substS'-top (stack-transform' (stack'2Stack'S (proj₂ (stack-split i σ)))) s) ≈ ind2coiS σ (rewrfixS{n}{i} s) stack-unfoldG-i : (i : Fin n) (σ : Stack n) (g : IND.GType (suc (n ∸ suc (toℕ i) + toℕ i))) → ind2coiG (proj₁ (stack-split i σ)) (stack-sim-substG'-top (stack-transform' (stack'2Stack'S (proj₂ (stack-split i σ)))) g) ≈' ind2coiG σ (rewrfixG{n}{i} g) COI.Equiv.force (stack-unfoldS-i i σ (gdd gst)) = {!!} COI.Equiv.force (stack-unfoldS-i{n} i σ (rec gst)) = {!stack-unfoldG-i (suc i) ? gst!} COI.Equiv.force (stack-unfoldS-i i σ (var x)) = {!!} -- won't work. rec case adds something to σ on the left side, but something at the end of (stack-cat σ σ') on the right side. stack-unfoldS' : (σ : Stack n) (σ' : Stack' n m) (s : IND.SType (n + m)) → ind2coiS σ (stack-sim-substS'-top (stack-transform' (stack'2Stack'S σ')) s) ≈ ind2coiS (stack-cat σ σ') s stack-unfoldG' : (σ : Stack n) (σ' : Stack' n m) (g : IND.GType (n + m)) → ind2coiG σ (stack-sim-substG'-top (stack-transform' (stack'2Stack'S σ')) g) ≈' ind2coiG (stack-cat σ σ') g COI.Equiv.force (stack-unfoldS' σ σ' (gdd gst)) = {!!} COI.Equiv.force (stack-unfoldS'{n}{m} σ σ' (rec gst)) = {!!} -- {!stack-unfoldG'{suc n}{m} ⟪ σ , stack-sim-substG'-top-i≥ 1 (stack-transform' (stack'2Stack'S σ')) gst ⟫ (weaken1-Stack' 0 σ') gst!} COI.Equiv.force (stack-unfoldS' σ σ' (var x)) = {!!} -}
40.024664
244
0.58148
fbdcd20fac85aba0071856a6d5a9e1f5c2df0c69
2,015
agda
Agda
Cubical/HITs/DunceCap/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/HITs/DunceCap/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/HITs/DunceCap/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.DunceCap.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.HITs.S1 using (S¹; base; decodeEncode) import Cubical.HITs.S1 as S¹ open import Cubical.HITs.MappingCones open import Cubical.HITs.DunceCap.Base -- DunceCone is contractible (easy) Disk : Type₀ Disk = Cone (idfun S¹) isContr-Disk : isContr Disk fst isContr-Disk = hub snd isContr-Disk (inj x) i = spoke x i snd isContr-Disk hub i = hub snd isContr-Disk (spoke x j) i = spoke x (i ∧ j) dunceMap≡id : dunceMap ≡ idfun S¹ dunceMap≡id i base = base dunceMap≡id i (S¹.loop j) = p i j where p : S¹.loop ⁻¹ ∙∙ S¹.loop ∙∙ S¹.loop ≡ S¹.loop p = sym (decodeEncode base (S¹.loop ⁻¹ ∙∙ S¹.loop ∙∙ S¹.loop)) ∙ sym (lUnit S¹.loop) isContr-DunceCone : isContr DunceCone isContr-DunceCone = subst isContr (cong Cone (sym dunceMap≡id)) isContr-Disk -- Dunce is contractible (harder) contrDunce : (d : Dunce) → d ≡ base contrDunce base k = loop k contrDunce (loop i) k = surf k i contrDunce (surf i j) k = hcomp (λ l → λ { (i = i0) → surf k j ; (i = i1) → cube l ; (j = i0) → cube l ; (j = i1) → cube l ; (k = i0) → surf i j ; (k = i1) → base }) (surf (k ∨ i) j) where cube : I → Dunce cube l = hfill (λ i → λ { (k = i0) → loop i ; (k = i1) → base ; (l = i0) → loop (k ∨ i) ; (l = i1) → surf k i }) (inS (loop k)) i isContr-Dunce : isContr Dunce fst isContr-Dunce = base snd isContr-Dunce = sym ∘ contrDunce Dunce≡DunceCone : Dunce ≡ DunceCone Dunce≡DunceCone = ua (Contr→Equiv isContr-Dunce isContr-DunceCone)
31
92
0.602481
1cd2503d54812e846cd707042cfba5a9e4a48222
652
agda
Agda
lib/types/Cospan.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
lib/types/Cospan.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
lib/types/Cospan.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Pi open import lib.types.Pointed module lib.types.Cospan where record Cospan {i j k : ULevel} : Type (lsucc (lmax (lmax i j) k)) where constructor cospan field A : Type i B : Type j C : Type k f : A → C g : B → C record ⊙Cospan {i j k : ULevel} : Type (lsucc (lmax (lmax i j) k)) where constructor ⊙cospan field X : Ptd i Y : Ptd j Z : Ptd k f : fst (X ⊙→ Z) g : fst (Y ⊙→ Z) ⊙cospan-out : ∀ {i j k} → ⊙Cospan {i} {j} {k} → Cospan {i} {j} {k} ⊙cospan-out (⊙cospan X Y Z f g) = cospan (fst X) (fst Y) (fst Z) (fst f) (fst g)
21.733333
72
0.562883
df9a6ac3b98ac945cd8128e939097f8259faee41
9,572
agda
Agda
Cubical/Experiments/ZariskiLatticeBasicOpens.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Experiments/ZariskiLatticeBasicOpens.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Experiments/ZariskiLatticeBasicOpens.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Experiments.ZariskiLatticeBasicOpens where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Powerset open import Cubical.Foundations.Transport open import Cubical.Foundations.Structure open import Cubical.Functions.FunExtEquiv import Cubical.Data.Empty as ⊥ open import Cubical.Data.Bool open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; _^_ to _^ℕ_ ; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm) open import Cubical.Data.Sigma.Base open import Cubical.Data.Sigma.Properties open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Relation.Binary open import Cubical.Relation.Binary.Poset open import Cubical.Algebra.Ring open import Cubical.Algebra.Algebra open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Localisation.Base open import Cubical.Algebra.CommRing.Localisation.UniversalProperty open import Cubical.Algebra.CommRing.Localisation.InvertingElements open import Cubical.Algebra.CommAlgebra.Base open import Cubical.Algebra.CommAlgebra.Properties open import Cubical.Algebra.CommAlgebra.Localisation open import Cubical.Algebra.CommRingSolver.Reflection open import Cubical.Algebra.Semilattice open import Cubical.HITs.SetQuotients as SQ open import Cubical.HITs.PropositionalTruncation as PT open Iso open BinaryRelation open isEquivRel private variable ℓ ℓ' : Level module Presheaf (A' : CommRing ℓ) where open CommRingStr (snd A') renaming (_·_ to _·r_ ; ·Comm to ·r-comm ; ·Assoc to ·rAssoc ; ·Lid to ·rLid ; ·Rid to ·rRid) open Exponentiation A' open CommRingTheory A' open InvertingElementsBase A' open isMultClosedSubset open CommAlgebraStr ⦃...⦄ private A = fst A' A[1/_] : A → CommAlgebra A' ℓ A[1/ x ] = AlgLoc.S⁻¹RAsCommAlg A' [ x ⁿ|n≥0] (powersFormMultClosedSubset _) A[1/_]ˣ : (x : A) → ℙ (fst A[1/ x ]) A[1/ x ]ˣ = (CommAlgebra→CommRing A[1/ x ]) ˣ _≼_ : A → A → Type ℓ x ≼ y = ∃[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r y -- rad(x) ⊆ rad(y) -- ≼ is a pre-order: Refl≼ : isRefl _≼_ Refl≼ x = PT.∣ 1 , 1r , ·r-comm _ _ ∣ Trans≼ : isTrans _≼_ Trans≼ x y z = map2 Trans≼Σ where Trans≼Σ : Σ[ n ∈ ℕ ] Σ[ a ∈ A ] x ^ n ≡ a ·r y → Σ[ n ∈ ℕ ] Σ[ a ∈ A ] y ^ n ≡ a ·r z → Σ[ n ∈ ℕ ] Σ[ a ∈ A ] x ^ n ≡ a ·r z Trans≼Σ (n , a , p) (m , b , q) = n ·ℕ m , (a ^ m ·r b) , path where path : x ^ (n ·ℕ m) ≡ a ^ m ·r b ·r z path = x ^ (n ·ℕ m) ≡⟨ ^-rdist-·ℕ x n m ⟩ (x ^ n) ^ m ≡⟨ cong (_^ m) p ⟩ (a ·r y) ^ m ≡⟨ ^-ldist-· a y m ⟩ a ^ m ·r y ^ m ≡⟨ cong (a ^ m ·r_) q ⟩ a ^ m ·r (b ·r z) ≡⟨ ·rAssoc _ _ _ ⟩ a ^ m ·r b ·r z ∎ R : A → A → Type ℓ R x y = x ≼ y × y ≼ x -- rad(x) ≡ rad(y) RequivRel : isEquivRel R RequivRel .reflexive x = Refl≼ x , Refl≼ x RequivRel .symmetric _ _ Rxy = (Rxy .snd) , (Rxy .fst) RequivRel .transitive _ _ _ Rxy Ryz = Trans≼ _ _ _ (Rxy .fst) (Ryz .fst) , Trans≼ _ _ _ (Ryz .snd) (Rxy .snd) RpropValued : isPropValued R RpropValued x y = isProp× isPropPropTrunc isPropPropTrunc powerIs≽ : (x a : A) → x ∈ [ a ⁿ|n≥0] → a ≼ x powerIs≽ x a = map powerIs≽Σ where powerIs≽Σ : Σ[ n ∈ ℕ ] (x ≡ a ^ n) → Σ[ n ∈ ℕ ] Σ[ z ∈ A ] (a ^ n ≡ z ·r x) powerIs≽Σ (n , p) = n , 1r , sym p ∙ sym (·rLid _) module ≼ToLoc (x y : A) where private instance _ = snd A[1/ x ] lemma : x ≼ y → y ⋆ 1a ∈ A[1/ x ]ˣ -- y/1 ∈ A[1/x]ˣ lemma = PT.rec (A[1/ x ]ˣ (y ⋆ 1a) .snd) lemmaΣ where path1 : (y z : A) → 1r ·r (y ·r 1r ·r z) ·r 1r ≡ z ·r y path1 = solve A' path2 : (xn : A) → xn ≡ 1r ·r 1r ·r (1r ·r 1r ·r xn) path2 = solve A' lemmaΣ : Σ[ n ∈ ℕ ] Σ[ a ∈ A ] x ^ n ≡ a ·r y → y ⋆ 1a ∈ A[1/ x ]ˣ lemmaΣ (n , z , p) = [ z , (x ^ n) , PT.∣ n , refl ∣ ] -- xⁿ≡zy → y⁻¹ ≡ z/xⁿ , eq/ _ _ ((1r , powersFormMultClosedSubset _ .containsOne) , (path1 _ _ ∙∙ sym p ∙∙ path2 _)) module ≼PowerToLoc (x y : A) (x≼y : x ≼ y) where private [yⁿ|n≥0] = [ y ⁿ|n≥0] instance _ = snd A[1/ x ] lemma : ∀ (s : A) → s ∈ [yⁿ|n≥0] → s ⋆ 1a ∈ A[1/ x ]ˣ lemma _ s∈[yⁿ|n≥0] = ≼ToLoc.lemma _ _ (Trans≼ _ y _ x≼y (powerIs≽ _ _ s∈[yⁿ|n≥0])) 𝓞ᴰ : A / R → CommAlgebra A' ℓ 𝓞ᴰ = rec→Gpd.fun isGroupoidCommAlgebra (λ a → A[1/ a ]) RCoh LocPathProp where RCoh : ∀ a b → R a b → A[1/ a ] ≡ A[1/ b ] RCoh a b (a≼b , b≼a) = fst (isContrS₁⁻¹R≡S₂⁻¹R (≼PowerToLoc.lemma _ _ b≼a) (≼PowerToLoc.lemma _ _ a≼b)) where open AlgLocTwoSubsets A' [ a ⁿ|n≥0] (powersFormMultClosedSubset _) [ b ⁿ|n≥0] (powersFormMultClosedSubset _) LocPathProp : ∀ a b → isProp (A[1/ a ] ≡ A[1/ b ]) LocPathProp a b = isPropS₁⁻¹R≡S₂⁻¹R where open AlgLocTwoSubsets A' [ a ⁿ|n≥0] (powersFormMultClosedSubset _) [ b ⁿ|n≥0] (powersFormMultClosedSubset _) -- The quotient A/R corresponds to the basic opens of the Zariski topology. -- Multiplication lifts to the quotient and corresponds to intersection -- of basic opens, i.e. we get a meet-semilattice with: _∧/_ : A / R → A / R → A / R _∧/_ = setQuotSymmBinOp (RequivRel .reflexive) (RequivRel .transitive) _·r_ (λ a b → subst (λ x → R (a ·r b) x) (·r-comm a b) (RequivRel .reflexive (a ·r b))) ·r-lcoh where ·r-lcoh-≼ : (x y z : A) → x ≼ y → (x ·r z) ≼ (y ·r z) ·r-lcoh-≼ x y z = map ·r-lcoh-≼Σ where path : (x z a y zn : A) → x ·r z ·r (a ·r y ·r zn) ≡ x ·r zn ·r a ·r (y ·r z) path = solve A' ·r-lcoh-≼Σ : Σ[ n ∈ ℕ ] Σ[ a ∈ A ] x ^ n ≡ a ·r y → Σ[ n ∈ ℕ ] Σ[ a ∈ A ] (x ·r z) ^ n ≡ a ·r (y ·r z) ·r-lcoh-≼Σ (n , a , p) = suc n , (x ·r z ^ n ·r a) , (cong (x ·r z ·r_) (^-ldist-· _ _ _) ∙∙ cong (λ v → x ·r z ·r (v ·r z ^ n)) p ∙∙ path _ _ _ _ _) ·r-lcoh : (x y z : A) → R x y → R (x ·r z) (y ·r z) ·r-lcoh x y z Rxy = ·r-lcoh-≼ x y z (Rxy .fst) , ·r-lcoh-≼ y x z (Rxy .snd) BasicOpens : Semilattice ℓ BasicOpens = makeSemilattice [ 1r ] _∧/_ squash/ (elimProp3 (λ _ _ _ → squash/ _ _) λ _ _ _ → cong [_] (·rAssoc _ _ _)) (elimProp (λ _ → squash/ _ _) λ _ → cong [_] (·rRid _)) (elimProp (λ _ → squash/ _ _) λ _ → cong [_] (·rLid _)) (elimProp2 (λ _ _ → squash/ _ _) λ _ _ → cong [_] (·r-comm _ _)) (elimProp (λ _ → squash/ _ _) λ a → eq/ _ _ -- R a a² (∣ 1 , a , ·rRid _ ∣ , ∣ 2 , 1r , cong (a ·r_) (·rRid a) ∙ sym (·rLid _) ∣)) -- The induced partial order open MeetSemilattice BasicOpens renaming (_≤_ to _≼/_ ; IndPoset to BasicOpensAsPoset) -- coincides with our ≼ ≼/CoincidesWith≼ : ∀ (x y : A) → ([ x ] ≼/ [ y ]) ≡ (x ≼ y) ≼/CoincidesWith≼ x y = [ x ] ≼/ [ y ] -- ≡⟨ refl ⟩ [ x ·r y ] ≡ [ x ] ≡⟨ isoToPath (isEquivRel→effectiveIso RpropValued RequivRel _ _) ⟩ R (x ·r y) x ≡⟨ isoToPath Σ-swap-Iso ⟩ R x (x ·r y) ≡⟨ hPropExt (RpropValued _ _) isPropPropTrunc ·To≼ ≼To· ⟩ x ≼ y ∎ where x≼xy→x≼yΣ : Σ[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r (x ·r y) → Σ[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r y x≼xy→x≼yΣ (n , z , p) = n , (z ·r x) , p ∙ ·rAssoc _ _ _ ·To≼ : R x (x ·r y) → x ≼ y ·To≼ (x≼xy , _) = PT.map x≼xy→x≼yΣ x≼xy x≼y→x≼xyΣ : Σ[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r y → Σ[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r (x ·r y) x≼y→x≼xyΣ (n , z , p) = suc n , z , cong (x ·r_) p ∙ ·CommAssocl _ _ _ ≼To· : x ≼ y → R x ( x ·r y) ≼To· x≼y = PT.map x≼y→x≼xyΣ x≼y , PT.∣ 1 , y , ·rRid _ ∙ ·r-comm _ _ ∣ open IsPoset open PosetStr Refl≼/ : isRefl _≼/_ Refl≼/ = BasicOpensAsPoset .snd .isPoset .is-refl Trans≼/ : isTrans _≼/_ Trans≼/ = BasicOpensAsPoset .snd .isPoset .is-trans -- The restrictions: ρᴰᴬ : (a b : A) → a ≼ b → isContr (CommAlgebraHom A[1/ b ] A[1/ a ]) ρᴰᴬ _ b a≼b = A[1/b]HasUniversalProp _ (≼PowerToLoc.lemma _ _ a≼b) where open AlgLoc A' [ b ⁿ|n≥0] (powersFormMultClosedSubset _) renaming (S⁻¹RHasAlgUniversalProp to A[1/b]HasUniversalProp) ρᴰᴬId : ∀ (a : A) (r : a ≼ a) → ρᴰᴬ a a r .fst ≡ idAlgHom ρᴰᴬId a r = ρᴰᴬ a a r .snd _ ρᴰᴬComp : ∀ (a b c : A) (l : a ≼ b) (m : b ≼ c) → ρᴰᴬ a c (Trans≼ _ _ _ l m) .fst ≡ ρᴰᴬ a b l .fst ∘a ρᴰᴬ b c m .fst ρᴰᴬComp a _ c l m = ρᴰᴬ a c (Trans≼ _ _ _ l m) .snd _ ρᴰ : (x y : A / R) → x ≼/ y → CommAlgebraHom (𝓞ᴰ y) (𝓞ᴰ x) ρᴰ = elimContr2 λ _ _ → isContrΠ λ [a]≼/[b] → ρᴰᴬ _ _ (transport (≼/CoincidesWith≼ _ _) [a]≼/[b]) ρᴰId : ∀ (x : A / R) (r : x ≼/ x) → ρᴰ x x r ≡ idAlgHom ρᴰId = SQ.elimProp (λ _ → isPropΠ (λ _ → isSetAlgebraHom _ _ _ _)) λ a r → ρᴰᴬId a (transport (≼/CoincidesWith≼ _ _) r) ρᴰComp : ∀ (x y z : A / R) (l : x ≼/ y) (m : y ≼/ z) → ρᴰ x z (Trans≼/ _ _ _ l m) ≡ ρᴰ x y l ∘a ρᴰ y z m ρᴰComp = SQ.elimProp3 (λ _ _ _ → isPropΠ2 (λ _ _ → isSetAlgebraHom _ _ _ _)) λ a b c _ _ → sym (ρᴰᴬ a c _ .snd _) ∙ ρᴰᴬComp a b c _ _
38.288
100
0.534371
dc9357a0442bc451696b329cf5b305d548de8188
16,018
agda
Agda
Cubical/Functions/Embedding.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Functions/Embedding.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Functions/Embedding.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Functions.Embedding where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.Properties open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Path open import Cubical.Foundations.Powerset open import Cubical.Foundations.Prelude open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence using (ua; univalence; pathToEquiv) open import Cubical.Functions.Fibration open import Cubical.Data.Sigma open import Cubical.Functions.Fibration open import Cubical.Functions.FunExtEquiv open import Cubical.Relation.Nullary using (Discrete; yes; no) open import Cubical.Structures.Axioms open import Cubical.Reflection.StrictEquiv open import Cubical.Data.Nat using (ℕ; zero; suc) open import Cubical.Data.Sigma private variable ℓ ℓ₁ ℓ₂ : Level A B : Type ℓ f h : A → B w x : A y z : B -- Embeddings are generalizations of injections. The usual -- definition of injection as: -- -- f x ≡ f y → x ≡ y -- -- is not well-behaved with higher h-levels, while embeddings -- are. isEmbedding : (A → B) → Type _ isEmbedding f = ∀ w x → isEquiv {A = w ≡ x} (cong f) isPropIsEmbedding : isProp (isEmbedding f) isPropIsEmbedding {f = f} = isPropΠ2 λ _ _ → isPropIsEquiv (cong f) -- If A and B are h-sets, then injective functions between -- them are embeddings. -- -- Note: It doesn't appear to be possible to omit either of -- the `isSet` hypotheses. injEmbedding : {f : A → B} → isSet A → isSet B → (∀{w x} → f w ≡ f x → w ≡ x) → isEmbedding f injEmbedding {f = f} iSA iSB inj w x = isoToIsEquiv (iso (cong f) inj sect retr) where sect : section (cong f) inj sect p = iSB (f w) (f x) _ p retr : retract (cong f) inj retr p = iSA w x _ p -- If `f` is an embedding, we'd expect the fibers of `f` to be -- propositions, like an injective function. hasPropFibers : (A → B) → Type _ hasPropFibers f = ∀ y → isProp (fiber f y) -- This can be relaxed to having all prop fibers over the image, see [hasPropFibersOfImage→isEmbedding] hasPropFibersOfImage : (A → B) → Type _ hasPropFibersOfImage f = ∀ x → isProp (fiber f (f x)) -- some notation _↪_ : Type ℓ₁ → Type ℓ₂ → Type (ℓ-max ℓ₁ ℓ₂) A ↪ B = Σ[ f ∈ (A → B) ] isEmbedding f hasPropFibersIsProp : isProp (hasPropFibers f) hasPropFibersIsProp = isPropΠ (λ _ → isPropIsProp) private lemma₀ : (p : y ≡ z) → fiber f y ≡ fiber f z lemma₀ {f = f} p = λ i → fiber f (p i) lemma₁ : isEmbedding f → ∀ x → isContr (fiber f (f x)) lemma₁ {f = f} iE x = value , path where value : fiber f (f x) value = (x , refl) path : ∀(fi : fiber f (f x)) → value ≡ fi path (w , p) i = case equiv-proof (iE w x) p of λ { ((q , sq) , _) → hfill (λ j → λ { (i = i0) → (x , refl) ; (i = i1) → (w , sq j) }) (inS (q (~ i) , λ j → f (q (~ i ∨ j)))) i1 } isEmbedding→hasPropFibers : isEmbedding f → hasPropFibers f isEmbedding→hasPropFibers iE y (x , p) = subst (λ f → isProp f) (lemma₀ p) (isContr→isProp (lemma₁ iE x)) (x , p) private fibCong→PathP : {f : A → B} → (p : f w ≡ f x) → (fi : fiber (cong f) p) → PathP (λ i → fiber f (p i)) (w , refl) (x , refl) fibCong→PathP p (q , r) i = q i , λ j → r j i PathP→fibCong : {f : A → B} → (p : f w ≡ f x) → (pp : PathP (λ i → fiber f (p i)) (w , refl) (x , refl)) → fiber (cong f) p PathP→fibCong p pp = (λ i → fst (pp i)) , (λ j i → snd (pp i) j) PathP≡fibCong : {f : A → B} → (p : f w ≡ f x) → PathP (λ i → fiber f (p i)) (w , refl) (x , refl) ≡ fiber (cong f) p PathP≡fibCong p = isoToPath (iso (PathP→fibCong p) (fibCong→PathP p) (λ _ → refl) (λ _ → refl)) hasPropFibers→isEmbedding : hasPropFibers f → isEmbedding f hasPropFibers→isEmbedding {f = f} iP w x .equiv-proof p = subst isContr (PathP≡fibCong p) (isProp→isContrPathP (λ i → iP (p i)) fw fx) where fw : fiber f (f w) fw = (w , refl) fx : fiber f (f x) fx = (x , refl) hasPropFibersOfImage→hasPropFibers : hasPropFibersOfImage f → hasPropFibers f hasPropFibersOfImage→hasPropFibers {f = f} fibImg y a b = subst (λ y → isProp (fiber f y)) (snd a) (fibImg (fst a)) a b hasPropFibersOfImage→isEmbedding : hasPropFibersOfImage f → isEmbedding f hasPropFibersOfImage→isEmbedding = hasPropFibers→isEmbedding ∘ hasPropFibersOfImage→hasPropFibers isEmbedding≡hasPropFibers : isEmbedding f ≡ hasPropFibers f isEmbedding≡hasPropFibers = isoToPath (iso isEmbedding→hasPropFibers hasPropFibers→isEmbedding (λ _ → hasPropFibersIsProp _ _) (λ _ → isPropIsEmbedding _ _)) isEquiv→hasPropFibers : isEquiv f → hasPropFibers f isEquiv→hasPropFibers e b = isContr→isProp (equiv-proof e b) isEquiv→isEmbedding : isEquiv f → isEmbedding f isEquiv→isEmbedding e = λ _ _ → congEquiv (_ , e) .snd Equiv→Embedding : A ≃ B → A ↪ B Equiv→Embedding (f , isEquivF) = (f , isEquiv→isEmbedding isEquivF) iso→isEmbedding : ∀ {ℓ} {A B : Type ℓ} → (isom : Iso A B) ------------------------------- → isEmbedding (Iso.fun isom) iso→isEmbedding {A = A} {B} isom = (isEquiv→isEmbedding (equivIsEquiv (isoToEquiv isom))) isEmbedding→Injection : ∀ {ℓ} {A B C : Type ℓ} → (a : A → B) → (e : isEmbedding a) ---------------------- → ∀ {f g : C → A} → ∀ x → (a (f x) ≡ a (g x)) ≡ (f x ≡ g x) isEmbedding→Injection a e {f = f} {g} x = sym (ua (cong a , e (f x) (g x))) -- if `f` has a retract, then `cong f` has, as well. If `B` is a set, then `cong f` -- further has a section, making `f` an embedding. module _ {f : A → B} (retf : hasRetract f) where open Σ retf renaming (fst to g ; snd to ϕ) congRetract : f w ≡ f x → w ≡ x congRetract {w = w} {x = x} p = sym (ϕ w) ∙∙ cong g p ∙∙ ϕ x isRetractCongRetract : retract (cong {x = w} {y = x} f) congRetract isRetractCongRetract p = transport (PathP≡doubleCompPathˡ _ _ _ _) (λ i j → ϕ (p j) i) hasRetract→hasRetractCong : hasRetract (cong {x = w} {y = x} f) hasRetract→hasRetractCong = congRetract , isRetractCongRetract retractableIntoSet→isEmbedding : isSet B → isEmbedding f retractableIntoSet→isEmbedding setB w x = isoToIsEquiv (iso (cong f) congRetract (λ _ → setB _ _ _ _) (hasRetract→hasRetractCong .snd)) Embedding-into-Discrete→Discrete : A ↪ B → Discrete B → Discrete A Embedding-into-Discrete→Discrete (f , isEmbeddingF) _≟_ x y with f x ≟ f y ... | yes p = yes (invIsEq (isEmbeddingF x y) p) ... | no ¬p = no (¬p ∘ cong f) Embedding-into-isProp→isProp : A ↪ B → isProp B → isProp A Embedding-into-isProp→isProp (f , isEmbeddingF) isProp-B x y = invIsEq (isEmbeddingF x y) (isProp-B (f x) (f y)) Embedding-into-isSet→isSet : A ↪ B → isSet B → isSet A Embedding-into-isSet→isSet (f , isEmbeddingF) isSet-B x y p q = p ≡⟨ sym (retIsEq isEquiv-cong-f p) ⟩ cong-f⁻¹ (cong f p) ≡⟨ cong cong-f⁻¹ cong-f-p≡cong-f-q ⟩ cong-f⁻¹ (cong f q) ≡⟨ retIsEq isEquiv-cong-f q ⟩ q ∎ where cong-f-p≡cong-f-q = isSet-B (f x) (f y) (cong f p) (cong f q) isEquiv-cong-f = isEmbeddingF x y cong-f⁻¹ = invIsEq isEquiv-cong-f Embedding-into-hLevel→hLevel : ∀ n → A ↪ B → isOfHLevel (suc n) B → isOfHLevel (suc n) A Embedding-into-hLevel→hLevel zero = Embedding-into-isProp→isProp Embedding-into-hLevel→hLevel (suc n) (f , isEmbeddingF) Blvl x y = isOfHLevelRespectEquiv (suc n) (invEquiv equiv) subLvl where equiv : (x ≡ y) ≃ (f x ≡ f y) equiv .fst = cong f equiv .snd = isEmbeddingF x y subLvl : isOfHLevel (suc n) (f x ≡ f y) subLvl = Blvl (f x) (f y) -- We now show that the powerset is the subtype classifier -- i.e. ℙ X ≃ Σ[A ∈ Type ℓ] (A ↪ X) Embedding→Subset : {X : Type ℓ} → Σ[ A ∈ Type ℓ ] (A ↪ X) → ℙ X Embedding→Subset (_ , f , isEmbeddingF) x = fiber f x , isEmbedding→hasPropFibers isEmbeddingF x Subset→Embedding : {X : Type ℓ} → ℙ X → Σ[ A ∈ Type ℓ ] (A ↪ X) Subset→Embedding {X = X} A = D , fst , Ψ where D = Σ[ x ∈ X ] x ∈ A Ψ : isEmbedding fst Ψ w x = isEmbeddingFstΣProp (∈-isProp A) Subset→Embedding→Subset : {X : Type ℓ} → section (Embedding→Subset {ℓ} {X}) (Subset→Embedding {ℓ} {X}) Subset→Embedding→Subset _ = funExt λ x → Σ≡Prop (λ _ → isPropIsProp) (ua (FiberIso.fiberEquiv _ x)) Embedding→Subset→Embedding : {X : Type ℓ} → retract (Embedding→Subset {ℓ} {X}) (Subset→Embedding {ℓ} {X}) Embedding→Subset→Embedding {ℓ = ℓ} {X = X} (A , f , ψ) = cong (equivFun Σ-assoc-≃) (Σ≡Prop (λ _ → isPropIsEmbedding) (retEq (fibrationEquiv X ℓ) (A , f))) Subset≃Embedding : {X : Type ℓ} → ℙ X ≃ (Σ[ A ∈ Type ℓ ] (A ↪ X)) Subset≃Embedding = isoToEquiv (iso Subset→Embedding Embedding→Subset Embedding→Subset→Embedding Subset→Embedding→Subset) Subset≡Embedding : {X : Type ℓ} → ℙ X ≡ (Σ[ A ∈ Type ℓ ] (A ↪ X)) Subset≡Embedding = ua Subset≃Embedding isEmbedding-∘ : isEmbedding f → isEmbedding h → isEmbedding (f ∘ h) isEmbedding-∘ {f = f} {h = h} Embf Embh w x = compEquiv (cong h , Embh w x) (cong f , Embf (h w) (h x)) .snd isEmbedding→embedsFibersIntoSingl : isEmbedding f → ∀ z → fiber f z ↪ singl z isEmbedding→embedsFibersIntoSingl {f = f} isE z = e , isEmbE where e : fiber f z → singl z e x = f (fst x) , sym (snd x) isEmbE : isEmbedding e isEmbE u v = goal where -- "adjust" ΣeqCf by trivial equivalences that hold judgementally, which should save compositions Dom′ : ∀ u v → Type _ Dom′ u v = Σ[ p ∈ fst u ≡ fst v ] PathP (λ i → f (p i) ≡ z) (snd u) (snd v) Cod′ : ∀ u v → Type _ Cod′ u v = Σ[ p ∈ f (fst u) ≡ f (fst v) ] PathP (λ i → p i ≡ z) (snd u) (snd v) ΣeqCf : Dom′ u v ≃ Cod′ u v ΣeqCf = Σ-cong-equiv-fst (_ , isE _ _) dom→ : u ≡ v → Dom′ u v dom→ p = cong fst p , cong snd p dom← : Dom′ u v → u ≡ v dom← p i = p .fst i , p .snd i cod→ : e u ≡ e v → Cod′ u v cod→ p = cong fst p , cong (sym ∘ snd) p cod← : Cod′ u v → e u ≡ e v cod← p i = p .fst i , sym (p .snd i) goal : isEquiv (cong e) goal .equiv-proof x .fst .fst = dom← (equivCtr ΣeqCf (cod→ x) .fst) goal .equiv-proof x .fst .snd j = cod← (equivCtr ΣeqCf (cod→ x) .snd j) goal .equiv-proof x .snd (g , p) i .fst = dom← (equivCtrPath ΣeqCf (cod→ x) (dom→ g , cong cod→ p) i .fst) goal .equiv-proof x .snd (g , p) i .snd j = cod← (equivCtrPath ΣeqCf (cod→ x) (dom→ g , cong cod→ p) i .snd j) isEmbedding→hasPropFibers′ : isEmbedding f → hasPropFibers f isEmbedding→hasPropFibers′ {f = f} iE z = Embedding-into-isProp→isProp (isEmbedding→embedsFibersIntoSingl iE z) isPropSingl universeEmbedding : ∀ {ℓ ℓ₁ : Level} → (F : Type ℓ → Type ℓ₁) → (∀ X → F X ≃ X) → isEmbedding F universeEmbedding F liftingEquiv = hasPropFibersOfImage→isEmbedding propFibersF where lemma : ∀ A B → (F A ≡ F B) ≃ (B ≡ A) lemma A B = (F A ≡ F B) ≃⟨ univalence ⟩ (F A ≃ F B) ≃⟨ equivComp (liftingEquiv A) (liftingEquiv B) ⟩ (A ≃ B) ≃⟨ invEquivEquiv ⟩ (B ≃ A) ≃⟨ invEquiv univalence ⟩ (B ≡ A) ■ fiberSingl : ∀ X → fiber F (F X) ≃ singl X fiberSingl X = Σ-cong-equiv-snd (λ _ → lemma _ _) propFibersF : hasPropFibersOfImage F propFibersF X = Embedding-into-isProp→isProp (Equiv→Embedding (fiberSingl X)) isPropSingl liftEmbedding : (ℓ ℓ₁ : Level) → isEmbedding (Lift {i = ℓ} {j = ℓ₁}) liftEmbedding ℓ ℓ₁ = universeEmbedding (Lift {j = ℓ₁}) (λ _ → invEquiv LiftEquiv) module FibrationIdentityPrinciple {B : Type ℓ} {ℓ₁} where -- note that fibrationEquiv (for good reason) uses ℓ₁ = ℓ-max ℓ ℓ₁, so we have to work -- some universe magic to achieve good universe polymorphism -- First, prove it for the case that's dealt with in fibrationEquiv Fibration′ = Fibration B (ℓ-max ℓ ℓ₁) module Lifted (f g : Fibration′) where f≃g′ : Type (ℓ-max ℓ ℓ₁) f≃g′ = ∀ b → fiber (f .snd) b ≃ fiber (g .snd) b Fibration′IP : f≃g′ ≃ (f ≡ g) Fibration′IP = f≃g′ ≃⟨ equivΠCod (λ _ → invEquiv univalence) ⟩ (∀ b → fiber (f .snd) b ≡ fiber (g .snd) b) ≃⟨ funExtEquiv ⟩ fiber (f .snd) ≡ fiber (g .snd) ≃⟨ invEquiv (congEquiv (fibrationEquiv B ℓ₁)) ⟩ f ≡ g ■ -- Then embed into the above case by lifting the type L : Type _ → Type _ -- local synonym fixing the levels of Lift L = Lift {i = ℓ₁} {j = ℓ} liftFibration : Fibration B ℓ₁ → Fibration′ liftFibration (A , f) = L A , f ∘ lower hasPropFibersLiftFibration : hasPropFibers liftFibration hasPropFibersLiftFibration (A , f) = Embedding-into-isProp→isProp (Equiv→Embedding fiberChar) (isPropΣ (isEmbedding→hasPropFibers (liftEmbedding _ _) A) λ _ → isEquiv→hasPropFibers (snd (invEquiv (preCompEquiv LiftEquiv))) _) where fiberChar : fiber liftFibration (A , f) ≃ (Σ[ (E , eq) ∈ fiber L A ] fiber (_∘ lower) (transport⁻ (λ i → eq i → B) f)) fiberChar = fiber liftFibration (A , f) ≃⟨ Σ-cong-equiv-snd (λ _ → invEquiv ΣPath≃PathΣ) ⟩ (Σ[ (E , g) ∈ Fibration B ℓ₁ ] Σ[ eq ∈ (L E ≡ A) ] PathP (λ i → eq i → B) (g ∘ lower) f) ≃⟨ boringSwap ⟩ (Σ[ (E , eq) ∈ fiber L A ] Σ[ g ∈ (E → B) ] PathP (λ i → eq i → B) (g ∘ lower) f) ≃⟨ Σ-cong-equiv-snd (λ _ → Σ-cong-equiv-snd λ _ → pathToEquiv (PathP≡Path⁻ _ _ _)) ⟩ (Σ[ (E , eq) ∈ fiber L A ] fiber (_∘ lower) (transport⁻ (λ i → eq i → B) f)) ■ where unquoteDecl boringSwap = declStrictEquiv boringSwap (λ ((E , g) , (eq , p)) → ((E , eq) , (g , p))) (λ ((E , g) , (eq , p)) → ((E , eq) , (g , p))) isEmbeddingLiftFibration : isEmbedding liftFibration isEmbeddingLiftFibration = hasPropFibers→isEmbedding hasPropFibersLiftFibration -- and finish off module _ (f g : Fibration B ℓ₁) where open Lifted (liftFibration f) (liftFibration g) f≃g : Type (ℓ-max ℓ ℓ₁) f≃g = ∀ b → fiber (f .snd) b ≃ fiber (g .snd) b FibrationIP : f≃g ≃ (f ≡ g) FibrationIP = f≃g ≃⟨ equivΠCod (λ b → equivComp (Σ-cong-equiv-fst LiftEquiv) (Σ-cong-equiv-fst LiftEquiv)) ⟩ f≃g′ ≃⟨ Fibration′IP ⟩ (liftFibration f ≡ liftFibration g) ≃⟨ invEquiv (_ , isEmbeddingLiftFibration _ _) ⟩ (f ≡ g) ■ open FibrationIdentityPrinciple renaming (f≃g to _≃Fib_) using (FibrationIP) public Embedding : (B : Type ℓ₁) → (ℓ : Level) → Type (ℓ-max ℓ₁ (ℓ-suc ℓ)) Embedding B ℓ = Σ[ A ∈ Type ℓ ] A ↪ B module EmbeddingIdentityPrinciple {B : Type ℓ} {ℓ₁} (f g : Embedding B ℓ₁) where module _ where open Σ f renaming (fst to F) public open Σ g renaming (fst to G) public open Σ (f .snd) renaming (fst to ffun; snd to isEmbF) public open Σ (g .snd) renaming (fst to gfun; snd to isEmbG) public f≃g : Type _ f≃g = (∀ b → fiber ffun b → fiber gfun b) × (∀ b → fiber gfun b → fiber ffun b) toFibr : Embedding B ℓ₁ → Fibration B ℓ₁ toFibr (A , (f , _)) = (A , f) isEmbeddingToFibr : isEmbedding toFibr isEmbeddingToFibr w x = fullEquiv .snd where -- carefully managed such that (cong toFibr) is the equivalence fullEquiv : (w ≡ x) ≃ (toFibr w ≡ toFibr x) fullEquiv = compEquiv (congEquiv (invEquiv Σ-assoc-≃)) (invEquiv (Σ≡PropEquiv (λ _ → isPropIsEmbedding))) EmbeddingIP : f≃g ≃ (f ≡ g) EmbeddingIP = f≃g ≃⟨ strictIsoToEquiv (invIso toProdIso) ⟩ (∀ b → (fiber ffun b → fiber gfun b) × (fiber gfun b → fiber ffun b)) ≃⟨ equivΠCod (λ _ → isEquivPropBiimpl→Equiv (isEmbedding→hasPropFibers isEmbF _) (isEmbedding→hasPropFibers isEmbG _)) ⟩ (∀ b → (fiber (f .snd .fst) b) ≃ (fiber (g .snd .fst) b)) ≃⟨ FibrationIP (toFibr f) (toFibr g) ⟩ (toFibr f ≡ toFibr g) ≃⟨ invEquiv (_ , isEmbeddingToFibr _ _) ⟩ f ≡ g ■ open EmbeddingIdentityPrinciple renaming (f≃g to _≃Emb_) using (EmbeddingIP) public
37.425234
109
0.614996
d07ea617123bd7b81b2d32c51e25699ab862e857
836
agda
Agda
test/asset/agda-stdlib-1.0/Data/Nat.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Nat.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Nat.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Natural numbers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat where ------------------------------------------------------------------------ -- Publicly re-export the contents of the base module open import Data.Nat.Base public ------------------------------------------------------------------------ -- Publicly re-export queries open import Data.Nat.Properties public using ( _≟_ ; _≤?_ ; _≥?_ ; _<?_ ; _>?_ ; _≤′?_; _≥′?_; _<′?_; _>′?_ ; _≤″?_; _<″?_; _≥″?_; _>″?_ ) ------------------------------------------------------------------------ -- Deprecated -- Version 0.17 open import Data.Nat.Properties public using (≤-pred)
24.588235
72
0.348086
cb98285a253a67858a4ae45d600913ea1957c80c
3,624
agda
Agda
src/Categories/Diagram/Pullback/Properties.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
src/Categories/Diagram/Pullback/Properties.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
src/Categories/Diagram/Pullback/Properties.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Diagram.Pullback.Properties {o ℓ e} (C : Category o ℓ e) where open import Function using (_$_) open import Categories.Category.Cartesian C open import Categories.Diagram.Pullback C open import Categories.Diagram.Equalizer C open import Categories.Object.Product C open import Categories.Object.Terminal C open import Categories.Morphism.Reasoning C private open Category C variable X Y Z : Obj f g h i : X ⇒ Y open HomReasoning -- pullback from a terminal object is the same as a product module _ (t : Terminal) where open Terminal t pullback-⊤⇒product : Pullback (! {X}) (! {Y}) → Product X Y pullback-⊤⇒product p = record { A×B = P ; π₁ = p₁ ; π₂ = p₂ ; ⟨_,_⟩ = λ f g → universal (!-unique₂ {f = ! ∘ f} {g = ! ∘ g}) ; project₁ = p₁∘universal≈h₁ ; project₂ = p₂∘universal≈h₂ ; unique = λ eq eq′ → ⟺ (unique eq eq′) } where open Pullback p product⇒pullback-⊤ : Product X Y → Pullback (! {X}) (! {Y}) product⇒pullback-⊤ p = record { p₁ = π₁ ; p₂ = π₂ ; commute = !-unique₂ ; universal = λ {_ f g} _ → ⟨ f , g ⟩ ; unique = λ eq eq′ → ⟺ (unique eq eq′) ; p₁∘universal≈h₁ = project₁ ; p₂∘universal≈h₂ = project₂ } where open Product p -- pullbacks respect _≈_ module _ (p : Pullback f g) where open Pullback p pullback-resp-≈ : f ≈ h → g ≈ i → Pullback h i pullback-resp-≈ eq eq′ = record { p₁ = p₁ ; p₂ = p₂ ; commute = ∘-resp-≈ˡ (⟺ eq) ○ commute ○ ∘-resp-≈ˡ eq′ ; universal = λ eq″ → universal (∘-resp-≈ˡ eq ○ eq″ ○ ∘-resp-≈ˡ (⟺ eq′)) ; unique = unique ; p₁∘universal≈h₁ = p₁∘universal≈h₁ ; p₂∘universal≈h₂ = p₂∘universal≈h₂ } module _ (pullbacks : ∀ {X Y Z} (f : X ⇒ Z) (g : Y ⇒ Z) → Pullback f g) (cartesian : Cartesian) where open Cartesian cartesian pullback×cartesian⇒equalizer : Equalizer f g pullback×cartesian⇒equalizer {f = f} {g = g} = record { arr = p.p₁ ; equality = equality ; equalize = λ {_ h} eq → p.universal $ begin ⟨ f , g ⟩ ∘ h ≈⟨ ⟨⟩∘ ⟩ ⟨ f ∘ h , g ∘ h ⟩ ≈˘⟨ ⟨⟩-cong₂ identityˡ (identityˡ ○ eq) ⟩ ⟨ id ∘ f ∘ h , id ∘ f ∘ h ⟩ ≈˘⟨ ⟨⟩∘ ⟩ ⟨ id , id ⟩ ∘ f ∘ h ∎ ; universal = ⟺ p.p₁∘universal≈h₁ ; unique = λ eq → p.unique (⟺ eq) (⟺ (pullˡ eq′) ○ ⟺ (∘-resp-≈ʳ eq)) } where p : Pullback ⟨ f , g ⟩ ⟨ id , id ⟩ p = pullbacks _ _ module p = Pullback p eq : ⟨ f ∘ p.p₁ , g ∘ p.p₁ ⟩ ≈ ⟨ p.p₂ , p.p₂ ⟩ eq = begin ⟨ f ∘ p.p₁ , g ∘ p.p₁ ⟩ ≈˘⟨ ⟨⟩∘ ⟩ ⟨ f , g ⟩ ∘ p.p₁ ≈⟨ p.commute ⟩ ⟨ id , id ⟩ ∘ p.p₂ ≈⟨ ⟨⟩∘ ⟩ ⟨ id ∘ p.p₂ , id ∘ p.p₂ ⟩ ≈⟨ ⟨⟩-cong₂ identityˡ identityˡ ⟩ ⟨ p.p₂ , p.p₂ ⟩ ∎ eq′ : f ∘ p.p₁ ≈ p.p₂ eq′ = begin f ∘ p.p₁ ≈˘⟨ project₁ ⟩ π₁ ∘ ⟨ f ∘ p.p₁ , g ∘ p.p₁ ⟩ ≈⟨ refl⟩∘⟨ eq ⟩ π₁ ∘ ⟨ p.p₂ , p.p₂ ⟩ ≈⟨ project₁ ⟩ p.p₂ ∎ equality : f ∘ p.p₁ ≈ g ∘ p.p₁ equality = begin f ∘ p.p₁ ≈⟨ eq′ ⟩ p.p₂ ≈˘⟨ project₂ ⟩ π₂ ∘ ⟨ p.p₂ , p.p₂ ⟩ ≈˘⟨ refl⟩∘⟨ eq ⟩ π₂ ∘ ⟨ f ∘ p.p₁ , g ∘ p.p₁ ⟩ ≈⟨ project₂ ⟩ g ∘ p.p₁ ∎
34.188679
82
0.458057
4a5e17dcc95c39c065f9d631dc705d5b3b412cfc
171
agda
Agda
Cubical/HITs/Rational.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/HITs/Rational.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/HITs/Rational.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.Rational where open import Cubical.HITs.Rational.Base public -- open import Cubical.HITs.Rational.Properties public
24.428571
54
0.77193
0e2e033592b1c31e03db63387d8afc9bbc9c08d3
1,086
agda
Agda
archive/agda-2/Oscar/Definition.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-2/Oscar/Definition.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-2/Oscar/Definition.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module Oscar.Definition where {- unpack : AList m n → Fin m → Term n -- sub substitute : (Fin m → Term n) → Term m → Term n -- _◃_ substitutes : ∀ N → (Fin m → Term n) → Terms N m → Terms N n -- _◃s_ stepify : (Term m → Term n) → Step m → Step n -- fmapS collapse : (List ∘ Step) n → Term n → Term n -- _⊹_ Substitist = Substitunction = Fin m → Term n Oscar.Data.Proposequality Oscar.Data.Proposextensequality Oscar.Data.Term Oscar.Data.Terms Oscar.Data.PropositionalEquality setoidPropositionalEquality : Set → Setoid Oscar.Data.IndexedPropositionalEquality setoidIndexedPropEq : ∀ {A : Set} {B : A → Set} → ((x : A) → B x) → ((x : A) → B x) → Setoid Oscar.Data.Substitist Oscar.Setoid.PropositionalEquality Oscar.Morphism.Substitist Oscar.Unification Oscar.Data.Substitunction Substitunction m n = Fin m → Term n : Morphism ℕ : Oscar.Definition.Substitist : Morphism ℕ = alistSetoid : IsSemigroupoid : Semigroupoid _++_ : IsCategory : Category Oscar.Definition.Substitist.internal AList alistSetoid : ℕ → ℕ → Setoid ε = anil _++_ -}
21.72
94
0.6814
10769a9406a3e37ba406b3a0d6cc0ad658115bb3
25,705
agda
Agda
Cubical/ZCohomology/Properties.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
null
null
null
Cubical/ZCohomology/Properties.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
null
null
null
Cubical/ZCohomology/Properties.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.Properties where {- This module contains: 1. direct proofs of connectedness of Kn and ΩKn 2. Induction principles for cohomology groups of pointed types 3. Equivalence between cohomology of A and reduced cohomology of (A + 1) 4. Equivalence between cohomology and reduced cohomology for dimension ≥ 1 5. Encode-decode proof of Kₙ ≃ ΩKₙ₊₁ and proofs that this equivalence and its inverse are morphisms 6. A proof of coHomGr ≅ coHomGrΩ 7. A locked (non-reducing) version of Kₙ ≃ ΩKₙ₊₁ -} open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.HITs.S1 hiding (encode ; decode) open import Cubical.HITs.Sn open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Pointed.Homogeneous open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws renaming (assoc to assoc∙) open import Cubical.Foundations.Univalence open import Cubical.HITs.Susp open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to sRec2 ; elim to sElim ; elim2 to sElim2 ; isSetSetTrunc to §) open import Cubical.Data.Int renaming (_+_ to _ℤ+_) hiding (-_) open import Cubical.Data.Nat open import Cubical.HITs.Truncation renaming (elim to trElim ; map to trMap ; map2 to trMap2; rec to trRec ; elim3 to trElim3) open import Cubical.Homotopy.Loopspace open import Cubical.Homotopy.Connected open import Cubical.Algebra.Group hiding (Unit ; ℤ) open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Data.Sum.Base hiding (map) open import Cubical.Functions.Morphism open import Cubical.Data.Sigma open Iso renaming (inv to inv') private variable ℓ ℓ' : Level ------------------- Connectedness --------------------- is2ConnectedKn : (n : ℕ) → isConnected 2 (coHomK (suc n)) is2ConnectedKn zero = ∣ ∣ base ∣ ∣ , trElim (λ _ → isOfHLevelPath 2 (isOfHLevelTrunc 2) _ _) (trElim (λ _ → isOfHLevelPath 3 (isOfHLevelSuc 2 (isOfHLevelTrunc 2)) _ _) (toPropElim (λ _ → isOfHLevelTrunc 2 _ _) refl)) is2ConnectedKn (suc n) = ∣ ∣ north ∣ ∣ , trElim (λ _ → isOfHLevelPath 2 (isOfHLevelTrunc 2) _ _) (trElim (λ _ → isProp→isOfHLevelSuc (3 + n) (isOfHLevelTrunc 2 _ _)) (suspToPropElim (ptSn (suc n)) (λ _ → isOfHLevelTrunc 2 _ _) refl)) isConnectedKn : (n : ℕ) → isConnected (2 + n) (coHomK (suc n)) isConnectedKn n = isOfHLevelRetractFromIso 0 (invIso (truncOfTruncIso (2 + n) 1)) (sphereConnected (suc n)) -- direct proof of connectedness of ΩKₙ₊₁ not relying on the equivalence ∥ a ≡ b ∥ₙ ≃ (∣ a ∣ₙ₊₁ ≡ ∣ b ∣ₙ₊₁) isConnectedPathKn : (n : ℕ) (x y : (coHomK (suc n))) → isConnected (suc n) (x ≡ y) isConnectedPathKn n = trElim (λ _ → isProp→isOfHLevelSuc (2 + n) (isPropΠ λ _ → isPropIsContr)) (sphereElim _ (λ _ → isProp→isOfHLevelSuc n (isPropΠ λ _ → isPropIsContr)) λ y → isContrRetractOfConstFun {B = (hLevelTrunc (suc n) (ptSn (suc n) ≡ ptSn (suc n)))} ∣ refl ∣ (fun⁻ n y , trElim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) (J (λ y p → fun⁻ n y _ ≡ _) (funExt⁻ (fun⁻Id n) ∣ refl ∣)))) where fun⁻ : (n : ℕ) → (y : coHomK (suc n)) → hLevelTrunc (suc n) (ptSn (suc n) ≡ ptSn (suc n)) → hLevelTrunc (suc n) (∣ ptSn (suc n) ∣ ≡ y) fun⁻ n = trElim (λ _ → isOfHLevelΠ (3 + n) λ _ → isOfHLevelSuc (2 + n) (isOfHLevelSuc (suc n) (isOfHLevelTrunc (suc n)))) (sphereElim n (λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelTrunc (suc n)) λ _ → ∣ refl ∣) fun⁻Id : (n : ℕ) → fun⁻ n ∣ ptSn (suc n) ∣ ≡ λ _ → ∣ refl ∣ fun⁻Id zero = refl fun⁻Id (suc n) = refl ------------------- -- Induction principles for cohomology groups (n ≥ 1) -- If we want to show a proposition about some x : Hⁿ(A), it suffices to show it under the -- assumption that x = ∣ f ∣₂ for some f : A → Kₙ and that f is pointed coHomPointedElim : {A : Type ℓ} (n : ℕ) (a : A) {B : coHom (suc n) A → Type ℓ'} → ((x : coHom (suc n) A) → isProp (B x)) → ((f : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → B ∣ f ∣₂) → (x : coHom (suc n) A) → B x coHomPointedElim {ℓ' = ℓ'} {A = A} n a isprop indp = sElim (λ _ → isOfHLevelSuc 1 (isprop _)) λ f → helper n isprop indp f (f a) refl where helper : (n : ℕ) {B : coHom (suc n) A → Type ℓ'} → ((x : coHom (suc n) A) → isProp (B x)) → ((f : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → B ∣ f ∣₂) → (f : A → coHomK (suc n)) → (x : coHomK (suc n)) → f a ≡ x → B ∣ f ∣₂ -- pattern matching a bit extra to avoid isOfHLevelPlus' helper zero isprop ind f = trElim (λ _ → isOfHLevelPlus {n = 1} 2 (isPropΠ λ _ → isprop _)) (toPropElim (λ _ → isPropΠ λ _ → isprop _) (ind f)) helper (suc zero) isprop ind f = trElim (λ _ → isOfHLevelPlus {n = 1} 3 (isPropΠ λ _ → isprop _)) (suspToPropElim base (λ _ → isPropΠ λ _ → isprop _) (ind f)) helper (suc (suc zero)) isprop ind f = trElim (λ _ → isOfHLevelPlus {n = 1} 4 (isPropΠ λ _ → isprop _)) (suspToPropElim north (λ _ → isPropΠ λ _ → isprop _) (ind f)) helper (suc (suc (suc n))) isprop ind f = trElim (λ _ → isOfHLevelPlus' {n = 5 + n} 1 (isPropΠ λ _ → isprop _)) (suspToPropElim north (λ _ → isPropΠ λ _ → isprop _) (ind f)) coHomPointedElim2 : {A : Type ℓ} (n : ℕ) (a : A) {B : coHom (suc n) A → coHom (suc n) A → Type ℓ'} → ((x y : coHom (suc n) A) → isProp (B x y)) → ((f g : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → g a ≡ coHom-pt (suc n) → B ∣ f ∣₂ ∣ g ∣₂) → (x y : coHom (suc n) A) → B x y coHomPointedElim2 {ℓ' = ℓ'} {A = A} n a isprop indp = sElim2 (λ _ _ → isOfHLevelSuc 1 (isprop _ _)) λ f g → helper n a isprop indp f g (f a) (g a) refl refl where helper : (n : ℕ) (a : A) {B : coHom (suc n) A → coHom (suc n) A → Type ℓ'} → ((x y : coHom (suc n) A) → isProp (B x y)) → ((f g : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → g a ≡ coHom-pt (suc n) → B ∣ f ∣₂ ∣ g ∣₂) → (f g : A → coHomK (suc n)) → (x y : coHomK (suc n)) → f a ≡ x → g a ≡ y → B ∣ f ∣₂ ∣ g ∣₂ helper zero a isprop indp f g = elim2 (λ _ _ → isOfHLevelPlus {n = 1} 2 (isPropΠ2 λ _ _ → isprop _ _)) (toPropElim2 (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g)) helper (suc zero) a isprop indp f g = elim2 (λ _ _ → isOfHLevelPlus {n = 1} 3 (isPropΠ2 λ _ _ → isprop _ _)) (suspToPropElim2 base (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g)) helper (suc (suc zero)) a isprop indp f g = elim2 (λ _ _ → isOfHLevelPlus {n = 1} 4 (isPropΠ2 λ _ _ → isprop _ _)) (suspToPropElim2 north (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g)) helper (suc (suc (suc n))) a isprop indp f g = elim2 (λ _ _ → isOfHLevelPlus' {n = 5 + n} 1 (isPropΠ2 λ _ _ → isprop _ _)) (suspToPropElim2 north (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g)) coHomK-elim : ∀ {ℓ} (n : ℕ) {B : coHomK (suc n) → Type ℓ} → ((x : _) → isOfHLevel (suc n) (B x)) → B (0ₖ (suc n)) → (x : _) → B x coHomK-elim n {B = B } hlev b = trElim (λ _ → isOfHLevelPlus {n = (suc n)} 2 (hlev _)) (sphereElim _ (hlev ∘ ∣_∣) b) {- Equivalence between cohomology of A and reduced cohomology of (A + 1) -} coHomRed+1Equiv : (n : ℕ) → (A : Type ℓ) → (coHom n A) ≡ (coHomRed n ((A ⊎ Unit , inr (tt)))) coHomRed+1Equiv zero A i = ∥ helpLemma {C = (ℤ , pos 0)} i ∥₂ module coHomRed+1 where helpLemma : {C : Pointed ℓ} → ( (A → (typ C)) ≡ ((((A ⊎ Unit) , inr (tt)) →∙ C))) helpLemma {C = C} = isoToPath (iso map1 map2 (λ b → linvPf b) (λ _ → refl)) where map1 : (A → typ C) → ((((A ⊎ Unit) , inr (tt)) →∙ C)) map1 f = map1' , refl module helpmap where map1' : A ⊎ Unit → fst C map1' (inl x) = f x map1' (inr x) = pt C map2 : ((((A ⊎ Unit) , inr (tt)) →∙ C)) → (A → typ C) map2 (g , pf) x = g (inl x) linvPf : (b :((((A ⊎ Unit) , inr (tt)) →∙ C))) → map1 (map2 b) ≡ b linvPf (f , snd) i = (λ x → helper x i) , λ j → snd ((~ i) ∨ j) where helper : (x : A ⊎ Unit) → ((helpmap.map1') (map2 (f , snd)) x) ≡ f x helper (inl x) = refl helper (inr tt) = sym snd coHomRed+1Equiv (suc zero) A i = ∥ coHomRed+1.helpLemma A i {C = (coHomK 1 , ∣ base ∣)} i ∥₂ coHomRed+1Equiv (suc (suc n)) A i = ∥ coHomRed+1.helpLemma A i {C = (coHomK (2 + n) , ∣ north ∣)} i ∥₂ Iso-coHom-coHomRed : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → Iso (coHomRed (suc n) A) (coHom (suc n) (typ A)) fun (Iso-coHom-coHomRed {A = A , a} n) = map fst inv' (Iso-coHom-coHomRed {A = A , a} n) = map λ f → (λ x → f x -ₖ f a) , rCancelₖ _ _ rightInv (Iso-coHom-coHomRed {A = A , a} n) = sElim (λ _ → isOfHLevelPath 2 § _ _) λ f → trRec (isProp→isOfHLevelSuc _ (§ _ _)) (λ p → cong ∣_∣₂ (funExt λ x → cong (λ y → f x +ₖ y) (cong -ₖ_ p ∙ -0ₖ) ∙ rUnitₖ _ (f x))) (Iso.fun (PathIdTruncIso (suc n)) (isContr→isProp (isConnectedKn n) ∣ f a ∣ ∣ 0ₖ _ ∣)) leftInv (Iso-coHom-coHomRed {A = A , a} n) = sElim (λ _ → isOfHLevelPath 2 § _ _) λ {(f , p) → cong ∣_∣₂ (ΣPathP (((funExt λ x → (cong (λ y → f x -ₖ y) p ∙∙ cong (λ y → f x +ₖ y) -0ₖ ∙∙ rUnitₖ _ (f x)) ∙ refl)) , helper n (f a) (sym p)))} where path : (n : ℕ) (x : coHomK (suc n)) (p : 0ₖ _ ≡ x) → _ path n x p = (cong (λ y → x -ₖ y) (sym p) ∙∙ cong (λ y → x +ₖ y) -0ₖ ∙∙ rUnitₖ _ x) ∙ refl helper : (n : ℕ) (x : coHomK (suc n)) (p : 0ₖ _ ≡ x) → PathP (λ i → path n x p i ≡ 0ₖ _) (rCancelₖ _ x) (sym p) helper zero x = J (λ x p → PathP (λ i → path 0 x p i ≡ 0ₖ _) (rCancelₖ _ x) (sym p)) λ i j → rUnit (rUnit (λ _ → 0ₖ 1) (~ j)) (~ j) i helper (suc n) x = J (λ x p → PathP (λ i → path (suc n) x p i ≡ 0ₖ _) (rCancelₖ _ x) (sym p)) λ i j → rCancelₖ (suc (suc n)) (0ₖ (suc (suc n))) (~ i ∧ ~ j) +∙≡+ : (n : ℕ) {A : Pointed ℓ} (x y : coHomRed (suc n) A) → Iso.fun (Iso-coHom-coHomRed n) (x +ₕ∙ y) ≡ Iso.fun (Iso-coHom-coHomRed n) x +ₕ Iso.fun (Iso-coHom-coHomRed n) y +∙≡+ zero = sElim2 (λ _ _ → isOfHLevelPath 2 § _ _) λ _ _ → refl +∙≡+ (suc n) = sElim2 (λ _ _ → isOfHLevelPath 2 § _ _) λ _ _ → refl private homhelp : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) (x y : coHom (suc n) (typ A)) → Iso.inv (Iso-coHom-coHomRed {A = A} n) (x +ₕ y) ≡ Iso.inv (Iso-coHom-coHomRed n) x +ₕ∙ Iso.inv (Iso-coHom-coHomRed n) y homhelp n A = morphLemmas.isMorphInv _+ₕ∙_ _+ₕ_ (Iso.fun (Iso-coHom-coHomRed n)) (+∙≡+ n) _ (Iso.rightInv (Iso-coHom-coHomRed n)) (Iso.leftInv (Iso-coHom-coHomRed n)) coHomGr≅coHomRedGr : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) → GroupEquiv (coHomRedGrDir (suc n) A) (coHomGr (suc n) (typ A)) fst (coHomGr≅coHomRedGr n A) = isoToEquiv (Iso-coHom-coHomRed n) snd (coHomGr≅coHomRedGr n A) = makeIsGroupHom (+∙≡+ n) coHomRedGroup : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) → AbGroup ℓ coHomRedGroup zero A = coHomRedGroupDir zero A coHomRedGroup (suc n) A = InducedAbGroup (coHomGroup (suc n) (typ A)) _+ₕ∙_ (isoToEquiv (invIso (Iso-coHom-coHomRed n))) (homhelp n A) abstract coHomGroup≡coHomRedGroup : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) → coHomGroup (suc n) (typ A) ≡ coHomRedGroup (suc n) A coHomGroup≡coHomRedGroup n A = InducedAbGroupPath (coHomGroup (suc n) (typ A)) _+ₕ∙_ (isoToEquiv (invIso (Iso-coHom-coHomRed n))) (homhelp n A) ------------------- Kₙ ≃ ΩKₙ₊₁ --------------------- -- This proof uses the encode-decode method rather than Freudenthal -- We define the map σ : Kₙ → ΩKₙ₊₁ and prove that it is a morphism private module _ (n : ℕ) where σ : {n : ℕ} → coHomK (suc n) → Path (coHomK (2 + n)) ∣ north ∣ ∣ north ∣ σ {n = n} = trRec (isOfHLevelTrunc (4 + n) _ _) λ a → cong ∣_∣ (merid a ∙ sym (merid (ptSn (suc n)))) σ-hom-helper : ∀ {ℓ} {A : Type ℓ} {a : A} (p : a ≡ a) (r : refl ≡ p) → lUnit p ∙ cong (_∙ p) r ≡ rUnit p ∙ cong (p ∙_) r σ-hom-helper p = J (λ p r → lUnit p ∙ cong (_∙ p) r ≡ rUnit p ∙ cong (p ∙_) r) refl σ-hom : {n : ℕ} (x y : coHomK (suc n)) → σ (x +ₖ y) ≡ σ x ∙ σ y σ-hom {n = zero} = elim2 (λ _ _ → isOfHLevelPath 3 (isOfHLevelTrunc 4 _ _) _ _) (wedgeconFun _ _ (λ _ _ → isOfHLevelTrunc 4 _ _ _ _) (λ x → lUnit _ ∙ cong (_∙ σ ∣ x ∣) (cong (cong ∣_∣) (sym (rCancel (merid base))))) (λ y → cong σ (rUnitₖ 1 ∣ y ∣) ∙∙ rUnit _ ∙∙ cong (σ ∣ y ∣ ∙_) (cong (cong ∣_∣) (sym (rCancel (merid base))))) (sym (σ-hom-helper (σ ∣ base ∣) (cong (cong ∣_∣) (sym (rCancel (merid base))))))) σ-hom {n = suc n} = elim2 (λ _ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (5 + n) _ _) _ _) (wedgeconFun _ _ (λ _ _ → isOfHLevelPath ((2 + n) + (2 + n)) (wedgeConHLev' n) _ _) (λ x → lUnit _ ∙ cong (_∙ σ ∣ x ∣) (cong (cong ∣_∣) (sym (rCancel (merid north))))) (λ y → cong σ (rUnitₖ (2 + n) ∣ y ∣) ∙∙ rUnit _ ∙∙ cong (σ ∣ y ∣ ∙_) (cong (cong ∣_∣) (sym (rCancel (merid north))))) (sym (σ-hom-helper (σ ∣ north ∣) (cong (cong ∣_∣) (sym (rCancel (merid north))))))) -- We will need to following lemma σ-minusDistr : {n : ℕ} (x y : coHomK (suc n)) → σ (x -ₖ y) ≡ σ x ∙ sym (σ y) σ-minusDistr {n = n} = morphLemmas.distrMinus' _+ₖ_ _∙_ σ σ-hom ∣ (ptSn (suc n)) ∣ refl -ₖ_ sym (λ x → sym (lUnit x)) (λ x → sym (rUnit x)) (rUnitₖ (suc n)) (lCancelₖ (suc n)) rCancel (assocₖ (suc n)) assoc∙ (cong (cong ∣_∣) (rCancel (merid (ptSn (suc n))))) -- we define the code using addIso Code : (n : ℕ) → coHomK (2 + n) → Type₀ Code n x = (trRec {B = TypeOfHLevel ℓ-zero (3 + n)} (isOfHLevelTypeOfHLevel (3 + n)) λ a → Code' a , hLevCode' a) x .fst where Code' : (S₊ (2 + n)) → Type₀ Code' north = coHomK (suc n) Code' south = coHomK (suc n) Code' (merid a i) = isoToPath (addIso (suc n) ∣ a ∣) i hLevCode' : (x : S₊ (2 + n)) → isOfHLevel (3 + n) (Code' x) hLevCode' = suspToPropElim (ptSn (suc n)) (λ _ → isPropIsOfHLevel (3 + n)) (isOfHLevelTrunc (3 + n)) symMeridLem : (n : ℕ) → (x : S₊ (suc n)) (y : coHomK (suc n)) → subst (Code n) (cong ∣_∣ (sym (merid x))) y ≡ y -ₖ ∣ x ∣ symMeridLem n x = trElim (λ _ → isOfHLevelPath (3 + n) (isOfHLevelTrunc (3 + n)) _ _) (λ y → cong (_-ₖ ∣ x ∣) (transportRefl ∣ y ∣)) decode : {n : ℕ} (x : coHomK (2 + n)) → Code n x → ∣ north ∣ ≡ x decode {n = n} = trElim (λ _ → isOfHLevelΠ (4 + n) λ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _) decode-elim where north≡merid : (a : S₊ (suc n)) → Path (coHomK (2 + n)) ∣ north ∣ ∣ north ∣ ≡ (Path (coHomK (2 + n)) ∣ north ∣ ∣ south ∣) north≡merid a i = Path (coHomK (2 + n)) ∣ north ∣ ∣ merid a i ∣ decode-elim : (a : S₊ (2 + n)) → Code n ∣ a ∣ → Path (coHomK (2 + n)) ∣ north ∣ ∣ a ∣ decode-elim north = σ decode-elim south = trRec (isOfHLevelTrunc (4 + n) _ _) λ a → cong ∣_∣ (merid a) decode-elim (merid a i) = hcomp (λ k → λ { (i = i0) → σ ; (i = i1) → mainPath a k}) (funTypeTransp (Code n) (λ x → ∣ north ∣ ≡ x) (cong ∣_∣ (merid a)) σ i) where mainPath : (a : (S₊ (suc n))) → transport (north≡merid a) ∘ σ ∘ transport (λ i → Code n ∣ merid a (~ i) ∣) ≡ trRec (isOfHLevelTrunc (4 + n) _ _) λ a → cong ∣_∣ (merid a) mainPath a = funExt (trElim (λ _ → isOfHLevelPath (3 + n) (isOfHLevelTrunc (4 + n) _ _) _ _) (λ x → (λ i → transport (north≡merid a) (σ (symMeridLem n a ∣ x ∣ i))) ∙∙ cong (transport (north≡merid a)) (-distrHelp x) ∙∙ (substAbove x))) where -distrHelp : (x : S₊ (suc n)) → σ (∣ x ∣ -ₖ ∣ a ∣) ≡ cong ∣_∣ (merid x) ∙ cong ∣_∣ (sym (merid a)) -distrHelp x = σ-minusDistr ∣ x ∣ ∣ a ∣ ∙ (λ i → (cong ∣_∣ (compPath-filler (merid x) (λ j → merid (ptSn (suc n)) (~ j ∨ i)) (~ i))) ∙ (cong ∣_∣ (sym (compPath-filler (merid a) (λ j → merid (ptSn (suc n)) (~ j ∨ i)) (~ i))))) substAbove : (x : S₊ (suc n)) → transport (north≡merid a) (cong ∣_∣ (merid x) ∙ cong ∣_∣ (sym (merid a))) ≡ cong ∣_∣ (merid x) substAbove x i = transp (λ j → north≡merid a (i ∨ j)) i (compPath-filler (cong ∣_∣ (merid x)) (λ j → ∣ merid a (~ j ∨ i) ∣) (~ i)) encode : {n : ℕ} {x : coHomK (2 + n)} → Path (coHomK (2 + n)) ∣ north ∣ x → Code n x encode {n = n} p = transport (cong (Code n) p) ∣ (ptSn (suc n)) ∣ decode-encode : {n : ℕ} {x : coHomK (2 + n)} (p : Path (coHomK (2 + n)) ∣ north ∣ x) → decode _ (encode p) ≡ p decode-encode {n = n} = J (λ y p → decode _ (encode p) ≡ p) (cong (decode ∣ north ∣) (transportRefl ∣ ptSn (suc n) ∣) ∙ cong (cong ∣_∣) (rCancel (merid (ptSn (suc n))))) -- We define an addition operation on Code which we can use in order to show that encode is a -- morphism (in a very loose sense) hLevCode : {n : ℕ} (x : coHomK (2 + n)) → isOfHLevel (3 + n) (Code n x) hLevCode {n = n} = trElim (λ _ → isProp→isOfHLevelSuc (3 + n) (isPropIsOfHLevel (3 + n))) (sphereToPropElim _ (λ _ → (isPropIsOfHLevel (3 + n))) (isOfHLevelTrunc (3 + n))) Code-add' : {n : ℕ} (x : _) → Code n ∣ north ∣ → Code n ∣ x ∣ → Code n ∣ x ∣ Code-add' {n = n} north = _+ₖ_ Code-add' {n = n} south = _+ₖ_ Code-add' {n = n} (merid a i) = helper n a i where help : (n : ℕ) → (x y a : S₊ (suc n)) → transport (λ i → Code n ∣ north ∣ → Code n ∣ merid a i ∣ → Code n ∣ merid a i ∣) (_+ₖ_) ∣ x ∣ ∣ y ∣ ≡ ∣ x ∣ +ₖ ∣ y ∣ help n x y a = (λ i → transportRefl ((∣ transportRefl x i ∣ +ₖ (∣ transportRefl y i ∣ -ₖ ∣ a ∣)) +ₖ ∣ a ∣) i) ∙∙ cong (_+ₖ ∣ a ∣) (assocₖ _ ∣ x ∣ ∣ y ∣ (-ₖ ∣ a ∣)) ∙∙ sym (assocₖ _ (∣ x ∣ +ₖ ∣ y ∣) (-ₖ ∣ a ∣) ∣ a ∣) ∙∙ cong ((∣ x ∣ +ₖ ∣ y ∣) +ₖ_) (lCancelₖ _ ∣ a ∣) ∙∙ rUnitₖ _ _ helper : (n : ℕ) (a : S₊ (suc n)) → PathP (λ i → Code n ∣ north ∣ → Code n ∣ merid a i ∣ → Code n ∣ merid a i ∣) _+ₖ_ _+ₖ_ helper n a = toPathP (funExt (trElim (λ _ → isOfHLevelPath (3 + n) (isOfHLevelΠ (3 + n) (λ _ → isOfHLevelTrunc (3 + n))) _ _) λ x → funExt (trElim (λ _ → isOfHLevelPath (3 + n) (isOfHLevelTrunc (3 + n)) _ _) λ y → help n x y a))) Code-add : {n : ℕ} (x : _) → Code n ∣ north ∣ → Code n x → Code n x Code-add {n = n} = trElim (λ x → isOfHLevelΠ (4 + n) λ _ → isOfHLevelΠ (4 + n) λ _ → isOfHLevelSuc (3 + n) (hLevCode {n = n} x)) Code-add' encode-hom : {n : ℕ} {x : _} (q : 0ₖ _ ≡ 0ₖ _) (p : 0ₖ _ ≡ x) → encode (q ∙ p) ≡ Code-add {n = n} x (encode q) (encode p) encode-hom {n = n} q = J (λ x p → encode (q ∙ p) ≡ Code-add {n = n} x (encode q) (encode p)) (cong encode (sym (rUnit q)) ∙∙ sym (rUnitₖ _ (encode q)) ∙∙ cong (encode q +ₖ_) (cong ∣_∣ (sym (transportRefl _)))) stabSpheres : (n : ℕ) → Iso (coHomK (suc n)) (typ (Ω (coHomK-ptd (2 + n)))) fun (stabSpheres n) = decode _ inv' (stabSpheres n) = encode rightInv (stabSpheres n) p = decode-encode p leftInv (stabSpheres n) = trElim (λ _ → isOfHLevelPath (3 + n) (isOfHLevelTrunc (3 + n)) _ _) λ a → cong encode (congFunct ∣_∣ (merid a) (sym (merid (ptSn (suc n))))) ∙∙ (λ i → transport (congFunct (Code n) (cong ∣_∣ (merid a)) (cong ∣_∣ (sym (merid (ptSn (suc n))))) i) ∣ ptSn (suc n) ∣) ∙∙ (substComposite (λ x → x) (cong (Code n) (cong ∣_∣ (merid a))) (cong (Code n) (cong ∣_∣ (sym (merid (ptSn (suc n)))))) ∣ ptSn (suc n) ∣ ∙∙ cong (transport (λ i → Code n ∣ merid (ptSn (suc n)) (~ i) ∣)) (transportRefl (∣ (ptSn (suc n)) ∣ +ₖ ∣ a ∣) ∙ lUnitₖ (suc n) ∣ a ∣) ∙∙ symMeridLem n (ptSn (suc n)) ∣ a ∣ ∙∙ cong (∣ a ∣ +ₖ_) -0ₖ ∙∙ rUnitₖ (suc n) ∣ a ∣) Iso-Kn-ΩKn+1 : (n : HLevel) → Iso (coHomK n) (typ (Ω (coHomK-ptd (suc n)))) Iso-Kn-ΩKn+1 zero = invIso (compIso (congIso (truncIdempotentIso _ isGroupoidS¹)) ΩS¹Isoℤ) Iso-Kn-ΩKn+1 (suc n) = stabSpheres n Kn≃ΩKn+1 : {n : ℕ} → coHomK n ≃ typ (Ω (coHomK-ptd (suc n))) Kn≃ΩKn+1 {n = n} = isoToEquiv (Iso-Kn-ΩKn+1 n) -- Some properties of the Iso Kn→ΩKn+1 : (n : ℕ) → coHomK n → typ (Ω (coHomK-ptd (suc n))) Kn→ΩKn+1 n = Iso.fun (Iso-Kn-ΩKn+1 n) ΩKn+1→Kn : (n : ℕ) → typ (Ω (coHomK-ptd (suc n))) → coHomK n ΩKn+1→Kn n = Iso.inv (Iso-Kn-ΩKn+1 n) Kn→ΩKn+10ₖ : (n : ℕ) → Kn→ΩKn+1 n (0ₖ n) ≡ refl Kn→ΩKn+10ₖ zero = sym (rUnit refl) Kn→ΩKn+10ₖ (suc n) i j = ∣ (rCancel (merid (ptSn (suc n))) i j) ∣ ΩKn+1→Kn-refl : (n : ℕ) → ΩKn+1→Kn n refl ≡ 0ₖ n ΩKn+1→Kn-refl zero = refl ΩKn+1→Kn-refl (suc zero) = refl ΩKn+1→Kn-refl (suc (suc n)) = refl Kn→ΩKn+1-hom : (n : ℕ) (x y : coHomK n) → Kn→ΩKn+1 n (x +[ n ]ₖ y) ≡ Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y Kn→ΩKn+1-hom zero x y = (λ j i → hfill (doubleComp-faces (λ i₁ → ∣ base ∣) (λ _ → ∣ base ∣) i) (inS (∣ intLoop (x ℤ+ y) i ∣)) (~ j)) ∙∙ (λ j i → ∣ intLoop-hom x y (~ j) i ∣) ∙∙ (congFunct ∣_∣ (intLoop x) (intLoop y) ∙ cong₂ _∙_ (λ j i → hfill (doubleComp-faces (λ i₁ → ∣ base ∣) (λ _ → ∣ base ∣) i) (inS (∣ intLoop x i ∣)) j) λ j i → hfill (doubleComp-faces (λ i₁ → ∣ base ∣) (λ _ → ∣ base ∣) i) (inS (∣ intLoop y i ∣)) j) Kn→ΩKn+1-hom (suc n) = σ-hom ΩKn+1→Kn-hom : (n : ℕ) (x y : Path (coHomK (suc n)) (0ₖ _) (0ₖ _)) → ΩKn+1→Kn n (x ∙ y) ≡ ΩKn+1→Kn n x +[ n ]ₖ ΩKn+1→Kn n y ΩKn+1→Kn-hom zero p q = cong winding (congFunct (trRec isGroupoidS¹ (λ x → x)) p q) ∙ winding-hom (cong (trRec isGroupoidS¹ (λ x → x)) p) (cong (trRec isGroupoidS¹ (λ x → x)) q) ΩKn+1→Kn-hom (suc n) = encode-hom isHomogeneousKn : (n : HLevel) → isHomogeneous (coHomK-ptd n) isHomogeneousKn n = subst isHomogeneous (sym (ΣPathP (ua Kn≃ΩKn+1 , ua-gluePath _ (Kn→ΩKn+10ₖ n)))) (isHomogeneousPath _ _) -- With the equivalence Kn≃ΩKn+1, we get that the two definitions of cohomology groups agree open IsGroupHom coHom≅coHomΩ : ∀ {ℓ} (n : ℕ) (A : Type ℓ) → GroupIso (coHomGr n A) (coHomGrΩ n A) fun (fst (coHom≅coHomΩ n A)) = map λ f a → Kn→ΩKn+1 n (f a) inv' (fst (coHom≅coHomΩ n A)) = map λ f a → ΩKn+1→Kn n (f a) rightInv (fst (coHom≅coHomΩ n A)) = sElim (λ _ → isOfHLevelPath 2 § _ _) λ f → cong ∣_∣₂ (funExt λ x → rightInv (Iso-Kn-ΩKn+1 n) (f x)) leftInv (fst (coHom≅coHomΩ n A)) = sElim (λ _ → isOfHLevelPath 2 § _ _) λ f → cong ∣_∣₂ (funExt λ x → leftInv (Iso-Kn-ΩKn+1 n) (f x)) snd (coHom≅coHomΩ n A) = makeIsGroupHom (sElim2 (λ _ _ → isOfHLevelPath 2 § _ _) λ f g → cong ∣_∣₂ (funExt λ x → Kn→ΩKn+1-hom n (f x) (g x))) module lockedKnIso (key : Unit') where Kn→ΩKn+1' : (n : ℕ) → coHomK n → typ (Ω (coHomK-ptd (suc n))) Kn→ΩKn+1' n = lock key (Iso.fun (Iso-Kn-ΩKn+1 n)) ΩKn+1→Kn' : (n : ℕ) → typ (Ω (coHomK-ptd (suc n))) → coHomK n ΩKn+1→Kn' n = lock key (Iso.inv (Iso-Kn-ΩKn+1 n)) ΩKn+1→Kn→ΩKn+1 : (n : ℕ) → (x : typ (Ω (coHomK-ptd (suc n)))) → Kn→ΩKn+1' n (ΩKn+1→Kn' n x) ≡ x ΩKn+1→Kn→ΩKn+1 n x = pm key where pm : (key : Unit') → lock key (Iso.fun (Iso-Kn-ΩKn+1 n)) (lock key (Iso.inv (Iso-Kn-ΩKn+1 n)) x) ≡ x pm unlock = Iso.rightInv (Iso-Kn-ΩKn+1 n) x Kn→ΩKn+1→Kn : (n : ℕ) → (x : coHomK n) → ΩKn+1→Kn' n (Kn→ΩKn+1' n x) ≡ x Kn→ΩKn+1→Kn n x = pm key where pm : (key : Unit') → lock key (Iso.inv (Iso-Kn-ΩKn+1 n)) (lock key (Iso.fun (Iso-Kn-ΩKn+1 n)) x) ≡ x pm unlock = Iso.leftInv (Iso-Kn-ΩKn+1 n) x -distrLemma : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (n m : ℕ) (f : GroupHom (coHomGr n A) (coHomGr m B)) (x y : coHom n A) → fst f (x -[ n ]ₕ y) ≡ fst f x -[ m ]ₕ fst f y -distrLemma n m f' x y = sym (-cancelRₕ m (f y) (f (x -[ n ]ₕ y))) ∙∙ cong (λ x → x -[ m ]ₕ f y) (sym (f' .snd .pres· (x -[ n ]ₕ y) y)) ∙∙ cong (λ x → x -[ m ]ₕ f y) ( cong f (-+cancelₕ n _ _)) where f = fst f'
49.243295
132
0.514725
502e4f0f48d5e5cf1c204b6d3977fa1c334a830b
135
agda
Agda
test/interaction/Imports/ImportedDisplayForms.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Imports/ImportedDisplayForms.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Imports/ImportedDisplayForms.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Imports.ImportedDisplayForms where open import Agda.Builtin.Nat postulate _plus_ : Set {-# DISPLAY _+_ a b = a plus b #-}
13.5
41
0.718519
cb312041da770ba57b394cb6de036f232cbc4b7b
3,788
agda
Agda
Operational-semantics-using-the-partiality-monad.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
1
2021-02-13T14:48:45.000Z
2021-02-13T14:48:45.000Z
Operational-semantics-using-the-partiality-monad.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
null
null
null
Operational-semantics-using-the-partiality-monad.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Code related to the paper -- "Operational Semantics Using the Partiality Monad" -- -- Nils Anders Danielsson ------------------------------------------------------------------------ -- Several definitions and proofs in this code are closely related to -- definitions and proofs in the paper "Coinductive big-step -- operational semantics" by Leroy and Grall. See my paper for more -- detailed references to related work, and also for more explanations -- of how the code works. module Operational-semantics-using-the-partiality-monad where ------------------------------------------------------------------------ -- Section 2 -- Fin. import Data.Fin -- Vec, lookup. import Data.Vec -- The partiality monad. import Category.Monad.Partiality -- A variant of trivial, as well as proofs showing that the definition -- of weak bisimilarity in the paper coincides with Capretta's -- definition and a more standard definition based on weak -- bisimulations. import AdmissibleButNotPostulable ------------------------------------------------------------------------ -- Section 3 -- Tm, Env, Value. import Lambda.Syntax -- Big-step functional semantics, Ω. import Lambda.Closure.Functional -- The module above uses some workarounds in order to convince Agda -- that the code is productive. The following module contains (more or -- less) the same code without the workarounds, but is checked with -- the termination checker turned off. import Lambda.Closure.Functional.No-workarounds -- An alternative definition of the functional semantics. This -- definition uses continuation-passing style instead of bind. import Lambda.Closure.Functional.Alternative ------------------------------------------------------------------------ -- Section 4 -- Type system. import Lambda.Syntax -- Type soundness. import Lambda.Closure.Functional.Type-soundness -- The use of Lift in the paper is replaced by the use of two -- different predicate transformers: Any for Maybe and All for the -- partiality monad. import Data.Maybe import Category.Monad.Partiality.All -- An alternative definition of the functional semantics, using -- substitutions instead of environments and closures, plus a proof of -- type soundness. import Lambda.Substitution.Functional ------------------------------------------------------------------------ -- Section 5 -- The relational semantics. import Lambda.Closure.Relational -- Proofs of equivalence. import Lambda.Closure.Equivalence ------------------------------------------------------------------------ -- Section 6 -- The virtual machine. Two semantics are given, one relational and -- one functional, and they are proved to be equivalent. import Lambda.VirtualMachine ------------------------------------------------------------------------ -- Section 7 -- The compiler. import Lambda.VirtualMachine -- Compiler correctness for the functional semantics. import Lambda.Closure.Functional import Lambda.Closure.Functional.No-workarounds -- Compiler correctness for the relational semantics. import Lambda.Closure.Relational ------------------------------------------------------------------------ -- Section 8 -- The non-deterministic language along with a compiler and a compiler -- correctness proof, as well as a type soundness proof. import Lambda.Closure.Functional.Non-deterministic import Lambda.Closure.Functional.Non-deterministic.No-workarounds ------------------------------------------------------------------------ -- Section 9 -- A very brief treatment of different kinds of term equivalences, -- including contextual equivalence and applicative bisimilarity. import Lambda.Closure.Equivalences -- _⇓. import Category.Monad.Partiality
27.057143
72
0.631468
fb92dc3d7356f043997b28ce0697485d9d6dd972
20,614
agda
Agda
LibraBFT/Prelude.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
4
2020-12-16T19:43:41.000Z
2021-12-18T19:24:05.000Z
LibraBFT/Prelude.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
72
2021-02-04T05:04:33.000Z
2022-03-25T05:36:11.000Z
LibraBFT/Prelude.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
6
2020-12-16T19:43:52.000Z
2022-02-18T01:04:32.000Z
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} -- This is a selection of useful functions and definitions -- from the standard library that we tend to use a lot. module LibraBFT.Prelude where open import Level renaming (suc to ℓ+1; zero to ℓ0; _⊔_ to _ℓ⊔_) public 1ℓ : Level 1ℓ = ℓ+1 0ℓ open import Agda.Builtin.Unit public open import Function using (_∘_; _∘′_; id; case_of_; _on_; typeOf; flip; const; _∋_; _$_) public identity = id infixl 1 _&_ _&_ = Function._|>_ open import Data.Unit.NonEta public open import Data.Empty public -- NOTE: This function is defined to give extra documentation when discharging -- absurd cases where Agda can tell by pattern matching that `A` is not -- inhabited. For example: -- > absurd (just v ≡ nothing) case impossibleProof of λ () infix 0 absurd_case_of_ absurd_case_of_ : ∀ {ℓ₁ ℓ₂} (A : Set ℓ₁) {B : Set ℓ₂} → A → (A → ⊥) → B absurd A case x of f = ⊥-elim (f x) open import Data.Nat renaming (_≟_ to _≟ℕ_; _≤?_ to _≤?ℕ_; _≥?_ to _≥?ℕ_; compare to compareℕ; Ordering to Orderingℕ) public max = _⊔_ min = _⊓_ open import Data.Nat.DivMod using (_/_) div = _/_ open import Data.Nat.Properties hiding (≡-irrelevant ; _≟_) public open import Data.List renaming (map to List-map ; filter to List-filter ; lookup to List-lookup; tabulate to List-tabulate; foldl to List-foldl) hiding (fromMaybe; [_]) public foldl' = List-foldl open import Data.List.Properties renaming (≡-dec to List-≡-dec; length-map to List-length-map; map-compose to List-map-compose; filter-++ to List-filter-++; length-filter to List-length-filter) using (∷-injective; length-++; map-++-commute; sum-++-commute; map-tabulate; tabulate-lookup; ++-identityʳ; ++-identityˡ) public open import Data.List.Relation.Binary.Subset.Propositional renaming (_⊆_ to _⊆List_) public open import Data.List.Relation.Unary.Any using (Any; here; there) renaming (lookup to Any-lookup; map to Any-map; satisfied to Any-satisfied ;index to Any-index; any to Any-any) public open import Data.List.Relation.Unary.Any.Properties using (¬Any[]) renaming ( map⁺ to Any-map⁺ ; map⁻ to Any-map⁻ ; concat⁺ to Any-concat⁺ ; concat⁻ to Any-concat⁻ ; ++⁻ to Any-++⁻ ; ++⁺ʳ to Any-++ʳ ; ++⁺ˡ to Any-++ˡ ; singleton⁻ to Any-singleton⁻ ; tabulate⁺ to Any-tabulate⁺ ; filter⁻ to Any-filter⁻ ) public open import Data.List.Relation.Unary.All using (All; []; _∷_) renaming (head to All-head; tail to All-tail; lookup to All-lookup; tabulate to All-tabulate; reduce to All-reduce; map to All-map) public open import Data.List.Relation.Unary.All.Properties hiding (All-map) renaming ( tabulate⁻ to All-tabulate⁻ ; tabulate⁺ to All-tabulate⁺ ; map⁺ to All-map⁺ ; map⁻ to All-map⁻ ; ++⁺ to All-++ ) public open import Data.List.Membership.Propositional using (_∈_; _∉_) public open import Data.List.Membership.Propositional.Properties renaming (∈-filter⁺ to List-∈-filter⁺; ∈-filter⁻ to List-∈-filter⁻) public open import Data.Vec using (Vec; []; _∷_) renaming (replicate to Vec-replicate; lookup to Vec-lookup ;map to Vec-map; head to Vec-head; tail to Vec-tail ;updateAt to Vec-updateAt; tabulate to Vec-tabulate ;allFin to Vec-allFin; toList to Vec-toList; fromList to Vec-fromList ;_++_ to _Vec-++_) public open import Data.Vec.Relation.Unary.All using ([]; _∷_) renaming (All to Vec-All; lookup to Vec-All-lookup) public open import Data.Vec.Properties using () renaming (updateAt-minimal to Vec-updateAt-minimal ;[]=⇒lookup to Vec-[]=⇒lookup ;lookup⇒[]= to Vec-lookup⇒[]= ;lookup∘tabulate to Vec-lookup∘tabulate ;≡-dec to Vec-≡-dec) public open import Data.List.Relation.Binary.Pointwise using (decidable-≡) public open import Data.Bool renaming (_≟_ to _≟Bool_) hiding (_≤?_; _<_; _<?_; _≤_; not) public open import Data.Maybe renaming (map to Maybe-map; zip to Maybe-zip ; _>>=_ to _Maybe->>=_) hiding (align; alignWith; zipWith) public -- a non-dependent eliminator maybeS : ∀ {a b} {A : Set a} {B : Set b} → (x : Maybe A) → B → ((x : A) → B) → B maybeS {B = B} x f t = maybe {B = const B} t f x maybeHsk : ∀ {A B : Set} → B → (A → B) → Maybe A → B maybeHsk b a→b = λ where nothing → b (just a) → a→b a open import Data.Maybe.Relation.Unary.Any renaming (Any to Maybe-Any; dec to Maybe-Any-dec) hiding (map; zip; zipWith; unzip ; unzipWith) public maybe-any-⊥ : ∀{a}{A : Set a} → Maybe-Any {A = A} (λ _ → ⊤) nothing → ⊥ maybe-any-⊥ () headMay : ∀ {A : Set} → List A → Maybe A headMay [] = nothing headMay (x ∷ _) = just x lastMay : ∀ {A : Set} → List A → Maybe A lastMay [] = nothing lastMay (x ∷ []) = just x lastMay (_ ∷ x ∷ xs) = lastMay (x ∷ xs) open import Data.Maybe.Properties using (just-injective) renaming (≡-dec to Maybe-≡-dec) public open import Data.Fin using (Fin; suc; zero; fromℕ; fromℕ< ; toℕ ; cast) renaming (_≟_ to _≟Fin_; _≤?_ to _≤?Fin_; _≤_ to _≤Fin_ ; _<_ to _<Fin_; inject₁ to Fin-inject₁; inject+ to Fin-inject+; inject≤ to Fin-inject≤) public fins : (n : ℕ) → List (Fin n) fins n = Vec-toList (Vec-allFin n) open import Data.Fin.Properties using (toℕ-injective; toℕ<n) renaming (<-cmp to Fin-<-cmp; <⇒≢ to <⇒≢Fin; suc-injective to Fin-suc-injective) public open import Relation.Binary.PropositionalEquality hiding (decSetoid) public open import Relation.Binary.HeterogeneousEquality using (_≅_) renaming (cong to ≅-cong; cong₂ to ≅-cong₂) public open import Relation.Binary public data Ordering : Set where LT EQ GT : Ordering compare : ℕ → ℕ → Ordering compare m n with <-cmp m n ... | tri< a ¬b ¬c = LT ... | tri≈ ¬a b ¬c = EQ ... | tri> ¬a ¬b c = GT ≡-irrelevant : ∀{a}{A : Set a} → Irrelevant {a} {A} _≡_ ≡-irrelevant refl refl = refl to-witness-lemma : ∀{ℓ}{A : Set ℓ}{a : A}{f : Maybe A}(x : Is-just f) → to-witness x ≡ a → f ≡ just a to-witness-lemma (just x) refl = refl open import Relation.Nullary hiding (Irrelevant; proof) public open import Relation.Nullary.Decidable hiding (map) public open import Data.Sum renaming ([_,_] to either; map to ⊎-map; map₁ to ⊎-map₁; map₂ to ⊎-map₂) public open import Data.Sum.Properties using (inj₁-injective ; inj₂-injective) public ⊎-elimˡ : ∀ {ℓ₀ ℓ₁}{A₀ : Set ℓ₀}{A₁ : Set ℓ₁} → ¬ A₀ → A₀ ⊎ A₁ → A₁ ⊎-elimˡ ¬a = either (⊥-elim ∘ ¬a) id ⊎-elimʳ : ∀ {ℓ₀ ℓ₁}{A₀ : Set ℓ₀}{A₁ : Set ℓ₁} → ¬ A₁ → A₀ ⊎ A₁ → A₀ ⊎-elimʳ ¬a = either id (⊥-elim ∘ ¬a) open import Data.Product renaming (map to ×-map; map₂ to ×-map₂; map₁ to ×-map₁; <_,_> to split; swap to ×-swap) hiding (zip) public fst = proj₁ open import Data.Product.Properties public module _ {ℓA} {A : Set ℓA} where NoneOfKind : ∀ {ℓ} {P : A → Set ℓ} → List A → (p : (a : A) → Dec (P a)) → Set ℓA NoneOfKind xs p = List-filter p xs ≡ [] postulate -- TODO-1: Replace with or prove using library properties? Move to Lemmas? NoneOfKind⇒ : ∀ {ℓ} {P : A → Set ℓ} {Q : A → Set ℓ} {xs : List A} → (p : (a : A) → Dec (P a)) → {q : (a : A) → Dec (Q a)} → (∀ {a} → P a → Q a) -- TODO-1: Use proper notation (Relation.Unary?) → NoneOfKind xs q → NoneOfKind xs p infix 4 _<?ℕ_ _<?ℕ_ : Decidable _<_ m <?ℕ n = suc m ≤?ℕ n infix 0 if-yes_then_else_ infix 0 if-dec_then_else_ if-yes_then_else_ : ∀ {ℓA ℓB} {A : Set ℓA} {B : Set ℓB} → Dec A → (A → B) → (¬ A → B) → B if-yes (yes prf) then f else _ = f prf if-yes (no prf) then _ else g = g prf if-dec_then_else_ : ∀ {ℓA ℓB} {A : Set ℓA} {B : Set ℓB} → Dec A → B → B → B if-dec x then f else g = if-yes x then const f else const g open import Relation.Nullary.Negation using (contradiction; contraposition) public open import Relation.Binary using (Setoid; IsPreorder) public open import Relation.Unary using (_∪_) public open import Relation.Unary.Properties using (_∪?_) public -- Injectivity for a function of two potentially different types (A and B) via functions to a -- common type (C). Injective' : ∀ {b c d e}{B : Set b}{C : Set c}{D : Set d} → (hB : B → D) → (hC : C → D) → (_≈_ : B → C → Set e) → Set _ Injective' {C = C} hB hC _≈_ = ∀ {b c} → hB b ≡ hC c → b ≈ c Injective : ∀ {c d e}{C : Set c}{D : Set d} → (h : C → D) → (_≈_ : Rel C e) → Set _ Injective h _≈_ = Injective' h h _≈_ Injective-≡ : ∀ {c d}{C : Set c}{D : Set d} → (h : C → D) → Set _ Injective-≡ h = Injective h _≡_ Injective-int : ∀{a b c d e}{A : Set a}{B : Set b}{C : Set c}{D : Set d} → (_≈_ : A → B → Set e) → (h : C → D) → (f₁ : A → C) → (f₂ : B → C) → Set (a ℓ⊔ b ℓ⊔ d ℓ⊔ e) Injective-int _≈_ h f₁ f₂ = ∀ {a₁} {b₁} → h (f₁ a₁) ≡ h (f₂ b₁) → a₁ ≈ b₁ NonInjective : ∀{a b c}{A : Set a}{B : Set b} → (_≈_ : Rel A c) → (A → B) → Set (a ℓ⊔ b ℓ⊔ c) NonInjective {A = A} _≈_ f = Σ (A × A) (λ { (x₁ , x₂) → ¬ (x₁ ≈ x₂) × f x₁ ≡ f x₂ }) NonInjective-≡ : ∀{a b}{A : Set a}{B : Set b} → (A → B) → Set (a ℓ⊔ b) NonInjective-≡ = NonInjective _≡_ NonInjective-≡-preds : ∀{a b}{A : Set a}{B : Set b}{ℓ₁ ℓ₂ : Level} → (A → Set ℓ₁) → (A → Set ℓ₂) → (A → B) → Set (a ℓ⊔ b ℓ⊔ ℓ₁ ℓ⊔ ℓ₂) NonInjective-≡-preds Pred1 Pred2 f = Σ (NonInjective _≡_ f) λ { ((a₀ , a₁) , _ , _) → Pred1 a₀ × Pred2 a₁ } NonInjective-≡-pred : ∀{a b}{A : Set a}{B : Set b}{ℓ : Level} → (P : A → Set ℓ) → (A → B) → Set (a ℓ⊔ b ℓ⊔ ℓ) NonInjective-≡-pred Pred = NonInjective-≡-preds Pred Pred NonInjective-∘ : ∀{a b c}{A : Set a}{B : Set b}{C : Set c} → {f : A → B}(g : B → C) → NonInjective-≡ f → NonInjective-≡ (g ∘ f) NonInjective-∘ g ((x0 , x1) , (x0≢x1 , fx0≡fx1)) = ((x0 , x1) , x0≢x1 , (cong g fx0≡fx1)) -------------------------------------------- -- Handy fmap and bind for specific types -- _<M$>_ : ∀{a b}{A : Set a}{B : Set b} → (f : A → B) → Maybe A → Maybe B _<M$>_ = Maybe-map <M$>-univ : ∀{a b}{A : Set a}{B : Set b} → (f : A → B)(x : Maybe A) → {y : B} → f <M$> x ≡ just y → ∃[ x' ] (x ≡ just x' × f x' ≡ y) <M$>-univ f (just x) refl = x , (refl , refl) maybe-lift : {A : Set} → {mx : Maybe A}{x : A} → (P : A → Set) → P x → mx ≡ just x → maybe {B = const Set} P ⊥ mx maybe-lift {mx = just .x} {x} P px refl = px <M$>-nothing : ∀ {a b}{A : Set a}{B : Set b}(f : A → B) → f <M$> nothing ≡ nothing <M$>-nothing _ = refl _<⊎$>_ : ∀{a b c}{A : Set a}{B : Set b}{C : Set c} → (A → B) → C ⊎ A → C ⊎ B f <⊎$> (inj₁ hb) = inj₁ hb f <⊎$> (inj₂ x) = inj₂ (f x) _⊎⟫=_ : ∀{a b c}{A : Set a}{B : Set b}{C : Set c} → C ⊎ A → (A → C ⊎ B) → C ⊎ B (inj₁ x) ⊎⟫= _ = inj₁ x (inj₂ a) ⊎⟫= f = f a -- Syntactic support for more faithful model of Haskell code Either : ∀ {a b} → Set a → Set b → Set (a ℓ⊔ b) Either A B = A ⊎ B pattern Left x = inj₁ x pattern Right x = inj₂ x isLeft : ∀ {a b} {A : Set a} {B : Set b} → Either A B → Bool isLeft (Left _) = true isLeft (Right _) = false isRight : ∀ {a b} {A : Set a} {B : Set b} → Either A B → Bool isRight = Data.Bool.not ∘ isLeft -- a non-dependent eliminator eitherS : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} (x : Either A B) → ((x : A) → C) → ((x : B) → C) → C eitherS eab fa fb = case eab of λ where (Left a) → fa a (Right b) → fb b module _ {ℓ₀ ℓ₁ ℓ₂ : Level} where EL-type = Set ℓ₁ → Set ℓ₂ → Set ℓ₀ EL-level = ℓ₁ ℓ⊔ ℓ₂ ℓ⊔ ℓ₀ -- Utility to make passing between `Either` and `EitherD` more convenient record EitherLike (E : EL-type) : Set (ℓ+1 EL-level) where field fromEither : ∀ {A : Set ℓ₁} {B : Set ℓ₂} → Either A B → E A B toEither : ∀ {A : Set ℓ₁} {B : Set ℓ₂} → E A B → Either A B open EitherLike ⦃ ... ⦄ public EL-func : EL-type → Set (ℓ+1 EL-level) EL-func EL = ⦃ mel : EitherLike EL ⦄ → Set EL-level instance EitherLike-Either : ∀ {ℓ₁ ℓ₂} → EitherLike{ℓ₁ ℓ⊔ ℓ₂}{ℓ₁}{ℓ₂} Either EitherLike.fromEither EitherLike-Either = id EitherLike.toEither EitherLike-Either = id -- an approximation of Haskell's backtick notation for making infix operators; in Agda, must have -- spaces between f and backticks flip' : _ -- Avoids warning about definition and syntax declaration being in different scopes flip' = flip syntax flip' f = ` f ` open import Data.String as String hiding (_==_ ; _≟_ ; concat) check : Bool → List String → Either String Unit check b t = if b then inj₂ unit else inj₁ (String.intersperse "; " t) -- TODO-1: Maybe this belongs somewhere else? It's in a similar -- category as Optics, so maybe should similarly be in a module that -- is separate from the main project? ------------------ -- Guard Syntax -- -- -- Example Usage: -- -- > f : ℕ → ℕ -- > f x = grd‖ x ≟ℕ 10 ≔ 12 -- > ‖ otherwise≔ 40 + 2 -- -- -- > g : ℕ ⊎ ℕ → ℕ -- > g x = case x of λ -- > { (inj₁ x) → grd‖ x ≤? 10 ≔ 2 * x -- > ‖ otherwise≔ 42 -- > ; (inj₂ y) → y -- > } -- -- To type: ‖ --> \Vert -- ≔ --> \:= record ToBool {a}(A : Set a) : Set a where field toBool : A → Bool open ToBool {{ ... }} public not : ∀ {b} {B : Set b} ⦃ _ : ToBool B ⦄ → B → Bool not b = Data.Bool.not (toBool b) instance ToBool-Bool : ToBool Bool ToBool-Bool = record { toBool = id } ToBool-Dec : ∀{a}{A : Set a} → ToBool (Dec A) ToBool-Dec = record { toBool = ⌊_⌋ } toWitnessT : ∀{ℓ}{P : Set ℓ}{d : Dec P} → ⌊ d ⌋ ≡ true → P toWitnessT {d = yes proof} _ = proof toWitnessF : ∀{ℓ}{P : Set ℓ}{d : Dec P} → ⌊ d ⌋ ≡ false → ¬ P toWitnessF{d = no proof} _ = proof infix 3 _≔_ data GuardClause {a}{b}(A : Set a) : Set (a ℓ⊔ ℓ+1 b) where _≔_ : {B : Set b}{{ bb : ToBool B }} → B → A → GuardClause A infix 3 otherwise≔_ data Guards {a}{b}(A : Set a) : Set (a ℓ⊔ ℓ+1 b) where otherwise≔_ : A → Guards A clause : GuardClause{a}{b} A → Guards{a}{b} A → Guards A infixr 2 _‖_ _‖_ : ∀{a}{b}{A : Set a} → GuardClause{a}{b} A → Guards A → Guards A _‖_ = clause infix 1 grd‖_ grd‖_ : ∀{a}{b}{A : Set a} → Guards{a}{b} A → A grd‖_ (otherwise≔ a) = a grd‖_ (clause (b ≔ a) g) = if toBool b then a else (grd‖ g) Any-satisfied-∈ : ∀{a ℓ}{A : Set a}{P : A → Set ℓ}{xs : List A} → Any P xs → Σ A (λ x → P x × x ∈ xs) Any-satisfied-∈ (here px) = _ , (px , here refl) Any-satisfied-∈ (there p) = let (a , px , prf) = Any-satisfied-∈ p in (a , px , there prf) f-sum : ∀{a}{A : Set a} → (A → ℕ) → List A → ℕ f-sum f = sum ∘ List-map f record Functor {ℓ₁ ℓ₂ : Level} (F : Set ℓ₁ → Set ℓ₂) : Set (ℓ₂ ℓ⊔ ℓ+1 ℓ₁) where infixl 4 _<$>_ field _<$>_ : ∀ {A B : Set ℓ₁} → (A → B) → F A → F B fmap = _<$>_ open Functor ⦃ ... ⦄ public record Applicative {ℓ₁ ℓ₂ : Level} (F : Set ℓ₁ → Set ℓ₂) : Set (ℓ₂ ℓ⊔ ℓ+1 ℓ₁) where infixl 4 _<*>_ field pure : ∀ {A : Set ℓ₁} → A → F A _<*>_ : ∀ {A B : Set ℓ₁} → F (A → B) → F A → F B open Applicative ⦃ ... ⦄ public instance ApplicativeFunctor : ∀ {ℓ₁ ℓ₂} {F : Set ℓ₁ → Set ℓ₂} ⦃ _ : Applicative F ⦄ → Functor F Functor._<$>_ ApplicativeFunctor f xs = pure f <*> xs record Monad {ℓ₁ ℓ₂ : Level} (M : Set ℓ₁ → Set ℓ₂) : Set (ℓ₂ ℓ⊔ ℓ+1 ℓ₁) where infixl 1 _>>=_ _>>_ field return : ∀ {A : Set ℓ₁} → A → M A _>>=_ : ∀ {A B : Set ℓ₁} → M A → (A → M B) → M B _>>_ : ∀ {A B : Set ℓ₁} → M A → M B → M B m₁ >> m₂ = m₁ >>= λ _ → m₂ open Monad ⦃ ... ⦄ public instance MonadApplicative : ∀ {ℓ₁ ℓ₂} {M : Set ℓ₁ → Set ℓ₂} ⦃ _ : Monad M ⦄ → Applicative M Applicative.pure MonadApplicative = return Applicative._<*>_ MonadApplicative fs xs = do f ← fs x ← xs return (f x) instance Monad-Either : ∀ {ℓ}{C : Set ℓ} → Monad{ℓ}{ℓ} (Either C) Monad.return (Monad-Either{ℓ}{C}) = inj₂ Monad._>>=_ (Monad-Either{ℓ}{C}) = either (const ∘ inj₁) _&_ Monad-Maybe : ∀ {ℓ} → Monad {ℓ} {ℓ} Maybe Monad.return (Monad-Maybe{ℓ}) = just Monad._>>=_ (Monad-Maybe{ℓ}) = _Maybe->>=_ Monad-List : ∀ {ℓ} → Monad {ℓ}{ℓ} List Monad.return Monad-List x = x ∷ [] Monad._>>=_ Monad-List x f = concat (List-map f x) maybeSMP : ∀ {ℓ} {A B : Set} {m : Set → Set ℓ} ⦃ _ : Monad m ⦄ → m (Maybe A) → B → (A → m B) → m B maybeSMP ma b f = do x ← ma case x of λ where nothing → pure b (just j) → f j fromMaybeM : ∀ {ℓ} {A : Set} {m : Set → Set ℓ} ⦃ _ : Monad m ⦄ → m A → m (Maybe A) → m A fromMaybeM ma mma = do mma >>= λ where nothing → ma (just a) → pure a forM_ : ∀ {ℓ} {A B : Set} {M : Set → Set ℓ} ⦃ _ : Monad M ⦄ → List A → (A → M B) → M Unit forM_ [] _ = return unit forM_ (x ∷ xs) f = f x >> forM_ xs f -- NOTE: because 'forM_' is defined above, it is necessary to -- call 'forM' with parenthesis (e.g., recursive call in definition) -- to disambiguate it for the Agda parser. forM : ∀ {ℓ} {A B : Set} {M : Set → Set ℓ} ⦃ _ : Monad M ⦄ → List A → (A → M B) → M (List B) forM [] _ = return [] forM (x ∷ xs) f = do fx ← f x fxs ← (forM) xs f return (fx ∷ fxs) foldrM : ∀ {ℓ₁ ℓ₂} {A B : Set ℓ₁} {M : Set ℓ₁ → Set ℓ₂} ⦃ _ : Monad M ⦄ → (A → B → M B) → B → List A → M B foldrM _ b [] = return b foldrM f b (a ∷ as) = foldrM f b as >>= f a foldlM : ∀ {ℓ₁ ℓ₂} {A B : Set ℓ₁} {M : Set ℓ₁ → Set ℓ₂} ⦃ _ : Monad M ⦄ → (B → A → M B) → B → List A → M B foldlM _ z [] = pure z foldlM f z (x ∷ xs) = do z' ← f z x foldlM f z' xs foldM = foldlM foldM_ : {A B : Set} {M : Set → Set} ⦃ _ : Monad M ⦄ → (B → A → M B) → B → List A → M Unit foldM_ f a xs = foldlM f a xs >> pure unit open import LibraBFT.Base.Util public record Eq {a} (A : Set a) : Set a where infix 4 _≟_ _==_ _/=_ field _≟_ : (a b : A) → Dec (a ≡ b) _==_ : A → A → Bool a == b = toBool $ a ≟ b _/=_ : A → A → Bool a /= b = not (a == b) open Eq ⦃ ... ⦄ public elem : ∀ {ℓ} {A : Set ℓ} ⦃ _ : Eq A ⦄ → A → List A → Bool elem x = toBool ∘ Any-any (x ≟_) instance Eq-Nat : Eq ℕ Eq._≟_ Eq-Nat = _≟ℕ_ Eq-Maybe : ∀ {a} {A : Set a} ⦃ _ : Eq A ⦄ → Eq (Maybe A) Eq._≟_ Eq-Maybe nothing nothing = yes refl Eq._≟_ Eq-Maybe (just _) nothing = no λ () Eq._≟_ Eq-Maybe nothing (just _) = no λ () Eq._≟_ Eq-Maybe (just a) (just b) with a ≟ b ... | no proof = no λ where refl → proof refl ... | yes refl = yes refl infixl 9 _!?_ _!?_ : {A : Set} → List A → ℕ → Maybe A [] !? _ = nothing (x ∷ _ ) !? 0 = just x (_ ∷ xs) !? (suc n) = xs !? n -- Like a Haskell list-comprehension for ℕ : [ n | n <- [from .. to] ] fromToList : ℕ → ℕ → List ℕ fromToList from to with from ≤′? to ... | no ¬pr = [] ... | yes pr = fromToList-le from to pr [] where fromToList-le : ∀ (from to : ℕ) (klel : from ≤′ to) (acc : List ℕ) → List ℕ fromToList-le from ._ ≤′-refl acc = from ∷ acc fromToList-le from (suc to) (≤′-step klel) acc = fromToList-le from to klel (suc to ∷ acc) _ : fromToList 1 1 ≡ 1 ∷ [] _ = refl _ : fromToList 1 2 ≡ 1 ∷ 2 ∷ [] _ = refl _ : fromToList 2 1 ≡ [] _ = refl
31.328267
164
0.529106
d054cc161102706e3919dbaaa5c21387048044a2
1,119
agda
Agda
theorems/homotopy/TruncationLoopLadder.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/homotopy/TruncationLoopLadder.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/homotopy/TruncationLoopLadder.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT module homotopy.TruncationLoopLadder where ⊙Ω-Trunc : ∀ {i} {n : ℕ₋₂} (X : Ptd i) → ⊙Ω (⊙Trunc (S n) X) ⊙≃ ⊙Trunc n (⊙Ω X) ⊙Ω-Trunc X = ≃-to-⊙≃ (=ₜ-equiv [ pt X ] [ pt X ]) idp step : ∀ {i j} n {X : Ptd i} {Y : Ptd j} (f : X ⊙→ Y) → ⊙CommSquareEquiv (⊙Ω-fmap (⊙Trunc-fmap {n = S n} f)) (⊙Trunc-fmap {n = n} (⊙Ω-fmap f)) (⊙–> (⊙Ω-Trunc X)) (⊙–> (⊙Ω-Trunc Y)) step n (f , idp) = ⊙comm-sqr (=ₜ-equiv-nat _ _ _ , idp) , snd (⊙Ω-Trunc _) , snd (⊙Ω-Trunc _) rail : ∀ m {i} (X : Ptd i) → ⊙Ω^' m (⊙Trunc ⟨ m ⟩ X) ⊙→ ⊙Trunc 0 (⊙Ω^' m X) rail O X = ⊙idf _ rail (S m) X = rail m (⊙Ω X) ⊙∘ ⊙Ω^'-fmap m (⊙–> (⊙Ω-Trunc X)) ladder : ∀ {i j} m {X : Ptd i} {Y : Ptd j} (f : X ⊙→ Y) → ⊙CommSquareEquiv (⊙Ω^'-fmap m (⊙Trunc-fmap {n = ⟨ m ⟩} f)) (⊙Trunc-fmap {n = 0} (⊙Ω^'-fmap m f)) (rail m X) (rail m Y) ladder O f = ⊙comm-sqr (⊙∘-unit-l _) , idf-is-equiv _ , idf-is-equiv _ ladder (S m) f = ⊙CommSquareEquiv-∘v (ladder m (⊙Ω-fmap f)) (⊙Ω^'-csemap m (step ⟨ m ⟩ f))
32.911765
78
0.459339
39541ece4dae39bad09ca49ec5be6def7516529e
461
agda
Agda
test/interaction/Issue1298.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue1298.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue1298.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- {-# OPTIONS -v tc.cover:40 #-} -- Andreas, 2014-10-09 -- Reported by ohmanjoakim infixr 8 _⇒_ data Ty : Set where _⇒_ : Ty → Ty → Ty ⟦_⟧ : Ty → Set ⟦ A ⇒ B ⟧ = ⟦ A ⟧ → ⟦ B ⟧ data Term : Ty → Set where K : (A B : Ty) → Term (A ⇒ B ⇒ A) test : (A : Ty) (a : Term A) → ⟦ A ⟧ test A a = {!a!} -- When doing a case split on a in foo, the following is written: -- test .(x ⇒ x₁ ⇒ x) (K A B) x x₁ = ? -- Correct is -- test .(A ⇒ B ⇒ A) (K A B) x x₁ = ?
18.44
65
0.496746
500cf338e0a86cd85390fd32274db1d8d435a34b
14,808
agda
Agda
agda/Esterel/Lang/CanFunction/MergePotentialRuleCan.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
3
2020-04-16T10:58:53.000Z
2020-07-01T03:59:31.000Z
agda/Esterel/Lang/CanFunction/MergePotentialRuleCan.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
null
null
null
agda/Esterel/Lang/CanFunction/MergePotentialRuleCan.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
1
2020-04-15T20:02:49.000Z
2020-04-15T20:02:49.000Z
{- The equivalent "goodness" of can w.r.t. the rmerge reduction. The lemma proved in this file is can-irr : ∀ {BV} {FV} θ₁ θ₂ q → CorrectBinding q BV FV → (distinct' (proj₁ FV) (proj₁ (Dom θ₂))) → Can q θ₁ ≡ Can q (θ₁ ← θ₂) That is, the result of the Can function will not change provided that the program does not refer to any variables in the new environment. -} module Esterel.Lang.CanFunction.MergePotentialRuleCan where open import utility open import Esterel.Lang open import Esterel.Lang.Binding open import Esterel.Lang.CanFunction open import Esterel.Lang.CanFunction.Base open import Esterel.Context open import Esterel.Context.Properties using (plug ; unplug) open import Esterel.Environment as Env using (Env ; Θ ; _←_ ; Dom ; module SigMap ; module ShrMap ; module VarMap) open import Esterel.CompletionCode as Code using () renaming (CompletionCode to Code) open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) open import Esterel.Variable.Shared as SharedVar using (SharedVar ; _ₛₕ) open import Esterel.Variable.Sequential as SeqVar using (SeqVar) open import Data.Bool using (Bool ; true ; false ; if_then_else_) open import Data.Empty using (⊥ ; ⊥-elim) open import Data.List using (List ; [] ; _∷_ ; _++_ ; map ; concatMap) open import Data.List.Properties using (map-id) open import Data.List.Any using (Any ; any ; here ; there) open import Data.List.Any.Properties using () renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ) open import Data.Maybe using (Maybe ; just ; nothing) open import Data.Nat using (ℕ ; zero ; suc ; _≟_ ; _+_) open import Data.Nat.Properties.Simple using (+-comm) open import Data.Product using (Σ ; proj₁ ; proj₂ ; ∃ ; _,_ ; _,′_ ; _×_) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Function using (_∘_ ; _∋_ ; id) open import Relation.Nullary using (¬_ ; Dec ; yes ; no) open import Relation.Nullary.Decidable using (⌊_⌋) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; trans ; sym ; cong ; subst) open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM open ListSet Data.Nat._≟_ using (set-subtract ; set-subtract-[] ; set-subtract-split ; set-subtract-merge ; set-subtract-notin ; set-remove-mono-∈ ; set-remove-removed ; set-remove-not-removed) can-new-irr : ∀ {BV} {FV} θ₁ θ₂ θo q → CorrectBinding q BV FV → (∀ S' → S' ∈ (proj₁ FV) → (S' ∉ proj₁ (Dom θ₂)) ⊎ (S' ∈ proj₁ (Dom θo))) → Can q (θ₁ ← θo) ≡ Can q ((θ₁ ← θ₂) ← θo) canθ-new-irr : ∀ {BV} {FV} sigs S θ₁ θ₂ θo q → CorrectBinding q BV FV → (∀ S' → S' ∈ (proj₁ FV) → ((S' ∉ proj₁ (Dom θ₂)) ⊎ (S' ∈ proj₁ (Dom θo))) ⊎ S' ∈ map (_+_ S) (SigMap.keys sigs)) → Canθ sigs S q (θ₁ ← θo) ≡ Canθ sigs S q ((θ₁ ← θ₂) ← θo) can-new-irr θ₁ θ₂ θo nothin CBnothing S-prop = refl can-new-irr θ₁ θ₂ θo pause CBpause S-prop = refl can-new-irr θ₁ θ₂ θo (signl S q) (CBsig cbq) S-prop rewrite canθ-new-irr (Env.sig ([S]-env S)) 0 θ₁ θ₂ θo q cbq (λ S' S'∈FV → Data.Sum.map (S-prop S') (subst (S' ∈_) (sym (map-id (proj₁ (Dom ([S]-env S))))) ∘ (λ S'∈[S] → subst (_∈ proj₁ (Dom ([S]-env S))) (sym (∈:: S'∈[S])) (Env.sig-∈-single S Signal.unknown))) (set-subtract-split {ys = Signal.unwrap S ∷ []} S'∈FV)) = refl can-new-irr θ₁ θ₂ θo (present S ∣⇒ p ∣⇒ q) (CBpresent {FVp = FVp} cbp cbq) S-prop with S-prop (Signal.unwrap S) (here refl)| Env.Sig∈ S (θ₁ ← θo) | Env.Sig∈ S ((θ₁ ← θ₂) ← θo) ... | inj₂ S∈Domθo | no S∉domθ₁←θo | S∈domθ₁←θ₂←θo? = ⊥-elim (S∉domθ₁←θo (Env.sig-←-monoʳ S θo θ₁ S∈Domθo)) ... | inj₂ S∈Domθo | yes S∈domθ₁←θo | no S∉domθ₁←θ₂←θo = ⊥-elim (S∉domθ₁←θ₂←θo (Env.sig-←-monoʳ S θo (θ₁ ← θ₂) S∈Domθo)) ... | inj₂ S∈Domθo | yes S∈domθ₁←θo | yes S∈domθ₁←θ₂←θo rewrite SigMap.∈-get-U-irr-m S (Env.sig θ₁) (Env.sig (θ₁ ← θ₂)) (Env.sig θo) S∈domθ₁←θo S∈domθ₁←θ₂←θo S∈Domθo with Env.sig-stats {S} ((θ₁ ← θ₂) ← θo) S∈domθ₁←θ₂←θo ... | Signal.present = can-new-irr θ₁ θ₂ θo p cbp (λ S' S'∈FVp → S-prop S' (++ʳ (Signal.unwrap S ∷ []) (++ˡ S'∈FVp))) ... | Signal.absent = can-new-irr θ₁ θ₂ θo q cbq (λ S' S'∈FVq → S-prop S' (++ʳ (Signal.unwrap S ∷ proj₁ FVp) S'∈FVq)) ... | Signal.unknown rewrite can-new-irr θ₁ θ₂ θo p cbp (λ S' S'∈FVp → S-prop S' (++ʳ (Signal.unwrap S ∷ []) (++ˡ S'∈FVp))) | can-new-irr θ₁ θ₂ θo q cbq (λ S' S'∈FVq → S-prop S' (++ʳ (Signal.unwrap S ∷ proj₁ FVp) S'∈FVq)) = refl can-new-irr θ₁ θ₂ θo (present S ∣⇒ p ∣⇒ q) (CBpresent {FVp = FVp} cbp cbq) S-prop | inj₁ S∉Domθ₂ | yes S∈domθ₁←θo | yes S∈domθ₁←θ₂←θo with Env.sig-←⁻ {θ₁} {θo} S S∈domθ₁←θo ... | inj₂ S∈Domθo rewrite SigMap.∈-get-U-irr-m S (Env.sig θ₁) (Env.sig (θ₁ ← θ₂)) (Env.sig θo) S∈domθ₁←θo S∈domθ₁←θ₂←θo S∈Domθo with Env.sig-stats {S} ((θ₁ ← θ₂) ← θo) S∈domθ₁←θ₂←θo ... | Signal.present = can-new-irr θ₁ θ₂ θo p cbp (λ S' S'∈FVp → S-prop S' (++ʳ (Signal.unwrap S ∷ []) (++ˡ S'∈FVp))) ... | Signal.absent = can-new-irr θ₁ θ₂ θo q cbq (λ S' S'∈FVq → S-prop S' (++ʳ (Signal.unwrap S ∷ proj₁ FVp) S'∈FVq)) ... | Signal.unknown rewrite can-new-irr θ₁ θ₂ θo p cbp (λ S' S'∈FVp → S-prop S' (++ʳ (Signal.unwrap S ∷ []) (++ˡ S'∈FVp))) | can-new-irr θ₁ θ₂ θo q cbq (λ S' S'∈FVq → S-prop S' (++ʳ (Signal.unwrap S ∷ proj₁ FVp) S'∈FVq)) = refl can-new-irr θ₁ θ₂ θo (present S ∣⇒ p ∣⇒ q) (CBpresent {FVp = FVp} cbp cbq) S-prop | inj₁ S∉Domθ₂ | yes S∈domθ₁←θo | yes S∈domθ₁←θ₂←θo | inj₁ S∈domθ₁ with Env.sig-←-irr-get {θ₁} {θ₂} {S} S∈domθ₁ S∉Domθ₂ ... | a , b rewrite SigMap.get-U-both-irr-m S (Env.sig θ₁) (Env.sig (θ₁ ← θ₂)) (Env.sig θo) S∈domθ₁ a S∈domθ₁←θo S∈domθ₁←θ₂←θo b with Env.sig-stats {S} ((θ₁ ← θ₂) ← θo) S∈domθ₁←θ₂←θo ... | Signal.present = can-new-irr θ₁ θ₂ θo p cbp (λ S' S'∈FVp → S-prop S' (++ʳ (Signal.unwrap S ∷ []) (++ˡ S'∈FVp))) ... | Signal.absent = can-new-irr θ₁ θ₂ θo q cbq (λ S' S'∈FVq → S-prop S' (++ʳ (Signal.unwrap S ∷ proj₁ FVp) S'∈FVq)) ... | Signal.unknown rewrite can-new-irr θ₁ θ₂ θo p cbp (λ S' S'∈FVp → S-prop S' (++ʳ (Signal.unwrap S ∷ []) (++ˡ S'∈FVp))) | can-new-irr θ₁ θ₂ θo q cbq (λ S' S'∈FVq → S-prop S' (++ʳ (Signal.unwrap S ∷ proj₁ FVp) S'∈FVq)) = refl can-new-irr θ₁ θ₂ θo (present S ∣⇒ p ∣⇒ q) (CBpresent cbp cbq) S-prop | inj₁ S∉Domθ₂ | yes S∈domθ₁←θo | no S∉domθ₁←θ₂←θo rewrite SigMap.keys-assoc-comm (Env.sig θ₁) (Env.sig θ₂) (Env.sig θo) = ⊥-elim (S∉domθ₁←θ₂←θo (SigMap.U-mono {m = Env.sig (θ₁ ← θo)} {k = S} S∈domθ₁←θo)) can-new-irr θ₁ θ₂ θo (present S ∣⇒ p ∣⇒ q) (CBpresent cbp cbq) S-prop | inj₁ S∉Domθ₂ | no S∉domθ₁←θo | yes S∈domθ₁←θ₂←θo with Env.sig-←⁻ {θ₁ ← θo} {θ₂} S (subst (Signal.unwrap S ∈_) (SigMap.keys-assoc-comm (Env.sig θ₁) (Env.sig θ₂) (Env.sig θo)) S∈domθ₁←θ₂←θo) ... | (inj₁ S∈Domθ₁←θo) = ⊥-elim (S∉domθ₁←θo S∈Domθ₁←θo) ... | (inj₂ S∈Domθ₂) = ⊥-elim (S∉Domθ₂ S∈Domθ₂) can-new-irr θ₁ θ₂ θo (present S ∣⇒ p ∣⇒ q) (CBpresent {FVp = FVp} cbp cbq) S-prop | inj₁ S∉Domθ₂ | no S∉domθ₁←θo | no S∉domθ₁←θ₂←θo rewrite can-new-irr θ₁ θ₂ θo p cbp (λ S' S'∈FVp → S-prop S' (++ʳ (Signal.unwrap S ∷ []) (++ˡ S'∈FVp))) | can-new-irr θ₁ θ₂ θo q cbq (λ S' S'∈FVq → S-prop S' (++ʳ (Signal.unwrap S ∷ proj₁ FVp) S'∈FVq)) = refl can-new-irr θ₁ θ₂ θo (emit S) CBemit S-prop = refl can-new-irr θ₁ θ₂ θo (p ∥ q) (CBpar {FVp = FVp} cbp cbq BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) S-prop rewrite can-new-irr θ₁ θ₂ θo p cbp (λ S' S'∈FVp → S-prop S' (++ˡ S'∈FVp)) | can-new-irr θ₁ θ₂ θo q cbq (λ S' S'∈FVq → S-prop S' (++ʳ (proj₁ FVp) S'∈FVq)) = refl can-new-irr θ₁ θ₂ θo (loop q) (CBloop cbq BV≠FV) S-prop = can-new-irr θ₁ θ₂ θo q cbq S-prop can-new-irr θ₁ θ₂ θo (loopˢ p q) (CBloopˢ {BVp = BVp} {FVp = FVp} CBp CBq BVp≠FVq BVq≠FVq) S-prop rewrite can-new-irr θ₁ θ₂ θo p CBp (λ S' S'∈FVp → S-prop S' (++ˡ S'∈FVp)) | can-new-irr θ₁ θ₂ θo q CBq (λ S' S'∈FVq → S-prop S' (++ʳ (proj₁ FVp) S'∈FVq)) = refl can-new-irr θ₁ θ₂ θo (p >> q) (CBseq {BVp = BVp} {FVp = FVp} cbp cbq BVp≠FVq) S-prop with can-new-irr θ₁ θ₂ θo p cbp (λ S' S'∈FVp → S-prop S' (++ˡ S'∈FVp)) ... | can-p-θ₁←θo≡can-p-θ₁←θ₂←θo with any (Code._≟_ Code.nothin) (Canₖ p (θ₁ ← θo)) | any (Code._≟_ Code.nothin) (Canₖ p ((θ₁ ← θ₂) ← θo)) ... | yes nothin∈can-p-θ₁←θo | yes nothin∈can-p-θ₁←θ₂←θo rewrite can-p-θ₁←θo≡can-p-θ₁←θ₂←θo | can-new-irr θ₁ θ₂ θo q cbq (λ S' S'∈FVq → S-prop S' (++ʳ (proj₁ FVp) S'∈FVq)) = refl ... | yes nothin∈can-p-θ₁←θo | no nothin∉can-p-θ₁←θ₂←θo = ⊥-elim (nothin∉can-p-θ₁←θ₂←θo (subst (λ xs → Code.nothin ∈ proj₁ (proj₂ xs)) can-p-θ₁←θo≡can-p-θ₁←θ₂←θo nothin∈can-p-θ₁←θo)) ... | no nothin∉can-p-θ₁←θo | yes nothin∈can-p-θ₁←θ₂←θo = ⊥-elim (nothin∉can-p-θ₁←θo (subst (λ xs → Code.nothin ∈ proj₁ (proj₂ xs)) (sym can-p-θ₁←θo≡can-p-θ₁←θ₂←θo) nothin∈can-p-θ₁←θ₂←θo)) ... | no nothin∉can-p-θ₁←θo | no nothin∉can-p-θ₁←θ₂←θo rewrite can-p-θ₁←θo≡can-p-θ₁←θ₂←θo = refl can-new-irr θ₁ θ₂ θo (suspend q S) (CBsusp cbq [S]≠BVp) S-prop = can-new-irr θ₁ θ₂ θo q cbq (λ S' S'∈FV → S-prop S' (there S'∈FV)) can-new-irr θ₁ θ₂ θo (exit n) CBexit S-prop = refl can-new-irr θ₁ θ₂ θo (trap q) (CBtrap cbq) S-prop rewrite can-new-irr θ₁ θ₂ θo q cbq S-prop = refl can-new-irr θ₁ θ₂ θo (shared s ≔ e in: q) (CBshared {FV = FV} cbq) S-prop rewrite set-subtract-[] (proj₁ FV) | can-new-irr θ₁ θ₂ θo q cbq (λ S' S'∈FV → S-prop S' (++ʳ (proj₁ (FVₑ e)) S'∈FV)) = refl can-new-irr θ₁ θ₂ θo (s ⇐ e) CBsset S-prop = refl can-new-irr θ₁ θ₂ θo (var x ≔ e in: q) (CBvar {FV = FV} cbq) S-prop rewrite set-subtract-[] (proj₁ FV) = can-new-irr θ₁ θ₂ θo q cbq (λ S' S'∈FV → S-prop S' (++ʳ (proj₁ (FVₑ e)) S'∈FV)) can-new-irr θ₁ θ₂ θo (x ≔ e) CBvset S-prop = refl can-new-irr θ₁ θ₂ θo (if x ∣⇒ p ∣⇒ q) (CBif {FVp = FVp} cbp cbq) S-prop rewrite can-new-irr θ₁ θ₂ θo p cbp (λ S' S'∈FVp → S-prop S' (++ˡ S'∈FVp)) | can-new-irr θ₁ θ₂ θo q cbq (λ S' S'∈FVq → S-prop S' (++ʳ (proj₁ FVp) S'∈FVq)) = refl can-new-irr θ₁ θ₂ θo (ρ⟨ θ , A ⟩· q) (CBρ {FV = FV} cbq) S-prop rewrite canθ-new-irr (Env.sig θ) 0 θ₁ θ₂ θo q cbq (λ S' S'∈FV → Data.Sum.map (S-prop S') (subst (S' ∈_) (sym (map-id (proj₁ (Dom θ))))) (set-subtract-split {ys = proj₁ (Dom θ)} S'∈FV)) = refl canθ-new-irr-S-prop-accumulate : ∀ {xs ys zs} S status θo → (∀ S' → S' ∈ xs → (S' ∉ ys ⊎ S' ∈ proj₁ (Dom θo)) ⊎ S' ∈ (S + 0 ∷ map (_+_ S) (map suc zs))) → ∀ S' → S' ∈ xs → (S' ∉ ys ⊎ S' ∈ proj₁ (Dom (θo ← [ (S ₛ) ↦ status ]))) ⊎ S' ∈ map (_+_ (suc S)) zs canθ-new-irr-S-prop-accumulate {zs = zs} S status θo S-prop S' S'∈xs with S-prop S' S'∈xs ... | inj₁ (inj₁ S'∉ys) = inj₁ (inj₁ S'∉ys) ... | inj₁ (inj₂ S'∈Domθo) = inj₁ (inj₂ (Env.sig-←-monoˡ (S' ₛ) θo [ (S ₛ) ↦ status ] S'∈Domθo)) ... | inj₂ (here refl) rewrite +-comm S 0 = inj₁ (inj₂ (Env.sig-←-monoʳ (S ₛ) [ S ₛ ↦ status ] θo (Env.sig-∈-single (S ₛ) status))) ... | inj₂ (there S'∈map-+-S-suc-zs) rewrite map-+-compose-suc S zs = inj₂ S'∈map-+-S-suc-zs canθ-new-irr {BV} {FV} [] S θ₁ θ₂ θo q cbq S-prop = can-new-irr θ₁ θ₂ θo q cbq S-prop' where S-prop' : ∀ S' → S' ∈ proj₁ FV → S' ∉ proj₁ (Dom θ₂) ⊎ S' ∈ proj₁ (Dom θo) S-prop' S' S'∈FV with S-prop S' S'∈FV ... | inj₁ S'∉Domθ₂⊎S'∈Domθo = S'∉Domθ₂⊎S'∈Domθo ... | inj₂ () canθ-new-irr (nothing ∷ sigs) S θ₁ θ₂ θo q cbq S-prop = canθ-new-irr sigs (suc S) θ₁ θ₂ θo q cbq (λ S' S'∈FV → Data.Sum.map id (subst (S' ∈_) (map-+-compose-suc S (SigMap.keys sigs))) (S-prop S' S'∈FV)) canθ-new-irr (just Signal.present ∷ sigs) S θ₁ θ₂ θo q cbq S-prop rewrite sym (Env.←-assoc θ₁ θo ([S]-env-present (S ₛ))) | sym (Env.←-assoc (θ₁ ← θ₂) θo ([S]-env-present (S ₛ))) = canθ-new-irr sigs (suc S) θ₁ θ₂ (θo ← [S]-env-present (S ₛ)) q cbq (canθ-new-irr-S-prop-accumulate S Signal.present θo S-prop) canθ-new-irr (just Signal.absent ∷ sigs) S θ₁ θ₂ θo q cbq S-prop rewrite sym (Env.←-assoc θ₁ θo ([S]-env-absent (S ₛ))) | sym (Env.←-assoc (θ₁ ← θ₂) θo ([S]-env-absent (S ₛ))) = canθ-new-irr sigs (suc S) θ₁ θ₂ (θo ← [S]-env-absent (S ₛ)) q cbq (canθ-new-irr-S-prop-accumulate S Signal.absent θo S-prop) canθ-new-irr (just Signal.unknown ∷ sigs) S θ₁ θ₂ θo q cbq S-prop with any (_≟_ S) (Canθₛ sigs (suc S) q ((θ₁ ← θo) ← [S]-env (S ₛ))) | any (_≟_ S) (Canθₛ sigs (suc S) q (((θ₁ ← θ₂) ← θo) ← [S]-env (S ₛ))) ... | yes S∈canθ-sigs-q-θ₁←θo←[S] | yes S∈canθ-sigs-q-θ₁←θ₂←θo←[S] rewrite sym (Env.←-assoc θ₁ θo ([S]-env (S ₛ))) | sym (Env.←-assoc (θ₁ ← θ₂) θo ([S]-env (S ₛ))) = canθ-new-irr sigs (suc S) θ₁ θ₂ (θo ← [S]-env (S ₛ)) q cbq (canθ-new-irr-S-prop-accumulate S Signal.unknown θo S-prop) ... | no S∉canθ-sigs-q-θ₁←θo←[S] | no S∉canθ-sigs-q-θ₁←θ₂←θo←[S] rewrite sym (Env.←-assoc θ₁ θo ([S]-env-absent (S ₛ))) | sym (Env.←-assoc (θ₁ ← θ₂) θo ([S]-env-absent (S ₛ))) = canθ-new-irr sigs (suc S) θ₁ θ₂ (θo ← [S]-env-absent (S ₛ)) q cbq (canθ-new-irr-S-prop-accumulate S Signal.absent θo S-prop) ... | yes S∈canθ-sigs-q-θ₁←θo←[S] | no S∉canθ-sigs-q-θ₁←θ₂←θo←[S] rewrite sym (Env.←-assoc θ₁ θo ([S]-env (S ₛ))) | sym (Env.←-assoc (θ₁ ← θ₂) θo ([S]-env (S ₛ))) | canθ-new-irr sigs (suc S) θ₁ θ₂ (θo ← [S]-env (S ₛ)) q cbq (canθ-new-irr-S-prop-accumulate S Signal.unknown θo S-prop) = ⊥-elim (S∉canθ-sigs-q-θ₁←θ₂←θo←[S] S∈canθ-sigs-q-θ₁←θo←[S]) ... | no S∉canθ-sigs-q-θ₁←θo←[S] | yes S∈canθ-sigs-q-θ₁←θ₂←θo←[S] rewrite sym (Env.←-assoc θ₁ θo ([S]-env (S ₛ))) | sym (Env.←-assoc (θ₁ ← θ₂) θo ([S]-env (S ₛ))) | canθ-new-irr sigs (suc S) θ₁ θ₂ (θo ← [S]-env (S ₛ)) q cbq (canθ-new-irr-S-prop-accumulate S Signal.unknown θo S-prop) = ⊥-elim (S∉canθ-sigs-q-θ₁←θo←[S] S∈canθ-sigs-q-θ₁←θ₂←θo←[S]) can-irr : ∀ {BV} {FV} θ₁ θ₂ q → CorrectBinding q BV FV → (distinct' (proj₁ FV) (proj₁ (Dom θ₂))) → Can q θ₁ ≡ Can q (θ₁ ← θ₂) can-irr θ₁ θ₂ q cbq FV≠Domθ₂ with can-new-irr θ₁ θ₂ Env.[]env q cbq (λ S' S'∈FV → inj₁ (FV≠Domθ₂ S' S'∈FV)) ... | eq rewrite cong (Can q) (Env.←-comm Env.[]env θ₁ distinct-empty-left) | cong (Can q) (Env.←-comm Env.[]env (θ₁ ← θ₂) distinct-empty-left) = eq
46.566038
128
0.568679
dca2d116ddcc62d64ecaeb6f0a96ea9ea3f8cf25
2,766
agda
Agda
examples/outdated-and-incorrect/tait/Prelude.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/tait/Prelude.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/tait/Prelude.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Prelude where infix 20 _≡_ _≤_ _∈_ infixl 60 _,_ _++_ _+_ _◄_ _◄²_ _∘_ : {A B : Set}{C : B -> Set}(f : (x : B) -> C x)(g : A -> B)(x : A) -> C (g x) (f ∘ g) x = f (g x) data _≡_ {A : Set}(x : A) : {B : Set} -> B -> Set where refl : x ≡ x cong : {A : Set}{B : A -> Set}(f : (z : A) -> B z){x y : A} -> x ≡ y -> f x ≡ f y cong f refl = refl subst : {A : Set}(P : A -> Set){x y : A} -> x ≡ y -> P y -> P x subst P refl px = px sym : {A : Set}{x y : A} -> x ≡ y -> y ≡ x sym refl = refl data Nat : Set where zero : Nat suc : Nat -> Nat _+_ : Nat -> Nat -> Nat zero + m = m suc n + m = suc (n + m) {-# BUILTIN NATURAL Nat #-} {-# BUILTIN NATPLUS _+_ #-} data _≤_ : Nat -> Nat -> Set where leqZ : {m : Nat} -> zero ≤ m leqS : {n m : Nat} -> n ≤ m -> suc n ≤ suc m refl-≤ : {n : Nat} -> n ≤ n refl-≤ {zero } = leqZ refl-≤ {suc n} = leqS refl-≤ refl-≤' : {n m : Nat} -> n ≡ m -> n ≤ m refl-≤' refl = refl-≤ trans-≤ : {x y z : Nat} -> x ≤ y -> y ≤ z -> x ≤ z trans-≤ leqZ yz = leqZ trans-≤ (leqS xy) (leqS yz) = leqS (trans-≤ xy yz) lem-≤suc : {x : Nat} -> x ≤ suc x lem-≤suc {zero } = leqZ lem-≤suc {suc x} = leqS lem-≤suc lem-≤+L : (x : Nat){y : Nat} -> y ≤ x + y lem-≤+L zero = refl-≤ lem-≤+L (suc x) = trans-≤ (lem-≤+L x) lem-≤suc lem-≤+R : {x y : Nat} -> x ≤ x + y lem-≤+R {zero } = leqZ lem-≤+R {suc x} = leqS lem-≤+R data List (A : Set) : Set where ε : List A _,_ : List A -> A -> List A _++_ : {A : Set} -> List A -> List A -> List A xs ++ ε = xs xs ++ (ys , y) = (xs ++ ys) , y data All {A : Set}(P : A -> Set) : List A -> Set where ∅ : All P ε _◄_ : forall {xs x} -> All P xs -> P x -> All P (xs , x) {- data Some {A : Set}(P : A -> Set) : List A -> Set where hd : forall {x xs} -> P x -> Some P (xs , x) tl : forall {x xs} -> Some P xs -> Some P (xs , x) -} data _∈_ {A : Set}(x : A) : List A -> Set where hd : forall {xs} -> x ∈ xs , x tl : forall {y xs} -> x ∈ xs -> x ∈ xs , y _!_ : {A : Set}{P : A -> Set}{xs : List A} -> All P xs -> {x : A} -> x ∈ xs -> P x ∅ ! () (xs ◄ x) ! hd = x (xs ◄ x) ! tl i = xs ! i tabulate : {A : Set}{P : A -> Set}{xs : List A} -> ({x : A} -> x ∈ xs -> P x) -> All P xs tabulate {xs = ε} f = ∅ tabulate {xs = xs , x} f = tabulate (f ∘ tl) ◄ f hd data All² {I : Set}{A : I -> Set}(P : {i : I} -> A i -> Set) : {is : List I} -> All A is -> Set where ∅² : All² P ∅ _◄²_ : forall {i is}{x : A i}{xs : All A is} -> All² P xs -> P x -> All² P (xs ◄ x) data _∈²_ {I : Set}{A : I -> Set}{i : I}(x : A i) : {is : List I} -> All A is -> Set where hd² : forall {is}{xs : All A is} -> x ∈² xs ◄ x tl² : forall {j is}{y : A j}{xs : All A is} -> x ∈² xs -> x ∈² xs ◄ y
26.342857
81
0.435286
0e5c5c77e66b3e256aa745eb27d76e9c4057952e
1,180
agda
Agda
agda/proof-nat.agda
anqurvanillapy/fpl
9576d5b76e6a868992dbe52930712ac67697bed2
[ "MIT" ]
1
2019-08-24T22:47:47.000Z
2019-08-24T22:47:47.000Z
agda/proof-nat.agda
anqurvanillapy/fpl
9576d5b76e6a868992dbe52930712ac67697bed2
[ "MIT" ]
null
null
null
agda/proof-nat.agda
anqurvanillapy/fpl
9576d5b76e6a868992dbe52930712ac67697bed2
[ "MIT" ]
null
null
null
import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎) data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} {- Addition -} _+_ : ℕ → ℕ → ℕ zero + n = n (suc m) + n = suc (m + n) _ : 3 + 4 ≡ 7 _ = begin 3 + 4 ≡⟨⟩ suc (2 + 4) ≡⟨⟩ suc (suc (1 + 4)) ≡⟨⟩ suc (suc (suc (0 + 4))) ≡⟨⟩ suc (suc (suc 4)) ≡⟨⟩ 7 ∎ _ : 1 + 1 ≡ 2 _ = refl {- Multiplication -} _*_ : ℕ → ℕ → ℕ zero * n = zero (suc m) * n = n + (m * n) _ : 2 * 2 ≡ 4 _ = begin 2 * 2 ≡⟨⟩ 2 + (1 * 2) ≡⟨⟩ 2 + (2 + (0 * 2)) ≡⟨⟩ 2 + 2 ≡⟨⟩ 4 ∎ _ : 1 * 1 ≡ 1 _ = refl {- Exponentiation -} _^_ : ℕ → ℕ → ℕ n ^ 0 = 1 n ^ (suc m) = n * (n ^ m) _ : 2 ^ 3 ≡ 8 _ = begin 2 ^ 3 ≡⟨⟩ 2 * (2 ^ 2) ≡⟨⟩ 2 * (2 * (2 ^ 1)) ≡⟨⟩ 2 * (2 * (2 * (2 ^ 0))) ≡⟨⟩ 2 * (2 * (2 * 1)) ≡⟨⟩ 8 ∎ _ : 42 ^ 0 ≡ 1 _ = refl {- Monus -} _∸_ : ℕ → ℕ → ℕ m ∸ zero = m zero ∸ (suc n) = zero (suc m) ∸ (suc n) = m ∸ n _ : 2 ∸ 1 ≡ 1 _ = begin 2 ∸ 1 ≡⟨⟩ 1 ∸ 0 ≡⟨⟩ 1 ∎ _ : 7 ∸ 4 ≡ 3 _ = refl _ : 4 ∸ 7 ≡ 0 _ = refl
11.132075
50
0.35678
1cac0d8654e2781d5d447a370e5ef7a186d7bdc6
1,030
agda
Agda
lib/types/Groupoid.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
lib/types/Groupoid.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
lib/types/Groupoid.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.NType2 open import lib.types.TLevel open import lib.types.Sigma open import lib.types.Pi module lib.types.Groupoid where record GroupoidStructure {i j} {El : Type i} (Arr : El → El → Type j) (_ : ∀ x y → has-level ⟨0⟩ (Arr x y)) : Type (lmax i j) where field id : ∀ {x} → Arr x x inv : ∀ {x y} → Arr x y → Arr y x comp : ∀ {x y z} → Arr x y → Arr y z → Arr x z unit-l : ∀ {x y} (a : Arr x y) → comp id a == a unit-r : ∀ {x y} (a : Arr x y) → comp a id == a assoc : ∀ {x y z w} (a : Arr x y) (b : Arr y z) (c : Arr z w) → comp (comp a b) c == comp a (comp b c) inv-r : ∀ {x y} (a : Arr x y) → (comp a (inv a)) == id inv-l : ∀ {x y } (a : Arr x y) → (comp (inv a) a) == id record Groupoid {i j} : Type (lsucc (lmax i j)) where constructor groupoid field El : Type i Arr : El → El → Type j Arr-level : ∀ x y → has-level ⟨0⟩ (Arr x y) groupoid-struct : GroupoidStructure Arr Arr-level
33.225806
69
0.538835
4a0ea43afec71e24f6d20cb96cf547d2cce05282
9,169
agda
Agda
src/scratch/FinDecEq1.agda
zampino/ggt
e2d6b5f9bea15dd67817bf67e273f6b9a14335af
[ "MIT" ]
2
2020-04-17T11:10:00.000Z
2020-11-28T05:48:39.000Z
src/scratch/FinDecEq1.agda
zampino/ggt
e2d6b5f9bea15dd67817bf67e273f6b9a14335af
[ "MIT" ]
null
null
null
src/scratch/FinDecEq1.agda
zampino/ggt
e2d6b5f9bea15dd67817bf67e273f6b9a14335af
[ "MIT" ]
null
null
null
module Scratch.FinDecEq1 where open import Data.Bool.Base hiding (_≤_) open import Data.Product open import Data.Sum open import Level renaming (suc to lsuc; _⊔_ to _⊔ℓ_; zero to lzero) open import Relation.Nullary open import Relation.Nullary.Decidable open import Relation.Unary using (Decidable) open import Relation.Binary hiding (Decidable) open import Function.Base -- open import Function.Bijection hiding (_∘_) -- open import Function.Equality hiding (≡-setoid; _∘_) open import Data.Nat.Base hiding (_≤_) open import Data.Fin renaming (zero to fzero; suc to fsuc) open import Data.Fin.Properties hiding (to-from) -- see http://firsov.ee/finset/finset.pdf open import Data.List.Base renaming (tabulate to tab; lookup to nth; filter to lfilter; allFin to allF) open import Data.List.Properties open import Data.List.Relation.Unary.Any -- open import Data.List.Membership.Propositional renaming (_∈_ to _∈ℓ_) -- open import Data.List.Membership.Propositional.Properties open import Data.List.Relation.Unary.Any as Any -- hiding (tail) open import Data.List.Relation.Unary.Any.Properties hiding (tabulate⁺) open import Data.List.Relation.Unary.All as All hiding (tabulate) open import Data.List.Relation.Unary.AllPairs as AllPairs open import Data.List.Relation.Unary.AllPairs.Properties renaming (map⁺ to ap-map⁺) -- :-( can't use Vector because it doesn't have a filter -- open import Data.Vec.Functional as Coll -- open import Data.Vec.Functional.Relation.Unary.Any -- renaming (here to here'; there to there') open import Relation.Binary.PropositionalEquality as Eq open Eq.≡-Reasoning open import Scratch.Data.List.Relation.Helpers open import Scratch.Subset -- record StronglyFiniteSetoid (n : ℕ) : Set (lsuc (c ⊔ℓ ℓ)) where -- field -- S : Setoid c ℓ -- χ : Bijection (≡-setoid n) S -- -- open Setoid S -- open Bijection χ -- open Π to renaming (_⟨$⟩_ to to') -- open Π from renaming (_⟨$⟩_ to from') -- -- ι : Fin n → Carrier -- ι x = to' x -- -- ρ : Carrier → Fin n -- ρ y = from' y -- TODO: pullback of ω where ω ≤ _≈_ (see orbital relation) -- /Users/amantini/dev/agda/agda-stdlib/README/Data/Interleaving.agda -- if ω is decidable then the pullback is a FinDecEq open import Data.Vec hiding (length) renaming (lookup to vlookup) open import Data.Vec.Properties -- open import Data.Vec.Relation.Unary.Any open import Data.Fin.Subset open import Data.Fin.Subset.Properties lmap = Data.List.Base.map syntax lmap (λ x → B) L = ⟦ B ∣ x ∈ℓ L ⟧ fsuc∈ : ∀ {n} → { p : Subset n} → {x : Fin n} → {s : Side} → (x ∈ p) → (fsuc x) ∈ (s Data.Vec.∷ p) fsuc∈ here = there here fsuc∈ (there x∈p) = there (fsuc∈ x∈p) fst₊ : ∀ {n} → (s : Subset n) → Nonempty s → Σ (Fin n) (λ x → ( x ∈ s × (∀ {y} → (y ∈ s) → x ≤ y ))) fst₊ {suc n} (inside ∷ rest) ne = ( fzero , here , λ _ → z≤n ) fst₊ {suc n} (outside ∷ rest) ne with (∃-toSum ne) ... | inj₂ b = let w = drop-there (proj₂ b) z = (proj₁ b , w) ( a , bb , c ) = (fst₊ rest z) in (fsuc a , fsuc∈ bb , λ { (there y∈s) → s≤s (c y∈s) } ) fst₋ : ∀ {n} → (s : Subset n) → Nonempty s → Fin n fst₋ s ne = proj₁ (fst₊ s ne) fst₋unique : ∀ {n} → ∀ (s t : Subset n) → (ns : Nonempty s) → (nt : Nonempty t) → s ≡ t → (fst₋ s ns) ≡ (fst₋ t nt) fst₋unique s t ns nt s≡t = let fs , fs∈s , fs≤ = (fst₊ s ns) ft , ft∈t , ft≤ = (fst₊ t nt) ft∈s : ft ∈ s ft∈s = subst _ (sym s≡t) ft∈t fs∈t : fs ∈ t fs∈t = subst _ s≡t fs∈s in ≤-antisym (fs≤ ft∈s) (ft≤ fs∈t) open import Data.Unit hiding (_≟_; ⊤) -- TODO: see src/Data/List/Membership/Setoid.agda -- see src/Relation/Nullary/Decidable.agda ≡→T : ∀ {b : Bool} → b ≡ true → T b ≡→T refl = tt record FinDecEq {a} (n : ℕ) : Set (lsuc a) where field _ω_ : Rel (Fin n) a isDecEq : IsDecEquivalence _ω_ std : DecSetoid _ _ std = record { Carrier = (Fin n) ; _≈_ = _ω_ ; isDecEquivalence = isDecEq } open DecSetoid std renaming (_≟_ to _ω?_ ; refl to r ; sym to s ; trans to t ; Carrier to F; setoid to std') public import Data.List.Membership.Propositional module MP = Data.List.Membership.Propositional {A = F} open MP renaming (_∈_ to _∈ℓ_) -- open import Data.List.Membership.Propositional renaming (_∈_ to _∈ℓ_) open import Data.List.Membership.Propositional.Properties [_]ω : (Fin n) → Subset n [ o ]ω = tabulate (does ∘ (_ω? o)) -- TODO: use src/Data/List/Membership/Setoid.agda -- and src/Data/Fin/Subset/Properties.agda ω⇒∈ : ∀ {x y} → x ω y → x ∈ [ y ]ω ω⇒∈ {x} {y} xωy = let lkp = begin vlookup [ y ]ω x ≡⟨ lookup∘tabulate _ x ⟩ does (x ω? y) ≡⟨ dec-true (x ω? y) xωy ⟩ true ∎ in lookup⇒[]= x [ y ]ω lkp -- in particular classes are not empty o∈[o]ω : ∀ { o : Fin n } → o ∈ [ o ]ω o∈[o]ω = ω⇒∈ r -- and actually equal -- conversely ∈⇒ω : ∀ {x y} → x ∈ [ y ]ω → x ω y ∈⇒ω {x} {y} x∈[y] = let w = begin true ≡˘⟨ []=⇒lookup x∈[y] ⟩ vlookup [ y ]ω x ≡⟨ lookup∘tabulate _ x ⟩ does (x ω? y) ≡˘⟨ isYes≗does _ ⟩ isYes (x ω? y) ∎ r : True (x ω? y) r = ≡→T (sym w) in toWitness r ω⇒⊆ : ∀ {x y} → x ω y → [ x ]ω ⊆ [ y ]ω ω⇒⊆ {x} {y} xωy {s} s∈[x] = ω⇒∈ (t (∈⇒ω s∈[x]) xωy ) ω⇒≡ : ∀ {x y} → x ω y → [ x ]ω ≡ [ y ]ω ω⇒≡ {x} {y} xωy = ⊆-antisym (ω⇒⊆ xωy) (ω⇒⊆ (s xωy)) -- canonical choice - TODO c : F → F c f = fst₋ {n} [ f ]ω ( f , o∈[o]ω ) -- cx∈[x] : ∀ (x : Fin n) → (c x) ∈ [ x ]ω cx∈[x] x = proj₁ (proj₂ (fst₊ [ x ]ω ( x , o∈[o]ω ))) xωcx : ∀ (x : F) → x ω (c x) xωcx x = s (∈⇒ω (cx∈[x] x)) -- c⇒ω : ∀ {x y} → c x ≡ c y → x ω y c⇒ω {x} {y} cx≡cy = let P = λ q → q ∈ [ y ]ω w : (c x) ∈ [ y ]ω w = subst P (sym cx≡cy) (cx∈[x] y) in t (xωcx x) (∈⇒ω w) -- ω⇒c : ∀ {x y} → x ω y → c x ≡ c y ω⇒c {x} {y} xωy = fst₋unique _ _ _ _ (ω⇒≡ xωy) c-idempt : (x : F) → c (c x) ≡ c x c-idempt x = ω⇒c {c x} {x} (s (xωcx x)) ω-disj : ∀ {x y} → ¬ (x ω y) → Empty ([ x ]ω ∩ [ y ]ω) ω-disj {x} {y} ¬xωy f∈∩ = let f , [x]∩[y] = f∈∩ l , r = x∈p∩q⁻ _ _ [x]∩[y] fωx : f ω x fωx = ∈⇒ω l fωy = ∈⇒ω r in ¬xωy (t (s fωx) fωy) ω-Disj : ∀ {x y} → ¬ (x ω y) → Disj [ x ]ω [ y ]ω ω-Disj ¬xωy = Empty-unique (ω-disj ¬xωy) -- canonical representative cr : (i : F) → Set cr i = i ≡ (c i) -- c' : (i : F) → cr i × i ω (c i) -- _≟_ cr? : Decidable cr cr? = λ i → i ≟ (c i) cr-disj : ∀ {x y} → (cr x) → (cr y) → x ≢ y → ¬ (x ω y) cr-disj {x} {y} crx cry x≢y xωy = let x≡y = begin x ≡⟨ crx ⟩ c x ≡⟨ ω⇒c xωy ⟩ c y ≡˘⟨ cry ⟩ y ∎ in x≢y x≡y Tr : List F Tr = (lfilter cr? (allF n)) -- ∈-filter⁻ : ∀ {v xs} → v ∈ filter P? xs → v ∈ xs × P v -- C : List (Subset n) -- C = ⟦ [ x ]ω ∣ x ∈ℓ Tr ⟧ -- ap x≢y allF -- ap ¬ x ω y Tr -- ap Disj (map [_] Tr) ap1 : AllPairs _≢_ (allF n) ap1 = tabulate⁺ id ap2 : AllPairs (λ x y → ¬ x ω y) Tr ap2 = filter⁺⁺ cr? cr-disj ap1 ap3 : AllPairs Disj ⟦ [ x ]ω ∣ x ∈ℓ Tr ⟧ ap3 = ap-map⁺ (AllPairs.map ω-Disj ap2) C-cover' : ∀ (x : F) → (∃ λ k → cr k × x ω k) C-cover' x = (c x) , sym (c-idempt x) , xωcx x C-cover : ∀ (x : F) → Any (x ∈_) ⟦ [ x ]ω ∣ x ∈ℓ Tr ⟧ C-cover x = let (k , crk , xωk) = C-cover' x k∈ℓallF : k ∈ℓ allF n k∈ℓallF = ∈-allFin {n} k k∈ℓTr : k ∈ℓ Tr k∈ℓTr = ∈-filter⁺ cr? k∈ℓallF crk a : Any (x ω_) Tr a = lose k∈ℓTr xωk b : Any ((x ∈_) ∘ [_]ω) Tr b = Any.map ω⇒∈ a -- map⁺ : Any (P ∘ f) xs → Any P (List.map f xs) in map⁺ b -- []ω-cover : ⊤ ≡ ⋃ ⟦ [ x ]ω ∣ x ∈ℓ Tr ⟧ []ω-cover = cover-⊤ ⟦ [ x ]ω ∣ x ∈ℓ Tr ⟧ C-cover -- Cardinality : n ≡ Data.List.Base.sum ⟦ ∣ [ x ]ω ∣ ∣ x ∈ℓ Tr ⟧ -- Cardinality = -- let c = ∣⋃ᵢpᵢ∣≡Σᵢ∣pᵢ∣ ⟦ [ x ]ω ∣ x ∈ℓ Tr ⟧ ap3 -- in begin -- n ≡˘⟨ ∣⊤∣≡n n ⟩ -- ∣ ⊤ {n} ∣ ≡⟨ cong ∣_∣ []ω-cover ⟩ -- ∣ ⋃ ⟦ [ x ]ω ∣ x ∈ℓ Tr ⟧ ∣ ≡⟨ c ⟩ -- -- cong List.sum (map-compose λ t → ∣ [ t ]ω ∣ ) refl -- Data.List.Base.sum (lmap ∣_∣ ⟦ [ x ]ω ∣ x ∈ℓ Tr ⟧) ≡˘⟨ ? ⟩ -- Data.List.Base.sum ⟦ ∣ [ x ]ω ∣ ∣ x ∈ℓ Tr ⟧ ∎
33.221014
100
0.476279
cb0d762e677bfa0cfe498ef56662e6731ed1a133
233
agda
Agda
test/Succeed/Issue2155.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue2155.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue2155.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
open import Agda.Builtin.Bool open import Agda.Builtin.Equality open import Agda.Builtin.Float NaN : Float NaN = primFloatDiv 0.0 0.0 defNaN : NaN ≡ NaN defNaN = refl primEqNaN : primFloatEquality NaN NaN ≡ true primEqNaN = refl
16.642857
44
0.763948
d0af3abea33c0dad136dfae6da85ddee873edff9
1,051
agda
Agda
test/Succeed/QuoteAbsurdClause.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/QuoteAbsurdClause.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/QuoteAbsurdClause.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Builtin.Unit open import Agda.Builtin.Nat open import Agda.Builtin.Equality open import Agda.Builtin.List open import Agda.Builtin.Sigma open import Agda.Builtin.Reflection renaming (bindTC to _>>=_) data ⊥ : Set where [_] : {A : Set} → A → List A [ x ] = x ∷ [] vArg : {A : Set} → A → Arg A vArg x = arg (arg-info visible (modality relevant quantity-ω)) x macro getFunDef : Name → Term → TC ⊤ getFunDef f hole = do function cls ← getDefinition f where _ → error niceCls ← quoteTC cls unify hole niceCls where postulate error : _ noooo : (A : Set) → ⊥ → A noooo A () -- Quoting the term `noooo Nat x` used to produce an absurd lambda -- applied to `x`, which should not happen. It should instead simply -- keep the term `noooo Nat x` as-is. fooooo : ⊥ → Nat fooooo x = noooo Nat x test : getFunDef fooooo ≡ [ clause [ "x" , vArg (def (quote ⊥) []) ] [ vArg (var 0) ] (def (quote noooo) (vArg (def (quote Nat) []) ∷ vArg (var 0 []) ∷ [])) ] test = refl
25.02381
88
0.617507
fb93ae84543a6186d71cd30fbc7433a6b6bbdb32
598
agda
Agda
Agda/ProcessAlgebra.agda
Brethland/LEARNING-STUFF
eb2cef0556efb9a4ce11783f8516789ea48cc344
[ "MIT" ]
2
2020-02-03T05:05:52.000Z
2020-03-11T10:35:42.000Z
Agda/ProcessAlgebra.agda
Brethland/LEARNING-STUFF
eb2cef0556efb9a4ce11783f8516789ea48cc344
[ "MIT" ]
null
null
null
Agda/ProcessAlgebra.agda
Brethland/LEARNING-STUFF
eb2cef0556efb9a4ce11783f8516789ea48cc344
[ "MIT" ]
1
2019-12-13T04:50:46.000Z
2019-12-13T04:50:46.000Z
module ProcessAlgebra where open import Data.Nat open import Data.Nat.Properties open import Data.List data Channel : Set where ℂ_ : ℕ → Channel data ℙ : Set₁ where ν_[_] : List Channel → (Channel → ℙ) → ℙ B_,_ : Channel → ℙ → ℙ Send_[_],_ : ∀ {A : Set} → Channel → A → ℙ → ℙ Recv_,_ : ∀ {A : Set} → Channel → (A → ℙ) → ℙ _||_ : ℙ → ℙ → ℙ Dup_ : ℙ → ℙ Done : ℙ data Message : Set₁ where _,_of_ : Channel → (A : Set) → A → Message data Action : Set₁ where Out_ : Message → Action In_ : Message → Action data Label : Set₁ where Silent : Label Act_ : Action → Label
19.290323
48
0.605351
4a696337d00519e048501af3c107c0f237dc46cb
734
agda
Agda
agda/Everything.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/Everything.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/Everything.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
module Everything where open import Relation.Binary.Core postulate A : Set postulate _≤_ : A → A → Set postulate tot≤ : Total _≤_ postulate trans≤ : Transitive _≤_ open import BBHeap.Everything _≤_ tot≤ trans≤ open import BHeap.Everything _≤_ tot≤ open import BTree.Complete.Alternative.Correctness {A} open import BubbleSort.Everything _≤_ tot≤ trans≤ open import Heapsort.Everything _≤_ tot≤ trans≤ open import InsertSort.Everything _≤_ tot≤ open import List.Permutation.Base.Bag A open import Mergesort.Everything _≤_ tot≤ open import PLRTree.Everything _≤_ tot≤ trans≤ open import Quicksort.Everything _≤_ tot≤ trans≤ open import SelectSort.Everything _≤_ tot≤ trans≤ open import TreeSort.Everything _≤_ tot≤ trans≤
22.242424
54
0.775204
cbda517d996a5dbbbc07f074c0f2b393025bab0b
382
agda
Agda
Base.agda
DDOtten/M-types
5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369
[ "MIT" ]
null
null
null
Base.agda
DDOtten/M-types
5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369
[ "MIT" ]
null
null
null
Base.agda
DDOtten/M-types
5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} module M-types.Base where open import M-types.Base.Core public open import M-types.Base.Sum public open import M-types.Base.Prod public open import M-types.Base.Eq public open import M-types.Base.Equi public open import M-types.Base.Rel public open import M-types.Base.Contr public open import M-types.Base.Axiom public
29.384615
41
0.717277
396fbc021c94087d58e9df16ebe89fc61ce42245
666
agda
Agda
test/Succeed/Issue2386BuiltinEqualitySet.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2386BuiltinEqualitySet.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2386BuiltinEqualitySet.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2017-01-12, issue #2386 -- Relaxing the constraints of BUILTIN EQUALITY postulate A : Set a b : A P : A → Set -- Level-polymorphic equality module P where data _≡_ {a} {A : Set a} (x : A) : A → Set a where instance refl : x ≡ x -- Set-polymorphic equality data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ #-} -- The type of primErase has to match the flavor of EQUALITY primitive primEraseEquality : ∀ {A : Set} {x y : A} → _≡_ x y → _≡_ x y testTM : (eq : a ≡ a) → primEraseEquality {x = a} {y = a} eq ≡ refl testTM _ = refl -- Testing rewrite subst : a ≡ b → P a → P b subst eq p rewrite eq = p
20.181818
71
0.605105
20a8c9d333d994ba3823a79d6ee73d5674f75132
15,775
agda
Agda
src/data/lib/prim/Agda/Builtin/Reflection.agda
isovector/agda
9a29f3a1f5e24c818bdabbf2c17d0f79887aa8b4
[ "BSD-2-Clause" ]
null
null
null
src/data/lib/prim/Agda/Builtin/Reflection.agda
isovector/agda
9a29f3a1f5e24c818bdabbf2c17d0f79887aa8b4
[ "BSD-2-Clause" ]
null
null
null
src/data/lib/prim/Agda/Builtin/Reflection.agda
isovector/agda
9a29f3a1f5e24c818bdabbf2c17d0f79887aa8b4
[ "BSD-2-Clause" ]
null
null
null
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness #-} module Agda.Builtin.Reflection where open import Agda.Builtin.Unit open import Agda.Builtin.Bool open import Agda.Builtin.Nat open import Agda.Builtin.Word open import Agda.Builtin.List open import Agda.Builtin.String open import Agda.Builtin.Char open import Agda.Builtin.Float open import Agda.Builtin.Int open import Agda.Builtin.Sigma open import Agda.Primitive -- Names -- postulate Name : Set {-# BUILTIN QNAME Name #-} primitive primQNameEquality : Name → Name → Bool primQNameLess : Name → Name → Bool primShowQName : Name → String -- Fixity -- data Associativity : Set where left-assoc : Associativity right-assoc : Associativity non-assoc : Associativity data Precedence : Set where related : Float → Precedence unrelated : Precedence data Fixity : Set where fixity : Associativity → Precedence → Fixity {-# BUILTIN ASSOC Associativity #-} {-# BUILTIN ASSOCLEFT left-assoc #-} {-# BUILTIN ASSOCRIGHT right-assoc #-} {-# BUILTIN ASSOCNON non-assoc #-} {-# BUILTIN PRECEDENCE Precedence #-} {-# BUILTIN PRECRELATED related #-} {-# BUILTIN PRECUNRELATED unrelated #-} {-# BUILTIN FIXITY Fixity #-} {-# BUILTIN FIXITYFIXITY fixity #-} {-# COMPILE GHC Associativity = data MAlonzo.RTE.Assoc (MAlonzo.RTE.LeftAssoc | MAlonzo.RTE.RightAssoc | MAlonzo.RTE.NonAssoc) #-} {-# COMPILE GHC Precedence = data MAlonzo.RTE.Precedence (MAlonzo.RTE.Related | MAlonzo.RTE.Unrelated) #-} {-# COMPILE GHC Fixity = data MAlonzo.RTE.Fixity (MAlonzo.RTE.Fixity) #-} {-# COMPILE JS Associativity = function (x,v) { return v[x](); } #-} {-# COMPILE JS left-assoc = "left-assoc" #-} {-# COMPILE JS right-assoc = "right-assoc" #-} {-# COMPILE JS non-assoc = "non-assoc" #-} {-# COMPILE JS Precedence = function (x,v) { if (x === "unrelated") { return v[x](); } else { return v["related"](x); }} #-} {-# COMPILE JS related = function(x) { return x; } #-} {-# COMPILE JS unrelated = "unrelated" #-} {-# COMPILE JS Fixity = function (x,v) { return v["fixity"](x["assoc"], x["prec"]); } #-} {-# COMPILE JS fixity = function (x) { return function (y) { return { "assoc": x, "prec": y}; }; } #-} primitive primQNameFixity : Name → Fixity primQNameToWord64s : Name → Σ Word64 (λ _ → Word64) -- Metavariables -- postulate Meta : Set {-# BUILTIN AGDAMETA Meta #-} primitive primMetaEquality : Meta → Meta → Bool primMetaLess : Meta → Meta → Bool primShowMeta : Meta → String primMetaToNat : Meta → Nat -- Arguments -- -- Arguments can be (visible), {hidden}, or {{instance}}. data Visibility : Set where visible hidden instance′ : Visibility {-# BUILTIN HIDING Visibility #-} {-# BUILTIN VISIBLE visible #-} {-# BUILTIN HIDDEN hidden #-} {-# BUILTIN INSTANCE instance′ #-} -- Arguments can be relevant or irrelevant. data Relevance : Set where relevant irrelevant : Relevance {-# BUILTIN RELEVANCE Relevance #-} {-# BUILTIN RELEVANT relevant #-} {-# BUILTIN IRRELEVANT irrelevant #-} -- Arguments also have a quantity. data Quantity : Set where quantity-0 quantity-ω : Quantity {-# BUILTIN QUANTITY Quantity #-} {-# BUILTIN QUANTITY-0 quantity-0 #-} {-# BUILTIN QUANTITY-ω quantity-ω #-} -- Relevance and quantity are combined into a modality. data Modality : Set where modality : (r : Relevance) (q : Quantity) → Modality {-# BUILTIN MODALITY Modality #-} {-# BUILTIN MODALITY-CONSTRUCTOR modality #-} data ArgInfo : Set where arg-info : (v : Visibility) (m : Modality) → ArgInfo data Arg {a} (A : Set a) : Set a where arg : (i : ArgInfo) (x : A) → Arg A {-# BUILTIN ARGINFO ArgInfo #-} {-# BUILTIN ARGARGINFO arg-info #-} {-# BUILTIN ARG Arg #-} {-# BUILTIN ARGARG arg #-} -- Name abstraction -- data Abs {a} (A : Set a) : Set a where abs : (s : String) (x : A) → Abs A {-# BUILTIN ABS Abs #-} {-# BUILTIN ABSABS abs #-} -- Literals -- data Literal : Set where nat : (n : Nat) → Literal word64 : (n : Word64) → Literal float : (x : Float) → Literal char : (c : Char) → Literal string : (s : String) → Literal name : (x : Name) → Literal meta : (x : Meta) → Literal {-# BUILTIN AGDALITERAL Literal #-} {-# BUILTIN AGDALITNAT nat #-} {-# BUILTIN AGDALITWORD64 word64 #-} {-# BUILTIN AGDALITFLOAT float #-} {-# BUILTIN AGDALITCHAR char #-} {-# BUILTIN AGDALITSTRING string #-} {-# BUILTIN AGDALITQNAME name #-} {-# BUILTIN AGDALITMETA meta #-} -- Terms and patterns -- data Term : Set data Sort : Set data Pattern : Set data Clause : Set Type = Term Telescope = List (Σ String λ _ → Arg Type) data Term where var : (x : Nat) (args : List (Arg Term)) → Term con : (c : Name) (args : List (Arg Term)) → Term def : (f : Name) (args : List (Arg Term)) → Term lam : (v : Visibility) (t : Abs Term) → Term pat-lam : (cs : List Clause) (args : List (Arg Term)) → Term pi : (a : Arg Type) (b : Abs Type) → Term agda-sort : (s : Sort) → Term lit : (l : Literal) → Term meta : (x : Meta) → List (Arg Term) → Term unknown : Term data Sort where set : (t : Term) → Sort lit : (n : Nat) → Sort prop : (t : Term) → Sort propLit : (n : Nat) → Sort inf : (n : Nat) → Sort unknown : Sort data Pattern where con : (c : Name) (ps : List (Arg Pattern)) → Pattern dot : (t : Term) → Pattern var : (x : Nat) → Pattern lit : (l : Literal) → Pattern proj : (f : Name) → Pattern absurd : (x : Nat) → Pattern -- absurd patterns counts as variables data Clause where clause : (tel : Telescope) (ps : List (Arg Pattern)) (t : Term) → Clause absurd-clause : (tel : Telescope) (ps : List (Arg Pattern)) → Clause {-# BUILTIN AGDATERM Term #-} {-# BUILTIN AGDASORT Sort #-} {-# BUILTIN AGDAPATTERN Pattern #-} {-# BUILTIN AGDACLAUSE Clause #-} {-# BUILTIN AGDATERMVAR var #-} {-# BUILTIN AGDATERMCON con #-} {-# BUILTIN AGDATERMDEF def #-} {-# BUILTIN AGDATERMMETA meta #-} {-# BUILTIN AGDATERMLAM lam #-} {-# BUILTIN AGDATERMEXTLAM pat-lam #-} {-# BUILTIN AGDATERMPI pi #-} {-# BUILTIN AGDATERMSORT agda-sort #-} {-# BUILTIN AGDATERMLIT lit #-} {-# BUILTIN AGDATERMUNSUPPORTED unknown #-} {-# BUILTIN AGDASORTSET set #-} {-# BUILTIN AGDASORTLIT lit #-} {-# BUILTIN AGDASORTPROP prop #-} {-# BUILTIN AGDASORTPROPLIT propLit #-} {-# BUILTIN AGDASORTINF inf #-} {-# BUILTIN AGDASORTUNSUPPORTED unknown #-} {-# BUILTIN AGDAPATCON con #-} {-# BUILTIN AGDAPATDOT dot #-} {-# BUILTIN AGDAPATVAR var #-} {-# BUILTIN AGDAPATLIT lit #-} {-# BUILTIN AGDAPATPROJ proj #-} {-# BUILTIN AGDAPATABSURD absurd #-} {-# BUILTIN AGDACLAUSECLAUSE clause #-} {-# BUILTIN AGDACLAUSEABSURD absurd-clause #-} -- Definitions -- data Definition : Set where function : (cs : List Clause) → Definition data-type : (pars : Nat) (cs : List Name) → Definition record-type : (c : Name) (fs : List (Arg Name)) → Definition data-cons : (d : Name) → Definition axiom : Definition prim-fun : Definition {-# BUILTIN AGDADEFINITION Definition #-} {-# BUILTIN AGDADEFINITIONFUNDEF function #-} {-# BUILTIN AGDADEFINITIONDATADEF data-type #-} {-# BUILTIN AGDADEFINITIONRECORDDEF record-type #-} {-# BUILTIN AGDADEFINITIONDATACONSTRUCTOR data-cons #-} {-# BUILTIN AGDADEFINITIONPOSTULATE axiom #-} {-# BUILTIN AGDADEFINITIONPRIMITIVE prim-fun #-} -- Errors -- data ErrorPart : Set where strErr : String → ErrorPart termErr : Term → ErrorPart nameErr : Name → ErrorPart {-# BUILTIN AGDAERRORPART ErrorPart #-} {-# BUILTIN AGDAERRORPARTSTRING strErr #-} {-# BUILTIN AGDAERRORPARTTERM termErr #-} {-# BUILTIN AGDAERRORPARTNAME nameErr #-} -- TC monad -- postulate TC : ∀ {a} → Set a → Set a returnTC : ∀ {a} {A : Set a} → A → TC A bindTC : ∀ {a b} {A : Set a} {B : Set b} → TC A → (A → TC B) → TC B unify : Term → Term → TC ⊤ typeError : ∀ {a} {A : Set a} → List ErrorPart → TC A inferType : Term → TC Type checkType : Term → Type → TC Term normalise : Term → TC Term reduce : Term → TC Term catchTC : ∀ {a} {A : Set a} → TC A → TC A → TC A quoteTC : ∀ {a} {A : Set a} → A → TC Term unquoteTC : ∀ {a} {A : Set a} → Term → TC A quoteωTC : ∀ {A : Setω} → A → TC Term getContext : TC Telescope extendContext : ∀ {a} {A : Set a} → String → Arg Type → TC A → TC A inContext : ∀ {a} {A : Set a} → Telescope → TC A → TC A freshName : String → TC Name declareDef : Arg Name → Type → TC ⊤ declarePostulate : Arg Name → Type → TC ⊤ defineFun : Name → List Clause → TC ⊤ getType : Name → TC Type getDefinition : Name → TC Definition blockOnMeta : ∀ {a} {A : Set a} → Meta → TC A commitTC : TC ⊤ isMacro : Name → TC Bool -- If the argument is 'true' makes the following primitives also normalise -- their results: inferType, checkType, quoteTC, getType, and getContext withNormalisation : ∀ {a} {A : Set a} → Bool → TC A → TC A -- Makes the following primitives to reconstruct hidden arguments -- getDefinition, normalise, reduce, inferType, checkType and getContext withReconstructed : ∀ {a} {A : Set a} → TC A → TC A -- Prints the third argument if the corresponding verbosity level is turned -- on (with the -v flag to Agda). debugPrint : String → Nat → List ErrorPart → TC ⊤ -- Only allow reduction of specific definitions while executing the TC computation onlyReduceDefs : ∀ {a} {A : Set a} → List Name → TC A → TC A -- Don't allow reduction of specific definitions while executing the TC computation dontReduceDefs : ∀ {a} {A : Set a} → List Name → TC A → TC A -- Fail if the given computation gives rise to new, unsolved -- "blocking" constraints. noConstraints : ∀ {a} {A : Set a} → TC A → TC A -- Run the given TC action and return the first component. Resets to -- the old TC state if the second component is 'false', or keep the -- new TC state if it is 'true'. runSpeculative : ∀ {a} {A : Set a} → TC (Σ A λ _ → Bool) → TC A -- Get a list of all possible instance candidates for the given meta -- variable (it does not have to be an instance meta). getInstances : Meta → TC (List Term) {-# BUILTIN AGDATCM TC #-} {-# BUILTIN AGDATCMRETURN returnTC #-} {-# BUILTIN AGDATCMBIND bindTC #-} {-# BUILTIN AGDATCMUNIFY unify #-} {-# BUILTIN AGDATCMTYPEERROR typeError #-} {-# BUILTIN AGDATCMINFERTYPE inferType #-} {-# BUILTIN AGDATCMCHECKTYPE checkType #-} {-# BUILTIN AGDATCMNORMALISE normalise #-} {-# BUILTIN AGDATCMREDUCE reduce #-} {-# BUILTIN AGDATCMCATCHERROR catchTC #-} {-# BUILTIN AGDATCMQUOTETERM quoteTC #-} {-# BUILTIN AGDATCMUNQUOTETERM unquoteTC #-} {-# BUILTIN AGDATCMQUOTEOMEGATERM quoteωTC #-} {-# BUILTIN AGDATCMGETCONTEXT getContext #-} {-# BUILTIN AGDATCMEXTENDCONTEXT extendContext #-} {-# BUILTIN AGDATCMINCONTEXT inContext #-} {-# BUILTIN AGDATCMFRESHNAME freshName #-} {-# BUILTIN AGDATCMDECLAREDEF declareDef #-} {-# BUILTIN AGDATCMDECLAREPOSTULATE declarePostulate #-} {-# BUILTIN AGDATCMDEFINEFUN defineFun #-} {-# BUILTIN AGDATCMGETTYPE getType #-} {-# BUILTIN AGDATCMGETDEFINITION getDefinition #-} {-# BUILTIN AGDATCMBLOCKONMETA blockOnMeta #-} {-# BUILTIN AGDATCMCOMMIT commitTC #-} {-# BUILTIN AGDATCMISMACRO isMacro #-} {-# BUILTIN AGDATCMWITHNORMALISATION withNormalisation #-} {-# BUILTIN AGDATCMDEBUGPRINT debugPrint #-} {-# BUILTIN AGDATCMONLYREDUCEDEFS onlyReduceDefs #-} {-# BUILTIN AGDATCMDONTREDUCEDEFS dontReduceDefs #-} {-# BUILTIN AGDATCMWITHRECONSPARAMS withReconstructed #-} {-# BUILTIN AGDATCMNOCONSTRAINTS noConstraints #-} {-# BUILTIN AGDATCMRUNSPECULATIVE runSpeculative #-} {-# BUILTIN AGDATCMGETINSTANCES getInstances #-} -- All the TC primitives are compiled to functions that return -- undefined, rather than just undefined, in an attempt to make sure -- that code will run properly. {-# COMPILE JS returnTC = _ => _ => _ => undefined #-} {-# COMPILE JS bindTC = _ => _ => _ => _ => _ => _ => undefined #-} {-# COMPILE JS unify = _ => _ => undefined #-} {-# COMPILE JS typeError = _ => _ => _ => undefined #-} {-# COMPILE JS inferType = _ => undefined #-} {-# COMPILE JS checkType = _ => _ => undefined #-} {-# COMPILE JS normalise = _ => undefined #-} {-# COMPILE JS reduce = _ => undefined #-} {-# COMPILE JS catchTC = _ => _ => _ => _ => undefined #-} {-# COMPILE JS quoteTC = _ => _ => _ => undefined #-} {-# COMPILE JS unquoteTC = _ => _ => _ => undefined #-} {-# COMPILE JS quoteωTC = _ => _ => undefined #-} {-# COMPILE JS getContext = undefined #-} {-# COMPILE JS extendContext = _ => _ => _ => _ => _ => undefined #-} {-# COMPILE JS inContext = _ => _ => _ => _ => undefined #-} {-# COMPILE JS freshName = _ => undefined #-} {-# COMPILE JS declareDef = _ => _ => undefined #-} {-# COMPILE JS declarePostulate = _ => _ => undefined #-} {-# COMPILE JS defineFun = _ => _ => undefined #-} {-# COMPILE JS getType = _ => undefined #-} {-# COMPILE JS getDefinition = _ => undefined #-} {-# COMPILE JS blockOnMeta = _ => _ => _ => undefined #-} {-# COMPILE JS commitTC = undefined #-} {-# COMPILE JS isMacro = _ => undefined #-} {-# COMPILE JS withNormalisation = _ => _ => _ => _ => undefined #-} {-# COMPILE JS withReconstructed = _ => _ => _ => undefined #-} {-# COMPILE JS debugPrint = _ => _ => _ => undefined #-} {-# COMPILE JS onlyReduceDefs = _ => _ => _ => _ => undefined #-} {-# COMPILE JS dontReduceDefs = _ => _ => _ => _ => undefined #-} {-# COMPILE JS noConstraints = _ => _ => _ => undefined #-} {-# COMPILE JS runSpeculative = _ => _ => _ => undefined #-} {-# COMPILE JS getInstances = _ => undefined #-}
40.038071
130
0.553344
3922e9174791507a64f86c766a954b7adaa1fce3
311
agda
Agda
test/Fail/Errors/Issue84.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
10
2015-09-03T20:54:16.000Z
2019-12-03T13:44:25.000Z
test/Fail/Errors/Issue84.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
121
2015-01-25T13:22:12.000Z
2018-04-22T06:01:44.000Z
test/Fail/Errors/Issue84.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
4
2016-05-10T23:06:19.000Z
2016-08-03T03:54:55.000Z
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} postulate D : Set _≡_ : D → D → Set a b : D postulate p : a ≡ b {-# ATP axiom p #-} postulate foo : a ≡ b {-# ATP prove foo #-}
19.4375
42
0.4791
1cebd6cc93e3c27beb7afe0a18de1e58ec7c96f2
1,291
agda
Agda
archive/agda-3/src/Oscar/Class/Transrightidentity.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-3/src/Oscar/Class/Transrightidentity.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-3/src/Oscar/Class/Transrightidentity.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
open import Oscar.Prelude open import Oscar.Class open import Oscar.Class.Leftunit open import Oscar.Class.Reflexivity open import Oscar.Class.Transitivity module Oscar.Class.Transrightidentity where module Transrightidentity {𝔬} {𝔒 : Ø 𝔬} {𝔯} (_∼_ : 𝔒 → 𝔒 → Ø 𝔯) {ℓ} (_∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ) (ε : Reflexivity.type _∼_) (transitivity : Transitivity.type _∼_) = ℭLASS (_∼_ ,, (λ {x y} → _∼̇_ {x} {y}) ,, (λ {x} → ε {x}) ,, (λ {x y z} → transitivity {x} {y} {z})) (∀ {x y} {f : x ∼ y} → Leftunit.type _∼̇_ ε transitivity f) module _ {𝔬} {𝔒 : Ø 𝔬} {𝔯} {_∼_ : 𝔒 → 𝔒 → Ø 𝔯} {ℓ} {_∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ} {ε : Reflexivity.type _∼_} {transitivity : Transitivity.type _∼_} where transrightidentity = Transrightidentity.method _∼_ _∼̇_ ε transitivity instance toLeftunitFromTransrightidentity : ⦃ _ : Transrightidentity.class _∼_ _∼̇_ ε transitivity ⦄ → ∀ {x y} {f : x ∼ y} → Leftunit.class _∼̇_ ε transitivity f toLeftunitFromTransrightidentity .⋆ = transrightidentity module Transrightidentity! {𝔬} {𝔒 : Ø 𝔬} {𝔯} (_∼_ : 𝔒 → 𝔒 → Ø 𝔯) {ℓ} (_∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ) ⦃ _ : Reflexivity.class _∼_ ⦄ ⦃ _ : Transitivity.class _∼_ ⦄ = Transrightidentity (_∼_) (_∼̇_) reflexivity transitivity
32.275
104
0.597986
dcc396fd7702724c7d5dbb61bc3ecf950d6f3ead
10,654
agda
Agda
agda/sn-calculus-confluence/rec.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
3
2020-04-16T10:58:53.000Z
2020-07-01T03:59:31.000Z
agda/sn-calculus-confluence/rec.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
null
null
null
agda/sn-calculus-confluence/rec.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
1
2020-04-15T20:02:49.000Z
2020-04-15T20:02:49.000Z
module sn-calculus-confluence.rec where open import Data.Nat using (_+_) open import Function using (_∋_ ; _∘_) open import Data.Nat.Properties.Simple using ( +-comm ; +-assoc ) open import utility open import Esterel.Lang open import Esterel.Lang.Properties open import Esterel.Environment as Env open import Esterel.Context open import Data.Product open import Data.Sum open import Data.Bool open import Data.List open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Data.Empty open import sn-calculus open import context-properties open import Esterel.Lang.Binding open import Data.Maybe using ( just ) open import Data.List.Any open import Data.List.Any.Properties open import Data.FiniteMap import Data.OrderedListMap as OMap open import Data.Nat as Nat using (ℕ) open import Esterel.Variable.Signal as Signal using (Signal) open import Esterel.Variable.Shared as SharedVar using (SharedVar) open import Esterel.Variable.Sequential as SeqVar open import sn-calculus-confluence.helper open import sn-calculus-confluence.recrec ρ-conf-rec : ∀{θ El Er ql qr i oli ori qro qlo FV BV θl θr A Al Ar} → CorrectBinding (ρ⟨ θ , A ⟩· i) FV BV → (ieql : i ≐ El ⟦ ql ⟧e) → (ieqr : i ≐ Er ⟦ qr ⟧e) → El a~ Er → (rl : (ρ⟨ θ , A ⟩· i) sn⟶₁ (ρ⟨ θl , Al ⟩· oli)) → (rr : (ρ⟨ θ , A ⟩· i) sn⟶₁ (ρ⟨ θr , Ar ⟩· ori)) → (olieq : oli ≐ El ⟦ qlo ⟧e) → (orieq : ori ≐ Er ⟦ qro ⟧e) → (->E-view rl ieql olieq) → (->E-view rr ieqr orieq) → ( Σ[ θo ∈ Env ] Σ[ Ao ∈ Ctrl ] Σ[ si ∈ Term ] Σ[ Elo ∈ EvaluationContext ] Σ[ Ero ∈ EvaluationContext ] Σ[ oorieq ∈ ori ≐ Elo ⟦ ql ⟧e ] Σ[ oolieq ∈ oli ≐ Ero ⟦ qr ⟧e ] Σ[ sireq ∈ (si ≐ Elo ⟦ qlo ⟧e ) ] Σ[ sileq ∈ (si ≐ Ero ⟦ qro ⟧e ) ] Σ[ redl ∈ ((ρ⟨ θl , Al ⟩· oli) sn⟶₁ (ρ⟨ θo , Ao ⟩· si )) ] Σ[ redr ∈ ((ρ⟨ θr , Ar ⟩· ori) sn⟶₁ (ρ⟨ θo , Ao ⟩· si )) ] ((->E-view redl oolieq sileq) × (->E-view redr oorieq sireq))) ρ-conf-rec {p₂} {El = El@.(epar₂ _ ∷ _)} {Er@.(epar₁ _ ∷ _)} {i = .(_ ∥ _)} cb (depar₂ ieqr) (depar₁ ieql) par redl redr olieq orieq viewl viewr with ρ-conf-rec2{El = El}{Er} cb (depar₂ ieqr) (depar₁ ieql) par redl redr olieq orieq viewl viewr refl refl ... | (θo , Ao , whatever , Erl , Ero , thig , oolieq , sireq , sileq , rlout , rrout , viewlo , viewro , _) = θo , Ao , whatever , Erl , Ero , thig , oolieq , sireq , sileq , rlout , rrout , viewlo , viewro ρ-conf-rec {p₂} {El = (epar₁ q ∷ El)} {(epar₂ p ∷ Er)} {i = .(_ ∥ _)}{oli = (olp ∥ .q)}{ori = (.p ∥ orq)} cb@(CBρ (CBpar cbl cbr a b c d)) (depar₁ ieql) (depar₂ ieqr) par2 redl redr (depar₁ olieq) (depar₂ orieq) viewl viewr with unwrap-rho redl (depar₁ ieql) (depar₁ olieq) ieql olieq viewl | unwrap-rho redr (depar₂ ieqr) (depar₂ orieq) ieqr orieq viewr ... | (redli , viewli) | (redri , viewri) with wrap-rho redli ieql olieq viewli (epar₂ q) (depar₂ ieql) (depar₂ olieq) | wrap-rho redri ieqr orieq viewri (epar₁ p) (depar₁ ieqr) (depar₁ orieq) ... | (redl2 , viewl2) | (redr2 , viewr2) with ρ-conf-rec2{El = epar₂ q ∷ El}{epar₁ p ∷ Er}{oli = oli2}{ori = ori2} (CBρ (CBpar cbr cbl (distinct-sym a) (distinct-sym c) (distinct-sym b) (distinct'-sym d))) (depar₂ ieql) (depar₁ ieqr) par redl2 redr2 (depar₂ olieq) (depar₁ orieq) viewl2 viewr2 refl refl where oli2 = Term ∋ (q ∥ olp) ori2 = orq ∥ p ... | (θo , Ao , (sil@.orq ∥ sir@.olp) , (epar₂ _ ∷ Erl) , (epar₁ _ ∷ Ero) , (depar₂ oorieq) , (depar₁ oolieq) , (depar₂ sireq) , (depar₁ sileq) , rlout , rrout , viewlo , viewro , ((.Erl , .Ero , _ , _) , refl , refl)) with unwrap-rho rlout (depar₁ oolieq) (depar₁ sileq) oolieq sileq viewlo | unwrap-rho rrout (depar₂ oorieq) (depar₂ sireq) oorieq sireq viewro ... | (roli , roliview) | (rori , roriview) with wrap-rho roli oolieq sileq roliview (epar₂ sir) (depar₂ oolieq) (depar₂ sileq) | wrap-rho rori oorieq sireq roriview (epar₁ sil) (depar₁ oorieq) (depar₁ sireq) ... | (rolo , roloview) | (roro , roroview) = θo , Ao , sir ∥ sil , epar₁ orq ∷ Erl , epar₂ olp ∷ Ero , depar₁ oorieq , depar₂ oolieq , depar₁ sireq , depar₂ sileq , rolo , roro , roloview , roroview -- _ , _ , _ , _ , _ , rolo , roro , roloview , roroview -- {! !} ρ-conf-rec {El = epar₁ q ∷ El} {epar₁ .q ∷ Er} {ql} {qr} {.(_ ∥ q)} (CBρ (CBpar cb cb₁ x x₁ x₂ x₃)) (depar₁ ieql) (depar₁ ieqr) (parr a~~) redl redr (depar₁ olieq) (depar₁ orieq) viewl viewr with unwrap-rho redl (depar₁ ieql) (depar₁ olieq) ieql olieq viewl | unwrap-rho redr (depar₁ ieqr) (depar₁ orieq) ieqr orieq viewr ... | (redli , viewli) | (redri , viewri) with ρ-conf-rec (CBρ cb) ieql ieqr a~~ redli redri olieq orieq viewli viewri ... | ( θo , Ao , si , Elo , Ero , oorieq , oolieq , sireq , sileq , rlout , rrout , viewlo , viewro ) with wrap-rho rlout oolieq sileq viewlo (epar₁ q) (depar₁ oolieq) (depar₁ sileq) | wrap-rho rrout oorieq sireq viewro (epar₁ q) (depar₁ oorieq) (depar₁ sireq) ... | (rol , rolview) | (ror , rorview) = θo , Ao , si ∥ q , (epar₁ q) ∷ Elo , (epar₁ q) ∷ Ero , depar₁ oorieq , depar₁ oolieq , depar₁ sireq , depar₁ sileq , rol , ror , rolview , rorview ρ-conf-rec {El = (epar₂ p ∷ El)} {(epar₂ .p ∷ Er)} {i = .(_ ∥ _)} (CBρ (CBpar cb₁ cb x x₁ x₂ x₃)) (depar₂ ieql) (depar₂ ieqr) (parl a~~) redl redr (depar₂ olieq) (depar₂ orieq) viewl viewr with unwrap-rho redl (depar₂ ieql) (depar₂ olieq) ieql olieq viewl | unwrap-rho redr (depar₂ ieqr) (depar₂ orieq) ieqr orieq viewr ... | (redli , viewli) | (redri , viewri) with ρ-conf-rec (CBρ cb) ieql ieqr a~~ redli redri olieq orieq viewli viewri ... | ( θo , Ao , si , Elo , Ero , oorieq , oolieq , sireq , sileq , rlout , rrout , viewlo , viewro ) with wrap-rho rlout oolieq sileq viewlo (epar₂ p) (depar₂ oolieq) (depar₂ sileq) | wrap-rho rrout oorieq sireq viewro (epar₂ p) (depar₂ oorieq) (depar₂ sireq) ... | (rol , rolview) | (ror , rorview) = θo , Ao , p ∥ si , (epar₂ p) ∷ Elo , (epar₂ p) ∷ Ero , depar₂ oorieq , depar₂ oolieq , depar₂ sireq , depar₂ sileq , rol , ror , rolview , rorview ρ-conf-rec {El = (eseq q ∷ El)} {(eseq .q ∷ Er)} {i = .(_ >> q)} (CBρ (CBseq cb cb₁ x)) (deseq ieql) (deseq ieqr) (seq a~~) redl redr (deseq olieq) (deseq orieq) viewl viewr with unwrap-rho redl (deseq ieql) (deseq olieq) ieql olieq viewl | unwrap-rho redr (deseq ieqr) (deseq orieq) ieqr orieq viewr ... | (redli , viewli) | (redri , viewri) with ρ-conf-rec (CBρ cb) ieql ieqr a~~ redli redri olieq orieq viewli viewri ... | ( θo , Ao , si , Elo , Ero , oorieq , oolieq , sireq , sileq , rlout , rrout , viewlo , viewro ) with wrap-rho rlout oolieq sileq viewlo (eseq q) (deseq oolieq) (deseq sileq) | wrap-rho rrout oorieq sireq viewro (eseq q) (deseq oorieq) (deseq sireq) ... | (rol , rolview) | (ror , rorview) = θo , Ao , (si >> q) , (eseq q) ∷ Elo , (eseq q) ∷ Ero , deseq oorieq , deseq oolieq , deseq sireq , deseq sileq , rol , ror , rolview , rorview ρ-conf-rec {El = (eloopˢ q ∷ El)} {(eloopˢ .q ∷ Er)} {i = .(loopˢ _ q)} (CBρ (CBloopˢ cb cb₁ x _)) (deloopˢ ieql) (deloopˢ ieqr) (loopˢ a~~) redl redr (deloopˢ olieq) (deloopˢ orieq) viewl viewr with unwrap-rho redl (deloopˢ ieql) (deloopˢ olieq) ieql olieq viewl | unwrap-rho redr (deloopˢ ieqr) (deloopˢ orieq) ieqr orieq viewr ... | (redli , viewli) | (redri , viewri) with ρ-conf-rec (CBρ cb) ieql ieqr a~~ redli redri olieq orieq viewli viewri ... | ( θo , Ao , si , Elo , Ero , oorieq , oolieq , sireq , sileq , rlout , rrout , viewlo , viewro ) with wrap-rho rlout oolieq sileq viewlo (eloopˢ q) (deloopˢ oolieq) (deloopˢ sileq) | wrap-rho rrout oorieq sireq viewro (eloopˢ q) (deloopˢ oorieq) (deloopˢ sireq) ... | (rol , rolview) | (ror , rorview) = θo , Ao , (loopˢ si q) , (eloopˢ q) ∷ Elo , (eloopˢ q) ∷ Ero , deloopˢ oorieq , deloopˢ oolieq , deloopˢ sireq , deloopˢ sileq , rol , ror , rolview , rorview ρ-conf-rec {El = (esuspend S ∷ El)} {(esuspend .S ∷ Er)} {i = .(suspend _ _)} (CBρ (CBsusp cb x)) (desuspend ieql) (desuspend ieqr) (susp a~~) redl redr (desuspend olieq) (desuspend orieq) viewl viewr with unwrap-rho redl (desuspend ieql) (desuspend olieq) ieql olieq viewl | unwrap-rho redr (desuspend ieqr) (desuspend orieq) ieqr orieq viewr ... | (redli , viewli) | (redri , viewri) with ρ-conf-rec (CBρ cb) ieql ieqr a~~ redli redri olieq orieq viewli viewri ... | ( θo , Ao , si , Elo , Ero , oorieq , oolieq , sireq , sileq , rlout , rrout , viewlo , viewro ) with wrap-rho rlout oolieq sileq viewlo (esuspend S) (desuspend oolieq) (desuspend sileq) | wrap-rho rrout oorieq sireq viewro (esuspend S) (desuspend oorieq) (desuspend sireq) ... | (rol , rolview) | (ror , rorview) = θo , Ao , (suspend si S) , (esuspend S) ∷ Elo , (esuspend S) ∷ Ero , desuspend oorieq , desuspend oolieq , desuspend sireq , desuspend sileq , rol , ror , rolview , rorview ρ-conf-rec {El = (etrap ∷ El)} {(etrap ∷ Er)} {i = .(trap _)} (CBρ (CBtrap cb)) (detrap ieql) (detrap ieqr) (trp a~~) redl redr (detrap olieq) (detrap orieq) viewl viewr with unwrap-rho redl (detrap ieql) (detrap olieq) ieql olieq viewl | unwrap-rho redr (detrap ieqr) (detrap orieq) ieqr orieq viewr ... | (redli , viewli) | (redri , viewri) with ρ-conf-rec (CBρ cb) ieql ieqr a~~ redli redri olieq orieq viewli viewri ... | ( θo , Ao , si , Elo , Ero , oorieq , oolieq , sireq , sileq , rlout , rrout , viewlo , viewro ) with wrap-rho rlout oolieq sileq viewlo (etrap) (detrap oolieq) (detrap sileq) | wrap-rho rrout oorieq sireq viewro (etrap) (detrap oorieq) (detrap sireq) ... | (rol , rolview) | (ror , rorview) = θo , Ao , (trap si) , (etrap) ∷ Elo , (etrap) ∷ Ero , detrap oorieq , detrap oolieq , detrap sireq , detrap sileq , rol , ror , rolview , rorview
81.953846
305
0.585508
dfa461a09e63b5206e6570e6dba7a29c563b7f4d
1,431
agda
Agda
Numeral/Natural/Relation/Order/Existence.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Numeral/Natural/Relation/Order/Existence.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Numeral/Natural/Relation/Order/Existence.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Numeral.Natural.Relation.Order.Existence where import Lvl open import Logic open import Logic.Propositional open import Logic.Predicate open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Proofs import Numeral.Natural.Relation.Order as [≤def] open import Relator.Equals open import Relator.Equals.Proofs.Equiv open import Relator.Ordering open import Structure.Function open import Structure.Function.Domain open import Syntax.Function open import Syntax.Transitivity _≤_ : ℕ → ℕ → Stmt _≤_ a b = ∃{Obj = ℕ}(n ↦ a + n ≡ b) _<_ : ℕ → ℕ → Stmt _<_ a b = (𝐒(a) ≤ b) open From-[≤][<] (_≤_) (_<_) public [≤]-with-[𝐒] : ∀{a b : ℕ} → (a ≤ b) → (𝐒(a) ≤ 𝐒(b)) [≤]-with-[𝐒] {a} {b} ([∃]-intro n ⦃ f ⦄) = [∃]-intro n ⦃ 𝐒(a) + n 🝖[ _≡_ ]-[ [+]-stepₗ {a} {n} ] 𝐒(a + n) 🝖[ _≡_ ]-[ congruence₁(𝐒) f ] 𝐒(b) 🝖-end ⦄ [≤]-equivalence : ∀{x y} → (x ≤ y) ↔ (x [≤def].≤ y) [≤]-equivalence{x}{y} = [↔]-intro (l{x}{y}) (r{x}{y}) where l : ∀{x y} → (x ≤ y) ← (x [≤def].≤ y) l{𝟎} {y} ([≤def].min) = [∃]-intro(y) ⦃ [≡]-intro ⦄ l{𝐒(x)}{𝟎} () l{𝐒(x)}{𝐒(y)} ([≤def].succ proof) = [≤]-with-[𝐒] {x}{y} (l{x}{y} (proof)) r : ∀{x y} → (x ≤ y) → (x [≤def].≤ y) r{𝟎} {y} ([∃]-intro(z) ⦃ 𝟎+z≡y ⦄) = [≤def].min r{𝐒(x)}{𝟎} ([∃]-intro(z) ⦃ ⦄) r{𝐒(x)}{𝐒(y)} ([∃]-intro(z) ⦃ 𝐒x+z≡𝐒y ⦄) = [≤def].succ (r{x}{y} ([∃]-intro(z) ⦃ injective(𝐒)(𝐒x+z≡𝐒y) ⦄))
31.108696
107
0.533194
dfcaccd5598d823b0d791e0d97b48c4215907e6e
5,551
agda
Agda
Cubical/Categories/DistLatticeSheaf.agda
mzeuner/cubical
63c770b381039c0132c17d7913f4566b35984701
[ "MIT" ]
null
null
null
Cubical/Categories/DistLatticeSheaf.agda
mzeuner/cubical
63c770b381039c0132c17d7913f4566b35984701
[ "MIT" ]
null
null
null
Cubical/Categories/DistLatticeSheaf.agda
mzeuner/cubical
63c770b381039c0132c17d7913f4566b35984701
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Categories.DistLatticeSheaf where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Structure open import Cubical.Foundations.Powerset open import Cubical.Data.Sigma open import Cubical.Relation.Binary.Poset open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.Semilattice open import Cubical.Algebra.Lattice open import Cubical.Algebra.DistLattice open import Cubical.Algebra.DistLattice.Basis open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Categories.NaturalTransformation open import Cubical.Categories.Limits.Pullback open import Cubical.Categories.Limits.Terminal open import Cubical.Categories.Instances.Functors open import Cubical.Categories.Instances.CommRings open import Cubical.Categories.Instances.Poset open import Cubical.Categories.Instances.Semilattice open import Cubical.Categories.Instances.Lattice open import Cubical.Categories.Instances.DistLattice private variable ℓ ℓ' ℓ'' : Level module _ (L : DistLattice ℓ) (C : Category ℓ' ℓ'') (T : Terminal C) where open Category hiding (_⋆_) open Functor open DistLatticeStr (snd L) open MeetSemilattice (Lattice→MeetSemilattice (DistLattice→Lattice L)) open PosetStr (IndPoset .snd) 𝟙 : ob C 𝟙 = terminalOb C T DLCat : Category ℓ ℓ DLCat = DistLatticeCategory L open Category DLCat -- C-valued presheaves on a distributive lattice DLPreSheaf : Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'') DLPreSheaf = Functor (DLCat ^op) C hom-∨₁ : (x y : L .fst) → DLCat [ x , x ∨l y ] hom-∨₁ x y = goal where -- TODO: isn't the fixity of the operators a bit weird? goal : x ∧l (x ∨l y) ≡ x goal = ∧lAbsorb∨l x y hom-∨₂ : (x y : L .fst) → DLCat [ y , x ∨l y ] hom-∨₂ x y = goal where -- TODO: upstream this kind of simple lemmas? Or are they already somewhere? goal : y ∧l (x ∨l y) ≡ y goal = cong (y ∧l_) (∨lComm x y) ∙ ∧lAbsorb∨l y x hom-∧₁ : (x y : L .fst) → DLCat [ x ∧l y , x ] hom-∧₁ x y = goal where goal : (x ∧l y) ∧l x ≡ x ∧l y goal = ∧lComm (x ∧l y) x ∙ ∧lAssoc x x y ∙ cong (_∧l y) (∧lIdem x) hom-∧₂ : (x y : L .fst) → DLCat [ x ∧l y , y ] hom-∧₂ x y = goal where goal : (x ∧l y) ∧l y ≡ x ∧l y goal = sym (∧lAssoc x y y) ∙ cong (x ∧l_) (∧lIdem y) {- x ∧ y ----→ y | | | sq | V V x ----→ x ∨ y -} sq : (x y : L .fst) → hom-∧₂ x y ⋆ hom-∨₂ x y ≡ hom-∧₁ x y ⋆ hom-∨₁ x y sq x y = is-prop-valued (x ∧l y) (x ∨l y) (hom-∧₂ x y ⋆ hom-∨₂ x y) (hom-∧₁ x y ⋆ hom-∨₁ x y) {- F(x ∨ y) ----→ F(y) | | | Fsq | V V F(x) ------→ F(x ∧ y) -} Fsq : (F : DLPreSheaf) (x y : L .fst) → F .F-hom (hom-∨₂ x y) ⋆⟨ C ⟩ F .F-hom (hom-∧₂ x y) ≡ F .F-hom (hom-∨₁ x y) ⋆⟨ C ⟩ F .F-hom (hom-∧₁ x y) Fsq F x y = sym (F-seq F (hom-∨₂ x y) (hom-∧₂ x y)) ∙∙ cong (F .F-hom) (sq x y) ∙∙ F-seq F (hom-∨₁ x y) (hom-∧₁ x y) isDLSheaf : (F : DLPreSheaf) → Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'') isDLSheaf F = (F-ob F 0l ≡ 𝟙) × ((x y : L .fst) → isPullback C _ _ _ (Fsq F x y)) -- TODO: might be better to define this as a record DLSheaf : Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'') DLSheaf = Σ[ F ∈ DLPreSheaf ] isDLSheaf F module Lemma1 (L : DistLattice ℓ) (C : Category ℓ' ℓ'') (T : Terminal C) (L' : ℙ (fst L)) (hB : IsBasis L L') where open Category hiding (_⋆_) open Functor open DistLatticeStr (snd L) open IsBasis hB isDLBasisSheaf : (F : DLPreSheaf L C T) → Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'') isDLBasisSheaf F = (F-ob F 0l ≡ 𝟙 L C T) × ((x y : L .fst) → x ∈ L' → y ∈ L' → isPullback C _ _ _ (Fsq L C T F x y)) DLBasisSheaf : Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'') DLBasisSheaf = Σ[ F ∈ DLPreSheaf L C T ] isDLBasisSheaf F -- To prove the statement we probably need that C is: -- 1. univalent -- 2. has finite limits (or pullbacks and a terminal object) -- 3. isGroupoid (C .ob) -- The last point is not strictly necessary, but we have to have some -- control over the hLevel as we want to write F(x) in terms of its -- basis cover which is information hidden under a prop truncation... -- Alternatively we just prove the statement for C = CommRingsCategory -- TODO: is unique existence expressed like this what we want? -- statement : (F' : DLBasisSheaf) -- → ∃![ F ∈ DLSheaf L C T ] ((x : fst L) → (x ∈ L') → CatIso C (F-ob (fst F) x) (F-ob (fst F') x)) -- TODO: if C is univalent the CatIso could be ≡? -- statement (F' , h1 , hPb) = ? -- It might be easier to prove all of these if we use the definition -- in terms of particular limits instead -- Scrap zone: -- -- Sublattices: upstream later -- record isSublattice (L' : ℙ (fst L)) : Type ℓ where -- field -- 1l-closed : 1l ∈ L' -- 0l-closed : 0l ∈ L' -- ∧l-closed : {x y : fst L} → x ∈ L' → y ∈ L' → x ∧l y ∈ L' -- ∨l-closed : {x y : fst L} → x ∈ L' → y ∈ L' → x ∨l y ∈ L' -- open isSublattice -- Sublattice : Type (ℓ-suc ℓ) -- Sublattice = Σ[ L' ∈ ℙ (fst L) ] isSublattice L' -- restrictDLSheaf : DLSheaf → Sublattice → DLSheaf -- F-ob (fst (restrictDLSheaf F (L' , HL'))) x = {!F-ob (fst F) x!} -- Hmm, not nice... -- F-hom (fst (restrictDLSheaf F L')) = {!!} -- F-id (fst (restrictDLSheaf F L')) = {!!} -- F-seq (fst (restrictDLSheaf F L')) = {!!} -- snd (restrictDLSheaf F L') = {!!}
32.846154
161
0.591245
fb25a0efc94f509358c6efd39405f2877f938d5c
658
agda
Agda
src/fot/FOTC/Program/Iter0/PropertiesATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Program/Iter0/PropertiesATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Program/Iter0/PropertiesATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Some properties of the function iter₀ ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.Iter0.PropertiesATP where open import FOTC.Program.Iter0.Iter0 open import FOTC.Base open import FOTC.Base.List ------------------------------------------------------------------------------ postulate iter₀-0 : ∀ f → iter₀ f zero ≡ [] {-# ATP prove iter₀-0 #-}
31.333333
78
0.399696
4a52f6dbb766b93c52da45e147f606debea3cbde
1,116
agda
Agda
src/Types/Tail1.agda
peterthiemann/dual-session
7a8bc1f6b2f808bd2a22c592bd482dbcc271979c
[ "BSD-2-Clause" ]
1
2022-02-13T05:43:25.000Z
2022-02-13T05:43:25.000Z
src/Types/Tail1.agda
peterthiemann/dual-session
7a8bc1f6b2f808bd2a22c592bd482dbcc271979c
[ "BSD-2-Clause" ]
null
null
null
src/Types/Tail1.agda
peterthiemann/dual-session
7a8bc1f6b2f808bd2a22c592bd482dbcc271979c
[ "BSD-2-Clause" ]
1
2019-12-07T16:12:50.000Z
2019-12-07T16:12:50.000Z
module Types.Tail1 where open import Data.Fin open import Data.Nat open import Function using (_∘_) open import Types.Direction import Types.IND1 as IND private variable n : ℕ -- session types restricted to tail recursion -- can be recognized by type of TChan constructor data Type : Set data SType (n : ℕ) : Set data GType (n : ℕ) : Set data Type where TUnit TInt : Type TPair : (t₁ t₂ : Type) → Type TChan : (s : IND.SType 0) → Type data SType n where gdd : (g : GType n) → SType n rec : (g : GType (suc n)) → SType n var : (x : Fin n) → SType n data GType n where transmit : (d : Dir) (t : Type) (s : SType n) → GType n choice : (d : Dir) (m : ℕ) (alt : Fin m → SType n) → GType n end : GType n -- naive definition of duality for tail recursive session types -- message types are ignored as they are closed dualS : SType n → SType n dualG : GType n → GType n dualS (gdd g) = gdd (dualG g) dualS (rec g) = rec (dualG g) dualS (var x) = var x dualG (transmit d t s) = transmit (dual-dir d) t (dualS s) dualG (choice d m alt) = choice (dual-dir d) m (dualS ∘ alt) dualG end = end
22.77551
63
0.65233
df4dda904ef694b748768bafe3b684924ff195df
1,278
agda
Agda
skylighting-core/test/cases/abc.agda
jgm/highlighting-kate2
df6ac5844729a564cf2e7ae956dd820209c6afd2
[ "MIT", "BSD-3-Clause" ]
139
2016-12-14T19:36:22.000Z
2022-03-31T05:41:52.000Z
skylighting-core/test/cases/abc.agda
jgm/highlighting-kate2
df6ac5844729a564cf2e7ae956dd820209c6afd2
[ "MIT", "BSD-3-Clause" ]
133
2017-01-19T10:19:36.000Z
2022-03-13T21:07:07.000Z
skylighting-core/test/cases/abc.agda
jgm/highlighting-kate2
df6ac5844729a564cf2e7ae956dd820209c6afd2
[ "MIT", "BSD-3-Clause" ]
66
2017-01-21T21:36:16.000Z
2022-01-18T10:12:38.000Z
module Reals where -- (a set with properties of) the reals data ℝ : Set where r0 : ℝ r1 : ℝ _+_ : ℝ → ℝ → ℝ -- equality data _==_ : ℝ → ℝ → Set where AXrefl== : ∀ {r} → r == r AXsymm== : ∀ {r s} → r == s → s == r AXtrans== : ∀ {r s t} → r == s → s == t → r == t AX+0 : ∀ {r} → (r + r0) == r AXsymm+ : ∀ {r s} → (r + s) == (s + r) AX+== : ∀ {r s t} → r == s → (r + t) == (s + t) THM0+ : {r : ℝ} → r == (r0 + r) THM0+ = AXsymm== (AXtrans== AXsymm+ AX+0) -- AXsymm+ AX+0 r0 + r == r + r0 and r + r0 == r -- AXtrans== so r0 + r == r -- AXsymm== so r == r0 + r THM0+alt : {r : ℝ} → r == (r0 + r) THM0+alt {r} = AXsymm== {r0 + r} {r} ((AXtrans== {r0 + r} {r + r0} {r}) (AXsymm+ {r0} {r}) (AX+0 {r})) -- strict partial ordering data _<_ : ℝ → ℝ → Set where AXtrans<<< : ∀ {r s t} → r < s → s < t → r < t AX<=< : ∀ {r s t} → r < s → s == t → r < t AX=<< : ∀ {r s t} → r == s → s < t → r < t AX0<1 : r0 < r1 AX+<< : ∀ {r s t} → r < s → (r + t) < (s + t) THM<+1 : {r : ℝ} → r < (r + r1) THM<+1 = AX<=< (AX=<< THM0+ (AX+<< AX0<1)) AXsymm+ -- AX0<1 0 < 1 -- AX<+ % so 0 + r < 1 + r -- AX=<< lem0+ % so r < 1 + r -- AX<=< % AXsymm+ so r < r + 1
31.170732
104
0.365415
1ca2d748f7611afc3358a7ba240b2928a8e156d3
16,764
agda
Agda
Cubical/Data/BinNat/BinNat.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Data/BinNat/BinNat.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Data/BinNat/BinNat.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{- Binary natural numbers (Anders Mörtberg, Jan. 2019) This file defines two representations of binary numbers. We prove that they are equivalent to unary numbers and univalence is then used to transport both programs and properties between the representations. This is an example of how having computational univalence can be useful for practical programming. The first definition is [Binℕ] and the numbers are essentially lists of 0/1 with no trailing zeroes (in little-endian format). The main definitions and examples are: - Equivalence between Binℕ and ℕ ([Binℕ≃ℕ]) with an equality obtained using univalence ([Binℕ≡ℕ]). - Addition on Binℕ defined by transporting addition on ℕ to Binℕ ([_+Binℕ_]) along Binℕ≡ℕ together with a proof that addition on Binℕ is associative obtained by transporting the proof for ℕ ([+Binℕ-assoc]). - Functions testing whether a binary number is odd or even in O(1) ([oddBinℕ], [evenBinℕ]) and the corresponding functions for ℕ obtained by transport. Proof that odd numbers are not even transported from Binℕ to ℕ ([oddℕnotEvenℕ]). - An example of the structure identity principle for natural number structures ([NatImpl]). We first prove that Binℕ≡ℕ lifts to natural number structures ([NatImplℕ≡Binℕ]) and we then use this to transport "+-suc : m + suc n ≡ suc (m + n)" from ℕ to Binℕ ([+Binℕ-suc]). - An example of program/data refinement using the structure identity principle where we transport a property that is infeasible to prove by computation for ℕ ([propDoubleℕ]): 2^20 * 2^10 = 2^5 * (2^15 * 2^10) from the corresponding result on Binℕ which is proved instantly by refl ([propDoubleBinℕ]). These examples are inspired from an old cubicaltt formalization: https://github.com/mortberg/cubicaltt/blob/master/examples/binnat.ctt which itself is based on an even older cubical formalization (from 2014): https://github.com/simhu/cubical/blob/master/examples/binnat.cub The second representation is more non-standard and inspired by: https://github.com/RedPRL/redtt/blob/master/library/cool/nats.red Only some of the experiments have been done for this representation, but it has the virtue of being a bit simpler to prove equivalent to ℕ. The same representation can be found in: http://www.cs.bham.ac.uk/~mhe/agda-new/BinaryNaturals.html -} {-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Data.BinNat.BinNat where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Foundations.Isomorphism open import Cubical.Data.Nat open import Cubical.Data.Bool open import Cubical.Data.Empty open import Cubical.Relation.Nullary data Binℕ : Type₀ data Pos : Type₀ -- Binary natural numbers data Binℕ where binℕ0 : Binℕ binℕpos : Pos → Binℕ -- Positive binary numbers data Pos where x0 : Pos → Pos x1 : Binℕ → Pos pattern pos1 = x1 binℕ0 pattern x1-pos n = x1 (binℕpos n) -- Note on notation: -- We use "⇒" for functions that are equivalences (and therefore -- they don't preserve the numerical value where the ranges don't -- match, as with Binℕ⇒Pos). -- -- We use "→" for the opposite situation (numerical value is preserved, -- but the function is not necessarily an equivalence) Binℕ⇒Pos : Binℕ → Pos sucPos : Pos → Pos Binℕ⇒Pos binℕ0 = pos1 Binℕ⇒Pos (binℕpos n) = sucPos n sucPos (x0 ps) = x1-pos ps sucPos (x1 ps) = x0 (Binℕ⇒Pos ps) Binℕ→ℕ : Binℕ → ℕ Pos⇒ℕ : Pos → ℕ Pos→ℕ : Pos → ℕ Binℕ→ℕ binℕ0 = zero Binℕ→ℕ (binℕpos x) = Pos→ℕ x Pos→ℕ ps = suc (Pos⇒ℕ ps) Pos⇒ℕ (x0 ps) = suc (doubleℕ (Pos⇒ℕ ps)) Pos⇒ℕ (x1 ps) = doubleℕ (Binℕ→ℕ ps) posInd : {P : Pos → Type₀} → P pos1 → ((p : Pos) → P p → P (sucPos p)) → (p : Pos) → P p posInd {P} h1 hs ps = f ps where H : (p : Pos) → P (x0 p) → P (x0 (sucPos p)) H p hx0p = hs (x1-pos p) (hs (x0 p) hx0p) f : (ps : Pos) → P ps f pos1 = h1 f (x0 ps) = posInd (hs pos1 h1) H ps f (x1-pos ps) = hs (x0 ps) (posInd (hs pos1 h1) H ps) Binℕ⇒Pos⇒ℕ : (p : Binℕ) → Pos⇒ℕ (Binℕ⇒Pos p) ≡ Binℕ→ℕ p Binℕ⇒Pos⇒ℕ binℕ0 = refl Binℕ⇒Pos⇒ℕ (binℕpos (x0 p)) = refl Binℕ⇒Pos⇒ℕ (binℕpos (x1 x)) = λ i → suc (doubleℕ (Binℕ⇒Pos⇒ℕ x i)) Pos⇒ℕsucPos : (p : Pos) → Pos⇒ℕ (sucPos p) ≡ suc (Pos⇒ℕ p) Pos⇒ℕsucPos p = Binℕ⇒Pos⇒ℕ (binℕpos p) Pos→ℕsucPos : (p : Pos) → Pos→ℕ (sucPos p) ≡ suc (Pos→ℕ p) Pos→ℕsucPos p = cong suc (Binℕ⇒Pos⇒ℕ (binℕpos p)) ℕ⇒Pos : ℕ → Pos ℕ⇒Pos zero = pos1 ℕ⇒Pos (suc n) = sucPos (ℕ⇒Pos n) ℕ→Pos : ℕ → Pos ℕ→Pos zero = pos1 ℕ→Pos (suc n) = ℕ⇒Pos n Pos⇒ℕ⇒Pos : (p : Pos) → ℕ⇒Pos (Pos⇒ℕ p) ≡ p Pos⇒ℕ⇒Pos p = posInd refl hs p where hs : (p : Pos) → ℕ⇒Pos (Pos⇒ℕ p) ≡ p → ℕ⇒Pos (Pos⇒ℕ (sucPos p)) ≡ sucPos p hs p hp = ℕ⇒Pos (Pos⇒ℕ (sucPos p)) ≡⟨ cong ℕ⇒Pos (Pos⇒ℕsucPos p) ⟩ sucPos (ℕ⇒Pos (Pos⇒ℕ p)) ≡⟨ cong sucPos hp ⟩ sucPos p ∎ ℕ⇒Pos⇒ℕ : (n : ℕ) → Pos⇒ℕ (ℕ⇒Pos n) ≡ n ℕ⇒Pos⇒ℕ zero = refl ℕ⇒Pos⇒ℕ (suc n) = Pos⇒ℕ (ℕ⇒Pos (suc n)) ≡⟨ Pos⇒ℕsucPos (ℕ⇒Pos n) ⟩ suc (Pos⇒ℕ (ℕ⇒Pos n)) ≡⟨ cong suc (ℕ⇒Pos⇒ℕ n) ⟩ suc n ∎ ℕ→Binℕ : ℕ → Binℕ ℕ→Binℕ zero = binℕ0 ℕ→Binℕ (suc n) = binℕpos (ℕ⇒Pos n) ℕ→Binℕ→ℕ : (n : ℕ) → Binℕ→ℕ (ℕ→Binℕ n) ≡ n ℕ→Binℕ→ℕ zero = refl ℕ→Binℕ→ℕ (suc n) = cong suc (ℕ⇒Pos⇒ℕ n) Binℕ→ℕ→Binℕ : (n : Binℕ) → ℕ→Binℕ (Binℕ→ℕ n) ≡ n Binℕ→ℕ→Binℕ binℕ0 = refl Binℕ→ℕ→Binℕ (binℕpos p) = cong binℕpos (Pos⇒ℕ⇒Pos p) Binℕ≃ℕ : Binℕ ≃ ℕ Binℕ≃ℕ = isoToEquiv (iso Binℕ→ℕ ℕ→Binℕ ℕ→Binℕ→ℕ Binℕ→ℕ→Binℕ) -- Use univalence (in fact only "ua") to get an equality from the -- above equivalence Binℕ≡ℕ : Binℕ ≡ ℕ Binℕ≡ℕ = ua Binℕ≃ℕ sucBinℕ : Binℕ → Binℕ sucBinℕ x = binℕpos (Binℕ⇒Pos x) Binℕ→ℕsuc : (x : Binℕ) → suc (Binℕ→ℕ x) ≡ Binℕ→ℕ (sucBinℕ x) Binℕ→ℕsuc binℕ0 = refl Binℕ→ℕsuc (binℕpos x) = sym (Pos→ℕsucPos x) -- We can transport addition on ℕ to Binℕ _+Binℕ_ : Binℕ → Binℕ → Binℕ _+Binℕ_ = transport (λ i → Binℕ≡ℕ (~ i) → Binℕ≡ℕ (~ i) → Binℕ≡ℕ (~ i)) _+_ -- Test: 4 + 1 = 5 private _ : binℕpos (x0 (x0 pos1)) +Binℕ binℕpos pos1 ≡ binℕpos (x1-pos (x0 pos1)) _ = refl -- It is easy to test if binary numbers are odd oddBinℕ : Binℕ → Bool oddBinℕ binℕ0 = false oddBinℕ (binℕpos (x0 _)) = false oddBinℕ (binℕpos (x1 _)) = true evenBinℕ : Binℕ → Bool evenBinℕ n = oddBinℕ (sucBinℕ n) -- And prove the following property (without induction) oddBinℕnotEvenBinℕ : (n : Binℕ) → oddBinℕ n ≡ not (evenBinℕ n) oddBinℕnotEvenBinℕ binℕ0 = refl oddBinℕnotEvenBinℕ (binℕpos (x0 x)) = refl oddBinℕnotEvenBinℕ (binℕpos (x1 x)) = refl -- It is also easy to define and prove the property for unary numbers, -- however the definition uses recursion and the proof induction private oddn : ℕ → Bool oddn zero = true oddn (suc x) = not (oddn x) evenn : ℕ → Bool evenn n = not (oddn n) oddnSuc : (n : ℕ) → oddn n ≡ not (evenn n) oddnSuc zero = refl oddnSuc (suc n) = cong not (oddnSuc n) -- So what we can do instead is to transport the odd test from Binℕ to -- ℕ along the equality oddℕ : ℕ → Bool oddℕ = transport (λ i → Binℕ≡ℕ i → Bool) oddBinℕ evenℕ : ℕ → Bool evenℕ = transport (λ i → Binℕ≡ℕ i → Bool) evenBinℕ -- We can then also transport the property oddℕnotEvenℕ : (n : ℕ) → oddℕ n ≡ not (evenℕ n) oddℕnotEvenℕ = let -- We first build a path from oddBinℕ to oddℕ. When i=1 this is -- "transp (λ j → Binℕ≡ℕ j → Bool) i0 oddBinℕ" (i.e. oddℕ) oddp : PathP (λ i → Binℕ≡ℕ i → Bool) oddBinℕ oddℕ oddp i = transp (λ j → Binℕ≡ℕ (i ∧ j) → Bool) (~ i) oddBinℕ -- We then build a path from evenBinℕ to evenℕ evenp : PathP (λ i → Binℕ≡ℕ i → Bool) evenBinℕ evenℕ evenp i = transp (λ j → Binℕ≡ℕ (i ∧ j) → Bool) (~ i) evenBinℕ in -- Then transport oddBinℕnotEvenBinℕ in a suitable equality type -- When i=0 this is "(n : Binℕ) → oddBinℕ n ≡ not (evenBinℕ n)" -- When i=1 this is "(n : ℕ) → oddℕ n ≡ not (evenℕ n)" transport (λ i → (n : Binℕ≡ℕ i) → oddp i n ≡ not (evenp i n)) oddBinℕnotEvenBinℕ -- We can do the same for natural numbers: -- First construct the path addp : PathP (λ i → Binℕ≡ℕ (~ i) → Binℕ≡ℕ (~ i) → Binℕ≡ℕ (~ i)) _+_ _+Binℕ_ addp i = transp (λ j → Binℕ≡ℕ (~ i ∨ ~ j) → Binℕ≡ℕ (~ i ∨ ~ j) → Binℕ≡ℕ (~ i ∨ ~ j)) (~ i) _+_ -- Then transport associativity: +Binℕ-assoc : ∀ m n o → m +Binℕ (n +Binℕ o) ≡ (m +Binℕ n) +Binℕ o +Binℕ-assoc = transport (λ i → (m n o : Binℕ≡ℕ (~ i)) → addp i m (addp i n o) ≡ addp i (addp i m n) o) +-assoc -- We can also define what it means to be an implementation of natural -- numbers and use this to transport properties between different -- implementation of natural numbers. This can be seen as a special -- case of the structure identity principle: any property that holds -- for one structure also holds for an equivalent one. -- An implementation of natural numbers (i.e. a "natural number -- structure") has a zero and successor. record NatImpl (A : Type₀) : Type₀ where field z : A s : A → A open NatImpl NatImplℕ : NatImpl ℕ z NatImplℕ = zero s NatImplℕ = suc NatImplBinℕ : NatImpl Binℕ z NatImplBinℕ = binℕ0 s NatImplBinℕ = sucBinℕ -- Using the equality between binary and unary numbers we can get an -- equality between the two implementations of the NatImpl interface NatImplℕ≡Binℕ : PathP (λ i → NatImpl (Binℕ≡ℕ (~ i))) NatImplℕ NatImplBinℕ z (NatImplℕ≡Binℕ i) = transp (λ j → Binℕ≡ℕ (~ i ∨ ~ j)) (~ i) zero s (NatImplℕ≡Binℕ i) = λ x → glue (λ { (i = i0) → suc x ; (i = i1) → sucBinℕ x }) -- We need to do use and hcomp to do and endpoint -- correction as "suc (unglue x)" connects "suc x" -- with "suc (Binℕ→ℕ x)" along i (which makes sense as -- x varies from ℕ to Binℕ along i), but we need -- something from "suc x" to "Binℕ→ℕ (sucBinℕ x)" for -- the glue to be well-formed (hcomp (λ j → λ { (i = i0) → suc x ; (i = i1) → Binℕ→ℕsuc x j }) (suc (unglue (i ∨ ~ i) x))) -- We then use this to transport +-suc from unary to binary numbers +Binℕ-suc : ∀ m n → m +Binℕ sucBinℕ n ≡ sucBinℕ (m +Binℕ n) +Binℕ-suc = transport (λ i → (m n : Binℕ≡ℕ (~ i)) → addp i m (NatImplℕ≡Binℕ i .s n) ≡ NatImplℕ≡Binℕ i .s (addp i m n)) +-suc -- Doubling experiment: we define a notion of "doubling structure" and -- transport a proof that is proved directly using refl for binary -- numbers to unary numbers. This is an example of program/data -- refinement: we can use univalence to prove properties about -- inefficient data-structures using efficient ones. -- Doubling structures record Double {ℓ} (A : Type ℓ) : Type (ℓ-suc ℓ) where field -- doubling function computing 2 * x double : A → A -- element to double elt : A open Double -- Compute: 2^n * x doubles : ∀ {ℓ} {A : Type ℓ} (D : Double A) → ℕ → A → A doubles D n x = iter n (double D) x Doubleℕ : Double ℕ double Doubleℕ = doubleℕ elt Doubleℕ = n1024 where -- 1024 = 2^8 * 2^2 = 2^10 n1024 : ℕ n1024 = doublesℕ 8 4 -- The doubling operation on binary numbers is O(1), while for unary -- numbers it is O(n). What is of course even more problematic is that -- we cannot handle very big unary natural numbers, but with binary -- there is no problem to represent very big numbers doubleBinℕ : Binℕ → Binℕ doubleBinℕ binℕ0 = binℕ0 doubleBinℕ (binℕpos x) = binℕpos (x0 x) DoubleBinℕ : Double Binℕ double DoubleBinℕ = doubleBinℕ elt DoubleBinℕ = bin1024 where -- 1024 = 2^10 = 10000000000₂ bin1024 : Binℕ bin1024 = binℕpos (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 pos1)))))))))) -- As these function don't commute strictly we have to prove it -- separately and insert it in the proof of DoubleBinℕ≡Doubleℕ below -- (just like we had to in NatImplℕ≡NatImplBinℕ Binℕ→ℕdouble : (x : Binℕ) → doubleℕ (Binℕ→ℕ x) ≡ Binℕ→ℕ (doubleBinℕ x) Binℕ→ℕdouble binℕ0 = refl Binℕ→ℕdouble (binℕpos x) = refl -- We use the equality between Binℕ and ℕ to get an equality of -- doubling structures DoubleBinℕ≡Doubleℕ : PathP (λ i → Double (Binℕ≡ℕ i)) DoubleBinℕ Doubleℕ double (DoubleBinℕ≡Doubleℕ i) = λ x → glue (λ { (i = i0) → doubleBinℕ x ; (i = i1) → doubleℕ x }) (hcomp (λ j → λ { (i = i0) → Binℕ→ℕdouble x j ; (i = i1) → doubleℕ x }) (doubleℕ (unglue (i ∨ ~ i) x))) elt (DoubleBinℕ≡Doubleℕ i) = transp (λ j → Binℕ≡ℕ (i ∨ ~ j)) i (Doubleℕ .elt) -- We can now use transport to prove a property that is too slow to -- check with unary numbers. We define the property we want to check -- as a record so that Agda does not try to unfold it eagerly. record propDouble {ℓ} {A : Type ℓ} (D : Double A) : Type ℓ where field -- 2^20 * e = 2^5 * (2^15 * e) proof : doubles D 20 (elt D) ≡ doubles D 5 (doubles D 15 (elt D)) open propDouble -- The property we want to prove takes too long to typecheck for ℕ: -- propDoubleℕ : propDouble Doubleℕ -- propDoubleℕ = refl -- With binary numbers it is instant propDoubleBinℕ : propDouble DoubleBinℕ proof propDoubleBinℕ = refl -- By transporting the proof along the equality we then get it for -- unary numbers propDoubleℕ : propDouble Doubleℕ propDoubleℕ = transport (λ i → propDouble (DoubleBinℕ≡Doubleℕ i)) propDoubleBinℕ -------------------------------------------------------------------------------- -- -- Alternative encoding of binary natural numbers inspired by: -- https://github.com/RedPRL/redtt/blob/master/library/cool/nats.red -- -- This representation makes the equivalence with ℕ a bit easier to -- prove, but the doubling example wouldn't work as nicely as we -- cannot define it as an O(1) operation data binnat : Type₀ where zero : binnat -- 0 consOdd : binnat → binnat -- 2*n + 1 consEven : binnat → binnat -- 2*{n+1} binnat→ℕ : binnat → ℕ binnat→ℕ zero = 0 binnat→ℕ (consOdd n) = suc (doubleℕ (binnat→ℕ n)) binnat→ℕ (consEven n) = suc (suc (doubleℕ (binnat→ℕ n))) suc-binnat : binnat → binnat suc-binnat zero = consOdd zero suc-binnat (consOdd n) = consEven n suc-binnat (consEven n) = consOdd (suc-binnat n) ℕ→binnat : ℕ → binnat ℕ→binnat zero = zero ℕ→binnat (suc n) = suc-binnat (ℕ→binnat n) binnat→ℕ-suc : (n : binnat) → binnat→ℕ (suc-binnat n) ≡ suc (binnat→ℕ n) binnat→ℕ-suc zero = refl binnat→ℕ-suc (consOdd n) = refl binnat→ℕ-suc (consEven n) = λ i → suc (doubleℕ (binnat→ℕ-suc n i)) ℕ→binnat→ℕ : (n : ℕ) → binnat→ℕ (ℕ→binnat n) ≡ n ℕ→binnat→ℕ zero = refl ℕ→binnat→ℕ (suc n) = (binnat→ℕ-suc (ℕ→binnat n)) ∙ (cong suc (ℕ→binnat→ℕ n)) suc-ℕ→binnat-double : (n : ℕ) → suc-binnat (ℕ→binnat (doubleℕ n)) ≡ consOdd (ℕ→binnat n) suc-ℕ→binnat-double zero = refl suc-ℕ→binnat-double (suc n) = λ i → suc-binnat (suc-binnat (suc-ℕ→binnat-double n i)) binnat→ℕ→binnat : (n : binnat) → ℕ→binnat (binnat→ℕ n) ≡ n binnat→ℕ→binnat zero = refl binnat→ℕ→binnat (consOdd n) = (suc-ℕ→binnat-double (binnat→ℕ n)) ∙ (cong consOdd (binnat→ℕ→binnat n)) binnat→ℕ→binnat (consEven n) = (λ i → suc-binnat (suc-ℕ→binnat-double (binnat→ℕ n) i)) ∙ (cong consEven (binnat→ℕ→binnat n)) ℕ≃binnat : ℕ ≃ binnat ℕ≃binnat = isoToEquiv (iso ℕ→binnat binnat→ℕ binnat→ℕ→binnat ℕ→binnat→ℕ) ℕ≡binnat : ℕ ≡ binnat ℕ≡binnat = ua ℕ≃binnat -- We can transport addition on ℕ to binnat _+binnat_ : binnat → binnat → binnat _+binnat_ = transport (λ i → ℕ≡binnat i → ℕ≡binnat i → ℕ≡binnat i) _+_ -- Test: 4 + 1 = 5 _ : consEven (consOdd zero) +binnat consOdd zero ≡ consOdd (consEven zero) _ = refl oddbinnat : binnat → Bool oddbinnat zero = false oddbinnat (consOdd _) = true oddbinnat (consEven _) = false oddℕ' : ℕ → Bool oddℕ' = transport (λ i → ℕ≡binnat (~ i) → Bool) oddbinnat -- The NatImpl example for this representation of binary numbers private NatImplbinnat : NatImpl binnat z NatImplbinnat = zero s NatImplbinnat = suc-binnat -- Note that the s case is a bit simpler as no end-point correction -- is necessary (things commute strictly) NatImplℕ≡NatImplbinnat : PathP (λ i → NatImpl (ℕ≡binnat i)) NatImplℕ NatImplbinnat z (NatImplℕ≡NatImplbinnat i) = transp (λ j → ℕ≡binnat (i ∨ ~ j)) i zero s (NatImplℕ≡NatImplbinnat i) = λ x → glue (λ { (i = i0) → suc x ; (i = i1) → suc-binnat x }) (suc-binnat (unglue (i ∨ ~ i) x)) oddSuc : (n : binnat) → oddbinnat n ≡ not (oddbinnat (suc-binnat n)) oddSuc zero = refl oddSuc (consOdd _) = refl oddSuc (consEven _) = refl oddℕSuc' : (n : ℕ) → oddℕ' n ≡ not (oddℕ' (suc n)) oddℕSuc' = let eq : (i : I) → ℕ≡binnat (~ i) → Bool eq i = transp (λ j → ℕ≡binnat (~ i ∨ ~ j) → Bool) (~ i) oddbinnat in transport (λ i → (n : ℕ≡binnat (~ i)) → eq i n ≡ not (eq i (NatImplℕ≡NatImplbinnat (~ i) .NatImpl.s n))) oddSuc
34.004057
104
0.645848
209ab067d8c79a74ad96f20fb29c66396b086f43
810
agda
Agda
test/Succeed/fol-theorems/DuplicateAgdaDefinitions1.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
10
2015-09-03T20:54:16.000Z
2019-12-03T13:44:25.000Z
test/Succeed/fol-theorems/DuplicateAgdaDefinitions1.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
121
2015-01-25T13:22:12.000Z
2018-04-22T06:01:44.000Z
test/Succeed/fol-theorems/DuplicateAgdaDefinitions1.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
4
2016-05-10T23:06:19.000Z
2016-08-03T03:54:55.000Z
------------------------------------------------------------------------------ -- Testing the erasing of the duplicate definitions required by a conjecture ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module DuplicateAgdaDefinitions1 where infix 7 _≈_ ------------------------------------------------------------------------------ postulate D : Set _≈_ : D → D → Set Eq : D → D → Set Eq x y = x ≈ y {-# ATP definition Eq #-} postulate Eq-trans : ∀ {x y z} → Eq x y → Eq y z → Eq x z postulate Eq-trans₂ : ∀ {w x y z} → Eq w x → Eq x y → Eq y z → Eq w z {-# ATP prove Eq-trans₂ Eq-trans #-}
28.928571
78
0.402469
103095dfae9f042528124d206e87cccb3ee21f2a
1,076
agda
Agda
src/Dijkstra/EitherLike.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/Dijkstra/EitherLike.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/Dijkstra/EitherLike.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} module Dijkstra.EitherLike where open import Haskell.Prelude open import Level renaming (suc to ℓ+1; zero to ℓ0; _⊔_ to _ℓ⊔_) public module _ {ℓ₀ ℓ₁ ℓ₂ : Level} where EL-type = Set ℓ₁ → Set ℓ₂ → Set ℓ₀ EL-level = ℓ₁ ℓ⊔ ℓ₂ ℓ⊔ ℓ₀ -- Utility to make passing between `Either` and `EitherD` more convenient record EitherLike (E : EL-type) : Set (ℓ+1 EL-level) where field fromEither : ∀ {A : Set ℓ₁} {B : Set ℓ₂} → Either A B → E A B toEither : ∀ {A : Set ℓ₁} {B : Set ℓ₂} → E A B → Either A B open EitherLike ⦃ ... ⦄ public EL-func : EL-type → Set (ℓ+1 EL-level) EL-func EL = ⦃ mel : EitherLike EL ⦄ → Set EL-level instance EitherLike-Either : ∀ {ℓ₁ ℓ₂} → EitherLike{ℓ₁ ℓ⊔ ℓ₂}{ℓ₁}{ℓ₂} Either EitherLike.fromEither EitherLike-Either = id EitherLike.toEither EitherLike-Either = id
31.647059
111
0.671004
1016ec3d6ec0ecd030fa6650055c9e276ce319bc
4,401
agda
Agda
code-examples/agda/poly0.agda
mstone/poly
425de958985aacbd3284d3057fe21fd682e315ea
[ "MIT" ]
53
2021-02-18T16:31:04.000Z
2022-03-22T23:08:27.000Z
code-examples/agda/poly0.agda
mstone/poly
425de958985aacbd3284d3057fe21fd682e315ea
[ "MIT" ]
2
2021-09-02T02:29:39.000Z
2022-01-12T10:06:32.000Z
code-examples/agda/poly0.agda
mstone/poly
425de958985aacbd3284d3057fe21fd682e315ea
[ "MIT" ]
4
2021-07-10T17:19:37.000Z
2022-01-30T11:45:57.000Z
{-# OPTIONS --type-in-type #-} module poly0 where open import prelude open import functors open import poly.core public variable A B C X Y : ∫ I A⁺ B⁺ C⁺ X⁺ Y⁺ : Set A⁻ : A⁺ → Set B⁻ : B⁺ → Set C⁻ : C⁺ → Set X⁻ : X⁺ → Set Y⁻ : Y⁺ → Set ∃⊤ ∃⊥ ⊤∫ ∫∫ : Set → ∫ ∃⊤ a = a , λ _ → ⊤ ∃⊥ a = a , λ _ → ⊥ ⊤∫ a = ⊤ , λ _ → a ∫∫ a = a , λ _ → a 𝒴 𝟘 : ∫ 𝒴 = ⊤ , λ _ → ⊤ 𝟘 = ⊥ , λ _ → ⊥ module _ {A@(A⁺ , A⁻) B@(B⁺ , B⁻) : ∫} where infixl 5 _★_ -- infix notatjon for get _★_ : A⁺ → (l : ∫[ A , B ]) → B⁺ σa ★ l = get l σa infixr 4 _#_←_ -- Infix notatjon for set _#_←_ : (a⁺ : A⁺) → (A↝B : ∫[ A , B ]) → B⁻ (a⁺ ★ A↝B) → A⁻ a⁺ a⁺ # l ← b⁻ = π₂ (l a⁺) b⁻ _↕_ : (get : A⁺ → B⁺) → (set : (a⁺ : A⁺) → B⁻ (get a⁺) → A⁻ a⁺) → ∫[ A , B ] g ↕ s = λ a⁺ → (g a⁺) , (s a⁺) module _ {A@(A⁺ , A⁻) C@(C⁺ , C⁻) : ∫} (l : ∫[ A , C ]) where -- vertical and cartesian factorization Factor : Σ[ B ∈ ∫ ] (∫[ A , B ]) × (∫[ B , C ]) Factor = (A⁺ , C⁻ ∘ get l) , id ↕ set l , get l ↕ λ _ → id module lenses (f : A⁺ → B⁺) where constant : ∫[ ∃⊥ A⁺ , ∃⊥ B⁺ ] emitter : ∫[ ∃⊤ A⁺ , ∃⊤ B⁺ ] sensor : ∫[ ⊤∫ B⁺ , ⊤∫ A⁺ ] constant a⁺ = f a⁺ , id emitter a⁺ = f a⁺ , λ _ → tt sensor _ = tt , f open lenses public enclose : ((a⁺ : A⁺) → B⁻ a⁺) → ∫[ (A⁺ , B⁻) , 𝒴 ] enclose f a⁺ = tt , λ _ → f a⁺ auto : ∫[ ∃⊤ A⁺ , 𝒴 ] auto = enclose λ _ → tt {- lift∫ : (f : Set → Set) → ∫ → ∫ lift∫ f (A⁺ , A⁻) = A⁺ , f ∘ A⁻ liftLens : ∀ {A B} (f : Set → Set) → ∫[ A , B ] → ∫[ lift∫ f A , lift∫ f B ] liftLens f l a⁺ with l a⁺ ... | b⁺ , setb = b⁺ , φ setb -} {- module lift_comonad (f : Set → Set) {A : ∫} ⦃ f_monad : Monad f ⦄ where extract : lift∫ f A ↝ A extract a⁺ = a⁺ , η f_monad -- id ↕ λ _ → η duplicate : lift∫ f A ↝ lift∫ f (lift∫ f A) duplicate a⁺ = a⁺ , μ -} module poly-ops where infixl 6 _⊗_ infixl 5 _⊕_ _⊕_ _⊗_ _⊠_ _⊚_ : ∫ → ∫ → ∫ (A⁺ , A⁻) ⊕ (B⁺ , B⁻) = (A⁺ ⊎ B⁺) , (A⁻ ⨄ B⁻) -- coproduct (A⁺ , A⁻) ⊗ (B⁺ , B⁻) = (A⁺ × B⁺) , (A⁻ ⨃ B⁻) -- product (A⁺ , A⁻) ⊠ (B⁺ , B⁻) = (A⁺ × B⁺) , (A⁻ ⨉ B⁻) -- juxtapose (A⁺ , A⁻) ⊚ (B⁺ , B⁻) = (Σ[ a⁺ ∈ A⁺ ](A⁻ a⁺ → B⁺)) -- compose , λ (_ , bs) → ∃ (B⁻ ∘ bs) -- N-ary Σ⊕ : (I → ∫) → ∫ Σ⊕ {I = I} A = Σ I (π₁ ∘ A) , λ (i , a⁺) → π₂ (A i) a⁺ Π⊗ : (I → ∫) → ∫ Π⊗ {I = I} a = ((i : I) → π₁ (a i)) , λ a⁺ → Σ[ i ∈ I ](π₂ (a i) (a⁺ i)) Π⊠ : (I → ∫) → ∫ Π⊠ {I = I} a = ((i : I) → π₁ (a i)) , (λ a⁺ → (i : I) -> π₂ (a i) (a⁺ i)) _ᵒ_ : ∫ → ℕ → ∫ _ ᵒ ℕz = 𝒴 a ᵒ ℕs n = a ⊚ (a ᵒ n) open poly-ops public module lens-ops where _⟦+⟧_ : ∀ {a b x y} → ∫[ a , b ] → ∫[ x , y ] → ∫[ a ⊕ x , b ⊕ y ] -- coproduct _⟦|⟧_ : ∀ {a b x } → ∫[ a , x ] → ∫[ b , x ] → ∫[ a ⊕ b , x ] -- copair _⟦⊗⟧_ : ∀ {a b x y} → ∫[ a , b ] → ∫[ x , y ] → ∫[ a ⊗ x , b ⊗ y ] -- product _⟦×⟧_ : ∀ {x a b } → ∫[ x , a ] → ∫[ x , b ] → ∫[ x , a ⊗ b ] -- pair _⟦⊠⟧_ : ∀ {a b x y} → ∫[ a , b ] → ∫[ x , y ] → ∫[ a ⊠ x , b ⊠ y ] -- juxtaposition _⟦⊚⟧_ : ∀ {a b x y} → ∫[ a , b ] → ∫[ x , y ] → ∫[ a ⊚ x , b ⊚ y ] -- composition (a↝b ⟦+⟧ x↝y) = λ{(Σ₁ a⁺) → let b⁺ , setb = a↝b a⁺ in Σ₁ b⁺ , setb ;(Σ₂ x⁺) → let y⁺ , sety = x↝y x⁺ in Σ₂ y⁺ , sety} (a↝x ⟦|⟧ b↝x) = λ{(Σ₁ a⁺) → a↝x a⁺ ;(Σ₂ b⁺) → b↝x b⁺} (a↝b ⟦⊗⟧ x↝y) (a⁺ , x⁺) with a↝b a⁺ | x↝y x⁺ ... | b⁺ , setb | y⁺ , sety = (b⁺ , y⁺) , λ{(Σ₁ b⁻) → Σ₁ (setb b⁻) ;(Σ₂ y⁻) → Σ₂ (sety y⁻)} _⟦×⟧_ x↝a x↝b x⁺ with x↝a x⁺ | x↝b x⁺ ... | a⁺ , seta | b⁺ , setb = (a⁺ , b⁺) , λ{(Σ₁ a⁻) → seta a⁻ ;(Σ₂ b⁻) → setb b⁻} _⟦⊠⟧_ a↝b x↝y (a⁺ , x⁺) = ((a⁺ ★ a↝b) , (x⁺ ★ x↝y)) , λ (b⁻ , y⁻) → (a⁺ # a↝b ← b⁻) , (x⁺ # x↝y ← y⁻) (a↝b ⟦⊚⟧ x↝y) (a⁺ , a⁻→x⁺) with a↝b a⁺ ... | b⁺ , setb = (b⁺ , get x↝y ∘ a⁻→x⁺ ∘ setb) , λ (b⁻ , y⁻) → let a⁻ = setb b⁻ in a⁻ , (a⁻→x⁺ a⁻ # x↝y ← y⁻) -- N-ary Π⟦⊠⟧ : {as bs : I → ∫} → ((i : I) → (∫[ as i , bs i ])) → ∫[ Π⊠ as , Π⊠ bs ] Π⟦⊠⟧ ls as⁺ = (λ i → as⁺ i ★ ls i) , (λ dbs i → as⁺ i # ls i ← dbs i) _⟦ᵒ⟧_ : ∫[ A , B ] → (n : ℕ) → ∫[ A ᵒ n , B ᵒ n ] _⟦ᵒ⟧_ {a} {b} l = go where go : (n : ℕ) → ∫[ a ᵒ n , b ᵒ n ] go ℕz = 𝒾 {x = 𝒴} go (ℕs n) = l ⟦⊚⟧ (go n) open lens-ops public
30.5625
85
0.33606
20f152bdfa894d785a75ecb2c120ec8a5cfde202
794
agda
Agda
src/Data/Lens/Proofs/LensLaws.agda
JonathanBrouwer/research-project
4959a3c9cd8563a1726e0e968e6a179008cd4d9f
[ "Unlicense" ]
1
2021-05-25T09:10:20.000Z
2021-05-25T09:10:20.000Z
src/Data/Lens/Proofs/LensLaws.agda
JonathanBrouwer/research-project
4959a3c9cd8563a1726e0e968e6a179008cd4d9f
[ "Unlicense" ]
null
null
null
src/Data/Lens/Proofs/LensLaws.agda
JonathanBrouwer/research-project
4959a3c9cd8563a1726e0e968e6a179008cd4d9f
[ "Unlicense" ]
null
null
null
module Data.Lens.Proofs.LensLaws where open import Haskell.Prelude renaming (zero to Z; suc to S) open import Data.Lens.Lens open import Data.Logic open import Agda.Primitive -- First, define the lens laws ViewSet : {a b : Set} -> (l : Lens a b) -> Set ViewSet {a} {b} l = (v : b) (s : a) -> view l (set l v s) ≡ v SetView : {a b : Set} -> (l : Lens a b) -> Set SetView {a} {b} l = (s : a) -> set l (view l s) s ≡ s SetSet : {a b : Set} -> (l : Lens a b) -> Set SetSet {a} {b} l = (v1 v2 : b) (s : a) -> set l v2 (set l v1 s) ≡ set l v2 s -- Define ValidLens as a lens for which the laws hold data ValidLens (a b : Set) : Set₁ where CValidLens : (l : Lens a b) -> ViewSet l -> SetView l -> SetSet l -> ValidLens a b toLens : ValidLens a b -> Lens a b toLens (CValidLens l _ _ _) = l
29.407407
84
0.602015
dfbfeedf8ddb3960fc84919200d92566ec07541a
1,474
agda
Agda
SOAS/ContextMaps/Properties.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
39
2021-11-09T20:39:55.000Z
2022-03-19T17:33:12.000Z
SOAS/ContextMaps/Properties.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
1
2021-11-21T12:19:32.000Z
2021-11-21T12:19:32.000Z
SOAS/ContextMaps/Properties.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
4
2021-11-09T20:39:59.000Z
2022-01-24T12:49:17.000Z
import SOAS.Families.Core -- Various properties of context map operations module SOAS.ContextMaps.Properties {T : Set} (open SOAS.Families.Core {T}) (𝒳 : Familyₛ) where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.ContextMaps.CategoryOfRenamings {T} open import SOAS.ContextMaps.Combinators open import Categories.Functor.Bifunctor open import Categories.Object.Initial open import Categories.Object.Coproduct open import Categories.Category.Cocartesian open import Categories.Category.Equivalence using (StrongEquivalence) open import Categories.NaturalTransformation.NaturalIsomorphism using (niHelper) renaming (refl to NI-refl) private variable Γ Δ Θ Ξ : Ctx α : T -- Copairing and injection copair∘i₁ : {σ : Γ ~[ 𝒳 ]↝ Θ}{ς : Δ ~[ 𝒳 ]↝ Θ} (v : ℐ α Γ) → copair 𝒳 σ ς (∔.i₁ v) ≡ σ v copair∘i₁ new = refl copair∘i₁ {σ = σ} (old v) = copair∘i₁ {σ = σ ∘ old} v copair∘i₂ : {σ : Γ ~[ 𝒳 ]↝ Θ}{ς : Δ ~[ 𝒳 ]↝ Θ} (v : ℐ α Δ) → copair 𝒳 σ ς (∔.i₂ {Γ} v) ≡ ς v copair∘i₂ {Γ = ∅} v = refl copair∘i₂ {Γ = α ∙ Γ} {σ = σ} v = copair∘i₂ {σ = σ ∘ old} v -- Push function into copairing f∘copair : (𝒳 {𝒴} : Familyₛ) (f : Θ ~[ 𝒳 ➔ 𝒴 ]↝ Ξ)(σ : Γ ~[ 𝒳 ]↝ Θ)(ς : Δ ~[ 𝒳 ]↝ Θ) (v : ℐ α (Γ ∔ Δ)) → f (copair 𝒳 σ ς v) ≡ copair 𝒴 (f ∘ σ) (f ∘ ς) v f∘copair {Γ = ∅} 𝒳 f σ ς v = refl f∘copair {Γ = α ∙ Γ} 𝒳 f σ ς new = refl f∘copair {Γ = α ∙ Γ} 𝒳 f σ ς (old v) = f∘copair 𝒳 f (σ ∘ old) ς v
32.755556
84
0.625509
dc10e2cc4797d9f635b1730e42080cfcc64d46e4
1,207
agda
Agda
agda/Data/List/Filter.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
agda/Data/List/Filter.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
agda/Data/List/Filter.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Data.List.Filter where open import Prelude open import Data.List open import Data.List.Membership open import Data.Sigma.Properties open import Data.Bool.Properties open import Data.Fin module _ {p} {P : A → Type p} where filter : (P? : ∀ x → Dec (P x)) → List A → List (∃ P) filter P? = foldr f [] where f : _ → List (∃ P) → List (∃ P) f y ys with P? y ... | yes t = (y , t) ∷ ys ... | no _ = ys filter-preserves : (isPropP : ∀ x → isProp (P x)) (P? : ∀ x → Dec (P x)) (xs : List A) → (x : A) → (v : P x) → (x ∈ xs) → ((x , v) ∈ filter P? xs) filter-preserves isPropP P? (x ∷ xs) y v (n , y∈xs) with P? x filter-preserves isPropP P? (x ∷ xs) y v (f0 , y∈xs) | yes t = f0 , ΣProp≡ isPropP y∈xs filter-preserves isPropP P? (x ∷ xs) y v (fs n , y∈xs) | yes t = let m , q = filter-preserves isPropP P? xs y v (n , y∈xs) in fs m , q filter-preserves isPropP P? (x ∷ xs) y v (f0 , y∈xs) | no ¬t = ⊥-elim (¬t (subst P (sym y∈xs) v)) filter-preserves isPropP P? (x ∷ xs) y v (fs n , y∈xs) | no ¬t = filter-preserves isPropP P? xs y v (n , y∈xs)
38.935484
136
0.525269
fbf7fbecf565bdab48c2e5cc9cd1ac6e323439c0
90
agda
Agda
agda/Data/Fin.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
agda/Data/Fin.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
agda/Data/Fin.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --safe #-} module Data.Fin where open import Data.Fin.Base public
15
32
0.7
3915693ceb51f001de8ce12b4ac883debedc76a5
3,613
agda
Agda
HoTT/Basic_Types.agda
andyfreeyy/agda_and_math
76b9ef64626b6d3bbb7ace4f1a16aeb447c54328
[ "MIT" ]
2
2020-03-23T09:01:42.000Z
2020-05-24T10:56:36.000Z
HoTT/Basic_Types.agda
andyfreeyy/agda_and_math
76b9ef64626b6d3bbb7ace4f1a16aeb447c54328
[ "MIT" ]
null
null
null
HoTT/Basic_Types.agda
andyfreeyy/agda_and_math
76b9ef64626b6d3bbb7ace4f1a16aeb447c54328
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --exact-split --safe #-} module Basic_Types where -- Already in the builtin's of agda, there are Π types, which is ∀, and lambda -- abstraction, which is λ{ } and function types, which is →. -- ------------------------------------ -- Some operations for function types -- The curly brackts ∀{} should be viewed as contexts. -- identity function id : ∀ {A : Set} → A → A id = λ{ x → x } -- function composition comp : ∀ {A B C : Set} → (B → C) → (A → B) → A → C comp {A} {B} {C} = λ (f : B → C) (g : A → B) (x : A) → f (g x) -- The judgemental equality of association of functions is builtin in agda, -- i.e., all the rules of derivation in the basic language of type theory, -- e.g., the β-, η- reduction is automatic in agda. -- swapping the argument swap : ∀ {A B : Set} {C : A → B → Set} → (∀ (a : A) (b : B) → C a b) → (∀ (b : B) (a : A) → C a b) swap {A} {B} {C} = λ { p → λ (b : B) (a : A) → p a b } -- ------------------------------------ -- the unit type data 𝟙 : Set where ⋆ : 𝟙 𝟙-ind : ∀ {A : 𝟙 → Set} → ∀ (a : A ⋆) → ∀ (x : 𝟙) → A x 𝟙-ind {A} a = 𝟙-indhelper where 𝟙-indhelper : ∀ (x : 𝟙) → A x 𝟙-indhelper ⋆ = a -- ------------------------------------ -- the empty type data 𝟘 : Set where 𝟘-ind : ∀ {A : 𝟘 → Set} → ∀ (x : 𝟘) → A x 𝟘-ind {A} () -- define negation ¬_ : ∀ (A : Set) → Set ¬ A = A → 𝟘 -- ------------------------------------ -- the boolean type data 𝟚 : Set where tt ff : 𝟚 𝟚-ind : ∀ {A : 𝟚 → Set} → A ff → A tt → ∀ (x : 𝟚) → A x 𝟚-ind Aff _ ff = Aff 𝟚-ind _ Att tt = Att -- ------------------------------------ -- natural numbers data ℕ : Set where zero : ℕ succ : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} -- ℕ induction ℕ-ind : ∀ {A : ℕ → Set} → ∀ (a : A 0) → (∀ (n : ℕ) → A n → A (succ n)) → ∀ (m : ℕ) → A m ℕ-ind {A} a p = ℕ-indhelper where ℕ-indhelper : ∀ (m : ℕ) → A m ℕ-indhelper 0 = a ℕ-indhelper (succ n) = p n (ℕ-indhelper n) -- From this exercise, we can actually see that the idea of induction is -- builtin in agda, since we essentially use the induction builtin in agda -- to prove ℕ-ind. -- ℕ recursion, which is a special case for ℕ induction, where the type is not -- dependent on ℕ ℕ-rec : ∀ {A : Set} → ∀ (a : A) → (∀ (n : ℕ) → A → A) → ∀ (m : ℕ) → A ℕ-rec {A} = ℕ-ind {λ { n → A }} -- for example, we can use ℕ-rec to define addition add : ℕ → ℕ → ℕ add = ℕ-rec {ℕ → ℕ} (id {ℕ}) (λ (n : ℕ) (p : ℕ → ℕ) → comp succ p) -- ------------------------------------ -- the sum type record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field a : A b : B a -- the two projections π₁ : ∀ {A : Set} {B : A → Set} → Σ A B → A π₁ (x , y) = x π₂ : ∀ {A : Set} {B : A → Set} → ∀ (z : Σ A B) → B (π₁ z) π₂ (x , y) = y syntax Σ A (λ a → b) = Σ a ∶ A , b -- Σ induction Σ-ind : ∀ {A : Set} {B : A → Set} {P : Σ A B → Set} → (∀ (a : A) (b : B a) → P (a , b)) → ∀ (z : Σ A B) → P z Σ-ind {A} {B} {P} = λ (f : ∀ (a : A) (b : B a) → P (a , b)) → λ (z : Σ A B) → f (π₁ z) (π₂ z) -- cartesion product type _×_ : Set → Set → Set A × B = Σ a ∶ A , B ×-ind : ∀ {A : Set} {B : Set} {P : A × B → Set} → (∀ (a : A) (b : B) → P (a , b)) → ∀ (z : A × B) → P z ×-ind {A} {B} {P} = Σ-ind {A} {λ (a : A) → B} {P} -- ------------------------------------ -- the coproduct type data _⊎_ (A : Set) (B : Set) : Set where inl : A → A ⊎ B inr : B → A ⊎ B ⊎-ind : ∀ {A : Set} {B : Set} {P : A ⊎ B → Set} → (∀ (a : A) → P (inl a)) → (∀ (b : B) → P (inr b)) → ∀ (u : A ⊎ B) → P u ⊎-ind f _ (inl x) = f x ⊎-ind _ g (inr y) = g y
27.165414
78
0.443952
0e03e0a0b8e1f38f380d61fc2c5d20885d97859e
4,722
agda
Agda
Cubical/DStructures/Structures/Higher.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/DStructures/Structures/Higher.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/DStructures/Structures/Higher.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.DStructures.Structures.Higher where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Function open import Cubical.Foundations.Pointed open import Cubical.Foundations.Univalence open import Cubical.Functions.FunExtEquiv open import Cubical.Homotopy.Base open import Cubical.Homotopy.Connected open import Cubical.Data.Sigma open import Cubical.Data.Nat open import Cubical.Relation.Binary open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Higher open import Cubical.Algebra.Group.EilenbergMacLane1 open import Cubical.HITs.EilenbergMacLane1 open import Cubical.DStructures.Base open import Cubical.DStructures.Meta.Properties open import Cubical.DStructures.Meta.Isomorphism open import Cubical.DStructures.Structures.Universe open import Cubical.DStructures.Structures.Type open import Cubical.DStructures.Structures.Group open import Cubical.DStructures.Structures.Constant private variable ℓ ℓ' : Level 𝒮ᴰ-connected : {ℓ : Level} (k : ℕ) → URGStrᴰ (𝒮-universe {ℓ}) (isConnected k) ℓ-zero 𝒮ᴰ-connected k = Subtype→Sub-𝒮ᴰ (λ A → isConnected k A , isPropIsContr) 𝒮-universe 𝒮ᴰ-truncated : {ℓ : Level} (n : ℕ) → URGStrᴰ (𝒮-universe {ℓ}) (isOfHLevel n) ℓ-zero 𝒮ᴰ-truncated n = Subtype→Sub-𝒮ᴰ (λ A → isOfHLevel n A , isPropIsOfHLevel n) 𝒮-universe 𝒮ᴰ-BGroup : (n k : ℕ) → URGStrᴰ (𝒮-universe {ℓ}) (λ A → A × (isConnected (k + 1) A) × (isOfHLevel (n + k + 2) A)) ℓ 𝒮ᴰ-BGroup n k = combine-𝒮ᴰ 𝒮ᴰ-pointed (combine-𝒮ᴰ (𝒮ᴰ-connected (k + 1)) (𝒮ᴰ-truncated (n + k + 2))) 𝒮-BGroup : (n k : ℕ) → URGStr (Σ[ A ∈ Type ℓ ] A × (isConnected (k + 1) A) × (isOfHLevel (n + k + 2) A)) ℓ 𝒮-BGroup n k = ∫⟨ 𝒮-universe ⟩ 𝒮ᴰ-BGroup n k 𝒮-1BGroup : URGStr 1BGroupΣ ℓ 𝒮-1BGroup = 𝒮-BGroup 0 1 𝒮-Iso-BGroup-Group : {ℓ : Level} → 𝒮-PIso (𝒮-group ℓ) 𝒮-1BGroup RelIso.fun 𝒮-Iso-BGroup-Group G = EM₁ G , embase , EM₁Connected G , EM₁Groupoid G RelIso.inv 𝒮-Iso-BGroup-Group = π₁-1BGroupΣ RelIso.leftInv 𝒮-Iso-BGroup-Group = π₁EM₁≃ RelIso.rightInv 𝒮-Iso-BGroup-Group BG = basetype-≅ , basepoint-≅ , tt , tt where -- notation type = fst BG * = fst (snd BG) conn = fst (snd (snd BG)) trunc = snd (snd (snd BG)) BG' = (bgroup (type , *) conn trunc) π₁BG : Group π₁BG = π₁-1BGroupΣ BG EM₁π₁BG : 1BGroupΣ EM₁π₁BG = EM₁ π₁BG , embase , EM₁Connected π₁BG , EM₁Groupoid π₁BG -- equivalences basetype-≅ : EM₁ π₁BG ≃ type fst basetype-≅ = EM₁-functor-lInv-function π₁BG BG' (GroupEquiv.hom (π₁EM₁≃ π₁BG)) snd basetype-≅ = EM₁-functor-lInv-onIso-isEquiv π₁BG BG' (π₁EM₁≃ π₁BG) basepoint-≅ : * ≡ * basepoint-≅ = refl 𝒮ᴰ-BGroupHom : (n k : ℕ) → URGStrᴰ (𝒮-BGroup {ℓ} n k ×𝒮 𝒮-BGroup {ℓ'} n k) (λ (BG , BH) → BGroupHomΣ BG BH) (ℓ-max ℓ ℓ') 𝒮ᴰ-BGroupHom n k = make-𝒮ᴰ (λ {(BG , BH)} {(BG' , BH')} f (((eᴳ , _) , eᴳ-pt , _), ((eᴴ , _) , eᴴ-pt , _)) f' → ((eᴴ , eᴴ-pt) ∘∙ f) ∙∼ (f' ∘∙ (eᴳ , eᴳ-pt))) (λ {(BG , BH)} f → q {(BG , BH)} f) contrSingl where module _ {(BG , BH) : BGroupΣ n k × BGroupΣ n k} (f : BGroupHomΣ BG BH) where q : (id∙ (baseΣ BH) ∘∙ f) ∙∼ (f ∘∙ id∙ (baseΣ BG)) q = funExt∙⁻ (id∙ (baseΣ BH) ∘∙ f ≡⟨ ∘∙-idʳ f ⟩ f ≡⟨ sym (∘∙-idˡ f) ⟩ (f ∘∙ id∙ (baseΣ BG)) ∎) module _ ((BG , BH) : BGroupΣ n k × BGroupΣ n k) (f : BGroupHomΣ BG BH) where contrSingl : isContr (Σ[ f' ∈ BGroupHomΣ BG BH ] ((id∙ (baseΣ BH) ∘∙ f) ∙∼ (f' ∘∙ id∙ (baseΣ BG)))) contrSingl = isContrRespectEquiv (Σ-cong-equiv-snd (λ f' → f ≡ f' ≃⟨ invEquiv (funExt∙≃ f f') ⟩ f ∙∼ f' ≃⟨ pathToEquiv (cong (_∙∼ f') (sym (∘∙-idʳ f)) ∙ cong ((id∙ (baseΣ BH) ∘∙ f) ∙∼_) (sym (∘∙-idˡ f'))) ⟩ (id∙ (baseΣ BH) ∘∙ f) ∙∼ (f' ∘∙ id∙ (baseΣ BG)) ■)) (isContrSingl f)
37.776
113
0.532402
10691735209a294f0ff0ea081f6a8f2d2029a562
4,003
agda
Agda
internal/lob--2015-06-14--III.agda
JasonGross/lob
716129208eaf4fe3b5f629f95dde4254805942b3
[ "MIT" ]
19
2015-07-17T17:53:30.000Z
2021-03-17T14:04:53.000Z
internal/lob--2015-06-14--III.agda
JasonGross/lob
716129208eaf4fe3b5f629f95dde4254805942b3
[ "MIT" ]
1
2015-07-17T20:20:43.000Z
2015-07-17T20:20:43.000Z
internal/lob--2015-06-14--III.agda
JasonGross/lob
716129208eaf4fe3b5f629f95dde4254805942b3
[ "MIT" ]
1
2015-07-17T18:53:37.000Z
2015-07-17T18:53:37.000Z
module lob--2015-06-14--III where data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} record Σ {X : Set} (F : X → Set) : Set where constructor _,_ field fst : X snd : F fst data ⊤ : Set where unit : ⊤ data Tree (X : Set) : Set where br : Tree X → Tree X → Tree X leaf : X → Tree X indtree : {X : Set} → (P : Tree X → Set) → ((s t : Tree X) → P s → P t → P (br s t)) → ((x : X) → P (leaf x)) → (t : Tree X) → P t indtree P b l (br s t) = b s t (indtree P b l s) (indtree P b l t) indtree P b l (leaf x) = l x data Preterm : Set where type : ℕ → Preterm pi : Preterm → Preterm → Preterm sig : Preterm → Preterm → Preterm bot : Preterm top : Preterm unit : Preterm var : ℕ → Preterm lam : Preterm → Preterm → Preterm app : Preterm → Preterm → Preterm tree : Preterm → Preterm br : Preterm → Preterm → Preterm → Preterm leaf : Preterm → Preterm → Preterm ind : Preterm → Preterm → Preterm → Preterm → Preterm → Preterm ‘λ→’ = lam data _::_ : Preterm → Preterm → Set where ::type : (ℓ : ℕ) → type ℓ :: type (suc ℓ) -- ... □ : Preterm → Set □ T = Σ \(t : Preterm) → t :: T num : ℕ → Preterm num 0 = leaf top unit num (suc n) = br top unit (num n) data List (X : Set) : Set where nil : List X _,_ : X → List X → List X infixr 1 _,_ list : List Preterm → Preterm list nil = leaf top unit list (x , xs) = br top x (list xs) cons : ℕ → List Preterm → Preterm cons n xs = br top (num n) (list xs) ‘type’ : Preterm → Preterm ‘type’ n = cons 0 (n , nil) ‘pi’ : Preterm → Preterm → Preterm ‘pi’ x f = cons 1 (x , f , nil) ‘sig’ : Preterm → Preterm → Preterm ‘sig’ x f = cons 2 (x , f , nil) ‘bot’ : Preterm ‘bot’ = cons 3 nil ‘top’ : Preterm ‘top’ = cons 4 nil ‘unit’ : Preterm ‘unit’ = cons 5 nil ‘var’ : Preterm → Preterm ‘var’ n = cons 6 (n , nil) ‘lam’ : Preterm → Preterm → Preterm ‘lam’ t b = cons 7 (t , b , nil) ‘app’ : Preterm → Preterm → Preterm ‘app’ f x = cons 8 (f , x , nil) ‘tree’ : Preterm → Preterm ‘tree’ x = cons 9 (x , nil) ‘br’ : Preterm → Preterm → Preterm → Preterm ‘br’ x l r = cons 10 (x , l , r , nil) ‘leaf’ : Preterm → Preterm → Preterm ‘leaf’ x y = cons 11 (x , y , nil) ‘ind’ : Preterm → Preterm → Preterm → Preterm → Preterm → Preterm ‘ind’ x p b l t = cons 12 (x , p , b , l , t , nil) ‘Preterm’ : Preterm ‘Preterm’ = tree top ‘Preterm’::type₀ : ‘Preterm’ :: type 0 ‘Preterm’::type₀ = {!!} ‘□’ : Preterm ‘□’ = {!!} _‘→’_ : Preterm → Preterm → Preterm A ‘→’ B = pi A {!!} quot : Preterm → Preterm quot (type n) = ‘type’ (num n) quot (pi x f) = ‘pi’ (quot x) (quot f) quot (sig x f) = ‘sig’ (quot x) (quot f) quot bot = ‘bot’ quot top = ‘top’ quot unit = ‘unit’ quot (var n) = ‘var’ (num n) quot (lam x b) = ‘lam’ (quot x) (quot b) quot (app f x) = ‘app’ (quot f) (quot x) quot (tree x) = ‘tree’ (quot x) quot (br x l r) = ‘br’ (quot x) (quot l) (quot r) quot (leaf x y) = ‘leaf’ (quot x) (quot y) quot (ind x p b l t) = ‘ind’ (quot x) (quot p) (quot b) (quot l) (quot t) ‘quot’ : Preterm ‘quot’ = {!!} ‘‘→’’ : Preterm ‘‘→’’ = {!!} ⌜_⌝ = quot _‘’_ = app infixl 1 _‘’_ postulate X : Set ‘X’ : Preterm ‘X’::type₀ : ‘X’ :: type 0 App : {‘A’ ‘B’ : Preterm} → □ (‘A’ ‘→’ ‘B’) → □ ‘A’ → □ ‘B’ App □‘A→B’ □‘A’ = {!!} ‘App’ : Preterm ‘App’ = {!!} Quot : {‘T’ : Preterm} → □ ‘T’ → □ (‘□’ ‘’ ⌜ ‘T’ ⌝) Quot □T = {!!} ‘Quot’ : Preterm ‘Quot’ = {!!} ‘L₀’ : Preterm ‘L₀’ = (‘λ→’ ‘Preterm’ ((‘app’ ⌜ ‘□’ ⌝ (‘app’ (var 0) (‘quot’ ‘’ (var 0)))) ‘’ ‘‘→’’ ‘’ ⌜ ‘X’ ⌝ )) L : Preterm L = (λ (h : Preterm) → (app ‘□’ (app h (⌜ h ⌝))) ‘→’ ‘X’) ‘L₀’ ‘L’ = app ‘L₀’ ⌜ ‘L₀’ ⌝ Conv : □ (‘□’ ‘’ ⌜ L ⌝) → □ (‘□’ ‘’ ‘L’) Conv = {!!} ‘Conv’ : Preterm ‘Conv’ = {!!} postulate f : □ ‘X’ → X ‘f’ : Preterm d‘f’ : ‘f’ :: (app ‘□’ (quot ‘X’) ‘→’ ‘X’) y : X y = (λ (ℓ : □ L) → f (App ℓ (Conv (Quot ℓ)))) ( ‘λ→’ (‘□’ ‘’ ‘L’) (‘f’ ‘’ (‘App’ ‘’ (var 0) ‘’ (‘Conv’ ‘’ (‘Quot’ ‘’ var 0)))) , {!!})
19.816832
98
0.501374
23cd34507e044066419c62b0e5c6ec740f6e9421
1,126
agda
Agda
src/Categories/Category/Exact.agda
Akshobhya1234/agda-categories
c202a616d4f376b11e8320e641c98db2ddc9d233
[ "MIT" ]
null
null
null
src/Categories/Category/Exact.agda
Akshobhya1234/agda-categories
c202a616d4f376b11e8320e641c98db2ddc9d233
[ "MIT" ]
null
null
null
src/Categories/Category/Exact.agda
Akshobhya1234/agda-categories
c202a616d4f376b11e8320e641c98db2ddc9d233
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} -- Exact category (https://ncatlab.org/nlab/show/exact+category) -- is a regular category -- in which every internal equivalence is a kernel pair module Categories.Category.Exact where open import Level open import Categories.Category.Core open import Categories.Diagram.Pullback open import Categories.Category.Cocartesian open import Categories.Object.Coproduct open import Categories.Morphism open import Categories.Category.Complete.Finitely using (FinitelyComplete) open import Categories.Diagram.Coequalizer open import Categories.Diagram.KernelPair open import Categories.Category.Regular open import Categories.Morphism.Regular open import Categories.Object.InternalRelation record Exact {o ℓ e : Level} (𝒞 : Category o ℓ e) : Set (suc (o ⊔ ℓ ⊔ e)) where open Category 𝒞 open Pullback open Coequalizer open Equivalence field regular : Regular 𝒞 quotient : ∀ {X : Obj} (E : Equivalence 𝒞 X) → Coequalizer 𝒞 (R.p₁ E) (R.p₂ E) effective : ∀ {X : Obj} (E : Equivalence 𝒞 X) → IsPullback 𝒞 (R.p₁ E) (R.p₂ E) (arr (quotient E)) (arr (quotient E))
31.277778
84
0.742451
23621f6e4d1a6eed7aa690d0c0084c8e1992797a
1,593
agda
Agda
src/deriveUtil.agda
shinji-kono/automaton-in-agda
eba0538f088f3d0c0fedb19c47c081954fbc69cb
[ "MIT" ]
null
null
null
src/deriveUtil.agda
shinji-kono/automaton-in-agda
eba0538f088f3d0c0fedb19c47c081954fbc69cb
[ "MIT" ]
null
null
null
src/deriveUtil.agda
shinji-kono/automaton-in-agda
eba0538f088f3d0c0fedb19c47c081954fbc69cb
[ "MIT" ]
null
null
null
module deriveUtil where open import Level renaming ( suc to succ ; zero to Zero ) open import Data.Nat open import Data.Fin open import Data.List open import regex open import automaton open import nfa open import logic open NAutomaton open Automaton open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Relation.Nullary open Bool data alpha2 : Set where a : alpha2 b : alpha2 a-eq? : (x y : alpha2) → Dec (x ≡ y) a-eq? a a = yes refl a-eq? b b = yes refl a-eq? a b = no (λ ()) a-eq? b a = no (λ ()) open Regex open import finiteSet fin-a : FiniteSet alpha2 fin-a = record { finite = finite0 ; Q←F = Q←F0 ; F←Q = F←Q0 ; finiso→ = finiso→0 ; finiso← = finiso←0 } where finite0 : ℕ finite0 = 2 Q←F0 : Fin finite0 → alpha2 Q←F0 zero = a Q←F0 (suc zero) = b F←Q0 : alpha2 → Fin finite0 F←Q0 a = # 0 F←Q0 b = # 1 finiso→0 : (q : alpha2) → Q←F0 ( F←Q0 q ) ≡ q finiso→0 a = refl finiso→0 b = refl finiso←0 : (f : Fin finite0 ) → F←Q0 ( Q←F0 f ) ≡ f finiso←0 zero = refl finiso←0 (suc zero) = refl open import derive alpha2 fin-a a-eq? test11 = regex→automaton ( < a > & < b > ) test12 = accept test11 record { state = < a > & < b > ; is-derived = unit } ( a ∷ b ∷ [] ) test13 = accept test11 record { state = < a > & < b > ; is-derived = unit } ( a ∷ a ∷ [] ) test14 = regex-match ( ( < a > & < b > ) * ) ( a ∷ b ∷ a ∷ a ∷ [] ) test15 = regex-derive ( ( < a > & < b > ) * ∷ [] ) test16 = regex-derive test15 test17 : regex-derive test16 ≡ test16 test17 = refl
22.757143
91
0.578782
d0bd3e744881b231af1ecfcdb32b6e8f3cb932f8
203
agda
Agda
test/Succeed/Issue2243.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2243.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2243.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-10-08, issue #2243 -- {-# OPTIONS -v tc.cover.cover:100 #-} open import Agda.Builtin.Char f : Char → Char f 'x' = 'x' f 'x' = 'y' -- should be marked as unreachable clause f _ = 's'
18.454545
54
0.605911
dcf4e68d4b2f3eb99fba732a19a1cadf54fb742d
17,140
agda
Agda
Cubical/HITs/Truncation/Properties.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/HITs/Truncation/Properties.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/HITs/Truncation/Properties.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Truncation.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Foundations.Univalence open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Equiv.PathSplit open isPathSplitEquiv open import Cubical.Modalities.Modality open Modality open import Cubical.Data.Empty as ⊥ using (⊥) open import Cubical.Data.Nat hiding (elim) open import Cubical.Data.NatMinusOne as ℕ₋₁ open import Cubical.Data.Sigma open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.HITs.Nullification as Null hiding (rec; elim) open import Cubical.HITs.Truncation.Base open import Cubical.HITs.PropositionalTruncation as PropTrunc renaming (∥_∥ to ∥_∥₁; ∣_∣ to ∣_∣₁; squash to squash₁) using () open import Cubical.HITs.SetTruncation as SetTrunc using (∥_∥₂; ∣_∣₂; squash₂) open import Cubical.HITs.GroupoidTruncation as GpdTrunc using (∥_∥₃; ∣_∣₃; squash₃) open import Cubical.HITs.2GroupoidTruncation as 2GpdTrunc using (∥_∥₄; ∣_∣₄; squash₄) private variable ℓ ℓ' : Level A B : Type ℓ sphereFill : (n : ℕ₋₁) (f : S n → A) → Type _ sphereFill {A = A} n f = Σ[ top ∈ A ] ((x : S n) → top ≡ f x) isSphereFilled : ℕ₋₁ → Type ℓ → Type ℓ isSphereFilled n A = (f : S n → A) → sphereFill n f isSphereFilledTrunc : {n : HLevel} → isSphereFilled (-1+ n) (hLevelTrunc n A) isSphereFilledTrunc {n = zero} f = hub f , ⊥.elim isSphereFilledTrunc {n = suc n} f = hub f , spoke f isSphereFilled→isOfHLevelSuc : {n : HLevel} → isSphereFilled (ℕ→ℕ₋₁ n) A → isOfHLevel (suc n) A isSphereFilled→isOfHLevelSuc {A = A} {zero} h x y = sym (snd (h f) north) ∙ snd (h f) south where f : Susp ⊥ → A f north = x f south = y isSphereFilled→isOfHLevelSuc {A = A} {suc n} h x y = isSphereFilled→isOfHLevelSuc (helper h x y) where helper : isSphereFilled (ℕ→ℕ₋₁ (suc n)) A → (x y : A) → isSphereFilled (ℕ→ℕ₋₁ n) (x ≡ y) helper h x y f = sym p ∙ q , r where f' : Susp (S (ℕ→ℕ₋₁ n)) → A f' north = x f' south = y f' (merid u i) = f u i p = snd (h f') north q = snd (h f') south r : (s : S (ℕ→ℕ₋₁ n)) → sym p ∙ q ≡ f s r s i j = hcomp (λ k → λ { (i = i0) → compPath-filler (sym p) q k j ; (i = i1) → snd (h f') (merid s j) k ; (j = i0) → p (k ∨ ~ i) ; (j = i1) → q k }) (p (~ i ∧ ~ j)) isOfHLevel→isSphereFilled : {n : HLevel} → isOfHLevel n A → isSphereFilled (-1+ n) A isOfHLevel→isSphereFilled {n = zero} h f = fst h , λ _ → snd h _ isOfHLevel→isSphereFilled {n = suc zero} h f = f north , λ _ → h _ _ isOfHLevel→isSphereFilled {A = A} {suc (suc n)} h = helper λ x y → isOfHLevel→isSphereFilled (h x y) where helper : {n : HLevel} → ((x y : A) → isSphereFilled (-1+ n) (x ≡ y)) → isSphereFilled (suc₋₁ (-1+ n)) A helper {n} h f = l , r where l : A l = f north f' : S (-1+ n) → f north ≡ f south f' x i = f (merid x i) h' : sphereFill (-1+ n) f' h' = h (f north) (f south) f' r : (x : S (suc₋₁ (-1+ n))) → l ≡ f x r north = refl r south = h' .fst r (merid x i) j = hcomp (λ k → λ { (i = i0) → f north ; (i = i1) → h' .snd x (~ k) j ; (j = i0) → f north ; (j = i1) → f (merid x i) }) (f (merid x (i ∧ j))) -- isNull (S n) A ≃ (isSphereFilled n A) × (∀ (x y : A) → isSphereFilled n (x ≡ y)) isOfHLevel→isSnNull : {n : HLevel} → isOfHLevel n A → isNull (S (-1+ n)) A fst (sec (isOfHLevel→isSnNull h)) f = fst (isOfHLevel→isSphereFilled h f) snd (sec (isOfHLevel→isSnNull h)) f i s = snd (isOfHLevel→isSphereFilled h f) s i fst (secCong (isOfHLevel→isSnNull h) x y) p = fst (isOfHLevel→isSphereFilled (isOfHLevelPath _ h x y) (funExt⁻ p)) snd (secCong (isOfHLevel→isSnNull h) x y) p i j s = snd (isOfHLevel→isSphereFilled (isOfHLevelPath _ h x y) (funExt⁻ p)) s i j isSnNull→isOfHLevel : {n : HLevel} → isNull (S (-1+ n)) A → isOfHLevel n A isSnNull→isOfHLevel {n = zero} nA = fst (sec nA) ⊥.rec , λ y → fst (secCong nA _ y) (funExt ⊥.elim) isSnNull→isOfHLevel {n = suc n} nA = isSphereFilled→isOfHLevelSuc (λ f → fst (sec nA) f , λ s i → snd (sec nA) f i s) isOfHLevelTrunc : (n : HLevel) → isOfHLevel n (hLevelTrunc n A) isOfHLevelTrunc zero = hub ⊥.rec , λ _ → ≡hub ⊥.rec isOfHLevelTrunc (suc n) = isSphereFilled→isOfHLevelSuc isSphereFilledTrunc -- isOfHLevelTrunc n = isSnNull→isOfHLevel isNull-Null -- hLevelTrunc n is a modality rec : {n : HLevel} {B : Type ℓ'} → isOfHLevel n B → (A → B) → hLevelTrunc n A → B rec h = Null.rec (isOfHLevel→isSnNull h) elim : {n : HLevel} {B : hLevelTrunc n A → Type ℓ'} (hB : (x : hLevelTrunc n A) → isOfHLevel n (B x)) (g : (a : A) → B (∣ a ∣)) (x : hLevelTrunc n A) → B x elim hB = Null.elim (λ x → isOfHLevel→isSnNull (hB x)) elim2 : {n : HLevel} {B : hLevelTrunc n A → hLevelTrunc n A → Type ℓ'} (hB : ((x y : hLevelTrunc n A) → isOfHLevel n (B x y))) (g : (a b : A) → B ∣ a ∣ ∣ b ∣) (x y : hLevelTrunc n A) → B x y elim2 {n = n} hB g = elim (λ _ → isOfHLevelΠ n (λ _ → hB _ _)) (λ a → elim (λ _ → hB _ _) (λ b → g a b)) elim3 : {n : HLevel} {B : (x y z : hLevelTrunc n A) → Type ℓ'} (hB : ((x y z : hLevelTrunc n A) → isOfHLevel n (B x y z))) (g : (a b c : A) → B (∣ a ∣) ∣ b ∣ ∣ c ∣) (x y z : hLevelTrunc n A) → B x y z elim3 {n = n} hB g = elim2 (λ _ _ → isOfHLevelΠ n (hB _ _)) (λ a b → elim (λ _ → hB _ _ _) (λ c → g a b c)) HLevelTruncModality : ∀ {ℓ} (n : HLevel) → Modality ℓ isModal (HLevelTruncModality n) = isOfHLevel n isModalIsProp (HLevelTruncModality n) = isPropIsOfHLevel n ◯ (HLevelTruncModality n) = hLevelTrunc n ◯-isModal (HLevelTruncModality n) = isOfHLevelTrunc n η (HLevelTruncModality n) = ∣_∣ ◯-elim (HLevelTruncModality n) = elim ◯-elim-β (HLevelTruncModality n) = λ _ _ _ → refl ◯-=-isModal (HLevelTruncModality n) = isOfHLevelPath n (isOfHLevelTrunc n) truncIdempotentIso : (n : HLevel) → isOfHLevel n A → Iso A (hLevelTrunc n A) truncIdempotentIso n hA = isModalToIso (HLevelTruncModality n) hA truncIdempotent≃ : (n : HLevel) → isOfHLevel n A → A ≃ hLevelTrunc n A truncIdempotent≃ n hA = ∣_∣ , isModalToIsEquiv (HLevelTruncModality n) hA truncIdempotent : (n : HLevel) → isOfHLevel n A → hLevelTrunc n A ≡ A truncIdempotent n hA = ua (invEquiv (truncIdempotent≃ n hA)) -- universal property univTrunc : ∀ {ℓ} (n : HLevel) {B : TypeOfHLevel ℓ n} → Iso (hLevelTrunc n A → B .fst) (A → B .fst) Iso.fun (univTrunc n {B , lev}) g a = g ∣ a ∣ Iso.inv (univTrunc n {B , lev}) = elim λ _ → lev Iso.rightInv (univTrunc n {B , lev}) b = refl Iso.leftInv (univTrunc n {B , lev}) b = funExt (elim (λ x → isOfHLevelPath _ lev _ _) λ a → refl) -- functorial action map : {n : HLevel} {B : Type ℓ'} (g : A → B) → hLevelTrunc n A → hLevelTrunc n B map g = rec (isOfHLevelTrunc _) (λ a → ∣ g a ∣) mapCompIso : {n : HLevel} {B : Type ℓ'} → (Iso A B) → Iso (hLevelTrunc n A) (hLevelTrunc n B) Iso.fun (mapCompIso g) = map (Iso.fun g) Iso.inv (mapCompIso g) = map (Iso.inv g) Iso.rightInv (mapCompIso g) = elim (λ x → isOfHLevelPath _ (isOfHLevelTrunc _) _ _) λ b → cong ∣_∣ (Iso.rightInv g b) Iso.leftInv (mapCompIso g) = elim (λ x → isOfHLevelPath _ (isOfHLevelTrunc _) _ _) λ a → cong ∣_∣ (Iso.leftInv g a) mapId : {n : HLevel} → ∀ t → map {n = n} (idfun A) t ≡ t mapId {n = n} = elim (λ _ → isOfHLevelPath n (isOfHLevelTrunc n) _ _) (λ _ → refl) -- equivalences to prop/set/groupoid truncations propTruncTrunc1Iso : Iso ∥ A ∥₁ (∥ A ∥ 1) Iso.fun propTruncTrunc1Iso = PropTrunc.elim (λ _ → isOfHLevelTrunc 1) ∣_∣ Iso.inv propTruncTrunc1Iso = elim (λ _ → squash₁) ∣_∣₁ Iso.rightInv propTruncTrunc1Iso = elim (λ _ → isOfHLevelPath 1 (isOfHLevelTrunc 1) _ _) (λ _ → refl) Iso.leftInv propTruncTrunc1Iso = PropTrunc.elim (λ _ → isOfHLevelPath 1 squash₁ _ _) (λ _ → refl) propTrunc≃Trunc1 : ∥ A ∥₁ ≃ ∥ A ∥ 1 propTrunc≃Trunc1 = isoToEquiv propTruncTrunc1Iso propTrunc≡Trunc1 : ∥ A ∥₁ ≡ ∥ A ∥ 1 propTrunc≡Trunc1 = ua propTrunc≃Trunc1 setTruncTrunc2Iso : Iso ∥ A ∥₂ (∥ A ∥ 2) Iso.fun setTruncTrunc2Iso = SetTrunc.elim (λ _ → isOfHLevelTrunc 2) ∣_∣ Iso.inv setTruncTrunc2Iso = elim (λ _ → squash₂) ∣_∣₂ Iso.rightInv setTruncTrunc2Iso = elim (λ _ → isOfHLevelPath 2 (isOfHLevelTrunc 2) _ _) (λ _ → refl) Iso.leftInv setTruncTrunc2Iso = SetTrunc.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) (λ _ → refl) setTrunc≃Trunc2 : ∥ A ∥₂ ≃ ∥ A ∥ 2 setTrunc≃Trunc2 = isoToEquiv setTruncTrunc2Iso propTrunc≡Trunc2 : ∥ A ∥₂ ≡ ∥ A ∥ 2 propTrunc≡Trunc2 = ua setTrunc≃Trunc2 groupoidTrunc≃Trunc3Iso : Iso ∥ A ∥₃ (∥ A ∥ 3) Iso.fun groupoidTrunc≃Trunc3Iso = GpdTrunc.elim (λ _ → isOfHLevelTrunc 3) ∣_∣ Iso.inv groupoidTrunc≃Trunc3Iso = elim (λ _ → squash₃) ∣_∣₃ Iso.rightInv groupoidTrunc≃Trunc3Iso = elim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) (λ _ → refl) Iso.leftInv groupoidTrunc≃Trunc3Iso = GpdTrunc.elim (λ _ → isOfHLevelPath 3 squash₃ _ _) (λ _ → refl) groupoidTrunc≃Trunc3 : ∥ A ∥₃ ≃ ∥ A ∥ 3 groupoidTrunc≃Trunc3 = isoToEquiv groupoidTrunc≃Trunc3Iso groupoidTrunc≡Trunc3 : ∥ A ∥₃ ≡ ∥ A ∥ 3 groupoidTrunc≡Trunc3 = ua groupoidTrunc≃Trunc3 2GroupoidTrunc≃Trunc4Iso : Iso ∥ A ∥₄ (∥ A ∥ 4) Iso.fun 2GroupoidTrunc≃Trunc4Iso = 2GpdTrunc.elim (λ _ → isOfHLevelTrunc 4) ∣_∣ Iso.inv 2GroupoidTrunc≃Trunc4Iso = elim (λ _ → squash₄) ∣_∣₄ Iso.rightInv 2GroupoidTrunc≃Trunc4Iso = elim (λ _ → isOfHLevelPath 4 (isOfHLevelTrunc 4) _ _) (λ _ → refl) Iso.leftInv 2GroupoidTrunc≃Trunc4Iso = 2GpdTrunc.elim (λ _ → isOfHLevelPath 4 squash₄ _ _) (λ _ → refl) 2GroupoidTrunc≃Trunc4 : ∥ A ∥₄ ≃ ∥ A ∥ 4 2GroupoidTrunc≃Trunc4 = isoToEquiv (iso (2GpdTrunc.elim (λ _ → isOfHLevelTrunc 4) ∣_∣) (elim (λ _ → squash₄) ∣_∣₄) (elim (λ _ → isOfHLevelPath 4 (isOfHLevelTrunc 4) _ _) (λ _ → refl)) (2GpdTrunc.elim (λ _ → isOfHLevelPath 4 squash₄ _ _) (λ _ → refl))) 2GroupoidTrunc≡Trunc4 : ∥ A ∥₄ ≡ ∥ A ∥ 4 2GroupoidTrunc≡Trunc4 = ua 2GroupoidTrunc≃Trunc4 isContr→isContrTrunc : ∀ {ℓ} {A : Type ℓ} (n : ℕ) → isContr A → isContr (hLevelTrunc n A) isContr→isContrTrunc n contr = ∣ fst contr ∣ , (elim (λ _ → isOfHLevelPath n (isOfHLevelTrunc n) _ _) λ a → cong ∣_∣ (snd contr a)) truncOfProdIso : (n : ℕ) → Iso (hLevelTrunc n (A × B)) (hLevelTrunc n A × hLevelTrunc n B) Iso.fun (truncOfProdIso n) = rec (isOfHLevelΣ n (isOfHLevelTrunc n) (λ _ → isOfHLevelTrunc n)) λ {(a , b) → ∣ a ∣ , ∣ b ∣} Iso.inv (truncOfProdIso n) (a , b) = rec (isOfHLevelTrunc n) (λ a → rec (isOfHLevelTrunc n) (λ b → ∣ a , b ∣) b) a Iso.rightInv (truncOfProdIso n) (a , b) = elim {B = λ a → Iso.fun (truncOfProdIso n) (Iso.inv (truncOfProdIso n) (a , b)) ≡ (a , b)} (λ _ → isOfHLevelPath n (isOfHLevelΣ n (isOfHLevelTrunc n) (λ _ → isOfHLevelTrunc n)) _ _) (λ a → elim {B = λ b → Iso.fun (truncOfProdIso n) (Iso.inv (truncOfProdIso n) (∣ a ∣ , b)) ≡ (∣ a ∣ , b)} (λ _ → isOfHLevelPath n (isOfHLevelΣ n (isOfHLevelTrunc n) (λ _ → isOfHLevelTrunc n)) _ _) (λ b → refl) b) a Iso.leftInv (truncOfProdIso n) = elim (λ _ → isOfHLevelPath n (isOfHLevelTrunc n) _ _) λ a → refl ---- ∥ Ω A ∥ ₙ ≡ Ω ∥ A ∥ₙ₊₁ ---- abstract isOfHLevelTypeOfHLevel2 : ∀ n → isOfHLevel (suc n) (TypeOfHLevel ℓ n) isOfHLevelTypeOfHLevel2 n = isOfHLevelTypeOfHLevel n {- Proofs of Theorem 7.3.12. and Corollary 7.3.13. in the HoTT book -} module ΩTrunc where {- We define the fibration P to show a more general result -} P : {X : Type ℓ} {n : HLevel} → ∥ X ∥ (suc n) → ∥ X ∥ (suc n) → Type ℓ P {n = n} x y = elim2 (λ _ _ → isOfHLevelTypeOfHLevel2 (n)) (λ a b → ∥ a ≡ b ∥ n , isOfHLevelTrunc (n)) x y .fst {- We will need P to be of hLevel n + 3 -} hLevelP : {n : HLevel} (a b : ∥ B ∥ (suc n)) → isOfHLevel ((suc n)) (P a b) hLevelP {n = n} = elim2 (λ x y → isProp→isOfHLevelSuc (n) (isPropIsOfHLevel (suc n))) (λ a b → isOfHLevelSuc (n) (isOfHLevelTrunc (n))) {- decode function from P x y to x ≡ y -} decode-fun : {n : HLevel} (x y : ∥ B ∥ (suc n)) → P x y → x ≡ y decode-fun {n = n} = elim2 (λ u v → isOfHLevelΠ (suc n) (λ _ → isOfHLevelSuc (suc n) (isOfHLevelTrunc (suc n)) u v)) decode* where decode* : ∀ {n : HLevel} (u v : B) → P {n = n} ∣ u ∣ ∣ v ∣ → Path (∥ B ∥ (suc n)) ∣ u ∣ ∣ v ∣ decode* {B = B} {n = zero} u v = rec ( isOfHLevelTrunc 1 ∣ u ∣ ∣ v ∣ , λ _ → isOfHLevelSuc 1 (isOfHLevelTrunc 1) _ _ _ _) (cong ∣_∣) decode* {n = suc n} u v = rec (isOfHLevelTrunc (suc (suc n)) ∣ u ∣ ∣ v ∣) (cong ∣_∣) {- auxiliary function r used to define encode -} r : {m : HLevel} (u : ∥ B ∥ (suc m)) → P u u r = elim (λ x → hLevelP x x) (λ a → ∣ refl ∣) {- encode function from x ≡ y to P x y -} encode-fun : {n : HLevel} (x y : ∥ B ∥ (suc n)) → x ≡ y → P x y encode-fun x y p = transport (λ i → P x (p i)) (r x) {- We need the following two lemmas on the functions behaviour for refl -} dec-refl : {n : HLevel} (x : ∥ B ∥ (suc n)) → decode-fun x x (r x) ≡ refl dec-refl {n = zero} = elim (λ x → isOfHLevelSuc 1 (isOfHLevelSuc 1 (isOfHLevelTrunc 1) x x) _ _) (λ _ → refl) dec-refl {n = suc n} = elim (λ x → isOfHLevelSuc (suc n) (isOfHLevelSuc (suc n) (isOfHLevelTrunc (suc (suc n)) x x) (decode-fun x x (r x)) refl)) (λ _ → refl) enc-refl : {n : HLevel} (x : ∥ B ∥ (suc n)) → encode-fun x x refl ≡ r x enc-refl x j = transp (λ _ → P x x) j (r x) {- decode-fun is a right-inverse -} P-rinv : {n : HLevel} (u v : ∥ B ∥ (suc n)) (x : Path (∥ B ∥ (suc n)) u v) → decode-fun u v (encode-fun u v x) ≡ x P-rinv u v = J (λ y p → decode-fun u y (encode-fun u y p) ≡ p) (cong (decode-fun u u) (enc-refl u) ∙ dec-refl u) {- decode-fun is a left-inverse -} P-linv : {n : HLevel} (u v : ∥ B ∥ (suc n )) (x : P u v) → encode-fun u v (decode-fun u v x) ≡ x P-linv {n = n} = elim2 (λ x y → isOfHLevelΠ (suc n) (λ z → isOfHLevelSuc (suc n) (hLevelP x y) _ _)) helper where helper : {n : HLevel} (a b : B) (p : P {n = n} ∣ a ∣ ∣ b ∣) → encode-fun _ _ (decode-fun ∣ a ∣ ∣ b ∣ p) ≡ p helper {n = zero} a b = elim (λ x → ( sym (isOfHLevelTrunc 0 .snd _) ∙ isOfHLevelTrunc 0 .snd x , λ y → isOfHLevelSuc 1 (isOfHLevelSuc 0 (isOfHLevelTrunc 0)) _ _ _ _)) (J (λ y p → encode-fun ∣ a ∣ ∣ y ∣ (decode-fun _ _ ∣ p ∣) ≡ ∣ p ∣) (enc-refl ∣ a ∣)) helper {n = suc n} a b = elim (λ x → hLevelP {n = suc n} ∣ a ∣ ∣ b ∣ _ _) (J (λ y p → encode-fun {n = suc n} ∣ a ∣ ∣ y ∣ (decode-fun _ _ ∣ p ∣) ≡ ∣ p ∣) (enc-refl ∣ a ∣)) {- The final Iso established -} IsoFinal : (n : HLevel) (x y : ∥ B ∥ (suc n)) → Iso (x ≡ y) (P x y) Iso.fun (IsoFinal _ x y) = encode-fun x y Iso.inv (IsoFinal _ x y) = decode-fun x y Iso.rightInv (IsoFinal _ x y) = P-linv x y Iso.leftInv (IsoFinal _ x y) = P-rinv x y PathIdTrunc : {a b : A} (n : HLevel) → (Path (∥ A ∥ (suc n)) ∣ a ∣ ∣ b ∣) ≡ (∥ a ≡ b ∥ n) PathIdTrunc n = isoToPath (ΩTrunc.IsoFinal n _ _) PathΩ : {a : A} (n : HLevel) → (Path (∥ A ∥ (suc n)) ∣ a ∣ ∣ a ∣) ≡ (∥ a ≡ a ∥ n) PathΩ n = PathIdTrunc n {- Special case using direct defs of truncations -} PathIdTrunc₀Iso : {a b : A} → Iso (∣ a ∣₂ ≡ ∣ b ∣₂) ∥ a ≡ b ∥₁ PathIdTrunc₀Iso = compIso (congIso setTruncTrunc2Iso) (compIso (ΩTrunc.IsoFinal _ ∣ _ ∣ ∣ _ ∣) (invIso propTruncTrunc1Iso)) ------------------------- truncOfTruncIso : (n m : HLevel) → Iso (hLevelTrunc n A) (hLevelTrunc n (hLevelTrunc (m + n) A)) Iso.fun (truncOfTruncIso n m) = elim (λ _ → isOfHLevelTrunc n) λ a → ∣ ∣ a ∣ ∣ Iso.inv (truncOfTruncIso {A = A} n m) = elim (λ _ → isOfHLevelTrunc n) (elim (λ _ → (isOfHLevelPlus m (isOfHLevelTrunc n ))) λ a → ∣ a ∣) Iso.rightInv (truncOfTruncIso {A = A} n m) = elim (λ x → isOfHLevelPath n (isOfHLevelTrunc n) _ _ ) (elim (λ x → isOfHLevelPath (m + n) (isOfHLevelPlus m (isOfHLevelTrunc n)) _ _ ) λ a → refl) Iso.leftInv (truncOfTruncIso n m) = elim (λ x → isOfHLevelPath n (isOfHLevelTrunc n) _ _) λ a → refl truncOfTruncEq : (n m : ℕ) → (hLevelTrunc n A) ≃ (hLevelTrunc n (hLevelTrunc (m + n) A)) truncOfTruncEq n m = isoToEquiv (truncOfTruncIso n m)
43.173804
131
0.578705
39569708c11c34c18312220c15c5ec3c51dceaa6
1,531
agda
Agda
theorems/cw/Degree.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
theorems/cw/Degree.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
theorems/cw/Degree.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT open import cw.CW open import homotopy.PinSn module cw.Degree {i} {n : ℕ} (skel : Skeleton {i} (S (S n))) (skel-has-dec-cells : has-dec-cells skel) (skel-is-aligned : is-aligned skel) -- the cells at the upper and lower dimensions (upper : cells-last skel) (lower : cells-nth (inr ltS) skel) where private lower-skel = cw-take (inr ltS) skel lower-cells = cells-last lower-skel lower-cells-has-dec-eq = snd (fst skel-has-dec-cells) -- squash the lower CW complex except one of its cells [lower] cw-squash-lower-to-Sphere : ⟦ lower-skel ⟧ → Sphere (S n) cw-squash-lower-to-Sphere = Attached-rec (λ _ → north) squash-hubs squash-spokes where -- squash cells except [lower] squash-hubs : lower-cells → Sphere (S n) squash-hubs c with lower-cells-has-dec-eq c lower ... | (inl _) = south ... | (inr _) = north -- squash cells except [lower] squash-spokes : (c : lower-cells) → Sphere n → north == squash-hubs c squash-spokes c s with lower-cells-has-dec-eq c lower ... | (inl _) = merid s ... | (inr _) = idp degree-map : Sphere (S n) → Sphere (S n) degree-map = cw-squash-lower-to-Sphere ∘ attaching-last skel upper degree-⊙map : fst (⊙Sphere (S n) ⊙→ ⊙Sphere (S n)) degree-⊙map = degree-map , ap cw-squash-lower-to-Sphere (! (snd (snd skel-is-aligned upper))) degree' : ℤ → ℤ degree' = transport Group.El (πₙ₊₁Sⁿ⁺¹ n) ∘ GroupHom.f (πS-fmap n degree-⊙map) ∘ transport! Group.El (πₙ₊₁Sⁿ⁺¹ n) degree : ℤ degree = degree' 1
31.244898
93
0.650555