hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
c75174167db3fd86e5e43b3f240946db3edc7bb4
5,881
agda
Agda
Definition/Conversion/Lift.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
30
2017-05-20T03:05:21.000Z
2022-03-30T18:01:07.000Z
Definition/Conversion/Lift.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
4
2017-06-22T12:49:23.000Z
2021-02-22T10:37:24.000Z
Definition/Conversion/Lift.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
8
2017-10-18T14:18:20.000Z
2021-11-27T15:58:33.000Z
{-# OPTIONS --without-K --safe #-} module Definition.Conversion.Lift where open import Definition.Untyped hiding (_∷_) open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Weakening open import Definition.Typed.Properties open import Definition.Typed.EqRelInstance open import Definition.Conversion open import Definition.Conversion.Whnf open import Definition.Conversion.Soundness open import Definition.Conversion.Weakening open import Definition.LogicalRelation open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Fundamental.Reducibility open import Definition.Typed.Consequences.Syntactic open import Definition.Typed.Consequences.Reduction open import Tools.Fin open import Tools.Nat open import Tools.Product import Tools.PropositionalEquality as PE private variable n : Nat Γ : Con Term n -- Lifting of algorithmic equality of types from WHNF to generic types. liftConv : ∀ {A B} → Γ ⊢ A [conv↓] B → Γ ⊢ A [conv↑] B liftConv A<>B = let ⊢A , ⊢B = syntacticEq (soundnessConv↓ A<>B) whnfA , whnfB = whnfConv↓ A<>B in [↑] _ _ (id ⊢A) (id ⊢B) whnfA whnfB A<>B -- Lifting of algorithmic equality of terms from WHNF to generic terms. liftConvTerm : ∀ {t u A} → Γ ⊢ t [conv↓] u ∷ A → Γ ⊢ t [conv↑] u ∷ A liftConvTerm t<>u = let ⊢A , ⊢t , ⊢u = syntacticEqTerm (soundnessConv↓Term t<>u) whnfA , whnfT , whnfU = whnfConv↓Term t<>u in [↑]ₜ _ _ _ (id ⊢A) (id ⊢t) (id ⊢u) whnfA whnfT whnfU t<>u mutual -- Helper function for lifting from neutrals to generic terms in WHNF. lift~toConv↓′ : ∀ {t u A A′ l} → Γ ⊩⟨ l ⟩ A′ → Γ ⊢ A′ ⇒* A → Γ ⊢ t ~ u ↓ A → Γ ⊢ t [conv↓] u ∷ A lift~toConv↓′ (Uᵣ′ .⁰ 0<1 ⊢Γ) D ([~] A D₁ whnfB k~l) rewrite PE.sym (whnfRed* D Uₙ) = let _ , ⊢t , ⊢u = syntacticEqTerm (conv (soundness~↑ k~l) (subset* D₁)) in univ ⊢t ⊢u (ne ([~] A D₁ Uₙ k~l)) lift~toConv↓′ (ℕᵣ D) D₁ ([~] A D₂ whnfB k~l) rewrite PE.sym (whrDet* (red D , ℕₙ) (D₁ , whnfB)) = ℕ-ins ([~] A D₂ ℕₙ k~l) lift~toConv↓′ (Emptyᵣ D) D₁ ([~] A D₂ whnfB k~l) rewrite PE.sym (whrDet* (red D , Emptyₙ) (D₁ , whnfB)) = Empty-ins ([~] A D₂ Emptyₙ k~l) lift~toConv↓′ (Unitᵣ D) D₁ ([~] A D₂ whnfB k~l) rewrite PE.sym (whrDet* (red D , Unitₙ) (D₁ , whnfB)) = Unit-ins ([~] A D₂ Unitₙ k~l) lift~toConv↓′ (ne′ K D neK K≡K) D₁ ([~] A D₂ whnfB k~l) rewrite PE.sym (whrDet* (red D , ne neK) (D₁ , whnfB)) = let _ , ⊢t , ⊢u = syntacticEqTerm (soundness~↑ k~l) A≡K = subset* D₂ in ne-ins (conv ⊢t A≡K) (conv ⊢u A≡K) neK ([~] A D₂ (ne neK) k~l) lift~toConv↓′ (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) D₁ ([~] A D₂ whnfB k~l) rewrite PE.sym (whrDet* (red D , Πₙ) (D₁ , whnfB)) = let ⊢ΠFG , ⊢t , ⊢u = syntacticEqTerm (soundness~↓ ([~] A D₂ Πₙ k~l)) ⊢F , ⊢G = syntacticΠ ⊢ΠFG neT , neU = ne~↑ k~l ⊢Γ = wf ⊢F var0 = neuTerm ([F] (step id) (⊢Γ ∙ ⊢F)) (var x0) (var (⊢Γ ∙ ⊢F) here) (refl (var (⊢Γ ∙ ⊢F) here)) 0≡0 = lift~toConv↑′ ([F] (step id) (⊢Γ ∙ ⊢F)) (var-refl (var (⊢Γ ∙ ⊢F) here) PE.refl) k∘0≡l∘0 = lift~toConv↑′ ([G] (step id) (⊢Γ ∙ ⊢F) var0) (app-cong (wk~↓ (step id) (⊢Γ ∙ ⊢F) ([~] A D₂ Πₙ k~l)) 0≡0) in η-eq ⊢t ⊢u (ne neT) (ne neU) (PE.subst (λ x → _ ⊢ _ [conv↑] _ ∷ x) (wkSingleSubstId _) k∘0≡l∘0) lift~toConv↓′ (Σᵣ′ F G D ⊢F ⊢G Σ≡Σ [F] [G] G-ext) D₁ ([~] A″ D₂ whnfA t~u) rewrite PE.sym (whrDet* (red D , Σₙ) (D₁ , whnfA)) {- Σ F ▹ G ≡ A -} = let neT , neU = ne~↑ t~u t~u↓ = [~] A″ D₂ Σₙ t~u ⊢ΣFG , ⊢t , ⊢u = syntacticEqTerm (soundness~↓ t~u↓) ⊢F , ⊢G = syntacticΣ ⊢ΣFG ⊢Γ = wf ⊢F wkId = wk-id F wkLiftId = PE.cong (λ x → x [ fst _ ]) (wk-lift-id G) wk[F] = [F] id ⊢Γ wk⊢fst = PE.subst (λ x → _ ⊢ _ ∷ x) (PE.sym wkId) (fstⱼ ⊢F ⊢G ⊢t) wkfst≡ = PE.subst (λ x → _ ⊢ _ ≡ _ ∷ x) (PE.sym wkId) (fst-cong ⊢F ⊢G (refl ⊢t)) wk[fst] = neuTerm wk[F] (fstₙ neT) wk⊢fst wkfst≡ wk[Gfst] = [G] id ⊢Γ wk[fst] wkfst~ = PE.subst (λ x → _ ⊢ _ ~ _ ↑ x) (PE.sym wkId) (fst-cong t~u↓) wksnd~ = PE.subst (λ x → _ ⊢ _ ~ _ ↑ x) (PE.sym wkLiftId) (snd-cong t~u↓) in Σ-η ⊢t ⊢u (ne neT) (ne neU) (PE.subst (λ x → _ ⊢ _ [conv↑] _ ∷ x) wkId (lift~toConv↑′ wk[F] wkfst~)) (PE.subst (λ x → _ ⊢ _ [conv↑] _ ∷ x) wkLiftId (lift~toConv↑′ wk[Gfst] wksnd~)) lift~toConv↓′ (emb 0<1 [A]) D t~u = lift~toConv↓′ [A] D t~u -- Helper function for lifting from neutrals to generic terms. lift~toConv↑′ : ∀ {t u A l} → Γ ⊩⟨ l ⟩ A → Γ ⊢ t ~ u ↑ A → Γ ⊢ t [conv↑] u ∷ A lift~toConv↑′ [A] t~u = let B , whnfB , D = whNorm′ [A] t~u↓ = [~] _ (red D) whnfB t~u neT , neU = ne~↑ t~u _ , ⊢t , ⊢u = syntacticEqTerm (soundness~↓ t~u↓) in [↑]ₜ _ _ _ (red D) (id ⊢t) (id ⊢u) whnfB (ne neT) (ne neU) (lift~toConv↓′ [A] (red D) t~u↓) -- Lifting of algorithmic equality of terms from neutrals to generic terms in WHNF. lift~toConv↓ : ∀ {t u A} → Γ ⊢ t ~ u ↓ A → Γ ⊢ t [conv↓] u ∷ A lift~toConv↓ ([~] A₁ D whnfB k~l) = lift~toConv↓′ (reducible (proj₁ (syntacticRed D))) D ([~] A₁ D whnfB k~l) -- Lifting of algorithmic equality of terms from neutrals to generic terms. lift~toConv↑ : ∀ {t u A} → Γ ⊢ t ~ u ↑ A → Γ ⊢ t [conv↑] u ∷ A lift~toConv↑ t~u = lift~toConv↑′ (reducible (proj₁ (syntacticEqTerm (soundness~↑ t~u)))) t~u
41.125874
93
0.52168
294007603f07b216ddbc52a483c5464d7e58d3f1
3,143
agda
Agda
Lang/Size.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Lang/Size.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Lang/Size.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
{-# OPTIONS --sized-types #-} module Lang.Size where -- Some stuff about sizes that seems to : -- • Types: -- • SizeU : TYPE -- • Size : TYPE -- • <ˢⁱᶻᵉ_ : Size → TYPE -- • 𝐒ˢⁱᶻᵉ : Size → Size -- • ∞ˢⁱᶻᵉ : Size -- • _⊔ˢⁱᶻᵉ_ : Size → Size → Size -- • Subtyping : ∀s₁∀s₂. (s₁: <ˢⁱᶻᵉ s₂) → (s₁: Size) -- • Almost irreflexivity: ∀(s: Size). (s ≠ ∞ˢⁱᶻᵉ) → ¬(s: <ˢⁱᶻᵉ s) -- • Transitivity : ∀s₁∀s₂∀s₃. (s₁: <ˢⁱᶻᵉ s₂) → (s₂: <ˢⁱᶻᵉ s₃) → (s₁: <ˢⁱᶻᵉ s₃) -- • Successor : ∀(s: Size). s: <ˢⁱᶻᵉ 𝐒ˢⁱᶻᵉ(s) -- • Maximum : ∀(s: Size). s: <ˢⁱᶻᵉ ∞ˢⁱᶻᵉ -- • Successor of maximum: 𝐒ˢⁱᶻᵉ(∞ˢⁱᶻᵉ) = ∞ˢⁱᶻᵉ -- • Max function left : ∀(s₁: Size)∀(s₂: Size)∀(s₃: Size). ((s₁: <ˢⁱᶻᵉ s₃) ∧ (s₂: <ˢⁱᶻᵉ s₃)) → (((s₁ ⊔ˢⁱᶻᵉ s₂)): <ˢⁱᶻᵉ s₃) -- • Max function right : ∀(s₁: Size)∀(s₂: Size)∀(s₃: Size). ((s₁: <ˢⁱᶻᵉ s₂) ∨ (s₁: <ˢⁱᶻᵉ s₃)) → (s₁: <ˢⁱᶻᵉ (s₂ ⊔ˢⁱᶻᵉ s₃)) -- • Max of maximum left : ∀(s: Size). s ⊔ˢⁱᶻᵉ ∞ˢⁱᶻᵉ = ∞ˢⁱᶻᵉ -- • Max of maximum right: ∀(s: Size). ∞ˢⁱᶻᵉ ⊔ˢⁱᶻᵉ s = ∞ˢⁱᶻᵉ -- TODO: What is SizeU? See https://github.com/agda/agda/blob/cabe234d3c784e20646636ad082cc1e04ddf007b/src/full/Agda/TypeChecking/Rules/Builtin.hs#L294 , https://github.com/agda/agda/blob/1eec63b1c5566b252c0a4a815ce1df99a772c475/src/full/Agda/TypeChecking/Primitive/Base.hs#L134 {-# BUILTIN SIZEUNIV SizeU #-} {-# BUILTIN SIZE Size #-} {-# BUILTIN SIZELT <ˢⁱᶻᵉ_ #-} {-# BUILTIN SIZESUC 𝐒ˢⁱᶻᵉ #-} {-# BUILTIN SIZEINF ∞ˢⁱᶻᵉ #-} {-# BUILTIN SIZEMAX _⊔ˢⁱᶻᵉ_ #-} {- private module Test where open import Relator.Equals types-SizeU : TYPE types-SizeU = SizeU types-Size : TYPE types-Size = Size types-<ˢⁱᶻᵉ : Size → TYPE types-<ˢⁱᶻᵉ = <ˢⁱᶻᵉ_ types-𝐒ˢⁱᶻᵉ : Size → Size types-𝐒ˢⁱᶻᵉ = 𝐒ˢⁱᶻᵉ types-∞ˢⁱᶻᵉ : Size types-∞ˢⁱᶻᵉ = ∞ˢⁱᶻᵉ types-_⊔ˢⁱᶻᵉ_ : Size → Size → Size types-_⊔ˢⁱᶻᵉ_ = _⊔ˢⁱᶻᵉ_ subtyping : ∀{s₂ : Size}{s₁ : <ˢⁱᶻᵉ s₂} → Size subtyping {s₁ = s₁} = s₁ reflexivity-of-maximum : <ˢⁱᶻᵉ ∞ˢⁱᶻᵉ reflexivity-of-maximum = ∞ˢⁱᶻᵉ transitivity : ∀{s₃ : Size}{s₂ : <ˢⁱᶻᵉ s₃}{s₁ : <ˢⁱᶻᵉ s₂} → (<ˢⁱᶻᵉ s₃) transitivity {s₁ = s₁} = s₁ maximum : ∀{s : Size} → <ˢⁱᶻᵉ ∞ˢⁱᶻᵉ maximum{s} = s successor-of-maximum : 𝐒ˢⁱᶻᵉ ∞ˢⁱᶻᵉ ≡ ∞ˢⁱᶻᵉ successor-of-maximum = [≡]-intro max-of-maximumₗ : ∀{s : Size} → (∞ˢⁱᶻᵉ ⊔ˢⁱᶻᵉ s ≡ ∞ˢⁱᶻᵉ) max-of-maximumₗ = [≡]-intro max-of-maximumᵣ : ∀{s : Size} → (s ⊔ˢⁱᶻᵉ ∞ˢⁱᶻᵉ ≡ ∞ˢⁱᶻᵉ) max-of-maximumᵣ = [≡]-intro max-function-left : ∀{s₃ : Size}{s₁ : <ˢⁱᶻᵉ s₃}{s₂ : <ˢⁱᶻᵉ s₃} → (<ˢⁱᶻᵉ s₃) max-function-left {s₁ = s₁}{s₂ = s₂} = s₁ ⊔ˢⁱᶻᵉ s₂ max-function-rightₗ : ∀{s₂ s₃ : Size}{s₁ : <ˢⁱᶻᵉ s₂} → (<ˢⁱᶻᵉ (s₂ ⊔ˢⁱᶻᵉ s₃)) max-function-rightₗ {s₁ = s₁} = s₁ max-function-rightᵣ : ∀{s₂ s₃ : Size}{s₁ : <ˢⁱᶻᵉ s₃} → (<ˢⁱᶻᵉ (s₂ ⊔ˢⁱᶻᵉ s₃)) max-function-rightᵣ {s₁ = s₁} = s₁ -- TODO: Is this supposed to not work? This is: ∀(sₗ₁ : Size)∀(sₗ₂ : Size)∀(sᵣ : Size) → (sₗ₁ <ˢⁱᶻᵉ sₗ₂) → ((sₗ₁ ⊔ˢⁱᶻᵉ sᵣ) <ˢⁱᶻᵉ (sₗ₂ ⊔ˢⁱᶻᵉ sᵣ)) max-should-work? : ∀{sₗ₂ sᵣ : Size}{sₗ₁ : <ˢⁱᶻᵉ sₗ₂} → (<ˢⁱᶻᵉ (sₗ₂ ⊔ˢⁱᶻᵉ sᵣ)) max-should-work? {sᵣ = sᵣ}{sₗ₁ = sₗ₁} = sₗ₁ ⊔ˢⁱᶻᵉ sᵣ -}
35.314607
278
0.57111
10509db800b365b646bf6d6ecba5cb37e5fea90e
304
agda
Agda
Agda.agda
abt8601/one-two-three...infinity
aba4eb82bc37717b7dcac69277750dfe1067d054
[ "Unlicense" ]
9
2017-01-02T18:14:51.000Z
2022-02-01T09:01:59.000Z
Agda.agda
abt8601/one-two-three...infinity
aba4eb82bc37717b7dcac69277750dfe1067d054
[ "Unlicense" ]
23
2016-09-10T13:51:09.000Z
2022-01-23T21:18:50.000Z
Agda.agda
abt8601/one-two-three...infinity
aba4eb82bc37717b7dcac69277750dfe1067d054
[ "Unlicense" ]
18
2016-09-09T19:39:43.000Z
2022-01-17T23:23:37.000Z
open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Nat.Show using (show) open import Function using (_$!_) open import IO using (run; putStrLn) sum : ℕ sum = f 1000000000 0 where f : ℕ → ℕ → ℕ f zero acc = acc f (suc n) acc = f n $! suc n + acc main = run (putStrLn (show sum))
21.714286
46
0.634868
395c602a58c5147e2cac949a5c0d4eacfa9d956d
2,907
agda
Agda
Data/BitVector/Peano.agda
copumpkin/bitvector
6902f4bce0330f1b58f48395dac4406056713687
[ "BSD-3-Clause" ]
3
2015-01-04T07:19:55.000Z
2021-11-12T01:41:07.000Z
Data/BitVector/Peano.agda
copumpkin/bitvector
6902f4bce0330f1b58f48395dac4406056713687
[ "BSD-3-Clause" ]
1
2016-05-25T02:00:59.000Z
2016-05-25T02:00:59.000Z
Data/BitVector/Peano.agda
copumpkin/bitvector
6902f4bce0330f1b58f48395dac4406056713687
[ "BSD-3-Clause" ]
3
2016-05-25T00:15:43.000Z
2021-11-12T01:40:57.000Z
module Data.BitVector.Peano where open import Data.BitVector open import Algebra.FunctionProperties.Core open import Data.Nat hiding (pred) renaming (suc to Nsuc; zero to Nzero) open import Data.Vec hiding (fromList) open import Relation.Binary.PropositionalEquality open import Data.Digit hiding (Bit) open import Data.Fin using () renaming (zero to Fzero; suc to Fsuc) open import Data.List open import Data.Product suc : ∀ {n} → Op₁ (BitVector n) suc [] = [] suc (0# ∷ xs) = 1# ∷ xs suc (1# ∷ xs) = 0# ∷ suc xs pred-helper : ∀ {n} → BitVector n → BitVector (Nsuc n) pred-helper [] = 1# ∷ [] pred-helper (0# ∷ xs) = 1# ∷ pred-helper xs pred-helper (1# ∷ xs) = 1# ∷ 0# ∷ xs pred : ∀ {n} → Op₁ (BitVector n) pred [] = [] pred (1# ∷ xs) = 0# ∷ xs pred (0# ∷ xs) = pred-helper xs suc∘pred-helper≡0# : ∀ {n} (x : BitVector n) → suc (pred-helper x) ≡ 0# ∷ x suc∘pred-helper≡0# [] = refl suc∘pred-helper≡0# (0# ∷ xs) = cong (_∷_ 0#) (suc∘pred-helper≡0# xs) suc∘pred-helper≡0# (1# ∷ xs) = refl pred-helper∘suc≡1# : ∀ {n} (x : BitVector n) → pred-helper (suc x) ≡ 1# ∷ x pred-helper∘suc≡1# [] = refl pred-helper∘suc≡1# (0# ∷ xs) = refl pred-helper∘suc≡1# (1# ∷ xs) = cong (_∷_ 1#) (pred-helper∘suc≡1# xs) suc∘pred≡id : ∀ {n} (x : BitVector n) → suc (pred x) ≡ x suc∘pred≡id [] = refl suc∘pred≡id (0# ∷ xs) = suc∘pred-helper≡0# xs suc∘pred≡id (1# ∷ xs) = refl pred∘suc≡id : ∀ {n} (x : BitVector n) → pred (suc x) ≡ x pred∘suc≡id [] = refl pred∘suc≡id (0# ∷ xs) = refl pred∘suc≡id (1# ∷ xs) = pred-helper∘suc≡1# xs data Peano : ∀ {n} → BitVector n → Set where Pzero : ∀ {n} → Peano (zero n) Psuc : ∀ {n} {x : BitVector n} → (p : Peano x) → Peano (suc x) Pdouble : ∀ {n} {x : BitVector n} → Peano x → Peano (0# ∷ x) Pdouble Pzero = Pzero Pdouble (Psuc p) = Psuc (Psuc (Pdouble p)) toPeano : ∀ {n} (x : BitVector n) → Peano x toPeano [] = Pzero toPeano (0# ∷ xs) = Pdouble (toPeano xs) toPeano (1# ∷ xs) = Psuc (Pdouble (toPeano xs)) peanoInduction : ∀ {n} → (P : ∀ {x : BitVector n} → Peano x → Set) → P Pzero → (∀ {x : BitVector n} {m : Peano x} → P m → P (Psuc m)) → ∀ {x : BitVector n} (q : Peano x) → P q peanoInduction P z s Pzero = z peanoInduction P z s (Psuc p) = s {_} {p} (peanoInduction P z s p) induction : ∀ {n} (P : BitVector n → Set) → P (zero n) → (∀ {m} → P m → P (suc m)) → ∀ x → P x induction P z s x = peanoInduction (λ {x} _ → P x) z s (toPeano x) toℕ : ∀ {n} → BitVector n → ℕ toℕ = induction _ 0 Nsuc fromDigit : Digit 2 → Bit fromDigit Fzero = 0# fromDigit (Fsuc Fzero) = 1# fromDigit (Fsuc (Fsuc ())) fromList : ∀ {n} → List (Digit 2) → BitVector n fromList [] = zero _ fromList {Nzero} (x ∷ xs) = [] fromList {Nsuc n} (x ∷ xs) = fromDigit x ∷ fromList xs fromℕ : ∀ {n} → ℕ → BitVector n fromℕ n with toDigits 2 n fromℕ .(fromDigits ds) | ds , refl = fromList ds -- TODO: the terrifying proofs that toℕ and fromℕ are inverses
31.597826
76
0.596491
50c4ae94e3bbc3d2030afadea35294a082fdc4f5
2,761
agda
Agda
Cubical/Algebra/NatSolver/HornerForms.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-02-05T01:25:26.000Z
2022-02-05T01:25:26.000Z
Cubical/Algebra/NatSolver/HornerForms.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Algebra/NatSolver/HornerForms.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.NatSolver.HornerForms where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat open import Cubical.Data.FinData open import Cubical.Data.Vec open import Cubical.Data.Bool using (Bool; true; false; if_then_else_) private variable ℓ : Level {- This defines the type of multivariate Polynomials over ℕ. The construction is based on the algebraic fact ℕ[X₀][X₁]⋯[Xₙ] ≅ ℕ[X₀,⋯,Xₙ] BUT: Contrary to algebraic convetions, we will give 'Xₙ' the lowest index in the definition of 'Variable' below. So if 'Variable n k' is identified with 'Xₖ', what we construct should rather be denoted with ℕ[Xₙ][Xₙ₋₁]⋯[X₀] or, to be precise about the evaluation order: (⋯((ℕ[Xₙ])[Xₙ₋₁])⋯)[X₀] -} data IteratedHornerForms : ℕ → Type ℓ-zero where const : ℕ → IteratedHornerForms ℕ.zero 0H : {n : ℕ} → IteratedHornerForms (ℕ.suc n) _·X+_ : {n : ℕ} → IteratedHornerForms (ℕ.suc n) → IteratedHornerForms n → IteratedHornerForms (ℕ.suc n) eval : {n : ℕ} (P : IteratedHornerForms n) → Vec ℕ n → ℕ eval (const r) [] = r eval 0H (_ ∷ _) = 0 eval (P ·X+ Q) (x ∷ xs) = (eval P (x ∷ xs)) · x + eval Q xs module IteratedHornerOperations where private 1H' : (n : ℕ) → IteratedHornerForms n 1H' ℕ.zero = const 1 1H' (ℕ.suc n) = 0H ·X+ 1H' n 0H' : (n : ℕ) → IteratedHornerForms n 0H' ℕ.zero = const 0 0H' (ℕ.suc n) = 0H 1ₕ : {n : ℕ} → IteratedHornerForms n 1ₕ {n = n} = 1H' n 0ₕ : {n : ℕ} → IteratedHornerForms n 0ₕ {n = n} = 0H' n X : (n : ℕ) (k : Fin n) → IteratedHornerForms n X (ℕ.suc m) zero = 1ₕ ·X+ 0ₕ X (ℕ.suc m) (suc k) = 0ₕ ·X+ X m k _+ₕ_ : {n : ℕ} → IteratedHornerForms n → IteratedHornerForms n → IteratedHornerForms n (const r) +ₕ (const s) = const (r + s) 0H +ₕ Q = Q (P ·X+ r) +ₕ 0H = P ·X+ r (P ·X+ r) +ₕ (Q ·X+ s) = (P +ₕ Q) ·X+ (r +ₕ s) isZero : {n : ℕ} → IteratedHornerForms (ℕ.suc n) → Bool isZero 0H = true isZero (P ·X+ P₁) = false _⋆_ : {n : ℕ} → IteratedHornerForms n → IteratedHornerForms (ℕ.suc n) → IteratedHornerForms (ℕ.suc n) _·ₕ_ : {n : ℕ} → IteratedHornerForms n → IteratedHornerForms n → IteratedHornerForms n r ⋆ 0H = 0H r ⋆ (P ·X+ Q) = (r ⋆ P) ·X+ (r ·ₕ Q) const x ·ₕ const y = const (x · y) 0H ·ₕ Q = 0H (P ·X+ Q) ·ₕ S = let z = (P ·ₕ S) in if (isZero z) then (Q ⋆ S) else (z ·X+ 0ₕ) +ₕ (Q ⋆ S) Variable : (n : ℕ) (k : Fin n) → IteratedHornerForms n Variable n k = IteratedHornerOperations.X n k Constant : (n : ℕ) (r : ℕ) → IteratedHornerForms n Constant ℕ.zero r = const r Constant (ℕ.suc n) r = IteratedHornerOperations.0ₕ ·X+ Constant n r
27.336634
75
0.59109
3dc38d2517537eaed7978fe2fde624ec9018db94
762
agda
Agda
examples/AIM6/Path/Examples.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/AIM6/Path/Examples.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/AIM6/Path/Examples.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Examples where open import Prelude open import Star open import Modal El : Set -> Rel True El A _ _ = A List : Set -> Set List A = Star (El A) _ _ Nat = List True zero : Nat zero = ε suc : Nat -> Nat suc n = _ • n -- Vectors Vec : Set -> Nat -> Set Vec A = All (\_ -> A) infixr 40 _::_ _::_ : {A : Set}{n : Nat} -> A -> Vec A n -> Vec A (suc n) x :: xs = check x • xs -- Fin Fin : Nat -> Set Fin = Any (\_ -> True) -- Turning a vector to a list vecToList : {A : Set}{n : Nat} -> Vec A n -> List A vecToList {A} = map ! uncheck listToVec : {A : Set}(xs : List A) -> Vec A (length xs) listToVec ε = ε listToVec (x • xs) = x :: listToVec xs -- span test : Vec Nat (suc (suc (suc zero))) test = zero :: suc zero :: suc (suc zero) :: ε
15.55102
58
0.562992
3ded0cc04f967c60aca92237cece5447eb5b14e0
1,357
agda
Agda
Cubical/HITs/Delooping/Two/Base.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/HITs/Delooping/Two/Base.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/HITs/Delooping/Two/Base.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe --no-import-sorts #-} module Cubical.HITs.Delooping.Two.Base where open import Cubical.Foundations.HLevels open import Cubical.Foundations.Prelude -- Explicit construction of the delooping of the two-element group data Bℤ₂ : Type₀ where base : Bℤ₂ loop : base ≡ base loop² : Square loop refl refl loop trunc : isGroupoid Bℤ₂ private variable ℓ : Level A : Type ℓ module Elim where rec : (x : A) → (p : x ≡ x) → (sq : Square p refl refl p) → isGroupoid A → Bℤ₂ → A rec x p sq Agpd = go where go : _ → _ go base = x go (loop i) = p i go (loop² i j) = sq i j go (trunc x y p q r s i j k) = Agpd (go x) (go y) (cong go p) (cong go q) (cong (cong go) r) (cong (cong go) s) i j k elim : (P : Bℤ₂ → Type ℓ) → (x : P base) → (p : PathP (λ i → P (loop i)) x x) → (sq : SquareP (λ i j → P (loop² i j)) p (λ i → x) (λ i → x) p) → isOfHLevelDep 3 P → (z : Bℤ₂) → P z elim P x p sq Pgpd = go where go : (z : Bℤ₂) → P z go base = x go (loop i) = p i go (loop² i j) = sq i j go (trunc x y p q r s i j k) = Pgpd (go x) (go y) (cong go p) (cong go q) (cong (cong go) r) (cong (cong go) s) (trunc x y p q r s) i j k
24.232143
71
0.508475
595a2bd1f4cf569782a017b6fc64f368110792bb
2,764
agda
Agda
Univalence/Obsolete/Cauchy2.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
Univalence/Obsolete/Cauchy2.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
Univalence/Obsolete/Cauchy2.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
{-# OPTIONS --without-K #-} -- this is mostly reference for an unused intermediate step. module Cauchy2 where open import Data.Nat open import Data.Vec renaming (map to mapV; _++_ to _++V_; concat to concatV) open import Data.Fin using (Fin; inject+; raise; inject≤; fromℕ; toℕ) open import Function using (id) open import Relation.Binary.PropositionalEquality using (_≡_; subst) open import VectorLemmas open import LeqLemmas open import Cauchy using (id+) Cauchy : ℕ → ℕ → Set Cauchy n₁ n₂ = Vec (Fin n₁) n₂ ------------------------------------------------------------------------------ -- Elementary permutations in the Cauchy representation emptycauchy : Cauchy 0 0 emptycauchy = [] idcauchy : (n : ℕ) → Cauchy n n idcauchy = allFin -- Sequential composition scompcauchy : ∀ {n₀ n₁ n₂} → Cauchy n₁ n₀ → Cauchy n₂ n₁ → Cauchy n₂ n₀ scompcauchy {n} perm₁ perm₂ = tabulate (λ i → lookup (lookup i perm₁) perm₂) -- swap the first m elements with the last n elements -- [ v₀ , v₁ , v₂ , ... , vm-1 , vm , vm₊₁ , ... , vm+n-1 ] -- ==> -- [ vm , vm₊₁ , ... , vm+n-1 , v₀ , v₁ , v₂ , ... , vm-1 ] swap+cauchy : (m n : ℕ) → Cauchy (m + n) (n + m) swap+cauchy m n = {!!} -- tabulate swapper -- Parallel additive composition -- append both permutations but adjust the indices in the second -- permutation by the size of the first type so that it acts on the -- second part of the vector pcompcauchy : ∀ {m₁ n₁ m₂ n₂} → Cauchy m₁ m₂ → Cauchy n₁ n₂ → Cauchy (m₁ + n₁) (m₂ + n₂) pcompcauchy {m} {n} α β = mapV (inject+ n) α ++V mapV (raise m) β -- Tensor multiplicative composition -- Transpositions in α correspond to swapping entire rows -- Transpositions in β correspond to swapping entire columns tcompcauchy : ∀ {m₁ n₁ m₂ n₂} → Cauchy m₁ m₂ → Cauchy n₁ n₂ → Cauchy (m₁ * n₁) (m₂ * n₂) tcompcauchy {m} {n} α β = concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d)) β) α) -- swap⋆ -- -- This is essentially the classical problem of in-place matrix transpose: -- "http://en.wikipedia.org/wiki/In-place_matrix_transposition" -- Given m and n, the desired permutation in Cauchy representation is: -- P(i) = m*n-1 if i=m*n-1 -- = m*i mod m*n-1 otherwise transposeIndex : (m n : ℕ) → (b : Fin m) → (d : Fin n) → Fin (n * m) transposeIndex m n b d = inject≤ (fromℕ (toℕ d * m + toℕ b)) (i*n+k≤m*n d b) {- inject≤ (fromℕ (toℕ d * m + toℕ b)) (trans≤ (i*n+k≤m*n d b) (refl′ (*-comm n m))) -} swap⋆cauchy : (m₁ n₁ m₂ n₂ : ℕ) → (meq : m₂ ≡ m₁) → (neq : n₂ ≡ n₁) → Cauchy (n₁ * m₁) (n₂ * m₂) swap⋆cauchy m₁ n₁ m₂ n₂ meq neq = concatV (mapV (λ d → mapV (λ b → transposeIndex m₁ n₁ (subst Fin meq b) (subst Fin neq d)) (allFin m₂)) (allFin n₂))
33.301205
100
0.611795
12f2036241a98554bd0b799c77b7a89afa2a09c6
1,225
agda
Agda
src/scratch/Data/List/Relation/Helpers.agda
zampino/ggt
e2d6b5f9bea15dd67817bf67e273f6b9a14335af
[ "MIT" ]
2
2020-04-17T11:10:00.000Z
2020-11-28T05:48:39.000Z
src/scratch/Data/List/Relation/Helpers.agda
zampino/ggt
e2d6b5f9bea15dd67817bf67e273f6b9a14335af
[ "MIT" ]
null
null
null
src/scratch/Data/List/Relation/Helpers.agda
zampino/ggt
e2d6b5f9bea15dd67817bf67e273f6b9a14335af
[ "MIT" ]
null
null
null
module Scratch.Data.List.Relation.Helpers where open import Relation.Nullary open import Relation.Nullary.Decidable open import Relation.Unary open import Relation.Binary hiding (Decidable) open import Data.Product open import Data.List.Base open import Data.List.Relation.Unary.All as All open import Data.List.Relation.Unary.All.Properties open import Data.List.Relation.Unary.AllPairs module _ {a ℓ ℓ₁ ℓ₂} {A : Set a} {R : Rel A ℓ₁} {S : Rel A ℓ₂} {P : Pred A ℓ} (P? : Decidable P) where filter⁺⁺ : ∀ {xs} → (∀ {x y} → P x → P y → R x y → S x y) → AllPairs R xs → AllPairs S (filter P? xs) filter⁺⁺ {[]} _ _ = [] filter⁺⁺ {x ∷ xs} Δ (h ∷ t) with (P? x) ... | yes p = let hf : All (R x) (filter P? xs) hf = filter⁺ P? h ap : All P (filter P? xs) ap = all-filter P? xs w : All (P ∩ R x) (filter P? xs) w = All.zip ( ap , hf ) y : P ∩ R x ⊆ S x y = λ z → Δ p (proj₁ z) (proj₂ z) z : All (S x) (filter P? xs) z = All.map y w in z ∷ filter⁺⁺ {xs} Δ t ... | no ¬p = filter⁺⁺ {xs} Δ t
33.108108
61
0.505306
5815899853777d073c37474c5d7e46990eb8d533
266
agda
Agda
src/data/lib/prim/Agda/Builtin/Char/Properties.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
src/data/lib/prim/Agda/Builtin/Char/Properties.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
src/data/lib/prim/Agda/Builtin/Char/Properties.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness #-} module Agda.Builtin.Char.Properties where open import Agda.Builtin.Char open import Agda.Builtin.Equality primitive primCharToNatInjective : ∀ a b → primCharToNat a ≡ primCharToNat b → a ≡ b
24.181818
76
0.740602
2030025656da349e5cff7fe15c815afc7cf44d60
37,830
agda
Agda
src/Indexed-container/Combinators.agda
nad/up-to
b936ff85411baf3401ad85ce85d5ff2e9aa0ca14
[ "MIT" ]
null
null
null
src/Indexed-container/Combinators.agda
nad/up-to
b936ff85411baf3401ad85ce85d5ff2e9aa0ca14
[ "MIT" ]
null
null
null
src/Indexed-container/Combinators.agda
nad/up-to
b936ff85411baf3401ad85ce85d5ff2e9aa0ca14
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Container combinators ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} module Indexed-container.Combinators where open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Prelude as P hiding (id; const) renaming (_∘_ to _⊚_) open import Prelude.Size open import Bijection equality-with-J as Bijection using (_↔_) import Equivalence equality-with-J as Eq open import Function-universe equality-with-J as F hiding (id; _∘_) open import Indexed-container open import Relation -- An identity combinator. -- -- Taken from "Indexed containers" by Altenkirch, Ghani, Hancock, -- McBride and Morris (JFP, 2015). id : ∀ {i} {I : Type i} → Container I I id = (λ _ → ↑ _ ⊤) ◁ λ {i} _ i′ → i ≡ i′ -- An unfolding lemma for ⟦ id ⟧. ⟦id⟧↔ : ∀ {k ℓ x} {I : Type ℓ} {X : Rel x I} {i} → Extensionality? k ℓ (ℓ ⊔ x) → ⟦ id ⟧ X i ↝[ k ] X i ⟦id⟧↔ {X = X} {i} ext = ↑ _ ⊤ × (λ i′ → i ≡ i′) ⊆ X ↔⟨ drop-⊤-left-× (λ _ → Bijection.↑↔) ⟩ (λ i′ → i ≡ i′) ⊆ X ↔⟨⟩ (∀ {i′} → i ≡ i′ → X i′) ↔⟨ Bijection.implicit-Π↔Π ⟩ (∀ i′ → i ≡ i′ → X i′) ↝⟨ inverse-ext? (λ ext → ∀-intro _ ext) ext ⟩□ X i □ -- An unfolding lemma for ⟦ id ⟧₂. ⟦id⟧₂↔ : ∀ {k ℓ x} {I : Type ℓ} {X : Rel x I} → Extensionality? k ℓ ℓ → ∀ (R : ∀ {i} → Rel₂ ℓ (X i)) {i} → (x y : ⟦ id ⟧ X i) → ⟦ id ⟧₂ R (x , y) ↝[ k ] proj₁ x ≡ proj₁ y × R (proj₂ x refl , proj₂ y refl) ⟦id⟧₂↔ ext R {i} x@(s , f) y@(t , g) = ⟦ id ⟧₂ R (x , y) ↔⟨⟩ (∃ λ (eq : s ≡ t) → ∀ {o} (p : i ≡ o) → R (f p , g (subst (λ _ → i ≡ o) eq p))) ↔⟨ ∃-cong (λ _ → Bijection.implicit-Π↔Π) ⟩ (∃ λ (eq : s ≡ t) → ∀ o (p : i ≡ o) → R (f p , g (subst (λ _ → i ≡ o) eq p))) ↝⟨ ∃-cong (λ _ → inverse-ext? (λ ext → ∀-intro _ ext) ext) ⟩ (∃ λ (eq : s ≡ t) → R (f refl , g (subst (λ _ → i ≡ i) eq refl))) ↝⟨ ∃-cong (λ eq → ≡⇒↝ _ (cong (λ eq → R (f refl , g eq)) (subst-const eq))) ⟩ s ≡ t × R (f refl , g refl) □ -- A second unfolding lemma for ⟦ id ⟧₂. ⟦id⟧₂≡↔ : ∀ {ℓ} {I : Type ℓ} {X : Rel ℓ I} {i} → Extensionality ℓ ℓ → (x y : ⟦ id ⟧ X i) → ⟦ id ⟧₂ (uncurry _≡_) (x , y) ↔ x ≡ y ⟦id⟧₂≡↔ ext x@(s , f) y@(t , g) = ⟦ id ⟧₂ (uncurry _≡_) (x , y) ↝⟨ ⟦id⟧₂↔ ext (uncurry _≡_) x y ⟩ s ≡ t × f refl ≡ g refl ↔⟨ ∃-cong (λ _ → Eq.≃-≡ (Eq.↔⇒≃ $ inverse $ ∀-intro _ ext)) ⟩ s ≡ t × (λ _ → f) ≡ (λ _ → g) ↔⟨ ∃-cong (λ _ → Eq.≃-≡ (Eq.↔⇒≃ Bijection.implicit-Π↔Π)) ⟩ s ≡ t × (λ {_} → f) ≡ g ↝⟨ ≡×≡↔≡ ⟩ x ≡ y □ -- A constant combinator. const : ∀ {i} {I : Type i} → Rel i I → Container I I const X = X ◁ λ _ _ → ⊥ -- An unfolding lemma for ⟦ const ⟧. ⟦const⟧↔ : ∀ {k ℓ y} {I : Type ℓ} X {Y : Rel y I} {i} → Extensionality? k ℓ (ℓ ⊔ y) → ⟦ const X ⟧ Y i ↝[ k ] X i ⟦const⟧↔ {k} {ℓ} {I = I} X {Y} {i} ext = X i × (∀ {i} → ⊥ → Y i) ↔⟨ ∃-cong (λ _ → Bijection.implicit-Π↔Π) ⟩ X i × (∀ i → ⊥ → Y i) ↝⟨ ∃-cong (λ _ → ∀-cong ext λ _ → Π⊥↔⊤ (lower-extensionality? k lzero ℓ ext)) ⟩ X i × (I → ⊤) ↔⟨ drop-⊤-right (λ _ → →-right-zero) ⟩ X i □ -- An unfolding lemma for ⟦ const ⟧₂. ⟦const⟧₂↔ : ∀ {k ℓ y} {I : Type ℓ} {X} {Y : Rel y I} → Extensionality? k ℓ ℓ → ∀ (R : ∀ {i} → Rel₂ ℓ (Y i)) {i} (x y : ⟦ const X ⟧ Y i) → ⟦ const X ⟧₂ R (x , y) ↝[ k ] proj₁ x ≡ proj₁ y ⟦const⟧₂↔ {X = X} ext R x@(s , f) y@(t , g) = ⟦ const X ⟧₂ R (x , y) ↔⟨⟩ (∃ λ (eq : s ≡ t) → ∀ {o} (p : ⊥) → R (f p , g (subst (λ _ → ⊥) eq p))) ↔⟨ ∃-cong (λ _ → Bijection.implicit-Π↔Π) ⟩ (∃ λ (eq : s ≡ t) → ∀ o (p : ⊥) → R (f p , g (subst (λ _ → ⊥) eq p))) ↝⟨ ∃-cong (λ _ → ∀-cong ext λ _ → Π⊥↔⊤ ext) ⟩ (∃ λ (eq : s ≡ t) → ∀ o → ⊤) ↔⟨ drop-⊤-right (λ _ → →-right-zero) ⟩ s ≡ t □ where open Container -- A composition combinator. infixr 9 _∘_ _∘_ : ∀ {ℓ} {I J K : Type ℓ} → Container J K → Container I J → Container I K C ∘ D = ⟦ C ⟧ (Shape D) ◁ (λ { (s , f) i → ∃ λ j → ∃ λ (p : Position C s j) → Position D (f p) i }) where open Container -- An unfolding lemma for ⟦ C ∘ D ⟧. ⟦∘⟧↔ : ∀ {fk ℓ x} {I J K : Type ℓ} {X : Rel x I} → Extensionality? fk ℓ (ℓ ⊔ x) → ∀ (C : Container J K) {D : Container I J} {k} → ⟦ C ∘ D ⟧ X k ↝[ fk ] ⟦ C ⟧ (⟦ D ⟧ X) k ⟦∘⟧↔ {X = X} ext C {D} {k} = ⟦ C ∘ D ⟧ X k ↔⟨⟩ (∃ λ { (s , f) → ∀ {i} → (∃ λ j → ∃ λ (p : Position C s j) → Position D (f p) i) → X i }) ↔⟨ inverse Σ-assoc ⟩ (∃ λ s → ∃ λ (f : Position C s ⊆ Shape D) → ∀ {i} → (∃ λ j → ∃ λ (p : Position C s j) → Position D (f p) i) → X i) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → implicit-∀-cong ext $ from-isomorphism currying) ⟩ (∃ λ s → ∃ λ (f : Position C s ⊆ Shape D) → ∀ {i} j → (∃ λ (p : Position C s j) → Position D (f p) i) → X i) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → Bijection.implicit-Π↔Π) ⟩ (∃ λ s → ∃ λ (f : Position C s ⊆ Shape D) → ∀ i j → (∃ λ (p : Position C s j) → Position D (f p) i) → X i) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → Π-comm) ⟩ (∃ λ s → ∃ λ (f : Position C s ⊆ Shape D) → ∀ j i → (∃ λ (p : Position C s j) → Position D (f p) i) → X i) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → inverse Bijection.implicit-Π↔Π) ⟩ (∃ λ s → ∃ λ (f : Position C s ⊆ Shape D) → ∀ {j} i → (∃ λ (p : Position C s j) → Position D (f p) i) → X i) ↔⟨ (∃-cong λ _ → inverse implicit-ΠΣ-comm) ⟩ (∃ λ s → ∀ {j} → ∃ λ (f : Position C s j → Shape D j) → ∀ i → (∃ λ (p : Position C s j) → Position D (f p) i) → X i) ↝⟨ (∃-cong λ _ → implicit-∀-cong ext $ ∃-cong λ _ → ∀-cong ext λ _ → from-isomorphism currying) ⟩ (∃ λ s → ∀ {j} → ∃ λ (f : Position C s j → Shape D j) → ∀ i → (p : Position C s j) → Position D (f p) i → X i) ↝⟨ (∃-cong λ _ → implicit-∀-cong ext $ ∃-cong λ _ → from-isomorphism Π-comm) ⟩ (∃ λ s → ∀ {j} → ∃ λ (f : Position C s j → Shape D j) → (p : Position C s j) → ∀ i → Position D (f p) i → X i) ↝⟨ (∃-cong λ _ → implicit-∀-cong ext $ from-isomorphism $ inverse ΠΣ-comm) ⟩ (∃ λ s → ∀ {j} → Position C s j → ∃ λ (s′ : Shape D j) → ∀ i → Position D s′ i → X i) ↝⟨ (∃-cong λ _ → implicit-∀-cong ext $ ∀-cong ext λ _ → ∃-cong λ _ → from-isomorphism $ inverse Bijection.implicit-Π↔Π) ⟩ (∃ λ s → ∀ {j} → Position C s j → ∃ λ (s′ : Shape D j) → Position D s′ ⊆ X) ↔⟨⟩ ⟦ C ⟧ (⟦ D ⟧ X) k □ where open Container -- TODO: Define ⟦∘⟧₂↔ (an unfolding lemma for ⟦ C ∘ D ⟧₂). -- A reindexing combinator. -- -- Taken from "Indexed containers". reindex₂ : ∀ {ℓ} {I O₁ O₂ : Type ℓ} → (O₂ → O₁) → Container I O₁ → Container I O₂ reindex₂ f (S ◁ P) = (S ⊚ f) ◁ P -- An unfolding lemma for ⟦ reindex₂ f C ⟧. ⟦reindex₂⟧↔ : ∀ {ℓ x} {I O₁ O₂ : Type ℓ} (f : O₂ → O₁) (C : Container I O₁) {X : Rel x I} {o} → ⟦ reindex₂ f C ⟧ X o ↔ ⟦ C ⟧ X (f o) ⟦reindex₂⟧↔ f C = Bijection.id -- An unfolding lemma for ⟦ reindex₂ f C ⟧₂. ⟦reindex₂⟧₂↔ : ∀ {ℓ x} {I O : Type ℓ} {X : Rel x I} (C : Container I O) (f : I → O) (R : ∀ {i} → Rel₂ ℓ (X i)) {i} (x y : ⟦ reindex₂ f C ⟧ X i) → ⟦ reindex₂ f C ⟧₂ R (x , y) ↔ ⟦ C ⟧₂ R (x , y) ⟦reindex₂⟧₂↔ C f R x@(s , g) y@(t , h) = ⟦ reindex₂ f C ⟧₂ R (x , y) ↔⟨⟩ (∃ λ (eq : s ≡ t) → ∀ {o} (p : Position (reindex₂ f C) s o) → R (g p , h (subst (λ s → Position (reindex₂ f C) s o) eq p))) ↔⟨⟩ (∃ λ (eq : s ≡ t) → ∀ {o} (p : Position C s o) → R (g p , h (subst (λ s → Position C s o) eq p))) ↔⟨⟩ ⟦ C ⟧₂ R (x , y) □ where open Container -- Another reindexing combinator. reindex₁ : ∀ {ℓ} {I₁ I₂ O : Type ℓ} → (I₁ → I₂) → Container I₁ O → Container I₂ O reindex₁ f C = Shape C ◁ (λ s i → ∃ λ i′ → f i′ ≡ i × Position C s i′) where open Container -- An unfolding lemma for ⟦ reindex₁ f C ⟧. ⟦reindex₁⟧↔ : ∀ {k ℓ x} {I₁ I₂ O : Type ℓ} {f : I₁ → I₂} → Extensionality? k ℓ (ℓ ⊔ x) → ∀ (C : Container I₁ O) {X : Rel x I₂} {o} → ⟦ reindex₁ f C ⟧ X o ↝[ k ] ⟦ C ⟧ (X ⊚ f) o ⟦reindex₁⟧↔ {f = f} ext C {X} {o} = ⟦ reindex₁ f C ⟧ X o ↔⟨ (∃-cong λ _ → Bijection.implicit-Π↔Π) ⟩ (∃ λ (s : Shape C o) → ∀ i → (∃ λ i′ → f i′ ≡ i × Position C s i′) → X i) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → from-isomorphism currying) ⟩ (∃ λ (s : Shape C o) → ∀ i i′ → f i′ ≡ i × Position C s i′ → X i) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → from-isomorphism currying) ⟩ (∃ λ (s : Shape C o) → ∀ i i′ → f i′ ≡ i → Position C s i′ → X i) ↔⟨ (∃-cong λ _ → Π-comm) ⟩ (∃ λ (s : Shape C o) → ∀ i i′ → f i ≡ i′ → Position C s i → X i′) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → inverse-ext? (λ ext → ∀-intro _ ext) ext) ⟩ (∃ λ (s : Shape C o) → ∀ i → Position C s i → X (f i)) ↔⟨ (∃-cong λ _ → inverse Bijection.implicit-Π↔Π) ⟩ ⟦ C ⟧ (X ⊚ f) o □ where open Container -- An unfolding lemma for ⟦ reindex₁ f C ⟧₂. ⟦reindex₁⟧₂↔ : ∀ {k ℓ x} {I O : Type ℓ} {X : Rel x O} → Extensionality? k ℓ ℓ → ∀ (C : Container I O) (f : I → O) (R : ∀ {o} → Rel₂ ℓ (X o)) {o} (x y : ⟦ reindex₁ f C ⟧ X o) → ⟦ reindex₁ f C ⟧₂ R (x , y) ↝[ k ] ⟦ C ⟧₂ R ( (proj₁ x , λ p → proj₂ x (_ , refl , p)) , (proj₁ y , λ p → proj₂ y (_ , refl , p)) ) ⟦reindex₁⟧₂↔ ext C f R x@(s , g) y@(t , h) = ⟦ reindex₁ f C ⟧₂ R (x , y) ↔⟨⟩ (∃ λ (eq : s ≡ t) → ∀ {o} (p : ∃ λ o′ → f o′ ≡ o × Position C s o′) → R (g p , h (subst (λ s → ∃ λ o′ → f o′ ≡ o × Position C s o′) eq p))) ↝⟨ (∃-cong λ eq → implicit-∀-cong ext $ ∀-cong ext λ _ → ≡⇒↝ _ $ cong (R ⊚ (g _ ,_) ⊚ h) $ lemma eq) ⟩ (∃ λ (eq : s ≡ t) → ∀ {o} (p : ∃ λ o′ → f o′ ≡ o × Position C s o′) → R ( g p , h ( proj₁ p , proj₁ (proj₂ p) , subst (λ s → Position C s (proj₁ p)) eq (proj₂ (proj₂ p)) ) )) ↝⟨ (∃-cong λ _ → implicit-∀-cong ext $ from-isomorphism currying) ⟩ (∃ λ (eq : s ≡ t) → ∀ {o} o′ (p : f o′ ≡ o × Position C s o′) → R ( g (o′ , p) , h (o′ , proj₁ p , subst (λ s → Position C s o′) eq (proj₂ p)) )) ↝⟨ (∃-cong λ _ → implicit-∀-cong ext $ ∀-cong ext λ _ → from-isomorphism currying) ⟩ (∃ λ (eq : s ≡ t) → ∀ {o} o′ (≡o : f o′ ≡ o) (p : Position C s o′) → R ( g (o′ , ≡o , p) , h (o′ , ≡o , subst (λ s → Position C s o′) eq p) )) ↔⟨ (∃-cong λ _ → Bijection.implicit-Π↔Π) ⟩ (∃ λ (eq : s ≡ t) → ∀ o o′ (≡o : f o′ ≡ o) (p : Position C s o′) → R ( g (o′ , ≡o , p) , h (o′ , ≡o , subst (λ s → Position C s o′) eq p) )) ↔⟨ (∃-cong λ _ → Π-comm) ⟩ (∃ λ (eq : s ≡ t) → ∀ o o′ (≡o′ : f o ≡ o′) (p : Position C s o) → R ( g (o , ≡o′ , p) , h (o , ≡o′ , subst (λ s → Position C s o) eq p) )) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → inverse-ext? (λ ext → ∀-intro _ ext) ext) ⟩ (∃ λ (eq : s ≡ t) → ∀ o (p : Position C s o) → R ( g (o , refl , p) , h (o , refl , subst (λ s → Position C s o) eq p) )) ↔⟨ (∃-cong λ _ → inverse Bijection.implicit-Π↔Π) ⟩ (∃ λ (eq : s ≡ t) → ∀ {o} (p : Position C s o) → R ( g (o , refl , p) , h (o , refl , subst (λ s → Position C s o) eq p) )) ↔⟨⟩ ⟦ C ⟧₂ R ((s , λ p → g (_ , refl , p)) , (t , λ p → h (_ , refl , p))) □ where open Container lemma = λ (eq : s ≡ t) {o} {p : ∃ λ o′ → f o′ ≡ o × Position C s o′} → subst (λ s → ∃ λ o′ → f o′ ≡ o × Position C s o′) eq p ≡⟨ push-subst-pair′ {y≡z = eq} _ _ (subst-const eq) ⟩ ( proj₁ p , subst (λ { (s , o′) → f o′ ≡ o × Position C s o′ }) (Σ-≡,≡→≡ eq (subst-const eq)) (proj₂ p) ) ≡⟨⟩ ( proj₁ p , subst (λ { (s , o′) → f o′ ≡ o × Position C s o′ }) (Σ-≡,≡→≡ eq (trans (subst-const eq) refl)) (proj₂ p) ) ≡⟨ cong (λ eq → _ , subst (λ { (s , o′) → f o′ ≡ o × Position C s o′ }) eq (proj₂ p)) $ Σ-≡,≡→≡-subst-const eq refl ⟩ ( proj₁ p , subst (λ { (s , o′) → f o′ ≡ o × Position C s o′ }) (cong₂ _,_ eq refl) (proj₂ p) ) ≡⟨ cong (_ ,_) $ push-subst-, {y≡z = cong₂ _,_ eq refl} ((_≡ o) ⊚ f ⊚ proj₂) (uncurry (Position C)) ⟩ ( proj₁ p , subst ((_≡ o) ⊚ f ⊚ proj₂) (cong₂ _,_ eq refl) (proj₁ (proj₂ p)) , subst (uncurry (Position C)) (cong₂ _,_ eq refl) (proj₂ (proj₂ p)) ) ≡⟨ cong (λ eq′ → _ , eq′ , subst (uncurry (Position C)) (cong₂ _,_ eq refl) _) $ subst-∘ ((_≡ o) ⊚ f) proj₂ (cong₂ _,_ eq refl) ⟩ ( proj₁ p , subst ((_≡ o) ⊚ f) (cong proj₂ (cong₂ _,_ eq refl)) (proj₁ (proj₂ p)) , subst (uncurry (Position C)) (cong (_, _) eq) (proj₂ (proj₂ p)) ) ≡⟨ cong₂ (λ eq₁ eq₂ → _ , subst ((_≡ o) ⊚ f) eq₁ _ , eq₂) (cong-proj₂-cong₂-, eq refl) (sym $ subst-∘ (uncurry (Position C)) (_, _) eq) ⟩ ( proj₁ p , subst ((_≡ o) ⊚ f) refl (proj₁ (proj₂ p)) , subst (uncurry (Position C) ⊚ (_, _)) eq (proj₂ (proj₂ p)) ) ≡⟨⟩ ( proj₁ p , proj₁ (proj₂ p) , subst (λ s → Position C s (proj₁ p)) eq (proj₂ (proj₂ p)) ) ∎ -- A combined reindexing combinator. -- -- The application reindex swap is similar to the overline function -- from Section 6.3.4.1 in Pous and Sangiorgi's "Enhancements of the -- bisimulation proof method". reindex : ∀ {ℓ} {I O : Type ℓ} → (I → O) → Container I O → Container O I reindex f = reindex₂ f ⊚ reindex₁ f -- An unfolding lemma for ⟦ reindex f C ⟧. ⟦reindex⟧↔ : ∀ {k ℓ x} {I O : Type ℓ} {f : I → O} → Extensionality? k ℓ (ℓ ⊔ x) → ∀ (C : Container I O) {X : Rel x O} {i} → ⟦ reindex f C ⟧ X i ↝[ k ] ⟦ C ⟧ (X ⊚ f) (f i) ⟦reindex⟧↔ {f = f} ext C {X} {i} = ⟦ reindex f C ⟧ X i ↔⟨⟩ ⟦ reindex₂ f (reindex₁ f C) ⟧ X i ↔⟨⟩ ⟦ reindex₁ f C ⟧ X (f i) ↝⟨ ⟦reindex₁⟧↔ ext C ⟩□ ⟦ C ⟧ (X ⊚ f) (f i) □ -- An unfolding lemma for ⟦ reindex f C ⟧₂. ⟦reindex⟧₂↔ : ∀ {k ℓ x} {I O : Type ℓ} {X : Rel x O} → Extensionality? k ℓ ℓ → ∀ (C : Container I O) (f : I → O) (R : ∀ {o} → Rel₂ ℓ (X o)) {i} (x y : ⟦ reindex f C ⟧ X i) → ⟦ reindex f C ⟧₂ R (x , y) ↝[ k ] ⟦ C ⟧₂ R ( (proj₁ x , λ p → proj₂ x (_ , refl , p)) , (proj₁ y , λ p → proj₂ y (_ , refl , p)) ) ⟦reindex⟧₂↔ ext C f R x y = ⟦ reindex f C ⟧₂ R (x , y) ↔⟨⟩ ⟦ reindex₂ f (reindex₁ f C) ⟧₂ R (x , y) ↔⟨⟩ ⟦ reindex₁ f C ⟧₂ R (x , y) ↝⟨ ⟦reindex₁⟧₂↔ ext C f R x y ⟩□ ⟦ C ⟧₂ R ( (proj₁ x , λ p → proj₂ x (_ , refl , p)) , (proj₁ y , λ p → proj₂ y (_ , refl , p)) ) □ -- If f is an involution, then ν (reindex f C) i is pointwise -- logically equivalent to ν C i ⊚ f. mutual ν-reindex⇔ : ∀ {ℓ} {I : Type ℓ} {C : Container I I} {f : I → I} → f ⊚ f ≡ P.id → ∀ {i x} → ν (reindex f C) i x ⇔ ν C i (f x) ν-reindex⇔ {C = C} {f} inv {i} {x} = ν (reindex f C) i x ↔⟨⟩ ⟦ reindex f C ⟧ (ν′ (reindex f C) i) x ↝⟨ ⟦reindex⟧↔ _ C ⟩ ⟦ C ⟧ (ν′ (reindex f C) i ⊚ f) (f x) ↝⟨ ⟦⟧-cong _ C (ν′-reindex⇔ inv) ⟩ ⟦ C ⟧ (ν′ C i ⊚ f ⊚ f) (f x) ↔⟨ ≡⇒↝ bijection $ cong (λ g → ⟦ C ⟧ (ν′ C i ⊚ g) (f x)) inv ⟩ ⟦ C ⟧ (ν′ C i) (f x) ↔⟨⟩ ν C i (f x) □ ν′-reindex⇔ : ∀ {ℓ} {I : Type ℓ} {C : Container I I} {f : I → I} → f ⊚ f ≡ P.id → ∀ {i x} → ν′ (reindex f C) i x ⇔ ν′ C i (f x) ν′-reindex⇔ {C = C} {f} inv = record { to = to; from = from } where to : ∀ {i} → ν′ (reindex f C) i ⊆ ν′ C i ⊚ f force (to x) = _⇔_.to (ν-reindex⇔ inv) (force x) from : ∀ {i} → ν′ C i ⊚ f ⊆ ν′ (reindex f C) i force (from x) = _⇔_.from (ν-reindex⇔ inv) (force x) -- A cartesian product combinator. -- -- Similar to a construction in "Containers: Constructing strictly -- positive types" by Abbott, Altenkirch and Ghani (see -- Proposition 3.5). infixr 2 _⊗_ _⊗_ : ∀ {ℓ} {I O : Type ℓ} → Container I O → Container I O → Container I O C₁ ⊗ C₂ = (λ o → Shape C₁ o × Shape C₂ o) ◁ (λ { (s₁ , s₂) i → Position C₁ s₁ i ⊎ Position C₂ s₂ i }) where open Container -- An unfolding lemma for ⟦ C₁ ⊗ C₂ ⟧. ⟦⊗⟧↔ : ∀ {k ℓ x} {I O : Type ℓ} → Extensionality? k ℓ (ℓ ⊔ x) → ∀ (C₁ C₂ : Container I O) {X : Rel x I} {o} → ⟦ C₁ ⊗ C₂ ⟧ X o ↝[ k ] ⟦ C₁ ⟧ X o × ⟦ C₂ ⟧ X o ⟦⊗⟧↔ {k} {ℓ} ext C₁ C₂ {X} {o} = ⟦ C₁ ⊗ C₂ ⟧ X o ↔⟨⟩ (∃ λ (s : Shape C₁ o × Shape C₂ o) → (λ i → Position C₁ (proj₁ s) i ⊎ Position C₂ (proj₂ s) i) ⊆ X) ↔⟨ inverse Σ-assoc ⟩ (∃ λ (s₁ : Shape C₁ o) → ∃ λ (s₂ : Shape C₂ o) → (λ i → Position C₁ s₁ i ⊎ Position C₂ s₂ i) ⊆ X) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → implicit-∀-cong ext $ Π⊎↔Π×Π (lower-extensionality? k lzero ℓ ext)) ⟩ (∃ λ (s₁ : Shape C₁ o) → ∃ λ (s₂ : Shape C₂ o) → ∀ {i} → (Position C₁ s₁ i → X i) × (Position C₂ s₂ i → X i)) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → implicit-ΠΣ-comm) ⟩ (∃ λ (s₁ : Shape C₁ o) → ∃ λ (s₂ : Shape C₂ o) → Position C₁ s₁ ⊆ X × Position C₂ s₂ ⊆ X) ↔⟨ (∃-cong λ _ → ∃-comm) ⟩ (∃ λ (s₁ : Shape C₁ o) → Position C₁ s₁ ⊆ X × ∃ λ (s₂ : Shape C₂ o) → Position C₂ s₂ ⊆ X) ↔⟨ Σ-assoc ⟩ (∃ λ (s : Shape C₁ o) → Position C₁ s ⊆ X) × (∃ λ (s : Shape C₂ o) → Position C₂ s ⊆ X) ↔⟨⟩ ⟦ C₁ ⟧ X o × ⟦ C₂ ⟧ X o □ where open Container -- An unfolding lemma for ⟦ C₁ ⊗ C₂ ⟧₂. ⟦⊗⟧₂↔ : ∀ {k ℓ x} {I : Type ℓ} {X : Rel x I} → Extensionality? k ℓ ℓ → ∀ (C₁ C₂ : Container I I) (R : ∀ {i} → Rel₂ ℓ (X i)) {i} (x y : ⟦ C₁ ⊗ C₂ ⟧ X i) → let (x₁ , x₂) , f = x (y₁ , y₂) , g = y in ⟦ C₁ ⊗ C₂ ⟧₂ R (x , y) ↝[ k ] ⟦ C₁ ⟧₂ R ((x₁ , f ⊚ inj₁) , (y₁ , g ⊚ inj₁)) × ⟦ C₂ ⟧₂ R ((x₂ , f ⊚ inj₂) , (y₂ , g ⊚ inj₂)) ⟦⊗⟧₂↔ ext C₁ C₂ R (x@(x₁ , x₂) , f) (y@(y₁ , y₂) , g) = ⟦ C₁ ⊗ C₂ ⟧₂ R ((x , f) , (y , g)) ↔⟨⟩ (∃ λ (eq : x ≡ y) → ∀ {o} (p : Position (C₁ ⊗ C₂) x o) → R (f p , g (subst (λ s → Position (C₁ ⊗ C₂) s o) eq p))) ↔⟨⟩ (∃ λ (eq : x ≡ y) → ∀ {o} (p : Position C₁ x₁ o ⊎ Position C₂ x₂ o) → R ( f p , g (subst (λ { (s₁ , s₂) → Position C₁ s₁ o ⊎ Position C₂ s₂ o }) eq p) )) ↔⟨ inverse (Σ-cong ≡×≡↔≡ λ _ → Bijection.id) ⟩ (∃ λ (eq : x₁ ≡ y₁ × x₂ ≡ y₂) → ∀ {o} (p : Position C₁ x₁ o ⊎ Position C₂ x₂ o) → R ( f p , g (subst (λ { (s₁ , s₂) → Position C₁ s₁ o ⊎ Position C₂ s₂ o }) (cong₂ _,_ (proj₁ eq) (proj₂ eq)) p) )) ↔⟨ inverse Σ-assoc ⟩ (∃ λ (eq₁ : x₁ ≡ y₁) → ∃ λ (eq₂ : x₂ ≡ y₂) → ∀ {o} (p : Position C₁ x₁ o ⊎ Position C₂ x₂ o) → R ( f p , g (subst (λ { (s₁ , s₂) → Position C₁ s₁ o ⊎ Position C₂ s₂ o }) (cong₂ _,_ eq₁ eq₂) p) )) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → implicit-∀-cong ext $ Π⊎↔Π×Π ext) ⟩ (∃ λ (eq₁ : x₁ ≡ y₁) → ∃ λ (eq₂ : x₂ ≡ y₂) → ∀ {o} → ((p : Position C₁ x₁ o) → R ( f (inj₁ p) , g (subst (λ { (s₁ , s₂) → Position C₁ s₁ o ⊎ Position C₂ s₂ o }) (cong₂ _,_ eq₁ eq₂) (inj₁ p)) )) × ((p : Position C₂ x₂ o) → R ( f (inj₂ p) , g (subst (λ { (s₁ , s₂) → Position C₁ s₁ o ⊎ Position C₂ s₂ o }) (cong₂ _,_ eq₁ eq₂) (inj₂ p)) ))) ↝⟨ (∃-cong λ eq₁ → ∃-cong λ eq₂ → implicit-∀-cong ext $ (∀-cong ext λ _ → ≡⇒↝ _ $ cong (R ⊚ (f _ ,_)) $ lemma₁ eq₁ eq₂) ×-cong (∀-cong ext λ _ → ≡⇒↝ _ $ cong (R ⊚ (f _ ,_)) $ lemma₂ eq₁ eq₂)) ⟩ (∃ λ (eq₁ : x₁ ≡ y₁) → ∃ λ (eq₂ : x₂ ≡ y₂) → ∀ {o} → ((p : Position C₁ x₁ o) → R (f (inj₁ p) , g (inj₁ (subst (λ s₁ → Position C₁ s₁ o) eq₁ p)))) × ((p : Position C₂ x₂ o) → R (f (inj₂ p) , g (inj₂ (subst (λ s₂ → Position C₂ s₂ o) eq₂ p))))) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → implicit-ΠΣ-comm) ⟩ (∃ λ (eq₁ : x₁ ≡ y₁) → ∃ λ (eq₂ : x₂ ≡ y₂) → (∀ {o} (p : Position C₁ x₁ o) → R (f (inj₁ p) , g (inj₁ (subst (λ s₁ → Position C₁ s₁ o) eq₁ p)))) × (∀ {o} (p : Position C₂ x₂ o) → R (f (inj₂ p) , g (inj₂ (subst (λ s₂ → Position C₂ s₂ o) eq₂ p))))) ↔⟨ (∃-cong λ _ → ∃-comm) ⟩ (∃ λ (eq₁ : x₁ ≡ y₁) → (∀ {o} (p : Position C₁ x₁ o) → R (f (inj₁ p) , g (inj₁ (subst (λ s₁ → Position C₁ s₁ o) eq₁ p)))) × ∃ λ (eq₂ : x₂ ≡ y₂) → (∀ {o} (p : Position C₂ x₂ o) → R (f (inj₂ p) , g (inj₂ (subst (λ s₂ → Position C₂ s₂ o) eq₂ p))))) ↔⟨ Σ-assoc ⟩ (∃ λ (eq : x₁ ≡ y₁) → (∀ {o} (p : Container.Position C₁ x₁ o) → R ( f (inj₁ p) , g (inj₁ (subst (λ s₁ → Container.Position C₁ s₁ o) eq p))) )) × (∃ λ (eq : x₂ ≡ y₂) → (∀ {o} (p : Container.Position C₂ x₂ o) → R ( f (inj₂ p) , g (inj₂ (subst (λ s₂ → Container.Position C₂ s₂ o) eq p)) ))) ↔⟨⟩ ⟦ C₁ ⟧₂ R ((x₁ , f ⊚ inj₁) , (y₁ , g ⊚ inj₁)) × ⟦ C₂ ⟧₂ R ((x₂ , f ⊚ inj₂) , (y₂ , g ⊚ inj₂)) □ where open Container lemma₁ = λ (eq₁ : x₁ ≡ y₁) (eq₂ : x₂ ≡ y₂) {o p} → g (subst (λ { (s₁ , s₂) → Position C₁ s₁ o ⊎ Position C₂ s₂ o }) (cong₂ _,_ eq₁ eq₂) (inj₁ p)) ≡⟨ cong g $ push-subst-inj₁ {y≡z = cong₂ _,_ eq₁ eq₂} _ _ ⟩ g (inj₁ (subst (λ { (s₁ , s₂) → Position C₁ s₁ o }) (cong₂ _,_ eq₁ eq₂) p)) ≡⟨ cong (g ⊚ inj₁) $ subst-∘ _ _ (cong₂ _,_ eq₁ eq₂) ⟩ g (inj₁ (subst (λ s₁ → Position C₁ s₁ o) (cong proj₁ (cong₂ _,_ eq₁ eq₂)) p)) ≡⟨ cong (g ⊚ inj₁) $ cong (flip (subst _) _) $ cong-proj₁-cong₂-, eq₁ eq₂ ⟩∎ g (inj₁ (subst (λ s₁ → Position C₁ s₁ o) eq₁ p)) ∎ lemma₂ = λ (eq₁ : x₁ ≡ y₁) (eq₂ : x₂ ≡ y₂) {o p} → g (subst (λ { (s₁ , s₂) → Position C₁ s₁ o ⊎ Position C₂ s₂ o }) (cong₂ _,_ eq₁ eq₂) (inj₂ p)) ≡⟨ cong g $ push-subst-inj₂ {y≡z = cong₂ _,_ eq₁ eq₂} _ _ ⟩ g (inj₂ (subst (λ { (s₁ , s₂) → Position C₂ s₂ o }) (cong₂ _,_ eq₁ eq₂) p)) ≡⟨ cong (g ⊚ inj₂) $ subst-∘ _ _ (cong₂ _,_ eq₁ eq₂) ⟩ g (inj₂ (subst (λ s₂ → Position C₂ s₂ o) (cong proj₂ (cong₂ _,_ eq₁ eq₂)) p)) ≡⟨ cong (g ⊚ inj₂) $ cong (flip (subst _) _) $ cong-proj₂-cong₂-, eq₁ eq₂ ⟩∎ g (inj₂ (subst (λ s₂ → Position C₂ s₂ o) eq₂ p)) ∎ -- The greatest fixpoint ν (C₁ ⊗ C₂) i is contained in the -- intersection ν C₁ i ∩ ν C₂ i. ν-⊗⊆ : ∀ {ℓ} {I : Type ℓ} {C₁ C₂ : Container I I} {i} → ν (C₁ ⊗ C₂) i ⊆ ν C₁ i ∩ ν C₂ i ν-⊗⊆ {C₁ = C₁} {C₂} {i} = ν (C₁ ⊗ C₂) i ⊆⟨⟩ ⟦ C₁ ⊗ C₂ ⟧ (ν′ (C₁ ⊗ C₂) i) ⊆⟨ ⟦⊗⟧↔ _ C₁ C₂ ⟩ ⟦ C₁ ⟧ (ν′ (C₁ ⊗ C₂) i) ∩ ⟦ C₂ ⟧ (ν′ (C₁ ⊗ C₂) i) ⊆⟨ Σ-map (map C₁ ν-⊗⊆₁′) (map C₂ ν-⊗⊆₂′) ⟩ ⟦ C₁ ⟧ (ν′ C₁ i) ∩ ⟦ C₂ ⟧ (ν′ C₂ i) ⊆⟨ P.id ⟩∎ ν C₁ i ∩ ν C₂ i ∎ where ν-⊗⊆₁′ : ν′ (C₁ ⊗ C₂) i ⊆ ν′ C₁ i force (ν-⊗⊆₁′ x) = proj₁ (ν-⊗⊆ (force x)) ν-⊗⊆₂′ : ν′ (C₁ ⊗ C₂) i ⊆ ν′ C₂ i force (ν-⊗⊆₂′ x) = proj₂ (ν-⊗⊆ (force x)) -- A disjoint union combinator. -- -- Similar to a construction in "Containers: Constructing strictly -- positive types" by Abbott, Altenkirch and Ghani (see -- Proposition 3.5). infixr 2 _⊕_ _⊕_ : ∀ {ℓ} {I O : Type ℓ} → Container I O → Container I O → Container I O C₁ ⊕ C₂ = (λ o → Shape C₁ o ⊎ Shape C₂ o) ◁ [ Position C₁ , Position C₂ ] where open Container -- An unfolding lemma for ⟦ C₁ ⊕ C₂ ⟧. ⟦⊕⟧↔ : ∀ {ℓ x} {I O : Type ℓ} (C₁ C₂ : Container I O) {X : Rel x I} {o} → ⟦ C₁ ⊕ C₂ ⟧ X o ↔ ⟦ C₁ ⟧ X o ⊎ ⟦ C₂ ⟧ X o ⟦⊕⟧↔ C₁ C₂ {X} {o} = ⟦ C₁ ⊕ C₂ ⟧ X o ↔⟨⟩ (∃ λ (s : Shape C₁ o ⊎ Shape C₂ o) → [ Position C₁ , Position C₂ ] s ⊆ X) ↝⟨ ∃-⊎-distrib-right ⟩ (∃ λ (s : Shape C₁ o) → Position C₁ s ⊆ X) ⊎ (∃ λ (s : Shape C₂ o) → Position C₂ s ⊆ X) ↔⟨⟩ ⟦ C₁ ⟧ X o ⊎ ⟦ C₂ ⟧ X o □ where open Container -- An unfolding lemma for ⟦ C₁ ⊕ C₂ ⟧₂. ⟦⊕⟧₂↔ : ∀ {k ℓ x} {I : Type ℓ} {X : Rel x I} → Extensionality? k ℓ ℓ → ∀ (C₁ C₂ : Container I I) (R : ∀ {i} → Rel₂ ℓ (X i)) {i} (x y : ⟦ C₁ ⊕ C₂ ⟧ X i) → ⟦ C₁ ⊕ C₂ ⟧₂ R (x , y) ↝[ k ] (curry (⟦ C₁ ⟧₂ R) ⊎-rel curry (⟦ C₂ ⟧₂ R)) (_↔_.to (⟦⊕⟧↔ C₁ C₂) x) (_↔_.to (⟦⊕⟧↔ C₁ C₂) y) ⟦⊕⟧₂↔ ext C₁ C₂ R (inj₁ x , f) (inj₁ y , g) = ⟦ C₁ ⊕ C₂ ⟧₂ R ((inj₁ x , f) , (inj₁ y , g)) ↔⟨⟩ (∃ λ (eq : inj₁ x ≡ inj₁ y) → ∀ {o} (p : Position C₁ x o) → R ( f p , g (subst (λ s → [_,_] {C = λ _ → Rel _ _} (Position C₁) (Position C₂) s o) eq p) )) ↔⟨ inverse $ Σ-cong Bijection.≡↔inj₁≡inj₁ (λ _ → Bijection.id) ⟩ (∃ λ (eq : x ≡ y) → ∀ {o} (p : Position C₁ x o) → R ( f p , g (subst (λ s → [_,_] {C = λ _ → Rel _ _} (Position C₁) (Position C₂) s o) (cong inj₁ eq) p) )) ↝⟨ (∃-cong λ eq → implicit-∀-cong ext $ ∀-cong ext λ _ → ≡⇒↝ _ $ cong (λ x → R (_ , g x)) $ sym $ subst-∘ _ _ eq) ⟩ (∃ λ (eq : x ≡ y) → ∀ {o} (p : Position C₁ x o) → R ( f p , g (subst (λ s → Position C₁ s o) eq p) )) ↔⟨⟩ ⟦ C₁ ⟧₂ R ((x , f) , (y , g)) □ where open Container ⟦⊕⟧₂↔ _ C₁ C₂ R (inj₁ x , f) (inj₂ y , g) = ⟦ C₁ ⊕ C₂ ⟧₂ R ((inj₁ x , f) , (inj₂ y , g)) ↔⟨⟩ (∃ λ (eq : inj₁ x ≡ inj₂ y) → _) ↔⟨ inverse $ Σ-cong (inverse Bijection.≡↔⊎) (λ _ → Bijection.id) ⟩ (∃ λ (eq : ⊥) → _) ↔⟨ Σ-left-zero ⟩ ⊥ □ ⟦⊕⟧₂↔ _ C₁ C₂ R (inj₂ x , f) (inj₁ y , g) = ⟦ C₁ ⊕ C₂ ⟧₂ R ((inj₂ x , f) , (inj₁ y , g)) ↔⟨⟩ (∃ λ (eq : inj₂ x ≡ inj₁ y) → _) ↔⟨ inverse $ Σ-cong (inverse Bijection.≡↔⊎) (λ _ → Bijection.id) ⟩ (∃ λ (eq : ⊥) → _) ↔⟨ Σ-left-zero ⟩ ⊥ □ ⟦⊕⟧₂↔ ext C₁ C₂ R (inj₂ x , f) (inj₂ y , g) = ⟦ C₁ ⊕ C₂ ⟧₂ R ((inj₂ x , f) , (inj₂ y , g)) ↔⟨⟩ (∃ λ (eq : inj₂ x ≡ inj₂ y) → ∀ {o} (p : Position C₂ x o) → R ( f p , g (subst (λ s → [_,_] {C = λ _ → Rel _ _} (Position C₁) (Position C₂) s o) eq p) )) ↔⟨ inverse $ Σ-cong Bijection.≡↔inj₂≡inj₂ (λ _ → Bijection.id) ⟩ (∃ λ (eq : x ≡ y) → ∀ {o} (p : Position C₂ x o) → R ( f p , g (subst (λ s → [_,_] {C = λ _ → Rel _ _} (Position C₁) (Position C₂) s o) (cong inj₂ eq) p) )) ↝⟨ (∃-cong λ eq → implicit-∀-cong ext $ ∀-cong ext λ _ → ≡⇒↝ _ $ cong (λ x → R (_ , g x)) $ sym $ subst-∘ _ _ eq) ⟩ (∃ λ (eq : x ≡ y) → ∀ {o} (p : Position C₂ x o) → R ( f p , g (subst (λ s → Position C₂ s o) eq p) )) ↔⟨⟩ ⟦ C₂ ⟧₂ R ((x , f) , (y , g)) □ where open Container mutual -- A combinator that is similar to the function ⟷ from -- Section 6.3.4.1 in Pous and Sangiorgi's "Enhancements of the -- bisimulation proof method". ⟷[_] : ∀ {ℓ} {I : Type ℓ} → Container (I × I) (I × I) → Container (I × I) (I × I) ⟷[ C ] = C ⟷ C -- A generalisation of ⟷[_]. infix 1 _⟷_ _⟷_ : ∀ {ℓ} {I : Type ℓ} → (_ _ : Container (I × I) (I × I)) → Container (I × I) (I × I) C₁ ⟷ C₂ = C₁ ⊗ reindex swap C₂ -- An unfolding lemma for ⟦ C₁ ⟷ C₂ ⟧. ⟦⟷⟧↔ : ∀ {k ℓ x} {I : Type ℓ} → Extensionality? k ℓ (ℓ ⊔ x) → ∀ (C₁ C₂ : Container (I × I) (I × I)) {X : Rel₂ x I} {i} → ⟦ C₁ ⟷ C₂ ⟧ X i ↝[ k ] ⟦ C₁ ⟧ X i × (⟦ C₂ ⟧ (X ⁻¹) ⁻¹) i ⟦⟷⟧↔ ext C₁ C₂ {X} {i} = ⟦ C₁ ⟷ C₂ ⟧ X i ↔⟨⟩ ⟦ C₁ ⊗ reindex swap C₂ ⟧ X i ↝⟨ ⟦⊗⟧↔ ext C₁ (reindex swap C₂) ⟩ ⟦ C₁ ⟧ X i × ⟦ reindex swap C₂ ⟧ X i ↝⟨ ∃-cong (λ _ → ⟦reindex⟧↔ ext C₂) ⟩□ ⟦ C₁ ⟧ X i × (⟦ C₂ ⟧ (X ⁻¹) ⁻¹) i □ -- An unfolding lemma for ⟦ C₁ ⟷ C₂ ⟧₂. ⟦⟷⟧₂↔ : ∀ {k ℓ x} {I : Type ℓ} {X : Rel₂ x I} → Extensionality? k ℓ ℓ → ∀ (C₁ C₂ : Container (I × I) (I × I)) (R : ∀ {i} → Rel₂ ℓ (X i)) {i} (x y : ⟦ C₁ ⟷ C₂ ⟧ X i) → let (s₁ , s₂) , f = x (t₁ , t₂) , g = y in ⟦ C₁ ⟷ C₂ ⟧₂ R (x , y) ↝[ k ] ⟦ C₁ ⟧₂ R ((s₁ , f ⊚ inj₁) , (t₁ , g ⊚ inj₁)) × ⟦ C₂ ⟧₂ R ( (s₂ , λ p → f (inj₂ (_ , refl , p))) , (t₂ , λ p → g (inj₂ (_ , refl , p))) ) ⟦⟷⟧₂↔ ext C₁ C₂ R x@((s₁ , s₂) , f) y@((t₁ , t₂) , g) = ⟦ C₁ ⟷ C₂ ⟧₂ R (x , y) ↔⟨⟩ ⟦ C₁ ⊗ reindex swap C₂ ⟧₂ R (x , y) ↝⟨ ⟦⊗⟧₂↔ ext C₁ (reindex swap C₂) R _ (_ , g) ⟩ ⟦ C₁ ⟧₂ R ((s₁ , f ⊚ inj₁) , (t₁ , g ⊚ inj₁)) × ⟦ reindex swap C₂ ⟧₂ R ((s₂ , f ⊚ inj₂) , (t₂ , g ⊚ inj₂)) ↝⟨ ∃-cong (λ _ → ⟦reindex⟧₂↔ ext C₂ _ R _ (_ , g ⊚ inj₂)) ⟩□ ⟦ C₁ ⟧₂ R ((s₁ , f ⊚ inj₁) , (t₁ , g ⊚ inj₁)) × ⟦ C₂ ⟧₂ R ( (s₂ , λ p → f (inj₂ (_ , refl , p))) , (t₂ , λ p → g (inj₂ (_ , refl , p))) ) □ -- The greatest fixpoint ν (C₁ ⟷ C₂) i is contained in the -- intersection ν C₁ i ∩ ν C₂ i ⁻¹. ν-↔⊆ : ∀ {ℓ} {I : Type ℓ} {C₁ C₂ : Container (I × I) (I × I)} {i} → ν (C₁ ⟷ C₂) i ⊆ ν C₁ i ∩ ν C₂ i ⁻¹ ν-↔⊆ {C₁ = C₁} {C₂} {i} = ν (C₁ ⟷ C₂) i ⊆⟨⟩ ν (C₁ ⊗ reindex swap C₂) i ⊆⟨ ν-⊗⊆ ⟩ ν C₁ i ∩ ν (reindex swap C₂) i ⊆⟨ Σ-map P.id (_⇔_.to (ν-reindex⇔ refl)) ⟩∎ ν C₁ i ∩ ν C₂ i ⁻¹ ∎ -- The following three lemmas correspond to the second part of -- Exercise 6.3.24 in Pous and Sangiorgi's "Enhancements of the -- bisimulation proof method". -- Post-fixpoints of the container reindex₂ swap id ⊗ C are -- post-fixpoints of ⟷[ C ]. ⊆reindex₂-swap-⊗→⊆⟷ : ∀ {ℓ r} {I : Type ℓ} {C : Container (I × I) (I × I)} {R : Rel₂ r I} → R ⊆ ⟦ reindex₂ swap id ⊗ C ⟧ R → R ⊆ ⟦ ⟷[ C ] ⟧ R ⊆reindex₂-swap-⊗→⊆⟷ {C = C} {R} R⊆ = R ⊆⟨ (λ x → lemma₁ x , lemma₂ x) ⟩ ⟦ C ⟧ R ∩ R ⁻¹ ⊆⟨ Σ-map P.id lemma₃ ⟩ ⟦ C ⟧ R ∩ ⟦ C ⟧ (R ⁻¹) ⁻¹ ⊆⟨ _⇔_.from (⟦⟷⟧↔ _ C C) ⟩∎ ⟦ ⟷[ C ] ⟧ R ∎ where lemma₀ = R ⊆⟨ R⊆ ⟩ ⟦ reindex₂ swap id ⊗ C ⟧ R ⊆⟨ ⟦⊗⟧↔ _ (reindex₂ swap id) C ⟩∎ ⟦ reindex₂ swap id ⟧ R ∩ ⟦ C ⟧ R ∎ lemma₁ = R ⊆⟨ lemma₀ ⟩ ⟦ reindex₂ swap id ⟧ R ∩ ⟦ C ⟧ R ⊆⟨ proj₂ ⟩∎ ⟦ C ⟧ R ∎ lemma₂ = R ⊆⟨ lemma₀ ⟩ ⟦ reindex₂ swap id ⟧ R ∩ ⟦ C ⟧ R ⊆⟨ proj₁ ⟩ ⟦ reindex₂ swap id ⟧ R ⊆⟨ P.id ⟩ ⟦ id ⟧ R ⁻¹ ⊆⟨ _⇔_.to (⟦id⟧↔ _) ⟩∎ R ⁻¹ ∎ lemma₃ = R ⊆⟨ lemma₁ ⟩ ⟦ C ⟧ R ⊆⟨ map C lemma₂ ⟩∎ ⟦ C ⟧ (R ⁻¹) ∎ -- The symmetric closure of a post-fixpoint of ⟷[ C ] is a -- post-fixpoint of reindex₂ swap id ⊗ C. ⊆⟷→∪-swap⊆reindex₂-swap-⊗ : ∀ {ℓ r} {I : Type ℓ} {C : Container (I × I) (I × I)} {R : Rel₂ r I} → R ⊆ ⟦ ⟷[ C ] ⟧ R → R ∪ R ⁻¹ ⊆ ⟦ reindex₂ swap id ⊗ C ⟧ (R ∪ R ⁻¹) ⊆⟷→∪-swap⊆reindex₂-swap-⊗ {C = C} {R} R⊆ = R ∪ R ⁻¹ ⊆⟨ (λ x → lemma₁ x , lemma₂ x) ⟩ ⟦ reindex₂ swap id ⟧ (R ∪ R ⁻¹) ∩ ⟦ C ⟧ (R ∪ R ⁻¹) ⊆⟨ _⇔_.from (⟦⊗⟧↔ _ (reindex₂ swap id) C) ⟩∎ ⟦ reindex₂ swap id ⊗ C ⟧ (R ∪ R ⁻¹) ∎ where lemma₁ = R ∪ R ⁻¹ ⊆⟨ [ inj₂ , inj₁ ] ⟩ R ⁻¹ ∪ R ⊆⟨ P.id ⟩ R ⁻¹ ∪ R ⁻¹ ⁻¹ ⊆⟨ P.id ⟩ (R ∪ R ⁻¹) ⁻¹ ⊆⟨ _⇔_.from (⟦id⟧↔ _) ⟩ ⟦ id ⟧ (R ∪ R ⁻¹) ⁻¹ ⊆⟨ P.id ⟩∎ ⟦ reindex₂ swap id ⟧ (R ∪ R ⁻¹) ∎ lemma₂ = R ∪ R ⁻¹ ⊆⟨ ⊎-map R⊆ R⊆ ⟩ ⟦ ⟷[ C ] ⟧ R ∪ ⟦ ⟷[ C ] ⟧ R ⁻¹ ⊆⟨ ⊎-map (_⇔_.to (⟦⟷⟧↔ _ C C)) (_⇔_.to (⟦⟷⟧↔ _ C C)) ⟩ ⟦ C ⟧ R ∩ ⟦ C ⟧ (R ⁻¹) ⁻¹ ∪ ⟦ C ⟧ R ⁻¹ ∩ ⟦ C ⟧ (R ⁻¹) ⊆⟨ ⊎-map proj₁ proj₂ ⟩ ⟦ C ⟧ R ∪ ⟦ C ⟧ (R ⁻¹) ⊆⟨ [ map C inj₁ , map C inj₂ ] ⟩∎ ⟦ C ⟧ (R ∪ R ⁻¹) ∎ -- The greatest fixpoint of ⟷[ C ] is pointwise logically equivalent -- to the greatest fixpoint of reindex₂ swap id ⊗ C. -- -- Note that this proof is not necessarily size-preserving. TODO: -- Figure out if the proof can be made size-preserving. ν-⟷⇔ : ∀ {ℓ} {I : Type ℓ} {C : Container (I × I) (I × I)} {p} → ν ⟷[ C ] ∞ p ⇔ ν (reindex₂ swap id ⊗ C) ∞ p ν-⟷⇔ {C = C} = record { to = let R = ν ⟷[ C ] ∞ in $⟨ (λ {_} → ν-out _) ⟩ R ⊆ ⟦ ⟷[ C ] ⟧ R ↝⟨ ⊆⟷→∪-swap⊆reindex₂-swap-⊗ ⟩ R ∪ R ⁻¹ ⊆ ⟦ reindex₂ swap id ⊗ C ⟧ (R ∪ R ⁻¹) ↝⟨ unfold _ ⟩ R ∪ R ⁻¹ ⊆ ν (reindex₂ swap id ⊗ C) ∞ ↝⟨ (λ hyp {_} x → hyp (inj₁ x)) ⟩□ R ⊆ ν (reindex₂ swap id ⊗ C) ∞ □ ; from = let R = ν (reindex₂ swap id ⊗ C) ∞ in $⟨ (λ {_} → ν-out _) ⟩ R ⊆ ⟦ reindex₂ swap id ⊗ C ⟧ R ↝⟨ ⊆reindex₂-swap-⊗→⊆⟷ ⟩ R ⊆ ⟦ ⟷[ C ] ⟧ R ↝⟨ unfold _ ⟩□ R ⊆ ν ⟷[ C ] ∞ □ }
37.381423
148
0.365741
c7bb4b6f07d71ba1311d519f8375b5b1b183c435
2,152
agda
Agda
agda/Number/Prelude/Int.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
3
2020-07-31T18:15:26.000Z
2022-02-19T12:15:21.000Z
agda/Number/Prelude/Int.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
agda/Number/Prelude/Int.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts #-} module Number.Prelude.Int where open import Cubical.Data.Int public using ( Int ; fromNatInt ; fromNegInt ; sucInt ; predInt ; sucInt+ ; predInt+ ; _+pos_ ; _+negsuc_ ) renaming ( isSetInt to isSetℤ ; _-_ to infix 7 _-ᶻ_ ; _+_ to infix 5 _+ᶻ_ ; pos to posᶻ ; negsuc to negsucᶻ ) open import Number.Instances.Int public using ( +negsuc-identityˡ ; negsuc+negsuc≡+ⁿ ; sneg ; spos ) renaming ( _·_ to _·ᶻ_ ; -_ to -ᶻ_ ; _<_ to _<ᶻ_ ; min to minᶻ ; max to maxᶻ ; is-min to is-minᶻ ; is-max to is-maxᶻ ; ·-reflects-< to ·ᶻ-reflects-<ᶻ ; is-LinearlyOrderedCommRing to is-LinearlyOrderedCommRingᶻ ) -- Int≅Builtin -- Int≡Builtin -- Sign -- spos -- sneg -- _·ˢ_ -- sign -- signed -- -_ -- -involutive -- _·_ -- _·'_ -- _·''_ -- ·''-nullifiesʳ -- _<_ -- min -- max -- <-irrefl -- <-trans -- <-asym -- <-cotrans -- +-identityʳ -- +-identityˡ -- -1·≡- -- negsuc≡-pos -- negsuc-reflects-≡ -- pos-reflects-≡ -- possuc+negsuc≡0 -- sucInt[negsuc+pos]≡0 -- +-inverseʳ -- +-inverseˡ -- +-inverse -- pos+pos≡+ⁿ -- negsuc+negsuc≡+ⁿ -- +negsuc-identityˡ -- pos+negsuc≡⊎ -- negsuc+pos≡⊎ -- pos+negsuc≡negsuc+pos -- predInt- -- pos+negsuc-swap -- negsuc+pos-swap -- +negsuc-assoc -- sucInt[negsuc+pos]≡pos -- +pos-inverse -- +pos-assoc -- Trichotomy -- _≟_ -- MinTrichtotomy -- MaxTrichtotomy -- min-trichotomy -- max-trichotomy -- is-min -- is-max -- sucInt-reflects-< -- predInt-reflects-< -- sucInt-preserves-< -- predInt-preserves-< -- +-preserves-< -- +-reflects-< -- +-reflects-<ˡ -- +-<-ext -- ·≡·' -- ·'-nullifiesʳ -- ·'-nullifiesˡ -- -distrˡ -- ·-comm -- -distrʳ -- ·'-assoc -- ·'-assoc≡ -- ·-assoc -- ·-nullifiesˡ -- ·-nullifiesʳ -- ·-identityˡ -- ·-identityʳ -- ·-preserves-< -- ·-reflects-< -- ·-sucInt -- ·-sucIntˡ -- ·-predInt -- ·-predIntˡ -- -distrib -- ·-distribˡ -- ·-distribʳ -- ·-Semigroup .IsSemigroup.is-assoc -- +-Monoid .IsMonoid.is-identity -- ·-Monoid .IsMonoid.is-identity -- is-Semiring .IsSemiring.is-dist -- <-StrictLinearOrder .IsStrictLinearOrder.is-tricho
16.8125
61
0.589684
581ce4a3dbdef65768b5ae81a1de780ee21768a3
2,546
agda
Agda
Cubical/HITs/FiniteMultiset/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/HITs/FiniteMultiset/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/HITs/FiniteMultiset/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.FiniteMultiset.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.HITs.FiniteMultiset.Base private variable A : Type₀ infixr 30 _++_ _++_ : ∀ (xs ys : FMSet A) → FMSet A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ xs ++ ys comm x y xs i ++ ys = comm x y (xs ++ ys) i trunc xs zs p q i j ++ ys = trunc (xs ++ ys) (zs ++ ys) (cong (_++ ys) p) (cong (_++ ys) q) i j unitl-++ : ∀ (xs : FMSet A) → [] ++ xs ≡ xs unitl-++ xs = refl unitr-++ : ∀ (xs : FMSet A) → xs ++ [] ≡ xs unitr-++ = ElimProp.f (trunc _ _) refl (λ x p → cong (_∷_ x) p) assoc-++ : ∀ (xs ys zs : FMSet A) → xs ++ (ys ++ zs) ≡ (xs ++ ys) ++ zs assoc-++ = ElimProp.f (isPropPi (λ _ → isPropPi (λ _ → trunc _ _))) (λ ys zs → refl) (λ x p ys zs → cong (_∷_ x) (p ys zs)) cons-++ : ∀ (x : A) (xs : FMSet A) → x ∷ xs ≡ xs ++ [ x ] cons-++ x = ElimProp.f (trunc _ _) refl (λ y {xs} p → comm x y xs ∙ cong (_∷_ y) p) comm-++ : ∀ (xs ys : FMSet A) → xs ++ ys ≡ ys ++ xs comm-++ = ElimProp.f (isPropPi (λ _ → trunc _ _)) (λ ys → sym (unitr-++ ys)) (λ x {xs} p ys → cong (x ∷_) (p ys) ∙ cong (_++ xs) (cons-++ x ys) ∙ sym (assoc-++ ys [ x ] xs)) module FMSetUniversal {ℓ} {M : Type ℓ} (MSet : isSet M) (e : M) (_⊗_ : M → M → M) (comm-⊗ : ∀ x y → x ⊗ y ≡ y ⊗ x) (assoc-⊗ : ∀ x y z → x ⊗ (y ⊗ z) ≡ (x ⊗ y) ⊗ z) (unit-⊗ : ∀ x → e ⊗ x ≡ x) (f : A → M) where f-extend : FMSet A → M f-extend = Rec.f MSet e (λ x m → f x ⊗ m) (λ x y m → comm-⊗ (f x) (f y ⊗ m) ∙ sym (assoc-⊗ (f y) m (f x)) ∙ cong (f y ⊗_) (comm-⊗ m (f x))) f-extend-nil : f-extend [] ≡ e f-extend-nil = refl f-extend-cons : ∀ x xs → f-extend (x ∷ xs) ≡ f x ⊗ f-extend xs f-extend-cons x xs = refl f-extend-sing : ∀ x → f-extend [ x ] ≡ f x f-extend-sing x = comm-⊗ (f x) e ∙ unit-⊗ (f x) f-extend-++ : ∀ xs ys → f-extend (xs ++ ys) ≡ f-extend xs ⊗ f-extend ys f-extend-++ = ElimProp.f (isPropPi λ _ → MSet _ _) (λ ys → sym (unit-⊗ (f-extend ys))) (λ x {xs} p ys → cong (f x ⊗_) (p ys) ∙ assoc-⊗ (f x) (f-extend xs) (f-extend ys)) module _ (h : FMSet A → M) (h-nil : h [] ≡ e) (h-sing : ∀ x → h [ x ] ≡ f x) (h-++ : ∀ xs ys → h (xs ++ ys) ≡ h xs ⊗ h ys) where f-extend-unique : h ≡ f-extend f-extend-unique = funExt (ElimProp.f (MSet _ _) h-nil (λ x {xs} p → (h-++ [ x ] xs) ∙ cong (_⊗ h xs) (h-sing x) ∙ cong (f x ⊗_) p))
32.641026
107
0.480754
2f76432533f2092d06cd6b1aabc997e7afe7f086
554
agda
Agda
agda-stdlib/src/Data/Product/Relation/Lex/Strict.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Product/Relation/Lex/Strict.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Product/Relation/Lex/Strict.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.Product.Relation.Binary.Lex.Strict directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Product.Relation.Lex.Strict where open import Data.Product.Relation.Binary.Lex.Strict public {-# WARNING_ON_IMPORT "Data.Product.Relation.Lex.Strict was deprecated in v1.0. Use Data.Product.Relation.Binary.Lex.Strict instead." #-}
30.777778
72
0.559567
29f8cd23911db7cc8a26eeb8ac4916657e32c114
431
agda
Agda
src/Bools.agda
ice1k/Theorems
7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc
[ "Apache-2.0" ]
1
2020-04-15T15:28:03.000Z
2020-04-15T15:28:03.000Z
src/Bools.agda
ice1k/Theorems
7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc
[ "Apache-2.0" ]
null
null
null
src/Bools.agda
ice1k/Theorems
7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc
[ "Apache-2.0" ]
null
null
null
module Bools where open import Agda.Builtin.Bool public renaming (Bool to 𝔹) not : 𝔹 → 𝔹 not true = false not false = true -- T : 𝔹 → Set -- T true = ⊤ -- T false = ⊥ if_then_else_ : ∀ {a} {A : Set a} → 𝔹 → A → A → A if true then t else _ = t if false then _ else f = f _∧_ : 𝔹 → 𝔹 → 𝔹 true ∧ b = b false ∧ _ = false _∨_ : 𝔹 → 𝔹 → 𝔹 true ∨ _ = true false ∨ b = b _xor_ : 𝔹 → 𝔹 → 𝔹 true xor b = not b false xor b = b
14.862069
49
0.552204
313fae0824ff8880d2d3733d5c9daa82d1a69595
171
agda
Agda
test/Fail/Issue3014.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue3014.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue3014.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
data Bool : Set where true false : Bool data Eq : Bool → Bool → Set where refl : (x : Bool) → Eq x x test : (x : Bool) → Eq true x → Set test _ (refl false) = Bool
17.1
35
0.590643
41d86875d0acd80add3775408ad3929a8a751a2f
228
agda
Agda
Agda/Ag06.agda
Brethland/LEARNING-STUFF
eb2cef0556efb9a4ce11783f8516789ea48cc344
[ "MIT" ]
2
2020-02-03T05:05:52.000Z
2020-03-11T10:35:42.000Z
Agda/Ag06.agda
Brethland/LEARNING-STUFF
eb2cef0556efb9a4ce11783f8516789ea48cc344
[ "MIT" ]
null
null
null
Agda/Ag06.agda
Brethland/LEARNING-STUFF
eb2cef0556efb9a4ce11783f8516789ea48cc344
[ "MIT" ]
1
2019-12-13T04:50:46.000Z
2019-12-13T04:50:46.000Z
module Ag06 where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; cong-app) open Eq.≡-Reasoning open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Nat.Properties using (+-comm)
22.8
50
0.75
22a0d1ac60da546333797c507869243bfa2e7c24
247
agda
Agda
test/Succeed/Issue1885.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1885.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1885.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# NO_POSITIVITY_CHECK #-} data D : Set data D where d : (D → D) → D data E : Set {-# NO_POSITIVITY_CHECK #-} data E where e : (E → E) → E {-# NO_POSITIVITY_CHECK #-} data F : Set {-# NO_POSITIVITY_CHECK #-} data F where e : (F → F) → F
14.529412
27
0.574899
2fcfa3f6ed97b0f21b28f47d89fa793270e01fdc
2,278
agda
Agda
Data/Collection/Equivalence.agda
banacorn/lambda-calculus
f81b116473582ab7956adc4bf1d7ebf1ae2a213a
[ "MIT" ]
null
null
null
Data/Collection/Equivalence.agda
banacorn/lambda-calculus
f81b116473582ab7956adc4bf1d7ebf1ae2a213a
[ "MIT" ]
null
null
null
Data/Collection/Equivalence.agda
banacorn/lambda-calculus
f81b116473582ab7956adc4bf1d7ebf1ae2a213a
[ "MIT" ]
null
null
null
module Data.Collection.Equivalence where open import Data.Collection.Core open import Function using (id; _∘_) open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (_⇔_; equivalence) open Function.Equivalence.Equivalence open import Relation.Binary.PropositionalEquality open import Level using (zero) open import Relation.Nullary open import Relation.Unary open import Relation.Binary nach : ∀ {f t} {A : Set f} {B : Set t} → (A ⇔ B) → A → B nach = _⟨$⟩_ ∘ to von : ∀ {f t} {A : Set f} {B : Set t} → (A ⇔ B) → B → A von = _⟨$⟩_ ∘ from infixr 5 _≋_ _≋_ : Rel Membership _ A ≋ B = {x : Element} → x ∈ A ⇔ x ∈ B ≋-Reflexive : Reflexive _≋_ ≋-Reflexive = equivalence id id ≋-Symmetric : Symmetric _≋_ ≋-Symmetric z = record { to = from z ; from = to z } ≋-Transitive : Transitive _≋_ ≋-Transitive P≋Q Q≋R = equivalence (nach Q≋R ∘ nach P≋Q) (von P≋Q ∘ von Q≋R) ≋-IsEquivalence : IsEquivalence _≋_ ≋-IsEquivalence = record { refl = equivalence id id ; sym = ≋-Symmetric ; trans = ≋-Transitive } ≋-Setoid : Setoid _ _ ≋-Setoid = record { Carrier = Pred Element zero ; _≈_ = _≋_ ; isEquivalence = ≋-IsEquivalence } -------------------------------------------------------------------------------- -- Conditional Equivalence -------------------------------------------------------------------------------- _≋[_]_ : ∀ {a} → Membership → Pred Element a → Membership → Set a A ≋[ P ] B = {x : Element} → P x → x ∈ A ⇔ x ∈ B -- prefix version of _≋[_]_, with the predicate being the first argument [_]≋ : ∀ {a} → Pred Element a → Membership → Membership → Set a [_]≋ P A B = A ≋[ P ] B ≋[]-Reflexive : ∀ {a} {P : Pred Element a} → Reflexive [ P ]≋ ≋[]-Reflexive A = equivalence id id ≋[]-Symmetric : ∀ {a} {P : Pred Element a} → Symmetric [ P ]≋ ≋[]-Symmetric z ∈P = record { to = from (z ∈P) ; from = to (z ∈P) } ≋[]-Transitive : ∀ {a} {P : Pred Element a} → Transitive [ P ]≋ ≋[]-Transitive P≋Q Q≋R ∈P = equivalence (nach (Q≋R ∈P) ∘ nach (P≋Q ∈P)) (von (P≋Q ∈P) ∘ von (Q≋R ∈P)) ≋[]-IsEquivalence : ∀ {a} {P : Pred Element a} → IsEquivalence [ P ]≋ ≋[]-IsEquivalence {p} = record { refl = λ _ → equivalence id id ; sym = ≋[]-Symmetric ; trans = ≋[]-Transitive }
26.8
101
0.559263
2263615d77ac4aac7066eb596bcd4691a43e1845
15,737
agda
Agda
prototyping/Luau/Syntax/FromJSON.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
1
2021-11-06T08:03:00.000Z
2021-11-06T08:03:00.000Z
prototyping/Luau/Syntax/FromJSON.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
prototyping/Luau/Syntax/FromJSON.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
{-# OPTIONS --rewriting #-} module Luau.Syntax.FromJSON where open import Luau.Syntax using (Block; Stat ; Expr; _$_; val; nil; bool; number; var; var_∈_; function_is_end; _⟨_⟩; _⟨_⟩∈_; local_←_; return; done; _∙_; maybe; VarDec; binexp; BinaryOperator; +; -; *; /; ==; ~=; <; >; <=; >=; ··; string) open import Luau.Type.FromJSON using (typeFromJSON) open import Agda.Builtin.List using (List; _∷_; []) open import Agda.Builtin.Bool using (true; false) open import FFI.Data.Aeson using (Value; Array; Object; object; array; string; fromString; lookup) open import FFI.Data.Either using (Either; Left; Right) open import FFI.Data.Maybe using (Maybe; nothing; just) open import FFI.Data.Scientific using (toFloat) open import FFI.Data.String using (String; _++_) open import FFI.Data.Vector using (head; tail; null; empty) args = fromString "args" body = fromString "body" func = fromString "func" lokal = fromString "local" list = fromString "list" name = fromString "name" type = fromString "type" value = fromString "value" values = fromString "values" vars = fromString "vars" op = fromString "op" left = fromString "left" right = fromString "right" returnAnnotation = fromString "returnAnnotation" types = fromString "types" data Lookup : Set where _,_ : String → Value → Lookup nil : Lookup lookupIn : List String → Object → Lookup lookupIn [] obj = nil lookupIn (key ∷ keys) obj with lookup (fromString key) obj lookupIn (key ∷ keys) obj | nothing = lookupIn keys obj lookupIn (key ∷ keys) obj | just value = (key , value) binOpFromJSON : Value → Either String BinaryOperator binOpFromString : String → Either String BinaryOperator varDecFromJSON : Value → Either String (VarDec maybe) varDecFromObject : Object → Either String (VarDec maybe) exprFromJSON : Value → Either String (Expr maybe) exprFromObject : Object → Either String (Expr maybe) statFromJSON : Value → Either String (Stat maybe) statFromObject : Object → Either String (Stat maybe) blockFromJSON : Value → Either String (Block maybe) blockFromArray : Array → Either String (Block maybe) binOpFromJSON (string s) = binOpFromString s binOpFromJSON _ = Left "Binary operator not a string" binOpFromString "Add" = Right + binOpFromString "Sub" = Right - binOpFromString "Mul" = Right * binOpFromString "Div" = Right / binOpFromString "CompareEq" = Right == binOpFromString "CompareNe" = Right ~= binOpFromString "CompareLt" = Right < binOpFromString "CompareLe" = Right <= binOpFromString "CompareGt" = Right > binOpFromString "CompareGe" = Right >= binOpFromString "Concat" = Right ·· binOpFromString s = Left ("'" ++ s ++ "' is not a valid operator") varDecFromJSON (object arg) = varDecFromObject arg varDecFromJSON _ = Left "VarDec not an object" varDecFromObject obj with lookup name obj | lookup type obj varDecFromObject obj | just (string name) | nothing = Right (var name) varDecFromObject obj | just (string name) | just Value.null = Right (var name) varDecFromObject obj | just (string name) | just tyValue with typeFromJSON tyValue varDecFromObject obj | just (string name) | just tyValue | Right ty = Right (var name ∈ ty) varDecFromObject obj | just (string name) | just tyValue | Left err = Left err varDecFromObject obj | just _ | _ = Left "AstLocal name is not a string" varDecFromObject obj | nothing | _ = Left "AstLocal missing name" exprFromJSON (object obj) = exprFromObject obj exprFromJSON _ = Left "AstExpr not an object" exprFromObject obj with lookup type obj exprFromObject obj | just (string "AstExprCall") with lookup func obj | lookup args obj exprFromObject obj | just (string "AstExprCall") | just value | just (array arr) with head arr exprFromObject obj | just (string "AstExprCall") | just value | just (array arr) | just value2 with exprFromJSON value | exprFromJSON value2 exprFromObject obj | just (string "AstExprCall") | just value | just (array arr) | just value2 | Right fun | Right arg = Right (fun $ arg) exprFromObject obj | just (string "AstExprCall") | just value | just (array arr) | just value2 | Left err | _ = Left err exprFromObject obj | just (string "AstExprCall") | just value | just (array arr) | just value2 | _ | Left err = Left err exprFromObject obj | just (string "AstExprCall") | just value | just (array arr) | nothing = Left ("AstExprCall empty args") exprFromObject obj | just (string "AstExprCall") | just value | just _ = Left ("AstExprCall args not an array") exprFromObject obj | just (string "AstExprCall") | nothing | _ = Left ("AstExprCall missing func") exprFromObject obj | just (string "AstExprCall") | _ | nothing = Left ("AstExprCall missing args") exprFromObject obj | just (string "AstExprConstantNil") = Right (val nil) exprFromObject obj | just (string "AstExprFunction") with lookup args obj | lookup body obj | lookup returnAnnotation obj exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | rtn with head arr | blockFromJSON blockValue exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | rtn | just argValue | Right B with varDecFromJSON argValue exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just (object rtnObj) | just argValue | Right B | Right arg with lookup types rtnObj exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just (object rtnObj) | just argValue | Right B | Right arg | just (array rtnTypes) with head rtnTypes exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just (object rtnObj) | just argValue | Right B | Right arg | just (array rtnTypes) | just rtnType with typeFromJSON rtnType exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just (object rtnObj) | just argValue | Right B | Right arg | just (array rtnTypes) | just rtnType | Left err = Left err exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just (object rtnObj) | just argValue | Right B | Right arg | just (array rtnTypes) | just rtnType | Right T = Right (function "" ⟨ arg ⟩∈ T is B end) exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just (object rtnObj) | just argValue | Right B | Right arg | just (array rtnTypes) | nothing = Right (function "" ⟨ arg ⟩ is B end) exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just (object rtnObj) | just argValue | Right B | Right arg | just _ = Left "returnAnnotation types not an array" exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just (object rtnObj) | just argValue | Right B | Right arg | nothing = Left "returnAnnotation missing types" exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just _ | just argValue | Right B | Right arg = Left "returnAnnotation not an object" exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | nothing | just argValue | Right B | Right arg = Right (function "" ⟨ arg ⟩ is B end) exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | rtn | just argValue | Right B | Left err = Left err exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | rtn | nothing | Right B = Left "Unsupported AstExprFunction empty args" exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | rtn | _ | Left err = Left err exprFromObject obj | just (string "AstExprFunction") | just _ | just _ | rtn = Left "AstExprFunction args not an array" exprFromObject obj | just (string "AstExprFunction") | nothing | _ | rtn = Left "AstExprFunction missing args" exprFromObject obj | just (string "AstExprFunction") | _ | nothing | rtn = Left "AstExprFunction missing body" exprFromObject obj | just (string "AstExprLocal") with lookup lokal obj exprFromObject obj | just (string "AstExprLocal") | just x with varDecFromJSON x exprFromObject obj | just (string "AstExprLocal") | just x | Right x′ = Right (var (Luau.Syntax.name x′)) exprFromObject obj | just (string "AstExprLocal") | just x | Left err = Left err exprFromObject obj | just (string "AstExprLocal") | nothing = Left "AstExprLocal missing local" exprFromObject obj | just (string "AstExprConstantNumber") with lookup value obj exprFromObject obj | just (string "AstExprConstantNumber") | just (FFI.Data.Aeson.Value.number x) = Right (val (number (toFloat x))) exprFromObject obj | just (string "AstExprConstantNumber") | just _ = Left "AstExprConstantNumber value is not a number" exprFromObject obj | just (string "AstExprConstantNumber") | nothing = Left "AstExprConstantNumber missing value" exprFromObject obj | just (string "AstExprConstantString") with lookup value obj exprFromObject obj | just (string "AstExprConstantString") | just (string x) = Right (val (string x)) exprFromObject obj | just (string "AstExprConstantString") | just _ = Left "AstExprConstantString value is not a string" exprFromObject obj | just (string "AstExprConstantString") | nothing = Left "AstExprConstantString missing value" exprFromObject obj | just (string "AstExprConstantBool") with lookup value obj exprFromObject obj | just (string "AstExprConstantBool") | just (FFI.Data.Aeson.Value.bool b) = Right (val (bool b)) exprFromObject obj | just (string "AstExprConstantBool") | just _ = Left "AstExprConstantBool value is not a bool" exprFromObject obj | just (string "AstExprConstantBool") | nothing = Left "AstExprConstantBool missing value" exprFromObject obj | just (string "AstExprBinary") with lookup op obj | lookup left obj | lookup right obj exprFromObject obj | just (string "AstExprBinary") | just o | just l | just r with binOpFromJSON o | exprFromJSON l | exprFromJSON r exprFromObject obj | just (string "AstExprBinary") | just o | just l | just r | Right o′ | Right l′ | Right r′ = Right (binexp l′ o′ r′) exprFromObject obj | just (string "AstExprBinary") | just o | just l | just r | Left err | _ | _ = Left err exprFromObject obj | just (string "AstExprBinary") | just o | just l | just r | _ | Left err | _ = Left err exprFromObject obj | just (string "AstExprBinary") | just o | just l | just r | _ | _ | Left err = Left err exprFromObject obj | just (string "AstExprBinary") | nothing | _ | _ = Left "Missing 'op' in AstExprBinary" exprFromObject obj | just (string "AstExprBinary") | _ | nothing | _ = Left "Missing 'left' in AstExprBinary" exprFromObject obj | just (string "AstExprBinary") | _ | _ | nothing = Left "Missing 'right' in AstExprBinary" exprFromObject obj | just (string ty) = Left ("TODO: Unsupported AstExpr " ++ ty) exprFromObject obj | just _ = Left "AstExpr type not a string" exprFromObject obj | nothing = Left "AstExpr missing type" {-# NON_TERMINATING #-} statFromJSON (object obj) = statFromObject obj statFromJSON _ = Left "AstStat not an object" statFromObject obj with lookup type obj statFromObject obj | just(string "AstStatLocal") with lookup vars obj | lookup values obj statFromObject obj | just(string "AstStatLocal") | just(array arr1) | just(array arr2) with head(arr1) | head(arr2) statFromObject obj | just(string "AstStatLocal") | just(array arr1) | just(array arr2) | just(x) | just(value) with varDecFromJSON(x) | exprFromJSON(value) statFromObject obj | just(string "AstStatLocal") | just(array arr1) | just(array arr2) | just(x) | just(value) | Right x′ | Right M = Right (local x′ ← M) statFromObject obj | just(string "AstStatLocal") | just(array arr1) | just(array arr2) | just(x) | just(value) | Left err | _ = Left err statFromObject obj | just(string "AstStatLocal") | just(array arr1) | just(array arr2) | just(x) | just(value) | _ | Left err = Left err statFromObject obj | just(string "AstStatLocal") | just(array arr1) | just(array arr2) | just(x) | nothing = Left "AstStatLocal empty values" statFromObject obj | just(string "AstStatLocal") | just(array arr1) | just(array arr2) | nothing | _ = Left "AstStatLocal empty vars" statFromObject obj | just(string "AstStatLocal") | just(array arr1) | just(_) = Left "AstStatLocal values not an array" statFromObject obj | just(string "AstStatLocal") | just(_) | just(_) = Left "AstStatLocal vars not an array" statFromObject obj | just(string "AstStatLocal") | just(_) | nothing = Left "AstStatLocal missing values" statFromObject obj | just(string "AstStatLocal") | nothing | _ = Left "AstStatLocal missing vars" statFromObject obj | just(string "AstStatLocalFunction") with lookup name obj | lookup func obj statFromObject obj | just(string "AstStatLocalFunction") | just fnName | just value with varDecFromJSON fnName | exprFromJSON value statFromObject obj | just(string "AstStatLocalFunction") | just fnName | just value | Right fnVar | Right (function "" ⟨ x ⟩ is B end) = Right (function (Luau.Syntax.name fnVar) ⟨ x ⟩ is B end) statFromObject obj | just(string "AstStatLocalFunction") | just fnName | just value | Right fnVar | Right (function "" ⟨ x ⟩∈ T is B end) = Right (function (Luau.Syntax.name fnVar) ⟨ x ⟩∈ T is B end) statFromObject obj | just(string "AstStatLocalFunction") | just fnName | just value | Left err | _ = Left err statFromObject obj | just(string "AstStatLocalFunction") | just fnName | just value | _ | Left err = Left err statFromObject obj | just(string "AstStatLocalFunction") | just _ | just _ | Right _ | Right _ = Left "AstStatLocalFunction func is not an AstExprFunction" statFromObject obj | just(string "AstStatLocalFunction") | nothing | _ = Left "AstStatFunction missing name" statFromObject obj | just(string "AstStatLocalFunction") | _ | nothing = Left "AstStatFunction missing func" statFromObject obj | just(string "AstStatReturn") with lookup list obj statFromObject obj | just(string "AstStatReturn") | just(array arr) with head arr statFromObject obj | just(string "AstStatReturn") | just(array arr) | just value with exprFromJSON value statFromObject obj | just(string "AstStatReturn") | just(array arr) | just value | Right M = Right (return M) statFromObject obj | just(string "AstStatReturn") | just(array arr) | just value | Left err = Left err statFromObject obj | just(string "AstStatReturn") | just(array arr) | nothing = Left "AstStatReturn empty list" statFromObject obj | just(string "AstStatReturn") | just(_) = Left "AstStatReturn list not an array" statFromObject obj | just(string "AstStatReturn") | nothing = Left "AstStatReturn missing list" statFromObject obj | just (string ty) = Left ("TODO: Unsupported AstStat " ++ ty) statFromObject obj | just _ = Left "AstStat type not a string" statFromObject obj | nothing = Left "AstStat missing type" blockFromJSON (array arr) = blockFromArray arr blockFromJSON (object obj) with lookup type obj | lookup body obj blockFromJSON (object obj) | just (string "AstStatBlock") | just value = blockFromJSON value blockFromJSON (object obj) | just (string "AstStatBlock") | nothing = Left "AstStatBlock missing body" blockFromJSON (object obj) | just (string ty) | _ = Left ("Unsupported AstBlock " ++ ty) blockFromJSON (object obj) | just _ | _ = Left "AstStatBlock type not a string" blockFromJSON (object obj) | nothing | _ = Left "AstStatBlock missing type" blockFromJSON _ = Left "AstBlock not an array or AstStatBlock object" blockFromArray arr with head arr blockFromArray arr | nothing = Right done blockFromArray arr | just value with statFromJSON value blockFromArray arr | just value | Left err = Left err blockFromArray arr | just value | Right S with blockFromArray(tail arr) blockFromArray arr | just value | Right S | Left err = Left (err) blockFromArray arr | just value | Right S | Right B = Right (S ∙ B)
77.905941
241
0.737434
582f1c0e39a01ddaf2ce3c66e514b82945826eae
446
agda
Agda
test/Compiler/simple/Issue2123.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Compiler/simple/Issue2123.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Compiler/simple/Issue2123.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where open import Agda.Builtin.Nat open import Agda.Builtin.String open import Common.IO open import Common.Unit data ⊥ : Set where record Pair : Set where constructor _,_ field fst snd : String open Pair record ERing : Set where constructor ering field divRem : (⊥ → ⊥) → Pair open ERing eRing : ERing eRing = ering λ _ → "fst" , "snd" test : String test = snd (divRem eRing (λ ())) main : IO Unit main = putStrLn test
14.866667
33
0.697309
582a8805d21c1938dc6eb42b87c5973e136db433
22,199
agda
Agda
complexity/Pilot2.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
2
2016-04-26T20:22:22.000Z
2019-08-08T12:27:18.000Z
complexity/Pilot2.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
1
2020-03-23T08:39:04.000Z
2020-05-12T00:32:45.000Z
complexity/Pilot2.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
null
null
null
open import Preliminaries module Pilot2 where data CTp : Set where unit : CTp nat : CTp -- discrete natural numbers ♭nat, where we interpret ≤ as = _->c_ : CTp → CTp → CTp _×c_ : CTp → CTp → CTp list : CTp → CTp bool : CTp C : CTp rnat : CTp -- natural numbers with ≤ actually interpreted as ≤ data CTpM : CTp → Set where runit : CTpM unit rn : CTpM rnat _×cm_ : ∀ {τ1 τ2} → CTpM τ1 → CTpM τ2 → CTpM (τ1 ×c τ2) _->cm_ : ∀ {τ1 τ2} → CTpM τ2 → CTpM (τ1 ->c τ2) -- represent a context as a list of types Ctx = List CTp -- de Bruijn indices (for free variables) data _∈_ : CTp → Ctx → Set where i0 : ∀ {Γ τ} → τ ∈ (τ :: Γ) iS : ∀ {Γ τ τ1} → τ ∈ Γ → τ ∈ (τ1 :: Γ) rctx : Ctx → Ctx → Set rctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → τ ∈ Γ r-extend : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) (τ :: Γ') data _|-_ : Ctx → CTp → Set sctx : Ctx → Ctx → Set sctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → Γ |- τ _∙rr_ : ∀ {A B C} → rctx A B → rctx B C → rctx A C _rs_ : ∀ {A B C} → rctx A B → sctx B C → sctx A C ren : ∀ {Γ Γ' τ} → Γ' |- τ → rctx Γ Γ' → Γ |- τ subst : ∀ {Γ Γ' τ} → Γ' |- τ → sctx Γ Γ' → Γ |- τ _ss_ : ∀ {A B C} → sctx A B → sctx B C → sctx A C _sr_ : ∀ {A B C} → sctx A B → rctx B C → sctx A C data _≤s_ : ∀ {Γ T} → Γ |- T → Γ |- T → Set rename-var : ∀ {Γ Γ' τ} → rctx Γ Γ' → τ ∈ Γ' → τ ∈ Γ idr : ∀ {Γ} → rctx Γ Γ p∙ : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) Γ' p : ∀ {Γ τ} → rctx (τ :: Γ) Γ rename-var-ident : ∀ {Γ τ} → (x : τ ∈ Γ) → rename-var idr x == x rename-var-∙ : ∀ {A B C τ} → (r1 : rctx A B) (r2 : rctx B C) (x : τ ∈ C) → rename-var r1 (rename-var r2 x) == rename-var (r1 ∙rr r2) x ∙rr-assoc : ∀ {A B C D} → (r1 : rctx A B) (r2 : rctx B C) (r3 : rctx C D) → _==_ {_} {rctx A D} (r1 ∙rr (r2 ∙rr r3)) ((r1 ∙rr r2) ∙rr r3) extend-ren-comp-lemma : ∀ {Γ Γ' Γ'' τ τ'} → (x : τ ∈ τ' :: Γ'') (ρ1 : rctx Γ Γ') (ρ2 : rctx Γ' Γ'') → Id {_} {_} ((r-extend ρ1 ∙rr r-extend ρ2) x) (r-extend (ρ1 ∙rr ρ2) x) extend-ren-comp : ∀ {Γ Γ' Γ'' τ} → (ρ1 : rctx Γ Γ') → (ρ2 : rctx Γ' Γ'') → Id {_} {rctx (τ :: Γ) (τ :: Γ'')} (r-extend ρ1 ∙rr r-extend ρ2) (r-extend (ρ1 ∙rr ρ2)) wkn : ∀ {Γ τ1 τ2} → Γ |- τ2 → (τ1 :: Γ) |- τ2 s-extend : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) (τ :: Γ') ids : ∀ {Γ} → sctx Γ Γ q∙ : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) Γ' lem3' : ∀ {Γ Γ' τ} → sctx Γ Γ' → Γ |- τ → sctx Γ (τ :: Γ') q : ∀ {Γ τ} → Γ |- τ → sctx Γ (τ :: Γ) svar : ∀ {Γ1 Γ2 τ} → sctx Γ1 Γ2 → τ ∈ Γ2 → Γ1 |- τ lem4' : ∀ {Γ Γ' τ1 τ2} → sctx Γ Γ' → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ')) lem4 : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ)) lem5' : ∀ {Γ Γ' τ1 τ2 τ3} → sctx Γ Γ' → Γ |- τ1 → Γ |- τ2 → Γ |- τ3 → sctx Γ (τ1 :: (τ2 :: (τ3 :: Γ'))) lem5 : ∀ {Γ τ1 τ2 τ3} → Γ |- τ1 → Γ |- τ2 → Γ |- τ3 → sctx Γ (τ1 :: (τ2 :: (τ3 :: Γ))) data _|-_ where unit : ∀ {Γ} → Γ |- unit 0C : ∀ {Γ} → Γ |- C 1C : ∀ {Γ}→ Γ |- C plusC : ∀ {Γ} → Γ |- C → Γ |- C → Γ |- C var : ∀ {Γ τ} → τ ∈ Γ → Γ |- τ z : ∀ {Γ} → Γ |- nat s : ∀ {Γ} → (e : Γ |- nat) → Γ |- nat rec : ∀ {Γ τ} → Γ |- nat → Γ |- τ → (nat :: (τ :: Γ)) |- τ → Γ |- τ lam : ∀ {Γ τ ρ} → (ρ :: Γ) |- τ → Γ |- (ρ ->c τ) app : ∀ {Γ τ1 τ2} → Γ |- (τ2 ->c τ1) → Γ |- τ2 → Γ |- τ1 -- rz : ∀ {Γ} → Γ |- rnat -- rsuc : ∀ {Γ} → Γ |- rnat → Γ |- rnat -- rrec : ∀ {Γ τ} → Γ |- rnat → (Z' : Γ |- τ) → (S' : Γ |- (rnat ->c (τ ->c τ))) → (P : Z' ≤s (app (app S' rz) Z')) → Γ |- τ --→ (S' : (nat≤ :: (τ :: Γ)) |- τ) → (P : Z' ≤s subst S' (lem3' (lem3' ids Z') z')) (what we're doing is the same but just avoids termination problems) prod : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → Γ |- (τ1 ×c τ2) l-proj : ∀ {Γ τ1 τ2} → Γ |- (τ1 ×c τ2) → Γ |- τ1 r-proj : ∀ {Γ τ1 τ2} → Γ |- (τ1 ×c τ2) → Γ |- τ2 nil : ∀ {Γ τ} → Γ |- list τ _::c_ : ∀ {Γ τ} → Γ |- τ → Γ |- list τ → Γ |- list τ listrec : ∀ {Γ τ τ'} → Γ |- list τ → Γ |- τ' → (τ :: (list τ :: (τ' :: Γ))) |- τ' → Γ |- τ' true : ∀ {Γ} → Γ |- bool false : ∀ {Γ} → Γ |- bool max : ∀ {Γ τ} → CTpM τ → Γ |- τ → Γ |- τ → Γ |- τ {-[ Θ ]s : Monotone [ Γ ] [ Γ' ] [ ρ ]r : same interpE ren e ρ k == interpE e (interpR ρ) k interp commutes with renaming and substitution equations that define ren and subst are true in the semantics-} --also add axioms for max-l/r etc. data _≤s_ where refl-s : ∀ {Γ T} → {e : Γ |- T} → e ≤s e trans-s : ∀ {Γ T} → {e e' e'' : Γ |- T} → e ≤s e' → e' ≤s e'' → e ≤s e'' cong-refl : ∀ {Γ τ} {e e' : Γ |- τ} → e == e' → e ≤s e' +-unit-l : ∀ {Γ} {e : Γ |- C} → (plusC 0C e) ≤s e +-unit-l' : ∀ {Γ} {e : Γ |- C} → e ≤s (plusC 0C e) +-unit-r : ∀ {Γ} {e : Γ |- C} → (plusC e 0C) ≤s e +-unit-r' : ∀ {Γ} {e : Γ |- C} → e ≤s (plusC e 0C) +-assoc : ∀ {Γ} {e1 e2 e3 : Γ |- C} → (plusC e1 (plusC e2 e3)) ≤s (plusC (plusC e1 e2) e3) +-assoc' : ∀ {Γ} {e1 e2 e3 : Γ |- C} → (plusC (plusC e1 e2) e3) ≤s (plusC e1 (plusC e2 e3)) refl-+ : ∀ {Γ} {e0 e1 : Γ |- C} → (plusC e0 e1) ≤s (plusC e1 e0) cong-+ : ∀ {Γ} {e0 e1 e0' e1' : Γ |- C} → e0 ≤s e0' → e1 ≤s e1' → (plusC e0 e1) ≤s (plusC e0' e1') cong-lproj : ∀ {Γ τ τ'} {e e' : Γ |- (τ ×c τ')} → e ≤s e' → (l-proj e) ≤s (l-proj e') cong-rproj : ∀ {Γ τ τ'} {e e' : Γ |- (τ ×c τ')} → e ≤s e' → (r-proj e) ≤s (r-proj e') cong-app : ∀ {Γ τ τ'} {e e' : Γ |- (τ ->c τ')} {e1 : Γ |- τ} → e ≤s e' → (app e e1) ≤s (app e' e1) ren-cong : ∀ {Γ Γ' τ} {e1 e2 : Γ' |- τ} {ρ : rctx Γ Γ'} → e1 ≤s e2 → (ren e1 ρ) ≤s (ren e2 ρ) subst-cong : ∀ {Γ Γ' τ} {e1 e2 : Γ' |- τ} {Θ : sctx Γ Γ'} → e1 ≤s e2 → (subst e1 Θ) ≤s (subst e2 Θ) subst-cong2 : ∀ {Γ Γ' τ} {Θ Θ' : sctx Γ Γ'} {e : Γ' |- τ} → (∀ τ → (x : τ ∈ Γ') → Θ x ≤s Θ' x) → subst e Θ ≤s subst e Θ' cong-rec : ∀ {Γ τ} {e e' : Γ |- nat} {e0 : Γ |- τ} {e1 : (nat :: (τ :: Γ)) |- τ} → e ≤s e' → rec e e0 e1 ≤s rec e' e0 e1 cong-listrec : ∀ {Γ τ τ'} {e e' : Γ |- list τ} {e0 : Γ |- τ'} {e1 : (τ :: (list τ :: (τ' :: Γ))) |- τ'} → e ≤s e' → listrec e e0 e1 ≤s listrec e' e0 e1 lam-s : ∀ {Γ T T'} → {e : (T :: Γ) |- T'} → {e2 : Γ |- T} → subst e (q e2) ≤s app (lam e) e2 l-proj-s : ∀ {Γ T1 T2} → {e1 : Γ |- T1} {e2 : Γ |- T2} → e1 ≤s (l-proj (prod e1 e2)) r-proj-s : ∀ {Γ T1 T2} → {e1 : Γ |- T1} → {e2 : Γ |- T2} → e2 ≤s (r-proj (prod e1 e2)) rec-steps-z : ∀ {Γ T} → {e0 : Γ |- T} → {e1 : (nat :: (T :: Γ)) |- T} → e0 ≤s (rec z e0 e1) rec-steps-s : ∀ {Γ T} → {e : Γ |- nat} → {e0 : Γ |- T} → {e1 : (nat :: (T :: Γ)) |- T} → subst e1 (lem4 e (rec e e0 e1)) ≤s (rec (s e) e0 e1) listrec-steps-nil : ∀ {Γ τ τ'} → {e0 : Γ |- τ'} → {e1 : (τ :: (list τ :: (τ' :: Γ))) |- τ'} → e0 ≤s (listrec nil e0 e1) listrec-steps-cons : ∀ {Γ τ τ'} → {h : Γ |- τ} {t : Γ |- list τ} → {e0 : Γ |- τ'} → {e1 : (τ :: (list τ :: (τ' :: Γ))) |- τ'} → subst e1 (lem5 h t (listrec t e0 e1)) ≤s (listrec (h ::c t) e0 e1) ren-comp-l : ∀ {Γ Γ' Γ'' τ} → (ρ1 : rctx Γ Γ') → (ρ2 : rctx Γ' Γ'') → (e : Γ'' |- τ) → (ren (ren e ρ2) ρ1) ≤s (ren e (ρ1 ∙rr ρ2)) ren-comp-r : ∀ {Γ Γ' Γ'' τ} → (ρ1 : rctx Γ Γ') → (ρ2 : rctx Γ' Γ'') → (e : Γ'' |- τ) → (ren e (ρ1 ∙rr ρ2)) ≤s (ren (ren e ρ2) ρ1) subst-id-l : ∀ {Γ τ} → (e : Γ |- τ) → e ≤s subst e ids subst-id-r : ∀ {Γ τ} → (e : Γ |- τ) → subst e ids ≤s e subst-rs-l : ∀ {A B C τ} → (ρ : rctx C A) (Θ : sctx A B) (e : B |- τ) → ren (subst e Θ) ρ ≤s subst e (ρ rs Θ) subst-rs-r : ∀ {A B C τ} → (ρ : rctx C A) (Θ : sctx A B) (e : B |- τ) → subst e (ρ rs Θ) ≤s ren (subst e Θ) ρ subst-sr-l : ∀ {Γ Γ' Γ'' τ} → (Θ : sctx Γ Γ') → (ρ : rctx Γ' Γ'') → (e : Γ'' |- τ) → (subst (ren e ρ) Θ) ≤s subst e (Θ sr ρ) subst-sr-r : ∀ {Γ Γ' Γ'' τ} → (Θ : sctx Γ Γ') → (ρ : rctx Γ' Γ'') → (e : Γ'' |- τ) → subst e (Θ sr ρ) ≤s (subst (ren e ρ) Θ) subst-ss-l : ∀ {A B C τ} → (Θ1 : sctx A B) (Θ2 : sctx B C) (e : C |- τ) → subst e (Θ1 ss Θ2) ≤s subst (subst e Θ2) Θ1 subst-ss-r : ∀ {A B C τ} → (Θ1 : sctx A B) (Θ2 : sctx B C) (e : C |- τ) → subst (subst e Θ2) Θ1 ≤s subst e (Θ1 ss Θ2) subst-compose-l : ∀ {Γ Γ' τ τ1} (Θ : sctx Γ Γ') (v : Γ |- τ) (e : (τ :: Γ' |- τ1) ) → subst (subst e (s-extend Θ)) (q v) ≤s subst e (lem3' Θ v) subst-compose-r : ∀ {Γ Γ' τ τ1} (Θ : sctx Γ Γ') (v : Γ |- τ) (e : (τ :: Γ' |- τ1) ) → subst e (lem3' Θ v) ≤s subst (subst e (s-extend Θ)) (q v) subst-compose2-l : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) → subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2) ≤s subst e1 (lem4' Θ v1 v2) subst-compose2-r : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) → subst e1 (lem4' Θ v1 v2) ≤s subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2) subst-compose3-l : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ' |- τ1) (v2 : Γ' |- τ2) → subst (subst e1 (lem4 v1 v2)) Θ ≤s subst e1 (lem4' Θ (subst v1 Θ) (subst v2 Θ)) subst-compose3-r : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ' |- τ1) (v2 : Γ' |- τ2) → subst e1 (lem4' Θ (subst v1 Θ) (subst v2 Θ)) ≤s subst (subst e1 (lem4 v1 v2)) Θ subst-compose4-l : ∀ {Γ Γ' τ} (Θ : sctx Γ Γ') (v' : Γ |- nat) (r : Γ |- τ) (e2 : (nat :: (τ :: Γ')) |- τ) → subst (subst e2 (s-extend (s-extend Θ))) (lem4 v' r) ≤s subst e2 (lem4' Θ v' r) subst-compose4-r : ∀ {Γ Γ' τ} (Θ : sctx Γ Γ') (v' : Γ |- nat) (r : Γ |- τ) (e2 : (nat :: (τ :: Γ')) |- τ) → subst e2 (lem4' Θ v' r) ≤s subst (subst e2 (s-extend (s-extend Θ))) (lem4 v' r) subst-compose5-l : ∀ {Γ Γ' τ τ1 τ2 τ3} (Θ : sctx Γ Γ') (e : (τ1 :: (τ2 :: (τ3 :: Γ'))) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) → subst (subst e (s-extend (s-extend (s-extend (Θ))))) (lem5 v1 v2 v3) ≤s subst e (lem5' Θ v1 v2 v3) subst-compose5-r : ∀ {Γ Γ' τ τ1 τ2 τ3} (Θ : sctx Γ Γ') (e : (τ1 :: (τ2 :: (τ3 :: Γ'))) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) → subst e (lem5' Θ v1 v2 v3) ≤s subst (subst e (s-extend (s-extend (s-extend (Θ))))) (lem5 v1 v2 v3) -- r-extend : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) (τ :: Γ') r-extend ρ i0 = i0 r-extend ρ (iS x) = iS (ρ x) -- _∙rr_ : ∀ {A B C} → rctx A B → rctx B C → rctx A C ρ1 ∙rr ρ2 = ρ1 o ρ2 rename-var ρ a = ρ a idr x = x p∙ ρ = λ x → iS (ρ x) p = p∙ idr --free stuff rename-var-ident _ = Refl rename-var-∙ _ _ _ = Refl ∙rr-assoc r1 r2 r3 = Refl ren unit ρ = unit ren 0C ρ = 0C ren 1C ρ = 1C ren (plusC e e₁) ρ = plusC (ren e ρ) (ren e₁ ρ) ren (var x) ρ = var (ρ x) ren z ρ = z ren (s e) ρ = s (ren e ρ) ren (rec e e₁ e₂) ρ = rec (ren e ρ) (ren e₁ ρ) (ren e₂ (r-extend (r-extend ρ))) ren (lam e) ρ = lam (ren e (r-extend ρ)) ren (app e e₁) ρ = app (ren e ρ) (ren e₁ ρ) ren (prod e1 e2) ρ = prod (ren e1 ρ) (ren e2 ρ) ren (l-proj e) ρ = l-proj (ren e ρ) ren (r-proj e) ρ = r-proj (ren e ρ) ren nil ρ = nil ren (x ::c xs) ρ = ren x ρ ::c ren xs ρ ren true ρ = true ren false ρ = false ren (listrec e e₁ e₂) ρ = listrec (ren e ρ) (ren e₁ ρ) (ren e₂ (r-extend (r-extend (r-extend ρ)))) -- ren rz ρ = rz -- ren (rsuc e) ρ = rsuc (ren e ρ) -- ren (rrec e e₁ e₂ p) ρ = rrec (ren e ρ) (ren e₁ ρ) (ren e₂ ρ) (ren-cong p) ren (max τ e1 e2) ρ = max τ (ren e1 ρ) (ren e2 ρ) extend-ren-comp-lemma i0 ρ1 ρ2 = Refl extend-ren-comp-lemma (iS x) ρ1 ρ2 = Refl extend-ren-comp ρ1 ρ2 = λ=i (λ τ → λ= (λ x → extend-ren-comp-lemma x ρ1 ρ2)) -- weakening a context wkn e = ren e iS -- parallel extension s-extend Θ i0 = var i0 s-extend Θ (iS x) = wkn (Θ x) -- identity substitution ids x = var x -- weakening with substitution q∙ Θ = λ x → wkn (Θ x) lem3' Θ e i0 = e lem3' Θ e (iS i) = Θ i --lem3 q e = lem3' ids e -- subst-var svar Θ i = q (Θ i) i0 lem4' Θ a b = lem3' (lem3' Θ b) a lem4 e1 e2 = lem4' ids e1 e2 lem5' Θ a b c = lem3' (lem3' (lem3' Θ c) b) a lem5 e1 e2 e3 = lem5' ids e1 e2 e3 subst unit Θ = unit subst 0C Θ = 0C subst 1C Θ = 1C subst (plusC e e₁) Θ = plusC (subst e Θ) (subst e₁ Θ) subst (var x) Θ = Θ x subst z Θ = z subst (s e) Θ = s (subst e Θ) subst (rec e e₁ e₂) Θ = rec (subst e Θ) (subst e₁ Θ) (subst e₂ (s-extend (s-extend Θ))) subst (lam e) Θ = lam (subst e (s-extend Θ)) subst (app e e₁) Θ = app (subst e Θ) (subst e₁ Θ) subst (prod e1 e2) Θ = prod (subst e1 Θ) (subst e2 Θ) subst (l-proj e) Θ = l-proj (subst e Θ) subst (r-proj e) Θ = r-proj (subst e Θ) subst nil Θ = nil subst (x ::c xs) Θ = subst x Θ ::c subst xs Θ subst true Θ = true subst false Θ = false subst (listrec e e₁ e₂) Θ = listrec (subst e Θ) (subst e₁ Θ) (subst e₂ (s-extend (s-extend (s-extend Θ)))) -- subst rz Θ = rz -- subst (rsuc e) Θ = rsuc (subst e Θ) -- subst (rrec e e₁ e₂ p) Θ = rrec (subst e Θ) (subst e₁ Θ) (subst e₂ Θ) (subst-cong p) subst (max τ e1 e2) Θ = max τ (subst e1 Θ) (subst e2 Θ) subst1 : ∀ {Γ τ τ1} → Γ |- τ1 → (τ1 :: Γ) |- τ → Γ |- τ subst1 e e' = subst e' (q e) _rs_ ρ Θ x = ren (subst (var x) Θ) ρ _ss_ Θ1 Θ2 x = subst (subst (var x) Θ2) Θ1 _sr_ Θ ρ x = subst (ren (var x) ρ) Θ extend-id-once-lemma : ∀ {Γ τ τ'} → (x : τ ∈ τ' :: Γ) → _==_ {_} {τ' :: Γ |- τ} (ids {τ' :: Γ} {τ} x) (s-extend {Γ} {Γ} {τ'} (ids {Γ}) {τ} x) extend-id-once-lemma i0 = Refl extend-id-once-lemma (iS x) = Refl extend-id-once : ∀ {Γ τ} → Id {_} {sctx (τ :: Γ) (τ :: Γ)} (ids {τ :: Γ}) (s-extend ids) extend-id-once = λ=i (λ τ → λ= (λ x → extend-id-once-lemma x)) extend-id-twice : ∀ {Γ τ1 τ2} → Id {_} {sctx (τ1 :: τ2 :: Γ) (τ1 :: τ2 :: Γ)} (ids {τ1 :: τ2 :: Γ}) (s-extend (s-extend ids)) extend-id-twice = ap s-extend extend-id-once ∘ extend-id-once {- lemmas I may or may not need later extend-rs-once-lemma : ∀ {A B C τ τ'} → (x : τ ∈ τ' :: B) (ρ : rctx C A) (Θ : sctx A B) → _==_ {_} {τ' :: C |- τ} (_rs_ {τ' :: C} {τ' :: A} {τ' :: B} (r-extend {C} {A} {τ'} ρ) (s-extend {A} {B} {τ'} Θ) {τ} x) (s-extend {C} {B} {τ'} (_rs_ {C} {A} {B} ρ Θ) {τ} x) extend-rs-once-lemma i0 ρ Θ = Refl extend-rs-once-lemma (iS x) ρ Θ = ! (ren-comp iS ρ (Θ x)) ∘ ren-comp (r-extend ρ) iS (Θ x) extend-rs-once : ∀ {A B C τ} → (ρ : rctx C A) (Θ : sctx A B) → Id {_} {sctx (τ :: C) (τ :: B)} (r-extend ρ rs s-extend Θ) (s-extend (ρ rs Θ)) extend-rs-once ρ Θ = λ=i (λ τ → λ= (λ x → extend-rs-once-lemma x ρ Θ)) extend-rs-twice : ∀ {A B C τ τ'} → (ρ : rctx C A) (Θ : sctx A B) → Id {_} {sctx (τ :: τ' :: C) (τ :: τ' :: B)} ((r-extend (r-extend ρ)) rs (s-extend (s-extend Θ))) ((s-extend (s-extend (ρ rs Θ)))) extend-rs-twice ρ Θ = ap s-extend (extend-rs-once ρ Θ) ∘ extend-rs-once (r-extend ρ) (s-extend Θ) extend-sr-once-lemma : ∀ {A B C τ τ'} → (Θ : sctx A B) (ρ : rctx B C) (x : τ ∈ τ' :: C) → _==_ {_} {τ' :: A |- τ} (s-extend (_sr_ Θ ρ) x) (_sr_ (s-extend Θ) (r-extend ρ) x) extend-sr-once-lemma Θ ρ i0 = Refl extend-sr-once-lemma Θ ρ (iS x) = Refl extend-sr-once : ∀ {A B C τ} → (Θ : sctx A B) (ρ : rctx B C) → Id {_} {sctx (τ :: A) (τ :: C)} (s-extend Θ sr r-extend ρ) (s-extend (Θ sr ρ)) extend-sr-once Θ ρ = λ=i (λ τ → λ= (λ x → ! (extend-sr-once-lemma Θ ρ x))) extend-sr-twice : ∀ {A B C τ τ'} → (Θ : sctx A B) (ρ : rctx B C) → Id {_} {sctx (τ' :: τ :: A) (τ' :: τ :: C)} (s-extend (s-extend Θ) sr r-extend (r-extend ρ)) (s-extend (s-extend (Θ sr ρ))) extend-sr-twice Θ ρ = ap s-extend (extend-sr-once Θ ρ) ∘ extend-sr-once (s-extend Θ) (r-extend ρ) extend-ss-once-lemma : ∀ {A B C τ τ'} → (Θ1 : sctx A B) (Θ2 : sctx B C) (x : τ ∈ τ' :: C) → _==_ {_} {τ' :: A |- τ} (s-extend (_ss_ Θ1 Θ2) x) (_ss_ (s-extend Θ1) (s-extend Θ2) x) extend-ss-once-lemma Θ1 Θ2 i0 = Refl extend-ss-once-lemma Θ1 Θ2 (iS x) = ! (sr-comp (s-extend Θ1) iS (Θ2 x)) ∘ rs-comp iS Θ1 (Θ2 x) extend-ss-once : ∀ {A B C τ} → (Θ1 : sctx A B) (Θ2 : sctx B C) → _==_ {_} {sctx (τ :: A) (τ :: C)} (s-extend (Θ1 ss Θ2)) ((s-extend Θ1) ss (s-extend Θ2)) extend-ss-once Θ1 Θ2 = λ=i (λ τ → λ= (λ x → extend-ss-once-lemma Θ1 Θ2 x)) throw : ∀ {Γ Γ' τ} → sctx Γ (τ :: Γ') → sctx Γ Γ' throw Θ x = Θ (iS x) fuse1 : ∀ {Γ Γ' τ τ'} (v : Γ |- τ') (Θ : sctx Γ Γ') (x : τ ∈ Γ') → (q v ss q∙ Θ) x == Θ x fuse1 v Θ x = subst (ren (Θ x) iS) (q v) =⟨ sr-comp (q v) iS (Θ x) ⟩ subst (Θ x) (q v sr iS) =⟨ Refl ⟩ subst (Θ x) ids =⟨ ! (subst-id (Θ x)) ⟩ (Θ x ∎) subst-compose-lemma-lemma : ∀ {Γ Γ' τ τ'} (v : Γ |- τ') (Θ : sctx Γ Γ') (x : τ ∈ τ' :: Γ') → _==_ {_} {Γ |- τ} (_ss_ (q v) (s-extend Θ) x) (lem3' Θ v x) subst-compose-lemma-lemma v Θ i0 = Refl subst-compose-lemma-lemma v Θ (iS x) = fuse1 v Θ x subst-compose-lemma : ∀ {Γ Γ' τ} (v : Γ |- τ) (Θ : sctx Γ Γ') → _==_ {_} {sctx Γ (τ :: Γ')} ((q v) ss (s-extend Θ)) (lem3' Θ v) subst-compose-lemma v Θ = λ=i (λ τ → λ= (λ x → subst-compose-lemma-lemma v Θ x)) fuse2 : ∀ {Γ Γ' τ τ1 τ2} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (Θ : sctx Γ Γ') (x : τ ∈ τ2 :: Γ') → (lem4 v1 v2 ss throw (s-extend (s-extend Θ))) x == (lem3' Θ v2) x fuse2 v1 v2 Θ x = subst (ren (s-extend Θ x) iS) (lem4 v1 v2) =⟨ sr-comp (lem4 v1 v2) iS (s-extend Θ x) ⟩ subst (s-extend Θ x) (lem4 v1 v2 sr iS) =⟨ Refl ⟩ subst (s-extend Θ x) (lem3' ids v2) =⟨ subst-compose-lemma-lemma v2 Θ x ⟩ (lem3' Θ v2 x ∎) subst-compose2-lemma-lemma : ∀ {Γ Γ' τ τ1 τ2 τ'} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (e1 : τ1 :: τ2 :: Γ' |- τ) (Θ : sctx Γ Γ') (x : τ' ∈ τ1 :: τ2 :: Γ') → _==_ {_} {_} ((lem4 v1 v2 ss s-extend (s-extend Θ)) x) (lem4' Θ v1 v2 x) subst-compose2-lemma-lemma v1 v2 e1 Θ i0 = Refl subst-compose2-lemma-lemma v1 v2 e1 Θ (iS x) = fuse2 v1 v2 Θ x subst-compose2-lemma : ∀ {Γ Γ' τ τ1 τ2} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (e1 : τ1 :: τ2 :: Γ' |- τ) (Θ : sctx Γ Γ') → _==_ {_} {sctx Γ (τ1 :: τ2 :: Γ')} (lem4 v1 v2 ss s-extend (s-extend Θ)) (lem4' Θ v1 v2) subst-compose2-lemma v1 v2 e1 Θ = λ=i (λ τ → λ= (λ x → subst-compose2-lemma-lemma v1 v2 e1 Θ x)) fuse3 : ∀ {Γ Γ' τ1 τ2 τ'} (Θ : sctx Γ Γ') (v1 : Γ' |- τ1) (v2 : Γ' |- τ2) (x : τ' ∈ τ2 :: Γ') → subst (lem3' ids v2 x) Θ == lem3' Θ (subst v2 Θ) x fuse3 Θ v1 v2 i0 = Refl fuse3 Θ v1 v2 (iS x) = Refl subst-compose3-lemma-lemma : ∀ {Γ Γ' τ τ1 τ2 τ'} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ' |- τ1) (v2 : Γ' |- τ2) (x : τ' ∈ τ1 :: τ2 :: Γ') → _==_ {_} {_} ((Θ ss lem4 v1 v2) x) (lem4' Θ (subst v1 Θ) (subst v2 Θ) x) subst-compose3-lemma-lemma Θ e1 v1 v2 i0 = Refl subst-compose3-lemma-lemma Θ e1 v1 v2 (iS x) = fuse3 Θ v1 v2 x subst-compose3-lemma : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ' |- τ1) (v2 : Γ' |- τ2) → _==_ {_} {sctx Γ (τ1 :: τ2 :: Γ')} (Θ ss lem4 v1 v2) (lem4' Θ (subst v1 Θ) (subst v2 Θ)) subst-compose3-lemma Θ e1 v1 v2 = λ=i (λ τ → λ= (λ x → subst-compose3-lemma-lemma Θ e1 v1 v2 x)) fuse4-lemma : ∀ {Γ Γ' τ τ1 τ2 τ3} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) (Θ : sctx Γ Γ') (x : τ ∈ Γ') → (lem3' (lem3' ids v3) v2 ss q∙ (q∙ Θ)) x == Θ x fuse4-lemma v1 v2 v3 Θ x = subst (ren (wkn (Θ x)) iS) (lem3' (q v3) v2) =⟨ sr-comp (lem3' (q v3) v2) iS (wkn (Θ x)) ⟩ subst (wkn (Θ x)) (lem3' (q v3) v2 sr iS) =⟨ Refl ⟩ subst (ren (Θ x) iS) (lem3' (q v3) v2 sr iS) =⟨ sr-comp (lem3' (q v3) v2 sr iS) iS (Θ x) ⟩ subst (Θ x) ((lem3' (q v3) v2 sr iS) sr iS) =⟨ Refl ⟩ subst (Θ x) ids =⟨ ! (subst-id (Θ x)) ⟩ (Θ x ∎) fuse4 : ∀ {Γ Γ' τ τ1 τ2 τ3} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) (Θ : sctx Γ Γ') (x : τ ∈ τ2 :: τ3 :: Γ') → subst (s-extend (s-extend Θ) x) (lem3' (lem3' ids v3) v2) == lem3' (lem3' Θ v3) v2 x fuse4 v1 v2 v3 Θ i0 = Refl fuse4 v1 v2 v3 Θ (iS i0) = Refl fuse4 v1 v2 v3 Θ (iS (iS x)) = subst (wkn (wkn (Θ x))) (lem3' (lem3' ids v3) v2) =⟨ subst-ss (lem3' (lem3' ids v3) v2) (q∙ (q∙ Θ)) (var x) ⟩ subst (var x) (lem3' (lem3' ids v3) v2 ss q∙ (q∙ Θ)) =⟨ fuse4-lemma v1 v2 v3 Θ x ⟩ subst (var x) Θ =⟨ Refl ⟩ (Θ x ∎) subst-compose5-lemma-lemma : ∀ {Γ Γ' τ τ1 τ2 τ3 τ'} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) (e1 : τ1 :: τ2 :: τ3 :: Γ' |- τ) (Θ : sctx Γ Γ') (x : τ' ∈ τ1 :: τ2 :: τ3 :: Γ') → _==_ {_} {_} ((lem5 v1 v2 v3 ss s-extend (s-extend (s-extend Θ))) x) (lem5' Θ v1 v2 v3 x) subst-compose5-lemma-lemma v1 v2 v3 e Θ i0 = Refl subst-compose5-lemma-lemma v1 v2 v3 e Θ (iS x) = (lem5 v1 v2 v3 ss s-extend (s-extend (s-extend Θ))) (iS x) =⟨ sr-comp (lem5 v1 v2 v3) iS (s-extend (s-extend Θ) x) ⟩ subst (s-extend (s-extend Θ) x) (lem3' (lem3' ids v3) v2) =⟨ fuse4 v1 v2 v3 Θ x ⟩ (lem3' (lem3' Θ v3) v2 x ∎) subst-compose5-lemma : ∀ {Γ Γ' τ τ1 τ2 τ3} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) (e : τ1 :: τ2 :: τ3 :: Γ' |- τ) (Θ : sctx Γ Γ') → _==_ {_} {sctx Γ (τ1 :: τ2 :: τ3 :: Γ')} (lem5 v1 v2 v3 ss (s-extend (s-extend (s-extend Θ)))) (lem5' Θ v1 v2 v3) subst-compose5-lemma v1 v2 v3 e Θ = λ=i (λ τ → λ= (λ x → subst-compose5-lemma-lemma v1 v2 v3 e Θ x)) -} _+C_ : ∀ {Γ τ} → Γ |- C → Γ |- (C ×c τ)→ Γ |- (C ×c τ) c +C e = prod (plusC c (l-proj e)) (r-proj e) _trans_ : ∀ {Γ T} → {e e' e'' : Γ |- T} → e ≤s e' → e' ≤s e'' → e ≤s e'' _trans_ = trans-s infixr 10 _trans_
54.812346
179
0.446191
0ba30adffd837bede60bfd10363ef83916988542
2,380
agda
Agda
Cubical/Categories/Presheaves.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Categories/Presheaves.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Categories/Presheaves.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --postfix-projections #-} module Cubical.Categories.Presheaves where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.HITs.PropositionalTruncation open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Categories.NaturalTransformation open import Cubical.Categories.Sets module _ (ℓ ℓ' : Level) where PSH : Precategory ℓ ℓ' → Precategory (ℓ-max (ℓ-suc ℓ) ℓ') (ℓ-max (ℓ-suc ℓ) ℓ') PSH 𝒞 = FUNCTOR (𝒞 ^op) (SET ℓ) private variable ℓ : Level module Yoneda (𝒞 : Precategory ℓ ℓ) ⦃ 𝒞-cat : isCategory 𝒞 ⦄ where open Functor open NatTrans yo : 𝒞 .ob → Functor (𝒞 ^op) (SET ℓ) yo x .F-ob y .fst = 𝒞 .hom y x yo x .F-ob y .snd = 𝒞-cat .homIsSet yo x .F-hom f g = 𝒞 .seq f g yo x .F-idn i f = 𝒞 .seq-λ f i yo x .F-seq f g i h = 𝒞 .seq-α g f h i YO : Functor 𝒞 (PSH ℓ ℓ 𝒞) YO .F-ob = yo YO .F-hom f .N-ob z g = 𝒞 .seq g f YO .F-hom f .N-hom g i h = 𝒞 .seq-α g h f i YO .F-idn = make-nat-trans-path λ i _ → λ f → 𝒞 .seq-ρ f i YO .F-seq f g = make-nat-trans-path λ i _ → λ h → 𝒞 .seq-α h f g (~ i) module _ {x} (F : Functor (𝒞 ^op) (SET ℓ)) where yo-yo-yo : NatTrans (yo x) F → F .F-ob x .fst yo-yo-yo α = α .N-ob _ (𝒞 .idn _) no-no-no : F .F-ob x .fst → NatTrans (yo x) F no-no-no a .N-ob y f = F .F-hom f a no-no-no a .N-hom f = funExt λ g i → F .F-seq g f i a yo-iso : Iso (NatTrans (yo x) F) (F .F-ob x .fst) yo-iso .Iso.fun = yo-yo-yo yo-iso .Iso.inv = no-no-no yo-iso .Iso.rightInv b i = F .F-idn i b yo-iso .Iso.leftInv a = make-nat-trans-path (funExt λ _ → funExt rem) where rem : ∀ {z} (x₁ : 𝒞 .hom z x) → F .F-hom x₁ (yo-yo-yo a) ≡ (a .N-ob z) x₁ rem g = F .F-hom g (yo-yo-yo a) ≡[ i ]⟨ a .N-hom g (~ i) (𝒞 .idn x) ⟩ a .N-hom g i0 (𝒞 .idn x) ≡[ i ]⟨ a .N-ob _ (𝒞 .seq-ρ g i) ⟩ (a .N-ob _) g ∎ yo-equiv : NatTrans (yo x) F ≃ F .F-ob x .fst yo-equiv = isoToEquiv yo-iso YO-full : is-full YO YO-full x y F[f] = ∣ yo-yo-yo _ F[f] , yo-iso {x} (yo y) .Iso.leftInv F[f] ∣ YO-faithful : is-faithful YO YO-faithful x y f g p i = hcomp (λ j → λ{ (i = i0) → 𝒞 .seq-λ f j; (i = i1) → 𝒞 .seq-λ g j}) (yo-yo-yo _ (p i))
30.909091
81
0.565966
41ad61f508f7059e9c1db7b7f3f464a49a147574
1,313
agda
Agda
src/Categories/Category/Construction/StrictDiscrete.agda
yourboynico/agda-categories
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Category/Construction/StrictDiscrete.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Category/Construction/StrictDiscrete.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Category.Construction.StrictDiscrete where -- This is not 'the' Discrete Category construction, but one of them. -- In this case, what is built is a Category, but it's actually Strict (thus -- the name). open import Level open import Data.Unit open import Function open import Relation.Binary.PropositionalEquality as ≡ open import Categories.Category open import Categories.Functor Discrete : ∀ {a} (A : Set a) → Category a a a Discrete A = record { Obj = A ; _⇒_ = _≡_ ; _≈_ = _≡_ ; id = refl ; _∘_ = flip ≡.trans ; assoc = λ {_ _ _ _ g} → sym (trans-assoc g) ; sym-assoc = λ {_ _ _ _ g} → trans-assoc g ; identityˡ = λ {_ _ f} → trans-reflʳ f ; identityʳ = refl ; identity² = refl ; equiv = isEquivalence ; ∘-resp-≈ = λ where refl refl → refl } module _ {a o ℓ e} {A : Set a} (C : Category o ℓ e) where open Category C renaming (id to one) module _ (f : A → Obj) where lift-func : Functor (Discrete A) C lift-func = record { F₀ = f ; F₁ = λ { refl → one } ; identity = Equiv.refl ; homomorphism = λ { {_} {_} {_} {refl} {refl} → Equiv.sym identity² } ; F-resp-≈ = λ { {_} {_} {refl} refl → Equiv.refl } }
29.177778
76
0.581874
dc0f12b07f4201a08753371c60465b549eb80696
752
agda
Agda
test/interaction/Auto-EqualityReasoning.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Auto-EqualityReasoning.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Auto-EqualityReasoning.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Auto-EqualityReasoning where -- equality reasoning, computation and induction open import Auto.Prelude module AdditionCommutative where lemma : ∀ n m → (n + succ m) ≡ succ (n + m) lemma n m = {!-c!} -- h0 {- lemma zero m = refl lemma (succ x) m = cong succ (lemma x m) -} lemma' : ∀ n m → (n + succ m) ≡ succ (n + m) lemma' zero m = refl lemma' (succ n) m = cong succ (lemma' n m) addcommut : ∀ n m → (n + m) ≡ (m + n) addcommut n m = {!-c lemma'!} -- h1 {- addcommut zero zero = refl addcommut zero (succ x) = sym (cong succ (addcommut x zero)) -- solution does not pass termination check addcommut (succ x) m = begin (succ (x + m) ≡⟨ cong succ (addcommut x m) ⟩ (succ (m + x) ≡⟨ sym (lemma' m x) ⟩ ((m + succ x) ∎))) -}
25.931034
129
0.599734
234e395f839aa66d3cc4a908bea8479525a63e7c
1,089
agda
Agda
Cubical/Algebra/RingSolver/RingExpression.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Algebra/RingSolver/RingExpression.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Algebra/RingSolver/RingExpression.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.RingSolver.RingExpression where open import Cubical.Foundations.Prelude open import Cubical.Data.FinData open import Cubical.Data.Nat using (ℕ) open import Cubical.Data.Nat.Order using (zero-≤) open import Cubical.Data.Vec.Base open import Cubical.Algebra.RingSolver.AlmostRing open import Cubical.Algebra.RingSolver.RawRing renaming (⟨_⟩ to ⟨_⟩ᵣ) private variable ℓ : Level infixl 6 _⊕_ infixl 7 _⊗_ -- Expression in a ring on A with n variables data Expr {ℓ} (A : Type ℓ) (n : ℕ) : Type ℓ where K : A → Expr A n ∣ : Fin n → Expr A n _⊕_ : Expr A n → Expr A n → Expr A n _⊗_ : Expr A n → Expr A n → Expr A n -- _⊛_ : Expr A n → ℕ → Expr A n -- exponentiation ⊝_ : Expr A n → Expr A n module Eval (R : RawRing {ℓ}) where open import Cubical.Data.Vec open RawRing R ⟦_⟧ : ∀ {n} → Expr ⟨ R ⟩ᵣ n → Vec ⟨ R ⟩ᵣ n → ⟨ R ⟩ᵣ ⟦ K r ⟧ v = r ⟦ ∣ k ⟧ v = lookup k v ⟦ x ⊕ y ⟧ v = ⟦ x ⟧ v + ⟦ y ⟧ v ⟦ x ⊗ y ⟧ v = ⟦ x ⟧ v · ⟦ y ⟧ v -- ⟦ x ⊛ l ⟧ v = ⟦ x ⟧ v ^ l ⟦ ⊝ x ⟧ v = - ⟦ x ⟧ v
27.225
69
0.598714
41c16140220f0a87307b1a0f128bc4bf62e48aa5
409
agda
Agda
test/Succeed/Issue665.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue665.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue665.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue665 where postulate A : Set record I : Set where constructor i field f : A data Wrap : (j : I) → Set where con : ∀ {j} → Wrap j postulate C : Set anything : C works1 : ∀ {X} -> Wrap X -> C works1 (con {i _}) with anything ... | z = z works2 : ∀ {X} -> Wrap X -> C works2 (con {_}) with anything ... | z = z bugged : ∀ {X} -> Wrap X -> C bugged con with anything ... | z = z
14.103448
32
0.552567
a1a5a5ef36eb236094446352e66a465a7635b9c2
4,984
agda
Agda
core/lib/NType.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
core/lib/NType.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
core/lib/NType.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Base open import lib.PathGroupoid open import lib.Relation module lib.NType {i} where {- Definition of contractible types and truncation levels -} is-contr : Type i → Type i is-contr A = Σ A (λ x → ((y : A) → x == y)) has-level : ℕ₋₂ → (Type i → Type i) has-level ⟨-2⟩ A = is-contr A has-level (S n) A = (x y : A) → has-level n (x == y) is-prop = has-level -1 is-set = has-level 0 {- To be a mere proposition, it is sufficient that all points are equal -} has-all-paths : Type i → Type i has-all-paths A = (x y : A) → x == y abstract all-paths-is-prop : {A : Type i} → (has-all-paths A → is-prop A) all-paths-is-prop {A} c x y = (c x y , canon-path) where canon-path : {x y : A} (p : x == y) → c x y == p canon-path {.y} {y} idp = c y y =⟨ lemma (! (c y y)) ⟩ (! (c y y)) ∙ c y y =⟨ !-inv-l (c y y) ⟩ idp ∎ where lemma : {x y : A} (p : x == y) → c x y == p ∙ c y y lemma idp = idp {- Truncation levels are cumulative -} abstract raise-level : {A : Type i} (n : ℕ₋₂) → (has-level n A → has-level (S n) A) raise-level ⟨-2⟩ q = all-paths-is-prop (λ x y → ! (snd q x) ∙ snd q y) raise-level (S n) q = λ x y → raise-level n (q x y) {- Having decidable equality is stronger that being a set -} has-dec-eq : Type i → Type i has-dec-eq A = Decidable (_==_ :> Rel A i) abstract dec-eq-is-set : {A : Type i} → (has-dec-eq A → is-set A) dec-eq-is-set {A} d x y = all-paths-is-prop UIP where UIP : {x y : A} (p q : x == y) -> p == q UIP {x} idp q with d x x | lemma q where T : {x y : A} → x == y → Type i T {x} {y} p = match (d x y) withl (λ b → match (d x x) withl (λ b' → p == ! b' ∙ b) withr (λ _ → Lift Empty)) withr (λ _ → Lift Empty) lemma : {x y : A} → (p : x == y) -> T p lemma {x} idp with (d x x) lemma idp | inl a = ! (!-inv-l a) lemma idp | inr r = lift (r idp) UIP idp q | inl a | p' = ! (!-inv-l a) ∙ (! p') UIP idp q | inr r | _ = Empty-elim (r idp) {- Relationships between levels -} module _ {A : Type i} where abstract contr-has-all-paths : is-contr A → has-all-paths A contr-has-all-paths c x y = ! (snd c x) ∙ snd c y prop-has-all-paths : is-prop A → has-all-paths A prop-has-all-paths c x y = fst (c x y) inhab-prop-is-contr : A → is-prop A → is-contr A inhab-prop-is-contr x₀ p = (x₀ , λ y → fst (p x₀ y)) inhab-to-contr-is-prop : (A → is-contr A) → is-prop A inhab-to-contr-is-prop c = all-paths-is-prop $ λ x y → ! (snd (c x) x) ∙ snd (c x) y contr-has-level : {n : ℕ₋₂} → (is-contr A → has-level n A) contr-has-level {n = ⟨-2⟩} p = p contr-has-level {n = S n} p = raise-level n (contr-has-level p) prop-has-level-S : {n : ℕ₋₂} → (is-prop A → has-level (S n) A) prop-has-level-S {n = ⟨-2⟩} p = p prop-has-level-S {n = S n} p = raise-level (S n) (prop-has-level-S p) set-has-level-SS : {n : ℕ₋₂} → (is-set A → has-level (S (S n)) A) set-has-level-SS {n = ⟨-2⟩} p = p set-has-level-SS {n = S n} p = raise-level (S (S n)) (set-has-level-SS p) contr-is-prop : is-contr A → is-prop A contr-is-prop = contr-has-level contr-is-set : is-contr A → is-set A contr-is-set = contr-has-level prop-is-set : is-prop A → is-set A prop-is-set = prop-has-level-S {- If [A] has level [n], then so does [x == y] for [x y : A] -} =-preserves-level : (n : ℕ₋₂) {x y : A} → (has-level n A → has-level n (x == y)) =-preserves-level ⟨-2⟩ p = (contr-has-all-paths p _ _ , unique-path) where unique-path : {u v : A} (q : u == v) → contr-has-all-paths p u v == q unique-path idp = !-inv-l (snd p _) =-preserves-level (S n) {x} {y} p = raise-level n (p x y) =-preserves-set : {x y : A} → (is-set A → is-set (x == y)) =-preserves-set = =-preserves-level 0 =-preserves-prop : {x y : A} → (is-prop A → is-prop (x == y)) =-preserves-prop = =-preserves-level -1 {- The type of paths from a fixed point is contractible -} pathfrom-is-contr : (x : A) → is-contr (Σ A (λ t → x == t)) pathfrom-is-contr x = ((x , idp) , pathfrom-unique-path) where pathfrom-unique-path : {u : A} (pp : Σ A (λ t → u == t)) → (u , idp) == pp pathfrom-unique-path (u , idp) = idp {- The type of paths to a fixed point is contractible -} pathto-is-contr : (x : A) → is-contr (Σ A (λ t → t == x)) pathto-is-contr x = ((x , idp) , pathto-unique-path) where pathto-unique-path : {u : A} (pp : Σ A (λ t → t == u)) → (u , idp) == pp pathto-unique-path (u , idp) = idp {- If [B] is a fibration over a contractible type [A], then any point in any fiber of [B] gives a section -} contr-has-section : ∀ {j} {A : Type i} {B : A → Type j} → (is-contr A → (x : A) → (u : B x) → Π A B) contr-has-section {B = B} (x , p) x₀ y₀ t = transport B (! (p x₀) ∙ p t) y₀
34.136986
78
0.530498
221f3e45ab635da08e3e32a812e1ffcc619b49f4
8,644
agda
Agda
src/STLC/Kovacs/Substitution.agda
mietek/coquand-kovacs
bd626509948fbf8503ec2e31c1852e1ac6edcc79
[ "X11" ]
null
null
null
src/STLC/Kovacs/Substitution.agda
mietek/coquand-kovacs
bd626509948fbf8503ec2e31c1852e1ac6edcc79
[ "X11" ]
null
null
null
src/STLC/Kovacs/Substitution.agda
mietek/coquand-kovacs
bd626509948fbf8503ec2e31c1852e1ac6edcc79
[ "X11" ]
null
null
null
module STLC.Kovacs.Substitution where open import STLC.Kovacs.Embedding public open import Category -------------------------------------------------------------------------------- -- Substitutions (Sub ; ∙ ; _,_) infix 3 _⊢⋆_ data _⊢⋆_ : 𝒞 → 𝒞 → Set where ∅ : ∀ {Γ} → Γ ⊢⋆ ∅ _,_ : ∀ {Γ Ξ A} → (σ : Γ ⊢⋆ Ξ) (M : Γ ⊢ A) → Γ ⊢⋆ Ξ , A -- (_ₛ∘ₑ_) -- NOTE: _◐_ = ren⋆ _◐_ : ∀ {Γ Γ′ Ξ} → Γ ⊢⋆ Ξ → Γ′ ⊇ Γ → Γ′ ⊢⋆ Ξ ∅ ◐ η = ∅ (σ , M) ◐ η = σ ◐ η , ren η M -- (_ₑ∘ₛ_) _◑_ : ∀ {Γ Ξ Ξ′} → Ξ′ ⊇ Ξ → Γ ⊢⋆ Ξ′ → Γ ⊢⋆ Ξ done ◑ σ = σ wkₑ η ◑ (σ , M) = η ◑ σ liftₑ η ◑ (σ , M) = η ◑ σ , M -------------------------------------------------------------------------------- -- (dropₛ) wkₛ : ∀ {A Γ Ξ} → Γ ⊢⋆ Ξ → Γ , A ⊢⋆ Ξ wkₛ σ = σ ◐ wkₑ idₑ -- (keepₛ) liftₛ : ∀ {A Γ Ξ} → Γ ⊢⋆ Ξ → Γ , A ⊢⋆ Ξ , A liftₛ σ = wkₛ σ , 0 -- (⌜_⌝ᵒᵖᵉ) ⌊_⌋ : ∀ {Γ Γ′} → Γ′ ⊇ Γ → Γ′ ⊢⋆ Γ ⌊ done ⌋ = ∅ ⌊ wkₑ η ⌋ = wkₛ ⌊ η ⌋ ⌊ liftₑ η ⌋ = liftₛ ⌊ η ⌋ -- (∈ₛ) getₛ : ∀ {Γ Ξ A} → Γ ⊢⋆ Ξ → Ξ ∋ A → Γ ⊢ A getₛ (σ , M) zero = M getₛ (σ , M) (suc i) = getₛ σ i -- (Tmₛ) sub : ∀ {Γ Ξ A} → Γ ⊢⋆ Ξ → Ξ ⊢ A → Γ ⊢ A sub σ (𝓋 i) = getₛ σ i sub σ (ƛ M) = ƛ (sub (liftₛ σ) M) sub σ (M ∙ N) = sub σ M ∙ sub σ N -- (idₛ) idₛ : ∀ {Γ} → Γ ⊢⋆ Γ idₛ {∅} = ∅ idₛ {Γ , A} = liftₛ idₛ cut : ∀ {Γ A B} → Γ ⊢ A → Γ , A ⊢ B → Γ ⊢ B cut M N = sub (idₛ , M) N -- (_∘ₛ_) -- NOTE: _●_ = sub⋆ _●_ : ∀ {Γ Ξ Φ} → Ξ ⊢⋆ Φ → Γ ⊢⋆ Ξ → Γ ⊢⋆ Φ ∅ ● σ₁ = ∅ (σ₂ , M) ● σ₁ = σ₂ ● σ₁ , sub σ₁ M -------------------------------------------------------------------------------- -- (assₛₑₑ) comp◐○ : ∀ {Γ Γ′ Γ″ Ξ} → (η₁ : Γ″ ⊇ Γ′) (η₂ : Γ′ ⊇ Γ) (σ : Γ ⊢⋆ Ξ) → (σ ◐ η₂) ◐ η₁ ≡ σ ◐ (η₂ ○ η₁) comp◐○ η₁ η₂ ∅ = refl comp◐○ η₁ η₂ (σ , M) = _,_ & comp◐○ η₁ η₂ σ ⊗ (ren○ η₁ η₂ M ⁻¹) -- (assₑₛₑ) comp◑◐ : ∀ {Γ Γ′ Ξ Ξ′} → (η₁ : Γ′ ⊇ Γ) (σ : Γ ⊢⋆ Ξ′) (η₂ : Ξ′ ⊇ Ξ) → (η₂ ◑ σ) ◐ η₁ ≡ η₂ ◑ (σ ◐ η₁) comp◑◐ η₁ ∅ done = refl comp◑◐ η₁ (σ , M) (wkₑ η₂) = comp◑◐ η₁ σ η₂ comp◑◐ η₁ (σ , M) (liftₑ η₂) = (_, ren η₁ M) & comp◑◐ η₁ σ η₂ -------------------------------------------------------------------------------- -- (idlₑₛ) lid◑ : ∀ {Γ Ξ} → (σ : Γ ⊢⋆ Ξ) → idₑ ◑ σ ≡ σ lid◑ ∅ = refl lid◑ (σ , M) = (_, M) & lid◑ σ -- (idlₛₑ) lid◐ : ∀ {Γ Γ′} → (η : Γ′ ⊇ Γ) → idₛ ◐ η ≡ ⌊ η ⌋ lid◐ done = refl lid◐ (wkₑ η) = ((idₛ ◐_) ∘ wkₑ) & rid○ η ⁻¹ ⦙ comp◐○ (wkₑ idₑ) η idₛ ⁻¹ ⦙ wkₛ & lid◐ η lid◐ (liftₑ η) = (_, 0) & ( comp◐○ (liftₑ η) (wkₑ idₑ) idₛ ⦙ ((idₛ ◐_) ∘ wkₑ) & ( lid○ η ⦙ rid○ η ⁻¹ ) ⦙ comp◐○ (wkₑ idₑ) η idₛ ⁻¹ ⦙ (_◐ wkₑ idₑ) & lid◐ η ) -- (idrₑₛ) rid◑ : ∀ {Γ Γ′} → (η : Γ′ ⊇ Γ) → η ◑ idₛ ≡ ⌊ η ⌋ rid◑ done = refl rid◑ (wkₑ η) = comp◑◐ (wkₑ idₑ) idₛ η ⁻¹ ⦙ wkₛ & rid◑ η rid◑ (liftₑ η) = (_, 0) & ( comp◑◐ (wkₑ idₑ) idₛ η ⁻¹ ⦙ (_◐ wkₑ idₑ) & rid◑ η ) -------------------------------------------------------------------------------- -- (∈-ₑ∘ₛ) get◑ : ∀ {Γ Ξ Ξ′ A} → (σ : Γ ⊢⋆ Ξ′) (η : Ξ′ ⊇ Ξ) (i : Ξ ∋ A) → getₛ (η ◑ σ) i ≡ (getₛ σ ∘ getₑ η) i get◑ σ done i = refl get◑ (σ , M) (wkₑ η) i = get◑ σ η i get◑ (σ , M) (liftₑ η) zero = refl get◑ (σ , M) (liftₑ η) (suc i) = get◑ σ η i -- (Tm-ₑ∘ₛ) mutual sub◑ : ∀ {Γ Ξ Ξ′ A} → (σ : Γ ⊢⋆ Ξ′) (η : Ξ′ ⊇ Ξ) (M : Ξ ⊢ A) → sub (η ◑ σ) M ≡ (sub σ ∘ ren η) M sub◑ σ η (𝓋 i) = get◑ σ η i sub◑ σ η (ƛ M) = ƛ & sublift◑ σ η M sub◑ σ η (M ∙ N) = _∙_ & sub◑ σ η M ⊗ sub◑ σ η N sublift◑ : ∀ {Γ Ξ Ξ′ A B} → (σ : Γ ⊢⋆ Ξ′) (η : Ξ′ ⊇ Ξ) (M : Ξ , B ⊢ A) → sub (liftₛ {B} (η ◑ σ)) M ≡ (sub (liftₛ σ) ∘ ren (liftₑ η)) M sublift◑ σ η M = (λ σ′ → sub (σ′ , 0) M) & comp◑◐ (wkₑ idₑ) σ η ⦙ sub◑ (liftₛ σ) (liftₑ η) M -------------------------------------------------------------------------------- -- (∈-ₛ∘ₑ) get◐ : ∀ {Γ Γ′ Ξ A} → (η : Γ′ ⊇ Γ) (σ : Γ ⊢⋆ Ξ) (i : Ξ ∋ A) → getₛ (σ ◐ η) i ≡ (ren η ∘ getₛ σ) i get◐ η (σ , M) zero = refl get◐ η (σ , M) (suc i) = get◐ η σ i -- (Tm-ₛ∘ₑ) mutual sub◐ : ∀ {Γ Γ′ Ξ A} → (η : Γ′ ⊇ Γ) (σ : Γ ⊢⋆ Ξ) (M : Ξ ⊢ A) → sub (σ ◐ η) M ≡ (ren η ∘ sub σ) M sub◐ η σ (𝓋 i) = get◐ η σ i sub◐ η σ (ƛ M) = ƛ & sublift◐ η σ M sub◐ η σ (M ∙ N) = _∙_ & sub◐ η σ M ⊗ sub◐ η σ N sublift◐ : ∀ {Γ Γ′ Ξ A B} → (η : Γ′ ⊇ Γ) (σ : Γ ⊢⋆ Ξ) (M : Ξ , B ⊢ A) → sub (liftₛ {B} (σ ◐ η)) M ≡ (ren (liftₑ η) ∘ sub (liftₛ σ)) M sublift◐ η σ M = (λ σ′ → sub (σ′ , 0) M) & ( comp◐○ (wkₑ idₑ) η σ ⦙ (σ ◐_) & (wkₑ & ( rid○ η ⦙ lid○ η ⁻¹ )) ⦙ comp◐○ (liftₑ η) (wkₑ idₑ) σ ⁻¹ ) ⦙ sub◐ (liftₑ η) (liftₛ σ) M -------------------------------------------------------------------------------- -- (assₛₑₛ) comp●◑ : ∀ {Γ Ξ Ξ′ Φ} → (σ₁ : Γ ⊢⋆ Ξ′) (η : Ξ′ ⊇ Ξ) (σ₂ : Ξ ⊢⋆ Φ) → (σ₂ ◐ η) ● σ₁ ≡ σ₂ ● (η ◑ σ₁) comp●◑ σ₁ η ∅ = refl comp●◑ σ₁ η (σ₂ , M) = _,_ & comp●◑ σ₁ η σ₂ ⊗ (sub◑ σ₁ η M ⁻¹) -- (assₛₛₑ) comp●◐ : ∀ {Γ Γ′ Ξ Φ} → (η : Γ′ ⊇ Γ) (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) → (σ₂ ● σ₁) ◐ η ≡ σ₂ ● (σ₁ ◐ η) comp●◐ η σ₁ ∅ = refl comp●◐ η σ₁ (σ₂ , M) = _,_ & comp●◐ η σ₁ σ₂ ⊗ (sub◐ η σ₁ M ⁻¹) -------------------------------------------------------------------------------- -- (∈-∘ₛ) get● : ∀ {Γ Ξ Φ A} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) (i : Φ ∋ A) → getₛ (σ₂ ● σ₁) i ≡ (sub σ₁ ∘ getₛ σ₂) i get● σ₁ (σ₂ , M) zero = refl get● σ₁ (σ₂ , M) (suc i) = get● σ₁ σ₂ i -- (Tm-∘ₛ) mutual sub● : ∀ {Γ Ξ Φ A} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) (M : Φ ⊢ A) → sub (σ₂ ● σ₁) M ≡ (sub σ₁ ∘ sub σ₂) M sub● σ₁ σ₂ (𝓋 i) = get● σ₁ σ₂ i sub● σ₁ σ₂ (ƛ M) = ƛ & sublift● σ₁ σ₂ M sub● σ₁ σ₂ (M ∙ N) = _∙_ & sub● σ₁ σ₂ M ⊗ sub● σ₁ σ₂ N sublift● : ∀ {Γ Ξ Φ A B} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) (M : Φ , B ⊢ A) → sub (liftₛ {B} (σ₂ ● σ₁)) M ≡ (sub (liftₛ σ₁) ∘ sub (liftₛ σ₂)) M sublift● σ₁ σ₂ M = (λ σ′ → sub (σ′ , 0) M) & ( comp●◐ (wkₑ idₑ) σ₁ σ₂ ⦙ (σ₂ ●_) & (lid◑ (wkₛ σ₁) ⁻¹) ⦙ comp●◑ (liftₛ σ₁) (wkₑ idₑ) σ₂ ⁻¹ ) ⦙ sub● (liftₛ σ₁) (liftₛ σ₂) M -------------------------------------------------------------------------------- -- (∈-idₛ) idgetₛ : ∀ {Γ A} → (i : Γ ∋ A) → getₛ idₛ i ≡ 𝓋 i idgetₛ zero = refl idgetₛ (suc i) = get◐ (wkₑ idₑ) idₛ i ⦙ wk & idgetₛ i ⦙ 𝓋 ∘ suc & idgetₑ i -- (Tm-idₛ) idsub : ∀ {Γ A} → (M : Γ ⊢ A) → sub idₛ M ≡ M idsub (𝓋 i) = idgetₛ i idsub (ƛ M) = ƛ & idsub M idsub (M ∙ N) = _∙_ & idsub M ⊗ idsub N -------------------------------------------------------------------------------- -- (idrₛ) rid● : ∀ {Γ Ξ} → (σ : Γ ⊢⋆ Ξ) → σ ● idₛ ≡ σ rid● ∅ = refl rid● (σ , M) = _,_ & rid● σ ⊗ idsub M -- (idlₛ) lid● : ∀ {Γ Ξ} → (σ : Γ ⊢⋆ Ξ) → idₛ ● σ ≡ σ lid● ∅ = refl lid● (σ , M) = (_, M) & ( comp●◑ (σ , M) (wkₑ idₑ) idₛ ⦙ lid● (idₑ ◑ σ) ⦙ lid◑ σ ) -- (assₛ) assoc● : ∀ {Γ Ξ Φ Ψ} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) (σ₃ : Φ ⊢⋆ Ψ) → (σ₃ ● σ₂) ● σ₁ ≡ σ₃ ● (σ₂ ● σ₁) assoc● σ₁ σ₂ ∅ = refl assoc● σ₁ σ₂ (σ₃ , M) = _,_ & assoc● σ₁ σ₂ σ₃ ⊗ (sub● σ₁ σ₂ M ⁻¹) -------------------------------------------------------------------------------- 𝗦𝗧𝗟𝗖 : Category 𝒞 _⊢⋆_ 𝗦𝗧𝗟𝗖 = record { idₓ = idₛ ; _⋄_ = _●_ ; lid⋄ = lid● ; rid⋄ = rid● ; assoc⋄ = assoc● } subPsh : 𝒯 → Presheaf₀ 𝗦𝗧𝗟𝗖 subPsh A = record { Fₓ = _⊢ A ; F = sub ; idF = fext! idsub ; F⋄ = λ σ₁ σ₂ → fext! (sub● σ₂ σ₁) } --------------------------------------------------------------------------------
28.156352
80
0.287367
397765a9f3b9bcde1a92a3afe4050b3502b87587
33,185
agda
Agda
Numbers/Naturals/EuclideanAlgorithm.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Numbers/Naturals/EuclideanAlgorithm.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Numbers/Naturals/EuclideanAlgorithm.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Definition open import Numbers.Naturals.Naturals open import Numbers.Naturals.Order open import Numbers.Naturals.Order.Lemmas open import Numbers.Naturals.Order.WellFounded open import Orders.WellFounded.Induction open import Orders.Total.Definition open import Semirings.Definition module Numbers.Naturals.EuclideanAlgorithm where open TotalOrder ℕTotalOrder open Semiring ℕSemiring open import Decidable.Lemmas ℕDecideEquality record divisionAlgResult (a : ℕ) (b : ℕ) : Set where field quot : ℕ rem : ℕ pr : a *N quot +N rem ≡ b remIsSmall : (rem <N a) || (a ≡ 0) quotSmall : (0 <N a) || ((0 ≡ a) && (quot ≡ 0)) record divisionAlgResult' (a : ℕ) (b : ℕ) : Set where field quot : ℕ rem : ℕ .pr : a *N quot +N rem ≡ b remIsSmall : (rem <N' a) || (a =N' 0) quotSmall : (0 <N' a) || ((0 =N' a) && (quot =N' 0)) collapseDivAlgResult : {a b : ℕ} → (divisionAlgResult a b) → divisionAlgResult' a b collapseDivAlgResult record { quot = q ; rem = r ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inl y) } = record { quot = q ; rem = r ; pr = pr ; remIsSmall = inl (<NTo<N' x) ; quotSmall = inl (<NTo<N' y) } collapseDivAlgResult record { quot = q ; rem = r ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inr y) } = record { quot = q ; rem = r ; pr = pr ; remIsSmall = inl (<NTo<N' x) ; quotSmall = inr (collapseN (_&&_.fst y) ,, collapseN (_&&_.snd y)) } collapseDivAlgResult record { quot = q ; rem = r ; pr = pr ; remIsSmall = (inr x) ; quotSmall = inl y } = record { quot = q ; rem = r ; pr = pr ; remIsSmall = inr (collapseN x) ; quotSmall = inl (<NTo<N' y) } collapseDivAlgResult record { quot = q ; rem = r ; pr = pr ; remIsSmall = (inr x) ; quotSmall = inr y } = record { quot = q ; rem = r ; pr = pr ; remIsSmall = inr (collapseN x) ; quotSmall = inr (collapseN (_&&_.fst y) ,, collapseN (_&&_.snd y)) } squashDivAlgResult : {a b : ℕ} → divisionAlgResult' a b → divisionAlgResult a b squashDivAlgResult record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inl y) } = record { quot = quot ; rem = rem ; pr = squash pr ; remIsSmall = inl (<N'To<N x) ; quotSmall = inl (<N'To<N y) } squashDivAlgResult record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inr y) } = record { quot = quot ; rem = rem ; pr = squash pr ; remIsSmall = inl (<N'To<N x) ; quotSmall = inr (squashN (_&&_.fst y) ,, squashN (_&&_.snd y)) } squashDivAlgResult record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr x) ; quotSmall = (inl y) } = record { quot = quot ; rem = rem ; pr = squash pr ; remIsSmall = inr (squashN x) ; quotSmall = inl (<N'To<N y) } squashDivAlgResult record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr x) ; quotSmall = (inr y) } = record { quot = quot ; rem = rem ; pr = squash pr ; remIsSmall = inr (squashN x) ; quotSmall = inr (squashN (_&&_.fst y) ,, squashN (_&&_.snd y)) } squashPreservesRem : {a b : ℕ} → (p : divisionAlgResult' a b) → divisionAlgResult.rem (squashDivAlgResult p) ≡ divisionAlgResult'.rem p squashPreservesRem record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inl x₁) } = refl squashPreservesRem record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inr x₁) } = refl squashPreservesRem record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr x) ; quotSmall = (inl x₁) } = refl squashPreservesRem record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr x) ; quotSmall = (inr x₁) } = refl squashPreservesQuot : {a b : ℕ} → (p : divisionAlgResult' a b) → divisionAlgResult.quot (squashDivAlgResult p) ≡ divisionAlgResult'.quot p squashPreservesQuot record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inl x₁) } = refl squashPreservesQuot record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inr x₁) } = refl squashPreservesQuot record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr x) ; quotSmall = (inl x₁) } = refl squashPreservesQuot record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr x) ; quotSmall = (inr x₁) } = refl collapsePreservesRem : {a b : ℕ} → (p : divisionAlgResult a b) → divisionAlgResult'.rem (collapseDivAlgResult p) ≡ divisionAlgResult.rem p collapsePreservesRem record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inl x₁) } = refl collapsePreservesRem record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inr x₁) } = refl collapsePreservesRem record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr x) ; quotSmall = (inl x₁) } = refl collapsePreservesRem record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr x) ; quotSmall = (inr x₁) } = refl collapsePreservesQuot : {a b : ℕ} → (p : divisionAlgResult a b) → divisionAlgResult'.quot (collapseDivAlgResult p) ≡ divisionAlgResult.quot p collapsePreservesQuot record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inl x₁) } = refl collapsePreservesQuot record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) ; quotSmall = (inr x₁) } = refl collapsePreservesQuot record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr x) ; quotSmall = (inl x₁) } = refl collapsePreservesQuot record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr x) ; quotSmall = (inr x₁) } = refl divAlgLessLemma : (a b : ℕ) → (0 <N a) → (r : divisionAlgResult a b) → (divisionAlgResult.quot r ≡ 0) || (divisionAlgResult.rem r <N b) divAlgLessLemma zero b pr _ = exFalso (TotalOrder.irreflexive ℕTotalOrder pr) divAlgLessLemma (succ a) b _ record { quot = zero ; rem = a%b ; pr = pr ; remIsSmall = remIsSmall } = inl refl divAlgLessLemma (succ a) b _ record { quot = (succ a/b) ; rem = a%b ; pr = pr ; remIsSmall = remIsSmall } = inr record { x = a/b +N a *N succ (a/b) ; proof = pr } modUniqueLemma : {rem1 rem2 a : ℕ} → (quot1 quot2 : ℕ) → rem1 <N a → rem2 <N a → a *N quot1 +N rem1 ≡ a *N quot2 +N rem2 → rem1 ≡ rem2 modUniqueLemma {rem1} {rem2} {a} zero zero rem1<a rem2<a pr rewrite Semiring.productZeroRight ℕSemiring a = pr modUniqueLemma {rem1} {rem2} {a} zero (succ quot2) rem1<a rem2<a pr rewrite Semiring.productZeroRight ℕSemiring a | pr | multiplicationNIsCommutative a (succ quot2) | equalityCommutative (Semiring.+Associative ℕSemiring a (quot2 *N a) rem2) = exFalso (cannotAddAndEnlarge' {a} {quot2 *N a +N rem2} rem1<a) modUniqueLemma {rem1} {rem2} {a} (succ quot1) zero rem1<a rem2<a pr rewrite Semiring.productZeroRight ℕSemiring a | equalityCommutative pr | multiplicationNIsCommutative a (succ quot1) | equalityCommutative (Semiring.+Associative ℕSemiring a (quot1 *N a) rem1) = exFalso (cannotAddAndEnlarge' {a} {quot1 *N a +N rem1} rem2<a) modUniqueLemma {rem1} {rem2} {a} (succ quot1) (succ quot2) rem1<a rem2<a pr rewrite multiplicationNIsCommutative a (succ quot1) | multiplicationNIsCommutative a (succ quot2) | equalityCommutative (Semiring.+Associative ℕSemiring a (quot1 *N a) rem1) | equalityCommutative (Semiring.+Associative ℕSemiring a (quot2 *N a) rem2) = modUniqueLemma {rem1} {rem2} {a} quot1 quot2 rem1<a rem2<a (go {a}{quot1}{rem1}{quot2}{rem2} pr) where go : {a quot1 rem1 quot2 rem2 : ℕ} → (a +N (quot1 *N a +N rem1) ≡ a +N (quot2 *N a +N rem2)) → a *N quot1 +N rem1 ≡ a *N quot2 +N rem2 go {a} {quot1} {rem1} {quot2} {rem2} pr rewrite multiplicationNIsCommutative quot1 a | multiplicationNIsCommutative quot2 a = canSubtractFromEqualityLeft {a} pr modIsUnique : {a b : ℕ} → (div1 div2 : divisionAlgResult a b) → divisionAlgResult.rem div1 ≡ divisionAlgResult.rem div2 modIsUnique {zero} {b} record { quot = quot1 ; rem = rem1 ; pr = pr1 ; remIsSmall = remIsSmall1 } record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = remIsSmall } = transitivity pr1 (equalityCommutative pr) modIsUnique {succ a} {b} record { quot = quot1 ; rem = rem1 ; pr = pr1 ; remIsSmall = (inl y) } record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) } = modUniqueLemma {rem1} {rem} {succ a} quot1 quot y x (transitivity pr1 (equalityCommutative pr)) modIsUnique {succ a} {b} record { quot = quot1 ; rem = rem1 ; pr = pr1 ; remIsSmall = (inr ()) } record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inl x) } modIsUnique {succ a} {b} record { quot = quot1 ; rem = rem1 ; pr = pr1 ; remIsSmall = remIsSmall1 } record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = (inr ()) } transferAddition : (a b c : ℕ) → (a +N b) +N c ≡ (a +N c) +N b transferAddition a b c rewrite equalityCommutative (Semiring.+Associative ℕSemiring a b c) = p a b c where p : (a b c : ℕ) → a +N (b +N c) ≡ (a +N c) +N b p a b c = transitivity (applyEquality (a +N_) (Semiring.commutative ℕSemiring b c)) (Semiring.+Associative ℕSemiring a c b) divisionAlgLemma : (x b : ℕ) → x *N zero +N b ≡ b divisionAlgLemma x b rewrite (Semiring.productZeroRight ℕSemiring x) = refl divisionAlgLemma2 : (x b : ℕ) → (x ≡ b) → x *N succ zero +N zero ≡ b divisionAlgLemma2 x b pr rewrite (Semiring.productOneRight ℕSemiring x) = equalityCommutative (transitivity (equalityCommutative pr) (equalityCommutative (Semiring.sumZeroRight ℕSemiring x))) divisionAlgLemma3 : {a x : ℕ} → (p : succ a <N succ x) → (subtractionNResult.result (-N (inl p))) <N (succ x) divisionAlgLemma3 {a} {x} p = -NIsDecreasing {a} {succ x} p divisionAlgLemma4 : (p a q : ℕ) → ((p +N a *N p) +N q) +N succ a ≡ succ ((p +N a *N succ p) +N q) divisionAlgLemma4 p a q = ans where r : ((p +N a *N p) +N q) +N succ a ≡ succ (((p +N a *N p) +N q) +N a) ans : ((p +N a *N p) +N q) +N succ a ≡ succ ((p +N a *N succ p) +N q) s : ((p +N a *N p) +N q) +N a ≡ (p +N a *N succ p) +N q t : (p +N a *N p) +N a ≡ p +N a *N succ p s = transitivity (transferAddition (p +N a *N p) q a) (applyEquality (λ i → i +N q) t) ans = identityOfIndiscernablesRight _≡_ r (applyEquality succ s) r = succExtracts ((p +N a *N p) +N q) a t = transitivity (equalityCommutative (Semiring.+Associative ℕSemiring p (a *N p) a)) (applyEquality (λ n → p +N n) (equalityCommutative (transitivity (multiplicationNIsCommutative a (succ p)) (transitivity (Semiring.commutative ℕSemiring a _) (applyEquality (_+N a) (multiplicationNIsCommutative p _)))))) divisionAlg : (a : ℕ) → (b : ℕ) → divisionAlgResult a b divisionAlg zero = λ b → record { quot = zero ; rem = b ; pr = refl ; remIsSmall = inr refl ; quotSmall = inr (record { fst = refl ; snd = refl }) } divisionAlg (succ a) = rec <NWellfounded (λ n → divisionAlgResult (succ a) n) go where go : (x : ℕ) (indHyp : (y : ℕ) (y<x : y <N x) → divisionAlgResult (succ a) y) → divisionAlgResult (succ a) x go zero prop = record { quot = zero ; rem = zero ; pr = divisionAlgLemma (succ a) zero ; remIsSmall = inl (succIsPositive a) ; quotSmall = inl (succIsPositive a) } go (succ x) indHyp with totality (succ a) (succ x) go (succ x) indHyp | inl (inl sa<sx) with indHyp (subtractionNResult.result (-N (inl sa<sx))) (divisionAlgLemma3 sa<sx) ... | record { quot = prevQuot ; rem = prevRem ; pr = prevPr ; remIsSmall = smallRem } = p where p : divisionAlgResult (succ a) (succ x) addedA : (succ a *N prevQuot +N prevRem) +N (succ a) ≡ subtractionNResult.result (-N (inl sa<sx)) +N (succ a) addedA' : (succ a *N prevQuot +N prevRem) +N succ a ≡ succ x addedA'' : (succ a *N succ prevQuot) +N prevRem ≡ succ x addedA''' : succ ((prevQuot +N a *N succ prevQuot) +N prevRem) ≡ succ x addedA''' = identityOfIndiscernablesLeft _≡_ addedA'' refl p = record { quot = succ prevQuot ; rem = prevRem ; pr = addedA''' ; remIsSmall = smallRem ; quotSmall = inl (succIsPositive a) } addedA = applyEquality (λ n → n +N succ a) prevPr addedA' = identityOfIndiscernablesRight _≡_ addedA (addMinus {succ a} {succ x} (inl sa<sx)) addedA'' = identityOfIndiscernablesLeft _≡_ addedA' (divisionAlgLemma4 prevQuot a prevRem) go (succ x) indHyp | inr (sa=sx) = record { quot = succ zero ; rem = zero ; pr = divisionAlgLemma2 (succ a) (succ x) sa=sx ; remIsSmall = inl (succIsPositive a) ; quotSmall = inl (succIsPositive a) } go (succ x) indHyp | inl (inr (sx<sa)) = record { quot = zero ; rem = succ x ; pr = divisionAlgLemma (succ a) (succ x) ; remIsSmall = inl sx<sa ; quotSmall = inl (succIsPositive a) } data _∣_ : ℕ → ℕ → Set where divides : {a b : ℕ} → (res : divisionAlgResult a b) → divisionAlgResult.rem res ≡ zero → a ∣ b data _∣'_ : ℕ → ℕ → Set where divides' : {a b : ℕ} → (res : divisionAlgResult' a b) → .(divisionAlgResult'.rem res ≡ zero) → a ∣' b divToDiv' : {a b : ℕ} → a ∣ b → a ∣' b divToDiv' (divides res x) = divides' (collapseDivAlgResult res) (transitivity (collapsePreservesRem res) x) div'ToDiv : {a b : ℕ} → a ∣' b → a ∣ b div'ToDiv (divides' res x) = divides (squashDivAlgResult res) (transitivity (squashPreservesRem res) (squashN record { eq = x })) zeroDividesNothing : (a : ℕ) → zero ∣ succ a → False zeroDividesNothing a (divides record { quot = quot ; rem = rem ; pr = pr } x) = naughtE p where p : zero ≡ succ a p = transitivity (equalityCommutative x) pr record hcfData (a b : ℕ) : Set where field c : ℕ c|a : c ∣ a c|b : c ∣ b hcf : ∀ x → x ∣ a → x ∣ b → x ∣ c positiveTimes : {a b : ℕ} → (succ a *N succ b <N succ a) → False positiveTimes {a} {b} pr = zeroNeverGreater f' where g : succ a *N succ b <N succ a *N succ 0 g rewrite multiplicationNIsCommutative a 1 | Semiring.commutative ℕSemiring a 0 = pr f : succ b <N succ 0 f = cancelInequalityLeft {succ a} {succ b} g f' : b <N 0 f' = canRemoveSuccFrom<N f biggerThanCantDivideLemma : {a b : ℕ} → (a <N b) → (b ∣ a) → a ≡ 0 biggerThanCantDivideLemma {zero} {b} a<b b|a = refl biggerThanCantDivideLemma {succ a} {zero} a<b (divides record { quot = quot ; rem = .0 ; pr = pr ; remIsSmall = remIsSmall ; quotSmall = (inl (le x ())) } refl) biggerThanCantDivideLemma {succ a} {zero} a<b (divides record { quot = quot ; rem = .0 ; pr = () ; remIsSmall = remIsSmall ; quotSmall = (inr x) } refl) biggerThanCantDivideLemma {succ a} {succ b} a<b (divides record { quot = zero ; rem = .0 ; pr = pr ; remIsSmall = remIsSmall ; quotSmall = quotSmall } refl) rewrite Semiring.commutative ℕSemiring (b *N zero) 0 | multiplicationNIsCommutative b 0 = exFalso (naughtE pr) biggerThanCantDivideLemma {succ a} {succ b} a<b (divides record { quot = (succ quot) ; rem = .0 ; pr = pr ; remIsSmall = remIsSmall ; quotSmall = quotSmall } refl) rewrite Semiring.commutative ℕSemiring (quot +N b *N succ quot) 0 | equalityCommutative pr = exFalso (positiveTimes {b} {quot} a<b) biggerThanCantDivide : {a b : ℕ} → (x : ℕ) → (TotalOrder.max ℕTotalOrder a b) <N x → (x ∣ a) → (x ∣ b) → (a ≡ 0) && (b ≡ 0) biggerThanCantDivide {a} {b} x pr x|a x|b with totality a b biggerThanCantDivide {a} {b} x pr x|a x|b | inl (inl a<b) = exFalso (zeroNeverGreater f') where f : b ≡ 0 f = biggerThanCantDivideLemma pr x|b f' : a <N 0 f' rewrite equalityCommutative f = a<b biggerThanCantDivide {a} {b} x pr x|a x|b | inl (inr b<a) = exFalso (zeroNeverGreater f') where f : a ≡ 0 f = biggerThanCantDivideLemma pr x|a f' : b <N 0 f' rewrite equalityCommutative f = b<a biggerThanCantDivide {a} {b} x pr x|a x|b | inr a=b = (transitivity a=b f ,, f) where f : b ≡ 0 f = biggerThanCantDivideLemma pr x|b aDivA : (a : ℕ) → a ∣ a aDivA zero = divides (record { quot = 0 ; rem = 0 ; pr = equalityCommutative (oneTimesPlusZero zero) ; remIsSmall = inr refl ; quotSmall = inr (refl ,, refl) }) refl aDivA (succ a) = divides (record { quot = 1 ; rem = 0 ; pr = equalityCommutative (oneTimesPlusZero (succ a)) ; remIsSmall = inl (succIsPositive a) ; quotSmall = inl (succIsPositive a) }) refl aDivZero : (a : ℕ) → a ∣ zero aDivZero zero = aDivA zero aDivZero (succ a) = divides (record { quot = zero ; rem = zero ; pr = lemma (succ a) ; remIsSmall = inl (succIsPositive a) ; quotSmall = inl (succIsPositive a) }) refl where lemma : (b : ℕ) → b *N zero +N zero ≡ zero lemma b rewrite (Semiring.sumZeroRight ℕSemiring (b *N zero)) = Semiring.productZeroRight ℕSemiring b record extendedHcf (a b : ℕ) : Set where field hcf : hcfData a b c : ℕ c = hcfData.c hcf field extended1 : ℕ extended2 : ℕ extendedProof : (a *N extended1 ≡ b *N extended2 +N c) || (a *N extended1 +N c ≡ b *N extended2) divEqualityLemma1 : {a b c : ℕ} → b ≡ zero → b *N c +N 0 ≡ a → a ≡ b divEqualityLemma1 {a} {.0} {c} refl pr = equalityCommutative pr divEquality : {a b : ℕ} → a ∣ b → b ∣ a → a ≡ b divEquality {a} {b} (divides record { quot = quotAB ; rem = .0 ; pr = prAB ; remIsSmall = _ ; quotSmall = quotSmallAB } refl) (divides record { quot = quot ; rem = .0 ; pr = pr ; remIsSmall = _ ; quotSmall = (inl x) } refl) rewrite Semiring.commutative ℕSemiring (b *N quot) 0 | Semiring.commutative ℕSemiring (a *N quotAB) 0 | equalityCommutative pr | equalityCommutative (Semiring.*Associative ℕSemiring b quot quotAB) = res where lem : {b r : ℕ} → b *N r ≡ b → (0 <N b) → r ≡ 1 lem {zero} {r} pr () lem {succ b} {zero} pr _ rewrite multiplicationNIsCommutative b 0 = exFalso (naughtE pr) lem {succ b} {succ zero} pr _ = refl lem {succ b} {succ (succ r)} pr _ rewrite multiplicationNIsCommutative b (succ (succ r)) | Semiring.commutative ℕSemiring (succ r) (b +N (b +N r *N b)) | equalityCommutative (Semiring.+Associative ℕSemiring b (b +N r *N b) (succ r)) | Semiring.commutative ℕSemiring (b +N r *N b) (succ r) = exFalso (cannotAddAndEnlarge'' {succ b} pr) p : quot *N quotAB ≡ 1 p = lem prAB x q : quot ≡ 1 q = _&&_.fst (productOneImpliesOperandsOne p) res : b *N quot ≡ b res rewrite q | multiplicationNIsCommutative b 1 | Semiring.commutative ℕSemiring b 0 = refl divEquality {.0} {.0} (divides record { quot = quotAB ; rem = .0 ; pr = prAB ; remIsSmall = _ ; quotSmall = quotSmallAB } refl) (divides record { quot = quot ; rem = .0 ; pr = refl ; remIsSmall = _ ; quotSmall = (inr (refl ,, snd)) } refl) = refl hcfWelldefined : {a b : ℕ} → (ab : hcfData a b) → (ab' : hcfData a b) → (hcfData.c ab ≡ hcfData.c ab') hcfWelldefined {a} {b} record { c = c ; c|a = c|a ; c|b = c|b ; hcf = hcf } record { c = c' ; c|a = c|a' ; c|b = c|b' ; hcf = hcf' } with hcf c' c|a' c|b' ... | c'DivC with hcf' c c|a c|b ... | cDivC' = divEquality cDivC' c'DivC reverseHCF : {a b : ℕ} → (ab : extendedHcf a b) → extendedHcf b a reverseHCF {a} {b} record { hcf = record { c = c ; c|a = c|a ; c|b = c|b ; hcf = hcf } ; extended1 = extended1 ; extended2 = extended2 ; extendedProof = (inl x) } = record { hcf = record { c = c ; c|a = c|b ; c|b = c|a ; hcf = λ x z z₁ → hcf x z₁ z } ; extended1 = extended2 ; extended2 = extended1 ; extendedProof = inr (equalityCommutative x) } reverseHCF {a} {b} record { hcf = record { c = c ; c|a = c|a ; c|b = c|b ; hcf = hcf } ; extended1 = extended1 ; extended2 = extended2 ; extendedProof = (inr x) } = record { hcf = record { c = c ; c|a = c|b ; c|b = c|a ; hcf = λ x z z₁ → hcf x z₁ z } ; extended1 = extended2 ; extended2 = extended1 ; extendedProof = inl (equalityCommutative x) } oneDivN : (a : ℕ) → 1 ∣ a oneDivN a = divides (record { quot = a ; rem = zero ; pr = pr ; remIsSmall = inl (succIsPositive zero) ; quotSmall = inl (le zero refl) }) refl where pr : (a +N zero) +N zero ≡ a pr rewrite Semiring.sumZeroRight ℕSemiring (a +N zero) = Semiring.sumZeroRight ℕSemiring a hcfZero : (a : ℕ) → extendedHcf zero a hcfZero a = record { hcf = record { c = a ; c|a = aDivZero a ; c|b = aDivA a ; hcf = λ _ _ p → p } ; extended1 = 0 ; extended2 = 1 ; extendedProof = inr (equalityCommutative (Semiring.productOneRight ℕSemiring a))} hcfOne : (a : ℕ) → extendedHcf 1 a hcfOne a = record { hcf = record { c = 1 ; c|a = aDivA 1 ; c|b = oneDivN a ; hcf = λ _ z _ → z } ; extended1 = 1 ; extended2 = 0 ; extendedProof = inl g } where g : 1 ≡ a *N 0 +N 1 g rewrite multiplicationNIsCommutative a 0 = refl zeroIsValidRem : (a : ℕ) → (0 <N a) || (a ≡ 0) zeroIsValidRem zero = inr refl zeroIsValidRem (succ a) = inl (succIsPositive a) dividesBothImpliesDividesSum : {a x y : ℕ} → a ∣ x → a ∣ y → a ∣ (x +N y) dividesBothImpliesDividesSum {a} {x} {y} (divides record { quot = xDivA ; rem = .0 ; pr = prA ; quotSmall = qsm1 } refl) (divides record { quot = quot ; rem = .0 ; pr = pr ; quotSmall = qsm2 } refl) = divides (record { quot = xDivA +N quot ; rem = 0 ; pr = go {a} {x} {y} {xDivA} {quot} pr prA ; remIsSmall = zeroIsValidRem a ; quotSmall = (quotSmall qsm1 qsm2) }) refl where go : {a x y quot quot2 : ℕ} → (a *N quot2 +N zero ≡ y) → (a *N quot +N zero ≡ x) → a *N (quot +N quot2) +N zero ≡ x +N y go {a} {x} {y} {quot} {quot2} pr1 pr2 rewrite Semiring.sumZeroRight ℕSemiring (a *N quot) = identityOfIndiscernablesLeft _≡_ t (equalityCommutative (Semiring.sumZeroRight ℕSemiring (a *N (quot +N quot2)))) where t : a *N (quot +N quot2) ≡ x +N y t rewrite Semiring.sumZeroRight ℕSemiring (a *N quot2) = transitivity (Semiring.+DistributesOver* ℕSemiring a quot quot2) p where s : a *N quot +N a *N quot2 ≡ x +N a *N quot2 s = applyEquality (λ n → n +N a *N quot2) pr2 r : x +N a *N quot2 ≡ x +N y r = applyEquality (λ n → x +N n) pr1 p : a *N quot +N a *N quot2 ≡ x +N y p = transitivity s r quotSmall : ((0 <N a) || ((0 ≡ a) && (xDivA ≡ 0))) → ((0 <N a) || ((0 ≡ a) && (quot ≡ 0))) → (0 <N a) || ((0 ≡ a) && (xDivA +N quot ≡ 0)) quotSmall (inl x1) (inl x2) = inl x1 quotSmall (inl x1) (inr x2) = inl x1 quotSmall (inr x1) (inl x2) = inl x2 quotSmall (inr (a=0 ,, bl)) (inr (_ ,, bl2)) = inr (a=0 ,, ans) where ans : xDivA +N quot ≡ 0 ans rewrite bl | bl2 = refl dividesBothImpliesDividesDifference : {a b c : ℕ} → a ∣ b → a ∣ c → (c<b : c <N b) → a ∣ (subtractionNResult.result (-N (inl c<b))) dividesBothImpliesDividesDifference {zero} {b} {.0} prab (divides record { quot = quot ; rem = .0 ; pr = refl } refl) c<b = prab dividesBothImpliesDividesDifference {succ a} {b} {c} (divides record { quot = bDivSA ; rem = .0 ; pr = pr } refl) (divides record { quot = cDivSA ; rem = .0 ; pr = pr2 } refl) c<b rewrite (Semiring.sumZeroRight ℕSemiring (succ a *N cDivSA)) | (Semiring.sumZeroRight ℕSemiring (succ a *N bDivSA)) = divides (record { quot = subtractionNResult.result bDivSA-cDivSA ; rem = 0 ; pr = identityOfIndiscernablesLeft _≡_ (identityOfIndiscernablesLeft _≡_ s (equalityCommutative q)) (equalityCommutative (Semiring.sumZeroRight ℕSemiring _)) ; remIsSmall = inl (succIsPositive a) ; quotSmall = inl (succIsPositive a) }) refl where p : cDivSA <N bDivSA p rewrite (equalityCommutative pr2) | (equalityCommutative pr) = cancelInequalityLeft {succ a} {cDivSA} {bDivSA} c<b bDivSA-cDivSA : subtractionNResult cDivSA bDivSA (inl p) bDivSA-cDivSA = -N {cDivSA} {bDivSA} (inl p) la-ka = subtractionNResult.result (-N {succ a *N cDivSA} {succ a *N bDivSA} (inl (lessRespectsMultiplicationLeft cDivSA bDivSA (succ a) p (succIsPositive a)))) q : (succ a *N (subtractionNResult.result bDivSA-cDivSA)) ≡ la-ka q = subtractProduct {succ a} {cDivSA} {bDivSA} (succIsPositive a) p s : la-ka ≡ subtractionNResult.result (-N {c} {b} (inl c<b)) s = equivalentSubtraction (succ a *N cDivSA) b (succ a *N bDivSA) c (lessRespectsMultiplicationLeft cDivSA bDivSA (succ a) p (succIsPositive a)) c<b g where g : (succ a *N cDivSA) +N b ≡ (succ a *N bDivSA) +N c g rewrite equalityCommutative pr2 | equalityCommutative pr = Semiring.commutative ℕSemiring (cDivSA +N a *N cDivSA) (bDivSA +N a *N bDivSA) euclidLemma1 : {a b : ℕ} → (a<b : a <N b) → (t : ℕ) → a +N b <N t → a +N (subtractionNResult.result (-N (inl a<b))) <N t euclidLemma1 {zero} {b} zero<b t b<t = b<t euclidLemma1 {succ a} {b} sa<b t sa+b<t = identityOfIndiscernablesLeft _<N_ q (Semiring.commutative ℕSemiring (subtractionNResult.result (-N (inl sa<b))) (succ a)) where p : b <N t p = TotalOrder.<Transitive ℕTotalOrder (le a refl) sa+b<t q : (subtractionNResult.result (-N (inl sa<b))) +N succ a <N t q = identityOfIndiscernablesLeft _<N_ p (equalityCommutative (addMinus (inl sa<b))) euclidLemma2 : {a b max : ℕ} → (succ (a +N b) <N max) → b <N max euclidLemma2 {a} {b} {max} pr = lessTransitive {b} {succ (a +N b)} {max} (lemma a b) pr where lemma : (a b : ℕ) → b <N succ (a +N b) lemma a b rewrite Semiring.commutative ℕSemiring (succ a) b = addingIncreases b a euclidLemma3 : {a b max : ℕ} → (succ (succ (a +N b)) <N max) → succ b <N max euclidLemma3 {a} {b} {max} pr = euclidLemma2 {a} {succ b} {max} (identityOfIndiscernablesLeft _<N_ pr (applyEquality succ (equalityCommutative (succExtracts a b)))) euclidLemma4 : (a b c d h : ℕ) → (sa<b : (succ a) <N b) → (pr : subtractionNResult.result (-N (inl sa<b)) *N c ≡ (succ a) *N d +N h) → b *N c ≡ (succ a) *N (d +N c) +N h euclidLemma4 a b zero d h sa<b pr rewrite Semiring.sumZeroRight ℕSemiring d | Semiring.productZeroRight ℕSemiring b | Semiring.productZeroRight ℕSemiring (subtractionNResult.result (-N (inl sa<b))) = pr euclidLemma4 a b (succ c) d h sa<b pr rewrite subtractProduct' (succIsPositive c) sa<b = transitivity q' r' where q : (succ c) *N b ≡ succ (a +N c *N succ a) +N ((succ a) *N d +N h) q = moveOneSubtraction {succ (a +N c *N succ a)} {b +N c *N b} {(succ a) *N d +N h} {inl _} pr q' : b *N succ c ≡ succ (a +N c *N succ a) +N ((succ a) *N d +N h) q' rewrite multiplicationNIsCommutative b (succ c) = q r' : ((succ c) *N succ a) +N (((succ a) *N d) +N h) ≡ ((succ a) *N (d +N succ c)) +N h r' rewrite Semiring.+Associative ℕSemiring ((succ c) *N succ a) ((succ a) *N d) h = applyEquality (λ t → t +N h) {((succ c) *N succ a) +N ((succ a) *N d)} {(succ a) *N (d +N succ c)} (go (succ c) (succ a) d) where go' : (a b c : ℕ) → b *N a +N b *N c ≡ b *N (c +N a) go : (a b c : ℕ) → a *N b +N b *N c ≡ b *N (c +N a) go a b c rewrite multiplicationNIsCommutative a b = go' a b c go' a b c rewrite Semiring.commutative ℕSemiring (b *N a) (b *N c) = equalityCommutative (Semiring.+DistributesOver* ℕSemiring b c a) euclidLemma5 : (a b c d h : ℕ) → (sa<b : (succ a) <N b) → (pr : subtractionNResult.result (-N (inl sa<b)) *N c +N h ≡ (succ a) *N d) → (succ a) *N (d +N c) ≡ b *N c +N h euclidLemma5 a b c d h sa<b pr with (-N (inl sa<b)) euclidLemma5 a b zero d h sa<b pr | record { result = result ; pr = sub } rewrite Semiring.sumZeroRight ℕSemiring d | Semiring.productZeroRight ℕSemiring b | Semiring.productZeroRight ℕSemiring result = equalityCommutative pr euclidLemma5 a b (succ c) d h sa<b pr | record { result = result ; pr = sub } rewrite subtractProduct' (succIsPositive c) sa<b | equalityCommutative sub = pv'' where p : succ a *N d ≡ result *N succ c +N h p = equalityCommutative pr p' : a *N succ c +N succ a *N d ≡ (a *N succ c) +N ((result *N succ c) +N h) p' = applyEquality (λ t → a *N succ c +N t) p p'' : a *N succ c +N succ a *N d ≡ (a *N succ c +N result *N succ c) +N h p'' rewrite equalityCommutative (Semiring.+Associative ℕSemiring (a *N succ c) (result *N succ c) h) = p' p''' : a *N succ c +N succ a *N d ≡ (a +N result) *N succ c +N h p''' rewrite multiplicationNIsCommutative (a +N result) (succ c) | Semiring.+DistributesOver* ℕSemiring (succ c) a result | multiplicationNIsCommutative (succ c) a | multiplicationNIsCommutative (succ c) result = p'' pv : c +N (a *N succ c +N succ a *N d) ≡ (c +N (a +N result) *N succ c) +N h pv rewrite equalityCommutative (Semiring.+Associative ℕSemiring c ((a +N result) *N succ c) h) = applyEquality (λ t → c +N t) p''' pv' : (succ c) +N (a *N succ c +N succ a *N d) ≡ succ ((c +N (a +N result) *N succ c) +N h) pv' = applyEquality succ pv pv'' : (succ a) *N (d +N succ c) ≡ succ ((c +N (a +N result) *N succ c) +N h) pv'' = identityOfIndiscernablesLeft _≡_ pv' (go a c d) where go : (a c d : ℕ) → (succ c) +N (a *N succ c +N ((succ a) *N d)) ≡ (succ a) *N (d +N succ c) go a c d rewrite Semiring.+Associative ℕSemiring (succ c) (a *N succ c) ((succ a) *N d) = go' where go' : (succ a) *N (succ c) +N (succ a) *N d ≡ (succ a) *N (d +N succ c) go' rewrite Semiring.commutative ℕSemiring d (succ c) = equalityCommutative (Semiring.+DistributesOver* ℕSemiring (succ a) (succ c) d) euclid : (a b : ℕ) → extendedHcf a b euclid a b = inducted (succ a +N b) a b (a<SuccA (a +N b)) where P : ℕ → Set P sum = ∀ (a b : ℕ) → a +N b <N sum → extendedHcf a b go'' : {a b : ℕ} → (maxsum : ℕ) → (a <N b) → (a +N b <N maxsum) → (∀ y → y <N maxsum → P y) → extendedHcf a b go'' {zero} {b} maxSum zero<b b<maxsum indHyp = hcfZero b go'' {1} {b} maxSum 1<b b<maxsum indHyp = hcfOne b go'' {succ (succ a)} {b} maxSum ssa<b ssa+b<maxsum indHyp with (indHyp (succ b) (euclidLemma3 {a} {b} {maxSum} ssa+b<maxsum)) (subtractionNResult.result (-N (inl ssa<b))) (succ (succ a)) (identityOfIndiscernablesLeft _<N_ (a<SuccA b) (equalityCommutative (addMinus (inl ssa<b)))) go'' {succ (succ a)} {b} maxSum ssa<b ssa+b<maxsum indHyp | record { hcf = record { c = c ; c|a = c|a ; c|b = c|b ; hcf = hcf } ; extended1 = extended1 ; extended2 = extended2 ; extendedProof = inl extendedProof } = record { hcf = record { c = c ; c|a = c|b ; c|b = hcfDivB'' ; hcf = λ div prDivSSA prDivB → hcf div (dividesBothImpliesDividesDifference prDivB prDivSSA ssa<b) prDivSSA } ; extended2 = extended1; extended1 = extended2 +N extended1 ; extendedProof = inr (equalityCommutative (euclidLemma4 (succ a) b extended1 extended2 c ssa<b extendedProof)) } where hcfDivB : c ∣ ((succ (succ a)) +N (subtractionNResult.result (-N (inl ssa<b)))) hcfDivB = dividesBothImpliesDividesSum {c} {succ (succ a)} { subtractionNResult.result (-N (inl ssa<b))} c|b c|a hcfDivB' : c ∣ ((subtractionNResult.result (-N (inl ssa<b))) +N (succ (succ a))) hcfDivB' = identityOfIndiscernablesRight _∣_ hcfDivB (Semiring.commutative ℕSemiring (succ (succ a)) ( subtractionNResult.result (-N (inl ssa<b)))) hcfDivB'' : c ∣ b hcfDivB'' = identityOfIndiscernablesRight _∣_ hcfDivB' (addMinus (inl ssa<b)) go'' {succ (succ a)} {b} maxSum ssa<b ssa+b<maxsum indHyp | record { hcf = record { c = c ; c|a = c|a ; c|b = c|b ; hcf = hcf } ; extended1 = extended1 ; extended2 = extended2 ; extendedProof = inr extendedProof } = record { hcf = record { c = c ; c|a = c|b ; c|b = hcfDivB'' ; hcf = λ div prDivSSA prDivB → hcf div (dividesBothImpliesDividesDifference prDivB prDivSSA ssa<b) prDivSSA } ; extended2 = extended1; extended1 = extended2 +N extended1 ; extendedProof = inl (euclidLemma5 (succ a) b extended1 extended2 c ssa<b extendedProof) } where hcfDivB : c ∣ ((succ (succ a)) +N (subtractionNResult.result (-N (inl ssa<b)))) hcfDivB = dividesBothImpliesDividesSum {c} {succ (succ a)} { subtractionNResult.result (-N (inl ssa<b))} c|b c|a hcfDivB' : c ∣ ((subtractionNResult.result (-N (inl ssa<b))) +N (succ (succ a))) hcfDivB' = identityOfIndiscernablesRight _∣_ hcfDivB (Semiring.commutative ℕSemiring (succ (succ a)) (subtractionNResult.result (-N (inl ssa<b)))) hcfDivB'' : c ∣ b hcfDivB'' = identityOfIndiscernablesRight _∣_ hcfDivB' (addMinus (inl ssa<b)) go' : (maxSum a b : ℕ) → (a +N b <N maxSum) → (∀ y → y <N maxSum → P y) → extendedHcf a b go' maxSum a b a+b<maxsum indHyp with totality a b go' maxSum a b a+b<maxsum indHyp | inl (inl a<b) = go'' maxSum a<b a+b<maxsum indHyp go' maxSum a b a+b<maxsum indHyp | inl (inr b<a) = reverseHCF (go'' maxSum b<a (identityOfIndiscernablesLeft _<N_ a+b<maxsum (Semiring.commutative ℕSemiring a b)) indHyp) go' maxSum a .a _ indHyp | inr refl = record { hcf = record { c = a ; c|a = aDivA a ; c|b = aDivA a ; hcf = λ _ _ z → z } ; extended1 = 0 ; extended2 = 1 ; extendedProof = inr s} where s : a *N zero +N a ≡ a *N 1 s rewrite multiplicationNIsCommutative a zero | Semiring.productOneRight ℕSemiring a = refl go : ∀ x → (∀ y → y <N x → P y) → P x go maxSum indHyp = λ a b a+b<maxSum → go' maxSum a b a+b<maxSum indHyp inducted : ∀ x → P x inducted = rec <NWellfounded P go divOneImpliesOne : {a : ℕ} → a ∣ 1 → a ≡ 1 divOneImpliesOne {zero} a|1 = exFalso (zeroDividesNothing _ a|1) divOneImpliesOne {succ zero} a|1 = refl divOneImpliesOne {succ (succ a)} (divides record { quot = zero ; rem = .0 ; pr = pr ; remIsSmall = remIsSmall ; quotSmall = quotSmall } refl) rewrite Semiring.sumZeroRight ℕSemiring (a *N zero) | multiplicationNIsCommutative a 0 = exFalso (naughtE pr) divOneImpliesOne {succ (succ a)} (divides record { quot = (succ quot) ; rem = .0 ; pr = pr ; remIsSmall = remIsSmall ; quotSmall = quotSmall } refl) rewrite Semiring.commutative ℕSemiring quot (succ (quot +N a *N succ quot)) = exFalso (naughtE (equalityCommutative (succInjective pr)))
79.771635
614
0.63598
c71f7187418d5a8cfadb398adc1e6f6439e39e28
2,595
agda
Agda
Definition/Typed/Consequences/Reduction.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
30
2017-05-20T03:05:21.000Z
2022-03-30T18:01:07.000Z
Definition/Typed/Consequences/Reduction.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
4
2017-06-22T12:49:23.000Z
2021-02-22T10:37:24.000Z
Definition/Typed/Consequences/Reduction.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
8
2017-10-18T14:18:20.000Z
2021-11-27T15:58:33.000Z
{-# OPTIONS --without-K --safe #-} module Definition.Typed.Consequences.Reduction where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.EqRelInstance open import Definition.Typed.Consequences.Syntactic open import Definition.LogicalRelation open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Fundamental.Reducibility open import Tools.Nat open import Tools.Product private variable n : Nat Γ : Con Term n -- Helper function where all reducible types can be reduced to WHNF. whNorm′ : ∀ {A l} ([A] : Γ ⊩⟨ l ⟩ A) → ∃ λ B → Whnf B × Γ ⊢ A :⇒*: B whNorm′ (Uᵣ′ .⁰ 0<1 ⊢Γ) = U , Uₙ , idRed:*: (Uⱼ ⊢Γ) whNorm′ (ℕᵣ D) = ℕ , ℕₙ , D whNorm′ (Emptyᵣ D) = Empty , Emptyₙ , D whNorm′ (Unitᵣ D) = Unit , Unitₙ , D whNorm′ (ne′ K D neK K≡K) = K , ne neK , D whNorm′ (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) = Π F ▹ G , Πₙ , D whNorm′ (Σᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) = Σ F ▹ G , Σₙ , D whNorm′ (emb 0<1 [A]) = whNorm′ [A] -- Well-formed types can all be reduced to WHNF. whNorm : ∀ {A} → Γ ⊢ A → ∃ λ B → Whnf B × Γ ⊢ A :⇒*: B whNorm A = whNorm′ (reducible A) -- Helper function where reducible all terms can be reduced to WHNF. whNormTerm′ : ∀ {a A l} ([A] : Γ ⊩⟨ l ⟩ A) → Γ ⊩⟨ l ⟩ a ∷ A / [A] → ∃ λ b → Whnf b × Γ ⊢ a :⇒*: b ∷ A whNormTerm′ (Uᵣ x) (Uₜ A d typeA A≡A [t]) = A , typeWhnf typeA , d whNormTerm′ (ℕᵣ x) (ℕₜ n d n≡n prop) = let natN = natural prop in n , naturalWhnf natN , convRed:*: d (sym (subset* (red x))) whNormTerm′ (Emptyᵣ x) (Emptyₜ n d n≡n prop) = let emptyN = empty prop in n , ne emptyN , convRed:*: d (sym (subset* (red x))) whNormTerm′ (Unitᵣ x) (Unitₜ n d prop) = n , prop , convRed:*: d (sym (subset* (red x))) whNormTerm′ (ne (ne K D neK K≡K)) (neₜ k d (neNfₜ neK₁ ⊢k k≡k)) = k , ne neK₁ , convRed:*: d (sym (subset* (red D))) whNormTerm′ (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πₜ f d funcF f≡f [f] [f]₁) = f , functionWhnf funcF , convRed:*: d (sym (subset* (red D))) whNormTerm′ (Σᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Σₜ p d pProd p≡p [fst] [snd]) = p , productWhnf pProd , convRed:*: d (sym (subset* (red D))) whNormTerm′ (emb 0<1 [A]) [a] = whNormTerm′ [A] [a] -- Well-formed terms can all be reduced to WHNF. whNormTerm : ∀ {a A} → Γ ⊢ a ∷ A → ∃ λ b → Whnf b × Γ ⊢ a :⇒*: b ∷ A whNormTerm {a} {A} ⊢a = let [A] , [a] = reducibleTerm ⊢a in whNormTerm′ [A] [a] redMany : ∀ {t u A} → Γ ⊢ t ⇒ u ∷ A → Γ ⊢ t ⇒* u ∷ A redMany d = let _ , _ , ⊢u = syntacticEqTerm (subsetTerm d) in d ⇨ id ⊢u
38.161765
80
0.593834
41f95bfc3af1b5cbac34979aa5f1089da0c47191
3,862
agda
Agda
Structure/Category/Monad/Category.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Structure/Category/Monad/Category.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Structure/Category/Monad/Category.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
open import Structure.Category open import Type module Structure.Category.Monad.Category {ℓₒ ℓₘ ℓₑ} {cat : CategoryObject{ℓₒ}{ℓₘ}{ℓₑ}} where import Data.Tuple as Tuple import Function.Equals open Function.Equals.Dependent import Lvl open import Structure.Category.Functor open import Structure.Category.Monad{cat = cat} open import Structure.Category.Monad.ExtensionSystem{cat = cat} open import Structure.Categorical.Properties open import Structure.Function open import Structure.Operator open import Structure.Relator.Equivalence open import Structure.Setoid open import Syntax.Transitivity open CategoryObject(cat) open Category.ArrowNotation(category) open Category(category) private open module MorphismEquiv {x}{y} = Equivalence (Equiv-equivalence ⦃ morphism-equiv{x}{y} ⦄) using () module _ (T : Object → Object) ⦃ extSys : ExtensionSystem(T) ⦄ where open ExtensionSystem(extSys) open Functor(functor) open Monad ⦃ functor ⦄ (monad) using (μ-functor-[∘]-identityₗ) -- Also called: Kleisli category categoryₑₓₜ : Category(\x y → (x ⟶ T(y))) Category._∘_ categoryₑₓₜ = _∘ₑₓₜ_ Category.id categoryₑₓₜ = idₑₓₜ BinaryOperator.congruence (Category.binaryOperator categoryₑₓₜ {x}{y}{z}) {f₁}{f₂} {g₁}{g₂} f₁f₂ g₁g₂ = f₁ ∘ₑₓₜ g₁ 🝖[ _≡_ ]-[] ext f₁ ∘ g₁ 🝖[ _≡_ ]-[ congruence₂(_∘_) (congruence₁(ext) f₁f₂) g₁g₂ ] ext f₂ ∘ g₂ 🝖[ _≡_ ]-[] f₂ ∘ₑₓₜ g₂ 🝖-end Morphism.Associativity.proof (Category.associativity categoryₑₓₜ) {x} {y} {z} {w} {f} {g} {h} = (f ∘ₑₓₜ g) ∘ₑₓₜ h 🝖[ _≡_ ]-[] ext(ext(f) ∘ g) ∘ h 🝖[ _≡_ ]-[ congruence₂ₗ(_∘_)(_) ext-distribute ] (ext(f) ∘ ext(g)) ∘ h 🝖[ _≡_ ]-[ Morphism.associativity(_∘_) ] ext(f) ∘ (ext(g) ∘ h) 🝖[ _≡_ ]-[] f ∘ₑₓₜ (g ∘ₑₓₜ h) 🝖-end Morphism.Identityₗ.proof (Tuple.left (Category.identity categoryₑₓₜ)) {x} {y} {f} = idₑₓₜ ∘ₑₓₜ f 🝖[ _≡_ ]-[] ext(η(y)) ∘ f 🝖[ _≡_ ]-[ congruence₂ₗ(_∘_)(f) ext-inverse ] id ∘ f 🝖[ _≡_ ]-[ Morphism.identityₗ(_∘_)(id) ] f 🝖-end Morphism.Identityᵣ.proof (Tuple.right (Category.identity categoryₑₓₜ)) {x} {y} {f} = f ∘ₑₓₜ idₑₓₜ 🝖[ _≡_ ]-[] ext(f) ∘ η(x) 🝖[ _≡_ ]-[ ext-identity ] f 🝖-end module _ (T : Object → Object) ⦃ functor : Functor(category)(category)(T) ⦄ ⦃ monad : Monad(T) ⦄ where open Functor(functor) open Monad(monad) hiding (ext) open ExtensionSystem(monad-to-extensionSystem) hiding (η ; μ) -- Note: This is the supposed to be the same as categoryₑₓₜ but proven from a monad directly. monad-category : Category(\x y → (x ⟶ T(y))) Category._∘_ monad-category f g = ext(f) ∘ g Category.id monad-category {x} = η(x) BinaryOperator.congruence (Category.binaryOperator monad-category {x}{y}{z}) {f₁}{f₂} {g₁}{g₂} f₁f₂ g₁g₂ = ext(f₁) ∘ g₁ 🝖[ _≡_ ]-[] (μ(z) ∘ map f₁) ∘ g₁ 🝖-[ Morphism.associativity(_∘_) ] μ(z) ∘ (map f₁ ∘ g₁) 🝖-[ congruence₂ᵣ(_∘_)(μ(z)) (congruence₂(_∘_) (congruence₁(map) f₁f₂) g₁g₂) ] μ(z) ∘ (map f₂ ∘ g₂) 🝖-[ Morphism.associativity(_∘_) ]-sym (μ(z) ∘ map f₂) ∘ g₂ 🝖[ _≡_ ]-[] ext(f₂) ∘ g₂ 🝖-end Morphism.Associativity.proof (Category.associativity monad-category) {x} {y} {z} {w} {f} {g} {h} = ext(ext(f) ∘ g) ∘ h 🝖-[ congruence₂ₗ(_∘_)(_) (ext-distribute) ] (ext(f) ∘ ext(g)) ∘ h 🝖-[ Morphism.associativity(_∘_) ] ext(f) ∘ (ext(g) ∘ h) 🝖-end Morphism.Identityₗ.proof (Tuple.left (Category.identity monad-category)) {x} {y} {f} = ext(η(y)) ∘ f 🝖[ _≡_ ]-[] (μ(y) ∘ map(η(y))) ∘ f 🝖-[ congruence₂ₗ(_∘_)(f) (_⊜_.proof μ-functor-[∘]-identityₗ) ] id ∘ f 🝖-[ Morphism.identityₗ(_∘_)(id) ] f 🝖-end Morphism.Identityᵣ.proof (Tuple.right (Category.identity monad-category)) {x} {y} {f} = ext-identity
45.97619
108
0.608752
31e6184cf1c46b422afb176373a3e5089f14bf9d
8
agda
Agda
test/interaction/HighlightMissingDefinition.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/HighlightMissingDefinition.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/HighlightMissingDefinition.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
A : Set
4
7
0.5
50cc4fb1407599a4a1d7aff5802a222c66bc8207
467
agda
Agda
test/Succeed/Issue2858-with.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2858-with.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2858-with.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Builtin.Nat interleaved mutual plus : Nat → Nat → Nat mult : Nat → Nat → Nat -- base case mult 0 n = 0 plus 0 n = n -- inductive case. The fun clauses with an ellipsis belong to mult mult (suc m) n with mult m n ... | p with plus p n ... | q = q plus (suc m) n = suc (plus m n) open import Agda.Builtin.Equality proof : ∀ m n → mult (suc m) n ≡ plus (mult m n) n proof m n with mult m n ... | p with plus p n ... | q = refl
19.458333
68
0.599572
3d8bda788ae07461d412ebbe0c11e4a2757a5986
1,037
agda
Agda
test/succeed/Issue480.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/succeed/Issue480.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/Issue480.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
module Issue480 where module Simple where data Q : Set where a : Q f : _ → Q f a = a postulate helper : ∀ {T : Set} → (T → T) → Q test₁ : Q → Q test₁ = λ { a → a } test₂ : Q test₂ = helper test₁ -- Same as test₂ and test₁, but stuck together. test₃ : Q test₃ = helper λ { a → a } -- this says "Type mismatch when checking that the pattern a has type _45" module Example where infixr 5 _∷_ data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ data List : Set₁ where [] : List _∷_ : Set → List → List data Tree (L : Set) : List → Set₁ where tip : Tree L [] node : ∀ {T Ts} → (cs : T → Tree L Ts) → Tree L (T ∷ Ts) data Q (n : ℕ) : Set where a : Q n b : Q n test₁ : Q zero → Tree ℕ (Q zero ∷ []) test₁ = λ { a → node λ { a → tip ; b → tip } ; b → node λ { a → tip ; b → tip } } test₂ = node test₁ test₃ : Tree ℕ (Q zero ∷ Q zero ∷ []) test₃ = node λ { a → node λ { a → tip ; b → tip } ; b → node λ { a → tip ; b → tip } }
17.87931
103
0.499518
12eb95cf5943fc6e98e6fc1f65f1a368a6782c9b
11,437
agda
Agda
Definition/LogicalRelation/Properties/Neutral.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
30
2017-05-20T03:05:21.000Z
2022-03-30T18:01:07.000Z
Definition/LogicalRelation/Properties/Neutral.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
4
2017-06-22T12:49:23.000Z
2021-02-22T10:37:24.000Z
Definition/LogicalRelation/Properties/Neutral.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
8
2017-10-18T14:18:20.000Z
2021-11-27T15:58:33.000Z
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Properties.Neutral {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped hiding (_∷_) open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Properties import Definition.Typed.Weakening as Wk open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Properties.Reflexivity open import Definition.LogicalRelation.Properties.Escape open import Definition.LogicalRelation.Properties.Symmetry open import Tools.Nat open import Tools.Product import Tools.PropositionalEquality as PE private variable m : Nat Γ : Con Term m -- Neutral reflexive types are reducible. neu : ∀ {l A} (neA : Neutral A) → Γ ⊢ A → Γ ⊢ A ~ A ∷ U → Γ ⊩⟨ l ⟩ A neu neA A A~A = ne′ _ (idRed:*: A) neA A~A -- Helper function for reducible neutral equality of a specific type of derivation. neuEq′ : ∀ {l A B} ([A] : Γ ⊩⟨ l ⟩ne A) (neA : Neutral A) (neB : Neutral B) → Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ~ B ∷ U → Γ ⊩⟨ l ⟩ A ≡ B / ne-intr [A] neuEq′ (noemb (ne K [ ⊢A , ⊢B , D ] neK K≡K)) neA neB A B A~B = let A≡K = whnfRed* D (ne neA) in ne₌ _ (idRed:*: B) neB (PE.subst (λ x → _ ⊢ x ~ _ ∷ _) A≡K A~B) neuEq′ (emb 0<1 x) neB A:≡:B = neuEq′ x neB A:≡:B -- Neutrally equal types are of reducible equality. neuEq : ∀ {l A B} ([A] : Γ ⊩⟨ l ⟩ A) (neA : Neutral A) (neB : Neutral B) → Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ~ B ∷ U → Γ ⊩⟨ l ⟩ A ≡ B / [A] neuEq [A] neA neB A B A~B = irrelevanceEq (ne-intr (ne-elim neA [A])) [A] (neuEq′ (ne-elim neA [A]) neA neB A B A~B) mutual -- Neutral reflexive terms are reducible. neuTerm : ∀ {l A n} ([A] : Γ ⊩⟨ l ⟩ A) (neN : Neutral n) → Γ ⊢ n ∷ A → Γ ⊢ n ~ n ∷ A → Γ ⊩⟨ l ⟩ n ∷ A / [A] neuTerm (Uᵣ′ .⁰ 0<1 ⊢Γ) neN n n~n = Uₜ _ (idRedTerm:*: n) (ne neN) (~-to-≅ₜ n~n) (neu neN (univ n) n~n) neuTerm (ℕᵣ [ ⊢A , ⊢B , D ]) neN n n~n = let A≡ℕ = subset* D n~n′ = ~-conv n~n A≡ℕ n≡n = ~-to-≅ₜ n~n′ in ℕₜ _ (idRedTerm:*: (conv n A≡ℕ)) n≡n (ne (neNfₜ neN (conv n A≡ℕ) n~n′)) neuTerm (Emptyᵣ [ ⊢A , ⊢B , D ]) neN n n~n = let A≡Empty = subset* D n~n′ = ~-conv n~n A≡Empty n≡n = ~-to-≅ₜ n~n′ in Emptyₜ _ (idRedTerm:*: (conv n A≡Empty)) n≡n (ne (neNfₜ neN (conv n A≡Empty) n~n′)) neuTerm (Unitᵣ [ ⊢A , ⊢B , D ]) neN n n~n = let A≡Unit = subset* D n~n′ = ~-conv n~n A≡Unit in Unitₜ _ (idRedTerm:*: (conv n A≡Unit)) (ne neN) neuTerm (ne′ K [ ⊢A , ⊢B , D ] neK K≡K) neN n n~n = let A≡K = subset* D in neₜ _ (idRedTerm:*: (conv n A≡K)) (neNfₜ neN (conv n A≡K) (~-conv n~n A≡K)) neuTerm (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) neN n n~n = let A≡ΠFG = subset* (red D) in Πₜ _ (idRedTerm:*: (conv n A≡ΠFG)) (ne neN) (~-to-≅ₜ (~-conv n~n A≡ΠFG)) (λ {_} {ρ} [ρ] ⊢Δ [a] [b] [a≡b] → let A≡ΠFG = subset* (red D) ρA≡ρΠFG = Wk.wkEq [ρ] ⊢Δ (subset* (red D)) G[a]≡G[b] = escapeEq ([G] [ρ] ⊢Δ [b]) (symEq ([G] [ρ] ⊢Δ [a]) ([G] [ρ] ⊢Δ [b]) (G-ext [ρ] ⊢Δ [a] [b] [a≡b])) a = escapeTerm ([F] [ρ] ⊢Δ) [a] b = escapeTerm ([F] [ρ] ⊢Δ) [b] a≡b = escapeTermEq ([F] [ρ] ⊢Δ) [a≡b] ρn = conv (Wk.wkTerm [ρ] ⊢Δ n) ρA≡ρΠFG neN∘a = ∘ₙ (wkNeutral ρ neN) neN∘b = ∘ₙ (wkNeutral ρ neN) in neuEqTerm ([G] [ρ] ⊢Δ [a]) neN∘a neN∘b (ρn ∘ⱼ a) (conv (ρn ∘ⱼ b) (≅-eq G[a]≡G[b])) (~-app (~-wk [ρ] ⊢Δ (~-conv n~n A≡ΠFG)) a≡b)) (λ {_} {ρ} [ρ] ⊢Δ [a] → let ρA≡ρΠFG = Wk.wkEq [ρ] ⊢Δ (subset* (red D)) a = escapeTerm ([F] [ρ] ⊢Δ) [a] a≡a = escapeTermEq ([F] [ρ] ⊢Δ) (reflEqTerm ([F] [ρ] ⊢Δ) [a]) in neuTerm ([G] [ρ] ⊢Δ [a]) (∘ₙ (wkNeutral ρ neN)) (conv (Wk.wkTerm [ρ] ⊢Δ n) ρA≡ρΠFG ∘ⱼ a) (~-app (~-wk [ρ] ⊢Δ (~-conv n~n A≡ΠFG)) a≡a)) neuTerm (Σᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) neN ⊢n n~n = let A≡ΣFG = subset* (red D) ⊢Γ = wf ⊢F ⊢n = conv ⊢n A≡ΣFG n~n = ~-conv n~n A≡ΣFG [F] = [F] Wk.id ⊢Γ [fst] = neuTerm [F] (fstₙ neN) (PE.subst (λ x → _ ⊢ fst _ ∷ x) (PE.sym (wk-id F)) (fstⱼ ⊢F ⊢G ⊢n)) (PE.subst (λ x → _ ⊢ _ ~ _ ∷ x) (PE.sym (wk-id F)) (~-fst ⊢F ⊢G n~n)) [Gfst] = [G] Wk.id ⊢Γ [fst] [snd] = neuTerm [Gfst] (sndₙ neN) (PE.subst (λ x → _ ⊢ snd _ ∷ x) (PE.cong (λ x → x [ fst _ ]) (PE.sym (wk-lift-id G))) (sndⱼ ⊢F ⊢G ⊢n)) (PE.subst (λ x → _ ⊢ _ ~ _ ∷ x) (PE.cong (λ x → x [ fst _ ]) (PE.sym (wk-lift-id G))) (~-snd ⊢F ⊢G n~n)) in Σₜ _ (idRedTerm:*: ⊢n) (ne neN) (~-to-≅ₜ n~n) [fst] [snd] neuTerm (emb 0<1 x) neN n = neuTerm x neN n -- Neutrally equal terms are of reducible equality. neuEqTerm : ∀ {l A n n′} ([A] : Γ ⊩⟨ l ⟩ A) (neN : Neutral n) (neN′ : Neutral n′) → Γ ⊢ n ∷ A → Γ ⊢ n′ ∷ A → Γ ⊢ n ~ n′ ∷ A → Γ ⊩⟨ l ⟩ n ≡ n′ ∷ A / [A] neuEqTerm (Uᵣ′ .⁰ 0<1 ⊢Γ) neN neN′ n n′ n~n′ = let [n] = neu neN (univ n) (~-trans n~n′ (~-sym n~n′)) [n′] = neu neN′ (univ n′) (~-trans (~-sym n~n′) n~n′) in Uₜ₌ _ _ (idRedTerm:*: n) (idRedTerm:*: n′) (ne neN) (ne neN′) (~-to-≅ₜ n~n′) [n] [n′] (neuEq [n] neN neN′ (univ n) (univ n′) n~n′) neuEqTerm (ℕᵣ [ ⊢A , ⊢B , D ]) neN neN′ n n′ n~n′ = let A≡ℕ = subset* D n~n′₁ = ~-conv n~n′ A≡ℕ n≡n′ = ~-to-≅ₜ n~n′₁ in ℕₜ₌ _ _ (idRedTerm:*: (conv n A≡ℕ)) (idRedTerm:*: (conv n′ A≡ℕ)) n≡n′ (ne (neNfₜ₌ neN neN′ n~n′₁)) neuEqTerm (Emptyᵣ [ ⊢A , ⊢B , D ]) neN neN′ n n′ n~n′ = let A≡Empty = subset* D n~n′₁ = ~-conv n~n′ A≡Empty n≡n′ = ~-to-≅ₜ n~n′₁ in Emptyₜ₌ _ _ (idRedTerm:*: (conv n A≡Empty)) (idRedTerm:*: (conv n′ A≡Empty)) n≡n′ (ne (neNfₜ₌ neN neN′ n~n′₁)) neuEqTerm (Unitᵣ [ ⊢A , ⊢B , D ]) neN neN′ n n′ n~n′ = let A≡Unit = subset* D in Unitₜ₌ (conv n A≡Unit) (conv n′ A≡Unit) neuEqTerm (ne (ne K [ ⊢A , ⊢B , D ] neK K≡K)) neN neN′ n n′ n~n′ = let A≡K = subset* D in neₜ₌ _ _ (idRedTerm:*: (conv n A≡K)) (idRedTerm:*: (conv n′ A≡K)) (neNfₜ₌ neN neN′ (~-conv n~n′ A≡K)) neuEqTerm (Πᵣ′ F G [ ⊢A , ⊢B , D ] ⊢F ⊢G A≡A [F] [G] G-ext) neN neN′ n n′ n~n′ = let [ΠFG] = Πᵣ′ F G [ ⊢A , ⊢B , D ] ⊢F ⊢G A≡A [F] [G] G-ext A≡ΠFG = subset* D n~n′₁ = ~-conv n~n′ A≡ΠFG n≡n′ = ~-to-≅ₜ n~n′₁ n~n = ~-trans n~n′ (~-sym n~n′) n′~n′ = ~-trans (~-sym n~n′) n~n′ in Πₜ₌ _ _ (idRedTerm:*: (conv n A≡ΠFG)) (idRedTerm:*: (conv n′ A≡ΠFG)) (ne neN) (ne neN′) n≡n′ (neuTerm [ΠFG] neN n n~n) (neuTerm [ΠFG] neN′ n′ n′~n′) (λ {_} {ρ} [ρ] ⊢Δ [a] → let ρA≡ρΠFG = Wk.wkEq [ρ] ⊢Δ A≡ΠFG ρn = Wk.wkTerm [ρ] ⊢Δ n ρn′ = Wk.wkTerm [ρ] ⊢Δ n′ a = escapeTerm ([F] [ρ] ⊢Δ) [a] a≡a = escapeTermEq ([F] [ρ] ⊢Δ) (reflEqTerm ([F] [ρ] ⊢Δ) [a]) neN∙a = ∘ₙ (wkNeutral ρ neN) neN′∙a′ = ∘ₙ (wkNeutral ρ neN′) in neuEqTerm ([G] [ρ] ⊢Δ [a]) neN∙a neN′∙a′ (conv ρn ρA≡ρΠFG ∘ⱼ a) (conv ρn′ ρA≡ρΠFG ∘ⱼ a) (~-app (~-wk [ρ] ⊢Δ n~n′₁) a≡a)) neuEqTerm (Σᵣ′ F G [ ⊢A , ⊢B , D ] ⊢F ⊢G A≡A [F] [G] G-ext) neN neN′ ⊢n ⊢n′ n~n′ = let [ΣFG] = Σᵣ′ F G [ ⊢A , ⊢B , D ] ⊢F ⊢G A≡A [F] [G] G-ext A≡ΣFG = subset* D n~n = ~-trans n~n′ (~-sym n~n′) n′~n′ = ~-trans (~-sym n~n′) n~n′ ⊢Γ = wf ⊢F ⊢nΣ = conv ⊢n A≡ΣFG ⊢n′Σ = conv ⊢n′ A≡ΣFG n~n′Σ = ~-conv n~n′ A≡ΣFG n~nΣ = ~-conv n~n A≡ΣFG n′~n′Σ = ~-conv n′~n′ A≡ΣFG [F] = [F] Wk.id ⊢Γ ⊢fstnΣ = (PE.subst (λ x → _ ⊢ fst _ ∷ x) (PE.sym (wk-id F)) (fstⱼ ⊢F ⊢G ⊢nΣ)) ⊢fstn′Σ = (PE.subst (λ x → _ ⊢ fst _ ∷ x) (PE.sym (wk-id F)) (fstⱼ ⊢F ⊢G ⊢n′Σ)) [fstn] = neuTerm [F] (fstₙ neN) ⊢fstnΣ (PE.subst (λ x → _ ⊢ _ ~ _ ∷ x) (PE.sym (wk-id F)) (~-fst ⊢F ⊢G n~nΣ)) [fstn′] = neuTerm [F] (fstₙ neN′) ⊢fstn′Σ (PE.subst (λ x → _ ⊢ _ ~ _ ∷ x) (PE.sym (wk-id F)) (~-fst ⊢F ⊢G n′~n′Σ)) [fstn≡fstn′] = neuEqTerm [F] (fstₙ neN) (fstₙ neN′) ⊢fstnΣ ⊢fstn′Σ (PE.subst (λ x → _ ⊢ _ ~ _ ∷ x) (PE.sym (wk-id F)) (~-fst ⊢F ⊢G n~n′Σ)) [Gfstn] = [G] Wk.id ⊢Γ [fstn] [Gfstn′] = PE.subst (λ x → _ ⊩⟨ _ ⟩ x [ fst _ ]) (wk-lift-id G) ([G] Wk.id ⊢Γ [fstn′]) [fstn′≡fstn] = symEqTerm [F] [fstn≡fstn′] [Gfstn′≡Gfstn] = irrelevanceEq″ (PE.cong (λ x → x [ fst _ ]) (wk-lift-id G)) (PE.cong (λ x → x [ fst _ ]) (wk-lift-id G)) ([G] Wk.id ⊢Γ [fstn′]) [Gfstn′] (G-ext Wk.id ⊢Γ [fstn′] [fstn] [fstn′≡fstn]) Gfstn′≡Gfstn = ≅-eq (escapeEq [Gfstn′] [Gfstn′≡Gfstn]) [sndn≡sndn′] = neuEqTerm [Gfstn] (sndₙ neN) (sndₙ neN′) (PE.subst (λ x → _ ⊢ snd _ ∷ x) (PE.cong (λ x → x [ fst _ ]) (PE.sym (wk-lift-id G))) (sndⱼ ⊢F ⊢G ⊢nΣ)) (PE.subst (λ x → _ ⊢ snd _ ∷ x) (PE.cong (λ x → x [ fst _ ]) (PE.sym (wk-lift-id G))) (conv (sndⱼ ⊢F ⊢G ⊢n′Σ) Gfstn′≡Gfstn)) (PE.subst (λ x → _ ⊢ _ ~ _ ∷ x) (PE.cong (λ x → x [ fst _ ]) (PE.sym (wk-lift-id G))) (~-snd ⊢F ⊢G n~n′Σ)) in Σₜ₌ _ _ (idRedTerm:*: ⊢nΣ) (idRedTerm:*: ⊢n′Σ) (ne neN) (ne neN′) (~-to-≅ₜ n~n′Σ) (neuTerm [ΣFG] neN ⊢n n~n) (neuTerm [ΣFG] neN′ ⊢n′ n′~n′) [fstn] [fstn′] [fstn≡fstn′] [sndn≡sndn′] neuEqTerm (emb 0<1 x) neN neN′ n:≡:n′ = neuEqTerm x neN neN′ n:≡:n′
43.32197
94
0.397569
dc225caf35e9dd212e56f088263d129ae2e92d8e
1,040
agda
Agda
notes/FOT/FOTC/Data/Nat/MutualRecursiveFunctions.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/FOT/FOTC/Data/Nat/MutualRecursiveFunctions.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/FOT/FOTC/Data/Nat/MutualRecursiveFunctions.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Mutual recursive functions ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Data.Nat.MutualRecursiveFunctions where open import FOTC.Base open import FOTC.Data.Nat.UnaryNumbers ------------------------------------------------------------------------------ postulate even : D → D odd : D → D even-0 : even zero ≡ true even-S : ∀ d → even (succ₁ d) ≡ odd d odd-0 : odd zero ≡ false odd-S : ∀ d → odd (succ₁ d) ≡ even d {-# ATP axioms even-0 even-S odd-0 odd-S #-} postulate even-2 : even 2' ≡ true {-# ATP prove even-2 #-} postulate even-3 : even 3' ≡ false {-# ATP prove even-3 #-} postulate odd-2 : odd 2' ≡ false {-# ATP prove odd-2 #-} postulate odd-3 : odd 3' ≡ true {-# ATP prove odd-3 #-}
26.666667
78
0.445192
575ead3cdbc3d857a5a28553d6bd024f4cb976db
10,365
agda
Agda
LibraBFT/ImplShared/Interface/Output.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
4
2020-12-16T19:43:41.000Z
2021-12-18T19:24:05.000Z
LibraBFT/ImplShared/Interface/Output.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
72
2021-02-04T05:04:33.000Z
2022-03-25T05:36:11.000Z
LibraBFT/ImplShared/Interface/Output.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
6
2020-12-16T19:43:52.000Z
2022-02-18T01:04:32.000Z
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} -- This module defines Outputs produced by handlers, as well as functions and properties relating -- these to Yasm Actions. open import LibraBFT.Base.KVMap open import LibraBFT.ImplShared.NetworkMsg open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.Prelude open import LibraBFT.Yasm.Types open import Optics.All module LibraBFT.ImplShared.Interface.Output where data Output : Set where --BroadcastEpochChangeProof : EpochChangeProof → List Author → Output -- TODO-1 BroadcastProposal : ProposalMsg → List Author → Output BroadcastSyncInfo : SyncInfo → List Author → Output LogErr : ErrLog → Output LogInfo : InfoLog → Output SendBRP : Author → BlockRetrievalResponse → Output SendVote : VoteMsg → List Author → Output open Output public SendVote-inj-v : ∀ {x1 x2 y1 y2} → SendVote x1 y1 ≡ SendVote x2 y2 → x1 ≡ x2 SendVote-inj-v refl = refl SendVote-inj-si : ∀ {x1 x2 y1 y2} → SendVote x1 y1 ≡ SendVote x2 y2 → y1 ≡ y2 SendVote-inj-si refl = refl IsSendVote : Output → Set IsSendVote (BroadcastProposal _ _) = ⊥ IsSendVote (BroadcastSyncInfo _ _) = ⊥ IsSendVote (LogErr _) = ⊥ IsSendVote (LogInfo _) = ⊥ IsSendVote (SendBRP _ _) = ⊥ IsSendVote (SendVote _ _) = ⊤ IsBroadcastProposal : Output → Set IsBroadcastProposal (BroadcastProposal _ _) = ⊤ IsBroadcastProposal (BroadcastSyncInfo _ _) = ⊥ IsBroadcastProposal (LogErr _) = ⊥ IsBroadcastProposal (LogInfo _) = ⊥ IsBroadcastProposal (SendBRP _ _) = ⊥ IsBroadcastProposal (SendVote _ _) = ⊥ IsBroadcastSyncInfo : Output → Set IsBroadcastSyncInfo (BroadcastProposal _ _) = ⊥ IsBroadcastSyncInfo (BroadcastSyncInfo _ _) = ⊤ IsBroadcastSyncInfo (LogErr _) = ⊥ IsBroadcastSyncInfo (LogInfo _) = ⊥ IsBroadcastSyncInfo (SendBRP _ _) = ⊥ IsBroadcastSyncInfo (SendVote _ _) = ⊥ IsLogErr : Output → Set IsLogErr (BroadcastProposal _ _) = ⊥ IsLogErr (BroadcastSyncInfo _ _) = ⊥ IsLogErr (LogErr _) = ⊤ IsLogErr (LogInfo _) = ⊥ IsLogErr (SendBRP _ _) = ⊥ IsLogErr (SendVote _ _) = ⊥ isSendVote? : (out : Output) → Dec (IsSendVote out) isSendVote? (BroadcastProposal _ _) = no λ () isSendVote? (BroadcastSyncInfo _ _) = no λ () isSendVote? (LogErr _) = no λ () isSendVote? (LogInfo _) = no λ () isSendVote? (SendBRP _ _) = no λ () isSendVote? (SendVote mv pid) = yes tt isBroadcastProposal? : (out : Output) → Dec (IsBroadcastProposal out) isBroadcastProposal? (BroadcastProposal _ _) = yes tt isBroadcastProposal? (BroadcastSyncInfo _ _) = no λ () isBroadcastProposal? (LogErr _) = no λ () isBroadcastProposal? (LogInfo _) = no λ () isBroadcastProposal? (SendBRP _ _) = no λ () isBroadcastProposal? (SendVote _ _) = no λ () isBroadcastSyncInfo? : (out : Output) → Dec (IsBroadcastSyncInfo out) isBroadcastSyncInfo? (BroadcastProposal _ _) = no λ () isBroadcastSyncInfo? (BroadcastSyncInfo _ _) = yes tt isBroadcastSyncInfo? (LogErr _) = no λ () isBroadcastSyncInfo? (LogInfo _) = no λ () isBroadcastSyncInfo? (SendBRP _ _) = no λ () isBroadcastSyncInfo? (SendVote _ _) = no λ () isLogErr? : (out : Output) → Dec (IsLogErr out) isLogErr? (BroadcastProposal x _) = no λ () isLogErr? (BroadcastSyncInfo x _) = no λ () isLogErr? (LogErr x) = yes tt isLogErr? (LogInfo x) = no λ () isLogErr? (SendBRP _ _) = no λ () isLogErr? (SendVote x x₁) = no λ () IsOutputMsg : Output → Set IsOutputMsg = IsBroadcastProposal ∪ IsBroadcastSyncInfo ∪ IsSendVote isOutputMsg? = isBroadcastProposal? ∪? (isBroadcastSyncInfo? ∪? isSendVote?) data _Msg∈Out_ : NetworkMsg → Output → Set where inBP : ∀ {pm pids} → P pm Msg∈Out BroadcastProposal pm pids inSV : ∀ {vm pids} → V vm Msg∈Out SendVote vm pids sendVote∉Output : ∀ {vm pid outs} → List-filter isSendVote? outs ≡ [] → ¬ (SendVote vm pid ∈ outs) sendVote∉Output () (here refl) sendVote∉Output{outs = x ∷ outs'} eq (there vm∈outs) with isSendVote? x ... | no proof = sendVote∉Output eq vm∈outs -- Note: the SystemModel allows anyone to receive any message sent, so intended recipient is ignored; -- it is included in the model only to facilitate future work on liveness properties, when we will need -- assumptions about message delivery between honest peers. outputToActions : RoundManager → Output → List (Action NetworkMsg) outputToActions rm (BroadcastProposal p rcvrs) = List-map (const (send (P p))) rcvrs outputToActions _ (BroadcastSyncInfo _ _) = [] outputToActions _ (LogErr x) = [] outputToActions _ (LogInfo x) = [] outputToActions _ (SendVote vm rcvrs) = List-map (const (send (V vm))) rcvrs outputToActions _ (SendBRP p brr) = [] -- TODO-1: Update `NetworkMsg` outputsToActions : ∀ {State} → List Output → List (Action NetworkMsg) outputsToActions {st} = concat ∘ List-map (outputToActions st) -- Lemmas about `outputsToActions` outputToActions-sendVote∉actions : ∀ {out vm st} → ¬ (IsSendVote out) → ¬ (send (V vm) ∈ outputToActions st out) outputToActions-sendVote∉actions {BroadcastProposal pm rcvrs}{vm}{st} ¬sv m∈acts = help rcvrs m∈acts where help : ∀ xs → ¬ (send (V vm) ∈ List-map (const (send (P pm))) xs) help (x ∷ xs) (there m∈acts) = help xs m∈acts outputToActions-sendVote∉actions {SendVote _ _} ¬sv m∈acts = ¬sv tt outputToActions-m∈sendVoteList : ∀ {m vm rcvrs} → send m ∈ List-map (const $ send (V vm)) rcvrs → m Msg∈Out SendVote vm rcvrs outputToActions-m∈sendVoteList {.(V vm)} {vm} {x ∷ rcvrs} (here refl) = inSV outputToActions-m∈sendVoteList {m} {vm} {x ∷ rcvrs} (there m∈svl) with outputToActions-m∈sendVoteList{rcvrs = rcvrs} m∈svl ... | inSV = inSV outputToActions-m∈sendProposalList : ∀ {m pm rcvrs} → send m ∈ List-map (const $ send (P pm)) rcvrs → m Msg∈Out BroadcastProposal pm rcvrs outputToActions-m∈sendProposalList {.(P pm)} {pm} {x ∷ rcvrs} (here refl) = inBP outputToActions-m∈sendProposalList {m} {pm} {x ∷ rcvrs} (there m∈spl) with outputToActions-m∈sendProposalList {rcvrs = rcvrs} m∈spl ... | inBP = inBP sendVote∉actions : ∀ {outs vm st} → [] ≡ List-filter isSendVote? outs → ¬ (send (V vm) ∈ outputsToActions{st} outs) sendVote∉actions {[]} {st = st} outs≡ () sendVote∉actions {x ∷ outs} {st = st} outs≡ m∈acts with Any-++⁻ (outputToActions st x) m∈acts ... | Left m∈[] with isSendVote? x ...| no proof = outputToActions-sendVote∉actions {st = st} proof m∈[] sendVote∉actions {x ∷ outs} {st = st} outs≡ m∈acts | Right m∈acts' with isSendVote? x ...| no proof = sendVote∉actions{outs = outs}{st = st} outs≡ m∈acts' sendVote∈actions : ∀ {vm vm' pids outs st} → SendVote vm pids ∷ [] ≡ List-filter isSendVote? outs → send (V vm') ∈ outputsToActions{st} outs → vm' ≡ vm sendVote∈actions {outs = (BroadcastProposal x rcvrs) ∷ outs}{st = st} outs≡ m∈acts with Any-++⁻ (outputToActions st (BroadcastProposal x rcvrs)) m∈acts ... | Left m∈[] = ⊥-elim (outputToActions-sendVote∉actions{out = BroadcastProposal x rcvrs}{st = st} id m∈[]) ... | Right m∈acts' = sendVote∈actions{outs = outs}{st = st} outs≡ m∈acts' sendVote∈actions {outs = (BroadcastSyncInfo x rcvrs) ∷ outs}{st = st} outs≡ m∈acts = sendVote∈actions{outs = outs}{st = st} outs≡ m∈acts sendVote∈actions {outs = LogErr x ∷ outs}{st = st} outs≡ m∈acts = sendVote∈actions{outs = outs}{st = st} outs≡ m∈acts sendVote∈actions {outs = LogInfo x ∷ outs}{st = st} outs≡ m∈acts = sendVote∈actions{outs = outs}{st = st} outs≡ m∈acts sendVote∈actions {vm}{vm'}{outs = SendBRP pid brr ∷ outs}{st = st} outs≡ m∈acts = sendVote∈actions{outs = outs}{st = st} outs≡ m∈acts sendVote∈actions {vm}{vm'}{outs = SendVote vm“ pids' ∷ outs}{st = st} outs≡ m∈acts with ∷-injective outs≡ ...| refl , tl≡ with Any-++⁻ (List-map (const (send (V vm“))) pids') m∈acts ... | Right m∈[] = ⊥-elim (sendVote∉actions{outs = outs}{st = st} tl≡ m∈[]) ... | Left m∈acts' = help pids' m∈acts' where help : ∀ pids → send (V vm') ∈ List-map (const (send (V vm“))) pids → vm' ≡ vm“ help (_ ∷ pids) (here refl) = refl help (_ ∷ pids) (there m∈acts) = help pids m∈acts sendMsg∈actions : ∀ {outs m st} → send m ∈ outputsToActions{st} outs → Σ[ out ∈ Output ] (out ∈ outs × m Msg∈Out out) sendMsg∈actions {BroadcastProposal pm rcvrs ∷ outs} {m} {st} m∈acts with Any-++⁻ (List-map (const $ send (P pm)) rcvrs) m∈acts ... | Left m∈bpl = BroadcastProposal pm rcvrs , here refl , outputToActions-m∈sendProposalList m∈bpl ... | Right m∈acts' with sendMsg∈actions{outs}{m}{st} m∈acts' ... | out , out∈outs , m∈out = out , there out∈outs , m∈out -- NOTE: When we represent sending `BroadcastSyncInfo` as an action, this will require updating sendMsg∈actions {BroadcastSyncInfo _ _ ∷ outs} {m} {st} m∈acts with sendMsg∈actions{outs}{m}{st} m∈acts ...| out , out∈outs , m∈out = out , there out∈outs , m∈out sendMsg∈actions {LogErr _ ∷ outs} {m} {st} m∈acts with sendMsg∈actions{outs}{m}{st} m∈acts ...| out , out∈outs , m∈out = out , there out∈outs , m∈out sendMsg∈actions {LogInfo _ ∷ outs} {m} {st} m∈acts with sendMsg∈actions{outs}{m}{st} m∈acts ...| out , out∈outs , m∈out = out , there out∈outs , m∈out sendMsg∈actions {SendBRP pid brr ∷ outs} {m} {st} m∈acts with sendMsg∈actions{outs}{m}{st} m∈acts ...| out , out∈outs , m∈out = out , there out∈outs , m∈out sendMsg∈actions {SendVote vm rcvrs ∷ outs} {m} {st} m∈acts with Any-++⁻ (List-map (const (send (V vm))) rcvrs) m∈acts ... | Left m∈svl = SendVote vm rcvrs , here refl , outputToActions-m∈sendVoteList m∈svl ... | Right m∈acts' with sendMsg∈actions{outs}{m}{st} m∈acts' ... | out , out∈outs , m∈out = out , there out∈outs , m∈out
46.479821
111
0.640714
5810f36bef84e7575a68447fabfd24afd1956b71
45,918
agda
Agda
Agda/12-univalence.agda
tadejpetric/HoTT-Intro
f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5
[ "CC-BY-4.0" ]
null
null
null
Agda/12-univalence.agda
tadejpetric/HoTT-Intro
f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5
[ "CC-BY-4.0" ]
null
null
null
Agda/12-univalence.agda
tadejpetric/HoTT-Intro
f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5
[ "CC-BY-4.0" ]
null
null
null
{-# OPTIONS --without-K --exact-split --allow-unsolved-metas #-} module 12-univalence where import 11-function-extensionality open 11-function-extensionality public -- Section 10.1 Type extensionality equiv-eq : {i : Level} {A : UU i} {B : UU i} → Id A B → A ≃ B equiv-eq {A = A} refl = pair id (is-equiv-id A) UNIVALENCE : {i : Level} (A B : UU i) → UU (lsuc i) UNIVALENCE A B = is-equiv (equiv-eq {A = A} {B = B}) is-contr-total-equiv-UNIVALENCE : {i : Level} (A : UU i) → ((B : UU i) → UNIVALENCE A B) → is-contr (Σ (UU i) (λ X → A ≃ X)) is-contr-total-equiv-UNIVALENCE A UA = fundamental-theorem-id' A ( pair id (is-equiv-id A)) ( λ B → equiv-eq {B = B}) ( UA) UNIVALENCE-is-contr-total-equiv : {i : Level} (A : UU i) → is-contr (Σ (UU i) (λ X → A ≃ X)) → (B : UU i) → UNIVALENCE A B UNIVALENCE-is-contr-total-equiv A c = fundamental-theorem-id A ( pair id (is-equiv-id A)) ( c) ( λ B → equiv-eq {B = B}) ev-id : {i j : Level} {A : UU i} (P : (B : UU i) → (A ≃ B) → UU j) → ((B : UU i) (e : A ≃ B) → P B e) → P A (pair id (is-equiv-id A)) ev-id {A = A} P f = f A (pair id (is-equiv-id A)) IND-EQUIV : {i j : Level} {A : UU i} → ((B : UU i) (e : A ≃ B) → UU j) → UU _ IND-EQUIV P = sec (ev-id P) triangle-ev-id : {i j : Level} {A : UU i} (P : (Σ (UU i) (λ X → A ≃ X)) → UU j) → (ev-pt (Σ (UU i) (λ X → A ≃ X)) (pair A (pair id (is-equiv-id A))) P) ~ ((ev-id (λ X e → P (pair X e))) ∘ (ev-pair {A = UU i} {B = λ X → A ≃ X} {C = P})) triangle-ev-id P f = refl abstract IND-EQUIV-is-contr-total-equiv : {i j : Level} (A : UU i) → is-contr (Σ (UU i) (λ X → A ≃ X)) → (P : (Σ (UU i) (λ X → A ≃ X)) → UU j) → IND-EQUIV (λ B e → P (pair B e)) IND-EQUIV-is-contr-total-equiv {i} {j} A c P = section-comp ( ev-pt (Σ (UU i) (λ X → A ≃ X)) (pair A (pair id (is-equiv-id A))) P) ( ev-id (λ X e → P (pair X e))) ( ev-pair {A = UU i} {B = λ X → A ≃ X} {C = P}) ( triangle-ev-id P) ( sec-ev-pair (UU i) (λ X → A ≃ X) P) ( is-sing-is-contr (Σ (UU i) (λ X → A ≃ X)) ( pair ( pair A (pair id (is-equiv-id A))) ( λ t → ( inv (contraction c (pair A (pair id (is-equiv-id A))))) ∙ ( contraction c t))) ( P) ( pair A (equiv-id A))) abstract is-contr-total-equiv-IND-EQUIV : {i : Level} (A : UU i) → ( {j : Level} (P : (Σ (UU i) (λ X → A ≃ X)) → UU j) → IND-EQUIV (λ B e → P (pair B e))) → is-contr (Σ (UU i) (λ X → A ≃ X)) is-contr-total-equiv-IND-EQUIV {i} A ind = is-contr-is-sing ( Σ (UU i) (λ X → A ≃ X)) ( pair A (pair id (is-equiv-id A))) ( λ P → section-comp' ( ev-pt (Σ (UU i) (λ X → A ≃ X)) (pair A (pair id (is-equiv-id A))) P) ( ev-id (λ X e → P (pair X e))) ( ev-pair {A = UU i} {B = λ X → A ≃ X} {C = P}) ( triangle-ev-id P) ( sec-ev-pair (UU i) (λ X → A ≃ X) P) ( ind P)) -- The univalence axiom postulate univalence : {i : Level} (A B : UU i) → UNIVALENCE A B eq-equiv : {i : Level} (A B : UU i) → (A ≃ B) → Id A B eq-equiv A B = inv-is-equiv (univalence A B) abstract is-contr-total-equiv : {i : Level} (A : UU i) → is-contr (Σ (UU i) (λ X → A ≃ X)) is-contr-total-equiv A = is-contr-total-equiv-UNIVALENCE A (univalence A) abstract Ind-equiv : {i j : Level} (A : UU i) (P : (B : UU i) (e : A ≃ B) → UU j) → sec (ev-id P) Ind-equiv A P = IND-EQUIV-is-contr-total-equiv A ( is-contr-total-equiv A) ( λ t → P (pr1 t) (pr2 t)) ind-equiv : {i j : Level} (A : UU i) (P : (B : UU i) (e : A ≃ B) → UU j) → P A (pair id (is-equiv-id A)) → {B : UU i} (e : A ≃ B) → P B e ind-equiv A P p {B} = pr1 (Ind-equiv A P) p B -- Subuniverses is-subuniverse : {l1 l2 : Level} (P : UU l1 → UU l2) → UU ((lsuc l1) ⊔ l2) is-subuniverse P = is-subtype P subuniverse : (l1 l2 : Level) → UU ((lsuc l1) ⊔ (lsuc l2)) subuniverse l1 l2 = Σ (UU l1 → UU l2) is-subuniverse {- By univalence, subuniverses are closed under equivalences. -} in-subuniverse-equiv : {l1 l2 : Level} (P : UU l1 → UU l2) {X Y : UU l1} → X ≃ Y → P X → P Y in-subuniverse-equiv P e = tr P (eq-equiv _ _ e) in-subuniverse-equiv' : {l1 l2 : Level} (P : UU l1 → UU l2) {X Y : UU l1} → X ≃ Y → P Y → P X in-subuniverse-equiv' P e = tr P (inv (eq-equiv _ _ e)) total-subuniverse : {l1 l2 : Level} (P : subuniverse l1 l2) → UU ((lsuc l1) ⊔ l2) total-subuniverse {l1} P = Σ (UU l1) (pr1 P) {- We also introduce the notion of 'global subuniverse'. The handling of universe levels is a bit more complicated here, since (l : Level) → A l are kinds but not types. -} is-global-subuniverse : (α : Level → Level) (P : (l : Level) → subuniverse l (α l)) → (l1 l2 : Level) → UU _ is-global-subuniverse α P l1 l2 = (X : UU l1) (Y : UU l2) → X ≃ Y → (pr1 (P l1)) X → (pr1 (P l2)) Y {- Next we characterize the identity type of a subuniverse. -} Eq-total-subuniverse : {l1 l2 : Level} (P : subuniverse l1 l2) → (s t : total-subuniverse P) → UU l1 Eq-total-subuniverse (pair P H) (pair X p) t = X ≃ (pr1 t) Eq-total-subuniverse-eq : {l1 l2 : Level} (P : subuniverse l1 l2) → (s t : total-subuniverse P) → Id s t → Eq-total-subuniverse P s t Eq-total-subuniverse-eq (pair P H) (pair X p) .(pair X p) refl = equiv-id X abstract is-contr-total-Eq-total-subuniverse : {l1 l2 : Level} (P : subuniverse l1 l2) (s : total-subuniverse P) → is-contr (Σ (total-subuniverse P) (λ t → Eq-total-subuniverse P s t)) is-contr-total-Eq-total-subuniverse (pair P H) (pair X p) = is-contr-total-Eq-substructure (is-contr-total-equiv X) H X (equiv-id X) p abstract is-equiv-Eq-total-subuniverse-eq : {l1 l2 : Level} (P : subuniverse l1 l2) (s t : total-subuniverse P) → is-equiv (Eq-total-subuniverse-eq P s t) is-equiv-Eq-total-subuniverse-eq (pair P H) (pair X p) = fundamental-theorem-id ( pair X p) ( equiv-id X) ( is-contr-total-Eq-total-subuniverse (pair P H) (pair X p)) ( Eq-total-subuniverse-eq (pair P H) (pair X p)) eq-Eq-total-subuniverse : {l1 l2 : Level} (P : subuniverse l1 l2) → {s t : total-subuniverse P} → Eq-total-subuniverse P s t → Id s t eq-Eq-total-subuniverse P {s} {t} = inv-is-equiv (is-equiv-Eq-total-subuniverse-eq P s t) -- Section 12.2 Univalence implies function extensionality is-equiv-postcomp-univalence : {l1 l2 : Level} {X Y : UU l1} (A : UU l2) (e : X ≃ Y) → is-equiv (postcomp A (map-equiv e)) is-equiv-postcomp-univalence {X = X} A = ind-equiv X ( λ Y e → is-equiv (postcomp A (map-equiv e))) ( is-equiv-id (A → X)) weak-funext-univalence : {l : Level} {A : UU l} {B : A → UU l} → WEAK-FUNEXT A B weak-funext-univalence {A = A} {B} is-contr-B = is-contr-retract-of ( fib (postcomp A (pr1 {B = B})) id) ( pair ( λ f → pair (λ x → pair x (f x)) refl) ( pair ( λ h x → tr B (htpy-eq (pr2 h) x) (pr2 (pr1 h x))) ( htpy-refl))) ( is-contr-map-is-equiv ( is-equiv-postcomp-univalence A (equiv-pr1 is-contr-B)) ( id)) funext-univalence : {l : Level} {A : UU l} {B : A → UU l} (f : (x : A) → B x) → FUNEXT f funext-univalence {A = A} {B} f = FUNEXT-WEAK-FUNEXT (λ A B → weak-funext-univalence) A B f -- Section 12.3 Groups in univalent mathematics {- We first introduce semi-groups, and then groups. We do this because the category of groups is a full subcategory of the category of semi-groups. In particular, it is a proposition for a semi-group to be a group. Therefore this approach gives us in a straightforward way that equality of groups is equality of semi-groups. This will be useful in showing that group isomorphisms are equivalent to identifications of groups. -} has-associative-mul : {l : Level} (X : UU-Set l) → UU l has-associative-mul X = Σ ( ( type-Set X) → ( ( type-Set X) → (type-Set X))) (λ μ → ( x y z : type-Set X) → Id (μ (μ x y) z) (μ x (μ y z))) Semi-Group : (l : Level) → UU (lsuc l) Semi-Group l = Σ (UU-Set l) has-associative-mul {- Bureaucracy of semi-groups. -} set-Semi-Group : {l : Level} → Semi-Group l → UU-Set l set-Semi-Group G = pr1 G type-Semi-Group : {l : Level} → Semi-Group l → UU l type-Semi-Group G = pr1 (set-Semi-Group G) is-set-type-Semi-Group : {l : Level} (G : Semi-Group l) → is-set (type-Semi-Group G) is-set-type-Semi-Group G = pr2 (set-Semi-Group G) associative-mul-Semi-Group : {l : Level} (G : Semi-Group l) → has-associative-mul (set-Semi-Group G) associative-mul-Semi-Group G = pr2 G mul-Semi-Group : {l : Level} (G : Semi-Group l) → type-Semi-Group G → type-Semi-Group G → type-Semi-Group G mul-Semi-Group G = pr1 (associative-mul-Semi-Group G) is-associative-mul-Semi-Group : {l : Level} (G : Semi-Group l) (x y z : type-Semi-Group G) → Id ( mul-Semi-Group G (mul-Semi-Group G x y) z) ( mul-Semi-Group G x (mul-Semi-Group G y z)) is-associative-mul-Semi-Group G = pr2 (associative-mul-Semi-Group G) {- The property that a semi-group is a monoid is just that the semi-group possesses a unit that satisfies the left and right unit laws. -} is-unital : {l : Level} → Semi-Group l → UU l is-unital G = Σ ( type-Semi-Group G) ( λ e → ( (y : type-Semi-Group G) → Id (mul-Semi-Group G e y) y) × ( (x : type-Semi-Group G) → Id (mul-Semi-Group G x e) x)) {- We show that is-unital is a proposition. -} abstract is-prop-is-unital' : {l : Level} (G : Semi-Group l) → is-prop' (is-unital G) is-prop-is-unital' (pair (pair X is-set-X) (pair μ assoc-μ)) (pair e (pair left-unit-e right-unit-e)) (pair e' (pair left-unit-e' right-unit-e')) = eq-subtype ( λ e → is-prop-prod ( is-prop-Π (λ y → is-set-X (μ e y) y)) ( is-prop-Π (λ x → is-set-X (μ x e) x))) ( (inv (left-unit-e' e)) ∙ (right-unit-e e')) abstract is-prop-is-unital : {l : Level} (G : Semi-Group l) → is-prop (is-unital G) is-prop-is-unital G = is-prop-is-prop' (is-prop-is-unital' G) {- The property that a monoid is a group is just the property that the monoid that every element is invertible, i.e., it comes equipped with an inverse operation that satisfies the left and right inverse laws. -} is-group' : {l : Level} (G : Semi-Group l) → is-unital G → UU l is-group' G is-unital-G = Σ ( type-Semi-Group G → type-Semi-Group G) ( λ i → ( (x : type-Semi-Group G) → Id (mul-Semi-Group G (i x) x) (pr1 is-unital-G)) × ( (x : type-Semi-Group G) → Id (mul-Semi-Group G x (i x)) (pr1 is-unital-G))) is-group : {l : Level} (G : Semi-Group l) → UU l is-group G = Σ (is-unital G) (is-group' G) Group : (l : Level) → UU (lsuc l) Group l = Σ (Semi-Group l) is-group {- Some bureaucracy of Groups. -} semi-group-Group : {l : Level} → Group l → Semi-Group l semi-group-Group G = pr1 G set-Group : {l : Level} → Group l → UU-Set l set-Group G = pr1 (semi-group-Group G) type-Group : {l : Level} → Group l → UU l type-Group G = pr1 (set-Group G) is-set-type-Group : {l : Level} (G : Group l) → is-set (type-Group G) is-set-type-Group G = pr2 (set-Group G) associative-mul-Group : {l : Level} (G : Group l) → has-associative-mul (set-Group G) associative-mul-Group G = pr2 (semi-group-Group G) mul-Group : {l : Level} (G : Group l) → type-Group G → type-Group G → type-Group G mul-Group G = pr1 (associative-mul-Group G) is-associative-mul-Group : {l : Level} (G : Group l) (x y z : type-Group G) → Id (mul-Group G (mul-Group G x y) z) (mul-Group G x (mul-Group G y z)) is-associative-mul-Group G = pr2 (associative-mul-Group G) is-group-Group : {l : Level} (G : Group l) → is-group (semi-group-Group G) is-group-Group G = pr2 G is-unital-Group : {l : Level} (G : Group l) → is-unital (semi-group-Group G) is-unital-Group G = pr1 (is-group-Group G) unit-Group : {l : Level} (G : Group l) → type-Group G unit-Group G = pr1 (is-unital-Group G) left-unit-law-Group : {l : Level} (G : Group l) (x : type-Group G) → Id (mul-Group G (unit-Group G) x) x left-unit-law-Group G = pr1 (pr2 (is-unital-Group G)) right-unit-law-Group : {l : Level} (G : Group l) (x : type-Group G) → Id (mul-Group G x (unit-Group G)) x right-unit-law-Group G = pr2 (pr2 (is-unital-Group G)) has-inverses-Group : {l : Level} (G : Group l) → is-group' (semi-group-Group G) (is-unital-Group G) has-inverses-Group G = pr2 (is-group-Group G) inv-Group : {l : Level} (G : Group l) → type-Group G → type-Group G inv-Group G = pr1 (has-inverses-Group G) left-inverse-law-Group : {l : Level} (G : Group l) (x : type-Group G) → Id (mul-Group G (inv-Group G x) x) (unit-Group G) left-inverse-law-Group G = pr1 (pr2 (has-inverses-Group G)) right-inverse-law-Group : {l : Level} (G : Group l) (x : type-Group G) → Id (mul-Group G x (inv-Group G x)) (unit-Group G) right-inverse-law-Group G = pr2 (pr2 (has-inverses-Group G)) {- We show that being a group is a proposition. -} abstract is-prop-is-group' : {l : Level} (G : Semi-Group l) (e : is-unital G) → is-prop' (is-group' G e) is-prop-is-group' ( pair (pair G is-set-G) (pair μ assoc-G)) ( pair e (pair left-unit-G right-unit-G)) ( pair i (pair left-inv-i right-inv-i)) ( pair i' (pair left-inv-i' right-inv-i')) = eq-subtype ( λ i → is-prop-prod ( is-prop-Π (λ x → is-set-G (μ (i x) x) e)) ( is-prop-Π (λ x → is-set-G (μ x (i x)) e))) ( eq-htpy ( λ x → -- ix ( inv (left-unit-G (i x))) ∙ -- = 1·(ix) ( ( ap (λ y → μ y (i x)) (inv (left-inv-i' x))) ∙ -- = (i'x·x)·(ix) ( ( assoc-G (i' x) x (i x)) ∙ -- = (i'x)·(x·i'x) ( ( ap (μ (i' x)) (right-inv-i x)) ∙ -- = (i'x)·1 ( right-unit-G (i' x))))))) -- = i'x abstract is-prop-is-group : {l : Level} (G : Semi-Group l) → is-prop (is-group G) is-prop-is-group G = is-prop-Σ ( is-prop-is-unital G) ( λ e → is-prop-is-prop' (is-prop-is-group' G e)) {- We give two examples of groups. The first is the group ℤ of integers. The second is the loop space of a pointed 1-type. -} {- The group of integers. -} semi-group-ℤ : Semi-Group lzero semi-group-ℤ = pair set-ℤ (pair add-ℤ associative-add-ℤ) group-ℤ : Group lzero group-ℤ = pair ( semi-group-ℤ) ( pair ( pair zero-ℤ (pair left-unit-law-add-ℤ right-unit-law-add-ℤ)) ( pair neg-ℤ (pair left-inverse-law-add-ℤ right-inverse-law-add-ℤ))) {- The loop space of a 1-type as a group. -} loop-space : {l : Level} {A : UU l} → A → UU l loop-space a = Id a a set-loop-space : {l : Level} (A : UU l) (a : A) (is-set-Ω : is-set (Id a a)) → UU-Set l set-loop-space A a is-set-Ω = pair (Id a a) is-set-Ω semi-group-loop-space : {l : Level} (A : UU l) (a : A) (is-set-Ω : is-set (Id a a)) → Semi-Group l semi-group-loop-space A a is-set-Ω = pair ( set-loop-space A a is-set-Ω) ( pair (λ p q → p ∙ q) assoc) group-loop-space : {l : Level} (A : UU l) (a : A) (is-set-Ω : is-set (Id a a)) → Group l group-loop-space A a is-set-Ω = pair ( semi-group-loop-space A a is-set-Ω) ( pair ( pair refl (pair (λ q → left-unit) (λ p → right-unit))) ( pair inv (pair left-inv right-inv))) set-loop-space-1-type : {l : Level} (A : 1-type l) (a : pr1 A) → UU-Set l set-loop-space-1-type (pair A is-1-type-A) a = set-loop-space A a (is-1-type-A a a) semi-group-loop-space-1-type : {l : Level} (A : 1-type l) (a : pr1 A) → Semi-Group l semi-group-loop-space-1-type (pair A is-1-type-A) a = semi-group-loop-space A a (is-1-type-A a a) group-loop-space-1-type : {l : Level} (A : 1-type l) (a : pr1 A) → Group l group-loop-space-1-type (pair A is-1-type-A) a = group-loop-space A a (is-1-type-A a a) {- We introduce the automorphism group on a set X. -} aut-Set : {l : Level} (X : UU-Set l) → UU-Set l aut-Set X = set-equiv X X associative-comp-equiv : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} → (e : A ≃ B) (f : B ≃ C) (g : C ≃ D) → Id ((g ∘e f) ∘e e) (g ∘e (f ∘e e)) associative-comp-equiv e f g = eq-htpy-equiv htpy-refl has-associative-mul-aut-Set : {l : Level} (X : UU-Set l) → has-associative-mul (aut-Set X) has-associative-mul-aut-Set X = pair ( λ e f → f ∘e e) ( λ e f g → inv (associative-comp-equiv e f g)) aut-Semi-Group : {l : Level} (X : UU-Set l) → Semi-Group l aut-Semi-Group X = pair ( aut-Set X) ( has-associative-mul-aut-Set X) left-unit-law-equiv : {l1 l2 : Level} {X : UU l1} {Y : UU l2} (e : X ≃ Y) → Id ((equiv-id Y) ∘e e) e left-unit-law-equiv e = eq-htpy-equiv htpy-refl right-unit-law-equiv : {l1 l2 : Level} {X : UU l1} {Y : UU l2} (e : X ≃ Y) → Id (e ∘e (equiv-id X)) e right-unit-law-equiv e = eq-htpy-equiv htpy-refl is-unital-aut-Semi-Group : {l : Level} (X : UU-Set l) → is-unital (aut-Semi-Group X) is-unital-aut-Semi-Group X = pair ( equiv-id (type-Set X)) ( pair ( right-unit-law-equiv) ( left-unit-law-equiv)) left-inverse-law-equiv : {l1 l2 : Level} {X : UU l1} {Y : UU l2} (e : X ≃ Y) → Id ((inv-equiv e) ∘e e) (equiv-id X) left-inverse-law-equiv e = eq-htpy-equiv (isretr-inv-is-equiv (is-equiv-map-equiv e)) right-inverse-law-equiv : {l1 l2 : Level} {X : UU l1} {Y : UU l2} (e : X ≃ Y) → Id (e ∘e (inv-equiv e)) (equiv-id Y) right-inverse-law-equiv e = eq-htpy-equiv (issec-inv-is-equiv (is-equiv-map-equiv e)) is-group-aut-Semi-Group' : {l : Level} (X : UU-Set l) → is-group' (aut-Semi-Group X) (is-unital-aut-Semi-Group X) is-group-aut-Semi-Group' X = pair ( inv-equiv) ( pair right-inverse-law-equiv left-inverse-law-equiv) aut-Group : {l : Level} → UU-Set l → Group l aut-Group X = pair ( aut-Semi-Group X) ( pair (is-unital-aut-Semi-Group X) (is-group-aut-Semi-Group' X)) {- Now we introduce homomorphisms of semi-groups. Group homomorphisms are just homomorphisms between their underlying semi-groups. -} preserves-mul : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → (type-Semi-Group G → type-Semi-Group H) → UU (l1 ⊔ l2) preserves-mul G H f = (x y : type-Semi-Group G) → Id (f (mul-Semi-Group G x y)) (mul-Semi-Group H (f x) (f y)) abstract is-prop-preserves-mul : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f : type-Semi-Group G → type-Semi-Group H) → is-prop (preserves-mul G H f) is-prop-preserves-mul G (pair (pair H is-set-H) (pair μ-H assoc-H)) f = is-prop-Π (λ x → is-prop-Π (λ y → is-set-H (f (mul-Semi-Group G x y)) (μ-H (f x) (f y)))) hom-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → UU (l1 ⊔ l2) hom-Semi-Group G H = Σ ( type-Semi-Group G → type-Semi-Group H) ( preserves-mul G H) {- Bureaucracy of homomorphisms of semi-groups. -} map-hom-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( hom-Semi-Group G H) → ( type-Semi-Group G) → (type-Semi-Group H) map-hom-Semi-Group G H f = pr1 f preserves-mul-hom-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f : hom-Semi-Group G H) → preserves-mul G H (map-hom-Semi-Group G H f) preserves-mul-hom-Semi-Group G H f = pr2 f {- We characterize the identity type of the semi-group homomorphisms. -} htpy-hom-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) (f g : hom-Semi-Group G H) → UU (l1 ⊔ l2) htpy-hom-Semi-Group G H f g = (map-hom-Semi-Group G H f) ~ (map-hom-Semi-Group G H g) reflexive-htpy-hom-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f : hom-Semi-Group G H) → htpy-hom-Semi-Group G H f f reflexive-htpy-hom-Semi-Group G H f = htpy-refl htpy-hom-Semi-Group-eq : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f g : hom-Semi-Group G H) → Id f g → htpy-hom-Semi-Group G H f g htpy-hom-Semi-Group-eq G H f .f refl = reflexive-htpy-hom-Semi-Group G H f abstract is-contr-total-htpy-hom-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f : hom-Semi-Group G H) → is-contr (Σ (hom-Semi-Group G H) (htpy-hom-Semi-Group G H f)) is-contr-total-htpy-hom-Semi-Group G H f = is-contr-total-Eq-substructure ( is-contr-total-htpy (map-hom-Semi-Group G H f)) ( is-prop-preserves-mul G H) ( map-hom-Semi-Group G H f) ( htpy-refl) ( preserves-mul-hom-Semi-Group G H f) abstract is-equiv-htpy-hom-Semi-Group-eq : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f g : hom-Semi-Group G H) → is-equiv (htpy-hom-Semi-Group-eq G H f g) is-equiv-htpy-hom-Semi-Group-eq G H f = fundamental-theorem-id f ( reflexive-htpy-hom-Semi-Group G H f) ( is-contr-total-htpy-hom-Semi-Group G H f) ( htpy-hom-Semi-Group-eq G H f) eq-htpy-hom-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → { f g : hom-Semi-Group G H} → htpy-hom-Semi-Group G H f g → Id f g eq-htpy-hom-Semi-Group G H {f} {g} = inv-is-equiv (is-equiv-htpy-hom-Semi-Group-eq G H f g) {- We show that the type of semi-group homomorphisms between two semi-groups is a set. -} is-set-hom-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → is-set (hom-Semi-Group G H) is-set-hom-Semi-Group G H (pair f μ-f) (pair g μ-g) = is-prop-is-equiv ( htpy-hom-Semi-Group G H (pair f μ-f) (pair g μ-g)) ( htpy-hom-Semi-Group-eq G H (pair f μ-f) (pair g μ-g)) ( is-equiv-htpy-hom-Semi-Group-eq G H (pair f μ-f) (pair g μ-g)) ( is-prop-Π (λ x → is-set-type-Semi-Group H (f x) (g x))) {- We introduce group homomorphisms. -} hom-Group : { l1 l2 : Level} (G : Group l1) (H : Group l2) → UU (l1 ⊔ l2) hom-Group G H = hom-Semi-Group ( semi-group-Group G) ( semi-group-Group H) {- Bureaucracy of group homomorphisms. -} map-hom-Group : { l1 l2 : Level} (G : Group l1) (H : Group l2) → ( hom-Group G H) → ( type-Group G) → (type-Group H) map-hom-Group G H f = pr1 f preserves-mul-hom-Group : { l1 l2 : Level} (G : Group l1) (H : Group l2) → ( f : hom-Group G H) → preserves-mul ( semi-group-Group G) ( semi-group-Group H) ( map-hom-Group G H f) preserves-mul-hom-Group G H f = pr2 f {- We characterize the identity type of the group homomorphisms. -} htpy-hom-Group : { l1 l2 : Level} (G : Group l1) (H : Group l2) (f g : hom-Group G H) → UU (l1 ⊔ l2) htpy-hom-Group G H = htpy-hom-Semi-Group ( semi-group-Group G) ( semi-group-Group H) reflexive-htpy-hom-Group : { l1 l2 : Level} (G : Group l1) (H : Group l2) → ( f : hom-Group G H) → htpy-hom-Group G H f f reflexive-htpy-hom-Group G H = reflexive-htpy-hom-Semi-Group ( semi-group-Group G) ( semi-group-Group H) htpy-hom-Group-eq : { l1 l2 : Level} (G : Group l1) (H : Group l2) → ( f g : hom-Group G H) → Id f g → htpy-hom-Group G H f g htpy-hom-Group-eq G H = htpy-hom-Semi-Group-eq ( semi-group-Group G) ( semi-group-Group H) abstract is-contr-total-htpy-hom-Group : { l1 l2 : Level} (G : Group l1) (H : Group l2) → ( f : hom-Group G H) → is-contr (Σ (hom-Group G H) (htpy-hom-Group G H f)) is-contr-total-htpy-hom-Group G H = is-contr-total-htpy-hom-Semi-Group ( semi-group-Group G) ( semi-group-Group H) abstract is-equiv-htpy-hom-Group-eq : { l1 l2 : Level} (G : Group l1) (H : Group l2) → ( f g : hom-Group G H) → is-equiv (htpy-hom-Group-eq G H f g) is-equiv-htpy-hom-Group-eq G H = is-equiv-htpy-hom-Semi-Group-eq ( semi-group-Group G) ( semi-group-Group H) eq-htpy-hom-Group : { l1 l2 : Level} (G : Group l1) (H : Group l2) → { f g : hom-Group G H} → htpy-hom-Group G H f g → Id f g eq-htpy-hom-Group G H = eq-htpy-hom-Semi-Group (semi-group-Group G) (semi-group-Group H) {- Next, we construct the identity group homomorphism, and we show that compositions of group homomorphisms are again group homomorphisms. -} preserves-mul-id : {l : Level} (G : Semi-Group l) → preserves-mul G G id preserves-mul-id (pair (pair G is-set-G) (pair μ-G assoc-G)) x y = refl id-Semi-Group : {l : Level} (G : Semi-Group l) → hom-Semi-Group G G id-Semi-Group G = pair id (preserves-mul-id G) id-Group : {l : Level} (G : Group l) → hom-Group G G id-Group G = id-Semi-Group (semi-group-Group G) composition-Semi-Group : {l1 l2 l3 : Level} → (G : Semi-Group l1) (H : Semi-Group l2) (K : Semi-Group l3) → (hom-Semi-Group H K) → (hom-Semi-Group G H) → (hom-Semi-Group G K) composition-Semi-Group G H K (pair g μ-g) (pair f μ-f) = pair ( g ∘ f) ( λ x y → (ap g (μ-f x y)) ∙ (μ-g (f x) (f y))) composition-Group : {l1 l2 l3 : Level} (G : Group l1) (H : Group l2) (K : Group l3) → (hom-Group H K) → (hom-Group G H) → (hom-Group G K) composition-Group G H K = composition-Semi-Group ( semi-group-Group G) ( semi-group-Group H) ( semi-group-Group K) {- Next, we prove the that the laws for a category hold for group homomorphisms, i.e., we show that composition is associative and satisfies the left and right unit laws. Before we show that these laws hold, we will characterize the identity type of the types of semi-group homomorphisms and group homomorphisms. -} associative-Semi-Group : { l1 l2 l3 l4 : Level} (G : Semi-Group l1) (H : Semi-Group l2) ( K : Semi-Group l3) (L : Semi-Group l4) (h : hom-Semi-Group K L) → ( g : hom-Semi-Group H K) (f : hom-Semi-Group G H) → Id ( composition-Semi-Group G H L ( composition-Semi-Group H K L h g) f) ( composition-Semi-Group G K L h ( composition-Semi-Group G H K g f)) associative-Semi-Group G H K L (pair h μ-h) (pair g μ-g) (pair f μ-f) = eq-htpy-hom-Semi-Group G L htpy-refl left-unit-law-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) ( f : hom-Semi-Group G H) → Id ( composition-Semi-Group G H H (id-Semi-Group H) f) f left-unit-law-Semi-Group G (pair (pair H is-set-H) (pair μ-H assoc-H)) (pair f μ-f) = eq-htpy-hom-Semi-Group G ( pair (pair H is-set-H) (pair μ-H assoc-H)) ( htpy-refl) right-unit-law-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) ( f : hom-Semi-Group G H) → Id ( composition-Semi-Group G G H f (id-Semi-Group G)) f right-unit-law-Semi-Group (pair (pair G is-set-G) (pair μ-G assoc-G)) H (pair f μ-f) = eq-htpy-hom-Semi-Group ( pair (pair G is-set-G) (pair μ-G assoc-G)) H htpy-refl {- Now we introduce the notion of group isomorphism. Finally, we will show that isomorphic groups are equal. -} is-iso-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f : hom-Semi-Group G H) → UU (l1 ⊔ l2) is-iso-Semi-Group G H f = Σ ( hom-Semi-Group H G) (λ g → ( Id (composition-Semi-Group H G H f g) (id-Semi-Group H)) × ( Id (composition-Semi-Group G H G g f) (id-Semi-Group G))) iso-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → UU (l1 ⊔ l2) iso-Semi-Group G H = Σ (hom-Semi-Group G H) (is-iso-Semi-Group G H) abstract is-prop-is-iso-Semi-Group' : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f : hom-Semi-Group G H) → is-prop' (is-iso-Semi-Group G H f) is-prop-is-iso-Semi-Group' G H f (pair g (pair issec isretr)) (pair g' (pair issec' isretr')) = eq-subtype ( λ h → is-prop-prod ( is-set-hom-Semi-Group H H ( composition-Semi-Group H G H f h) ( id-Semi-Group H)) ( is-set-hom-Semi-Group G G ( composition-Semi-Group G H G h f) ( id-Semi-Group G))) ( ( inv (left-unit-law-Semi-Group H G g)) ∙ ( ( inv (ap (λ h → composition-Semi-Group H G G h g) isretr')) ∙ ( ( associative-Semi-Group H G H G g' f g) ∙ ( ( ap (composition-Semi-Group H H G g') issec) ∙ ( right-unit-law-Semi-Group H G g'))))) abstract is-prop-is-iso-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f : hom-Semi-Group G H) → is-prop (is-iso-Semi-Group G H f) is-prop-is-iso-Semi-Group G H f = is-prop-is-prop' (is-prop-is-iso-Semi-Group' G H f) abstract preserves-mul-inv-is-equiv-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f : hom-Semi-Group G H) ( is-equiv-f : is-equiv (map-hom-Semi-Group G H f)) → preserves-mul H G (inv-is-equiv is-equiv-f) preserves-mul-inv-is-equiv-Semi-Group ( pair (pair G is-set-G) (pair μ-G assoc-G)) ( pair (pair H is-set-H) (pair μ-H assoc-H)) ( pair f μ-f) is-equiv-f x y = inv-is-equiv ( is-emb-is-equiv f is-equiv-f ( inv-is-equiv is-equiv-f (μ-H x y)) ( μ-G (inv-is-equiv is-equiv-f x) (inv-is-equiv is-equiv-f y))) ( ( ( issec-inv-is-equiv is-equiv-f (μ-H x y)) ∙ ( ( ap (λ t → μ-H t y) (inv (issec-inv-is-equiv is-equiv-f x))) ∙ ( ap ( μ-H (f (inv-is-equiv is-equiv-f x))) ( inv (issec-inv-is-equiv is-equiv-f y))))) ∙ ( inv (μ-f (inv-is-equiv is-equiv-f x) (inv-is-equiv is-equiv-f y)))) abstract is-iso-is-equiv-hom-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f : hom-Semi-Group G H) (is-equiv-f : is-equiv (pr1 f)) → is-iso-Semi-Group G H f is-iso-is-equiv-hom-Semi-Group ( pair (pair G is-set-G) (pair μ-G assoc-G)) ( pair (pair H is-set-H) (pair μ-H assoc-H)) ( pair f μ-f) is-equiv-f = pair ( pair ( inv-is-equiv is-equiv-f) ( preserves-mul-inv-is-equiv-Semi-Group ( pair (pair G is-set-G) (pair μ-G assoc-G)) ( pair (pair H is-set-H) (pair μ-H assoc-H)) ( pair f μ-f) is-equiv-f)) ( pair ( eq-htpy-hom-Semi-Group ( pair (pair H is-set-H) (pair μ-H assoc-H)) ( pair (pair H is-set-H) (pair μ-H assoc-H)) ( issec-inv-is-equiv is-equiv-f)) ( eq-htpy-hom-Semi-Group ( pair (pair G is-set-G) (pair μ-G assoc-G)) ( pair (pair G is-set-G) (pair μ-G assoc-G)) ( isretr-inv-is-equiv is-equiv-f))) abstract is-equiv-hom-is-iso-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f : hom-Semi-Group G H) (is-iso-f : is-iso-Semi-Group G H f) → ( is-equiv (pr1 f)) is-equiv-hom-is-iso-Semi-Group ( pair (pair G is-set-G) (pair μ-G assoc-G)) ( pair (pair H is-set-H) (pair μ-H assoc-H)) ( pair f μ-f) ( pair (pair g μ-g) (pair issec isretr)) = is-equiv-has-inverse g ( htpy-eq (ap pr1 issec)) ( htpy-eq (ap pr1 isretr)) equiv-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → UU (l1 ⊔ l2) equiv-Semi-Group G H = Σ ( type-Semi-Group G ≃ type-Semi-Group H) ( λ e → preserves-mul G H (map-equiv e)) total-is-equiv-hom-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → UU (l1 ⊔ l2) total-is-equiv-hom-Semi-Group G H = Σ (hom-Semi-Group G H) (λ f → is-equiv (map-hom-Semi-Group G H f)) preserves-mul' : { l1 l2 : Level} (G : Semi-Group l1) (H : UU-Set l2) ( μ-H : has-associative-mul H) → ( e : (type-Semi-Group G) ≃ (type-Set H)) → UU (l1 ⊔ l2) preserves-mul' G H μ-H e = preserves-mul G (pair H μ-H) (map-equiv e) equiv-Semi-Group' : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → UU (l1 ⊔ l2) equiv-Semi-Group' G H = equiv-Semi-Group G (pair (pr1 H) (pr2 H)) abstract equiv-iso-Semi-Group-equiv-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → equiv-Semi-Group' G H ≃ iso-Semi-Group G H equiv-iso-Semi-Group-equiv-Semi-Group G H = ( ( ( equiv-total-subtype ( λ f → is-subtype-is-equiv (map-hom-Semi-Group G H f)) ( is-prop-is-iso-Semi-Group G H) ( is-iso-is-equiv-hom-Semi-Group G H) ( is-equiv-hom-is-iso-Semi-Group G H)) ∘e ( ( inv-equiv ( equiv-Σ-assoc ( type-Semi-Group G → type-Semi-Group H) ( preserves-mul G H) ( λ f → is-equiv (map-hom-Semi-Group G H f)))) ∘e ( equiv-tot ( λ f → equiv-swap-prod (is-equiv f) (preserves-mul G H f))))) ∘e ( equiv-Σ-assoc ( type-Semi-Group G → type-Semi-Group H) ( is-equiv) ( λ e → preserves-mul G H (map-equiv e)))) ∘e ( equiv-tr (equiv-Semi-Group G) (η-pair H)) center-total-preserves-mul-id : { l1 : Level} (G : Semi-Group l1) → Σ (has-associative-mul (pr1 G)) (λ μ → preserves-mul G (pair (pr1 G) μ) id) center-total-preserves-mul-id (pair (pair G is-set-G) (pair μ-G assoc-G)) = pair (pair μ-G assoc-G) (λ x y → refl) contraction-total-preserves-mul-id : { l1 : Level} (G : Semi-Group l1) → ( t : Σ ( has-associative-mul (pr1 G)) ( λ μ → preserves-mul G (pair (pr1 G) μ) id)) → Id (center-total-preserves-mul-id G) t contraction-total-preserves-mul-id ( pair (pair G is-set-G) (pair μ-G assoc-G)) ( pair (pair μ-G' assoc-G') μ-id) = eq-subtype ( λ μ → is-prop-preserves-mul ( pair (pair G is-set-G) (pair μ-G assoc-G)) ( pair (pair G is-set-G) μ) id) ( eq-subtype ( λ μ → is-prop-Π (λ x → is-prop-Π (λ y → is-prop-Π (λ z → is-set-G (μ (μ x y) z) (μ x (μ y z)))))) ( eq-htpy (λ x → eq-htpy (λ y → μ-id x y)))) is-contr-total-preserves-mul-id : { l1 : Level} (G : Semi-Group l1) → is-contr (Σ (has-associative-mul (pr1 G)) (λ μ → preserves-mul G (pair (pr1 G) μ) id)) is-contr-total-preserves-mul-id G = pair ( center-total-preserves-mul-id G) ( contraction-total-preserves-mul-id G) is-contr-total-equiv-Semi-Group : { l1 : Level} (G : Semi-Group l1) → is-contr (Σ (Semi-Group l1) (λ H → equiv-Semi-Group' G H)) is-contr-total-equiv-Semi-Group {l1} G = is-contr-total-Eq-structure ( preserves-mul' G) ( is-contr-total-Eq-substructure ( is-contr-total-equiv (type-Semi-Group G)) ( is-prop-is-set) ( type-Semi-Group G) ( equiv-id (type-Semi-Group G)) ( is-set-type-Semi-Group G)) ( pair (pr1 G) (equiv-id (type-Semi-Group G))) ( is-contr-total-preserves-mul-id G) is-contr-total-iso-Semi-Group : { l1 : Level} (G : Semi-Group l1) → is-contr (Σ (Semi-Group l1) (iso-Semi-Group G)) is-contr-total-iso-Semi-Group {l1} G = is-contr-equiv' ( Σ (Semi-Group l1) (λ H → equiv-Semi-Group' G H)) ( equiv-tot (λ H → equiv-iso-Semi-Group-equiv-Semi-Group G H)) ( is-contr-total-equiv-Semi-Group G) iso-id-Semi-Group : { l1 : Level} (G : Semi-Group l1) → iso-Semi-Group G G iso-id-Semi-Group G = pair ( id-Semi-Group G) ( pair ( id-Semi-Group G) ( pair ( left-unit-law-Semi-Group G G (id-Semi-Group G)) ( right-unit-law-Semi-Group G G (id-Semi-Group G)))) iso-eq-Semi-Group : { l1 : Level} (G H : Semi-Group l1) → Id G H → iso-Semi-Group G H iso-eq-Semi-Group G .G refl = iso-id-Semi-Group G is-equiv-iso-eq-Semi-Group : { l1 : Level} (G H : Semi-Group l1) → is-equiv (iso-eq-Semi-Group G H) is-equiv-iso-eq-Semi-Group G = fundamental-theorem-id G ( iso-id-Semi-Group G) ( is-contr-total-iso-Semi-Group G) ( iso-eq-Semi-Group G) equiv-iso-eq-Semi-Group : { l1 : Level} (G H : Semi-Group l1) → Id G H ≃ iso-Semi-Group G H equiv-iso-eq-Semi-Group G H = pair (iso-eq-Semi-Group G H) (is-equiv-iso-eq-Semi-Group G H) eq-iso-Semi-Group : { l1 : Level} (G H : Semi-Group l1) → iso-Semi-Group G H → Id G H eq-iso-Semi-Group G H = inv-is-equiv (is-equiv-iso-eq-Semi-Group G H) {- Finally we show that isomorphic groups are equal. -} iso-Group : { l1 l2 : Level} (G : Group l1) (H : Group l2) → UU (l1 ⊔ l2) iso-Group G H = iso-Semi-Group ( semi-group-Group G) ( semi-group-Group H) iso-id-Group : { l1 : Level} (G : Group l1) → iso-Group G G iso-id-Group G = iso-id-Semi-Group (semi-group-Group G) iso-eq-Group : { l1 : Level} (G H : Group l1) → Id G H → iso-Group G H iso-eq-Group G .G refl = iso-id-Group G abstract equiv-iso-eq-Group' : { l1 : Level} (G H : Group l1) → Id G H ≃ iso-Group G H equiv-iso-eq-Group' G H = ( equiv-iso-eq-Semi-Group ( semi-group-Group G) ( semi-group-Group H)) ∘e ( equiv-ap-pr1-is-subtype is-prop-is-group {s = G} {t = H}) abstract is-contr-total-iso-Group : { l1 : Level} (G : Group l1) → is-contr (Σ (Group l1) (iso-Group G)) is-contr-total-iso-Group {l1} G = is-contr-equiv' ( Σ (Group l1) (Id G)) ( equiv-tot (λ H → equiv-iso-eq-Group' G H)) ( is-contr-total-path G) is-equiv-iso-eq-Group : { l1 : Level} (G H : Group l1) → is-equiv (iso-eq-Group G H) is-equiv-iso-eq-Group G = fundamental-theorem-id G ( iso-id-Group G) ( is-contr-total-iso-Group G) ( iso-eq-Group G) eq-iso-Group : { l1 : Level} (G H : Group l1) → iso-Group G H → Id G H eq-iso-Group G H = inv-is-equiv (is-equiv-iso-eq-Group G H) -- Exercises -- Exercise 10.1 tr-equiv-eq-ap : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {x y : A} (p : Id x y) → (map-equiv (equiv-eq (ap B p))) ~ tr B p tr-equiv-eq-ap refl = htpy-refl -- Exercise 10.2 subuniverse-is-contr : {i : Level} → subuniverse i i subuniverse-is-contr {i} = pair is-contr is-subtype-is-contr unit' : (i : Level) → UU i unit' i = pr1 (Raise i unit) abstract is-contr-unit' : (i : Level) → is-contr (unit' i) is-contr-unit' i = is-contr-equiv' unit (pr2 (Raise i unit)) is-contr-unit abstract center-UU-contr : (i : Level) → total-subuniverse (subuniverse-is-contr {i}) center-UU-contr i = pair (unit' i) (is-contr-unit' i) contraction-UU-contr : {i : Level} (A : Σ (UU i) is-contr) → Id (center-UU-contr i) A contraction-UU-contr (pair A is-contr-A) = eq-Eq-total-subuniverse subuniverse-is-contr ( equiv-is-contr (is-contr-unit' _) is-contr-A) abstract is-contr-UU-contr : (i : Level) → is-contr (Σ (UU i) is-contr) is-contr-UU-contr i = pair (center-UU-contr i) (contraction-UU-contr) is-trunc-UU-trunc : (k : 𝕋) (i : Level) → is-trunc (succ-𝕋 k) (Σ (UU i) (is-trunc k)) is-trunc-UU-trunc k i X Y = is-trunc-is-equiv k ( Id (pr1 X) (pr1 Y)) ( ap pr1) ( is-emb-pr1-is-subtype ( is-prop-is-trunc k) X Y) ( is-trunc-is-equiv k ( (pr1 X) ≃ (pr1 Y)) ( equiv-eq) ( univalence (pr1 X) (pr1 Y)) ( is-trunc-equiv-is-trunc k (pr2 X) (pr2 Y))) ev-true-false : {l : Level} (A : UU l) → (f : bool → A) → A × A ev-true-false A f = pair (f true) (f false) map-universal-property-bool : {l : Level} {A : UU l} → A × A → (bool → A) map-universal-property-bool (pair x y) true = x map-universal-property-bool (pair x y) false = y issec-map-universal-property-bool : {l : Level} {A : UU l} → ((ev-true-false A) ∘ map-universal-property-bool) ~ id issec-map-universal-property-bool (pair x y) = eq-pair-triv (pair refl refl) isretr-map-universal-property-bool' : {l : Level} {A : UU l} (f : bool → A) → (map-universal-property-bool (ev-true-false A f)) ~ f isretr-map-universal-property-bool' f true = refl isretr-map-universal-property-bool' f false = refl isretr-map-universal-property-bool : {l : Level} {A : UU l} → (map-universal-property-bool ∘ (ev-true-false A)) ~ id isretr-map-universal-property-bool f = eq-htpy (isretr-map-universal-property-bool' f) universal-property-bool : {l : Level} (A : UU l) → is-equiv (λ (f : bool → A) → pair (f true) (f false)) universal-property-bool A = is-equiv-has-inverse map-universal-property-bool issec-map-universal-property-bool isretr-map-universal-property-bool ev-true : {l : Level} {A : UU l} → (bool → A) → A ev-true f = f true triangle-ev-true : {l : Level} (A : UU l) → (ev-true) ~ (pr1 ∘ (ev-true-false A)) triangle-ev-true A = htpy-refl aut-bool-bool : bool → (bool ≃ bool) aut-bool-bool true = equiv-id bool aut-bool-bool false = equiv-neg-𝟚 bool-aut-bool : (bool ≃ bool) → bool bool-aut-bool e = map-equiv e true decide-true-false : (b : bool) → coprod (Id b true) (Id b false) decide-true-false true = inl refl decide-true-false false = inr refl eq-false : (b : bool) → (¬ (Id b true)) → (Id b false) eq-false true p = ind-empty (p refl) eq-false false p = refl eq-true : (b : bool) → (¬ (Id b false)) → Id b true eq-true true p = refl eq-true false p = ind-empty (p refl) eq-false-equiv' : (e : bool ≃ bool) → Id (map-equiv e true) true → is-decidable (Id (map-equiv e false) false) → Id (map-equiv e false) false eq-false-equiv' e p (inl q) = q eq-false-equiv' e p (inr x) = ind-empty ( Eq-𝟚-eq true false ( ap pr1 ( is-prop-is-contr' ( is-contr-map-is-equiv (is-equiv-map-equiv e) true) ( pair true p) ( pair false (eq-true (map-equiv e false) x))))) eq-false-equiv : (e : bool ≃ bool) → Id (map-equiv e true) true → Id (map-equiv e false) false eq-false-equiv e p = eq-false-equiv' e p (has-decidable-equality-𝟚 (map-equiv e false) false) {- eq-true-equiv : (e : bool ≃ bool) → ¬ (Id (map-equiv e true) true) → Id (map-equiv e false) true eq-true-equiv e f = {!!} issec-bool-aut-bool' : ( e : bool ≃ bool) (d : is-decidable (Id (map-equiv e true) true)) → htpy-equiv (aut-bool-bool (bool-aut-bool e)) e issec-bool-aut-bool' e (inl p) true = ( htpy-equiv-eq (ap aut-bool-bool p) true) ∙ (inv p) issec-bool-aut-bool' e (inl p) false = ( htpy-equiv-eq (ap aut-bool-bool p) false) ∙ ( inv (eq-false-equiv e p)) issec-bool-aut-bool' e (inr f) true = ( htpy-equiv-eq ( ap aut-bool-bool (eq-false (map-equiv e true) f)) true) ∙ ( inv (eq-false (map-equiv e true) f)) issec-bool-aut-bool' e (inr f) false = ( htpy-equiv-eq (ap aut-bool-bool {!eq-true-equiv e ?!}) {!!}) ∙ ( inv {!!}) issec-bool-aut-bool : (aut-bool-bool ∘ bool-aut-bool) ~ id issec-bool-aut-bool e = eq-htpy-equiv ( issec-bool-aut-bool' e ( has-decidable-equality-𝟚 (map-equiv e true) true)) -} -- Exercise unit-classical-Prop : classical-Prop lzero unit-classical-Prop = pair (pair {!!} {!!}) {!!} raise-unit-classical-Prop : (l : Level) → classical-Prop l raise-unit-classical-Prop l = pair ( pair ( raise l unit) ( is-prop-is-equiv' unit ( map-raise l unit) ( is-equiv-map-raise l unit) ( is-prop-unit))) ( inl (map-raise l unit star)) bool-classical-Prop : (l : Level) → classical-Prop l → bool bool-classical-Prop l (pair P (inl x)) = true bool-classical-Prop l (pair P (inr x)) = false classical-Prop-bool : (l : Level) → bool → classical-Prop l classical-Prop-bool l true = raise-unit-classical-Prop l classical-Prop-bool l false = {!!} -- Exercise {- We show that group homomorphisms preserve the unit. -} preserves-unit : { l1 l2 : Level} (G : Group l1) (H : Group l2) → ( f : hom-Semi-Group ( semi-group-Group G) ( semi-group-Group H)) → UU l2 preserves-unit G H f = Id (map-hom-Group G H f (unit-Group G)) (unit-Group H) abstract preserves-unit-group-hom : { l1 l2 : Level} (G : Group l1) (H : Group l2) → ( f : hom-Group G H) → preserves-unit G H f preserves-unit-group-hom ( pair ( pair (pair G is-set-G) (pair μ-G assoc-G)) ( pair ( pair e-G (pair left-unit-G right-unit-G)) ( pair i-G (pair left-inv-G right-inv-G)))) ( pair ( pair (pair H is-set-H) (pair μ-H assoc-H)) ( pair ( pair e-H (pair left-unit-H right-unit-H)) ( pair i-H (pair left-inv-H right-inv-H)))) ( pair f μ-f) = ( inv (left-unit-H (f e-G))) ∙ ( ( ap (λ x → μ-H x (f e-G)) (inv (left-inv-H (f e-G)))) ∙ ( ( assoc-H (i-H (f e-G)) (f e-G) (f e-G)) ∙ ( ( ap (μ-H (i-H (f e-G))) (inv (μ-f e-G e-G))) ∙ ( ( ap (λ x → μ-H (i-H (f e-G)) (f x)) (left-unit-G e-G)) ∙ ( left-inv-H (f e-G)))))) {- We show that group homomorphisms preserve inverses. -} preserves-inverses : { l1 l2 : Level} (G : Group l1) (H : Group l2) → ( f : hom-Group G H) → UU (l1 ⊔ l2) preserves-inverses G H f = ( x : type-Group G) → Id ( map-hom-Group G H f (inv-Group G x)) ( inv-Group H (map-hom-Group G H f x)) abstract preserves-inverses-group-hom' : { l1 l2 : Level} (G : Group l1) (H : Group l2) → ( f : hom-Group G H) → preserves-unit G H f → preserves-inverses G H f preserves-inverses-group-hom' ( pair ( pair (pair G is-set-G) (pair μ-G assoc-G)) ( pair ( pair e-G (pair left-unit-G right-unit-G)) ( pair i-G (pair left-inv-G right-inv-G)))) ( pair ( pair (pair H is-set-H) (pair μ-H assoc-H)) ( pair ( pair e-H (pair left-unit-H right-unit-H)) ( pair i-H (pair left-inv-H right-inv-H)))) ( pair f μ-f) preserves-unit-f x = ( inv ( right-unit-H (f (i-G x)))) ∙ ( ( ap (μ-H (f (i-G x))) (inv (right-inv-H (f x)))) ∙ ( ( inv (assoc-H (f (i-G x)) (f x) (i-H (f x)))) ∙ ( ( inv (ap (λ y → μ-H y (i-H (f x))) (μ-f (i-G x) x))) ∙ ( ( ap (λ y → μ-H (f y) (i-H (f x))) (left-inv-G x)) ∙ ( ( ap ( λ y → μ-H y (i-H (f x))) ( preserves-unit-f)) ∙ ( left-unit-H (i-H (f x)))))))) abstract preserves-inverses-group-hom : { l1 l2 : Level} (G : Group l1) (H : Group l2) → ( f : hom-Group G H) → preserves-inverses G H f preserves-inverses-group-hom G H f = preserves-inverses-group-hom' G H f (preserves-unit-group-hom G H f) hom-Group' : { l1 l2 : Level} (G : Group l1) (H : Group l2) → UU (l1 ⊔ l2) hom-Group' G H = Σ ( hom-Group G H) (λ f → ( preserves-unit G H f) × (preserves-inverses G H f)) preserves-all-hom-Group : { l1 l2 : Level} (G : Group l1) (H : Group l2) → hom-Group G H → hom-Group' G H preserves-all-hom-Group G H f = pair f ( pair ( preserves-unit-group-hom G H f) ( preserves-inverses-group-hom G H f)) -- Exercise {- hom-mul-Group : {l : Level} (G : Group l) → hom-Group G Aut -}
33.394909
88
0.58182
dc408084b892ab26d6a41bfd1d46b7cd857746b1
4,945
agda
Agda
src/Data/Context.agda
sstucki/f-omega-int-agda
ae648c9520895a8428a7ad80f47bb55ecf4d50ea
[ "MIT" ]
12
2017-06-13T16:05:35.000Z
2021-09-27T05:53:06.000Z
src/Data/Context.agda
sstucki/f-omega-int-agda
ae648c9520895a8428a7ad80f47bb55ecf4d50ea
[ "MIT" ]
1
2021-05-14T08:09:40.000Z
2021-05-14T08:54:39.000Z
src/Data/Context.agda
sstucki/f-omega-int-agda
ae648c9520895a8428a7ad80f47bb55ecf4d50ea
[ "MIT" ]
2
2021-05-13T22:29:48.000Z
2021-05-14T10:25:05.000Z
------------------------------------------------------------------------ -- Abstract typing contexts ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module Data.Context where open import Data.Fin using (Fin) open import Data.Fin.Substitution open import Data.Fin.Substitution.Extra using (Extension) open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Vec as Vec using (Vec; []; _∷_) open import Relation.Unary using (Pred) ------------------------------------------------------------------------ -- Abstract typing contexts and context extensions. infixr 5 _∷_ -- Typing contexts. -- -- A |Ctx T n| is an indexed sequences of T-typed bindings mapping n -- variables to T-types with 0 to (n - 1) free variables each. Like -- lists (Data.List) and vectors (Data.Vec), contexts are cons -- sequences, i.e. new bindings are added to the front (rather than -- the back, as is more common in the literature). For example, a -- typing context Γ represented in the usual notation as -- -- Γ = xᵢ: Aᵢ, ..., x₁: A₁, x₀: A₀ -- -- is represented here by a term |Γ : Ctx Type i| of the form -- -- Γ = A₀ ∷ A₁ ∷ ... ∷ Aᵢ -- -- which is consistent with A₀ being the 0-th element of Γ, and with -- the de Bruijn convention that the 0-th variable corresponds to the -- closest binding. data Ctx {ℓ} (T : Pred ℕ ℓ) : ℕ → Set ℓ where [] : Ctx T zero _∷_ : ∀ {n} → T n → Ctx T n → Ctx T (suc n) module _ {ℓ} {T : Pred ℕ ℓ} where head : ∀ {n} → Ctx T (suc n) → T n head (t ∷ ts) = t tail : ∀ {n} → Ctx T (suc n) → Ctx T n tail (t ∷ ts) = ts -- Drop the m innermost elements of a context Γ. drop : ∀ {n} m → Ctx T (m + n) → Ctx T n drop zero Γ = Γ drop (suc m) (_ ∷ Γ) = drop m Γ -- A map function that changes the entries in a context pointwise. map : ∀ {ℓ₁ ℓ₂} {T₁ : Pred ℕ ℓ₁} {T₂ : Pred ℕ ℓ₂} {n} → (∀ {k} → T₁ k → T₂ k) → Ctx T₁ n → Ctx T₂ n map f [] = [] map f (t ∷ Γ) = f t ∷ map f Γ -- Extensions of typing contexts. -- -- Context extensions are indexed sequences of bindings that can be -- concatenated to the front of a typing context. A |CtxExt T m n| is -- an extension mapping n variables to T-types with m to (n + m - 1) -- free variables each. -- -- NOTE. It is tempting to define contexts as just a special case of -- context extensions, i.e. as -- -- Ctx T n = CtxExt T zero n -- -- But this leads to problems when defining e.g. concatenation because -- of the way context extensions are indexed. This could be remedied -- by indexing context extensions differently, but then the definition -- of |mapExt| below becomes difficult. An earlier version of this -- module contained two different (but equivalent) representations for -- context extensions, but this complicated (rather than simplified) -- the development overall. data CtxExt {ℓ} (T : Pred ℕ ℓ) (m : ℕ) : ℕ → Set ℓ where [] : CtxExt T m zero _∷_ : ∀ {l} → T (l + m) → CtxExt T m l → CtxExt T m (suc l) infixr 5 _++_ -- Concatenation of context extensions with contexts. _++_ : ∀ {ℓ} {T : Pred ℕ ℓ} {m n} → CtxExt T m n → Ctx T m → Ctx T (n + m) [] ++ Γ = Γ (t ∷ Δ) ++ Γ = t ∷ (Δ ++ Γ) -- A map function that point-wise re-indexes and changes the entries -- in a context extension. mapExt : ∀ {ℓ₁ ℓ₂} {T₁ : Pred ℕ ℓ₁} {T₂ : Pred ℕ ℓ₂} {m n k} → (∀ l → T₁ (l + m) → T₂ (l + n)) → CtxExt T₁ m k → CtxExt T₂ n k mapExt f [] = [] mapExt f (_∷_ {l} t Γ) = f l t ∷ mapExt (λ l → f l) Γ -- Operations on contexts that require weakening of types. module WeakenOps {ℓ} {T : Pred ℕ ℓ} (extension : Extension T) where -- Weakening of types. open Extension extension public -- Convert a context or context extension to its vector representation. toVec : ∀ {n} → Ctx T n → Vec (T n) n toVec [] = [] toVec (t ∷ Γ) = weaken t /∷ toVec Γ extToVec : ∀ {k m n} → CtxExt T m n → Vec (T m) k → Vec (T (n + m)) (n + k) extToVec [] ts = ts extToVec (t ∷ Γ) ts = weaken t /∷ extToVec Γ ts -- Lookup the type of a variable in a context or context extension. lookup : ∀ {n} → Ctx T n → Fin n → T n lookup Γ x = Vec.lookup (toVec Γ) x extLookup : ∀ {k m n} → CtxExt T m n → Vec (T m) k → Fin (n + k) → T (n + m) extLookup Δ ts x = Vec.lookup (extToVec Δ ts) x -- Operations on contexts that require substitutions in types. module SubstOps {ℓ₁ ℓ₂} {T₁ : Pred ℕ ℓ₁} {T₂ : Pred ℕ ℓ₂} (application : Application T₁ T₂) (simple : Simple T₂) where open Application application public -- Application of T′ substitutions to Ts. open Simple simple public -- Simple T′ substitutions. -- Application of substitutions to context extensions. infixl 8 _E/_ _E/_ : ∀ {k m n} → CtxExt T₁ m k → Sub T₂ m n → CtxExt T₁ n k Γ E/ σ = mapExt (λ l t → t / σ ↑⋆ l) Γ
33.412162
79
0.584226
22b314237638ab5281e363d4e72efadb696b5b71
76
agda
Agda
Cubical/Codata/EverythingSafe.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Codata/EverythingSafe.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Codata/EverythingSafe.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Codata.EverythingSafe where
25.333333
42
0.736842
41df20bb6ad67269da7817e830c63500f684a81c
1,606
agda
Agda
TotalParserCombinators/Derivative/Corollaries.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
7
2016-12-13T05:23:14.000Z
2021-06-22T05:35:31.000Z
TotalParserCombinators/Derivative/Corollaries.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
1
2018-01-22T22:21:41.000Z
2018-01-24T16:39:37.000Z
TotalParserCombinators/Derivative/Corollaries.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Some corollaries ------------------------------------------------------------------------ module TotalParserCombinators.Derivative.Corollaries where open import Data.List open import Function open import Function.Inverse using (_↔_) import Function.Related as Related import Relation.Binary.PropositionalEquality as P open import TotalParserCombinators.Derivative.Definition open import TotalParserCombinators.Derivative.LeftInverse open import TotalParserCombinators.Derivative.RightInverse open import TotalParserCombinators.Derivative.SoundComplete open import TotalParserCombinators.Parser open import TotalParserCombinators.Semantics -- D is correct. correct : ∀ {Tok R xs x s} {t} {p : Parser Tok R xs} → x ∈ D t p · s ↔ x ∈ p · t ∷ s correct {p = p} = record { to = P.→-to-⟶ $ sound p ; from = P.→-to-⟶ complete ; inverse-of = record { left-inverse-of = complete∘sound p ; right-inverse-of = sound∘complete } } -- D is monotone. mono : ∀ {Tok R xs₁ xs₂ t} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ≲ p₂ → D t p₁ ≲ D t p₂ mono p₁≲p₂ = complete ∘ p₁≲p₂ ∘ sound _ -- D preserves parser and language equivalence. cong : ∀ {k Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ∼[ k ] p₂ → ∀ {t} → D t p₁ ∼[ k ] D t p₂ cong {p₁ = p₁} {p₂} p₁≈p₂ {t} {x} {s} = x ∈ D t p₁ · s ↔⟨ correct ⟩ x ∈ p₁ · t ∷ s ∼⟨ p₁≈p₂ ⟩ x ∈ p₂ · t ∷ s ↔⟨ sym correct ⟩ x ∈ D t p₂ · s ∎ where open Related.EquationalReasoning
31.490196
72
0.590909
1c5b3076987ef39b359ea606912f4b15f67108f8
7,328
agda
Agda
test/asset/agda-stdlib-1.0/Relation/Binary/Construct/On.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
test/asset/agda-stdlib-1.0/Relation/Binary/Construct/On.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Binary/Construct/On.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Many properties which hold for _∼_ also hold for _∼_ on f ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.Construct.On where open import Function open import Data.Product module _ {a b} {A : Set a} {B : Set b} (f : B → A) where implies : ∀ {ℓ₁ ℓ₂} (≈ : Rel A ℓ₁) (∼ : Rel A ℓ₂) → ≈ ⇒ ∼ → (≈ on f) ⇒ (∼ on f) implies _ _ impl = impl reflexive : ∀ {ℓ} (∼ : Rel A ℓ) → Reflexive ∼ → Reflexive (∼ on f) reflexive _ refl = refl irreflexive : ∀ {ℓ₁ ℓ₂} (≈ : Rel A ℓ₁) (∼ : Rel A ℓ₂) → Irreflexive ≈ ∼ → Irreflexive (≈ on f) (∼ on f) irreflexive _ _ irrefl = irrefl symmetric : ∀ {ℓ} (∼ : Rel A ℓ) → Symmetric ∼ → Symmetric (∼ on f) symmetric _ sym = sym transitive : ∀ {ℓ} (∼ : Rel A ℓ) → Transitive ∼ → Transitive (∼ on f) transitive _ trans = trans antisymmetric : ∀ {ℓ₁ ℓ₂} (≈ : Rel A ℓ₁) (≤ : Rel A ℓ₂) → Antisymmetric ≈ ≤ → Antisymmetric (≈ on f) (≤ on f) antisymmetric _ _ antisym = antisym asymmetric : ∀ {ℓ} (< : Rel A ℓ) → Asymmetric < → Asymmetric (< on f) asymmetric _ asym = asym respects : ∀ {ℓ p} (∼ : Rel A ℓ) (P : A → Set p) → P Respects ∼ → (P ∘ f) Respects (∼ on f) respects _ _ resp = resp respects₂ : ∀ {ℓ₁ ℓ₂} (∼₁ : Rel A ℓ₁) (∼₂ : Rel A ℓ₂) → ∼₁ Respects₂ ∼₂ → (∼₁ on f) Respects₂ (∼₂ on f) respects₂ _ _ (resp₁ , resp₂) = ((λ {_} {_} {_} → resp₁) , λ {_} {_} {_} → resp₂) decidable : ∀ {ℓ} (∼ : Rel A ℓ) → Decidable ∼ → Decidable (∼ on f) decidable _ dec = λ x y → dec (f x) (f y) total : ∀ {ℓ} (∼ : Rel A ℓ) → Total ∼ → Total (∼ on f) total _ tot = λ x y → tot (f x) (f y) trichotomous : ∀ {ℓ₁ ℓ₂} (≈ : Rel A ℓ₁) (< : Rel A ℓ₂) → Trichotomous ≈ < → Trichotomous (≈ on f) (< on f) trichotomous _ _ compare = λ x y → compare (f x) (f y) isEquivalence : ∀ {ℓ} {≈ : Rel A ℓ} → IsEquivalence ≈ → IsEquivalence (≈ on f) isEquivalence {≈ = ≈} eq = record { refl = reflexive ≈ Eq.refl ; sym = symmetric ≈ Eq.sym ; trans = transitive ≈ Eq.trans } where module Eq = IsEquivalence eq isPreorder : ∀ {ℓ₁ ℓ₂} {≈ : Rel A ℓ₁} {∼ : Rel A ℓ₂} → IsPreorder ≈ ∼ → IsPreorder (≈ on f) (∼ on f) isPreorder {≈ = ≈} {∼} pre = record { isEquivalence = isEquivalence Pre.isEquivalence ; reflexive = implies ≈ ∼ Pre.reflexive ; trans = transitive ∼ Pre.trans } where module Pre = IsPreorder pre isDecEquivalence : ∀ {ℓ} {≈ : Rel A ℓ} → IsDecEquivalence ≈ → IsDecEquivalence (≈ on f) isDecEquivalence {≈ = ≈} dec = record { isEquivalence = isEquivalence Dec.isEquivalence ; _≟_ = decidable ≈ Dec._≟_ } where module Dec = IsDecEquivalence dec isPartialOrder : ∀ {ℓ₁ ℓ₂} {≈ : Rel A ℓ₁} {≤ : Rel A ℓ₂} → IsPartialOrder ≈ ≤ → IsPartialOrder (≈ on f) (≤ on f) isPartialOrder {≈ = ≈} {≤} po = record { isPreorder = isPreorder Po.isPreorder ; antisym = antisymmetric ≈ ≤ Po.antisym } where module Po = IsPartialOrder po isDecPartialOrder : ∀ {ℓ₁ ℓ₂} {≈ : Rel A ℓ₁} {≤ : Rel A ℓ₂} → IsDecPartialOrder ≈ ≤ → IsDecPartialOrder (≈ on f) (≤ on f) isDecPartialOrder dpo = record { isPartialOrder = isPartialOrder DPO.isPartialOrder ; _≟_ = decidable _ DPO._≟_ ; _≤?_ = decidable _ DPO._≤?_ } where module DPO = IsDecPartialOrder dpo isStrictPartialOrder : ∀ {ℓ₁ ℓ₂} {≈ : Rel A ℓ₁} {< : Rel A ℓ₂} → IsStrictPartialOrder ≈ < → IsStrictPartialOrder (≈ on f) (< on f) isStrictPartialOrder {≈ = ≈} {<} spo = record { isEquivalence = isEquivalence Spo.isEquivalence ; irrefl = irreflexive ≈ < Spo.irrefl ; trans = transitive < Spo.trans ; <-resp-≈ = respects₂ < ≈ Spo.<-resp-≈ } where module Spo = IsStrictPartialOrder spo isTotalOrder : ∀ {ℓ₁ ℓ₂} {≈ : Rel A ℓ₁} {≤ : Rel A ℓ₂} → IsTotalOrder ≈ ≤ → IsTotalOrder (≈ on f) (≤ on f) isTotalOrder {≈ = ≈} {≤} to = record { isPartialOrder = isPartialOrder To.isPartialOrder ; total = total ≤ To.total } where module To = IsTotalOrder to isDecTotalOrder : ∀ {ℓ₁ ℓ₂} {≈ : Rel A ℓ₁} {≤ : Rel A ℓ₂} → IsDecTotalOrder ≈ ≤ → IsDecTotalOrder (≈ on f) (≤ on f) isDecTotalOrder {≈ = ≈} {≤} dec = record { isTotalOrder = isTotalOrder Dec.isTotalOrder ; _≟_ = decidable ≈ Dec._≟_ ; _≤?_ = decidable ≤ Dec._≤?_ } where module Dec = IsDecTotalOrder dec isStrictTotalOrder : ∀ {ℓ₁ ℓ₂} {≈ : Rel A ℓ₁} {< : Rel A ℓ₂} → IsStrictTotalOrder ≈ < → IsStrictTotalOrder (≈ on f) (< on f) isStrictTotalOrder {≈ = ≈} {<} sto = record { isEquivalence = isEquivalence Sto.isEquivalence ; trans = transitive < Sto.trans ; compare = trichotomous ≈ < Sto.compare } where module Sto = IsStrictTotalOrder sto preorder : ∀ {p₁ p₂ p₃ b} {B : Set b} (P : Preorder p₁ p₂ p₃) → (B → Preorder.Carrier P) → Preorder _ _ _ preorder P f = record { isPreorder = isPreorder f (Preorder.isPreorder P) } setoid : ∀ {s₁ s₂ b} {B : Set b} (S : Setoid s₁ s₂) → (B → Setoid.Carrier S) → Setoid _ _ setoid S f = record { isEquivalence = isEquivalence f (Setoid.isEquivalence S) } decSetoid : ∀ {d₁ d₂ b} {B : Set b} (D : DecSetoid d₁ d₂) → (B → DecSetoid.Carrier D) → DecSetoid _ _ decSetoid D f = record { isDecEquivalence = isDecEquivalence f (DecSetoid.isDecEquivalence D) } poset : ∀ {p₁ p₂ p₃ b} {B : Set b} (P : Poset p₁ p₂ p₃) → (B → Poset.Carrier P) → Poset _ _ _ poset P f = record { isPartialOrder = isPartialOrder f (Poset.isPartialOrder P) } decPoset : ∀ {d₁ d₂ d₃ b} {B : Set b} (D : DecPoset d₁ d₂ d₃) → (B → DecPoset.Carrier D) → DecPoset _ _ _ decPoset D f = record { isDecPartialOrder = isDecPartialOrder f (DecPoset.isDecPartialOrder D) } strictPartialOrder : ∀ {s₁ s₂ s₃ b} {B : Set b} (S : StrictPartialOrder s₁ s₂ s₃) → (B → StrictPartialOrder.Carrier S) → StrictPartialOrder _ _ _ strictPartialOrder S f = record { isStrictPartialOrder = isStrictPartialOrder f (StrictPartialOrder.isStrictPartialOrder S) } totalOrder : ∀ {t₁ t₂ t₃ b} {B : Set b} (T : TotalOrder t₁ t₂ t₃) → (B → TotalOrder.Carrier T) → TotalOrder _ _ _ totalOrder T f = record { isTotalOrder = isTotalOrder f (TotalOrder.isTotalOrder T) } decTotalOrder : ∀ {d₁ d₂ d₃ b} {B : Set b} (D : DecTotalOrder d₁ d₂ d₃) → (B → DecTotalOrder.Carrier D) → DecTotalOrder _ _ _ decTotalOrder D f = record { isDecTotalOrder = isDecTotalOrder f (DecTotalOrder.isDecTotalOrder D) } strictTotalOrder : ∀ {s₁ s₂ s₃ b} {B : Set b} (S : StrictTotalOrder s₁ s₂ s₃) → (B → StrictTotalOrder.Carrier S) → StrictTotalOrder _ _ _ strictTotalOrder S f = record { isStrictTotalOrder = isStrictTotalOrder f (StrictTotalOrder.isStrictTotalOrder S) }
35.746341
73
0.556905
294f5ba694ae76e01ea1c4b1ee44f2c94d22993c
2,740
agda
Agda
src/STLCRef/Eval.agda
ajrouvoet/implicits.agda
ef2e347a4470e55083c83b743efbc2902ef1ad22
[ "MIT" ]
4
2019-04-05T17:57:11.000Z
2021-05-07T04:08:41.000Z
src/STLCRef/Eval.agda
ElessarWebb/implicits.agda
ef2e347a4470e55083c83b743efbc2902ef1ad22
[ "MIT" ]
null
null
null
src/STLCRef/Eval.agda
ElessarWebb/implicits.agda
ef2e347a4470e55083c83b743efbc2902ef1ad22
[ "MIT" ]
null
null
null
module STLCRef.Eval where open import Prelude open import Data.Product open import Data.List open import Data.List.Reverse open import Data.Nat open import Data.Fin hiding (_<_) open import Extensions.List as L open import STLCRef.Syntax open import STLCRef.Welltyped _!!_ : ∀ {n i} → (μ : Store n) → i < length μ → ∃ (Val {n}) _!!_ {i = i} [] () _!!_ {i = zero} (x ∷ μ) (s≤s p) = x _!!_ {i = suc i} (x ∷ μ) (s≤s p) = μ !! p Config : (n : ℕ) → Set Config n = Exp n × Store n infixl 1 _≻_ data _≻_ : ∀ {n} → Config n → Config n → Set where --------------------------------------- -- Reduction rules --------------------------------------- -- β AppAbs : ∀ {n} {A x} {e : Exp (suc n)} {μ : Store n} → --------------------------------- (ƛ A e) · x , μ ≻ e / (sub x) , μ -- new RefVal : ∀ {n e} {μ : Store n} → (v : Val e) → -------------------------------------------- (ref e , μ) ≻ (loc (length μ) , μ ∷ʳ (, v)) -- load DerefLoc : ∀ {n i} {μ : Store n} → (p : i < length μ) → --------------------------------------------------- (! (loc i) , μ) ≻ (proj₁ (μ !! p) , μ) -- store Assign : ∀ {i n e} {μ : Store n} → (p : i < length μ) → (v : Val e) → ---------------------------------------------- loc i ≔ e , μ ≻ unit , (μ L.[ fromℕ≤ p ]≔ (, v)) --------------------------------------- -- contextual closure --------------------------------------- Ref : ∀ {n e'} {e : Exp n} {μ μ'} → (e , μ) ≻ (e' , μ') → --------------------------------------- (ref e) , μ ≻ (ref e') , μ' Appₗ : ∀ {n f' e} {f : Exp n} {μ μ'} → (f , μ) ≻ (f' , μ') → --------------------------------------- (f · e) , μ ≻ (f' · e) , μ' Appᵣ : ∀ {n e' e} {f : Exp n} {μ μ'} → (e , μ) ≻ (e' , μ') → --------------------------------------- (f · e) , μ ≻ (f · e') , μ' Deref : ∀ {n} {e : Exp n} {e'} {μ μ'} → e , μ ≻ e' , μ' → --------------------------------------- ! e , μ ≻ ! e' , μ' Assign₁ : ∀ {n} {e₁ : Exp n} {e₁' e₂} {μ μ'} → e₁ , μ ≻ e₁' , μ' → --------------------------------------- e₁ ≔ e₂ , μ ≻ e₁' ≔ e₂ , μ' Assign₂ : ∀ {n} {e₁ : Exp n} {e₂' e₂} {μ μ'} → e₂ , μ ≻ e₂' , μ' → --------------------------------------- e₁ ≔ e₂ , μ ≻ e₁ ≔ e₂' , μ' ------------------------------------------------ -- Reflexive-transitive closure of step relation ------------------------------------------------ open import Data.Star infixl 1 _≻*_ _≻*_ : ∀ {n} → Config n → Config n → Set c ≻* c' = Star _≻_ c c'
28.247423
64
0.295985
1c7ae2295f991205521ae7739db4b609438af5f9
112
agda
Agda
test/Compiler/simple/Erased-cubical-Pattern-matching-Cubical.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Compiler/simple/Erased-cubical-Pattern-matching-Cubical.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Compiler/simple/Erased-cubical-Pattern-matching-Cubical.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --cubical #-} module Erased-cubical-Pattern-matching-Cubical where data D : Set where c₁ c₂ : D
16
52
0.696429
20b6f65465cdb14baa846d7c92240a9d9c653790
13,062
agda
Agda
src/Numeric/Nat/Prime.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
111
2015-01-05T11:28:15.000Z
2022-02-12T23:29:26.000Z
src/Numeric/Nat/Prime.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
59
2016-02-09T05:36:44.000Z
2022-01-14T07:32:36.000Z
src/Numeric/Nat/Prime.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
24
2015-03-12T18:03:45.000Z
2021-04-22T06:10:41.000Z
module Numeric.Nat.Prime where open import Prelude hiding (less-antirefl) open import Numeric.Nat.GCD open import Numeric.Nat.Divide open import Numeric.Nat.Divide.Properties open import Numeric.Nat.DivMod open import Numeric.Nat.Sqrt open import Numeric.Nat.Properties open import Tactic.Nat data Prime (n : Nat) : Set where prime : n > 1 → (∀ k → k Divides n → Either (k ≡ 1) (k ≡ n)) → Prime n private lem : (a b : Nat) → b > 1 → suc a < suc a * b lem a .(suc (k + 1)) (diff! k) = auto data Composite (n : Nat) : Set where composite : ∀ a b → a > 1 → b > 1 → a * b ≡ n → Composite n pattern composite! a b 1<a 1<b = composite a b 1<a 1<b refl composite-not-prime : ∀ {n} → Composite n → Prime n → ⊥ composite-not-prime (composite! 0 b (diff _ ()) _) composite-not-prime (composite! (suc a) b sa>1 b>1) (prime _ f) = case f (suc a) (divides-mul-l b divides-refl) of λ { (left sa=1) → less-antirefl sa>1 (sym sa=1) ; (right sa=sab) → less-antirefl (lem a b b>1) sa=sab } data Prime? n : Set where yes : Prime n → Prime? n no : Composite n → Prime? n tiny : LessNat n 2 → Prime? n private less-inv : ∀ {a b} → ¬ LessNat a b → LessNat b (suc a) less-inv {a} {b} a≮b with compare a b less-inv a≮b | less a<b = ⊥-elim (a≮b a<b) less-inv a≮b | equal refl = diff! 0 less-inv a≮b | greater a>b = by a>b data _∈[_,_] (n a b : Nat) : Set where in-range : a ≤ n → n ≤ b → n ∈[ a , b ] empty-range : ∀ {n a b} → a > b → ¬ (n ∈[ a , b ]) empty-range a>b (in-range a≤n n≤b) = less-not-geq a>b (a≤n ⟨≤⟩ n≤b) below-range : ∀ {n a b} → n < a → ¬ (n ∈[ a , b ]) below-range n<a (in-range a≤n _) = less-not-geq n<a a≤n range-lower-bound : ∀ {n a b} → n ∈[ a , b ] → a ≤ n range-lower-bound (in-range a<n _) = a<n range-upper-bound : ∀ {n a b} → n ∈[ a , b ] → n ≤ b range-upper-bound (in-range _ n<b) = n<b singleton-range : ∀ {n a} → n ∈[ a , a ] → a ≡ n singleton-range (in-range a<n n<a) = leq-antisym a<n n<a suc-range-r : ∀ {n a b} → n ∈[ a , b ] → n ∈[ a , suc b ] suc-range-r (in-range a<n n<b) = in-range a<n (by n<b) suc-range-l : ∀ {n a b} → n ∈[ suc a , b ] → n ∈[ a , b ] suc-range-l (in-range a<n n<b) = in-range (by a<n) n<b in-range-l : ∀ {a b} → a ≤ b → a ∈[ a , b ] in-range-l a<b = in-range (diff! 0) a<b in-range-r : ∀ {a b} → a ≤ b → b ∈[ a , b ] in-range-r a<b = in-range a<b (diff! 0) non-zero-range : ∀ {n a b} → n ∈[ suc a , b ] → NonZero n non-zero-range {zero} {a} (in-range (diff k eq) _) = refute eq non-zero-range {suc _} _ = _ erase-in-range : ∀ {n a b} → n ∈[ a , b ] → n ∈[ a , b ] erase-in-range r = in-range (fast-diff (range-lower-bound r)) (fast-diff (range-upper-bound r)) data _∈[_,_]? k a b : Set where inside : k ∈[ a , b ] → k ∈[ a , b ]? below : k < a → k ∈[ a , b ]? above : k > b → k ∈[ a , b ]? cmp-leq : (a b : Nat) → Either (a < b) (b ≤ a) cmp-leq a b with compare a b cmp-leq a b | less a<b = left a<b cmp-leq a b | equal a=b = right (diff 0 (cong suc a=b)) cmp-leq a b | greater a>b = right (by a>b) in-range? : ∀ k a b → k ∈[ a , b ]? in-range? k a b with cmp-leq k a in-range? k a b | left k<a = below k<a in-range? k a b | right k≥a with cmp-leq b k in-range? k a b | right k≥a | left k>b = above k>b in-range? k a b | right k≥a | right k≤b = inside (in-range k≥a k≤b) data FindInRange {ℓ} a b (P : Nat → Set ℓ) : Set ℓ where here : ∀ k → k ∈[ a , b ] → P k → FindInRange a b P none : (∀ k → k ∈[ a , b ] → ¬ P k) → FindInRange a b P -- Version with less evidence. Faster to compute. data FindInRange! {ℓ} (P : Nat → Set ℓ) : Set ℓ where here : ∀ k → P k → FindInRange! P none : FindInRange! P private not-first : ∀ {ℓ} {P : Nat → Set ℓ} {a b} → ¬ P a → (∀ k → k ∈[ suc a , b ] → ¬ P k) → ∀ k → k ∈[ a , b ] → ¬ P k not-first {a = a} !pa !pa+ k k∈r pk with compare k a not-first !pa !pa+ k k∈r pk | less k<a = below-range k<a k∈r not-first !pa !pa+ k k∈r pk | equal refl = !pa pk not-first !pa !pa+ k (in-range _ k≤b) pk | greater k>a = !pa+ k (in-range (by k>a) k≤b) pk find! : ∀ {ℓ} {P : Nat → Set ℓ} (a d : Nat) → (∀ k → Dec (P k)) → FindInRange! P find! a zero check = none find! a (suc d) check with check a find! a (suc d) check | yes pa = here a pa find! a (suc d) check | no _ = force a λ a → find! (suc a) d check found-in-range : ∀ {ℓ} {P : Nat → Set ℓ} a b d (eq : d + a ≡ suc b) (check : ∀ k → Dec (P k)) → ∀ k (pk : P k) → find! a d check ≡ here k pk → k ∈[ a , b ] found-in-range a b zero eq check k pk () found-in-range a b (suc d) eq check k pk feq with check a found-in-range a b (suc d) eq check .a pa refl | yes .pa = in-range-l (by eq) found-in-range 0 b (suc d) eq check k pk feq | no !pa with find! 1 d check | found-in-range 1 b d (by eq) check found-in-range 0 b (suc d) eq check k pk refl | no !pa | here .k .pk | rec = suc-range-l (rec _ _ refl) found-in-range 0 b (suc d) eq check k pk () | no !pa | none | rec found-in-range (suc a) b (suc d) eq check k pk feq | no !pa with find! (2 + a) d check | found-in-range (2 + a) b d (by eq) check found-in-range (suc a) b (suc d) eq check k pk refl | no !pa | here .k .pk | rec = suc-range-l (rec _ _ refl) found-in-range (suc a) b (suc d) eq check k pk () | no !pa | none | rec not-found-in-range : ∀ {ℓ} {P : Nat → Set ℓ} a b d (eq : d + a ≡ suc b) (check : ∀ k → Dec (P k)) → find! a d check ≡ none → ∀ k → k ∈[ a , b ] → ¬ P k not-found-in-range 0 b zero eq check prf k k∈ab pk = empty-range (diff 0 eq) k∈ab not-found-in-range (suc _) b zero eq check prf k k∈ab pk = empty-range (diff 0 eq) k∈ab not-found-in-range a b (suc d) eq check prf k (in-range a<k k<b) pk with check a not-found-in-range a b (suc d) eq check () k (in-range a<k k<b) pk | yes pa not-found-in-range 0 b (suc d) eq check prf k (in-range a<k k<b) pk | no !pa with find! 1 d check | not-found-in-range 1 b d (by eq) check not-found-in-range 0 b (suc d) eq check () k (in-range a<k k<b) pk | no !pa | here _ _ | rec not-found-in-range 0 b (suc d) eq check prf k (in-range a<k k<b) pk | no !pa | none | rec = not-first !pa (rec refl) k (in-range a<k k<b) pk not-found-in-range (suc a) b (suc d) eq check prf k (in-range a<k k<b) pk | no !pa with find! (suc (suc a)) d check | not-found-in-range (suc (suc a)) b d (by eq) check not-found-in-range (suc a) b (suc d) eq check () k (in-range a<k k<b) pk | no !pa | here _ _ | rec not-found-in-range (suc a) b (suc d) eq check prf k (in-range a<k k<b) pk | no !pa | none | rec = not-first !pa (rec refl) k (in-range a<k k<b) pk find : ∀ {ℓ} {P : Nat → Set ℓ} a b d → d + a ≡ suc b → (∀ k → Dec (P k)) → FindInRange a b P find a b d eq check with inspect (find! a d check) ... | here k pk with≡ prf = here k (erase-in-range (found-in-range a b d eq check k pk prf)) pk ... | none with≡ prf = none (not-found-in-range a b d eq check prf) findInRange : ∀ {ℓ} {P : Nat → Set ℓ} a b → (∀ k → Dec (P k)) → FindInRange a b P findInRange a b check with compare a b findInRange a ._ check | less (diff! k) = find a _ (2 + k) refl check findInRange a .a check | equal refl = find a _ 1 refl check findInRange a b check | greater gt = none (λ k k∈ab _ → empty-range gt k∈ab) --- Reducing the required search space to 2..√a --- private lem-less : {n r d q : Nat} → r ^ 2 ≥ n → q * d ≡ n → r < d → suc r ≤ q → ⊥ lem-less (diff k eq) refl (diff j refl) (diff! i) = refute eq non-zero-less : ∀ {a} {{_ : NonZero a}} → 0 < a non-zero-less {0} {{}} non-zero-less {suc a} = diff a auto div-unique : ∀ q {a b} {{_ : NonZero b}} → q * b ≡ a → a div b ≡ q div-unique q {a} {b} eq = quot-unique (qr (a div b) (a mod b) (mod-less b a) (divmod-sound b a)) (qr q 0 non-zero-less (by eq)) divide-smaller : ∀ n r d {{_ : NonZero d}} → n ≤ r ^ 2 → d Divides n → d > r → n div d ≤ r divide-smaller n r d n<r² (factor q eq) d>r = let n/d=q : n div d ≡ q n/d=q = div-unique q eq in less-raa (lem-less n<r² (cong (_* d) n/d=q ⟨≡⟩ eq) d>r) divide-bigger : ∀ n k {{_ : NonZero k}} → k < n → k Divides n → n div k ≥ 2 divide-bigger ._ k (diff! k₁) (factor zero eq) = refute eq divide-bigger n k k<n (factor 1 eq) = ⊥-elim (less-antirefl k<n (by eq)) divide-bigger n k k<n (factor (suc (suc q)) eq) = by (sym (div-unique (2 + q) {b = k} eq)) up-to-root : ∀ r n → r ≤ n → r ^ 2 ≥ suc n → FindInRange 2 r (_Divides suc n) → FindInRange 2 n (_Divides suc n) up-to-root r n r<n r²>n (none k∤sn) = none λ k k∈2n k|sn → erase-⊥ $ case in-range? k 2 r of λ { (inside k∈2r) → k∤sn k k∈2r k|sn ; (below k<2) → less-not-geq k<2 (range-lower-bound k∈2n) ; (above k>r) → let instance k≠0 : NonZero k k≠0 = non-zero-range k∈2n hi : suc n div k ≤ r hi = divide-smaller (suc n) r k r²>n k|sn k>r lo : suc n div k ≥ 2 lo = divide-bigger (suc n) k (range-upper-bound k∈2n) k|sn in k∤sn (suc n div k) (in-range lo hi) (factor k (by (div-divides k|sn))) } up-to-root 0 _ _ _ (here k k∈⊥ _) = ⊥-elim (empty-range (diff! 1) k∈⊥) up-to-root (suc r) n r<n r²>n (here k (in-range 2<k k<r) pk) = here k (in-range 2<k (k<r ⟨≤⟩ r<n)) pk private is-1-or-n : ∀ {n} → (∀ k → k ∈[ 2 , n ] → k Divides suc n → ⊥) → ∀ k → k Divides suc n → Either (k ≡ 1) (k ≡ suc n) is-1-or-n {n} no-div k (factor q kq=n) with in-range? k 2 n is-1-or-n no-div k (factor q kq=n) | inside inr = ⊥-elim (no-div k inr (factor q kq=n)) is-1-or-n no-div .1 (factor q kq=n) | below (diff! zero) = left refl is-1-or-n {n} no-div k (factor q kq=n) | below (diff (suc k₁) eq) = refute (divides-zero (transport (_Divides suc n) (by eq) (factor q kq=n))) is-1-or-n {n} no-div k (factor q kq=n) | above k>n = right (leq-antisym {A = Nat} (divides-less (factor q kq=n)) (by k>n)) lem₂ : ∀ {n d : Nat} q → q * d ≡ suc n → d < suc n → q > 1 lem₂ 0 eq d≤n = refute eq lem₂ 1 eq d≤n = ⊥-elim (less-antirefl d≤n (by eq)) lem₂ (suc (suc q)) eq d≤n = auto two-is-prime : ∀ k → k Divides 2 → Either (k ≡ 1) (k ≡ 2) two-is-prime k k|2 with divides-less k|2 two-is-prime 0 (factor q eq) | k≤2 = refute eq two-is-prime 1 k|2 | k≤2 = left refl two-is-prime 2 k|2 | k≤2 = right refl two-is-prime (suc (suc (suc k))) k|2 | lt = refute lt lem-sqrt : (n r : Nat) → r ^ 2 < 4 + n → ¬ (suc n < r) lem-sqrt n ._ lt (diff! c) = refute lt sqrt-less : (n : Nat) → n > 2 → suc (sqrt! n) < n sqrt-less 0 (diff k ()) sqrt-less 1 (diff k eq) = refute eq sqrt-less 2 (diff k eq) = refute eq sqrt-less (suc (suc (suc n))) _ with sqrt (3 + n) sqrt-less (suc (suc (suc n))) _ | root r lt _ = less-raa λ n<r → lem-sqrt n r lt (by n<r) isPrimeAux : ∀ n → Comparison _<_ 2 n → Prime? n isPrimeAux 0 _ = tiny (diff! 1) isPrimeAux 1 _ = tiny (diff! 0) isPrimeAux 2 _ = yes (prime (diff! 0) two-is-prime) isPrimeAux (suc (suc (suc n))) (greater (diff k eq)) = refute eq isPrimeAux (suc (suc (suc _))) (equal ()) isPrimeAux (suc n) (less n>2) with sqrt (suc n) | sqrt-less _ n>2 ... | root r r²<n sr²>n | r<n with up-to-root (suc r) n r<n (by sr²>n) $ findInRange 2 (suc r) (λ k → k divides? suc n) ... | none p = yes (prime (by n>2) (is-1-or-n p)) ... | here d (in-range 2≤d d≤n) (factor q eq) = no (composite d q (by 2≤d) (lem₂ q eq d≤n) (by eq)) isPrime : ∀ n → Prime? n isPrime n = isPrimeAux n (compare 2 n) isPrime! : Nat → Bool isPrime! n with isPrime n ... | yes _ = true ... | no _ = false ... | tiny _ = false decPrime : ∀ p → Dec (Prime p) decPrime p = case isPrime p of λ where (yes isp) → yes isp (no comp) → no (composite-not-prime comp) (tiny p<2) → no λ where (prime p>1 dp) → less-not-geq p>1 p<2 -- Benchmarking -- Todo: test only odd numbers -- Composite -- 5.0s + isPrime 1927 (41 * 47) -- 40ms recurse from below -- 5.2s + isPrime (1021 * 1021) -- 0.2s remove range argument from check -- 0.8s + isPrime (3581 * 3581) -- 0.3s don't compute in-range proof in find! -- Prime (no proof) -- 2.3s + isPrime! 1021 -- 5.0s recurse from below -- 0.1s remove range argument from check -- 0.7s + isPrime! 3581 -- Prime (run proof: cheap because we're not actually running the (negative) function computed by find) -- 0.7s + testPrimeProof 3581 -- Prime (print proof) -- 1.8s + isPrime 83 -- 3.4s recurse from below -- 2.6s remove range argument from check -- 0.1s split negative proof into separate function -- 0.6s + isPrime 3581 -- 0.2s only check up to sqrt -- 0.7s + isPrime 12823607 -- 2.3s + isPrime 234576373 -- 1.4s don't compute in-range proof in find!
42.686275
114
0.546624
313268fe40662385ea10e2e72b6c6aa67be00170
7,997
agda
Agda
HoTT/HLevel.agda
michaelforney/hott
ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508
[ "0BSD" ]
null
null
null
HoTT/HLevel.agda
michaelforney/hott
ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508
[ "0BSD" ]
null
null
null
HoTT/HLevel.agda
michaelforney/hott
ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508
[ "0BSD" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT.Base open import HoTT.Identity open import HoTT.Identity.Boolean open import HoTT.Identity.Coproduct open import HoTT.Identity.Sigma open import HoTT.Identity.Identity open import HoTT.Identity.Pi open import HoTT.Identity.NaturalNumber open import HoTT.Transport.Identity open import HoTT.Equivalence open import HoTT.Equivalence.Lift open import HoTT.Equivalence.Transport open import HoTT.Homotopy module HoTT.HLevel where open variables private variable n : ℕ isContr : 𝒰 i → 𝒰 i isContr A = Σ[ a ∶ A ] Π[ x ∶ A ] (a == x) -- Use a record so that we can use instances (technique from HoTT-Agda) record hlevel (n : ℕ) (A : 𝒰 i) : 𝒰 i hlevel-type : ℕ → 𝒰 i → 𝒰 i hlevel-type zero = isContr hlevel-type (succ n) A = {x y : A} → hlevel n (x == y) record hlevel n A where inductive eta-equality constructor hlevel-in field hlevel-out : hlevel-type n A open hlevel public center : ⦃ hlevel 0 A ⦄ → A center ⦃ hlevel-in (c , _) ⦄ = c contr : ⦃ _ : hlevel 0 A ⦄ {x : A} → center == x contr ⦃ hlevel-in (_ , p) ⦄ = p _ isProp : 𝒰 i → 𝒰 i isProp A = (x y : A) → x == y record hlevel𝒰 (n : ℕ) (i : _) : 𝒰 (lsuc i) where constructor type infix 90 _ty field _ty : 𝒰 i ⦃ h ⦄ : hlevel n _ty open hlevel𝒰 using (_ty) public Prop𝒰 = hlevel𝒰 1 Prop𝒰₀ = Prop𝒰 lzero isSet : 𝒰 i → 𝒰 i isSet A = {x y : A} → isProp (x == y) Set𝒰 = hlevel𝒰 2 Set𝒰₀ = Set𝒰 lzero instance =-hlevel : {x y : A} → ⦃ hlevel (succ n) A ⦄ → hlevel n (x == y) =-hlevel ⦃ hlevel-in h ⦄ = h _◃_ : 𝒰 i → 𝒰 j → 𝒰 (i ⊔ j) A ◃ B = Σ (A → B) rinv infixr 5 _◃_ -- Theorem 7.1.4 retract-hlevel : A ◃ B → ⦃ hlevel n A ⦄ → hlevel n B retract-hlevel {n = zero} (p , s , ε) = hlevel-in (p center , λ b → ap p contr ∙ ε b) retract-hlevel {A = A} {B = B} {n = succ n} (p , s , ε) = hlevel-in (retract-hlevel {n = n} r) where -- t = r : {y y' : B} → (s y == s y') ◃ (y == y') r {y} {y'} = t , ap s , λ u → ε y ⁻¹ ∙ ap p (ap s u) ∙ ε y' =⟨ _ ∙ₗ ap-∘ p s u ⁻¹ ∙ᵣ _ ⟩ ε y ⁻¹ ∙ ap (p ∘ s) u ∙ ε y' =⟨ assoc ⁻¹ ⟩ ε y ⁻¹ ∙ (ap (p ∘ s) u ∙ ε y') =⟨ pivotₗ (~-natural-id ε u) ⁻¹ ⟩ u ∎ where open =-Reasoning t : _ t q = ε y ⁻¹ ∙ ap p q ∙ ε y' equiv-hlevel : A ≃ B → ⦃ hlevel n A ⦄ → hlevel n B equiv-hlevel e = retract-hlevel (pr₁ e , qinv→rinv (isequiv→qinv (pr₂ e))) Π-implicit-equiv : ({x : A} → P x) ≃ Π A P Π-implicit-equiv = iso→eqv λ{.f x _ → x ; .g h → h _ ; .η _ → refl ; .ε _ → refl} where open Iso raise : ⦃ {_ : A} → hlevel n A ⦄ → hlevel (succ n) A raise {n = zero} ⦃ f ⦄ = hlevel-in λ {x} → hlevel-in (contr ⦃ f {x} ⦄ ⁻¹ ∙ contr , λ{refl → invₗ}) raise {n = succ n} ⦃ f ⦄ = hlevel-in λ {x} → raise ⦃ =-hlevel ⦃ f {x} ⦄ ⦄ add : ℕ → ℕ → ℕ add n zero = n add n (succ m) = succ (add n m) raise* : {A : 𝒰 i} → ⦃ hlevel n A ⦄ → {m : ℕ} → hlevel (add n (succ m)) A raise* {m = zero} = raise raise* {m = succ m} = raise ⦃ raise* ⦄ instance Lift-hlevel : ⦃ hlevel n A ⦄ → hlevel n (Lift {i} A) Lift-hlevel = equiv-hlevel (Lift-equiv ⁻¹ₑ) 𝟎-hlevel : hlevel (succ n) (𝟎 {i}) 𝟎-hlevel {zero} = hlevel-in λ where {()} 𝟎-hlevel {succ _} = raise 𝟏-hlevel : hlevel n (𝟏 {i}) 𝟏-hlevel {zero} = hlevel-in (★ , λ where ★ → refl) 𝟏-hlevel {succ _} = raise 𝟐-hlevel : hlevel (succ (succ n)) 𝟐 𝟐-hlevel {n} = hlevel-in (equiv-hlevel (=𝟐-equiv ⁻¹ₑ)) where code-hlevel : {x y : 𝟐} → hlevel (succ n) (x =𝟐 y) code-hlevel {0₂} {0₂} = ⟨⟩ code-hlevel {0₂} {1₂} = ⟨⟩ code-hlevel {1₂} {0₂} = ⟨⟩ code-hlevel {1₂} {1₂} = ⟨⟩ instance _ = code-hlevel Π-hlevel : ⦃ {x : A} → hlevel n (P x) ⦄ → hlevel n (Π A P) Π-hlevel {n = zero} = hlevel-in ((λ _ → center) , (λ _ → funext λ _ → contr)) Π-hlevel {n = succ n} = hlevel-in (equiv-hlevel (=Π-equiv ⁻¹ₑ)) Π-implicit-hlevel : ⦃ {x : A} → hlevel n (P x) ⦄ → hlevel n ({x : A} → P x) Π-implicit-hlevel = equiv-hlevel (Π-implicit-equiv ⁻¹ₑ) +-hlevel : ⦃ hlevel (succ (succ n)) A ⦄ → ⦃ hlevel (succ (succ n)) B ⦄ → hlevel (succ (succ n)) (A + B) +-hlevel {n} {A = A} {B = B} = hlevel-in (equiv-hlevel (=+-equiv ⁻¹ₑ)) where code-hlevel : {x y : A + B} → hlevel (succ n) (x =+ y) code-hlevel {inl _} {inl _} = ⟨⟩ code-hlevel {inl _} {inr _} = ⟨⟩ code-hlevel {inr _} {inl _} = ⟨⟩ code-hlevel {inr _} {inr _} = ⟨⟩ instance _ = code-hlevel ℕ-hlevel : hlevel 2 ℕ hlevel-out ℕ-hlevel {x} = equiv-hlevel (=ℕ-equiv ⁻¹ₑ) where code-hlevel : {x y : ℕ} → hlevel 1 (x =ℕ y) code-hlevel {zero} {zero} = ⟨⟩ code-hlevel {zero} {succ y} = ⟨⟩ code-hlevel {succ x} {zero} = ⟨⟩ code-hlevel {succ x} {succ y} = code-hlevel {x} instance _ = code-hlevel {x} -- Make Σ-hlevel a private instance so it can be installed as-needed. -- There are too many cases where we want to use some other instance -- instead. Σ-hlevel : ⦃ h₁ : hlevel n A ⦄ → ⦃ h₂ : {x : A} → hlevel n (P x) ⦄ → hlevel n (Σ A P) private instance _ = Σ-hlevel Σ-hlevel {n = zero} = hlevel-in ((center , center) , λ x → pair⁼' (contr , contr)) Σ-hlevel {n = succ n} = hlevel-in (equiv-hlevel (=Σ-equiv ⁻¹ₑ)) →-hlevel : ⦃ hlevel n B ⦄ → hlevel n (A → B) →-hlevel = ⟨⟩ ×-hlevel : ⦃ h₁ : hlevel n A ⦄ → ⦃ h₂ : hlevel n B ⦄ → hlevel n (A × B) ×-hlevel = ⟨⟩ isContr-hlevel : hlevel 1 (isContr A) hlevel-out (isContr-hlevel {A = A}) {h} = ⟨⟩ where instance _ = raise* ⦃ hlevel-in h ⦄ hlevel-equiv : hlevel-type n A ≃ hlevel n A hlevel-equiv = hlevel-in , qinv→isequiv (hlevel-out , (λ _ → refl) , (λ _ → refl)) instance hlevel-hlevel : hlevel 1 (hlevel n A) hlevel-hlevel {zero} = equiv-hlevel hlevel-equiv ⦃ isContr-hlevel ⦄ hlevel-hlevel {succ n} = equiv-hlevel hlevel-equiv hlevel⁼ : ⦃ h₁ : hlevel n A ⦄ ⦃ h₂ : hlevel n B ⦄ → A == B → type A == type B hlevel⁼ ⦃ h₁ ⦄ ⦃ h₂ ⦄ refl rewrite center ⦃ =-hlevel {x = h₁} {h₂} ⦄ = refl hlevel1→isProp : ⦃ hlevel 1 A ⦄ → isProp A hlevel1→isProp = center hlevel2→isSet : ⦃ hlevel 2 A ⦄ → isSet A hlevel2→isSet = center isProp→hlevel1 : isProp A → hlevel 1 A hlevel-out (isProp→hlevel1 f) {x} {y} = ⟨⟩ where instance _ = raise ⦃ hlevel-in (x , f x) ⦄ isProp-hlevel1 : hlevel 1 (isProp A) hlevel-out isProp-hlevel1 {f} = ⟨⟩ where instance _ = raise ⦃ isProp→hlevel1 f ⦄ isProp-prop : isProp (isProp A) isProp-prop = hlevel1→isProp ⦃ isProp-hlevel1 ⦄ isProp→isSet : isProp A → isSet A isProp→isSet A-prop {x} {y} p q = center where instance _ = raise ⦃ isProp→hlevel1 A-prop ⦄ isContr-prop : isProp (isContr A) isContr-prop (a , p) (a' , p') = pair⁼ (p a' , center) where instance _ = raise* ⦃ hlevel-in (a , p) ⦄ prop-equiv : ⦃ h₁ : hlevel 1 A ⦄ → ⦃ h₂ : hlevel 1 B ⦄ → (A → B) → (B → A) → A ≃ B prop-equiv f g = f , qinv→isequiv (g , (λ _ → center) , (λ _ → center)) Σ-contr₁ : ⦃ _ : hlevel 0 A ⦄ → Σ A P ≃ P center Σ-contr₁ {A = A} {P = P} ⦃ h ⦄ = let open Iso in iso→eqv λ where .f → transport P (contr ⁻¹) ∘ pr₂ .g y → center , y .η x → pair⁼ (contr , Eqv.ε (transport-equiv (contr {A = A})) _) .ε y → ap {x = contr ⁻¹} (λ p → transport P p y) let instance _ = raise* ⦃ h ⦄ in center Σ-contr₂ : ⦃ {x : A} → hlevel 0 (P x) ⦄ → Σ A P ≃ A Σ-contr₂ = let open Iso in iso→eqv λ where .f → pr₁ .g x → x , center .η _ → pair⁼ (refl , contr) .ε _ → refl ×-contr₁ : ⦃ hlevel 0 A ⦄ → A × B ≃ B ×-contr₁ = Σ-contr₁ ×-contr₂ : ⦃ hlevel 0 B ⦄ → A × B ≃ A ×-contr₂ = Σ-contr₂ Π-contr₁ : ⦃ _ : hlevel 0 A ⦄ → Π A P ≃ P center Π-contr₁ {A = A} {P = P} ⦃ h ⦄ = let open Iso in iso→eqv λ where .f h → h center .g x _ → transport P contr x .η h → funext (λ _ → apd h contr) .ε x → ap {x = contr} (λ p → transport P p x) let instance _ = raise* ⦃ h ⦄ in center =-contrₗ : (a : A) → hlevel 0 (Σ A (a ==_)) =-contrₗ a = hlevel-in ((a , refl) , λ (_ , p) → pair⁼ (p , transport=-const-id p a refl ∙ unitₗ ⁻¹)) =-contrᵣ : (a : A) → hlevel 0 (Σ A (_== a)) =-contrᵣ a = hlevel-in ((a , refl) , λ (_ , p) → pair⁼ (p ⁻¹ , transport=-id-const a (p ⁻¹) refl ∙ unitᵣ ⁻¹ ∙ invinv))
31.360784
85
0.566462
1a1afcc01ab3d9596da8ef301c83e6bb363ee0ee
803
agda
Agda
archive/agda-3/src/Oscar/Class/Hmap.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-3/src/Oscar/Class/Hmap.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-3/src/Oscar/Class/Hmap.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
open import Oscar.Prelude open import Oscar.Class module Oscar.Class.Hmap where module Hmap {𝔵₁} {𝔛₁ : Ø 𝔵₁} {𝔵₂} {𝔛₂ : Ø 𝔵₂} {𝔯₁} {𝔯₂} (ℜ₁ : 𝔛₁ → 𝔛₂ → Ø 𝔯₁) (ℜ₂ : 𝔛₁ → 𝔛₂ → Ø 𝔯₂) = ℭLASS (ℜ₁ , ℜ₂) (∀ x y → ℜ₁ x y → ℜ₂ x y) module _ {𝔵₁} {𝔛₁ : Ø 𝔵₁} {𝔵₂} {𝔛₂ : Ø 𝔵₂} {𝔯₁} {𝔯₂} {ℜ₁ : 𝔛₁ → 𝔛₂ → Ø 𝔯₁} {ℜ₂ : 𝔛₁ → 𝔛₂ → Ø 𝔯₂} where hmap = Hmap.method ℜ₁ ℜ₂ module _ {𝔵} {𝔛 : Ø 𝔵} {𝔯₁} {𝔯₂} {ℜ₁ : 𝔛 → 𝔛 → Ø 𝔯₁} {ℜ₂ : 𝔛 → 𝔛 → Ø 𝔯₂} where smap : ⦃ _ : Hmap.class ℜ₁ ℜ₂ ⦄ → ∀ {x y} → ℜ₁ x y → ℜ₂ x y smap = Hmap.method ℜ₁ ℜ₂ _ _ § = smap module _ {𝔵} {𝔛 : Ø 𝔵} {𝔯₁} {𝔯₂} {ℜ₁ : 𝔛 → 𝔛 → Ø 𝔯₁} (ℜ₂ : 𝔛 → 𝔛 → Ø 𝔯₂) where smap[_] : ⦃ _ : Hmap.class ℜ₁ ℜ₂ ⦄ → ∀ {x y} → ℜ₁ x y → ℜ₂ x y smap[_] = Hmap.method ℜ₁ ℜ₂ _ _ §[_] = smap[_]
17.844444
64
0.465753
5992cb2243f111147c2a5930dff6166d30989518
790
agda
Agda
src/Categories/Functor/Construction/SubCategory.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Functor/Construction/SubCategory.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Functor/Construction/SubCategory.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Functor.Construction.SubCategory {o ℓ e} (C : Category o ℓ e) where open import Categories.Category.SubCategory C open Category C open Equiv open import Level open import Function.Base using () renaming (id to id→) open import Data.Product open import Categories.Functor using (Functor) private variable ℓ′ i : Level I : Set i U : I → Obj Sub : ∀ (sub : SubCat {i} {ℓ′} I) → Functor (SubCategory sub) C Sub (record {U = U}) = record { F₀ = U ; F₁ = proj₁ ; identity = refl ; homomorphism = refl ; F-resp-≈ = id→ } FullSub : Functor (FullSubCategory U) C FullSub {U = U} = record { F₀ = U ; F₁ = id→ ; identity = refl ; homomorphism = refl ; F-resp-≈ = id→ }
19.268293
85
0.64557
2975e9dbde598ba28e2d6fdc4db01c1c7581ef41
74
agda
Agda
test-lib/src/Test.agda
phile314/agda-build
fe6be7731e968c78aef73f4fc14bf7976a607c79
[ "BSD-3-Clause" ]
null
null
null
test-lib/src/Test.agda
phile314/agda-build
fe6be7731e968c78aef73f4fc14bf7976a607c79
[ "BSD-3-Clause" ]
null
null
null
test-lib/src/Test.agda
phile314/agda-build
fe6be7731e968c78aef73f4fc14bf7976a607c79
[ "BSD-3-Clause" ]
null
null
null
module Test where open import Agda.Primitive f : Level -> Level f x = x
10.571429
26
0.702703
41ace045c22719b170bc52d16bb68c3dcfa41862
19,545
agda
Agda
examples/AIM5/yoshiki/SET.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
examples/AIM5/yoshiki/SET.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/AIM5/yoshiki/SET.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
------------------------------------------------------------------------------- -- -- SET (in Hedberg library) for agda2 -- as of 2006.9.29 morning -- Yoshiki. -- module SET where ---------------------------------------------------------------------------- -- Auxiliary. ---------------------------------------------------------------------------- -- no : (x : A) -> B : Set if A : Set B : Set -- yes : (x : A) -> B type if A type B type -- El M type if M : Set data Unop (A : Set) : Set1 where unopI : (A -> A) -> Unop A data Pred (A : Set) : Set1 where PredI : (A -> Set) -> Pred A data Rel (A : Set) : Set1 where RelI : (A -> A -> Set) -> Rel A data Reflexive {A : Set} (R : A -> A -> Set) : Set where reflexiveI : ((a : A) -> R a a) -> Reflexive R data Symmetrical {A : Set} (R : A -> A -> Set) : Set where symmetricalI : ({a b : A} -> R a b -> R a b) -> Symmetrical R data Transitive {A : Set} (R : A -> A -> Set) : Set where transitiveI : ({a b c : A} -> R a b -> R b c -> R a c) -> Transitive R compositionalI : {A : Set} -> (R : A -> A -> Set) -> ({a b c : A} -> R b c -> R a b -> R a c) -> Transitive R compositionalI {A} R f = transitiveI (\{a b c : A} -> \(x : R a b) -> \(y : R b c) -> f y x) data Substitutive {A : Set} (R : A -> A -> Set) : Set1 where substitutiveI : ((P : A -> Set) -> {a b : A} -> R a b -> P a -> P b) -> Substitutive R data Collapsed (A : Set) : Set1 where collapsedI : ((P : A -> Set) -> {a b : A} -> P a -> P b) -> Collapsed A cmp : {A B C : Set} -> (B -> C) -> (A -> B) -> A -> C cmp f g a = f (g a) seq : {A B C : Set} -> (A -> B) -> (B -> C) -> A -> C seq f g = cmp g f S : {A B C : Set} -> (C -> B -> A) -> (C -> B) -> C -> A S x y z = x z (y z) K : {A B : Set} -> A -> B -> A K x y = x I : {A : Set} -> A -> A I a = a -- of course I = S K K id = \{A : Set} -> I {A} const = \{A B : Set} -> K {A}{B} -- Set version pS : {P Q R : Set} -> (R -> Q -> P) -> (R -> Q) -> R -> P pS x y z = x z (y z) pK : {P Q : Set} -> P -> Q -> P pK x y = x pI : {P : Set} -> P -> P pI a = a proj : {A : Set} -> (B : A -> Set) -> (a : A) -> (f : (aa : A) -> B aa) -> B a proj B a f = f a flip : {A B C : Set} (f : A -> B -> C) (b : B) (a : A) -> C flip f b a = f a b -- separate definition of FlipRel is necessary because it is not the case -- that Set : Set. FlipRel : {A : Set} -> (R : A -> A -> Set) -> (a b : A) -> Set FlipRel R a b = R b a ---------------------------------------------------------------------------- -- Product sets. ---------------------------------------------------------------------------- -- Prod : (A : Set) -> (A -> Set) -> Set -- Prod A B = (a : A) -> B a -- The above is not type-correct since (a : A) -> B a is not well-formed -- but the following works. data Prod (A : Set) (B : A -> Set) : Set where prodI : ((a : A) -> B a) -> Prod A B mapProd : {A : Set} -> {B C : A -> Set} -> ((a : A) -> B a -> C a) -> Prod A B -> Prod A C mapProd {A} f (prodI g) = prodI (\(a : A) -> f a (g a)) -- data Fun (A B : Set) : Set1 where -- funI : (A -> B) -> Fun A B Fun : Set -> Set -> Set Fun A B = Prod A (\(_ : A) -> B) mapFun : {A B C D : Set} -> (B -> A) -> (C -> D) -> (A -> C) -> B -> D mapFun {A} {B} {C} {D} f g h x = g (h (f x)) -- mapFun (|X1 |X2 |Y1 |Y2 :: Set) -- :: (X2 -> X1) -> (Y1 -> Y2) -> (X1 -> Y1) -> X2 -> Y2 -- = \f -> \g -> \h -> \x -> -- g (h (f x)) --------------------------------------------------------------------------- -- Identity proof sets. --------------------------------------------------------------------------- -- to accept the following definition more general scheme of -- inductive definition is required -- data Id (A : Set) (a b : A) : Set1 where -- ref : (a : A) -> Id A a a -- -- elimId (|X :: Set) -- (C :: (x1 x2 :: X) |-> Id x1 x2 -> Set) -- (refC :: (x :: X) -> C (refId x)) -- (|x1 |x2 :: X) -- (u :: Id x1 x2) :: -- C u -- = case u of { (ref x) -> refC x;} -- -- abstract whenId (|X :: Set)(C :: Rel X)(c :: (x :: X) -> C x x) -- :: (x1 x2 :: X) |-> Id x1 x2 -> C x1 x2 -- = elimId (\x1 x2 |-> \(u :: Id x1 x2) -> C x1 x2) c -- -- abstract substId (|X :: Set) :: Substitutive Id -- = \(C :: Pred X) -> -- whenId (\x1 x2 -> C x1 -> C x2) (\x -> id) -- -- abstract mapId (|X :: Set)(|Y :: Set)(f :: X -> Y) -- :: (x1 x2 :: X) |-> Id x1 x2 -> Id (f x1) (f x2) -- = whenId (\x1 x2 -> Id (f x1) (f x2)) (\(x :: X) -> refId (f x)) -- -- abstract symId (|X :: Set) :: Symmetrical Id -- = whenId (\(x1 x2 :: X) -> Id x2 x1) refId -- -- abstract cmpId (|X :: Set) :: Compositional Id -- = let lem :: (x y :: X) |-> Id x y -> (z :: X) |-> Id z x -> Id z y -- = whenId ( \(x y :: _) -> (z :: X) |-> Id z x -> Id z y) -- ( \x -> \z |-> id) -- in \(x1 x2 x3 :: _) |-> -- \(u :: Id x2 x3) -> -- \(v :: Id x1 x2) -> -- lem u v -- -- abstract tranId (|X :: Set) :: Transitive Id -- = \(x1 x2 x3 :: X) |-> -- \(u :: Id x1 x2) -> -- \(v :: Id x2 x3) -> -- cmpId v u ---------------------------------------------------------------------------- -- The empty set. ---------------------------------------------------------------------------- data Zero : Set where -- --abstract whenZero (X :: Set)(z :: Zero) :: X -- -- = case z of { } -- do not know how to encode whenZero; the following does not work. -- whenZero : (X : Set) -> (z : Zero) -> X -- whenZero X z = -- --elimZero (C :: Zero -> Set)(z :: Zero) :: C z -- -- = case z of { } -- elimZero either! -- elimZero : (C : Zero -> Set) -> (z : Zero) -> C z -- elimZero C z = -- -- abstract collZero :: Collapsed Zero -- = \(C :: Zero -> Set) -> -- \(z1 z2 :: Zero) |-> -- \(c :: C z1) -> -- case z1 of { } -- ---------------------------------------------------------------------------- -- The singleton set. ---------------------------------------------------------------------------- data Unit : Set where uu : Unit elUnit = uu elimUnit : (C : Unit -> Set) -> C uu -> (u : Unit) -> C u elimUnit C c uu = c -- Do not know of the exact use of Collapse! -- collUnit : (C : Unit -> Set) -> {u1 u2 : Unit} -> C u1 -> Collapsed Unit -- collUnit C {uu} {uu} A = collapsedI (\(P : Unit -> Set) -> \{a b : Unit} -> \(y : P a) -> A) -- abstract collUnit :: Collapsed Unit -- = \(C :: Unit -> Set) -> -- \(u1 u2 :: Unit) |-> -- \(c :: C u1) -> -- case u1 of { (tt) -> case u2 of { (tt) -> c;};} --------------------------------------------------------------------------- -- The successor set adds a new element. --------------------------------------------------------------------------- data Succ (A : Set) : Set where zerS : Succ A sucS : A -> Succ A zerSucc = \{A : Set} -> zerS {A} sucSucc = \{A : Set} -> sucS {A} elimSucc : {X : Set} -> (C : Succ X -> Set) -> C zerS -> ((x : X) -> C (sucS x)) -> (xx : Succ X) -> (C xx) elimSucc C c_z c_s zerS = c_z elimSucc C c_z c_s (sucS x) = c_s x whenSucc : {X Y : Set} -> Y -> (X -> Y) -> (Succ X) -> Y whenSucc y_z y_s zerS = y_z whenSucc y_z y_s (sucS x) = y_s x mapSucc : {X Y : Set} -> (X -> Y) -> Succ X -> Succ Y mapSucc {X} {_} f = whenSucc zerS (\(x : X) -> sucS (f x)) --------------------------------------------------------------------------- -- The (binary) disjoint union. --------------------------------------------------------------------------- data Plus (A B : Set) : Set where inl : A -> Plus A B inr : B -> Plus A B elimPlus : {X Y : Set} -> (C : Plus X Y -> Set) -> ((x : X) -> C (inl x)) -> ((y : Y) -> C (inr y)) -> (z : Plus X Y) -> C z elimPlus {X} {Y} C c_lft c_rgt (inl x) = c_lft x elimPlus {X} {Y} C c_lft c_rgt (inr x) = c_rgt x when : {X Y Z : Set} -> (X -> Z) -> (Y -> Z) -> Plus X Y -> Z when {X} {Y} {Z} f g (inl x) = f x when {X} {Y} {Z} f g (inr y) = g y whenplus : {X Y Z : Set} -> (X -> Z) -> (Y -> Z) -> Plus X Y -> Z whenplus = when mapPlus : {X1 X2 Y1 Y2 : Set} -> (X1 -> X2) -> (Y1 -> Y2) -> Plus X1 Y1 -> Plus X2 Y2 mapPlus f g = when (\x1 -> inl (f x1)) (\y1 -> inr (g y1)) swapPlus : {X Y : Set} -> Plus X Y -> Plus Y X swapPlus = when inr inl ---------------------------------------------------------------------------- -- Dependent pairs. ---------------------------------------------------------------------------- data Sum (A : Set) (B : A -> Set) : Set where sumI : (fst : A) -> B fst -> Sum A B depPair : {A : Set} -> {B : A -> Set} -> (a : A) -> B a -> Sum A B depPair a b = sumI a b depFst : {A : Set} -> {B : A -> Set} -> (c : Sum A B) -> A depFst (sumI fst snd) = fst depSnd : {A : Set} -> {B : A -> Set} -> (c : Sum A B) -> B (depFst c) depSnd (sumI fst snd) = snd depCur : {A : Set} -> {B : A -> Set} -> {C : Set} -> (f : Sum A B -> C) -> (a : A) -> B a -> C depCur f = \a -> \b -> f (depPair a b) -- the above works but the below does not---why? -- depCur : {X : Set} -> {Y : X -> Set} -> {Z : Set} -> (f : Sum X Y -> Z) -- -> {x : X} -> Y x -> Z -- depCur {X} {Y} {Z} f = \{x} -> \y -> f (depPair x y) -- Error message : -- When checking that the expression \{x} -> \y -> f (depPair x y) -- has type Y _x -> Z -- found an implicit lambda where an explicit lambda was expected depUncur : {A : Set} -> {B : A -> Set} -> {C : Set} -> ((a : A) -> B a -> C) -> Sum A B -> C depUncur f ab = f (depFst ab) (depSnd ab) depCurry : {A : Set} -> {B : A -> Set} -> {C : Sum A B -> Set} -> (f : (ab : Sum A B) -> C ab) -> (a : A) -> (b : B a) -> C (depPair a b) depCurry f a b = f (depPair a b) depUncurry : {A : Set} -> {B : A -> Set} -> {C : Sum A B -> Set} -> (f : (a : A) -> (b : B a) -> C (depPair a b)) -> (ab : Sum A B) -> C ab depUncurry f (sumI fst snd) = f fst snd mapSum : {A : Set} -> {B1 : A -> Set} -> {B2 : A -> Set} -> (f : (a : A) -> B1 a -> B2 a) -> Sum A B1 -> Sum A B2 mapSum f (sumI fst snd) = depPair fst (f fst snd) elimSum = \{A : Set}{B : A -> Set}{C : Sum A B -> Set} -> depUncurry{A}{B}{C} --------------------------------------------------------------------------- -- Nondependent pairs (binary) cartesian product. --------------------------------------------------------------------------- Times : Set -> Set -> Set Times A B = Sum A (\(_ : A) -> B) pair : {A : Set} -> {B : Set} -> A -> B -> Times A B pair a b = sumI a b fst : {A : Set} -> {B : Set} -> Times A B -> A fst (sumI a _) = a snd : {A : Set} -> {B : Set} -> Times A B -> B snd (sumI _ b) = b pairfun : {C : Set} -> {A : Set} -> {B : Set} -> (C -> A) -> (C -> B) -> C -> Times A B pairfun f g c = pair (f c) (g c) mapTimes : {A1 : Set} -> {A2 : Set} -> {B1 : Set} -> {B2 : Set} -> (A1 -> A2) -> (B1 -> B2) -> Times A1 B1 -> Times A2 B2 mapTimes f g (sumI a b) = pair (f a) (g b) swapTimes : {A : Set} -> {B : Set} -> Times A B -> Times B A swapTimes (sumI a b) = sumI b a cur : {A : Set} -> {B : Set} -> {C : Set} -> (f : Times A B -> C) -> A -> B -> C cur f a b = f (pair a b) uncur : {A : Set} -> {B : Set} -> {C : Set} -> (A -> B -> C) -> Times A B -> C uncur f (sumI a b) = f a b curry : {A : Set} -> {B : Set} -> {C : Times A B -> Set} -> ((p : Times A B) -> C p) -> (a : A) ->(b : B) -> C (pair a b) curry f a b = f (pair a b) uncurry : {A : Set} -> {B : Set} -> {C : Times A B -> Set} -> ((a : A) -> (b : B) -> C (pair a b)) -> (p : Times A B) -> C p uncurry f (sumI a b) = f a b elimTimes = \{A B : Set}{C : Times A B -> Set} -> uncurry{A}{B}{C} --------------------------------------------------------------------------- -- Natural numbers. --------------------------------------------------------------------------- data Nat : Set where zero : Nat succ : Nat -> Nat elimNat : (C : Nat -> Set) -> (C zero) -> ((m : Nat) -> C m -> C (succ m)) -> (n : Nat) -> C n elimNat C c_z c_s zero = c_z elimNat C c_z c_s (succ m') = c_s m' (elimNat C c_z c_s m') ---------------------------------------------------------------------------- -- Linear universe of finite sets. ---------------------------------------------------------------------------- Fin : (m : Nat) -> Set Fin zero = Zero Fin (succ n) = Succ (Fin n) {- Fin 0 = {} Fin 1 = { zerS } Fin 2 = { zerS (sucS zerS) } Fin 3 = { zerS (sucS zerS) (sucS (sucS zerS)) } -} valFin : (n' : Nat) -> Fin n' -> Nat valFin zero () valFin (succ n) zerS = zero valFin (succ n) (sucS x) = succ (valFin n x) zeroFin : (n : Nat) -> Fin (succ n) zeroFin n = zerS succFin : (n : Nat) -> Fin n -> Fin (succ n) succFin n N = sucS N ---------------------------------------------------------------------------- -- Do these really belong here? ---------------------------------------------------------------------------- HEAD : {A : Set} -> (n : Nat) -> (Fin (succ n) -> A) -> A HEAD n f = f (zeroFin n) TAIL : {A : Set} -> (n : Nat) -> (Fin (succ n) -> A) -> Fin n -> A TAIL n f N = f (succFin n N) ---------------------------------------------------------------------------- -- Lists. ---------------------------------------------------------------------------- data List (A : Set) : Set where nil : List A con : A -> List A -> List A elimList : {A : Set} -> (C : List A -> Set) -> (C nil) -> ((a : A) -> (as : List A) -> C as -> C (con a as)) -> (as : List A) -> C as elimList _ c_nil _ nil = c_nil elimList C c_nil c_con (con a as) = c_con a as (elimList C c_nil c_con as) ---------------------------------------------------------------------------- -- Tuples are "dependently typed vectors". ---------------------------------------------------------------------------- data Nill : Set where nill : Nill data Cons (A B : Set) : Set where cons : A -> B -> Cons A B Tuple : (n : Nat) -> (C : Fin n -> Set) -> Set Tuple zero = \ C -> Nill Tuple (succ n) = \ C -> Cons (C zerS) (Tuple n (\(N : Fin n) -> C (sucS N))) ---------------------------------------------------------------------------- -- Vectors homogeneously typed tuples. ---------------------------------------------------------------------------- Vec : Set -> Nat -> Set Vec A m = Tuple m (\(n : Fin m) -> A) ---------------------------------------------------------------------------- -- Monoidal expressions. ---------------------------------------------------------------------------- data Mon (A : Set) : Set where unit : Mon A at : A -> Mon A mul : Mon A -> Mon A -> Mon A {- -} ---------------------------------------------------------------------------- -- Propositions. ---------------------------------------------------------------------------- data Implies (A B : Set) : Set where impliesI : (A -> B) -> Implies A B data Absurd : Set where data Taut : Set where tt : Taut data Not (P : Set) : Set where notI : (P -> Absurd) -> Not P -- encoding of Exists is unsatisfactory! Its type should be Set. data Exists (A : Set) (P : A -> Set) : Set where existsI : (evidence : A) -> P evidence -> Exists A P data Forall (A : Set) (P : A -> Set) : Set where forallI : ((a : A) -> P a) -> Forall A P data And (A B : Set) : Set where andI : A -> B -> And A B Iff : Set -> Set -> Set Iff A B = And (Implies A B) (Implies B A) data Or (A B : Set) : Set where orIl : (a : A) -> Or A B orIr : (b : B) -> Or A B Decidable : Set -> Set Decidable P = Or P (Implies P Absurd) data DecidablePred {A : Set} (P : A -> Set) : Set where decidablepredIl : (a : A) -> (P a) -> DecidablePred P decidablepredIr : (a : A) -> (Implies (P a) Absurd) -> DecidablePred P data DecidableRel {A : Set} (R : A -> A -> Set) : Set where decidablerelIl : (a b : A) -> (R a b) -> DecidableRel R decidablerelIr : (a b : A) -> (Implies (R a b) Absurd) -> DecidableRel R data Least {A : Set} (_<=_ : A -> A -> Set) (P : A -> Set) (a : A) : Set where leastI : (P a) -> ((aa : A) -> P aa -> (a <= aa)) -> Least _<=_ P a data Greatest {A : Set} (_<=_ : A -> A -> Set) (P : A -> Set) (a : A) : Set where greatestI : (P a) -> ((aa : A) -> P aa -> (aa <= a)) -> Greatest _<=_ P a ---------------------------------------------------------------------------- -- Booleans. ---------------------------------------------------------------------------- data Bool : Set where true : Bool false : Bool elimBool : (C : Bool -> Set) -> C true -> C false -> (b : Bool) -> C b elimBool C c_t c_f true = c_t elimBool C c_t c_f false = c_f whenBool : (C : Set) -> C -> C -> Bool -> C whenBool C c_t c_f b = elimBool (\(_ : Bool) -> C) c_t c_f b data pred (A : Set) : Set where predI : (A -> Bool) -> pred A data rel (A : Set) : Set where relI : (A -> A -> Bool) -> rel A True : Bool -> Set True true = Taut True false = Absurd bool2set = True pred2Pred : {A : Set} -> pred A -> Pred A pred2Pred (predI p) = PredI (\a -> True (p a)) rel2Rel : {A : Set} -> rel A -> Rel A rel2Rel (relI r) = RelI (\a -> \b -> True (r a b)) -- decTrue : (p : Bool) -> Decidable (True p) -- decTrue true = orIl tt -- decTrue false = orIr (impliesI pI) -- decTrue false = orIr (impliesI (\(p : (True false)) -> p)) -- dec_lem : {P : Set} -> (decP : Decidable P) -- -> Exists A {- abstract dec_lem (|P :: Set)(decP :: Decidable P) :: Exist |_ (\(b :: Bool) -> Iff (True b) P) = case decP of { (inl trueP) -> struct { fst = true@_; snd = struct { fst = const |_ |_ trueP; -- (True true@_) snd = const |_ |_ tt;};}; (inr notP) -> struct { fst = false@_; snd = struct { fst = whenZero P; snd = notP;};};} dec2bool :: (P :: Set) |-> (decP :: Decidable P) -> Bool = \(P :: Set) |-> \(decP :: Decidable P) -> (dec_lem |_ decP).fst dec2bool_spec (|P :: Set)(decP :: Decidable P) :: Iff (True (dec2bool |_ decP)) P = (dec_lem |_ decP).snd abstract collTrue :: (b :: Bool) -> Collapsed (True b) = let aux (X :: Set)(C :: X -> Set) :: (b :: Bool) -> (f :: True b -> X) -> (t1 :: True b) |-> (t2 :: True b) |-> C (f t1) -> C (f t2) = \(b :: Bool) -> case b of { (true) -> \(f :: (x :: True true@_) -> X) -> \(t1 t2 :: True true@_) |-> \(c :: C (f t1)) -> case t1 of { (tt) -> case t2 of { (tt) -> c;};}; (false) -> \(f :: (x :: True false@_) -> X) -> \(t1 t2 :: True false@_) |-> \(c :: C (f t1)) -> case t1 of { };} in \(b :: Bool) -> \(P :: True b -> Set) -> aux (True b) P b id bool2nat (p :: Bool) :: Nat = case p of { (true) -> succ zero; (false) -> zero;} -}
39.246988
96
0.377846
c7cdb7ae88d13094ef05e49d5b874faa30dc20d2
2,935
agda
Agda
src/fot/FOTC/Relation/Binary/Bisimilarity/PropertiesATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Relation/Binary/Bisimilarity/PropertiesATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Relation/Binary/Bisimilarity/PropertiesATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Properties for the bisimilarity relation ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Relation.Binary.Bisimilarity.PropertiesATP where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Stream.Type open import FOTC.Relation.Binary.Bisimilarity.Type ------------------------------------------------------------------------------ -- Because a greatest post-fixed point is a fixed-point, the -- bisimilarity relation _≈_ on unbounded lists is also a pre-fixed -- point of the bisimulation functional (see -- FOTC.Relation.Binary.Bisimulation). -- See Issue https://github.com/asr/apia/issues/81 . ≈-inB : D → D → Set ≈-inB xs ys = ∃[ x' ] ∃[ xs' ] ∃[ ys' ] xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ xs' ≈ ys' {-# ATP definition ≈-inB #-} ≈-in : ∀ {xs ys} → ∃[ x' ] ∃[ xs' ] ∃[ ys' ] xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ xs' ≈ ys' → xs ≈ ys ≈-in h = ≈-coind ≈-inB h' h where postulate h' : ∀ {xs} {ys} → ≈-inB xs ys → ∃[ x' ] ∃[ xs' ] ∃[ ys' ] xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ ≈-inB xs' ys' {-# ATP prove h' #-} -- See Issue https://github.com/asr/apia/issues/81 . ≈-reflB : D → D → Set ≈-reflB xs ys = xs ≡ ys ∧ Stream xs {-# ATP definition ≈-reflB #-} ≈-refl : ∀ {xs} → Stream xs → xs ≈ xs ≈-refl {xs} Sxs = ≈-coind ≈-reflB h₁ h₂ where postulate h₁ : ∀ {xs ys} → ≈-reflB xs ys → ∃[ x' ] ∃[ xs' ] ∃[ ys' ] xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ ≈-reflB xs' ys' {-# ATP prove h₁ #-} postulate h₂ : ≈-reflB xs xs {-# ATP prove h₂ #-} -- See Issue https://github.com/asr/apia/issues/81 . ≈-symB : D → D → Set ≈-symB xs ys = ys ≈ xs {-# ATP definition ≈-symB #-} ≈-sym : ∀ {xs ys} → xs ≈ ys → ys ≈ xs ≈-sym {xs} {ys} xs≈ys = ≈-coind ≈-symB h₁ h₂ where postulate h₁ : ∀ {ys} {xs} → ≈-symB ys xs → ∃[ y' ] ∃[ ys' ] ∃[ xs' ] ys ≡ y' ∷ ys' ∧ xs ≡ y' ∷ xs' ∧ ≈-symB ys' xs' {-# ATP prove h₁ #-} postulate h₂ : ≈-symB ys xs {-# ATP prove h₂ #-} -- See Issue https://github.com/asr/apia/issues/81 . ≈-transB : D → D → Set ≈-transB xs zs = ∃[ ys ] xs ≈ ys ∧ ys ≈ zs {-# ATP definition ≈-transB #-} ≈-trans : ∀ {xs ys zs} → xs ≈ ys → ys ≈ zs → xs ≈ zs ≈-trans {xs} {ys} {zs} xs≈ys ys≈zs = ≈-coind ≈-transB h₁ h₂ where postulate h₁ : ∀ {as} {cs} → ≈-transB as cs → ∃[ a' ] ∃[ as' ] ∃[ cs' ] as ≡ a' ∷ as' ∧ cs ≡ a' ∷ cs' ∧ ≈-transB as' cs' {-# ATP prove h₁ #-} postulate h₂ : ≈-transB xs zs {-# ATP prove h₂ #-} postulate ∷-injective≈ : ∀ {x xs ys} → x ∷ xs ≈ x ∷ ys → xs ≈ ys {-# ATP prove ∷-injective≈ #-} postulate ∷-rightCong≈ : ∀ {x xs ys} → xs ≈ ys → x ∷ xs ≈ x ∷ ys {-# ATP prove ∷-rightCong≈ ≈-in #-}
31.55914
83
0.47632
22dbd04070eeb6cd04afb5ef4b81345777f96942
78
agda
Agda
test/Succeed/Issue2284.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2284.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2284.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS -WShadowingInTelescope #-} bad : Set → Set → Set bad = λ x x → x
15.6
38
0.602564
1d4f5ddf199bd80368cd82960d0308dfa51ee718
712
agda
Agda
test/Succeed/fol-theorems/Eta2.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
10
2015-09-03T20:54:16.000Z
2019-12-03T13:44:25.000Z
test/Succeed/fol-theorems/Eta2.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
121
2015-01-25T13:22:12.000Z
2018-04-22T06:01:44.000Z
test/Succeed/fol-theorems/Eta2.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
4
2016-05-10T23:06:19.000Z
2016-08-03T03:54:55.000Z
------------------------------------------------------------------------------ -- Testing the η-expansion ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Eta2 where postulate D : Set ∃ : (A : D → Set) → Set _≡_ : D → D → Set -- Due to η-contraction the Agda internal representation of foo and -- bar are the same. We η-expand the internal types before the -- translation to FOL. postulate foo : ∀ d → ∃ (λ e → d ≡ e) bar : ∀ d → ∃ (_≡_ d) {-# ATP prove foo #-} {-# ATP prove bar #-}
27.384615
78
0.429775
23b3e61d701b71ac736c890f978366b1d139c9be
646
agda
Agda
test/Succeed/Issue2231sharp.agda
caryoscelus/agda
98d6f195fe672e54ef0389b4deb62e04e3e98327
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue2231sharp.agda
caryoscelus/agda
98d6f195fe672e54ef0389b4deb62e04e3e98327
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue2231sharp.agda
caryoscelus/agda
98d6f195fe672e54ef0389b4deb62e04e3e98327
[ "BSD-3-Clause" ]
null
null
null
-- Andreas, 2016-10-03, re issue #2231 -- Termination checking a corecursive definition in abstract mode. {-# OPTIONS --guardedness #-} infix 1000 ♯_ {-# BUILTIN INFINITY ∞ #-} {-# BUILTIN SHARP ♯_ #-} {-# BUILTIN FLAT ♭ #-} abstract data Functor : Set where Id : Functor _·_ : Functor → Set → Set Id · A = A data ν (F : Functor) : Set where inn : ∞ (F · ν F) → ν F -- Evaluation is required to see that Id · ν Id is a coinductive type. foo : ∀ F → F · ν F foo Id = inn (♯ foo Id) -- The termination checker needs to treat the generated #-foo function -- in abstract mode, to have constructor Id in scope.
22.275862
72
0.619195
c77649ea2f08c8d56df2b3341a10f5c1b32ec5c8
3,947
agda
Agda
src/Relation/Binary/Indexed/Extra.agda
banacorn/categories
9f6d933b227aecab338ecaef1d86566a54fdac68
[ "MIT" ]
1
2018-01-04T23:19:30.000Z
2018-01-04T23:19:30.000Z
src/Relation/Binary/Indexed/Extra.agda
banacorn/categories
9f6d933b227aecab338ecaef1d86566a54fdac68
[ "MIT" ]
null
null
null
src/Relation/Binary/Indexed/Extra.agda
banacorn/categories
9f6d933b227aecab338ecaef1d86566a54fdac68
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Extension The Agda standard library -- -- Properties of indexed binary relations ------------------------------------------------------------------------ module Relation.Binary.Indexed.Extra where open import Data.Product open import Data.Sum open import Function open import Level -- import Relation.Binary.PropositionalEquality.Core as PropEq -- open import Relation.Binary.Consequences as Consequences open import Relation.Binary.Core as Core using (_≡_) open import Relation.Binary.Indexed.Core open import Relation.Binary.Indexed import Relation.Binary as B ------------------------------------------------------------------------ -- Simple properties and equivalence relations -- open Core public hiding (_≡_; refl; _≢_) -- -- open Consequences public using (Total) ------------------------------------------------------------------------ -- Simple properties of indexed binary relations -- Implication/containment. Could also be written ⊆. [_][_]_⇒_ : ∀ {i₁ i₂ a b ℓ₁ ℓ₂} {I₁ : Set i₁} {I₂ : Set i₂} (A : I₁ → Set a) (B : I₂ → Set b) → REL A B ℓ₁ → REL A B ℓ₂ → Set _ [ A ][ B ] P ⇒ Q = ∀ {i₁ i₂} {x : A i₁} {y : B i₂} → P x y → Q x y -- _Preserves_⟶_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : A → Set b} → -- ((x : A) → B x) → B.Rel A ℓ₁ → Rel B ℓ₂ → Set (ℓ₂ ⊔ (ℓ₁ ⊔ a)) -- f Preserves P ⟶ Q = P =[ f ]⇒ Q _Respects_ : ∀ {𝒾 a ℓ₁ ℓ₂} {I : Set 𝒾} {A : I → Set a} {i : I} → (A i → Set ℓ₁) → Rel A ℓ₂ → Set (ℓ₂ ⊔ (ℓ₁ ⊔ a)) P Respects _∼_ = ∀ {x y} → x ∼ y → P x → P y [_]_Respects₂_ : ∀ {𝒾 a ℓ₁ ℓ₂} {I : Set 𝒾} (A : I → Set a) → Rel A ℓ₁ → Rel A ℓ₂ → Set (ℓ₂ ⊔ (ℓ₁ ⊔ (a ⊔ 𝒾))) [ A ] P Respects₂ _∼_ = (∀ {i} {x : A i} → _Respects_ {A = A} {i = i} (P x) _∼_) × (∀ {i} {y : A i} → _Respects_ {A = A} {i = i} (flip P y) _∼_) ------------------------------------------------------------------------ -- Preorders record IsPreorder {𝒾 a ℓ₁ ℓ₂} {I : Set 𝒾} (A : I → Set a) (_≈_ : Rel A ℓ₁) -- The underlying equality. (_∼_ : Rel A ℓ₂) -- The relation. : Set (𝒾 ⊔ a ⊔ ℓ₁ ⊔ ℓ₂) where field isEquivalence : IsEquivalence A _≈_ -- Reflexivity is expressed in terms of an underlying equality: reflexive : [ A ][ A ] _≈_ ⇒ _∼_ trans : Transitive A _∼_ module Eq = IsEquivalence isEquivalence refl : Reflexive A _∼_ refl = reflexive Eq.refl ∼-resp-≈ : [ A ] _∼_ Respects₂ _≈_ ∼-resp-≈ = (λ x≈y z∼x → trans z∼x (reflexive x≈y)) , (λ x≈y x∼z → trans (reflexive $ Eq.sym x≈y) x∼z) record Preorder {i} (I : Set i) c ℓ₁ ℓ₂ : Set (suc (i ⊔ c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _∼_ field Carrier : I → Set c _≈_ : Rel Carrier ℓ₁ -- The underlying equality. _∼_ : Rel Carrier ℓ₂ -- The relation. isPreorder : IsPreorder Carrier _≈_ _∼_ open IsPreorder isPreorder public SetoidIsPreorder : ∀ {𝒾} {I : Set 𝒾} {c ℓ} (S : Setoid I c ℓ) → IsPreorder (Setoid.Carrier S) (Setoid._≈_ S) (Setoid._≈_ S) SetoidIsPreorder {𝒾} {I} S = record { isEquivalence = isEquivalence ; reflexive = id ; trans = IsEquivalence.trans isEquivalence } where open Setoid S Setoid⇒Preorder : ∀ {𝒾} {I : Set 𝒾} {c ℓ} (S : Setoid I c ℓ) → Preorder I c ℓ ℓ Setoid⇒Preorder S = record { isPreorder = SetoidIsPreorder S } -- record -- { Carrier = {! !} -- ; _≈_ = {! !} -- ; _∼_ = {! !} -- ; isPreorder = {! !} -- } -- IsEquivalence.reflexive (Setoid.isEquivalence S) -- where open IsEquivalence {! !} -- -- isPreorder : IsPreorder _≡_ _≈_ -- isPreorder = record -- { isEquivalence = PropEq.isEquivalence -- ; reflexive = reflexive -- ; trans = trans -- } -- -- preorder : Preorder c c ℓ -- preorder = record { isPreorder = isPreorder }
34.929204
123
0.505701
2997b43603b9db67aabedc18f5e7d64e5735278a
142
agda
Agda
test/Fail/PatternSynonymOverloaded.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/PatternSynonymOverloaded.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Fail/PatternSynonymOverloaded.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
module PatternSynonymOverloaded where data Nat : Set where zero : Nat suc : Nat -> Nat pattern ss x = suc (suc x) pattern ss x = suc x
15.777778
37
0.683099
297ec924917c7b4592ce37d2904220649feb7942
218
agda
Agda
Example/Test.agda
omelkonian/setup-agda
b987bcf8dbe1e1699405f26010273d562805258a
[ "MIT" ]
2
2020-11-14T12:25:39.000Z
2022-03-05T19:15:16.000Z
Example/Test.agda
omelkonian/setup-agda
b987bcf8dbe1e1699405f26010273d562805258a
[ "MIT" ]
null
null
null
Example/Test.agda
omelkonian/setup-agda
b987bcf8dbe1e1699405f26010273d562805258a
[ "MIT" ]
null
null
null
module Example.Test where open import Data.Maybe using (Is-just) open import Prelude.Init open import Prelude.DecEq open import Prelude.Decidable _ : (¬ ¬ ((true , true) ≡ (true , true))) × (8 ≡ 18 ∸ 10) _ = auto
18.166667
41
0.678899
59dec94f304a0ebcc557c96ca53eb8b19b428010
238
agda
Agda
test/Fail/NonTerminatingReduce.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/NonTerminatingReduce.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/NonTerminatingReduce.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
data Nat : Set where zero : Nat suc : Nat → Nat {-# BUILTIN NATURAL Nat #-} data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x {-# NON_TERMINATING #-} loop : Nat → Nat loop n = loop n thm : ∀ n → loop n ≡ 42 thm n = refl
14
42
0.542017
1c8e65494d3508ec43cd14d0c6dedd2ceab613ed
5,778
agda
Agda
src/Tactic/Reflection/Substitute.agda
L-TChen/agda-prelude
158d299b1b365e186f00d8ef5b8c6844235ee267
[ "MIT" ]
111
2015-01-05T11:28:15.000Z
2022-02-12T23:29:26.000Z
src/Tactic/Reflection/Substitute.agda
L-TChen/agda-prelude
158d299b1b365e186f00d8ef5b8c6844235ee267
[ "MIT" ]
59
2016-02-09T05:36:44.000Z
2022-01-14T07:32:36.000Z
src/Tactic/Reflection/Substitute.agda
L-TChen/agda-prelude
158d299b1b365e186f00d8ef5b8c6844235ee267
[ "MIT" ]
24
2015-03-12T18:03:45.000Z
2021-04-22T06:10:41.000Z
module Tactic.Reflection.Substitute where open import Prelude hiding (abs) open import Builtin.Reflection open import Tactic.Reflection.DeBruijn IsSafe : Term → Set IsSafe (lam _ _) = ⊥ IsSafe _ = ⊤ data SafeTerm : Set where safe : (v : Term) (p : IsSafe v) → SafeTerm maybeSafe : Term → Maybe SafeTerm maybeSafe (var x args) = just (safe (var x args) _) maybeSafe (con c args) = just (safe (con c args) _) maybeSafe (def f args) = just (safe (def f args) _) maybeSafe (meta x args) = just (safe (meta x args) _) maybeSafe (lam v t) = nothing maybeSafe (pat-lam cs args) = just (safe (pat-lam cs args) _) maybeSafe (pi a b) = just (safe (pi a b) _) maybeSafe (agda-sort s) = just (safe (agda-sort s) _) maybeSafe (lit l) = just (safe (lit l) _) maybeSafe unknown = just (safe unknown _) instance DeBruijnSafeTerm : DeBruijn SafeTerm strengthenFrom {{DeBruijnSafeTerm}} k n (safe v _) = do -- Strengthening or weakening safe terms always results in safe terms, -- but proving that is a bit of a bother, thus maybeSafe. v₁ ← strengthenFrom k n v maybeSafe v₁ weakenFrom {{DeBruijnSafeTerm}} k n (safe v p) = maybe (safe unknown _) id (maybeSafe (weakenFrom k n v)) safe-term : SafeTerm → Term safe-term (safe v _) = v applyTerm : SafeTerm → List (Arg Term) → Term applyTerm v [] = safe-term v applyTerm (safe (var x args) _) args₁ = var x (args ++ args₁) applyTerm (safe (con c args) _) args₁ = con c (args ++ args₁) applyTerm (safe (def f args) _) args₁ = def f (args ++ args₁) applyTerm (safe (meta x args) _) args₁ = meta x (args ++ args₁) applyTerm (safe (lam v t) ()) args applyTerm (safe (pat-lam cs args) _) args₁ = pat-lam cs (args ++ args₁) applyTerm (safe (pi a b) _) _ = pi a b applyTerm (safe (agda-sort s) _) _ = agda-sort s applyTerm (safe (lit l) _) _ = lit l applyTerm (safe unknown _) _ = unknown Subst : Set → Set Subst A = List SafeTerm → A → A substTerm : Subst Term substArgs : Subst (List (Arg Term)) substArg : Subst (Arg Term) substAbs : Subst (Abs Term) substSort : Subst Sort substClauses : Subst (List Clause) substClause : Subst Clause substTerm σ (var x args) = case index σ x of λ { nothing → var (x - length σ) (substArgs σ args) ; (just v) → applyTerm v (substArgs σ args) } substTerm σ (con c args) = con c (substArgs σ args) substTerm σ (def f args) = def f (substArgs σ args) substTerm σ (meta x args) = meta x (substArgs σ args) substTerm σ (lam v b) = lam v (substAbs σ b) substTerm σ (pat-lam cs args) = pat-lam (substClauses σ cs) (substArgs σ args) substTerm σ (pi a b) = pi (substArg σ a) (substAbs σ b) substTerm σ (agda-sort s) = agda-sort (substSort σ s) substTerm σ (lit l) = lit l substTerm σ unknown = unknown substSort σ (set t) = set (substTerm σ t) substSort σ (lit n) = lit n substSort σ (prop t) = prop (substTerm σ t) substSort σ (propLit n) = propLit n substSort σ (inf n) = inf n substSort σ unknown = unknown substClauses σ [] = [] substClauses σ (c ∷ cs) = substClause σ c ∷ substClauses σ cs substClause σ (clause tel ps b) = case length tel of λ { zero → clause tel ps (substTerm σ b) ; (suc n) → clause tel ps (substTerm (reverse (map (λ i → safe (var i []) _) (from 0 to n)) ++ weaken (suc n) σ) b) } substClause σ (absurd-clause tel ps) = absurd-clause tel ps substArgs σ [] = [] substArgs σ (x ∷ args) = substArg σ x ∷ substArgs σ args substArg σ (arg i x) = arg i (substTerm σ x) substAbs σ (abs x v) = abs x $ substTerm (safe (var 0 []) _ ∷ weaken 1 σ) v private toArgs : Nat → List (Arg SafeTerm) → List (Arg Term) toArgs k = map (λ x → weaken k (fmap safe-term x)) SafeApplyType : Set → Set SafeApplyType A = List SafeTerm → Nat → A → List (Arg SafeTerm) → A safeApplyAbs : SafeApplyType (Abs Term) safeApplyArg : SafeApplyType (Arg Term) safeApplySort : SafeApplyType Sort -- safeApply′ env |Θ| v args = v′ -- where Γ, Δ, Θ ⊢ v -- Γ ⊢ env : Δ -- Γ ⊢ args -- Γ, Θ ⊢ v′ safeApply′ : List SafeTerm → Nat → Term → List (Arg SafeTerm) → Term safeApply′ env k (var x args) args₁ = if x <? k then var x (args ++ toArgs k args₁) else case index env (x - k) of λ { nothing → var (x - length env) (args ++ toArgs k args₁) ; (just v) → applyTerm v (args ++ toArgs k args₁) } safeApply′ env k (con c args) args₁ = con c (args ++ toArgs k args₁) safeApply′ env k (def f args) args₁ = def f (args ++ toArgs k args₁) safeApply′ env k (lam v t) (a ∷ args₁) = safeApply′ (unArg a ∷ env) k (unAbs t) args₁ safeApply′ env k (lam v b) [] = lam v $ safeApplyAbs env k b [] safeApply′ env k (pat-lam cs args) args₁ = pat-lam cs (args ++ toArgs k args₁) -- not right if applying to constructors safeApply′ env k (pi a b) _ = pi (safeApplyArg env k a []) (safeApplyAbs env k b []) safeApply′ env k (agda-sort s) args₁ = agda-sort (safeApplySort env k s []) safeApply′ env k (lit l) args₁ = lit l safeApply′ env k (meta x args) args₁ = meta x (args ++ toArgs k args₁) safeApply′ env k unknown args₁ = unknown safeApplyAbs env k (abs x b) _ = abs x (safeApply′ env (suc k) b []) safeApplyArg env k (arg i v) args₁ = arg i (safeApply′ env k v args₁) safeApplySort env k (set t) _ = set (safeApply′ env k t []) safeApplySort env k (lit n) _ = lit n safeApplySort env k (prop t) _ = set (safeApply′ env k t []) safeApplySort env k (propLit n) _ = propLit n safeApplySort env k (inf n) _ = inf n safeApplySort env k unknown _ = unknown safeApply : Term → List (Arg SafeTerm) → Term safeApply v args = safeApply′ [] 0 v args
39.575342
117
0.630149
3d714f4877970224ac6f61abf6b5efa39c78f6c2
2,493
agda
Agda
examples/todomvc/src/logic/base-todos.agda
frankymacster/redux
506fba1e27d8c1527f06c285762391b00ed03ced
[ "CC0-1.0", "MIT" ]
null
null
null
examples/todomvc/src/logic/base-todos.agda
frankymacster/redux
506fba1e27d8c1527f06c285762391b00ed03ced
[ "CC0-1.0", "MIT" ]
null
null
null
examples/todomvc/src/logic/base-todos.agda
frankymacster/redux
506fba1e27d8c1527f06c285762391b00ed03ced
[ "CC0-1.0", "MIT" ]
null
null
null
open import Data.Bool as Bool using (Bool; false; true; if_then_else_; not) open import Data.String using (String) open import Data.Nat using (ℕ; _+_; _≟_; suc; _>_; _<_; _∸_) open import Relation.Nullary.Decidable using (⌊_⌋) open import Data.List as l using (List; filter; map; take; foldl; length) open import Data.List.Properties open import Data.Maybe using (to-witness) open import Data.Fin using (fromℕ; _-_; zero) open import Data.Product as Prod using (∃; ∃₂; _×_; _,_; Σ) import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong) open Eq.≡-Reasoning open import Level using (Level) open import Data.Vec as v using (Vec; fromList; toList; last; length; []; _∷_; [_]; _∷ʳ_; _++_; lookup; head; initLast; filter; map) open import Data.Vec.Bounded as vb using ([]; _∷_; fromVec; filter; Vec≤) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; refl; _≗_; cong₂) open import Data.Nat.Properties using (+-comm) open import Relation.Unary using (Pred; Decidable) open import Relation.Nullary using (does) open import Data.Vec.Bounded.Base using (padRight; ≤-cast) import Data.Nat.Properties as ℕₚ open import Relation.Nullary.Decidable.Core using (dec-false) -- essentially a List String record Todo : Set where field text : String AddTodo : ∀ {n : ℕ} → (Vec Todo n) → String → (Vec Todo (1 + n)) AddTodo todos text = todos ∷ʳ record { text = text } AddTodoAddsNewListItem : ∀ {n : ℕ} → (todos : Vec Todo n) (text : String) → v.length (AddTodo todos text) ≡ v.length todos + 1 AddTodoAddsNewListItem [] text = refl AddTodoAddsNewListItem todos text = +-comm 1 (v.length todos) AddTodoLastAddedElementIsTodo : ∀ {n} (todos : Vec Todo n) (text : String) → last (AddTodo todos text) ≡ record { text = text } AddTodoLastAddedElementIsTodo todos text = vecLast todos where vecLast : ∀ {a} {A : Set a} {l} {n : ℕ} (xs : Vec A n) → last (xs ∷ʳ l) ≡ l vecLast [] = refl vecLast (_ ∷ xs) = P.trans (prop (xs ∷ʳ _)) (vecLast xs) where prop : ∀ {a} {A : Set a} {n x} (xs : Vec A (suc n)) → last (x v.∷ xs) ≡ last xs prop xs with initLast xs ... | _ , _ , refl = refl AddTodoAddedTodoHasGivenText : ∀ {n} (todos : Vec Todo n) (text : String) → Todo.text (last (AddTodo todos text)) ≡ text AddTodoAddedTodoHasGivenText todos text rewrite (AddTodoLastAddedElementIsTodo todos text) = refl
35.112676
132
0.657842
5720c74bc6858a81f071c9c652789a8dc46eb324
16,083
agda
Agda
src/Semantics.agda
proglang/incorrectness
91a5ff5267089e6ed0d2f6d3998633ba1842b397
[ "BSD-3-Clause" ]
1
2020-06-17T19:13:13.000Z
2020-06-17T19:13:13.000Z
src/Semantics.agda
proglang/incorrectness
91a5ff5267089e6ed0d2f6d3998633ba1842b397
[ "BSD-3-Clause" ]
null
null
null
src/Semantics.agda
proglang/incorrectness
91a5ff5267089e6ed0d2f6d3998633ba1842b397
[ "BSD-3-Clause" ]
null
null
null
module Semantics where open import Data.Nat hiding (_⊔_; _⊓_) open import Data.Product open import Data.Sum open import Data.String using (String) open import Data.Unit hiding (_≟_) open import Data.Empty open import Relation.Nullary import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_;_≢_; refl) open Eq.≡-Reasoning open import Level hiding (_⊔_) renaming (zero to lzero; suc to lsuc) {- TODO: * subtyping of refinement types * union types * intersection types -} Id = String variable x y : Id ℓ : Level data Expr : Set where Nat : ℕ → Expr Var : Id → Expr Lam : Id → Expr → Expr App : Expr → Expr → Expr Pair : Expr → Expr → Expr Fst Snd : Expr → Expr Inl Inr : Expr → Expr Case : Expr → Id → Expr → Id → Expr → Expr data RawType : Set where Nat : RawType _⇒_ _⋆_ _⊹_ : RawType → RawType → RawType ss⇒tt : ∀ {S S₁ T T₁ : RawType} → (S ⇒ S₁) ≡ (T ⇒ T₁) → (S ≡ T × S₁ ≡ T₁) ss⇒tt refl = refl , refl ss⋆tt : ∀ {S S₁ T T₁ : RawType} → (S ⋆ S₁) ≡ (T ⋆ T₁) → (S ≡ T × S₁ ≡ T₁) ss⋆tt refl = refl , refl ss⊹tt : ∀ {S S₁ T T₁ : RawType} → (S ⊹ S₁) ≡ (T ⊹ T₁) → (S ≡ T × S₁ ≡ T₁) ss⊹tt refl = refl , refl data Type : Set₁ where Base : (P : ℕ → Set) → Type -- refinement Nat : Type _⇒_ : Type → Type → Type _⋆_ : Type → Type → Type _⊹_ : Type → Type → Type T-Nat = Base (λ n → ⊤) -- all natural numbers data ne : Type → Set where ne-base : ∀ {P} → (∃P : Σ ℕ P) → ne (Base P) ne-nat : ne Nat ne-⇒ : ∀ {S T} → ne S → ne T → ne (S ⇒ T) ne-⋆ : ∀ {S T} → ne S → ne T → ne (S ⋆ T) ne-⊹L : ∀ {S T} → ne S → ne (S ⊹ T) ne-⊹R : ∀ {S T} → ne T → ne (S ⊹ T) data Env (A : Set ℓ) : Set ℓ where · : Env A _,_⦂_ : Env A → (x : Id) → (a : A) → Env A ∥_∥ : Type → RawType ∥ Base P ∥ = Nat ∥ Nat ∥ = Nat ∥ S ⇒ S₁ ∥ = ∥ S ∥ ⇒ ∥ S₁ ∥ ∥ S ⋆ S₁ ∥ = ∥ S ∥ ⋆ ∥ S₁ ∥ ∥ S ⊹ S₁ ∥ = ∥ S ∥ ⊹ ∥ S₁ ∥ _∨_ : (P Q : ℕ → Set) → ℕ → Set P ∨ Q = λ n → P n ⊎ Q n _∧_ : (P Q : ℕ → Set) → ℕ → Set P ∧ Q = λ n → P n × Q n implies : ∀ {P Q : ℕ → Set} → (n : ℕ) → P n → (P n ⊎ Q n) implies n Pn = inj₁ Pn p*q->p : ∀ {P Q : ℕ → Set} → (n : ℕ) → (P n × Q n) → P n p*q->p n (Pn , Qn) = Pn _⊔_ _⊓_ : (S T : Type) {r : ∥ S ∥ ≡ ∥ T ∥} → Type (Base P ⊔ Base P₁) {refl} = Base (P ∨ P₁) (Base P ⊔ Nat) = Nat (Nat ⊔ Base P) = Nat (Nat ⊔ Nat) = Nat ((S ⇒ S₁) ⊔ (T ⇒ T₁)) {r} with ss⇒tt r ... | sss , ttt = (S ⊓ T){sss} ⇒ (S₁ ⊔ T₁){ttt} ((S ⋆ S₁) ⊔ (T ⋆ T₁)) {r} with ss⋆tt r ... | sss , ttt = (S ⊔ T){sss} ⋆ (S₁ ⊔ T₁){ttt} ((S ⊹ S₁) ⊔ (T ⊹ T₁)) {r} with ss⊹tt r ... | sss , ttt = (S ⊔ T){sss} ⊹ (S₁ ⊔ T₁){ttt} Base P ⊓ Base P₁ = Base (P ∧ P₁) Base P ⊓ Nat = Base P Nat ⊓ Base P = Base P Nat ⊓ Nat = Nat ((S ⇒ S₁) ⊓ (T ⇒ T₁)){r} with ss⇒tt r ... | sss , ttt = (S ⊔ T){sss} ⇒ (S₁ ⊓ T₁){ttt} ((S ⋆ S₁) ⊓ (T ⋆ T₁)){r} with ss⋆tt r ... | sss , ttt = (S ⊓ T){sss} ⋆ (S₁ ⊓ T₁){ttt} ((S ⊹ S₁) ⊓ (T ⊹ T₁)){r} with ss⊹tt r ... | sss , ttt = (S ⊓ T){sss} ⊹ (S₁ ⊓ T₁){ttt} variable S T U S′ T′ U′ U″ : Type Γ Γ₁ Γ₂ : Env Type L M N : Expr n : ℕ P : ℕ → Set data Split {A : Set ℓ} : Env A → Env A → Env A → Set ℓ where nil : Split · · · lft : ∀ {a : A}{Γ Γ₁ Γ₂ : Env A} → Split Γ Γ₁ Γ₂ → Split (Γ , x ⦂ a) (Γ₁ , x ⦂ a) Γ₂ rgt : ∀ {a : A}{Γ Γ₁ Γ₂ : Env A} → Split Γ Γ₁ Γ₂ → Split (Γ , x ⦂ a) Γ₁ (Γ₂ , x ⦂ a) data _⦂_∈_ {A : Set ℓ} : Id → A → Env A → Set ℓ where found : ∀ {a : A}{E : Env A} → x ⦂ a ∈ (E , x ⦂ a) there : ∀ {a a' : A}{E : Env A} → x ⦂ a ∈ E → -- x ≢ y → x ⦂ a ∈ (E , y ⦂ a') data _<:_ : Type → Type → Set where <:-refl : T <: T <:-base : (P Q : ℕ → Set) → (p→q : ∀ n → P n → Q n) → Base P <: Base Q <:-base-nat : Base P <: Nat <:-⇒ : S′ <: S → T <: T′ → (S ⇒ T) <: (S′ ⇒ T′) <:-⋆ : S <: S′ → T <: T′ → (S ⋆ T) <: (S′ ⋆ T′) <:-⊹ : S <: S′ → T <: T′ → (S ⊹ T) <: (S′ ⊹ T′) -- subtyping is compatible with raw types <:-raw : S <: T → ∥ S ∥ ≡ ∥ T ∥ <:-raw <:-refl = refl <:-raw (<:-base P Q p→q) = refl <:-raw <:-base-nat = refl <:-raw (<:-⇒ s<:t s<:t₁) = Eq.cong₂ _⇒_ (Eq.sym (<:-raw s<:t)) (<:-raw s<:t₁) <:-raw (<:-⋆ s<:t s<:t₁) = Eq.cong₂ _⋆_ (<:-raw s<:t) (<:-raw s<:t₁) <:-raw (<:-⊹ s<:t s<:t₁) = Eq.cong₂ _⊹_ (<:-raw s<:t) (<:-raw s<:t₁) <:-⊔ : ∀ S T → {c : ∥ S ∥ ≡ ∥ T ∥} → S <: (S ⊔ T){c} <:-⊓ : ∀ S T → {c : ∥ S ∥ ≡ ∥ T ∥} → (S ⊓ T){c} <: S <:-⊔ (Base P) (Base P₁) {refl} = <:-base P (P ∨ P₁) implies <:-⊔ (Base P) Nat = <:-base-nat <:-⊔ Nat (Base P) = <:-refl <:-⊔ Nat Nat = <:-refl <:-⊔ (S ⇒ S₁) (T ⇒ T₁) {c} with ss⇒tt c ... | c1 , c2 = <:-⇒ (<:-⊓ S T) (<:-⊔ S₁ T₁) <:-⊔ (S ⋆ S₁) (T ⋆ T₁) {c} with ss⋆tt c ... | c1 , c2 = <:-⋆ (<:-⊔ S T) (<:-⊔ S₁ T₁) <:-⊔ (S ⊹ S₁) (T ⊹ T₁) {c} with ss⊹tt c ... | c1 , c2 = <:-⊹ (<:-⊔ S T) (<:-⊔ S₁ T₁) <:-⊓ (Base P) (Base P₁) {refl} = <:-base (P ∧ P₁) P p*q->p <:-⊓ (Base P) Nat = <:-refl <:-⊓ Nat (Base P) = <:-base-nat <:-⊓ Nat Nat = <:-refl <:-⊓ (S ⇒ S₁) (T ⇒ T₁) {c} with ss⇒tt c ... | c1 , c2 = <:-⇒ (<:-⊔ S T) (<:-⊓ S₁ T₁) <:-⊓ (S ⋆ S₁) (T ⋆ T₁) {c} with ss⋆tt c ... | c1 , c2 = <:-⋆ (<:-⊓ S T) (<:-⊓ S₁ T₁) <:-⊓ (S ⊹ S₁) (T ⊹ T₁) {c} with ss⊹tt c ... | c1 , c2 = <:-⊹ (<:-⊓ S T) (<:-⊓ S₁ T₁) -- should be in terms of RawType for evaluation data _⊢_⦂_ : Env Type → Expr → Type → Set₁ where nat' : Γ ⊢ Nat n ⦂ Base (_≡_ n) var : (x∈ : x ⦂ T ∈ Γ) → -------------------- Γ ⊢ Var x ⦂ T lam : (Γ , x ⦂ S) ⊢ M ⦂ T → -------------------- Γ ⊢ Lam x M ⦂ (S ⇒ T) app : Γ ⊢ M ⦂ (S ⇒ T) → Γ ⊢ N ⦂ S → -------------------- Γ ⊢ App M N ⦂ T pair : Γ ⊢ M ⦂ S → Γ ⊢ N ⦂ T → -------------------- Γ ⊢ Pair M N ⦂ (S ⋆ T) pair-E1 : Γ ⊢ M ⦂ (S ⋆ T) → -------------------- Γ ⊢ Fst M ⦂ S pair-E2 : Γ ⊢ M ⦂ (S ⋆ T) → -------------------- Γ ⊢ Snd M ⦂ T sum-I1 : Γ ⊢ M ⦂ S → -------------------- Γ ⊢ Inl M ⦂ (S ⊹ T) sum-I2 : Γ ⊢ N ⦂ T → -------------------- Γ ⊢ Inl N ⦂ (S ⊹ T) sum-E : Γ ⊢ L ⦂ (S ⊹ T) → (Γ , x ⦂ S) ⊢ M ⦂ U → (Γ , y ⦂ T) ⊢ N ⦂ U → -------------------- Γ ⊢ Case L x M y N ⦂ U split-sym : Split Γ Γ₁ Γ₂ → Split Γ Γ₂ Γ₁ split-sym nil = nil split-sym (lft sp) = rgt (split-sym sp) split-sym (rgt sp) = lft (split-sym sp) weaken-∈ : Split Γ Γ₁ Γ₂ → x ⦂ T ∈ Γ₁ → x ⦂ T ∈ Γ weaken-∈ (lft sp) found = found weaken-∈ (rgt sp) found = there (weaken-∈ sp found) weaken-∈ (lft sp) (there x∈) = there (weaken-∈ sp x∈) weaken-∈ (rgt sp) (there x∈) = there (weaken-∈ sp (there x∈)) weaken : Split Γ Γ₁ Γ₂ → Γ₁ ⊢ M ⦂ T → Γ ⊢ M ⦂ T weaken sp (nat') = nat' weaken sp (var x∈) = var (weaken-∈ sp x∈) weaken sp (lam ⊢M) = lam (weaken (lft sp) ⊢M) weaken sp (app ⊢M ⊢N) = app (weaken sp ⊢M) (weaken sp ⊢N) weaken sp (pair ⊢M ⊢N) = pair (weaken sp ⊢M) (weaken sp ⊢N) weaken sp (pair-E1 ⊢M) = pair-E1 (weaken sp ⊢M) weaken sp (pair-E2 ⊢M) = pair-E2 (weaken sp ⊢M) weaken sp (sum-I1 ⊢M) = sum-I1 (weaken sp ⊢M) weaken sp (sum-I2 ⊢N) = sum-I2 (weaken sp ⊢N) weaken sp (sum-E ⊢L ⊢M ⊢N) = sum-E (weaken sp ⊢L) (weaken (lft sp) ⊢M) (weaken (lft sp) ⊢N) -- incorrectness typing P=n : ℕ → ℕ → Set P=n = λ n x → n ≡ x data _⊢_÷_ : Env Type → Expr → Type → Set₁ where nat' : -------------------- · ⊢ Nat n ÷ Base (_≡_ n) var1 : ( · , x ⦂ T) ⊢ Var x ÷ T {- var : x ⦂ T ∈ Γ → -------------------- Γ ⊢ Var x ÷ T -} lam : (· , x ⦂ S) ⊢ M ÷ T → -------------------- · ⊢ Lam x M ÷ (S ⇒ T) pair : Split Γ Γ₁ Γ₂ → Γ₁ ⊢ M ÷ S → Γ₂ ⊢ N ÷ T → -------------------- Γ ⊢ Pair M N ÷ (S ⋆ T) pair-E1 : Γ ⊢ M ÷ (S ⋆ T) → -------------------- Γ ⊢ Fst M ÷ S pair-E2 : Γ ⊢ M ÷ (S ⋆ T) → -------------------- Γ ⊢ Snd M ÷ T sum-E : Split Γ Γ₁ Γ₂ → Γ₁ ⊢ L ÷ (S ⊹ T) → (Γ₂ , x ⦂ S) ⊢ M ÷ U → (Γ₂ , y ⦂ T) ⊢ N ÷ U → -------------------- Γ ⊢ Case L x M y N ÷ U sum-E′ : ∀ {ru′=ru″} → Split Γ Γ₁ Γ₂ → Γ₁ ⊢ L ÷ (S ⊹ T) → (Γ₂ , x ⦂ S) ⊢ M ÷ U′ → (Γ₂ , y ⦂ T) ⊢ N ÷ U″ → U ≡ (U′ ⊔ U″){ru′=ru″} → -------------------- Γ ⊢ Case L x M y N ÷ U {- `sub` : Γ ⊢ M ÷ S → T <: S → -------------------- Γ ⊢ M ÷ T -} record _←_ (A B : Set) : Set where field func : A → B back : ∀ (b : B) → ∃ λ (a : A) → func a ≡ b open _←_ T⟦_⟧ : Type → Set T⟦ Base P ⟧ = Σ ℕ P T⟦ Nat ⟧ = ℕ T⟦ S ⇒ T ⟧ = T⟦ S ⟧ → T⟦ T ⟧ T⟦ S ⋆ T ⟧ = T⟦ S ⟧ × T⟦ T ⟧ T⟦ S ⊹ T ⟧ = T⟦ S ⟧ ⊎ T⟦ T ⟧ T'⟦_⟧ : Type → Set T'⟦ Base P ⟧ = Σ ℕ P T'⟦ Nat ⟧ = ℕ T'⟦ S ⇒ T ⟧ = T'⟦ S ⟧ ← T'⟦ T ⟧ T'⟦ S ⋆ T ⟧ = T'⟦ S ⟧ × T'⟦ T ⟧ T'⟦ S ⊹ T ⟧ = T'⟦ S ⟧ ⊎ T'⟦ T ⟧ E⟦_⟧ : Env Type → Env Set E⟦ · ⟧ = · E⟦ Γ , x ⦂ T ⟧ = E⟦ Γ ⟧ , x ⦂ T⟦ T ⟧ data iEnv : Env Set → Set where · : iEnv · _,_⦂_ : ∀ {E}{A} → iEnv E → (x : Id) → (a : A) → iEnv (E , x ⦂ A) lookup : (x ⦂ T ∈ Γ) → iEnv E⟦ Γ ⟧ → T⟦ T ⟧ lookup found (γ , _ ⦂ a) = a lookup (there x∈) (γ , _ ⦂ a) = lookup x∈ γ eval : Γ ⊢ M ⦂ T → iEnv E⟦ Γ ⟧ → T⟦ T ⟧ eval (nat'{n = n}) γ = n , refl eval (var x∈) γ = lookup x∈ γ eval (lam ⊢M) γ = λ s → eval ⊢M (γ , _ ⦂ s) eval (app ⊢M ⊢N) γ = eval ⊢M γ (eval ⊢N γ) eval (pair ⊢M ⊢N) γ = (eval ⊢M γ) , (eval ⊢N γ) eval (pair-E1 ⊢M) γ = proj₁ (eval ⊢M γ) eval (pair-E2 ⊢M) γ = proj₂ (eval ⊢M γ) eval (sum-I1 ⊢M) γ = inj₁ (eval ⊢M γ) eval (sum-I2 ⊢N) γ = inj₂ (eval ⊢N γ) eval (sum-E{S = S}{T = T}{U = U} ⊢L ⊢M ⊢N) γ = [ (λ s → eval ⊢M (γ , _ ⦂ s)) , (λ t → eval ⊢N (γ , _ ⦂ t)) ] (eval ⊢L γ) corr : Γ ⊢ M ÷ T → Γ ⊢ M ⦂ T corr (nat') = nat' corr var1 = var found -- corr (var x) = var x corr (lam ⊢M) = lam (corr ⊢M) corr (pair-E1 ÷M) = pair-E1 (corr ÷M) corr (pair-E2 ÷M) = pair-E2 (corr ÷M) corr (pair sp ÷M ÷N) = pair (weaken sp (corr ÷M)) (weaken (split-sym sp) (corr ÷N)) corr (sum-E sp ÷L ÷M ÷N) = sum-E (weaken sp (corr ÷L)) (weaken (lft (split-sym sp)) (corr ÷M)) (weaken (lft (split-sym sp)) (corr ÷N)) corr (sum-E′ sp ÷L ÷M ÷N U≡U′⊔U″) = sum-E (weaken sp (corr ÷L)) (weaken (lft (split-sym sp)) (corr {!!})) (weaken (lft (split-sym sp)) (corr {!!})) {- corr (`sub` ÷M T<S) = {!÷M!} -} -- pick one element of a type to demonstrate non-emptiness one : ∀ (T : Type) {net : ne T} → T⟦ T ⟧ one (Base P) {ne-base ∃P} = ∃P one Nat = zero one (T ⇒ T₁) {ne-⇒ ne-T ne-T₁} = λ x → one T₁ {ne-T₁} one (T ⋆ T₁) {ne-⋆ ne-T ne-T₁} = (one T {ne-T}) , (one T₁ {ne-T₁}) one (T ⊹ T₁) {ne-⊹L ne-T} = inj₁ (one T {ne-T}) one (T ⊹ T₁) {ne-⊹R ne-T₁} = inj₂ (one T₁ {ne-T₁}) {- not needed many : iEnv E⟦ Γ ⟧ many {·} = · many {Γ , x ⦂ T} = many , x ⦂ one T gen : (x∈ : x ⦂ T ∈ Γ) (t : T⟦ T ⟧) → iEnv E⟦ Γ ⟧ gen found t = many , _ ⦂ t gen (there x∈) t = (gen x∈ t) , _ ⦂ one {!!} lookup-gen : (x∈ : x ⦂ T ∈ Γ) (t : T⟦ T ⟧) → lookup x∈ (gen x∈ t) ≡ t lookup-gen found t = refl lookup-gen (there x∈) t = lookup-gen x∈ t -} open Eq.≡-Reasoning postulate ext : ∀ {A B : Set}{f g : A → B} → (∀ x → f x ≡ g x) → f ≡ g unsplit-env : Split Γ Γ₁ Γ₂ → iEnv E⟦ Γ₁ ⟧ → iEnv E⟦ Γ₂ ⟧ → iEnv E⟦ Γ ⟧ unsplit-env nil γ₁ γ₂ = · unsplit-env (lft sp) (γ₁ , _ ⦂ a) γ₂ = (unsplit-env sp γ₁ γ₂) , _ ⦂ a unsplit-env (rgt sp) γ₁ (γ₂ , _ ⦂ a) = (unsplit-env sp γ₁ γ₂) , _ ⦂ a unsplit-split : (sp : Split Γ Γ₁ Γ₂) (γ₁ : iEnv E⟦ Γ₁ ⟧) (γ₂ : iEnv E⟦ Γ₂ ⟧) → unsplit-env sp γ₁ γ₂ ≡ unsplit-env (split-sym sp) γ₂ γ₁ unsplit-split nil γ₁ γ₂ = refl unsplit-split (lft sp) (γ₁ , _ ⦂ a) γ₂ rewrite unsplit-split sp γ₁ γ₂ = refl unsplit-split (rgt sp) γ₁ (γ₂ , _ ⦂ a) rewrite unsplit-split sp γ₁ γ₂ = refl lookup-unsplit : (sp : Split Γ Γ₁ Γ₂) (γ₁ : iEnv E⟦ Γ₁ ⟧) (γ₂ : iEnv E⟦ Γ₂ ⟧) → (x∈ : x ⦂ T ∈ Γ₁) → lookup (weaken-∈ sp x∈) (unsplit-env sp γ₁ γ₂) ≡ lookup x∈ γ₁ lookup-unsplit (lft sp) (γ₁ , _ ⦂ a) γ₂ found = refl lookup-unsplit (rgt sp) γ₁ (γ₂ , _ ⦂ a) found = lookup-unsplit sp γ₁ γ₂ found lookup-unsplit (lft sp) (γ₁ , _ ⦂ a) γ₂ (there x∈) = lookup-unsplit sp γ₁ γ₂ x∈ lookup-unsplit (rgt sp) γ₁ (γ₂ , _ ⦂ a) (there x∈) = lookup-unsplit sp γ₁ γ₂ (there x∈) eval-unsplit : (sp : Split Γ Γ₁ Γ₂) (γ₁ : iEnv E⟦ Γ₁ ⟧) (γ₂ : iEnv E⟦ Γ₂ ⟧) → (⊢M : Γ₁ ⊢ M ⦂ T) → eval (weaken sp ⊢M) (unsplit-env sp γ₁ γ₂) ≡ eval ⊢M γ₁ eval-unsplit sp γ₁ γ₂ (nat')= refl eval-unsplit sp γ₁ γ₂ (var x∈) = lookup-unsplit sp γ₁ γ₂ x∈ eval-unsplit sp γ₁ γ₂ (lam ⊢M) = ext (λ s → eval-unsplit (lft sp) (γ₁ , _ ⦂ s) γ₂ ⊢M) eval-unsplit sp γ₁ γ₂ (app ⊢M ⊢M₁) rewrite eval-unsplit sp γ₁ γ₂ ⊢M | eval-unsplit sp γ₁ γ₂ ⊢M₁ = refl eval-unsplit sp γ₁ γ₂ (pair ⊢M ⊢M₁) rewrite eval-unsplit sp γ₁ γ₂ ⊢M | eval-unsplit sp γ₁ γ₂ ⊢M₁ = refl eval-unsplit sp γ₁ γ₂ (pair-E1 ⊢M) rewrite eval-unsplit sp γ₁ γ₂ ⊢M = refl eval-unsplit sp γ₁ γ₂ (pair-E2 ⊢M) rewrite eval-unsplit sp γ₁ γ₂ ⊢M = refl eval-unsplit sp γ₁ γ₂ (sum-I1 ⊢M) rewrite eval-unsplit sp γ₁ γ₂ ⊢M = refl eval-unsplit sp γ₁ γ₂ (sum-I2 ⊢N) rewrite eval-unsplit sp γ₁ γ₂ ⊢N = refl eval-unsplit sp γ₁ γ₂ (sum-E ⊢L ⊢M ⊢N) rewrite eval-unsplit sp γ₁ γ₂ ⊢L | ext (λ s → eval-unsplit (lft sp) (γ₁ , _ ⦂ s) γ₂ ⊢M) | ext (λ t → eval-unsplit (lft sp) (γ₁ , _ ⦂ t) γ₂ ⊢N) = refl -- soundness of the incorrectness rules lave : (÷M : Γ ⊢ M ÷ T) → ∀ (t : T⟦ T ⟧) → ∃ λ (γ : iEnv E⟦ Γ ⟧) → eval (corr ÷M) γ ≡ t lave nat' (n , refl) = · , refl lave var1 t = (· , _ ⦂ t) , refl -- lave (var x∈) t = (gen x∈ t) , lookup-gen x∈ t lave (lam{x = x}{S = S} ÷M) t = · , ext aux where aux : (s : T⟦ S ⟧) → eval (corr ÷M) (· , x ⦂ s) ≡ t s aux s with lave ÷M (t s) ... | (· , .x ⦂ a) , snd = {!!} -- impossible to complete! lave (pair-E1 ÷M) t with lave ÷M (t , one {!!}) ... | γ , ih = γ , Eq.cong proj₁ ih lave (pair-E2 ÷M) t with lave ÷M (one {!!} , t) ... | γ , ih = γ , Eq.cong proj₂ ih lave (pair sp ÷M ÷N) (s , t) with lave ÷M s | lave ÷N t ... | γ₁ , ih-M | γ₂ , ih-N = unsplit-env sp γ₁ γ₂ , Eq.cong₂ _,_ (Eq.trans (eval-unsplit sp γ₁ γ₂ (corr ÷M)) ih-M) (begin eval (weaken (split-sym sp) (corr ÷N)) (unsplit-env sp γ₁ γ₂) ≡⟨ Eq.cong (eval (weaken (split-sym sp) (corr ÷N))) (unsplit-split sp γ₁ γ₂) ⟩ eval (weaken (split-sym sp) (corr ÷N)) (unsplit-env (split-sym sp) γ₂ γ₁) ≡⟨ eval-unsplit (split-sym sp) γ₂ γ₁ (corr ÷N) ⟩ ih-N) -- works, but unsatisfactory! -- this proof uses only one branch of the case -- this choice is possible because both branches ÷M and ÷N have the same type -- in general, U could be the union of the types of ÷M and ÷N lave (sum-E{S = S}{T = T}{U = U} sp ÷L ÷M ÷N) u with lave ÷M u | lave ÷N u ... | (γ₁ , x ⦂ s) , ih-M | (γ₂ , y ⦂ t) , ih-N with lave ÷L (inj₁ s) ... | γ₀ , ih-L = unsplit-env sp γ₀ γ₁ , (begin [ (λ s₁ → eval (weaken (lft (split-sym sp)) (corr ÷M)) (unsplit-env sp γ₀ γ₁ , x ⦂ s₁)) , (λ t₁ → eval (weaken (lft (split-sym sp)) (corr ÷N)) (unsplit-env sp γ₀ γ₁ , y ⦂ t₁)) ] (eval (weaken sp (corr ÷L)) (unsplit-env sp γ₀ γ₁)) ≡⟨ Eq.cong [ (λ s₁ → eval (weaken (lft (split-sym sp)) (corr ÷M)) (unsplit-env sp γ₀ γ₁ , x ⦂ s₁)) , (λ t₁ → eval (weaken (lft (split-sym sp)) (corr ÷N)) (unsplit-env sp γ₀ γ₁ , y ⦂ t₁)) ] (eval-unsplit sp γ₀ γ₁ (corr ÷L)) ⟩ [ (λ s₁ → eval (weaken (lft (split-sym sp)) (corr ÷M)) (unsplit-env sp γ₀ γ₁ , x ⦂ s₁)) , (λ t₁ → eval (weaken (lft (split-sym sp)) (corr ÷N)) (unsplit-env sp γ₀ γ₁ , y ⦂ t₁)) ] (eval (corr ÷L) γ₀) ≡⟨ Eq.cong [ (λ s₁ → eval (weaken (lft (split-sym sp)) (corr ÷M)) (unsplit-env sp γ₀ γ₁ , x ⦂ s₁)) , (λ t₁ → eval (weaken (lft (split-sym sp)) (corr ÷N)) (unsplit-env sp γ₀ γ₁ , y ⦂ t₁)) ] ih-L ⟩ eval (weaken (lft (split-sym sp)) (corr ÷M)) (unsplit-env sp γ₀ γ₁ , x ⦂ s) ≡⟨ Eq.cong (λ γ → eval (weaken (lft (split-sym sp)) (corr ÷M)) (γ , x ⦂ s)) (unsplit-split sp γ₀ γ₁) ⟩ eval (weaken (lft (split-sym sp)) (corr ÷M)) (unsplit-env (split-sym sp) γ₁ γ₀ , x ⦂ s) ≡⟨⟩ eval (weaken (lft (split-sym sp)) (corr ÷M)) (unsplit-env (lft (split-sym sp)) (γ₁ , x ⦂ s) γ₀) ≡⟨ eval-unsplit (lft (split-sym sp)) (γ₁ , x ⦂ s) γ₀ (corr ÷M) ⟩ ih-M) lave (sum-E′{S = S}{T = T}{U = U} sp ÷L ÷M ÷N uuu) u = {!!}
27.921875
135
0.461295
a1c1f6c9018ccdd7cf1fe32c9045b45da4762624
25,443
agda
Agda
Ex2.agda
m-schmidt/CS410-17-Exercises
5db8e95bbcbe8dc0eec810f3e73130ecd78d207c
[ "BSD-3-Clause" ]
null
null
null
Ex2.agda
m-schmidt/CS410-17-Exercises
5db8e95bbcbe8dc0eec810f3e73130ecd78d207c
[ "BSD-3-Clause" ]
null
null
null
Ex2.agda
m-schmidt/CS410-17-Exercises
5db8e95bbcbe8dc0eec810f3e73130ecd78d207c
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --type-in-type #-} -- yes, I will let you cheat in this exercise {-# OPTIONS --allow-unsolved-metas #-} -- allows import, unfinished ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ -- CS410 2017/18 Exercise 2 CATEGORIES AND MONADS (worth 25%) ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ -- NOTE (19/10/17) This file is currently incomplete: more will arrive on -- GitHub. -- NOTE (29/10/17) All components are now present. ------------------------------------------------------------------------------ -- Dependencies ------------------------------------------------------------------------------ open import CS410-Prelude open import CS410-Categories open import Ex1 ------------------------------------------------------------------------------ -- Categorical Jigsaws (based on Ex1) ------------------------------------------------------------------------------ OPE : Category -- The category of order-preserving embeddings... OPE = record { Obj = Nat -- ...has numbers as objects... ; _~>_ = _<=_ -- ...and "thinnings" as arrows. ; id~> = oi ; _>~>_ = _o>>_ ; law-id~>>~> = idThen-o>> ; law->~>id~> = idAfter-o>> ; law->~>>~> = assoc-o>> } VEC : Nat -> SET => SET -- Vectors of length n... VEC n = record { F-Obj = \ X -> Vec X n -- ...give a functor from SET to SET... ; F-map = \ f xs -> vMap f xs -- ...doing vMap to arrows. -- Now prove the laws. ; F-map-id~> = extensionality \ xs -> {!!} ; F-map->~> = \ f g -> extensionality \ xs -> {!!} } Op : Category -> Category -- Every category has an opposite... Op C = record { Obj = Obj -- ...with the same objects, but... ; _~>_ = \ S T -> T ~> S -- ...arrows that go backwards! -- Now, find the rest! ; id~> = id~> ; _>~>_ = \ f g -> g >~> f ; law-id~>>~> = law->~>id~> ; law->~>id~> = law-id~>>~> ; law->~>>~> = {!!} } where open Category C CHOOSE : Set -> OPE => Op SET -- Show that thinnings from n to m... CHOOSE X = record -- ...act by selection... { F-Obj = Vec X -- ...to cut vectors down from m to n. ; F-map = {!!} ; F-map-id~> = extensionality {!!} ; F-map->~> = \ f g -> extensionality {!!} } --??-------------------------------------------------------------------------- ------------------------------------------------------------------------------ -- The List Monad (a warm-up) ------------------------------------------------------------------------------ -- The declaration of List has been added to the CS410-Prelude file: -- data List (X : Set) : Set where -- [] : List X -- _,-_ : (x : X)(xs : List X) -> List X -- infixr 4 _,-_ -- Appending two lists is rather well known, so I'll not ask you to write it. _+L_ : {X : Set} -> List X -> List X -> List X [] +L ys = ys (x ,- xs) +L ys = x ,- (xs +L ys) infixr 4 _+L_ -- But I will ask you to find some structure for it. --??--2.2--------------------------------------------------------------------- LIST-MONOID : Set -> Category LIST-MONOID X = -- Show that _+L_ is the operation of a monoid,... record { Obj = One -- ... i.e., a category with one object. ; _~>_ = {!!} ; id~> = {!!} ; _>~>_ = {!!} ; law-id~>>~> = {!!} ; law->~>id~> = {!!} ; law->~>>~> = {!!} } where -- useful helper proofs (lemmas) go here --??-------------------------------------------------------------------------- -- Next, functoriality of lists. Given a function on elements, show how to -- apply that function to all the elements of a list. (Haskell calls this -- operation "map".) --??--2.3--------------------------------------------------------------------- list : {X Y : Set} -> (X -> Y) -> List X -> List Y list f xs = {!!} LIST : SET => SET LIST = record { F-Obj = List ; F-map = list ; F-map-id~> = extensionality {!!} ; F-map->~> = \ f g -> extensionality {!!} } where -- useful helper proofs (lemmas) go here --??-------------------------------------------------------------------------- -- Moreover, applying a function elementwise should respect appending. --??--2.4--------------------------------------------------------------------- LIST+L : {X Y : Set}(f : X -> Y) -> LIST-MONOID X => LIST-MONOID Y LIST+L {X}{Y} f = record { F-Obj = id ; F-map = list f -- this yellow will go once LIST-MONOID has arrows! ; F-map-id~> = {!!} ; F-map->~> = {!!} } where -- useful helper proofs (lemmas) go here --??-------------------------------------------------------------------------- -- Next, we have two very important "natural transformations". --??--2.5--------------------------------------------------------------------- SINGLE : ID ~~> LIST SINGLE = record { xf = \ x -> x ,- [] -- turn a value into a singleton list ; naturality = \ f -> {!!} } --??-------------------------------------------------------------------------- -- Here, naturality means that it doesn't matter -- whether you apply a function f, then make a singleton list -- or you make a singleton list, then apply f to all (one of) its elements. -- Now, define the operation that concatenates a whole list of lists, and -- show that it, too, is natural. That is, it doesn't matter whether you -- transform the elements (two layers inside) then concatenate, or you -- concatenate, then transform the elements. --??--2.6--------------------------------------------------------------------- concat : {X : Set} -> List (List X) -> List X concat xss = {!!} CONCAT : (LIST >=> LIST) ~~> LIST CONCAT = record { xf = concat ; naturality = {!!} } where -- useful helper proofs (lemmas) go here --??-------------------------------------------------------------------------- -- You've nearly built your first monad! You just need to prove that -- single and concat play nicely with each other. --??--2.7--------------------------------------------------------------------- module LIST-MONAD where open MONAD LIST public ListMonad : Monad ListMonad = record { unit = SINGLE ; mult = CONCAT ; unitMult = {!!} ; multUnit = {!!} ; multMult = {!!} } where -- useful helper proofs (lemmas) go here -- open LIST-MONAD --??-------------------------------------------------------------------------- -- More monads to come... ------------------------------------------------------------------------------ -- Categories of Indexed Sets ------------------------------------------------------------------------------ -- We can think of some -- P : I -> Set -- as a collection of sets indexed by I, such that -- P i -- means "exactly the P-things which fit with i". -- You've met -- Vec X : Nat -> Set -- where -- Vec X n -- means "exactly the vectors which fit with n". -- Now, given two such collections, S and T, we can make a collection -- of function types: the functions which fit with i map the -- S-things which fit with i to the T-things which fit with i. _-:>_ : {I : Set} -> (I -> Set) -> (I -> Set) -> (I -> Set) (S -:> T) i = S i -> T i -- So, (Vec X -:> Vec Y) n contains the functions which turn -- n Xs into n Ys. -- Next, if we know such a collection of sets, we can claim to have -- one for each index. [_] : {I : Set} -> (I -> Set) -> Set [ P ] = forall i -> P i -- [_] {I} P = (i : I) -> P i -- E.g., [ Vec X -:> Vec Y ] is the type of functions from X-vectors -- to Y-vectors which preserve length. -- For any such I, we get a category of indexed sets with index-preserving -- functions. _->SET : Set -> Category I ->SET = record { Obj = I -> Set -- I-indexed sets ; _~>_ = \ S T -> [ S -:> T ] -- index-respecting functions ; id~> = \ i -> id -- the identity at every index ; _>~>_ = \ f g i -> f i >> g i -- composition at every index ; law-id~>>~> = refl -- and the laws are very boring ; law->~>id~> = refl ; law->~>>~> = \ f g h -> refl _ } -- In fact, we didn't need to choose SET here. We could do this construction -- for any category: index the objects; index the morphisms. -- But SET is plenty to be getting on with. -- Now, let me define an operation that makes types from lists. All : {X : Set} -> (X -> Set) -> (List X -> Set) All P [] = One All P (x ,- xs) = P x * All P xs -- The idea is that we get a tuple of P-things: one for each list element. -- So -- All P (1 ,- 2 ,- 3 ,- []) -- = P 1 * P 2 * P 3 * One -- Note that if you think of List One as a version of Nat, -- All becomes a lot like Vec. copy : Nat -> List One copy zero = [] copy (suc n) = <> ,- copy n VecCopy : Set -> Nat -> Set VecCopy X n = All (\ _ -> X) (copy n) -- Now, your turn... --??--2.8--------------------------------------------------------------------- -- Show that, for any X, All induces a functor -- from (X ->SET) to (List X ->SET) all : {X : Set}{S T : X -> Set} -> [ S -:> T ] -> [ All S -:> All T ] all f xs ss = {!!} ALL : (X : Set) -> (X ->SET) => (List X ->SET) ALL X = record { F-Obj = All ; F-map = all ; F-map-id~> = {!!} ; F-map->~> = {!!} } where -- useful helper facts go here --??-------------------------------------------------------------------------- ------------------------------------------------------------------------------ -- Cutting Things Up ------------------------------------------------------------------------------ -- Next, we're going to develop a very general technique for building -- data structures. -- We may think of an I |> O as a way to "cut O-shapes into I-shaped pieces". -- The pointy end points to the type being cut; the flat end to the type of -- pieces. record _|>_ (I O : Set) : Set where field Cuts : O -> Set -- given o : O, how may we cut it? inners : {o : O} -> Cuts o -> List I -- given how we cut it, what are -- the shapes of its pieces? -- Let us have some examples right away! VecCut : One |> Nat -- cut numbers into boring pieces VecCut = record { Cuts = \ n -> One -- there is one way to cut n ; inners = \ {n} _ -> copy n -- and you get n pieces } -- Here's a less boring example. You can cut a number into *two* pieces -- by finding two numbers that add to it. NatCut : Nat |> Nat NatCut = record { Cuts = \ mn -> Sg Nat \ m -> Sg Nat \ n -> (m +N n) == mn ; inners = \ { (m , n , _) -> m ,- n ,- [] } } -- The point is that we can make data structures that record how we -- built an O-shaped thing from I-shaped pieces. record Cutting {I O}(C : I |> O)(P : I -> Set)(o : O) : Set where constructor _8><_ -- "scissors" open _|>_ C field cut : Cuts o -- we decide how to cut o pieces : All P (inners cut) -- then we give all the pieces. infixr 3 _8><_ -- For example... VecCutting : Set -> Nat -> Set VecCutting X = Cutting VecCut (\ _ -> X) myVecCutting : VecCutting Char 5 myVecCutting = <> 8>< 'h' , 'e' , 'l' , 'l' , 'o' , <> -- Or, if you let me fiddle about with strings for a moment,... length : {X : Set} -> List X -> Nat length [] = zero length (x ,- xs) = suc (length xs) listVec : {X : Set}(xs : List X) -> Vec X (length xs) listVec [] = [] listVec (x ,- xs) = x ,- listVec xs strVec : (s : String) -> Vec Char (length (primStringToList s)) strVec s = listVec (primStringToList s) -- ...an example of cutting a number in two, with vector pieces. footprints : Cutting NatCut (Vec Char) 10 footprints = (4 , 6 , refl 10) 8>< strVec "foot" , strVec "prints" , <> -- Now, let me direct you to the =$ operator, now in CS410-Prelude.agda, -- which you may find helps with the proofs in the following. --??--2.9--------------------------------------------------------------------- -- Using what you already built for ALL, show that every Cutting C gives us -- a functor between categories of indexed sets. CUTTING : {I O : Set}(C : I |> O) -> (I ->SET) => (O ->SET) CUTTING {I}{O} C = record { F-Obj = Cutting C ; F-map = {!!} ; F-map-id~> = extensionality \ o -> extensionality \ { (c 8>< ps) -> {!!} } ; F-map->~> = \ f g -> extensionality \ o -> extensionality \ { (c 8>< ps) -> {!!} } } where open _|>_ C open _=>_ (ALL I) --??-------------------------------------------------------------------------- ------------------------------------------------------------------------------ -- Interiors ------------------------------------------------------------------------------ -- Next, let me define the notion of an algebra for a given functor in C => C module ALGEBRA {C : Category}(F : C => C) where open Category C open _=>_ F Algebra : (X : Obj) -> Set -- we call X the "carrier" of the algebra... Algebra X = F-Obj X ~> X -- ...and we explain how to turn a bunch of Xs -- into one open ALGEBRA -- Some week, we'll build categories whose objects are algebras. Not this week. -- Instead, let's work with them a bit. -- If we know a way to cut I-shapes into I-shaped pieces, we can build the -- ways to "tile" an I with I-shaped T-tiles. data Interior {I}(C : I |> I)(T : I -> Set)(i : I) : Set where -- either... tile : T i -> Interior C T i -- we have a tile that fits, or... <_> : Cutting C (Interior C T) i -> -- ...we cut, then tile the pieces. Interior C T i -- Let me give you an example of an interior. subbookkeeper : Interior NatCut (Vec Char) 13 subbookkeeper = < (3 , 10 , refl _) 8>< tile (strVec "sub") , < (4 , 6 , refl _) 8>< tile (strVec "book") , tile (strVec "keeper") , <> > , <> > -- We make a 13-interior from -- a 3-tile and a 10-interior made from a 4-tile and a 6-tile. -- Guess what? Interior C is always a Monad! We'll get there. module INTERIOR {I : Set}{C : I |> I} where -- fix some C... open _|>_ C -- ...and open it open module I->SET {I : Set} = Category (I ->SET) -- work in I ->SET -- tile gives us an arrow from T into Interior C T tile' : {T : I -> Set} -> [ T -:> Interior C T ] tile' i = tile -- <_> gives us an algebra! cut' : {T : I -> Set} -> Algebra (CUTTING C) (Interior C T) cut' i = <_> -- Now, other (CUTTING C) algebras give us operators on interiors. module INTERIORFOLD {P Q : I -> Set} where interiorFold : [ P -:> Q ] -> -- if we can turn a P into a Q... Algebra (CUTTING C) Q -> -- ...and a bunch of Qs into a Q... [ Interior C P -:> Q ] -- ...we can turn an interior of Ps into a Q allInteriorFold : -- annoyingly, we'll need a specialized "all" [ P -:> Q ] -> Algebra (CUTTING C) Q -> [ All (Interior C P) -:> All Q ] interiorFold pq qalg i (tile p) = pq i p interiorFold pq qalg i < c 8>< pis > = qalg i (c 8>< allInteriorFold pq qalg (inners c) pis) -- recursively turn all the sub-interiors into Qs allInteriorFold pq qalg [] <> = <> allInteriorFold pq qalg (i ,- is) (pi , pis) = interiorFold pq qalg i pi , allInteriorFold pq qalg is pis -- The trouble is that if you use -- all (interiorFold pq qalg) -- to process the sub-interiors, the termination checker complains. -- But if you've built "all" correctly, you should be able to prove this: --??--2.10-------------------------------------------------------------------- allInteriorFoldLaw : (pq : [ P -:> Q ])(qalg : Algebra (CUTTING C) Q) -> allInteriorFold pq qalg == all (interiorFold pq qalg) allInteriorFoldLaw pq qalg = extensionality \ is -> extensionality \ ps -> {!!} where -- helper lemmas go here --??-------------------------------------------------------------------------- -- Now, do me a favour and prove this extremely useful fact. -- Its purpose is to bottle the inductive proof method for functions -- built with interiorFold. --??--2.11-------------------------------------------------------------------- interiorFoldLemma : (pq : [ P -:> Q ])(qalg : Algebra (CUTTING C) Q) (f : [ Interior C P -:> Q ]) -> ((i : I)(p : P i) -> pq i p == f i (tile p)) -> ((i : I)(c : Cuts i)(ps : All (Interior C P) (inners c)) -> qalg i (c 8>< all f (inners c) ps) == f i < c 8>< ps >) -> (i : I)(pi : Interior C P i) -> interiorFold pq qalg i pi == f i pi interiorFoldLemma pq qalg f base step i pi = {!!} --??-------------------------------------------------------------------------- -- We'll use it in this form: interiorFoldLaw : (pq : [ P -:> Q ])(qalg : Algebra (CUTTING C) Q) (f : [ Interior C P -:> Q ]) -> ((i : I)(p : P i) -> pq i p == f i (tile p)) -> ((i : I)(c : Cuts i)(ps : All (Interior C P) (inners c)) -> qalg i (c 8>< all f (inners c) ps) == f i < c 8>< ps >) -> interiorFold pq qalg == f interiorFoldLaw pq qalg f base step = extensionality \ i -> extensionality \ pi -> interiorFoldLemma pq qalg f base step i pi open INTERIORFOLD -- Let me pay you back immediately! -- An interiorBind is an interiorFold which computes an Interior, -- rewrapping each layer with < ... > interiorBind : {X Y : I -> Set} -> [ X -:> Interior C Y ] -> [ Interior C X -:> Interior C Y ] interiorBind f = interiorFold f (\ i -> <_>) -- Because an interiorBind *makes* an interior, we can say something useful -- about what happens if we follow it with an interiorFold. interiorBindFusion : {X Y Z : I -> Set} -> (f : [ X -:> Interior C Y ]) (yz : [ Y -:> Z ])(zalg : Algebra (CUTTING C) Z) -> (interiorBind f >~> interiorFold yz zalg) == interiorFold (f >~> interiorFold yz zalg) zalg -- That is, we can "fuse" the two together, making one interiorFold. -- I'll do the proof as it's a bit hairy. You've given me all I need. -- Note that I don't use extensionality, just laws that relate functions. interiorBindFusion f yz zalg = (interiorBind f >~> interiorFold yz zalg) =< interiorFoldLaw (f >~> interiorFold yz zalg) zalg (interiorBind f >~> interiorFold yz zalg) (\ i p -> refl (interiorFold yz zalg i (f i p))) (\ i c ps -> refl (zalg i) =$= (refl (c 8><_) =$= ( ((all (interiorBind f >~> interiorFold yz zalg) =[ F-map->~> (interiorBind f) (interiorFold yz zalg) >= (all (interiorBind f) >~> all (interiorFold yz zalg)) =< refl _>~>_ =$= allInteriorFoldLaw f cut' =$= allInteriorFoldLaw yz zalg ]= allInteriorFold f (\ i -> <_>) >~> allInteriorFold yz zalg [QED]) =$ inners c =$= refl ps)))) ]= interiorFold (f >~> interiorFold yz zalg) zalg [QED] where open _=>_ (ALL I) -- You should find that a very useful piece of kit. In fact, you should -- not need extensionality, either. -- We need Interior C to be a functor. --??--2.12-------------------------------------------------------------------- -- using interiorBind, implement the "F-map" for Interiors as a one-liner interior : {X Y : I -> Set} -> [ X -:> Y ] -> [ Interior C X -:> Interior C Y ] interior f = {!!} -- using interiorBindFusion, prove the following law for "fold after map" interiorFoldFusion : {P Q R : I -> Set} (pq : [ P -:> Q ])(qr : [ Q -:> R ])(ralg : Algebra (CUTTING C) R) -> (interior pq >~> interiorFold qr ralg) == interiorFold (pq >~> qr) ralg interiorFoldFusion pq qr ralg = interior pq >~> interiorFold qr ralg =[ {!!} >= interiorFold (pq >~> qr) ralg [QED] where open _=>_ (ALL I) -- and now, using interiorFoldFusion if it helps, -- complete the functor construction INTERIOR : (I ->SET) => (I ->SET) INTERIOR = record { F-Obj = Interior C ; F-map = interior ; F-map-id~> = {!!} ; F-map->~> = {!!} } where open _=>_ (ALL I) --??-------------------------------------------------------------------------- -- Now let's build the Monad. -- You should find that all the laws you have to prove follow from the -- fusion laws you already have. open MONAD INTERIOR --??--2.13-------------------------------------------------------------------- WRAP : ID ~~> INTERIOR WRAP = record { xf = {!!} ; naturality = {!!} } -- use interiorBind to define the following FLATTEN : (INTERIOR >=> INTERIOR) ~~> INTERIOR FLATTEN = record { xf = {!!} ; naturality = {!!} } INTERIOR-Monad : Monad INTERIOR-Monad = record { unit = WRAP ; mult = FLATTEN ; unitMult = {!!} ; multUnit = {!!} ; multMult = {!!} } where open _=>_ INTERIOR --??-------------------------------------------------------------------------- open INTERIOR open INTERIORFOLD -- You should be able to define an algebra on vectors for NatCut, using +V --??--2.14-------------------------------------------------------------------- NatCutVecAlg : {X : Set} -> Algebra (CUTTING NatCut) (Vec X) NatCutVecAlg n xsc = {!!} --??-------------------------------------------------------------------------- -- Check that it puts things together suitably when you evaluate this: test1 : Vec Char 13 test1 = interiorFold (\ _ -> id) NatCutVecAlg 13 subbookkeeper ------------------------------------------------------------------------------ -- Cutting Up Pairs ------------------------------------------------------------------------------ module CHOICE where open _|>_ --??--2.15-------------------------------------------------------------------- -- Show that if you can cut up I and cut up J, then you can cut up I * J. -- You now have two dimensions (I and J). The idea is that you choose one -- dimension in which to make a cut, and keep everything in the other -- dimension the same. _+C_ : {I J : Set} -> I |> I -> J |> J -> (I * J) |> (I * J) Cuts (P +C Q) (i , j) = Cuts P i + Cuts Q j inners (P +C Q) = {!!} --??-------------------------------------------------------------------------- open CHOICE -- That should get us the ability to cut up *rectangules* by cutting either -- vertically or horizontally. NatCut2D : (Nat * Nat) |> (Nat * Nat) NatCut2D = NatCut +C NatCut Matrix : Set -> Nat * Nat -> Set Matrix X (w , h) = Vec (Vec X w) h -- If you've done it right, you should find that the following typechecks. -- It's the interior of a rectangle, tiled with matrices of characters. rectangle : Interior NatCut2D (Matrix Char) (15 , 6) rectangle = < inr (4 , 2 , refl _) 8>< < inl (7 , 8 , refl _) 8>< tile (strVec "seventy" ,- strVec "kitchen" ,- strVec "program" ,- strVec "mistake" ,- []) , tile (strVec "thousand" ,- strVec "soldiers" ,- strVec "probably" ,- strVec "undefine" ,- []) , <> > , tile (strVec "acknowledgement" ,- strVec "procrastination" ,- []) , <> > -- Later, we'll use rectangular interiors as the underlying data structure -- for a window manager. -- But for now, one last thing. --??--2.16-------------------------------------------------------------------- -- Show that if you have a vector of n Ps for every element of a list, -- then you can make a vector of n (All P)s . -- Hint: Ex1 provides some useful equipment for this job. vecAll : {I : Set}{P : I -> Set}{is : List I}{n : Nat} -> All (\ i -> Vec (P i) n) is -> Vec (All P is) n vecAll {is = is} pss = {!!} -- Given vecAll, show that algebra for any cutting can be lifted -- to an algebra on vectors. VecLiftAlg : {I : Set}(C : I |> I){X : I -> Set} (alg : Algebra (CUTTING C) X){n : Nat} -> Algebra (CUTTING C) (\ i -> Vec (X i) n) VecLiftAlg C alg i (c 8>< pss) = {!!} -- Now show that you can build an algebra for matrices -- which handles cuts in either dimension, -- combining them either horizontally or vertically! NatCut2DMatAlg : {X : Set} -> Algebra (CUTTING NatCut2D) (Matrix X) NatCut2DMatAlg _ (inl c 8>< ms) = {!!} NatCut2DMatAlg _ (inr c 8>< ms) = {!!} --??-------------------------------------------------------------------------- -- And that should give you a way to glue pictures together from interiors. picture : [ Interior NatCut2D (Matrix Char) -:> Matrix Char ] picture = interiorFold (\ _ -> id) NatCut2DMatAlg -- You should be able to check that the following gives you something -- sensible: test2 = picture _ rectangle
33.346003
79
0.471171
572c90db65bd126baad781d880f80a02d29f4ad2
7,322
agda
Agda
old/Complexity-lang.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
2
2016-04-26T20:22:22.000Z
2019-08-08T12:27:18.000Z
old/Complexity-lang.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
1
2020-03-23T08:39:04.000Z
2020-05-12T00:32:45.000Z
old/Complexity-lang.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
null
null
null
{- Name: Bowornmet (Ben) Hudson --Complexity : "Playing The Game"-- -} open import Preliminaries open import Preorder-withmax module Complexity-lang where data Typ : Set where nat : Typ _×'_ : Typ → Typ → Typ _⇒_ : Typ → Typ → Typ unit : Typ ------------------------------------------ -- represent a context as a list of types Ctx = List Typ -- de Bruijn indices (for free variables) data _∈_ : Typ → Ctx → Set where i0 : ∀ {Γ T} → T ∈ (T :: Γ) iS : ∀ {Γ T T1} → T ∈ Γ → T ∈ (T1 :: Γ) ------------------------------------------ -- some syntax data _|-_ : Ctx → Typ → Set where var : ∀ {Γ T} → (x : T ∈ Γ) → Γ |- T z : ∀ {Γ} → Γ |- nat suc : ∀ {Γ} → (e : Γ |- nat) → Γ |- nat rec : ∀ {Γ T} → (e : Γ |- nat) → (e0 : Γ |- T) → (e1 : (nat :: (T :: Γ)) |- T) → Γ |- T lam : ∀ {Γ T Ρ} → (x : (Ρ :: Γ) |- T) → Γ |- (Ρ ⇒ T) app : ∀ {Γ T1 T2} → (e1 : Γ |- (T2 ⇒ T1)) → (e2 : Γ |- T2) → Γ |- T1 unit : ∀ {Γ} → Γ |- unit prod : ∀ {Γ T1 T2} → (e1 : Γ |- T1) → (e2 : Γ |- T2) → Γ |- (T1 ×' T2) l-proj : ∀ {Γ T1 T2} → (e : Γ |- (T1 ×' T2)) → Γ |- T1 r-proj : ∀ {Γ T1 T2} → (e : Γ |- (T1 ×' T2)) → Γ |- T2 ------------------------------------------ -- renaming function rctx : Ctx → Ctx → Set rctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → τ ∈ Γ lem1 : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) (τ :: Γ') lem1 d i0 = i0 lem1 d (iS x) = iS (d x) ren : ∀ {Γ Γ' τ} → Γ' |- τ → rctx Γ Γ' → Γ |- τ ren (var x) d = var (d x) ren z d = z ren (suc e) d = suc (ren e d) ren (rec e0 e1 e2) d = rec (ren e0 d) (ren e1 d) (ren e2 (lem1 (lem1 d))) ren (lam x) d = lam (ren x (lem1 d)) ren (app e1 e2) d = app (ren e1 d) (ren e2 d) ren unit d = unit ren (prod e1 e2) d = prod (ren e1 d) (ren e2 d) ren (l-proj e) d = l-proj (ren e d) ren (r-proj e) d = r-proj (ren e d) ------------------------------------------ -- substitution sctx : Ctx → Ctx → Set sctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → Γ |- τ -- weakening wkn : ∀ {Γ τ1 τ2} → Γ |- τ2 → (τ1 :: Γ) |- τ2 wkn e = ren e iS -- lemmas everywhere wkn-s : ∀ {Γ τ1 Γ'} → sctx Γ Γ' → sctx (τ1 :: Γ) Γ' wkn-s d = λ f → wkn (d f) wkn-r : ∀ {Γ τ1 Γ'} → rctx Γ Γ' → rctx (τ1 :: Γ) Γ' wkn-r d = λ x → iS (d x) lem2 : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) (τ :: Γ') lem2 d i0 = var i0 lem2 d (iS i) = wkn (d i) lem3 : ∀ {Γ τ} → Γ |- τ → sctx Γ (τ :: Γ) lem3 e i0 = e lem3 e (iS i) = var i lem4 : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ)) lem4 e1 e2 i0 = e1 lem4 e1 e2 (iS i0) = e2 lem4 e1 e2 (iS (iS i)) = var i subst : ∀ {Γ Γ' τ} → sctx Γ Γ' → Γ' |- τ → Γ |- τ subst d (var x) = d x subst d z = z subst d (suc e) = suc (subst d e) subst d (rec e0 e1 e2) = rec (subst d e0) (subst d e1) (subst (lem2 (lem2 d)) e2) subst d (lam e) = lam (subst (lem2 d) e) subst d (app e1 e2) = app (subst d e1) (subst d e2) subst d unit = unit subst d (prod e1 e2) = prod (subst d e1) (subst d e2) subst d (l-proj e) = l-proj (subst d e) subst d (r-proj e) = r-proj (subst d e) ------------------------------------------ -- define 'stepping' as a datatype (fig. 1 of proof) data _≤s_ : ∀ {Γ T} → Γ |- T → Γ |- T → Set where refl-s : ∀ {Γ T} → (e : Γ |- T) → e ≤s e trans-s : ∀ {Γ T} → (e e' e'' : Γ |- T) → e ≤s e' → e' ≤s e'' → e ≤s e'' cong-s : ∀ {Γ T T'} → (e : (T :: Γ) |- T') → (e1 e2 : Γ |- T) → e1 ≤s e2 → subst (lem3 e1) e ≤s subst (lem3 e2) e lam-s : ∀ {Γ T T'} → (e : (T :: Γ) |- T') → (e2 : Γ |- T) → subst (lem3 e2) e ≤s app (lam e) e2 l-proj-s : ∀ {Γ T1 T2} → (e1 : Γ |- T1) → (e2 : Γ |- T2) → e1 ≤s (l-proj (prod e1 e2)) r-proj-s : ∀ {Γ T1 T2} → (e1 : Γ |- T1) → (e2 : Γ |- T2) → e2 ≤s (r-proj (prod e1 e2)) rec-steps-s : ∀ {Γ T} → (e : Γ |- nat) → (e0 : Γ |- T) → (e1 : (nat :: (T :: Γ)) |- T) → subst (lem4 e (rec e e0 e1)) e1 ≤s (rec (suc e) e0 e1) rec-steps-z : ∀ {Γ T} → (e0 : Γ |- T) → (e1 : (nat :: (T :: Γ)) |- T) → e0 ≤s (rec z e0 e1) ------------------------------------------ el : PREORDER → Set el = fst PREORDER≤ : (PA : PREORDER) → el PA → el PA → Set PREORDER≤ PA = Preorder-max-str.≤ (snd PA) interp : Typ → PREORDER interp nat = Nat , nat-p interp (A ×' B) = interp A ×p interp B interp (A ⇒ B) = interp A ->p interp B interp unit = unit-p interpC : Ctx → PREORDER interpC [] = unit-p interpC (A :: Γ) = interpC Γ ×p interp A -- look up a variable in context lookup : ∀{Γ τ} → τ ∈ Γ → el (interpC Γ ->p interp τ) lookup (i0 {Γ} {τ}) = snd' {interpC (τ :: Γ)} {interpC Γ} {_} id lookup (iS {Γ} {τ} {τ1} x) = comp {interpC (τ1 :: Γ)} {_} {_} (fst' {interpC (τ1 :: Γ)} {_} {interp τ1} id) (lookup x) interpE : ∀{Γ τ} → Γ |- τ → el (interpC Γ ->p interp τ) interpE (var x) = lookup x interpE z = monotone (λ x → Z) (λ x y _ → <>) interpE (suc e) = {!!} --monotone (λ x → S {!!}) {!!} interpE {_} {τ} (rec e0 e1 e2) = {!!} --mnatrec {!!} (λ x x₁ → interpE e1) {!!} interpE (lam e) = lam' (interpE e) interpE (app e1 e2) = app' (interpE e1) (interpE e2) interpE unit = monotone (λ _ → <>) (λ x y _ → <>) interpE (prod e1 e2) = pair' (interpE e1) (interpE e2) interpE (l-proj {Γ} {τ1} {τ2} e) = fst' {_} {_} {interp τ2} (interpE e) interpE (r-proj {Γ} {τ1} {τ2} e) = snd' {_} {interp τ1} {_} (interpE e) cong-lemma : ∀ {Γ τ τ'} → (e : (τ :: Γ) |- τ') → (e1 e2 : Γ |- τ) → e1 ≤s e2 → (k : fst (interpC Γ)) → Preorder-max-str.≤ (snd (interp τ)) {!!} {!!} cong-lemma = {!!} {- Preorder-max-str.≤ (snd (interp .τ)) (Monotone.f (interpE (subst (lem3 e1) e)) k) (Monotone.f (interpE (subst (lem3 e2) e)) k) -} sound : ∀ {Γ τ} (e e' : Γ |- τ) → e ≤s e' → PREORDER≤ (interpC Γ ->p interp τ) (interpE e) (interpE e') sound {_} {τ} .e' e' (refl-s .e') k = Preorder-max-str.refl (snd (interp τ)) (Monotone.f (interpE e') k) sound {_} {τ} e e' (trans-s .e e'' .e' p p₁) k = Preorder-max-str.trans (snd (interp τ)) (Monotone.f (interpE e) k) (Monotone.f (interpE e'') k) (Monotone.f (interpE e') k) (sound e e'' p k) (sound e'' e' p₁ k) sound .(subst (lem3 e1) e) .(subst (lem3 e2) e) (cong-s e e1 e2 p) k = Monotone.is-monotone {!!} (subst (lem3 e1) e) (subst (lem3 e2) e) cong-s sound .(subst (lem3 e2) e) .(app (lam e) e2) (lam-s e e2) k = {!!} sound {_} {τ} e .(l-proj (prod e e2)) (l-proj-s .e e2) k = Preorder-max-str.refl (snd (interp τ)) (Monotone.f (interpE e) k) sound {_} {τ} e .(r-proj (prod e1 e)) (r-proj-s e1 .e) k = Preorder-max-str.refl (snd (interp τ)) (Monotone.f (interpE e) k) sound .(subst (lem4 e (rec e e0 e1)) e1) .(rec (suc e) e0 e1) (rec-steps-s e e0 e1) k = {!!} sound e .(rec z e e1) (rec-steps-z .e e1) k = {!!}
32.542222
145
0.426386
fbbbc290bcf2c0b902ace760a56af51164378f1c
4,152
agda
Agda
src/Implicits/Resolution/Infinite/NormalFormEquiv.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
4
2019-04-05T17:57:11.000Z
2021-05-07T04:08:41.000Z
src/Implicits/Resolution/Infinite/NormalFormEquiv.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
src/Implicits/Resolution/Infinite/NormalFormEquiv.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
module Implicits.Resolution.Infinite.NormalFormEquiv where open import Prelude open import Implicits.Syntax open import Implicits.Resolution.Infinite.Resolution open import Implicits.Resolution.Embedding open import Implicits.Resolution.Embedding.Lemmas open import SystemF.Everything as F using () open import SystemF.NormalForm open import Data.Vec hiding ([_]) open import Relation.Binary.HeterogeneousEquality as H using () open import Data.List.Any open import Data.List.Properties open import Data.Vec.Properties as VP using () open import Extensions.Vec open import Function.Equivalence using (_⇔_; equivalence) mutual from-⇓ : ∀ {ν n t a τ} {Γ : F.Ctx ν n} → Γ ⊢ t ⇓ a → ⟦ Γ ⟧ctx← ⊢ ⟦ a ⟧tp← ↓ τ → ∃ λ i → ⟦ Γ ⟧ctx← ⊢ ⟦ lookup i Γ ⟧tp← ↓ τ from-⇓ {Γ = Γ} (nvar i) ↓τ = i , ↓τ from-⇓ (napp p x) ↓τ = from-⇓ p (i-iabs (from-⇑ x) ↓τ) from-⇓ {Γ = Γ} (ntapp {a = a} b p) ↓τ = from-⇓ p (i-tabs ⟦ b ⟧tp← (subst (λ z → ⟦ Γ ⟧ctx← ⊢ z ↓ _) (⟦a/sub⟧tp← a b) ↓τ)) from-⇑ : ∀ {ν n t a} {Γ : F.Ctx ν n} → Γ ⊢ t ⇑ a → ⟦ Γ ⟧ctx← ⊢ᵣ ⟦ a ⟧tp← from-⇑ (nbase b x) with ⟦base⟧tp← b from-⇑ (nbase b x) | τ , eq with from-⇓ x (subst (λ z → _ ⊢ z ↓ τ) (sym $ eq) (i-simp τ)) from-⇑ (nbase b x) | τ , eq | i , lookup-i↓tc = subst (λ z → _ ⊢ᵣ z) (sym $ eq) (r-simp (lookup-∈ i _) lookup-i↓tc) from-⇑ (nabs p) = r-iabs (from-⇑ p) from-⇑ (ntabs p) = r-tabs (subst (λ z → z ⊢ᵣ _) (⟦weaken⟧ctx← _) (from-⇑ p)) to-⇓ : ∀ {ν} {Δ : ICtx ν} {a τ t₁} → Δ ⊢ a ↓ τ → ⟦ Δ ⟧ctx→ ⊢ t₁ ⇓ ⟦ a ⟧tp→ → ∃ λ t₂ → ⟦ Δ ⟧ctx→ ⊢ t₂ ⇓ ⟦ simpl τ ⟧tp→ to-⇓ (i-simp a) q = , q to-⇓ (i-iabs x p) q = to-⇓ p (napp q (proj₂ $ to-⇑ x)) to-⇓ {Δ = Δ} (i-tabs {ρ = a} b p) q = to-⇓ p (subst (λ z → ⟦ Δ ⟧ctx→ ⊢ _ ⇓ z) (sym $ ⟦a/sub⟧tp→ a b) (ntapp ⟦ b ⟧tp→ q)) to-⇑ : ∀ {ν} {Δ : ICtx ν} {a} → Δ ⊢ᵣ a → ∃ λ t → ⟦ Δ ⟧ctx→ ⊢ t ⇑ ⟦ a ⟧tp→ to-⇑ {Δ = Δ} (r-simp {r = a} r r↓τ) = , nbase (⟦simpl⟧tp→ _) (proj₂ $ to-⇓ r↓τ var⇓a) where var⇓a : ⟦ Δ ⟧ctx→ ⊢ _ ⇓ ⟦ a ⟧tp→ var⇓a = let (i , eq) = ∈⟶index (VP.List-∈⇒∈ r) in let i' = (subst Fin (sym $ length-map _ Δ) i) in subst (λ z → ⟦ Δ ⟧ctx→ ⊢ (F.var i') ⇓ z) (lookup⟦⟧ Δ i eq) (nvar i') to-⇑ (r-iabs p) = , nabs (proj₂ $ to-⇑ p) to-⇑ {Δ = Δ} (r-tabs {ρ = a} p) = , ntabs (⇑-subst-n (length-weaken-Δ Δ) (H.sym $ ⟦weaken⟧ctx→ Δ) (proj₂ (to-⇑ p))) -- System F η-long-β-normal forms are isomorphic to infinite resolution derivations equivalent : ∀ {ν} (Δ : ICtx ν) r → Δ ⊢ᵣ r ⇔ (∃ λ t → ⟦ Δ ⟧ctx→ ⊢ t ⇑ ⟦ r ⟧tp→) equivalent Δ r = equivalence (λ x → to-⇑ x) (λ x → subst₂ (λ Δ' r' → Δ' ⊢ᵣ r') (ctx→← _) (tp→← r) (from-⇑ (proj₂ x))) {-} open import Function.Inverse open import Function.Equality -- from-⇑ : ∀ {ν n t a} {Γ : F.Ctx ν n} → Γ ⊢ t ⇑ a → ⟦ Γ ⟧ctx← ⊢ᵣ ⟦ a ⟧tp← from-⇑' : ∀ {ν a} {Δ : ICtx ν} → (∃ λ t → ⟦ Δ ⟧ctx→ ⊢ t ⇑ ⟦ a ⟧tp→) → Δ ⊢ᵣ a from-⇑' (_ , p) = subst₂ (λ Δ a → Δ ⊢ᵣ a) (ctx→← _) (tp→← _) (from-⇑ p) -- from-⇓' : ∀ {ν a} {Δ : ICtx ν} {τ} → (∃ λ t → ⟦ Δ ⟧ctx→ ⊢ t ⇓ ⟦ a ⟧tp→) → Δ ⊢ Δ ⊢ a ↓ τ -- from-⇓' {τ = τ} (_ , p) = subst₂ (λ Δ a → Δ ⊢ a ↓ τ) (ctx→← _) (tp→← _) (from-⇓ p) -- from-to-⇓ : ∀ {ν a} {Δ : ICtx ν} {τ} → (p : Δ ⊢ a ↓ τ) → from-⇓' (to-⇓ p) ≡ p -- from-to-⇓ p = ? from-to-⇑ : ∀ {ν a} {Δ : ICtx ν} → (p : Δ ⊢ᵣ a) → from-⇑' (to-⇑ p) ≡ p from-to-⇑ (r-simp x x₁) = {!!} from-to-⇑ (r-iabs p) = begin from-⇑' (, (nabs (proj₂ (to-⇑ p)))) ≡⟨ refl ⟩ subst₂ (λ Δ a → Δ ⊢ᵣ a) (ctx→← _) (tp→← _) (from-⇑ (nabs (proj₂ (to-⇑ p)))) ≡⟨ refl ⟩ subst₂ (λ Δ a → Δ ⊢ᵣ a) (ctx→← _) (tp→← _) (r-iabs (from-⇑ (proj₂ (to-⇑ p)))) ≡⟨ {!!} ⟩ r-iabs (subst₂ (λ Δ a → Δ ⊢ᵣ a) (ctx→← _) (tp→← _) (from-⇑ (proj₂ (to-⇑ p)))) ≡⟨ refl ⟩ r-iabs (from-⇑' (to-⇑ p)) ≡⟨ Prelude.cong r-iabs (from-to-⇑ p) ⟩ r-iabs p ∎ from-to-⇑ (r-tabs p) with from-to-⇑ p from-to-⇑ (r-tabs p) | x = {!x!} where lem : ∀ {ν a} {Δ : ICtx ν} → to-from-⇑ : ∀ {ν a} {Δ : ICtx ν} → (p : ∃ λ t → ⟦ Δ ⟧ctx→ ⊢ t ⇑ ⟦ a ⟧tp→) → to-⇑ (from-⇑' p) ≡ p to-from-⇑ p = {!!} iso' : ∀ {ν a} {Δ : ICtx ν} → (→-to-⟶ (to-⇑ {Δ = Δ} {a = a})) InverseOf (→-to-⟶ from-⇑') iso' = record { left-inverse-of = to-from-⇑; right-inverse-of = from-to-⇑ } -}
40.31068
96
0.490125
2f8794d8fab7d294569baa241020f5c96662dee2
1,911
agda
Agda
agda-stdlib/README/Data/Integer.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/README/Data/Integer.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/README/Data/Integer.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Some examples showing where the integers and some related -- operations and properties are defined, and how they can be used ------------------------------------------------------------------------ {-# OPTIONS --without-K #-} module README.Data.Integer where -- The integers and various arithmetic operations are defined in -- Data.Integer. open import Data.Integer -- The +_ function converts natural numbers into integers. ex₁ : ℤ ex₁ = + 2 -- The -_ function negates an integer. ex₂ : ℤ ex₂ = - + 4 -- Some binary operators are also defined, including addition, -- subtraction and multiplication. ex₃ : ℤ ex₃ = + 1 + + 3 * - + 2 - + 4 -- Propositional equality and some related properties can be found -- in Relation.Binary.PropositionalEquality. open import Relation.Binary.PropositionalEquality as P using (_≡_) ex₄ : ex₃ ≡ - + 9 ex₄ = P.refl -- Data.Integer.Properties contains a number of properties related to -- integers. Algebra defines what a commutative ring is, among other -- things. import Data.Integer.Properties as ℤₚ ex₅ : ∀ i j → i * j ≡ j * i ex₅ i j = ℤₚ.*-comm i j -- The module ≡-Reasoning in Relation.Binary.PropositionalEquality -- provides some combinators for equational reasoning. open P.≡-Reasoning open import Data.Product ex₆ : ∀ i j → i * (j + + 0) ≡ j * i ex₆ i j = begin i * (j + + 0) ≡⟨ P.cong (i *_) (ℤₚ.+-identityʳ j) ⟩ i * j ≡⟨ ℤₚ.*-comm i j ⟩ j * i ∎ -- The module RingSolver in Data.Integer.Solver contains a solver -- for integer equalities involving variables, constants, _+_, _*_, -_ -- and _-_. open import Data.Integer.Solver using (module +-*-Solver) open +-*-Solver ex₇ : ∀ i j → i * - j - j * i ≡ - + 2 * i * j ex₇ = solve 2 (λ i j → i :* :- j :- j :* i := :- con (+ 2) :* i :* j) P.refl
26.541667
72
0.603872
41ea9411d3aa8703445d85791a28a1a2da5e8f5d
5,101
agda
Agda
core/lib/types/Group.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
core/lib/types/Group.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
core/lib/types/Group.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Pi module lib.types.Group where record GroupStructure {i} (El : Type i) --(El-level : has-level 0 El) : Type i where constructor group-structure field ident : El inv : El → El comp : El → El → El unitl : ∀ a → comp ident a == a unitr : ∀ a → comp a ident == a assoc : ∀ a b c → comp (comp a b) c == comp a (comp b c) invl : ∀ a → (comp (inv a) a) == ident invr : ∀ a → (comp a (inv a)) == ident record Group i : Type (lsucc i) where constructor group field El : Type i El-level : has-level 0 El group-struct : GroupStructure El open GroupStructure group-struct public ⊙El : Σ (Type i) (λ A → A) ⊙El = (El , ident) Group₀ : Type (lsucc lzero) Group₀ = Group lzero is-abelian : ∀ {i} → Group i → Type i is-abelian G = (a b : Group.El G) → Group.comp G a b == Group.comp G b a module _ where open GroupStructure abstract group-structure= : ∀ {i} {A : Type i} (pA : has-level 0 A) {id₁ id₂ : A} {inv₁ inv₂ : A → A} {comp₁ comp₂ : A → A → A} → ∀ {unitl₁ unitl₂} → ∀ {unitr₁ unitr₂} → ∀ {assoc₁ assoc₂} → ∀ {invr₁ invr₂} → ∀ {invl₁ invl₂} → (id₁ == id₂) → (inv₁ == inv₂) → (comp₁ == comp₂) → Path {A = GroupStructure A} (group-structure id₁ inv₁ comp₁ unitl₁ unitr₁ assoc₁ invl₁ invr₁) (group-structure id₂ inv₂ comp₂ unitl₂ unitr₂ assoc₂ invl₂ invr₂) group-structure= pA {id₁ = id₁} {inv₁ = inv₁} {comp₁ = comp₁} idp idp idp = ap5 (group-structure id₁ inv₁ comp₁) (prop-has-all-paths (Π-level (λ _ → pA _ _)) _ _) (prop-has-all-paths (Π-level (λ _ → pA _ _)) _ _) (prop-has-all-paths (Π-level (λ _ → Π-level (λ _ → Π-level (λ _ → pA _ _)))) _ _) (prop-has-all-paths (Π-level (λ _ → pA _ _)) _ _) (prop-has-all-paths (Π-level (λ _ → pA _ _)) _ _) where ap5 : ∀ {j} {C D E F G H : Type j} {c₁ c₂ : C} {d₁ d₂ : D} {e₁ e₂ : E} {f₁ f₂ : F} {g₁ g₂ : G} (f : C → D → E → F → G → H) → (c₁ == c₂) → (d₁ == d₂) → (e₁ == e₂) → (f₁ == f₂) → (g₁ == g₂) → f c₁ d₁ e₁ f₁ g₁ == f c₂ d₂ e₂ f₂ g₂ ap5 f idp idp idp idp idp = idp ↓-group-structure= : ∀ {i} {A B : Type i} (A-level : has-level 0 A) {GS : GroupStructure A} {HS : GroupStructure B} (p : A == B) → (ident GS == ident HS [ (λ C → C) ↓ p ]) → (inv GS == inv HS [ (λ C → C → C) ↓ p ]) → (comp GS == comp HS [ (λ C → C → C → C) ↓ p ]) → GS == HS [ GroupStructure ↓ p ] ↓-group-structure= A-level idp = group-structure= A-level module _ {i} (G : Group i) where private open Group G infix 80 _⊙_ _⊙_ = comp group-inv-unique-l : (g h : El) → (g ⊙ h == ident) → inv h == g group-inv-unique-l g h p = inv h =⟨ ! (unitl (inv h)) ⟩ ident ⊙ inv h =⟨ ! p |in-ctx (λ w → w ⊙ inv h) ⟩ (g ⊙ h) ⊙ inv h =⟨ assoc g h (inv h) ⟩ g ⊙ (h ⊙ inv h) =⟨ invr h |in-ctx (λ w → g ⊙ w) ⟩ g ⊙ ident =⟨ unitr g ⟩ g ∎ group-inv-unique-r : (g h : El) → (g ⊙ h == ident) → inv g == h group-inv-unique-r g h p = inv g =⟨ ! (unitr (inv g)) ⟩ inv g ⊙ ident =⟨ ! p |in-ctx (λ w → inv g ⊙ w) ⟩ inv g ⊙ (g ⊙ h) =⟨ ! (assoc (inv g) g h) ⟩ (inv g ⊙ g) ⊙ h =⟨ invl g |in-ctx (λ w → w ⊙ h) ⟩ ident ⊙ h =⟨ unitl h ⟩ h ∎ group-inv-ident : inv ident == ident group-inv-ident = group-inv-unique-l ident ident (unitl ident) group-inv-comp : (g₁ g₂ : El) → inv (g₁ ⊙ g₂) == inv g₂ ⊙ inv g₁ group-inv-comp g₁ g₂ = group-inv-unique-r (g₁ ⊙ g₂) (inv g₂ ⊙ inv g₁) $ (g₁ ⊙ g₂) ⊙ (inv g₂ ⊙ inv g₁) =⟨ assoc g₁ g₂ (inv g₂ ⊙ inv g₁) ⟩ g₁ ⊙ (g₂ ⊙ (inv g₂ ⊙ inv g₁)) =⟨ ! (assoc g₂ (inv g₂) (inv g₁)) |in-ctx (λ w → g₁ ⊙ w) ⟩ g₁ ⊙ ((g₂ ⊙ inv g₂) ⊙ inv g₁) =⟨ invr g₂ |in-ctx (λ w → g₁ ⊙ (w ⊙ inv g₁)) ⟩ g₁ ⊙ (ident ⊙ inv g₁) =⟨ unitl (inv g₁) |in-ctx (λ w → g₁ ⊙ w) ⟩ g₁ ⊙ inv g₁ =⟨ invr g₁ ⟩ ident ∎ group-inv-inv : (g : El) → inv (inv g) == g group-inv-inv g = group-inv-unique-r (inv g) g (invl g) group-cancel-l : (g : El) {h k : El} → g ⊙ h == g ⊙ k → h == k group-cancel-l g {h} {k} p = h =⟨ ! (unitl h) ⟩ ident ⊙ h =⟨ ap (λ w → w ⊙ h) (! (invl g)) ⟩ (inv g ⊙ g) ⊙ h =⟨ assoc (inv g) g h ⟩ inv g ⊙ (g ⊙ h) =⟨ ap (λ w → inv g ⊙ w) p ⟩ inv g ⊙ (g ⊙ k) =⟨ ! (assoc (inv g) g k) ⟩ (inv g ⊙ g) ⊙ k =⟨ ap (λ w → w ⊙ k) (invl g) ⟩ ident ⊙ k =⟨ unitl k ⟩ k ∎ group-cancel-r : (g : El) {h k : El} → h ⊙ g == k ⊙ g → h == k group-cancel-r g {h} {k} p = h =⟨ ! (unitr h) ⟩ h ⊙ ident =⟨ ap (λ w → h ⊙ w) (! (invr g)) ⟩ h ⊙ (g ⊙ inv g) =⟨ ! (assoc h g (inv g)) ⟩ (h ⊙ g) ⊙ inv g =⟨ ap (λ w → w ⊙ inv g) p ⟩ (k ⊙ g) ⊙ inv g =⟨ assoc k g (inv g) ⟩ k ⊙ (g ⊙ inv g) =⟨ ap (λ w → k ⊙ w) (invr g) ⟩ k ⊙ ident =⟨ unitr k ⟩ k ∎
35.922535
79
0.466575
3ddb757f359a80309cb2fbbf752151d0fdc2e531
5,814
agda
Agda
notes/FOT/LTC-PCF/Data/Nat/SubtractionFixedPointOperator.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/FOT/LTC-PCF/Data/Nat/SubtractionFixedPointOperator.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/FOT/LTC-PCF/Data/Nat/SubtractionFixedPointOperator.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Subtraction using the fixed-point operator ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.LTC-PCF.Data.Nat.SubtractionFixedPointOperator where open import Common.FOL.Relation.Binary.EqReasoning open import LTC-PCF.Base open import LTC-PCF.Base.Properties -- We add 3 to the fixities of the Agda standard library 0.8.1 (see -- Data/Nat.agda). infixl 9 _∸_ ------------------------------------------------------------------------------ -- Subtraction's definition ∸-helper : D → D ∸-helper f = lam (λ m → lam (λ n → if (iszero₁ n) then m else if (iszero₁ m) then zero else f · pred₁ m · pred₁ n)) _∸_ : D → D → D _∸_ m n = fix ∸-helper · m · n ------------------------------------------------------------------------------ -- Conversion rules from the Agda standard library 0.8.1 (see -- Data/Nat.agda) without use induction. private ---------------------------------------------------------------------------- -- The steps -- See doc in LTC-PCF.Program.GCD.Total.Equations. -- Initially, the conversion rule fix-eq is applied. ∸-s₁ : D → D → D ∸-s₁ m n = ∸-helper (fix ∸-helper) · m · n -- First argument application. ∸-s₂ : D → D ∸-s₂ m = lam (λ n → if (iszero₁ n) then m else if (iszero₁ m) then zero else fix ∸-helper · pred₁ m · pred₁ n) -- Second argument application. ∸-s₃ : D → D → D ∸-s₃ m n = if (iszero₁ n) then m else if (iszero₁ m) then zero else fix ∸-helper · pred₁ m · pred₁ n -- First if_then_else_ iszero₁ n = b. ∸-s₄ : D → D → D → D ∸-s₄ m n b = if b then m else if (iszero₁ m) then zero else fix ∸-helper · pred₁ m · pred₁ n -- First if_then_else_ when if true ... ∸-s₅ : D → D ∸-s₅ m = m -- First if_then_else_ when if false ... ∸-s₆ : D → D → D ∸-s₆ m n = if (iszero₁ m) then zero else fix ∸-helper · pred₁ m · pred₁ n -- Second if_then_else_ iszero₁ m = b. ∸-s₇ : D → D → D → D ∸-s₇ m n b = if b then zero else fix ∸-helper · pred₁ m · pred₁ n -- Second if_then_else_ when if true ... ∸-s₈ : D ∸-s₈ = zero -- Second if_then_else_ when if false ... ∸-s₉ : D → D → D ∸-s₉ m n = fix ∸-helper · pred₁ m · pred₁ n ---------------------------------------------------------------------------- -- Congruence properties ∸-s₄Cong₃ : ∀ {m n b₁ b₂} → b₁ ≡ b₂ → ∸-s₄ m n b₁ ≡ ∸-s₄ m n b₂ ∸-s₄Cong₃ refl = refl ∸-s₇Cong₃ : ∀ {m n b₁ b₂} → b₁ ≡ b₂ → ∸-s₇ m n b₁ ≡ ∸-s₇ m n b₂ ∸-s₇Cong₃ refl = refl ---------------------------------------------------------------------------- -- The execution steps -- See doc in LTC-PCF.Program.GCD.Total.Equations. proof₀₋₁ : ∀ m n → fix ∸-helper · m · n ≡ ∸-s₁ m n proof₀₋₁ m n = subst (λ x → x · m · n ≡ ∸-helper (fix ∸-helper) · m · n) (sym (fix-eq ∸-helper)) refl proof₁₋₂ : ∀ m n → ∸-s₁ m n ≡ ∸-s₂ m · n proof₁₋₂ m n = subst (λ x → x · n ≡ ∸-s₂ m · n) (sym (beta ∸-s₂ m)) refl proof₂₋₃ : ∀ m n → ∸-s₂ m · n ≡ ∸-s₃ m n proof₂₋₃ m n = beta (∸-s₃ m) n proof₃₋₄ : ∀ m n b → iszero₁ n ≡ b → ∸-s₃ m n ≡ ∸-s₄ m n b proof₃₋₄ m n b = ∸-s₄Cong₃ proof₄₊ : ∀ m n → ∸-s₄ m n true ≡ ∸-s₅ m proof₄₊ m _ = if-true (∸-s₅ m) proof₄₋₆ : ∀ m n → ∸-s₄ m n false ≡ ∸-s₆ m n proof₄₋₆ m n = if-false (∸-s₆ m n) proof₆₋₇ : ∀ m n b → iszero₁ m ≡ b → ∸-s₆ m n ≡ ∸-s₇ m n b proof₆₋₇ m n b = ∸-s₇Cong₃ proof₇₊ : ∀ m n → ∸-s₇ m n true ≡ ∸-s₈ proof₇₊ m n = if-true ∸-s₈ proof₇₋₉ : ∀ m n → ∸-s₇ m n false ≡ ∸-s₉ m n proof₇₋₉ m n = if-false (∸-s₉ m n) ------------------------------------------------------------------------------ -- The equations for subtraction ∸-x0 : ∀ n → n ∸ zero ≡ n ∸-x0 n = n ∸ zero ≡⟨ proof₀₋₁ n zero ⟩ ∸-s₁ n zero ≡⟨ proof₁₋₂ n zero ⟩ ∸-s₂ n · zero ≡⟨ proof₂₋₃ n zero ⟩ ∸-s₃ n zero ≡⟨ proof₃₋₄ n zero true iszero-0 ⟩ ∸-s₄ n zero true ≡⟨ proof₄₊ n zero ⟩ n ∎ ∸-0S : ∀ n → zero ∸ succ₁ n ≡ zero ∸-0S n = zero ∸ succ₁ n ≡⟨ proof₀₋₁ zero (succ₁ n) ⟩ ∸-s₁ zero (succ₁ n) ≡⟨ proof₁₋₂ zero (succ₁ n) ⟩ ∸-s₂ zero · (succ₁ n) ≡⟨ proof₂₋₃ zero (succ₁ n) ⟩ ∸-s₃ zero (succ₁ n) ≡⟨ proof₃₋₄ zero (succ₁ n) false (iszero-S n) ⟩ ∸-s₄ zero (succ₁ n) false ≡⟨ proof₄₋₆ zero (succ₁ n) ⟩ ∸-s₆ zero (succ₁ n) ≡⟨ proof₆₋₇ zero (succ₁ n) true iszero-0 ⟩ ∸-s₇ zero (succ₁ n) true ≡⟨ proof₇₊ zero (succ₁ n) ⟩ zero ∎ ∸-SS : ∀ m n → succ₁ m ∸ succ₁ n ≡ m ∸ n ∸-SS m n = succ₁ m ∸ succ₁ n ≡⟨ proof₀₋₁ (succ₁ m) (succ₁ n) ⟩ ∸-s₁ (succ₁ m) (succ₁ n) ≡⟨ proof₁₋₂ (succ₁ m) (succ₁ n) ⟩ ∸-s₂ (succ₁ m) · (succ₁ n) ≡⟨ proof₂₋₃ (succ₁ m) (succ₁ n) ⟩ ∸-s₃ (succ₁ m) (succ₁ n) ≡⟨ proof₃₋₄ (succ₁ m) (succ₁ n) false (iszero-S n) ⟩ ∸-s₄ (succ₁ m) (succ₁ n) false ≡⟨ proof₄₋₆ (succ₁ m) (succ₁ n) ⟩ ∸-s₆ (succ₁ m) (succ₁ n) ≡⟨ proof₆₋₇ (succ₁ m) (succ₁ n) false (iszero-S m) ⟩ ∸-s₇ (succ₁ m) (succ₁ n) false ≡⟨ proof₇₋₉ (succ₁ m) (succ₁ n) ⟩ fix ∸-helper · pred₁ (succ₁ m) · pred₁ (succ₁ n) ≡⟨ ·-rightCong (pred-S n) ⟩ fix ∸-helper · pred₁ (succ₁ m) · n ≡⟨ ·-leftCong (·-rightCong (pred-S m)) ⟩ fix ∸-helper · m · n ∎
31.427027
78
0.445992
572b55502a4608d220c6ff7cdb5a953f48c98fc7
19,139
agda
Agda
agda-stdlib/src/Codata/Musical/Colist.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Codata/Musical/Colist.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Codata/Musical/Colist.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Coinductive lists ------------------------------------------------------------------------ {-# OPTIONS --without-K --sized-types --guardedness #-} -- Disabled to prevent warnings from BoundedVec {-# OPTIONS --warn=noUserWarning #-} module Codata.Musical.Colist where open import Category.Monad open import Codata.Musical.Notation open import Codata.Musical.Conat using (Coℕ; zero; suc) open import Data.Bool.Base using (Bool; true; false) open import Data.Empty using (⊥) open import Data.Maybe using (Maybe; nothing; just; Is-just) open import Data.Maybe.Relation.Unary.Any using (just) open import Data.Nat.Base using (ℕ; zero; suc; _≥′_; ≤′-refl; ≤′-step) open import Data.Nat.Properties using (s≤′s) open import Data.List.Base using (List; []; _∷_) open import Data.List.NonEmpty using (List⁺; _∷_) open import Data.Product as Prod using (∃; _×_; _,_) open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂; [_,_]′) open import Data.Vec.Bounded as Vec≤ using (Vec≤) open import Function.Base open import Function.Equality using (_⟨$⟩_) open import Function.Inverse as Inv using (_↔_; _↔̇_; Inverse; inverse) open import Level using (_⊔_) open import Relation.Binary import Relation.Binary.Construct.FromRel as Ind import Relation.Binary.Reasoning.Preorder as PreR import Relation.Binary.Reasoning.PartialOrder as POR open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary.Reflects using (invert) open import Relation.Nullary open import Relation.Nullary.Negation module ¬¬Monad {p} where open RawMonad (¬¬-Monad {p}) public open ¬¬Monad -- we don't want the RawMonad content to be opened publicly ------------------------------------------------------------------------ -- The type infixr 5 _∷_ data Colist {a} (A : Set a) : Set a where [] : Colist A _∷_ : (x : A) (xs : ∞ (Colist A)) → Colist A {-# FOREIGN GHC data AgdaColist a = Nil | Cons a (MAlonzo.RTE.Inf (AgdaColist a)) type AgdaColist' l a = AgdaColist a #-} {-# COMPILE GHC Colist = data AgdaColist' (Nil | Cons) #-} {-# COMPILE UHC Colist = data __LIST__ (__NIL__ | __CONS__) #-} module Colist-injective {a} {A : Set a} where ∷-injectiveˡ : ∀ {x y : A} {xs ys} → (Colist A ∋ x ∷ xs) ≡ y ∷ ys → x ≡ y ∷-injectiveˡ P.refl = P.refl ∷-injectiveʳ : ∀ {x y : A} {xs ys} → (Colist A ∋ x ∷ xs) ≡ y ∷ ys → xs ≡ ys ∷-injectiveʳ P.refl = P.refl data Any {a p} {A : Set a} (P : A → Set p) : Colist A → Set (a ⊔ p) where here : ∀ {x xs} (px : P x) → Any P (x ∷ xs) there : ∀ {x xs} (pxs : Any P (♭ xs)) → Any P (x ∷ xs) module _ {a p} {A : Set a} {P : A → Set p} where here-injective : ∀ {x xs p q} → (Any P (x ∷ xs) ∋ here p) ≡ here q → p ≡ q here-injective P.refl = P.refl there-injective : ∀ {x xs p q} → (Any P (x ∷ xs) ∋ there p) ≡ there q → p ≡ q there-injective P.refl = P.refl data All {a p} {A : Set a} (P : A → Set p) : Colist A → Set (a ⊔ p) where [] : All P [] _∷_ : ∀ {x xs} (px : P x) (pxs : ∞ (All P (♭ xs))) → All P (x ∷ xs) module All-injective {a p} {A : Set a} {P : A → Set p} where ∷-injectiveˡ : ∀ {x xs} {px qx pxs qxs} → (All P (x ∷ xs) ∋ px ∷ pxs) ≡ qx ∷ qxs → px ≡ qx ∷-injectiveˡ P.refl = P.refl ∷-injectiveʳ : ∀ {x xs} {px qx pxs qxs} → (All P (x ∷ xs) ∋ px ∷ pxs) ≡ qx ∷ qxs → pxs ≡ qxs ∷-injectiveʳ P.refl = P.refl ------------------------------------------------------------------------ -- Some operations null : ∀ {a} {A : Set a} → Colist A → Bool null [] = true null (_ ∷ _) = false length : ∀ {a} {A : Set a} → Colist A → Coℕ length [] = zero length (x ∷ xs) = suc (♯ length (♭ xs)) map : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → Colist A → Colist B map f [] = [] map f (x ∷ xs) = f x ∷ ♯ map f (♭ xs) fromList : ∀ {a} {A : Set a} → List A → Colist A fromList [] = [] fromList (x ∷ xs) = x ∷ ♯ fromList xs take : ∀ {a} {A : Set a} (n : ℕ) → Colist A → Vec≤ A n take zero xs = Vec≤.[] take (suc n) [] = Vec≤.[] take (suc n) (x ∷ xs) = x Vec≤.∷ take n (♭ xs) replicate : ∀ {a} {A : Set a} → Coℕ → A → Colist A replicate zero x = [] replicate (suc n) x = x ∷ ♯ replicate (♭ n) x lookup : ∀ {a} {A : Set a} → ℕ → Colist A → Maybe A lookup n [] = nothing lookup zero (x ∷ xs) = just x lookup (suc n) (x ∷ xs) = lookup n (♭ xs) infixr 5 _++_ _++_ : ∀ {a} {A : Set a} → Colist A → Colist A → Colist A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ ♯ (♭ xs ++ ys) -- Interleaves the two colists (until the shorter one, if any, has -- been exhausted). infixr 5 _⋎_ _⋎_ : ∀ {a} {A : Set a} → Colist A → Colist A → Colist A [] ⋎ ys = ys (x ∷ xs) ⋎ ys = x ∷ ♯ (ys ⋎ ♭ xs) concat : ∀ {a} {A : Set a} → Colist (List⁺ A) → Colist A concat [] = [] concat ((x ∷ []) ∷ xss) = x ∷ ♯ concat (♭ xss) concat ((x ∷ (y ∷ xs)) ∷ xss) = x ∷ ♯ concat ((y ∷ xs) ∷ xss) [_] : ∀ {a} {A : Set a} → A → Colist A [ x ] = x ∷ ♯ [] ------------------------------------------------------------------------ -- Any lemmas -- Any lemma for map. Any-map : ∀ {a b p} {A : Set a} {B : Set b} {P : B → Set p} {f : A → B} {xs} → Any P (map f xs) ↔ Any (P ∘ f) xs Any-map {P = P} {f} {xs} = inverse to from from∘to to∘from where to : ∀ {xs} → Any P (map f xs) → Any (P ∘ f) xs to {x ∷ xs} (here px) = here px to {x ∷ xs} (there p) = there (to p) from : ∀ {xs} → Any (P ∘ f) xs → Any P (map f xs) from (here px) = here px from (there p) = there (from p) from∘to : ∀ {xs} (p : Any P (map f xs)) → from (to p) ≡ p from∘to {x ∷ xs} (here px) = P.refl from∘to {x ∷ xs} (there p) = P.cong there (from∘to p) to∘from : ∀ {xs} (p : Any (P ∘ f) xs) → to (from p) ≡ p to∘from (here px) = P.refl to∘from (there p) = P.cong there (to∘from p) -- Any lemma for _⋎_. This lemma implies that every member of xs or ys -- is a member of xs ⋎ ys, and vice versa. Any-⋎ : ∀ {a p} {A : Set a} {P : A → Set p} xs {ys} → Any P (xs ⋎ ys) ↔ (Any P xs ⊎ Any P ys) Any-⋎ {P = P} = λ xs → record { to = P.→-to-⟶ (to xs) ; from = P.→-to-⟶ (from xs) ; inverse-of = record { left-inverse-of = from∘to xs ; right-inverse-of = to∘from xs } } where to : ∀ xs {ys} → Any P (xs ⋎ ys) → Any P xs ⊎ Any P ys to [] p = inj₂ p to (x ∷ xs) (here px) = inj₁ (here px) to (x ∷ xs) (there p) = [ inj₂ , inj₁ ∘ there ]′ (to _ p) mutual from-left : ∀ {xs ys} → Any P xs → Any P (xs ⋎ ys) from-left (here px) = here px from-left {ys = ys} (there p) = there (from-right ys p) from-right : ∀ xs {ys} → Any P ys → Any P (xs ⋎ ys) from-right [] p = p from-right (x ∷ xs) p = there (from-left p) from : ∀ xs {ys} → Any P xs ⊎ Any P ys → Any P (xs ⋎ ys) from xs = Sum.[ from-left , from-right xs ] from∘to : ∀ xs {ys} (p : Any P (xs ⋎ ys)) → from xs (to xs p) ≡ p from∘to [] p = P.refl from∘to (x ∷ xs) (here px) = P.refl from∘to (x ∷ xs) {ys = ys} (there p) with to ys p | from∘to ys p from∘to (x ∷ xs) {ys = ys} (there .(from-left q)) | inj₁ q | P.refl = P.refl from∘to (x ∷ xs) {ys = ys} (there .(from-right ys q)) | inj₂ q | P.refl = P.refl mutual to∘from-left : ∀ {xs ys} (p : Any P xs) → to xs {ys = ys} (from-left p) ≡ inj₁ p to∘from-left (here px) = P.refl to∘from-left {ys = ys} (there p) rewrite to∘from-right ys p = P.refl to∘from-right : ∀ xs {ys} (p : Any P ys) → to xs (from-right xs p) ≡ inj₂ p to∘from-right [] p = P.refl to∘from-right (x ∷ xs) {ys = ys} p rewrite to∘from-left {xs = ys} {ys = ♭ xs} p = P.refl to∘from : ∀ xs {ys} (p : Any P xs ⊎ Any P ys) → to xs (from xs p) ≡ p to∘from xs = Sum.[ to∘from-left , to∘from-right xs ] ------------------------------------------------------------------------ -- Equality -- xs ≈ ys means that xs and ys are equal. infix 4 _≈_ data _≈_ {a} {A : Set a} : (xs ys : Colist A) → Set a where [] : [] ≈ [] _∷_ : ∀ x {xs ys} (xs≈ : ∞ (♭ xs ≈ ♭ ys)) → x ∷ xs ≈ x ∷ ys -- The equality relation forms a setoid. setoid : ∀ {ℓ} → Set ℓ → Setoid _ _ setoid A = record { Carrier = Colist A ; _≈_ = _≈_ ; isEquivalence = record { refl = refl ; sym = sym ; trans = trans } } where refl : Reflexive _≈_ refl {[]} = [] refl {x ∷ xs} = x ∷ ♯ refl sym : Symmetric _≈_ sym [] = [] sym (x ∷ xs≈) = x ∷ ♯ sym (♭ xs≈) trans : Transitive _≈_ trans [] [] = [] trans (x ∷ xs≈) (.x ∷ ys≈) = x ∷ ♯ trans (♭ xs≈) (♭ ys≈) module ≈-Reasoning where import Relation.Binary.Reasoning.Setoid as EqR private open module R {a} {A : Set a} = EqR (setoid A) public -- map preserves equality. map-cong : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) → _≈_ =[ map f ]⇒ _≈_ map-cong f [] = [] map-cong f (x ∷ xs≈) = f x ∷ ♯ map-cong f (♭ xs≈) -- Any respects pointwise implication (for the predicate) and equality -- (for the colist). Any-resp : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} {xs ys} → (∀ {x} → P x → Q x) → xs ≈ ys → Any P xs → Any Q ys Any-resp f (x ∷ xs≈) (here px) = here (f px) Any-resp f (x ∷ xs≈) (there p) = there (Any-resp f (♭ xs≈) p) -- Any maps pointwise isomorphic predicates and equal colists to -- isomorphic types. Any-cong : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} {xs ys} → P ↔̇ Q → xs ≈ ys → Any P xs ↔ Any Q ys Any-cong {A = A} {P} {Q} {xs} {ys} P↔Q = λ xs≈ys → record { to = P.→-to-⟶ (to xs≈ys) ; from = P.→-to-⟶ (from xs≈ys) ; inverse-of = record { left-inverse-of = from∘to _ ; right-inverse-of = to∘from _ } } where open Setoid (setoid _) using (sym) to : ∀ {xs ys} → xs ≈ ys → Any P xs → Any Q ys to xs≈ys = Any-resp (Inverse.to P↔Q ⟨$⟩_) xs≈ys from : ∀ {xs ys} → xs ≈ ys → Any Q ys → Any P xs from xs≈ys = Any-resp (Inverse.from P↔Q ⟨$⟩_) (sym xs≈ys) to∘from : ∀ {xs ys} (xs≈ys : xs ≈ ys) (q : Any Q ys) → to xs≈ys (from xs≈ys q) ≡ q to∘from (x ∷ xs≈) (there q) = P.cong there (to∘from (♭ xs≈) q) to∘from (x ∷ xs≈) (here qx) = P.cong here (Inverse.right-inverse-of P↔Q qx) from∘to : ∀ {xs ys} (xs≈ys : xs ≈ ys) (p : Any P xs) → from xs≈ys (to xs≈ys p) ≡ p from∘to (x ∷ xs≈) (there p) = P.cong there (from∘to (♭ xs≈) p) from∘to (x ∷ xs≈) (here px) = P.cong here (Inverse.left-inverse-of P↔Q px) ------------------------------------------------------------------------ -- Indices -- Converts Any proofs to indices into the colist. The index can also -- be seen as the size of the proof. index : ∀ {a p} {A : Set a} {P : A → Set p} {xs} → Any P xs → ℕ index (here px) = zero index (there p) = suc (index p) -- The position returned by index is guaranteed to be within bounds. lookup-index : ∀ {a p} {A : Set a} {P : A → Set p} {xs} (p : Any P xs) → Is-just (lookup (index p) xs) lookup-index (here px) = just _ lookup-index (there p) = lookup-index p -- Any-resp preserves the index. index-Any-resp : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} {f : ∀ {x} → P x → Q x} {xs ys} (xs≈ys : xs ≈ ys) (p : Any P xs) → index (Any-resp f xs≈ys p) ≡ index p index-Any-resp (x ∷ xs≈) (here px) = P.refl index-Any-resp (x ∷ xs≈) (there p) = P.cong suc (index-Any-resp (♭ xs≈) p) -- The left-to-right direction of Any-⋎ returns a proof whose size is -- no larger than that of the input proof. index-Any-⋎ : ∀ {a p} {A : Set a} {P : A → Set p} xs {ys} (p : Any P (xs ⋎ ys)) → index p ≥′ [ index , index ]′ (Inverse.to (Any-⋎ xs) ⟨$⟩ p) index-Any-⋎ [] p = ≤′-refl index-Any-⋎ (x ∷ xs) (here px) = ≤′-refl index-Any-⋎ (x ∷ xs) {ys = ys} (there p) with Inverse.to (Any-⋎ ys) ⟨$⟩ p | index-Any-⋎ ys p ... | inj₁ q | q≤p = ≤′-step q≤p ... | inj₂ q | q≤p = s≤′s q≤p ------------------------------------------------------------------------ -- Memberships, subsets, prefixes -- x ∈ xs means that x is a member of xs. infix 4 _∈_ _∈_ : ∀ {a} → {A : Set a} → A → Colist A → Set a x ∈ xs = Any (_≡_ x) xs -- xs ⊆ ys means that xs is a subset of ys. infix 4 _⊆_ _⊆_ : ∀ {a} → {A : Set a} → Colist A → Colist A → Set a xs ⊆ ys = ∀ {x} → x ∈ xs → x ∈ ys -- xs ⊑ ys means that xs is a prefix of ys. infix 4 _⊑_ data _⊑_ {a} {A : Set a} : Colist A → Colist A → Set a where [] : ∀ {ys} → [] ⊑ ys _∷_ : ∀ x {xs ys} (p : ∞ (♭ xs ⊑ ♭ ys)) → x ∷ xs ⊑ x ∷ ys -- Any can be expressed using _∈_ (and vice versa). Any-∈ : ∀ {a p} {A : Set a} {P : A → Set p} {xs} → Any P xs ↔ ∃ λ x → x ∈ xs × P x Any-∈ {P = P} = record { to = P.→-to-⟶ to ; from = P.→-to-⟶ (λ { (x , x∈xs , p) → from x∈xs p }) ; inverse-of = record { left-inverse-of = from∘to ; right-inverse-of = λ { (x , x∈xs , p) → to∘from x∈xs p } } } where to : ∀ {xs} → Any P xs → ∃ λ x → x ∈ xs × P x to (here p) = _ , here P.refl , p to (there p) = Prod.map id (Prod.map there id) (to p) from : ∀ {x xs} → x ∈ xs → P x → Any P xs from (here P.refl) p = here p from (there x∈xs) p = there (from x∈xs p) to∘from : ∀ {x xs} (x∈xs : x ∈ xs) (p : P x) → to (from x∈xs p) ≡ (x , x∈xs , p) to∘from (here P.refl) p = P.refl to∘from (there x∈xs) p = P.cong (Prod.map id (Prod.map there id)) (to∘from x∈xs p) from∘to : ∀ {xs} (p : Any P xs) → let (x , x∈xs , px) = to p in from x∈xs px ≡ p from∘to (here _) = P.refl from∘to (there p) = P.cong there (from∘to p) -- Prefixes are subsets. ⊑⇒⊆ : ∀ {a} → {A : Set a} → _⊑_ {A = A} ⇒ _⊆_ ⊑⇒⊆ (x ∷ xs⊑ys) (here ≡x) = here ≡x ⊑⇒⊆ (_ ∷ xs⊑ys) (there x∈xs) = there (⊑⇒⊆ (♭ xs⊑ys) x∈xs) -- The prefix relation forms a poset. ⊑-Poset : ∀ {ℓ} → Set ℓ → Poset _ _ _ ⊑-Poset A = record { Carrier = Colist A ; _≈_ = _≈_ ; _≤_ = _⊑_ ; isPartialOrder = record { isPreorder = record { isEquivalence = Setoid.isEquivalence (setoid A) ; reflexive = reflexive ; trans = trans } ; antisym = antisym } } where reflexive : _≈_ ⇒ _⊑_ reflexive [] = [] reflexive (x ∷ xs≈) = x ∷ ♯ reflexive (♭ xs≈) trans : Transitive _⊑_ trans [] _ = [] trans (x ∷ xs≈) (.x ∷ ys≈) = x ∷ ♯ trans (♭ xs≈) (♭ ys≈) tail : ∀ {x xs y ys} → x ∷ xs ⊑ y ∷ ys → ♭ xs ⊑ ♭ ys tail (_ ∷ p) = ♭ p antisym : Antisymmetric _≈_ _⊑_ antisym [] [] = [] antisym (x ∷ p₁) p₂ = x ∷ ♯ antisym (♭ p₁) (tail p₂) module ⊑-Reasoning {a} {A : Set a} where private module Base = POR (⊑-Poset A) open Base public hiding (step-<; begin-strict_; step-≤) infixr 2 step-⊑ step-⊑ = Base.step-≤ syntax step-⊑ x ys⊑zs xs⊑ys = x ⊑⟨ xs⊑ys ⟩ ys⊑zs -- The subset relation forms a preorder. ⊆-Preorder : ∀ {ℓ} → Set ℓ → Preorder _ _ _ ⊆-Preorder A = Ind.preorder (setoid A) _∈_ (λ xs≈ys → ⊑⇒⊆ (⊑P.reflexive xs≈ys)) where module ⊑P = Poset (⊑-Poset A) module ⊆-Reasoning {a} {A : Set a} where private module Base = PreR (⊆-Preorder A) open Base public hiding (step-∼) infixr 2 step-⊆ infix 1 step-∈ step-⊆ = Base.step-∼ step-∈ : ∀ (x : A) {xs ys} → xs IsRelatedTo ys → x ∈ xs → x ∈ ys step-∈ x xs⊆ys x∈xs = (begin xs⊆ys) x∈xs syntax step-⊆ xs ys⊆zs xs⊆ys = xs ⊆⟨ xs⊆ys ⟩ ys⊆zs syntax step-∈ x xs⊆ys x∈xs = x ∈⟨ x∈xs ⟩ xs⊆ys -- take returns a prefix. take-⊑ : ∀ {a} {A : Set a} n (xs : Colist A) → let toColist = fromList {a} ∘ Vec≤.toList in toColist (take n xs) ⊑ xs take-⊑ zero xs = [] take-⊑ (suc n) [] = [] take-⊑ (suc n) (x ∷ xs) = x ∷ ♯ take-⊑ n (♭ xs) ------------------------------------------------------------------------ -- Finiteness and infiniteness -- Finite xs means that xs has finite length. data Finite {a} {A : Set a} : Colist A → Set a where [] : Finite [] _∷_ : ∀ x {xs} (fin : Finite (♭ xs)) → Finite (x ∷ xs) module Finite-injective {a} {A : Set a} where ∷-injective : ∀ {x : A} {xs p q} → (Finite (x ∷ xs) ∋ x ∷ p) ≡ x ∷ q → p ≡ q ∷-injective P.refl = P.refl -- Infinite xs means that xs has infinite length. data Infinite {a} {A : Set a} : Colist A → Set a where _∷_ : ∀ x {xs} (inf : ∞ (Infinite (♭ xs))) → Infinite (x ∷ xs) module Infinite-injective {a} {A : Set a} where ∷-injective : ∀ {x : A} {xs p q} → (Infinite (x ∷ xs) ∋ x ∷ p) ≡ x ∷ q → p ≡ q ∷-injective P.refl = P.refl -- Colists which are not finite are infinite. not-finite-is-infinite : ∀ {a} {A : Set a} (xs : Colist A) → ¬ Finite xs → Infinite xs not-finite-is-infinite [] hyp = contradiction [] hyp not-finite-is-infinite (x ∷ xs) hyp = x ∷ ♯ not-finite-is-infinite (♭ xs) (hyp ∘ _∷_ x) -- Colists are either finite or infinite (classically). finite-or-infinite : ∀ {a} {A : Set a} (xs : Colist A) → ¬ ¬ (Finite xs ⊎ Infinite xs) finite-or-infinite xs = helper <$> excluded-middle where helper : Dec (Finite xs) → Finite xs ⊎ Infinite xs helper ( true because [fin]) = inj₁ (invert [fin]) helper (false because [¬fin]) = inj₂ $ not-finite-is-infinite xs (invert [¬fin]) -- Colists are not both finite and infinite. not-finite-and-infinite : ∀ {a} {A : Set a} {xs : Colist A} → Finite xs → Infinite xs → ⊥ not-finite-and-infinite (x ∷ fin) (.x ∷ inf) = not-finite-and-infinite fin (♭ inf) ------------------------------------------------------------------------ -- Legacy import Codata.Colist as C open import Codata.Thunk import Size module _ {a} {A : Set a} where fromMusical : ∀ {i} → Colist A → C.Colist A i fromMusical [] = C.[] fromMusical (x ∷ xs) = x C.∷ λ where .force → fromMusical (♭ xs) toMusical : C.Colist A Size.∞ → Colist A toMusical C.[] = [] toMusical (x C.∷ xs) = x ∷ ♯ toMusical (xs .force) ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.3 open import Data.BoundedVec.Inefficient as BVec using (BoundedVec; []; _∷_) take′ : ∀ {a} {A : Set a} (n : ℕ) → Colist A → BoundedVec A n take′ zero xs = [] take′ (suc n) [] = [] take′ (suc n) (x ∷ xs) = x ∷ take′ n (♭ xs) {-# WARNING_ON_USAGE take′ "Warning: take′ (and Data.BoundedVec) was deprecated in v1.3. Please use take (and Data.Vec.Bounded) instead." #-} take′-⊑ : ∀ {a} {A : Set a} n (xs : Colist A) → let toColist = fromList {a} ∘ BVec.toList in toColist (take′ n xs) ⊑ xs take′-⊑ zero xs = [] take′-⊑ (suc n) [] = [] take′-⊑ (suc n) (x ∷ xs) = x ∷ ♯ take′-⊑ n (♭ xs) {-# WARNING_ON_USAGE take′-⊑ "Warning: take′-⊑ (and Data.BoundedVec) was deprecated in v1.3. Please use take-⊑ (and Data.Vec.Bounded) instead." #-}
31.739635
83
0.506192
dc59f927a824f6ace91198525199a1459ab1b264
458
agda
Agda
test/Succeed/Issue333.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue333.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue333.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --universe-polymorphism #-} module Issue333 where open import Common.Level data Σ a b (A : Set a) (B : A → Set b) : Set (a ⊔ b) where _,_ : (x : A) → B x → Σ a b A B P : ∀ a b (A : Set a) (B : Set b) → Set (a ⊔ b) P a b A B = Σ a b A (λ _ → B) postulate A B : Set foo : Σ lzero lzero A λ (y : A) → P lzero lzero A B bar : Set₁ bar = helper foo where helper : (Σ _ _ A λ (y : A) → P _ _ _ _) → Set₁ helper (y , (x⇓ , fy⇑)) = Set
20.818182
58
0.524017
1c46b5174cd33b800fe2484ecffa04fc19065a62
131
agda
Agda
test/succeed/Issue49.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/Issue49.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/Issue49.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module Issue49 where module Dummy {A : Set1} where postulate D : Set T : Set T = Dummy.D {Set} T' : Set T' = Dummy.D {A = Set}
13.1
29
0.618321
586af86547cc5fa4a0337c1dedd4518949e8a40a
4,172
agda
Agda
out/TLC/Equality.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
39
2021-11-09T20:39:55.000Z
2022-03-19T17:33:12.000Z
out/TLC/Equality.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
1
2021-11-21T12:19:32.000Z
2021-11-21T12:19:32.000Z
out/TLC/Equality.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
4
2021-11-09T20:39:59.000Z
2022-01-24T12:49:17.000Z
{- This second-order equational theory was created from the following second-order syntax description: syntax TLC | Λ type N : 0-ary _↣_ : 2-ary | r30 𝟙 : 0-ary _⊗_ : 2-ary | l40 𝟘 : 0-ary _⊕_ : 2-ary | l30 term app : α ↣ β α -> β | _$_ l20 lam : α.β -> α ↣ β | ƛ_ r10 unit : 𝟙 pair : α β -> α ⊗ β | ⟨_,_⟩ fst : α ⊗ β -> α snd : α ⊗ β -> β abort : 𝟘 -> α inl : α -> α ⊕ β inr : β -> α ⊕ β case : α ⊕ β α.γ β.γ -> γ ze : N su : N -> N nrec : N α (α,N).α -> α theory (ƛβ) b : α.β a : α |> app (lam(x.b[x]), a) = b[a] (ƛη) f : α ↣ β |> lam (x. app(f, x)) = f (𝟙η) u : 𝟙 |> u = unit (fβ) a : α b : β |> fst (pair(a, b)) = a (sβ) a : α b : β |> snd (pair(a, b)) = b (pη) p : α ⊗ β |> pair (fst(p), snd(p)) = p (𝟘η) e : 𝟘 c : α |> abort(e) = c (lβ) a : α f : α.γ g : β.γ |> case (inl(a), x.f[x], y.g[y]) = f[a] (rβ) b : β f : α.γ g : β.γ |> case (inr(b), x.f[x], y.g[y]) = g[b] (cη) s : α ⊕ β c : (α ⊕ β).γ |> case (s, x.c[inl(x)], y.c[inr(y)]) = c[s] (zeβ) z : α s : (α,N).α |> nrec (ze, z, r m. s[r,m]) = z (suβ) z : α s : (α,N).α n : N |> nrec (su (n), z, r m. s[r,m]) = s[nrec (n, z, r m. s[r,m]), n] (ift) t f : α |> if (true, t, f) = t (iff) t f : α |> if (false, t, f) = f -} module TLC.Equality where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Families.Build open import SOAS.ContextMaps.Inductive open import TLC.Signature open import TLC.Syntax open import SOAS.Metatheory.SecondOrder.Metasubstitution Λ:Syn open import SOAS.Metatheory.SecondOrder.Equality Λ:Syn private variable α β γ τ : ΛT Γ Δ Π : Ctx infix 1 _▹_⊢_≋ₐ_ -- Axioms of equality data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ Λ) α Γ → (𝔐 ▷ Λ) α Γ → Set where ƛβ : ⁅ α ⊩ β ⁆ ⁅ α ⁆̣ ▹ ∅ ⊢ (ƛ 𝔞⟨ x₀ ⟩) $ 𝔟 ≋ₐ 𝔞⟨ 𝔟 ⟩ ƛη : ⁅ α ↣ β ⁆̣ ▹ ∅ ⊢ ƛ (𝔞 $ x₀) ≋ₐ 𝔞 𝟙η : ⁅ 𝟙 ⁆̣ ▹ ∅ ⊢ 𝔞 ≋ₐ unit fβ : ⁅ α ⁆ ⁅ β ⁆̣ ▹ ∅ ⊢ fst (⟨ 𝔞 , 𝔟 ⟩) ≋ₐ 𝔞 sβ : ⁅ α ⁆ ⁅ β ⁆̣ ▹ ∅ ⊢ snd (⟨ 𝔞 , 𝔟 ⟩) ≋ₐ 𝔟 pη : ⁅ α ⊗ β ⁆̣ ▹ ∅ ⊢ ⟨ (fst 𝔞) , (snd 𝔞) ⟩ ≋ₐ 𝔞 𝟘η : ⁅ 𝟘 ⁆ ⁅ α ⁆̣ ▹ ∅ ⊢ abort 𝔞 ≋ₐ 𝔟 lβ : ⁅ α ⁆ ⁅ α ⊩ γ ⁆ ⁅ β ⊩ γ ⁆̣ ▹ ∅ ⊢ case (inl 𝔞) (𝔟⟨ x₀ ⟩) (𝔠⟨ x₀ ⟩) ≋ₐ 𝔟⟨ 𝔞 ⟩ rβ : ⁅ β ⁆ ⁅ α ⊩ γ ⁆ ⁅ β ⊩ γ ⁆̣ ▹ ∅ ⊢ case (inr 𝔞) (𝔟⟨ x₀ ⟩) (𝔠⟨ x₀ ⟩) ≋ₐ 𝔠⟨ 𝔞 ⟩ cη : ⁅ α ⊕ β ⁆ ⁅ (α ⊕ β) ⊩ γ ⁆̣ ▹ ∅ ⊢ case 𝔞 (𝔟⟨ inl x₀ ⟩) (𝔟⟨ inr x₀ ⟩) ≋ₐ 𝔟⟨ 𝔞 ⟩ zeβ : ⁅ α ⁆ ⁅ α · N ⊩ α ⁆̣ ▹ ∅ ⊢ nrec ze 𝔞 (𝔟⟨ x₀ ◂ x₁ ⟩) ≋ₐ 𝔞 suβ : ⁅ α ⁆ ⁅ α · N ⊩ α ⁆ ⁅ N ⁆̣ ▹ ∅ ⊢ nrec (su 𝔠) 𝔞 (𝔟⟨ x₀ ◂ x₁ ⟩) ≋ₐ 𝔟⟨ (nrec 𝔠 𝔞 (𝔟⟨ x₀ ◂ x₁ ⟩)) ◂ 𝔠 ⟩ open EqLogic _▹_⊢_≋ₐ_ open ≋-Reasoning -- Derived equations ift : ⁅ α ⁆ ⁅ α ⁆̣ ▹ ∅ ⊢ if true 𝔞 𝔟 ≋ 𝔞 ift = ax lβ with《 unit ◃ 𝔞 ◃ 𝔟 》 iff : ⁅ α ⁆ ⁅ α ⁆̣ ▹ ∅ ⊢ if false 𝔞 𝔟 ≋ 𝔟 iff = ax rβ with《 unit ◃ 𝔞 ◃ 𝔟 》 -- Double beta reduction ƛβ² : ⁅ β · α ⊩ γ ⁆ ⁅ α ⁆ ⁅ β ⁆̣ ▹ ∅ ⊢ (ƛ (ƛ 𝔞⟨ x₀ ◂ x₁ ⟩)) $ 𝔟 $ 𝔠 ≋ 𝔞⟨ 𝔠 ◂ 𝔟 ⟩ ƛβ² = begin (ƛ (ƛ 𝔞⟨ x₀ ◂ x₁ ⟩)) $ 𝔟 $ 𝔠 ≋⟨ cong[ ax ƛβ with《 (ƛ 𝔞⟨ x₀ ◂ x₁ ⟩) ◃ 𝔟 》 ]inside ◌ᵈ $ 𝔠 ⟩ (ƛ 𝔞⟨ x₀ ◂ 𝔟 ⟩) $ 𝔠 ≋⟨ ax ƛβ with《 (𝔞⟨ x₀ ◂ 𝔟 ⟩) ◃ 𝔠 》 ⟩ 𝔞⟨ 𝔠 ◂ 𝔟 ⟩ ∎ -- Uncurrying and arithmetic 1+2 : ⁅⁆ ▹ ∅ ⊢ uncurry $ plus $ ⟨ su ze , su (su ze) ⟩ ≋ su (su (su ze)) 1+2 = begin uncurry $ plus $ ⟨ su ze , su (su ze) ⟩ ≋⟨ thm ƛβ² with《 x₁ $ fst x₀ $ snd x₀ ◃ plus ◃ ⟨ su ze , su (su ze) ⟩ 》 ⟩ plus $ fst ⟨ su ze , su (su ze) ⟩ $ snd ⟨ su ze , su (su ze) ⟩ ≋⟨ cong₂[ ax fβ with《 su ze ◃ su (su ze) 》 ][ ax sβ with《 su ze ◃ su (su ze) 》 ]inside plus $ ◌ᵃ $ ◌ᵇ ⟩ plus $ su ze $ su (su ze) ≋⟨ thm ƛβ² with《 nrec x₁ x₀ (su x₀) ◃ su ze ◃ su (su ze) 》 ⟩ nrec (su ze) (su (su ze)) (su x₀) ≋⟨ ax suβ with《 su (su ze) ◃ su x₀ ◃ ze 》 ⟩ su (nrec ze (su (su ze)) (su x₀)) ≋⟨ cong[ ax zeβ with《 su (su ze) ◃ su x₀ 》 ]inside su ◌ᵃ ⟩ su (su (su ze)) ∎
35.355932
113
0.405081
1d918aa871183874672880ce3d185400216d82f9
2,490
agda
Agda
examples/outdated-and-incorrect/AIM6/Cat/Slice.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/AIM6/Cat/Slice.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/AIM6/Cat/Slice.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Slice where open import Logic.Relations open import Logic.Equivalence open import Logic.Base open import Category module SliceCat (ℂ : Cat)(Γ : Category.Obj ℂ) where open module CC = Category.Category ℂ record SlObj : Set1 where field dom : Obj arr : dom ─→ Γ record _Sl→_ (f f' : SlObj) : Set where field h : (SlObj.dom f) ─→ (SlObj.dom f') π : (SlObj.arr f') ∘ h == (SlObj.arr f) SlId : {f : SlObj} -> f Sl→ f SlId = record { h = id ; π = idRight } _o_ : {f f' f'' : SlObj} -> f' Sl→ f'' -> f Sl→ f' -> f Sl→ f'' _o_ {F} {F'} {F''} F₁ F₂ = let f = SlObj.arr F in let f' = SlObj.arr F' in let f'' = SlObj.arr F'' in let h' = _Sl→_.h F₁ in let h = _Sl→_.h F₂ in record { h = (_Sl→_.h F₁) ∘ (_Sl→_.h F₂) -- Proof of f'' ∘ (h' ∘ h) == f ; π = trans (trans (sym assoc) (congL (_Sl→_.π F₁))) (_Sl→_.π F₂) } SlRel : {A B : SlObj} -> Rel (A Sl→ B) SlRel f f' = (_Sl→_.h f) == (_Sl→_.h f') SlRefl : {A B : SlObj} -> Reflexive {A Sl→ B} SlRel SlRefl = refl SlSym : {A B : SlObj} -> Symmetric {A Sl→ B} SlRel SlSym = sym SlTrans : {A B : SlObj} -> Transitive {A Sl→ B} SlRel SlTrans = trans SlEq : {A B : SlObj} -> Equivalence (A Sl→ B) SlEq {A} {B} = record { _==_ = SlRel {A} {B} ; refl = \{f : A Sl→ B} -> SlRefl {A}{B}{f} ; sym = \{f g : A Sl→ B} -> SlSym {A}{B}{f}{g} ; trans = \{f g h : A Sl→ B} -> SlTrans {A}{B}{f}{g}{h} } SlCong : {A B C : SlObj}{f f' : B Sl→ C}{g g' : A Sl→ B} -> SlRel f f' -> SlRel g g' -> SlRel (f o g) (f' o g') SlCong = cong SlIdLeft : {A B : SlObj}{f : A Sl→ B} -> SlRel (SlId o f) f SlIdLeft = idLeft SlIdRight : {A B : SlObj}{f : A Sl→ B} -> SlRel (f o SlId) f SlIdRight = idRight SlAssoc : {A B C D : SlObj}{f : C Sl→ D}{g : B Sl→ C}{h : A Sl→ B} -> SlRel ((f o g) o h) (f o (g o h)) SlAssoc = assoc Slice : Cat Slice = record { Obj = SlObj ; _─→_ = _Sl→_ ; id = SlId ; _∘_ = _o_ ; Eq = SlEq ; cong = \{A B C : SlObj}{f f' : B Sl→ C}{g g' : A Sl→ B} -> SlCong {A}{B}{C}{f}{f'}{g}{g'} ; idLeft = \{A B : SlObj}{f : A Sl→ B} -> SlIdLeft {A} {B} {f} ; idRight = \{A B : SlObj}{f : A Sl→ B} -> SlIdRight {A} {B} {f} ; assoc = \{A B C D : SlObj}{f : C Sl→ D}{g : B Sl→ C}{h : A Sl→ B} -> SlAssoc {A}{B}{C}{D}{f}{g}{h} }
27.065217
98
0.464659
06fc3ca2a0350411e0557e05155be397b87ed33c
6,958
agda
Agda
examples/outdated-and-incorrect/Termination/Example.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/Termination/Example.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/Termination/Example.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Example where loop : Set loop = loop _∞_ : Set -> Set -> Set x ∞ y = x ∞ y data Nat : Set where zero : Nat succ : Nat -> Nat id : Nat -> Nat id zero = zero id (succ n) = succ (id n) bad : Nat -> Nat bad n = bad n _+_ : Nat -> Nat -> Nat zero + n = n (succ m) + n = succ (m + n) bad2 : Nat -> Nat bad2 (succ x) = bad2 x + bad2 (succ x) bad2 x = bad2 x data Bool : Set where true : Bool false : Bool _&&_ : Bool -> Bool -> Bool true && a = a false && a = false mutual even : Nat -> Bool even zero = true even (succ n) = odd n odd : Nat -> Bool odd zero = false odd (succ n) = even n data Ty : {_ : Nat} -> Set where Base : forall {n} -> Ty {succ n} Arr : forall {n} -> Ty {n} -> Ty {n} -> Ty {succ n} eqty : forall {n} -> Ty {n} -> Ty {n} -> Bool eqty Base Base = true eqty (Arr a b) (Arr a' b') = (eqty a a') && (eqty b b') eqty _ _ = false subty : forall {n} -> Ty {n} -> Ty {n} -> Bool subty Base Base = true subty (Arr a b) (Arr a' b') = (subty a' a) && (subty b b') subty _ _ = false -- the following is enough for making it termination check subty' : forall {n} -> Ty {n} -> Ty {n} -> Bool subty' Base Base = true subty' {succ n} (Arr a b) (Arr a' b') = (subty' a' a) && (subty' b b') subty' _ _ = false subty'' : forall {n} -> Ty {n} -> Ty {n} -> Bool subty'' Base Base = true subty'' {succ n} (Arr {.n} a b) (Arr .{n} a'' b'') = (subty'' {n} a'' a) && (subty'' {n} b b'') subty'' _ _ = false data _×_ (A B : Set) : Set where _,_ : A -> B -> A × B add : Nat × Nat -> Nat add (zero , m) = m add (succ n , m) = succ (add (n , m)) eq : Nat × Nat -> Bool eq (zero , zero ) = true eq (succ n , succ m) = eq (n , m) eq _ = false -- the following should not termination check mutual f : Nat -> Nat -> Nat f zero y = zero f (succ x) zero = zero f (succ x) (succ y) = (g x (succ y)) + (f (succ (succ x)) y) g : Nat -> Nat -> Nat g zero y = zero g (succ x) zero = zero g (succ x) (succ y) = (f (succ x) (succ y)) + (g x (succ (succ y))) mutual badf : Nat × Nat -> Nat badf (zero , y) = zero badf (succ x , zero) = zero badf (succ x , succ y) = badg (x , succ y) + badf (succ (succ x) , y) badg : Nat × Nat -> Nat badg (zero , y) = zero badg (succ x , zero) = zero badg (succ x , succ y) = badf (succ x , succ y) + badg (x , succ (succ y)) -- these are ok, however mutual f' : Nat -> Nat -> Nat f' zero y = zero f' (succ x) zero = zero f' (succ x) (succ y) = (g' x (succ y)) + (f' (succ (succ x)) y) g' : Nat -> Nat -> Nat g' zero y = zero g' (succ x) zero = zero g' (succ x) (succ y) = (f' (succ x) (succ y)) + (g' x (succ y)) -- these are ok, however bla : Nat bla = succ (succ zero) mutual f'' : Nat -> Nat -> Nat f'' zero y = zero f'' (succ x) zero = zero f'' (succ x) (succ y) = (g'' x (succ y)) + (f'' bla y) g'' : Nat -> Nat -> Nat g'' zero y = zero g'' (succ x) zero = zero g'' (succ x) (succ y) = (f'' (succ x) (succ y)) + (g'' x (succ y)) -- Ackermann ack : Nat -> Nat -> Nat ack zero y = succ y ack (succ x) zero = ack x (succ zero) ack (succ x) (succ y) = ack x (ack (succ x) y) ack' : Nat × Nat -> Nat ack' (zero , y) = succ y ack' (succ x , zero) = ack' (x , succ zero) ack' (succ x , succ y) = ack' (x , ack' (succ x , y)) -- Maximum of 3 numbers max3 : Nat -> Nat -> Nat -> Nat max3 zero zero z = z max3 zero y zero = y max3 x zero zero = x max3 (succ x) (succ y) zero = succ (max3 x y zero) max3 (succ x) zero (succ z) = succ (max3 x zero z) max3 zero (succ y) (succ z) = succ (max3 zero y z) max3 (succ x) (succ y) (succ z) = succ (max3 x y z) -- addition of Ordinals data Ord : Set where ozero : Ord olim : (Nat -> Ord) -> Ord addord : Ord -> Ord -> Ord addord x ozero = x addord x (olim f) = olim (\ n -> addord x (f n)) -- Higher-order example which should not pass the termination checker. -- (Not the current one, anyway.) foo : Ord -> (Nat -> Ord) -> Ord foo ozero g = ozero foo (olim f) g = olim (\n -> foo (g n) f) -- Examples checking that a function can be used with several -- different numbers of arguments on the right-hand side. const : {a b : Set1} -> a -> b -> a const x _ = x ok : Nat -> Nat -> Set ok zero y = Nat ok (succ x) y = const Nat (const (ok x y) (ok x)) notOK : Set -> Set notOK x = const (notOK Ord) notOK -- An example which should fail (37 is an arbitrary number): data ⊤ : Set where tt : ⊤ mutual foo37 : ⊤ -> ⊤ foo37 x = bar37 x bar37 : ⊤ -> ⊤ bar37 tt = foo37 tt -- Some examples involving with. -- Not OK: withNo : Nat -> Nat withNo n with n withNo n | m = withNo m -- OK: withYes : Nat -> Nat withYes n with n withYes n | zero = zero withYes n | succ m = withYes m -- Some rather convoluted examples. -- OK: number : Nat number = zero where data Foo12 : Nat -> Set where foo12 : Foo12 number -- Should the occurrence of number' in the type signature of foo12 -- really be highlighted here? number' : Nat number' with zero number' | x = g12 foo12 where data Foo12 : Nat -> Set where foo12 : Foo12 number' abstract g12 : {i : Nat} -> Foo12 i -> Nat g12 foo12 = zero -- Tests highlighting (but does not type check yet): -- number'' : Nat -- number'' with zero -- number'' | x = g12 (foo12 x) -- where -- data Foo12 : Nat -> Set where -- foo12 : (n : Nat) -> Foo12 (number'' | n) -- abstract -- g12 : {i : Nat} -> Foo12 i -> Nat -- g12 (foo12 n) = n data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A infixr 50 _::_ -- butlast function good1 : {A : Set} -> List A -> A good1 (a :: []) = a good1 (a :: b :: bs) = good1 (b :: bs) infixl 10 _⊕_ postulate _⊕_ : {A : Set} -> A -> A -> A -- non-deterministic choice -- a funny formulation of insert -- insert (a :: l) inserts a into l insert : {A : Set} -> List A -> List A insert [] = [] insert (a :: []) = a :: [] insert (a :: b :: bs) = a :: b :: bs ⊕ -- case a <= b b :: insert (a :: bs) -- case a > b -- list flattening flat : {A : Set} -> List (List A) -> List A flat [] = [] flat ([] :: ll) = flat ll flat ((x :: l) :: ll) = x :: flat (l :: ll) -- leaf-labelled trees data Tree (A : Set) : Set where leaf : A -> Tree A node : Tree A -> Tree A -> Tree A -- flattening (does not termination check) tflat : {A : Set} -> Tree A -> List A tflat (leaf a) = a :: [] tflat (node (leaf a) r) = a :: tflat r tflat (node (node l1 l2) r) = tflat (node l1 (node l2 r)) -- Maximum of 3 numbers -- mixing tupling and swapping: does not work with structured orders max3' : Nat × Nat -> Nat -> Nat max3' (zero , zero) z = z max3' (zero , y) zero = y max3' (x , zero) zero = x max3' (succ x , succ y) zero = succ (max3' (x , y) zero) max3' (succ x , zero) (succ z) = succ (max3' (x , z) zero) max3' (zero , succ y) (succ z) = succ (max3' (y , z) zero) max3' (succ x , succ y) (succ z) = succ (max3' (z , x) y)
21.676012
77
0.545559
1c2c9b38327b3d01409bf7985ebcf9324ad85509
1,071
agda
Agda
test/Succeed/Issue1551.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/Succeed/Issue1551.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue1551.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- Andreas, 2015-06-11 {-# OPTIONS --copatterns #-} open import Common.Size module _ {C : Set} {R : C → Set} where mutual record IO (i : Size) (A : Set) : Set where coinductive constructor delay field force : {j : Size< i} → IO' j A data IO' (i : Size) (A : Set) : Set where act : (c : C) (f : R c → IO i A) → IO' i A return : (a : A) → IO' i A open IO module Works where _>>=_ : ∀{i A B} (m : IO i A) (k : A → IO i B) → IO i B force (m >>= k) with force m force (m >>= k) {j} | act c f = act c λ x → f x >>= k force (m >>= k) {j} | return a = force (k a) _>>=_ : ∀{i A B} (m : IO i A) (k : A → IO i B) → IO i B force (m >>= k) with force m force (m >>= k) | act c f = act c λ x → f x >>= k force (m >>= k) | return a = force (k a) -- Error WAS: -- Too few arguments given in with-clause -- when checking that the clause -- force (m >>= k) with force m -- force (m >>= k) | do c f = do c (λ x → f x >>= k) -- force (m >>= k) | return a = force (k a) -- has type {i : Size} {A B : Set} → IO i A → (A → IO i B) → IO i B
26.121951
67
0.500467
58593bb8c7bd3e16b24beea37c1141f1d01ce218
6,882
agda
Agda
Definition/Typed/Consequences/Inversion.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2018-06-21T08:39:01.000Z
2022-01-17T16:13:53.000Z
Definition/Typed/Consequences/Inversion.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
null
null
null
Definition/Typed/Consequences/Inversion.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2022-01-26T14:55:51.000Z
2022-02-15T19:42:19.000Z
{-# OPTIONS --safe #-} module Definition.Typed.Consequences.Inversion where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.Consequences.Syntactic open import Definition.Typed.Consequences.Substitution open import Tools.Product import Tools.PropositionalEquality as PE -- Inversion of Universes inversion-U : ∀ {Γ C rU lU r} → Γ ⊢ Univ rU lU ∷ C ^ r → Γ ⊢ C ≡ U ¹ ^ [ ! , next ¹ ] × r PE.≡ [ ! , next ¹ ] × lU PE.≡ ⁰ inversion-U (univ 0<1 x) = refl (Ugenⱼ x) , PE.refl , PE.refl inversion-U (conv x x₁) with inversion-U x ... | [C≡U] , PE.refl , PE.refl = trans (sym x₁) [C≡U] , PE.refl , PE.refl -- Inversion of natural number type. inversion-ℕ : ∀ {Γ C r} → Γ ⊢ ℕ ∷ C ^ r → Γ ⊢ C ≡ U ⁰ ^ r × r PE.≡ [ ! , next ⁰ ] inversion-ℕ (ℕⱼ x) = refl (Ugenⱼ x) , PE.refl inversion-ℕ (conv x x₁) with inversion-ℕ x ... | [C≡U] , PE.refl = trans (sym x₁) [C≡U] , PE.refl -- Inversion of Π-types. inversion-Π : ∀ {F rF G r Γ C lF lG lΠ} → Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° lΠ ∷ C ^ r → ∃ λ rG → lF ≤ lΠ × lG ≤ lΠ × Γ ⊢ F ∷ Univ rF lF ^ [ ! , next lF ] × Γ ∙ F ^ [ rF , ι lF ] ⊢ G ∷ Univ rG lG ^ [ ! , next lG ] × Γ ⊢ C ≡ Univ rG lΠ ^ [ ! , next lΠ ] × r PE.≡ [ ! , next lΠ ] inversion-Π (Πⱼ_▹_▹_▹_ {rF = rF} {r = rG} l< l<' x x₁) = rG , l< , l<' , x , x₁ , refl (Ugenⱼ (wfTerm x)) , PE.refl inversion-Π (conv x x₁) = let rG , l< , l<' , a , b , c , r≡! = inversion-Π x in rG , l< , l<' , a , b , trans (sym (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ rx) r≡! x₁)) c , r≡! -- Inversion of ∃-types. inversion-∃ : ∀ {F G Γ C r} → Γ ⊢ ∃ F ▹ G ∷ C ^ r → ∃ λ l∃ → Γ ⊢ F ∷ Univ % l∃ ^ [ ! , next l∃ ] × Γ ∙ F ^ [ % , ι l∃ ] ⊢ G ∷ Univ % l∃ ^ [ ! , next l∃ ] × Γ ⊢ C ≡ Univ % l∃ ^ [ ! , next l∃ ] × r PE.≡ [ ! , next l∃ ] inversion-∃ (∃ⱼ_▹_ {l = l∃} x x₁) = l∃ , x , x₁ , refl (Ugenⱼ (wfTerm x)) , PE.refl inversion-∃ (conv x x₁) = let l∃ , a , b , c , r≡! = inversion-∃ x in l∃ , a , b , trans (sym (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ rx) r≡! x₁)) c , r≡! inversion-Empty : ∀ {Γ C r l} → Γ ⊢ Empty l ∷ C ^ r → Γ ⊢ C ≡ SProp l ^ r × r PE.≡ [ ! , next l ] inversion-Empty (Emptyⱼ x) = refl (Ugenⱼ x) , PE.refl inversion-Empty (conv x x₁) = let C≡SProp , r = inversion-Empty x in trans (sym x₁) C≡SProp , r -- Inversion of zero. inversion-zero : ∀ {Γ C r} → Γ ⊢ zero ∷ C ^ r → Γ ⊢ C ≡ ℕ ^ [ ! , ι ⁰ ] × r PE.≡ [ ! , ι ⁰ ] inversion-zero (zeroⱼ x) = univ (refl (ℕⱼ x)) , PE.refl inversion-zero (conv x x₁) with inversion-zero x ... | [C≡ℕ] , PE.refl = trans (sym x₁) [C≡ℕ] , PE.refl -- Inversion of successor. inversion-suc : ∀ {Γ t C r} → Γ ⊢ suc t ∷ C ^ r → Γ ⊢ t ∷ ℕ ^ [ ! , ι ⁰ ] × Γ ⊢ C ≡ ℕ ^ [ ! , ι ⁰ ] × r PE.≡ [ ! , ι ⁰ ] inversion-suc (sucⱼ x) = x , refl (univ (ℕⱼ (wfTerm x))) , PE.refl inversion-suc (conv x x₁) with inversion-suc x ... | a , b , PE.refl = a , trans (sym x₁) b , PE.refl -- Inversion of natural recursion. inversion-natrec : ∀ {Γ c g n A C rlC lC} → Γ ⊢ natrec lC C c g n ∷ A ^ rlC → ∃ λ rC → (Γ ∙ ℕ ^ [ ! , ι ⁰ ]) ⊢ C ^ [ rC , ι lC ] × Γ ⊢ c ∷ C [ zero ] ^ [ rC , ι lC ] × Γ ⊢ g ∷ Π ℕ ^ ! ° ⁰ ▹ (C ^ rC ° lC ▹▹ C [ suc (var 0) ]↑ ° lC ° lC) ° lC ° lC ^ [ rC , ι lC ] × Γ ⊢ n ∷ ℕ ^ [ ! , ι ⁰ ] × Γ ⊢ A ≡ C [ n ] ^ [ rC , ι lC ] × rlC PE.≡ [ rC , ι lC ] inversion-natrec (natrecⱼ x d d₁ n) = _ , x , d , d₁ , n , refl (substType x n) , PE.refl inversion-natrec (conv d x) = let a' , a , b , c , d , e , e' = inversion-natrec d in a' , a , b , c , d , trans (sym (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ rx) e' x)) e , e' inversion-Emptyrec : ∀ {Γ e A C rlC lEmpty lC} → Γ ⊢ Emptyrec lC lEmpty C e ∷ A ^ rlC → ∃ λ rC → Γ ⊢ C ^ [ rC , ι lC ] × Γ ⊢ e ∷ Empty lEmpty ^ [ % , ι lEmpty ] × Γ ⊢ A ≡ C ^ [ rC , ι lC ] × rlC PE.≡ [ rC , ι lC ] inversion-Emptyrec (Emptyrecⱼ [C] [e]) = _ , [C] , [e] , refl [C] , PE.refl inversion-Emptyrec (conv d x) = let r , a , b , c , e = inversion-Emptyrec d in r , a , b , trans (sym (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ rx) e x)) c , e -- Inversion of application. inversion-app : ∀ {Γ f a A r lΠ} → Γ ⊢ (f ∘ a ^ lΠ) ∷ A ^ r → ∃₂ λ F rF → ∃₂ λ lF G → ∃₂ λ lG rG → Γ ⊢ f ∷ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ rG , ι lΠ ] × Γ ⊢ a ∷ F ^ [ rF , ι lF ] × Γ ⊢ A ≡ G [ a ] ^ [ rG , ι lG ] × r PE.≡ [ rG , ι lG ] inversion-app (d ∘ⱼ d₁) = _ , _ , _ , _ , _ , _ , d , d₁ , refl (substTypeΠ (syntacticTerm d) d₁) , PE.refl inversion-app (conv d x) = let a , b , c , d , e , f , g , h , i , j = inversion-app d in a , b , c , d , e , f , g , h , trans (sym (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ rx) j x)) i , j -- Inversion of lambda. inversion-lam : ∀ {t F A r lΠ Γ} → Γ ⊢ lam F ▹ t ^ lΠ ∷ A ^ r → ∃₂ λ rF lF → ∃₂ λ G rG → ∃ λ lG → Γ ⊢ F ^ [ rF , ι lF ] × Γ ∙ F ^ [ rF , ι lF ] ⊢ t ∷ G ^ [ rG , ι lG ] × Γ ⊢ A ≡ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ rG , ι lΠ ] × r PE.≡ [ rG , ι lΠ ] inversion-lam (lamⱼ l< l<' x x₁) = _ , _ , _ , _ , _ , x , x₁ , refl (univ (Πⱼ l< ▹ l<' ▹ (un-univ x) ▹ un-univ (syntacticTerm x₁))) , PE.refl inversion-lam (conv x x₁) = let a , b , c , d , e , f , g , h , i = inversion-lam x in a , b , c , d , e , f , g , trans (sym (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ rx) i x₁)) h , i -- Inversion of Id-types. inversion-Id : ∀ {A t u C r Γ} → Γ ⊢ Id A t u ∷ C ^ r → ∃ λ l → Γ ⊢ A ∷ U l ^ [ ! , next l ] × Γ ⊢ t ∷ A ^ [ ! , ι l ] × Γ ⊢ u ∷ A ^ [ ! , ι l ] × Γ ⊢ C ≡ SProp l ^ [ ! , next l ] × r PE.≡ [ ! , next l ] inversion-Id (Idⱼ {l = l} A t u) = l , A , t , u , refl (Ugenⱼ (wfTerm A)) , PE.refl inversion-Id (conv x x₁) = let l , a , b , c , d , r≡! = inversion-Id x in l , a , b , c , trans (sym (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ rx) r≡! x₁)) d , r≡! -- Inversion of cast-types. inversion-cast : ∀ {A B e t l C r Γ} → Γ ⊢ cast l A B e t ∷ C ^ r → ∃ λ rA → Γ ⊢ A ∷ Univ rA l ^ [ ! , next ⁰ ] × Γ ⊢ B ∷ Univ rA l ^ [ ! , next ⁰ ] × Γ ⊢ e ∷ Id (Univ rA l) A B ^ [ % , next ⁰ ] × Γ ⊢ t ∷ A ^ [ rA , ι ⁰ ] × Γ ⊢ C ≡ B ^ [ rA , ι ⁰ ] × r PE.≡ [ rA , ι ⁰ ] × l PE.≡ ⁰ inversion-cast (castⱼ X X₁ X₂ X₃) = _ , X , X₁ , X₂ , X₃ , refl (univ X₁) , PE.refl , PE.refl inversion-cast (conv x x₁) = let r , a , b , c , d , e , r≡! , el = inversion-cast x in r , a , b , c , d , trans (sym (PE.subst (λ rx → _ ⊢ _ ≡ _ ^ rx) r≡! x₁)) e , r≡! , el
46.816327
121
0.439117
581307995d4d9804de484679a277db7a1105c718
240
agda
Agda
src/Calf/Types/Bool.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
29
2021-07-14T03:18:28.000Z
2022-03-22T20:35:11.000Z
src/Calf/Types/Bool.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
null
null
null
src/Calf/Types/Bool.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
2
2021-10-06T10:28:24.000Z
2022-01-29T08:12:01.000Z
{-# OPTIONS --prop --without-K --rewriting #-} module Calf.Types.Bool where open import Calf.Prelude open import Calf.Metalanguage open import Data.Bool public using (Bool; true; false; if_then_else_) bool : tp pos bool = U (meta Bool)
20
69
0.733333
1a41eb2d22eab4873c1c8d6605c0fb6a167cf87e
175
agda
Agda
test/Compiler/with-stdlib/HelloWorldPrim.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Compiler/with-stdlib/HelloWorldPrim.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Compiler/with-stdlib/HelloWorldPrim.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --guardedness #-} module HelloWorldPrim where open import IO.Primitive.Infinite open import Codata.Musical.Costring main = putStrLn (toCostring "Hello World!")
19.444444
43
0.771429
59a2f242b5fcfebae54c0ef110956b345a51c167
2,431
agda
Agda
Cubical/Data/Vec/OperationsNat.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Data/Vec/OperationsNat.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Data/Vec/OperationsNat.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Data.Vec.OperationsNat where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat renaming(_+_ to _+n_; _·_ to _·n_) open import Cubical.Data.Vec.Base open import Cubical.Data.Sigma private variable ℓ : Level _+n-vec_ : {m : ℕ} → Vec ℕ m → Vec ℕ m → Vec ℕ m _+n-vec_ {.zero} [] [] = [] _+n-vec_ {.(suc _)} (k ∷ v) (l ∷ v') = (k +n l) ∷ (v +n-vec v') +n-vec-lid : {m : ℕ} → (v : Vec ℕ m) → replicate 0 +n-vec v ≡ v +n-vec-lid {.zero} [] = refl +n-vec-lid {.(suc _)} (k ∷ v) = cong (_∷_ k) (+n-vec-lid v) +n-vec-rid : {m : ℕ} → (v : Vec ℕ m) → v +n-vec replicate 0 ≡ v +n-vec-rid {.zero} [] = refl +n-vec-rid {.(suc _)} (k ∷ v) = cong₂ _∷_ (+-zero k) (+n-vec-rid v) +n-vec-assoc : {m : ℕ} → (v v' v'' : Vec ℕ m) → v +n-vec (v' +n-vec v'') ≡ (v +n-vec v') +n-vec v'' +n-vec-assoc [] [] [] = refl +n-vec-assoc (k ∷ v) (l ∷ v') (p ∷ v'') = cong₂ _∷_ (+-assoc k l p) (+n-vec-assoc v v' v'') +n-vec-comm : {m : ℕ} → (v v' : Vec ℕ m) → v +n-vec v' ≡ v' +n-vec v +n-vec-comm {.zero} [] [] = refl +n-vec-comm {.(suc _)} (k ∷ v) (l ∷ v') = cong₂ _∷_ (+-comm k l) (+n-vec-comm v v') sep-vec : (k l : ℕ) → Vec ℕ (k +n l) → (Vec ℕ k) × (Vec ℕ l ) sep-vec zero l v = [] , v sep-vec (suc k) l (x ∷ v) = (x ∷ fst (sep-vec k l v)) , (snd (sep-vec k l v)) sep-vec-fst : (k l : ℕ) → (v : Vec ℕ k) → (v' : Vec ℕ l) → fst (sep-vec k l (v ++ v')) ≡ v sep-vec-fst zero l [] v' = refl sep-vec-fst (suc k) l (x ∷ v) v' = cong (λ X → x ∷ X) (sep-vec-fst k l v v') sep-vec-snd : (k l : ℕ) → (v : Vec ℕ k) → (v' : Vec ℕ l) → snd (sep-vec k l (v ++ v')) ≡ v' sep-vec-snd zero l [] v' = refl sep-vec-snd (suc k) l (x ∷ v) v' = sep-vec-snd k l v v' sep-vec-id : (k l : ℕ) → (v : Vec ℕ (k +n l)) → fst (sep-vec k l v) ++ snd (sep-vec k l v) ≡ v sep-vec-id zero l v = refl sep-vec-id (suc k) l (x ∷ v) = cong (λ X → x ∷ X) (sep-vec-id k l v) rep-concat : (k l : ℕ) → {B : Type ℓ} → (b : B) → replicate {_} {k} {B} b ++ replicate {_} {l} {B} b ≡ replicate {_} {k +n l} {B} b rep-concat zero l b = refl rep-concat (suc k) l b = cong (λ X → b ∷ X) (rep-concat k l b) +n-vec-concat : (k l : ℕ) → (v w : Vec ℕ k) → (v' w' : Vec ℕ l) → (v +n-vec w) ++ (v' +n-vec w') ≡ (v ++ v') +n-vec (w ++ w') +n-vec-concat zero l [] [] v' w' = refl +n-vec-concat (suc k) l (x ∷ v) (y ∷ w) v' w' = cong (λ X → x +n y ∷ X) (+n-vec-concat k l v w v' w')
41.913793
101
0.496503
3951b75a932227d7c1204412404f7cec8e983689
14,055
agda
Agda
core/lib/PathOver.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
core/lib/PathOver.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
core/lib/PathOver.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Base open import lib.PathFunctor open import lib.PathGroupoid open import lib.Equivalence {- Structural lemmas about paths over paths The lemmas here have the form [↓-something-in] : introduction rule for the something [↓-something-out] : elimination rule for the something [↓-something-β] : β-reduction rule for the something [↓-something-η] : η-reduction rule for the something The possible somethings are: [cst] : constant fibration [cst2] : fibration constant in the second argument [cst2×] : fibration constant and nondependent in the second argument [ap] : the path below is of the form [ap f p] [fst×] : the fibration is [fst] (nondependent product) [snd×] : the fibration is [snd] (nondependent product) The rule of prime: The above lemmas should choose between [_∙_] and [_∙'_] in a way that, if the underlying path is [idp], then the entire lemma reduces to an identity function. Otherwise, the lemma would have the suffix [in'] or [out'], meaning that all the choices of [_∙_] or [_∙'_] are exactly the opposite ones. You can also go back and forth between dependent paths and homogeneous paths with a transport on one side with the functions [to-transp], [from-transp], [to-transp-β] [to-transp!], [from-transp!], [to-transp!-β] More lemmas about paths over paths are present in the lib.types.* modules (depending on the type constructor of the fibration) -} module lib.PathOver where {- Dependent paths in a constant fibration -} module _ {i j} {A : Type i} {B : Type j} where ↓-cst-in : {x y : A} {p : x == y} {u v : B} → u == v → u == v [ (λ _ → B) ↓ p ] ↓-cst-in {p = idp} q = q ↓-cst-out : {x y : A} {p : x == y} {u v : B} → u == v [ (λ _ → B) ↓ p ] → u == v ↓-cst-out {p = idp} q = q ↓-cst-β : {x y : A} (p : x == y) {u v : B} (q : u == v) → (↓-cst-out (↓-cst-in {p = p} q) == q) ↓-cst-β idp q = idp {- Interaction of [↓-cst-in] with [_∙_] -} ↓-cst-in-∙ : {x y z : A} (p : x == y) (q : y == z) {u v w : B} (p' : u == v) (q' : v == w) → ↓-cst-in {p = p ∙ q} (p' ∙ q') == ↓-cst-in {p = p} p' ∙ᵈ ↓-cst-in {p = q} q' ↓-cst-in-∙ idp idp p' q' = idp {- Interaction of [↓-cst-in] with [_∙'_] -} ↓-cst-in-∙' : {x y z : A} (p : x == y) (q : y == z) {u v w : B} (p' : u == v) (q' : v == w) → ↓-cst-in {p = p ∙' q} (p' ∙' q') == ↓-cst-in {p = p} p' ∙'ᵈ ↓-cst-in {p = q} q' ↓-cst-in-∙' idp idp p' q' = idp {- Introduction of an equality between [↓-cst-in]s (used to deduce the recursor from the eliminator in HIT with 2-paths) -} ↓-cst-in2 : {a a' : A} {b b' : B} {p₀ p₁ : a == a'} {q₀ q₁ : b == b'} {q : p₀ == p₁} → q₀ == q₁ → ↓-cst-in {p = p₀} q₀ == ↓-cst-in {p = p₁} q₁ [ (λ p → b == b' [ (λ _ → B) ↓ p ]) ↓ q ] ↓-cst-in2 {p₀ = idp} {p₁ = .idp} {q = idp} k = k ↓-cst-out2 : {a a' : A} {b b' : B} {p₀ p₁ : a == a'} {q₀ : b == b' [ (λ _ → B) ↓ p₀ ]} {q₁ : b == b' [ (λ _ → B) ↓ p₁ ]} {q : p₀ == p₁} → (q₀ == q₁ [ (λ p → b == b' [ (λ _ → B) ↓ p ]) ↓ q ] ) → ↓-cst-out q₀ == ↓-cst-out q₁ ↓-cst-out2 {p₀ = idp} {p₁ = .idp} {q = idp} k = k ↓-cst-in2-idp : {a a' : A} {b b' : B} (p : a == a') (q : b == b') → ↓-cst-in2 {q = idp {a = p}} (idp {a = q}) == idp {a = ↓-cst-in {p = p} q} ↓-cst-in2-idp idp q = idp ↓-cst-in2-∙ : {a a' : A} {b b' : B} {p₀ p₁ p₂ : a == a'} {q₀ q₁ q₂ : b == b'} {p₀₁ : p₀ == p₁} {p₁₂ : p₁ == p₂} → (q₀₁ : q₀ == q₁) (q₁₂ : q₁ == q₂) → ↓-cst-in2 {q = p₀₁ ∙ p₁₂} (q₀₁ ∙ q₁₂) == ↓-cst-in2 {q = p₀₁} q₀₁ ∙ᵈ ↓-cst-in2 {q = p₁₂} q₁₂ ↓-cst-in2-∙ {p₀ = idp} {p₁ = .idp} {p₂ = .idp} {q₀} {q₁} {q₂} {idp} {idp} q₀₁ q₀₂ = idp ↓-cst-in-assoc : {a a' a'' a''' : A} {p₀ : a == a'} {p₁ : a' == a''} {p₂ : a'' == a'''} {b b' b'' b''' : B} (q₀ : b == b') (q₁ : b' == b'') (q₂ : b'' == b''') → ↓-cst-in2 {q = ∙-assoc p₀ p₁ p₂} (∙-assoc q₀ q₁ q₂) ▹ (↓-cst-in-∙ p₀ (p₁ ∙ p₂) q₀ (q₁ ∙ q₂) ∙ (↓-cst-in {p = p₀} q₀ ∙ᵈₗ ↓-cst-in-∙ p₁ p₂ q₁ q₂)) == ↓-cst-in-∙ (p₀ ∙ p₁) p₂ (q₀ ∙ q₁) q₂ ◃ (↓-cst-in-∙ p₀ p₁ q₀ q₁ ∙ᵈᵣ ↓-cst-in {p = p₂} q₂) ◃ ∙ᵈ-assoc (↓-cst-in {p = p₀} q₀) (↓-cst-in {p = p₁} q₁) (↓-cst-in {p = p₂} q₂) ↓-cst-in-assoc {p₀ = idp} {p₁ = idp} {p₂ = idp} q₀ q₁ q₂ = idp ↓-cst-in2-whisker-right : {a a' a'' : A} {b b' b'' : B} {p₀ p₁ : a == a'} {p' : a' == a''} {q₀ q₁ : b == b'} {q' : b' == b''} {p₀₁ : p₀ == p₁} → (q₀₁ : q₀ == q₁) → ↓-cst-in2 {q = ap (λ r → r ∙ p') p₀₁} (ap (λ r → r ∙ q') q₀₁) ▹ ↓-cst-in-∙ p₁ p' q₁ q' == ↓-cst-in-∙ p₀ p' q₀ q' ◃ (↓-cst-in2 {q = p₀₁} q₀₁ ∙ᵈᵣ ↓-cst-in {p = p'} q') ↓-cst-in2-whisker-right {p₀ = idp} {p₁ = .idp} {p' = idp} {p₀₁ = idp} idp = idp ↓-cst-in2-whisker-left : {a a' a'' : A} {b b' b'' : B} {p : a == a'} {p₀' p₁' : a' == a''} {q : b == b'} {q₀' q₁' : b' == b''} {p₀₁' : p₀' == p₁'} → (q₀₁' : q₀' == q₁') → ↓-cst-in2 {q = ap (λ r → p ∙ r) p₀₁'} (ap (λ r → q ∙ r) q₀₁') ▹ ↓-cst-in-∙ p p₁' q q₁' == ↓-cst-in-∙ p p₀' q q₀' ◃ (↓-cst-in {p = p} q ∙ᵈₗ ↓-cst-in2 {q = p₀₁'} q₀₁') ↓-cst-in2-whisker-left {p = idp} {p₀' = idp} {p₁' = .idp} {p₀₁' = idp} idp = idp -- Dependent paths in a fibration constant in the second argument module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} where ↓-cst2-in : {x y : A} (p : x == y) {b : C x} {c : C y} (q : b == c [ C ↓ p ]) {u : B x} {v : B y} → u == v [ B ↓ p ] → u == v [ (λ xy → B (fst xy)) ↓ (pair= p q) ] ↓-cst2-in idp idp r = r ↓-cst2-out : {x y : A} (p : x == y) {b : C x} {c : C y} (q : b == c [ C ↓ p ]) {u : B x} {v : B y} → u == v [ (λ xy → B (fst xy)) ↓ (pair= p q) ] → u == v [ B ↓ p ] ↓-cst2-out idp idp r = r -- Dependent paths in a fibration constant and non dependent in the -- second argument module _ {i j k} {A : Type i} {B : A → Type j} {C : Type k} where ↓-cst2×-in : {x y : A} (p : x == y) {b c : C} (q : b == c) {u : B x} {v : B y} → u == v [ B ↓ p ] → u == v [ (λ xy → B (fst xy)) ↓ (pair×= p q) ] ↓-cst2×-in idp idp r = r ↓-cst2×-out : {x y : A} (p : x == y) {b c : C} (q : b == c) {u : B x} {v : B y} → u == v [ (λ xy → B (fst xy)) ↓ (pair×= p q) ] → u == v [ B ↓ p ] ↓-cst2×-out idp idp r = r -- Dependent paths in the universal fibration over the universe ↓-idf-out : ∀ {i} {A B : Type i} (p : A == B) {u : A} {v : B} → u == v [ (λ X → X) ↓ p ] → coe p u == v ↓-idf-out idp = idf _ ↓-idf-in : ∀ {i} {A B : Type i} (p : A == B) {u : A} {v : B} → coe p u == v → u == v [ (λ X → X) ↓ p ] ↓-idf-in idp = idf _ -- Dependent paths over [ap f p] module _ {i j k} {A : Type i} {B : Type j} (C : B → Type k) (f : A → B) where ↓-ap-in : {x y : A} {p : x == y} {u : C (f x)} {v : C (f y)} → u == v [ C ∘ f ↓ p ] → u == v [ C ↓ ap f p ] ↓-ap-in {p = idp} q = q ↓-ap-out : {x y : A} (p : x == y) {u : C (f x)} {v : C (f y)} → u == v [ C ↓ ap f p ] → u == v [ C ∘ f ↓ p ] ↓-ap-out idp q = q ↓-ap-in-β : {x y : A} {p : x == y} {u : C (f x)} {v : C (f y)} → ∀ q → ↓-ap-in {u = u} {v = v} (↓-ap-out p q) == q ↓-ap-in-β {p = idp} q = idp ↓-ap-in-η : {x y : A} {p : x == y} {u : C (f x)} {v : C (f y)} → ∀ q → ↓-ap-out p (↓-ap-in {u = u} {v = v} q) == q ↓-ap-in-η {p = idp} q = idp ↓-ap-equiv : ∀ {x y : A} {p : x == y} {u : C (f x)} {v : C (f y)} → (u == v [ C ∘ f ↓ p ]) ≃ (u == v [ C ↓ ap f p ]) ↓-ap-equiv {p = p} = equiv ↓-ap-in (↓-ap-out p) ↓-ap-in-β ↓-ap-in-η ↓-cst-in2-ap : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} {a a' : A} {b b' : B} {c c' : C} (f : C → a == a') (g : C → b == b') (r : c == c') → ↓-cst-in2 {q = ap f r} (ap g r) == ↓-ap-in (λ p → b == b' [ (λ _ → B) ↓ p ]) f (apd (λ c → ↓-cst-in {p = f c} (g c)) r) ↓-cst-in2-ap {c = c} {c' = .c} f g idp = ↓-cst-in2-idp (f c) (g c) -- Dependent paths over [ap2 f p q] module _ {i j k l} {A : Type i} {B : Type j} {C : Type k} (D : C → Type l) (f : A → B → C) where ↓-ap2-in : {x y : A} {p : x == y} {w z : B} {q : w == z} {u : D (f x w)} {v : D (f y z)} → u == v [ D ∘ uncurry f ↓ pair×= p q ] → u == v [ D ↓ ap2 f p q ] ↓-ap2-in {p = idp} {q = idp} α = α ↓-ap2-out : {x y : A} {p : x == y} {w z : B} {q : w == z} {u : D (f x w)} {v : D (f y z)} → u == v [ D ↓ ap2 f p q ] → u == v [ D ∘ uncurry f ↓ pair×= p q ] ↓-ap2-out {p = idp} {q = idp} α = α apd↓ : ∀ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k} (f : {a : A} (b : B a) → C a b) {x y : A} {p : x == y} {u : B x} {v : B y} (q : u == v [ B ↓ p ]) → f u == f v [ (λ xy → C (fst xy) (snd xy)) ↓ pair= p q ] apd↓ f {p = idp} idp = idp apd↓=apd : ∀ {i j} {A : Type i} {B : A → Type j} (f : (a : A) → B a) {x y : A} (p : x == y) → (apd f p == ↓-ap-out _ _ p (apd↓ {A = Unit} f {p = idp} p)) apd↓=apd f idp = idp -- Paths in the fibrations [fst] and [snd] module _ {i j} where ↓-fst×-out : {A A' : Type i} {B B' : Type j} (p : A == A') (q : B == B') {u : A} {v : A'} → u == v [ fst ↓ pair×= p q ] → u == v [ (λ X → X) ↓ p ] ↓-fst×-out idp idp h = h ↓-snd×-in : {A A' : Type i} {B B' : Type j} (p : A == A') (q : B == B') {u : B} {v : B'} → u == v [ (λ X → X) ↓ q ] → u == v [ snd ↓ pair×= p q ] ↓-snd×-in idp idp h = h -- Mediating dependent paths with the transport version module _ {i j} {A : Type i} where from-transp : (B : A → Type j) {a a' : A} (p : a == a') {u : B a} {v : B a'} → (transport B p u == v) → (u == v [ B ↓ p ]) from-transp B idp idp = idp to-transp : {B : A → Type j} {a a' : A} {p : a == a'} {u : B a} {v : B a'} → (u == v [ B ↓ p ]) → (transport B p u == v) to-transp {p = idp} idp = idp to-transp-β : (B : A → Type j) {a a' : A} (p : a == a') {u : B a} {v : B a'} (q : transport B p u == v) → to-transp (from-transp B p q) == q to-transp-β B idp idp = idp to-transp-η : {B : A → Type j} {a a' : A} {p : a == a'} {u : B a} {v : B a'} (q : u == v [ B ↓ p ]) → from-transp B p (to-transp q) == q to-transp-η {p = idp} idp = idp to-transp-equiv : (B : A → Type j) {a a' : A} (p : a == a') {u : B a} {v : B a'} → (u == v [ B ↓ p ]) ≃ (transport B p u == v) to-transp-equiv B p = equiv to-transp (from-transp B p) (to-transp-β B p) (to-transp-η) from-transp! : (B : A → Type j) {a a' : A} (p : a == a') {u : B a} {v : B a'} → (u == transport! B p v) → (u == v [ B ↓ p ]) from-transp! B idp idp = idp to-transp! : {B : A → Type j} {a a' : A} {p : a == a'} {u : B a} {v : B a'} → (u == v [ B ↓ p ]) → (u == transport! B p v) to-transp! {p = idp} idp = idp to-transp!-β : (B : A → Type j) {a a' : A} (p : a == a') {u : B a} {v : B a'} (q : u == transport! B p v) → to-transp! (from-transp! B p q) == q to-transp!-β B idp idp = idp to-transp!-η : {B : A → Type j} {a a' : A} {p : a == a'} {u : B a} {v : B a'} (q : u == v [ B ↓ p ]) → from-transp! B p (to-transp! q) == q to-transp!-η {p = idp} idp = idp to-transp!-equiv : (B : A → Type j) {a a' : A} (p : a == a') {u : B a} {v : B a'} → (u == v [ B ↓ p ]) ≃ (u == transport! B p v) to-transp!-equiv B p = equiv to-transp! (from-transp! B p) (to-transp!-β B p) (to-transp!-η) {- Various other lemmas -} module _ {i j} {A : Type i} {B : Type j} where {- Used for defining the recursor from the eliminator for 1-HIT -} apd=cst-in : ∀ {f : A → B} {a a' : A} {p : a == a'} {q : f a == f a'} → apd f p == ↓-cst-in q → ap f p == q apd=cst-in {p = idp} x = x ap=↓-cst-out-apd : ∀ (f : A → B) {a a' : A} (p : a == a') → ap f p == ↓-cst-out (apd f p) ap=↓-cst-out-apd f idp = idp ↓-apd-out : ∀ {i j k} {A : Type i} {B : A → Type j} (C : (a : A) → B a → Type k) {f : Π A B} {x y : A} {p : x == y} {q : f x == f y [ B ↓ p ]} (r : apd f p == q) {u : C x (f x)} {v : C y (f y)} → u == v [ uncurry C ↓ pair= p q ] → u == v [ (λ z → C z (f z)) ↓ p ] ↓-apd-out C {p = idp} idp idp = idp ↓-ap-out= : ∀ {i j k} {A : Type i} {B : Type j} (C : (b : B) → Type k) (f : A → B) {x y : A} (p : x == y) {q : f x == f y} (r : ap f p == q) {u : C (f x)} {v : C (f y)} → u == v [ C ↓ q ] → u == v [ (λ z → C (f z)) ↓ p ] ↓-ap-out= C f idp idp idp = idp -- No idea what that is to-transp-weird : ∀ {i j} {A : Type i} {B : A → Type j} {u v : A} {d : B u} {d' d'' : B v} {p : u == v} (q : d == d' [ B ↓ p ]) (r : transport B p d == d'') → (from-transp B p r ∙'ᵈ (! r ∙ to-transp q)) == q to-transp-weird {p = idp} idp idp = idp -- Something not really clear yet module _ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : A → C) (g : B → C) where ↓-swap : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'} (r : f a == g b') (s : f a' == g b) → (ap f p ∙' s == r [ (λ x → f a == g x) ↓ q ]) → (r == s ∙ ap g q [ (λ x → f x == g b') ↓ p ]) ↓-swap {p = idp} {q = idp} r s t = (! t) ∙ ∙'-unit-l s ∙ ! (∙-unit-r s) ↓-swap! : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'} (r : f a == g b') (s : f a' == g b) → (r == s ∙ ap g q [ (λ x → f x == g b') ↓ p ]) → (ap f p ∙' s == r [ (λ x → f a == g x) ↓ q ]) ↓-swap! {p = idp} {q = idp} r s t = ∙'-unit-l s ∙ ! (∙-unit-r s) ∙ (! t) ↓-swap-β : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'} (r : f a == g b') (s : f a' == g b) (t : ap f p ∙' s == r [ (λ x → f a == g x) ↓ q ]) → ↓-swap! r s (↓-swap r s t) == t ↓-swap-β {p = idp} {q = idp} r s t = coh (∙'-unit-l s) (∙-unit-r s) t where coh : ∀ {i} {X : Type i} {x y z t : X} (p : x == y) (q : z == y) (r : x == t) → p ∙ ! q ∙ ! (! r ∙ p ∙ ! q) == r coh idp idp idp = idp transp-↓ : ∀ {i j} {A : Type i} (P : A → Type j) {a₁ a₂ : A} (p : a₁ == a₂) (y : P a₂) → transport P (! p) y == y [ P ↓ p ] transp-↓ _ idp _ = idp transp-ap-↓ : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k) (h : A → B) {a₁ a₂ : A} (p : a₁ == a₂) (y : P (h a₂)) → transport P (! (ap h p)) y == y [ P ∘ h ↓ p ] transp-ap-↓ _ _ idp _ = idp
35.854592
97
0.421914
06383780fc7bb2802794d27643875873e98a68f1
196
agda
Agda
All.agda
msullivan/godels-t
7412725cf27873b2b23f7e411a236a97dd99ef91
[ "MIT" ]
4
2016-12-25T01:52:57.000Z
2021-03-22T00:28:03.000Z
All.agda
msullivan/godels-t
7412725cf27873b2b23f7e411a236a97dd99ef91
[ "MIT" ]
null
null
null
All.agda
msullivan/godels-t
7412725cf27873b2b23f7e411a236a97dd99ef91
[ "MIT" ]
3
2015-04-26T11:39:14.000Z
2021-05-04T22:37:18.000Z
module All where open import Prelude open import T open import SubstTheory open import DynTheory open import Progress open import HT open import Examples open import Eq open import DenotCommutes
16.333333
25
0.841837
06eb29eddfe7b84a17a8a610df83b4aa81f2f066
410
agda
Agda
benchmark/Syntacticosmos/Syntacticosmos.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
benchmark/Syntacticosmos/Syntacticosmos.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
benchmark/Syntacticosmos/Syntacticosmos.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Syntacticosmos (Gnd : Set)(U : Set)(El : U -> Set) where open import Basics open import Pr open import Nom import Kind open Kind Gnd U El public import Cxt open Cxt Kind public import Loc open Loc Kind public import Term open Term Gnd U El public import Shift open Shift Gnd U El public import Eta open Eta Gnd U El public import Inst open Inst Gnd U El public import Subst open Subst Gnd U El public
17.826087
63
0.770732
2e00de36f1d93b8fb9376fef886c1ab206489fb9
5,481
agda
Agda
notes/FOT/FOTC/Program/GCD/Total/CommutativeI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/FOT/FOTC/Program/GCD/Total/CommutativeI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/FOT/FOTC/Program/GCD/Total/CommutativeI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- The gcd is commutative ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Program.GCD.Total.CommutativeI where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.Induction.NonAcc.LexicographicI open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.EliminationPropertiesI open import FOTC.Data.Nat.Inequalities.PropertiesI open import FOTC.Data.Nat.PropertiesI open import FOTC.Program.GCD.Total.ConversionRulesI open import FOTC.Program.GCD.Total.GCD ------------------------------------------------------------------------------ -- Informal proof: -- 1. gcd 0 n = n -- gcd def -- = gcd n 0 -- gcd def -- 2. gcd n 0 = n -- gcd def -- = gcd 0 n -- gcd def -- 3.1. Case: S m > S n -- gcd (S m) (S n) = gcd (S m - S n) (S n) -- gcd def -- = gcd (S n) (S m - S n) -- IH -- = gcd (S n) (S m) -- gcd def -- 3.2. Case: S m ≮ S n -- gcd (S m) (S n) = gcd (S m) (S n - S m) -- gcd def -- = gcd (S n - S m) (S m) -- IH -- = gcd (S n) (S m) -- gcd def ------------------------------------------------------------------------------ -- Commutativity property. Comm : D → D → Set Comm t t' = gcd t t' ≡ gcd t' t {-# ATP definition Comm #-} x>y→y≯x : ∀ {m n} → N m → N n → m > n → n ≯ m x>y→y≯x nzero Nn 0>n = ⊥-elim (0>x→⊥ Nn 0>n) {-# CATCHALL #-} x>y→y≯x Nm nzero _ = 0≯x Nm x>y→y≯x (nsucc {m} Nm) (nsucc {n} Nn) Sm>Sn = trans (lt-SS m n) (x>y→y≯x Nm Nn (trans (sym (lt-SS n m)) Sm>Sn)) postulate x≯Sy→Sy>x : ∀ {m n} → N m → N n → m ≯ succ₁ n → succ₁ n > m -- x≯Sy→Sy>x {n = n} nzero Nn _ = <-0S n -- x≯Sy→Sy>x {n = n} (nsucc {m} Nm) Nn h = {!!} ------------------------------------------------------------------------------ -- gcd 0 0 is commutative. gcd-00-comm : Comm zero zero gcd-00-comm = refl ------------------------------------------------------------------------------ -- gcd (succ₁ n) 0 is commutative. gcd-S0-comm : ∀ n → Comm (succ₁ n) zero gcd-S0-comm n = trans (gcd-S0 n) (sym (gcd-0S n)) ------------------------------------------------------------------------------ -- gcd (succ₁ m) (succ₁ n) when succ₁ m > succ₁ n is commutative. gcd-S>S-comm : ∀ {m n} → N m → N n → Comm (succ₁ m ∸ succ₁ n) (succ₁ n) → succ₁ m > succ₁ n → Comm (succ₁ m) (succ₁ n) gcd-S>S-comm {m} {n} Nm Nn ih Sm>Sn = gcd (succ₁ m) (succ₁ n) ≡⟨ gcd-S>S m n Sm>Sn ⟩ gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ≡⟨ ih ⟩ gcd (succ₁ n) (succ₁ m ∸ succ₁ n) ≡⟨ sym (gcd-S≯S n m (x>y→y≯x (nsucc Nm) (nsucc Nn) Sm>Sn)) ⟩ gcd (succ₁ n) (succ₁ m) ∎ ------------------------------------------------------------------------------ -- gcd (succ₁ m) (succ₁ n) when succ₁ m ≯ succ₁ n is commutative. gcd-S≯S-comm : ∀ {m n} → N m → N n → Comm (succ₁ m) (succ₁ n ∸ succ₁ m) → succ₁ m ≯ succ₁ n → Comm (succ₁ m) (succ₁ n) gcd-S≯S-comm {m} {n} Nm Nn ih Sm≯Sn = gcd (succ₁ m) (succ₁ n) ≡⟨ gcd-S≯S m n Sm≯Sn ⟩ gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ≡⟨ ih ⟩ gcd (succ₁ n ∸ succ₁ m) (succ₁ m) ≡⟨ sym (gcd-S>S n m (x≯Sy→Sy>x (nsucc Nm) Nn Sm≯Sn)) ⟩ gcd (succ₁ n) (succ₁ m) ∎ ------------------------------------------------------------------------------ -- gcd m n when m > n is commutative. gcd-x>y-comm : ∀ {m n} → N m → N n → (∀ {o p} → N o → N p → Lexi o p m n → Comm o p) → m > n → Comm m n gcd-x>y-comm nzero Nn _ 0>n = ⊥-elim (0>x→⊥ Nn 0>n) gcd-x>y-comm (nsucc {n} _) nzero _ _ = gcd-S0-comm n gcd-x>y-comm (nsucc {m} Nm) (nsucc {n} Nn) ah Sm>Sn = gcd-S>S-comm Nm Nn ih Sm>Sn where -- Inductive hypothesis. ih : Comm (succ₁ m ∸ succ₁ n) (succ₁ n) ih = ah {succ₁ m ∸ succ₁ n} {succ₁ n} (∸-N (nsucc Nm) (nsucc Nn)) (nsucc Nn) ([Sx∸Sy,Sy]<[Sx,Sy] Nm Nn) ------------------------------------------------------------------------------ -- gcd m n when m ≯ n is commutative. gcd-x≯y-comm : ∀ {m n} → N m → N n → (∀ {o p} → N o → N p → Lexi o p m n → Comm o p) → m ≯ n → Comm m n gcd-x≯y-comm nzero nzero _ _ = gcd-00-comm gcd-x≯y-comm nzero (nsucc {n} _) _ _ = sym (gcd-S0-comm n) gcd-x≯y-comm (nsucc _) nzero _ Sm≯0 = ⊥-elim (S≯0→⊥ Sm≯0) gcd-x≯y-comm (nsucc {m} Nm) (nsucc {n} Nn) ah Sm≯Sn = gcd-S≯S-comm Nm Nn ih Sm≯Sn where -- Inductive hypothesis. ih : Comm (succ₁ m) (succ₁ n ∸ succ₁ m) ih = ah {succ₁ m} {succ₁ n ∸ succ₁ m} (nsucc Nm) (∸-N (nsucc Nn) (nsucc Nm)) ([Sx,Sy∸Sx]<[Sx,Sy] Nm Nn) ------------------------------------------------------------------------------ -- gcd is commutative. gcd-comm : ∀ {m n} → N m → N n → Comm m n gcd-comm = Lexi-wfind A h where A : D → D → Set A i j = Comm i j h : ∀ {i j} → N i → N j → (∀ {k l} → N k → N l → Lexi k l i j → A k l) → A i j h Ni Nj ah = case (gcd-x>y-comm Ni Nj ah) (gcd-x≯y-comm Ni Nj ah) (x>y∨x≯y Ni Nj)
36.298013
81
0.424193
58f0198d7491192df17ede548b8169334569fd42
4,837
agda
Agda
Cubical/Homotopy/MayerVietorisCofiber.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Homotopy/MayerVietorisCofiber.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Homotopy/MayerVietorisCofiber.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{- Mayer-Vietoris cofiber sequence: Let X be a pointed type, and let a span B ←[f]- X -[g]→ C be given. Then the mapping cone of the canonical map (B ⋁ C) → B ⊔_X C is equivalent to Susp X. The sequence Susp X → (B ⋁ C) → B ⊔_X C therefore induces a long exact sequence in cohomology. Proof is adapted from Evan Cavallo's master's thesis. -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Homotopy.MayerVietorisCofiber where open import Cubical.Core.Everything open import Cubical.Foundations.Everything open import Cubical.Foundations.Pointed open import Cubical.Data.Unit open import Cubical.HITs.MappingCones open import Cubical.HITs.Pushout open import Cubical.HITs.Susp open import Cubical.HITs.Wedge module _ {ℓX ℓB ℓC} {X : Pointed ℓX} {B : Type ℓB} {C : Type ℓC} (f : X .fst → B) (g : X .fst → C) where private Y : Pointed _ Y = (B , f (X .snd)) Z : Pointed _ Z = (C , g (X .snd)) wedgeToPushout : Y ⋁ Z → Pushout f g wedgeToPushout (inl y) = inl y wedgeToPushout (inr z) = inr z wedgeToPushout (push _ i) = push (pt X) i pushoutToSusp : Pushout f g → Susp (X .fst) pushoutToSusp (inl y) = north pushoutToSusp (inr z) = south pushoutToSusp (push x i) = merid x i {- Coherence lemma: To construct a function f : (c : Cone wedgeToPushout) → D c, we can always adjust the definition of (f (spoke (inr z) i)) so that there is a canonical choice for (f (spoke (push tt j) i)) -} module Helper {ℓD} {D : Cone wedgeToPushout → Type ℓD} (inj* : ∀ w → D (inj w)) (hub* : D hub) (inl* : ∀ y → PathP (λ i → D (spoke (inl y) i)) hub* (inj* (inl y))) (inr* : ∀ z → PathP (λ i → D (spoke (inr z) i)) hub* (inj* (inr z))) where cap : (i j : I) → D (spoke (push tt j) i) cap i j = fill (λ i → D (spoke (push tt j) (~ i))) (λ i → λ { (j = i0) → inl* (Y .snd) (~ i) ; (j = i1) → inr* (Z .snd) (~ i) }) (inS (inj* (push (X .snd) j))) (~ i) cap0 : (j : I) → D hub cap0 = cap i0 face-i≡0 : (k j : I) → D hub face-i≡0 k j = hfill (λ j → λ { (k = i0) → cap0 j ; (k = i1) → hub* }) (inS hub*) j inrFiller : ∀ z → (k i : I) → D (spoke (inr z) i) inrFiller z k i = hfill (λ k → λ { (i = i0) → face-i≡0 k i1 ; (i = i1) → inj* (inr z) }) (inS (inr* z i)) k fun : ∀ c → D c fun (inj w) = inj* w fun hub = hub* fun (spoke (inl y) i) = inl* y i fun (spoke (inr z) i) = inrFiller z i1 i fun (spoke (push tt j) i) = hcomp (λ k → λ { (i = i0) → face-i≡0 k j ; (i = i1) → inj* (push (X .snd) j) ; (j = i0) → inl* (Y .snd) i }) (cap i j) equiv : Cone wedgeToPushout ≃ Susp (X .fst) equiv = isoToEquiv (iso fwd bwd fwdBwd bwdFwd) where fwd : Cone wedgeToPushout → Susp (X .fst) fwd (inj w) = pushoutToSusp w fwd hub = north fwd (spoke (inl y) i) = north fwd (spoke (inr z) i) = merid (X .snd) i fwd (spoke (push tt j) i) = merid (X .snd) (i ∧ j) bwd : Susp (X .fst) → Cone wedgeToPushout bwd north = hub bwd south = hub bwd (merid x i) = hcomp (λ k → λ { (i = i0) → spoke (inl (f x)) (~ k) ; (i = i1) → spoke (inr (g x)) (~ k) }) (inj (push x i)) bwdPushout : (w : Pushout f g) → bwd (pushoutToSusp w) ≡ inj w bwdPushout (inl y) = spoke (inl y) bwdPushout (inr z) = spoke (inr z) bwdPushout (push x i) k = hfill (λ k → λ { (i = i0) → spoke (inl (f x)) (~ k) ; (i = i1) → spoke (inr (g x)) (~ k) }) (inS (inj (push x i))) (~ k) bwdMeridPt : refl ≡ cong bwd (merid (X .snd)) bwdMeridPt j i = hcomp (λ k → λ { (i = i0) → spoke (inl (Y .snd)) (~ k) ; (i = i1) → spoke (inr (Z .snd)) (~ k) ; (j = i0) → spoke (push _ i) (~ k) }) (inj (push (X .snd) i)) bwdFwd : (c : Cone wedgeToPushout) → bwd (fwd c) ≡ c bwdFwd = Helper.fun bwdPushout refl (λ y i k → spoke (inl y) (i ∧ k)) (λ z i k → hcomp (λ l → λ { (i = i0) → hub ; (i = i1) → spoke (inr z) k ; (k = i0) → bwdMeridPt l i ; (k = i1) → spoke (inr z) i }) (spoke (inr z) (i ∧ k))) fwdBwd : (s : Susp (X .fst)) → fwd (bwd s) ≡ s fwdBwd north = refl fwdBwd south = merid (X .snd) fwdBwd (merid a i) j = fill (λ _ → Susp (X .fst)) (λ j → λ { (i = i0) → north ; (i = i1) → merid (X .snd) (~ j) }) (inS (merid a i)) (~ j)
27.482955
98
0.479636
414838d16aa68b2f56100aaacc56b62b5bba0a47
728
agda
Agda
SDG/Extra/OrderedAlgebra/Structures.agda
wrrnhttn/agda-sdg
6814e6f0baffff35efe14ef70d469343cd9b3ba0
[ "MIT" ]
1
2020-11-13T09:36:38.000Z
2020-11-13T09:36:38.000Z
SDG/Extra/OrderedAlgebra/Structures.agda
wrrnhttn/agda-sdg
6814e6f0baffff35efe14ef70d469343cd9b3ba0
[ "MIT" ]
1
2019-07-18T20:00:23.000Z
2019-09-18T15:47:49.000Z
SDG/Extra/OrderedAlgebra/Structures.agda
wrrnhttn/agda-sdg
6814e6f0baffff35efe14ef70d469343cd9b3ba0
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Level hiding (zero) open import Relation.Binary module SDG.Extra.OrderedAlgebra.Structures {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) where open import Algebra.Structures open import Algebra.FunctionProperties record IsOrderedCommutativeRing (_<_ : Rel A ℓ) (_+_ _*_ : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where field isCommutativeRing : IsCommutativeRing _≈_ _+_ _*_ -_ 0# 1# <-isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_ <-+ : ∀ (a b c) → a < b → (a + c) < (b + c) <-* : ∀ (a b) → 0# < a → 0# < b → 0# < (a * b) open IsCommutativeRing isCommutativeRing public --using (zero) open IsStrictTotalOrder <-isStrictTotalOrder public
28
82
0.625
4d8add19d23b1f81a9cd28abfcd29b93abca4eab
1,509
agda
Agda
agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-hc-slist2-base.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
36
2015-01-29T14:37:15.000Z
2021-07-30T06:55:03.000Z
agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-hc-slist2-base.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
null
null
null
agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-hc-slist2-base.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
8
2015-04-13T21:40:15.000Z
2021-09-21T15:58:10.000Z
{- https://mazzo.li/posts/AgdaSort.html 2013-04-01Agda by Example: Sorting -} module z05-01-hc-slist2-base where data List (X : Set) : Set where [] : List X _∷_ : X → List X → List X infixr 5 _∷_ foldr : ∀ {A} {B : Set} → (A → B → B) → B → List A → B foldr f b [] = b foldr f b (a ∷ as) = f a (foldr f b as) data Either (A : Set) (B : Set) : Set where left : A → Either A B right : B → Either A B [_,_] : ∀ {A B} {C : Set} → (A → C) → (B → C) → Either A B → C [ f , g ] (left x) = f x [ f , g ] (right x) = g x -- Unhabited type data Empty : Set where absurd : {X : Set} → Empty → X absurd () -- use Empty to define something close to negation in logic: -- e.g., terms of type ¬ (3 > 4) infix 3 ¬_ ¬_ : Set → Set ¬ X = X → Empty -- binary relation on a type X Rel : Set → Set₁ Rel X = X → X → Set -- decidable relations Decidable : ∀ {X} → Rel X → Set Decidable R = ∀ x y → Either (R x y) (¬ (R x y)) -- To sort a list, need two relations on elements of list: -- equality record Equivalence {X} (_≈_ : Rel X) : Set₁ where field refl : ∀ {x} → x ≈ x sym : ∀ {x y} → x ≈ y → y ≈ x trans : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z -- and ordering record TotalOrder {X} (_≈_ : Rel X) (_≤_ : Rel X) : Set₁ where field antisym : ∀ {x y} → x ≤ y → y ≤ x → x ≈ y trans : ∀ {x y z} → x ≤ y → y ≤ z → x ≤ z total : ∀ x y → Either (x ≤ y) (y ≤ x) reflexive : ∀ {x y} → x ≈ y → x ≤ y equivalence : Equivalence _≈_
24.33871
62
0.508284
22f39244a257302012a37762afefd41bf6a9de36
566
agda
Agda
Demos/Cantor.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
Demos/Cantor.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
Demos/Cantor.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --safe #-} module Demos.Cantor where open import Prelude open import Data.Bool.Properties using (false≢true; true≢false) Stream : Type a → Type a Stream A = ℕ → A _∈_ : ∀ {A : Type a} (x : A) → Stream A → Type a x ∈ xs = ∃ i × (xs i ≡ x) Countable : Type a → Type a Countable A = Σ[ xs ⦂ Stream A ] × (∀ x → x ∈ xs) x≢¬x : ∀ x → x ≢ not x x≢¬x false = false≢true x≢¬x true = true≢false cantor : ¬ (Countable (Stream Bool)) cantor (support , cover) = let p , ps = cover (λ i → not (support i i)) q = cong (_$ p) ps in x≢¬x _ q
21.769231
63
0.579505
2232fb32ae995a926610a7800fc2b33394e655ea
14,770
agda
Agda
OutsideIn/Expressions.agda
liamoc/outside-in
fc1fc1bba2af95806d9075296f9ed1074afa4c24
[ "BSD-3-Clause" ]
2
2015-09-14T05:22:15.000Z
2020-11-19T14:30:07.000Z
OutsideIn/Expressions.agda
liamoc/outside-in
fc1fc1bba2af95806d9075296f9ed1074afa4c24
[ "BSD-3-Clause" ]
null
null
null
OutsideIn/Expressions.agda
liamoc/outside-in
fc1fc1bba2af95806d9075296f9ed1074afa4c24
[ "BSD-3-Clause" ]
null
null
null
open import OutsideIn.Prelude open import OutsideIn.X module OutsideIn.Expressions(x : X) where import OutsideIn.TypeSchema as TS open TS(x) open X(x) {- SYNTAX -} data Name (n : Set) : NameType → Set where N : n → Name n Regular DC : ∀ {x} → dc x → Name n (Datacon x) mutual data Alternative (ev tv : Set) : Shape → Set where _→′_ : ∀ {n : ℕ}{r : Shape}→ Name ev (Datacon n) → Expression (ev ⨁ n) tv r → Alternative ev tv (Unary r) infixr 5 _∣_ data Alternatives (ev tv : Set) : Shape → Set where esac : Alternatives ev tv Nullary _∣_ : ∀ {r₁ r₂} → Alternative ev tv r₁ → Alternatives ev tv r₂ → Alternatives ev tv (Binary r₁ r₂) data Expression (ev tv : Set) : Shape → Set where Var : ∀ {x} → Name ev x → Expression ev tv Nullary λ′_ : ∀ {a} → Expression (Ⓢ ev) tv a → Expression ev tv (Unary a) _·_ : ∀ {a a′} → Expression ev tv a → Expression ev tv a′ → Expression ev tv (Binary a a′) let₁_in′_ : ∀ {a a′} → Expression ev tv a → Expression (Ⓢ ev) tv a′ → Expression ev tv (Binary a a′) let₂_∷_in′_ : ∀ {a a′} → Expression ev tv a → Type tv → Expression (Ⓢ ev) tv a′ → Expression ev tv (Binary a a′) let₃_·_∷_⇒_in′_ : ∀ {a a′} → (n : ℕ) → Expression ev (tv ⨁ n) a → QConstraint (tv ⨁ n) → Type (tv ⨁ n) → Expression (Ⓢ ev) tv a′ → Expression ev tv (Binary a a′) case_of_ : ∀ {r₁ r₂} → Expression ev tv r₁ → Alternatives ev tv r₂ → Expression ev tv (Binary r₁ r₂) private module PlusN-f n = Functor (Monad.is-functor (PlusN-is-monad {n})) module Ⓢ-f = Functor Ⓢ-is-functor module Type-f = Functor (type-is-functor) module TypeSchema-f {n} = Functor (type-schema-is-functor {n}) module QC-f = Functor (qconstraint-is-functor) private fmap-alt₁ : ∀ {a b tv}{r} → (a → b) → Alternative a tv r → Alternative b tv r fmap-exp₁ : ∀ {a b tv}{r} → (a → b) → Expression a tv r → Expression b tv r map-fmap-alt₁ : ∀ {a b tv}{r} → (a → b) → Alternatives a tv r → Alternatives b tv r fmap-alt₁ f (_→′_ {n} (DC c) expr) = DC c →′ fmap-exp₁ (pn.map f) expr where module pn = PlusN-f n fmap-exp₁ f (Var (DC c)) = Var (DC c) fmap-exp₁ f (Var (N x)) = Var (N (f x)) fmap-exp₁ f (λ′ x) = λ′ (fmap-exp₁ (Ⓢ-f.map f) x) fmap-exp₁ f (x · y) = (fmap-exp₁ f x) · (fmap-exp₁ f y) fmap-exp₁ f (let₁ x in′ y) = let₁ (fmap-exp₁ f x) in′ (fmap-exp₁ (Ⓢ-f.map f) y) fmap-exp₁ f (let₂ x ∷ τ in′ y) = let₂ (fmap-exp₁ f x) ∷ τ in′ (fmap-exp₁ (Ⓢ-f.map f) y) fmap-exp₁ f (let₃ n · x ∷ Q ⇒ τ in′ y) = let₃ n · fmap-exp₁ f x ∷ Q ⇒ τ in′ fmap-exp₁ (Ⓢ-f.map f) y fmap-exp₁ f (case x of alts) = case (fmap-exp₁ f x) of map-fmap-alt₁ f alts map-fmap-alt₁ f esac = esac map-fmap-alt₁ f (x ∣ xs) = fmap-alt₁ f x ∣ map-fmap-alt₁ f xs private fmap-alt₂ : ∀ {a b ev}{r} → (a → b) → Alternative ev a r → Alternative ev b r fmap-exp₂ : ∀ {a b ev}{r} → (a → b) → Expression ev a r → Expression ev b r map-fmap-alt₂ : ∀ {a b ev}{r} → (a → b) → Alternatives ev a r → Alternatives ev b r fmap-alt₂ f (p →′ expr) = p →′ fmap-exp₂ f expr fmap-exp₂ f (Var x) = Var x fmap-exp₂ f (λ′ x) = λ′ (fmap-exp₂ f x) fmap-exp₂ f (x · y) = fmap-exp₂ f x · fmap-exp₂ f y fmap-exp₂ f (let₁ x in′ y) = let₁ fmap-exp₂ f x in′ fmap-exp₂ f y fmap-exp₂ f (let₂ x ∷ τ in′ y) = let₂ fmap-exp₂ f x ∷ Type-f.map f τ in′ fmap-exp₂ f y fmap-exp₂ f (let₃ n · x ∷ Q ⇒ τ in′ y) = let₃ n · fmap-exp₂ (pn.map f) x ∷ QC-f.map (pn.map f) Q ⇒ Type-f.map (pn.map f) τ in′ fmap-exp₂ f y where module pn = PlusN-f n fmap-exp₂ f (case x of alts) = case (fmap-exp₂ f x) of map-fmap-alt₂ f alts map-fmap-alt₂ f esac = esac map-fmap-alt₂ f (x ∣ xs) = fmap-alt₂ f x ∣ map-fmap-alt₂ f xs private fmap-alt-id₁ : {A tv : Set} {f : A → A}{r : Shape} → isIdentity f → isIdentity (fmap-alt₁ {A}{A}{tv}{r} f) map-fmap-alt-id₁ : ∀ {a}{tv}{f : a → a}{r : Shape} → isIdentity f → isIdentity (map-fmap-alt₁ {a}{a}{tv}{r} f) fmap-exp-id₁ : ∀{A tv : Set}{r : Shape} {f : A → A} → isIdentity f → isIdentity (fmap-exp₁ {A}{A}{tv}{r} f) fmap-alt-id₁ {A}{f} f-is-id {_→′_ {n} (DC p) x} = cong (_→′_ (DC p)) (fmap-exp-id₁ (pn.identity f-is-id)) where module pn = PlusN-f n map-fmap-alt-id₁ {r = Unary _} f-is-id {} map-fmap-alt-id₁ {r = Nullary} f-is-id {esac} = refl map-fmap-alt-id₁ {r = Binary r₁ r₂} f-is-id {x ∣ xs} = cong₂ _∣_ (fmap-alt-id₁ f-is-id) (map-fmap-alt-id₁ f-is-id) fmap-exp-id₁ {r = Nullary} f-is-id {Var (DC x)} = refl fmap-exp-id₁ {r = Nullary} f-is-id {Var (N x)} = cong Var (cong N f-is-id) fmap-exp-id₁ {r = Unary r′} f-is-id {λ′ x} = cong λ′_ (fmap-exp-id₁ (Ⓢ-f.identity f-is-id)) fmap-exp-id₁ {r = Binary r₁ r₂} f-is-id {x · y} = cong₂ _·_ (fmap-exp-id₁ f-is-id) (fmap-exp-id₁ f-is-id) fmap-exp-id₁ {r = Binary r₁ r₂} f-is-id {let₁ x in′ y} = cong₂ let₁_in′_ (fmap-exp-id₁ f-is-id) (fmap-exp-id₁ (Ⓢ-f.identity f-is-id)) fmap-exp-id₁ {r = Binary r₁ r₂} f-is-id {let₂ x ∷ τ in′ y} = cong₂ (λ a b → let₂ a ∷ τ in′ b) (fmap-exp-id₁ f-is-id) (fmap-exp-id₁ (Ⓢ-f.identity f-is-id)) fmap-exp-id₁ {r = Binary r₁ r₂} f-is-id {let₃ n · x ∷ Q ⇒ τ in′ y} = cong₂ (λ a b → let₃ n · a ∷ Q ⇒ τ in′ b) (fmap-exp-id₁ f-is-id) (fmap-exp-id₁ (Ⓢ-f.identity f-is-id)) fmap-exp-id₁ {r = Binary r₁ r₂} f-is-id {case x of alts} = cong₂ case_of_ (fmap-exp-id₁ f-is-id) (map-fmap-alt-id₁ f-is-id) private fmap-alt-id₂ : {A ev : Set}{r : Shape}{f : A → A} → isIdentity f → isIdentity (fmap-alt₂ {A}{A}{ev}{r} f) map-fmap-alt-id₂ : ∀ {a}{ev}{r : Shape}{f : a → a} → isIdentity f → isIdentity (map-fmap-alt₂ {a}{a}{ev}{r} f) fmap-exp-id₂ : ∀{A ev : Set}{r : Shape} {f : A → A} → isIdentity f → isIdentity (fmap-exp₂ {A}{A}{ev}{r} f) fmap-alt-id₂ f-is-id {_→′_ {n} p x} = cong (_→′_ p) (fmap-exp-id₂ f-is-id) map-fmap-alt-id₂ f-is-id {esac} = refl map-fmap-alt-id₂ f-is-id {x ∣ xs} = cong₂ _∣_ (fmap-alt-id₂ f-is-id) (map-fmap-alt-id₂ f-is-id) fmap-exp-id₂ {r = Nullary} f-is-id {Var x} = refl fmap-exp-id₂ {r = Unary r′} f-is-id {λ′ x} = cong λ′_ (fmap-exp-id₂ f-is-id) fmap-exp-id₂ {r = Binary r₁ r₂} f-is-id {x · y} = cong₂ _·_ (fmap-exp-id₂ f-is-id) (fmap-exp-id₂ f-is-id) fmap-exp-id₂ {r = Binary r₁ r₂} f-is-id {let₁ x in′ y} = cong₂ let₁_in′_ (fmap-exp-id₂ f-is-id) (fmap-exp-id₂ f-is-id) fmap-exp-id₂ {r = Binary r₁ r₂} f-is-id {let₂ x ∷ τ in′ y} = cong₃ let₂_∷_in′_ (fmap-exp-id₂ f-is-id) (Type-f.identity f-is-id) (fmap-exp-id₂ f-is-id) fmap-exp-id₂ {r = Binary r₁ r₂} f-is-id {let₃ n · x ∷ Q ⇒ τ in′ y} = cong₄ (let₃_·_∷_⇒_in′_ n) (fmap-exp-id₂ (pn.identity f-is-id)) (QC-f.identity (pn.identity f-is-id)) (Type-f.identity (pn.identity f-is-id)) (fmap-exp-id₂ f-is-id) where module pn = PlusN-f n fmap-exp-id₂ {r = Binary r₁ r₂} f-is-id {case x of alts} = cong₂ case_of_ (fmap-exp-id₂ f-is-id) (map-fmap-alt-id₂ f-is-id) private fmap-alt-comp₁ : {r : Shape} {A B C tv : Set} {f : A → B}{g : B → C} {x : Alternative A tv r} → fmap-alt₁ (g ∘ f) x ≡ fmap-alt₁ g (fmap-alt₁ f x) fmap-exp-comp₁ : {r : Shape}{tv A B C : Set} {f : A → B} {g : B → C} {x : Expression A tv r} → fmap-exp₁ (g ∘ f) x ≡ fmap-exp₁ g (fmap-exp₁ f x) map-fmap-alt-comp₁ : {r : Shape}{A B C tv : Set}{f : A → B}{g : B → C}{l : Alternatives A tv r} → map-fmap-alt₁ (g ∘ f) l ≡ map-fmap-alt₁ g (map-fmap-alt₁ f l) fmap-alt-comp₁ {Nullary} {x = ()} fmap-alt-comp₁ {Binary _ _}{x = ()} fmap-alt-comp₁ {Unary r}{f = f}{g}{x = _→′_ {n} (DC p) expr} = cong (_→′_ (DC p)) (combine-composite′ ⦃ Monad.is-functor (PlusN-is-monad {n}) ⦄ {expr} fmap-exp₁ (fmap-exp-comp₁ {f = pn.map f}{g = pn.map g}{expr})) where module pn = PlusN-f n map-fmap-alt-comp₁ {l = esac} = refl map-fmap-alt-comp₁ {Binary a b}{A}{B}{C}{tv}{l = x ∣ xs} = cong₂ _∣_ (fmap-alt-comp₁ {x = x}) (map-fmap-alt-comp₁) fmap-exp-comp₁ {x = Var (N x)} = cong Var (cong N (refl)) fmap-exp-comp₁ {x = Var (DC x)} = refl fmap-exp-comp₁ {f = f}{g}{x = λ′ x } = cong λ′_ (combine-composite′ ⦃ Monad.is-functor (Ⓢ-is-monad) ⦄ {x} fmap-exp₁ (fmap-exp-comp₁ {f = Ⓢ-f.map f}{g = Ⓢ-f.map g}{x})) fmap-exp-comp₁ {f = f}{g}{x = x · y } = cong₂ _·_ (fmap-exp-comp₁ {f = f}{g}{x}) (fmap-exp-comp₁ {f = f}{g}{y}) fmap-exp-comp₁ {f = f}{g}{x = let₁ x in′ y } = cong₂ let₁_in′_ (fmap-exp-comp₁ {f = f}{g}{x}) (combine-composite′ ⦃ Monad.is-functor (Ⓢ-is-monad) ⦄ {y} fmap-exp₁ (fmap-exp-comp₁ {f = Ⓢ-f.map f}{g = Ⓢ-f.map g}{y})) fmap-exp-comp₁ {f = f}{g}{x = let₂ x ∷ τ in′ y} = cong₂ (λ a b → let₂ a ∷ τ in′ b) (fmap-exp-comp₁ {f = f}{g}{x}) (combine-composite′ ⦃ Monad.is-functor (Ⓢ-is-monad) ⦄ {y} fmap-exp₁ (fmap-exp-comp₁ {f = Ⓢ-f.map f} {g = Ⓢ-f.map g}{y})) fmap-exp-comp₁ {f = f}{g}{x = let₃ n · x ∷ Q ⇒ τ in′ y} = cong₂ (λ a b → let₃ n · a ∷ Q ⇒ τ in′ b) (fmap-exp-comp₁ {f = f}{g}{x}) (combine-composite′ ⦃ Monad.is-functor (Ⓢ-is-monad) ⦄ {y} fmap-exp₁ (fmap-exp-comp₁ {f = Ⓢ-f.map f}{g = Ⓢ-f.map g}{y})) fmap-exp-comp₁ {f = f}{g}{x = case x of alts } = cong₂ case_of_ (fmap-exp-comp₁ {f = f}{g}{x}) map-fmap-alt-comp₁ private fmap-alt-comp₂ : {A B C ev : Set}{r : Shape} {f : A → B} {g : B → C} {x : Alternative ev A r} → fmap-alt₂ (g ∘ f) x ≡ fmap-alt₂ g (fmap-alt₂ f x) fmap-exp-comp₂ : {A B C ev : Set}{r : Shape} {f : A → B} {g : B → C} {x : Expression ev A r} → fmap-exp₂ (g ∘ f) x ≡ fmap-exp₂ g (fmap-exp₂ f x) map-fmap-alt-comp₂ : ∀{r}{A B C ev : Set} {f : A → B} {g : B → C} {alts : Alternatives ev A r} → map-fmap-alt₂ (g ∘ f) alts ≡ map-fmap-alt₂ g (map-fmap-alt₂ f alts) fmap-alt-comp₂ {x = _→′_ {n} p expr} = cong (_→′_ p) fmap-exp-comp₂ map-fmap-alt-comp₂ {alts = esac} = refl map-fmap-alt-comp₂ {alts = x ∣ xs} = cong₂ _∣_ fmap-alt-comp₂ map-fmap-alt-comp₂ fmap-exp-comp₂ {x = Var a} = refl fmap-exp-comp₂ {x = λ′ x } = cong λ′_ fmap-exp-comp₂ fmap-exp-comp₂ {x = x · y } = cong₂ _·_ fmap-exp-comp₂ fmap-exp-comp₂ fmap-exp-comp₂ {x = let₁ x in′ y } = cong₂ let₁_in′_ fmap-exp-comp₂ fmap-exp-comp₂ fmap-exp-comp₂ {x = let₂ x ∷ τ in′ y } = cong₃ let₂_∷_in′_ fmap-exp-comp₂ Type-f.composite fmap-exp-comp₂ fmap-exp-comp₂ {x = let₃ n · x ∷ Q ⇒ τ in′ y } = cong₄ (λ a b c d → let₃ n · a ∷ b ⇒ c in′ d) (combine-composite′ ⦃ pnf ⦄ fmap-exp₂ fmap-exp-comp₂) (combine-composite ⦃ qconstraint-is-functor ⦄ ⦃ pnf ⦄) (combine-composite ⦃ type-is-functor ⦄ ⦃ pnf ⦄) fmap-exp-comp₂ where pnf = Monad.is-functor (PlusN-is-monad {n}) fmap-exp-comp₂ {x = case x of alts } = cong₂ case_of_ fmap-exp-comp₂ map-fmap-alt-comp₂ alternatives-is-functor₁ : ∀{tv}{r} → Functor (λ x → Alternatives x tv r) alternatives-is-functor₁ = record { map = map-fmap-alt₁ ; identity = map-fmap-alt-id₁ ; composite = map-fmap-alt-comp₁ } alternatives-is-functor₂ : ∀{ev}{r} → Functor (λ x → Alternatives ev x r) alternatives-is-functor₂ = record { map = map-fmap-alt₂ ; identity = map-fmap-alt-id₂ ; composite = map-fmap-alt-comp₂ } alternative-is-functor₁ : ∀{tv}{r} → Functor (λ x → Alternative x tv r) alternative-is-functor₁ = record { map = fmap-alt₁ ; identity = fmap-alt-id₁ ; composite = λ { {x = x} → fmap-alt-comp₁ {x = x} } } alternative-is-functor₂ : ∀{ev}{r} → Functor (λ x → Alternative ev x r) alternative-is-functor₂ = record { map = fmap-alt₂ ; identity = fmap-alt-id₂ ; composite = fmap-alt-comp₂ } expression-is-functor₁ : ∀{tv}{r} → Functor (λ x → Expression x tv r) expression-is-functor₁ {tv}{r} = record { map = fmap-exp₁ ; identity = fmap-exp-id₁ ; composite = λ {A}{B}{C}{f}{g}{x} → fmap-exp-comp₁ {r}{tv}{A}{B}{C}{f}{g}{x} } expression-is-functor₂ : ∀{ev}{r} → Functor (λ x → Expression ev x r) expression-is-functor₂ = record { map = fmap-exp₂ ; identity = fmap-exp-id₂ ; composite = fmap-exp-comp₂ }
59.317269
118
0.466215
dc250396b149fee0aeb671fb6f0f386a732a8ac7
4,929
agda
Agda
src/Categories/Category/CartesianClosed/Locally.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
1
2021-04-18T18:21:47.000Z
2021-04-18T18:21:47.000Z
src/Categories/Category/CartesianClosed/Locally.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
null
null
null
src/Categories/Category/CartesianClosed/Locally.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Core using (Category) module Categories.Category.CartesianClosed.Locally {o ℓ e} (C : Category o ℓ e) where open import Level using (levelOfTerm) open import Categories.Category.CartesianClosed open import Categories.Category.Cartesian open import Categories.Category.Cartesian.Properties C open import Categories.Category.Complete.Finitely C open import Categories.Category.Slice C open import Categories.Category.Slice.Properties C open import Categories.Object.Product open import Categories.Object.Exponential open import Categories.Object.Terminal C import Categories.Diagram.Pullback as P import Categories.Diagram.Pullback.Properties C as Pₚ import Categories.Morphism.Reasoning as MR open Category C record Locally : Set (levelOfTerm C) where field sliceCCC : ∀ A → CartesianClosed (Slice A) -- only populate this module with some stuff, for space reasons module sliceCCC A = CartesianClosed (sliceCCC A) using (product; products; exp) pullbacks : ∀ {X A B} (f : A ⇒ X) (g : B ⇒ X) → P.Pullback C f g pullbacks {X} _ _ = product⇒pullback (sliceCCC.product X) -- the slice categories also have pullbacks, because slice of slice is slice. slice-pullbacks : ∀ {A} {B X Y : SliceObj A} (f : Slice⇒ X B) (g : Slice⇒ Y B) → P.Pullback (Slice A) f g slice-pullbacks {A} {B} {X} {Y} f g = record { P = sliceobj (X.arr ∘ p.p₁) ; p₁ = slicearr refl ; p₂ = slicearr comm ; isPullback = record { commute = p.commute ; universal = λ {Z} {h i} eq → slicearr {h = p.universal eq} (pullʳ p.p₁∘universal≈h₁ ○ Slice⇒.△ h) ; unique = λ eq₁ eq₂ → p.unique eq₁ eq₂ ; p₁∘universal≈h₁ = p.p₁∘universal≈h₁ ; p₂∘universal≈h₂ = p.p₂∘universal≈h₂ } } where open HomReasoning open Equiv module X = SliceObj X module Y = SliceObj Y module B = SliceObj B module f = Slice⇒ f module g = Slice⇒ g module p = P.Pullback (pullbacks f.h g.h) using (p₁; p₂; commute; universal; p₁∘universal≈h₁; p₂∘universal≈h₂; unique) open MR C comm : Y.arr ∘ p.p₂ ≈ X.arr ∘ p.p₁ comm = begin Y.arr ∘ p.p₂ ≈˘⟨ g.△ ⟩∘⟨refl ⟩ (B.arr ∘ g.h) ∘ p.p₂ ≈˘⟨ pushʳ p.commute ⟩ B.arr ∘ f.h ∘ p.p₁ ≈⟨ pullˡ f.△ ⟩ X.arr ∘ p.p₁ ∎ module _ (LCCC : Locally) (t : Terminal) where open Locally LCCC open Terminal t open HomReasoning open Equiv cartesian : Cartesian C cartesian = record { terminal = t ; products = record { product = Pₚ.pullback-⊤⇒product t (product⇒pullback (sliceCCC.product ⊤)) } } cartesianClosed : CartesianClosed C cartesianClosed = record { cartesian = cartesian ; exp = λ {A B} → let open Exponential (exp {sliceobj (! {A})} {sliceobj (! {B})}) in record { B^A = Y B^A ; product = -- this is tricky. how product is implemented requires special care. for example, the following -- code also gives a product that type checks, but it is impossible to work with. -- Pₚ.pullback-⊤⇒product t (Pₚ.pullback-resp-≈ (product⇒pullback product) !-unique₂ refl) -- -- another quirk of proof relevance. let open Product (Slice ⊤) (exp.product {sliceobj (! {A})} {sliceobj (! {B})}) in record { A×B = Y A×B ; π₁ = h π₁ ; π₂ = h π₂ ; ⟨_,_⟩ = λ f g → h ⟨ slicearr {h = f} (⟺ (!-unique _)) , slicearr {h = g} (⟺ (!-unique _)) ⟩ ; project₁ = project₁ ; project₂ = project₂ ; unique = unique {h = slicearr (⟺ (!-unique _))} } ; eval = h eval ; λg = λ {X} p f → h (λg (pullback⇒product′ t (Pₚ.product⇒pullback-⊤ t p)) (lift t f)) -- what looks like an identity proof below is not quite, as it is not -- "proof relevant", the 2 underlying arrows contain different proofs. ; β = λ p → ∘-resp-≈ʳ (exp.product.⟨⟩-cong₂ refl refl) ○ β (pullback⇒product′ t (Pₚ.product⇒pullback-⊤ t p)) ; λ-unique = λ p eq → λ-unique (pullback⇒product′ t (Pₚ.product⇒pullback-⊤ t p)) {h = slicearr (⟺ (!-unique _))} (∘-resp-≈ʳ (exp.product.⟨⟩-cong₂ refl refl) ○ eq) } } where open sliceCCC ⊤ using (exp) open SliceObj open Slice⇒ finitelyComplete : FinitelyComplete finitelyComplete = record { cartesian = cartesian ; equalizer = λ f g → prods×pullbacks⇒equalizers (Cartesian.products cartesian) (λ {_ _ X} h i → product⇒pullback (sliceCCC.product X)) }
40.073171
111
0.573139
123c0ad00c7eca54f9ad055ba6cb39860ce69eca
355
agda
Agda
test/Fail/Issue1652.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1652.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1652.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{- reported by Guillaume Brunerie on 2015-09-17 -} {-# OPTIONS --rewriting #-} data _==_ {A : Set} (a : A) : A → Set where idp : a == a {-# BUILTIN REWRITE _==_ #-} postulate A B : Set f g : A → B module M (x : A) where postulate rx : f x == g x {-# REWRITE rx #-} -- This shouldn't work test : (y : A) → f y == g y test y = idp
16.136364
50
0.521127
a14c5e4f4738a772a40baac94b0d98e05e90fc62
2,833
agda
Agda
src/Prelude/String.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
111
2015-01-05T11:28:15.000Z
2022-02-12T23:29:26.000Z
src/Prelude/String.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
59
2016-02-09T05:36:44.000Z
2022-01-14T07:32:36.000Z
src/Prelude/String.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
24
2015-03-12T18:03:45.000Z
2021-04-22T06:10:41.000Z
module Prelude.String where open import Agda.Primitive open import Prelude.Unit open import Prelude.Char open import Prelude.Bool open import Prelude.Nat open import Prelude.List open import Prelude.Maybe open import Prelude.Equality open import Prelude.Equality.Unsafe open import Prelude.Decidable open import Prelude.Ord open import Prelude.Function open import Prelude.Monad open import Prelude.Semiring open import Agda.Builtin.String public open import Agda.Builtin.FromString public unpackString = primStringToList packString = primStringFromList unpackString-inj : ∀ {x y} → unpackString x ≡ unpackString y → x ≡ y unpackString-inj {x} p with unpackString x unpackString-inj refl | ._ = unsafeEqual infixr 5 _&_ _&_ = primStringAppend -- Eq -- instance EqString : Eq String _==_ {{EqString}} x y with primStringEquality x y ... | true = yes unsafeEqual ... | false = no unsafeNotEqual -- Ord -- instance OrdString : Ord String OrdString = OrdBy unpackString-inj OrdLawsString : Ord/Laws String OrdLawsString = OrdLawsBy unpackString-inj -- Overloaded literals -- instance StringIsString : IsString String IsString.Constraint StringIsString _ = ⊤ IsString.fromString StringIsString s = s ListIsString : IsString (List Char) IsString.Constraint ListIsString _ = ⊤ IsString.fromString ListIsString s = unpackString s -- Monoid -- instance open import Prelude.Monoid SemigroupString : Semigroup String _<>_ {{SemigroupString}} = primStringAppend MonoidString : Monoid String Monoid.super MonoidString = it mempty {{MonoidString}} = "" -- More functions -- parseNat : String → Maybe Nat parseNat = parseNat′ ∘ unpackString where pDigit : Char → Maybe Nat pDigit c = if isDigit c then just (charToNat c - charToNat '0') else nothing pNat : Nat → List Char → Maybe Nat pNat n [] = just n pNat n (c ∷ s) = pDigit c >>= λ d → pNat (n * 10 + d) s parseNat′ : List Char → Maybe Nat parseNat′ [] = nothing parseNat′ (c ∷ s) = pDigit c >>= λ d → pNat d s onChars : (List Char → List Char) → String → String onChars f = packString ∘ f ∘ unpackString words : String → List String words = map packString ∘ wordsBy isSpace ∘ unpackString ltrim : String → String ltrim = onChars (dropWhile isSpace) rtrim : String → String rtrim = onChars (reverse ∘ dropWhile isSpace ∘ reverse) trim : String → String trim = rtrim ∘ ltrim strTake : Nat → String → String strTake n = onChars (take n) strDrop : Nat → String → String strDrop n = onChars (drop n) strLength : String → Nat strLength = length ∘ unpackString strIsPrefixOf? : String → String → Bool strIsPrefixOf? = isPrefixOf? on unpackString strCommonPrefix : String → String → String strCommonPrefix s₁ s₂ = packString $ (commonPrefix! on unpackString) s₁ s₂
24.008475
74
0.719732
59b92e652db9b66bae3a455a577523fafda9c046
3,242
agda
Agda
Cubical/HITs/FreeComMonoids/Properties.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/HITs/FreeComMonoids/Properties.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/HITs/FreeComMonoids/Properties.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.HITs.FreeComMonoids.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.GroupoidLaws hiding (assoc) open import Cubical.Foundations.Univalence open import Cubical.Data.Nat hiding (_·_ ; _^_) open import Cubical.HITs.FreeComMonoids.Base as FCM open import Cubical.HITs.AssocList as AL private variable ℓ : Level A : Type ℓ multi-· : A → ℕ → FreeComMonoid A → FreeComMonoid A multi-· x zero xs = xs multi-· x (suc n) xs = ⟦ x ⟧ · multi-· x n xs _^_ : A → ℕ → FreeComMonoid A x ^ n = multi-· x n ε ^+≡ : ∀ (p : A) m n → ((p ^ m) · (p ^ n)) ≡ (p ^ (m + n)) ^+≡ p zero n = identityₗ _ ^+≡ p (suc m) n = sym (assoc _ _ _) ∙ cong (_ ·_) (^+≡ _ _ _) AL→FCM : AssocList A → FreeComMonoid A AL→FCM = AL.Rec.f trunc ε (λ a n p → (a ^ n) · p) per* agg* (const identityₗ) where per* : ∀ x y (mon : FreeComMonoid A) → ((⟦ x ⟧ · ε) · ((⟦ y ⟧ · ε) · mon)) ≡ ((⟦ y ⟧ · ε) · ((⟦ x ⟧ · ε) · mon)) per* x y mon = (⟦ x ⟧ · ε) · ((⟦ y ⟧ · ε) · mon) ≡⟨ assoc _ _ _ ⟩ ((⟦ x ⟧ · ε) · (⟦ y ⟧ · ε)) · mon ≡⟨ cong (_· mon) (comm _ _) ⟩ (((⟦ y ⟧ · ε) · (⟦ x ⟧ · ε)) · mon) ≡⟨ sym (assoc _ _ _) ⟩ ((⟦ y ⟧ · ε) · ((⟦ x ⟧ · ε) · mon)) ∎ agg* : ∀ a m n mon → ((a ^ m) · ((a ^ n) · mon)) ≡ ((a ^ (m + n)) · mon) agg* a m n mon = ((a ^ m) · ((a ^ n) · mon)) ≡⟨ assoc _ _ _ ⟩ (((a ^ m) · (a ^ n)) · mon) ≡⟨ cong (_· _) (^+≡ _ _ _) ⟩ ((a ^ (m + n)) · mon) ∎ FCM→AL : FreeComMonoid A → AssocList A FCM→AL = FCM.Rec.f trunc ⟨_⟩ ⟨⟩ _++_ comm-++ unitr-++ (λ _ → refl) assoc-++ ^-id : (x : A) (m : ℕ) (u : FreeComMonoid A) → FCM→AL ((x ^ m) · u) ≡ ⟨ x , m ⟩∷ FCM→AL u ^-id x zero u = cong FCM→AL (identityₗ u) ∙ sym (del _ _) ^-id x (suc m) u = FCM→AL ((⟦ x ⟧ · (x ^ m)) · u) ≡⟨ cong ⟨ x , 1 ⟩∷_ (^-id x m u) ⟩ ⟨ x , 1 ⟩∷ ⟨ x , m ⟩∷ FCM→AL u ≡⟨ agg _ _ _ _ ⟩ ⟨ x , suc m ⟩∷ FCM→AL u ∎ ++-· : (x y : AssocList A) → AL→FCM (x ++ y) ≡ AL→FCM x · AL→FCM y ++-· = AL.ElimProp.f (isPropΠ (λ _ → trunc _ _)) (λ _ → sym (identityₗ _)) λ x n {xs} p ys → AL→FCM (((⟨ x , n ⟩∷ ⟨⟩) ++ xs) ++ ys) ≡⟨ cong AL→FCM (cong (_++ ys) (comm-++ (⟨ x , n ⟩∷ ⟨⟩) xs) ∙ sym (assoc-++ xs _ ys)) ⟩ AL→FCM (xs ++ (⟨ x , n ⟩∷ ys)) ≡⟨ p _ ⟩ (AL→FCM xs · ((x ^ n) · AL→FCM ys)) ≡⟨ assoc (AL→FCM xs) _ _ ⟩ ((AL→FCM xs · (x ^ n)) · AL→FCM ys) ≡⟨ cong (_· AL→FCM ys) (comm _ _) ⟩ ((x ^ n) · AL→FCM xs) · AL→FCM ys ∎ AL→FCM∘FCM→AL≡id : section {A = AssocList A} AL→FCM FCM→AL AL→FCM∘FCM→AL≡id = FCM.ElimProp.f (trunc _ _) (λ x → identityᵣ _ ∙ identityᵣ _) refl λ {x y} p q → ++-· (FCM→AL x) (FCM→AL y) ∙ cong₂ _·_ p q FCM→AL∘AL→FCM≡id : retract {A = AssocList A} AL→FCM FCM→AL FCM→AL∘AL→FCM≡id = AL.ElimProp.f (trunc _ _) refl λ x n {xs} p → ^-id x n (AL→FCM xs) ∙ cong (⟨ _ , _ ⟩∷_) p AssocList≃FreeComMonoid : AssocList A ≃ FreeComMonoid A AssocList≃FreeComMonoid = isoToEquiv (iso AL→FCM FCM→AL AL→FCM∘FCM→AL≡id FCM→AL∘AL→FCM≡id) AssocList≡FreeComMonoid : AssocList A ≡ FreeComMonoid A AssocList≡FreeComMonoid = ua AssocList≃FreeComMonoid
31.784314
90
0.528994
2e0071bcacc977ad43d71862116b744dd5f7d0ff
984
agda
Agda
test/Succeed/Issue701-c.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue701-c.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue701-c.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas 2012-09-27, reported by Fredrik Forsberg {-# OPTIONS --sized-types #-} module Issue701-c where open import Common.Size {- If I understand correctly, unconstrained sizes should be resolved to \infty. If I define -} data U : {i : Size} -> Set where c : {i : Size} -> U {↑ i} data V : {i : Size} -> Set where d : {i : Size} -> U {∞} -> V {↑ i} works-with-explicit-infty : {i : Size} -> V {i} -> V {↑ i} works-with-explicit-infty x = x -- everything is fine. However, if I leave out {\infty}: data V' : {i : Size} -> Set where d : {i : Size} -> U -> V' {↑ i} fails-if-no-infty : {i : Size} -> V' {i} -> V' {↑ i} fails-if-no-infty x = x --.i != ↑ .i of type Size --when checking that the expression x has type V' {- V' is not detected as a sized type anymore which seems to break the promise about unconstrained sizes. Since U is just a non-inductive argument to d, I wouldn't expect it to influence whether V is a sized type or not? -}
29.818182
79
0.612805
1aab2919fe39b56e402401970a87216a05a86d19
140
agda
Agda
Cubical/HITs/Ints/IsoInt.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/Ints/IsoInt.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/HITs/Ints/IsoInt.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Ints.IsoInt where open import Cubical.HITs.Ints.IsoInt.Base public
23.333333
50
0.742857
31b43cb0999df2a176abfe86d0a48e71707942ca
4,823
agda
Agda
Definition/Conversion.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
30
2017-05-20T03:05:21.000Z
2022-03-30T18:01:07.000Z
Definition/Conversion.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
4
2017-06-22T12:49:23.000Z
2021-02-22T10:37:24.000Z
Definition/Conversion.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
8
2017-10-18T14:18:20.000Z
2021-11-27T15:58:33.000Z
-- Algorithmic equality. {-# OPTIONS --without-K --safe #-} module Definition.Conversion where open import Definition.Untyped hiding (_∷_) open import Definition.Typed open import Tools.Fin open import Tools.Nat open import Tools.Product import Tools.PropositionalEquality as PE infix 10 _⊢_~_↑_ infix 10 _⊢_~_↓_ infix 10 _⊢_[conv↑]_ infix 10 _⊢_[conv↓]_ infix 10 _⊢_[conv↑]_∷_ infix 10 _⊢_[conv↓]_∷_ private variable n : Nat Γ : Con Term n mutual -- Neutral equality. data _⊢_~_↑_ (Γ : Con Term n) : (k l A : Term n) → Set where var-refl : ∀ {x y A} → Γ ⊢ var x ∷ A → x PE.≡ y → Γ ⊢ var x ~ var y ↑ A app-cong : ∀ {k l t v F G} → Γ ⊢ k ~ l ↓ Π F ▹ G → Γ ⊢ t [conv↑] v ∷ F → Γ ⊢ k ∘ t ~ l ∘ v ↑ G [ t ] fst-cong : ∀ {p r F G} → Γ ⊢ p ~ r ↓ Σ F ▹ G → Γ ⊢ fst p ~ fst r ↑ F snd-cong : ∀ {p r F G} → Γ ⊢ p ~ r ↓ Σ F ▹ G → Γ ⊢ snd p ~ snd r ↑ G [ fst p ] natrec-cong : ∀ {k l h g a₀ b₀ F G} → Γ ∙ ℕ ⊢ F [conv↑] G → Γ ⊢ a₀ [conv↑] b₀ ∷ F [ zero ] → Γ ⊢ h [conv↑] g ∷ Π ℕ ▹ (F ▹▹ F [ suc (var x0) ]↑) → Γ ⊢ k ~ l ↓ ℕ → Γ ⊢ natrec F a₀ h k ~ natrec G b₀ g l ↑ F [ k ] Emptyrec-cong : ∀ {k l F G} → Γ ⊢ F [conv↑] G → Γ ⊢ k ~ l ↓ Empty → Γ ⊢ Emptyrec F k ~ Emptyrec G l ↑ F -- Neutral equality with types in WHNF. record _⊢_~_↓_ (Γ : Con Term n) (k l B : Term n) : Set where inductive constructor [~] field A : Term n D : Γ ⊢ A ⇒* B whnfB : Whnf B k~l : Γ ⊢ k ~ l ↑ A -- Type equality. record _⊢_[conv↑]_ (Γ : Con Term n) (A B : Term n) : Set where inductive constructor [↑] field A′ B′ : Term n D : Γ ⊢ A ⇒* A′ D′ : Γ ⊢ B ⇒* B′ whnfA′ : Whnf A′ whnfB′ : Whnf B′ A′<>B′ : Γ ⊢ A′ [conv↓] B′ -- Type equality with types in WHNF. data _⊢_[conv↓]_ (Γ : Con Term n) : (A B : Term n) → Set where U-refl : ⊢ Γ → Γ ⊢ U [conv↓] U ℕ-refl : ⊢ Γ → Γ ⊢ ℕ [conv↓] ℕ Empty-refl : ⊢ Γ → Γ ⊢ Empty [conv↓] Empty Unit-refl : ⊢ Γ → Γ ⊢ Unit [conv↓] Unit ne : ∀ {K L} → Γ ⊢ K ~ L ↓ U → Γ ⊢ K [conv↓] L Π-cong : ∀ {F G H E} → Γ ⊢ F → Γ ⊢ F [conv↑] H → Γ ∙ F ⊢ G [conv↑] E → Γ ⊢ Π F ▹ G [conv↓] Π H ▹ E Σ-cong : ∀ {F G H E} → Γ ⊢ F → Γ ⊢ F [conv↑] H → Γ ∙ F ⊢ G [conv↑] E → Γ ⊢ Σ F ▹ G [conv↓] Σ H ▹ E -- Term equality. record _⊢_[conv↑]_∷_ (Γ : Con Term n) (t u A : Term n) : Set where inductive constructor [↑]ₜ field B t′ u′ : Term n D : Γ ⊢ A ⇒* B d : Γ ⊢ t ⇒* t′ ∷ B d′ : Γ ⊢ u ⇒* u′ ∷ B whnfB : Whnf B whnft′ : Whnf t′ whnfu′ : Whnf u′ t<>u : Γ ⊢ t′ [conv↓] u′ ∷ B -- Term equality with types and terms in WHNF. data _⊢_[conv↓]_∷_ (Γ : Con Term n) : (t u A : Term n) → Set where ℕ-ins : ∀ {k l} → Γ ⊢ k ~ l ↓ ℕ → Γ ⊢ k [conv↓] l ∷ ℕ Empty-ins : ∀ {k l} → Γ ⊢ k ~ l ↓ Empty → Γ ⊢ k [conv↓] l ∷ Empty Unit-ins : ∀ {k l} → Γ ⊢ k ~ l ↓ Unit → Γ ⊢ k [conv↓] l ∷ Unit ne-ins : ∀ {k l M N} → Γ ⊢ k ∷ N → Γ ⊢ l ∷ N → Neutral N → Γ ⊢ k ~ l ↓ M → Γ ⊢ k [conv↓] l ∷ N univ : ∀ {A B} → Γ ⊢ A ∷ U → Γ ⊢ B ∷ U → Γ ⊢ A [conv↓] B → Γ ⊢ A [conv↓] B ∷ U zero-refl : ⊢ Γ → Γ ⊢ zero [conv↓] zero ∷ ℕ suc-cong : ∀ {m n} → Γ ⊢ m [conv↑] n ∷ ℕ → Γ ⊢ suc m [conv↓] suc n ∷ ℕ η-eq : ∀ {f g F G} → Γ ⊢ f ∷ Π F ▹ G → Γ ⊢ g ∷ Π F ▹ G → Function f → Function g → Γ ∙ F ⊢ wk1 f ∘ var x0 [conv↑] wk1 g ∘ var x0 ∷ G → Γ ⊢ f [conv↓] g ∷ Π F ▹ G Σ-η : ∀ {p r F G} → Γ ⊢ p ∷ Σ F ▹ G → Γ ⊢ r ∷ Σ F ▹ G → Product p → Product r → Γ ⊢ fst p [conv↑] fst r ∷ F → Γ ⊢ snd p [conv↑] snd r ∷ G [ fst p ] → Γ ⊢ p [conv↓] r ∷ Σ F ▹ G η-unit : ∀ {k l} → Γ ⊢ k ∷ Unit → Γ ⊢ l ∷ Unit → Whnf k → Whnf l → Γ ⊢ k [conv↓] l ∷ Unit star-refl : ⊢ Γ → Γ ⊢ star [conv↓] star ∷ Unit star-refl ⊢Γ = η-unit (starⱼ ⊢Γ) (starⱼ ⊢Γ) starₙ starₙ
29.771605
70
0.364089
1a9822574d16ee2584b0d476f83d60b10c660eea
4,983
agda
Agda
LibraBFT/Abstract/Properties.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
4
2020-12-16T19:43:41.000Z
2021-12-18T19:24:05.000Z
LibraBFT/Abstract/Properties.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
72
2021-02-04T05:04:33.000Z
2022-03-25T05:36:11.000Z
LibraBFT/Abstract/Properties.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
6
2020-12-16T19:43:52.000Z
2022-02-18T01:04:32.000Z
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Abstract.Types open import LibraBFT.Abstract.Types.EpochConfig open import LibraBFT.Lemmas open import LibraBFT.Prelude open WithAbsVote -- For each desired property (VotesOnce and PreferredRoundRule), we have a -- module containing a Type that defines a property that an implementation -- should prove, and a proof that it implies the corresponding rule used by -- the abstract proofs. Then, we use those proofs to instantiate thmS5, -- and the use thmS5 to prove a number of correctness conditions. -- -- TODO-1: refactor this file to separate the definitions and proofs of -- VotesOnce and PreferredRoundRule from their use in proving the correctness -- properties. module LibraBFT.Abstract.Properties (UID : Set) (_≟UID_ : (u₀ u₁ : UID) → Dec (u₀ ≡ u₁)) (NodeId : Set) (𝓔 : EpochConfig UID NodeId) (𝓥 : VoteEvidence UID NodeId 𝓔) where open import LibraBFT.Abstract.Records UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.Records.Extends UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.RecordChain UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.RecordChain.Assumptions UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.System UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.RecordChain.Properties UID _≟UID_ NodeId 𝓔 𝓥 open EpochConfig 𝓔 module WithAssumptions {ℓ} (InSys : Record → Set ℓ) (no-collisions-InSys : NoCollisions InSys) (votes-once : VotesOnlyOnceRule InSys) (preferred-round : PreferredRoundRule InSys) where open All-InSys-props InSys CommitsDoNotConflict : ∀{q q'} → {rc : RecordChain (Q q)} → All-InSys rc → {rc' : RecordChain (Q q')} → All-InSys rc' → {b b' : Block} → CommitRule rc b → CommitRule rc' b' → (B b) ∈RC rc' ⊎ (B b') ∈RC rc CommitsDoNotConflict ais ais' cr cr' with WithInvariants.thmS5 InSys votes-once preferred-round ais ais' cr cr' -- We use the implementation-provided evidence that Block ids are injective among -- Block actually in the system to dismiss the first possibility ...| inj₁ ((_ , neq , h≡) , (is1 , is2)) = ⊥-elim (neq (no-collisions-InSys is1 is2 h≡)) ...| inj₂ corr = corr -- When we are dealing with a /Complete/ InSys predicate, we can go a few steps -- further and prove that commits do not conflict even if we have only partial -- knowledge about Records represented in the system. module _ (∈QC⇒AllSent : Complete InSys) where -- For a /complete/ system (i.e., one in which peers vote for a Block only if -- they know of a RecordChain up to that Block whose Records are all InSys), we -- can prove that CommitRules based on RecordChainFroms similarly do not -- conflict, provided all of the Records in the RecordChainFroms are InSys. -- This enables peers not participating in consensus to confirm commits even if -- they are sent only a "commit certificate" that contains enough of a -- RecordChain to confirm the CommitRule. Note that it is this "sending" that -- justfies the assumption that the RecordChainFroms on which the CommitRules -- are based are All-InSys. CommitsDoNotConflict' : ∀{o o' q q'} → {rcf : RecordChainFrom o (Q q)} → All-InSys rcf → {rcf' : RecordChainFrom o' (Q q')} → All-InSys rcf' → {b b' : Block} → CommitRuleFrom rcf b → CommitRuleFrom rcf' b' → Σ (RecordChain (Q q')) ((B b) ∈RC_) ⊎ Σ (RecordChain (Q q)) ((B b') ∈RC_) CommitsDoNotConflict' {cb} {q = q} {q'} {rcf} rcfAll∈sys {rcf'} rcf'All∈sys crf crf' with bft-property (qVotes-C1 q) (qVotes-C1 q') ...| α , α∈qmem , α∈q'mem , hα with Any-sym (Any-map⁻ α∈qmem) | Any-sym (Any-map⁻ α∈q'mem) ...| α∈q | α∈q' with ∈QC⇒AllSent {q = q} hα α∈q (rcfAll∈sys here) | ∈QC⇒AllSent {q = q'} hα α∈q' (rcf'All∈sys here) ...| ab , (arc , ais) , ab←q | ab' , (arc' , ais') , ab←q' with crf⇒cr rcf (step arc ab←q) crf | crf⇒cr rcf' (step arc' ab←q') crf' ...| inj₁ ((_ , neq , h≡) , (is1 , is2)) | _ = ⊥-elim (neq (no-collisions-InSys (rcfAll∈sys is1) (ais (∈RC-simple-¬here arc ab←q (λ ()) is2)) h≡)) ...| inj₂ _ | inj₁ ((_ , neq , h≡) , (is1 , is2)) = ⊥-elim (neq (no-collisions-InSys (rcf'All∈sys is1) (ais' (∈RC-simple-¬here arc' ab←q' (λ ()) is2)) h≡)) ...| inj₂ cr | inj₂ cr' with CommitsDoNotConflict (All-InSys-step ais ab←q (rcfAll∈sys here)) (All-InSys-step ais' ab←q' (rcf'All∈sys here)) cr cr' ...| inj₁ b∈arc' = inj₁ (step arc' ab←q' , b∈arc') ...| inj₂ b'∈arc = inj₂ (step arc ab←q , b'∈arc)
50.333333
174
0.643388
c5e9d4b4bdce777d289c8df7c666a0d1072ac021
6,659
agda
Agda
Cubical/Relation/Binary/Base.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/Relation/Binary/Base.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/Relation/Binary/Base.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Binary.Base where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.HITs.SetQuotients.Base open import Cubical.HITs.PropositionalTruncation.Base open import Cubical.Foundations.Equiv.Fiberwise open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism private variable ℓA ℓA' ℓ ℓ' ℓ≅A ℓ≅A' ℓB : Level -- Rel : ∀ {ℓ} (A B : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) -- Rel A B ℓ' = A → B → Type ℓ' Rel : (A : Type ℓA) (B : Type ℓB) (ℓ : Level) → Type (ℓ-max (ℓ-suc ℓ) (ℓ-max ℓA ℓB)) Rel A B ℓ = A → B → Type ℓ PropRel : ∀ {ℓ} (A B : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) PropRel A B ℓ' = Σ[ R ∈ Rel A B ℓ' ] ∀ a b → isProp (R a b) idPropRel : ∀ {ℓ} (A : Type ℓ) → PropRel A A ℓ idPropRel A .fst a a' = ∥ a ≡ a' ∥ idPropRel A .snd _ _ = squash invPropRel : ∀ {ℓ ℓ'} {A B : Type ℓ} → PropRel A B ℓ' → PropRel B A ℓ' invPropRel R .fst b a = R .fst a b invPropRel R .snd b a = R .snd a b compPropRel : ∀ {ℓ ℓ' ℓ''} {A B C : Type ℓ} → PropRel A B ℓ' → PropRel B C ℓ'' → PropRel A C (ℓ-max ℓ (ℓ-max ℓ' ℓ'')) compPropRel R S .fst a c = ∥ Σ[ b ∈ _ ] (R .fst a b × S .fst b c) ∥ compPropRel R S .snd _ _ = squash graphRel : ∀ {ℓ} {A B : Type ℓ} → (A → B) → Rel A B ℓ graphRel f a b = f a ≡ b module _ {ℓ ℓ' : Level} {A : Type ℓ} (_R_ : Rel A A ℓ') where -- R is reflexive isRefl : Type (ℓ-max ℓ ℓ') isRefl = (a : A) → a R a -- R is symmetric isSym : Type (ℓ-max ℓ ℓ') isSym = (a b : A) → a R b → b R a -- R is transitive isTrans : Type (ℓ-max ℓ ℓ') isTrans = (a b c : A) → a R b → b R c → a R c record isEquivRel : Type (ℓ-max ℓ ℓ') where constructor equivRel field reflexive : isRefl symmetric : isSym transitive : isTrans isPropValued : Type (ℓ-max ℓ ℓ') isPropValued = (a b : A) → isProp (a R b) isEffective : Type (ℓ-max ℓ ℓ') isEffective = (a b : A) → isEquiv (eq/ {R = _R_} a b) -- the total space corresponding to the binary relation w.r.t. a relSinglAt : (a : A) → Type (ℓ-max ℓ ℓ') relSinglAt a = Σ[ a' ∈ A ] (a R a') -- the statement that the total space is contractible at any a contrRelSingl : Type (ℓ-max ℓ ℓ') contrRelSingl = (a : A) → isContr (relSinglAt a) -- assume a reflexive binary relation module _ (ρ : isRefl) where -- identity is the least reflexive relation ≡→R : {a a' : A} → a ≡ a' → a R a' -- ≡→R {a} {a'} p = subst (λ z → a R z) p (ρ a) ≡→R {a} {a'} p = J (λ z q → a R z) (ρ a) p -- what it means for a reflexive binary relation to be univalent isUnivalent : Type (ℓ-max ℓ ℓ') isUnivalent = (a a' : A) → isEquiv (≡→R {a} {a'}) -- helpers for contrRelSingl→isUnivalent private module _ (a : A) where -- wrapper for ≡→R f = λ (a' : A) (p : a ≡ a') → ≡→R {a} {a'} p -- the corresponding total map that univalence -- of R will be reduced to totf : singl a → Σ[ a' ∈ A ] (a R a') totf (a' , p) = (a' , f a' p) -- if the total space corresponding to R is contractible -- then R is univalent -- because the singleton at a is also contractible contrRelSingl→isUnivalent : contrRelSingl → isUnivalent contrRelSingl→isUnivalent c a = q where abstract q = fiberEquiv (λ a' → a ≡ a') (λ a' → a R a') (f a) (snd (propBiimpl→Equiv (isContr→isProp (isContrSingl a)) (isContr→isProp (c a)) (totf a) (λ _ → fst (isContrSingl a)))) -- converse map. proof idea: -- equivalences preserve contractability, -- singletons are contractible -- and by the univalence assumption the total map is an equivalence isUnivalent→contrRelSingl : isUnivalent → contrRelSingl isUnivalent→contrRelSingl u a = q where abstract q = isContrRespectEquiv (totf a , totalEquiv (a ≡_) (a R_) (f a) λ a' → u a a') (isContrSingl a) isUnivalent' : Type (ℓ-max ℓ ℓ') isUnivalent' = (a a' : A) → (a ≡ a') ≃ a R a' private module _ (e : isUnivalent') (a : A) where -- wrapper for ≡→R g = λ (a' : A) (p : a ≡ a') → e a a' .fst p -- the corresponding total map that univalence -- of R will be reduced to totg : singl a → Σ[ a' ∈ A ] (a R a') totg (a' , p) = (a' , g a' p) isUnivalent'→contrRelSingl : isUnivalent' → contrRelSingl isUnivalent'→contrRelSingl u a = q where abstract q = isContrRespectEquiv (totg u a , totalEquiv (a ≡_) (a R_) (g u a) λ a' → u a a' .snd) (isContrSingl a) isUnivalent'→isUnivalent : isUnivalent' → isUnivalent isUnivalent'→isUnivalent u = contrRelSingl→isUnivalent (isUnivalent'→contrRelSingl u) isUnivalent→isUnivalent' : isUnivalent → isUnivalent' isUnivalent→isUnivalent' u a a' = ≡→R {a} {a'} , u a a' record RelIso {A : Type ℓA} (_≅_ : Rel A A ℓ≅A) {A' : Type ℓA'} (_≅'_ : Rel A' A' ℓ≅A') : Type (ℓ-max (ℓ-max ℓA ℓA') (ℓ-max ℓ≅A ℓ≅A')) where constructor reliso field fun : A → A' inv : A' → A rightInv : (a' : A') → fun (inv a') ≅' a' leftInv : (a : A) → inv (fun a) ≅ a RelIso→Iso : {A : Type ℓA} {A' : Type ℓA'} (_≅_ : Rel A A ℓ≅A) (_≅'_ : Rel A' A' ℓ≅A') {ρ : isRefl _≅_} {ρ' : isRefl _≅'_} (uni : isUnivalent _≅_ ρ) (uni' : isUnivalent _≅'_ ρ') (f : RelIso _≅_ _≅'_) → Iso A A' Iso.fun (RelIso→Iso _ _ _ _ f) = RelIso.fun f Iso.inv (RelIso→Iso _ _ _ _ f) = RelIso.inv f Iso.rightInv (RelIso→Iso _ _≅'_ {ρ' = ρ'} _ uni' f) a' = invEquiv (≡→R _≅'_ ρ' , uni' (RelIso.fun f (RelIso.inv f a')) a') .fst (RelIso.rightInv f a') Iso.leftInv (RelIso→Iso _≅_ _ {ρ = ρ} uni _ f) a = invEquiv (≡→R _≅_ ρ , uni (RelIso.inv f (RelIso.fun f a)) a) .fst (RelIso.leftInv f a) EquivRel : ∀ {ℓ} (A : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) EquivRel A ℓ' = Σ[ R ∈ Rel A A ℓ' ] isEquivRel R EquivPropRel : ∀ {ℓ} (A : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) EquivPropRel A ℓ' = Σ[ R ∈ PropRel A A ℓ' ] isEquivRel (R .fst)
35.047368
106
0.533113
22a89f05142f5e36c4eabccf0a771db34960c2cc
3,271
agda
Agda
examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Vec.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Vec.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Vec.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
module Data.Vec where open import Prelude open import Data.Nat open import Data.Fin hiding (_==_; _<_) open import Logic.Structure.Applicative open import Logic.Identity open import Logic.Base infixl 90 _#_ infixr 50 _::_ infixl 45 _!_ _[!]_ data Vec (A : Set) : Nat -> Set where [] : Vec A zero _::_ : {n : Nat} -> A -> Vec A n -> Vec A (suc n) -- Indexing _!_ : {n : Nat}{A : Set} -> Vec A n -> Fin n -> A x :: xs ! fzero = x x :: xs ! fsuc i = xs ! i -- Insertion insert : {n : Nat}{A : Set} -> Fin (suc n) -> A -> Vec A n -> Vec A (suc n) insert fzero y xs = y :: xs insert (fsuc i) y (x :: xs) = x :: insert i y xs -- Index view data IndexView {A : Set} : {n : Nat}(i : Fin n) -> Vec A n -> Set where ixV : {n : Nat}{i : Fin (suc n)}(x : A)(xs : Vec A n) -> IndexView i (insert i x xs) _[!]_ : {A : Set}{n : Nat}(xs : Vec A n)(i : Fin n) -> IndexView i xs x :: xs [!] fzero = ixV x xs x :: xs [!] fsuc i = aux xs i (xs [!] i) where aux : {n : Nat}(xs : Vec _ n)(i : Fin n) -> IndexView i xs -> IndexView (fsuc i) (x :: xs) aux .(insert i y xs) i (ixV y xs) = ixV y (x :: xs) -- Build a vector from an indexing function (inverse of _!_) build : {n : Nat}{A : Set} -> (Fin n -> A) -> Vec A n build {zero } f = [] build {suc _} f = f fzero :: build (f ∘ fsuc) -- Constant vectors vec : {n : Nat}{A : Set} -> A -> Vec A n vec {zero } _ = [] vec {suc m} x = x :: vec x -- Vector application _#_ : {n : Nat}{A B : Set} -> Vec (A -> B) n -> Vec A n -> Vec B n [] # [] = [] (f :: fs) # (x :: xs) = f x :: fs # xs -- Vectors of length n form an applicative structure ApplicativeVec : {n : Nat} -> Applicative (\A -> Vec A n) ApplicativeVec {n} = applicative (vec {n}) (_#_ {n}) -- Map map : {n : Nat}{A B : Set} -> (A -> B) -> Vec A n -> Vec B n map f xs = vec f # xs -- Zip zip : {n : Nat}{A B C : Set} -> (A -> B -> C) -> Vec A n -> Vec B n -> Vec C n zip f xs ys = vec f # xs # ys module Elem where infix 40 _∈_ _∉_ data _∈_ {A : Set}(x : A) : {n : Nat}(xs : Vec A n) -> Set where hd : {n : Nat} {xs : Vec A n} -> x ∈ x :: xs tl : {n : Nat}{y : A}{xs : Vec A n} -> x ∈ xs -> x ∈ y :: xs data _∉_ {A : Set}(x : A) : {n : Nat}(xs : Vec A n) -> Set where nl : x ∉ [] cns : {n : Nat}{y : A}{xs : Vec A n} -> x ≢ y -> x ∉ xs -> x ∉ y :: xs ∉=¬∈ : {A : Set}{x : A}{n : Nat}{xs : Vec A n} -> x ∉ xs -> ¬ (x ∈ xs) ∉=¬∈ nl () ∉=¬∈ {A} (cns x≠x _) hd = elim-False (x≠x refl) ∉=¬∈ {A} (cns _ ne) (tl e) = ∉=¬∈ ne e ∈=¬∉ : {A : Set}{x : A}{n : Nat}{xs : Vec A n} -> x ∈ xs -> ¬ (x ∉ xs) ∈=¬∉ e ne = ∉=¬∈ ne e find : {A : Set}{n : Nat} -> ((x y : A) -> x ≡ y \/ x ≢ y) -> (x : A)(xs : Vec A n) -> x ∈ xs \/ x ∉ xs find _ _ [] = \/-IR nl find eq y (x :: xs) = aux x y (eq y x) (find eq y xs) where aux : forall x y -> y ≡ x \/ y ≢ x -> y ∈ xs \/ y ∉ xs -> y ∈ x :: xs \/ y ∉ x :: xs aux x .x (\/-IL refl) _ = \/-IL hd aux x y (\/-IR y≠x) (\/-IR y∉xs) = \/-IR (cns y≠x y∉xs) aux x y (\/-IR _) (\/-IL y∈xs) = \/-IL (tl y∈xs) delete : {A : Set}{n : Nat}(x : A)(xs : Vec A (suc n)) -> x ∈ xs -> Vec A n delete .x (x :: xs) hd = xs delete {A}{zero } _ ._ (tl ()) delete {A}{suc _} y (x :: xs) (tl p) = x :: delete y xs p
31.757282
88
0.466524
121515af7fd8dd0ff65a48c72007fa6d08d43022
39,090
agda
Agda
agda-stdlib/src/Data/List/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/List/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/List/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- List-related properties ------------------------------------------------------------------------ -- Note that the lemmas below could be generalised to work with other -- equalities than _≡_. {-# OPTIONS --without-K --safe #-} module Data.List.Properties where open import Algebra.Bundles open import Algebra.Definitions as AlgebraicDefinitions using (Involutive) import Algebra.Structures as AlgebraicStructures open import Data.Bool.Base using (Bool; false; true; not; if_then_else_) open import Data.Fin.Base using (Fin; zero; suc; cast; toℕ; inject₁) open import Data.List.Base as List open import Data.List.Relation.Unary.All using (All; []; _∷_) open import Data.List.Relation.Unary.Any using (Any; here; there) open import Data.Maybe.Base using (Maybe; just; nothing) open import Data.Nat.Base open import Data.Nat.Properties open import Data.Product as Prod hiding (map; zip) open import Data.Sum.Base using (_⊎_; inj₁; inj₂) open import Data.These.Base as These using (These; this; that; these) open import Function open import Level using (Level) open import Relation.Binary as B using (DecidableEquality) import Relation.Binary.Reasoning.Setoid as EqR open import Relation.Binary.PropositionalEquality as P hiding ([_]) open import Relation.Binary as B using (Rel) open import Relation.Nullary.Reflects using (invert) open import Relation.Nullary using (¬_; Dec; does; _because_; yes; no) open import Relation.Nullary.Negation using (contradiction; ¬?) open import Relation.Nullary.Decidable as Decidable using (isYes; map′; ⌊_⌋) open import Relation.Nullary.Product using (_×-dec_) open import Relation.Unary using (Pred; Decidable; ∁) open import Relation.Unary.Properties using (∁?) open ≡-Reasoning private variable a b c d e p : Level A : Set a B : Set b C : Set c D : Set d E : Set e ----------------------------------------------------------------------- -- _∷_ module _ {x y : A} {xs ys : List A} where ∷-injective : x ∷ xs ≡ y List.∷ ys → x ≡ y × xs ≡ ys ∷-injective refl = (refl , refl) ∷-injectiveˡ : x ∷ xs ≡ y List.∷ ys → x ≡ y ∷-injectiveˡ refl = refl ∷-injectiveʳ : x ∷ xs ≡ y List.∷ ys → xs ≡ ys ∷-injectiveʳ refl = refl ∷-dec : Dec (x ≡ y) → Dec (xs ≡ ys) → Dec (x List.∷ xs ≡ y ∷ ys) ∷-dec x≟y xs≟ys = Decidable.map′ (uncurry (cong₂ _∷_)) ∷-injective (x≟y ×-dec xs≟ys) ≡-dec : DecidableEquality A → DecidableEquality (List A) ≡-dec _≟_ [] [] = yes refl ≡-dec _≟_ (x ∷ xs) [] = no λ() ≡-dec _≟_ [] (y ∷ ys) = no λ() ≡-dec _≟_ (x ∷ xs) (y ∷ ys) = ∷-dec (x ≟ y) (≡-dec _≟_ xs ys) ------------------------------------------------------------------------ -- map map-id : map id ≗ id {A = List A} map-id [] = refl map-id (x ∷ xs) = cong (x ∷_) (map-id xs) map-id₂ : ∀ {f : A → A} {xs} → All (λ x → f x ≡ x) xs → map f xs ≡ xs map-id₂ [] = refl map-id₂ (fx≡x ∷ pxs) = cong₂ _∷_ fx≡x (map-id₂ pxs) map-++-commute : ∀ (f : A → B) xs ys → map f (xs ++ ys) ≡ map f xs ++ map f ys map-++-commute f [] ys = refl map-++-commute f (x ∷ xs) ys = cong (f x ∷_) (map-++-commute f xs ys) map-cong : ∀ {f g : A → B} → f ≗ g → map f ≗ map g map-cong f≗g [] = refl map-cong f≗g (x ∷ xs) = cong₂ _∷_ (f≗g x) (map-cong f≗g xs) map-cong₂ : ∀ {f g : A → B} {xs} → All (λ x → f x ≡ g x) xs → map f xs ≡ map g xs map-cong₂ [] = refl map-cong₂ (fx≡gx ∷ fxs≡gxs) = cong₂ _∷_ fx≡gx (map-cong₂ fxs≡gxs) length-map : ∀ (f : A → B) xs → length (map f xs) ≡ length xs length-map f [] = refl length-map f (x ∷ xs) = cong suc (length-map f xs) map-compose : {g : B → C} {f : A → B} → map (g ∘ f) ≗ map g ∘ map f map-compose [] = refl map-compose (x ∷ xs) = cong (_ ∷_) (map-compose xs) ------------------------------------------------------------------------ -- mapMaybe mapMaybe-just : (xs : List A) → mapMaybe just xs ≡ xs mapMaybe-just [] = refl mapMaybe-just (x ∷ xs) = cong (x ∷_) (mapMaybe-just xs) mapMaybe-nothing : (xs : List A) → mapMaybe {B = A} (λ _ → nothing) xs ≡ [] mapMaybe-nothing [] = refl mapMaybe-nothing (x ∷ xs) = mapMaybe-nothing xs module _ (f : A → Maybe B) where mapMaybe-concatMap : mapMaybe f ≗ concatMap (fromMaybe ∘ f) mapMaybe-concatMap [] = refl mapMaybe-concatMap (x ∷ xs) with f x ... | just y = cong (y ∷_) (mapMaybe-concatMap xs) ... | nothing = mapMaybe-concatMap xs length-mapMaybe : ∀ xs → length (mapMaybe f xs) ≤ length xs length-mapMaybe [] = z≤n length-mapMaybe (x ∷ xs) with f x ... | just y = s≤s (length-mapMaybe xs) ... | nothing = ≤-step (length-mapMaybe xs) ------------------------------------------------------------------------ -- _++_ length-++ : ∀ (xs : List A) {ys} → length (xs ++ ys) ≡ length xs + length ys length-++ [] = refl length-++ (x ∷ xs) = cong suc (length-++ xs) module _ {A : Set a} where open AlgebraicDefinitions {A = List A} _≡_ open AlgebraicStructures {A = List A} _≡_ ++-assoc : Associative _++_ ++-assoc [] ys zs = refl ++-assoc (x ∷ xs) ys zs = cong (x ∷_) (++-assoc xs ys zs) ++-identityˡ : LeftIdentity [] _++_ ++-identityˡ xs = refl ++-identityʳ : RightIdentity [] _++_ ++-identityʳ [] = refl ++-identityʳ (x ∷ xs) = cong (x ∷_) (++-identityʳ xs) ++-identity : Identity [] _++_ ++-identity = ++-identityˡ , ++-identityʳ ++-identityʳ-unique : ∀ (xs : List A) {ys} → xs ≡ xs ++ ys → ys ≡ [] ++-identityʳ-unique [] refl = refl ++-identityʳ-unique (x ∷ xs) eq = ++-identityʳ-unique xs (proj₂ (∷-injective eq)) ++-identityˡ-unique : ∀ {xs} (ys : List A) → xs ≡ ys ++ xs → ys ≡ [] ++-identityˡ-unique [] _ = refl ++-identityˡ-unique {xs = x ∷ xs} (y ∷ ys) eq with ++-identityˡ-unique (ys ++ [ x ]) (begin xs ≡⟨ proj₂ (∷-injective eq) ⟩ ys ++ x ∷ xs ≡⟨ sym (++-assoc ys [ x ] xs) ⟩ (ys ++ [ x ]) ++ xs ∎) ++-identityˡ-unique {xs = x ∷ xs} (y ∷ [] ) eq | () ++-identityˡ-unique {xs = x ∷ xs} (y ∷ _ ∷ _) eq | () ++-cancelˡ : ∀ xs {ys zs : List A} → xs ++ ys ≡ xs ++ zs → ys ≡ zs ++-cancelˡ [] ys≡zs = ys≡zs ++-cancelˡ (x ∷ xs) x∷xs++ys≡x∷xs++zs = ++-cancelˡ xs (∷-injectiveʳ x∷xs++ys≡x∷xs++zs) ++-cancelʳ : ∀ {xs : List A} ys zs → ys ++ xs ≡ zs ++ xs → ys ≡ zs ++-cancelʳ {_} [] [] _ = refl ++-cancelʳ {xs} [] (z ∷ zs) eq = contradiction (trans (cong length eq) (length-++ (z ∷ zs))) (m≢1+n+m (length xs)) ++-cancelʳ {xs} (y ∷ ys) [] eq = contradiction (trans (sym (length-++ (y ∷ ys))) (cong length eq)) (m≢1+n+m (length xs) ∘ sym) ++-cancelʳ {_} (y ∷ ys) (z ∷ zs) eq = cong₂ _∷_ (∷-injectiveˡ eq) (++-cancelʳ ys zs (∷-injectiveʳ eq)) ++-cancel : Cancellative _++_ ++-cancel = ++-cancelˡ , ++-cancelʳ ++-conicalˡ : ∀ (xs ys : List A) → xs ++ ys ≡ [] → xs ≡ [] ++-conicalˡ [] _ refl = refl ++-conicalʳ : ∀ (xs ys : List A) → xs ++ ys ≡ [] → ys ≡ [] ++-conicalʳ [] _ refl = refl ++-conical : Conical [] _++_ ++-conical = ++-conicalˡ , ++-conicalʳ ++-isMagma : IsMagma _++_ ++-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _++_ } ++-isSemigroup : IsSemigroup _++_ ++-isSemigroup = record { isMagma = ++-isMagma ; assoc = ++-assoc } ++-isMonoid : IsMonoid _++_ [] ++-isMonoid = record { isSemigroup = ++-isSemigroup ; identity = ++-identity } module _ (A : Set a) where ++-semigroup : Semigroup a a ++-semigroup = record { Carrier = List A ; isSemigroup = ++-isSemigroup } ++-monoid : Monoid a a ++-monoid = record { Carrier = List A ; isMonoid = ++-isMonoid } ------------------------------------------------------------------------ -- alignWith module _ {f g : These A B → C} where alignWith-cong : f ≗ g → ∀ as → alignWith f as ≗ alignWith g as alignWith-cong f≗g [] bs = map-cong (f≗g ∘ that) bs alignWith-cong f≗g as@(_ ∷ _) [] = map-cong (f≗g ∘ this) as alignWith-cong f≗g (a ∷ as) (b ∷ bs) = cong₂ _∷_ (f≗g (these a b)) (alignWith-cong f≗g as bs) length-alignWith : ∀ xs ys → length (alignWith f xs ys) ≡ length xs ⊔ length ys length-alignWith [] ys = length-map (f ∘′ that) ys length-alignWith xs@(_ ∷ _) [] = length-map (f ∘′ this) xs length-alignWith (x ∷ xs) (y ∷ ys) = cong suc (length-alignWith xs ys) alignWith-map : (g : D → A) (h : E → B) → ∀ xs ys → alignWith f (map g xs) (map h ys) ≡ alignWith (f ∘′ These.map g h) xs ys alignWith-map g h [] ys = sym (map-compose ys) alignWith-map g h xs@(_ ∷ _) [] = sym (map-compose xs) alignWith-map g h (x ∷ xs) (y ∷ ys) = cong₂ _∷_ refl (alignWith-map g h xs ys) map-alignWith : ∀ (g : C → D) → ∀ xs ys → map g (alignWith f xs ys) ≡ alignWith (g ∘′ f) xs ys map-alignWith g [] ys = sym (map-compose ys) map-alignWith g xs@(_ ∷ _) [] = sym (map-compose xs) map-alignWith g (x ∷ xs) (y ∷ ys) = cong₂ _∷_ refl (map-alignWith g xs ys) ------------------------------------------------------------------------ -- zipWith module _ (f : A → A → B) where zipWith-comm : (∀ x y → f x y ≡ f y x) → ∀ xs ys → zipWith f xs ys ≡ zipWith f ys xs zipWith-comm f-comm [] [] = refl zipWith-comm f-comm [] (x ∷ ys) = refl zipWith-comm f-comm (x ∷ xs) [] = refl zipWith-comm f-comm (x ∷ xs) (y ∷ ys) = cong₂ _∷_ (f-comm x y) (zipWith-comm f-comm xs ys) module _ (f : A → B → C) where zipWith-identityˡ : ∀ xs → zipWith f [] xs ≡ [] zipWith-identityˡ [] = refl zipWith-identityˡ (x ∷ xs) = refl zipWith-identityʳ : ∀ xs → zipWith f xs [] ≡ [] zipWith-identityʳ [] = refl zipWith-identityʳ (x ∷ xs) = refl length-zipWith : ∀ xs ys → length (zipWith f xs ys) ≡ length xs ⊓ length ys length-zipWith [] [] = refl length-zipWith [] (y ∷ ys) = refl length-zipWith (x ∷ xs) [] = refl length-zipWith (x ∷ xs) (y ∷ ys) = cong suc (length-zipWith xs ys) zipWith-map : ∀ {d e} {D : Set d} {E : Set e} (g : D → A) (h : E → B) → ∀ xs ys → zipWith f (map g xs) (map h ys) ≡ zipWith (λ x y → f (g x) (h y)) xs ys zipWith-map g h [] [] = refl zipWith-map g h [] (y ∷ ys) = refl zipWith-map g h (x ∷ xs) [] = refl zipWith-map g h (x ∷ xs) (y ∷ ys) = cong₂ _∷_ refl (zipWith-map g h xs ys) map-zipWith : ∀ {d} {D : Set d} (g : C → D) → ∀ xs ys → map g (zipWith f xs ys) ≡ zipWith (λ x y → g (f x y)) xs ys map-zipWith g [] [] = refl map-zipWith g [] (y ∷ ys) = refl map-zipWith g (x ∷ xs) [] = refl map-zipWith g (x ∷ xs) (y ∷ ys) = cong₂ _∷_ refl (map-zipWith g xs ys) ------------------------------------------------------------------------ -- unalignWith unalignWith-this : unalignWith ((A → These A B) ∋ this) ≗ (_, []) unalignWith-this [] = refl unalignWith-this (a ∷ as) = cong (Prod.map₁ (a ∷_)) (unalignWith-this as) unalignWith-that : unalignWith ((B → These A B) ∋ that) ≗ ([] ,_) unalignWith-that [] = refl unalignWith-that (b ∷ bs) = cong (Prod.map₂ (b ∷_)) (unalignWith-that bs) module _ {f g : C → These A B} where unalignWith-cong : f ≗ g → unalignWith f ≗ unalignWith g unalignWith-cong f≗g [] = refl unalignWith-cong f≗g (c ∷ cs) with f c | g c | f≗g c ... | this a | ._ | refl = cong (Prod.map₁ (a ∷_)) (unalignWith-cong f≗g cs) ... | that b | ._ | refl = cong (Prod.map₂ (b ∷_)) (unalignWith-cong f≗g cs) ... | these a b | ._ | refl = cong (Prod.map (a ∷_) (b ∷_)) (unalignWith-cong f≗g cs) module _ (f : C → These A B) where unalignWith-map : (g : D → C) → ∀ ds → unalignWith f (map g ds) ≡ unalignWith (f ∘′ g) ds unalignWith-map g [] = refl unalignWith-map g (d ∷ ds) with f (g d) ... | this a = cong (Prod.map₁ (a ∷_)) (unalignWith-map g ds) ... | that b = cong (Prod.map₂ (b ∷_)) (unalignWith-map g ds) ... | these a b = cong (Prod.map (a ∷_) (b ∷_)) (unalignWith-map g ds) map-unalignWith : (g : A → D) (h : B → E) → Prod.map (map g) (map h) ∘′ unalignWith f ≗ unalignWith (These.map g h ∘′ f) map-unalignWith g h [] = refl map-unalignWith g h (c ∷ cs) with f c ... | this a = cong (Prod.map₁ (g a ∷_)) (map-unalignWith g h cs) ... | that b = cong (Prod.map₂ (h b ∷_)) (map-unalignWith g h cs) ... | these a b = cong (Prod.map (g a ∷_) (h b ∷_)) (map-unalignWith g h cs) unalignWith-alignWith : (g : These A B → C) → f ∘′ g ≗ id → ∀ as bs → unalignWith f (alignWith g as bs) ≡ (as , bs) unalignWith-alignWith g g∘f≗id [] bs = begin unalignWith f (map (g ∘′ that) bs) ≡⟨ unalignWith-map (g ∘′ that) bs ⟩ unalignWith (f ∘′ g ∘′ that) bs ≡⟨ unalignWith-cong (g∘f≗id ∘ that) bs ⟩ unalignWith that bs ≡⟨ unalignWith-that bs ⟩ [] , bs ∎ unalignWith-alignWith g g∘f≗id as@(_ ∷ _) [] = begin unalignWith f (map (g ∘′ this) as) ≡⟨ unalignWith-map (g ∘′ this) as ⟩ unalignWith (f ∘′ g ∘′ this) as ≡⟨ unalignWith-cong (g∘f≗id ∘ this) as ⟩ unalignWith this as ≡⟨ unalignWith-this as ⟩ as , [] ∎ unalignWith-alignWith g g∘f≗id (a ∷ as) (b ∷ bs) rewrite g∘f≗id (these a b) = cong (Prod.map (a ∷_) (b ∷_)) (unalignWith-alignWith g g∘f≗id as bs) ------------------------------------------------------------------------ -- unzipWith module _ (f : A → B × C) where length-unzipWith₁ : ∀ xys → length (proj₁ (unzipWith f xys)) ≡ length xys length-unzipWith₁ [] = refl length-unzipWith₁ (x ∷ xys) = cong suc (length-unzipWith₁ xys) length-unzipWith₂ : ∀ xys → length (proj₂ (unzipWith f xys)) ≡ length xys length-unzipWith₂ [] = refl length-unzipWith₂ (x ∷ xys) = cong suc (length-unzipWith₂ xys) zipWith-unzipWith : (g : B → C → A) → uncurry′ g ∘ f ≗ id → uncurry′ (zipWith g) ∘ (unzipWith f) ≗ id zipWith-unzipWith g f∘g≗id [] = refl zipWith-unzipWith g f∘g≗id (x ∷ xs) = cong₂ _∷_ (f∘g≗id x) (zipWith-unzipWith g f∘g≗id xs) ------------------------------------------------------------------------ -- foldr foldr-universal : ∀ (h : List A → B) f e → (h [] ≡ e) → (∀ x xs → h (x ∷ xs) ≡ f x (h xs)) → h ≗ foldr f e foldr-universal h f e base step [] = base foldr-universal h f e base step (x ∷ xs) = begin h (x ∷ xs) ≡⟨ step x xs ⟩ f x (h xs) ≡⟨ cong (f x) (foldr-universal h f e base step xs) ⟩ f x (foldr f e xs) ∎ foldr-cong : ∀ {f g : A → B → B} {d e : B} → (∀ x y → f x y ≡ g x y) → d ≡ e → foldr f d ≗ foldr g e foldr-cong f≗g refl [] = refl foldr-cong f≗g d≡e (x ∷ xs) rewrite foldr-cong f≗g d≡e xs = f≗g x _ foldr-fusion : ∀ (h : B → C) {f : A → B → B} {g : A → C → C} (e : B) → (∀ x y → h (f x y) ≡ g x (h y)) → h ∘ foldr f e ≗ foldr g (h e) foldr-fusion h {f} {g} e fuse = foldr-universal (h ∘ foldr f e) g (h e) refl (λ x xs → fuse x (foldr f e xs)) id-is-foldr : id {A = List A} ≗ foldr _∷_ [] id-is-foldr = foldr-universal id _∷_ [] refl (λ _ _ → refl) ++-is-foldr : (xs ys : List A) → xs ++ ys ≡ foldr _∷_ ys xs ++-is-foldr xs ys = begin xs ++ ys ≡⟨ cong (_++ ys) (id-is-foldr xs) ⟩ foldr _∷_ [] xs ++ ys ≡⟨ foldr-fusion (_++ ys) [] (λ _ _ → refl) xs ⟩ foldr _∷_ ([] ++ ys) xs ≡⟨⟩ foldr _∷_ ys xs ∎ foldr-++ : ∀ (f : A → B → B) x ys zs → foldr f x (ys ++ zs) ≡ foldr f (foldr f x zs) ys foldr-++ f x [] zs = refl foldr-++ f x (y ∷ ys) zs = cong (f y) (foldr-++ f x ys zs) map-is-foldr : {f : A → B} → map f ≗ foldr (λ x ys → f x ∷ ys) [] map-is-foldr {f = f} xs = begin map f xs ≡⟨ cong (map f) (id-is-foldr xs) ⟩ map f (foldr _∷_ [] xs) ≡⟨ foldr-fusion (map f) [] (λ _ _ → refl) xs ⟩ foldr (λ x ys → f x ∷ ys) [] xs ∎ foldr-∷ʳ : ∀ (f : A → B → B) x y ys → foldr f x (ys ∷ʳ y) ≡ foldr f (f y x) ys foldr-∷ʳ f x y [] = refl foldr-∷ʳ f x y (z ∷ ys) = cong (f z) (foldr-∷ʳ f x y ys) -- Interaction with predicates module _ {P : Pred A p} {f : A → A → A} where foldr-forcesᵇ : (∀ x y → P (f x y) → P x × P y) → ∀ e xs → P (foldr f e xs) → All P xs foldr-forcesᵇ _ _ [] _ = [] foldr-forcesᵇ forces _ (x ∷ xs) Pfold with forces _ _ Pfold ... | (px , pfxs) = px ∷ foldr-forcesᵇ forces _ xs pfxs foldr-preservesᵇ : (∀ {x y} → P x → P y → P (f x y)) → ∀ {e xs} → P e → All P xs → P (foldr f e xs) foldr-preservesᵇ _ Pe [] = Pe foldr-preservesᵇ pres Pe (px ∷ pxs) = pres px (foldr-preservesᵇ pres Pe pxs) foldr-preservesʳ : (∀ x {y} → P y → P (f x y)) → ∀ {e} → P e → ∀ xs → P (foldr f e xs) foldr-preservesʳ pres Pe [] = Pe foldr-preservesʳ pres Pe (_ ∷ xs) = pres _ (foldr-preservesʳ pres Pe xs) foldr-preservesᵒ : (∀ x y → P x ⊎ P y → P (f x y)) → ∀ e xs → P e ⊎ Any P xs → P (foldr f e xs) foldr-preservesᵒ pres e [] (inj₁ Pe) = Pe foldr-preservesᵒ pres e (x ∷ xs) (inj₁ Pe) = pres _ _ (inj₂ (foldr-preservesᵒ pres e xs (inj₁ Pe))) foldr-preservesᵒ pres e (x ∷ xs) (inj₂ (here px)) = pres _ _ (inj₁ px) foldr-preservesᵒ pres e (x ∷ xs) (inj₂ (there pxs)) = pres _ _ (inj₂ (foldr-preservesᵒ pres e xs (inj₂ pxs))) ------------------------------------------------------------------------ -- foldl foldl-++ : ∀ (f : A → B → A) x ys zs → foldl f x (ys ++ zs) ≡ foldl f (foldl f x ys) zs foldl-++ f x [] zs = refl foldl-++ f x (y ∷ ys) zs = foldl-++ f (f x y) ys zs foldl-∷ʳ : ∀ (f : A → B → A) x y ys → foldl f x (ys ∷ʳ y) ≡ f (foldl f x ys) y foldl-∷ʳ f x y [] = refl foldl-∷ʳ f x y (z ∷ ys) = foldl-∷ʳ f (f x z) y ys ------------------------------------------------------------------------ -- concat concat-map : ∀ {f : A → B} → concat ∘ map (map f) ≗ map f ∘ concat concat-map {f = f} xss = begin concat (map (map f) xss) ≡⟨ cong concat (map-is-foldr xss) ⟩ concat (foldr (λ xs → map f xs ∷_) [] xss) ≡⟨ foldr-fusion concat [] (λ _ _ → refl) xss ⟩ foldr (λ ys → map f ys ++_) [] xss ≡⟨ sym (foldr-fusion (map f) [] (map-++-commute f) xss) ⟩ map f (concat xss) ∎ ------------------------------------------------------------------------ -- sum sum-++-commute : ∀ xs ys → sum (xs ++ ys) ≡ sum xs + sum ys sum-++-commute [] ys = refl sum-++-commute (x ∷ xs) ys = begin x + sum (xs ++ ys) ≡⟨ cong (x +_) (sum-++-commute xs ys) ⟩ x + (sum xs + sum ys) ≡⟨ sym (+-assoc x _ _) ⟩ (x + sum xs) + sum ys ∎ ------------------------------------------------------------------------ -- replicate length-replicate : ∀ n {x : A} → length (replicate n x) ≡ n length-replicate zero = refl length-replicate (suc n) = cong suc (length-replicate n) ------------------------------------------------------------------------ -- scanr scanr-defn : ∀ (f : A → B → B) (e : B) → scanr f e ≗ map (foldr f e) ∘ tails scanr-defn f e [] = refl scanr-defn f e (x ∷ []) = refl scanr-defn f e (x ∷ y ∷ xs) with scanr f e (y ∷ xs) | scanr-defn f e (y ∷ xs) ... | [] | () ... | z ∷ zs | eq with ∷-injective eq ... | z≡fy⦇f⦈xs , _ = cong₂ (λ z → f x z ∷_) z≡fy⦇f⦈xs eq ------------------------------------------------------------------------ -- scanl scanl-defn : ∀ (f : A → B → A) (e : A) → scanl f e ≗ map (foldl f e) ∘ inits scanl-defn f e [] = refl scanl-defn f e (x ∷ xs) = cong (e ∷_) (begin scanl f (f e x) xs ≡⟨ scanl-defn f (f e x) xs ⟩ map (foldl f (f e x)) (inits xs) ≡⟨ refl ⟩ map (foldl f e ∘ (x ∷_)) (inits xs) ≡⟨ map-compose (inits xs) ⟩ map (foldl f e) (map (x ∷_) (inits xs)) ∎) ------------------------------------------------------------------------ -- applyUpTo length-applyUpTo : ∀ (f : ℕ → A) n → length (applyUpTo f n) ≡ n length-applyUpTo f zero = refl length-applyUpTo f (suc n) = cong suc (length-applyUpTo (f ∘ suc) n) lookup-applyUpTo : ∀ (f : ℕ → A) n i → lookup (applyUpTo f n) i ≡ f (toℕ i) lookup-applyUpTo f (suc n) zero = refl lookup-applyUpTo f (suc n) (suc i) = lookup-applyUpTo (f ∘ suc) n i ------------------------------------------------------------------------ -- applyUpTo module _ (f : ℕ → A) where length-applyDownFrom : ∀ n → length (applyDownFrom f n) ≡ n length-applyDownFrom zero = refl length-applyDownFrom (suc n) = cong suc (length-applyDownFrom n) lookup-applyDownFrom : ∀ n i → lookup (applyDownFrom f n) i ≡ f (n ∸ (suc (toℕ i))) lookup-applyDownFrom (suc n) zero = refl lookup-applyDownFrom (suc n) (suc i) = lookup-applyDownFrom n i ------------------------------------------------------------------------ -- upTo length-upTo : ∀ n → length (upTo n) ≡ n length-upTo = length-applyUpTo id lookup-upTo : ∀ n i → lookup (upTo n) i ≡ toℕ i lookup-upTo = lookup-applyUpTo id ------------------------------------------------------------------------ -- downFrom length-downFrom : ∀ n → length (downFrom n) ≡ n length-downFrom = length-applyDownFrom id lookup-downFrom : ∀ n i → lookup (downFrom n) i ≡ n ∸ (suc (toℕ i)) lookup-downFrom = lookup-applyDownFrom id ------------------------------------------------------------------------ -- tabulate tabulate-cong : ∀ {n} {f g : Fin n → A} → f ≗ g → tabulate f ≡ tabulate g tabulate-cong {n = zero} p = refl tabulate-cong {n = suc n} p = cong₂ _∷_ (p zero) (tabulate-cong (p ∘ suc)) tabulate-lookup : ∀ (xs : List A) → tabulate (lookup xs) ≡ xs tabulate-lookup [] = refl tabulate-lookup (x ∷ xs) = cong (_ ∷_) (tabulate-lookup xs) length-tabulate : ∀ {n} → (f : Fin n → A) → length (tabulate f) ≡ n length-tabulate {n = zero} f = refl length-tabulate {n = suc n} f = cong suc (length-tabulate (λ z → f (suc z))) lookup-tabulate : ∀ {n} → (f : Fin n → A) → ∀ i → let i′ = cast (sym (length-tabulate f)) i in lookup (tabulate f) i′ ≡ f i lookup-tabulate f zero = refl lookup-tabulate f (suc i) = lookup-tabulate (f ∘ suc) i map-tabulate : ∀ {n} (g : Fin n → A) (f : A → B) → map f (tabulate g) ≡ tabulate (f ∘ g) map-tabulate {n = zero} g f = refl map-tabulate {n = suc n} g f = cong (_ ∷_) (map-tabulate (g ∘ suc) f) ------------------------------------------------------------------------ -- _[_]%=_ length-%= : ∀ xs k (f : A → A) → length (xs [ k ]%= f) ≡ length xs length-%= (x ∷ xs) zero f = refl length-%= (x ∷ xs) (suc k) f = cong suc (length-%= xs k f) ------------------------------------------------------------------------ -- _[_]∷=_ length-∷= : ∀ xs k (v : A) → length (xs [ k ]∷= v) ≡ length xs length-∷= xs k v = length-%= xs k (const v) map-∷= : ∀ xs k (v : A) (f : A → B) → let eq = sym (length-map f xs) in map f (xs [ k ]∷= v) ≡ map f xs [ cast eq k ]∷= f v map-∷= (x ∷ xs) zero v f = refl map-∷= (x ∷ xs) (suc k) v f = cong (f x ∷_) (map-∷= xs k v f) ------------------------------------------------------------------------ -- _─_ length-─ : ∀ (xs : List A) k → length (xs ─ k) ≡ pred (length xs) length-─ (x ∷ xs) zero = refl length-─ (x ∷ y ∷ xs) (suc k) = cong suc (length-─ (y ∷ xs) k) map-─ : ∀ xs k (f : A → B) → let eq = sym (length-map f xs) in map f (xs ─ k) ≡ map f xs ─ cast eq k map-─ (x ∷ xs) zero f = refl map-─ (x ∷ xs) (suc k) f = cong (f x ∷_) (map-─ xs k f) ------------------------------------------------------------------------ -- take length-take : ∀ n (xs : List A) → length (take n xs) ≡ n ⊓ (length xs) length-take zero xs = refl length-take (suc n) [] = refl length-take (suc n) (x ∷ xs) = cong suc (length-take n xs) ------------------------------------------------------------------------ -- drop length-drop : ∀ n (xs : List A) → length (drop n xs) ≡ length xs ∸ n length-drop zero xs = refl length-drop (suc n) [] = refl length-drop (suc n) (x ∷ xs) = length-drop n xs take++drop : ∀ n (xs : List A) → take n xs ++ drop n xs ≡ xs take++drop zero xs = refl take++drop (suc n) [] = refl take++drop (suc n) (x ∷ xs) = cong (x ∷_) (take++drop n xs) ------------------------------------------------------------------------ -- splitAt splitAt-defn : ∀ n → splitAt {A = A} n ≗ < take n , drop n > splitAt-defn zero xs = refl splitAt-defn (suc n) [] = refl splitAt-defn (suc n) (x ∷ xs) with splitAt n xs | splitAt-defn n xs ... | (ys , zs) | ih = cong (Prod.map (x ∷_) id) ih ------------------------------------------------------------------------ -- takeWhile, dropWhile, and span module _ {P : Pred A p} (P? : Decidable P) where takeWhile++dropWhile : ∀ xs → takeWhile P? xs ++ dropWhile P? xs ≡ xs takeWhile++dropWhile [] = refl takeWhile++dropWhile (x ∷ xs) with does (P? x) ... | true = cong (x ∷_) (takeWhile++dropWhile xs) ... | false = refl span-defn : span P? ≗ < takeWhile P? , dropWhile P? > span-defn [] = refl span-defn (x ∷ xs) with does (P? x) ... | true = cong (Prod.map (x ∷_) id) (span-defn xs) ... | false = refl ------------------------------------------------------------------------ -- filter module _ {P : Pred A p} (P? : Decidable P) where length-filter : ∀ xs → length (filter P? xs) ≤ length xs length-filter [] = z≤n length-filter (x ∷ xs) with does (P? x) ... | false = ≤-step (length-filter xs) ... | true = s≤s (length-filter xs) filter-all : ∀ {xs} → All P xs → filter P? xs ≡ xs filter-all {[]} [] = refl filter-all {x ∷ xs} (px ∷ pxs) with P? x ... | no ¬px = contradiction px ¬px ... | true because _ = cong (x ∷_) (filter-all pxs) filter-notAll : ∀ xs → Any (∁ P) xs → length (filter P? xs) < length xs filter-notAll (x ∷ xs) (here ¬px) with P? x ... | false because _ = s≤s (length-filter xs) ... | yes px = contradiction px ¬px filter-notAll (x ∷ xs) (there any) with does (P? x) ... | false = ≤-step (filter-notAll xs any) ... | true = s≤s (filter-notAll xs any) filter-some : ∀ {xs} → Any P xs → 0 < length (filter P? xs) filter-some {x ∷ xs} (here px) with P? x ... | true because _ = s≤s z≤n ... | no ¬px = contradiction px ¬px filter-some {x ∷ xs} (there pxs) with does (P? x) ... | true = ≤-step (filter-some pxs) ... | false = filter-some pxs filter-none : ∀ {xs} → All (∁ P) xs → filter P? xs ≡ [] filter-none {[]} [] = refl filter-none {x ∷ xs} (¬px ∷ ¬pxs) with P? x ... | false because _ = filter-none ¬pxs ... | yes px = contradiction px ¬px filter-complete : ∀ {xs} → length (filter P? xs) ≡ length xs → filter P? xs ≡ xs filter-complete {[]} eq = refl filter-complete {x ∷ xs} eq with does (P? x) ... | false = contradiction eq (<⇒≢ (s≤s (length-filter xs))) ... | true = cong (x ∷_) (filter-complete (suc-injective eq)) filter-accept : ∀ {x xs} → P x → filter P? (x ∷ xs) ≡ x ∷ (filter P? xs) filter-accept {x} Px with P? x ... | true because _ = refl ... | no ¬Px = contradiction Px ¬Px filter-reject : ∀ {x xs} → ¬ P x → filter P? (x ∷ xs) ≡ filter P? xs filter-reject {x} ¬Px with P? x ... | yes Px = contradiction Px ¬Px ... | false because _ = refl filter-idem : filter P? ∘ filter P? ≗ filter P? filter-idem [] = refl filter-idem (x ∷ xs) with does (P? x) | inspect does (P? x) ... | false | _ = filter-idem xs ... | true | P.[ eq ] rewrite eq = cong (x ∷_) (filter-idem xs) filter-++ : ∀ xs ys → filter P? (xs ++ ys) ≡ filter P? xs ++ filter P? ys filter-++ [] ys = refl filter-++ (x ∷ xs) ys with does (P? x) ... | true = cong (x ∷_) (filter-++ xs ys) ... | false = filter-++ xs ys ------------------------------------------------------------------------ -- derun and deduplicate module _ {R : Rel A p} (R? : B.Decidable R) where length-derun : ∀ xs → length (derun R? xs) ≤ length xs length-derun [] = ≤-refl length-derun (x ∷ []) = ≤-refl length-derun (x ∷ y ∷ xs) with does (R? x y) | length-derun (y ∷ xs) ... | true | r = ≤-step r ... | false | r = s≤s r length-deduplicate : ∀ xs → length (deduplicate R? xs) ≤ length xs length-deduplicate [] = z≤n length-deduplicate (x ∷ xs) = ≤-begin 1 + length (filter (¬? ∘ R? x) r) ≤⟨ s≤s (length-filter (¬? ∘ R? x) r) ⟩ 1 + length r ≤⟨ s≤s (length-deduplicate xs) ⟩ 1 + length xs ≤-∎ where open ≤-Reasoning renaming (begin_ to ≤-begin_; _∎ to _≤-∎) r = deduplicate R? xs derun-reject : ∀ {x y} xs → R x y → derun R? (x ∷ y ∷ xs) ≡ derun R? (y ∷ xs) derun-reject {x} {y} xs Rxy with R? x y ... | yes _ = refl ... | no ¬Rxy = contradiction Rxy ¬Rxy derun-accept : ∀ {x y} xs → ¬ R x y → derun R? (x ∷ y ∷ xs) ≡ x ∷ derun R? (y ∷ xs) derun-accept {x} {y} xs ¬Rxy with R? x y ... | yes Rxy = contradiction Rxy ¬Rxy ... | no _ = refl ------------------------------------------------------------------------ -- partition module _ {P : Pred A p} (P? : Decidable P) where partition-defn : partition P? ≗ < filter P? , filter (∁? P?) > partition-defn [] = refl partition-defn (x ∷ xs) with does (P? x) ... | true = cong (Prod.map (x ∷_) id) (partition-defn xs) ... | false = cong (Prod.map id (x ∷_)) (partition-defn xs) ------------------------------------------------------------------------ -- _ʳ++_ ʳ++-defn : ∀ (xs : List A) {ys} → xs ʳ++ ys ≡ reverse xs ++ ys ʳ++-defn [] = refl ʳ++-defn (x ∷ xs) {ys} = begin (x ∷ xs) ʳ++ ys ≡⟨⟩ xs ʳ++ x ∷ ys ≡⟨⟩ xs ʳ++ [ x ] ++ ys ≡⟨ ʳ++-defn xs ⟩ reverse xs ++ [ x ] ++ ys ≡⟨ sym (++-assoc (reverse xs) _ _) ⟩ (reverse xs ++ [ x ]) ++ ys ≡⟨ cong (_++ ys) (sym (ʳ++-defn xs)) ⟩ (xs ʳ++ [ x ]) ++ ys ≡⟨⟩ reverse (x ∷ xs) ++ ys ∎ -- Reverse-append of append is reverse-append after reverse-append. ʳ++-++ : ∀ (xs {ys zs} : List A) → (xs ++ ys) ʳ++ zs ≡ ys ʳ++ xs ʳ++ zs ʳ++-++ [] = refl ʳ++-++ (x ∷ xs) {ys} {zs} = begin (x ∷ xs ++ ys) ʳ++ zs ≡⟨⟩ (xs ++ ys) ʳ++ x ∷ zs ≡⟨ ʳ++-++ xs ⟩ ys ʳ++ xs ʳ++ x ∷ zs ≡⟨⟩ ys ʳ++ (x ∷ xs) ʳ++ zs ∎ -- Reverse-append of reverse-append is commuted reverse-append after append. ʳ++-ʳ++ : ∀ (xs {ys zs} : List A) → (xs ʳ++ ys) ʳ++ zs ≡ ys ʳ++ xs ++ zs ʳ++-ʳ++ [] = refl ʳ++-ʳ++ (x ∷ xs) {ys} {zs} = begin ((x ∷ xs) ʳ++ ys) ʳ++ zs ≡⟨⟩ (xs ʳ++ x ∷ ys) ʳ++ zs ≡⟨ ʳ++-ʳ++ xs ⟩ (x ∷ ys) ʳ++ xs ++ zs ≡⟨⟩ ys ʳ++ (x ∷ xs) ++ zs ∎ -- Length of reverse-append length-ʳ++ : ∀ (xs {ys} : List A) → length (xs ʳ++ ys) ≡ length xs + length ys length-ʳ++ [] = refl length-ʳ++ (x ∷ xs) {ys} = begin length ((x ∷ xs) ʳ++ ys) ≡⟨⟩ length (xs ʳ++ x ∷ ys) ≡⟨ length-ʳ++ xs ⟩ length xs + length (x ∷ ys) ≡⟨ +-suc _ _ ⟩ length (x ∷ xs) + length ys ∎ -- map distributes over reverse-append. map-ʳ++ : (f : A → B) (xs {ys} : List A) → map f (xs ʳ++ ys) ≡ map f xs ʳ++ map f ys map-ʳ++ f [] = refl map-ʳ++ f (x ∷ xs) {ys} = begin map f ((x ∷ xs) ʳ++ ys) ≡⟨⟩ map f (xs ʳ++ x ∷ ys) ≡⟨ map-ʳ++ f xs ⟩ map f xs ʳ++ map f (x ∷ ys) ≡⟨⟩ map f xs ʳ++ f x ∷ map f ys ≡⟨⟩ (f x ∷ map f xs) ʳ++ map f ys ≡⟨⟩ map f (x ∷ xs) ʳ++ map f ys ∎ -- A foldr after a reverse is a foldl. foldr-ʳ++ : ∀ (f : A → B → B) b xs {ys} → foldr f b (xs ʳ++ ys) ≡ foldl (flip f) (foldr f b ys) xs foldr-ʳ++ f b [] {_} = refl foldr-ʳ++ f b (x ∷ xs) {ys} = begin foldr f b ((x ∷ xs) ʳ++ ys) ≡⟨⟩ foldr f b (xs ʳ++ x ∷ ys) ≡⟨ foldr-ʳ++ f b xs ⟩ foldl (flip f) (foldr f b (x ∷ ys)) xs ≡⟨⟩ foldl (flip f) (f x (foldr f b ys)) xs ≡⟨⟩ foldl (flip f) (foldr f b ys) (x ∷ xs) ∎ -- A foldl after a reverse is a foldr. foldl-ʳ++ : ∀ (f : B → A → B) b xs {ys} → foldl f b (xs ʳ++ ys) ≡ foldl f (foldr (flip f) b xs) ys foldl-ʳ++ f b [] {_} = refl foldl-ʳ++ f b (x ∷ xs) {ys} = begin foldl f b ((x ∷ xs) ʳ++ ys) ≡⟨⟩ foldl f b (xs ʳ++ x ∷ ys) ≡⟨ foldl-ʳ++ f b xs ⟩ foldl f (foldr (flip f) b xs) (x ∷ ys) ≡⟨⟩ foldl f (f (foldr (flip f) b xs) x) ys ≡⟨⟩ foldl f (foldr (flip f) b (x ∷ xs)) ys ∎ ------------------------------------------------------------------------ -- reverse -- reverse of cons is snoc of reverse. unfold-reverse : ∀ (x : A) xs → reverse (x ∷ xs) ≡ reverse xs ∷ʳ x unfold-reverse x xs = ʳ++-defn xs -- reverse is an involution with respect to append. reverse-++-commute : (xs ys : List A) → reverse (xs ++ ys) ≡ reverse ys ++ reverse xs reverse-++-commute xs ys = begin reverse (xs ++ ys) ≡⟨⟩ (xs ++ ys) ʳ++ [] ≡⟨ ʳ++-++ xs ⟩ ys ʳ++ xs ʳ++ [] ≡⟨⟩ ys ʳ++ reverse xs ≡⟨ ʳ++-defn ys ⟩ reverse ys ++ reverse xs ∎ -- reverse is involutive. reverse-involutive : Involutive {A = List A} _≡_ reverse reverse-involutive xs = begin reverse (reverse xs) ≡⟨⟩ (xs ʳ++ []) ʳ++ [] ≡⟨ ʳ++-ʳ++ xs ⟩ [] ʳ++ xs ++ [] ≡⟨⟩ xs ++ [] ≡⟨ ++-identityʳ xs ⟩ xs ∎ -- reverse preserves length. length-reverse : ∀ (xs : List A) → length (reverse xs) ≡ length xs length-reverse xs = begin length (reverse xs) ≡⟨⟩ length (xs ʳ++ []) ≡⟨ length-ʳ++ xs ⟩ length xs + 0 ≡⟨ +-identityʳ _ ⟩ length xs ∎ reverse-map-commute : (f : A → B) → map f ∘ reverse ≗ reverse ∘ map f reverse-map-commute f xs = begin map f (reverse xs) ≡⟨⟩ map f (xs ʳ++ []) ≡⟨ map-ʳ++ f xs ⟩ map f xs ʳ++ [] ≡⟨⟩ reverse (map f xs) ∎ reverse-foldr : ∀ (f : A → B → B) b → foldr f b ∘ reverse ≗ foldl (flip f) b reverse-foldr f b xs = foldr-ʳ++ f b xs reverse-foldl : ∀ (f : B → A → B) b xs → foldl f b (reverse xs) ≡ foldr (flip f) b xs reverse-foldl f b xs = foldl-ʳ++ f b xs ------------------------------------------------------------------------ -- _∷ʳ_ module _ {x y : A} where ∷ʳ-injective : ∀ xs ys → xs ∷ʳ x ≡ ys ∷ʳ y → xs ≡ ys × x ≡ y ∷ʳ-injective [] [] refl = (refl , refl) ∷ʳ-injective (x ∷ xs) (y ∷ ys) eq with ∷-injective eq ... | refl , eq′ = Prod.map (cong (x ∷_)) id (∷ʳ-injective xs ys eq′) ∷ʳ-injective [] (_ ∷ _ ∷ _) () ∷ʳ-injective (_ ∷ _ ∷ _) [] () ∷ʳ-injectiveˡ : ∀ (xs ys : List A) → xs ∷ʳ x ≡ ys ∷ʳ y → xs ≡ ys ∷ʳ-injectiveˡ xs ys eq = proj₁ (∷ʳ-injective xs ys eq) ∷ʳ-injectiveʳ : ∀ (xs ys : List A) → xs ∷ʳ x ≡ ys ∷ʳ y → x ≡ y ∷ʳ-injectiveʳ xs ys eq = proj₂ (∷ʳ-injective xs ys eq) ------------------------------------------------------------------------ -- DEPRECATED ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.15 gfilter-just = mapMaybe-just {-# WARNING_ON_USAGE gfilter-just "Warning: gfilter-just was deprecated in v0.15. Please use mapMaybe-just instead." #-} gfilter-nothing = mapMaybe-nothing {-# WARNING_ON_USAGE gfilter-nothing "Warning: gfilter-nothing was deprecated in v0.15. Please use mapMaybe-nothing instead." #-} gfilter-concatMap = mapMaybe-concatMap {-# WARNING_ON_USAGE gfilter-concatMap "Warning: gfilter-concatMap was deprecated in v0.15. Please use mapMaybe-concatMap instead." #-} length-gfilter = length-mapMaybe {-# WARNING_ON_USAGE length-gfilter "Warning: length-gfilter was deprecated in v0.15. Please use length-mapMaybe instead." #-} right-identity-unique = ++-identityʳ-unique {-# WARNING_ON_USAGE right-identity-unique "Warning: right-identity-unique was deprecated in v0.15. Please use ++-identityʳ-unique instead." #-} left-identity-unique = ++-identityˡ-unique {-# WARNING_ON_USAGE left-identity-unique "Warning: left-identity-unique was deprecated in v0.15. Please use ++-identityˡ-unique instead." #-} -- Version 0.16 module _ (p : A → Bool) where boolTakeWhile++boolDropWhile : ∀ xs → boolTakeWhile p xs ++ boolDropWhile p xs ≡ xs boolTakeWhile++boolDropWhile [] = refl boolTakeWhile++boolDropWhile (x ∷ xs) with p x ... | true = cong (x ∷_) (boolTakeWhile++boolDropWhile xs) ... | false = refl {-# WARNING_ON_USAGE boolTakeWhile++boolDropWhile "Warning: boolTakeWhile and boolDropWhile were deprecated in v0.16. Please use takeWhile and dropWhile instead." #-} boolSpan-defn : boolSpan p ≗ < boolTakeWhile p , boolDropWhile p > boolSpan-defn [] = refl boolSpan-defn (x ∷ xs) with p x ... | true = cong (Prod.map (x ∷_) id) (boolSpan-defn xs) ... | false = refl {-# WARNING_ON_USAGE boolSpan-defn "Warning: boolSpan, boolTakeWhile and boolDropWhile were deprecated in v0.16. Please use span, takeWhile and dropWhile instead." #-} length-boolFilter : ∀ xs → length (boolFilter p xs) ≤ length xs length-boolFilter xs = length-mapMaybe (λ x → if p x then just x else nothing) xs {-# WARNING_ON_USAGE length-boolFilter "Warning: boolFilter was deprecated in v0.16. Please use filter instead." #-} boolPartition-defn : boolPartition p ≗ < boolFilter p , boolFilter (not ∘ p) > boolPartition-defn [] = refl boolPartition-defn (x ∷ xs) with p x ... | true = cong (Prod.map (x ∷_) id) (boolPartition-defn xs) ... | false = cong (Prod.map id (x ∷_)) (boolPartition-defn xs) {-# WARNING_ON_USAGE boolPartition-defn "Warning: boolPartition and boolFilter were deprecated in v0.16. Please use partition and filter instead." #-} module _ (P : A → Set p) (P? : Decidable P) where boolFilter-filters : ∀ xs → All P (boolFilter (isYes ∘ P?) xs) boolFilter-filters [] = [] boolFilter-filters (x ∷ xs) with P? x ... | true because [px] = invert [px] ∷ boolFilter-filters xs ... | false because _ = boolFilter-filters xs {-# WARNING_ON_USAGE boolFilter-filters "Warning: boolFilter was deprecated in v0.16. Please use filter instead." #-} -- Version 0.17 idIsFold = id-is-foldr {-# WARNING_ON_USAGE idIsFold "Warning: idIsFold was deprecated in v0.17. Please use id-is-foldr instead." #-} ++IsFold = ++-is-foldr {-# WARNING_ON_USAGE ++IsFold "Warning: ++IsFold was deprecated in v0.17. Please use ++-is-foldr instead." #-} mapIsFold = map-is-foldr {-# WARNING_ON_USAGE mapIsFold "Warning: mapIsFold was deprecated in v0.17. Please use map-is-foldr instead." #-}
36.842601
102
0.500128
315008bbec41dc6135d8089597aa90339d9d0d95
6,686
agda
Agda
old/Homotopy/VanKampen/Guide.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
old/Homotopy/VanKampen/Guide.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
old/Homotopy/VanKampen/Guide.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K #-} open import Base module Homotopy.VanKampen.Guide where open import Homotopy.Truncation open import Homotopy.Connected record legend i (city : Set i) : Set (suc i) where constructor leg_,_,_ field name : Set i loc : name → city all-listed : ∀ c → [ hfiber loc c ] id-legend : ∀ {i} (A : Set i) → legend i A id-legend A = leg A , id A , λ x → proj $ x , refl private module Book {i} {city : Set i} {l : legend i city} where open legend l private data #guide : Set i where #point : name → #guide guide : Set i guide = #guide point : name → guide point = #point postulate -- HIT route : ∀ n₁ n₂ → loc n₁ ≡ loc n₂ → point n₁ ≡ point n₂ guide-rec : ∀ {l} (P : guide → Set l) (point* : (n : name) → P (point n)) (route* : ∀ n₁ n₂ (p : loc n₁ ≡ loc n₂) → transport P (route n₁ n₂ p) (point* n₁) ≡ point* n₂) → (x : guide) → P x guide-rec P point* route* (#point n) = point* n postulate -- HIT guide-β-route : ∀ {l} (P : guide → Set l) (point* : (n : name) → P (point n)) (route* : ∀ n₁ n₂ (p : loc n₁ ≡ loc n₂) → transport P (route n₁ n₂ p) (point* n₁) ≡ point* n₂) n₁ n₂ (p : loc n₁ ≡ loc n₂) → apd (guide-rec {l} P point* route*) (route n₁ n₂ p) ≡ route* n₁ n₂ p guide-rec-nondep : ∀ {l} (P : Set l) (point* : name → P) (route* : ∀ n₁ n₂ → loc n₁ ≡ loc n₂ → point* n₁ ≡ point* n₂) → (guide → P) guide-rec-nondep P point* route* (#point n) = point* n postulate -- HIT guide-β-route-nondep : ∀ {l} (P : Set l) (point* : name → P) (route* : ∀ n₁ n₂ → loc n₁ ≡ loc n₂ → point* n₁ ≡ point* n₂) n₁ n₂ (p : loc n₁ ≡ loc n₂) → ap (guide-rec-nondep P point* route*) (route n₁ n₂ p) ≡ route* n₁ n₂ p open Book public hiding (guide) module _ {i} {city : Set i} (l : legend i city) where open legend l guide : Set i guide = Book.guide {i} {city} {l} visit : guide → city visit = guide-rec-nondep city loc (λ _ _ p → p) visit-β-route : ∀ n₁ n₂ (p : loc n₁ ≡ loc n₂) → ap visit (route n₁ n₂ p) ≡ p visit-β-route = guide-β-route-nondep city loc (λ _ _ p → p) private drawn-as-one : ∀ c → is-contr (π₀ $ hfiber visit c) drawn-as-one c = []-extend-nondep ⦃ is-connected-is-prop ⟨0⟩ ⦄ ( λ {(n₁ , p₁) → proj (point n₁ , p₁) , π₀-extend ⦃ λ _ → ≡-is-set $ π₀-is-set $ hfiber visit c ⦄ ( uncurry $ guide-rec (λ x → ∀ p₂ → proj (x , p₂) ≡ proj (point n₁ , p₁)) (λ n₂ p₂ → ap proj let p₃ = p₂ ∘ ! p₁ in Σ-eq (route n₂ n₁ p₃) $ transport (λ x → visit x ≡ c) (route n₂ n₁ p₃) p₂ ≡⟨ trans-app≡cst visit c (route n₂ n₁ p₃) p₂ ⟩ ! (ap visit (route n₂ n₁ p₃)) ∘ p₂ ≡⟨ ap (λ x → ! x ∘ p₂) $ visit-β-route n₂ n₁ p₃ ⟩ ! (p₂ ∘ ! p₁) ∘ p₂ ≡⟨ ap (λ x → x ∘ p₂) $ opposite-concat p₂ (! p₁) ⟩ (! (! p₁) ∘ ! p₂) ∘ p₂ ≡⟨ concat-assoc (! (! p₁)) (! p₂) p₂ ⟩ ! (! p₁) ∘ (! p₂ ∘ p₂) ≡⟨ ap (λ x → ! (! p₁) ∘ x) $ opposite-left-inverse p₂ ⟩ ! (! p₁) ∘ refl ≡⟨ refl-right-unit $ ! (! p₁) ⟩ ! (! p₁) ≡⟨ opposite-opposite p₁ ⟩∎ p₁ ∎) (λ _ _ _ → funext λ _ → prop-has-all-paths (π₀-is-set _ _ _) _ _))}) (all-listed c) private visit-fiber-rec′ : ∀ {j} (P : city → Set j) (h₀-point : ∀ n → P (loc n)) (h₁-route : ∀ n₁ n₂ r → transport P r (h₀-point n₁) ≡ h₀-point n₂) → (∀ c → hfiber visit c → P c) visit-fiber-rec′ P h₀-p h₁-r c (pt , p₁) = transport P p₁ $ guide-rec (P ◯ visit) h₀-p (λ n₁ n₂ r → transport (P ◯ visit) (route n₁ n₂ r) (h₀-p n₁) ≡⟨ ! $ trans-ap P visit (route n₁ n₂ r) $ h₀-p n₁ ⟩ transport P (ap visit $ route n₁ n₂ r) (h₀-p n₁) ≡⟨ ap (λ x → transport P x $ h₀-p n₁) $ visit-β-route n₁ n₂ r ⟩ transport P r (h₀-p n₁) ≡⟨ h₁-r n₁ n₂ r ⟩∎ h₀-p n₂ ∎) pt visit-fiber-rec : ∀ {j} (P : city → Set j) ⦃ _ : ∀ (c : city) → is-set $ P c ⦄ (h₀-point : ∀ n → P (loc n)) (h₁-route : ∀ n₁ n₂ r → transport P r (h₀-point n₁) ≡ h₀-point n₂) → (∀ c → P c) visit-fiber-rec P ⦃ P-is-set ⦄ h₀-p h₁-r c = π₀-extend-nondep ⦃ P-is-set c ⦄ (visit-fiber-rec′ P h₀-p h₁-r c) (π₁ $ drawn-as-one c) visit-fiber-β-loc : ∀ {j} (P : city → Set j) ⦃ P-is-set : ∀ (c : city) → is-set $ P c ⦄ (h₀-p : ∀ n → P (loc n)) (h₁-r : ∀ n₁ n₂ r → transport P r (h₀-p n₁) ≡ h₀-p n₂) → ∀ n → visit-fiber-rec P ⦃ P-is-set ⦄ h₀-p h₁-r (loc n) ≡ h₀-p n visit-fiber-β-loc P ⦃ P-is-set ⦄ h₀-p h₁-r n = visit-fiber-rec P ⦃ P-is-set ⦄ h₀-p h₁-r (loc n) ≡⟨ ap (π₀-extend-nondep ⦃ P-is-set $ loc n ⦄ (visit-fiber-rec′ P h₀-p h₁-r $ loc n)) $ ! $ π₂ (drawn-as-one $ loc n) (proj $ point n , refl) ⟩∎ h₀-p n ∎ private loc-fiber-rec′ : ∀ {j} (P : city → Set j) (h₀-point : ∀ n → P (loc n)) → (∀ c → hfiber loc c → P c) loc-fiber-rec′ P h₀-p c (n , p) = transport P p (h₀-p n) loc-fiber-rec : ∀ {j} (P : city → Set j) ⦃ _ : ∀ c → is-prop $ P c ⦄ (h₀-point : ∀ n → P (loc n)) → (∀ c → P c) loc-fiber-rec P ⦃ P-is-prop ⦄ h₀-p c = []-extend-nondep ⦃ P-is-prop c ⦄ (loc-fiber-rec′ P h₀-p c) (all-listed c) loc-fiber-β-loc : ∀ {j} (P : city → Set j) ⦃ P-is-prop : ∀ (c : city) → is-prop $ P c ⦄ (h₀-p : ∀ n → P (loc n)) → ∀ n → loc-fiber-rec P ⦃ P-is-prop ⦄ h₀-p (loc n) ≡ h₀-p n loc-fiber-β-loc P ⦃ P-is-prop ⦄ h₀-p n = loc-fiber-rec P ⦃ P-is-prop ⦄ h₀-p (loc n) ≡⟨ ap ([]-extend-nondep ⦃ P-is-prop $ loc n ⦄ (loc-fiber-rec′ P h₀-p $ loc n)) $ prop-has-all-paths []-is-prop (all-listed $ loc n) $ proj $ n , refl ⟩∎ h₀-p n ∎ -- Did I preserve the computational contents for identity legend? private module IdTest {i} {city : Set i} where open legend (id-legend city) visit-fiber-β-id : ∀ {j} (P : city → Set j) ⦃ P-is-set : ∀ (c : city) → is-set $ P c ⦄ (h₀-p : ∀ n → P n) (h₁-r : ∀ n₁ n₂ r → transport P r (h₀-p n₁) ≡ h₀-p n₂) → ∀ n → visit-fiber-rec (id-legend city) P ⦃ P-is-set ⦄ h₀-p h₁-r n ≡ h₀-p n visit-fiber-β-id P ⦃ P-is-set ⦄ h₀-p h₁-r n = refl loc-fiber-β-id : ∀ {j} (P : city → Set j) ⦃ P-is-prop : ∀ (c : city) → is-prop $ P c ⦄ (h₀-p : ∀ n → P n) → ∀ n → loc-fiber-rec (id-legend city) P ⦃ P-is-prop ⦄ h₀-p n ≡ h₀-p n loc-fiber-β-id P ⦃ P-is-prop ⦄ h₀-p n = refl
35.56383
90
0.485343