hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
41288fc9e1b077fc458a78de43f0972e387be303
827
agda
Agda
notes/FOT/FOTC/Program/McCarthy91/WF-Relation/Induction/NonAcc/TerminationCheckIssue.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/FOT/FOTC/Program/McCarthy91/WF-Relation/Induction/NonAcc/TerminationCheckIssue.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/FOT/FOTC/Program/McCarthy91/WF-Relation/Induction/NonAcc/TerminationCheckIssue.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Program.McCarthy91.WF-Relation.Induction.NonAcc.TerminationCheckIssue where data ℕ : Set where zero : ℕ succ : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} postulate someℕ : ℕ {-# TERMINATING #-} foo : ℕ → ℕ → ℕ foo n zero = 10 foo zero (succ m) = foo zero someℕ foo (succ n) (succ m) = foo n (succ m) {-# TERMINATING #-} bar : ℕ → ℕ → ℕ bar n zero = 10 bar zero (succ m) = bar m someℕ bar (succ n) (succ m) = bar n (succ m) {-# TERMINATING #-} foobar : ℕ → ℕ → ℕ foobar n zero = 10 foobar zero (succ m) with someℕ ... | zero = 10 ... | succ o = foobar m (succ o) foobar (succ n) (succ m) = foobar n (succ m)
22.972222
85
0.563482
3d9b0414b3f7ba452b6e424a0663d16058b70067
169
agda
Agda
Tools/List.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
30
2017-05-20T03:05:21.000Z
2022-03-30T18:01:07.000Z
Tools/List.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
4
2017-06-22T12:49:23.000Z
2021-02-22T10:37:24.000Z
Tools/List.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
8
2017-10-18T14:18:20.000Z
2021-11-27T15:58:33.000Z
{-# OPTIONS --without-K --safe #-} module Tools.List where open import Data.List.Base public using (List; []; _∷_) module L where open import Data.List.Base public
18.777778
55
0.698225
1dae28e114ea3e1410b9547e941c525934905378
10,900
agda
Agda
core/lib/groups/Isomorphism.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/groups/Isomorphism.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/groups/Isomorphism.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.Equivalence2 open import lib.Function2 open import lib.NType2 open import lib.types.Group open import lib.types.Pi open import lib.types.Subtype open import lib.types.Truncation open import lib.groups.Homomorphism open import lib.groups.SubgroupProp module lib.groups.Isomorphism where GroupStructureIso : ∀ {i j} {GEl : Type i} {HEl : Type j} (GS : GroupStructure GEl) (HS : GroupStructure HEl) → Type (lmax i j) GroupStructureIso GS HS = Σ (GroupStructureHom GS HS) (λ φ → is-equiv (GroupStructureHom.f φ)) infix 30 _≃ᴳˢ_ -- [ˢ] for structures _≃ᴳˢ_ = GroupStructureIso GroupIso : ∀ {i j} (G : Group i) (H : Group j) → Type (lmax i j) GroupIso G H = Σ (G →ᴳ H) (λ φ → is-equiv (GroupHom.f φ)) infix 30 _≃ᴳ_ _≃ᴳ_ = GroupIso ≃ᴳˢ-to-≃ᴳ : ∀ {i j} {G : Group i} {H : Group j} → (Group.group-struct G ≃ᴳˢ Group.group-struct H) → (G ≃ᴳ H) ≃ᴳˢ-to-≃ᴳ (φ , φ-is-equiv) = →ᴳˢ-to-→ᴳ φ , φ-is-equiv ≃-to-≃ᴳ : ∀ {i j} {G : Group i} {H : Group j} (e : Group.El G ≃ Group.El H) → preserves-comp (Group.comp G) (Group.comp H) (–> e) → G ≃ᴳ H ≃-to-≃ᴳ (f , f-is-equiv) pres-comp = group-hom f pres-comp , f-is-equiv ≃-to-≃ᴳˢ : ∀ {i j} {GEl : Type i} {HEl : Type j} {GS : GroupStructure GEl} {HS : GroupStructure HEl} (e : GEl ≃ HEl) → preserves-comp (GroupStructure.comp GS) (GroupStructure.comp HS) (–> e) → GS ≃ᴳˢ HS ≃-to-≃ᴳˢ (f , f-is-equiv) pres-comp = group-structure-hom f pres-comp , f-is-equiv private inverse-preserves-comp : ∀ {i j} {A : Type i} {B : Type j} (A-comp : A → A → A) (B-comp : B → B → B) {f : A → B} (f-ie : is-equiv f) → preserves-comp A-comp B-comp f → preserves-comp B-comp A-comp (is-equiv.g f-ie) inverse-preserves-comp Ac Bc ie pc b₁ b₂ = let open is-equiv ie in ap2 (λ w₁ w₂ → g (Bc w₁ w₂)) (! (f-g b₁)) (! (f-g b₂)) ∙ ! (ap g (pc (g b₁) (g b₂))) ∙ g-f (Ac (g b₁) (g b₂)) module GroupIso {i j} {G : Group i} {H : Group j} (iso : GroupIso G H) where f-hom : G →ᴳ H f-hom = fst iso open GroupHom {G = G} {H = H} f-hom public f-is-equiv : is-equiv f f-is-equiv = snd iso open is-equiv f-is-equiv public f-equiv : Group.El G ≃ Group.El H f-equiv = f , f-is-equiv g-hom : H →ᴳ G g-hom = group-hom g (inverse-preserves-comp (Group.comp G) (Group.comp H) f-is-equiv pres-comp) g-is-equiv : is-equiv g g-is-equiv = is-equiv-inverse f-is-equiv g-equiv : Group.El H ≃ Group.El G g-equiv = g , g-is-equiv idiso : ∀ {i} (G : Group i) → (G ≃ᴳ G) idiso G = idhom G , idf-is-equiv _ {- equality of isomomorphisms -} abstract group-hom=-to-iso= : ∀ {i j} {G : Group i} {H : Group j} {φ ψ : G ≃ᴳ H} → GroupIso.f-hom φ == GroupIso.f-hom ψ → φ == ψ group-hom=-to-iso= = Subtype=-out (is-equiv-prop ∘sub GroupHom.f) group-iso= : ∀ {i j} {G : Group i} {H : Group j} {φ ψ : G ≃ᴳ H} → GroupIso.f φ == GroupIso.f ψ → φ == ψ group-iso= {H = H} p = group-hom=-to-iso= $ group-hom= p {- compositions -} infixr 80 _∘eᴳ_ _∘eᴳ_ : ∀ {i j k} {G : Group i} {H : Group j} {K : Group k} → H ≃ᴳ K → G ≃ᴳ H → G ≃ᴳ K (φ₂ , ie₂) ∘eᴳ (φ₁ , ie₁) = (φ₂ ∘ᴳ φ₁ , ie₂ ∘ise ie₁) infixr 10 _≃ᴳ⟨_⟩_ infix 15 _≃ᴳ∎ _≃ᴳ⟨_⟩_ : ∀ {i j k} (G : Group i) {H : Group j} {K : Group k} → G ≃ᴳ H → H ≃ᴳ K → G ≃ᴳ K G ≃ᴳ⟨ e₁ ⟩ e₂ = e₂ ∘eᴳ e₁ _≃ᴳ∎ : ∀ {i} (G : Group i) → (G ≃ᴳ G) _≃ᴳ∎ = idiso infixl 120 _⁻¹ᴳ _⁻¹ᴳ : ∀ {i j} {G : Group i} {H : Group j} → G ≃ᴳ H → H ≃ᴳ G _⁻¹ᴳ {G = G} {H = H} (φ , ie) = GroupIso.g-hom (φ , ie) , is-equiv-inverse ie {- mimicking notations for equivalences -} –>ᴳ : ∀ {i j} {G : Group i} {H : Group j} → (G ≃ᴳ H) → (G →ᴳ H) –>ᴳ = GroupIso.f-hom <–ᴳ : ∀ {i j} {G : Group i} {H : Group j} → (G ≃ᴳ H) → (H →ᴳ G) <–ᴳ = GroupIso.g-hom {- univalence -} module _ {i} {G H : Group i} (iso : GroupIso G H) where private module G = Group G module H = Group H open module φ = GroupIso {G = G} {H = H} iso El= = ua f-equiv private ap3-lemma : ∀ {i j k l} {C : Type i} {D : C → Type j} {E : C → Type k} {F : Type l} {c₁ c₂ : C} {d₁ : D c₁} {d₂ : D c₂} {e₁ : E c₁} {e₂ : E c₂} (f : (c : C) → D c → E c → F) (p : c₁ == c₂) → (d₁ == d₂ [ D ↓ p ]) → (e₁ == e₂ [ E ↓ p ]) → (f c₁ d₁ e₁ == f c₂ d₂ e₂) ap3-lemma f idp idp idp = idp ap3-lemma-El : ∀ {i} {G H : Group i} (p : Group.El G == Group.El H) (q : Group.El-level G == Group.El-level H [ _ ↓ p ]) (r : Group.group-struct G == Group.group-struct H [ _ ↓ p ]) → ap Group.El (ap3-lemma group p q r) == p ap3-lemma-El idp idp idp = idp {- a homomorphism which is an equivalence gives a path between groups -} abstract uaᴳ : G == H uaᴳ = ap3-lemma group El= (prop-has-all-paths-↓ has-level-is-prop) (↓-group-structure= (G.El-level) El= ident= inv= comp=) where ident= : G.ident == H.ident [ (λ C → C) ↓ El= ] ident= = ↓-idf-ua-in _ pres-ident inv= : G.inv == H.inv [ (λ C → C → C) ↓ El= ] inv= = ↓-→-from-transp $ λ= λ a → transport (λ C → C) El= (G.inv a) =⟨ to-transp (↓-idf-ua-in _ idp) ⟩ f (G.inv a) =⟨ pres-inv a ⟩ H.inv (f a) =⟨ ap H.inv (! (to-transp (↓-idf-ua-in _ idp))) ⟩ H.inv (transport (λ C → C) El= a) =∎ comp=' : (a : G.El) → G.comp a == H.comp (f a) [ (λ C → C → C) ↓ El= ] comp=' a = ↓-→-from-transp $ λ= λ b → transport (λ C → C) El= (G.comp a b) =⟨ to-transp (↓-idf-ua-in _ idp) ⟩ f (G.comp a b) =⟨ pres-comp a b ⟩ H.comp (f a) (f b) =⟨ ! (to-transp (↓-idf-ua-in _ idp)) |in-ctx (λ w → H.comp (f a) w) ⟩ H.comp (f a) (transport (λ C → C) El= b) =∎ comp= : G.comp == H.comp [ (λ C → C → C → C) ↓ El= ] comp= = ↓-→-from-transp $ λ= λ a → transport (λ C → C → C) El= (G.comp a) =⟨ to-transp (comp=' a) ⟩ H.comp (f a) =⟨ ! (to-transp (↓-idf-ua-in _ idp)) |in-ctx (λ w → H.comp w) ⟩ H.comp (transport (λ C → C) El= a) =∎ -- XXX This stretches the naming convention a little bit. El=-β : ap Group.El uaᴳ == El= El=-β = ap3-lemma-El El= _ _ {- homomorphism from equality of groups -} abstract transp-El-pres-comp : ∀ {i j} {A : Type i} (B : A → Group j) {a₁ a₂ : A} (p : a₁ == a₂) → preserves-comp (Group.comp (B a₁)) (Group.comp (B a₂)) (transport (Group.El ∘ B) p) transp-El-pres-comp B idp g₁ g₂ = idp transp!-El-pres-comp : ∀ {i j} {A : Type i} (B : A → Group j) {a₁ a₂ : A} (p : a₁ == a₂) → preserves-comp (Group.comp (B a₂)) (Group.comp (B a₁)) (transport! (Group.El ∘ B) p) transp!-El-pres-comp B idp h₁ h₂ = idp transportᴳ : ∀ {i j} {A : Type i} (B : A → Group j) {a₁ a₂ : A} (p : a₁ == a₂) → (B a₁ →ᴳ B a₂) transportᴳ B p = record {f = transport (Group.El ∘ B) p; pres-comp = transp-El-pres-comp B p} transport!ᴳ : ∀ {i j} {A : Type i} (B : A → Group j) {a₁ a₂ : A} (p : a₁ == a₂) → (B a₂ →ᴳ B a₁) transport!ᴳ B p = record {f = transport! (Group.El ∘ B) p; pres-comp = transp!-El-pres-comp B p} abstract transpᴳ-is-iso : ∀ {i j} {A : Type i} (B : A → Group j) {a₁ a₂ : A} (p : a₁ == a₂) → is-equiv (GroupHom.f (transportᴳ B p)) transpᴳ-is-iso B idp = idf-is-equiv _ transp!ᴳ-is-iso : ∀ {i j} {A : Type i} (B : A → Group j) {a₁ a₂ : A} (p : a₁ == a₂) → is-equiv (GroupHom.f (transport!ᴳ B p)) transp!ᴳ-is-iso B idp = idf-is-equiv _ transportᴳ-iso : ∀ {i j} {A : Type i} (B : A → Group j) {a₁ a₂ : A} (p : a₁ == a₂) → B a₁ ≃ᴳ B a₂ transportᴳ-iso B p = transportᴳ B p , transpᴳ-is-iso B p transport!ᴳ-iso : ∀ {i j} {A : Type i} (B : A → Group j) {a₁ a₂ : A} (p : a₁ == a₂) → B a₂ ≃ᴳ B a₁ transport!ᴳ-iso B p = transport!ᴳ B p , transp!ᴳ-is-iso B p coeᴳ : ∀ {i} {G H : Group i} → G == H → (G →ᴳ H) coeᴳ = transportᴳ (idf _) coe!ᴳ : ∀ {i} {G H : Group i} → G == H → (H →ᴳ G) coe!ᴳ = transport!ᴳ (idf _) coeᴳ-iso : ∀ {i} {G H : Group i} → G == H → G ≃ᴳ H coeᴳ-iso = transportᴳ-iso (idf _) coe!ᴳ-iso : ∀ {i} {G H : Group i} → G == H → H ≃ᴳ G coe!ᴳ-iso = transport!ᴳ-iso (idf _) abstract coeᴳ-β : ∀ {i} {G H : Group i} (iso : G ≃ᴳ H) → coeᴳ (uaᴳ iso) == GroupIso.f-hom iso coeᴳ-β iso = group-hom= $ ap coe (El=-β iso) ∙ λ= (coe-β (GroupIso.f-equiv iso)) -- triviality iso-preserves-trivial : ∀ {i j} {G : Group i} {H : Group j} → G ≃ᴳ H → is-trivialᴳ G → is-trivialᴳ H iso-preserves-trivial iso G-is-trivial h = ! (GroupIso.f-g iso h) ∙ ap (GroupIso.f iso) (G-is-trivial _) ∙ GroupIso.pres-ident iso iso-preserves'-trivial : ∀ {i j} {G : Group i} {H : Group j} → G ≃ᴳ H → is-trivialᴳ H → is-trivialᴳ G iso-preserves'-trivial iso H-is-trivial g = ! (GroupIso.g-f iso g) ∙ ap (GroupIso.g iso) (H-is-trivial _) ∙ GroupHom.pres-ident (GroupIso.g-hom iso) -- a surjective and injective homomorphism is an isomorphism module _ {i j} {G : Group i} {H : Group j} (φ : G →ᴳ H) (surj : is-surjᴳ φ) (inj : is-injᴳ φ) where private module G = Group G module H = Group H module φ = GroupHom φ image-prop : (h : H.El) → is-prop (hfiber φ.f h) image-prop h = all-paths-is-prop $ λ {(g₁ , p₁) (g₂ , p₂) → pair= (inj g₁ g₂ (p₁ ∙ ! p₂)) (prop-has-all-paths-↓ (H.El-level _ _))} surjᴳ-and-injᴳ-is-equiv : is-equiv φ.f surjᴳ-and-injᴳ-is-equiv = contr-map-is-equiv (λ h → let (g₁ , p₁) = Trunc-rec (image-prop h) (idf _) (surj h) in ((g₁ , p₁) , (λ {(g₂ , p₂) → pair= (inj g₁ g₂ (p₁ ∙ ! p₂)) (prop-has-all-paths-↓ (H.El-level _ _))}))) surjᴳ-and-injᴳ-iso : G ≃ᴳ H surjᴳ-and-injᴳ-iso = φ , surjᴳ-and-injᴳ-is-equiv -- isomorphisms preserve abelianess. module _ {i} {G H : Group i} (iso : G ≃ᴳ H) (G-abelian : is-abelian G) where private module G = Group G module H = Group H open GroupIso iso abstract iso-preserves-abelian : is-abelian H iso-preserves-abelian h₁ h₂ = H.comp h₁ h₂ =⟨ ap2 H.comp (! $ f-g h₁) (! $ f-g h₂) ⟩ H.comp (f (g h₁)) (f (g h₂)) =⟨ ! $ pres-comp (g h₁) (g h₂) ⟩ f (G.comp (g h₁) (g h₂)) =⟨ G-abelian (g h₁) (g h₂) |in-ctx f ⟩ f (G.comp (g h₂) (g h₁)) =⟨ pres-comp (g h₂) (g h₁) ⟩ H.comp (f (g h₂)) (f (g h₁)) =⟨ ap2 H.comp (f-g h₂) (f-g h₁) ⟩ H.comp h₂ h₁ =∎ pre∘ᴳ-iso : ∀ {i j k} {G : Group i} {H : Group j} (K : AbGroup k) → (G ≃ᴳ H) → (hom-group H K ≃ᴳ hom-group G K) pre∘ᴳ-iso K iso = ≃-to-≃ᴳ (equiv to from to-from from-to) to-pres-comp where to = GroupHom.f (pre∘ᴳ-hom K (–>ᴳ iso)) to-pres-comp = GroupHom.pres-comp (pre∘ᴳ-hom K (–>ᴳ iso)) from = GroupHom.f (pre∘ᴳ-hom K (<–ᴳ iso)) abstract to-from : ∀ φ → to (from φ) == φ to-from φ = group-hom= $ λ= λ g → ap (GroupHom.f φ) (GroupIso.g-f iso g) from-to : ∀ φ → from (to φ) == φ from-to φ = group-hom= $ λ= λ h → ap (GroupHom.f φ) (GroupIso.f-g iso h)
33.74613
97
0.535321
411320c8e95a335abf466a9d4bc5ea54ad79d20b
13,226
agda
Agda
deBruijn/Substitution/Data/Application/Application21.agda
nad/dependently-typed-syntax
498f8aefc570f7815fd1d6616508eeb92c52abce
[ "MIT" ]
5
2020-04-16T12:14:44.000Z
2020-07-08T22:51:36.000Z
deBruijn/Substitution/Data/Application/Application21.agda
nad/dependently-typed-syntax
498f8aefc570f7815fd1d6616508eeb92c52abce
[ "MIT" ]
null
null
null
deBruijn/Substitution/Data/Application/Application21.agda
nad/dependently-typed-syntax
498f8aefc570f7815fd1d6616508eeb92c52abce
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Lemmas related to application of substitutions ------------------------------------------------------------------------ -- The record below allows the application operation to be -- "heterogeneous", applying substitutions containing one kind of term -- to another kind of term. TODO: This results in some extra -- complication—is it worth it? open import Data.Universe.Indexed module deBruijn.Substitution.Data.Application.Application21 {i u e} {Uni : IndexedUniverse i u e} where import deBruijn.Context; open deBruijn.Context Uni open import deBruijn.Substitution.Data.Application.Application open import deBruijn.Substitution.Data.Basics open import deBruijn.Substitution.Data.Map open import deBruijn.Substitution.Data.Simple open import Function using (_$_) open import Level using (_⊔_) import Relation.Binary.PropositionalEquality as P open P.≡-Reasoning -- Lemmas and definitions related to application. record Application₂₁ {t₁} {T₁ : Term-like t₁} {t₂} {T₂ : Term-like t₂} -- Simple substitutions for the first kind of terms. (simple₁ : Simple T₁) -- Simple substitutions for the second kind of terms. (simple₂ : Simple T₂) -- A translation from the first to the second kind of terms. (trans : [ T₁ ⟶⁼ T₂ ]) : Set (i ⊔ u ⊔ e ⊔ t₁ ⊔ t₂) where open Term-like T₁ using () renaming (_⊢_ to _⊢₁_; _≅-⊢_ to _≅-⊢₁_) open Term-like T₂ using ([_]) renaming (_⊢_ to _⊢₂_; _≅-⊢_ to _≅-⊢₂_) open Simple simple₁ using () renaming ( id to id₁; sub to sub₁; var to var₁ ; weaken[_] to weaken₁[_]; wk to wk₁ ; wk-subst to wk-subst₁; wk-subst[_] to wk-subst₁[_] ; _↑ to _↑₁; _↑_ to _↑₁_; _↑⁺_ to _↑⁺₁_; _↑₊_ to _↑₊₁_ ; _↑⋆_ to _↑⋆₁_; _↑⁺⋆_ to _↑⁺⋆₁_; _↑₊⋆_ to _↑₊⋆₁_ ) open Simple simple₂ using () renaming ( id to id₂; id[_] to id₂[_]; var to var₂ ; weaken to weaken₂; weaken[_] to weaken₂[_]; wk to wk₂ ; wk-subst to wk-subst₂; wk-subst[_] to wk-subst₂[_] ; _↑ to _↑₂; _↑_ to _↑₂_ ) field application : Application T₁ T₂ open Application application field -- The two weakening functions coincide. trans-weaken : ∀ {Γ σ τ} (t : Γ ⊢₁ τ) → trans · (weaken₁[ σ ] · t) ≅-⊢₂ weaken₂[ σ ] · (trans · t) -- The two variable inclusion functions coincide. trans-var : ∀ {Γ σ} (x : Γ ∋ σ) → trans · (var₁ · x) ≅-⊢₂ var₂ · x -- _/⊢_ and _/∋₁_ coincide for variables. var-/⊢ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (x : Γ ∋ σ) (ρ : Sub T₁ ρ̂) → var₂ · x /⊢ ρ ≅-⊢₂ trans · (x /∋ ρ) -- Application of multiple substitutions to variables. -- -- TODO: Remove? app∋⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Subs T₁ ρ̂ → [ Var ⟶ T₂ ] ρ̂ app∋⋆ ε = var₂ app∋⋆ (ε ▻ ρ) = trans [∘] app∋ ρ app∋⋆ (ρs ▻ ρ) = app ρ [∘] app∋⋆ ρs infixl 8 _/∋⋆_ _/∋⋆_ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} → Γ ∋ σ → Subs T₁ ρ̂ → Δ ⊢₂ σ /̂ ρ̂ x /∋⋆ ρs = app∋⋆ ρs · x -- Composition of multiple substitutions. -- -- TODO: Remove? ∘⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Subs T₁ ρ̂ → Sub T₂ ρ̂ ∘⋆ ε = id₂ ∘⋆ (ρs ▻ ρ) = ∘⋆ ρs ∘ ρ -- Some congruence lemmas. trans-cong : ∀ {Γ₁ σ₁} {t₁ : Γ₁ ⊢₁ σ₁} {Γ₂ σ₂} {t₂ : Γ₂ ⊢₁ σ₂} → t₁ ≅-⊢₁ t₂ → trans · t₁ ≅-⊢₂ trans · t₂ trans-cong P.refl = P.refl app∋⋆-cong : ∀ {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρs₁ : Subs T₁ ρ̂₁} {Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρs₂ : Subs T₁ ρ̂₂} → ρs₁ ≅-⇨⋆ ρs₂ → app∋⋆ ρs₁ ≅-⟶ app∋⋆ ρs₂ app∋⋆-cong P.refl = [ P.refl ] /∋⋆-cong : ∀ {Γ₁ Δ₁ σ₁} {x₁ : Γ₁ ∋ σ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρs₁ : Subs T₁ ρ̂₁} {Γ₂ Δ₂ σ₂} {x₂ : Γ₂ ∋ σ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρs₂ : Subs T₁ ρ̂₂} → x₁ ≅-∋ x₂ → ρs₁ ≅-⇨⋆ ρs₂ → x₁ /∋⋆ ρs₁ ≅-⊢₂ x₂ /∋⋆ ρs₂ /∋⋆-cong P.refl P.refl = P.refl ∘⋆-cong : ∀ {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρs₁ : Subs T₁ ρ̂₁} {Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρs₂ : Subs T₁ ρ̂₂} → ρs₁ ≅-⇨⋆ ρs₂ → ∘⋆ ρs₁ ≅-⇨ ∘⋆ ρs₂ ∘⋆-cong P.refl = P.refl abstract -- Applying a composed substitution to a variable is equivalent to -- applying all the substitutions one after another. -- -- TODO: Remove this lemma? /∋-∘⋆ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (x : Γ ∋ σ) (ρs : Subs T₁ ρ̂) → x /∋ ∘⋆ ρs ≅-⊢₂ var₂ · x /⊢⋆ ρs /∋-∘⋆ x ε = begin [ x /∋ id₂ ] ≡⟨ Simple./∋-id simple₂ x ⟩ [ var₂ · x ] ∎ /∋-∘⋆ x (ρs ▻ ρ) = begin [ x /∋ ∘⋆ ρs ∘ ρ ] ≡⟨ /∋-∘ x (∘⋆ ρs) ρ ⟩ [ x /∋ ∘⋆ ρs /⊢ ρ ] ≡⟨ /⊢-cong (/∋-∘⋆ x ρs) P.refl ⟩ [ var₂ · x /⊢⋆ ρs /⊢ ρ ] ∎ -- x /∋⋆ ρs is synonymous with var₂ · x /⊢⋆ ρs. -- -- TODO: Remove? var-/⊢⋆ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (x : Γ ∋ σ) (ρs : Subs T₁ ρ̂) → var₂ · x /⊢⋆ ρs ≅-⊢₂ x /∋⋆ ρs var-/⊢⋆ x ε = P.refl var-/⊢⋆ x (ε ▻ ρ) = begin [ var₂ · x /⊢ ρ ] ≡⟨ var-/⊢ x ρ ⟩ [ trans · (x /∋ ρ) ] ∎ var-/⊢⋆ x (ρs ▻ ρ₁ ▻ ρ₂) = begin [ var₂ · x /⊢⋆ (ρs ▻ ρ₁) /⊢ ρ₂ ] ≡⟨ /⊢-cong (var-/⊢⋆ x (ρs ▻ ρ₁)) P.refl ⟩ [ x /∋⋆ (ρs ▻ ρ₁) /⊢ ρ₂ ] ∎ -- A helper lemma. /∋-≅-⊢-var : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (x : Γ ∋ σ) (ρ : Sub T₁ ρ̂) {y : Δ ∋ σ / ρ} → x /∋ ρ ≅-⊢₁ var₁ · y → var₂ · x /⊢ ρ ≅-⊢₂ var₂ · y /∋-≅-⊢-var x ρ {y} hyp = begin [ var₂ · x /⊢ ρ ] ≡⟨ var-/⊢ x ρ ⟩ [ trans · (x /∋ ρ) ] ≡⟨ trans-cong hyp ⟩ [ trans · (var₁ · y) ] ≡⟨ trans-var y ⟩ [ var₂ · y ] ∎ -- A variant of /∋-id. var-/⊢-id : ∀ {Γ σ} (x : Γ ∋ σ) → var₂ · x /⊢ id₁ ≅-⊢₂ var₂ · x var-/⊢-id x = /∋-≅-⊢-var x id₁ (Simple./∋-id simple₁ x) -- A variant of /∋-wk-↑⁺. var-/⊢-wk-↑⁺ : ∀ {Γ σ} Γ⁺ {τ} (x : Γ ++⁺ Γ⁺ ∋ τ) → var₂ · x /⊢ wk₁ {σ = σ} ↑⁺₁ Γ⁺ ≅-⊢₂ var₂ · (lift weaken∋[ σ ] Γ⁺ · x) var-/⊢-wk-↑⁺ Γ⁺ x = /∋-≅-⊢-var x (wk₁ ↑⁺₁ Γ⁺) (Simple./∋-wk-↑⁺ simple₁ Γ⁺ x) -- A variant of /∋-wk-↑⁺-↑⁺. var-/⊢-wk-↑⁺-↑⁺ : ∀ {Γ σ} Γ⁺ Γ⁺⁺ {τ} (x : Γ ++⁺ Γ⁺ ++⁺ Γ⁺⁺ ∋ τ) → var₂ · x /⊢ wk₁ {σ = σ} ↑⁺₁ Γ⁺ ↑⁺₁ Γ⁺⁺ ≅-⊢₂ var₂ · (lift (lift weaken∋[ σ ] Γ⁺) Γ⁺⁺ · x) var-/⊢-wk-↑⁺-↑⁺ Γ⁺ Γ⁺⁺ x = /∋-≅-⊢-var x (wk₁ ↑⁺₁ Γ⁺ ↑⁺₁ Γ⁺⁺) (Simple./∋-wk-↑⁺-↑⁺ simple₁ Γ⁺ Γ⁺⁺ x) -- Variants of zero-/∋-↑. zero-/⊢-↑ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} σ (ρ : Sub T₁ ρ̂) → var₂ · zero /⊢ ρ ↑₁ σ ≅-⊢₂ var₂ · zero[ σ / ρ ] zero-/⊢-↑ σ ρ = /∋-≅-⊢-var zero (ρ ↑₁ σ) (Simple.zero-/∋-↑ simple₁ σ ρ) zero-/⊢⋆-↑⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} σ (ρs : Subs T₁ ρ̂) → var₂ · zero /⊢⋆ ρs ↑⋆₁ σ ≅-⊢₂ var₂ · zero[ σ /⋆ ρs ] zero-/⊢⋆-↑⋆ σ ε = P.refl zero-/⊢⋆-↑⋆ σ (ρs ▻ ρ) = begin [ var₂ · zero /⊢⋆ ρs ↑⋆₁ σ /⊢ ρ ↑₁ ] ≡⟨ /⊢-cong (zero-/⊢⋆-↑⋆ σ ρs) (P.refl {x = [ ρ ↑₁ (σ /⋆ ρs) ]}) ⟩ [ var₂ · zero /⊢ ρ ↑₁ (σ /⋆ ρs) ] ≡⟨ zero-/⊢-↑ (σ /⋆ ρs) ρ ⟩ [ var₂ · zero ] ∎ -- Corollaries of ε-↑⁺⋆ and ε-↑₊⋆. /⊢⋆-ε-↑⁺⋆ : ∀ {Γ} Γ⁺ {σ} (t : Γ ++⁺ Γ⁺ ⊢₂ σ) → t /⊢⋆ ε ↑⁺⋆₁ Γ⁺ ≅-⊢₂ t /⊢⋆-ε-↑⁺⋆ Γ⁺ t = begin [ t /⊢⋆ ε ↑⁺⋆₁ Γ⁺ ] ≡⟨ /⊢⋆-cong (P.refl {x = [ t ]}) (Simple.ε-↑⁺⋆ simple₁ Γ⁺) ⟩ [ t /⊢⋆ ε ] ≡⟨ P.refl ⟩ [ t ] ∎ /⊢⋆-ε-↑₊⋆ : ∀ {Γ} Γ₊ {σ} (t : Γ ++₊ Γ₊ ⊢₂ σ) → t /⊢⋆ ε ↑₊⋆₁ Γ₊ ≅-⊢₂ t /⊢⋆-ε-↑₊⋆ Γ₊ t = begin [ t /⊢⋆ ε ↑₊⋆₁ Γ₊ ] ≡⟨ /⊢⋆-cong (P.refl {x = [ t ]}) (Simple.ε-↑₊⋆ simple₁ Γ₊) ⟩ [ t /⊢⋆ ε ] ≡⟨ P.refl ⟩ [ t ] ∎ -- Corollaries of ▻-↑⁺⋆ and ▻-↑₊⋆. /⊢⋆-▻-↑⁺⋆ : ∀ {Γ Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} Γ⁺ {σ} (t : Γ ++⁺ Γ⁺ ⊢₂ σ) (ρs : Subs T₁ ρ̂₁) (ρ : Sub T₁ ρ̂₂) → t /⊢⋆ (ρs ▻ ρ) ↑⁺⋆₁ Γ⁺ ≅-⊢₂ t /⊢⋆ ρs ↑⁺⋆₁ Γ⁺ /⊢ ρ ↑⁺₁ (Γ⁺ /⁺⋆ ρs) /⊢⋆-▻-↑⁺⋆ Γ⁺ t ρs ρ = /⊢⋆-cong (P.refl {x = [ t ]}) (Simple.▻-↑⁺⋆ simple₁ ρs ρ Γ⁺) /⊢⋆-▻-↑₊⋆ : ∀ {Γ Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} Γ₊ {σ} (t : Γ ++₊ Γ₊ ⊢₂ σ) (ρs : Subs T₁ ρ̂₁) (ρ : Sub T₁ ρ̂₂) → t /⊢⋆ (ρs ▻ ρ) ↑₊⋆₁ Γ₊ ≅-⊢₂ t /⊢⋆ ρs ↑₊⋆₁ Γ₊ /⊢ ρ ↑₊₁ (Γ₊ /₊⋆ ρs) /⊢⋆-▻-↑₊⋆ Γ₊ t ρs ρ = /⊢⋆-cong (P.refl {x = [ t ]}) (Simple.▻-↑₊⋆ simple₁ ρs ρ Γ₊) -- Corollaries of ε-↑⁺⋆/ε-↑₊⋆ and ▻-↑⁺⋆/▻-↑₊⋆. /⊢⋆-ε-▻-↑⁺⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} Γ⁺ {σ} (t : Γ ++⁺ Γ⁺ ⊢₂ σ) (ρ : Sub T₁ ρ̂) → t /⊢⋆ (ε ▻ ρ) ↑⁺⋆₁ Γ⁺ ≅-⊢₂ t /⊢ ρ ↑⁺₁ Γ⁺ /⊢⋆-ε-▻-↑⁺⋆ Γ⁺ t ρ = begin [ t /⊢⋆ (ε ▻ ρ) ↑⁺⋆₁ Γ⁺ ] ≡⟨ /⊢⋆-cong (P.refl {x = [ t ]}) (Simple.▻-↑⁺⋆ simple₁ ε ρ Γ⁺) ⟩ [ t /⊢⋆ ε ↑⁺⋆₁ Γ⁺ /⊢ ρ ↑⁺₁ (Γ⁺ /̂⁺ îd) ] ≡⟨ /⊢-cong (/⊢⋆-ε-↑⁺⋆ Γ⁺ t) (Simple.↑⁺-cong simple₁ P.refl (/̂⁺-îd Γ⁺)) ⟩ [ t /⊢ ρ ↑⁺₁ Γ⁺ ] ∎ /⊢⋆-ε-▻-▻-↑⁺⋆ : ∀ {Γ Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} Γ⁺ {σ} (t : Γ ++⁺ Γ⁺ ⊢₂ σ) (ρ₁ : Sub T₁ ρ̂₁) (ρ₂ : Sub T₁ ρ̂₂) → t /⊢⋆ (ε ▻ ρ₁ ▻ ρ₂) ↑⁺⋆₁ Γ⁺ ≅-⊢₂ t /⊢ ρ₁ ↑⁺₁ Γ⁺ /⊢ ρ₂ ↑⁺₁ (Γ⁺ /⁺ ρ₁) /⊢⋆-ε-▻-▻-↑⁺⋆ Γ⁺ t ρ₁ ρ₂ = begin [ t /⊢⋆ (ε ▻ ρ₁ ▻ ρ₂) ↑⁺⋆₁ Γ⁺ ] ≡⟨ /⊢⋆-cong (P.refl {x = [ t ]}) (Simple.▻-↑⁺⋆ simple₁ (ε ▻ ρ₁) ρ₂ Γ⁺) ⟩ [ t /⊢⋆ (ε ▻ ρ₁) ↑⁺⋆₁ Γ⁺ /⊢ ρ₂ ↑⁺₁ (Γ⁺ /⁺ ρ₁) ] ≡⟨ /⊢-cong (/⊢⋆-ε-▻-↑⁺⋆ Γ⁺ t ρ₁) P.refl ⟩ [ t /⊢ ρ₁ ↑⁺₁ Γ⁺ /⊢ ρ₂ ↑⁺₁ (Γ⁺ /⁺ ρ₁) ] ∎ /⊢⋆-ε-▻-↑₊⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} Γ₊ {σ} (t : Γ ++₊ Γ₊ ⊢₂ σ) (ρ : Sub T₁ ρ̂) → t /⊢⋆ (ε ▻ ρ) ↑₊⋆₁ Γ₊ ≅-⊢₂ t /⊢ ρ ↑₊₁ Γ₊ /⊢⋆-ε-▻-↑₊⋆ Γ₊ t ρ = begin [ t /⊢⋆ (ε ▻ ρ) ↑₊⋆₁ Γ₊ ] ≡⟨ /⊢⋆-cong (P.refl {x = [ t ]}) (Simple.▻-↑₊⋆ simple₁ ε ρ Γ₊) ⟩ [ t /⊢⋆ ε ↑₊⋆₁ Γ₊ /⊢ ρ ↑₊₁ (Γ₊ /̂₊ îd) ] ≡⟨ /⊢-cong (/⊢⋆-ε-↑₊⋆ Γ₊ t) (Simple.↑₊-cong simple₁ P.refl (/̂₊-îd Γ₊)) ⟩ [ t /⊢ ρ ↑₊₁ Γ₊ ] ∎ /⊢⋆-ε-▻-▻-↑₊⋆ : ∀ {Γ Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} Γ₊ {σ} (t : Γ ++₊ Γ₊ ⊢₂ σ) (ρ₁ : Sub T₁ ρ̂₁) (ρ₂ : Sub T₁ ρ̂₂) → t /⊢⋆ (ε ▻ ρ₁ ▻ ρ₂) ↑₊⋆₁ Γ₊ ≅-⊢₂ t /⊢ ρ₁ ↑₊₁ Γ₊ /⊢ ρ₂ ↑₊₁ (Γ₊ /₊ ρ₁) /⊢⋆-ε-▻-▻-↑₊⋆ Γ₊ t ρ₁ ρ₂ = begin [ t /⊢⋆ (ε ▻ ρ₁ ▻ ρ₂) ↑₊⋆₁ Γ₊ ] ≡⟨ /⊢⋆-cong (P.refl {x = [ t ]}) (Simple.▻-↑₊⋆ simple₁ (ε ▻ ρ₁) ρ₂ Γ₊) ⟩ [ t /⊢⋆ (ε ▻ ρ₁) ↑₊⋆₁ Γ₊ /⊢ ρ₂ ↑₊₁ (Γ₊ /₊ ρ₁) ] ≡⟨ /⊢-cong (/⊢⋆-ε-▻-↑₊⋆ Γ₊ t ρ₁) P.refl ⟩ [ t /⊢ ρ₁ ↑₊₁ Γ₊ /⊢ ρ₂ ↑₊₁ (Γ₊ /₊ ρ₁) ] ∎ -- Application of sub cancels one occurrence of suc. suc-/⊢-sub : ∀ {Γ σ τ} (x : Γ ∋ σ) (t : Γ ⊢₁ τ) → var₂ · suc x /⊢ sub₁ t ≅-⊢₂ var₂ · x suc-/⊢-sub x t = begin [ var₂ · suc x /⊢ sub₁ t ] ≡⟨ var-/⊢ (suc x) (sub₁ t) ⟩ [ trans · (suc x /∋ sub₁ t) ] ≡⟨ P.refl ⟩ [ trans · (x /∋ id₁) ] ≡⟨ trans-cong (Simple./∋-id simple₁ x) ⟩ [ trans · (var₁ · x) ] ≡⟨ trans-var x ⟩ [ var₂ · x ] ∎ -- First weakening and then substituting something for the first -- variable is equivalent to doing nothing. wk-∘-sub : ∀ {Γ σ} (t : Γ ⊢₁ σ) → wk₂ ∘ sub₁ t ≅-⇨ id₂[ Γ ] wk-∘-sub t = extensionality P.refl λ x → begin [ x /∋ wk₂ ∘ sub₁ t ] ≡⟨ /∋-∘ x wk₂ (sub₁ t) ⟩ [ x /∋ wk₂ /⊢ sub₁ t ] ≡⟨ /⊢-cong (Simple./∋-wk simple₂ x) P.refl ⟩ [ var₂ · suc x /⊢ sub₁ t ] ≡⟨ suc-/⊢-sub x t ⟩ [ var₂ · x ] ≡⟨ P.sym $ Simple./∋-id simple₂ x ⟩ [ x /∋ id₂ ] ∎ -- id is a left identity of _∘_ (more or less). id-∘ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T₁ ρ̂) → id₂ ∘ ρ ≅-⇨ map trans ρ id-∘ ρ = extensionality P.refl λ x → begin [ x /∋ id₂ ∘ ρ ] ≡⟨ /∋-∘ x id₂ ρ ⟩ [ x /∋ id₂ /⊢ ρ ] ≡⟨ /⊢-cong (Simple./∋-id simple₂ x) (P.refl {x = [ ρ ]}) ⟩ [ var₂ · x /⊢ ρ ] ≡⟨ var-/⊢ x ρ ⟩ [ trans · (x /∋ ρ) ] ≡⟨ P.sym $ /∋-map x trans ρ ⟩ [ x /∋ map trans ρ ] ∎ -- One can translate a substitution either before or after -- weakening it. map-trans-wk-subst : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T₁ ρ̂) → map trans (wk-subst₁[ σ ] ρ) ≅-⇨ wk-subst₂[ σ ] (map trans ρ) map-trans-wk-subst {σ = σ} ρ = begin [ map trans (wk-subst₁[ σ ] ρ) ] ≡⟨ P.sym $ map-[∘] trans weaken₁[ σ ] ρ ⟩ [ map (trans [∘] weaken₁[ σ ]) ρ ] ≡⟨ map-cong-ext₁ P.refl trans-weaken (P.refl {x = [ ρ ]}) ⟩ [ map (weaken₂ [∘] trans) ρ ] ≡⟨ map-[∘] weaken₂ trans ρ ⟩ [ wk-subst₂ (map trans ρ) ] ∎ -- One can translate a substitution either before or after lifting -- it. map-trans-↑ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T₁ ρ̂) → map trans (ρ ↑₁ σ) ≅-⇨ map trans ρ ↑₂ σ map-trans-↑ {σ = σ} ρ = begin [ map trans (ρ ↑₁ σ) ] ≡⟨ map-cong (trans ∎-⟶) (Simple.unfold-↑ simple₁ ρ) ⟩ [ map trans (wk-subst₁[ σ / ρ ] ρ ▻ var₁ · zero) ] ≡⟨ map-▻ trans (wk-subst₁ ρ) _ ⟩ [ map trans (wk-subst₁[ σ / ρ ] ρ) ▻ trans · (var₁ · zero) ] ≡⟨ ▻⇨-cong P.refl (map-trans-wk-subst ρ) (trans-var zero) ⟩ [ wk-subst₂ (map trans ρ) ▻ var₂ · zero ] ≡⟨ P.sym $ Simple.unfold-↑ simple₂ (map trans ρ) ⟩ [ map trans ρ ↑₂ ] ∎ open Application application public
39.957704
127
0.397097
3dddaeeaf88e449ee8e1032cbf8e95a39b865662
9,193
agda
Agda
Univalence/TypeEquiv.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
Univalence/TypeEquiv.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
Univalence/TypeEquiv.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
{-# OPTIONS --without-K #-} module TypeEquiv where import Level using (zero; suc) open import Data.Empty using (⊥) open import Data.Unit using (⊤; tt) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_; proj₁; proj₂; _,_) open import Algebra using (CommutativeSemiring) open import Algebra.Structures using (IsSemigroup; IsCommutativeMonoid; IsCommutativeSemiring) open import Function renaming (_∘_ to _○_) open import Relation.Binary.PropositionalEquality using (refl) open import Equiv using (_∼_; refl∼; _≃_; id≃; sym≃; ≃IsEquiv; qinv; _⊎≃_; _×≃_) ------------------------------------------------------------------------------ -- Type Equivalences -- for each type combinator, define two functions that are inverses, and -- establish an equivalence. These are all in the 'semantic space' with -- respect to Pi combinators. -- swap₊ swap₊ : {A B : Set} → A ⊎ B → B ⊎ A swap₊ (inj₁ a) = inj₂ a swap₊ (inj₂ b) = inj₁ b abstract swapswap₊ : {A B : Set} → swap₊ ○ swap₊ {A} {B} ∼ id swapswap₊ (inj₁ a) = refl swapswap₊ (inj₂ b) = refl swap₊equiv : {A B : Set} → (A ⊎ B) ≃ (B ⊎ A) swap₊equiv = (swap₊ , qinv swap₊ swapswap₊ swapswap₊) -- unite₊ and uniti₊ unite₊ : {A : Set} → ⊥ ⊎ A → A unite₊ (inj₁ ()) unite₊ (inj₂ y) = y uniti₊ : {A : Set} → A → ⊥ ⊎ A uniti₊ a = inj₂ a abstract uniti₊∘unite₊ : {A : Set} → uniti₊ ○ unite₊ ∼ id {A = ⊥ ⊎ A} uniti₊∘unite₊ (inj₁ ()) uniti₊∘unite₊ (inj₂ y) = refl -- this is so easy, Agda can figure it out by itself (see below) unite₊∘uniti₊ : {A : Set} → unite₊ ○ uniti₊ ∼ id {A = A} unite₊∘uniti₊ _ = refl unite₊equiv : {A : Set} → (⊥ ⊎ A) ≃ A unite₊equiv = (unite₊ , qinv uniti₊ unite₊∘uniti₊ uniti₊∘unite₊) uniti₊equiv : {A : Set} → A ≃ (⊥ ⊎ A) uniti₊equiv = sym≃ unite₊equiv -- unite₊′ and uniti₊′ unite₊′ : {A : Set} → A ⊎ ⊥ → A unite₊′ (inj₁ x) = x unite₊′ (inj₂ ()) uniti₊′ : {A : Set} → A → A ⊎ ⊥ uniti₊′ a = inj₁ a abstract uniti₊′∘unite₊′ : {A : Set} → uniti₊′ ○ unite₊′ ∼ id {A = A ⊎ ⊥} uniti₊′∘unite₊′ (inj₁ _) = refl uniti₊′∘unite₊′ (inj₂ ()) -- this is so easy, Agda can figure it out by itself (see below) unite₊′∘uniti₊′ : {A : Set} → unite₊′ ○ uniti₊′ ∼ id {A = A} unite₊′∘uniti₊′ _ = refl unite₊′equiv : {A : Set} → (A ⊎ ⊥) ≃ A unite₊′equiv = (unite₊′ , qinv uniti₊′ refl∼ uniti₊′∘unite₊′) uniti₊′equiv : {A : Set} → A ≃ (A ⊎ ⊥) uniti₊′equiv = sym≃ unite₊′equiv -- unite⋆ and uniti⋆ unite⋆ : {A : Set} → ⊤ × A → A unite⋆ (tt , x) = x uniti⋆ : {A : Set} → A → ⊤ × A uniti⋆ x = tt , x abstract uniti⋆∘unite⋆ : {A : Set} → uniti⋆ ○ unite⋆ ∼ id {A = ⊤ × A} uniti⋆∘unite⋆ (tt , x) = refl unite⋆equiv : {A : Set} → (⊤ × A) ≃ A unite⋆equiv = unite⋆ , qinv uniti⋆ refl∼ uniti⋆∘unite⋆ uniti⋆equiv : {A : Set} → A ≃ (⊤ × A) uniti⋆equiv = sym≃ unite⋆equiv -- unite⋆′ and uniti⋆′ unite⋆′ : {A : Set} → A × ⊤ → A unite⋆′ (x , tt) = x uniti⋆′ : {A : Set} → A → A × ⊤ uniti⋆′ x = x , tt abstract uniti⋆′∘unite⋆′ : {A : Set} → uniti⋆′ ○ unite⋆′ ∼ id {A = A × ⊤} uniti⋆′∘unite⋆′ (x , tt) = refl unite⋆′equiv : {A : Set} → (A × ⊤) ≃ A unite⋆′equiv = unite⋆′ , qinv uniti⋆′ refl∼ uniti⋆′∘unite⋆′ uniti⋆′equiv : {A : Set} → A ≃ (A × ⊤) uniti⋆′equiv = sym≃ unite⋆′equiv -- swap⋆ swap⋆ : {A B : Set} → A × B → B × A swap⋆ (a , b) = (b , a) abstract swapswap⋆ : {A B : Set} → swap⋆ ○ swap⋆ ∼ id {A = A × B} swapswap⋆ (a , b) = refl swap⋆equiv : {A B : Set} → (A × B) ≃ (B × A) swap⋆equiv = swap⋆ , qinv swap⋆ swapswap⋆ swapswap⋆ -- assocl₊ and assocr₊ assocl₊ : {A B C : Set} → (A ⊎ (B ⊎ C)) → ((A ⊎ B) ⊎ C) assocl₊ (inj₁ a) = inj₁ (inj₁ a) assocl₊ (inj₂ (inj₁ b)) = inj₁ (inj₂ b) assocl₊ (inj₂ (inj₂ c)) = inj₂ c assocr₊ : {A B C : Set} → ((A ⊎ B) ⊎ C) → (A ⊎ (B ⊎ C)) assocr₊ (inj₁ (inj₁ a)) = inj₁ a assocr₊ (inj₁ (inj₂ b)) = inj₂ (inj₁ b) assocr₊ (inj₂ c) = inj₂ (inj₂ c) abstract assocl₊∘assocr₊ : {A B C : Set} → assocl₊ ○ assocr₊ ∼ id {A = ((A ⊎ B) ⊎ C)} assocl₊∘assocr₊ (inj₁ (inj₁ a)) = refl assocl₊∘assocr₊ (inj₁ (inj₂ b)) = refl assocl₊∘assocr₊ (inj₂ c) = refl assocr₊∘assocl₊ : {A B C : Set} → assocr₊ ○ assocl₊ ∼ id {A = (A ⊎ (B ⊎ C))} assocr₊∘assocl₊ (inj₁ a) = refl assocr₊∘assocl₊ (inj₂ (inj₁ b)) = refl assocr₊∘assocl₊ (inj₂ (inj₂ c)) = refl assocr₊equiv : {A B C : Set} → ((A ⊎ B) ⊎ C) ≃ (A ⊎ (B ⊎ C)) assocr₊equiv = assocr₊ , qinv assocl₊ assocr₊∘assocl₊ assocl₊∘assocr₊ assocl₊equiv : {A B C : Set} → (A ⊎ (B ⊎ C)) ≃ ((A ⊎ B) ⊎ C) assocl₊equiv = sym≃ assocr₊equiv -- assocl⋆ and assocr⋆ assocl⋆ : {A B C : Set} → (A × (B × C)) → ((A × B) × C) assocl⋆ (a , (b , c)) = ((a , b) , c) assocr⋆ : {A B C : Set} → ((A × B) × C) → (A × (B × C)) assocr⋆ ((a , b) , c) = (a , (b , c)) abstract assocl⋆∘assocr⋆ : {A B C : Set} → assocl⋆ ○ assocr⋆ ∼ id {A = ((A × B) × C)} assocl⋆∘assocr⋆ = refl∼ assocr⋆∘assocl⋆ : {A B C : Set} → assocr⋆ ○ assocl⋆ ∼ id {A = (A × (B × C))} assocr⋆∘assocl⋆ = refl∼ assocl⋆equiv : {A B C : Set} → (A × (B × C)) ≃ ((A × B) × C) assocl⋆equiv = assocl⋆ , qinv assocr⋆ assocl⋆∘assocr⋆ assocr⋆∘assocl⋆ assocr⋆equiv : {A B C : Set} → ((A × B) × C) ≃ (A × (B × C)) assocr⋆equiv = sym≃ assocl⋆equiv -- distz and factorz, on left distz : { A : Set} → (⊥ × A) → ⊥ distz = proj₁ factorz : {A : Set} → ⊥ → (⊥ × A) factorz () abstract distz∘factorz : {A : Set} → distz ○ factorz {A} ∼ id distz∘factorz () factorz∘distz : {A : Set} → factorz {A} ○ distz ∼ id factorz∘distz (() , proj₂) distzequiv : {A : Set} → (⊥ × A) ≃ ⊥ distzequiv {A} = distz , qinv factorz (distz∘factorz {A}) factorz∘distz factorzequiv : {A : Set} → ⊥ ≃ (⊥ × A) factorzequiv {A} = sym≃ distzequiv -- distz and factorz, on right distzr : { A : Set} → (A × ⊥) → ⊥ distzr = proj₂ factorzr : {A : Set} → ⊥ → (A × ⊥) factorzr () abstract distzr∘factorzr : {A : Set} → distzr ○ factorzr {A} ∼ id distzr∘factorzr () factorzr∘distzr : {A : Set} → factorzr {A} ○ distzr ∼ id factorzr∘distzr (_ , ()) distzrequiv : {A : Set} → (A × ⊥) ≃ ⊥ distzrequiv {A} = distzr , qinv factorzr (distzr∘factorzr {A}) factorzr∘distzr factorzrequiv : {A : Set} → ⊥ ≃ (A × ⊥) factorzrequiv {A} = sym≃ distzrequiv -- dist and factor, on right dist : {A B C : Set} → ((A ⊎ B) × C) → (A × C) ⊎ (B × C) dist (inj₁ x , c) = inj₁ (x , c) dist (inj₂ y , c) = inj₂ (y , c) factor : {A B C : Set} → (A × C) ⊎ (B × C) → ((A ⊎ B) × C) factor (inj₁ (a , c)) = inj₁ a , c factor (inj₂ (b , c)) = inj₂ b , c abstract dist∘factor : {A B C : Set} → dist {A} {B} {C} ○ factor ∼ id dist∘factor (inj₁ x) = refl dist∘factor (inj₂ y) = refl factor∘dist : {A B C : Set} → factor {A} {B} {C} ○ dist ∼ id factor∘dist (inj₁ x , c) = refl factor∘dist (inj₂ y , c) = refl distequiv : {A B C : Set} → ((A ⊎ B) × C) ≃ ((A × C) ⊎ (B × C)) distequiv = dist , qinv factor dist∘factor factor∘dist factorequiv : {A B C : Set} → ((A × C) ⊎ (B × C)) ≃ ((A ⊎ B) × C) factorequiv = sym≃ distequiv -- dist and factor, on left distl : {A B C : Set} → A × (B ⊎ C) → (A × B) ⊎ (A × C) distl (x , inj₁ x₁) = inj₁ (x , x₁) distl (x , inj₂ y) = inj₂ (x , y) factorl : {A B C : Set} → (A × B) ⊎ (A × C) → A × (B ⊎ C) factorl (inj₁ (x , y)) = x , inj₁ y factorl (inj₂ (x , y)) = x , inj₂ y abstract distl∘factorl : {A B C : Set} → distl {A} {B} {C} ○ factorl ∼ id distl∘factorl (inj₁ (x , y)) = refl distl∘factorl (inj₂ (x , y)) = refl factorl∘distl : {A B C : Set} → factorl {A} {B} {C} ○ distl ∼ id factorl∘distl (a , inj₁ x) = refl factorl∘distl (a , inj₂ y) = refl distlequiv : {A B C : Set} → (A × (B ⊎ C)) ≃ ((A × B) ⊎ (A × C)) distlequiv = distl , qinv factorl distl∘factorl factorl∘distl factorlequiv : {A B C : Set} → ((A × B) ⊎ (A × C)) ≃ (A × (B ⊎ C)) factorlequiv = sym≃ distlequiv ------------------------------------------------------------------------------ -- Commutative semiring structure typesPlusIsSG : IsSemigroup {Level.suc Level.zero} {Level.zero} {Set} _≃_ _⊎_ typesPlusIsSG = record { isMagma = record { isEquivalence = ≃IsEquiv ; ∙-cong = _⊎≃_ } ; assoc = λ t₁ t₂ t₃ → assocr₊equiv {t₁} {t₂} {t₃} } typesTimesIsSG : IsSemigroup {Level.suc Level.zero} {Level.zero} {Set} _≃_ _×_ typesTimesIsSG = record { isMagma = record { isEquivalence = ≃IsEquiv ; ∙-cong = _×≃_ } ; assoc = λ t₁ t₂ t₃ → assocr⋆equiv {t₁} {t₂} {t₃} } typesPlusIsCM : IsCommutativeMonoid _≃_ _⊎_ ⊥ typesPlusIsCM = record { isSemigroup = typesPlusIsSG ; identityˡ = λ t → unite₊equiv {t} ; comm = λ t₁ t₂ → swap₊equiv {t₁} {t₂} } typesTimesIsCM : IsCommutativeMonoid _≃_ _×_ ⊤ typesTimesIsCM = record { isSemigroup = typesTimesIsSG ; identityˡ = λ t → unite⋆equiv {t} ; comm = λ t₁ t₂ → swap⋆equiv {t₁} {t₂} } typesIsCSR : IsCommutativeSemiring _≃_ _⊎_ _×_ ⊥ ⊤ typesIsCSR = record { +-isCommutativeMonoid = typesPlusIsCM ; *-isCommutativeMonoid = typesTimesIsCM ; distribʳ = λ t₁ t₂ t₃ → distequiv {t₂} {t₃} {t₁} ; zeroˡ = λ t → distzequiv {t} } typesCSR : CommutativeSemiring (Level.suc Level.zero) Level.zero typesCSR = record { Carrier = Set ; _≈_ = _≃_ ; _+_ = _⊎_ ; _*_ = _×_ ; 0# = ⊥ ; 1# = ⊤ ; isCommutativeSemiring = typesIsCSR } ------------------------------------------------------------------------------
26.042493
78
0.540955
c7436bbf155fe40dbbfb45f502551b5556324dd8
29,837
agda
Agda
Cubical/ZCohomology/RingStructure/RingLaws.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/ZCohomology/RingStructure/RingLaws.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/ZCohomology/RingStructure/RingLaws.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.RingStructure.RingLaws where open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Path open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Pointed.Homogeneous open import Cubical.Foundations.GroupoidLaws hiding (assoc) open import Cubical.Data.Nat open import Cubical.Data.Int renaming (_+_ to _ℤ+_ ; _·_ to _ℤ∙_ ; +Comm to +ℤ-comm ; ·Comm to ∙-comm ; +Assoc to ℤ+-assoc ; -_ to -ℤ_) hiding (_+'_ ; +'≡+) open import Cubical.Data.Sigma open import Cubical.HITs.SetTruncation as ST open import Cubical.HITs.Truncation as T open import Cubical.HITs.S1 hiding (_·_) open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.Homotopy.Loopspace open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.RingStructure.CupProduct private variable ℓ : Level -- Some boring lemmas ·₀≡·ℤ : (x y : ℤ) → _·₀_ {n = zero} x y ≡ x ℤ∙ y ·₀≡·ℤ (pos zero) y = refl ·₀≡·ℤ (pos (suc n)) y = cong (y ℤ+_) (·₀≡·ℤ (pos n) y) ·₀≡·ℤ (negsuc zero) (pos zero) = refl ·₀≡·ℤ (negsuc zero) (pos (suc n)) = -AntiComm 0 (pos (suc n)) ·₀≡·ℤ (negsuc zero) (negsuc n) = -AntiComm 0 (negsuc n) ·₀≡·ℤ (negsuc (suc n)) (pos m) = (cong ((_ℤ+ (pos 0 - pos m))) (·₀≡·ℤ (negsuc n) (pos m)) ∙ cong ((negsuc n ℤ∙ (pos m)) ℤ+_) (-AntiComm 0 (pos m) ∙ cong (-ℤ_) (help m))) ∙ sym (+ℤ-comm (-ℤ (pos m)) (negsuc n ℤ∙ (pos m))) where help : (m : ℕ) → (pos m - 0) ≡ pos m help zero = refl help (suc m) = refl ·₀≡·ℤ (negsuc (suc n)) (negsuc m) = +ℤ-comm (_·₀_{n = zero} (negsuc n) (negsuc m)) (pos 0 - (negsuc m)) ∙∙ cong ((pos 0 - negsuc m) ℤ+_) (·₀≡·ℤ (negsuc n) (negsuc m)) ∙∙ cong (_ℤ+ (negsuc n ℤ∙ negsuc m)) (help m) where help : (m : ℕ) → (pos 0 - negsuc m) ≡ pos (suc m) help zero = refl help (suc n) = cong sucℤ (help n) comm-·₀ : (x y : ℤ) → _·₀_ {n = 0} x y ≡ y ·₀ x comm-·₀ x y = ·₀≡·ℤ x y ∙∙ ∙-comm x y ∙∙ sym (·₀≡·ℤ y x) +'-assoc : (n m l : ℕ) → (n +' (m +' l)) ≡ ((n +' m) +' l) +'-assoc n m l = (λ i → +'≡+ n (+'≡+ m l i) i) ∙∙ +-assoc n m l ∙∙ (λ i → +'≡+ (+'≡+ n m (~ i)) l (~ i)) -- Zero multiplication ⌣ₖ-0ₖ : (n m : ℕ) → (x : coHomK n) → x ⌣ₖ (0ₖ _) ≡ 0ₖ _ ⌣ₖ-0ₖ n m x = snd (⌣ₖ∙ n m x) 0ₖ-⌣ₖ : (n m : ℕ) → (x : coHomK m) → (0ₖ _) ⌣ₖ x ≡ 0ₖ _ 0ₖ-⌣ₖ n m = funExt⁻ (cong fst (snd (⌣ₖ∙∙ n m))) ⌣ₖ-0ₖ≡0ₖ-⌣ₖ : (n m : ℕ) → ⌣ₖ-0ₖ n m (0ₖ _) ≡ 0ₖ-⌣ₖ n m (0ₖ _) ⌣ₖ-0ₖ≡0ₖ-⌣ₖ zero zero = refl ⌣ₖ-0ₖ≡0ₖ-⌣ₖ zero (suc m) = refl ⌣ₖ-0ₖ≡0ₖ-⌣ₖ (suc n) zero = refl ⌣ₖ-0ₖ≡0ₖ-⌣ₖ (suc zero) (suc m) = refl ⌣ₖ-0ₖ≡0ₖ-⌣ₖ (suc (suc n)) (suc m) = refl -- Left distributivity private ⌣ₖ-distrFun : -- z ⌣ₖ (x +ₖ y) (n m : ℕ) → (x y : coHomK n) → coHomK-ptd m →∙ coHomK-ptd (m +' n) fst (⌣ₖ-distrFun n m x y) z = z ⌣ₖ (x +ₖ y) snd (⌣ₖ-distrFun n m x y) = 0ₖ-⌣ₖ m n (x +ₖ y) ⌣ₖ-distrFun2 : -- z ⌣ₖ x +ₖ z ⌣ₖ y (n m : ℕ) → (x y : coHomK n) → coHomK-ptd m →∙ coHomK-ptd (m +' n) fst (⌣ₖ-distrFun2 n m x y) z = z ⌣ₖ x +ₖ z ⌣ₖ y snd (⌣ₖ-distrFun2 n m x y) = cong₂ _+ₖ_ (0ₖ-⌣ₖ m n x) (0ₖ-⌣ₖ m n y) ∙ rUnitₖ _ _ leftDistr-⌣ₖ· : (n m : ℕ) (x y : coHomK (suc n)) → ⌣ₖ-distrFun (suc n) (suc m) x y ≡ ⌣ₖ-distrFun2 (suc n) (suc m) x y leftDistr-⌣ₖ· n m = T.elim2 (λ _ _ → isOfHLevelSuc (2 + n) (hLevHelp n m _ _)) main where hLevHelp : (n m : ℕ) (x y : _) → isOfHLevel (2 + n) ( ⌣ₖ-distrFun (suc n) (suc m) x y ≡ ⌣ₖ-distrFun2 (suc n) (suc m) x y) hLevHelp n m x y = (subst (isOfHLevel (3 + n)) (λ i → (coHomK-ptd (suc m) →∙ coHomK-ptd (suc (suc (+-comm n m i))))) (isOfHLevel↑∙ (suc n) m)) _ _ left-fst : (n : ℕ) (x : S₊ (suc n)) → fst (⌣ₖ-distrFun (suc n) (suc m) ∣ ptSn (suc n) ∣ ∣ x ∣) ≡ fst (⌣ₖ-distrFun2 (suc n) (suc m) ∣ ptSn (suc n) ∣ ∣ x ∣) left-fst zero y = (funExt (λ z → sym (lUnitₖ _ (z ⌣ₖ ∣ y ∣)) ∙ λ i → ⌣ₖ-0ₖ _ _ z (~ i) +ₖ z ⌣ₖ ∣ y ∣)) left-fst (suc n) y = (funExt (λ z → sym (lUnitₖ _ (z ⌣ₖ ∣ y ∣)) ∙ λ i → ⌣ₖ-0ₖ _ _ z (~ i) +ₖ z ⌣ₖ ∣ y ∣)) right-fst : (n : ℕ) (x : S₊ (suc n)) → fst (⌣ₖ-distrFun (suc n) (suc m) ∣ x ∣ (0ₖ _)) ≡ fst (⌣ₖ-distrFun2 (suc n) (suc m) ∣ x ∣ (0ₖ _)) right-fst n x = funExt (λ z → (cong (z ⌣ₖ_) (rUnitₖ _ ∣ x ∣) ∙∙ sym (rUnitₖ _ _) ∙∙ λ i → z ⌣ₖ ∣ x ∣ +ₖ ⌣ₖ-0ₖ _ (suc n) z (~ i))) helper : (n : ℕ) (x : coHomK (suc n)) (p : 0ₖ _ ≡ x) → sym (lUnitₖ _ x) ∙ cong (_+ₖ x) p ≡ sym (rUnitₖ _ x) ∙ cong (x +ₖ_) p helper n x = J (λ x p → sym (lUnitₖ _ x) ∙ cong (_+ₖ x) p ≡ sym (rUnitₖ _ x) ∙ cong (x +ₖ_) p) (helper' n) where helper' : (n : ℕ) → (λ i → lUnitₖ (suc n) (0ₖ (suc n)) (~ i)) ∙ (λ i → 0ₖ (suc n) +ₖ 0ₖ (suc n)) ≡ (λ i → rUnitₖ (suc n) (0ₖ (suc n)) (~ i)) ∙ (λ i → 0ₖ (suc n) +ₖ 0ₖ (suc n)) helper' zero = refl helper' (suc n) = refl left-fst≡right-fst : (n : ℕ) → left-fst n (ptSn _) ≡ right-fst n (ptSn _) left-fst≡right-fst zero i j z = helper _ (z ⌣ₖ ∣ base ∣) (sym (⌣ₖ-0ₖ _ _ z)) i j left-fst≡right-fst (suc n) i j z = helper _ (z ⌣ₖ ∣ north ∣) (sym (⌣ₖ-0ₖ _ (suc (suc n)) z)) i j main : (a b : S₊ (suc n)) → ⌣ₖ-distrFun (suc n) (suc m) ∣ a ∣ₕ ∣ b ∣ₕ ≡ ⌣ₖ-distrFun2 (suc n) (suc m) ∣ a ∣ₕ ∣ b ∣ₕ main = wedgeconFun n n (λ x y → subst (λ l → isOfHLevel l ((⌣ₖ-distrFun (suc n) (suc m) ∣ x ∣ ∣ y ∣) ≡ ⌣ₖ-distrFun2 (suc n) (suc m) ∣ x ∣ ∣ y ∣)) (+-suc n (suc n)) (isOfHLevelPlus {n = 2 + n} n (hLevHelp n m ∣ x ∣ ∣ y ∣))) (λ x → →∙Homogeneous≡ (isHomogeneousKn _) (left-fst n x)) (λ x → →∙Homogeneous≡ (isHomogeneousKn _) (right-fst n x)) (cong (→∙Homogeneous≡ (isHomogeneousKn _)) (sym (left-fst≡right-fst n))) -- Distributivity for 0 dimensional cases leftDistr₀n : (n : ℕ) → (z : coHomK 0) (x y : coHomK n) → z ·₀ (x +[ n ]ₖ y) ≡ z ·₀ x +[ n ]ₖ (z ·₀ y) leftDistr₀n n (pos zero) x y = sym (rUnitₖ n (0ₖ _)) leftDistr₀n n (pos (suc z)) x y = cong ((x +ₖ y) +ₖ_) (leftDistr₀n n (pos z) x y) ∙∙ sym (assocₖ n x y (pos z ·₀ x +[ n ]ₖ (pos z ·₀ y))) ∙∙ cong (x +ₖ_) (assocₖ n y (pos z ·₀ x) (pos z ·₀ y) ∙∙ cong (_+ₖ (pos z ·₀ y)) (commₖ n y (pos z ·₀ x)) ∙∙ sym (assocₖ n (pos z ·₀ x) y (pos z ·₀ y))) ∙ assocₖ n x _ _ leftDistr₀n n (negsuc zero) x y = -distrₖ n x y leftDistr₀n n (negsuc (suc z)) x y = cong₂ (_+ₖ_) (leftDistr₀n n (negsuc z) x y) (-distrₖ n x y) ∙∙ assocₖ n ((negsuc z ·₀ x) +ₖ (negsuc z ·₀ y)) (-ₖ x) (-ₖ y) ∙∙ cong (_-ₖ y) (sym (assocₖ n (negsuc z ·₀ x) (negsuc z ·₀ y) (-ₖ x)) ∙∙ cong ((negsuc z ·₀ x) +ₖ_) (commₖ n (negsuc z ·₀ y) (-ₖ x)) ∙∙ assocₖ n (negsuc z ·₀ x) (-ₖ x) (negsuc z ·₀ y)) ∙ sym (assocₖ n (negsuc (suc z) ·₀ x) _ _) leftDistrn₀ : (n : ℕ) → (z : coHomK n) (x y : coHomK 0) → (x ℤ+ y) ·₀ z ≡ x ·₀ z +[ n ]ₖ (y ·₀ z) leftDistrn₀ n z x (pos zero) = sym (rUnitₖ n (x ·₀ z)) leftDistrn₀ n z x (pos (suc y)) = lem (x +pos y) ∙∙ cong (z +ₖ_) (leftDistrn₀ n z x (pos y) ∙ commₖ n _ _) ∙∙ assocₖ n z _ _ ∙ commₖ n _ _ where lem : (a : ℤ) → (sucℤ a) ·₀ z ≡ z +ₖ (a ·₀ z) lem (pos zero) = refl lem (pos (suc a)) = cong (z +ₖ_) (lem (pos a)) lem (negsuc zero) = sym (rCancelₖ n z) lem (negsuc (suc a)) = sym (-cancelLₖ n z (negsuc a ·₀ z)) ∙ sym (assocₖ n z (negsuc a ·₀ z) (-ₖ z)) leftDistrn₀ n z x (negsuc y) = main y where help : (x : ℤ) → predℤ x ·₀ z ≡ (x ·₀ z -ₖ z) help (pos zero) = sym (lUnitₖ n (-ₖ z)) help (pos (suc x)) = sym (-cancelLₖ n z (pos x ·₀ z)) help (negsuc x) = refl main : (y : _) → (x ℤ+ negsuc y) ·₀ z ≡ (x ·₀ z) +ₖ (negsuc y ·₀ z) main zero = help x main (suc y) = help (x +negsuc y) ∙∙ cong (_-ₖ z) (main y) ∙∙ sym (assocₖ n _ _ _) leftDistr-⌣ₖ : (n m : ℕ) (z : coHomK n) (x y : coHomK m) → z ⌣ₖ (x +ₖ y) ≡ (z ⌣ₖ x +ₖ z ⌣ₖ y) leftDistr-⌣ₖ zero m z x y = leftDistr₀n m z x y leftDistr-⌣ₖ (suc n) zero z x y = leftDistrn₀ (suc n) z x y leftDistr-⌣ₖ (suc n) (suc m) z x y = funExt⁻ (cong fst (leftDistr-⌣ₖ· m n x y)) z -- Right distributivity private ⌣ₖ-distrFun-r : -- (x +ₖ y) ⌣ₖ z (n m : ℕ) → (x y : coHomK n) → coHomK-ptd m →∙ coHomK-ptd (n +' m) fst (⌣ₖ-distrFun-r n m x y) z = (x +ₖ y) ⌣ₖ z snd (⌣ₖ-distrFun-r n m x y) = ⌣ₖ-0ₖ n m (x +ₖ y) -- ⌣ₖ-0ₖ m n (x +ₖ y) ⌣ₖ-distrFun2-r : (n m : ℕ) → (x y : coHomK n) → coHomK-ptd m →∙ coHomK-ptd (n +' m) fst (⌣ₖ-distrFun2-r n m x y) z = x ⌣ₖ z +ₖ y ⌣ₖ z snd (⌣ₖ-distrFun2-r n m x y) = cong₂ _+ₖ_ (⌣ₖ-0ₖ n m x) (⌣ₖ-0ₖ n m y) ∙ rUnitₖ _ _ rightDistr-⌣ₖ· : (n m : ℕ) (x y : coHomK (suc n)) → ⌣ₖ-distrFun-r (suc n) (suc m) x y ≡ ⌣ₖ-distrFun2-r (suc n) (suc m) x y rightDistr-⌣ₖ· n m = T.elim2 (λ _ _ → isOfHLevelPath (3 + n) (isOfHLevel↑∙ (suc n) m) _ _) main where fst-left : (n : ℕ) (y : S₊ (suc n)) → fst (⌣ₖ-distrFun-r (suc n) (suc m) ∣ ptSn (suc n) ∣ ∣ y ∣) ≡ fst (⌣ₖ-distrFun2-r (suc n) (suc m) ∣ ptSn (suc n) ∣ ∣ y ∣) fst-left n y = funExt (λ z → cong (_⌣ₖ z) (lUnitₖ _ ∣ y ∣) ∙∙ sym (lUnitₖ _ (∣ y ∣ ⌣ₖ z)) ∙∙ cong (_+ₖ (∣ y ∣ ⌣ₖ z)) (sym (0ₖ-⌣ₖ _ _ z))) fst-right : (n : ℕ) (x : S₊ (suc n)) → fst (⌣ₖ-distrFun-r (suc n) (suc m) ∣ x ∣ ∣ ptSn (suc n) ∣) ≡ fst (⌣ₖ-distrFun2-r (suc n) (suc m) ∣ x ∣ ∣ ptSn (suc n) ∣) fst-right n x = funExt λ z → cong (_⌣ₖ z) (rUnitₖ _ ∣ x ∣) ∙∙ sym (rUnitₖ _ _) ∙∙ cong (∣ x ∣ ⌣ₖ z +ₖ_) (sym (0ₖ-⌣ₖ _ _ z)) left≡right : (n : ℕ) → fst-left n (ptSn (suc n)) ≡ fst-right n (ptSn (suc n)) left≡right zero = refl left≡right (suc n) = refl main : (a b : S₊ (suc n)) → ⌣ₖ-distrFun-r (suc n) (suc m) ∣ a ∣ₕ ∣ b ∣ₕ ≡ ⌣ₖ-distrFun2-r (suc n) (suc m) ∣ a ∣ₕ ∣ b ∣ₕ main = wedgeconFun n n (λ x y → subst (λ l → isOfHLevel l ((⌣ₖ-distrFun-r (suc n) (suc m) ∣ x ∣ ∣ y ∣) ≡ ⌣ₖ-distrFun2-r (suc n) (suc m) ∣ x ∣ ∣ y ∣)) (+-suc n (suc n)) (isOfHLevelPlus {n = 2 + n} n (isOfHLevel↑∙ (suc n) m _ _))) (λ x → →∙Homogeneous≡ (isHomogeneousKn _) (fst-left n x)) (λ x → →∙Homogeneous≡ (isHomogeneousKn _) (fst-right n x)) (cong (→∙Homogeneous≡ (isHomogeneousKn _)) (sym (left≡right n))) rightDistr-⌣ₖ : (n m : ℕ) (x y : coHomK n) (z : coHomK m) → (x +ₖ y) ⌣ₖ z ≡ (x ⌣ₖ z +ₖ y ⌣ₖ z) rightDistr-⌣ₖ zero zero x y z = comm-·₀ (x ℤ+ y) z ∙∙ leftDistr-⌣ₖ zero zero z x y ∙∙ cong₂ _+ₖ_ (sym (comm-·₀ x z)) (sym (comm-·₀ y z)) rightDistr-⌣ₖ zero (suc m) x y z = leftDistr-⌣ₖ _ zero z x y rightDistr-⌣ₖ (suc n) zero x y z = leftDistr-⌣ₖ zero (suc n) z x y rightDistr-⌣ₖ (suc n) (suc m) x y z = (funExt⁻ (cong fst (rightDistr-⌣ₖ· n m x y))) z -- Associativity private -- We need to give the two associators as (doubly) pointed functions assocer : (n m k : ℕ) → coHomK (suc n) → coHomK-ptd (suc m) →∙ (coHomK-ptd (suc k) →∙ coHomK-ptd ((suc n) +' ((suc m) +' (suc k))) ∙) fst (fst (assocer n m k x) y) z = x ⌣ₖ (y ⌣ₖ z) snd (fst (assocer n m k x) y) = cong (x ⌣ₖ_) (⌣ₖ-0ₖ _ (suc k) y) ∙ ⌣ₖ-0ₖ _ _ x snd (assocer n m k x) = ΣPathP (funExt (λ z → cong (x ⌣ₖ_) (0ₖ-⌣ₖ (suc m) (suc k) z) ∙ ⌣ₖ-0ₖ (suc n) _ x) , help) where h : (n m k : ℕ) (x : coHomK (suc n)) → cong (_⌣ₖ_ x) (⌣ₖ-0ₖ (suc m) (suc k) (0ₖ _)) ≡ (λ i → x ⌣ₖ 0ₖ-⌣ₖ (suc m) (suc k) (0ₖ _) i) h zero zero k x = refl h zero (suc m) k x = refl h (suc n) zero k x = refl h (suc n) (suc m) k x = refl help : PathP (λ i → (cong (x ⌣ₖ_) (0ₖ-⌣ₖ (suc m) (suc k) (0ₖ _)) ∙ ⌣ₖ-0ₖ (suc n) _ x) i ≡ 0ₖ _) (cong (x ⌣ₖ_) (⌣ₖ-0ₖ (suc m) (suc k) (0ₖ _)) ∙ ⌣ₖ-0ₖ (suc n) _ x) refl help = compPathR→PathP (cong (_∙ ⌣ₖ-0ₖ (suc n) ((suc m) +' (suc k)) x) (h n m k x) ∙∙ rUnit _ ∙∙ cong ((cong (x ⌣ₖ_) (0ₖ-⌣ₖ (suc m) (suc k) (0ₖ _)) ∙ ⌣ₖ-0ₖ (suc n) _ x) ∙_) (rUnit refl)) assoc2-sub : (n m k : ℕ) → _ → _ assoc2-sub n m k = subst coHomK (sym (+'-assoc n m k)) assoc2-sub-0 : (n m k : ℕ) → assoc2-sub n m k (0ₖ _) ≡ 0ₖ _ assoc2-sub-0 zero zero zero = refl assoc2-sub-0 zero zero (suc zero) = refl assoc2-sub-0 zero zero (suc (suc k)) = refl assoc2-sub-0 zero (suc zero) zero = refl assoc2-sub-0 zero (suc zero) (suc k) = refl assoc2-sub-0 zero (suc (suc m)) zero = refl assoc2-sub-0 zero (suc (suc m)) (suc k) = refl assoc2-sub-0 (suc zero) zero zero = refl assoc2-sub-0 (suc zero) zero (suc k) = refl assoc2-sub-0 (suc (suc n)) zero zero = refl assoc2-sub-0 (suc (suc n)) zero (suc k) = refl assoc2-sub-0 (suc zero) (suc m) zero = refl assoc2-sub-0 (suc (suc n)) (suc m) zero = refl assoc2-sub-0 (suc zero) (suc m) (suc k) = refl assoc2-sub-0 (suc (suc n)) (suc m) (suc k) = refl assocer2 : (n m k : ℕ) → coHomK (suc n) → coHomK-ptd (suc m) →∙ (coHomK-ptd (suc k) →∙ coHomK-ptd ((suc n) +' ((suc m) +' (suc k))) ∙) fst (fst (assocer2 n m k x) y) z = subst coHomK (sym (+'-assoc (suc n) (suc m) (suc k))) ((x ⌣ₖ y) ⌣ₖ z) -- snd (fst (assocer2 zero m k x) y) = cong (subst coHomK (sym (+'-assoc 1 (suc m) (suc k)))) (⌣ₖ-0ₖ _ _ (x ⌣ₖ y)) snd (fst (assocer2 (suc n) m k x) y) = cong (subst coHomK (sym (+'-assoc (2 + n) (suc m) (suc k)))) (⌣ₖ-0ₖ _ _ (x ⌣ₖ y)) fst (snd (assocer2 zero m k x) i) z = subst coHomK (sym (+'-assoc (suc zero) (suc m) (suc k))) (⌣ₖ-0ₖ _ _ x i ⌣ₖ z) snd (snd (assocer2 zero m k x) i) j = subst coHomK (sym (+'-assoc (suc zero) (suc m) (suc k))) (⌣ₖ-0ₖ _ _ (⌣ₖ-0ₖ _ _ x i) j) fst (snd (assocer2 (suc n) m k x) i) z = subst coHomK (sym (+'-assoc (2 + n) (suc m) (suc k))) (⌣ₖ-0ₖ _ _ x i ⌣ₖ z) snd (snd (assocer2 (suc n) m k x) i) j = subst coHomK (sym (+'-assoc (2 + n) (suc m) (suc k))) (⌣ₖ-0ₖ _ _ (⌣ₖ-0ₖ _ _ x i) j) assocer-helpFun : (n m : ℕ) → coHomK (suc n) → coHomK-ptd (suc m) →∙ Ω (coHomK-ptd (3 + (n + m))) fst (assocer-helpFun n m a) b = Kn→ΩKn+1 _ (a ⌣ₖ b) snd (assocer-helpFun n m a) = cong (Kn→ΩKn+1 _) (⌣ₖ-0ₖ (suc n) (suc m) a) ∙ Kn→ΩKn+10ₖ _ assocer-helpFun2 : (n m : ℕ) → coHomK (suc n) → coHomK-ptd (suc m) →∙ Ω (coHomK-ptd (3 + (n + m))) fst (assocer-helpFun2 n m a) b i = (Kn→ΩKn+1 _ a i) ⌣ₖ b snd (assocer-helpFun2 n m a) i j = ⌣ₖ-0ₖ _ (suc m) (Kn→ΩKn+1 _ a j) i -- Key lemma for associativity assocer-helpFun≡ : (n m : ℕ) → (x : coHomK (suc n)) → assocer-helpFun n m x ≡ assocer-helpFun2 n m x assocer-helpFun≡ n m = T.elim (λ _ → isOfHLevelPath (3 + n) (hLev-assocer-helpFun n m) _ _) λ a → →∙Homogeneous≡ (subst isHomogeneous Kn≃ΩKn+1∙ (isHomogeneousKn _)) (funExt (main n a)) where hLev-assocer-helpFun : (n m : ℕ) → isOfHLevel (3 + n) (coHomK-ptd (suc m) →∙ Ω (coHomK-ptd (3 + (n + m)))) hLev-assocer-helpFun n m = subst (isOfHLevel (3 + n)) (cong (coHomK-ptd (suc m) →∙_) (Kn≃ΩKn+1∙)) (isOfHLevel↑∙ (suc n) m) main : (n : ℕ) (a : S₊ (suc n)) (b : _) → fst (assocer-helpFun n m ∣ a ∣) b ≡ fst (assocer-helpFun2 n m ∣ a ∣) b main zero a b k i = hcomp (λ r → λ {(i = i0) → 0ₖ _ ; (i = i1) → ∣ rCancel (merid north) r (~ k) ∣ ; (k = i0) → Kn→ΩKn+1 _ (∣ a ∣ ⌣ₖ b) i ; (k = i1) → (Kn→ΩKn+1 _ ∣ a ∣ i) ⌣ₖ b}) (∣ compPath-filler (merid a) (sym (merid base)) k i ∣ ⌣ₖ b) main (suc n) a b k i = hcomp (λ r → λ {(i = i0) → 0ₖ _ ; (i = i1) → ∣ rCancel (merid north) r (~ k) ∣ ; (k = i0) → Kn→ΩKn+1 _ (∣ a ∣ ⌣ₖ b) i ; (k = i1) → (Kn→ΩKn+1 _ ∣ a ∣ i) ⌣ₖ b}) (∣ compPath-filler (merid a) (sym (merid north)) k i ∣ ⌣ₖ b) assoc-helper : (n m : ℕ) (x : coHomK (suc n)) (y : coHomK (suc m)) → Kn→ΩKn+1 _ (x ⌣ₖ y) ≡ λ i → (Kn→ΩKn+1 _ x i) ⌣ₖ y assoc-helper n m x y = funExt⁻ (cong fst (assocer-helpFun≡ n m x)) y assoc-⌣ₖ· : (n m k : ℕ) → (x : coHomK (suc n)) → assocer n m k x ≡ assocer2 n m k x assoc-⌣ₖ· n m k = T.elim (λ _ → isOfHLevelPath (3 + n) (transport (λ i → isOfHLevel (3 + n) (coHomK-ptd (suc m) →∙ (coHomK-ptd (suc k) →∙ coHomK-ptd (h (~ i)) ∙))) (isOfHLevel↑∙∙ m k (suc n))) _ _) λ a → →∙Homogeneous≡ (isHomogeneous→∙ (isHomogeneousKn _)) (funExt λ b → →∙Homogeneous≡ (isHomogeneousKn _) (funExt (main n m k a b))) where h : (suc n) +' ((suc m) +' (suc k)) ≡ suc (suc (suc n + m + k)) h = cong (2 +_) (+-suc n (m + k)) ∙ λ i → suc (suc (suc (+-assoc n m k i))) main : (n m k : ℕ) (a : S₊ (suc n)) (b : coHomK (suc m)) (c : coHomK (suc k)) → ∣ a ∣ ⌣ₖ b ⌣ₖ c ≡ (subst coHomK (λ i → +'-assoc (suc n) (suc m) (suc k) (~ i)) ((∣ a ∣ ⌣ₖ b) ⌣ₖ c)) main zero m k a b c = goal a ∙ sym (funExt⁻ t ((∣ a ∣ ⌣ₖ b) ⌣ₖ c)) where t : subst coHomK (λ i → +'-assoc 1 (suc m) (suc k) (~ i)) ≡ idfun _ t = cong (subst coHomK) (isSetℕ _ _ (+'-assoc 1 (suc m) (suc k)) refl) ∙ funExt transportRefl goal : (a : _) → ∣ a ∣ ⌣ₖ b ⌣ₖ c ≡ (∣ a ∣ ⌣ₖ b) ⌣ₖ c goal base = refl goal (loop i) j = assoc-helper m k b c j i main (suc n) m k north b c = refl main (suc n) m k south b c = refl main (suc n) m k (merid a i) b c j = help2 j i where transpLem : (n m : ℕ) (p : n ≡ m) → subst coHomK p (0ₖ _) ≡ 0ₖ _ transpLem zero m = J (λ m p → subst coHomK p (0ₖ _) ≡ 0ₖ _) refl transpLem (suc zero) m = J (λ m p → subst coHomK p (0ₖ _) ≡ 0ₖ _) refl transpLem (suc (suc n)) m = J (λ m p → subst coHomK p (0ₖ _) ≡ 0ₖ _) refl transpLem-refl : transpLem (suc (suc (suc (suc (n + m + k))))) (suc (suc n +' (suc m +' suc k))) (λ i₃ → +'-assoc (2 + n) (suc m) (suc k) (~ i₃)) ≡ refl transpLem-refl = transportRefl refl moveTransports : (n m : ℕ) (x : coHomK n) (p : n ≡ m) (q : (suc n) ≡ suc m) → PathP (λ i → transpLem _ _ q (~ i) ≡ transpLem _ _ q (~ i)) (Kn→ΩKn+1 _ (subst coHomK p x)) (cong (subst coHomK q) (Kn→ΩKn+1 _ x)) moveTransports n m x = J (λ m p → (q : (suc n) ≡ suc m) → PathP (λ i → transpLem _ _ q (~ i) ≡ transpLem _ _ q (~ i)) (Kn→ΩKn+1 _ (subst coHomK p x)) (cong (subst coHomK q) (Kn→ΩKn+1 _ x))) λ q → transport (λ j → PathP (λ i → transpLem (suc n) (suc n) (isSetℕ _ _ refl q j) (~ i) ≡ transpLem (suc n) (suc n) (isSetℕ _ _ refl q j) (~ i)) (Kn→ΩKn+1 _ (subst coHomK refl x)) (cong (subst coHomK (isSetℕ _ _ refl q j)) (Kn→ΩKn+1 _ x))) (h2 n x) where h2 : (n : ℕ) (x : _) → PathP (λ i₁ → transpLem (suc n) (suc n) (λ _ → suc n) (~ i₁) ≡ transpLem (suc n) (suc n) (λ _ → suc n) (~ i₁)) (Kn→ΩKn+1 n (subst coHomK (λ _ → n) x)) (λ i₁ → subst coHomK (λ _ → suc n) (Kn→ΩKn+1 n x i₁)) h2 zero x k i = hcomp (λ j → λ {(i = i0) → transportRefl (refl {x = 0ₖ _}) (~ j) k ; (i = i1) → transportRefl (refl {x = 0ₖ _}) (~ j) k ; (k = i0) → Kn→ΩKn+1 _ (transportRefl x j) i ; (k = i1) → transportRefl (Kn→ΩKn+1 _ x i) (~ j)}) (Kn→ΩKn+1 _ x i) h2 (suc n) x k i = hcomp (λ j → λ {(i = i0) → transportRefl (refl {x = 0ₖ _}) (~ j) k ; (i = i1) → transportRefl (refl {x = 0ₖ _}) (~ j) k ; (k = i0) → Kn→ΩKn+1 _ (transport refl x) i ; (k = i1) → transportRefl (Kn→ΩKn+1 _ x i) (~ j)}) (Kn→ΩKn+1 _ (transportRefl x k) i) finalTransp : (n : ℕ) (a : _) → Kn→ΩKn+1 _ (subst coHomK (λ i₁ → +'-assoc (suc n) (suc m) (suc k) (~ i₁)) ((∣ a ∣ ⌣ₖ b) ⌣ₖ c)) ≡ cong (subst coHomK (λ i₁ → +'-assoc (2 + n) (suc m) (suc k) (~ i₁))) (Kn→ΩKn+1 _ ((∣ a ∣ ⌣ₖ b) ⌣ₖ c)) finalTransp n a = rUnit _ ∙∙ (λ i → (λ j → transpLem (suc (suc (suc (suc (n + m + k))))) (suc (suc n +' (suc m +' suc k))) (λ i₃ → +'-assoc (2 + n) (suc m) (suc k) (~ i₃)) (i ∧ j)) ∙∙ moveTransports _ _ ((∣ a ∣ ⌣ₖ b) ⌣ₖ c) (sym (+'-assoc (suc n) (suc m) (suc k))) (sym (+'-assoc (2 + n) (suc m) (suc k))) i ∙∙ λ j → transpLem (suc (suc (suc (suc (n + m + k))))) (suc (suc n +' (suc m +' suc k))) (λ i₃ → +'-assoc (2 + n) (suc m) (suc k) (~ i₃)) (i ∧ ~ j)) ∙∙ (λ i → transportRefl refl i ∙∙ cong (subst coHomK (λ i₁ → +'-assoc (2 + n) (suc m) (suc k) (~ i₁))) (Kn→ΩKn+1 _ ((∣ a ∣ ⌣ₖ b) ⌣ₖ c)) ∙∙ transportRefl refl i) ∙ sym (rUnit _) help2 : cong (λ x → (∣ x ∣) ⌣ₖ (b ⌣ₖ c)) (merid a) ≡ cong (assoc2-sub (2 + n) (suc m) (suc k)) (cong (λ x → (∣ x ∣ ⌣ₖ b) ⌣ₖ c) (merid a)) help2 = ((λ r → Kn→ΩKn+1 _ (main n m k a b c r))) ∙∙ finalTransp n a ∙∙ λ r i → subst coHomK (sym (+'-assoc (2 + n) (suc m) (suc k))) (assoc-helper _ _ (∣ a ∣ ⌣ₖ b) c r i) -- Some key distributivity lemmas -Distₗ : (n m : ℕ) (x : coHomK n) (y : coHomK m) → (-ₖ (x ⌣ₖ y)) ≡ (-ₖ x) ⌣ₖ y -Distₗ n m x y = sym (rUnitₖ _ (-ₖ (x ⌣ₖ y))) ∙∙ cong ((-ₖ (x ⌣ₖ y)) +ₖ_) (sym (rCancelₖ _ (x ⌣ₖ y))) ∙∙ assocₖ _ (-ₖ (x ⌣ₖ y)) (x ⌣ₖ y) (-ₖ (x ⌣ₖ y)) ∙∙ cong (_-ₖ (x ⌣ₖ y)) help ∙∙ sym (assocₖ _ ((-ₖ x) ⌣ₖ y) (x ⌣ₖ y) (-ₖ (x ⌣ₖ y))) ∙∙ cong ((-ₖ x) ⌣ₖ y +ₖ_) (rCancelₖ _ (x ⌣ₖ y)) ∙∙ rUnitₖ _ ((-ₖ x) ⌣ₖ y) where help : (-ₖ (x ⌣ₖ y)) +ₖ (x ⌣ₖ y) ≡ (-ₖ x) ⌣ₖ y +ₖ (x ⌣ₖ y) help = lCancelₖ _ _ ∙∙ sym (0ₖ-⌣ₖ _ _ y) ∙ cong (_⌣ₖ y) (sym (lCancelₖ _ x)) ∙∙ rightDistr-⌣ₖ _ _ (-ₖ x) x y -Distᵣ : (n m : ℕ) (x : coHomK n) (y : coHomK m) → (-ₖ (x ⌣ₖ y)) ≡ x ⌣ₖ (-ₖ y) -Distᵣ n m x y = sym (rUnitₖ _ (-ₖ (x ⌣ₖ y))) ∙∙ cong ((-ₖ (x ⌣ₖ y)) +ₖ_) (sym (rCancelₖ _ (x ⌣ₖ y))) ∙∙ assocₖ _ (-ₖ (x ⌣ₖ y)) (x ⌣ₖ y) (-ₖ (x ⌣ₖ y)) ∙∙ cong (_-ₖ (x ⌣ₖ y)) help ∙∙ sym (assocₖ _ (x ⌣ₖ (-ₖ y)) (x ⌣ₖ y) (-ₖ (x ⌣ₖ y))) ∙∙ cong (x ⌣ₖ (-ₖ y) +ₖ_) (rCancelₖ _ (x ⌣ₖ y)) ∙∙ rUnitₖ _ (x ⌣ₖ (-ₖ y)) where help : (-ₖ (x ⌣ₖ y)) +ₖ (x ⌣ₖ y) ≡ x ⌣ₖ (-ₖ y) +ₖ (x ⌣ₖ y) help = lCancelₖ _ _ ∙∙ sym (⌣ₖ-0ₖ _ _ x) ∙∙ cong (x ⌣ₖ_) (sym (lCancelₖ _ y)) ∙ leftDistr-⌣ₖ _ _ x (-ₖ y) y assoc₀ : (m k : ℕ) (x : ℤ) (y : coHomK m) (z : coHomK k) → _⌣ₖ_{n = zero} x (y ⌣ₖ z) ≡ (_⌣ₖ_{n = zero} {m = m} x y) ⌣ₖ z assoc₀ m k x y z = main x where h : subst coHomK (sym (+'-assoc zero m k)) ≡ idfun _ h = cong (subst coHomK) (isSetℕ _ _ _ refl) ∙ funExt transportRefl mainPos : (x : ℕ) → _⌣ₖ_ {n = zero} (pos x) (y ⌣ₖ z) ≡ ((_⌣ₖ_ {n = zero} {m = m} (pos x) y) ⌣ₖ z) mainPos zero = sym (0ₖ-⌣ₖ _ _ z) ∙ cong (_⌣ₖ z) (sym (0ₖ-⌣ₖ _ _ y)) mainPos (suc n) = cong (y ⌣ₖ z +ₖ_) (mainPos n) ∙∙ sym (rightDistr-⌣ₖ _ _ y (_⌣ₖ_ {n = zero} {m = m} (pos n) y) z) ∙∙ (λ i → (y +ₖ (_⌣ₖ_ {n = zero} {m = m} (pos n) y)) ⌣ₖ z) main : (x : ℤ) → x ⌣ₖ y ⌣ₖ z ≡ ((_⌣ₖ_ {n = zero} {m = m} x y) ⌣ₖ z) main (pos n) = mainPos n main (negsuc n) = (λ i → _⌣ₖ_ {n = zero} (+ℤ-comm (negsuc n) 0 i) (y ⌣ₖ z)) ∙∙ sym (-Distₗ zero _ (pos (suc n)) (y ⌣ₖ z)) ∙ cong (-ₖ_) (mainPos (suc n)) ∙∙ -Distₗ _ _ (pos (suc n) ⌣ₖ y) z ∙∙ cong (_⌣ₖ z) ((-Distₗ zero _ (pos (suc n)) y)) ∙∙ λ i → (_⌣ₖ_ {n = zero} (+ℤ-comm (negsuc n) 0 (~ i)) y) ⌣ₖ z assoc-⌣ₖ : (n m k : ℕ) (x : coHomK n) (y : coHomK m) (z : coHomK k) → x ⌣ₖ y ⌣ₖ z ≡ subst coHomK (sym (+'-assoc n m k)) ((x ⌣ₖ y) ⌣ₖ z) assoc-⌣ₖ zero m k x y z = assoc₀ _ _ x y z ∙ sym (funExt⁻ h ((x ⌣ₖ y) ⌣ₖ z)) where h : subst coHomK (sym (+'-assoc zero m k)) ≡ idfun _ h = cong (subst coHomK) (isSetℕ _ _ _ refl) ∙ funExt transportRefl assoc-⌣ₖ (suc n) zero k x y z = help y ∙∙ sym (transportRefl ((x ⌣ₖ y) ⌣ₖ z)) ∙∙ λ i → transport (λ j → coHomK ((isSetℕ _ _ ((sym (+'-assoc (suc n) zero k))) refl (~ i) j))) ((_⌣ₖ_ {m = zero} x y) ⌣ₖ z) where helpPos : (y : ℕ) → x ⌣ₖ (_⌣ₖ_ {n = zero} (pos y) z) ≡ ((_⌣ₖ_ {m = zero} x (pos y)) ⌣ₖ z) helpPos zero = (⌣ₖ-0ₖ _ _ x) ∙∙ (sym (0ₖ-⌣ₖ _ _ z)) ∙∙ cong (_⌣ₖ z) (sym (⌣ₖ-0ₖ _ _ x)) helpPos (suc y) = leftDistr-⌣ₖ _ _ x z (_⌣ₖ_{n = zero} (pos y) z) ∙∙ cong ((x ⌣ₖ z) +ₖ_) (helpPos y) ∙∙ sym (rightDistr-⌣ₖ _ _ x (_⌣ₖ_{n = zero} (pos y) x) z) help : (y : ℤ) → x ⌣ₖ (_⌣ₖ_ {n = zero} y z) ≡ ((_⌣ₖ_ {m = zero} x y) ⌣ₖ z) help (pos n) = helpPos n help (negsuc n) = (λ i → x ⌣ₖ (_⌣ₖ_ {n = zero} (+ℤ-comm (negsuc n) 0 i) z)) ∙∙ cong (x ⌣ₖ_) (sym (-Distₗ zero _ (pos (suc n)) z)) ∙∙ sym (-Distᵣ _ _ x _) ∙∙ cong -ₖ_ (helpPos (suc n)) ∙∙ -Distₗ _ _ _ z ∙∙ cong (_⌣ₖ z) (-Distᵣ _ zero x (pos (suc n))) ∙∙ λ i → (_⌣ₖ_ {m = zero} x (+ℤ-comm (negsuc n) 0 (~ i))) ⌣ₖ z assoc-⌣ₖ (suc n) (suc m) zero x y z = (assoc-⌣ₖ (suc n) zero (suc m) x z y) ∙∙ cong (subst coHomK (sym (+'-assoc (suc n) zero (suc m)))) (sym (assoc₀ _ _ z x y)) ∙∙ (funExt⁻ (sym h) (_⌣ₖ_ {n = zero} z (x ⌣ₖ y))) where h : subst coHomK (sym (+'-assoc (suc n) (suc m) zero)) ≡ subst coHomK (λ i → +'-assoc (suc n) zero (suc m) (~ i)) h = cong (subst coHomK) (isSetℕ _ _ _ _) assoc-⌣ₖ (suc n) (suc m) (suc k) x y z = funExt⁻ (cong fst (funExt⁻ (cong fst (assoc-⌣ₖ· n m k x)) y)) z -- Ring laws for ⌣ module _ {A : Type ℓ} (n m : ℕ) where ⌣-0ₕ : (f : coHom n A) → (f ⌣ 0ₕ m) ≡ 0ₕ _ ⌣-0ₕ = ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt λ x → ⌣ₖ-0ₖ n m (f x)) 0ₕ-⌣ : (f : coHom m A) → (0ₕ n ⌣ f) ≡ 0ₕ _ 0ₕ-⌣ = ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt λ x → 0ₖ-⌣ₖ n m (f x)) leftDistr-⌣ : (f : coHom n A) (g h : coHom m A) → f ⌣ (g +ₕ h) ≡ f ⌣ g +ₕ f ⌣ h leftDistr-⌣ = ST.elim (λ _ → isSetΠ2 λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ f → ST.elim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ g h → cong ∣_∣₂ (funExt λ x → leftDistr-⌣ₖ n m (f x) (g x) (h x)) rightDistr-⌣ : (g h : coHom n A) (f : coHom m A) → (g +ₕ h) ⌣ f ≡ g ⌣ f +ₕ h ⌣ f rightDistr-⌣ = ST.elim2 (λ _ _ → isSetΠ (λ _ → isOfHLevelPath 2 squash₂ _ _)) λ g h → ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt λ x → rightDistr-⌣ₖ n m (g x) (h x) (f x)) assoc-⌣ : (l : ℕ) (f : coHom n A) (g : coHom m A) (h : coHom l A) → f ⌣ g ⌣ h ≡ subst (λ x → coHom x A) (sym (+'-assoc n m l)) ((f ⌣ g) ⌣ h) assoc-⌣ l = ST.elim (λ _ → isSetΠ2 λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ f → ST.elim (λ _ → isSetΠ λ _ → isOfHLevelPath 2 squash₂ _ _) λ g → ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ h → cong ∣_∣₂ ((funExt (λ x → assoc-⌣ₖ n m l (f x) (g x) (h x) ∙ cong (subst coHomK (sym (+'-assoc n m l))) λ i → (f (transportRefl x (~ i)) ⌣ₖ g (transportRefl x (~ i))) ⌣ₖ (h (transportRefl x (~ i)))))) -- Additive unit(s) 0⌣ : ∀ {ℓ} {A : Type ℓ} (n m : ℕ) (x : coHom n A) → x ⌣ (0ₕ m) ≡ 0ₕ _ 0⌣ n m = ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt λ x → ⌣ₖ-0ₖ n m (f x)) ⌣0 : ∀ {ℓ} {A : Type ℓ} (n m : ℕ) (x : coHom n A) → (0ₕ m) ⌣ x ≡ 0ₕ _ ⌣0 n m = ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt λ x → 0ₖ-⌣ₖ m n (f x)) -- Multiplicative unit 1⌣ : ∀ {ℓ} {A : Type ℓ} → coHom 0 A 1⌣ = ∣ (λ _ → 1) ∣₂ n+'0 : (n : ℕ) → n +' 0 ≡ n n+'0 zero = refl n+'0 (suc n) = refl lUnit⌣ₖ : (n : ℕ) (x : coHomK n) → _⌣ₖ_ {n = 0} (pos 1) x ≡ x lUnit⌣ₖ zero = λ _ → refl lUnit⌣ₖ (suc n) x = rUnitₖ _ x lUnit⌣ : ∀ {ℓ} {A : Type ℓ} (n : ℕ) (x : coHom n A) → x ⌣ 1⌣ ≡ subst (λ n → coHom n A) (sym (n+'0 n)) x lUnit⌣ zero = ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt (λ x → comm-·₀ (f x) (pos 1))) ∙ sym (transportRefl ∣ f ∣₂) lUnit⌣ (suc n) = ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt (λ x → cong (f x +ₖ_) (0ₖ-⌣ₖ zero _ (f x)) ∙ rUnitₖ _ (f x))) ∙ sym (transportRefl ∣ f ∣₂) rUnit⌣ : ∀ {ℓ} {A : Type ℓ} (n : ℕ) (x : coHom n A) → 1⌣ ⌣ x ≡ x rUnit⌣ zero = ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → refl rUnit⌣ (suc n) = ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt λ x → rUnitₖ _ (f x)) -ₕDistᵣ : ∀ {ℓ} {A : Type ℓ} (n m : ℕ) (x : coHom n A) (y : coHom m A) → (-ₕ (x ⌣ y)) ≡ x ⌣ (-ₕ y) -ₕDistᵣ n m = ST.elim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ f g → cong ∣_∣₂ (funExt λ x → -Distᵣ n m (f x) (g x)) -ₕDistₗ : ∀ {ℓ} {A : Type ℓ} (n m : ℕ) (x : coHom n A) (y : coHom m A) → (-ₕ (x ⌣ y)) ≡ (-ₕ x) ⌣ y -ₕDistₗ n m = ST.elim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ f g → cong ∣_∣₂ (funExt λ x → -Distₗ n m (f x) (g x)) -ₕDistₗᵣ : ∀ {ℓ} {A : Type ℓ} (n m : ℕ) (x : coHom n A) (y : coHom m A) → (-ₕ x) ⌣ (-ₕ y) ≡ x ⌣ y -ₕDistₗᵣ n m x y = sym (-ₕDistₗ n m x (-ₕ y)) ∙∙ cong -ₕ_ (sym (-ₕDistᵣ n m x y)) ∙∙ ST.elim2 {C = λ x y → (-ₕ (-ₕ (x ⌣ y))) ≡ x ⌣ y} (λ _ _ → isSetPathImplicit) (λ f g → cong ∣_∣₂ (funExt λ _ → -ₖ^2 _)) x y -- TODO : Graded ring structure
43.054834
143
0.477763
4143716d5cbefb0ac3aa85a7fc9bbeda3776ba79
423
agda
Agda
function/overloading.agda
HoTT/M-types
beebe176981953ab48f37de5eb74557cfc5402f4
[ "BSD-3-Clause" ]
27
2015-04-14T15:47:03.000Z
2022-01-09T07:26:57.000Z
src/function/overloading.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T14:32:16.000Z
2016-10-26T11:57:26.000Z
function/overloading.agda
HoTT/M-types
beebe176981953ab48f37de5eb74557cfc5402f4
[ "BSD-3-Clause" ]
4
2015-04-11T17:19:12.000Z
2019-02-26T06:17:38.000Z
{-# OPTIONS --without-K #-} module function.overloading {i j}{X : Set i}{Y : Set j} where open import level open import sum open import overloading.core fun-is-fun : Coercion (X → Y) (X → Y) fun-is-fun = coerce-self _ private module fun-methods {k}{Source : Set k} ⦃ c : Coercion Source (X → Y) ⦄ where open Coercion c public using () renaming (coerce to apply) open fun-methods public
23.5
61
0.638298
2e4a5934a02b7f4f31cffdd0c2852f9bae093e51
10,259
agda
Agda
Cubical/ZCohomology/Groups/Torus.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
Cubical/ZCohomology/Groups/Torus.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
Cubical/ZCohomology/Groups/Torus.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.ZCohomology.Groups.Torus where open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.Groups.Connected open import Cubical.ZCohomology.MayerVietorisUnreduced open import Cubical.ZCohomology.Groups.Unit open import Cubical.ZCohomology.Groups.Sn open import Cubical.ZCohomology.Groups.Prelims open import Cubical.ZCohomology.KcompPrelims open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Univalence open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Data.Sigma open import Cubical.Data.Int renaming (_+_ to _+ℤ_; +-comm to +ℤ-comm ; +-assoc to +ℤ-assoc) open import Cubical.Data.Nat open import Cubical.Data.Unit open import Cubical.Algebra.Group open import Cubical.HITs.Pushout open import Cubical.HITs.S1 open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.HITs.SetTruncation renaming (rec to sRec ; elim to sElim ; elim2 to sElim2) hiding (map) open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; elim2 to pElim2 ; ∣_∣ to ∣_∣₁) hiding (map) open import Cubical.HITs.Nullification open import Cubical.HITs.Truncation renaming (elim to trElim ; elim2 to trElim2 ; map to trMap ; rec to trRec) open GroupHom open GroupIso private module congLemma (key : Unit') where module K = lockedCohom key main : (n : ℕ) (p : Path (coHomK n) (0ₖ n) (0ₖ n)) → Path (K.+K n (0ₖ n) (0ₖ n) ≡ K.+K n (0ₖ n) (0ₖ n)) (cong (K.+K n (0ₖ n)) p) (cong (λ x → K.+K n x (0ₖ n)) p) main n = congIdLeft≡congIdRight (K.+K n) (K.-K n) (0ₖ n) (K.rUnitK n) (K.lUnitK n) (rUnitlUnit0K key n) --------- H⁰(T²) ------------ H⁰-T²≅ℤ : GroupIso (coHomGr 0 (S₊ 1 × S₊ 1)) intGroup H⁰-T²≅ℤ = H⁰-connected (base , base) λ (a , b) → pRec propTruncIsProp (λ id1 → pRec propTruncIsProp (λ id2 → ∣ ΣPathP (id1 , id2) ∣₁) (Sn-connected 0 b) ) (Sn-connected 0 a) --------- H¹(T²) ------------------------------- H¹-T²≅ℤ×ℤ : GroupIso (coHomGr 1 ((S₊ 1) × (S₊ 1))) (dirProd intGroup intGroup) H¹-T²≅ℤ×ℤ = theIso □ dirProdGroupIso (invGroupIso (Hⁿ-Sⁿ≅ℤ 0)) (H⁰-Sⁿ≅ℤ 0) where helper : (x : hLevelTrunc 3 (S₊ 1)) → ∣ (S¹map x) ∣ ≡ x helper = trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) λ a → refl typIso : Iso _ _ typIso = setTruncIso (curryIso ⋄ codomainIso S1→K₁≡S1×Int ⋄ toProdIso) ⋄ setTruncOfProdIso theIso : GroupIso _ _ fun (map theIso) = Iso.fun (typIso) isHom (map theIso) = sElim2 (λ _ _ → isOfHLevelPath 2 (isOfHLevelΣ 2 setTruncIsSet (λ _ → setTruncIsSet)) _ _) λ f g → ΣPathP ((cong ∣_∣₂ (funExt (λ x → helper (f (x , base) +ₖ g (x , base)) ∙ sym (cong₂ (λ x y → x +ₖ y) (helper (f (x , base))) (helper (g (x , base))))))) , (cong ∣_∣₂ (funExt (toPropElim (λ _ → isSetInt _ _) (cong winding (basechange-lemma2 (λ x → f (base , x)) (λ x → g (base , x)) λ x → S¹map x) ∙∙ winding-hom (basechange2⁻ (S¹map (f (base , base))) (λ i → S¹map (f (base , (loop i))))) (basechange2⁻ (S¹map (g (base , base))) (λ i → S¹map (g (base , (loop i))))) ∙∙ sym (addLemma (winding (basechange2⁻ (S¹map (f (base , base))) (λ i → S¹map (f (base , (loop i)))))) (winding (basechange2⁻ (S¹map (g (base , base))) (λ i → S¹map (g (base , (loop i)))))))))))) inv theIso = Iso.inv typIso rightInv theIso = Iso.rightInv typIso leftInv theIso = Iso.leftInv typIso ----------------------- H²(T²) ------------------------------ open import Cubical.Foundations.Equiv H²-T²≅ℤ : GroupIso (coHomGr 2 (S₊ 1 × S₊ 1)) intGroup H²-T²≅ℤ = invGroupIso (ℤ≅H²-T² unlock) where module _ (key : Unit') where module K = lockedCohom key private _+K_ : {n : ℕ} → coHomK n → coHomK n → coHomK n _+K_ {n = n} = K.+K n -K_ : {n : ℕ} → coHomK n → coHomK n -K_ {n = n} = K.-K n -H_ : {A : Type₀} {n : ℕ} → coHom n A → coHom n A -H_ {n = n} = K.-H n _+H_ : {A : Type₀} {n : ℕ} → coHom n A → coHom n A → coHom n A _+H_ {n = n} = K.+H n typIso : Iso _ _ typIso = helper ⋄ (invIso (prodIso (GroupIso→Iso (Hⁿ-S¹≅0 0)) (invIso (GroupIso→Iso (Hⁿ-Sⁿ≅ℤ 0)))) ⋄ ((invIso setTruncOfProdIso) ⋄ (invIso (setTruncIso (curryIso ⋄ codomainIso (S1→K2≡K2×K1' key) ⋄ toProdIso))))) where helper : Iso Int (Unit × Int) Iso.inv helper = snd Iso.fun helper x = tt , x Iso.leftInv helper _ = refl Iso.rightInv helper _ = refl mapIsHom : (x y : Int) → Iso.fun typIso (x +ℤ y) ≡ ((Iso.fun typIso x) +H Iso.fun typIso y) mapIsHom a b = (cong f ((GroupHom.isHom (GroupIso.map (invGroupIso (dirProdGroupIso (Hⁿ-S¹≅0 0) (invGroupIso (Hⁿ-Sⁿ≅ℤ 0))))) (_ , a) (_ , b)) ∙ λ i → guyId i , +H≡+ₕ key _ (~ i) (g a) (g b))) ∙∙ helper (g a) (g b) ∙∙ cong₂ (_+H_) (λ i → f (guyId2 (~ i) , g a)) λ i → f (guyId2 (~ i) , g b) where f = Iso.fun (((invIso setTruncOfProdIso ⋄ invIso (setTruncIso (curryIso ⋄ codomainIso (S1→K2≡K2×K1' key) ⋄ toProdIso))))) g = GroupIso.inv (invGroupIso (Hⁿ-Sⁿ≅ℤ 0)) isPropH²-S¹ : isProp (coHom 2 (S₊ 1)) isPropH²-S¹ = isPropRetract (fun (map (Hⁿ-S¹≅0 0))) (inv (Hⁿ-S¹≅0 0)) (leftInv (Hⁿ-S¹≅0 0)) isPropUnit guyId : ∣ _ ∣₂ ≡ 0ₕ 2 guyId = isPropH²-S¹ _ _ guyId2 : ∣ _ ∣₂ ≡ 0ₕ 2 guyId2 = isPropH²-S¹ _ _ helper : (x y : ∥ ((S₊ 1) → (hLevelTrunc 3 (S₊ 1) )) ∥₂) → f ((0ₕ 2) , (x +H y)) ≡ f ((0ₕ 2) , x) +H f (0ₕ 2 , y) helper = sElim2 (λ _ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ f g i → ∣ (λ x → helper2 (f (fst x)) (g (fst x)) (snd x) i) ∣₂ where helper2 : (x y : coHomK 1) (s : S₊ 1) → Iso.inv (S1→K2≡K2×K1' key) (0ₖ 2 , x +K y) s ≡ (Iso.inv (S1→K2≡K2×K1' key) (0ₖ 2 , x)) s +K (Iso.inv (S1→K2≡K2×K1' key) (0ₖ 2 , y)) s helper2 = trElim2 (λ _ _ → isOfHLevelΠ 3 λ _ → isOfHLevelTrunc 4 _ _) λ a b → λ {base → cong₂ (_+K_) (sym (K.lUnitK _ 0₂)) (sym (K.lUnitK _ 0₂)) ; (loop i) j → hcomp (λ k → λ{ (i = i0) → cong₂ (_+K_) (sym (K.lUnitK _ 0₂)) (sym (K.lUnitK _ 0₂)) (j ∧ k) ; (i = i1) → cong₂ (_+K_) (sym (K.lUnitK _ 0₂)) (sym (K.lUnitK _ 0₂)) (j ∧ k) ; (j = i0) → 0₂ +K (Kn→ΩKn+1 1 (∣ a ∣ +K ∣ b ∣) i) ; (j = i1) → cong₂ (_+K_) (sym (K.lUnitK _ (Kn→ΩKn+1 1 ∣ a ∣ i))) (sym (K.lUnitK _ (Kn→ΩKn+1 1 ∣ b ∣ i))) k}) (helper3 ∣ a ∣ ∣ b ∣ j i)} where helper3 : (a b : coHomK 1) → cong (0₂ +K_) (Kn→ΩKn+1 1 (a +K b)) ≡ cong₂ (_+K_) (Kn→ΩKn+1 1 a) (Kn→ΩKn+1 1 b) helper3 a b = cong (cong (0₂ +K_)) (+K→∙ key 1 a b) ∙ (congFunct (0₂ +K_) (Kn→ΩKn+1 1 a) (Kn→ΩKn+1 1 b) ∙∙ (λ i → congLemma.main key 2 (Kn→ΩKn+1 1 a) i ∙ cong (_+K_ ∣ north ∣) (λ i → Kn→ΩKn+1 1 b i)) ∙∙ sym (cong₂Funct (_+K_) (Kn→ΩKn+1 1 a) (Kn→ΩKn+1 1 b))) ℤ≅H²-T² : GroupIso intGroup (coHomGr 2 (S₊ 1 × S₊ 1)) fun (map ℤ≅H²-T²) = Iso.fun typIso isHom (map ℤ≅H²-T²) = pm key mapIsHom where pm : (t : Unit') → ((x y : Int) → Iso.fun typIso (x +ℤ y) ≡ (lockedCohom.+H t _ (Iso.fun typIso x) (Iso.fun typIso y))) → isGroupHom intGroup (coHomGr 2 (S₊ 1 × S₊ 1)) (Iso.fun typIso) pm unlock p = p inv ℤ≅H²-T² = Iso.inv typIso rightInv ℤ≅H²-T² = Iso.rightInv typIso leftInv ℤ≅H²-T² = Iso.leftInv typIso private to₂ : coHom 2 (S₊ 1 × S₊ 1) → Int to₂ = fun (map H²-T²≅ℤ) from₂ : Int → coHom 2 (S₊ 1 × S₊ 1) from₂ = inv H²-T²≅ℤ to₁ : coHom 1 (S₊ 1 × S₊ 1) → Int × Int to₁ = fun (map H¹-T²≅ℤ×ℤ) from₁ : Int × Int → coHom 1 (S₊ 1 × S₊ 1) from₁ = inv H¹-T²≅ℤ×ℤ to₀ : coHom 0 (S₊ 1 × S₊ 1) → Int to₀ = fun (map H⁰-T²≅ℤ) from₀ : Int → coHom 0 (S₊ 1 × S₊ 1) from₀ = inv H⁰-T²≅ℤ {- -- Compute fast: test : to₁ (from₁ (0 , 1) +ₕ from₁ (1 , 0)) ≡ (1 , 1) test = refl test2 : to₁ (from₁ (5 , 1) +ₕ from₁ (-2 , 3)) ≡ (3 , 4) test2 = refl -- Will not compute: test3 : to₂ (from₂ 0) ≡ 0 test3 = refl -}
42.745833
152
0.45716
c710fa4c6b51730268ad49fe9eb0f0e5f60540a6
118
agda
Agda
test/Succeed/Issue4265b.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue4265b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue4265b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --no-syntactic-equality #-} open import Agda.Primitive variable ℓ : Level A : Set ℓ P : A → Set ℓ
13.111111
39
0.627119
1aacfe459e80044753bd6c2d508a53ed3dbe8a8a
916
agda
Agda
test/Succeed/Issue2455.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue2455.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue2455.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
-- Andreas, 2017-02-14 issue #2455 reported by mechvel -- Test case by Andrea -- Seem that the fix for issue #44 was not complete. -- When inserting module parameters for a definition, -- we need to respect polarities! -- {-# OPTIONS -v tc.decl:10 -v tc.polarity:70 -v tc.sig.inst:30 #-} module Issue2455 where data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x data Unit : Set where unit : Unit postulate A : Set P : A → Set p : ∀ {e} → P e module M (e : A) (f : Unit) where aux : Unit → P e aux unit = p -- se does not depent on f -- se gets type (e : A) (f :{UnusedArg} Unit) -> A se = e -- aux' should not depend on f -- For this to work, the module parameters for se must be -- respecting UnusedArg. aux' : Unit → P se aux' unit = p works : ∀ x y e → M.aux e x ≡ M.aux e y works _ _ _ = refl fails : ∀ x y e → M.aux' e x ≡ M.aux' e y fails _ _ _ = refl
20.818182
68
0.59607
589e52b9eaf50e9636a0e2082e038d3fb49e5ac8
505
agda
Agda
theorems/homotopy/3x3/Commutes.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/homotopy/3x3/Commutes.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/homotopy/3x3/Commutes.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import homotopy.3x3.PushoutPushout open import homotopy.3x3.Transpose import homotopy.3x3.To as To import homotopy.3x3.From as From open import homotopy.3x3.Common module homotopy.3x3.Commutes {i} (d : Span^2 {i}) where open Span^2 d open M using (Pushout^2) open To d open From d open import homotopy.3x3.FromTo open import homotopy.3x3.ToFrom abstract theorem : Pushout^2 d ≃ Pushout^2 (transpose d) theorem = equiv to from (to-from d) (from-to d)
21.956522
55
0.744554
1a6a677c7450952bd5cbc8b96e922ecc10fbc0fe
14,643
agda
Agda
LibraBFT/ImplShared/Util/HashCollisions.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
4
2020-12-16T19:43:41.000Z
2021-12-18T19:24:05.000Z
LibraBFT/ImplShared/Util/HashCollisions.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
72
2021-02-04T05:04:33.000Z
2022-03-25T05:36:11.000Z
LibraBFT/ImplShared/Util/HashCollisions.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
6
2020-12-16T19:43:52.000Z
2022-02-18T01:04:32.000Z
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.ByteString open import LibraBFT.Base.PKCS open import LibraBFT.Concrete.System.Parameters open import LibraBFT.Impl.Consensus.BlockStorage.BlockStore open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Util.Crypto open import LibraBFT.Prelude open import LibraBFT.Yasm.Base open import LibraBFT.Yasm.System ℓ-RoundManager ℓ-VSFP ConcSysParms open import Optics.All -- This module contains the machinery we use for tracking hash collisions for the hash function -- postulated in LibraBFT.ImplShared.Util.Crypto. (Note that, although we call it sha256 to remind -- ourselves that this *represents* a real hash function, in fact it is just postulated and could -- represent any hash function.) We prove our correctness conditions modulo hash collisions of this -- function, which is used to derive IDs for Blocks. Therefore, how we model and reason about such -- collisions is critical to the validity of our proofs. -- -- A common approach is to simply assume (e.g., postulate or state as an axiom) that the function is -- injective. While this is a reasonable pragmatic approach, it does raise an important issue. -- Because practical hash functions have unbounded domains and finite codomains, they are not -- injective. Therefore, assuming that the function represented by the postulated one is injective -- amounts to making an unsatisfiable assumption, from which anything can be proved (false implies -- anything). For this reason, it is not sufficient to show that the desired property holds unless -- a hash collision *exists*. Instead, we must construct evidence of a *specific* hash collision -- (i.e., two values and evidence that their hashes are the same but the values themselves are -- different). Such evidence is captured by the type NonInjective-≡ sha256. Below we elaborate on -- some subtleties and tradeoffs with what we prove in which contexts. -- -- First, when we are dealing with *abstract* Records (as in the Abstract and Concrete modules), it -- is trivial to construct an injectivity failure of Block IDs, simply by constructing two different -- abstract Blocks that have the same ID. In that context, it is important that we prove our -- correctness conditions modulo injectivity failures between Blocks that are actually represented -- in the specific ReachableSystemState about which we're reasoning (because that allows the -- injectivity failure of IDs of the *abstract* Blocks to be related back to concrete blocks whose -- IDs are derived using the hash function). -- -- In contrast, it is far from trivial to construct a specific collision for the *postulated* -- sha256-cr function. It would be possible to prove that *some* collision *exists* by using a -- pigeonhole principle counting argument. In principle, one could then construct a specific -- collision by generating 2 ^ 256 + 1 distinct Records (in case the postulated hash function is -- assumed to produce 256-bit hashes), and asking for each pair of them whether they hash to the -- same value. We could eliminate the possibility that none of these pairs provides a collision -- using the counting argument. -- -- One could not do this "accidentally" (as could potentially occur with Abstract records), and -- furthermore, by examining all proofs that use meta-no-collision, it is not difficult to see that -- the specific collisions are all produced from Records introduced by the proof obligations (i.e., -- Records that are in the ReachableSystemState under consideration). Therefore, we do not consider -- it necessary to explicitly associate any collisions for the postulated hash function with the -- ReachableSystemState. -- -- Having received feedback from some people who were uncomfortable with this argument, we have put -- some effort into explicitly tying each collision to data "in the system" in the -- ReachableSystemState in question. Our exploration convinces us that it's possible, but -- reinforces our view that it is not worthwhile; we elaborate on this in comments below. -- -- Our current position is to keep for illustrative purposes our work so far on explicitly tying -- some hash collisions to particular Records in the system for some cases, but to continue to -- simply construct the evidence of the collision in other cases. The two approaches can coexist -- because proofs can "bail out" when finding a hash collision between Records the proof is -- considering by invoking either of the postulated functions below (meta-no-collision-in-sys and -- meta-no-collsion). Both state that there is no collision, so providing evidence of a specific -- collision is sufficient to bail out of the proof of a condition that might not hold in case of a -- collision. The first requires the specific elements contributing to the collision to be -- precisely located within the current ReachableSystemState, while the second requires only -- evidence of the collision's existence, without specific information about where its elements came -- from. Below we explain our initial approach for meta-no-collision-in-sys, overview some examples -- demonstrating the additional proof burden it creates, and also discuss what would be needed to -- complete this effort, if it were deemed worthwhile. module LibraBFT.ImplShared.Util.HashCollisions (iiah : SystemInitAndHandlers ℓ-RoundManager ConcSysParms) where open WithInitAndHandlers iiah -- By placing the constructs below within a module that takes a ReachableSystemState as a module -- parameter, we ensure that a proof that wants to "bail out" due to a hash collision must specify -- a ReachableSystemState and show that the specific collision is between elements represented in -- that state. module PerReachableState {st} (r : ReachableSystemState st) where -- The following datatypes are used in the definition of HashCollisionFound below to enumerate -- the ways in which hash collisions that would undermine correctness can arise in the given -- state st. Note that we do not need to capture all ways in which a ByteString might be -- represented, only those for which our proofs require injectivity properties. Our initial -- work requires capturing hash collisions only for Block IDs. data _∈Block_ : BSL → Block → Set where inB : ∀ {b} → blockData-bsl (b ^∙ bBlockData) ∈Block b open _∈Block_ data _∈ProposalMsg_ (bsl : BSL) (pm : ProposalMsg) : Set where inPM : bsl ∈Block (pm ^∙ pmProposal) → bsl ∈ProposalMsg pm open _∈ProposalMsg_ data _∈nm (bsl : BSL) : Set where inP : ∀ {sndr pm} → (sndr , P pm) ∈ msgPool st → bsl ∈ProposalMsg pm → bsl ∈nm open _∈nm -- We could refine this further (∈BlockTree, ∈btIdToBlock), but I don't think we need to. data _∈BS_ (bsl : BSL) (bs : BlockStore) : Set where inBS : ∀ {eb} → (getBlock (hashBSL bsl) bs ≡ just eb) → bsl ∈Block (eb ^∙ ebBlock) → bsl ∈BS bs data _∈RM_ (bsl : BSL) (rm : RoundManager) : Set where inRM : bsl ∈BS (rm ^∙ lBlockStore) → bsl ∈RM rm -- So far, HashCollisionFound includes two constructors, one (msgRmHC) for a collision between a -- ByteString represented in a message that has been sent (∈nm) and one represented in the -- RoundManager of some peer. The other (msgmsgHC) is unused so far, but would be needed if we -- were to take this work further; it is for cases in which there is a collision between two -- elements in messages that have been sent. data HashCollisionFound : Set where msgRmHC : ∀ {bs1 bs2 pid} → bs1 ∈nm → initialised st pid ≡ initd → bs2 ∈RM (peerStates st pid) → hashBSL bs1 ≡ hashBSL bs2 → bs1 ≢ bs2 → HashCollisionFound msgmsgHC : ∀ {bs1 bs2} → bs1 ∈nm → bs2 ∈nm → hashBSL bs1 ≡ hashBSL bs2 → bs1 ≢ bs2 → HashCollisionFound -- By postulating the lack of existence of HashCollisionFound, we enable any proof to "bail out" -- only if it can construct a *specific* hash collision that is "in the system" represented by -- the specific ReachableSystemState, according to the specific notions thereof captured by the -- constructors for this type. postulate -- Valid assumption: there are no hash collisions among values found in the system meta-no-collision-in-sys : ¬ HashCollisionFound -- Discussion -- -- As noted above, we have applied this approach to some proofs but not others. In particular, -- there are still a number of proofs that use meta-no-collision (below), which does not require -- the constructed collision to be explicitly placed in context of the ReachableSystemState. -- -- We have used meta-no-collision-in-sys for the case of a peer handling a proposal. The -- proposal contains a Block which has an ID, which is supposed to be the hash of some parts of -- the proposal. This condition is verified when the proposal message is first received (see -- verifyWellFormed in LibraBFT.Impl.Consensus.ConsensusTypes.Block), and the knowledge that it -- verified correctly is needed all the way down the stack when the receiving peer inserts the -- block into its BlockTree. If an ExecutedBlock is found in the BlockTree associated with the -- ID of the new Block, then the algorithm assumes it's the same Block (because both the new -- Block and the one inserted previously in the BlockTree have been verified as hashing to the -- same ID). If there were a collision (i.e., these two Blocks that hash to the same ID -- actually have different bits that are hashed to derive the ID), then incorrect behaviour -- would be possible. -- -- To use meta-no-collision-in-sys, we need to construct a value of HashCollisionFound in -- context of the ReachableSystemState under consideration (but see note below). This requires -- carrying the fact that the hash of the newly proposed Block matches its ID from the -- above-mentioned verification all the way down the stack, where it is needed to invoke an -- assumption about the lack of collisions between the new Block and one previously stored when -- proving the Contract for insertBlockESpec. (This is the NOHC1 argument given to the blocks≈ -- field insertBlockESpec.ContrackOk.) Then, each Contract up the stack must receive a similar -- argument enabling it to invoke the Contract of the next function down the stack. See, for -- example, the ebBlock≈ field of executeAndInsertBlockESpec.ContractOk, the voteAttemptCorrect -- field of processProposalMsgMSpec.Contract (and others in the same file), and similarly for -- handleProposalSpec.Contract. Then this argument must be provided by higher level properties -- that wish to invoke the lower-level contracts. Because the higher-level properties are in -- context of a specific ReachableSystemState, they can construct a proof of the absence of the -- potential collision by using meta-no-collision-in-sys for that ReachableSystemState. -- -- As can be seen, connecting a potential hash collision to a specific ReachableSystemState is a -- fair amount of work, which complicates proofs. As explained above, we do not think it is -- worthwhile to continue this effort, just to show that we can. One issue we would want to -- address if taking this work further would be to *ensure* that the ReachableSystemState -- for which a potential collision is considered is the same one about which we're proving the -- given property. This already is the case in our proofs, but our conditions don't *ensure* -- that it is because, in principle, when calling nohc to use meta-no-collision-in-sys to -- eliminate an assumed collision, we could provide *any* ReachableSystemState. To require it -- to be the same ReachableSystemState, we would need to explicitly express for each relevant -- property that it holds unless there is collision in *that state*. So, for example, the -- conclusion of the IncreasingRoundObligation property would have to become something like the -- following (where pre is the state about which IncreasingRoundObligation is proved): -- -- HashCollisionFound pre -- ⊎ v' ^∙ vRound < v ^∙ vRound -- ⊎ VoteForRound∈ pk (v ^∙ vRound) (v ^∙ vEpoch) (v ^∙ vProposedId) (msgPool pre) -- -- The first disjunct is not currently necessary because there is no requirement to place the -- HashCollisionFound in the same ReachableSystemState. We would then need to propagate those -- disjuncts from one proof to another, making even more work and complicating proofs and -- properties further. Importantly, doing so would provide no additional benefit over what we -- have done already, exactly because it is not practical to construct a collision for the -- postulated hash function anyway (and we could not do so "accidentally"): giving ourselves the -- freedom to associate it with a diffferent ReachabeSystemState does not change that. This -- underlines the point that requiring the collision to be associated with a -- ReachableSystemState creates quite a bit of work, and provides little benefit. postulate -- valid assumption. Note that this does *not* say that no collisions *exist*; it -- says a proof cannot escape its obligations unless it can provide specfic evidence -- of a collision; as explained above, doing so other than from Records presented to -- the proof (because they are in the system state under consideration) is -- impractical and impossible to do "accidentally" meta-no-collision : ¬ (NonInjective-≡ sha256) sameSig⇒sameVoteDataNoCol : ∀ {v1 v2 : Vote} {pk} → WithVerSig pk v1 → WithVerSig pk v2 → v1 ^∙ vSignature ≡ v2 ^∙ vSignature → v2 ^∙ vVoteData ≡ v1 ^∙ vVoteData sameSig⇒sameVoteDataNoCol {v1} {v2} wvs1 wvs2 refl with sameSig⇒sameVoteData {v1} {v2} wvs1 wvs2 refl ...| inj₁ hb = ⊥-elim (meta-no-collision hb) ...| inj₂ x = x
65.663677
111
0.731476
0be7e6cfb78741b7de7514bd85e04290384751ac
15,369
agda
Agda
Cubical/Data/Int/Properties.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
Cubical/Data/Int/Properties.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
Cubical/Data/Int/Properties.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} {- This file defines sucPred : ∀ (i : Int) → sucInt (predInt i) ≡ i predSuc : ∀ (i : Int) → predInt (sucInt i) ≡ i discreteInt : discrete Int isSetInt : isSet Int addition of Int is defined _+_ : Int → Int → Int as well as its commutativity and associativity +-comm : ∀ (m n : Int) → m + n ≡ n + m +-assoc : ∀ (m n o : Int) → m + (n + o) ≡ (m + n) + o An alternate definition of _+_ is defined via ua, namely _+'_, which helps us to easily prove isEquivAddInt : (m : Int) → isEquiv (λ n → n + m) -} module Cubical.Data.Int.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Transport open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Data.Empty open import Cubical.Data.Nat hiding (+-assoc ; +-comm) renaming (_·_ to _·ℕ_; _+_ to _+ℕ_) open import Cubical.Data.Bool open import Cubical.Data.Sum open import Cubical.Data.Int.Base open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.DecidableEq abs : Int → ℕ abs (pos n) = n abs (negsuc n) = suc n sgn : Int → Bool sgn (pos n) = true sgn (negsuc n) = false sucPred : ∀ i → sucInt (predInt i) ≡ i sucPred (pos zero) = refl sucPred (pos (suc n)) = refl sucPred (negsuc n) = refl predSuc : ∀ i → predInt (sucInt i) ≡ i predSuc (pos n) = refl predSuc (negsuc zero) = refl predSuc (negsuc (suc n)) = refl -- TODO: define multiplication injPos : ∀ {a b : ℕ} → pos a ≡ pos b → a ≡ b injPos {a} h = subst T h refl where T : Int → Type₀ T (pos x) = a ≡ x T (negsuc _) = ⊥ injNegsuc : ∀ {a b : ℕ} → negsuc a ≡ negsuc b → a ≡ b injNegsuc {a} h = subst T h refl where T : Int → Type₀ T (pos _) = ⊥ T (negsuc x) = a ≡ x posNotnegsuc : ∀ (a b : ℕ) → ¬ (pos a ≡ negsuc b) posNotnegsuc a b h = subst T h 0 where T : Int → Type₀ T (pos _) = ℕ T (negsuc _) = ⊥ negsucNotpos : ∀ (a b : ℕ) → ¬ (negsuc a ≡ pos b) negsucNotpos a b h = subst T h 0 where T : Int → Type₀ T (pos _) = ⊥ T (negsuc _) = ℕ discreteInt : Discrete Int discreteInt (pos n) (pos m) with discreteℕ n m ... | yes p = yes (cong pos p) ... | no p = no (λ x → p (injPos x)) discreteInt (pos n) (negsuc m) = no (posNotnegsuc n m) discreteInt (negsuc n) (pos m) = no (negsucNotpos n m) discreteInt (negsuc n) (negsuc m) with discreteℕ n m ... | yes p = yes (cong negsuc p) ... | no p = no (λ x → p (injNegsuc x)) isSetInt : isSet Int isSetInt = Discrete→isSet discreteInt isEven : Int → Bool isEven (pos zero) = true isEven (pos (suc zero)) = false isEven (pos (suc (suc n))) = isEven (pos n) isEven (negsuc zero) = false isEven (negsuc (suc n)) = isEven (pos n) _ℕ-_ : ℕ → ℕ → Int a ℕ- 0 = pos a 0 ℕ- suc b = negsuc b suc a ℕ- suc b = a ℕ- b _+pos_ : Int → ℕ → Int z +pos 0 = z z +pos (suc n) = sucInt (z +pos n) _+negsuc_ : Int → ℕ → Int z +negsuc 0 = predInt z z +negsuc (suc n) = predInt (z +negsuc n) _+_ : Int → Int → Int m + pos n = m +pos n m + negsuc n = m +negsuc n -_ : Int → Int - pos zero = pos zero - pos (suc n) = negsuc n - negsuc n = pos (suc n) _-_ : Int → Int → Int m - n = m + (- n) -pos : ∀ n → - (pos n) ≡ neg n -pos zero = refl -pos (suc n) = refl -neg : ∀ n → - (neg n) ≡ pos n -neg zero = refl -neg (suc n) = refl -Involutive : ∀ z → - (- z) ≡ z -Involutive (pos n) = (- (- pos n)) ≡⟨ cong -_ (-pos n) ⟩ - (neg n) ≡⟨ -neg n ⟩ pos n ∎ -Involutive (negsuc n) = refl sucInt+pos : ∀ n m → sucInt (m +pos n) ≡ (sucInt m) +pos n sucInt+pos zero m = refl sucInt+pos (suc n) m = cong sucInt (sucInt+pos n m) predInt+negsuc : ∀ n m → predInt (m +negsuc n) ≡ (predInt m) +negsuc n predInt+negsuc zero m = refl predInt+negsuc (suc n) m = cong predInt (predInt+negsuc n m) sucInt+negsuc : ∀ n m → sucInt (m +negsuc n) ≡ (sucInt m) +negsuc n sucInt+negsuc zero m = (sucPred _) ∙ (sym (predSuc _)) sucInt+negsuc (suc n) m = _ ≡⟨ sucPred _ ⟩ m +negsuc n ≡[ i ]⟨ predSuc m (~ i) +negsuc n ⟩ (predInt (sucInt m)) +negsuc n ≡⟨ sym (predInt+negsuc n (sucInt m)) ⟩ predInt (sucInt m +negsuc n) ∎ predInt+pos : ∀ n m → predInt (m +pos n) ≡ (predInt m) +pos n predInt+pos zero m = refl predInt+pos (suc n) m = _ ≡⟨ predSuc _ ⟩ m +pos n ≡[ i ]⟨ sucPred m (~ i) + pos n ⟩ (sucInt (predInt m)) +pos n ≡⟨ sym (sucInt+pos n (predInt m))⟩ (predInt m) +pos (suc n) ∎ predInt-pos : ∀ n → predInt(- (pos n)) ≡ negsuc n predInt-pos zero = refl predInt-pos (suc n) = refl predInt+ : ∀ m n → predInt (m + n) ≡ (predInt m) + n predInt+ m (pos n) = predInt+pos n m predInt+ m (negsuc n) = predInt+negsuc n m +predInt : ∀ m n → predInt (m + n) ≡ m + (predInt n) +predInt m (pos zero) = refl +predInt m (pos (suc n)) = (predSuc (m + pos n)) ∙ (cong (_+_ m) (sym (predSuc (pos n)))) +predInt m (negsuc n) = refl sucInt+ : ∀ m n → sucInt (m + n) ≡ (sucInt m) + n sucInt+ m (pos n) = sucInt+pos n m sucInt+ m (negsuc n) = sucInt+negsuc n m +sucInt : ∀ m n → sucInt (m + n) ≡ m + (sucInt n) +sucInt m (pos n) = refl +sucInt m (negsuc zero) = sucPred _ +sucInt m (negsuc (suc n)) = (sucPred (m +negsuc n)) ∙ (cong (_+_ m) (sym (sucPred (negsuc n)))) pos0+ : ∀ z → z ≡ pos 0 + z pos0+ (pos zero) = refl pos0+ (pos (suc n)) = cong sucInt (pos0+ (pos n)) pos0+ (negsuc zero) = refl pos0+ (negsuc (suc n)) = cong predInt (pos0+ (negsuc n)) negsuc0+ : ∀ z → predInt z ≡ negsuc 0 + z negsuc0+ (pos zero) = refl negsuc0+ (pos (suc n)) = (sym (sucPred (pos n))) ∙ (cong sucInt (negsuc0+ _)) negsuc0+ (negsuc zero) = refl negsuc0+ (negsuc (suc n)) = cong predInt (negsuc0+ (negsuc n)) ind-comm : {A : Type₀} (_∙_ : A → A → A) (f : ℕ → A) (g : A → A) (p : ∀ {n} → f (suc n) ≡ g (f n)) (g∙ : ∀ a b → g (a ∙ b) ≡ g a ∙ b) (∙g : ∀ a b → g (a ∙ b) ≡ a ∙ g b) (base : ∀ z → z ∙ f 0 ≡ f 0 ∙ z) → ∀ z n → z ∙ f n ≡ f n ∙ z ind-comm _∙_ f g p g∙ ∙g base z 0 = base z ind-comm _∙_ f g p g∙ ∙g base z (suc n) = z ∙ f (suc n) ≡[ i ]⟨ z ∙ p {n} i ⟩ z ∙ g (f n) ≡⟨ sym ( ∙g z (f n)) ⟩ g (z ∙ f n) ≡⟨ cong g IH ⟩ g (f n ∙ z) ≡⟨ g∙ (f n) z ⟩ g (f n) ∙ z ≡[ i ]⟨ p {n} (~ i) ∙ z ⟩ f (suc n) ∙ z ∎ where IH = ind-comm _∙_ f g p g∙ ∙g base z n ind-assoc : {A : Type₀} (_·_ : A → A → A) (f : ℕ → A) (g : A → A) (p : ∀ a b → g (a · b) ≡ a · (g b)) (q : ∀ {c} → f (suc c) ≡ g (f c)) (base : ∀ m n → (m · n) · (f 0) ≡ m · (n · (f 0))) (m n : A) (o : ℕ) → m · (n · (f o)) ≡ (m · n) · (f o) ind-assoc _·_ f g p q base m n 0 = sym (base m n) ind-assoc _·_ f g p q base m n (suc o) = m · (n · (f (suc o))) ≡[ i ]⟨ m · (n · q {o} i) ⟩ m · (n · (g (f o))) ≡[ i ]⟨ m · (p n (f o) (~ i)) ⟩ m · (g (n · (f o))) ≡⟨ sym (p m (n · (f o)))⟩ g (m · (n · (f o))) ≡⟨ cong g IH ⟩ g ((m · n) · (f o)) ≡⟨ p (m · n) (f o) ⟩ (m · n) · (g (f o)) ≡[ i ]⟨ (m · n) · q {o} (~ i) ⟩ (m · n) · (f (suc o)) ∎ where IH = ind-assoc _·_ f g p q base m n o +-comm : ∀ m n → m + n ≡ n + m +-comm m (pos n) = ind-comm _+_ pos sucInt refl sucInt+ +sucInt pos0+ m n +-comm m (negsuc n) = ind-comm _+_ negsuc predInt refl predInt+ +predInt negsuc0+ m n +-assoc : ∀ m n o → m + (n + o) ≡ (m + n) + o +-assoc m n (pos o) = ind-assoc _+_ pos sucInt +sucInt refl (λ _ _ → refl) m n o +-assoc m n (negsuc o) = ind-assoc _+_ negsuc predInt +predInt refl +predInt m n o -- Compose sucPathInt with itself n times. Transporting along this -- will be addition, transporting with it backwards will be subtraction. -- Use this to define _+'_ for which is easier to prove -- isEquiv (λ n → n +' m) since _+'_ is defined by transport sucPathInt : Int ≡ Int sucPathInt = ua (sucInt , isoToIsEquiv (iso sucInt predInt sucPred predSuc)) addEq : ℕ → Int ≡ Int addEq zero = refl addEq (suc n) = (addEq n) ∙ sucPathInt predPathInt : Int ≡ Int predPathInt = ua (predInt , isoToIsEquiv (iso predInt sucInt predSuc sucPred)) subEq : ℕ → Int ≡ Int subEq zero = refl subEq (suc n) = (subEq n) ∙ predPathInt _+'_ : Int → Int → Int m +' pos n = transport (addEq n) m m +' negsuc n = transport (subEq (suc n)) m +'≡+ : _+'_ ≡ _+_ +'≡+ i m (pos zero) = m +'≡+ i m (pos (suc n)) = sucInt (+'≡+ i m (pos n)) +'≡+ i m (negsuc zero) = predInt m +'≡+ i m (negsuc (suc n)) = predInt (+'≡+ i m (negsuc n)) -- -- compPath (λ i → (+'≡+ i (predInt m) (negsuc n))) (sym (predInt+negsuc n m)) i isEquivAddInt' : (m : Int) → isEquiv (λ n → n +' m) isEquivAddInt' (pos n) = isEquivTransport (addEq n) isEquivAddInt' (negsuc n) = isEquivTransport (subEq (suc n)) isEquivAddInt : (m : Int) → isEquiv (λ n → n + m) isEquivAddInt = subst (λ add → (m : Int) → isEquiv (λ n → add n m)) +'≡+ isEquivAddInt' -- below is an alternate proof of isEquivAddInt for comparison -- We also have two useful lemma here. minusPlus : ∀ m n → (n - m) + m ≡ n minusPlus (pos zero) n = refl minusPlus (pos 1) = sucPred minusPlus (pos (suc (suc m))) n = sucInt ((n +negsuc (suc m)) +pos (suc m)) ≡⟨ sucInt+pos (suc m) _ ⟩ sucInt (n +negsuc (suc m)) +pos (suc m) ≡[ i ]⟨ sucPred (n +negsuc m) i +pos (suc m) ⟩ (n - pos (suc m)) +pos (suc m) ≡⟨ minusPlus (pos (suc m)) n ⟩ n ∎ minusPlus (negsuc zero) = predSuc minusPlus (negsuc (suc m)) n = predInt (sucInt (sucInt (n +pos m)) +negsuc m) ≡⟨ predInt+negsuc m _ ⟩ predInt (sucInt (sucInt (n +pos m))) +negsuc m ≡[ i ]⟨ predSuc (sucInt (n +pos m)) i +negsuc m ⟩ sucInt (n +pos m) +negsuc m ≡⟨ minusPlus (negsuc m) n ⟩ n ∎ plusMinus : ∀ m n → (n + m) - m ≡ n plusMinus (pos zero) n = refl plusMinus (pos (suc m)) = minusPlus (negsuc m) plusMinus (negsuc m) = minusPlus (pos (suc m)) private alternateProof : (m : Int) → isEquiv (λ n → n + m) alternateProof m = isoToIsEquiv (iso (λ n → n + m) (λ n → n - m) (minusPlus m) (plusMinus m)) -Cancel : ∀ z → z - z ≡ pos zero -Cancel z = z - z ≡⟨ cong (_- z) (pos0+ z) ⟩ (pos zero + z) - z ≡⟨ plusMinus z (pos zero) ⟩ pos zero ∎ pos+ : ∀ m n → pos (m +ℕ n) ≡ pos m + pos n pos+ zero zero = refl pos+ zero (suc n) = pos (zero +ℕ suc n) ≡⟨ +-comm (pos (suc n)) (pos zero) ⟩ pos zero + pos (suc n) ∎ pos+ (suc m) zero = pos (suc (m +ℕ zero)) ≡⟨ cong pos (cong suc (+-zero m)) ⟩ pos (suc m) + pos zero ∎ pos+ (suc m) (suc n) = pos (suc m +ℕ suc n) ≡⟨ cong pos (cong suc (+-suc m n)) ⟩ sucInt (pos (suc (m +ℕ n))) ≡⟨ cong sucInt (cong sucInt (pos+ m n)) ⟩ sucInt (sucInt (pos m + pos n)) ≡⟨ sucInt+ (pos m) (sucInt (pos n)) ⟩ pos (suc m) + pos (suc n) ∎ negsuc+ : ∀ m n → negsuc (m +ℕ n) ≡ negsuc m - pos n negsuc+ zero zero = refl negsuc+ zero (suc n) = negsuc (zero +ℕ suc n) ≡⟨ negsuc0+ (negsuc n) ⟩ negsuc zero + negsuc n ≡⟨ cong (negsuc zero +_) (-pos (suc n)) ⟩ negsuc zero - pos (suc n) ∎ negsuc+ (suc m) zero = negsuc (suc m +ℕ zero) ≡⟨ cong negsuc (cong suc (+-zero m)) ⟩ negsuc (suc m) - pos zero ∎ negsuc+ (suc m) (suc n) = negsuc (suc m +ℕ suc n) ≡⟨ cong negsuc (sym (+-suc m (suc n))) ⟩ negsuc (m +ℕ suc (suc n)) ≡⟨ negsuc+ m (suc (suc n)) ⟩ negsuc m - pos (suc (suc n)) ≡⟨ sym (+predInt (negsuc m) (negsuc n)) ⟩ predInt (negsuc m + negsuc n ) ≡⟨ predInt+ (negsuc m) (negsuc n) ⟩ negsuc (suc m) - pos (suc n) ∎ neg+ : ∀ m n → neg (m +ℕ n) ≡ neg m + neg n neg+ zero zero = refl neg+ zero (suc n) = neg (zero +ℕ suc n) ≡⟨ +-comm (neg (suc n)) (pos zero) ⟩ neg zero + neg (suc n) ∎ neg+ (suc m) zero = neg (suc (m +ℕ zero)) ≡⟨ cong neg (cong suc (+-zero m)) ⟩ neg (suc m) + neg zero ∎ neg+ (suc m) (suc n) = neg (suc m +ℕ suc n) ≡⟨ negsuc+ m (suc n) ⟩ neg (suc m) + neg (suc n) ∎ ℕ-AntiComm : ∀ m n → m ℕ- n ≡ - (n ℕ- m) ℕ-AntiComm zero zero = refl ℕ-AntiComm zero (suc n) = refl ℕ-AntiComm (suc m) zero = refl ℕ-AntiComm (suc m) (suc n) = suc m ℕ- suc n ≡⟨ ℕ-AntiComm m n ⟩ - (suc n ℕ- suc m) ∎ pos- : ∀ m n → m ℕ- n ≡ pos m - pos n pos- zero zero = refl pos- zero (suc n) = zero ℕ- suc n ≡⟨ +-comm (negsuc n) (pos zero) ⟩ pos zero - pos (suc n) ∎ pos- (suc m) zero = refl pos- (suc m) (suc n) = suc m ℕ- suc n ≡⟨ pos- m n ⟩ pos m - pos n ≡⟨ sym (sucPred (pos m - pos n)) ⟩ sucInt (predInt (pos m - pos n)) ≡⟨ cong sucInt (+predInt (pos m) (- pos n)) ⟩ sucInt (pos m + predInt (- (pos n))) ≡⟨ cong sucInt (cong (pos m +_) (predInt-pos n)) ⟩ sucInt (pos m + negsuc n) ≡⟨ sucInt+negsuc n (pos m) ⟩ pos (suc m) - pos (suc n) ∎ -AntiComm : ∀ m n → m - n ≡ - (n - m) -AntiComm (pos n) (pos m) = pos n - pos m ≡⟨ sym (pos- n m) ⟩ n ℕ- m ≡⟨ ℕ-AntiComm n m ⟩ - (m ℕ- n) ≡⟨ cong -_ (pos- m n) ⟩ - (pos m - pos n) ∎ -AntiComm (pos n) (negsuc m) = pos n - negsuc m ≡⟨ +-comm (pos n) (pos (suc m)) ⟩ pos (suc m) + pos n ≡⟨ sym (pos+ (suc m) n) ⟩ pos (suc m +ℕ n) ≡⟨ sym (-neg (suc m +ℕ n)) ⟩ - neg (suc m +ℕ n) ≡⟨ cong -_ (neg+ (suc m) n) ⟩ - (neg (suc m) + neg n) ≡⟨ cong -_ (cong (negsuc m +_) (sym (-pos n))) ⟩ - (negsuc m - pos n) ∎ -AntiComm (negsuc n) (pos m) = negsuc n - pos m ≡⟨ sym (negsuc+ n m) ⟩ negsuc (n +ℕ m) ≡⟨ cong -_ (pos+ (suc n) m) ⟩ - (pos (suc n) + pos m) ≡⟨ cong -_ (+-comm (pos (suc n)) (pos m)) ⟩ - (pos m - negsuc n) ∎ -AntiComm (negsuc n) (negsuc m) = negsuc n - negsuc m ≡⟨ +-comm (negsuc n) (pos (suc m)) ⟩ pos (suc m) + negsuc n ≡⟨ sym (pos- (suc m) (suc n)) ⟩ suc m ℕ- suc n ≡⟨ ℕ-AntiComm (suc m) (suc n) ⟩ - (suc n ℕ- suc m) ≡⟨ cong -_ (pos- (suc n) (suc m)) ⟩ - (pos (suc n) - pos (suc m)) ≡⟨ cong -_ (+-comm (pos (suc n)) (negsuc m)) ⟩ - (negsuc m - negsuc n) ∎ -Dist+ : ∀ m n → - (m + n) ≡ (- m) + (- n) -Dist+ (pos n) (pos m) = - (pos n + pos m) ≡⟨ cong -_ (sym (pos+ n m)) ⟩ - pos (n +ℕ m) ≡⟨ -pos (n +ℕ m) ⟩ neg (n +ℕ m) ≡⟨ neg+ n m ⟩ neg n + neg m ≡⟨ cong (neg n +_) (sym (-pos m)) ⟩ neg n + (- pos m) ≡⟨ cong (_+ (- pos m)) (sym (-pos n)) ⟩ (- pos n) + (- pos m) ∎ -Dist+ (pos n) (negsuc m) = - (pos n + negsuc m) ≡⟨ sym (-AntiComm (pos (suc m)) (pos n)) ⟩ pos (suc m) - pos n ≡⟨ +-comm (pos (suc m)) (- pos n) ⟩ (- pos n) + (- negsuc m) ∎ -Dist+ (negsuc n) (pos m) = - (negsuc n + pos m) ≡⟨ cong -_ (+-comm (negsuc n) (pos m)) ⟩ - (pos m + negsuc n) ≡⟨ sym (-AntiComm (- negsuc n) (pos m)) ⟩ (- negsuc n) + (- pos m) ∎ -Dist+ (negsuc n) (negsuc m) = - (negsuc n + negsuc m) ≡⟨ cong -_ (sym (neg+ (suc n) (suc m))) ⟩ - neg (suc n +ℕ suc m) ≡⟨ pos+ (suc n) (suc m) ⟩ (- negsuc n) + (- negsuc m) ∎ _·_ : Int → Int → Int pos zero · m = pos zero pos (suc n) · m = m + (pos n · m) negsuc zero · m = (- m) negsuc (suc n) · m = (- m) + ((negsuc n) · m)
35.412442
98
0.51682
1ac4acdfef0d29b2bad86ea26b880e15282a604b
998
agda
Agda
Path.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
Path.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
Path.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --safe #-} module Path where open import Cubical.Foundations.Everything using ( _≡_ ; sym ; refl ; subst ; transport ; Path ; PathP ; I ; i0 ; i1 ; funExt ; cong ; toPathP ; cong₂ ; ~_ ; _∧_ ; _∨_ ; hcomp ; transp ; J ) renaming (_∙_ to _;_; subst2 to subst₂) public open import Data.Empty using (¬_) open import Level infix 4 _≢_ _≢_ : {A : Type a} → A → A → Type a x ≢ y = ¬ (x ≡ y) infix 4 PathP-syntax PathP-syntax = PathP {-# DISPLAY PathP-syntax = PathP #-} syntax PathP-syntax (λ i → Ty) lhs rhs = lhs ≡[ i ≔ Ty ]≡ rhs import Agda.Builtin.Equality as MLTT builtin-eq-to-path : {A : Type a} {x y : A} → x MLTT.≡ y → x ≡ y builtin-eq-to-path {x = x} MLTT.refl i = x path-to-builtin-eq : {A : Type a} {x y : A} → x ≡ y → x MLTT.≡ y path-to-builtin-eq {x = x} x≡y = subst (x MLTT.≡_) x≡y MLTT.refl
19.96
64
0.508016
fbc8ea7e669430b3d7b67852c7ad5023e9440d53
92
agda
Agda
agda/Data/List.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
4
2021-01-05T14:07:44.000Z
2021-01-05T15:32:14.000Z
agda/Data/List.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
agda/Data/List.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
1
2021-01-05T14:05:30.000Z
2021-01-05T14:05:30.000Z
{-# OPTIONS --cubical --safe #-} module Data.List where open import Data.List.Base public
15.333333
33
0.706522
c76a60199d8aaddcd62d8479fdc47a385a946ffa
487
agda
Agda
test/asset/agda-stdlib-1.0/Relation/Binary/EquivalenceClosure.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Binary/EquivalenceClosure.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Binary/EquivalenceClosure.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Equivalence closures of binary relations -- -- This module is DEPRECATED. Please use the -- Relation.Binary.Construct.Closure.Equivalence module directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary.EquivalenceClosure where open import Relation.Binary.Construct.Closure.Equivalence public
32.466667
72
0.546201
1d8cc41368f37ee6f6c1a57647297fe345ad5e7d
334
agda
Agda
test/Fail/WithoutK-PatternMatchingLambdas1.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/WithoutK-PatternMatchingLambdas1.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/WithoutK-PatternMatchingLambdas1.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --without-K #-} module WithoutK-PatternMatchingLambdas1 where -- Equality defined with one index. data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x -- The --without-K option works with pattern matching lambdas. K : (A : Set) (x : A) (P : x ≡ x → Set) → P refl → (p : x ≡ x ) → P p K = λ { A x P pr refl → pr }
27.833333
70
0.583832
1d54600bc516cda28d1b494c3b69e2879a406bae
1,045
agda
Agda
test/interaction/Issue1963.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue1963.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue1963.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, May-July 2016, implementing postfix projections {-# OPTIONS --postfix-projections #-} open import Common.Product open import Common.Bool pair : ∀{A : Set}(a : A) → A × A pair a = {!!} -- C-c C-c here outputs postfix projections record BoolFun : Set where field out : Bool → Bool open BoolFun neg : BoolFun neg .out x = {!x!} -- splitting here should preserve postfix proj neg2 : BoolFun out neg2 x = {!x!} -- splitting here should preserve prefix proj module ExtendedLambda where neg3 : BoolFun neg3 = λ{ .out → {!!} } pair2 : ∀{A : Set}(a : A) → A × A pair2 = λ{ a → {!!} } neg4 : BoolFun neg4 = λ{ .out b → {!b!} } -- DOES NOT WORK DUE TO ISSUE #2020 -- module LambdaWhere where -- neg3 : BoolFun -- neg3 = λ where -- .out → {!!} -- splitting on result here crashes -- pair2 : ∀{A : Set}(a : A) → A × A -- pair2 = λ where -- a → {!!} -- extlam-where : Bool → Bool -- extlam-where = λ where -- b → {!b!} -- -- extlam : Bool → Bool -- -- extlam = λ -- -- { b → {!b!} -- -- }
20.096154
65
0.571292
41e8c42d615dfce97b5718c02f9d84dd18c20261
31,652
agda
Agda
agda/book/Programming_Language_Foundations_in_Agda/x02induction.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
36
2015-01-29T14:37:15.000Z
2021-07-30T06:55:03.000Z
agda/book/Programming_Language_Foundations_in_Agda/x02induction.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
null
null
null
agda/book/Programming_Language_Foundations_in_Agda/x02induction.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
8
2015-04-13T21:40:15.000Z
2021-09-21T15:58:10.000Z
module x02induction where -- prove properties of inductive naturals and operations on them via induction import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; sym) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _^_) {- ------------------------------------------------------------------------------ ## Properties of operators : identity, associativity, commutativity, distributivity * _Identity_. left/right/both; sometimes called _unit_ * _Associativity_. e.g., `(m + n) + p ≡ m + (n + p)` * _Commutativity_. e.g., `m + n ≡ n + m` * _Distributivity_. e.g., from the left `(m + n) * p ≡ (m * p) + (n * p)` from the right `m * (p + q) ≡ (m * p) + (m * q)` #### Exercise `operators` (practice) {name=operators} TODO : ops with different properties - no proofs pair of operators - have an identity - are associative, commutative, and distribute over one another (do not prove) operator - has identity - is associative - not commutative (do not prove) -} {- HC not associative; right identity -} _ = begin (3 ∸ 1) ∸ 1 ∸ 0 ≡⟨⟩ 2 ∸ 1 ∸ 0 ≡⟨⟩ 1 ∸ 0 ≡⟨⟩ 1 ∸ 0 ∎ {- ------------------------------------------------------------------------------ ## ASSOCIATIVITY of ADDITION : (m + n) + p ≡ m + (n + p) -} _ : (3 + 4) + 5 ≡ 3 + (4 + 5) _ = begin (3 + 4) + 5 ≡⟨⟩ 7 + 5 ≡⟨⟩ 12 ≡⟨⟩ 3 + 9 ≡⟨⟩ 3 + (4 + 5) ∎ {- useful to read chains like above - from top down until reaching simplest term (i.e., `12`) - from bottom up until reaching the same term Why should `7 + 5` be the same as `3 + 9`? Perhaps gather more evidence, testing the proposition by choosing other numbers. But infinite naturals so testing can never be complete. ## PROOF BY INDUCTION natural definition has - base case - inductive case inductive proof follows structure of definition: prove two cases - _base case_ : show property holds for `zero` - _inductive case_ : - assume property holds for an arbitrary natural `m` (the _inductive hypothesis_) - then show that the property holds for `suc m` ------ P zero P m --------- P (suc m) - initially, no properties are known. - base case : `P zero` holds : add it to set of known properties -- On the first day, one property is known. P zero - inductive case tells us that if `P m` holds -- On the second day, two properties are known. P zero P (suc zero) then `P (suc m)` also holds -- On the third day, three properties are known. P zero P (suc zero) P (suc (suc zero)) -- On the fourth day, four properties are known. P zero P (suc zero) P (suc (suc zero)) P (suc (suc (suc zero))) the process continues: property `P n` first appears on day _n+1_ ------------------------------------------------------------------------------ ## PROVE ASSOCIATIVITY of ADDITION take `P m` to be the property: (m + n) + p ≡ m + (n + p) `n` and `p` are arbitrary natural numbers show the equation holds for all `m` it will also hold for all `n` and `p` ------------------------------- (zero + n) + p ≡ zero + (n + p) (m + n) + p ≡ m + (n + p) --------------------------------- (suc m + n) + p ≡ suc m + (n + p) demonstrate both of above, then associativity of addition follows by induction -} -- signature says providing evidence for proposition +-assoc : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) -- Evidence is a function that -- - takes three natural numbers, binds them to `m`, `n`, and `p` -- - returns evidence for the corresponding instance of the equation -- base case : show: (zero + n) + p -- ≡ zero + (n + p) +-assoc zero n p = begin (zero + n) + p ≡⟨⟩ -- _+_ base case n + p ≡⟨⟩ zero + (n + p) ∎ -- inductive case : show: (suc m + n) + p -- ≡ suc m + (n + p) +-assoc (suc m) n p = begin (suc m + n) + p ≡⟨⟩ -- _+_ inductive case (left to right) suc (m + n) + p ≡⟨⟩ suc ((m + n) + p) ≡⟨ cong suc (+-assoc m n p) ⟩ -- simplifying both sides : suc ((m + n) + p) ≡ suc (m + (n + p)) -- follows by prefacing `suc` to both sides of the induction hypothesis: -- (m + n) + p ≡ m + (n + p) suc (m + (n + p)) ≡⟨⟩ -- _+_ inductive case (right to left) suc m + (n + p) ∎ -- HC minimal version +-assoc' : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) +-assoc' zero n p = refl +-assoc' (suc m) n p = cong suc (+-assoc m n p) {- identifiers can have any characters NOT including spaces or the characters @.(){};_ the "middle" equation, does not follow from applying _+_ (i.e., "simplification") alone - `_≡⟨_⟩_` : called "chain reasoning" - justification for equation given in angle brackets: - empty means "simplification", or - something more, e.g.,: ⟨ cong suc (+-assoc m n p) ⟩ recursive invocation `+-assoc m n p` - has type of the induction hypothesis - `cong suc` prefaces `suc` to each side of inductive hypothesis A relation is a CONGRUENCE for a given function if the relation is preserved by applying the function. if `e` is evidence that `x ≡ y`, then `cong f e` is evidence `f x ≡ f y`, for any `f` here the inductive hypothesis is not assumed instead, proved by recursive invocation of the function being defined, `+-assoc m n p` WELL FOUNDED : associativity of larger numbers is proved in of associativity of smaller numbers. e.g., `assoc (suc m) n p` is proved using `assoc m n p`. ------------------------------------------------------------------------------ ## Induction as recursion Concrete example of how induction corresponds to recursion : instantiate `m` to `2` -} +-assoc-2 : ∀ (n p : ℕ) → (2 + n) + p ≡ 2 + (n + p) +-assoc-2 n p = begin (2 + n) + p ≡⟨⟩ suc (1 + n) + p ≡⟨⟩ suc ((1 + n) + p) ≡⟨ cong suc (+-assoc-1 n p) ⟩ suc (1 + (n + p)) ≡⟨⟩ 2 + (n + p) ∎ where +-assoc-1 : ∀ (n p : ℕ) → (1 + n) + p ≡ 1 + (n + p) +-assoc-1 n p = begin (1 + n) + p ≡⟨⟩ suc (0 + n) + p ≡⟨⟩ suc ((0 + n) + p) ≡⟨ cong suc (+-assoc-0 n p) ⟩ suc (0 + (n + p)) ≡⟨⟩ 1 + (n + p) ∎ where +-assoc-0 : ∀ (n p : ℕ) → (0 + n) + p ≡ 0 + (n + p) +-assoc-0 n p = begin (0 + n) + p ≡⟨⟩ n + p ≡⟨⟩ 0 + (n + p) ∎ {- ------------------------------------------------------------------------------ ## Terminology and notation Evidence for a universal quantifier is a function. The notations +-assoc : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) and +-assoc : ∀ (m : ℕ) → ∀ (n : ℕ) → ∀ (p : ℕ) → (m + n) + p ≡ m + (n + p) are equivalent. differ from function type such as `ℕ → ℕ → ℕ` - variables are associated with each argument type - the result type may mention (or depend upon) these variables - hence called _DEPENDENT functions_ ------------------------------------------------------------------------------ ## COMMUTATIVITY of ADDITION : m + n ≡ n + m two lemmas used in proof ### first lemma The base case of the definition of addition states that zero is a left-identity: zero + n ≡ n First lemma states that zero is also a right-identity: -} -- proof by induction on `m` +-identityʳ : ∀ (m : ℕ) → m + zero ≡ m -- base case : show: -- zero + zero -- ≡ zero +-identityʳ zero = begin zero + zero ≡⟨⟩ -- _+_ base zero ∎ -- inductive case : show: -- (suc m) + zero -- = suc m +-identityʳ (suc m) = begin suc m + zero ≡⟨⟩ -- _+_ inductive suc (m + zero) ≡⟨ cong suc (+-identityʳ m) ⟩ -- recursive invocation `+-identityʳ m` -- has type of induction hypothesis -- m + zero ≡ m -- `cong suc` prefaces `suc` to each side of that type, yielding -- suc (m + zero) ≡ suc m suc m ∎ {- ### second lemma inductive case of _+_ pushes `suc` on 1st arg to the outside: suc m + n ≡ suc (m + n) second lemma does same for `suc` on 2nd arg: m + suc n ≡ suc (m + n) -} -- signature states defining `+-suc` which provides evidence for the proposition/type +-suc : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n) -- evidence is fun that takes two nats, binds to `m` and `n` -- returns evidence for the corresponding instance of the equation -- proof is by induction on `m` -- base case +-suc zero n = begin zero + suc n ≡⟨⟩ -- _+_ base suc n ≡⟨⟩ -- _+_ base suc (zero + n) ∎ -- inductive case : show: suc m + suc n -- ≡ suc (suc m + n) +-suc (suc m) n = begin suc m + suc n ≡⟨⟩ -- _+_ inductive suc (m + suc n) ≡⟨ cong suc (+-suc m n) ⟩ -- induction suc (suc (m + n)) ≡⟨⟩ -- _+_ inductive suc (suc m + n) ∎ ------------------------- +-comm : ∀ (m n : ℕ) → m + n ≡ n + m +-comm m zero = begin m + zero ≡⟨ +-identityʳ m ⟩ m ≡⟨⟩ zero + m ∎ +-comm m (suc n) = begin m + suc n ≡⟨ +-suc m n ⟩ suc (m + n) ≡⟨ cong suc (+-comm m n) ⟩ -- congruence and induction hypothesis suc (n + m) ≡⟨⟩ -- _+_ inductive suc n + m ∎ {- definition required BEFORE using them ------------------------------------------------------------------------------ ## COROLLARY: REARRANGING : apply associativity to rearrange parentheses (SYM; sections) -} +-rearrange : ∀ (m n p q : ℕ) → (m + n) + (p + q) ≡ m + (n + p) + q +-rearrange m n p q = begin (m + n) + (p + q) ≡⟨ +-assoc m n (p + q) ⟩ m + (n + (p + q)) ≡⟨ cong (m +_) (sym (+-assoc n p q)) ⟩ m + ((n + p) + q) ≡⟨ sym (+-assoc m (n + p) q) ⟩ (m + (n + p)) + q ≡⟨⟩ m + (n + p) + q ∎ {- no induction is required NOTE: addition is left associative : m + (n + p) + q = (m + (n + p)) + q SYM : interchange sides of an equation, e.g., - `+-assoc n p q` shifts parens right to left: (n + p) + q ≡ n + (p + q) `sym (+-assoc n p q)`: to shift them left-to-right n + (p + q) ≡ (n + p) + q general - if `e` provides evidence for `x ≡ y` - then `sym e` provides evidence for `y ≡ x` SECTION NOTATION (introduced by Richard Bird) : `(x +_)` `(_+ x)` ------------------------------------------------------------------------------ ## Creation, one last time base case : `(zero + n) + p ≡ zero + (n + p)` inductive case : - if `(m + n) + p ≡ m + (n + p)` then `(suc m + n) + p ≡ suc m + (n + p)` using base case, associativity of zero on left: (0 + 0) + 0 ≡ 0 + (0 + 0) ... (0 + 4) + 5 ≡ 0 + (4 + 5) ... using inductive case (1 + 0) + 0 ≡ 1 + (0 + 0) ... (1 + 4) + 5 ≡ 1 + (4 + 5) ... (2 + 0) + 0 ≡ 2 + (0 + 0) ... (2 + 4) + 5 ≡ 2 + (4 + 5) ... (3 + 0) + 0 ≡ 3 + (0 + 0) ... (3 + 4) + 5 ≡ 3 + (4 + 5) ... ... there is a finite approach to generating the same equations (following exercise) ------------------------------------------------------------------------------ #### Exercise `finite-|-assoc` (stretch) {name=finite-plus-assoc} TODO - first four days of creation - description, not proof Write out what is known about associativity of addition on each of the first four days using a finite story of creation, as [earlier](/Naturals/#finite-creation). ------------------------------------------------------------------------------ ## proof of ASSOCIATIVITY using `rewrite` (rather than chains of equations) avoids chains of equations and the need to invoke `cong` -} +-assoc′ : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) -- base -- show: (zero + n) + p ≡ zero + (n + p) -- _+_ base applied "invisibly", then terms equal/refl +-assoc′ zero n p = refl -- inductive -- show: (suc m + n) + p ≡ suc m + (n + p) -- _+_ inductive applied "invisibly" giving: suc ((m + n) + p) ≡ suc (m + (n + p)) -- rewrite with the inductive hypothesis -- then terms are equal/refl +-assoc′ (suc m) n p rewrite +-assoc′ m n p = refl {- rewriting by a given equation - indicated by keyword `rewrite` - followed by a proof of that equation ------------------------------------------------------------------------------ ## COMMUTATIVITY with rewrite -} +-suc′ : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n) +-suc′ zero n = refl +-suc′ (suc m) n rewrite +-suc′ m n = refl +-comm′ : ∀ (m n : ℕ) → m + n ≡ n + m +-comm′ m zero rewrite +-identityʳ m = refl -- rewriting with two equations indicated by separating the two proofs -- of the relevant equations by a vertical bar -- left rewrite performed before right +-comm′ m (suc n) -- m + suc n ≡ suc n + m -- m + suc n ≡ suc (n + m) -- def/eq rewrite +-suc′ m n -- suc (m + n) ≡ suc (n + m) | +-comm′ m n -- suc (n + m) ≡ suc (n + m) = refl +-comm′′ : ∀ (m n : ℕ) → m + n ≡ n + m +-comm′′ m zero rewrite +-identityʳ m = refl +-comm′′ m (suc n) = begin m + suc n ≡⟨ +-suc′ m n ⟩ suc (m + n) ≡⟨ cong suc (+-comm′′ m n) ⟩ suc (n + m) ≡⟨⟩ -- def/eq suc n + m ∎ {- ------------------------------------------------------------------------------ HC -} *0 : ∀ (m : ℕ) → m * 0 ≡ 0 *0 zero = refl *0 (suc m) = *0 m 0* : ∀ (m : ℕ) → 0 * m ≡ 0 0* m = refl *1 : ∀ (n : ℕ) → n * 1 ≡ n *1 zero = refl *1 (suc n) rewrite *1 n = refl 1* : ∀ (n : ℕ) → 1 * n ≡ n 1* zero = refl 1* (suc n) rewrite 1* n = refl {- ------------------------------------------------------------------------------ ## Building proofs interactively +-assoc′ : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) +-assoc′ m n p = ? C-c C-l +-assoc′ : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) +-assoc′ m n p = { }0 new window at the bottom: ?0 : ((m + n) + p) ≡ (m + (n + p)) indicates hole 0 needs to be filled with a proof of the stated judgment to prove the proposition by induction on `m` move cursor into hole C-c C-c prompt: pattern variables to case (empty for split on result): type `m` to case split on that variable +-assoc′ : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) +-assoc′ zero n p = { }0 +-assoc′ (suc m) n p = { }1 There are now two holes, and the window at the bottom tells you what each is required to prove: ?0 : ((zero + n) + p) ≡ (zero + (n + p)) ?1 : ((suc m + n) + p) ≡ (suc m + (n + p)) goto hole 0 C-c C-, Goal: (n + p) ≡ (n + p) ———————————————————————————————————————————————————————————— p : ℕ n : ℕ indicates that after simplification the goal for hole 0 is as stated, and that variables `p` and `n` of the stated types are available to use in the proof. the proof of the given goal is simple goto goal C-c C-r fills in with refl C-c C-l renumbers remaining hole to 0: +-assoc′ : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) +-assoc′ zero n p = refl +-assoc′ (suc m) n p = { }0 goto hole 0 C-c C-, Goal: suc ((m + n) + p) ≡ suc (m + (n + p)) ———————————————————————————————————————————————————————————— p : ℕ n : ℕ m : ℕ gives simplified goal and available variables need to rewrite by the induction hypothesis +-assoc′ : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) +-assoc′ zero n p = refl +-assoc′ (suc m) n p rewrite +-assoc′ m n p = { }0 goto hole C-c C-, Goal: suc (m + (n + p)) ≡ suc (m + (n + p)) ———————————————————————————————————————————————————————————— p : ℕ n : ℕ m : ℕ goto goal C-c C-r fills in, completing proof +-assoc′ : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) +-assoc′ zero n p = refl +-assoc′ (suc m) n p rewrite +-assoc′ m n p = refl ------------------------------------------------------------------------------ #### Exercise `+-swap` (recommended) {name=plus-swap} Show m + (n + p) ≡ n + (m + p) for all naturals `m`, `n`, and `p` - no induction - use associativity and commutativity of addtion -} +-swap : ∀ (m n p : ℕ) → m + (n + p) ≡ n + (m + p) +-swap m n p = begin m + (n + p) ≡⟨ sym (+-assoc m n p) ⟩ (m + n) + p ≡⟨ cong (_+ p) (sym (+-comm n m)) ⟩ (n + m) + p ≡⟨ +-assoc n m p ⟩ n + (m + p) ∎ {- ------------------------------------------------------------------------------ #### Exercise `*-distrib-+` (recommended) {name=times-distrib-plus} (m + n) * p ≡ m * p + n * p -} *-distrib-+r : ∀ (m n p : ℕ) → (m + n) * p ≡ m * p + n * p *-distrib-+r zero y z = refl *-distrib-+r (suc x) y z -- (suc x + y) * z ≡ suc x * z + y * z -- z + (x + y) * z ≡ z + x * z + y * z rewrite *-distrib-+r x y z -- z + (x * z + y * z) ≡ z + x * z + y * z | sym (+-assoc z (x * z) (y * z)) -- z + x * z + y * z ≡ z + x * z + y * z = refl {- TODO: agda loops on this : *-distrib-+r done with chain reasoning *-distrib-+r' : ∀ (m n p : ℕ) → (m + n) * p ≡ m * p + n * p *-distrib-+r' zero y z = refl *-distrib-+r' (suc x) y z begin (suc x + y) * z ≡⟨⟩ z + (x + y) * z ≡⟨ *-distrib-+r' x y z ⟩ z + (x * z + y * z) ≡⟨ sym (+-assoc z (x * z) (y * z)) ⟩ z + x * z + y * z ≡⟨⟩ suc x * z + y * z ∎ -} {- ------------------------------------------------------------------------------ #### Exercise `*-assoc` (recommended) {name=times-assoc} (m * n) * p ≡ m * (n * p) -} *-assoc : ∀ (m n p : ℕ) → (m * n) * p ≡ m * (n * p) -- base case : show: (zero * n) * p -- ≡ zero * (n * p) *-assoc zero n p = refl -- zero * n * p ≡ zero * (n * p) -- zero ≡ zero -- def/eq -- inductive case : show: (suc m * n) * p -- ≡ suc m * (n * p) *-assoc (suc m) n p -- suc m * n * p ≡ suc m * (n * p) -- (n + m * n) * p ≡ n * p + m * (n * p) rewrite *-distrib-+r n (m * n) p -- n * p + m * n * p ≡ n * p + m * (n * p) | *-assoc m n p -- n * p + m * (n * p) ≡ n * p + m * (n * p) = refl {- ------------------------------------------------------------------------------ #### Exercise `*-comm` (practice) {name=times-comm} MULTIPLICATION is COMMUTATIVE : m * n ≡ n * m -} *-suc : ∀ (x y : ℕ) → x * (suc y) ≡ x + (x * y) *-suc zero y = refl *-suc (suc x) y -- suc x * suc y ≡ suc x + suc x * y -- suc (y + x * suc y) ≡ suc (x + (y + x * y)) rewrite +-comm y (x * suc y) -- suc (x * suc y + y) ≡ suc (x + (y + x * y)) | *-suc x y -- suc (x + x * y + y) ≡ suc (x + (y + x * y)) | +-comm y (x * y) -- suc (x + x * y + y) ≡ suc (x + (x * y + y)) | sym (+-assoc x (x * y) y) -- suc (x + x * y + y) ≡ suc (x + x * y + y) = refl *-comm : ∀ (m n : ℕ) → m * n ≡ n * m *-comm m zero rewrite *0 m = refl *-comm m (suc n) -- m * suc n ≡ suc n * m -- m * suc n ≡ m + n * m rewrite *-suc m n -- m + m * n ≡ m + n * m | *-comm m n -- m + n * m ≡ m + n * m = refl {- ------------------------------------------------------------------------------ #### Exercise `0∸n≡0` (practice) {name=zero-monus} : Show zero ∸ n ≡ zero for all naturals `n`. Did your proof require induction? -} 0∸n≡0 : ∀ (n : ℕ) → 0 ∸ n ≡ 0 0∸n≡0 zero = refl 0∸n≡0 (suc n) = refl {- ------------------------------------------------------------------------------ #### Exercise `∸-|-assoc` (practice) {name=monus-plus-assoc} : m ∸ n ∸ p ≡ m ∸ (n + p) show that monus associates with addition -} ∸-|-assoc : ∀ (m n p : ℕ) → m ∸ n ∸ p ≡ m ∸ (n + p) ∸-|-assoc m n zero -- m ∸ n ∸ zero ≡ m ∸ (n + zero) -- m ∸ n ≡ m ∸ (n + zero) rewrite +-identityʳ n = refl -- m ∸ n ≡ m ∸ n ∸-|-assoc m zero (suc p) -- m ∸ zero ∸ suc p ≡ m ∸ (zero + suc p) = refl -- m ∸ suc p ≡ m ∸ suc p ∸-|-assoc zero (suc n) (suc p) -- zero ∸ suc n ∸ suc p ≡ zero ∸ (suc n + suc p) = refl -- zero ≡ zero ∸-|-assoc (suc m) (suc n) (suc p) -- suc m ∸ suc n ∸ suc p ≡ suc m ∸ (suc n + suc p) -- m ∸ n ∸ suc p ≡ m ∸ (n + suc p) rewrite ∸-|-assoc m n (suc p) -- m ∸ (n + suc p) ≡ m ∸ (n + suc p) = refl {- ------------------------------------------------------------------------------ #### Exercise `+*^` (stretch) m ^ (n + p) ≡ (m ^ n) * (m ^ p) (^-distribˡ-|-*) (m * n) ^ p ≡ (m ^ p) * (n ^ p) (^-distribʳ-*) (m ^ n) ^ p ≡ m ^ (n * p) (^-*-assoc) -} ------------------------- -- this can be shortened ^-distribˡ-|-* : ∀ (m n p : ℕ) → m ^ (n + p) ≡ (m ^ n) * (m ^ p) ^-distribˡ-|-* m n zero -- (m ^ (n + zero)) ≡ (m ^ n) * (m ^ zero) -- (m ^ (n + zero)) ≡ (m ^ n) * 1 rewrite +-identityʳ n -- (m ^ n) ≡ (m ^ n) * 1 | *1 (m ^ n) -- (m ^ n) ≡ (m ^ n) = refl ^-distribˡ-|-* m n (suc p) -- (m ^ (n + suc p)) ≡ (m ^ n) * (m ^ suc p) -- (m ^ (n + suc p)) ≡ (m ^ n) * (m * (m ^ p)) rewrite *-comm m (m ^ p) -- (m ^ (n + suc p)) ≡ (m ^ n) * ((m ^ p) * m) | sym (*-assoc (m ^ n) (m ^ p) m) -- (m ^ (n + suc p)) ≡ (m ^ n) * (m ^ p) * m | +-comm n (suc p) -- (m ^ suc (p + n)) ≡ (m ^ n) * (m ^ p) * m -- m * (m ^ (p + n)) ≡ (m ^ n) * (m ^ p) * m | *-comm ((m ^ n) * (m ^ p)) m -- m * (m ^ (p + n)) ≡ m * ((m ^ n) * (m ^ p)) | sym (*-assoc m (m ^ n) (m ^ p)) -- m * (m ^ (p + n)) ≡ m * (m ^ n) * (m ^ p) | ^-distribˡ-|-* m p n -- m * ((m ^ p) * (m ^ n)) ≡ m * (m ^ n) * (m ^ p) | sym (*-comm (m ^ n) (m ^ p)) -- m * ((m ^ n) * (m ^ p)) ≡ m * (m ^ n) * (m ^ p) | *-assoc m (m ^ n) (m ^ p) -- m * ((m ^ n) * (m ^ p)) ≡ m * ((m ^ n) * (m ^ p)) = refl ------------------------- ^-distribʳ-* : ∀ (m n p : ℕ) → (m * n) ^ p ≡ (m ^ p) * (n ^ p) ^-distribʳ-* m n zero = refl ^-distribʳ-* m n (suc p) -- ((m * n) ^ suc p) ≡(m ^ suc p) * (n ^ suc p) -- m * n * ((m * n) ^ p) ≡ m * (m ^ p) * (n * (n ^ p)) rewrite ^-distribʳ-* m n p -- m * n * ((m ^ p) * (n ^ p)) ≡ m * (m ^ p) * (n * (n ^ p)) | *-comm (m * (m ^ p)) (n * (n ^ p)) -- m * n * ((m ^ p) * (n ^ p)) ≡ n * (n ^ p) * (m * (m ^ p)) | *-assoc m n ((m ^ p) * (n ^ p)) -- m *(n * ((m ^ p) * (n ^ p)))≡ n * (n ^ p) * (m * (m ^ p)) | *-comm m (n * ((m ^ p) * (n ^ p))) -- n *((m ^ p) * (n ^ p))* m ≡ n * (n ^ p) * (m * (m ^ p)) | *-comm (m ^ p) (n ^ p) -- n *((n ^ p) * (m ^ p))* m ≡ n * (n ^ p) * (m * (m ^ p)) | sym (*-assoc n (n ^ p) (m ^ p)) -- n * (n ^ p) * (m ^ p) * m ≡ n * (n ^ p) * (m * (m ^ p)) | *-assoc n (n ^ p) (m * (m ^ p)) -- n * (n ^ p) * (m ^ p) * m ≡ n *((n ^ p) * (m * (m ^ p))) | *-comm m (m ^ p) -- n * (n ^ p) * (m ^ p) * m ≡ n *((n ^ p) * ((m ^ p) * m)) | *-assoc n (n ^ p) (m ^ p) -- n *((n ^ p) * (m ^ p))* m ≡ n *((n ^ p) * ((m ^ p) * m)) | *-assoc n ((n ^ p) * (m ^ p)) m -- n *((n ^ p) * (m ^ p) * m) ≡ n *((n ^ p) * ((m ^ p) * m)) | *-assoc (n ^ p) (m ^ p) m -- n *((n ^ p) *((m ^ p) * m))≡ n *((n ^ p) * ((m ^ p) * m)) = refl ------------------------- ^-*-assoc : ∀ (m n p : ℕ) → (m ^ n) ^ p ≡ m ^ (n * p) ^-*-assoc m n zero -- ((m ^ n) ^ zero) ≡ (m ^ (n * zero)) -- 1 ≡ (m ^ (n * zero)) rewrite *0 n -- 1 ≡ (m ^ 0) -- 1 ≡ 1 = refl ^-*-assoc m n (suc p) -- ((m ^ n) ^ suc p) ≡ (m ^ (n * suc p)) -- (m ^ n) * ((m ^ n) ^ p) ≡ (m ^ (n * suc p)) rewrite *-suc n p -- (m ^ n) * ((m ^ n) ^ p) ≡ (m ^ (n + n * p)) | ^-distribˡ-|-* m n (n * p) -- (m ^ n) * ((m ^ n) ^ p) ≡ (m ^ n) * (m ^ (n * p)) | sym (^-*-assoc m n p) -- (m ^ n) * ((m ^ n) ^ p) ≡ (m ^ n) * ((m ^ n) ^ p) = refl {- ------------------------------------------------------------------------------ #### Exercise `Bin-laws` (stretch) {name=Bin-laws} Recall that Exercise [Bin](/Naturals/#Bin) defines a datatype `Bin` of bitstrings representing natural numbers, and asks you to define functions -} -- begin duplicated from x01 (can't import because of "duplicate" pragma) data Bin : Set where ⟨⟩ : Bin _O : Bin → Bin _I : Bin → Bin inc : Bin → Bin inc ⟨⟩ = ⟨⟩ I inc (b O) = b I inc (b I) = (inc b) O _ : inc (⟨⟩ I O I I) ≡ ⟨⟩ I I O O _ = refl -- end duplicated dbl : ℕ → ℕ dbl zero = zero dbl (suc m) = suc (suc (dbl m)) to : ℕ → Bin to zero = ⟨⟩ O to (suc m) = inc (to m) -- THIS IS THE CRITICAL STEP : defining in terms of 'dbl' -- Got hint from : https://cs.uwaterloo.ca/~plragde/842/ from : Bin → ℕ from ⟨⟩ = 0 from (b O) = dbl (from b) from (b I) = suc (dbl (from b)) _ : to 6 ≡ ⟨⟩ I I O _ = refl _ : from (⟨⟩ I I O) ≡ 6 _ = refl {- Consider the following laws, where `n` ranges over naturals and `b` over bitstrings: from (inc b) ≡ suc (from b) to (from b) ≡ b from (to n) ≡ n For each law: if it holds, prove; if not, give a counterexample. -} ------------------------- -- fromInc≡sucFrom +1 : ∀ (x : ℕ) → x + 1 ≡ suc x +1 zero = refl +1 (suc n) rewrite +1 n = refl fromInc≡sucFrom : ∀ (b : Bin) → from (inc b) ≡ suc (from b) fromInc≡sucFrom ⟨⟩ -- from (inc ⟨⟩) ≡ suc (from ⟨⟩) -- 1 ≡ 1 = refl fromInc≡sucFrom (⟨⟩ I) -- from (inc (⟨⟩ I)) ≡ suc (from (⟨⟩ I)) -- 2 ≡ 2 = refl fromInc≡sucFrom (b O) -- from (inc (b O)) ≡ suc (from (b O)) -- dbl (from b) + 1 ≡ suc (dbl (from b)) rewrite +1 (dbl (from b)) -- suc (dbl (from b)) ≡ suc (dbl (from b)) = refl fromInc≡sucFrom (b I) -- from (inc (b I)) ≡ suc (from (b I)) -- dbl (from (inc b)) ≡ suc (dbl (from b) + 1) rewrite +1 (dbl (from b)) -- dbl (from (inc b)) ≡ suc (suc (dbl (from b))) | fromInc≡sucFrom b -- dbl (suc (from b)) ≡ suc (suc (dbl (from b))) -- suc (suc (dbl (from b))) ≡ suc (suc (dbl (from b))) = refl ------------------------- -- to-from≡b -- cannot be proved because there are TWO representations of ZERO -- NOT USED xx : ∀ (b : Bin) → (dbl (from b)) ≡ from (b O) xx ⟨⟩ -- dbl (from ⟨⟩) ≡ from (⟨⟩ O) -- zero ≡ zero = refl xx (b O) -- dbl (from (b O)) ≡ from ((b O) O) -- dbl (dbl (from b)) ≡ dbl (dbl (from b)) = refl xx (b I) -- dbl (from (b I)) ≡ from ((b I) O) -- suc (suc (dbl (dbl (from b)))) ≡ suc (suc (dbl (dbl (from b)))) = refl -- CANNOT BE PROVED BECAUSE TWO REPRESENTATIONS OF ZERO : (⟨⟩) and (⟨⟩ O) yy : ∀ (b : Bin) → to (dbl (from b)) ≡ (b O) yy ⟨⟩ -- to (dbl (from ⟨⟩)) ≡ (⟨⟩ O) -- (⟨⟩ O) ≡ (⟨⟩ O) = refl yy (b O) -- to (dbl (from (b O))) ≡ ((b O) O) -- to (dbl (dbl (from b))) ≡ ((b O) O) rewrite yy b = {!!} yy (b I) -- to (dbl (from (b I))) ≡ ((b I) O) -- inc (inc (to (dbl (dbl (from b))))) ≡ ((b I) O) = {!!} to-from : ∀ (b : Bin) → to (from b) ≡ b to-from ⟨⟩ -- to (from ⟨⟩) ≡ ⟨⟩ -- (⟨⟩ O) ≡ ⟨⟩ -- ***** = {!!} to-from (⟨⟩ I) -- to (from (⟨⟩ I)) ≡ (⟨⟩ I) -- (⟨⟩ I) ≡ (⟨⟩ I) = refl to-from (b O) -- to (from (b O)) ≡ (b O) -- to (dbl (from b)) ≡ (b O) rewrite yy b -- (b O) ≡ (b O) = refl to-from (b I) -- to (from (b I)) ≡ (b I) -- inc (to (dbl (from b))) ≡ (b I) rewrite yy b -- (b I) ≡ (b I) = refl ------------------------- -- https://github.com/billyang98/plfa/blob/master/plfa/Induction.agda from-inc≡suc-from : ∀ x → from (inc x) ≡ suc (from x) from-inc≡suc-from ⟨⟩ = refl from-inc≡suc-from (x O) = refl from-inc≡suc-from (x I) -- from (inc (x I)) ≡ suc (from (x I)) -- dbl (from (inc x)) ≡ suc (suc (dbl (from x))) rewrite from-inc≡suc-from x -- suc (suc (dbl (from x))) ≡ suc (suc (dbl (from x))) = refl from-to : ∀ n → from (to n) ≡ n from-to zero = refl from-to (suc n) -- from (to (suc n)) ≡ suc n -- from (inc (to n)) ≡ suc n rewrite from-inc≡suc-from (to n) -- suc (from (to n)) ≡ suc n | cong suc (from-to n) -- suc n ≡ suc n = refl {- ------------------------------------------------------------------------------ ## Standard library Definitions similar to those in this chapter can be found in the standard library: ``` import Data.Nat.Properties using (+-assoc; +-identityʳ; +-suc; +-comm) ``` ------------------------------------------------------------------------------ ## Unicode This chapter uses the following unicode: ∀ U+2200 FOR ALL (\forall, \all) ʳ U+02B3 MODIFIER LETTER SMALL R (\^r) ′ U+2032 PRIME (\') ″ U+2033 DOUBLE PRIME (\') ‴ U+2034 TRIPLE PRIME (\') ⁗ U+2057 QUADRUPLE PRIME (\') Similar to `\r`, the command `\^r` gives access to a variety of superscript rightward arrows, and also a superscript letter `r`. The command `\'` gives access to a range of primes (`′ ″ ‴ ⁗`). -} -- ============================================================================ -- this is here to ensure the Bin/in/from/to does not get broken if changed above _ : inc (⟨⟩ I O I I) ≡ ⟨⟩ I I O O _ = refl _ : inc (⟨⟩ O) ≡ ⟨⟩ I _ = refl _ : inc (⟨⟩ I) ≡ ⟨⟩ I O _ = refl _ : inc (⟨⟩ I O) ≡ ⟨⟩ I I _ = refl _ : inc (⟨⟩ I I) ≡ ⟨⟩ I O O _ = refl _ : inc (⟨⟩ I O O) ≡ ⟨⟩ I O I _ = refl _ : from (⟨⟩ O) ≡ 0 _ = refl _ : from (⟨⟩ I) ≡ 1 _ = refl _ : from (⟨⟩ I O) ≡ 2 _ = refl _ : from (⟨⟩ I I) ≡ 3 _ = refl _ : from (⟨⟩ I O O) ≡ 4 _ = refl _ : to 0 ≡ (⟨⟩ O) _ = refl _ : to 1 ≡ (⟨⟩ I) _ = refl _ : to 2 ≡ (⟨⟩ I O) _ = refl _ : to 3 ≡ (⟨⟩ I I) _ = refl _ : to 4 ≡ (⟨⟩ I O O) _ = refl _ : from (to 12) ≡ 12 _ = refl _ : to (from (⟨⟩ I I O O)) ≡ ⟨⟩ I I O O _ = refl
30.640852
125
0.405314
069054f486ba356bde500a8c0b441790b204a41f
12,782
agda
Agda
CaTT/Fullness.agda
ThiBen/catt-formalization
ed45935b38d6a86fa662f561866140122ee3dcef
[ "MIT" ]
2
2020-05-01T08:26:53.000Z
2020-05-20T00:41:09.000Z
CaTT/Fullness.agda
ThiBen/catt-formalization
ed45935b38d6a86fa662f561866140122ee3dcef
[ "MIT" ]
null
null
null
CaTT/Fullness.agda
ThiBen/catt-formalization
ed45935b38d6a86fa662f561866140122ee3dcef
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import Prelude open import GSeTT.Syntax open import GSeTT.Rules open import GSeTT.Disks open import CaTT.Ps-contexts open import CaTT.Uniqueness-Derivations-Ps open import Sets ℕ eqdecℕ module CaTT.Fullness where data Ty : Set₁ data Tm : Set₁ data Sub : Set₁ data _is-full-in_ : Ty → ps-ctx → Set₁ data Ty where ∗ : Ty _⇒[_]_ : Tm → Ty → Tm → Ty data Tm where v : ℕ → Tm coh : (Γ : ps-ctx) → (A : Ty) → A is-full-in Γ → Sub → Tm data Sub where <> : Sub <_,_↦_> : Sub → ℕ → Tm → Sub infix 50 _⇒[_]_ =⇒Ty : ∀ {A A' : Ty} {t t' u u' : Tm} → _==_ {A = Ty} (t ⇒[ A ] u) (t' ⇒[ A' ] u') → ((A == A' × t == t') × u == u') =⇒Ty idp = (idp , idp) , idp coh= : ∀ {Γ Γ' A A' Afull A'full γ γ'} → coh Γ A Afull γ == coh Γ' A' A'full γ' → ((Γ == Γ' × A == A') × γ == γ') coh= idp = (idp , idp) , idp <>= : ∀ {γ γ' x x' t t'} → < γ , x ↦ t > == < γ' , x' ↦ t' > → ((γ == γ' × x == x') × t == t') <>= idp = (idp , idp) , idp {- Set of variables -} varC : Pre-Ctx → set varC nil = Ø varC (Γ :: (x , _)) = (varC Γ) ∪-set (singleton x) varT : Ty → set vart : Tm → set varS : Sub → set varT ∗ = Ø varT (t ⇒[ A ] u) = (varT A) ∪-set ((vart t) ∪-set (vart u)) vart (v x) = singleton x vart (coh Γ A Afull γ) = varS γ varS <> = Ø varS < γ , x ↦ t > = (varS γ) ∪-set (vart t) {- fullness condition -} data _is-full-in_ where side-cond₁ : ∀ Γ A t u → (src-var Γ) ≗ ((varT A) ∪-set (vart t)) → (tgt-var Γ) ≗ ((varT A) ∪-set (vart u)) → (t ⇒[ A ] u) is-full-in Γ side-cond₂ : ∀ Γ A → (varC (fst Γ)) ≗ (varT A) → A is-full-in Γ ∈-drop : ∀ {A : Set} {a : A} {l : list A} → a ∈-list drop l → a ∈-list l ∈-drop {A} {a} {l :: a₁} x = inl x l∉∂⁻ : ∀ {Γ i x A y} → (Γ⊢ps : Γ ⊢ps x # A) → length Γ ≤ y → ¬ (y ∈-list (srcᵢ-var i Γ⊢ps)) l∉∂⁻ {i = i} pss lΓ≤y y∈ with eqdecℕ i O ... | inl _ = y∈ l∉∂⁻ {i = i} pss lΓ≤y (inr idp) | inr _ = Sn≰n _ lΓ≤y l∉∂⁻ (psd Γ⊢ps) lΓ≤y y∈ = l∉∂⁻ Γ⊢ps lΓ≤y y∈ l∉∂⁻ {i = i} (pse {A = A} Γ⊢ps idp idp idp idp idp) SSl≤y y∈ with dec-≤ i (S (dim A)) ... | inl _ = l∉∂⁻ Γ⊢ps (Sn≤m→n≤m (Sn≤m→n≤m SSl≤y)) y∈ l∉∂⁻ {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inl (inl y∈)) | inr _ = l∉∂⁻ Γ⊢ps (Sn≤m→n≤m (Sn≤m→n≤m SSl≤y)) y∈ l∉∂⁻ {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inl (inr idp)) | inr _ = Sn≰n _ (n≤m→n≤Sm SSl≤y) l∉∂⁻ {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inr idp) | inr _ = Sn≰n _ SSl≤y l∉∂⁺ : ∀ {Γ i x A y} → (Γ⊢ps : Γ ⊢ps x # A) → length Γ ≤ y → ¬ (y ∈-list (tgtᵢ-var i Γ⊢ps)) l∉∂⁺ {i = i} pss lΓ≤y y∈ with eqdecℕ i O ... | inl _ = y∈ l∉∂⁺ {i = i} pss lΓ≤y (inr idp) | inr _ = Sn≰n _ lΓ≤y l∉∂⁺ (psd Γ⊢ps) lΓ≤y y∈ = l∉∂⁺ Γ⊢ps lΓ≤y y∈ l∉∂⁺ {i = i} (pse {A = A} Γ⊢ps idp idp idp idp idp) SSl≤y y∈ with dec-≤ i (S (dim A)) l∉∂⁺ {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inl (inl y∈)) | inr _ = l∉∂⁺ Γ⊢ps (Sn≤m→n≤m (Sn≤m→n≤m SSl≤y)) y∈ l∉∂⁺ {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inl (inr idp)) | inr _ = Sn≰n _ (n≤m→n≤Sm SSl≤y) l∉∂⁺ {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inr idp) | inr x = Sn≰n _ SSl≤y ... | inl _ with eqdecℕ i (S (dim A)) l∉∂⁺ {i = .(S (dim _))} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inl y∈drop) | inl _ | inl idp = l∉∂⁺ Γ⊢ps (Sn≤m→n≤m (Sn≤m→n≤m SSl≤y)) (∈-drop y∈drop) l∉∂⁺ {i = .(S (dim _))} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inr idp) | inl _ | inl idp = Sn≰n _ (n≤m→n≤Sm SSl≤y) ... | inr _ = l∉∂⁺ Γ⊢ps (Sn≤m→n≤m (Sn≤m→n≤m SSl≤y)) y∈ ∂⁻ᵢ-var : ∀ {Γ x A y B i} → (Γ⊢ps : Γ ⊢ps x # A) → Γ ⊢t (Var y) # B → i ≤ dim B → ¬ (y ∈-list (srcᵢ-var i Γ⊢ps)) ∂⁻ᵢ-var pss (var x (inr (idp , idp))) (0≤ .0) () ∂⁻ᵢ-var (psd Γ⊢ps) Γ⊢y i≤B y∈∂⁻ = ∂⁻ᵢ-var Γ⊢ps Γ⊢y i≤B y∈∂⁻ ∂⁻ᵢ-var {i = i} (pse {A = A} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B y∈∂⁻ with dec-≤ i (S (dim A)) ... | inl _ = ∂⁻ᵢ-var Γ⊢ps (var (psv Γ⊢ps) y∈Γ) i≤B y∈∂⁻ ∂⁻ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B (inl (inl y∈∂⁻)) | inr _ = ∂⁻ᵢ-var Γ⊢ps (var (psv Γ⊢ps) y∈Γ) i≤B y∈∂⁻ ∂⁻ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B (inl (inr idp)) | inr _ = x∉ (psv Γ⊢ps) (n≤n _) (var (psv Γ⊢ps) y∈Γ) ∂⁻ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B (inr idp) | inr _ = x∉ (psv Γ⊢ps) (n≤Sn _) (var (psv Γ⊢ps) y∈Γ) ∂⁻ᵢ-var {i = i} (pse {A = B} Γ⊢ps idp idp idp idp idp) (var _ (inl (inr (idp , idp)))) i≤B y∈∂⁻ with dec-≤ i (S (dim B)) ... | inl _ = l∉∂⁻ Γ⊢ps (n≤n _) y∈∂⁻ ... | inr i≰SB = i≰SB (n≤m→n≤Sm i≤B) ∂⁻ᵢ-var {i = i} (pse {A = A} Γ⊢ps idp idp idp idp idp) (var _ (inr (idp , idp))) i≤SA y∈∂⁻ with dec-≤ i (S (dim A)) ... | inl _ = l∉∂⁻ Γ⊢ps (n≤Sn _) y∈∂⁻ ... | inr i≰SA = i≰SA i≤SA ∂⁺ᵢ-var : ∀ {Γ x A y B i} → (Γ⊢ps : Γ ⊢ps x # A) → Γ ⊢t (Var y) # B → i ≤ dim B → ¬ (y ∈-list (tgtᵢ-var i Γ⊢ps)) ∂⁺ᵢ-var pss (var x (inr (idp , idp))) (0≤ .0) () ∂⁺ᵢ-var (psd Γ⊢ps) Γ⊢y i≤B y∈∂⁺ = ∂⁺ᵢ-var Γ⊢ps Γ⊢y i≤B y∈∂⁺ ∂⁺ᵢ-var {i = i} (pse {A = A} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B y∈∂⁺ with dec-≤ i (S (dim A)) ... | inl i≤SdimA with eqdecℕ i (S (dim A)) ... | inr _ = ∂⁺ᵢ-var Γ⊢ps (var (psv Γ⊢ps) y∈Γ) i≤B y∈∂⁺ ∂⁺ᵢ-var {i = .(S (dim _))} (pse {A = A} Γ⊢ps idp idp idp idp idp) (var {x = y} _ (inl (inl y∈Γ))) i≤B (inl y∈drop) | inl i≤SdimA | inl idp = ∂⁺ᵢ-var Γ⊢ps (var (psv Γ⊢ps) y∈Γ) i≤B (∈-drop y∈drop) ∂⁺ᵢ-var {i = .(S (dim _))} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B (inr idp) | inl i≤SdimA | inl idp = lΓ∉Γ (psv Γ⊢ps) y∈Γ ∂⁺ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B (inl (inl y∈∂⁻)) | inr _ = ∂⁺ᵢ-var Γ⊢ps (var (psv Γ⊢ps) y∈Γ) i≤B y∈∂⁻ ∂⁺ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B (inl (inr idp)) | inr _ = x∉ (psv Γ⊢ps) (n≤n _) (var (psv Γ⊢ps) y∈Γ) ∂⁺ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B (inr idp) | inr _ = x∉ (psv Γ⊢ps) (n≤Sn _) (var (psv Γ⊢ps) y∈Γ) ∂⁺ᵢ-var {i = i} (pse {A = B} Γ⊢ps idp idp idp idp idp) (var _ (inl (inr (idp , idp)))) i≤B y∈∂⁺ with dec-≤ i (S (dim B)) ... | inr i≰SB = i≰SB (n≤m→n≤Sm i≤B) ... | inl _ with eqdecℕ i (S (dim B)) ... | inr _ = l∉∂⁺ Γ⊢ps (n≤n _) y∈∂⁺ ∂⁺ᵢ-var (pse Γ⊢ps idp idp idp idp idp) (var _ (inl (inr (idp , idp)))) i≤B (inl l∈drop) | inl _ | inl _ = l∉∂⁺ Γ⊢ps (n≤n _) (∈-drop l∈drop) ∂⁺ᵢ-var (pse Γ⊢ps idp idp idp idp idp) (var _ (inl (inr (idp , idp)))) i≤B (inr p) | inl _ | inl idp = Sn≰n _ i≤B ∂⁺ᵢ-var {i = i} (pse {A = A} Γ⊢ps idp idp idp idp idp) (var _ (inr (idp , idp))) i≤SA y∈∂⁺ with dec-≤ i (S (dim A)) ... | inr i≰SA = i≰SA i≤SA ... | inl _ with eqdecℕ i (S (dim A)) ... | inr _ = l∉∂⁺ Γ⊢ps (n≤Sn _) y∈∂⁺ ∂⁺ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inr (idp , idp))) i≤SA (inl Sl∈drop) | inl _ | inl _ = l∉∂⁺ Γ⊢ps (n≤Sn _) (∈-drop Sl∈drop) ∂⁺ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inr (idp , idp))) i≤SA (inr Sl=l) | inl _ | inl _ = Sn≠n _ Sl=l ∈-varC : ∀ {Γ x A} → x # A ∈ Γ → x ∈-set (varC Γ) ∈-varC {Γ :: (y , B)} {x} {A} (inl x∈Γ) = ∈-∪₁ {A = varC Γ} {B = singleton y} (∈-varC x∈Γ) ∈-varC {Γ :: (y , B)} {x} {A} (inr (idp , _)) = ∈-∪₂ {A = varC Γ} {B = singleton y} (∈-singleton y) max-var-def : Pre-Ctx → ℕ × Pre-Ty max-var-def nil = 0 , ∗ max-var-def (Γ :: (y , B)) with dec-≤ (dimC Γ) (dim B) ... | inr _ = max-var-def Γ ... | inl _ = y , B max-var-is-max : ∀ {Γ} → Γ ≠ nil → Γ ⊢C → let (x , A) = max-var-def Γ in ((x # A ∈ Γ) × (dimC Γ == dim A)) max-var-is-max {nil} Γ≠nil _ = ⊥-elim (Γ≠nil idp) max-var-is-max {Γ :: (y , B)} _ Γ⊢ with dec-≤ (dimC Γ) (dim B) ... | inl _ = inr (idp , idp) , idp ... | inr _ with Γ max-var-is-max {Γ :: (y , B)} _ (cc Γ⊢ Γ⊢B idp) | inr _ | Δ :: (x , A) = let (x∈ , dimA) = max-var-is-max (λ{()}) Γ⊢ in inl x∈ , dimA max-var-is-max {Γ :: (.0 , .∗)} _ (cc Γ⊢ (ob _) idp) | inr _ | nil = inr (idp , idp) , idp max-var-is-max {Γ :: (.0 , _)} _ (cc Γ⊢ (ar _ _ _) idp) | inr dΓ≤dB | nil = ⊥-elim (dΓ≤dB (0≤ _)) psx-nonul : ∀ {Γ x A} → Γ ⊢ps x # A → Γ ≠ nil psx-nonul (psd x) idp = psx-nonul x idp ps-nonul : ∀ {Γ} → Γ ⊢ps → Γ ≠ nil ps-nonul (ps Γ⊢ps) = psx-nonul Γ⊢ps max-var : ∀ {Γ} → Γ ⊢ps → Σ (ℕ × Pre-Ty) λ {(x , A) → (x # A ∈ Γ) × (dimC Γ == dim A)} max-var {Γ} Γ⊢ps@(ps Γ⊢psx) = max-var-def Γ , max-var-is-max (ps-nonul Γ⊢ps) (psv Γ⊢psx) ∂Γ-not-full : ∀ Γ → ¬ (varC (fst Γ) ⊂ ((src-var Γ) ∪-set (tgt-var Γ))) ∂Γ-not-full (Γ , Γ⊢ps@(ps Γ⊢psx)) vΓ⊂∂ = let ((x , A) , (x∈Γ , dimA)) = max-var Γ⊢ps in ∉-∪ {set-of-list (srcᵢ-var (dimC Γ) Γ⊢psx)} {set-of-list (tgtᵢ-var (dimC Γ) Γ⊢psx)} {x} (λ x∈∂⁻ → ∂⁻ᵢ-var Γ⊢psx (var (psv Γ⊢psx) x∈Γ) (≤-= (n≤n _) dimA) (∈-set-∈-list _ _ x∈∂⁻)) (λ x∈∂⁺ → ∂⁺ᵢ-var Γ⊢psx (var (psv Γ⊢psx) x∈Γ) (≤-= (n≤n _) dimA) (∈-set-∈-list _ _ x∈∂⁺)) (vΓ⊂∂ x (∈-varC x∈Γ)) disjoint-cond : ∀ Γ A t u → (src-var Γ) ≗ ((varT A) ∪-set (vart t)) → (tgt-var Γ) ≗ ((varT A) ∪-set (vart u)) → ¬ (varC (fst Γ) ≗ varT (t ⇒[ A ] u)) disjoint-cond Γ A t u (_ , A⊂∂⁻) (_ , A⊂∂⁺) (Γ⊂A , _) = let vA = varT A in let vt = vart t in let vu = vart u in let sr = src-var Γ in let tg = tgt-var Γ in ∂Γ-not-full Γ (⊂-trans {varC (fst Γ)} {vA ∪-set (vt ∪-set vu)} {sr ∪-set tg} Γ⊂A (≗-⊂ {vA ∪-set (vt ∪-set vu)} {(vA ∪-set vt) ∪-set (vA ∪-set vu)} {sr ∪-set tg} (∪-factor (varT A) (vart t) (vart u)) (⊂-∪ {vA ∪-set vt} {sr} {vA ∪-set vu} {tg} A⊂∂⁻ A⊂∂⁺))) side-cond₁= : ∀ Γ A t u ∂⁻-full₁ ∂⁻-full₂ ∂⁺-full₁ ∂⁺-full₂ → ∂⁻-full₁ == ∂⁻-full₂ → ∂⁺-full₁ == ∂⁺-full₂ → side-cond₁ Γ A t u ∂⁻-full₁ ∂⁺-full₁ == side-cond₁ Γ A t u ∂⁻-full₂ ∂⁺-full₂ side-cond₁= Γ A t u ∂⁻-full₁ .∂⁻-full₁ ∂⁺-full₁ .∂⁺-full₁ idp idp = idp has-all-paths-is-full : ∀ Γ A → has-all-paths (A is-full-in Γ) has-all-paths-is-full Γ .(t ⇒[ A ] u) (side-cond₁ .Γ A t u x x₁) (side-cond₁ .Γ .A .t .u x₂ x₃) = ap² (λ ∂⁻ → λ ∂⁺ → side-cond₁ Γ A t u ∂⁻ ∂⁺) (is-prop-has-all-paths (is-prop-≗ (src-var Γ) (varT A ∪-set vart t)) x x₂) (is-prop-has-all-paths (is-prop-≗ (tgt-var Γ) (varT A ∪-set vart u)) x₁ x₃) has-all-paths-is-full Γ .(t ⇒[ A ] u) (side-cond₁ .Γ A t u ∂⁻ ∂⁺) (side-cond₂ .Γ .(t ⇒[ A ] u) full) = ⊥-elim (disjoint-cond Γ A t u ∂⁻ ∂⁺ full) has-all-paths-is-full Γ .(t ⇒[ A ] u) (side-cond₂ .Γ .(t ⇒[ A ] u) full) (side-cond₁ .Γ A t u ∂⁻ ∂⁺) = ⊥-elim (disjoint-cond Γ A t u ∂⁻ ∂⁺ full) has-all-paths-is-full Γ A (side-cond₂ .Γ .A x) (side-cond₂ .Γ .A x₁) = ap (side-cond₂ Γ A) (is-prop-has-all-paths (is-prop-≗ (varC (fst Γ)) (varT A)) x x₁) is-prop-full : ∀ Γ A → is-prop (A is-full-in Γ) is-prop-full Γ A = has-all-paths-is-prop (has-all-paths-is-full Γ A) eqdec-Ty : eqdec Ty eqdec-Tm : eqdec Tm eqdec-Sub : eqdec Sub eqdec-Ty ∗ ∗ = inl idp eqdec-Ty ∗ (_ ⇒[ _ ] _) = inr λ{()} eqdec-Ty (_ ⇒[ _ ] _) ∗ = inr λ{()} eqdec-Ty (t ⇒[ A ] u) (t' ⇒[ A' ] u') with eqdec-Ty A A' | eqdec-Tm t t' | eqdec-Tm u u' ... | inl idp | inl idp | inl idp = inl idp ... | inr A≠A' | _ | _ = inr λ {idp → A≠A' idp} ... | inl idp | inr t≠t' | _ = inr λ p → t≠t' (snd (fst (=⇒Ty p))) ... | inl idp | inl idp | inr u≠u' = inr λ p → u≠u' (snd (=⇒Ty p)) eqdec-Tm (v x) (v y) with eqdecℕ x y ... | inl idp = inl idp ... | inr x≠y = inr λ{idp → x≠y idp} eqdec-Tm (v _) (coh _ _ _ _) = inr λ{()} eqdec-Tm (coh _ _ _ _) (v _) = inr λ{()} eqdec-Tm (coh Γ A Afull γ) (coh Γ' A' A'full γ') with eqdec-ps Γ Γ' | eqdec-Ty A A' | eqdec-Sub γ γ' ... | inl idp | inl idp | inl idp = inl (ap (λ X → coh Γ A X γ) (is-prop-has-all-paths (is-prop-full Γ A) Afull A'full)) ... | inr Γ≠Γ' | _ | _ = inr λ {idp → Γ≠Γ' idp} ... | inl idp | inr A≠A' | _ = inr λ p → A≠A' (snd (fst (coh= p))) ... | inl idp | inl idp | inr γ≠γ' = inr λ p → γ≠γ' (snd (coh= p)) eqdec-Sub <> <> = inl idp eqdec-Sub <> < _ , _ ↦ _ > = inr λ{()} eqdec-Sub < _ , _ ↦ _ > <> = inr λ{()} eqdec-Sub < γ , x ↦ t > < γ' , x' ↦ t' > with eqdec-Sub γ γ' | eqdecℕ x x' | eqdec-Tm t t' ... | inl idp | inl idp | inl idp = inl idp ... | inr γ≠γ' | _ | _ = inr λ {idp → γ≠γ' idp} ... | inl idp | inr x≠x' | _ = inr λ p → x≠x' (snd (fst (<>= p))) ... | inl idp | inl idp | inr t≠t' = inr λ p → t≠t' (snd (<>= p))
58.365297
295
0.46143
cb2b4ffb9806d2092d198145f331c371c1848110
538
agda
Agda
test/Fail/Issue1129b.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1129b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1129b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
data _×_ (A B : Set) : Set where _,_ : A → B → A × B postulate M : Set → Set _>>=_ : ∀{A B : Set} → M A → (A → M B) → M B infixr 1 bind bind : _ bind = _>>=_ infix 0 id id : ∀{A : Set} → A → A id = λ x → x syntax id x = act x syntax bind ma (λ x → f) = x ← ma , f swapM′ : ∀ {A B} → M (A × B) → M (B × A) swapM′ mAB = act (a , b) ← mAB , return $ b , a -- Was: -- An internal error has occurred. Please report this as a bug. -- Location of the error: -- src/full/Agda/TypeChecking/Monad/Base.hs:1793
17.933333
63
0.509294
57bdbdb0f1ec97ea65754e1b80c1e52f1140e7e1
1,400
agda
Agda
agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-hc-sorted-list.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
36
2015-01-29T14:37:15.000Z
2021-07-30T06:55:03.000Z
agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-hc-sorted-list.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
null
null
null
agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-hc-sorted-list.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
8
2015-04-13T21:40:15.000Z
2021-09-21T15:58:10.000Z
{-# OPTIONS --allow-unsolved-metas #-} open import bool open import bool-thms2 open import eq open import maybe open import product open import product-thms open import bool-relations using (transitive ; total) module z05-01-hc-sorted-list (A : Set) -- type of elements (_≤A_ : A → A → 𝔹) -- ordering function (≤A-trans : transitive _≤A_) -- proof of transitivity of given ordering (≤A-total : total _≤A_) -- proof of totality of given ordering where open import bool-relations _≤A_ hiding (transitive ; total) open import minmax _≤A_ ≤A-trans ≤A-total data slist : A → A → Set where snil : ∀ {l u : A} → l ≤A u ≡ tt → slist l u scons : ∀ {l u : A} → (d : A) -- value stored at head → slist l u -- elements to the right ≥ stored value → d ≤A l ≡ tt → slist (min d l) (max d u) slist-insert : ∀ {l u : A} → (d : A) -- insert 'd' → slist l u -- into this 'bst' → d ≤A l ≡ tt → slist (min d l) (max d u) -- type might change slist-insert d (snil l≤Au) d≤Al≡tt = scons d (snil l≤Au) d≤Al≡tt slist-insert d (scons d' xs d'≤Al≡tt) d≤Al≡tt with keep (d ≤A d') slist-insert d L@(scons d' xs d'≤Al≡tt) d≤Al≡tt | tt , p = scons d L d≤Al≡tt slist-insert d L@(scons d' xs d'≤Al≡tt) d≤Al≡tt | ff , p = {!!}
32.55814
76
0.549286
228a7bd4c7426eeb1f8c2bb0d79dd633d99b761e
988
agda
Agda
Categories/Category/Instance/Simplex.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Category/Instance/Simplex.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Category/Instance/Simplex.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Category.Instance.Simplex where open import Level open import Data.Product open import Data.Fin open import Data.Nat using (ℕ) open import Function renaming (id to idF; _∘_ to _∙_) open import Relation.Binary open import Relation.Binary.PropositionalEquality Δ : Category 0ℓ 0ℓ 0ℓ Δ = record { Obj = ℕ ; _⇒_ = λ m n → Σ (Fin m → Fin n) (λ f → _≤_ =[ f ]⇒ _≤_) ; _≈_ = λ { (f , mf) (g , mg) → ∀ x → f x ≡ g x } ; id = idF , idF ; _∘_ = λ { (f , mf) (g , mg) → f ∙ g , mf ∙ mg } ; assoc = λ _ → refl ; sym-assoc = λ _ → refl ; identityˡ = λ _ → refl ; identityʳ = λ _ → refl ; identity² = λ _ → refl ; equiv = record { refl = λ _ → refl ; sym = λ eq x → sym (eq x) ; trans = λ eq₁ eq₂ x → trans (eq₁ x) (eq₂ x) } ; ∘-resp-≈ = λ {_ _ _ f g h i} eq₁ eq₂ x → trans (cong (λ t → proj₁ f t) (eq₂ x)) (eq₁ (proj₁ i x)) }
28.228571
102
0.546559
c5a84f1f78221fe46c40a31cc975e0cb82a51a33
4,893
agda
Agda
Cubical/Algebra/Monoid/Construct/Free.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Algebra/Monoid/Construct/Free.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Algebra/Monoid/Construct/Free.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Core.Everything open import Cubical.Foundations.HLevels module Cubical.Algebra.Monoid.Construct.Free {ℓ} (Aˢ : hSet ℓ) where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Path open import Cubical.Algebra.Monoid open import Cubical.Data.Empty.Polymorphic open import Cubical.Data.Prod open import Cubical.Relation.Binary.Reasoning.Equality private A = ⟨ Aˢ ⟩ isSetA = Aˢ .snd ------------------------------------------------------------------------ -- The direct free monoid type data FreeM : Type ℓ where inj : A → FreeM _•_ : Op₂ FreeM ε : FreeM •-assoc : Associative _•_ ε-identityˡ : LeftIdentity ε _•_ ε-identityʳ : RightIdentity ε _•_ squash : isSet FreeM ε-identity : Identity ε _•_ ε-identity = ε-identityˡ , ε-identityʳ elim : ∀ {ℓ′} {B : FreeM → Type ℓ′} → (∀ x → isSet (B x)) → (∀ x → B (inj x)) → (op : ∀ {x y} → B x → B y → B (x • y)) → (e : B ε) → (∀ {x y z} (a : B x) (b : B y) (c : B z) → PathP (λ i → B (•-assoc x y z i)) (op (op a b) c) (op a (op b c))) → (∀ {x} (a : B x) → PathP (λ i → B (ε-identityˡ x i)) (op e a) a) → (∀ {x} (a : B x) → PathP (λ i → B (ε-identityʳ x i)) (op a e) a) → (x : FreeM) → B x elim isSetB f op e assc idˡ idʳ (inj x) = f x elim isSetB f op e assc idˡ idʳ (x • y) = op (elim isSetB f op e assc idˡ idʳ x) (elim isSetB f op e assc idˡ idʳ y) elim isSetB f op e assc idˡ idʳ ε = e elim isSetB f op e assc idˡ idʳ (•-assoc x y z i) = assc (elim isSetB f op e assc idˡ idʳ x) (elim isSetB f op e assc idˡ idʳ y) (elim isSetB f op e assc idˡ idʳ z) i elim isSetB f op e assc idˡ idʳ (ε-identityˡ x i) = idˡ (elim isSetB f op e assc idˡ idʳ x) i elim isSetB f op e assc idˡ idʳ (ε-identityʳ x i) = idʳ (elim isSetB f op e assc idˡ idʳ x) i elim isSetB f op e assc idˡ idʳ (squash x y p q i j) = isOfHLevel→isOfHLevelDep 2 isSetB (elim isSetB f op e assc idˡ idʳ x) (elim isSetB f op e assc idˡ idʳ y) (cong (elim isSetB f op e assc idˡ idʳ) p) (cong (elim isSetB f op e assc idˡ idʳ) q) (squash x y p q) i j ------------------------------------------------------------------------ -- The simplified free monoid type -- Defined in Cubical.Data.List open import Cubical.Data.List open Structures isSetA public ------------------------------------------------------------------------ -- Proving the two types are equivalent List→FreeM : List A → FreeM List→FreeM [] = ε List→FreeM (x ∷ xs) = inj x • List→FreeM xs FreeM→List : FreeM → List A FreeM→List = elim (λ _ → isOfHLevelList 0 isSetA) [_] _++_ [] ++-assoc ++-identityˡ ++-identityʳ ++-hom : Homomorphic₂ List→FreeM _++_ _•_ ++-hom [] ys = sym (ε-identityˡ _) ++-hom (x ∷ xs) ys = cong (inj x •_) (++-hom xs ys) ∙ sym (•-assoc (inj x) (List→FreeM xs) (List→FreeM ys)) List→FreeM→List : retract List→FreeM FreeM→List List→FreeM→List [] = refl List→FreeM→List (x ∷ xs) = cong (x ∷_) (List→FreeM→List xs) FreeM→List→FreeM : section List→FreeM FreeM→List FreeM→List→FreeM = elim (λ _ → isSet→isGroupoid squash _ _) (λ _ → ε-identityʳ _) sectionOp refl (λ _ _ _ → isOfHLevelPathP' 0 (squash _ _) _ _ .fst) (λ _ → isOfHLevelPathP' 0 (squash _ _) _ _ .fst) (λ _ → isOfHLevelPathP' 0 (squash _ _) _ _ .fst) where sectionOp : ∀ {x y} → List→FreeM (FreeM→List x) ≡ x → List→FreeM (FreeM→List y) ≡ y → List→FreeM (FreeM→List (x • y)) ≡ (x • y) sectionOp {x} {y} p q = List→FreeM (FreeM→List (x • y)) ≡⟨⟩ List→FreeM (FreeM→List x ++ FreeM→List y) ≡⟨ ++-hom (FreeM→List x) (FreeM→List y) ⟩ List→FreeM (FreeM→List x) • List→FreeM (FreeM→List y) ≡⟨ cong₂ _•_ p q ⟩ x • y ∎ List≃FreeM : List A ≃ FreeM List≃FreeM = isoToEquiv (iso List→FreeM FreeM→List FreeM→List→FreeM List→FreeM→List) List≡FreeM : List A ≡ FreeM List≡FreeM = ua List≃FreeM ------------------------------------------------------------------------ -- Monoid structure FreeM-isMonoid : IsMonoid FreeM _•_ ε FreeM-isMonoid = record { isSemigroup = record { isMagma = record { is-set = squash } ; assoc = •-assoc } ; identity = ε-identity } FreeMonoid : Monoid ℓ FreeMonoid = record { isMonoid = FreeM-isMonoid } EquivFreeM : MonoidEquiv ListMonoid FreeMonoid EquivFreeM = record { eq = List≃FreeM ; isHom = record { preservesOp = ++-hom ; preservesId = refl } } FreeMonoid≡ : ListMonoid ≡ FreeMonoid FreeMonoid≡ = uaMonoid EquivFreeM
35.456522
119
0.557736
c7fdd710454f970c2a86f1ddb361aff68a8f3f43
320
agda
Agda
LC/Base.agda
banacorn/bidirectional
0c9a6e79c23192b28ddb07315b200a94ee900ca6
[ "MIT" ]
2
2020-08-25T07:34:40.000Z
2020-08-25T14:05:01.000Z
LC/Base.agda
banacorn/bidirectional
0c9a6e79c23192b28ddb07315b200a94ee900ca6
[ "MIT" ]
null
null
null
LC/Base.agda
banacorn/bidirectional
0c9a6e79c23192b28ddb07315b200a94ee900ca6
[ "MIT" ]
null
null
null
module LC.Base where open import Data.Nat -------------------------------------------------------------------------------- -- de Bruijn indexed lambda calculus infix 5 ƛ_ infixl 7 _∙_ infix 9 var_ data Term : Set where var_ : (x : ℕ) → Term ƛ_ : (M : Term) → Term _∙_ : (M : Term) → (N : Term) → Term
20
80
0.446875
06d6a32d14f432e7755593a2e2da4b2dbe2090a7
77
agda
Agda
Type/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Type/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Type/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Type.Proofs where open import Logic import Lvl open import Type
12.833333
24
0.766234
58d75b6bec6ef57052224f17c24f5ad4b02de611
293
agda
Agda
Cubical/Algebra.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Algebra.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Algebra.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra where open import Cubical.Algebra.Base public open import Cubical.Algebra.Definitions public open import Cubical.Algebra.Structures public open import Cubical.Algebra.Bundles public open import Cubical.Classes public
29.3
50
0.812287
0b558b53e194f7b89ed4453f44b44973a8cb2333
1,953
agda
Agda
Mixfix/Fixity.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
7
2016-12-13T05:23:14.000Z
2021-06-22T05:35:31.000Z
Mixfix/Fixity.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
1
2018-01-22T22:21:41.000Z
2018-01-24T16:39:37.000Z
Mixfix/Fixity.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Fixity and associativity ------------------------------------------------------------------------ module Mixfix.Fixity where open import Data.Fin using (Fin; zero; suc; #_) open import Data.Fin.Properties using (eq?) open import Function.LeftInverse open import Relation.Binary open import Relation.Binary.PropositionalEquality as Eq data Associativity : Set where left : Associativity right : Associativity non : Associativity -- A combination of fixity and associativity. Only infix operators -- have associativity. -- Note that infix is a reserved word. data Fixity : Set where prefx : Fixity infx : (assoc : Associativity) → Fixity postfx : Fixity closed : Fixity Fixity-is-finite : LeftInverse (Eq.setoid Fixity) (Eq.setoid (Fin 6)) Fixity-is-finite = record { from = Eq.→-to-⟶ from ; to = Eq.→-to-⟶ to ; left-inverse-of = left-inverse-of } where to : Fixity → Fin 6 to prefx = # 0 to (infx left) = # 1 to (infx right) = # 2 to (infx non) = # 3 to postfx = # 4 to closed = # 5 from : Fin 6 → Fixity from zero = prefx from (suc zero) = infx left from (suc (suc zero)) = infx right from (suc (suc (suc zero))) = infx non from (suc (suc (suc (suc zero)))) = postfx from (suc (suc (suc (suc (suc zero))))) = closed from (suc (suc (suc (suc (suc (suc ())))))) left-inverse-of : Eq.→-to-⟶ from LeftInverseOf Eq.→-to-⟶ to left-inverse-of prefx = refl left-inverse-of (infx left) = refl left-inverse-of (infx right) = refl left-inverse-of (infx non) = refl left-inverse-of postfx = refl left-inverse-of closed = refl _≟_ : Decidable (_≡_ {A = Fixity}) _≟_ = eq? injection where open LeftInverse Fixity-is-finite
30.515625
72
0.554531
3d2ceb9531aa957a9c29133fc1c2fa26b5c4e398
1,963
agda
Agda
Mask.agda
pigworker/InteriorDesign
454cdd18f56db0b0d1643a1fcf36951b5ece395c
[ "BSD-3-Clause" ]
6
2018-06-18T15:25:39.000Z
2018-07-31T02:00:13.000Z
Mask.agda
pigworker/InteriorDesign
454cdd18f56db0b0d1643a1fcf36951b5ece395c
[ "BSD-3-Clause" ]
null
null
null
Mask.agda
pigworker/InteriorDesign
454cdd18f56db0b0d1643a1fcf36951b5ece395c
[ "BSD-3-Clause" ]
null
null
null
module Mask where open import Basics open import Ix open import All open import Cutting open import Splitting open import Perm open import Interior open import Recutter module MASK {I}(C : I |> I) where open _|>_ open INTERIOR C open RECUTTER C module CHOP {P}(pc : CutKit P)(rec : Recutter) where glue : (is : List I) -> (d : Subs is) -> All (Interior P) (subCollect is d) -> All (Interior P) is glue [] <> <> = <> glue (i ,- is) (inl <> , ds) (p , ps) = p , glue is ds ps glue (i ,- is) (inr c , ds) ps with isRiffle (slrs (inners C c) (subCollect is ds)) ps glue (i ,- is) (inr c , ds) .(riffle (slrs (inners C c) (subCollect is ds)) lp rp) | mkRiffle lp rp = < c 8>< lp > , glue is ds rp chop : (i : I)(c c' : Cuts C i) -> All (Interior P) (inners C c) -> All (Interior P) (inners C c') chops : (is : List I) -> All (Interior P) is -> (d : Subs is) -> All (Interior P) (subCollect is d) chop i c c' ps with rec i c c' ... | d , d' , m with chops (inners C c) ps d ... | qs = glue (inners C c') d' (permute m qs) chops [] <> <> = <> chops (i ,- is) (p , ps) (inl <> , ds) = p , chops is ps ds chops (i ,- is) (tile p , ps) (inr c' , ds) = cat (inners C c') (subCollect is ds) (all (\ _ -> tile) _ (pc i c' p)) (chops is ps ds) chops (i ,- is) (< c 8>< ps' > , ps) (inr c' , ds) = cat (inners C c') (subCollect is ds) (chop i c c' ps') (chops is ps ds) mask : forall {O Q} -> [ O -:> Interior P -:> Interior Q ] -> [ Interior O -:> Interior P -:> Interior Q ] mask {O}{Q} f = ifold f help where help : [ Cutting C (Interior P -:> Interior Q) -:> Interior P -:> Interior Q ] help i (c' 8>< fs) (tile p) with pc i c' p ... | ps = < c' 8>< allAp (inners C c') fs (all (\ _ -> tile) _ ps) > help i (c' 8>< fs) < c 8>< ps > = < c' 8>< allAp (inners C c') fs (chop i c c' ps) >
40.061224
93
0.516556
cbe32c4ec982b9fc110d1ff852861ac63600c976
984
agda
Agda
src/Magma/Definitions.agda
Akshobhya1234/agda-NonAssociativeAlgebra
443e831e536b756acbd1afd0d6bae7bc0d288048
[ "MIT" ]
2
2021-08-15T06:16:13.000Z
2021-08-17T09:14:03.000Z
src/Magma/Definitions.agda
Akshobhya1234/agda-NonAssociativeAlgebra
443e831e536b756acbd1afd0d6bae7bc0d288048
[ "MIT" ]
2
2021-10-04T05:30:30.000Z
2021-10-09T08:24:56.000Z
src/Magma/Definitions.agda
Akshobhya1234/agda-NonAssociativeAlgebra
443e831e536b756acbd1afd0d6bae7bc0d288048
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Relation.Binary.Core module Magma.Definitions {a ℓ} {A : Set a} -- The underlying set (_≈_ : Rel A ℓ) -- The underlying equality where open import Algebra.Core open import Data.Product Alternativeˡ : Op₂ A → Set _ Alternativeˡ _∙_ = ∀ x y → ((x ∙ x) ∙ y) ≈ (x ∙ (y ∙ y)) Alternativeʳ : Op₂ A → Set _ Alternativeʳ _∙_ = ∀ x y → (x ∙ (y ∙ y)) ≈ ((x ∙ y) ∙ y) Alternative : Op₂ A → Set _ Alternative _∙_ = (Alternativeˡ _∙_ ) × ( Alternativeʳ _∙_) Flexible : Op₂ A → Set _ Flexible _∙_ = ∀ x y → ((x ∙ y) ∙ x) ≈ (x ∙ (y ∙ x)) Medial : Op₂ A → Set _ Medial _∙_ = ∀ x y u z → ((x ∙ y) ∙ (u ∙ z)) ≈ ((x ∙ u) ∙ (y ∙ z)) LeftSemimedial : Op₂ A → Set _ LeftSemimedial _∙_ = ∀ x y z → ((x ∙ x) ∙ (y ∙ z)) ≈ ((x ∙ y) ∙ (x ∙ z)) RightSemimedial : Op₂ A → Set _ RightSemimedial _∙_ = ∀ x y z → ((y ∙ z) ∙ (x ∙ x)) ≈ ((y ∙ x) ∙ (z ∙ x)) Semimedial : Op₂ A → Set _ Semimedial _∙_ = (LeftSemimedial _∙_) × (RightSemimedial _∙_)
27.333333
73
0.550813
2e8dbffc63d97204273bc14515d7c5f011256cef
205
agda
Agda
test/fail/ATPBadConjecture2.agda
asr/eagda
7220bebfe9f64297880ecec40314c0090018fdd0
[ "BSD-3-Clause" ]
1
2016-03-17T01:45:59.000Z
2016-03-17T01:45:59.000Z
test/fail/ATPBadConjecture2.agda
asr/eagda
7220bebfe9f64297880ecec40314c0090018fdd0
[ "BSD-3-Clause" ]
null
null
null
test/fail/ATPBadConjecture2.agda
asr/eagda
7220bebfe9f64297880ecec40314c0090018fdd0
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- An ATP conjecture must be used with postulates. -- This error is detected by TypeChecking.Rules.Decl. module ATPBadConjecture2 where data Bool : Set where false true : Bool {-# ATP prove Bool #-}
18.636364
53
0.731707
22c7cf0530dcafca5c006ae3cbb6e866ef07a575
746
agda
Agda
test/Succeed/Issue2484-7.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2484-7.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2484-7.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --sized-types #-} module _ (_ : Set) where open import Agda.Builtin.Size postulate I : Set record ∃ (B : I → Set) : Set where constructor _,_ field proj₁ : I proj₂ : B proj₁ module M (_ : Set₁) where mutual data P (i : Size) (x y : I) : Set where ⟨_⟩ : ∃ (Q i x) → P i x y record Q (i : Size) (x y : I) : Set where coinductive field force : {j : Size< i} → P j x y open M Set postulate map : (B : I → Set) → (∀ x → B x → B x) → ∃ B → ∃ B lemma : ∀ x y i → Q i x y → Q i x y p : ∀ x i → P i x x q′ : ∀ x i → ∃ λ y → Q i x y q : ∀ x i → Q i x x p x i = ⟨ map _ (λ y → lemma x y _) (q′ x _) ⟩ Q.force (q x i) {j} = p _ _ q′ x i = x , q x i
18.195122
60
0.458445
1a922d95e2d0425f8c13260d0f95f1d062048152
1,692
agda
Agda
Cubical/Foundations/Surjection.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Foundations/Surjection.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Foundations/Surjection.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Foundations.Surjection where open import Cubical.Core.Everything open import Cubical.Data.Prod open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Embedding open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.HITs.PropositionalTruncation as PropTrunc private variable ℓ ℓ' : Level A : Type ℓ B : Type ℓ' f : A → B isSurjection : (A → B) → Type _ isSurjection f = ∀ b → ∥ fiber f b ∥ section→isSurjection : {g : B → A} → section f g → isSurjection f section→isSurjection {g = g} s b = ∣ g b , s b ∣ isSurjectionIsProp : isProp (isSurjection f) isSurjectionIsProp = isPropPi λ _ → squash isEquiv→isSurjection : isEquiv f → isSurjection f isEquiv→isSurjection e b = ∣ fst (equiv-proof e b) ∣ isEquiv→isEmbedding×isSurjection : isEquiv f → isEmbedding f × isSurjection f isEquiv→isEmbedding×isSurjection e = isEquiv→isEmbedding e , isEquiv→isSurjection e isEmbedding×isSurjection→isEquiv : isEmbedding f × isSurjection f → isEquiv f equiv-proof (isEmbedding×isSurjection→isEquiv {f = f} (emb , sur)) b = inhProp→isContr (PropTrunc.rec fib' (λ x → x) fib) fib' where hpf : hasPropFibers f hpf = isEmbedding→hasPropFibers emb fib : ∥ fiber f b ∥ fib = sur b fib' : isProp (fiber f b) fib' = hpf b isEquiv≃isEmbedding×isSurjection : isEquiv f ≃ isEmbedding f × isSurjection f isEquiv≃isEmbedding×isSurjection = isoToEquiv (iso isEquiv→isEmbedding×isSurjection isEmbedding×isSurjection→isEquiv (λ _ → isOfHLevelProd 1 isEmbeddingIsProp isSurjectionIsProp _ _) (λ _ → isPropIsEquiv _ _ _))
31.333333
83
0.741726
29859de970e59b793aefa26560a53ca0e2056297
2,591
agda
Agda
test/interaction/Issue1353.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue1353.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue1353.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --show-implicit #-} {-# OPTIONS -v tc.interaction:20 #-} ------------------------------------------------------------------------ -- Library id : ∀ {X : Set} → X → X id x = x infixr 9 _∘_ _∘_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} → (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → ((x : A) → C (g x)) f ∘ g = λ x → f (g x) record Σ (X : Set) (Y : X → Set) : Set where constructor _,_ field proj₁ : X proj₂ : Y proj₁ open Σ public syntax Σ X (λ x → Y) = Σ[ x ∈ X ] Y data _≡_ {X : Set} (x : X) : X → Set where refl : x ≡ x subst : ∀ {A} (P : A → Set) {x y} → x ≡ y → P x → P y subst P refl p = p record _▷_ (I O : Set) : Set₁ where constructor _◃_/_ field Parameter : (o : O) → Set Arity : ∀ {o} (p : Parameter o) → Set input : ∀ {o} (p : Parameter o) (a : Arity p) → I open _▷_ public Pow : Set → Set₁ Pow X = X → Set infix 4 _⊆_ _⊆_ : ∀ {X} → Pow X → Pow X → Set P ⊆ Q = ∀ {x} → P x → Q x ⟦_⟧ : ∀ {I O} → I ▷ O → (Pow I → Pow O) ⟦ P ◃ A / s ⟧ X o = Σ[ p ∈ P o ] ((a : A p) → X (s p a)) Alg : ∀ {O} → O ▷ O → Pow O → Set Alg Σ X = ⟦ Σ ⟧ X ⊆ X module _ {I₁ I₂ O₁ O₂} where record ContainerMorphism (C₁ : I₁ ▷ O₁) (C₂ : I₂ ▷ O₂) (f : I₁ → I₂) (g : O₁ → O₂) (_∼_ : I₂ → I₂ → Set) (_≈_ : Set → Set → Set) (_·_ : ∀ {A B} → A ≈ B → A → B) : Set where field parameter : Parameter C₁ ⊆ Parameter C₂ ∘ g arity : ∀ {o} {p₁ : Parameter C₁ o} → Arity C₂ (parameter p₁) ≈ Arity C₁ p₁ coherent : ∀ {o} {p₁ : Parameter C₁ o} {a₂ : Arity C₂ (parameter p₁)} → f (input C₁ p₁ (arity · a₂)) ∼ input C₂ (parameter p₁) a₂ open ContainerMorphism public _⇒[_/_]_ : I₁ ▷ O₁ → (I₁ → I₂) → (O₁ → O₂) → I₂ ▷ O₂ → Set C₁ ⇒[ f / g ] C₂ = ContainerMorphism C₁ C₂ f g _≡_ (λ R₂ R₁ → R₂ → R₁) (λ f x → f x) ⟪_⟫ : ∀ {I} {C₁ C₂ : I ▷ I} → C₁ ⇒[ id / id ] C₂ → (X : Pow I) → ⟦ C₁ ⟧ X ⊆ ⟦ C₂ ⟧ X ⟪ m ⟫ X (c , k) = parameter m c , λ a₂ → subst X (coherent m) (k (arity m a₂)) ------------------------------------------------------------------------ -- Example weaken : ∀ {I} {Ω : I ▷ I} {Ψ : I ▷ I} {X : Pow I} → Alg Ψ X → Ω ⇒[ id / id ] Ψ → Alg Ω X weaken {I}{Ω}{Ψ}{X = X} φ m {i} (p , k) = φ {x = i} (⟪ m ⟫ {!X!} (p , k)) weaken2 : ∀ {I} {Ω : I ▷ I} {Ψ : I ▷ I} {X : Pow I} → Alg Ψ X → Ω ⇒[ id / id ] Ψ → Alg Ω X weaken2 {I}{Ω}{Ψ}{X = X} φ m {i} (p , k) = φ {i} (⟪ m ⟫ X (p , k))
27.56383
79
0.394056
0648cf18a99799e0f8dca98d435725eb9c894067
363
agda
Agda
test/fail/TrustMe.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/fail/TrustMe.agda
dagit/agda
4383a3d20328a6c43689161496cee8eb479aca08
[ "MIT" ]
null
null
null
test/fail/TrustMe.agda
dagit/agda
4383a3d20328a6c43689161496cee8eb479aca08
[ "MIT" ]
null
null
null
{-# OPTIONS --universe-polymorphism #-} module TrustMe where open import Common.Equality primitive primTrustMe : ∀ {a} {A : Set a} {x y : A} → x ≡ y postulate A : Set x y : A eq : x ≡ y eq = primTrustMe sym : ∀ {a} {A : Set a} {x y : A} → x ≡ y → y ≡ x sym refl = refl does-not-evaluate-to-refl : sym (sym eq) ≡ eq does-not-evaluate-to-refl = refl
16.5
51
0.595041
419685bffe03440cc43656f5dda72e44ea1a6c52
7,822
agda
Agda
Cubical/Algebra/CommAlgebra/Base.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/Algebra/CommAlgebra/Base.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/Algebra/CommAlgebra/Base.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe --no-import-sorts #-} module Cubical.Algebra.CommAlgebra.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Structures.Axioms open import Cubical.Algebra.Semigroup hiding (⟨_⟩) open import Cubical.Algebra.Monoid hiding (⟨_⟩) open import Cubical.Algebra.CommRing renaming (⟨_⟩ to ⟨_⟩r) open import Cubical.Algebra.Ring hiding (⟨_⟩) open import Cubical.Algebra.Algebra hiding (⟨_⟩) private variable ℓ ℓ′ : Level record IsCommAlgebra (R : CommRing {ℓ}) {A : Type ℓ} (0a : A) (1a : A) (_+_ : A → A → A) (_·_ : A → A → A) (-_ : A → A) (_⋆_ : ⟨ R ⟩r → A → A) : Type ℓ where constructor iscommalgebra field isAlgebra : IsAlgebra (CommRing→Ring R) 0a 1a _+_ _·_ -_ _⋆_ ·-comm : (x y : A) → x · y ≡ y · x open IsAlgebra isAlgebra public record CommAlgebra (R : CommRing {ℓ}) : Type (ℓ-suc ℓ) where constructor commalgebra field Carrier : Type ℓ 0a : Carrier 1a : Carrier _+_ : Carrier → Carrier → Carrier _·_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier _⋆_ : ⟨ R ⟩r → Carrier → Carrier isCommAlgebra : IsCommAlgebra R 0a 1a _+_ _·_ -_ _⋆_ open IsCommAlgebra isCommAlgebra public module _ {R : CommRing {ℓ}} where open CommRing R using (1r) renaming (_+_ to _+r_; _·_ to _·s_) ⟨_⟩ : CommAlgebra R → Type ℓ ⟨_⟩ = CommAlgebra.Carrier CommAlgebra→Algebra : (A : CommAlgebra R) → Algebra (CommRing→Ring R) CommAlgebra→Algebra (commalgebra Carrier _ _ _ _ _ _ (iscommalgebra isAlgebra ·-comm)) = algebra Carrier _ _ _ _ _ _ isAlgebra CommAlgebra→CommRing : (A : CommAlgebra R) → CommRing {ℓ} CommAlgebra→CommRing (commalgebra Carrier _ _ _ _ _ _ (iscommalgebra isAlgebra ·-comm)) = commring Carrier _ _ _ _ _ (iscommring (IsAlgebra.isRing isAlgebra) ·-comm) CommAlgebraEquiv : (R S : CommAlgebra R) → Type ℓ CommAlgebraEquiv R S = AlgebraEquiv (CommAlgebra→Algebra R) (CommAlgebra→Algebra S) makeIsCommAlgebra : {A : Type ℓ} {0a 1a : A} {_+_ _·_ : A → A → A} { -_ : A → A} {_⋆_ : ⟨ R ⟩r → A → A} (isSet-A : isSet A) (+-assoc : (x y z : A) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : A) → x + 0a ≡ x) (+-rinv : (x : A) → x + (- x) ≡ 0a) (+-comm : (x y : A) → x + y ≡ y + x) (·-assoc : (x y z : A) → x · (y · z) ≡ (x · y) · z) (·-lid : (x : A) → 1a · x ≡ x) (·-ldist-+ : (x y z : A) → (x + y) · z ≡ (x · z) + (y · z)) (·-comm : (x y : A) → x · y ≡ y · x) (⋆-assoc : (r s : ⟨ R ⟩r) (x : A) → (r ·s s) ⋆ x ≡ r ⋆ (s ⋆ x)) (⋆-ldist : (r s : ⟨ R ⟩r) (x : A) → (r +r s) ⋆ x ≡ (r ⋆ x) + (s ⋆ x)) (⋆-rdist : (r : ⟨ R ⟩r) (x y : A) → r ⋆ (x + y) ≡ (r ⋆ x) + (r ⋆ y)) (⋆-lid : (x : A) → 1r ⋆ x ≡ x) (⋆-lassoc : (r : ⟨ R ⟩r) (x y : A) → (r ⋆ x) · y ≡ r ⋆ (x · y)) → IsCommAlgebra R 0a 1a _+_ _·_ -_ _⋆_ makeIsCommAlgebra {A} {0a} {1a} {_+_} {_·_} { -_} {_⋆_} isSet-A +-assoc +-rid +-rinv +-comm ·-assoc ·-lid ·-ldist-+ ·-comm ⋆-assoc ⋆-ldist ⋆-rdist ⋆-lid ⋆-lassoc = iscommalgebra (makeIsAlgebra isSet-A +-assoc +-rid +-rinv +-comm ·-assoc (λ x → x · 1a ≡⟨ ·-comm _ _ ⟩ 1a · x ≡⟨ ·-lid _ ⟩ x ∎) ·-lid (λ x y z → x · (y + z) ≡⟨ ·-comm _ _ ⟩ (y + z) · x ≡⟨ ·-ldist-+ _ _ _ ⟩ (y · x) + (z · x) ≡⟨ cong (λ u → (y · x) + u) (·-comm _ _) ⟩ (y · x) + (x · z) ≡⟨ cong (λ u → u + (x · z)) (·-comm _ _) ⟩ (x · y) + (x · z) ∎) ·-ldist-+ ⋆-assoc ⋆-ldist ⋆-rdist ⋆-lid ⋆-lassoc λ r x y → r ⋆ (x · y) ≡⟨ cong (λ u → r ⋆ u) (·-comm _ _) ⟩ r ⋆ (y · x) ≡⟨ sym (⋆-lassoc _ _ _) ⟩ (r ⋆ y) · x ≡⟨ ·-comm _ _ ⟩ x · (r ⋆ y) ∎) ·-comm module CommAlgebraΣTheory (R : CommRing {ℓ}) where open AlgebraΣTheory (CommRing→Ring R) CommAlgebraAxioms : (A : Type ℓ) (s : RawAlgebraStructure A) → Type ℓ CommAlgebraAxioms A (_+_ , _·_ , 1a , _⋆_) = AlgebraAxioms A (_+_ , _·_ , 1a , _⋆_) × ((x y : A) → x · y ≡ y · x) CommAlgebraStructure : Type ℓ → Type ℓ CommAlgebraStructure = AxiomsStructure RawAlgebraStructure CommAlgebraAxioms CommAlgebraΣ : Type (ℓ-suc ℓ) CommAlgebraΣ = TypeWithStr ℓ CommAlgebraStructure CommAlgebraEquivStr : StrEquiv CommAlgebraStructure ℓ CommAlgebraEquivStr = AxiomsEquivStr RawAlgebraEquivStr CommAlgebraAxioms isPropCommAlgebraAxioms : (A : Type ℓ) (s : RawAlgebraStructure A) → isProp (CommAlgebraAxioms A s) isPropCommAlgebraAxioms A (_+_ , _·_ , 1a , _⋆_) = isPropΣ (isPropAlgebraAxioms A (_+_ , _·_ , 1a , _⋆_)) λ isAlgebra → isPropΠ2 λ _ _ → (isSetAlgebraΣ (A , _ , isAlgebra)) _ _ CommAlgebra→CommAlgebraΣ : CommAlgebra R → CommAlgebraΣ CommAlgebra→CommAlgebraΣ (commalgebra _ _ _ _ _ _ _ (iscommalgebra G C)) = _ , _ , Algebra→AlgebraΣ (algebra _ _ _ _ _ _ _ G) .snd .snd , C CommAlgebraΣ→CommAlgebra : CommAlgebraΣ → CommAlgebra R CommAlgebraΣ→CommAlgebra (_ , _ , G , C) = commalgebra _ _ _ _ _ _ _ (iscommalgebra (AlgebraΣ→Algebra (_ , _ , G) .Algebra.isAlgebra) C) CommAlgebraIsoCommAlgebraΣ : Iso (CommAlgebra R) CommAlgebraΣ CommAlgebraIsoCommAlgebraΣ = iso CommAlgebra→CommAlgebraΣ CommAlgebraΣ→CommAlgebra (λ _ → refl) helper where open import Cubical.Algebra.Group.Base hiding (⟨_⟩) open CommAlgebra open IsAlgebra open IsCommAlgebra algebra-helper : retract Algebra→AlgebraΣ AlgebraΣ→Algebra algebra-helper = Iso.leftInv AlgebraIsoAlgebraΣ helper : retract CommAlgebra→CommAlgebraΣ CommAlgebraΣ→CommAlgebra Carrier (helper a i) = Carrier a 0a (helper a i) = 0a a 1a (helper a i) = 1a a _+_ (helper a i) = _+_ a _·_ (helper a i) = _·_ a - helper a i = -_ a _⋆_ (helper a i) = _⋆_ a isAlgebra (isCommAlgebra (helper a i)) = Algebra.isAlgebra (algebra-helper (algebra _ _ _ _ _ _ _ (isAlgebra (isCommAlgebra a))) i) ·-comm (isCommAlgebra (helper a i)) = ·-comm (isCommAlgebra a) commAlgebraUnivalentStr : UnivalentStr CommAlgebraStructure CommAlgebraEquivStr commAlgebraUnivalentStr = axiomsUnivalentStr _ isPropCommAlgebraAxioms rawAlgebraUnivalentStr CommAlgebraΣPath : (A B : CommAlgebraΣ) → (A ≃[ CommAlgebraEquivStr ] B) ≃ (A ≡ B) CommAlgebraΣPath = SIP commAlgebraUnivalentStr CommAlgebraEquivΣ : (A B : CommAlgebra R) → Type ℓ CommAlgebraEquivΣ A B = CommAlgebra→CommAlgebraΣ A ≃[ CommAlgebraEquivStr ] CommAlgebra→CommAlgebraΣ B CommAlgebraPath : (A B : CommAlgebra R) → (CommAlgebraEquiv A B) ≃ (A ≡ B) CommAlgebraPath A B = CommAlgebraEquiv A B ≃⟨ isoToEquiv AlgebraEquivΣPath ⟩ CommAlgebraEquivΣ A B ≃⟨ CommAlgebraΣPath _ _ ⟩ CommAlgebra→CommAlgebraΣ A ≡ CommAlgebra→CommAlgebraΣ B ≃⟨ isoToEquiv (invIso (congIso CommAlgebraIsoCommAlgebraΣ)) ⟩ A ≡ B ■ CommAlgebraPath : (R : CommRing {ℓ}) → (A B : CommAlgebra R) → (CommAlgebraEquiv A B) ≃ (A ≡ B) CommAlgebraPath = CommAlgebraΣTheory.CommAlgebraPath
41.168421
104
0.558041
2fbf335265cef3f7c847844831182196abf73436
452
agda
Agda
test/Fail/Issue2369.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2369.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2369.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-12-30 test case for #2369 -- {-# OPTIONS --allow-unsolved-metas #-} -- {-# OPTIONS -v scope.import:20 #-} module Issue2369 where import Issue2369.OpenIP -- Error is: -- Module cannot be imported since it has open interaction points -- (consider adding {-# OPTIONS --allow-unsolved-metas #-} to this -- module) -- when scope checking the declaration -- import Issue2369.OpenIP -- Error could be better, or this could just work.
23.789474
66
0.701327
507634655e1824a8990cc242fe9c7caf11f12c84
1,391
agda
Agda
test/Succeed/Issue3518.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3518.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3518.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
record ∃ {A : Set} (B : A → Set) : Set where field fst : A snd : B fst data ⊥ : Set where infix 3 ¬_ ¬_ : Set → Set ¬ P = P → ⊥ infixr 1 _⊎_ data _⊎_ (A B : Set) : Set where inj₁ : A → A ⊎ B inj₂ : B → A ⊎ B ⊎-map : ∀ {A₁ A₂ B₁ B₂ : Set} → (A₁ → A₂) → (B₁ → B₂) → A₁ ⊎ B₁ → A₂ ⊎ B₂ ⊎-map f g (inj₁ x) = inj₁ (f x) ⊎-map f g (inj₂ y) = inj₂ (g y) record Raw-monad (M : Set → Set) : Set₁ where constructor mk infixl 5 _>>=_ field return : ∀ {A} → A → M A _>>=_ : ∀ {A B} → M A → (A → M B) → M B map : ∀ {A B} → (A → B) → M A → M B map f x = x >>= λ x → return (f x) open Raw-monad ⦃ … ⦄ -- Id is included in order to make run overloaded. record Id (A : Set) : Set where field run : A open Id infix 3 ¬¬_ record ¬¬_ (A : Set) : Set where field run : ¬ ¬ A open ¬¬_ instance double-negation-monad : Raw-monad ¬¬_ run (Raw-monad.return double-negation-monad x) = λ f → f x run (Raw-monad._>>=_ double-negation-monad x f) = λ ¬b → run x (λ a → run (f a) ¬b) excluded-middle : {A : Set} → ¬¬ (A ⊎ ¬ A) run excluded-middle ¬[a⊎¬a] = ¬[a⊎¬a] (inj₂ λ a → ¬[a⊎¬a] (inj₁ a)) postulate A : Set P : Set → Set _⇓_ : P A → A → Set _⇑ : P A → Set ¬⇓→⇑ : {x : P A} → ¬ (∃ λ y → x ⇓ y) → x ⇑ ¬¬[⇓⊎⇑] : (x : P A) → ¬ ¬ ((∃ λ y → x ⇓ y) ⊎ x ⇑) ¬¬[⇓⊎⇑] x = run (map (⊎-map (λ x → x) ¬⇓→⇑) excluded-middle)
19.054795
67
0.472322
570538491bd225e206048cb645be0f39e33f0fcf
701
agda
Agda
Cubical/Experiments/Everything.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
null
null
null
Cubical/Experiments/Everything.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
null
null
null
Cubical/Experiments/Everything.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
null
null
null
-- Export only the experiments that are expected to compile (without -- any holes) module Cubical.Experiments.Everything where open import Cubical.Experiments.Brunerie public open import Cubical.Experiments.EscardoSIP public open import Cubical.Experiments.Generic public open import Cubical.Experiments.NatMinusTwo open import Cubical.Experiments.IsoInt open import Cubical.Experiments.HAEquivInt open import Cubical.Experiments.Problem open import Cubical.Experiments.FunExtFromUA public open import Cubical.Experiments.HoTT-UF open import Cubical.Experiments.ZCohomologyOld.Base open import Cubical.Experiments.ZCohomologyOld.KcompPrelims open import Cubical.Experiments.ZCohomologyOld.Properties
41.235294
68
0.865906
29f8e9810eab9bc3dcb59a5353cd74d2f7e5e733
1,271
agda
Agda
Univalence/Circuits.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
Univalence/Circuits.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
Univalence/Circuits.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
{-# OPTIONS --without-K #-} module Circuits where open import PiLevel0 using (U; ZERO; ONE; PLUS; TIMES; BOOL; BOOL²; _⟷_; unite₊; uniti₊; swap₊; assocl₊; assocr₊; unite⋆; uniti⋆; swap⋆; assocl⋆; assocr⋆; absorbr; absorbl; factorzr; factorzl; dist; factor; id⟷; _◎_; _⊕_; _⊗_; _⟷⟨_⟩_; _□; NOT; CNOT; TOFFOLI) ------------------------------------------------------------------------------ SWAP : BOOL² ⟷ BOOL² SWAP = swap⋆ CONTROL : {t : U} → (t ⟷ t) → (TIMES BOOL t ⟷ TIMES BOOL t) CONTROL {t} f = TIMES BOOL t ⟷⟨ id⟷ ⟩ TIMES (PLUS x y) t ⟷⟨ dist ⟩ PLUS (TIMES x t) (TIMES y t) ⟷⟨ id⟷ ⊕ (id⟷ ⊗ f) ⟩ PLUS (TIMES x t) (TIMES y t) ⟷⟨ factor ⟩ TIMES (PLUS x y) t ⟷⟨ id⟷ ⟩ TIMES BOOL t □ where x = ONE; y = ONE FREDKIN : TIMES BOOL BOOL² ⟷ TIMES BOOL BOOL² FREDKIN = CONTROL SWAP ------------------------------------------------------------------------------ -- Fig. 4 in http://arxiv.org/pdf/1110.2574v2.pdf -- (e) cycles -- (c) reversible truth table ------------------------------------------------------------------------------
27.630435
78
0.387097
1d68ce359e50bcedfea29569464fb859e9a223e5
4,758
agda
Agda
slides/ClosedTheory2.agda
larrytheliquid/generic-elim
832383d7adf37aa2364213fb0aeb67e9f61a248f
[ "MIT" ]
11
2015-06-02T14:05:20.000Z
2021-09-09T08:46:42.000Z
slides/ClosedTheory2.agda
larrytheliquid/generic-elim
832383d7adf37aa2364213fb0aeb67e9f61a248f
[ "MIT" ]
null
null
null
slides/ClosedTheory2.agda
larrytheliquid/generic-elim
832383d7adf37aa2364213fb0aeb67e9f61a248f
[ "MIT" ]
2
2016-05-02T08:56:15.000Z
2022-03-12T11:31:22.000Z
{-# OPTIONS --type-in-type #-} open import Data.Empty open import Data.Unit open import Data.Bool hiding ( T ) open import Data.Product hiding ( curry ; uncurry ) open import Data.Nat open import Data.String open import Relation.Binary.PropositionalEquality using ( refl ; _≢_ ; _≡_ ) open import Function module ClosedTheory2 where ---------------------------------------------------------------------- data Tel : Set₁ where Emp : Tel Ext : (A : Set) (B : A → Tel) → Tel Scope : Tel → Set Scope Emp = ⊤ Scope (Ext A B) = Σ A λ a → Scope (B a) ---------------------------------------------------------------------- UncurriedScope : (T : Tel) (X : Scope T → Set) → Set UncurriedScope T X = (xs : Scope T) → X xs CurriedScope : (T : Tel) (X : Scope T → Set) → Set CurriedScope Emp X = X tt CurriedScope (Ext A B) X = (a : A) → CurriedScope (B a) (λ b → X (a , b)) curryScope : (T : Tel) (X : Scope T → Set) → UncurriedScope T X → CurriedScope T X curryScope Emp X f = f tt curryScope (Ext A B) X f a = curryScope (B a) (λ b → X (a , b)) (λ b → f (a , b)) ---------------------------------------------------------------------- data Desc (I : Set) : Set₁ where End : (i : I) → Desc I Rec : (i : I) (D : Desc I) → Desc I Arg : (A : Set) (B : A → Desc I) → Desc I ISet : Set → Set₁ ISet I = I → Set El : {I : Set} (D : Desc I) → ISet I → ISet I El (End j) X i = j ≡ i El (Rec j D) X i = X j × El D X i El (Arg A B) X i = Σ A (λ a → El (B a) X i) data μ {I : Set} (D : Desc I) (i : I) : Set where init : El D (μ D) i → μ D i ---------------------------------------------------------------------- UncurriedEl : {I : Set} (D : Desc I) (X : ISet I) → Set UncurriedEl D X = ∀{i} → El D X i → X i CurriedEl : {I : Set} (D : Desc I) (X : ISet I) → Set CurriedEl (End i) X = X i CurriedEl (Rec i D) X = (x : X i) → CurriedEl D X CurriedEl (Arg A B) X = (a : A) → CurriedEl (B a) X curryEl : {I : Set} (D : Desc I) (X : ISet I) → UncurriedEl D X → CurriedEl D X curryEl (End i) X cn = cn refl curryEl (Rec i D) X cn = λ x → curryEl D X (λ xs → cn (x , xs)) curryEl (Arg A B) X cn = λ a → curryEl (B a) X (λ xs → cn (a , xs)) ---------------------------------------------------------------------- record Data : Set₁ where field E : Set P : Tel I : Scope P → Tel C : (p : Scope P) (t : E) → Desc (Scope (I p)) ---------------------------------------------------------------------- UncurriedFormer : Set UncurriedFormer = UncurriedScope P λ p → UncurriedScope (I p) λ i → Set FormUncurried : UncurriedFormer FormUncurried p = μ (Arg E (C p)) Former : Set Former = CurriedScope P λ p → CurriedScope (I p) λ i → Set Form : Former Form = curryScope P (λ p → CurriedScope (I p) λ i → Set) λ p → curryScope (I p) (λ i → Set) λ i → FormUncurried p i ---------------------------------------------------------------------- InjUncurried : E → Set InjUncurried t = UncurriedScope P λ p → CurriedEl (C p t ) (FormUncurried p) injUncurried : (t : E) → InjUncurried t injUncurried t p = curryEl (C p t) (FormUncurried p) (λ xs → init (t , xs)) Inj : E → Set Inj t = CurriedScope P λ p → CurriedEl (C p t) (FormUncurried p) inj : (t : E) → Inj t inj t = curryScope P (λ p → CurriedEl (C p t) (FormUncurried p)) (injUncurried t) ---------------------------------------------------------------------- open Data using ( Former ; Form ; Inj ; inj ) ---------------------------------------------------------------------- data VecT : Set where nilT consT : VecT VecR : Data VecR = record { E = VecT ; P = Ext Set λ _ → Emp ; I = λ _ → Ext ℕ λ _ → Emp ; C = λ { (A , tt) → λ { nilT → End (zero , tt) ; consT → Arg ℕ λ n → Arg A λ _ → Rec (n , tt) $ End (suc n , tt) } } } Vec : (A : Set) → ℕ → Set Vec = Form VecR nil : (A : Set) → Vec A zero nil = inj VecR nilT cons : (A : Set) (n : ℕ) (x : A) (xs : Vec A n) → Vec A (suc n) cons = inj VecR consT ---------------------------------------------------------------------- data TreeT : Set where leaf₁T leaf₂T branchT : TreeT TreeR : Data TreeR = record { E = TreeT ; P = Ext Set λ _ → Ext Set λ _ → Emp ; I = λ _ → Ext ℕ λ _ → Ext ℕ λ _ → Emp ; C = λ { (A , B , tt) → λ { leaf₁T → Arg A λ _ → End (suc zero , zero , tt) ; leaf₂T → Arg B λ _ → End (zero , suc zero , tt) ; branchT → Arg ℕ λ m → Arg ℕ λ n → Arg ℕ λ x → Arg ℕ λ y → Rec (m , n , tt) $ Rec (x , y , tt) $ End (m + x , n + y , tt) } } } Tree : (A B : Set) (m n : ℕ) → Set Tree = Form TreeR leaf₁ : (A B : Set) → A → Tree A B (suc zero) zero leaf₁ = inj TreeR leaf₁T ----------------------------------------------------------------------
27.188571
82
0.461118
c79852e0eba60947d23ab066a4a6e9dabc58cee9
1,428
agda
Agda
agda/SNat/Log.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/SNat/Log.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/SNat/Log.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
{-# OPTIONS --sized-types #-} module SNat.Log where open import Size open import SNat open import SNat.Order open import SNat.Order.Properties open import SNat.Properties open import SNat.Sum lemma-≅-log : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≅ n → log₂ m ≅ log₂ n lemma-≅-log z≅z = z≅z lemma-≅-log (s≅s z≅z) = z≅z lemma-≅-log (s≅s (s≅s m≅n)) = s≅s (lemma-≅-log (s≅s (lemma-≅-/2 m≅n))) mutual lemma-logn≤′logsn : {ι : Size}(n : SNat {ι}) → log₂ n ≤′ log₂ (succ n) lemma-logn≤′logsn zero = ≤′-eq z≅z lemma-logn≤′logsn (succ zero) = ≤′-step (≤′-eq z≅z) lemma-logn≤′logsn (succ (succ n)) = lemma-s≤′s (lemma-≤′-log (lemma-s≤′s (lemma-n/2≤′sn/2 n))) lemma-≤′-log : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≤′ n → log₂ m ≤′ log₂ n lemma-≤′-log (≤′-eq m≅n) = ≤′-eq (lemma-≅-log m≅n) lemma-≤′-log (≤′-step {n = n} m≤′n) = trans≤′ (lemma-≤′-log m≤′n) (lemma-logn≤′logsn n) lemma-1+logn≤′log2n : (n : SNat) → succ (log₂ (succ n)) ≤′ log₂ (succ n + succ n) lemma-1+logn≤′log2n zero = refl≤′ lemma-1+logn≤′log2n (succ n) rewrite +-assoc-succ (succ (succ n)) (succ n) | +-assoc-succ n (succ n) | +-assoc-succ n n = lemma-s≤′s (lemma-≤′-log (lemma-s≤′s (lemma-n+1≤′2n+2/2 n))) lemma-log2n≤′1+logn : (n : SNat) → log₂ (n + n) ≤′ succ (log₂ n) lemma-log2n≤′1+logn zero = ≤′-step refl≤′ lemma-log2n≤′1+logn (succ n) rewrite +-assoc-succ (succ n) n = lemma-s≤′s (lemma-≤′-log (lemma-s≤′s (lemma-2n/2≤′n n)))
42
182
0.579132
a1f090286614174154855fa705bab23fc19b63c9
1,607
agda
Agda
Algebra/Group/Group.agda
esoeylemez/agda-simple
d9245e5a8b2e902781736de09bd17e81022f6f13
[ "BSD-3-Clause" ]
1
2019-10-07T17:36:42.000Z
2019-10-07T17:36:42.000Z
Algebra/Group/Group.agda
esoeylemez/agda-simple
d9245e5a8b2e902781736de09bd17e81022f6f13
[ "BSD-3-Clause" ]
null
null
null
Algebra/Group/Group.agda
esoeylemez/agda-simple
d9245e5a8b2e902781736de09bd17e81022f6f13
[ "BSD-3-Clause" ]
null
null
null
-- Copyright: (c) 2016 Ertugrul Söylemez -- License: BSD3 -- Maintainer: Ertugrul Söylemez <esz@posteo.de> module Algebra.Group.Group where open import Algebra.Category open import Algebra.Group.Monoid open import Algebra.Group.Semigroup open import Core -- A group is a monoid where every element has an inverse. record IsGroup {a r} (S : Semigroup {a} {r}) : Set (a ⊔ r) where open Semigroup S field isMonoid : IsMonoid S open IsMonoid isMonoid field iso : ∀ x → Iso x inv : A → A inv x = Iso.inv (iso x) field inv-cong : ∀ {x y} → x ≈ y → inv x ≈ inv y groupoid : Groupoid groupoid = record { category = category; iso = iso; inv-cong = inv-cong } open Groupoid groupoid public using (inv-invol) record Group {a r} : Set (lsuc (a ⊔ r)) where field semigroup : Semigroup {a} {r} open Semigroup semigroup public field isGroup : IsGroup semigroup open IsGroup isGroup public monoid : Monoid monoid = record { semigroup = semigroup; isMonoid = isMonoid } -- A group morphism is a function that maps the elements of one group to -- another while preserving the compositional structure, the identity -- and all inverses. record GroupMorphism {ga gr ha hr} (G : Group {ga} {gr}) (H : Group {ha} {hr}) : Set (ga ⊔ gr ⊔ ha ⊔ hr) where private module G = Group G module H = Group H field monoidMorphism : MonoidMorphism G.monoid H.monoid open MonoidMorphism monoidMorphism public field inv-preserving : ∀ x → map (G.inv x) H.≈ H.inv (map x)
21.716216
72
0.645302
12c5b4efb8bd04eabb4ce3ea7409e70a7fe45fa1
12,453
agda
Agda
Cubical/ZCohomology/CohomologyRings/Coproduct.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/ZCohomology/CohomologyRings/Coproduct.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/ZCohomology/CohomologyRings/Coproduct.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.CohomologyRings.Coproduct where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Data.Nat renaming (_+_ to _+n_ ; _·_ to _·n_ ; snotz to nsnotz) open import Cubical.Data.Sigma open import Cubical.Data.Sum open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.DirProd open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Ring open import Cubical.Algebra.Ring.DirectProd open import Cubical.Algebra.DirectSum.DirectSumHIT.Base open import Cubical.HITs.SetTruncation as ST open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Groups.Coproduct open import Cubical.ZCohomology.RingStructure.CupProduct open import Cubical.ZCohomology.RingStructure.CohomologyRing private variable ℓ ℓ' : Level module Equiv-Coproduct-Properties {X : Type ℓ} {Y : Type ℓ'} where open Iso open IsGroupHom open GroupStr open PlusBis open RingStr (snd (H*R X)) using () renaming ( 0r to 0H*X ; 1r to 1H*X ; _+_ to _+H*X_ ; -_ to -H*X_ ; _·_ to _cupX_ ; +Assoc to +H*XAssoc ; +IdL to +H*XIdL ; +IdR to +H*XIdR ; +Comm to +H*XComm ; ·Assoc to ·H*XAssoc ; ·IdL to ·H*XIdL ; ·IdR to ·H*XIdR ; is-set to isSetH*X ) open RingStr (snd (H*R Y)) using () renaming ( 0r to 0H*Y ; 1r to 1H*Y ; _+_ to _+H*Y_ ; -_ to -H*Y_ ; _·_ to _cupY_ ; +Assoc to +H*YAssoc ; +IdL to +H*YIdL ; +IdR to +H*YIdR ; +Comm to +H*YComm ; ·Assoc to ·H*YAssoc ; ·IdL to ·H*YIdL ; ·IdR to ·H*YIdR ; is-set to isSetH*Y ) -- warning this does not open H*(X×Y) ! -- This just a notation shorter and pratical open RingStr (snd (DirectProd-Ring (H*R X) (H*R Y))) using () renaming ( 0r to 0H*X×Y ; 1r to 1H*X×Y ; _+_ to _+H*X×Y_ ; -_ to -H*X×Y_ ; _·_ to _cupX×Y_ ; +Assoc to +H*X×YAssoc ; +IdL to +H*X×YIdL ; +IdR to +H*X×YIdR ; +Comm to +H*X×YComm ; ·Assoc to ·H*X×YAssoc ; ·IdL to ·H*X×YIdL ; ·IdR to ·H*X×YIdR ; is-set to isSetH*X×Y ) open RingStr (snd (H*R (X ⊎ Y))) using () renaming ( 0r to 0H*X⊎Y ; 1r to 1H*X⊎Y ; _+_ to _+H*X⊎Y_ ; -_ to -H*X⊎Y_ ; _·_ to _cupX⊎Y_ ; +Assoc to +H*X⊎YAssoc ; +IdL to +H*X⊎YIdL ; +IdR to +H*X⊎YIdR ; +Comm to +H*X⊎YComm ; ·Assoc to ·H*X⊎YAssoc ; ·IdL to ·H*X⊎YIdL ; ·IdR to ·H*X⊎YIdR ; is-set to isSetH*X⊎Y ) ----------------------------------------------------------------------------- -- Notation needed for type checking -- indeed several base coexists and two cannot be inferef without implicit argument -- it is clearer to add a notation baseX : (n : ℕ) → (x : coHom n X) → H* X baseX n x = base n x baseY : (n : ℕ) → (x : coHom n Y) → H* Y baseY n x = base n x ----------------------------------------------------------------------------- -- Direct Sens H*-X⊎Y→H*-X×H*-Y : H* (X ⊎ Y) → (H* X) × (H* Y) H*-X⊎Y→H*-X×H*-Y = DS-Rec-Set.f _ _ _ _ isSetH*X×Y (0H*X , 0H*Y) (λ n a → (base n (fst (fun (fst Equiv-Coproduct-CoHom) a))) , (base n (snd (fun (fst Equiv-Coproduct-CoHom) a)))) _+H*X×Y_ +H*X×YAssoc +H*X×YIdR +H*X×YComm (λ n → ≡-× ((cong (λ A → baseX n (fst A)) (pres1 (snd Equiv-Coproduct-CoHom))) ∙ base-neutral n) (((cong (λ B → baseY n (snd B)) (pres1 (snd Equiv-Coproduct-CoHom))) ∙ base-neutral n))) λ n a b → sym (≡-× (cong (λ A → baseX n (fst A)) (pres· (snd Equiv-Coproduct-CoHom) a b) ∙ cong (base n) (helper1 _ _ _) ∙ sym (base-add n _ _)) (cong (λ B → baseY n (snd B)) (pres· (snd Equiv-Coproduct-CoHom) a b) ∙ cong (base n) (helper2 _ _ _) ∙ sym (base-add n _ _))) where helper1 : (n : ℕ) → (x y : coHom n X × coHom n Y) → fst ((DirProd (coHomGr n X) (coHomGr n Y) .snd GroupStr.· x) y) ≡ ((fst x) +ₕ (fst y)) helper1 n (fst₁ , snd₁) (fst₂ , snd₂) = refl helper2 : (n : ℕ) → (x y : coHom n X × coHom n Y) → snd ((DirProd (coHomGr n X) (coHomGr n Y) .snd GroupStr.· x) y) ≡ ((snd x) +ₕ (snd y)) helper2 n (fst₁ , snd₁) (fst₂ , snd₂) = refl ----------------------------------------------------------------------------- -- Converse Sens -- One need to convert seperatly the X an Y -- Otherwise the traduction fails in the case base n a , 0 -- because one need then to lift x + 0 ≡ 0 -- which doesn't work because the + being lifted is on H*(Y) and not H*(X)×H*(Y) H*-X→H*-X⊎Y : H*(X) → H*(X ⊎ Y) H*-X→H*-X⊎Y = DS-Rec-Set.f _ _ _ _ isSetH*X⊎Y 0H*X⊎Y (λ n a → base n (inv (fst Equiv-Coproduct-CoHom) (a , (0ₕ n)))) _+H*X⊎Y_ +H*X⊎YAssoc +H*X⊎YIdR +H*X⊎YComm (λ n → cong (base n) (pres1 (snd (invGroupIso Equiv-Coproduct-CoHom))) ∙ base-neutral n) λ n a a' → base-add _ _ _ ∙ cong (base n) (sym (pres· (snd (invGroupIso Equiv-Coproduct-CoHom)) _ _)) ∙ cong (base n) (cong (inv (fst Equiv-Coproduct-CoHom)) (≡-× refl (AbGroupStr.+IdL (snd (coHomGroup n Y)) (0ₕ n)))) H*-Y→H*-X⊎Y : H*(Y) → H*(X ⊎ Y) H*-Y→H*-X⊎Y = DS-Rec-Set.f _ _ _ _ isSetH*X⊎Y 0H*X⊎Y (λ m b → base m (inv (fst Equiv-Coproduct-CoHom) (0ₕ m , b))) _+H*X⊎Y_ +H*X⊎YAssoc +H*X⊎YIdR +H*X⊎YComm (λ m → cong (base m) (pres1 (snd (invGroupIso Equiv-Coproduct-CoHom))) ∙ base-neutral m) λ m b b' → base-add _ _ _ ∙ cong (base m) (sym (pres· (snd (invGroupIso Equiv-Coproduct-CoHom)) (0ₕ m , b) (0ₕ m , b'))) ∙ cong (base m) (cong (inv (fst Equiv-Coproduct-CoHom)) (≡-× (AbGroupStr.+IdL (snd (coHomGroup m X)) (0ₕ m)) refl)) H*-X×H*-Y→H*-X⊎Y : H*(X) × H*(Y) → H*(X ⊎ Y) H*-X×H*-Y→H*-X⊎Y (x , y) = (H*-X→H*-X⊎Y x) +H*X⊎Y (H*-Y→H*-X⊎Y y) H*-X×H*-Y→H*-X⊎Y-pres+ : (x y : H*(X) × H*(Y)) → H*-X×H*-Y→H*-X⊎Y (x +H*X×Y y) ≡ ((H*-X×H*-Y→H*-X⊎Y x) +H*X⊎Y (H*-X×H*-Y→H*-X⊎Y y)) H*-X×H*-Y→H*-X⊎Y-pres+ (x , y) (x' , y') = RingTheory.+ShufflePairs (H*R (X ⊎ Y)) _ _ _ _ ----------------------------------------------------------------------------- -- Section Sens e-sectX : (x : H* X) → H*-X⊎Y→H*-X×H*-Y (H*-X→H*-X⊎Y x) ≡ (x , 0H*Y) e-sectX = DS-Ind-Prop.f _ _ _ _ (λ _ → isSetH*X×Y _ _) refl (λ n a → ≡-× (cong (base n) (cong fst (rightInv (fst Equiv-Coproduct-CoHom) (a , 0ₕ n)))) (cong (base n) (cong snd (rightInv (fst Equiv-Coproduct-CoHom) (a , 0ₕ n)))) ∙ ≡-× refl (base-neutral n)) λ {U V} ind-U ind-V → cong₂ _+H*X×Y_ ind-U ind-V ∙ ≡-× refl (+H*YIdR _) e-sectY : (y : H* Y) → (H*-X⊎Y→H*-X×H*-Y (H*-Y→H*-X⊎Y y)) ≡ (0H*X , y) e-sectY = DS-Ind-Prop.f _ _ _ _ (λ _ → isSetH*X×Y _ _) refl (λ m b → ≡-× (cong (base m) (cong fst (rightInv (fst Equiv-Coproduct-CoHom) (0ₕ m , b)))) (cong (base m) (cong snd (rightInv (fst Equiv-Coproduct-CoHom) (0ₕ m , b)))) ∙ ≡-× (base-neutral m) refl) λ {U V} ind-U ind-V → cong₂ _+H*X×Y_ ind-U ind-V ∙ ≡-× (+H*XIdR _) refl e-sect : (z : H*(X) × H*(Y)) → H*-X⊎Y→H*-X×H*-Y (H*-X×H*-Y→H*-X⊎Y z) ≡ z e-sect (x , y) = cong₂ _+H*X×Y_ (e-sectX x) (e-sectY y) ∙ ≡-× (+H*XIdR x) (+H*YIdL y) ----------------------------------------------------------------------------- -- Retraction Sens e-retr : (x : H*(X ⊎ Y)) → H*-X×H*-Y→H*-X⊎Y (H*-X⊎Y→H*-X×H*-Y x) ≡ x e-retr = DS-Ind-Prop.f _ _ _ _ (λ _ → isSetH*X⊎Y _ _) (+H*X⊎YIdR _) (λ n a → ((base n (T⁻ ((fst (T a)) , 0ₕ n))) +H*X⊎Y (base n (T⁻ (0ₕ n , snd (T a))))) ≡⟨ base-add n _ _ ⟩ base n ((T⁻ ((fst (T a)) , 0ₕ n)) +ₕ (T⁻ (0ₕ n , snd (T a)))) ≡⟨ cong (base n) (sym (pres· (snd (invGroupIso Equiv-Coproduct-CoHom)) ((fst (T a)) , 0ₕ n) (0ₕ n , snd (T a)))) ⟩ base n (T⁻ ( fst (T a) +ₕ 0ₕ n , 0ₕ n +ₕ snd (T a))) ≡⟨ cong (base n) (cong T⁻ (≡-× (rUnitₕ n (fst (T a))) (lUnitₕ n (snd (T a))))) ⟩ base n (T⁻ ( fst (T a) , snd (T a))) ≡⟨ cong (base n) (cong T⁻ (helper1 _ _ (T a))) ⟩ base n (T⁻ (T a)) ≡⟨ cong (base n) (leftInv (fst Equiv-Coproduct-CoHom) a) ⟩ base n a ∎) λ {U V} ind-U ind-V → (H*-X×H*-Y→H*-X⊎Y-pres+ _ _) ∙ (cong₂ _+H*X⊎Y_ ind-U ind-V) where T : {n : ℕ} → coHom n (X ⊎ Y) → coHom n X × coHom n Y T {n} = fun (fst (Equiv-Coproduct-CoHom)) T⁻ : {n : ℕ} → coHom n X × coHom n Y → coHom n (X ⊎ Y) T⁻ {n} = inv (fst (Equiv-Coproduct-CoHom)) helper1 : (A : Type ℓ) → (B : Type ℓ') → (x : A × B) → (fst x , snd x) ≡ x helper1 A B (fst₁ , snd₁) = refl ----------------------------------------------------------------------------- -- Ring Equiv-Coproduct-CoHomphism H*-X⊎Y→H*-X×H*-Y-pres1 : H*-X⊎Y→H*-X×H*-Y 1H*X⊎Y ≡ (1H*X , 1H*Y) H*-X⊎Y→H*-X×H*-Y-pres1 = refl H*-X⊎Y→H*-X×H*-Y-pres+ : (x y : H* (X ⊎ Y)) → H*-X⊎Y→H*-X×H*-Y ( x +H*X⊎Y y) ≡ H*-X⊎Y→H*-X×H*-Y x +H*X×Y H*-X⊎Y→H*-X×H*-Y y H*-X⊎Y→H*-X×H*-Y-pres+ x y = refl H*-X⊎Y→H*-X×H*-Y-pres· : (x y : H* (X ⊎ Y)) → H*-X⊎Y→H*-X×H*-Y ( x cupX⊎Y y) ≡ H*-X⊎Y→H*-X×H*-Y x cupX×Y H*-X⊎Y→H*-X×H*-Y y H*-X⊎Y→H*-X×H*-Y-pres· = DS-Ind-Prop.f _ _ _ _ (λ x p q i y → isSetH*X×Y _ _ (p y) (q y) i) (λ y → refl) (λ n a → DS-Ind-Prop.f _ _ _ _ (λ _ → isSetH*X×Y _ _) refl (λ m b → (base (n +' m) (fst (T (a ⌣ b)))) , base (n +' m) (snd (T (a ⌣ b))) ≡⟨ ≡-× (cong (base (n +' m)) (helperX a b)) (cong (base (n +' m)) (helperY a b)) ⟩ (base (n +' m) ((fst (T a)) ⌣ (fst (T b)))) , base (n +' m) ((snd (T a)) ⌣ (snd (T b))) ∎ ) λ {U V} ind-U ind-V → cong₂ _+H*X×Y_ ind-U ind-V) (λ {U V} ind-U ind-V y → cong₂ _+H*X×Y_ (ind-U y) (ind-V y)) where T : {n : ℕ} → coHom n (X ⊎ Y) → coHom n X × coHom n Y T {n} = fun (fst (Equiv-Coproduct-CoHom)) helperX : {n : ℕ} → {m : ℕ} → (a : coHom n (X ⊎ Y)) → (b : coHom m (X ⊎ Y)) → fst (T (a ⌣ b)) ≡ (fst (T a)) ⌣ (fst (T b)) helperX = ST.elim (λ x → isProp→isSet λ u v i y → squash₂ _ _ (u y) (v y) i ) λ g → ST.elim (λ _ → isProp→isSet (squash₂ _ _)) (λ h → refl) helperY : {n : ℕ} → {m : ℕ} → (a : coHom n (X ⊎ Y)) → (b : coHom m (X ⊎ Y)) → snd (T (a ⌣ b)) ≡ (snd (T a)) ⌣ (snd (T b)) helperY = ST.elim (λ x → isProp→isSet λ u v i y → squash₂ _ _ (u y) (v y) i ) λ g → ST.elim (λ _ → isProp→isSet (squash₂ _ _)) (λ h → refl) ----------------------------------------------------------------------------- -- Computation of the Cohomology Ring module _ (X : Type ℓ) (Y : Type ℓ') where open Equiv-Coproduct-Properties open Iso open RingEquivs CohomologyRing-Coproduct : RingEquiv (H*R(X ⊎ Y)) (DirectProd-Ring (H*R X) (H*R Y)) fst (CohomologyRing-Coproduct) = isoToEquiv is where is : Iso (H* (X ⊎ Y)) (H* X × H* Y) fun is = H*-X⊎Y→H*-X×H*-Y inv is = H*-X×H*-Y→H*-X⊎Y rightInv is = e-sect leftInv is = e-retr snd (CohomologyRing-Coproduct) = makeIsRingHom H*-X⊎Y→H*-X×H*-Y-pres1 H*-X⊎Y→H*-X×H*-Y-pres+ H*-X⊎Y→H*-X×H*-Y-pres·
39.785942
141
0.45483
222e4655c4d6a46f92aa762b4649477c2cdc122b
32,168
agda
Agda
agda/paper/2008-Ulf_Norell_and_Chapman-Dependently_Typed_Programming_in_Agda/z.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
36
2015-01-29T14:37:15.000Z
2021-07-30T06:55:03.000Z
agda/paper/2008-Ulf_Norell_and_Chapman-Dependently_Typed_Programming_in_Agda/z.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
null
null
null
agda/paper/2008-Ulf_Norell_and_Chapman-Dependently_Typed_Programming_in_Agda/z.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
8
2015-04-13T21:40:15.000Z
2021-09-21T15:58:10.000Z
module z where -- http://www.cse.chalmers.se/~ulfn/papers/afp08/tutorial.pdf {- Dependently Typed Programming in Agda Ulf Norell1 : Chalmers University, Gothenburg : ulfn@chalmers.se James Chapman : Institute of Cybernetics, Tallinn : james@cs.ioc.ee ------------------------------------------------------------------------------ 1 Introduction In Hindley-Milner languages (Haskell, ML) : separation between types and values. Dependently typed : types can contain (depend on) arbitrary values and appear as arguments and results of ordinary functions Dependent types enables types to talk about values, so can encode properties of values as types whose elements are proofs that the property is true. So dependently typed programming language can be used as a logic. To be consistent programs must be total. ------------------------------------------------------------------------------ 2 BASICS based on intuitionistic type theory[4] -------------------------------------------------- 2.1 DATATYPES AND PATTERN MATCHING -} data Bool : Set where true : Bool false : Bool {- type of Bool is - Set, the type of small types - There is hierarchy of increasingly large types - type of Set is Set1, whose type is Set2, ... -} not : Bool → Bool not true = false not false = true data Nat : Set where zero : Nat suc : Nat → Nat {-# BUILTIN NATURAL Nat #-} _+_ : Nat → Nat → Nat zero + m = m suc n + m = suc (n + m) infixl 40 _+_ _*_ : Nat → Nat → Nat zero * m = zero suc n * m = m + n * m infixl 60 _*_ {- functions must not crash and must terminate recursive calls have to be made on structurally smaller arguments mixfix via _ : args where the underscores are -} _or_ : Bool → Bool → Bool false or x = x true or _ = true -- uses wildcard pattern on "don't care" args infixr 20 _or_ -- polymorphic function over type A if_then_else_ : {A : Set} → Bool → A → A → A if true then x else y = x if false then x else y = y infix 5 if_then_else_ -- types parameterize by other types data List (A : Set) : Set where [] : List A _::_ : A → List A → List A infixr 40 _::_ -- liberal naming policy enables naming above data _⋆ (α : Set) : Set where ε : α ⋆ _C_ : α → α ⋆ → α ⋆ {- whitespace important -------------------------------------------------- 2.2 DEPENDENT FUNCTIONS result type depends on VALUE of an arg (x : A) → B for the type of functions - given : arg x of type A - returns : result of type B - where x may appear in B special case is when x itself is a type, e.g., -} identity : (A : Set) → A → A identity A x = x zero’ : Nat zero’ = identity Nat zero {- identity is a dependent function - given - a type argument A and - an element of A - returns - the element This is how polymorphic functions are encoded in Agda. example : function which takes a dependent function and applies it to an argument: -} apply : (A : Set) (B : A → Set) → ((x : A) → B x) → (a : A) → B a apply A B f a = f a {- shorthand for dependent function types: (x : A) (y : B) → C for (x : A) → (y : B) → C (x y : A) → B for (x : A) (y : A) → B elements of dependent function types are lambda terms which may carry explicit type info alternative ways to identity identity function above are: -} identity2 : (A : Set) → A → A identity2 = \A x → x identity3 : (A : Set) → A → A identity3 = \(A : Set) (x : A) → x identity4 : (A : Set) → A → A identity4 = \(A : Set) x → x {- -------------------------------------------------- 2.3 IMPLICIT ARGUMENTS Previous section showed how dependent functions taking types as arguments used to model polymorphic types. But it is not necessary to say at which point it is applied - that can be inferred. The identity functions above explicitly provide the type argument. Avoid explicit type arg via implicit arguments using {} -} id : {A : Set} → A → A id x = x true’ : Bool true’ = id true {- No restrictions on what arguments can be made implicit. Not guarantees that an implicit argument can be inferred. E.g., make 2nd arg of identity function implicit as well: -} silly : {A : Set} {x : A} → A -- but type checker cannot figure out 2nd arg silly {_} {x} = x false’ : Bool false’ = silly {x = false} -- must provide via named implicit application syntax f {v} -- must use name if not in order -- type checker fills in term -- will not search, only looks at typing constraints and performs unification one : Nat one = identity _ (suc zero) -- example of inferring the typing constraints _◦_ : {A : Set}{B : A → Set}{C : (x : A) → B x → Set} (f : {x : A}(y : B x) → C x y)(g : (x : A) → B x) (x : A) → C x (g x) (f ◦ g) x = f (g x) plus-two = suc ◦ suc -- other functions map : {A B : Set} → (A → B) → List A → List B map f [] = [] map f (x :: xs) = f x :: map f xs _++_ : {A : Set} → List A → List A → List A [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) {- -------------------------------------------------- -- 2.4 DATATYPE FAMILIES So far, only used dependent types is to represent polymorphism -} data Vec (A : Set) : Nat → Set where [] : Vec A zero _::_ : {n : Nat} → A → Vec A n → Vec A (suc n) {- type of Vec A is Nat → Set - means that Vec A is a family of types indexed by natural numbers - for each Nat n, Vec A n is a type - [] constructs an element in Vec A zero - _::_ constructs an element in Vec A (suc n) for some n distinction between parameters and indices of a datatype - parameterised by type A - indexed over Nat type of _::_ is a dependent function type - 1st arg is an implicit Nat n - returns type that depends on n 'suc n' same constructor names for Vec as for List - constructor names are not required to be distinct between different datatypes -} -- safe head head : {A : Set} {n : Nat} → Vec A (suc n) → A head (x :: xs) = x tail : {A : Set} {n : Nat} → Vec A (suc n) → Vec A n tail (x :: xs) = xs {- rule for when to include a particular case is: if it is type correct you have to include it -} -------------------------------------------------- -- DOT PATTERNS : indicate value of an arg deduced by type checking, not pattern matching vmap : {A B : Set} {n : Nat} → (A → B) → Vec A n → Vec B n vmap f [] = [] vmap f (x :: xs) = f x :: vmap f xs {- map on Vec is exactly the same map on List only change is the type behind the scenes, what happens with the length argument when pattern matching to see, define new versions of Vec and vmap with fewer implicit arguments: -} data Vec2 (A : Set) : Nat → Set where nil : Vec2 A zero cons : (n : Nat) → A → Vec2 A n → Vec2 A (suc n) vmap2 : {A B : Set} (n : Nat) → (A → B) → Vec2 A n → Vec2 B n vmap2 .zero f nil = nil vmap2 .(suc n) f (cons n x xs) = cons n (f x) (vmap2 n f xs) {- pattern matching on list argument reveals its length - if nil then zero - if cons then suc n to indicate value of an arg deduced by type checking, rather than observed by pattern matching, it is prefixed by a dot (.) could choose to define vmap by first pattern matching on the length rather than on the list -} vmap3 : {A B : Set} (n : Nat) → (A → B) → Vec2 A n → Vec2 B n vmap3 zero f nil = nil vmap3 (suc n) f (cons .n x xs) = cons n (f x) (vmap3 n f xs) {- rule for when arg should be dotted: - if there is a unique type correct value for the argument it should be dotted above, the terms under the dots were valid patterns - in general they can be arbitrary terms e.g., -} data Image_el_ {A B : Set}(f : A → B) : B → Set where im : (x : A) → Image f el f x {- only way to construct an element in the image of f is to pick an argument x and apply f to x knowing that a particular y is in the image of f enables computing the inverse of f on y: -} inv : {A B : Set} (f : A → B) (y : B) → Image f el y → A inv f .(f x) (im x) = x {- -------------------------------------------------- ABSURD PATTERNS -} -- family of numbers smaller than a given natural number data Fin : Nat → Set where fzero : {n : Nat} → Fin (suc n) -- smaller than suc n for any n fsuc : {n : Nat} → Fin n → Fin (suc n) -- if i smaller than n then fsuc i is smaller than suc n -- Now way to construct a Fin smaller than zero. -- When no possible constructor patterns for a given argument -- then pattern match with absurd pattern () magic : {A : Set} → Fin zero → A magic () {- Using absurd pattern means no need to give a right hand side, since no way anyting could given as an arg that would match. Seems the clause not needed, that checker could tell. But a case can only be omitted if no type correct way of writing it. 'magic a' has a type correct left hand side absurd pattern can only be used if there are no valid constructor patterns for the arg. It is not enough that there are no closed inhabitants of the type. E.g., -} data Empty : Set where empty : Fin zero → Empty {- Args of type Empty cannot be matched with absurd pattern, since there is a valid constructor pattern: 'empty x' So must write: -} magic’ : {A : Set} → Empty → A magic’ (empty ()) -- magic’ () -- not accepted -- Extract ith element of the list (starting from 0): -- Turns a list into a function from indices to elements. _!_ : {n : Nat} {A : Set} → Vec A n → Fin n → A [] ! () (x :: xs) ! fzero = x (x :: xs) ! (fsuc i) = xs ! i {- types ensure no danger of indexing outside the list reflected in use of absurd in empty case : no possible values for the index -} -- constructing a list given a function from indices to elements tabulate : {n : Nat} {A : Set} → (Fin n → A) → Vec A n tabulate {zero} f = [] tabulate {suc n} f = f fzero :: tabulate (f ◦ fsuc) -- recursive call implicitly gets 'n' {- tabulate is defined by recursion over the length of the result list, even though it is an implicit argument. In general, no correspondance between implicit data and computationally irrelevant data. ------------------------------------------------------------------------------ -- 2.5 PROGRAMS AS PROOFS Type system can represent propositions as types whose elements are proofs of the proposition. -} data False : Set where -- datatype with no constructors record True : Set where -- record type with no fields -- has a single element : the empty record {- Could have defined True as datatype with a single element. But using record def lets checker know there is a unique element of True and will fill in any implicit arguments of type True with this element. exploited in trivial: -} trivial : True trivial = _ trivial' : True trivial' = record {} {- where right hand is underscore, instead of explicitly writing 'record {}' The 'False' and 'True' propositions enable working with decidable propositions. Can model decidable propositions as booleans and define -} -- takes a VALUE of type Bool -- returns a Set (i.e., a TYPE) isTrue : Bool → Set isTrue true = True isTrue false = False isFalse : Bool → Set isFalse x = isTrue (not x) {- isTrue b is the type of proofs that b equals true. This technique enables defining safe list lookup function in a different way, working on simply typed lists and numbers. -} -- takes Nat VALUES -- returns Bool VALUES _<_ : Nat → Nat → Bool _ < zero = false zero < suc n = true suc m < suc n = m < n length : {A : Set} → List A → Nat length [] = zero length (x :: xs) = suc (length xs) -- | -- v lookup : {A : Set} (xs : List A) (n : Nat) → isTrue (n < length xs) → A lookup [] n () lookup (x :: xs) zero p = x lookup (x :: xs) (suc n) p = lookup xs n p {- Rather than there being no index into the empty list, there is no proof that a number n is smaller than zero. In this example, using indexed types to capture the precondition, as done in '_!_' above, is a little bit nicer, since do not have to pass an explicit proof object as done in 'lookup' above. When properties cannot be easily captured by indexed types, this is a useful alternative. -------------------------------------------------- DEFINE PROPOSITIONS USING DATATYPE FAMILIES -} -- family of proofs of “being equal to x” -- specify the type by giving it two args -- type can only be constructed when the two args reduce to the same thing data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x -- only inhabited at index x where the single proof is refl -- another exampla -- compare to def of '_<_' above data _≤_ : Nat → Nat → Set where leq-zero : {n : Nat} → zero ≤ n leq-suc : {m n : Nat} → m ≤ n → suc m ≤ suc n {- advantage of this approach - PATTERN MATCH ON PROOF OBJECT - makes proving properties of _≤_ easier - e.g., -} leq-trans : {l m n : Nat} → l ≤ m → m ≤ n → l ≤ n leq-trans leq-zero _ = leq-zero leq-trans (leq-suc p) (leq-suc q) = leq-suc (leq-trans p q) {- ------------------------------------------------------------------------------ -- 2.6 WITH : PATTERN MATCH ON RESULT OF INTERMEDIATE COMPUTATION Haskell : done on right hand side using case when matching expression in dependently typed language, learn - shape of expression - things about other expressions - e.g., matching 'Vec A n' reveals info about n - not captured by usual case expression to pattern match on an expression e in the def of fun f - abstract f over value of e - effectively adding another argument to f - can then be matched on in usual way -} min : Nat → Nat → Nat min x y with x < y min x y | true = x min x y | false = y {- Can abstract over multiple expressions at same time, separated by vertical bars. Can nest with abstractions. When matching on arg using WITH, no need to match on args again: - use ... -} filter : {A : Set} → (A → Bool) → List A → List A filter p [] = [] filter p (x :: xs) with p x ... | true = x :: filter p xs ... | false = filter p xs {- Example of revealing info via matching. Compare numbers for equality. Instead of returning boolean, return proof of equality or explanation of why they are not equal. -} data _≠_ : Nat → Nat → Set where z≠s : {n : Nat} → zero ≠ suc n -- different if one is zero and other suc s≠z : {n : Nat} → suc n ≠ zero -- vice versa s≠s : {m n : Nat} → m ≠ n → suc m ≠ suc n -- both suc but their predecessors are different data Equal? (n m : Nat) : Set where eq : n ≡ m → Equal? n m neq : n ≠ m → Equal? n m -- now function that returns the explanation equal? : (n m : Nat) → Equal? n m -- Equal? zero zero -- zero ≡ zero equal? zero zero = eq refl equal? zero (suc _) = neq z≠s equal? (suc _) zero = neq s≠z equal? (suc n) (suc m) with equal? n m -- matching on proof reveals if predecessors are equal equal? (suc _) (suc _) | eq refl = eq refl -- Equal? (suc n) (suc m) -- suc n ≠ suc m -- n ≠ m equal? (suc _) (suc _) | neq p = neq (s≠s p) {- using WITH : expression is abstracted from entire context means that if expression occurs in type of arg to function or in result type, occurrence is replaced by the with-argument on the left hand side. e.g., prove 'filter' only removes some elements -} -- to make a sublist, each element can either be dropped or kept infix 20 _⊆_ data _⊆_ {A : Set} : List A → List A → Set where stop : [] ⊆ [] drop : forall {xs y ys} → xs ⊆ ys → xs ⊆ y :: ys keep : forall {x xs ys} → xs ⊆ ys → x :: xs ⊆ x :: ys {- When checker can infer type of an arg in fun type, then can use forall: – forall {x y} a b → A shorthand for {x : _} {y : _} (a : _) (b : _) → A -} -- proof that filter computes a sublist of its argument: lem-filter : {A : Set} (p : A → Bool) (xs : List A) → filter p xs ⊆ xs lem-filter p [] = stop lem-filter p (x :: xs) with p x ... | true = keep (lem-filter p xs) ... | false = drop (lem-filter p xs) {- to prove lem-filter p (x :: xs) need to prove : (filter p (x :: xs) | p x) ⊆ x :: xs when abstracting over p x it will be abstracted from goal type, giving lem-filter p (x :: xs) with p x ... | px = ? where p x has been replaced by px in the goal type (filter p (x :: xs) | px) ⊆ x :: xs match px reduce call to filter lem-filter p (x :: xs) with p x ... | true = ? {- x :: filter p xs ⊆ x :: xs -} ... | false = ? {- filter p xs ⊆ x :: xs -} Sometimes WITH useful to abstract over expr that will not be matched, e.g., expect expr to be instantiated by matching on something else -} lem-plus-zero : (n : Nat) → n + zero ≡ n lem-plus-zero zero = refl lem-plus-zero (suc n) with n + zero | lem-plus-zero n ... | _ | refl = refl -- suc n ≡ suc n {- In suc ("step" case) : match on induction hypothesis : n + zero ≡ n to prove suc n + zero ≡ suc n but n + zero does not unify with n so abstract over n + zero, calling it _, left with the induction hypothesis m ≡ n and goal suc m ≡ suc n Now match on induction hypothesis, instantiating _ to n -------------------------------------------------- -- 2.7 Modules TODO -------------------------------------------------- -- 2.8 Records -} record Point : Set where field x : Nat y : Nat mkPoint : Nat → Nat → Point mkPoint a b = record { x = a; y = b } {- field projections via module of the same name. - parameterised by element of record type - contains projection functions for the fields - i.e., module Point (p : Point) where x : Nat y : Nat - can be used as is or instantiated to a particular record -} getX : Point → Nat getX = Point.x abs2 : Point → Nat abs2 p = let open Point p in x * x + y * y -- TODO pattern match on records -- can add functions to the module of a record record Monad (M : Set → Set) : Set1 where field return : {A : Set} → A → M A _>>=_ : {A B : Set} → M A → (A → M B) → M B mapM : {A B : Set} → (A → M B) → List A → M (List B) mapM f [] = return [] mapM f (x :: xs) = f x >>= \y → mapM f xs >>= \ys → return (y :: ys) mapM’ : {M : Set → Set} → Monad M → {A B : Set} → (A → M B) → List A → M (List B) mapM’ Mon f xs = Monad.mapM Mon f xs -------------------------------------------------- -- 2.9 Exercises ------------------------- -- Exercise 2.1. Matrix transposition -- inner vectors are rows Matrix : Set → Nat → Nat → Set Matrix A n m = Vec (Vec A n) m -- (a) function to compute vector containing n copies of element x vec : {n : Nat} {A : Set} → A → Vec A n vec {zero} x = [] vec {suc n} x = x :: vec {n} x vecTest : Vec Nat 3 vecTest = vec zero -- (b) point-wise application of vector of functions to vector of arguments infixl 90 _$_ _$_ : {n : Nat} {A B : Set} → Vec (A → B) n → Vec A n → Vec B n _$_ [] [] = [] _$_ (f :: fs) (x :: xs) = f x :: fs $ xs $TestInputFs : Vec (Nat → Nat) 2 $TestInputFs = (_+ 1) :: (_* 2) :: [] $TestInputXs : Vec Nat 2 $TestInputXs = 0 :: 2 :: [] $TestOutput : Vec Nat 2 $TestOutput = 1 :: 4 :: [] $Test : $TestInputFs $ $TestInputXs ≡ $TestOutput $Test = refl -- (c) matrix transposition in terms of 'vec' and _$_ transpose : forall {A n m} → Matrix A n m → Matrix A m n transpose [] = vec [] transpose (xs :: xss) = (vmap _::_ xs) $ (transpose xss) transposeTestInput : Matrix Nat 2 3 transposeTestInput = r1 :: r2 :: r3 :: [] where r1 = 1 :: 2 :: [] r2 = 3 :: 4 :: [] r3 = 5 :: 6 :: [] transposeTestOuput : Matrix Nat 3 2 transposeTestOuput = r1 :: r2 :: [] where r1 = 1 :: 3 :: 5 :: [] r2 = 2 :: 4 :: 6 :: [] transposeTest : transpose transposeTestInput ≡ transposeTestOuput transposeTest = refl ------------------------- -- Exercise 2.2. Vector lookup -- function composition _∘_ : ∀ {A B C : Set} → (B → C) → (A → B) → (A → C) (g ∘ f) x = g (f x) -- prove 'tabulate' and '!' are each other’s inverses -- (a) relatively easy lem-!-tab : ∀ {A n} → (f : Fin n → A) → (i : Fin n) → ((tabulate f) ! i) ≡ f i lem-!-tab f fzero = refl -- (tabulate f ! fzero) ≡ f fzero lem-!-tab f (fsuc i) = lem-!-tab (f ∘ fsuc) i -- (tabulate f ! fsuc i) ≡ f (fsuc i) -- (b) trickier lem-tab-! : forall {A n} → (xs : Vec A n) → tabulate (xs !_) ≡ xs lem-tab-! [] = refl lem-tab-! (x :: xs) -- tabulate (_!_ (x :: xs)) ≡ (x :: xs) with tabulate (xs !_) | lem-tab-! xs ... | _y | refl = refl -- (x :: _y) ≡ (x :: xs) -- ^ ^ -- Vec A n _y ≡ xs ------------------------- -- Exercise 2.3. Sublists (see def above) -- (a) prove reflexivity and transitivity of ⊆ -- need to name implicits since the interesting one does not come first ⊆-refl : {A : Set} {xs : List A} → xs ⊆ xs ⊆-refl {xs = []} = stop ⊆-refl {xs = x :: xss} = keep (⊆-refl { xs = xss }) {- [] [] [] [] [] [z] [] [z] [z] [z] [z] [z] [z] [z] [z,z] [z] [z,z] [z,z] [z,z] [z,z] [z,z] -} ⊆-trans : {A : Set} {xs ys zs : List A} → xs ⊆ ys → ys ⊆ zs → xs ⊆ zs -- [] [] [] ⊆-trans stop stop = stop -- [] [] [z] -- [z] [z] [z,z] ⊆-trans xy (drop yz) = drop (⊆-trans xy yz) -- [] [z] [z] -- [z] [z,z] [z,z] ⊆-trans (drop xy) (keep yz) = drop (⊆-trans xy yz) -- [z] [z] [z] ⊆-trans (keep xy) (keep yz) = keep (⊆-trans xy yz) ⊆-trans' : {A : Set} {xs ys zs : List A} → xs ⊆ ys → ys ⊆ zs → xs ⊆ zs ⊆-trans' stop stop = stop ⊆-trans' stop (drop yz) = drop (⊆-trans' stop yz) ⊆-trans' (drop xy) (drop yz) = drop (⊆-trans' (drop xy) yz) ⊆-trans' (drop xy) (keep yz) = drop (⊆-trans' xy yz) ⊆-trans' (keep xy) (drop yz) = drop (⊆-trans' (keep xy) yz) ⊆-trans' (keep xy) (keep yz) = keep (⊆-trans' xy yz) -- sublist TYPE of a specific list (compare to existing sublist RELATION above) infixr 30 _:::_ data SubList {A : Set} : List A → Set where [] : SubList [] _:::_ : forall x {xs} → SubList xs → SubList (x :: xs) skip : forall {x xs} → SubList xs → SubList (x :: xs) -- (b) extract list corresponding to a sublist forget : {A : Set} {xs : List A} → SubList xs → List A forget [] = [] forget (x ::: s) = x :: forget s forget (skip s) = forget s -- (c) prove SubList is a sublist in the sense of ⊆ lem-forget : {A : Set} {xs : List A} → (zs : SubList xs) → forget zs ⊆ xs lem-forget [] = stop lem-forget (x ::: zs) = keep (lem-forget zs) lem-forget (skip zs) = drop (lem-forget zs) -- (d) alternative def of filter : satisfies sublist property by construction filter' : {A : Set} → (A → Bool) → (xs : List A) → SubList xs filter' p [] = [] filter' p (x :: xs) with p x ... | true = x ::: filter' p xs ... | false = skip (filter' p xs) -- (e) complement of a sublist complement : {A : Set} {xs : List A} → SubList xs → SubList xs complement [] = [] complement (x ::: xs) = skip (complement xs) complement (skip {x} xs) = x ::: complement xs module ComplementTest where ll : List Nat ll = 1 :: 2 :: 3 :: 4 :: [] p1 : Nat → Bool p1 2 = true p1 3 = true p1 4 = true p1 _ = false p2 : Nat → Bool p2 2 = true p2 4 = true p2 _ = false sl1 : SubList ll sl1 = filter' p1 ll sl2 : SubList ll sl2 = filter' p2 ll sl1Test : sl1 ≡ skip (2 ::: 3 ::: 4 ::: []) sl1Test = refl sl2Test : sl2 ≡ skip (2 ::: skip (4 ::: [])) sl2Test = refl c1 : SubList ll c1 = complement sl1 c2 : SubList ll c2 = complement sl2 cTest1 : c1 ≡ 1 ::: skip (skip (skip [])) cTest1 = refl cTest2 : c2 ≡ 1 ::: skip (3 ::: skip []) cTest2 = refl -- https://medium.com/@angerman/powersets-in-haskell-1df9684db52a -- (f) compute all sublists of a given list sublists : {A : Set} → (xs : List A) → List (SubList xs) sublists [] = [] :: [] sublists (x :: xs) = map (x :::_) (sublists xs) ++ (map skip (sublists xs)) -- 2^3 elements - expected output MUST be in same element ORDER as function result sublistsTest : sublists (1 :: 2 :: 3 :: []) ≡ (1 ::: 2 ::: 3 ::: []) :: (1 ::: 2 ::: skip []) :: (1 ::: skip (3 ::: [])) :: (1 ::: skip (skip [])) :: skip (2 ::: 3 ::: []) :: skip (2 ::: skip []) :: skip (skip (3 ::: [])) :: skip (skip (skip [])) :: [] sublistsTest = refl {- ------------------------------------------------------------------------------ 3 Programming Techniques : VIEWS and UNIVERSE constructions -------------------------------------------------- 3.1 VIEWS matching can reveal info about term being matched AND terms INSIDE the type matched term VIEW[5]: datatypes whose purpose is to reveal info about its indices to use a view, define a view function - computes an element of the view for arbitrary indices -} -- view datatype expressing -- any Nat can be expressed as 2k or 2k + 1 for some k -- element of Parity n says if n is even or odd and what k is data Parity : Nat → Set where even : (k : Nat) → Parity (k * 2) odd : (k : Nat) → Parity (1 + k * 2) parity : (n : Nat) → Parity n parity zero = even zero parity (suc n) with parity n ... | even k = odd k ... | odd k = even (suc k) {- parity (suc .(k * 2)) | even k = odd k parity (suc .(1 + k * 2)) | odd k = even (suc k) -} half : Nat → Nat half n with parity n ... | even k = k ... | odd k = k {- -- Note that k is bound in the pattern for the view, -- not in the dotted pattern for the natural number. half .(k * 2) | even k = k half .(1 + k * 2) | odd k = k -} ------------------------- -- FINDING AN ELEMENT IN A LIST -- given predicate and list -- returns if P holds for all elements -- A proof of All P xs is a list of proofs of P x for each element x of xs. -- P does not have to be a decidable predicate. infixr 30 _:all:_ data All {A : Set} (P : A → Set) : List A → Set where all[] : All P [] _:all:_ : forall {x xs} → P x → All P xs → All P (x :: xs) -- to turn a decidable predicate into a general predicate, define: satisfies : {A : Set} → (A → Bool) → A → Set satisfies p x = isTrue (p x) ------------------------- -- exercise : use All to prove 2nd part of correctness of filter -- - all elements of result satisfies the predicate -- All (satisfies p) (filter p xs) -- https://www.javaer101.com/en/article/18631037.html {- open import Relation.Binary.PropositionalEquality filter-lem-b : {A : Set} → (p : A → Bool) → (xs : List A) → All (satisfies p) (filter p xs) filter-lem-b p [] = vacuo filter-lem-b p (x :: xs) with p x | inspect p x ... | true | [ eq ] = holds _ _ (subst isTrue (sym eq) _) (filter-lem-b p xs) ... | false | [ eq ] = filter-lem-b p xs -} -- https://stackoverflow.com/questions/38572464/agda-type-isnt-simplified-in-with-block lem-all-filter : {A : Set} → (p : A → Bool) → (xs : List A) → All (satisfies p) (filter p xs) lem-all-filter p [] = all[] -- isTrue (p x) lem-all-filter p (x :: xs) with p x | λ (y : satisfies p x) → y :all: lem-all-filter p xs -- onTrue : (y : True) → All (λ x₁ → isTrue (p x₁)) (x :: filter p xs) ... | true | onTrue = onTrue _ ... | false | _ = lem-all-filter p xs ------------------------- -- VIEWS ON LISTS -- given : decidable predicate on elements of list -- find element in list that satisfies predicate, -- or else all elements satifies negation of the predicate data Find {A : Set} (p : A → Bool) : List A → Set where -- does NOT specify which element to use as a witness in the found case. -- (If the view was always to return first (or last) matching element, -- force elements of xs (or ys) to satisfy the negation of p.) found : (xs : List A) → (y : A) → satisfies p y → (ys : List A) → Find p (xs ++ y :: ys) not-found : forall {xs} → All (satisfies (not ◦ p)) xs → Find p xs -- view function computing an element of Find p xs for any p and xs -- 1st attempt {- find1 : {A : Set} (p : A → Bool) (xs : List A) → Find p xs find1 p [] = not-found all[] find1 p (x :: xs) with p x -- Need to return found on first match. -- ({ }) is isTrue (p x), even though already matched on p x and found out that it was true. -- Problem : when abstracting over p x did not know that needed to use the found constructor, -- so there were no p x to abstract over. -- WITH does not remember connection between the with-term and the pattern. ... | true = found [] x {! !} xs ... | false = {! !} -} {- A solution : make this connection explicit with a proof object. Do NOT abstract over the term itself - instead rather over arbitrary term of same type AND a proof that it is equal to the original term -} -- type of elements of type A AND proofs they are equal to some given x in A data Inspect {A : Set} (x : A) : Set where it : (y : A) → x ≡ y → Inspect x -- construct an element of Inspect x by picking x as thing which is equal to x. inspect : {A : Set} → (x : A) → Inspect x inspect x = it x refl -- lemmas trueIsTrue : {x : Bool} → x ≡ true → isTrue x falseIsFalse : {x : Bool} → x ≡ false → isFalse x trueIsTrue refl = _ falseIsFalse refl = _ {- now define find by abstracting over inspect (p x) rather than p x provide either a proof of p x == true or a proof of p x == false - can be use in args to 'found' and 'not-found -} find : {A : Set} → (p : A → Bool) → (xs : List A) → Find p xs find p [] = not-found all[] find p (x :: xs) with inspect (p x) -- When p x is true, inspect (p x) matches 'it true prf' where prf : p x == true. -- Use lemma to turn into proof of isTrue (p x) needed by 3rd arg of 'found' ... | it true prf = found [] x (trueIsTrue prf) xs ... | it false prf with find p xs find p (x :: ._) | it false _ | found xs y py ys = found (x :: xs) y py ys -- p x is false : use lemma find p (x :: xs) | it false prf | not-found npxs = not-found (falseIsFalse prf :all: npxs) ------------------------- -- INDEXING INTO A LIST {- Previously showed two ways of safely indexing into a list. Both cases used type system to guarantee the index didn’t point outside the list. In situations where there is no control over value of index (i.e., it might be outside) a solution is to wrap result of lookup in MAYBE, but MAYBE provides no info. -} -- type of proofs that an element x is in a list xs. data _∈_ {A : Set} (x : A) : List A → Set where hd : forall {xs} → x ∈ x :: xs -- 1st el is a member tl : forall {y xs} → x ∈ xs → x ∈ y :: xs -- any el in tail is member -- Given proof of x ∈ xs, compute index where x occurs. -- Count number of tls in proof. index : forall {A} {x : A} {xs} → x ∈ xs → Nat index hd = zero index (tl p) = suc (index p) -- view on Nat with respect to list data Lookup {A : Set} (xs : List A) : Nat → Set where inside : (x : A) → (p : x ∈ xs) → Lookup xs (index p) outside : (m : Nat) → Lookup xs (length xs + m) {- When n is valid, get element at that position and guarantee that element is returned. No way for 'lookup' to cheat. When n is outside, get out-of-bounds proof showing by how much. -} -- now, guaranteed 'lookup' function _!'_ : {A : Set} → (xs : List A) → (n : Nat) → Lookup xs n [] !' n = outside n (x :: xs) !' zero = inside x hd (x :: xs) !' suc n with xs !' n ... | inside y p = inside y (tl p) (x :: xs) !' suc .(length xs + n) | outside n = outside n {- (x :: xs) !' suc .(index p) | inside y p = inside y (tl p) (x :: xs) !' suc .(length xs + n) | outside n = outside n -} -------------------------------------------------- -- TYPE CHECKER FOR λ-CALCULUS
28.568384
98
0.575665
58ff8b2eeff5fc46e7ba67f1157ed45146733138
266
agda
Agda
test/Fail/CopatternWithoutFieldName.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/fail/CopatternWithoutFieldName.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/CopatternWithoutFieldName.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- 2011-11-24 Andreas, James {-# OPTIONS --copatterns #-} module CopatternWithoutFieldName where record R : Set2 where field f : Set1 open R test : (f : R -> Set1) -> R test f = bla where bla : R f bla = Set -- not a copattern, since f not a field name
16.625
44
0.642857
57119ee0b5bf2c0cee612da09b1832809832d86a
475
agda
Agda
test/Fail/Issue1209-4-2.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1209-4-2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1209-4-2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Showing that destroy-guardedness in Issue1209-4 indeed does -- destroy guardedness {-# OPTIONS --safe --guardedness --no-sized-types #-} record Stream (A : Set) : Set where coinductive field head : A tail : Stream A open Stream destroy-guardedness : ∀ {A} → Stream A → Stream A destroy-guardedness xs .head = xs .head destroy-guardedness xs .tail = xs .tail repeat : ∀ {A} → A → Stream A repeat x .head = x repeat x .tail = destroy-guardedness (repeat x)
22.619048
62
0.684211
2009ff54798b7f4277f8f910ede7df1b769279ea
3,280
agda
Agda
src/CategoryTheory/Instances/Sets.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
4
2018-05-31T20:37:04.000Z
2022-01-04T09:33:48.000Z
src/CategoryTheory/Instances/Sets.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
null
null
null
src/CategoryTheory/Instances/Sets.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
null
null
null
{- Category of sets -} module CategoryTheory.Instances.Sets where open import CategoryTheory.Categories open import CategoryTheory.BCCCs import Function as F using (_∘_) open import Data.Unit using () renaming (⊤ to top) public open import Data.Product public open import Data.Empty using (⊥-elim) renaming (⊥ to bot) public open import Data.Sum -- Category of sets. 𝕊et : Category lzero 𝕊et = record { obj = Set ; _~>_ = λ a b -> (a -> b) ; id = λ a -> a ; _∘_ = λ g f a -> g (f a) ; _≈_ = λ f g -> ∀ {a} -> f a ≡ g a ; id-left = refl ; id-right = refl ; ∘-assoc = refl ; ≈-equiv = record { refl = refl ; sym = λ p → sym p ; trans = λ p q → trans p q } ; ≈-cong = ≈-cong-𝕊 } where ≈-cong-𝕊 : ∀{A B C : Set} {f f′ : A -> B} {g g′ : B -> C} -> (∀ {a} -> f a ≡ f′ a) -> (∀ {b} -> g b ≡ g′ b) -> (∀ {a} -> g (f a) ≡ g′ (f′ a)) ≈-cong-𝕊 {f′ = f′} fe ge {a′} rewrite fe {a′} | ge {f′ a′} = refl -- Bicartesian closed structure 𝕊et-BCCC : BicartesianClosed 𝕊et 𝕊et-BCCC = record { cart = record { term = record { ⊤ = top ; ! = λ {A} _ → top.tt ; !-unique = λ m → refl } ; prod = λ A B → record { A⊗B = A × B ; π₁ = proj₁ ; π₂ = proj₂ ; ⟨_,_⟩ = <_,_> ; π₁-comm = refl ; π₂-comm = refl ; ⊗-unique = λ pr1 pr2 → unique-cart (ext λ x → pr1 {x}) (ext λ x → pr2 {x}) } } ; cocart = record { init = record { ⊥ = bot ; ¡ = ⊥-elim ; ¡-unique = λ {A} m → λ {} } ; sum = λ A B → record { A⊕B = A ⊎ B ; ι₁ = inj₁ ; ι₂ = inj₂ ; [_⁏_] = [_,_] ; ι₁-comm = λ {S} {i₁} {i₂} {a} → refl ; ι₂-comm = λ {S} {i₁} {i₂} {a} → refl ; ⊕-unique = λ {S} {i₁} {i₂} {m} pr1 pr2 -> unique-cocart {m = m} (ext λ x → pr1 {x}) (ext λ x → pr2 {x}) } } ; closed = record { exp = λ A B → record { A⇒B = A -> B ; eval = λ fa → proj₁ fa (proj₂ fa) ; Λ = λ f a b → f (a , b) ; Λ-comm = refl ; Λ-unique = λ pr → λ {a} -> unique-closed (ext λ x → pr {x}) ; Λ-cong = λ pr → ext (λ _ → pr) } } } where unique-cart : ∀{A B P : Set}{a} -> {p₁ : P -> A} {p₂ : P -> B} {m : P -> A × B} -> proj₁ F.∘ m ≡ p₁ -> proj₂ F.∘ m ≡ p₂ -> < p₁ , p₂ > a ≡ m a unique-cart refl refl = refl unique-cocart : ∀{A B S : Set}{a} -> {i₁ : A -> S} {i₂ : B -> S} {m : A ⊎ B -> S} -> m F.∘ inj₁ ≡ i₁ -> m F.∘ inj₂ ≡ i₂ -> [ i₁ , i₂ ] a ≡ m a unique-cocart {a = inj₁ x} refl refl = refl unique-cocart {a = inj₂ y} refl refl = refl open Category 𝕊et unique-closed : ∀{A B E : Set}{a} -> {e : E × A -> B} {m : E -> (A -> B)} -> (λ fa → proj₁ fa (proj₂ fa)) ∘ < m ∘ proj₁ , proj₂ > ≡ e -> (λ b → e (a , b)) ≡ m a unique-closed refl = refl
32.156863
88
0.386585
dc84e610cb9ad064c6efc346c0c7372184093270
393
agda
Agda
test/Fail/Issue3289.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue3289.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue3289.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Builtin.Nat record R : Set where field x : Nat open R {{...}} f₁ f₂ : R -- This is fine. x ⦃ f₁ ⦄ = 0 -- WAS: THIS WORKS BUT MAKES NO SENSE!!! f₂ ⦃ .x ⦄ = 0 -- Error: -- Cannot eliminate type R with pattern ⦃ .x ⦄ (suggestion: write .(x) -- for a dot pattern, or remove the braces for a postfix projection) -- when checking the clause left hand side -- f₂ ⦃ .x ⦄
17.086957
70
0.620865
104feb59cdacc31b1c29909fd9684ec8f482b7a4
477
agda
Agda
test/Succeed/fol-theorems/NonTopLevelModuleName.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
10
2015-09-03T20:54:16.000Z
2019-12-03T13:44:25.000Z
test/Succeed/fol-theorems/NonTopLevelModuleName.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
121
2015-01-25T13:22:12.000Z
2018-04-22T06:01:44.000Z
test/Succeed/fol-theorems/NonTopLevelModuleName.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
4
2016-05-10T23:06:19.000Z
2016-08-03T03:54:55.000Z
------------------------------------------------------------------------------ -- Testing anonymous module ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- No top-level module postulate D : Set _≡_ : D → D → Set postulate foo : ∀ t → t ≡ t {-# ATP prove foo #-}
26.5
78
0.343816
58b9053b91a4522262cb0a108653e96e73c69ec2
29,321
agda
Agda
Cubical/Algebra/CommRing/Localisation/InvertingElements.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Localisation/InvertingElements.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Localisation/InvertingElements.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
-- In this file we consider the special of localising at a single -- element f : R (or rather the set of powers of f). This is also -- known as inverting f. -- We then prove that localising first at an element f and at an element -- g (or rather the image g/1) is the same as localising at the product f·g -- This fact has an important application in algebraic geometry where it's -- used to define the structure sheaf of a commutative ring. {-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.CommRing.Localisation.InvertingElements where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Powerset open import Cubical.Foundations.Transport open import Cubical.Functions.FunExtEquiv import Cubical.Data.Empty as ⊥ open import Cubical.Data.Bool open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; _^_ to _^ℕ_ ; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm) open import Cubical.Data.Nat.Order open import Cubical.Data.Vec open import Cubical.Data.Sigma.Base open import Cubical.Data.Sigma.Properties open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Relation.Binary open import Cubical.Algebra.Group open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Localisation.Base open import Cubical.Algebra.CommRing.Localisation.UniversalProperty open import Cubical.Algebra.CommRing.Ideal open import Cubical.Algebra.CommRing.FGIdeal open import Cubical.Algebra.CommRing.RadicalIdeal open import Cubical.Algebra.CommRingSolver.Reflection open import Cubical.HITs.SetQuotients as SQ open import Cubical.HITs.PropositionalTruncation as PT open Iso private variable ℓ ℓ' : Level A : Type ℓ module InvertingElementsBase (R' : CommRing ℓ) where open isMultClosedSubset private R = fst R' open CommRingStr (snd R') open Exponentiation R' open RingTheory (CommRing→Ring R') [_ⁿ|n≥0] : R → ℙ R [ f ⁿ|n≥0] g = (∃[ n ∈ ℕ ] g ≡ f ^ n) , isPropPropTrunc -- Σ[ n ∈ ℕ ] (s ≡ f ^ n) × (∀ m → s ≡ f ^ m → n ≤ m) maybe better, this isProp: -- (n,s≡fⁿ,p) (m,s≡fᵐ,q) then n≤m by p and m≤n by q => n≡m powersFormMultClosedSubset : (f : R) → isMultClosedSubset R' [ f ⁿ|n≥0] powersFormMultClosedSubset f .containsOne = PT.∣ zero , refl ∣₁ powersFormMultClosedSubset f .multClosed = PT.map2 λ (m , p) (n , q) → (m +ℕ n) , (λ i → (p i) · (q i)) ∙ ·-of-^-is-^-of-+ f m n R[1/_] : R → Type ℓ R[1/ f ] = Loc.S⁻¹R R' [ f ⁿ|n≥0] (powersFormMultClosedSubset f) -- a quick fact isContrR[1/0] : isContr R[1/ 0r ] fst isContrR[1/0] = [ 1r , 0r , ∣ 1 , sym (·IdR 0r) ∣₁ ] -- everything is equal to 1/0 snd isContrR[1/0] = elimProp (λ _ → squash/ _ _) λ _ → eq/ _ _ ((0r , ∣ 1 , sym (·IdR 0r) ∣₁) , useSolver _ _) where useSolver : ∀ s r → 0r · 1r · s ≡ 0r · r · 0r useSolver = solve R' R[1/_]AsCommRing : R → CommRing ℓ R[1/ f ]AsCommRing = Loc.S⁻¹RAsCommRing R' [ f ⁿ|n≥0] (powersFormMultClosedSubset f) -- A useful lemma: (gⁿ/1)≡(g/1)ⁿ in R[1/f] ^-respects-/1 : {f g : R} (n : ℕ) → [ (g ^ n) , 1r , PT.∣ 0 , (λ _ → 1r) ∣₁ ] ≡ Exponentiation._^_ R[1/ f ]AsCommRing [ g , 1r , powersFormMultClosedSubset _ .containsOne ] n ^-respects-/1 zero = refl ^-respects-/1 {f} {g} (suc n) = eq/ _ _ ( (1r , powersFormMultClosedSubset f .containsOne) , cong (1r · (g · (g ^ n)) ·_) (·IdL 1r)) ∙ cong (CommRingStr._·_ (R[1/ f ]AsCommRing .snd) [ g , 1r , powersFormMultClosedSubset f .containsOne ]) (^-respects-/1 n) -- A slight improvement for eliminating into propositions invElPropElim : {f : R} {P : R[1/ f ] → Type ℓ'} → (∀ x → isProp (P x)) → (∀ (r : R) (n : ℕ) → P [ r , (f ^ n) , PT.∣ n , refl ∣₁ ]) -- ∀ r n → P (r/fⁿ) ---------------------------------------------------------- → ∀ x → P x invElPropElim {f = f} {P = P} PisProp base = elimProp (λ _ → PisProp _) []-case where S[f] = Loc.S R' [ f ⁿ|n≥0] (powersFormMultClosedSubset f) []-case : (a : R × S[f]) → P [ a ] []-case (r , s , s∈S[f]) = PT.rec (PisProp _) Σhelper s∈S[f] where Σhelper : Σ[ n ∈ ℕ ] s ≡ f ^ n → P [ r , s , s∈S[f] ] Σhelper (n , p) = subst P (cong [_] (≡-× refl (Σ≡Prop (λ _ → isPropPropTrunc) (sym p)))) (base r n) invElPropElim2 : {f g : R} {P : R[1/ f ] → R[1/ g ] → Type ℓ'} → (∀ x y → isProp (P x y)) → (∀ (r s : R) (n : ℕ) → P [ r , (f ^ n) , PT.∣ n , refl ∣₁ ] [ s , (g ^ n) , PT.∣ n , refl ∣₁ ]) ---------------------------------------------------------- → ∀ x y → P x y invElPropElim2 {f = f} {g = g} {P = P} PisProp base = invElPropElim (λ _ → isPropΠ (λ _ → PisProp _ _)) reduce1 where reduce1 : ∀ (r : R) (n : ℕ) (y : R[1/ g ]) → P [ r , f ^ n , ∣ n , refl ∣₁ ] y reduce1 r n = invElPropElim (λ _ → PisProp _ _) reduce2 where reduce2 : (s : R) (m : ℕ) → P [ r , f ^ n , ∣ n , refl ∣₁ ] [ s , g ^ m , ∣ m , refl ∣₁ ] reduce2 s m = subst2 P p q (base _ _ l) where l = max m n x : R[1/ f ] x = [ r , f ^ n , ∣ n , refl ∣₁ ] y : R[1/ g ] y = [ s , g ^ m , ∣ m , refl ∣₁ ] x' : R[1/ f ] x' = [ r · f ^ (l ∸ n) , f ^ l , ∣ l , refl ∣₁ ] y' : R[1/ g ] y' = [ s · g ^ (l ∸ m) , g ^ l , ∣ l , refl ∣₁ ] p : x' ≡ x p = eq/ _ _ ((1r , ∣ 0 , refl ∣₁) , path) where useSolver1 : ∀ a b c → 1r · (a · b) · c ≡ a · (b · c) useSolver1 = solve R' useSolver2 : ∀ a b → a · b ≡ 1r · a · b useSolver2 = solve R' path : 1r · (r · f ^ (l ∸ n)) · f ^ n ≡ 1r · r · f ^ l path = 1r · (r · f ^ (l ∸ n)) · f ^ n ≡⟨ useSolver1 _ _ _ ⟩ r · (f ^ (l ∸ n) · f ^ n) ≡⟨ cong (r ·_) (·-of-^-is-^-of-+ _ _ _) ⟩ r · f ^ (l ∸ n +ℕ n) ≡⟨ cong (λ k → r · f ^ k) (≤-∸-+-cancel right-≤-max) ⟩ r · f ^ l ≡⟨ useSolver2 _ _ ⟩ 1r · r · f ^ l ∎ q : y' ≡ y q = eq/ _ _ ((1r , ∣ 0 , refl ∣₁) , path) where useSolver1 : ∀ a b c → 1r · (a · b) · c ≡ a · (b · c) useSolver1 = solve R' useSolver2 : ∀ a b → a · b ≡ 1r · a · b useSolver2 = solve R' path : 1r · (s · g ^ (l ∸ m)) · g ^ m ≡ 1r · s · g ^ l path = 1r · (s · g ^ (l ∸ m)) · g ^ m ≡⟨ useSolver1 _ _ _ ⟩ s · (g ^ (l ∸ m) · g ^ m) ≡⟨ cong (s ·_) (·-of-^-is-^-of-+ _ _ _) ⟩ s · g ^ (l ∸ m +ℕ m) ≡⟨ cong (λ k → s · g ^ k) (≤-∸-+-cancel left-≤-max) ⟩ s · g ^ l ≡⟨ useSolver2 _ _ ⟩ 1r · s · g ^ l ∎ -- For predicates over the set of powers powersPropElim : {f : R} {P : R → Type ℓ'} → (∀ x → isProp (P x)) → (∀ n → P (f ^ n)) ------------------------------ → ∀ s → s ∈ [ f ⁿ|n≥0] → P s powersPropElim {f = f} {P = P} PisProp base s = PT.rec (PisProp s) λ (n , p) → subst P (sym p) (base n) module RadicalLemma (R' : CommRing ℓ) (f g : (fst R')) where open IsRingHom open isMultClosedSubset open CommRingTheory R' open RingTheory (CommRing→Ring R') open CommIdeal R' hiding (subst-∈) renaming (_∈_ to _∈ᵢ_) open RadicalIdeal R' open Exponentiation R' open InvertingElementsBase R' open S⁻¹RUniversalProp R' [ f ⁿ|n≥0] (powersFormMultClosedSubset f) hiding (S⁻¹RHasUniversalProp) open S⁻¹RUniversalProp R' [ g ⁿ|n≥0] (powersFormMultClosedSubset g) hiding (_/1 ; /1AsCommRingHom) open CommRingStr (R' .snd) private R = R' .fst ⟨_⟩ : R → CommIdeal ⟨ f ⟩ = ⟨ replicateFinVec 1 f ⟩[ R' ] unitHelper : f ∈ᵢ √ ⟨ g ⟩ → (g /1) ∈ R[1/ f ]AsCommRing ˣ unitHelper = PT.rec isPropGoal (uncurry ℕhelper) where isPropGoal = Units.inverseUniqueness _ (g /1) ℕhelper : (n : ℕ) → f ^ n ∈ᵢ ⟨ g ⟩ → (g /1) ∈ R[1/ f ]AsCommRing ˣ ℕhelper n = PT.rec isPropGoal -- fⁿ≡αg → g⁻¹≡α/fⁿ λ (α , p) → [ (α zero) , (f ^ n) , ∣ n , refl ∣₁ ] , eq/ _ _ ((1r , powersFormMultClosedSubset f .containsOne) , useSolver1 _ _ ∙ sym p ∙ useSolver2 _) where useSolver1 : ∀ x y → 1r · (x · y) · 1r ≡ y · x + 0r useSolver1 = solve R' useSolver2 : ∀ x → x ≡ 1r · 1r · (1r · x) useSolver2 = solve R' toUnit : f ∈ᵢ √ ⟨ g ⟩ → ∀ s → s ∈ [ g ⁿ|n≥0] → (s /1) ∈ R[1/ f ]AsCommRing ˣ toUnit f∈√⟨g⟩ = powersPropElim (λ x → Units.inverseUniqueness _ (x /1)) λ n → subst-∈ (R[1/ f ]AsCommRing ˣ) (sym (^-respects-/1 n)) (Exponentiation.^-presUnit _ _ n (unitHelper f∈√⟨g⟩)) module DoubleLoc (R' : CommRing ℓ) (f g : (fst R')) where open isMultClosedSubset open CommRingStr (snd R') open CommRingTheory R' open Exponentiation R' open InvertingElementsBase open RingTheory (CommRing→Ring R') open CommRingStr (snd (R[1/_]AsCommRing R' f)) renaming ( _·_ to _·ᶠ_ ; 1r to 1ᶠ ; _+_ to _+ᶠ_ ; 0r to 0ᶠ ; ·IdL to ·ᶠ-lid ; ·IdR to ·ᶠ-rid ; ·Assoc to ·ᶠ-assoc ; ·Comm to ·ᶠ-comm) open IsRingHom private R = fst R' R[1/f] = R[1/_] R' f R[1/f]AsCommRing = R[1/_]AsCommRing R' f R[1/fg] = R[1/_] R' (f · g) R[1/fg]AsCommRing = R[1/_]AsCommRing R' (f · g) R[1/f][1/g] = R[1/_] (R[1/_]AsCommRing R' f) [ g , 1r , powersFormMultClosedSubset R' f .containsOne ] R[1/f][1/g]AsCommRing = R[1/_]AsCommRing (R[1/_]AsCommRing R' f) [ g , 1r , powersFormMultClosedSubset R' f .containsOne ] R[1/f][1/g]ˣ = R[1/f][1/g]AsCommRing ˣ _/1/1 : R → R[1/f][1/g] r /1/1 = [ [ r , 1r , PT.∣ 0 , refl ∣₁ ] , 1ᶠ , PT.∣ 0 , refl ∣₁ ] /1/1AsCommRingHom : CommRingHom R' R[1/f][1/g]AsCommRing fst /1/1AsCommRingHom = _/1/1 snd /1/1AsCommRingHom = makeIsRingHom refl lem+ lem· where lem+ : _ lem+ r r' = cong [_] (≡-× (cong [_] (≡-× (cong₂ _+_ (sym (·IdR _) ∙ (λ i → (·IdR r (~ i)) · (·IdR 1r (~ i)))) (sym (·IdR _) ∙ (λ i → (·IdR r' (~ i)) · (·IdR 1r (~ i))))) (Σ≡Prop (λ _ → isPropPropTrunc) (sym (·IdL _) ∙ (λ i → (·IdL 1r (~ i)) · (·IdL 1r (~ i))))))) (Σ≡Prop (λ _ → isPropPropTrunc) (sym (·ᶠ-lid 1ᶠ)))) lem· : _ lem· r r' = cong [_] (≡-× (cong [_] (≡-× refl (Σ≡Prop (λ _ → isPropPropTrunc) (sym (·IdL _))))) (Σ≡Prop (λ _ → isPropPropTrunc) (sym (·ᶠ-lid 1ᶠ)))) -- this will give us a map R[1/fg] → R[1/f][1/g] by the universal property of localisation fⁿgⁿ/1/1∈R[1/f][1/g]ˣ : (s : R) → s ∈ ([_ⁿ|n≥0] R' (f · g)) → s /1/1 ∈ R[1/f][1/g]ˣ fⁿgⁿ/1/1∈R[1/f][1/g]ˣ = powersPropElim R' (λ s → R[1/f][1/g]ˣ (s /1/1) .snd) ℕcase where ℕcase : (n : ℕ) → ((f · g) ^ n) /1/1 ∈ R[1/f][1/g]ˣ ℕcase n = [ [ 1r , (f ^ n) , PT.∣ n , refl ∣₁ ] , [ (g ^ n) , 1r , PT.∣ 0 , refl ∣₁ ] --denominator , PT.∣ n , ^-respects-/1 _ n ∣₁ ] , eq/ _ _ ((1ᶠ , powersFormMultClosedSubset _ _ .containsOne) , eq/ _ _ ((1r , powersFormMultClosedSubset _ _ .containsOne) , path)) where eq1 : ∀ x → 1r · (1r · (x · 1r) · 1r) · (1r · 1r · (1r · 1r)) ≡ x eq1 = solve R' eq2 : ∀ x y → x · y ≡ 1r · (1r · 1r · (1r · y)) · (1r · (1r · x) · 1r) eq2 = solve R' path : 1r · (1r · ((f · g) ^ n · 1r) · 1r) · (1r · 1r · (1r · 1r)) ≡ 1r · (1r · 1r · (1r · g ^ n)) · (1r · (1r · f ^ n) · 1r) path = 1r · (1r · ((f · g) ^ n · 1r) · 1r) · (1r · 1r · (1r · 1r)) ≡⟨ eq1 ((f · g) ^ n) ⟩ (f · g) ^ n ≡⟨ ^-ldist-· _ _ _ ⟩ f ^ n · g ^ n ≡⟨ eq2 (f ^ n) (g ^ n) ⟩ 1r · (1r · 1r · (1r · g ^ n)) · (1r · (1r · f ^ n) · 1r) ∎ open PathToS⁻¹R pathtoR[1/fg] : PathToS⁻¹R R' ([_ⁿ|n≥0] R' (f · g)) (powersFormMultClosedSubset R' (f · g)) R[1/f][1/g]AsCommRing /1/1AsCommRingHom φS⊆Aˣ pathtoR[1/fg] = fⁿgⁿ/1/1∈R[1/f][1/g]ˣ kerφ⊆annS pathtoR[1/fg] r p = toGoal helperR[1/f] where open RingTheory (CommRing→Ring R[1/f]AsCommRing) renaming ( 0RightAnnihilates to 0ᶠRightAnnihilates ; 0LeftAnnihilates to 0ᶠ-leftNullifies) open Exponentiation R[1/f]AsCommRing renaming (_^_ to _^ᶠ_) hiding (·-of-^-is-^-of-+ ; ^-ldist-·) S[f] = Loc.S R' ([_ⁿ|n≥0] R' f) (powersFormMultClosedSubset R' f) S[fg] = Loc.S R' ([_ⁿ|n≥0] R' (f · g)) (powersFormMultClosedSubset R' (f · g)) g/1 : R[1/_] R' f g/1 = [ g , 1r , powersFormMultClosedSubset R' f .containsOne ] S[g/1] = Loc.S R[1/f]AsCommRing ([_ⁿ|n≥0] R[1/f]AsCommRing g/1) (powersFormMultClosedSubset R[1/f]AsCommRing g/1) r/1 : R[1/_] R' f r/1 = [ r , 1r , powersFormMultClosedSubset R' f .containsOne ] -- this is the crucial step, modulo truncation we can take p to be generated -- by the quotienting relation of localisation. Note that we wouldn't be able -- to prove our goal if kerφ⊆annS was formulated with a Σ instead of a ∃ ∥r/1,1/1≈0/1,1/1∥ : ∃[ u ∈ S[g/1] ] fst u ·ᶠ r/1 ·ᶠ 1ᶠ ≡ fst u ·ᶠ 0ᶠ ·ᶠ 1ᶠ ∥r/1,1/1≈0/1,1/1∥ = Iso.fun (SQ.isEquivRel→TruncIso (Loc.locIsEquivRel _ _ _) _ _) p helperR[1/f] : ∃[ n ∈ ℕ ] [ g ^ n · r , 1r , PT.∣ 0 , refl ∣₁ ] ≡ 0ᶠ helperR[1/f] = PT.rec isPropPropTrunc (uncurry (uncurry (powersPropElim R[1/f]AsCommRing (λ _ → isPropΠ (λ _ → isPropPropTrunc)) baseCase))) ∥r/1,1/1≈0/1,1/1∥ where baseCase : ∀ n → g/1 ^ᶠ n ·ᶠ r/1 ·ᶠ 1ᶠ ≡ g/1 ^ᶠ n ·ᶠ 0ᶠ ·ᶠ 1ᶠ → ∃[ n ∈ ℕ ] [ g ^ n · r , 1r , PT.∣ 0 , refl ∣₁ ] ≡ 0ᶠ baseCase n q = PT.∣ n , path ∣₁ where path : [ g ^ n · r , 1r , PT.∣ 0 , refl ∣₁ ] ≡ 0ᶠ path = [ g ^ n · r , 1r , PT.∣ 0 , refl ∣₁ ] ≡⟨ cong [_] (≡-× refl (Σ≡Prop (λ _ → isPropPropTrunc) (sym (·IdR _)))) ⟩ [ g ^ n , 1r , PT.∣ 0 , refl ∣₁ ] ·ᶠ r/1 ≡⟨ cong (_·ᶠ r/1) (^-respects-/1 _ n) ⟩ g/1 ^ᶠ n ·ᶠ r/1 ≡⟨ sym (·ᶠ-rid _) ⟩ g/1 ^ᶠ n ·ᶠ r/1 ·ᶠ 1ᶠ ≡⟨ q ⟩ g/1 ^ᶠ n ·ᶠ 0ᶠ ·ᶠ 1ᶠ ≡⟨ cong (_·ᶠ 1ᶠ) (0ᶠRightAnnihilates _) ∙ 0ᶠ-leftNullifies 1ᶠ ⟩ 0ᶠ ∎ toGoal : ∃[ n ∈ ℕ ] [ g ^ n · r , 1r , PT.∣ 0 , refl ∣₁ ] ≡ 0ᶠ → ∃[ u ∈ S[fg] ] fst u · r ≡ 0r toGoal = PT.rec isPropPropTrunc Σhelper where Σhelper : Σ[ n ∈ ℕ ] [ g ^ n · r , 1r , PT.∣ 0 , refl ∣₁ ] ≡ 0ᶠ → ∃[ u ∈ S[fg] ] fst u · r ≡ 0r Σhelper (n , q) = PT.map Σhelper2 helperR where -- now, repeat the above strategy with q ∥gⁿr≈0∥ : ∃[ u ∈ S[f] ] fst u · (g ^ n · r) · 1r ≡ fst u · 0r · 1r ∥gⁿr≈0∥ = Iso.fun (SQ.isEquivRel→TruncIso (Loc.locIsEquivRel _ _ _) _ _) q helperR : ∃[ m ∈ ℕ ] f ^ m · g ^ n · r ≡ 0r helperR = PT.rec isPropPropTrunc (uncurry (uncurry (powersPropElim R' (λ _ → isPropΠ (λ _ → isPropPropTrunc)) baseCase))) ∥gⁿr≈0∥ where baseCase : (m : ℕ) → f ^ m · (g ^ n · r) · 1r ≡ f ^ m · 0r · 1r → ∃[ m ∈ ℕ ] f ^ m · g ^ n · r ≡ 0r baseCase m q' = PT.∣ m , path ∣₁ where path : f ^ m · g ^ n · r ≡ 0r path = (λ i → ·IdR (·Assoc (f ^ m) (g ^ n) r (~ i)) (~ i)) ∙∙ q' ∙∙ (λ i → ·IdR (0RightAnnihilates (f ^ m) i) i) Σhelper2 : Σ[ m ∈ ℕ ] f ^ m · g ^ n · r ≡ 0r → Σ[ u ∈ S[fg] ] fst u · r ≡ 0r Σhelper2 (m , q') = (((f · g) ^ l) , PT.∣ l , refl ∣₁) , path where l = max m n path : (f · g) ^ l · r ≡ 0r path = (f · g) ^ l · r ≡⟨ cong (_· r) (^-ldist-· _ _ _) ⟩ f ^ l · g ^ l · r ≡⟨ cong₂ (λ x y → f ^ x · g ^ y · r) (sym (≤-∸-+-cancel {m = m} left-≤-max)) (sym (≤-∸-+-cancel {m = n} right-≤-max)) ⟩ f ^ (l ∸ m +ℕ m) · g ^ (l ∸ n +ℕ n) · r ≡⟨ cong₂ (λ x y → x · y · r) (sym (·-of-^-is-^-of-+ _ _ _)) (sym (·-of-^-is-^-of-+ _ _ _)) ⟩ f ^ (l ∸ m) · f ^ m · (g ^ (l ∸ n) · g ^ n) · r ≡⟨ cong (_· r) (·CommAssocSwap _ _ _ _) ⟩ f ^ (l ∸ m) · g ^ (l ∸ n) · (f ^ m · g ^ n) · r ≡⟨ sym (·Assoc _ _ _) ⟩ f ^ (l ∸ m) · g ^ (l ∸ n) · (f ^ m · g ^ n · r) ≡⟨ cong (f ^ (l ∸ m) · g ^ (l ∸ n) ·_) q' ⟩ f ^ (l ∸ m) · g ^ (l ∸ n) · 0r ≡⟨ 0RightAnnihilates _ ⟩ 0r ∎ surχ pathtoR[1/fg] = invElPropElim _ (λ _ → isPropPropTrunc) toGoal where open Exponentiation R[1/f]AsCommRing renaming (_^_ to _^ᶠ_) hiding (·-of-^-is-^-of-+ ; ^-ldist-·) open CommRingStr (snd R[1/f][1/g]AsCommRing) renaming (_·_ to _·R[1/f][1/g]_) hiding (1r ; ·IdL ; ·IdR ; ·Assoc) open Units R[1/f][1/g]AsCommRing g/1 : R[1/_] R' f g/1 = [ g , 1r , powersFormMultClosedSubset R' f .containsOne ] S[fg] = Loc.S R' ([_ⁿ|n≥0] R' (f · g)) (powersFormMultClosedSubset R' (f · g)) baseCase : (r : R) (m n : ℕ) → ∃[ x ∈ R × S[fg] ] (x .fst /1/1) ≡ [ [ r , f ^ m , PT.∣ m , refl ∣₁ ] , [ g ^ n , 1r , PT.∣ 0 , refl ∣₁ ] , PT.∣ n , ^-respects-/1 _ n ∣₁ ] ·R[1/f][1/g] (x .snd .fst /1/1) baseCase r m n = PT.∣ ((r · f ^ (l ∸ m) · g ^ (l ∸ n)) -- x .fst , (f · g) ^ l , PT.∣ l , refl ∣₁) -- x .snd , eq/ _ _ ((1ᶠ , PT.∣ 0 , refl ∣₁) , eq/ _ _ ((1r , PT.∣ 0 , refl ∣₁) , path)) ∣₁ -- reduce equality of double fractions into equality in R where eq1 : ∀ r flm gln gn fm → 1r · (1r · (r · flm · gln) · (gn · 1r)) · (1r · (fm · 1r) · 1r) ≡ r · flm · (gln · gn) · fm eq1 = solve R' eq2 : ∀ r flm gl fm → r · flm · gl · fm ≡ r · (flm · fm ) · gl eq2 = solve R' eq3 : ∀ r fgl → r · fgl ≡ 1r · (1r · (r · fgl) · 1r) · (1r · 1r · (1r · 1r)) eq3 = solve R' l = max m n path : 1r · (1r · (r · f ^ (l ∸ m) · g ^ (l ∸ n)) · (g ^ n · 1r)) · (1r · (f ^ m · 1r) · 1r) ≡ 1r · (1r · (r · (f · g) ^ l) · 1r) · (1r · 1r · (1r · 1r)) path = 1r · (1r · (r · f ^ (l ∸ m) · g ^ (l ∸ n)) · (g ^ n · 1r)) · (1r · (f ^ m · 1r) · 1r) ≡⟨ eq1 r (f ^ (l ∸ m)) (g ^ (l ∸ n)) (g ^ n) (f ^ m) ⟩ r · f ^ (l ∸ m) · (g ^ (l ∸ n) · g ^ n) · f ^ m ≡⟨ cong (λ x → r · f ^ (l ∸ m) · x · f ^ m) (·-of-^-is-^-of-+ _ _ _) ⟩ r · f ^ (l ∸ m) · g ^ (l ∸ n +ℕ n) · f ^ m ≡⟨ cong (λ x → r · f ^ (l ∸ m) · g ^ x · f ^ m) (≤-∸-+-cancel right-≤-max) ⟩ r · f ^ (l ∸ m) · g ^ l · f ^ m ≡⟨ eq2 r (f ^ (l ∸ m)) (g ^ l) (f ^ m) ⟩ r · (f ^ (l ∸ m) · f ^ m) · g ^ l ≡⟨ cong (λ x → r · x · g ^ l) (·-of-^-is-^-of-+ _ _ _) ⟩ r · f ^ (l ∸ m +ℕ m) · g ^ l ≡⟨ cong (λ x → r · f ^ x · g ^ l) (≤-∸-+-cancel left-≤-max) ⟩ r · f ^ l · g ^ l ≡⟨ sym (·Assoc _ _ _) ⟩ r · (f ^ l · g ^ l) ≡⟨ cong (r ·_) (sym (^-ldist-· _ _ _)) ⟩ r · (f · g) ^ l ≡⟨ eq3 r ((f · g) ^ l) ⟩ 1r · (1r · (r · (f · g) ^ l) · 1r) · (1r · 1r · (1r · 1r)) ∎ base-^ᶠ-helper : (r : R) (m n : ℕ) → ∃[ x ∈ R × S[fg] ] (x .fst /1/1) ≡ [ [ r , f ^ m , PT.∣ m , refl ∣₁ ] , g/1 ^ᶠ n , PT.∣ n , refl ∣₁ ] ·R[1/f][1/g] (x .snd .fst /1/1) base-^ᶠ-helper r m n = subst (λ y → ∃[ x ∈ R × S[fg] ] (x .fst /1/1) ≡ [ [ r , f ^ m , PT.∣ m , refl ∣₁ ] , y ] ·R[1/f][1/g] (x .snd .fst /1/1)) (Σ≡Prop (λ _ → isPropPropTrunc) (^-respects-/1 _ n)) (baseCase r m n) indStep : (r : R[1/_] R' f) (n : ℕ) → ∃[ x ∈ R × S[fg] ] (x .fst /1/1) ≡ [ r , g/1 ^ᶠ n , PT.∣ n , refl ∣₁ ] ·R[1/f][1/g] (x .snd .fst /1/1) indStep = invElPropElim _ (λ _ → isPropΠ λ _ → isPropPropTrunc) base-^ᶠ-helper toGoal : (r : R[1/_] R' f) (n : ℕ) → ∃[ x ∈ R × S[fg] ] (x .fst /1/1) ·R[1/f][1/g] ((x .snd .fst /1/1) ⁻¹) ⦃ φS⊆Aˣ pathtoR[1/fg] (x .snd .fst) (x .snd .snd) ⦄ ≡ [ r , g/1 ^ᶠ n , PT.∣ n , refl ∣₁ ] toGoal r n = PT.map Σhelper (indStep r n) where Σhelper : Σ[ x ∈ R × S[fg] ] (x .fst /1/1) ≡ [ r , g/1 ^ᶠ n , PT.∣ n , refl ∣₁ ] ·R[1/f][1/g] (x .snd .fst /1/1) → Σ[ x ∈ R × S[fg] ] (x .fst /1/1) ·R[1/f][1/g] ((x .snd .fst /1/1) ⁻¹) ⦃ φS⊆Aˣ pathtoR[1/fg] (x .snd .fst) (x .snd .snd) ⦄ ≡ [ r , g/1 ^ᶠ n , PT.∣ n , refl ∣₁ ] Σhelper ((r' , s , s∈S[fg]) , p) = (r' , s , s∈S[fg]) , ⁻¹-eq-elim ⦃ φS⊆Aˣ pathtoR[1/fg] s s∈S[fg] ⦄ p -- the main result: localising at one element and then at another is -- the same as localising at the product. -- takes forever to compute without experimental lossy unification R[1/fg]≡R[1/f][1/g] : R[1/fg]AsCommRing ≡ R[1/f][1/g]AsCommRing R[1/fg]≡R[1/f][1/g] = S⁻¹RChar R' ([_ⁿ|n≥0] R' (f · g)) (powersFormMultClosedSubset R' (f · g)) _ /1/1AsCommRingHom pathtoR[1/fg] -- In this module we construct the map R[1/fg]→R[1/f][1/g] directly -- and show that it is equal (although not judgementally) to the map induced -- by the universal property of localisation, i.e. transporting along the path -- constructed above. Given that this is the easier direction, we can see that -- it is pretty cumbersome to prove R[1/fg]≡R[1/f][1/g] directly, -- which illustrates the usefulness of S⁻¹RChar quite well. private module check where φ : R[1/fg] → R[1/f][1/g] φ = SQ.rec squash/ ϕ ϕcoh where S[fg] = Loc.S R' ([_ⁿ|n≥0] R' (f · g)) (powersFormMultClosedSubset R' (f · g)) curriedϕΣ : (r s : R) → Σ[ n ∈ ℕ ] s ≡ (f · g) ^ n → R[1/f][1/g] curriedϕΣ r s (n , s≡fg^n) = [ [ r , (f ^ n) , PT.∣ n , refl ∣₁ ] , [ (g ^ n) , 1r , PT.∣ 0 , refl ∣₁ ] --denominator , PT.∣ n , ^-respects-/1 R' n ∣₁ ] curriedϕ : (r s : R) → ∃[ n ∈ ℕ ] s ≡ (f · g) ^ n → R[1/f][1/g] curriedϕ r s = elim→Set (λ _ → squash/) (curriedϕΣ r s) coh where coh : (x y : Σ[ n ∈ ℕ ] s ≡ (f · g) ^ n) → curriedϕΣ r s x ≡ curriedϕΣ r s y coh (n , s≡fg^n) (m , s≡fg^m) = eq/ _ _ ((1ᶠ , PT.∣ 0 , refl ∣₁) , eq/ _ _ ( (1r , powersFormMultClosedSubset R' f .containsOne) , path)) where eq1 : ∀ r gm fm → 1r · (1r · r · gm) · (1r · fm · 1r) ≡ r · (gm · fm) eq1 = solve R' path : 1r · (1r · r · (g ^ m)) · (1r · (f ^ m) · 1r) ≡ 1r · (1r · r · (g ^ n)) · (1r · (f ^ n) · 1r) path = 1r · (1r · r · (g ^ m)) · (1r · (f ^ m) · 1r) ≡⟨ eq1 r (g ^ m) (f ^ m) ⟩ r · (g ^ m · f ^ m) ≡⟨ cong (r ·_) (sym (^-ldist-· g f m)) ⟩ r · ((g · f) ^ m) ≡⟨ cong (λ x → r · (x ^ m)) (·Comm _ _) ⟩ r · ((f · g) ^ m) ≡⟨ cong (r ·_) ((sym s≡fg^m) ∙ s≡fg^n) ⟩ r · ((f · g) ^ n) ≡⟨ cong (λ x → r · (x ^ n)) (·Comm _ _) ⟩ r · ((g · f) ^ n) ≡⟨ cong (r ·_) (^-ldist-· g f n) ⟩ r · (g ^ n · f ^ n) ≡⟨ sym (eq1 r (g ^ n) (f ^ n)) ⟩ 1r · (1r · r · (g ^ n)) · (1r · (f ^ n) · 1r) ∎ ϕ : R × S[fg] → R[1/f][1/g] ϕ = uncurry2 curriedϕ -- λ (r / (fg)ⁿ) → ((r / fⁿ) / gⁿ) curriedϕcohΣ : (r s r' s' u : R) → (p : u · r · s' ≡ u · r' · s) → (α : Σ[ n ∈ ℕ ] s ≡ (f · g) ^ n) → (β : Σ[ m ∈ ℕ ] s' ≡ (f · g) ^ m) → (γ : Σ[ l ∈ ℕ ] u ≡ (f · g) ^ l) → ϕ (r , s , PT.∣ α ∣₁) ≡ ϕ (r' , s' , PT.∣ β ∣₁) curriedϕcohΣ r s r' s' u p (n , s≡fgⁿ) (m , s'≡fgᵐ) (l , u≡fgˡ) = eq/ _ _ ( ( [ (g ^ l) , 1r , powersFormMultClosedSubset R' f .containsOne ] , PT.∣ l , ^-respects-/1 R' l ∣₁) , eq/ _ _ ((f ^ l , PT.∣ l , refl ∣₁) , path)) where eq1 : ∀ fl gl r gm fm → fl · (gl · r · gm) · (1r · fm · 1r) ≡ fl · gl · r · (gm · fm) eq1 = solve R' path : f ^ l · (g ^ l · transp (λ i → R) i0 r · transp (λ i → R) i0 (g ^ m)) · (1r · transp (λ i → R) i0 (f ^ m) · transp (λ i → R) i0 1r) ≡ f ^ l · (g ^ l · transp (λ i → R) i0 r' · transp (λ i → R) i0 (g ^ n)) · (1r · transp (λ i → R) i0 (f ^ n) · transp (λ i → R) i0 1r) path = f ^ l · (g ^ l · transp (λ i → R) i0 r · transp (λ i → R) i0 (g ^ m)) · (1r · transp (λ i → R) i0 (f ^ m) · transp (λ i → R) i0 1r) ≡⟨ (λ i → f ^ l · (g ^ l · transportRefl r i · transportRefl (g ^ m) i) · (1r · transportRefl (f ^ m) i · transportRefl 1r i)) ⟩ f ^ l · (g ^ l · r · g ^ m) · (1r · f ^ m · 1r) ≡⟨ eq1 (f ^ l) (g ^ l) r (g ^ m) (f ^ m) ⟩ f ^ l · g ^ l · r · (g ^ m · f ^ m) ≡⟨ (λ i → ^-ldist-· f g l (~ i) · r · ^-ldist-· g f m (~ i)) ⟩ (f · g) ^ l · r · (g · f) ^ m ≡⟨ cong (λ x → (f · g) ^ l · r · x ^ m) (·Comm _ _) ⟩ (f · g) ^ l · r · (f · g) ^ m ≡⟨ (λ i → u≡fgˡ (~ i) · r · s'≡fgᵐ (~ i)) ⟩ u · r · s' ≡⟨ p ⟩ u · r' · s ≡⟨ (λ i → u≡fgˡ i · r' · s≡fgⁿ i) ⟩ (f · g) ^ l · r' · (f · g) ^ n ≡⟨ cong (λ x → (f · g) ^ l · r' · x ^ n) (·Comm _ _) ⟩ (f · g) ^ l · r' · (g · f) ^ n ≡⟨ (λ i → ^-ldist-· f g l i · r' · ^-ldist-· g f n i) ⟩ f ^ l · g ^ l · r' · (g ^ n · f ^ n) ≡⟨ sym (eq1 (f ^ l) (g ^ l) r' (g ^ n) (f ^ n)) ⟩ f ^ l · (g ^ l · r' · g ^ n) · (1r · f ^ n · 1r) ≡⟨ (λ i → f ^ l · (g ^ l · transportRefl r' (~ i) · transportRefl (g ^ n) (~ i)) · (1r · transportRefl (f ^ n) (~ i) · transportRefl 1r (~ i))) ⟩ f ^ l · (g ^ l · transp (λ i → R) i0 r' · transp (λ i → R) i0 (g ^ n)) · (1r · transp (λ i → R) i0 (f ^ n) · transp (λ i → R) i0 1r) ∎ curriedϕcoh : (r s r' s' u : R) → (p : u · r · s' ≡ u · r' · s) → (α : ∃[ n ∈ ℕ ] s ≡ (f · g) ^ n) → (β : ∃[ m ∈ ℕ ] s' ≡ (f · g) ^ m) → (γ : ∃[ l ∈ ℕ ] u ≡ (f · g) ^ l) → ϕ (r , s , α) ≡ ϕ (r' , s' , β) curriedϕcoh r s r' s' u p = PT.elim (λ _ → isPropΠ2 (λ _ _ → squash/ _ _)) λ α → PT.elim (λ _ → isPropΠ (λ _ → squash/ _ _)) λ β → PT.rec (squash/ _ _) λ γ → curriedϕcohΣ r s r' s' u p α β γ ϕcoh : (a b : R × S[fg]) → Loc._≈_ R' ([_ⁿ|n≥0] R' (f · g)) (powersFormMultClosedSubset R' (f · g)) a b → ϕ a ≡ ϕ b ϕcoh (r , s , α) (r' , s' , β) ((u , γ) , p) = curriedϕcoh r s r' s' u p α β γ -- the map induced by the universal property open S⁻¹RUniversalProp R' ([_ⁿ|n≥0] R' (f · g)) (powersFormMultClosedSubset R' (f · g)) χ : R[1/fg] → R[1/f][1/g] χ = S⁻¹RHasUniversalProp R[1/f][1/g]AsCommRing /1/1AsCommRingHom fⁿgⁿ/1/1∈R[1/f][1/g]ˣ .fst .fst .fst -- the sanity check: -- both maps send a fraction r/(fg)ⁿ to a double fraction, -- where numerator and denominator are almost the same fraction respectively. -- unfortunately the proofs that the denominators are powers are quite different for -- the two maps, but of course we can ignore them. -- The definition of χ introduces a lot of (1r ·_). Perhaps most surprisingly, -- we have to give the path eq1 for the equality of the numerator of the numerator. φ≡χ : ∀ r → φ r ≡ χ r φ≡χ = invElPropElim _ (λ _ → squash/ _ _) ℕcase where ℕcase : (r : R) (n : ℕ) → φ [ r , (f · g) ^ n , PT.∣ n , refl ∣₁ ] ≡ χ [ r , (f · g) ^ n , PT.∣ n , refl ∣₁ ] ℕcase r n = cong [_] (ΣPathP --look into the components of the double-fractions ( cong [_] (ΣPathP (eq1 , Σ≡Prop (λ x → S'[f] x .snd) (sym (·IdL _)))) , Σ≡Prop (λ x → S'[f][g] x .snd) --ignore proof that denominator is power of g/1 ( cong [_] (ΣPathP (sym (·IdL _) , Σ≡Prop (λ x → S'[f] x .snd) (sym (·IdL _))))))) where S'[f] = ([_ⁿ|n≥0] R' f) S'[f][g] = ([_ⁿ|n≥0] R[1/f]AsCommRing [ g , 1r , powersFormMultClosedSubset R' f .containsOne ]) eq1 : transp (λ i → fst R') i0 r ≡ r · transp (λ i → fst R') i0 1r eq1 = transportRefl r ∙∙ sym (·IdR r) ∙∙ cong (r ·_) (sym (transportRefl 1r))
40.78025
104
0.442754
41aded02493931cc30dcbfac387ad894a7d6a1a2
224
agda
Agda
test/Succeed/Issue2641.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2641.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2641.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Builtin.Nat open import Agda.Builtin.FromNat open import Agda.Builtin.Unit instance NumberNat : Number Nat Number.Constraint NumberNat _ = ⊤ fromNat {{NumberNat}} n = n open import Issue2641.Import
18.666667
35
0.767857
fbcbec8852ad905a798640ae00a0299b4d40225a
6,905
agda
Agda
core/lib/groups/HomotopyGroup.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
core/lib/groups/HomotopyGroup.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
core/lib/groups/HomotopyGroup.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType2 open import lib.types.Empty open import lib.types.Group open import lib.types.LoopSpace open import lib.types.Nat open import lib.types.Pi open import lib.types.Pointed open import lib.types.Sigma open import lib.types.TLevel open import lib.types.Truncation open import lib.groups.GroupProduct open import lib.groups.Homomorphism open import lib.groups.Isomorphism open import lib.groups.LoopSpace open import lib.groups.TruncationGroup open import lib.groups.Unit module lib.groups.HomotopyGroup where {- Higher homotopy groups -} module _ {i} where πS : (n : ℕ) (X : Ptd i) → Group i πS n X = Trunc-group (Ω^S-group-structure n X) π'S : (n : ℕ) (X : Ptd i) → Group i π'S n X = Trunc-group (Ω^'S-group-structure n X) fundamental-group : (X : Ptd i) → Group i fundamental-group X = πS 0 X module _ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} where πS-fmap : X ⊙→ Y → (πS n X →ᴳ πS n Y) πS-fmap F = Trunc-group-fmap (Ω^S-group-structure-fmap n F) π'S-fmap : X ⊙→ Y → (π'S n X →ᴳ π'S n Y) π'S-fmap F = Trunc-group-fmap (Ω^'S-group-structure-fmap n F) πS-emap : (X ⊙≃ Y) → (πS n X ≃ᴳ πS n Y) πS-emap e = Trunc-group-emap (Ω^S-group-structure-emap n e) π'S-emap : (X ⊙≃ Y) → (π'S n X ≃ᴳ π'S n Y) π'S-emap e = Trunc-group-emap (Ω^'S-group-structure-emap n e) {- π_(n+1) of a space is π_n of its loop space -} abstract πS-Ω-split-iso : ∀ {i} (n : ℕ) (X : Ptd i) → πS (S n) X ≃ᴳ πS n (⊙Ω X) πS-Ω-split-iso n X = group-hom (Trunc-fmap (Ω^-Ω-split (S n) X)) (Trunc-elim (λ p → Trunc-elim (λ q → ap [_] (Ω^S-Ω-split-∙ n X p q)))) , Trunc-isemap {n = 0} (Ω^-Ω-split-is-equiv (S n) X) {- We can shift the truncation inside the loop in the definition of π -} module _ {i} where private record Ω^STruncPreIso (n : ℕ) (m : ℕ₋₂) (k : ℕ₋₂) (X : Ptd i) : Type i where field F : ⊙Ω^ (S n) (⊙Trunc k X) ⊙→ ⊙Trunc m (⊙Ω^ (S n) X) pres-comp : ∀ (p q : Ω^ (S n) (⊙Trunc k X)) → fst F (Ω^S-∙ n p q) == Trunc-fmap2 (Ω^S-∙ n) (fst F p) (fst F q) e : is-equiv (fst F) Ω^S-Trunc-preiso : (n : ℕ) (m : ℕ₋₂) (X : Ptd i) → Ω^STruncPreIso n m (⟨ S n ⟩₋₂ +2+ m) X Ω^S-Trunc-preiso O m X = record { F = ⊙–> (⊙Ω-⊙Trunc-comm m X); pres-comp = –>-=ₜ-equiv-pres-∙; e = snd (⊙Ω-⊙Trunc-comm m X) } Ω^S-Trunc-preiso (S n) m X = let r : Ω^STruncPreIso n (S m) (⟨ S n ⟩₋₂ +2+ S m) X r = Ω^S-Trunc-preiso n (S m) X H = ⊙–> (⊙Ω-⊙Trunc-comm m (⊙Ω^ (S n) X)) G = ⊙Ω-fmap (Ω^STruncPreIso.F r) in transport (λ k → Ω^STruncPreIso (S n) m k X) (+2+-βr ⟨ S n ⟩₋₂ m) (record { F = H ⊙∘ G; pres-comp = λ p q → ap (fst H) (Ω^S-fmap-∙ 0 (Ω^STruncPreIso.F r) p q) ∙ (–>-=ₜ-equiv-pres-∙ (fst G p) (fst G q)); e = snd (⊙≃-to-≃ (⊙Ω-⊙Trunc-comm m (⊙Ω^ (S n) X)) ∘e Ω^-emap 1 (Ω^STruncPreIso.F r , Ω^STruncPreIso.e r))}) Ω^S-group-Trunc-fuse-diag-iso : (n : ℕ) (X : Ptd i) → Ω^S-group n (⊙Trunc ⟨ S n ⟩ X) ≃ᴳ πS n X Ω^S-group-Trunc-fuse-diag-iso n X = group-hom (fst F) pres-comp , e where r = transport (λ k → Ω^STruncPreIso n 0 k X) (+2+0 ⟨ S n ⟩₋₂) (Ω^S-Trunc-preiso n 0 X) open Ω^STruncPreIso r {- favonia: the same lemma for the alternative homotopy groups is trivial. -} Ω^'S-group-Trunc-fuse-diag-iso : (n : ℕ) (X : Ptd i) → Ω^'S-group n (⊙Trunc ⟨ S n ⟩ X) ≃ᴳ π'S n X Ω^'S-group-Trunc-fuse-diag-iso O X = ≃-to-≃ᴳ (=ₜ-equiv [ pt X ] [ pt X ]) –>-=ₜ-equiv-pres-∙ Ω^'S-group-Trunc-fuse-diag-iso (S n) X = Ω^'S-group-Trunc-fuse-diag-iso n (⊙Ω X) ∘eᴳ Ω^'S-group-emap n {X = ⊙Ω (⊙Trunc ⟨ S (S n) ⟩ X)} (≃-to-⊙≃ (=ₜ-equiv [ pt X ] [ pt X ]) idp) abstract πS-Trunc-fuse-≤-iso : ∀ {i} (n : ℕ) (m : ℕ₋₂) (X : Ptd i) → (⟨ S n ⟩ ≤T m) → πS n (⊙Trunc m X) ≃ᴳ πS n X πS-Trunc-fuse-≤-iso n m X Sn≤m = πS n (⊙Trunc m X) ≃ᴳ⟨ Ω^S-group-Trunc-fuse-diag-iso n (⊙Trunc m X) ⁻¹ᴳ ⟩ Ω^S-group n (⊙Trunc ⟨ S n ⟩ (⊙Trunc m X)) ≃ᴳ⟨ Ω^S-group-emap n (≃-to-⊙≃ (Trunc-fuse-≤ (de⊙ X) Sn≤m) idp) ⟩ Ω^S-group n (⊙Trunc ⟨ S n ⟩ X) ≃ᴳ⟨ Ω^S-group-Trunc-fuse-diag-iso n X ⟩ πS n X ≃ᴳ∎ π'S-Trunc-fuse-≤-iso : ∀ {i} (n : ℕ) (m : ℕ₋₂) (X : Ptd i) → (⟨ S n ⟩ ≤T m) → π'S n (⊙Trunc m X) ≃ᴳ π'S n X π'S-Trunc-fuse-≤-iso n m X Sn≤m = π'S n (⊙Trunc m X) ≃ᴳ⟨ Ω^'S-group-Trunc-fuse-diag-iso n (⊙Trunc m X) ⁻¹ᴳ ⟩ Ω^'S-group n (⊙Trunc ⟨ S n ⟩ (⊙Trunc m X)) ≃ᴳ⟨ Ω^'S-group-emap n (≃-to-⊙≃ (Trunc-fuse-≤ (de⊙ X) Sn≤m) idp) ⟩ Ω^'S-group n (⊙Trunc ⟨ S n ⟩ X) ≃ᴳ⟨ Ω^'S-group-Trunc-fuse-diag-iso n X ⟩ π'S n X ≃ᴳ∎ πS-Trunc-fuse->-iso : ∀ {i} (n : ℕ) (m : ℕ₋₂) (X : Ptd i) → (m <T ⟨ S n ⟩) → πS n (⊙Trunc m X) ≃ᴳ 0ᴳ πS-Trunc-fuse->-iso n m X m<n = πS n (⊙Trunc m X) ≃ᴳ⟨ Ω^S-group-Trunc-fuse-diag-iso n (⊙Trunc m X) ⁻¹ᴳ ⟩ Ω^S-group n (⊙Trunc ⟨ S n ⟩ (⊙Trunc m X)) ≃ᴳ⟨ contr-iso-0ᴳ _ $ inhab-prop-is-contr (Group.ident (Ω^S-group n (⊙Trunc ⟨ S n ⟩ (⊙Trunc m X)))) {{Ω^-level -1 (S n) _ $ Trunc-preserves-level ⟨ S n ⟩ $ raise-level-≤T (transport (λ k → m ≤T k) (+2+-comm -1 ⟨ S n ⟩₋₂) (<T-to-≤T m<n)) (Trunc-level {n = m})}} ⟩ 0ᴳ ≃ᴳ∎ π'S-Trunc-fuse->-iso : ∀ {i} (n : ℕ) (m : ℕ₋₂) (X : Ptd i) → (m <T ⟨ S n ⟩) → π'S n (⊙Trunc m X) ≃ᴳ 0ᴳ π'S-Trunc-fuse->-iso n m X m<n = π'S n (⊙Trunc m X) ≃ᴳ⟨ Ω^'S-group-Trunc-fuse-diag-iso n (⊙Trunc m X) ⁻¹ᴳ ⟩ Ω^'S-group n (⊙Trunc ⟨ S n ⟩ (⊙Trunc m X)) ≃ᴳ⟨ contr-iso-0ᴳ _ $ inhab-prop-is-contr (Group.ident (Ω^'S-group n (⊙Trunc ⟨ S n ⟩ (⊙Trunc m X)))) {{Ω^'-is-prop (S n) _ $ Trunc-preserves-level ⟨ S n ⟩ $ raise-level-≤T (<T-to-≤T m<n) (Trunc-level {n = m})}} ⟩ 0ᴳ ≃ᴳ∎ -- XXX Naming conventions? πS->level-econv : ∀ {i} (n : ℕ) (m : ℕ₋₂) (X : Ptd i) → (m <T ⟨ S n ⟩) → {{_ : has-level m (de⊙ X)}} → πS n X ≃ᴳ 0ᴳ πS->level-econv n m X lt = πS n X ≃ᴳ⟨ πS-emap n (⊙unTrunc-equiv X ⊙⁻¹) ⟩ πS n (⊙Trunc m X) ≃ᴳ⟨ πS-Trunc-fuse->-iso n m X lt ⟩ 0ᴳ ≃ᴳ∎ π'S->level-econv : ∀ {i} (n : ℕ) (m : ℕ₋₂) (X : Ptd i) → (m <T ⟨ S n ⟩) → {{_ : has-level m (de⊙ X)}} → π'S n X ≃ᴳ 0ᴳ π'S->level-econv n m X lt = π'S n X ≃ᴳ⟨ π'S-emap n (⊙unTrunc-equiv X ⊙⁻¹) ⟩ π'S n (⊙Trunc m X) ≃ᴳ⟨ π'S-Trunc-fuse->-iso n m X lt ⟩ 0ᴳ ≃ᴳ∎ {- πₙ(X × Y) == πₙ(X) × πₙ(Y) -} module _ {i j} (n : ℕ) (X : Ptd i) (Y : Ptd j) where πS-× : πS n (X ⊙× Y) ≃ᴳ πS n X ×ᴳ πS n Y πS-× = Trunc-group-× _ _ ∘eᴳ Trunc-group-emap (Ω^S-group-structure-× n X Y) π'S-× : π'S n (X ⊙× Y) ≃ᴳ π'S n X ×ᴳ π'S n Y π'S-× = Trunc-group-× _ _ ∘eᴳ Trunc-group-emap (Ω^'S-group-structure-× n X Y)
35.050761
100
0.5063
22b7d4360a8e93b7eb8b78d9f7ba633d0aaa7001
186
agda
Agda
test/interaction/Issue3441.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue3441.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue3441.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Primitive f : ∀ {a b c} → Set a → Set b → Set c → Set {!!} -- WAS solution: (a ⊔ (b ⊔ c)) f A B C = A → B → C -- NOW: (a ⊔ b ⊔ c)
37.2
79
0.370968
1a6cce7713a3d1d7868e382fc1e035b832c6f6ca
247
agda
Agda
Cubical/Algebra/Ring.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
null
null
null
Cubical/Algebra/Ring.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
null
null
null
Cubical/Algebra/Ring.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
1
2021-03-12T20:08:45.000Z
2021-03-12T20:08:45.000Z
{-# OPTIONS --safe #-} module Cubical.Algebra.Ring where open import Cubical.Algebra.Ring.Base public open import Cubical.Algebra.Ring.Properties public open import Cubical.Algebra.Ring.Ideal public open import Cubical.Algebra.Ring.Kernel public
30.875
50
0.813765
297e660fc4e9728c57ad6f0cf16ccb9d77cd66d9
1,514
agda
Agda
notes/thesis/report/FOTC/Twice.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/thesis/report/FOTC/Twice.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/thesis/report/FOTC/Twice.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Twice funcion ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Twice where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base ------------------------------------------------------------------------------ module HigherOrder where -- We cannot translate this function as a definition because it is -- higher-order. twice : (D → D) → D → D twice f x = f (f x) -- {-# ATP definition twice #-} postulate twice-succ : ∀ n → twice succ₁ n ≡ succ₁ (succ₁ n) -- {-# ATP prove twice-succ #-} module FirstOrderAxiom where postulate twice : D → D → D twice-eq : ∀ f x → twice f x ≡ f · (f · x) {-# ATP axiom twice-eq #-} twice-succI : ∀ n → twice succ n ≡ succ · (succ · n) twice-succI n = twice succ n ≡⟨ twice-eq succ n ⟩ succ · (succ · n) ∎ postulate twice-succATP : ∀ n → twice succ n ≡ succ · (succ · n) {-# ATP prove twice-succATP #-} module FirstOrderDefinition where twice : D → D → D twice f x = f · (f · x) {-# ATP definition twice #-} twice-succI : ∀ n → twice succ n ≡ succ · (succ · n) twice-succI n = refl postulate twice-succATP : ∀ n → twice succ n ≡ succ · (succ · n) {-# ATP prove twice-succATP #-}
28.037037
78
0.48745
223294d7ff296fe288da395276f5ff52efa22649
11,217
agda
Agda
src/fot/LTC-PCF/Data/Nat/Properties.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/LTC-PCF/Data/Nat/Properties.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/LTC-PCF/Data/Nat/Properties.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Arithmetic properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Data.Nat.Properties where open import Common.FOL.Relation.Binary.EqReasoning open import LTC-PCF.Base open import LTC-PCF.Base.Properties open import LTC-PCF.Data.Nat open import LTC-PCF.Data.Nat.Rec open import LTC-PCF.Data.Nat.Rec.ConversionRules open import LTC-PCF.Data.Nat.UnaryNumbers ------------------------------------------------------------------------------ -- Congruence properties +-leftCong : ∀ {m n o} → m ≡ n → m + o ≡ n + o +-leftCong refl = refl +-rightCong : ∀ {m n o} → n ≡ o → m + n ≡ m + o +-rightCong refl = refl ∸-leftCong : ∀ {m n o} → m ≡ n → m ∸ o ≡ n ∸ o ∸-leftCong refl = refl ∸-rightCong : ∀ {m n o} → n ≡ o → m ∸ n ≡ m ∸ o ∸-rightCong refl = refl *-leftCong : ∀ {m n o} → m ≡ n → m * o ≡ n * o *-leftCong refl = refl *-rightCong : ∀ {m n o} → n ≡ o → m * n ≡ m * o *-rightCong refl = refl ------------------------------------------------------------------------------ -- Conversion rules +-0x : ∀ n → zero + n ≡ n +-0x n = rec zero n _ ≡⟨ rec-0 n ⟩ n ∎ +-Sx : ∀ m n → succ₁ m + n ≡ succ₁ (m + n) +-Sx m n = rec (succ₁ m) n (lam (λ _ → lam succ₁)) ≡⟨ rec-S m n (lam (λ _ → lam succ₁)) ⟩ (lam (λ _ → lam succ₁)) · m · (m + n) ≡⟨ ·-leftCong (beta (λ _ → lam succ₁) m) ⟩ lam succ₁ · (m + n) ≡⟨ beta succ₁ (m + n) ⟩ succ₁ (m + n) ∎ ∸-x0 : ∀ n → n ∸ zero ≡ n ∸-x0 n = rec zero n _ ≡⟨ rec-0 n ⟩ n ∎ ∸-xS : ∀ m n → m ∸ succ₁ n ≡ pred₁ (m ∸ n) ∸-xS m n = rec (succ₁ n) m (lam (λ _ → lam pred₁)) ≡⟨ rec-S n m (lam (λ _ → lam pred₁)) ⟩ lam (λ x → lam pred₁) · n · (m ∸ n) ≡⟨ ·-leftCong (beta (λ _ → lam pred₁) n) ⟩ lam pred₁ · (m ∸ n) ≡⟨ beta pred₁ (m ∸ n) ⟩ pred₁ (m ∸ n) ∎ *-0x : ∀ n → zero * n ≡ zero *-0x n = rec zero zero (lam (λ _ → lam (_+_ n))) ≡⟨ rec-0 zero ⟩ zero ∎ *-Sx : ∀ m n → succ₁ m * n ≡ n + m * n *-Sx m n = rec (succ₁ m) zero (lam (λ _ → lam (_+_ n))) ≡⟨ rec-S m zero (lam (λ _ → lam (_+_ n))) ⟩ (lam (λ _ → lam (_+_ n))) · m · (m * n) ≡⟨ ·-leftCong (beta (λ _ → lam (_+_ n)) m) ⟩ lam (_+_ n) · (m * n) ≡⟨ beta (_+_ n) (m * n) ⟩ n + (m * n) ∎ ------------------------------------------------------------------------------ +-leftIdentity : ∀ n → zero + n ≡ n +-leftIdentity = +-0x +-rightIdentity : ∀ {n} → N n → n + zero ≡ n +-rightIdentity nzero = +-leftIdentity zero +-rightIdentity (nsucc {n} Nn) = trans (+-Sx n zero) (succCong (+-rightIdentity Nn)) pred-N : ∀ {n} → N n → N (pred₁ n) pred-N nzero = subst N (sym pred-0) nzero pred-N (nsucc {n} Nn) = subst N (sym (pred-S n)) Nn +-N : ∀ {m n} → N m → N n → N (m + n) +-N {n = n} nzero Nn = subst N (sym (+-leftIdentity n)) Nn +-N {n = n} (nsucc {m} Nm) Nn = subst N (sym (+-Sx m n)) (nsucc (+-N Nm Nn)) ∸-N : ∀ {m n} → N m → N n → N (m ∸ n) ∸-N {m} Nm nzero = subst N (sym (∸-x0 m)) Nm ∸-N {m} Nm (nsucc {n} Nn) = subst N (sym (∸-xS m n)) (pred-N (∸-N Nm Nn)) +-assoc : ∀ {m} → N m → ∀ n o → m + n + o ≡ m + (n + o) +-assoc nzero n o = zero + n + o ≡⟨ +-leftCong (+-leftIdentity n) ⟩ n + o ≡⟨ sym (+-leftIdentity (n + o)) ⟩ zero + (n + o) ∎ +-assoc (nsucc {m} Nm) n o = succ₁ m + n + o ≡⟨ +-leftCong (+-Sx m n) ⟩ succ₁ (m + n) + o ≡⟨ +-Sx (m + n) o ⟩ succ₁ (m + n + o) ≡⟨ succCong (+-assoc Nm n o) ⟩ succ₁ (m + (n + o)) ≡⟨ sym (+-Sx m (n + o)) ⟩ succ₁ m + (n + o) ∎ x+Sy≡S[x+y] : ∀ {m} → N m → ∀ n → m + succ₁ n ≡ succ₁ (m + n) x+Sy≡S[x+y] nzero n = zero + succ₁ n ≡⟨ +-leftIdentity (succ₁ n) ⟩ succ₁ n ≡⟨ succCong (sym (+-leftIdentity n)) ⟩ succ₁ (zero + n) ∎ x+Sy≡S[x+y] (nsucc {m} Nm) n = succ₁ m + succ₁ n ≡⟨ +-Sx m (succ₁ n) ⟩ succ₁ (m + succ₁ n) ≡⟨ succCong (x+Sy≡S[x+y] Nm n) ⟩ succ₁ (succ₁ (m + n)) ≡⟨ succCong (sym (+-Sx m n)) ⟩ succ₁ (succ₁ m + n) ∎ 0∸x : ∀ {n} → N n → zero ∸ n ≡ zero 0∸x nzero = ∸-x0 zero 0∸x (nsucc {n} Nn) = zero ∸ succ₁ n ≡⟨ ∸-xS zero n ⟩ pred₁ (zero ∸ n) ≡⟨ predCong (0∸x Nn) ⟩ pred₁ zero ≡⟨ pred-0 ⟩ zero ∎ S∸S : ∀ {m n} → N m → N n → succ₁ m ∸ succ₁ n ≡ m ∸ n S∸S {m} _ nzero = succ₁ m ∸ [1] ≡⟨ ∸-xS (succ₁ m) zero ⟩ pred₁ (succ₁ m ∸ zero) ≡⟨ predCong (∸-x0 (succ₁ m)) ⟩ pred₁ (succ₁ m) ≡⟨ pred-S m ⟩ m ≡⟨ sym (∸-x0 m) ⟩ m ∸ zero ∎ S∸S nzero (nsucc {n} Nn) = [1] ∸ succ₁ (succ₁ n) ≡⟨ ∸-xS [1] (succ₁ n) ⟩ pred₁ ([1] ∸ succ₁ n) ≡⟨ predCong (S∸S nzero Nn) ⟩ pred₁ (zero ∸ n) ≡⟨ predCong (0∸x Nn) ⟩ pred₁ zero ≡⟨ pred-0 ⟩ zero ≡⟨ sym (0∸x (nsucc Nn)) ⟩ zero ∸ succ₁ n ∎ S∸S (nsucc {m} Nm) (nsucc {n} Nn) = succ₁ (succ₁ m) ∸ succ₁ (succ₁ n) ≡⟨ ∸-xS (succ₁ (succ₁ m)) (succ₁ n) ⟩ pred₁ (succ₁ (succ₁ m) ∸ succ₁ n) ≡⟨ predCong (S∸S (nsucc Nm) Nn) ⟩ pred₁ (succ₁ m ∸ n) ≡⟨ sym (∸-xS (succ₁ m) n) ⟩ succ₁ m ∸ succ₁ n ∎ [x+y]∸[x+z]≡y∸z : ∀ {m n o} → N m → N n → N o → (m + n) ∸ (m + o) ≡ n ∸ o [x+y]∸[x+z]≡y∸z {n = n} {o} nzero _ _ = (zero + n) ∸ (zero + o) ≡⟨ ∸-leftCong (+-leftIdentity n) ⟩ n ∸ (zero + o) ≡⟨ ∸-rightCong (+-leftIdentity o) ⟩ n ∸ o ∎ [x+y]∸[x+z]≡y∸z {n = n} {o} (nsucc {m} Nm) Nn No = (succ₁ m + n) ∸ (succ₁ m + o) ≡⟨ ∸-leftCong (+-Sx m n) ⟩ succ₁ (m + n) ∸ (succ₁ m + o) ≡⟨ ∸-rightCong (+-Sx m o) ⟩ succ₁ (m + n) ∸ succ₁ (m + o) ≡⟨ S∸S (+-N Nm Nn) (+-N Nm No) ⟩ (m + n) ∸ (m + o) ≡⟨ [x+y]∸[x+z]≡y∸z Nm Nn No ⟩ n ∸ o ∎ +-comm : ∀ {m n} → N m → N n → m + n ≡ n + m +-comm {n = n} nzero Nn = zero + n ≡⟨ +-leftIdentity n ⟩ n ≡⟨ sym (+-rightIdentity Nn) ⟩ n + zero ∎ +-comm {n = n} (nsucc {m} Nm) Nn = succ₁ m + n ≡⟨ +-Sx m n ⟩ succ₁ (m + n) ≡⟨ succCong (+-comm Nm Nn) ⟩ succ₁ (n + m) ≡⟨ sym (x+Sy≡S[x+y] Nn m) ⟩ n + succ₁ m ∎ *-leftZero : ∀ n → zero * n ≡ zero *-leftZero = *-0x *-rightZero : ∀ {n} → N n → n * zero ≡ zero *-rightZero nzero = *-leftZero zero *-rightZero (nsucc {n} Nn) = trans (*-Sx n zero) (trans (+-leftIdentity (n * zero)) (*-rightZero Nn)) *-N : ∀ {m n} → N m → N n → N (m * n) *-N {n = n} nzero _ = subst N (sym (*-leftZero n)) nzero *-N {n = n} (nsucc {m} Nm) Nn = subst N (sym (*-Sx m n)) (+-N Nn (*-N Nm Nn)) *-leftIdentity : ∀ {n} → N n → [1] * n ≡ n *-leftIdentity {n} Nn = [1] * n ≡⟨ *-Sx zero n ⟩ n + zero * n ≡⟨ +-rightCong (*-leftZero n) ⟩ n + zero ≡⟨ +-rightIdentity Nn ⟩ n ∎ x*Sy≡x+xy : ∀ {m n} → N m → N n → m * succ₁ n ≡ m + m * n x*Sy≡x+xy {n = n} nzero Nn = sym ( zero + zero * n ≡⟨ +-rightCong (*-leftZero n) ⟩ zero + zero ≡⟨ +-leftIdentity zero ⟩ zero ≡⟨ sym (*-leftZero (succ₁ n)) ⟩ zero * succ₁ n ∎ ) x*Sy≡x+xy {n = n} (nsucc {m} Nm) Nn = succ₁ m * succ₁ n ≡⟨ *-Sx m (succ₁ n) ⟩ succ₁ n + m * succ₁ n ≡⟨ +-rightCong (x*Sy≡x+xy Nm Nn) ⟩ succ₁ n + (m + m * n) ≡⟨ +-Sx n (m + m * n) ⟩ succ₁ (n + (m + m * n)) ≡⟨ succCong (sym (+-assoc Nn m (m * n))) ⟩ succ₁ (n + m + m * n) ≡⟨ succCong (+-leftCong (+-comm Nn Nm)) ⟩ succ₁ (m + n + m * n) ≡⟨ succCong (+-assoc Nm n (m * n)) ⟩ succ₁ (m + (n + m * n)) ≡⟨ sym (+-Sx m (n + m * n)) ⟩ succ₁ m + (n + m * n) ≡⟨ +-rightCong (sym (*-Sx m n)) ⟩ succ₁ m + succ₁ m * n ∎ *-comm : ∀ {m n} → N m → N n → m * n ≡ n * m *-comm {n = n} nzero Nn = trans (*-leftZero n) (sym (*-rightZero Nn)) *-comm {n = n} (nsucc {m} Nm) Nn = succ₁ m * n ≡⟨ *-Sx m n ⟩ n + m * n ≡⟨ +-rightCong (*-comm Nm Nn) ⟩ n + n * m ≡⟨ sym (x*Sy≡x+xy Nn Nm) ⟩ n * succ₁ m ∎ *∸-leftDistributive : ∀ {m n o} → N m → N n → N o → (m ∸ n) * o ≡ m * o ∸ n * o *∸-leftDistributive {m} {o = o} _ nzero _ = (m ∸ zero) * o ≡⟨ *-leftCong (∸-x0 m) ⟩ m * o ≡⟨ sym (∸-x0 (m * o)) ⟩ m * o ∸ zero ≡⟨ ∸-rightCong (sym (*-leftZero o)) ⟩ m * o ∸ zero * o ∎ *∸-leftDistributive {o = o} nzero (nsucc {n} Nn) No = (zero ∸ succ₁ n) * o ≡⟨ *-leftCong (0∸x (nsucc Nn)) ⟩ zero * o ≡⟨ *-leftZero o ⟩ zero ≡⟨ sym (0∸x (*-N (nsucc Nn) No)) ⟩ zero ∸ succ₁ n * o ≡⟨ ∸-leftCong (sym (*-leftZero o)) ⟩ zero * o ∸ succ₁ n * o ∎ *∸-leftDistributive (nsucc {m} Nm) (nsucc {n} Nn) nzero = (succ₁ m ∸ succ₁ n) * zero ≡⟨ *-comm (∸-N (nsucc Nm) (nsucc Nn)) nzero ⟩ zero * (succ₁ m ∸ succ₁ n) ≡⟨ *-leftZero (succ₁ m ∸ succ₁ n) ⟩ zero ≡⟨ sym (0∸x (*-N (nsucc Nn) nzero)) ⟩ zero ∸ succ₁ n * zero ≡⟨ ∸-leftCong (sym (*-leftZero (succ₁ m))) ⟩ zero * succ₁ m ∸ succ₁ n * zero ≡⟨ ∸-leftCong (*-comm nzero (nsucc Nm)) ⟩ succ₁ m * zero ∸ succ₁ n * zero ∎ *∸-leftDistributive (nsucc {m} Nm) (nsucc {n} Nn) (nsucc {o} No) = (succ₁ m ∸ succ₁ n) * succ₁ o ≡⟨ *-leftCong (S∸S Nm Nn) ⟩ (m ∸ n) * succ₁ o ≡⟨ *∸-leftDistributive Nm Nn (nsucc No) ⟩ m * succ₁ o ∸ n * succ₁ o ≡⟨ sym ([x+y]∸[x+z]≡y∸z (nsucc No) (*-N Nm (nsucc No)) (*-N Nn (nsucc No))) ⟩ (succ₁ o + m * succ₁ o) ∸ (succ₁ o + n * succ₁ o) ≡⟨ ∸-leftCong (sym (*-Sx m (succ₁ o))) ⟩ (succ₁ m * succ₁ o) ∸ (succ₁ o + n * succ₁ o) ≡⟨ ∸-rightCong (sym (*-Sx n (succ₁ o))) ⟩ (succ₁ m * succ₁ o) ∸ (succ₁ n * succ₁ o) ∎ *+-leftDistributive : ∀ {m n o} → N m → N n → N o → (m + n) * o ≡ m * o + n * o *+-leftDistributive {m} {n} Nm Nn nzero = (m + n) * zero ≡⟨ *-comm (+-N Nm Nn) nzero ⟩ zero * (m + n) ≡⟨ *-leftZero (m + n) ⟩ zero ≡⟨ sym (*-leftZero m) ⟩ zero * m ≡⟨ *-comm nzero Nm ⟩ m * zero ≡⟨ sym (+-rightIdentity (*-N Nm nzero)) ⟩ m * zero + zero ≡⟨ +-rightCong (trans (sym (*-leftZero n)) (*-comm nzero Nn)) ⟩ m * zero + n * zero ∎ *+-leftDistributive {n = n} nzero Nn (nsucc {o} No) = (zero + n) * succ₁ o ≡⟨ *-leftCong (+-leftIdentity n) ⟩ n * succ₁ o ≡⟨ sym (+-leftIdentity (n * succ₁ o)) ⟩ zero + n * succ₁ o ≡⟨ +-leftCong (sym (*-leftZero (succ₁ o))) ⟩ zero * succ₁ o + n * succ₁ o ∎ *+-leftDistributive (nsucc {m} Nm) nzero (nsucc {o} No) = (succ₁ m + zero) * succ₁ o ≡⟨ *-leftCong (+-rightIdentity (nsucc Nm)) ⟩ succ₁ m * succ₁ o ≡⟨ sym (+-rightIdentity (*-N (nsucc Nm) (nsucc No))) ⟩ succ₁ m * succ₁ o + zero ≡⟨ +-rightCong (sym (*-leftZero (succ₁ o))) ⟩ succ₁ m * succ₁ o + zero * succ₁ o ∎ *+-leftDistributive (nsucc {m} Nm) (nsucc {n} Nn) (nsucc {o} No) = (succ₁ m + succ₁ n) * succ₁ o ≡⟨ *-leftCong (+-Sx m (succ₁ n)) ⟩ succ₁ (m + succ₁ n) * succ₁ o ≡⟨ *-Sx (m + succ₁ n) (succ₁ o) ⟩ succ₁ o + (m + succ₁ n) * succ₁ o ≡⟨ +-rightCong (*+-leftDistributive Nm (nsucc Nn) (nsucc No)) ⟩ succ₁ o + (m * succ₁ o + succ₁ n * succ₁ o) ≡⟨ sym (+-assoc (nsucc No) (m * succ₁ o) (succ₁ n * succ₁ o)) ⟩ succ₁ o + m * succ₁ o + succ₁ n * succ₁ o ≡⟨ +-leftCong (sym (*-Sx m (succ₁ o))) ⟩ succ₁ m * succ₁ o + succ₁ n * succ₁ o ∎
34.198171
81
0.449496
1d26dfcb13e0c514cd08dfbdbda8de28cc3fa023
145
agda
Agda
test/Succeed/Issue5731.agda
sseefried/agda
6b13364d36eeb60d8ec15eaf8effe23c73401900
[ "BSD-2-Clause" ]
1
2022-02-05T01:21:48.000Z
2022-02-05T01:21:48.000Z
test/Succeed/Issue5731.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
6
2021-10-18T08:12:24.000Z
2021-11-24T08:31:10.000Z
test/Succeed/Issue5731.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
null
null
null
-- This file just tests that the options --no-save-metas and -- --save-metas are parsed correctly. {-# OPTIONS --no-save-metas --save-metas #-}
29
60
0.682759
223bfc496df89aa07d5109d08cc9b8fc3cccdd14
206
agda
Agda
Cubical/HITs/S2/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/S2/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/S2/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.S2.Base where open import Cubical.Foundations.Prelude data S² : Type₀ where base : S² surf : PathP (λ i → base ≡ base) refl refl
22.888889
50
0.694175
414684629c5acb4cf8d942d5eba8253fe8da358c
221
agda
Agda
test/Fail/NotStrictlyPositive.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/NotStrictlyPositive.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/NotStrictlyPositive.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module NotStrictlyPositive where data False : Set where data Not (A : Set) : Set where not : (A -> False) -> Not A data Neg (A : Set) : Set where neg : Not A -> Neg A data Bad : Set where bad : Neg Bad -> Bad
14.733333
32
0.615385
5732a40ace6430d9dfbaeb7b4d68cff2f318b054
1,478
agda
Agda
test/Succeed/Issue480.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue480.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue480.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
-- Andreas, 2016-02-02 added Ambiguous module Issue480 where module Simple where data Q : Set where a : Q f : _ → Q f a = a postulate helper : ∀ {T : Set} → (T → T) → Q test₁ : Q → Q test₁ = λ { a → a } test₂ : Q test₂ = helper test₁ -- Same as test₂ and test₁, but stuck together. test₃ : Q test₃ = helper λ { a → a } -- this says "Type mismatch when checking that the pattern a has type _45" module Ambiguous where data Q : Set where a : Q data Overlap : Set where a : Overlap postulate helper : ∀ {T : Set} → (T → T) → T -- result type needs to be propagated test₁ : Q → Q test₁ = λ { a → a } test₃ : Q test₃ = helper λ { a → a } _$_ : ∀ {T : Set} → (T → T) → T → T f $ x = f x test : Q test = (λ { a → a }) $ a test₂ : _ test₂ = (λ { a → a }) $ Q.a module Example where infixr 5 _∷_ data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ data List : Set₁ where [] : List _∷_ : Set → List → List data Tree (L : Set) : List → Set₁ where tip : Tree L [] node : ∀ {T Ts} → (cs : T → Tree L Ts) → Tree L (T ∷ Ts) data Q (n : ℕ) : Set where a : Q n b : Q n test₁ : Q zero → Tree ℕ (Q zero ∷ []) test₁ = λ { a → node λ { a → tip ; b → tip } ; b → node λ { a → tip ; b → tip } } test₂ = node test₁ test₃ : Tree ℕ (Q zero ∷ Q zero ∷ []) test₃ = node λ { a → node λ { a → tip ; b → tip } ; b → node λ { a → tip ; b → tip } }
17.595238
103
0.499323
3db7e2a811133b1f4c389a015dd8c88600a135f5
282
agda
Agda
Algebra/Category.agda
esoeylemez/agda-simple
d9245e5a8b2e902781736de09bd17e81022f6f13
[ "BSD-3-Clause" ]
1
2019-10-07T17:36:42.000Z
2019-10-07T17:36:42.000Z
Algebra/Category.agda
esoeylemez/agda-simple
d9245e5a8b2e902781736de09bd17e81022f6f13
[ "BSD-3-Clause" ]
null
null
null
Algebra/Category.agda
esoeylemez/agda-simple
d9245e5a8b2e902781736de09bd17e81022f6f13
[ "BSD-3-Clause" ]
null
null
null
-- Copyright: (c) 2016 Ertugrul Söylemez -- License: BSD3 -- Maintainer: Ertugrul Söylemez <esz@posteo.de> module Algebra.Category where open import Algebra.Category.Category public open import Algebra.Category.Groupoid public open import Algebra.Category.Semigroupoid public
28.2
48
0.797872
1abd86ae5996eb556e0475a845fb4967a92b7605
11,715
agda
Agda
agda/PLRTree/Insert/Permutation.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/PLRTree/Insert/Permutation.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/PLRTree/Insert/Permutation.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
open import Relation.Binary.Core module PLRTree.Insert.Permutation {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Data.List open import Data.Product renaming (_×_ to _∧_) open import Data.Sum open import List.Permutation.Base A open import List.Permutation.Base.Concatenation A open import List.Permutation.Base.Equivalence A open import PLRTree {A} open import PLRTree.Complete {A} open import PLRTree.Compound {A} open import PLRTree.Insert _≤_ tot≤ open import PLRTree.Insert.Properties _≤_ tot≤ mutual lemma-insert-/ : {t : PLRTree}(x : A) → Complete t → ∃ (λ xs → flatten (insert x t) / x ⟶ xs ∧ xs ∼ flatten t) lemma-insert-/ x leaf = [] , /head , ∼[] lemma-insert-/ x (perfect {l} {r} y cl _ l≃r) with tot≤ x y | l | r | l≃r ... | inj₁ x≤y | leaf | leaf | _ = y ∷ [] , /head , refl∼ ... | inj₁ x≤y | leaf | node _ _ _ _ | () ... | inj₁ x≤y | node perfect _ _ _ | leaf | () ... | inj₁ x≤y | node perfect y' l' r' | node perfect y'' l'' r'' | _ = let _l = node perfect y' l' r' ; _r = node perfect y'' l'' r'' ; flᵢfr∼yflfr = lemma++∼r (lemma-insert-∼ y cl) in flatten (insert y _l) ++ flatten _r , /head , flᵢfr∼yflfr ... | inj₁ x≤y | node perfect _ _ _ | node left _ _ _ | () ... | inj₁ x≤y | node perfect _ _ _ | node right _ _ _ | () ... | inj₁ x≤y | node left _ _ _ | _ | () ... | inj₁ x≤y | node right _ _ _ | _ | () ... | inj₂ y≤x | leaf | leaf | _ = y ∷ [] , /tail /head , refl∼ ... | inj₂ y≤x | leaf | node _ _ _ _ | () ... | inj₂ y≤x | node perfect _ _ _ | leaf | () ... | inj₂ y≤x | node perfect y' l' r' | node perfect y'' l'' r'' | _ with lemma-insert-/ x cl ... | xs , flᵢ/x⟶xs , xs∼fl = let _l = node perfect y' l' r' ; _r = node perfect y'' l'' r'' ; yflᵢfr/x⟶yxsfr = /tail (lemma++/r flᵢ/x⟶xs) ; yflᵢfr∼yxsfr = ∼x /head /head (lemma++∼r xs∼fl) in y ∷ xs ++ flatten _r , yflᵢfr/x⟶yxsfr , yflᵢfr∼yxsfr lemma-insert-/ x (perfect y cl _ l≃r) | inj₂ y≤x | node perfect _ _ _ | node left _ _ _ | () lemma-insert-/ x (perfect y cl _ l≃r) | inj₂ y≤x | node perfect _ _ _ | node right _ _ _ | () lemma-insert-/ x (perfect y cl _ l≃r) | inj₂ y≤x | node left _ _ _ | _ | () lemma-insert-/ x (perfect y cl _ l≃r) | inj₂ y≤x | node right _ _ _ | _ | () lemma-insert-/ x (left {l} {r} y cl _ _) with tot≤ x y ... | inj₁ x≤y with insert y l | lemma-insert-∼ y cl | lemma-insert-compound y l ... | node perfect y' l' r' | flᵢ∼yfl | compound = let flᵢfr∼yflfr = lemma++∼r flᵢ∼yfl in flatten (node perfect y' l' r') ++ flatten r , /head , flᵢfr∼yflfr ... | node left y' l' r' | flᵢ∼yfl | compound = let flᵢfr∼yflfr = lemma++∼r flᵢ∼yfl in flatten (node left y' l' r') ++ flatten r , /head , flᵢfr∼yflfr ... | node right y' l' r' | flᵢ∼yfl | compound = let flᵢfr∼yflfr = lemma++∼r flᵢ∼yfl in flatten (node right y' l' r') ++ flatten r , /head , flᵢfr∼yflfr lemma-insert-/ x (left {l} {r} y cl _ _) | inj₂ y≤x with insert x l | lemma-insert-/ x cl | lemma-insert-compound x l ... | node perfect _ _ _ | xs , flᵢ/x⟶xs , xs∼fl | compound = let yflᵢfr/x⟶yxsfr = /tail (lemma++/r flᵢ/x⟶xs) ; yflᵢfr∼yxsfr = ∼x /head /head (lemma++∼r xs∼fl) in y ∷ xs ++ flatten r , yflᵢfr/x⟶yxsfr , yflᵢfr∼yxsfr ... | node left _ _ _ | xs , flᵢ/x⟶xs , xs∼fl | compound = let yflᵢfr/x⟶yxsfr = /tail (lemma++/r flᵢ/x⟶xs) ; yflᵢfr∼yxsfr = ∼x /head /head (lemma++∼r xs∼fl) in y ∷ xs ++ flatten r , yflᵢfr/x⟶yxsfr , yflᵢfr∼yxsfr ... | node right _ _ _ | xs , flᵢ/x⟶xs , xs∼fl | compound = let yflᵢfr/x⟶yxsfr = /tail (lemma++/r flᵢ/x⟶xs) ; yflᵢfr∼yxsfr = ∼x /head /head (lemma++∼r xs∼fl) in y ∷ xs ++ flatten r , yflᵢfr/x⟶yxsfr , yflᵢfr∼yxsfr lemma-insert-/ x (right {l} {r} y _ cr _) with tot≤ x y ... | inj₁ x≤y with insert y r | lemma-insert-∼ y cr | lemma-insert-compound y r ... | node perfect y' l' r' | frᵢ∼yfr | compound = let flfrᵢ∼flyfr = lemma++∼l {flatten l} frᵢ∼yfr ; flyfr∼yflfr = ∼x (lemma++/ {y} {flatten l}) /head refl∼ ; flfrᵢ∼yflfr = trans∼ flfrᵢ∼flyfr flyfr∼yflfr in flatten l ++ flatten (node perfect y' l' r') , /head , flfrᵢ∼yflfr ... | node left y' l' r' | frᵢ∼yfr | compound = let flfrᵢ∼flyfr = lemma++∼l {flatten l} frᵢ∼yfr ; flyfr∼yflfr = ∼x (lemma++/ {y} {flatten l}) /head refl∼ ; flfrᵢ∼yflfr = trans∼ flfrᵢ∼flyfr flyfr∼yflfr in flatten l ++ flatten (node left y' l' r') , /head , flfrᵢ∼yflfr ... | node right y' l' r' | frᵢ∼yfr | compound = let flfrᵢ∼flyfr = lemma++∼l {flatten l} frᵢ∼yfr ; flyfr∼yflfr = ∼x (lemma++/ {y} {flatten l}) /head refl∼ ; flfrᵢ∼yflfr = trans∼ flfrᵢ∼flyfr flyfr∼yflfr in flatten l ++ flatten (node right y' l' r') , /head , flfrᵢ∼yflfr lemma-insert-/ x (right {l} {r} y _ cr _) | inj₂ y≤x with insert x r | lemma-insert-/ x cr | lemma-insert-compound x r ... | node perfect y' l' r' | xs , frᵢ/x⟶xs , xs∼fr | compound = let yflfrᵢ/x⟶yflxs = /tail (lemma++/l {x} {flatten l} frᵢ/x⟶xs) ; yflfrᵢ∼yflxs = ∼x /head /head (lemma++∼l {flatten l} xs∼fr) in y ∷ flatten l ++ xs , yflfrᵢ/x⟶yflxs , yflfrᵢ∼yflxs ... | node left y' l' r' | xs , frᵢ/x⟶xs , xs∼fr | compound = let yflfrᵢ/x⟶yflxs = /tail (lemma++/l {x} {flatten l} frᵢ/x⟶xs) ; yflfrᵢ∼yflxs = ∼x /head /head (lemma++∼l {flatten l} xs∼fr) in y ∷ flatten l ++ xs , yflfrᵢ/x⟶yflxs , yflfrᵢ∼yflxs ... | node right y' l' r' | xs , frᵢ/x⟶xs , xs∼fr | compound = let yflfrᵢ/x⟶yflxs = /tail (lemma++/l {x} {flatten l} frᵢ/x⟶xs) ; yflfrᵢ∼yflxs = ∼x /head /head (lemma++∼l {flatten l} xs∼fr) in y ∷ flatten l ++ xs , yflfrᵢ/x⟶yflxs , yflfrᵢ∼yflxs lemma-insert-∼ : {t : PLRTree}(x : A) → Complete t → flatten (insert x t) ∼ (x ∷ flatten t) lemma-insert-∼ x leaf = ∼x /head /head ∼[] lemma-insert-∼ x (perfect {l} {r} y cl _ l≃r) with tot≤ x y | l | r | l≃r ... | inj₁ x≤y | leaf | leaf | _ = ∼x /head /head (∼x /head /head ∼[]) ... | inj₁ x≤y | leaf | node _ _ _ _ | () ... | inj₁ x≤y | node perfect _ _ _ | leaf | () ... | inj₁ x≤y | node perfect _ _ _ | node perfect _ _ _ | _ = let flᵢfr∼yflfr = lemma++∼r (lemma-insert-∼ y cl) in ∼x /head /head flᵢfr∼yflfr ... | inj₁ x≤y | node perfect _ _ _ | node left _ _ _ | () ... | inj₁ x≤y | node perfect _ _ _ | node right _ _ _ | () ... | inj₁ x≤y | node left _ _ _ | _ | () ... | inj₁ x≤y | node right _ _ _ | _ | () ... | inj₂ y≤x | leaf | leaf | _ = ∼x /head (/tail /head) (∼x /head /head ∼[]) ... | inj₂ y≤x | leaf | node _ _ _ _ | () ... | inj₂ y≤x | node perfect _ _ _ | leaf | () ... | inj₂ y≤x | node perfect _ _ _ | node perfect _ _ _ | _ with lemma-insert-/ x cl ... | xs , flᵢ/x⟶xs , xs∼fl = let yflᵢfr/x⟶yxsfr = /tail (lemma++/r flᵢ/x⟶xs) ; yxsfr∼yflfr = ∼x /head /head (lemma++∼r xs∼fl) in ∼x yflᵢfr/x⟶yxsfr /head yxsfr∼yflfr lemma-insert-∼ x (perfect y cl _ l≃r) | inj₂ y≤x | node perfect _ _ _ | node left _ _ _ | () lemma-insert-∼ x (perfect y cl _ l≃r) | inj₂ y≤x | node perfect _ _ _ | node right _ _ _ | () lemma-insert-∼ x (perfect y cl _ l≃r) | inj₂ y≤x | node left _ _ _ | _ | () lemma-insert-∼ x (perfect y cl _ l≃r) | inj₂ y≤x | node right _ _ _ | _ | () lemma-insert-∼ x (left {l} {r} y cl _ _) with tot≤ x y ... | inj₁ x≤y with insert y l | lemma-insert-∼ y cl | lemma-insert-compound y l ... | node perfect _ _ _ | flᵢ∼yfl | compound = let flᵢfr∼yflfr = lemma++∼r flᵢ∼yfl in ∼x /head /head flᵢfr∼yflfr ... | node left _ _ _ | flᵢ∼yfl | compound = let flᵢfr∼yflfr = lemma++∼r flᵢ∼yfl in ∼x /head /head flᵢfr∼yflfr ... | node right _ _ _ | flᵢ∼yfl | compound = let flᵢfr∼yflfr = lemma++∼r flᵢ∼yfl in ∼x /head /head flᵢfr∼yflfr lemma-insert-∼ x (left {l} {r} y cl _ _) | inj₂ y≤x with insert x l | lemma-insert-/ x cl | lemma-insert-compound x l ... | node perfect _ _ _ | xs , flᵢ/x⟶xs , xs∼fl | compound = let yflᵢfr/x⟶yxsfr = /tail (lemma++/r flᵢ/x⟶xs) ; yxsfr∼yflfr = ∼x /head /head (lemma++∼r xs∼fl) in ∼x yflᵢfr/x⟶yxsfr /head yxsfr∼yflfr ... | node left _ _ _ | xs , flᵢ/x⟶xs , xs∼fl | compound = let yflᵢfr/x⟶yxsfr = /tail (lemma++/r flᵢ/x⟶xs) ; yxsfr∼yflfr = ∼x /head /head (lemma++∼r xs∼fl) in ∼x yflᵢfr/x⟶yxsfr /head yxsfr∼yflfr ... | node right _ _ _ | xs , flᵢ/x⟶xs , xs∼fl | compound = let yflᵢfr/x⟶yxsfr = /tail (lemma++/r flᵢ/x⟶xs) ; yxsfr∼yflfr = ∼x /head /head (lemma++∼r xs∼fl) in ∼x yflᵢfr/x⟶yxsfr /head yxsfr∼yflfr lemma-insert-∼ x (right {l} {r} y _ cr _) with tot≤ x y ... | inj₁ x≤y with insert y r | lemma-insert-∼ y cr | lemma-insert-compound y r ... | node perfect _ _ _ | frᵢ∼yfr | compound = let flyfr∼yflfr = ∼x (lemma++/ {y} {flatten l}) /head refl∼ ; flfrᵢ∼flyfr = lemma++∼l {flatten l} frᵢ∼yfr ; flfrᵢ∼yflfr = trans∼ flfrᵢ∼flyfr flyfr∼yflfr in ∼x /head /head flfrᵢ∼yflfr ... | node left _ _ _ | frᵢ∼yfr | compound = let flyfr∼yflfr = ∼x (lemma++/ {y} {flatten l}) /head refl∼ ; flfrᵢ∼flyfr = lemma++∼l {flatten l} frᵢ∼yfr ; flfrᵢ∼yflfr = trans∼ flfrᵢ∼flyfr flyfr∼yflfr in ∼x /head /head flfrᵢ∼yflfr ... | node right _ _ _ | frᵢ∼yfr | compound = let flyfr∼yflfr = ∼x (lemma++/ {y} {flatten l}) /head refl∼ ; flfrᵢ∼flyfr = lemma++∼l {flatten l} frᵢ∼yfr ; flfrᵢ∼yflfr = trans∼ flfrᵢ∼flyfr flyfr∼yflfr in ∼x /head /head flfrᵢ∼yflfr lemma-insert-∼ x (right {l} {r} y _ cr _) | inj₂ y≤x with insert x r | lemma-insert-/ x cr | lemma-insert-compound x r ... | node perfect y' l' r' | xs , frᵢ/x⟶xs , xs∼fr | compound = let yflfrᵢ/x⟶yflxs = /tail (lemma++/l {x} {flatten l} frᵢ/x⟶xs) ; yflxs∼yflfr = ∼x /head /head (lemma++∼l {flatten l} xs∼fr) in ∼x yflfrᵢ/x⟶yflxs /head yflxs∼yflfr ... | node left y' l' r' | xs , frᵢ/x⟶xs , xs∼fr | compound = let yflfrᵢ/x⟶yflxs = /tail (lemma++/l {x} {flatten l} frᵢ/x⟶xs) ; yflxs∼yflfr = ∼x /head /head (lemma++∼l {flatten l} xs∼fr) in ∼x yflfrᵢ/x⟶yflxs /head yflxs∼yflfr ... | node right y' l' r' | xs , frᵢ/x⟶xs , xs∼fr | compound = let yflfrᵢ/x⟶yflxs = /tail (lemma++/l {x} {flatten l} frᵢ/x⟶xs) ; yflxs∼yflfr = ∼x /head /head (lemma++∼l {flatten l} xs∼fr) in ∼x yflfrᵢ/x⟶yflxs /head yflxs∼yflfr
58.575
112
0.497738
12cc971a4528c03e002967bf350ffb1acc28098d
108
agda
Agda
test/Fail/IUnivNoHComp.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/IUnivNoHComp.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/IUnivNoHComp.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Primitive.Cubical test : (J : IUniv) → J → J test J j = primHComp {φ = i0} (λ k → λ ()) j
21.6
44
0.592593
2292e6815c2a3851a5644767dffc83ef89f4f409
24
agda
Agda
test/interaction/Issue591/M.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue591/M.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue591/M.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue591.M where
12
23
0.833333
3108d2f26c546343047a2a713bd86a2c3abc76f5
8,192
agda
Agda
Cubical/HITs/SequentialColimit/Properties.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/HITs/SequentialColimit/Properties.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/HITs/SequentialColimit/Properties.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{- This file contains: - Eliminators of direct limit, especially an index-shifting version; - Connectivity of inclusion maps. -} {-# OPTIONS --safe #-} module Cubical.HITs.SequentialColimit.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv.Properties open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Function open import Cubical.Data.Nat hiding (elim) open import Cubical.HITs.SequentialColimit.Base open import Cubical.Homotopy.Connected private variable ℓ ℓ' : Level module _ (X : Sequence ℓ) where open Sequence private inl∞ : (n : ℕ) → X .space n → Lim→ X inl∞ n = inl {n = n} record ElimData (P : Lim→ X → Type ℓ') : Type (ℓ-max ℓ ℓ') where field finl : {k : ℕ}(x : X .space k) → P (inl x) fpush : {k : ℕ}(x : X .space k) → PathP (λ i → P (push x i)) (finl x) (finl (X .map x)) record ElimShiftData (n : ℕ)(P : Lim→ X → Type ℓ') : Type (ℓ-max ℓ ℓ') where field finl : {k : ℕ}(x : X .space (k + n)) → P (inl x) fpush : {k : ℕ}(x : X .space (k + n)) → PathP (λ i → P (push x i)) (finl x) (finl (X .map x)) open ElimData open ElimShiftData ElimData→ElimShiftData : (n : ℕ)(P : Lim→ X → Type ℓ') → ElimData P → ElimShiftData n P ElimData→ElimShiftData n P datum .finl = datum .finl ElimData→ElimShiftData n P datum .fpush = datum .fpush -- Preliminary lemmas -- The difficulty is mainly due to natural numbers having no strict +-commutativity private alg-path : (a b : ℕ) → a + (1 + b) ≡ 1 + (a + b) alg-path a b = +-assoc a 1 b ∙ (λ i → +-comm a 1 i + b) module _ (P : Lim→ X → Type ℓ') (datum : ElimShiftData 0 P) where +-zero-0 : refl ≡ +-zero 0 +-zero-0 i j = isSet→SquareP (λ i j → isSetℕ) refl refl refl (+-zero 0) j i finl'-filler : (k : ℕ) → (i : I) → (x : X .space (+-zero k i)) → P (inl x) finl'-filler k i = transport-filler (λ i → (x : X .space (+-zero k i)) → P (inl x)) (datum .finl) i finl' : (k : ℕ) → (x : X .space k) → P (inl x) finl' k = finl'-filler k i1 finl'-0-eq : datum .finl ≡ finl' 0 finl'-0-eq = sym (transportRefl _) ∙ (λ j → transport (λ i → (x : X .space (+-zero-0 j i)) → P (inl x)) (datum .finl {k = 0})) fpush' : (k : ℕ) → (x : X .space k) → PathP (λ i → P (push x i)) (finl' k x) (finl' (1 + k) (X .map x)) fpush' k = transport (λ i → (x : X .space (+-zero k i)) → PathP (λ i → P (push x i)) (finl'-filler k i x) (finl'-filler (1 + k) i (X .map x))) (datum .fpush) ElimShiftData0→ElimData : ElimData P ElimShiftData0→ElimData .finl = finl' _ ElimShiftData0→ElimData .fpush = fpush' _ module _ (n : ℕ)(P : Lim→ X → Type ℓ') (datum : ElimShiftData (1 + n) P) where alg-path-0 : (b : ℕ) → refl ≡ alg-path 0 b alg-path-0 b i j = isSet→SquareP (λ i j → isSetℕ) refl refl refl (alg-path 0 b) j i finl-n-filler : (k : ℕ) → (i : I) → ((x : X .space (alg-path k n i)) → P (inl x)) finl-n-filler k i = transport-filler (λ i → (x : X .space (alg-path k n i)) → P (inl x)) (datum .finl) i finl-n : (k : ℕ) → (x : X .space ((1 + k) + n)) → P (inl x) finl-n k = finl-n-filler k i1 fpush-n : (k : ℕ) → (x : X .space ((1 + k) + n)) → PathP (λ i → P (push x i)) (finl-n k x) (finl-n (1 + k) (X .map x)) fpush-n k = transport (λ i → (x : X .space (alg-path k n i)) → PathP (λ i → P (push x i)) (finl-n-filler k i x) (finl-n-filler (1 + k) i (X .map x))) (datum .fpush) finl-0-filler : (x : X .space n) → (i : I) → P (push x i) finl-0-filler x i = transport-filler (λ i → P (push x (~ i))) (datum .finl {k = 0} (X .map x)) (~ i) finl-0 : (x : X .space n) → P (inl x) finl-0 x = finl-0-filler x i0 finl-0-eq : datum .finl {k = 0} ≡ finl-n 0 finl-0-eq = sym (transportRefl _) ∙ (λ j → transport (λ i → (x : X .space (alg-path-0 n j i)) → P (inl x)) (datum .finl {k = 0})) fpush-0 : (x : X .space n) → PathP (λ i → P (push x i)) (finl-0 x) (finl-n 0 (X .map x)) fpush-0 x i = hcomp (λ j → λ { (i = i0) → finl-0 x ; (i = i1) → finl-0-eq j (X .map x) }) (finl-0-filler x i) elimShiftDataSuc : ElimShiftData n P elimShiftDataSuc .finl {k = 0} = finl-0 elimShiftDataSuc .finl {k = suc k} = finl-n k elimShiftDataSuc .fpush {k = 0} = fpush-0 elimShiftDataSuc .fpush {k = suc k} = fpush-n k -- The eliminators elim : (P : Lim→ X → Type ℓ') → ElimData P → (x : Lim→ X) → P x elim P datum (inl x) = datum .finl x elim P datum (push x i) = datum .fpush x i elimShift : (n : ℕ) → (P : Lim→ X → Type ℓ') → ElimShiftData n P → (x : Lim→ X) → P x elimShift 0 _ datum = elim _ (ElimShiftData0→ElimData _ datum) elimShift (suc n) _ datum = elimShift n _ (elimShiftDataSuc _ _ datum) elimShiftβ : (n : ℕ)(k : ℕ) → (P : Lim→ X → Type ℓ') → (datum : ElimShiftData n P) → elimShift _ _ datum ∘ inl∞ (k + n) ≡ datum .finl elimShiftβ 0 0 _ datum = sym (finl'-0-eq _ datum) elimShiftβ 0 (suc k) P datum = transport (λ i → elimShift _ _ datum ∘ inl∞ (+-zero (suc k) (~ i)) ≡ finl'-filler P datum (suc k) (~ i)) refl elimShiftβ (suc n) 0 _ datum = elimShiftβ n _ _ (elimShiftDataSuc _ _ datum) ∙ sym (finl-0-eq _ _ datum) elimShiftβ (suc n) (suc k) P datum = transport (λ i → elimShift _ _ datum ∘ inl∞ (alg-path (suc k) n (~ i)) ≡ finl-n-filler n P datum (suc k) (~ i)) (elimShiftβ n (suc (suc k)) P (elimShiftDataSuc _ _ datum)) -- Lemma to lift sections open Iso private transpSec : (n : ℕ)(Y : Lim→ X → Type ℓ') (sec : (x : X .space n) → Y (inl x)) → (x : X .space n) → Y (inl (X .map x)) transpSec n Y sec x = transport (λ i → Y (push x i)) (sec x) module _ (d : ℕ)(n : ℕ) (conn : isConnectedFun d (X .map {n = n})) (Y : Lim→ X → TypeOfHLevel ℓ' d) where module _ (sec : (x : X .space n) → Y (inl (X .map x)) .fst) where lift-iso = elim.isIsoPrecompose _ d (Y ∘ inl) conn liftSec' : (x : X .space (1 + n)) → Y (inl x) .fst liftSec' = lift-iso .inv sec liftSecPath' : (x : X .space n) → sec x ≡ liftSec' (X .map x) liftSecPath' x i = lift-iso .rightInv sec (~ i) x module _ (sec : (x : X .space n) → Y (inl x) .fst) where liftSec : (x : X .space (1 + n)) → Y (inl x) .fst liftSec = liftSec' (transpSec n (λ x → Y x .fst) sec) liftSecPath : (x : X .space n) → PathP (λ i → Y (push x i) .fst) (sec x) (liftSec (X .map x)) liftSecPath x i = hcomp (λ j → λ { (i = i0) → sec x ; (i = i1) → liftSecPath' (transpSec n (λ x → Y x .fst) sec) x j }) (transport-filler (λ i → Y (push x i) .fst) (sec x) i) module _ (d : ℕ)(n : ℕ) (conn : (k : ℕ) → isConnectedFun d (X .map {n = k + n})) where private module _ (Y : Lim→ X → TypeOfHLevel ℓ' d) where lifting : (k : ℕ)(sec : (x : X .space n) → Y (inl x) .fst) → (x : X .space (k + n)) → Y (inl x) .fst lifting 0 sec = sec lifting (suc k) sec = liftSec d _ (conn _) Y (lifting k sec) liftingPath : (k : ℕ)(sec : (x : X .space n) → Y (inl x) .fst) → (x : X .space (k + n)) → PathP (λ i → Y (push x i) .fst) (lifting k sec x) (lifting (1 + k) sec (X .map x)) liftingPath k sec = liftSecPath d _ (conn _) Y (lifting k sec) liftingData : ((x : X .space n) → Y (inl x) .fst) → ElimShiftData n (λ x → Y x .fst) liftingData sec .finl = lifting _ sec liftingData sec .fpush = liftingPath _ sec hasSectionInl∘ : hasSection (λ (sec : (x : Lim→ X) → Y x .fst) → sec ∘ inl {n = n}) hasSectionInl∘ .fst sec = elimShift _ _ (liftingData sec) hasSectionInl∘ .snd sec = elimShiftβ _ _ _ (liftingData sec) -- Connectivity of inclusion map isConnectedInl∞ : isConnectedFun d (inl∞ n) isConnectedInl∞ = elim.isConnectedPrecompose _ _ hasSectionInl∘
34.420168
111
0.537231
fbd108bb73a5a6f2879648d3ed0cab41afc55c56
45,911
agda
Agda
Agda/17-cubical-diagrams.agda
tadejpetric/HoTT-Intro
f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5
[ "CC-BY-4.0" ]
null
null
null
Agda/17-cubical-diagrams.agda
tadejpetric/HoTT-Intro
f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5
[ "CC-BY-4.0" ]
null
null
null
Agda/17-cubical-diagrams.agda
tadejpetric/HoTT-Intro
f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5
[ "CC-BY-4.0" ]
null
null
null
{-# OPTIONS --without-K --allow-unsolved-metas --exact-split #-} module 17-cubical-diagrams where import 16-pushouts open 16-pushouts public -- Section 15.1 Commuting cubes -- Cubes {- We specify the type of the homotopy witnessing that a cube commutes. Imagine that the cube is presented as a lattice * / | \ / | \ / | \ * * * |\ / \ /| | \ ‌/ | |/ \ / \| * * * \ | / \ | / \ | / * with all maps pointing in the downwards direction. Presented in this way, a cube of maps has a top face, a back-left face, a back-right face, a front-left face, a front-right face, and a bottom face, all of which are homotopies. A term of type coherence-cube is a homotopy filling the cube. -} coherence-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → UU _ coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom = (((h ·l back-left) ∙h (front-left ·r f')) ∙h (hD ·l top)) ~ ((bottom ·r hA) ∙h ((k ·l back-right) ∙h (front-right ·r g'))) coherence-hexagon : {l : Level} {A : UU l} {x u u' v v' y : A} (α : Id x u) (β : Id u u') (γ : Id u' y) (δ : Id x v) (ε : Id v v') (ζ : Id v' y) → UU l coherence-hexagon α β γ δ ε ζ = Id ((α ∙ β) ∙ γ) (δ ∙ (ε ∙ ζ)) hexagon-rotate-120 : {l : Level} {A : UU l} {x u u' v v' y : A} (α : Id x u) (β : Id u u') (γ : Id u' y) (δ : Id x v) (ε : Id v v') (ζ : Id v' y) → coherence-hexagon α β γ δ ε ζ → coherence-hexagon (inv ε) (inv δ) α ζ (inv γ) (inv β) hexagon-rotate-120 refl refl refl refl refl .refl refl = refl hexagon-rotate-240 : {l : Level} {A : UU l} {x u u' v v' y : A} (α : Id x u) (β : Id u u') (γ : Id u' y) (δ : Id x v) (ε : Id v v') (ζ : Id v' y) → coherence-hexagon α β γ δ ε ζ → coherence-hexagon γ (inv ζ) (inv ε) (inv β) (inv α) δ hexagon-rotate-240 refl refl refl refl refl .refl refl = refl hexagon-mirror-A : {l : Level} {A : UU l} {x u u' v v' y : A} (α : Id x u) (β : Id u u') (γ : Id u' y) (δ : Id x v) (ε : Id v v') (ζ : Id v' y) → coherence-hexagon α β γ δ ε ζ → coherence-hexagon ε ζ (inv γ) (inv δ) α β hexagon-mirror-A refl refl refl refl refl .refl refl = refl hexagon-mirror-B : {l : Level} {A : UU l} {x u u' v v' y : A} (α : Id x u) (β : Id u u') (γ : Id u' y) (δ : Id x v) (ε : Id v v') (ζ : Id v' y) → coherence-hexagon α β γ δ ε ζ → coherence-hexagon (inv α) δ ε β γ (inv ζ) hexagon-mirror-B refl refl refl refl refl .refl refl = refl hexagon-mirror-C : {l : Level} {A : UU l} {x u u' v v' y : A} (α : Id x u) (β : Id u u') (γ : Id u' y) (δ : Id x v) (ε : Id v v') (ζ : Id v' y) → coherence-hexagon α β γ δ ε ζ → coherence-hexagon (inv γ) (inv β) (inv α) (inv ζ) (inv ε) (inv δ) hexagon-mirror-C refl refl refl refl refl .refl refl = refl {- Since the specification of a cube is rather lengthy, we use Agda's parametrized module system in order to avoid having to specify the same variables multiple times. -} module Cubes {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) (c : coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) where {- The symmetry group D_3 acts on a cube. However, the coherence filling a a cube needs to be modified to show that the rotated/reflected cube again commutes. In the following definitions we provide the homotopies witnessing that the rotated/reflected cubes again commute. Note: although in principle it ought to be enough to show this for the generators of the symmetry group D_3, in practice it is more straightforward to just do the work for each of the symmetries separately. One reason is that some of the homotopies witnessing that the faces commute will be inverted as the result of an application of a symmetry. Inverting a homotopy twice results in a new homotopy that is only homotopic to the original homotopy. We first provide some constructions involving homotopies that will help us manipulating coherences of cubes. -} -- We show that a rotation of a commuting cube again commutes. coherence-cube-rotate-120 : coherence-cube hC k' k hD hA f' f hB g' g h' h back-left (htpy-inv back-right) (htpy-inv top) (htpy-inv bottom) (htpy-inv front-left) front-right coherence-cube-rotate-120 a' = ( ap (λ t → t ∙ (ap h (back-left a'))) ( ap (λ t' → t' ∙ inv (bottom (hA a'))) ( ap-inv k (back-right a')))) ∙ ( ( hexagon-rotate-120 ( ap h (back-left a')) ( front-left (f' a')) ( ap hD (top a')) ( bottom (hA a')) ( ap k (back-right a')) ( front-right (g' a')) ( c a')) ∙ ( inv ( ap (λ t → (front-right (g' a')) ∙ t) ( ap (λ t' → t' ∙ inv (front-left (f' a'))) ( ap-inv hD (top a')))))) coherence-cube-rotate-240 : coherence-cube h' hB hD h g' hA hC g f' k' f k (htpy-inv back-right) top (htpy-inv back-left) (htpy-inv front-right) bottom (htpy-inv front-left) coherence-cube-rotate-240 a' = ( ap (λ t → _ ∙ t) (ap-inv k (back-right a'))) ∙ ( ( hexagon-rotate-240 ( ap h (back-left a')) ( front-left (f' a')) ( ap hD (top a')) ( bottom (hA a')) ( ap k (back-right a')) ( front-right (g' a')) ( c a')) ∙ ( inv ( ap ( λ t → inv (front-left (f' a')) ∙ t) ( ap (λ t' → t' ∙ _) (ap-inv h (back-left a')))))) {- We show that a reflection through the plane spanned by the vertices A', A, and D of a commuting cube again commutes. Note: Since the vertices A' and D must always be fixed, the vertex A determines the mirror symmetry. -} coherence-cube-mirror-A : coherence-cube g f k h g' f' k' h' hA hC hB hD (htpy-inv top) back-right back-left front-right front-left (htpy-inv bottom) coherence-cube-mirror-A a' = ( ap (λ t → _ ∙ t) (ap-inv hD (top a'))) ∙ ( hexagon-mirror-A ( ap h (back-left a')) ( front-left (f' a')) ( ap hD (top a')) ( bottom (hA a')) ( ap k (back-right a')) ( front-right (g' a')) ( c a')) coherence-cube-mirror-B : coherence-cube hB h' h hD hA g' g hC f' f k' k back-right (htpy-inv back-left) top bottom (htpy-inv front-right) front-left coherence-cube-mirror-B a' = ( ap (λ t → t ∙ (ap k (back-right a'))) ( ap (λ t → t ∙ _) (ap-inv h (back-left a')))) ∙ ( hexagon-mirror-B ( ap h (back-left a')) ( front-left (f' a')) ( ap hD (top a')) ( bottom (hA a')) ( ap k (back-right a')) ( front-right (g' a')) ( c a')) coherence-cube-mirror-C : coherence-cube k' hC hD k f' hA hB f g' h' g h (htpy-inv back-left) (htpy-inv top) (htpy-inv back-right) (htpy-inv front-left) (htpy-inv bottom) (htpy-inv front-right) coherence-cube-mirror-C a' = ( ap ( λ t → (t ∙ inv (front-left (f' a'))) ∙ (ap h (inv (back-left a')))) ( ap-inv hD (top a'))) ∙ ( ( ap (λ t → _ ∙ t) (ap-inv h (back-left a'))) ∙ ( ( hexagon-mirror-C ( ap h (back-left a')) ( front-left (f' a')) ( ap hD (top a')) ( bottom (hA a')) ( ap k (back-right a')) ( front-right (g' a')) ( c a')) ∙ ( inv ( ap ( λ t → inv (front-right (g' a')) ∙ t) ( ap (λ t' → t' ∙ _) (ap-inv k (back-right a'))))))) open Cubes public rectangle-back-left-front-left-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → ((h ∘ f) ∘ hA) ~ (hD ∘ (h' ∘ f')) rectangle-back-left-front-left-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom = (h ·l back-left) ∙h (front-left ·r f') rectangle-back-right-front-right-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → ((k ∘ g) ∘ hA) ~ (hD ∘ (k' ∘ g')) rectangle-back-right-front-right-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom = (k ·l back-right) ∙h (front-right ·r g') coherence-htpy-square-rectangle-bl-fl-rectangle-br-fr-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) (c : coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → coherence-htpy-square ( bottom) ( htpy-refl' hD) ( pair hA ( pair ( h' ∘ f') ( rectangle-back-left-front-left-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))) ( pair hA ( pair ( k' ∘ g') ( rectangle-back-right-front-right-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))) ( htpy-refl' hA) ( top) coherence-htpy-square-rectangle-bl-fl-rectangle-br-fr-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c = ( λ a' → ( ap ( concat ( rectangle-back-left-front-left-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom a') ( hD (k' (g' a')))) ( right-unit))) ∙h ( c) rectangle-top-front-left-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → ((h ∘ hB) ∘ f') ~ ((hD ∘ k') ∘ g') rectangle-top-front-left-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom = (front-left ·r f') ∙h (hD ·l top) rectangle-back-right-bottom-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → ((h ∘ f) ∘ hA) ~ ((k ∘ hC) ∘ g') rectangle-back-right-bottom-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom = ( bottom ·r hA) ∙h (k ·l back-right) {- coherence-htpy-square-rectangle-top-fl-rectangle-br-bot-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) (c : coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → coherence-htpy-square ( htpy-inv front-right) ( htpy-refl' h) ( pair g' (pair (hB ∘ f') ( htpy-inv (rectangle-top-front-left-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom)))) ( pair g' (pair (f ∘ hA) ( htpy-inv ( rectangle-back-right-bottom-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom)))) ( htpy-refl' g') ( htpy-inv back-left) coherence-htpy-square-rectangle-top-fl-rectangle-br-bot-cube = {!!} -} rectangle-top-front-right-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → ((hD ∘ h') ∘ f') ~ ((k ∘ hC) ∘ g') rectangle-top-front-right-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom = (hD ·l top) ∙h (htpy-inv (front-right) ·r g') rectangle-back-left-bottom-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g))→ ((h ∘ hB) ∘ f') ~ ((k ∘ g) ∘ hA) rectangle-back-left-bottom-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom = (h ·l (htpy-inv back-left)) ∙h (bottom ·r hA) is-pullback-back-left-is-pullback-back-right-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {f : A → B} {g : A → C} {h : B → D} {k : C → D} {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} {f' : A' → B'} {g' : A' → C'} {h' : B' → D'} {k' : C' → D'} {hA : A' → A} {hB : B' → B} {hC : C' → C} {hD : D' → D} (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → (c : coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → is-pullback h hD (pair hB (pair h' front-left)) → is-pullback k hD (pair hC (pair k' front-right)) → is-pullback g hC (pair hA (pair g' back-right)) → is-pullback f hB (pair hA (pair f' back-left)) is-pullback-back-left-is-pullback-back-right-cube {f = f} {g} {h} {k} {f' = f'} {g'} {h'} {k'} {hA = hA} {hB} {hC} {hD} top back-left back-right front-left front-right bottom c is-pb-front-left is-pb-front-right is-pb-back-right = is-pullback-left-square-is-pullback-rectangle f h hD ( pair hB (pair h' front-left)) ( pair hA (pair f' back-left)) ( is-pb-front-left) ( is-pullback-htpy { f = h ∘ f} ( k ∘ g) ( bottom) { g = hD} ( hD) ( htpy-refl) { c = pair hA (pair (h' ∘ f') ( rectangle-back-left-front-left-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))} ( pair hA (pair (k' ∘ g') ( rectangle-back-right-front-right-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))) ( pair ( htpy-refl) ( pair top ( coherence-htpy-square-rectangle-bl-fl-rectangle-br-fr-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c))) ( is-pullback-rectangle-is-pullback-left-square g k hD ( pair hC (pair k' front-right)) ( pair hA (pair g' back-right)) ( is-pb-front-right) ( is-pb-back-right))) is-pullback-back-right-is-pullback-back-left-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {f : A → B} {g : A → C} {h : B → D} {k : C → D} {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} {f' : A' → B'} {g' : A' → C'} {h' : B' → D'} {k' : C' → D'} {hA : A' → A} {hB : B' → B} {hC : C' → C} {hD : D' → D} (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → (c : coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → is-pullback h hD (pair hB (pair h' front-left)) → is-pullback k hD (pair hC (pair k' front-right)) → is-pullback f hB (pair hA (pair f' back-left)) → is-pullback g hC (pair hA (pair g' back-right)) is-pullback-back-right-is-pullback-back-left-cube {f = f} {g} {h} {k} {f' = f'} {g'} {h'} {k'} {hA = hA} {hB} {hC} {hD} top back-left back-right front-left front-right bottom c is-pb-front-left is-pb-front-right is-pb-back-left = is-pullback-left-square-is-pullback-rectangle g k hD ( pair hC (pair k' front-right)) ( pair hA (pair g' back-right)) ( is-pb-front-right) ( is-pullback-htpy' ( h ∘ f) { f' = k ∘ g} ( bottom) ( hD) { g' = hD} ( htpy-refl) ( pair hA (pair (h' ∘ f') ( rectangle-back-left-front-left-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))) { c' = pair hA (pair (k' ∘ g') ( rectangle-back-right-front-right-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))} ( pair ( htpy-refl) ( pair top ( coherence-htpy-square-rectangle-bl-fl-rectangle-br-fr-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c))) ( is-pullback-rectangle-is-pullback-left-square f h hD ( pair hB (pair h' front-left)) ( pair hA (pair f' back-left)) ( is-pb-front-left) ( is-pb-back-left))) descent-is-equiv : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (i : X → Y) (j : Y → Z) (h : C → Z) (c : cone j h B) (d : cone i (pr1 c) A) → is-equiv i → is-equiv (pr1 (pr2 d)) → is-pullback (j ∘ i) h (cone-comp-horizontal i j h c d) → is-pullback j h c descent-is-equiv i j h c d is-equiv-i is-equiv-k is-pb-rectangle = is-pullback-is-fiberwise-equiv-fib-square j h c ( ind-is-equiv ( λ y → is-equiv (fib-square j h c y)) ( i) ( is-equiv-i) ( λ x → is-equiv-left-factor ( fib-square (j ∘ i) h ( cone-comp-horizontal i j h c d) x) ( fib-square j h c (i x)) ( fib-square i (pr1 c) d x) ( fib-square-comp-horizontal i j h c d x) ( is-fiberwise-equiv-fib-square-is-pullback (j ∘ i) h ( cone-comp-horizontal i j h c d) ( is-pb-rectangle) ( x)) ( is-fiberwise-equiv-fib-square-is-pullback i (pr1 c) d ( is-pullback-is-equiv' i (pr1 c) d is-equiv-i is-equiv-k) x))) coherence-htpy-square-is-pullback-bottom-is-pullback-top-cube-is-equiv : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → (c : coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → coherence-htpy-square ( front-left) ( htpy-refl' k) ( pair f' ( pair ( g ∘ hA) ( rectangle-back-left-bottom-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))) ( pair f' ( pair ( hC ∘ g') ( rectangle-top-front-right-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))) ( htpy-refl' f') ( back-right) coherence-htpy-square-is-pullback-bottom-is-pullback-top-cube-is-equiv f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c = ( htpy-inv ( htpy-inv ( htpy-assoc ( h ·l (htpy-inv back-left)) ( bottom ·r hA) ( (k ·l back-right) ∙h (htpy-refl' (k ∘ (hC ∘ g'))))))) ∙h ( ( htpy-ap-concat' ( h ·l (htpy-inv back-left)) ( htpy-inv (h ·l back-left)) ( _) ( htpy-left-whisk-htpy-inv h back-left)) ∙h ( htpy-inv (htpy-inv-con (h ·l back-left) _ _ ( ( ( htpy-inv (htpy-assoc (h ·l back-left) (front-left ·r f') _)) ∙h ( ( htpy-inv ( htpy-assoc ( (h ·l back-left) ∙h (front-left ·r f')) ( hD ·l top) ( (htpy-inv front-right) ·r g'))) ∙h htpy-inv ( htpy-con-inv _ (front-right ·r g') _ ( (htpy-assoc (bottom ·r hA) _ _) ∙h (htpy-inv (c)))))) ∙h ( htpy-inv ( htpy-ap-concat (bottom ·r hA) _ _ htpy-right-unit)))))) is-pullback-bottom-is-pullback-top-cube-is-equiv : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → (c : coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → is-equiv hA → is-equiv hB → is-equiv hC → is-equiv hD → is-pullback h' k' (pair f' (pair g' top)) → is-pullback h k (pair f (pair g bottom)) is-pullback-bottom-is-pullback-top-cube-is-equiv f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c is-equiv-hA is-equiv-hB is-equiv-hC is-equiv-hD is-pb-top = descent-is-equiv hB h k ( pair f (pair g bottom)) ( pair f' (pair hA (htpy-inv (back-left)))) ( is-equiv-hB) ( is-equiv-hA) ( is-pullback-htpy {f = h ∘ hB} ( hD ∘ h') ( front-left) {g = k} ( k) ( htpy-refl' k) { c = pair f' ( pair ( g ∘ hA) ( rectangle-back-left-bottom-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))} ( pair ( f') ( pair ( hC ∘ g') ( rectangle-top-front-right-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))) ( pair ( htpy-refl' f') ( pair ( back-right) ( coherence-htpy-square-is-pullback-bottom-is-pullback-top-cube-is-equiv f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c))) ( is-pullback-rectangle-is-pullback-left-square ( h') ( hD) ( k) ( pair k' (pair hC (htpy-inv front-right))) ( pair f' (pair g' top)) ( is-pullback-is-equiv' hD k ( pair k' (pair hC (htpy-inv front-right))) ( is-equiv-hD) ( is-equiv-hC)) ( is-pb-top))) is-pullback-top-is-pullback-bottom-cube-is-equiv : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → (c : coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → is-equiv hA → is-equiv hB → is-equiv hC → is-equiv hD → is-pullback h k (pair f (pair g bottom)) → is-pullback h' k' (pair f' (pair g' top)) is-pullback-top-is-pullback-bottom-cube-is-equiv f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c is-equiv-hA is-equiv-hB is-equiv-hC is-equiv-hD is-pb-bottom = is-pullback-top-is-pullback-rectangle h hD k' ( pair hB (pair h' front-left)) ( pair f' (pair g' top)) ( is-pullback-is-equiv h hD ( pair hB (pair h' front-left)) is-equiv-hD is-equiv-hB) ( is-pullback-htpy' h htpy-refl (k ∘ hC) front-right ( cone-comp-vertical h k hC ( pair f (pair g bottom)) ( pair hA (pair g' back-right))) { c' = cone-comp-vertical h hD k' ( pair hB (pair h' front-left)) ( pair f' (pair g' top))} ( pair back-left ( pair ( htpy-refl) ( ( ( ( htpy-assoc ( bottom ·r hA) (k ·l back-right) (front-right ·r g')) ∙h ( htpy-inv c)) ∙h ( htpy-assoc ( h ·l back-left) (front-left ·r f') (hD ·l top))) ∙h ( htpy-ap-concat' ( h ·l back-left) ( (h ·l back-left) ∙h htpy-refl) ( (front-left ·r f') ∙h (hD ·l top)) ( htpy-inv htpy-right-unit))))) ( is-pullback-rectangle-is-pullback-top h k hC ( pair f (pair g bottom)) ( pair hA (pair g' back-right)) ( is-pb-bottom) ( is-pullback-is-equiv g hC ( pair hA (pair g' back-right)) is-equiv-hC is-equiv-hA))) is-pullback-front-left-is-pullback-back-right-cube-is-equiv : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → (c : coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → is-equiv f' → is-equiv f → is-equiv k' → is-equiv k → is-pullback g hC (pair hA (pair g' back-right)) → is-pullback h hD (pair hB (pair h' front-left)) is-pullback-front-left-is-pullback-back-right-cube-is-equiv f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c is-equiv-f' is-equiv-f is-equiv-k' is-equiv-k is-pb-back-right = is-pullback-bottom-is-pullback-top-cube-is-equiv hB h' h hD hA g' g hC f' f k' k back-right (htpy-inv back-left) top bottom (htpy-inv front-right) front-left ( coherence-cube-mirror-B f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c) is-equiv-f' is-equiv-f is-equiv-k' is-equiv-k is-pb-back-right is-pullback-front-right-is-pullback-back-left-cube-is-equiv : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → (c : coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → is-equiv g' → is-equiv h' → is-equiv g → is-equiv h → is-pullback f hB (pair hA (pair f' back-left)) → is-pullback k hD (pair hC (pair k' front-right)) is-pullback-front-right-is-pullback-back-left-cube-is-equiv f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c is-equiv-g' is-equiv-h' is-equiv-g is-equiv-h is-pb-back-left = is-pullback-bottom-is-pullback-top-cube-is-equiv hC k' k hD hA f' f hB g' g h' h back-left (htpy-inv back-right) (htpy-inv top) ( htpy-inv bottom) (htpy-inv front-left) front-right ( coherence-cube-rotate-120 f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c) is-equiv-g' is-equiv-g is-equiv-h' is-equiv-h is-pb-back-left -- Section 15.2 Fiberwise pullbacks. {- We show that if we have a square of families, such that the base square is a pullback square, then each square of fibers is a pullback square if and only if the square of total spaces is a pullback square. -} cone-family : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {X : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (PX : X → UU l5) {PA : A → UU l6} {PB : B → UU l7} {f : A → X} {g : B → X} → (f' : (a : A) → PA a → PX (f a)) (g' : (b : B) → PB b → PX (g b)) → cone f g C → (C → UU l8) → UU (l4 ⊔ (l5 ⊔ (l6 ⊔ (l7 ⊔ l8)))) cone-family {C = C} PX f' g' c PC = (x : C) → cone ((tr PX (pr2 (pr2 c) x)) ∘ (f' (pr1 c x))) (g' (pr1 (pr2 c) x)) (PC x) htpy-toto : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {P : A → UU l3} (Q : B → UU l4) {f f' : A → B} (H : f ~ f') (g : (x : A) → P x → Q (f x)) {g' : (x : A) → P x → Q (f' x)} (K : (x : A) → ((tr Q (H x)) ∘ (g x)) ~ (g' x)) → (toto Q f g) ~ (toto Q f' g') htpy-toto Q H g K t = eq-pair (H (pr1 t)) (K (pr1 t) (pr2 t)) tot-cone-cone-family : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {X : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (PX : X → UU l5) {PA : A → UU l6} {PB : B → UU l7} {PC : C → UU l8} {f : A → X} {g : B → X} → (f' : (a : A) → PA a → PX (f a)) (g' : (b : B) → PB b → PX (g b)) → (c : cone f g C) → cone-family PX f' g' c PC → cone (toto PX f f') (toto PX g g') (Σ C PC) tot-cone-cone-family PX f' g' c c' = pair ( toto _ (pr1 c) (λ x → pr1 (c' x))) ( pair ( toto _ (pr1 (pr2 c)) (λ x → (pr1 (pr2 (c' x))))) ( htpy-toto PX ( pr2 (pr2 c)) ( λ z → (f' (pr1 c z)) ∘ (pr1 (c' z))) ( λ z → pr2 (pr2 (c' z))))) map-canpb-tot-cone-cone-fam-right-factor : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {X : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (PX : X → UU l5) {PA : A → UU l6} {PB : B → UU l7} {PC : C → UU l8} {f : A → X} {g : B → X} → (f' : (a : A) → PA a → PX (f a)) (g' : (b : B) → PB b → PX (g b)) → (c : cone f g C) (c' : cone-family PX f' g' c PC) → Σ ( canonical-pullback f g) ( λ t → canonical-pullback ((tr PX (π₃ t)) ∘ (f' (π₁ t))) (g' (π₂ t))) → Σ ( Σ A PA) ( λ aa' → Σ (Σ B (λ b → Id (f (pr1 aa')) (g b))) ( λ bα → Σ (PB (pr1 bα)) ( λ b' → Id ( tr PX (pr2 bα) (f' (pr1 aa') (pr2 aa'))) ( g' (pr1 bα) b')))) map-canpb-tot-cone-cone-fam-right-factor {X = X} {A} {B} {C} PX {PA} {PB} {PC} {f} {g} f' g' c c' = swap-total-Eq-structure ( λ a → Σ B (λ b → Id (f a) (g b))) ( PA) ( λ a bα a' → Σ (PB (pr1 bα)) ( λ b' → Id (tr PX (pr2 bα) (f' a a')) (g' (pr1 bα) b'))) map-canpb-tot-cone-cone-fam-left-factor : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {X : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (PX : X → UU l5) {PA : A → UU l6} {PB : B → UU l7} {PC : C → UU l8} {f : A → X} {g : B → X} → (f' : (a : A) → PA a → PX (f a)) (g' : (b : B) → PB b → PX (g b)) → (c : cone f g C) (c' : cone-family PX f' g' c PC) → (aa' : Σ A PA) → Σ (Σ B (λ b → Id (f (pr1 aa')) (g b))) ( λ bα → Σ (PB (pr1 bα)) ( λ b' → Id ( tr PX (pr2 bα) (f' (pr1 aa') (pr2 aa'))) ( g' (pr1 bα) b'))) → Σ ( Σ B PB) ( λ bb' → Σ (Id (f (pr1 aa')) (g (pr1 bb'))) ( λ α → Id (tr PX α (f' (pr1 aa') (pr2 aa'))) (g' (pr1 bb') (pr2 bb')))) map-canpb-tot-cone-cone-fam-left-factor {X = X} {A} {B} {C} PX {PA} {PB} {PC} {f} {g} f' g' c c' aa' = ( swap-total-Eq-structure ( λ b → Id (f (pr1 aa')) (g b)) ( PB) ( λ b α b' → Id (tr PX α (f' (pr1 aa') (pr2 aa'))) (g' b b'))) map-canonical-pullback-tot-cone-cone-family : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {X : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (PX : X → UU l5) {PA : A → UU l6} {PB : B → UU l7} {PC : C → UU l8} {f : A → X} {g : B → X} → (f' : (a : A) → PA a → PX (f a)) (g' : (b : B) → PB b → PX (g b)) → (c : cone f g C) (c' : cone-family PX f' g' c PC) → Σ ( canonical-pullback f g) ( λ t → canonical-pullback ((tr PX (π₃ t)) ∘ (f' (π₁ t))) (g' (π₂ t))) → canonical-pullback (toto PX f f') (toto PX g g') map-canonical-pullback-tot-cone-cone-family {X = X} {A} {B} {C} PX {PA} {PB} {PC} {f} {g} f' g' c c' = ( tot (λ aa' → ( tot (λ bb' → eq-pair')) ∘ ( map-canpb-tot-cone-cone-fam-left-factor PX f' g' c c' aa'))) ∘ ( map-canpb-tot-cone-cone-fam-right-factor PX f' g' c c') is-equiv-map-canonical-pullback-tot-cone-cone-family : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {X : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (PX : X → UU l5) {PA : A → UU l6} {PB : B → UU l7} {PC : C → UU l8} {f : A → X} {g : B → X} → (f' : (a : A) → PA a → PX (f a)) (g' : (b : B) → PB b → PX (g b)) → (c : cone f g C) (c' : cone-family PX f' g' c PC) → is-equiv (map-canonical-pullback-tot-cone-cone-family PX f' g' c c') is-equiv-map-canonical-pullback-tot-cone-cone-family {X = X} {A} {B} {C} PX {PA} {PB} {PC} {f} {g} f' g' c c' = is-equiv-comp ( map-canonical-pullback-tot-cone-cone-family PX f' g' c c') ( tot (λ aa' → ( tot (λ bb' → eq-pair')) ∘ ( map-canpb-tot-cone-cone-fam-left-factor PX f' g' c c' aa'))) ( map-canpb-tot-cone-cone-fam-right-factor PX f' g' c c') ( htpy-refl) ( is-equiv-swap-total-Eq-structure ( λ a → Σ B (λ b → Id (f a) (g b))) ( PA) ( λ a bα a' → Σ (PB (pr1 bα)) ( λ b' → Id (tr PX (pr2 bα) (f' a a')) (g' (pr1 bα) b')))) ( is-equiv-tot-is-fiberwise-equiv (λ aa' → is-equiv-comp ( ( tot (λ bb' → eq-pair')) ∘ ( map-canpb-tot-cone-cone-fam-left-factor PX f' g' c c' aa')) ( tot (λ bb' → eq-pair')) ( map-canpb-tot-cone-cone-fam-left-factor PX f' g' c c' aa') ( htpy-refl) ( is-equiv-swap-total-Eq-structure _ _ _) ( is-equiv-tot-is-fiberwise-equiv (λ bb' → is-equiv-eq-pair ( pair (f (pr1 aa')) (f' (pr1 aa') (pr2 aa'))) ( pair (g (pr1 bb')) (g' (pr1 bb') (pr2 bb'))))))) triangle-canonical-pullback-tot-cone-cone-family : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {X : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (PX : X → UU l5) {PA : A → UU l6} {PB : B → UU l7} {PC : C → UU l8} {f : A → X} {g : B → X} → (f' : (a : A) → PA a → PX (f a)) (g' : (b : B) → PB b → PX (g b)) → (c : cone f g C) (c' : cone-family PX f' g' c PC) → ( gap (toto PX f f') (toto PX g g') (tot-cone-cone-family PX f' g' c c')) ~ ( ( map-canonical-pullback-tot-cone-cone-family PX f' g' c c') ∘ ( toto _ ( gap f g c) ( λ x → gap ( (tr PX (pr2 (pr2 c) x)) ∘ (f' (pr1 c x))) ( g' (pr1 (pr2 c) x)) ( c' x)))) triangle-canonical-pullback-tot-cone-cone-family PX f' g' c c' (pair x y) = refl is-pullback-family-is-pullback-tot : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {X : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (PX : X → UU l5) {PA : A → UU l6} {PB : B → UU l7} {PC : C → UU l8} {f : A → X} {g : B → X} → (f' : (a : A) → PA a → PX (f a)) (g' : (b : B) → PB b → PX (g b)) → (c : cone f g C) (c' : cone-family PX f' g' c PC) → is-pullback f g c → is-pullback (toto PX f f') (toto PX g g') (tot-cone-cone-family PX f' g' c c') → (x : C) → is-pullback ( (tr PX (pr2 (pr2 c) x)) ∘ (f' (pr1 c x))) ( g' (pr1 (pr2 c) x)) ( c' x) is-pullback-family-is-pullback-tot PX {PA} {PB} {PC} {f} {g} f' g' c c' is-pb-c is-pb-tot = is-fiberwise-equiv-is-equiv-toto-is-equiv-base-map _ ( gap f g c) ( λ x → gap ( (tr PX (pr2 (pr2 c) x)) ∘ (f' (pr1 c x))) ( g' (pr1 (pr2 c) x)) ( c' x)) ( is-pb-c) ( is-equiv-right-factor ( gap (toto PX f f') (toto PX g g') (tot-cone-cone-family PX f' g' c c')) ( map-canonical-pullback-tot-cone-cone-family PX f' g' c c') ( toto _ ( gap f g c) ( λ x → gap ( (tr PX (pr2 (pr2 c) x)) ∘ (f' (pr1 c x))) ( g' (pr1 (pr2 c) x)) ( c' x))) ( triangle-canonical-pullback-tot-cone-cone-family PX f' g' c c') ( is-equiv-map-canonical-pullback-tot-cone-cone-family PX f' g' c c') ( is-pb-tot)) is-pullback-tot-is-pullback-family : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {X : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (PX : X → UU l5) {PA : A → UU l6} {PB : B → UU l7} {PC : C → UU l8} {f : A → X} {g : B → X} → (f' : (a : A) → PA a → PX (f a)) (g' : (b : B) → PB b → PX (g b)) → (c : cone f g C) (c' : cone-family PX f' g' c PC) → is-pullback f g c → ( (x : C) → is-pullback ( (tr PX (pr2 (pr2 c) x)) ∘ (f' (pr1 c x))) ( g' (pr1 (pr2 c) x)) ( c' x)) → is-pullback (toto PX f f') (toto PX g g') (tot-cone-cone-family PX f' g' c c') is-pullback-tot-is-pullback-family PX {PA} {PB} {PC} {f} {g} f' g' c c' is-pb-c is-pb-c' = is-equiv-comp ( gap (toto PX f f') (toto PX g g') (tot-cone-cone-family PX f' g' c c')) ( map-canonical-pullback-tot-cone-cone-family PX f' g' c c') ( toto _ ( gap f g c) ( λ x → gap ( (tr PX (pr2 (pr2 c) x)) ∘ (f' (pr1 c x))) ( g' (pr1 (pr2 c) x)) ( c' x))) ( triangle-canonical-pullback-tot-cone-cone-family PX f' g' c c') ( is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map _ ( gap f g c) ( λ x → gap ( (tr PX (pr2 (pr2 c) x)) ∘ (f' (pr1 c x))) ( g' (pr1 (pr2 c) x)) ( c' x)) ( is-pb-c) ( is-pb-c')) ( is-equiv-map-canonical-pullback-tot-cone-cone-family PX f' g' c c') {- We show that identity types commute with pullbacks. -} cone-ap : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) (c1 c2 : C) → let p = pr1 c q = pr1 (pr2 c) H = pr2 (pr2 c) in cone ( λ (α : Id (p c1) (p c2)) → (ap f α) ∙ (H c2)) ( λ (β : Id (q c1) (q c2)) → (H c1) ∙ (ap g β)) ( Id c1 c2) cone-ap f g (pair p (pair q H)) c1 c2 = pair ( ap p) ( pair ( ap q) ( λ γ → ( ap (λ t → t ∙ (H c2)) (inv (ap-comp f p γ))) ∙ ( ( inv (htpy-nat H γ)) ∙ ( ap (λ t → (H c1) ∙ t) (ap-comp g q γ))))) tr-id-right : {l1 : Level} {A : UU l1} {a b c : A} (q : Id b c) (p : Id a b) → Id (tr (λ y → Id a y) q p) (p ∙ q) tr-id-right refl refl = refl cone-ap' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) (c1 c2 : C) → let p = pr1 c q = pr1 (pr2 c) H = pr2 (pr2 c) in cone ( λ (α : Id (p c1) (p c2)) → tr (λ t → Id (f (p c1)) t) (H c2) (ap f α)) ( λ (β : Id (q c1) (q c2)) → (H c1) ∙ (ap g β)) ( Id c1 c2) cone-ap' f g (pair p (pair q H)) c1 c2 = pair ( ap p) ( pair ( ap q) ( λ γ → ( tr-id-right (H c2) (ap f (ap p γ))) ∙ ( ( ap (λ t → t ∙ (H c2)) (inv (ap-comp f p γ))) ∙ ( ( inv (htpy-nat H γ)) ∙ ( ap (λ t → (H c1) ∙ t) (ap-comp g q γ)))))) is-pullback-cone-ap : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback f g c → (c1 c2 : C) → let p = pr1 c q = pr1 (pr2 c) H = pr2 (pr2 c) in is-pullback ( λ (α : Id (p c1) (p c2)) → (ap f α) ∙ (H c2)) ( λ (β : Id (q c1) (q c2)) → (H c1) ∙ (ap g β)) ( cone-ap f g c c1 c2) is-pullback-cone-ap f g (pair p (pair q H)) is-pb-c c1 c2 = is-pullback-htpy' ( λ α → tr (λ x → Id (f (p c1)) x) (H c2) (ap f α)) ( λ α → tr-id-right (H c2) (ap f α)) ( λ β → (H c1) ∙ (ap g β)) ( htpy-refl) ( cone-ap' f g (pair p (pair q H)) c1 c2) { c' = cone-ap f g (pair p (pair q H)) c1 c2} ( pair htpy-refl (pair htpy-refl htpy-right-unit)) ( is-pullback-family-is-pullback-tot ( λ x → Id (f (p c1)) x) ( λ a → ap f {x = p c1} {y = a}) ( λ b β → (H c1) ∙ (ap g β)) ( pair p (pair q H)) ( cone-ap' f g (pair p (pair q H)) c1) ( is-pb-c) ( is-pullback-is-equiv ( toto _ f (λ a α → ap f α)) ( toto _ g (λ b β → (H c1) ∙ (ap g β))) ( tot-cone-cone-family ( Id (f (p c1))) ( λ a → ap f) ( λ b β → (H c1) ∙ (ap g β)) ( pair p (pair q H)) ( cone-ap' f g (pair p (pair q H)) c1)) ( is-equiv-is-contr _ ( is-contr-total-path (q c1)) ( is-contr-total-path (f (p c1)))) ( is-equiv-is-contr _ ( is-contr-total-path c1) ( is-contr-total-path (p c1)))) ( c2)) {- Next we show that for any commuting cube, if the bottom and top squares are pullback squares, then so is the square of fibers of the vertical maps in cube. -} {- square-fib-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → (c : coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → (a : A) → ( ( tot (λ d' p → p ∙ (bottom a)) ∘ ( fib-square h hD (pair hB (pair h' front-left)) (f a))) ∘ ( fib-square f hB (pair hA (pair f' back-left)) a)) ~ ( ( fib-square k hD (pair hC (pair k' front-right)) (g a)) ∘ ( fib-square g hC (pair hA (pair g' back-right)) a)) square-fib-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c .(hA a') (pair a' refl) = eq-pair ( pair ( top a') ( ( tr-id-left-subst ( top a') ( k (g (hA a'))) ( ( ( inv (front-left (f' a'))) ∙ ( ap h ((inv (back-left a')) ∙ refl))) ∙ ( bottom (hA a')))) ∙ ( ( ( assoc (inv (ap hD (top a'))) _ (bottom (hA a'))) ∙ {!!}) ∙ ( distributive-inv-concat (ap k (back-right a')) (front-right (g' a')) ∙ ( ( ap ( concat (inv (front-right (g' a'))) ?) ( inv (ap-inv k (back-right a')))) ∙ ( ap ( concat (inv (front-right (g' a'))) ?) ( ap (ap k) (inv right-unit)))))))) -}
38.61312
141
0.482303
12b37d9c29d3ed147e74cbf6e28996aee663280e
10,535
agda
Agda
Cubical/Talks/EPA2020.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Talks/EPA2020.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Talks/EPA2020.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{- Cubical Agda - A Dependently Typed PL with Univalence and HITs ============================================================== Anders Mörtberg Every Proof Assistant - September 17, 2020 Link to slides: https://staff.math.su.se/anders.mortberg/slides/EPA2020.pdf Link to video: https://vimeo.com/459020971 -} -- To make Agda cubical add the following options {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Talks.EPA2020 where -- The "Foundations" package contain a lot of important results (in -- particular the univalence theorem) open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Data.Int open import Cubical.Data.Prod.Base -- The interval in Cubical Agda is written I and the endpoints i0 and i1. apply0 : (A : Type) (p : I → A) → A apply0 A p = p i0 -- We omit the universe level ℓ for simplicity in this talk. In the -- library everything is maximally universe polymorphic. -- We can write functions out of the interval using λ-abstraction: refl' : {A : Type} (x : A) → x ≡ x refl' x = λ i → x -- In fact, x ≡ y is short for PathP (λ _ → A) x y refl'' : {A : Type} (x : A) → PathP (λ _ → A) x x refl'' x = λ _ → x -- In general PathP A x y has A : I → Type, x : A i0 and y : A i1 -- PathP = Dependent paths (Path over a Path) -- We cannot pattern-match on interval variables as I is not inductively defined -- foo : {A : Type} → I → A -- foo r = {!r!} -- Try typing C-c C-c -- cong has a direct proof cong' : {A B : Type} (f : A → B) {x y : A} → x ≡ y → f x ≡ f y cong' f p i = f (p i) -- function extensionality also has a direct proof. -- It also has computational content: swap the arguments. funExt' : {A B : Type} {f g : A → B} (p : (x : A) → f x ≡ g x) → f ≡ g funExt' p i x = p x i -- Transport is more complex as ≡ isn't inductively defined (so we -- can't define it by pattern-matching on p) transport' : {A B : Type} → A ≡ B → A → B transport' p a = transp (λ i → p i) i0 a -- This lets us define subst (which is called "transport" in the HoTT book) subst' : {A : Type} (P : A → Type) {x y : A} (p : x ≡ y) → P x → P y subst' P p pa = transport (λ i → P (p i)) pa -- The transp operation reduces differently for different types -- formers. For paths it reduces to another primitive operation called -- hcomp. -- We can also define the J eliminator (aka path induction) J' : {A : Type} {B : A → Type} {x : A} (P : (z : A) → x ≡ z → Type) (d : P x refl) {y : A} (p : x ≡ y) → P y p J' P d p = transport (λ i → P (p i) (λ j → p (i ∧ j))) d -- So J is provable, but it doesn't satisfy computation rule -- definitionally. This is almost never a problem in practice as the -- cubical primitives satisfy many new definitional equalities. -- Another key concept in HoTT/UF is the Univalence Axiom. In Cubical -- Agda this is provable, we hence refer to it as the Univalence -- Theorem. -- The univalence theorem: equivalences of types give paths of types ua' : {A B : Type} → A ≃ B → A ≡ B ua' = ua -- Any isomorphism of types gives rise to an equivalence isoToEquiv' : {A B : Type} → Iso A B → A ≃ B isoToEquiv' = isoToEquiv -- And hence to a path isoToPath' : {A B : Type} → Iso A B → A ≡ B isoToPath' e = ua' (isoToEquiv' e) -- ua satisfies the following computation rule -- This suffices to be able to prove the standard formulation of univalence. uaβ' : {A B : Type} (e : A ≃ B) (x : A) → transport (ua' e) x ≡ fst e x uaβ' e x = transportRefl (equivFun e x) -- Time for an example! -- Booleans data Bool : Type where false true : Bool not : Bool → Bool not false = true not true = false notPath : Bool ≡ Bool notPath = isoToPath' (iso not not rem rem) where rem : (b : Bool) → not (not b) ≡ b rem false = refl rem true = refl _ : transport notPath true ≡ false _ = refl -- Another example, integers: sucPath : Int ≡ Int sucPath = isoToPath' (iso sucInt predInt sucPred predSuc) _ : transport sucPath (pos 0) ≡ pos 1 _ = refl _ : transport (sucPath ∙ sucPath) (pos 0) ≡ pos 2 _ = refl _ : transport (sym sucPath) (pos 0) ≡ negsuc 0 _ = refl ----------------------------------------------------------------------------- -- Higher inductive types -- The following definition of finite multisets is due to Vikraman -- Choudhury and Marcelo Fiore. infixr 5 _∷_ data FMSet (A : Type) : Type where [] : FMSet A _∷_ : (x : A) → (xs : FMSet A) → FMSet A comm : (x y : A) (xs : FMSet A) → x ∷ y ∷ xs ≡ y ∷ x ∷ xs -- trunc : (xs ys : FMSet A) (p q : xs ≡ ys) → p ≡ q -- We need to add the trunc constructor for FMSets to be sets, omitted -- here for simplicity. _++_ : ∀ {A : Type} (xs ys : FMSet A) → FMSet A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ xs ++ ys comm x y xs i ++ ys = comm x y (xs ++ ys) i -- trunc xs zs p q i j ++ ys = -- trunc (xs ++ ys) (zs ++ ys) (cong (_++ ys) p) (cong (_++ ys) q) i j unitr-++ : {A : Type} (xs : FMSet A) → xs ++ [] ≡ xs unitr-++ [] = refl unitr-++ (x ∷ xs) = cong (x ∷_) (unitr-++ xs) unitr-++ (comm x y xs i) j = comm x y (unitr-++ xs j) i -- unitr-++ (trunc xs ys x y i j) = {!!} -- This is a special case of set quotients! Very useful for -- programming and set level mathematics data _/_ (A : Type) (R : A → A → Type) : Type where [_] : A → A / R eq/ : (a b : A) → R a b → [ a ] ≡ [ b ] trunc : (a b : A / R) (p q : a ≡ b) → p ≡ q -- Proving that they are effective ((a b : A) → [ a ] ≡ [ b ] → R a b) -- requires univalence for propositions. ------------------------------------------------------------------------- -- Topological examples of things that are not sets -- We can define the circle as the following simple data declaration: data S¹ : Type where base : S¹ loop : base ≡ base -- We can write functions on S¹ using pattern-matching equations: double : S¹ → S¹ double base = base double (loop i) = (loop ∙ loop) i helix : S¹ → Type helix base = Int helix (loop i) = sucPathInt i ΩS¹ : Type ΩS¹ = base ≡ base winding : ΩS¹ → Int winding p = subst helix p (pos 0) _ : winding (λ i → double ((loop ∙ loop) i)) ≡ pos 4 _ = refl -- We can define the Torus as: data Torus : Type where point : Torus line1 : point ≡ point line2 : point ≡ point square : PathP (λ i → line1 i ≡ line1 i) line2 line2 -- And prove that it is equivalent to two circle: t2c : Torus → S¹ × S¹ t2c point = (base , base) t2c (line1 i) = (loop i , base) t2c (line2 j) = (base , loop j) t2c (square i j) = (loop i , loop j) c2t : S¹ × S¹ → Torus c2t (base , base) = point c2t (loop i , base) = line1 i c2t (base , loop j) = line2 j c2t (loop i , loop j) = square i j c2t-t2c : (t : Torus) → c2t (t2c t) ≡ t c2t-t2c point = refl c2t-t2c (line1 _) = refl c2t-t2c (line2 _) = refl c2t-t2c (square _ _) = refl t2c-c2t : (p : S¹ × S¹) → t2c (c2t p) ≡ p t2c-c2t (base , base) = refl t2c-c2t (base , loop _) = refl t2c-c2t (loop _ , base) = refl t2c-c2t (loop _ , loop _) = refl -- Using univalence we get the following equality: Torus≡S¹×S¹ : Torus ≡ S¹ × S¹ Torus≡S¹×S¹ = isoToPath' (iso t2c c2t t2c-c2t c2t-t2c) windingTorus : point ≡ point → Int × Int windingTorus l = ( winding (λ i → proj₁ (t2c (l i))) , winding (λ i → proj₂ (t2c (l i)))) _ : windingTorus (line1 ∙ sym line2) ≡ (pos 1 , negsuc 0) _ = refl -- We have many more topological examples, including Klein bottle, RP^n, -- higher spheres, suspensions, join, wedges, smash product: open import Cubical.HITs.KleinBottle open import Cubical.HITs.RPn open import Cubical.HITs.S2 open import Cubical.HITs.S3 open import Cubical.HITs.Susp open import Cubical.HITs.Join open import Cubical.HITs.Wedge open import Cubical.HITs.SmashProduct -- There's also a proof of the "3x3 lemma" for pushouts in less than -- 200LOC. In HoTT-Agda this took about 3000LOC. For details see: -- https://github.com/HoTT/HoTT-Agda/tree/master/theorems/homotopy/3x3 open import Cubical.HITs.Pushout -- We also defined the Hopf fibration and proved that its total space -- is S³ in about 300LOC: open import Cubical.HITs.Hopf -- There is also some integer cohomology: open import Cubical.ZCohomology.Everything -- To compute cohomology groups of various spaces we need a bunch of -- interesting theorems: Freudenthal suspension theorem, -- Mayer-Vietoris sequence... open import Cubical.Homotopy.Freudenthal open import Cubical.ZCohomology.MayerVietorisUnreduced ------------------------------------------------------------------------- -- The structure identity principle -- A more efficient version of finite multisets based on association lists open import Cubical.HITs.AssocList.Base -- data AssocList (A : Type) : Type where -- ⟨⟩ : AssocList A -- ⟨_,_⟩∷_ : (a : A) (n : ℕ) (xs : AssocList A) → AssocList A -- per : (a b : A) (m n : ℕ) (xs : AssocList A) -- → ⟨ a , m ⟩∷ ⟨ b , n ⟩∷ xs ≡ ⟨ b , n ⟩∷ ⟨ a , m ⟩∷ xs -- agg : (a : A) (m n : ℕ) (xs : AssocList A) -- → ⟨ a , m ⟩∷ ⟨ a , n ⟩∷ xs ≡ ⟨ a , m + n ⟩∷ xs -- del : (a : A) (xs : AssocList A) → ⟨ a , 0 ⟩∷ xs ≡ xs -- trunc : (xs ys : AssocList A) (p q : xs ≡ ys) → p ≡ q -- Programming and proving is more complicated with AssocList compared -- to FMSet. This kind of example occurs everywhere in programming and -- mathematics: one representation is easier to work with, but not -- efficient, while another is efficient but difficult to work with. -- Solution: substitute using univalence substIso : {A B : Type} (P : Type → Type) (e : Iso A B) → P A → P B substIso P e = subst P (isoToPath e) -- Can transport for example Monoid structure from FMSet to AssocList -- this way, but the achieved Monoid structure is not very efficient -- to work with. A better solution is to prove that FMSet and -- AssocList are equal *as monoids*, but how to do this? -- Solution: structure identity principle (SIP) -- This is a very useful consequence of univalence open import Cubical.Foundations.SIP sip' : {ℓ : Level} {S : Type ℓ → Type ℓ} {ι : StrEquiv S ℓ} (θ : UnivalentStr S ι) (A B : TypeWithStr ℓ S) → A ≃[ ι ] B → A ≡ B sip' = sip -- The tricky thing is to prove that (S,ι) is a univalent structure. -- Luckily we provide automation for this in the library, see for example: open import Cubical.Algebra.Monoid.Base -- Another cool application of the SIP: matrices represented as -- functions out of pairs of Fin's and vectors are equal as abelian -- groups: open import Cubical.Algebra.Matrix -- The end, back to slides!
30.804094
80
0.628761
29455105466e2c0710751d67a7c71130f1da17c3
2,005
agda
Agda
src/parse-test.agda
xoltar/cedille
acf691e37210607d028f4b19f98ec26c4353bfb5
[ "MIT" ]
null
null
null
src/parse-test.agda
xoltar/cedille
acf691e37210607d028f4b19f98ec26c4353bfb5
[ "MIT" ]
null
null
null
src/parse-test.agda
xoltar/cedille
acf691e37210607d028f4b19f98ec26c4353bfb5
[ "MIT" ]
null
null
null
module parse-test where import parse open import lib open import cedille-types import cedille module parsem = parse cedille.gratr2-nt ptr open parsem open parsem.pnoderiv cedille.rrs cedille.cedille-rtn open import run ptr open noderiv {- from run.agda -} process-start : start → string process-start s = "" process : Run → string process (ParseTree (parsed-start p) :: []) = process-start p process r = "Parsing failure (run with -" ^ "-showParsed).\n" putStrRunIf : 𝔹 → Run → IO ⊤ putStrRunIf tt r = putStr (Run-to-string r) >> putStr "\n" putStrRunIf ff r = return triv parse-specific-nt : cedille.gratr2-nt → ℕ → (lc : 𝕃 char) → 𝕃 char ⊎ Run parse-specific-nt nt starting-char-position lc with parse-filter lc lc [] [] (cedille.cedille-start nt) inj₁ ...| inj₁ left = inj₁ left ...| inj₂ run = inj₂ (re-to-run starting-char-position (reverse run)) processArgs : (showRun : 𝔹) → (showParsed : 𝔹) → 𝕃 string → IO ⊤ processArgs showRun showParsed (input-filename :: []) = (readFiniteFile input-filename) >>= processText where processText : string → IO ⊤ processText x with parse-specific-nt cedille._type 10 (string-to-𝕃char x) processText x | s with s processText x | s | inj₁ cs = putStr "Characters left before failure : " >> putStr (𝕃char-to-string cs) >> putStr "\nCannot proceed to parsing.\n" processText x | s | inj₂ r with putStrRunIf showRun r | rewriteRun r processText x | s | inj₂ r | sr | r' with putStrRunIf showParsed r' processText x | s | inj₂ r | sr | r' | sr' = sr >> sr' >> putStr (process r') processArgs showRun showParsed ("--showRun" :: xs) = processArgs tt showParsed xs processArgs showRun showParsed ("--showParsed" :: xs) = processArgs showRun tt xs processArgs showRun showParsed (x :: xs) = putStr ("Unknown option " ^ x ^ "\n") processArgs showRun showParsed [] = putStr "Please run with the name of a file to process.\n" main : IO ⊤ main = getArgs >>= processArgs ff ff
41.770833
154
0.675312
2264bf341c01cdbea16439a39a0dfe442543fbc4
323
agda
Agda
Base/Core.agda
DDOtten/M-types
5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369
[ "MIT" ]
null
null
null
Base/Core.agda
DDOtten/M-types
5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369
[ "MIT" ]
null
null
null
Base/Core.agda
DDOtten/M-types
5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} module M-types.Base.Core where open import Agda.Primitive public using (Level) renaming ( lzero to ℓ-zero ; lsuc to ℓ-suc ; _⊔_ to ℓ-max ) variable ℓ ℓ₀ ℓ₁ ℓ₂ : Level Ty : (ℓ : Level) → Set (ℓ-suc ℓ) Ty ℓ = Set ℓ
17
60
0.495356
a19764406c331675c9e58b0335dbcfb8042fedb3
1,866
agda
Agda
test/Succeed/Erasure-succeed-Issue3855.agda
hborum/agda
aac88412199dd4cbcb041aab499d8a6b7e3f4a2e
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Erasure-succeed-Issue3855.agda
hborum/agda
aac88412199dd4cbcb041aab499d8a6b7e3f4a2e
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Erasure-succeed-Issue3855.agda
hborum/agda
aac88412199dd4cbcb041aab499d8a6b7e3f4a2e
[ "BSD-3-Clause" ]
1
2021-04-01T18:30:09.000Z
2021-04-01T18:30:09.000Z
-- Andreas, 2019-06-18, LAIM 2019, issue #3855: -- Successful tests for the erasure (@0) modality. module _ where open import Agda.Builtin.Bool open import Agda.Builtin.Nat open import Agda.Builtin.Equality open import Agda.Builtin.Coinduction open import Common.IO module WhereInErasedDeclaration where @0 n : Nat n = 4711 @0 m : Nat m = n' where n' = n module ErasedDeclarationInWhere where F : (G : @0 Set → Set) (@0 A : Set) → Set F G A = G B where @0 B : Set B = A module FlatErasure where @0 resurrect-λ : (A : Set) (@0 x : A) → A resurrect-λ A = λ x → x @0 resurrect-λ-where : (A : Set) (@0 x : A) → A resurrect-λ-where A = λ where x → x @0 resurrect-app : (A : Set) (@0 x : A) → A resurrect-app A x = x module ErasedEquality where -- Should maybe not work --without-K -- should definitely not work in --cubical cast : ∀{A B : Set} → @0 A ≡ B → A → B cast refl x = x J : ∀{A : Set} {a : A} (P : (x : A) → a ≡ x → Set) {b : A} (@0 eq : a ≡ b) → P a refl → P b eq J P refl p = p module ParametersAreErased where test : (@0 A : Set) → A ≡ A test A = refl {x = _} -- TODO: A instead of _ module Records where record R (A : Set) : Set where field el : A Par : Set Par = A -- record module parameters are NOT erased, so, this should be accepted proj : (A : Set) → R A → A -- TODO: @0 A instead of A proj A r = R.el {A = _} r MyPar : (A : Set) → R A → Set MyPar A = R.Par {A = A} record RB (b : Bool) : Set where bPar : Bool bPar = b myBPar : (b : Bool) → RB b → Bool myBPar b r = RB.bPar {b = b} r module CoinductionWithErasure (A : Set) where data Stream : Set where cons : (x : A) (xs : ∞ Stream) → Stream @0 repeat : (@0 a : A) → Stream repeat a = cons a (♯ (repeat a)) main = putStrLn "Hello, world!"
20.966292
86
0.571811
c74cfbe9477a23d35887b5d00786da5c0353a369
3,934
agda
Agda
src/Data/Graph/Path/Search.agda
kcsmnt0/graph
0196cf8a136a4933cd6358e4c9692aaf919ca603
[ "MIT" ]
null
null
null
src/Data/Graph/Path/Search.agda
kcsmnt0/graph
0196cf8a136a4933cd6358e4c9692aaf919ca603
[ "MIT" ]
null
null
null
src/Data/Graph/Path/Search.agda
kcsmnt0/graph
0196cf8a136a4933cd6358e4c9692aaf919ca603
[ "MIT" ]
null
null
null
open import Data.Graph module Data.Graph.Path.Search {ℓᵥ ℓₑ} (g : FiniteGraph ℓᵥ ℓₑ) where open import Data.Graph.Path.Cut g open import Data.Graph.Path.Finite g open import Data.Product as Σ open import Data.Sum as ⊎ open import Data.Vec as Vec open import Finite open import Function open import Level open import Relation.Binary open import Relation.Binary.Construct.Closure.ReflexiveTransitive open import Relation.Binary.PropositionalEquality open import Relation.Nullary hiding (module Dec) open import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Negation as ¬ open FiniteGraph g open IsFinite pathSearchFrom : ∀ {ℓ} {P : Vertex → Set ℓ} → (∀ b → Dec (P b)) → ∀ a → Dec (∃ λ b → P b × ∃ (Path a b)) pathSearchFrom P? a = case ∃? (Path≤-finite (size vertexFinite) a) (P? ∘ proj₁) of λ where (yes ((_ , _ , _ , p) , pb)) → yes (-, pb , (-, p)) (no ¬p) → no λ where (_ , pb , _ , p) → ¬p ((-, shortEnoughPath p) , pb) pathSearchAcyclicFrom : ∀ {ℓ} {P : Vertex → Set ℓ} → (∀ b → Dec (P b)) → ∀ a → Dec (∃ λ b → P b × ∃₂ λ n (p : Path a b n) → Acyclic p) pathSearchAcyclicFrom P? a = case ∃? (Path≤-finite (size vertexFinite) a) (P? ∘ proj₁) of λ where (yes ((_ , _ , _ , p) , pb)) → let (x , x≤n , p′) , ¬r′ = acyclicPath p in yes (-, pb , (-, (p′ , ¬r′))) (no ¬p) → no λ where (_ , pb , _ , p , r) → ¬p ((-, shortEnoughPath p) , pb) pathSearchBetween : ∀ a b → Dec (∃ (Path a b)) pathSearchBetween a b = case pathSearchFrom (decEqVertex b) a of λ where (yes (_ , refl , p)) → yes p (no ¬p) → no λ where (n , p) → ¬p (-, refl , -, p) searchFrom : ∀ {ℓ} {P : Vertex → Set ℓ} → (∀ b → Dec (P b)) → ∀ a → Dec (∃ λ b → P b × Star Edge a b) searchFrom P? a = Dec.map′ (Σ.map₂ (Σ.map₂ (toStar ∘ proj₂))) (Σ.map₂ (Σ.map₂ (-,_ ∘ fromStar))) (pathSearchFrom P? a) searchBetween : ∀ a b → Dec (Star Edge a b) searchBetween a b = Dec.map′ (toStar ∘ proj₂) (-,_ ∘ fromStar) (pathSearchBetween a b) module _ {ℓ ℓ≈ ℓ<} {P : Vertex → Set ℓ} (P? : ∀ a → Dec (P a)) {_≈_ : ∀ {a} → Rel (∃ (Star Edge a)) ℓ≈} {_<_ : ∀ {a} → Rel (∃ (Star Edge a)) ℓ<} (<-po : ∀ {a} → IsDecStrictPartialOrder (_≈_ {a}) _<_) where record MaximalPath a : Set (ℓ ⊔ ℓᵥ ⊔ ℓₑ ⊔ ℓ<) where field destination : Vertex predicate : P destination path : Star Edge a destination acyclic : Acyclic (fromStar path) isMax : ∀ {b} (p : Star Edge a b) (pb : P b) → Acyclic (fromStar p) → ¬ ((-, path) < (-, p)) searchMaximalFrom : ∀ a → Dec (MaximalPath a) searchMaximalFrom a = case max of λ where (inj₁ ¬p) → no λ mp → let open MaximalPath mp in ¬p ((-, path , fromWitness acyclic) , fromWitness predicate) (inj₂ (((b , p , acp) , pb) , isMax)) → yes record { destination = b ; predicate = toWitness pb ; path = p ; acyclic = toWitness acp ; isMax = λ q pb acq → isMax ((-, q , fromWitness acq) , fromWitness pb) } where module DPO = IsDecStrictPartialOrder <-po _≈′_ = _≈_ on λ where ((b , p , acp) , pb) → b , p _<′_ = _<_ on λ where ((b , p , acp) , pb) → b , p <′-IsDecStrictPartialOrder : IsDecStrictPartialOrder _≈′_ _<′_ <′-IsDecStrictPartialOrder = record { isStrictPartialOrder = record { isEquivalence = record { refl = IsEquivalence.refl DPO.isEquivalence ; sym = IsEquivalence.sym DPO.isEquivalence ; trans = IsEquivalence.trans DPO.isEquivalence } ; irrefl = DPO.irrefl ; trans = DPO.trans ; <-resp-≈ = proj₁ DPO.<-resp-≈ , proj₂ DPO.<-resp-≈ } ; _≟_ = λ _ _ → _ DPO.≟ _ ; _<?_ = λ _ _ → _ DPO.<? _ } acyclicPaths = filter (AcyclicStar-finite a) (P? ∘ proj₁) open Ordered acyclicPaths <′-IsDecStrictPartialOrder
33.623932
86
0.562023
d08b4abb76e3ba1061ba10698fbda63be2a97dbd
2,897
agda
Agda
examples/outdated-and-incorrect/Termination/comb.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/Termination/comb.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/Termination/comb.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module comb where infixr 50 _⟶_ data Ty : Set where ι : Ty _⟶_ : Ty -> Ty -> Ty data Tm : Ty -> Set where K : {σ τ : Ty} -> Tm (σ ⟶ τ ⟶ σ) S : {σ τ ρ : Ty} -> Tm ((σ ⟶ τ ⟶ ρ) ⟶ (σ ⟶ τ) ⟶ σ ⟶ ρ) _$_ : {σ τ : Ty} -> Tm (σ ⟶ τ) -> Tm σ -> Tm τ data Nf : Ty -> Set where Kⁿ : {σ τ : Ty} -> Nf (σ ⟶ τ ⟶ σ) Kⁿ¹ : {σ τ : Ty} -> Nf σ -> Nf (τ ⟶ σ) Sⁿ : {σ τ ρ : Ty} -> Nf ((σ ⟶ τ ⟶ ρ) ⟶ (σ ⟶ τ) ⟶ σ ⟶ ρ) Sⁿ¹ : {σ τ ρ : Ty} -> Nf (σ ⟶ τ ⟶ ρ) -> Nf ((σ ⟶ τ) ⟶ σ ⟶ ρ) Sⁿ² : {σ τ ρ : Ty} -> Nf (σ ⟶ τ ⟶ ρ) -> Nf (σ ⟶ τ) -> Nf (σ ⟶ ρ) _$$_ : {σ τ : Ty} -> Nf (σ ⟶ τ) -> Nf σ -> Nf τ Kⁿ $$ x = Kⁿ¹ x Kⁿ¹ x $$ y = x Sⁿ $$ x = Sⁿ¹ x Sⁿ¹ x $$ y = Sⁿ² x y Sⁿ² x y $$ z = (x $$ z) $$ (y $$ z) nf : {σ : Ty} -> Tm σ -> Nf σ nf K = Kⁿ nf S = Sⁿ nf (t $ u) = nf t $$ nf u data _$ⁿ_⇓_ : {σ τ : Ty} -> Nf (σ ⟶ τ) -> Nf σ -> Nf τ -> Set where rKⁿ : {σ τ : Ty} -> {x : Nf σ} -> Kⁿ {σ} {τ} $ⁿ x ⇓ Kⁿ¹ x rKⁿ¹ : {σ τ : Ty} -> {x : Nf σ} -> {y : Nf τ} -> Kⁿ¹ x $ⁿ y ⇓ x rSⁿ : {σ τ ρ : Ty} -> {x : Nf (σ ⟶ τ ⟶ ρ)} -> Sⁿ $ⁿ x ⇓ Sⁿ¹ x rSⁿ¹ : {σ τ ρ : Ty} -> {x : Nf (σ ⟶ τ ⟶ ρ)} -> {y : Nf (σ ⟶ τ)} -> Sⁿ¹ x $ⁿ y ⇓ Sⁿ² x y rSⁿ² : {σ τ ρ : Ty} -> {x : Nf (σ ⟶ τ ⟶ ρ)} -> {y : Nf (σ ⟶ τ)} -> {z : Nf σ} -> {u : Nf (τ ⟶ ρ)} -> x $ⁿ z ⇓ u -> {v : Nf τ} -> y $ⁿ z ⇓ v -> {w : Nf ρ} -> u $ⁿ v ⇓ w -> Sⁿ² x y $ⁿ z ⇓ w data _⇓_ : {σ : Ty} -> Tm σ -> Nf σ -> Set where rK : {σ τ : Ty} -> K {σ} {τ} ⇓ Kⁿ rS : {σ τ ρ : Ty} -> S {σ} {τ} {ρ} ⇓ Sⁿ r$ : {σ τ : Ty} -> {t : Tm (σ ⟶ τ)} -> {f : Nf (σ ⟶ τ)} -> t ⇓ f -> {u : Tm σ} -> {a : Nf σ} -> u ⇓ a -> {v : Nf τ} -> f $ⁿ a ⇓ v -> t $ u ⇓ v data _==_ {A : Set}(a : A) : {B : Set} -> (b : B) -> Set where refl : a == a data Σ {A : Set}(B : A -> Set) : Set where sig : (a : A) -> (b : B a) -> Σ B σ₀ : {A : Set} -> {B : A -> Set} -> Σ B -> A σ₀ (sig x _) = x σ₁ : {A : Set} -> {B : A -> Set} -> (s : Σ B) -> B (σ₀ s) σ₁ (sig _ y) = y _$$⁼_&_ : {σ τ : Ty} -> (f : Nf (σ ⟶ τ)) -> (a : Nf σ) -> {n : Nf τ} -> f $ⁿ a ⇓ n -> Σ \(n' : Nf τ) -> n' == n Kⁿ $$⁼ x & rKⁿ = sig (Kⁿ¹ x) refl Kⁿ¹ x $$⁼ y & rKⁿ¹ = sig x refl Sⁿ $$⁼ x & rSⁿ = sig (Sⁿ¹ x) refl Sⁿ¹ x $$⁼ y & rSⁿ¹ = sig (Sⁿ² x y) refl Sⁿ² x y $$⁼ z & (rSⁿ² p q r) with x $$⁼ z & p | y $$⁼ z & q Sⁿ² x y $$⁼ z & (rSⁿ² p q r) | sig u refl | sig v refl with u $$⁼ v & r Sⁿ² x y $$⁼ z & (rSⁿ² p q r) | sig u refl | sig v refl | sig w refl = sig w refl nf⁼ : {σ : Ty} -> (t : Tm σ) -> {n : Nf σ} -> t ⇓ n -> Σ \(n' : Nf σ) -> n' == n nf⁼ K rK = sig Kⁿ refl nf⁼ S rS = sig Sⁿ refl nf⁼ (t $ u) (r$ p q r) with nf⁼ t p | nf⁼ u q nf⁼ (t $ u) (r$ p q r) | sig f refl | sig a refl with f $$⁼ a & r nf⁼ (t $ u) (r$ p q r) | sig f refl | sig a refl | sig v refl = sig v refl proof : {σ : Ty} -> (t : Tm σ) -> Σ \(n : Nf σ) -> t ⇓ n proof = {! !} nf⇓ : {σ : Ty} -> Tm σ -> Nf σ nf⇓ t = σ₀ (nf⁼ t (σ₁ (proof t)))
32.550562
76
0.369693
316e4ebe8e0851c869709208307c12bed232a1ea
11,855
agda
Agda
Cubical/Foundations/Logic.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/Foundations/Logic.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/Foundations/Logic.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Logic where import Cubical.Data.Empty as ⊥ open import Cubical.Data.Sum as ⊎ using (_⊎_) open import Cubical.Data.Unit open import Cubical.Data.Sigma open import Cubical.Foundations.Prelude as FP open import Cubical.Functions.Embedding open import Cubical.Functions.Fibration as Fib open import Cubical.Foundations.Equiv open import Cubical.HITs.PropositionalTruncation as PropTrunc open import Cubical.Foundations.HLevels using (hProp; isPropΠ; isPropΠ2; isSetΠ; isSetHProp; isOfHLevelΣ; isPropΣ) public open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Function open import Cubical.Foundations.Univalence using (ua) open import Cubical.Relation.Nullary hiding (¬_) infix 10 ¬_ infixr 8 _⊔_ infixr 8 _⊔′_ infixr 8 _⊓_ infixr 8 _⊓′_ infixr 6 _⇒_ infixr 4 _⇔_ infix 30 _≡ₚ_ infix 30 _≢ₚ_ infix 2 ∃[]-syntax infix 2 ∃[∶]-syntax infix 2 ∀[∶]-syntax infix 2 ∀[]-syntax infix 2 ⇒∶_⇐∶_ infix 2 ⇐∶_⇒∶_ -------------------------------------------------------------------------------- -- The type hProp of mere propositions -- the definition hProp is given in Foundations.HLevels -- hProp ℓ = Σ (Type ℓ) isProp private variable ℓ ℓ' ℓ'' : Level P Q R : hProp ℓ A B C : Type ℓ [_] : hProp ℓ → Type ℓ [_] = fst isProp[] : (A : hProp ℓ) → isProp [ A ] isProp[] = snd ∥_∥ₚ : Type ℓ → hProp ℓ ∥ A ∥ₚ = ∥ A ∥ , propTruncIsProp _≡ₚ_ : (x y : A) → hProp _ x ≡ₚ y = ∥ x ≡ y ∥ₚ hProp≡ : [ P ] ≡ [ Q ] → P ≡ Q hProp≡ p = Σ≡Prop (\ _ → isPropIsProp) p -------------------------------------------------------------------------------- -- Logical implication of mere propositions _⇒_ : (A : hProp ℓ) → (B : hProp ℓ') → hProp _ A ⇒ B = ([ A ] → [ B ]) , isPropΠ λ _ → isProp[] B ⇔toPath : [ P ⇒ Q ] → [ Q ⇒ P ] → P ≡ Q ⇔toPath {P = P} {Q = Q} P⇒Q Q⇒P = hProp≡ (isoToPath (iso P⇒Q Q⇒P (λ b → isProp[] Q (P⇒Q (Q⇒P b)) b) λ a → isProp[] P (Q⇒P (P⇒Q a)) a)) pathTo⇒ : P ≡ Q → [ P ⇒ Q ] pathTo⇒ p x = subst fst p x pathTo⇐ : P ≡ Q → [ Q ⇒ P ] pathTo⇐ p x = subst fst (sym p) x substₚ : {x y : A} (B : A → hProp ℓ) → [ x ≡ₚ y ⇒ B x ⇒ B y ] substₚ {x = x} {y = y} B = PropTrunc.elim (λ _ → isPropΠ λ _ → isProp[] (B y)) (subst (fst ∘ B)) -------------------------------------------------------------------------------- -- Mixfix notations for ⇔-toPath -- see ⊔-identityˡ and ⊔-identityʳ for the difference ⇒∶_⇐∶_ : [ P ⇒ Q ] → [ Q ⇒ P ] → P ≡ Q ⇒∶_⇐∶_ = ⇔toPath ⇐∶_⇒∶_ : [ Q ⇒ P ] → [ P ⇒ Q ] → P ≡ Q ⇐∶ g ⇒∶ f = ⇔toPath f g -------------------------------------------------------------------------------- -- False and True ⊥ : hProp _ ⊥ = ⊥.⊥ , λ () ⊤ : hProp _ ⊤ = Unit , (λ _ _ _ → tt) -------------------------------------------------------------------------------- -- Pseudo-complement of mere propositions ¬_ : hProp ℓ → hProp _ ¬ A = ([ A ] → ⊥.⊥) , isPropΠ λ _ → ⊥.isProp⊥ _≢ₚ_ : (x y : A) → hProp _ x ≢ₚ y = ¬ x ≡ₚ y -------------------------------------------------------------------------------- -- Disjunction of mere propositions _⊔′_ : Type ℓ → Type ℓ' → Type _ A ⊔′ B = ∥ A ⊎ B ∥ _⊔_ : hProp ℓ → hProp ℓ' → hProp _ P ⊔ Q = ∥ [ P ] ⊎ [ Q ] ∥ₚ inl : A → A ⊔′ B inl x = ∣ ⊎.inl x ∣ inr : B → A ⊔′ B inr x = ∣ ⊎.inr x ∣ ⊔-elim : (P : hProp ℓ) (Q : hProp ℓ') (R : [ P ⊔ Q ] → hProp ℓ'') → (∀ x → [ R (inl x) ]) → (∀ y → [ R (inr y) ]) → (∀ z → [ R z ]) ⊔-elim _ _ R P⇒R Q⇒R = PropTrunc.elim (snd ∘ R) (⊎.elim P⇒R Q⇒R) -------------------------------------------------------------------------------- -- Conjunction of mere propositions _⊓′_ : Type ℓ → Type ℓ' → Type _ A ⊓′ B = A × B _⊓_ : hProp ℓ → hProp ℓ' → hProp _ A ⊓ B = [ A ] ⊓′ [ B ] , isOfHLevelΣ 1 (isProp[] A) (\ _ → isProp[] B) ⊓-intro : (P : hProp ℓ) (Q : [ P ] → hProp ℓ') (R : [ P ] → hProp ℓ'') → (∀ a → [ Q a ]) → (∀ a → [ R a ]) → (∀ (a : [ P ]) → [ Q a ⊓ R a ] ) ⊓-intro _ _ _ = \ f g a → f a , g a -------------------------------------------------------------------------------- -- Logical bi-implication of mere propositions _⇔_ : hProp ℓ → hProp ℓ' → hProp _ A ⇔ B = (A ⇒ B) ⊓ (B ⇒ A) -------------------------------------------------------------------------------- -- Universal Quantifier ∀[∶]-syntax : (A → hProp ℓ) → hProp _ ∀[∶]-syntax {A = A} P = (∀ x → [ P x ]) , isPropΠ (isProp[] ∘ P) ∀[]-syntax : (A → hProp ℓ) → hProp _ ∀[]-syntax {A = A} P = (∀ x → [ P x ]) , isPropΠ (isProp[] ∘ P) syntax ∀[∶]-syntax {A = A} (λ a → P) = ∀[ a ∶ A ] P syntax ∀[]-syntax (λ a → P) = ∀[ a ] P -------------------------------------------------------------------------------- -- Existential Quantifier ∃[]-syntax : (A → hProp ℓ) → hProp _ ∃[]-syntax {A = A} P = ∥ Σ A ([_] ∘ P) ∥ₚ ∃[∶]-syntax : (A → hProp ℓ) → hProp _ ∃[∶]-syntax {A = A} P = ∥ Σ A ([_] ∘ P) ∥ₚ syntax ∃[∶]-syntax {A = A} (λ x → P) = ∃[ x ∶ A ] P syntax ∃[]-syntax (λ x → P) = ∃[ x ] P -------------------------------------------------------------------------------- -- Decidable mere proposition Decₚ : (P : hProp ℓ) → hProp ℓ Decₚ P = Dec [ P ] , isPropDec (isProp[] P) -------------------------------------------------------------------------------- -- Negation commutes with truncation ∥¬A∥≡¬∥A∥ : (A : Type ℓ) → ∥ (A → ⊥.⊥) ∥ₚ ≡ (¬ ∥ A ∥ₚ) ∥¬A∥≡¬∥A∥ _ = ⇒∶ (λ ¬A A → PropTrunc.elim (λ _ → ⊥.isProp⊥) (PropTrunc.elim (λ _ → isPropΠ λ _ → ⊥.isProp⊥) (λ ¬p p → ¬p p) ¬A) A) ⇐∶ λ ¬p → ∣ (λ p → ¬p ∣ p ∣) ∣ -------------------------------------------------------------------------------- -- (hProp, ⊔, ⊥) is a bounded ⊔-semilattice ⊔-assoc : (P : hProp ℓ) (Q : hProp ℓ') (R : hProp ℓ'') → P ⊔ (Q ⊔ R) ≡ (P ⊔ Q) ⊔ R ⊔-assoc P Q R = ⇒∶ ⊔-elim P (Q ⊔ R) (λ _ → (P ⊔ Q) ⊔ R) (inl ∘ inl) (⊔-elim Q R (λ _ → (P ⊔ Q) ⊔ R) (inl ∘ inr) inr) ⇐∶ assoc2 where assoc2 : (A ⊔′ B) ⊔′ C → A ⊔′ (B ⊔′ C) assoc2 ∣ ⊎.inr a ∣ = ∣ ⊎.inr ∣ ⊎.inr a ∣ ∣ assoc2 ∣ ⊎.inl ∣ ⊎.inr b ∣ ∣ = ∣ ⊎.inr ∣ ⊎.inl b ∣ ∣ assoc2 ∣ ⊎.inl ∣ ⊎.inl c ∣ ∣ = ∣ ⊎.inl c ∣ assoc2 ∣ ⊎.inl (squash x y i) ∣ = propTruncIsProp (assoc2 ∣ ⊎.inl x ∣) (assoc2 ∣ ⊎.inl y ∣) i assoc2 (squash x y i) = propTruncIsProp (assoc2 x) (assoc2 y) i ⊔-idem : (P : hProp ℓ) → P ⊔ P ≡ P ⊔-idem P = ⇒∶ (⊔-elim P P (\ _ → P) (\ x → x) (\ x → x)) ⇐∶ inl ⊔-comm : (P : hProp ℓ) (Q : hProp ℓ') → P ⊔ Q ≡ Q ⊔ P ⊔-comm P Q = ⇒∶ (⊔-elim P Q (\ _ → (Q ⊔ P)) inr inl) ⇐∶ (⊔-elim Q P (\ _ → (P ⊔ Q)) inr inl) ⊔-identityˡ : (P : hProp ℓ) → ⊥ ⊔ P ≡ P ⊔-identityˡ P = ⇒∶ (⊔-elim ⊥ P (λ _ → P) (λ ()) (λ x → x)) ⇐∶ inr ⊔-identityʳ : (P : hProp ℓ) → P ⊔ ⊥ ≡ P ⊔-identityʳ P = ⇔toPath (⊔-elim P ⊥ (λ _ → P) (λ x → x) λ ()) inl -------------------------------------------------------------------------------- -- (hProp, ⊓, ⊤) is a bounded ⊓-lattice ⊓-assoc : (P : hProp ℓ) (Q : hProp ℓ') (R : hProp ℓ'') → P ⊓ Q ⊓ R ≡ (P ⊓ Q) ⊓ R ⊓-assoc _ _ _ = ⇒∶ (λ {(x , (y , z)) → (x , y) , z}) ⇐∶ (λ {((x , y) , z) → x , (y , z) }) ⊓-comm : (P : hProp ℓ) (Q : hProp ℓ') → P ⊓ Q ≡ Q ⊓ P ⊓-comm _ _ = ⇔toPath (\ p → p .snd , p .fst) (\ p → p .snd , p .fst) ⊓-idem : (P : hProp ℓ) → P ⊓ P ≡ P ⊓-idem _ = ⇔toPath fst (λ x → x , x) ⊓-identityˡ : (P : hProp ℓ) → ⊤ ⊓ P ≡ P ⊓-identityˡ _ = ⇔toPath snd λ x → tt , x ⊓-identityʳ : (P : hProp ℓ) → P ⊓ ⊤ ≡ P ⊓-identityʳ _ = ⇔toPath fst λ x → x , tt -------------------------------------------------------------------------------- -- Distributive laws ⇒-⊓-distrib : (P : hProp ℓ) (Q : hProp ℓ')(R : hProp ℓ'') → P ⇒ (Q ⊓ R) ≡ (P ⇒ Q) ⊓ (P ⇒ R) ⇒-⊓-distrib _ _ _ = ⇒∶ (λ f → (fst ∘ f) , (snd ∘ f)) ⇐∶ (λ { (f , g) x → f x , g x}) ⊓-⊔-distribˡ : (P : hProp ℓ) (Q : hProp ℓ')(R : hProp ℓ'') → P ⊓ (Q ⊔ R) ≡ (P ⊓ Q) ⊔ (P ⊓ R) ⊓-⊔-distribˡ P Q R = ⇒∶ (λ { (x , a) → ⊔-elim Q R (λ _ → (P ⊓ Q) ⊔ (P ⊓ R)) (λ y → ∣ ⊎.inl (x , y) ∣ ) (λ z → ∣ ⊎.inr (x , z) ∣ ) a }) ⇐∶ ⊔-elim (P ⊓ Q) (P ⊓ R) (λ _ → P ⊓ Q ⊔ R) (λ y → fst y , inl (snd y)) (λ z → fst z , inr (snd z)) ⊔-⊓-distribˡ : (P : hProp ℓ) (Q : hProp ℓ')(R : hProp ℓ'') → P ⊔ (Q ⊓ R) ≡ (P ⊔ Q) ⊓ (P ⊔ R) ⊔-⊓-distribˡ P Q R = ⇒∶ ⊔-elim P (Q ⊓ R) (λ _ → (P ⊔ Q) ⊓ (P ⊔ R) ) (\ x → inl x , inl x) (\ p → inr (p .fst) , inr (p .snd)) ⇐∶ (λ { (x , y) → ⊔-elim P R (λ _ → P ⊔ Q ⊓ R) inl (λ z → ⊔-elim P Q (λ _ → P ⊔ Q ⊓ R) inl (λ y → inr (y , z)) x) y }) ⊓-∀-distrib : (P : A → hProp ℓ) (Q : A → hProp ℓ') → (∀[ a ∶ A ] P a) ⊓ (∀[ a ∶ A ] Q a) ≡ (∀[ a ∶ A ] (P a ⊓ Q a)) ⊓-∀-distrib P Q = ⇒∶ (λ {(p , q) a → p a , q a}) ⇐∶ λ pq → (fst ∘ pq ) , (snd ∘ pq) -------------------------------------------------------------------------------- -- Introduce the "powerset" of a type in the style of Escardó's lecture notes: -- https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#propositionalextensionality ℙ : ∀ {ℓ} → Type ℓ → Type (ℓ-suc ℓ) ℙ {ℓ} X = X → hProp ℓ infix 5 _∈_ _∈_ : {X : Type ℓ} → X → ℙ X → Type ℓ x ∈ A = [ A x ] _⊆_ : {X : Type ℓ} → ℙ X → ℙ X → Type ℓ A ⊆ B = ∀ x → x ∈ A → x ∈ B ∈-isProp : {X : Type ℓ} (A : ℙ X) (x : X) → isProp (x ∈ A) ∈-isProp A = isProp[] ∘ A ⊆-isProp : {X : Type ℓ} (A B : ℙ X) → isProp (A ⊆ B) ⊆-isProp A B = isPropΠ2 (λ x _ → ∈-isProp B x) ⊆-refl : {X : Type ℓ} (A : ℙ X) → A ⊆ A ⊆-refl A x = idfun (x ∈ A) ⊆-refl-consequence : {X : Type ℓ} (A B : ℙ X) → A ≡ B → (A ⊆ B) × (B ⊆ A) ⊆-refl-consequence {X} A B p = subst (λ B → (A ⊆ B)) p (⊆-refl A) , subst (λ A → (B ⊆ A)) (sym p) (⊆-refl B) ⊆-extensionality : {X : Type ℓ} (A B : ℙ X) → (A ⊆ B) × (B ⊆ A) → A ≡ B ⊆-extensionality A B (φ , ψ) i x = ⇔toPath {P = (A x)} {Q = (B x)} (φ x) (ψ x) i powersets-are-sets : {X : Type ℓ} → isSet (ℙ X) powersets-are-sets {X = X} = isSetΠ (λ _ → isSetHProp) ⊆-extensionalityEquiv : {X : Type ℓ} (A B : ℙ X) → (A ⊆ B) × (B ⊆ A) ≃ (A ≡ B) ⊆-extensionalityEquiv A B = isoToEquiv (iso (⊆-extensionality A B) (⊆-refl-consequence A B) (λ _ → powersets-are-sets A B _ _) (λ _ → isPropΣ (⊆-isProp A B) (λ _ → ⊆-isProp B A) _ _)) -- We show that the powerset is the subtype classifier -- i.e. ℙ X ≃ Σ[A ∈ Type ℓ] (A ↪ X) Embedding→Subset : {X : Type ℓ} → Σ[ A ∈ Type ℓ ] (A ↪ X) → ℙ X Embedding→Subset (_ , f , isPropFiber) x = fiber f x , isPropFiber x Subset→Embedding : {X : Type ℓ} → ℙ X → Σ[ A ∈ Type ℓ ] (A ↪ X) Subset→Embedding {X = X} A = D , f , ψ where D = Σ[ x ∈ X ] x ∈ A f : D → X f d = d .fst ψ : hasPropFibers f ψ x ((y , y∈A) , y≡x) ((z , z∈A) , z≡x) = ΣPathP (r , q) where p : y ≡ z p = y≡x ∙ sym z≡x r : (y , y∈A) ≡ (z , z∈A) r = Σ≡Prop (∈-isProp A) p q : PathP (λ i → p i ≡ x) y≡x z≡x q i j = hcomp (λ k → λ { (j = i1) → x ; (i = i0) → y≡x j ; (i = i1) → z≡x (~ k ∨ j) }) (y≡x (i ∨ j)) Subset→Embedding→Subset : {X : Type ℓ} → section (Embedding→Subset {ℓ} {X}) (Subset→Embedding {ℓ} {X}) Subset→Embedding→Subset _ = funExt λ x → Σ≡Prop (λ _ → FP.isPropIsProp) (ua (Fib.FiberIso.fiberEquiv _ x)) Embedding→Subset→Embedding : {X : Type ℓ} → retract (Embedding→Subset {ℓ} {X}) (Subset→Embedding {ℓ} {X}) Embedding→Subset→Embedding {ℓ = ℓ} {X = X} (A , f , ψ) = cong (Σ-assoc-≃ .fst) p where χ = Subset→Embedding (Embedding→Subset (A , f , ψ)) .snd .snd p : (((Σ[ x ∈ X ] fiber f x) , fst) , χ) ≡ ((A , f) , ψ) p = Σ≡Prop (λ _ → hasPropFibersIsProp) ((equivToIso (Fib.fibrationEquiv X ℓ)) .Iso.leftInv (A , f)) Subset≃Embedding : {X : Type ℓ} → ℙ X ≃ (Σ[ A ∈ Type ℓ ] (A ↪ X)) Subset≃Embedding = isoToEquiv (iso Subset→Embedding Embedding→Subset Embedding→Subset→Embedding Subset→Embedding→Subset) Subset≡Embedding : {X : Type ℓ} → ℙ X ≡ (Σ[ A ∈ Type ℓ ] (A ↪ X)) Subset≡Embedding = ua Subset≃Embedding
31.445623
121
0.431717
22e8a27442c92ee48072d4de492520c077fe99e1
30,588
agda
Agda
src/Container/Indexed/Variant.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Container/Indexed/Variant.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Container/Indexed/Variant.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Another definition of indexed containers ------------------------------------------------------------------------ -- Partly based on "Indexed containers" by Altenkirch, Ghani, Hancock, -- McBride and Morris, and partly based on "Non-wellfounded trees in -- Homotopy Type Theory" by Ahrens, Capriotti and Spadotti. {-# OPTIONS --without-K --safe #-} open import Equality module Container.Indexed.Variant {e⁺} (eq : ∀ {a p} → Equality-with-J a p e⁺) where open Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude import Bijection eq as B open import Container.Indexed eq as C using (_⇾_; id⇾; _∘⇾_; Shape; Position; index) open import Equivalence eq as Eq using (_≃_) open import Function-universe eq as F hiding (id; _∘_) open import H-level.Closure eq open import Tactic.Sigma-cong eq open import Univalence-axiom eq private variable a ℓ p p₁ p₂ p′ q : Level A I O : Type a P Q R : A → Type p ext f i k o s : A ------------------------------------------------------------------------ -- Containers -- Doubly indexed containers. record Container₂ (I : Type i) (O : Type o) s p : Type (i ⊔ o ⊔ lsuc (s ⊔ p)) where constructor _◁_ field Shape : O → Type s Position : ∀ {o} → Shape o → I → Type p open Container₂ public -- Singly indexed containers. Container : Type i → ∀ s p → Type (i ⊔ lsuc (s ⊔ p)) Container I = Container₂ I I private variable C : Container₂ I O s p -- Container₂ can be expressed as a Σ-type. Container≃Σ : Container₂ I O s p ≃ (∃ λ (S : O → Type s) → ∀ {o} → S o → I → Type p) Container≃Σ = Eq.↔→≃ (λ (S ◁ P) → S , P) (uncurry _◁_) refl refl ------------------------------------------------------------------------ -- Polynomial functors -- The polynomial functor associated to a container. ⟦_⟧ : {I : Type i} {O : Type o} → Container₂ I O s p → (I → Type ℓ) → O → Type (ℓ ⊔ i ⊔ s ⊔ p) ⟦ S ◁ P ⟧ Q o = ∃ λ (s : S o) → P s ⇾ Q -- A map function. map : (C : Container₂ I O s p) → P ⇾ Q → ⟦ C ⟧ P ⇾ ⟦ C ⟧ Q map C f _ (s , g) = s , f ∘⇾ g -- Functor laws. map-id : map C (id⇾ {P = P}) ≡ id⇾ map-id = refl _ map-∘ : (f : Q ⇾ R) (g : P ⇾ Q) → map C (f ∘⇾ g) ≡ map C f ∘⇾ map C g map-∘ _ _ = refl _ -- A preservation lemma. ⟦⟧-cong : {I : Type i} {P₁ : I → Type p₁} {P₂ : I → Type p₂} → Extensionality? k (i ⊔ p) (p ⊔ p₁ ⊔ p₂) → (C : Container₂ I O s p) → (∀ i → P₁ i ↝[ k ] P₂ i) → (∀ o → ⟦ C ⟧ P₁ o ↝[ k ] ⟦ C ⟧ P₂ o) ⟦⟧-cong {i = i} {k = k} {p = p} {P₁ = Q₁} {P₂ = Q₂} ext (S ◁ P) Q₁↝Q₂ o = (∃ λ (s : S o) → P s ⇾ Q₁) ↝⟨ (∃-cong λ _ → ∀-cong (lower-extensionality? k p lzero ext) λ _ → ∀-cong (lower-extensionality? k i p ext) λ _ → Q₁↝Q₂ _) ⟩□ (∃ λ (s : S o) → P s ⇾ Q₂) □ -- The forward direction of ⟦⟧-cong is an instance of map (at least -- when k is equivalence). _ : _≃_.to (⟦⟧-cong ext C f o) ≡ map C (_≃_.to ∘ f) o _ = refl _ -- The shapes of a container are pointwise equivalent to the -- polynomial functor of the container applied to the constant -- function yielding the unit type. -- -- (This lemma was suggested to me by an anonymous reviewer of a -- paper.) Shape≃⟦⟧⊤ : (C : Container₂ I O s p) → Shape C o ≃ ⟦ C ⟧ (λ _ → ⊤) o Shape≃⟦⟧⊤ {o = o} (S ◁ P) = S o ↔⟨ inverse $ drop-⊤-right (λ _ → →-right-zero F.∘ inverse currying) ⟩□ (∃ λ (s : S o) → ∀ i → P s i → ⊤) □ ------------------------------------------------------------------------ -- Coalgebras -- The type of coalgebras for a (singly indexed) container. Coalgebra : {I : Type i} → Container I s p → Type (lsuc (i ⊔ s ⊔ p)) Coalgebra {i = i} {s = s} {p = p} {I = I} C = ∃ λ (P : I → Type (i ⊔ s ⊔ p)) → P ⇾ ⟦ C ⟧ P -- Coalgebra morphisms. infix 4 _⇨_ _⇨_ : {I : Type i} {C : Container I s p} → Coalgebra C → Coalgebra C → Type (i ⊔ s ⊔ p) (P , f) ⇨ (Q , g) = ∃ λ (h : P ⇾ Q) → g ∘⇾ h ≡ map _ h ∘⇾ f private variable X Y Z : Coalgebra C -- An identity morphism. id⇨ : X ⇨ X id⇨ = id⇾ , refl _ -- Composition for _⇨_. infix 9 [_]_∘⇨_ [_]_∘⇨_ : ∀ Z → Y ⇨ Z → X ⇨ Y → X ⇨ Z [_]_∘⇨_ {Y = _ , g} {X = _ , f} (_ , h) (f₁ , eq₁) (f₂ , eq₂) = f₁ ∘⇾ f₂ , (h ∘⇾ (f₁ ∘⇾ f₂) ≡⟨⟩ (h ∘⇾ f₁) ∘⇾ f₂ ≡⟨ cong (_∘⇾ f₂) eq₁ ⟩ (map _ f₁ ∘⇾ g) ∘⇾ f₂ ≡⟨⟩ map _ f₁ ∘⇾ (g ∘⇾ f₂) ≡⟨ cong (map _ f₁ ∘⇾_) eq₂ ⟩ map _ f₁ ∘⇾ (map _ f₂ ∘⇾ f) ≡⟨⟩ map _ (f₁ ∘⇾ f₂) ∘⇾ f ∎) -- The property of being a final coalgebra. Final : {I : Type i} {C : Container I s p} → Coalgebra C → Type (lsuc (i ⊔ s ⊔ p)) Final X = ∀ Y → Contractible (Y ⇨ X) -- A perhaps more traditional definition of what it means to be final. Final′ : {I : Type i} {C : Container I s p} → Coalgebra C → Type (lsuc (i ⊔ s ⊔ p)) Final′ X = ∀ Y → ∃ λ (m : Y ⇨ X) → (m′ : Y ⇨ X) → proj₁ m ≡ proj₁ m′ -- Final X implies Final′ X. Final→Final′ : (X : Coalgebra C) → Final X → Final′ X Final→Final′ _ = ∀-cong _ λ _ → ∃-cong λ _ → ∀-cong _ λ _ → cong proj₁ -- Final is pointwise propositional (assumption extensionality). Final-propositional : {I : Type i} {C : Container I s p} → Extensionality (lsuc (i ⊔ s ⊔ p)) (i ⊔ s ⊔ p) → (X : Coalgebra C) → Is-proposition (Final X) Final-propositional ext _ = Π-closure ext 1 λ _ → Contractible-propositional (lower-extensionality _ lzero ext) -- Final coalgebras. Final-coalgebra : {I : Type i} → Container I s p → Type (lsuc (i ⊔ s ⊔ p)) Final-coalgebra C = ∃ λ (X : Coalgebra C) → Final X -- Final coalgebras, defined using Final′. Final-coalgebra′ : {I : Type i} → Container I s p → Type (lsuc (i ⊔ s ⊔ p)) Final-coalgebra′ C = ∃ λ (X : Coalgebra C) → Final′ X -- Final-coalgebra C implies Final-coalgebra′ C. Final-coalgebra→Final-coalgebra′ : Final-coalgebra C → Final-coalgebra′ C Final-coalgebra→Final-coalgebra′ = ∃-cong Final→Final′ -- Carriers of final coalgebras (defined using Final′) for a given -- container are pointwise equivalent. carriers-of-final-coalgebras-equivalent′ : (((P₁ , _) , _) ((P₂ , _) , _) : Final-coalgebra′ C) → ∀ i → P₁ i ≃ P₂ i carriers-of-final-coalgebras-equivalent′ (X₁ , final₁) (X₂ , final₂) i = Eq.↔→≃ (proj₁ to i) (proj₁ from i) to∘from from∘to where to : X₁ ⇨ X₂ to = proj₁ (final₂ X₁) from : X₂ ⇨ X₁ from = proj₁ (final₁ X₂) to∘from : ∀ x → proj₁ ([ X₂ ] to ∘⇨ from) i x ≡ x to∘from x = proj₁ ([ X₂ ] to ∘⇨ from) i x ≡⟨ cong (λ f → f i x) $ sym $ proj₂ (final₂ X₂) $ [ X₂ ] to ∘⇨ from ⟩ proj₁ (proj₁ (final₂ X₂)) i x ≡⟨ cong (λ f → f i x) $ proj₂ (final₂ X₂) id⇨ ⟩ proj₁ (id⇨ {X = X₂}) i x ≡⟨⟩ x ∎ from∘to : ∀ x → proj₁ ([ X₁ ] from ∘⇨ to) i x ≡ x from∘to x = proj₁ ([ X₁ ] from ∘⇨ to) i x ≡⟨ cong (λ f → f i x) $ sym $ proj₂ (final₁ X₁) $ [ X₁ ] from ∘⇨ to ⟩ proj₁ (proj₁ (final₁ X₁)) i x ≡⟨ cong (λ f → f i x) $ proj₂ (final₁ X₁) id⇨ ⟩ proj₁ (id⇨ {X = X₁}) i x ≡⟨⟩ x ∎ -- The previous lemma relates the "out" functions of the two final -- coalgebras in a certain way. out-related′ : {C : Container I s p} (F₁@((_ , out₁) , _) F₂@((_ , out₂) , _) : Final-coalgebra′ C) → map C (_≃_.to ∘ carriers-of-final-coalgebras-equivalent′ F₁ F₂) ∘⇾ out₁ ≡ out₂ ∘⇾ (_≃_.to ∘ carriers-of-final-coalgebras-equivalent′ F₁ F₂) out-related′ (X₁ , _) (_ , final₂) = sym $ proj₂ (proj₁ (final₂ X₁)) -- Carriers of final coalgebras for a given container are pointwise -- equivalent. carriers-of-final-coalgebras-equivalent : (((P₁ , _) , _) ((P₂ , _) , _) : Final-coalgebra C) → ∀ i → P₁ i ≃ P₂ i carriers-of-final-coalgebras-equivalent = carriers-of-final-coalgebras-equivalent′ on Final-coalgebra→Final-coalgebra′ -- The previous lemma relates the "out" functions of the two final -- coalgebras in a certain way. out-related : {C : Container I s p} (F₁@((_ , out₁) , _) F₂@((_ , out₂) , _) : Final-coalgebra C) → map C (_≃_.to ∘ carriers-of-final-coalgebras-equivalent F₁ F₂) ∘⇾ out₁ ≡ out₂ ∘⇾ (_≃_.to ∘ carriers-of-final-coalgebras-equivalent F₁ F₂) out-related = out-related′ on Final-coalgebra→Final-coalgebra′ -- If X and Y are final coalgebras (with finality defined using -- Final′), then—assuming extensionality—finality of X (defined using -- Final) is equivalent to finality of Y. Final′→Final≃Final : {I : Type i} {C : Container I s p} ((X , _) (Y , _) : Final-coalgebra′ C) → Extensionality (i ⊔ s ⊔ p) (i ⊔ s ⊔ p) → Final X ↝[ lsuc (i ⊔ s ⊔ p) ∣ i ⊔ s ⊔ p ] Final Y Final′→Final≃Final {i = i} {s = s} {p = p} {C = C} ((X₁ , out₁) , final₁) ((X₂ , out₂) , final₂) ext {k = k} ext′ = ∀-cong ext′ λ Y@(_ , f) → H-level-cong (lower-extensionality? k _ lzero ext′) 0 (Σ-cong (lemma₂ Y) λ g → out₁ ∘⇾ g ≡ map C g ∘⇾ f ↝⟨ inverse $ Eq.≃-≡ (lemma₃ Y) ⟩ _≃_.to (lemma₃ Y) (out₁ ∘⇾ g) ≡ _≃_.to (lemma₃ Y) (map C g ∘⇾ f) ↔⟨⟩ map C (_≃_.to ∘ lemma₁) ∘⇾ out₁ ∘⇾ g ≡ map C (_≃_.to ∘ lemma₁) ∘⇾ map C g ∘⇾ f ↝⟨ ≡⇒↝ _ $ cong (λ h → h ∘⇾ g ≡ map C (_≃_.to ∘ lemma₁) ∘⇾ map C g ∘⇾ f) $ out-related′ ((X₁ , out₁) , final₁) ((X₂ , out₂) , final₂) ⟩ out₂ ∘⇾ (_≃_.to ∘ lemma₁) ∘⇾ g ≡ map C (_≃_.to ∘ lemma₁) ∘⇾ map C g ∘⇾ f ↔⟨⟩ out₂ ∘⇾ _≃_.to (lemma₂ Y) g ≡ map C (_≃_.to (lemma₂ Y) g) ∘⇾ f □) where ext₁ = lower-extensionality (s ⊔ p) lzero ext ext₂ = lower-extensionality (i ⊔ s) lzero ext lemma₁ : ∀ i → X₁ i ≃ X₂ i lemma₁ = carriers-of-final-coalgebras-equivalent′ ((X₁ , out₁) , final₁) ((X₂ , out₂) , final₂) lemma₂ : ((Y , _) : Coalgebra C) → (Y ⇾ X₁) ≃ (Y ⇾ X₂) lemma₂ _ = ∀-cong ext₁ λ _ → ∀-cong ext λ _ → lemma₁ _ lemma₃ : ((Y , _) : Coalgebra C) → (Y ⇾ ⟦ C ⟧ X₁) ≃ (Y ⇾ ⟦ C ⟧ X₂) lemma₃ _ = ∀-cong ext₁ λ _ → ∀-cong ext λ _ → ⟦⟧-cong ext₂ C lemma₁ _ -- If there is a final C-coalgebra, and we have Final′ X for some -- C-coalgebra X, then we also have Final X (assuming extensionality). Final′→Final : {I : Type i} {C : Container I s p} → Extensionality (i ⊔ s ⊔ p) (i ⊔ s ⊔ p) → Final-coalgebra C → ((X , _) : Final-coalgebra′ C) → Final X Final′→Final ext F₁@(_ , final₁) F₂ = Final′→Final≃Final (Final-coalgebra→Final-coalgebra′ F₁) F₂ ext _ final₁ -- Final-coalgebra is pointwise propositional, assuming extensionality -- and univalence. -- -- This is a variant of Lemma 5 from "Non-wellfounded trees in -- Homotopy Type Theory". Final-coalgebra-propositional : {I : Type i} {C : Container I s p} → Extensionality (lsuc (i ⊔ s ⊔ p)) (lsuc (i ⊔ s ⊔ p)) → Univalence (i ⊔ s ⊔ p) → Is-proposition (Final-coalgebra C) Final-coalgebra-propositional {I = I} {C = C@(S ◁ P)} ext univ F₁@((P₁ , out₁) , _) F₂@(X₂@(P₂ , out₂) , _) = block λ b → Σ-≡,≡→≡ (Σ-≡,≡→≡ (lemma₁ b) (lemma₂ b)) (Final-propositional (lower-extensionality lzero _ ext) X₂ _ _) where ext₁′ = lower-extensionality _ lzero ext ext₁ = Eq.good-ext ext₁′ lemma₀ : Block "lemma₀" → ∀ i → P₁ i ≃ P₂ i lemma₀ ⊠ = carriers-of-final-coalgebras-equivalent F₁ F₂ lemma₀-lemma : ∀ b x → map C (_≃_.to ∘ lemma₀ b) i (out₁ i (_≃_.from (lemma₀ b i) x)) ≡ out₂ i x lemma₀-lemma {i = i} ⊠ x = map C (_≃_.to ∘ lemma₀ ⊠) i (out₁ i (_≃_.from (lemma₀ ⊠ i) x)) ≡⟨ cong (λ f → f _ (_≃_.from (lemma₀ ⊠ i) x)) $ out-related F₁ F₂ ⟩ out₂ i (_≃_.to (lemma₀ ⊠ i) (_≃_.from (lemma₀ ⊠ i) x)) ≡⟨ cong (out₂ _) $ _≃_.right-inverse-of (lemma₀ ⊠ i) _ ⟩∎ out₂ i x ∎ lemma₁ : Block "lemma₀" → P₁ ≡ P₂ lemma₁ b = apply-ext ext₁ λ i → ≃⇒≡ univ (lemma₀ b i) lemma₁-lemma₁ = λ b i → sym $ Σ-≡,≡→≡ (sym (lemma₁ b)) (subst-const _) ≡⟨ cong sym Σ-≡,≡→≡-subst-const-refl ⟩ sym $ cong₂ _,_ (sym (lemma₁ b)) (refl _) ≡⟨ sym cong₂-sym ⟩ cong₂ _,_ (sym (sym (lemma₁ b))) (sym (refl _)) ≡⟨ cong₂ (cong₂ _) (sym-sym _) sym-refl ⟩ cong₂ _,_ (lemma₁ b) (refl i) ≡⟨ cong₂-reflʳ _ ⟩∎ cong (_, i) (lemma₁ b) ∎ lemma₁-lemma₂ = λ b i x → subst (_$ i) (sym (lemma₁ b)) x ≡⟨⟩ subst (_$ i) (sym (apply-ext ext₁ λ i → ≃⇒≡ univ (lemma₀ b i))) x ≡⟨ cong (flip (subst (_$ i)) _) $ sym $ Eq.good-ext-sym ext₁′ _ ⟩ subst (_$ i) (apply-ext ext₁ λ i → sym (≃⇒≡ univ (lemma₀ b i))) x ≡⟨ Eq.subst-good-ext ext₁′ _ _ ⟩ subst id (sym (≃⇒≡ univ (lemma₀ b i))) x ≡⟨ subst-id-in-terms-of-inverse∘≡⇒↝ equivalence ⟩ _≃_.from (≡⇒≃ (≃⇒≡ univ (lemma₀ b i))) x ≡⟨ cong (λ eq → _≃_.from eq _) $ _≃_.right-inverse-of (≡≃≃ univ) _ ⟩∎ _≃_.from (lemma₀ b i) x ∎ lemma₁-lemma₃ : ∀ b (f : P s ⇾ P₁) i p → _ ≡ _ lemma₁-lemma₃ b f i p = subst (_$ i) (lemma₁ b) (f i p) ≡⟨⟩ subst (_$ i) (apply-ext ext₁ λ i → ≃⇒≡ univ (lemma₀ b i)) (f i p) ≡⟨ Eq.subst-good-ext ext₁′ _ _ ⟩ subst id (≃⇒≡ univ (lemma₀ b i)) (f i p) ≡⟨ subst-id-in-terms-of-≡⇒↝ equivalence ⟩ ≡⇒→ (≃⇒≡ univ (lemma₀ b i)) (f i p) ≡⟨ cong (λ eq → _≃_.to eq _) $ _≃_.right-inverse-of (≡≃≃ univ) _ ⟩∎ _≃_.to (lemma₀ b i) (f i p) ∎ lemma₂ = λ b → apply-ext (lower-extensionality _ _ ext) λ i → apply-ext (lower-extensionality _ _ ext) λ x → subst (λ P → P ⇾ ⟦ C ⟧ P) (lemma₁ b) out₁ i x ≡⟨⟩ subst (λ P → ∀ i → P i → ⟦ C ⟧ P i) (lemma₁ b) out₁ i x ≡⟨ cong (_$ x) subst-∀ ⟩ subst (uncurry λ P i → P i → ⟦ C ⟧ P i) (sym $ Σ-≡,≡→≡ (sym (lemma₁ b)) (refl _)) (out₁ (subst (λ _ → I) (sym (lemma₁ b)) i)) x ≡⟨ elim¹ (λ {i′} eq → subst (uncurry λ P i → P i → ⟦ C ⟧ P i) (sym $ Σ-≡,≡→≡ (sym (lemma₁ b)) (refl _)) (out₁ (subst (λ _ → I) (sym (lemma₁ b)) i)) x ≡ subst (uncurry λ P i → P i → ⟦ C ⟧ P i) (sym $ Σ-≡,≡→≡ (sym (lemma₁ b)) eq) (out₁ i′) x) (refl _) _ ⟩ subst (uncurry λ P i → P i → ⟦ C ⟧ P i) (sym $ Σ-≡,≡→≡ (sym (lemma₁ b)) (subst-const _)) (out₁ i) x ≡⟨ cong (λ eq → subst (uncurry λ P i → P i → ⟦ C ⟧ P i) eq _ _) $ lemma₁-lemma₁ b i ⟩ subst (uncurry λ P i → P i → ⟦ C ⟧ P i) (cong (_, _) (lemma₁ b)) (out₁ i) x ≡⟨ cong (_$ x) $ sym $ subst-∘ _ _ _ ⟩ subst (λ P → P i → ⟦ C ⟧ P i) (lemma₁ b) (out₁ i) x ≡⟨ subst-→ ⟩ subst (λ P → ⟦ C ⟧ P i) (lemma₁ b) (out₁ i (subst (_$ i) (sym (lemma₁ b)) x)) ≡⟨ cong (subst (λ P → ⟦ C ⟧ P i) _) $ cong (out₁ _) $ lemma₁-lemma₂ b i x ⟩ subst (λ P → ⟦ C ⟧ P i) (lemma₁ b) (out₁ i (_≃_.from (lemma₀ b i) x)) ≡⟨⟩ subst (λ Q → ∃ λ (s : S i) → P s ⇾ Q) (lemma₁ b) (out₁ i (_≃_.from (lemma₀ b i) x)) ≡⟨ push-subst-pair-× _ _ ⟩ (let s , f = out₁ i (_≃_.from (lemma₀ b i) x) in s , subst (λ Q → P s ⇾ Q) (lemma₁ b) f) ≡⟨ (let s , _ = out₁ i (_≃_.from (lemma₀ b i) x) in cong (s ,_) $ apply-ext (lower-extensionality _ _ ext) λ _ → sym $ push-subst-application _ _) ⟩ (let s , f = out₁ i (_≃_.from (lemma₀ b i) x) in s , λ i → subst (λ Q → P s i → Q i) (lemma₁ b) (f i)) ≡⟨ (let s , _ = out₁ i (_≃_.from (lemma₀ b i) x) in cong (s ,_) $ apply-ext (lower-extensionality _ _ ext) λ _ → apply-ext (lower-extensionality _ _ ext) λ _ → sym $ push-subst-application _ _) ⟩ (let s , f = out₁ i (_≃_.from (lemma₀ b i) x) in s , λ i p → subst (_$ i) (lemma₁ b) (f i p)) ≡⟨ (let _ , f = out₁ i (_≃_.from (lemma₀ b i) x) in cong (_ ,_) $ apply-ext (lower-extensionality _ _ ext) λ i → apply-ext (lower-extensionality _ _ ext) $ lemma₁-lemma₃ b f i) ⟩ (let s , f = out₁ i (_≃_.from (lemma₀ b i) x) in s , λ i p → _≃_.to (lemma₀ b i) (f i p)) ≡⟨⟩ map C (_≃_.to ∘ lemma₀ b) i (out₁ i (_≃_.from (lemma₀ b i) x)) ≡⟨ lemma₀-lemma b x ⟩∎ out₂ i x ∎ ------------------------------------------------------------------------ -- Conversion lemmas -- A conversion lemma for Container. Note that the last index is not -- unrestricted. Container⇔Container : ∀ {I : Type i} {O : Type o} p → Container₂ I O s (i ⊔ p) ⇔ C.Container₂ I O s (i ⊔ p) Container⇔Container {i = iℓ} {s = s} {I = I} {O = O} p = Container₂ I O s (iℓ ⊔ p) ↔⟨ Container≃Σ ⟩ (∃ λ (S : O → Type s) → ∀ {o} → S o → I → Type (iℓ ⊔ p)) ↔⟨ (∃-cong λ _ → B.implicit-Π↔Π) ⟩ (∃ λ (S : O → Type s) → ∀ o (s : S o) → I → Type (iℓ ⊔ p)) ↝⟨ (∃-cong λ _ → ∀-cong _ λ _ → ∀-cong _ λ _ → Pow⇔Fam p) ⟩ (∃ λ (S : O → Type s) → ∀ o (s : S o) → ∃ λ (P : Type (iℓ ⊔ p)) → P → I) ↝⟨ (∃-cong λ _ → from-bijection ΠΣ-comm F.∘ ∀-cong _ λ _ → from-bijection ΠΣ-comm) ⟩ (∃ λ (S : O → Type s) → ∃ λ (P : ∀ o → S o → Type (iℓ ⊔ p)) → ∀ o (s : S o) → P o s → I) ↝⟨ (∃-cong λ _ → inverse $ Σ-cong-refl {k₂ = logical-equivalence} B.implicit-Π↔Π λ _ → (∀-cong _ λ _ → from-bijection B.implicit-Π↔Π) F.∘ from-bijection B.implicit-Π↔Π) ⟩ (∃ λ (S : O → Type s) → ∃ λ (P : ∀ {o} → S o → Type (iℓ ⊔ p)) → ∀ {o} {s : S o} → P s → I) ↔⟨ inverse C.Container≃Σ ⟩□ C.Container₂ I O s (iℓ ⊔ p) □ -- Another conversion lemma for Container. Container≃Container : ∀ {I : Type i} {O : Type o} p → Extensionality (i ⊔ o ⊔ s) (lsuc i ⊔ s ⊔ lsuc p) → Univalence (i ⊔ p) → Container₂ I O s (i ⊔ p) ≃ C.Container₂ I O s (i ⊔ p) Container≃Container {i = i} {o = o} {s = s} {I = I} {O = O} p ext univ = Container₂ I O s (i ⊔ p) ↝⟨ Container≃Σ ⟩ (∃ λ (S : O → Type s) → ∀ {o} → S o → I → Type (i ⊔ p)) ↔⟨ (∃-cong λ _ → B.implicit-Π↔Π) ⟩ (∃ λ (S : O → Type s) → ∀ o (s : S o) → I → Type (i ⊔ p)) ↔⟨ (∃-cong λ _ → ∀-cong (lower-extensionality l r ext) λ _ → ∀-cong (lower-extensionality l r ext) λ _ → Pow↔Fam p (lower-extensionality l r ext) univ) ⟩ (∃ λ (S : O → Type s) → ∀ o (s : S o) → ∃ λ (P : Type (i ⊔ p)) → P → I) ↔⟨ (∃-cong λ _ → ΠΣ-comm F.∘ ∀-cong (lower-extensionality l r ext) λ _ → ΠΣ-comm) ⟩ (∃ λ (S : O → Type s) → ∃ λ (P : ∀ o → S o → Type (i ⊔ p)) → ∀ o (s : S o) → P o s → I) ↝⟨ (∃-cong λ _ → inverse $ Σ-cong-refl {k₂ = logical-equivalence} B.implicit-Π↔Π λ _ → (∀-cong _ λ _ → from-bijection B.implicit-Π↔Π) F.∘ from-bijection B.implicit-Π↔Π) ⟩ (∃ λ (S : O → Type s) → ∃ λ (P : ∀ {o} → S o → Type (i ⊔ p)) → ∀ {o} {s : S o} → P s → I) ↝⟨ inverse C.Container≃Σ ⟩□ C.Container₂ I O s (i ⊔ p) □ where l = i ⊔ o ⊔ s r = lsuc i ⊔ s ⊔ lsuc p -- The two conversion lemmas for Container are related. _ : {I : Type i} {univ : Univalence (i ⊔ p)} → _≃_.logical-equivalence (Container≃Container {I = I} {O = O} p ext univ) ≡ Container⇔Container p _ = refl _ -- A conversion lemma for ⟦_⟧. ⟦⟧≃⟦⟧ : ∀ p → {I : Type i} (C : Container₂ I O s (i ⊔ p)) {P : I → Type ℓ} → ∀ o → C.⟦ _⇔_.to (Container⇔Container p) C ⟧ P o ≃ ⟦ C ⟧ P o ⟦⟧≃⟦⟧ _ {I = I} C {P = P} o = (∃ λ (s : Shape C o) → ((i , _) : Σ I (Position C s)) → P i) ↔⟨ (∃-cong λ _ → currying) ⟩□ (∃ λ (s : Shape C o) → (i : I) → Position C s i → P i) □ -- Another conversion lemma for ⟦_⟧. ⟦⟧≃⟦⟧′ : ∀ p → {I : Type i} (C : C.Container₂ I O s (i ⊔ p)) {P : I → Type ℓ} → ∀ o → ⟦ _⇔_.from (Container⇔Container p) C ⟧ P o ↝[ i ⊔ p ∣ i ⊔ p ⊔ ℓ ] C.⟦ C ⟧ P o ⟦⟧≃⟦⟧′ {i = i} {ℓ = ℓ} p {I = I} C {P = P} _ {k = k} ext = ∃-cong λ s → ((i : I) → (∃ λ (p : C .Position s) → C .index p ≡ i) → P i) ↝⟨ (∀-cong (lower-extensionality? k l r ext) λ _ → from-bijection currying) ⟩ ((i : I) (p : C .Position s) → C .index p ≡ i → P i) ↔⟨ Π-comm ⟩ ((p : C .Position s) (i : I) → C .index p ≡ i → P i) ↝⟨ (∀-cong (lower-extensionality? k l r ext) λ _ → ∀-cong (lower-extensionality? k l r ext) λ _ → ∀-cong (lower-extensionality? k l r ext) λ eq → ≡⇒↝ _ $ cong P (sym eq)) ⟩ ((p : C .Position s) (i : I) → C .index p ≡ i → P (C .index p)) ↝⟨ (∀-cong (lower-extensionality? k l r ext) λ _ → from-bijection $ inverse currying) ⟩ ((p : C .Position s) → (∃ λ (i : I) → C .index p ≡ i) → P (C .index p)) ↝⟨ (∀-cong (lower-extensionality? k l r ext) λ _ → drop-⊤-left-Π (lower-extensionality? k l r ext) $ _⇔_.to contractible⇔↔⊤ $ other-singleton-contractible _) ⟩□ ((p : C .Position s) → P (C .index p)) □ where l = i ⊔ p r = i ⊔ p ⊔ ℓ -- The map functions commute with ⟦⟧≃⟦⟧ (in a certain sense). _ : map C f ∘⇾ (_≃_.to ∘ ⟦⟧≃⟦⟧ p C) ≡ (_≃_.to ∘ ⟦⟧≃⟦⟧ p C) ∘⇾ C.map (_⇔_.to (Container⇔Container p) C) f _ = refl _ -- The map functions commute with ⟦⟧≃⟦⟧′ (in a certain sense, assuming -- extensionality). map≡map′ : {I : Type i} {O : Type o} {P : I → Type p} {Q : I → Type q} → ∀ p′ → Extensionality (i ⊔ o ⊔ p ⊔ s ⊔ p′) (i ⊔ p ⊔ q ⊔ s ⊔ p′) → (C : C.Container₂ I O s (i ⊔ p′)) {f : P ⇾ Q} → C.map C f ∘⇾ (λ o → ⟦⟧≃⟦⟧′ p′ C o _) ≡ (λ o → ⟦⟧≃⟦⟧′ p′ C o _) ∘⇾ map (_⇔_.from (Container⇔Container p′) C) f map≡map′ {i = i} {o = o} {p = p} {q = q} {s = s} {P = P} {Q = Q} p′ ext C {f = f} = apply-ext (lower-extensionality l r ext) λ _ → apply-ext (lower-extensionality l r ext) λ (_ , g) → cong (_ ,_) $ apply-ext (lower-extensionality l r ext) λ p → let i = C .index p in f i (≡⇒↝ _ (cong P (sym (refl _))) (g i (p , refl _))) ≡⟨ cong (λ eq → f i (≡⇒↝ _ eq (g i (p , refl _)))) $ trans (cong (cong P) sym-refl) $ cong-refl _ ⟩ f i (≡⇒↝ _ (refl _) (g i (p , refl _))) ≡⟨ cong (f i) $ cong (_$ g i (p , refl _)) ≡⇒↝-refl ⟩ f i (g i (p , refl _)) ≡⟨ cong (_$ f i (g i (p , refl _))) $ sym ≡⇒↝-refl ⟩ ≡⇒↝ _ (refl _) (f i (g i (p , refl _))) ≡⟨ cong (λ eq → ≡⇒↝ _ eq (f i (g i (p , refl _)))) $ sym $ trans (cong (cong Q) sym-refl) $ cong-refl _ ⟩∎ ≡⇒↝ _ (cong Q (sym (refl _))) (f i (g i (p , refl _))) ∎ where l = i ⊔ o ⊔ p ⊔ s ⊔ p′ r = i ⊔ p ⊔ q ⊔ s ⊔ p′ -- A conversion lemma for Coalgebra. Coalgebra≃Coalgebra : ∀ p {I : Type i} (C : Container I s (i ⊔ p)) → Coalgebra C ↝[ i ⊔ s ⊔ p ∣ i ⊔ s ⊔ p ] C.Coalgebra (_⇔_.to (Container⇔Container p) C) Coalgebra≃Coalgebra {s = s} p C {k = k} ext = (∃ λ P → P ⇾ ⟦ C ⟧ P) ↝⟨ (∃-cong λ _ → ∀-cong (lower-extensionality? k (s ⊔ p) lzero ext) λ _ → ∀-cong ext λ _ → from-equivalence $ inverse $ ⟦⟧≃⟦⟧ p C _) ⟩□ (∃ λ P → P ⇾ C.⟦ _⇔_.to (Container⇔Container p) C ⟧ P) □ -- A conversion lemma for _⇨_. ⇨≃⇨ : ∀ p {I : Type i} (C : Container I s (i ⊔ p)) → Extensionality (i ⊔ s ⊔ p) (i ⊔ s ⊔ p) → (X Y : Coalgebra C) → (X ⇨ Y) ≃ (Coalgebra≃Coalgebra p C _ X C.⇨ Coalgebra≃Coalgebra p C _ Y) ⇨≃⇨ {s = s} p C ext (P , f) (Q , g) = (∃ λ (h : P ⇾ Q) → g ∘⇾ h ≡ map _ h ∘⇾ f) ↝⟨ (∃-cong λ h → inverse $ Eq.≃-≡ $ ∀-cong (lower-extensionality (s ⊔ p) lzero ext) λ _ → ∀-cong ext λ _ → inverse $ ⟦⟧≃⟦⟧ p C _) ⟩□ (∃ λ (h : P ⇾ Q) → ((Σ-map id uncurry ∘_) ∘ g) ∘⇾ h ≡ C.map _ h ∘⇾ ((Σ-map id uncurry ∘_) ∘ f)) □ -- A conversion lemma for Final. Final≃Final : ∀ p {I : Type i} (C : Container I s (i ⊔ p)) → Extensionality (lsuc (i ⊔ s ⊔ p)) (i ⊔ s ⊔ p) → (ext : Extensionality (i ⊔ s ⊔ p) (i ⊔ s ⊔ p)) (X : Coalgebra C) → Final X ≃ C.Final (_≃_.to (Coalgebra≃Coalgebra p C ext) X) Final≃Final p C ext′ ext X = (∀ Y → Contractible (Y ⇨ X)) ↝⟨ (Π-cong ext′ (Coalgebra≃Coalgebra p C {k = equivalence} ext) λ Y → H-level-cong ext 0 $ ⇨≃⇨ p C ext Y X) ⟩□ (∀ Y → Contractible (Y C.⇨ Coalgebra≃Coalgebra p C _ X)) □ -- A conversion lemma for Final′. Final′≃Final′ : ∀ p {I : Type i} (C : Container I s (i ⊔ p)) → Extensionality (lsuc (i ⊔ s ⊔ p)) (i ⊔ s ⊔ p) → (ext : Extensionality (i ⊔ s ⊔ p) (i ⊔ s ⊔ p)) (X : Coalgebra C) → Final′ X ≃ C.Final′ (_≃_.to (Coalgebra≃Coalgebra p C ext) X) Final′≃Final′ p C ext′ ext X = (∀ Y → ∃ λ (m : Y ⇨ X ) → (m′ : Y ⇨ X ) → proj₁ m ≡ proj₁ m′) ↝⟨ (Π-cong ext′ (Coalgebra≃Coalgebra p C {k = equivalence} ext) λ Y → Σ-cong (⇨≃⇨ p C ext Y X) λ _ → Π-cong ext (⇨≃⇨ p C ext Y X) λ _ → F.id) ⟩□ (∀ Y → ∃ λ (m : Y C.⇨ X′) → (m′ : Y C.⇨ X′) → proj₁ m ≡ proj₁ m′) □ where X′ = _≃_.to (Coalgebra≃Coalgebra p C ext) X -- A conversion lemma for Final-coalgebra. Final-coalgebra≃Final-coalgebra : ∀ p {I : Type i} (C : Container I s (i ⊔ p)) → Extensionality (lsuc (i ⊔ s ⊔ p)) (i ⊔ s ⊔ p) → Final-coalgebra C ≃ C.Final-coalgebra (_⇔_.to (Container⇔Container p) C) Final-coalgebra≃Final-coalgebra p C ext = (∃ λ (X : Coalgebra C ) → Final X) ↝⟨ Σ-cong {k₁ = equivalence} (Coalgebra≃Coalgebra p C ext′) (Final≃Final p C ext ext′) ⟩□ (∃ λ (X : C.Coalgebra C′) → C.Final X) □ where C′ = _⇔_.to (Container⇔Container p) C ext′ = lower-extensionality _ lzero ext -- A conversion lemma for Final-coalgebra′. Final-coalgebra′≃Final-coalgebra′ : ∀ p {I : Type i} (C : Container I s (i ⊔ p)) → Extensionality (lsuc (i ⊔ s ⊔ p)) (i ⊔ s ⊔ p) → Final-coalgebra′ C ≃ C.Final-coalgebra′ (_⇔_.to (Container⇔Container p) C) Final-coalgebra′≃Final-coalgebra′ p C ext = (∃ λ (X : Coalgebra C ) → Final′ X) ↝⟨ Σ-cong {k₁ = equivalence} (Coalgebra≃Coalgebra p C ext′) (Final′≃Final′ p C ext ext′) ⟩□ (∃ λ (X : C.Coalgebra C′) → C.Final′ X) □ where C′ = _⇔_.to (Container⇔Container p) C ext′ = lower-extensionality _ lzero ext
41.335135
138
0.422486
cb192eab5daae544a3fcbd5ab29bbc048cf81a94
187
agda
Agda
examples/Introduction/Universes.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/Introduction/Universes.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/Introduction/Universes.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Introduction.Universes where data Nat : Set where zero : Nat suc : Nat -> Nat postulate IsEven : Nat -> Prop data Even : Set where even : (n : Nat) -> IsEven n -> Even
14.384615
38
0.641711
58077c8bb8215218aae3538fcfd38bb4a9bae40d
8,834
agda
Agda
old/Homotopy/TruncatedHIT.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
old/Homotopy/TruncatedHIT.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
old/Homotopy/TruncatedHIT.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K #-} {- Truncated higher inductive types look like higher inductive types except that they are truncated down to some fixed truncation level. This allow to define truncations (obviously) but also free algebras for algebraic theories, Eilenberg-MacLane spaces, etc. The idea is that to get an n-truncated higher inductive type, you just have to add the following two constructors, where [I] is the HIT you are defining. top : (f : Sⁿ n → I) → I rays : (f : Sⁿ n → I) (x : Sⁿ n) → top f ≡ f x In this file, I prove whatever is needed to go from the usual elimination rules generated by the previous constructors to the elimination rules that we expect from truncated higher inductive types. We have to note that the previous definition does not work for [n = 0], because this only adds a point to I instead of turning it into a contractible space. 0-truncated higher inductive types are not really interesting but handling truncations is easier when 0 is not special Hence I’m adding the following path constructor hack-prop : (p : n ≡ 0) (x y : τ) → (x ≡ y) This will force [I] to be a prop (hence contractible because [top] of the empty function is of type [I]) and does not change anything when [n] is not 0. I may use the following syntax for [n]-truncated higher inductive types: (n)data I : Set i where … -} module Homotopy.TruncatedHIT where open import Base open import Spaces.Spheres public open import Spaces.Suspension public _+1 : ℕ₋₂ → ℕ ⟨-2⟩ +1 = 0 (S ⟨-2⟩) +1 = 0 (S n) +1 = S (n +1) -- [hSⁿ n] is what is supposed to be filled to get something n-truncated hSⁿ : ℕ₋₂ → Set hSⁿ ⟨-2⟩ = ⊥ hSⁿ n = Sⁿ (n +1) -- Type of fillings of a sphere filling : ∀ {i} (n : ℕ₋₂) {A : Set i} (f : hSⁿ n → A) → Set i filling {i} n {A} f = Σ A (λ t → ((x : hSⁿ n) → t ≡ f x)) -- Type of dependent fillings of a sphere above a ball filling-dep : ∀ {i j} (n : ℕ₋₂) {A : Set i} (P : A → Set j) (f : hSⁿ n → A) (fill : filling n f) (p : (x : hSⁿ n) → P (f x)) → Set j filling-dep {i} {j} n {A} P f fill p = Σ (P (π₁ fill)) (λ t → ((x : hSⁿ n) → transport P (π₂ fill x) t ≡ p x)) -- [has-n-spheres-filled n A] is inhabited iff every n-sphere in [A] can be -- filled with an (n+1)-ball. -- We will show that this is equivalent to being n-truncated, *for n > 0* -- (for n = 0, having 0-spheres filled only means that A is inhabited) has-spheres-filled : ∀ {i} (n : ℕ₋₂) (A : Set i) → Set i has-spheres-filled n A = (f : hSⁿ n → A) → filling n f -- [has-n-spheres-filled] satisfy the same inductive property -- than [is-truncated] fill-paths : ∀ {i} (n : ℕ₋₂) (A : Set i) (t : has-spheres-filled (S n) A) → (n ≡ ⟨-2⟩ → is-contr A) → ((x y : A) → has-spheres-filled n (x ≡ y)) fill-paths ⟨-2⟩ A t contr x y f = (contr-has-all-paths (contr refl) x y , abort) fill-paths (S n) A t _ x y f = ((! (π₂ u (north _)) ∘ π₂ u (south _)) , (λ z → ! (lemma (paths _ z)) ∘ suspension-β-paths-nondep _ _ _ _ f _)) where -- [f] is a map from [hSⁿ (S n)] to [x ≡ y], we can build from it a map -- from [hSⁿ (S n)] to [A] newf : hSⁿ (S (S n)) → A newf = suspension-rec-nondep _ _ x y f u : filling (S (S n)) newf u = t newf -- I’ve got a filling -- Every path in the sphere is equal (in A) to the canonical path going -- through the center of the filled sphere lemma : {p q : hSⁿ (S (S n))} (l : p ≡ q) → ap newf l ≡ ! (π₂ u p) ∘ π₂ u q lemma {p = a} refl = ! (opposite-left-inverse (π₂ u a)) -- We first prove that if n-spheres are filled, then the type is n-truncated, -- we have to prove it for n = -1, and then use the previous lemma abstract spheres-filled-is-truncated : ∀ {i} (n : ℕ₋₂) (A : Set i) → ((n ≡ ⟨-2⟩ → is-contr A) → has-spheres-filled n A → is-truncated n A) spheres-filled-is-truncated ⟨-2⟩ A contr t = contr refl spheres-filled-is-truncated (S ⟨-2⟩) A _ t = all-paths-is-prop (λ x y → ! (π₂ (t (f x y)) true) ∘ π₂ (t (f x y)) false) where f : (x y : A) → bool {zero} → A f x y true = x f x y false = y spheres-filled-is-truncated (S (S n)) A _ t = λ x y → spheres-filled-is-truncated (S n) (x ≡ y) (λ ()) (fill-paths (S n) A t (λ ()) x y) -- We now prove the converse abstract truncated-has-spheres-filled : ∀ {i} (n : ℕ₋₂) (A : Set i) (t : is-truncated n A) → has-spheres-filled n A truncated-has-spheres-filled ⟨-2⟩ A t f = (π₁ t , abort) truncated-has-spheres-filled (S ⟨-2⟩) A t f = (f true , (λ {true → refl ; false → π₁ (t (f true) (f false))})) truncated-has-spheres-filled (S (S n)) A t f = (f (north _) , (suspension-rec _ _ refl (ap f (paths _ (⋆Sⁿ _))) (λ x → trans-cst≡app (f (north _)) f (paths _ _) _ ∘ (! (π₂ filled-newf x) ∘ π₂ filled-newf (⋆Sⁿ _))))) where newf : hSⁿ (S n) → (f (north _) ≡ f (south _)) newf x = ap f (paths _ x) filled-newf : filling (S n) newf filled-newf = truncated-has-spheres-filled (S n) _ (t _ _) newf -- I prove that if [A] has [S n]-spheres filled, then the type of fillings -- of [n]-spheres is a proposition. The idea is that two fillings of -- an [n]-sphere define an [S n]-sphere, which is then filled. filling-has-all-paths : ∀ {i} (n : ℕ₋₂) (A : Set i) ⦃ fill : has-spheres-filled (S n) A ⦄ (f : hSⁿ n → A) → has-all-paths (filling n f) filling-has-all-paths ⟨-2⟩ A ⦃ fill ⦄ f fill₁ fill₂ = Σ-eq (! (π₂ big-map-filled true) ∘ π₂ big-map-filled false) (funext abort) where big-map : hSⁿ ⟨-1⟩ → A big-map true = π₁ fill₁ big-map false = π₁ fill₂ big-map-filled : filling ⟨-1⟩ big-map big-map-filled = fill big-map filling-has-all-paths (S n) A ⦃ fill ⦄ f fill₁ fill₂ = Σ-eq (! (π₂ big-map-filled (north _)) ∘ π₂ big-map-filled (south _)) (funext (λ x → trans-Π2 _ (λ t x₁ → t ≡ f x₁) (! (π₂ big-map-filled (north _)) ∘ π₂ big-map-filled (south _)) (π₂ fill₁) x ∘ (trans-id≡cst (! (π₂ big-map-filled (north _)) ∘ π₂ big-map-filled (south _)) (π₂ fill₁ x) ∘ move!-right-on-left (! (π₂ big-map-filled (north _)) ∘ π₂ big-map-filled (south _)) _ _ (move-left-on-right _ (! (π₂ big-map-filled (north _)) ∘ π₂ big-map-filled (south _)) _ (! (suspension-β-paths-nondep _ _ _ _ g x) ∘ lemma (paths _ x)))))) where g : hSⁿ (S n) → (π₁ fill₁ ≡ π₁ fill₂) g x = π₂ fill₁ x ∘ ! (π₂ fill₂ x) big-map : hSⁿ (S (S n)) → A big-map = suspension-rec-nondep _ _ (π₁ fill₁) (π₁ fill₂) g big-map-filled : filling (S (S n)) big-map big-map-filled = fill big-map lemma : {u v : hSⁿ (S (S n))} (p : u ≡ v) → ap big-map p ≡ (! (π₂ big-map-filled u) ∘ π₂ big-map-filled v) lemma {u = a} refl = ! (opposite-left-inverse (π₂ big-map-filled a)) abstract truncated-has-filling-dep : ∀ {i j} (A : Set i) (P : A → Set j) (n : ℕ₋₂) ⦃ trunc : (x : A) → is-truncated n (P x) ⦄ (contr : n ≡ ⟨-2⟩ → is-contr A) (fill : has-spheres-filled n A) (f : hSⁿ n → A) (p : (x : hSⁿ n) → P (f x)) → filling-dep n P f (fill f) p truncated-has-filling-dep A P ⟨-2⟩ ⦃ trunc ⦄ contr fill f p = (π₁ (trunc (π₁ (fill f))) , abort) truncated-has-filling-dep A P (S n) ⦃ trunc ⦄ contr fill f p = transport (λ t → filling-dep (S n) P f t p) eq fill-dep where -- Combining [f] and [p] we have a sphere in the total space of [P] newf : hSⁿ (S n) → Σ A P newf x = (f x , p x) -- But this total space is (S n)-truncated ΣAP-truncated : is-truncated (S n) (Σ A P) ΣAP-truncated = Σ-is-truncated (S n) (spheres-filled-is-truncated (S n) A contr fill) trunc -- Hence the sphere is filled tot-fill : filling (S n) newf tot-fill = truncated-has-spheres-filled (S n) (Σ A P) ΣAP-truncated newf -- We can split this filling as a filling of [f] in [A] … new-fill : filling (S n) f new-fill = (π₁ (π₁ tot-fill) , (λ x → base-path (π₂ tot-fill x))) -- and a dependent filling above the previous filling of [f], along [p] fill-dep : filling-dep (S n) P f new-fill p fill-dep = (π₂ (π₁ tot-fill) , (λ x → fiber-path (π₂ tot-fill x))) A-has-spheres-filled-S : has-spheres-filled (S (S n)) A A-has-spheres-filled-S = truncated-has-spheres-filled (S (S n)) A (truncated-is-truncated-S (S n) (spheres-filled-is-truncated (S n) A contr fill)) -- But both the new and the old fillings of [f] are equal, hence we will -- have a dependent filling above the old one eq : new-fill ≡ fill f eq = filling-has-all-paths (S n) A f new-fill (fill f)
38.9163
80
0.579918
2ec414a915d402bb92f8c52659213f24b803e273
651
agda
Agda
Cubical/Categories/Limits/Terminal.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Categories/Limits/Terminal.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Categories/Limits/Terminal.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Categories.Limits.Terminal where open import Cubical.Foundations.Prelude open import Cubical.Data.Sigma -- open import Cubical.Categories.Limits.Base open import Cubical.Categories.Category open import Cubical.Categories.Functor private variable ℓ ℓ' : Level module _ (C : Precategory ℓ ℓ') where open Precategory C isInitial : (x : ob) → Type (ℓ-max ℓ ℓ') isInitial x = ∀ (y : ob) → isContr (C [ x , y ]) isFinal : (x : ob) → Type (ℓ-max ℓ ℓ') isFinal x = ∀ (y : ob) → isContr (C [ y , x ]) hasFinalOb : Type (ℓ-max ℓ ℓ') hasFinalOb = Σ[ x ∈ ob ] isFinal x
25.038462
50
0.663594
3d6880ba534d710984b2f0b5e49bde6961b3061b
13,925
agda
Agda
Cubical/HITs/S1/Base.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/HITs/S1/Base.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/HITs/S1/Base.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{- Definition of the circle as a HIT with a proof that Ω(S¹) ≡ ℤ -} {-# OPTIONS --cubical --safe #-} module Cubical.HITs.S1.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Data.Nat hiding (_+_ ; _*_ ; +-assoc ; +-comm) open import Cubical.Data.Int data S¹ : Type₀ where base : S¹ loop : base ≡ base -- Check that transp is the identity function for S¹ module _ where transpS¹ : ∀ (φ : I) (u0 : S¹) → transp (λ _ → S¹) φ u0 ≡ u0 transpS¹ φ u0 = refl compS1 : ∀ (φ : I) (u : ∀ i → Partial φ S¹) (u0 : S¹ [ φ ↦ u i0 ]) → comp (λ _ → S¹) u (outS u0) ≡ hcomp u (outS u0) compS1 φ u u0 = refl helix : S¹ → Type₀ helix base = Int helix (loop i) = sucPathInt i ΩS¹ : Type₀ ΩS¹ = base ≡ base encode : ∀ x → base ≡ x → helix x encode x p = subst helix p (pos zero) winding : ΩS¹ → Int winding = encode base intLoop : Int → ΩS¹ intLoop (pos zero) = refl intLoop (pos (suc n)) = intLoop (pos n) ∙ loop intLoop (negsuc zero) = sym loop intLoop (negsuc (suc n)) = intLoop (negsuc n) ∙ sym loop decodeSquare : (n : Int) → PathP (λ i → base ≡ loop i) (intLoop (predInt n)) (intLoop n) decodeSquare (pos zero) i j = loop (i ∨ ~ j) decodeSquare (pos (suc n)) i j = hfill (λ k → λ { (j = i0) → base ; (j = i1) → loop k } ) (inS (intLoop (pos n) j)) i decodeSquare (negsuc n) i j = hcomp (λ k → λ { (i = i1) → intLoop (negsuc n) j ; (j = i0) → base ; (j = i1) → loop (i ∨ ~ k) }) (intLoop (negsuc n) j) decode : (x : S¹) → helix x → base ≡ x decode base = intLoop decode (loop i) y j = let n : Int n = unglue (i ∨ ~ i) y in hcomp (λ k → λ { (i = i0) → intLoop (predSuc y k) j ; (i = i1) → intLoop y j ; (j = i0) → base ; (j = i1) → loop i }) (decodeSquare n i j) decodeEncode : (x : S¹) (p : base ≡ x) → decode x (encode x p) ≡ p decodeEncode x p = J (λ y q → decode y (encode y q) ≡ q) (λ _ → refl) p isSetΩS¹ : isSet ΩS¹ isSetΩS¹ p q r s j i = hcomp (λ k → λ { (i = i0) → decodeEncode base p k ; (i = i1) → decodeEncode base q k ; (j = i0) → decodeEncode base (r i) k ; (j = i1) → decodeEncode base (s i) k }) (decode base (isSetInt (winding p) (winding q) (cong winding r) (cong winding s) j i)) -- This proof does not rely on rewriting hcomp with empty systems in -- Int as ghcomp has been implemented! windingIntLoop : (n : Int) → winding (intLoop n) ≡ n windingIntLoop (pos zero) = refl windingIntLoop (pos (suc n)) = cong sucInt (windingIntLoop (pos n)) windingIntLoop (negsuc zero) = refl windingIntLoop (negsuc (suc n)) = cong predInt (windingIntLoop (negsuc n)) ΩS¹≡Int : ΩS¹ ≡ Int ΩS¹≡Int = isoToPath (iso winding intLoop windingIntLoop (decodeEncode base)) -- intLoop and winding are group homomorphisms private intLoop-sucInt : (z : Int) → intLoop (sucInt z) ≡ intLoop z ∙ loop intLoop-sucInt (pos n) = refl intLoop-sucInt (negsuc zero) = sym (lCancel loop) intLoop-sucInt (negsuc (suc n)) = rUnit (intLoop (negsuc n)) ∙ (λ i → intLoop (negsuc n) ∙ lCancel loop (~ i)) ∙ assoc (intLoop (negsuc n)) (sym loop) loop intLoop-predInt : (z : Int) → intLoop (predInt z) ≡ intLoop z ∙ sym loop intLoop-predInt (pos zero) = lUnit (sym loop) intLoop-predInt (pos (suc n)) = rUnit (intLoop (pos n)) ∙ (λ i → intLoop (pos n) ∙ (rCancel loop (~ i))) ∙ assoc (intLoop (pos n)) loop (sym loop) intLoop-predInt (negsuc n) = refl intLoop-hom : (a b : Int) → (intLoop a) ∙ (intLoop b) ≡ intLoop (a + b) intLoop-hom a (pos zero) = sym (rUnit (intLoop a)) intLoop-hom a (pos (suc n)) = assoc (intLoop a) (intLoop (pos n)) loop ∙ (λ i → (intLoop-hom a (pos n) i) ∙ loop) ∙ sym (intLoop-sucInt (a + pos n)) intLoop-hom a (negsuc zero) = sym (intLoop-predInt a) intLoop-hom a (negsuc (suc n)) = assoc (intLoop a) (intLoop (negsuc n)) (sym loop) ∙ (λ i → (intLoop-hom a (negsuc n) i) ∙ (sym loop)) ∙ sym (intLoop-predInt (a + negsuc n)) winding-hom : (a b : ΩS¹) → winding (a ∙ b) ≡ (winding a) + (winding b) winding-hom a b i = hcomp (λ t → λ { (i = i0) → winding (decodeEncode base a t ∙ decodeEncode base b t) ; (i = i1) → windingIntLoop (winding a + winding b) t }) (winding (intLoop-hom (winding a) (winding b) i)) -- Based homotopy group basedΩS¹ : (x : S¹) → Type₀ basedΩS¹ x = x ≡ x -- Proof that the homotopy group is actually independent on the basepoint -- first, give a quasi-inverse to the basechange basedΩS¹→ΩS¹ for any loop i -- (which does *not* match at endpoints) private ΩS¹→basedΩS¹-filler : I → I → ΩS¹ → I → S¹ ΩS¹→basedΩS¹-filler l i x j = hfill (λ t → λ { (j = i0) → loop (i ∧ t) ; (j = i1) → loop (i ∧ t) }) (inS (x j)) l basedΩS¹→ΩS¹-filler : (_ i : I) → basedΩS¹ (loop i) → I → S¹ basedΩS¹→ΩS¹-filler l i x j = hfill (λ t → λ { (j = i0) → loop (i ∧ (~ t)) ; (j = i1) → loop (i ∧ (~ t)) }) (inS (x j)) l ΩS¹→basedΩS¹ : (i : I) → ΩS¹ → basedΩS¹ (loop i) ΩS¹→basedΩS¹ i x j = ΩS¹→basedΩS¹-filler i1 i x j basedΩS¹→ΩS¹ : (i : I) → basedΩS¹ (loop i) → ΩS¹ basedΩS¹→ΩS¹ i x j = basedΩS¹→ΩS¹-filler i1 i x j basedΩS¹→ΩS¹→basedΩS¹ : (i : I) → (x : basedΩS¹ (loop i)) → ΩS¹→basedΩS¹ i (basedΩS¹→ΩS¹ i x) ≡ x basedΩS¹→ΩS¹→basedΩS¹ i x j k = hcomp (λ t → λ { (j = i1) → basedΩS¹→ΩS¹-filler (~ t) i x k ; (j = i0) → ΩS¹→basedΩS¹ i (basedΩS¹→ΩS¹ i x) k ; (k = i0) → loop (i ∧ (t ∨ (~ j))) ; (k = i1) → loop (i ∧ (t ∨ (~ j))) }) (ΩS¹→basedΩS¹-filler (~ j) i (basedΩS¹→ΩS¹ i x) k) ΩS¹→basedΩS¹→ΩS¹ : (i : I) → (x : ΩS¹) → basedΩS¹→ΩS¹ i (ΩS¹→basedΩS¹ i x) ≡ x ΩS¹→basedΩS¹→ΩS¹ i x j k = hcomp (λ t → λ { (j = i1) → ΩS¹→basedΩS¹-filler (~ t) i x k ; (j = i0) → basedΩS¹→ΩS¹ i (ΩS¹→basedΩS¹ i x) k ; (k = i0) → loop (i ∧ ((~ t) ∧ j)) ; (k = i1) → loop (i ∧ ((~ t) ∧ j)) }) (basedΩS¹→ΩS¹-filler (~ j) i (ΩS¹→basedΩS¹ i x) k) -- from the existence of our quasi-inverse, we deduce that the basechange is an equivalence -- for all loop i basedΩS¹→ΩS¹-isequiv : (i : I) → isEquiv (basedΩS¹→ΩS¹ i) basedΩS¹→ΩS¹-isequiv i = isoToIsEquiv (iso (basedΩS¹→ΩS¹ i) (ΩS¹→basedΩS¹ i) (ΩS¹→basedΩS¹→ΩS¹ i) (basedΩS¹→ΩS¹→basedΩS¹ i)) -- now extend the basechange so that both ends match -- (and therefore we get a basechange for any x : S¹) private loop-conjugation : basedΩS¹→ΩS¹ i1 ≡ λ x → x loop-conjugation i x = let p = (doubleCompPath-elim loop x (sym loop)) ∙ (λ i → (lUnit loop i ∙ x) ∙ sym loop) in ((sym (decodeEncode base (basedΩS¹→ΩS¹ i1 x))) ∙ (λ t → intLoop (winding (p t))) ∙ (λ t → intLoop (winding-hom (intLoop (pos (suc zero)) ∙ x) (intLoop (negsuc zero)) t)) ∙ (λ t → intLoop ((winding-hom (intLoop (pos (suc zero))) x t) + (windingIntLoop (negsuc zero) t))) ∙ (λ t → intLoop (((windingIntLoop (pos (suc zero)) t) + (winding x)) + (negsuc zero))) ∙ (λ t → intLoop ((+-comm (pos (suc zero)) (winding x) t) + (negsuc zero))) ∙ (λ t → intLoop (+-assoc (winding x) (pos (suc zero)) (negsuc zero) (~ t))) ∙ (decodeEncode base x)) i refl-conjugation : basedΩS¹→ΩS¹ i0 ≡ λ x → x refl-conjugation i x j = hfill (λ t → λ { (j = i0) → base ; (j = i1) → base }) (inS (x j)) (~ i) basechange : (x : S¹) → basedΩS¹ x → ΩS¹ basechange base y = y basechange (loop i) y = hcomp (λ t → λ { (i = i0) → refl-conjugation t y ; (i = i1) → loop-conjugation t y }) (basedΩS¹→ΩS¹ i y) -- for any loop i, the old basechange is equal to the new one basedΩS¹→ΩS¹≡basechange : (i : I) → basedΩS¹→ΩS¹ i ≡ basechange (loop i) basedΩS¹→ΩS¹≡basechange i j y = hfill (λ t → λ { (i = i0) → refl-conjugation t y ; (i = i1) → loop-conjugation t y }) (inS (basedΩS¹→ΩS¹ i y)) j -- so for any loop i, the extended basechange is an equivalence basechange-isequiv-aux : (i : I) → isEquiv (basechange (loop i)) basechange-isequiv-aux i = transport (λ j → isEquiv (basedΩS¹→ΩS¹≡basechange i j)) (basedΩS¹→ΩS¹-isequiv i) -- as being an equivalence is contractible, basechange is an equivalence for all x : S¹ basechange-isequiv : (x : S¹) → isEquiv (basechange x) basechange-isequiv base = basechange-isequiv-aux i0 basechange-isequiv (loop i) = hcomp (λ t → λ { (i = i0) → basechange-isequiv-aux i0 ; (i = i1) → isPropIsEquiv (basechange base) (basechange-isequiv-aux i1) (basechange-isequiv-aux i0) t }) (basechange-isequiv-aux i) basedΩS¹≡ΩS¹ : (x : S¹) → basedΩS¹ x ≡ ΩS¹ basedΩS¹≡ΩS¹ x = ua (basechange x , basechange-isequiv x) basedΩS¹≡Int : (x : S¹) → basedΩS¹ x ≡ Int basedΩS¹≡Int x = (basedΩS¹≡ΩS¹ x) ∙ ΩS¹≡Int -- Some tests module _ where private test-winding-pos : winding (intLoop (pos 5)) ≡ pos 5 test-winding-pos = refl test-winding-neg : winding (intLoop (negsuc 5)) ≡ negsuc 5 test-winding-neg = refl -- the inverse when S¹ is seen as a group inv : S¹ → S¹ inv base = base inv (loop i) = loop (~ i) invInvolutive : section inv inv invInvolutive base = refl invInvolutive (loop i) = refl invS¹Equiv : S¹ ≃ S¹ invS¹Equiv = isoToEquiv (iso inv inv invInvolutive invInvolutive) invS¹Path : S¹ ≡ S¹ invS¹Path = ua invS¹Equiv -- rot, used in the Hopf fibration rotLoop : (a : S¹) → a ≡ a rotLoop base = loop rotLoop (loop i) j = hcomp (λ k → λ { (i = i0) → loop (j ∨ ~ k) ; (i = i1) → loop (j ∧ k) ; (j = i0) → loop (i ∨ ~ k) ; (j = i1) → loop (i ∧ k)}) base rot : S¹ → S¹ → S¹ rot base x = x rot (loop i) x = rotLoop x i _*_ : S¹ → S¹ → S¹ a * b = rot a b infixl 30 _*_ -- rot i j = filler-rot i j i1 filler-rot : I → I → I → S¹ filler-rot i j = hfill (λ k → λ { (i = i0) → loop (j ∨ ~ k) ; (i = i1) → loop (j ∧ k) ; (j = i0) → loop (i ∨ ~ k) ; (j = i1) → loop (i ∧ k) }) (inS base) isPropFamS¹ : ∀ {ℓ} (P : S¹ → Type ℓ) (pP : (x : S¹) → isProp (P x)) (b0 : P base) → PathP (λ i → P (loop i)) b0 b0 isPropFamS¹ P pP b0 i = pP (loop i) (transp (λ j → P (loop (i ∧ j))) (~ i) b0) (transp (λ j → P (loop (i ∨ ~ j))) i b0) i rotIsEquiv : (a : S¹) → isEquiv (rot a) rotIsEquiv base = idIsEquiv S¹ rotIsEquiv (loop i) = isPropFamS¹ (λ x → isEquiv (rot x)) (λ x → isPropIsEquiv (rot x)) (idIsEquiv _) i -- more direct definition of the rot (loop i) equivalence rotLoopInv : (a : S¹) → PathP (λ i → rotLoop (rotLoop a (~ i)) i ≡ a) refl refl rotLoopInv a i j = homotopySymInv rotLoop a j i rotLoopEquiv : (i : I) → S¹ ≃ S¹ rotLoopEquiv i = isoToEquiv (iso (λ a → rotLoop a i) (λ a → rotLoop a (~ i)) (λ a → rotLoopInv a i) (λ a → rotLoopInv a (~ i))) -- some cancellation laws, used in the Hopf fibration private rotInv-aux-1 : I → I → I → I → S¹ rotInv-aux-1 j k i = hfill (λ l → λ { (k = i0) → (loop (i ∧ ~ l)) * loop j ; (k = i1) → loop j ; (i = i0) → (loop k * loop j) * loop (~ k) ; (i = i1) → loop (~ k ∧ ~ l) * loop j }) (inS ((loop (k ∨ i) * loop j) * loop (~ k))) rotInv-aux-2 : I → I → I → S¹ rotInv-aux-2 i j k = hcomp (λ l → λ { (k = i0) → inv (filler-rot (~ i) (~ j) l) ; (k = i1) → loop (j ∧ l) ; (i = i0) → filler-rot k j l ; (i = i1) → loop (j ∧ l) ; (j = i0) → loop (i ∨ k ∨ (~ l)) ; (j = i1) → loop ((i ∨ k) ∧ l) }) (base) rotInv-aux-3 : I → I → I → I → S¹ rotInv-aux-3 j k i = hfill (λ l → λ { (k = i0) → rotInv-aux-2 i j l ; (k = i1) → loop j ; (i = i0) → loop (k ∨ l) * loop j ; (i = i1) → loop k * (inv (loop (~ j) * loop k)) }) (inS (loop k * (inv (loop (~ j) * loop (k ∨ ~ i))))) rotInv-aux-4 : I → I → I → I → S¹ rotInv-aux-4 j k i = hfill (λ l → λ { (k = i0) → rotInv-aux-2 i j l ; (k = i1) → loop j ; (i = i0) → loop j * loop (k ∨ l) ; (i = i1) → (inv (loop (~ j) * loop k)) * loop k }) (inS ((inv (loop (~ j) * loop (k ∨ ~ i))) * loop k)) rotInv-1 : (a b : S¹) → b * a * inv b ≡ a rotInv-1 base base i = base rotInv-1 base (loop k) i = rotInv-aux-1 i0 k i i1 rotInv-1 (loop j) base i = loop j rotInv-1 (loop j) (loop k) i = rotInv-aux-1 j k i i1 rotInv-2 : (a b : S¹) → inv b * a * b ≡ a rotInv-2 base base i = base rotInv-2 base (loop k) i = rotInv-aux-1 i0 (~ k) i i1 rotInv-2 (loop j) base i = loop j rotInv-2 (loop j) (loop k) i = rotInv-aux-1 j (~ k) i i1 rotInv-3 : (a b : S¹) → b * (inv (inv a * b)) ≡ a rotInv-3 base base i = base rotInv-3 base (loop k) i = rotInv-aux-3 i0 k (~ i) i1 rotInv-3 (loop j) base i = loop j rotInv-3 (loop j) (loop k) i = rotInv-aux-3 j k (~ i) i1 rotInv-4 : (a b : S¹) → inv (b * inv a) * b ≡ a rotInv-4 base base i = base rotInv-4 base (loop k) i = rotInv-aux-4 i0 k (~ i) i1 rotInv-4 (loop j) base i = loop j rotInv-4 (loop j) (loop k) i = rotInv-aux-4 j k (~ i) i1
36.548556
94
0.533573
599b55f2c579fd64a6831a1b72a236df4594798e
6,013
agda
Agda
Numbers/Integers/Order.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Numbers/Integers/Order.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Numbers/Integers/Order.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Integers.RingStructure.Ring open import Semirings.Definition open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Orders.Total.Definition open import Orders.Partial.Definition open import Setoids.Orders.Total.Definition module Numbers.Integers.Order where infix 5 _<Z_ record _<Z_ (a : ℤ) (b : ℤ) : Set where constructor le field x : ℕ proof : (nonneg (succ x)) +Z a ≡ b lessLemma : (a x : ℕ) → succ x +N a ≡ a → False lessLemma zero x pr = naughtE (equalityCommutative pr) lessLemma (succ a) x pr = lessLemma a x q where q : succ x +N a ≡ a q rewrite Semiring.commutative ℕSemiring a (succ x) | Semiring.commutative ℕSemiring x a | Semiring.commutative ℕSemiring (succ a) x = succInjective pr irreflexive : (x : ℤ) → x <Z x → False irreflexive (nonneg x) record { x = y ; proof = proof } = lessLemma x y (nonnegInjective proof) irreflexive (negSucc a) record { x = x ; proof = proof } = naughtE (equalityCommutative q) where pr' : nonneg (succ x) +Z (negSucc a +Z nonneg (succ a)) ≡ negSucc a +Z nonneg (succ a) pr' rewrite +ZAssociative (nonneg (succ x)) (negSucc a) (nonneg (succ a)) = applyEquality (λ t → t +Z nonneg (succ a)) proof pr'' : nonneg (succ x) +Z nonneg 0 ≡ nonneg 0 pr'' rewrite equalityCommutative (additiveInverseExists a) = identityOfIndiscernablesLeft _≡_ pr' q where q : nonneg (succ x) +Z (negSucc a +Z nonneg (succ a)) ≡ nonneg (succ (x +N 0)) q rewrite Semiring.commutative ℕSemiring x 0 | additiveInverseExists a | Semiring.commutative ℕSemiring x 0 = refl pr''' : succ x +N 0 ≡ 0 pr''' = nonnegInjective pr'' q : succ x ≡ 0 q rewrite Semiring.commutative ℕSemiring 0 (succ x) = pr''' lessZTransitive : {a b c : ℤ} → (a <Z b) → (b <Z c) → (a <Z c) lessZTransitive {a} {b} {c} (le d1 pr1) (le d2 pr2) rewrite equalityCommutative pr1 = le (d1 +N succ d2) pr where pr : nonneg (succ (d1 +N succ d2)) +Z a ≡ c pr rewrite +ZAssociative (nonneg (succ d2)) (nonneg (succ d1)) a | Semiring.commutative ℕSemiring (succ d2) (succ d1) = pr2 lessInherits : {a b : ℕ} → (a <N b) → ((nonneg a) <Z (nonneg b)) _<Z_.x (lessInherits {a} {b} (le x proof)) = x _<Z_.proof (lessInherits {a} {.(succ (x +N a))} (le x refl)) = refl lessInheritsNegsucc : {a b : ℕ} → (a <N b) → ((negSucc b) <Z negSucc a) _<Z_.x (lessInheritsNegsucc {a} {b} (le x proof)) = x _<Z_.proof (lessInheritsNegsucc {a} {b} (le x proof)) rewrite equalityCommutative proof = transitivity (transitivity (+ZCommutative (nonneg x) (negSucc (x +N a))) (applyEquality (λ i → negSucc i +Z nonneg x) (Semiring.commutative ℕSemiring x a))) (equalityCommutative (negSucc+Nonneg a x)) lessNegsuccNonneg : {a b : ℕ} → (negSucc a <Z nonneg b) _<Z_.x (lessNegsuccNonneg {a} {b}) = a +N b _<Z_.proof (lessNegsuccNonneg {zero} {b}) = refl _<Z_.proof (lessNegsuccNonneg {succ a} {b}) = _<Z_.proof (lessNegsuccNonneg {a} {b}) lessThanTotalZ : {a b : ℤ} → ((a <Z b) || (b <Z a)) || (a ≡ b) lessThanTotalZ {nonneg a} {nonneg b} with TotalOrder.totality ℕTotalOrder a b lessThanTotalZ {nonneg a} {nonneg b} | inl (inl a<b) = inl (inl (lessInherits a<b)) lessThanTotalZ {nonneg a} {nonneg b} | inl (inr b<a) = inl (inr (lessInherits b<a)) lessThanTotalZ {nonneg a} {nonneg b} | inr a=b = inr (applyEquality nonneg a=b) lessThanTotalZ {nonneg a} {negSucc b} = inl (inr (lessNegsuccNonneg {b} {a})) lessThanTotalZ {negSucc a} {nonneg x} = inl (inl (lessNegsuccNonneg {a} {x})) lessThanTotalZ {negSucc a} {negSucc b} with TotalOrder.totality ℕTotalOrder a b ... | inl (inl a<b) = inl (inr (lessInheritsNegsucc a<b)) ... | inl (inr b<a) = inl (inl (lessInheritsNegsucc b<a)) lessThanTotalZ {negSucc a} {negSucc .a} | inr refl = inr refl ℤOrder : TotalOrder ℤ PartialOrder._<_ (TotalOrder.order ℤOrder) = _<Z_ PartialOrder.irreflexive (TotalOrder.order ℤOrder) {a} = irreflexive a PartialOrder.<Transitive (TotalOrder.order ℤOrder) = lessZTransitive TotalOrder.totality ℤOrder a b = lessThanTotalZ {a} {b} orderRespectsAddition : (a b : ℤ) → a <Z b → (c : ℤ) → a +Z c <Z b +Z c orderRespectsAddition (nonneg a) (nonneg b) (le x proof) (nonneg c) = le x (transitivity (+ZAssociative (nonneg (succ x)) (nonneg a) (nonneg c)) (applyEquality (_+Z nonneg c) proof)) orderRespectsAddition (nonneg a) (nonneg b) (le x proof) (negSucc c) = le x (transitivity (+ZAssociative (nonneg (succ x)) (nonneg a) (negSucc c)) (applyEquality (_+Z negSucc c) proof)) orderRespectsAddition (negSucc a) (nonneg b) (le x proof) (nonneg c) = le x (transitivity (+ZAssociative (nonneg (succ x)) (negSucc a) (nonneg c)) (applyEquality (_+Z nonneg c) proof)) orderRespectsAddition (negSucc a) (nonneg b) (le x proof) (negSucc c) = le x (transitivity (+ZAssociative (nonneg (succ x)) (negSucc a) (negSucc c)) (applyEquality (_+Z negSucc c) proof)) orderRespectsAddition (negSucc a) (negSucc b) (le x proof) (nonneg c) = le x (transitivity (+ZAssociative (nonneg (succ x)) (negSucc a) (nonneg c)) (applyEquality (_+Z nonneg c) proof)) orderRespectsAddition (negSucc a) (negSucc b) (le x proof) (negSucc c) = le x (transitivity (+ZAssociative (nonneg (succ x)) (negSucc a) (negSucc c)) (applyEquality (_+Z negSucc c) proof)) orderRespectsMultiplication : (a b : ℤ) → nonneg 0 <Z a → nonneg 0 <Z b → nonneg 0 <Z a *Z b orderRespectsMultiplication (nonneg (succ a)) (nonneg (succ b)) 0<a 0<b = lessInherits (succIsPositive (b +N a *N succ b)) ℤPOrderedRing : PartiallyOrderedRing ℤRing (SetoidTotalOrder.partial (totalOrderToSetoidTotalOrder ℤOrder)) PartiallyOrderedRing.orderRespectsAddition ℤPOrderedRing {a} {b} = orderRespectsAddition a b PartiallyOrderedRing.orderRespectsMultiplication ℤPOrderedRing {a} {b} = orderRespectsMultiplication a b ℤOrderedRing : TotallyOrderedRing ℤPOrderedRing TotallyOrderedRing.total ℤOrderedRing = totalOrderToSetoidTotalOrder ℤOrder
60.13
289
0.699152
2ee549468110be39c995b1a121777a1bbda0d23d
1,328
agda
Agda
test/Succeed/Issue2328.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue2328.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue2328.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
{- Examples by Twan van Laarhoven -} {-# OPTIONS --rewriting #-} module _ where open import Agda.Builtin.Equality {-# BUILTIN REWRITE _≡_ #-} const : ∀ {a b} {A : Set a} {B : Set b} → A → B → A const x _ = x _∘_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} → (f : ∀ {x} (y : B x) → C y) (g : (x : A) → B x) → (x : A) → C (g x) (f ∘ g) x = f (g x) postulate M : Set → Set postulate pure : ∀ {A} → A → M A postulate _>>=_ : ∀ {A B} → M A → (A → M B) → M B postulate bind-assoc : ∀ {A B C mx} {my : A → M B} {mz : B → M C} → (mx >>= my) >>= mz ≡ mx >>= \x → my x >>= mz {-# REWRITE bind-assoc #-} _<*>_ : ∀ {A B} → M (A → B) → M A → M B mf <*> mx = mf >>= \f → mx >>= (pure ∘ f) -- Agda was comparing inferred relevances here, causing the rewrite rule -- to fail. shouldWork : ∀ {A B} (mx : M A) (my : M B) → (mx >>= (pure ∘ const)) <*> my ≡ (mx >>= (pure ∘ const)) >>= (\f → my >>= (pure ∘ f)) shouldWork mx my = refl shouldAlsoWork : ∀ {A B} (mx : M A) (my : M B) → (mx >>= (pure ∘ const)) <*> my ≡ (mx >>= (pure ∘ \x _ → x)) >>= (\f → my >>= (pure ∘ f)) shouldAlsoWork mx my = refl shouldAlsoWork2 : ∀ {A B} (mx : M A) (my : M B) → (mx >>= (pure ∘ const)) >>= (\f → my >>= (pure ∘ f)) ≡ (mx >>= (pure ∘ \x _ → x)) >>= (\f → my >>= (pure ∘ f)) shouldAlsoWork2 mx my = refl
31.619048
114
0.46009
3dcbe7dd3386a3c21b79cceb2d381b1a16a4f075
883
agda
Agda
src/Web/Semantic/DL/Concept.agda
agda/agda-web-semantic
8ddbe83965a616bff6fc7a237191fa261fa78bab
[ "MIT" ]
9
2015-09-13T17:46:41.000Z
2020-03-14T14:21:08.000Z
src/Web/Semantic/DL/Concept.agda
agda/agda-web-semantic
8ddbe83965a616bff6fc7a237191fa261fa78bab
[ "MIT" ]
4
2018-11-14T02:32:28.000Z
2021-01-04T20:57:19.000Z
src/Web/Semantic/DL/Concept.agda
agda/agda-web-semantic
8ddbe83965a616bff6fc7a237191fa261fa78bab
[ "MIT" ]
3
2017-12-03T14:52:09.000Z
2022-03-12T11:40:03.000Z
open import Web.Semantic.DL.Role using ( Role ) open import Web.Semantic.DL.Signature using ( Signature ; CN ; RN ) module Web.Semantic.DL.Concept where infixr 9 ∀[_]_ infixr 8 ∃⟨_⟩_ infixl 7 _⊓_ infixl 6 _⊔_ data Concept (Σ : Signature) : Set where ⟨_⟩ : (c : CN Σ) → Concept Σ ¬⟨_⟩ : (c : CN Σ) → Concept Σ ⊤ : Concept Σ ⊥ : Concept Σ _⊓_ : (C D : Concept Σ) → Concept Σ _⊔_ : (C D : Concept Σ) → Concept Σ ∀[_]_ : (R : Role Σ) (C : Concept Σ) → Concept Σ ∃⟨_⟩_ : (R : Role Σ) (C : Concept Σ) → Concept Σ ≤1 : (R : Role Σ) → Concept Σ >1 : (R : Role Σ) → Concept Σ neg : ∀ {Σ} (C : Concept Σ) → Concept Σ neg ⟨ c ⟩ = ¬⟨ c ⟩ neg ¬⟨ c ⟩ = ⟨ c ⟩ neg ⊤ = ⊥ neg ⊥ = ⊤ neg (C ⊓ D) = neg C ⊔ neg D neg (C ⊔ D) = neg C ⊓ neg D neg (∀[ R ] C) = ∃⟨ R ⟩ neg C neg (∃⟨ R ⟩ C) = ∀[ R ] neg C neg (≤1 R) = >1 R neg (>1 R) = ≤1 R
25.970588
67
0.499434
22c42bec315e8ed9711b5f3d3b70a604bd06658b
8,578
agda
Agda
src/fot/FOTC/Program/SortList/Properties/Totality/OrdList/FlattenATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Program/SortList/Properties/Totality/OrdList/FlattenATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Program/SortList/Properties/Totality/OrdList/FlattenATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Totality properties respect to OrdList (flatten-OrdList-helper) ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.SortList.Properties.Totality.OrdList.FlattenATP where open import FOTC.Base open import FOTC.Data.Bool.PropertiesATP open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.PropertiesATP open import FOTC.Data.Nat.Type open import FOTC.Program.SortList.Properties.Totality.BoolATP open import FOTC.Program.SortList.Properties.Totality.ListN-ATP open import FOTC.Program.SortList.Properties.Totality.OrdTreeATP open import FOTC.Program.SortList.Properties.MiscellaneousATP open import FOTC.Program.SortList.SortList ------------------------------------------------------------------------------ flatten-OrdList-helper : ∀ {t₁ i t₂} → Tree t₁ → N i → Tree t₂ → OrdTree (node t₁ i t₂) → ≤-Lists (flatten t₁) (flatten t₂) flatten-OrdList-helper {t₂ = t₂} tnil Ni Tt₂ OTt = subst (λ t → ≤-Lists t (flatten t₂)) (sym (flatten-nil)) (le-Lists-[] (flatten t₂)) flatten-OrdList-helper (ttip {i₁} Ni₁) Tt₁ tnil OTt = prf where postulate prf : ≤-Lists (flatten (tip i₁)) (flatten nil) {-# ATP prove prf #-} flatten-OrdList-helper {i = i} (ttip {i₁} Ni₁) Ni (ttip {i₂} Ni₂) OTt = prf where postulate lemma : i₁ ≤ i₂ {-# ATP prove lemma ≤-trans &&-list₄-t le-ItemTree-Bool le-TreeItem-Bool ordTree-Bool #-} postulate prf : ≤-Lists (flatten (tip i₁)) (flatten (tip i₂)) {-# ATP prove prf lemma #-} flatten-OrdList-helper {i = i} (ttip {i₁} Ni₁) Ni (tnode {t₂₁} {i₂} {t₂₂} Tt₂₁ Ni₂ Tt₂₂) OTt = prf where -- Helper terms to get the conjuncts from OTt. helper₁ = ordTree-Bool (ttip Ni₁) helper₂ = ordTree-Bool (tnode Tt₂₁ Ni₂ Tt₂₂) helper₃ = le-TreeItem-Bool (ttip Ni₁) Ni helper₄ = le-ItemTree-Bool Ni (tnode Tt₂₁ Ni₂ Tt₂₂) helper₅ = trans (sym (ordTree-node (tip i₁) i (node t₂₁ i₂ t₂₂))) OTt -- Helper terms to get the conjuncts from the fourth conjunct of OTt helper₆ = le-ItemTree-Bool Ni Tt₂₁ helper₇ = le-ItemTree-Bool Ni Tt₂₂ helper₈ = trans (sym (le-ItemTree-node i t₂₁ i₂ t₂₂)) (&&-list₄-t₄ helper₁ helper₂ helper₃ helper₄ helper₅) -- Common terms for the lemma₁ and lemma₂. -- The ATPs could not figure out them. OrdTree-tip-i₁ : OrdTree (tip i₁) OrdTree-tip-i₁ = &&-list₄-t₁ helper₁ helper₂ helper₃ helper₄ helper₅ ≤-TreeItem-tip-i₁-i : ≤-TreeItem (tip i₁) i ≤-TreeItem-tip-i₁-i = &&-list₄-t₃ helper₁ helper₂ helper₃ helper₄ helper₅ lemma₁ : ≤-Lists (flatten (tip i₁)) (flatten t₂₁) lemma₁ = flatten-OrdList-helper (ttip Ni₁) Ni Tt₂₁ OT where -- The ATPs could not figure these terms. OrdTree-t₂₁ : OrdTree t₂₁ OrdTree-t₂₁ = leftSubTree-OrdTree Tt₂₁ Ni₂ Tt₂₂ (&&-list₄-t₂ helper₁ helper₂ helper₃ helper₄ helper₅) ≤-ItemTree-i-t₂₁ : ≤-ItemTree i t₂₁ ≤-ItemTree-i-t₂₁ = &&-list₂-t₁ helper₆ helper₇ helper₈ postulate OT : OrdTree (node (tip i₁) i t₂₁) {-# ATP prove OT ≤-TreeItem-tip-i₁-i ≤-ItemTree-i-t₂₁ OrdTree-tip-i₁ OrdTree-t₂₁ #-} lemma₂ : ≤-Lists (flatten (tip i₁)) (flatten t₂₂) lemma₂ = flatten-OrdList-helper (ttip Ni₁) Ni Tt₂₂ OT where -- The ATPs could not figure these terms. OrdTree-t₂₂ : OrdTree t₂₂ OrdTree-t₂₂ = rightSubTree-OrdTree Tt₂₁ Ni₂ Tt₂₂ (&&-list₄-t₂ helper₁ helper₂ helper₃ helper₄ helper₅) ≤-ItemTree-i-t₂₂ : ≤-ItemTree i t₂₂ ≤-ItemTree-i-t₂₂ = &&-list₂-t₂ helper₆ helper₇ helper₈ postulate OT : OrdTree (node (tip i₁) i t₂₂) {-# ATP prove OT ≤-TreeItem-tip-i₁-i ≤-ItemTree-i-t₂₂ OrdTree-tip-i₁ OrdTree-t₂₂ #-} postulate prf : ≤-Lists (flatten (tip i₁)) (flatten (node t₂₁ i₂ t₂₂)) {-# ATP prove prf xs≤ys→xs≤zs→xs≤ys++zs flatten-ListN lemma₁ lemma₂ #-} flatten-OrdList-helper {i = i} (tnode {t₁₁} {i₁} {t₁₂} Tt₁₁ Ni₁ Tt₁₂) Ni tnil OTt = prf where -- Helper terms to get the conjuncts from OTt. helper₁ = ordTree-Bool (tnode Tt₁₁ Ni₁ Tt₁₂) helper₂ = ordTree-Bool tnil helper₃ = le-TreeItem-Bool (tnode Tt₁₁ Ni₁ Tt₁₂) Ni helper₄ = le-ItemTree-Bool Ni tnil helper₅ = trans (sym (ordTree-node (node t₁₁ i₁ t₁₂) i nil)) OTt -- Helper terms to get the conjuncts from the third conjunct of OTt. helper₆ = le-TreeItem-Bool Tt₁₁ Ni helper₇ = le-TreeItem-Bool Tt₁₂ Ni helper₈ = trans (sym (le-TreeItem-node t₁₁ i₁ t₁₂ i)) (&&-list₄-t₃ helper₁ helper₂ helper₃ helper₄ helper₅) lemma₁ : ≤-Lists (flatten t₁₁) (flatten nil) lemma₁ = flatten-OrdList-helper Tt₁₁ Ni tnil OT where postulate OT : OrdTree (node t₁₁ i nil) {-# ATP prove OT leftSubTree-OrdTree &&-list₂-t &&-list₄-t helper₁ helper₂ helper₃ helper₄ helper₅ helper₆ helper₇ helper₈ #-} lemma₂ : ≤-Lists (flatten t₁₂) (flatten nil) lemma₂ = flatten-OrdList-helper Tt₁₂ Ni tnil OT where postulate OT : OrdTree (node t₁₂ i nil) {-# ATP prove OT rightSubTree-OrdTree &&-list₄-t helper₁ helper₂ helper₃ helper₄ helper₅ helper₆ helper₇ helper₈ #-} postulate prf : ≤-Lists (flatten (node t₁₁ i₁ t₁₂)) (flatten nil) {-# ATP prove prf xs≤zs→ys≤zs→xs++ys≤zs flatten-ListN lemma₁ lemma₂ #-} flatten-OrdList-helper {i = i} (tnode {t₁₁} {i₁} {t₁₂} Tt₁₁ Ni₁ Tt₁₂) Ni (ttip {i₂} Ni₂) OTt = prf where -- Helper terms to get the conjuncts from OTt. helper₁ = ordTree-Bool (tnode Tt₁₁ Ni₁ Tt₁₂) helper₂ = ordTree-Bool (ttip Ni₂) helper₃ = le-TreeItem-Bool (tnode Tt₁₁ Ni₁ Tt₁₂) Ni helper₄ = le-ItemTree-Bool Ni (ttip Ni₂) helper₅ = trans (sym (ordTree-node (node t₁₁ i₁ t₁₂) i (tip i₂))) OTt -- Helper terms to get the conjuncts from the third conjunct of OTt. helper₆ = le-TreeItem-Bool Tt₁₁ Ni helper₇ = le-TreeItem-Bool Tt₁₂ Ni helper₈ = trans (sym (le-TreeItem-node t₁₁ i₁ t₁₂ i)) (&&-list₄-t₃ helper₁ helper₂ helper₃ helper₄ helper₅) lemma₁ : ≤-Lists (flatten t₁₁) (flatten (tip i₂)) lemma₁ = flatten-OrdList-helper Tt₁₁ Ni (ttip Ni₂) OT where postulate OT : OrdTree (node t₁₁ i (tip i₂)) {-# ATP prove OT leftSubTree-OrdTree &&-list₂-t &&-list₄-t helper₁ helper₂ helper₃ helper₄ helper₅ helper₆ helper₇ helper₈ #-} lemma₂ : ≤-Lists (flatten t₁₂) (flatten (tip i₂)) lemma₂ = flatten-OrdList-helper Tt₁₂ Ni (ttip Ni₂) OT where postulate OT : OrdTree (node t₁₂ i (tip i₂)) {-# ATP prove OT rightSubTree-OrdTree &&-list₂-t &&-list₄-t helper₁ helper₂ helper₃ helper₄ helper₅ helper₆ helper₇ helper₈ #-} postulate prf : ≤-Lists (flatten (node t₁₁ i₁ t₁₂)) (flatten (tip i₂)) {-# ATP prove prf xs≤zs→ys≤zs→xs++ys≤zs flatten-ListN lemma₁ lemma₂ #-} flatten-OrdList-helper {i = i} (tnode {t₁₁} {i₁} {t₁₂} Tt₁₁ Ni₁ Tt₁₂) Ni (tnode {t₂₁} {i₂} {t₂₂} Tt₂₁ Ni₂ Tt₂₂) OTt = prf where -- Helper terms to get the conjuncts from OTt. helper₁ = ordTree-Bool (tnode Tt₁₁ Ni₁ Tt₁₂) helper₂ = ordTree-Bool (tnode Tt₂₁ Ni₂ Tt₂₂) helper₃ = le-TreeItem-Bool (tnode Tt₁₁ Ni₁ Tt₁₂) Ni helper₄ = le-ItemTree-Bool Ni (tnode Tt₂₁ Ni₂ Tt₂₂) helper₅ = trans (sym (ordTree-node (node t₁₁ i₁ t₁₂) i (node t₂₁ i₂ t₂₂))) OTt -- Helper terms to get the conjuncts from the third conjunct of OTt. helper₆ = le-TreeItem-Bool Tt₁₁ Ni helper₇ = le-TreeItem-Bool Tt₁₂ Ni helper₈ = trans (sym (le-TreeItem-node t₁₁ i₁ t₁₂ i)) (&&-list₄-t₃ helper₁ helper₂ helper₃ helper₄ helper₅) lemma₁ : ≤-Lists (flatten t₁₁) (flatten (node t₂₁ i₂ t₂₂)) lemma₁ = flatten-OrdList-helper Tt₁₁ Ni (tnode Tt₂₁ Ni₂ Tt₂₂) OT where postulate OT : OrdTree (node t₁₁ i (node t₂₁ i₂ t₂₂)) {-# ATP prove OT leftSubTree-OrdTree &&-list₂-t &&-list₄-t helper₁ helper₂ helper₃ helper₄ helper₅ helper₆ helper₇ helper₈ #-} lemma₂ : ≤-Lists (flatten t₁₂) (flatten (node t₂₁ i₂ t₂₂)) lemma₂ = flatten-OrdList-helper Tt₁₂ Ni (tnode Tt₂₁ Ni₂ Tt₂₂) OT where postulate OT : OrdTree (node t₁₂ i (node t₂₁ i₂ t₂₂)) {-# ATP prove OT rightSubTree-OrdTree &&-list₂-t &&-list₄-t helper₁ helper₂ helper₃ helper₄ helper₅ helper₆ helper₇ helper₈ #-} postulate prf : ≤-Lists (flatten (node t₁₁ i₁ t₁₂)) (flatten (node t₂₁ i₂ t₂₂)) {-# ATP prove prf xs≤zs→ys≤zs→xs++ys≤zs flatten-ListN lemma₁ lemma₂ #-}
43.543147
131
0.648636
cb5c25de34ce01155c94ffdd03dd5fb66b789091
1,808
agda
Agda
Cubical/Functions/Surjection.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Functions/Surjection.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Functions/Surjection.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Functions.Surjection where open import Cubical.Core.Everything open import Cubical.Data.Sigma open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Functions.Embedding open import Cubical.HITs.PropositionalTruncation as PropTrunc private variable ℓ ℓ' : Level A : Type ℓ B : Type ℓ' f : A → B isSurjection : (A → B) → Type _ isSurjection f = ∀ b → ∥ fiber f b ∥ section→isSurjection : {g : B → A} → section f g → isSurjection f section→isSurjection {g = g} s b = ∣ g b , s b ∣ isSurjectionIsProp : isProp (isSurjection f) isSurjectionIsProp = isPropΠ λ _ → squash isEquiv→isSurjection : isEquiv f → isSurjection f isEquiv→isSurjection e b = ∣ fst (equiv-proof e b) ∣ isEquiv→isEmbedding×isSurjection : isEquiv f → isEmbedding f × isSurjection f isEquiv→isEmbedding×isSurjection e = isEquiv→isEmbedding e , isEquiv→isSurjection e isEmbedding×isSurjection→isEquiv : isEmbedding f × isSurjection f → isEquiv f equiv-proof (isEmbedding×isSurjection→isEquiv {f = f} (emb , sur)) b = inhProp→isContr (PropTrunc.rec fib' (λ x → x) fib) fib' where hpf : hasPropFibers f hpf = isEmbedding→hasPropFibers emb fib : ∥ fiber f b ∥ fib = sur b fib' : isProp (fiber f b) fib' = hpf b isEquiv≃isEmbedding×isSurjection : isEquiv f ≃ isEmbedding f × isSurjection f isEquiv≃isEmbedding×isSurjection = isoToEquiv (iso isEquiv→isEmbedding×isSurjection isEmbedding×isSurjection→isEquiv (λ _ → isOfHLevelΣ 1 isEmbeddingIsProp (\ _ → isSurjectionIsProp) _ _) (λ _ → isPropIsEquiv _ _ _)) isPropIsSurjection : isProp (isSurjection f) isPropIsSurjection = isPropΠ λ _ → propTruncIsProp
31.719298
83
0.741704
394574739d493bd03a6c3f6c040e62b35acb35d5
2,109
agda
Agda
doc/icfp20/code/MidiEvent.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
28
2017-04-21T09:08:52.000Z
2022-03-04T18:04:07.000Z
doc/icfp20/code/MidiEvent.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
1
2020-11-13T01:26:20.000Z
2020-11-17T00:58:55.000Z
doc/icfp20/code/MidiEvent.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
3
2019-01-12T17:02:36.000Z
2020-11-10T04:04:40.000Z
{-# OPTIONS --without-K #-} module MidiEvent where open import Data.Fin using (Fin; #_) open import Data.List using (List; _∷_; []; concat; map) open import Data.Nat using (ℕ; _+_; _⊔_) open import Data.Product using (_×_; _,_; proj₁) open import Data.String using (String) open import Data.Vec using (toList) open import Function using (_∘_) open import Music using (Melody; melody; Counterpoint; cp; Harmony; melody→notes; harmony→counterpoint) open import Note using (Note; tone; rest; duration) open import Pitch using (Pitch) -- General MIDI instrument numbers range from 1 to 128, -- so this is the actual instrument number minus 1. InstrumentNumber-1 : Set InstrumentNumber-1 = Fin 128 Tick : Set Tick = ℕ Velocity : Set Velocity = Fin 128 defaultVelocity : Velocity defaultVelocity = # 60 -- percussion is channel 10, so 9 as Channel-1 Channel-1 : Set Channel-1 = Fin 16 -- in bpm Tempo : Set Tempo = ℕ record MidiEvent : Set where constructor midiEvent field pitch : Pitch -- Pitch was defined to correspond to MIDI pitch start : Tick stop : Tick velocity : Velocity record MidiTrack : Set where constructor track field trackName : String instrumentNumber : InstrumentNumber-1 channel : Channel-1 tempo : Tempo -- initial tempo events : List MidiEvent notes→events : Velocity → List Note → List MidiEvent notes→events v ns = me 0 ns where me : Tick → List Note → List MidiEvent me t [] = [] me t (tone (duration d) p ∷ ns) = midiEvent p t (t + d) v ∷ me (t + d) ns me t (rest (duration d) ∷ ns) = me (t + d) ns melody→events : {n : ℕ} → Velocity → Melody n → List MidiEvent melody→events v = notes→events v ∘ melody→notes counterpoint→events : {v d : ℕ} → Velocity → Counterpoint v d → List MidiEvent counterpoint→events v (cp ms) = concat (map (melody→events v) (toList ms)) harmony→events : {v d : ℕ} → Velocity → Harmony v d → List MidiEvent harmony→events v = counterpoint→events v ∘ harmony→counterpoint
29.704225
110
0.65908
3178f22185ab1c2035e1a7dd129a26bbfe224bfb
494
agda
Agda
BCK.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
BCK.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
BCK.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --safe #-} module BCK where open import Prelude hiding (B; C) infixl 4 _$$_ data BCK : Type where _$$_ : BCK → BCK → BCK B C K : BCK open import Data.List stack : BCK → Maybe BCK stack xs = go xs [] where go : BCK → List BCK → Maybe BCK go (f $$ x) xs = go f (x ∷ xs) go B (f ∷ g ∷ x ∷ xs) = just (foldl _$$_ (f $$ (g $$ x)) xs) go C (f ∷ x ∷ y ∷ xs) = just (foldl _$$_ (f $$ y $$ x) xs) go K (x ∷ y ∷ xs) = just (foldl _$$_ x xs) go _ _ = nothing
20.583333
62
0.52834
5758da81a50989bcd18048f8ad90c4e1808e530d
595
agda
Agda
presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/main.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
23
2016-06-19T12:57:55.000Z
2020-10-12T23:15:25.000Z
presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/main.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
null
null
null
presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/main.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
2
2018-09-01T15:02:37.000Z
2022-03-12T11:41:00.000Z
module main where {- unsized Versions omitted in talk -} import interactiveProgramsAgdaUnsized import objectsInAgdaUnsized {- end unsized Versions omitted in talk -} import interactiveProgramsAgda import objectsInAgda {- Probably omit because of time -} import interfaceExtensionAndDelegation {- End Probably omit because of time -} {- Omit later parts about proofs -} import stateDependentObjects {- End Omit later parts about proofs -} import stateDependentIO import drawingProgram import objectOrientedGui import spaceShipSimpleVar import spaceShipCell import spaceShipAdvanced
18.030303
42
0.815126
0e59f45e7353f3e1daec2736d1ca0699d38e5319
1,938
agda
Agda
core/lib/types/Types.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/types/Types.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/types/Types.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} module lib.types.Types where open import lib.Basics open import lib.types.BigWedge public open import lib.types.Bool public open import lib.types.Choice public open import lib.types.Circle public open import lib.types.Cofiber public open import lib.types.CommutingSquare public open import lib.types.Coproduct public open import lib.types.Cospan public open import lib.types.Cover public open import lib.types.EilenbergMacLane1 public open import lib.types.Empty public open import lib.types.Group public open import lib.types.GroupSet public open import lib.types.Groupoid public open import lib.types.HList public open import lib.types.Int public open import lib.types.IteratedSuspension public open import lib.types.Join public open import lib.types.Lift public open import lib.types.List public open import lib.types.LoopSpace public open import lib.types.Nat public open import lib.types.NatColim public open import lib.types.PathSeq public open import lib.types.PathSet public open import lib.types.Paths public open import lib.types.Pi public open import lib.types.Pointed public open import lib.types.Pullback public open import lib.types.Pushout public open import lib.types.PushoutFlattening public open import lib.types.PushoutFlip public open import lib.types.PushoutFmap public open import lib.types.SetQuotient public open import lib.types.Sigma public open import lib.types.Smash public open import lib.types.Span public open import lib.types.Subtype public open import lib.types.Suspension public open import lib.types.TLevel public open import lib.types.Torus public open import lib.types.Truncation public open import lib.types.Unit public open import lib.types.Wedge public open import lib.types.Word public -- This should probably not be exported -- module Generic1HIT {i j} (A : Type i) (B : Type j) (f g : B → A) where -- open import lib.types.Generic1HIT A B f g public
35.236364
73
0.816305
4dc3787469a3c7b69c0022807fdd10853201c31c
5,094
agda
Agda
Structure/Signature.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Structure/Signature.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Structure/Signature.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Structure.Signature where open import Data.Tuple.Raise open import Data.Tuple.Raiseᵣ.Functions import Lvl open import Numeral.Natural open import Structure.Function open import Structure.Setoid open import Structure.Relator open import Type private variable ℓ ℓᵢ ℓᵢ₁ ℓᵢ₂ ℓᵢ₃ ℓd ℓd₁ ℓd₂ ℓᵣ ℓᵣ₁ ℓᵣ₂ ℓₑ ℓₑ₁ ℓₑ₂ : Lvl.Level private variable n : ℕ -- A signature consists of a countable family of sets of function and relation symbols. -- `functions(n)` and `relations(n)` should be interpreted as the indices for functions/relations of arity `n`. record Signature : Type{Lvl.𝐒(ℓᵢ₁ Lvl.⊔ ℓᵢ₂)} where field functions : ℕ → Type{ℓᵢ₁} relations : ℕ → Type{ℓᵢ₂} private variable s : Signature{ℓᵢ₁}{ℓᵢ₂} import Data.Tuple.Equiv as Tuple -- A structure with a signature `s` consists of a domain and interpretations of the function/relation symbols in `s`. record Structure (s : Signature{ℓᵢ₁}{ℓᵢ₂}) : Type{Lvl.𝐒(ℓₑ Lvl.⊔ ℓd Lvl.⊔ ℓᵣ) Lvl.⊔ ℓᵢ₁ Lvl.⊔ ℓᵢ₂} where open Signature(s) field domain : Type{ℓd} ⦃ equiv ⦄ : ∀{n} → Equiv{ℓₑ}(domain ^ n) ⦃ ext ⦄ : ∀{n} → Tuple.Extensionality(equiv{𝐒(𝐒 n)}) function : functions(n) → ((domain ^ n) → domain) ⦃ function-func ⦄ : ∀{fi} → Function(function{n} fi) relation : relations(n) → ((domain ^ n) → Type{ℓᵣ}) ⦃ relation-func ⦄ : ∀{ri} → UnaryRelator(relation{n} ri) open Structure public using() renaming (domain to dom ; function to fn ; relation to rel) open import Logic.Predicate module _ {s : Signature{ℓᵢ₁}{ℓᵢ₂}} where private variable A B C S : Structure{ℓd = ℓd}{ℓᵣ = ℓᵣ}(s) private variable fi : Signature.functions s n private variable ri : Signature.relations s n private variable xs : dom(S) ^ n record Homomorphism (A : Structure{ℓₑ = ℓₑ₁}{ℓd = ℓd₁}{ℓᵣ = ℓᵣ₁}(s)) (B : Structure{ℓₑ = ℓₑ₂}{ℓd = ℓd₂}{ℓᵣ = ℓᵣ₂}(s)) (f : dom(A) → dom(B)) : Type{ℓₑ₁ Lvl.⊔ ℓₑ₂ Lvl.⊔ ℓd₁ Lvl.⊔ ℓd₂ Lvl.⊔ ℓᵣ₁ Lvl.⊔ ℓᵣ₂ Lvl.⊔ Lvl.ofType(Type.of s)} where field ⦃ function ⦄ : Function(f) preserve-functions : ∀{xs : dom(A) ^ n} → (f(fn(A) fi xs) ≡ fn(B) fi (map f xs)) preserve-relations : ∀{xs : dom(A) ^ n} → (rel(A) ri xs) → (rel(B) ri (map f xs)) _→ₛₜᵣᵤ_ : Structure{ℓₑ = ℓₑ₁}{ℓd = ℓd₁}{ℓᵣ = ℓᵣ₁}(s) → Structure{ℓₑ = ℓₑ₂}{ℓd = ℓd₂}{ℓᵣ = ℓᵣ₂}(s) → Type A →ₛₜᵣᵤ B = ∃(Homomorphism A B) open import Data open import Data.Tuple as Tuple using (_,_) open import Data.Tuple.Raiseᵣ.Proofs open import Functional open import Function.Proofs open import Lang.Instance open import Structure.Operator open import Structure.Relator.Properties open import Syntax.Transitivity idₛₜᵣᵤ : A →ₛₜᵣᵤ A ∃.witness idₛₜᵣᵤ = id Homomorphism.preserve-functions (∃.proof (idₛₜᵣᵤ {A = A})) {n} {fi} {xs} = congruence₁(fn A fi) (symmetry(Equiv._≡_ (Structure.equiv A)) ⦃ Equiv.symmetry infer ⦄ map-id) Homomorphism.preserve-relations (∃.proof (idₛₜᵣᵤ {A = A})) {n} {ri} {xs} = substitute₁ₗ(rel A ri) map-id _∘ₛₜᵣᵤ_ : let _ = A , B , C in (B →ₛₜᵣᵤ C) → (A →ₛₜᵣᵤ B) → (A →ₛₜᵣᵤ C) ∃.witness (([∃]-intro f) ∘ₛₜᵣᵤ ([∃]-intro g)) = f ∘ g Homomorphism.function (∃.proof ([∃]-intro f ∘ₛₜᵣᵤ [∃]-intro g)) = [∘]-function {f = f}{g = g} Homomorphism.preserve-functions (∃.proof (_∘ₛₜᵣᵤ_ {A = A} {B = B} {C = C} ([∃]-intro f ⦃ hom-f ⦄) ([∃]-intro g ⦃ hom-g ⦄))) {fi = fi} = transitivity(_≡_) ⦃ Equiv.transitivity infer ⦄ (transitivity(_≡_) ⦃ Equiv.transitivity infer ⦄ (congruence₁(f) (Homomorphism.preserve-functions hom-g)) (Homomorphism.preserve-functions hom-f)) (congruence₁(fn C fi) (symmetry(Equiv._≡_ (Structure.equiv C)) ⦃ Equiv.symmetry infer ⦄ (map-[∘] {f = f}{g = g}))) Homomorphism.preserve-relations (∃.proof (_∘ₛₜᵣᵤ_ {A = A} {B = B} {C = C} ([∃]-intro f ⦃ hom-f ⦄) ([∃]-intro g ⦃ hom-g ⦄))) {ri = ri} = substitute₁ₗ (rel C ri) map-[∘] ∘ Homomorphism.preserve-relations hom-f ∘ Homomorphism.preserve-relations hom-g open import Function.Equals open import Function.Equals.Proofs open import Logic.Predicate.Equiv open import Structure.Category open import Structure.Categorical.Properties Structure-Homomorphism-category : Category(_→ₛₜᵣᵤ_ {ℓₑ}{ℓd}{ℓᵣ}) Category._∘_ Structure-Homomorphism-category = _∘ₛₜᵣᵤ_ Category.id Structure-Homomorphism-category = idₛₜᵣᵤ BinaryOperator.congruence (Category.binaryOperator Structure-Homomorphism-category) = [⊜][∘]-binaryOperator-raw _⊜_.proof (Morphism.Associativity.proof (Category.associativity Structure-Homomorphism-category) {_} {_} {_} {_} {[∃]-intro f} {[∃]-intro g} {[∃]-intro h}) {x} = reflexivity(_≡_) ⦃ Equiv.reflexivity infer ⦄ {f(g(h(x)))} _⊜_.proof (Morphism.Identityₗ.proof (Tuple.left (Category.identity Structure-Homomorphism-category)) {f = [∃]-intro f}) {x} = reflexivity(_≡_) ⦃ Equiv.reflexivity infer ⦄ {f(x)} _⊜_.proof (Morphism.Identityᵣ.proof (Tuple.right (Category.identity Structure-Homomorphism-category)) {f = [∃]-intro f}) {x} = reflexivity(_≡_) ⦃ Equiv.reflexivity infer ⦄ {f(x)} module _ (s : Signature{ℓᵢ₁}{ℓᵢ₂}) where data Term : Type{ℓᵢ₁} where var : ℕ → Term func : (Signature.functions s n) → (Term ^ n) → Term
49.941176
445
0.66863
1d3b53b038626f851b43c2dbbd8b2c21db6764af
5,144
agda
Agda
Agda/free-group.agda
UlrikBuchholtz/HoTT-Intro
1e1f8def50f9359928e52ebb2ee53ed1166487d9
[ "CC-BY-4.0" ]
333
2018-09-26T08:33:30.000Z
2022-03-22T23:50:15.000Z
Agda/free-group.agda
UlrikBuchholtz/HoTT-Intro
1e1f8def50f9359928e52ebb2ee53ed1166487d9
[ "CC-BY-4.0" ]
8
2019-06-18T04:16:04.000Z
2020-10-16T15:27:01.000Z
Agda/free-group.agda
UlrikBuchholtz/HoTT-Intro
1e1f8def50f9359928e52ebb2ee53ed1166487d9
[ "CC-BY-4.0" ]
30
2018-09-26T09:08:57.000Z
2022-03-16T00:33:50.000Z
{-# OPTIONS --without-K --exact-split #-} module free-group where import 15-groups open 15-groups public {- We state the universal property of the free group on a set X -} precomp-universal-property-free-group : {l1 l2 l3 : Level} (X : UU-Set l1) (F : Group l2) (G : Group l3) (f : type-hom-Set X (set-Group F)) → hom-Group F G → type-hom-Set X (set-Group G) precomp-universal-property-free-group X F G f g = (map-hom-Group F G g) ∘ f universal-property-free-group : (l : Level) {l1 l2 : Level} (X : UU-Set l1) (F : Group l2) (f : type-hom-Set X (set-Group F)) → UU (lsuc l ⊔ l1 ⊔ l2) universal-property-free-group l X F f = (G : Group l) → is-equiv (precomp-universal-property-free-group X F G f) {- We state the universal property of the initial set equipped with a point and an automorphism for each x : X. -} universal-property-initial-pset-with-automorphisms : (l : Level) {l1 l2 : Level} (X : UU-Set l1) (Y : UU-Set l2) (pt-Y : type-Set Y) (f : type-Set X → (type-Set Y ≃ type-Set Y)) → UU (lsuc l ⊔ l1 ⊔ l2) universal-property-initial-pset-with-automorphisms l X Y pt-Y f = (Z : UU-Set l) (pt-Z : type-Set Z) (g : type-Set X → (type-Set Z ≃ type-Set Z)) → is-contr ( Σ ( type-hom-Set Y Z) ( λ h → ( Id (h pt-Y) pt-Z) × ( (x : type-Set X) (y : type-Set Y) → Id (h (map-equiv (f x) y)) (map-equiv (g x) (h y))))) map-initial-pset-with-automorphisms : { l1 l2 l3 : Level} (X : UU-Set l1) (Y : UU-Set l2) (pt-Y : type-Set Y) ( f : type-Set X → (type-Set Y ≃ type-Set Y)) → ( {l : Level} → universal-property-initial-pset-with-automorphisms l X Y pt-Y f) → ( Z : UU-Set l3) (pt-Z : type-Set Z) ( g : type-Set X → (type-Set Z ≃ type-Set Z)) → type-hom-Set Y Z map-initial-pset-with-automorphisms X Y pt-Y f up-Y Z pt-Z g = pr1 (center (up-Y Z pt-Z g)) preserves-point-map-initial-pset-with-automorphisms : { l1 l2 l3 : Level} (X : UU-Set l1) (Y : UU-Set l2) (pt-Y : type-Set Y) ( f : type-Set X → (type-Set Y ≃ type-Set Y)) → ( up-Y : {l : Level} → universal-property-initial-pset-with-automorphisms l X Y pt-Y f) → ( Z : UU-Set l3) (pt-Z : type-Set Z) ( g : type-Set X → (type-Set Z ≃ type-Set Z)) → Id (map-initial-pset-with-automorphisms X Y pt-Y f up-Y Z pt-Z g pt-Y) pt-Z preserves-point-map-initial-pset-with-automorphisms X Y pt-Y f up-Y Z pt-Z g = pr1 (pr2 (center (up-Y Z pt-Z g))) htpy-map-initial-pset-with-automorphisms : { l1 l2 l3 : Level} (X : UU-Set l1) (Y : UU-Set l2) (pt-Y : type-Set Y) ( f : type-Set X → (type-Set Y ≃ type-Set Y)) → ( up-Y : {l : Level} → universal-property-initial-pset-with-automorphisms l X Y pt-Y f) → ( Z : UU-Set l3) (pt-Z : type-Set Z) ( g : type-Set X → (type-Set Z ≃ type-Set Z)) → ( x : type-Set X) (y : type-Set Y) → Id ( map-initial-pset-with-automorphisms X Y pt-Y f up-Y Z pt-Z g ( map-equiv (f x) y)) ( map-equiv (g x) ( map-initial-pset-with-automorphisms X Y pt-Y f up-Y Z pt-Z g y)) htpy-map-initial-pset-with-automorphisms X Y pt-Y f up-Y Z pt-Z g = pr2 (pr2 (center (up-Y Z pt-Z g))) {- We show a dependent elimination property for the initial pointed set with an automorphism for each x : X. -} dependent-up-initial-pset-with-automorphisms : { l1 l2 l3 l4 : Level} (X : UU-Set l1) (Y : UU-Set l2) (pt-Y : type-Set Y) ( f : type-Set X → (type-Set Y ≃ type-Set Y)) → ( up-Y : {l : Level} → universal-property-initial-pset-with-automorphisms l X Y pt-Y f) → ( Z : UU-Set l3) (pt-Z : type-Set Z) ( g : type-Set X → (type-Set Z ≃ type-Set Z)) → ( P : type-Set Z → UU-Set l4) ( p : type-Set (P pt-Z)) ( e : (x : type-Set X) (z : type-Set Z) → type-Set (P z) ≃ type-Set (P (map-equiv (g x) z))) → ( y : type-Set Y) → type-Set (P (map-initial-pset-with-automorphisms X Y pt-Y f up-Y Z pt-Z g y)) dependent-up-initial-pset-with-automorphisms X Y pt-Y f up-Y Z pt-Z g P p e = {!!} {- We show that the initial set equipped with a point and an automorphism for each x : X is a group. -} mul-initial-pset-with-automorphisms : {l1 l2 : Level} (X : UU-Set l1) (Y : UU-Set l2) (pt-Y : type-Set Y) (f : type-Set X → (type-Set Y ≃ type-Set Y)) → ( {l : Level} → universal-property-initial-pset-with-automorphisms l X Y pt-Y f) → type-Set Y → type-Set Y → type-Set Y mul-initial-pset-with-automorphisms {l1} {l2} X Y pt-Y f up-Y = map-initial-pset-with-automorphisms X Y pt-Y f up-Y (hom-Set Y Y) id ( λ x → equiv-postcomp (type-Set Y) (f x)) associative-mul-initial-pset-with-automorphisms : {l1 l2 : Level} (X : UU-Set l1) (Y : UU-Set l2) (pt-Y : type-Set Y) (f : type-Set X → (type-Set Y ≃ type-Set Y)) → ( up-Y : {l : Level} → universal-property-initial-pset-with-automorphisms l X Y pt-Y f) → ( x y z : type-Set Y) → Id ( mul-initial-pset-with-automorphisms X Y pt-Y f up-Y ( mul-initial-pset-with-automorphisms X Y pt-Y f up-Y x y) z) ( mul-initial-pset-with-automorphisms X Y pt-Y f up-Y x ( mul-initial-pset-with-automorphisms X Y pt-Y f up-Y y z)) associative-mul-initial-pset-with-automorphisms X Y pt-Y f up-Y x y z = {!refl!}
42.866667
83
0.606921
41dde7d2d35259c4cbe18ff829272c4a1ca337fb
5,124
agda
Agda
Categories/Category.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Categories/Category.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Categories/Category.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --warning=error #-} open import LogicalFormulae open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Vectors open import Semirings.Definition open import Categories.Definition open import Orders open import Categories.Functor.Definition open import Categories.Examples module Categories.Category where postulate extensionality : {a b : _} {S : Set a} {T : S → Set b} {f g : (x : S) → T x} → ((x : S) → f x ≡ g x) → f ≡ g ≡Unique : {a : _} {X : Set a} → {a b : X} → (p1 p2 : a ≡ b) → (p1 ≡ p2) ≡Unique refl refl = refl NatPreorder : Category {lzero} {lzero} NatPreorder = record { objects = ℕ ; arrows = λ m n → m ≤N n ; id = λ x → inr refl ; _∘_ = λ f g → leqTransitive g f ; rightId = λ x<y → leqUnique (leqTransitive x<y (inr refl)) x<y ; leftId = λ x<y → leqUnique (leqTransitive (inr refl) x<y) x<y ; associative = λ z<=w y<=z x<=y → leqUnique (leqTransitive (leqTransitive x<=y y<=z) z<=w) (leqTransitive x<=y (leqTransitive y<=z z<=w)) } where leqTransitive : {a b c : ℕ} → (a ≤N b) → (b ≤N c) → (a ≤N c) leqTransitive (inl a<b) (inl b<c) = inl (TotalOrder.<Transitive ℕTotalOrder a<b b<c) leqTransitive (inl a<b) (inr b=c) rewrite b=c = inl a<b leqTransitive (inr a=b) (inl b<c) rewrite a=b = inl b<c leqTransitive (inr a=b) (inr b=c) rewrite a=b | b=c = inr refl <Nunique : {a b : ℕ} → (p1 p2 : a <N b) → p1 ≡ p2 <Nunique {a} {b} (le a-b pr1) (le a-b2 pr2) = go a-b pr1 a-b2 pr2 p' where p : a-b2 +N a ≡ a-b +N a p rewrite equalityCommutative pr1 = succInjective pr2 p' : a-b2 ≡ a-b p' = canSubtractFromEqualityRight p go : (a-b : ℕ) (pr1 : succ (a-b +N a) ≡ b) (a-b2 : ℕ) (pr2 : succ (a-b2 +N a) ≡ b) (p : a-b2 ≡ a-b) → (le a-b pr1) ≡ (le a-b2 pr2) go a-b pr1 a-b2 pr2 eq rewrite eq = applyEquality (λ i → le a-b i) (≡Unique pr1 pr2) leqUnique : {a b : ℕ} → (p1 : a ≤N b) → (p2 : a ≤N b) → p1 ≡ p2 leqUnique (inl a<b) (inl a<b2) = applyEquality inl (<Nunique a<b a<b2) leqUnique (inl a<b) (inr a=b) rewrite a=b = exFalso (lessIrreflexive a<b) leqUnique (inr a=b) (inl a<b) rewrite a=b = exFalso (lessIrreflexive a<b) leqUnique (inr a=b1) (inr a=b2) rewrite a=b1 | a=b2 = refl NatMonoid : Category {lzero} {lzero} NatMonoid = record { objects = True ; arrows = λ _ _ → ℕ ; id = λ x → 0 ; _∘_ = λ f g → f +N g ; rightId = λ f → refl ; leftId = λ f → Semiring.sumZeroRight ℕSemiring f ; associative = λ a b c → Semiring.+Associative ℕSemiring a b c } typeCastCat : {a b c d : _} {C : Category {a} {b}} {D : Category {c} {d}} (F : Functor C D) (G : Functor C D) (S T : Category.objects C) (pr : Functor.onObj F ≡ Functor.onObj G) → Category.arrows D (Functor.onObj G S) (Functor.onObj G T) ≡ Category.arrows D (Functor.onObj F S) (Functor.onObj F T) typeCastCat F G S T pr rewrite pr = refl equalityFunctionsEqual : {a b : _} {A : Set a} {B : Set b} (f : A → (B ≡ B)) → (g : A → (B ≡ B)) → (f ≡ g) equalityFunctionsEqual f g = extensionality λ x → ≡Unique (f x) (g x) equalityFunctionsEqual' : {a b : _} {A : Set a} {B : Set b} (f : A → (B ≡ B)) → (g : A → (B ≡ B)) → (f ≡ g) equalityFunctionsEqual' f g = extensionality λ x → ≡Unique (f x) (g x) functorsEqual' : {a b c d : _} {C : Category {a} {b}} {D : Category {c} {d}} (F : Functor C D) (G : Functor C D) (objEq : (Functor.onObj F) ≡ Functor.onObj G) (arrEq : ∀ {S T : Category.objects C} → {f : Category.arrows C S T} → (Functor.onArrow F {S} {T} f ≡ (typeCast (Functor.onArrow G {S} {T} f) (typeCastCat F G S T objEq)))) → F ≡ G functorsEqual' record { onObj = onObjF ; onArrow = onArrowF ; mapId = mapIdF ; mapCompose = mapComposeF } record { onObj = onObjG ; onArrow = onArrowG ; mapId = mapIdG ; mapCompose = mapComposeG } prObj prArr rewrite prObj = {!!} VEC : {a : _} → ℕ → Functor (SET {a}) (SET {a}) VEC {a} n = record { onObj = λ X → Vec X n ; onArrow = λ f → λ v → vecMap f v ; mapId = extensionality mapId' ; mapCompose = λ f g → extensionality λ vec → help f g vec } where vecMapLemma : {a : _} {T : Set a} {n : ℕ} (v : Vec T n) → vecMap (Category.id SET T) v ≡ v vecMapLemma {a} v with inspect (SET {a}) vecMapLemma {a} v | y with≡ SetCopy = vecMapIdFact (λ i → refl) v mapId' : {a : _} {T : Set a} {n : ℕ} → (v : Vec T n) → vecMap (Category.id SET T) v ≡ Category.id SET (Vec T n) v mapId' v rewrite vecMapLemma v = refl help : ∀ {a n} {X Y Z : Category.objects (SET {a})} (f : X → Y) (g : Y → Z) (vec : Vec X n) → vecMap (λ x → g (f x)) vec ≡ vecMap g (vecMap f vec) help f g vec = equalityCommutative (vecMapCompositionFact (λ x → refl) vec) CATEGORY : {a b : _} → Category {lsuc b ⊔ lsuc a} {b ⊔ a} CATEGORY {a} {b} = record { objects = Category {a} {b} ; arrows = λ C D → Functor C D ; _∘_ = λ F G → functorCompose F G ; id = λ C → idFunctor C ; rightId = λ F → {!!} ; leftId = λ F → {!!} ; associative = {!!} } where rightIdFact : {a b c d : _} → {C : Category {a} {b}} {D : Category {c} {d}} (F : Functor C D) → functorCompose (idFunctor D) F ≡ F rightIdFact {C = C} {D} F = {!!}
65.692308
386
0.595238
2e3752dc3fed438710e561ba0075c5ee7992bd67
2,940
agda
Agda
Data/Collection/Inclusion.agda
banacorn/lambda-calculus
f81b116473582ab7956adc4bf1d7ebf1ae2a213a
[ "MIT" ]
null
null
null
Data/Collection/Inclusion.agda
banacorn/lambda-calculus
f81b116473582ab7956adc4bf1d7ebf1ae2a213a
[ "MIT" ]
null
null
null
Data/Collection/Inclusion.agda
banacorn/lambda-calculus
f81b116473582ab7956adc4bf1d7ebf1ae2a213a
[ "MIT" ]
null
null
null
module Data.Collection.Inclusion where open import Data.Collection.Equivalence open import Data.Collection.Core open import Function using (id; _∘_) open import Function.Equivalence using (equivalence) open import Level using (Level; suc; zero) open import Relation.Unary hiding (_⇒_) open import Relation.Binary open import Relation.Binary.PropositionalEquality ≋⇒⊆ : _≋_ ⇒ _⊆_ ≋⇒⊆ P≋Q ∈P = nach P≋Q ∈P ⊆-Transitive : ∀ {a ℓ} {A : Set a} → Transitive {_} {_} {Pred A ℓ} _⊆_ ⊆-Transitive P⊆Q Q⊆R = Q⊆R ∘ P⊆Q ⊆-IsPreorder : IsPreorder _≋_ _⊆_ ⊆-IsPreorder = record { isEquivalence = ≋-IsEquivalence ; reflexive = ≋⇒⊆ ; trans = ⊆-Transitive } ⊆-Preorder : Preorder _ _ _ ⊆-Preorder = record { Carrier = Pred String zero ; _≈_ = _≋_ ; _∼_ = _⊆_ ; isPreorder = ⊆-IsPreorder } ⊆-Antisymmetric : Antisymmetric _≋_ _⊆_ ⊆-Antisymmetric P⊆Q Q⊆P = equivalence P⊆Q Q⊆P ⊆-IsPartialOrder : IsPartialOrder _≋_ _⊆_ ⊆-IsPartialOrder = record { isPreorder = ⊆-IsPreorder ; antisym = ⊆-Antisymmetric } ⊆-Poset : Poset _ _ _ ⊆-Poset = record { Carrier = Pred String zero ; _≈_ = _≋_ ; _≤_ = _⊆_ ; isPartialOrder = ⊆-IsPartialOrder } -------------------------------------------------------------------------------- -- Conditional Inclusion -------------------------------------------------------------------------------- _⊆[_]_ : ∀ {a ℓ₀ ℓ₁ ℓ₂} {A : Set a} → Pred A ℓ₀ → Pred A ℓ₁ → Pred A ℓ₂ → Set _ A ⊆[ P ] B = ∀ {x} → x ∈ P → x ∈ A → x ∈ B _⊈[_]_ : ∀ {a ℓ₀ ℓ₁ ℓ₂} {A : Set a} → Pred A ℓ₀ → Pred A ℓ₁ → Pred A ℓ₂ → Set _ A ⊈[ P ] B = ∀ {x} → x ∈ P → x ∉ A → x ∉ B -- prefix version of _⊆[_]_, with the predicate being the first argument [_]⊆ : ∀ {a ℓ₀ ℓ₁ ℓ₂} {A : Set a} → Pred A ℓ₁ → Pred A ℓ₀ → Pred A ℓ₂ → Set _ [ P ]⊆ A B = A ⊆[ P ] B ≋[]⇒⊆[] : ∀ {a} {P : Pred Element a} → [ P ]≋ ⇒ [ P ]⊆ ≋[]⇒⊆[] A≋B = nach ∘ A≋B ⊆[]-Transitive : ∀ {a ℓ} {P : Pred Element a} → Transitive {_} {_} {Pred String ℓ} [ P ]⊆ ⊆[]-Transitive A⊆B B⊆C ∈P = B⊆C ∈P ∘ A⊆B ∈P ⊆[]-IsPreorder : ∀ {a} {P : Pred Element a} → IsPreorder [ P ]≋ [ P ]⊆ ⊆[]-IsPreorder = record { isEquivalence = ≋[]-IsEquivalence ; reflexive = ≋[]⇒⊆[] ; trans = ⊆[]-Transitive } ⊆[]-Preorder : ∀ {a} {P : Pred Element a} → Preorder _ _ _ ⊆[]-Preorder {_} {P} = record { Carrier = Pred String zero ; _≈_ = [ P ]≋ ; _∼_ = [ P ]⊆ ; isPreorder = ⊆[]-IsPreorder } ⊆[]-Antisymmetric : ∀ {a} {P : Pred Element a} → Antisymmetric [ P ]≋ [ P ]⊆ ⊆[]-Antisymmetric P⊆Q Q⊆P ∈P = equivalence (P⊆Q ∈P) (Q⊆P ∈P) ⊆[]-IsPartialOrder : ∀ {a} {P : Pred Element a} → IsPartialOrder [ P ]≋ [ P ]⊆ ⊆[]-IsPartialOrder = record { isPreorder = ⊆[]-IsPreorder ; antisym = ⊆[]-Antisymmetric } ⊆[]-Poset : ∀ {a} {P : Pred Element a} → Poset _ _ _ ⊆[]-Poset {_} {P} = record { Carrier = Pred String zero ; _≈_ = [ P ]≋ ; _≤_ = [ P ]⊆ ; isPartialOrder = ⊆[]-IsPartialOrder }
28.543689
89
0.531973
0e68a9807136c62d136197088e1604bbb5f28d89
701
agda
Agda
examples/outdated-and-incorrect/fileIO/IO.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
examples/outdated-and-incorrect/fileIO/IO.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/outdated-and-incorrect/fileIO/IO.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module IO where open import Base postulate IO : Set -> Set getLine : IO String putStrLn : String -> IO Unit mapM₋ : {A : Set} -> (A -> IO Unit) -> List A -> IO Unit bindIO : {A B : Set} -> IO A -> (A -> IO B) -> IO B returnIO : {A : Set} -> A -> IO A {-# COMPILED putStrLn putStrLn #-} {-# COMPILED mapM₋ (\_ -> mapM_ :: (a -> IO ()) -> [a] -> IO ()) #-} -- we need to throw away the type argument to mapM_ -- and resolve the overloading explicitly (since Alonzo -- output is sprinkled with unsafeCoerce#). {-# COMPILED bindIO (\_ _ -> (>>=) :: IO a -> (a -> IO b) -> IO b) #-} {-# COMPILED returnIO (\_ -> return :: a -> IO a) #-} {-# COMPILED getLine getLine #-}
31.863636
70
0.544936
1a2a09e996b976d19aa195b12d74b2e4573290f1
9,829
agda
Agda
src/Test.agda
cspollard/diff
78c3dec24834ffeca5e74cb75578e9b210a5be62
[ "CC0-1.0" ]
null
null
null
src/Test.agda
cspollard/diff
78c3dec24834ffeca5e74cb75578e9b210a5be62
[ "CC0-1.0" ]
null
null
null
src/Test.agda
cspollard/diff
78c3dec24834ffeca5e74cb75578e9b210a5be62
[ "CC0-1.0" ]
null
null
null
module Test where open import Algebra using (CommutativeRing; IsCommutativeRing) open import Assume using (assume) import Data.Nat as ℕ open ℕ using (ℕ; zero; suc) import Data.Fin as F open F using (Fin) open import Relation.Binary using (Rel; Setoid; _Preserves_⟶_) open import Function using (Inverse; _on_; _∘_; _|>_; id; flip) open import Algebra.Module using (Module) module Mod = Module open import Data.Product using (_,_; proj₂; _×_) open import Algebra.Module.Construct.DirectProduct using () renaming (⟨module⟩ to ×-module) open import Level using (_⊔_; Level; 0ℓ; Lift) open import Data.Vec.Recursive open import Algebra.Module.Vec.Recursive module _ {r ℓ} {CR : CommutativeRing r ℓ} where -- D B k is the solution to -- (A → X) → A ^ suc k → B -- i.e. D B k ~ A ^ k → B open Module D : ∀ {m ℓm} (M : Module CR m ℓm) → ℕ → Set _ D {m = m} M k = ∀ {X : Set m} → X ^ suc k → Carrierᴹ M const : ∀ {m ℓm} {{M : Module CR m ℓm}} → ∀ {k} → Carrierᴹ M → D M k const {k = zero} c x = c const {{M}} {k = suc k} c v = 0ᴹ M double : ∀ {m ℓm} {{M : Module CR m ℓm}} → ∀ {k} → D M k → D M k double {{M}} x y = let x' = x y in _+ᴹ_ M x' x' -- D : Level → ∀ {n ℓn} (N : Module CR n ℓn) → ℕ → Set _ -- D m N k = {M : Set m} → M → M ^ k → Carrierᴹ N -- compose -- : ∀ {x} {X : Set x} -- → ∀ {n ℓn} {N : Module CR n ℓn} -- → ∀ {o ℓo} {O : Module CR o ℓo} -- → ∀ {k} → (f : X → D N k) → (g : Carrierᴹ N → D O k) -- → X → D O k -- compose = ? -- _th-derivative_ : ∀ k → (D k → D k) → M.Carrierᴹ → N.Carrierᴹ -- k th-derivative f = {! !} -- TODO -- can we use M → D N k everywhere?! -- data D : ℕ → Set (m ⊔ n) where -- z : N.Carrierᴹ → D zero -- d : ∀ {k} → (fx : N.Carrierᴹ) → (dfx : M.Carrierᴹ → D k) → D (suc k) -- module _ -- {r ℓ} {CR : CommutativeRing r ℓ} -- {m ℓm} {M : Module CR m ℓm} -- {n ℓn} {N : Module CR n ℓn} -- where -- private -- module CR = CommutativeRing CR -- module M = Module M -- module N = Module N -- private -- module dmod where -- Carrierᴹ : ∀ {k : ℕ} → Set (m ⊔ n) -- Carrierᴹ {k} = D M N k -- _≈ᴹ_ : ∀ {k} → Rel (D M N k) (m ⊔ ℓn) -- _≈ᴹ_ (z x) (z y) = Lift (m ⊔ ℓn) (x N.≈ᴹ y) -- _≈ᴹ_ (d fx dfx) (d fy dfy) = (fx N.≈ᴹ fy) × (∀ v → dfx v ≈ᴹ dfy v) -- _+ᴹ_ : ∀ {k} → (x y : D M N k) → D M N k -- _+ᴹ_ (z x) (z y) = z (x N.+ᴹ y) -- _+ᴹ_ (d fx dfx) (d fy dfy) = d (fx N.+ᴹ fy) λ v → dfx v +ᴹ dfy v -- _*ₗ_ : ∀ {k} → (s : CR.Carrier) (x : D M N k) → D M N k -- _*ₗ_ s (z x) = z (s N.*ₗ x) -- _*ₗ_ s (d fx dfx) = d (s N.*ₗ fx) λ v → s *ₗ dfx v -- _*ᵣ_ : ∀ {k} → (x : D M N k) (s : CR.Carrier) → D M N k -- _*ᵣ_ = flip _*ₗ_ -- 0ᴹ : ∀ {k} → D M N k -- 0ᴹ {zero} = z N.0ᴹ -- 0ᴹ {suc k} = d N.0ᴹ λ v → 0ᴹ -- -ᴹ_ : ∀ {k} → D M N k → D M N k -- -ᴹ_ (z x) = z (N.-ᴹ x) -- -ᴹ_ (d fx dfx) = d (N.-ᴹ fx) λ v → -ᴹ dfx v -- instance -- D-module : ∀ {k : ℕ} → Module CR _ _ -- D-module {k} = -- record -- { Carrierᴹ = dmod.Carrierᴹ {k} -- ; isModule = assume -- ; dmod -- } -- private variable k : ℕ -- run : D M N k → N.Carrierᴹ -- run (z x) = x -- run (d x _) = x -- extract : D M N zero → N.Carrierᴹ -- extract = run -- diff : M.Carrierᴹ → D M N (suc k) → D M N k -- diff v (d _ x) = x v -- konst _# : ∀ (c : N.Carrierᴹ) → D M N k -- konst {k = zero} c = z c -- konst {k = suc k} c = d c (λ v → konst N.0ᴹ) -- x # = konst x -- jacobian : (df : D M N 1) (v : M.Carrierᴹ) → N.Carrierᴹ -- jacobian df v = df |> diff v |> extract -- hessian : (df : D M N 2) (v v' : M.Carrierᴹ) → N.Carrierᴹ -- hessian df v v' = df |> diff v |> diff v' |> extract -- hack : ∀ {l} → D M N (suc l) → D M N l -- hack {zero} (d fx dfx) = z fx -- hack {suc l} (d fx dfx) = d fx λ v → hack {l} (dfx v) module _ where import Real as ℝ open ℝ using (ℝ) open import Data.Vec.Recursive ℝ-isCommutativeRing : IsCommutativeRing ℝ._≈_ ℝ._+_ ℝ._*_ ℝ.-_ 0.0 1.0 ℝ-isCommutativeRing = assume instance ℝ-commutativeRing : CommutativeRing 0ℓ 0ℓ ℝ-commutativeRing = record { isCommutativeRing = ℝ-isCommutativeRing } ℝ-cr : CommutativeRing 0ℓ 0ℓ ℝ-cr = ℝ-commutativeRing private ℝ-mod' : Module ℝ-commutativeRing 0ℓ 0ℓ ℝ-mod' = U.⟨module⟩ where import Algebra.Module.Construct.TensorUnit as U ℝ^ : ∀ n → Module ℝ-commutativeRing 0ℓ 0ℓ ℝ^ n = ℝ-mod' ^ᴹ n ℝ-mod : Module ℝ-commutativeRing 0ℓ 0ℓ ℝ-mod = ℝ^ 1 exp : ∀ {k} → D ℝ-mod k → D ℝ-mod k exp {0} f x = ℝ.e^ f x exp {1} f' xdx = let (fx , f'x) = f xdx in {! (ℝ.e^ fx) ℝ.* f'x !} exp {k} f y = {! !} -- -- TODO -- -- is this really the identity? -- var : ∀ {rank k} (c : Mod.Carrierᴹ (ℝ^ rank)) → D (ℝ^ rank) (ℝ^ rank) k -- var {rank} {zero} c = z c -- var {rank} {suc n} c = d c (λ v → konst (replicate rank 1.0)) -- instance -- ℝ^n : ∀ {n} → Module ℝ-cr 0ℓ 0ℓ -- ℝ^n {n} = ℝ^ n -- infixl 6 _+_ _-_ -- infixl 7 _*_ -- -- linear and bilinear forms -- _*_ -- : ∀ {m ℓm} {M : Module ℝ-cr m ℓm} {k rank} -- → (x y : D M (ℝ^ rank) k) -- → D M (ℝ^ rank) k -- open Module {{...}} -- _+_ _-_ -- : ∀ {r ℓ} {CR : CommutativeRing r ℓ} {m ℓm} {{M : Module CR m ℓm}} (x y : Mod.Carrierᴹ M) -- → Mod.Carrierᴹ M -- x + y = x +ᴹ y -- x - y = x +ᴹ (-ᴹ y) -- _*_ {rank = rank} (z x) (z y) = z (zipWith ℝ._*_ rank x y) -- _*_ {rank = rank} dfx@(d fx f'x) dgx@(d gx g'x) = -- d (zipWith ℝ._*_ rank fx gx) (λ v → hack dfx * g'x v + hack dgx * f'x v) -- -- convenience function -- _>-<_ -- : ∀ {k} -- → (f : ℝ → ℝ) (f' : ∀ {l} → D ℝ-mod ℝ-mod l → D ℝ-mod ℝ-mod l) -- → D ℝ-mod ℝ-mod k → D ℝ-mod ℝ-mod k -- (f >-< _) (z x) = z (f x) -- (f >-< f') dfx@(d x dx) = d (f x) λ v → dx v * f' (hack dfx) -- ε : ∀ {rank} → Fin rank → ℝ ^ rank -- ε {zero} n = _ -- ε {suc zero} _ = 1.0 -- ε {2+ rank} F.zero = 1.0 , Mod.0ᴹ (ℝ^ (suc rank)) -- ε {2+ rank} (F.suc n) = Mod.0ᴹ ℝ-mod , ε n -- ∇_ grad : ∀ {rank} → D (ℝ^ rank) (ℝ^ 1) 1 → ℝ ^ rank -- ∇_ {rank = rank} f = map (jacobian f) rank unitvecs -- where -- unitvecs : (ℝ ^ rank) ^ rank -- unitvecs = map ε rank (tabulate rank id) -- grad = ∇_ -- infixl 8 _**_ -- infixr 9 -_ -- infixr 9 e^_ -- -_ -- : ∀ {r ℓ} {CR : CommutativeRing r ℓ} {m ℓm} {{M : Module CR m ℓm}} (x : Mod.Carrierᴹ M) -- → Mod.Carrierᴹ M -- -_ x = -ᴹ x -- ℝ-sgn : ℝ → ℝ -- ℝ-sgn x = if does (0.0 ℝ.≤? x) then 1.0 else ℝ.- 1.0 -- where -- open import Data.Bool using (if_then_else_) -- open import Relation.Nullary using (does) -- ℝ-abs : ℝ → ℝ -- ℝ-abs x = x ℝ.* ℝ-sgn x -- -- the first is the zero-order -- poly : ∀ {rank k} → ℝ ^ suc rank → D ℝ-mod ℝ-mod k → D ℝ-mod ℝ-mod k -- poly {rank = zero} cs x = konst cs -- poly {rank = suc rank} (c , cs) x = konst c + x * poly cs x -- pow : ℕ → ∀ {k} → D ℝ-mod ℝ-mod k → D ℝ-mod ℝ-mod k -- pow 0 x = konst 1.0 -- pow 1 x = x -- pow (suc n) dx = dx * pow n dx -- log e^_ recip abs sgn : ∀ {k} → D ℝ-mod ℝ-mod k → D ℝ-mod ℝ-mod k -- log = ℝ.log >-< recip ∘ abs -- recip (z x) = z (1.0 ℝ.÷ x) -- recip dfx@(d fx f'x) = d (1.0 ℝ.÷ fx) λ x → - (f'x x * tmp * tmp) -- where -- tmp = recip (hack dfx) -- abs = ℝ-abs >-< sgn -- sgn = ℝ-sgn >-< λ _ → 0ᴹ -- e^ z x = z (ℝ.e^ x) -- e^ dfx@(d fx f'x) = d (run tmp) λ v → f'x v * tmp -- where -- tmp = e^ hack dfx -- infixl 7 _÷_ -- _÷_ _**_ : ∀ {k} (x y : D ℝ-mod ℝ-mod k) → D ℝ-mod ℝ-mod k -- x ÷ y = x * recip x -- x ** y = e^ y * log x -- _! : ℕ → ℕ -- 0 ! = 1 -- 1 ! = 1 -- sucn@(suc n) ! = sucn ℕ.* (n !) -- sterling : ∀ {k} → ℕ → D ℝ-mod ℝ-mod k -- sterling {k} m = m' * log m' - m' -- where -- m' : D ℝ-mod ℝ-mod k -- m' = ℝ.fromℕ m # -- -- without the constant denominator term -- logPoisson' : ∀ {n} → ℕ → D ℝ-mod ℝ-mod n → D ℝ-mod ℝ-mod n -- logPoisson' k λ' = k' * log λ' - λ' -- where k' = ℝ.fromℕ k # -- logPoisson : ∀ {n} → ℕ → D ℝ-mod ℝ-mod n → D ℝ-mod ℝ-mod n -- logPoisson k λ' = logPoisson' k λ' - sterling k -- -- descend : ∀ {rank} (f : D (ℝ^ rank) 1 → D ℝ-mod 1) (steps : ℕ) (start : ℝ ^ rank) → ℝ ^ rank -- -- descend f zero start = start -- -- descend f (suc steps) start = {! !} -- module _ where -- open import Relation.Binary.PropositionalEquality using (refl) -- _ : (∇ (var 1.0 * var 1.0)) ℝ.≈ 2.0 -- _ = refl -- -- -- -- _ : run e^_ 2.0 ℝ.≈ (ℝ.e^ 2.0) -- -- -- -- _ = refl -- -- -- -- testpoly : ∀ {n} → D ℝ-mod n → D ℝ-mod n -- -- -- -- testpoly = poly (1.0 , 2.0 , 3.0) -- -- -- -- _ : run testpoly 2.0 ℝ.≈ (1.0 + 4.0 + 12.0) -- -- -- -- _ = refl -- -- -- -- _ : ∇ testpoly [ 2.0 ] ℝ.≈ (0.0 + 2.0 + 3.0 ℝ.* 2.0 ℝ.* 2.0) -- -- -- -- _ = refl -- -- -- -- _ : ∇ testpoly [ 7.0 ] ℝ.≈ (0.0 + 2.0 + 2.0 ℝ.* 3.0 ℝ.* 7.0) -- -- -- -- _ = refl -- -- -- -- _ : hessian e^_ 1.0 1.0 0.0 ℝ.≈ (ℝ.e^ 1.0) -- -- -- -- _ = refl -- -- -- -- asdf : D ℝ-mod 2 -- -- -- -- asdf = e^ var (2.0 , 1.0 , 0.0) -- -- -- -- _ : hessian (poly (1.0 , 2.0 , 3.0)) 1.0 1.0 0.0 ℝ.≈ (2.0 ℝ.* 3.0) -- -- -- -- _ = refl -- -- -- -- _ : ∇ log [ 1.0 ] ℝ.≈ 1.0 -- -- -- -- _ = refl -- -- -- -- _ : ∇ log [ -ᴹ 1.0 ] ℝ.≈ 1.0 -- -- -- -- _ = refl -- -- -- -- _ : ∇ sgn [ 2.0 ] ℝ.≈ 0.0 -- -- -- -- _ = refl -- -- -- -- _ : ∇ abs [ 2.0 ] ℝ.≈ 1.0 -- -- -- -- _ = refl -- -- -- -- _ : run abs (- 2.0) ℝ.≈ 2.0 -- -- -- -- _ = refl -- -- -- -- _ : ∇ abs [ - 1.0 ] ℝ.≈ (- 1.0) -- -- -- -- _ = refl -- -- -- -- _ : ∇ recip [ - 2.0 ] ℝ.≈ (- 0.25) -- -- -- -- _ = refl -- -- -- -- _ : ∇ log [ 2.0 ] ℝ.≈ 0.5 -- -- -- -- _ = refl
26.071618
100
0.457015
22890c07fa7e61fc0b43a7b360bb456506df736c
14,223
agda
Agda
LC/stash/STLC2.agda
banacorn/bidirectional
0c9a6e79c23192b28ddb07315b200a94ee900ca6
[ "MIT" ]
2
2020-08-25T07:34:40.000Z
2020-08-25T14:05:01.000Z
LC/stash/STLC2.agda
banacorn/bidirectional
0c9a6e79c23192b28ddb07315b200a94ee900ca6
[ "MIT" ]
null
null
null
LC/stash/STLC2.agda
banacorn/bidirectional
0c9a6e79c23192b28ddb07315b200a94ee900ca6
[ "MIT" ]
null
null
null
module STLC2 where open import Data.Nat -- open import Data.List open import Data.Empty using (⊥-elim) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; cong₂; subst) open import Relation.Nullary open import Data.Product -- de Bruijn indexed lambda calculus infix 5 ƛ_ infixl 7 _∙_ infix 9 var_ data Term : Set where var_ : ℕ → Term ƛ_ : Term → Term _∙_ : Term → Term → Term -- only "shift" the variable when -- 1. it's free -- 2. it will be captured after substitution -- free <= x && x < subst-depth shift : ℕ → ℕ → Term → Term shift free subst-depth (var x) with free >? x shift free subst-depth (var x) | yes p = var x -- bound shift free subst-depth (var x) | no ¬p with subst-depth >? x -- free shift free subst-depth (var x) | no ¬p | yes q = var (suc x) -- will be captured, should increment shift free subst-depth (var x) | no ¬p | no ¬q = var x shift free subst-depth (ƛ M) = ƛ (shift (suc free) (suc subst-depth) M) shift free subst-depth (M ∙ N) = shift free subst-depth M ∙ shift free subst-depth N infixl 10 _[_/_] _[_/_] : Term → Term → ℕ → Term (var x) [ N / n ] with x ≟ n (var x) [ N / n ] | yes p = N (var x) [ N / n ] | no ¬p = var x (ƛ M) [ N / n ] = ƛ ((M [ shift 0 (suc n) N / suc n ])) (L ∙ M) [ N / n ] = L [ N / n ] ∙ M [ N / n ] -- substitution infixl 10 _[_] _[_] : Term → Term → Term M [ N ] = M [ N / zero ] -- β reduction infix 3 _β→_ data _β→_ : Term → Term → Set where β-ƛ-∙ : ∀ {M N} → ((ƛ M) ∙ N) β→ (M [ N ]) β-ƛ : ∀ {M N} → M β→ N → ƛ M β→ ƛ N β-∙-l : ∀ {L M N} → M β→ N → M ∙ L β→ N ∙ L β-∙-r : ∀ {L M N} → M β→ N → L ∙ M β→ L ∙ N -- the reflexive and transitive closure of _β→_ infix 2 _β→*_ infixr 2 _→*_ data _β→*_ : Term → Term → Set where ∎ : ∀ {M} → M β→* M _→*_ : ∀ {L M N} → L β→ M → M β→* N -------------- → L β→* N infixl 3 _<β>_ _<β>_ : ∀ {M N O} → M β→* N → N β→* O → M β→* O _<β>_ {M} {.M} {O} ∎ N→O = N→O _<β>_ {M} {N} {O} (L→M →* M→N) N→O = L→M →* M→N <β> N→O -- infix 2 _-↠_ infixr 2 _→⟨_⟩_ _→⟨_⟩_ : ∀ {M N} → ∀ L → L β→ M → M β→* N -------------- → L β→* N L →⟨ P ⟩ Q = P →* Q infixr 2 _→*⟨_⟩_ _→*⟨_⟩_ : ∀ {M N} → ∀ L → L β→* M → M β→* N -------------- → L β→* N L →*⟨ P ⟩ Q = P <β> Q infix 3 _→∎ _→∎ : ∀ M → M β→* M M →∎ = ∎ jump : ∀ {M N} → M β→ N → M β→* N jump {M} {N} M→N = M→N →* ∎ -- the symmetric closure of _β→*_ infix 1 _β≡_ data _β≡_ : Term → Term → Set where β-sym : ∀ {M N} → M β→* N → N β→* M ------- → M β≡ N infixr 2 _=*⟨_⟩_ _=*⟨_⟩_ : ∀ {M N} → ∀ L → L β≡ M → M β≡ N -------------- → L β≡ N L =*⟨ β-sym A B ⟩ β-sym C D = β-sym (A <β> C) (D <β> B) infixr 2 _=*⟨⟩_ _=*⟨⟩_ : ∀ {N} → ∀ L → L β≡ N -------------- → L β≡ N L =*⟨⟩ β-sym C D = β-sym C D infix 3 _=∎ _=∎ : ∀ M → M β≡ M M =∎ = β-sym ∎ ∎ forward : ∀ {M N} → M β≡ N → M β→* N forward (β-sym A _) = A backward : ∀ {M N} → M β≡ N → N β→* M backward (β-sym _ B) = B -- data Normal : Set where Normal : Term → Set Normal M = ¬ ∃ (λ N → M β→ N) normal : ∀ {M N} → Normal M → M β→* N → M ≡ N normal P ∎ = refl normal P (M→L →* L→N) = ⊥-elim (P (_ , M→L)) normal-ƛ : ∀ {M} → Normal (ƛ M) → Normal M normal-ƛ P (N , M→N) = P ((ƛ N) , (β-ƛ M→N)) normal-ƛ' : ∀ {M} → Normal M → Normal (ƛ M) normal-ƛ' P (.(ƛ N) , β-ƛ {N = N} ƛM→N) = P (N , ƛM→N) normal-∙-r : ∀ {M N} → Normal (M ∙ N) → Normal N normal-∙-r {M} P (O , N→O) = P (M ∙ O , (β-∙-r N→O)) normal-∙-l : ∀ {M N} → Normal (M ∙ N) → Normal M normal-∙-l {_} {N} P (O , M→O) = P (O ∙ N , (β-∙-l M→O)) cong-ƛ : ∀ {M N} → M β→* N → ƛ M β→* ƛ N cong-ƛ ∎ = ∎ cong-ƛ (M→N →* N→O) = β-ƛ M→N →* cong-ƛ N→O cong-∙-l : ∀ {L M N} → M β→* N → M ∙ L β→* N ∙ L cong-∙-l ∎ = ∎ cong-∙-l (M→N →* N→O) = β-∙-l M→N →* cong-∙-l N→O cong-∙-r : ∀ {L M N} → M β→* N → L ∙ M β→* L ∙ N cong-∙-r ∎ = ∎ cong-∙-r (M→N →* N→O) = β-∙-r M→N →* cong-∙-r N→O ∙-dist-r : ∀ M N O → (ƛ (M ∙ N)) ∙ O β→* ((ƛ M) ∙ O) ∙ ((ƛ N) ∙ O) ∙-dist-r (var x) N O = {! !} ∙-dist-r (ƛ M) N O = {! !} ∙-dist-r (M ∙ L) N O = {! !} ∙-dist-r2 : ∀ M N O → (ƛ (M ∙ N)) ∙ O β≡ ((ƛ M) ∙ O) ∙ ((ƛ N) ∙ O) ∙-dist-r2 (var x) N O = {! !} ∙-dist-r2 (ƛ M) N O = {! !} ∙-dist-r2 (M ∙ L) (var x) O = (ƛ (M ∙ L ∙ var x)) ∙ O =*⟨ β-sym (β-ƛ-∙ →* ∎) {! !} ⟩ ((M ∙ L ∙ var x) [ O ]) =*⟨ {! !} ⟩ {! !} =*⟨ {! !} ⟩ (ƛ M ∙ L) ∙ O ∙ ((ƛ var x) ∙ O) =∎ ∙-dist-r2 (M ∙ L) (ƛ N) O = {! !} ∙-dist-r2 (M ∙ L) (N ∙ K) O = {! !} -- {! !} -- →*⟨ {! !} ⟩ -- {! !} -- →*⟨ {! !} ⟩ -- {! !} -- →*⟨ {! !} ⟩ -- {! !} -- →*⟨ {! !} ⟩ -- {! !} -- →∎ -- (ƛ M) [ N / n ] = ƛ ((M [ shift 0 (suc n) N / suc n ])) cong-[]2 : ∀ {M N L n} → M β→ N → (M [ L / n ]) β→* (N [ L / n ]) cong-[]2 (β-ƛ-∙ {var x} {N}) = {! !} cong-[]2 {_} {_} {L} {n} (β-ƛ-∙ {ƛ M} {N}) = (ƛ (ƛ (M [ shift 0 (suc (suc n)) (shift 0 (suc n) L) / suc (suc n) ]))) ∙ (N [ L / n ]) →*⟨ jump β-ƛ-∙ ⟩ ƛ ((M [ shift 0 (suc (suc n)) (shift 0 (suc n) L) / suc (suc n) ]) [ shift 0 1 (N [ L / n ]) / 1 ]) →*⟨ cong-ƛ {! !} ⟩ ƛ {! !} →*⟨ {! !} ⟩ {! !} →*⟨ {! !} ⟩ ƛ ((M [ shift 0 1 N / 1 ]) [ shift 0 (suc n) L / suc n ]) →∎ cong-[]2 {_} {_} {L} {n} (β-ƛ-∙ {M ∙ K} {N}) = (ƛ (M [ shift 0 (suc n) L / suc n ]) ∙ (K [ shift 0 (suc n) L / suc n ])) ∙ (N [ L / n ]) →*⟨ {! !} ⟩ -- →*⟨ forward (∙-dist-r2 (M [ shift zero (suc n) L / suc n ]) (K [ shift zero (suc n) L / suc n ]) (N [ L / n ])) ⟩ (ƛ (M [ shift zero (suc n) L / suc n ])) ∙ (N [ L / n ]) ∙ ((ƛ (K [ shift 0 (suc n) L / suc n ])) ∙ (N [ L / n ])) →*⟨ cong-∙-l (cong-[]2 (β-ƛ-∙ {M} {N})) ⟩ ((M [ N ]) [ L / n ]) ∙ ((ƛ (K [ shift 0 (suc n) L / suc n ])) ∙ (N [ L / n ])) →*⟨ cong-∙-r (cong-[]2 (β-ƛ-∙ {K} {N})) ⟩ ((M [ N ]) [ L / n ]) ∙ ((K [ N ]) [ L / n ]) →∎ cong-[]2 (β-ƛ M→N) = cong-ƛ (cong-[]2 M→N) cong-[]2 (β-∙-l M→N) = cong-∙-l (cong-[]2 M→N) cong-[]2 (β-∙-r M→N) = cong-∙-r (cong-[]2 M→N) cong-∙-l' : ∀ {L M N} → M β→* N → M ∙ L ≡ N ∙ L cong-∙-l' ∎ = refl cong-∙-l' {L} {M} {O} (_→*_ {M = N} M→N N→O) = trans M∙L≡N∙L N∙L≡O∙L where M∙L≡N∙L : M ∙ L ≡ N ∙ L M∙L≡N∙L = {! !} N∙L≡O∙L : N ∙ L ≡ O ∙ L N∙L≡O∙L = cong-∙-l' N→O -- rans (cong-∙-l' (M→N →* ∎)) (cong-∙-l' N→O) cong-[] : ∀ {M N L n} → M β→ N → (M [ L / n ]) ≡ (N [ L / n ]) cong-[] β-ƛ-∙ = {! !} cong-[] (β-ƛ M→N) = {! !} cong-[] (β-∙-l M→N) = cong-∙-l' {! cong-[] M→N !} cong-[] (β-∙-r M→N) = {! !} normal-unique' : ∀ {M N O} → Normal N → Normal O → M β→ N → M β→ O → N ≡ O normal-unique' P Q β-ƛ-∙ β-ƛ-∙ = refl normal-unique' P Q (β-ƛ-∙ {M} {L}) (β-∙-l {N = .(ƛ N)} (β-ƛ {N = N} M→N)) = {! !} -- trans (normal P (cong-[]2 M→N)) N[L]≡ƛN∙L -- trans (normal P (cong-[]2 M→N)) N[L]≡ƛN∙L where N[L]≡ƛN∙L : (N [ L ]) ≡ (ƛ N) ∙ L N[L]≡ƛN∙L = sym (normal Q (jump β-ƛ-∙)) -- β-ƛ-∙ : ∀ {M N} → ((ƛ M) ∙ N) β→ (M [ N ]) normal-unique' P Q (β-ƛ-∙ {M} {L}) (β-∙-r {N = N} L→N) = {! sym (normal Q (jump β-ƛ-∙)) !} -- sym (trans (normal Q (jump β-ƛ-∙)) (cong (λ x → M [ x ]) (sym (normal {! !} (jump N→O))))) -- sym (trans (normal Q (jump β-ƛ-∙)) (cong (λ x → {! M [ x ] !}) {! !})) -- sym (trans {! !} (normal {! P !} (jump β-ƛ-∙))) normal-unique' P Q (β-ƛ M→N) (β-ƛ M→O) = cong ƛ_ (normal-unique' (normal-ƛ P) (normal-ƛ Q) M→N M→O) normal-unique' P Q (β-∙-l M→N) β-ƛ-∙ = {!normal (normal-∙-l P) !} normal-unique' P Q (β-∙-l {L} {N = N} M→N) (β-∙-l {N = O} M→O) = cong (λ x → x ∙ L) (normal-unique' (normal-∙-l P) (normal-∙-l Q) M→N M→O) normal-unique' P Q (β-∙-l M→N) (β-∙-r M→O) = cong₂ _∙_ (sym (normal (normal-∙-l Q) (jump M→N))) (normal (normal-∙-r P) (jump M→O)) normal-unique' {O = O} P Q (β-∙-r {L} {N = N} M→N) M→O = {! !} normal-unique : ∀ {M N O} → Normal N → Normal O → M β→* N → M β→* O → N ≡ O normal-unique P Q ∎ M→O = normal P M→O normal-unique P Q M→N ∎ = sym (normal Q M→N) normal-unique P Q (_→*_ {M = L} M→L L→N) (_→*_ {M = K} M→K K→O) = {! !} -- rewrite (normal-unique' {! !} {! !} M→L M→K) = normal-unique P Q L→N {! K→O !} -- where -- postulate L≡K : L ≡ K -- normal-unique' P Q {! !} {! !} -- ... | U = {! !} -- trans {! !} (normal-unique {! !} {! !} L→N {! !}) -- L≡K = {! !} -- normal-unique P Q {! !} M→O -- normal-unique P Q M→N ∎ = sym (normal Q M→N) -- normal-unique P Q M→N (M→L →* L→O) = {! !} -- β→*-confluent : ∀ {M N O} → (M β→* N) → (M β→* O) → ∃ (λ P → (N β→* P) × (O β→* P)) -- β→*-confluent {M} {.M} {O} ∎ M→O = O , M→O , ∎ -- β→*-confluent {M} {N} {.M} (M→L →* L→N) ∎ = N , ∎ , (M→L →* L→N) -- β→*-confluent {M} {N} {O} (M→L →* L→N) (M→K →* K→O) = {! !} -- lemma-0 : ∀ M N → M [ N ] β→* (ƛ M) ∙ N -- lemma-0 (var zero) (var zero) = (var zero) →⟨ {! !} ⟩ {! !} -- lemma-0 (var zero) (var suc y) = {! !} -- lemma-0 (var suc x) (var y) = {! !} -- lemma-0 (var x) (ƛ O) = {! !} -- lemma-0 (var x) (O ∙ P) = {! !} -- lemma-0 (ƛ M) O = {! !} -- lemma-0 (M ∙ N) O = {! !} -- lemma : ∀ M N O → ((ƛ M) ∙ N β→* O) → M [ N ] β→* O -- lemma (var x) N .((ƛ var x) ∙ N) (.((ƛ var x) ∙ N) ∎) = {! !} -- lemma (ƛ M) N .((ƛ (ƛ M)) ∙ N) (.((ƛ (ƛ M)) ∙ N) ∎) = {! !} -- lemma (M ∙ M₁) N .((ƛ M ∙ M₁) ∙ N) (.((ƛ M ∙ M₁) ∙ N) ∎) = {! !} -- lemma M N O (.((ƛ M) ∙ N) →⟨⟩ redex→O) = lemma M N O redex→O -- lemma M N O (_→⟨_⟩_ .((ƛ M) ∙ N) {P} ƛM∙N→P P→O) = {! !} -- -- lemma M N P (jump ƛM∙N→P) <β> P→O -- lemma-1 : ∀ M N O P → (ƛ M β→* N) → (N ∙ O β→* P) → M [ O ] β→* P -- lemma-1 M .(ƛ M) O P (.(ƛ M) ∎) N∙O→P = lemma M O P N∙O→P -- lemma-1 M N O P (.(ƛ M) →⟨⟩ ƛM→N) N∙O→P = lemma-1 M N O P ƛM→N N∙O→P -- lemma-1 M N O .(N ∙ O) (.(ƛ M) →⟨ x ⟩ ƛM→N) (.(N ∙ O) ∎) = {! !} -- lemma-1 M N O P (.(ƛ M) →⟨ x ⟩ ƛM→N) (.(N ∙ O) →⟨⟩ N∙O→P) = {! !} -- lemma-1 M N O P (.(ƛ M) →⟨ x ⟩ ƛM→N) (.(N ∙ O) →⟨ x₁ ⟩ N∙O→P) = {! !} -- -- (M [ N ]) β→* O -- -- M'→O : P ∙ N β→* O -- -- L→M' : ƛ M β→ P -- -- (M [ N ]) β→* O -- -- M'→O : N₂ ∙ N β→* O -- -- L→M' : ƛ M β→ N₂ -- -- M→N : (M [ N ]) β→* N₁ -- -- that diamond prop -- -- -- -- M -- -- N O -- -- P -- -- -- β→*-confluent : ∀ {M N O} → (M β→* N) → (M β→* O) → ∃ (λ P → (N β→* P) × (O β→* P)) -- β→*-confluent {O = O} (M ∎) M→O = O , M→O , (O ∎) -- β→*-confluent (L →⟨⟩ M→N) M→O = β→*-confluent M→N M→O -- β→*-confluent {N = N} (L →⟨ x ⟩ M→N) (.L ∎) = N , (N ∎) , (L →⟨ x ⟩ M→N) -- β→*-confluent (L →⟨ x ⟩ M→N) (.L →⟨⟩ M→O) = β→*-confluent (L →⟨ x ⟩ M→N) M→O -- β→*-confluent (.((ƛ _) ∙ _) →⟨ β-ƛ-∙ ⟩ M→N) (.((ƛ _) ∙ _) →⟨ β-ƛ-∙ ⟩ M'→O) = β→*-confluent M→N M'→O -- β→*-confluent {N = N} {O} (.((ƛ M) ∙ N₁) →⟨ β-ƛ-∙ {M} {N₁} ⟩ M→N) (.((ƛ M) ∙ N₁) →⟨ β-∙-l {N = N₂} L→M' ⟩ M'→O) = β→*-confluent M→N (lemma-1 M N₂ N₁ O ((ƛ M) →⟨ L→M' ⟩ (N₂ ∎)) M'→O) -- β→*-confluent (.((ƛ _) ∙ _) →⟨ β-ƛ-∙ ⟩ M→N) (.((ƛ _) ∙ _) →⟨ β-∙-r L→M' ⟩ M'→O) = {! !} -- β→*-confluent (.(ƛ _) →⟨ β-ƛ L→M ⟩ M→N) (.(ƛ _) →⟨ L→M' ⟩ M'→O) = {! !} -- β→*-confluent (.(_ ∙ _) →⟨ β-∙-l L→M ⟩ M→N) (.(_ ∙ _) →⟨ L→M' ⟩ M'→O) = {! !} -- β→*-confluent (.(_ ∙ _) →⟨ β-∙-r L→M ⟩ M→N) (.(_ ∙ _) →⟨ L→M' ⟩ M'→O) = {! !} -- L -- M M' -- N O -- P -- -- module Example where -- S : Term -- S = ƛ ƛ ƛ var 2 ∙ var 0 ∙ (var 1 ∙ var 0) -- K : Term -- K = ƛ ƛ var 1 -- I : Term -- I = ƛ (var 0) -- Z : Term -- Z = ƛ ƛ var 0 -- SZ : Term -- SZ = ƛ ƛ var 1 ∙ var 0 -- PLUS : Term -- PLUS = ƛ ƛ ƛ ƛ var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var 0) -- test-0 : ƛ (ƛ ƛ var 1) ∙ var 0 β→* ƛ ƛ var 1 -- test-0 = -- ƛ (ƛ ƛ var 1) ∙ var 0 -- →⟨ β-ƛ β-ƛ-∙ ⟩ -- ƛ (ƛ var 1) [ var 0 / 0 ] -- →⟨⟩ -- ƛ ƛ ((var 1) [ shift 0 1 (var 0) / 1 ]) -- →⟨⟩ -- ƛ ƛ ((var 1) [ var 1 / 1 ]) -- →⟨⟩ -- ƛ (ƛ var 1) -- ∎ -- test-2 : PLUS ∙ Z ∙ SZ β→* SZ -- test-2 = -- PLUS ∙ Z ∙ SZ -- →⟨⟩ -- (ƛ (ƛ (ƛ (ƛ var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var zero))))) ∙ Z ∙ SZ -- →⟨ β-∙-l β-ƛ-∙ ⟩ -- ((ƛ (ƛ (ƛ var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var zero)))) [ Z ]) ∙ SZ -- →⟨⟩ -- ((ƛ (ƛ (ƛ var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var zero)))) [ Z / 0 ]) ∙ SZ -- →⟨⟩ -- (ƛ ((ƛ (ƛ var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var zero))) [ shift 0 1 Z / 1 ])) ∙ SZ -- →⟨⟩ -- (ƛ ((ƛ (ƛ var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var zero))) [ Z / 1 ])) ∙ SZ -- →⟨⟩ -- (ƛ (ƛ ((ƛ var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var zero)) [ Z / 2 ]))) ∙ SZ -- →⟨⟩ -- (ƛ (ƛ (ƛ ((var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var zero)) [ Z / 3 ])))) ∙ SZ -- →⟨⟩ -- (ƛ ƛ ƛ Z ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var zero)) ∙ SZ -- →⟨ β-ƛ-∙ ⟩ -- ((ƛ ƛ Z ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var zero)) [ SZ / 0 ]) -- →⟨⟩ -- ƛ ((ƛ Z ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var zero)) [ SZ / 1 ]) -- →⟨⟩ -- ƛ ƛ ((Z ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var zero)) [ SZ / 2 ]) -- →⟨⟩ -- ƛ ƛ Z ∙ var 1 ∙ (SZ ∙ var 1 ∙ var 0) -- →⟨ β-ƛ (β-ƛ (β-∙-r (β-∙-l β-ƛ-∙))) ⟩ -- ƛ ƛ Z ∙ var 1 ∙ (((ƛ var 1 ∙ var 0) [ var 1 ]) ∙ var 0) -- →⟨⟩ -- ƛ ƛ Z ∙ var 1 ∙ (((ƛ var 1 ∙ var 0) [ var 1 / 0 ]) ∙ var 0) -- →⟨⟩ -- ƛ ƛ Z ∙ var 1 ∙ ((ƛ ((var 1 ∙ var 0) [ shift 0 1 (var 1) / 1 ])) ∙ var 0) -- →⟨⟩ -- ƛ ƛ Z ∙ var 1 ∙ ((ƛ ((var 1 ∙ var 0) [ var 1 / 1 ])) ∙ var 0) -- →⟨⟩ -- ƛ ƛ Z ∙ var 1 ∙ ((ƛ var 1 ∙ var 0) ∙ var 0) -- →⟨ β-ƛ (β-ƛ (β-∙-r β-ƛ-∙)) ⟩ -- ƛ ƛ Z ∙ var 1 ∙ ((var 1 ∙ var 0) [ var 0 / 0 ]) -- →⟨⟩ -- ƛ ƛ (ƛ ƛ var 0) ∙ var 1 ∙ (var 1 ∙ var 0) -- →⟨ β-ƛ (β-ƛ (β-∙-l β-ƛ-∙)) ⟩ -- ƛ ƛ ((ƛ var 0) [ var 1 / 0 ]) ∙ (var 1 ∙ var 0) -- →⟨⟩ -- ƛ ƛ (ƛ ((var 0) [ var 1 / 1 ])) ∙ (var 1 ∙ var 0) -- →⟨⟩ -- ƛ ƛ (ƛ var 0) ∙ (var 1 ∙ var 0) -- →⟨ β-ƛ (β-ƛ β-ƛ-∙) ⟩ -- ƛ ƛ ((var 0) [ var 1 ∙ var 0 / 0 ]) -- →⟨⟩ -- SZ -- ∎
30.852495
184
0.366378
1ade97167ba6feca9f5fa9d8ccc7bb5c6df8c255
690
agda
Agda
test/Succeed/AntiUnifyBug.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/AntiUnifyBug.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/AntiUnifyBug.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Jesper, 2019-07-27. Cut down this example from a latent bug in -- @antiUnify@, which was using @unAbs@ instead of @absBody@. {-# OPTIONS --double-check #-} open import Agda.Primitive postulate I : Set T : ∀ {p} → Set (lsuc p) → Set (lsuc p) t : ∀ {p} → (B : Set (lsuc p)) → (I → I → Set) → B → T B x0 : I R0 : I → I → Set P0 : ∀ p → R0 x0 x0 → Set p d0 : R0 x0 x0 C : ∀ {p} (X : Set) (x : (T (X → Set p))) → Set f : ∀ {p} (R : I → I → Set) (P : R x0 x0 → Set p) → {{_ : C (R x0 x0) (t (R x0 x0 → Set p) R P)}} → (d : R x0 x0) → P d instance iDP : ∀ {p} → C (R0 x0 x0) (t (R0 x0 x0 → Set p) R0 (P0 p)) fails : ∀ p → P0 p d0 fails p = f _ (P0 p) d0
23.793103
65
0.482609
5924a6094352f5b6551dc7129a26903f20b2d6ab
51,702
agda
Agda
src/elab-util.agda
mb64/cedille
d0f69cc6fbfb69d7ef83a436b623d612328eb016
[ "MIT" ]
328
2018-09-14T20:06:09.000Z
2022-03-26T10:33:07.000Z
src/elab-util.agda
mb64/cedille
d0f69cc6fbfb69d7ef83a436b623d612328eb016
[ "MIT" ]
123
2018-09-17T10:53:20.000Z
2022-01-12T03:51:28.000Z
src/elab-util.agda
mb64/cedille
d0f69cc6fbfb69d7ef83a436b623d612328eb016
[ "MIT" ]
34
2018-09-17T11:51:36.000Z
2022-02-20T18:33:16.000Z
import cedille-options module elab-util (options : cedille-options.options) where open import general-util open import cedille-types open import syntax-util open import type-util open import ctxt open import conversion (cedille-options.options.disable-conv options) using (hnf ; unfold-all ; unfold-head ; unfold-head-elab ; conv-type) open import constants open import instances open import subst open import rename open import rewriting open import free-vars open import toplevel-state options {IO} open import datatype-util open import bohm-out rename-validify : string → string rename-validify = 𝕃char-to-string ∘ (h ∘ string-to-𝕃char) where validify-char : char → 𝕃 char validify-char '/' = [ '-' ] validify-char '.' = [ '-' ] validify-char c with (c =char 'a') || (c =char 'z') || (c =char 'A') || (c =char 'Z') || (c =char '\'') || (c =char '-') || (c =char '_') || is-digit c || (c =char qual-local-chr) || (('a' <char c) && (c <char 'z')) || (('A' <char c) && (c <char 'Z')) ...| tt = [ c ] ...| ff = 'Z' :: string-to-𝕃char (ℕ-to-string (toNat c)) ++ [ 'Z' ] h : 𝕃 char → 𝕃 char h [] = [] h (c :: cs) = validify-char c ++ h cs -- Returns a fresh variable name by adding primes and replacing invalid characters fresh-var' : string → (string → 𝔹) → string fresh-var' x f = fresh-h f (rename-validify x) rename-new_from_for_ : ∀ {X : Set} → var → ctxt → (var → X) → X rename-new ignored-var from Γ for f = f $ fresh-var' "x" (ctxt-binds-var Γ) rename-new x from Γ for f = f $ fresh-var' x (ctxt-binds-var Γ) rename_from_for_ : ∀ {X : Set} → var → ctxt → (var → X) → X rename ignored-var from Γ for f = f ignored-var rename x from Γ for f = f $ fresh-var' x (ctxt-binds-var Γ) get-renaming : renamectxt → var → var → var × renamectxt get-renaming ρₓ xₒ x = let x' = fresh-var' x (renamectxt-in-field ρₓ) in x' , renamectxt-insert ρₓ xₒ x' rename_-_from_for_ : ∀ {X : Set} → var → var → renamectxt → (var → renamectxt → X) → X rename xₒ - ignored-var from ρₓ for f = f ignored-var ρₓ rename xₒ - x from ρₓ for f = uncurry f $ get-renaming ρₓ xₒ x rename_-_lookup_for_ : ∀ {X : Set} → var → var → renamectxt → (var → renamectxt → X) → X rename xₒ - x lookup ρₓ for f with renamectxt-lookup ρₓ xₒ ...| nothing = rename xₒ - x from ρₓ for f ...| just x' = f x' ρₓ rename_from_and_for_ : ∀ {X : Set} → var → ctxt → renamectxt → (var → ctxt → renamectxt → X) → X rename ignored-var from Γ and ρ for f = f ignored-var Γ ρ rename x from Γ and ρ for f = let x' = fresh-var' x (λ x → ctxt-binds-var Γ x || renamectxt-in-field ρ x) in f x' (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') module reindexing (Γ : ctxt) (D I mn : var) (isₒ : indices) (psₜ : params) where rnm : Set rnm = qualif × stringset rnm-insert : rnm → var → var → rnm rnm-insert (q , s) xₒ xₙ = trie-insert q xₒ (xₙ , []) , stringset-insert s xₙ rnm-add : rnm → var → var → args → rnm rnm-add (q , s) xₒ xₙ as = trie-insert q xₒ (xₙ , as) , stringset-insert s xₙ rnm-binds : rnm → var → 𝔹 rnm-binds (q , s) x = trie-contains q x || trie-contains s x reindex-fresh-var : rnm → trie indices → var → var reindex-fresh-var ρₓ is ignored-var = ignored-var reindex-fresh-var ρₓ is x = fresh-h (λ x' → ctxt-binds-var Γ x' || trie-contains is x' || rnm-binds ρₓ x') x rename-indices' : rnm → trie indices → indices rename-indices' ρₓ is = foldr {B = renamectxt → rnm → indices} (λ {(Index x atk) f r ρₓ → let x' = reindex-fresh-var ρₓ is x in Index x' (substh Γ r empty-trie -tk atk) :: f (renamectxt-insert r x x') (rnm-insert ρₓ x x')}) (λ r ρₓ → []) isₒ empty-renamectxt ρₓ reindex-t : Set → Set reindex-t X = rnm → trie indices → X → X {-# TERMINATING #-} reindex : ∀ {ed} → reindex-t ⟦ ed ⟧ rc-is : rnm → indices → rnm rc-is = foldr λ {(Index x atk) ρₓ → rnm-insert ρₓ x x} is-index-var : maybe tpkd → 𝔹 is-index-var (just (Tkt (TpVar x))) = x =string I is-index-var _ = ff reindex {TERM} ρₓ is (AppEr t (Var x)) with trie-lookup is x ...| nothing = AppEr (reindex ρₓ is t) $ reindex ρₓ is $ Var x ...| just is' = indices-to-apps is' $ reindex ρₓ is t reindex {TERM} ρₓ is (App t t') = App (reindex ρₓ is t) (reindex ρₓ is t') reindex {TERM} ρₓ is (AppE t tT) = AppE (reindex ρₓ is t) (reindex ρₓ is -tT tT) reindex {TERM} ρₓ is (Beta t t') = Beta (reindex ρₓ is t) (reindex ρₓ is t') reindex {TERM} ρₓ is (Delta b? T t) = Delta (b? >>=c λ t₁ t₂ → just (reindex ρₓ is t₁ , reindex ρₓ is t₂)) (reindex ρₓ is T) (reindex ρₓ is t) reindex {TERM} ρₓ is (Hole pi) = Hole pi reindex {TERM} ρₓ is (IotaPair t₁ t₂ x Tₓ) = let x' = reindex-fresh-var ρₓ is x in IotaPair (reindex ρₓ is t₁) (reindex ρₓ is t₂) x' (reindex (rnm-insert ρₓ x x') is Tₓ) reindex {TERM} ρₓ is (IotaProj t n) = IotaProj (reindex ρₓ is t) n reindex {TERM} ρₓ is (Lam me x tk? t) with is-index-var tk? ...| ff = let x' = reindex-fresh-var ρₓ is x in Lam me x' (reindex ρₓ is -tk_ <$> tk?) (reindex (rnm-insert ρₓ x x') is t) ...| tt with rename-indices' ρₓ is ...| isₙ = indices-to-lams isₙ $ reindex (rc-is ρₓ isₙ) (trie-insert is x isₙ) t reindex {TERM} ρₓ is (LetTm me x T? t t') = let x' = reindex-fresh-var ρₓ is x in LetTm me x' (reindex ρₓ is <$> T?) (reindex ρₓ is t) (reindex (rnm-insert ρₓ x x') is t') reindex {TERM} ρₓ is (LetTp x k T t) = let x' = reindex-fresh-var ρₓ is x in LetTp x' (reindex ρₓ is k) (reindex ρₓ is T) (reindex (rnm-insert ρₓ x x') is t) reindex {TERM} ρₓ is (Phi t₌ t₁ t₂) = Phi (reindex ρₓ is t₌) (reindex ρₓ is t₁) (reindex ρₓ is t₂) reindex {TERM} ρₓ is (Rho t₌ x Tₓ t) = let x' = reindex-fresh-var ρₓ is x in Rho (reindex ρₓ is t) x' (reindex (rnm-insert ρₓ x x') is Tₓ) (reindex ρₓ is t) reindex {TERM} ρₓ is (VarSigma t) = VarSigma (reindex ρₓ is t) reindex {TERM} ρₓ is (Var x) = maybe-else' (trie-lookup (fst ρₓ) x) (Var x) (uncurry (apps-term ∘ Var)) reindex {TERM} ρₓ is (Mu μ t Tₘ? f~ cs) = Var "template-mu-not-allowed" reindex {TERM} ρₓ is (Sigma μ t Tₘ? f~ cs) = Var "template-sigma-not-allowed" reindex {TYPE} ρₓ is (TpAbs me x atk T) with is-index-var (just atk) ...| ff = let x' = reindex-fresh-var ρₓ is x in TpAbs me x' (reindex ρₓ is -tk atk) (reindex (rnm-insert ρₓ x x') is T) ...| tt = let isₙ = rename-indices' ρₓ is in indices-to-alls isₙ $ reindex (rc-is ρₓ isₙ) (trie-insert is x isₙ) T reindex {TYPE} ρₓ is (TpEq t₁ t₂) = TpEq (reindex ρₓ is t₁) (reindex ρₓ is t₂) reindex {TYPE} ρₓ is (TpIota x T T') = let x' = reindex-fresh-var ρₓ is x in TpIota x' (reindex ρₓ is T) (reindex (rnm-insert ρₓ x x') is T') reindex {TYPE} ρₓ is (TpAppTm T (Var x)) with trie-lookup is x ...| nothing = TpAppTm (reindex ρₓ is T) $ reindex ρₓ is $ Var x ...| just is' = indices-to-tpapps is' $ reindex ρₓ is T reindex {TYPE} ρₓ is (TpApp T tT) = TpApp (reindex ρₓ is T) (reindex ρₓ is -tT tT) reindex {TYPE} ρₓ is (TpHole pi) = TpHole pi reindex {TYPE} ρₓ is (TpLam x atk T) with is-index-var (just atk) ...| ff = let x' = reindex-fresh-var ρₓ is x in TpLam x' (reindex ρₓ is -tk atk) (reindex (rnm-insert ρₓ x x') is T) ...| tt = let isₙ = rename-indices' ρₓ is in indices-to-tplams isₙ $ reindex (rc-is ρₓ isₙ) (trie-insert is x isₙ) T reindex {TYPE} ρₓ is (TpVar x) = maybe-else' (trie-lookup (fst ρₓ) x) (TpVar x) (uncurry (apps-type ∘ TpVar)) reindex {KIND} ρₓ is (KdAbs x atk k) with is-index-var (just atk) ...| ff = let x' = reindex-fresh-var ρₓ is x in KdAbs x' (reindex ρₓ is -tk atk) (reindex (rnm-insert ρₓ x x') is k) ...| tt = let isₙ = rename-indices' ρₓ is in indices-to-kind isₙ $ reindex (rc-is ρₓ isₙ) (trie-insert is x isₙ) k reindex {KIND} ρₓ is (KdHole pi) = KdHole pi reindex {KIND} ρₓ is KdStar = KdStar reindex-cmd : rnm → trie indices → cmd → cmd × rnm reindex-cmd ρₓ is (CmdImport (Import p? fp mnᵢ q? as)) = CmdImport (Import p? fp mnᵢ q? (reindex ρₓ is -arg_ <$> as)) , ρₓ reindex-cmd ρₓ is (CmdDefTerm x t) = let x' = D ^ "/" ^ x in CmdDefTerm x' (lam-expand-term psₜ $ reindex ρₓ is t) , rnm-add ρₓ (mn # x) (ctxt.mn Γ # x') (params-to-args psₜ) reindex-cmd ρₓ is (CmdDefType x k T) = let x' = D ^ "/" ^ x in CmdDefType x' (abs-expand-kind psₜ $ reindex ρₓ is k) (lam-expand-type psₜ $ reindex ρₓ is T) , rnm-add ρₓ (mn # x) (ctxt.mn Γ # x') (params-to-args psₜ) reindex-cmd ρₓ is (CmdDefKind x ps k) = CmdDefKind x ps k , ρₓ reindex-cmd ρₓ is (CmdDefData es x ps k cs) = CmdDefData es x ps k cs , ρₓ reindex-cmds : cmds → cmds reindex-cmds cs = foldr {B = rnm → cmds} (λ c rec ρₓ → elim reindex-cmd ρₓ empty-trie c for λ c ρₓ → c :: rec ρₓ) (λ ρₓ → []) cs (empty-trie , empty-stringset) {- we have to erase params to work around a situation like data MyData (x : {β ≃ β}) : ★ = | MyCtr : MyData. erased-problem : ∀ x : {β ≃ β}. MyData x ➔ MyData β{λ x. x} = Λ x. λ d. μ' d { MyCtr ➔ MyCtr β{λ x. x} }. ^----------------------------------------^ ... because the indicated term would elaborate to something like Λ x. λ d. FixInd x ·MyData d ... ^-^ ^ and "x" is bound by an erased lambda, but is an unerased arg to FixInd! (similar situations arise with fix-in/fix-out and with module parameters) -} reindex-file : ctxt → (D I modname : var) → indices → params → cmds → cmds reindex-file Γ D I mn is ps cs = let ps' = params-set-erased Erased (ctxt.ps Γ ++ ps) open reindexing (add-params-to-ctxt ps' Γ) D I mn is ps' in reindex-cmds cs mendler-elab-mu : ctxt → datatype-info → var → term → type → cases → term mendler-elab-mu-pure : ctxt → datatype-info → var → term → cases → term mendler-elab-sigma : ctxt → datatype-info → maybe term → term → type → cases → term mendler-elab-sigma-pure : ctxt → datatype-info → maybe term → term → cases → term -- Maps over expression, elaborating all mu-terms {-# TERMINATING #-} choose-mu : ∀ {ed} → ctxt → renamectxt → ⟦ ed ⟧ → ⟦ ed ⟧ choose-mu {TERM} Γ ρ (App tm tm') = App (choose-mu Γ ρ tm) (choose-mu Γ ρ tm') choose-mu {TERM} Γ ρ (AppE tm tT) = AppE (choose-mu Γ ρ tm) (choose-mu Γ ρ -tT tT) choose-mu {TERM} Γ ρ (Beta tm tm') = Beta (choose-mu Γ ρ tm) (choose-mu Γ ρ tm') choose-mu {TERM} Γ ρ (Delta b? tp tm) = maybe-else' (b? >>=c λ t₁ t₂ → make-contradiction (hnf Γ unfold-all (choose-mu Γ ρ t₁)) (hnf Γ unfold-all (choose-mu Γ ρ t₂))) (Delta nothing (choose-mu Γ ρ tp) (choose-mu Γ ρ tm)) λ f → rename "x" from Γ and ρ for λ x' _ _ → Delta (just (tt-term , ff-term)) (choose-mu Γ ρ tp) (Rho (choose-mu Γ ρ tm) x' (TpEq (App f (Var x')) ff-term) (Beta ff-term id-term)) choose-mu {TERM} Γ ρ (Hole pi) = Hole pi choose-mu {TERM} Γ ρ (IotaPair tm₁ tm₂ x Tₓ) = rename x from Γ and ρ for λ x' Γ' ρ' → IotaPair (choose-mu Γ ρ tm₁) (choose-mu Γ ρ tm₂) x' (choose-mu Γ' ρ' Tₓ) choose-mu {TERM} Γ ρ (IotaProj tm n) = IotaProj (choose-mu Γ ρ tm) n choose-mu {TERM} Γ ρ (Lam e x tk? tm) = rename x from Γ and ρ for λ x' Γ' ρ' → Lam e x' (choose-mu Γ ρ -tk_ <$> tk?) (choose-mu Γ' ρ' tm) choose-mu {TERM} Γ ρ (LetTm e x tp? tm tm') = rename x from Γ and ρ for λ x' Γ' ρ' → LetTm e x' (choose-mu Γ ρ <$> tp?) (choose-mu Γ ρ tm) (choose-mu Γ' ρ' tm') choose-mu {TERM} Γ ρ (LetTp x k T t) = rename x from Γ and ρ for λ x' Γ' ρ' → LetTp x' (choose-mu Γ ρ k) (choose-mu Γ ρ T) (choose-mu Γ' ρ' t) choose-mu {TERM} Γ ρ (Phi tm₌ tm₁ tm₂) = Phi (choose-mu Γ ρ tm₌) (choose-mu Γ ρ tm₁) (choose-mu Γ ρ tm₂) choose-mu {TERM} Γ ρ (Rho tm₌ x Tₓ tm) = rename x from Γ and ρ for λ x' Γ' ρ' → Rho (choose-mu Γ ρ tm₌) x' (choose-mu Γ' ρ' Tₓ) (choose-mu Γ ρ tm) choose-mu {TERM} Γ ρ (VarSigma tm) = VarSigma (choose-mu Γ ρ tm) choose-mu {TERM} Γ ρ (Mu x t tp? t~ ms) = choose-mu Γ ρ (maybe-else' tp? (mendler-elab-mu-pure Γ t~ x t ms) (λ tp → mendler-elab-mu Γ t~ x t tp ms)) choose-mu {TERM} Γ ρ (Sigma mt t tp? t~ ms) = choose-mu Γ ρ (maybe-else' tp? (mendler-elab-sigma-pure Γ t~ mt t ms) (λ tp → mendler-elab-sigma Γ t~ mt t tp ms)) choose-mu {TERM} Γ ρ (Var x) = Var (renamectxt-rep ρ x) choose-mu {TYPE} Γ ρ (TpAbs e x tk tp) = rename x from Γ and ρ for λ x' Γ' ρ' → TpAbs e x' (choose-mu Γ ρ -tk tk) (choose-mu Γ' ρ' tp) choose-mu {TYPE} Γ ρ (TpIota x tp₁ tp₂) = rename x from Γ and ρ for λ x' Γ' ρ' → TpIota x' (choose-mu Γ ρ tp₁) (choose-mu Γ' ρ' tp₂) choose-mu {TYPE} Γ ρ (TpApp tp tT) = TpApp (choose-mu Γ ρ tp) (choose-mu Γ ρ -tT tT) choose-mu {TYPE} Γ ρ (TpEq tmₗ tmᵣ) = TpEq (choose-mu Γ ρ tmₗ) (choose-mu Γ ρ tmᵣ) choose-mu {TYPE} Γ ρ (TpHole pi) = TpHole pi choose-mu {TYPE} Γ ρ (TpLam x tk tp) = rename x from Γ and ρ for λ x' Γ' ρ' → TpLam x' (choose-mu Γ ρ -tk tk) (choose-mu Γ' ρ' tp) choose-mu {TYPE} Γ ρ (TpVar x) = TpVar (renamectxt-rep ρ x) choose-mu {KIND} Γ ρ (KdAbs x tk kd) = rename x from Γ and ρ for λ x' Γ' ρ' → KdAbs x' (choose-mu Γ ρ -tk tk) (choose-mu Γ' ρ' kd) choose-mu {KIND} Γ ρ (KdHole pi) = KdHole pi choose-mu {KIND} Γ ρ KdStar = KdStar -- Adds all Dₓ's encoding defs to the ctxt ctxt-open-encoding-defs : var → ctxt → maybe ctxt ctxt-open-encoding-defs Dₓ Γ = trie-lookup (ctxt.μ~ Γ) Dₓ >>=r λ xs → let tmd = λ t → term-def nothing opacity-open (just t) (TpHole pi-gen) tpd = λ T → type-def nothing opacity-open (just T) (KdHole pi-gen) in record Γ { i = foldr (uncurry λ x tT i → trie-insert i x (either-else' tT (tmd ∘ hnf (record Γ {i = i}) unfold-head) (tpd ∘ hnf (record Γ {i = i}) unfold-head-elab) , missing-location)) (ctxt.i Γ) xs } ctxt-open-all-encoding-defs : ctxt → ctxt ctxt-open-all-encoding-defs Γ = foldr (λ Dₓ Γ → maybe-else Γ id $ ctxt-open-encoding-defs Dₓ Γ) Γ (trie-strings (ctxt.μ~ Γ)) mk-ctr-fmap-t : Set → Set mk-ctr-fmap-t X = ctxt → (var × type × term) → X {-# TERMINATING #-} mk-ctr-fmap-η+ : mk-ctr-fmap-t (term → type → term) mk-ctr-fmap-η- : mk-ctr-fmap-t (term → type → term) mk-ctr-fmap-η? : 𝔹 → mk-ctr-fmap-t (term → type → term) mk-ctr-fmap-η= : 𝔹 → mk-ctr-fmap-t (term → type → term) mk-ctr-fmapₖ-η+ : mk-ctr-fmap-t (type → kind → type) mk-ctr-fmapₖ-η- : mk-ctr-fmap-t (type → kind → type) mk-ctr-fmapₖ-η? : 𝔹 → mk-ctr-fmap-t (type → kind → type) -- TODO: Join fmap+ and fmap- into one function, to handle this for both strictly positive and strictly negative parameter occurrences in other datatypes mk-ctr-fmap-η= f Γ x @ (Aₓ , Bₓ , castₓ) body T with decompose-ctr-type Γ T ...| TpVar x'' , as , rs = maybe-else' (data-lookup (add-params-to-ctxt as Γ) x'' rs) ((if f then mk-ctr-fmap-η+ else mk-ctr-fmap-η-) Γ x body T) λ where d @ (mk-data-info X _ asₚ asᵢ ps kᵢ k cs csₚₛ eds gds) → params-to-lams (if f then as else (substh-params Γ empty-renamectxt (trie-single Aₓ (, Bₓ)) as)) $ let Γ' = add-params-to-ctxt as Γ recₓ = fresh-var Γ' "fmap" Γ' = ctxt-var-decl recₓ Γ' is = kind-to-indices Γ k uₓ = fresh-var (add-indices-to-ctxt is Γ') "u" vₓ = fresh-var (add-indices-to-ctxt is Γ') "v" Γ'' = ctxt-var-decl vₓ $ ctxt-var-decl uₓ $ add-indices-to-ctxt is Γ' in LetTm tt uₓ nothing (Mu recₓ (foldl (λ {(Param me x'' (Tkt T)) body → (if me then AppEr body else App body) $ mk-ctr-fmap-η? (~ f) Γ' x (Var x'') T; (Param _ x'' (Tkk k)) body → AppTp body $ mk-ctr-fmapₖ-η? (~ f) Γ' x (TpVar x'') k}) body as) (just (indices-to-tplams is $ TpLam uₓ (Tkt $ indices-to-tpapps is $ recompose-tpapps (args-to-tmtps asₚ) (TpVar X)) $ TpIota vₓ (subst Γ'' Bₓ Aₓ (recompose-tpapps (args-to-tmtps asₚ) (TpVar X))) (TpEq (Var vₓ) (Var uₓ)))) d $ flip map (map-snd (rename-var Γ'' (mu-Type/ recₓ) X) <$> inst-ctrs Γ'' ps asₚ cs) $ uncurry λ cₓ T → case decompose-ctr-type Γ T of λ where (Tₕ , as , rs) → Case cₓ (map (λ {(Param me x tk) → CaseArg me x (just tk)}) as) (let Xₚₛ = recompose-tpapps (args-to-tmtps asₚ) (TpVar X) cg = mu-Type/ recₓ , Xₚₛ , (indices-to-lams is $ Lam ff vₓ (just (Tkt (indices-to-tpapps is (TpVar (mu-Type/ recₓ))))) (Phi (IotaProj (App (indices-to-apps is (Var recₓ)) (Var vₓ)) ι2) (IotaProj (App (indices-to-apps is (Var recₓ)) (Var vₓ)) ι1) (Var vₓ))) t = foldl (λ {(Param me x'' (Tkt T)) body → (if me then AppEr body else App body) $ mk-ctr-fmap-η? f Γ' x (mk-ctr-fmap-η? ff Γ' cg (Var x'') T) (subst Γ'' Xₚₛ (mu-Type/ recₓ) T); (Param _ x'' (Tkk k)) body → AppTp body $ mk-ctr-fmapₖ-η? f Γ' x (mk-ctr-fmapₖ-η? ff Γ' cg (TpVar x'') k) (subst Γ'' Xₚₛ (mu-Type/ recₓ) k)}) (subst (add-params-to-ctxt as Γ) Bₓ Aₓ (recompose-apps asₚ (Var cₓ))) as tₑ = erase t in IotaPair t (Beta tₑ tₑ) vₓ (TpEq (Var vₓ) tₑ)) rs) (Phi (IotaProj (Var uₓ) ι2) (IotaProj (Var uₓ) ι1) (erase (params-to-apps as body))) -- maybe-else' (ctxt-open-encoding-defs x'' Γ) (f Γ x body T) -- λ Γ → f Γ x body (hnf-ctr Γ (fst x) T) ...| _ = (if f then mk-ctr-fmap-η+ else mk-ctr-fmap-η-) Γ x body T mk-ctr-fmap-η? f Γ x body T with is-free-in (fst x) T ...| tt = mk-ctr-fmap-η= f Γ x body T ...| ff = body mk-ctr-fmapₖ-η? f Γ x body k with is-free-in (fst x) k ...| tt = (if f then mk-ctr-fmapₖ-η+ else mk-ctr-fmapₖ-η-) Γ x body k ...| ff = body mk-ctr-fmap-η+ Γ x @ (Aₓ , Bₓ , _) body T with decompose-ctr-type Γ T ...| Tₕ , as , _ = params-to-lams as $ let Γ' = add-params-to-ctxt as Γ tₓ' = case Tₕ of λ where (TpIota x'' T₁ T₂) body → let t₁ = mk-ctr-fmap-η+ Γ' x (IotaProj body ι1) T₁ t₂ = mk-ctr-fmap-η+ Γ' x (IotaProj body ι2) (subst Γ' t₁ x'' T₂) in IotaPair t₁ t₂ x'' T₂ _ body → body in tₓ' $ foldl (λ {(Param me x'' (Tkt T)) body → (if me then AppEr body else App body) $ mk-ctr-fmap-η? ff Γ' x (Var x'') T; (Param _ x'' (Tkk k)) body → AppTp body $ mk-ctr-fmapₖ-η? ff Γ' x (TpVar x'') k}) body as mk-ctr-fmap-η- Γ xₒ @ (Aₓ , Bₓ , castₓ) body T with decompose-ctr-type Γ T ...| TpVar x'' , as , rs = params-to-lams (substh-params Γ empty-renamectxt (trie-single Aₓ (, Bₓ)) as) $ let Γ' = add-params-to-ctxt as Γ in if x'' =string Aₓ then App (recompose-apps (tmtps-to-args Erased rs) castₓ) else id $ foldl (λ {(Param me x'' (Tkt T)) body → (if me then AppEr body else App body) $ mk-ctr-fmap-η? tt Γ' xₒ (Var x'') T; (Param me x'' (Tkk k)) body → AppTp body $ mk-ctr-fmapₖ-η? tt Γ' xₒ (TpVar x'') k}) body as ...| TpIota x'' T₁ T₂ , as , [] = let Γ' = add-params-to-ctxt as Γ tₒ = foldl (λ where (Param me x'' (Tkt T)) body → (if me then AppEr body else App body) $ mk-ctr-fmap-η? tt Γ' xₒ (Var x'') T (Param me x'' (Tkk k)) body → AppTp body $ mk-ctr-fmapₖ-η? tt Γ' xₒ (TpVar x'') k ) body as t₁ = mk-ctr-fmap-η? ff Γ' xₒ (IotaProj tₒ ι1) T₁ t₂ = mk-ctr-fmap-η? ff Γ' xₒ (IotaProj tₒ ι2) ([ Γ' - t₁ / x'' ] T₂) in params-to-lams (substh-params Γ empty-renamectxt (trie-single Aₓ (, Bₓ)) as) $ IotaPair t₁ t₂ x'' (subst (ctxt-var-decl x'' Γ') Bₓ Aₓ T₂) ...| Tₕ , as , rs = body mk-ctr-fmapₖ-η+ Γ xₒ @ (Aₓ , Bₓ , castₓ) body k = let is = kind-to-indices Γ k in indices-to-tplams is $ let Γ' = add-indices-to-ctxt is Γ in foldl (λ {(Index x'' (Tkt T)) → flip TpAppTm $ mk-ctr-fmap-η? ff Γ' xₒ (Var x'') T; (Index x'' (Tkk k)) → flip TpAppTp $ mk-ctr-fmapₖ-η? ff Γ' xₒ (TpVar x'') k}) body is mk-ctr-fmapₖ-η- Γ xₒ @ (Aₓ , Bₓ , castₓ) body k with kind-to-indices Γ k ...| is = indices-to-tplams is $ let Γ' = add-indices-to-ctxt is Γ in foldl (λ {(Index x'' (Tkt T)) → flip TpAppTm $ mk-ctr-fmap-η? tt Γ' xₒ (Var x'') T; (Index x'' (Tkk k)) → flip TpApp $ Ttp $ mk-ctr-fmapₖ-η? tt Γ' xₒ (TpVar x'') k}) body is mk-def : term → term mk-def t = Phi (Beta t id-term) t (erase t) top-type : type top-type = TpEq id-term id-term -- Index telescoping parameter pattern IdxTele Iₓ = Param tt Iₓ (Tkk KdStar) :: [] pattern EncArgIdx I = ArgTp I pattern EncArgCast Cast = ArgTp Cast pattern EncArgCastIn cast-in = Arg cast-in pattern EncArgCastOut cast-out = Arg cast-out pattern EncArgCastIs cast-is = Arg cast-is pattern EncArgFunctor Functor = ArgTp Functor pattern EncArgFunctorIn functor-in = Arg functor-in pattern EncArgFunctorOut functor-out = Arg functor-out pattern EncArgFix Fix = ArgTp Fix pattern EncArgFixIn fix-in = Arg fix-in pattern EncArgFixOut fix-out = Arg fix-out pattern EncArgLambek1 lambek1 = Arg lambek1 pattern EncArgLambek2 lambek2 = Arg lambek2 pattern EncArgFixInd fix-ind = Arg fix-ind pattern EncArgs I Cast cast-in cast-out cast-is Functor functor-in functor-out Fix fix-in fix-out lambek1 lambek2 fix-ind = EncArgIdx I :: EncArgCast Cast :: EncArgCastIn cast-in :: EncArgCastOut cast-out :: EncArgCastIs cast-is :: EncArgFunctor Functor :: EncArgFunctorIn functor-in :: EncArgFunctorOut functor-out :: EncArgFix Fix :: EncArgFixIn fix-in :: EncArgFixOut fix-out :: EncArgLambek1 lambek1 :: EncArgLambek2 lambek2 :: EncArgFixInd fix-ind :: [] pattern EncImp fp I Cast cast-in cast-out cast-is Functor functor-in functor-out Fix fix-in fix-out lambek1 lambek2 fix-ind = CmdImport (Import _ fp _ _ (EncArgs I Cast cast-in cast-out cast-is Functor functor-in functor-out Fix fix-in fix-out lambek1 lambek2 fix-ind)) encode-datatype : ctxt → encoding-defs → datatype → encoding-defs encode-datatype Γ eds @ (mk-enc-defs ecs _ Cast cast-in cast-out cast-is Functor functor-in functor-out Fix fix-in fix-out lambek1 lambek2 fix-ind) (Data Dₓ' ps is cs) = record eds {gcs = [: TypeF-cmd ⌟ IndF-cmd ⌟ fmap-cmd ⌟ D-cmd ⌟ Is-cmd ⌟ is-cmd ⌟ to-cmd ⌟ map ctr-cmd cs~ :] } where Γₚₛ = ctxt.ps Γ psₜ = params-set-erased Erased (Γₚₛ ++ ps) app-ps = params-to-apps psₜ ∘ Var tpapp-ps = params-to-tpapps psₜ ∘ TpVar -- Cast = tpapp-ps Castₓ -- cast-in = app-ps cast-inₓ -- cast-out = app-ps cast-outₓ -- cast-is = app-ps cast-isₓ -- Functor = tpapp-ps Functorₓ -- functor-in = app-ps functor-inₓ -- functor-out = app-ps functor-outₓ -- Fix = tpapp-ps Fixₓ -- fix-in = app-ps fix-inₓ -- fix-out = app-ps fix-outₓ -- lambek1 = app-ps lambek1ₓ -- lambek2 = app-ps lambek2ₓ -- fix-ind = app-ps fix-indₓ mn = ctxt.mn Γ Γ' = add-params-to-ctxt psₜ Γ Dₓ = mn # Dₓ' cs~ = map-snd (subst Γ' (params-to-tpapps psₜ (TpVar Dₓ)) Dₓ) <$> cs cs' = map-snd (rename-var Γ' Dₓ Dₓ') <$> cs topᵢ = indices-to-kind is $ KdAbs ignored-var (Tkt top-type) KdStar mk-ctr-eterm : params → ctr → term mk-ctr-eterm ps (Ctr x _) = let xs = erase-params ps in Beta id-term $ foldr mlam (foldl (flip App ∘ Var) (Var x) xs) (map fst cs) mk-ctr-etype : ctxt → ctr → var → type mk-ctr-etype Γ (Ctr x T) X with decompose-ctr-type (ctxt-var-decl X Γ) T ...| Tₕ , as , rs = params-to-alls as $ let rs' = if length rs =ℕ length psₜ + length is then drop (length psₜ) rs else rs in TpAppTm (recompose-tpapps rs' $ TpVar X) $ mk-ctr-eterm as (Ctr x T) {- for the datatype data Dₓ (p₁ : P₁) (p₂ : P₂)... : Π i₁ : I₁. Π i₂ : I₂. ... ★ = | c₁ : Π/∀ a₁ : A₁. Π/∀ a₂ : A₂. ... (Dₓ r₁ r₂...) | c₂ : ... . produce the functor type ∀ X : Π i₁ : I₁. Π i₂ : I₂. ... Π _ : Top. ★. (Π/∀ a₁ : A₁. Π/∀ a₂ : A₂. ... (X r₁ r₂ β<λ x. x>{λ c₁. λ c₂. ... |c₁ a₁ a₂...|})) → ... → X i₁ i₂... ιₓ -} mk-ftype2 : ctxt → (asᵢ : 𝕃 tmtp) → (ιₓ : var) → ctrs → type mk-ftype2 Γ asᵢ ιₓ cs = let Γ = ctxt-var-decl ιₓ Γ in rename "X" from Γ for λ X → TpAbs tt X (Tkk topᵢ) $ foldr (λ c → TpAbs ff ignored-var $ Tkt $ mk-ctr-etype Γ c X) (TpAppTm (recompose-tpapps asᵢ $ TpVar X) $ Var ιₓ) cs mk-ctr-fterm : ctxt → ctr → ctrs → (as : params) → (rs : 𝕃 tmtp) → term mk-ctr-fterm Γ' (Ctr x' T) cs as rs = let Γ' = add-params-to-ctxt as Γ' in rename "X" from Γ' for λ Xₓ → rename "x" from Γ' for λ xₓ → let tkₓ = just (Tkk (indices-to-kind is (KdAbs ignored-var (Tkt top-type) KdStar))) fₜ = λ x T → Lam ff x (just (Tkt (mk-ctr-etype (ctxt-var-decl Xₓ Γ') (Ctr x T) Xₓ))) t = Lam tt Xₓ tkₓ (foldr (uncurry fₜ) (params-to-apps as (Var x')) cs) in IotaPair (Beta id-term (erase t)) t xₓ (mk-ftype2 (ctxt-var-decl xₓ Γ') rs xₓ cs) mk-ctr-ftype : ctxt → ctr → ctrs → var → type mk-ctr-ftype Γ (Ctr x T) cs X with decompose-ctr-type (ctxt-var-decl X Γ) T ...| Tₕ , as , rs = params-to-alls as $ TpAppTm (recompose-tpapps rs $ TpVar X) $ mk-ctr-fterm (ctxt-var-decl X Γ) (Ctr x T) cs as rs Is/D = tpapp-ps (data-Is/ Dₓ) is/D = app-ps (data-is/ Dₓ) to/D = app-ps (data-to/ Dₓ) TypeF/D = tpapp-ps (data-TypeF/ Dₓ) IndF/D = tpapp-ps (data-IndF/ Dₓ) fmap/D = app-ps (data-fmap/ Dₓ) D = tpapp-ps Dₓ kᵢ = indices-to-kind is KdStar tkᵢ = Tkk kᵢ jtkᵢ = just tkᵢ decl-Γ : ctxt → 𝕃 var → ctxt decl-Γ = foldr ctxt-var-decl {- λ p₁ : P₁. λ p₂ : P₂. ... λ Dₓ : Π i₁ : I₁. Π i₂ : I₂. ... ★. λ i₁ : I₁. λ i₂ : I₂. ... ι ιₓ : Top. mk-ftype2 (ctxt-var-decl ιₓ Γ') ιₓ cs. -} TypeF-cmd = CmdDefType (data-TypeF/ Dₓ') (params-to-kind psₜ $ KdAbs ignored-var tkᵢ kᵢ) $ let Γ' = add-indices-to-ctxt is Γ' in rename "x" from Γ' for λ ιₓ → params-to-tplams psₜ $ TpLam Dₓ' (Tkk $ indices-to-kind is KdStar) $ indices-to-tplams is $ TpIota ιₓ top-type $ mk-ftype2 (ctxt-var-decl ιₓ Γ') (indices-to-tmtps is) ιₓ cs' fmap-cmd = CmdDefTerm (data-fmap/ Dₓ') $ let Γ' = add-indices-to-ctxt is Γ' in rename "A" from Γ' for λ Aₓ → rename "B" from Γ' for λ Bₓ → rename "c" from Γ' for λ cₓ → rename "x" from Γ' for λ xₓ → rename "X" from Γ' for λ Xₓ → params-to-lams psₜ $ let cs-a = map-snd (rename-var Γ' Dₓ Aₓ) <$> cs cs-b = map-snd (rename-var Γ' Dₓ Bₓ) <$> cs in AppEr (AppTp functor-in TypeF/D) $ Lam tt Aₓ jtkᵢ $ Lam tt Bₓ jtkᵢ $ Lam tt cₓ (just (Tkt (TpAppTp (TpAppTp Cast (TpVar Aₓ)) (TpVar Bₓ)))) $ AppEr (AppEr (AppTp (AppTp cast-in (TpAppTp TypeF/D (TpVar Aₓ))) (TpAppTp TypeF/D (TpVar Bₓ))) (indices-to-lams is $ Lam ff xₓ (just (Tkt (indices-to-tpapps is (TpAppTp TypeF/D (TpVar Aₓ))))) $ IotaPair (IotaProj (Var xₓ) ι1) (Lam tt Xₓ (just (Tkk topᵢ)) $ flip (foldr $ uncurry λ x T → Lam ff x (just (Tkt (mk-ctr-etype (decl-Γ Γ' [: Aₓ ⌟ Bₓ ⌟ cₓ ⌟ xₓ ⌟ Xₓ :]) (x , T) Xₓ)))) cs-b $ foldl (flip App ∘ uncurry (λ bodyₓ T → mk-ctr-fmap-η? tt (decl-Γ Γ' [: Aₓ ⌟ Bₓ ⌟ cₓ ⌟ xₓ ⌟ Xₓ :]) (Aₓ , TpVar Bₓ , AppEr (AppTp (AppTp cast-out (TpVar Aₓ)) (TpVar Bₓ)) (Var cₓ)) (Var bodyₓ) (hnf-ctr (decl-Γ Γ' [: Aₓ ⌟ Bₓ ⌟ cₓ ⌟ xₓ ⌟ Xₓ :]) Aₓ T))) (AppTp (IotaProj (Var xₓ) ι2) (TpVar Xₓ)) cs-a) xₓ (mk-ftype2 (decl-Γ Γ' [: Aₓ ⌟ Bₓ ⌟ cₓ ⌟ xₓ :]) (indices-to-tmtps is) xₓ cs-b))) (Beta id-term id-term) IndF-cmd = CmdDefTerm (data-IndF/ Dₓ') $ params-to-lams psₜ $ Lam tt Dₓ' jtkᵢ $ indices-to-lams is $ let Γ' = add-indices-to-ctxt is Γ' in rename "x" from Γ' for λ xₓ → rename "y" from Γ' for λ yₓ → rename "e" from Γ' for λ eₓ → rename "X" from Γ' for λ Xₓ → let T = indices-to-tpapps is (TpAppTp TypeF/D (TpVar Dₓ')) Γ' = ctxt-var-decl xₓ (ctxt-var-decl Xₓ Γ') in Lam ff xₓ (just $ Tkt T) $ Lam tt Xₓ (just $ Tkk $ indices-to-kind is $ KdAbs ignored-var (Tkt T) KdStar) $ flip (foldr λ c → Lam ff (fst c) (just (Tkt (mk-ctr-ftype Γ' c cs' Xₓ)))) cs' $ flip AppEr (Beta (Var xₓ) id-term) $ flip AppEr (Var xₓ) $ let Γ' = decl-Γ Γ' [: xₓ ⌟ yₓ ⌟ eₓ ⌟ Xₓ :] in flip (foldl $ uncurry λ x' T' → case decompose-ctr-type Γ' T' of λ where (Tₕ , as , rs) → flip App $ params-to-lams as $ Lam tt yₓ (just (Tkt (recompose-tpapps rs (TpAppTp TypeF/D Tₕ)))) $ Lam tt eₓ (just (Tkt (TpEq (Var yₓ) (mk-ctr-eterm as (Ctr x' T'))))) $ params-to-apps as $ Var x') cs' $ AppTp (IotaProj (Var xₓ) ι2) $ indices-to-tplams is $ TpLam xₓ (Tkt top-type) $ TpAbs tt yₓ (Tkt T) $ TpAbs tt eₓ (Tkt $ TpEq (Var yₓ) (Var xₓ)) $ TpAppTm (indices-to-tpapps is $ TpVar Xₓ) $ Phi (Var eₓ) (Var yₓ) (Var xₓ) D-cmd = CmdDefType Dₓ' (params-to-kind (Γₚₛ ++ ps) kᵢ) $ params-to-tplams (Γₚₛ ++ ps) $ TpAppTm (TpApp Fix (Ttp TypeF/D)) fmap/D is-projn : ctxt → type → type → term → type is-projn Γ Tₘ Tₙ t = rename "i" from Γ for λ iₓ → TpIota iₓ (indices-to-alls is (TpAbs ff ignored-var (Tkt (indices-to-tpapps is Tₘ)) (indices-to-tpapps is Tₙ))) (TpEq (Var iₓ) t) is-proj1 = λ Γ T → is-projn Γ T D id-term is-proj2 = λ Γ T → is-projn Γ T (TpAppTp TypeF/D T) fix-out is-proj' : ctxt → var → term → term is-proj' Γ Xₓ mu = rename "c" from Γ for λ cₓ → rename "o" from Γ for λ oₓ → let t = App (AppTp mu (is-proj1 (decl-Γ Γ (cₓ :: oₓ :: [])) (TpVar Xₓ))) (Lam ff cₓ (just (Tkt (is-proj1 (decl-Γ Γ (cₓ :: oₓ :: [])) (TpVar Xₓ)))) (Lam ff oₓ (just (Tkt (is-proj2 (decl-Γ Γ (cₓ :: oₓ :: [])) (TpVar Xₓ)))) (Var cₓ))) in Phi (IotaProj t ι2) (IotaProj t ι1) id-term Is-cmd = CmdDefType (data-Is/ Dₓ') (params-to-kind (Γₚₛ ++ ps) $ KdAbs ignored-var tkᵢ KdStar) $ params-to-tplams (Γₚₛ ++ ps) $ rename "X" from Γ' for λ Xₓ → rename "Y" from Γ' for λ Yₓ → TpLam Xₓ tkᵢ $ TpAbs tt Yₓ (Tkk KdStar) $ TpAbs ff ignored-var (Tkt (TpAbs ff ignored-var (Tkt (is-proj1 (decl-Γ Γ' (Xₓ :: Yₓ :: [])) (TpVar Xₓ))) $ TpAbs ff ignored-var (Tkt (is-proj2 (decl-Γ Γ' (Xₓ :: Yₓ :: [])) (TpVar Xₓ))) $ TpVar Yₓ)) (TpVar Yₓ) is-cmd = CmdDefTerm (data-is/ Dₓ') $ params-to-lams (Γₚₛ ++ ps) $ rename "Y" from Γ' for λ Yₓ → rename "f" from Γ' for λ fₓ → rename "x" from Γ' for λ xₓ → let pair = λ t → IotaPair t (Beta (erase t) (erase t)) xₓ (TpEq (Var xₓ) (erase t)) in Lam tt Yₓ (just (Tkk KdStar)) $ Lam ff fₓ (just (Tkt (TpAbs ff ignored-var (Tkt (is-proj1 (ctxt-var-decl Yₓ Γ') D)) $ TpAbs ff ignored-var (Tkt (is-proj2 (ctxt-var-decl Yₓ Γ') D)) $ TpVar Yₓ))) $ App (App (Var fₓ) (pair (indices-to-lams is (Lam ff xₓ (just (Tkt (indices-to-tpapps is D))) (Var xₓ))))) (pair (AppEr (AppTp fix-out TypeF/D) fmap/D)) to-cmd = CmdDefTerm (data-to/ Dₓ') $ rename "Y" from Γ' for λ Yₓ → rename "mu" from Γ' for λ muₓ → params-to-lams (Γₚₛ ++ ps) $ Lam tt Yₓ jtkᵢ $ Lam tt muₓ (just (Tkt (TpApp Is/D (Ttp (TpVar Yₓ))))) $ is-proj' (decl-Γ Γ' (Yₓ :: muₓ :: [])) Yₓ (Var muₓ) ctr-cmd : ctr → cmd ctr-cmd (Ctr x' T) with subst Γ' D Dₓ' T ...| T' with decompose-ctr-type Γ' T' ...| Tₕ , as , rs = CmdDefTerm x' $ let Γ' = add-params-to-ctxt as Γ' rs = drop (length (Γₚₛ ++ ps)) rs in params-to-lams (Γₚₛ ++ ps) $ params-to-lams as $ App (recompose-apps (tmtps-to-args tt rs) $ AppEr (AppTp fix-in TypeF/D) fmap/D) $ mk-ctr-fterm Γ' (Ctr x' T) cs~ as rs init-encoding : ctxt → file → datatype → string ⊎ encoding-defs init-encoding Γ (Module mn (IdxTele Iₓ) mcs) d @ (Data Dₓ ps is cs) = case reverse (reindex-file Γ Dₓ Iₓ mn is ps mcs) of λ where (EncImp fp Iₓ' Cast cast-in cast-out cast-is Functor functor-in functor-out Fix fix-in fix-out lambek1 lambek2 fix-ind :: mcs) → err⊎-guard (~ conv-type Γ Iₓ' (TpVar Iₓ)) "Index telescoping argument to last import differs from the parameter" >> return (encode-datatype Γ (mk-enc-defs (reverse mcs) [] Cast cast-in cast-out cast-is Functor functor-in functor-out Fix fix-in fix-out lambek1 lambek2 fix-ind) d) (CmdImport (Import p? fn mn q? as) :: mcsᵣ) → inj₁ $ "Expected 14 import args, but got" ^ rope-to-string (strRun Γ (args-to-string as)) mcsᵣ → inj₁ "Datatype encodings must end with import ~/.cedille/Template.ced" where open import to-string options init-encoding Γ (Module mn mps mcs) (Data Dₓ ps is cs) = inj₁ $ "Datatype encodings must have a single module parameter of kind star, " ^ "for index telescoping" mendler-elab-mu-pure Γ (mk-data-info _ _ _ _ _ _ _ _ _ eds ecs) xₒ t ms = let fix-ind = erase (encoding-defs.fix-ind eds) msf = λ t → foldl (λ {(Case mₓ cas mₜ asₜₚ) t → App t (case-args-to-lams cas mₜ)}) t ms in rename xₒ from Γ for λ x → rename "y" from Γ for λ yₓ → let subst-msf = subst-renamectxt Γ (renamectxt-insert* empty-renamectxt ((xₒ , x) :: (yₓ , yₓ) :: [])) ∘ msf in App (App fix-ind t) (Lam ff x nothing $ Lam ff yₓ nothing $ subst-msf (Var yₓ)) mendler-elab-mu Γ (mk-data-info X Xₒ asₚ asᵢ ps kᵢ k cs csₚₛ (mk-enc-defs ecs gcs Cast cast-in cast-out cast-is Functor functor-in functor-out Fix fix-in fix-out lambek1 lambek2 fix-ind) (mk-encd-defs Is/Dₓ is/Dₓ to/Dₓ TypeF/Dₓ indF/Dₓ fmap/Dₓ)) x t Tₘ ms = let is = kind-to-indices Γ k Γᵢₛ = add-indices-to-ctxt is $ add-params-to-ctxt ps $ add-params-to-ctxt (ctxt.ps Γ) Γ is/X? = unless (X =string Xₒ) (Var (mu-isType/' Xₒ)) app-ps = recompose-apps (args-set-erased tt asₚ) ∘ Var tpapp-ps = recompose-tpapps (args-to-tmtps asₚ) ∘ TpVar app-ps' = inst-term Γ ps asₚ tpapp-ps' = inst-type Γ ps asₚ fmap/D = app-ps fmap/Dₓ TypeF/D = tpapp-ps TypeF/Dₓ indF/D = app-ps indF/Dₓ Cast = tpapp-ps' Cast cast-out = app-ps' cast-out Functor = tpapp-ps' Functor functor-in = app-ps' functor-in functor-out = app-ps' functor-out Fix = tpapp-ps' Fix fix-in = app-ps' fix-in fix-out = app-ps' fix-out lambek1 = app-ps' lambek1 fix-ind = app-ps' fix-ind Xₜₚ = recompose-tpapps (args-to-tmtps asₚ) (TpVar X) Xₒₜₚ = if Xₒ =string X then Xₜₚ else TpVar Xₒ toₓ = rename "to" from Γᵢₛ for id outₓ = rename "out" from Γᵢₛ for id to-tp = λ R → TpAppTp (TpAppTp Cast R) Xₜₚ out-tp = λ R → TpIota outₓ (indices-to-alls is (TpAbs ff ignored-var (Tkt (indices-to-tpapps is R)) (indices-to-tpapps is (TpAppTp TypeF/D R)))) (TpEq (Var outₓ) fix-out) ms' : trie term ms' = foldr (λ c σ → case c of λ {(Case x cas t asₜₚ) → let Γ' = add-caseArgs-to-ctxt cas Γᵢₛ in trie-insert σ x $ rename "y" from Γ' for λ yₓ → rename "e" from Γ' for λ eₓ → rename "x" from Γ' for λ xₓ → case-args-to-lams cas $ Lam tt yₓ (just (Tkt (recompose-tpapps (drop (length asₚ) asₜₚ) Xₜₚ))) $ Lam tt eₓ (just (Tkt (TpEq (App fix-in (foldr (uncurry λ x T → Lam ff (snd (split-var x)) nothing) (foldl (λ ca t → case ca of λ {(CaseArg ff x _) → App t (Var (snd (split-var x))); _ → t}) (Var (snd (split-var x))) cas) cs)) (Var yₓ)))) $ Rho (VarSigma (Var eₓ)) xₓ (TpAppTm (recompose-tpapps (drop (length asₚ) asₜₚ) Tₘ) (Var xₓ)) t}) empty-trie ms in-fix = λ is/X? T asᵢ t → (App (recompose-apps asᵢ (AppEr (AppTp fix-in TypeF/D) fmap/D)) (maybe-else' is/X? t λ is/X → App (recompose-apps asᵢ (AppEr (AppTp (AppTp cast-out (TpAppTp TypeF/D T)) (TpAppTp TypeF/D Xₜₚ)) (AppEr (AppTp (AppTp fmap/D T) Xₜₚ) (App (AppTp is/X (to-tp T)) (Lam ff "to" (just (Tkt (to-tp T))) $ Lam ff "out" (just (Tkt (out-tp T))) $ Var "to"))))) t)) app-lambek = λ is/X? t T asᵢ body → AppEr (AppEr body (in-fix is/X? T asᵢ t)) (App (recompose-apps asᵢ (AppEr (AppTp lambek1 TypeF/D) fmap/D)) (in-fix is/X? T asᵢ t)) in rename "x" from Γᵢₛ for λ xₓ → rename "y" from Γᵢₛ for λ yₓ → rename "y'" from ctxt-var-decl yₓ Γᵢₛ for λ y'ₓ → rename "z" from Γᵢₛ for λ zₓ → rename "e" from Γᵢₛ for λ eₓ → rename "X" from Γᵢₛ for λ Xₓ → maybe-else (Var "1") id $ foldl {B = maybe (term → term)} -- Agda hangs without this implicit argument...? (uncurry λ x Tₓ rec → rec >>= λ rec → trie-lookup ms' x >>= λ t → just λ tₕ → App (rec tₕ) t) (just λ t → t) cs >>= λ msf → maybe-else (just $ Var "2") just $ just (let Rₓ = mu-Type/ x isRₓ = mu-isType/ x fcₜ = AppEr (AppTp (AppTp cast-out (TpAppTp TypeF/D (TpVar Rₓ))) (TpAppTp TypeF/D Xₜₚ)) (AppEr (AppTp (AppTp fmap/D (TpVar Rₓ)) Xₜₚ) (Var toₓ)) Tₘₐ = TpLam Rₓ (Tkk (indices-to-kind is KdStar)) Tₘ Tₘ-fmap = rename "A" from Γᵢₛ for λ Aₓ → rename "B" from Γᵢₛ for λ Bₓ → rename "c" from Γᵢₛ for λ cₓ → rename "d" from Γᵢₛ for λ dₓ → rename "q" from Γᵢₛ for λ qₓ → let Γ' = foldr ctxt-var-decl Γ (Aₓ :: Bₓ :: cₓ :: dₓ :: qₓ :: []) Tₘₐ' = TpAppTm (indices-to-tpapps is (TpAppTp Tₘₐ (TpVar Aₓ))) (Var dₓ) Tₘₐₕ = hnf-ctr Γ' Aₓ Tₘₐ' in Lam tt Aₓ (just (Tkk k)) $ Lam tt Bₓ (just (Tkk k)) $ Lam tt cₓ (just (Tkt (TpAppTp (TpAppTp Cast (TpVar Aₓ)) (TpVar Bₓ)))) $ indices-to-lams is $ Lam tt dₓ (just (Tkt (indices-to-tpapps is Xₜₚ))) $ IotaPair (Lam ff qₓ (just (Tkt Tₘₐ')) (mk-ctr-fmap-η? ff Γ' (Aₓ , TpVar Bₓ , AppEr (AppTp (AppTp cast-out (TpVar Aₓ)) (TpVar Bₓ)) (Var cₓ)) (Var qₓ) Tₘₐₕ)) (Beta id-term id-term) qₓ (TpEq (Var qₓ) id-term) in App (AppEr (AppTp (App (recompose-apps (tmtps-to-args tt asᵢ) (AppEr (AppTp fix-ind TypeF/D) fmap/D)) t) Tₘₐ) Tₘ-fmap) (Lam tt Rₓ (just (Tkk k)) $ Lam tt toₓ (just (Tkt (to-tp (TpVar Rₓ)))) $ Lam tt outₓ (just (Tkt (out-tp (TpVar Rₓ)))) $ Lam ff x (just (Tkt (indices-to-alls is (TpAbs ff xₓ (Tkt (indices-to-tpapps is (TpVar Rₓ))) (TpAppTm (indices-to-tpapps is Tₘ) (App (indices-to-apps is (AppEr (AppTp (AppTp cast-out (TpVar Rₓ)) Xₜₚ) (Var toₓ))) (Var xₓ))))))) $ indices-to-lams is $ Lam ff yₓ (just (Tkt (indices-to-tpapps is (TpAppTp TypeF/D (TpVar Rₓ))))) $ LetTm tt isRₓ nothing (Lam tt Xₓ (just (Tkk KdStar)) $ Lam ff xₓ (just (Tkt (TpAbs ff ignored-var (Tkt (to-tp (TpVar Rₓ))) (TpAbs ff ignored-var (Tkt (out-tp (TpVar Rₓ))) (TpVar Xₓ))))) $ App (App (Var xₓ) (Var toₓ)) (Var outₓ)) (app-lambek (just $ Var isRₓ) (Var yₓ) (TpVar Rₓ) (indices-to-args is) $ msf (AppTp (Phi (Beta (Var yₓ) id-term) (App (indices-to-apps is (AppTp indF/D (TpVar Rₓ))) (Var yₓ)) (Var yₓ)) (indices-to-tplams is $ TpLam yₓ (Tkt $ indices-to-tpapps is (TpAppTp TypeF/D (TpVar Rₓ))) $ TpAbs tt y'ₓ (Tkt $ indices-to-tpapps is Xₜₚ) $ TpAbs tt eₓ (Tkt $ TpEq (App fix-in (Var yₓ)) (Var y'ₓ)) $ TpAppTm (indices-to-tpapps is Tₘ) (Phi (Var eₓ) (App (indices-to-apps is (AppEr (AppTp fix-in TypeF/D) fmap/D)) (App (indices-to-apps is fcₜ) (Var yₓ))) (Var y'ₓ))))))) mendler-elab-sigma-pure Γ (mk-data-info _ _ _ _ _ _ _ _ _ eds ecs) x? t ms = let fix-out = erase (encoding-defs.fix-out eds) msf = λ t → foldl (λ {(Case mₓ cas mₜ asₜₚ) t → App t (case-args-to-lams cas mₜ)}) t ms in msf (App fix-out t) mendler-elab-sigma Γ (mk-data-info X Xₒ asₚ asᵢ ps kᵢ k cs csₚₛ (mk-enc-defs ecs gcs Cast cast-in cast-out cast-is Functor functor-in functor-out Fix fix-in fix-out lambek1 lambek2 fix-ind) (mk-encd-defs Is/Dₓ is/Dₓ to/Dₓ TypeF/Dₓ indF/Dₓ fmap/Dₓ)) mt t Tₘ ms = let is = kind-to-indices Γ k Γᵢₛ = add-indices-to-ctxt is $ add-params-to-ctxt ps $ add-params-to-ctxt (ctxt.ps Γ) Γ is/X? = mt app-ps = recompose-apps (args-set-erased tt asₚ) ∘ Var tpapp-ps = recompose-tpapps (args-to-tmtps asₚ) ∘ TpVar app-ps' = inst-term Γ ps asₚ tpapp-ps' = inst-type Γ ps asₚ fmap/D = app-ps fmap/Dₓ TypeF/D = tpapp-ps TypeF/Dₓ to/D = recompose-apps asₚ (Var to/Dₓ) indF/D = app-ps indF/Dₓ Cast = tpapp-ps' Cast cast-out = app-ps' cast-out functor-out = app-ps' functor-out Fix = tpapp-ps' Fix fix-in = app-ps' fix-in fix-out = app-ps' fix-out lambek1 = app-ps' lambek1 Xₜₚ = recompose-tpapps (args-to-tmtps asₚ) (TpVar X) Xₒₜₚ = if Xₒ =string X then Xₜₚ else TpVar Xₒ toₓ = rename "to" from Γᵢₛ for id outₓ = rename "out" from Γᵢₛ for id to-tp = λ R → TpAppTp (TpAppTp Cast R) Xₜₚ out-tp = λ R → TpIota outₓ (indices-to-alls is (TpAbs ff ignored-var (Tkt (indices-to-tpapps is R)) (indices-to-tpapps is (TpAppTp TypeF/D R)))) (TpEq (Var outₓ) fix-out) ms' : trie term ms' = foldr (λ c σ → case c of λ {(Case x cas t asₜₚ) → let Γ' = add-caseArgs-to-ctxt cas Γᵢₛ in trie-insert σ x $ rename "y" from Γ' for λ yₓ → rename "e" from Γ' for λ eₓ → rename "x" from Γ' for λ xₓ → case-args-to-lams cas $ Lam tt yₓ (just (Tkt (recompose-tpapps (drop (length asₚ) asₜₚ) Xₜₚ))) $ Lam tt eₓ (just (Tkt (TpEq (App fix-in (foldr (uncurry λ x T → Lam ff (snd (split-var x)) nothing) (foldl (λ ca t → case ca of λ {(CaseArg ff x _) → App t (Var (snd (split-var x))); _ → t}) (Var (snd (split-var x))) cas) cs)) (Var yₓ)))) $ Rho (VarSigma (Var eₓ)) xₓ (TpAppTm (recompose-tpapps (drop (length asₚ) asₜₚ) Tₘ) (Var xₓ)) t}) empty-trie ms in-fix = λ is/X? T asᵢ t → (maybe-else' (is/X? ||-maybe mt) t λ is/X → App (recompose-apps asᵢ (AppEr (AppTp (AppTp cast-out T) Xₜₚ) (App (AppTp is/X (to-tp T)) (Lam ff "to" (just (Tkt (to-tp T))) $ Lam ff "out" (just (Tkt (out-tp T))) $ Var "to")))) t) app-lambek = λ is/X? t T asᵢ body → AppEr (AppEr body (in-fix is/X? T asᵢ t)) (App (recompose-apps asᵢ (AppEr (AppTp lambek1 TypeF/D) fmap/D)) (in-fix is/X? T asᵢ t)) in rename "x" from Γᵢₛ for λ xₓ → rename "y" from Γᵢₛ for λ yₓ → rename "y'" from ctxt-var-decl yₓ Γᵢₛ for λ y'ₓ → rename "z" from Γᵢₛ for λ zₓ → rename "e" from Γᵢₛ for λ eₓ → rename "X" from Γᵢₛ for λ Xₓ → maybe-else (Var "1") id $ foldl {B = maybe (term → term)} -- Agda hangs without this implicit argument...? (uncurry λ x Tₓ rec → rec >>= λ rec → trie-lookup ms' x >>= λ t → just λ tₕ → App (rec tₕ) t) (just λ t → t) cs >>= λ msf → maybe-else (just $ Var "2") just $ just $ (app-lambek is/X? t Xₒₜₚ (tmtps-to-args tt asᵢ) (msf (let Tₛ = maybe-else' is/X? Xₜₚ λ _ → Xₒₜₚ fcₜ = maybe-else' is/X? id λ is/X → App $ indices-to-apps is $ AppEr (AppTp (AppTp cast-out (TpAppTp TypeF/D Tₛ)) (TpAppTp TypeF/D Xₜₚ)) (AppEr (AppTp (AppTp (AppEr (AppTp functor-out TypeF/D) fmap/D) Tₛ) Xₜₚ) (App (AppTp is/X (to-tp Tₛ)) (Lam ff "to" (just (Tkt (to-tp Tₛ))) $ Lam ff "out" (just (Tkt (out-tp Tₛ))) $ Var "to"))) out = maybe-else' is/X? (AppEr (AppTp fix-out TypeF/D) fmap/D) λ is/X → let i = App (AppTp is/X (TpIota xₓ (indices-to-alls is (TpAbs ff ignored-var (Tkt (indices-to-tpapps is Tₛ)) (indices-to-tpapps is (TpAppTp TypeF/D Tₛ)))) (TpEq (Var xₓ) fix-out))) (Lam ff "to" (just (Tkt (to-tp Tₛ))) $ Lam ff "out" (just (Tkt (out-tp Tₛ))) $ Var "out") in Phi (IotaProj i ι2) (IotaProj i ι1) fix-out in AppTp (App (recompose-apps (tmtps-to-args tt asᵢ) (AppTp indF/D Tₛ)) (App (recompose-apps (tmtps-to-args tt asᵢ) out) t)) (indices-to-tplams is $ TpLam yₓ (Tkt $ indices-to-tpapps is (TpAppTp TypeF/D Tₛ)) $ TpAbs tt y'ₓ (Tkt $ indices-to-tpapps is Xₜₚ) $ TpAbs tt eₓ (Tkt (TpEq (App fix-in (Var yₓ)) (Var y'ₓ))) $ TpAppTm (indices-to-tpapps is Tₘ) (Phi (Var eₓ) (App (indices-to-apps is (AppEr (AppTp fix-in TypeF/D) fmap/D)) (fcₜ (Var yₓ))) (Var y'ₓ)))))) {- ################################ IO ################################ -} -- set show-qualified-vars to tt to show if there are bugs in parameter code, because -- they should always be captured by the scope and unqualified as a binder name open import to-string (record options {during-elaboration = tt; show-qualified-vars = tt; erase-types = ff; pretty-print = tt}) {-# TERMINATING #-} cmds-to-string : (newline-before-after : 𝔹) → params → cmds → strM cmd-to-string : params → cmd → strM cmd-to-string ps (CmdDefTerm x t) = strBreak 2 0 [ strVar x >>str strAdd " =" ] 2 [ to-stringh (lam-expand-term ps t) >>str strAdd "." ] cmd-to-string ps (CmdDefType x k T) = strBreak 3 0 [ strVar x >>str strAdd " :" ] (3 + string-length x) [ to-stringh (abs-expand-kind ps k) >>str strAdd " =" ] 2 [ to-stringh (lam-expand-type ps T) >>str strAdd "." ] cmd-to-string ps (CmdDefKind x psₖ k) = strBreak 2 0 [ strVar x ] 2 [ params-to-string'' (ps ++ psₖ) (to-stringh k) >>str strAdd "." ] cmd-to-string ps (CmdDefData eds x psₓ k cs) = cmds-to-string ff ps (encoding-defs.ecs eds) >>str strList 2 (strBreak 2 0 [ strAdd "data " >>str strVar x ] (5 + string-length x) [ params-to-string'' (ps ++ psₓ) (strAdd ": " >>str to-stringh k) ] :: map (uncurry λ x T → strBreak 2 0 [ strAdd "| " >>str strVar x >>str strAdd " :" ] (5 + string-length x) [ to-stringh T ]) cs) >>str strAdd "." cmd-to-string ps (CmdImport (Import p? fp mn q? as)) = strAdd "import " >>str strAdd mn >>str maybe-else' q? strEmpty (λ x → strAdd " as " >>str strAdd x) >>str args-to-string as >>str strAdd "." cmds-to-string b-a ps = let b-a-tt : cmd → strM → strM b-a-tt = λ c cs → strLine >>str strLine >>str cmd-to-string ps c >>str cs b-a-ff : cmd → strM → strM b-a-ff = λ c cs → cmd-to-string ps c >>str cs >>str strLine >>str strLine in foldr (if b-a then b-a-tt else b-a-ff) strEmpty file-to-string : file → strM file-to-string (Module mn ps cs) = strAdd "module " >>str strAdd mn >>str strAdd "." >>str cmds-to-string tt [] cs --cmds-to-string tt ps cs record elab-info : Set where constructor mk-elab-info field τ : toplevel-state ρ : renamectxt φ : renamectxt × trie file ν : trie stringset -- dependency mapping new-elab-info : toplevel-state → elab-info new-elab-info ts = mk-elab-info ts empty-renamectxt (empty-renamectxt , empty-trie) empty-trie ts-def : toplevel-state → var → tmtp → toplevel-state ts-def ts x tT = let Γ = toplevel-state.Γ ts i = ctxt.i Γ d = either-else' tT (λ t → term-def nothing opacity-open (just t) (TpHole pi-gen)) (λ T → type-def nothing opacity-open (just T) (KdHole pi-gen)) in record ts { Γ = record Γ { i = trie-insert i x (d , missing-location) } } add-dep : elab-info → var → elab-info add-dep (mk-elab-info τ ρ φ ν) mnᵢ = let fp = ctxt.fn (toplevel-state.Γ τ) mnᵢ-is = stringset-strings (trie-lookup-else empty-trie ν mnᵢ) mn-is = trie-lookup-else empty-trie ν fp in mk-elab-info τ ρ φ (trie-insert ν fp (foldr (flip stringset-insert) (stringset-insert mn-is mnᵢ) mnᵢ-is)) set-fn : elab-info → filepath → elab-info set-fn (mk-elab-info τ ρ φ ν) fn = mk-elab-info (record τ { Γ = record (toplevel-state.Γ τ) { fn = fn } }) ρ φ ν set-mn : elab-info → var → elab-info set-mn (mk-elab-info τ ρ φ ν) mn = mk-elab-info (record τ { Γ = record (toplevel-state.Γ τ) { mn = mn } }) ρ φ ν get-fn : elab-info → filepath get-fn = ctxt.fn ∘' toplevel-state.Γ ∘' elab-info.τ get-mn : elab-info → var get-mn = ctxt.mn ∘' toplevel-state.Γ ∘' elab-info.τ get-deps : elab-info → filepath → file → file get-deps (mk-elab-info τ ρ φ ν) fp (Module mn ps es) = Module mn ps (foldr (λ x → CmdImport (Import ff x (renamectxt-rep (fst φ) x) nothing []) ::_) es (stringset-strings (trie-lookup-else empty-stringset ν fp))) {-# TERMINATING #-} elab-file : elab-info → filepath → elab-info × var elab-cmds : elab-info → params → cmds → elab-info × cmds elab-cmds ei ps [] = ei , [] elab-cmds ei@(mk-elab-info τ ρ φ ν) ps (CmdDefTerm x t :: csᵣ) = rename (get-mn ei # x) - x from ρ for λ x' ρ' → let t' = choose-mu (toplevel-state.Γ τ) ρ (params-to-lams ps t) in elim elab-cmds (mk-elab-info (ts-def τ x' (Ttm t')) ρ' φ ν) ps csᵣ for λ ei csᵣ → ei , CmdDefTerm x' t' :: csᵣ elab-cmds ei@(mk-elab-info τ ρ φ ν) ps (CmdDefType x k T :: csᵣ) = rename (get-mn ei # x) - x from ρ for λ x' ρ' → let k' = choose-mu (toplevel-state.Γ τ) ρ (params-to-kind ps k) T' = choose-mu (toplevel-state.Γ τ) ρ (params-to-tplams ps T) in elim elab-cmds (mk-elab-info (ts-def τ x' (Ttp T')) ρ' φ ν) ps csᵣ for λ ei csᵣ → ei , CmdDefType x' k' T' :: csᵣ elab-cmds ei ps (CmdDefKind x psₖ k :: csᵣ) = elab-cmds ei ps csᵣ elab-cmds ei ps (CmdDefData es x psₓ k cs :: csᵣ) = elim elab-cmds ei [] (encoding-defs.ecs es) for λ ei ecs → elim elab-cmds ei [] (encoding-defs.gcs es) for λ ei gcs → elim elab-cmds ei ps csᵣ for λ ei rcs → ei , ecs ++ gcs ++ rcs elab-cmds ei ps (CmdImport (Import p? fp mn' q? as) :: csᵣ) = let fpₒ = get-fn ei; mnₒ = get-mn ei in elim elab-file ei fp for λ ei mn'' → elab-cmds (add-dep (set-mn (set-fn ei fpₒ) mnₒ) fp) ps csᵣ elab-file ei @ (mk-elab-info τ ρ φ ν) fp with trie-contains (snd φ) fp ...| tt = ei , renamectxt-rep (fst φ) fp ...| ff with get-include-elt-if τ fp >>= include-elt.ast~ ...| nothing = ei , "error" ...| just (Module mn ps es) = let p = elab-cmds (record (set-mn (set-fn ei fp) mn) { ν = trie-insert (elab-info.ν ei) fp empty-trie }) ps es (mk-elab-info τ ρ φ ν) = fst p es' = snd p τ = record τ { Γ = record (toplevel-state.Γ τ) { ps = ps } } in rename fp - mn from fst φ for λ mn' φ' → mk-elab-info τ ρ (φ' , trie-insert (snd φ) fp (Module mn' ps es')) ν , mn' elab-write-all : elab-info → (to : filepath) → IO ⊤ elab-write-all ei@(mk-elab-info τ ρ φ ν) to = let Γ = toplevel-state.Γ τ print = strRun Γ ∘ file-to-string in foldr' (createDirectoryIfMissing ff to) (uncurry λ fₒ fₛ io → let fₘ = renamectxt-rep (fst φ) fₒ fₙ = combineFileNames to (fₘ ^ ".cdle") in io >> writeRopeToFile fₙ (print (get-deps ei fₒ fₛ))) (trie-mappings (snd φ)) elab-all : toplevel-state → (from to : filepath) → IO ⊤ elab-all ts fm to = elab-write-all (fst (elab-file (new-elab-info ts) fm)) to >> putStrLn ("0")
44.958261
286
0.57462
59a17e28dcae0c46d0f3e9f7a8a058d1375325df
729
agda
Agda
test/Succeed/Issue2231sharp.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue2231sharp.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue2231sharp.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- Andreas, 2016-10-03, re issue #2231 -- Termination checking a corecursive definition in abstract mode. infix 1000 ♯_ postulate ∞ : ∀ {a} (A : Set a) → Set a ♯_ : ∀ {a} {A : Set a} → A → ∞ A ♭ : ∀ {a} {A : Set a} → ∞ A → A {-# BUILTIN INFINITY ∞ #-} {-# BUILTIN SHARP ♯_ #-} {-# BUILTIN FLAT ♭ #-} abstract data Functor : Set where Id : Functor _·_ : Functor → Set → Set Id · A = A data ν (F : Functor) : Set where inn : ∞ (F · ν F) → ν F -- Evaluation is required to see that Id · ν Id is a coinductive type. foo : ∀ F → F · ν F foo Id = inn (♯ foo Id) -- The termination checker needs to treat the generated #-foo function -- in abstract mode, to have constructor Id in scope.
22.78125
72
0.573388
5925c2476392ff67cae40b24e95200609d0beadd
127,794
agda
Agda
archive/agda-1/NaturalDeduction.monolithic.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-1/NaturalDeduction.monolithic.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-1/NaturalDeduction.monolithic.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
{-# OPTIONS --rewriting #-} --{-# OPTIONS --exact-split #-} --{-# OPTIONS --show-implicit #-} module NaturalDeduction where module CustomPrelude where open import Prelude public renaming (_==_ to _≟_) -- TODO ask Agda to rename Eq._==_ to Eq._≟_ hiding (force) -- needed by ∞Delay {-# BUILTIN REWRITE _≡_ #-} {-# DISPLAY Eq._==_ _ = _≟_ #-} open import Container.List renaming (_∈_ to _∈C_; lookup∈ to lookup∈C) public _∈C?_ : ∀ {ℓ} {A : Set ℓ} ⦃ _ : Eq A ⦄ (a : A) → (xs : List A) → Dec (a ∈C xs) a ∈C? [] = no λ () a ∈C? (x ∷ xs) with a ≟ x … | yes a≡x rewrite a≡x = yes (zero refl) … | no a≢x with a ∈C? xs … | yes a∈xs = yes (suc a∈xs) … | no a∉xs = no (λ {(zero a≡x) → a≢x a≡x ; (suc a∈xs) → a∉xs a∈xs}) _≢_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ x ≢ y = ¬ (x ≡ y) infix 0 _↔_ _↔_ : {ℓ¹ : Level} → Set ℓ¹ → {ℓ² : Level} → Set ℓ² → Set (ℓ¹ ⊔ ℓ²) P ↔ Q = (P → Q) × (Q → P) infix 0 _←⊗→_ _←⊗→_ : {ℓ¹ : Level} → Set ℓ¹ → {ℓ² : Level} → Set ℓ² → Set (ℓ¹ ⊔ ℓ²) P ←⊗→ Q = (P → ¬ Q) × (Q → ¬ P) ∃ : ∀ {ℓᴬ ℓᴮ} {A : Set ℓᴬ} (B : A → Set ℓᴮ) → Set (ℓᴬ ⊔ ℓᴮ) ∃ = Σ _ ∄ : ∀ {ℓᴬ ℓᴮ} {A : Set ℓᴬ} (B : A → Set ℓᴮ) → Set (ℓᴬ ⊔ ℓᴮ) ∄ = ¬_ ∘ ∃ infixl 4 _⊎_ _⊎_ = Either {-# DISPLAY Either = _⊎_ #-} --open import Agda.Builtin.Size public open import Size public open import Control.Monad.State public open import Control.Monad.Identity public open import Container.Traversable public sequence : ∀ {a b} {A : Set a} {F : Set a → Set b} ⦃ _ : Applicative F ⦄ → List (F A) → F ⊤′ sequence [] = pure tt sequence (x ∷ xs) = x *> sequence xs open import Tactic.Nat public open import Tactic.Deriving.Eq public mutual data Delay (i : Size) (A : Set) : Set where now : A → Delay i A later : ∞Delay i A → Delay i A record ∞Delay (i : Size) (A : Set) : Set where coinductive field force : {j : Size< i} → Delay j A open ∞Delay public module BindDelay where mutual bindDelay : ∀ {i A B} → Delay i A → (A → Delay i B) → Delay i B bindDelay (now a) f = f a bindDelay (later ∞a) f = later (bind∞Delay ∞a f) bind∞Delay : ∀ {i A B} → ∞Delay i A → (A → Delay i B) → ∞Delay i B force (bind∞Delay ∞a f) = bindDelay (force ∞a) f module _ where open BindDelay open BindDelay public using () renaming (bind∞Delay to _∞>>=_) instance FunctorDelay : {i : Size} → Functor (Delay i) Functor.fmap FunctorDelay f x = bindDelay x $ now ∘ f instance ApplicativeDelay : {i : Size} → Applicative (Delay i) Applicative.pure ApplicativeDelay x = now x Applicative._<*>_ ApplicativeDelay (now f) x = f <$> x Applicative._<*>_ ApplicativeDelay (later ∞f) x = later ∘ bind∞Delay ∞f $ flip fmap x Applicative.super ApplicativeDelay = FunctorDelay instance MonadDelay : {i : Size} → Monad (Delay i) Monad._>>=_ MonadDelay = bindDelay Monad.super MonadDelay = ApplicativeDelay {-# DISPLAY BindDelay.bindDelay x f = x >>= f #-} mutual data _∼_ {i : Size} {A : Set} : (a? b? : Delay ∞ A) → Set where ∼now : ∀ a → now a ∼ now a ∼later : ∀ {a∞ b∞} (eq : a∞ ∞∼⟨ i ⟩∼ b∞) → later a∞ ∼ later b∞ _∼⟨_⟩∼_ = λ {A} a? i b? → _∼_ {i}{A} a? b? record _∞∼⟨_⟩∼_ {A} (a∞ : ∞Delay ∞ A) i (b∞ : ∞Delay ∞ A) : Set where coinductive field ∼force : {j : Size< i} → force a∞ ∼⟨ j ⟩∼ force b∞ open _∞∼⟨_⟩∼_ public _∞∼_ = λ {i} {A} a∞ b∞ → _∞∼⟨_⟩∼_ {A} a∞ i b∞ mutual ∼refl : ∀{i A} (a? : Delay ∞ A) → a? ∼⟨ i ⟩∼ a? ∼refl (now a) = ∼now a ∼refl (later a∞) = ∼later (∞∼refl a∞) ∞∼refl : ∀{i A} (a∞ : ∞Delay ∞ A) → a∞ ∞∼⟨ i ⟩∼ a∞ ∼force (∞∼refl a∞) = ∼refl (force a∞) mutual ∼sym : ∀{i A}{a? b? : Delay ∞ A } → a? ∼⟨ i ⟩∼ b? → b? ∼⟨ i ⟩∼ a? ∼sym (∼now a) = ∼now a ∼sym (∼later eq) = ∼later (∞∼sym eq) ∞∼sym : ∀{i A}{a∞ b∞ : ∞Delay ∞ A} → a∞ ∞∼⟨ i ⟩∼ b∞ → b∞ ∞∼⟨ i ⟩∼ a∞ ∼force (∞∼sym eq) = ∼sym (∼force eq) mutual ∼trans : ∀{i A}{a? b? c? : Delay ∞ A} → a? ∼⟨ i ⟩∼ b? → b? ∼⟨ i ⟩∼ c? → a? ∼⟨ i ⟩∼ c? ∼trans (∼now a) (∼now .a) = ∼now a ∼trans (∼later eq) (∼later eq′) = ∼later (∞∼trans eq eq′) ∞∼trans : ∀{i A}{a∞ b∞ c∞ : ∞Delay ∞ A} → a∞ ∞∼⟨ i ⟩∼ b∞ → b∞ ∞∼⟨ i ⟩∼ c∞ → a∞ ∞∼⟨ i ⟩∼ c∞ ∼force (∞∼trans eq eq′) = ∼trans (∼force eq) (∼force eq′) --∼setoid : (i : Size) (A : Set) → Setoid lzero lzero --∞∼setoid : (i : Size) (A : Set) → Setoid lzero lzero mutual bind-assoc : ∀{i A B C} (m : Delay ∞ A) {k : A → Delay ∞ B} {l : B → Delay ∞ C} → ((m >>= k) >>= l) ∼⟨ i ⟩∼ (m >>= λ a → (k a >>= l)) bind-assoc (now a) = ∼refl _ bind-assoc (later a∞) = ∼later (∞bind-assoc a∞) ∞bind-assoc : ∀{i A B C} (a∞ : ∞Delay ∞ A) {k : A → Delay ∞ B} {l : B → Delay ∞ C} → ((a∞ ∞>>= k) ∞>>= l) ∞∼⟨ i ⟩∼ (a∞ ∞>>= λ a → (k a >>= l)) ∼force (∞bind-assoc a∞) = bind-assoc (force a∞) mutual bind-cong-l : ∀{i A B}{a? b? : Delay ∞ A} → a? ∼⟨ i ⟩∼ b? → (k : A → Delay ∞ B) → (a? >>= k) ∼⟨ i ⟩∼ (b? >>= k) bind-cong-l (∼now a) k = ∼refl _ bind-cong-l (∼later eq) k = ∼later (∞bind-cong-l eq k) ∞bind-cong-l : ∀{i A B}{a∞ b∞ : ∞Delay ∞ A} → a∞ ∞∼⟨ i ⟩∼ b∞ → (k : A → Delay ∞ B) → (a∞ ∞>>= k) ∞∼⟨ i ⟩∼ (b∞ ∞>>= k) ∼force (∞bind-cong-l eq k) = bind-cong-l (∼force eq) k mutual bind-cong-r : ∀{i A B}(a? : Delay ∞ A){k l : A → Delay ∞ B} → (∀ a → (k a) ∼⟨ i ⟩∼ (l a)) → (a? >>= k) ∼⟨ i ⟩∼ (a? >>= l) bind-cong-r (now a) h = h a bind-cong-r (later a∞) h = ∼later (∞bind-cong-r a∞ h) ∞bind-cong-r : ∀{i A B}(a∞ : ∞Delay ∞ A){k l : A → Delay ∞ B} → (∀ a → (k a) ∼⟨ i ⟩∼ (l a)) → (a∞ ∞>>= k) ∞∼⟨ i ⟩∼ (a∞ ∞>>= l) ∼force (∞bind-cong-r a∞ h) = bind-cong-r (force a∞) h map-compose : ∀{i A B C} (a? : Delay ∞ A) {f : A → B} {g : B → C} → (g <$> (f <$> a?)) ∼⟨ i ⟩∼ ((g ∘ f) <$> a?) map-compose a? = bind-assoc a? map-cong : ∀{i A B}{a? b? : Delay ∞ A} (f : A → B) → a? ∼⟨ i ⟩∼ b? → (f <$> a?) ∼⟨ i ⟩∼ (f <$> b?) map-cong f eq = bind-cong-l eq (now ∘ f) data _⇓_ {A : Set} : (a? : Delay ∞ A) (a : A) → Set where now⇓ : ∀{a} → now a ⇓ a later⇓ : ∀{a} {a∞ : ∞Delay ∞ A} → force a∞ ⇓ a → later a∞ ⇓ a _⇓ : {A : Set} (x : Delay ∞ A) → Set x ⇓ = ∃ λ a → x ⇓ a map⇓ : ∀{A B}{a : A}{a? : Delay ∞ A}(f : A → B) → a? ⇓ a → (f <$> a?) ⇓ f a map⇓ f now⇓ = now⇓ map⇓ f (later⇓ a⇓) = later⇓ (map⇓ f a⇓) bind⇓ : ∀{A B}(f : A → Delay ∞ B){?a : Delay ∞ A}{a : A}{b : B} → ?a ⇓ a → f a ⇓ b → (?a >>= f) ⇓ b bind⇓ f now⇓ q = q bind⇓ f (later⇓ p) q = later⇓ (bind⇓ f p q) infixl 4 _>>=⇓_ _>>=⇓_ : ∀{A B}{f : A → Delay ∞ B}{?a : Delay ∞ A}{a : A}{b : B} → ?a ⇓ a → f a ⇓ b → (?a >>= f) ⇓ b _>>=⇓_ = bind⇓ _ infixl 4 _⇓>>=⇓_ _⇓>>=⇓_ : ∀{A B}{f : A → Delay ∞ B}{?a : Delay ∞ A}{b : B} → (?a⇓ : ?a ⇓) → f (fst ?a⇓) ⇓ b → (?a >>= f) ⇓ b _⇓>>=⇓_ (_ , a⇓) = bind⇓ _ a⇓ _⇓Dec>>=⇓_else⇓_ : ∀{A B}{f-yes : A → Delay ∞ B}{f-no : ¬ A → Delay ∞ B}{?a : Delay ∞ (Dec A)}{b : B} → (?a⇓ : ?a ⇓) → ((a : A) → f-yes a ⇓ b) → ((¬a : ¬ A) → f-no ¬a ⇓ b) → ((?a >>= (λ { (yes y) → f-yes y ; (no n) → f-no n }))) ⇓ b (yes y , y⇓) ⇓Dec>>=⇓ fy⇓ else⇓ fn⇓ = y⇓ >>=⇓ fy⇓ y (no n , n⇓) ⇓Dec>>=⇓ fy⇓ else⇓ fn⇓ = n⇓ >>=⇓ fn⇓ n _⇓DecEq>>=⇓_else⇓_ : ∀{A : Set} {A₁ A₂ : A} {B}{f-yes : A₁ ≡ A₂ → Delay ∞ B}{f-no : A₁ ≢ A₂ → Delay ∞ B}{?a : Delay ∞ (Dec (A₁ ≡ A₂))}{b : B} → (?a⇓ : ?a ⇓) → ((eq : A₁ ≡ A₂) → f-yes eq ⇓ b) → ((¬eq : A₁ ≢ A₂) → f-no ¬eq ⇓ b) → ((?a >>= (λ { (yes refl) → f-yes refl ; (no n) → f-no n }))) ⇓ b (yes refl , y⇓) ⇓DecEq>>=⇓ fy⇓ else⇓ fn⇓ = y⇓ >>=⇓ fy⇓ refl (no n , n⇓) ⇓DecEq>>=⇓ fy⇓ else⇓ fn⇓ = n⇓ >>=⇓ fn⇓ n app⇓ : ∀{A}{B}{f? : Delay ∞ (A → B)}{f : A → B}{x? : Delay ∞ A}{x : A} → f? ⇓ f → x? ⇓ x → (f? <*> x?) ⇓ f x app⇓ now⇓ now⇓ = now⇓ app⇓ now⇓ (later⇓ x?) = later⇓ $ map⇓ _ x? app⇓ (later⇓ f?) now⇓ = later⇓ $ bind⇓ _ f? now⇓ app⇓ (later⇓ ⇓f) (later⇓ ⇓x) = later⇓ $ bind⇓ _ ⇓f $ later⇓ $ bind⇓ _ ⇓x now⇓ subst∼⇓ : ∀{A}{a? a?′ : Delay ∞ A}{a : A} → a? ⇓ a → a? ∼ a?′ → a?′ ⇓ a subst∼⇓ now⇓ (∼now a) = now⇓ subst∼⇓ (later⇓ p) (∼later eq) = later⇓ (subst∼⇓ p (∼force eq)) {- traverse⇓' : ∀{A}{B}{f? : A → Delay ∞ B}{T : Set → Set}⦃ _ : Traversable T ⦄{X : T A} → (∀ x → f? x ⇓) → ∀ (x : T A) → traverse f? x ⇓ traverse⇓' x₁ x₂ = {!!} , {!!} -} {- traverse⇓ : ∀{A}{B}{f : A → B}{T : Set → Set}⦃ _ : Traversable T ⦄{X : T A} → (∀ x → f? x ⇓) → ∀ (x : T A) → traverse f x ⇓ traverse⇓ x₁ x₂ = {!!} , {!!} -} traverse-list⇓ : ∀{A}{B} (f? : A → Delay ∞ B) → (∀ x → f? x ⇓) → (xs : List A) → traverse f? xs ⇓ traverse-list⇓ f? f?⇓ [] = [] , now⇓ traverse-list⇓ f? f?⇓ (x ∷ xs) with f?⇓ x | traverse-list⇓ f? f?⇓ xs … | y , y⇓ | ys , ys⇓ = y ∷ ys , app⇓ (map⇓ _ y⇓) ys⇓ {- traverse-vec⇓' : ∀{A}{B}{𝑎} (f? : A → Delay ∞ B) → (∀ x → f? x ⇓) → (xs : Vector A 𝑎) → traverse f? xs ⇓ traverse-vec⇓' f? f?⇓ [] = [] , now⇓ traverse-vec⇓' f? f?⇓ (x ∷ xs) with f?⇓ x | traverse-vec⇓' f? f?⇓ xs … | y , y⇓ | ys , ys⇓ = y ∷ ys , app⇓ (map⇓ _ y⇓) ys⇓ traverse-vec⇓ : ∀{A}{B}{𝑎} (f : A → B) → (xs : Vector (Delay ∞ A) 𝑎) → traverse {!f!} xs ⇓ traverse-vec⇓ = {!!} -} {- traverse-vec⇓ : ∀{A}{B}{𝑎} (f? : A → Delay ∞ B) → (∀ x → f? x ⇓) → (xs : Vec A 𝑎) → traverse {!f!} xs ⇓ -} open CustomPrelude record Successor {ℓᴬ} (A : Set ℓᴬ) {ℓᴮ} (B : Set ℓᴮ) : Set (ℓᴬ ⊔ ℓᴮ) where field ⊹ : A → B open Successor ⦃ … ⦄ instance SuccessorNat : Successor Nat Nat Successor.⊹ SuccessorNat = suc instance SuccessorLevel : Successor Level Level Successor.⊹ SuccessorLevel = lsuc record Membership {ℓ} (m : Set ℓ) (M : Set ℓ) : Set (⊹ ℓ) where field _∈_ : m → M → Set ℓ _∉_ : m → M → Set ℓ xor-membership : ∀ {x : m} {X : M} → x ∈ X ←⊗→ x ∉ X open Membership ⦃ … ⦄ data _∈L_ {ℓ} {A : Set ℓ} (a : A) : List A → Set ℓ where zero : {as : List A} → a ∈L (a ∷ as) suc : {x : A} {as : List A} → a ∈L as → a ∈L (x ∷ as) instance Successor∈L : ∀ {ℓ} {A : Set ℓ} {a : A} {x : A} {as : List A} → Successor (a ∈L as) $ a ∈L (x ∷ as) Successor.⊹ Successor∈L = suc instance MembershipList : ∀ {ℓ} {A : Set ℓ} → Membership A $ List A Membership._∈_ MembershipList = _∈L_ Membership._∉_ MembershipList x X = ¬ x ∈ X Membership.xor-membership MembershipList = (λ x x₁ → x₁ x) , (λ x x₁ → x x₁) record DecidableMembership {ℓ} (m : Set ℓ) (M : Set ℓ) ⦃ _ : Membership m M ⦄ : Set (⊹ ℓ) where field _∈?_ : (x : m) → (X : M) → Dec $ x ∈ X field _∉?_ : (x : m) → (X : M) → Dec $ x ∉ X open DecidableMembership ⦃ … ⦄ instance DecidableMembershipList : ∀ {ℓ} {A : Set ℓ} ⦃ _ : Eq A ⦄ → DecidableMembership A $ List A DecidableMembership._∈?_ (DecidableMembershipList {ℓ} {A}) = _∈L?_ where _∈L?_ : (a : A) → (xs : List A) → Dec (a ∈ xs) a ∈L? [] = no λ () a ∈L? (x ∷ xs) with a ≟ x … | yes a≡x rewrite a≡x = yes zero … | no a≢x with a ∈L? xs … | yes a∈xs = yes (⊹ a∈xs) … | no a∉xs = no (λ {zero → a≢x refl ; (suc a∈xs) → a∉xs a∈xs}) DecidableMembership._∉?_ (DecidableMembershipList {ℓ} {A}) = {!!} _⊆_ : ∀ {ℓ} {A : Set ℓ} → List A → List A → Set ℓ _⊆_ {A = A} R S = ∀ {x : A} → x ∈ R → x ∈ S record VariableName : Set where constructor ⟨_⟩ field name : Nat open VariableName instance EqVariableName : Eq VariableName Eq._==_ EqVariableName _ = decEq₁ (cong name) ∘ (_≟_ on name $ _) record FunctionName : Set where constructor ⟨_⟩ field name : Nat open FunctionName instance EqFunctionName : Eq FunctionName Eq._==_ EqFunctionName _ = decEq₁ (cong name) ∘ (_≟_ on name $ _) record PredicateName : Set where constructor ⟨_⟩ field name : Nat open PredicateName instance EqPredicateName : Eq PredicateName Eq._==_ EqPredicateName _ = decEq₁ (cong name) ∘ (_≟_ on name $ _) record Arity : Set where constructor ⟨_⟩ field arity : Nat open Arity instance EqArity : Eq Arity Eq._==_ EqArity _ = decEq₁ (cong arity) ∘ (_≟_ on arity $ _) record Vector (A : Set) (𝑎 : Arity) : Set where constructor ⟨_⟩ field vector : Vec A (arity 𝑎) open Vector instance EqVector : {A : Set} ⦃ _ : Eq A ⦄ {𝑎 : Arity} → Eq (Vector A 𝑎) Eq._==_ EqVector _ = decEq₁ (cong vector) ∘ (_≟_ on vector $ _) data ITerm : Nat → Set where variable : VariableName → ITerm zero function : FunctionName → {arity : Nat} → (τs : Vec (Σ Nat ITerm) arity) → {n : Nat} → n ≡ sum (vecToList $ (fst <$> τs)) → ITerm (suc n) mutual eqITerm : ∀ {n} → (x y : ITerm n) → Dec (x ≡ y) eqITerm = {!!} {- eqITerm : ∀ {n} → (x y : ITerm n) → Dec (x ≡ y) eqITerm {.0} (variable x) (variable x₁) = {!!} eqITerm {.(suc n)} (function x {arity = arity₁} τs {n = n} x₁) (function x₂ {arity = arity₂} τs₁ {n = .n} x₃) with x ≟ x₂ | arity₁ ≟ arity₂ eqITerm {.(suc n)} (function x {arity₁} τs {n} x₄) (function .x {.arity₁} τs₁ {.n} x₅) | yes refl | (yes refl) with eqITerms τs τs₁ eqITerm {.(suc n)} (function x₁ {arity₁} τs {n} x₄) (function .x₁ {.arity₁} .τs {.n} x₅) | yes refl | (yes refl) | (yes refl) rewrite x₄ | x₅ = yes refl eqITerm {.(suc n)} (function x₁ {arity₁} τs {n} x₄) (function .x₁ {.arity₁} τs₁ {.n} x₅) | yes refl | (yes refl) | (no x) = {!!} eqITerm {.(suc n)} (function x {arity₁} τs {n} x₄) (function x₂ {arity₂} τs₁ {.n} x₅) | yes x₁ | (no x₃) = {!!} eqITerm {.(suc n)} (function x {arity₁} τs {n} x₄) (function x₂ {arity₂} τs₁ {.n} x₅) | no x₁ | (yes x₃) = {!!} eqITerm {.(suc n)} (function x {arity₁} τs {n} x₄) (function x₂ {arity₂} τs₁ {.n} x₅) | no x₁ | (no x₃) = {!!} -} eqITerms : ∀ {n} → (x y : Vec (Σ Nat ITerm) n) → Dec (x ≡ y) eqITerms {.0} [] [] = {!!} eqITerms (_∷_ {n = n} (fst₁ , snd₁) x₁) (_∷_ {n = .n} (fst₂ , snd₂) y) with fst₁ ≟ fst₂ eqITerms (_∷_ {n = n} (fst₁ , snd₁) x₁) (_∷_ {n = .n} (fst₂ , snd₂) y) | yes refl with eqITerm snd₁ snd₂ eqITerms (_∷_ {n = n} (fst₁ , snd₁) x₁) (_∷_ {n = .n} (fst₂ , snd₂) y) | yes refl | yes refl with eqITerms x₁ y eqITerms (_∷_ {n = n} (fst₁ , snd₁) x₁) (_∷_ {n = .n} (fst₂ , snd₂) y) | yes refl | yes refl | yes refl = yes refl eqITerms (_∷_ {n = n} (fst₁ , snd₁) x₁) (_∷_ {n = .n} (fst₂ , snd₂) y) | yes refl | yes refl | no ref = {!!} eqITerms (_∷_ {n = n} (fst₁ , snd₁) x₁) (_∷_ {n = .n} (fst₂ , snd₂) y) | yes refl | no ref = {!!} eqITerms (_∷_ {n = n} (fst₁ , snd₁) x₁) (_∷_ {n = .n} (fst₂ , snd₂) y) | no ref = {!!} instance EqITerm : ∀ {n} → Eq (ITerm n) Eq._==_ EqITerm = eqITerm {- instance EqITerm : ∀ {n} → Eq (ITerm n) Eq._==_ EqITerm (variable x) (variable x₁) = {!!} Eq._==_ EqITerm (function x {arity = arity₁} τs {n = n} x₁) (function x₂ {arity = arity₂} τs₁ {n = .n} x₃) with x ≟ x₂ | arity₁ ≟ arity₂ Eq._==_ EqITerm (function x {arity₁} τs {n} x₄) (function .x {.arity₁} τs₁ {.n} x₅) | yes refl | (yes refl) with τs ≟ τs₁ Eq._==_ EqITerm (function x {arity₁} τs {n} x₄) (function .x {.arity₁} τs₁ {.n} x₅) | yes refl | (yes refl) | τs≡τs₁ = {!!} Eq._==_ EqITerm (function x {arity₁} τs {n} x₄) (function x₂ {arity₂} τs₁ {.n} x₅) | yes x₁ | (no x₃) = {!!} Eq._==_ EqITerm (function x {arity₁} τs {n} x₄) (function x₂ {arity₂} τs₁ {.n} x₅) | no x₁ | (yes x₃) = {!!} Eq._==_ EqITerm (function x {arity₁} τs {n} x₄) (function x₂ {arity₂} τs₁ {.n} x₅) | no x₁ | (no x₃) = {!!} -} mutual data Term : Set where variable : VariableName → Term function : FunctionName → Terms → Term record Terms : Set where constructor ⟨_⟩ inductive field {arity} : Arity terms : Vector Term arity open Terms termVariable-inj : ∀ {𝑥₁ 𝑥₂} → Term.variable 𝑥₁ ≡ variable 𝑥₂ → 𝑥₁ ≡ 𝑥₂ termVariable-inj refl = refl termFunction-inj₁ : ∀ {𝑓₁ 𝑓₂ τ₁s τ₂s} → Term.function 𝑓₁ τ₁s ≡ function 𝑓₂ τ₂s → 𝑓₁ ≡ 𝑓₂ termFunction-inj₁ refl = refl termFunction-inj₂ : ∀ {𝑓₁ 𝑓₂ τ₁s τ₂s} → Term.function 𝑓₁ τ₁s ≡ function 𝑓₂ τ₂s → τ₁s ≡ τ₂s termFunction-inj₂ refl = refl terms-inj : ∀ {𝑎} → {τs₁ τs₂ : Vector Term 𝑎} → (τs₁≡τs₂ : (Terms.⟨_⟩ {𝑎} τs₁) ≡ ⟨ τs₂ ⟩) → τs₁ ≡ τs₂ terms-inj refl = refl mutual termToITerm : Term → Σ Nat ITerm termToITerm (variable x) = _ , (variable x) termToITerm (function x x₁) = {!!} termsToVec : Terms → Σ Nat (λ arity → Σ (Vec (Σ Nat ITerm) arity) λ τs → Σ Nat λ n → n ≡ sum (vecToList $ (fst <$> τs))) termsToVec (⟨_⟩ {arity = arity₁} ⟨ vector₁ ⟩) = {!!} iTermToTerm : Σ Nat ITerm → Term iTermToTerm = {!!} eq-term-round : ∀ τ → iTermToTerm (termToITerm τ) ≡ τ eq-term-round = {!!} eq-iterm-round : ∀ τ → termToITerm (iTermToTerm τ) ≡ τ eq-iterm-round = {!!} instance EqTerm : Eq Term Eq._==_ EqTerm x y with termToITerm x | graphAt termToITerm x | termToITerm y | graphAt termToITerm y Eq._==_ EqTerm x y | ix | ingraph eqx | iy | ingraph eqy with ix ≟ iy Eq._==_ EqTerm x y | ix | ingraph eqx | .ix | ingraph eqy | yes refl = yes $ ((cong iTermToTerm eqy ⟨≡⟩ʳ cong iTermToTerm eqx) ⟨≡⟩ eq-term-round x) ʳ⟨≡⟩ eq-term-round y Eq._==_ EqTerm x y | ix | ingraph eqx | iy | ingraph eqy | no neq = {!!} instance EqTerms : Eq Terms EqTerms = {!!} {- module _ {i : Size} where mutual EqTerm⇑ : (x y : Term) → Delay i ∘ Dec $ x ≡ y EqTerm⇑ (variable _) (variable _) = now (decEq₁ termVariable-inj $ _≟_ _ _) EqTerm⇑ (function 𝑓₁ τ₁s) (function 𝑓₂ τ₂s) = {- τ₁s≟τ₂s ← EqTerms⇑ τ₁s τ₂s -| (now $ decEq₂ termFunction-inj₁ termFunction-inj₂ (𝑓₁ ≟ 𝑓₂) τ₁s≟τ₂s) -} EqTerms⇑ τ₁s τ₂s >>= λ τ₁s≟τ₂s → now $ decEq₂ termFunction-inj₁ termFunction-inj₂ (𝑓₁ ≟ 𝑓₂) τ₁s≟τ₂s EqTerm⇑ (variable _) (function _ _) = now $ no λ () EqTerm⇑ (function _ _) (variable _) = now $ no λ () EqTerms⇑ : (x y : Terms) → Delay i ∘ Dec $ x ≡ y EqTerms⇑ (⟨_⟩ {𝑎₁} τ₁s) (⟨_⟩ {𝑎₂} τ₂s) with 𝑎₁ ≟ 𝑎₂ … | no 𝑎₁≢𝑎₂ = now $ no λ {τ₁≡τ₂ → 𝑎₁≢𝑎₂ (cong arity τ₁≡τ₂)} … | yes refl = EqVectorTerm⇑ τ₁s τ₂s >>= λ { (yes refl) → now $ yes refl ; (no τ₁s≢τ₂s) → now $ no (λ ⟨τ₁s⟩≡⟨τ₂s⟩ → τ₁s≢τ₂s (terms-inj ⟨τ₁s⟩≡⟨τ₂s⟩)) } EqVectorTerm⇑ : ∀ {n} → (x y : Vector Term n) → Delay i ∘ Dec $ x ≡ y EqVectorTerm⇑ ⟨ [] ⟩ ⟨ [] ⟩ = now (yes refl) EqVectorTerm⇑ ⟨ τ₁ ∷ τ₁s ⟩ ⟨ τ₂ ∷ τ₂s ⟩ = EqTerm⇑ τ₁ τ₂ >>= λ { (yes refl) → EqVectorTerm⇑ ⟨ τ₁s ⟩ ⟨ τ₂s ⟩ >>= λ { (yes refl) → now $ yes refl ; (no τ₁s≢τ₂s) → now $ no λ τ₁₁s≡τ₁₂s → τ₁s≢τ₂s $ cong ⟨_⟩ ((vcons-inj-tail (cong vector τ₁₁s≡τ₁₂s))) } ; (no τ₁≢τ₂) → now $ no λ τ₁₁s≡τ₂₂s → τ₁≢τ₂ $ vcons-inj-head (cong vector τ₁₁s≡τ₂₂s) } EqVectorTerm⇓ : ∀ {n} → (x y : Vector Term n) → EqVectorTerm⇑ x y ⇓ EqVectorTerm⇓ ⟨ [] ⟩ ⟨ [] ⟩ = _ , now⇓ EqVectorTerm⇓ ⟨ variable 𝑥₁ ∷ τ₁s ⟩ ⟨ variable 𝑥₂ ∷ τ₂s ⟩ with 𝑥₁ ≟ 𝑥₂ … | yes refl with EqVectorTerm⇓ ⟨ τ₁s ⟩ ⟨ τ₂s ⟩ EqVectorTerm⇓ ⟨ variable 𝑥₁ ∷ τ₁s ⟩ ⟨ variable .𝑥₁ ∷ .τ₁s ⟩ | yes refl | (yes refl , snd₁) = _ , snd₁ >>=⇓ now⇓ EqVectorTerm⇓ ⟨ variable 𝑥₁ ∷ τ₁s ⟩ ⟨ variable .𝑥₁ ∷ τ₂s ⟩ | yes refl | (no x , snd₁) = _ , snd₁ >>=⇓ now⇓ EqVectorTerm⇓ ⟨ variable 𝑥₁ ∷ τ₁s ⟩ ⟨ variable 𝑥₂ ∷ τ₂s ⟩ | no 𝑥₁≢𝑥₂ = _ , now⇓ EqVectorTerm⇓ ⟨ variable x ∷ τ₁s ⟩ ⟨ function x₁ x₂ ∷ τ₂s ⟩ = _ , now⇓ EqVectorTerm⇓ ⟨ function x x₁ ∷ τ₁s ⟩ ⟨ variable x₂ ∷ τ₂s ⟩ = _ , now⇓ EqVectorTerm⇓ ⟨ function 𝑓₁ (⟨_⟩ {𝑎₁} τ₁s) ∷ τ₁₂s ⟩ ⟨ function 𝑓₂ (⟨_⟩ {𝑎₂} τ₂s) ∷ τ₂₂s ⟩ with 𝑎₁ ≟ 𝑎₂ | 𝑓₁ ≟ 𝑓₂ … | no 𝑎₁≢𝑎₂ | no 𝑓₁≢𝑓₂ = _ , now⇓ … | no 𝑎₁≢𝑎₂ | yes refl = _ , now⇓ … | yes refl | no 𝑓₁≢𝑓₂ with EqVectorTerm⇓ τ₁s τ₂s … | (no τ₁s≢τ₂s , τ⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ now⇓ … | (yes refl , τ⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ now⇓ EqVectorTerm⇓ ⟨ function 𝑓₁ (⟨_⟩ {𝑎₁} τ₁s) ∷ τ₁₂s ⟩ ⟨ function 𝑓₂ (⟨_⟩ {𝑎₂} τ₂s) ∷ τ₂₂s ⟩ | yes refl | yes refl with EqVectorTerm⇓ τ₁s τ₂s | EqVectorTerm⇓ ⟨ τ₁₂s ⟩ ⟨ τ₂₂s ⟩ … | (no τ₁s≢τ₂s , τ⇓) | (no τ₁₂s≢τ₂₂s , τs⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ now⇓ … | (yes refl , τ⇓) | (no τ₁₂s≢τ₂₂s , τs⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ (τs⇓ >>=⇓ now⇓) … | (no τ₁s≢τ₂s , τ⇓) | (yes refl , τs⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ now⇓ … | (yes refl , τ⇓) | (yes refl , τs⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ (τs⇓ >>=⇓ now⇓) EqTerms⇓ : (x y : Terms) → EqTerms⇑ x y ⇓ EqTerms⇓ (⟨_⟩ {𝑎₁} τ₁s) (⟨_⟩ {𝑎₂} τ₂s) with 𝑎₁ ≟ 𝑎₂ … | no 𝑎₁≢𝑎₂ = _ , now⇓ … | yes refl with EqVectorTerm⇓ τ₁s τ₂s … | (yes refl , τ⇓) = _ , τ⇓ >>=⇓ now⇓ … | (no _ , τ⇓) = _ , τ⇓ >>=⇓ now⇓ EqTerm⇓ : (x y : Term) → EqTerm⇑ x y ⇓ EqTerm⇓ (variable x) (variable x₁) = _ , now⇓ EqTerm⇓ (function _ τ₁s) (function _ τ₂s) with EqTerms⇓ τ₁s τ₂s … | (_ , τ⇓) = _ , τ⇓ >>=⇓ now⇓ EqTerm⇓ (variable x) (function x₁ x₂) = _ , now⇓ EqTerm⇓ (function x x₁) (variable x₂) = _ , now⇓ instance EqTerm : Eq Term EqTerm = record { _==_ = λ x y → fst (EqTerm⇓ x y) } instance EqTerms : Eq Terms Eq._==_ EqTerms x y = fst (EqTerms⇓ x y) -} record Unifiable (F : Set) (T : Set) (U₁ U₂ : Set) (σ : (T → F) → F → F) : Set₁ where field _≈u≈_ : (φ₁ φ₂ : F) → Set unifier : (φ₁ φ₂ : F) → φ₁ ≈u≈ φ₂ → (F → F) × (F → F) unifier-law : (φ₁ φ₂ : F) → (=u= : φ₁ ≈u≈ φ₂) → (let u = unifier φ₁ φ₂ =u=) → (fst u) φ₁ ≡ (snd u) φ₂ {- {-# TERMINATING #-} -- substitute 𝑥ₛ τₛ τ = τ, where all occurrences of 𝑥ₛ are replaced by τₛ substitute : VariableName → Term → Term → Term substitute 𝑥ₛ τₛ τ@(variable 𝑥) = ifYes 𝑥ₛ ≟ 𝑥 then τₛ else τ substitute 𝑥ₛ τₛ (function 𝑓 ⟨ ⟨ τs ⟩ ⟩) = function 𝑓 ⟨ ⟨ substitute 𝑥ₛ τₛ <$> τs ⟩ ⟩ -} mutual substituteTerm⇑ : VariableName → Term → ∀ {i} → Term → Delay i Term substituteTerm⇑ 𝑥ₛ τₛ τ@(variable 𝑥) = now $ ifYes 𝑥ₛ ≟ 𝑥 then τₛ else τ substituteTerm⇑ 𝑥ₛ τₛ (function 𝑓 τs) = substituteTerms⇑ 𝑥ₛ τₛ τs >>= λ τsₛ → now $ function 𝑓 τsₛ substituteTerms⇑ : VariableName → Term → ∀ {i} → Terms → Delay i Terms substituteTerms⇑ 𝑥ₛ τₛ ⟨ ⟨ [] ⟩ ⟩ = now ⟨ ⟨ [] ⟩ ⟩ substituteTerms⇑ 𝑥ₛ τₛ ⟨ ⟨ τ ∷ τs ⟩ ⟩ = let τs = substituteTerms⇑ 𝑥ₛ τₛ ⟨ ⟨ τs ⟩ ⟩ τ = substituteTerm⇑ 𝑥ₛ τₛ τ in τs >>= λ { ⟨ ⟨ τs ⟩ ⟩ → τ >>= λ { τ → now $ ⟨ ⟨ τ ∷ τs ⟩ ⟩ } } substituteTerms⇓ : (𝑥ₛ : VariableName) → (τₛ : Term) → (τs : Terms) → substituteTerms⇑ 𝑥ₛ τₛ τs ⇓ substituteTerms⇓ 𝑥ₛ τₛ ⟨ ⟨ [] ⟩ ⟩ = _ , now⇓ substituteTerms⇓ 𝑥ₛ τₛ ⟨ ⟨ (variable 𝑥) ∷ τs ⟩ ⟩ = _ , substituteTerms⇓ 𝑥ₛ τₛ ⟨ ⟨ τs ⟩ ⟩ ⇓>>=⇓ now⇓ substituteTerms⇓ 𝑥ₛ τₛ ⟨ ⟨ (function 𝑓 τs₁) ∷ τs ⟩ ⟩ = _ , substituteTerms⇓ 𝑥ₛ τₛ ⟨ ⟨ τs ⟩ ⟩ ⇓>>=⇓ ((substituteTerms⇓ 𝑥ₛ τₛ τs₁ ⇓>>=⇓ now⇓) >>=⇓ now⇓) substituteTerm⇓ : (𝑥ₛ : VariableName) → (τₛ : Term) → (τ : Term) → substituteTerm⇑ 𝑥ₛ τₛ τ ⇓ substituteTerm⇓ 𝑥ₛ τₛ (variable 𝑥) = _ , now⇓ substituteTerm⇓ 𝑥ₛ τₛ (function 𝑓 τs) = _ , substituteTerms⇓ 𝑥ₛ τₛ τs ⇓>>=⇓ now⇓ substitute : VariableName → Term → Term → Term substitute 𝑥ₛ τₛ τ = fst $ substituteTerm⇓ 𝑥ₛ τₛ τ {- record StructureSuitableForSubstitution : Set where field (∀ x xs → x ∈ xs → ) VariableConstructor : VariableName → Term FunctionConstructor : FunctionName → (a : Nat) → (ts : Vec Term a) → Term ∀ v' → VariableConstructor v' ≡ τ → τₛ ≡ substitute 𝑥ₛ τₛ τ ∀ f' → FunctionConstructor f' ≡ τ → ∀ τ' → τ' ∈ τ → τₛ ≡ substitute 𝑥ₛ τₛ τ constructor-bases : Vec Set #constructors eq : ∀ x → x ∈ constructor-bases → Eq x substitute : → constructor-base Structure → Structure datatype-constructor₁ : constructor-base₁ → datatype MEMBERSHIP : ELEMENT → STRUCTURE → Set ELEMENT → MEMBERSHIP e s → Σ STRUCTURE VariableConstructor → Term FunctionConstructor → Term substitute : VariableConstructor → Term → Term → Term substitute -} instance MembershipTermTerms : Membership Term Terms Membership._∈_ MembershipTermTerms = _ᵗ∈ᵗˢ_ where data _ᵗ∈ᵗˢ_ (τ : Term) : Terms → Set where zero : τ ᵗ∈ᵗˢ ⟨ ⟨ τ ∷ [] ⟩ ⟩ suc : ∀ {τs} → τ ᵗ∈ᵗˢ τs → τ ᵗ∈ᵗˢ ⟨ ⟨ τ ∷ vector (terms τs) ⟩ ⟩ Membership._∉_ MembershipTermTerms x X = ¬ x ∈ X fst (Membership.xor-membership MembershipTermTerms) x₁ x₂ = x₂ x₁ snd (Membership.xor-membership MembershipTermTerms) x₁ x₂ = x₁ x₂ instance MembershipVariableNameTerm : Membership VariableName Term Membership._∈_ MembershipVariableNameTerm = _ᵛ∈ᵗ_ where data _ᵛ∈ᵗ_ (𝑥 : VariableName) : Term → Set where variable : 𝑥 ᵛ∈ᵗ variable 𝑥 function : ∀ 𝑓 {τ : Term} {τs} → {_ : 𝑥 ∈ τ} → τ ∈ τs → 𝑥 ᵛ∈ᵗ function 𝑓 τs Membership._∉_ MembershipVariableNameTerm x X = ¬ x ∈ X fst (Membership.xor-membership MembershipVariableNameTerm) x₁ x₂ = x₂ x₁ snd (Membership.xor-membership MembershipVariableNameTerm) x₁ x₂ = x₁ x₂ data 𝕃 {𝑨} (𝐴 : Set 𝑨) : Set 𝑨 data _∉𝕃_ {𝑨} {𝐴 : Set 𝑨} (x : 𝐴) : 𝕃 𝐴 → Set 𝑨 data 𝕃 {𝑨} (𝐴 : Set 𝑨) where ∅ : 𝕃 𝐴 ✓ : {x₀ : 𝐴} → {x₁s : 𝕃 𝐴} → x₀ ∉𝕃 x₁s → 𝕃 𝐴 instance Successor𝕃 : ∀ {𝑨} {𝐴 : Set 𝑨} → {x₀ : 𝐴} → {x₁s : 𝕃 𝐴} → Successor (x₀ ∉𝕃 x₁s) (𝕃 𝐴) Successor.⊹ Successor𝕃 = ✓ data _∉𝕃_ {𝑨} {𝐴 : Set 𝑨} (𝔞 : 𝐴) where ∅ : 𝔞 ∉𝕃 ∅ ● : ∀ {x₀} → 𝔞 ≢ x₀ → ∀ {x₁s} → 𝔞 ∉𝕃 x₁s → (x₀∉x₁s : x₀ ∉𝕃 x₁s) → 𝔞 ∉𝕃 ✓ x₀∉x₁s data _∈𝕃_ {𝑨} {𝐴 : Set 𝑨} : (𝔞 : 𝐴) → 𝕃 𝐴 → Set {-𝑨-} where here : (𝔞 : 𝐴) {xs : 𝕃 𝐴} (𝔞∉xs : 𝔞 ∉𝕃 xs) → 𝔞 ∈𝕃 (✓ 𝔞∉xs) there : {x : 𝐴} {xs : 𝕃 𝐴} (x∉xs : x ∉𝕃 xs) {𝔞 : 𝐴} → 𝔞 ∈𝕃 xs → 𝔞 ∈𝕃 ✓ x∉xs ∈→¬∉ : ∀ {𝑨} {𝐴 : Set 𝑨} {x : 𝐴} {xs : 𝕃 𝐴} → x ∈𝕃 xs → ¬ x ∉𝕃 xs ∈→¬∉ {𝑨} {𝐴} {.𝔞} {.(✓ {_} {_} {𝔞} {xs} 𝔞∉xs)} (here 𝔞 {xs = xs} 𝔞∉xs) (● {x₀ = .𝔞} x {x₁s = .xs} x₂ .𝔞∉xs) = x refl ∈→¬∉ {𝑨} {𝐴} {x₁} {.(✓ {_} {_} {x} {∅} ∅)} (there {x = x} {xs = .∅} ∅ {𝔞 = .x₁} ()) (● {x₀ = .x} x₃ {x₁s = .∅} ∅ .∅) ∈→¬∉ {𝑨} {𝐴} {.𝔞} {.(✓ {_} {_} {x} {✓ {_} {_} {𝔞} {x₁s} x∉xs} (● {_} {_} {_} {𝔞} x₁ {x₁s} x∉xs₁ x∉xs))} (there {x = x} {xs = .(✓ {_} {_} {𝔞} {x₁s} x∉xs)} (● {x₀ = .𝔞} x₁ {x₁s = x₁s} x∉xs₁ x∉xs) {𝔞 = .𝔞} (here 𝔞 {xs = .x₁s} .x∉xs)) (● {x₀ = .x} x₃ {x₁s = .(✓ {_} {_} {𝔞} {x₁s} x∉xs)} (● {x₀ = .𝔞} x₂ {x₁s = .x₁s} x₄ .x∉xs) .(● {_} {_} {_} {𝔞} x₁ {x₁s} x∉xs₁ x∉xs)) = x₂ refl ∈→¬∉ {𝑨} {𝐴} {x} {.(✓ {_} {_} {x₁} {✓ {_} {_} {x₀} {x₁s} x∉xs} (● {_} {_} {_} {x₀} x₂ {x₁s} x∉xs₁ x∉xs))} (there {x = x₁} {xs = .(✓ {_} {_} {x₀} {x₁s} x∉xs)} (● {x₀ = x₀} x₂ {x₁s = x₁s} x∉xs₁ x∉xs) {𝔞 = .x} (there {x = .x₀} {xs = .x₁s} .x∉xs {𝔞 = .x} x₃)) (● {x₀ = .x₁} x₄ {x₁s = .(✓ {_} {_} {x₀} {x₁s} x∉xs)} (● {x₀ = .x₀} x₅ {x₁s = .x₁s} x₆ .x∉xs) .(● {_} {_} {_} {x₀} x₂ {x₁s} x∉xs₁ x∉xs)) = ∈→¬∉ x₃ x₆ ∉→¬∈ : ∀ {𝑨} {𝐴 : Set 𝑨} {x : 𝐴} {xs : 𝕃 𝐴} → x ∉𝕃 xs → ¬ x ∈𝕃 xs ∉→¬∈ {𝑨} {𝐴} {x} {.∅} ∅ () ∉→¬∈ {𝑨} {𝐴} {.𝔞} {.(✓ {_} {_} {𝔞} {x₁s} x₁)} (● {x₀ = .𝔞} x {x₁s = x₁s} x₂ x₁) (here 𝔞 {xs = .x₁s} .x₁) = x refl ∉→¬∈ {𝑨} {𝐴} {x} {.(✓ {_} {_} {x₀} {x₁s} x₁)} (● {x₀ = x₀} x₂ {x₁s = x₁s} x₃ x₁) (there {x = .x₀} {xs = .x₁s} .x₁ {𝔞 = .x} x₄) = ∉→¬∈ x₃ x₄ foo : ∀ {𝑨} {𝐴 : Set 𝑨} {x x₀ : 𝐴} (x₁ : _≡_ {𝑨} {𝐴} x x₀) (x₂ : _∈𝕃_ {𝑨} {𝐴} x (✓ {_} {_} {x₀} {∅} ∅) → ⊥) → ⊥ foo {𝑨} {𝐴} {x} {.x} refl x₂ = x₂ (here x ∅) foo₂ : (𝑨 : Level) (𝐴 : Set 𝑨 ) (x₀ : 𝐴 ) (x₁s : 𝕃 𝐴 ) (x₁ : x₀ ∉𝕃 x₁s ) (x : 𝐴 ) (x₂ : 𝐴 ) (x₃ : x₂ ≡ x₀ → ⊥ ) (x₄ : x₂ ∉𝕃 x₁s ) (x₅ : ¬ (x ∈𝕃 ✓ (● x₃ x₄ x₁)) ) (x₆ : x ≡ x₂) → ⊥ foo₂ 𝑨 𝐴 x₀ x₁s x₁ x .x x₃ x₄ x₅ refl = x₅ (here x (● x₃ x₄ x₁)) -- x₅ (here x (● x₃ x₄ x₁)) foo₃ : (𝑨 : Level) (𝐴 : Set 𝑨 ) (x₀ : 𝐴 ) (x₁s : 𝕃 𝐴 ) (x₁ : x₀ ∉𝕃 x₁s ) (x : 𝐴 ) (x₂ : 𝐴 ) (x₃ : x₂ ≡ x₀ → ⊥ ) (x₄ : x₂ ∉𝕃 x₁s ) (x₅ : ¬ (x ∈𝕃 ✓ (● x₃ x₄ x₁)) ) (x₆ : x ≡ x₀) → ⊥ foo₃ 𝑨 𝐴 x₀ x₁s x₁ .x₀ x₂ x₃ x₄ x₅ refl = x₅ (there (● x₃ x₄ x₁) (here x₀ x₁)) ¬∈→∉ : ∀ {𝑨} {𝐴 : Set 𝑨} {x : 𝐴} {xs : 𝕃 𝐴} → ¬ x ∈𝕃 xs → x ∉𝕃 xs ¬∈→∉ {𝑨} {𝐴} {x} {∅} x₁ = ∅ ¬∈→∉ {𝑨} {𝐴} {x} {✓ {x₀ = x₀} {x₁s = .∅} ∅} x₂ = ● (λ {x₁ → foo x₁ x₂}) ∅ ∅ ¬∈→∉ {𝑨} {𝐴} {x} {✓ {x₀ = x₂} {x₁s = .(✓ {_} {_} {x₀} {x₁s} x₁)} (● {x₀ = x₀} x₃ {x₁s = x₁s} x₄ x₁)} x₅ = ● (λ {x₆ → foo₂ 𝑨 𝐴 x₀ x₁s x₁ x x₂ x₃ x₄ x₅ x₆}) (● (λ {x₆ → foo₃ 𝑨 𝐴 x₀ x₁s x₁ _ x₂ x₃ x₄ x₅ x₆}) (¬∈→∉ (λ z → x₅ (there (● x₃ x₄ x₁) (there x₁ z)))) x₁) (● x₃ x₄ x₁) ¬∉→∈ : ∀ {𝑨} {𝐴 : Set 𝑨} {x : 𝐴} {xs : 𝕃 𝐴} → ¬ x ∉𝕃 xs → x ∈𝕃 xs ¬∉→∈ {𝑨} {𝐴} {x} {∅} x₁ = ⊥-elim (x₁ ∅) ¬∉→∈ {𝑨} {𝐴} {x} {✓ {x₀ = x₀} {x₁s = ∅} ∅} x₂ = {!⊥-elim!} ¬∉→∈ {𝑨} {𝐴} {x₁} {✓ {x₀ = x₂} {x₁s = ✓ {x₀ = x₀} {x₁s = x₁s} x} (● {x₀ = .x₀} x₃ {x₁s = .x₁s} x₄ .x)} x₅ = {!!} pattern tail= x₁s = ✓ {x₁s = x₁s} _ pattern 𝕃⟦_⟧ x₀ = ✓ {x₀ = x₀} ∅ pattern _₀∷₁_∷⟦_⟧ x₀ x₁ x₂s = ✓ {x₀ = x₀} (● {x₁} _ {x₂s} _ _) --{-# DISPLAY ✓ {x₀ = x₀} (● {x₁} _ {x₂s} _ _) = _₀∷₁_∷⟦_⟧ x₀ x₁ x₂s #-} pattern _↶_↷_ x₀∉x₂s x₀≢x₁ x₁∉x₂s = ● x₀≢x₁ x₀∉x₂s x₁∉x₂s pattern _₀∷₁⟦_⟧ x₀ x₁s = ● {x₀} _ {x₁s} _ _ instance Membership𝕃 : ∀ {𝑨} {𝐴 : Set 𝑨} → Membership 𝐴 (𝕃 𝐴) Membership._∉_ Membership𝕃 x xs = x ∉𝕃 xs Membership._∈_ Membership𝕃 x xs = ¬ x ∉𝕃 xs fst (Membership.xor-membership Membership𝕃) x₁ x₂ = x₁ x₂ snd (Membership.xor-membership Membership𝕃) x₁ x₂ = x₂ x₁ {-# DISPLAY _∉𝕃_ = _∉_ #-} add-1-preserves-∈𝕃 : ∀ {𝑨} {𝐴 : Set 𝑨} {x₀ : 𝐴} {x₁s : 𝕃 𝐴} (x₀∉x₁s : x₀ ∉ x₁s) {x : 𝐴} → x ∈ x₁s → x ∈ ✓ x₀∉x₁s add-1-preserves-∈𝕃 x₀∉x₁s x₁ (● x₃ x₄ x₂) = x₁ x₄ --{-# DISPLAY #-} _∉𝕃?_ : ∀ {𝑨} {𝐴 : Set 𝑨} ⦃ _ : Eq 𝐴 ⦄ → (x : 𝐴) (xs : 𝕃 𝐴) → Dec (x ∉𝕃 xs) _∉𝕃?_ x ∅ = yes ∅ _∉𝕃?_ x 𝕃⟦ x₀ ⟧ with x ≟ x₀ … | yes refl = no λ {(● x₂ _ .∅) → x₂ refl} … | no x≢x₀ = yes (● x≢x₀ ∅ ∅) _∉𝕃?_ x (✓ {x₀ = x₀} (● {x₁} x₀≢x₁ {x₂s} x₀∉x₂s x₁∉x₂s)) with x ≟ x₀ … | yes refl = no λ { (● x₃ _ _) → x₃ refl} … | no x≢x₀ with x ≟ x₁ … | yes refl = no λ { ((_ ↶ x≢x ↷ _) ↶ _ ↷ _) → x≢x refl } … | no x≢x₁ with x ∉𝕃? x₂s _∉𝕃?_ x₁ (✓ {x₂} (● {x₀} x₃ {.∅} x₄ x₀∉x₁s)) | no x≢x₀ | (no x≢x₁) | (yes ∅) = yes (● x≢x₀ (● x≢x₁ ∅ x₀∉x₁s) (● _ _ x₀∉x₁s)) _∉𝕃?_ x₁ (✓ {x₄} (● {x₃} x₅ {.(✓ asdf)} x₆ x₀∉x₁s)) | no x≢x₀ | (no x≢x₁) | (yes (● x₂ asdf₁ asdf)) = yes (● x≢x₀ (● x≢x₁ (● x₂ asdf₁ asdf) x₀∉x₁s) (● x₅ x₆ x₀∉x₁s)) … | no x∈x₂s = no λ { (● {_} x₃ {.(✓ x₁∉x₂s)} (● x₄ x∉x₀s .x₁∉x₂s) .(● x₀≢x₁ x₀∉x₂s x₁∉x₂s)) → x∈x₂s x∉x₀s} instance DecidableMembership𝕃 : ∀ {𝑨} {𝐴 : Set 𝑨} ⦃ _ : Eq 𝐴 ⦄ → DecidableMembership 𝐴 (𝕃 𝐴) DecidableMembership._∉?_ DecidableMembership𝕃 = _∉𝕃?_ DecidableMembership._∈?_ DecidableMembership𝕃 x X with _∉𝕃?_ x X … | yes x∉X = no (λ x₁ → x₁ x∉X) … | no x∈X = yes x∈X x∈singleton→x=singleton : ∀ {𝑨} {𝐴 : Set 𝑨} {x₀ : 𝐴} ⦃ _ : Eq 𝐴 ⦄ {x₀∉∅ : _∉_ ⦃ Membership𝕃 ⦄ x₀ 𝕃.∅} {x : 𝐴} → x ∈ ✓ x₀∉∅ → x ≡ x₀ x∈singleton→x=singleton {𝑨} {𝐴} {x₀} {∅} {x} x₁ with x ≟ x₀ x∈singleton→x=singleton {𝑨} {𝐴} {x₀} {∅} {x} x₁ | yes refl = refl x∈singleton→x=singleton {𝑨} {𝐴} {x₀} {∅} {x} x∈x₀ | no x≢x₀ = ⊥-elim (x∈x₀ (● x≢x₀ ∅ ∅)) foo₄ : (𝑨 : Level ) (𝐴 : Set 𝑨 ) (x₁ : 𝐴 ) (x₂s : 𝕃 𝐴 ) (x₁∉x₂s : x₁ ∉ x₂s ) (x₀ : 𝐴 ) (x₀≢x₁ : x₀ ≡ x₁ → ⊥ ) (x₀∉x₂s : x₀ ∉ x₂s ) (x : 𝐴 ) (x∈x₀∉x₁s : x ∉ ✓ (● x₀≢x₁ x₀∉x₂s x₁∉x₂s) → ⊥ ) (x≢x₀ : x ≡ x₀ → ⊥ ) (x≢x₁ : x ≡ x₁ → ⊥ ) (x∉x₂s : x ∉ x₂s ) (x₂ : x ≡ x₀ ) → ⊥ foo₄ 𝑨 𝐴 x₁ x₂s x₁∉x₂s x₀ x₀≢x₁ x₀∉x₂s .x₀ x∈x₀∉x₁s x≢x₀ x≢x₁ x∉x₂s refl = x≢x₀ refl if-diff-then-somewhere-else-∈𝕃 : ∀ {𝑨} {𝐴 : Set 𝑨} ⦃ _ : Eq 𝐴 ⦄ {x₀ : 𝐴} (x₁s : 𝕃 𝐴) {x₀∉x₁s : x₀ ∉ x₁s} {x : 𝐴} → x ∈ ✓ x₀∉x₁s → x ≢ x₀ → x ∈ x₁s if-diff-then-somewhere-else-∈𝕃 {𝑨} {𝐴} {x₀} ∅ {∅} {x} x∈x₀∉∅ x≢x₀ ∅ = x≢x₀ (x∈singleton→x=singleton x∈x₀∉∅) if-diff-then-somewhere-else-∈𝕃 {𝑨} {𝐴} {x₀} (✓ {x₀ = x₁} {x₁s = x₂s} x₁∉x₂s) {● x₀≢x₁ x₀∉x₂s ._} {x} x∈x₀∉x₁s x≢x₀ (● x≢x₁ x∉x₂s _) = x∈x₀∉x₁s (● (λ {x₂ → foo₄ 𝑨 𝐴 x₁ x₂s x₁∉x₂s x₀ x₀≢x₁ x₀∉x₂s _ x∈x₀∉x₁s x≢x₀ x≢x₁ x∉x₂s x₂}) (● x≢x₁ x∉x₂s x₁∉x₂s) (● x₀≢x₁ x₀∉x₂s x₁∉x₂s)) --if-diff-then-somewhere-else-∈𝕃 {𝑨} {𝐴} {x₀} .∅ {x₀∉x₁s} {x} x∈x₀s x≢x₀ ∅ = {!!} --if-diff-then-somewhere-else-∈𝕃 {𝑨} {𝐴} {x₀} ._ {x₀∉x₁s} {x} x∈x₀s x≢x₀ (● {x₀ = x₁} x≢x₁ {x₁s = x₂s} x∉x₂s x₁∉x₂s) = {!!} record TotalUnion {ℓ} (m : Set ℓ) (M : Set ℓ) ⦃ _ : Membership m M ⦄ : Set ℓ where field union : M → M → M unionLaw1 : ∀ {x : m} {X₁ X₂ : M} → x ∈ X₁ → x ∈ union X₁ X₂ unionLaw2 : ∀ {x : m} {X₁ X₂ : M} → x ∈ X₂ → x ∈ union X₁ X₂ unionLaw3 : ∀ {x : m} {X₁ X₂ : M} → x ∈ union X₁ X₂ → x ∈ X₁ ⊎ x ∈ X₂ open TotalUnion ⦃ … ⦄ {-# DISPLAY TotalUnion.union _ = union #-} add1-then-∈𝕃 : ∀ {𝑨} {𝐴 : Set 𝑨} ⦃ _ : Eq 𝐴 ⦄ {x₀ : 𝐴} (x₁s : 𝕃 𝐴) {x₀∉x₁s : x₀ ∉ x₁s} → x₀ ∈ ✓ {x₀ = x₀} x₀∉x₁s add1-then-∈𝕃 {𝑨} {𝐴} {{x}} {x₀} x₁s {.x₁} (● {x₀ = .x₀} x₂ {x₁s = .x₁s} x₃ x₁) = x₂ refl module ModuleTotalUnion𝕃 {ℓ} (A : Set ℓ) ⦃ _ : Eq A ⦄ where -- TODO aribtrarily moves from l₀s to r₀s, so a union of 10 and 2 elements takes longer than a union of 2 and 10 elements totalUnion : 𝕃 A → 𝕃 A → 𝕃 A totalUnion ∅ ∅ = ∅ totalUnion ∅ r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s) = r₀s totalUnion l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s) ∅ = l₀s totalUnion l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s) r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s) with l₀ ∉? r₀s totalUnion l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s) r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s) | no l₀∈r₀s = totalUnion l₁s r₀s totalUnion l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s) r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s) | yes l₀∉r₀s = totalUnion l₁s (✓ l₀∉r₀s) totalUnionLaw2 : ∀ {x : A} {X₁ X₂ : 𝕃 A} → x ∈ X₂ → x ∈ totalUnion X₁ X₂ totalUnionLaw2 {x₁} {∅} {∅} x₂ x₃ = x₂ x₃ totalUnionLaw2 {x₁} {∅} {✓ x₂} x₃ x₄ = x₃ x₄ totalUnionLaw2 {x₁} {✓ x₂} {∅} x₃ x₄ = x₃ ∅ totalUnionLaw2 {x} {l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s)} {r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s)} x∈r₀s x∉l₀s∪r₀s with l₀ ∉? r₀s totalUnionLaw2 {x} {l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s)} {r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s)} x∈r₀s x∉l₀s∪r₀s | no l₀∈r₀s = totalUnionLaw2 {X₁ = l₁s} x∈r₀s $ x∉l₀s∪r₀s totalUnionLaw2 {x} {l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s)} {r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s)} x∈r₀s x∉l₀s∪r₀s | yes l₀∉r₀s = (totalUnionLaw2 {X₁ = l₁s} $ add-1-preserves-∈𝕃 l₀∉r₀s x∈r₀s) $ x∉l₀s∪r₀s totalUnionLaw1 : ∀ {x : A} {X₁ X₂ : 𝕃 A} → x ∈ X₁ → x ∈ totalUnion X₁ X₂ totalUnionLaw1 {x₁} {∅} {∅} x₂ x₃ = x₂ x₃ totalUnionLaw1 {x₁} {∅} {✓ {x₀ = x₀} {x₁s = X₂} x₂} x₃ x₄ = x₃ ∅ totalUnionLaw1 {x₁} {✓ {x₀ = x₀} {x₁s = X₁} x₂} {∅} x₃ x₄ = x₃ x₄ totalUnionLaw1 {x} {l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s)} {r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s)} x∈l₀s x∉l₀s∪r₀s with l₀ ∉? r₀s totalUnionLaw1 {x} {l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s)} {r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s)} x∈l₀s x∉l₀s∪r₀s | no l₀∈r₀s with x ≟ l₀ totalUnionLaw1 {.l₀} {l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s)} {r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s)} x∈l₀s x∉l₀s∪r₀s | no l₀∈r₀s | yes refl = totalUnionLaw2 {X₁ = l₁s} l₀∈r₀s $ x∉l₀s∪r₀s totalUnionLaw1 {x} {l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s)} {r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s)} x∈l₀s x∉l₀s∪r₀s | no l₀∈r₀s | no x≢l₀ = let x∈l₁s = if-diff-then-somewhere-else-∈𝕃 l₁s x∈l₀s x≢l₀ in totalUnionLaw1 x∈l₁s $ x∉l₀s∪r₀s -- with x ≟ l₀ -- = {!!} totalUnionLaw1 {x} {l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s)} {r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s)} x∈l₀s x∉l₀s∪r₀s | yes l₀∉r₀s with x ≟ l₀ --totalUnionLaw1 {x} {l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s)} {r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s)} l₀∈l₀s l₀∉l₀s∪r₀s | yes l₀∉r₀s | yes refl = {!l₀∉r₀s!} totalUnionLaw1 {.l₀} {✓ {l₀} {l₁s} l₀∉l₁s} {✓ {r₀} {r₁s} r₀∉r₁s} l₀∈l₀s l₀∉l₁s∪l₀r₀s | yes (● l₀≢r₀ l₀∉r₁s .r₀∉r₁s) | (yes refl) = let l₀∈l₀r₀s : l₀ ∈ (✓ (● l₀≢r₀ l₀∉r₁s r₀∉r₁s)) l₀∈l₀r₀s = add1-then-∈𝕃 (✓ r₀∉r₁s) in totalUnionLaw2 {X₁ = l₁s} l₀∈l₀r₀s $ l₀∉l₁s∪l₀r₀s totalUnionLaw1 {x} {l₀s@(✓ {x₀ = l₀} {x₁s = l₁s} l₀∉l₁s)} {r₀s@(✓ {x₀ = r₀} {x₁s = r₁s} r₀∉r₁s)} x∈l₀s x∉l₀s∪r₀s | yes l₀∉r₀s | no x≢l₀ = let x∈l₁s = if-diff-then-somewhere-else-∈𝕃 l₁s x∈l₀s x≢l₀ in totalUnionLaw1 x∈l₁s $ x∉l₀s∪r₀s totalUnionLaw3 : ∀ {x : A} {X₁ X₂ : 𝕃 A} → x ∈ totalUnion X₁ X₂ → x ∈ X₁ ⊎ x ∈ X₂ totalUnionLaw3 = {!!} instance TotalUnion𝕃 : ∀ {𝑨} {𝐴 : Set 𝑨} ⦃ _ : Eq 𝐴 ⦄ → TotalUnion 𝐴 (𝕃 𝐴) TotalUnion.union TotalUnion𝕃 = ModuleTotalUnion𝕃.totalUnion _ TotalUnion.unionLaw1 TotalUnion𝕃 = ModuleTotalUnion𝕃.totalUnionLaw1 _ TotalUnion.unionLaw2 (TotalUnion𝕃 {𝑨} {𝐴} {{x}}) {x₁} {X₁} {X₂} x₂ x₃ = ModuleTotalUnion𝕃.totalUnionLaw2 𝐴 {X₁ = X₁} {X₂ = X₂} x₂ x₃ TotalUnion.unionLaw3 TotalUnion𝕃 = ModuleTotalUnion𝕃.totalUnionLaw3 _ mutual data FTerm : 𝕃 VariableName → Set where variable : (𝑥 : VariableName) → FTerm (𝕃⟦ 𝑥 ⟧) function : (𝑓 : FunctionName) → ..{𝑥s : 𝕃 VariableName} {arity : Nat} → (τs : FTerms 𝑥s arity) → FTerm 𝑥s data FTerms : 𝕃 VariableName → Nat → Set where [] : FTerms ∅ zero _∷_ : ∀ ..{𝑥s' 𝑥s : 𝕃 VariableName} → FTerm 𝑥s' → {n : Nat} → FTerms 𝑥s n → FTerms (union {m = VariableName} 𝑥s' 𝑥s) (⊹ n) instance MembershipVariableNameFTerm : ∀ {𝑥s} → Membership VariableName (FTerm 𝑥s) MembershipVariableNameFTerm = {!!} record TotalIntersection {ℓ} (m : Set ℓ) (M : Set ℓ) ⦃ _ : Membership m M ⦄ : Set ℓ where field intersection : M → M → M intersectionLaw1 : ∀ {x : m} {X₁ X₂ : M} → x ∈ intersection X₁ X₂ → x ∈ X₁ intersectionLaw2 : ∀ {x : m} {X₁ X₂ : M} → x ∈ intersection X₁ X₂ → x ∈ X₂ intersectionLaw3 : ∀ {x : m} {X₁ X₂ : M} → x ∈ X₁ × x ∈ X₂ → x ∈ intersection X₁ X₂ open TotalIntersection ⦃ … ⦄ {-# DISPLAY TotalIntersection.intersection _ = intersection #-} instance Intersection𝕃 : ∀ {ℓ} {A : Set ℓ} ⦃ _ : Eq A ⦄ → TotalIntersection A (𝕃 A) Intersection𝕃 = {!!} data HasUniqueValues (A : Set) : List A → Set where [] : HasUniqueValues A [] _∷_ : {x : A} → {xs : List A} → x ∉ xs → (uxs : HasUniqueValues A xs) → HasUniqueValues A (x ∷ xs) record AList (A : Set) (B : Set) : Set where field domain : List A uniquedomain : HasUniqueValues A domain range : ∀ {x : A} → x ∈ domain → B open AList mutual subst : AList VariableName (∃ FTerm) → ∃ FTerm → ∃ FTerm subst x t@(.(✓ ∅) , variable 𝑥) with 𝑥 ∈? domain x … | yes x∈D = range x x∈D … | no x∉D = t subst x (fst₁ , function 𝑓 {𝑥s = 𝑥s} {arity = a} τs) with substs x a (𝑥s , τs) subst x (fst₁ , function 𝑓 {.fst₁} {arity₁} τs) | fst₂ , snd₁ = fst₂ , (function 𝑓 snd₁) substs : AList VariableName (∃ FTerm) → (a : Nat) → ∃ (flip FTerms a) → ∃ (flip FTerms a) substs x .0 (.∅ , []) = ∅ , [] substs x .(suc _) (._ , (x₁ ∷ snd₁)) with {!subst x (_ , x₁)!} substs x .(suc _) (._ , (x₁ ∷ snd₁)) | sb = {!!} -- indexed by the number of function symbols contained data DTerm : Nat → Set where variable : (𝑥 : VariableName) → DTerm zero function : (𝑓 : FunctionName) → {arity : Nat} → (τs : Vec (∃ DTerm) arity) → DTerm (suc (sum (fst <$> vecToList τs))) mutual substD : VariableName → ∃ DTerm → {n : Nat} → DTerm n → ∃ DTerm substD x x₁ (variable 𝑥) = ifYes 𝑥 ≟ x then x₁ else _ , variable 𝑥 substD x x₁ (function 𝑓 τs) with substsD x x₁ τs substD x x₁ (function 𝑓 τs) | ss = suc (sum (fst <$> vecToList ss)) , function 𝑓 {_} ss substsD : VariableName → ∃ DTerm → {n : Nat} → Vec (Σ Nat DTerm) n → Vec (Σ Nat DTerm) n substsD x x₁ [] = [] substsD x x₁ (x₂ ∷ x₃) with substD x x₁ (snd x₂) | substsD x x₁ x₃ substsD x x₁ (x₂ ∷ x₃) | fst₁ , snd₁ | sss = (fst₁ , snd₁) ∷ sss data HDTerm : Set where ⟨_⟩ : {n : Nat} → DTerm n → HDTerm substituteD : (AList VariableName HDTerm) → HDTerm → HDTerm substituteD = {!!} amgu : HDTerm → HDTerm → (AList VariableName HDTerm) → Maybe (AList VariableName HDTerm) amgu ⟨ variable 𝑥 ⟩ ⟨ variable 𝑥₁ ⟩ f = {!!} amgu ⟨ variable 𝑥 ⟩ ⟨ function 𝑓 τs ⟩ f = {!!} amgu ⟨ function 𝑓 τs ⟩ ⟨ variable 𝑥 ⟩ f = {!!} amgu ⟨ function 𝑓 τs₁ ⟩ ⟨ function 𝑓₁ τs ⟩ f = {!!} -- {- -- data AList : 𝕃 VariableName → Set -- where -- [] : AList ∅ -- _∷_ : -- -} -- record JohnUnification {𝑥s₁} (τ₁ : FTerm 𝑥s₁) {𝑥s₂} (τ₂ : FTerm 𝑥s₂) (_ : intersection {m = VariableName} 𝑥s₁ 𝑥s₂ ≡ ∅) : Set where -- field -- u₁ u₂ : AList VariableName (∃ FTerm) -- unification-law₁ : fst (subst u₁ (𝑥s₁ , τ₁)) ≡ fst (subst u₂ (𝑥s₂ , τ₂)) -- unification-law₂ : snd (subst u₁ (𝑥s₁ , τ₁)) ≡ transport FTerm (sym unification-law₁) (snd (subst u₂ (𝑥s₂ , τ₂))) -- record UnificationEquation (𝑥s : 𝕃 VariableName) : Set -- where -- field -- {lhs-terms} : 𝕃 VariableName -- lhs : FTerm lhs-terms -- {rhs-terms} : 𝕃 VariableName -- rhs : FTerm rhs-terms -- lhs∪rhs-terms : 𝑥s ≡ union {m = VariableName} lhs-terms rhs-terms -- open UnificationEquation -- number-of-variables-that-occur-more-than-once : ∀ {n-eqn} → Vec (∃ λ 𝑥s → UnificationEquation 𝑥s) n-eqn → Nat -- number-of-variables-that-occur-more-than-once {zero} [] = 0 -- number-of-variables-that-occur-more-than-once {suc n-eqn} x = {!!} -- number-of-function-symbols : ∀ {𝑥s} → FTerm 𝑥s → Nat -- number-of-function-symbols = {!!} -- record UnificationProblem (n-var n-lhs n-eqn : Nat) : Set -- where -- field -- equations : Vec (∃ λ 𝑥s → UnificationEquation 𝑥s) n-eqn -- n-var-law : number-of-variables-that-occur-more-than-once equations ≤ n-var -- n-lhs-law : (sum ∘ vecToList $ number-of-function-symbols ∘ lhs ∘ snd <$> equations) ≤ n-lhs -- instance MembershipUnificationEquationUnificationProblem : ∀ {n-var n-lhs n-eqn 𝑥s} → Membership (UnificationEquation 𝑥s) (UnificationProblem n-var n-lhs n-eqn) -- MembershipUnificationEquationUnificationProblem = {!!} -- instance MembershipVariableNameUnificationProblem : ∀ {n-var n-lhs n-eqn} → Membership VariableName (UnificationProblem n-var n-lhs n-eqn) -- MembershipVariableNameUnificationProblem = {!!} -- deletable : ∀ {𝑥s} → UnificationEquation 𝑥s → Set -- deletable = {!!} -- deletable? : ∀ {𝑥s} → (eq : UnificationEquation 𝑥s) → Dec (deletable eq) -- deletable? = {!!} -- u-deletable? : ∀ {n-var n-lhs n-eqn} (up : UnificationProblem n-var n-lhs n-eqn) → Dec (∃ λ 𝑥s → ∃ λ (εq : UnificationEquation 𝑥s) → deletable εq × εq ∈ up) -- u-deletable? {n-var} {n-lhs} {zero} up = no {!!} -- u-deletable? {n-var} {n-lhs} {suc n-eqn} up = {!!} -- deleteRule : ∀ {n-var n-lhs n-eqn} {up : UnificationProblem n-var n-lhs (suc n-eqn)} {𝑥s} {εq : UnificationEquation 𝑥s} → deletable εq → εq ∈ up → UnificationProblem n-var n-lhs n-eqn -- deleteRule = {!!} -- decomposable : ∀ {𝑥s} → UnificationEquation 𝑥s → Set -- decomposable = {!!} -- decomposable? : ∀ {𝑥s} → (eq : UnificationEquation 𝑥s) → Dec (decomposable eq) -- decomposable? = {!!} -- u-decomposable? : ∀ {n-var n-lhs n-eqn} (up : UnificationProblem n-var (suc n-lhs) n-eqn) → Dec (∃ λ 𝑥s → ∃ λ (εq : UnificationEquation 𝑥s) → decomposable εq × εq ∈ up) -- u-decomposable? = {!!} -- decomposeRule : ∀ {n-var n-lhs n-eqn} {up : UnificationProblem n-var (suc n-lhs) n-eqn} {𝑥s} {εq : UnificationEquation 𝑥s} → decomposable εq → εq ∈ up → UnificationProblem n-var n-lhs n-eqn -- decomposeRule = {!!} -- swapable : ∀ {𝑥s} → UnificationEquation 𝑥s → Set -- swapable = {!!} -- swapable? : ∀ {𝑥s} → (eq : UnificationEquation 𝑥s) → Dec (swapable eq) -- swapable? = {!!} -- u-swapable? : ∀ {n-var n-lhs n-eqn} (up : UnificationProblem n-var (suc n-lhs) n-eqn) → Dec (∃ λ 𝑥s → ∃ λ (εq : UnificationEquation 𝑥s) → swapable εq × εq ∈ up) -- u-swapable? = {!!} -- swapRule : ∀ {n-var n-lhs n-eqn} {up : UnificationProblem n-var (suc n-lhs) n-eqn} {𝑥s} {εq : UnificationEquation 𝑥s} → swapable εq → εq ∈ up → UnificationProblem n-var n-lhs n-eqn -- swapRule = {!!} -- eliminatable : ∀ {n-var n-lhs n-eqn} {up : UnificationProblem n-var n-lhs n-eqn} {𝑥s} {εq : UnificationEquation 𝑥s} → (εq∈up : εq ∈ up) → Set -- eliminatable = {!!} -- u-eliminatable? : ∀ {n-var n-lhs n-eqn} (up : UnificationProblem (suc n-var) n-lhs n-eqn) → Dec (∃ λ 𝑥s → ∃ λ (εq : UnificationEquation 𝑥s) → ∃ λ (εq∈up : εq ∈ up) → eliminatable {up = up} {εq = εq} εq∈up) -- u-eliminatable? = {!!} -- eliminateRule : ∀ {n-var n-lhs n-eqn} {up : UnificationProblem (suc n-var) n-lhs n-eqn} {𝑥s} {εq : UnificationEquation 𝑥s} → {εq∈up : εq ∈ up} → eliminatable {up = up} {εq = εq} εq∈up → UnificationProblem n-var n-lhs n-eqn -- eliminateRule = {!!} -- conflictable : ∀ {𝑥s} → UnificationEquation 𝑥s → Set -- conflictable = {!!} -- conflictable? : ∀ {𝑥s} → (εq : UnificationEquation 𝑥s) → Dec (conflictable εq) -- conflictable? = {!!} -- u-conflictable? : ∀ {n-var n-lhs n-eqn} (up : UnificationProblem n-var n-lhs n-eqn) → Dec (∃ λ 𝑥s → ∃ λ (εq : UnificationEquation 𝑥s) → conflictable εq × εq ∈ up) -- u-conflictable? = {!!} -- checkable : ∀ {𝑥s} → UnificationEquation 𝑥s → Set -- checkable = {!!} -- checkable? : ∀ {𝑥s} → (εq : UnificationEquation 𝑥s) → Dec (checkable εq) -- checkable? = {!!} -- u-checkable? : ∀ {n-var n-lhs n-eqn} (up : UnificationProblem n-var n-lhs n-eqn) → Dec (∃ λ 𝑥s → ∃ λ (εq : UnificationEquation 𝑥s) → checkable εq × εq ∈ up) -- u-checkable? = {!!} -- record HasNegation (A : Set) : Set -- where -- field -- ~ : A → A -- open HasNegation ⦃ … ⦄ -- {-# DISPLAY HasNegation.~ _ = ~ #-} -- data Formula : Set -- where -- atomic : PredicateName → Terms → Formula -- logical : Formula → -- Formula → -- Formula -- quantified : VariableName → Formula → Formula -- formulaAtomic-inj₁ : ∀ {𝑃₁ τs₁ 𝑃₂ τs₂} → Formula.atomic 𝑃₁ τs₁ ≡ atomic 𝑃₂ τs₂ → 𝑃₁ ≡ 𝑃₂ -- formulaAtomic-inj₁ refl = refl -- formulaAtomic-inj₂ : ∀ {𝑃₁ τs₁ 𝑃₂ τs₂} → Formula.atomic 𝑃₁ τs₁ ≡ atomic 𝑃₂ τs₂ → τs₁ ≡ τs₂ -- formulaAtomic-inj₂ refl = refl -- formulaLogical-inj₁ : ∀ {φ₁₁ φ₁₂ φ₂₁ φ₂₂} → Formula.logical φ₁₁ φ₁₂ ≡ logical φ₂₁ φ₂₂ → φ₁₁ ≡ φ₂₁ -- formulaLogical-inj₁ refl = refl -- formulaLogical-inj₂ : ∀ {φ₁₁ φ₁₂ φ₂₁ φ₂₂} → Formula.logical φ₁₁ φ₁₂ ≡ logical φ₂₁ φ₂₂ → φ₁₂ ≡ φ₂₂ -- formulaLogical-inj₂ refl = refl -- formulaQuantified-inj₁ : ∀ {𝑥₁ φ₁ 𝑥₂ φ₂} → Formula.quantified 𝑥₁ φ₁ ≡ quantified 𝑥₂ φ₂ → 𝑥₁ ≡ 𝑥₂ -- formulaQuantified-inj₁ refl = refl -- formulaQuantified-inj₂ : ∀ {𝑥₁ φ₁ 𝑥₂ φ₂} → Formula.quantified 𝑥₁ φ₁ ≡ quantified 𝑥₂ φ₂ → φ₁ ≡ φ₂ -- formulaQuantified-inj₂ refl = refl -- instance EqFormula : Eq Formula -- Eq._==_ EqFormula (atomic 𝑃₁ τs₁) -- (atomic 𝑃₂ τs₂) -- = decEq₂ formulaAtomic-inj₁ -- formulaAtomic-inj₂ -- (𝑃₁ ≟ 𝑃₂) -- (τs₁ ≟ τs₂) -- Eq._==_ EqFormula (logical φ₁₁ φ₁₂) -- (logical φ₂₁ φ₂₂) -- = decEq₂ formulaLogical-inj₁ formulaLogical-inj₂ (φ₁₁ ≟ φ₂₁) (φ₁₂ ≟ φ₂₂) -- Eq._==_ EqFormula (quantified 𝑥₁ φ₁) (quantified 𝑥₂ φ₂) = decEq₂ formulaQuantified-inj₁ formulaQuantified-inj₂ (𝑥₁ ≟ 𝑥₂) (φ₁ ≟ φ₂) -- Eq._==_ EqFormula (atomic _ _) (logical _ _) = no λ () -- Eq._==_ EqFormula (atomic _ _) (quantified _ _) = no λ () -- Eq._==_ EqFormula (logical _ _) (atomic _ _) = no λ () -- Eq._==_ EqFormula (logical _ _) (quantified _ _) = no λ () -- Eq._==_ EqFormula (quantified _ _) (atomic _ _) = no λ () -- Eq._==_ EqFormula (quantified _ _) (logical _ _) = no λ () -- data IsFormula : Formula → Set -- where -- ⟨_⟩ : (φ : Formula) → IsFormula φ -- record 𝓕ormula (Is𝓕ormula : Formula → Set) : Set -- where -- constructor ⟨_⟩ -- field -- {formula} : Formula -- is𝓕ormula : Is𝓕ormula formula -- open 𝓕ormula -- 𝑃[_♭_] : PredicateName → Terms → Formula -- 𝑃[_♭_] = atomic -- {-# DISPLAY atomic = 𝑃[_♭_] #-} -- record HasNeitherNor (A : Set) : Set -- where -- field -- _⊗_ : A → A → A -- open HasNeitherNor ⦃ … ⦄ -- instance HasNeitherNorFormula : HasNeitherNor Formula -- HasNeitherNor._⊗_ HasNeitherNorFormula = logical -- {-# DISPLAY logical = _⊗_ #-} -- instance HasNegationFormula : HasNegation Formula -- HasNegation.~ HasNegationFormula φ = φ ⊗ φ -- data IsLiteralFormula : Formula → Set -- where -- atomic : (𝑃 : PredicateName) → (τs : Terms) → IsLiteralFormula $ 𝑃[ 𝑃 ♭ τs ] -- logical : (𝑃 : PredicateName) → (τs : Terms) → IsLiteralFormula ∘ ~ $ 𝑃[ 𝑃 ♭ τs ] -- eqIsLiteralFormula : ∀ {φ} → (lf₁ lf₂ : IsLiteralFormula φ) → lf₁ ≡ lf₂ -- eqIsLiteralFormula (atomic _ _) (atomic _ _) = refl -- eqIsLiteralFormula (logical _ _) (logical _ _) = refl -- instance EqIsLiteralFormula : ∀ {φ} → Eq (IsLiteralFormula φ) -- Eq._==_ EqIsLiteralFormula lf₁ lf₂ = yes $ eqIsLiteralFormula lf₁ lf₂ -- record LiteralFormula : Set -- where -- constructor ⟨_⟩ -- field -- {formula} : Formula -- isLiteralFormula : IsLiteralFormula formula -- open LiteralFormula -- instance EqLiteralFormula : Eq LiteralFormula -- Eq._==_ EqLiteralFormula (⟨_⟩ {φ₁} lf₁) (⟨_⟩ {φ₂} lf₂) -- with φ₁ ≟ φ₂ -- … | no φ₁≢φ₂ = no (λ {refl → φ₁≢φ₂ refl}) -- Eq._==_ EqLiteralFormula (⟨_⟩ {φ₁} lf₁) (⟨_⟩ {φ₂} lf₂) | yes refl = case (eqIsLiteralFormula lf₁ lf₂) of λ {refl → yes refl} -- instance HasNegationLiteralFormula : HasNegation LiteralFormula -- HasNegation.~ HasNegationLiteralFormula ⟨ atomic 𝑃 τs ⟩ = ⟨ logical 𝑃 τs ⟩ -- HasNegation.~ HasNegationLiteralFormula ⟨ logical 𝑃 τs ⟩ = ⟨ atomic 𝑃 τs ⟩ -- data IsPropositionalFormula : Formula → Set -- where -- atomic : (𝑃 : PredicateName) → (τs : Terms) → IsPropositionalFormula $ 𝑃[ 𝑃 ♭ τs ] -- logical : {φ₁ : Formula} → IsPropositionalFormula φ₁ → {φ₂ : Formula} → IsPropositionalFormula φ₂ → IsPropositionalFormula (φ₁ ⊗ φ₂) -- instance EqIsPropositionalFormula : ∀ {φ} → Eq (IsPropositionalFormula φ) -- Eq._==_ EqIsPropositionalFormula (atomic _ _) (atomic _ _ ) = yes refl -- Eq._==_ EqIsPropositionalFormula (logical φ₁₁ φ₁₂) (logical φ₂₁ φ₂₂) with φ₁₁ ≟ φ₂₁ | φ₁₂ ≟ φ₂₂ -- Eq._==_ EqIsPropositionalFormula (logical φ₁₁ φ₁₂) (logical φ₂₁ φ₂₂) | yes refl | yes refl = yes refl -- Eq._==_ EqIsPropositionalFormula (logical φ₁₁ φ₁₂) (logical φ₂₁ φ₂₂) | yes refl | no φ₁₂≢φ₂₂ = no λ {refl → φ₁₂≢φ₂₂ refl} -- Eq._==_ EqIsPropositionalFormula (logical φ₁₁ φ₁₂) (logical φ₂₁ φ₂₂) | no φ₁₁≢φ₂₁ | _ = no λ {refl → φ₁₁≢φ₂₁ refl} -- {- -- -- need to use coinduction to prove this -- foo : ¬ ∃ λ φ → ∃ λ (p₁ : IsPropositionalFormula φ) → ∃ λ (p₂ : IsPropositionalFormula φ) → p₁ ≢ p₂ -- foo (atomic x x₁ , atomic .x .x₁ , atomic .x .x₁ , snd₁) = snd₁ refl -- foo (logical fst₁ fst₂ , logical fst₃ fst₄ , logical fst₅ fst₆ , snd₁) with fst₃ ≟ fst₅ | fst₄ ≟ fst₆ -- foo (logical fst₁ fst₂ , logical fst₃ fst₄ , logical .fst₃ .fst₄ , snd₁) | yes refl | (yes refl) = snd₁ refl -- foo (logical fst₁ fst₂ , logical fst₃ fst₄ , logical .fst₃ fst₆ , snd₁) | yes refl | (no x₁) = foo (fst₂ , fst₄ , fst₆ , λ xs → x₁ xs) -- foo (logical fst₁ fst₂ , logical fst₃ fst₄ , logical fst₅ fst₆ , snd₁) | no x | (yes x₁) = {!!} -- foo (logical fst₁ fst₂ , logical fst₃ fst₄ , logical fst₅ fst₆ , snd₁) | no x | (no x₁) = {!!} -- foo (quantified x fst₁ , () , fst₃ , snd₁) -- -} -- record PropositionalFormula : Set -- where -- constructor ⟨_⟩ -- field -- {formula} : Formula -- isPropositionalFormula : IsPropositionalFormula formula -- open PropositionalFormula -- instance HasNegationPropositionalFormula : HasNegation PropositionalFormula -- HasNegation.~ HasNegationPropositionalFormula ⟨ φ ⟩ = ⟨ logical φ φ ⟩ -- instance HasNeitherNorPropositionalFormula : HasNeitherNor PropositionalFormula -- HasNeitherNor._⊗_ HasNeitherNorPropositionalFormula ⟨ φ₁ ⟩ ⟨ φ₂ ⟩ = ⟨ logical φ₁ φ₂ ⟩ -- {-# DISPLAY IsPropositionalFormula.logical = _⊗_ #-} -- record 𝓐ssertion (A : Set) : Set -- where -- no-eta-equality -- instance 𝓐ssertionList : {A : Set} ⦃ _ : 𝓐ssertion A ⦄ → 𝓐ssertion (List A) -- 𝓐ssertionList = record {} -- instance 𝓐ssertionFormula : 𝓐ssertion Formula -- 𝓐ssertionFormula = record {} -- instance 𝓐ssertionLiteralFormula : 𝓐ssertion LiteralFormula -- 𝓐ssertionLiteralFormula = record {} -- infix 15 _⊢_ -- record 𝓢equent (A : Set) ⦃ _ : 𝓐ssertion A ⦄ : Set -- where -- constructor _⊢_ -- field -- antecedents : List A -- consequents : List A -- open 𝓢equent ⦃ … ⦄ -- instance Eq𝓢equent : {A : Set} ⦃ _ : Eq A ⦄ ⦃ _ : 𝓐ssertion A ⦄ → Eq (𝓢equent A) -- Eq._==_ Eq𝓢equent (antecedents₁ ⊢ consequents₁) (antecedents₂ ⊢ consequents₂) = {!antecedents₁ ≟ antecedents₂!} -- instance 𝓐ssertion𝓢equent : {A : Set} ⦃ _ : 𝓐ssertion A ⦄ → 𝓐ssertion (𝓢equent A) -- 𝓐ssertion𝓢equent = record {} -- instance 𝓐ssertion𝓕ormula : {Is𝓕ormula : Formula → Set} → 𝓐ssertion (𝓕ormula Is𝓕ormula) -- 𝓐ssertion𝓕ormula = record {} -- infix 15 _╱_ -- record Sequent : Set -- where -- constructor _╱_ -- field -- statement : Formula -- suppositions : List Formula -- open Sequent -- instance EqSequent : Eq Sequent -- Eq._==_ EqSequent ( φᵗ₁ ╱ φˢs₁ ) ( φᵗ₂ ╱ φˢs₂ ) = decEq₂ (cong statement) (cong suppositions) (φᵗ₁ ≟ φᵗ₂) (φˢs₁ ≟ φˢs₂) -- instance HasNegationSequent : HasNegation Sequent -- HasNegation.~ HasNegationSequent ( φᵗ ╱ φˢs ) = ~ φᵗ ╱ φˢs -- record IsLiteralSequent (Φ : Sequent) : Set -- where -- constructor _╱_ -- field -- isLiteralStatement : IsLiteralFormula (statement Φ) -- isLiteralSuppositions : All IsLiteralFormula (suppositions Φ) -- open IsLiteralSequent -- instance EqIsLiteralSequent : ∀ {Φ} → Eq (IsLiteralSequent Φ) -- Eq._==_ EqIsLiteralSequent ( φᵗ₁ ╱ φˢs₁ ) ( φᵗ₂ ╱ φˢs₂ ) = decEq₂ (cong isLiteralStatement) (cong isLiteralSuppositions) (φᵗ₁ ≟ φᵗ₂) (φˢs₁ ≟ φˢs₂) -- record LiteralSequent : Set -- where -- constructor ⟨_⟩ -- field -- {sequent} : Sequent -- isLiteralSequent : IsLiteralSequent sequent -- open LiteralSequent -- pattern ⟪_,_⟫ h s = ⟨_⟩ {h} s -- pattern ⟪_⟫ h = (⟨_⟩ {h} _) -- instance EqLiteralSequent : Eq LiteralSequent -- Eq._==_ EqLiteralSequent ⟪ Φ₁ ⟫ ⟪ Φ₂ ⟫ with Φ₁ ≟ Φ₂ -- Eq._==_ EqLiteralSequent ⟨ !Φ₁ ⟩ ⟨ !Φ₂ ⟩ | yes refl with !Φ₁ ≟ !Φ₂ -- Eq._==_ EqLiteralSequent _ _ | yes refl | yes refl = yes refl -- Eq._==_ EqLiteralSequent ⟨ Φ₁ ⟩ ⟨ Φ₂ ⟩ | yes refl | no !Φ₁≢!Φ₂ = no λ {refl → !Φ₁≢!Φ₂ refl} -- Eq._==_ EqLiteralSequent ⟨ Φ₁ ⟩ ⟨ Φ₂ ⟩ | no Φ₁≢Φ₂ = no λ {refl → Φ₁≢Φ₂ refl} -- instance HasNegationLiteralSequent : HasNegation LiteralSequent -- HasNegation.~ HasNegationLiteralSequent ⟨ atomic 𝑃 τs ╱ φˢs ⟩ = ⟨ logical 𝑃 τs ╱ φˢs ⟩ -- HasNegation.~ HasNegationLiteralSequent ⟨ logical 𝑃 τs ╱ φˢs ⟩ = ⟨ atomic 𝑃 τs ╱ φˢs ⟩ -- infix 13 _¶_ -- record Problem : Set -- where -- constructor _¶_ -- field -- inferences : List Sequent -- interest : Sequent -- open Problem -- instance EqProblem : Eq Problem -- EqProblem = {!!} -- record IsLiteralProblem (𝔓 : Problem) : Set -- where -- constructor _¶_ -- field -- {problem} : Problem -- isLiteralInferences : All IsLiteralSequent (inferences 𝔓) -- isLiteralInterest : IsLiteralSequent (interest 𝔓) -- open IsLiteralProblem -- instance EqIsLiteralProblem : ∀ {𝔓} → Eq (IsLiteralProblem 𝔓) -- EqIsLiteralProblem = {!!} -- record LiteralProblem : Set -- where -- constructor ⟨_⟩ -- field -- {problem} : Problem -- isLiteralProblem : IsLiteralProblem problem -- open LiteralProblem -- instance EqLiteralProblem : Eq LiteralProblem -- EqLiteralProblem = {!!} -- record Element : Set -- where -- constructor ⟨_⟩ -- field -- element : Nat -- instance EqElement : Eq Element -- Eq._==_ EqElement ⟨ ε₁ ⟩ ⟨ ε₂ ⟩ with ε₁ ≟ ε₂ -- Eq._==_ EqElement ⟨ _ ⟩ ⟨ _ ⟩ | yes refl = yes refl -- Eq._==_ EqElement ⟨ _ ⟩ ⟨ _ ⟩ | no ε₁≢ε₂ = no λ {refl → ε₁≢ε₂ refl} -- record Elements : Set -- where -- constructor ⟨_⟩ -- field -- {arity} : Arity -- elements : Vector Element arity -- open Elements -- instance EqElements : Eq Elements -- Eq._==_ EqElements (⟨_⟩ {𝑎₁} εs₁) (⟨_⟩ {𝑎₂} εs₂) -- with 𝑎₁ ≟ 𝑎₂ -- … | no 𝑎₁≢𝑎₂ = no λ {refl → 𝑎₁≢𝑎₂ refl} -- … | yes refl -- with εs₁ ≟ εs₂ -- … | yes refl = yes refl -- … | no εs₁≢εs₂ = no λ {refl → εs₁≢εs₂ refl} -- record TruthValue : Set -- where -- constructor ⟨_⟩ -- field -- truthValue : Bool -- record Interpretation : Set -- where -- field -- μ⟦_⟧ : VariableName → Element -- 𝑓⟦_⟧ : FunctionName → Elements → Element -- 𝑃⟦_⟧ : PredicateName → Elements → TruthValue -- open Interpretation -- mutual -- τ⇑⟦_⟧ : Interpretation → {i : Size} → Term → Delay i Element -- τ⇑⟦ I ⟧ (variable 𝑥) = now $ μ⟦ I ⟧ 𝑥 -- τ⇑⟦ I ⟧ (function 𝑓 τs) = 𝑓⟦ I ⟧ 𝑓 ∘ ⟨_⟩ <$> τs⇑⟦ I ⟧ τs -- τs⇑⟦_⟧ : Interpretation → {i : Size} → (τs : Terms) → Delay i (Vector Element (arity τs)) -- τs⇑⟦ I ⟧ ⟨ ⟨ [] ⟩ ⟩ = now ⟨ [] ⟩ -- τs⇑⟦ I ⟧ ⟨ ⟨ τ ∷ τs ⟩ ⟩ = τ⇑⟦ I ⟧ τ >>= (λ t → τs⇑⟦ I ⟧ ⟨ ⟨ τs ⟩ ⟩ >>= λ ts → now ⟨ t ∷ vector ts ⟩) -- τs⇓⟦_⟧ : (I : Interpretation) → (τs : Terms) → τs⇑⟦ I ⟧ τs ⇓ -- τs⇓⟦ I ⟧ ⟨ ⟨ [] ⟩ ⟩ = _ , now⇓ -- τs⇓⟦ I ⟧ ⟨ ⟨ variable 𝑥 ∷ τs ⟩ ⟩ = _ , τs⇓⟦ I ⟧ ⟨ ⟨ τs ⟩ ⟩ ⇓>>=⇓ now⇓ -- τs⇓⟦ I ⟧ ⟨ ⟨ function 𝑓₁ τs₁ ∷ τs₂ ⟩ ⟩ = -- _ , τs⇓⟦ I ⟧ τs₁ ⇓>>=⇓ now⇓ >>=⇓ (τs⇓⟦ I ⟧ ⟨ ⟨ τs₂ ⟩ ⟩ ⇓>>=⇓ now⇓) -- τ⇓⟦_⟧ : (I : Interpretation) → (τ : Term) → τ⇑⟦ I ⟧ τ ⇓ -- τ⇓⟦ I ⟧ (variable 𝑥) = _ , now⇓ -- τ⇓⟦ I ⟧ (function 𝑓 τs) = _ , τs⇓⟦ I ⟧ τs ⇓>>=⇓ now⇓ -- τ⟦_⟧ : (I : Interpretation) → {i : Size} → (τ : Term) → Element -- τ⟦ I ⟧ τ = fst (τ⇓⟦ I ⟧ τ) -- record HasSatisfaction (A : Set) ⦃ _ : 𝓐ssertion A ⦄ : Set₁ -- where -- field -- _⊨_ : Interpretation → A → Set -- _⊭_ : Interpretation → A → Set -- _⊭_ I = ¬_ ∘ I ⊨_ -- open HasSatisfaction ⦃ … ⦄ -- {-# DISPLAY HasSatisfaction._⊨_ _ = _⊨_ #-} -- {-# DISPLAY HasSatisfaction._⊭_ _ = _⊭_ #-} -- record _≞_/_ (𝓘 : Interpretation) (I : Interpretation) (𝑥 : VariableName) : Set -- where -- field -- μEquality : {𝑥′ : VariableName} → 𝑥′ ≢ 𝑥 → μ⟦ 𝓘 ⟧ 𝑥 ≡ μ⟦ I ⟧ 𝑥′ -- 𝑓Equality : (𝑓 : FunctionName) (μs : Elements) → 𝑓⟦ 𝓘 ⟧ 𝑓 μs ≡ 𝑓⟦ I ⟧ 𝑓 μs -- 𝑃Equality : (𝑃 : PredicateName) → (μs : Elements) → 𝑃⟦ 𝓘 ⟧ 𝑃 μs ≡ 𝑃⟦ I ⟧ 𝑃 μs -- instance HasSatisfactionFormula : HasSatisfaction Formula -- HasSatisfaction._⊨_ HasSatisfactionFormula I (atomic 𝑃 τs) = 𝑃⟦ I ⟧ 𝑃 ⟨ ⟨ τ⟦ I ⟧ <$> vector (terms τs) ⟩ ⟩ ≡ ⟨ true ⟩ -- HasSatisfaction._⊨_ HasSatisfactionFormula I (logical φ₁ φ₂) = ¬ I ⊨ φ₁ × ¬ I ⊨ φ₂ -- HasSatisfaction._⊨_ HasSatisfactionFormula I (quantified 𝑥 φ) = (𝓘 : Interpretation) → 𝓘 ≞ I / 𝑥 → 𝓘 ⊨ φ -- instance HasSatisfaction𝓕ormula : {Is𝓕ormula : Formula → Set} → HasSatisfaction (𝓕ormula Is𝓕ormula) -- HasSatisfaction._⊨_ HasSatisfaction𝓕ormula I ⟪ φ ⟫ = I ⊨ φ -- instance HasSatisfactionLiteralFormula : HasSatisfaction LiteralFormula -- HasSatisfaction._⊨_ HasSatisfactionLiteralFormula I ⟨ atomic 𝑃 τs ⟩ = 𝑃⟦ I ⟧ 𝑃 ⟨ ⟨ τ⟦ I ⟧ <$> vector (terms τs) ⟩ ⟩ ≡ ⟨ true ⟩ -- HasSatisfaction._⊨_ HasSatisfactionLiteralFormula I ⟨ logical 𝑃 τs ⟩ = 𝑃⟦ I ⟧ 𝑃 ⟨ ⟨ τ⟦ I ⟧ <$> vector (terms τs) ⟩ ⟩ ≡ ⟨ false ⟩ -- instance HasSatisfactionList : {A : Set} ⦃ _ : 𝓐ssertion A ⦄ ⦃ _ : HasSatisfaction A ⦄ → HasSatisfaction $ List A -- HasSatisfaction._⊨_ HasSatisfactionList I [] = ⊤ -- HasSatisfaction._⊨_ HasSatisfactionList I (x ∷ xs) = I ⊨ x × I ⊨ xs -- instance 𝓐ssertionSequent : 𝓐ssertion Sequent -- 𝓐ssertionSequent = record {} -- instance 𝓐ssertionLiteralSequent : 𝓐ssertion LiteralSequent -- 𝓐ssertionLiteralSequent = record {} -- instance 𝓐ssertionProblem : 𝓐ssertion Problem -- 𝓐ssertionProblem = record {} -- instance 𝓐ssertionLiteralProblem : 𝓐ssertion LiteralProblem -- 𝓐ssertionLiteralProblem = record {} -- instance HasSatisfactionSequent : HasSatisfaction Sequent -- HasSatisfaction._⊨_ HasSatisfactionSequent I (φᵗ ╱ φˢs) = I ⊨ φˢs → I ⊨ φᵗ -- instance HasSatisfactionLiteralSequent : HasSatisfaction LiteralSequent -- HasSatisfaction._⊨_ HasSatisfactionLiteralSequent I Φ = I ⊨ sequent Φ -- instance HasSatisfactionProblem : HasSatisfaction Problem -- HasSatisfaction._⊨_ HasSatisfactionProblem I (Φ⁺s ¶ Φ⁻) = I ⊨ Φ⁺s → I ⊨ Φ⁻ -- instance HasSatisfactionLiteralProblem : HasSatisfaction LiteralProblem -- HasSatisfaction._⊨_ HasSatisfactionLiteralProblem I 𝔓 = I ⊨ problem 𝔓 -- record HasDecidableSatisfaction (A : Set) ⦃ _ : 𝓐ssertion A ⦄ ⦃ _ : HasSatisfaction A ⦄ : Set₁ -- where -- field -- _⊨?_ : (I : Interpretation) → (x : A) → Dec (I ⊨ x) -- open HasDecidableSatisfaction ⦃ … ⦄ -- {-# DISPLAY HasDecidableSatisfaction._⊨?_ _ = _⊨?_ #-} -- instance HasDecidableSatisfactionFormula : HasDecidableSatisfaction Formula -- HasDecidableSatisfaction._⊨?_ HasDecidableSatisfactionFormula I (atomic 𝑃 τs) = {!!} -- HasDecidableSatisfaction._⊨?_ HasDecidableSatisfactionFormula I (logical φ₁ φ₂) = {!!} -- HasDecidableSatisfaction._⊨?_ HasDecidableSatisfactionFormula I (quantified 𝑥 φ) = {!!} -- instance HasDecidableSatisfactionLiteralFormula : HasDecidableSatisfaction LiteralFormula -- HasDecidableSatisfaction._⊨?_ HasDecidableSatisfactionLiteralFormula -- I ⟨ atomic 𝑃 τs ⟩ -- with 𝑃⟦ I ⟧ 𝑃 ⟨ ⟨ τ⟦ I ⟧ <$> vector (terms τs) ⟩ ⟩ -- … | ⟨ true ⟩ = yes refl -- … | ⟨ false ⟩ = no λ () -- HasDecidableSatisfaction._⊨?_ HasDecidableSatisfactionLiteralFormula -- I ⟨ logical 𝑃 τs ⟩ -- with 𝑃⟦ I ⟧ 𝑃 ⟨ ⟨ τ⟦ I ⟧ <$> vector (terms τs) ⟩ ⟩ -- … | ⟨ true ⟩ = no λ () -- … | ⟨ false ⟩ = yes refl -- module _ {A} ⦃ _ : 𝓐ssertion A ⦄ ⦃ _ : HasSatisfaction A ⦄ -- where -- ⊨_ : A → Set -- ⊨ x = (I : Interpretation) → I ⊨ x -- ⊭_ : A → Set -- ⊭_ = ¬_ ∘ ⊨_ -- record HasDecidableValidation (A : Set) ⦃ _ : 𝓐ssertion A ⦄ ⦃ _ : HasSatisfaction A ⦄ : Set₁ -- where -- field -- ⊨?_ : (x : A) → Dec $ ⊨ x -- instance HasDecidableValidationFormula : HasDecidableValidation Formula -- HasDecidableValidation.⊨?_ HasDecidableValidationFormula (atomic 𝑃 τs) = {!!} -- HasDecidableValidation.⊨?_ HasDecidableValidationFormula (logical φ₁ φ₂) = {!!} -- HasDecidableValidation.⊨?_ HasDecidableValidationFormula (quantified 𝑥 φ) = {!!} -- instance HasDecidableValidationLiteralFormula : HasDecidableValidation LiteralFormula -- HasDecidableValidationLiteralFormula = {!!} -- instance HasDecidableValidationSequent : HasDecidableValidation Sequent -- HasDecidableValidationSequent = {!!} -- instance HasDecidableValidationLiteralSequent : HasDecidableValidation LiteralSequent -- HasDecidableValidationLiteralSequent = {!!} -- instance HasDecidableValidationProblem : HasDecidableValidation Problem -- HasDecidableValidationProblem = {!!} -- instance HasDecidableValidationLiteralProblem : HasDecidableValidation LiteralProblem -- HasDecidableValidationLiteralProblem = {!!} -- postulate -- substituteFormula : (VariableName → Term) → Formula → Formula -- record Unifier : Set -- where -- field -- unifier-left unifier-right : VariableName → Term -- open Unifier -- record _Unifies_and_ (υ : Unifier) (φ₁ φ₂ : Formula) : Set -- where -- field -- unification-law : substituteFormula (unifier-left υ) φ₁ ≡ substituteFormula (unifier-right υ) φ₂ -- record HasSubstantiveDischarge (+ : Set) (- : Set) : Set₁ -- where -- field -- _≽_ : + → - → Set -- _⋡_ : + → - → Set -- + ⋡ - = ¬ + ≽ - -- open HasSubstantiveDischarge ⦃ … ⦄ -- {-# DISPLAY HasSubstantiveDischarge._≽_ _ = _≽_ #-} -- instance HasSubstantiveDischargeList : ∀ {A} ⦃ _ : HasSubstantiveDischarge A A ⦄ → HasSubstantiveDischarge (List A) A -- HasSubstantiveDischarge._≽_ HasSubstantiveDischargeList +s - = {!!} -- ∃ λ c → (c ∈ +s) × c ≽ - -- instance HasSubstantiveDischargeListList : ∀ {A} ⦃ _ : HasSubstantiveDischarge A A ⦄ → HasSubstantiveDischarge (List A) (List A) -- HasSubstantiveDischarge._≽_ HasSubstantiveDischargeListList +s -s = {!!} -- ∀ i → i ∈ -s → +s ≽ i -- instance HasSubstantiveDischargeFormulaFormula : HasSubstantiveDischarge Formula Formula -- HasSubstantiveDischarge._≽_ HasSubstantiveDischargeFormulaFormula φ₁ φ₂ = ∃ λ υ → υ Unifies φ₁ and φ₂ -- instance HasSubstantiveDischargeSequentSequent : HasSubstantiveDischarge Sequent Sequent -- HasSubstantiveDischarge._≽_ HasSubstantiveDischargeSequentSequent (+ᵗ ╱ +ᵖs) (-ᵗ ╱ -ᵖs) = {!!} -- +ᵗ ≽ -ᵗ × +ᵖs ≽ -ᵖs -- use "unification into", from John's "Natural Deduction" -- instance HasSubstantiveDischargeProblemProblem : HasSubstantiveDischarge Problem Problem -- HasSubstantiveDischarge._≽_ HasSubstantiveDischargeProblemProblem (+s ¶ +) (-s ¶ -) = {!!} -- + ≽ - × +s ≽ -s -- record HasDecidableSubstantiveDischarge (+ : Set) (- : Set) ⦃ _ : HasSubstantiveDischarge (+) (-) ⦄ : Set₁ -- where -- field -- _≽?_ : (+ : +) → (- : -) → Dec $ + ≽ - -- open HasDecidableSubstantiveDischarge ⦃ … ⦄ -- {-# DISPLAY HasDecidableSubstantiveDischarge._≽?_ _ = _≽?_ #-} -- instance HasDecidableSubstantiveDischargeList : ∀ {A} ⦃ _ : HasSubstantiveDischarge A A ⦄ ⦃ _ : HasDecidableSubstantiveDischarge A A ⦄ ⦃ _ : Eq A ⦄ → HasDecidableSubstantiveDischarge (List A) A -- HasDecidableSubstantiveDischarge._≽?_ HasDecidableSubstantiveDischargeList +s - = {!!} -- instance HasDecidableSubstantiveDischargeListList : ∀ {A} ⦃ _ : HasSubstantiveDischarge A A ⦄ ⦃ _ : HasDecidableSubstantiveDischarge A A ⦄ ⦃ _ : Eq A ⦄ → HasDecidableSubstantiveDischarge (List A) (List A) -- HasDecidableSubstantiveDischarge._≽?_ HasDecidableSubstantiveDischargeListList +s -s = {!!} -- instance HasDecidableSubstantiveDischargeFormulaFormula : HasDecidableSubstantiveDischarge Formula Formula -- HasDecidableSubstantiveDischarge._≽?_ HasDecidableSubstantiveDischargeFormulaFormula = {!!} -- _≟_ -- instance HasDecidableSubstantiveDischargeSequentSequent : HasDecidableSubstantiveDischarge Sequent Sequent -- HasDecidableSubstantiveDischarge._≽?_ HasDecidableSubstantiveDischargeSequentSequent = {!!} -- instance HasDecidableSubstantiveDischargeProblemProblem : HasDecidableSubstantiveDischarge Problem Problem -- HasDecidableSubstantiveDischarge._≽?_ HasDecidableSubstantiveDischargeProblemProblem = {!!} -- record SubstantiveDischargeIsConsistent (+ : Set) (- : Set) ⦃ _ : HasNegation (-) ⦄ ⦃ _ : HasSubstantiveDischarge (+) (-) ⦄ : Set₁ -- where -- field -- ≽-consistent : {+ : +} → { - : - } → + ≽ - → + ⋡ ~ - -- open SubstantiveDischargeIsConsistent ⦃ … ⦄ -- {-# DISPLAY SubstantiveDischargeIsConsistent.≽-consistent _ = ≽-consistent #-} -- record SubstantiveDischargeIsReflexive (A : Set) ⦃ _ : HasSubstantiveDischarge A A ⦄ : Set₁ -- where -- field -- ≽-reflexive : (x : A) → x ≽ x -- open SubstantiveDischargeIsReflexive ⦃ … ⦄ -- {- -- record SubstantiveDischargeIsReflexive (A : Set) ⦃ _ : HasSubstantiveDischarge A A ⦄ : Set₁ -- where -- field -- ≽-reflexive : {x : A} → x ≽ x -- open SubstantiveDischargeIsReflexive ⦃ … ⦄ -- -} -- {-# DISPLAY SubstantiveDischargeIsReflexive.≽-reflexive _ = ≽-reflexive #-} -- record HasVacuousDischarge (A : Set) ⦃ _ : HasNegation A ⦄ ⦃ _ : HasSubstantiveDischarge A A ⦄ : Set₁ -- where -- ◁_ : List A → Set -- ◁ +s = ∃ λ (s : A) → (+s ≽ s) × (+s ≽ ~ s) -- ⋪_ : List A → Set -- ⋪_ = ¬_ ∘ ◁_ -- open HasVacuousDischarge ⦃ … ⦄ -- {-# DISPLAY HasVacuousDischarge.◁_ _ = ◁_ #-} -- {-# DISPLAY HasVacuousDischarge.⋪_ _ = ⋪_ #-} -- infixr 1 ,_ -- pattern ,_ p = _ , p -- pattern ◁pattern c₁∈xs c₁≽s c₂∈xs c₂≽~s = , (((, (c₁∈xs , c₁≽s)) , (, (c₂∈xs , c₂≽~s)))) -- record HasDecidableVacuousDischarge (A : Set) -- ⦃ _ : HasNegation A ⦄ -- ⦃ _ : HasSubstantiveDischarge A A ⦄ -- ⦃ _ : HasVacuousDischarge A ⦄ -- --⦃ _ : HasDecidableSubstantiveDischarge A A ⦄ -- --⦃ _ : SubstantiveDischargeIsConsistent A A ⦄ -- --⦃ _ : SubstantiveDischargeIsReflexive A ⦄ -- ⦃ _ : Eq A ⦄ -- : Set₁ -- where -- field -- ◁?_ : (x : List A) → Dec $ ◁ x -- instance HasDecidableVacuousDischarge𝓢equent : {A : Set} ⦃ _ : 𝓐ssertion A ⦄ ⦃ _ : Eq A ⦄ ⦃ _ : HasNegation (𝓢equent A) ⦄ ⦃ _ : HasSubstantiveDischarge (𝓢equent A) (𝓢equent A) ⦄ ⦃ _ : HasVacuousDischarge (𝓢equent A) ⦄ → HasDecidableVacuousDischarge (𝓢equent A) -- HasDecidableVacuousDischarge𝓢equent = {!!} -- {- -- instance -- ◁? [] = no (λ { (_ , (_ , () , _) , _)}) -- ◁? (x ∷ xs) with xs ≽? ~ x -- ◁? (x ∷ xs) | yes (, ~x!∈xs , ~x!≽~x) = yes $ , (((, (here xs , ≽-reflexive x)) , (, (there _ ~x!∈xs , ~x!≽~x)))) -- ◁? (x ∷ xs) | no xs⋡~x with ◁? xs -- ◁? (x ∷ xs) | no xs⋡~x | yes (◁pattern c₁∈xs c₁≽s c₂∈xs c₂≽~s) = yes (◁pattern (there _ c₁∈xs) c₁≽s (there _ c₂∈xs) c₂≽~s) -- ◁? (x ∷ xs) | no xs⋡~x | no ⋪xs = no λ -- { (◁pattern (here .xs) x≽s (here .xs) c₂≽~s) → {!xs⋡~x!} -- ; (◁pattern (here .xs) x≽s (there _ c₂∈xs) c₂≽~s) → {!xs⋡~x!} -- ; (◁pattern (there _ c₁∈xs) c₁≽s c₂∈xxs c₂≽~s) → {!xs⋡~x!} } -- -} -- --{-⋪xs (◁pattern {!!} c₁≽s {!!} c₂≽~s)-} -- open HasDecidableVacuousDischarge ⦃ … ⦄ -- {-# DISPLAY HasDecidableVacuousDischarge.◁?_ _ = ◁?_ #-} -- instance HasDecidableVacuousDischargeFormula : HasDecidableVacuousDischarge Formula -- HasDecidableVacuousDischarge.◁?_ HasDecidableVacuousDischargeFormula [] = {!!} -- HasDecidableVacuousDischarge.◁?_ HasDecidableVacuousDischargeFormula (φ ∷ φs) = {!!} -- record HasSalvation (A : Set) : Set₁ -- where -- field -- -- {isVacuouslyDischargable} : Set -- -- ⦃ hasVacuousDischarge ⦄ : HasVacuousDischarge isVacuouslyDischargable -- ▷_ : A → Set -- open HasSalvation ⦃ … ⦄ -- instance -- HasSalvation𝓢equent : {A : Set} ⦃ _ : 𝓐ssertion A ⦄ ⦃ _ : HasSubstantiveDischarge A A ⦄ ⦃ _ : HasNegation A ⦄ ⦃ _ : HasVacuousDischarge A ⦄ → HasSalvation $ 𝓢equent A -- HasSalvation.▷_ HasSalvation𝓢equent (φᵖs ⊢ φᵗs) = (◁ φᵖs) ⊎ (φᵖs ≽ φᵗs) -- {-# DISPLAY HasSalvation.▷_ _ = ▷_ #-} -- record HasDecidableSalvation (A : Set) ⦃ _ : HasSalvation A ⦄ : Set₁ -- where -- field -- ▷?_ : (x : A) → Dec $ ▷_ x -- open HasDecidableSalvation ⦃ … ⦄ -- {-# DISPLAY HasDecidableSalvation.▷?_ _ = ▷?_ #-} -- ∀[_♭_] : VariableName → Formula → Formula -- ∀[_♭_] = quantified -- {-# DISPLAY quantified = ∀[_♭_] #-} -- _∧_ : Formula → Formula → Formula -- φ₁ ∧ φ₂ = ~ φ₁ ⊗ ~ φ₂ -- _∨_ : Formula → Formula → Formula -- φ₁ ∨ φ₂ = ~ (φ₁ ⊗ φ₂) -- _⊃_ : Formula → Formula → Formula -- φ₁ ⊃ φ₂ = ~ φ₁ ∨ φ₂ -- _⟷_ : Formula → Formula → Formula -- φ₁ ⟷ φ₂ = (φ₁ ⊗ (φ₂ ⊗ φ₂)) ⊗ ((φ₁ ⊗ φ₁) ⊗ φ₂) -- TODO check that this is logically equivalent to the more verbose, (φ₁ ⊃ φ₂) ∧ (φ₂ ⊃ φ₁) -- data TermCode : Set -- where -- variable : VariableName → TermCode -- function : FunctionName → Arity → TermCode -- termCode-function-inj₁ : ∀ {𝑓₁ 𝑓₂ arity₁ arity₂} → TermCode.function 𝑓₁ arity₁ ≡ function 𝑓₂ arity₂ → 𝑓₁ ≡ 𝑓₂ -- termCode-function-inj₁ refl = refl -- termCode-function-inj₂ : ∀ {𝑓₁ 𝑓₂ arity₁ arity₂} → TermCode.function 𝑓₁ arity₁ ≡ function 𝑓₂ arity₂ → arity₁ ≡ arity₂ -- termCode-function-inj₂ refl = refl -- instance -- EqTermCode : Eq TermCode -- Eq._==_ EqTermCode (variable 𝑥₁) (variable 𝑥₂) with 𝑥₁ ≟ 𝑥₂ -- … | yes 𝑥₁≡𝑥₂ rewrite 𝑥₁≡𝑥₂ = yes refl -- … | no 𝑥₁≢𝑥₂ = no (λ { refl → 𝑥₁≢𝑥₂ refl}) -- Eq._==_ EqTermCode (variable x) (function x₁ x₂) = no (λ ()) -- Eq._==_ EqTermCode (function x x₁) (variable x₂) = no (λ ()) -- Eq._==_ EqTermCode (function 𝑓₁ 𝑎₁) (function 𝑓₂ 𝑎₂) = decEq₂ termCode-function-inj₁ termCode-function-inj₂ (𝑓₁ ≟ 𝑓₂) (𝑎₁ ≟ 𝑎₂) -- mutual -- encodeTerm : Term → List TermCode -- encodeTerm (variable 𝑥) = variable 𝑥 ∷ [] -- encodeTerm (function 𝑓 (⟨_⟩ {arity} τs)) = function 𝑓 arity ∷ encodeTerms τs -- encodeTerms : {arity : Arity} → Vector Term arity → List TermCode -- encodeTerms ⟨ [] ⟩ = [] -- encodeTerms ⟨ τ ∷ τs ⟩ = encodeTerm τ ++ encodeTerms ⟨ τs ⟩ -- mutual -- decodeTerm : Nat → StateT (List TermCode) Maybe Term -- decodeTerm zero = lift nothing -- decodeTerm (suc n) = do -- caseM get of λ -- { [] → lift nothing -- ; (variable 𝑥 ∷ _) → -- modify (drop 1) ~| -- return (variable 𝑥) -- ; (function 𝑓 arity ∷ _) → -- modify (drop 1) ~| -- decodeFunction n 𝑓 arity } -- decodeFunction : Nat → FunctionName → Arity → StateT (List TermCode) Maybe Term -- decodeFunction n 𝑓 arity = do -- τs ← decodeTerms n arity -| -- return (function 𝑓 ⟨ τs ⟩) -- decodeTerms : Nat → (arity : Arity) → StateT (List TermCode) Maybe (Vector Term arity) -- decodeTerms n ⟨ zero ⟩ = return ⟨ [] ⟩ -- decodeTerms n ⟨ suc arity ⟩ = do -- τ ← decodeTerm n -| -- τs ← decodeTerms n ⟨ arity ⟩ -| -- return ⟨ τ ∷ vector τs ⟩ -- .decode-is-inverse-of-encode : ∀ τ → runStateT (decodeTerm ∘ length $ encodeTerm τ) (encodeTerm τ) ≡ (just $ τ , []) -- decode-is-inverse-of-encode (variable 𝑥) = refl -- decode-is-inverse-of-encode (function 𝑓 ⟨ ⟨ [] ⟩ ⟩) = {!!} -- decode-is-inverse-of-encode (function 𝑓 ⟨ ⟨ variable 𝑥 ∷ τs ⟩ ⟩) = {!!} -- decode-is-inverse-of-encode (function 𝑓 ⟨ ⟨ function 𝑓' τs' ∷ τs ⟩ ⟩) = {!!} -- module ExampleEncodeDecode where -- example-Term : Term -- example-Term = -- (function ⟨ 2 ⟩ -- ⟨ ⟨ ( variable ⟨ 0 ⟩ ∷ -- function ⟨ 3 ⟩ ⟨ ⟨ variable ⟨ 2 ⟩ ∷ [] ⟩ ⟩ ∷ -- variable ⟨ 5 ⟩ ∷ [] ) -- ⟩ ⟩ -- ) -- -- function ⟨ 2 ⟩ ⟨ 3 ⟩ ∷ variable ⟨ 0 ⟩ ∷ function ⟨ 3 ⟩ ⟨ 1 ⟩ ∷ variable ⟨ 2 ⟩ ∷ variable ⟨ 5 ⟩ ∷ [] -- example-TermCodes : List TermCode -- example-TermCodes = encodeTerm example-Term -- example-TermDecode : Maybe (Term × List TermCode) -- example-TermDecode = runStateT (decodeTerm (length example-TermCodes)) example-TermCodes -- example-verified : example-TermDecode ≡ (just $ example-Term , []) -- example-verified = refl -- example-bad : runStateT (decodeTerm 2) (function ⟨ 2 ⟩ ⟨ 2 ⟩ ∷ variable ⟨ 0 ⟩ ∷ []) ≡ nothing -- example-bad = refl -- record TermNode : Set -- where -- inductive -- field -- children : List (TermCode × TermNode) -- number : Nat -- open TermNode -- _child∈_ : TermCode → TermNode → Set -- _child∈_ 𝔠 𝔫 = 𝔠 ∈ (fst <$> children 𝔫) -- _child∉_ : TermCode → TermNode → Set -- 𝔠 child∉ 𝔫 = ¬ (𝔠 child∈ 𝔫) -- _child∈?_ : (𝔠 : TermCode) → (𝔫 : TermNode) → Dec $ 𝔠 child∈ 𝔫 -- c child∈? record { children = cs } = c ∈? (fst <$> cs) -- getChild : {𝔠 : TermCode} → (𝔫 : TermNode) → 𝔠 child∈ 𝔫 → TermNode -- getChild {𝔠} (record { children = [] ; number = number₁ }) () -- getChild {._} (record { children = (fst₁ , snd₁) ∷ children₁ ; number = number₁ }) zero = snd₁ -- getChild {𝔠} (𝔫@record { children = x ∷ children₁ ; number = number₁ }) (suc x₁) = getChild record 𝔫 { children = children₁ } x₁ -- addChild : {𝔠 : TermCode} (𝔫 : TermNode) → 𝔠 child∉ 𝔫 → TermNode → TermNode -- addChild {𝔠} 𝔫 𝔠∉𝔫 𝔫' = -- record 𝔫 { children = (𝔠 , 𝔫') ∷ children 𝔫 } -- setChild : {𝔠 : TermCode} (𝔫 : TermNode) → 𝔠 child∈ 𝔫 → TermNode → TermNode -- setChild {𝔠} record { children = [] ; number = number₁ } () 𝔫' -- setChild 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } (zero) 𝔫' = -- record 𝔫 { children = ((fst₁ , 𝔫') ∷ children₁) } -- setChild {𝔠} 𝔫@record { children = (x ∷ children₁) ; number = number₁ } (suc 𝔠∈𝔫) 𝔫' = -- record 𝔫 { children = (x ∷ children (setChild (record 𝔫 { children = children₁ }) 𝔠∈𝔫 𝔫')) } -- setGet-ok : ∀ {𝔠} 𝔫 → (𝔠∈𝔫 : 𝔠 child∈ 𝔫) → setChild 𝔫 𝔠∈𝔫 (getChild 𝔫 𝔠∈𝔫) ≡ 𝔫 -- setGet-ok record { children = [] ; number = number₁ } () -- setGet-ok record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } (zero) = refl -- setGet-ok record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } (suc 𝔠∈𝔫) rewrite setGet-ok (record { children = children₁ ; number = number₁ }) 𝔠∈𝔫 = refl -- storeTermCodes : List TermCode → Nat → StateT TermNode Identity Nat -- storeTermCodes [] 𝔑 = return 𝔑 -- storeTermCodes (𝔠 ∷ 𝔠s) 𝔑 = -- 𝔫 ← get -| -- case 𝔠 child∈? 𝔫 of λ -- { (no 𝔠∉tests) → -- let 𝔑' , 𝔫' = runIdentity $ -- runStateT -- (storeTermCodes 𝔠s $ suc 𝔑) -- (record -- { children = [] -- ; number = suc 𝔑 }) in -- put ((addChild 𝔫 𝔠∉tests 𝔫')) ~| -- return 𝔑' -- ; (yes 𝔠∈tests) → -- let 𝔑' , 𝔫' = runIdentity $ -- runStateT -- (storeTermCodes 𝔠s $ suc 𝔑) -- ((getChild 𝔫 𝔠∈tests)) in -- put ((setChild 𝔫 𝔠∈tests 𝔫')) ~| -- return 𝔑' } -- storeTermCodes[] : (𝔫 : TermNode) (𝔑 : Nat) → (runIdentity $ runStateT (storeTermCodes [] 𝔑) 𝔫) ≡ (𝔑 , 𝔫) -- storeTermCodes[] 𝔫 𝔑 = refl -- --{-# REWRITE storeTermCodes[] #-} -- storeTermCodes' : List TermCode → StateT Nat (StateT TermNode Identity) ⊤ -- storeTermCodes' 𝔠s = -- 𝔑 ← get -| -- tn ← lift get -| -- (let 𝔑' , tn' = runIdentity $ runStateT (storeTermCodes 𝔠s 𝔑) tn in -- put 𝔑' ~| lift (put tn') ~| return tt) -- mutual -- storeTerm : Term → StateT Nat (StateT TermNode Identity) ⊤ -- storeTerm τ@(variable _) = storeTermCodes' (encodeTerm τ) -- storeTerm τ@(function _ τs) = storeTermCodes' (encodeTerm τ) ~| storeTerms τs -- storeTerms : Terms → StateT Nat (StateT TermNode Identity) ⊤ -- storeTerms ⟨ ⟨ [] ⟩ ⟩ = return tt -- storeTerms ⟨ ⟨ τ ∷ τs ⟩ ⟩ = storeTerm τ ~| storeTerms ⟨ ⟨ τs ⟩ ⟩ ~| return tt -- module ExampleStoreTerm where -- example-Term₁ : Term -- example-Term₁ = -- (function ⟨ 2 ⟩ -- ⟨ ⟨ variable ⟨ 0 ⟩ -- ∷ function ⟨ 3 ⟩ -- ⟨ ⟨ variable ⟨ 2 ⟩ ∷ [] ⟩ ⟩ -- ∷ variable ⟨ 5 ⟩ -- ∷ [] -- ⟩ ⟩ -- ) -- example-Term₂ : Term -- example-Term₂ = -- (function ⟨ 2 ⟩ -- ⟨ ⟨ variable ⟨ 0 ⟩ -- ∷ variable ⟨ 2 ⟩ -- ∷ function ⟨ 3 ⟩ -- ⟨ ⟨ variable ⟨ 2 ⟩ ∷ [] ⟩ ⟩ -- ∷ variable ⟨ 5 ⟩ -- ∷ [] -- ⟩ ⟩ -- ) -- topNode : TermNode -- topNode = record { children = [] ; number = 0 } -- example-storeTerm : (⊤ × Nat) × TermNode -- example-storeTerm = runIdentity $ runStateT (runStateT (storeTerm example-Term₁ >> storeTerm example-Term₂) 0) topNode -- NodeStateT = StateT TermNode -- TopNodeState = StateT Nat (NodeStateT Identity) -- storeLiteralFormulaTerms : LiteralFormula → StateT Nat (StateT TermNode Identity) ⊤ -- storeLiteralFormulaTerms ⟨ atomic 𝑃 τs ⟩ = storeTerms τs -- storeLiteralFormulaTerms ⟨ logical 𝑃 τs ⟩ = storeTerms τs -- storeSequentLiteralFormulaTerms : 𝓢equent LiteralFormula → StateT Nat (StateT TermNode Identity) ⊤′ -- storeSequentLiteralFormulaTerms (φˢs ⊢ φᵗ) = sequence $ storeLiteralFormulaTerms <$> ({!φᵗ!} ∷ φˢs) -- record FindTermNode (A : Set) : Set -- where -- field -- findTermNode : A → TermNode → Maybe TermNode -- open FindTermNode ⦃ … ⦄ -- instance -- FindTermNodeTermCode : FindTermNode TermCode -- FindTermNode.findTermNode FindTermNodeTermCode termCode record { children = [] ; number = number₁ } = nothing -- FindTermNode.findTermNode FindTermNodeTermCode termCode 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } = ifYes fst₁ ≟ termCode then just snd₁ else findTermNode termCode record 𝔫 { children = children₁ } -- FindTermNodeTermCodes : FindTermNode (List TermCode) -- FindTermNode.findTermNode FindTermNodeTermCodes [] node = just node -- FindTermNode.findTermNode FindTermNodeTermCodes (x ∷ termCodes) node = join $ findTermNode termCodes <$> findTermNode x node -- FindTermNodeTerm : FindTermNode Term -- FindTermNode.findTermNode FindTermNodeTerm term node = findTermNode (encodeTerm term) node -- -- This is starting to get difficult. We need Agda to know that the Term is encoded in the TermNode. Then we can drop the Maybe -- getInterpretationOfTerm : Term → TermNode → Maybe Element -- getInterpretationOfTerm τ node = ⟨_⟩ ∘ number <$> findTermNode (encodeTerm τ) node -- FindTermNodeTermCode-ok : ∀ {𝔠 𝔫} → 𝔠 child∈ 𝔫 → IsJust (findTermNode 𝔠 𝔫) -- FindTermNodeTermCode-ok {𝔠} {record { children = [] ; number = number₁ }} () -- --FindTermNodeTermCode-ok {𝔠} {record { children = (fst₁ , snd₁) ∷ children₁ ; number = number₁ }} x₁ = case (fst₁ ≟_) 𝔠 , graphAt {B = λ 𝑐 → Dec (fst₁ ≡ 𝑐)} (fst₁ ≟_) 𝔠 of λ { (yes x , snd₂) → {!!} ; (no x , snd₂) → {!!}} --λ { ((yes ===) , (inspect s1)) → {!!} ; ((no =n=) , inspect s2) → {!!} } -- --FindTermNodeTermCode-ok {𝔠} {record { children = (fst₁ , snd₁) ∷ children₁ ; number = number₁ }} x₁ = case fst₁ ≟ 𝔠 of λ { (yes refl) → {!!} ; (no x) → {!!}} -- FindTermNodeTermCode-ok {𝔠} {record { children = (fst₁ , snd₁) ∷ children₁ ; number = number₁ }} x₁ with fst₁ ≟ 𝔠 -- FindTermNodeTermCode-ok {𝔠} {record { children = (fst₁ , snd₁) ∷ children₁ ; number = number₁ }} x₁ | yes eq2 = tt -- FindTermNodeTermCode-ok {.fst₁} {record { children = (fst₁ , snd₁) ∷ children₁ ; number = number₁ }} (zero) | no neq = ⊥-elim (neq refl) -- FindTermNodeTermCode-ok {𝔠} {𝔫@record { children = (fst₁ , snd₁) ∷ children₁ ; number = number₁ }} (suc x₁) | no neq = FindTermNodeTermCode-ok {𝔫 = record 𝔫 { children = children₁ }} x₁ -- Justified : ∀ {a} {A : Set a} → (m : Maybe A) → IsJust m → ∃ λ x → m ≡ just x -- Justified nothing () -- Justified (just x) x₁ = _ , refl -- storeTerm-ok : ∀ τ 𝔫 𝔑 → IsJust (findTermNode τ (snd (runIdentity (runStateT (runStateT (storeTerm τ) 𝔑) 𝔫)))) -- storeTerm-ok (variable 𝑥) 𝔫 𝔑 with variable 𝑥 child∈? 𝔫 -- storeTerm-ok (variable 𝑥) 𝔫 𝔑 | no x with TermCode.variable 𝑥 ≟ variable 𝑥 -- storeTerm-ok (variable 𝑥) 𝔫 𝔑 | no x | yes _ = tt -- storeTerm-ok (variable 𝑥) 𝔫 𝔑 | no x | no variable𝑥≢variable𝑥 = ⊥-elim (variable𝑥≢variable𝑥 refl) -- --storeTerm-ok (variable 𝑥) 𝔫 𝔑 | yes vx∈𝔫 rewrite setGet-ok 𝔫 vx∈𝔫 = {!𝔫!} -- storeTerm-ok (variable 𝑥) record { children = [] ; number = number₁ } 𝔑 | yes () -- --storeTerm-ok x@(variable 𝑥) 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } 𝔑 | yes vx∈𝔫 rewrite setGet-ok 𝔫 vx∈𝔫 = {!!} -- storeTerm-ok x@(variable 𝑥) 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } 𝔑 | yes vx∈𝔫 rewrite setGet-ok 𝔫 vx∈𝔫 with fst₁ ≟ variable 𝑥 -- storeTerm-ok x@(variable 𝑥) 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } 𝔑 | yes vx∈𝔫 | yes eq = tt -- --… | no neq = case vx∈𝔫 of λ { (here .(map fst children₁)) → ⊥-elim (neq refl) ; (there .fst₁ asdf) → case graphAt FindTermNodeTermCode-ok asdf of λ { (ingraph sss) → {!!} } } -- storeTerm-ok x {!record 𝔫 { children = children₁ }!} 𝔑 -- x record 𝔫 { children = children₁ } 𝔑 -- --… | no neq = case vx∈𝔫 of λ { (here .(map fst children₁)) → ⊥-elim (neq refl) ; (there .fst₁ asdf) → case inspect $ FindTermNodeTermCode-ok {𝔫 = record 𝔫 { children = children₁ }} asdf of λ { (.(FindTermNodeTermCode-ok asdf) , ingraph refl) → {!!}} } -- storeTerm-ok x {!record 𝔫 { children = children₁ }!} 𝔑 -- x record 𝔫 { children = children₁ } 𝔑 -- storeTerm-ok x@(variable 𝑥) 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } 𝔑 | yes vx∈𝔫 | no neq with vx∈𝔫 -- storeTerm-ok x@(variable 𝑥) 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } 𝔑 | yes vx∈𝔫 | no neq | zero = ⊥-elim (neq refl) -- --storeTerm-ok x@(variable 𝑥) 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } 𝔑 | yes vx∈𝔫 | no neq | there dfdsf fdsdfs with FindTermNodeTermCode-ok {𝔫 = record 𝔫 { children = children₁ }} fdsdfs | graphAt (FindTermNodeTermCode-ok {𝔫 = record 𝔫 { children = children₁ }}) fdsdfs -- --… | frfrrf | ingraph tttttt = transport _ (snd $ Justified (FindTermNode.findTermNode FindTermNodeTermCode (variable 𝑥) (record { children = children₁ ; number = number₁ })) (FindTermNodeTermCode-ok {𝔫 = record 𝔫 { children = children₁ }} fdsdfs)) _ -- storeTerm-ok x@(variable 𝑥) 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } 𝔑 | yes vx∈𝔫 | no neq | suc fdsdfs rewrite (snd $ Justified (FindTermNode.findTermNode FindTermNodeTermCode (variable 𝑥) (record { children = children₁ ; number = number₁ })) (FindTermNodeTermCode-ok {𝔫 = record 𝔫 { children = children₁ }} fdsdfs)) = tt -- storeTerm-ok (function 𝑥 𝑎) 𝔫 𝔑 with (function 𝑥 (arity 𝑎)) child∈? 𝔫 -- storeTerm-ok (function 𝑥 ⟨ ⟨ [] ⟩ ⟩) 𝔫 𝔑 | no x with Eq._==_ EqFunctionName ⟨ name 𝑥 ⟩ ⟨ name 𝑥 ⟩ -- storeTerm-ok (function 𝑥 ⟨ ⟨ [] ⟩ ⟩) 𝔫 𝔑 | no x | (yes refl) = tt -- … | no neq = ⊥-elim (neq refl) -- --storeTerm-ok τ₀@(function 𝑓 ⟨ τ₁ ∷ τ₂s ⟩) 𝔫 𝔑 | no 𝔠₁∉𝔫 = {!τ₁!} -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥 ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₁∉𝔫 with variable 𝑥 child∈? 𝔫 -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥 ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (yes 𝔠₁∈𝔫) with 𝑓₀ ≟ 𝑓₀ -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥 ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (yes 𝔠₁∈𝔫) | yes refl with TermCode.variable 𝑥 ≟ variable 𝑥 -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥 ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (yes 𝔠₁∈𝔫) | yes refl | yes eq = tt -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥 ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (yes 𝔠₁∈𝔫) | yes refl | no neq = ⊥-elim (neq refl) -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥 ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (yes 𝔠₁∈𝔫) | no neq = ⊥-elim (neq refl) -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (no 𝔠₁∉𝔫) with 𝑓₀ ≟ 𝑓₀ -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (no 𝔠₁∉𝔫) | yes refl with TermCode.variable 𝑥₁ ≟ variable 𝑥₁ -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (no 𝔠₁∉𝔫) | yes refl | yes 𝔠₁≡𝔠₁ = tt -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (no 𝔠₁∉𝔫) | yes refl | no 𝔠₁≢𝔠₁ = ⊥-elim (𝔠₁≢𝔠₁ refl) -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (no 𝔠₁∉𝔫) | no 𝑓₀≢𝑓₀ = ⊥-elim (𝑓₀≢𝑓₀ refl) -- rewrite setGet-ok 𝔫 𝔠₁∈𝔫 -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ τ₂ ∷ τ₃s ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 with variable 𝑥₁ child∈? 𝔫 -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ τ₂ ∷ τ₃s ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | yes 𝔠₁∈𝔫 = {!!} -- storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ τ₂ ∷ τ₃s ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | no 𝔠₁∉𝔫 = {!!} -- storeTerm-ok τ₀@(function 𝑓₀ ⟨ ⟨ function 𝑓₁ τ₁s ∷ τ₂s ⟩ ⟩) 𝔫 𝔑 | no 𝔠₁∉𝔫 = {!!} -- storeTerm-ok (function 𝑥 x₁) 𝔫 𝔑 | yes x = {!!} -- mutual -- storeTermVerifiably' : (τ : Term) → StateT Nat (StateT (Σ TermNode λ n → IsJust (findTermNode τ n)) Identity) ⊤ -- storeTermVerifiably' (variable x) = {!!} -- storeTermVerifiably' (function x x₁) = {!!} -- storeTermVerifiably : Term → StateT Nat (StateT TermNode Identity) ⊤ -- storeTermVerifiably τ@(variable _) = storeTermCodes' (encodeTerm τ) -- storeTermVerifiably τ@(function _ τs) = storeTermCodes' (encodeTerm τ) ~| storeTermsVerifiably τs -- storeTermsVerifiably : Terms → StateT Nat (StateT TermNode Identity) ⊤ -- storeTermsVerifiably ⟨ ⟨ [] ⟩ ⟩ = return tt -- storeTermsVerifiably ⟨ ⟨ τ ∷ τs ⟩ ⟩ = storeTermVerifiably τ ~| storeTermsVerifiably ⟨ ⟨ τs ⟩ ⟩ ~| return tt -- Theorem1 : {Φ : 𝓢equent (𝓢equent LiteralFormula)} → {!⊨!} Φ ↔ {!▷!} Φ -- Theorem1 = {!!} -- {- -- Theorem1 {Φ@(χs ¶ ι)} = Theorem1a , Theorem1b -- where -- Theorem1a : ⊨ Φ → ▷ Φ -- Theorem1a with ▷? Φ -- … | yes ▷Φ = const ▷Φ -- … | no ⋫Φ = -- let I , I⊨χs , I⊭ι = Lemma1a in -- λ I→I⊨cs→I⊨i → ⊥-elim $ I⊭ι $ I→I⊨cs→I⊨i I I⊨χs -- where -- Lemma1a : ∃ λ I → I ⊨ χs × I ⊭ ι -- -- To construct the interpretation, consider a unique list, τ₀, τ₁, …, τₙ, of terms in ι ∷ χs. For each term, τ, we find <TODO> interpretations, 𝓘, such that for any I ∈ 𝓘, and any i ∈ 0, …, n, τ⟦ I ⟧ τᵢ = i. For each formula φ ∈ ι ∷ χs, we find <TODO> an interpretation I ∈ 𝓘 such that 𝑃⟦ I ⟧ φ = true when φ ∈ χs and 𝑃⟦ I ⟧ φ = false when φ = ι. -- -- For all terms in ι ∷ χs, find a coding into Nat that uniquely determines each term. To do this, compute the maximum functional depth of terms, D, the maximal arity of terms, A, the maximal function name, F, and the maximal variable name, V. Each term can then be coded into Fin V + (D₀ = F + F * V + F * V ^ 2 + ... + F * V ^ A) + (D₀ ... -- -- Encode each term in a discrimination network. Each new term stored is assigned a unique id -- Lemma1a = {!!} -- where -- Theorem1b : ▷ Φ → ⊨ Φ -- Theorem1b = {!!} -- -} -- negationEliminationRule : (I : Interpretation) (φ : Formula) → I ⊨ ~ (~ φ) → I ⊨ φ -- negationEliminationRule I φ (¬[I⊭φ×I⊭φ] , _) with I ⊨? φ -- … | yes I⊨φ = I⊨φ -- … | no I⊭φ = ⊥-elim $ ¬[I⊭φ×I⊭φ] $ I⊭φ , I⊭φ -- -- justifieds simplification and ... more? -- simplificationRule₁ : (I : Interpretation) (φ₁ φ₂ : Formula) → I ⊨ Formula.logical φ₁ φ₂ → I ⊨ Formula.logical φ₁ φ₁ -- simplificationRule₁ I φ₁ φ₂ x = (fst x) , (fst x) -- simplificationRule₂ : (I : Interpretation) (φ₁ φ₂ : Formula) → I ⊨ Formula.logical φ₁ φ₂ → I ⊨ Formula.logical φ₂ φ₂ -- simplificationRule₂ I φ₁ φ₂ x = snd x , snd x -- -- logical (logical (logical p p) q) (logical (logical p p) q) -- {- -- conditionalizationRule : (I : Interpretation) (p q : Formula) → I ⊨ q → I ⊨ (p ⊃ q ╱ (p ∷ []) ) -- conditionalizationRule I p q ⊨q (_ , _) = let prf = λ { (_ , ⊭q) → ⊭q ⊨q} in prf , prf -- --let ⊨p = {!-⊨p p (here [])!} in (λ { (x , ~q) → ~q ⊨q}) , (λ { (x , y) → y ⊨q}) -- -} -- modusPonens : (I : Interpretation) (p q : Formula) → I ⊨ p → I ⊨ (p ⊃ q) → I ⊨ q -- modusPonens I p q P (~[~p&~p&~q] , ~[~p&~p&~q]²) with I ⊨? q -- modusPonens I p q P (~[~p&~p&~q] , ~[~p&~p&~q]²) | yes x = x -- modusPonens I p q P (~[~p&~p&~q] , ~[~p&~p&~q]²) | no x = ⊥-elim (~[~p&~p&~q] ((λ { (x₁ , y) → y P}) , (λ x₁ → x x₁))) -- -- -- -- -- -- data SkolemFormula {ι : Size} (α : Alphabet) : Set where -- -- -- -- -- -- atomic : Predication α → SkolemFormula α -- -- -- -- -- -- logical : {ι¹ : Size< ι} → SkolemFormula {ι¹} α → {ι² : Size< ι} → SkolemFormula {ι²} α → SkolemFormula {ι} α -- -- -- -- -- -- record Alphabet₊ᵥ (α : Alphabet) : Set where -- -- -- -- -- -- constructor α₊ᵥ⟨_⟩ -- -- -- -- -- -- field -- -- -- -- -- -- alphabet : Alphabet -- -- -- -- -- -- .one-variable-is-added : (number ∘ variables $ alphabet) ≡ suc (number ∘ variables $ α) -- -- -- -- -- -- .there-are-no-functions-of-maximal-arity : number (functions alphabet) zero ≡ zero -- -- -- -- -- -- .shifted-function-matches : ∀ {ytira₀ ytira₁} → finToNat ytira₁ ≡ finToNat ytira₀ → number (functions alphabet) (suc ytira₁) ≡ number (functions α) ytira₀ -- -- -- -- -- -- open Alphabet₊ᵥ -- -- -- -- -- -- record Alphabet₊ₛ (α : Alphabet) : Set where -- -- -- -- -- -- constructor α₊ₛ⟨_⟩ -- -- -- -- -- -- field -- -- -- -- -- -- alphabet : Alphabet -- -- -- -- -- -- open Alphabet₊ₛ -- -- -- -- -- -- {- -- -- -- -- -- -- toSkolemFormula -- -- -- -- -- -- ∀x(F x v₀ v₁) ⟿ F v₀ v₁ v₂ -- -- -- -- -- -- ∃x(F x v₀ v₁) ⟿ F (s₀͍₂ v₀ v₁) v₀ v₁ -- -- -- -- -- -- ∀x(F x (s₀͍₂ v₀ v₁) v₁) ⟿ F v₀ (s₀͍₂ v₁ v₂) v₂ -- -- -- -- -- -- ∃x(F x (s₀͍₂ v₀ v₁) v₁) ⟿ F (s₀͍₂ v₀ v₁) (s₁͍₂ v₁ v₂) v₂ -- -- -- -- -- -- F v₀ ⊗ G v₀ ⟿ F v₀ ⊗ G v₀ -- -- -- -- -- -- ∀x(F x v₀ v₁) ⊗ ∀x(G x (s₀͍₂ x v₁) v₁) ⟿ F v₀ v₂ v₃ ⊗ G v₁ (s₀͍₂ v₀ v₃) v₃ -- -- -- -- -- -- ∀x(F x v₀ v₁) ⊗ ∃x(G x (s₀͍₂ x v₁) v₁) ⟿ F v₀ v₁ v₂ ⊗ G (s₀͍₁ v₂) (s₁͍₂ (s₀͍₂ v₂) v₂) v₂ -- -- -- -- -- -- Φ₀ = ∃x(G x (s₀͍₂ x v₁) v₁) has alphabet of 2 variables, skolem functions: 0, 0, 1 -- -- -- -- -- -- this is existential {α₊ₛ} Φ₁, where -- -- -- -- -- -- Φ₁ = G (s₀͍₂ v₀ v₁) (s₁͍₂ (s₀͍₂ v₀ v₁)) v₁ -- -- -- -- -- -- α₊ₛ = ⟨ 2 , 0 ∷ 0 ∷ 2 ∷ [] ⟩ -- -- -- -- -- -- maybe Φ₋₁ = ∀y∃x(G x (s₀͍₂ x v₀) v₀) -- -- -- -- -- -- and Φ₋₂ = ∀z∀y∃x(G x (s₀͍₂ x z) z), finally having no free variables, but nevertheless having skolem functions! these are user-defined functions, so this notion of Alphabet is somehow wrong. we have also left out constants (i.e. user-defined skolem-functions of arity 0) -- -- -- -- -- -- Instead, take the alphabet as defining -- -- -- -- -- -- a stack of free variables -- -- -- -- -- -- a matrix (triangle?) of skolem functions -- -- -- -- -- -- Let's try to reverse Φ₁ from a Skolem to a 1st-order formula. Is there a unique way to do it? -- -- -- -- -- -- Φ₀' = ∀x(G (s₀͍₂ x v₀) (s₁͍₂ (s₀͍₂ x v₀)) v₀ -- -- -- -- -- -- Nope! -- -- -- -- -- -- toSkolemFormula of -- -- -- -- -- -- -} -- -- -- -- -- -- -- toSkolemFormula (logical Φ₁ Φ₂) ⟿ -- -- -- -- -- -- -- let α' , φ₁ = toSkolemFormula Φ₁ -- -- -- -- -- -- -- Φ₂' = transcodeToAugmentedAlphabet Φ₂ α' -- -- -- -- -- -- -- α'' , φ₂' = toSkolemFormula Φ₂' -- -- -- -- -- -- -- φ₁' = transcodeToAugmentedAlphabet φ₁ α'' -- -- -- -- -- -- {- -- -- -- -- -- -- given Δv = #varibles α' - #variables α -- -- -- -- -- -- for every variable v in α, v in Φ, v stays the same in Φ' -- -- -- -- -- -- for the added variable v⁺ in α₊ - α, v⁺ in Φ, v⁺ ⟿ v⁺ + Δv in transcode (universal {α₊} Φ) -- -- -- -- -- -- α'₊ = α' + 1 variable -- -- -- -- -- -- -} -- -- -- -- -- -- -- record AddVariable (A : Alphabet → Set) : Set where -- -- -- -- -- -- -- field -- -- -- -- -- -- -- addVariableToAlphabet : {α : Alphabet} → A α → {α₊ : Alphabet} → Alphabet₊ᵥ α₊ → A α₊ -- -- -- -- -- -- -- instance -- -- -- -- -- -- -- AddVariableFirstOrderFormula : AddVariable FirstOrderFormula -- -- -- -- -- -- -- AddVariableFirstOrderFormula = {!!} -- -- -- -- -- -- -- #variables = number ∘ variables -- -- -- -- -- -- -- #functions_ofArity_ : Alphabet → Nat → Nat -- -- -- -- -- -- -- #functions α⟨ V⟨ #variables ⟩ , S⟨ #functions ⟩ ⟩ ofArity arity = if′ lessNat arity (suc #variables) then #functions (natToFin arity) else 0 -- -- -- -- -- -- -- record _⊇_ (α' α : Alphabet) : Set where -- -- -- -- -- -- -- field -- -- -- -- -- -- -- at-least-as-many-variables : #variables α' ≥ #variables α -- -- -- -- -- -- -- at-least-as-many-functions : ∀ {arity} → arity < #variables α → #functions α' ofArity arity ≥ #functions α ofArity arity -- -- -- -- -- -- -- record AddAlphabet (α-top α-bottom : Alphabet) : Set where -- -- -- -- -- -- -- field -- -- -- -- -- -- -- alphabet : Alphabet -- -- -- -- -- -- -- record Transcodeable (A : Alphabet → Set) : Set where -- -- -- -- -- -- -- field -- -- -- -- -- -- -- transcode : {α' α : Alphabet} → ⦃ _ : α' ⊇ α ⦄ → A α → A α' -- -- -- -- -- -- -- open Transcodeable ⦃ … ⦄ -- -- -- -- -- -- -- record TransferAlphabet {α' α : Alphabet} (α'⊇α : α' ⊇ α) (α₊ : Alphabet₊ᵥ α) (Φ : FirstOrderFormula (alphabet α₊)) : Set where -- -- -- -- -- -- -- field -- -- -- -- -- -- -- alphabet : Alphabet -- -- -- -- -- -- -- firstOrderFormula : FirstOrderFormula alphabet -- -- -- -- -- -- -- instance -- -- -- -- -- -- -- TranscodeablePredication : Transcodeable Predication -- -- -- -- -- -- -- TranscodeablePredication = {!!} -- -- -- -- -- -- -- TranscodeableAlphabet+Variable : Transcodeable Alphabet₊ᵥ -- -- -- -- -- -- -- TranscodeableAlphabet+Variable = {!!} -- -- -- -- -- -- -- TranscodeableSkolemFormula : Transcodeable SkolemFormula -- -- -- -- -- -- -- TranscodeableSkolemFormula = {!!} -- -- -- -- -- -- -- TranscodeableFirstOrderFormula : Transcodeable FirstOrderFormula -- -- -- -- -- -- -- Transcodeable.transcode TranscodeableFirstOrderFormula (atomic p) = atomic (transcode p) -- -- -- -- -- -- -- Transcodeable.transcode TranscodeableFirstOrderFormula (logical Φ₁ Φ₂) = logical (transcode Φ₁) (transcode Φ₂) -- -- -- -- -- -- -- Transcodeable.transcode TranscodeableFirstOrderFormula {α'} {α} ⦃ α'⊇α ⦄ (universal {α₊} Φ) = {!!} -- universal {_} {_} {transcode α₊} (transcode Φ) -- -- -- -- -- -- -- Transcodeable.transcode TranscodeableFirstOrderFormula (existential Φ) = {!!} -- -- -- -- -- -- -- --(α' α : Alphabet) (α'⊇α : α' ⊇ α) (α₊ : Alphabet+Variable α) (Φ : FirstOrderFormula (alphabet α₊)) → Σ _ λ (α''' : Alphabet) → FirstOrderFormula α''' -- -- -- -- -- -- -- --FirstOrderFormula (alphabet α₊) -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- --transcodeIntoAugmentedAlphabet : -- -- -- -- -- -- -- -- --toSkolemFormula : {α : Alphabet} → FirstOrderFormula α → Σ _ λ (α¹ : AugmentedAlphabet α) → SkolemFormula (alphabet α¹) -- -- -- -- -- -- -- -- --record IsEquivalentFormulas {α₀ : Alphabet} (φ₀ : SkolemFormula α₀) {α₁ : Alphabet} (Φ₁ : FirstOrderFormula α₁) : Set where -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- .atomicCase : {p : Predication α₀} → φ₀ ≡ atomic p → Φ₁ ≡ atomic p -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Alphabet+Alphabet (α₀ α₁ α₂ : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- alphabet : -- -- -- -- -- -- -- -- -- -- ∀xφ₁(x) ⊗ φ₂ ⟿ ∀x(φ₁ ⊗ φ₂) -- -- -- -- -- -- -- -- -- -- hasQuantifiers : FirstOrderFormula α → Bool -- -- -- -- -- -- -- -- -- --record Skolemization {α : Alphabet} (φ : FirstOrderFormula α) : Set where -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- alphabet : Alphabet -- -- -- -- -- -- -- -- -- -- skolemization : SkolemFormula alphabet -- -- -- -- -- -- -- -- -- record _IsAugmentationOf_ (α₁ α₀ : Alphabet) : Set where -- -- -- -- -- -- -- -- -- record AugmentedAlphabet (α : Alphabet) : Set where -- -- -- -- -- -- -- -- -- constructor ⟨_⟩ -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- alphabet : Alphabet -- -- -- -- -- -- -- -- -- ..laws : alphabet ≡ α -- -- -- -- -- -- -- -- -- open AugmentedAlphabet -- -- -- -- -- -- -- -- -- trivialAugmentation : (α : Alphabet) → AugmentedAlphabet α -- -- -- -- -- -- -- -- -- trivialAugmentation = {!!} -- -- -- -- -- -- -- -- -- record DisjointRelativeUnion {α : Alphabet} (α¹ α² : AugmentedAlphabet α) : Set where -- -- -- -- -- -- -- -- -- constructor ⟨_⟩ -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- augmentation : AugmentedAlphabet α -- -- -- -- -- -- -- -- -- .laws : {!!} -- -- -- -- -- -- -- -- -- open DisjointRelativeUnion -- -- -- -- -- -- -- -- -- disjointRelativeUnion : {α : Alphabet} → (α¹ α² : AugmentedAlphabet α) → DisjointRelativeUnion α¹ α² -- -- -- -- -- -- -- -- -- disjointRelativeUnion = {!!} -- -- -- -- -- -- -- -- -- -- inAugmentedAlphabet : {α : Alphabet} → (α¹ : AugmentedAlphabet α) → SkolemFormula α → SkolemFormula (alphabet α¹) -- -- -- -- -- -- -- -- -- -- inAugmentedAlphabet = {!!} -- -- -- -- -- -- -- -- -- -- toSkolemFormula : {α : Alphabet} → FirstOrderFormula α → Σ _ λ (α¹ : AugmentedAlphabet α) → SkolemFormula (alphabet α¹) -- -- -- -- -- -- -- -- -- -- toSkolemFormula {α₀} (atomic 𝑃) = trivialAugmentation α₀ , atomic 𝑃 -- -- -- -- -- -- -- -- -- -- toSkolemFormula {α₀} (logical φ₁ φ₂) with toSkolemFormula φ₁ | toSkolemFormula φ₂ -- -- -- -- -- -- -- -- -- -- toSkolemFormula {α₀} (logical φ₁ φ₂) | α¹ , Φ₁ | α² , Φ₂ = augmentation (disjointRelativeUnion α¹ α²) , logical {!inAugmentedAlphabet (augmentation (disjointRelativeUnion α¹ α²)) Φ₁!} {!Φ₂!} -- -- -- -- -- -- -- -- -- -- toSkolemFormula {α₀} (universal x) = {!!} -- -- -- -- -- -- -- -- -- -- toSkolemFormula {α₀} (existential x) = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula : ∀ {alphabet₀} → QFormula alphabet₀ → Σ _ λ alphabet₁ → NQFormula alphabet₁ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (atomic name terms) = alphabet₀ , atomic name terms -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (logical formula₁ formula₂) with toNQFormula formula₁ | toNQFormula formula₂ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- … | alphabet₁ , nqFormula₁ | alphabet₂ , nqFormula₂ = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (universal formula) = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (existential formula) = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- --VariableName = Fin ∘ |v| -- -- -- -- -- -- -- -- -- -- -- -- -- --FunctionArity = Fin ∘ suc ∘ size -- -- -- -- -- -- -- -- -- -- -- -- -- --FunctionName = λ alphabet ytira → Fin (|f| alphabet ytira) -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Alphabet : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- constructor ⟨_,_⟩ -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- |v| : Nat -- number of variables -- -- -- -- -- -- -- -- -- -- -- -- -- -- |f| : Fin (suc |v|) → Nat -- number of functions of each arity, |v| through 0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- open Alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- VariableName = Fin ∘ |v| -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- FunctionArity = Fin ∘ suc ∘ |v| -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- FunctionName = λ alphabet ytira → Fin (|f| alphabet ytira) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data Term {i : Size} (alphabet : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- variable : VariableName alphabet → Term alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- function : ∀ {arity : FunctionArity alphabet} → -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- FunctionName alphabet (natToFin (|v| alphabet) - arity) → -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ∀ {j : Size< i} → Vec (Term {j} alphabet) (finToNat arity) → -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Term {i} alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- PredicateArity = Nat -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- PredicateName = Nat -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a zeroth-order formula? (i.e. no quantifiers) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data NQFormula {i : Size} (alphabet : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- atomic : PredicateName → ∀ {arity} → Vec (Term alphabet) arity → NQFormula alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- logical : {j : Size< i} → NQFormula {j} alphabet → {k : Size< i} → NQFormula {k} alphabet → NQFormula {i} alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record AugmentedByVariable (alphabet₀ alphabet₁ : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- one-variable-is-added : |v| alphabet₁ ≡ suc (|v| alphabet₀) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- function-domain-is-zero-at-new-variable : |f| alphabet₁ zero ≡ 0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- shifted-function-matches : ∀ {ytira₀ ytira₁} → finToNat ytira₁ ≡ finToNat ytira₀ → |f| alphabet₁ (suc ytira₁) ≡ |f| alphabet₀ ytira₀ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record AugmentVariables (alphabet₀ : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- alphabet₁ : Alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentation : AugmentedByVariable alphabet₀ alphabet₁ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- open AugmentVariables -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentVariables : (alphabet : Alphabet) → AugmentVariables alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentVariables ⟨ |v| , |f| ⟩ = -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- { alphabet₁ = ⟨ suc |v| , (λ { zero → zero ; (suc ytira) → |f| ytira}) ⟩ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ; augmentation = -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- { one-variable-is-added = refl -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ; function-domain-is-zero-at-new-variable = refl -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ; shifted-function-matches = cong |f| ∘ finToNat-inj } } -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- |f|₀ = |f|₀ + 1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentFunctions : Alphabet → Alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentFunctions ⟨ |v| , |f| ⟩ = ⟨ |v| , (λ { zero → suc (|f| zero) ; (suc ytira) → |f| (suc ytira) }) ⟩ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data QFormula {i : Size} (alphabet : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- atomic : PredicateName → ∀ {arity} → Vec (Term alphabet) arity → QFormula alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- logical : {j : Size< i} → QFormula {j} alphabet → {k : Size< i} → QFormula {k} alphabet → QFormula {i} alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- universal : QFormula (alphabet₁ (augmentVariables alphabet)) → QFormula alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- existential : QFormula (augmentFunctions alphabet) → QFormula alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Assignment (alphabet : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- constructor ⟨_,_⟩ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- μ : VariableName alphabet → Domain -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 𝑓 : ∀ {arity} → FunctionName alphabet arity → Vec Domain (finToNat arity) → Domain -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateTerm : ∀ {i alphabet} → Assignment alphabet → Term {i} alphabet → Domain -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateTerm ⟨ μ , _ ⟩ (variable x) = μ x -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateTerm 𝑎@(⟨ μ , 𝑓 ⟩) (function f x) = 𝑓 f (evaluateTerm 𝑎 <$> x) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Interpretation (alphabet : Alphabet) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- constructor ⟨_,_⟩ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- open Assignment -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 𝑎 : Assignment alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 𝑃 : PredicateName → ∀ {arity} → Vec Domain arity → Bool -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateNQFormula : ∀ {i alphabet} → Interpretation alphabet → NQFormula {i} alphabet → Bool -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateNQFormula ⟨ 𝑎 , 𝑃 ⟩ (atomic name terms) = 𝑃 name $ evaluateTerm 𝑎 <$> terms -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateNQFormula I (logical formula₁ formula₂) = not (evaluateNQFormula I formula₁) && not (evaluateNQFormula I formula₂) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula : ∀ {alphabet₀} → QFormula alphabet₀ → Σ _ λ alphabet₁ → NQFormula alphabet₁ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (atomic name terms) = alphabet₀ , atomic name terms -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (logical formula₁ formula₂) with toNQFormula formula₁ | toNQFormula formula₂ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- … | alphabet₁ , nqFormula₁ | alphabet₂ , nqFormula₂ = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (universal formula) = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (existential formula) = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record IsADisjointUnionOfNQFormulas -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- {alphabet₁ alphabet₂ alphabet₁₊₂ : Alphabet} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (formula₁ : NQFormula alphabet₁) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (formula₂ : NQFormula alphabet₂) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (formula₁₊₂ : NQFormula alphabet₁₊₂) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- alphabet-size : |v| alphabet₁₊₂ ≡ |v| alphabet₁ + |v| alphabet₂ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --|f| alphabet₁₊₂ ytira -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ----record AlphabetSummed (alphabet₀ alphabet₁ : Alphabet) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --addAlphabets : Alphabet → Alphabet → Alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --addAlphabets ⟨ |v|₁ , |f|₁ ⟩ ⟨ |v|₂ , |f|₂ ⟩ = ⟨ (|v|₁ + |v|₂) , (λ x → if′ finToNat x ≤? |v|₁ && finToNat x ≤? |v|₂ then {!!} else {!!}) ⟩ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- sup : ∀ {alphabet₁} → Formula alphabet₁ → ∀ {alphabet₂} → Formula alphabet₂ → Σ _ λ alphabet₁₊₂ → Formula alphabet₁₊₂ × Formula alphabet₁₊₂ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- sup {⟨ |v|₁ , |a|₁ , |f|₁ ⟩} φ₁ {⟨ |v|₂ , |a|₂ , |f|₂ ⟩} φ₂ = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- pnf : ∀ {alphabet} → Formula alphabet → Σ _ λ alphabet+ → Formula₀ alphabet+ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- pnf = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --universal (P 0) = ∀ x → P x -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (∀ x ∃ y (P x y)) ∨ (∀ x ∃ y (P x y)) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- P x₀ (s₀͍₁ x₀) ∨ P x₁ (s₁͍₁ x₁) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- extended|f| : (arity : Arity) → Vec ℕ (suc |a|) → Vec ℕ (++arity (max arity |a|)) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- extended|f| = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- add a variable to the alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentVariables : Alphabet → Alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentVariables = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- increaseTabulationAtN : ∀ {n} → Fin n → (Fin n → Nat) → Fin n → Nat -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- increaseTabulationAtN = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record AugmentedFunctions {|a| : Arity} (arity : Arity) (|f| : Vec ℕ (++arity |a|)) : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- maxA : ℕ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- maxA-law : max arity |a| ≡ maxA -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ++|f| : Vec ℕ maxA -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- f-law : increaseTabulationAt arity (indexVec |f|) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- define -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a ⊗ b ≡ False a and False b -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- now, we can define -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ¬a = a ⊗ a ≡ False a and False a -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a ∨ b = ¬(a ⊗ b) ≡ False (False a and False b) and False (False a and False b) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a ∧ b = ¬(¬a ∨ ¬b) = ¬(¬(¬a ⊗ ¬b)) = ¬a ⊗ ¬b = False (False a and False a) and False (False b and False b) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a → b = ¬a ∨ b = (a ⊗ a) ∨ b = ¬((a ⊗ a) ⊗ b) = ((a ⊗ a) ⊗ b) ⊗ ((a ⊗ a) ⊗ b) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- conversion to prenex -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ∀xF ⊗ G ⟿ ∃x(F ⊗ wk(G)) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ∃xF ⊗ G ⟿ ∀x(F ⊗ wk(G)) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- F ⊗ ∀xG ⟿ ∃x(wk(F) ⊗ G) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- F ⊗ ∃xG ⟿ ∀x(wk(F) ⊗ G) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ======================== -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (a ⊗ ∀xB) ⊗ c ⟿ ∃x(wk(a) ⊗ B) ⊗ c ⟿ ∀x((wk(a) ⊗ B) ⊗ wk(c)) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF : (arity : Arity) → ∀ {|a| : Arity} → Vec ℕ (++arity |a|) → Vec ℕ (++arity (max arity |a|)) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- with decBool (lessNat |a| arity) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | yes x with compare arity |a| -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {.(suc (k + arity))} |f| | yes x | less (diff k refl) = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {.arity} |f| | yes x | equal refl with lessNat arity arity -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {.arity} |f| | yes x | equal refl | false = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF zero {.zero} |f| | yes true | equal refl | true = {!!} ∷ [] -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF (suc arity) {.(suc arity)} |f| | yes true | equal refl | true = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | yes x | greater gt = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | no x with decBool (lessNat arity |a|) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | no x₁ | yes x = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | no x₁ | no x = {!!} -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- = case arity <? |a| of λ { false → {!!} ; true → {!!} } -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- add a function of a given arity to the alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentFunctions : Arity → Alphabet → Alphabet -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentFunctions arity ⟨ |v| , |a| , |f| ⟩ = ⟨ |v| , max arity |a| , augmentF arity |f| ⟩ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Alphabet : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data DomainSignifier : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- free : Nat → DomainSignifier -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data PartiallyAppliedFunction : Nat → Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- constant : PartiallyAppliedFunction 0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- function : ∀ {n} → PartiallyAppliedFunction 0 → PartiallyAppliedFunction (suc n) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Term = PartiallyAppliedFunction 0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data PartialyAppliedPredicate : Nat → Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- statement : PartialyAppliedPredicate 0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- partial : ∀ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Language : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Name = String -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Function : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- name : Name -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- number-of-arguments : Nat -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Vec -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data Function : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data Term : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- function : Function → -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data Sentence : Set where -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- predication : Name → -- -- -- -- -- -- {- -- -- -- -- -- -- record Variables : Set where -- -- -- -- -- -- constructor V⟨_⟩ -- -- -- -- -- -- field -- -- -- -- -- -- number : Nat -- -- -- -- -- -- open Variables -- -- -- -- -- -- record Functions (υ : Variables) : Set where -- -- -- -- -- -- constructor S⟨_⟩ -- -- -- -- -- -- field -- -- -- -- -- -- number : Fin (suc (number υ)) → Nat -- -- -- -- -- -- open Functions -- -- -- -- -- -- record Alphabet : Set where -- -- -- -- -- -- constructor α⟨_,_⟩ -- -- -- -- -- -- field -- -- -- -- -- -- variables : Variables -- -- -- -- -- -- functions : Functions variables -- -- -- -- -- -- open Alphabet -- -- -- -- -- -- record Variable (α : Alphabet) : Set where -- -- -- -- -- -- constructor v⟨_⟩ -- -- -- -- -- -- field -- -- -- -- -- -- name : Fin (number (variables α)) -- -- -- -- -- -- open Variable -- -- -- -- -- -- record Function (α : Alphabet) : Set where -- -- -- -- -- -- constructor s⟨_,_⟩ -- -- -- -- -- -- field -- -- -- -- -- -- arity : Fin ∘ suc ∘ number ∘ variables $ α -- -- -- -- -- -- name : Fin $ number (functions α) arity -- -- -- -- -- -- open Function -- -- -- -- -- -- data Term (𝑽 : Nat) : Set where -- -- -- -- -- -- variable : Fin 𝑽 → Term 𝑽 -- -- -- -- -- -- function : (𝑓 : Function α) → {ι₋₁ : Size< ι₀} → Vec (Term {ι₋₁} α) (finToNat (arity 𝑓)) → -- -- -- -- -- -- Term {ι₀} α -- -- -- -- -- -- record Predication (alphabet : Alphabet) : Set where -- -- -- -- -- -- constructor P⟨_,_,_⟩ -- -- -- -- -- -- field -- -- -- -- -- -- name : Nat -- -- -- -- -- -- arity : Nat -- -- -- -- -- -- terms : Vec (Term alphabet) arity -- -- -- -- -- -- open Predication -- -- -- -- -- -- -} -- -- module NotUsed where -- -- -- thought it might be easier to use this -- -- module UsingContainerList where -- -- record TermNode : Set -- -- where -- -- inductive -- -- field -- -- children : List (TermCode × TermNode) -- -- number : Nat -- -- open TermNode -- -- _child∈_ : TermCode → TermNode → Set -- -- _child∈_ 𝔠 𝔫 = Any ((𝔠 ≡_) ∘ fst) (children 𝔫) -- -- -- this still has a lambda problem, albeit weirder -- -- module RememberChildren where -- -- record TermNode : Set -- -- where -- -- inductive -- -- field -- -- tests : List TermCode -- -- children : ∀ {𝔠} → 𝔠 ∈ tests → TermNode -- -- number : Nat -- -- open TermNode -- -- addChild : {𝔠 : TermCode} (𝔫 : TermNode) → 𝔠 ∉ tests 𝔫 → TermNode → TermNode -- -- addChild {𝔠} 𝔫 𝔠∉tests𝔫 𝔫' = -- -- record 𝔫 -- -- { tests = 𝔠 ∷ tests 𝔫 -- -- ; children = λ -- -- { (here _) → 𝔫' -- -- ; (there _ 𝔠'∈tests) → children 𝔫 𝔠'∈tests }} -- -- setChild : {𝔠 : TermCode} (𝔫 : TermNode) → 𝔠 ∈ tests 𝔫 → TermNode → TermNode -- -- setChild {𝔠} 𝔫 𝔠∈tests𝔫 𝔫' = -- -- record 𝔫 -- -- { children = λ {𝔠'} 𝔠'∈tests𝔫' → ifYes 𝔠' ≟ 𝔠 then 𝔫' else children 𝔫 𝔠'∈tests𝔫' } -- -- storeTermCodes : List TermCode → Nat → StateT TermNode Identity Nat -- -- storeTermCodes [] 𝔑 = return 𝔑 -- -- storeTermCodes (𝔠 ∷ 𝔠s) 𝔑 = -- -- 𝔫 ← get -| -- -- case 𝔠 ∈? tests 𝔫 of λ -- -- { (no 𝔠∉tests) → -- -- let 𝔑' , 𝔫' = runIdentity $ -- -- runStateT -- -- (storeTermCodes 𝔠s $ suc 𝔑) -- -- (record -- -- { tests = [] -- -- ; children = λ () -- -- ; number = suc 𝔑 }) in -- -- put (addChild 𝔫 𝔠∉tests 𝔫') ~| -- -- return 𝔑' -- -- ; (yes 𝔠∈tests) → -- -- let 𝔑' , 𝔫' = runIdentity $ -- -- runStateT -- -- (storeTermCodes 𝔠s $ suc 𝔑) -- -- (children 𝔫 𝔠∈tests) in -- -- put (setChild 𝔫 𝔠∈tests 𝔫') ~| -- -- return 𝔑' } -- -- topNode : TermNode -- -- topNode = record { tests = [] ; children = λ () ; number = 0 } -- -- example-store : TermNode -- -- example-store = snd ∘ runIdentity $ runStateT (storeTermCodes example-TermCodes 0) topNode -- -- foo : TermNode × TermNode -- -- foo = -- -- {!example-store!} , -- -- {!snd ∘ runIdentity $ runStateT (storeTermCodes example-TermCodes 10) example-store!} -- -- -- using a lambda for the children results in extra unnecessary structure when adding to an existing node; perhaps using an explicit mapping? or use another field to state what codes are present in the mapping? -- -- module NoParents where -- -- mutual -- -- record TermNode : Set -- -- where -- -- inductive -- -- field -- -- children : TermCode → Maybe TermNode -- Map TermCode TermNode -- -- self : TermCode -- -- number : Nat -- -- record TopTermNode : Set -- -- where -- -- inductive -- -- field -- -- children : TermCode → Maybe TermNode -- -- open TermNode -- -- open TopTermNode -- -- storeTermCodes : List TermCode → Nat → StateT TermNode Identity ⊤ -- -- storeTermCodes [] _ = return tt -- -- storeTermCodes (𝔠 ∷ 𝔠s) 𝔑 = -- -- 𝔫 ← get -| -- -- case children 𝔫 𝔠 of λ -- -- { nothing → -- -- put -- -- (record 𝔫 -- -- { children = -- -- λ 𝔠' → -- -- ifYes 𝔠' ≟ 𝔠 then -- -- just ∘ snd ∘ runIdentity $ -- -- (runStateT -- -- (storeTermCodes 𝔠s (suc 𝔑)) -- -- (record -- -- { self = 𝔠 -- -- ; children = const nothing -- -- ; number = suc 𝔑 })) -- -- else -- -- children 𝔫 𝔠' } ) ~| -- -- return tt -- -- ; (just 𝔫') → -- -- put (record 𝔫 -- -- { children = -- -- λ 𝔠' → -- -- ifYes 𝔠' ≟ 𝔠 then -- -- just ∘ snd ∘ runIdentity $ -- -- runStateT (storeTermCodes 𝔠s 𝔑) 𝔫' -- -- else -- -- children 𝔫 𝔠' }) ~| -- -- return tt } -- -- storeTermCodesAtTop : List TermCode → Nat → StateT TopTermNode Identity ⊤ -- -- storeTermCodesAtTop [] _ = return tt -- -- storeTermCodesAtTop (𝔠 ∷ 𝔠s) 𝔑 = -- -- 𝔫 ← get -| -- -- case children 𝔫 𝔠 of λ -- -- { nothing → -- -- put -- -- (record 𝔫 -- -- { children = -- -- λ 𝔠' → -- -- ifYes 𝔠' ≟ 𝔠 then -- -- just ∘ snd ∘ runIdentity $ -- -- (runStateT -- -- (storeTermCodes 𝔠s (suc 𝔑)) -- -- (record -- -- { self = 𝔠 -- -- ; children = const nothing -- -- ; number = suc 𝔑 })) -- -- else -- -- children 𝔫 𝔠' } ) ~| -- -- return tt -- -- ; (just 𝔫') → -- -- put (record 𝔫 -- -- { children = -- -- λ 𝔠' → -- -- ifYes 𝔠' ≟ 𝔠 then -- -- just ∘ snd ∘ runIdentity $ -- -- runStateT (storeTermCodes 𝔠s 𝔑) 𝔫' -- -- else -- -- children 𝔫 𝔠' }) ~| -- -- return tt } -- -- initialTopNode : TopTermNode -- -- initialTopNode = record { children = const nothing } -- -- example-store : TopTermNode -- -- example-store = snd ∘ runIdentity $ runStateT (storeTermCodesAtTop example-TermCodes 0) initialTopNode -- -- foo : TopTermNode × TopTermNode -- -- foo = -- -- {!example-store!} , -- -- {!snd ∘ runIdentity $ runStateT (storeTermCodesAtTop example-TermCodes 10) example-store!} -- -- -- it's tricky to keep the parents up to date when the children change (viz adolescence) -- -- module FirstTryWithParent where -- -- mutual -- -- record TermNode : Set -- -- where -- -- inductive -- -- field -- -- parent : TopTermNode ⊎ TermNode -- -- self : TermCode -- -- children : TermCode → Maybe TermNode -- Map TermCode TermNode -- -- number : Nat -- -- record TopTermNode : Set -- -- where -- -- inductive -- -- field -- -- children : TermCode → Maybe TermNode -- -- open TermNode -- -- open TopTermNode -- -- storeTermCodes : List TermCode → Nat → StateT TermNode Identity ⊤ -- -- storeTermCodes [] _ = return tt -- -- storeTermCodes (𝔠 ∷ 𝔠s) 𝔑 = -- -- 𝔫 ← get -| -- -- case children 𝔫 𝔠 of λ -- -- { nothing → -- -- put -- -- (record 𝔫 -- -- { children = -- -- λ 𝔠' → -- -- ifYes 𝔠' ≟ 𝔠 then -- -- just ∘ snd ∘ runIdentity $ -- -- (runStateT -- -- (storeTermCodes 𝔠s (suc 𝔑)) -- -- (record -- -- { parent = right 𝔫 -- -- ; self = 𝔠 -- -- ; children = const nothing -- -- ; number = suc 𝔑 })) -- -- else -- -- children 𝔫 𝔠' } ) ~| -- -- return tt -- -- ; (just 𝔫') → -- -- put (record 𝔫 -- -- { children = -- -- λ 𝔠' → -- -- ifYes 𝔠' ≟ 𝔠 then -- -- just ∘ snd ∘ runIdentity $ -- -- runStateT (storeTermCodes 𝔠s 𝔑) 𝔫' -- -- else -- -- children 𝔫 𝔠' }) ~| -- -- return tt } -- -- storeTermCodesAtTop : List TermCode → Nat → StateT TopTermNode Identity ⊤ -- -- storeTermCodesAtTop [] _ = return tt -- -- storeTermCodesAtTop (𝔠 ∷ 𝔠s) 𝔑 = -- -- 𝔫 ← get -| -- -- case children 𝔫 𝔠 of λ -- -- { nothing → -- -- put -- -- (record 𝔫 -- -- { children = -- -- λ 𝔠' → -- -- ifYes 𝔠' ≟ 𝔠 then -- -- just ∘ snd ∘ runIdentity $ -- -- (runStateT -- -- (storeTermCodes 𝔠s (suc 𝔑)) -- -- (record -- -- { parent = left 𝔫 -- -- ; self = 𝔠 -- -- ; children = const nothing -- -- ; number = suc 𝔑 })) -- -- else -- -- children 𝔫 𝔠' } ) ~| -- -- return tt -- -- ; (just 𝔫') → -- -- put (record 𝔫 -- -- { children = -- -- λ 𝔠' → -- -- ifYes 𝔠' ≟ 𝔠 then -- -- just ∘ snd ∘ runIdentity $ -- -- runStateT (storeTermCodes 𝔠s 𝔑) 𝔫' -- -- else -- -- children 𝔫 𝔠' }) ~| -- -- return tt } -- -- initialTopNode : TopTermNode -- -- initialTopNode = record { children = const nothing } -- -- example-store : TopTermNode -- -- example-store = snd ∘ runIdentity $ runStateT (storeTermCodesAtTop example-TermCodes 0) initialTopNode -- -- foo : TopTermNode -- -- foo = {!example-store!} -- -- -- -- -- -- _⟪_⟫_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → -- -- A → (A → B → C) → B → C -- -- x ⟪ f ⟫ y = f x y -- -- -- -- {- -- -- infixr 9 _∘₂′_ -- -- _∘₂′_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} → -- -- (C → D) → (A → B → C) → (A → B → D) -- -- _∘₂′_ = _∘′_ ∘ _∘′_ -- -- {-# INLINE _∘₂′_ #-} -- -- -- -- infixr 9 _∘₂′_ -- -- _∘₂′_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} → -- -- (C → D) → (A → B → C) → (A → B → D) -- -- _∘₂′_ = _∘′_ ∘ _∘′_ -- -- {-# INLINE _∘₂′_ #-} -- -- -} -- -- {- -- -- infixr 9 _∘₂_ -- -- _∘₂_ : ∀ {a b c d} {A : Set a} {B : A → Set b} {C : ∀ x → B x → Set c} {D : ∀ x → B x → C x -- -- (f : ∀ {x} (y : B x) → C x y) (g : ∀ x → B x) → -- -- ∀ x → C x (g x) -- -- _∘₂_ = _∘′_ ∘ _∘′_ -- -- {-# INLINE _∘₂′_ #-} -- -- -}
45.365282
405
0.508044
205707c4e9d237fa6a7cf17eba9555f550c3eb47
6,792
agda
Agda
src/JVM/Printer/Jasmin.agda
ajrouvoet/jvm.agda
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
[ "Apache-2.0" ]
6
2020-10-07T14:07:17.000Z
2021-02-28T21:49:08.000Z
src/JVM/Printer/Jasmin.agda
ajrouvoet/jvm.agda
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
[ "Apache-2.0" ]
null
null
null
src/JVM/Printer/Jasmin.agda
ajrouvoet/jvm.agda
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
[ "Apache-2.0" ]
1
2021-12-28T17:37:15.000Z
2021-12-28T17:37:15.000Z
{-# OPTIONS --safe #-} module JVM.Printer.Jasmin where open import Function open import Data.Nat open import Data.Integer open import Data.Nat.Show as NatShow open import Data.String as S using (String) open import Data.List as List open import JVM.Types open import JVM.Builtins sep : List (List String) → List String sep = List.concat ∘ List.intersperse [ " " ] Words = List String abstract Line = String Lines = List String unwords : Words → Line unwords = S.unwords line : String → Line line = id lines : List Line → Lines lines = id unlines : Lines → String unlines = S.unlines infixr 4 _<+_ _<+_ : Line → Lines → Lines l <+ ls = l ∷ ls infixl 6 _+>_ _+>_ : Lines → Line → Lines ls +> l = ls ∷ʳ l infixl 4 _<>_ _<>_ : Lines → Lines → Lines ls <> js = ls ++ js pars : List Lines → Lines pars = concat ident : Line → Line ident = "\t" S.++_ indent : Lines → Lines indent = List.map ident record ClassSpec : Set where constructor class field class_name : String out : Line out = unwords $ ".class" ∷ "public" ∷ class_name ∷ [] record SuperSpec : Set where constructor super field class_name : String out : Line out = unwords $ ".super" ∷ class_name ∷ [] record Header : Set where field class_spec : ClassSpec super_spec : SuperSpec out : Lines out = lines $ ClassSpec.out class_spec ∷ SuperSpec.out super_spec ∷ [] module Descriptor where type-desc : Ty → String type-desc boolean = "Z" type-desc byte = "B" type-desc short = "S" type-desc int = "I" type-desc long = "J" type-desc char = "C" type-desc (array t) = "[" S.++ type-desc t type-desc (ref cls) = S.concat $ "L" ∷ cls ∷ ";" ∷ [] ret-desc : Ret → String ret-desc void = "V" ret-desc (ty t) = type-desc t out : List Ty → Ret → String out as r = args as S.++ ret-desc r where args : List Ty → String args d = "(" S.++ (S.intersperse ";" (List.map type-desc d)) S.++ ")" data Comparator : Set where eq ne lt ge gt le : Comparator icmpge icmpgt icmpeq icmpne icmplt icmple : Comparator open import JVM.Types using (Fun) module Comp where out : Comparator → String out eq = "eq" out ne = "ne" out lt = "lt" out ge = "ge" out gt = "gt" out le = "le" out icmpge = "_icmpge" out icmpgt = "_icmpgt" out icmpeq = "_icmpeq" out icmpne = "_icmpne" out icmplt = "_icmplt" out icmple = "_icmple" data Instr : Set where nop pop dup swap ret : Instr aconst_null : Instr bipush sipush : ℤ → Instr iconstm1 iconst0 iconst1 iconst2 : Instr aaload aload iload : ℕ → Instr aastore astore istore : ℕ → Instr new : String → Instr goto : String → Instr if : Comparator → String → Instr iadd isub imul idiv ixor : Instr invokevirtual invokespecial invokestatic : Fun → Instr module Funs where out : Fun → String out (c / m :⟨ as ⟩ r) = c S.++ "/" S.++ m S.++ Descriptor.out as r module Instruction where lbl : String → String lbl x = "label_" S.++ x showInt : ℤ → String showInt (+ n) = NatShow.show n showInt (-[1+ n ]) = "-" S.++ NatShow.show (ℕ.suc n) out : Instr → Line out nop = line "nop" out pop = line "pop" out dup = line "dup" out swap = line "swap" out ret = line "return" out aconst_null = line "aconst_null" out (bipush n) = unwords $ "sipush" ∷ showInt n ∷ [] out (sipush n) = unwords $ "bipush" ∷ showInt n ∷ [] out (aload n) = unwords $ "aload" ∷ NatShow.show n ∷ [] out (astore n) = unwords $ "astore" ∷ NatShow.show n ∷ [] out (iload n) = unwords $ "iload" ∷ NatShow.show n ∷ [] out (istore n) = unwords $ "istore" ∷ NatShow.show n ∷ [] out (aaload n) = unwords $ "aaload" ∷ NatShow.show n ∷ [] out (aastore n) = unwords $ "astore" ∷ NatShow.show n ∷ [] out iconstm1 = line "iconstm1" out iconst0 = line "iconst_0" out iconst1 = line "iconst_1" out iconst2 = line "iconst_2" out (goto l) = unwords $ "goto" ∷ lbl l ∷ [] out (if c l) = unwords $ ("if" S.++ Comp.out c) ∷ lbl l ∷ [] out iadd = line "iadd" out isub = line "isub" out imul = line "imul" out idiv = line "idiv" out ixor = line "ixor" out (new c) = unwords $ "new" ∷ c ∷ [] out (invokespecial sf) = unwords $ "invokespecial" ∷ Funs.out sf ∷ [] out (invokestatic sf) = unwords $ "invokestatic" ∷ Funs.out sf ∷ [] out (invokevirtual sf) = unwords $ "invokevirtual" ∷ Funs.out sf ∷ [] data Stat : Set where label : String → Stat instr : Instr → Stat module Statement where out : Stat → Line out (label x) = line $ Instruction.lbl x S.++ ":" out (instr x) = Instruction.out x record ClassField : Set where constructor clsfield field name : String access : List String f_ty : Ty out : Line out = unwords $ ".field" ∷ access ++ name ∷ Descriptor.type-desc f_ty ∷ [] record Method : Set where constructor method field name : String access : List String locals : ℕ stacksize : ℕ m_args : List Ty m_ret : Ret body : List Stat out : Lines out = (unwords $ ".method" ∷ (S.unwords access) ∷ (name S.++ Descriptor.out m_args m_ret) ∷ []) <+ (ident $ unwords $ ".limit locals" ∷ NatShow.show locals ∷ []) <+ (ident $ unwords $ ".limit stack" ∷ NatShow.show stacksize ∷ []) <+ (lines $ List.map (ident ∘ Statement.out) body) +> (line $ ".end method") record Jasmin : Set where constructor jasmin field header : Header fields : List ClassField methods : List Method out : Lines out = Header.out header <> lines (List.map ClassField.out fields) <> pars (List.map Method.out methods) module _ where defaultInit : Method defaultInit = method "<init>" [ "public" ] 1 1 [] void ( instr (aload 0) ∷ instr (invokespecial (Object / "<init>" :⟨ [] ⟩ void)) ∷ instr ret ∷ [] ) procedure : (name : String) → ℕ → ℕ → List Stat → Jasmin procedure name locals stack st = jasmin (record { class_spec = class name ; super_spec = super Object }) [] ( method "apply" ("public" ∷ "static" ∷ []) locals stack [] void (st ∷ʳ instr ret) ∷ defaultInit ∷ method "main" ("public" ∷ "static" ∷ []) 1 0 [ array (ref "java/lang/String") ] void ( instr (invokestatic (name / "apply" :⟨ [] ⟩ void)) ∷ instr ret ∷ [] ) ∷ [] )
24.698182
98
0.565518