hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
109b3e6161052a90f8309a05d19fb391684bfe76
1,037
agda
Agda
test/asset/agda-stdlib-1.0/Codata/Colist/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Codata/Colist/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Codata/Colist/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of operations on the Colist type ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.Colist.Properties where open import Size open import Codata.Thunk using (Thunk; force) open import Codata.Conat open import Codata.Colist open import Codata.Colist.Bisimilarity open import Function open import Relation.Binary.PropositionalEquality as Eq -- Functor laws module _ {a} {A : Set a} where map-identity : ∀ (as : Colist A ∞) {i} → i ⊢ map id as ≈ as map-identity [] = [] map-identity (a ∷ as) = Eq.refl ∷ λ where .force → map-identity (as .force) module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where map-map-fusion : ∀ (f : A → B) (g : B → C) as {i} → i ⊢ map g (map f as) ≈ map (g ∘ f) as map-map-fusion f g [] = [] map-map-fusion f g (a ∷ as) = Eq.refl ∷ λ where .force → map-map-fusion f g (as .force)
31.424242
90
0.552555
c585c3f3719dd8ee046345859cece21b5bffda30
5,210
agda
Agda
prototyping/Luau/Type/FromJSON.agda
Tr4shh/Roblox-Luau
cd18adc20ecb805b8eeb770a9e5ef8e0cd123734
[ "MIT" ]
null
null
null
prototyping/Luau/Type/FromJSON.agda
Tr4shh/Roblox-Luau
cd18adc20ecb805b8eeb770a9e5ef8e0cd123734
[ "MIT" ]
null
null
null
prototyping/Luau/Type/FromJSON.agda
Tr4shh/Roblox-Luau
cd18adc20ecb805b8eeb770a9e5ef8e0cd123734
[ "MIT" ]
null
null
null
module Luau.Type.FromJSON where open import Luau.Type using (Type; nil; _⇒_; _∪_; _∩_; any; number) open import Agda.Builtin.List using (List; _∷_; []) open import FFI.Data.Aeson using (Value; Array; Object; object; array; string; fromString; lookup) open import FFI.Data.Bool using (true; false) open import FFI.Data.Either using (Either; Left; Right) open import FFI.Data.Maybe using (Maybe; nothing; just) open import FFI.Data.String using (String; _++_) open import FFI.Data.Vector using (head; tail; null; empty) name = fromString "name" type = fromString "type" argTypes = fromString "argTypes" returnTypes = fromString "returnTypes" types = fromString "types" {-# TERMINATING #-} typeFromJSON : Value → Either String Type compoundFromArray : (Type → Type → Type) → Array → Either String Type typeFromJSON (object o) with lookup type o typeFromJSON (object o) | just (string "AstTypeFunction") with lookup argTypes o | lookup returnTypes o typeFromJSON (object o) | just (string "AstTypeFunction") | just (object argsSet) | just (object retsSet) with lookup types argsSet | lookup types retsSet typeFromJSON (object o) | just (string "AstTypeFunction") | just (object argsSet) | just (object retsSet) | just (array args) | just (array rets) with head args | head rets typeFromJSON (object o) | just (string "AstTypeFunction") | just (object argsSet) | just (object retsSet) | just (array args) | just (array rets) | just argValue | just retValue with typeFromJSON argValue | typeFromJSON retValue typeFromJSON (object o) | just (string "AstTypeFunction") | just (object argsSet) | just (object retsSet) | just (array args) | just (array rets) | just argValue | just retValue | Right arg | Right ret = Right (arg ⇒ ret) typeFromJSON (object o) | just (string "AstTypeFunction") | just (object argsSet) | just (object retsSet) | just (array args) | just (array rets) | just argValue | just retValue | Left err | _ = Left err typeFromJSON (object o) | just (string "AstTypeFunction") | just (object argsSet) | just (object retsSet) | just (array args) | just (array rets) | just argValue | just retValue | _ | Left err = Left err typeFromJSON (object o) | just (string "AstTypeFunction") | just (object argsSet) | just (object retsSet) | just (array args) | just (array rets) | _ | nothing = Left "No return type" typeFromJSON (object o) | just (string "AstTypeFunction") | just (object argsSet) | just (object retsSet) | just (array args) | just (array rets) | nothing | _ = Left "No argument type" typeFromJSON (object o) | just (string "AstTypeFunction") | just (object argsSet) | just (object retsSet) | just _ | _ = Left "argTypes.types is not an array" typeFromJSON (object o) | just (string "AstTypeFunction") | just (object argsSet) | just (object retsSet) | _ | just _ = Left "retTypes.types is not an array" typeFromJSON (object o) | just (string "AstTypeFunction") | just (object argsSet) | just (object retsSet) | nothing | _ = Left "argTypes.types does not exist" typeFromJSON (object o) | just (string "AstTypeFunction") | _ | just _ = Left "argTypes is not an object" typeFromJSON (object o) | just (string "AstTypeFunction") | just _ | _ = Left "returnTypes is not an object" typeFromJSON (object o) | just (string "AstTypeFunction") | nothing | nothing = Left "Missing argTypes and returnTypes" typeFromJSON (object o) | just (string "AstTypeReference") with lookup name o typeFromJSON (object o) | just (string "AstTypeReference") | just (string "nil") = Right nil typeFromJSON (object o) | just (string "AstTypeReference") | just (string "any") = Right any typeFromJSON (object o) | just (string "AstTypeReference") | just (string "number") = Right number typeFromJSON (object o) | just (string "AstTypeReference") | _ = Left "Unknown referenced type" typeFromJSON (object o) | just (string "AstTypeUnion") with lookup types o typeFromJSON (object o) | just (string "AstTypeUnion") | just (array types) = compoundFromArray _∪_ types typeFromJSON (object o) | just (string "AstTypeUnion") | _ = Left "`types` field must be an array" typeFromJSON (object o) | just (string "AstTypeIntersection") with lookup types o typeFromJSON (object o) | just (string "AstTypeIntersection") | just (array types) = compoundFromArray _∩_ types typeFromJSON (object o) | just (string "AstTypeIntersection") | _ = Left "`types` field must be an array" typeFromJSON (object o) | just (string ty) = Left ("Unsupported type " ++ ty) typeFromJSON (object o) | just _ = Left "`type` field must be a string" typeFromJSON (object o) | nothing = Left "No `type` field" typeFromJSON _ = Left "Unsupported JSON type" compoundFromArray ctor ts with head ts | tail ts compoundFromArray ctor ts | just hd | tl with null tl compoundFromArray ctor ts | just hd | tl | true = typeFromJSON hd compoundFromArray ctor ts | just hd | tl | false with typeFromJSON hd | compoundFromArray ctor tl compoundFromArray ctor ts | just hd | tl | false | Right hdTy | Right tlTy = Right (ctor hdTy tlTy) compoundFromArray ctor ts | just hd | tl | false | Left err | _ = Left err compoundFromArray ctor ts | just hd | tl | false | _ | Left Err = Left Err compoundFromArray ctor ts | nothing | empty = Left "Empty types array?"
76.617647
228
0.726488
dcae8076b53e4a0e661b2b045820e1a4c09c0624
3,509
agda
Agda
FStream/FVec.agda
Aerate/condatis
64d95885579395f641e9a9cb1b9487cf79280446
[ "Unlicense" ]
1
2019-12-13T16:52:28.000Z
2019-12-13T16:52:28.000Z
FStream/FVec.agda
zimbatm/condatis
64d95885579395f641e9a9cb1b9487cf79280446
[ "Unlicense" ]
5
2017-06-03T20:02:22.000Z
2020-09-01T16:52:07.000Z
FStream/FVec.agda
zimbatm/condatis
64d95885579395f641e9a9cb1b9487cf79280446
[ "Unlicense" ]
1
2019-12-13T15:56:38.000Z
2019-12-13T15:56:38.000Z
module FStream.FVec where ------------------------------------------------------------------------ -- Dissecting effectful streams ------------------------------------------------------------------------ open import Library open import FStream.Core open import Data.Fin infixr 5 _▻_ infix 6 ⟨_▻⋯ infix 7 _⟩ data FVec {ℓ₁ ℓ₂} (C : Container ℓ₁) (A : Set ℓ₂) : (n : ℕ) → Set (ℓ₁ ⊔ ℓ₂) where FNil : FVec C A 0 FCons : ∀ {n} → ⟦ C ⟧ (A × FVec C A n) → FVec C A (suc n) -- TODO Syntactic sugar for these as well data FVec' {ℓ₁ ℓ₂} (C : Container ℓ₁) (A : Set ℓ₂) : (n : ℕ) → Set (ℓ₁ ⊔ ℓ₂) where FNil' : FVec' C A 0 FCons' : ∀ {n} → A → ⟦ C ⟧ (FVec' C A n) → FVec' C A (suc n) _▻'_ : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} {n} → A → ⟦ C ⟧ (FVec' C A n) → FVec' C A (suc n) _▻'_ = FCons' fVec'ToFVec : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} {n} → FVec' C A n → FVec C A n fVec'ToFVec FNil' = FNil fVec'ToFVec (FCons' a v) = FCons (fmap (λ x → a , fVec'ToFVec x) v) nest : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} {n} → Vec (⟦ C ⟧ A) n → FVec C A n nest [] = FNil nest (a ∷ as) = FCons (fmap (_, nest as) a) _▻_ : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} {n} → ⟦ C ⟧ A → (FVec C A n) → FVec C A (suc n) a ▻ v = FCons (fmap (λ x → x , v) a) _⟩ : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} → ⟦ C ⟧ A → FVec C A 1 a ⟩ = a ▻ FNil mutual vmap : ∀ {ℓ₁ ℓ₂ ℓ₃} {C : Container ℓ₁} {A : Set ℓ₂} {B : Set ℓ₃} {n} → (f : A → B) → FVec C A n → FVec C B n vmap _ FNil = FNil vmap f (FCons x) = FCons (fmap (vmap' f) x) vmap' : ∀ {ℓ₁ ℓ₂ ℓ₃} {C : Container ℓ₁} {A : Set ℓ₂} {B : Set ℓ₃} {n} → (f : A → B) → A × FVec C A n → B × FVec C B n vmap' f (a , v) = f a , vmap f v mutual take : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} → (n : ℕ) → FStream C A → FVec C A n take ℕ.zero as = FNil take (ℕ.suc n) as = FCons (fmap (take' n) (inF as)) take' : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} → (n : ℕ) → FStream' C A → A × FVec C A n proj₁ (take' n as) = head as proj₂ (take' n as) = take n (tail as) take'' : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} → (n : ℕ) → FStream' C A → FVec' C A n take'' zero as = FNil' take'' (suc n) as = FCons' (head as) (fmap (take'' n) (inF (tail as))) _pre⟨_▻⋯' : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} {m n} → FVec' C A m → FVec' C A (suc n) → FStream' {i} C A head (FNil' pre⟨ FCons' a _ ▻⋯') = a inF (tail (FNil' pre⟨ FCons' a v ▻⋯')) = fmap (_pre⟨ (FCons' a v) ▻⋯') v head (FCons' x _ pre⟨ v' ▻⋯') = x inF (tail (FCons' _ v pre⟨ v' ▻⋯')) = fmap (_pre⟨ v' ▻⋯') v ⟨_▻⋯' : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} {n : ℕ} → FVec' C A (suc n) → FStream' {i} C A ⟨ v ▻⋯' = FNil' pre⟨ v ▻⋯' mutual _pre⟨_▻⋯ : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} {m n} → FVec C A m → FVec C A (suc n) → FStream {i} C A inF (FCons x pre⟨ keep ▻⋯) = fmap (_aux keep) x inF (FNil pre⟨ FCons x ▻⋯) = fmap (_aux (FCons x)) x _aux_ : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} {n m : ℕ} → A × FVec C A m → FVec C A (suc n) → FStream' {i} C A head ((a , _ ) aux v) = a tail ((_ , v') aux v) = v' pre⟨ v ▻⋯ ⟨_▻⋯ : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} {n : ℕ} → FVec C A (suc n) → FStream {i} C A ⟨ as ▻⋯ = FNil pre⟨ as ▻⋯ data _[_]=_ {a} {A : Set a} {ℓ} {C : Container ℓ} : {n : ℕ} → FVec C A n → Fin n → ⟦ C ⟧ A → Set (a ⊔ ℓ) where here : ∀ {n} {x : ⟦ C ⟧ A} {xs : FVec C A n} → (x ▻ xs) [ zero ]= x there : ∀ {n} {k} {x y} {xs : FVec C A n} → xs [ k ]= x → (y ▻ xs) [ suc k ]= x
35.444444
110
0.476204
c50e2ba4ebea4f418d4b4c7c0d5932f613bf672a
1,639
agda
Agda
Cubical/HITs/InfNat/Properties.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/InfNat/Properties.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/HITs/InfNat/Properties.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.HITs.InfNat.Properties where open import Cubical.Core.Everything open import Cubical.Data.Maybe open import Cubical.Data.Nat open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.HITs.InfNat.Base import Cubical.Data.InfNat as Coprod ℕ+∞→Cℕ+∞ : ℕ+∞ → Coprod.ℕ+∞ ℕ+∞→Cℕ+∞ zero = Coprod.zero ℕ+∞→Cℕ+∞ (suc n) = Coprod.suc (ℕ+∞→Cℕ+∞ n) ℕ+∞→Cℕ+∞ ∞ = Coprod.∞ ℕ+∞→Cℕ+∞ (suc-inf i) = Coprod.∞ ℕ→ℕ+∞ : ℕ → ℕ+∞ ℕ→ℕ+∞ zero = zero ℕ→ℕ+∞ (suc n) = suc (ℕ→ℕ+∞ n) Cℕ+∞→ℕ+∞ : Coprod.ℕ+∞ → ℕ+∞ Cℕ+∞→ℕ+∞ Coprod.∞ = ∞ Cℕ+∞→ℕ+∞ (Coprod.fin n) = ℕ→ℕ+∞ n ℕ→ℕ+∞→Cℕ+∞ : ∀ n → ℕ+∞→Cℕ+∞ (ℕ→ℕ+∞ n) ≡ Coprod.fin n ℕ→ℕ+∞→Cℕ+∞ zero = refl ℕ→ℕ+∞→Cℕ+∞ (suc n) = cong Coprod.suc (ℕ→ℕ+∞→Cℕ+∞ n) Cℕ+∞→ℕ+∞→Cℕ+∞ : ∀ n → ℕ+∞→Cℕ+∞ (Cℕ+∞→ℕ+∞ n) ≡ n Cℕ+∞→ℕ+∞→Cℕ+∞ Coprod.∞ = refl Cℕ+∞→ℕ+∞→Cℕ+∞ (Coprod.fin n) = ℕ→ℕ+∞→Cℕ+∞ n suc-hom : ∀ n → Cℕ+∞→ℕ+∞ (Coprod.suc n) ≡ suc (Cℕ+∞→ℕ+∞ n) suc-hom Coprod.∞ = suc-inf suc-hom (Coprod.fin x) = refl ℕ+∞→Cℕ+∞→ℕ+∞ : ∀ n → Cℕ+∞→ℕ+∞ (ℕ+∞→Cℕ+∞ n) ≡ n ℕ+∞→Cℕ+∞→ℕ+∞ zero = refl ℕ+∞→Cℕ+∞→ℕ+∞ ∞ = refl ℕ+∞→Cℕ+∞→ℕ+∞ (suc n) = suc-hom (ℕ+∞→Cℕ+∞ n) ∙ cong suc (ℕ+∞→Cℕ+∞→ℕ+∞ n) ℕ+∞→Cℕ+∞→ℕ+∞ (suc-inf i) = lemma i where lemma : (λ i → ∞ ≡ suc-inf i) [ refl ≡ suc-inf ∙ refl ] lemma i j = hcomp (λ k → λ { (i = i0) → ∞ ; (i = i1) → compPath-filler suc-inf refl k j ; (j = i0) → ∞ ; (j = i1) → suc-inf i }) (suc-inf (i ∧ j)) open Iso ℕ+∞⇔Cℕ+∞ : Iso ℕ+∞ Coprod.ℕ+∞ ℕ+∞⇔Cℕ+∞ .fun = ℕ+∞→Cℕ+∞ ℕ+∞⇔Cℕ+∞ .inv = Cℕ+∞→ℕ+∞ ℕ+∞⇔Cℕ+∞ .leftInv = ℕ+∞→Cℕ+∞→ℕ+∞ ℕ+∞⇔Cℕ+∞ .rightInv = Cℕ+∞→ℕ+∞→Cℕ+∞
26.435484
71
0.52227
0e7328b74e4e17580e64968ea43d09483fd442bd
698
agda
Agda
test/interaction/Issue2466.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/interaction/Issue2466.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/interaction/Issue2466.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- Andreas, 2017-03-21, issue #2466 -- The unifier should not turn user-written variable patterns into -- dot patterns. -- {-# OPTIONS -v reify.implicit:100 -v interaction.case:100 #-} -- {-# OPTIONS -v tc.lhs.unify:40 #-} postulate A B : Set module Explicit where data D : A → B → Set where c : ∀ p {p'} x → D p' x → D p x test : ∀ p x → D p x → D p x test .p _ (c p x pp) = {!.p'!} where y = x -- Expected: test .p _ (c p {p'} x pp) = ? module Implicit where data D : A → B → Set where c : ∀ {p p' x} → D p' x → D p x test : ∀ p {x} → D p x → D p x test .p (c {p} {x = x} pp) = {!.p'!} where y = x -- Expected: test .p (c {p} {p'} {x} pp) = ?
19.942857
66
0.508596
fb17361c4890910cba9fd316a6f2069da1e05c08
117
agda
Agda
test/Fail/Issue1698-postulate.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1698-postulate.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1698-postulate.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
postulate foo = Foo -- Error message is: -- A postulate block can only contain type signatures or instance blocks
19.5
72
0.752137
c566167e3be57755489545f7c919d7d5a7da15ec
1,108
agda
Agda
BasicIS4/Metatheory/Gentzen-BasicKripkeOno.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicIS4/Metatheory/Gentzen-BasicKripkeOno.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicIS4/Metatheory/Gentzen-BasicKripkeOno.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
module BasicIS4.Metatheory.Gentzen-BasicKripkeOno where open import BasicIS4.Syntax.Gentzen public open import BasicIS4.Semantics.BasicKripkeOno public -- Soundness with respect to all models, or evaluation. mutual eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A eval (var i) γ = lookup i γ eval (lam t) γ = λ ξ a → eval t (mono⊩⋆ ξ γ , a) eval (app {A} {B} t u) γ = _⟪$⟫_ {A} {B} (eval t γ) (eval u γ) eval (multibox ts u) γ = λ ζ → eval u (thing ts γ ζ) eval (down {A} t) γ = ⟪↓⟫ {A} (eval t γ) eval (pair t u) γ = eval t γ , eval u γ eval (fst t) γ = π₁ (eval t γ) eval (snd t) γ = π₂ (eval t γ) eval unit γ = ∙ -- TODO: What is this? thing : ∀ {{_ : Model}} {Δ Γ} {w : World} → Γ ⊢⋆ □⋆ Δ → w ⊩⋆ Γ → ∀ {v′} → w R v′ → v′ ⊩⋆ □⋆ Δ thing {∅} ∙ γ ζ = ∙ thing {Δ , B} (ts , t) γ ζ = thing ts γ ζ , λ ζ′ → eval t γ (transR ζ ζ′) eval⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Γ ⊨⋆ Ξ eval⋆ {∅} ∙ γ = ∙ eval⋆ {Ξ , A} (ts , t) γ = eval⋆ ts γ , eval t γ -- TODO: Correctness of evaluation with respect to conversion.
33.575758
75
0.499097
2050a4b8653f545572dab61b41a02cbc8d3ae9f2
5,721
agda
Agda
lib/PathFunctor.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
lib/PathFunctor.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
lib/PathFunctor.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Base open import lib.PathGroupoid module lib.PathFunctor where {- Nondependent stuff -} module _ {i j} {A : Type i} {B : Type j} (f : A → B) where !-ap : {x y : A} (p : x == y) → ! (ap f p) == ap f (! p) !-ap idp = idp ap-! : {x y : A} (p : x == y) → ap f (! p) == ! (ap f p) ap-! idp = idp ∙-ap : {x y z : A} (p : x == y) (q : y == z) → ap f p ∙ ap f q == ap f (p ∙ q) ∙-ap idp q = idp ap-∙ : {x y z : A} (p : x == y) (q : y == z) → ap f (p ∙ q) == ap f p ∙ ap f q ap-∙ idp q = idp ∙'-ap : {x y z : A} (p : x == y) (q : y == z) → ap f p ∙' ap f q == ap f (p ∙' q) ∙'-ap p idp = idp ap-∙' : {x y z : A} (p : x == y) (q : y == z) → ap f (p ∙' q) == ap f p ∙' ap f q ap-∙' p idp = idp {- Dependent stuff -} module _ {i j} {A : Type i} {B : A → Type j} (f : Π A B) where apd-∙ : {x y z : A} (p : x == y) (q : y == z) → apd f (p ∙ q) == apd f p ∙ᵈ apd f q apd-∙ idp idp = idp apd-∙' : {x y z : A} (p : x == y) (q : y == z) → apd f (p ∙' q) == apd f p ∙'ᵈ apd f q apd-∙' idp idp = idp {- Over stuff -} module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} (f : {a : A} → B a → C a) where ap↓-◃ : {x y z : A} {u : B x} {v : B y} {w : B z} {p : x == y} {p' : y == z} (q : u == v [ B ↓ p ]) (r : v == w [ B ↓ p' ]) → ap↓ f (q ◃ r) == ap↓ f q ◃ ap↓ f r ap↓-◃ {p = idp} {p' = idp} idp idp = idp ap↓-▹! : {x y z : A} {u : B x} {v : B y} {w : B z} {p : x == y} {p' : z == y} (q : u == v [ B ↓ p ]) (r : w == v [ B ↓ p' ]) → ap↓ f (q ▹! r) == ap↓ f q ▹! ap↓ f r ap↓-▹! {p = idp} {p' = idp} idp idp = idp {- Fuse and unfuse -} ∘-ap : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (g : B → C) (f : A → B) {x y : A} (p : x == y) → ap g (ap f p) == ap (g ∘ f) p ∘-ap f g idp = idp ap-∘ : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (g : B → C) (f : A → B) {x y : A} (p : x == y) → ap (g ∘ f) p == ap g (ap f p) ap-∘ f g idp = idp ap-cst : ∀ {i j} {A : Type i} {B : Type j} (b : B) {x y : A} (p : x == y) → ap (cst b) p == idp ap-cst b idp = idp ap-idf : ∀ {i} {A : Type i} {u v : A} (p : u == v) → ap (idf A) p == p ap-idf idp = idp {- Functoriality of [coe] -} coe-∙ : ∀ {i} {A B C : Type i} (p : A == B) (q : B == C) (a : A) → coe (p ∙ q) a == coe q (coe p a) coe-∙ idp q a = idp coe-! : ∀ {i} {A B : Type i} (p : A == B) → coe (! p) == coe! p coe-! idp = idp coe!-inv-r : ∀ {i} {A B : Type i} (p : A == B) (b : B) → coe p (coe! p b) == b coe!-inv-r idp b = idp coe!-inv-l : ∀ {i} {A B : Type i} (p : A == B) (a : A) → coe! p (coe p a) == a coe!-inv-l idp a = idp coe-inv-adj : ∀ {i} {A B : Type i} (p : A == B) (a : A) → ap (coe p) (coe!-inv-l p a) == coe!-inv-r p (coe p a) coe-inv-adj idp a = idp coe!-inv-adj : ∀ {i} {A B : Type i} (p : A == B) (b : B) → ap (coe! p) (coe!-inv-r p b) == coe!-inv-l p (coe! p b) coe!-inv-adj idp b = idp coe-ap-! : ∀ {i j} {A : Type i} (P : A → Type j) {a b : A} (p : a == b) (x : P b) → coe (ap P (! p)) x == coe! (ap P p) x coe-ap-! P idp x = idp {- Functoriality of transport -} trans-∙ : ∀ {i j} {A : Type i} {B : A → Type j} {x y z : A} (p : x == y) (q : y == z) (b : B x) → transport B (p ∙ q) b == transport B q (transport B p b) trans-∙ idp _ _ = idp trans-∙' : ∀ {i j} {A : Type i} {B : A → Type j} {x y z : A} (p : x == y) (q : y == z) (b : B x) → transport B (p ∙' q) b == transport B q (transport B p b) trans-∙' _ idp _ = idp {- Naturality of homotopies -} htpy-natural : ∀ {i j} {A : Type i} {B : Type j} {x y : A} {f g : A → B} (p : ∀ x → (f x == g x)) (q : x == y) → ap f q ∙ p y == p x ∙ ap g q htpy-natural p idp = ! (∙-unit-r _) htpy-natural-toid : ∀ {i} {A : Type i} {f : A → A} (p : ∀ (x : A) → f x == x) → (∀ x → ap f (p x) == p (f x)) htpy-natural-toid {f = f} p x = anti-whisker-right (p x) $ htpy-natural p (p x) ∙ ap (λ q → p (f x) ∙ q) (ap-idf (p x)) {- for functions with two arguments -} module _ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : A → B → C) where ap2 : {x y : A} {w z : B} → (x == y) → (w == z) → f x w == f y z ap2 idp idp = idp ap2-out : {x y : A} {w z : B} (p : x == y) (q : w == z) → ap2 p q == ap (λ u → f u w) p ∙ ap (λ v → f y v) q ap2-out idp idp = idp ap2-idp-l : {x : A} {w z : B} (q : w == z) → ap2 (idp {a = x}) q == ap (f x) q ap2-idp-l idp = idp ap2-idp-r : {x y : A} {w : B} (p : x == y) → ap2 p (idp {a = w}) == ap (λ z → f z w) p ap2-idp-r idp = idp {- ap2 lemmas -} module _ {i j} {A : Type i} {B : Type j} where ap2-fst : {x y : A} {w z : B} (p : x == y) (q : w == z) → ap2 (curry fst) p q == p ap2-fst idp idp = idp ap2-snd : {x y : A} {w z : B} (p : x == y) (q : w == z) → ap2 (curry snd) p q == q ap2-snd idp idp = idp ap-ap2 : ∀ {k l} {C : Type k} {D : Type l} (g : C → D) (f : A → B → C) {x y : A} {w z : B} (p : x == y) (q : w == z) → ap g (ap2 f p q) == ap2 (λ a b → g (f a b)) p q ap-ap2 g f idp idp = idp ap2-ap-l : ∀ {k l} {C : Type k} {D : Type l} (g : B → C → D) (f : A → B) {x y : A} {w z : C} (p : x == y) (q : w == z) → ap2 g (ap f p) q == ap2 (λ a c → g (f a) c) p q ap2-ap-l g f idp idp = idp ap2-ap-r : ∀ {k l} {C : Type k} {D : Type l} (g : A → C → D) (f : B → C) {x y : A} {w z : B} (p : x == y) (q : w == z) → ap2 g p (ap f q) == ap2 (λ a b → g a (f b)) p q ap2-ap-r g f idp idp = idp ap2-diag : (f : A → A → B) {x y : A} (p : x == y) → ap2 f p p == ap (λ x → f x x) p ap2-diag f idp = idp -- unsure where this belongs trans-pathfrom : ∀ {i} {A : Type i} {a x y : A} (p : x == y) (q : a == x) → transport (λ x → a == x) p q == q ∙ p trans-pathfrom idp q = ! (∙-unit-r q)
31.262295
79
0.406572
cb3bcb9ee3986d35724010dd717a585eb19c21a8
138
agda
Agda
examples/outdated-and-incorrect/Alonzo/PreludeAll.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/Alonzo/PreludeAll.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/Alonzo/PreludeAll.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module PreludeAll where import PreludeBool public import PreludeNat import PreludeShow open PreludeBool open PreludeNat open PreludeShow
15.333333
25
0.876812
50def15eb7b9ce4a8a4f5ba5182839ccf5895ea2
21,163
agda
Agda
agda/book/Programming_Language_Foundations_in_Agda/x10-747Lists-hc.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
36
2015-01-29T14:37:15.000Z
2021-07-30T06:55:03.000Z
agda/book/Programming_Language_Foundations_in_Agda/x10-747Lists-hc.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
null
null
null
agda/book/Programming_Language_Foundations_in_Agda/x10-747Lists-hc.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
8
2015-04-13T21:40:15.000Z
2021-09-21T15:58:10.000Z
module x10-747Lists-hc where -- Library import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; sym; trans; cong) open Eq.≡-Reasoning open import Data.Bool using (Bool; true; false; T; _∧_; _∨_; not) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _≤_; s≤s; z≤n) open import Data.Nat.Properties using (+-assoc; +-identityˡ; +-identityʳ; *-assoc; *-identityˡ; *-identityʳ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Data.Product using (_×_; ∃; ∃-syntax) renaming (_,_ to ⟨_,_⟩) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Function using (_∘_) open import Level using (Level) open import Data.Empty using (⊥) ------------------------------------------------------------------------------ -- Copied from 747Isomorphism. infix 0 _≃_ record _≃_ (A B : Set) : Set where constructor mk-≃ -- This has been added, not in PLFA field to : A → B from : B → A from∘to : ∀ (x : A) → from (to x) ≡ x to∘from : ∀ (y : B) → to (from y) ≡ y open _≃_ infix 0 _≲_ record _≲_ (A B : Set) : Set where field to : A → B from : B → A from∘to : ∀ (x : A) → from (to x) ≡ x open _≲_ record _⇔_ (A B : Set) : Set where field to : A → B from : B → A open _⇔_ ------------------------------------------------------------------------------ -- Polymorphic lists (parameterized version). data List (A : Set) : Set where [] : List A _∷_ : A → List A → List A infixr 5 _∷_ -- example _ : List ℕ _ = 0 ∷ 1 ∷ 2 ∷ [] -- equivalent indexed version data List' : Set → Set where []' : ∀ {A : Set} → List' A _∷'_ : ∀ {A : Set} → A → List' A → List' A -- using implicit arguments in above example (why?) _ : List ℕ _ = _∷_ {ℕ} 0 (_∷_ {ℕ} 1 (_∷_ {ℕ} 2 ([] {ℕ}))) -- tell Agda to use Haskell lists internally {-# BUILTIN LIST List #-} -- useful syntax pattern [_] z = z ∷ [] pattern [_,_] y z = y ∷ z ∷ [] pattern [_,_,_] x y z = x ∷ y ∷ z ∷ [] pattern [_,_,_,_] w x y z = w ∷ x ∷ y ∷ z ∷ [] pattern [_,_,_,_,_] v w x y z = v ∷ w ∷ x ∷ y ∷ z ∷ [] pattern [_,_,_,_,_,_] u v w x y z = u ∷ v ∷ w ∷ x ∷ y ∷ z ∷ [] -- append for lists infixr 5 _++_ _++_ : ∀ {A : Set} → List A → List A → List A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) _ : [ 0 , 2 , 4 ] ++ [ 3 , 5 ] ≡ [ 0 , 2 , 4 , 3 , 5 ] _ = refl -- associativity of append ++-assoc : ∀ {A : Set} → (xs ys zs : List A) → (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs) ++-assoc [] ys zs = refl ++-assoc (x ∷ xs) ys zs rewrite ++-assoc xs ys zs = refl -- left/right identities for append ++-identityˡ : ∀ {A : Set} → (xs : List A) → [] ++ xs ≡ xs ++-identityˡ xs = refl ++-identityʳ : ∀ {A : Set} → (xs : List A) → xs ++ [] ≡ xs ++-identityʳ [] = refl ++-identityʳ (x ∷ xs) rewrite ++-identityʳ xs = refl -- length of a list length : ∀ {A : Set} → List A → ℕ length [] = zero length (x ∷ xs) = suc (length xs) _ : length [ 0 , 1 , 2 ] ≡ 3 _ = refl -- reasoning about length. length-++ : ∀ {A : Set} → (xs ys : List A) → length (xs ++ ys) ≡ length xs + length ys length-++ [] ys = refl length-++ (x ∷ xs) ys rewrite length-++ xs ys = refl -- quadratic time reverse using structural recursion reverse : ∀ {A : Set} → List A → List A reverse [] = [] reverse (x ∷ xs) = reverse xs ++ [ x ] _ : reverse [ 0 , 1 , 2 ] ≡ [ 2 , 1 , 0 ] _ = refl -- 747/PLFA exercise: RevCommApp (1 point) -- reverse commutes with ++ -- https://gist.github.com/pedrominicz/012e842362f6c65361722ed1aaf10178 -- The key to this one is NOT splitting ys. reverse-++-commute : ∀ {A : Set} → (xs ys : List A) → reverse (xs ++ ys) ≡ reverse ys ++ reverse xs reverse-++-commute [] ys rewrite ++-identityʳ (reverse ys) = refl reverse-++-commute (x ∷ xs) ys -- reverse ((x ∷ xs) ++ ys) ≡ reverse ys ++ reverse (x ∷ xs) -- reverse (xs ++ ys) ++ [ x ] ≡ reverse ys ++ reverse xs ++ [ x ] rewrite reverse-++-commute xs ys -- (reverse ys ++ reverse xs) ++ [ x ] ≡ reverse ys ++ reverse xs ++ [ x ] | ++-assoc (reverse ys) (reverse xs) [ x ] -- reverse ys ++ reverse xs ++ [ x ] ≡ reverse ys ++ reverse xs ++ [ x ] = refl -- NOT USED snoc : {A : Set} → List A → A → List A snoc [] x = x ∷ [] snoc (y ∷ l) x = y ∷ (snoc l x) -- NOT USED snoc≡app : {A : Set} → (l : List A) → (a : A) → snoc l a ≡ l ++ [ a ] snoc≡app [] a = refl snoc≡app (x ∷ l) a rewrite (snoc≡app l a) = refl -- NOT USED reverse-snoc : ∀ {A : Set} → (xs : List A) → List A reverse-snoc [] = [] reverse-snoc (x ∷ xs) = snoc (reverse-snoc xs) x _ : reverse-snoc [ 0 , 1 , 2 ] ≡ [ 2 , 1 , 0 ] _ = refl -- NOT USED reverse≡reverse-snoc : ∀ {A : Set} → (xs : List A) → reverse xs ≡ reverse-snoc xs reverse≡reverse-snoc [] = refl reverse≡reverse-snoc (x ∷ xs) -- reverse (x ∷ xs) ≡ reverse-snoc (x ∷ xs) -- reverse xs ++ [ x ] ≡ snoc (reverse-snoc xs) x rewrite reverse≡reverse-snoc xs -- reverse-snoc xs ++ [ x ] ≡ snoc (reverse-snoc xs) x | snoc≡app (reverse-snoc xs) x -- reverse-snoc xs ++ [ x ] ≡ reverse-snoc xs ++ [ x ] = refl -- 747/PLFA exercise: RevInvol (1 point) -- Reverse is its own inverse. reverse-involutive : ∀ {A : Set} → (xs : List A) → reverse (reverse xs) ≡ xs reverse-involutive [] = refl reverse-involutive (x ∷ xs) -- reverse (reverse (x ∷ xs)) ≡ x ∷ xs -- reverse (reverse xs ++ [ x ]) ≡ x ∷ xs rewrite (reverse-++-commute (reverse xs) [ x ]) -- x ∷ reverse (reverse xs) ≡ x ∷ xs | reverse-involutive xs -- x ∷ xs ≡ x ∷ xs = refl -- towards more efficient linear time reverse -- generalization of reverse shunt : ∀ {A : Set} → List A → List A → List A shunt [] ys = ys shunt (x ∷ xs) ys = shunt xs (x ∷ ys) -- explanation of what shunt is doing shunt-reverse : ∀ {A : Set} → (xs ys : List A) → shunt xs ys ≡ reverse xs ++ ys shunt-reverse [] ys = refl shunt-reverse (x ∷ xs) [] -- shunt (x ∷ xs) [] ≡ reverse (x ∷ xs) ++ [] -- shunt xs [ x ] ≡ (reverse xs ++ [ x ]) ++ [] rewrite ++-identityʳ (reverse xs ++ [ x ]) -- shunt xs [ x ] ≡ reverse xs ++ [ x ] | shunt-reverse xs [ x ] -- reverse xs ++ [ x ] ≡ reverse xs ++ [ x ] = refl shunt-reverse (x ∷ xs) (y ∷ ys) -- shunt (x ∷ xs) (y ∷ ys) ≡ reverse (x ∷ xs) ++ y ∷ ys -- shunt xs (x ∷ y ∷ ys) ≡ (reverse xs ++ [ x ]) ++ y ∷ ys rewrite shunt-reverse xs (x ∷ y ∷ ys) -- reverse xs ++ x ∷ y ∷ ys ≡ (reverse xs ++ [ x ]) ++ y ∷ ys | ++-assoc (reverse xs) [ x ] (y ∷ ys) -- reverse xs ++ x ∷ y ∷ ys ≡ reverse xs ++ x ∷ y ∷ ys = refl -- linear reverse is a special case of shunt reverse' : ∀ {A : Set} → List A → List A reverse' xs = shunt xs [] _ : reverse' [ 0 , 1 , 2 ] ≡ [ 2 , 1 , 0 ] _ = refl -- prove quadratic and linear reverse are equivalent reverses : ∀ {A : Set} → (xs : List A) → reverse' xs ≡ reverse xs reverses [] = refl reverses (x ∷ xs) -- reverse' (x ∷ xs) ≡ reverse (x ∷ xs) -- reverse' (x ∷ xs) ≡ reverse xs ++ [ x ] rewrite shunt-reverse xs [ x ] -- reverse xs ++ [ x ] ≡ reverse xs ++ [ x ] = refl -- common higher-order list functions map : ∀ {A B : Set} → (A → B) → List A → List B map f [] = [] map f (x ∷ xs) = f x ∷ map f xs _ : map suc [ 0 , 1 , 2 ] ≡ [ 1 , 2 , 3 ] _ = refl -- 747/PLFA exercise: MapCompose (1 point) -- The map of a composition is the composition of maps. -- Changed from PLFA: some arguments made explicit, uses pointwise equality. map-compose : ∀ {A B C : Set} (f : A → B) (g : B → C) (xs : List A) → map (g ∘ f) xs ≡ (map g ∘ map f) xs map-compose f g [] = refl map-compose f g (x ∷ xs) -- map (g ∘ f) (x ∷ xs) ≡ (map g ∘ map f) (x ∷ xs) -- (g ∘ f) x ∷ map (g ∘ f) xs ≡ (map g ∘ map f) (x ∷ xs) rewrite map-compose f g xs -- g (f x) ∷ map g (map f xs) ≡ g (f x) ∷ map g (map f xs) = refl -- 747/PLFA exercise: MapAppendComm (1 point) -- The map of an append is the append of maps. -- Changed from PLFA: some arguments made explicit. map-++-commute : ∀ {A B : Set} (f : A → B) (xs ys : List A) → map f (xs ++ ys) ≡ map f xs ++ map f ys map-++-commute f [] ys = refl map-++-commute f (x ∷ xs) ys -- map f ((x ∷ xs) ++ ys) ≡ map f (x ∷ xs) ++ map f ys -- f x ∷ map f (xs ++ ys) ≡ f x ∷ map f xs ++ map f ys rewrite map-++-commute f xs ys -- f x ∷ map f xs ++ map f ys ≡ f x ∷ map f xs ++ map f ys = refl ------------------------------------------------------------------------------ -- PLFA exercise: map over trees -- trees with leaves of type A and internal nodes of type B data Tree (A B : Set) : Set where leaf : A → Tree A B node : Tree A B → B → Tree A B → Tree A B map-Tree : ∀ {A B C D : Set} → (A → C) → (B → D) → Tree A B → Tree C D map-Tree f g (leaf a) = leaf (f a) map-Tree f g (node tl b tr) = node (map-Tree f g tl) (g b) (map-Tree f g tr) ------------------------------------------------------------------------------ -- Fold-right: put operator ⊗ between each list element (and supplied final element). -- ⊗ is considered right-associative. -- Fold-right is universal for structural recursion on one argument. foldr : ∀ {A B : Set} → (A → B → B) → B → List A → B foldr _⊗_ e [] = e foldr _⊗_ e (x ∷ xs) = x ⊗ foldr _⊗_ e xs _ : foldr _+_ 0 [ 1 , 2 , 3 , 4 ] ≡ 10 _ = refl -- Summing a list using foldr. sum : List ℕ → ℕ sum = foldr _+_ 0 _ : sum [ 1 , 2 , 3 , 4 ] ≡ 10 _ = refl -- PLFA exercise: use foldr to define product on lists of naturals product : List ℕ → ℕ product = foldr _*_ 1 _ : product [ 1 , 2 , 3 , 4 ] ≡ 24 _ = refl -- 747/PLFA exercise: FoldrOverAppend (1 point) -- prove foldr over an append can be expressed as foldrs over each list. foldr-++ : ∀ {A B : Set} (_⊗_ : A → B → B) (b : B) (xs ys : List A) → foldr _⊗_ b (xs ++ ys) ≡ foldr _⊗_ (foldr _⊗_ b ys) xs foldr-++ _⊗_ b [] ys = refl foldr-++ _⊗_ b (x ∷ xs) ys -- foldr _⊗_ b ((x ∷ xs) ++ ys) ≡ foldr _⊗_ (foldr _⊗_ b ys) (x ∷ xs) -- (x ⊗ foldr _⊗_ b (xs ++ ys)) ≡ (x ⊗ foldr _⊗_ (foldr _⊗_ b ys) xs) rewrite foldr-++ _⊗_ b xs ys -- (x ⊗ foldr _⊗_ (foldr _⊗_ b ys) xs) ≡ (x ⊗ foldr _⊗_ (foldr _⊗_ b ys) xs) = refl -- 747/PLFA exercise: MapIsFoldr (1 point) -- Show that map can be expressed as a fold. -- Changed from PLFA: some arguments made explicit, uses pointwise equality. map-is-foldr : ∀ {A B : Set} (f : A → B) (xs : List A) → map f xs ≡ foldr (λ x rs → f x ∷ rs) [] xs map-is-foldr f [] = refl map-is-foldr f (x ∷ xs) rewrite map-is-foldr f xs = refl -- PLFA exercise: write a fold for trees fold-Tree : ∀ {A B C : Set} → (A → C) → (C → B → C → C) → Tree A B → C fold-Tree f g (leaf a) = f a fold-Tree f g (node tl b tr) = g (fold-Tree f g tl) b (fold-Tree f g tr) -- PLFA exercise: the downFrom function computes a countdown list -- Prove an equality about its sum downFrom : ℕ → List ℕ downFrom zero = [] downFrom (suc n) = n ∷ downFrom n _ : downFrom 4 ≡ [ 3 , 2 , 1 , 0 ] _ = refl _ : sum (downFrom 4) ≡ 6 _ = refl {- TODO sum-downFrom : ∀ (n : ℕ) → sum (downFrom n) * 2 ≡ n * (n ∸ 1) sum-downFrom n = {!!} -} ------------------------------------------------------------------------------ -- 'Monoid' : set with -- - an associative operator -- - an element which is the left and right identity record IsMonoid (A : Set) : Set where field id : A _⊗_ : A → A → A assoc : ∀ (x y z : A) → (x ⊗ y) ⊗ z ≡ x ⊗ (y ⊗ z) identityˡ : ∀ (x : A) → id ⊗ x ≡ x identityʳ : ∀ (x : A) → x ⊗ id ≡ x -- The following open command is different from PLFA; it uses instance arguments, -- which work like typeclasses in Haskell (allow overloading, which is cleaner). open IsMonoid {{ ...}} public -- These pragmas make displays of goal and context look nicer. {-# DISPLAY IsMonoid.id _ = id #-} {-# DISPLAY IsMonoid._⊗_ _ = _⊗_ #-} -- instances of Monoid instance +-monoid : IsMonoid ℕ IsMonoid.id +-monoid = 0 IsMonoid._⊗_ +-monoid = _+_ IsMonoid.assoc +-monoid = +-assoc IsMonoid.identityˡ +-monoid = +-identityˡ IsMonoid.identityʳ +-monoid = +-identityʳ *-monoid : IsMonoid ℕ IsMonoid.id *-monoid = 1 IsMonoid._⊗_ *-monoid = _*_ IsMonoid.assoc *-monoid = *-assoc IsMonoid.identityˡ *-monoid = *-identityˡ IsMonoid.identityʳ *-monoid = *-identityʳ ++-monoid : ∀ {A : Set} → IsMonoid (List A) IsMonoid.id ++-monoid = [] IsMonoid._⊗_ ++-monoid = _++_ IsMonoid.assoc ++-monoid = ++-assoc IsMonoid.identityˡ ++-monoid = ++-identityˡ IsMonoid.identityʳ ++-monoid = ++-identityʳ -- property of foldr over a monoid foldr-monoid : ∀ {A : Set} → {{m : IsMonoid A}} → ∀ (xs : List A) (y : A) → foldr _⊗_ y xs ≡ (foldr _⊗_ id xs) ⊗ y foldr-monoid {A} ⦃ m ⦄ [] y rewrite identityˡ y = refl foldr-monoid {A} ⦃ m ⦄ (x ∷ xs) y with foldr-monoid xs y ... | xxx rewrite xxx | sym (assoc x (foldr _⊗_ id xs) y) = refl foldr-monoid-++ : ∀ {A : Set} → {{m : IsMonoid A}} → ∀ (xs ys : List A) → foldr _⊗_ id (xs ++ ys) ≡ foldr _⊗_ id xs ⊗ foldr _⊗_ id ys foldr-monoid-++ {A} ⦃ m ⦄ [] ys rewrite sym (foldr-monoid {A} {{m}} [] (foldr _⊗_ id ys)) = refl foldr-monoid-++ {A} ⦃ m ⦄ (x ∷ xs) ys rewrite foldr-monoid-++ {A} {{m}} xs ys | assoc x (foldr _⊗_ id xs) (foldr _⊗_ id ys) = refl -- 747/PLFA exercise: Foldl (1 point) -- Define foldl, which associates left instead of right, e.g. -- foldr _⊗_ e [ x , y , z ] = x ⊗ (y ⊗ (z ⊗ e)) -- foldl _⊗_ e [ x , y , z ] = ((e ⊗ x) ⊗ y) ⊗ z foldl : ∀ {A B : Set} → (B → A → B) → B → List A → B foldl _⊗_ e [] = e foldl _⊗_ e (x ∷ xs) = foldl _⊗_ (e ⊗ x) xs sum-foldl : foldl _+_ 0 [ 4 , 3 , 2 , 1 ] ≡ 10 sum-foldl = refl monus-foldl : foldl _∸_ 20 [ 4 , 3 , 2 ] ≡ 11 monus-foldl = refl monus-foldr : foldr _∸_ 20 [ 4 , 3 , 2 ] ≡ 1 monus-foldr = refl -- 747/PLFA exercise: FoldrMonFoldl (2 points) -- Show that foldr and foldl compute the same value on a monoid -- when the base case is the identity. -- Hint: generalize to when the base case is an arbitrary value. foldl-r-mon-helper : ∀ {A : Set} {{m : IsMonoid A}} → ∀ (xs : List A) (y : A) → foldl _⊗_ y xs ≡ y ⊗ foldl _⊗_ id xs foldl-r-mon-helper [] y rewrite identityʳ y = refl foldl-r-mon-helper (x ∷ xs) y -- foldl _⊗_ y (x ∷ xs) ≡ (y ⊗ foldl _⊗_ id (x ∷ xs)) -- foldl _⊗_ (y ⊗ x) xs ≡ (y ⊗ foldl _⊗_ (id ⊗ x) xs) rewrite identityˡ x -- foldl _⊗_ (y ⊗ x) xs ≡ (y ⊗ foldl _⊗_ x xs) | foldl-r-mon-helper xs (y ⊗ x) -- ((y ⊗ x) ⊗ foldl _⊗_ id xs) ≡ (y ⊗ foldl _⊗_ x xs) | assoc y x (foldl _⊗_ id xs) -- (y ⊗ (x ⊗ foldl _⊗_ id xs)) ≡ (y ⊗ foldl _⊗_ x xs) | foldl-r-mon-helper xs x -- (y ⊗ (x ⊗ foldl _⊗_ id xs)) ≡ (y ⊗ (x ⊗ foldl _⊗_ id xs)) = refl foldl-r-mon : ∀ {A : Set} → {{m : IsMonoid A}} → ∀ (xs : List A) → foldl _⊗_ id xs ≡ foldr _⊗_ id xs foldl-r-mon [] = refl foldl-r-mon (x ∷ xs) -- foldl _⊗_ id (x ∷ xs) ≡ foldr _⊗_ id (x ∷ xs) -- foldl _⊗_ (id ⊗ x) xs ≡ (x ⊗ foldr _⊗_ id xs) rewrite identityˡ x -- foldl _⊗_ x xs ≡ (x ⊗ foldr _⊗_ id xs) | foldl-r-mon-helper xs x -- (x ⊗ foldl _⊗_ id xs) ≡ (x ⊗ foldr _⊗_ id xs) | foldl-r-mon xs -- (x ⊗ foldr _⊗_ id xs) ≡ (x ⊗ foldr _⊗_ id xs) = refl ------------------------------------------------------------------------------ -- Inductively-defined predicates over lists -- All P xs means P x holds for every element of xs data All {A : Set} (P : A → Set) : List A → Set where [] : All P [] _∷_ : ∀ {x : A} {xs : List A} → P x → All P xs → All P (x ∷ xs) _ : All (_≤ 2) [ 0 , 1 , 2 ] _ = z≤n ∷ s≤s z≤n ∷ s≤s (s≤s z≤n) ∷ [] -- Any P xs means P x holds for some element of xs data Any {A : Set} (P : A → Set) : List A → Set where here : ∀ {x : A} {xs : List A} → P x → Any P (x ∷ xs) there : ∀ {x : A} {xs : List A} → Any P xs → Any P (x ∷ xs) -- membership in list as application of Any infix 4 _∈_ _∉_ _∈_ : ∀ {A : Set} (x : A) (xs : List A) → Set x ∈ xs = Any (x ≡_) xs _∉_ : ∀ {A : Set} (x : A) (xs : List A) → Set x ∉ xs = ¬ (x ∈ xs) _ : 0 ∈ [ 0 , 1 , 0 , 2 ] _ = here refl _ : 0 ∈ [ 1 , 2 , 0 ] _ = there (there (here refl)) not-in : 3 ∉ [ 0 , 1 , 0 , 2 ] not-in (here ()) not-in (there (here ())) not-in (there (there (here ()))) not-in (there (there (there (here ())))) -- The development in PLFA, repeated with our notation. All-++-⇔ : ∀ {A : Set} {P : A → Set} → (xs ys : List A) → All P (xs ++ ys) ⇔ (All P xs × All P ys) to (All-++-⇔ xs ys) = to' xs ys where to' : ∀ {A : Set} {P : A → Set} (xs ys : List A) → All P (xs ++ ys) → (All P xs × All P ys) to' [] ys = λ All-P-ys → ⟨ [] , All-P-ys ⟩ to' (x ∷ xs) ys (Px ∷ All-P-xs++ys) with to' xs ys All-P-xs++ys ... | ⟨ All-P-xs , All-PP-ys ⟩ = ⟨ Px ∷ All-P-xs , All-PP-ys ⟩ from (All-++-⇔ xs ys) = from' xs ys where from' : ∀ { A : Set} {P : A → Set} (xs ys : List A) → All P xs × All P ys → All P (xs ++ ys) from' [] ys = λ { ⟨ All-P-[] , All-P-ys ⟩ → All-P-ys } from' (x ∷ xs) ys = λ { ⟨ Px ∷ All-P-xs , All-P-ys ⟩ → Px ∷ from' xs ys ⟨ All-P-xs , All-P-ys ⟩ } -- PLFA exercise: state and prove Any-++-⇔ Any-++-⇔ : ∀ {A : Set} {P : A → Set} → (xs ys : List A) → Any P (xs ++ ys) ⇔ (Any P xs ⊎ Any P ys) to (Any-++-⇔ xs ys) = to' xs ys where to' : ∀ {A : Set} {P : A → Set} → (xs ys : List A) → Any P (xs ++ ys) → (Any P xs ⊎ Any P ys) to' [] ys = λ Any-P-ys → inj₂ Any-P-ys to' (x ∷ xs) ys (here Px ) = inj₁ (here Px) to' (x ∷ xs) ys (there Any-P-xs++ys) with to' xs ys Any-P-xs++ys ... | inj₁ Any-P-xs = inj₁ (there Any-P-xs) ... | inj₂ Any-P-ys = inj₂ Any-P-ys from (Any-++-⇔ xs ys) = from' xs ys where from' : ∀ {A : Set} {P : A → Set} → (xs ys : List A) → (Any P xs ⊎ Any P ys) → Any P (xs ++ ys) from' [] ys (inj₂ Any-P-ys) = Any-P-ys from' (x ∷ xs) ys (inj₂ Any-P-ys) = there (from' xs ys (inj₂ Any-P-ys)) from' (x ∷ xs) ys (inj₁ (here Px)) = here Px from' (x ∷ xs) ys (inj₁ (there Any-P-xs)) = there (from' xs ys (inj₁ Any-P-xs)) -- use Any-++-⇔ to demonstrate an equivalence relating ∈ and _++_ TODO -- PLFA exercise: Show that the equivalence All-++-⇔ can be extended to an isomorphism. -- PLFA exercise: Here is a universe-polymorphic version of composition, -- and a version of DeMorgan's law for Any and All expressed using it. _∘'_ : ∀ {ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set ℓ₁} {B : Set ℓ₂} {C : Set ℓ₃} → (B → C) → (A → B) → A → C (g ∘' f) x = g (f x) ¬Any≃All¬ : ∀ {A : Set} (P : A → Set) (xs : List A) → (¬_ ∘' Any P) xs ≃ All (¬_ ∘' P) xs to (¬Any≃All¬ _ []) ¬_∘'AnyPxs = [] to (¬Any≃All¬ P (_ ∷ xs)) ¬_∘'AnyPxs with to (¬Any≃All¬ P xs) ... | AnyPxs→⊥→Allλx₁→Px₁→⊥xs = (λ Px → ¬ here Px ∘'AnyPxs) ∷ AnyPxs→⊥→Allλx₁→Px₁→⊥xs (λ AnyPxs → ¬ there AnyPxs ∘'AnyPxs) from (¬Any≃All¬ _ []) All¬_∘'Pxs () from (¬Any≃All¬ P (x ∷ xs)) All¬_∘'Pxs (here Px) with from (¬Any≃All¬ P xs) ... | All-λx₁→Px₁→⊥-xs→AnyPxs→⊥ = All-λx₁→Px₁→⊥-xs→AnyPxs→⊥ {!!} {!!} from (¬Any≃All¬ _ (x ∷ xs)) All¬_∘'Pxs (there AnyPxs) = {!!} from∘to (¬Any≃All¬ P xs) = {!!} to∘from (¬Any≃All¬ P xs) = {!!} {- -- Can we prove the following? If not, explain why. -- ¬All≃Any¬ : ∀ {A : Set} (P : A → Set) (xs : List A) -- → (¬_ ∘' All P) xs ≃ Any (¬_ ∘' P) xs -- End of PLFA exercise -- Decidability of All -- A Boolean analogue of All all : ∀ {A : Set} → (A → Bool) → List A → Bool all p = foldr _∧_ true ∘ map p -- A Dec analogue of All -- A definition of a predicate being decidable Decidable : ∀ {A : Set} → (A → Set) → Set Decidable {A} P = ∀ (x : A) → Dec (P x) All? : ∀ {A : Set} {P : A → Set} → Decidable P → Decidable (All P) All? P? [] = yes [] All? P? (x ∷ xs) with P? x | All? P? xs All? P? (x ∷ xs) | yes p | yes p₁ = yes (p ∷ p₁) All? P? (x ∷ xs) | yes p | no ¬p = no (λ { (x ∷ x₁) → ¬p x₁}) All? P? (x ∷ xs) | no ¬p | _ = no (λ { (x ∷ x₁) → ¬p x}) -- PLFA exercise: repeat above for Any -- PLFA exercises: All-∀ and Any-∃ -- You will need the stronger version of extensionality -- (for dependent function types) given in PLFA Isomorphism. -- PLFA exercise: a version of 'filter' for decidable predicates -- filter? : ∀ {A : Set} {P : A → Set} -- → (P? : Decidable P) → List A → ∃[ ys ]( All P ys ) -- filter? P? xs = {!!} -}
34.922442
108
0.49974
1024a00f5e8ae8ac2ae8f5e680a7b6ac2951bdaa
3,362
agda
Agda
test/Fail/Issue921.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue921.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue921.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --without-K #-} {-# OPTIONS --allow-unsolved-metas #-} -- This issue demonstrates that a failing termination check, -- subsequently blocking reductions, makes some `impossible' -- cases possible in the conversion checker. module Issue921 where infix 3 _==_ postulate _==_ : {A : Set} → A → A → Set transport : {A : Set} (B : A → Set) {x y : A} (p : x == y) → (B x → B y) ! : {A : Set} {x y : A} → (x == y → y == x) infixr 1 _,_ record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field fst : A snd : B fst open Σ public infix 4 _≃_ _≃_ : ∀ (A : Set) (B : Set) → Set A ≃ B = Σ (A → B) (λ _ → B → A) postulate <– : {A : Set} {B : Set} → (A ≃ B) → B → A infixr 4 _∘e_ _∘e_ : {A : Set} {B : Set} {C : Set} → B ≃ C → A ≃ B → A ≃ C e1 ∘e e2 = ({!!} , λ c → snd e2 (snd e1 c)) module _ {A : Set} {B : A → Set} {C : (a : A) → B a → Set} where Σ-assoc : Σ (Σ A B) (λ z → C (fst z) (snd z)) ≃ Σ A (λ a → Σ (B a) (C a)) Σ-assoc = ({!!} , λ {(a , (b , c)) → ((a , b) , c)}) data Ctx : Set postulate Ty : Ctx → Set data Ctx where _·_ : (Γ : Ctx) → Ty {!!} → Ctx infix 5 _ctx-⇛_ _ctx-⇛_ : Ctx → Ctx → Set -- swap these two lines and the internal error disappears Tm : Σ Ctx Ty → Set Γ ctx-⇛ (Δ · A) = Σ {!!} {!!} infix 10 _*_ postulate _*_ : {Γ Δ : Ctx} (m : Γ ctx-⇛ Δ) → Ty {!!} → Ty {!!} pullback : {Γ Δ : Ctx} {A : Ty Δ} → Tm (Δ , A) → (m : Γ ctx-⇛ Δ) → Tm (Γ , m * A) infix 7 _·_ data Xtc (Γ : Ctx) : Set where _·_ : (A : Ty {!!}) → Xtc {!!} → Xtc Γ infix 6 _⋯_ _⋯_ : (Γ : Ctx) → Xtc Γ → Ctx Γ ⋯ (A · s) = (Γ · A) ⋯ s module xtc where infix 5 _⇛_∣_ _⇛_∣_ : (Γ : Ctx) {Δ : Ctx} (m : Γ ctx-⇛ Δ) → Xtc Δ → Set Γ ⇛ m ∣ A · T = Σ (Tm (Γ , m * A)) (λ t → Γ ⇛ (m , t) ∣ T) infix 5 _⇛_ _⇛_ : (Γ : Ctx) → Σ Ctx (λ Δ → Xtc Δ) → Set Γ ⇛ (Δ , T) = Σ (Γ ctx-⇛ Δ) (λ m → Γ ⇛ m ∣ T) eq : {Γ Δ : Ctx} {T : Xtc Δ} → Γ ctx-⇛ Δ ⋯ T ≃ Γ ⇛ (Δ , T) eq {T = A · T} = Σ-assoc ∘e eq weaken : (Γ : Ctx) {T : Xtc Γ} → Γ ⋯ T ctx-⇛ Γ infix 10 _○_ _○_ : {Γ Δ Θ : Ctx} → Δ ctx-⇛ Θ → Γ ctx-⇛ Δ → Γ ctx-⇛ Θ postulate _○=_ : {Γ Δ Θ : Ctx} (n : Δ ctx-⇛ Θ) (m : Γ ctx-⇛ {!!}) {A : Ty {!!}} → (n ○ m) * A == m * (n * A) Tm P = Σ Ctx λ Γ → Σ (Ty {!!}) λ A → Σ (Xtc (Γ · A)) λ T → (Γ · A ⋯ T , weaken Γ {A · T} * A) == P weaken (Γ · A) {T} = (weaken Γ {A · T} , (Γ , A , T , {!!})) _○_ {Θ = Θ · _} (n , x) m = (n ○ m , transport (λ z → Tm (_ , z)) (! (n ○= m)) (pullback x m)) weaken-○-scope : {Γ Δ : Ctx} {T : Xtc Δ} (ms : Γ xtc.⇛ (Δ , T)) → weaken Δ {T} ○ snd xtc.eq ms == fst ms pullback-var : {Γ Δ : Ctx} {A : Ty {!!}} {T : Xtc (Δ · A)} (ms : Γ xtc.⇛ (Δ , A · T)) → Tm (Γ , snd xtc.eq ms * (weaken Δ {A · T} * A)) pullback-var {Γ} {Δ} {A} {T} ms = transport (λ z → Tm (Γ , z)) (weaken Δ {A · T} ○= snd xtc.eq ms) (transport (λ z → Tm (Γ , z * A)) (! (weaken-○-scope ms)) (fst (snd ms))) pullback (Δ' , _ , T , p) = transport (λ P → (m : _ ctx-⇛ fst P) → Tm (_ , m * snd P)) p (<– {!!} pullback-var) weaken-○-scope {Γ} {Δ · A} {T} ((m , t) , ts) = {!!} where helper3 : transport (λ z → Tm (Γ , z)) (! (fst (weaken (Δ · A)) ○= snd xtc.eq ((m , t) , ts))) (pullback-var {!!}) == transport (λ z → Tm (Γ , z * A)) (! (weaken-○-scope (m , t , ts))) t helper3 = {!!}
28.491525
111
0.436347
1068bdcd5a16284f55d94c03888ee5e782355f46
4,524
agda
Agda
examples/outdated-and-incorrect/Alonzo/Vec.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
examples/outdated-and-incorrect/Alonzo/Vec.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/outdated-and-incorrect/Alonzo/Vec.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module examples.Vec where {- Computed datatypes -} data One : Set where unit : One data Nat : Set where zero : Nat suc : Nat -> Nat data _*_ (A B : Set) : Set where pair : A -> B -> A * B infixr 20 _=>_ data _=>_ (A B : Set) : Set where lam : (A -> B) -> A => B lam2 : {A B C : Set} -> (A -> B -> C) -> (A => B => C) lam2 f = lam (\x -> lam (f x)) app : {A B : Set} -> (A => B) -> A -> B app (lam f) x = f x Vec : Nat -> Set -> Set Vec zero X = One Vec (suc n) X = X * Vec n X {- ... construct the vectors of a given length -} vHead : {X : Set} -> (n : Nat)-> Vec (suc n) X -> X vHead n (pair a b) = a vTail : {X : Set} -> (n : Nat)-> Vec (suc n) X -> Vec n X vTail n (pair a b) = b {- safe destructors for nonempty vectors -} {- useful vector programming operators -} vec : {X : Set} -> (n : Nat) -> X -> Vec n X vec zero x = unit vec (suc n) x = pair x (vec n x) vapp : {S T : Set} -> (n : Nat) -> Vec n (S => T) -> Vec n S -> Vec n T vapp zero unit unit = unit vapp (suc n) (pair f fs) (pair s ss) = pair (app f s) (vapp n fs ss) {- mapping and zipping come from these -} vMap : {S T : Set} -> (n : Nat) -> (S -> T) -> Vec n S -> Vec n T vMap n f ss = vapp n (vec n (lam f)) ss {- transposition gets the type it deserves -} transpose : {X : Set} -> (m n : Nat)-> Vec m (Vec n X) -> Vec n (Vec m X) transpose zero n xss = vec n unit transpose (suc m) n (pair xs xss) = vapp n (vapp n (vec n (lam2 pair)) xs) (transpose m n xss) {- Sets of a given finite size may be computed as follows... -} {- Resist the temptation to mention idioms. -} data Zero : Set where data _+_ (A B : Set) : Set where inl : A -> A + B inr : B -> A + B Fin : Nat -> Set Fin zero = Zero Fin (suc n) = One + Fin n {- We can use these sets to index vectors safely. -} vProj : {X : Set} -> (n : Nat)-> Vec n X -> Fin n -> X -- vProj zero () we can pretend that there is an exhaustiveness check vProj (suc n) (pair x xs) (inl unit) = x vProj (suc n) (pair x xs) (inr i) = vProj n xs i {- We can also tabulate a function as a vector. Resist the temptation to mention logarithms. -} vTab : {X : Set} -> (n : Nat)-> (Fin n -> X) -> Vec n X vTab zero _ = unit vTab (suc n) f = pair (f (inl unit)) (vTab n (\x -> f (inr x))) {- Question to ponder in your own time: if we use functional vectors what are vec and vapp -} {- Answer: K and S -} {- Inductive datatypes of the unfocused variety -} {- Every constructor must target the whole family rather than focusing on specific indices. -} data Tm (n : Nat) : Set where evar : Fin n -> Tm n eapp : Tm n -> Tm n -> Tm n elam : Tm (suc n) -> Tm n {- Renamings -} Ren : Nat -> Nat -> Set Ren m n = Vec m (Fin n) _`Ren`_ = Ren {- identity and composition -} idR : (n : Nat) -> n `Ren` n idR n = vTab n (\i -> i) coR : (l m n : Nat) -> m `Ren` n -> l `Ren` m -> l `Ren` n coR l m n m2n l2m = vMap l (vProj m m2n) l2m {- what theorems should we prove -} {- the lifting functor for Ren -} liftR : (m n : Nat) -> m `Ren` n -> suc m `Ren` suc n liftR m n m2n = pair (inl unit) (vMap m inr m2n) {- what theorems should we prove -} {- the functor from Ren to Tm-arrows -} rename : {m n : Nat} -> (m `Ren` n) -> Tm m -> Tm n rename {m}{n} m2n (evar i) = evar (vProj m m2n i) rename {m}{n} m2n (eapp f s) = eapp (rename m2n f) (rename m2n s) rename {m}{n} m2n (elam t) = elam (rename (liftR m n m2n) t) {- Substitutions -} Sub : Nat -> Nat -> Set Sub m n = Vec m (Tm n) _`Sub`_ = Sub {- identity; composition must wait; why -} idS : (n : Nat) -> n `Sub` n idS n = vTab n (evar {n}) {- functor from renamings to substitutions -} Ren2Sub : (m n : Nat) -> m `Ren` n -> m `Sub` n Ren2Sub m n m2n = vMap m evar m2n {- lifting functor for substitution -} liftS : (m n : Nat) -> m `Sub` n -> suc m `Sub` suc n liftS m n m2n = pair (evar (inl unit)) (vMap m (rename (vMap n inr (idR n))) m2n) {- functor from Sub to Tm-arrows -} subst : {m n : Nat} -> m `Sub` n -> Tm m -> Tm n subst {m}{n} m2n (evar i) = vProj m m2n i subst {m}{n} m2n (eapp f s) = eapp (subst m2n f) (subst m2n s) subst {m}{n} m2n (elam t) = elam (subst (liftS m n m2n) t) {- and now we can define composition -} coS : (l m n : Nat) -> m `Sub` n -> l `Sub` m -> l `Sub` n coS l m n m2n l2m = vMap l (subst m2n) l2m
26.769231
75
0.539346
39937c3f6f68622cac23bd72579f0dce65493869
16,322
agda
Agda
Categories/Square.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
1
2018-12-29T21:51:57.000Z
2018-12-29T21:51:57.000Z
Categories/Square.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
null
null
null
Categories/Square.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --universe-polymorphism #-} module Categories.Square where open import Level open import Function renaming (id to idᶠ; _∘_ to _©_) open import Categories.Support.PropositionalEquality open import Categories.Category import Categories.Morphisms as Mor open import Relation.Binary hiding (_⇒_) module GlueSquares {o ℓ e} (C : Category o ℓ e) where private module C = Category C open C open Mor C module Pulls {X Y Z} {a : Y ⇒ Z} {b : X ⇒ Y} {c : X ⇒ Z} (ab≡c : a ∘ b ≡ c) where .pullʳ : ∀ {W} {f : Z ⇒ W} → (f ∘ a) ∘ b ≡ f ∘ c pullʳ {f = f} = begin (f ∘ a) ∘ b ↓⟨ assoc ⟩ f ∘ (a ∘ b) ↓⟨ ∘-resp-≡ʳ ab≡c ⟩ f ∘ c ∎ where open HomReasoning .pullˡ : ∀ {W} {f : W ⇒ X} → a ∘ (b ∘ f) ≡ c ∘ f pullˡ {f = f} = begin a ∘ (b ∘ f) ↑⟨ assoc ⟩ (a ∘ b) ∘ f ↓⟨ ∘-resp-≡ˡ ab≡c ⟩ c ∘ f ∎ where open HomReasoning open Pulls public module Pushes {X Y Z} {a : Y ⇒ Z} {b : X ⇒ Y} {c : X ⇒ Z} (c≡ab : c ≡ a ∘ b) where .pushʳ : ∀ {W} {f : Z ⇒ W} → f ∘ c ≡ (f ∘ a) ∘ b pushʳ {f = f} = begin f ∘ c ↓⟨ ∘-resp-≡ʳ c≡ab ⟩ f ∘ (a ∘ b) ↑⟨ assoc ⟩ (f ∘ a) ∘ b ∎ where open HomReasoning .pushˡ : ∀ {W} {f : W ⇒ X} → c ∘ f ≡ a ∘ (b ∘ f) pushˡ {f = f} = begin c ∘ f ↓⟨ ∘-resp-≡ˡ c≡ab ⟩ (a ∘ b) ∘ f ↓⟨ assoc ⟩ a ∘ (b ∘ f) ∎ where open HomReasoning open Pushes public module IntroElim {X} {a : X ⇒ X} (a≡id : a ≡ id) where .elimʳ : ∀ {W} {f : X ⇒ W} → (f ∘ a) ≡ f elimʳ {f = f} = begin f ∘ a ↓⟨ ∘-resp-≡ʳ a≡id ⟩ f ∘ id ↓⟨ identityʳ ⟩ f ∎ where open HomReasoning .introʳ : ∀ {W} {f : X ⇒ W} → f ≡ f ∘ a introʳ = Equiv.sym elimʳ .elimˡ : ∀ {W} {f : W ⇒ X} → (a ∘ f) ≡ f elimˡ {f = f} = begin a ∘ f ↓⟨ ∘-resp-≡ˡ a≡id ⟩ id ∘ f ↓⟨ identityˡ ⟩ f ∎ where open HomReasoning .introˡ : ∀ {W} {f : W ⇒ X} → f ≡ a ∘ f introˡ = Equiv.sym elimˡ open IntroElim public module Extends {X Y Z W} {f : X ⇒ Y} {g : X ⇒ Z} {h : Y ⇒ W} {i : Z ⇒ W} (s : CommutativeSquare f g h i) where .extendˡ : ∀ {A} {a : W ⇒ A} → CommutativeSquare f g (a ∘ h) (a ∘ i) extendˡ {a = a} = begin (a ∘ h) ∘ f ↓⟨ pullʳ s ⟩ a ∘ i ∘ g ↑⟨ assoc ⟩ (a ∘ i) ∘ g ∎ where open HomReasoning .extendʳ : ∀ {A} {a : A ⇒ X} → CommutativeSquare (f ∘ a) (g ∘ a) h i extendʳ {a = a} = begin h ∘ (f ∘ a) ↓⟨ pullˡ s ⟩ (i ∘ g) ∘ a ↓⟨ assoc ⟩ i ∘ (g ∘ a) ∎ where open HomReasoning .extend² : ∀ {A B} {a : W ⇒ A} {b : B ⇒ X} → CommutativeSquare (f ∘ b) (g ∘ b) (a ∘ h) (a ∘ i) extend² {a = a} {b} = begin (a ∘ h) ∘ (f ∘ b) ↓⟨ pullʳ extendʳ ⟩ a ∘ (i ∘ (g ∘ b)) ↑⟨ assoc ⟩ (a ∘ i) ∘ (g ∘ b) ∎ where open HomReasoning open Extends public -- essentially composition in the arrow category .glue : {X Y Y′ Z Z′ W : Obj} {a : Z ⇒ W} {a′ : Y′ ⇒ Z′} {b : Y ⇒ Z} {b′ : X ⇒ Y′} {c : X ⇒ Y} {c′ : Y′ ⇒ Z} {c″ : Z′ ⇒ W} → CommutativeSquare c′ a′ a c″ → CommutativeSquare c b′ b c′ → CommutativeSquare c (a′ ∘ b′) (a ∘ b) c″ glue {a = a} {a′} {b} {b′} {c} {c′} {c″} sq-a sq-b = begin (a ∘ b) ∘ c ↓⟨ pullʳ sq-b ⟩ a ∘ (c′ ∘ b′) ↓⟨ pullˡ sq-a ⟩ (c″ ∘ a′) ∘ b′ ↓⟨ assoc ⟩ c″ ∘ (a′ ∘ b′) ∎ where open HomReasoning .glue◃◽ : {X Y Y′ Z W : Obj} {a : Z ⇒ W} {b : Y ⇒ Z} {b′ : X ⇒ Y′} {c : X ⇒ Y} {c′ : Y′ ⇒ Z} {c″ : Y′ ⇒ W} → a ∘ c′ ≡ c″ → CommutativeSquare c b′ b c′ → CommutativeSquare c b′ (a ∘ b) c″ glue◃◽ {a = a} {b} {b′} {c} {c′} {c″} tri-a sq-b = begin (a ∘ b) ∘ c ↓⟨ pullʳ sq-b ⟩ a ∘ (c′ ∘ b′) ↓⟨ pullˡ tri-a ⟩ c″ ∘ b′ ∎ where open HomReasoning -- essentially composition in the over category .glueTrianglesʳ : ∀ {X X′ X″ Y} {a : X ⇒ Y} {b : X′ ⇒ X} {a′ : X′ ⇒ Y} {b′ : X″ ⇒ X′} {a″ : X″ ⇒ Y} → a ∘ b ≡ a′ → a′ ∘ b′ ≡ a″ → a ∘ (b ∘ b′) ≡ a″ glueTrianglesʳ {a = a} {b} {a′} {b′} {a″} a∘b≡a′ a′∘b′≡a″ = begin a ∘ (b ∘ b′) ↓⟨ pullˡ a∘b≡a′ ⟩ a′ ∘ b′ ↓⟨ a′∘b′≡a″ ⟩ a″ ∎ where open HomReasoning -- essentially composition in the under category .glueTrianglesˡ : ∀ {X Y Y′ Y″} {b : X ⇒ Y} {a : Y ⇒ Y′} {b′ : X ⇒ Y′} {a′ : Y′ ⇒ Y″} {b″ : X ⇒ Y″} → a′ ∘ b′ ≡ b″ → a ∘ b ≡ b′ → (a′ ∘ a) ∘ b ≡ b″ glueTrianglesˡ {b = b} {a} {b′} {a′} {b″} a′∘b′≡b″ a∘b≡b′ = begin (a′ ∘ a) ∘ b ↓⟨ pullʳ a∘b≡b′ ⟩ a′ ∘ b′ ↓⟨ a′∘b′≡b″ ⟩ b″ ∎ where open HomReasoning module Cancellers {Y Y′ : Obj} {h : Y′ ⇒ Y} {i : Y ⇒ Y′} (inv : h ∘ i ≡ id) where .cancelRight : ∀ {Z} {f : Y ⇒ Z} → (f ∘ h) ∘ i ≡ f cancelRight {f = f} = begin (f ∘ h) ∘ i ↓⟨ pullʳ inv ⟩ f ∘ id ↓⟨ identityʳ ⟩ f ∎ where open HomReasoning .cancelLeft : ∀ {X} {f : X ⇒ Y} → h ∘ (i ∘ f) ≡ f cancelLeft {f = f} = begin h ∘ (i ∘ f) ↓⟨ pullˡ inv ⟩ id ∘ f ↓⟨ identityˡ ⟩ f ∎ where open HomReasoning .cancelInner : ∀ {X Z} {f : Y ⇒ Z} {g : X ⇒ Y} → (f ∘ h) ∘ (i ∘ g) ≡ f ∘ g cancelInner {f = f} {g} = begin (f ∘ h) ∘ (i ∘ g) ↓⟨ pullˡ cancelRight ⟩ f ∘ g ∎ where open HomReasoning open Cancellers public module Switch {X Y} (i : X ≅ Y) where open _≅_ i .switch-fgˡ : ∀ {W} {h : W ⇒ X} {k : W ⇒ Y} → (f ∘ h ≡ k) → (h ≡ g ∘ k) switch-fgˡ {h = h} {k} pf = begin h ↑⟨ cancelLeft isoˡ ⟩ g ∘ (f ∘ h) ↓⟨ ∘-resp-≡ʳ pf ⟩ g ∘ k ∎ where open HomReasoning .switch-gfˡ : ∀ {W} {h : W ⇒ Y} {k : W ⇒ X} → (g ∘ h ≡ k) → (h ≡ f ∘ k) switch-gfˡ {h = h} {k} pf = begin h ↑⟨ cancelLeft isoʳ ⟩ f ∘ (g ∘ h) ↓⟨ ∘-resp-≡ʳ pf ⟩ f ∘ k ∎ where open HomReasoning .switch-fgʳ : ∀ {W} {h : Y ⇒ W} {k : X ⇒ W} → (h ∘ f ≡ k) → (h ≡ k ∘ g) switch-fgʳ {h = h} {k} pf = begin h ↑⟨ cancelRight isoʳ ⟩ (h ∘ f) ∘ g ↓⟨ ∘-resp-≡ˡ pf ⟩ k ∘ g ∎ where open HomReasoning .switch-gfʳ : ∀ {W} {h : X ⇒ W} {k : Y ⇒ W} → (h ∘ g ≡ k) → (h ≡ k ∘ f) switch-gfʳ {h = h} {k} pf = begin h ↑⟨ cancelRight isoˡ ⟩ (h ∘ g) ∘ f ↓⟨ ∘-resp-≡ˡ pf ⟩ k ∘ f ∎ where open HomReasoning open Switch public module Yon-Eda {o ℓ e} (C : Category o ℓ e) where private module C = Category C open C open Equiv record Yon (X Y : Obj) : Set (o ⊔ ℓ ⊔ e) where field arr : X ⇒ Y fun : ∀ {W} (f : W ⇒ X) → (W ⇒ Y) .ok : ∀ {W} (f : W ⇒ X) → fun f ≡ arr ∘ f norm : X ⇒ Y norm = fun id .norm≡arr : norm ≡ arr norm≡arr = trans (ok id) identityʳ record _≡′_ {X Y : Obj} (f g : Yon X Y) : Set (o ⊔ ℓ ⊔ e) where constructor yeq field arr-≡ : Yon.arr f ≡ Yon.arr g open _≡′_ public using (arr-≡) module _ {X Y} where .Yon-refl : Reflexive (_≡′_ {X} {Y}) Yon-refl = yeq refl .Yon-sym : Symmetric (_≡′_ {X} {Y}) Yon-sym = yeq © sym © arr-≡ .Yon-trans : Transitive (_≡′_ {X} {Y}) Yon-trans eq eq′ = yeq (trans (arr-≡ eq) (arr-≡ eq′)) Yon-id : ∀ {X} → Yon X X Yon-id = record { arr = id ; fun = idᶠ ; ok = λ _ → sym identityˡ } Yon-inject : ∀ {X Y} → (X ⇒ Y) → Yon X Y Yon-inject f = record { arr = f; fun = _∘_ f; ok = λ _ → refl } Yon-compose : ∀ {X Y Z} → (Yon Y Z) → (Yon X Y) → (Yon X Z) Yon-compose g f = record { arr = g.fun f.arr ; fun = g.fun © f.fun ; ok = λ h → trans (g.ok (f.fun h)) (trans (∘-resp-≡ʳ (f.ok h)) (trans (sym assoc) (sym (∘-resp-≡ˡ (g.ok f.arr))))) } where module g = Yon g module f = Yon f .Yon-assoc : ∀ {X Y Z W} (f : Yon Z W) (g : Yon Y Z) (h : Yon X Y) → Yon-compose f (Yon-compose g h) ≣ Yon-compose (Yon-compose f g) h Yon-assoc f g h = ≣-refl .Yon-identityˡ : ∀ {X Y} (f : Yon X Y) → Yon-compose Yon-id f ≣ f Yon-identityˡ f = ≣-refl .Yon-identityʳ : ∀ {X Y} (f : Yon X Y) → Yon-compose f Yon-id ≡′ f Yon-identityʳ f = yeq (Yon.norm≡arr f) .Yon-compose-resp-≡′ : ∀ {X Y Z} {f f′ : Yon Y Z} {g g′ : Yon X Y} → f ≡′ f′ → g ≡′ g′ → Yon-compose f g ≡′ Yon-compose f′ g′ Yon-compose-resp-≡′ {f = f} {f′} {g} {g′} f≡′f′ g≡′g′ = yeq (trans (Yon.ok f (Yon.arr g)) (trans (∘-resp-≡ (arr-≡ f≡′f′) (arr-≡ g≡′g′)) (sym (Yon.ok f′ (Yon.arr g′))))) record Eda (X Y : Obj) : Set (o ⊔ ℓ ⊔ e) where field yon : Yon X Y fun : ∀ {Z} (f : Yon Y Z) → Yon X Z .ok : ∀ {Z} (f : Yon Y Z) → fun f ≡′ Yon-compose f yon norm : Yon X Y norm = fun Yon-id open Yon yon public using (arr) Eda-id : ∀ {X} → Eda X X Eda-id = record { yon = Yon-id ; fun = idᶠ ; ok = yeq © sym © arr-≡ © Yon-identityʳ } Eda-inject : ∀ {X Y} → Yon X Y → Eda X Y Eda-inject f = record { yon = f; fun = flip Yon-compose f; ok = λ _ → yeq refl } Eda-compose : ∀ {X Y Z} → (Eda Y Z) → (Eda X Y) → (Eda X Z) Eda-compose {X} {Y} {Z} g f = record { yon = f.fun g.yon ; fun = f.fun © g.fun ; ok = λ {W} h → Yon-trans {X} {W} {f.fun (g.fun h)} (f.ok (g.fun h)) (Yon-trans (Yon-compose-resp-≡′ (g.ok h) (Yon-refl {x = f.yon})) (Yon-sym (Yon-compose-resp-≡′ (Yon-refl {x = h}) (f.ok g.yon)))) } where module g = Eda g module f = Eda f .Eda-assoc : ∀ {X Y Z W} (f : Eda Z W) (g : Eda Y Z) (h : Eda X Y) → Eda-compose f (Eda-compose g h) ≣ Eda-compose (Eda-compose f g) h Eda-assoc f g h = ≣-refl -- .Eda-identityˡ : ∀ {X Y} (f : Eda X Y) → Eda-compose Eda-id f ≣ f -- Eda-identityˡ f = {!!} .Eda-identityʳ : ∀ {X Y} (f : Eda X Y) → Eda-compose f Eda-id ≣ f Eda-identityʳ f = ≣-refl record NormReasoning {o ℓ e} (C : Category o ℓ e) (o′ ℓ′ : _) : Set (suc o′ ⊔ o ⊔ ℓ ⊔ e ⊔ suc ℓ′) where private module C = Category C field U : Set o′ T : U -> C.Obj _#⇒_ : U -> U -> Set ℓ′ eval : ∀ {A B} -> A #⇒ B -> T A C.⇒ T B norm : ∀ {A B} -> A #⇒ B -> T A C.⇒ T B .norm≡eval : ∀ {A B} (f : A #⇒ B) -> norm f C.≡ eval f open C.Equiv open C infix 4 _IsRelatedTo_ infix 1 begin_ infixr 2 _≈⟨_⟩_ _↓⟨_⟩_ _↑⟨_⟩_ _↓≡⟨_⟩_ _↑≡⟨_⟩_ _↕_ infix 3 _∎ data _IsRelatedTo_ {X Y} (f g : _#⇒_ X Y) : Set e where relTo : (f∼g : norm f ≡ norm g) → f IsRelatedTo g .begin_ : ∀ {X Y} {f g : _#⇒_ X Y} → f IsRelatedTo g → eval f ≡ eval g begin_ {f = f} {g} (relTo f∼g) = trans (sym (norm≡eval f)) (trans f∼g (norm≡eval g)) ._↓⟨_⟩_ : ∀ {X Y} (f : _#⇒_ X Y) {g h} → (norm f ≡ norm g) → g IsRelatedTo h → f IsRelatedTo h _ ↓⟨ f∼g ⟩ relTo g∼h = relTo (trans f∼g g∼h) ._↑⟨_⟩_ : ∀ {X Y} (f : _#⇒_ X Y) {g h} → (norm g ≡ norm f) → g IsRelatedTo h → f IsRelatedTo h _ ↑⟨ g∼f ⟩ relTo g∼h = relTo (trans (sym g∼f) g∼h) -- the syntax of the ancients, for compatibility ._≈⟨_⟩_ : ∀ {X Y} (f : _#⇒_ X Y) {g h} → (norm f ≡ norm g) → g IsRelatedTo h → f IsRelatedTo h _ ≈⟨ f∼g ⟩ relTo g∼h = relTo (trans f∼g g∼h) ._↓≡⟨_⟩_ : ∀ {X Y} (f : _#⇒_ X Y) {g h} → eval f ≡ eval g → g IsRelatedTo h → f IsRelatedTo h _↓≡⟨_⟩_ f {g} f∼g (relTo g∼h) = relTo (trans (norm≡eval f) (trans f∼g (trans (sym (norm≡eval g)) g∼h))) ._↑≡⟨_⟩_ : ∀ {X Y} (f : _#⇒_ X Y) {g h} → eval g ≡ eval f → g IsRelatedTo h → f IsRelatedTo h _↑≡⟨_⟩_ f {g} g∼f (relTo g∼h) = relTo (trans (norm≡eval f) (trans (sym g∼f) (trans (sym (norm≡eval g)) g∼h))) ._↕_ : ∀ {X Y} (f : _#⇒_ X Y) {h} → f IsRelatedTo h → f IsRelatedTo h _ ↕ f∼h = f∼h ._∎ : ∀ {X Y} (f : _#⇒_ X Y) → f IsRelatedTo f _∎ _ = relTo refl .by_ : ∀ {X Y} {f g h : X ⇒ Y} -> ((h ≡ h) -> f ≡ g) -> f ≡ g by eq = eq refl .computation : ∀ {X Y} (f g : X #⇒ Y) -> norm f ≡ norm g → eval f ≡ eval g computation f g eq = begin f ↓⟨ eq ⟩ g ∎ module AUReasoning {o ℓ e} (C : Category o ℓ e) where private module C = Category C open C open Equiv {- infix 4 _IsRelatedTo_ infix 2 _∎ infixr 2 _≈⟨_⟩_ infixr 2 _↓⟨_⟩_ infixr 2 _↑⟨_⟩_ infixr 2 _↓≡⟨_⟩_ infixr 2 _↑≡⟨_⟩_ infixr 2 _↕_ infix 1 begin_ -} infixr 8 _∙_ open Yon-Eda C public data Climb : Rel Obj (o ⊔ ℓ) where ID : ∀ {X} → Climb X X leaf : ∀ {X Y} → (X ⇒ Y) → Climb X Y _branch_ : ∀ {X Y Z} (l : Climb Y Z) (r : Climb X Y) → Climb X Z interp : ∀ {p} (P : Rel Obj p) (f-id : ∀ {X} → P X X) (f-leaf : ∀ {X Y} → X ⇒ Y → P X Y) (f-branch : ∀ {X Y Z} → P Y Z → P X Y → P X Z) → ∀ {X Y} → Climb X Y → P X Y interp P f-id f-leaf f-branch ID = f-id interp P f-id f-leaf f-branch (leaf y) = f-leaf y interp P f-id f-leaf f-branch (l branch r) = f-branch (interp P f-id f-leaf f-branch l) (interp P f-id f-leaf f-branch r) eval : ∀ {X Y} → Climb X Y → X ⇒ Y eval = interp _⇒_ id idᶠ _∘_ yeval : ∀ {X Y} → Climb X Y → Yon X Y yeval = interp Yon Yon-id Yon-inject Yon-compose .yarr : ∀ {X Y} → (t : Climb X Y) → Yon.arr (yeval t) ≡ eval t yarr ID = refl yarr (leaf y) = refl yarr (t branch t1) = trans (Yon.ok (yeval t) (Yon.arr (yeval t1))) (∘-resp-≡ (yarr t) (yarr t1)) eeval : ∀ {X Y} → Climb X Y → Eda X Y eeval = interp Eda Eda-id (Eda-inject © Yon-inject) Eda-compose .eyon : ∀ {X Y} → (t : Climb X Y) → Eda.yon (eeval t) ≡′ yeval t eyon ID = Yon-refl eyon (leaf y) = Yon-refl eyon (t branch t1) = Yon-trans (Eda.ok (eeval t1) (Eda.yon (eeval t))) (Yon-compose-resp-≡′ (eyon t) (eyon t1)) .earr : ∀ {X Y} → (t : Climb X Y) → Eda.arr (eeval t) ≡ eval t earr t = trans (arr-≡ (eyon t)) (yarr t) yyeval : ∀ {X Y} → (t : Climb X Y) → (X ⇒ Y) yyeval = Eda.arr © eeval record ClimbBuilder (X Y : Obj) {t} (T : Set t) : Set (o ⊔ ℓ ⊔ t) where field build : T → Climb X Y instance leafBuilder : ∀ {X Y} → ClimbBuilder X Y (X ⇒ Y) leafBuilder = record { build = leaf } idBuilder : ∀ {X Y} → ClimbBuilder X Y (Climb X Y) idBuilder = record { build = idᶠ } _∙_ : ∀ {X Y Z} {s} {S : Set s} {{Sb : ClimbBuilder Y Z S}} (f : S) {t} {T : Set t} {{Tb : ClimbBuilder X Y T}} (g : T) → Climb X Z _∙_ {{Sb}} f {{Tb}} g = ClimbBuilder.build Sb f branch ClimbBuilder.build Tb g aureasoning : NormReasoning C o (ℓ ⊔ o) aureasoning = record { U = Obj ; T = λ A → A ; _#⇒_ = Climb ; eval = eval ; norm = yyeval ; norm≡eval = earr } open NormReasoning aureasoning public hiding (eval) {- data _IsRelatedTo_ {X Y} (f g : Climb X Y) : Set e where relTo : (f∼g : yyeval f ≡ yyeval g) → f IsRelatedTo g .begin_ : ∀ {X Y} {f g : Climb X Y} → f IsRelatedTo g → eval f ≡ eval g begin_ {f = f} {g} (relTo f∼g) = trans (sym (earr f)) (trans f∼g (earr g)) ._↓⟨_⟩_ : ∀ {X Y} (f : Climb X Y) {g h} → (yyeval f ≡ yyeval g) → g IsRelatedTo h → f IsRelatedTo h _ ↓⟨ f∼g ⟩ relTo g∼h = relTo (trans f∼g g∼h) ._↑⟨_⟩_ : ∀ {X Y} (f : Climb X Y) {g h} → (yyeval g ≡ yyeval f) → g IsRelatedTo h → f IsRelatedTo h _ ↑⟨ g∼f ⟩ relTo g∼h = relTo (trans (sym g∼f) g∼h) -- the syntax of the ancients, for compatibility ._≈⟨_⟩_ : ∀ {X Y} (f : Climb X Y) {g h} → (yyeval f ≡ yyeval g) → g IsRelatedTo h → f IsRelatedTo h _ ≈⟨ f∼g ⟩ relTo g∼h = relTo (trans f∼g g∼h) ._↓≡⟨_⟩_ : ∀ {X Y} (f : Climb X Y) {g h} → eval f ≡ eval g → g IsRelatedTo h → f IsRelatedTo h _↓≡⟨_⟩_ f {g} f∼g (relTo g∼h) = relTo (trans (earr f) (trans f∼g (trans (sym (earr g)) g∼h))) ._↑≡⟨_⟩_ : ∀ {X Y} (f : Climb X Y) {g h} → eval g ≡ eval f → g IsRelatedTo h → f IsRelatedTo h _↑≡⟨_⟩_ f {g} g∼f (relTo g∼h) = relTo (trans (earr f) (trans (sym g∼f) (trans (sym (earr g)) g∼h))) {- -- XXX i want this to work whenever the Edas are equal -- but that probably -- requires Climb to be indexed by yyeval! oh, for cheap ornamentation. ._↕_ : ∀ {X Y} (f : Climb X Y) {h} → f IsRelatedTo h → f IsRelatedTo h _ ↕ f∼h = f∼h -} ._∎ : ∀ {X Y} (f : Climb X Y) → f IsRelatedTo f _∎ _ = relTo refl -}
29.356115
228
0.46373
235bbd3535af076cdae0860e27f967408f0c4e9e
237
agda
Agda
src/data/lib/prim/Agda/Builtin/Unit.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
src/data/lib/prim/Agda/Builtin/Unit.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
src/data/lib/prim/Agda/Builtin/Unit.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2021-04-01T18:30:09.000Z
2021-04-01T18:30:09.000Z
{-# OPTIONS --without-K --safe --no-universe-polymorphism --no-sized-types --no-guardedness #-} module Agda.Builtin.Unit where record ⊤ : Set where instance constructor tt {-# BUILTIN UNIT ⊤ #-} {-# COMPILE GHC ⊤ = data () (()) #-}
23.7
95
0.64135
df629bb46167d73aa1b55ddffa3f0c080b4f56b1
15,233
agda
Agda
Numbers/BinaryNaturals/Multiplication.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Numbers/BinaryNaturals/Multiplication.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Numbers/BinaryNaturals/Multiplication.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Lists.Lists open import Numbers.Naturals.Semiring open import Numbers.Naturals.Naturals open import Numbers.BinaryNaturals.Definition open import Numbers.BinaryNaturals.Addition open import Semirings.Definition module Numbers.BinaryNaturals.Multiplication where _*Binherit_ : BinNat → BinNat → BinNat a *Binherit b = NToBinNat (binNatToN a *N binNatToN b) _*B_ : BinNat → BinNat → BinNat [] *B b = [] (zero :: a) *B b = zero :: (a *B b) (one :: a) *B b = (zero :: (a *B b)) +B b private contr : {a : _} {A : Set a} {l1 l2 : List A} → {x : A} → l1 ≡ [] → l1 ≡ x :: l2 → False contr {l1 = []} p1 () contr {l1 = x :: l1} () p2 *BEmpty : (a : BinNat) → canonical (a *B []) ≡ [] *BEmpty [] = refl *BEmpty (zero :: a) rewrite *BEmpty a = refl *BEmpty (one :: a) rewrite *BEmpty a = refl canonicalDistributesPlus : (a b : BinNat) → canonical (a +B b) ≡ canonical a +B canonical b canonicalDistributesPlus a b = transitivity ans (+BIsInherited (canonical a) (canonical b) (canonicalIdempotent a) (canonicalIdempotent b)) where ans : canonical (a +B b) ≡ NToBinNat (binNatToN (canonical a) +N binNatToN (canonical b)) ans rewrite binNatToNIsCanonical a | binNatToNIsCanonical b = equalityCommutative (+BIsInherited' a b) incrPullsOut : (a b : BinNat) → incr (a +B b) ≡ (incr a) +B b incrPullsOut [] [] = refl incrPullsOut [] (zero :: b) = refl incrPullsOut [] (one :: b) = refl incrPullsOut (zero :: a) [] = refl incrPullsOut (zero :: a) (zero :: b) = refl incrPullsOut (zero :: a) (one :: b) = refl incrPullsOut (one :: a) [] = refl incrPullsOut (one :: a) (zero :: b) = applyEquality (zero ::_) (incrPullsOut a b) incrPullsOut (one :: a) (one :: b) = applyEquality (one ::_) (incrPullsOut a b) timesZero : (a b : BinNat) → canonical a ≡ [] → canonical (a *B b) ≡ [] timesZero [] b pr = refl timesZero (zero :: a) b pr with inspect (canonical a) timesZero (zero :: a) b pr | [] with≡ prA rewrite prA | timesZero a b prA = refl timesZero (zero :: a) b pr | (a1 :: as) with≡ prA rewrite prA = exFalso (nonEmptyNotEmpty pr) timesZero'' : (a b : BinNat) → canonical (a *B b) ≡ [] → (canonical a ≡ []) || (canonical b ≡ []) timesZero'' [] b pr = inl refl timesZero'' (x :: a) [] pr = inr refl timesZero'' (zero :: as) (zero :: bs) pr with inspect (canonical as) timesZero'' (zero :: as) (zero :: bs) pr | y with≡ x with inspect (canonical bs) timesZero'' (zero :: as) (zero :: bs) pr | [] with≡ prAs | y₁ with≡ prBs rewrite prAs = inl refl timesZero'' (zero :: as) (zero :: bs) pr | (a1 :: a's) with≡ prAs | [] with≡ prBs rewrite prBs = inr refl timesZero'' (zero :: as) (zero :: bs) pr | (a1 :: a's) with≡ prAs | (x :: y) with≡ prBs with inspect (canonical (as *B (zero :: bs))) timesZero'' (zero :: as) (zero :: bs) pr | (a1 :: a's) with≡ prAs | (b1 :: b's) with≡ prBs | [] with≡ pr' with timesZero'' as (zero :: bs) pr' timesZero'' (zero :: as) (zero :: bs) pr | (a1 :: a's) with≡ prAs | (b1 :: b's) with≡ prBs | [] with≡ pr' | inl x rewrite prAs | prBs | pr' | x = exFalso (nonEmptyNotEmpty x) timesZero'' (zero :: as) (zero :: bs) pr | (a1 :: a's) with≡ prAs | (b1 :: b's) with≡ prBs | [] with≡ pr' | inr x rewrite prBs | pr' | x = exFalso (nonEmptyNotEmpty x) timesZero'' (zero :: as) (zero :: bs) pr | (a1 :: a's) with≡ prAs | (b1 :: b's) with≡ prBs | (x :: y) with≡ pr' rewrite prAs | prBs | pr' = exFalso (nonEmptyNotEmpty pr) timesZero'' (zero :: as) (one :: bs) pr with inspect (canonical as) timesZero'' (zero :: as) (one :: bs) pr | [] with≡ x rewrite x = inl refl timesZero'' (zero :: as) (one :: bs) pr | (a1 :: a's) with≡ x with inspect (canonical (as *B (one :: bs))) timesZero'' (zero :: as) (one :: bs) pr | (a1 :: a's) with≡ x | [] with≡ pr' with timesZero'' as (one :: bs) pr' timesZero'' (zero :: as) (one :: bs) pr | (a1 :: a's) with≡ x | [] with≡ pr' | inl pr'' rewrite x | pr' | pr'' = exFalso (nonEmptyNotEmpty pr'') timesZero'' (zero :: as) (one :: bs) pr | (a1 :: a's) with≡ x | (x₁ :: y) with≡ pr' rewrite x | pr' = exFalso (nonEmptyNotEmpty pr) timesZero'' (one :: as) (zero :: bs) pr with inspect (canonical bs) timesZero'' (one :: as) (zero :: bs) pr | [] with≡ x rewrite x = inr refl timesZero'' (one :: as) (zero :: bs) pr | (b1 :: b's) with≡ prB with inspect (canonical ((as *B (zero :: bs)) +B bs)) timesZero'' (one :: as) (zero :: bs) pr | (b1 :: b's) with≡ prB | [] with≡ x rewrite equalityCommutative (+BIsInherited' (as *B (zero :: bs)) bs) = exFalso (nonEmptyNotEmpty (transitivity (equalityCommutative prB) v)) where t : binNatToN (as *B (zero :: bs)) +N binNatToN bs ≡ 0 t = transitivity (equalityCommutative (nToN _)) (applyEquality binNatToN x) u : (binNatToN (as *B (zero :: bs)) ≡ 0) && (binNatToN bs ≡ 0) u = sumZeroImpliesSummandsZero t v : canonical bs ≡ [] v with u ... | fst ,, snd = binNatToNZero bs snd timesZero'' (one :: as) (zero :: bs) pr | (b1 :: b's) with≡ prB | (x₁ :: y) with≡ x rewrite prB | x = exFalso (nonEmptyNotEmpty pr) lemma : {i : Bit} → (a b : BinNat) → canonical a ≡ canonical b → canonical (i :: a) ≡ canonical (i :: b) lemma {zero} a b pr with inspect (canonical a) lemma {zero} a b pr | [] with≡ x rewrite x | equalityCommutative pr = refl lemma {zero} a b pr | (a1 :: as) with≡ x rewrite x | equalityCommutative pr = refl lemma {one} a b pr = applyEquality (one ::_) pr binNatToNDistributesPlus : (a b : BinNat) → binNatToN (a +B b) ≡ binNatToN a +N binNatToN b binNatToNDistributesPlus a b = transitivity (equalityCommutative (binNatToNIsCanonical (a +B b))) (transitivity (applyEquality binNatToN (equalityCommutative (+BIsInherited' a b))) (nToN (binNatToN a +N binNatToN b))) +BAssociative : (a b c : BinNat) → canonical (a +B (b +B c)) ≡ canonical ((a +B b) +B c) +BAssociative a b c rewrite equalityCommutative (+BIsInherited' a (b +B c)) | equalityCommutative (+BIsInherited' (a +B b) c) | binNatToNDistributesPlus a b | binNatToNDistributesPlus b c | equalityCommutative (Semiring.+Associative ℕSemiring (binNatToN a) (binNatToN b) (binNatToN c)) = refl timesOne : (a b : BinNat) → (canonical b) ≡ (one :: []) → canonical (a *B b) ≡ canonical a timesOne [] b pr = refl timesOne (zero :: a) b pr with inspect (canonical (a *B b)) timesOne (zero :: a) b pr | [] with≡ prAB with timesZero'' a b prAB timesOne (zero :: a) b pr | [] with≡ prAB | inl a=0 rewrite a=0 | prAB = refl timesOne (zero :: a) b pr | [] with≡ prAB | inr b=0 = exFalso (nonEmptyNotEmpty (transitivity (equalityCommutative pr) b=0)) timesOne (zero :: a) b pr | (ab1 :: abs) with≡ prAB with inspect (canonical a) timesOne (zero :: a) b pr | (ab1 :: abs) with≡ prAB | [] with≡ x = exFalso (nonEmptyNotEmpty (transitivity (equalityCommutative prAB) (timesZero a b x))) timesOne (zero :: a) b pr | (ab1 :: abs) with≡ prAB | (x₁ :: y) with≡ x rewrite prAB | x | timesOne a b pr = applyEquality (zero ::_) (transitivity (equalityCommutative prAB) x) timesOne (one :: a) (zero :: b) pr with canonical b timesOne (one :: a) (zero :: b) () | [] timesOne (one :: a) (zero :: b) () | x :: bl timesOne (one :: a) (one :: b) pr rewrite canonicalDistributesPlus (a *B (one :: b)) b | ::Inj pr | +BCommutative (canonical (a *B (one :: b))) [] | timesOne a (one :: b) pr = refl timesZero' : (a b : BinNat) → canonical b ≡ [] → canonical (a *B b) ≡ [] timesZero' [] b pr = refl timesZero' (zero :: a) b pr with inspect (canonical (a *B b)) timesZero' (zero :: a) b pr | [] with≡ x rewrite x = refl timesZero' (zero :: a) b pr | (ab1 :: abs) with≡ prAB rewrite prAB = exFalso (nonEmptyNotEmpty (transitivity (equalityCommutative prAB) (timesZero' a b pr))) timesZero' (one :: a) b pr rewrite canonicalDistributesPlus (zero :: (a *B b)) b | pr | +BCommutative (canonical (zero :: (a *B b))) [] = ans where ans : canonical (zero :: (a *B b)) ≡ [] ans with inspect (canonical (a *B b)) ans | [] with≡ x rewrite x = refl ans | (x₁ :: y) with≡ x rewrite x = exFalso (nonEmptyNotEmpty (transitivity (equalityCommutative x) (timesZero' a b pr))) canonicalDistributesTimes : (a b : BinNat) → canonical (a *B b) ≡ canonical ((canonical a) *B (canonical b)) canonicalDistributesTimes [] b = refl canonicalDistributesTimes (zero :: a) b with inspect (canonical a) canonicalDistributesTimes (zero :: a) b | [] with≡ x rewrite timesZero a b x | x = refl canonicalDistributesTimes (zero :: a) b | (a1 :: as) with≡ prA with inspect (canonical b) canonicalDistributesTimes (zero :: a) b | (a1 :: as) with≡ prA | [] with≡ prB rewrite prA | prB = ans where ans : canonical (zero :: (a *B b)) ≡ canonical (zero :: ((a1 :: as) *B [])) ans with inspect (canonical ((a1 :: as) *B [])) ans | [] with≡ x rewrite x | timesZero' a b prB = refl ans | (x₁ :: y) with≡ x = exFalso (nonEmptyNotEmpty (equalityCommutative (transitivity (equalityCommutative (timesZero' (a1 :: as) [] refl)) x))) canonicalDistributesTimes (zero :: a) b | (a1 :: as) with≡ prA | (b1 :: bs) with≡ prB with inspect (canonical (a *B b)) canonicalDistributesTimes (zero :: a) b | (a1 :: as) with≡ prA | (b1 :: bs) with≡ prB | [] with≡ x with timesZero'' a b x canonicalDistributesTimes (zero :: a) b | (a1 :: as) with≡ prA | (b1 :: bs) with≡ prB | [] with≡ x | inl a=0 = exFalso (nonEmptyNotEmpty (transitivity (equalityCommutative prA) a=0)) canonicalDistributesTimes (zero :: a) b | (a1 :: as) with≡ prA | (b1 :: bs) with≡ prB | [] with≡ x | inr b=0 = exFalso (nonEmptyNotEmpty (transitivity (equalityCommutative prB) b=0)) canonicalDistributesTimes (zero :: a) b | (a1 :: as) with≡ prA | (b1 :: bs) with≡ prB | (ab1 :: abs) with≡ x rewrite prA | prB | x = ans where ans : zero :: ab1 :: abs ≡ canonical (zero :: ((a1 :: as) *B (b1 :: bs))) ans rewrite equalityCommutative prA | equalityCommutative prB | equalityCommutative (canonicalDistributesTimes a b) | x = refl canonicalDistributesTimes (one :: a) b = transitivity (canonicalDistributesPlus (zero :: (a *B b)) b) (transitivity (transitivity (applyEquality (_+B canonical b) (transitivity (equalityCommutative (canonicalAscends'' (a *B b))) (transitivity (applyEquality (λ i → canonical (zero :: i)) (canonicalDistributesTimes a b)) (canonicalAscends'' (canonical a *B canonical b))))) (applyEquality (λ i → canonical (zero :: (canonical a *B canonical b)) +B i) (canonicalIdempotent b))) (equalityCommutative (canonicalDistributesPlus (zero :: (canonical a *B canonical b)) (canonical b)))) NToBinNatDistributesPlus : (a b : ℕ) → NToBinNat (a +N b) ≡ NToBinNat a +B NToBinNat b NToBinNatDistributesPlus zero b = refl NToBinNatDistributesPlus (succ a) b with inspect (NToBinNat a) ... | bl with≡ prA with inspect (NToBinNat (a +N b)) ... | q with≡ prAB = transitivity (applyEquality incr (NToBinNatDistributesPlus a b)) (incrPullsOut (NToBinNat a) (NToBinNat b)) timesCommutative : (a b : BinNat) → canonical (a *B b) ≡ canonical (b *B a) timesCommLemma : (a b : BinNat) → canonical (zero :: (b *B a)) ≡ canonical (b *B (zero :: a)) timesCommLemma a b rewrite timesCommutative b (zero :: a) | equalityCommutative (canonicalAscends'' {zero} (b *B a)) | equalityCommutative (canonicalAscends'' {zero} (a *B b)) | timesCommutative b a = refl timesCommutative [] b rewrite timesZero' b [] refl = refl timesCommutative (x :: a) [] rewrite timesZero' (x :: a) [] refl = refl timesCommutative (zero :: as) (zero :: b) rewrite equalityCommutative (canonicalAscends'' {zero} (as *B (zero :: b))) | timesCommutative as (zero :: b) | canonicalAscends'' {zero} (zero :: b *B as) | equalityCommutative (canonicalAscends'' {zero} (b *B (zero :: as))) | timesCommutative b (zero :: as) | canonicalAscends'' {zero} (zero :: (as *B b)) = ans where ans : canonical (zero :: zero :: (b *B as)) ≡ canonical (zero :: zero :: (as *B b)) ans rewrite equalityCommutative (canonicalAscends'' {zero} (zero :: (b *B as))) | equalityCommutative (canonicalAscends'' {zero} (b *B as)) | timesCommutative b as | canonicalAscends'' {zero} (as *B b) | canonicalAscends'' {zero} (zero :: (as *B b)) = refl timesCommutative (zero :: as) (one :: b) = transitivity (equalityCommutative (canonicalAscends'' (as *B (one :: b)))) (transitivity (applyEquality (λ i → canonical (zero :: i)) (timesCommutative as (one :: b))) (transitivity (applyEquality (λ i → canonical (zero :: i)) ans) (canonicalAscends'' ((b *B (zero :: as)) +B as)))) where ans : canonical ((zero :: (b *B as)) +B as) ≡ canonical ((b *B (zero :: as)) +B as) ans rewrite canonicalDistributesPlus (zero :: (b *B as)) as | canonicalDistributesPlus (b *B (zero :: as)) as = applyEquality (_+B canonical as) (timesCommLemma as b) timesCommutative (one :: as) (zero :: bs) = transitivity (equalityCommutative (canonicalAscends'' ((as *B (zero :: bs)) +B bs))) (transitivity (applyEquality (λ i → canonical (zero :: i)) ans) (canonicalAscends'' (bs *B (one :: as)))) where ans : canonical ((as *B (zero :: bs)) +B bs) ≡ canonical (bs *B (one :: as)) ans rewrite timesCommutative bs (one :: as) | canonicalDistributesPlus (as *B (zero :: bs)) bs | canonicalDistributesPlus (zero :: (as *B bs)) bs = applyEquality (_+B canonical bs) (equalityCommutative (timesCommLemma bs as)) timesCommutative (one :: as) (one :: bs) = applyEquality (one ::_) (transitivity (canonicalDistributesPlus (as *B (one :: bs)) bs) (transitivity (transitivity (applyEquality (_+B canonical bs) (timesCommutative as (one :: bs))) (transitivity ans (equalityCommutative (applyEquality (_+B canonical as) (timesCommutative bs (one :: as)))))) (equalityCommutative (canonicalDistributesPlus (bs *B (one :: as)) as)))) where ans : canonical ((zero :: (bs *B as)) +B as) +B canonical bs ≡ canonical ((zero :: (as *B bs)) +B bs) +B canonical as ans rewrite equalityCommutative (canonicalDistributesPlus ((zero :: (bs *B as)) +B as) bs) | equalityCommutative (canonicalDistributesPlus ((zero :: (as *B bs)) +B bs) as) | equalityCommutative (+BAssociative (zero :: (bs *B as)) as bs) | equalityCommutative (+BAssociative (zero :: (as *B bs)) bs as) | canonicalDistributesPlus (zero :: (bs *B as)) (as +B bs) | canonicalDistributesPlus (zero :: (as *B bs)) (bs +B as) | equalityCommutative (canonicalAscends'' {zero} (bs *B as)) | timesCommutative bs as | canonicalAscends'' {zero} (as *B bs) | +BCommutative as bs = refl *BIsInherited : (a b : BinNat) → a *Binherit b ≡ canonical (a *B b) *BIsInherited a b = transitivity (applyEquality NToBinNat t) (transitivity (binToBin (canonical (a *B b))) (equalityCommutative (canonicalIdempotent (a *B b)))) where ans : (a b : BinNat) → binNatToN a *N binNatToN b ≡ binNatToN (a *B b) ans [] b = refl ans (zero :: a) b rewrite equalityCommutative (ans a b) = equalityCommutative (Semiring.*Associative ℕSemiring 2 (binNatToN a) (binNatToN b)) ans (one :: a) b rewrite binNatToNDistributesPlus (zero :: (a *B b)) b | Semiring.commutative ℕSemiring (binNatToN b) ((2 *N (binNatToN a)) *N (binNatToN b)) | equalityCommutative (ans a b) = applyEquality (_+N binNatToN b) (equalityCommutative (Semiring.*Associative ℕSemiring 2 (binNatToN a) (binNatToN b))) t : (binNatToN a *N binNatToN b) ≡ binNatToN (canonical (a *B b)) t = transitivity (ans a b) (equalityCommutative (binNatToNIsCanonical (a *B b)))
83.240437
579
0.648067
d0fb3bffb75d012a4d51dc62624085af07dec009
355
agda
Agda
test/Fail/RewritingNotSafe.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/RewritingNotSafe.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/RewritingNotSafe.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2015-08-26 {-# OPTIONS --rewriting #-} -- Should give error open import Agda.Builtin.Equality open import Common.List {-# BUILTIN REWRITE _≡_ #-} lengthMap : {A B : Set} (f : A → B) (xs : List A) → length (map f xs) ≡ length xs lengthMap f [] = refl lengthMap f (x ∷ xs) rewrite lengthMap f xs = refl {-# REWRITE lengthMap #-}
23.666667
51
0.622535
1c6ea96f7b655abd92dda486d6cd0a54ed3e57bd
428
agda
Agda
test/LibSucceed/InstanceArguments/01-arguments.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/LibSucceed/InstanceArguments/01-arguments.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/LibSucceed/InstanceArguments/01-arguments.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- {-# OPTIONS --verbose tc.constr.findInScope:15 #-} module InstanceArguments.01-arguments where data T : Set where instance tt : T data A : Set where instance mkA : A mkA2 : T → A giveA : ⦃ a : A ⦄ → A giveA {{a}} = a test : A → T test a = tt test2 : T test2 = test giveA id : {A : Set} → A → A id v = v test5 : T → T test5 = id ⋯ : {A : Set} → {{a : A}} → A ⋯ {{a}} = a --giveA' : {{a : A}} → A --giveA' = ⋯
12.969697
53
0.525701
0e8739882df7d262e6d632d1ddeeca29f44c66d5
1,363
agda
Agda
test/Fail/TypeConstructorsWhichPreserveGuardedness1.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/TypeConstructorsWhichPreserveGuardedness1.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Fail/TypeConstructorsWhichPreserveGuardedness1.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- Note that the flag --guardedness-preserving-type-constructors is -- not (should not be) enabled in this module. module TypeConstructorsWhichPreserveGuardedness1 where open import Common.Coinduction record ⊤ : Set where data _⊎_ (A B : Set) : Set where inj₁ : A → A ⊎ B inj₂ : B → A ⊎ B record ∃ {A : Set} (B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁ data Rec (A : ∞ Set) : Set where fold : ♭ A → Rec A module ℕ₁ where -- Without the flag, the following is non-terminating, -- hence, not reduced. {-# NON_TERMINATING #-} ℕ : Set ℕ = ⊤ ⊎ Rec (♯ ℕ) zero : ℕ zero = inj₁ _ -- yields a type error since ℕ does not reduce suc : ℕ → ℕ suc n = inj₂ (fold n) ℕ-rec : (P : ℕ → Set) → P zero → (∀ n → P n → P (suc n)) → ∀ n → P n ℕ-rec P z s (inj₁ _) = z ℕ-rec P z s (inj₂ (fold n)) = s n (ℕ-rec P z s n) module ℕ₂ where data ℕC : Set where ′zero : ℕC ′suc : ℕC mutual ℕ : Set ℕ = ∃ λ (c : ℕC) → ℕ′ c ℕ′ : ℕC → Set ℕ′ ′zero = ⊤ ℕ′ ′suc = Rec (♯ ℕ) zero : ℕ zero = (′zero , _) suc : ℕ → ℕ suc n = (′suc , fold n) ℕ-rec : (P : ℕ → Set) → P zero → (∀ n → P n → P (suc n)) → ∀ n → P n ℕ-rec P z s (′zero , _) = z ℕ-rec P z s (′suc , fold n) = s n (ℕ-rec P z s n)
19.197183
67
0.507704
4ac1ed730d146597a317cf36a8623d32aa129b8e
493
agda
Agda
test/interaction/Issue2407-u.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/interaction/Issue2407-u.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/interaction/Issue2407-u.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- {-# OPTIONS -v tc.cover:20 #-} -- Andreas, 2017-01-18, issue #2407 -- If underscores are not preserved (issue #819), -- the case split fails due to size constraints. open import Common.Size data D (i : Size) : (j : Size< ↑ i) → Set where c : ∀ (j : Size< ↑ i) (k : Size< ↑ j) → D i j → D j k → D i k split-u : ∀ i (j : Size< ↑ i) → D i j → Set split-u _ _ x = {!x!} -- split on x -- Expected: splitting on x succeeds with -- split-u _ _ (c j k x x₁) = {!!}
22.409091
49
0.533469
50970f679e04c68d876953008a825628505e796f
638
agda
Agda
src/Categories/Functor/Construction/Zero.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Functor/Construction/Zero.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Functor/Construction/Zero.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Construction.Zero where -- The Zero functor maps everything to the initial object of a -- category (when it exists). Note quite const. open import Level open import Categories.Category open import Categories.Functor using (Functor) open import Categories.Object.Initial private variable o ℓ e : Level C D : Category o ℓ e Zero : Initial D → Functor C D Zero {D = D} init = record { F₀ = λ _ → ⊥ ; F₁ = λ _ → id ; identity = Equiv.refl ; homomorphism = Equiv.sym identity² ; F-resp-≈ = λ _ → Equiv.refl } where open Initial init open Category D
22
62
0.688088
fbff2710b40d4457aaa2208ac4407eb0e5b6c8e9
2,394
agda
Agda
ON/ON.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
ON/ON.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
ON/ON.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
{-# OPTIONS --copatterns --sized-types #-} open import Function open import Data.Unit as Unit renaming (tt to ∗) open import Data.List as List TyCtx = List ⊤ data TyVar : (Γ : TyCtx) → Set where zero : ∀{Γ} → TyVar (∗ ∷ Γ) succ : ∀{Γ} → (x : TyVar Γ) → TyVar (∗ ∷ Γ) data Type (Γ : TyCtx) : Set where unit : Type Γ var : (x : TyVar Γ) → Type Γ _⊕_ : (t₁ : Type Γ) (t₂ : Type Γ) → Type Γ μ : (t : Type (_ ∷ Γ)) → Type Γ _⊗_ : (t₁ : Type Γ) (t₂ : Type Γ) → Type Γ _⇒_ : (t₁ : Type []) (t₂ : Type Γ) → Type Γ ν : (t : Type (_ ∷ Γ)) → Type Γ -- | Variable renaming in types _▹_ : (Γ Δ : TyCtx) → Set Γ ▹ Δ = TyVar Γ → TyVar Δ {- rename : {Γ Δ : TyCtx} → (ρ : Γ ▹ Δ) → Type Γ → Type Δ rename ρ unit = unit rename ρ (var x) = var (ρ ∗ x) rename ρ (t₁ ⊕ t₂) = rename ρ t₁ ⊕ rename ρ t₂ rename {Γ} {Δ} ρ (μ t) = μ (rename ρ' t) where ρ' : (∗ ∷ Γ) ▹ (∗ ∷ Δ) ρ' = ? -- ρ' = id {[ ∗ ]} ⧻ ρ rename ρ (t₁ ⊗ t₂) = rename ρ t₁ ⊗ rename ρ t₂ rename ρ (t₁ ⇒ t₂) = t₁ ⇒ rename ρ t₂ rename {Γ} {Δ} ρ (ν t) = ν (rename ρ' t) where ρ' : (∗ ∷ Γ) ▹ (∗ ∷ Δ) ρ' = ? -- ρ' = ctx-id {[ ∗ ]} ⧻ ρ ------------------------- ---- Generating structure on contexts (derived from renaming) weaken : {Γ : TyCtx} (Δ : TyCtx) → Type Γ -> Type (Δ ++ Γ) weaken {Γ} Δ = rename {Γ} {Δ ++ Γ} ? exchange : (Γ Δ : TyCtx) → Type (Γ ++ Δ) -> Type (Δ ++ Γ) exchange Γ Δ = rename [ i₂ {Δ} {Γ} , i₁ {Δ} {Γ} ] contract : {Γ : TyCtx} → Type (Γ ∐ Γ) -> Type Γ contract = rename [ ctx-id , ctx-id ] -} Subst : TyCtx → TyCtx → Set Subst Γ Δ = TyVar Γ → Type Δ update : ∀{Γ Δ : TyCtx} → Subst Γ Δ → Type Δ → (Subst (∗ ∷ Γ) Δ) update σ a zero = a update σ _ (succ x) = σ x lift : ∀{Γ Δ} → Subst Γ Δ → Subst (∗ ∷ Γ) (∗ ∷ Δ) lift σ zero = {!!} lift σ (succ x) = {!!} -- | Simultaneous substitution subst : {Γ Δ : TyCtx} → (σ : Subst Γ Δ) → Type Γ → Type Δ subst σ unit = unit subst σ (var x) = σ x subst σ (t₁ ⊕ t₂) = subst σ t₁ ⊕ subst σ t₂ subst {Γ} {Δ} σ (μ t) = μ (subst (lift σ) t) subst σ (t₁ ⊗ t₂) = subst σ t₁ ⊗ subst σ t₂ subst σ (t₁ ⇒ t₂) = t₁ ⇒ subst σ t₂ subst {Γ} {Δ} σ (ν t) = ν (subst (lift σ) t) data Term : Set where
29.195122
64
0.457811
20964c5fb7770914a10bde3fe49ca1af56b190b8
819
agda
Agda
vendor/stdlib/src/Relation/Binary/Props/Poset.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Relation/Binary/Props/Poset.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Relation/Binary/Props/Poset.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- Properties satisfied by posets ------------------------------------------------------------------------ open import Relation.Binary module Relation.Binary.Props.Poset (p : Poset) where open Relation.Binary.Poset p hiding (trans) import Relation.Binary.NonStrictToStrict as Conv open Conv _≈_ _≤_ ------------------------------------------------------------------------ -- Posets can be turned into strict partial orders strictPartialOrder : StrictPartialOrder strictPartialOrder = record { isStrictPartialOrder = record { isEquivalence = isEquivalence ; irrefl = irrefl ; trans = trans isPartialOrder ; <-resp-≈ = <-resp-≈ isEquivalence ≤-resp-≈ } } open StrictPartialOrder strictPartialOrder
30.333333
72
0.531136
1cf4e6b7563cd27e648aea641a488c150b2721cb
13,871
agda
Agda
Cubical/Algebra/Matrix.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
null
null
null
Cubical/Algebra/Matrix.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
null
null
null
Cubical/Algebra/Matrix.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
1
2021-03-12T20:08:45.000Z
2021-03-12T20:08:45.000Z
{-# OPTIONS --safe #-} module Cubical.Algebra.Matrix where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Structure open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport open import Cubical.Functions.FunExtEquiv import Cubical.Data.Empty as ⊥ open import Cubical.Data.Bool open import Cubical.Data.Nat hiding (_+_ ; _·_; +-comm ; +-assoc; ·-assoc) open import Cubical.Data.Vec open import Cubical.Data.Sigma.Base open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Algebra.Group open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.Ring open Iso private variable ℓ : Level A : Type ℓ -- Equivalence between Vec matrix and Fin function matrix FinMatrix : (A : Type ℓ) (m n : ℕ) → Type ℓ FinMatrix A m n = FinVec (FinVec A n) m VecMatrix : (A : Type ℓ) (m n : ℕ) → Type ℓ VecMatrix A m n = Vec (Vec A n) m FinMatrix→VecMatrix : {m n : ℕ} → FinMatrix A m n → VecMatrix A m n FinMatrix→VecMatrix M = FinVec→Vec (λ fm → FinVec→Vec (M fm)) VecMatrix→FinMatrix : {m n : ℕ} → VecMatrix A m n → FinMatrix A m n VecMatrix→FinMatrix M fn fm = lookup fm (lookup fn M) FinMatrix→VecMatrix→FinMatrix : {m n : ℕ} (M : FinMatrix A m n) → VecMatrix→FinMatrix (FinMatrix→VecMatrix M) ≡ M FinMatrix→VecMatrix→FinMatrix {m = zero} M = funExt (⊥.rec ∘ ¬Fin0) FinMatrix→VecMatrix→FinMatrix {n = zero} M = funExt₂ (λ _ → ⊥.rec ∘ ¬Fin0) FinMatrix→VecMatrix→FinMatrix {m = suc m} {n = suc n} M = funExt₂ goal where goal : (fm : Fin (suc m)) (fn : Fin (suc n)) → VecMatrix→FinMatrix (_ ∷ FinMatrix→VecMatrix (M ∘ suc)) fm fn ≡ M fm fn goal zero zero = refl goal zero (suc fn) i = FinVec→Vec→FinVec (M zero ∘ suc) i fn goal (suc fm) fn i = FinMatrix→VecMatrix→FinMatrix (M ∘ suc) i fm fn VecMatrix→FinMatrix→VecMatrix : {m n : ℕ} (M : VecMatrix A m n) → FinMatrix→VecMatrix (VecMatrix→FinMatrix M) ≡ M VecMatrix→FinMatrix→VecMatrix {m = zero} [] = refl VecMatrix→FinMatrix→VecMatrix {m = suc m} (M ∷ MS) i = Vec→FinVec→Vec M i ∷ VecMatrix→FinMatrix→VecMatrix MS i FinMatrixIsoVecMatrix : (A : Type ℓ) (m n : ℕ) → Iso (FinMatrix A m n) (VecMatrix A m n) fun (FinMatrixIsoVecMatrix A m n) = FinMatrix→VecMatrix inv (FinMatrixIsoVecMatrix A m n) = VecMatrix→FinMatrix rightInv (FinMatrixIsoVecMatrix A m n) = VecMatrix→FinMatrix→VecMatrix leftInv (FinMatrixIsoVecMatrix A m n) = FinMatrix→VecMatrix→FinMatrix FinMatrix≃VecMatrix : {m n : ℕ} → FinMatrix A m n ≃ VecMatrix A m n FinMatrix≃VecMatrix {_} {A} {m} {n} = isoToEquiv (FinMatrixIsoVecMatrix A m n) FinMatrix≡VecMatrix : (A : Type ℓ) (m n : ℕ) → FinMatrix A m n ≡ VecMatrix A m n FinMatrix≡VecMatrix _ _ _ = ua FinMatrix≃VecMatrix -- Define abelian group structure on matrices module FinMatrixAbGroup (G' : AbGroup ℓ) where open AbGroupStr (snd G') renaming ( is-set to isSetG ) private G = ⟨ G' ⟩ zeroFinMatrix : ∀ {m n} → FinMatrix G m n zeroFinMatrix _ _ = 0g negFinMatrix : ∀ {m n} → FinMatrix G m n → FinMatrix G m n negFinMatrix M i j = - M i j addFinMatrix : ∀ {m n} → FinMatrix G m n → FinMatrix G m n → FinMatrix G m n addFinMatrix M N i j = M i j + N i j isSetFinMatrix : ∀ {m n} → isSet (FinMatrix G m n) isSetFinMatrix = isSetΠ2 λ _ _ → isSetG addFinMatrixAssoc : ∀ {m n} → (M N K : FinMatrix G m n) → addFinMatrix M (addFinMatrix N K) ≡ addFinMatrix (addFinMatrix M N) K addFinMatrixAssoc M N K i j k = assoc (M j k) (N j k) (K j k) i addFinMatrix0r : ∀ {m n} → (M : FinMatrix G m n) → addFinMatrix M zeroFinMatrix ≡ M addFinMatrix0r M i j k = rid (M j k) i addFinMatrix0l : ∀ {m n} → (M : FinMatrix G m n) → addFinMatrix zeroFinMatrix M ≡ M addFinMatrix0l M i j k = lid (M j k) i addFinMatrixNegMatrixr : ∀ {m n} → (M : FinMatrix G m n) → addFinMatrix M (negFinMatrix M) ≡ zeroFinMatrix addFinMatrixNegMatrixr M i j k = invr (M j k) i addFinMatrixNegMatrixl : ∀ {m n} → (M : FinMatrix G m n) → addFinMatrix (negFinMatrix M) M ≡ zeroFinMatrix addFinMatrixNegMatrixl M i j k = invl (M j k) i addFinMatrixComm : ∀ {m n} → (M N : FinMatrix G m n) → addFinMatrix M N ≡ addFinMatrix N M addFinMatrixComm M N i k l = comm (M k l) (N k l) i FinMatrixAbGroup : (m n : ℕ) → AbGroup ℓ FinMatrixAbGroup m n = makeAbGroup {G = FinMatrix G m n} zeroFinMatrix addFinMatrix negFinMatrix isSetFinMatrix addFinMatrixAssoc addFinMatrix0r addFinMatrixNegMatrixr addFinMatrixComm -- Define a abelian group structure on vector matrices and prove that -- it is equal to FinMatrixAbGroup using the SIP module _ (G' : AbGroup ℓ) where open AbGroupStr (snd G') private G = ⟨ G' ⟩ zeroVecMatrix : ∀ {m n} → VecMatrix G m n zeroVecMatrix = replicate (replicate 0g) negVecMatrix : ∀ {m n} → VecMatrix G m n → VecMatrix G m n negVecMatrix = map (map (λ x → - x)) addVec : ∀ {m} → Vec G m → Vec G m → Vec G m addVec [] [] = [] addVec (x ∷ xs) (y ∷ ys) = x + y ∷ addVec xs ys addVecMatrix : ∀ {m n} → VecMatrix G m n → VecMatrix G m n → VecMatrix G m n addVecMatrix [] [] = [] addVecMatrix (M ∷ MS) (N ∷ NS) = addVec M N ∷ addVecMatrix MS NS open FinMatrixAbGroup -- Proof that FinMatrix→VecMatrix is a group homorphism FinMatrix→VecMatrixHomAdd : (m n : ℕ) (M N : FinMatrix G m n) → FinMatrix→VecMatrix (addFinMatrix G' M N) ≡ addVecMatrix (FinMatrix→VecMatrix M) (FinMatrix→VecMatrix N) FinMatrix→VecMatrixHomAdd zero n M N = refl FinMatrix→VecMatrixHomAdd (suc m) n M N = λ i → lem n (M zero) (N zero) i ∷ FinMatrix→VecMatrixHomAdd m n (λ i j → M (suc i) j) (λ i j → N (suc i) j) i where lem : (n : ℕ) (V W : FinVec G n) → FinVec→Vec (λ j → V j + W j) ≡ addVec (FinVec→Vec V) (FinVec→Vec W) lem zero V W = refl lem (suc n) V W = λ i → V zero + W zero ∷ lem n (V ∘ suc) (W ∘ suc) i -- Combine everything to get an induced abelian group structure of -- VecMatrix that is equal to the one on FinMatrix VecMatrixAbGroup : (m n : ℕ) → AbGroup ℓ VecMatrixAbGroup m n = InducedAbGroup (FinMatrixAbGroup G' m n) addVecMatrix FinMatrix≃VecMatrix (FinMatrix→VecMatrixHomAdd m n) FinMatrixAbGroup≡VecMatrixAbGroup : (m n : ℕ) → FinMatrixAbGroup G' m n ≡ VecMatrixAbGroup m n FinMatrixAbGroup≡VecMatrixAbGroup m n = InducedAbGroupPath (FinMatrixAbGroup G' m n) addVecMatrix FinMatrix≃VecMatrix (FinMatrix→VecMatrixHomAdd m n) -- Define identity matrix and matrix multiplication for FinMatrix and -- prove that square matrices form a ring module _ (R' : Ring ℓ) where open RingStr (snd R') renaming ( is-set to isSetR ) open RingTheory R' open FinMatrixAbGroup (_ , abgroupstr _ _ _ (snd R' .RingStr.+IsAbGroup)) private R = ⟨ R' ⟩ oneFinMatrix : ∀ {n} → FinMatrix R n n oneFinMatrix i j = if i == j then 1r else 0r -- TODO: upstream and state for monoids ∑ : ∀ {n} → FinVec R n → R ∑ = foldrFin _+_ 0r mulFinMatrix : ∀ {m1 m2 m3} → FinMatrix R m1 m2 → FinMatrix R m2 m3 → FinMatrix R m1 m3 mulFinMatrix M N i k = ∑ λ j → M i j · N j k -- Properties sumVecExt : ∀ {n} → {V W : FinVec R n} → ((i : Fin n) → V i ≡ W i) → ∑ V ≡ ∑ W sumVecExt {n = zero} _ = refl sumVecExt {n = suc n} h i = h zero i + sumVecExt (h ∘ suc) i sumVecSplit : ∀ {n} → (V W : FinVec R n) → ∑ (λ i → V i + W i) ≡ ∑ V + ∑ W sumVecSplit {n = zero} V W = sym (+Rid 0r) sumVecSplit {n = suc n} V W = V zero + W zero + ∑ (λ i → V (suc i) + W (suc i)) ≡⟨ (λ i → V zero + W zero + sumVecSplit (V ∘ suc) (W ∘ suc) i) ⟩ V zero + W zero + (∑ (V ∘ suc) + ∑ (W ∘ suc)) ≡⟨ sym (+Assoc _ _ _) ⟩ V zero + (W zero + (∑ (V ∘ suc) + ∑ (W ∘ suc))) ≡⟨ cong (λ x → V zero + x) (+Assoc-comm1 _ _ _) ⟩ V zero + (∑ (V ∘ suc) + (W zero + (∑ (W ∘ suc)))) ≡⟨ +Assoc _ _ _ ⟩ V zero + ∑ (V ∘ suc) + (W zero + ∑ (W ∘ suc)) ∎ sumVec0r : (n : ℕ) → ∑ (λ (i : Fin n) → 0r) ≡ 0r sumVec0r zero = refl sumVec0r (suc n) = cong (λ x → 0r + x) (sumVec0r n) ∙ +Rid 0r sumVecExchange : ∀ {m n} → (M : FinMatrix R m n) → ∑ (λ i → ∑ (λ j → M i j)) ≡ ∑ (λ j → ∑ (λ i → M i j)) sumVecExchange {m = zero} {n = n} M = sym (sumVec0r n) sumVecExchange {m = suc m} {n = zero} M = cong (λ x → 0r + x) (sumVec0r m) ∙ +Rid 0r sumVecExchange {m = suc m} {n = suc n} M = let a = M zero zero L = ∑ λ j → M zero (suc j) C = ∑ λ i → M (suc i) zero N = ∑ λ i → ∑ λ j → M (suc i) (suc j) -- N reindexed N' = ∑ λ j → ∑ λ i → M (suc i) (suc j) in a + L + ∑ (λ i → ∑ (λ j → M (suc i) j)) ≡⟨ (λ k → a + L + sumVecSplit (λ i → M (suc i) zero) (λ i → ∑ (λ j → M (suc i) (suc j))) k) ⟩ a + L + (C + N) ≡⟨ (λ k → a + L + (C + sumVecExchange (λ i j → M (suc i) (suc j)) k)) ⟩ a + L + (C + N') ≡⟨ sym (+Assoc _ _ _) ⟩ a + (L + (C + N')) ≡⟨ (λ k → a + +Assoc-comm1 L C N' k) ⟩ a + (C + (L + N')) ≡⟨ +Assoc _ _ _ ⟩ a + C + (L + N') ≡⟨ (λ k → a + C + sumVecSplit (λ j → M zero (suc j)) (λ j → ∑ (λ i → M (suc i) (suc j))) (~ k)) ⟩ a + C + ∑ (λ j → ∑ (λ i → M i (suc j))) ∎ sumVecMulrdist : ∀ {n} → (x : R) → (V : FinVec R n) → x · ∑ V ≡ ∑ λ i → x · V i sumVecMulrdist {n = zero} x _ = 0RightAnnihilates x sumVecMulrdist {n = suc n} x V = x · (V zero + ∑ (V ∘ suc)) ≡⟨ ·Rdist+ _ _ _ ⟩ x · V zero + x · ∑ (V ∘ suc) ≡⟨ (λ i → x · V zero + sumVecMulrdist x (V ∘ suc) i) ⟩ x · V zero + ∑ (λ i → x · V (suc i)) ∎ sumVecMulldist : ∀ {n} → (x : R) → (V : FinVec R n) → (∑ V) · x ≡ ∑ λ i → V i · x sumVecMulldist {n = zero} x _ = 0LeftAnnihilates x sumVecMulldist {n = suc n} x V = (V zero + ∑ (V ∘ suc)) · x ≡⟨ ·Ldist+ _ _ _ ⟩ V zero · x + (∑ (V ∘ suc)) · x ≡⟨ (λ i → V zero · x + sumVecMulldist x (V ∘ suc) i) ⟩ V zero · x + ∑ (λ i → V (suc i) · x) ∎ sumVecMulr0 : ∀ {n} → (V : FinVec R n) → ∑ (λ i → V i · 0r) ≡ 0r sumVecMulr0 V = sym (sumVecMulldist 0r V) ∙ 0RightAnnihilates _ sumVecMul0r : ∀ {n} → (V : FinVec R n) → ∑ (λ i → 0r · V i) ≡ 0r sumVecMul0r V = sym (sumVecMulrdist 0r V) ∙ 0LeftAnnihilates _ sumVecMulr1 : (n : ℕ) (V : FinVec R n) → (j : Fin n) → ∑ (λ i → V i · (if i == j then 1r else 0r)) ≡ V j sumVecMulr1 (suc n) V zero = (λ k → ·Rid (V zero) k + sumVecMulr0 (V ∘ suc) k) ∙ +Rid (V zero) sumVecMulr1 (suc n) V (suc j) = (λ i → 0RightAnnihilates (V zero) i + ∑ (λ x → V (suc x) · (if x == j then 1r else 0r))) ∙∙ +Lid _ ∙∙ sumVecMulr1 n (V ∘ suc) j sumVecMul1r : (n : ℕ) (V : FinVec R n) → (j : Fin n) → ∑ (λ i → (if j == i then 1r else 0r) · V i) ≡ V j sumVecMul1r (suc n) V zero = (λ k → ·Lid (V zero) k + sumVecMul0r (V ∘ suc) k) ∙ +Rid (V zero) sumVecMul1r (suc n) V (suc j) = (λ i → 0LeftAnnihilates (V zero) i + ∑ (λ i → (if j == i then 1r else 0r) · V (suc i))) ∙∙ +Lid _ ∙∙ sumVecMul1r n (V ∘ suc) j mulFinMatrixAssoc : ∀ {m n k l} → (M : FinMatrix R m n) → (N : FinMatrix R n k) → (K : FinMatrix R k l) → mulFinMatrix M (mulFinMatrix N K) ≡ mulFinMatrix (mulFinMatrix M N) K mulFinMatrixAssoc M N K = funExt₂ λ i j → ∑ (λ k → M i k · ∑ (λ l → N k l · K l j)) ≡⟨ sumVecExt (λ k → sumVecMulrdist (M i k) (λ l → N k l · K l j)) ⟩ ∑ (λ k → ∑ (λ l → M i k · (N k l · K l j))) ≡⟨ sumVecExt (λ k → sumVecExt (λ l → ·Assoc (M i k) (N k l) (K l j))) ⟩ ∑ (λ k → ∑ (λ l → M i k · N k l · K l j)) ≡⟨ sumVecExchange (λ k l → M i k · N k l · K l j) ⟩ ∑ (λ l → ∑ (λ k → M i k · N k l · K l j)) ≡⟨ sumVecExt (λ l → sym (sumVecMulldist (K l j) (λ k → M i k · N k l))) ⟩ ∑ (λ l → ∑ (λ k → M i k · N k l) · K l j) ∎ mulFinMatrixr1 : ∀ {m n} → (M : FinMatrix R m n) → mulFinMatrix M oneFinMatrix ≡ M mulFinMatrixr1 M = funExt₂ λ i j → sumVecMulr1 _ (M i) j mulFinMatrix1r : ∀ {m n} → (M : FinMatrix R m n) → mulFinMatrix oneFinMatrix M ≡ M mulFinMatrix1r M = funExt₂ λ i j → sumVecMul1r _ (λ x → M x j) i mulFinMatrixrDistrAddFinMatrix : ∀ {n} (M N K : FinMatrix R n n) → mulFinMatrix M (addFinMatrix N K) ≡ addFinMatrix (mulFinMatrix M N) (mulFinMatrix M K) mulFinMatrixrDistrAddFinMatrix M N K = funExt₂ λ i j → ∑ (λ k → M i k · (N k j + K k j)) ≡⟨ sumVecExt (λ k → ·Rdist+ (M i k) (N k j) (K k j)) ⟩ ∑ (λ k → M i k · N k j + M i k · K k j) ≡⟨ sumVecSplit (λ k → M i k · N k j) (λ k → M i k · K k j) ⟩ ∑ (λ k → M i k · N k j) + ∑ (λ k → M i k · K k j) ∎ mulFinMatrixlDistrAddFinMatrix : ∀ {n} (M N K : FinMatrix R n n) → mulFinMatrix (addFinMatrix M N) K ≡ addFinMatrix (mulFinMatrix M K) (mulFinMatrix N K) mulFinMatrixlDistrAddFinMatrix M N K = funExt₂ λ i j → ∑ (λ k → (M i k + N i k) · K k j) ≡⟨ sumVecExt (λ k → ·Ldist+ (M i k) (N i k) (K k j)) ⟩ ∑ (λ k → M i k · K k j + N i k · K k j) ≡⟨ sumVecSplit (λ k → M i k · K k j) (λ k → N i k · K k j) ⟩ ∑ (λ k → M i k · K k j) + ∑ (λ k → N i k · K k j) ∎ FinMatrixRing : (n : ℕ) → Ring ℓ FinMatrixRing n = makeRing {R = FinMatrix R n n} zeroFinMatrix oneFinMatrix addFinMatrix mulFinMatrix negFinMatrix isSetFinMatrix addFinMatrixAssoc addFinMatrix0r addFinMatrixNegMatrixr addFinMatrixComm mulFinMatrixAssoc mulFinMatrixr1 mulFinMatrix1r mulFinMatrixrDistrAddFinMatrix mulFinMatrixlDistrAddFinMatrix
45.778878
145
0.574724
4afb824677c03ca4b5525e8b98ee1baf1942d3a0
578
agda
Agda
test/Succeed/SharedDefinitions.agda
sseefried/agda
6b13364d36eeb60d8ec15eaf8effe23c73401900
[ "BSD-2-Clause" ]
1
2022-02-25T00:40:56.000Z
2022-02-25T00:40:56.000Z
test/Succeed/SharedDefinitions.agda
SNU-2D/agda
b5b3b1657556f720a7310cb7744edb1fac71eaf4
[ "BSD-2-Clause" ]
6
2021-10-18T08:12:24.000Z
2021-11-24T08:31:10.000Z
test/Succeed/SharedDefinitions.agda
SNU-2D/agda
b5b3b1657556f720a7310cb7744edb1fac71eaf4
[ "BSD-2-Clause" ]
null
null
null
{-# OPTIONS --profile=interactive #-} open import Common.Prelude open import Common.Equality `1 = suc zero `2 = `1 + `1 `4 = `2 + `2 `8 = `4 + `4 `16 = `8 + `8 `32 = `16 + `16 `64 = `32 + `32 `128 = `64 + `64 `256 = `128 + `128 `512 = `256 + `256 `1024 = `512 + `512 `2048 = `1024 + `1024 `4096 = `2048 + `2048 `8192 = `4096 + `4096 `16384 = `8192 + `8192 `32768 = `16384 + `16384 `65536 = `32768 + `32768 prf8 : `8 ≡ 8 prf8 = refl prf65k : `65536 ≡ 65536 prf65k = refl
20.642857
37
0.448097
dfd119dd6dd1ea38c6a3bec2b264aad2a531ae50
710
agda
Agda
test/Succeed/Issue778b.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue778b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue778b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS -v impossible:10 #-} -- {-# OPTIONS -v tc.term.exlam:100 -v extendedlambda:100 -v int2abs.reifyterm:100 -v tc.with:100 -v tc.mod.apply:100 #-} module Issue778b (Param : Set) where open import Issue778M Param data D : (Nat → Nat) → Set where d : D pred → D pred -- Ulf, 2013-11-11: With the fix to issue 59 that inlines with functions, -- this no longer termination checks. The problem is having a termination -- path going through a with-expression (the variable x in this case). {-# TERMINATING #-} test : (f : Nat → Nat) → D f → Nat test .pred (d x) = bla where bla : Nat bla with (d x) -- Andreas, 2014-11-06 "with x" has been outlawed. ... | (d (d y)) = test pred y
30.869565
121
0.646479
10ceb6ba31f0ec9c2d6f0789f4d8d163922f5462
14,077
agda
Agda
Definition/Untyped.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/Untyped.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/Untyped.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
-- Raw terms, weakening (renaming) and substitution. {-# OPTIONS --without-K --safe #-} module Definition.Untyped where open import Tools.Nat open import Tools.Product open import Tools.List import Tools.PropositionalEquality as PE infixl 30 _∙_ infix 30 Π_▹_ infixr 22 _▹▹_ infix 30 Σ_▹_ infixr 22 _××_ infix 30 ⟦_⟧_▹_ infixl 30 _ₛ•ₛ_ _•ₛ_ _ₛ•_ infix 25 _[_] infix 25 _[_]↑ -- Typing contexts (snoc-lists, isomorphic to lists). data Con (A : Set) : Set where ε : Con A -- Empty context. _∙_ : Con A → A → Con A -- Context extension. record GenT (A : Set) : Set where inductive constructor ⟦_,_⟧ field l : Nat t : A data Kind : Set where Ukind : Kind Pikind : Kind Lamkind : Kind Appkind : Kind Sigmakind : Kind Prodkind : Kind Fstkind : Kind Sndkind : Kind Natkind : Kind Zerokind : Kind Suckind : Kind Natreckind : Kind Unitkind : Kind Starkind : Kind Emptykind : Kind Emptyreckind : Kind data Term : Set where var : (x : Nat) → Term gen : (k : Kind) (c : List (GenT Term)) → Term -- The Grammar of our language. -- We represent the expressions of our language as de Bruijn terms. -- Variables are natural numbers interpreted as de Bruijn indices. -- Π, lam, and natrec are binders. -- Type constructors. U : Term -- Universe. U = gen Ukind [] pattern Univ u = gen (Ukind u) [] Π_▹_ : (A B : Term) → Term -- Dependent function type (B is a binder). Π A ▹ B = gen Pikind (⟦ 0 , A ⟧ ∷ ⟦ 1 , B ⟧ ∷ []) Σ_▹_ : (A B : Term) → Term Σ A ▹ B = gen Sigmakind (⟦ 0 , A ⟧ ∷ ⟦ 1 , B ⟧ ∷ []) ℕ : Term -- Type of natural numbers. ℕ = gen Natkind [] Empty : Term Empty = gen Emptykind [] Unit : Term Unit = gen Unitkind [] -- Lambda-calculus. -- var : (x : Nat) → Term -- Variable (de Bruijn index). -- var = var lam : (t : Term) → Term -- Function abstraction (binder). lam t = gen Lamkind (⟦ 1 , t ⟧ ∷ []) _∘_ : (t u : Term) → Term -- Application. t ∘ u = gen Appkind (⟦ 0 , t ⟧ ∷ ⟦ 0 , u ⟧ ∷ []) -- Dependent products prod : (t u : Term) → Term prod t u = gen Prodkind (⟦ 0 , t ⟧ ∷ ⟦ 0 , u ⟧ ∷ []) fst : (t : Term) → Term fst t = gen Fstkind (⟦ 0 , t ⟧ ∷ []) snd : (t : Term) → Term snd t = gen Sndkind (⟦ 0 , t ⟧ ∷ []) -- Introduction and elimination of natural numbers. zero : Term -- Natural number zero. zero = gen Zerokind [] suc : (t : Term) → Term -- Successor. suc t = gen Suckind (⟦ 0 , t ⟧ ∷ []) natrec : (A t u v : Term) → Term -- Recursor (A is a binder). natrec A t u v = gen Natreckind (⟦ 1 , A ⟧ ∷ ⟦ 0 , t ⟧ ∷ ⟦ 0 , u ⟧ ∷ ⟦ 0 , v ⟧ ∷ []) -- Unit type star : Term star = gen Starkind [] -- Empty type Emptyrec : (A e : Term) → Term Emptyrec A e = gen Emptyreckind (⟦ 0 , A ⟧ ∷ ⟦ 0 , e ⟧ ∷ []) -- Binding types data BindingType : Set where BΠ : BindingType BΣ : BindingType ⟦_⟧_▹_ : BindingType → Term → Term → Term ⟦ BΠ ⟧ F ▹ G = Π F ▹ G ⟦ BΣ ⟧ F ▹ G = Σ F ▹ G -- Injectivity of term constructors w.r.t. propositional equality. -- If W F G = W H E then F = H and G = E. B-PE-injectivity : ∀ {F G H E} W → ⟦ W ⟧ F ▹ G PE.≡ ⟦ W ⟧ H ▹ E → F PE.≡ H × G PE.≡ E B-PE-injectivity BΠ PE.refl = PE.refl , PE.refl B-PE-injectivity BΣ PE.refl = PE.refl , PE.refl -- If suc n = suc m then n = m. suc-PE-injectivity : ∀ {n m} → suc n PE.≡ suc m → n PE.≡ m suc-PE-injectivity PE.refl = PE.refl -- Neutral terms. -- A term is neutral if it has a variable in head position. -- The variable blocks reduction of such terms. data Neutral : Term → Set where var : ∀ n → Neutral (var n) ∘ₙ : ∀ {k u} → Neutral k → Neutral (k ∘ u) fstₙ : ∀ {p} → Neutral p → Neutral (fst p) sndₙ : ∀ {p} → Neutral p → Neutral (snd p) natrecₙ : ∀ {C c g k} → Neutral k → Neutral (natrec C c g k) Emptyrecₙ : ∀ {A e} → Neutral e → Neutral (Emptyrec A e) -- Weak head normal forms (whnfs). -- These are the (lazy) values of our language. data Whnf : Term → Set where -- Type constructors are whnfs. Uₙ : Whnf U Πₙ : ∀ {A B} → Whnf (Π A ▹ B) Σₙ : ∀ {A B} → Whnf (Σ A ▹ B) ℕₙ : Whnf ℕ Unitₙ : Whnf Unit Emptyₙ : Whnf Empty -- Introductions are whnfs. lamₙ : ∀ {t} → Whnf (lam t) zeroₙ : Whnf zero sucₙ : ∀ {t} → Whnf (suc t) starₙ : Whnf star prodₙ : ∀ {t u} → Whnf (prod t u) -- Neutrals are whnfs. ne : ∀ {n} → Neutral n → Whnf n -- Whnf inequalities. -- Different whnfs are trivially distinguished by propositional equality. -- (The following statements are sometimes called "no-confusion theorems".) U≢ne : ∀ {K} → Neutral K → U PE.≢ K U≢ne () PE.refl ℕ≢ne : ∀ {K} → Neutral K → ℕ PE.≢ K ℕ≢ne () PE.refl Empty≢ne : ∀ {K} → Neutral K → Empty PE.≢ K Empty≢ne () PE.refl Unit≢ne : ∀ {K} → Neutral K → Unit PE.≢ K Unit≢ne () PE.refl B≢ne : ∀ {F G K} W → Neutral K → ⟦ W ⟧ F ▹ G PE.≢ K B≢ne BΠ () PE.refl B≢ne BΣ () PE.refl U≢B : ∀ {F G} W → U PE.≢ ⟦ W ⟧ F ▹ G U≢B BΠ () U≢B BΣ () ℕ≢B : ∀ {F G} W → ℕ PE.≢ ⟦ W ⟧ F ▹ G ℕ≢B BΠ () ℕ≢B BΣ () Empty≢B : ∀ {F G} W → Empty PE.≢ ⟦ W ⟧ F ▹ G Empty≢B BΠ () Empty≢B BΣ () Unit≢B : ∀ {F G} W → Unit PE.≢ ⟦ W ⟧ F ▹ G Unit≢B BΠ () Unit≢B BΣ () zero≢ne : ∀ {k} → Neutral k → zero PE.≢ k zero≢ne () PE.refl suc≢ne : ∀ {n k} → Neutral k → suc n PE.≢ k suc≢ne () PE.refl -- Several views on whnfs (note: not recursive). -- A whnf of type ℕ is either zero, suc t, or neutral. data Natural : Term → Set where zeroₙ : Natural zero sucₙ : ∀ {t} → Natural (suc t) ne : ∀ {n} → Neutral n → Natural n -- A (small) type in whnf is either Π A B, ℕ, or neutral. -- Large types could also be U. data Type : Term → Set where Πₙ : ∀ {A B} → Type (Π A ▹ B) Σₙ : ∀ {A B} → Type (Σ A ▹ B) ℕₙ : Type ℕ Emptyₙ : Type Empty Unitₙ : Type Unit ne : ∀{n} → Neutral n → Type n ⟦_⟧-type : ∀ (W : BindingType) {F} {G} → Type (⟦ W ⟧ F ▹ G) ⟦ BΠ ⟧-type = Πₙ ⟦ BΣ ⟧-type = Σₙ -- A whnf of type Π A ▹ B is either lam t or neutral. data Function : Term → Set where lamₙ : ∀ {t} → Function (lam t) ne : ∀ {n} → Neutral n → Function n -- A whnf of type Σ A ▹ B is either prod t u or neutral. data Product : Term → Set where prodₙ : ∀ {t u} → Product (prod t u) ne : ∀ {n} → Neutral n → Product n -- These views classify only whnfs. -- Natural, Type, and Function are a subsets of Whnf. naturalWhnf : ∀ {n} → Natural n → Whnf n naturalWhnf sucₙ = sucₙ naturalWhnf zeroₙ = zeroₙ naturalWhnf (ne x) = ne x typeWhnf : ∀ {A} → Type A → Whnf A typeWhnf Πₙ = Πₙ typeWhnf Σₙ = Σₙ typeWhnf ℕₙ = ℕₙ typeWhnf Emptyₙ = Emptyₙ typeWhnf Unitₙ = Unitₙ typeWhnf (ne x) = ne x functionWhnf : ∀ {f} → Function f → Whnf f functionWhnf lamₙ = lamₙ functionWhnf (ne x) = ne x productWhnf : ∀ {p} → Product p → Whnf p productWhnf prodₙ = prodₙ productWhnf (ne x) = ne x ⟦_⟧ₙ : (W : BindingType) → ∀ {F G} → Whnf (⟦ W ⟧ F ▹ G) ⟦_⟧ₙ BΠ = Πₙ ⟦_⟧ₙ BΣ = Σₙ ------------------------------------------------------------------------ -- Weakening -- In the following we define untyped weakenings η : Wk. -- The typed form could be written η : Γ ≤ Δ with the intention -- that η transport a term t living in context Δ to a context Γ -- that can bind additional variables (which cannot appear in t). -- Thus, if Δ ⊢ t : A and η : Γ ≤ Δ then Γ ⊢ wk η t : wk η A. -- -- Even though Γ is "larger" than Δ we write Γ ≤ Δ to be conformant -- with subtyping A ≤ B. With subtyping, relation Γ ≤ Δ could be defined as -- ``for all x ∈ dom(Δ) have Γ(x) ≤ Δ(x)'' (in the sense of subtyping) -- and this would be the natural extension of weakenings. data Wk : Set where id : Wk -- η : Γ ≤ Γ. step : Wk → Wk -- If η : Γ ≤ Δ then step η : Γ∙A ≤ Δ. lift : Wk → Wk -- If η : Γ ≤ Δ then lift η : Γ∙A ≤ Δ∙A. -- Composition of weakening. -- If η : Γ ≤ Δ and η′ : Δ ≤ Φ then η • η′ : Γ ≤ Φ. infixl 30 _•_ _•_ : Wk → Wk → Wk id • η′ = η′ step η • η′ = step (η • η′) lift η • id = lift η lift η • step η′ = step (η • η′) lift η • lift η′ = lift (η • η′) repeat : {A : Set} → (A → A) → A → Nat → A repeat f a 0 = a repeat f a (1+ n) = f (repeat f a n) -- Weakening of variables. -- If η : Γ ≤ Δ and x ∈ dom(Δ) then wkVar η x ∈ dom(Γ). wkVar : (ρ : Wk) (n : Nat) → Nat wkVar id n = n wkVar (step ρ) n = 1+ (wkVar ρ n) wkVar (lift ρ) 0 = 0 wkVar (lift ρ) (1+ n) = 1+ (wkVar ρ n) -- Weakening of terms. -- If η : Γ ≤ Δ and Δ ⊢ t : A then Γ ⊢ wk η t : wk η A. mutual wkGen : (ρ : Wk) (g : List (GenT Term)) → List (GenT Term) wkGen ρ [] = [] wkGen ρ (⟦ l , t ⟧ ∷ g) = ⟦ l , (wk (repeat lift ρ l) t) ⟧ ∷ wkGen ρ g wk : (ρ : Wk) (t : Term) → Term wk ρ (var x) = var (wkVar ρ x) wk ρ (gen x c) = gen x (wkGen ρ c) -- Adding one variable to the context requires wk1. -- If Γ ⊢ t : B then Γ∙A ⊢ wk1 t : wk1 B. wk1 : Term → Term wk1 = wk (step id) -- Weakening of a neutral term. wkNeutral : ∀ {t} ρ → Neutral t → Neutral (wk ρ t) wkNeutral ρ (var n) = var (wkVar ρ n) wkNeutral ρ (∘ₙ n) = ∘ₙ (wkNeutral ρ n) wkNeutral ρ (fstₙ n) = fstₙ (wkNeutral ρ n) wkNeutral ρ (sndₙ n) = sndₙ (wkNeutral ρ n) wkNeutral ρ (natrecₙ n) = natrecₙ (wkNeutral ρ n) wkNeutral ρ (Emptyrecₙ e) = Emptyrecₙ (wkNeutral ρ e) -- Weakening can be applied to our whnf views. wkNatural : ∀ {t} ρ → Natural t → Natural (wk ρ t) wkNatural ρ sucₙ = sucₙ wkNatural ρ zeroₙ = zeroₙ wkNatural ρ (ne x) = ne (wkNeutral ρ x) wkType : ∀ {t} ρ → Type t → Type (wk ρ t) wkType ρ Πₙ = Πₙ wkType ρ Σₙ = Σₙ wkType ρ ℕₙ = ℕₙ wkType ρ Emptyₙ = Emptyₙ wkType ρ Unitₙ = Unitₙ wkType ρ (ne x) = ne (wkNeutral ρ x) wkFunction : ∀ {t} ρ → Function t → Function (wk ρ t) wkFunction ρ lamₙ = lamₙ wkFunction ρ (ne x) = ne (wkNeutral ρ x) wkProduct : ∀ {t} ρ → Product t → Product (wk ρ t) wkProduct ρ prodₙ = prodₙ wkProduct ρ (ne x) = ne (wkNeutral ρ x) wkWhnf : ∀ {t} ρ → Whnf t → Whnf (wk ρ t) wkWhnf ρ Uₙ = Uₙ wkWhnf ρ Πₙ = Πₙ wkWhnf ρ Σₙ = Σₙ wkWhnf ρ ℕₙ = ℕₙ wkWhnf ρ Emptyₙ = Emptyₙ wkWhnf ρ Unitₙ = Unitₙ wkWhnf ρ lamₙ = lamₙ wkWhnf ρ prodₙ = prodₙ wkWhnf ρ zeroₙ = zeroₙ wkWhnf ρ sucₙ = sucₙ wkWhnf ρ starₙ = starₙ wkWhnf ρ (ne x) = ne (wkNeutral ρ x) -- Non-dependent version of Π. _▹▹_ : Term → Term → Term A ▹▹ B = Π A ▹ wk1 B -- Non-dependent products. _××_ : Term → Term → Term A ×× B = Σ A ▹ wk1 B ------------------------------------------------------------------------ -- Substitution -- The substitution operation subst σ t replaces the free de Bruijn indices -- of term t by chosen terms as specified by σ. -- The substitution σ itself is a map from natural numbers to terms. Subst : Set Subst = Nat → Term -- Given closed contexts ⊢ Γ and ⊢ Δ, -- substitutions may be typed via Γ ⊢ σ : Δ meaning that -- Γ ⊢ σ(x) : (subst σ Δ)(x) for all x ∈ dom(Δ). -- -- The substitution operation is then typed as follows: -- If Γ ⊢ σ : Δ and Δ ⊢ t : A, then Γ ⊢ subst σ t : subst σ A. -- -- Although substitutions are untyped, typing helps us -- to understand the operation on substitutions. -- We may view σ as the infinite stream σ 0, σ 1, ... -- Extract the substitution of the first variable. -- -- If Γ ⊢ σ : Δ∙A then Γ ⊢ head σ : subst σ A. head : Subst → Term head σ = σ 0 -- Remove the first variable instance of a substitution -- and shift the rest to accommodate. -- -- If Γ ⊢ σ : Δ∙A then Γ ⊢ tail σ : Δ. tail : Subst → Subst tail σ n = σ (1+ n) -- Substitution of a variable. -- -- If Γ ⊢ σ : Δ then Γ ⊢ substVar σ x : (subst σ Δ)(x). substVar : (σ : Subst) (x : Nat) → Term substVar σ x = σ x -- Identity substitution. -- Replaces each variable by itself. -- -- Γ ⊢ idSubst : Γ. idSubst : Subst idSubst = var -- Weaken a substitution by one. -- -- If Γ ⊢ σ : Δ then Γ∙A ⊢ wk1Subst σ : Δ. wk1Subst : Subst → Subst wk1Subst σ x = wk1 (σ x) -- Lift a substitution. -- -- If Γ ⊢ σ : Δ then Γ∙A ⊢ liftSubst σ : Δ∙A. liftSubst : (σ : Subst) → Subst liftSubst σ 0 = var 0 liftSubst σ (1+ x) = wk1Subst σ x -- Transform a weakening into a substitution. -- -- If ρ : Γ ≤ Δ then Γ ⊢ toSubst ρ : Δ. toSubst : Wk → Subst toSubst pr x = var (wkVar pr x) -- Apply a substitution to a term. -- -- If Γ ⊢ σ : Δ and Δ ⊢ t : A then Γ ⊢ subst σ t : subst σ A. mutual substGen : (σ : Subst) (g : List (GenT Term)) → List (GenT Term) substGen σ [] = [] substGen σ (⟦ l , t ⟧ ∷ g) = ⟦ l , (subst (repeat liftSubst σ l) t) ⟧ ∷ substGen σ g subst : (σ : Subst) (t : Term) → Term subst σ (var x) = substVar σ x subst σ (gen x c) = gen x (substGen σ c) -- Extend a substitution by adding a term as -- the first variable substitution and shift the rest. -- -- If Γ ⊢ σ : Δ and Γ ⊢ t : subst σ A then Γ ⊢ consSubst σ t : Δ∙A. consSubst : Subst → Term → Subst consSubst σ t 0 = t consSubst σ t (1+ n) = σ n -- Singleton substitution. -- -- If Γ ⊢ t : A then Γ ⊢ sgSubst t : Γ∙A. sgSubst : Term → Subst sgSubst = consSubst idSubst -- Compose two substitutions. -- -- If Γ ⊢ σ : Δ and Δ ⊢ σ′ : Φ then Γ ⊢ σ ₛ•ₛ σ′ : Φ. _ₛ•ₛ_ : Subst → Subst → Subst _ₛ•ₛ_ σ σ′ x = subst σ (σ′ x) -- Composition of weakening and substitution. -- -- If ρ : Γ ≤ Δ and Δ ⊢ σ : Φ then Γ ⊢ ρ •ₛ σ : Φ. _•ₛ_ : Wk → Subst → Subst _•ₛ_ ρ σ x = wk ρ (σ x) -- If Γ ⊢ σ : Δ and ρ : Δ ≤ Φ then Γ ⊢ σ ₛ• ρ : Φ. _ₛ•_ : Subst → Wk → Subst _ₛ•_ σ ρ x = σ (wkVar ρ x) -- Substitute the first variable of a term with an other term. -- -- If Γ∙A ⊢ t : B and Γ ⊢ s : A then Γ ⊢ t[s] : B[s]. _[_] : (t : Term) (s : Term) → Term t [ s ] = subst (sgSubst s) t -- Substitute the first variable of a term with an other term, -- but let the two terms share the same context. -- -- If Γ∙A ⊢ t : B and Γ∙A ⊢ s : A then Γ∙A ⊢ t[s]↑ : B[s]↑. _[_]↑ : (t : Term) (s : Term) → Term t [ s ]↑ = subst (consSubst (wk1Subst idSubst) s) t B-subst : (σ : Subst) (W : BindingType) (F G : Term) → subst σ (⟦ W ⟧ F ▹ G) PE.≡ ⟦ W ⟧ (subst σ F) ▹ (subst (liftSubst σ) G) B-subst σ BΠ F G = PE.refl B-subst σ BΣ F G = PE.refl
25.003552
86
0.567877
fb6f4c4bfc4dc4044205950c7b95145fd35a1b1f
6,354
agda
Agda
Cubical/Algebra/CommRingSolver/Solver.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Algebra/CommRingSolver/Solver.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRingSolver/Solver.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.CommRingSolver.Solver where open import Cubical.Foundations.Prelude open import Cubical.Data.FinData open import Cubical.Data.Nat using (ℕ) open import Cubical.Data.Nat.Order using (zero-≤) open import Cubical.Data.Vec.Base open import Cubical.Algebra.CommRing open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRingSolver.RawAlgebra renaming (⟨_⟩ to ⟨_⟩ᵣ) open import Cubical.Algebra.CommRingSolver.AlgebraExpression open import Cubical.Algebra.CommRingSolver.IntAsRawRing open import Cubical.Algebra.CommRingSolver.HornerForms open import Cubical.Algebra.CommRingSolver.EvalHom open import Cubical.Algebra.CommRingSolver.HornerEval private variable ℓ : Level module EqualityToNormalform (R : CommRing ℓ) where νR = CommRing→RawℤAlgebra R open CommRingStr (snd R) open RingTheory (CommRing→Ring R) open Eval ℤAsRawRing νR open IteratedHornerOperations νR open HomomorphismProperties R ℤExpr : (n : ℕ) → Type _ ℤExpr = Expr ℤAsRawRing (fst R) normalize : {n : ℕ} → ℤExpr n → IteratedHornerForms νR n normalize {n = n} (K r) = Constant n νR r normalize {n = n} (∣ k) = Variable n νR k normalize (x +' y) = (normalize x) +ₕ (normalize y) normalize (x ·' y) = (normalize x) ·ₕ (normalize y) normalize (-' x) = -ₕ (normalize x) isEqualToNormalform : {n : ℕ} (e : ℤExpr n) (xs : Vec (fst R) n) → eval (normalize e) xs ≡ ⟦ e ⟧ xs isEqualToNormalform (K r) [] = refl isEqualToNormalform {n = ℕ.suc n} (K r) (x ∷ xs) = eval (Constant (ℕ.suc n) νR r) (x ∷ xs) ≡⟨ refl ⟩ eval (0ₕ ·X+ Constant n νR r) (x ∷ xs) ≡⟨ combineCasesEval R 0ₕ (Constant n νR r) x xs ⟩ eval 0ₕ (x ∷ xs) · x + eval (Constant n νR r) xs ≡⟨ cong (λ u → u · x + eval (Constant n νR r) xs) (Eval0H (x ∷ xs)) ⟩ 0r · x + eval (Constant n νR r) xs ≡⟨ cong (λ u → u + eval (Constant n νR r) xs) (0LeftAnnihilates _) ⟩ 0r + eval (Constant n νR r) xs ≡⟨ +Lid _ ⟩ eval (Constant n νR r) xs ≡⟨ isEqualToNormalform (K r) xs ⟩ _ ∎ isEqualToNormalform (∣ zero) (x ∷ xs) = eval (1ₕ ·X+ 0ₕ) (x ∷ xs) ≡⟨ combineCasesEval R 1ₕ 0ₕ x xs ⟩ eval 1ₕ (x ∷ xs) · x + eval 0ₕ xs ≡⟨ cong (λ u → u · x + eval 0ₕ xs) (Eval1ₕ (x ∷ xs)) ⟩ 1r · x + eval 0ₕ xs ≡⟨ cong (λ u → 1r · x + u ) (Eval0H xs) ⟩ 1r · x + 0r ≡⟨ +Rid _ ⟩ 1r · x ≡⟨ ·Lid _ ⟩ x ∎ isEqualToNormalform {n = ℕ.suc n} (∣ (suc k)) (x ∷ xs) = eval (0ₕ ·X+ Variable n νR k) (x ∷ xs) ≡⟨ combineCasesEval R 0ₕ (Variable n νR k) x xs ⟩ eval 0ₕ (x ∷ xs) · x + eval (Variable n νR k) xs ≡⟨ cong (λ u → u · x + eval (Variable n νR k) xs) (Eval0H (x ∷ xs)) ⟩ 0r · x + eval (Variable n νR k) xs ≡⟨ cong (λ u → u + eval (Variable n νR k) xs) (0LeftAnnihilates _) ⟩ 0r + eval (Variable n νR k) xs ≡⟨ +Lid _ ⟩ eval (Variable n νR k) xs ≡⟨ isEqualToNormalform (∣ k) xs ⟩ ⟦ ∣ (suc k) ⟧ (x ∷ xs) ∎ isEqualToNormalform (-' e) [] = eval (-ₕ (normalize e)) [] ≡⟨ -EvalDist (normalize e) [] ⟩ - eval (normalize e) [] ≡⟨ cong -_ (isEqualToNormalform e [] ) ⟩ - ⟦ e ⟧ [] ∎ isEqualToNormalform (-' e) (x ∷ xs) = eval (-ₕ (normalize e)) (x ∷ xs) ≡⟨ -EvalDist (normalize e) (x ∷ xs) ⟩ - eval (normalize e) (x ∷ xs) ≡⟨ cong -_ (isEqualToNormalform e (x ∷ xs) ) ⟩ - ⟦ e ⟧ (x ∷ xs) ∎ isEqualToNormalform (e +' e₁) [] = eval (normalize e +ₕ normalize e₁) [] ≡⟨ +Homeval (normalize e) _ [] ⟩ eval (normalize e) [] + eval (normalize e₁) [] ≡⟨ cong (λ u → u + eval (normalize e₁) []) (isEqualToNormalform e []) ⟩ ⟦ e ⟧ [] + eval (normalize e₁) [] ≡⟨ cong (λ u → ⟦ e ⟧ [] + u) (isEqualToNormalform e₁ []) ⟩ ⟦ e ⟧ [] + ⟦ e₁ ⟧ [] ∎ isEqualToNormalform (e +' e₁) (x ∷ xs) = eval (normalize e +ₕ normalize e₁) (x ∷ xs) ≡⟨ +Homeval (normalize e) _ (x ∷ xs) ⟩ eval (normalize e) (x ∷ xs) + eval (normalize e₁) (x ∷ xs) ≡⟨ cong (λ u → u + eval (normalize e₁) (x ∷ xs)) (isEqualToNormalform e (x ∷ xs)) ⟩ ⟦ e ⟧ (x ∷ xs) + eval (normalize e₁) (x ∷ xs) ≡⟨ cong (λ u → ⟦ e ⟧ (x ∷ xs) + u) (isEqualToNormalform e₁ (x ∷ xs)) ⟩ ⟦ e ⟧ (x ∷ xs) + ⟦ e₁ ⟧ (x ∷ xs) ∎ isEqualToNormalform (e ·' e₁) [] = eval (normalize e ·ₕ normalize e₁) [] ≡⟨ ·Homeval (normalize e) _ [] ⟩ eval (normalize e) [] · eval (normalize e₁) [] ≡⟨ cong (λ u → u · eval (normalize e₁) []) (isEqualToNormalform e []) ⟩ ⟦ e ⟧ [] · eval (normalize e₁) [] ≡⟨ cong (λ u → ⟦ e ⟧ [] · u) (isEqualToNormalform e₁ []) ⟩ ⟦ e ⟧ [] · ⟦ e₁ ⟧ [] ∎ isEqualToNormalform (e ·' e₁) (x ∷ xs) = eval (normalize e ·ₕ normalize e₁) (x ∷ xs) ≡⟨ ·Homeval (normalize e) _ (x ∷ xs) ⟩ eval (normalize e) (x ∷ xs) · eval (normalize e₁) (x ∷ xs) ≡⟨ cong (λ u → u · eval (normalize e₁) (x ∷ xs)) (isEqualToNormalform e (x ∷ xs)) ⟩ ⟦ e ⟧ (x ∷ xs) · eval (normalize e₁) (x ∷ xs) ≡⟨ cong (λ u → ⟦ e ⟧ (x ∷ xs) · u) (isEqualToNormalform e₁ (x ∷ xs)) ⟩ ⟦ e ⟧ (x ∷ xs) · ⟦ e₁ ⟧ (x ∷ xs) ∎ solve : {n : ℕ} (e₁ e₂ : ℤExpr n) (xs : Vec (fst R) n) (p : eval (normalize e₁) xs ≡ eval (normalize e₂) xs) → ⟦ e₁ ⟧ xs ≡ ⟦ e₂ ⟧ xs solve e₁ e₂ xs p = ⟦ e₁ ⟧ xs ≡⟨ sym (isEqualToNormalform e₁ xs) ⟩ eval (normalize e₁) xs ≡⟨ p ⟩ eval (normalize e₂) xs ≡⟨ isEqualToNormalform e₂ xs ⟩ ⟦ e₂ ⟧ xs ∎ ℤExpr : (R : CommRing ℓ) (n : ℕ) → _ ℤExpr R n = EqualityToNormalform.ℤExpr R n solve : (R : CommRing ℓ) {n : ℕ} (e₁ e₂ : ℤExpr R n) (xs : Vec (fst R) n) (p : eval (EqualityToNormalform.normalize R e₁) xs ≡ eval (EqualityToNormalform.normalize R e₂) xs) → _ solve R = EqualityToNormalform.solve R
43.520548
107
0.506295
1c4813e7422fc37b1d25a2dc5eddb6a0e927ed2e
3,039
agda
Agda
L0E.agda
daherb/Agda-Montague
9f8bbff7248dbeb54919e03957daf9b35ec1ac23
[ "Artistic-2.0" ]
1
2020-12-18T11:56:24.000Z
2020-12-18T11:56:24.000Z
L0E.agda
daherb/Agda-Montague
9f8bbff7248dbeb54919e03957daf9b35ec1ac23
[ "Artistic-2.0" ]
null
null
null
L0E.agda
daherb/Agda-Montague
9f8bbff7248dbeb54919e03957daf9b35ec1ac23
[ "Artistic-2.0" ]
null
null
null
module L0E where open import Common -- Syntax data Conj : Set where and or : Conj data N : Set where Saddie Liz Hank : N data Vᵢ : Set where snores sleeps is-boring : Vᵢ data Vₜ : Set where loves hates is-taller-than : Vₜ data Neg : Set where it-is-not-the-case-that : Neg data VP : Set where iv : Vᵢ -> VP tv : Vₜ -> N -> VP data S : Set where sconjs : S -> Conj -> S -> S negs : Neg -> S -> S predvp : N -> VP -> S example1 : S example1 = predvp Saddie (iv snores) example2 : S example2 = predvp Liz (iv sleeps) example3 : S example3 = negs it-is-not-the-case-that (predvp Hank (iv snores)) example41 example42 : S example41 = sconjs (sconjs (predvp Saddie (iv sleeps)) or (predvp Liz (iv is-boring))) and (predvp Hank (iv snores)) example42 = sconjs (predvp Saddie (iv sleeps)) or (sconjs (predvp Liz (iv is-boring)) and (predvp Hank (iv snores))) example5 : S example5 = negs it-is-not-the-case-that (negs it-is-not-the-case-that (predvp Saddie (iv sleeps))) -- Semantics data Individual : Set where Anwar_Sadat : Individual Queen_Elizabeth_II : Individual Henry_Kissinger : Individual ⟦_⟧N : N -> Individual ⟦ Saddie ⟧N = Anwar_Sadat ⟦ Liz ⟧N = Queen_Elizabeth_II ⟦ Hank ⟧N = Henry_Kissinger ⟦_⟧̬̬̌Vᵢ : Vᵢ -> Individual -> Bool ⟦ snores ⟧̬̬̌Vᵢ Anwar_Sadat = true ⟦ snores ⟧̬̬̌Vᵢ Queen_Elizabeth_II = true ⟦ snores ⟧̬̬̌Vᵢ Henry_Kissinger = false ⟦ sleeps ⟧̬̬̌Vᵢ Anwar_Sadat = true ⟦ sleeps ⟧̬̬̌Vᵢ Queen_Elizabeth_II = false ⟦ sleeps ⟧̬̬̌Vᵢ Henry_Kissinger = false ⟦ is-boring ⟧̬̬̌Vᵢ Anwar_Sadat = true ⟦ is-boring ⟧̬̬̌Vᵢ Queen_Elizabeth_II = true ⟦ is-boring ⟧̬̬̌Vᵢ Henry_Kissinger = true ⟦_⟧Vₜ : Vₜ -> Individual -> Individual -> Bool ⟦ loves ⟧Vₜ Anwar_Sadat _ = true ⟦ loves ⟧Vₜ Queen_Elizabeth_II Anwar_Sadat = false ⟦ loves ⟧Vₜ Queen_Elizabeth_II Queen_Elizabeth_II = true ⟦ loves ⟧Vₜ Queen_Elizabeth_II Henry_Kissinger = false ⟦ loves ⟧Vₜ Henry_Kissinger Anwar_Sadat = true ⟦ loves ⟧Vₜ Henry_Kissinger Queen_Elizabeth_II = false ⟦ loves ⟧Vₜ Henry_Kissinger Henry_Kissinger = true ⟦ hates ⟧Vₜ Anwar_Sadat _ = false ⟦ hates ⟧Vₜ Queen_Elizabeth_II Anwar_Sadat = true ⟦ hates ⟧Vₜ Queen_Elizabeth_II Queen_Elizabeth_II = false ⟦ hates ⟧Vₜ Queen_Elizabeth_II Henry_Kissinger = true ⟦ hates ⟧Vₜ Henry_Kissinger Anwar_Sadat = false ⟦ hates ⟧Vₜ Henry_Kissinger Queen_Elizabeth_II = true ⟦ hates ⟧Vₜ Henry_Kissinger Henry_Kissinger = false ⟦ is-taller-than ⟧Vₜ Anwar_Sadat Anwar_Sadat = false ⟦ is-taller-than ⟧Vₜ Anwar_Sadat Queen_Elizabeth_II = true ⟦ is-taller-than ⟧Vₜ Anwar_Sadat Henry_Kissinger = false ⟦ is-taller-than ⟧Vₜ Queen_Elizabeth_II _ = false ⟦ is-taller-than ⟧Vₜ Henry_Kissinger Anwar_Sadat = true ⟦ is-taller-than ⟧Vₜ Henry_Kissinger Queen_Elizabeth_II = true ⟦ is-taller-than ⟧Vₜ Henry_Kissinger Henry_Kissinger = false ⟦_⟧VP : VP -> Individual -> Bool ⟦ iv v ⟧VP = ⟦ v ⟧̬̬̌Vᵢ ⟦ tv v n ⟧VP = ⟦ v ⟧Vₜ ⟦ n ⟧N ⟦_⟧S : S -> Bool ⟦ sconjs x and x₂ ⟧S = ⟦ x ⟧S && ⟦ x₂ ⟧S ⟦ sconjs x or x₂ ⟧S = ⟦ x ⟧S || ⟦ x₂ ⟧S ⟦ negs x x₁ ⟧S = neg ⟦ x₁ ⟧S ⟦ predvp x x₁ ⟧S = ⟦ x₁ ⟧VP ⟦ x ⟧N
28.401869
116
0.698585
1c66284b351da097c555f3e214dea067396d4188
652
agda
Agda
src/pointed/core.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
20
2015-06-12T12:20:17.000Z
2022-02-01T11:25:54.000Z
src/pointed/core.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T14:32:16.000Z
2016-10-26T11:57:26.000Z
src/pointed/core.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T12:17:00.000Z
2019-05-04T19:31:00.000Z
{-# OPTIONS --without-K #-} module pointed.core where open import sum open import equality.core open import function.core open import function.isomorphism.core PSet : ∀ i → Set _ PSet i = Σ (Set i) λ X → X PMap : ∀ {i j} → PSet i → PSet j → Set _ PMap (X , x) (Y , y) = Σ (X → Y) λ f → f x ≡ y _∘P_ : ∀ {i j k}{𝓧 : PSet i}{𝓨 : PSet j}{𝓩 : PSet k} → PMap 𝓨 𝓩 → PMap 𝓧 𝓨 → PMap 𝓧 𝓩 (g , q) ∘P (f , p) = (g ∘ f , ap g p · q) instance pmap-comp : ∀ {i j k} → Composition _ _ _ _ _ _ pmap-comp {i}{j}{k} = record { U₁ = PSet i ; U₂ = PSet j ; U₃ = PSet k ; hom₁₂ = PMap ; hom₂₃ = PMap ; hom₁₃ = PMap ; _∘_ = _∘P_ }
22.482759
52
0.529141
c564596242d842d15369c28dce25537436de0398
810
agda
Agda
src/fot/FOTC/Program/McCarthy91/McCarthy91.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Program/McCarthy91/McCarthy91.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Program/McCarthy91/McCarthy91.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- The McCarthy 91 function: A function with nested recursion ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.McCarthy91.McCarthy91 where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.UnaryNumbers ------------------------------------------------------------------------------ -- The McCarthy 91 function. postulate f₉₁ : D → D f₉₁-eq : ∀ n → f₉₁ n ≡ (if (gt n 100') then n ∸ 10' else f₉₁ (f₉₁ (n + 11'))) {-# ATP axiom f₉₁-eq #-}
35.217391
79
0.446914
0e7157505a46a45784cc8a636c9ca3497f5b2f86
143
agda
Agda
test/Succeed/DeadCodePatSyn.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/DeadCodePatSyn.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/DeadCodePatSyn.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
module _ where open import DeadCodePatSyn.Lib -- Check that pattern synonyms count when computing dead code f : _ → Set₁ f not-hidden = Set
15.888889
61
0.755245
c5e1a6672fe134d6db887f9172c526a211eda593
443
agda
Agda
Data/List/Sorting/HeapSort.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Data/List/Sorting/HeapSort.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Data/List/Sorting/HeapSort.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
open import Data.Boolean open import Type module Data.List.Sorting.HeapSort {ℓ} {T : Type{ℓ}} (_≤?_ : T → T → Bool) where import Lvl open import Data.List import Data.List.Functions as List open import Data.BinaryTree import Data.BinaryTree.Heap as Heap open import Functional using (_∘_) heapSort : List(T) → List(T) heapSort = Heap.foldOrdered(_≤?_)(_⊰_) ∅ ∘ List.foldᵣ(Heap.insert(_≤?_)) emptyTree module Proofs where
24.611111
82
0.706546
c5e80facfd6612ae63401016388fd6c7d91fa432
3,955
agda
Agda
Agda/21-image.agda
tadejpetric/HoTT-Intro
f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5
[ "CC-BY-4.0" ]
null
null
null
Agda/21-image.agda
tadejpetric/HoTT-Intro
f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5
[ "CC-BY-4.0" ]
null
null
null
Agda/21-image.agda
tadejpetric/HoTT-Intro
f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5
[ "CC-BY-4.0" ]
null
null
null
{-# OPTIONS --without-K --exact-split --allow-unsolved-metas #-} module 21-image where import 20-sequences open 20-sequences public {- We give the formal specification of propositional truncation. -} precomp-Prop : { l1 l2 l3 : Level} {A : UU l1} (P : hProp l2) → (A → type-Prop P) → (Q : hProp l3) → (type-Prop P → type-Prop Q) → A → type-Prop Q precomp-Prop P f Q g = g ∘ f universal-property-propositional-truncation : ( l : Level) {l1 l2 : Level} {A : UU l1} (P : hProp l2) → ( A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2) universal-property-propositional-truncation l P f = (Q : hProp l) → is-equiv (precomp-Prop P f Q) universal-property-propositional-truncation' : ( l : Level) {l1 l2 : Level} {A : UU l1} (P : hProp l2) → ( A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2) universal-property-propositional-truncation' l {A = A} P f = (Q : hProp l) → (A → type-Prop Q) → (type-Prop P → type-Prop Q) universal-property-propositional-truncation-simplify : { l1 l2 : Level} {A : UU l1} (P : hProp l2) ( f : A → type-Prop P) → ( (l : Level) → universal-property-propositional-truncation' l P f) → ( (l : Level) → universal-property-propositional-truncation l P f) universal-property-propositional-truncation-simplify P f up-P l Q = is-equiv-is-prop ( is-prop-Π (λ x → is-prop-type-Prop Q)) ( is-prop-Π (λ x → is-prop-type-Prop Q)) ( up-P l Q) precomp-Π-Prop : { l1 l2 l3 : Level} {A : UU l1} (P : hProp l2) → ( f : A → type-Prop P) (Q : type-Prop P → hProp l3) → ( g : (p : type-Prop P) → type-Prop (Q p)) → (x : A) → type-Prop (Q (f x)) precomp-Π-Prop P f Q g x = g (f x) dependent-universal-property-propositional-truncation : ( l : Level) {l1 l2 : Level} {A : UU l1} (P : hProp l2) → ( A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2) dependent-universal-property-propositional-truncation l P f = (Q : type-Prop P → hProp l) → is-equiv (precomp-Π-Prop P f Q) {- We introduce the image inclusion of a map. -} precomp-emb : { l1 l2 l3 l4 : Level} {X : UU l1} {A : UU l2} (f : A → X) {B : UU l3} ( i : B ↪ X) (q : hom-slice f (map-emb i)) → {C : UU l4} ( j : C ↪ X) (r : hom-slice (map-emb i) (map-emb j)) → hom-slice f (map-emb j) precomp-emb f i q j r = pair ( ( map-hom-slice (map-emb i) (map-emb j) r) ∘ ( map-hom-slice f (map-emb i) q)) ( ( triangle-hom-slice f (map-emb i) q) ∙h ( ( triangle-hom-slice (map-emb i) (map-emb j) r) ·r ( map-hom-slice f (map-emb i) q))) is-prop-hom-slice : { l1 l2 l3 : Level} {X : UU l1} {A : UU l2} (f : A → X) → { B : UU l3} (i : B ↪ X) → is-prop (hom-slice f (map-emb i)) is-prop-hom-slice {X = X} f i = is-prop-is-equiv ( (x : X) → fib f x → fib (map-emb i) x) ( fiberwise-hom-hom-slice f (map-emb i)) ( is-equiv-fiberwise-hom-hom-slice f (map-emb i)) ( is-prop-Π ( λ x → is-prop-Π ( λ p → is-prop-map-is-emb (map-emb i) (is-emb-map-emb i) x))) universal-property-image : ( l : Level) {l1 l2 l3 : Level} {X : UU l1} {A : UU l2} (f : A → X) → { B : UU l3} (i : B ↪ X) (q : hom-slice f (map-emb i)) → UU (lsuc l ⊔ l1 ⊔ l2 ⊔ l3) universal-property-image l {X = X} f i q = ( C : UU l) (j : C ↪ X) → is-equiv (precomp-emb f i q j) universal-property-image' : ( l : Level) {l1 l2 l3 : Level} {X : UU l1} {A : UU l2} (f : A → X) → { B : UU l3} (i : B ↪ X) (q : hom-slice f (map-emb i)) → UU (lsuc l ⊔ l1 ⊔ l2 ⊔ l3) universal-property-image' l {X = X} f i q = ( C : UU l) (j : C ↪ X) → hom-slice f (map-emb j) → hom-slice (map-emb i) (map-emb j) universal-property-image-universal-property-image' : ( l : Level) {l1 l2 l3 : Level} {X : UU l1} {A : UU l2} (f : A → X) → { B : UU l3} (i : B ↪ X) (q : hom-slice f (map-emb i)) → universal-property-image' l f i q → universal-property-image l f i q universal-property-image-universal-property-image' l f i q up' C j = is-equiv-is-prop ( is-prop-hom-slice (map-emb i) j) ( is-prop-hom-slice f j) ( up' C j)
38.028846
76
0.573704
101300cc6e3e857f0dc52c7f1e3dad02695f5cda
8,019
agda
Agda
Security.agda
iwilare/imp-semantics
cb98e3b3b93362654b79152bfdf2c21eb4951fcc
[ "MIT" ]
6
2020-09-08T11:54:07.000Z
2022-02-24T22:29:44.000Z
Security.agda
iwilare/imp-semantics
cb98e3b3b93362654b79152bfdf2c21eb4951fcc
[ "MIT" ]
null
null
null
Security.agda
iwilare/imp-semantics
cb98e3b3b93362654b79152bfdf2c21eb4951fcc
[ "MIT" ]
null
null
null
open import Data.Nat using (ℕ; suc; zero; _<_; _≤_; z≤n; s≤s; _+_; _⊔_) open import Data.Bool using (Bool; true; false; not; _∧_) open import Data.Sum using (inj₁; inj₂; _⊎_; [_,_]) open import Data.Product using (_×_; _,_; -,_; _-,-_; ∃; ∃-syntax; proj₂) open import Data.String using (String; _≟_; length) open import Relation.Nullary using (¬_; yes; no) open import Relation.Nullary.Decidable using (⌊_⌋) open import Relation.Nullary.Negation using (contradiction) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; cong; trans; cong₂) open import Data.Nat.Properties hiding (_≤?_; _≟_) open import IMP level = ℕ sec : vname → level -- We can also temporarily use "sec x" to avoid the -- automatic expansion of the definition in error messages sec x = length x secₐ : aexp → level secₐ (N n) = 0 secₐ (V x) = sec x secₐ (Plus a b) = secₐ a ⊔ secₐ b sec₆ : bexp → level sec₆ (Bc x) = 0 sec₆ (Not b) = sec₆ b sec₆ (And b₁ b₂) = sec₆ b₁ ⊔ sec₆ b₂ sec₆ (Less a b) = secₐ a ⊔ secₐ b _≡_⦅≤_⦆ : state → state → level → Set s₁ ≡ s₂ ⦅≤ l ⦆ = ∀ x → sec x ≤ l → s₁ x ≡ s₂ x _≡_⦅<_⦆ : state → state → level → Set s₁ ≡ s₂ ⦅< l ⦆ = ∀ x → sec x < l → s₁ x ≡ s₂ x non-interference-aexp : ∀ a {s₁ s₂ l} → s₁ ≡ s₂ ⦅≤ l ⦆ → secₐ a ≤ l → aval a s₁ ≡ aval a s₂ non-interference-aexp (N x) r e = refl non-interference-aexp (V x) r e = r x e non-interference-aexp (Plus a b) r e = cong₂ (_+_) (non-interference-aexp a r (m⊔n≤o⇒m≤o _ _ e)) (non-interference-aexp b r (m⊔n≤o⇒n≤o _ _ e)) non-interference-bexp : ∀ a {s₁ s₂ l} → s₁ ≡ s₂ ⦅≤ l ⦆ → sec₆ a ≤ l → bval a s₁ ≡ bval a s₂ non-interference-bexp (Bc x) r e = refl non-interference-bexp (Not a) r e = cong not (non-interference-bexp a r e) non-interference-bexp (And a b) r e = cong₂ (_∧_) (non-interference-bexp a r (m⊔n≤o⇒m≤o _ _ e)) (non-interference-bexp b r (m⊔n≤o⇒n≤o _ _ e)) non-interference-bexp (Less a b) r e = cong₂ (_≤?_) (non-interference-aexp a r (m⊔n≤o⇒m≤o _ _ e)) (non-interference-aexp b r (m⊔n≤o⇒n≤o _ _ e)) data _⊢_ : level → com → Set where SecSkip : ∀{l} → l ⊢ SKIP SecLoc : ∀{l a x} → secₐ a ≤ sec x → l ≤ sec x → l ⊢ (x ::= a) SecSeq : ∀{l c₁ c₂} → l ⊢ c₁ → l ⊢ c₂ → l ⊢ (c₁ :: c₂) SecIf : ∀{b l c₁ c₂} → (l ⊔ sec₆ b) ⊢ c₁ → (l ⊔ sec₆ b) ⊢ c₂ → l ⊢ (IF b THEN c₁ ELSE c₂) SecWhile : ∀{b l c} → (l ⊔ sec₆ b) ⊢ c → l ⊢ (WHILE b DO c) anti-monotonicity : ∀{l l′ c} → l ⊢ c → l′ ≤ l → l′ ⊢ c anti-monotonicity SecSkip s = SecSkip anti-monotonicity (SecLoc x x₁) s = SecLoc x (≤-trans s x₁) anti-monotonicity (SecSeq d d₁) s = SecSeq (anti-monotonicity d s) (anti-monotonicity d₁ s) anti-monotonicity (SecIf d d₁) s = SecIf (anti-monotonicity d (⊔-monoˡ-≤ _ s)) (anti-monotonicity d₁ (⊔-monoˡ-≤ _ s)) anti-monotonicity (SecWhile d) s = SecWhile ((anti-monotonicity d (⊔-monoˡ-≤ _ s))) data ⦅_,_⦆⇒_ : com → state → state → Set where Skip : ∀{s} → ⦅ SKIP , s ⦆⇒ s Loc : ∀{s x a} → ⦅ x ::= a , s ⦆⇒ (s [ x ::= aval a s ]) Seq : ∀{c₁ c₂ s₁ s₂ s₃} → ⦅ c₁ , s₁ ⦆⇒ s₂ → ⦅ c₂ , s₂ ⦆⇒ s₃ → ⦅ c₁ :: c₂ , s₁ ⦆⇒ s₃ IfTrue : ∀{c₁ c₂ b s t} → bval b s ≡ true → ⦅ c₁ , s ⦆⇒ t → ⦅ IF b THEN c₁ ELSE c₂ , s ⦆⇒ t IfFalse : ∀{c₁ c₂ b s t} → bval b s ≡ false → ⦅ c₂ , s ⦆⇒ t → ⦅ IF b THEN c₁ ELSE c₂ , s ⦆⇒ t WhileFalse : ∀{c b s} → bval b s ≡ false → ⦅ WHILE b DO c , s ⦆⇒ s WhileTrue : ∀{c b s₁ s₂ s₃} → bval b s₁ ≡ true → ⦅ c , s₁ ⦆⇒ s₂ → ⦅ WHILE b DO c , s₂ ⦆⇒ s₃ → ⦅ WHILE b DO c , s₁ ⦆⇒ s₃ confinement : ∀{c s t l} → ⦅ c , s ⦆⇒ t → l ⊢ c → s ≡ t ⦅< l ⦆ confinement Skip SecSkip x₂ x₃ = refl confinement (Loc {x = x₂}) (SecLoc x x₁) e r with e ≟ x₂ ... | yes refl = contradiction x₁ (<⇒≱ r) ... | no _ = refl confinement (Seq x x₄) (SecSeq x₁ x₅) x₂ x₃ = trans (confinement x x₁ x₂ x₃) (confinement x₄ x₅ x₂ x₃) confinement (IfTrue x x₄) (SecIf x₁ x₅) x₂ x₃ = confinement x₄ x₁ x₂ (m<n⇒m<n⊔o _ x₃) confinement (IfFalse x x₄) (SecIf x₁ x₅) x₂ x₃ = confinement x₄ x₅ x₂ (m<n⇒m<n⊔o _ x₃) confinement (WhileFalse x) (SecWhile x₁) x₂ x₃ = refl confinement {l = l} (WhileTrue x x₄ x₅) (SecWhile x₁) x₂ x₃ = trans (confinement x₄ (anti-monotonicity x₁ (m≤m⊔n _ _)) x₂ x₃) (confinement x₅ (SecWhile x₁) x₂ x₃) true≢false : ¬ (true ≡ false) true≢false = λ () reversal₁ : ∀{b c s₁ s₃} → ⦅ WHILE b DO c , s₁ ⦆⇒ s₃ → bval b s₁ ≡ true → ∃[ s₂ ] ( ⦅ c , s₁ ⦆⇒ s₂ × ⦅ WHILE b DO c , s₂ ⦆⇒ s₃) reversal₁ (WhileFalse x) v = contradiction (trans (sym v) x) true≢false reversal₁ (WhileTrue x e e₁) v = -, e , e₁ reversal₂ : ∀{b c s₁ s₃} → ⦅ WHILE b DO c , s₁ ⦆⇒ s₃ → bval b s₁ ≡ false → s₁ ≡ s₃ reversal₂ (WhileFalse x) v = refl reversal₂ (WhileTrue x r r₁) v = contradiction (trans (sym x) v) true≢false level-cong : ∀{l l′ c} → l ≡ l′ → l ⊢ c → l′ ⊢ c level-cong refl x = x ≤⇒<suc : ∀{a b} → a ≤ b → a < suc b ≤⇒<suc z≤n = s≤s z≤n ≤⇒<suc (s≤s r) = s≤s (≤⇒<suc r) non-interference : ∀{c s s′ t t′ l} → ⦅ c , s ⦆⇒ s′ → ⦅ c , t ⦆⇒ t′ → 0 ⊢ c → s ≡ t ⦅≤ l ⦆ → s′ ≡ t′ ⦅≤ l ⦆ non-interference Skip Skip z e = e non-interference (Loc {x = x₂} {a}) Loc (SecLoc x₃ z≤n) e x x₁ with x ≟ x₂ ... | yes refl = non-interference-aexp a e (≤-trans x₃ x₁) ... | no _ = e x x₁ non-interference (Seq x cs) (Seq y ct) (SecSeq z z₁) e = non-interference cs ct z₁ (non-interference x y z e) non-interference {l = l} (IfTrue {b = b} x cs) (IfTrue x₁ red) (SecIf w w₁) e r r₁ = non-interference cs red (anti-monotonicity w z≤n) e r r₁ non-interference {l = l} (IfTrue {b = b} x cs) (IfFalse x₁ red) (SecIf w w₁) e r r₁ = [ (λ secb≤l → let wr = non-interference-bexp b e secb≤l in contradiction (trans (sym x) (trans wr x₁)) true≢false) , (λ l<secb → let oo₁ = confinement cs w oo₂ = confinement red w₁ in trans (sym (oo₁ r (<-transʳ r₁ l<secb))) (trans (e r r₁) (oo₂ r (<-transʳ r₁ l<secb)))) ] (≤-<-connex (sec₆ b) l) non-interference {l = l} (IfFalse x₁ red) (IfTrue {b = b} x cs) (SecIf w w₁) e r r₁ = [ (λ secb≤l → let wr = non-interference-bexp b e secb≤l in contradiction (trans (sym x) (trans (sym wr) x₁)) true≢false) , (λ l<secb → let oo₁ = confinement cs w oo₂ = confinement red w₁ in trans (sym (oo₂ r (<-transʳ r₁ l<secb))) (trans (e r r₁) (oo₁ r (<-transʳ r₁ l<secb)))) ] (≤-<-connex (sec₆ b) l) non-interference (IfFalse x₁ red) (IfFalse x cs) (SecIf x₇ x₈) = non-interference red cs (anti-monotonicity x₈ z≤n) non-interference (WhileFalse x) (WhileFalse x₁) (SecWhile z) e = e non-interference {l = l} (WhileFalse {b = b} r) (WhileTrue c ct ct₁) (SecWhile z) e x x₁ = [ (λ secb≤l → let wr = non-interference-bexp b e secb≤l in contradiction (trans (sym c) (trans (sym wr) r)) true≢false) , (λ l<secb → let simp = confinement ct z simp2 = confinement ct₁ (SecWhile (level-cong (sym (m≤n⇒m⊔n≡n l<secb)) z)) in trans (e x x₁) (trans (simp x (<-transʳ x₁ l<secb)) (simp2 x (≤⇒<suc x₁)))) ] (≤-<-connex (sec₆ b) l) non-interference {l = l} (WhileTrue c ct ct₁) (WhileFalse {b = b} r) (SecWhile z) e x x₁ = [ (λ secb≤l → let wr = non-interference-bexp b e secb≤l in contradiction (trans (sym c) (trans wr r)) true≢false) , (λ l<secb → let simp = confinement ct z simp2 = confinement ct₁ (SecWhile (level-cong (sym (m≤n⇒m⊔n≡n l<secb)) z)) in trans (trans (sym (simp2 x (≤⇒<suc x₁))) (sym (simp x ((<-transʳ x₁ l<secb))))) (e x x₁)) ] (≤-<-connex (sec₆ b) l) non-interference {l = l} (WhileTrue {b = b} r cs cs₁) (WhileTrue c ct ct₁) (SecWhile z) e = let h₁ = non-interference cs ct (anti-monotonicity z z≤n) e h₂ = non-interference cs₁ ct₁ (SecWhile z) h₁ in h₂
36.616438
117
0.555805
fbe1fa6256d5540430ced8a90c0175fbe559e1a4
168
agda
Agda
test/succeed/Issue778M.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/Issue778M.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/Issue778M.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module Issue778M (Param : Set) where data Nat : Set where zero : Nat suc : Nat -> Nat pred : Nat → Nat pred = λ { zero → zero; (suc n) → n } where aux = zero
14
37
0.589286
50789ad7f76d64807ffb3d81916a8f86997a82bd
45,758
agda
Agda
Agda/09-fundamental-theorem.agda
hemangandhi/HoTT-Intro
09c710bf9c31ba88be144cc950bd7bc19c22a934
[ "CC-BY-4.0" ]
null
null
null
Agda/09-fundamental-theorem.agda
hemangandhi/HoTT-Intro
09c710bf9c31ba88be144cc950bd7bc19c22a934
[ "CC-BY-4.0" ]
null
null
null
Agda/09-fundamental-theorem.agda
hemangandhi/HoTT-Intro
09c710bf9c31ba88be144cc950bd7bc19c22a934
[ "CC-BY-4.0" ]
null
null
null
{-# OPTIONS --without-K --exact-split #-} module 09-fundamental-theorem where import 08-contractible-types open 08-contractible-types public -- Section 8.1 Families of equivalences {- Any family of maps induces a map on the total spaces. -} tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → ((x : A) → B x → C x) → ( Σ A B → Σ A C) tot f t = pair (pr1 t) (f (pr1 t) (pr2 t)) {- We show that for any family of maps, the fiber of the induced map on total spaces are equivalent to the fibers of the maps in the family. -} fib-ftr-fib-tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → fib (tot f) t → fib (f (pr1 t)) (pr2 t) fib-ftr-fib-tot f .(pair x (f x y)) (pair (pair x y) refl) = pair y refl fib-tot-fib-ftr : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → fib (f (pr1 t)) (pr2 t) → fib (tot f) t fib-tot-fib-ftr F (pair a .(F a y)) (pair y refl) = pair (pair a y) refl issec-fib-tot-fib-ftr : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → ((fib-ftr-fib-tot f t) ∘ (fib-tot-fib-ftr f t)) ~ id issec-fib-tot-fib-ftr f (pair x .(f x y)) (pair y refl) = refl isretr-fib-tot-fib-ftr : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → ((fib-tot-fib-ftr f t) ∘ (fib-ftr-fib-tot f t)) ~ id isretr-fib-tot-fib-ftr f .(pair x (f x y)) (pair (pair x y) refl) = refl abstract is-equiv-fib-ftr-fib-tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → is-equiv (fib-ftr-fib-tot f t) is-equiv-fib-ftr-fib-tot f t = is-equiv-has-inverse ( fib-tot-fib-ftr f t) ( issec-fib-tot-fib-ftr f t) ( isretr-fib-tot-fib-ftr f t) abstract is-equiv-fib-tot-fib-ftr : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → is-equiv (fib-tot-fib-ftr f t) is-equiv-fib-tot-fib-ftr f t = is-equiv-has-inverse ( fib-ftr-fib-tot f t) ( isretr-fib-tot-fib-ftr f t) ( issec-fib-tot-fib-ftr f t) {- Now that we have shown that the fibers of the induced map on total spaces are equivalent to the fibers of the maps in the family, it follows that the induced map on total spaces is an equivalence if and only if each map in the family is an equivalence. -} is-fiberwise-equiv : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → ((x : A) → B x → C x) → UU (i ⊔ (j ⊔ k)) is-fiberwise-equiv f = (x : _) → is-equiv (f x) abstract is-equiv-tot-is-fiberwise-equiv : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → {f : (x : A) → B x → C x} → is-fiberwise-equiv f → is-equiv (tot f ) is-equiv-tot-is-fiberwise-equiv {f = f} H = is-equiv-is-contr-map ( λ t → is-contr-is-equiv _ ( fib-ftr-fib-tot f t) ( is-equiv-fib-ftr-fib-tot f t) ( is-contr-map-is-equiv (H _) (pr2 t))) abstract is-fiberwise-equiv-is-equiv-tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → is-equiv (tot f) → is-fiberwise-equiv f is-fiberwise-equiv-is-equiv-tot {A = A} {B} {C} f is-equiv-tot-f x = is-equiv-is-contr-map ( λ z → is-contr-is-equiv' ( fib (tot f) (pair x z)) ( fib-ftr-fib-tot f (pair x z)) ( is-equiv-fib-ftr-fib-tot f (pair x z)) ( is-contr-map-is-equiv is-equiv-tot-f (pair x z))) equiv-tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → ((x : A) → B x ≃ C x) → (Σ A B) ≃ (Σ A C) equiv-tot e = pair ( tot (λ x → map-equiv (e x))) ( is-equiv-tot-is-fiberwise-equiv (λ x → is-equiv-map-equiv (e x))) {- In the second part of this section we show that any equivalence f on base types also induces an equivalence on total spaces. -} Σ-map-base-map : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → Σ A (λ x → C (f x)) → Σ B C Σ-map-base-map f C s = pair (f (pr1 s)) (pr2 s) {- The proof is similar to the previous part: we show that the fibers of f and Σ-kap-base-map f C are equivalent. -} fib-Σ-map-base-map-fib : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → ( t : Σ B C) → fib f (pr1 t) → fib (Σ-map-base-map f C) t fib-Σ-map-base-map-fib f C (pair .(f x) z) (pair x refl) = pair (pair x z) refl fib-fib-Σ-map-base-map : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → ( t : Σ B C) → fib (Σ-map-base-map f C) t → fib f (pr1 t) fib-fib-Σ-map-base-map f C .(pair (f x) z) (pair (pair x z) refl) = pair x refl issec-fib-fib-Σ-map-base-map : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → ( t : Σ B C) → ( (fib-Σ-map-base-map-fib f C t) ∘ (fib-fib-Σ-map-base-map f C t)) ~ id issec-fib-fib-Σ-map-base-map f C .(pair (f x) z) (pair (pair x z) refl) = refl isretr-fib-fib-Σ-map-base-map : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → ( t : Σ B C) → ( (fib-fib-Σ-map-base-map f C t) ∘ (fib-Σ-map-base-map-fib f C t)) ~ id isretr-fib-fib-Σ-map-base-map f C (pair .(f x) z) (pair x refl) = refl abstract is-equiv-fib-Σ-map-base-map-fib : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → ( t : Σ B C) → is-equiv (fib-Σ-map-base-map-fib f C t) is-equiv-fib-Σ-map-base-map-fib f C t = is-equiv-has-inverse ( fib-fib-Σ-map-base-map f C t) ( issec-fib-fib-Σ-map-base-map f C t) ( isretr-fib-fib-Σ-map-base-map f C t) abstract is-contr-map-Σ-map-base-map : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (C : B → UU l3) (f : A → B) → is-contr-map f → is-contr-map (Σ-map-base-map f C) is-contr-map-Σ-map-base-map C f is-contr-f (pair y z) = is-contr-is-equiv' ( fib f y) ( fib-Σ-map-base-map-fib f C (pair y z)) ( is-equiv-fib-Σ-map-base-map-fib f C (pair y z)) ( is-contr-f y) abstract is-equiv-Σ-map-base-map : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (C : B → UU l3) (f : A → B) → is-equiv f → is-equiv (Σ-map-base-map f C) is-equiv-Σ-map-base-map C f is-equiv-f = is-equiv-is-contr-map ( is-contr-map-Σ-map-base-map C f (is-contr-map-is-equiv is-equiv-f)) {- Now we combine the two parts of this section. -} toto : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} (D : B → UU l4) (f : A → B) (g : (x : A) → C x → D (f x)) → Σ A C → Σ B D toto D f g t = pair (f (pr1 t)) (g (pr1 t) (pr2 t)) {- A special case of toto is the functoriality of the cartesian product. -} {- We construct the functoriality of cartesian products. -} functor-prod : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) → (A × B) → (C × D) functor-prod f g (pair a b) = pair (f a) (g b) functor-prod-pr1 : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) → (pr1 ∘ (functor-prod f g)) ~ (f ∘ pr1) functor-prod-pr1 f g (pair a b) = refl functor-prod-pr2 : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) → (pr2 ∘ (functor-prod f g)) ~ (g ∘ pr2) functor-prod-pr2 f g (pair a b) = refl {- For our convenience we show that the functorial action of cartesian products preserves identity maps, compositions, homotopies, and equivalences. -} functor-prod-id : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (functor-prod (id {A = A}) (id {A = B})) ~ id functor-prod-id (pair a b) = refl functor-prod-comp : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {E : UU l5} {F : UU l6} (f : A → C) (g : B → D) (h : C → E) (k : D → F) → functor-prod (h ∘ f) (k ∘ g) ~ ((functor-prod h k) ∘ (functor-prod f g)) functor-prod-comp f g h k (pair a b) = refl functor-prod-htpy : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {f f' : A → C} (H : f ~ f') {g g' : B → D} (K : g ~ g') → functor-prod f g ~ functor-prod f' g' functor-prod-htpy {f = f} {f'} H {g} {g'} K (pair a b) = eq-pair-triv (pair (H a) (K b)) abstract is-equiv-functor-prod : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) → is-equiv f → is-equiv g → is-equiv (functor-prod f g) is-equiv-functor-prod f g ( pair (pair sf issec-sf) (pair rf isretr-rf)) ( pair (pair sg issec-sg) (pair rg isretr-rg)) = pair ( pair ( functor-prod sf sg) ( ( htpy-inv (functor-prod-comp sf sg f g)) ∙h ( (functor-prod-htpy issec-sf issec-sg) ∙h functor-prod-id))) ( pair ( functor-prod rf rg) ( ( htpy-inv (functor-prod-comp f g rf rg)) ∙h ( (functor-prod-htpy isretr-rf isretr-rg) ∙h functor-prod-id))) {- triangle -} triangle-toto : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} (D : B → UU l4) (f : A → B) (g : (x : A) → C x → D (f x)) → (toto D f g) ~ ((Σ-map-base-map f D) ∘ (tot g)) triangle-toto D f g t = refl abstract is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} (D : B → UU l4) (f : A → B) (g : (x : A) → C x → D (f x)) → is-equiv f → (is-fiberwise-equiv g) → is-equiv (toto D f g) is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map D f g is-equiv-f is-fiberwise-equiv-g = is-equiv-comp ( toto D f g) ( Σ-map-base-map f D) ( tot g) ( triangle-toto D f g) ( is-equiv-tot-is-fiberwise-equiv is-fiberwise-equiv-g) ( is-equiv-Σ-map-base-map D f is-equiv-f) equiv-toto : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} (D : B → UU l4) (e : A ≃ B) (g : (x : A) → C x ≃ D (map-equiv e x)) → Σ A C ≃ Σ B D equiv-toto D e g = pair ( toto D (map-equiv e) (λ x → map-equiv (g x))) ( is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map D ( map-equiv e) ( λ x → map-equiv (g x)) ( is-equiv-map-equiv e) ( λ x → is-equiv-map-equiv (g x))) abstract is-fiberwise-equiv-is-equiv-toto-is-equiv-base-map : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} (D : B → UU l4) (f : A → B) (g : (x : A) → C x → D (f x)) → is-equiv f → is-equiv (toto D f g) → is-fiberwise-equiv g is-fiberwise-equiv-is-equiv-toto-is-equiv-base-map D f g is-equiv-f is-equiv-toto-fg = is-fiberwise-equiv-is-equiv-tot g ( is-equiv-right-factor ( toto D f g) ( Σ-map-base-map f D) ( tot g) ( triangle-toto D f g) ( is-equiv-Σ-map-base-map D f is-equiv-f) ( is-equiv-toto-fg)) -- Section 8.2 The fundamental theorem -- The general form of the fundamental theorem of identity types abstract fundamental-theorem-id : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → is-contr (Σ A B) → (f : (x : A) → Id a x → B x) → is-fiberwise-equiv f fundamental-theorem-id {A = A} a b is-contr-AB f = is-fiberwise-equiv-is-equiv-tot f ( is-equiv-is-contr (tot f) (is-contr-total-path a) is-contr-AB) abstract fundamental-theorem-id' : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) (f : (x : A) → Id a x → B x) → is-fiberwise-equiv f → is-contr (Σ A B) fundamental-theorem-id' {A = A} {B = B} a b f is-fiberwise-equiv-f = is-contr-is-equiv' ( Σ A (Id a)) ( tot f) ( is-equiv-tot-is-fiberwise-equiv is-fiberwise-equiv-f) ( is-contr-total-path a) -- The canonical form of the fundamental theorem of identity types abstract fundamental-theorem-id-J : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → is-contr (Σ A B) → is-fiberwise-equiv (ind-Id a (λ x p → B x) b) fundamental-theorem-id-J {i} {j} {A} {B} a b is-contr-AB = fundamental-theorem-id a b is-contr-AB (ind-Id a (λ x p → B x) b) -- The converse of the fundamental theorem of identity types abstract fundamental-theorem-id-J' : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → (is-fiberwise-equiv (ind-Id a (λ x p → B x) b)) → is-contr (Σ A B) fundamental-theorem-id-J' {i} {j} {A} {B} a b H = is-contr-is-equiv' ( Σ A (Id a)) ( tot (ind-Id a (λ x p → B x) b)) ( is-equiv-tot-is-fiberwise-equiv H) ( is-contr-total-path a) -- As an application we show that equivalences are embeddings. is-emb : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j) is-emb f = (x y : _) → is-equiv (ap f {x} {y}) _↪_ : {i j : Level} → UU i → UU j → UU (i ⊔ j) A ↪ B = Σ (A → B) is-emb map-emb : {i j : Level} {A : UU i} {B : UU j} → A ↪ B → A → B map-emb f = pr1 f is-emb-map-emb : { i j : Level} {A : UU i} {B : UU j} (f : A ↪ B) → is-emb (map-emb f) is-emb-map-emb f = pr2 f abstract is-emb-is-equiv : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → is-equiv f → is-emb f is-emb-is-equiv {i} {j} {A} {B} f is-equiv-f x = fundamental-theorem-id x refl ( is-contr-equiv ( fib f (f x)) ( equiv-tot (λ y → equiv-inv (f x) (f y))) ( is-contr-map-is-equiv is-equiv-f (f x))) ( λ y p → ap f p) equiv-ap : {i j : Level} {A : UU i} {B : UU j} (e : A ≃ B) (x y : A) → (Id x y) ≃ (Id (map-equiv e x) (map-equiv e y)) equiv-ap e x y = pair ( ap (map-equiv e) {x} {y}) ( is-emb-is-equiv (map-equiv e) (is-equiv-map-equiv e) x y) -- Section 7.3 Identity systems IND-identity-system : {i j : Level} (k : Level) {A : UU i} (B : A → UU j) (a : A) (b : B a) → UU _ IND-identity-system k {A} B a b = ( P : (x : A) (y : B x) → UU k) → sec (λ (h : (x : A) (y : B x) → P x y) → h a b) fam-Σ : {i j k : Level} {A : UU i} {B : A → UU j} (C : (x : A) → B x → UU k) → Σ A B → UU k fam-Σ C (pair x y) = C x y abstract ind-identity-system : {i j k : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → (is-contr-AB : is-contr (Σ A B)) (P : (x : A) → B x → UU k) → P a b → (x : A) (y : B x) → P x y ind-identity-system a b is-contr-AB P p x y = tr ( fam-Σ P) ( is-prop-is-contr' is-contr-AB (pair a b) (pair x y)) ( p) comp-identity-system : {i j k : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → (is-contr-AB : is-contr (Σ A B)) → (P : (x : A) → B x → UU k) (p : P a b) → Id (ind-identity-system a b is-contr-AB P p a b) p comp-identity-system a b is-contr-AB P p = ap ( λ t → tr (fam-Σ P) t p) ( is-prop-is-contr' ( is-prop-is-contr is-contr-AB (pair a b) (pair a b)) ( is-prop-is-contr' is-contr-AB (pair a b) (pair a b)) ( refl)) Ind-identity-system : {i j : Level} (k : Level) {A : UU i} {B : A → UU j} (a : A) (b : B a) → (is-contr-AB : is-contr (Σ A B)) → IND-identity-system k B a b Ind-identity-system k a b is-contr-AB P = pair ( ind-identity-system a b is-contr-AB P) ( comp-identity-system a b is-contr-AB P) contraction-total-space-IND-identity-system : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → IND-identity-system (i ⊔ j) B a b → (t : Σ A B) → Id (pair a b) t contraction-total-space-IND-identity-system a b ind (pair x y) = pr1 (ind (λ x' y' → Id (pair a b) (pair x' y'))) refl x y abstract is-contr-total-space-IND-identity-system : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → IND-identity-system (i ⊔ j) B a b → is-contr (Σ A B) is-contr-total-space-IND-identity-system a b ind = pair ( pair a b) ( contraction-total-space-IND-identity-system a b ind) abstract fundamental-theorem-id-IND-identity-system : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → IND-identity-system (i ⊔ j) B a b → (f : (x : A) → Id a x → B x) → (x : A) → is-equiv (f x) fundamental-theorem-id-IND-identity-system a b ind f = fundamental-theorem-id a b (is-contr-total-space-IND-identity-system a b ind) f -- Section 7.4 Disjointness of coproducts -- Raising universe levels postulate Raise : {l1 : Level} (l2 : Level) → (A : UU l1) → Σ (UU (l1 ⊔ l2)) (λ X → A ≃ X) abstract raise : {l1 : Level} (l2 : Level) → UU l1 → UU (l1 ⊔ l2) raise l2 A = pr1 (Raise l2 A) equiv-raise : {l1 : Level} (l2 : Level) (A : UU l1) → A ≃ raise l2 A equiv-raise l2 A = pr2 (Raise l2 A) map-raise : {l1 : Level} (l2 : Level) (A : UU l1) → A → raise l2 A map-raise l2 A = map-equiv (equiv-raise l2 A) is-equiv-map-raise : {l1 : Level} (l2 : Level) (A : UU l1) → is-equiv (map-raise l2 A) is-equiv-map-raise l2 A = is-equiv-map-equiv (equiv-raise l2 A) -- Lemmas about coproducts left-distributive-coprod-Σ-map : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → Σ (coprod A B) C → coprod (Σ A (λ x → C (inl x))) (Σ B (λ y → C (inr y))) left-distributive-coprod-Σ-map A B C (pair (inl x) z) = inl (pair x z) left-distributive-coprod-Σ-map A B C (pair (inr y) z) = inr (pair y z) inv-left-distributive-coprod-Σ-map : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → coprod (Σ A (λ x → C (inl x))) (Σ B (λ y → C (inr y))) → Σ (coprod A B) C inv-left-distributive-coprod-Σ-map A B C (inl (pair x z)) = pair (inl x) z inv-left-distributive-coprod-Σ-map A B C (inr (pair y z)) = pair (inr y) z issec-inv-left-distributive-coprod-Σ-map : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → ( (left-distributive-coprod-Σ-map A B C) ∘ (inv-left-distributive-coprod-Σ-map A B C)) ~ id issec-inv-left-distributive-coprod-Σ-map A B C (inl (pair x z)) = refl issec-inv-left-distributive-coprod-Σ-map A B C (inr (pair y z)) = refl isretr-inv-left-distributive-coprod-Σ-map : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → ( (inv-left-distributive-coprod-Σ-map A B C) ∘ (left-distributive-coprod-Σ-map A B C)) ~ id isretr-inv-left-distributive-coprod-Σ-map A B C (pair (inl x) z) = refl isretr-inv-left-distributive-coprod-Σ-map A B C (pair (inr y) z) = refl abstract is-equiv-left-distributive-coprod-Σ-map : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → is-equiv (left-distributive-coprod-Σ-map A B C) is-equiv-left-distributive-coprod-Σ-map A B C = is-equiv-has-inverse ( inv-left-distributive-coprod-Σ-map A B C) ( issec-inv-left-distributive-coprod-Σ-map A B C) ( isretr-inv-left-distributive-coprod-Σ-map A B C) equiv-left-distributive-coprod-Σ : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → Σ (coprod A B) C ≃ coprod (Σ A (λ x → C (inl x))) (Σ B (λ y → C (inr y))) equiv-left-distributive-coprod-Σ A B C = pair ( left-distributive-coprod-Σ-map A B C) ( is-equiv-left-distributive-coprod-Σ-map A B C) abstract is-equiv-map-to-empty : {l : Level} {A : UU l} (f : A → empty) → is-equiv f is-equiv-map-to-empty f = is-equiv-has-inverse ind-empty ind-empty ( λ x → ind-empty {P = λ t → Id (ind-empty (f x)) x} (f x)) map-Σ-empty-fam : {l : Level} (A : UU l) → Σ A (λ x → empty) → empty map-Σ-empty-fam A (pair x ()) abstract is-equiv-map-Σ-empty-fam : {l : Level} (A : UU l) → is-equiv (map-Σ-empty-fam A) is-equiv-map-Σ-empty-fam A = is-equiv-map-to-empty (map-Σ-empty-fam A) equiv-Σ-empty-fam : {l : Level} (A : UU l) → Σ A (λ x → empty) ≃ empty equiv-Σ-empty-fam A = pair (map-Σ-empty-fam A) (is-equiv-map-Σ-empty-fam A) -- The identity types of coproducts Eq-coprod : {l1 l2 : Level} (A : UU l1) (B : UU l2) → coprod A B → coprod A B → UU (l1 ⊔ l2) Eq-coprod {l1} {l2} A B (inl x) (inl y) = raise (l1 ⊔ l2) (Id x y) Eq-coprod {l1} {l2} A B (inl x) (inr y) = raise (l1 ⊔ l2) empty Eq-coprod {l1} {l2} A B (inr x) (inl y) = raise (l1 ⊔ l2) empty Eq-coprod {l1} {l2} A B (inr x) (inr y) = raise (l1 ⊔ l2) (Id x y) reflexive-Eq-coprod : {l1 l2 : Level} (A : UU l1) (B : UU l2) → (t : coprod A B) → Eq-coprod A B t t reflexive-Eq-coprod {l1} {l2} A B (inl x) = map-raise (l1 ⊔ l2) (Id x x) refl reflexive-Eq-coprod {l1} {l2} A B (inr x) = map-raise (l1 ⊔ l2) (Id x x) refl Eq-coprod-eq : {l1 l2 : Level} (A : UU l1) (B : UU l2) → (s t : coprod A B) → Id s t → Eq-coprod A B s t Eq-coprod-eq A B s .s refl = reflexive-Eq-coprod A B s abstract is-contr-total-Eq-coprod-inl : {l1 l2 : Level} (A : UU l1) (B : UU l2) (x : A) → is-contr (Σ (coprod A B) (Eq-coprod A B (inl x))) is-contr-total-Eq-coprod-inl A B x = is-contr-equiv ( coprod ( Σ A (λ y → Eq-coprod A B (inl x) (inl y))) ( Σ B (λ y → Eq-coprod A B (inl x) (inr y)))) ( equiv-left-distributive-coprod-Σ A B (Eq-coprod A B (inl x))) ( is-contr-equiv' ( coprod ( Σ A (Id x)) ( Σ B (λ y → empty))) ( equiv-functor-coprod ( equiv-tot (λ y → equiv-raise _ (Id x y))) ( equiv-tot (λ y → equiv-raise _ empty))) ( is-contr-equiv ( coprod (Σ A (Id x)) empty) ( equiv-functor-coprod ( equiv-id (Σ A (Id x))) ( equiv-Σ-empty-fam B)) ( is-contr-equiv' ( Σ A (Id x)) ( right-unit-law-coprod (Σ A (Id x))) ( is-contr-total-path x)))) abstract is-contr-total-Eq-coprod-inr : {l1 l2 : Level} (A : UU l1) (B : UU l2) (x : B) → is-contr (Σ (coprod A B) (Eq-coprod A B (inr x))) is-contr-total-Eq-coprod-inr A B x = is-contr-equiv ( coprod ( Σ A (λ y → Eq-coprod A B (inr x) (inl y))) ( Σ B (λ y → Eq-coprod A B (inr x) (inr y)))) ( equiv-left-distributive-coprod-Σ A B (Eq-coprod A B (inr x))) ( is-contr-equiv' ( coprod (Σ A (λ y → empty)) (Σ B (Id x))) ( equiv-functor-coprod ( equiv-tot (λ y → equiv-raise _ empty)) ( equiv-tot (λ y → equiv-raise _ (Id x y)))) ( is-contr-equiv ( coprod empty (Σ B (Id x))) ( equiv-functor-coprod ( equiv-Σ-empty-fam A) ( equiv-id (Σ B (Id x)))) ( is-contr-equiv' ( Σ B (Id x)) ( left-unit-law-coprod (Σ B (Id x))) ( is-contr-total-path x)))) abstract is-equiv-Eq-coprod-eq-inl : {l1 l2 : Level} (A : UU l1) (B : UU l2) (x : A) → is-fiberwise-equiv (Eq-coprod-eq A B (inl x)) is-equiv-Eq-coprod-eq-inl A B x = fundamental-theorem-id ( inl x) ( reflexive-Eq-coprod A B (inl x)) ( is-contr-total-Eq-coprod-inl A B x) ( Eq-coprod-eq A B (inl x)) abstract is-equiv-Eq-coprod-eq-inr : {l1 l2 : Level} (A : UU l1) (B : UU l2) (x : B) → is-fiberwise-equiv (Eq-coprod-eq A B (inr x)) is-equiv-Eq-coprod-eq-inr A B x = fundamental-theorem-id ( inr x) ( reflexive-Eq-coprod A B (inr x)) ( is-contr-total-Eq-coprod-inr A B x) ( Eq-coprod-eq A B (inr x)) abstract is-equiv-Eq-coprod-eq : {l1 l2 : Level} (A : UU l1) (B : UU l2) (s : coprod A B) → is-fiberwise-equiv (Eq-coprod-eq A B s) is-equiv-Eq-coprod-eq A B (inl x) = is-equiv-Eq-coprod-eq-inl A B x is-equiv-Eq-coprod-eq A B (inr x) = is-equiv-Eq-coprod-eq-inr A B x map-compute-eq-coprod-inl-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x x' : A) → Id (inl {B = B} x) (inl {B = B} x') → Id x x' map-compute-eq-coprod-inl-inl x x' = ( inv-is-equiv (is-equiv-map-raise _ (Id x x'))) ∘ ( Eq-coprod-eq _ _ (inl x) (inl x')) abstract is-equiv-map-compute-eq-coprod-inl-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x x' : A) → is-equiv (map-compute-eq-coprod-inl-inl {B = B} x x') is-equiv-map-compute-eq-coprod-inl-inl x x' = is-equiv-comp ( map-compute-eq-coprod-inl-inl x x') ( inv-is-equiv (is-equiv-map-raise _ (Id x x'))) ( Eq-coprod-eq _ _ (inl x) (inl x')) ( refl-htpy) ( is-equiv-Eq-coprod-eq _ _ (inl x) (inl x')) ( is-equiv-inv-is-equiv (is-equiv-map-raise _ (Id x x'))) compute-eq-coprod-inl-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x x' : A) → (Id (inl {B = B} x) (inl x')) ≃ (Id x x') compute-eq-coprod-inl-inl x x' = pair ( map-compute-eq-coprod-inl-inl x x') ( is-equiv-map-compute-eq-coprod-inl-inl x x') map-compute-eq-coprod-inl-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x : A) (y' : B) → Id (inl x) (inr y') → empty map-compute-eq-coprod-inl-inr x y' = ( inv-is-equiv (is-equiv-map-raise _ empty)) ∘ ( Eq-coprod-eq _ _ (inl x) (inr y')) abstract is-equiv-map-compute-eq-coprod-inl-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x : A) (y' : B) → is-equiv (map-compute-eq-coprod-inl-inr x y') is-equiv-map-compute-eq-coprod-inl-inr x y' = is-equiv-comp ( map-compute-eq-coprod-inl-inr x y') ( inv-is-equiv (is-equiv-map-raise _ empty)) ( Eq-coprod-eq _ _ (inl x) (inr y')) ( refl-htpy) ( is-equiv-Eq-coprod-eq _ _ (inl x) (inr y')) ( is-equiv-inv-is-equiv (is-equiv-map-raise _ empty)) compute-eq-coprod-inl-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x : A) (y' : B) → (Id (inl x) (inr y')) ≃ empty compute-eq-coprod-inl-inr x y' = pair ( map-compute-eq-coprod-inl-inr x y') ( is-equiv-map-compute-eq-coprod-inl-inr x y') map-compute-eq-coprod-inr-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y : B) (x' : A) → (Id (inr {A = A} y) (inl x')) → empty map-compute-eq-coprod-inr-inl y x' = ( inv-is-equiv (is-equiv-map-raise _ empty)) ∘ ( Eq-coprod-eq _ _ (inr y) (inl x')) abstract is-equiv-map-compute-eq-coprod-inr-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y : B) (x' : A) → is-equiv (map-compute-eq-coprod-inr-inl y x') is-equiv-map-compute-eq-coprod-inr-inl y x' = is-equiv-comp ( map-compute-eq-coprod-inr-inl y x') ( inv-is-equiv (is-equiv-map-raise _ empty)) ( Eq-coprod-eq _ _ (inr y) (inl x')) ( refl-htpy) ( is-equiv-Eq-coprod-eq _ _ (inr y) (inl x')) ( is-equiv-inv-is-equiv (is-equiv-map-raise _ empty)) compute-eq-coprod-inr-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y : B) (x' : A) → (Id (inr y) (inl x')) ≃ empty compute-eq-coprod-inr-inl y x' = pair ( map-compute-eq-coprod-inr-inl y x') ( is-equiv-map-compute-eq-coprod-inr-inl y x') map-compute-eq-coprod-inr-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y y' : B) → (Id (inr {A = A} y) (inr y')) → Id y y' map-compute-eq-coprod-inr-inr y y' = ( inv-is-equiv (is-equiv-map-raise _ (Id y y'))) ∘ ( Eq-coprod-eq _ _ (inr y) (inr y')) abstract is-equiv-map-compute-eq-coprod-inr-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y y' : B) → is-equiv (map-compute-eq-coprod-inr-inr {A = A} y y') is-equiv-map-compute-eq-coprod-inr-inr y y' = is-equiv-comp ( map-compute-eq-coprod-inr-inr y y') ( inv-is-equiv (is-equiv-map-raise _ (Id y y'))) ( Eq-coprod-eq _ _ (inr y) (inr y')) ( refl-htpy) ( is-equiv-Eq-coprod-eq _ _ (inr y) (inr y')) ( is-equiv-inv-is-equiv (is-equiv-map-raise _ (Id y y'))) compute-eq-coprod-inr-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y y' : B) → (Id (inr {A = A} y) (inr y')) ≃ (Id y y') compute-eq-coprod-inr-inr y y' = pair ( map-compute-eq-coprod-inr-inr y y') ( is-equiv-map-compute-eq-coprod-inr-inr y y') -- Exercises -- Exercise 7.1 abstract is-emb-empty : {i : Level} (A : UU i) → is-emb (ind-empty {P = λ x → A}) is-emb-empty A = ind-empty -- Exercise 7.2 path-adjointness-equiv : {i j : Level} {A : UU i} {B : UU j} (e : A ≃ B) (x : A) (y : B) → (Id (map-equiv e x) y) ≃ (Id x (inv-map-equiv e y)) path-adjointness-equiv e x y = ( inv-equiv (equiv-ap e x (inv-map-equiv e y))) ∘e ( equiv-concat' ( map-equiv e x) ( inv (issec-inv-is-equiv (is-equiv-map-equiv e) y))) -- Exercise 7.3 abstract is-equiv-top-is-equiv-left-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : C → D) (h : A → C) (i : B → D) (H : (i ∘ f) ~ (g ∘ h)) → is-equiv i → is-equiv f → is-equiv g → is-equiv h is-equiv-top-is-equiv-left-square f g h i H Ei Ef Eg = is-equiv-right-factor (i ∘ f) g h H Eg ( is-equiv-comp (i ∘ f) i f refl-htpy Ef Ei) abstract is-emb-htpy : {i j : Level} {A : UU i} {B : UU j} (f g : A → B) → (f ~ g) → is-emb g → is-emb f is-emb-htpy f g H is-emb-g x y = is-equiv-top-is-equiv-left-square ( ap g) ( concat' (f x) (H y)) ( ap f) ( concat (H x) (g y)) ( htpy-nat H) ( is-equiv-concat (H x) (g y)) ( is-emb-g x y) ( is-equiv-concat' (f x) (H y)) abstract is-emb-htpy' : {i j : Level} {A : UU i} {B : UU j} (f g : A → B) → (f ~ g) → is-emb f → is-emb g is-emb-htpy' f g H is-emb-f = is-emb-htpy g f (htpy-inv H) is-emb-f -- Exercise 7.4 abstract is-emb-comp : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-emb g → is-emb h → is-emb f is-emb-comp f g h H is-emb-g is-emb-h = is-emb-htpy f (g ∘ h) H ( λ x y → is-equiv-comp (ap (g ∘ h)) (ap g) (ap h) (ap-comp g h) ( is-emb-h x y) ( is-emb-g (h x) (h y))) abstract is-emb-right-factor : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-emb g → is-emb f → is-emb h is-emb-right-factor f g h H is-emb-g is-emb-f x y = is-equiv-right-factor ( ap (g ∘ h)) ( ap g) ( ap h) ( ap-comp g h) ( is-emb-g (h x) (h y)) ( is-emb-htpy (g ∘ h) f (htpy-inv H) is-emb-f x y) abstract is-emb-triangle-is-equiv : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (e : A → B) (H : f ~ (g ∘ e)) → is-equiv e → is-emb g → is-emb f is-emb-triangle-is-equiv f g e H is-equiv-e is-emb-g = is-emb-comp f g e H is-emb-g (is-emb-is-equiv e is-equiv-e) abstract is-emb-triangle-is-equiv' : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (e : A → B) (H : f ~ (g ∘ e)) → is-equiv e → is-emb f → is-emb g is-emb-triangle-is-equiv' f g e H is-equiv-e is-emb-f = is-emb-triangle-is-equiv g f ( inv-is-equiv is-equiv-e) ( triangle-section f g e H ( pair ( inv-is-equiv is-equiv-e) ( issec-inv-is-equiv is-equiv-e))) ( is-equiv-inv-is-equiv is-equiv-e) ( is-emb-f) -- Exercise 7.5 abstract is-emb-inl : {i j : Level} (A : UU i) (B : UU j) → is-emb (inl {A = A} {B = B}) is-emb-inl A B x = fundamental-theorem-id x refl ( is-contr-is-equiv ( Σ A (λ y → Eq-coprod A B (inl x) (inl y))) ( tot (λ y → Eq-coprod-eq A B (inl x) (inl y))) ( is-equiv-tot-is-fiberwise-equiv ( λ y → is-equiv-Eq-coprod-eq A B (inl x) (inl y))) ( is-contr-equiv' ( Σ A (Id x)) ( equiv-tot (λ y → equiv-raise _ (Id x y))) ( is-contr-total-path x))) ( λ y → ap inl) abstract is-emb-inr : {i j : Level} (A : UU i) (B : UU j) → is-emb (inr {A = A} {B = B}) is-emb-inr A B x = fundamental-theorem-id x refl ( is-contr-is-equiv ( Σ B (λ y → Eq-coprod A B (inr x) (inr y))) ( tot (λ y → Eq-coprod-eq A B (inr x) (inr y))) ( is-equiv-tot-is-fiberwise-equiv ( λ y → is-equiv-Eq-coprod-eq A B (inr x) (inr y))) ( is-contr-equiv' ( Σ B (Id x)) ( equiv-tot (λ y → equiv-raise _ (Id x y))) ( is-contr-total-path x))) ( λ y → ap inr) -- Exercise 7.6 -- Exercise 7.7 tot-htpy : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} {f g : (x : A) → B x → C x} → (H : (x : A) → f x ~ g x) → tot f ~ tot g tot-htpy H (pair x y) = eq-pair refl (H x y) tot-id : {i j : Level} {A : UU i} (B : A → UU j) → (tot (λ x (y : B x) → y)) ~ id tot-id B (pair x y) = refl tot-comp : {i j j' j'' : Level} {A : UU i} {B : A → UU j} {B' : A → UU j'} {B'' : A → UU j''} (f : (x : A) → B x → B' x) (g : (x : A) → B' x → B'' x) → tot (λ x → (g x) ∘ (f x)) ~ ((tot g) ∘ (tot f)) tot-comp f g (pair x y) = refl -- Exercise 7.8 abstract fundamental-theorem-id-retr : {i j : Level} {A : UU i} {B : A → UU j} (a : A) → (i : (x : A) → B x → Id a x) → (R : (x : A) → retr (i x)) → is-fiberwise-equiv i fundamental-theorem-id-retr {_} {_} {A} {B} a i R = is-fiberwise-equiv-is-equiv-tot i ( is-equiv-is-contr (tot i) ( is-contr-retract-of (Σ _ (λ y → Id a y)) ( pair (tot i) ( pair (tot λ x → pr1 (R x)) ( ( htpy-inv (tot-comp i (λ x → pr1 (R x)))) ∙h ( ( tot-htpy λ x → pr2 (R x)) ∙h (tot-id B))))) ( is-contr-total-path a)) ( is-contr-total-path a)) abstract is-equiv-sec-is-equiv : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (sec-f : sec f) → is-equiv (pr1 sec-f) → is-equiv f is-equiv-sec-is-equiv {A = A} {B = B} f (pair g issec-g) is-equiv-sec-f = let h : A → B h = inv-is-equiv is-equiv-sec-f in is-equiv-htpy h ( ( htpy-left-whisk f (htpy-inv (issec-inv-is-equiv is-equiv-sec-f))) ∙h ( htpy-right-whisk issec-g h)) ( is-equiv-inv-is-equiv is-equiv-sec-f) abstract fundamental-theorem-id-sec : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (f : (x : A) → Id a x → B x) → ((x : A) → sec (f x)) → is-fiberwise-equiv f fundamental-theorem-id-sec {A = A} {B = B} a f sec-f x = let i : (x : A) → B x → Id a x i = λ x → pr1 (sec-f x) retr-i : (x : A) → retr (i x) retr-i = λ x → pair (f x) (pr2 (sec-f x)) is-fiberwise-equiv-i : is-fiberwise-equiv i is-fiberwise-equiv-i = fundamental-theorem-id-retr a i retr-i in is-equiv-sec-is-equiv (f x) (sec-f x) (is-fiberwise-equiv-i x) -- Exercise 7.9 abstract is-emb-sec-ap : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → ((x y : A) → sec (ap f {x = x} {y = y})) → is-emb f is-emb-sec-ap f sec-ap-f x = fundamental-theorem-id-sec x (λ y → ap f {y = y}) (sec-ap-f x) -- Exercise 7.10 coherence-is-half-adjoint-equivalence : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (g : B → A) (G : (f ∘ g) ~ id) (H : (g ∘ f) ~ id) → UU (l1 ⊔ l2) coherence-is-half-adjoint-equivalence f g G H = ( htpy-right-whisk G f) ~ (htpy-left-whisk f H) is-half-adjoint-equivalence : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → UU (l1 ⊔ l2) is-half-adjoint-equivalence {A = A} {B = B} f = Σ (B → A) ( λ g → Σ ((f ∘ g) ~ id) ( λ G → Σ ((g ∘ f) ~ id) (coherence-is-half-adjoint-equivalence f g G))) is-path-split : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → UU (l1 ⊔ l2) is-path-split {A = A} {B = B} f = sec f × ((x y : A) → sec (ap f {x = x} {y = y})) abstract is-path-split-is-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-equiv f → is-path-split f is-path-split-is-equiv f is-equiv-f = pair (pr1 is-equiv-f) (λ x y → pr1 (is-emb-is-equiv f is-equiv-f x y)) abstract is-half-adjoint-equivalence-is-path-split : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-path-split f → is-half-adjoint-equivalence f is-half-adjoint-equivalence-is-path-split {A = A} {B = B} f ( pair (pair g issec-g) sec-ap-f) = let φ : ((x : A) → fib (ap f) (issec-g (f x))) → Σ ((g ∘ f) ~ id) ( λ H → (htpy-right-whisk issec-g f) ~ (htpy-left-whisk f H)) φ = ( tot (λ H' → htpy-inv)) ∘ ( λ s → pair (λ x → pr1 (s x)) (λ x → pr2 (s x))) in pair g ( pair issec-g ( φ (λ x → pair ( pr1 (sec-ap-f (g (f x)) x) (issec-g (f x))) ( pr2 (sec-ap-f (g (f x)) x) (issec-g (f x)))))) abstract is-equiv-is-half-adjoint-equivalence : { l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-half-adjoint-equivalence f → is-equiv f is-equiv-is-half-adjoint-equivalence f (pair g (pair G (pair H K))) = is-equiv-has-inverse g G H abstract is-equiv-is-path-split : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-path-split f → is-equiv f is-equiv-is-path-split f = ( is-equiv-is-half-adjoint-equivalence f) ∘ ( is-half-adjoint-equivalence-is-path-split f) abstract is-half-adjoint-equivalence-is-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-equiv f → is-half-adjoint-equivalence f is-half-adjoint-equivalence-is-equiv f = ( is-half-adjoint-equivalence-is-path-split f) ∘ (is-path-split-is-equiv f) -- Exercise 7.11 abstract is-equiv-top-is-equiv-bottom-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : C → D) (h : A → C) (i : B → D) (H : (i ∘ f) ~ (g ∘ h)) → (is-equiv f) → (is-equiv g) → (is-equiv i) → (is-equiv h) is-equiv-top-is-equiv-bottom-square f g h i H is-equiv-f is-equiv-g is-equiv-i = is-equiv-right-factor (i ∘ f) g h H is-equiv-g ( is-equiv-comp' i f is-equiv-f is-equiv-i) abstract is-equiv-bottom-is-equiv-top-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : C → D) (h : A → C) (i : B → D) (H : (i ∘ f) ~ (g ∘ h)) → (is-equiv f) → (is-equiv g) → (is-equiv h) → (is-equiv i) is-equiv-bottom-is-equiv-top-square f g h i H is-equiv-f is-equiv-g is-equiv-h = is-equiv-left-factor' i f ( is-equiv-comp (i ∘ f) g h H is-equiv-h is-equiv-g) is-equiv-f abstract is-equiv-left-is-equiv-right-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : C → D) (h : A → C) (i : B → D) (H : (i ∘ f) ~ (g ∘ h)) → (is-equiv h) → (is-equiv i) → (is-equiv g) → (is-equiv f) is-equiv-left-is-equiv-right-square f g h i H is-equiv-h is-equiv-i is-equiv-g = is-equiv-right-factor' i f is-equiv-i ( is-equiv-comp (i ∘ f) g h H is-equiv-h is-equiv-g) abstract is-equiv-right-is-equiv-left-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : C → D) (h : A → C) (i : B → D) (H : (i ∘ f) ~ (g ∘ h)) → (is-equiv h) → (is-equiv i) → (is-equiv f) → (is-equiv g) is-equiv-right-is-equiv-left-square f g h i H is-equiv-h is-equiv-i is-equiv-f = is-equiv-left-factor (i ∘ f) g h H ( is-equiv-comp' i f is-equiv-f is-equiv-i) ( is-equiv-h) fib-triangle : {i j k : Level} {X : UU i} {A : UU j} {B : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) (x : X) → (fib f x) → (fib g x) fib-triangle f g h H .(f a) (pair a refl) = pair (h a) (inv (H a)) square-tot-fib-triangle : {i j k : Level} {X : UU i} {A : UU j} {B : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → (h ∘ (Σ-fib-to-domain f)) ~ ((Σ-fib-to-domain g) ∘ (tot (fib-triangle f g h H))) square-tot-fib-triangle f g h H (pair .(f a) (pair a refl)) = refl abstract is-fiberwise-equiv-is-equiv-triangle : {i j k : Level} {X : UU i} {A : UU j} {B : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → (E : is-equiv h) → is-fiberwise-equiv (fib-triangle f g h H) is-fiberwise-equiv-is-equiv-triangle f g h H E = is-fiberwise-equiv-is-equiv-tot ( fib-triangle f g h H) ( is-equiv-top-is-equiv-bottom-square ( Σ-fib-to-domain f) ( Σ-fib-to-domain g) ( tot (fib-triangle f g h H)) ( h) ( square-tot-fib-triangle f g h H) ( is-equiv-Σ-fib-to-domain f) ( is-equiv-Σ-fib-to-domain g) ( E)) abstract is-equiv-triangle-is-fiberwise-equiv : {i j k : Level} {X : UU i} {A : UU j} {B : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → (E : is-fiberwise-equiv (fib-triangle f g h H)) → is-equiv h is-equiv-triangle-is-fiberwise-equiv f g h H E = is-equiv-bottom-is-equiv-top-square ( Σ-fib-to-domain f) ( Σ-fib-to-domain g) ( tot (fib-triangle f g h H)) ( h) ( square-tot-fib-triangle f g h H) ( is-equiv-Σ-fib-to-domain f) ( is-equiv-Σ-fib-to-domain g) ( is-equiv-tot-is-fiberwise-equiv E) -- Extra material {- In order to show that the total space of htpy-cone is contractible, we give a general construction that helps us characterize the identity type of a structure. This construction is called is-contr-total-Eq-structure. We first give some definitions that help us with the construction of is-contr-total-Eq-structure. -} swap-total-Eq-structure : {l1 l2 l3 l4 : Level} {A : UU l1} (B : A → UU l2) (C : A → UU l3) (D : (x : A) → B x → C x → UU l4) → Σ (Σ A B) (λ t → Σ (C (pr1 t)) (D (pr1 t) (pr2 t))) → Σ (Σ A C) (λ t → Σ (B (pr1 t)) (λ y → D (pr1 t) y (pr2 t))) swap-total-Eq-structure B C D (pair (pair a b) (pair c d)) = pair (pair a c) (pair b d) htpy-swap-total-Eq-structure : {l1 l2 l3 l4 : Level} {A : UU l1} (B : A → UU l2) (C : A → UU l3) (D : (x : A) → B x → C x → UU l4) → ( ( swap-total-Eq-structure B C D) ∘ ( swap-total-Eq-structure C B (λ x z y → D x y z))) ~ id htpy-swap-total-Eq-structure B C D (pair (pair a b) (pair c d)) = refl abstract is-equiv-swap-total-Eq-structure : {l1 l2 l3 l4 : Level} {A : UU l1} (B : A → UU l2) (C : A → UU l3) (D : (x : A) → B x → C x → UU l4) → is-equiv (swap-total-Eq-structure B C D) is-equiv-swap-total-Eq-structure B C D = is-equiv-has-inverse ( swap-total-Eq-structure C B (λ x z y → D x y z)) ( htpy-swap-total-Eq-structure B C D) ( htpy-swap-total-Eq-structure C B (λ x z y → D x y z)) abstract is-contr-Σ : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-contr A → ((x : A) → is-contr (B x)) → is-contr (Σ A B) is-contr-Σ {A = A} {B = B} is-contr-A is-contr-B = is-contr-equiv' ( B (center is-contr-A)) ( left-unit-law-Σ B is-contr-A) ( is-contr-B (center is-contr-A)) abstract is-contr-Σ' : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-contr A → (a : A) → is-contr (B a) → is-contr (Σ A B) is-contr-Σ' {A = A} {B} is-contr-A a is-contr-B = is-contr-is-equiv' ( B a) ( left-unit-law-Σ-map-gen B is-contr-A a) ( is-equiv-left-unit-law-Σ-map-gen B is-contr-A a) ( is-contr-B) abstract is-contr-total-Eq-structure : { l1 l2 l3 l4 : Level} { A : UU l1} {B : A → UU l2} {C : A → UU l3} ( D : (x : A) → B x → C x → UU l4) → ( is-contr-AC : is-contr (Σ A C)) → ( t : Σ A C) → is-contr (Σ (B (pr1 t)) (λ y → D (pr1 t) y (pr2 t))) → is-contr (Σ (Σ A B) (λ t → Σ (C (pr1 t)) (D (pr1 t) (pr2 t)))) is-contr-total-Eq-structure {A = A} {B = B} {C = C} D is-contr-AC t is-contr-BD = is-contr-is-equiv ( Σ (Σ A C) (λ t → Σ (B (pr1 t)) (λ y → D (pr1 t) y (pr2 t)))) ( swap-total-Eq-structure B C D) ( is-equiv-swap-total-Eq-structure B C D) ( is-contr-Σ' is-contr-AC t is-contr-BD) -- Characterizing the identity type of a fiber as the fiber of the action on -- paths fib-ap-eq-fib-fiberwise : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {b : B} (s t : fib f b) (p : Id (pr1 s) (pr1 t)) → (Id (tr (λ (a : A) → Id (f a) b) p (pr2 s)) (pr2 t)) → (Id (ap f p) ((pr2 s) ∙ (inv (pr2 t)))) fib-ap-eq-fib-fiberwise f (pair .x' p) (pair x' refl) refl = inv ∘ (concat right-unit refl) abstract is-fiberwise-equiv-fib-ap-eq-fib-fiberwise : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {b : B} (s t : fib f b) → is-fiberwise-equiv (fib-ap-eq-fib-fiberwise f s t) is-fiberwise-equiv-fib-ap-eq-fib-fiberwise f (pair x y) (pair .x refl) refl = is-equiv-comp ( fib-ap-eq-fib-fiberwise f (pair x y) (pair x refl) refl) ( inv) ( concat right-unit refl) ( refl-htpy) ( is-equiv-concat right-unit refl) ( is-equiv-inv (y ∙ refl) refl) fib-ap-eq-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {b : B} (s t : fib f b) → Id s t → fib (ap f {x = pr1 s} {y = pr1 t}) ((pr2 s) ∙ (inv (pr2 t))) fib-ap-eq-fib f s .s refl = pair refl (inv (right-inv (pr2 s))) triangle-fib-ap-eq-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {b : B} (s t : fib f b) → (fib-ap-eq-fib f s t) ~ ((tot (fib-ap-eq-fib-fiberwise f s t)) ∘ (pair-eq {s = s} {t})) triangle-fib-ap-eq-fib f (pair x refl) .(pair x refl) refl = refl abstract is-equiv-fib-ap-eq-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {b : B} (s t : fib f b) → is-equiv (fib-ap-eq-fib f s t) is-equiv-fib-ap-eq-fib f s t = is-equiv-comp ( fib-ap-eq-fib f s t) ( tot (fib-ap-eq-fib-fiberwise f s t)) ( pair-eq {s = s} {t}) ( triangle-fib-ap-eq-fib f s t) ( is-equiv-pair-eq s t) ( is-equiv-tot-is-fiberwise-equiv ( is-fiberwise-equiv-fib-ap-eq-fib-fiberwise f s t)) eq-fib-fib-ap : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (x y : A) (q : Id (f x) (f y)) → Id (pair x q) (pair y (refl {x = f y})) → fib (ap f {x = x} {y = y}) q eq-fib-fib-ap f x y q = (tr (fib (ap f)) right-unit) ∘ (fib-ap-eq-fib f (pair x q) (pair y refl)) abstract is-equiv-eq-fib-fib-ap : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (x y : A) (q : Id (f x) (f y)) → is-equiv (eq-fib-fib-ap f x y q) is-equiv-eq-fib-fib-ap f x y q = is-equiv-comp ( eq-fib-fib-ap f x y q) ( tr (fib (ap f)) right-unit) ( fib-ap-eq-fib f (pair x q) (pair y refl)) ( refl-htpy) ( is-equiv-fib-ap-eq-fib f (pair x q) (pair y refl)) ( is-equiv-tr (fib (ap f)) right-unit) -- Comparing fib and fib' fib'-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (y : B) → fib f y → fib' f y fib'-fib f y t = tot (λ x → inv) t abstract is-equiv-fib'-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → is-fiberwise-equiv (fib'-fib f) is-equiv-fib'-fib f y = is-equiv-tot-is-fiberwise-equiv (λ x → is-equiv-inv (f x) y)
35.776388
97
0.530465
3973eafe9462cda3ba36254bc14efdb966434003
1,226
agda
Agda
notes/thesis/report/LogicalFramework/CommAddition.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/thesis/report/LogicalFramework/CommAddition.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/thesis/report/LogicalFramework/CommAddition.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- A Peano arithmetic proof without using a where clause ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LogicalFramework.CommAddition where open import Common.FOL.Relation.Binary.EqReasoning open import PA.Axiomatic.Standard.Base ------------------------------------------------------------------------------ postulate +-rightIdentity : ∀ n → n + zero ≡ n x+Sy≡S[x+y] : ∀ m n → m + succ n ≡ succ (m + n) succCong : ∀ {m n} → m ≡ n → succ m ≡ succ n +-leftIdentity : ∀ n → zero + n ≡ n +-leftIdentity = PA₃ A : ℕ → Set A m = ∀ n → m + n ≡ n + m A0 : A zero A0 n = zero + n ≡⟨ +-leftIdentity n ⟩ n ≡⟨ sym (+-rightIdentity n) ⟩ n + zero ∎ is : ∀ m → A m → A (succ m) is m ih n = succ m + n ≡⟨ PA₄ m n ⟩ succ (m + n) ≡⟨ succCong (ih n) ⟩ succ (n + m) ≡⟨ sym (x+Sy≡S[x+y] n m) ⟩ n + succ m ∎ +-comm : ∀ m n → m + n ≡ n + m +-comm = ℕ-ind A A0 is
29.190476
78
0.40783
1c98ffbd2fed23ade13879e2f3951fd1fb6ba635
11,716
agda
Agda
src/Tactic/Reflection/Equality.agda
lclem/agda-prelude
75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6
[ "MIT" ]
null
null
null
src/Tactic/Reflection/Equality.agda
lclem/agda-prelude
75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6
[ "MIT" ]
null
null
null
src/Tactic/Reflection/Equality.agda
lclem/agda-prelude
75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6
[ "MIT" ]
null
null
null
module Tactic.Reflection.Equality where open import Prelude open import Builtin.Reflection open import Builtin.Float instance EqVisibility : Eq Visibility _==_ {{EqVisibility}} visible visible = yes refl _==_ {{EqVisibility}} visible hidden = no (λ ()) _==_ {{EqVisibility}} visible instance′ = no (λ ()) _==_ {{EqVisibility}} hidden visible = no (λ ()) _==_ {{EqVisibility}} hidden hidden = yes refl _==_ {{EqVisibility}} hidden instance′ = no (λ ()) _==_ {{EqVisibility}} instance′ visible = no (λ ()) _==_ {{EqVisibility}} instance′ hidden = no (λ ()) _==_ {{EqVisibility}} instance′ instance′ = yes refl EqRelevance : Eq Relevance _==_ {{EqRelevance}} relevant relevant = yes refl _==_ {{EqRelevance}} relevant irrelevant = no (λ ()) _==_ {{EqRelevance}} irrelevant relevant = no (λ ()) _==_ {{EqRelevance}} irrelevant irrelevant = yes refl EqArgInfo : Eq ArgInfo _==_ {{EqArgInfo}} (arg-info v r) (arg-info v₁ r₁) = decEq₂ arg-info-inj₁ arg-info-inj₂ (v == v₁) (r == r₁) EqArg : ∀ {A} {{EqA : Eq A}} → Eq (Arg A) _==_ {{EqArg}} (arg i x) (arg i₁ x₁) = decEq₂ arg-inj₁ arg-inj₂ (i == i₁) (x == x₁) EqLiteral : Eq Literal _==_ {{EqLiteral}} = eqLit where eqLit : (x y : Literal) → Dec (x ≡ y) eqLit (nat x) (nat y) = decEq₁ nat-inj (x == y) eqLit (word64 x) (word64 y) = decEq₁ word64-inj (x == y) eqLit (float x) (float y) = decEq₁ float-inj (x == y) eqLit (char x) (char y) = decEq₁ char-inj (x == y) eqLit (string x) (string y) = decEq₁ string-inj (x == y) eqLit (name x) (name y) = decEq₁ name-inj (x == y) eqLit (meta x) (meta y) = decEq₁ meta-inj (x == y) eqLit (nat _) (float _) = no λ() eqLit (nat _) (word64 _) = no λ() eqLit (nat _) (char _) = no λ() eqLit (nat _) (string _) = no λ() eqLit (nat _) (name _) = no λ() eqLit (nat _) (meta _) = no λ() eqLit (word64 _) (nat _) = no λ() eqLit (word64 _) (float _) = no λ() eqLit (word64 _) (char _) = no λ() eqLit (word64 _) (string _) = no λ() eqLit (word64 _) (name _) = no λ() eqLit (word64 _) (meta _) = no λ() eqLit (float _) (nat _) = no λ() eqLit (float _) (word64 _) = no λ() eqLit (float _) (char _) = no λ() eqLit (float _) (string _) = no λ() eqLit (float _) (name _) = no λ() eqLit (float _) (meta _) = no λ() eqLit (char _) (nat _) = no λ() eqLit (char _) (word64 _) = no λ() eqLit (char _) (float _) = no λ() eqLit (char _) (string _) = no λ() eqLit (char _) (name _) = no λ() eqLit (char _) (meta _) = no λ() eqLit (string _) (nat _) = no λ() eqLit (string _) (word64 _) = no λ() eqLit (string _) (float _) = no λ() eqLit (string _) (char _) = no λ() eqLit (string _) (name _) = no λ() eqLit (string _) (meta _) = no λ() eqLit (name _) (nat _) = no λ() eqLit (name _) (word64 _) = no λ() eqLit (name _) (float _) = no λ() eqLit (name _) (char _) = no λ() eqLit (name _) (string _) = no λ() eqLit (name _) (meta _) = no λ() eqLit (meta _) (nat _) = no λ() eqLit (meta _) (word64 _) = no λ() eqLit (meta _) (float _) = no λ() eqLit (meta _) (char _) = no λ() eqLit (meta _) (string _) = no λ() eqLit (meta _) (name _) = no λ() private eqSort : (x y : Sort) → Dec (x ≡ y) eqTerm : (x y : Term) → Dec (x ≡ y) eqPat : (x y : Pattern) → Dec (x ≡ y) eqClause : (x y : Clause) → Dec (x ≡ y) eqArgTerm : (x y : Arg Term) → Dec (x ≡ y) eqArgTerm (arg i x) (arg i₁ x₁) = decEq₂ arg-inj₁ arg-inj₂ (i == i₁) (eqTerm x x₁) eqArgPat : (x y : Arg Pattern) → Dec (x ≡ y) eqArgPat (arg i x) (arg i₁ x₁) = decEq₂ arg-inj₁ arg-inj₂ (i == i₁) (eqPat x x₁) eqAbsTerm : (x y : Abs Term) → Dec (x ≡ y) eqAbsTerm (abs s x) (abs s₁ x₁) = decEq₂ abs-inj₁ abs-inj₂ (s == s₁) (eqTerm x x₁) eqPats : (x y : List (Arg Pattern)) → Dec (x ≡ y) eqPats [] [] = yes refl eqPats [] (x ∷ xs) = no λ () eqPats (x ∷ xs) [] = no λ () eqPats (x ∷ xs) (y ∷ ys) = decEq₂ cons-inj-head cons-inj-tail (eqArgPat x y) (eqPats xs ys) eqArgs : (x y : List (Arg Term)) → Dec (x ≡ y) eqArgs [] [] = yes refl eqArgs [] (x ∷ xs) = no λ () eqArgs (x ∷ xs) [] = no λ () eqArgs (x ∷ xs) (y ∷ ys) = decEq₂ cons-inj-head cons-inj-tail (eqArgTerm x y) (eqArgs xs ys) eqClauses : (x y : List Clause) → Dec (x ≡ y) eqClauses [] [] = yes refl eqClauses [] (x ∷ xs) = no λ () eqClauses (x ∷ xs) [] = no λ () eqClauses (x ∷ xs) (y ∷ ys) = decEq₂ cons-inj-head cons-inj-tail (eqClause x y) (eqClauses xs ys) eqTerm (var x args) (var x₁ args₁) = decEq₂ var-inj₁ var-inj₂ (x == x₁) (eqArgs args args₁) eqTerm (con c args) (con c₁ args₁) = decEq₂ con-inj₁ con-inj₂ (c == c₁) (eqArgs args args₁) eqTerm (def f args) (def f₁ args₁) = decEq₂ def-inj₁ def-inj₂ (f == f₁) (eqArgs args args₁) eqTerm (meta x args) (meta x₁ args₁) = decEq₂ meta-inj₁ meta-inj₂ (x == x₁) (eqArgs args args₁) eqTerm (lam v x) (lam v₁ y) = decEq₂ lam-inj₁ lam-inj₂ (v == v₁) (eqAbsTerm x y) eqTerm (pi t₁ t₂) (pi t₃ t₄) = decEq₂ pi-inj₁ pi-inj₂ (eqArgTerm t₁ t₃) (eqAbsTerm t₂ t₄) eqTerm (agda-sort x) (agda-sort x₁) = decEq₁ sort-inj (eqSort x x₁) eqTerm (lit l) (lit l₁) = decEq₁ lit-inj (l == l₁) eqTerm (pat-lam c args) (pat-lam c₁ args₁) = decEq₂ pat-lam-inj₁ pat-lam-inj₂ (eqClauses c c₁) (eqArgs args args₁) eqTerm unknown unknown = yes refl eqTerm (var x args) (con c args₁) = no λ () eqTerm (var x args) (def f args₁) = no λ () eqTerm (var x args) (lam v y) = no λ () eqTerm (var x args) (pi t₁ t₂) = no λ () eqTerm (var x args) (agda-sort x₁) = no λ () eqTerm (var x args) (lit x₁) = no λ () eqTerm (var x args) unknown = no λ () eqTerm (con c args) (var x args₁) = no λ () eqTerm (con c args) (def f args₁) = no λ () eqTerm (con c args) (lam v y) = no λ () eqTerm (con c args) (pi t₁ t₂) = no λ () eqTerm (con c args) (agda-sort x) = no λ () eqTerm (con c args) (lit x) = no λ () eqTerm (con c args) unknown = no λ () eqTerm (def f args) (var x args₁) = no λ () eqTerm (def f args) (con c args₁) = no λ () eqTerm (def f args) (lam v y) = no λ () eqTerm (def f args) (pi t₁ t₂) = no λ () eqTerm (def f args) (agda-sort x) = no λ () eqTerm (def f args) (lit x) = no λ () eqTerm (def f args) unknown = no λ () eqTerm (lam v x) (var x₁ args) = no λ () eqTerm (lam v x) (con c args) = no λ () eqTerm (lam v x) (def f args) = no λ () eqTerm (lam v x) (pi t₁ t₂) = no λ () eqTerm (lam v x) (agda-sort x₁) = no λ () eqTerm (lam v x) (lit x₁) = no λ () eqTerm (lam v x) unknown = no λ () eqTerm (pi t₁ t₂) (var x args) = no λ () eqTerm (pi t₁ t₂) (con c args) = no λ () eqTerm (pi t₁ t₂) (def f args) = no λ () eqTerm (pi t₁ t₂) (lam v y) = no λ () eqTerm (pi t₁ t₂) (agda-sort x) = no λ () eqTerm (pi t₁ t₂) (lit x) = no λ () eqTerm (pi t₁ t₂) unknown = no λ () eqTerm (agda-sort x) (var x₁ args) = no λ () eqTerm (agda-sort x) (con c args) = no λ () eqTerm (agda-sort x) (def f args) = no λ () eqTerm (agda-sort x) (lam v y) = no λ () eqTerm (agda-sort x) (pi t₁ t₂) = no λ () eqTerm (agda-sort x) (lit x₁) = no λ () eqTerm (agda-sort x) unknown = no λ () eqTerm (lit x) (var x₁ args) = no λ () eqTerm (lit x) (con c args) = no λ () eqTerm (lit x) (def f args) = no λ () eqTerm (lit x) (lam v y) = no λ () eqTerm (lit x) (pi t₁ t₂) = no λ () eqTerm (lit x) (agda-sort x₁) = no λ () eqTerm (lit x) unknown = no λ () eqTerm unknown (var x args) = no λ () eqTerm unknown (con c args) = no λ () eqTerm unknown (def f args) = no λ () eqTerm unknown (lam v y) = no λ () eqTerm unknown (pi t₁ t₂) = no λ () eqTerm unknown (agda-sort x) = no λ () eqTerm unknown (lit x) = no λ () eqTerm (var _ _) (meta _ _) = no λ () eqTerm (con _ _) (meta _ _) = no λ () eqTerm (def _ _) (meta _ _) = no λ () eqTerm (lam _ _) (meta _ _) = no λ () eqTerm (pi _ _) (meta _ _) = no λ () eqTerm (agda-sort _) (meta _ _) = no λ () eqTerm (lit _) (meta _ _) = no λ () eqTerm unknown (meta _ _) = no λ () eqTerm (meta _ _) (var _ _) = no λ () eqTerm (meta _ _) (con _ _) = no λ () eqTerm (meta _ _) (def _ _) = no λ () eqTerm (meta _ _) (lam _ _) = no λ () eqTerm (meta _ _) (pi _ _) = no λ () eqTerm (meta _ _) (agda-sort _) = no λ () eqTerm (meta _ _) (lit _) = no λ () eqTerm (meta _ _) unknown = no λ () eqTerm (var _ _) (pat-lam _ _) = no λ () eqTerm (con _ _) (pat-lam _ _) = no λ () eqTerm (def _ _) (pat-lam _ _) = no λ () eqTerm (lam _ _) (pat-lam _ _) = no λ () eqTerm (pi _ _) (pat-lam _ _) = no λ () eqTerm (meta _ _) (pat-lam _ _) = no λ () eqTerm (agda-sort _) (pat-lam _ _) = no λ () eqTerm (lit _) (pat-lam _ _) = no λ () eqTerm unknown (pat-lam _ _) = no λ () eqTerm (pat-lam _ _) (var _ _) = no λ () eqTerm (pat-lam _ _) (con _ _) = no λ () eqTerm (pat-lam _ _) (def _ _) = no λ () eqTerm (pat-lam _ _) (lam _ _) = no λ () eqTerm (pat-lam _ _) (pi _ _) = no λ () eqTerm (pat-lam _ _) (meta _ _) = no λ () eqTerm (pat-lam _ _) (agda-sort _) = no λ () eqTerm (pat-lam _ _) (lit _) = no λ () eqTerm (pat-lam _ _) unknown = no λ () eqSort (set t) (set t₁) = decEq₁ set-inj (eqTerm t t₁) eqSort (lit n) (lit n₁) = decEq₁ slit-inj (n == n₁) eqSort unknown unknown = yes refl eqSort (set t) (lit n) = no λ () eqSort (set t) unknown = no λ () eqSort (lit n) (set t) = no λ () eqSort (lit n) unknown = no λ () eqSort unknown (set t) = no λ () eqSort unknown (lit n) = no λ () eqPat (con c ps) (con c₁ ps₁) = decEq₂ pcon-inj₁ pcon-inj₂ (c == c₁) (eqPats ps ps₁) eqPat dot dot = yes refl eqPat (var s) (var s₁) = decEq₁ pvar-inj (s == s₁) eqPat (lit l) (lit l₁) = decEq₁ plit-inj (l == l₁) eqPat (proj f) (proj f₁) = decEq₁ proj-inj (f == f₁) eqPat absurd absurd = yes refl eqPat (con _ _) dot = no λ () eqPat (con _ _) (var _) = no λ () eqPat (con _ _) (lit _) = no λ () eqPat (con _ _) (proj _) = no λ () eqPat (con _ _) absurd = no λ () eqPat dot (con _ _) = no λ () eqPat dot (var _) = no λ () eqPat dot (lit _) = no λ () eqPat dot (proj _) = no λ () eqPat dot absurd = no λ () eqPat (var _) (con _ _) = no λ () eqPat (var _) dot = no λ () eqPat (var _) (lit _) = no λ () eqPat (var _) (proj _) = no λ () eqPat (var _) absurd = no λ () eqPat (lit _) (con _ _) = no λ () eqPat (lit _) dot = no λ () eqPat (lit _) (var _) = no λ () eqPat (lit _) (proj _) = no λ () eqPat (lit _) absurd = no λ () eqPat (proj _) (con _ _) = no λ () eqPat (proj _) dot = no λ () eqPat (proj _) (var _) = no λ () eqPat (proj _) (lit _) = no λ () eqPat (proj _) absurd = no λ () eqPat absurd (con _ _) = no λ () eqPat absurd dot = no λ () eqPat absurd (var _) = no λ () eqPat absurd (lit _) = no λ () eqPat absurd (proj _) = no λ () eqClause (clause ps t) (clause ps₁ t₁) = decEq₂ clause-inj₁ clause-inj₂ (eqPats ps ps₁) (eqTerm t t₁) eqClause (absurd-clause ps) (absurd-clause ps₁) = decEq₁ absurd-clause-inj (eqPats ps ps₁) eqClause (clause _ _) (absurd-clause _) = no λ () eqClause (absurd-clause _) (clause _ _) = no λ () instance EqTerm : Eq Term _==_ {{EqTerm}} = eqTerm EqSort : Eq Sort _==_ {{EqSort}} = eqSort EqClause : Eq Clause _==_ {{EqClause}} = eqClause EqPattern : Eq Pattern _==_ {{EqPattern}} = eqPat
39.715254
116
0.540287
10003989d3299ee258b6aeed204e1c17e0cc9ac6
1,002
agda
Agda
notes/FOT/FOTC/Program/Mirror/TreeR.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/FOT/FOTC/Program/Mirror/TreeR.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/FOT/FOTC/Program/Mirror/TreeR.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Well-founded relation on trees ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Program.Mirror.TreeR where open import FOTC.Base open import FOTC.Data.List.WF-Relation.LT-Cons open import FOTC.Program.Mirror.Type ------------------------------------------------------------------------------ -- Well-founded relation on trees. -- A well-founded relation for rose trees is the lexicographical order -- -- (t : ts) < (t' : ts') = t < t' or t ≡ t' and ts < ts'. -- -- It seems we would not to use the first conjunct in the mirror -- example. TreeR : D → D → Set TreeR t₁ t₂ = ∃[ d ] ∃[ ts₁ ] ∃[ ts₂ ] t₁ ≡ node d ts₁ ∧ t₂ ≡ node d ts₂ ∧ LTC ts₁ ts₂
33.4
78
0.441118
d0020d59f1bc08d0be7bfc459c5e8a2a46d6586e
6,428
agda
Agda
Cubical/Algebra/CommRing/Base.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Base.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Base.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.CommRing.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Reflection.StrictEquiv open import Cubical.Structures.Axioms open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Ring.Base open Iso private variable ℓ : Level record IsCommRing {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) : Type ℓ where constructor iscommring field isRing : IsRing 0r 1r _+_ _·_ -_ ·-comm : (x y : R) → x · y ≡ y · x open IsRing isRing public record CommRingStr (A : Type ℓ) : Type (ℓ-suc ℓ) where constructor commringstr field 0r : A 1r : A _+_ : A → A → A _·_ : A → A → A -_ : A → A isCommRing : IsCommRing 0r 1r _+_ _·_ -_ infix 8 -_ infixl 7 _·_ infixl 6 _+_ open IsCommRing isCommRing public CommRing : Type (ℓ-suc ℓ) CommRing = TypeWithStr _ CommRingStr makeIsCommRing : {R : Type ℓ} {0r 1r : R} {_+_ _·_ : R → R → R} { -_ : R → R} (is-setR : isSet R) (+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : R) → x + 0r ≡ x) (+-rinv : (x : R) → x + (- x) ≡ 0r) (+-comm : (x y : R) → x + y ≡ y + x) (·-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z) (·-rid : (x : R) → x · 1r ≡ x) (·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)) (·-comm : (x y : R) → x · y ≡ y · x) → IsCommRing 0r 1r _+_ _·_ -_ makeIsCommRing {_+_ = _+_} is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm = iscommring (makeIsRing is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid (λ x → ·-comm _ _ ∙ ·-rid x) ·-rdist-+ (λ x y z → ·-comm _ _ ∙∙ ·-rdist-+ z x y ∙∙ λ i → (·-comm z x i) + (·-comm z y i))) ·-comm makeCommRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) (is-setR : isSet R) (+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : R) → x + 0r ≡ x) (+-rinv : (x : R) → x + (- x) ≡ 0r) (+-comm : (x y : R) → x + y ≡ y + x) (·-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z) (·-rid : (x : R) → x · 1r ≡ x) (·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)) (·-comm : (x y : R) → x · y ≡ y · x) → CommRing makeCommRing 0r 1r _+_ _·_ -_ is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm = _ , commringstr _ _ _ _ _ (makeIsCommRing is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm) CommRing→Ring : CommRing {ℓ} → Ring CommRing→Ring (_ , commringstr _ _ _ _ _ H) = _ , ringstr _ _ _ _ _ (IsCommRing.isRing H) CommRingEquiv : (R S : CommRing) (e : ⟨ R ⟩ ≃ ⟨ S ⟩) → Type ℓ CommRingEquiv R S e = RingEquiv (CommRing→Ring R) (CommRing→Ring S) e CommRingHom : (R S : CommRing) → Type ℓ CommRingHom R S = RingHom (CommRing→Ring R) (CommRing→Ring S) module CommRingΣTheory {ℓ} where open RingΣTheory CommRingAxioms : (R : Type ℓ) (s : RawRingStructure R) → Type ℓ CommRingAxioms R (_+_ , 1r , _·_) = RingAxioms R (_+_ , 1r , _·_) × ((x y : R) → x · y ≡ y · x) CommRingStructure : Type ℓ → Type ℓ CommRingStructure = AxiomsStructure RawRingStructure CommRingAxioms CommRingΣ : Type (ℓ-suc ℓ) CommRingΣ = TypeWithStr ℓ CommRingStructure CommRingEquivStr : StrEquiv CommRingStructure ℓ CommRingEquivStr = AxiomsEquivStr RawRingEquivStr CommRingAxioms isPropCommRingAxioms : (R : Type ℓ) (s : RawRingStructure R) → isProp (CommRingAxioms R s) isPropCommRingAxioms R (_·_ , 0r , _+_) = isPropΣ (isPropRingAxioms R (_·_ , 0r , _+_)) λ { (_ , x , _) → isPropΠ2 λ _ _ → x .IsMonoid.isSemigroup .IsSemigroup.is-set _ _} CommRing→CommRingΣ : CommRing → CommRingΣ CommRing→CommRingΣ (_ , commringstr _ _ _ _ _ (iscommring G C)) = _ , _ , Ring→RingΣ (_ , ringstr _ _ _ _ _ G) .snd .snd , C CommRingΣ→CommRing : CommRingΣ → CommRing CommRingΣ→CommRing (_ , _ , G , C) = _ , commringstr _ _ _ _ _ (iscommring (RingΣ→Ring (_ , _ , G) .snd .RingStr.isRing) C) CommRingIsoCommRingΣ : Iso CommRing CommRingΣ CommRingIsoCommRingΣ = iso CommRing→CommRingΣ CommRingΣ→CommRing (λ _ → refl) (λ _ → refl) commRingUnivalentStr : UnivalentStr CommRingStructure CommRingEquivStr commRingUnivalentStr = axiomsUnivalentStr _ isPropCommRingAxioms rawRingUnivalentStr CommRingΣPath : (R S : CommRingΣ) → (R ≃[ CommRingEquivStr ] S) ≃ (R ≡ S) CommRingΣPath = SIP commRingUnivalentStr CommRingEquivΣ : (R S : CommRing) → Type ℓ CommRingEquivΣ R S = CommRing→CommRingΣ R ≃[ CommRingEquivStr ] CommRing→CommRingΣ S CommRingPath : (R S : CommRing) → (Σ[ e ∈ ⟨ R ⟩ ≃ ⟨ S ⟩ ] CommRingEquiv R S e) ≃ (R ≡ S) CommRingPath R S = Σ[ e ∈ ⟨ R ⟩ ≃ ⟨ S ⟩ ] CommRingEquiv R S e ≃⟨ strictIsoToEquiv RingIsoΣPath ⟩ CommRingEquivΣ R S ≃⟨ CommRingΣPath _ _ ⟩ CommRing→CommRingΣ R ≡ CommRing→CommRingΣ S ≃⟨ isoToEquiv (invIso (congIso CommRingIsoCommRingΣ)) ⟩ R ≡ S ■ CommRingPath : (R S : CommRing {ℓ}) → (Σ[ e ∈ ⟨ R ⟩ ≃ ⟨ S ⟩ ] CommRingEquiv R S e) ≃ (R ≡ S) CommRingPath = CommRingΣTheory.CommRingPath isSetCommRing : ((R , str) : CommRing {ℓ}) → isSet R isSetCommRing (R , str) = str .CommRingStr.is-set isPropIsCommRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) → isProp (IsCommRing 0r 1r _+_ _·_ -_) isPropIsCommRing 0r 1r _+_ _·_ -_ (iscommring RR RC) (iscommring SR SC) = λ i → iscommring (isPropIsRing _ _ _ _ _ RR SR i) (isPropComm RC SC i) where isSetR : isSet _ isSetR = RR .IsRing.·IsMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set isPropComm : isProp ((x y : _) → x · y ≡ y · x) isPropComm = isPropΠ2 λ _ _ → isSetR _ _
37.811765
115
0.569384
dc0a68d2ab3854831a4e48f179e6ddf588f61862
1,265
agda
Agda
examples/examplesPaperJFP/Colists.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
23
2016-06-19T12:57:55.000Z
2020-10-12T23:15:25.000Z
examples/examplesPaperJFP/Colists.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
null
null
null
examples/examplesPaperJFP/Colists.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
2
2018-09-01T15:02:37.000Z
2022-03-12T11:41:00.000Z
module examplesPaperJFP.Colists where -- open import Function -- Case expressions (to be used with pattern-matching lambdas, see -- README.Case). infix 0 case_return_of_ case_of_ case_return_of_ : ∀ {a b} {A : Set a} (x : A) (B : A → Set b) → ((x : A) → B x) → B x case x return B of f = f x case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B case x of f = case x return _ of f data ListF A S : Set where nil : ListF A S cons : (a : A) (s : S) → ListF A S record Colist A : Set where coinductive field force : ListF A (Colist A) open Colist using (force) mapF : ∀{A S S′} (f : S → S′) → (ListF A S → ListF A S′) mapF f nil = nil mapF f (cons a s) = cons a (f s) -- As an example, we define mapping over potentially infinite lists using -- copattern matching: map : ∀{A B} (f : A → B) (l : Colist A) → Colist B force (map f l) with force l ... | nil = nil ... | cons x xs = cons (f x) (map f xs) unfold : ∀{A S} (t : S → ListF A S) → (S → Colist A) force (unfold t s) with t s ... | nil = nil ... | cons a s′ = cons a (unfold t s′) fmap : ∀{A B} (f : A → B) (l : Colist A) → Colist B fmap f = unfold λ l → case force l of λ { nil → nil ; (cons a s) → cons (f a) s }
24.326923
73
0.550988
508cd9a2423574c67857cea571c473e549c9e148
6,875
agda
Agda
Cubical/HITs/SetTruncation/Properties.agda
jorge-jbs/cubical
ebbe824fda41ab6524b62a42959665be4e67b847
[ "MIT" ]
null
null
null
Cubical/HITs/SetTruncation/Properties.agda
jorge-jbs/cubical
ebbe824fda41ab6524b62a42959665be4e67b847
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/HITs/SetTruncation/Properties.agda
jorge-jbs/cubical
ebbe824fda41ab6524b62a42959665be4e67b847
[ "MIT" ]
null
null
null
{- This file contains: - Properties of set truncations -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.SetTruncation.Properties where open import Cubical.HITs.SetTruncation.Base open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Univalence open import Cubical.Data.Sigma private variable ℓ ℓ' : Level A B C D : Type ℓ rec : isSet B → (A → B) → ∥ A ∥₂ → B rec Bset f ∣ x ∣₂ = f x rec Bset f (squash₂ x y p q i j) = Bset _ _ (cong (rec Bset f) p) (cong (rec Bset f) q) i j rec2 : isSet C → (A → B → C) → ∥ A ∥₂ → ∥ B ∥₂ → C rec2 Cset f ∣ x ∣₂ ∣ y ∣₂ = f x y rec2 Cset f ∣ x ∣₂ (squash₂ y z p q i j) = Cset _ _ (cong (rec2 Cset f ∣ x ∣₂) p) (cong (rec2 Cset f ∣ x ∣₂) q) i j rec2 Cset f (squash₂ x y p q i j) z = Cset _ _ (cong (λ a → rec2 Cset f a z) p) (cong (λ a → rec2 Cset f a z) q) i j -- Old version: -- rec2 Cset f = rec (isSetΠ λ _ → Cset) λ x → rec Cset (f x) -- lemma 6.9.1 in HoTT book elim : {B : ∥ A ∥₂ → Type ℓ} (Bset : (x : ∥ A ∥₂) → isSet (B x)) (f : (a : A) → B (∣ a ∣₂)) (x : ∥ A ∥₂) → B x elim Bset f ∣ a ∣₂ = f a elim Bset f (squash₂ x y p q i j) = isOfHLevel→isOfHLevelDep 2 Bset _ _ (cong (elim Bset f) p) (cong (elim Bset f) q) (squash₂ x y p q) i j elim2 : {C : ∥ A ∥₂ → ∥ B ∥₂ → Type ℓ} (Cset : ((x : ∥ A ∥₂) (y : ∥ B ∥₂) → isSet (C x y))) (f : (a : A) (b : B) → C ∣ a ∣₂ ∣ b ∣₂) (x : ∥ A ∥₂) (y : ∥ B ∥₂) → C x y elim2 Cset f ∣ x ∣₂ ∣ y ∣₂ = f x y elim2 Cset f ∣ x ∣₂ (squash₂ y z p q i j) = isOfHLevel→isOfHLevelDep 2 (λ a → Cset ∣ x ∣₂ a) _ _ (cong (elim2 Cset f ∣ x ∣₂) p) (cong (elim2 Cset f ∣ x ∣₂) q) (squash₂ y z p q) i j elim2 Cset f (squash₂ x y p q i j) z = isOfHLevel→isOfHLevelDep 2 (λ a → Cset a z) _ _ (cong (λ a → elim2 Cset f a z) p) (cong (λ a → elim2 Cset f a z) q) (squash₂ x y p q) i j -- Old version: -- elim2 Cset f = elim (λ _ → isSetΠ (λ _ → Cset _ _)) -- (λ a → elim (λ _ → Cset _ _) (f a)) -- TODO: generalize elim3 : {B : (x y z : ∥ A ∥₂) → Type ℓ} (Bset : ((x y z : ∥ A ∥₂) → isSet (B x y z))) (g : (a b c : A) → B ∣ a ∣₂ ∣ b ∣₂ ∣ c ∣₂) (x y z : ∥ A ∥₂) → B x y z elim3 Bset g = elim2 (λ _ _ → isSetΠ (λ _ → Bset _ _ _)) (λ a b → elim (λ _ → Bset _ _ _) (g a b)) setTruncUniversal : isSet B → (∥ A ∥₂ → B) ≃ (A → B) setTruncUniversal {B = B} Bset = isoToEquiv (iso (λ h x → h ∣ x ∣₂) (rec Bset) (λ _ → refl) rinv) where rinv : (f : ∥ A ∥₂ → B) → rec Bset (λ x → f ∣ x ∣₂) ≡ f rinv f i x = elim (λ x → isProp→isSet (Bset (rec Bset (λ x → f ∣ x ∣₂) x) (f x))) (λ _ → refl) x i setTruncIsSet : isSet ∥ A ∥₂ setTruncIsSet a b p q = squash₂ a b p q setTruncIdempotent≃ : isSet A → ∥ A ∥₂ ≃ A setTruncIdempotent≃ {A = A} hA = isoToEquiv f where f : Iso ∥ A ∥₂ A Iso.fun f = rec hA (idfun A) Iso.inv f x = ∣ x ∣₂ Iso.rightInv f _ = refl Iso.leftInv f = elim (λ _ → isSet→isGroupoid setTruncIsSet _ _) (λ _ → refl) setTruncIdempotent : isSet A → ∥ A ∥₂ ≡ A setTruncIdempotent hA = ua (setTruncIdempotent≃ hA) isContr→isContrSetTrunc : isContr A → isContr (∥ A ∥₂) isContr→isContrSetTrunc contr = ∣ fst contr ∣₂ , elim (λ _ → isOfHLevelPath 2 (setTruncIsSet) _ _) λ a → cong ∣_∣₂ (snd contr a) setTruncIso : Iso A B → Iso ∥ A ∥₂ ∥ B ∥₂ Iso.fun (setTruncIso is) = rec setTruncIsSet (λ x → ∣ Iso.fun is x ∣₂) Iso.inv (setTruncIso is) = rec setTruncIsSet (λ x → ∣ Iso.inv is x ∣₂) Iso.rightInv (setTruncIso is) = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ a → cong ∣_∣₂ (Iso.rightInv is a) Iso.leftInv (setTruncIso is) = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ a → cong ∣_∣₂ (Iso.leftInv is a) setSigmaIso : {B : A → Type ℓ} → Iso ∥ Σ A B ∥₂ ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂ setSigmaIso {A = A} {B = B} = iso fun funinv sect retr where {- writing it out explicitly to avoid yellow highlighting -} fun : ∥ Σ A B ∥₂ → ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂ fun = rec setTruncIsSet λ {(a , p) → ∣ a , ∣ p ∣₂ ∣₂} funinv : ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂ → ∥ Σ A B ∥₂ funinv = rec setTruncIsSet (λ {(a , p) → rec setTruncIsSet (λ p → ∣ a , p ∣₂) p}) sect : section fun funinv sect = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ { (a , p) → elim {B = λ p → fun (funinv ∣ a , p ∣₂) ≡ ∣ a , p ∣₂} (λ p → isOfHLevelPath 2 setTruncIsSet _ _) (λ _ → refl) p } retr : retract fun funinv retr = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ { _ → refl } sigmaElim : {B : ∥ A ∥₂ → Type ℓ} {C : Σ ∥ A ∥₂ B → Type ℓ'} (Bset : (x : Σ ∥ A ∥₂ B) → isSet (C x)) (g : (a : A) (b : B ∣ a ∣₂) → C (∣ a ∣₂ , b)) (x : Σ ∥ A ∥₂ B) → C x sigmaElim {B = B} {C = C} set g (x , y) = elim {B = λ x → (y : B x) → C (x , y)} (λ _ → isSetΠ λ _ → set _) g x y sigmaProdElim : {C : ∥ A ∥₂ × ∥ B ∥₂ → Type ℓ} {D : Σ (∥ A ∥₂ × ∥ B ∥₂) C → Type ℓ'} (Bset : (x : Σ (∥ A ∥₂ × ∥ B ∥₂) C) → isSet (D x)) (g : (a : A) (b : B) (c : C (∣ a ∣₂ , ∣ b ∣₂)) → D ((∣ a ∣₂ , ∣ b ∣₂) , c)) (x : Σ (∥ A ∥₂ × ∥ B ∥₂) C) → D x sigmaProdElim {B = B} {C = C} {D = D} set g ((x , y) , c) = elim {B = λ x → (y : ∥ B ∥₂) (c : C (x , y)) → D ((x , y) , c)} (λ _ → isSetΠ λ _ → isSetΠ λ _ → set _) (λ x → elim (λ _ → isSetΠ λ _ → set _) (g x)) x y c prodElim : {C : ∥ A ∥₂ × ∥ B ∥₂ → Type ℓ} → ((x : ∥ A ∥₂ × ∥ B ∥₂) → isSet (C x)) → ((a : A) (b : B) → C (∣ a ∣₂ , ∣ b ∣₂)) → (x : ∥ A ∥₂ × ∥ B ∥₂) → C x prodElim setC f (a , b) = elim2 (λ x y → setC (x , y)) f a b prodRec : {C : Type ℓ} → isSet C → (A → B → C) → ∥ A ∥₂ × ∥ B ∥₂ → C prodRec setC f (a , b) = rec2 setC f a b prodElim2 : {E : (∥ A ∥₂ × ∥ B ∥₂) → (∥ C ∥₂ × ∥ D ∥₂) → Type ℓ} → ((x : ∥ A ∥₂ × ∥ B ∥₂) (y : ∥ C ∥₂ × ∥ D ∥₂) → isSet (E x y)) → ((a : A) (b : B) (c : C) (d : D) → E (∣ a ∣₂ , ∣ b ∣₂) (∣ c ∣₂ , ∣ d ∣₂)) → ((x : ∥ A ∥₂ × ∥ B ∥₂) (y : ∥ C ∥₂ × ∥ D ∥₂) → (E x y)) prodElim2 isset f = prodElim (λ _ → isSetΠ λ _ → isset _ _) λ a b → prodElim (λ _ → isset _ _) λ c d → f a b c d setTruncOfProdIso : Iso ∥ A × B ∥₂ (∥ A ∥₂ × ∥ B ∥₂) Iso.fun setTruncOfProdIso = rec (isSet× setTruncIsSet setTruncIsSet) λ { (a , b) → ∣ a ∣₂ , ∣ b ∣₂ } Iso.inv setTruncOfProdIso = prodRec setTruncIsSet λ a b → ∣ a , b ∣₂ Iso.rightInv setTruncOfProdIso = prodElim (λ _ → isOfHLevelPath 2 (isSet× setTruncIsSet setTruncIsSet) _ _) λ _ _ → refl Iso.leftInv setTruncOfProdIso = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ {(a , b) → refl}
39.97093
100
0.504582
4ab717df5b821a1a5ad08aeb1ff6fdadeb4ca7dc
4,787
agda
Agda
Cubical/HITs/KleinBottle/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/HITs/KleinBottle/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/HITs/KleinBottle/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{- Definition of the Klein bottle as a HIT -} {-# OPTIONS --cubical --safe #-} module Cubical.HITs.KleinBottle.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Data.Nat open import Cubical.Data.Int public renaming (_+_ to _+Int_ ; +-assoc to +Int-assoc; +-comm to +Int-comm) open import Cubical.Data.Prod open import Cubical.Data.Sigma open import Cubical.HITs.S1 open import Cubical.HITs.PropositionalTruncation as PropTrunc open import Cubical.HITs.KleinBottle.Base loop1 : S¹ → KleinBottle loop1 base = point loop1 (loop i) = line1 i invS¹Loop : S¹ → Set invS¹Loop base = S¹ invS¹Loop (loop i) = invS¹Path i loop1Inv : (s : S¹) → loop1 (inv s) ≡ loop1 s loop1Inv base = line2 loop1Inv (loop i) = square i twist : (s : S¹) → PathP (λ i → invS¹Path i) s (inv s) twist s i = glue (λ {(i = i0) → s; (i = i1) → inv s}) (inv s) twistBaseLoop : (s : S¹) → invS¹Loop s twistBaseLoop base = base twistBaseLoop (loop i) = twist base i kleinBottle≃Σ : KleinBottle ≃ Σ S¹ invS¹Loop kleinBottle≃Σ = isoToEquiv (iso fro to froTo toFro) where fro : KleinBottle → Σ S¹ invS¹Loop fro point = (base , base) fro (line1 i) = (base , loop i) fro (line2 j) = (loop (~ j) , twist base (~ j)) fro (square i j) = (loop (~ j) , twist (loop i) (~ j)) toLoopFiller : (j : I) → ua invS¹Equiv j → I → KleinBottle toLoopFiller j g l = hfill (λ l → λ { (j = i0) → loop1Inv g l ; (j = i1) → loop1 g }) (inS (loop1 (unglue (j ∨ ~ j) g))) l to : Σ S¹ invS¹Loop → KleinBottle to (base , s) = loop1 s to (loop j , g) = toLoopFiller j g i1 toFro : (a : KleinBottle) → to (fro a) ≡ a toFro point = refl toFro (line1 i) = refl toFro (line2 j) k = lUnit line2 (~ k) j toFro (square i j) k = lUnit (square i) (~ k) j froLoop1 : (s : S¹) → fro (loop1 s) ≡ (base , s) froLoop1 base = refl froLoop1 (loop i) = refl froLoop1Inv : PathP (λ k → (s : S¹) → froLoop1 (inv s) k ≡ froLoop1 s k) (λ s l → fro (loop1Inv s l)) (λ s l → loop (~ l) , twist s (~ l)) froLoop1Inv k base l = loop (~ l) , twist base (~ l) froLoop1Inv k (loop i) l = loop (~ l) , twist (loop i) (~ l) froTo : (a : Σ S¹ invS¹Loop) → fro (to a) ≡ a froTo (base , s) = froLoop1 s froTo (loop j , g) k = hcomp (λ l → λ { (j = i0) → froLoop1Inv k g l ; (j = i1) → froLoop1 g k ; (k = i0) → fro (toLoopFiller j g l) ; (k = i1) → ( loop (j ∨ ~ l) , glue (λ { (j = i0) (l = i1) → g ; (j = i1) → g ; (l = i0) → unglue (j ∨ ~ j) g }) (unglue (j ∨ ~ j) g) ) }) (froLoop1 (unglue (j ∨ ~ j) g) k) isGroupoidKleinBottle : isGroupoid KleinBottle isGroupoidKleinBottle = transport (λ i → isGroupoid (ua kleinBottle≃Σ (~ i))) (isOfHLevelΣ 3 isGroupoidS¹ (λ s → PropTrunc.rec (isPropIsOfHLevel 3) (λ p → subst (λ s → isGroupoid (invS¹Loop s)) p isGroupoidS¹) (isConnectedS¹ s))) -- Transport across the following is too slow :( ΩKlein≡Int² : Path KleinBottle point point ≡ Int × Int ΩKlein≡Int² = Path KleinBottle point point ≡⟨ (λ i → basePath i ≡ basePath i) ⟩ Path (Σ S¹ invS¹Loop) (base , base) (base , base) ≡⟨ sym (ua Σ≡) ⟩ Σ ΩS¹ (λ p → PathP (λ j → invS¹Loop (p j)) base base) ≡⟨ (λ i → Σ ΩS¹ (λ p → PathP (λ j → invS¹Loop (p (j ∨ i))) (twistBaseLoop (p i)) base)) ⟩ Σ ΩS¹ (λ _ → ΩS¹) ≡⟨ sym A×B≡A×ΣB ⟩ ΩS¹ × ΩS¹ ≡⟨ (λ i → ΩS¹≡Int i × ΩS¹≡Int i) ⟩ Int × Int ∎ where basePath : PathP (λ i → ua kleinBottle≃Σ i) point (base , base) basePath i = glue (λ {(i = i0) → point; (i = i1) → base , base}) (base , base) -- We can at least define the winding function directly and get results on small examples windingKlein : Path KleinBottle point point → Int × Int windingKlein p = (z₀ , z₁) where step₀ : Path (Σ S¹ invS¹Loop) (base , base) (base , base) step₀ = (λ i → kleinBottle≃Σ .fst (p i)) z₀ : Int z₀ = winding (λ i → kleinBottle≃Σ .fst (p i) .fst) z₁ : Int z₁ = winding (transport (λ i → PathP (λ j → invS¹Loop (step₀ (j ∨ i) .fst)) (twistBaseLoop (step₀ i .fst)) base) (cong snd step₀)) _ : windingKlein line1 ≡ (pos 0 , pos 1) _ = refl _ : windingKlein line2 ≡ (negsuc 0 , pos 0) _ = refl _ : windingKlein (line1 ∙ line2) ≡ (negsuc 0 , negsuc 0) _ = refl _ : windingKlein (line1 ∙ line2 ∙ line1) ≡ (negsuc 0 , pos 0) _ = refl
29.189024
105
0.594318
231c120927d5371672ce35239fd659afdcf9aa98
387
agda
Agda
test/Compiler/with-stdlib/TrustMe.agda
andreasabel/agda-with-old-branches
04941fb75be06039b0085ab047117625294cbc99
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Compiler/with-stdlib/TrustMe.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Compiler/with-stdlib/TrustMe.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
module TrustMe where open import Data.String open import Data.Unit using (⊤) open import IO import IO.Primitive as Prim open import Relation.Binary.PropositionalEquality open import Relation.Nullary -- Check that trustMe works. testTrustMe : IO ⊤ testTrustMe with "apa" ≟ "apa" ... | yes refl = putStrLn "Yes!" ... | no _ = putStrLn "No." main : Prim.IO ⊤ main = run testTrustMe
20.368421
49
0.723514
3906499be099b7aaa45304f9fc694b1597b71bc5
2,082
agda
Agda
test/LibSucceed/SizeInconsistentMeta4.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/LibSucceed/SizeInconsistentMeta4.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/LibSucceed/SizeInconsistentMeta4.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2012-02-24 example by Ramana Kumar {-# OPTIONS --sized-types #-} -- {-# OPTIONS --show-implicit -v tc.size.solve:20 -v tc.conv.size:15 #-} module SizeInconsistentMeta4 where open import Data.Nat using (ℕ;zero;suc) renaming (_<_ to _N<_) open import Data.Product using (_,_;_×_) open import Data.Product.Relation.Binary.Lex.Strict using (×-Lex; ×-transitive) open import Data.List using (List) open import Data.List.Relation.Binary.Lex.Strict using (Lex-<) renaming (<-transitive to Lex<-trans) open import Relation.Binary using (Rel;_Respects₂_;Transitive;IsEquivalence) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_) open import Level using (0ℓ) open import Size using (Size;↑_) -- keeping the definition of Vec for the positivity check infixr 5 _∷_ data Vec {a} (A : Set a) : ℕ → Set a where [] : Vec A zero _∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n) {- produces different error data Lex-< {A : _} (_≈_ _<_ : Rel A Level.zero) : Rel (List A) Level.zero where postulate Lex<-trans : ∀ {P _≈_ _<_} → IsEquivalence _≈_ → _<_ Respects₂ _≈_ → Transitive _<_ → Transitive (Lex-< _≈_ _<_) -} postulate N<-trans : Transitive _N<_ -- Vec : ∀ {a} (A : Set a) → ℕ → Set a Vec→List : ∀ {a n} {A : Set a} → Vec A n → List A data Type : Size → Set where TyApp : {z : Size} (n : ℕ) → (as : Vec (Type z) n) → Type (↑ z) <-transf : ∀ {z} → Rel (Type z) 0ℓ → Rel (ℕ × List (Type z)) 0ℓ <-transf _<_ = ×-Lex _≡_ _N<_ (Lex-< _≡_ _<_) infix 4 _<_ data _<_ : {z : Size} → Rel (Type z) 0ℓ where TyApp<TyApp : ∀ {z} {n₁} {as₁} {n₂} {as₂} → <-transf (_<_ {z}) (n₁ , Vec→List as₁) (n₂ , Vec→List as₂) → _<_ {↑ z} (TyApp n₁ as₁) (TyApp n₂ as₂) <-trans : ∀ {z} → Transitive (_<_ {z}) <-trans (TyApp<TyApp p) (TyApp<TyApp q) = TyApp<TyApp (×-transitive {_<₂_ = Lex-< _≡_ _<_} PropEq.isEquivalence (PropEq.resp₂ _N<_) N<-trans (Lex<-trans PropEq.isEquivalence (PropEq.resp₂ _<_) <-trans) p q)
36.526316
100
0.595581
cb697b96d3fb4c3725163512c454cabcccd73dd2
7,525
agda
Agda
theorems/homotopy/3x3/From.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/homotopy/3x3/From.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/homotopy/3x3/From.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} --open import HoTT open import homotopy.3x3.PushoutPushout open import homotopy.3x3.Transpose open import homotopy.3x3.Common module homotopy.3x3.From {i} (d : Span^2 {i}) where open Span^2 d open M d hiding (Pushout^2) open M (transpose d) using () renaming (A₀∙ to A∙₀; A₂∙ to A∙₂; A₄∙ to A∙₄; module F₁∙ to F∙₁; f₁∙ to f∙₁; module F₃∙ to F∙₃; f₃∙ to f∙₃; v-h-span to h-v-span) open M using (Pushout^2) module I∙₀ = PushoutRec {D = Pushout^2 d} (left ∘ left) (right ∘ left) (glue ∘ left) i∙₀ : A∙₀ → Pushout^2 d i∙₀ = I∙₀.f module I∙₄ = PushoutRec {D = Pushout^2 d} (left ∘ right) (right ∘ right) (glue ∘ right) i∙₄ : A∙₄ → Pushout^2 d i∙₄ = I∙₄.f module E∙₂Red (c : A₂₂) where lhs-o : _ lhs-o = ap (i∙₄ ∘ f∙₃) (glue c) =⟨ ap-∘ i∙₄ f∙₃ (glue c) ⟩ ap i∙₄ (ap f∙₃ (glue c)) =⟨ F∙₃.glue-β c |in-ctx (ap i∙₄) ⟩ ap i∙₄ (ap left (H₁₃ c) ∙ glue (f₂₃ c) ∙ ap right (! (H₃₃ c))) =⟨ ap-∙∙!`∘`∘ i∙₄ left right (H₁₃ c) (glue (f₂₃ c)) (H₃₃ c) ⟩ ap (left ∘ right) (H₁₃ c) ∙ ap i∙₄ (glue (f₂₃ c)) ∙ ! (ap (right ∘ right) (H₃₃ c)) =⟨ I∙₄.glue-β (f₂₃ c) |in-ctx (λ u → ap (left ∘ right) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c))) ⟩ ap (left ∘ right) (H₁₃ c) ∙ glue (right (f₂₃ c)) ∙ ! (ap (right ∘ right) (H₃₃ c)) ∎ rhs-o : _ rhs-o = ! (ap (left ∘ left) (H₁₁ c)) ∙ glue (left (f₂₁ c)) ∙ ap (right ∘ left) (H₃₁ c) =⟨ ! (I∙₀.glue-β (f₂₁ c)) |in-ctx (λ u → (! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c))) ⟩ ! (ap (left ∘ left) (H₁₁ c)) ∙ ap i∙₀ (glue (f₂₁ c)) ∙ ap (right ∘ left) (H₃₁ c) =⟨ ! (ap-!∙∙`∘`∘ i∙₀ left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c)) ⟩ ap i∙₀ (ap left (! (H₁₁ c)) ∙ glue (f₂₁ c) ∙ ap right (H₃₁ c)) =⟨ ! (F∙₁.glue-β c) |in-ctx (λ u → ap i∙₀ u) ⟩ ap i∙₀ (ap f∙₁ (glue c)) =⟨ ∘-ap i∙₀ f∙₁ (glue c) ⟩ ap (i∙₀ ∘ f∙₁) (glue c) ∎ T-lhs : Type _ T-lhs = right (left (f₃₀ (f₂₁ c))) == right (right (f₃₄ (f₂₃ c))) :> Pushout^2 d lhs-i : _ == _ :> T-lhs lhs-i = ap (right ∘ left) (H₃₁ c) ∙ ap right (glue (f₃₂ c)) ∙ ap (right ∘ right) (H₃₃ c) =⟨ ! (ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c)) ⟩ ap right (ap left (H₃₁ c) ∙ glue (f₃₂ c) ∙ ap right (H₃₃ c)) =⟨ ! (ap (ap right) (F₃∙.glue-β c)) ⟩ ap right (ap f₃∙ (glue c)) =⟨ ∘-ap right f₃∙ (glue c) ⟩ ap (right ∘ f₃∙) (glue c) ∎ T-rhs : Type _ T-rhs = left (left (f₁₀ (f₂₁ c))) == left (right (f₁₄ (f₂₃ c))) :> Pushout^2 d rhs-i : _ == _ :> T-rhs rhs-i = ap (left ∘ f₁∙) (glue c) =⟨ ap-∘ left f₁∙ (glue c) ⟩ ap left (ap f₁∙ (glue c)) =⟨ F₁∙.glue-β c |in-ctx (ap left) ⟩ ap left (ap left (H₁₁ c) ∙ glue (f₁₂ c) ∙ ap right (H₁₃ c)) =⟨ ap-∙∙`∘`∘ left left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c) ⟩ (ap (left ∘ left) (H₁₁ c) ∙ ap left (glue (f₁₂ c)) ∙ ap (left ∘ right) (H₁₃ c)) ∎ coh! : (p : (_ , _ =□ _ , _)) → _ coh! = pp-coh! {A = Pushout^2 d} {u = glue (left (f₂₁ c))} {ap (right ∘ left) (H₃₁ c)} {ap right (glue (f₃₂ c))} {ap (right ∘ right) (H₃₃ c)} {ap (left ∘ left) (H₁₁ c)} {ap left (glue (f₁₂ c))} {ap (left ∘ right) (H₁₃ c)} {glue (right (f₂₃ c))} coh : (p : (_ , _ =□ _ , _)) → _ coh = pp-coh {A = Pushout^2 d} {p = ap left (glue (f₁₂ c))} {ap (left ∘ right) (H₁₃ c)} {glue (right (f₂₃ c))} {ap (right ∘ right) (H₃₃ c)} {ap (left ∘ left) (H₁₁ c)} {glue (left (f₂₁ c))} {ap (right ∘ left) (H₃₁ c)} {ap right (glue (f₃₂ c))} module _ (to : Pushout^2 d → Pushout^2 (transpose d)) where ap-ap-coh! : (p : _ , _ =□ _ , _) → _ ap-ap-coh! = pp-coh! {u = ap to (glue (left (f₂₁ c)))} {ap (to ∘ right ∘ left) (H₃₁ c)} {ap to (ap right (glue (f₃₂ c)))} {ap (to ∘ right ∘ right) (H₃₃ c)} {ap (to ∘ left ∘ left) (H₁₁ c)} {ap to (ap left (glue (f₁₂ c)))} {ap (to ∘ left ∘ right) (H₁₃ c)} {ap to (glue (right (f₂₃ c)))} ap-ap-coh : (p : _ , _ =□ _ , _) → _ ap-ap-coh = pp-coh {p = ap to (ap left (glue (f₁₂ c)))} {ap (to ∘ left ∘ right) (H₁₃ c)} {ap to (glue (right (f₂₃ c)))} {ap (to ∘ right ∘ right) (H₃₃ c)} {ap (to ∘ left ∘ left) (H₁₁ c)} {ap to (glue (left (f₂₁ c)))} {ap (to ∘ right ∘ left) (H₃₁ c)} {ap to (ap right (glue (f₃₂ c)))} ap-ap-coh!-lhs-i : _ ap-ap-coh!-lhs-i = ! (ap-∙∙`∘`∘ to (right ∘ left) (right ∘ right) (H₃₁ c) (ap right (glue (f₃₂ c))) (H₃₃ c)) ap-ap-coh!-rhs-i : _ ap-ap-coh!-rhs-i = ap-∙∙`∘`∘ to (left ∘ left) (left ∘ right) (H₁₁ c) (ap left (glue (f₁₂ c))) (H₁₃ c) ap-ap-coh!-lhs-o : _ ap-ap-coh!-lhs-o = ap-∙∙!'`∘`∘ to (left ∘ right) (right ∘ right) (H₁₃ c) (glue (right (f₂₃ c))) (H₃₃ c) ap-ap-coh!-rhs-o : _ ap-ap-coh!-rhs-o = ! (ap-!'∙∙`∘`∘ to (left ∘ left) (right ∘ left) (H₁₁ c) (glue (left (f₂₁ c))) (H₃₁ c)) ap-ap-coh!-β : (α : _) → ap□ to (coh! α) == ap-ap-coh! (ap□ to α ∙□-i/ ap-ap-coh!-lhs-i / ap-ap-coh!-rhs-i /) ∙□-i/ ap-ap-coh!-lhs-o / ap-ap-coh!-rhs-o / ap-ap-coh!-β α = ap□-coh! {g₁ = left ∘ right} {right ∘ right} {left ∘ left} {right ∘ left} to {u = glue (left (f₂₁ c))} {H₃₁ c} {ap right (glue (f₃₂ c))} {H₃₃ c} {H₁₁ c} {ap left (glue (f₁₂ c))} {H₁₃ c} {glue (right (f₂₃ c))} α open E∙₂Red module E∙₂ = PushoutElim {d = span _ _ _ f₁₂ f₃₂} {P = λ c → i∙₀ (f∙₁ c) == i∙₄ (f∙₃ c)} (ap left ∘ glue) (ap right ∘ glue) (λ c → ↓-='-in' (coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ lhs-i c / rhs-i c /) ∙□-i/ lhs-o c / rhs-o c /)) e∙₂ : (c : A∙₂) → i∙₀ (f∙₁ c) == i∙₄ (f∙₃ c) e∙₂ = E∙₂.f module From = PushoutRec {d = h-v-span} {D = Pushout^2 d} i∙₀ i∙₄ e∙₂ from : Pushout^2 (transpose d) → Pushout^2 d from = From.f from-glue-glue-β : (c : A₂₂) → ap↓ (ap from) (apd glue (glue c)) == (↓-='-in' (coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ lhs-i c / rhs-i c /) ∙□-i/ lhs-o c / rhs-o c /)) ◃/ From.glue-β (left (f₁₂ c)) / ! (From.glue-β (right (f₃₂ c))) / from-glue-glue-β c = ∘'-apd (ap from) glue (glue c) ∙ coh1 {p = apd (ap from ∘ glue) (glue c)} {From.glue-β (right (f₃₂ c))} {From.glue-β (left (f₁₂ c))} {apd e∙₂ (glue c)} (↓-=-out (apd From.glue-β (glue c))) ∙ (E∙₂.glue-β c |in-ctx (λ u → u ◃/ From.glue-β (left (f₁₂ c)) / ! (From.glue-β (right (f₃₂ c)))/))
42.755682
118
0.413821
1086d39c5ab0c25a0ece2293c8a5b9a6c942c44d
378
agda
Agda
prototyping/Luau/Value.agda
Tr4shh/Roblox-Luau
cd18adc20ecb805b8eeb770a9e5ef8e0cd123734
[ "MIT" ]
null
null
null
prototyping/Luau/Value.agda
Tr4shh/Roblox-Luau
cd18adc20ecb805b8eeb770a9e5ef8e0cd123734
[ "MIT" ]
null
null
null
prototyping/Luau/Value.agda
Tr4shh/Roblox-Luau
cd18adc20ecb805b8eeb770a9e5ef8e0cd123734
[ "MIT" ]
null
null
null
module Luau.Value where open import Agda.Builtin.Float using (Float) open import Luau.Addr using (Addr) open import Luau.Syntax using (Block; Expr; nil; addr; number) open import Luau.Var using (Var) data Value : Set where nil : Value addr : Addr → Value number : Float → Value val : ∀ {a} → Value → Expr a val nil = nil val (addr a) = addr a val (number x) = number x
22.235294
62
0.693122
0e7dbfd211145d66629440d6605316a326c8e0aa
20,801
agda
Agda
Definition/LogicalRelation.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2018-06-21T08:39:01.000Z
2022-01-17T16:13:53.000Z
Definition/LogicalRelation.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
null
null
null
Definition/LogicalRelation.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2022-01-26T14:55:51.000Z
2022-02-15T19:42:19.000Z
{-# OPTIONS --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped as U open import Definition.Typed open import Definition.Typed.Weakening open import Definition.Typed.Reduction open import Tools.Product import Tools.PropositionalEquality as PE import Data.Fin as Fin import Data.Nat as Nat -- The different cases of the logical relation are spread out through out -- this file. This is due to them having different dependencies. -- We will refer to expressions that satisfies the logical relation as reducible. -- Reducibility of Neutrals: -- Neutral type record _⊩ne_^[_,_] (Γ : Con Term) (A : Term) (r : Relevance) (l : Level) : Set where constructor ne field K : Term D : Γ ⊢ A :⇒*: K ^ [ r , ι l ] neK : Neutral K K≡K : Γ ⊢ K ~ K ∷ (Univ r l) ^ [ ! , next l ] -- Neutral type equality record _⊩ne_≡_^[_,_]/_ (Γ : Con Term) (A B : Term) (r : Relevance) (l : Level) ([A] : Γ ⊩ne A ^[ r , l ]) : Set where constructor ne₌ open _⊩ne_^[_,_] [A] field M : Term D′ : Γ ⊢ B :⇒*: M ^ [ r , ι l ] neM : Neutral M K≡M : Γ ⊢ K ~ M ∷ (Univ r l) ^ [ ! , next l ] -- Neutral term in WHNF record _⊩neNf_∷_^_ (Γ : Con Term) (k A : Term) (r : TypeInfo) : Set where inductive constructor neNfₜ field neK : Neutral k ⊢k : Γ ⊢ k ∷ A ^ r k≡k : Γ ⊢ k ~ k ∷ A ^ r -- Neutral relevant term record _⊩ne_∷_^_/_ (Γ : Con Term) (t A : Term) (l : Level) ([A] : Γ ⊩ne A ^[ ! , l ]) : Set where inductive constructor neₜ open _⊩ne_^[_,_] [A] field k : Term d : Γ ⊢ t :⇒*: k ∷ K ^ ι l nf : Γ ⊩neNf k ∷ K ^ [ ! , ι l ] -- Neutral irrelevant term record _⊩neIrr_∷_^_/_ (Γ : Con Term) (t A : Term) (l : Level) ([A] : Γ ⊩ne A ^[ % , l ]) : Set where inductive constructor neₜ open _⊩ne_^[_,_] [A] field d : Γ ⊢ t ∷ A ^ [ % , ι l ] -- Neutral term equality in WHNF record _⊩neNf_≡_∷_^_ (Γ : Con Term) (k m A : Term) (r : TypeInfo) : Set where inductive constructor neNfₜ₌ field neK : Neutral k neM : Neutral m k≡m : Γ ⊢ k ~ m ∷ A ^ r -- Neutral relevant term equality record _⊩ne_≡_∷_^_/_ (Γ : Con Term) (t u A : Term) (l : Level) ([A] : Γ ⊩ne A ^[ ! , l ]) : Set where constructor neₜ₌ open _⊩ne_^[_,_] [A] field k m : Term d : Γ ⊢ t :⇒*: k ∷ K ^ ι l d′ : Γ ⊢ u :⇒*: m ∷ K ^ ι l nf : Γ ⊩neNf k ≡ m ∷ K ^ [ ! , ι l ] -- Neutral irrelevant term equality record _⊩neIrr_≡_∷_^_/_ (Γ : Con Term) (t u A : Term) (l : Level) ([A] : Γ ⊩ne A ^[ % , l ]) : Set where constructor neₜ₌ open _⊩ne_^[_,_] [A] field d : Γ ⊢ t ∷ A ^ [ % , ι l ] d′ : Γ ⊢ u ∷ A ^ [ % , ι l ] -- Reducibility of natural numbers: -- Natural number type _⊩ℕ_ : (Γ : Con Term) (A : Term) → Set Γ ⊩ℕ A = Γ ⊢ A :⇒*: ℕ ^ [ ! , ι ⁰ ] -- Natural number type equality _⊩ℕ_≡_ : (Γ : Con Term) (A B : Term) → Set Γ ⊩ℕ A ≡ B = Γ ⊢ B ⇒* ℕ ^ [ ! , ι ⁰ ] mutual -- Natural number term data _⊩ℕ_∷ℕ (Γ : Con Term) (t : Term) : Set where ℕₜ : (n : Term) (d : Γ ⊢ t :⇒*: n ∷ ℕ ^ ι ⁰) (n≡n : Γ ⊢ n ≅ n ∷ ℕ ^ [ ! , ι ⁰ ]) (prop : Natural-prop Γ n) → Γ ⊩ℕ t ∷ℕ -- WHNF property of natural number terms data Natural-prop (Γ : Con Term) : (n : Term) → Set where sucᵣ : ∀ {n} → Γ ⊩ℕ n ∷ℕ → Natural-prop Γ (suc n) zeroᵣ : Natural-prop Γ zero ne : ∀ {n} → Γ ⊩neNf n ∷ ℕ ^ [ ! , ι ⁰ ] → Natural-prop Γ n mutual -- Natural number term equality data _⊩ℕ_≡_∷ℕ (Γ : Con Term) (t u : Term) : Set where ℕₜ₌ : (k k′ : Term) (d : Γ ⊢ t :⇒*: k ∷ ℕ ^ ι ⁰) (d′ : Γ ⊢ u :⇒*: k′ ∷ ℕ ^ ι ⁰) (k≡k′ : Γ ⊢ k ≅ k′ ∷ ℕ ^ [ ! , ι ⁰ ]) (prop : [Natural]-prop Γ k k′) → Γ ⊩ℕ t ≡ u ∷ℕ -- WHNF property of Natural number term equality data [Natural]-prop (Γ : Con Term) : (n n′ : Term) → Set where sucᵣ : ∀ {n n′} → Γ ⊩ℕ n ≡ n′ ∷ℕ → [Natural]-prop Γ (suc n) (suc n′) zeroᵣ : [Natural]-prop Γ zero zero ne : ∀ {n n′} → Γ ⊩neNf n ≡ n′ ∷ ℕ ^ [ ! , ι ⁰ ] → [Natural]-prop Γ n n′ -- Natural extraction from term WHNF property natural : ∀ {Γ n} → Natural-prop Γ n → Natural n natural (sucᵣ x) = sucₙ natural zeroᵣ = zeroₙ natural (ne (neNfₜ neK ⊢k k≡k)) = ne neK -- Natural extraction from term equality WHNF property split : ∀ {Γ a b} → [Natural]-prop Γ a b → Natural a × Natural b split (sucᵣ x) = sucₙ , sucₙ split zeroᵣ = zeroₙ , zeroₙ split (ne (neNfₜ₌ neK neM k≡m)) = ne neK , ne neM -- Reducibility of Empty -- Empty type _⊩Empty_^_ : (Γ : Con Term) (A : Term) (l : Level) → Set Γ ⊩Empty A ^ l = Γ ⊢ A :⇒*: Empty l ^ [ % , ι l ] -- Empty type equality _⊩Empty_≡_^_ : (Γ : Con Term) (A B : Term) (l : Level) → Set Γ ⊩Empty A ≡ B ^ l = Γ ⊢ B ⇒* Empty l ^ [ % , ι l ] data Empty-prop (Γ : Con Term) (n : Term) (l : Level) : Set where ne : Γ ⊢ n ∷ Empty l ^ [ % , ι l ] → Empty-prop Γ n l -- -- Empty term data _⊩Empty_∷Empty^_ (Γ : Con Term) (t : Term) (l : Level) : Set where Emptyₜ : (prop : Empty-prop Γ t l) → Γ ⊩Empty t ∷Empty^ l data [Empty]-prop (Γ : Con Term) : (n n′ : Term) (l : Level) → Set where ne : ∀ {n n′ l} → Γ ⊢ n ∷ Empty l ^ [ % , ι l ] → Γ ⊢ n′ ∷ Empty l ^ [ % , ι l ] → [Empty]-prop Γ n n′ l -- Empty term equality data _⊩Empty_≡_∷Empty^_ (Γ : Con Term) (t u : Term) (l : Level) : Set where Emptyₜ₌ : (prop : [Empty]-prop Γ t u l) → Γ ⊩Empty t ≡ u ∷Empty^ l -- Logical relation record LogRelKit : Set₁ where constructor Kit field _⊩U_^_ : (Γ : Con Term) → Term → TypeLevel → Set _⊩Π_^[_,_] : (Γ : Con Term) → Term → Relevance → Level → Set _⊩∃_^_ : (Γ : Con Term) → Term → Level → Set _⊩_^_ : (Γ : Con Term) → Term → TypeInfo → Set _⊩_≡_^_/_ : (Γ : Con Term) (A B : Term) (r : TypeInfo) → Γ ⊩ A ^ r → Set _⊩_∷_^_/_ : (Γ : Con Term) (t A : Term) (r : TypeInfo) → Γ ⊩ A ^ r → Set _⊩_≡_∷_^_/_ : (Γ : Con Term) (t u A : Term) (r : TypeInfo) → Γ ⊩ A ^ r → Set module LogRel (l : TypeLevel) (rec : ∀ {l′} → l′ <∞ l → LogRelKit) where -- Reducibility of Universe: -- Universe type record _⊩¹U_^_ (Γ : Con Term) (A : Term) (ll : TypeLevel) : Set where constructor Uᵣ field r : Relevance l′ : Level l< : ι l′ <∞ l eq : next l′ PE.≡ ll d : Γ ⊢ A :⇒*: Univ r l′ ^ [ ! , next l′ ] -- Universe type equality _⊩¹U_≡_^_/_ : (Γ : Con Term) (A B : Term) (ll : TypeLevel) ([A] : Γ ⊩¹U A ^ ll) → Set Γ ⊩¹U A ≡ B ^ ll / [A] = Γ ⊢ B ⇒* Univ (_⊩¹U_^_.r [A]) (_⊩¹U_^_.l′ [A]) ^ [ ! , ll ] -- Universe term record _⊩¹U_∷_^_/_ (Γ : Con Term) (t : Term) (A : Term) (ll : TypeLevel) ([A] : Γ ⊩¹U A ^ ll) : Set where constructor Uₜ open _⊩¹U_^_ [A] open LogRelKit (rec l<) field K : Term d : Γ ⊢ t :⇒*: K ∷ Univ r l′ ^ next l′ typeK : Type K K≡K : Γ ⊢ K ≅ K ∷ Univ r l′ ^ [ ! , next l′ ] [t] : ∀ {ρ Δ} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → Δ ⊩ U.wk ρ t ^ [ r , ι l′ ] -- Universe term equality record _⊩¹U_≡_∷_^_/_ (Γ : Con Term) (t u : Term) (X : Term) (ll : TypeLevel) ([X] : Γ ⊩¹U X ^ ll) : Set where constructor Uₜ₌ open _⊩¹U_^_ [X] open LogRelKit (rec l<) field [t] : Γ ⊩¹U t ∷ X ^ ll / [X] [u] : Γ ⊩¹U u ∷ X ^ ll / [X] A≡B : Γ ⊢ _⊩¹U_∷_^_/_.K [t] ≅ _⊩¹U_∷_^_/_.K [u] ∷ Univ r l′ ^ [ ! , next l′ ] [t≡u] : ∀ {ρ Δ} → ([ρ] : ρ ∷ Δ ⊆ Γ) → (⊢Δ : ⊢ Δ) → Δ ⊩ U.wk ρ t ≡ U.wk ρ u ^ [ r , ι l′ ] / _⊩¹U_∷_^_/_.[t] [t] [ρ] ⊢Δ mutual -- Reducibility of Π: -- Π-type record _⊩¹Π_^[_,_] (Γ : Con Term) (A : Term) (r : Relevance) (lΠ : Level) : Set where inductive eta-equality constructor Πᵣ field rF : Relevance lF : Level lG : Level lF≤ : lF ≤ lΠ lG≤ : lG ≤ lΠ F : Term G : Term D : Γ ⊢ A :⇒*: Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ r , ι lΠ ] ⊢F : Γ ⊢ F ^ [ rF , ι lF ] ⊢G : Γ ∙ F ^ [ rF , ι lF ] ⊢ G ^ [ r , ι lG ] A≡A : Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° lΠ ≅ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ r , ι lΠ ] [F] : ∀ {ρ Δ} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → Δ ⊩¹ U.wk ρ F ^ [ rF , ι lF ] [G] : ∀ {ρ Δ a} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩¹ a ∷ U.wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ → Δ ⊩¹ U.wk (lift ρ) G [ a ] ^ [ r , ι lG ] G-ext : ∀ {ρ Δ a b} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → ([a] : Δ ⊩¹ a ∷ U.wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ) → ([b] : Δ ⊩¹ b ∷ U.wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ) → Δ ⊩¹ a ≡ b ∷ U.wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ → Δ ⊩¹ U.wk (lift ρ) G [ a ] ≡ U.wk (lift ρ) G [ b ] ^ [ r , ι lG ] / [G] [ρ] ⊢Δ [a] -- Π-type equality record _⊩¹Π_≡_^[_,_]/_ (Γ : Con Term) (A B : Term) (r : Relevance) (lΠ : Level) ([A] : Γ ⊩¹Π A ^[ r , lΠ ]) : Set where inductive eta-equality constructor Π₌ open _⊩¹Π_^[_,_] [A] field F′ : Term G′ : Term D′ : Γ ⊢ B ⇒* Π F′ ^ rF ° lF ▹ G′ ° lG ° lΠ ^ [ r , ι lΠ ] A≡B : Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° lΠ ≅ Π F′ ^ rF ° lF ▹ G′ ° lG ° lΠ ^ [ r , ι lΠ ] [F≡F′] : ∀ {ρ Δ} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩¹ U.wk ρ F ≡ U.wk ρ F′ ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ [G≡G′] : ∀ {ρ Δ a} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → ([a] : Δ ⊩¹ a ∷ U.wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ) → Δ ⊩¹ U.wk (lift ρ) G [ a ] ≡ U.wk (lift ρ) G′ [ a ] ^ [ r , ι lG ] / [G] [ρ] ⊢Δ [a] -- relevant Term of Π-type _⊩¹Π_∷_^_/_ : (Γ : Con Term) (t A : Term) (lΠ : Level) ([A] : Γ ⊩¹Π A ^[ ! , lΠ ]) → Set Γ ⊩¹Π t ∷ A ^ lΠ / Πᵣ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext = ∃ λ f → Γ ⊢ t :⇒*: f ∷ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ ι lΠ × Function f × Γ ⊢ f ≅ f ∷ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ ! , ι lΠ ] × (∀ {ρ Δ a b} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) ([a] : Δ ⊩¹ a ∷ U.wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ) ([b] : Δ ⊩¹ b ∷ U.wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ) ([a≡b] : Δ ⊩¹ a ≡ b ∷ U.wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ) → Δ ⊩¹ U.wk ρ f ∘ a ^ lΠ ≡ U.wk ρ f ∘ b ^ lΠ ∷ U.wk (lift ρ) G [ a ] ^ [ ! , ι lG ] / [G] [ρ] ⊢Δ [a]) × (∀ {ρ Δ a} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → ([a] : Δ ⊩¹ a ∷ U.wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ) → Δ ⊩¹ U.wk ρ f ∘ a ^ lΠ ∷ U.wk (lift ρ) G [ a ] ^ [ ! , ι lG ] / [G] [ρ] ⊢Δ [a]) -- Issue: Agda complains about record use not being strictly positive. -- Therefore we have to use × -- Irrelevant term of Π-type _⊩¹Πirr_∷_^_/_ : (Γ : Con Term) (t A : Term) (l′ : Level) ([A] : Γ ⊩¹Π A ^[ % , l′ ]) → Set Γ ⊩¹Πirr t ∷ A ^ l′ / Πᵣ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext = Γ ⊢ t ∷ Π F ^ rF ° lF ▹ G ° lG ° l′ ^ [ % , ι l′ ] -- Term equality of Π-type _⊩¹Π_≡_∷_^_/_ : (Γ : Con Term) (t u A : Term) (l′ : Level) ([A] : Γ ⊩¹Π A ^[ ! , l′ ]) → Set Γ ⊩¹Π t ≡ u ∷ A ^ l′ / Πᵣ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext = let [A] = Πᵣ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext in ∃₂ λ f g → ( Γ ⊢ t :⇒*: f ∷ Π F ^ rF ° lF ▹ G ° lG ° l′ ^ ι l′ ) × ( Γ ⊢ u :⇒*: g ∷ Π F ^ rF ° lF ▹ G ° lG ° l′ ^ ι l′ ) × Function f × Function g × Γ ⊢ f ≅ g ∷ Π F ^ rF ° lF ▹ G ° lG ° l′ ^ [ ! , ι l′ ] × Γ ⊩¹Π t ∷ A ^ l′ / [A] × Γ ⊩¹Π u ∷ A ^ l′ / [A] × (∀ {ρ Δ a} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → ([a] : Δ ⊩¹ a ∷ U.wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ) → Δ ⊩¹ U.wk ρ f ∘ a ^ l′ ≡ U.wk ρ g ∘ a ^ l′ ∷ U.wk (lift ρ) G [ a ] ^ [ ! , ι lG ] / [G] [ρ] ⊢Δ [a]) -- Issue: Same as above. -- Irrelevant term equality of Π-type _⊩¹Πirr_≡_∷_^_/_ : (Γ : Con Term) (t u A : Term) (l′ : Level) ([A] : Γ ⊩¹Π A ^[ % , l′ ] ) → Set Γ ⊩¹Πirr t ≡ u ∷ A ^ l′ / Πᵣ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext = (Γ ⊢ t ∷ Π F ^ rF ° lF ▹ G ° lG ° l′ ^ [ % , ι l′ ]) × (Γ ⊢ u ∷ Π F ^ rF ° lF ▹ G ° lG ° l′ ^ [ % , ι l′ ]) -- Existential types record _⊩¹∃_^_ (Γ : Con Term) (A : Term) (l′ : Level) : Set where inductive eta-equality constructor ∃ᵣ field F : Term G : Term D : Γ ⊢ A :⇒*: ∃ F ▹ G ^ [ % , ι l′ ] ⊢F : Γ ⊢ F ^ [ % , ι l′ ] ⊢G : Γ ∙ F ^ [ % , ι l′ ] ⊢ G ^ [ % , ι l′ ] A≡A : Γ ⊢ (∃ F ▹ G) ≅ (∃ F ▹ G) ^ [ % , ι l′ ] [F] : ∀ {ρ Δ} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → Δ ⊩¹ U.wk ρ F ^ [ % , ι l′ ] [G] : ∀ {ρ Δ a} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩¹ a ∷ U.wk ρ F ^ [ % , ι l′ ] / [F] [ρ] ⊢Δ → Δ ⊩¹ U.wk (lift ρ) G [ a ] ^ [ % , ι l′ ] G-ext : ∀ {ρ Δ a b} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → ([a] : Δ ⊩¹ a ∷ U.wk ρ F ^ [ % , ι l′ ] / [F] [ρ] ⊢Δ) → ([b] : Δ ⊩¹ b ∷ U.wk ρ F ^ [ % , ι l′ ] / [F] [ρ] ⊢Δ) → Δ ⊩¹ a ≡ b ∷ U.wk ρ F ^ [ % , ι l′ ] / [F] [ρ] ⊢Δ → Δ ⊩¹ U.wk (lift ρ) G [ a ] ≡ U.wk (lift ρ) G [ b ] ^ [ % , ι l′ ] / [G] [ρ] ⊢Δ [a] -- ∃-type equality record _⊩¹∃_≡_^_/_ (Γ : Con Term) (A B : Term) (l′ : Level) ([A] : Γ ⊩¹∃ A ^ l′) : Set where inductive eta-equality constructor ∃₌ open _⊩¹∃_^_ [A] field F′ : Term G′ : Term D′ : Γ ⊢ B ⇒* ∃ F′ ▹ G′ ^ [ % , ι l′ ] A≡B : Γ ⊢ ∃ F ▹ G ≅ ∃ F′ ▹ G′ ^ [ % , ι l′ ] [F≡F′] : ∀ {ρ Δ} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → Δ ⊩¹ U.wk ρ F ≡ U.wk ρ F′ ^ [ % , ι l′ ] / [F] [ρ] ⊢Δ [G≡G′] : ∀ {ρ Δ a} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) → ([a] : Δ ⊩¹ a ∷ U.wk ρ F ^ [ % , ι l′ ] / [F] [ρ] ⊢Δ) → Δ ⊩¹ U.wk (lift ρ) G [ a ] ≡ U.wk (lift ρ) G′ [ a ] ^ [ % , ι l′ ] / [G] [ρ] ⊢Δ [a] -- Terms of ∃-types (always irrelevant) _⊩¹∃_∷_^_/_ : (Γ : Con Term) (t A : Term) (l′ : Level) ([A] : Γ ⊩¹∃ A ^ l′) → Set Γ ⊩¹∃ t ∷ A ^ l′ / ∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext = Γ ⊢ t ∷ ∃ F ▹ G ^ [ % , ι l′ ] -- Term equality for ∃-types _⊩¹∃_≡_∷_^_/_ : (Γ : Con Term) (t u A : Term) (l′ : Level) ([A] : Γ ⊩¹∃ A ^ l′) → Set Γ ⊩¹∃ t ≡ u ∷ A ^ l′ / ∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext = (Γ ⊢ t ∷ ∃ F ▹ G ^ [ % , ι l′ ]) × (Γ ⊢ u ∷ ∃ F ▹ G ^ [ % , ι l′ ]) -- Logical relation definition data _⊩¹_^_ (Γ : Con Term) : Term → TypeInfo → Set where Uᵣ : ∀ {A ll} → (UA : Γ ⊩¹U A ^ ll) → Γ ⊩¹ A ^ [ ! , ll ] ℕᵣ : ∀ {A} → Γ ⊩ℕ A → Γ ⊩¹ A ^ [ ! , ι ⁰ ] Emptyᵣ : ∀ {A l} → Γ ⊩Empty A ^ l → Γ ⊩¹ A ^ [ % , ι l ] ne : ∀ {A r l} → Γ ⊩ne A ^[ r , l ] → Γ ⊩¹ A ^ [ r , ι l ] Πᵣ : ∀ {A r l} → Γ ⊩¹Π A ^[ r , l ] → Γ ⊩¹ A ^ [ r , ι l ] ∃ᵣ : ∀ {A l} → Γ ⊩¹∃ A ^ l → Γ ⊩¹ A ^ [ % , ι l ] emb : ∀ {A r l′} (l< : l′ <∞ l) (let open LogRelKit (rec l<)) ([A] : Γ ⊩ A ^ r) → Γ ⊩¹ A ^ r _⊩¹_≡_^_/_ : (Γ : Con Term) (A B : Term) (r : TypeInfo) → Γ ⊩¹ A ^ r → Set Γ ⊩¹ A ≡ B ^ [ .! , l ] / Uᵣ UA = Γ ⊩¹U A ≡ B ^ l / UA Γ ⊩¹ A ≡ B ^ [ .! , .ι ⁰ ] / ℕᵣ D = Γ ⊩ℕ A ≡ B Γ ⊩¹ A ≡ B ^ [ .% , .ι l ] / Emptyᵣ D = Γ ⊩Empty A ≡ B ^ l Γ ⊩¹ A ≡ B ^ [ r , ι l ] / ne neA = Γ ⊩ne A ≡ B ^[ r , l ]/ neA Γ ⊩¹ A ≡ B ^ [ r , ι l ] / Πᵣ ΠA = Γ ⊩¹Π A ≡ B ^[ r , l ]/ ΠA Γ ⊩¹ A ≡ B ^ [ .% , ι l ] / ∃ᵣ ∃A = Γ ⊩¹∃ A ≡ B ^ l / ∃A Γ ⊩¹ A ≡ B ^ r / emb l< [A] = Γ ⊩ A ≡ B ^ r / [A] where open LogRelKit (rec l<) _⊩¹_∷_^_/_ : (Γ : Con Term) (t A : Term) (r : TypeInfo) → Γ ⊩¹ A ^ r → Set Γ ⊩¹ t ∷ A ^ [ .! , ll ] / Uᵣ UA = Γ ⊩¹U t ∷ A ^ ll / UA Γ ⊩¹ t ∷ A ^ .([ ! , ι ⁰ ]) / ℕᵣ x = Γ ⊩ℕ t ∷ℕ Γ ⊩¹ t ∷ A ^ [ .% , ι ll ] / Emptyᵣ x = Γ ⊩Empty t ∷Empty^ ll Γ ⊩¹ t ∷ A ^ .([ ! , ι l ]) / ne {r = !} {l} neA = Γ ⊩ne t ∷ A ^ l / neA Γ ⊩¹ t ∷ A ^ .([ % , ι l ]) / ne {r = %} {l} neA = Γ ⊩neIrr t ∷ A ^ l / neA Γ ⊩¹ t ∷ A ^ [ ! , ι l ] / Πᵣ ΠA = Γ ⊩¹Π t ∷ A ^ l / ΠA Γ ⊩¹ t ∷ A ^ [ % , ι l ] / Πᵣ ΠA = Γ ⊩¹Πirr t ∷ A ^ l / ΠA Γ ⊩¹ t ∷ A ^ .([ % , ι l ]) / ∃ᵣ {l = l} ∃A = Γ ⊩¹∃ t ∷ A ^ l / ∃A Γ ⊩¹ t ∷ A ^ r / emb l< [A] = Γ ⊩ t ∷ A ^ r / [A] where open LogRelKit (rec l<) _⊩¹_≡_∷_^_/_ : (Γ : Con Term) (t u A : Term) (r : TypeInfo) → Γ ⊩¹ A ^ r → Set Γ ⊩¹ t ≡ u ∷ A ^ [ .! , ll ] / Uᵣ UA = Γ ⊩¹U t ≡ u ∷ A ^ ll / UA Γ ⊩¹ t ≡ u ∷ A ^ .([ ! , ι ⁰ ]) / ℕᵣ D = Γ ⊩ℕ t ≡ u ∷ℕ Γ ⊩¹ t ≡ u ∷ A ^ [ .% , ι ll ] / Emptyᵣ D = Γ ⊩Empty t ≡ u ∷Empty^ ll Γ ⊩¹ t ≡ u ∷ A ^ .([ ! , ι l ]) / ne {r = !} {l} neA = Γ ⊩ne t ≡ u ∷ A ^ l / neA Γ ⊩¹ t ≡ u ∷ A ^ .([ % , ι l ]) / ne {r = %} {l} neA = Γ ⊩neIrr t ≡ u ∷ A ^ l / neA Γ ⊩¹ t ≡ u ∷ A ^ [ ! , ι l ] / Πᵣ ΠA = Γ ⊩¹Π t ≡ u ∷ A ^ l / ΠA Γ ⊩¹ t ≡ u ∷ A ^ [ % , ι l ] / Πᵣ ΠA = Γ ⊩¹Πirr t ≡ u ∷ A ^ l / ΠA Γ ⊩¹ t ≡ u ∷ A ^ .([ % , ι l ]) / ∃ᵣ {l = l} ∃A = Γ ⊩¹∃ t ≡ u ∷ A ^ l / ∃A Γ ⊩¹ t ≡ u ∷ A ^ r / emb l< [A] = Γ ⊩ t ≡ u ∷ A ^ r / [A] where open LogRelKit (rec l<) kit : LogRelKit kit = Kit _⊩¹U_^_ _⊩¹Π_^[_,_] _⊩¹∃_^_ _⊩¹_^_ _⊩¹_≡_^_/_ _⊩¹_∷_^_/_ _⊩¹_≡_∷_^_/_ open LogRel public using (Uᵣ; ℕᵣ; Emptyᵣ; ne; Πᵣ ; ∃ᵣ ; emb; Uₜ; Uₜ₌; Π₌; ∃₌) -- Patterns for the non-records of Π pattern Πₜ a b c d e f = a , b , c , d , e , f pattern Πₜ₌ a b c d e f g h i j = a , b , c , d , e , f , g , h , i , j pattern Uᵣ′ A ll r l a e d = Uᵣ {A = A} {ll = ll} (Uᵣ r l a e d) pattern ne′ b c d e = ne (ne b c d e) pattern Πᵣ′ a a' a'' lf lg b c d e f g h i j = Πᵣ (Πᵣ a a' a'' lf lg b c d e f g h i j) pattern ∃ᵣ′ a b c d e f g h i = ∃ᵣ (∃ᵣ a b c d e f g h i) -- we need to split the LogRelKit into the level part and the general part to convince Agda termination checker logRelRec : ∀ l {l′} → l′ <∞ l → LogRelKit logRelRec (ι ⁰) = λ () logRelRec (ι ¹) X = LogRel.kit (ι ⁰) λ () logRelRec ∞ X = LogRel.kit (ι ¹) (λ X → LogRel.kit (ι ⁰) λ ()) kit : ∀ (i : TypeLevel) → LogRelKit kit l = LogRel.kit l (logRelRec l) _⊩′⟨_⟩U_^_ : (Γ : Con Term) (l : TypeLevel) → Term → TypeLevel → Set Γ ⊩′⟨ l ⟩U A ^ ll = Γ ⊩U A ^ ll where open LogRelKit (kit l) _⊩′⟨_⟩Π_^[_,_] : (Γ : Con Term) (l : TypeLevel) → Term → Relevance → Level → Set Γ ⊩′⟨ l ⟩Π A ^[ r , lΠ ] = Γ ⊩Π A ^[ r , lΠ ] where open LogRelKit (kit l) _⊩′⟨_⟩∃_^_ : (Γ : Con Term) (l : TypeLevel) → Term → Level → Set Γ ⊩′⟨ l ⟩∃ A ^ l' = Γ ⊩∃ A ^ l' where open LogRelKit (kit l) _⊩⟨_⟩_^_ : (Γ : Con Term) (l : TypeLevel) → Term → TypeInfo → Set Γ ⊩⟨ l ⟩ A ^ r = Γ ⊩ A ^ r where open LogRelKit (kit l) _⊩⟨_⟩_≡_^_/_ : (Γ : Con Term) (l : TypeLevel) (A B : Term) (r : TypeInfo) → Γ ⊩⟨ l ⟩ A ^ r → Set Γ ⊩⟨ l ⟩ A ≡ B ^ r / [A] = Γ ⊩ A ≡ B ^ r / [A] where open LogRelKit (kit l) _⊩⟨_⟩_∷_^_/_ : (Γ : Con Term) (l : TypeLevel) (t A : Term) (r : TypeInfo) → Γ ⊩⟨ l ⟩ A ^ r → Set Γ ⊩⟨ l ⟩ t ∷ A ^ r / [A] = Γ ⊩ t ∷ A ^ r / [A] where open LogRelKit (kit l) _⊩⟨_⟩_≡_∷_^_/_ : (Γ : Con Term) (l : TypeLevel) (t u A : Term) (r : TypeInfo) → Γ ⊩⟨ l ⟩ A ^ r → Set Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ r / [A] = Γ ⊩ t ≡ u ∷ A ^ r / [A] where open LogRelKit (kit l) -- Well-typed irrelevant terms are always reducible logRelIrr : ∀ {l t Γ l' A} ([A] : Γ ⊩⟨ l ⟩ A ^ [ % , l' ]) (⊢t : Γ ⊢ t ∷ A ^ [ % , l' ]) → Γ ⊩⟨ l ⟩ t ∷ A ^ [ % , l' ] / [A] logRelIrr (Emptyᵣ [[ ⊢A , ⊢B , D ]]) ⊢t = Emptyₜ (ne (conv ⊢t (reduction D (id ⊢B) Emptyₙ Emptyₙ (refl ⊢B)))) logRelIrr (ne x) ⊢t = neₜ ⊢t logRelIrr (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ⊢t = conv ⊢t (reduction (red D) (id (_⊢_:⇒*:_^_.⊢B D)) Πₙ Πₙ (refl (_⊢_:⇒*:_^_.⊢B D))) logRelIrr (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ⊢t = conv ⊢t (reduction (red D) (id (_⊢_:⇒*:_^_.⊢B D)) ∃ₙ ∃ₙ (refl (_⊢_:⇒*:_^_.⊢B D))) logRelIrr {ι ¹} (emb X [A]) ⊢t = logRelIrr [A] ⊢t logRelIrr {∞} (emb X [A]) ⊢t = logRelIrr [A] ⊢t -- Well-typed irrelevant terms are reducibly equal as soon as they have the same type logRelIrrEq : ∀ {l t u Γ l' A} ([A] : Γ ⊩⟨ l ⟩ A ^ [ % , l' ]) (⊢t : Γ ⊢ t ∷ A ^ [ % , l' ]) (⊢u : Γ ⊢ u ∷ A ^ [ % , l' ]) → Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ [ % , l' ] / [A] logRelIrrEq (Emptyᵣ [[ ⊢A , ⊢B , D ]]) ⊢t ⊢u = Emptyₜ₌ (ne ((conv ⊢t (reduction D (id ⊢B) Emptyₙ Emptyₙ (refl ⊢B)))) (conv ⊢u (reduction D (id ⊢B) Emptyₙ Emptyₙ (refl ⊢B)))) logRelIrrEq (ne x) ⊢t ⊢u = neₜ₌ ⊢t ⊢u logRelIrrEq (Πᵣ′ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ⊢t ⊢u = (conv ⊢t (reduction (red D) (id (_⊢_:⇒*:_^_.⊢B D)) Πₙ Πₙ (refl (_⊢_:⇒*:_^_.⊢B D))) ) , (conv ⊢u (reduction (red D) (id (_⊢_:⇒*:_^_.⊢B D)) Πₙ Πₙ (refl (_⊢_:⇒*:_^_.⊢B D))) ) logRelIrrEq (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) ⊢t ⊢u = (conv ⊢t (reduction (red D) (id (_⊢_:⇒*:_^_.⊢B D)) ∃ₙ ∃ₙ (refl (_⊢_:⇒*:_^_.⊢B D))) ) , (conv ⊢u (reduction (red D) (id (_⊢_:⇒*:_^_.⊢B D)) ∃ₙ ∃ₙ (refl (_⊢_:⇒*:_^_.⊢B D))) ) logRelIrrEq {ι ¹} (emb X [A]) ⊢t = logRelIrrEq [A] ⊢t logRelIrrEq {∞} (emb X [A]) ⊢t = logRelIrrEq [A] ⊢t
42.278455
240
0.423537
10160963e79f37b8040ecbdda7f4a159ef43ce3c
8,635
agda
Agda
src/Generics/Prelude.agda
flupe/generics
db764f858d908aa39ea4901669a6bbce1525f757
[ "MIT" ]
11
2021-04-08T15:10:20.000Z
2022-02-05T09:35:17.000Z
src/Generics/Prelude.agda
flupe/generics
db764f858d908aa39ea4901669a6bbce1525f757
[ "MIT" ]
4
2021-09-13T07:33:50.000Z
2022-01-14T10:48:30.000Z
src/Generics/Prelude.agda
flupe/generics
db764f858d908aa39ea4901669a6bbce1525f757
[ "MIT" ]
3
2021-04-08T08:32:42.000Z
2022-01-14T10:35:16.000Z
{-# OPTIONS --safe --without-K #-} module Generics.Prelude where open import Function.Base public open import Data.Product public hiding (map; uncurry; uncurry′; curry′) open import Level public using (Setω; Level; _⊔_; Lift; lift) renaming (zero to lzero; suc to lsuc) open import Relation.Binary.PropositionalEquality public hiding ([_]; Extensionality; ∀-extensionality) open import Data.Nat.Base public using (ℕ; zero; suc; _+_) renaming (_∸_ to _-_) open import Data.Unit public using (⊤; tt) open import Data.Empty public using (⊥) open import Data.List public using (List; []; _∷_) open import Data.Vec.Base public using (Vec; []; _∷_; map; lookup) open import Data.Fin.Base as Fin public using (Fin; zero; suc) open import Axiom.Extensionality.Propositional public open import Data.String using (String) open import Reflection public hiding (var; return; _>>=_; _>>_; assocˡ; assocʳ; visibility; relevance; module Arg) import Reflection.Argument module Arg = Reflection.Argument open import Reflection.Argument.Information public using (ArgInfo; arg-info; visibility) renaming (modality to getModality) open import Reflection.Argument.Modality public using (Modality; modality) open import Reflection.Argument.Relevance public using (Relevance; relevant; irrelevant) open import Reflection.Argument.Visibility public using (Visibility; visible; hidden; instance′) private variable m n : ℕ k : Fin n l l' : Level A B : Set l record Irr (A : Set l) : Set l where constructor irrv field .unirr : A open Irr public <_>_ : Relevance → Set l → Set l < relevant > A = A < irrelevant > A = Irr A relevance : ArgInfo → Relevance relevance = Reflection.Argument.Modality.relevance ∘ getModality -- withAI : ArgInfo → Term → Term -- withAI i t with relevance i -- ... | relevant = t -- ... | irrelevant = con (quote irrv) (vArg t ∷ []) -- macro -- Π<> : ((n , i) : String × ArgInfo) → Term → Term → Term → TC ⊤ -- Π<> (n , ai) S′ (Term.var k []) = -- unify (pi (arg ai S′) (abs n (Term.var (suc k) (vArg (withAI ai (Term.var 0 [])) ∷ [])))) -- Π<> (n , ai) S′ _ hole = typeError (strErr "" ∷ []) -- TODO: do this with reflection, using names -- TODO: deal with quantities Π<_> : ((a , i) : String × ArgInfo) (A : Set l) → (< relevance i > A → Set l') → Set (l ⊔ l') Π< _ , arg-info visible (modality relevant q) > A B = (x : A) → B x Π< _ , arg-info visible (modality irrelevant q) > A B = .(x : A) → B (irrv x) Π< _ , arg-info hidden (modality relevant q) > A B = {x : A} → B x Π< _ , arg-info hidden (modality irrelevant q) > A B = .{x : A} → B (irrv x) Π< _ , arg-info instance′ (modality relevant q) > A B = {{x : A}} → B x Π< _ , arg-info instance′ (modality irrelevant q) > A B = .{{x : A}} → B (irrv x) _→<_>_ : Set l → String × ArgInfo → Set l' → Set (l ⊔ l') A →< i > B = Π< i > A λ _ → B fun<_> : (ai@(a , i) : String × ArgInfo) {A : Set l} {B : < relevance i > A → Set l'} → (f : (x : < relevance i > A) → B x) → Π< ai > A B fun< _ , arg-info visible (modality relevant q) > f x = f x fun< _ , arg-info visible (modality irrelevant q) > f x = f (irrv x) fun< _ , arg-info hidden (modality relevant q) > f {x} = f x fun< _ , arg-info hidden (modality irrelevant q) > f {x} = f (irrv x) fun< _ , arg-info instance′ (modality relevant q) > f {{x}} = f x fun< _ , arg-info instance′ (modality irrelevant q) > f {{x}} = f (irrv x) app<_> : (ai@(a , i) : String × ArgInfo) {A : Set l} {B : < relevance i > A → Set l'} → (f : Π< ai > A B) → (x : < relevance i > A) → B x app< _ , arg-info visible (modality relevant q) > f x = f x app< _ , arg-info visible (modality irrelevant q) > f (irrv x) = f x app< _ , arg-info hidden (modality relevant q) > f x = f {x} app< _ , arg-info hidden (modality irrelevant q) > f (irrv x) = f {x} app< _ , arg-info instance′ (modality relevant q) > f x = f {{x}} app< _ , arg-info instance′ (modality irrelevant q) > f (irrv x) = f {{x}} -- Instead of the definitions from Function.Nary.NonDependent in the -- standard library, we use a *functional* representation of vectors -- of levels and types. This makes it much easier to work with -- operations like lookup and tabulate, at the cost of losing certain -- eta laws for nil and cons (see the comment for `uncurryₙ` below). Levels : ℕ → Set Levels n = Fin n → Level private variable ls ls' : Levels n []l : Levels 0 []l () _∷l_ : Level → Levels n → Levels (suc n) (l ∷l ls) zero = l (l ∷l ls) (suc k) = ls k headl : Levels (suc n) → Level headl ls = ls zero taill : Levels (suc n) → Levels n taill ls = ls ∘ suc _++l_ : Levels m → Levels n → Levels (m + n) _++l_ {zero} ls ls' = ls' _++l_ {suc m} ls ls' zero = headl ls _++l_ {suc m} ls ls' (suc x) = (taill ls ++l ls') x ⨆ : Levels n → Level ⨆ {zero} ls = lzero ⨆ {suc n} ls = ls zero ⊔ ⨆ (ls ∘ suc) Sets : (ls : Levels n) → Setω Sets {n} ls = (k : Fin n) → Set (ls k) private variable As Bs : Sets ls []S : {ls : Levels 0} → Sets ls []S () _∷S_ : Set (headl ls) → Sets (taill ls) → Sets ls (A ∷S As) zero = A (A ∷S As) (suc k) = As k headS : Sets ls → Set (headl ls) headS As = As zero tailS : Sets ls → Sets (taill ls) tailS As k = As (suc k) _++S_ : Sets ls → Sets ls' → Sets (ls ++l ls') _++S_ {zero} As Bs = Bs _++S_ {suc m} As Bs zero = headS As _++S_ {suc m} As Bs (suc k) = (tailS As ++S Bs) k Els : (As : Sets ls) → Setω Els {n} As = (k : Fin n) → As k private variable xs : Els As []El : {As : Sets {zero} ls} → Els As []El () _∷El_ : headS As → Els (tailS As) → Els As (x ∷El xs) zero = x (x ∷El xs) (suc k) = xs k headEl : Els As → headS As headEl xs = xs zero tailEl : Els As → Els (tailS As) tailEl xs k = xs (suc k) _++El_ : Els As → Els Bs → Els (As ++S Bs) _++El_ {zero} xs ys = ys _++El_ {suc m} xs ys zero = headEl xs _++El_ {suc m} xs ys (suc k) = (tailEl xs ++El ys) k ++El-proj₁ : Els (As ++S Bs) → Els As ++El-proj₁ xs zero = xs zero ++El-proj₁ xs (suc k) = ++El-proj₁ (tailEl xs) k ++El-proj₂ : Els (As ++S Bs) → Els Bs ++El-proj₂ {zero} xs k = xs k ++El-proj₂ {suc m} xs k = ++El-proj₂ (tailEl xs) k Pis : (As : Sets ls) (B : Els As → Set l) → Set (⨆ ls ⊔ l) Pis {zero} As B = B []El Pis {suc n} As B = (x : As zero) → Pis (tailS As) (λ xs → B (x ∷El xs)) Arrows : (As : Sets ls) (B : Set l) → Set (⨆ ls ⊔ l) Arrows As B = Pis As (λ _ → B) curryₙ : {B : Els As → Set l} → ((xs : Els As) → B xs) → Pis As B curryₙ {zero} f = f []El curryₙ {suc n} f = λ x → curryₙ (λ xs → f (x ∷El xs)) -- It is not possible to define the dependent version of uncurryₙ, as -- it requires the laws that `xs = []El` for all `xs : Els {zero} As` -- and `xs = headEl xs ∷El tailEl xs` for all `xs : Els {suc n} As`, -- which do not hold definitionally and require funExt to prove. uncurryₙ : Arrows As B → Els As → B uncurryₙ {zero} f _ = f uncurryₙ {suc n} f xs = uncurryₙ (f (headEl xs)) (tailEl xs) ------------------------------------ -- Some utilities to work with Setω -- TODO: move this somewhere else -- TODO: consistent naming record ⊤ω : Setω where instance constructor tt data ⊥ω : Setω where ⊥⇒⊥ω : ⊥ → ⊥ω ⊥⇒⊥ω () ⊥ω-elimω : {A : Setω} → ⊥ω → A ⊥ω-elimω () ttω : ⊤ω ttω = tt record Liftω (A : Set l) : Setω where constructor liftω field lower : A instance liftω-inst : {A : Set l} → ⦃ A ⦄ → Liftω A liftω-inst ⦃ x ⦄ = liftω x record _×ω_ (A B : Setω) : Setω where constructor _,_ field fst : A snd : B _ω,ω_ : {A B : Setω} → A → B → A ×ω B _ω,ω_ = _,_ data _≡ω_ {A : Setω} (x : A) : A → Setω where refl : x ≡ω x congω : ∀ {A b} {B : Set b} (f : ∀ x → B) → ∀ {x y : A} → x ≡ω y → f x ≡ f y congω f refl = refl cong≡ω : {A : Set l} {B : Setω} (f : ∀ x → B) → ∀ {x y : A} → x ≡ y → f x ≡ω f y cong≡ω f refl = refl cong≡ωω : {A B : Setω} (f : ∀ x → B) → ∀ {x y : A} → x ≡ω y → f x ≡ω f y cong≡ωω f refl = refl reflω : {A : Setω} {x : A} → x ≡ω x reflω = refl transω : {A : Setω} {x y z : A} → x ≡ω y → y ≡ω z → x ≡ω z transω refl refl = refl symω : {A : Setω} {x y : A} → x ≡ω y → y ≡ω x symω refl = refl instance ×ω-inst : ∀ {A B} → ⦃ A ⦄ → ⦃ B ⦄ → A ×ω B ×ω-inst ⦃ x ⦄ ⦃ y ⦄ = x , y record Σω {a} (A : Set a) (B : A → Setω) : Setω where constructor _,_ field proj₁ : A proj₂ : B proj₁ data Decω (A : Setω) : Setω where yesω : A → Decω A noω : (A → ⊥) → Decω A
31.514599
97
0.570006
20c07d92e9fb29790bcd3139d1e7f194ca26ca27
715
agda
Agda
test/Succeed/Issue2484-6.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/Succeed/Issue2484-6.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue2484-6.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
module _ (_ : Set) where open import Agda.Builtin.Size postulate I : Set record ∃ (B : I → Set) : Set where constructor _,_ field proj₁ : I proj₂ : B proj₁ module M (_ : Set₁) where mutual data P (i : Size) (x y : I) : Set where ⟨_⟩ : ∃ (Q i x) → P i x y record Q (i : Size) (x y : I) : Set where coinductive field force : {j : Size< i} → P j x y open M Set postulate map : (B : I → Set) → (∀ x → B x → B x) → ∃ B → ∃ B lemma : ∀ x y i → Q i x y → Q i x y p : ∀ x i → P i x x q′ : ∀ x i → ∃ λ y → Q i x y q : ∀ x i → Q i x x p x i = ⟨ map _ (λ y → lemma x y _) (q′ x _) ⟩ q′ x i = x , q x i Q.force (q x i) {j} = p _ _
18.333333
60
0.454545
d04209cc76473c6a9b33ba0cd1d2aebab9e4989f
2,564
agda
Agda
Relation/Binary/Construct/UpperBound.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
Relation/Binary/Construct/UpperBound.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
Relation/Binary/Construct/UpperBound.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --safe --postfix-projections #-} open import Prelude open import Relation.Binary module Relation.Binary.Construct.UpperBound {e} {E : Type e} {r₁ r₂} (totalOrder : TotalOrder E r₁ r₂) where open TotalOrder totalOrder renaming (refl to <-refl) import Data.Unit.UniversePolymorphic as Poly import Data.Empty.UniversePolymorphic as Poly open import Data.Maybe.Base using () renaming (nothing to ⌈⊤⌉; just to ⌈_⌉) public ⌈∙⌉ : Type e ⌈∙⌉ = Maybe E _≤⌈_⌉ : ⌈∙⌉ → E → Type _ ⌈⊤⌉ ≤⌈ y ⌉ = Poly.⊥ ⌈ x ⌉ ≤⌈ y ⌉ = x ≤ y _⌈≤⌉_ : ⌈∙⌉ → ⌈∙⌉ → Type _ x ⌈≤⌉ ⌈⊤⌉ = Poly.⊤ x ⌈≤⌉ ⌈ y ⌉ = x ≤⌈ y ⌉ ⌈_⌉<_ : E → ⌈∙⌉ → Type _ ⌈ x ⌉< ⌈⊤⌉ = Poly.⊤ ⌈ x ⌉< ⌈ y ⌉ = x < y _⌈<⌉_ : ⌈∙⌉ → ⌈∙⌉ → Type _ ⌈⊤⌉ ⌈<⌉ _ = Poly.⊥ ⌈ x ⌉ ⌈<⌉ y = ⌈ x ⌉< y ub-pord : PartialOrder ⌈∙⌉ _ ub-pord .PartialOrder.preorder .Preorder._≤_ = _⌈≤⌉_ ub-pord .PartialOrder.preorder .Preorder.refl {⌈⊤⌉} = Poly.tt ub-pord .PartialOrder.preorder .Preorder.refl {⌈ x ⌉} = <-refl ub-pord .PartialOrder.preorder .Preorder.trans {x} {y} {⌈⊤⌉} x≤y y≤z = Poly.tt ub-pord .PartialOrder.preorder .Preorder.trans {⌈ x ⌉} {⌈ y ⌉} {⌈ z ⌉} x≤y y≤z = ≤-trans x≤y y≤z ub-pord .PartialOrder.antisym {⌈⊤⌉} {⌈⊤⌉} p q = refl ub-pord .PartialOrder.antisym {⌈ x ⌉} {⌈ y ⌉} p q = cong ⌈_⌉ (antisym p q) ub-sord : StrictPartialOrder ⌈∙⌉ _ StrictPreorder._<_ (StrictPartialOrder.strictPreorder ub-sord) = _⌈<⌉_ StrictPreorder.trans (StrictPartialOrder.strictPreorder ub-sord) {⌈ x ⌉} {⌈ y ⌉} {⌈⊤⌉} p q = Poly.tt StrictPreorder.trans (StrictPartialOrder.strictPreorder ub-sord) {⌈ x ⌉} {⌈ y ⌉} {⌈ z ⌉} p q = <-trans p q StrictPreorder.irrefl (StrictPartialOrder.strictPreorder ub-sord) {⌈ x ⌉} = irrefl {x = x} StrictPartialOrder.conn ub-sord {⌈⊤⌉} {⌈⊤⌉} p q = refl StrictPartialOrder.conn ub-sord {⌈⊤⌉} {⌈ x ⌉} p q = ⊥-elim (q Poly.tt) StrictPartialOrder.conn ub-sord {⌈ x ⌉} {⌈⊤⌉} p q = ⊥-elim (p Poly.tt) StrictPartialOrder.conn ub-sord {⌈ x ⌉} {⌈ y ⌉} p q = cong ⌈_⌉ (conn p q) ub-lt : ∀ x y → Dec (x ⌈<⌉ y) ub-lt ⌈⊤⌉ y = no λ () ub-lt ⌈ x ⌉ ⌈⊤⌉ = yes Poly.tt ub-lt ⌈ x ⌉ ⌈ y ⌉ = x <? y ub-ord : TotalOrder ⌈∙⌉ _ _ TotalOrder.strictPartialOrder ub-ord = ub-sord TotalOrder.partialOrder ub-ord = ub-pord TotalOrder._<?_ ub-ord = ub-lt TotalOrder.≰⇒> ub-ord {x} {⌈⊤⌉} p = ⊥-elim (p Poly.tt) TotalOrder.≰⇒> ub-ord {⌈⊤⌉} {⌈ y ⌉} p = Poly.tt TotalOrder.≰⇒> ub-ord {⌈ x ⌉} {⌈ y ⌉} p = ≰⇒> p TotalOrder.≮⇒≥ ub-ord {⌈⊤⌉} {y} p = Poly.tt TotalOrder.≮⇒≥ ub-ord {⌈ x ⌉} {⌈⊤⌉} p = ⊥-elim (p Poly.tt) TotalOrder.≮⇒≥ ub-ord {⌈ x ⌉} {⌈ y ⌉} p = ≮⇒≥ p import Data.Maybe.Sugar module UBSugar = Data.Maybe.Sugar
36.628571
108
0.592824
fbba3d868d5d916bc1c56415d41b484f8e9635f4
5,455
agda
Agda
BasicIS4/Semantics/BasicKripkeOno.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicIS4/Semantics/BasicKripkeOno.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicIS4/Semantics/BasicKripkeOno.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇. -- Basic Kripke-style semantics with abstract worlds, for soundness only. -- Ono-style conditions. module BasicIS4.Semantics.BasicKripkeOno where open import BasicIS4.Syntax.Common public -- Intuitionistic modal Kripke models, with frame conditions given by Ono. record Model : Set₁ where infix 3 _⊩ᵅ_ field World : Set -- Intuitionistic accessibility; preorder. _≤_ : World → World → Set refl≤ : ∀ {w} → w ≤ w trans≤ : ∀ {w w′ w″} → w ≤ w′ → w′ ≤ w″ → w ≤ w″ -- Modal accessibility; preorder. _R_ : World → World → Set reflR : ∀ {w} → w R w transR : ∀ {w w′ w″} → w R w′ → w′ R w″ → w R w″ -- Forcing for atomic propositions; monotonic. _⊩ᵅ_ : World → Atom → Set mono⊩ᵅ : ∀ {P w w′} → w ≤ w′ → w ⊩ᵅ P → w′ ⊩ᵅ P -- Composition of accessibility. _≤⨾R_ : World → World → Set _≤⨾R_ = _≤_ ⨾ _R_ _R⨾≤_ : World → World → Set _R⨾≤_ = _R_ ⨾ _≤_ -- Persistence condition. -- -- w′ v′ → v′ -- ◌───R───● → ● -- │ → ╱ -- ≤ ξ,ζ → R -- │ → ╱ -- ● → ● -- w → w field ≤⨾R→R : ∀ {v′ w} → w ≤⨾R v′ → w R v′ -- Minor persistence condition. -- -- w′ v′ → v′ -- ◌───R───● → ● -- │ → │ -- ≤ ξ,ζ → ≤ -- │ → │ -- ● → ●───R───◌ -- w → w v -- -- w″ → w″ -- ● → ● -- │ → │ -- ξ′,ζ′ ≤ → │ -- │ → │ -- ●───R───◌ → ≤ -- │ v′ → │ -- ξ,ζ ≤ → │ -- │ → │ -- ●───R───◌ → ●───────R───────◌ -- w v → w v″ ≤⨾R→R⨾≤ : ∀ {v′ w} → w ≤⨾R v′ → w R⨾≤ v′ ≤⨾R→R⨾≤ {v′} ξ,ζ = v′ , (≤⨾R→R ξ,ζ , refl≤) reflR⨾≤ : ∀ {w} → w R⨾≤ w reflR⨾≤ {w} = w , (reflR , refl≤) transR⨾≤ : ∀ {w′ w w″} → w R⨾≤ w′ → w′ R⨾≤ w″ → w R⨾≤ w″ transR⨾≤ {w′} (v , (ζ , ξ)) (v′ , (ζ′ , ξ′)) = let v″ , (ζ″ , ξ″) = ≤⨾R→R⨾≤ (w′ , (ξ , ζ′)) in v″ , (transR ζ ζ″ , trans≤ ξ″ ξ′) ≤→R : ∀ {v′ w} → w ≤ v′ → w R v′ ≤→R {v′} ξ = ≤⨾R→R (v′ , (ξ , reflR)) open Model {{…}} public -- Forcing in a particular world of a particular model. module _ {{_ : Model}} where infix 3 _⊩_ _⊩_ : World → Ty → Set w ⊩ α P = w ⊩ᵅ P w ⊩ A ▻ B = ∀ {w′} → w ≤ w′ → w′ ⊩ A → w′ ⊩ B w ⊩ □ A = ∀ {v′} → w R v′ → v′ ⊩ A w ⊩ A ∧ B = w ⊩ A × w ⊩ B w ⊩ ⊤ = 𝟙 infix 3 _⊩⋆_ _⊩⋆_ : World → Cx Ty → Set w ⊩⋆ ∅ = 𝟙 w ⊩⋆ Ξ , A = w ⊩⋆ Ξ × w ⊩ A -- Monotonicity with respect to intuitionistic accessibility. module _ {{_ : Model}} where mono⊩ : ∀ {A w w′} → w ≤ w′ → w ⊩ A → w′ ⊩ A mono⊩ {α P} ξ s = mono⊩ᵅ ξ s mono⊩ {A ▻ B} ξ s = λ ξ′ a → s (trans≤ ξ ξ′) a mono⊩ {□ A} ξ s = λ ζ → s (transR (≤→R ξ) ζ) mono⊩ {A ∧ B} ξ s = mono⊩ {A} ξ (π₁ s) , mono⊩ {B} ξ (π₂ s) mono⊩ {⊤} ξ s = ∙ mono⊩⋆ : ∀ {Γ w w′} → w ≤ w′ → w ⊩⋆ Γ → w′ ⊩⋆ Γ mono⊩⋆ {∅} ξ ∙ = ∙ mono⊩⋆ {Γ , A} ξ (γ , a) = mono⊩⋆ {Γ} ξ γ , mono⊩ {A} ξ a -- Additional useful equipment. module _ {{_ : Model}} where _⟪$⟫_ : ∀ {A B w} → w ⊩ A ▻ B → w ⊩ A → w ⊩ B s ⟪$⟫ a = s refl≤ a ⟪K⟫ : ∀ {A B w} → w ⊩ A → w ⊩ B ▻ A ⟪K⟫ {A} a ξ = K (mono⊩ {A} ξ a) ⟪S⟫ : ∀ {A B C w} → w ⊩ A ▻ B ▻ C → w ⊩ A ▻ B → w ⊩ A → w ⊩ C ⟪S⟫ {A} {B} {C} s₁ s₂ a = _⟪$⟫_ {B} {C} (_⟪$⟫_ {A} {B ▻ C} s₁ a) (_⟪$⟫_ {A} {B} s₂ a) ⟪S⟫′ : ∀ {A B C w} → w ⊩ A ▻ B ▻ C → w ⊩ (A ▻ B) ▻ A ▻ C ⟪S⟫′ {A} {B} {C} s₁ ξ s₂ ξ′ a = let s₁′ = mono⊩ {A ▻ B ▻ C} (trans≤ ξ ξ′) s₁ s₂′ = mono⊩ {A ▻ B} ξ′ s₂ in ⟪S⟫ {A} {B} {C} s₁′ s₂′ a _⟪D⟫_ : ∀ {A B w} → w ⊩ □ (A ▻ B) → w ⊩ □ A → w ⊩ □ B _⟪D⟫_ {A} {B} s₁ s₂ ζ = let s₁′ = s₁ ζ s₂′ = s₂ ζ in _⟪$⟫_ {A} {B} s₁′ s₂′ _⟪D⟫′_ : ∀ {A B w} → w ⊩ □ (A ▻ B) → w ⊩ □ A ▻ □ B _⟪D⟫′_ {A} {B} s₁ ξ = _⟪D⟫_ {A} {B} (mono⊩ {□ (A ▻ B)} ξ s₁) ⟪↑⟫ : ∀ {A w} → w ⊩ □ A → w ⊩ □ □ A ⟪↑⟫ s ζ ζ′ = s (transR ζ ζ′) ⟪↓⟫ : ∀ {A w} → w ⊩ □ A → w ⊩ A ⟪↓⟫ s = s reflR _⟪,⟫′_ : ∀ {A B w} → w ⊩ A → w ⊩ B ▻ A ∧ B _⟪,⟫′_ {A} {B} a ξ = _,_ (mono⊩ {A} ξ a) -- Forcing in a particular world of a particular model, for sequents. module _ {{_ : Model}} where infix 3 _⊩_⇒_ _⊩_⇒_ : World → Cx Ty → Ty → Set w ⊩ Γ ⇒ A = w ⊩⋆ Γ → w ⊩ A infix 3 _⊩_⇒⋆_ _⊩_⇒⋆_ : World → Cx Ty → Cx Ty → Set w ⊩ Γ ⇒⋆ Ξ = w ⊩⋆ Γ → w ⊩⋆ Ξ -- Entailment, or forcing in all worlds of all models, for sequents. infix 3 _⊨_ _⊨_ : Cx Ty → Ty → Set₁ Γ ⊨ A = ∀ {{_ : Model}} {w : World} → w ⊩ Γ ⇒ A infix 3 _⊨⋆_ _⊨⋆_ : Cx Ty → Cx Ty → Set₁ Γ ⊨⋆ Ξ = ∀ {{_ : Model}} {w : World} → w ⊩ Γ ⇒⋆ Ξ infix 3 _⁏_⊨_ _⁏_⊨_ : Cx Ty → Cx Ty → Ty → Set₁ Γ ⁏ Δ ⊨ A = ∀ {{_ : Model}} {w : World} → w ⊩⋆ Γ → (∀ {v′} → w R v′ → v′ ⊩⋆ Δ) → w ⊩ A -- Additional useful equipment, for sequents. module _ {{_ : Model}} where lookup : ∀ {A Γ w} → A ∈ Γ → w ⊩ Γ ⇒ A lookup top (γ , a) = a lookup (pop i) (γ , b) = lookup i γ
28.118557
93
0.352521
fb6e5ffba761c4f5bc5a8a9626e980608ec2386c
644
agda
Agda
agda-stdlib/src/Relation/Binary/PartialOrderReasoning.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Relation/Binary/PartialOrderReasoning.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Relation/Binary/PartialOrderReasoning.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use the -- Relation.Binary.Reasoning.PartialOrder module directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.PartialOrderReasoning {p₁ p₂ p₃} (P : Poset p₁ p₂ p₃) where open import Relation.Binary.Reasoning.PartialOrder P public {-# WARNING_ON_IMPORT "Relation.Binary.PartialOrderReasoning was deprecated in v1.0. Use Relation.Binary.Reasoning.PartialOrder instead." #-}
30.666667
72
0.588509
230d8e74941392c4e4f4ab8d33c6d3b18a630fe9
4,107
agda
Agda
test/Succeed/Builtin.agda
alex-mckenna/agda
78b62cd24bbd570271a7153e44ad280e52ef3e29
[ "BSD-3-Clause" ]
1
2021-07-07T10:49:57.000Z
2021-07-07T10:49:57.000Z
test/Succeed/Builtin.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Builtin.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
module Builtin where data Bool : Set where false : Bool true : Bool not : Bool -> Bool not true = false not false = true _||_ : Bool -> Bool -> Bool true || _ = true false || x = x _&&_ : Bool -> Bool -> Bool true && x = x false && _ = false {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE true #-} {-# BUILTIN FALSE false #-} data Nat : Set where zero : Nat suc : Nat -> Nat {-# BUILTIN NATURAL Nat #-} zero' : Nat zero' = 0 one : Nat one = 1 data Int : Set where pos : Nat → Int negsuc : Nat → Int {-# BUILTIN INTEGER Int #-} {-# BUILTIN INTEGERPOS pos #-} {-# BUILTIN INTEGERNEGSUC negsuc #-} {-# BUILTIN STRING String #-} {-# BUILTIN FLOAT Float #-} {-# BUILTIN CHAR Char #-} infixr 10 _::_ data List (A : Set) : Set where nil : List A _::_ : A -> List A -> List A {-# BUILTIN LIST List #-} primitive -- Integer functions primShowInteger : Int -> String -- Floating point functions primNatToFloat : Nat -> Float primFloatPlus : Float -> Float -> Float primFloatMinus : Float -> Float -> Float primFloatTimes : Float -> Float -> Float primFloatNegate : Float -> Float primFloatDiv : Float -> Float -> Float primFloatEquality : Float -> Float -> Bool primFloatNumericalEquality : Float -> Float -> Bool primFloatNumericalLess : Float -> Float -> Bool primFloatSqrt : Float -> Float primRound : Float -> Int primFloor : Float -> Int primCeiling : Float -> Int primExp : Float -> Float primLog : Float -> Float primSin : Float -> Float primCos : Float -> Float primTan : Float -> Float primASin : Float -> Float primACos : Float -> Float primATan : Float -> Float primATan2 : Float -> Float -> Float primShowFloat : Float -> String -- Character functions primCharEquality : Char -> Char -> Bool primIsLower : Char -> Bool primIsDigit : Char -> Bool primIsAlpha : Char -> Bool primIsSpace : Char -> Bool primIsAscii : Char -> Bool primIsLatin1 : Char -> Bool primIsPrint : Char -> Bool primIsHexDigit : Char -> Bool primToUpper : Char -> Char primToLower : Char -> Char primCharToNat : Char -> Nat primNatToChar : Nat -> Char -- partial primShowChar : Char -> String -- String functions primStringToList : String -> List Char primStringFromList : List Char -> String primStringAppend : String -> String -> String primStringEquality : String -> String -> Bool primShowString : String -> String isLower : Char -> Bool isLower = primIsLower isAlpha : Char -> Bool isAlpha = primIsAlpha isUpper : Char -> Bool isUpper c = isAlpha c && not (isLower c) infixl 14 _/_ nat0 = primCharToNat '\0' int0 = pos nat0 _/_ = primFloatDiv pi : Float pi = 3.141592653589793 sin : Float -> Float sin = primSin cos : Float -> Float cos = primCos tan : Float -> Float tan = primTan reverse : {A : Set} -> List A -> List A reverse xs = rev xs nil where rev : {A : Set} -> List A -> List A -> List A rev nil ys = ys rev (x :: xs) ys = rev xs (x :: ys) infixr 20 _∘_ _∘_ : {A B C : Set} -> (B -> C) -> (A -> B) -> A -> C f ∘ g = \x -> f (g x) map : {A B : Set} -> (A -> B) -> List A -> List B map f nil = nil map f (x :: xs) = f x :: map f xs stringAsList : (List Char -> List Char) -> String -> String stringAsList f = primStringFromList ∘ f ∘ primStringToList revStr : String -> String revStr = stringAsList reverse mapStr : (Char -> Char) -> String -> String mapStr f = stringAsList (map f) -- Testing unicode literals uString = "åäö⊢ξ∀" uChar = '∀' data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x thm-show-pos : primShowInteger (pos 42) ≡ "42" thm-show-pos = refl thm-show-neg : primShowInteger (negsuc 41) ≡ "-42" thm-show-neg = refl thm-floor : primFloor 4.2 ≡ pos 4 thm-floor = refl thm-ceiling : primCeiling -5.1 ≡ negsuc 4 thm-ceiling = refl
23.335227
59
0.585342
d0074e91f192fa2aa94f767c685f34c49a4b8b0d
30,243
agda
Agda
HP.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
HP.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
HP.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
{-# OPTIONS --without-K #-} {-- Make a version of this file with plain PI and ℕ as a model Make another version with PI+NEG+FRAC (meadow style) and ℚ as a model Keep extending; add imaginary numbers and try ℂ as a model then add square roots and try algebraic numbers as a model An orthogonal direction is to try other models that are not numbers: in particular groupoid-based models like we started in F2.agda and F2a.agda --} module HP where -- Pi as a higher-order inductive type open import Agda.Prim open import Data.Empty open import Data.Unit open import Data.Unit.Core open import Data.Maybe hiding (map) open import Data.Nat renaming (_⊔_ to _⊔ℕ_) open import Data.Integer hiding (_⊔_) open import Data.Sum renaming (map to _⊎→_) open import Data.Product renaming (map to _×→_) open import Data.List open import Data.Rational hiding (_≃_) open import Function renaming (_∘_ to _○_) infixr 8 _∘_ -- path composition infix 4 _≡_ -- propositional equality infix 4 _∼_ -- homotopy between two functions infix 4 _≃_ -- type of equivalences infix 2 _∎ -- equational reasoning infixr 2 _≡⟨_⟩_ -- equational reasoning infix 2 _∎≃ -- equational reasoning for equivalences infixr 2 _≃⟨_⟩_ -- equational reasoning for equivalences ------------------------------------------------------------------------------ -- Identity types and path induction principles -- Our own version of refl that makes 'a' explicit data _≡_ {ℓ} {A : Set ℓ} : (a b : A) → Set ℓ where refl : (a : A) → (a ≡ a) pathInd : ∀ {u ℓ} → {A : Set u} → (C : {x y : A} → x ≡ y → Set ℓ) → (c : (x : A) → C (refl x)) → ({x y : A} (p : x ≡ y) → C p) pathInd C c (refl x) = c x basedPathInd : {A : Set} → (a : A) → (C : (x : A) → (a ≡ x) → Set) → C a (refl a) → ((x : A) (p : a ≡ x) → C x p) basedPathInd a C c .a (refl .a) = c ------------------------------------------------------------------------------ -- Ch. 2 -- Lemma 2.1.1 ! : ∀ {u} → {A : Set u} {x y : A} → (x ≡ y) → (y ≡ x) ! = pathInd (λ {x} {y} _ → y ≡ x) refl -- Lemma 2.1.2 _∘_ : ∀ {u} → {A : Set u} → {x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z) _∘_ {u} {A} {x} {y} {z} p q = pathInd (λ {x} {y} p → ((z : A) → (q : y ≡ z) → (x ≡ z))) (λ x z q → pathInd (λ {x} {z} _ → x ≡ z) refl {x} {z} q) {x} {y} p z q -- Lemma 2.1.4 -- p ≡ p ∘ refl unitTransR : {A : Set} {x y : A} → (p : x ≡ y) → (p ≡ p ∘ refl y) unitTransR {A} {x} {y} p = pathInd (λ {x} {y} p → p ≡ p ∘ (refl y)) (λ x → refl (refl x)) {x} {y} p -- p ≡ refl ∘ p unitTransL : {A : Set} {x y : A} → (p : x ≡ y) → (p ≡ refl x ∘ p) unitTransL {A} {x} {y} p = pathInd (λ {x} {y} p → p ≡ (refl x) ∘ p) (λ x → refl (refl x)) {x} {y} p -- ! p ∘ p ≡ refl invTransL : {A : Set} {x y : A} → (p : x ≡ y) → (! p ∘ p ≡ refl y) invTransL {A} {x} {y} p = pathInd (λ {x} {y} p → ! p ∘ p ≡ refl y) (λ x → refl (refl x)) {x} {y} p -- p ∘ ! p ≡ refl invTransR : ∀ {ℓ} {A : Set ℓ} {x y : A} → (p : x ≡ y) → (p ∘ ! p ≡ refl x) invTransR {ℓ} {A} {x} {y} p = pathInd (λ {x} {y} p → p ∘ ! p ≡ refl x) (λ x → refl (refl x)) {x} {y} p -- ! (! p) ≡ p invId : {A : Set} {x y : A} → (p : x ≡ y) → (! (! p) ≡ p) invId {A} {x} {y} p = pathInd (λ {x} {y} p → ! (! p) ≡ p) (λ x → refl (refl x)) {x} {y} p -- p ∘ (q ∘ r) ≡ (p ∘ q) ∘ r assocP : {A : Set} {x y z w : A} → (p : x ≡ y) → (q : y ≡ z) → (r : z ≡ w) → (p ∘ (q ∘ r) ≡ (p ∘ q) ∘ r) assocP {A} {x} {y} {z} {w} p q r = pathInd (λ {x} {y} p → (z : A) → (w : A) → (q : y ≡ z) → (r : z ≡ w) → p ∘ (q ∘ r) ≡ (p ∘ q) ∘ r) (λ x z w q r → pathInd (λ {x} {z} q → (w : A) → (r : z ≡ w) → (refl x) ∘ (q ∘ r) ≡ ((refl x) ∘ q) ∘ r) (λ x w r → pathInd (λ {x} {w} r → (refl x) ∘ ((refl x) ∘ r) ≡ ((refl x) ∘ (refl x)) ∘ r) (λ x → (refl (refl x))) {x} {w} r) {x} {z} q w r) {x} {y} p z w q r -- ! (p ∘ q) ≡ ! q ∘ ! p invComp : {A : Set} {x y z : A} → (p : x ≡ y) → (q : y ≡ z) → ! (p ∘ q) ≡ ! q ∘ ! p invComp {A} {x} {y} {z} p q = pathInd (λ {x} {y} p → (z : A) → (q : y ≡ z) → ! (p ∘ q) ≡ ! q ∘ ! p) (λ x z q → pathInd (λ {x} {z} q → ! (refl x ∘ q) ≡ ! q ∘ ! (refl x)) (λ x → refl (refl x)) {x} {z} q) {x} {y} p z q -- Introduce equational reasoning syntax to simplify proofs _≡⟨_⟩_ : ∀ {u} → {A : Set u} (x : A) {y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z) _ ≡⟨ p ⟩ q = p ∘ q bydef : ∀ {u} → {A : Set u} {x : A} → (x ≡ x) bydef {u} {A} {x} = refl x _∎ : ∀ {u} → {A : Set u} (x : A) → x ≡ x _∎ x = refl x ------------------------------------------------------------------------------ -- Functions are functors -- Lemma 2.2.1 -- computation rule: ap f (refl x) = refl (f x) ap : ∀ {ℓ ℓ'} → {A : Set ℓ} {B : Set ℓ'} {x y : A} → (f : A → B) → (x ≡ y) → (f x ≡ f y) ap f p = pathInd (λ {x} {y} _ → f x ≡ f y) (λ x → refl (f x)) p ap₂ : ∀ {ℓ ℓ' ℓ''} → {A : Set ℓ} {B : Set ℓ'} {C : Set ℓ''} {x₁ y₁ : A} {x₂ y₂ : B} → (f : A → B → C) → (x₁ ≡ y₁) → (x₂ ≡ y₂) → (f x₁ x₂ ≡ f y₁ y₂) ap₂ {ℓ} {ℓ'} {ℓ''} {A} {B} {C} {x₁} {y₁} {x₂} {y₂} f p₁ p₂ = pathInd -- on p₁ (λ {x₁} {y₁} p₁ → f x₁ x₂ ≡ f y₁ y₂) (λ x → pathInd -- on p₂ (λ {x₂} {y₂} p₂ → f x x₂ ≡ f x y₂) (λ y → refl (f x y)) {x₂} {y₂} p₂) {x₁} {y₁} p₁ -- Lemma 2.2.2 -- f (p ∘ q) ≡ f p ∘ f q apfTrans : ∀ {u} → {A B : Set u} {x y z : A} → (f : A → B) → (p : x ≡ y) → (q : y ≡ z) → ap f (p ∘ q) ≡ (ap f p) ∘ (ap f q) apfTrans {u} {A} {B} {x} {y} {z} f p q = pathInd {u} (λ {x} {y} p → (z : A) → (q : y ≡ z) → ap f (p ∘ q) ≡ (ap f p) ∘ (ap f q)) (λ x z q → pathInd {u} (λ {x} {z} q → ap f (refl x ∘ q) ≡ (ap f (refl x)) ∘ (ap f q)) (λ x → refl (refl (f x))) {x} {z} q) {x} {y} p z q -- f (! p) ≡ ! (f p) apfInv : ∀ {u} → {A B : Set u} {x y : A} → (f : A → B) → (p : x ≡ y) → ap f (! p) ≡ ! (ap f p) apfInv f p = pathInd (λ p → ap f (! p) ≡ ! (ap f p)) (λ x → refl (ap f (refl x))) p -- g (f p) ≡ (g ○ f) p apfComp : {A B C : Set} {x y : A} → (f : A → B) → (g : B → C) → (p : x ≡ y) → ap g (ap f p) ≡ ap (g ○ f) p apfComp {A} {B} {C} {x} {y} f g p = pathInd (λ {x} {y} p → ap g (ap f p) ≡ ap (g ○ f) p) (λ x → refl (ap g (ap f (refl x)))) {x} {y} p -- id p ≡ p apfId : {A : Set} {x y : A} → (p : x ≡ y) → ap id p ≡ p apfId {A} {x} {y} p = pathInd (λ {x} {y} p → ap id p ≡ p) (λ x → refl (refl x)) {x} {y} p -- Transport -- Lemma 2.3.1 transport : ∀ {ℓ ℓ'} → {A : Set ℓ} {x y : A} → (P : A → Set ℓ') → (p : x ≡ y) → P x → P y transport {x = x} {y} P p = pathInd (λ {x'} {y'} _ → (P x' → P y')) (λ _ → id) {x} {y} p -- Lemma 2.3.10 transport-f : ∀ {ℓ ℓ' ℓ''} → {A : Set ℓ} {B : Set ℓ'} {x y : A} → (f : A → B) → (P : B → Set ℓ'') → (p : x ≡ y) → (u : P (f x)) → transport (P ○ f) p u ≡ transport P (ap f p) u transport-f {ℓ} {ℓ'} {ℓ''} {A} {B} {x} {y} f P p u = pathInd -- on p (λ {x} {y} p → (u : P (f x)) → transport (P ○ f) p u ≡ transport P (ap f p) u) (λ x u → refl u) {x} {y} p u -- Lemma 2.11.2 transportIdR : {A : Set} {a y z : A} → (p : y ≡ z) → (q : a ≡ y) → transport (λ x → a ≡ x) p q ≡ q ∘ p transportIdR {A} {a} {y} {z} p q = pathInd (λ {y} {z} p → (q : a ≡ y) → transport (λ x → a ≡ x) p q ≡ q ∘ p) (λ y q → transport (λ x → a ≡ x) (refl y) q ≡⟨ bydef ⟩ q ≡⟨ unitTransR q ⟩ q ∘ refl y ∎) {y} {z} p q transportIdL : {A : Set} {a y z : A} → (p : y ≡ z) → (q : y ≡ a) → transport (λ x → x ≡ a) p q ≡ ! p ∘ q transportIdL {A} {a} {y} {z} p q = pathInd (λ {y} {z} p → (q : y ≡ a) → transport (λ x → x ≡ a) p q ≡ ! p ∘ q) (λ y q → transport (λ x → x ≡ a) (refl y) q ≡⟨ bydef ⟩ q ≡⟨ unitTransL q ⟩ ! (refl y) ∘ q ∎) {y} {z} p q transportIdRefl : {A : Set} {y z : A} → (p : y ≡ z) → (q : y ≡ y) → transport (λ x → x ≡ x) p q ≡ ! p ∘ q ∘ p transportIdRefl {A} {y} {z} p q = pathInd (λ {y} {z} p → (q : y ≡ y) → transport (λ x → x ≡ x) p q ≡ ! p ∘ q ∘ p) (λ y q → transport (λ x → x ≡ x) (refl y) q ≡⟨ bydef ⟩ q ≡⟨ unitTransR q ⟩ q ∘ refl y ≡⟨ unitTransL (q ∘ refl y) ⟩ ! (refl y) ∘ q ∘ refl y ∎) {y} {z} p q -- Thm 2.11.3 transportId : {A B : Set} {y z : A} → (f g : A → B) → (p : y ≡ z) → (q : f y ≡ g y) → transport (λ x → f x ≡ g x) p q ≡ ! (ap f p) ∘ q ∘ (ap g p) transportId {A} {B} {y} {z} f g p q = pathInd (λ {y} {z} p → (q : f y ≡ g y) → transport (λ x → f x ≡ g x) p q ≡ ! (ap f p) ∘ q ∘ (ap g p)) (λ y q → q ≡⟨ unitTransR q ⟩ q ∘ refl (g y) ≡⟨ unitTransL (q ∘ refl (g y)) ⟩ refl (f y) ∘ q ∘ refl (g y) ∎) {y} {z} p q ------------------------------------------------------------------------------- -- Homotopies and equivalences _∼_ : ∀ {ℓ ℓ'} → {A : Set ℓ} {P : A → Set ℓ'} → (f g : (x : A) → P x) → Set (_⊔_ ℓ ℓ') _∼_ {ℓ} {ℓ'} {A} {P} f g = (x : A) → f x ≡ g x -- Quasi-inverses record qinv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) : Set (_⊔_ ℓ ℓ') where constructor mkqinv field g : B → A α : (f ○ g) ∼ id β : (g ○ f) ∼ id -- Example 2.4.7 idqinv : ∀ {ℓ} → {A : Set ℓ} → qinv {ℓ} {ℓ} {A} {A} id idqinv = record { g = id ; α = λ b → refl b ; β = λ a → refl a } -- Equivalences record isequiv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) : Set (_⊔_ ℓ ℓ') where constructor mkisequiv field g : B → A α : (f ○ g) ∼ id h : B → A β : (h ○ f) ∼ id equiv₁ : ∀ {ℓ ℓ'} → {A : Set ℓ} {B : Set ℓ'} {f : A → B} → qinv f → isequiv f equiv₁ (mkqinv qg qα qβ) = mkisequiv qg qα qg qβ equiv₂ : ∀ {ℓ ℓ'} → {A : Set ℓ} {B : Set ℓ'} {f : A → B} → isequiv f → qinv f equiv₂ {f = f} (mkisequiv ig iα ih iβ) = record { g = ig ; α = iα ; β = λ x → ig (f x) ≡⟨ ! (iβ (ig (f x))) ⟩ ih (f (ig (f x))) ≡⟨ ap ih (iα (f x)) ⟩ ih (f x) ≡⟨ iβ x ⟩ x ∎ } _≃_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (_⊔_ ℓ ℓ') A ≃ B = Σ (A → B) isequiv id≃ : ∀ {ℓ} {A : Set ℓ} → A ≃ A id≃ = (id , equiv₁ idqinv) sym≃ : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → (A ≃ B) → B ≃ A sym≃ (A→B , equiv) with equiv₂ equiv ... | mkqinv g α β = g , equiv₁ (mkqinv A→B β α) trans≃ : {A B C : Set} → A ≃ B → B ≃ C → A ≃ C trans≃ (f , feq) (g , geq) with equiv₂ feq | equiv₂ geq ... | mkqinv ff fα fβ | mkqinv gg gα gβ = (g ○ f , equiv₁ (mkqinv (ff ○ gg) (λ c → g (f (ff (gg c))) ≡⟨ ap g (fα (gg c)) ⟩ g (gg c) ≡⟨ gα c ⟩ c ∎) (λ a → ff (gg (g (f a))) ≡⟨ ap ff (gβ (f a)) ⟩ ff (f a) ≡⟨ fβ a ⟩ a ∎))) -- identities are equivalences idtoeqv : {A B : Set} → (A ≡ B) → (A ≃ B) idtoeqv {A} {B} p = pathInd (λ {A'} {B'} _ → A' ≃ B') (λ _ → id≃) {A} {B} p -- equivalences are injective _⋆_ : {A B : Set} → (A ≃ B) → (x : A) → B (f , _) ⋆ x = f x inj≃ : {A B : Set} → (eq : A ≃ B) → (x y : A) → (eq ⋆ x ≡ eq ⋆ y → x ≡ y) inj≃ (f , mkisequiv g α h β) x y p = ! (β x) ∘ (ap h p ∘ β y) -- equivalences for coproducts (Sec. 2.12) indCP : {A B : Set} → (C : A ⊎ B → Set) → ((a : A) → C (inj₁ a)) → ((b : B) → C (inj₂ b)) → ((x : A ⊎ B) → C x) indCP C f g (inj₁ a) = f a indCP C f g (inj₂ b) = g b code : {A B : Set} → (a₀ : A) → A ⊎ B → Set code a₀ (inj₁ a) = a₀ ≡ a code a₀ (inj₂ b) = ⊥ encode : {A B : Set} → (a₀ : A) → (x : A ⊎ B) → (p : inj₁ a₀ ≡ x) → code a₀ x encode {A} {B} a₀ x p = transport (code a₀) p (refl a₀) decode : {A B : Set} → (a₀ : A) → (x : A ⊎ B) → (c : code a₀ x) → inj₁ a₀ ≡ x decode a₀ (inj₁ a) c = ap inj₁ c decode a₀ (inj₂ b) () codeqinv : {A B : Set} {a₀ : A} {x : A ⊎ B} → qinv (encode a₀ x) codeqinv {A} {B} {a₀} {x} = record { g = decode a₀ x ; α = indCP (λ x → (c : code a₀ x) → encode a₀ x (decode a₀ x c) ≡ c) (λ a c → encode a₀ (inj₁ a) (decode a₀ (inj₁ a) c) ≡⟨ bydef ⟩ encode a₀ (inj₁ a) (ap inj₁ c) ≡⟨ bydef ⟩ transport (code a₀) (ap inj₁ c) (refl a₀) ≡⟨ ! (transport-f inj₁ (code a₀) c (refl a₀)) ⟩ transport (λ a → code {A} {B} a₀ (inj₁ a)) c (refl a₀) ≡⟨ bydef ⟩ transport (λ a → a₀ ≡ a) c (refl a₀) ≡⟨ transportIdR c (refl a₀) ⟩ (refl a₀) ∘ c ≡⟨ ! (unitTransL c) ⟩ c ∎) (λ b ()) x ; β = λ p → basedPathInd (inj₁ a₀) (λ x p → decode a₀ x (encode a₀ x p) ≡ p) (decode a₀ (inj₁ a₀) (encode {A} {B} a₀ (inj₁ a₀) (refl (inj₁ a₀))) ≡⟨ bydef ⟩ (decode a₀ (inj₁ a₀) (transport (code {A} {B} a₀) (refl (inj₁ a₀)) (refl a₀))) ≡⟨ bydef ⟩ (decode a₀ (inj₁ a₀) (refl a₀)) ≡⟨ bydef ⟩ (ap inj₁ (refl a₀)) ≡⟨ bydef ⟩ refl (inj₁ a₀) ∎) x p } thm2-12-5 : {A B : Set} → (a₀ : A) → (x : A ⊎ B) → (inj₁ a₀ ≡ x) ≃ code a₀ x thm2-12-5 {A} {B} a₀ x = (encode a₀ x , equiv₁ codeqinv) inj₁₁path : {A B : Set} → (a₁ a₂ : A) → (inj₁ {A = A} {B = B} a₁ ≡ inj₁ a₂) ≃ (a₁ ≡ a₂) inj₁₁path a₁ a₂ = thm2-12-5 a₁ (inj₁ a₂) inj₁₂path : {A B : Set} → (a : A) (b : B) → (inj₁ a ≡ inj₂ b) ≃ ⊥ inj₁₂path a b = thm2-12-5 a (inj₂ b) -- Abbreviations for equivalence compositions _≃⟨_⟩_ : (A : Set) {B C : Set} → (A ≃ B) → (B ≃ C) → (A ≃ C) _ ≃⟨ p ⟩ q = trans≃ p q _∎≃ : {ℓ : Level} {A : Set ℓ} → A ≃ A _∎≃ {ℓ} {A} = id≃ {ℓ} {A} ------------------------------------------------------------------------------ -- Type equivalences -- unite₊ and uniti₊ unite₊ : {A : Set} → ⊥ ⊎ A → A unite₊ (inj₁ ()) unite₊ (inj₂ y) = y uniti₊ : {A : Set} → A → ⊥ ⊎ A uniti₊ a = inj₂ a uniti₊∘unite₊ : {A : Set} → uniti₊ ○ unite₊ ∼ id {A = ⊥ ⊎ A} uniti₊∘unite₊ (inj₁ ()) uniti₊∘unite₊ (inj₂ y) = refl (inj₂ y) unite₊∙uniti₊ : {A : Set} → unite₊ ○ uniti₊ ∼ id {A = A} unite₊∙uniti₊ = refl unite₊≃ : {A : Set} → (⊥ ⊎ A) ≃ A unite₊≃ = (unite₊ , mkisequiv uniti₊ refl uniti₊ uniti₊∘unite₊) uniti₊≃ : {A : Set} → A ≃ (⊥ ⊎ A) uniti₊≃ = uniti₊ , mkisequiv unite₊ uniti₊∘unite₊ unite₊ unite₊∙uniti₊ -- swap₊ swap₊ : {A B : Set} → A ⊎ B → B ⊎ A swap₊ (inj₁ a) = inj₂ a swap₊ (inj₂ b) = inj₁ b swapswap₊ : {A B : Set} → swap₊ ○ swap₊ {A} {B} ∼ id swapswap₊ (inj₁ a) = refl (inj₁ a) swapswap₊ (inj₂ b) = refl (inj₂ b) swap₊≃ : {A B : Set} → (A ⊎ B) ≃ (B ⊎ A) swap₊≃ = (swap₊ , equiv₁ (mkqinv swap₊ swapswap₊ swapswap₊)) -- assocl₊ and assocr₊ assocl₊ : {A B C : Set} → (A ⊎ (B ⊎ C)) → ((A ⊎ B) ⊎ C) assocl₊ (inj₁ a) = inj₁ (inj₁ a) assocl₊ (inj₂ (inj₁ b)) = inj₁ (inj₂ b) assocl₊ (inj₂ (inj₂ c)) = inj₂ c assocr₊ : {A B C : Set} → ((A ⊎ B) ⊎ C) → (A ⊎ (B ⊎ C)) assocr₊ (inj₁ (inj₁ a)) = inj₁ a assocr₊ (inj₁ (inj₂ b)) = inj₂ (inj₁ b) assocr₊ (inj₂ c) = inj₂ (inj₂ c) assocl₊∘assocr₊ : {A B C : Set} → assocl₊ ○ assocr₊ ∼ id {A = ((A ⊎ B) ⊎ C)} assocl₊∘assocr₊ (inj₁ (inj₁ a)) = refl (inj₁ (inj₁ a)) assocl₊∘assocr₊ (inj₁ (inj₂ b)) = refl (inj₁ (inj₂ b)) assocl₊∘assocr₊ (inj₂ c) = refl (inj₂ c) assocr₊∘assocl₊ : {A B C : Set} → assocr₊ ○ assocl₊ ∼ id {A = (A ⊎ (B ⊎ C))} assocr₊∘assocl₊ (inj₁ a) = refl (inj₁ a) assocr₊∘assocl₊ (inj₂ (inj₁ b)) = refl (inj₂ (inj₁ b)) assocr₊∘assocl₊ (inj₂ (inj₂ c)) = refl (inj₂ (inj₂ c)) assocl₊≃ : {A B C : Set} → (A ⊎ (B ⊎ C)) ≃ ((A ⊎ B) ⊎ C) assocl₊≃ = assocl₊ , mkisequiv assocr₊ assocl₊∘assocr₊ assocr₊ assocr₊∘assocl₊ assocr₊≃ : {A B C : Set} → ((A ⊎ B) ⊎ C) ≃ (A ⊎ (B ⊎ C)) assocr₊≃ = assocr₊ , mkisequiv assocl₊ assocr₊∘assocl₊ assocl₊ assocl₊∘assocr₊ -- unite⋆ and uniti⋆ unite⋆ : {A : Set} → ⊤ × A → A unite⋆ (tt , x) = x uniti⋆ : {A : Set} → A → ⊤ × A uniti⋆ x = tt , x uniti⋆∘unite⋆ : {A : Set} → uniti⋆ ○ unite⋆ ∼ id {A = ⊤ × A} uniti⋆∘unite⋆ (tt , x) = refl (tt , x) unite⋆≃ : {A : Set} → (⊤ × A) ≃ A unite⋆≃ = unite⋆ , mkisequiv uniti⋆ refl uniti⋆ uniti⋆∘unite⋆ uniti⋆≃ : {A : Set} → A ≃ (⊤ × A) uniti⋆≃ = uniti⋆ , mkisequiv unite⋆ uniti⋆∘unite⋆ unite⋆ refl -- swap⋆ swap⋆ : {A B : Set} → A × B → B × A swap⋆ (a , b) = (b , a) swapswap⋆ : {A B : Set} → swap⋆ ○ swap⋆ ∼ id {A = A × B} swapswap⋆ (a , b) = refl (a , b) swap⋆≃ : {A B : Set} → (A × B) ≃ (B × A) swap⋆≃ = swap⋆ , mkisequiv swap⋆ swapswap⋆ swap⋆ swapswap⋆ -- assocl⋆ and assocr⋆ assocl⋆ : {A B C : Set} → (A × (B × C)) → ((A × B) × C) assocl⋆ (a , (b , c)) = ((a , b) , c) assocr⋆ : {A B C : Set} → ((A × B) × C) → (A × (B × C)) assocr⋆ ((a , b) , c) = (a , (b , c)) assocl⋆∘assocr⋆ : {A B C : Set} → assocl⋆ ○ assocr⋆ ∼ id {A = ((A × B) × C)} assocl⋆∘assocr⋆ x = refl x assocr⋆∘assocl⋆ : {A B C : Set} → assocr⋆ ○ assocl⋆ ∼ id {A = (A × (B × C))} assocr⋆∘assocl⋆ x = refl x assocl⋆≃ : {A B C : Set} → (A × (B × C)) ≃ ((A × B) × C) assocl⋆≃ = assocl⋆ , mkisequiv assocr⋆ assocl⋆∘assocr⋆ assocr⋆ assocr⋆∘assocl⋆ assocr⋆≃ : {A B C : Set} → ((A × B) × C) ≃ (A × (B × C)) assocr⋆≃ = assocr⋆ , mkisequiv assocl⋆ assocr⋆∘assocl⋆ assocl⋆ assocl⋆∘assocr⋆ -- distz and factorz distz : { A : Set} → (⊥ × A) → ⊥ distz (() , _) factorz : {A : Set} → ⊥ → (⊥ × A) factorz () distz∘factorz : {A : Set} → distz ○ factorz {A} ∼ id distz∘factorz () factorz∘distz : {A : Set} → factorz {A} ○ distz ∼ id factorz∘distz (() , proj₂) distz≃ : {A : Set} → (⊥ × A) ≃ ⊥ distz≃ {A} = distz , mkisequiv factorz (distz∘factorz {A}) factorz factorz∘distz factorz≃ : {A : Set} → ⊥ ≃ (⊥ × A) factorz≃ {A} = factorz , mkisequiv distz factorz∘distz distz (distz∘factorz {A}) -- dist and factor dist : {A B C : Set} → ((A ⊎ B) × C) → (A × C) ⊎ (B × C) dist (inj₁ x , c) = inj₁ (x , c) dist (inj₂ y , c) = inj₂ (y , c) factor : {A B C : Set} → (A × C) ⊎ (B × C) → ((A ⊎ B) × C) factor (inj₁ (a , c)) = inj₁ a , c factor (inj₂ (b , c)) = inj₂ b , c dist∘factor : {A B C : Set} → dist {A} {B} {C} ○ factor ∼ id dist∘factor (inj₁ x) = refl (inj₁ x) dist∘factor (inj₂ y) = refl (inj₂ y) factor∘dist : {A B C : Set} → factor {A} {B} {C} ○ dist ∼ id factor∘dist (inj₁ x , c) = refl (inj₁ x , c) factor∘dist (inj₂ y , c) = refl (inj₂ y , c) dist≃ : {A B C : Set} → ((A ⊎ B) × C) ≃ ((A × C) ⊎ (B × C)) dist≃ = dist , mkisequiv factor dist∘factor factor factor∘dist factor≃ : {A B C : Set} → ((A × C) ⊎ (B × C)) ≃ ((A ⊎ B) × C) factor≃ = factor , (mkisequiv dist factor∘dist dist dist∘factor) -- congruence -- ⊕ _⊎∼_ : {A B C D : Set} {f : A → C} {finv : C → A} {g : B → D} {ginv : D → B} → (α : f ○ finv ∼ id) → (β : g ○ ginv ∼ id) → (f ⊎→ g) ○ (finv ⊎→ ginv) ∼ id {A = C ⊎ D} _⊎∼_ α β (inj₁ x) = ap inj₁ (α x) _⊎∼_ α β (inj₂ y) = ap inj₂ (β y) path⊎ : {A B C D : Set} → A ≃ C → B ≃ D → (A ⊎ B) ≃ (C ⊎ D) path⊎ (fp , eqp) (fq , eqq) = Data.Sum.map fp fq , mkisequiv (P.g ⊎→ Q.g) (P.α ⊎∼ Q.α) (P.h ⊎→ Q.h) (P.β ⊎∼ Q.β) where module P = isequiv eqp module Q = isequiv eqq -- ⊗ _×∼_ : {A B C D : Set} {f : A → C} {finv : C → A} {g : B → D} {ginv : D → B} → (α : f ○ finv ∼ id) → (β : g ○ ginv ∼ id) → (f ×→ g) ○ (finv ×→ ginv) ∼ id {A = C × D} _×∼_ α β (x , y) = ap₂ _,_ (α x) (β y) path× : {A B C D : Set} → A ≃ C → B ≃ D → (A × B) ≃ (C × D) path× {A} {B} {C} {D} (fp , eqp) (fq , eqq) = Data.Product.map fp fq , mkisequiv (P.g ×→ Q.g) (_×∼_ {A} {B} {C} {D} {fp} {P.g} {fq} {Q.g} P.α Q.α) (P.h ×→ Q.h) (_×∼_ {C} {D} {A} {B} {P.h} {fp} {Q.h} {fq} P.β Q.β) where module P = isequiv eqp module Q = isequiv eqq ------------------------------------------------------------------------------ -- Pi as a higher-order inductive type module PI where -- hidden private data FT* : Set where ZERO* : FT* ONE* : FT* PLUS* : FT* → FT* → FT* TIMES* : FT* → FT* → FT* NEG* : FT* → FT* RECIP* : FT* → FT* -- exported FT : Set FT = FT* ZERO : FT ZERO = ZERO* ONE : FT ONE = ONE* PLUS : FT → FT → FT PLUS = PLUS* TIMES : FT → FT → FT TIMES = TIMES* NEG : FT → FT NEG = NEG* RECIP : FT → FT RECIP = RECIP* postulate -- additive structure unite₊≡ : { b : FT } → PLUS ZERO b ≡ b uniti₊≡ : { b : FT } → b ≡ PLUS ZERO b swap₊≡ : { b₁ b₂ : FT } → PLUS b₁ b₂ ≡ PLUS b₂ b₁ assocl₊≡ : { b₁ b₂ b₃ : FT } → PLUS b₁ (PLUS b₂ b₃) ≡ PLUS (PLUS b₁ b₂) b₃ assocr₊≡ : { b₁ b₂ b₃ : FT } → PLUS (PLUS b₁ b₂) b₃ ≡ PLUS b₁ (PLUS b₂ b₃) -- multiplicative structure unite⋆≡ : { b : FT } → TIMES ONE b ≡ b uniti⋆≡ : { b : FT } → b ≡ TIMES ONE b swap⋆≡ : { b₁ b₂ : FT } → TIMES b₁ b₂ ≡ TIMES b₂ b₁ assocl⋆≡ : { b₁ b₂ b₃ : FT } → TIMES b₁ (TIMES b₂ b₃) ≡ TIMES (TIMES b₁ b₂) b₃ assocr⋆≡ : { b₁ b₂ b₃ : FT } → TIMES (TIMES b₁ b₂) b₃ ≡ TIMES b₁ (TIMES b₂ b₃) -- distributivity distz≡ : { b : FT } → TIMES ZERO b ≡ ZERO factorz≡ : { b : FT } → ZERO ≡ TIMES ZERO b dist≡ : { b₁ b₂ b₃ : FT } → TIMES (PLUS b₁ b₂) b₃ ≡ PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) factor≡ : { b₁ b₂ b₃ : FT } → PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) ≡ TIMES (PLUS b₁ b₂) b₃ -- negatives and fractionals η₊ : { b : FT } → ZERO ≡ PLUS (NEG b) b ε₊ : { b : FT } → PLUS (NEG b) b ≡ ZERO refe⋆ : { b : FT } → RECIP (RECIP b) ≡ b refi⋆ : { b : FT } → b ≡ RECIP (RECIP b) rile⋆ : { b : FT } → TIMES b (TIMES b (RECIP b)) ≡ b rili⋆ : { b : FT } → b ≡ TIMES b (TIMES b (RECIP b)) -- no need to postulate congruence; it will be provable -- Any function mapping PI to a type C must produce one of the following -- records that shows how both points and paths are mapped record PIR {ℓ : Level} (C : Set ℓ) : Set (lsuc ℓ) where field czero : C cone : C cplus : C → C → C ctimes : C → C → C cneg : C → C crecip : C → C cunite₊≡ : { c : C } → cplus czero c ≡ c cuniti₊≡ : { c : C } → c ≡ cplus czero c cswap₊≡ : { c₁ c₂ : C } → cplus c₁ c₂ ≡ cplus c₂ c₁ cassocl₊≡ : { c₁ c₂ c₃ : C } → cplus c₁ (cplus c₂ c₃) ≡ cplus (cplus c₁ c₂) c₃ cassocr₊≡ : { c₁ c₂ c₃ : C } → cplus (cplus c₁ c₂) c₃ ≡ cplus c₁ (cplus c₂ c₃) cunite⋆≡ : { c : C } → ctimes cone c ≡ c cuniti⋆≡ : { c : C } → c ≡ ctimes cone c cswap⋆≡ : { c₁ c₂ : C } → ctimes c₁ c₂ ≡ ctimes c₂ c₁ cassocl⋆≡ : { c₁ c₂ c₃ : C } → ctimes c₁ (ctimes c₂ c₃) ≡ ctimes (ctimes c₁ c₂) c₃ cassocr⋆≡ : { c₁ c₂ c₃ : C } → ctimes (ctimes c₁ c₂) c₃ ≡ ctimes c₁ (ctimes c₂ c₃) cdistz≡ : { c : C } → ctimes czero c ≡ czero cfactorz≡ : { c : C } → czero ≡ ctimes czero c cdist≡ : { c₁ c₂ c₃ : C } → ctimes (cplus c₁ c₂) c₃ ≡ cplus (ctimes c₁ c₃) (ctimes c₂ c₃) cfactor≡ : { c₁ c₂ c₃ : C } → cplus (ctimes c₁ c₃) (ctimes c₂ c₃) ≡ ctimes (cplus c₁ c₂) c₃ cη₊ : { c : C } → czero ≡ cplus (cneg c) c cε₊ : { c : C } → cplus (cneg c) c ≡ czero crefe⋆ : { c : C } → crecip (crecip c) ≡ c crefi⋆ : { c : C } → c ≡ crecip (crecip c) crile⋆ : { c : C } → ctimes c (ctimes c (crecip c)) ≡ c crili⋆ : { c : C } → c ≡ ctimes c (ctimes c (crecip c)) open PIR -- recursion principle for PI: given a target type C and a target record as -- above that has appropriate points and paths, recPI shows how points are -- mapped to points; the postulates assert that paths are transported as -- expected recPI : {ℓ : Level} {C : Set ℓ} → (PIR C) → FT → C recPI pir ZERO* = czero pir recPI pir ONE* = cone pir recPI pir (PLUS* B₁ B₂) = cplus pir (recPI pir B₁) (recPI pir B₂) recPI pir (TIMES* B₁ B₂) = ctimes pir (recPI pir B₁) (recPI pir B₂) recPI pir (NEG* B) = cneg pir (recPI pir B) recPI pir (RECIP* B) = crecip pir (recPI pir B) postulate βreccunite₊≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b : FT} → ap (recPI pir) (unite₊≡ {b}) ≡ cunite₊≡ pir βreccuniti₊≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b : FT} → ap (recPI pir) (uniti₊≡ {b}) ≡ cuniti₊≡ pir βreccswap₊≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b₁ b₂ : FT} → ap (recPI pir) (swap₊≡ {b₁} {b₂}) ≡ cswap₊≡ pir βreccassocl₊≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b₁ b₂ b₃ : FT} → ap (recPI pir) (assocl₊≡ {b₁} {b₂} {b₃}) ≡ cassocl₊≡ pir βreccassocr₊≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b₁ b₂ b₃ : FT} → ap (recPI pir) (assocr₊≡ {b₁} {b₂} {b₃}) ≡ cassocr₊≡ pir βreccunite⋆≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b : FT} → ap (recPI pir) (unite⋆≡ {b}) ≡ cunite⋆≡ pir βreccuniti⋆≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b : FT} → ap (recPI pir) (uniti⋆≡ {b}) ≡ cuniti⋆≡ pir βreccswap⋆≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b₁ b₂ : FT} → ap (recPI pir) (swap⋆≡ {b₁} {b₂}) ≡ cswap⋆≡ pir βreccassocl⋆≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b₁ b₂ b₃ : FT} → ap (recPI pir) (assocl⋆≡ {b₁} {b₂} {b₃}) ≡ cassocl⋆≡ pir βreccassocr⋆≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b₁ b₂ b₃ : FT} → ap (recPI pir) (assocr⋆≡ {b₁} {b₂} {b₃}) ≡ cassocr⋆≡ pir βreccdistz≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b : FT} → ap (recPI pir) (distz≡ {b}) ≡ cdistz≡ pir βreccfactorz≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b : FT} → ap (recPI pir) (factorz≡ {b}) ≡ cfactorz≡ pir βreccdist≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b₁ b₂ b₃ : FT} → ap (recPI pir) (dist≡ {b₁} {b₂} {b₃}) ≡ cdist≡ pir βreccfactor≡ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → {b₁ b₂ b₃ : FT} → ap (recPI pir) (factor≡ {b₁} {b₂} {b₃}) ≡ cfactor≡ pir βreccη₊ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → { b : FT } → ap (recPI pir) (η₊ {b}) ≡ cη₊ pir βreccε₊ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → { b : FT } → ap (recPI pir) (ε₊ {b}) ≡ cε₊ pir βreccrefe⋆ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → { b : FT } → ap (recPI pir) (refe⋆ {b}) ≡ crefe⋆ pir βreccrefi⋆ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → { b : FT } → ap (recPI pir) (refi⋆ {b}) ≡ crefi⋆ pir βreccrile⋆ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → { b : FT } → ap (recPI pir) (rile⋆ {b}) ≡ crile⋆ pir βreccrili⋆ : {ℓ : Level} {C : Set ℓ} → (pir : PIR C) → { b : FT } → ap (recPI pir) (rili⋆ {b}) ≡ crili⋆ pir open PI public ------------------------------------------------------------------------------ -- Semantics I -- The rationals are a model of PI {-- unitPlus : (n : ℕ) -> (n + 0) ≡ n unitPlus 0 = refl 0 unitPlus (suc m) = ap suc (unitPlus m) sPlus : (n m : ℕ) -> suc (n + m) ≡ (n + suc m) sPlus 0 m = refl (suc m) sPlus (suc n) m = ap suc (sPlus n m) commPlus : (m n : ℕ) -> (m + n) ≡ (n + m) commPlus 0 n = ! (unitPlus n) commPlus (suc m) n = (ap suc (commPlus m n)) ∘ (sPlus n m) assocPlus : (m n o : ℕ) ->((m + n) + o) ≡ (m + (n + o)) assocPlus 0 n o = refl (n + o) assocPlus (suc m) n o = ap suc (assocPlus m n o) -- unitMult : (i : ℕ) → 1 * i ≡ i unitMult 0 = refl 0 unitMult (suc i) = ap suc (unitMult i) mulSuc : (m n : ℕ) → m * suc n ≡ m + m * n mulSuc 0 n = refl 0 mulSuc (suc m) n = ap (λ x → suc n + x) (mulSuc m n) ∘ ap suc (! (assocPlus n m (m * n))) ∘ ap (λ x → suc (x + m * n)) (commPlus n m) ∘ ap suc (assocPlus m n (m * n)) annMult : (i : ℕ) → i * 0 ≡ 0 annMult 0 = refl 0 annMult (suc i) = annMult i commMult : (i j : ℕ) → i * j ≡ j * i commMult 0 j = ! (annMult j) commMult (suc i) j = ap (λ x → j + x) (commMult i j) ∘ (! (mulSuc j i)) distrib : (i j k : ℕ) → (j + k) * i ≡ j * i + k * i distrib i 0 k = refl (k * i) distrib i (suc j) k = ap (_+_ i) (distrib i j k) ∘ (! (assocPlus i (j * i) (k * i))) assocMult : (i j k : ℕ) → (i * j) * k ≡ i * (j * k) assocMult 0 j k = refl 0 assocMult (suc i) j k = distrib k j (i * j) ∘ ap (λ x → j * k + x) (assocMult i j k) --} -- toℚ : FT → ℚ toℚ b = recPI (record { czero = + 0 ÷ 1 ; cone = + 1 ÷ 1 ; cplus = {!!} ; --_+_ ; ctimes = {!!} ; --_*_ ; cneg = {!!} ; crecip = {!!} ; cunite₊≡ = {!!} ; --λ {c} → refl c ; cuniti₊≡ = {!!} ; --λ {c} → refl c ; cswap₊≡ = {!!} ; --λ {a b} → commPlus a b ; cassocl₊≡ = {!!} ; --λ {a b c} → ! (assocPlus a b c) ; cassocr₊≡ = {!!} ; --λ {a b c} → assocPlus a b c ; cunite⋆≡ = {!!} ; --λ {a} → unitMult a ; cuniti⋆≡ = {!!} ; --λ {a} → ! (unitMult a) ; cswap⋆≡ = {!!} ; --λ {a b} → commMult a b ; cassocl⋆≡ = {!!} ; --λ {a b c} → ! (assocMult a b c) ; cassocr⋆≡ = {!!} ; --λ {a b c} → assocMult a b c ; cdistz≡ = {!!} ; --refl 0 ; cfactorz≡ = {!!} ; --refl 0 ; cdist≡ = {!!} ; --λ {a b c} → distrib c a b ; cfactor≡ = {!!} ; --λ {a b c} → ! (distrib c a b) ; cη₊ = {!!} ; cε₊ = {!!} ; crefe⋆ = {!!} ; crefi⋆ = {!!} ; crile⋆ = {!!} ; crili⋆ = {!!} }) b ------------------------------------------------------------------------------
31.568894
79
0.424363
c5f39499950be1880e6ec46dcf408900c6c1a64b
926
agda
Agda
Definition/Conversion/Universe.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2018-06-21T08:39:01.000Z
2022-01-17T16:13:53.000Z
Definition/Conversion/Universe.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
null
null
null
Definition/Conversion/Universe.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2022-01-26T14:55:51.000Z
2022-02-15T19:42:19.000Z
{-# OPTIONS --safe #-} module Definition.Conversion.Universe where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.RedSteps open import Definition.Conversion open import Definition.Conversion.Reduction open import Definition.Conversion.Lift import Tools.PropositionalEquality as PE -- Algorithmic equality of terms in WHNF of type U are equal as types. univConv↓ : ∀ {A B r Γ l} → Γ ⊢ A [conv↓] B ∷ Univ r l ^ next l → Γ ⊢ A [conv↓] B ^ [ r , ι l ] univConv↓ X = univ X -- Algorithmic equality of terms of type U are equal as types. univConv↑ : ∀ {A B r Γ l} → Γ ⊢ A [conv↑] B ∷ Univ r l ^ next l → Γ ⊢ A [conv↑] B ^ [ r , ι l ] univConv↑ ([↑]ₜ B₁ t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u) rewrite PE.sym (whnfRed* D Uₙ) = reductionConv↑ (univ* d) (univ* d′) whnft′ whnfu′ (liftConv (univConv↓ t<>u))
30.866667
79
0.661987
4ad4cf5cb8c4c5d27277339952707405fd29fe24
1,679
agda
Agda
src/Categories/Category/CartesianClosed/Properties.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
src/Categories/Category/CartesianClosed/Properties.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
null
null
null
src/Categories/Category/CartesianClosed/Properties.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Category.CartesianClosed.Properties where open import Level open import Data.Product using (Σ; _,_; Σ-syntax; proj₁; proj₂) open import Categories.Category.Core open import Categories.Category.CartesianClosed import Categories.Morphism.Reasoning as MR module _ {o ℓ e} {𝒞 : Category o ℓ e} (𝓥 : CartesianClosed 𝒞) where open Category 𝒞 open CartesianClosed 𝓥 open HomReasoning open MR 𝒞 PointSurjective : ∀ {A X Y : Obj} → (X ⇒ Y ^ A) → Set (ℓ ⊔ e) PointSurjective {A = A} {X = X} {Y = Y} ϕ = ∀ (f : A ⇒ Y) → Σ[ x ∈ ⊤ ⇒ X ] (∀ (a : ⊤ ⇒ A) → eval′ ∘ first ϕ ∘ ⟨ x , a ⟩ ≈ f ∘ a) lawvere-fixed-point : ∀ {A B : Obj} → (ϕ : A ⇒ B ^ A) → PointSurjective ϕ → (f : B ⇒ B) → Σ[ s ∈ ⊤ ⇒ B ] f ∘ s ≈ s lawvere-fixed-point {A = A} {B = B} ϕ surjective f = g ∘ x , g-fixed-point where g : A ⇒ B g = f ∘ eval′ ∘ ⟨ ϕ , id ⟩ x : ⊤ ⇒ A x = proj₁ (surjective g) g-surjective : eval′ ∘ first ϕ ∘ ⟨ x , x ⟩ ≈ g ∘ x g-surjective = proj₂ (surjective g) x lemma : ∀ {A B C D} → (f : B ⇒ C) → (g : B ⇒ D) → (h : A ⇒ B) → (f ⁂ g) ∘ ⟨ h , h ⟩ ≈ ⟨ f , g ⟩ ∘ h lemma f g h = begin (f ⁂ g) ∘ ⟨ h , h ⟩ ≈⟨ ⁂∘⟨⟩ ⟩ ⟨ f ∘ h , g ∘ h ⟩ ≈˘⟨ ⟨⟩∘ ⟩ ⟨ f , g ⟩ ∘ h ∎ g-fixed-point : f ∘ (g ∘ x) ≈ g ∘ x g-fixed-point = begin f ∘ g ∘ x ≈˘⟨ refl⟩∘⟨ g-surjective ⟩ f ∘ eval′ ∘ first ϕ ∘ ⟨ x , x ⟩ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ lemma ϕ id x ⟩ f ∘ eval′ ∘ ⟨ ϕ , id ⟩ ∘ x ≈⟨ ∘-resp-≈ʳ sym-assoc ○ sym-assoc ⟩ (f ∘ eval′ ∘ ⟨ ϕ , id ⟩) ∘ x ≡⟨⟩ g ∘ x ∎
34.979167
116
0.461584
502fb37d337b615833b8b2d4389a5f1e41b3b0e8
4,606
agda
Agda
FormalLanguage/RegularExpression.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
FormalLanguage/RegularExpression.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
FormalLanguage/RegularExpression.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
import Lvl open import Type module FormalLanguage.RegularExpression {ℓ} (Σ : Type{ℓ}) where open import Data.Boolean open import Data.Boolean.Stmt.Proofs open import Data.List as List using (List) open import FormalLanguage open import FormalLanguage.Proofs open import Functional open import Logic open import Logic.Propositional open import Numeral.Natural open import Relator.Equals data RegExp : Type{ℓ} where ∅ : RegExp -- Empty language (Consisting of no words). ε : RegExp -- Empty word language (Consisting of a single empty word). • : Σ → RegExp -- Singleton language (Consisting of a single one letter word). _++_ : RegExp → RegExp → RegExp -- Concatenation language (Consisting of the words concatenated pairwise). _‖_ : RegExp → RegExp → RegExp -- Union language (Consisting of the words in both languages). _* : RegExp → RegExp -- Infinite concatenations language (Consisting of the words concatenated with themselves any number of times). -- Non-empty infinite concatenations language. _+ : RegExp → RegExp e + = e ++ (e *) -- Optional expression language _?? : RegExp → RegExp e ?? = ε ‖ e -- Finitely repeated expression language exactly : ℕ → RegExp → RegExp exactly 𝟎 e = ε exactly (𝐒(n)) e = e ++ (exactly n e) -- Minimum repetitions of an expression language at-least : ℕ → RegExp → RegExp at-least 𝟎 e = e * at-least (𝐒(n)) e = e ++ (at-least n e) -- Maximum repetitions of an expression language at-most : ℕ → RegExp → RegExp at-most 𝟎 e = ε at-most (𝐒(n)) e = ε ‖ (e ++ (at-most n e)) -- Relation for whether a pattern/expression matches a word (whether the word is in the language that the pattern/expression describes). data _matches_ : RegExp → List(Σ) → Stmt{ℓ} where empty-word : ε matches List.∅ concatenation : ∀{r₁ r₂}{l₁ l₂} → (r₁ matches l₁) → (r₂ matches l₂) → ((r₁ ++ r₂) matches (l₁ List.++ l₂)) disjunctionₗ : ∀{rₗ rᵣ}{l} → (rₗ matches l) → ((rₗ ‖ rᵣ) matches l) disjunctionᵣ : ∀{rₗ rᵣ}{l} → (rᵣ matches l) → ((rₗ ‖ rᵣ) matches l) iteration : ∀{r}{l₁ l₂} → (r matches l₁) → ((r *) matches l₂) → ((r *) matches (l₁ List.++ l₂)) literal : ∀{a} → ((• a) matches List.singleton(a)) -- optional-empty : ∀{e} → ((e ??) matches List.∅) pattern optional-empty = disjunctionₗ empty-word optional-self : ∀{e}{l} → (e matches l) → ((e ??) matches l) optional-self = disjunctionᵣ empty-none : ∀{l} → ¬(∅ matches l) empty-none () module _ ⦃ _ : ComputablyDecidable(_≡_) ⦄ where language : RegExp → Language(Σ) language ∅ = Oper.∅ language ε = Oper.ε language (• x) = Oper.single x language (x ++ y) = language(x) Oper.𝁼 language(y) language (x ‖ y) = language(x) Oper.∪ language(y) language (x *) = language(x) Oper.* postulate matches-language : ∀{e}{l} → (e matches l) → (l Oper.∈ language(e)) {-matches-language {ε} {List.∅} empty-word = [⊤]-intro matches-language {• a} {.a List.⊰ .List.∅} literal = {!!} matches-language {e₁ ++ e₂} {List.∅} p = {!!} matches-language {e₁ ++ e₂} {x List.⊰ l} p = {!!} matches-language {e₁ ‖ e₂} {List.∅} (disjunctionₗ p) = IsTrue.[∨]-introₗ(matches-language {e₁} p) matches-language {e₁ ‖ e₂} {List.∅} (disjunctionᵣ p) = IsTrue.[∨]-introᵣ(matches-language {e₂} p) matches-language {e₁ ‖ e₂} {x List.⊰ l} (disjunctionₗ p) = [↔]-to-[←] ([∪]-containment {x = x List.⊰ l}{A = language(e₁)}{B = language(e₂)}) ([∨]-introₗ (matches-language {e₁} p)) matches-language {e₁ ‖ e₂} {x List.⊰ l} (disjunctionᵣ p) = [↔]-to-[←] ([∪]-containment {x = x List.⊰ l}{A = language(e₁)}{B = language(e₂)}) ([∨]-introᵣ (matches-language {e₂} p)) matches-language {e *} {List.∅} p = {!!} matches-language {e *} {x List.⊰ l} p = {!!} -} postulate language-matches : ∀{e}{l} → (l Oper.∈ language(e)) → (e matches l) {-language-matches {∅} {x List.⊰ l} p with () ← language-matches {∅} {l} p language-matches {ε} {List.∅} [⊤]-intro = empty-word language-matches {ε} {x List.⊰ l} p with () ← [↔]-to-[→] ([ε]-containment {x = x List.⊰ l}) p language-matches {• a} {x List.⊰ l} p with [≡]-intro ← [↔]-to-[→] (single-containment {x = x List.⊰ l}) p = literal language-matches {e₁ ++ e₂} {List.∅} p = {!!} language-matches {e₁ ++ e₂} {x List.⊰ l} p = {!!} language-matches {e₁ ‖ e₂} {l} p = [∨]-elim (disjunctionₗ ∘ language-matches) (disjunctionᵣ ∘ language-matches) ([↔]-to-[→] ([∪]-containment {x = l} {A = language(e₁)} {B = language(e₂)}) p) language-matches {e *} {List.∅} [⊤]-intro = {![*]-containment!} language-matches {e *} {x List.⊰ l} p = {!!} -}
46.525253
193
0.616153
0e036e3b65998f1899638ae78af17c9f2af3a975
3,188
agda
Agda
src/Categories/Category/Construction/Properties/EilenbergMoore.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/Category/Construction/Properties/EilenbergMoore.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/Category/Construction/Properties/EilenbergMoore.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Categories.Category.Construction.Properties.EilenbergMoore where open import Level import Relation.Binary.PropositionalEquality as ≡ open import Categories.Adjoint open import Categories.Adjoint.Properties open import Categories.Category open import Categories.Functor using (Functor; _∘F_) open import Categories.Functor.Equivalence open import Categories.Monad open import Categories.NaturalTransformation renaming (id to idN) open import Categories.Morphism.HeterogeneousIdentity open import Categories.Adjoint.Construction.EilenbergMoore open import Categories.Category.Construction.EilenbergMoore private variable o ℓ e : Level 𝒞 𝒟 : Category o ℓ e module _ {F : Functor 𝒞 𝒟} {G : Functor 𝒟 𝒞} (F⊣G : Adjoint F G) where private T : Monad 𝒞 T = adjoint⇒monad F⊣G 𝒞ᵀ : Category _ _ _ 𝒞ᵀ = EilenbergMoore T module 𝒞 = Category 𝒞 module 𝒟 = Category 𝒟 module 𝒞ᵀ = Category 𝒞ᵀ open 𝒞.HomReasoning module T = Monad T module F = Functor F module G = Functor G open Adjoint F⊣G open NaturalTransformation -- Maclane's Comparison Functor ComparisonF : Functor 𝒟 𝒞ᵀ ComparisonF = record { F₀ = λ X → record { A = G.F₀ X ; action = G.F₁ (counit.η X) ; commute = commute (G ∘ˡ counit) (counit.η X) ; identity = zag } ; F₁ = λ {A} {B} f → record { arr = G.F₁ f ; commute = begin 𝒞 [ G.F₁ f ∘ G.F₁ (counit.η A) ] ≈˘⟨ G.homomorphism ⟩ G.F₁ (𝒟 [ f ∘ (counit.η A) ]) ≈˘⟨ G.F-resp-≈ (counit.commute f) ⟩ G.F₁ (𝒟 [ counit.η B ∘ F.F₁ (G.F₁ f) ]) ≈⟨ G.homomorphism ⟩ 𝒞 [ G.F₁ (counit.η B) ∘ G.F₁ (F.F₁ (G.F₁ f)) ] ∎ } ; identity = G.identity ; homomorphism = G.homomorphism ; F-resp-≈ = G.F-resp-≈ } private K = ComparisonF module K = Functor K module Gᵀ = Functor (Forgetful T) module Fᵀ = Functor (Free T) Comparison∘F≡Free : (ComparisonF ∘F F) ≡F Free T Comparison∘F≡Free = record { eq₀ = λ X → ≡.refl ; eq₁ = λ {A} {B} f → begin Module⇒.arr (𝒞ᵀ [ (hid 𝒞ᵀ ≡.refl) ∘ K.F₁ (F.F₁ f) ]) ≈⟨ hid-refl 𝒞ᵀ {A = K.F₀ (F.F₀ B)} ⟩∘⟨refl ⟩ Module⇒.arr (𝒞ᵀ [ 𝒞ᵀ.id ∘ K.F₁ (F.F₁ f) ]) ≈⟨ 𝒞.identityˡ {f = Module⇒.arr (K.F₁ (F.F₁ f))} ⟩ Module⇒.arr (K.F₁ (F.F₁ f)) ≈⟨ refl ⟩ Module⇒.arr (Fᵀ.F₁ f) ≈˘⟨ 𝒞ᵀ.identityʳ {f = Fᵀ.F₁ f} ⟩ Module⇒.arr (𝒞ᵀ [ Fᵀ.F₁ f ∘ 𝒞ᵀ.id ]) ≈˘⟨ refl⟩∘⟨ hid-refl 𝒞ᵀ {A = Fᵀ.F₀ A} ⟩ Module⇒.arr (𝒞ᵀ [ Fᵀ.F₁ f ∘ (hid 𝒞ᵀ ≡.refl) ]) ∎ } Forgetful∘ComparisonF≡G : (Forgetful T ∘F ComparisonF) ≡F G Forgetful∘ComparisonF≡G = record { eq₀ = λ X → ≡.refl ; eq₁ = λ f → begin 𝒞 [ (hid 𝒞 ≡.refl) ∘ (Gᵀ.F₁ (K.F₁ f)) ] ≈⟨ hid-refl 𝒞 ⟩∘⟨refl ⟩ 𝒞 [ 𝒞.id ∘ (Gᵀ.F₁ (K.F₁ f)) ] ≈⟨ 𝒞.identityˡ ⟩ (Gᵀ.F₁ (K.F₁ f)) ≈⟨ refl ⟩ G.F₁ f ≈˘⟨ 𝒞.identityʳ ⟩ 𝒞 [ G.F₁ f ∘ 𝒞.id ] ≈˘⟨ refl⟩∘⟨ hid-refl 𝒞 ⟩ 𝒞 [ G.F₁ f ∘ (hid 𝒞 ≡.refl) ] ∎ }
32.865979
109
0.54611
df70cc3b22ad6f966f8fece1d8d62832cba0d98c
701
agda
Agda
Cubical/Algebra/Group.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Algebra/Group.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Algebra/Group.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Algebra.Group where open import Cubical.Algebra.Group.Base public open import Cubical.Algebra.Group.Properties public open import Cubical.Algebra.Group.GroupPath public open import Cubical.Algebra.Group.DirProd public open import Cubical.Algebra.Group.Morphisms public open import Cubical.Algebra.Group.MorphismProperties public open import Cubical.Algebra.Group.Subgroup public open import Cubical.Algebra.Group.QuotientGroup public open import Cubical.Algebra.Group.IsomorphismTheorems public open import Cubical.Algebra.Group.Instances.Unit public open import Cubical.Algebra.Group.Instances.Bool public open import Cubical.Algebra.Group.Instances.Int public
43.8125
60
0.850214
396b67cf9a8a2d0eacb972062a0c2f3c856a57c5
1,221
agda
Agda
UniDB/Morph/Sub.agda
skeuchel/unidb-agda
7ae52205db44ad4f463882ba7e5082120fb76349
[ "MIT" ]
null
null
null
UniDB/Morph/Sub.agda
skeuchel/unidb-agda
7ae52205db44ad4f463882ba7e5082120fb76349
[ "MIT" ]
null
null
null
UniDB/Morph/Sub.agda
skeuchel/unidb-agda
7ae52205db44ad4f463882ba7e5082120fb76349
[ "MIT" ]
null
null
null
module UniDB.Morph.Sub where open import UniDB.Spec open import UniDB.Morph.Depth -------------------------------------------------------------------------------- data Single (T : STX) : MOR where single : {γ : Dom} (t : T γ) → Single T (suc γ) γ instance iLkSingle : {T : STX} {{vrT : Vr T}} → Lk T (Single T) lk {{iLkSingle {T}}} (single t) zero = t lk {{iLkSingle {T}}} (single t) (suc i) = vr {T} i iBetaSingle : {T : STX} → Beta T (Single T) beta {{iBetaSingle}} = single -------------------------------------------------------------------------------- data Sub (T : STX) : MOR where sub : {γ₁ γ₂ : Dom} (ξ : Depth (Single T) γ₁ γ₂) → Sub T γ₁ γ₂ module _ {T : STX} where instance iLkSub : {{vrT : Vr T}} {{wkT : Wk T}} → Lk T (Sub T) lk {{iLkSub}} (sub ξ) = lk {T} {Depth (Single T)} ξ iUpSub : Up (Sub T) _↑₁ {{iUpSub}} (sub ζ) = sub (ζ ↑₁) _↑_ {{iUpSub}} ξ 0 = ξ _↑_ {{iUpSub}} ξ (suc δ⁺) = ξ ↑ δ⁺ ↑₁ ↑-zero {{iUpSub}} ξ = refl ↑-suc {{iUpSub}} ξ δ = refl iBetaSub : Beta T (Sub T) beta {{iBetaSub}} t = sub (beta {T} {Depth (Single T)} t) --------------------------------------------------------------------------------
29.780488
80
0.425061
50c15cb11047053e46158876d8264abf94666c2a
9,554
agda
Agda
Cubical/Experiments/ZariskiLatticeBasicOpens.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-02-05T01:25:26.000Z
2022-02-05T01:25:26.000Z
Cubical/Experiments/ZariskiLatticeBasicOpens.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Experiments/ZariskiLatticeBasicOpens.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Experiments.ZariskiLatticeBasicOpens where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Powerset open import Cubical.Foundations.Transport open import Cubical.Foundations.Structure open import Cubical.Functions.FunExtEquiv import Cubical.Data.Empty as ⊥ open import Cubical.Data.Bool open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm) open import Cubical.Data.Sigma.Base open import Cubical.Data.Sigma.Properties open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Relation.Binary open import Cubical.Relation.Binary.Poset open import Cubical.Algebra.Ring open import Cubical.Algebra.Algebra open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Localisation.Base open import Cubical.Algebra.CommRing.Localisation.UniversalProperty open import Cubical.Algebra.CommRing.Localisation.InvertingElements open import Cubical.Algebra.CommAlgebra.Base open import Cubical.Algebra.CommAlgebra.Properties open import Cubical.Algebra.CommAlgebra.Localisation open import Cubical.Algebra.RingSolver.Reflection open import Cubical.Algebra.Semilattice open import Cubical.HITs.SetQuotients as SQ open import Cubical.HITs.PropositionalTruncation as PT open Iso open BinaryRelation open isEquivRel private variable ℓ ℓ' : Level module Presheaf (A' : CommRing ℓ) where open CommRingStr (snd A') renaming (_·_ to _·r_ ; ·Comm to ·r-comm ; ·Assoc to ·rAssoc ; ·Lid to ·rLid ; ·Rid to ·rRid) open Exponentiation A' open CommRingTheory A' open InvertingElementsBase A' open isMultClosedSubset open CommAlgebraStr ⦃...⦄ private A = fst A' A[1/_] : A → CommAlgebra A' ℓ A[1/ x ] = AlgLoc.S⁻¹RAsCommAlg A' [ x ⁿ|n≥0] (powersFormMultClosedSubset _) A[1/_]ˣ : (x : A) → ℙ (fst A[1/ x ]) A[1/ x ]ˣ = (CommAlgebra→CommRing A[1/ x ]) ˣ _≼_ : A → A → Type ℓ x ≼ y = ∃[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r y -- rad(x) ⊆ rad(y) -- ≼ is a pre-order: Refl≼ : isRefl _≼_ Refl≼ x = PT.∣ 1 , 1r , ·r-comm _ _ ∣ Trans≼ : isTrans _≼_ Trans≼ x y z = map2 Trans≼Σ where Trans≼Σ : Σ[ n ∈ ℕ ] Σ[ a ∈ A ] x ^ n ≡ a ·r y → Σ[ n ∈ ℕ ] Σ[ a ∈ A ] y ^ n ≡ a ·r z → Σ[ n ∈ ℕ ] Σ[ a ∈ A ] x ^ n ≡ a ·r z Trans≼Σ (n , a , p) (m , b , q) = n ·ℕ m , (a ^ m ·r b) , path where path : x ^ (n ·ℕ m) ≡ a ^ m ·r b ·r z path = x ^ (n ·ℕ m) ≡⟨ ^-rdist-·ℕ x n m ⟩ (x ^ n) ^ m ≡⟨ cong (_^ m) p ⟩ (a ·r y) ^ m ≡⟨ ^-ldist-· a y m ⟩ a ^ m ·r y ^ m ≡⟨ cong (a ^ m ·r_) q ⟩ a ^ m ·r (b ·r z) ≡⟨ ·rAssoc _ _ _ ⟩ a ^ m ·r b ·r z ∎ R : A → A → Type ℓ R x y = x ≼ y × y ≼ x -- rad(x) ≡ rad(y) RequivRel : isEquivRel R RequivRel .reflexive x = Refl≼ x , Refl≼ x RequivRel .symmetric _ _ Rxy = (Rxy .snd) , (Rxy .fst) RequivRel .transitive _ _ _ Rxy Ryz = Trans≼ _ _ _ (Rxy .fst) (Ryz .fst) , Trans≼ _ _ _ (Ryz .snd) (Rxy .snd) RpropValued : isPropValued R RpropValued x y = isProp× isPropPropTrunc isPropPropTrunc powerIs≽ : (x a : A) → x ∈ [ a ⁿ|n≥0] → a ≼ x powerIs≽ x a = map powerIs≽Σ where powerIs≽Σ : Σ[ n ∈ ℕ ] (x ≡ a ^ n) → Σ[ n ∈ ℕ ] Σ[ z ∈ A ] (a ^ n ≡ z ·r x) powerIs≽Σ (n , p) = n , 1r , sym p ∙ sym (·rLid _) module ≼ToLoc (x y : A) where private instance _ = snd A[1/ x ] lemma : x ≼ y → y ⋆ 1a ∈ A[1/ x ]ˣ -- y/1 ∈ A[1/x]ˣ lemma = PT.rec (A[1/ x ]ˣ (y ⋆ 1a) .snd) lemmaΣ where path1 : (y z : A) → 1r ·r (y ·r 1r ·r z) ·r 1r ≡ z ·r y path1 = solve A' path2 : (xn : A) → xn ≡ 1r ·r 1r ·r (1r ·r 1r ·r xn) path2 = solve A' lemmaΣ : Σ[ n ∈ ℕ ] Σ[ a ∈ A ] x ^ n ≡ a ·r y → y ⋆ 1a ∈ A[1/ x ]ˣ lemmaΣ (n , z , p) = [ z , (x ^ n) , PT.∣ n , refl ∣ ] -- xⁿ≡zy → y⁻¹ ≡ z/xⁿ , eq/ _ _ ((1r , powersFormMultClosedSubset _ .containsOne) , (path1 _ _ ∙∙ sym p ∙∙ path2 _)) module ≼PowerToLoc (x y : A) (x≼y : x ≼ y) where private [yⁿ|n≥0] = [ y ⁿ|n≥0] instance _ = snd A[1/ x ] lemma : ∀ (s : A) → s ∈ [yⁿ|n≥0] → s ⋆ 1a ∈ A[1/ x ]ˣ lemma _ s∈[yⁿ|n≥0] = ≼ToLoc.lemma _ _ (Trans≼ _ y _ x≼y (powerIs≽ _ _ s∈[yⁿ|n≥0])) 𝓞ᴰ : A / R → CommAlgebra A' ℓ 𝓞ᴰ = rec→Gpd.fun isGroupoidCommAlgebra (λ a → A[1/ a ]) RCoh LocPathProp where RCoh : ∀ a b → R a b → A[1/ a ] ≡ A[1/ b ] RCoh a b (a≼b , b≼a) = fst (isContrS₁⁻¹R≡S₂⁻¹R (≼PowerToLoc.lemma _ _ b≼a) (≼PowerToLoc.lemma _ _ a≼b)) where open AlgLocTwoSubsets A' [ a ⁿ|n≥0] (powersFormMultClosedSubset _) [ b ⁿ|n≥0] (powersFormMultClosedSubset _) LocPathProp : ∀ a b → isProp (A[1/ a ] ≡ A[1/ b ]) LocPathProp a b = isPropS₁⁻¹R≡S₂⁻¹R where open AlgLocTwoSubsets A' [ a ⁿ|n≥0] (powersFormMultClosedSubset _) [ b ⁿ|n≥0] (powersFormMultClosedSubset _) -- The quotient A/R corresponds to the basic opens of the Zariski topology. -- Multiplication lifts to the quotient and corresponds to intersection -- of basic opens, i.e. we get a meet-semilattice with: _∧/_ : A / R → A / R → A / R _∧/_ = setQuotSymmBinOp (RequivRel .reflexive) (RequivRel .transitive) _·r_ (λ a b → subst (λ x → R (a ·r b) x) (·r-comm a b) (RequivRel .reflexive (a ·r b))) ·r-lcoh where ·r-lcoh-≼ : (x y z : A) → x ≼ y → (x ·r z) ≼ (y ·r z) ·r-lcoh-≼ x y z = map ·r-lcoh-≼Σ where path : (x z a y zn : A) → x ·r z ·r (a ·r y ·r zn) ≡ x ·r zn ·r a ·r (y ·r z) path = solve A' ·r-lcoh-≼Σ : Σ[ n ∈ ℕ ] Σ[ a ∈ A ] x ^ n ≡ a ·r y → Σ[ n ∈ ℕ ] Σ[ a ∈ A ] (x ·r z) ^ n ≡ a ·r (y ·r z) ·r-lcoh-≼Σ (n , a , p) = suc n , (x ·r z ^ n ·r a) , (cong (x ·r z ·r_) (^-ldist-· _ _ _) ∙∙ cong (λ v → x ·r z ·r (v ·r z ^ n)) p ∙∙ path _ _ _ _ _) ·r-lcoh : (x y z : A) → R x y → R (x ·r z) (y ·r z) ·r-lcoh x y z Rxy = ·r-lcoh-≼ x y z (Rxy .fst) , ·r-lcoh-≼ y x z (Rxy .snd) BasicOpens : Semilattice ℓ BasicOpens = makeSemilattice [ 1r ] _∧/_ squash/ (elimProp3 (λ _ _ _ → squash/ _ _) λ _ _ _ → cong [_] (·rAssoc _ _ _)) (elimProp (λ _ → squash/ _ _) λ _ → cong [_] (·rRid _)) (elimProp (λ _ → squash/ _ _) λ _ → cong [_] (·rLid _)) (elimProp2 (λ _ _ → squash/ _ _) λ _ _ → cong [_] (·r-comm _ _)) (elimProp (λ _ → squash/ _ _) λ a → eq/ _ _ -- R a a² (∣ 1 , a , ·rRid _ ∣ , ∣ 2 , 1r , cong (a ·r_) (·rRid a) ∙ sym (·rLid _) ∣)) -- The induced partial order open MeetSemilattice BasicOpens renaming (_≤_ to _≼/_ ; IndPoset to BasicOpensAsPoset) -- coincides with our ≼ ≼/CoincidesWith≼ : ∀ (x y : A) → ([ x ] ≼/ [ y ]) ≡ (x ≼ y) ≼/CoincidesWith≼ x y = [ x ] ≼/ [ y ] -- ≡⟨ refl ⟩ [ x ·r y ] ≡ [ x ] ≡⟨ isoToPath (isEquivRel→effectiveIso RpropValued RequivRel _ _) ⟩ R (x ·r y) x ≡⟨ isoToPath Σ-swap-Iso ⟩ R x (x ·r y) ≡⟨ hPropExt (RpropValued _ _) isPropPropTrunc ·To≼ ≼To· ⟩ x ≼ y ∎ where x≼xy→x≼yΣ : Σ[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r (x ·r y) → Σ[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r y x≼xy→x≼yΣ (n , z , p) = n , (z ·r x) , p ∙ ·rAssoc _ _ _ ·To≼ : R x (x ·r y) → x ≼ y ·To≼ (x≼xy , _) = PT.map x≼xy→x≼yΣ x≼xy x≼y→x≼xyΣ : Σ[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r y → Σ[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r (x ·r y) x≼y→x≼xyΣ (n , z , p) = suc n , z , cong (x ·r_) p ∙ ·CommAssocl _ _ _ ≼To· : x ≼ y → R x ( x ·r y) ≼To· x≼y = PT.map x≼y→x≼xyΣ x≼y , PT.∣ 1 , y , ·rRid _ ∙ ·r-comm _ _ ∣ open IsPoset open PosetStr Refl≼/ : isRefl _≼/_ Refl≼/ = BasicOpensAsPoset .snd .isPoset .is-refl Trans≼/ : isTrans _≼/_ Trans≼/ = BasicOpensAsPoset .snd .isPoset .is-trans -- The restrictions: ρᴰᴬ : (a b : A) → a ≼ b → isContr (CommAlgebraHom A[1/ b ] A[1/ a ]) ρᴰᴬ _ b a≼b = A[1/b]HasUniversalProp _ (≼PowerToLoc.lemma _ _ a≼b) where open AlgLoc A' [ b ⁿ|n≥0] (powersFormMultClosedSubset _) renaming (S⁻¹RHasAlgUniversalProp to A[1/b]HasUniversalProp) ρᴰᴬId : ∀ (a : A) (r : a ≼ a) → ρᴰᴬ a a r .fst ≡ idAlgHom ρᴰᴬId a r = ρᴰᴬ a a r .snd _ ρᴰᴬComp : ∀ (a b c : A) (l : a ≼ b) (m : b ≼ c) → ρᴰᴬ a c (Trans≼ _ _ _ l m) .fst ≡ ρᴰᴬ a b l .fst ∘a ρᴰᴬ b c m .fst ρᴰᴬComp a _ c l m = ρᴰᴬ a c (Trans≼ _ _ _ l m) .snd _ ρᴰ : (x y : A / R) → x ≼/ y → CommAlgebraHom (𝓞ᴰ y) (𝓞ᴰ x) ρᴰ = elimContr2 λ _ _ → isContrΠ λ [a]≼/[b] → ρᴰᴬ _ _ (transport (≼/CoincidesWith≼ _ _) [a]≼/[b]) ρᴰId : ∀ (x : A / R) (r : x ≼/ x) → ρᴰ x x r ≡ idAlgHom ρᴰId = SQ.elimProp (λ _ → isPropΠ (λ _ → isSetAlgebraHom _ _ _ _)) λ a r → ρᴰᴬId a (transport (≼/CoincidesWith≼ _ _) r) ρᴰComp : ∀ (x y z : A / R) (l : x ≼/ y) (m : y ≼/ z) → ρᴰ x z (Trans≼/ _ _ _ l m) ≡ ρᴰ x y l ∘a ρᴰ y z m ρᴰComp = SQ.elimProp3 (λ _ _ _ → isPropΠ2 (λ _ _ → isSetAlgebraHom _ _ _ _)) λ a b c _ _ → sym (ρᴰᴬ a c _ .snd _) ∙ ρᴰᴬComp a b c _ _
38.216
100
0.534227
5005a7b9cc66989d06c91cc09f047d442b633a9b
402
agda
Agda
test/Fail/Issue2494-pattern-hidden.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2494-pattern-hidden.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2494-pattern-hidden.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2017-04-13, issue #2494, reported by identicalsnowflake -- Consecutive hidden record fields confused the implicit argument insertion -- due to lack of names in NamedArg. -- {-# OPTIONS -v tc.lhs:30 #-} -- {-# OPTIONS -v tc.term.args:100 #-} postulate Red Blue : Set record Colors : Set where field {red} : Red {blue} : Blue f : Colors → Red f record { blue = blue } = blue
22.333333
76
0.661692
200900d2055a70a81ac744d3bb2a882c7c2626cc
83
agda
Agda
archive/agda-1/Prologue.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-1/Prologue.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-1/Prologue.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module Prologue where open import Relation.Binary.Core open IsEquivalence ⦃ … ⦄
11.857143
32
0.771084
1cfbb93b620f0232fea3e6c0a1027b498c1cbd41
346
agda
Agda
test/succeed/TelescopingLet5.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/TelescopingLet5.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
test/succeed/TelescopingLet5.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
module TelescopingLet5 where postulate A : Set a : A module B (a : A) where postulate C : Set -- B.C : (a : A) → Set module N = B a module M' (open N) (c : C) where postulate cc : C -- M.cc : (a : B.A a) → B.A a E = let open B a in C module M (open B a) (x : A) where D = C postulate cc : C -- M.cc : (a : B.A a) → B.A a
13.84
33
0.526012
50dfa2e9b1231a2910be0570424c8c4cbc1d7acb
201
agda
Agda
Cubical/HITs/Modulo.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/HITs/Modulo.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/HITs/Modulo.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.HITs.Modulo where open import Cubical.HITs.Modulo.Base public open import Cubical.HITs.Modulo.Properties public open import Cubical.HITs.Modulo.FinEquiv public
22.333333
49
0.79602
cbd245ea512ae0a440fdcead7e60e43266b0b957
1,735
agda
Agda
Decidable/Relations.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Decidable/Relations.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Decidable/Relations.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Decidable.Relations where DecidableRelation : {a b : _} {A : Set a} (f : A → Set b) → Set (a ⊔ b) DecidableRelation {A = A} f = (x : A) → (f x) || (f x → False) orDecidable : {a b c : _} {A : Set a} {f : A → Set b} {g : A → Set c} → DecidableRelation f → DecidableRelation g → DecidableRelation (λ x → (f x) || (g x)) orDecidable fDec gDec x with fDec x orDecidable fDec gDec x | inl fx = inl (inl fx) orDecidable fDec gDec x | inr !fx with gDec x orDecidable fDec gDec x | inr !fx | inl gx = inl (inr gx) orDecidable {f = f} {g} fDec gDec x | inr !fx | inr !gx = inr t where t : (f x || g x) → False t (inl x) = !fx x t (inr x) = !gx x andDecidable : {a b c : _} {A : Set a} {f : A → Set b} {g : A → Set c} → DecidableRelation f → DecidableRelation g → DecidableRelation (λ x → (f x) && (g x)) andDecidable fDec gDec x with fDec x andDecidable fDec gDec x | inl fx with gDec x andDecidable fDec gDec x | inl fx | inl gx = inl (fx ,, gx) andDecidable fDec gDec x | inl fx | inr !gx = inr (λ x → !gx (_&&_.snd x)) andDecidable fDec gDec x | inr !fx = inr (λ x → !fx (_&&_.fst x)) notDecidable : {a b : _} {A : Set a} {f : A → Set b} → DecidableRelation f → DecidableRelation (λ x → (f x) → False) notDecidable fDec x with fDec x notDecidable fDec x | inl fx = inr (λ x → x fx) notDecidable fDec x | inr !fx = inl !fx doubleNegation : {a b : _} {A : Set a} {f : A → Set b} → DecidableRelation f → (x : A) → (((f x) → False) → False) → f x doubleNegation fDec x with fDec x doubleNegation fDec x | inl fx = λ _ → fx doubleNegation fDec x | inr !fx = λ p → exFalso (p !fx)
45.657895
157
0.61902
1ce845593e3ec3bb26039ecf3b14153bd0997cf1
8,512
agda
Agda
Groups/SymmetricGroups/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Groups/SymmetricGroups/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Groups/SymmetricGroups/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import Setoids.Setoids open import Groups.Definition open import Groups.Lemmas open import Groups.Homomorphisms.Definition open import Groups.QuotientGroup.Definition open import Groups.Homomorphisms.Lemmas open import Groups.Actions.Definition open import Sets.EquivalenceRelations module Groups.SymmetricGroups.Lemmas where trivialAction : {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·_ : A → A → A} {B : Set n} (G : Group S _·_) (X : Setoid {n} {p} B) → GroupAction G X trivialAction G X = record { action = λ _ x → x ; actionWellDefined1 = λ _ → reflexive ; actionWellDefined2 = λ wd1 → wd1 ; identityAction = reflexive ; associativeAction = reflexive } where open Setoid X renaming (eq to setoidEq) open Equivalence (Setoid.eq X) leftRegularAction : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A → A → A} (G : Group S _·_) → GroupAction G S GroupAction.action (leftRegularAction {_·_ = _·_} G) g h = g · h where open Group G GroupAction.actionWellDefined1 (leftRegularAction {S = S} G) eq1 = +WellDefined eq1 reflexive where open Group G open Setoid S renaming (eq to setoidEq) open Equivalence setoidEq GroupAction.actionWellDefined2 (leftRegularAction {S = S} G) {g} {x} {y} eq1 = +WellDefined reflexive eq1 where open Group G open Setoid S open Equivalence eq GroupAction.identityAction (leftRegularAction G) = identLeft where open Group G GroupAction.associativeAction (leftRegularAction {S = S} G) = symmetric +Associative where open Group G open Setoid S open Equivalence eq conjugationAction : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A → A → A} → (G : Group S _·_) → GroupAction G S conjugationAction {S = S} {_·_ = _·_} G = record { action = λ g h → (g · h) · (inverse g) ; actionWellDefined1 = λ gh → +WellDefined (+WellDefined gh reflexive) (inverseWellDefined G gh) ; actionWellDefined2 = λ x~y → +WellDefined (+WellDefined reflexive x~y) reflexive ; identityAction = transitive (+WellDefined reflexive (invIdent G)) (transitive identRight identLeft) ; associativeAction = λ {x} {g} {h} → transitive (+WellDefined reflexive (invContravariant G)) (transitive +Associative (+WellDefined (transitive (symmetric +Associative) (transitive (symmetric (+Associative)) (+WellDefined reflexive +Associative))) reflexive)) } where open Group G open Setoid S open Equivalence eq conjugationNormalSubgroupAction : {m n o p : _} {A : Set m} {B : Set o} {S : Setoid {m} {n} A} {T : Setoid {o} {p} B} {_·A_ : A → A → A} {_·B_ : B → B → B} → (G : Group S _·A_) → (H : Group T _·B_) → {underF : A → B} (f : GroupHom G H underF) → GroupAction G (quotientGroupSetoid G f) GroupAction.action (conjugationNormalSubgroupAction {_·A_ = _·A_} G H {f} fHom) a b = a ·A (b ·A (Group.inverse G a)) GroupAction.actionWellDefined1 (conjugationNormalSubgroupAction {S = S} {T = T} {_·A_ = _·A_} G H {f} fHom) {g} {h} {x} g~h = ans where open Group G open Setoid T open Equivalence eq ans : f ((g ·A (x ·A (inverse g))) ·A inverse (h ·A (x ·A inverse h))) ∼ Group.0G H ans = transitive (GroupHom.wellDefined fHom (transferToRight'' G (Group.+WellDefined G g~h (Group.+WellDefined G (Equivalence.reflexive (Setoid.eq S)) (inverseWellDefined G g~h))))) (imageOfIdentityIsIdentity fHom) GroupAction.actionWellDefined2 (conjugationNormalSubgroupAction {S = S} {T = T} {_·A_ = _·A_} {_·B_ = _·B_} G H {f} fHom) {g} {x} {y} x~y = ans where open Group G open Setoid T open Equivalence (Setoid.eq S) open Equivalence (Setoid.eq T) renaming (transitive to transitiveH ; symmetric to symmetricH ; reflexive to reflexiveH) input : f (x ·A inverse y) ∼ Group.0G H input = x~y p1 : Setoid._∼_ S ((g ·A (x ·A inverse g)) ·A inverse (g ·A (y ·A inverse g))) ((g ·A (x ·A inverse g)) ·A (inverse (y ·A (inverse g)) ·A inverse g)) p1 = Group.+WellDefined G reflexive (invContravariant G) p2 : Setoid._∼_ S ((g ·A (x ·A inverse g)) ·A (inverse (y ·A (inverse g)) ·A inverse g)) ((g ·A (x ·A inverse g)) ·A ((inverse (inverse g) ·A inverse y) ·A inverse g)) p2 = Group.+WellDefined G reflexive (Group.+WellDefined G (invContravariant G) reflexive) p3 : Setoid._∼_ S ((g ·A (x ·A inverse g)) ·A ((inverse (inverse g) ·A inverse y) ·A inverse g)) (g ·A (((x ·A inverse g) ·A (inverse (inverse g) ·A inverse y)) ·A inverse g)) p3 = symmetric (transitive (+WellDefined reflexive (symmetric +Associative)) +Associative) p4 : Setoid._∼_ S (g ·A (((x ·A inverse g) ·A (inverse (inverse g) ·A inverse y)) ·A inverse g)) (g ·A ((x ·A ((inverse g ·A inverse (inverse g)) ·A inverse y)) ·A inverse g)) p4 = Group.+WellDefined G reflexive (Group.+WellDefined G (symmetric (transitive (+WellDefined reflexive (symmetric +Associative)) +Associative)) reflexive) p5 : Setoid._∼_ S (g ·A ((x ·A ((inverse g ·A inverse (inverse g)) ·A inverse y)) ·A inverse g)) (g ·A ((x ·A (0G ·A inverse y)) ·A inverse g)) p5 = Group.+WellDefined G reflexive (Group.+WellDefined G (Group.+WellDefined G reflexive (Group.+WellDefined G invRight reflexive)) reflexive) p6 : Setoid._∼_ S (g ·A ((x ·A (0G ·A inverse y)) ·A inverse g)) (g ·A ((x ·A inverse y) ·A inverse g)) p6 = Group.+WellDefined G reflexive (Group.+WellDefined G (Group.+WellDefined G reflexive identLeft) reflexive) intermediate : Setoid._∼_ S ((g ·A (x ·A inverse g)) ·A inverse (g ·A (y ·A inverse g))) (g ·A ((x ·A inverse y) ·A inverse g)) intermediate = transitive p1 (transitive p2 (transitive p3 (transitive p4 (transitive p5 p6)))) p7 : f ((g ·A (x ·A inverse g)) ·A inverse (g ·A (y ·A inverse g))) ∼ f (g ·A ((x ·A inverse y) ·A inverse g)) p7 = GroupHom.wellDefined fHom intermediate p8 : f (g ·A ((x ·A inverse y) ·A inverse g)) ∼ (f g) ·B (f ((x ·A inverse y) ·A inverse g)) p8 = GroupHom.groupHom fHom p9 : (f g) ·B (f ((x ·A inverse y) ·A inverse g)) ∼ (f g) ·B (f (x ·A inverse y) ·B f (inverse g)) p9 = Group.+WellDefined H reflexiveH (GroupHom.groupHom fHom) p10 : (f g) ·B (f (x ·A inverse y) ·B f (inverse g)) ∼ (f g) ·B (Group.0G H ·B f (inverse g)) p10 = Group.+WellDefined H reflexiveH (Group.+WellDefined H input reflexiveH) p11 : (f g) ·B (Group.0G H ·B f (inverse g)) ∼ (f g) ·B (f (inverse g)) p11 = Group.+WellDefined H reflexiveH (Group.identLeft H) p12 : (f g) ·B (f (inverse g)) ∼ f (g ·A (inverse g)) p12 = symmetricH (GroupHom.groupHom fHom) intermediate2 : f ((g ·A (x ·A inverse g)) ·A inverse (g ·A (y ·A inverse g))) ∼ (f (g ·A (inverse g))) intermediate2 = transitiveH p7 (transitiveH p8 (transitiveH p9 (transitiveH p10 (transitiveH p11 p12)))) ans : f ((g ·A (x ·A inverse g)) ·A inverse (g ·A (y ·A inverse g))) ∼ Group.0G H ans = transitiveH intermediate2 (transitiveH (GroupHom.wellDefined fHom invRight) (imageOfIdentityIsIdentity fHom)) GroupAction.identityAction (conjugationNormalSubgroupAction {S = S} {T = T} {_·A_ = _·A_} G H {f} fHom) {x} = ans where open Group G open Setoid S open Setoid T renaming (_∼_ to _∼T_) open Equivalence (Setoid.eq T) i : Setoid._∼_ S (x ·A inverse 0G) x i = Equivalence.transitive (Setoid.eq S) (+WellDefined (Equivalence.reflexive (Setoid.eq S)) (invIdent G)) identRight h : 0G ·A (x ·A inverse 0G) ∼ x h = Equivalence.transitive (Setoid.eq S) identLeft i g : ((0G ·A (x ·A inverse 0G)) ·A inverse x) ∼ 0G g = transferToRight'' G h ans : f ((0G ·A (x ·A inverse 0G)) ·A Group.inverse G x) ∼T Group.0G H ans = transitive (GroupHom.wellDefined fHom g) (imageOfIdentityIsIdentity fHom) GroupAction.associativeAction (conjugationNormalSubgroupAction {S = S} {T = T} {_·A_ = _·A_} G H {f} fHom) {x} {g} {h} = ans where open Group G open Setoid T renaming (_∼_ to _∼T_) open Setoid S renaming (_∼_ to _∼S_) open Equivalence (Setoid.eq T) renaming (transitive to transitiveH) open Equivalence (Setoid.eq S) renaming (transitive to transitiveG ; symmetric to symmetricG ; reflexive to reflexiveG) ans : f (((g ·A h) ·A (x ·A inverse (g ·A h))) ·A inverse ((g ·A ((h ·A (x ·A inverse h)) ·A inverse g)))) ∼T Group.0G H ans = transitiveH (GroupHom.wellDefined fHom (transferToRight'' G (transitiveG (symmetricG +Associative) (Group.+WellDefined G reflexiveG (transitiveG (+WellDefined reflexiveG (transitiveG (+WellDefined reflexiveG (invContravariant G)) +Associative)) +Associative))))) (imageOfIdentityIsIdentity fHom)
70.933333
636
0.661184
4a43393f430e40d0a428376652ffda7d75361dd9
5,978
agda
Agda
Cubical/Algebra/DistLattice/BigOps.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Algebra/DistLattice/BigOps.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Algebra/DistLattice/BigOps.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
-- define ⋁ and ⋀ as the bigOps of a Ring when interpreted -- as an additive/multiplicative monoid {-# OPTIONS --safe #-} module Cubical.Algebra.DistLattice.BigOps where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Data.Nat using (ℕ ; zero ; suc) open import Cubical.Data.FinData open import Cubical.Data.Bool hiding (_≤_) open import Cubical.Structures.Axioms open import Cubical.Structures.Auto open import Cubical.Structures.Macro open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.Monoid.BigOp open import Cubical.Algebra.CommMonoid open import Cubical.Algebra.Semilattice open import Cubical.Algebra.Lattice open import Cubical.Algebra.DistLattice open import Cubical.Relation.Binary.Poset private variable ℓ : Level module KroneckerDelta (L' : DistLattice ℓ) where private L = fst L' open DistLatticeStr (snd L') δ : {n : ℕ} (i j : Fin n) → L δ i j = if i == j then 1l else 0l module Join (L' : DistLattice ℓ) where private L = fst L' open DistLatticeStr (snd L') open MonoidBigOp (Semilattice→Monoid (Lattice→JoinSemilattice (DistLattice→Lattice L'))) open LatticeTheory (DistLattice→Lattice L') open KroneckerDelta L' ⋁ = bigOp ⋁Ext = bigOpExt ⋁0l = bigOpε ⋁Last = bigOpLast ⋁Split : ∀ {n} → (V W : FinVec L n) → ⋁ (λ i → V i ∨l W i) ≡ ⋁ V ∨l ⋁ W ⋁Split = bigOpSplit ∨lComm ⋁Meetrdist : ∀ {n} → (x : L) → (V : FinVec L n) → x ∧l ⋁ V ≡ ⋁ λ i → x ∧l V i ⋁Meetrdist {n = zero} x _ = 0lRightAnnihilates∧l x ⋁Meetrdist {n = suc n} x V = x ∧l (V zero ∨l ⋁ (V ∘ suc)) ≡⟨ ∧lLdist∨l _ _ _ ⟩ --Ldist and Rdist wrong way around? (x ∧l V zero) ∨l (x ∧l ⋁ (V ∘ suc)) ≡⟨ (λ i → (x ∧l V zero) ∨l ⋁Meetrdist x (V ∘ suc) i) ⟩ (x ∧l V zero) ∨l ⋁ (λ i → x ∧l V (suc i)) ∎ ⋁Meetldist : ∀ {n} → (x : L) → (V : FinVec L n) → (⋁ V) ∧l x ≡ ⋁ λ i → V i ∧l x ⋁Meetldist {n = zero} x _ = 0lLeftAnnihilates∧l x ⋁Meetldist {n = suc n} x V = (V zero ∨l ⋁ (V ∘ suc)) ∧l x ≡⟨ ∧lRdist∨l _ _ _ ⟩ (V zero ∧l x) ∨l ((⋁ (V ∘ suc)) ∧l x) ≡⟨ (λ i → (V zero ∧l x) ∨l ⋁Meetldist x (V ∘ suc) i) ⟩ (V zero ∧l x) ∨l ⋁ (λ i → V (suc i) ∧l x) ∎ ⋁Meetr0 : ∀ {n} → (V : FinVec L n) → ⋁ (λ i → V i ∧l 0l) ≡ 0l ⋁Meetr0 V = sym (⋁Meetldist 0l V) ∙ 0lRightAnnihilates∧l _ ⋁Meet0r : ∀ {n} → (V : FinVec L n) → ⋁ (λ i → 0l ∧l V i) ≡ 0l ⋁Meet0r V = sym (⋁Meetrdist 0l V) ∙ 0lLeftAnnihilates∧l _ ⋁Meetr1 : (n : ℕ) (V : FinVec L n) → (j : Fin n) → ⋁ (λ i → V i ∧l δ i j) ≡ V j ⋁Meetr1 (suc n) V zero = (λ k → ∧lRid (V zero) k ∨l ⋁Meetr0 (V ∘ suc) k) ∙ ∨lRid (V zero) ⋁Meetr1 (suc n) V (suc j) = (λ i → 0lRightAnnihilates∧l (V zero) i ∨l ⋁ (λ x → V (suc x) ∧l δ x j)) ∙∙ ∨lLid _ ∙∙ ⋁Meetr1 n (V ∘ suc) j ⋁Meet1r : (n : ℕ) (V : FinVec L n) → (j : Fin n) → ⋁ (λ i → (δ j i) ∧l V i) ≡ V j ⋁Meet1r (suc n) V zero = (λ k → ∧lLid (V zero) k ∨l ⋁Meet0r (V ∘ suc) k) ∙ ∨lRid (V zero) ⋁Meet1r (suc n) V (suc j) = (λ i → 0lLeftAnnihilates∧l (V zero) i ∨l ⋁ (λ i → (δ j i) ∧l V (suc i))) ∙∙ ∨lLid _ ∙∙ ⋁Meet1r n (V ∘ suc) j -- inequalities of big joins open JoinSemilattice (Lattice→JoinSemilattice (DistLattice→Lattice L')) open PosetReasoning IndPoset open PosetStr (IndPoset .snd) hiding (_≤_) ind≤⋁ : {n : ℕ} (U : FinVec L n) (i : Fin n) → U i ≤ ⋁ U ind≤⋁ {n = suc n} U zero = ∨≤RCancel _ _ ind≤⋁ {n = suc n} U (suc i) = is-trans _ (⋁ (U ∘ suc)) _ (ind≤⋁ (U ∘ suc) i) (∨≤LCancel _ _) ⋁IsMax : {n : ℕ} (U : FinVec L n) (x : L) → (∀ i → U i ≤ x) → ⋁ U ≤ x ⋁IsMax {n = zero} _ _ _ = ∨lLid _ ⋁IsMax {n = suc n} U x U≤x = ⋁ U ≤⟨ is-refl _ ⟩ U zero ∨l ⋁ (U ∘ suc) ≤⟨ ≤-∨LPres _ _ _ (⋁IsMax _ _ (U≤x ∘ suc)) ⟩ U zero ∨l x ≤⟨ ∨lIsMax _ _ _ (U≤x zero) (is-refl x) ⟩ x ◾ ≤-⋁Ext : {n : ℕ} (U W : FinVec L n) → (∀ i → U i ≤ W i) → ⋁ U ≤ ⋁ W ≤-⋁Ext {n = zero} U W U≤W = is-refl 0l ≤-⋁Ext {n = suc n} U W U≤W = ⋁ U ≤⟨ is-refl _ ⟩ U zero ∨l ⋁ (U ∘ suc) ≤⟨ ≤-∨Pres _ _ _ _ (U≤W zero) (≤-⋁Ext _ _ (U≤W ∘ suc)) ⟩ W zero ∨l ⋁ (W ∘ suc) ≤⟨ is-refl _ ⟩ ⋁ W ◾ module Meet (L' : DistLattice ℓ) where private L = fst L' open DistLatticeStr (snd L') open MonoidBigOp (Semilattice→Monoid (Lattice→MeetSemilattice (DistLattice→Lattice L'))) -- extra DistLattice→MeetMonoid? open LatticeTheory (DistLattice→Lattice L') open KroneckerDelta L' ⋀ = bigOp ⋀Ext = bigOpExt ⋀1l = bigOpε ⋀Last = bigOpLast ⋀Split : ∀ {n} → (V W : FinVec L n) → ⋀ (λ i → V i ∧l W i) ≡ ⋀ V ∧l ⋀ W ⋀Split = bigOpSplit ∧lComm ⋀Joinrdist : ∀ {n} → (x : L) → (V : FinVec L n) → x ∨l ⋀ V ≡ ⋀ λ i → x ∨l V i ⋀Joinrdist {n = zero} x _ = 1lRightAnnihilates∨l x ⋀Joinrdist {n = suc n} x V = x ∨l (V zero ∧l ⋀ (V ∘ suc)) ≡⟨ ∨lLdist∧l _ _ _ ⟩ --Ldist and Rdist wrong way around? (x ∨l V zero) ∧l (x ∨l ⋀ (V ∘ suc)) ≡⟨ (λ i → (x ∨l V zero) ∧l ⋀Joinrdist x (V ∘ suc) i) ⟩ (x ∨l V zero) ∧l ⋀ (λ i → x ∨l V (suc i)) ∎ ⋀Joinldist : ∀ {n} → (x : L) → (V : FinVec L n) → (⋀ V) ∨l x ≡ ⋀ λ i → V i ∨l x ⋀Joinldist {n = zero} x _ = 1lLeftAnnihilates∨l x ⋀Joinldist {n = suc n} x V = (V zero ∧l ⋀ (V ∘ suc)) ∨l x ≡⟨ ∨lRdist∧l _ _ _ ⟩ (V zero ∨l x) ∧l ((⋀ (V ∘ suc)) ∨l x) ≡⟨ (λ i → (V zero ∨l x) ∧l ⋀Joinldist x (V ∘ suc) i) ⟩ (V zero ∨l x) ∧l ⋀ (λ i → V (suc i) ∨l x) ∎ ⋀Joinr1 : ∀ {n} → (V : FinVec L n) → ⋀ (λ i → V i ∨l 1l) ≡ 1l ⋀Joinr1 V = sym (⋀Joinldist 1l V) ∙ 1lRightAnnihilates∨l _ ⋀Join1r : ∀ {n} → (V : FinVec L n) → ⋀ (λ i → 1l ∨l V i) ≡ 1l ⋀Join1r V = sym (⋀Joinrdist 1l V) ∙ 1lLeftAnnihilates∨l _
36.901235
101
0.562228
1cfcb4b0130f4a3317e75793d09c9fc2eab5a0f1
286
agda
Agda
Container/Membership.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
Container/Membership.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
Container/Membership.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --safe --cubical #-} open import Container module Container.Membership {s p} (𝒞 : Container s p) where open import Prelude open import HLevels infixr 5 _∈_ _∈!_ _∈_ : A → ⟦ 𝒞 ⟧ A → Type _ x ∈ xs = fiber (snd xs) x _∈!_ : A → ⟦ 𝒞 ⟧ A → Type _ x ∈! xs = isContr (x ∈ xs)
17.875
59
0.604895
cb68009bca24fbad5176a5e6ba1f5b856bb400d3
909
agda
Agda
test/interaction/Issue635.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue635.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue635.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- {-# OPTIONS -v interaction.case:10 -v tc.cover:40 #-} module Issue635 where record Pointed : Set₁ where field Carrier : Set empty : Carrier equal : Carrier → Carrier → Set record PointedMorphism (M₁ M₂ : Pointed) : Set where constructor morph module M₁ = Pointed M₁ module M₂ = Pointed M₂ field f : M₁.Carrier → M₂.Carrier .identity : M₂.equal (f M₁.empty) M₂.empty g : ∀ (M₁ M₂ : Pointed) → PointedMorphism M₁ M₂ → PointedMorphism M₁ M₂ g M₁ M₂ (morph f identity) = morph f identity f : ∀ {M₁ M₂ : Pointed} → PointedMorphism M₁ M₂ → PointedMorphism M₁ M₂ f x = {!x!} {- WAS: case splitting on x in that hole produces this monstrosity: f {.Splitting.recCon-NOT-PRINTED Carrier empty times equal} {.Splitting.recCon-NOT-PRINTED Carrier₁ empty₁ times₁ equal₁} (morph f identity) = ? -} -- Andreas, 2013-03-21 -- NOW: case splitting on x yields pattern (morph f identity)
28.40625
144
0.694169
0e7c889f8b27b7979f9afa08c9ccea83aab3b6b7
1,077
agda
Agda
Categories/Monad/Duality.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Monad/Duality.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Monad/Duality.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Monad.Duality {o ℓ e} (C : Category o ℓ e) where open import Categories.Functor open import Categories.NaturalTransformation open import Categories.Monad open import Categories.Comonad private module C = Category C open C open HomReasoning coMonad⇒Comonad : Monad C.op → Comonad C coMonad⇒Comonad M = record { F = Functor.op F ; ε = NaturalTransformation.op η ; δ = NaturalTransformation.op μ ; assoc = M.sym-assoc ; sym-assoc = M.assoc ; identityˡ = M.identityˡ ; identityʳ = M.identityʳ } where module M = Monad M open M using (F; η; μ) Comonad⇒coMonad : Comonad C → Monad C.op Comonad⇒coMonad M = record { F = Functor.op F ; η = NaturalTransformation.op ε ; μ = NaturalTransformation.op δ ; assoc = M.sym-assoc ; sym-assoc = M.assoc ; identityˡ = M.identityˡ ; identityʳ = M.identityʳ } where module M = Comonad M open M using (F; ε; δ)
25.642857
66
0.630455
23c9c39b1cd5c8db96f094433826bba9b88879fc
9,784
agda
Agda
agda-aplas14/Substitution.agda
ryanakca/strong-normalization
79d97481f3312c2d30a823c3b1bcb8ae871c2fe2
[ "Unlicense" ]
32
2017-05-22T14:33:27.000Z
2021-03-05T12:12:03.000Z
agda-aplas14/Substitution.agda
ryanakca/strong-normalization
79d97481f3312c2d30a823c3b1bcb8ae871c2fe2
[ "Unlicense" ]
2
2018-02-14T16:42:36.000Z
2018-02-20T14:54:18.000Z
agda-aplas14/Substitution.agda
ryanakca/strong-normalization
79d97481f3312c2d30a823c3b1bcb8ae871c2fe2
[ "Unlicense" ]
4
2017-11-10T16:44:52.000Z
2018-02-23T18:22:17.000Z
module Substitution where open import Library open import Terms -- VarTm n specifies whether the substitution produces variables or terms. -- The index is used to impose an order on the constructors -- and so pass termination checking in lift/subst. data VarTm : ℕ → Set where `Var : VarTm 0 `Tm : VarTm 1 max01 : ℕ → ℕ → ℕ max01 0 m = m max01 n m = n _∙VT_ : ∀ {m n} → VarTm m → VarTm n → VarTm (max01 m n) `Var ∙VT vt = vt `Tm ∙VT vt = `Tm VT : ∀ {m} → VarTm m → Cxt → Ty → Set VT `Var Γ a = Var Γ a VT `Tm Γ a = Tm Γ a vt2tm : ∀ {Γ a m} vt → VT {m} vt Γ a → Tm Γ a vt2tm `Var x = var x vt2tm `Tm t = t RenSub : ∀ {m} → VarTm m → Cxt → Cxt → Set RenSub vt Γ Δ = ∀ {a} → Var Γ a → VT vt Δ a mutual -- Lifiting a substitution lifts : ∀ {m vt Γ Δ a} → RenSub {m} vt Γ Δ → RenSub vt (a ∷ Γ) (a ∷ Δ) lifts {vt = `Var} σ (zero) = zero lifts {vt = `Var} σ (suc x) = suc (σ x) lifts {vt = `Tm} σ (zero) = var (zero) lifts {vt = `Tm} σ (suc x) = subst {vt = `Var} suc (σ x) -- Performing a substitution subst : ∀ {m vt Γ Δ τ} → RenSub {m} vt Γ Δ → Tm Γ τ → Tm Δ τ subst σ (abs t) = abs (subst (lifts σ) t) subst σ (app t u) = app (subst σ t) (subst σ u) subst σ (var x) = vt2tm _ (σ x) -- Performing substitution, inductive specification data IndSubst {m vt Γ Δ} (σ : RenSub {m} vt Γ Δ) : ∀ {τ} → Tm Γ τ → Tm Δ τ → Set where var : ∀{a t} (x : Var Γ a) → vt2tm _ (σ x) ≡ t → IndSubst σ (var x) t abs : ∀{a b} {t : Tm (a ∷ Γ) b} {t'} → IndSubst (lifts σ) t t' → IndSubst σ (abs t) (abs t') app : ∀{a b} {t : Tm Γ (a →̂ b)} {u t' u'} → IndSubst σ t t' → IndSubst σ u u' → IndSubst σ (app t u) (app t' u') -- Performing renaming, inductive specification data IndRen {Γ Δ} (σ : RenSub `Var Γ Δ) : ∀ {τ} → Tm Γ τ → Tm Δ τ → Set where var : ∀{a y} (x : Var Γ a) → (σ x) ≡ y → IndRen σ (var x) (var y) abs : ∀{a b} {t : Tm (a ∷ Γ) b} {t'} → IndRen (lifts σ) t t' → IndRen σ (abs t) (abs t') app : ∀{a b} {t : Tm Γ (a →̂ b)} {u t' u'} → IndRen σ t t' → IndRen σ u u' → IndRen σ (app t u) (app t' u') -- Logical equivalence between inductive and algorithmic substitution IndS→prop : ∀ {m vt Γ Δ} (σ : RenSub {m} vt Γ Δ) {τ} {t : Tm Γ τ} {t' : Tm Δ τ} → IndSubst σ t t' → subst σ t ≡ t' IndS→prop σ (var x ≡.refl) = ≡.refl IndS→prop σ (abs t) = ≡.cong abs (IndS→prop (lifts σ) t) IndS→prop σ (app t t₁) = ≡.cong₂ app (IndS→prop σ t) (IndS→prop σ t₁) prop→IndS' : ∀ {m vt Γ Δ} (σ : RenSub {m} vt Γ Δ) {τ} (t : Tm Γ τ) → IndSubst σ t (subst σ t) prop→IndS' σ (var x) = var x ≡.refl prop→IndS' σ (abs t) = abs (prop→IndS' (lifts σ) t) prop→IndS' σ (app t u) = app (prop→IndS' σ t) (prop→IndS' σ u) prop→IndS : ∀ {m vt Γ Δ} (σ : RenSub {m} vt Γ Δ) {τ} {t : Tm Γ τ} {t' : Tm Δ τ} → subst σ t ≡ t' → IndSubst σ t t' prop→IndS _ ≡.refl = prop→IndS' _ _ -- Logical equivalence between inductive and algorithmic renaming Ind→prop : ∀ {Γ Δ} (σ : RenSub `Var Γ Δ) {τ} {t : Tm Γ τ} {t' : Tm Δ τ} → IndRen σ t t' → subst σ t ≡ t' Ind→prop σ (var x ≡.refl) = ≡.refl Ind→prop σ (abs t) = ≡.cong abs (Ind→prop (lifts σ) t) Ind→prop σ (app t t₁) = ≡.cong₂ app (Ind→prop σ t) (Ind→prop σ t₁) prop→Ind' : ∀ {Γ Δ} (σ : RenSub `Var Γ Δ) {τ} (t : Tm Γ τ) → IndRen σ t (subst σ t) prop→Ind' σ (var x) = var x ≡.refl prop→Ind' σ (abs t) = abs (prop→Ind' (lifts σ) t) prop→Ind' σ (app t u) = app (prop→Ind' σ t) (prop→Ind' σ u) prop→Ind : ∀ {Γ Δ} (σ : RenSub `Var Γ Δ) {τ} {t : Tm Γ τ} {t' : Tm Δ τ} → subst σ t ≡ t' → IndRen σ t t' prop→Ind _ ≡.refl = prop→Ind' _ _ -- Identity substitution ids : ∀ {i vt Γ} → RenSub {i} vt Γ Γ ids {vt = `Var} x = x ids {vt = `Tm } x = var x -- substitution composition _•s_ : ∀ {Γ₀ Γ₁ Γ₂} {n}{vt2 : VarTm n}(τ : RenSub vt2 Γ₁ Γ₂) {m}{vt1 : VarTm m}(σ : RenSub vt1 Γ₀ Γ₁) → RenSub (vt1 ∙VT vt2) Γ₀ Γ₂ _•s_ τ {vt1 = `Var} σ x = τ (σ x) _•s_ τ {vt1 = `Tm } σ x = subst τ (σ x) -- Term substitution Subst : Cxt → Cxt → Set Subst Γ Δ = ∀ {a : Ty} → Var Γ a → Tm Δ a -- Extending a substitution _∷s_ : ∀ {Γ Δ a} → Tm Γ a → Subst Δ Γ → Subst (a ∷ Δ) Γ (t ∷s σ) (zero) = t (t ∷s σ) (suc x) = σ x -- Substitution for 0th variable sgs : ∀ {Γ a} → Tm Γ a → Subst (a ∷ Γ) Γ sgs t = t ∷s ids -- Substituting for the 0th variable [u/0]t subst0 : ∀ {Γ a b} → Tm Γ a → Tm (a ∷ Γ) b → Tm Γ b subst0 u = subst (sgs u) -- Renamings Ren : (Γ Δ : Cxt) → Set Ren = RenSub `Var _≤_ : (Γ Δ : Cxt) → Set _≤_ Γ Δ = RenSub `Var Δ Γ rename : ∀ {Γ Δ : Cxt} {a : Ty} (η : Γ ≤ Δ) (x : Tm Δ a) → Tm Γ a rename = subst -- Weakening renaming weak : ∀{Γ a} → (a ∷ Γ) ≤ Γ weak = suc -- Weakening substitution weaks : ∀{n}{vt : VarTm n}{a Γ Δ} (σ : RenSub vt Γ Δ) → RenSub vt (Γ) (a ∷ Δ) weaks {vt = `Var} σ x = suc (σ x) weaks {vt = `Tm} σ x = rename suc (σ x) -- Properties _≡s_ : ∀ {Γ Δ} {m n vt1 vt2} → (f : RenSub {m} vt1 Γ Δ)(g : RenSub {n} vt2 Γ Δ) → Set f ≡s g = (∀ {a} x → vt2tm _ (f {a} x) ≡ vt2tm _ (g x)) mutual subst-ext : ∀ {Γ Δ} {m n vt1 vt2} {f : RenSub {m} vt1 Γ Δ}{g : RenSub {n} vt2 Γ Δ} → f ≡s g → ∀ {a} (t : Tm Γ a) → subst f t ≡ subst g t subst-ext f≐g (var v) = (f≐g v) subst-ext {f = f} {g = g} f≐g (abs t) = ≡.cong abs (subst-ext (lifts-ext {f = f} {g = g} f≐g) t) subst-ext f≐g (app t t₁) = ≡.cong₂ app (subst-ext f≐g t) (subst-ext f≐g t₁) lifts-ext : ∀ {Γ Δ b} {m n vt1 vt2} {f : RenSub {m} vt1 Γ Δ}{g : RenSub {n} vt2 Γ Δ} → f ≡s g → lifts {a = b} f ≡s lifts g lifts-ext {vt1 = `Var} {`Var} f≐g (zero) = ≡.refl lifts-ext {vt1 = `Var} {`Var} {f} {g} f≐g (suc x) with f x | g x | f≐g x lifts-ext {Γ} {Δ} {b} {._} {._} {`Var} {`Var} f≐g (suc x) | z | .z | ≡.refl = ≡.refl lifts-ext {vt1 = `Var} {`Tm} f≐g (zero) = ≡.refl lifts-ext {vt1 = `Var} {`Tm} f≐g (suc x) rewrite ≡.sym (f≐g x) = ≡.refl lifts-ext {vt1 = `Tm} {`Var} f≐g (zero) = ≡.refl lifts-ext {vt1 = `Tm} {`Var} f≐g (suc x) rewrite (f≐g x) = ≡.refl lifts-ext {vt1 = `Tm} {`Tm} f≐g (zero) = ≡.refl lifts-ext {vt1 = `Tm} {`Tm} f≐g (suc x) = ≡.cong (subst suc) (f≐g x) mutual subst-∙ : ∀ {Γ₀ Γ₁ Γ₂} {n}{vt2 : VarTm n}(τ : RenSub vt2 Γ₁ Γ₂) {m}{vt1 : VarTm m}(σ : RenSub vt1 Γ₀ Γ₁) → ∀ {a} (t : Tm Γ₀ a) → subst (τ •s σ) t ≡ subst τ (subst σ t) subst-∙ τ {vt1 = `Var} σ (var x) = ≡.refl subst-∙ τ {vt1 = `Tm} σ (var x) = ≡.refl subst-∙ τ σ (abs t) = ≡.cong abs (≡.trans (subst-ext (lifts-∙ τ σ) t) (subst-∙ (lifts τ) (lifts σ) t)) subst-∙ τ σ (app t t₁) = ≡.cong₂ app (subst-∙ τ σ t) (subst-∙ τ σ t₁) lifts-∙ : ∀ {Γ₀ Γ₁ Γ₂} {n}{vt2 : VarTm n}(τ : RenSub vt2 Γ₁ Γ₂) {m}{vt1 : VarTm m}(σ : RenSub vt1 Γ₀ Γ₁) → ∀ {a} → lifts {a = a} (τ •s σ) ≡s (lifts τ •s lifts σ) lifts-∙ {vt2 = `Var} τ {vt1 = `Var} σ (zero) = ≡.refl lifts-∙ {vt2 = `Tm} τ {vt1 = `Var} σ (zero) = ≡.refl lifts-∙ {vt2 = `Var} τ {vt1 = `Var} σ (suc x) = ≡.refl lifts-∙ {vt2 = `Tm} τ {vt1 = `Var} σ (suc x) = ≡.refl lifts-∙ {vt2 = `Var} τ {vt1 = `Tm} σ (zero) = ≡.refl lifts-∙ {vt2 = `Tm} τ {vt1 = `Tm} σ (zero) = ≡.refl lifts-∙ {vt2 = `Var} τ {vt1 = `Tm} σ (suc x) = ≡.trans (≡.sym (subst-∙ suc τ (σ x))) (subst-∙ (lifts τ) suc (σ x)) lifts-∙ {vt2 = `Tm} τ {vt1 = `Tm} σ (suc x) = ≡.trans (≡.sym (subst-∙ suc τ (σ x))) (subst-∙ (lifts τ) suc (σ x)) mutual subst-id : ∀ {m vt Γ a} → (t : Tm Γ a) → subst (ids {m} {vt}) t ≡ t subst-id {vt = `Var} (var v) = ≡.refl subst-id {vt = `Tm} (var v) = ≡.refl subst-id {m} {vt} {Γ} (abs t) = ≡.cong abs (≡.trans (subst-ext {n = m} {vt2 = vt} (lifts-id {m} {vt}) t) (subst-id t)) subst-id (app t t₁) = ≡.cong₂ app (subst-id t) (subst-id t₁) lifts-id : ∀ {m vt Γ b} → lifts {a = b} (ids {m} {vt} {Γ = Γ}) ≡s ids {m} {vt} {Γ = b ∷ Γ} lifts-id {vt = `Var} (zero) = ≡.refl lifts-id {vt = `Var} (suc x) = ≡.refl lifts-id {vt = `Tm} (zero) = ≡.refl lifts-id {vt = `Tm} (suc x) = ≡.refl sgs-lifts : ∀ {m vt Γ Δ a} {σ : RenSub {m} vt Γ Δ} {u : Tm Γ a} → (sgs (subst σ u) •s lifts σ) ≡s (σ •s sgs u) sgs-lifts {vt = `Var} = (λ { (zero) → ≡.refl ; (suc x) → ≡.refl }) sgs-lifts {vt = `Tm} {σ = σ} {u} = (λ { (zero) → ≡.refl ; (suc x) → ≡.sym (≡.trans (≡.sym (subst-id (σ x))) (subst-∙ (sgs (subst σ u)) {vt1 = `Var} suc (σ x))) }) sgs-lifts-term : ∀ {m vt Γ Δ a b} {σ : RenSub {m} vt Γ Δ} {u : Tm Γ a}{t : Tm (a ∷ Γ) b} → subst (sgs (subst σ u)) (subst (lifts σ) t) ≡ subst σ (subst (sgs u) t) sgs-lifts-term {σ = σ} {u} {t} = (≡.trans (≡.sym (subst-∙ (sgs (subst σ u)) (lifts σ) t)) (≡.trans (subst-ext sgs-lifts t) (subst-∙ σ (sgs u) t))) renId : ∀ {Γ a}{t : Tm Γ a} → rename id t ≡ t renId = subst-id _ contract : ∀ {a Γ} → RenSub `Var (a ∷ a ∷ Γ) (a ∷ Γ) contract (zero) = zero contract (suc x) = x contract-sgs : ∀ {a Γ} → contract {a} {Γ} ≡s sgs (var zero) contract-sgs (zero) = ≡.refl contract-sgs (suc x) = ≡.refl sgs-weak₀ : ∀ {Γ a} {u : Tm Γ a} {b} (x : Var Γ b) → sgs u (suc x) ≡ var x sgs-weak₀ x = ≡.refl sgs-weak₁ : ∀ {Γ a} {u : Tm Γ a} → (sgs u ∘ suc) ≡s (ids {vt = `Tm}) sgs-weak₁ x = ≡.refl sgs-weak : ∀ {Γ a} {u : Tm Γ a} → (sgs u •s weak) ≡s (ids {vt = `Tm}) sgs-weak x = ≡.refl cons-to-sgs : ∀ {Γ Δ a} (u : Tm Δ a) (σ : Subst Γ Δ) → (u ∷s σ) ≡s (sgs u •s lifts σ) cons-to-sgs u σ (zero) = ≡.refl cons-to-sgs u σ (suc x) = begin σ x ≡⟨ ≡.sym (subst-id (σ x)) ⟩ subst (ids {vt = `Tm}) (σ x) ≡⟨ subst-ext (λ _ → ≡.refl) (σ x) ⟩ subst (sgs u •s weak) (σ x) ≡⟨ subst-∙ (sgs u) weak (σ x) ⟩ subst (sgs u) (subst suc (σ x)) ∎ where open ≡-Reasoning -- -}
35.970588
138
0.500409
4ab48c08e942aa3458ce290ec6bb304034d8502b
432
agda
Agda
Light/Implementation/Data/Unit.agda
zamfofex/lightlib
44b1c724f2de95d3a9effe87ca36ef9eca8b4756
[ "0BSD" ]
1
2019-12-20T21:33:05.000Z
2019-12-20T21:33:05.000Z
Light/Implementation/Data/Unit.agda
zamfofex/lightlib
44b1c724f2de95d3a9effe87ca36ef9eca8b4756
[ "0BSD" ]
null
null
null
Light/Implementation/Data/Unit.agda
zamfofex/lightlib
44b1c724f2de95d3a9effe87ca36ef9eca8b4756
[ "0BSD" ]
null
null
null
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Implementation.Data.Unit where open import Light.Library.Data.Unit using (Library ; Dependencies) instance dependencies : Dependencies dependencies = record {} instance library : Library dependencies library = record { Implementation } where module Implementation where record Unit : Set where constructor unit
28.8
79
0.747685
4a9353e58127bb44955e3257fbbe42e610424470
6,907
agda
Agda
UniDB/Subst/Inst.agda
skeuchel/unidb-agda
7ae52205db44ad4f463882ba7e5082120fb76349
[ "MIT" ]
null
null
null
UniDB/Subst/Inst.agda
skeuchel/unidb-agda
7ae52205db44ad4f463882ba7e5082120fb76349
[ "MIT" ]
null
null
null
UniDB/Subst/Inst.agda
skeuchel/unidb-agda
7ae52205db44ad4f463882ba7e5082120fb76349
[ "MIT" ]
null
null
null
module UniDB.Subst.Inst where open import UniDB.Spec open import UniDB.Subst.Core open import UniDB.Subst.Pair open import UniDB.Subst.Shifts open import UniDB.Morph.Pair open import UniDB.Morph.Shift open import UniDB.Morph.Shifts open import UniDB.Morph.Unit -- These are two unused instances. Just to show that ApHComp is slightly -- stronger than ApPair, but given ApRel then ApPair and ApHComp become -- equivalent. Unfortunately neither ApPair nor ApHComp imply ApRel but -- both can be made stronger to do so. module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} (X : STX) {{apTX : Ap T X}} {{apHCompTX : ApHComp T X}} where iApPair : ApPair T X ap-pair {{iApPair}} {Ξ} {Ζ} ξ ζ x = ap-⊡ {T} {X} {Ξ} {Ζ} {Pair Ξ Ζ} ξ ζ x module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} (X : STX) {{wkX : Wk X}} {{apTX : Ap T X}} {{apRelTX : ApRel T X}} (Ξ : MOR) {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{wkmΞ : Wkm Ξ}} {{lkUpTΞ : LkUp T Ξ}} {{lkWkmTΞ : LkWkm T Ξ}} (Ζ : MOR) {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}} {{wkmΖ : Wkm Ζ}} {{lkUpTΖ : LkUp T Ζ}} {{lkWkmTΖ : LkWkm T Ζ}} where ap-wkm-rel : {γ : Dom} (δ : Dom) (x : X γ) → ap {T} (wkm {Ξ} δ) x ≡ ap {T} (wkm {Ζ} δ) x ap-wkm-rel {γ} δ = ap-rel≃ {T} lemma where lemma : [ T ] wkm {Ξ} {γ} δ ≃ wkm {Ζ} δ lk≃ lemma i = begin lk {T} (wkm {Ξ} δ) i ≡⟨ lk-wkm {T} {Ξ} δ i ⟩ vr (wk δ i) ≡⟨ sym (lk-wkm {T} {Ζ} δ i) ⟩ lk {T} (wkm {Ζ} δ) i ∎ module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} (X : STX) {{apTX : Ap T X}} {{apPairTX : ApPair T X}} {{apRelTX : ApRel T X}} where iApHComp : ApHComp T X ap-⊡ {{iApHComp}} {Ξ} {Ζ} {Θ} ξ ζ x = begin ap {T} {X} {Θ} (ξ ⊡ ζ) x ≡⟨ ap-rel≅ {T} (≃-to-≅` lem) x ⟩ ap {T} {X} {Pair Ξ Ζ} (ξ ⊡ ζ) x ≡⟨ ap-pair {T} ξ ζ x ⟩ ap {T} {X} {Ζ} ζ (ap {T} {X} {Ξ} ξ x) ∎ where lem : (δ : Dom) → [ T ] ((_⊡_ {Θ = Θ} ξ ζ) ↑ δ) ≃ (ξ ⊗ ζ) ↑ δ lk≃ (lem δ) i = begin lk {T} {Θ} ((ξ ⊡ ζ) ↑ δ) i ≡⟨ cong (λ ρ → lk {T} {Θ} ρ i) (⊡-↑ {Ξ} {Ζ} {Θ} ξ ζ δ) ⟩ lk {T} {Θ} (ξ ↑ δ ⊡ ζ ↑ δ) i ≡⟨ lk-⊡-ap {T} {Ξ} {Ζ} {Θ} (ξ ↑ δ) (ζ ↑ δ) i ⟩ lk {T} {Pair Ξ Ζ} (ξ ↑ δ ⊗ ζ ↑ δ) i ≡⟨ cong (λ ρ → lk {T} {Pair Ξ Ζ} ρ i) (sym (⊡-↑ {Ξ} {Ζ} {Pair Ξ Ζ} ξ ζ δ)) ⟩ lk {T} {Pair Ξ Ζ} ((ξ ⊗ ζ) ↑ δ) i ∎ module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} (X : STX) {{apTX : Ap T X}} {{apPairTX : ApPair T X}} {{apRelTX : ApRel T X}} where iApComp : ApComp T X ap-⊙ {{iApComp}} {Ξ} ξ ζ x = begin ap {T} (ξ ⊙ ζ) x ≡⟨ ap-rel≅ {T} (≃-to-≅` lem) x ⟩ ap {T} (ξ ⊗ ζ) x ≡⟨ ap-pair {T} ξ ζ x ⟩ ap {T} ζ (ap {T} ξ x) ∎ where lem : (δ : Dom) → [ T ] (ξ ⊙ ζ) ↑ δ ≃ (ξ ⊗ ζ) ↑ δ lk≃ (lem δ) i = begin lk ((ξ ⊙ ζ) ↑ δ) i ≡⟨ cong (λ ρ → lk ρ i) (⊙-↑ ξ ζ δ) ⟩ lk (ξ ↑ δ ⊙ ζ ↑ δ) i ≡⟨ lk-⊙-ap (ξ ↑ δ) (ζ ↑ δ) i ⟩ ap {T} (ζ ↑ δ) (lk (ξ ↑ δ) i) ≡⟨ refl ⟩ lk (ξ ↑ δ ⊗ ζ ↑ δ) i ≡⟨ refl ⟩ -- cong (λ ρ → lk ρ i) (sym (⊡-↑ {Ξ} {Ξ} {Pair Ξ Ξ} ξ ζ δ)) ⟩ lk ((ξ ⊗ ζ) ↑ δ) i ∎ module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} {{apVrT : ApVr T}} {{apWkmWkTT : ApWkmWk T T}} (X : STX) {{wkX : Wk X}} {{apTX : Ap T X}} {{apWkmWkTX : ApWkmWk T X}} {{apPairTX : ApPair T X}} {{apRelTX : ApRel T X}} (Ρ : MOR) {{lkTΡ : Lk T Ρ}} {{upΡ : Up Ρ}} {{lkUpTΡ : LkUp T Ρ}} {{wkmΡ : Wkm Ρ}} {{lkWkmΡ : LkWkm T Ρ}} (Ξ : MOR) {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{lkUpTΞ : LkUp T Ξ}} {{lkUpPairΞΡ : LkUp T (Pair Ξ Ρ)}} {{lkUpPairΞΡ : LkUp T (Pair Ρ Ξ)}} where ap-wk₁-gen : {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) (x : X γ₁) → ap {T} {X} {Ξ} (ξ ↑₁) (wk₁ x) ≡ wk₁ (ap {T} {X} {Ξ} ξ x) ap-wk₁-gen ξ x = begin ap {T} (ξ ↑₁) (wk₁ x) ≡⟨ cong (ap {T} (ξ ↑₁)) (sym (ap-wkm-wk₁ {T} {X} {Ρ} x)) ⟩ ap {T} (ξ ↑₁) (ap {T} (wkm {Ρ} 1) x) ≡⟨ sym (ap-pair {T} (wkm {Ρ} 1) (ξ ↑₁) x) ⟩ ap {T} (wkm {Ρ} 1 ⊗ ξ ↑₁) x ≡⟨ ap-rel≃ {T} lem x ⟩ ap {T} (ξ ⊗ wkm {Ρ} 1) x ≡⟨ ap-pair {T} ξ (wkm {Ρ} 1) x ⟩ ap {T} (wkm {Ρ} 1) (ap {T} ξ x) ≡⟨ ap-wkm-wk₁ {T} (ap {T} ξ x) ⟩ wk₁ (ap {T} ξ x) ∎ where lem : [ T ] (wkm {Ρ} 1 ⊗ ξ ↑₁) ≃ (ξ ⊗ wkm {Ρ} 1) lk≃ lem i = begin ap {T} (ξ ↑₁) (lk {T} (wkm {Ρ} 1) i) ≡⟨ cong (ap {T} (_↑₁ ξ)) (lk-wkm {T} {Ρ} 1 i) ⟩ ap {T} (ξ ↑₁) (vr (suc i)) ≡⟨ ap-vr {T} (ξ ↑₁) (suc i) ⟩ lk {T} (ξ ↑₁) (suc i) ≡⟨ lk-↑₁-suc {T} ξ i ⟩ wk₁ (lk {T} ξ i) ≡⟨ sym (ap-wkm-wk₁ {T} (lk {T} ξ i)) ⟩ ap {T} (wkm {Ρ} 1) (lk {T} ξ i) ∎ module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} {{wkVrT : WkVr T}} {{apVrT : ApVr T}} {{apWkmWkTT : ApWkmWk T T}} {{apPairTT : ApPair T T}} {{apRelTT : ApRel T T}} (X : STX) {{wkX : Wk X}} {{apTX : Ap T X}} {{apWkmWkTX : ApWkmWk T X}} {{apPairTX : ApPair T X}} {{apRelTX : ApRel T X}} where private Ren : MOR Ren = Shift iApWk : ApWk T X ap-wk₁ {{iApWk}} {Ξ} = ap-wk₁-gen T X Ren Ξ where instance iLkUpRenRen : LkUp T (Pair Ren Ren) iLkUpRenRen = iLkUpPairRenaming T Ren Ren iLkUpRenΞ : LkUp T (Pair Ren Ξ) iLkUpRenΞ = iLkUpPairRenaming T Ren Ξ iLkUpΞRen : LkUp T (Pair Ξ Ren) iLkUpΞRen = iLkUpPairSubstitution T Ξ Ren (ap-wk₁-gen T T Ren Ren) {- module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} {{wkVrT : WkVr T}} {{apVrT : ApVr T}} (X : STX) {{wkX : Wk X}} {{apTX : Ap T X}} {{apWkmWkTX : ApWkmWk T X}} {{apIdmTX : ApIdm T X}} {{apCompTX : ApComp T X}} where private module _ (Ξ : MOR) {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{idmΞ : Idm Ξ}} {{wkmΞ : Wkm Ξ}} {{compΞ : Comp Ξ}} {{lkUpTΞ : LkUp T Ξ}} {{lkWkmTΞ : LkWkm T Ξ}} {{lkIdmTΞ : LkIdm T Ξ}} {{upIdmΞ : UpIdm Ξ}} {{upCompΞ : UpComp Ξ}} {{lkCompTΞ : LkCompAp T Ξ}} {{wkmHomΞ : WkmHom Ξ}} where iWkHom` : WkHom X wk-zero {{iWkHom`}} x = begin wk 0 x ≡⟨ sym (ap-wkm-wk T X Ξ 0 x) ⟩ ap T X Ξ (wkm Ξ 0) x ≡⟨ cong (λ ξ → ap T X Ξ ξ x) (wkm-zero Ξ) ⟩ ap T X Ξ (idm Ξ _) x ≡⟨ ap-idm T X Ξ x ⟩ x ∎ wk-suc {{iWkHom`}} δ x = begin wk (suc δ) x ≡⟨ sym (ap-wkm-wk T X Ξ (suc δ) x) ⟩ ap T X Ξ (wkm Ξ (suc δ)) x ≡⟨ cong (λ ξ → ap T X Ξ ξ x) (wkm-suc Ξ δ) ⟩ ap T X Ξ (wkm Ξ δ ⊙ wkm Ξ 1) x ≡⟨ ap-⊙ T X Ξ (wkm Ξ δ) (wkm Ξ 1) x ⟩ ap T X Ξ (wkm Ξ 1) (ap T X Ξ (wkm Ξ δ) x) ≡⟨ ap-wkm-wk₁ T X Ξ (ap T X Ξ (wkm Ξ δ) x) ⟩ wk₁ (ap T X Ξ (wkm Ξ δ) x) ≡⟨ cong wk₁ (ap-wkm-wk T X Ξ δ x) ⟩ wk₁ (wk δ x) ∎ iWkHom : WkHom X iWkHom = iWkHom` Shifts -}
39.924855
120
0.442884
10d78bbd9b27e9613a803a5e6b0d9d6d566d7de0
715
agda
Agda
test/Succeed/Issue2484-9.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/Succeed/Issue2484-9.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue2484-9.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
module _ (_ : Set) where open import Agda.Builtin.Size postulate I : Set record ∃ (B : I → Set) : Set where constructor _,_ field proj₁ : I proj₂ : B proj₁ module M (_ : Set₁) where mutual data P (i : Size) (x y : I) : Set where ⟨_⟩ : ∃ (Q i x) → P i x y record Q (i : Size) (x y : I) : Set where coinductive field force : {j : Size< i} → P j x y open M Set postulate map : (B : I → Set) → (∀ x → B x → B x) → ∃ B → ∃ B lemma : ∀ x y i → Q i x y → Q i x y p : ∀ x i → P i x x q′ : ∀ x i → ∃ λ y → Q i x y q : ∀ x i → Q i x x q′ x i = x , q x i p x i = ⟨ map _ (λ y → lemma x y _) (q′ x i) ⟩ Q.force (q x i) {j} = p _ _
18.333333
60
0.454545
185d655b7b1eb4502d0e472ebd03d6acb0a0b82d
2,060
agda
Agda
Data/Fin/Injective.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
Data/Fin/Injective.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
Data/Fin/Injective.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --safe #-} module Data.Fin.Injective where open import Prelude open import Data.Fin.Base open import Data.Fin.Properties using (discreteFin) open import Data.Nat open import Data.Nat.Properties using (+-comm) open import Function.Injective private variable n m : ℕ infix 4 _≢ᶠ_ _≡ᶠ_ _≢ᶠ_ _≡ᶠ_ : Fin n → Fin n → Type _ n ≢ᶠ m = T (not (discreteFin n m .does)) n ≡ᶠ m = T (discreteFin n m .does) _F↣_ : ℕ → ℕ → Type n F↣ m = Σ[ f ⦂ (Fin n → Fin m) ] × ∀ {x y} → x ≢ᶠ y → f x ≢ᶠ f y shift : (x y : Fin (suc n)) → x ≢ᶠ y → Fin n shift f0 (fs y) x≢y = y shift {suc _} (fs x) f0 x≢y = f0 shift {suc _} (fs x) (fs y) x≢y = fs (shift x y x≢y) shift-inj : ∀ (x y z : Fin (suc n)) x≢y x≢z → y ≢ᶠ z → shift x y x≢y ≢ᶠ shift x z x≢z shift-inj f0 (fs y) (fs z) x≢y x≢z x+y≢x+z = x+y≢x+z shift-inj {suc _} (fs x) f0 (fs z) x≢y x≢z x+y≢x+z = tt shift-inj {suc _} (fs x) (fs y) f0 x≢y x≢z x+y≢x+z = tt shift-inj {suc _} (fs x) (fs y) (fs z) x≢y x≢z x+y≢x+z = shift-inj x y z x≢y x≢z x+y≢x+z shrink : suc n F↣ suc m → n F↣ m shrink (f , inj) .fst x = shift (f f0) (f (fs x)) (inj tt) shrink (f , inj) .snd p = shift-inj (f f0) (f (fs _)) (f (fs _)) (inj tt) (inj tt) (inj p) ¬plus-inj : ∀ n m → ¬ (suc (n + m) F↣ m) ¬plus-inj zero zero (f , _) = f f0 ¬plus-inj zero (suc m) inj = ¬plus-inj zero m (shrink inj) ¬plus-inj (suc n) m (f , p) = ¬plus-inj n m (f ∘ fs , p) toFin-inj : (Fin n ↣ Fin m) → n F↣ m toFin-inj f .fst = f .fst toFin-inj (f , inj) .snd {x} {y} x≢ᶠy with discreteFin x y | discreteFin (f x) (f y) ... | no ¬p | yes p = ¬p (inj _ _ p) ... | no _ | no _ = tt n≢sn+m : ∀ n m → Fin n ≢ Fin (suc (n + m)) n≢sn+m n m n≡m = ¬plus-inj m n (toFin-inj (subst (_↣ Fin n) (n≡m ; cong (Fin ∘ suc) (+-comm n m)) refl-↣)) Fin-inj : Injective Fin Fin-inj n m eq with compare n m ... | equal _ = refl ... | less n k = ⊥-elim (n≢sn+m n k eq) ... | greater m k = ⊥-elim (n≢sn+m m k (sym eq))
30.746269
92
0.517961
10e0eae92cab52c912df6290a66ff88da1f1e01e
2,254
agda
Agda
lib/Explore/Experimental/iso-probabilistic-reasoning.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
2
2016-06-05T09:25:32.000Z
2017-06-28T19:19:29.000Z
lib/Explore/Experimental/iso-probabilistic-reasoning.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
1
2019-03-16T14:24:04.000Z
2019-03-16T14:24:04.000Z
lib/Explore/Experimental/iso-probabilistic-reasoning.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K #-} module isos-examples where open import Function open import Function.Related.TypeIsomorphisms.NP import Function.Inverse.NP as FI open FI using (_↔_; inverses; module Inverse) renaming (_$₁_ to to; _$₂_ to from) import Function.Related as FR open import Type hiding (★) open import Data.Product.NP open import Data.Bool.NP using (✓) open import Data.One using (𝟙) open import Data.Bits open import Relation.Binary import Relation.Binary.PropositionalEquality as ≡ open ≡ using (_≡_; subst) _≈₂_ : ∀ {a} {A : ★ a} (f g : A → Bit) → ★ _ _≈₂_ {A = A} f g = Σ A (✓ ∘ f) ↔ Σ A (✓ ∘ g) module _ {a r} {A : ★ a} {R : ★ r} where _≈_ : (f g : A → R) → ★ _ f ≈ g = ∀ (O : R → ★ r) → Σ A (O ∘ f) ↔ Σ A (O ∘ g) ≈-refl : Reflexive {A = A → R} _≈_ ≈-refl _ = FI.id ≈-trans : Transitive {A = A → R} _≈_ ≈-trans p q O = q O FI.∘ p O ≈-sym : Symmetric {A = A → R} _≈_ ≈-sym p O = FI.sym (p O) module _ {a r} {A : ★ a} {R : ★ r} (f : A → R) (p : A ↔ A) where stable : f ≈ (f ∘ from p) stable _ = first-iso p stable′ : f ≈ (f ∘ to p) stable′ _ = first-iso (FI.sym p) module _ {a b r} {A : ★ a} {B : ★ b} {R : ★ r} where _≋_ : (f : A → R) (g : B → R) → ★ _ f ≋ g = (f ∘ proj₁) ≈ (g ∘ proj₂) module _ {a b r} {A : ★ a} {B : ★ b} {R : ★ r} where _≋′_ : (f : A → R) (g : B → R) → ★ _ f ≋′ g = ∀ (O : R → ★ r) → (B × Σ A (O ∘ f)) ↔ (A × Σ B (O ∘ g)) module _ {f : A → R} {g : B → R} where open FR.EquationalReasoning ≋′→≋ : f ≋′ g → f ≋ g ≋′→≋ h O = Σ (A × B) (O ∘ f ∘ proj₁) ↔⟨ Σ×-swap ⟩ Σ (B × A) (O ∘ f ∘ proj₂) ↔⟨ Σ-assoc ⟩ (B × Σ A (O ∘ f)) ↔⟨ h O ⟩ (A × Σ B (O ∘ g)) ↔⟨ FI.sym Σ-assoc ⟩ Σ (A × B) (O ∘ g ∘ proj₂) ∎ ≋→≋′ : f ≋ g → f ≋′ g ≋→≋′ h O = (B × Σ A (O ∘ f)) ↔⟨ FI.sym Σ-assoc ⟩ Σ (B × A) (O ∘ f ∘ proj₂) ↔⟨ Σ×-swap ⟩ Σ (A × B) (O ∘ f ∘ proj₁) ↔⟨ h O ⟩ Σ (A × B) (O ∘ g ∘ proj₂) ↔⟨ Σ-assoc ⟩ (A × Σ B (O ∘ g)) ∎ -- -} -- -} -- -} -- -} -- -}
27.487805
81
0.404614
fbf902dc99a58dab6439d14644237a1272c459b7
3,567
agda
Agda
Univalence/DivMod23.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
Univalence/DivMod23.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
Univalence/DivMod23.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Integer division ------------------------------------------------------------------------ module DivMod23 where open import Data.Nat as Nat open import Data.Nat.Properties open SemiringSolver open import Data.Fin as Fin using (Fin; zero; suc; toℕ; fromℕ) import Data.Fin.Properties as Fin open import Induction.Nat open import Relation.Nullary.Decidable open import Relation.Binary.PropositionalEquality open ≡-Reasoning open import Function ------------------------------------------------------------------------ -- Some boring lemmas private lem₁ : (m k : ℕ) → Nat.suc m ≡ suc (toℕ (Fin.inject+ k (fromℕ m)) + 0) lem₁ m k = cong suc $ begin m ≡⟨ sym $ Fin.to-from m ⟩ toℕ (fromℕ m) ≡⟨ Fin.inject+-lemma k (fromℕ m) ⟩ toℕ (Fin.inject+ k (fromℕ m)) ≡⟨ solve 1 (λ x → x := x :+ con 0) refl _ ⟩ toℕ (Fin.inject+ k (fromℕ m)) + 0 ∎ lem₂ : ∀ n → _ lem₂ = solve 1 (λ n → con 1 :+ n := con 1 :+ (n :+ con 0)) refl lem₃ : ∀ n k q (r : Fin n) eq → suc n + k ≡ toℕ r + suc q * n lem₃ n k q r eq = begin suc n + k ≡⟨ solve 2 (λ n k → con 1 :+ n :+ k := n :+ (con 1 :+ k)) refl n k ⟩ n + suc k ≡⟨ cong (_+_ n) eq ⟩ n + (toℕ r + q * n) ≡⟨ solve 3 (λ n r q → n :+ (r :+ q :* n) := r :+ (con 1 :+ q) :* n) refl n (toℕ r) q ⟩ toℕ r + suc q * n ∎ ------------------------------------------------------------------------ -- Division infixl 7 _divMod_ _div_ _mod_ -- A specification of integer division. record DivMod (dividend divisor : ℕ) : Set where constructor result field quotient : ℕ remainder : Fin divisor property : dividend ≡ toℕ remainder + quotient * divisor -- Integer division with remainder. -- Note that Induction.Nat.<-rec is used to establish termination of -- division. The run-time complexity of this implementation of integer -- division should be linear in the size of the dividend, assuming -- that well-founded recursion and the equality type are optimised -- properly (see "Inductive Families Need Not Store Their Indices" -- (Brady, McBride, McKinna, TYPES 2003)). _divMod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → DivMod dividend divisor _divMod_ m n {≢0} = <-rec Pred dm m n {≢0} where Pred : ℕ → Set Pred dividend = (divisor : ℕ) {≢0 : False (divisor ≟ 0)} → DivMod dividend divisor 1+_ : ∀ {k n} → DivMod (suc k) n → DivMod (suc n + k) n 1+_ {k} {n} (result q r eq) = result (1 + q) r (lem₃ n k q r eq) dm : (dividend : ℕ) → <-Rec Pred dividend → Pred dividend dm m rec zero {≢0 = ()} dm zero rec (suc n) = result 0 zero refl dm (suc m) rec (suc n) with compare m n dm (suc m) rec (suc .(suc m + k)) | less .m k = result 0 r (lem₁ m k) where r = suc (Fin.inject+ k (fromℕ m)) dm (suc m) rec (suc .m) | equal .m = result 1 zero (lem₂ m) dm (suc .(suc n + k)) rec (suc n) | greater .n k = 1+ rec (suc k) le (suc n) where le = s≤′s (s≤′s (n≤′m+n n k)) -- Integer division. _div_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ _div_ m n {≢0} = DivMod.quotient $ _divMod_ m n {≢0} -- The remainder after integer division. _mod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → Fin divisor _mod_ m n {≢0} = DivMod.remainder $ _divMod_ m n {≢0}
33.027778
79
0.520886
cb143e82389bb192aced5df1a7e030478df6d278
3,413
agda
Agda
Definition/LogicalRelation/Substitution.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/LogicalRelation/Substitution.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/LogicalRelation/Substitution.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution {{eqrel : EqRelSet}} where open import Definition.Untyped open import Definition.Typed open import Definition.LogicalRelation open import Tools.Product open import Tools.Unit -- The validity judgements: -- We consider expressions that satisfy these judgments valid mutual -- Validity of contexts data ⊩ᵛ_ : Con Term → Set where ε : ⊩ᵛ ε _∙_ : ∀ {Γ A l} ([Γ] : ⊩ᵛ Γ) → Γ ⊩ᵛ⟨ l ⟩ A / [Γ] → ⊩ᵛ Γ ∙ A -- Validity of types _⊩ᵛ⟨_⟩_/_ : (Γ : Con Term) (l : TypeLevel) (A : Term) → ⊩ᵛ Γ → Set Γ ⊩ᵛ⟨ l ⟩ A / [Γ] = ∀ {Δ σ} (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) → Σ (Δ ⊩⟨ l ⟩ subst σ A) (λ [Aσ] → ∀ {σ′} ([σ′] : Δ ⊩ˢ σ′ ∷ Γ / [Γ] / ⊢Δ) ([σ≡σ′] : Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ]) → Δ ⊩⟨ l ⟩ subst σ A ≡ subst σ′ A / [Aσ]) -- Logical relation for substitutions from a valid context _⊩ˢ_∷_/_/_ : (Δ : Con Term) (σ : Subst) (Γ : Con Term) ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ) → Set Δ ⊩ˢ σ ∷ .ε / ε / ⊢Δ = ⊤ Δ ⊩ˢ σ ∷ .(Γ ∙ A) / (_∙_ {Γ} {A} {l} [Γ] [A]) / ⊢Δ = Σ (Δ ⊩ˢ tail σ ∷ Γ / [Γ] / ⊢Δ) λ [tailσ] → (Δ ⊩⟨ l ⟩ head σ ∷ subst (tail σ) A / proj₁ ([A] ⊢Δ [tailσ])) -- Logical relation for equality of substitutions from a valid context _⊩ˢ_≡_∷_/_/_/_ : (Δ : Con Term) (σ σ′ : Subst) (Γ : Con Term) ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) → Set Δ ⊩ˢ σ ≡ σ′ ∷ .ε / ε / ⊢Δ / [σ] = ⊤ Δ ⊩ˢ σ ≡ σ′ ∷ .(Γ ∙ A) / (_∙_ {Γ} {A} {l} [Γ] [A]) / ⊢Δ / [σ] = (Δ ⊩ˢ tail σ ≡ tail σ′ ∷ Γ / [Γ] / ⊢Δ / proj₁ [σ]) × (Δ ⊩⟨ l ⟩ head σ ≡ head σ′ ∷ subst (tail σ) A / proj₁ ([A] ⊢Δ (proj₁ [σ]))) -- Validity of terms _⊩ᵛ⟨_⟩_∷_/_/_ : (Γ : Con Term) (l : TypeLevel) (t A : Term) ([Γ] : ⊩ᵛ Γ) ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) → Set Γ ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] / [A] = ∀ {Δ σ} (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) → Σ (Δ ⊩⟨ l ⟩ subst σ t ∷ subst σ A / proj₁ ([A] ⊢Δ [σ])) λ [tσ] → ∀ {σ′} → Δ ⊩ˢ σ′ ∷ Γ / [Γ] / ⊢Δ → Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ] → Δ ⊩⟨ l ⟩ subst σ t ≡ subst σ′ t ∷ subst σ A / proj₁ ([A] ⊢Δ [σ]) -- Validity of type equality _⊩ᵛ⟨_⟩_≡_/_/_ : (Γ : Con Term) (l : TypeLevel) (A B : Term) ([Γ] : ⊩ᵛ Γ) ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) → Set Γ ⊩ᵛ⟨ l ⟩ A ≡ B / [Γ] / [A] = ∀ {Δ σ} (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) → Δ ⊩⟨ l ⟩ subst σ A ≡ subst σ B / proj₁ ([A] ⊢Δ [σ]) -- Validity of term equality _⊩ᵛ⟨_⟩_≡_∷_/_/_ : (Γ : Con Term) (l : TypeLevel) (t u A : Term) ([Γ] : ⊩ᵛ Γ) ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) → Set Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ A / [Γ] / [A] = ∀ {Δ σ} → (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) → Δ ⊩⟨ l ⟩ subst σ t ≡ subst σ u ∷ subst σ A / proj₁ ([A] ⊢Δ [σ]) -- Valid term equality with validity of its type and terms record [_⊩ᵛ⟨_⟩_≡_∷_/_] (Γ : Con Term) (l : TypeLevel) (t u A : Term) ([Γ] : ⊩ᵛ Γ) : Set where constructor modelsTermEq field [A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ] [t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] / [A] [u] : Γ ⊩ᵛ⟨ l ⟩ u ∷ A / [Γ] / [A] [t≡u] : Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ A / [Γ] / [A] -- Validity of reduction of terms _⊩ᵛ_⇒_∷_/_ : (Γ : Con Term) (t u A : Term) ([Γ] : ⊩ᵛ Γ) → Set Γ ⊩ᵛ t ⇒ u ∷ A / [Γ] = ∀ {Δ σ} (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) → Δ ⊢ subst σ t ⇒ subst σ u ∷ subst σ A
38.784091
80
0.425725
fb2cfd3138a180c8a60c4725a80f78a67e3a4cd0
14,600
agda
Agda
Cubical/Categories/Constructions/Slice.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Categories/Constructions/Slice.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Categories/Constructions/Slice.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Categories.Category open import Cubical.Categories.Morphism renaming (isIso to isIsoC) open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open Iso open import Cubical.Foundations.HLevels open Precategory open import Cubical.Core.Glue open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport using (transpFill) module Cubical.Categories.Constructions.Slice {ℓ ℓ' : Level} (C : Precategory ℓ ℓ') (c : C .ob) {{isC : isCategory C}} where open import Cubical.Data.Sigma -- just a helper to prevent redundency TypeC : Type (ℓ-suc (ℓ-max ℓ ℓ')) TypeC = Type (ℓ-max ℓ ℓ') -- Components of a slice category record SliceOb : TypeC where constructor sliceob field {S-ob} : C .ob S-arr : C [ S-ob , c ] open SliceOb public record SliceHom (a b : SliceOb) : Type ℓ' where constructor slicehom field S-hom : C [ S-ob a , S-ob b ] -- commutative diagram S-comm : S-hom ⋆⟨ C ⟩ (S-arr b) ≡ S-arr a open SliceHom public -- Helpers for working with equality -- can probably replace these by showing that SliceOb is isomorphic to Sigma and -- that paths are isomorphic to Sigma? But sounds like that would need a lot of transp SliceOb-≡-intro : ∀ {a b} {f g} → (p : a ≡ b) → PathP (λ i → C [ p i , c ]) f g → sliceob {a} f ≡ sliceob {b} g SliceOb-≡-intro p q = λ i → sliceob {p i} (q i) module _ {xf yg : SliceOb} where private x = xf .S-ob f = xf .S-arr y = yg .S-ob g = yg .S-arr -- a path between slice objects is the "same" as a pair of paths between C obs and C arrows SOPathIsoPathΣ : Iso (xf ≡ yg) (Σ[ p ∈ x ≡ y ] PathP (λ i → C [ p i , c ]) f g) SOPathIsoPathΣ .fun p = (λ i → (p i) .S-ob) , (λ i → (p i) .S-arr) SOPathIsoPathΣ .inv (p , q) i = sliceob {p i} (q i) SOPathIsoPathΣ .rightInv _ = refl SOPathIsoPathΣ .leftInv _ = refl SOPath≃PathΣ = isoToEquiv SOPathIsoPathΣ SOPath≡PathΣ = ua (isoToEquiv SOPathIsoPathΣ) -- intro and elim for working with SliceHom equalities (is there a better way to do this?) SliceHom-≡-intro : ∀ {a b} {f g} {c₁} {c₂} → (p : f ≡ g) → PathP (λ i → (p i) ⋆⟨ C ⟩ (S-arr b) ≡ S-arr a) c₁ c₂ → slicehom f c₁ ≡ slicehom g c₂ SliceHom-≡-intro p q = λ i → slicehom (p i) (q i) SliceHom-≡-elim : ∀ {a b} {f g} {c₁} {c₂} → slicehom f c₁ ≡ slicehom g c₂ → Σ[ p ∈ f ≡ g ] PathP (λ i → (p i) ⋆⟨ C ⟩ (S-arr b) ≡ S-arr a) c₁ c₂ SliceHom-≡-elim r = (λ i → S-hom (r i)) , λ i → S-comm (r i) SliceHom-≡-intro' : ∀ {a b} {f g : C [ a .S-ob , b .S-ob ]} {c₁} {c₂} → (p : f ≡ g) → slicehom f c₁ ≡ slicehom g c₂ SliceHom-≡-intro' {a} {b} {f} {g} {c₁} {c₂} p i = slicehom (p i) (c₁≡c₂ i) where c₁≡c₂ : PathP (λ i → (p i) ⋆⟨ C ⟩ (b .S-arr) ≡ a .S-arr) c₁ c₂ c₁≡c₂ = isOfHLevel→isOfHLevelDep 1 (λ _ → isC .isSetHom _ _) c₁ c₂ p -- SliceHom is isomorphic to the Sigma type with the same components SliceHom-Σ-Iso : ∀ {a b} → Iso (SliceHom a b) (Σ[ h ∈ C [ S-ob a , S-ob b ] ] h ⋆⟨ C ⟩ (S-arr b) ≡ S-arr a) SliceHom-Σ-Iso .fun (slicehom h c) = h , c SliceHom-Σ-Iso .inv (h , c) = slicehom h c SliceHom-Σ-Iso .rightInv = λ x → refl SliceHom-Σ-Iso .leftInv = λ x → refl -- Precategory definition SliceCat : Precategory _ _ SliceCat .ob = SliceOb SliceCat .Hom[_,_] = SliceHom SliceCat .id (sliceob {x} f) = slicehom (C .id x) (C .⋆IdL _) SliceCat ._⋆_ {sliceob j} {sliceob k} {sliceob l} (slicehom f p) (slicehom g p') = slicehom (f ⋆⟨ C ⟩ g) ( f ⋆⟨ C ⟩ g ⋆⟨ C ⟩ l ≡⟨ C .⋆Assoc _ _ _ ⟩ f ⋆⟨ C ⟩ (g ⋆⟨ C ⟩ l) ≡⟨ cong (λ v → f ⋆⟨ C ⟩ v) p' ⟩ f ⋆⟨ C ⟩ k ≡⟨ p ⟩ j ∎) SliceCat .⋆IdL (slicehom S-hom S-comm) = SliceHom-≡-intro (⋆IdL C _) (toPathP (isC .isSetHom _ _ _ _)) SliceCat .⋆IdR (slicehom S-hom S-comm) = SliceHom-≡-intro (⋆IdR C _) (toPathP (isC .isSetHom _ _ _ _)) SliceCat .⋆Assoc f g h = SliceHom-≡-intro (⋆Assoc C _ _ _) (toPathP (isC .isSetHom _ _ _ _)) -- SliceCat is a Category instance isCatSlice : isCategory SliceCat isCatSlice .isSetHom {a} {b} (slicehom f c₁) (slicehom g c₂) p q = cong isoP p'≡q' where -- paths between SliceHoms are equivalent to the projection paths p' : Σ[ p ∈ f ≡ g ] PathP (λ i → (p i) ⋆⟨ C ⟩ (S-arr b) ≡ S-arr a) c₁ c₂ p' = SliceHom-≡-elim p q' : Σ[ p ∈ f ≡ g ] PathP (λ i → (p i) ⋆⟨ C ⟩ (S-arr b) ≡ S-arr a) c₁ c₂ q' = SliceHom-≡-elim q -- we want all paths between (dependent) paths of this type to be equal B = λ v → v ⋆⟨ C ⟩ (S-arr b) ≡ S-arr a -- need the groupoidness for dependent paths homIsGroupoidDep : isOfHLevelDep 2 B homIsGroupoidDep = isOfHLevel→isOfHLevelDep 2 (λ v x y → isSet→isGroupoid (isC .isSetHom) _ _ x y) -- we first prove that the projected paths are equal p'≡q' : p' ≡ q' p'≡q' = ΣPathP ((isC .isSetHom _ _ _ _) , toPathP (homIsGroupoidDep _ _ _ _ _)) -- and then we can use equivalence to lift these paths up -- to actual SliceHom paths isoP = λ g → cong (inv SliceHom-Σ-Iso) (fun (ΣPathIsoPathΣ) g) -- SliceCat is univalent if C is univalent module _ ⦃ isU : isUnivalent C ⦄ where open CatIso open Iso module _ { xf yg : SliceOb } where private x = xf .S-ob y = yg .S-ob -- names for the equivalences/isos pathIsoEquiv : (x ≡ y) ≃ (CatIso x y) pathIsoEquiv = univEquiv isU x y isoPathEquiv : (CatIso x y) ≃ (x ≡ y) isoPathEquiv = invEquiv pathIsoEquiv pToIIso' : Iso (x ≡ y) (CatIso x y) pToIIso' = equivToIso pathIsoEquiv -- the iso in SliceCat we're given induces an iso in C between x and y module _ ( cIso@(catiso kc lc s r) : CatIso {C = SliceCat} xf yg ) where extractIso' : CatIso {C = C} x y extractIso' .mor = kc .S-hom extractIso' .inv = lc .S-hom extractIso' .sec i = (s i) .S-hom extractIso' .ret i = (r i) .S-hom instance preservesUnivalenceSlice : isUnivalent SliceCat -- we prove the equivalence by going through Iso preservesUnivalenceSlice .univ xf@(sliceob {x} f) yg@(sliceob {y} g) = isoToIsEquiv sIso where -- this is just here because the type checker can't seem to infer xf and yg pToIIso : Iso (x ≡ y) (CatIso x y) pToIIso = pToIIso' {xf = xf} {yg} -- the meat of the proof sIso : Iso (xf ≡ yg) (CatIso xf yg) sIso .fun p = pathToIso xf yg p -- we use the normal pathToIso via path induction to get an isomorphism sIso .inv is@(catiso kc lc s r) = SliceOb-≡-intro x≡y (symP (sym (lc .S-comm) ◁ lf≡f)) where -- we get a path between xf and yg by combining paths between -- x and y, and f and g -- 1. x≡y follows from univalence of C -- 2. f≡g is more tricky; by commutativity, we know that g ≡ l ⋆ f -- so we want l to be id; we get this by showing: id ≡ pathToIso x y x≡y ≡ l -- where the first step follows from path induction, and the second from univalence of C -- morphisms in C from kc and lc k = kc .S-hom l = lc .S-hom -- extract out the iso between x and y extractIso : CatIso {C = C} x y extractIso = extractIso' is -- and we can use univalence of C to get x ≡ y x≡y : x ≡ y x≡y = pToIIso .inv extractIso -- to show that f ≡ g, we show that l ≡ id -- by using C's isomorphism pToI≡id : PathP (λ i → C [ x≡y (~ i) , x ]) (pathToIso {C = C} x y x≡y .inv) (C .id x) pToI≡id = J (λ y p → PathP (λ i → C [ p (~ i) , x ]) (pathToIso {C = C} x y p .inv) (C .id x)) (λ j → JRefl pToIFam pToIBase j .inv) x≡y where idx = C .id x pToIFam = (λ z _ → CatIso {C = C} x z) pToIBase = catiso (C .id x) idx (C .⋆IdL idx) (C .⋆IdL idx) l≡pToI : l ≡ pathToIso {C = C} x y x≡y .inv l≡pToI i = pToIIso .rightInv extractIso (~ i) .inv l≡id : PathP (λ i → C [ x≡y (~ i) , x ]) l (C .id x) l≡id = l≡pToI ◁ pToI≡id lf≡f : PathP (λ i → C [ x≡y (~ i) , c ]) (l ⋆⟨ C ⟩ f) f lf≡f = (λ i → (l≡id i) ⋆⟨ C ⟩ f) ▷ C .⋆IdL _ sIso .rightInv is@(catiso kc lc s r) i = catiso (kc'≡kc i) (lc'≡lc i) (s'≡s i) (r'≡r i) -- we prove rightInv using a combination of univalence and the fact that homs are an h-set where kc' = (sIso .fun) (sIso .inv is) .mor lc' = (sIso .fun) (sIso .inv is) .inv k' = kc' .S-hom l' = lc' .S-hom k = kc .S-hom l = lc .S-hom extractIso : CatIso {C = C} x y extractIso = extractIso' is -- we do the equality component wise -- mor k'≡k : k' ≡ k k'≡k i = (pToIIso .rightInv extractIso) i .mor kcom'≡kcom : PathP (λ j → (k'≡k j) ⋆⟨ C ⟩ g ≡ f) (kc' .S-comm) (kc .S-comm) kcom'≡kcom = isSetHomP1 _ _ λ i → (k'≡k i) ⋆⟨ C ⟩ g kc'≡kc : kc' ≡ kc kc'≡kc i = slicehom (k'≡k i) (kcom'≡kcom i) -- inv l'≡l : l' ≡ l l'≡l i = (pToIIso .rightInv extractIso) i .inv lcom'≡lcom : PathP (λ j → (l'≡l j) ⋆⟨ C ⟩ f ≡ g) (lc' .S-comm) (lc .S-comm) lcom'≡lcom = isSetHomP1 _ _ λ i → (l'≡l i) ⋆⟨ C ⟩ f lc'≡lc : lc' ≡ lc lc'≡lc i = slicehom (l'≡l i) (lcom'≡lcom i) -- sec s' = (sIso .fun) (sIso .inv is) .sec s'≡s : PathP (λ i → lc'≡lc i ⋆⟨ SliceCat ⟩ kc'≡kc i ≡ SliceCat .id _) s' s s'≡s = isSetHomP1 _ _ λ i → lc'≡lc i ⋆⟨ SliceCat ⟩ kc'≡kc i -- ret r' = (sIso .fun) (sIso .inv is) .ret r'≡r : PathP (λ i → kc'≡kc i ⋆⟨ SliceCat ⟩ lc'≡lc i ≡ SliceCat .id _) r' r r'≡r = isSetHomP1 _ _ λ i → kc'≡kc i ⋆⟨ SliceCat ⟩ lc'≡lc i sIso .leftInv p = p'≡p -- to show that the round trip is equivalent to the identity -- we show that this is true for each component (S-ob, S-arr) -- and then combine -- specifically, we show that p'Ob≡pOb and p'Mor≡pMor -- and it follows that p'≡p where p' = (sIso .inv) (sIso .fun p) pOb : x ≡ y pOb i = (p i) .S-ob p'Ob : x ≡ y p'Ob i = (p' i) .S-ob pMor : PathP (λ i → C [ pOb i , c ]) f g pMor i = (p i) .S-arr p'Mor : PathP (λ i → C [ p'Ob i , c ]) f g p'Mor i = (p' i) .S-arr -- we first show that it's equivalent to use sIso first then extract, or to extract first than use pToIIso extractCom : extractIso' (sIso .fun p) ≡ pToIIso .fun pOb extractCom = J (λ yg' p̃ → extractIso' (pathToIso xf yg' p̃) ≡ pToIIso' {xf = xf} {yg'} .fun (λ i → (p̃ i) .S-ob)) (cong extractIso' (JRefl pToIFam' pToIBase') ∙ sym (JRefl pToIFam pToIBase)) p where idx = C .id x pToIFam = (λ z _ → CatIso {C = C} x z) pToIBase = catiso (C .id x) idx (C .⋆IdL idx) (C .⋆IdL idx) idxf = SliceCat .id xf pToIFam' = (λ z _ → CatIso {C = SliceCat} xf z) pToIBase' = catiso (SliceCat .id xf) idxf (SliceCat .⋆IdL idxf) (SliceCat .⋆IdL idxf) -- why does this not follow definitionally? -- from extractCom, we get that performing the roundtrip on pOb gives us back p'Ob ppp : p'Ob ≡ (pToIIso .inv) (pToIIso .fun pOb) ppp = cong (pToIIso .inv) extractCom -- apply univalence of C -- this gives us the first component that we want p'Ob≡pOb : p'Ob ≡ pOb p'Ob≡pOb = ppp ∙ pToIIso .leftInv pOb -- isSetHom gives us the second component, path between morphisms p'Mor≡pMor : PathP (λ j → PathP (λ i → C [ (p'Ob≡pOb j) i , c ]) f g) p'Mor pMor p'Mor≡pMor = isSetHomP2l _ _ p'Mor pMor p'Ob≡pOb -- we can use the above paths to show that p' ≡ p p'≡p : p' ≡ p p'≡p i = comp (λ i' → SOPath≡PathΣ {xf = xf} {yg} (~ i')) (λ j → λ { (i = i0) → left (~ j) ; (i = i1) → right (~ j) }) (p'Σ≡pΣ i) where -- we break up p' and p into their constituent paths -- first via transport and then via our component definitions from before -- we show that p'ΣT ≡ p'Σ (and same for p) via univalence -- and p'Σ≡pΣ follows from our work from above p'ΣT : Σ[ p ∈ x ≡ y ] PathP (λ i → C [ p i , c ]) f g p'ΣT = transport SOPath≡PathΣ p' p'Σ : Σ[ p ∈ x ≡ y ] PathP (λ i → C [ p i , c ]) f g p'Σ = (p'Ob , p'Mor) pΣT : Σ[ p ∈ x ≡ y ] PathP (λ i → C [ p i , c ]) f g pΣT = transport SOPath≡PathΣ p pΣ : Σ[ p ∈ x ≡ y ] PathP (λ i → C [ p i , c ]) f g pΣ = (pOb , pMor)-- transport SOPathP≡PathPSO p -- using the computation rule to ua p'ΣT≡p'Σ : p'ΣT ≡ p'Σ p'ΣT≡p'Σ = uaβ SOPath≃PathΣ p' pΣT≡pΣ : pΣT ≡ pΣ pΣT≡pΣ = uaβ SOPath≃PathΣ p p'Σ≡pΣ : p'Σ ≡ pΣ p'Σ≡pΣ = ΣPathP (p'Ob≡pOb , p'Mor≡pMor) -- two sides of the square we're connecting left : PathP (λ i → SOPath≡PathΣ {xf = xf} {yg} i) p' p'Σ left = transport-filler SOPath≡PathΣ p' ▷ p'ΣT≡p'Σ right : PathP (λ i → SOPath≡PathΣ {xf = xf} {yg} i) p pΣ right = transport-filler SOPath≡PathΣ p ▷ pΣT≡pΣ -- properties -- TODO: move to own file open isIsoC renaming (inv to invC) -- make a slice isomorphism from just the hom sliceIso : ∀ {a b} (f : C [ a .S-ob , b .S-ob ]) (c : (f ⋆⟨ C ⟩ b .S-arr) ≡ a .S-arr) → isIsoC {C = C} f → isIsoC {C = SliceCat} (slicehom f c) sliceIso f c isof .invC = slicehom (isof .invC) (sym (invMoveL (isIso→areInv isof) c)) sliceIso f c isof .sec = SliceHom-≡-intro' (isof .sec) sliceIso f c isof .ret = SliceHom-≡-intro' (isof .ret)
38.020833
126
0.52274
0b61e755fb073c8d03f1e6bf92ce9b305a5dd2ae
871
agda
Agda
theorems/cohomology/CupProduct/OnEM/InLowDegrees2.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/cohomology/CupProduct/OnEM/InLowDegrees2.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/cohomology/CupProduct/OnEM/InLowDegrees2.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.EilenbergMacLane module cohomology.CupProduct.OnEM.InLowDegrees2 {i} {j} (G : AbGroup i) (H : AbGroup j) where private module G = AbGroup G module H = AbGroup H module G⊗H = TensorProduct G H open EMExplicit G⊗H.abgroup open import cohomology.CupProduct.OnEM.InLowDegrees G H public open import cohomology.CupProduct.OnEM.CommutativityInLowDegrees open CP₁₁-comm G H cp₁₁-embase-r : (x : EM₁ G.grp) → cp₁₁ x embase == [ north ]₂ cp₁₁-embase-r x = CP₁₁Comm.f x embase module ∧-cp₁₁-Rec = SmashRec {X = ⊙EM₁ G.grp} {Y = ⊙EM₁ H.grp} {C = EM 2} cp₁₁ [ north ]₂ [ north ]₂ cp₁₁-embase-r (λ y → idp) ∧-cp₁₁ : ⊙EM₁ G.grp ∧ ⊙EM₁ H.grp → EM 2 ∧-cp₁₁ = ∧-cp₁₁-Rec.f ⊙∧-cp₁₁ : ⊙EM₁ G.grp ⊙∧ ⊙EM₁ H.grp ⊙→ ⊙EM 2 ⊙∧-cp₁₁ = ∧-cp₁₁-Rec.f , idp
26.393939
93
0.638347
23d8a8720d406ff818bb447af12c038d8e44fcf6
265
agda
Agda
test/Succeed/Issue1583.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1583.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1583.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2015-06-24 Parsing of forall should be like lambda open import Common.Prelude open import Common.Product test : ⊤ × ∀ (B : Set) → B → B -- should parse test = _ , λ B b → b test1 : ⊤ × forall (B : Set) → B → B -- should parse test1 = _ , λ B b → b
24.090909
62
0.611321
505b0f0c8174d1b94f0a7d68a4344aab882de3db
11,269
agda
Agda
Cubical/Foundations/Id.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-02-05T01:25:26.000Z
2022-02-05T01:25:26.000Z
Cubical/Foundations/Id.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Foundations/Id.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{- This file contains: - Id, refl and J (with definitional computation rule) - Basic theory about Id, proved using J - Lemmas for going back and forth between Path and Id - Function extensionality for Id - fiber, isContr, equiv all defined using Id - The univalence axiom expressed using only Id ([EquivContr]) - Propositional truncation and its elimination principle -} {-# OPTIONS --safe #-} module Cubical.Foundations.Id where open import Cubical.Foundations.Prelude public hiding ( _≡_ ; _≡⟨_⟩_ ; _∎ ; isPropIsContr) renaming ( refl to reflPath ; transport to transportPath ; J to JPath ; JRefl to JPathRefl ; sym to symPath ; _∙_ to compPath ; cong to congPath ; funExt to funExtPath ; isContr to isContrPath ; isProp to isPropPath ; isSet to isSetPath ; fst to pr₁ -- as in the HoTT book ; snd to pr₂ ) open import Cubical.Foundations.Equiv renaming ( fiber to fiberPath ; isEquiv to isEquivPath ; _≃_ to EquivPath ; equivFun to equivFunPath ; isPropIsEquiv to isPropIsEquivPath ) hiding ( equivCtr ; equivIsEquiv ) open import Cubical.Foundations.Univalence renaming ( EquivContr to EquivContrPath ) open import Cubical.Foundations.Isomorphism open import Cubical.HITs.PropositionalTruncation public renaming ( squash to squashPath ; rec to recPropTruncPath ; elim to elimPropTruncPath ) open import Cubical.Core.Id public using (Id; ⟨_,_⟩; faceId; pathId; elimId; _≡_) private variable ℓ ℓ' : Level A : Type ℓ -- Version of the constructor for Id where the y is also -- explicit. This is sometimes useful when it is needed for -- typechecking (see JId below). conId : ∀ {x : A} φ (y : A [ φ ↦ (λ _ → x) ]) (w : (Path _ x (outS y)) [ φ ↦ (λ { (φ = i1) → λ _ → x}) ]) → x ≡ outS y conId φ _ w = ⟨ φ , outS w ⟩ -- Reflexivity refl : ∀ {x : A} → x ≡ x refl {x = x} = ⟨ i1 , (λ _ → x) ⟩ -- Definition of J for Id module _ {x : A} (P : ∀ (y : A) → Id x y → Type ℓ') (d : P x refl) where J : ∀ {y : A} (w : x ≡ y) → P y w J {y = y} = elimId P (λ φ y w → comp (λ i → P _ (conId (φ ∨ ~ i) (inS (outS w i)) (inS (λ j → outS w (i ∧ j))))) (λ i → λ { (φ = i1) → d}) d) {y = y} -- Check that J of refl is the identity function Jdefeq : Path _ (J refl) d Jdefeq _ = d -- Basic theory about Id, proved using J transport : ∀ (B : A → Type ℓ') {x y : A} → x ≡ y → B x → B y transport B {x} p b = J (λ y p → B y) b p _⁻¹ : {x y : A} → x ≡ y → y ≡ x _⁻¹ {x = x} p = J (λ z _ → z ≡ x) refl p ap : ∀ {B : Type ℓ'} (f : A → B) → ∀ {x y : A} → x ≡ y → f x ≡ f y ap f {x} = J (λ z _ → f x ≡ f z) refl _∙_ : ∀ {x y z : A} → x ≡ y → y ≡ z → x ≡ z _∙_ {x = x} p = J (λ y _ → x ≡ y) p infix 4 _∙_ infix 3 _∎ infixr 2 _≡⟨_⟩_ _≡⟨_⟩_ : (x : A) {y z : A} → x ≡ y → y ≡ z → x ≡ z _ ≡⟨ p ⟩ q = p ∙ q _∎ : (x : A) → x ≡ x _ ∎ = refl -- Convert between Path and Id pathToId : ∀ {x y : A} → Path _ x y → Id x y pathToId {x = x} = JPath (λ y _ → Id x y) refl pathToIdRefl : ∀ {x : A} → Path _ (pathToId (λ _ → x)) refl pathToIdRefl {x = x} = JPathRefl (λ y _ → Id x y) refl idToPath : ∀ {x y : A} → Id x y → Path _ x y idToPath {x = x} = J (λ y _ → Path _ x y) (λ _ → x) idToPathRefl : ∀ {x : A} → Path _ (idToPath {x = x} refl) reflPath idToPathRefl {x = x} _ _ = x pathToIdToPath : ∀ {x y : A} → (p : Path _ x y) → Path _ (idToPath (pathToId p)) p pathToIdToPath {x = x} = JPath (λ y p → Path _ (idToPath (pathToId p)) p) (λ i → idToPath (pathToIdRefl i)) idToPathToId : ∀ {x y : A} → (p : Id x y) → Path _ (pathToId (idToPath p)) p idToPathToId {x = x} = J (λ b p → Path _ (pathToId (idToPath p)) p) pathToIdRefl -- We get function extensionality by going back and forth between Path and Id funExt : ∀ {B : A → Type ℓ'} {f g : (x : A) → B x} → ((x : A) → f x ≡ g x) → f ≡ g funExt p = pathToId (λ i x → idToPath (p x) i) -- Equivalences expressed using Id fiber : ∀ {A : Type ℓ} {B : Type ℓ'} (f : A → B) (y : B) → Type (ℓ-max ℓ ℓ') fiber {A = A} f y = Σ[ x ∈ A ] f x ≡ y isContr : Type ℓ → Type ℓ isContr A = Σ[ x ∈ A ] (∀ y → x ≡ y) isProp : Type ℓ → Type ℓ isProp A = (x y : A) → x ≡ y isSet : Type ℓ → Type ℓ isSet A = (x y : A) → isProp (x ≡ y) record isEquiv {A : Type ℓ} {B : Type ℓ'} (f : A → B) : Type (ℓ-max ℓ ℓ') where field equiv-proof : (y : B) → isContr (fiber f y) open isEquiv public infix 4 _≃_ _≃_ : ∀ (A : Type ℓ) (B : Type ℓ') → Type (ℓ-max ℓ ℓ') A ≃ B = Σ[ f ∈ (A → B) ] (isEquiv f) equivFun : ∀ {B : Type ℓ'} → A ≃ B → A → B equivFun e = pr₁ e equivIsEquiv : ∀ {B : Type ℓ'} (e : A ≃ B) → isEquiv (equivFun e) equivIsEquiv e = pr₂ e equivCtr : ∀ {B : Type ℓ'} (e : A ≃ B) (y : B) → fiber (equivFun e) y equivCtr e y = e .pr₂ .equiv-proof y .pr₁ -- Functions for going between the various definitions. This could -- also be achieved by making lines in the universe and transporting -- back and forth along them. fiberPathToFiber : ∀ {B : Type ℓ'} {f : A → B} {y : B} → fiberPath f y → fiber f y fiberPathToFiber (x , p) = (x , pathToId p) fiberToFiberPath : ∀ {B : Type ℓ'} {f : A → B} {y : B} → fiber f y → fiberPath f y fiberToFiberPath (x , p) = (x , idToPath p) fiberToFiber : ∀ {B : Type ℓ'} {f : A → B} {y : B} (p : fiber f y) → Path _ (fiberPathToFiber (fiberToFiberPath p)) p fiberToFiber (x , p) = λ i → x , idToPathToId p i fiberPathToFiberPath : ∀ {B : Type ℓ'} {f : A → B} {y : B} (p : fiberPath f y) → Path _ (fiberToFiberPath (fiberPathToFiber p)) p fiberPathToFiberPath (x , p) = λ i → x , pathToIdToPath p i isContrPathToIsContr : isContrPath A → isContr A isContrPathToIsContr (ctr , p) = (ctr , λ y → pathToId (p y)) isContrToIsContrPath : isContr A → isContrPath A isContrToIsContrPath (ctr , p) = (ctr , λ y → idToPath (p y)) isPropPathToIsProp : isPropPath A → isProp A isPropPathToIsProp H x y = pathToId (H x y) isPropToIsPropPath : isProp A → isPropPath A isPropToIsPropPath H x y i = idToPath (H x y) i -- Specialized helper lemmas for going back and forth between -- isContrPath and isContr: helper1 : ∀ {A B : Type ℓ} (f : A → B) (g : B → A) (h : (y : B) → Path B (f (g y)) y) → isContrPath A → isContr B helper1 f g h (x , p) = (f x , λ y → pathToId (λ i → hcomp (λ j → λ { (i = i0) → f x ; (i = i1) → h y j }) (f (p (g y) i)))) helper2 : ∀ {A B : Type ℓ} (f : A → B) (g : B → A) (h : (y : A) → Path A (g (f y)) y) → isContr B → isContrPath A helper2 {A = A} f g h (x , p) = (g x , λ y → idToPath (rem y)) where rem : ∀ (y : A) → g x ≡ y rem y = g x ≡⟨ ap g (p (f y)) ⟩ g (f y) ≡⟨ pathToId (h y) ⟩ y ∎ -- This proof is essentially the one for proving that isContr with -- Path is a proposition, but as we are working with Id we have to -- insert a lof of conversion functions. It is still nice that is -- works like this though. isPropIsContr : ∀ (p1 p2 : isContr A) → Path (isContr A) p1 p2 isPropIsContr (a0 , p0) (a1 , p1) j = ( idToPath (p0 a1) j , hcomp (λ i → λ { (j = i0) → λ x → idToPathToId (p0 x) i ; (j = i1) → λ x → idToPathToId (p1 x) i }) (λ x → pathToId (λ i → hcomp (λ k → λ { (i = i0) → idToPath (p0 a1) j ; (i = i1) → idToPath (p0 x) (j ∨ k) ; (j = i0) → idToPath (p0 x) (i ∧ k) ; (j = i1) → idToPath (p1 x) i }) (idToPath (p0 (idToPath (p1 x) i)) j)))) -- We now prove that isEquiv is a proposition isPropIsEquiv : ∀ {A : Type ℓ} {B : Type ℓ} → {f : A → B} → (h1 h2 : isEquiv f) → Path _ h1 h2 equiv-proof (isPropIsEquiv {f = f} h1 h2 i) y = isPropIsContr {A = fiber f y} (h1 .equiv-proof y) (h2 .equiv-proof y) i -- Go from a Path equivalence to an Id equivalence equivPathToEquiv : ∀ {A : Type ℓ} {B : Type ℓ'} → EquivPath A B → A ≃ B equivPathToEquiv (f , p) = (f , λ { .equiv-proof y → helper1 fiberPathToFiber fiberToFiberPath fiberToFiber (p .equiv-proof y) }) -- Go from an Id equivalence to a Path equivalence equivToEquivPath : ∀ {A : Type ℓ} {B : Type ℓ'} → A ≃ B → EquivPath A B equivToEquivPath (f , p) = (f , λ { .equiv-proof y → helper2 fiberPathToFiber fiberToFiberPath fiberPathToFiberPath (p .equiv-proof y) }) equivToEquiv : ∀ {A : Type ℓ} {B : Type ℓ} → (p : A ≃ B) → Path _ (equivPathToEquiv (equivToEquivPath p)) p equivToEquiv (f , p) i = (f , isPropIsEquiv (λ { .equiv-proof y → helper1 fiberPathToFiber fiberToFiberPath fiberToFiber (helper2 fiberPathToFiber fiberToFiberPath fiberPathToFiberPath (p .equiv-proof y)) }) p i) -- We can finally prove univalence with Id everywhere from the one for Path EquivContr : ∀ (A : Type ℓ) → isContr (Σ[ T ∈ Type ℓ ] (T ≃ A)) EquivContr {ℓ = ℓ} A = helper1 f1 f2 f12 (EquivContrPath A) where f1 : {A : Type ℓ} → Σ[ T ∈ Type ℓ ] (EquivPath T A) → Σ[ T ∈ Type ℓ ] (T ≃ A) f1 (x , p) = x , equivPathToEquiv p f2 : {A : Type ℓ} → Σ[ T ∈ Type ℓ ] (T ≃ A) → Σ[ T ∈ Type ℓ ] (EquivPath T A) f2 (x , p) = x , equivToEquivPath p f12 : (y : Σ[ T ∈ Type ℓ ] (T ≃ A)) → Path (Σ[ T ∈ Type ℓ ] (T ≃ A)) (f1 (f2 y)) y f12 (x , p) i = x , equivToEquiv {A = x} {B = A} p i -- Propositional truncation ∥∥-isProp : ∀ (x y : ∥ A ∥) → x ≡ y ∥∥-isProp x y = pathToId (squashPath x y) ∥∥-recursion : ∀ {A : Type ℓ} {P : Type ℓ} → isProp P → (A → P) → ∥ A ∥ → P ∥∥-recursion Pprop f x = recPropTruncPath (isPropToIsPropPath Pprop) f x ∥∥-induction : ∀ {A : Type ℓ} {P : ∥ A ∥ → Type ℓ} → ((a : ∥ A ∥) → isProp (P a)) → ((x : A) → P ∣ x ∣) → (a : ∥ A ∥) → P a ∥∥-induction Pprop f x = elimPropTruncPath (λ a → isPropToIsPropPath (Pprop a)) f x -- Univalence path≡Id : ∀ {ℓ} {A B : Type ℓ} → Path _ (Path _ A B) (Id A B) path≡Id = isoToPath (iso pathToId idToPath idToPathToId pathToIdToPath ) equivPathToEquivPath : ∀ {ℓ} {A : Type ℓ} {B : Type ℓ} → (p : EquivPath A B) → Path _ (equivToEquivPath (equivPathToEquiv p)) p equivPathToEquivPath (f , p) i = ( f , isPropIsEquivPath f (equivToEquivPath (equivPathToEquiv (f , p)) .pr₂) p i ) equivPath≡Equiv : ∀ {ℓ} {A B : Type ℓ} → Path _ (EquivPath A B) (A ≃ B) equivPath≡Equiv {ℓ} = isoToPath (iso (equivPathToEquiv {ℓ}) equivToEquivPath equivToEquiv equivPathToEquivPath) univalenceId : ∀ {ℓ} {A B : Type ℓ} → (A ≡ B) ≃ (A ≃ B) univalenceId {ℓ} {A = A} {B = B} = equivPathToEquiv rem where rem0 : Path _ (Lift (EquivPath A B)) (Lift (A ≃ B)) rem0 = congPath Lift equivPath≡Equiv rem1 : Path _ (Id A B) (Lift (A ≃ B)) rem1 i = hcomp (λ j → λ { (i = i0) → path≡Id {A = A} {B = B} j ; (i = i1) → rem0 j }) (univalencePath {A = A} {B = B} i) rem : EquivPath (Id A B) (A ≃ B) rem = compEquiv (eqweqmap rem1) (invEquiv LiftEquiv)
35.888535
136
0.54752
1c63cd733b017de5258df3379dc4287ac260ced1
283
agda
Agda
test/Fail/Prop-NoImpredicativity.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Prop-NoImpredicativity.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Prop-NoImpredicativity.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --prop #-} True : Prop True = {P : Prop} → P → P -- Old error (incomprehensible): -- Set₁ != Set -- when checking that the expression {P : Prop} → P → P has type Prop -- New error: -- Prop₁ != Prop -- when checking that the expression {P : Prop} → P → P has type Prop
21.769231
69
0.607774
0b992b6d8623956567d450780c86d70e80254cc8
423
agda
Agda
test/Fail/Issue478.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue478.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue478.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- {-# OPTIONS -v tc.display:100 #-} module Issue478 where record Ko (Q : Set) : Set₁ where field T : Set module Bo (P : Set) (ko : Ko P) where open Ko ko err : T err = Set {- The error message was: Set₁ !=< T P ko of type Set₂ when checking that the expression Set has type T P ko We now get the desired error message: Set₁ !=< T of type Set₂ when checking that the expression Set has type T -}
16.92
55
0.64539
0b08733a8b25ccc0adae6ae1a34a819523aed3a3
7,880
agda
Agda
BasicIS4/Semantics/TarskiOvergluedDyadicGentzen.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicIS4/Semantics/TarskiOvergluedDyadicGentzen.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicIS4/Semantics/TarskiOvergluedDyadicGentzen.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇. -- Tarski-style semantics with context pairs as concrete worlds, and glueing for α, ▻, and □. -- Gentzen-style syntax. module BasicIS4.Semantics.TarskiOvergluedDyadicGentzen where open import BasicIS4.Syntax.Common public open import Common.Semantics public -- Intuitionistic Tarski models. record Model : Set₁ where infix 3 _⊩ᵅ_ _[⊢]_ field -- Forcing for atomic propositions; monotonic. _⊩ᵅ_ : Cx² Ty Ty → Atom → Set mono²⊩ᵅ : ∀ {P Π Π′} → Π ⊆² Π′ → Π ⊩ᵅ P → Π′ ⊩ᵅ P -- Gentzen-style syntax representation; monotonic. _[⊢]_ : Cx² Ty Ty → Ty → Set mono²[⊢] : ∀ {A Π Π′} → Π ⊆² Π′ → Π [⊢] A → Π′ [⊢] A [var] : ∀ {A Γ Δ} → A ∈ Γ → Γ ⁏ Δ [⊢] A [lam] : ∀ {A B Γ Δ} → Γ , A ⁏ Δ [⊢] B → Γ ⁏ Δ [⊢] A ▻ B [app] : ∀ {A B Γ Δ} → Γ ⁏ Δ [⊢] A ▻ B → Γ ⁏ Δ [⊢] A → Γ ⁏ Δ [⊢] B [mvar] : ∀ {A Γ Δ} → A ∈ Δ → Γ ⁏ Δ [⊢] A [box] : ∀ {A Γ Δ} → ∅ ⁏ Δ [⊢] A → Γ ⁏ Δ [⊢] □ A [unbox] : ∀ {A C Γ Δ} → Γ ⁏ Δ [⊢] □ A → Γ ⁏ Δ , A [⊢] C → Γ ⁏ Δ [⊢] C [pair] : ∀ {A B Γ Δ} → Γ ⁏ Δ [⊢] A → Γ ⁏ Δ [⊢] B → Γ ⁏ Δ [⊢] A ∧ B [fst] : ∀ {A B Γ Δ} → Γ ⁏ Δ [⊢] A ∧ B → Γ ⁏ Δ [⊢] A [snd] : ∀ {A B Γ Δ} → Γ ⁏ Δ [⊢] A ∧ B → Γ ⁏ Δ [⊢] B [unit] : ∀ {Γ Δ} → Γ ⁏ Δ [⊢] ⊤ infix 3 _[⊢]⋆_ _[⊢]⋆_ : Cx² Ty Ty → Cx Ty → Set Π [⊢]⋆ ∅ = 𝟙 Π [⊢]⋆ Ξ , A = Π [⊢]⋆ Ξ × Π [⊢] A open Model {{…}} public -- Forcing in a particular model. module _ {{_ : Model}} where infix 3 _⊩_ _⊩_ : Cx² Ty Ty → Ty → Set Π ⊩ α P = Glue (Π [⊢] α P) (Π ⊩ᵅ P) Π ⊩ A ▻ B = ∀ {Π′} → Π ⊆² Π′ → Glue (Π′ [⊢] A ▻ B) (Π′ ⊩ A → Π′ ⊩ B) Π ⊩ □ A = ∀ {Π′} → Π ⊆² Π′ → Glue (Π′ [⊢] □ A) (Π′ ⊩ A) Π ⊩ A ∧ B = Π ⊩ A × Π ⊩ B Π ⊩ ⊤ = 𝟙 infix 3 _⊩⋆_ _⊩⋆_ : Cx² Ty Ty → Cx Ty → Set Π ⊩⋆ ∅ = 𝟙 Π ⊩⋆ Ξ , A = Π ⊩⋆ Ξ × Π ⊩ A -- Monotonicity with respect to context inclusion. module _ {{_ : Model}} where mono²⊩ : ∀ {A Π Π′} → Π ⊆² Π′ → Π ⊩ A → Π′ ⊩ A mono²⊩ {α P} ψ s = mono²[⊢] ψ (syn s) ⅋ mono²⊩ᵅ ψ (sem s) mono²⊩ {A ▻ B} ψ s = λ ψ′ → s (trans⊆² ψ ψ′) mono²⊩ {□ A} ψ s = λ ψ′ → s (trans⊆² ψ ψ′) mono²⊩ {A ∧ B} ψ s = mono²⊩ {A} ψ (π₁ s) , mono²⊩ {B} ψ (π₂ s) mono²⊩ {⊤} ψ s = ∙ mono²⊩⋆ : ∀ {Ξ Π Π′} → Π ⊆² Π′ → Π ⊩⋆ Ξ → Π′ ⊩⋆ Ξ mono²⊩⋆ {∅} ψ ∙ = ∙ mono²⊩⋆ {Ξ , A} ψ (ts , t) = mono²⊩⋆ ψ ts , mono²⊩ {A} ψ t -- Extraction of syntax representation in a particular model. module _ {{_ : Model}} where reifyʳ : ∀ {A Π} → Π ⊩ A → Π [⊢] A reifyʳ {α P} s = syn s reifyʳ {A ▻ B} s = syn (s refl⊆²) reifyʳ {□ A} s = syn (s refl⊆²) reifyʳ {A ∧ B} s = [pair] (reifyʳ {A} (π₁ s)) (reifyʳ {B} (π₂ s)) reifyʳ {⊤} s = [unit] reifyʳ⋆ : ∀ {Ξ Π} → Π ⊩⋆ Ξ → Π [⊢]⋆ Ξ reifyʳ⋆ {∅} ∙ = ∙ reifyʳ⋆ {Ξ , A} (ts , t) = reifyʳ⋆ ts , reifyʳ t -- Shorthand for variables. module _ {{_ : Model}} where [v₀] : ∀ {A Γ Δ} → Γ , A ⁏ Δ [⊢] A [v₀] = [var] i₀ [v₁] : ∀ {A B Γ Δ} → Γ , A , B ⁏ Δ [⊢] A [v₁] = [var] i₁ [v₂] : ∀ {A B C Γ Δ} → Γ , A , B , C ⁏ Δ [⊢] A [v₂] = [var] i₂ [mv₀] : ∀ {A Γ Δ} → Γ ⁏ Δ , A [⊢] A [mv₀] = [mvar] i₀ [mv₁] : ∀ {A B Γ Δ} → Γ ⁏ Δ , A , B [⊢] A [mv₁] = [mvar] i₁ [mv₂] : ∀ {A B C Γ Δ} → Γ ⁏ Δ , A , B , C [⊢] A [mv₂] = [mvar] i₂ -- Useful theorems in functional form. module _ {{_ : Model}} where [mlam] : ∀ {A B Γ Δ} → Γ ⁏ Δ , A [⊢] B → Γ ⁏ Δ [⊢] □ A ▻ B [mlam] t = [lam] ([unbox] [v₀] (mono²[⊢] (weak⊆ , refl⊆) t)) [multicut] : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ [⊢]⋆ Ξ → Ξ ⁏ Δ [⊢] A → Γ ⁏ Δ [⊢] A [multicut] {∅} ∙ u = mono²[⊢] (bot⊆ , refl⊆) u [multicut] {Ξ , B} (ts , t) u = [app] ([multicut] ts ([lam] u)) t [mmulticut] : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ [⊢]⋆ □⋆ Ξ → Γ ⁏ Ξ [⊢] A → Γ ⁏ Δ [⊢] A [mmulticut] {∅} ∙ u = mono²[⊢] (refl⊆ , bot⊆) u [mmulticut] {Ξ , B} (ts , t) u = [app] ([mmulticut] ts ([mlam] u)) t [multicut²] : ∀ {Ξ Ξ′ A Γ Δ} → Γ ⁏ Δ [⊢]⋆ Ξ → Γ ⁏ Δ [⊢]⋆ □⋆ Ξ′ → Ξ ⁏ Ξ′ [⊢] A → Γ ⁏ Δ [⊢] A [multicut²] {∅} ∙ us v = [mmulticut] us (mono²[⊢] (bot⊆ , refl⊆) v) [multicut²] {Ξ , B} (ts , t) us v = [app] ([multicut²] ts us ([lam] v)) t [dist] : ∀ {A B Γ Δ} → Γ ⁏ Δ [⊢] □ (A ▻ B) → Γ ⁏ Δ [⊢] □ A → Γ ⁏ Δ [⊢] □ B [dist] t u = [unbox] t ([unbox] (mono²[⊢] (refl⊆ , weak⊆) u) ([box] ([app] [mv₁] [mv₀]))) [up] : ∀ {A Γ Δ} → Γ ⁏ Δ [⊢] □ A → Γ ⁏ Δ [⊢] □ □ A [up] t = [unbox] t ([box] ([box] [mv₀])) [down] : ∀ {A Γ Δ} → Γ ⁏ Δ [⊢] □ A → Γ ⁏ Δ [⊢] A [down] t = [unbox] t [mv₀] -- Useful theorems in combinatory form. module _ {{_ : Model}} where [ci] : ∀ {A Γ Δ} → Γ ⁏ Δ [⊢] A ▻ A [ci] = [lam] [v₀] [ck] : ∀ {A B Γ Δ} → Γ ⁏ Δ [⊢] A ▻ B ▻ A [ck] = [lam] ([lam] [v₁]) [cs] : ∀ {A B C Γ Δ} → Γ ⁏ Δ [⊢] (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C [cs] = [lam] ([lam] ([lam] ([app] ([app] [v₂] [v₀]) ([app] [v₁] [v₀])))) [cdist] : ∀ {A B Γ Δ} → Γ ⁏ Δ [⊢] □ (A ▻ B) ▻ □ A ▻ □ B [cdist] = [lam] ([lam] ([dist] [v₁] [v₀])) [cup] : ∀ {A Γ Δ} → Γ ⁏ Δ [⊢] □ A ▻ □ □ A [cup] = [lam] ([up] [v₀]) [cdown] : ∀ {A Γ Δ} → Γ ⁏ Δ [⊢] □ A ▻ A [cdown] = [lam] ([down] [v₀]) [cpair] : ∀ {A B Γ Δ} → Γ ⁏ Δ [⊢] A ▻ B ▻ A ∧ B [cpair] = [lam] ([lam] ([pair] [v₁] [v₀])) [cfst] : ∀ {A B Γ Δ} → Γ ⁏ Δ [⊢] A ∧ B ▻ A [cfst] = [lam] ([fst] [v₀]) [csnd] : ∀ {A B Γ Δ} → Γ ⁏ Δ [⊢] A ∧ B ▻ B [csnd] = [lam] ([snd] [v₀]) -- Additional useful equipment. module _ {{_ : Model}} where _⟪$⟫_ : ∀ {A B Π} → Π ⊩ A ▻ B → Π ⊩ A → Π ⊩ B s ⟪$⟫ a = sem (s refl⊆²) a ⟪K⟫ : ∀ {A B Π} → Π ⊩ A → Π ⊩ B ▻ A ⟪K⟫ {A} a ψ = let a′ = mono²⊩ {A} ψ a in [app] [ck] (reifyʳ a′) ⅋ K a′ ⟪S⟫ : ∀ {A B C Π} → Π ⊩ A ▻ B ▻ C → Π ⊩ A ▻ B → Π ⊩ A → Π ⊩ C ⟪S⟫ s₁ s₂ a = (s₁ ⟪$⟫ a) ⟪$⟫ (s₂ ⟪$⟫ a) ⟪S⟫′ : ∀ {A B C Π} → Π ⊩ A ▻ B ▻ C → Π ⊩ (A ▻ B) ▻ A ▻ C ⟪S⟫′ {A} {B} {C} s₁ ψ = let s₁′ = mono²⊩ {A ▻ B ▻ C} ψ s₁ t = syn (s₁′ refl⊆²) in [app] [cs] t ⅋ λ s₂ ψ′ → let s₁″ = mono²⊩ {A ▻ B ▻ C} (trans⊆² ψ ψ′) s₁ s₂′ = mono²⊩ {A ▻ B} ψ′ s₂ t′ = syn (s₁″ refl⊆²) u = syn (s₂′ refl⊆²) in [app] ([app] [cs] t′) u ⅋ ⟪S⟫ s₁″ s₂′ _⟪D⟫_ : ∀ {A B Π} → Π ⊩ □ (A ▻ B) → Π ⊩ □ A → Π ⊩ □ B (s₁ ⟪D⟫ s₂) ψ = let t ⅋ s₁′ = s₁ ψ u ⅋ a = s₂ ψ in [app] ([app] [cdist] t) u ⅋ s₁′ ⟪$⟫ a _⟪D⟫′_ : ∀ {A B Π} → Π ⊩ □ (A ▻ B) → Π ⊩ □ A ▻ □ B _⟪D⟫′_ {A} {B} s₁ ψ = let s₁′ = mono²⊩ {□ (A ▻ B)} ψ s₁ in [app] [cdist] (reifyʳ (λ {_} ψ′ → s₁′ ψ′)) ⅋ _⟪D⟫_ s₁′ ⟪↑⟫ : ∀ {A Π} → Π ⊩ □ A → Π ⊩ □ □ A ⟪↑⟫ {A} s ψ = [app] [cup] (syn (s ψ)) ⅋ λ ψ′ → s (trans⊆² ψ ψ′) ⟪↓⟫ : ∀ {A Π} → Π ⊩ □ A → Π ⊩ A ⟪↓⟫ s = sem (s refl⊆²) _⟪,⟫′_ : ∀ {A B Π} → Π ⊩ A → Π ⊩ B ▻ A ∧ B _⟪,⟫′_ {A} a ψ = let a′ = mono²⊩ {A} ψ a in [app] [cpair] (reifyʳ a′) ⅋ _,_ a′ -- Forcing in a particular world of a particular model, for sequents. module _ {{_ : Model}} where infix 3 _⊩_⇒_ _⊩_⇒_ : Cx² Ty Ty → Cx² Ty Ty → Ty → Set Π ⊩ Γ ⁏ Δ ⇒ A = Π ⊩⋆ Γ → Π ⊩⋆ □⋆ Δ → Π ⊩ A infix 3 _⊩_⇒⋆_ _⊩_⇒⋆_ : Cx² Ty Ty → Cx² Ty Ty → Cx Ty → Set Π ⊩ Γ ⁏ Δ ⇒⋆ Ξ = Π ⊩⋆ Γ → Π ⊩⋆ □⋆ Δ → Π ⊩⋆ Ξ -- Entailment, or forcing in all worlds of all models, for sequents. infix 3 _⊨_ _⊨_ : Cx² Ty Ty → Ty → Set₁ Π ⊨ A = ∀ {{_ : Model}} {w : Cx² Ty Ty} → w ⊩ Π ⇒ A infix 3 _⊨⋆_ _⊨⋆_ : Cx² Ty Ty → Cx Ty → Set₁ Π ⊨⋆ Ξ = ∀ {{_ : Model}} {w : Cx² Ty Ty} → w ⊩ Π ⇒⋆ Ξ -- Additional useful equipment, for sequents. module _ {{_ : Model}} where lookup : ∀ {A Γ w} → A ∈ Γ → w ⊩⋆ Γ → w ⊩ A lookup top (γ , a) = a lookup (pop i) (γ , b) = lookup i γ mlookup : ∀ {A Δ w} → A ∈ Δ → w ⊩⋆ □⋆ Δ → w ⊩ A mlookup top (γ , s) = sem (s refl⊆²) mlookup (pop i) (γ , s) = mlookup i γ -- TODO: More equipment.
31.774194
93
0.393401
c5f861f73809644bc58f98442646c60d8aca8939
609
agda
Agda
test/Fail/Issue1035.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1035.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1035.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
data _≡_ {A : Set}(x : A) : A → Set where refl : x ≡ x data * : Set where ! : * postulate prop : ∀ x → x ≡ ! record StrictTotalOrder : Set where field compare : * open StrictTotalOrder module M (Key : StrictTotalOrder) where postulate intersection′-₁ : ∀ x → x ≡ compare Key -- Doesn't termination check, but shouldn't get __IMPOSSIBLE__ -- when termination checking! to-∈-intersection′ : * → * → Set to-∈-intersection′ x h with intersection′-₁ x to-∈-intersection′ ._ h | refl with prop h to-∈-intersection′ ._ ._ | refl | refl = to-∈-intersection′ ! !
23.423077
71
0.610837
18e96ad59586e3e8040cd85b580ac8a3e4a0ed28
1,051
agda
Agda
Data/List/Kleene/Relation/Unary/All.agda
oisdk/agda-kleene-lists
a7e99bc288e12e83440c891dbd3e5077d9b1657e
[ "MIT" ]
null
null
null
Data/List/Kleene/Relation/Unary/All.agda
oisdk/agda-kleene-lists
a7e99bc288e12e83440c891dbd3e5077d9b1657e
[ "MIT" ]
null
null
null
Data/List/Kleene/Relation/Unary/All.agda
oisdk/agda-kleene-lists
a7e99bc288e12e83440c891dbd3e5077d9b1657e
[ "MIT" ]
null
null
null
module Data.List.Kleene.Relation.Unary.All where open import Data.List.Kleene.Base open import Relation.Unary open import Relation.Nullary open import Level using (_⊔_) open import Function mutual record All⁺ {a p} {A : Set a} (P : Pred A p) (xs : A ⁺) : Set (a ⊔ p) where constructor P⟨_&_⟩ inductive field P⟨head⟩ : P (head xs) P⟨tail⟩ : All⋆ P (tail xs) data All⋆ {a p} {A : Set a} (P : Pred A p) : Pred (A ⋆) (a ⊔ p) where P⟨[]⟩ : All⋆ P [] P⟨∹_⟩ : ∀ {xs} → All⁺ P xs → All⋆ P (∹ xs) open All⁺ public module _ {a p} {A : Set a} {P : Pred A p} where mutual all⋆ : Decidable P → Decidable (All⋆ P) all⋆ p? [] = yes P⟨[]⟩ all⋆ p? (∹ xs) with all⁺ p? xs all⋆ p? (∹ xs) | yes p = yes P⟨∹ p ⟩ all⋆ p? (∹ xs) | no ¬p = no λ { P⟨∹ x ⟩ → ¬p x } all⁺ : Decidable P → Decidable (All⁺ P) all⁺ p? xs with p? (head xs) | all⋆ p? (tail xs) all⁺ p? xs | no ¬p | ys = no (¬p ∘ P⟨head⟩) all⁺ p? xs | yes p | yes ps = yes P⟨ p & ps ⟩ all⁺ p? xs | yes p | no ¬p = no (¬p ∘ P⟨tail⟩)
28.405405
77
0.52236
c5f2f675b4ed29a5cff78c9c7a25c50c0f44340d
35,194
agda
Agda
Agda/11-truncation-levels.agda
tmoux/HoTT-Intro
22023fd35023cb6804424ce12cd10d252b80fd29
[ "CC-BY-4.0" ]
333
2018-09-26T08:33:30.000Z
2022-03-22T23:50:15.000Z
Agda/11-truncation-levels.agda
tmoux/HoTT-Intro
22023fd35023cb6804424ce12cd10d252b80fd29
[ "CC-BY-4.0" ]
8
2019-06-18T04:16:04.000Z
2020-10-16T15:27:01.000Z
Agda/11-truncation-levels.agda
tmoux/HoTT-Intro
22023fd35023cb6804424ce12cd10d252b80fd29
[ "CC-BY-4.0" ]
30
2018-09-26T09:08:57.000Z
2022-03-16T00:33:50.000Z
{-# OPTIONS --without-K --exact-split --safe #-} module 11-truncation-levels where import 10-fundamental-theorem open 10-fundamental-theorem public -- Section 8.1 Propositions is-prop : {i : Level} (A : UU i) → UU i is-prop A = (x y : A) → is-contr (Id x y) {- We introduce the universe of all propositions. -} UU-Prop : (l : Level) → UU (lsuc l) UU-Prop l = Σ (UU l) is-prop type-Prop : {l : Level} → UU-Prop l → UU l type-Prop P = pr1 P is-prop-type-Prop : {l : Level} (P : UU-Prop l) → is-prop (type-Prop P) is-prop-type-Prop P = pr2 P {- The empty type is a proposition. -} abstract is-prop-empty : is-prop empty is-prop-empty () empty-Prop : UU-Prop lzero empty-Prop = pair empty is-prop-empty abstract is-prop-unit : is-prop unit is-prop-unit = is-prop-is-contr is-contr-unit unit-Prop : UU-Prop lzero unit-Prop = pair unit is-prop-unit is-prop' : {i : Level} (A : UU i) → UU i is-prop' A = (x y : A) → Id x y abstract is-prop-is-prop' : {i : Level} {A : UU i} → is-prop' A → is-prop A is-prop-is-prop' {i} {A} H x y = pair ( (inv (H x x)) ∙ (H x y)) ( ind-Id x ( λ z p → Id ((inv (H x x)) ∙ (H x z)) p) ( left-inv (H x x)) y) abstract is-prop'-is-prop : {i : Level} {A : UU i} → is-prop A → is-prop' A is-prop'-is-prop H x y = pr1 (H x y) abstract is-contr-is-prop-inh : {i : Level} {A : UU i} → is-prop A → A → is-contr A is-contr-is-prop-inh H a = pair a (is-prop'-is-prop H a) abstract is-prop-is-contr-if-inh : {i : Level} {A : UU i} → (A → is-contr A) → is-prop A is-prop-is-contr-if-inh H x y = is-prop-is-contr (H x) x y is-subtype : {i j : Level} {A : UU i} (B : A → UU j) → UU (i ⊔ j) is-subtype B = (x : _) → is-prop (B x) double-structure-swap : {l1 l2 l3 : Level} (A : UU l1) (B : A → UU l2) (C : A → UU l3) → Σ (Σ A B) (λ t → C (pr1 t)) → Σ (Σ A C) (λ t → B (pr1 t)) double-structure-swap A B C (pair (pair a b) c) = (pair (pair a c) b) htpy-double-structure-swap : {l1 l2 l3 : Level} (A : UU l1) (B : A → UU l2) (C : A → UU l3) → ((double-structure-swap A C B) ∘ (double-structure-swap A B C)) ~ id htpy-double-structure-swap A B C (pair (pair a b) c) = eq-pair (eq-pair refl refl) refl is-equiv-double-structure-swap : {l1 l2 l3 : Level} (A : UU l1) (B : A → UU l2) (C : A → UU l3) → is-equiv (double-structure-swap A B C) is-equiv-double-structure-swap A B C = is-equiv-has-inverse ( double-structure-swap A C B) ( htpy-double-structure-swap A C B) ( htpy-double-structure-swap A B C) {- The following is a general construction that will help us show that the identity type of a subtype agrees with the identity type of the original type. We already know that the first projection of a family of propositions is an embedding, but the following lemma still has its uses. -} abstract is-contr-total-Eq-substructure : {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {P : A → UU l3} → is-contr (Σ A B) → (is-subtype P) → (a : A) (b : B a) (p : P a) → is-contr (Σ (Σ A P) (λ t → B (pr1 t))) is-contr-total-Eq-substructure {A = A} {B} {P} is-contr-AB is-subtype-P a b p = is-contr-is-equiv ( Σ (Σ A B) (λ t → P (pr1 t))) ( double-structure-swap A P B) ( is-equiv-double-structure-swap A P B) ( is-contr-is-equiv' ( P a) ( left-unit-law-Σ-map-gen (λ t → P (pr1 t)) is-contr-AB (pair a b)) ( is-equiv-left-unit-law-Σ-map-gen _ is-contr-AB (pair a b)) ( is-contr-is-prop-inh (is-subtype-P a) p)) Eq-total-subtype : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-subtype B → (Σ A B) → (Σ A B) → UU l1 Eq-total-subtype is-subtype-B p p' = Id (pr1 p) (pr1 p') reflexive-Eq-total-subtype : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (is-subtype-B : is-subtype B) → (p : Σ A B) → Eq-total-subtype is-subtype-B p p reflexive-Eq-total-subtype is-subtype-B (pair x y) = refl Eq-total-subtype-eq : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (is-subtype-B : is-subtype B) → (p p' : Σ A B) → Id p p' → Eq-total-subtype is-subtype-B p p' Eq-total-subtype-eq is-subtype-B p .p refl = reflexive-Eq-total-subtype is-subtype-B p is-contr-total-Eq-total-subtype : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (is-subtype-B : is-subtype B) → (p : Σ A B) → is-contr (Σ (Σ A B) (Eq-total-subtype is-subtype-B p)) is-contr-total-Eq-total-subtype is-subtype-B (pair x y) = is-contr-total-Eq-substructure ( is-contr-total-path x) ( is-subtype-B) x refl y is-equiv-Eq-total-subtype-eq : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (is-subtype-B : is-subtype B) → (p p' : Σ A B) → is-equiv (Eq-total-subtype-eq is-subtype-B p p') is-equiv-Eq-total-subtype-eq is-subtype-B p = fundamental-theorem-id p ( reflexive-Eq-total-subtype is-subtype-B p) ( is-contr-total-Eq-total-subtype is-subtype-B p) ( Eq-total-subtype-eq is-subtype-B p) equiv-Eq-total-subtype-eq : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (is-subtype-B : is-subtype B) → (p p' : Σ A B) → (Id p p') ≃ (Eq-total-subtype is-subtype-B p p') equiv-Eq-total-subtype-eq is-subtype-B p p' = pair ( Eq-total-subtype-eq is-subtype-B p p') ( is-equiv-Eq-total-subtype-eq is-subtype-B p p') eq-subtype : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (is-subtype-B : is-subtype B) → {p p' : Σ A B} → Eq-total-subtype is-subtype-B p p' → Id p p' eq-subtype is-subtype-B {p} {p'} = inv-is-equiv (is-equiv-Eq-total-subtype-eq is-subtype-B p p') -- Section 8.2 Sets is-set : {i : Level} → UU i → UU i is-set A = (x y : A) → is-prop (Id x y) UU-Set : (i : Level) → UU (lsuc i) UU-Set i = Σ (UU i) is-set type-Set : {l : Level} → UU-Set l → UU l type-Set X = pr1 X is-set-type-Set : {l : Level} (X : UU-Set l) → is-set (type-Set X) is-set-type-Set X = pr2 X axiom-K : {i : Level} → UU i → UU i axiom-K A = (x : A) (p : Id x x) → Id refl p abstract is-set-axiom-K : {i : Level} (A : UU i) → axiom-K A → is-set A is-set-axiom-K A H x y = is-prop-is-prop' (ind-Id x (λ z p → (q : Id x z) → Id p q) (H x) y) abstract axiom-K-is-set : {i : Level} (A : UU i) → is-set A → axiom-K A axiom-K-is-set A H x p = ( inv (contraction (is-contr-is-prop-inh (H x x) refl) refl)) ∙ ( contraction (is-contr-is-prop-inh (H x x) refl) p) abstract is-equiv-prop-in-id : {i j : Level} {A : UU i} (R : A → A → UU j) (p : (x y : A) → is-prop (R x y)) (ρ : (x : A) → R x x) (i : (x y : A) → R x y → Id x y) → (x y : A) → is-equiv (i x y) is-equiv-prop-in-id R p ρ i x = fundamental-theorem-id-retr x (i x) (λ y → pair (ind-Id x (λ z p → R x z) (ρ x) y) ((λ r → is-prop'-is-prop (p x y) _ r))) abstract is-prop-is-equiv : {i j : Level} {A : UU i} (B : UU j) (f : A → B) (E : is-equiv f) → is-prop B → is-prop A is-prop-is-equiv B f E H x y = is-contr-is-equiv _ (ap f {x} {y}) (is-emb-is-equiv f E x y) (H (f x) (f y)) is-prop-equiv : {i j : Level} {A : UU i} (B : UU j) (e : A ≃ B) → is-prop B → is-prop A is-prop-equiv B (pair f is-equiv-f) = is-prop-is-equiv B f is-equiv-f abstract is-prop-is-equiv' : {i j : Level} (A : UU i) {B : UU j} (f : A → B) (E : is-equiv f) → is-prop A → is-prop B is-prop-is-equiv' A f E H = is-prop-is-equiv _ (inv-is-equiv E) (is-equiv-inv-is-equiv E) H is-prop-equiv' : {i j : Level} (A : UU i) {B : UU j} (e : A ≃ B) → is-prop A → is-prop B is-prop-equiv' A (pair f is-equiv-f) = is-prop-is-equiv' A f is-equiv-f abstract is-set-prop-in-id : {i j : Level} {A : UU i} (R : A → A → UU j) (p : (x y : A) → is-prop (R x y)) (ρ : (x : A) → R x x) (i : (x y : A) → R x y → Id x y) → is-set A is-set-prop-in-id R p ρ i x y = is-prop-is-equiv' ( R x y) ( i x y) ( is-equiv-prop-in-id R p ρ i x y) (p x y) abstract is-prop-Eq-ℕ : (n m : ℕ) → is-prop (Eq-ℕ n m) is-prop-Eq-ℕ zero-ℕ zero-ℕ = is-prop-unit is-prop-Eq-ℕ zero-ℕ (succ-ℕ m) = is-prop-empty is-prop-Eq-ℕ (succ-ℕ n) zero-ℕ = is-prop-empty is-prop-Eq-ℕ (succ-ℕ n) (succ-ℕ m) = is-prop-Eq-ℕ n m abstract is-set-ℕ : is-set ℕ is-set-ℕ = is-set-prop-in-id Eq-ℕ is-prop-Eq-ℕ refl-Eq-ℕ eq-Eq-ℕ ℕ-Set : UU-Set lzero ℕ-Set = pair ℕ is-set-ℕ -- Section 8.3 General truncation levels data 𝕋 : UU lzero where neg-two-𝕋 : 𝕋 succ-𝕋 : 𝕋 → 𝕋 neg-one-𝕋 : 𝕋 neg-one-𝕋 = succ-𝕋 (neg-two-𝕋) zero-𝕋 : 𝕋 zero-𝕋 = succ-𝕋 (neg-one-𝕋) one-𝕋 : 𝕋 one-𝕋 = succ-𝕋 (zero-𝕋) ℕ-in-𝕋 : ℕ → 𝕋 ℕ-in-𝕋 zero-ℕ = zero-𝕋 ℕ-in-𝕋 (succ-ℕ n) = succ-𝕋 (ℕ-in-𝕋 n) -- Probably it is better to define this where we first need it. add-𝕋 : 𝕋 → 𝕋 → 𝕋 add-𝕋 neg-two-𝕋 neg-two-𝕋 = neg-two-𝕋 add-𝕋 neg-two-𝕋 (succ-𝕋 neg-two-𝕋) = neg-two-𝕋 add-𝕋 neg-two-𝕋 (succ-𝕋 (succ-𝕋 y)) = y add-𝕋 (succ-𝕋 neg-two-𝕋) neg-two-𝕋 = neg-two-𝕋 add-𝕋 (succ-𝕋 neg-two-𝕋) (succ-𝕋 y) = y add-𝕋 (succ-𝕋 (succ-𝕋 neg-two-𝕋)) y = y add-𝕋 (succ-𝕋 (succ-𝕋 (succ-𝕋 x))) y = succ-𝕋 (add-𝕋 (succ-𝕋 (succ-𝕋 x)) y) is-trunc : {i : Level} (k : 𝕋) → UU i → UU i is-trunc neg-two-𝕋 A = is-contr A is-trunc (succ-𝕋 k) A = (x y : A) → is-trunc k (Id x y) -- We introduce some notation for the special case of 1-types -- is-1-type : {l : Level} → UU l → UU l is-1-type = is-trunc one-𝕋 UU-1-Type : (l : Level) → UU (lsuc l) UU-1-Type l = Σ (UU l) is-1-type type-1-Type : {l : Level} → UU-1-Type l → UU l type-1-Type = pr1 is-1-type-type-1-Type : {l : Level} (A : UU-1-Type l) → is-1-type (type-1-Type A) is-1-type-type-1-Type = pr2 -- We introduce some notation for the special case of 2-types -- is-2-type : {l : Level} → UU l → UU l is-2-type = is-trunc (succ-𝕋 one-𝕋) UU-2-Type : (l : Level) → UU (lsuc l) UU-2-Type l = Σ (UU l) is-2-type type-2-Type : {l : Level} → UU-2-Type l → UU l type-2-Type = pr1 is-2-type-type-2-Type : {l : Level} (A : UU-2-Type l) → is-2-type (type-2-Type A) is-2-type-type-2-Type = pr2 -- We introduce some notation for the universe of k-truncated types -- UU-Truncated-Type : 𝕋 → (l : Level) → UU (lsuc l) UU-Truncated-Type k l = Σ (UU l) (is-trunc k) type-Truncated-Type : (k : 𝕋) {l : Level} → UU-Truncated-Type k l → UU l type-Truncated-Type k = pr1 is-trunc-type-Truncated-Type : (k : 𝕋) {l : Level} (A : UU-Truncated-Type k l) → is-trunc k (type-Truncated-Type k A) is-trunc-type-Truncated-Type k = pr2 -- We show that if a type is k-truncated, then it is (k+1)-truncated. -- abstract is-trunc-succ-is-trunc : (k : 𝕋) {i : Level} {A : UU i} → is-trunc k A → is-trunc (succ-𝕋 k) A is-trunc-succ-is-trunc neg-two-𝕋 H = is-prop-is-contr H is-trunc-succ-is-trunc (succ-𝕋 k) H x y = is-trunc-succ-is-trunc k (H x y) truncated-type-succ-Truncated-Type : (k : 𝕋) {l : Level} → UU-Truncated-Type k l → UU-Truncated-Type (succ-𝕋 k) l truncated-type-succ-Truncated-Type k A = pair ( type-Truncated-Type k A) ( is-trunc-succ-is-trunc k (is-trunc-type-Truncated-Type k A)) set-Prop : {l : Level} → UU-Prop l → UU-Set l set-Prop P = truncated-type-succ-Truncated-Type neg-one-𝕋 P 1-type-Set : {l : Level} → UU-Set l → UU-1-Type l 1-type-Set A = truncated-type-succ-Truncated-Type zero-𝕋 A -- We show that k-truncated types are closed under equivalences -- abstract is-trunc-is-equiv : {i j : Level} (k : 𝕋) {A : UU i} (B : UU j) (f : A → B) → is-equiv f → is-trunc k B → is-trunc k A is-trunc-is-equiv neg-two-𝕋 B f is-equiv-f H = is-contr-is-equiv B f is-equiv-f H is-trunc-is-equiv (succ-𝕋 k) B f is-equiv-f H x y = is-trunc-is-equiv k (Id (f x) (f y)) (ap f {x} {y}) (is-emb-is-equiv f is-equiv-f x y) (H (f x) (f y)) abstract is-set-is-equiv : {i j : Level} {A : UU i} (B : UU j) (f : A → B) → is-equiv f → is-set B → is-set A is-set-is-equiv = is-trunc-is-equiv zero-𝕋 abstract is-trunc-equiv : {i j : Level} (k : 𝕋) {A : UU i} (B : UU j) (e : A ≃ B) → is-trunc k B → is-trunc k A is-trunc-equiv k B (pair f is-equiv-f) = is-trunc-is-equiv k B f is-equiv-f abstract is-set-equiv : {i j : Level} {A : UU i} (B : UU j) (e : A ≃ B) → is-set B → is-set A is-set-equiv = is-trunc-equiv zero-𝕋 abstract is-trunc-is-equiv' : {i j : Level} (k : 𝕋) (A : UU i) {B : UU j} (f : A → B) → is-equiv f → is-trunc k A → is-trunc k B is-trunc-is-equiv' k A f is-equiv-f is-trunc-A = is-trunc-is-equiv k A ( inv-is-equiv is-equiv-f) ( is-equiv-inv-is-equiv is-equiv-f) ( is-trunc-A) abstract is-set-is-equiv' : {i j : Level} (A : UU i) {B : UU j} (f : A → B) → is-equiv f → is-set A → is-set B is-set-is-equiv' = is-trunc-is-equiv' zero-𝕋 abstract is-trunc-equiv' : {i j : Level} (k : 𝕋) (A : UU i) {B : UU j} (e : A ≃ B) → is-trunc k A → is-trunc k B is-trunc-equiv' k A (pair f is-equiv-f) = is-trunc-is-equiv' k A f is-equiv-f abstract is-set-equiv' : {i j : Level} (A : UU i) {B : UU j} (e : A ≃ B) → is-set A → is-set B is-set-equiv' = is-trunc-equiv' zero-𝕋 -- We show that if A embeds into a (k+1)-type B, then A is a (k+1)-type. -- abstract is-trunc-succ-is-emb : {i j : Level} (k : 𝕋) {A : UU i} {B : UU j} (f : A → B) → is-emb f → is-trunc (succ-𝕋 k) B → is-trunc (succ-𝕋 k) A is-trunc-succ-is-emb k f Ef H x y = is-trunc-is-equiv k (Id (f x) (f y)) (ap f {x} {y}) (Ef x y) (H (f x) (f y)) is-trunc-map : {i j : Level} (k : 𝕋) {A : UU i} {B : UU j} → (A → B) → UU (i ⊔ j) is-trunc-map k f = (y : _) → is-trunc k (fib f y) trunc-map : {i j : Level} (k : 𝕋) (A : UU i) (B : UU j) → UU (i ⊔ j) trunc-map k A B = Σ (A → B) (is-trunc-map k) abstract is-trunc-pr1-is-trunc-fam : {i j : Level} (k : 𝕋) {A : UU i} (B : A → UU j) → ((x : A) → is-trunc k (B x)) → is-trunc-map k (pr1 {i} {j} {A} {B}) is-trunc-pr1-is-trunc-fam k B H x = is-trunc-is-equiv k ( B x) ( fib-fam-fib-pr1 B x) ( is-equiv-fib-fam-fib-pr1 B x) ( H x) trunc-pr1 : {i j : Level} (k : 𝕋) {A : UU i} (B : A → UU-Truncated-Type k j) → trunc-map k (Σ A (λ x → pr1 (B x))) A trunc-pr1 k B = pair pr1 (is-trunc-pr1-is-trunc-fam k (λ x → pr1 (B x)) (λ x → pr2 (B x))) abstract is-trunc-fam-is-trunc-pr1 : {i j : Level} (k : 𝕋) {A : UU i} (B : A → UU j) → is-trunc-map k (pr1 {i} {j} {A} {B}) → ((x : A) → is-trunc k (B x)) is-trunc-fam-is-trunc-pr1 k B is-trunc-pr1 x = is-trunc-is-equiv k ( fib pr1 x) ( fib-pr1-fib-fam B x) ( is-equiv-fib-pr1-fib-fam B x) ( is-trunc-pr1 x) abstract is-trunc-map-is-trunc-ap : {i j : Level} (k : 𝕋) {A : UU i} {B : UU j} (f : A → B) → ((x y : A) → is-trunc-map k (ap f {x = x} {y = y})) → is-trunc-map (succ-𝕋 k) f is-trunc-map-is-trunc-ap k f is-trunc-ap-f b (pair x p) (pair x' p') = is-trunc-is-equiv k ( fib (ap f) (p ∙ (inv p'))) ( fib-ap-eq-fib f (pair x p) (pair x' p')) ( is-equiv-fib-ap-eq-fib f (pair x p) (pair x' p')) ( is-trunc-ap-f x x' (p ∙ (inv p'))) abstract is-trunc-ap-is-trunc-map : {i j : Level} (k : 𝕋) {A : UU i} {B : UU j} (f : A → B) → is-trunc-map (succ-𝕋 k) f → (x y : A) → is-trunc-map k (ap f {x = x} {y = y}) is-trunc-ap-is-trunc-map k f is-trunc-map-f x y p = is-trunc-is-equiv' k ( Id (pair x p) (pair y refl)) ( eq-fib-fib-ap f x y p) ( is-equiv-eq-fib-fib-ap f x y p) ( is-trunc-map-f (f y) (pair x p) (pair y refl)) is-prop-map : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j) is-prop-map f = (b : _) → is-trunc neg-one-𝕋 (fib f b) abstract is-emb-is-prop-map : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → is-prop-map f → is-emb f is-emb-is-prop-map f is-prop-map-f x y = is-equiv-is-contr-map ( is-trunc-ap-is-trunc-map neg-two-𝕋 f is-prop-map-f x y) abstract is-prop-map-is-emb : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → is-emb f → is-prop-map f is-prop-map-is-emb f is-emb-f = is-trunc-map-is-trunc-ap neg-two-𝕋 f ( λ x y → is-contr-map-is-equiv (is-emb-f x y)) fib-prop-emb : {i j : Level} {A : UU i} {B : UU j} (f : A ↪ B) → B → UU-Prop (i ⊔ j) fib-prop-emb f y = pair ( fib (map-emb f) y) ( is-prop-map-is-emb (map-emb f) (is-emb-map-emb f) y) abstract is-emb-pr1-is-subtype : {i j : Level} {A : UU i} {B : A → UU j} → is-subtype B → is-emb (pr1 {B = B}) is-emb-pr1-is-subtype {B = B} is-subtype-B = is-emb-is-prop-map pr1 ( λ x → is-trunc-is-equiv neg-one-𝕋 ( B x) ( fib-fam-fib-pr1 _ x) ( is-equiv-fib-fam-fib-pr1 _ x) ( is-subtype-B x)) equiv-ap-pr1-is-subtype : {i j : Level} {A : UU i} {B : A → UU j} → is-subtype B → {s t : Σ A B} → Id s t ≃ Id (pr1 s) (pr1 t) equiv-ap-pr1-is-subtype is-subtype-B {s} {t} = pair ( ap pr1) ( is-emb-pr1-is-subtype is-subtype-B s t) abstract is-subtype-is-emb-pr1 : {i j : Level} {A : UU i} {B : A → UU j} → is-emb (pr1 {B = B}) → is-subtype B is-subtype-is-emb-pr1 is-emb-pr1-B x = is-trunc-is-equiv neg-one-𝕋 ( fib pr1 x) ( fib-pr1-fib-fam _ x) ( is-equiv-fib-pr1-fib-fam _ x) ( is-prop-map-is-emb pr1 is-emb-pr1-B x) abstract is-trunc-succ-subtype : {i j : Level} (k : 𝕋) {A : UU i} {P : A → UU j} → ((x : A) → is-prop (P x)) → is-trunc (succ-𝕋 k) A → is-trunc (succ-𝕋 k) (Σ A P) is-trunc-succ-subtype k H is-trunc-A = is-trunc-succ-is-emb k pr1 (is-emb-pr1-is-subtype H) is-trunc-A is-fiberwise-trunc : {l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : A → UU l2} {C : A → UU l3} (f : (x : A) → B x → C x) → UU (l1 ⊔ (l2 ⊔ l3)) is-fiberwise-trunc k f = (x : _) → is-trunc-map k (f x) abstract is-trunc-tot-is-fiberwise-trunc : {l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : A → UU l2} {C : A → UU l3} (f : (x : A) → B x → C x) → is-fiberwise-trunc k f → is-trunc-map k (tot f) is-trunc-tot-is-fiberwise-trunc k f is-fiberwise-trunc-f (pair x z) = is-trunc-is-equiv k ( fib (f x) z) ( fib-ftr-fib-tot f (pair x z)) ( is-equiv-fib-ftr-fib-tot f (pair x z)) ( is-fiberwise-trunc-f x z) abstract is-fiberwise-trunc-is-trunc-tot : {l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : A → UU l2} {C : A → UU l3} (f : (x : A) → B x → C x) → is-trunc-map k (tot f) → is-fiberwise-trunc k f is-fiberwise-trunc-is-trunc-tot k f is-trunc-tot-f x z = is-trunc-is-equiv k ( fib (tot f) (pair x z)) ( fib-tot-fib-ftr f (pair x z)) ( is-equiv-fib-tot-fib-ftr f (pair x z)) ( is-trunc-tot-f (pair x z)) -- Exercises -- Exercise 8.1 -- Exercise 8.1 diagonal : {l : Level} (A : UU l) → A → A × A diagonal A x = pair x x abstract is-prop-is-equiv-diagonal : {l : Level} (A : UU l) → is-equiv (diagonal A) → is-prop A is-prop-is-equiv-diagonal A is-equiv-d = is-prop-is-prop' ( λ x y → let α = issec-inv-is-equiv is-equiv-d (pair x y) in ( inv (ap pr1 α)) ∙ (ap pr2 α)) eq-fib-diagonal : {l : Level} (A : UU l) (t : A × A) → fib (diagonal A) t → Id (pr1 t) (pr2 t) eq-fib-diagonal A (pair x y) (pair z α) = (inv (ap pr1 α)) ∙ (ap pr2 α) fib-diagonal-eq : {l : Level} (A : UU l) (t : A × A) → Id (pr1 t) (pr2 t) → fib (diagonal A) t fib-diagonal-eq A (pair x y) β = pair x (eq-pair-triv (pair refl β)) issec-fib-diagonal-eq : {l : Level} (A : UU l) (t : A × A) → ((eq-fib-diagonal A t) ∘ (fib-diagonal-eq A t)) ~ id issec-fib-diagonal-eq A (pair x .x) refl = refl isretr-fib-diagonal-eq : {l : Level} (A : UU l) (t : A × A) → ((fib-diagonal-eq A t) ∘ (eq-fib-diagonal A t)) ~ id isretr-fib-diagonal-eq A .(pair z z) (pair z refl) = refl abstract is-equiv-eq-fib-diagonal : {l : Level} (A : UU l) (t : A × A) → is-equiv (eq-fib-diagonal A t) is-equiv-eq-fib-diagonal A t = is-equiv-has-inverse ( fib-diagonal-eq A t) ( issec-fib-diagonal-eq A t) ( isretr-fib-diagonal-eq A t) abstract is-trunc-is-trunc-diagonal : {l : Level} (k : 𝕋) (A : UU l) → is-trunc-map k (diagonal A) → is-trunc (succ-𝕋 k) A is-trunc-is-trunc-diagonal k A is-trunc-d x y = is-trunc-is-equiv' k ( fib (diagonal A) (pair x y)) ( eq-fib-diagonal A (pair x y)) ( is-equiv-eq-fib-diagonal A (pair x y)) ( is-trunc-d (pair x y)) abstract is-trunc-diagonal-is-trunc : {l : Level} (k : 𝕋) (A : UU l) → is-trunc (succ-𝕋 k) A → is-trunc-map k (diagonal A) is-trunc-diagonal-is-trunc k A is-trunc-A t = is-trunc-is-equiv k ( Id (pr1 t) (pr2 t)) ( eq-fib-diagonal A t) ( is-equiv-eq-fib-diagonal A t) ( is-trunc-A (pr1 t) (pr2 t)) -- Exercise 8.2 -- Exercise 8.2(a) abstract is-trunc-Σ : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : A → UU l2} → is-trunc k A → ((x : A) → is-trunc k (B x)) → is-trunc k (Σ A B) is-trunc-Σ neg-two-𝕋 is-trunc-A is-trunc-B = is-contr-Σ is-trunc-A is-trunc-B is-trunc-Σ (succ-𝕋 k) {B = B} is-trunc-A is-trunc-B s t = is-trunc-is-equiv k ( Σ (Id (pr1 s) (pr1 t)) (λ p → Id (tr B p (pr2 s)) (pr2 t))) ( pair-eq) ( is-equiv-pair-eq s t) ( is-trunc-Σ k ( is-trunc-A (pr1 s) (pr1 t)) ( λ p → is-trunc-B (pr1 t) (tr B p (pr2 s)) (pr2 t))) abstract is-trunc-prod : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} → is-trunc k A → is-trunc k B → is-trunc k (A × B) is-trunc-prod k is-trunc-A is-trunc-B = is-trunc-Σ k is-trunc-A (λ x → is-trunc-B) abstract is-prop-Σ : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-prop A → is-subtype B → is-prop (Σ A B) is-prop-Σ = is-trunc-Σ neg-one-𝕋 Σ-Prop : {l1 l2 : Level} (P : UU-Prop l1) (Q : type-Prop P → UU-Prop l2) → UU-Prop (l1 ⊔ l2) Σ-Prop P Q = pair ( Σ (type-Prop P) (λ p → type-Prop (Q p))) ( is-prop-Σ ( is-prop-type-Prop P) ( λ p → is-prop-type-Prop (Q p))) abstract is-prop-prod : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-prop A → is-prop B → is-prop (A × B) is-prop-prod = is-trunc-prod neg-one-𝕋 prod-Prop : {l1 l2 : Level} → UU-Prop l1 → UU-Prop l2 → UU-Prop (l1 ⊔ l2) prod-Prop P Q = pair ( type-Prop P × type-Prop Q) ( is-prop-prod (is-prop-type-Prop P) (is-prop-type-Prop Q)) abstract is-set-Σ : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-set A → ((x : A) → is-set (B x)) → is-set (Σ A B) is-set-Σ = is-trunc-Σ zero-𝕋 set-Σ : {l1 l2 : Level} (A : UU-Set l1) (B : pr1 A → UU-Set l2) → UU-Set (l1 ⊔ l2) set-Σ (pair A is-set-A) B = pair ( Σ A (λ x → (pr1 (B x)))) ( is-set-Σ is-set-A (λ x → pr2 (B x))) abstract is-set-prod : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-set A → is-set B → is-set (A × B) is-set-prod = is-trunc-prod zero-𝕋 set-prod : {l1 l2 : Level} (A : UU-Set l1) (B : UU-Set l2) → UU-Set (l1 ⊔ l2) set-prod (pair A is-set-A) (pair B is-set-B) = pair (A × B) (is-set-prod is-set-A is-set-B) -- Exercise 8.2 (b) abstract is-trunc-Id : {l : Level} (k : 𝕋) {A : UU l} → is-trunc k A → (x y : A) → is-trunc k (Id x y) is-trunc-Id neg-two-𝕋 is-trunc-A = is-prop-is-contr is-trunc-A is-trunc-Id (succ-𝕋 k) is-trunc-A x y = is-trunc-succ-is-trunc k {A = Id x y} (is-trunc-A x y) -- Exercise 8.2 (c) abstract is-trunc-map-is-trunc-domain-codomain : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {f : A → B} → is-trunc k A → is-trunc k B → is-trunc-map k f is-trunc-map-is-trunc-domain-codomain k {f = f} is-trunc-A is-trunc-B b = is-trunc-Σ k is-trunc-A (λ x → is-trunc-Id k is-trunc-B (f x) b) -- Exercise 8.2 (d) abstract is-trunc-fam-is-trunc-Σ : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : A → UU l2} → is-trunc k A → is-trunc k (Σ A B) → (x : A) → is-trunc k (B x) is-trunc-fam-is-trunc-Σ k {B = B} is-trunc-A is-trunc-ΣAB x = is-trunc-is-equiv' k ( fib pr1 x) ( fib-fam-fib-pr1 B x) ( is-equiv-fib-fam-fib-pr1 B x) ( is-trunc-map-is-trunc-domain-codomain k is-trunc-ΣAB is-trunc-A x) -- Exercise 8.3 abstract is-prop-Eq-𝟚 : (x y : bool) → is-prop (Eq-𝟚 x y) is-prop-Eq-𝟚 true true = is-prop-unit is-prop-Eq-𝟚 true false = is-prop-empty is-prop-Eq-𝟚 false true = is-prop-empty is-prop-Eq-𝟚 false false = is-prop-unit abstract is-set-bool : is-set bool is-set-bool = is-set-prop-in-id Eq-𝟚 is-prop-Eq-𝟚 reflexive-Eq-𝟚 (λ x y → eq-Eq-𝟚) set-bool : UU-Set lzero set-bool = pair bool is-set-bool -- Exercise 8.4 abstract is-prop'-coprod : {l1 l2 : Level} {P : UU l1} {Q : UU l2} → (P → ¬ Q) → is-prop' P → is-prop' Q → is-prop' (coprod P Q) is-prop'-coprod {P = P} {Q = Q} f is-prop-P is-prop-Q (inl p) (inl p') = ap inl (is-prop-P p p') is-prop'-coprod {P = P} {Q = Q} f is-prop-P is-prop-Q (inl p) (inr q') = ind-empty (f p q') is-prop'-coprod {P = P} {Q = Q} f is-prop-P is-prop-Q (inr q) (inl p') = ind-empty (f p' q) is-prop'-coprod {P = P} {Q = Q} f is-prop-P is-prop-Q (inr q) (inr q') = ap inr (is-prop-Q q q') abstract is-prop-coprod : {l1 l2 : Level} {P : UU l1} {Q : UU l2} → (P → ¬ Q) → is-prop P → is-prop Q → is-prop (coprod P Q) is-prop-coprod f is-prop-P is-prop-Q = is-prop-is-prop' ( is-prop'-coprod f ( is-prop'-is-prop is-prop-P) ( is-prop'-is-prop is-prop-Q)) abstract is-trunc-succ-empty : (k : 𝕋) → is-trunc (succ-𝕋 k) empty is-trunc-succ-empty k = ind-empty abstract is-trunc-coprod : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} → is-trunc (succ-𝕋 (succ-𝕋 k)) A → is-trunc (succ-𝕋 (succ-𝕋 k)) B → is-trunc (succ-𝕋 (succ-𝕋 k)) (coprod A B) is-trunc-coprod k {A} {B} is-trunc-A is-trunc-B (inl x) (inl y) = is-trunc-is-equiv (succ-𝕋 k) ( Eq-coprod A B (inl x) (inl y)) ( Eq-coprod-eq A B (inl x) (inl y)) ( is-equiv-Eq-coprod-eq A B (inl x) (inl y)) ( is-trunc-is-equiv' (succ-𝕋 k) ( Id x y) ( map-raise {A = Id x y}) ( is-equiv-map-raise _ (Id x y)) ( is-trunc-A x y)) is-trunc-coprod k {A} {B} is-trunc-A is-trunc-B (inl x) (inr y) = is-trunc-is-equiv (succ-𝕋 k) ( Eq-coprod A B (inl x) (inr y)) ( Eq-coprod-eq A B (inl x) (inr y)) ( is-equiv-Eq-coprod-eq A B (inl x) (inr y)) ( is-trunc-is-equiv' (succ-𝕋 k) ( empty) ( map-raise {A = empty}) ( is-equiv-map-raise _ empty) ( is-trunc-succ-empty k)) is-trunc-coprod k {A} {B} is-trunc-A is-trunc-B (inr x) (inl y) = is-trunc-is-equiv (succ-𝕋 k) ( Eq-coprod A B (inr x) (inl y)) ( Eq-coprod-eq A B (inr x) (inl y)) ( is-equiv-Eq-coprod-eq A B (inr x) (inl y)) ( is-trunc-is-equiv' (succ-𝕋 k) ( empty) ( map-raise {A = empty}) ( is-equiv-map-raise _ empty) ( is-trunc-succ-empty k)) is-trunc-coprod k {A} {B} is-trunc-A is-trunc-B (inr x) (inr y) = is-trunc-is-equiv (succ-𝕋 k) ( Eq-coprod A B (inr x) (inr y)) ( Eq-coprod-eq A B (inr x) (inr y)) ( is-equiv-Eq-coprod-eq A B (inr x) (inr y)) ( is-trunc-is-equiv' (succ-𝕋 k) ( Id x y) ( map-raise {A = Id x y}) ( is-equiv-map-raise _ (Id x y)) ( is-trunc-B x y)) abstract is-set-coprod : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-set A → is-set B → is-set (coprod A B) is-set-coprod = is-trunc-coprod neg-two-𝕋 set-coprod : {l1 l2 : Level} (A : UU-Set l1) (B : UU-Set l2) → UU-Set (l1 ⊔ l2) set-coprod (pair A is-set-A) (pair B is-set-B) = pair (coprod A B) (is-set-coprod is-set-A is-set-B) abstract is-set-unit : is-set unit is-set-unit = is-trunc-succ-is-trunc neg-one-𝕋 is-prop-unit set-unit : UU-Set lzero set-unit = pair unit is-set-unit abstract is-set-ℤ : is-set ℤ is-set-ℤ = is-set-coprod is-set-ℕ (is-set-coprod is-set-unit is-set-ℕ) set-ℤ : UU-Set lzero set-ℤ = pair ℤ is-set-ℤ ℤ-Set : UU-Set lzero ℤ-Set = pair ℤ is-set-ℤ is-set-empty : is-set empty is-set-empty () abstract is-set-Fin : (n : ℕ) → is-set (Fin n) is-set-Fin zero-ℕ = is-set-empty is-set-Fin (succ-ℕ n) = is-set-coprod (is-set-Fin n) is-set-unit set-Fin : (n : ℕ) → UU-Set lzero set-Fin n = pair (Fin n) (is-set-Fin n) -- Exercise 8.7 abstract is-trunc-retract-of : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} → A retract-of B → is-trunc k B → is-trunc k A is-trunc-retract-of neg-two-𝕋 (pair i (pair r H)) is-trunc-B = is-contr-retract-of _ (pair i (pair r H)) is-trunc-B is-trunc-retract-of (succ-𝕋 k) (pair i retr-i) is-trunc-B x y = is-trunc-retract-of k ( pair (ap i) (retr-ap i retr-i x y)) ( is-trunc-B (i x) (i y)) -- Exercise 8.8 is-injective : {l1 l2 : Level} {A : UU l1} (is-set-A : is-set A) {B : UU l2} (is-set-B : is-set B) (f : A → B) → UU (l1 ⊔ l2) is-injective {A = A} is-set-A is-set-B f = (x y : A) → Id (f x) (f y) → Id x y is-injective-const-true : is-injective is-set-unit is-set-bool (const unit bool true) is-injective-const-true x y p = center (is-prop-unit x y) is-injective-const-false : is-injective is-set-unit is-set-bool (const unit bool false) is-injective-const-false x y p = center (is-prop-unit x y) abstract is-equiv-is-prop : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-prop A → is-prop B → {f : A → B} → (B → A) → is-equiv f is-equiv-is-prop is-prop-A is-prop-B {f} g = is-equiv-has-inverse ( g) ( λ y → center (is-prop-B (f (g y)) y)) ( λ x → center (is-prop-A (g (f x)) x)) equiv-prop : { l1 l2 : Level} {A : UU l1} {B : UU l2} → is-prop A → is-prop B → ( A → B) → (B → A) → A ≃ B equiv-prop is-prop-A is-prop-B f g = pair f (is-equiv-is-prop is-prop-A is-prop-B g) equiv-total-subtype : { l1 l2 l3 : Level} {A : UU l1} {P : A → UU l2} {Q : A → UU l3} → ( is-subtype-P : is-subtype P) (is-subtype-Q : is-subtype Q) → ( f : (x : A) → P x → Q x) → ( g : (x : A) → Q x → P x) → ( Σ A P) ≃ (Σ A Q) equiv-total-subtype is-subtype-P is-subtype-Q f g = pair ( tot f) ( is-equiv-tot-is-fiberwise-equiv {f = f} ( λ x → is-equiv-is-prop (is-subtype-P x) (is-subtype-Q x) (g x))) abstract is-emb-is-injective : {l1 l2 : Level} {A : UU l1} (is-set-A : is-set A) {B : UU l2} (is-set-B : is-set B) (f : A → B) → is-injective is-set-A is-set-B f → is-emb f is-emb-is-injective is-set-A is-set-B f is-injective-f x y = is-equiv-is-prop ( is-set-A x y) ( is-set-B (f x) (f y)) ( is-injective-f x y) abstract is-injective-is-emb : {l1 l2 : Level} {A : UU l1} {is-set-A : is-set A} {B : UU l2} {is-set-B : is-set B} {f : A → B} → is-emb f → is-injective is-set-A is-set-B f is-injective-is-emb is-emb-f x y = inv-is-equiv (is-emb-f x y) -- Exercise 8.9 abstract is-trunc-const-is-trunc : {l : Level} (k : 𝕋) {A : UU l} → is-trunc (succ-𝕋 k) A → (x : A) → is-trunc-map k (const unit A x) is-trunc-const-is-trunc k is-trunc-A x y = is-trunc-is-equiv' k ( Id x y) ( left-unit-law-Σ-map (λ t → Id x y) is-contr-unit) ( is-equiv-left-unit-law-Σ-map (λ t → Id x y) is-contr-unit) ( is-trunc-A x y) abstract is-trunc-is-trunc-const : {l : Level} (k : 𝕋) {A : UU l} → ((x : A) → is-trunc-map k (const unit A x)) → is-trunc (succ-𝕋 k) A is-trunc-is-trunc-const k is-trunc-const x y = is-trunc-is-equiv k ( Σ unit (λ t → Id x y)) ( left-unit-law-Σ-map (λ t → Id x y) is-contr-unit) ( is-equiv-left-unit-law-Σ-map (λ t → Id x y) is-contr-unit) ( is-trunc-const x y) -- Exercise 8.10 map-fib-comp : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (g : B → X) (h : A → B) → (x : X) → fib (g ∘ h) x → Σ (fib g x) (λ t → fib h (pr1 t)) map-fib-comp g h x (pair a p) = pair ( pair (h a) p) ( pair a refl) inv-map-fib-comp : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (g : B → X) (h : A → B) → (x : X) → Σ (fib g x) (λ t → fib h (pr1 t)) → fib (g ∘ h) x inv-map-fib-comp g h c t = pair (pr1 (pr2 t)) ((ap g (pr2 (pr2 t))) ∙ (pr2 (pr1 t))) issec-inv-map-fib-comp : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (g : B → X) (h : A → B) → (x : X) → ((map-fib-comp g h x) ∘ (inv-map-fib-comp g h x)) ~ id issec-inv-map-fib-comp g h x (pair (pair .(h a) refl) (pair a refl)) = refl isretr-inv-map-fib-comp : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (g : B → X) (h : A → B) (x : X) → ((inv-map-fib-comp g h x) ∘ (map-fib-comp g h x)) ~ id isretr-inv-map-fib-comp g h .(g (h a)) (pair a refl) = refl abstract is-equiv-map-fib-comp : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (g : B → X) (h : A → B) (x : X) → is-equiv (map-fib-comp g h x) is-equiv-map-fib-comp g h x = is-equiv-has-inverse ( inv-map-fib-comp g h x) ( issec-inv-map-fib-comp g h x) ( isretr-inv-map-fib-comp g h x) abstract is-equiv-inv-map-fib-comp : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (g : B → X) (h : A → B) (x : X) → is-equiv (inv-map-fib-comp g h x) is-equiv-inv-map-fib-comp g h x = is-equiv-has-inverse ( map-fib-comp g h x) ( isretr-inv-map-fib-comp g h x) ( issec-inv-map-fib-comp g h x) abstract is-trunc-map-htpy : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f g : A → B) → f ~ g → is-trunc-map k g → is-trunc-map k f is-trunc-map-htpy k {A} f g H is-trunc-g b = is-trunc-is-equiv k ( Σ A (λ z → Id (g z) b)) ( fib-triangle f g id H b) ( is-fiberwise-equiv-is-equiv-triangle f g id H (is-equiv-id _) b) ( is-trunc-g b) abstract is-trunc-map-comp : {l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-trunc-map k g → is-trunc-map k h → is-trunc-map k f is-trunc-map-comp k f g h H is-trunc-g is-trunc-h = is-trunc-map-htpy k f (g ∘ h) H ( λ x → is-trunc-is-equiv k ( Σ (fib g x) (λ t → fib h (pr1 t))) ( map-fib-comp g h x) ( is-equiv-map-fib-comp g h x) ( is-trunc-Σ k ( is-trunc-g x) ( λ t → is-trunc-h (pr1 t)))) abstract is-trunc-map-right-factor : {l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-trunc-map k g → is-trunc-map k f → is-trunc-map k h is-trunc-map-right-factor k {A} f g h H is-trunc-g is-trunc-f b = is-trunc-fam-is-trunc-Σ k ( is-trunc-g (g b)) ( is-trunc-is-equiv' k ( Σ A (λ z → Id (g (h z)) (g b))) ( map-fib-comp g h (g b)) ( is-equiv-map-fib-comp g h (g b)) ( is-trunc-map-htpy k (g ∘ h) f (htpy-inv H) is-trunc-f (g b))) ( pair b refl) abstract is-trunc-map-succ-is-trunc-map : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) → is-trunc-map k f → is-trunc-map (succ-𝕋 k) f is-trunc-map-succ-is-trunc-map k f is-trunc-f b = is-trunc-succ-is-trunc k (is-trunc-f b) -------------------------------------------------------------------------------- {- We show that if f : A → B is an embedding, then the induced map Σ A (C ∘ f) → Σ A C is also an embedding. -} is-emb-Σ-map-base-map : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → is-emb f → is-emb (Σ-map-base-map f C) is-emb-Σ-map-base-map f C is-emb-f = is-emb-is-prop-map ( Σ-map-base-map f C) ( λ x → is-prop-equiv' ( fib f (pr1 x)) ( equiv-fib-Σ-map-base-map-fib f C x) ( is-prop-map-is-emb f is-emb-f (pr1 x)))
32.436866
84
0.547366
4ad2c3964e66a7d0ae1487946b55412b1078c169
565
agda
Agda
test/Fail/MatchingOnCoinductiveRecord.agda
alex-mckenna/agda
78b62cd24bbd570271a7153e44ad280e52ef3e29
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/MatchingOnCoinductiveRecord.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Fail/MatchingOnCoinductiveRecord.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
{-# OPTIONS --copatterns #-} -- 2013-05-30 Andreas, Oury's counterexample to subject reduction in Coq -- 2014-11-04 Andreas: simplified (removed force) module MatchingOnCoinductiveRecord where open import Common.Equality record U : Set where coinductive constructor inn field out : U open U u : U out u = u eq : (x : U) → x ≡ inn (out x) eq (inn y) = refl -- should fail, as internally this is just -- eq x = refl -- and we do not have η for coinductive records equ : u ≡ inn u equ = eq u -- normalizes to refl, which does not have type u ≡ inn u
18.833333
72
0.683186
1c55681cdb07269fca0fbfe10d738d4b0a97f291
213
agda
Agda
test/Fail/WrongDotPattern.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/WrongDotPattern.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/WrongDotPattern.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module WrongDotPattern where data Nat : Set where zero : Nat suc : Nat -> Nat data NonZero : Nat -> Set where nonZ : (n : Nat) -> NonZero (suc n) f : (n : Nat) -> NonZero n -> Nat f .zero (nonZ n) = n
15.214286
37
0.586854
103fe245d3185267679ea35119d6845978523d06
3,638
agda
Agda
notes/fixed-points/GFPs/Colist.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/fixed-points/GFPs/Colist.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/fixed-points/GFPs/Colist.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Co-lists ------------------------------------------------------------------------------ {-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module GFPs.Colist where open import FOTC.Base open import FOTC.Base.List ------------------------------------------------------------------------------ -- Colist is a greatest fixed-point of a functor -- The functor. ListF : (D → Set) → D → Set ListF A xs = xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs') -- Colist is the greatest fixed-point of ListF. postulate Colist : D → Set -- Colist is a post-fixed point of ListF, i.e. -- -- Colist ≤ ListF Colist. Colist-out-ho : ∀ {n} → Colist n → ListF Colist n -- Colist is the greatest post-fixed point of ListF, i.e. -- -- ∀ A. A ≤ ListF A ⇒ A ≤ Colist. Colist-coind-ho : (A : D → Set) → -- A is post-fixed point of ListF. (∀ {xs} → A xs → ListF A xs) → -- Colist is greater than A. ∀ {xs} → A xs → Colist xs ------------------------------------------------------------------------------ -- First-order versions Colist-out : ∀ {xs} → Colist xs → xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ Colist xs') Colist-out = Colist-out-ho Colist-coind : (A : D → Set) → (∀ {xs} → A xs → xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs')) → ∀ {xs} → A xs → Colist xs Colist-coind = Colist-coind-ho ------------------------------------------------------------------------------ -- Because a greatest post-fixed point is a fixed-point, then the -- Colist predicate is also a pre-fixed point of the functional ListF, -- i.e. -- -- ListF Colist ≤ Colist. Colist-in-ho : ∀ {xs} → ListF Colist xs → Colist xs Colist-in-ho h = Colist-coind-ho A h' h where A : D → Set A xs = ListF Colist xs h' : ∀ {xs} → A xs → ListF A xs h' (inj₁ xs≡0) = inj₁ xs≡0 h' (inj₂ (x' , xs' , prf , CLxs' )) = inj₂ (x' , xs' , prf , Colist-out CLxs') -- The first-order version. Colist-in : ∀ {xs} → xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ Colist xs') → Colist xs Colist-in = Colist-in-ho ------------------------------------------------------------------------------ -- A stronger co-induction principle -- -- From (Paulson, 1997. p. 16). postulate Colist-coind-stronger-ho : (A : D → Set) → (∀ {xs} → A xs → ListF A xs ∨ Colist xs) → ∀ {xs} → A xs → Colist xs Colist-coind-ho' : (A : D → Set) → (∀ {xs} → A xs → ListF A xs) → ∀ {xs} → A xs → Colist xs Colist-coind-ho' A h Axs = Colist-coind-stronger-ho A (λ Ays → inj₁ (h Ays)) Axs -- The first-order version. Colist-coind-stronger : (A : D → Set) → (∀ {xs} → A xs → (xs ≡ [] ∨ (∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ A xs')) ∨ Colist xs) → ∀ {xs} → A xs → Colist xs Colist-coind-stronger = Colist-coind-stronger-ho -- 13 January 2014. As expected, we cannot prove -- Colist-coind-stronger-ho from Colist-coind-ho. Colist-coind-stronger-ho' : (A : D → Set) → (∀ {xs} → A xs → ListF A xs ∨ Colist xs) → ∀ {xs} → A xs → Colist xs Colist-coind-stronger-ho' A h {xs} Axs = case prf (λ h' → h') (h Axs) where prf : ListF A xs → Colist xs prf h' = Colist-coind-ho A {!!} Axs ------------------------------------------------------------------------------ -- References -- -- Paulson, L. C. (1997). Mechanizing Coinduction and Corecursion in -- Higher-order Logic. Journal of Logic and Computation 7.2, -- pp. 175–204.
29.577236
78
0.468664
cb3fb57e1ea5451fd77b8e545d923fe2595aaa45
65
agda
Agda
test/interaction/Issue604.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue604.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue604.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue604 where f : (y : Set1) → (x : Set) → Set1 f x = ?
13
33
0.538462
4aa3c2326511f672d874cc5982d2ed5971032dfe
5,374
agda
Agda
Cubical/Categories/Constructions/Elements.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Categories/Constructions/Elements.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Categories/Constructions/Elements.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} -- The Category of Elements open import Cubical.Categories.Category module Cubical.Categories.Constructions.Elements {ℓ ℓ'} {C : Precategory ℓ ℓ'} where open import Cubical.Categories.Instances.Sets open import Cubical.Categories.Functor open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma import Cubical.Categories.Morphism as Morphism import Cubical.Categories.Constructions.Slice as Slice -- some issues -- * always need to specify objects during composition because can't infer isSet open Precategory open Functor getIsSet : {C : Precategory ℓ ℓ'} (F : Functor C (SET ℓ)) → (c : C .ob) → isSet (fst (F ⟅ c ⟆)) getIsSet F c = snd (F ⟅ c ⟆) infix 50 ∫_ ∫_ : Functor C (SET ℓ) → Precategory ℓ (ℓ-max ℓ ℓ') -- objects are (c , x) pairs where c ∈ C and x ∈ F c (∫ F) .ob = Σ[ c ∈ C .ob ] fst (F ⟅ c ⟆) -- morphisms are f : c → c' which take x to x' (∫ F) .Hom[_,_] (c , x) (c' , x') = Σ[ f ∈ C [ c , c' ] ] x' ≡ (F ⟪ f ⟫) x (∫ F) .id (c , x) = C .id c , sym (funExt⁻ (F .F-id) x ∙ refl) (∫ F) ._⋆_ {c , x} {c₁ , x₁} {c₂ , x₂} (f , p) (g , q) = (f ⋆⟨ C ⟩ g) , (x₂ ≡⟨ q ⟩ (F ⟪ g ⟫) x₁ -- basically expanding out function composition ≡⟨ cong (F ⟪ g ⟫) p ⟩ (F ⟪ g ⟫) ((F ⟪ f ⟫) x) ≡⟨ funExt⁻ (sym (F .F-seq _ _)) _ ⟩ (F ⟪ f ⋆⟨ C ⟩ g ⟫) x ∎) (∫ F) .⋆IdL o@{c , x} o1@{c' , x'} f'@(f , p) i = (cIdL i) , isOfHLevel→isOfHLevelDep 1 (λ a → isS' x' ((F ⟪ a ⟫) x)) p' p cIdL i where isS = getIsSet F c isS' = getIsSet F c' cIdL = C .⋆IdL f -- proof from composition with id p' : x' ≡ (F ⟪ C .id c ⋆⟨ C ⟩ f ⟫) x p' = snd ((∫ F) ._⋆_ ((∫ F) .id o) f') (∫ F) .⋆IdR o@{c , x} o1@{c' , x'} f'@(f , p) i = (cIdR i) , isOfHLevel→isOfHLevelDep 1 (λ a → isS' x' ((F ⟪ a ⟫) x)) p' p cIdR i where cIdR = C .⋆IdR f isS' = getIsSet F c' p' : x' ≡ (F ⟪ f ⋆⟨ C ⟩ C .id c' ⟫) x p' = snd ((∫ F) ._⋆_ f' ((∫ F) .id o1)) (∫ F) .⋆Assoc o@{c , x} o1@{c₁ , x₁} o2@{c₂ , x₂} o3@{c₃ , x₃} f'@(f , p) g'@(g , q) h'@(h , r) i = (cAssoc i) , isOfHLevel→isOfHLevelDep 1 (λ a → isS₃ x₃ ((F ⟪ a ⟫) x)) p1 p2 cAssoc i where cAssoc = C .⋆Assoc f g h isS₃ = getIsSet F c₃ p1 : x₃ ≡ (F ⟪ (f ⋆⟨ C ⟩ g) ⋆⟨ C ⟩ h ⟫) x p1 = snd ((∫ F) ._⋆_ ((∫ F) ._⋆_ {o} {o1} {o2} f' g') h') p2 : x₃ ≡ (F ⟪ f ⋆⟨ C ⟩ (g ⋆⟨ C ⟩ h) ⟫) x p2 = snd ((∫ F) ._⋆_ f' ((∫ F) ._⋆_ {o1} {o2} {o3} g' h')) -- same thing but for presheaves ∫ᴾ_ : Functor (C ^op) (SET ℓ) → Precategory ℓ (ℓ-max ℓ ℓ') -- objects are (c , x) pairs where c ∈ C and x ∈ F c (∫ᴾ F) .ob = Σ[ c ∈ C .ob ] fst (F ⟅ c ⟆) -- morphisms are f : c → c' which take x to x' (∫ᴾ F) .Hom[_,_] (c , x) (c' , x') = Σ[ f ∈ C [ c , c' ] ] x ≡ (F ⟪ f ⟫) x' (∫ᴾ F) .id (c , x) = C .id c , sym (funExt⁻ (F .F-id) x ∙ refl) (∫ᴾ F) ._⋆_ {c , x} {c₁ , x₁} {c₂ , x₂} (f , p) (g , q) = (f ⋆⟨ C ⟩ g) , (x ≡⟨ p ⟩ (F ⟪ f ⟫) x₁ -- basically expanding out function composition ≡⟨ cong (F ⟪ f ⟫) q ⟩ (F ⟪ f ⟫) ((F ⟪ g ⟫) x₂) ≡⟨ funExt⁻ (sym (F .F-seq _ _)) _ ⟩ (F ⟪ f ⋆⟨ C ⟩ g ⟫) x₂ ∎) (∫ᴾ F) .⋆IdL o@{c , x} o1@{c' , x'} f'@(f , p) i = (cIdL i) , isOfHLevel→isOfHLevelDep 1 (λ a → isS x ((F ⟪ a ⟫) x')) p' p cIdL i where isS = getIsSet F c isS' = getIsSet F c' cIdL = C .⋆IdL f -- proof from composition with id p' : x ≡ (F ⟪ C .id c ⋆⟨ C ⟩ f ⟫) x' p' = snd ((∫ᴾ F) ._⋆_ ((∫ᴾ F) .id o) f') (∫ᴾ F) .⋆IdR o@{c , x} o1@{c' , x'} f'@(f , p) i = (cIdR i) , isOfHLevel→isOfHLevelDep 1 (λ a → isS x ((F ⟪ a ⟫) x')) p' p cIdR i where cIdR = C .⋆IdR f isS = getIsSet F c p' : x ≡ (F ⟪ f ⋆⟨ C ⟩ C .id c' ⟫) x' p' = snd ((∫ᴾ F) ._⋆_ f' ((∫ᴾ F) .id o1)) (∫ᴾ F) .⋆Assoc o@{c , x} o1@{c₁ , x₁} o2@{c₂ , x₂} o3@{c₃ , x₃} f'@(f , p) g'@(g , q) h'@(h , r) i = (cAssoc i) , isOfHLevel→isOfHLevelDep 1 (λ a → isS x ((F ⟪ a ⟫) x₃)) p1 p2 cAssoc i where cAssoc = C .⋆Assoc f g h isS = getIsSet F c p1 : x ≡ (F ⟪ (f ⋆⟨ C ⟩ g) ⋆⟨ C ⟩ h ⟫) x₃ p1 = snd ((∫ᴾ F) ._⋆_ ((∫ᴾ F) ._⋆_ {o} {o1} {o2} f' g') h') p2 : x ≡ (F ⟪ f ⋆⟨ C ⟩ (g ⋆⟨ C ⟩ h) ⟫) x₃ p2 = snd ((∫ᴾ F) ._⋆_ f' ((∫ᴾ F) ._⋆_ {o1} {o2} {o3} g' h')) -- helpful results module _ {F : Functor (C ^op) (SET ℓ)} where -- morphisms are equal as long as the morphisms in C are equals ∫ᴾhomEq : ∀ {o1 o1' o2 o2'} (f : (∫ᴾ F) [ o1 , o2 ]) (g : (∫ᴾ F) [ o1' , o2' ]) → (p : o1 ≡ o1') (q : o2 ≡ o2') → (eqInC : PathP (λ i → C [ fst (p i) , fst (q i) ]) (fst f) (fst g)) → PathP (λ i → (∫ᴾ F) [ p i , q i ]) f g ∫ᴾhomEq (f , eqf) (g , eqg) p q eqInC = ΣPathP (eqInC , isOfHLevel→isOfHLevelDep 1 {A = Σ[ (o1 , o2) ∈ (∫ᴾ F) .ob × (∫ᴾ F) .ob ] (C [ fst o1 , fst o2 ])} {B = λ ((o1 , o2) , f) → snd o1 ≡ (F ⟪ f ⟫) (snd o2)} (λ ((o1 , o2) , f) → snd (F ⟅ (fst o1) ⟆) (snd o1) ((F ⟪ f ⟫) (snd o2))) eqf eqg λ i → ((p i , q i) , eqInC i))
38.942029
114
0.433383
df01cb6aff978530ee26aa1d5bc4fbe11d2f1bc4
124
agda
Agda
test/Fail/TooManyFields.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/TooManyFields.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Fail/TooManyFields.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
module TooManyFields where postulate X : Set record D : Set where field x : X d : X -> D d x = record {x = x; y = x}
10.333333
27
0.596774
0b5650feda9536f355895609e2a4c1228a06b895
497
agda
Agda
test/Succeed/RecordFromModule.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/RecordFromModule.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/RecordFromModule.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
postulate I : Set D : I → Set T : Set record R : Set where field t0 : T {i0} : I t1 : T d0 : D i0 {i1} : I d1 : D i1 t2 : T module M0 where postulate t0 t1 : T module MI where postulate i1 : I d1 : D i1 module MD {i0 : I} where postulate d0 : D i0 t0 : T r : R r = record { M0; t2 = M0.t0; MD hiding (t0); MI; i0 = i0 } module My where postulate i0 : I r' : R r' = record { R r; t0 = R.t1 r } where module Rr = R r
13.432432
58
0.496982
0e53000a716987c45387117c5f4d1b8e68f90007
454
agda
Agda
test/Succeed/Issue1584.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1584.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1584.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2015-06-24 open import Common.Equality open import Common.Product Sing : {A : Set} (a : A) → Set Sing a = ∃ λ b → a ≡ b works : {A : Set} (f : ∀{a : A} → Sing a) (a : A) → Sing a works f a = let b , p = f {_} in b , p test : {A : Set} (f : ∀{a : A} → Sing a) (a : A) → Sing a test f a = let b , p = f in b , p -- ERROR WAS: -- Type mismatch -- when checking that the pattern b , p has type -- {a = a₁ : .A} → Sing a₁ -- should work now
21.619048
58
0.535242
c54eaa84a9747ab92e0f200ad2e627ea5969fd60
114
agda
Agda
test/Fail/Issue2935.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2935.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2935.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue2935 where data ℕ : Set where zero : ℕ suc : ℕ → ℕ bad : ℕ → ℕ bad zero = zero bad suc = zero
11.4
22
0.605263
20c425a205cc3557297aa94a7e5871f6f23bb428
630
agda
Agda
test/Succeed/InjectivityHITs.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/InjectivityHITs.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/InjectivityHITs.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --cubical #-} open import Agda.Builtin.Cubical.Path open import Agda.Primitive open import Agda.Primitive.Cubical open import Agda.Builtin.Bool variable a p : Level A : Set a P : A → Set p x y : A refl : x ≡ x refl {x = x} = λ _ → x data Interval : Set where left right : Interval line : left ≡ right h2 : Bool → Interval h2 true = left h2 false = right -- `left` and `right` are distinct canonical forms, -- so `h2 ? = left` imples `? = true`. -- -- Added this test to make sure we do not always give up on -- injectivity when targeting a HIT. _ : h2 _ ≡ left _ = refl
18.529412
59
0.625397