hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
22ff552eb7ef647791edf5246b1e83a9862ccf14
21,407
agda
Agda
src/to-string.agda
ice1000/cedille
bf62d3d338809a30bc21a1affed07936b1ac60ac
[ "MIT" ]
null
null
null
src/to-string.agda
ice1000/cedille
bf62d3d338809a30bc21a1affed07936b1ac60ac
[ "MIT" ]
null
null
null
src/to-string.agda
ice1000/cedille
bf62d3d338809a30bc21a1affed07936b1ac60ac
[ "MIT" ]
null
null
null
import cedille-options module to-string (options : cedille-options.options) where open import cedille-types open import constants open import syntax-util open import ctxt open import rename open import general-util open import datatype-util open import type-util open import free-vars open import json data expr-side : Set where left : expr-side right : expr-side neither : expr-side is-left : expr-side → 𝔹 is-left left = tt is-left _ = ff is-right : expr-side → 𝔹 is-right right = tt is-right _ = ff exprd-eq : exprd → exprd → 𝔹 exprd-eq TERM TERM = tt exprd-eq TYPE TYPE = tt exprd-eq KIND KIND = tt exprd-eq _ _ = ff is-eq-op : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-eq-op{TERM} (VarSigma _) = tt is-eq-op{TERM} (Rho _ _ _ _) = tt is-eq-op{TERM} (Phi _ _ _) = tt is-eq-op{TERM} (Delta _ _ _) = tt is-eq-op _ = ff pattern arrow-var = "_arrow_" pattern TpArrow tp me tp' = TpAbs me arrow-var (Tkt tp) tp' pattern KdArrow tk kd = KdAbs arrow-var tk kd is-arrow : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-arrow {TYPE} (TpArrow _ _ _) = tt is-arrow {KIND} (KdArrow _ _) = tt is-arrow _ = ff is-type-level-app : ∀ {ed} → ⟦ ed ⟧ → 𝔹 is-type-level-app {TYPE} (TpApp T tT) = tt is-type-level-app _ = ff {- need-parens e1 e2 s returns tt iff we need parens when e1 occurs as the given side s of parent expression e2. -} need-parens : {ed : exprd} → {ed' : exprd} → ⟦ ed ⟧ → ⟦ ed' ⟧ → expr-side → 𝔹 need-parens {TYPE} {TYPE} (TpAbs _ _ _ _) (TpArrow _ _ _) left = tt need-parens {TYPE} {TYPE} (TpIota _ _ _) (TpArrow _ _ _) left = tt need-parens {KIND} {KIND} (KdAbs _ _ _) (KdArrow _ _) left = tt need-parens {TYPE} {KIND} (TpAbs _ _ _ _) (KdArrow _ _) left = tt need-parens {TYPE} {KIND} (TpIota _ _ _) (KdArrow _ _) left = tt need-parens {TERM} {_} (Var x) p lr = ff need-parens {TERM} {_} (Hole pi) p lr = ff need-parens {TERM} {_} (IotaPair t₁ t₂ x Tₓ) p lr = ff need-parens {TERM} {_} (IotaProj t n) p lr = ff need-parens {TYPE} {_} (TpVar x) p lr = ff need-parens {TYPE} {_} (TpEq t₁ t₂) p lr = ff need-parens {TYPE} {_} (TpHole pi) p lr = ff need-parens {KIND} {_} (KdHole pi) p lr = ff need-parens {KIND} {_} KdStar p lr = ff need-parens {_} {TERM} _ (IotaPair t₁ t₂ x Tₓ) lr = ff need-parens {_} {TYPE} _ (TpEq t₁ t₂) lr = ff need-parens {_} {TERM} _ (Beta ot ot') lr = ff need-parens {_} {TERM} _ (Phi tₑ t₁ t₂) lr = is-left lr need-parens {_} {TERM} _ (Rho _ _ _ _) right = ff need-parens {_} {TERM} _ (Delta _ _ _) right = ff need-parens {_} {TERM} _ (LetTm _ _ _ _ _) lr = ff need-parens {_} {TERM} _ (LetTp _ _ _ _) lr = ff need-parens {_} {TERM} _ (Lam _ _ _ _) lr = ff need-parens {_} {TERM} _ (Mu _ _ _ _ _) right = ff need-parens {_} {TYPE} _ (TpLam _ _ _) lr = ff need-parens {_} {TYPE} _ (TpAbs _ _ _ _) lr = ff need-parens {_} {KIND} _ (KdAbs _ _ _) neither = ff need-parens {_} {TYPE} _ (TpIota _ _ _) lr = ff need-parens {TERM} {_} (App t t') p lr = tt need-parens {TERM} {_} (AppE t tT) p lr = tt need-parens {TERM} {_} (Beta ot ot') p lr = ff need-parens {TERM} {_} (Delta _ T t) p lr = tt need-parens {TERM} {_} (Lam me x tk? t) p lr = tt need-parens {TERM} {_} (LetTm me x T t t') p lr = tt need-parens {TERM} {_} (LetTp x T t t') p lr = tt need-parens {TERM} {_} (Phi tₑ t₁ t₂) p lr = tt need-parens {TERM} {_} (Rho tₑ x Tₓ t) p lr = tt need-parens {TERM} {_} (VarSigma t) p lr = ~ is-eq-op p need-parens {TERM} {_} (Mu _ _ _ _ _) p lr = tt need-parens {TERM} {_} (Sigma _ _ _ _ _) p lr = tt need-parens {TYPE} {e} (TpAbs me x tk T) p lr = ~ exprd-eq e TYPE || ~ is-arrow p || is-left lr need-parens {TYPE} {_} (TpIota x T₁ T₂) p lr = tt need-parens {TYPE} {_} (TpApp T tT) p lr = ~ is-arrow p && (~ is-type-level-app p || is-right lr) need-parens {TYPE} {_} (TpLam x tk T) p lr = tt need-parens {KIND} {_} (KdAbs x tk k) p lr = ~ is-arrow p || is-left lr pattern ced-ops-drop-spine = cedille-options.options.mk-options _ _ _ _ ff _ _ _ ff _ _ pattern ced-ops-conv-arr = cedille-options.options.mk-options _ _ _ _ _ _ _ _ ff _ _ pattern ced-ops-conv-abs = cedille-options.options.mk-options _ _ _ _ _ _ _ _ tt _ _ drop-spine : cedille-options.options → {ed : exprd} → ctxt → ⟦ ed ⟧ → ⟦ ed ⟧ drop-spine ops @ ced-ops-drop-spine = h where drop-mod-argse : (mod : args) → (actual : args) → args drop-mod-argse (ArgE _ :: asₘ) (ArgE _ :: asₐ) = drop-mod-argse asₘ asₐ drop-mod-argse (Arg _ :: asₘ) (Arg t :: asₐ) = drop-mod-argse asₘ asₐ drop-mod-argse (_ :: asₘ) asₐ@(Arg t :: _) = drop-mod-argse asₘ asₐ -- ^ Relevant term arg, so wait until we find its corresponding relevant module arg ^ drop-mod-argse _ asₐ = asₐ drop-mod-args-term : ctxt → var × args → term drop-mod-args-term Γ (v , as) = let uqv = unqual-all (ctxt.qual Γ) v in flip recompose-apps (Var uqv) $ maybe-else' (ifMaybe (~ v =string uqv) $ ctxt-get-qi Γ uqv) as λ qi → drop-mod-argse (snd qi) as drop-mod-args-type : ctxt → var × 𝕃 tmtp → type drop-mod-args-type Γ (v , as) = let uqv = unqual-all (ctxt.qual Γ) v in flip recompose-tpapps (TpVar uqv) $ maybe-else' (ifMaybe (~ v =string uqv) $ ctxt-qualif-args-length Γ Erased uqv) as λ n → drop n as h : {ed : exprd} → ctxt → ⟦ ed ⟧ → ⟦ ed ⟧ h {TERM} Γ t = maybe-else' (decompose-var-headed t) t (drop-mod-args-term Γ) h {TYPE} Γ T = maybe-else' (decompose-tpvar-headed T) T (drop-mod-args-type Γ) h Γ x = x drop-spine ops Γ x = x to-string-rewrite : {ed : exprd} → ctxt → cedille-options.options → ⟦ ed ⟧ → Σi exprd ⟦_⟧ to-string-rewrite{TYPE} Γ ced-ops-conv-arr (TpAbs me x (Tkt T) T') = , TpAbs me (if is-free-in x T' then x else arrow-var) (Tkt T) T' to-string-rewrite{KIND} Γ ced-ops-conv-arr (KdAbs x tk k) = , KdAbs (if is-free-in x k then x else arrow-var) tk k to-string-rewrite{TERM} Γ ops (VarSigma t) with to-string-rewrite Γ ops t ...| ,_ {TERM} (VarSigma t') = , t' ...| t? = , VarSigma t to-string-rewrite Γ ops x = , drop-spine ops Γ x ------------------------------- open import pretty use-newlines : 𝔹 use-newlines = ~ iszero (cedille-options.options.pretty-print-columns options) && cedille-options.options.pretty-print options doc-to-rope : DOC → rope doc-to-rope = if use-newlines then pretty (cedille-options.options.pretty-print-columns options) else flatten-out strM : Set strM = {ed : exprd} → DOC → ℕ → 𝕃 tag → ctxt → maybe ⟦ ed ⟧ → expr-side → DOC × ℕ × 𝕃 tag strEmpty : strM strEmpty s n ts Γ pe lr = s , n , ts to-stringh : {ed : exprd} → ⟦ ed ⟧ → strM strM-Γ : (ctxt → strM) → strM strM-Γ f s n ts Γ = f Γ s n ts Γ infixr 2 _>>str_ _>>str_ : strM → strM → strM (m >>str m') s n ts Γ pe lr with m s n ts Γ pe lr (m >>str m') s n ts Γ pe lr | s' , n' , ts' = m' s' n' ts' Γ pe lr strAdd : string → strM strAdd s s' n ts Γ pe lr = s' <> TEXT [[ s ]] , n + string-length s , ts strLine : strM strLine s n ts Γ pe lr = s <> LINE , suc n , ts strNest : ℕ → strM → strM strNest i m s n ts Γ pe lr with m nil n ts Γ pe lr ...| s' , n' , ts' = s <> nest i s' , n' , ts' strFold' : (ℕ → ℕ) → {ed : exprd} → 𝕃 (ℕ × strM) → ℕ → 𝕃 tag → ctxt → maybe ⟦ ed ⟧ → expr-side → 𝕃 (ℕ × DOC) × ℕ × 𝕃 tag strFold' l [] n ts Γ pe lr = [] , n , ts strFold' l ((i , x) :: []) n ts Γ pe lr with x nil n ts Γ pe lr ...| sₓ , nₓ , tsₓ = [ i , sₓ ] , nₓ , tsₓ strFold' l ((i , x) :: xs) n ts Γ pe lr with x nil n ts Γ pe lr ...| sₓ , nₓ , tsₓ with strFold' l xs (l nₓ) tsₓ Γ pe lr ...| sₓₛ , nₓₛ , tsₓₛ = (i , sₓ) :: sₓₛ , nₓₛ , tsₓₛ strFold : (ℕ → ℕ) → (𝕃 (ℕ × DOC) → DOC) → 𝕃 (ℕ × strM) → strM strFold l f ms s n ts Γ pe lr with strFold' l ms n ts Γ pe lr ...| s' , n' , ts' = s <> f s' , n' , ts' strFoldi : ℕ → (ℕ → ℕ) → (𝕃 DOC → DOC) → 𝕃 strM → strM strFoldi i l f = strNest i ∘' strFold suc (f ∘' map snd) ∘' map (_,_ 0) -- Either fit all args on one line, or give each their own line strList : ℕ → 𝕃 strM → strM strList i = strFoldi i suc λ ms → flatten (spread ms) :<|> stack ms -- Fit as many args on each line as possible -- (n = number of strM args) -- (𝕃 strM so that optional args (nil) are possible) strBreak : (n : ℕ) → fold n strM λ X → ℕ → 𝕃 strM → X strBreak = h [] where h : 𝕃 (ℕ × strM) → (n : ℕ) → fold n strM λ X → ℕ → 𝕃 strM → X h ms (suc n) i m = h (map (_,_ i) m ++ ms) n h ms zero = strFold suc filln $ reverse ms strBracket : char → strM → char → strM strBracket l m r s n ts Γ pe lr with m nil (suc (suc n)) ts Γ pe lr ...| s' , n' , ts' = s <> bracket (char-to-string l) s' (char-to-string r) , suc (suc n') , ts' strΓ' : defScope → var → strM → strM strΓ' ds v m s n ts Γ = let gl = ds iff globalScope v' = if gl then (ctxt.mn Γ # v) else v in m s n ts (record Γ { qual = qualif-insert-params (ctxt.qual Γ) v' (unqual-local v) (if gl then ctxt.ps Γ else []); i = trie-insert (ctxt.i Γ) v' (var-decl , missing-location) }) strΓ : var → strM → strM strΓ x m s n ts Γ = m s n ts (ctxt-var-decl x Γ) ctxt-get-file-id : ctxt → (filename : string) → ℕ ctxt-get-file-id = trie-lookup-else 0 ∘ ctxt.id-map make-loc-tag : ctxt → (filename start-to end-to : string) → (start-from end-from : ℕ) → tag make-loc-tag Γ fn s e = make-tag "loc" (("fn" , json-nat (ctxt-get-file-id Γ fn)) :: ("s" , json-raw [[ s ]]) :: ("e" , json-raw [[ e ]]) :: []) var-loc-tag : ctxt → location → var → 𝕃 (string × 𝕃 tag) var-loc-tag Γ ("missing" , "missing") x = [] var-loc-tag Γ ("" , _) x = [] var-loc-tag Γ (_ , "") x = [] var-loc-tag Γ (fn , pi) x = let fn-tag = "fn" , json-nat (ctxt-get-file-id Γ fn) s-tag = "s" , json-raw [[ pi ]] e-tag = "e" , json-raw [[ posinfo-plus-str pi x ]] in [ "loc" , fn-tag :: s-tag :: e-tag :: [] ] var-tags : ctxt → var → var → 𝕃 (string × 𝕃 tag) var-tags Γ qv uqv = (if qv =string qualif-var Γ uqv then id else ("shadowed" , []) ::_) (var-loc-tag Γ (ctxt-var-location Γ qv) uqv) strAddTags : string → 𝕃 (string × 𝕃 tag) → strM strAddTags sₙ tsₙ sₒ n tsₒ Γ pe lr = let n' = n + string-length sₙ in sₒ <> TEXT [[ sₙ ]] , n' , map (uncurry λ k vs → make-tag k vs n n') tsₙ ++ tsₒ strVar : var → strM strVar v = strM-Γ λ Γ → let uqv = unqual-local v -- $ unqual-all (ctxt-get-qualif Γ) v uqv' = if cedille-options.options.show-qualified-vars options then v else uqv in strAddTags uqv' (var-tags Γ (qualif-var Γ v) uqv) strKvar : var → strM strKvar v = strM-Γ λ Γ → strVar (unqual-all (ctxt.qual Γ) v) -- Only necessary to unqual-local because of module parameters strBvar : var → (class body : strM) → strM strBvar v cm bm = strAdd (unqual-local v) >>str cm >>str strΓ' localScope v bm strMetaVar : var → span-location → strM strMetaVar x (fn , pi , pi') s n ts Γ pe lr = let n' = n + string-length x in s <> TEXT [[ x ]] , n' , make-loc-tag Γ fn pi pi' n n' :: ts {-# TERMINATING #-} term-to-stringh : term → strM type-to-stringh : type → strM kind-to-stringh : kind → strM ctr-to-string : ctr → strM case-to-string : case → strM cases-to-string : cases → strM caseArgs-to-string : case-args → strM → strM params-to-string : params → strM params-to-string' : strM → params → strM params-to-string'' : params → strM → strM optTerm-to-string : maybe term → char → char → 𝕃 strM optClass-to-string : maybe tpkd → strM optType-to-string : maybe char → maybe type → 𝕃 strM arg-to-string : arg → strM args-to-string : args → strM binder-to-string : erased? → string lam-to-string : erased? → string arrowtype-to-string : erased? → string vars-to-string : 𝕃 var → strM bracketL : erased? → string bracketR : erased? → string braceL : erased? → string braceR : erased? → string opacity-to-string : opacity → string hole-to-string : posinfo → strM to-string-ed : {ed : exprd} → ⟦ ed ⟧ → strM to-string-ed{TERM} = term-to-stringh to-string-ed{TYPE} = type-to-stringh to-string-ed{KIND} = kind-to-stringh to-stringh' : {ed : exprd} → expr-side → ⟦ ed ⟧ → strM to-stringh' {ed} lr t {ed'} s n ts Γ mp lr' = elim-Σi (to-string-rewrite Γ options t) λ t' → parens-if (maybe𝔹 mp (λ pe → need-parens t' pe lr)) (to-string-ed t') s n ts Γ (just t') lr where parens-if : 𝔹 → strM → strM parens-if p s = if p then (strAdd "(" >>str strNest 1 s >>str strAdd ")") else s to-stringl : {ed : exprd} → ⟦ ed ⟧ → strM to-stringr : {ed : exprd} → ⟦ ed ⟧ → strM to-stringl = to-stringh' left to-stringr = to-stringh' right to-stringh = to-stringh' neither set-parent : ∀ {ed} → ⟦ ed ⟧ → strM → strM set-parent t m s n ts Γ _ lr = m s n ts Γ (just t) lr apps-to-string : ∀ {ll : 𝔹} → (if ll then term else type) → strM apps-to-string {tt} t with decompose-apps t ...| tₕ , as = set-parent t $ strList 2 (to-stringl tₕ :: map arg-to-string as) apps-to-string {ff} T with decompose-tpapps T ...| Tₕ , as = set-parent T $ strList 2 (to-stringl Tₕ :: map arg-to-string (tmtps-to-args ff as)) lams-to-string : term → strM lams-to-string t = elim-pair (decompose-lams-pretty t) λ xs b → set-parent t $ strFold suc filln $ foldr {B = 𝕃 (ℕ × strM)} (λ {(x , me , oc) r → (1 , (strAdd (lam-to-string me) >>str strAdd " " >>str strBvar x (strNest 4 (optClass-to-string oc)) (strAdd " ."))) :: map (map-snd $ strΓ' localScope x) r}) [ 2 , to-stringr b ] xs where decompose-lams-pretty : term → 𝕃 (var × erased? × maybe tpkd) × term decompose-lams-pretty = h [] where h : 𝕃 (var × erased? × maybe tpkd) → term → 𝕃 (var × erased? × maybe tpkd) × term h acc (Lam me x oc t) = h ((x , me , oc) :: acc) t h acc t = reverse acc , t term-to-stringh (App t t') = apps-to-string (App t t') term-to-stringh (AppE t tT) = apps-to-string (AppE t tT) term-to-stringh (Beta t t') = strBreak 3 0 [ strAdd "β" ] 2 [ strAdd "<" >>str to-stringh (erase t ) >>str strAdd ">" ] 2 [ strAdd "{" >>str to-stringh (erase t') >>str strAdd "}" ] term-to-stringh (Delta _ T t) = strBreak 3 0 [ strAdd "δ" ] 2 [ to-stringl T >>str strAdd " -" ] 1 [ to-stringr t ] term-to-stringh (Hole pi) = hole-to-string pi term-to-stringh (IotaPair t₁ t₂ x Tₓ) = strBreak 3 1 [ strAdd "[ " >>str to-stringh t₁ >>str strAdd "," ] 1 [ to-stringh t₂ ] 1 [ strAdd "@ " >>str strBvar x (strAdd " . ") (strNest (5 + string-length x) (to-stringh Tₓ)) >>str strAdd " ]" ] term-to-stringh (IotaProj t n) = to-stringh t >>str strAdd (if n iff ι1 then ".1" else ".2") term-to-stringh (Lam me x oc t) = lams-to-string (Lam me x oc t) term-to-stringh (LetTm me x T t t') = strBreak 4 1 [ strAdd (bracketL me) >>str strAdd (unqual-local x) ] 5 ( optType-to-string (just ':') T ) 3 [ strAdd "= " >>str to-stringh t >>str strAdd (bracketR me) ] 1 [ strΓ' localScope x (to-stringr t') ] term-to-stringh (LetTp x k T t) = strBreak 4 1 [ strAdd (bracketL NotErased) >>str strAdd (unqual-local x) ] 5 [ strAdd ": " >>str to-stringh k ] 3 [ strAdd "= " >>str to-stringh T >>str strAdd (bracketR NotErased) ] 1 [ strΓ' localScope x (to-stringr t) ] term-to-stringh (Phi tₑ t₁ t₂) = strBreak 3 0 [ strAdd "φ " >>str to-stringl tₑ >>str strAdd " -" ] 2 [ to-stringh t₁ ] 2 [ strAdd "{ " >>str to-stringr (erase t₂) >>str strAdd " }" ] term-to-stringh (Rho tₑ x Tₓ t) = strBreak 3 0 [ strAdd "ρ " >>str to-stringl tₑ ] 1 [ strAdd "@ " >>str strBvar x (strAdd " . ") (to-stringh (erase Tₓ)) ] 1 [ strAdd "- " >>str strNest 2 (to-stringr t) ] term-to-stringh (VarSigma t) = strAdd "ς " >>str to-stringh t term-to-stringh (Var x) = strVar x term-to-stringh (Mu x t ot t~ cs) = strAdd "μ " >>str strBvar x (strAdd " . " >>str strBreak 2 2 [ to-stringl t ] 3 ( optType-to-string (just '@') ot )) (strAdd " " >>str strBracket '{' (cases-to-string cs) '}') term-to-stringh (Sigma ot t oT t~ cs) = strAdd "σ " >>str strBreak 3 2 (maybe-else' {B = 𝕃 strM} ot [] λ t → [ strAdd "<" >>str to-stringh t >>str strAdd ">" ]) 2 [ to-stringl t ] 3 ( optType-to-string (just '@') oT ) >>str strAdd " " >>str strBracket '{' (cases-to-string cs) '}' type-to-stringh (TpArrow T a T') = strBreak 2 2 [ to-stringl T >>str strAdd (arrowtype-to-string a) ] 2 [ to-stringr T' ] type-to-stringh (TpAbs me x tk T) = strBreak 2 3 [ strAdd (binder-to-string me ^ " ") >>str strBvar x (strAdd " : " >>str to-stringl -tk' tk >>str strAdd " .") strEmpty ] 1 [ strΓ' localScope x (to-stringh T) ] type-to-stringh (TpIota x T₁ T₂) = strBreak 2 2 [ strAdd "ι " >>str strBvar x (strAdd " : " >>str to-stringh T₁ >>str strAdd " .") strEmpty ] 2 [ strΓ' localScope x (to-stringh T₂) ] type-to-stringh (TpApp T tT) = apps-to-string (TpApp T tT) type-to-stringh (TpEq t₁ t₂) = strBreak 2 2 [ strAdd "{ " >>str to-stringh (erase t₁) ] 2 [ strAdd "≃ " >>str to-stringh (erase t₂) >>str strAdd " }" ] type-to-stringh (TpHole pi) = hole-to-string pi type-to-stringh (TpLam x tk T) = strBreak 2 3 [ strAdd "λ " >>str strBvar x (strAdd " : " >>str to-stringh -tk' tk >>str strAdd " .") strEmpty ] 1 [ strΓ' localScope x (to-stringr T) ] type-to-stringh (TpVar x) = strVar x kind-to-stringh (KdArrow k k') = strBreak 2 2 [ to-stringl -tk' k >>str strAdd " ➔" ] 2 [ to-stringr k' ] kind-to-stringh (KdAbs x tk k) = strBreak 2 4 [ strAdd "Π " >>str strBvar x (strAdd " : " >>str to-stringl -tk' tk >>str strAdd " .") strEmpty ] 1 [ strΓ' localScope x (to-stringh k) ] kind-to-stringh (KdHole pi) = hole-to-string pi kind-to-stringh KdStar = strAdd "★" hole-to-string pi = strM-Γ λ Γ → strAddTags "●" (var-loc-tag Γ (split-var pi) "●") optTerm-to-string nothing c1 c2 = [] optTerm-to-string (just t) c1 c2 = [ strAdd (𝕃char-to-string (c1 :: [ ' ' ])) >>str to-stringh t >>str strAdd (𝕃char-to-string (' ' :: [ c2 ])) ] optClass-to-string nothing = strEmpty optClass-to-string (just atk) = strAdd " : " >>str to-stringh -tk' atk optType-to-string pfx nothing = [] optType-to-string pfx (just T) = [ maybe-else strEmpty (λ pfx → strAdd (𝕃char-to-string (pfx :: [ ' ' ]))) pfx >>str to-stringh T ] arg-to-string (Arg t) = to-stringr t arg-to-string (ArgE (Ttm t)) = strAdd "-" >>str strNest 1 (to-stringr t) arg-to-string (ArgE (Ttp T)) = strAdd "·" >>str strNest 2 (to-stringr T) args-to-string = set-parent (App (Hole pi-gen) (Hole pi-gen)) ∘ foldr' strEmpty λ t x → strAdd " " >>str arg-to-string t >>str x binder-to-string tt = "∀" binder-to-string ff = "Π" lam-to-string tt = "Λ" lam-to-string ff = "λ" arrowtype-to-string ff = " ➔" arrowtype-to-string tt = " ➾" opacity-to-string opacity-open = "" opacity-to-string opacity-closed = "opaque " vars-to-string [] = strEmpty vars-to-string (v :: []) = strVar v vars-to-string (v :: vs) = strVar v >>str strAdd " " >>str vars-to-string vs ctr-to-string (Ctr x T) = strAdd x >>str strAdd " : " >>str to-stringh T case-to-string (Case x as t _) = strM-Γ λ Γ → let as-f = λ x as → strVar x >>str caseArgs-to-string as (strAdd " ➔ " >>str to-stringr t) in case (env-lookup Γ x , options) of uncurry λ where (just (ctr-def mps T _ _ _ , _ , _)) ced-ops-drop-spine → as-f (unqual-all (ctxt.qual Γ) x) as _ _ → as-f x as cases-to-string = h use-newlines where h : 𝔹 → cases → strM h _ [] = strEmpty h tt (m :: []) = strAdd "| " >>str case-to-string m h tt (m :: ms) = strAdd "| " >>str case-to-string m >>str strLine >>str h tt ms h ff (m :: []) = case-to-string m h ff (m :: ms) = case-to-string m >>str strAdd " | " >>str h ff ms caseArgs-to-string [] m = m caseArgs-to-string (CaseArg _ x (just (Tkk _)) :: as) m = strAdd " ·" >>str strBvar x strEmpty (caseArgs-to-string as m) caseArgs-to-string (CaseArg ff x _ :: as) m = strAdd " " >>str strBvar x strEmpty (caseArgs-to-string as m) caseArgs-to-string (CaseArg tt x _ :: as) m = strAdd " -" >>str strBvar x strEmpty (caseArgs-to-string as m) braceL me = if me then "{" else "(" braceR me = if me then "}" else ")" bracketL me = if me then "{ " else "[ " bracketR me = if me then " } -" else " ] -" param-to-string : param → (strM → strM) × strM param-to-string (Param me v atk) = strΓ' localScope v , (strAdd (braceL me) >>str strAdd (unqual-local v) >>str strAdd " : " >>str to-stringh -tk' atk >>str strAdd (braceR me)) params-to-string'' ps f = elim-pair (foldr (λ p → uncurry λ g ms → elim-pair (param-to-string p) λ h m → g ∘ h , m :: map h ms) (id , []) ps) λ g ms → strList 2 (strEmpty :: ms) >>str g f params-to-string' f [] = f params-to-string' f (p :: []) = elim-pair (param-to-string p) λ g m → m >>str g f params-to-string' f (p :: ps) = elim-pair (param-to-string p) λ g m → m >>str strAdd " " >>str params-to-string' (g f) ps params-to-string = params-to-string' strEmpty strRun : ctxt → strM → rope strRun Γ m = doc-to-rope $ fst $ m {TERM} NIL 0 [] Γ nothing neither strRunTag : (name : string) → ctxt → strM → tagged-val strRunTag name Γ m with m {TERM} NIL 0 [] Γ nothing neither ...| s , n , ts = name , doc-to-rope s , ts to-stringe : {ed : exprd} → ⟦ ed ⟧ → strM to-stringe = to-stringh ∘' (if cedille-options.options.erase-types options then erase else id) to-string-tag : {ed : exprd} → string → ctxt → ⟦ ed ⟧ → tagged-val to-string-tag name Γ t = strRunTag name Γ (to-stringe t) to-string : {ed : exprd} → ctxt → ⟦ ed ⟧ → rope to-string Γ t = strRun Γ (to-stringh t) tpkd-to-stringe : tpkd → strM tpkd-to-stringe = to-stringe -tk'_ tpkd-to-string : ctxt → tpkd → rope tpkd-to-string Γ atk = strRun Γ (tpkd-to-stringe atk) params-to-string-tag : string → ctxt → params → tagged-val params-to-string-tag name Γ ps = strRunTag name Γ (params-to-string ps)
36.972366
187
0.607558
2222cc8169baf9b81a23e491999280ae5ddd70af
3,060
agda
Agda
OutsideIn/Inference/Separator.agda
liamoc/outside-in
fc1fc1bba2af95806d9075296f9ed1074afa4c24
[ "BSD-3-Clause" ]
2
2015-09-14T05:22:15.000Z
2020-11-19T14:30:07.000Z
OutsideIn/Inference/Separator.agda
liamoc/outside-in
fc1fc1bba2af95806d9075296f9ed1074afa4c24
[ "BSD-3-Clause" ]
null
null
null
OutsideIn/Inference/Separator.agda
liamoc/outside-in
fc1fc1bba2af95806d9075296f9ed1074afa4c24
[ "BSD-3-Clause" ]
null
null
null
open import OutsideIn.Prelude open import OutsideIn.X module OutsideIn.Inference.Separator(x : X) where import OutsideIn.Constraints as C open C(x) open X(x) open import Data.List hiding (map) mutual data SeparatedConstraint (n : Set) : Shape → Set where SC : ∀ {s} → QConstraint n → Implications n s → SeparatedConstraint n s data Implications (n : Set) : Shape → Set where imp-ε : Implications n Nullary imp : ∀ {s} → Implication (λ n → SeparatedConstraint n s) n → Implications n (Unary s) _imp-∧_ : ∀ {s₁ s₂} → Implications n s₁ → Implications n s₂ → Implications n (Binary s₁ s₂) mutual data _simpl:_ {n : Set} : Constraint n Flat → QConstraint n → Set where Simpl-QC : ∀ {c} → QC c simpl: c Simpl-∧ : ∀ {a b}{a′ b′} → a simpl: a′ → b simpl: b′ → (a ∧′ b) simpl: (a′ ∧ b′) Simpl-Imp : ∀ {i} → Imp i simpl: ε data _separate:_,_ {n : Set} : Constraint n Flat → (r : Shape) → SeparatedConstraint n r → Set where Separate : ∀ {C}{Q}{r}{I} → C simpl: Q → C implic: r , I → C separate: r , SC Q I data _implic:_,_ {n : Set} : Constraint n Flat → (r : Shape) → Implications n r → Set where Implic-Qc : ∀ {c} → QC c implic: Nullary , imp-ε Implic-∧ : ∀{a b}{r₁ r₂}{a′}{b′} → a implic: r₁ , a′ → b implic: r₂ , b′ → (a ∧′ b) implic: Binary r₁ r₂ , (a′ imp-∧ b′) Implic-I : ∀{n}{Q}{C}{s}{v} → C separate: s , v → Imp (∃ n · Q ⊃ C) implic: Unary s , imp (∃ n · Q ⊃ v) simpl : ∀ {n} → (C : Constraint n Flat) → ∃ (λ Q → C simpl: Q) simpl (QC c) = _ , Simpl-QC simpl (a ∧′ b) with simpl a | simpl b ... | q₁ , p₁ | q₂ , p₂ = _ , Simpl-∧ p₁ p₂ simpl (Imp _) = _ , Simpl-Imp separate : ∀ {n} → (C : Constraint n Flat) → ∃ (λ r → ∃ (λ S → C separate: r , S)) implic : ∀ {n} → (C : Constraint n Flat) → ∃ (λ r → ∃ (λ I → C implic: r , I )) separate c with implic c | simpl c ... | s , v , p | q , p′ = _ , _ , Separate p′ p implic (QC c) = _ , _ , Implic-Qc implic (a ∧′ b) with implic a | implic b ... | s , v , p | s′ , v′ , p′ = _ , _ , Implic-∧ p p′ implic (Imp (∃ n · Q ⊃ C)) with separate C ... | s , v , p = _ , _ , Implic-I p -- Substitution for separated constraints substituteSep : ∀ {s}{a b} → (a → Type b) → SeparatedConstraint a s → SeparatedConstraint b s substituteImp : ∀ {s}{a b} → (a → Type b) → Implications a s → Implications b s substituteSep f (SC qc imps) = SC (qc-substitute f qc) (substituteImp f imps) where open Monad (type-is-monad) open Functor (type-is-functor) substituteImp f (imp-ε) = imp-ε substituteImp {Unary s} f (imp (∃ n · Q ⊃ C)) = imp (∃ n · constraint-types (join ∘ map f) Q ⊃ substituteSep f′ C) where module PlusN-f = Functor (Monad.is-functor (PlusN-is-monad {n})) open Monad (type-is-monad) open Functor (type-is-functor) f′ = sequence-PlusN {n = n} ⦃ type-is-monad ⦄ ∘ PlusN-f.map f substituteImp f (a imp-∧ b) = substituteImp f a imp-∧ substituteImp f b
51
127
0.558497
580c1caf1c0dc1691c654c29770b0a102c6489bb
1,309
agda
Agda
LibraBFT/Concrete/System/Parameters.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
LibraBFT/Concrete/System/Parameters.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
LibraBFT/Concrete/System/Parameters.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Optics.All open import LibraBFT.Prelude open import LibraBFT.Base.Types open import LibraBFT.Impl.Consensus.Types open import LibraBFT.Impl.NetworkMsg open import LibraBFT.Impl.Util.Crypto open import LibraBFT.Impl.Handle sha256 sha256-cr open EpochConfig open import LibraBFT.Yasm.Base (ℓ+1 0ℓ) EpochConfig epochId authorsN -- In this module, we instantiate the system model with parameters to -- model a system using the simple implementation model we have so -- far, which aims to obey the VotesOnceRule, but not LockedRoundRule -- yet. This will evolve as we build out a model of a real -- implementation. module LibraBFT.Concrete.System.Parameters where ConcSysParms : SystemParameters ConcSysParms = mkSysParms NodeId _≟NodeId_ EventProcessor fakeEP NetworkMsg Vote sig-Vote _⊂Msg_ (_^∙ vEpoch) initialEventProcessorAndMessages peerStepWrapper
36.361111
111
0.686784
22d96b16ee01b0ecde767f97499e680e7b06fa92
2,846
agda
Agda
src/Sphere.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Sphere.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Sphere.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Spheres ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} -- This module follows the HoTT book rather closely. import Equality.Path as P module Sphere {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq hiding (elim) open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection equality-with-J using (_↔_) open import Equality.Path.Isomorphisms eq open import Equality.Tactic equality-with-J import Equivalence equality-with-J as Equiv open import Function-universe equality-with-J as F hiding (_∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import Nat equality-with-J as Nat open import Pointed-type equality-with-J open import Suspension eq as Suspension private variable a b : Level A B : Type a C : Pointed-type a x : A n : ℕ -- Spheres. 𝕊[_-1] : ℕ → Type 𝕊[ zero -1] = ⊥ 𝕊[ suc n -1] = Susp 𝕊[ n -1] -- Spheres with non-negative dimensions. 𝕊 : ℕ → Type 𝕊 n = 𝕊[ 1 + n -1] -- The booleans are isomorphic to the 0-dimensional sphere. Bool↔𝕊⁰ : Bool ↔ 𝕊 0 Bool↔𝕊⁰ = Bool↔Susp-⊥ -- Based maps from spheres with non-negative dimensions (using north -- as the point) are isomorphic to iterated loop spaces. 𝕊→ᴮ↔ : ∀ n → (𝕊 n , north) →ᴮ C ↔ proj₁ (Ω[ n ] C) 𝕊→ᴮ↔ {C = C} = lemma zero where lemma : ∀ m n → (𝕊 n , north) →ᴮ Ω[ m ] C ↔ proj₁ (Ω[ m + n ] C) lemma m zero = (𝕊 0 , north) →ᴮ Ω[ m ] C ↝⟨ Σ-cong (→-cong ext (inverse Bool↔𝕊⁰) F.id) (λ _ → F.id) ⟩ (Bool , true) →ᴮ Ω[ m ] C ↝⟨ Bool→ᴮ↔ ext ⟩ proj₁ (Ω[ m ] C) ↝⟨ ≡⇒↝ _ $ cong (λ n → proj₁ (Ω[ n ] C)) $ sym $ Nat.+-right-identity {n = m} ⟩□ proj₁ (Ω[ m + 0 ] C) □ lemma m (suc n) = (𝕊 (suc n) , north) →ᴮ Ω[ m ] C ↝⟨ Susp→ᴮ↔ ⟩ (𝕊 n , north) →ᴮ Ω[ suc m ] C ↝⟨ lemma (suc m) n ⟩ proj₁ (Ω[ suc m + n ] C) ↝⟨ ≡⇒↝ _ $ cong (λ n → proj₁ (Ω[ n ] C)) $ Nat.suc+≡+suc m ⟩□ proj₁ (Ω[ m + suc n ] C) □ -- A corollary. +↔∀contractible𝕊→ᴮ : H-level (1 + n) A ↔ (∀ x → Contractible ((𝕊 n , north) →ᴮ (A , x))) +↔∀contractible𝕊→ᴮ {n = n} {A = A} = H-level (1 + n) A ↔⟨ _↔_.to (Equiv.⇔↔≃ ext (H-level-propositional ext _) (Π-closure ext 1 λ _ → H-level-propositional ext _)) (+⇔∀contractible-Ω[] _) ⟩ (∀ x → Contractible (proj₁ $ Ω[ n ] (A , x))) ↝⟨ (∀-cong ext λ _ → H-level-cong ext 0 (inverse $ 𝕊→ᴮ↔ _)) ⟩□ (∀ x → Contractible ((𝕊 n , north) →ᴮ (A , x))) □
33.482353
113
0.504216
3dbd896d2b21a89d97152f7523d609c90fea7db2
6,745
agda
Agda
Ex6AgdaSetup.agda
clarkdm/CS410
523a8749f49c914bcd28402116dcbe79a78dbbf4
[ "CC0-1.0" ]
null
null
null
Ex6AgdaSetup.agda
clarkdm/CS410
523a8749f49c914bcd28402116dcbe79a78dbbf4
[ "CC0-1.0" ]
null
null
null
Ex6AgdaSetup.agda
clarkdm/CS410
523a8749f49c914bcd28402116dcbe79a78dbbf4
[ "CC0-1.0" ]
null
null
null
module Ex6AgdaSetup where {- This file contains all the basic types you need for the editor. You should read and understand the Agda in this file, but not bother too much about the funny compiler directives. -} open import CS410-Prelude open import CS410-Nat record _**_ (S T : Set) : Set where constructor _,_ field outl : S outr : T open _**_ {-# COMPILED_DATA _**_ (,) (,) #-} infixr 4 _**_ _,_ _<=_ : Nat -> Nat -> Two zero <= y = tt suc x <= zero = ff suc x <= suc y = x <= y _++_ : {A : Set} -> List A -> List A -> List A [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) {- Here are backward lists, which are useful when the closest element is conceptually at the right end. They aren't really crucial as you could use ordinary lists but think of the data as being reversed, but I prefer to keep my thinking straight and use data which look like what I have in mind. -} data Bwd (X : Set) : Set where [] : Bwd X _<:_ : Bwd X -> X -> Bwd X infixl 3 _<:_ {- You will need access to characters, imported from Haskell. You can write character literals like 'c'. You also get strings, with String literals like "fred" -} postulate -- Haskell has a monad for doing IO, which we use at the top level IO : Set -> Set return : {A : Set} -> A -> IO A _>>=_ : {A B : Set} -> IO A -> (A -> IO B) -> IO B infixl 1 _>>=_ {-# BUILTIN IO IO #-} {-# COMPILED_TYPE IO IO #-} {-# COMPILED return (\ _ -> return) #-} {-# COMPILED _>>=_ (\ _ _ -> (>>=)) #-} {- Here's the characterization of keys I give you -} data Direction : Set where up down left right : Direction data Modifier : Set where normal shift control : Modifier data Key : Set where char : Char -> Key arrow : Modifier -> Direction -> Key enter : Key backspace : Key delete : Key escape : Key tab : Key data Event : Set where key : (k : Key) -> Event resize : (w h : Nat) -> Event {- This type classifies the difference between two editor states. -} data Change : Set where allQuiet : Change -- the buffer should be exactly the same cursorMove : Change -- the cursor has moved but the text is the same lineEdit : Change -- only the text on the current line has changed bigChange : Change -- goodness knows! {- This type collects the things you're allowed to do with the text window. -} data Action : Set where goRowCol : Nat -> Nat -> Action -- send the cursor somewhere sendText : List Char -> Action -- send some text move : Direction -> Nat -> Action -- which way and how much fgText : Colour -> Action bgText : Colour -> Action {- I wire all of that stuff up to its Haskell counterpart. -} {-# IMPORT ANSIEscapes #-} {-# IMPORT HaskellSetup #-} {-# COMPILED_DATA Direction ANSIEscapes.Dir ANSIEscapes.DU ANSIEscapes.DD ANSIEscapes.DL ANSIEscapes.DR #-} {-# COMPILED_DATA Modifier HaskellSetup.Modifier HaskellSetup.Normal HaskellSetup.Shift HaskellSetup.Control #-} {-# COMPILED_DATA Key HaskellSetup.Key HaskellSetup.Char HaskellSetup.Arrow HaskellSetup.Enter HaskellSetup.Backspace HaskellSetup.Delete HaskellSetup.Escape HaskellSetup.Tab #-} {-# COMPILED_DATA Event HaskellSetup.Event HaskellSetup.Key HaskellSetup.Resize #-} {-# COMPILED_DATA Change HaskellSetup.Change HaskellSetup.AllQuiet HaskellSetup.CursorMove HaskellSetup.LineEdit HaskellSetup.BigChange #-} {-# COMPILED_DATA Action HaskellSetup.Action HaskellSetup.GoRowCol HaskellSetup.SendText HaskellSetup.Move HaskellSetup.FgText HaskellSetup.BgText #-} {- This is the bit of code I wrote to animate your code. -} postulate mainLoop : {B : Set} -> -- buffer type -- INITIALIZER (List (List Char) -> B) -> -- make a buffer from some lines of text -- KEYSTROKE HANDLER (Key -> B -> -- keystroke and buffer in Change ** B) -> -- change report and buffer out -- RENDERER ((Nat ** Nat) -> -- height and width of screen (Nat ** Nat) -> -- top line number, left column number (Change ** B) -> -- change report and buffer to render (List Action ** -- how to update the display (Nat ** Nat))) -> -- new top line number, left column number -- PUT 'EM TOGETHER AND YOU'VE GOT AN EDITOR! IO One {-# COMPILED mainLoop (\ _ -> HaskellSetup.mainLoop) #-} {- You can use this to put noisy debug messages in Agda code. So trace "fred" tt evaluates to tt, but prints "fred" in the process. -} postulate trace : {A : Set} -> String -> A -> A {-# IMPORT Debug.Trace #-} {-# COMPILED trace (\ _ -> Debug.Trace.trace) #-} {- You can use this to print an error message when you don't know what else to do. It's very useful for filling in unfinished holes to persuade the compiler to compile your code even though it isn't finished: you get an error if you try to run a missing bit. -} postulate error : {A : Set} -> String -> A {-# COMPILED error (\ _ -> error) #-} {- Equality -} {- x == y is a type whenever x and y are values in the same type -} {- data _==_ {X : Set}(x : X) : X -> Set where refl : x == x -- and x == y has a constructor only when y actually is x! infixl 1 _==_ -- {-# BUILTIN EQUALITY _==_ #-} -- {-# BUILTIN REFL refl #-} {-# COMPILED_DATA _==_ HaskellSetup.EQ HaskellSetup.Refl #-} within_turn_into_because_ : {X Y : Set}(f : X -> Y)(x x' : X) -> x == x' -> f x == f x' within f turn x into .x because refl = refl -- the dot tells Agda that *only* x can go there symmetry : {X : Set}{x x' : X} -> x == x' -> x' == x symmetry refl = refl transitivity : {X : Set}{x0 x1 x2 : X} -> x0 == x1 -> x1 == x2 -> x0 == x2 transitivity refl refl = refl -} within_turn_into_because_ : {X Y : Set}(f : X -> Y)(x x' : X) -> x == x' -> f x == f x' within f turn x into .x because refl = refl {- postulate _==_ : {X : Set} -> X -> X -> Set -- the evidence that two X-values are equal refl : {X : Set}{x : X} -> x == x symmetry : {X : Set}{x x' : X} -> x == x' -> x' == x transitivity : {X : Set}{x0 x1 x2 : X} -> x0 == x1 -> x1 == x2 -> x0 == x2 within_turn_into_because_ : {X Y : Set}(f : X -> Y)(x x' : X) -> x == x' -> f x == f x' infix 1 _==_ {-# COMPILED_TYPE _==_ HaskellSetup.EQ #-} {- Here's an example. -} additionAssociative : (x y z : Nat) -> (x + y) + z == x + (y + z) additionAssociative zero y z = refl additionAssociative (suc x) y z = within suc turn ((x + y) + z) into (x + (y + z)) because additionAssociative x y z -}
34.948187
82
0.606968
3d84499ce129672577d60e93ffc5685cc5ef34dc
797
agda
Agda
Cubical/Categories/Instances/RingAlgebras.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Categories/Instances/RingAlgebras.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Categories/Instances/RingAlgebras.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Categories.Instances.RingAlgebras where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Algebra.Ring open import Cubical.Algebra.Algebra open import Cubical.Categories.Category open Category open AlgebraHoms private variable ℓ ℓ' : Level module _ (R : Ring ℓ) where AlgebrasCategory : Category (ℓ-suc (ℓ-max ℓ ℓ')) (ℓ-max ℓ ℓ') ob AlgebrasCategory = Algebra R _ Hom[_,_] AlgebrasCategory = AlgebraHom id AlgebrasCategory {A} = idAlgebraHom A _⋆_ AlgebrasCategory = compAlgebraHom ⋆IdL AlgebrasCategory = compIdAlgebraHom ⋆IdR AlgebrasCategory = idCompAlgebraHom ⋆Assoc AlgebrasCategory = compAssocAlgebraHom isSetHom AlgebrasCategory = isSetAlgebraHom _ _
27.482759
63
0.759097
4176843ee1ab02be9fea91a03fc8d7c2e16c9e49
10,532
agda
Agda
Cubical/Algebra/CommRing/Localisation/Base.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Localisation/Base.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Localisation/Base.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
-- We define the localisation of a commutative ring -- at a multiplicatively closed subset and show that it -- has a commutative ring structure. {-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.CommRing.Localisation.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Powerset open import Cubical.Foundations.Transport open import Cubical.Functions.FunExtEquiv import Cubical.Data.Empty as ⊥ open import Cubical.Data.Bool open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; _^_ to _^ℕ_ ; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm) open import Cubical.Data.Vec open import Cubical.Data.Sigma.Base open import Cubical.Data.Sigma.Properties open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Relation.Binary open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRingSolver.Reflection open import Cubical.HITs.SetQuotients as SQ open import Cubical.HITs.PropositionalTruncation as PT open Iso private variable ℓ ℓ' : Level A : Type ℓ -- A multiplicatively closed subset is assumed to contain 1 record isMultClosedSubset (R' : CommRing ℓ) (S' : ℙ (fst R')) : Type ℓ where constructor multclosedsubset field containsOne : (R' .snd .CommRingStr.1r) ∈ S' multClosed : ∀ {s t} → s ∈ S' → t ∈ S' → ((snd R') .CommRingStr._·_ s t) ∈ S' module Loc (R' : CommRing ℓ) (S' : ℙ (fst R')) (SMultClosedSubset : isMultClosedSubset R' S') where open isMultClosedSubset private R = fst R' open CommRingStr (snd R') open RingTheory (CommRing→Ring R') open CommRingTheory R' S = Σ[ s ∈ R ] (s ∈ S') -- We define the localisation of R by S by quotienting by the following relation: _≈_ : R × S → R × S → Type ℓ (r₁ , s₁) ≈ (r₂ , s₂) = Σ[ s ∈ S ] (fst s · r₁ · fst s₂ ≡ fst s · r₂ · fst s₁) S⁻¹R = (R × S) / _≈_ -- now define addition for S⁻¹R open BinaryRelation locRefl : isRefl _≈_ locRefl _ = (1r , SMultClosedSubset .containsOne) , refl locSym : isSym _≈_ locSym (r , s , s∈S') (r' , s' , s'∈S') (u , p) = u , sym p locTrans : isTrans _≈_ locTrans (r , s , s∈S') (r' , s' , s'∈S') (r'' , s'' , s''∈S') ((u , u∈S') , p) ((v , v∈S') , q) = ((u · v · s') , SMultClosedSubset .multClosed (SMultClosedSubset .multClosed u∈S' v∈S') s'∈S') , path where eq1 : (r s r' s' r'' s'' u v : R) → u · v · s' · r · s'' ≡ u · r · s' · v · s'' eq1 = solve R' eq2 : (r s r' s' r'' s'' u v : R) → u · r' · s · v · s'' ≡ u · s · (v · r' · s'') eq2 = solve R' eq3 : (r s r' s' r'' s'' u v : R) → u · s · (v · r'' · s') ≡ u · v · s' · r'' · s eq3 = solve R' path : u · v · s' · r · s'' ≡ u · v · s' · r'' · s path = u · v · s' · r · s'' ≡⟨ eq1 r s r' s' r'' s'' u v ⟩ -- not just ≡⟨ solve R' ⟩ u · r · s' · v · s'' ≡⟨ cong (λ x → x · v · s'') p ⟩ u · r' · s · v · s'' ≡⟨ eq2 r s r' s' r'' s'' u v ⟩ u · s · (v · r' · s'') ≡⟨ cong (u · s ·_) q ⟩ u · s · (v · r'' · s') ≡⟨ eq3 r s r' s' r'' s'' u v ⟩ u · v · s' · r'' · s ∎ locIsEquivRel : isEquivRel _≈_ isEquivRel.reflexive locIsEquivRel = locRefl isEquivRel.symmetric locIsEquivRel = locSym isEquivRel.transitive locIsEquivRel = locTrans _+ₗ_ : S⁻¹R → S⁻¹R → S⁻¹R _+ₗ_ = setQuotSymmBinOp locRefl locTrans _+ₚ_ (λ a b → subst (λ x → (a +ₚ b) ≈ x) (+ₚ-symm a b) (locRefl (a +ₚ b))) θ where _+ₚ_ : R × S → R × S → R × S (r₁ , s₁ , s₁∈S) +ₚ (r₂ , s₂ , s₂∈S) = (r₁ · s₂ + r₂ · s₁) , (s₁ · s₂) , SMultClosedSubset .multClosed s₁∈S s₂∈S +ₚ-symm : (a b : R × S) → (a +ₚ b) ≡ (b +ₚ a) +ₚ-symm (r₁ , s₁ , s₁∈S) (r₂ , s₂ , s₂∈S) = ΣPathP (+Comm _ _ , Σ≡Prop (λ x → S' x .snd) (·Comm _ _)) θ : (a a' b : R × S) → a ≈ a' → (a +ₚ b) ≈ (a' +ₚ b) θ (r₁ , s₁ , s₁∈S) (r'₁ , s'₁ , s'₁∈S) (r₂ , s₂ , s₂∈S) ((s , s∈S) , p) = (s , s∈S) , path where eq1 : (r₁ s₁ r'₁ s'₁ s'₁ r₂ s₂ s : R) → s · (r₁ · s₂ + r₂ · s₁) · (s'₁ · s₂) ≡ s · r₁ · s'₁ · s₂ · s₂ + s · r₂ · s₁ · s'₁ · s₂ eq1 = solve R' eq2 : (r₁ s₁ r'₁ s'₁ s'₁ r₂ s₂ s : R) → s · r'₁ · s₁ · s₂ · s₂ + s · r₂ · s₁ · s'₁ · s₂ ≡ s · (r'₁ · s₂ + r₂ · s'₁) · (s₁ · s₂) eq2 = solve R' path : s · (r₁ · s₂ + r₂ · s₁) · (s'₁ · s₂) ≡ s · (r'₁ · s₂ + r₂ · s'₁) · (s₁ · s₂) path = s · (r₁ · s₂ + r₂ · s₁) · (s'₁ · s₂) ≡⟨ eq1 r₁ s₁ r'₁ s'₁ s'₁ r₂ s₂ s ⟩ s · r₁ · s'₁ · s₂ · s₂ + s · r₂ · s₁ · s'₁ · s₂ ≡⟨ cong (λ x → x · s₂ · s₂ + s · r₂ · s₁ · s'₁ · s₂) p ⟩ s · r'₁ · s₁ · s₂ · s₂ + s · r₂ · s₁ · s'₁ · s₂ ≡⟨ eq2 r₁ s₁ r'₁ s'₁ s'₁ r₂ s₂ s ⟩ s · (r'₁ · s₂ + r₂ · s'₁) · (s₁ · s₂) ∎ -- check group-laws for addition +ₗ-assoc : (x y z : S⁻¹R) → x +ₗ (y +ₗ z) ≡ (x +ₗ y) +ₗ z +ₗ-assoc = SQ.elimProp3 (λ _ _ _ → squash/ _ _) +ₗ-assoc[] where +ₗ-assoc[] : (a b c : R × S) → [ a ] +ₗ ([ b ] +ₗ [ c ]) ≡ ([ a ] +ₗ [ b ]) +ₗ [ c ] +ₗ-assoc[] (r , s , s∈S) (r' , s' , s'∈S) (r'' , s'' , s''∈S) = cong [_] (ΣPathP ((path r s r' s' r'' s'') , Σ≡Prop (λ x → ∈-isProp S' x) (·Assoc _ _ _))) where path : (r s r' s' r'' s'' : R) → r · (s' · s'') + (r' · s'' + r'' · s') · s ≡ (r · s' + r' · s) · s'' + r'' · (s · s') path = solve R' 0ₗ : S⁻¹R 0ₗ = [ 0r , 1r , SMultClosedSubset .containsOne ] +ₗ-rid : (x : S⁻¹R) → x +ₗ 0ₗ ≡ x +ₗ-rid = SQ.elimProp (λ _ → squash/ _ _) +ₗ-rid[] where +ₗ-rid[] : (a : R × S) → [ a ] +ₗ 0ₗ ≡ [ a ] +ₗ-rid[] (r , s , s∈S) = path where eq1 : (r s : R) → r · 1r + 0r · s ≡ r eq1 = solve R' path : [ r · 1r + 0r · s , s · 1r , SMultClosedSubset .multClosed s∈S (SMultClosedSubset .containsOne) ] ≡ [ r , s , s∈S ] path = cong [_] (ΣPathP (eq1 r s , Σ≡Prop (λ x → ∈-isProp S' x) (·IdR _))) -ₗ_ : S⁻¹R → S⁻¹R -ₗ_ = SQ.rec squash/ -ₗ[] -ₗWellDef where -ₗ[] : R × S → S⁻¹R -ₗ[] (r , s) = [ - r , s ] -ₗWellDef : (a b : R × S) → a ≈ b → -ₗ[] a ≡ -ₗ[] b -ₗWellDef (r , s , _) (r' , s' , _) ((u , u∈S) , p) = eq/ _ _ ((u , u∈S) , path) where eq1 : (u r s' : R) → u · - r · s' ≡ - (u · r · s') eq1 = solve R' eq2 : (u r' s : R) → - (u · r' · s) ≡ u · - r' · s eq2 = solve R' path : u · - r · s' ≡ u · - r' · s path = eq1 u r s' ∙∙ cong -_ p ∙∙ eq2 u r' s +ₗ-rinv : (x : S⁻¹R) → x +ₗ (-ₗ x) ≡ 0ₗ +ₗ-rinv = SQ.elimProp (λ _ → squash/ _ _) +ₗ-rinv[] where +ₗ-rinv[] : (a : R × S) → ([ a ] +ₗ (-ₗ [ a ])) ≡ 0ₗ +ₗ-rinv[] (r , s , s∈S) = eq/ _ _ ((1r , SMultClosedSubset .containsOne) , path r s) where path : (r s : R) → 1r · (r · s + - r · s) · 1r ≡ 1r · 0r · (s · s) path = solve R' +ₗ-comm : (x y : S⁻¹R) → x +ₗ y ≡ y +ₗ x +ₗ-comm = SQ.elimProp2 (λ _ _ → squash/ _ _) +ₗ-comm[] where +ₗ-comm[] : (a b : R × S) → ([ a ] +ₗ [ b ]) ≡ ([ b ] +ₗ [ a ]) +ₗ-comm[] (r , s , s∈S) (r' , s' , s'∈S) = cong [_] (ΣPathP ((+Comm _ _) , Σ≡Prop (λ x → ∈-isProp S' x) (·Comm _ _))) -- Now for multiplication _·ₗ_ : S⁻¹R → S⁻¹R → S⁻¹R _·ₗ_ = setQuotSymmBinOp locRefl locTrans _·ₚ_ (λ a b → subst (λ x → (a ·ₚ b) ≈ x) (·ₚ-symm a b) (locRefl (a ·ₚ b))) θ where _·ₚ_ : R × S → R × S → R × S (r₁ , s₁ , s₁∈S) ·ₚ (r₂ , s₂ , s₂∈S) = (r₁ · r₂) , ((s₁ · s₂) , SMultClosedSubset .multClosed s₁∈S s₂∈S) ·ₚ-symm : (a b : R × S) → (a ·ₚ b) ≡ (b ·ₚ a) ·ₚ-symm (r₁ , s₁ , s₁∈S) (r₂ , s₂ , s₂∈S) = ΣPathP (·Comm _ _ , Σ≡Prop (λ x → S' x .snd) (·Comm _ _)) θ : (a a' b : R × S) → a ≈ a' → (a ·ₚ b) ≈ (a' ·ₚ b) θ (r₁ , s₁ , s₁∈S) (r'₁ , s'₁ , s'₁∈S) (r₂ , s₂ , s₂∈S) ((s , s∈S) , p) = (s , s∈S) , path where eq1 : (r₁ s₁ r'₁ s'₁ r₂ s₂ s : R) → s · (r₁ · r₂) · (s'₁ · s₂) ≡ s · r₁ · s'₁ · r₂ · s₂ eq1 = solve R' eq2 : (r₁ s₁ r'₁ s'₁ r₂ s₂ s : R) → s · r'₁ · s₁ · r₂ · s₂ ≡ s · (r'₁ · r₂) · (s₁ · s₂) eq2 = solve R' path : s · (r₁ · r₂) · (s'₁ · s₂) ≡ s · (r'₁ · r₂) · (s₁ · s₂) path = eq1 r₁ s₁ r'₁ s'₁ r₂ s₂ s ∙∙ cong (λ x → x · r₂ · s₂) p ∙∙ eq2 r₁ s₁ r'₁ s'₁ r₂ s₂ s -- checking laws for multiplication 1ₗ : S⁻¹R 1ₗ = [ 1r , 1r , SMultClosedSubset .containsOne ] ·ₗ-assoc : (x y z : S⁻¹R) → x ·ₗ (y ·ₗ z) ≡ (x ·ₗ y) ·ₗ z ·ₗ-assoc = SQ.elimProp3 (λ _ _ _ → squash/ _ _) ·ₗ-assoc[] where ·ₗ-assoc[] : (a b c : R × S) → [ a ] ·ₗ ([ b ] ·ₗ [ c ]) ≡ ([ a ] ·ₗ [ b ]) ·ₗ [ c ] ·ₗ-assoc[] (r , s , s∈S) (r' , s' , s'∈S) (r'' , s'' , s''∈S) = cong [_] (ΣPathP ((·Assoc _ _ _) , Σ≡Prop (λ x → ∈-isProp S' x) (·Assoc _ _ _))) ·ₗ-rid : (x : S⁻¹R) → x ·ₗ 1ₗ ≡ x ·ₗ-rid = SQ.elimProp (λ _ → squash/ _ _) ·ₗ-rid[] where ·ₗ-rid[] : (a : R × S) → ([ a ] ·ₗ 1ₗ) ≡ [ a ] ·ₗ-rid[] (r , s , s∈S) = cong [_] (ΣPathP ((·IdR _) , Σ≡Prop (λ x → ∈-isProp S' x) (·IdR _))) ·ₗ-rdist-+ₗ : (x y z : S⁻¹R) → x ·ₗ (y +ₗ z) ≡ (x ·ₗ y) +ₗ (x ·ₗ z) ·ₗ-rdist-+ₗ = SQ.elimProp3 (λ _ _ _ → squash/ _ _) ·ₗ-rdist-+ₗ[] where ·ₗ-rdist-+ₗ[] : (a b c : R × S) → [ a ] ·ₗ ([ b ] +ₗ [ c ]) ≡ ([ a ] ·ₗ [ b ]) +ₗ ([ a ] ·ₗ [ c ]) ·ₗ-rdist-+ₗ[] (r , s , s∈S) (r' , s' , s'∈S) (r'' , s'' , s''∈S) = eq/ _ _ ((1r , (SMultClosedSubset .containsOne)) , path r s r' s' r'' s'') where -- could be shortened even further path : (r s r' s' r'' s'' : R) → 1r · (r · (r' · s'' + r'' · s')) · (s · s' · (s · s'')) ≡ 1r · (r · r' · (s · s'') + r · r'' · (s · s')) · (s · (s' · s'')) path = solve R' ·ₗ-comm : (x y : S⁻¹R) → x ·ₗ y ≡ y ·ₗ x ·ₗ-comm = SQ.elimProp2 (λ _ _ → squash/ _ _) ·ₗ-comm[] where ·ₗ-comm[] : (a b : R × S) → [ a ] ·ₗ [ b ] ≡ [ b ] ·ₗ [ a ] ·ₗ-comm[] (r , s , s∈S) (r' , s' , s'∈S) = cong [_] (ΣPathP ((·Comm _ _) , Σ≡Prop (λ x → ∈-isProp S' x) (·Comm _ _))) -- Commutative ring structure on S⁻¹R S⁻¹RAsCommRing : CommRing ℓ S⁻¹RAsCommRing = S⁻¹R , S⁻¹RCommRingStr where open CommRingStr S⁻¹RCommRingStr : CommRingStr S⁻¹R 0r S⁻¹RCommRingStr = 0ₗ 1r S⁻¹RCommRingStr = 1ₗ _+_ S⁻¹RCommRingStr = _+ₗ_ _·_ S⁻¹RCommRingStr = _·ₗ_ - S⁻¹RCommRingStr = -ₗ_ isCommRing S⁻¹RCommRingStr = makeIsCommRing squash/ +ₗ-assoc +ₗ-rid +ₗ-rinv +ₗ-comm ·ₗ-assoc ·ₗ-rid ·ₗ-rdist-+ₗ ·ₗ-comm
36.442907
101
0.476738
587a0fc6fd1221bbbb6342d1757fbb08c84ab058
1,057
agda
Agda
SDG/SDG.agda
wrrnhttn/agda-sdg
6814e6f0baffff35efe14ef70d469343cd9b3ba0
[ "MIT" ]
1
2020-11-13T09:36:38.000Z
2020-11-13T09:36:38.000Z
SDG/SDG.agda
wrrnhttn/agda-sdg
6814e6f0baffff35efe14ef70d469343cd9b3ba0
[ "MIT" ]
1
2019-07-18T20:00:23.000Z
2019-09-18T15:47:49.000Z
SDG/SDG.agda
wrrnhttn/agda-sdg
6814e6f0baffff35efe14ef70d469343cd9b3ba0
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import SDG.Extra.OrderedAlgebra module SDG.SDG {r₁ r₂} (R : OrderedCommutativeRing r₁ r₂) where open OrderedCommutativeRing R renaming (Carrier to Rc) open import Data.Product open import Data.Sum open import Algebra -- note: SDG should probably be a record if i need to -- use some particular topos model --nilsqr : {!!} nilsqr = λ x → (x * x) ≈ 0# nilsqr-0# : nilsqr 0# nilsqr-0# = zeroˡ 0# --D : {!!} D = Σ[ x ∈ Rc ] (nilsqr x) D→R : D → Rc D→R d = proj₁ d R→D : (x : Rc) → nilsqr x → D R→D x nilsqr = x , nilsqr d0 : D d0 = R→D 0# nilsqr-0# postulate kock-lawvere : ∀ (g : D → Rc) → ∃! _≈_ (λ b → ∀ (d : D) → ((g d) ≈ ((g d0) + (D→R d * b)))) -- these definitions are modified from previous development based on Bell: gₓ : ∀ (f : Rc → Rc) (x : Rc) → (D → Rc) gₓ f x d = f (x + D→R d) ∃!b : ∀ (f : Rc → Rc) (x : Rc) → ∃! _≈_ (λ b → ∀ (d : D) → ((gₓ f x d) ≈ ((gₓ f x d0) + (D→R d * b)))) ∃!b f x = kock-lawvere (gₓ f x) _′ : (f : Rc → Rc) → (Rc → Rc) (f ′) x = proj₁ (∃!b f x)
21.571429
102
0.53737
2293081f33f40677c4540163cac255dfc828037e
51,464
agda
Agda
test/Hit.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
3
2020-07-31T18:15:26.000Z
2022-02-19T12:15:21.000Z
test/Hit.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
test/Hit.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts #-} module Hit where -- open import Cubical.Core.Everything open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ) -- open import Cubical.Foundations.Equiv.HalfAdjoint -- open import Cubical.Data.Sigma.Properties -- https://en.wikipedia.org/wiki/Inductive_type#Higher_inductive_types -- private -- ℓ : Level _ : (A B : Type₀) → Type₁ _ = λ a b → a ≡ b -- https://www.youtube.com/watch?v=AZ8wMIar-_c -- List becomes a normal form of this data FreeMonoid' (A : Type₀) : Type₀ where [_]' : A → FreeMonoid' A ε' : FreeMonoid' A _*'_ : FreeMonoid' A → FreeMonoid' A → FreeMonoid' A assoc' : ∀ x y z → x *' (y *' z) ≡ (x *' y) *' z data List (A : Type) : Type where [] : List A _∷_ : A → List A → List A -- debug fonts -- see which fonts are "in effect" with -- fc-match --verbose -- https://wiki.archlinux.org/index.php/X_Logical_Font_Description -- Two different font systems are used by X11: -- - the older or core X Logical Font Description, XLFD, -- - and the newer X FreeType, Xft, systems (see An Xft Tutorial for font names format). -- https://keithp.com/~keithp/render/Xft.tutorial -- λ-calculus -- Cockx 2019 - Hack your type theory with rewrite rules -- https://jesper.sikanda.be/posts/hack-your-type-theory.html -- email thread from Georgi Lyubenov (24.03.20, 23:28 ff) about sized lambdas "How can I implement naive sized lambdas?" -- email thread from Joey Eremondi (22.04.20, 06:07 ff) about variable binding "What do you use for variable binding in 2020?" -- literate agda markdown -> latex -- https://lists.chalmers.se/pipermail/agda/2019/011286.html -- https://stackoverflow.com/questions/58339725/literate-agda-in-markdown-format-to-latex-via-pandoc -- https://jesper.sikanda.be/posts/literate-agda.html -- Jesper Cockx' mail from 09.07.19, 18:35 -- an example file/paper that shows how to use cubical: -- /home/christianl/agda/cubical/Cubical/Papers/Synthetic.agda -- Cubical synthetic homotopy theory -- Mörtberg and Pujet, „Cubical synthetic homotopy theory“. -- https://dl.acm.org/doi/abs/10.1145/3372885.3373825 -- the github repository recommends -- Vezzosi 2019 - Cubical Agda: A Dependently Typed ProgrammingLanguage with Univalence and Higher Inductive Types -- https://dl.acm.org/doi/pdf/10.1145/3341691 -- there is also the very comprehensive -- https://arxiv.org/pdf/1911.00580.pdf -- Martín Hötzel Escardó 2020 - Introduction to Univalent Foundations of Mathematics with Agda -- clickable html version: https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html -- https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#sns -- A structure identity principle for a standard notion of structure -- some useful, recent stuff from the mailing list: -- https://ncatlab.org/nlab/show/archimedean+field -- An archimedean field is an ordered field in which every element is bounded above by a natural number. -- Q: why refl {x} and refl {_} {_} {x} behave differently according to context -- A: (U. Norell 01.05.20, 23:08) -- pattern reflpv x = refl {x = x} -- you are not allowed to pattern match on datatype parameters, since they are not stored in the constructor. In a right-hand side you can give the parameters to guide the type checker, but they are thrown out during elaboration. -- Andreas Nuyts 26.04.20, 22:34 -- a case in a pattern matching definition gets a light grey background when it doesn't hold as a definitional equation, typically because it is a fallthrough case and further matching of the arguments is necessary to establish that none of the prior cases apply -- Q: what do I assume/not assume when using --cubical? -- A: (Andreas Abel 24.04.20, 15:04) That is a long story. One thing is that in --cubical, the identity type is a primitive (not a data), and you cannot match on refl. -- https://agda.readthedocs.io/en/v2.6.1/tools/command-line-options.html?highlight=infective#consistency-checking-of-options-used -- An infective option is an option that if used in one module, must be used in all modules that depend on this module. -- A coinfective option is an option that if used in one module, must be used in all modules that this module depends on. -- (Orestis Melkonian 22.12.19, 21:11) inspect MAlonzo haskell code's variable names with https://github.com/agda/agda-ghc-names -- (James Wood 22.12.19, 21:28) -- Note that record field names can also overlap if they are applied directly to a record value. -- The theory behind this is in bidirectional type checking, and how a term having its type checked (rather than inferred) may be ambiguous without the information from the type. -- The same mechanism allows λ to be reused for dimension abstraction in cubical Agda (because it is a constructor). -- In short, overloading is fine in the following cases: -- - Everything being overloaded is a constructor, and there is an obvious type to check the resulting construction against. -- - Everything being overloaded is a field, and there is an obvious record type that the field is destructing. -- Outside of these cases, overloading fails. -- You might notice also that the agda2-infer-type command will usually fail to infer the type of a construction of which the head is an overloaded constructor. -- This is because Agda really wants to check the construction, rather than inferring a type for it. -- It just happens that when the constructor is not overloaded, it's easier to make progress, because that gives just enough to check the construction against. -- Q: Copattern match in emacs -- A: (James Wood 05.11.19, 22:41) If I understand the question correctly, it's the usual C-c C-c for case-splitting, but on an empty hole and followed immediately by RET, rather than entering a variable name. The intermediate prompt is “pattern variables to case (empty for split on result)”. It's splitting on the result that you want. -- Constructor names can overlap; the right one will be chosen on usage depending on the expected type. -- Note that other kind of names cannot overlap (e.g. definition names, etc..). -- the cubical std-lib is described in a blog post from Andreas Mörtberg -- https://homotopytypetheory.org/2018/12/06/cubical-agda/ -- isomorphisms are equivalences (i.e. have contractible fibers) -- Hedberg’s theorem (types with decidable equality are sets) -- The main things that the CCHM cubical type theory extends dependent type theory with are: -- 1. An interval pretype -- 2. Kan operations -- 3. Glue types -- 4. Cubical identity types open import Cubical.Structures.CommRing open import Cubical.Relation.Nullary.Base -- ¬_ open import Cubical.Relation.Binary.Base -- open import Cubical.Data.Prod.Base renaming (_×_ to _×'_) -- NOTE: Cubical.Core.Sigma uses Agda.Builtin.Sigma -- open import Agda.Builtin.Sigma renaming (_×_ to _×ᵇ_) open import Cubical.Data.Sum.Base open import Cubical.Data.Sigma.Base -- Σ-types are defined in Core/Primitives as they are needed for Glue types. -- PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ -- -- We have a variable name in `(λ i → A)` as a hint for case splitting. -- -- Path : ∀ {ℓ} (A : Set ℓ) → A → A → Set ℓ -- Path A a b = PathP (λ _ → A) a b -- -- _≡_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ -- _≡_ {A = A} = PathP (λ i → A) -- Cubical.Foundations.Id -- -- transport : ∀ (B : A → Type ℓ') {x y : A} → x ≡ y → B x → B y -- transport B {x} p b = J (λ y p → B y) b p -- -- _⁻¹ : {x y : A} → x ≡ y → y ≡ x -- _⁻¹ {x = x} p = J (λ z _ → z ≡ x) refl p -- -- ap : ∀ {B : Type ℓ'} (f : A → B) → ∀ {x y : A} → x ≡ y → f x ≡ f y -- ap f {x} = J (λ z _ → f x ≡ f z) refl -- -- _∙_ : ∀ {x y z : A} → x ≡ y → y ≡ z → x ≡ z -- _∙_ {x = x} p = J (λ y _ → x ≡ y) p refl1 : ∀ {ℓ} {A : Type ℓ} {x : A} → Path A x x refl1 {x = x} = λ i → x refl2 : ∀ {ℓ} {A : Type ℓ} {x : A} → PathP (λ _ → A) x x refl2 {x = x} = λ i → x refl3 : ∀{ℓ} {A : Type ℓ} {x : A} → PathP (λ _ → A) x x refl3 {x = x} = λ _ → x sym1 : ∀ {ℓ} {A : Type ℓ} {x y : A} → x ≡ y → y ≡ x sym1 p = λ i → p (~ i) cong1 : ∀ {ℓ} {A : Type ℓ} {x y : A} {B : A → Type ℓ} (f : (a : A) → B a) (p : x ≡ y) -------------------------------------------- → PathP (λ i → B (p i)) (f x) (f y) cong1 f p i = f (p i) cong2 : ∀ {ℓ} {A : Type ℓ} {x y : A} {B : A → Type ℓ} (f : (a : A) → B a) (p : PathP (λ i → A ) x y ) ---------------------------------------------- → ( PathP (λ i → B (p i)) (f x) (f y)) cong2 f p i = f (p i) -- see "Propositional truncation" https://homotopytypetheory.org/2018/12/06/cubical-agda for -- data ∥_∥ {ℓ} (A : Set ℓ) : Set ℓ where -- ∣_∣ : A → ∥ A ∥ -- squash : ∀ (x y : ∥ A ∥) → x ≡ y -- see https://planetmath.org/37propositionaltruncation open import Cubical.HITs.PropositionalTruncation -- for `|_|` and `squash` test1 : {Carrier : Type} -> ∃[ x ∈ Carrier ] x ≡ x → Carrier test1 ∣ x , x≡x ∣ = x -- Goal: Carrier -- ———— Boundary —————————————————————————————————————————————— -- i = i0 ⊢ test1 x -- i = i1 ⊢ test1 y -- ———— Constraints ——————————————————————————————————————————— -- test1 x = ?0 (i = i0) : Carrier -- test1 y = ?0 (i = i1) : Carrier test1 (squash x y i) = {! test1 x!} test2 : {A : Type} → (x y : A) → x ≡ y → A -- test2 x y x≡y = {! x≡y!} test2 x y p = p i0 -- test4 : I → Type -- test4 i = {!!} test5a : {A : Type} {P : A → Type} → (x y : A) → x ≡ y → P x → P y test5a {A} {P} x y p px = transport (λ i → P (p i)) px test5b : {A : Type} → {P : A → Type} → (x y : A) → PathP (λ _ → A) x y -- x ≡ y → P x -------------------------- → P y test5b {A} {P} x y x≡y Px = transport {A = P x} Px≡Py Px where -- transport gives us `P x → P y`, but we need to feed it `P x ≡ P y` Px≡Py : P x ≡ P y Px≡Py = cong P x≡y -- this is almost what `isProp P` would give us -- isProp : ∀ {ℓ} → Type ℓ → Type ℓ -- isProp A = (x y : A) → x ≡ y -- but we need something like `∀(x y : A) → P x ≡ P y` -- well, no. `cong P x≡y` gives us `P x ≡ P y` -- it is different from non-cubical agda, where `x ≡ y` was sufficient, no matter what P is -- there, we could just pattern match on refl and "change" the goal to `P x` instead of `P y` -- well, in some sense we are already changing the goal as this approach could be "at the end" of a sequence of equational reasoning -- ... just without pattern matching test5c : {A : Type} → {P : A → Type} → (x y : A) → PathP (λ _ → A) x y -- x ≡ y → P x -------------------------- → P y test5c {A} {P} x y x≡y Px = transport {A = P x} Px≡Py Px where -- once again, without `cong` Px≡Py : P x ≡ P y -- we need to build a path that is `P x` at i0 and `P y` at i1 -- with `x≡y` we have given a path that is `x` at i0 and `y` at i1 -- therefore `x≡y(i)` behaves in the correct way and we just plug this into `P` Px≡Py i = P (x≡y i) -- the short version, collapsing all intermediates test5f : ∀{ℓ ℓ'} {A : Type ℓ} {P : A → Type ℓ'} {x y : A} → (x ≡ y) → (P x) → P y test5f {P = P} p px = transport (λ i → P (p i)) px --primitive -- transp : ∀ {ℓ} (A : (i : I) → Set (ℓ i)) (φ : I) (a : A i0) → A i1 transport1 : ∀{ℓ} {A B : Type ℓ} → A ≡ B → A → B transport1 p a = transp (λ i → p i) i0 a test5d : {A : Type} {P : A → Type} → (x y : A) → x ≡ y → P x → P y test5d {A} {P} x y x≡y Px = transport (cong P x≡y) Px module Utils where private variable ℓ ℓ' : Level A : Type ℓ B : A → Type ℓ C : (a : A) → B a → Type ℓ D : (a : A) → (b : B a) → C a b → Type ℓ cong₁ : ∀ (f : (a : A) → B a) → {x : A} {y : A} (p : PathP (λ i → A) x y) -- (p : x ≡ y) ---------------------------------- → PathP (λ i → B (p i)) (f x) (f y) cong₁ f p i = f (p i) {-# INLINE cong₁ #-} cong₂' : ∀ {F : (a : A) → (b : B a) → Type ℓ} → (f : (a : A) → (b : B a) → F a b) → {x : A } {y : A } (p : PathP (λ i → A ) x y) -- (p : x ≡ y) → {u : B x } {v : B y } (q : PathP (λ i → B (p i) ) u v) -- ? u ≡ v given x ≡ y ? --------------------------------------------- → PathP (λ i → F (p i) (q i)) (f x u) (f y v) cong₂' f p q i = f (p i) (q i) {-# INLINE cong₂' #-} cong₃ : ∀{F : (a : A) → (b : B a) → (c : C a b) → Type ℓ} → (f : (a : A) → (b : B a) → (c : C a b) → F a b c) → {x : A } {y : A } (p : PathP (λ i → A ) x y) -- (p : x ≡ y) → {u : B x } {v : B y } (q : PathP (λ i → B (p i) ) u v) -- ? u ≡ v given x ≡ y ? → {m : C x u} {n : C y v} (r : PathP (λ i → C (p i) (q i)) m n) -- ? m ≡ n given x ≡ y and u ≡ v ? -------------------------------------------- → PathP (λ i → F (p i) (q i) (r i)) (f x u m) (f y v n) cong₃ f p q r i = f (p i) (q i) (r i) {-# INLINE cong₃ #-} cong₄ : ∀{F : (a : A) → (b : B a) → (c : C a b) → (d : D a b c) → Type ℓ} → (f : (a : A) → (b : B a) → (c : C a b) → (d : D a b c) → F a b c d) → {x : A } {y : A } (p : PathP (λ i → A ) x y) -- (p : x ≡ y) → {u : B x } {v : B y } (q : PathP (λ i → B (p i) ) u v) -- ? u ≡ v given x ≡ y ? → {m : C x u } {n : C y v } (r : PathP (λ i → C (p i) (q i) ) m n) -- ? m ≡ n given x ≡ y and u ≡ v ? → {k : D x u m} {l : D y v n} (s : PathP (λ i → D (p i) (q i) (r i)) k l) -- ? k ≡ l given x ≡ y and u ≡ v and m ≡ n? -------------------------------------------- → PathP (λ i → F (p i) (q i) (r i) (s i)) (f x u m k) (f y v n l) cong₄ f p q r s i = f (p i) (q i) (r i) (s i) {-# INLINE cong₄ #-} open Utils using (cong₃; cong₄) -- slide 18 of http://www.cse.chalmers.se/~abela/esslli2016/talkESSLLI3.pdf fullelim : (A : Type) → (C : (x y : A) → (p : x ≡ y) → Type) → (M N : A) → (P : M ≡ N) → (O : (z : A) → C z z refl) ------------------------ → C M N P fullelim A C M N P O = transport along (O M) where along : C M M refl ≡ C M N P -- the "obvious" idea would be to show equality on every argument -- and then use a brute force `cong₃` to apply these equalities along = cong₃ C (refl {x = M}) P refl≡P where -- the first two arguments are easy, and the hole of the third argument rewards us with a signature to implement: refl≡P : PathP (λ i → M ≡ (P i)) refl P -- here, we need to build a path that is refl on i0 and P on i1 just with the things we have given -- refl : ∀{ℓ} {A : Type ℓ} {x : A} x ≡ x -- refl {x = x} = λ _ → x -- _≡_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ -- _≡_ {A = A} = PathP (λ i → A) -- therefore, we have -- refl : ∀{ℓ} {A : Type ℓ} {x : A} → PathP (λ i → A) M M -- refl {x = x} = λ _ → x -- P : PathP (λ i → A) M N -- Goal: M ≡ P i -- Goal: PathP (λ j → A) M (P i) refl≡P i = λ j → P (i ∧ j) -- I could not come up with the solution myself, but I was able to pick it off ... -- ... of `J` under "Kan operations" at https://homotopytypetheory.org/2018/12/06/cubical-agda/ -- so, how does this work? These are the cases: -- i | j | i∧j | P(i∧j) | λ j → P(i∧j) | λ i → λ j → P(i∧j) -- i0 | i0 | i0 | M : A | M≡M : M ≡ M | p : (M≡M) ≡ (M≡N) -- i0 | i1 | i0 | M : A | | which is "like" -- i1 | i0 | i0 | M : A | M≡N : M ≡ N | p : refl ≡ P -- i1 | i1 | i1 | N : A | | -- and indeed, they work out -- we could not write `refl ≡ P` but instead have `PathP _ refl P` fullelim2 : (A : Type) → (C : (x y : A) → (p : x ≡ y) → Type) → (M N : A) → (P : M ≡ N) → (O : (z : A) → C z z refl) ------------------------ → C M N P -- we can unfold `transport` as in the blog post -- transport : {A B : Type ℓ} → A ≡ B → A → B -- transport p a = transp (λ i → p i) i0 a fullelim2 A C M N P O = transp (λ i → along i) i0 (O M) where -- and we can directly "set up" the path without using `cong₃` along : C M M refl ≡ C M N P along i = C (refl {x = M} i) (P i) (λ j → P (i ∧ j) ) -- -- see favonia: [Agda] Equational Reasoning -- https://favonia.org/courses/hdtt2020/agda/agda-0305-eqreasoning.agda -- Kraus 2013 - Generalizations of Hedberg’s Theorem -- https://www.cs.bham.ac.uk/~mhe/papers/hedberg.pdf -- Although the identity types in Martin-Löf type theory (MLTT) are defined byone constructor refl and by one eliminator J that matches the constructor, the statement that every identity type has at most one inhabitant is not provable [9]. -- Thus,uniqueness of identity proofs(UIP), or, equivalently, Streicher’s axiom K are principles that have to be assumed, and have often been assumed, as additional rules of MLTT. -- ... -- we do not assume the principle of unique identity proofs. -- However, certain types do satisfy it naturally, and such types are often called h-sets. -- A sufficient condition for a type to be an h-set, given by Hedberg [8], isthat it has decidable propositional equality. -- In Section 3, we analyze Hedberg’s original argument, which consists of two steps: -- 1. A type X is an h-set iff for all x, y : X there is a constant map x = y → x = y. -- 2. If X has decidable equality then such constant endomaps exist -- Decidable equality means that, for all x and y, we have (x = y) + (x ≠ y). -- Thus, a natural weakening is ¬¬-separated equality, ¬¬(x = y) → x = y, which occurs often in constructive mathematics. -- In this case we say that the type X is separated. -- For example, going beyond MLTT, the reals and the Cantorspace in Bishop mathematics and topos theory are separated. -- In MLTT, the Cantortype of functions from natural numbers to booleans is separated under the assumption of functional extensionality, -- ∀ f g : X → Y, (∀ x : X, f x = g x) → f = g. -- We observe that under functional extensionality, a separated type X is an h-set, because there is always a constant map x = y → x = y. -- In order to obtain a further characterization of the notion of h-set, we consider truncations -- (also known as bracket or squash types), written ‖X‖in accordance with recent HoTT notation. -- The idea is to collapse all inhabitants of X so that ‖X‖ has at most one inhabitant. -- We refer the reader to the technical development for a precise definition. -- cites -- Altenkirch 2012 - On h-Propositional Reflection and Hedberg’s Theorem -- https://homotopytypetheory.org/2012/11/27/on-h-propositional-reflection-and-hedbergs-theorem/ -- Bracket-Type https://ncatlab.org/nlab/show/bracket+type -- By contrast, in the paradigm that may be called propositions as some types, every proposition is a type, but not every type is a proposition. -- The types which are propositions are generally those which “have at most one inhabitant” — in homotopy type theory this is called being of h-level 1 or being a (-1)-type. -- ... -- For A a type, the support of A denoted supp(A) or isInhab(A) or τ₋₁ A or ‖A‖₋₁ or ‖A‖ or, lastly, [A], -- is the higher inductive type defined by the two constructors -- a : A ⊢ isinhab(a) : supp(A) -- x : supp(A), y : supp(A) ⊢ inpath(x,y) : (x = y), -- where in the last sequent on the right we have the identity type. -- https://github.com/agda/cubical/issues/286 -- It could also be a good idea to axiomatize the notion of a Caucy-complete Archimedean ordered field, as in Auke Booij's thesis, and show that Dedekind reals are an instance. The HoTT reals are then another instance. (Can cubical Agda handle the HoTT reals as a HIIT yet?) -- https://www.cs.bham.ac.uk/~abb538/thesis-first_submission.pdf -- Booij 2020 - Analysis in Univalent Type Theory -- 4.1 Algebraic structure of numbers -- -- Fields have the property that nonzero numbers have a multiplicative inverse, or more precisely, that -- (∀ x : F) x ≠ 0 ⇒ (∃ y : F) x · y = 1. -- -- Remark 4.1.1. -- If we require the collection of numbers to form a set in the sense of Definition 2.5.4, and satisfy the ring axioms, then multiplicative inverses are unique, so that the above is equivalent to the proposition -- (Π x : F) x ≠ 0 ⇒ (Σ y : F) x · y = 1. -- -- Definition 4.1.2. -- A classical field is a set F with points 0, 1 : F, operations +, · : F → F → F, which is a commutative ring with unit, such that -- (∀ x : F) x ≠ 0 ⇒ (∃ y : F) x · y = 1. private variable ℓ ℓ' ℓ'' : Level module ClassicalFieldModule where -- NOTE: one might want to put this into another file to omit the name-clashing record IsClassicalField {F : Type ℓ} (0f : F) (1f : F) (_+_ : F → F → F) (_·_ : F → F → F) (-_ : F → F) (_⁻¹ᶠ : (x : F) → {{¬(x ≡ 0f)}} → F) : Type ℓ where constructor isclassicalfield field isCommRing : IsCommRing 0f 1f _+_ _·_ -_ ·-rinv : (x : F) → (p : ¬(x ≡ 0f)) → x · (_⁻¹ᶠ x {{p}}) ≡ 1f ·-linv : (x : F) → (p : ¬(x ≡ 0f)) → (_⁻¹ᶠ x {{p}}) · x ≡ 1f open IsCommRing {0r = 0f} {1r = 1f} isCommRing public record ClassicalField : Type (ℓ-suc ℓ) where field Carrier : Type ℓ 0f : Carrier 1f : Carrier _+_ : Carrier → Carrier → Carrier _·_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier _⁻¹ᶠ : (x : Carrier) → {{¬(x ≡ 0f)}} → Carrier isClassicalField : IsClassicalField 0f 1f _+_ _·_ -_ _⁻¹ᶠ infix 9 _⁻¹ᶠ infix 8 -_ infixl 7 _·_ infixl 6 _+_ open IsClassicalField isClassicalField public -- Remark 4.1.3. -- As in the classical case, by proving that additive and multiplicative inverses are unique, we also obtain the negation and division operations. -- -- For the reals, the assumption x ≠ 0 does not give us any information allowing us to bound x away from 0, which we would like in order to compute multiplicative inverses. -- Hence, we give a variation on the denition of fields in which the underlying set comes equipped with an apartness relation #, which satises x # y ⇒ x ≠ y, although the converse implication may not hold. -- This apartness relation allows us to make appropriate error bounds and compute multiplicative inverses based on the assumption x # 0. -- -- Definition 4.1.4. -- - An apartness relation, denoted by #, is an irreflexive symmetric cotransitive relation. -- - A strict partial order, denoted by <, is an irreflexive transitive cotransitive relation. IsIrrefl : {ℓ ℓ' : Level} {A : Type ℓ} → (R : Rel A A ℓ') → Type (ℓ-max ℓ ℓ') IsIrrefl {A = A} R = (a b : A) → R a b → ¬(R b a) IsCotrans : {ℓ ℓ' : Level} {A : Type ℓ} → (R : Rel A A ℓ') → Type (ℓ-max ℓ ℓ') IsCotrans {A = A} R = (a b : A) → R a b → (∀(x : A) → (R a x) ⊎ (R x b)) -- NOTE: these `IsX` definitions are in the style of the standard library and do not make `a` and `b` to be implicit arguments -- when using them, we can just use `_` as in `isIrrefl _ _ a#b` -- NOTE: module parameters "add" to the contained function's arguments -- see https://agda.readthedocs.io/en/v2.6.0.1/language/module-system.html#parameterised-modules -- IsApartnessRel : {ℓ ℓ' : Level} {A : Type ℓ} → (R : Rel A A ℓ') → Type (ℓ-max ℓ ℓ') -- IsApartnessRel R = IsIrrefl R × BinaryRelation.isSym R × IsCotrans R record IsApartnessRel {ℓ ℓ' : Level} {A : Type ℓ} (R : Rel A A ℓ') : Type (ℓ-max ℓ ℓ') where field isIrrefl : IsIrrefl R isSym : BinaryRelation.isSym R isCotrans : IsCotrans R -- IsStrictPartialOrder : {ℓ ℓ' : Level} {A : Type ℓ} → (R : Rel A A ℓ') → Type (ℓ-max ℓ ℓ') -- IsStrictPartialOrder R = IsIrrefl R × BinaryRelation.isTrans R × IsCotrans R record IsStrictPartialOrder {ℓ ℓ' : Level} {A : Type ℓ} (R : Rel A A ℓ') : Type (ℓ-max ℓ ℓ') where field isIrrefl : IsIrrefl R isTrans : BinaryRelation.isTrans R isCotrans : IsCotrans R -- Definition 4.1.5. -- A constructive field is a set F with points 0, 1 : F, binary operations +, · : F → F → F, and a binary relation # such that -- 1. (F, 0, 1, +, ·) is a commutative ring with unit; -- 2. x : F has a multiplicative inverse iff x # 0; -- 3. + is #-extensional, that is, for all w, x, y, z : F -- w + x # y + z ⇒ w # y ∨ x # z. {- NOTE: about naming in the standard library with `isCommRing : IsCommRing 0f 1f _+_ _·_ -_` we import is-set : (x y : Carrier) (x₁ y₁ : x ≡ y) → x₁ ≡ y₁ -- NOTE: this is imported from +-isAbGroup and explicitly hidden from ·-isMonoid isCommRing : IsCommRing 0f 1f _+_ _·_ -_ isRing : IsRing 0f 1f _+_ _·_ -_ +-isAbGroup : IsAbGroup 0f _+_ -_ +-assoc : (x y z : Carrier) → x + (y + z) ≡ x + y + z +-identity : (x : Carrier) → (x + 0f ≡ x) × (0f + x ≡ x) +-rid : (x : Carrier) → x + 0f ≡ x +-lid : (x : Carrier) → 0f + x ≡ x +-inv : (x : Carrier) → (x + - x ≡ 0f) × (- x + x ≡ 0f) +-linv : (x : Carrier) → - x + x ≡ 0f +-rinv : (x : Carrier) → x + - x ≡ 0f +-comm : (x y : Carrier) → x + y ≡ y + x +-isSemigroup : IsSemigroup _+_ +-isMonoid : IsMonoid 0f _+_ +-isGroup : IsGroup 0f _+_ -_ ·-isSemigroup : IsSemigroup _·_ ·-isMonoid : IsMonoid 1f _·_ ·-comm : (x y : Carrier) → x · y ≡ y · x ·-assoc : (x y z : Carrier) → x + (y + z) ≡ x + y + z ·-identity : (x : Carrier) → (x · 1f ≡ x) × (1f · x ≡ x) ·-lid : (x : Carrier) → 1f · x ≡ x ·-rid : (x : Carrier) → x · 1f ≡ x dist : (x y z : Carrier) → (x · (y + z) ≡ x · y + x · z) × ((x + y) · z ≡ x · z + y · z) ·-rdist-+ : (x y z : Carrier) → x · (y + z) ≡ x · y + x · z ·-ldist-+ : (x y z : Carrier) → (x + y) · z ≡ x · z + y · z there is module GroupLemmas (G : Group {ℓ}) where record MonoidEquiv (M N : Monoid {ℓ}) : Type ℓ where module SemigroupΣTheory {ℓ} where module CommRingΣTheory {ℓ} where module MonoidΣTheory {ℓ} where module MonoidTheory {ℓ} (M' : Monoid {ℓ}) where module GroupΣTheory {ℓ} where module AbGroupΣTheory {ℓ} where module RingΣTheory {ℓ} where module Theory (R' : Ring {ℓ}) where module PosetReasoning (P : Poset ℓ₀ ℓ₁) where there is a syntax for https://agda.readthedocs.io/en/latest/language/module-system.html?highlight=module#parameterised-modules module SortNat = Sort Nat leqNat the non-cubical standard library has a lot of machinery that is missing in the cubical-stdlib module Function.Base where -- Binary application _⟨_⟩_ : A → (A → B → C) → B → C x ⟨ f ⟩ y = f x y -- Composition of a binary function with a unary function _on_ : (B → B → C) → (A → B) → (A → A → C) _*_ on f = λ x y → f x * f y -- Flipped application (aka pipe-forward) _|>_ : ∀ {A : Set a} {B : A → Set b} → (a : A) → (∀ a → B a) → B a -- Construct an element of the given type by instance search. it : {A : Set a} → {{A}} → A it {{x}} = x module Relation.Binary.Core where infix 4 _⇒_ _⇔_ _=[_]⇒_ -- Implication/containment - could also be written _⊆_. -- and corresponding notion of equivalence _⇒_ : REL A B ℓ₁ → REL A B ℓ₂ → Set _ P ⇒ Q = ∀ {x y} → P x y → Q x y _⇔_ : REL A B ℓ₁ → REL A B ℓ₂ → Set _ P ⇔ Q = P ⇒ Q × Q ⇒ P -- Generalised implication - if P ≡ Q it can be read as "f preserves P". _=[_]⇒_ : Rel A ℓ₁ → (A → B) → Rel B ℓ₂ → Set _ P =[ f ]⇒ Q = P ⇒ (Q on f) -- A synonym for _=[_]⇒_. _Preserves_⟶_ : (A → B) → Rel A ℓ₁ → Rel B ℓ₂ → Set _ f Preserves P ⟶ Q = P =[ f ]⇒ Q -- A binary variant of _Preserves_⟶_. _Preserves₂_⟶_⟶_ : (A → B → C) → Rel A ℓ₁ → Rel B ℓ₂ → Rel C ℓ₃ → Set _ _∙_ Preserves₂ P ⟶ Q ⟶ R = ∀ {x y u v} → P x y → Q u v → R (x ∙ u) (y ∙ v) module Algebra.Definitions Congruent₁ : Op₁ A → Set _ Congruent₁ f = f Preserves _≈_ ⟶ _≈_ Congruent₂ : Op₂ A → Set _ Congruent₂ ∙ = ∙ Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_ LeftCongruent : Op₂ A → Set _ LeftCongruent _∙_ = ∀ {x} → (x ∙_) Preserves _≈_ ⟶ _≈_ RightCongruent : Op₂ A → Set _ RightCongruent _∙_ = ∀ {x} → (_∙ x) Preserves _≈_ ⟶ _≈_ the non-cubical standard library makes more use of unicode, e.g. in invˡ and invʳ for the inverse, we have in the non-cubical standard library inverseˡ : LeftInverse ε _⁻¹ _∙_ inverseˡ = proj₁ inverse inverseʳ : RightInverse ε _⁻¹ _∙_ inverseʳ = proj₂ inverse uniqueˡ-⁻¹ : ∀ x y → (x ∙ y) ≈ ε → x ≈ (y ⁻¹) uniqueˡ-⁻¹ = Consequences.assoc+id+invʳ⇒invˡ-unique setoid ∙-cong assoc identity inverseʳ uniqueʳ-⁻¹ : ∀ x y → (x ∙ y) ≈ ε → y ≈ (x ⁻¹) uniqueʳ-⁻¹ = Consequences.assoc+id+invˡ⇒invʳ-unique setoid ∙-cong assoc identity inverseˡ interestingly, this follows from just one field `inverse : Inverse ε _⁻¹ _∙_` there is `module Algebra.Consequences.Setoid` for such results ("consequences") there are open pull requests which might have some more information about the "intended" style https://github.com/agda/cubical/pull/331 Algebras and modules #331 https://github.com/agda/cubical/pull/365 Mayer-Vietoris and some cohomology groups #365 https://github.com/agda/cubical/pull/325 Denial field #325 A denial field is a commutative ring where every non-zero element has an inverse. See #301 for a discussion of other notions of 'field' in constructive algebra. https://github.com/felixwellen/cubical/tree/denial-field https://github.com/agda/cubical/issues/301 Add Field to Cubical.Structures #301 In the style of Ring, etc. from #284. I think it would be good to have this so we could show ℚ is a field. https://github.com/agda/cubical/pull/284 Newstructures #284 Adding some new structures (semigroups, groups, abelian groups and rngs) and a new folder of Algebra, in order to produce results about these new Algebraic structures. https://github.com/agda/cubical/commit/8cf91aeb49ebf26d4cf4e6795e8b56041e28c7a1 Rewrite Group, AbGroup, Ring and CommRing to be records instead of nested Sigma types https://github.com/agda/cubical/pull/324 Ideals and quotient rings #324 - define (left-, right- and two-sided) ideals - define quotient by a two-sided ideal - construct the ring structure on the quotient -} record IsConstructiveField {F : Type ℓ} (0f : F) (1f : F) (_+_ : F → F → F) (_·_ : F → F → F) (-_ : F → F) (_#_ : Rel F F ℓ') (_⁻¹ᶠ : (x : F) → {{x # 0f}} → F) : Type (ℓ-max ℓ ℓ') where constructor isconstructivefield field isCommRing : IsCommRing 0f 1f _+_ _·_ -_ ·-rinv : (x : F) → (p : x # 0f) → x · (_⁻¹ᶠ x {{p}}) ≡ 1f ·-linv : (x : F) → (p : x # 0f) → (_⁻¹ᶠ x {{p}}) · x ≡ 1f -- ·-inv : (x : F) → (p : x # 0f) → x · (let instance p = p in (x ⁻¹ᶠ)) ≡ 1f -- this does also work -- ·-inv : (x : F) → ({{p}} : x # 0f) → x · (x ⁻¹ᶠ) ≡ 1f -- this does not do the right thing -- ·-inv-back : (x : F) → ∃[ y ∈ F ] (x · y ≡ 1f) → x # 0f ·-inv-back : (x y : F) → (x · y ≡ 1f) → x # 0f × y # 0f +-#-extensional : (w x y z : F) → (w + x) # (y + z) → (w # y) ⊎ (x # z) isApartnessRel : IsApartnessRel _#_ open IsCommRing {0r = 0f} {1r = 1f} isCommRing public open IsApartnessRel isApartnessRel public renaming ( isIrrefl to #-irrefl ; isSym to #-sym ; isCotrans to #-cotrans ) _ = {!!} record ConstructiveField : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field Carrier : Type ℓ 0f : Carrier 1f : Carrier _+_ : Carrier → Carrier → Carrier _·_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier _#_ : Rel Carrier Carrier ℓ' _⁻¹ᶠ : (x : Carrier) → {{x # 0f}} → Carrier isConstructiveField : IsConstructiveField 0f 1f _+_ _·_ -_ _#_ _⁻¹ᶠ infix 9 _⁻¹ᶠ infixl 7 _·_ infix 6 -_ infixl 5 _+_ infixl 4 _#_ open IsConstructiveField isConstructiveField public open import Cubical.Data.Empty renaming (elim to ⊥-elim) -- `⊥` and `elim` -- Lemma 4.1.6. -- For a constructive field (F, 0, 1, +, ·, #), the following hold. -- 1. 1 # 0. -- 2. Addition + is #-compatible in the sense that for all x, y, z : F -- x # y ⇔ x + z # y + z. -- 3. Multiplication · is #-extensional in the sense that for all w, x, y, z : F -- w · x # y · z ⇒ w # y ∨ x # z. module Lemmas-4-6-1 {{F : ConstructiveField {ℓ} {ℓ'}}} where --open ConstructiveField {{...}} public -- creates additional `ConstructiveField.foo F` in the "Goal/Have-previews" open ConstructiveField F -- works open import Cubical.Structures.Ring -- NOTE: this also creates additional `Ring.Carrier (makeRing ...)` in the "Goal/Have-previews", except when using C-u C-u C-... then these get normalized fine -- can we do something with pragmas here? https://agda.readthedocs.io/en/latest/language/pragmas.html?highlight=INLINE#the-inline-and-noinline-pragmas -- or maybe with macros? https://github.com/alhassy/gentle-intro-to-reflection -- using this `R` makes it a little better R = (makeRing 0f 1f _+_ _·_ -_ is-set +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+) open Cubical.Structures.Ring.Theory R -- 0-rightNullifies -- open Ring {{...}} public {- module ReflectionTest where open import Data.Nat as Nat hiding (_⊓_) open import Data.List as List open import Data.Char as Char open import Data.String as String open import Reflection hiding (name; Type) open import Reflection.Term as Term public hiding (Type) test06 = (quoteTC 0-rightNullifies) test07 : _ unquoteDef test07 = defineFun test07 [ clause ( [] ) -- hidden arguments `{x}` ( [] ) -- visible arguments `{y}` (quoteTerm 0f) -- the "Term" at the right hand side of the `=` ] -- {-# INLINE test07 #-} -- {-# NOINLINE test07 #-} proof07 : test07 ≡ 0f proof07 = {!!} -} {- -- NOTE: it might be possible with --overlapping-instances to resolve this "Goal/Have-preview" issue -- but it is mentioned that this "might lead to an exponential slowdown in instance resolution and possibly (apparent) looping behaviour" -- also the OPTION pragma to apply --overlapping-instances can only be set per file (and not per module) -- so it might be a good idea to have a separate "Theory.agda" or "Properties.agda" (as it is called in the standard library) -- well, in a test with --overlapping instances, I got the issue that -_ is defined multiple times -- to be fair, the result we have implemented might fit better in a more general Ring context -- so one might think about this and until then, I guess, the best solution is to just omit multiple instances module InstanceTest where -- taken from https://agda.readthedocs.io/en/latest/language/instance-arguments.html#defining-type-classes -- open import Algebra open import Agda.Builtin.Nat open import Data.List renaming (List to BList) record Monoid {a} (A : Type a) : Type a where field mempty : A _<>_ : A → A → A open Monoid {{...}} public instance ListMonoid : ∀ {a} {A : Type a} → Monoid (BList A) -- normal: provide "implementation" in a single term -- ListMonoid = record { mempty = []; _<>_ = _++_ } -- with copatterns: provide "implementation" with patterns mempty {{ListMonoid}} = [] _<>_ {{ListMonoid}} xs ys = xs ++ ys mconcat : ∀ {a} {A : Type a} → {{Monoid A}} → BList A → A mconcat [] = mempty mconcat (x ∷ xs) = x <> mconcat xs sum1 : BList Nat → Nat sum1 xs = let instance -- NOTE: IMPORTANT: the instance-block needs to be more indented (!) than the `instance` keyword NatMonoid : Monoid Nat NatMonoid = record { mempty = 0; _<>_ = Agda.Builtin.Nat._+_ } in mconcat xs itest2 = let instance rr = R in {! 0-rightNullifies!} -- To restrict an instance to the current module, you can mark it as private. For instance, -- https://agda.readthedocs.io/en/latest/language/instance-arguments.html#restricting-instance-search -} {- https://agda.readthedocs.io/en/latest/language/abstract-definitions.html Abstract definitions Definitions can be marked as abstract, for the purpose of hiding implementation details, or to speed up type-checking of other parts. In essence, abstract definitions behave like postulates, thus, do not reduce/compute. For instance, proofs whose content does not matter could be marked abstract, to prevent Agda from unfolding them (which might slow down type-checking). -} -- anonymous modules `module _ params where` automatically open themselves -- they are not well documented but there is this usage example -- Anonymous modules or sections #735 -- https://github.com/agda/agda/issues/735 -- I often want to use something like sections in Coq. I usually use parametrized modules but this has at least two issues that Coq does not have: -- 1) I need to give a name to the module, and there is often no meaningful name to be given -- 2) It exports the module, so I cannot define a module in another file with the same name -- the following code -- module _ params where -- declarations -- would be translated to: -- private -- module Fresh params where -- declarations -- open Fresh public -- where Fresh is a new name. -- NOTE: this gives a hint on the use of "sections" in mathematical writing -- it suggests, that these introduce variable-but-fixed parameter dependencies to all definitions (in the way the `variable` keyword does) -- the difference between an anonymous module and a variable seems to be that the module adds all parameters, where `variable` only adds parameters when used -- also, in the module we have more flexibility with opening other modules and hiding names with the `private` keyword, etc. -- and there is -- https://github.com/agda/agda/issues/1145 -- Allow multiple layout keywords on the same line #1145 -- NOTE: IMPORTANT: when in a hole, with C-c C-o one can list "module contents" -- if given `F` here, we can see the contents of F -- I guess, since every inherited member is included with `open ... public`, -- we can continue with just `isConstructiveField` -- and even `isCommRing` -- and even `isRing` -- this greatly helps to investigate available {- test3 : ∃[ x ∈ Carrier ] x · x ≡ x → Carrier test3 ∥_∥.∣ Σx-x·x≡x ∣ = {!!} --test ∥_∥.∣ x , x·x≡x ∣ = x test3 (∥_∥.squash Σx-x·x≡x₁ Σx-x·x≡x₂ i) = {!!} test3b : {A : Type} → ∃[ x ∈ A ] ∃[ y ∈ A ] x ≡ y → A test3b ∥_∥.∣ fst₁ , ∥_∥.∣ fst₂ , snd₁ ∣ ∣ = {!!} test3b ∥_∥.∣ fst₁ , ∥_∥.squash snd₁ ∥_∥.∣ x ∣ i ∣ = {!!} test3b ∥_∥.∣ fst₁ , ∥_∥.squash snd₁ (∥_∥.squash snd₂ ∥_∥.∣ x ∣ i₁) i ∣ = {!!} test3b ∥_∥.∣ fst₁ , ∥_∥.squash snd₁ (∥_∥.squash snd₂ (∥_∥.squash snd₃ snd₄ i₂) i₁) i ∣ = {!!} test3b (∥_∥.squash ∥_∥.∣ x ∣ ∥_∥.∣ x₁ ∣ i) = {!!} test3b (∥_∥.squash ∥_∥.∣ x ∣ (∥_∥.squash x₁ x₂ i₁) i) = {!!} test3b (∥_∥.squash (∥_∥.squash x x₂ i₁) x₁ i) = {!!} -} -- ∃ : ∀ {ℓ ℓ'} (A : Type ℓ) (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ') -- ∃ A B = ∥ Σ A B ∥ -- infix 2 ∃-syntax -- ∃-syntax : ∀ {ℓ ℓ'} (A : Type ℓ) (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ') -- ∃-syntax = ∃ -- syntax ∃-syntax A (λ x → B) = ∃[ x ∈ A ] B -- Lemma 4.1.6.1 1f#0f : 1f # 0f 1f#0f with ·-identity 1f -- 1f#0f | 1·1≡1 , _ = ·-inv-back 1f ∣ (1f , 1·1≡1) ∣ -- need additional ∣_∣ resp. \|_\| around the tuple 1f#0f | 1·1≡1 , _ = fst (·-inv-back _ _ 1·1≡1) _ = Cubical.Data.Sigma.Base._×_ -- fst and snd a+b-b≡a : ∀ a b → a ≡ (a + b) - b -- NOTE: about workflow -- one can investigate some single term in the hole (C-c C-.), but not a second one -- therefore, we can move a term temporarily into a let-clause and work on another term in the hole -- ... is there equational reasoning in --cubical ? -- NOTE: Yes! it is in Cubical.Foundations.Id a+b-b≡a a b = let P = sym (fst (+-inv b)) Q = sym (fst (+-identity a)) R = transport (λ i → a ≡ a + P i) Q S = transport (λ i → a ≡ (+-assoc a b (- b)) i ) R in S +-preserves-≡ : ∀{a b} → ∀ c → a ≡ b → a + c ≡ b + c +-preserves-≡ c a≡b i = a≡b i + c +-preserves-≡-l : ∀{a b} → ∀ c → a ≡ b → c + a ≡ c + b +-preserves-≡-l c a≡b i = c + a≡b i a+b≡0→a≡-b : ∀{a b} → a + b ≡ 0f → a ≡ - b a+b≡0→a≡-b {a} {b} a+b≡0 = transport (λ i → let RHS = snd (+-identity (- b)) LHS₁ : a + (b + - b) ≡ a + 0f LHS₁ = +-preserves-≡-l a (fst (+-inv b)) LHS₂ : (a + b) - b ≡ a LHS₂ = transport (λ j → (+-assoc a b (- b)) j ≡ fst (+-identity a) j) LHS₁ in LHS₂ i ≡ RHS i ) (+-preserves-≡ (- b) a+b≡0) a·-b≡-a·b : ∀ a b → a · (- b) ≡ - a · b a·-b≡-a·b a b = let P : a · 0f ≡ 0f P = 0-rightNullifies a Q : a · (- b + b) ≡ 0f Q = transport (λ i → a · snd (+-inv b) (~ i) ≡ 0f) P R : a · (- b) + a · b ≡ 0f R = transport (λ i → ·-rdist-+ a (- b) b i ≡ 0f) Q in a+b≡0→a≡-b R a·b-a·c≡a·[b-c] : ∀ a b c → a · b - a · c ≡ a · (b - c) a·b-a·c≡a·[b-c] a b c = let P : a · b + a · (- c) ≡ a · (b + - c) P = sym (·-rdist-+ a b (- c)) Q : a · b - a · c ≡ a · (b + - c) Q = transport (λ i → a · b + a·-b≡-a·b a c i ≡ a · (b + - c) ) P in Q -- Lemma 4.1.6.2 -- For #-compatibility of +, suppose x # y, that is, (x +z) −z # (y +z) −z. -- Then #-extensionality gives (x + z # y + z) ∨ (−z # −z), where the latter case is excluded by irreflexivity of #. +-#-compatible : ∀(x y z : Carrier) → x # y → x + z # y + z +-#-compatible x y z x#y with let P = transport (λ i → a+b-b≡a x z i # a+b-b≡a y z i ) x#y in +-#-extensional _ _ _ _ P ... | inl x+z#y+z = x+z#y+z ... | inr -z#-z = ⊥-elim (#-irrefl _ _ -z#-z -z#-z) -- The other direction is similar. +-#-compatible-inv : ∀(x y z : Carrier) → x + z # y + z → x # y +-#-compatible-inv _ _ _ x+z#y+z with +-#-extensional _ _ _ _ x+z#y+z ... | inl x#y = x#y ... | inr z#z = ⊥-elim (#-irrefl _ _ z#z z#z) -- _ = {!!} ≃⟨ {!!} ⟩ {!!} ■ -- open import -- _ = {!!} ≡[ i ]⟨ {!!} ⟩ {!!} ∎ --_≡⟨_⟩_ : (x : A) → x ≡ y → y ≡ z → x ≡ z --_ ≡⟨ x≡y ⟩ y≡z = x≡y ∙ y≡z -- for a list of unicode symbols in agda, see https://people.inf.elte.hu/divip/AgdaTutorial/Symbols.html infix 3 _◼ infixr 2 _⇒⟨_⟩_ _⇒⟨_⟩_ : ∀{ℓ ℓ' ℓ''} {Q : Type ℓ'} {R : Type ℓ''} → (P : Type ℓ) → (P → Q) → (Q → R) → (P → R) _ ⇒⟨ pq ⟩ qr = qr ∘ pq _◼ : ∀{ℓ} (A : Type ℓ) → A → A _ ◼ = λ x → x f : Carrier → Carrier f x with +-inv x ... | fst₁ , snd₁ = {!!} -- see https://agda.readthedocs.io/en/latest/language/instance-arguments.html it : ∀ {a} {A : Type a} → {{A}} → A it {{x}} = x -- instance search -- Lemma 4.1.6.3 -- TODO: there is equational resoning in Cubical.Foundations.Id, use this -- P = _ ≡⟨ _ ⟩ _ ∎ -- P = _ ≡[ i ] _ ∎ -- syntax ≡⟨⟩-syntax x (λ i → B) y = x ≡[ i ]⟨ B ⟩ y -- in general this module offers a lot of useful equational machinery -- it already makes use of path concatenation with ∙ and ∙∙ -- there is also Cubical.Foundations.Equiv -- P = _ ≃⟨ _ ⟩ _ ■ ·-#-extensional-case1 : ∀(w x y z : Carrier) → w · x # y · z → w · x # w · z → x # z ·-#-extensional-case1 w x y z w·x#y·z w·x#w·z = let P : w · x + - w · x # w · z + - w · x P = +-#-compatible _ _ (- (w · x)) w·x#w·z Q : 0f # w · (z + - x) Q = transport (λ i → (fst (+-inv (w · x)) i) # a·b-a·c≡a·[b-c] w z x i) P instance -- NOTE: this allows to use ⁻¹ᶠ without an instance argument q = #-sym _ _ Q -- see https://agda.readthedocs.io/en/latest/language/instance-arguments.html it : ∀ {a} {A : Type a} → {{A}} → A it {{x}} = x -- instance search R : w · (z - x) · (w · (z - x)) ⁻¹ᶠ ≡ 1f R = ·-rinv (w · (z - x)) it -- (#-sym _ _ Q) S : (z + - x) · w · (w · (z + - x)) ⁻¹ᶠ ≡ 1f S = transport (λ i → ·-comm w (z - x) i · (w · (z - x)) ⁻¹ᶠ ≡ 1f) R T : (z + - x) · (w · (w · (z + - x)) ⁻¹ᶠ) ≡ 1f T = transport (λ i → ·-assoc (z + - x) w ((w · (z + - x)) ⁻¹ᶠ) (~ i) ≡ 1f) S U : z - x # 0f U = fst (·-inv-back _ _ T) V : z - x + x # 0f + x V = (+-#-compatible _ _ x) (fst (·-inv-back _ _ T)) -- (+-#-compatible _ _ x U) -- workflow: -- start with `transport (λ i → z - x + x # 0f + x) V` in the hole (i.e. a constant transport) -- and then fiddle with the path and look what comes out W : z + (- x + x) # x W = transport (λ i → +-assoc z (- x) x (~ i) # snd (+-identity x) i) V X : z + 0f # x X = transport (λ i → z + snd (+-inv x) i # x) W in (#-sym _ _ (transport (λ i → fst (+-identity z) i # x) X)) ·-#-extensional : ∀(w x y z : Carrier) → w · x # y · z → (w # y) ⊎ (x # z) ·-#-extensional w x y z w·x#y·z with #-cotrans _ _ w·x#y·z (w · z) ... | inl w·x#w·z = inr (·-#-extensional-case1 w x y z w·x#y·z w·x#w·z) -- first case ... | inr w·z#y·z = let z·w≡z·y = (transport (λ i → ·-comm w z i # ·-comm y z i) w·z#y·z) in inl (·-#-extensional-case1 _ _ _ _ z·w≡z·y z·w≡z·y) -- second case reduced to first case -- for an example to use equational reasoning in this topic, see https://github.com/felixwellen/cubical/blob/field/Cubical/Structures/Field.agda -- we do not do equational reasoning here but "implicational" reasoning instead -- the special syntax should make it more readable and omit giving names to every intermediate step -- but giving names to intermediates in a `let` or `where` clause might just be the way it's done -- c.f. with more elaborate proofs e.g. in https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#combining-structures -- also see the elaborate proof in https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#381519 -- which uses equational reasoning, but still names the single steps i, ii, iii, iv, v, vi, ... and resolves them in a `where` clause -- also see https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#391417 -- "We consider rings without unit, called rngs, and with unit, called rings." -- this work of Martín Escardó was prepared for the -- Midlands Graduate School in the Foundations of Computing Science (University of Birmingham, UK, 14 - 18 April, 2019) -- http://events.cs.bham.ac.uk/mgs2019/ -- Introductory Courses: -- - Lambda Calculus (course notes) by Venanzio Capretta (University of Nottingham) -- - Category Theory (course notes) by Thorsten Altenkirch (University of Nottingham) -- - Univalent Type Theory in Agda (course notes) by Martín Escardó (University of Birmingham) ·-#-extensional-case1' : ∀(w x y z : Carrier) → w · x # y · z → w · x # w · z → x # z ·-#-extensional-case1' w x y z w·x#y·z w·x#w·z = let instance -- this allows to use ⁻¹ᶠ without an instance argument w·[z-x]#0f = ( w · x # w · z ⇒⟨ +-#-compatible _ _ (- (w · x)) ⟩ w · x - w · x # w · z - w · x ⇒⟨ transport (λ i → (fst (+-inv (w · x)) i) # a·b-a·c≡a·[b-c] w z x i) ⟩ 0f # w · (z - x) ⇒⟨ #-sym _ _ ⟩ w · (z - x) # 0f ◼) w·x#w·z in ( w · (z - x) # 0f ⇒⟨ (λ _ → ·-rinv (w · (z - x)) it ) ⟩ -- NOTE: "plugging in" the instance did not work, ∴ `it` w · (z - x) · (w · (z - x)) ⁻¹ᶠ ≡ 1f ⇒⟨ transport (λ i → ·-comm w (z - x) i · (w · (z - x)) ⁻¹ᶠ ≡ 1f) ⟩ (z - x) · w · (w · (z - x)) ⁻¹ᶠ ≡ 1f ⇒⟨ transport (λ i → ·-assoc (z - x) w ((w · (z - x)) ⁻¹ᶠ) (~ i) ≡ 1f) ⟩ (z - x) · (w · (w · (z - x)) ⁻¹ᶠ) ≡ 1f ⇒⟨ fst ∘ (·-inv-back _ _) ⟩ z - x # 0f ⇒⟨ +-#-compatible _ _ x ⟩ (z - x) + x # 0f + x ⇒⟨ transport (λ i → +-assoc z (- x) x (~ i) # snd (+-identity x) i) ⟩ z + (- x + x) # x ⇒⟨ transport (λ i → z + snd (+-inv x) i # x) ⟩ z + 0f # x ⇒⟨ transport (λ i → fst (+-identity z) i # x) ⟩ z # x ⇒⟨ #-sym _ _ ⟩ x # z ◼) it -- conceptually we would plug `w·[z-x]#0f` in, but this breaks the very first step -- -- Lemma 4.1.7. -- Given a strict partial order < on a set X: -- 1. we have an apartness relation defined by -- x # y := (x < y) ∨ (y < x), and -- 2. we have a preorder defined by -- x ≤ y := ¬(y < x). -- -- Definition 4.1.8. -- Let (A, ≤) be a partial order, and let min, max : A → A → A be binary operators on A. We say that (A, ≤, min, max) is a lattice if min computes greatest lower bounds in the sense that for every x, y, z : A, we have -- z ≤ min(x,y) ⇔ z ≤ x ∧ z ≤ y, -- and max computes least upper bounds in the sense that for every x, y, z : A, we have -- max(x,y) ≤ z ⇔ x ≤ z ∧ y ≤ z. -- -- Remark 4.1.9. -- 1. From the fact that (A, ≤, min, max) is a lattice, it does not follow that for every x and y, min(x,y) = x ∨ min(x,y) = y. However, we can characterize min as -- z < min(x,y) ⇔ z < x ∨ z < y -- and similarly for max, see Lemma 6.7.1. -- 2. In a partial order, for two fixed elements a and b, all joins and meets of a, b are equal, so that Lemma 2.6.20 the type of joins and the type of meets are propositions. Hence, providing the maps min and max as in the above definition is equivalent to the showing the existenceof all binary joins and meets. -- -- The following definition is modified from on The Univalent Foundations Program [89, Definition 11.2.7]. -- -- Definition 4.1.10. -- An ordered field is a set F together with constants 0, 1, operations +, ·, min, max, and a binary relation < such that: -- 1. (F, 0, 1, +, ·) is a commutative ring with unit; -- 2. < is a strict order; -- 3. x : F has a multiplicative inverse iff x # 0, recalling that # is defined as in Lemma 4.1.7; -- 4. ≤, as in Lemma 4.1.7, is antisymmetric, so that (F, ≤) is a partial order; -- 5. (F, ≤, min, max) is a lattice. -- 6. for all x, y, z, w : F: -- x + y < z + w ⇒ x < z ∨ y < w, (†) -- 0 < z ∧ x < y ⇒ x z < y z. (∗) -- Our notion of ordered fields coincides with The Univalent Foundations Program [89, Definition 11.2.7]. -- -- Lemma 4.1.11. -- In the presence of the first five axioms of Definition 4.1.10, conditions (†) and (∗) are together equivalent to the condition that for all x, y, z : F, -- 1. x ≤ y ⇔ ¬(y < x), -- 2. x # y ⇔ (x < y) ∨ (y < x) -- 3. x ≤ y ⇔ x + z ≤ y + z, -- 4. x < y ⇔ x + z < y + z, -- 5. 0 < x + y ⇒ 0 < x ∨ 0 < y, -- 6. x < y ≤ z ⇒ x < z, -- 7. x ≤ y < z ⇒ x < z, -- 8. x ≤ y ∧ 0 ≤ z ⇒ x z ≤ y z, -- 9. 0 < z ⇒ (x < y ⇔ x z < y z), -- 10. 0 < 1. -- we have in cubical -- import Cubical.HITs.Rationals.HITQ -- ℚ as a higher inductive type -- import Cubical.HITs.Rationals.QuoQ -- ℚ as a set quotient of ℤ × ℕ₊₁ (as in the HoTT book) -- import Cubical.HITs.Rationals.SigmaQ -- ℚ as the set of coprime pairs in ℤ × ℕ₊₁
49.247847
375
0.574227
5967b522b3ad928c4f85fff6c2e34dda3bf46fc7
918
agda
Agda
test/Compiler/simple/Issue2879-2.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Compiler/simple/Issue2879-2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Compiler/simple/Issue2879-2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --sized-types #-} open import Agda.Builtin.IO open import Agda.Builtin.Nat open import Agda.Builtin.Size open import Agda.Builtin.Unit mutual data Delay (A : Set) (i : Size) : Set where now : A → Delay A i later : Delay′ A i → Delay A i record Delay′ (A : Set) (i : Size) : Set where coinductive field force : {j : Size< i} → Delay A j open Delay′ public delay : ∀ {A i} → Nat → A → Delay A i delay zero x = now x delay (suc n) x = later λ { .force → delay n x } data Maybe (A : Set) : Set where nothing : Maybe A just : A → Maybe A {-# COMPILE GHC Maybe = data Maybe (Nothing | Just) #-} run : ∀ {A} → Nat → Delay A ∞ → Maybe A run zero _ = nothing run (suc n) (now x) = just x run (suc n) (later x) = run n (force x) postulate wrapper : Maybe Nat → IO ⊤ {-# COMPILE GHC wrapper = print #-} main : IO ⊤ main = wrapper (run 10 (delay 5 12))
21.348837
55
0.592593
3d219df6fed750f6e14b5e7bd801921bc713d36e
123
agda
Agda
src/Lemmachine/Default.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
src/Lemmachine/Default.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
src/Lemmachine/Default.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
module Lemmachine.Default where open import Lemmachine resource : Hooks resource = [] main = runResolve (toApp resource)
15.375
34
0.780488
dfb48363f18780b1dc698f7a2ece994f17e96416
438
agda
Agda
agda/Analysis.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
28
2017-04-21T09:08:52.000Z
2022-03-04T18:04:07.000Z
agda/Analysis.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
1
2020-11-13T01:26:20.000Z
2020-11-17T00:58:55.000Z
agda/Analysis.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
3
2019-01-12T17:02:36.000Z
2020-11-10T04:04:40.000Z
{-# OPTIONS --cubical --safe #-} module Analysis where open import Data.List using (List; []; _∷_; map) open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Harmony open import Music open import Note open import Pitch -- test of analysis accompF : List Pitch accompF = f 4 ∷ a 4 ∷ c 5 ∷ [] xx = pitchClassListToSet (map pitchToClass accompF) --yy = showPitchClassSet xx zz : xx ≡ IV-maj zz = refl
18.25
67
0.703196
410f71e8fbdd02929432d59d4002b1d9e0d62840
4,070
agda
Agda
src/data/lib/prim/Agda/Builtin/Cubical/Glue.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2021-06-14T11:08:59.000Z
2021-06-14T11:08:59.000Z
src/data/lib/prim/Agda/Builtin/Cubical/Glue.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2020-05-29T19:45:38.000Z
2020-05-29T19:45:38.000Z
src/data/lib/prim/Agda/Builtin/Cubical/Glue.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2021-04-18T13:34:07.000Z
2021-04-18T13:34:07.000Z
{-# OPTIONS --cubical --safe --no-sized-types --no-guardedness --no-subtyping #-} module Agda.Builtin.Cubical.Glue where open import Agda.Primitive open import Agda.Builtin.Sigma open import Agda.Primitive.Cubical renaming (primINeg to ~_; primIMax to _∨_; primIMin to _∧_; primHComp to hcomp; primTransp to transp; primComp to comp; itIsOne to 1=1) open import Agda.Builtin.Cubical.Path open import Agda.Builtin.Cubical.Sub renaming (Sub to _[_↦_]; primSubOut to ouc) import Agda.Builtin.Cubical.HCompU as HCompU module Helpers = HCompU.Helpers open Helpers -- We make this a record so that isEquiv can be proved using -- copatterns. This is good because copatterns don't get unfolded -- unless a projection is applied so it should be more efficient. record isEquiv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) : Set (ℓ ⊔ ℓ') where no-eta-equality field equiv-proof : (y : B) → isContr (fiber f y) open isEquiv public infix 4 _≃_ _≃_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ') A ≃ B = Σ (A → B) \ f → (isEquiv f) equivFun : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → A ≃ B → A → B equivFun e = fst e -- Improved version of equivProof compared to Lemma 5 in CCHM. We put -- the (φ = i0) face in contr' making it be definitionally c in this -- case. This makes the computational behavior better, in particular -- for transp in Glue. equivProof : ∀ {la lt} (T : Set la) (A : Set lt) → (w : T ≃ A) → (a : A) → ∀ ψ → (Partial ψ (fiber (w .fst) a)) → fiber (w .fst) a equivProof A B w a ψ fb = contr' {A = fiber (w .fst) a} (w .snd .equiv-proof a) ψ fb where contr' : ∀ {ℓ} {A : Set ℓ} → isContr A → (φ : I) → (u : Partial φ A) → A contr' {A = A} (c , p) φ u = hcomp (λ i → λ { (φ = i1) → p (u 1=1) i ; (φ = i0) → c }) c {-# BUILTIN EQUIV _≃_ #-} {-# BUILTIN EQUIVFUN equivFun #-} {-# BUILTIN EQUIVPROOF equivProof #-} primitive primGlue : ∀ {ℓ ℓ'} (A : Set ℓ) {φ : I} → (T : Partial φ (Set ℓ')) → (e : PartialP φ (λ o → T o ≃ A)) → Set ℓ' prim^glue : ∀ {ℓ ℓ'} {A : Set ℓ} {φ : I} → {T : Partial φ (Set ℓ')} → {e : PartialP φ (λ o → T o ≃ A)} → (t : PartialP φ T) → (a : A) → primGlue A T e prim^unglue : ∀ {ℓ ℓ'} {A : Set ℓ} {φ : I} → {T : Partial φ (Set ℓ')} → {e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A module _ {ℓ : I → Level} (P : (i : I) → Set (ℓ i)) where private E : (i : I) → Set (ℓ i) E = λ i → P i ~E : (i : I) → Set (ℓ (~ i)) ~E = λ i → P (~ i) A = P i0 B = P i1 f : A → B f x = transp E i0 x g : B → A g y = transp ~E i0 y u : ∀ i → A → E i u i x = transp (λ j → E (i ∧ j)) (~ i) x v : ∀ i → B → E i v i y = transp (λ j → ~E ( ~ i ∧ j)) i y fiberPath : (y : B) → (xβ0 xβ1 : fiber f y) → xβ0 ≡ xβ1 fiberPath y (x0 , β0) (x1 , β1) k = ω , λ j → δ (~ j) where module _ (j : I) where private sys : A → ∀ i → PartialP (~ j ∨ j) (λ _ → E (~ i)) sys x i (j = i0) = v (~ i) y sys x i (j = i1) = u (~ i) x ω0 = comp ~E (sys x0) ((β0 (~ j))) ω1 = comp ~E (sys x1) ((β1 (~ j))) θ0 = fill ~E (sys x0) (inc (β0 (~ j))) θ1 = fill ~E (sys x1) (inc (β1 (~ j))) sys = λ {j (k = i0) → ω0 j ; j (k = i1) → ω1 j} ω = hcomp sys (g y) θ = hfill sys (inc (g y)) δ = λ (j : I) → comp E (λ i → λ { (j = i0) → v i y ; (k = i0) → θ0 j (~ i) ; (j = i1) → u i ω ; (k = i1) → θ1 j (~ i) }) (θ j) γ : (y : B) → y ≡ f (g y) γ y j = comp E (λ i → λ { (j = i0) → v i y ; (j = i1) → u i (g y) }) (g y) pathToisEquiv : isEquiv f pathToisEquiv .equiv-proof y .fst .fst = g y pathToisEquiv .equiv-proof y .fst .snd = sym (γ y) pathToisEquiv .equiv-proof y .snd = fiberPath y _ pathToEquiv : A ≃ B pathToEquiv .fst = f pathToEquiv .snd = pathToisEquiv
33.360656
104
0.488698
581dcf84137f72aee68d3ad009c20eedaaeed3d9
9,254
agda
Agda
agda-stdlib/src/Data/List/NonEmpty.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/List/NonEmpty.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/List/NonEmpty.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Non-empty lists ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.NonEmpty where open import Level using (Level) open import Category.Monad open import Data.Bool.Base using (Bool; false; true; not; T) open import Data.Bool.Properties open import Data.List.Base as List using (List; []; _∷_) open import Data.Maybe.Base using (Maybe ; nothing; just) open import Data.Nat.Base as ℕ open import Data.Product as Prod using (∃; _×_; proj₁; proj₂; _,_; -,_) open import Data.These.Base as These using (These; this; that; these) open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂) open import Data.Unit open import Data.Vec.Base as Vec using (Vec; []; _∷_) open import Function.Base open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using () renaming (module Equivalence to Eq) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; refl) open import Relation.Nullary.Decidable using (isYes) private variable a b c : Level A : Set a B : Set b C : Set c ------------------------------------------------------------------------ -- Non-empty lists infixr 5 _∷_ record List⁺ (A : Set a) : Set a where constructor _∷_ field head : A tail : List A open List⁺ public -- Basic combinators uncons : List⁺ A → A × List A uncons (hd ∷ tl) = hd , tl [_] : A → List⁺ A [ x ] = x ∷ [] infixr 5 _∷⁺_ _∷⁺_ : A → List⁺ A → List⁺ A x ∷⁺ y ∷ xs = x ∷ y ∷ xs length : List⁺ A → ℕ length (x ∷ xs) = suc (List.length xs) ------------------------------------------------------------------------ -- Conversion toList : List⁺ A → List A toList (x ∷ xs) = x ∷ xs fromList : List A → Maybe (List⁺ A) fromList [] = nothing fromList (x ∷ xs) = just (x ∷ xs) fromVec : ∀ {n} → Vec A (suc n) → List⁺ A fromVec (x ∷ xs) = x ∷ Vec.toList xs toVec : (xs : List⁺ A) → Vec A (length xs) toVec (x ∷ xs) = x ∷ Vec.fromList xs lift : (∀ {m} → Vec A (suc m) → ∃ λ n → Vec B (suc n)) → List⁺ A → List⁺ B lift f xs = fromVec (proj₂ (f (toVec xs))) ------------------------------------------------------------------------ -- Other operations map : (A → B) → List⁺ A → List⁺ B map f (x ∷ xs) = (f x ∷ List.map f xs) replicate : ∀ n → n ≢ 0 → A → List⁺ A replicate n n≢0 a = a ∷ List.replicate (pred n) a -- Right fold. Note that s is only applied to the last element (see -- the examples below). foldr : (A → B → B) → (A → B) → List⁺ A → B foldr {A = A} {B = B} c s (x ∷ xs) = foldr′ x xs where foldr′ : A → List A → B foldr′ x [] = s x foldr′ x (y ∷ xs) = c x (foldr′ y xs) -- Right fold. foldr₁ : (A → A → A) → List⁺ A → A foldr₁ f = foldr f id -- Left fold. Note that s is only applied to the first element (see -- the examples below). foldl : (B → A → B) → (A → B) → List⁺ A → B foldl c s (x ∷ xs) = List.foldl c (s x) xs -- Left fold. foldl₁ : (A → A → A) → List⁺ A → A foldl₁ f = foldl f id -- Append (several variants). infixr 5 _⁺++⁺_ _++⁺_ _⁺++_ _⁺++⁺_ : List⁺ A → List⁺ A → List⁺ A (x ∷ xs) ⁺++⁺ (y ∷ ys) = x ∷ (xs List.++ y ∷ ys) _⁺++_ : List⁺ A → List A → List⁺ A (x ∷ xs) ⁺++ ys = x ∷ (xs List.++ ys) _++⁺_ : List A → List⁺ A → List⁺ A xs ++⁺ ys = List.foldr _∷⁺_ ys xs concat : List⁺ (List⁺ A) → List⁺ A concat (xs ∷ xss) = xs ⁺++ List.concat (List.map toList xss) concatMap : (A → List⁺ B) → List⁺ A → List⁺ B concatMap f = concat ∘′ map f -- Reverse reverse : List⁺ A → List⁺ A reverse = lift (-,_ ∘′ Vec.reverse) -- Align and Zip alignWith : (These A B → C) → List⁺ A → List⁺ B → List⁺ C alignWith f (a ∷ as) (b ∷ bs) = f (these a b) ∷ List.alignWith f as bs zipWith : (A → B → C) → List⁺ A → List⁺ B → List⁺ C zipWith f (a ∷ as) (b ∷ bs) = f a b ∷ List.zipWith f as bs unalignWith : (A → These B C) → List⁺ A → These (List⁺ B) (List⁺ C) unalignWith f = foldr (These.alignWith mcons mcons ∘′ f) (These.map [_] [_] ∘′ f) where mcons : ∀ {e} {E : Set e} → These E (List⁺ E) → List⁺ E mcons = These.fold [_] id _∷⁺_ unzipWith : (A → B × C) → List⁺ A → List⁺ B × List⁺ C unzipWith f (a ∷ as) = Prod.zip _∷_ _∷_ (f a) (List.unzipWith f as) align : List⁺ A → List⁺ B → List⁺ (These A B) align = alignWith id zip : List⁺ A → List⁺ B → List⁺ (A × B) zip = zipWith _,_ unalign : List⁺ (These A B) → These (List⁺ A) (List⁺ B) unalign = unalignWith id unzip : List⁺ (A × B) → List⁺ A × List⁺ B unzip = unzipWith id -- Snoc. infixl 5 _∷ʳ_ _⁺∷ʳ_ _∷ʳ_ : List A → A → List⁺ A [] ∷ʳ y = [ y ] (x ∷ xs) ∷ʳ y = x ∷ (xs List.∷ʳ y) _⁺∷ʳ_ : List⁺ A → A → List⁺ A xs ⁺∷ʳ x = toList xs ∷ʳ x -- A snoc-view of non-empty lists. infixl 5 _∷ʳ′_ data SnocView {A : Set a} : List⁺ A → Set a where _∷ʳ′_ : (xs : List A) (x : A) → SnocView (xs ∷ʳ x) snocView : (xs : List⁺ A) → SnocView xs snocView (x ∷ xs) with List.initLast xs snocView (x ∷ .[]) | [] = [] ∷ʳ′ x snocView (x ∷ .(xs List.∷ʳ y)) | xs List.∷ʳ' y = (x ∷ xs) ∷ʳ′ y -- The last element in the list. last : List⁺ A → A last xs with snocView xs last .(ys ∷ʳ y) | ys ∷ʳ′ y = y -- Groups all contiguous elements for which the predicate returns the -- same result into lists. split : (p : A → Bool) → List A → List (List⁺ (∃ (T ∘ p)) ⊎ List⁺ (∃ (T ∘ not ∘ p))) split p [] = [] split p (x ∷ xs) with p x | P.inspect p x | split p xs ... | true | P.[ px≡t ] | inj₁ xs′ ∷ xss = inj₁ ((x , Eq.from T-≡ ⟨$⟩ px≡t) ∷⁺ xs′) ∷ xss ... | true | P.[ px≡t ] | xss = inj₁ [ x , Eq.from T-≡ ⟨$⟩ px≡t ] ∷ xss ... | false | P.[ px≡f ] | inj₂ xs′ ∷ xss = inj₂ ((x , Eq.from T-not-≡ ⟨$⟩ px≡f) ∷⁺ xs′) ∷ xss ... | false | P.[ px≡f ] | xss = inj₂ [ x , Eq.from T-not-≡ ⟨$⟩ px≡f ] ∷ xss -- If we flatten the list returned by split, then we get the list we -- started with. flatten : ∀ {p q} {P : A → Set p} {Q : A → Set q} → List (List⁺ (∃ P) ⊎ List⁺ (∃ Q)) → List A flatten = List.concat ∘ List.map Sum.[ toList ∘ map proj₁ , toList ∘ map proj₁ ] flatten-split : (p : A → Bool) (xs : List A) → flatten (split p xs) ≡ xs flatten-split p [] = refl flatten-split p (x ∷ xs) with p x | P.inspect p x | split p xs | flatten-split p xs ... | true | P.[ _ ] | [] | hyp = P.cong (_∷_ x) hyp ... | true | P.[ _ ] | inj₁ _ ∷ _ | hyp = P.cong (_∷_ x) hyp ... | true | P.[ _ ] | inj₂ _ ∷ _ | hyp = P.cong (_∷_ x) hyp ... | false | P.[ _ ] | [] | hyp = P.cong (_∷_ x) hyp ... | false | P.[ _ ] | inj₁ _ ∷ _ | hyp = P.cong (_∷_ x) hyp ... | false | P.[ _ ] | inj₂ _ ∷ _ | hyp = P.cong (_∷_ x) hyp -- Groups all contiguous elements /not/ satisfying the predicate into -- lists. Elements satisfying the predicate are dropped. wordsBy : (A → Bool) → List A → List (List⁺ A) wordsBy p = List.mapMaybe Sum.[ const nothing , just ∘′ map proj₁ ] ∘ split p ------------------------------------------------------------------------ -- Examples -- Note that these examples are simple unit tests, because the type -- checker verifies them. private module Examples {A B : Set} (_⊕_ : A → B → B) (_⊗_ : B → A → B) (_⊙_ : A → A → A) (f : A → B) (a b c : A) where hd : head (a ∷⁺ b ∷⁺ [ c ]) ≡ a hd = refl tl : tail (a ∷⁺ b ∷⁺ [ c ]) ≡ b ∷ c ∷ [] tl = refl mp : map f (a ∷⁺ b ∷⁺ [ c ]) ≡ f a ∷⁺ f b ∷⁺ [ f c ] mp = refl right : foldr _⊕_ f (a ∷⁺ b ∷⁺ [ c ]) ≡ (a ⊕ (b ⊕ f c)) right = refl right₁ : foldr₁ _⊙_ (a ∷⁺ b ∷⁺ [ c ]) ≡ (a ⊙ (b ⊙ c)) right₁ = refl left : foldl _⊗_ f (a ∷⁺ b ∷⁺ [ c ]) ≡ ((f a ⊗ b) ⊗ c) left = refl left₁ : foldl₁ _⊙_ (a ∷⁺ b ∷⁺ [ c ]) ≡ ((a ⊙ b) ⊙ c) left₁ = refl ⁺app⁺ : (a ∷⁺ b ∷⁺ [ c ]) ⁺++⁺ (b ∷⁺ [ c ]) ≡ a ∷⁺ b ∷⁺ c ∷⁺ b ∷⁺ [ c ] ⁺app⁺ = refl ⁺app : (a ∷⁺ b ∷⁺ [ c ]) ⁺++ (b ∷ c ∷ []) ≡ a ∷⁺ b ∷⁺ c ∷⁺ b ∷⁺ [ c ] ⁺app = refl app⁺ : (a ∷ b ∷ c ∷ []) ++⁺ (b ∷⁺ [ c ]) ≡ a ∷⁺ b ∷⁺ c ∷⁺ b ∷⁺ [ c ] app⁺ = refl conc : concat ((a ∷⁺ b ∷⁺ [ c ]) ∷⁺ [ b ∷⁺ [ c ] ]) ≡ a ∷⁺ b ∷⁺ c ∷⁺ b ∷⁺ [ c ] conc = refl rev : reverse (a ∷⁺ b ∷⁺ [ c ]) ≡ c ∷⁺ b ∷⁺ [ a ] rev = refl snoc : (a ∷ b ∷ c ∷ []) ∷ʳ a ≡ a ∷⁺ b ∷⁺ c ∷⁺ [ a ] snoc = refl snoc⁺ : (a ∷⁺ b ∷⁺ [ c ]) ⁺∷ʳ a ≡ a ∷⁺ b ∷⁺ c ∷⁺ [ a ] snoc⁺ = refl split-true : split (const true) (a ∷ b ∷ c ∷ []) ≡ inj₁ ((a , tt) ∷⁺ (b , tt) ∷⁺ [ c , tt ]) ∷ [] split-true = refl split-false : split (const false) (a ∷ b ∷ c ∷ []) ≡ inj₂ ((a , tt) ∷⁺ (b , tt) ∷⁺ [ c , tt ]) ∷ [] split-false = refl split-≡1 : split (ℕ._≡ᵇ 1) (1 ∷ 2 ∷ 3 ∷ 1 ∷ 1 ∷ 2 ∷ 1 ∷ []) ≡ inj₁ [ 1 , tt ] ∷ inj₂ ((2 , tt) ∷⁺ [ 3 , tt ]) ∷ inj₁ ((1 , tt) ∷⁺ [ 1 , tt ]) ∷ inj₂ [ 2 , tt ] ∷ inj₁ [ 1 , tt ] ∷ [] split-≡1 = refl wordsBy-true : wordsBy (const true) (a ∷ b ∷ c ∷ []) ≡ [] wordsBy-true = refl wordsBy-false : wordsBy (const false) (a ∷ b ∷ c ∷ []) ≡ (a ∷⁺ b ∷⁺ [ c ]) ∷ [] wordsBy-false = refl wordsBy-≡1 : wordsBy (ℕ._≡ᵇ 1) (1 ∷ 2 ∷ 3 ∷ 1 ∷ 1 ∷ 2 ∷ 1 ∷ []) ≡ (2 ∷⁺ [ 3 ]) ∷ [ 2 ] ∷ [] wordsBy-≡1 = refl
28.12766
94
0.479684
3d4f37abb4010a392a951db94d99f6d572433c24
1,403
agda
Agda
src/CF/Transform/Compile/ToJVM.agda
ajrouvoet/jvm.agda
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
[ "Apache-2.0" ]
6
2020-10-07T14:07:17.000Z
2021-02-28T21:49:08.000Z
src/CF/Transform/Compile/ToJVM.agda
ajrouvoet/jvm.agda
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
[ "Apache-2.0" ]
null
null
null
src/CF/Transform/Compile/ToJVM.agda
ajrouvoet/jvm.agda
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
[ "Apache-2.0" ]
1
2021-12-28T17:37:15.000Z
2021-12-28T17:37:15.000Z
{-# OPTIONS --safe #-} {- A typeclass for converting between type disciplines #-} module CF.Transform.Compile.ToJVM where open import Level open import Function open import Data.Product as P open import Data.List as L open import Data.List.Properties as LP open import Data.List.Membership.Propositional open import Data.List.Membership.Propositional.Properties open import Relation.Binary.PropositionalEquality open import Relation.Ternary.Morphisms open import CF.Types as CF open import CF.Contexts.Lexical open import JVM.Types as JVM record To {l r} (L : Set l) (R : Set r) : Set (l ⊔ r) where field ⟦_⟧ : L → R open To {{...}} public instance ⟦⟧-list : ∀ {a} {A B : Set a} {{_ : To A B}} → To (List A) (List B) To.⟦_⟧ ⟦⟧-list = L.map ⟦_⟧ instance ⟦⟧-prod : ∀ {a} {A B C D : Set a} {{_ : To A B}} {{_ : To C D}} → To (A × C) (B × D) To.⟦_⟧ ⟦⟧-prod = P.map ⟦_⟧ ⟦_⟧ instance cfToJvm-ty : To CF.Ty JVM.Ty To.⟦_⟧ cfToJvm-ty = ‵_ where ‵_ : CF.Ty → JVM.Ty ‵ void = boolean ‵ int = int ‵ bool = boolean instance cfToJvm-var : ∀ {ℓ} {A B : Set ℓ} {{_ : To A B}} {a : A} {as} → To (a ∈ as) (⟦ a ⟧ ∈ ⟦ as ⟧) To.⟦_⟧ cfToJvm-var = ∈-map⁺ ⟦_⟧ private module _ {t} {T : Set t} where open import JVM.Model T public instance on-intf : ∀ {ℓ} {A B : Set ℓ} {{_ : To A B}} → To (Intf {T = A}) (Intf {T = B}) To.⟦ on-intf ⟧ (u ⇅ d) = ⟦ u ⟧ ⇅ ⟦ d ⟧
28.06
93
0.595153
1c0ad3acf58efa84553cf3a2ad9ced9369f50afc
6,268
agda
Agda
LP/Example.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
LP/Example.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
LP/Example.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
module Example where import Level open import Signature open import Function open import Data.Empty open import Data.Unit open import Data.Nat open import Data.Fin open import Data.Product as Prod renaming (Σ to ⨿) open import Data.Sum as Sum open import Relation.Nullary open import Relation.Unary hiding (_⇒_) open import Relation.Binary.PropositionalEquality hiding ([_]) open ≡-Reasoning postulate ext : Extensionality Level.zero Level.zero ------ -- Examples ----- module NatProg where Σ : Sig ∥ Σ ∥ = Fin 3 ar Σ zero = Fin 0 -- 0 ar Σ (suc zero) = Fin 1 -- succ ar Σ (suc (suc _)) = Fin 1 -- nat open import Terms Σ V = ℕ Z S N : ∥ Σ ∥ Z = # 0 S = # 1 N = # 2 z : T V z = μ (ι (Z , (λ ()))) s nat : T V → T V s t = μ (ι (S , (λ _ → t))) nat t = μ (ι (N , (λ _ → t))) z∞ : T∞ V z∞ = χ z s∞ nat∞ : ∀{X} → T∞ X → T∞ X s∞ t = μ∞ (ι∞ (S , (λ _ → t))) nat∞ t = μ∞ (ι∞ (N , (λ _ → t))) inf : T∞ ⊥ inf = corec (λ x → inj₁ (S , (λ _ → tt))) tt inf-nat : T∞ ⊥ inf-nat = nat∞ inf open import Program Σ V -- | Program consisting of -- ⇒ nat(0) -- nat(n) ⇒ nat(s n) P : Program P = ((0 , (λ ())) , ( , clauses)) where clauses : Fin 2 → Clause clauses zero = (0 , (λ ())) ⊢ nat z clauses (suc _) = (1 , b) ⊢ nat (s n) where n = η 0 b : Fin 1 → T V b _ = nat n open import Herbrand Σ V P lem : ¬ (∃ λ σ → (inf ~ app∞ σ (χ (geth-ν P (# 0))))) lem (σ , p) with out~ p lem (σ , p) | () , _ bad-ν : inf-nat ∈ Herbrand-ν bw-closed bad-ν = inj₁ p where p : (i : dom-ν P) {σ : V → T∞ ⊥} → inf-nat ~ (app∞ σ (χ (geth-ν P i))) → (j : dom (getb-ν P i)) → app∞ σ (χ (get (getb-ν P i) j)) ∈ Herbrand-ν {- p i {σ} p j with out inf-nat | out (σ 0) | out~ p p i p j | inj₁ (zero , α) | v | r = {!!} p i p j | inj₁ (suc zero , α) | v | r = {!!} p i p j | inj₁ (suc (suc _) , α) | v | r = {!!} p i p j | inj₂ () | v | r -} p i {σ} p j with out (σ 0) | out~ p p zero p () | u | refl , r p (suc i) p zero | inj₁ (zero , _) | refl , r = {!!} p (suc i) p zero | inj₁ (suc zero , _) | refl , r = {!!} p (suc i) p zero | inj₁ (suc (suc _) , proj₂) | refl , r = {!!} p (suc i) p zero | inj₂ () | refl , r p (suc _) p (suc ()) | u | refl , r {- f : ? f i {σ} p j with out~ p ... | u = ? -} bad : inf-nat ∈ Herbrand-μ bad = coind-μ bad-ν {- module BitList where Σ : Sig ∥ Σ ∥ = Fin 6 ar Σ zero = Fin 0 -- 0 ar Σ (suc zero) = Fin 0 -- 1 ar Σ (suc (suc zero)) = Fin 1 -- bit(x) ar Σ (suc (suc (suc zero))) = Fin 1 -- blist(x) ar Σ (suc (suc (suc (suc zero)))) = Fin 0 -- nil ar Σ (suc (suc (suc (suc (suc f))))) = Fin 2 -- cons(x,y) open import Terms Σ V = ℕ Z O Bit BList Nil Cons : ∥ Σ ∥ Z = # 0 O = # 1 Bit = # 2 BList = # 3 Nil = # 4 Cons = # 5 z o nil : T V z = μ (ι (Z , (λ ()))) o = μ (ι (O , (λ ()))) nil = μ (ι (Nil , (λ ()))) bit blist : T V → T V bit t = μ (ι (Bit , (λ _ → t))) blist t = μ (ι (BList , (λ _ → t))) bin-branch : {X : Set} → X → X → Fin 2 → X bin-branch x y zero = x bin-branch x y (suc _) = y cons-br-distr : ∀{X Y} (t s : X) (f : X → Y) → f ∘ bin-branch t s ≡ bin-branch (f t) (f s) cons-br-distr t s f = ext p where p : (i : Fin 2) → f (bin-branch t s i) ≡ bin-branch (f t) (f s) i p zero = refl p (suc _) = refl cons : T V → T V → T V cons t s = μ (ι (Cons , bin-branch t s)) bit0 bit1 : T V bit0 = bit z bit1 = bit o open import Program Σ V -- | Program consisting of -- ⇒ bit(0) -- ⇒ bit(1) -- ⇒ blist(nil) -- bit(x), blist(y) ⇒ blist(cons(x,y)) P : Program P = , clauses where clauses : Fin 4 → Clause clauses zero = (0 , (λ ())) ⊢ bit0 clauses (suc zero) = (0 , (λ ())) ⊢ bit1 clauses (suc (suc zero)) = (0 , (λ ())) ⊢ nil clauses (suc (suc (suc c))) = (2 , b) ⊢ blist (cons (η 0) (η 1)) where b : Fin 2 → T V b zero = bit (η 0) b (suc i) = blist (η 1) open import Rewrite Σ V P X S bitX : T V X = η 0 S = blist (cons X (cons X nil)) bitX = bit X bitX-val : Val bitX bitX-val zero () x bitX-val (suc zero) () x bitX-val (suc (suc zero)) () x bitX-val (suc (suc (suc _))) zero () bitX-val (suc (suc (suc _))) (suc _) () step1 : S ⟿ bitX step1 = rew-step (# 3) (# 0) {σ} σ-match where σ : Subst V V σ zero = X σ (suc zero) = cons X nil σ (suc (suc n)) = η (suc (suc n)) σ-match : matches (geth P (# 3)) S σ σ-match = begin app σ (blist (cons X (η 1))) ≡⟨ refl ⟩ μ (T₁ σ (blist (cons X (η 1)))) ≡⟨ refl ⟩ μ (T₁ σ (μ (ι (BList , (λ _ → (cons X (η 1))))))) ≡⟨ refl ⟩ μ (μ (ι (BList , (λ _ → T₁ σ (cons X (η 1)))))) ≡⟨ refl ⟩ μ (μ (ι (BList , (λ _ → T₁ σ (μ (ι (Cons , bin-branch X (η 1)))))))) ≡⟨ refl ⟩ μ (μ (ι (BList , (λ _ → μ (ι (Cons , T₁ σ ∘ (bin-branch X (η 1)))))))) ≡⟨ cong (λ u → μ (μ (ι (BList , (λ _ → μ (ι (Cons , u))))))) (cons-br-distr X (η 1) (T₁ σ)) ⟩ μ (μ (ι (BList , (λ _ → μ (ι (Cons , (bin-branch (T₁ σ X) (T₁ σ (η 1))))))))) ≡⟨ refl ⟩ μ (μ (ι (BList , (λ _ → μ (ι (Cons , (bin-branch (η (σ 0)) (η (σ 1))))))))) ≡⟨ cong (λ u → μ (μ (ι (BList , (λ _ → μ (ι (Cons , u))))))) (sym (cons-br-distr (σ 0) (σ 1) η)) ⟩ μ (μ (ι (BList , (λ _ → μ (ι (Cons , (η ∘ (bin-branch (σ 0) (σ 1))))))))) ≡⟨ refl ⟩ blist (cons (σ 0) (σ 1)) ≡⟨ refl ⟩ blist (cons X (cons X nil)) ≡⟨ refl ⟩ S ∎ term1 : S ↓ bitX term1 = step bitX bitX (val bitX-val) step1 -- Problem: The substitution needs to match _all_ leaves!!! -}
25.583673
80
0.424697
126624536733f1411c6ad87f0e6cdb262da08472
3,300
agda
Agda
notes/fomega/gadts/ScottVec.agda
Quantum-One-DLT/zerepoch
c8cf4619e6e496930c9092cf6d64493eff300177
[ "Apache-2.0" ]
null
null
null
notes/fomega/gadts/ScottVec.agda
Quantum-One-DLT/zerepoch
c8cf4619e6e496930c9092cf6d64493eff300177
[ "Apache-2.0" ]
null
null
null
notes/fomega/gadts/ScottVec.agda
Quantum-One-DLT/zerepoch
c8cf4619e6e496930c9092cf6d64493eff300177
[ "Apache-2.0" ]
2
2021-11-13T21:25:19.000Z
2022-02-21T16:38:59.000Z
-- This document shows how to encode GADTs using `IFix`. {-# OPTIONS --type-in-type #-} module ScottVec where -- The kind of church-encoded type-level natural numbers. Nat = (Set -> Set) -> Set -> Set zero : Nat zero = λ f z -> z suc : Nat -> Nat suc = λ n f z -> f (n f z) plus : Nat -> Nat -> Nat plus = λ n m f z -> n f (m f z) -- Our old friend. {-# NO_POSITIVITY_CHECK #-} record IFix {I : Set} (F : (I -> Set) -> I -> Set) (i : I) : Set where constructor wrap field unwrap : F (IFix F) i open IFix -- Scott-encoded vectors (a vector is a list with statically-known length). -- As usually the pattern vector of a Scott-encoded data type encodes pattern-matching. VecF : Set -> (Nat -> Set) -> Nat -> Set VecF = λ A Rec n -> (R : Nat -> Set) -- The type of the result depends on the vector's length. -> (∀ p -> A -> Rec p -> R (suc p)) -- The encoded `cons` constructor. -> R zero -- The encoded `nil` constructor. -> R n Vec : Set -> Nat -> Set Vec = λ (A : Set) -> IFix (VecF A) nil : ∀ A -> Vec A zero nil = λ A -> wrap λ R f z -> z cons : ∀ A n -> A -> Vec A n -> Vec A (suc n) cons = λ A n x xs -> wrap λ R f z -> f n x xs open import Data.Empty open import Data.Unit.Base open import Data.Nat.Base using (ℕ; _+_) -- Type-safe `head`. head : ∀ A n -> Vec A (suc n) -> A head A n xs = unwrap xs (λ p -> p (λ _ -> A) ⊤) -- `p (λ _ -> A) ⊤` returns `A` when `p` is `suc p'` for some `p'` -- and `⊤` when `p` is `zero` (λ p x xs' -> x) -- In the `cons` case `suc p (λ _ -> A) ⊤` reduces to `A`, -- hence we return the list element of type `A`. tt -- In the `nil` case `zero (λ _ -> A) ⊤` reduces to `⊤`, -- hence we return the only value of that type. {- Note [Type-safe `tail`] It's not obvious if type-safe `tail` can be implemented with this setup. This is because even though `Vec` is Scott-encoded, the type-level natural are Church-encoded (obviously we could have Scott-encoded type-level naturals in Agda just as well, but not in Zerepoch Core), which makes `pred` hard, which makes `tail` non-trivial. I did try using Scott-encoded naturals in Agda, that makes `tail` even more straightforward than `head`: tail : ∀ A n -> Vec A (suc n) -> Vec A n tail A n xs = unwrap xs (λ p -> ((B : ℕ -> Set) -> B (pred p) -> B n) -> Vec A n) (λ p x xs' coe -> coe (Vec A) xs') (λ coe -> coe (Vec A) (nil A)) (λ B x -> x) -} -- Here we pattern-match on `xs` and if it's non-empty, i.e. of type `Vec ℕ (suc p)` for some `p`, -- then we also get access to a coercion function that allows us to coerce the second list from -- `Vec ℕ n` to the same `Vec ℕ (suc p)` and call the type-safe `head` over it. -- Note that we don't even need to encode the `n ~ suc p` and `n ~ zero` equality constraints in -- the definition of `vecF` and can recover coercions along those constraints by adding the -- `Vec ℕ n -> Vec ℕ p` argument to the motive. sumHeadsOr0 : ∀ n -> Vec ℕ n -> Vec ℕ n -> ℕ sumHeadsOr0 n xs ys = unwrap xs (λ p -> (Vec ℕ n -> Vec ℕ p) -> ℕ) (λ p i _ coe -> i + head ℕ p (coe ys)) (λ _ -> 0) (λ x -> x)
34.736842
98
0.564848
583b88bc2a1e43f53c27d9b9015e23bd09233d3f
5,100
agda
Agda
lib/types/Cover.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
lib/types/Cover.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
lib/types/Cover.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.NConnected open import lib.types.TLevel open import lib.NType2 open import lib.types.Pi open import lib.types.Sigma open import lib.types.Pointed open import lib.types.LoopSpace open import lib.types.Truncation open import lib.types.PathSet module lib.types.Cover where {- The definition of covering spaces. -} record Cover {i} (A : Type i) j : Type (lmax i (lsucc j)) where constructor cover field Fiber : A → Type j Fiber-level : ∀ a → is-set (Fiber a) Fiber-is-set = Fiber-level TotalSpace = Σ A Fiber -- Basic lemmas module _ {i} {A : Type i} {j} where open Cover -- Equality between covers. private cover=′ : {c₁ c₂ : Cover A j} → Fiber c₁ == Fiber c₂ → c₁ == c₂ cover=′ {cover f _} {cover .f _} idp = ap (cover f) $ prop-has-all-paths (Π-is-prop λ _ → is-set-is-prop) _ _ cover= : {c₁ c₂ : Cover A j} → (∀ a → Fiber c₁ a ≃ Fiber c₂ a) → c₁ == c₂ cover= F≃ = cover=′ (λ= λ a → ua $ F≃ a) -- The definition of universality in terms of connectedness. is-universal : Cover A j → Type (lmax i j) is-universal cov = is-connected ⟨1⟩ $ TotalSpace cov -- In terms of connectedness UniversalCover : Type (lmax i (lsucc j)) UniversalCover = Σ (Cover A j) is-universal -- Theorem: A covering space keeps higher homotopy groups. module _ {i} (A∙ : Ptd i) {j} (c : Cover (fst A∙) j) (a↑ : Cover.Fiber c (snd A∙)) where open Cover c private F = Cover.Fiber c F-level = Cover.Fiber-level c A = fst A∙ a = snd A∙ private -- The projection map with one end free (in order to apply J). to′ : ∀ {p⇑ : _==_ {A = Σ A F} (a , a↑) (a , a↑)} → idp == p⇑ → idp == fst= p⇑ to′ idp=p⇑ = ap fst= idp=p⇑ -- The projection map from Ω²(Σ A F) to Ω²(A). to : Ω^ 2 ⊙[ Σ A F , (a , a↑) ] → Ω^ 2 A∙ to p²⇑ = to′ {p⇑ = idp} p²⇑ -- Auxiliary synthesized path for injection. idp=p↑ : ∀ {p : a == a} {p↑ : a↑ == a↑ [ F ↓ p ]} → (idp=p : idp == p) → idp == p↑ [ (λ p → a↑ == a↑ [ F ↓ p ]) ↓ idp=p ] idp=p↑ idp = prop-has-all-paths (F-level a _ _) _ _ -- The injection map with some ends free (in order to apply J). from′ : ∀ {p : a == a} {p↑ : a↑ == a↑ [ F ↓ p ]} → (idp=p : idp == p) → idp == p↑ -- aux [ (λ p → a↑ == a↑ [ F ↓ p ]) ↓ idp=p ] → idp == pair= p p↑ from′ idp=p idp=p↑ = pair== idp=p idp=p↑ -- The injection map from Ω²(A) to Ω²(Σ A F). from : Ω^ 2 A∙ → Ω^ 2 ⊙[ Σ A F , (a , a↑) ] from p² = from′ {p = idp} {p↑ = idp} p² (idp=p↑ p²) -- Injection is left-inverse to projection (with some ends free). from′-to′ : ∀ {p⇑ : _==_ {A = Σ A F} (a , a↑) (a , a↑)} → (idp=p⇑ : idp == p⇑) → (idp=snd=p⇑ : idp == snd= p⇑ -- aux [ (λ p → a↑ == a↑ [ F ↓ p ]) ↓ to′ idp=p⇑ ]) → from′ (to′ idp=p⇑) idp=snd=p⇑ == idp=p⇑ [ (λ p⇑ → idp == p⇑) ↓ ! (pair=-η p⇑) ] from′-to′ idp idp=snd=p⇑ = ap (from′ idp) $ contr-has-all-paths (F-level a _ _ _ _) _ _ -- Injection is left-inverse to projection. from-to : ∀ p²⇑ → from (to p²⇑) == p²⇑ from-to p²⇑ = from′-to′ {p⇑ = idp} p²⇑ (idp=p↑ (to′ p²⇑)) -- Injection is right-inverse to projection (with some ends free). to′-from′ : ∀ {p : a == a} {p↑ : a↑ == a↑ [ F ↓ p ]} → (idp=p : idp == p) → (idp=p↑ : idp == p↑ -- aux [ (λ p → a↑ == a↑ [ F ↓ p ]) ↓ idp=p ]) → to′ (from′ idp=p idp=p↑) == idp=p [ (λ p → idp == p) ↓ fst=-β p p↑ ] to′-from′ idp idp = idp -- Injection is right-inverse to projection. to-from : ∀ p² → to (from p²) == p² to-from p² = to′-from′ p² (idp=p↑ p²) -- The theorem. Ω²ΣAFiber≃Ω²A : Ω^ 2 (Σ A F , (a , a↑)) ≃ Ω^ 2 A∙ Ω²ΣAFiber≃Ω²A = to , is-eq to from to-from from-to -- A natural way to construct a G-set from covering spaces. module _ {i} {A : Type i} where open Cover cover-trace : ∀ {j} (cov : Cover A j) {a₁ a₂} → Fiber cov a₁ → a₁ =₀ a₂ → Fiber cov a₂ cover-trace cov a↑ p = transport₀ (Fiber cov) (Fiber-is-set cov _) p a↑ abstract cover-trace-idp₀ : ∀ {j} (cov : Cover A j) {a₁} → (a↑ : Fiber cov a₁) → cover-trace cov a↑ idp₀ == a↑ cover-trace-idp₀ cov a↑ = idp cover-paste : ∀ {j} (cov : Cover A j) {a₁ a₂} → (a↑ : Fiber cov a₁) → (loop : a₁ =₀ a₁) → (p : a₁ =₀ a₂) → cover-trace cov (cover-trace cov a↑ loop) p == cover-trace cov a↑ (loop ∙₀ p) cover-paste cov a↑ loop p = ! $ trans₀-∙₀ (λ {a} → Fiber-is-set cov a) loop p a↑ -- Path sets form a covering space module _ {i} (A∙ : Ptd i) where path-set-cover : Cover (fst A∙) i path-set-cover = record { Fiber = λ a → snd A∙ =₀ a ; Fiber-level = λ a → Trunc-level } -- Cover morphisms CoverHom : ∀ {i} {A : Type i} {j₁ j₂} → (cov1 : Cover A j₁) → (cov2 : Cover A j₂) → Type (lmax i (lmax j₁ j₂)) CoverHom (cover F₁ _) (cover F₂ _) = ∀ a → F₁ a → F₂ a
31.875
84
0.515098
a1655f385f50f4351875c40e9cc9918969c56ad0
16,082
agda
Agda
Cubical/HITs/PropositionalTruncation/Properties.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/HITs/PropositionalTruncation/Properties.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/HITs/PropositionalTruncation/Properties.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{- This file contains: - Eliminator for propositional truncation -} {-# OPTIONS --safe #-} module Cubical.HITs.PropositionalTruncation.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Data.Sigma open import Cubical.Data.Sum hiding (rec ; elim ; map) open import Cubical.HITs.PropositionalTruncation.Base private variable ℓ ℓ′ : Level A B C : Type ℓ A′ : Type ℓ′ ∥∥-isPropDep : (P : A → Type ℓ) → isOfHLevelDep 1 (λ x → ∥ P x ∥) ∥∥-isPropDep P = isOfHLevel→isOfHLevelDep 1 (λ _ → squash) rec : {P : Type ℓ} → isProp P → (A → P) → ∥ A ∥ → P rec Pprop f ∣ x ∣ = f x rec Pprop f (squash x y i) = Pprop (rec Pprop f x) (rec Pprop f y) i rec2 : {P : Type ℓ} → isProp P → (A → B → P) → ∥ A ∥ → ∥ B ∥ → P rec2 Pprop f ∣ x ∣ ∣ y ∣ = f x y rec2 Pprop f ∣ x ∣ (squash y z i) = Pprop (rec2 Pprop f ∣ x ∣ y) (rec2 Pprop f ∣ x ∣ z) i rec2 Pprop f (squash x y i) z = Pprop (rec2 Pprop f x z) (rec2 Pprop f y z) i -- Old version -- rec2 : ∀ {P : Type ℓ} → isProp P → (A → A → P) → ∥ A ∥ → ∥ A ∥ → P -- rec2 Pprop f = rec (isProp→ Pprop) (λ a → rec Pprop (f a)) elim : {P : ∥ A ∥ → Type ℓ} → ((a : ∥ A ∥) → isProp (P a)) → ((x : A) → P ∣ x ∣) → (a : ∥ A ∥) → P a elim Pprop f ∣ x ∣ = f x elim Pprop f (squash x y i) = isOfHLevel→isOfHLevelDep 1 Pprop (elim Pprop f x) (elim Pprop f y) (squash x y) i elim2 : {P : ∥ A ∥ → ∥ B ∥ → Type ℓ} (Pprop : (x : ∥ A ∥) (y : ∥ B ∥) → isProp (P x y)) (f : (a : A) (b : B) → P ∣ a ∣ ∣ b ∣) (x : ∥ A ∥) (y : ∥ B ∥) → P x y elim2 Pprop f = elim (λ _ → isPropΠ (λ _ → Pprop _ _)) (λ a → elim (λ _ → Pprop _ _) (f a)) elim3 : {P : ∥ A ∥ → ∥ B ∥ → ∥ C ∥ → Type ℓ} (Pprop : ((x : ∥ A ∥) (y : ∥ B ∥) (z : ∥ C ∥) → isProp (P x y z))) (g : (a : A) (b : B) (c : C) → P (∣ a ∣) ∣ b ∣ ∣ c ∣) (x : ∥ A ∥) (y : ∥ B ∥) (z : ∥ C ∥) → P x y z elim3 Pprop g = elim2 (λ _ _ → isPropΠ (λ _ → Pprop _ _ _)) (λ a b → elim (λ _ → Pprop _ _ _) (g a b)) isPropPropTrunc : isProp ∥ A ∥ isPropPropTrunc x y = squash x y propTruncIdempotent≃ : isProp A → ∥ A ∥ ≃ A propTruncIdempotent≃ {A = A} hA = isoToEquiv f where f : Iso ∥ A ∥ A Iso.fun f = rec hA (idfun A) Iso.inv f x = ∣ x ∣ Iso.rightInv f _ = refl Iso.leftInv f = elim (λ _ → isProp→isSet isPropPropTrunc _ _) (λ _ → refl) propTruncIdempotent : isProp A → ∥ A ∥ ≡ A propTruncIdempotent hA = ua (propTruncIdempotent≃ hA) -- We could also define the eliminator using the recursor elim' : {P : ∥ A ∥ → Type ℓ} → ((a : ∥ A ∥) → isProp (P a)) → ((x : A) → P ∣ x ∣) → (a : ∥ A ∥) → P a elim' {P = P} Pprop f a = rec (Pprop a) (λ x → transp (λ i → P (squash ∣ x ∣ a i)) i0 (f x)) a map : (A → B) → (∥ A ∥ → ∥ B ∥) map f = rec squash (∣_∣ ∘ f) map2 : (A → B → C) → (∥ A ∥ → ∥ B ∥ → ∥ C ∥) map2 f = rec (isPropΠ λ _ → squash) (map ∘ f) -- The propositional truncation can be eliminated into non-propositional -- types as long as the function used in the eliminator is 'coherently -- constant.' The details of this can be found in the following paper: -- -- https://arxiv.org/pdf/1411.2682.pdf module SetElim (Bset : isSet B) where Bset' : isSet' B Bset' = isSet→isSet' Bset rec→Set : (f : A → B) (kf : 2-Constant f) → ∥ A ∥ → B helper : (f : A → B) (kf : 2-Constant f) → (t u : ∥ A ∥) → rec→Set f kf t ≡ rec→Set f kf u rec→Set f kf ∣ x ∣ = f x rec→Set f kf (squash t u i) = helper f kf t u i helper f kf ∣ x ∣ ∣ y ∣ = kf x y helper f kf (squash t u i) v = Bset' (helper f kf t v) (helper f kf u v) (helper f kf t u) refl i helper f kf t (squash u v i) = Bset' (helper f kf t u) (helper f kf t v) refl (helper f kf u v) i kcomp : (f : ∥ A ∥ → B) → 2-Constant (f ∘ ∣_∣) kcomp f x y = cong f (squash ∣ x ∣ ∣ y ∣) Fset : isSet (A → B) Fset = isSetΠ (const Bset) Kset : (f : A → B) → isSet (2-Constant f) Kset f = isSetΠ (λ _ → isSetΠ (λ _ → isProp→isSet (Bset _ _))) setRecLemma : (f : ∥ A ∥ → B) → rec→Set (f ∘ ∣_∣) (kcomp f) ≡ f setRecLemma f i t = elim {P = λ t → rec→Set (f ∘ ∣_∣) (kcomp f) t ≡ f t} (λ t → Bset _ _) (λ x → refl) t i mkKmap : (∥ A ∥ → B) → Σ (A → B) 2-Constant mkKmap f = f ∘ ∣_∣ , kcomp f fib : (g : Σ (A → B) 2-Constant) → fiber mkKmap g fib (g , kg) = rec→Set g kg , refl eqv : (g : Σ (A → B) 2-Constant) → ∀ fi → fib g ≡ fi eqv g (f , p) = Σ≡Prop (λ f → isOfHLevelΣ 2 Fset Kset _ _) (cong (uncurry rec→Set) (sym p) ∙ setRecLemma f) trunc→Set≃ : (∥ A ∥ → B) ≃ (Σ (A → B) 2-Constant) trunc→Set≃ .fst = mkKmap trunc→Set≃ .snd .equiv-proof g = fib g , eqv g -- The strategy of this equivalence proof follows the paper more closely. -- It is used further down for the groupoid version, because the above -- strategy does not generalize so easily. e : B → Σ (A → B) 2-Constant e b = const b , λ _ _ → refl eval : A → (γ : Σ (A → B) 2-Constant) → B eval a₀ (g , _) = g a₀ e-eval : ∀ (a₀ : A) γ → e (eval a₀ γ) ≡ γ e-eval a₀ (g , kg) i .fst a₁ = kg a₀ a₁ i e-eval a₀ (g , kg) i .snd a₁ a₂ = Bset' refl (kg a₁ a₂) (kg a₀ a₁) (kg a₀ a₂) i e-isEquiv : A → isEquiv (e {A = A}) e-isEquiv a₀ = isoToIsEquiv (iso e (eval a₀) (e-eval a₀) λ _ → refl) preEquiv₁ : ∥ A ∥ → B ≃ Σ (A → B) 2-Constant preEquiv₁ t = e , rec (isPropIsEquiv e) e-isEquiv t preEquiv₂ : (∥ A ∥ → Σ (A → B) 2-Constant) ≃ Σ (A → B) 2-Constant preEquiv₂ = isoToEquiv (iso to const (λ _ → refl) retr) where to : (∥ A ∥ → Σ (A → B) 2-Constant) → Σ (A → B) 2-Constant to f .fst x = f ∣ x ∣ .fst x to f .snd x y i = f (squash ∣ x ∣ ∣ y ∣ i) .snd x y i retr : retract to const retr f i t .fst x = f (squash ∣ x ∣ t i) .fst x retr f i t .snd x y = Bset' (λ j → f (squash ∣ x ∣ ∣ y ∣ j) .snd x y j) (f t .snd x y) (λ j → f (squash ∣ x ∣ t j) .fst x) (λ j → f (squash ∣ y ∣ t j) .fst y) i trunc→Set≃₂ : (∥ A ∥ → B) ≃ Σ (A → B) 2-Constant trunc→Set≃₂ = compEquiv (equivΠCod preEquiv₁) preEquiv₂ open SetElim public using (rec→Set; trunc→Set≃) elim→Set : {P : ∥ A ∥ → Type ℓ} → (∀ t → isSet (P t)) → (f : (x : A) → P ∣ x ∣) → (kf : ∀ x y → PathP (λ i → P (squash ∣ x ∣ ∣ y ∣ i)) (f x) (f y)) → (t : ∥ A ∥) → P t elim→Set {A = A} {P = P} Pset f kf t = rec→Set (Pset t) g gk t where g : A → P t g x = transp (λ i → P (squash ∣ x ∣ t i)) i0 (f x) gk : 2-Constant g gk x y i = transp (λ j → P (squash (squash ∣ x ∣ ∣ y ∣ i) t j)) i0 (kf x y i) RecHProp : (P : A → hProp ℓ) (kP : ∀ x y → P x ≡ P y) → ∥ A ∥ → hProp ℓ RecHProp P kP = rec→Set isSetHProp P kP module GpdElim (Bgpd : isGroupoid B) where Bgpd' : isGroupoid' B Bgpd' = isGroupoid→isGroupoid' Bgpd module _ (f : A → B) (3kf : 3-Constant f) where open 3-Constant 3kf rec→Gpd : ∥ A ∥ → B pathHelper : (t u : ∥ A ∥) → rec→Gpd t ≡ rec→Gpd u triHelper₁ : (t u v : ∥ A ∥) → Square (pathHelper t u) (pathHelper t v) refl (pathHelper u v) triHelper₂ : (t u v : ∥ A ∥) → Square (pathHelper t v) (pathHelper u v) (pathHelper t u) refl rec→Gpd ∣ x ∣ = f x rec→Gpd (squash t u i) = pathHelper t u i pathHelper ∣ x ∣ ∣ y ∣ = link x y pathHelper (squash t u j) v = triHelper₂ t u v j pathHelper ∣ x ∣ (squash u v j) = triHelper₁ ∣ x ∣ u v j triHelper₁ ∣ x ∣ ∣ y ∣ ∣ z ∣ = coh₁ x y z triHelper₁ (squash s t i) u v = Bgpd' (triHelper₁ s u v) (triHelper₁ t u v) (triHelper₂ s t u) (triHelper₂ s t v) (λ i → refl) (λ i → pathHelper u v) i triHelper₁ ∣ x ∣ (squash t u i) v = Bgpd' (triHelper₁ ∣ x ∣ t v) (triHelper₁ ∣ x ∣ u v) (triHelper₁ ∣ x ∣ t u) (λ i → pathHelper ∣ x ∣ v) (λ i → refl) (triHelper₂ t u v) i triHelper₁ ∣ x ∣ ∣ y ∣ (squash u v i) = Bgpd' (triHelper₁ ∣ x ∣ ∣ y ∣ u) (triHelper₁ ∣ x ∣ ∣ y ∣ v) (λ i → link x y) (triHelper₁ ∣ x ∣ u v) (λ i → refl) (triHelper₁ ∣ y ∣ u v) i triHelper₂ ∣ x ∣ ∣ y ∣ ∣ z ∣ = coh₂ x y z triHelper₂ (squash s t i) u v = Bgpd' (triHelper₂ s u v) (triHelper₂ t u v) (triHelper₂ s t v) (λ i → pathHelper u v) (triHelper₂ s t u) (λ i → refl) i triHelper₂ ∣ x ∣ (squash t u i) v = Bgpd' (triHelper₂ ∣ x ∣ t v) (triHelper₂ ∣ x ∣ u v) (λ i → pathHelper ∣ x ∣ v) (triHelper₂ t u v) (triHelper₁ ∣ x ∣ t u) (λ i → refl) i triHelper₂ ∣ x ∣ ∣ y ∣ (squash u v i) = Bgpd' (triHelper₂ ∣ x ∣ ∣ y ∣ u) (triHelper₂ ∣ x ∣ ∣ y ∣ v) (triHelper₁ ∣ x ∣ u v) (triHelper₁ ∣ y ∣ u v) (λ i → link x y) (λ i → refl) i preEquiv₁ : (∥ A ∥ → Σ (A → B) 3-Constant) ≃ Σ (A → B) 3-Constant preEquiv₁ = isoToEquiv (iso fn const (λ _ → refl) retr) where open 3-Constant fn : (∥ A ∥ → Σ (A → B) 3-Constant) → Σ (A → B) 3-Constant fn f .fst x = f ∣ x ∣ .fst x fn f .snd .link x y i = f (squash ∣ x ∣ ∣ y ∣ i) .snd .link x y i fn f .snd .coh₁ x y z i j = f (squash ∣ x ∣ (squash ∣ y ∣ ∣ z ∣ i) j) .snd .coh₁ x y z i j retr : retract fn const retr f i t .fst x = f (squash ∣ x ∣ t i) .fst x retr f i t .snd .link x y j = f (squash (squash ∣ x ∣ ∣ y ∣ j) t i) .snd .link x y j retr f i t .snd .coh₁ x y z = Bgpd' (λ k j → f (cb k j i0) .snd .coh₁ x y z k j ) (λ k j → f (cb k j i1) .snd .coh₁ x y z k j) (λ k j → f (cb i0 j k) .snd .link x y j) (λ k j → f (cb i1 j k) .snd .link x z j) (λ _ → refl) (λ k j → f (cb j i1 k) .snd .link y z j) i where cb : I → I → I → ∥ _ ∥ cb i j k = squash (squash ∣ x ∣ (squash ∣ y ∣ ∣ z ∣ i) j) t k e : B → Σ (A → B) 3-Constant e b .fst _ = b e b .snd = record { link = λ _ _ _ → b ; coh₁ = λ _ _ _ _ _ → b } eval : A → Σ (A → B) 3-Constant → B eval a₀ (g , _) = g a₀ module _ where open 3-Constant e-eval : ∀(a₀ : A) γ → e (eval a₀ γ) ≡ γ e-eval a₀ (g , 3kg) i .fst x = 3kg .link a₀ x i e-eval a₀ (g , 3kg) i .snd .link x y = λ j → 3kg .coh₁ a₀ x y j i e-eval a₀ (g , 3kg) i .snd .coh₁ x y z = Bgpd' (λ _ _ → g a₀) (3kg .coh₁ x y z) (λ k j → 3kg .coh₁ a₀ x y j k) (λ k j → 3kg .coh₁ a₀ x z j k) (λ _ → refl) (λ k j → 3kg .coh₁ a₀ y z j k) i e-isEquiv : A → isEquiv (e {A = A}) e-isEquiv a₀ = isoToIsEquiv (iso e (eval a₀) (e-eval a₀) λ _ → refl) preEquiv₂ : ∥ A ∥ → B ≃ Σ (A → B) 3-Constant preEquiv₂ t = e , rec (isPropIsEquiv e) e-isEquiv t trunc→Gpd≃ : (∥ A ∥ → B) ≃ Σ (A → B) 3-Constant trunc→Gpd≃ = compEquiv (equivΠCod preEquiv₂) preEquiv₁ open GpdElim using (rec→Gpd; trunc→Gpd≃) public squashᵗ : ∀(x y z : A) → Square (squash ∣ x ∣ ∣ y ∣) (squash ∣ x ∣ ∣ z ∣) refl (squash ∣ y ∣ ∣ z ∣) squashᵗ x y z i = squash ∣ x ∣ (squash ∣ y ∣ ∣ z ∣ i) elim→Gpd : (P : ∥ A ∥ → Type ℓ) → (∀ t → isGroupoid (P t)) → (f : (x : A) → P ∣ x ∣) → (kf : ∀ x y → PathP (λ i → P (squash ∣ x ∣ ∣ y ∣ i)) (f x) (f y)) → (3kf : ∀ x y z → SquareP (λ i j → P (squashᵗ x y z i j)) (kf x y) (kf x z) refl (kf y z)) → (t : ∥ A ∥) → P t elim→Gpd {A = A} P Pgpd f kf 3kf t = rec→Gpd (Pgpd t) g 3kg t where g : A → P t g x = transp (λ i → P (squash ∣ x ∣ t i)) i0 (f x) open 3-Constant 3kg : 3-Constant g 3kg .link x y i = transp (λ j → P (squash (squash ∣ x ∣ ∣ y ∣ i) t j)) i0 (kf x y i) 3kg .coh₁ x y z i j = transp (λ k → P (squash (squashᵗ x y z i j) t k)) i0 (3kf x y z i j) RecHSet : (P : A → TypeOfHLevel ℓ 2) → 3-Constant P → ∥ A ∥ → TypeOfHLevel ℓ 2 RecHSet P 3kP = rec→Gpd (isOfHLevelTypeOfHLevel 2) P 3kP ∥∥-IdempotentL-⊎-≃ : ∥ ∥ A ∥ ⊎ A′ ∥ ≃ ∥ A ⊎ A′ ∥ ∥∥-IdempotentL-⊎-≃ = isoToEquiv ∥∥-IdempotentL-⊎-Iso where ∥∥-IdempotentL-⊎-Iso : Iso (∥ ∥ A ∥ ⊎ A′ ∥) (∥ A ⊎ A′ ∥) Iso.fun ∥∥-IdempotentL-⊎-Iso x = rec squash lem x where lem : ∥ A ∥ ⊎ A′ → ∥ A ⊎ A′ ∥ lem (inl x) = map (λ a → inl a) x lem (inr x) = ∣ inr x ∣ Iso.inv ∥∥-IdempotentL-⊎-Iso x = map lem x where lem : A ⊎ A′ → ∥ A ∥ ⊎ A′ lem (inl x) = inl ∣ x ∣ lem (inr x) = inr x Iso.rightInv ∥∥-IdempotentL-⊎-Iso x = squash (Iso.fun ∥∥-IdempotentL-⊎-Iso (Iso.inv ∥∥-IdempotentL-⊎-Iso x)) x Iso.leftInv ∥∥-IdempotentL-⊎-Iso x = squash (Iso.inv ∥∥-IdempotentL-⊎-Iso (Iso.fun ∥∥-IdempotentL-⊎-Iso x)) x ∥∥-IdempotentL-⊎ : ∥ ∥ A ∥ ⊎ A′ ∥ ≡ ∥ A ⊎ A′ ∥ ∥∥-IdempotentL-⊎ = ua ∥∥-IdempotentL-⊎-≃ ∥∥-IdempotentR-⊎-≃ : ∥ A ⊎ ∥ A′ ∥ ∥ ≃ ∥ A ⊎ A′ ∥ ∥∥-IdempotentR-⊎-≃ = isoToEquiv ∥∥-IdempotentR-⊎-Iso where ∥∥-IdempotentR-⊎-Iso : Iso (∥ A ⊎ ∥ A′ ∥ ∥) (∥ A ⊎ A′ ∥) Iso.fun ∥∥-IdempotentR-⊎-Iso x = rec squash lem x where lem : A ⊎ ∥ A′ ∥ → ∥ A ⊎ A′ ∥ lem (inl x) = ∣ inl x ∣ lem (inr x) = map (λ a → inr a) x Iso.inv ∥∥-IdempotentR-⊎-Iso x = map lem x where lem : A ⊎ A′ → A ⊎ ∥ A′ ∥ lem (inl x) = inl x lem (inr x) = inr ∣ x ∣ Iso.rightInv ∥∥-IdempotentR-⊎-Iso x = squash (Iso.fun ∥∥-IdempotentR-⊎-Iso (Iso.inv ∥∥-IdempotentR-⊎-Iso x)) x Iso.leftInv ∥∥-IdempotentR-⊎-Iso x = squash (Iso.inv ∥∥-IdempotentR-⊎-Iso (Iso.fun ∥∥-IdempotentR-⊎-Iso x)) x ∥∥-IdempotentR-⊎ : ∥ A ⊎ ∥ A′ ∥ ∥ ≡ ∥ A ⊎ A′ ∥ ∥∥-IdempotentR-⊎ = ua ∥∥-IdempotentR-⊎-≃ ∥∥-Idempotent-⊎ : {A : Type ℓ} {A′ : Type ℓ′} → ∥ ∥ A ∥ ⊎ ∥ A′ ∥ ∥ ≡ ∥ A ⊎ A′ ∥ ∥∥-Idempotent-⊎ {A = A} {A′} = ∥ ∥ A ∥ ⊎ ∥ A′ ∥ ∥ ≡⟨ ∥∥-IdempotentR-⊎ ⟩ ∥ ∥ A ∥ ⊎ A′ ∥ ≡⟨ ∥∥-IdempotentL-⊎ ⟩ ∥ A ⊎ A′ ∥ ∎ ∥∥-IdempotentL-×-≃ : ∥ ∥ A ∥ × A′ ∥ ≃ ∥ A × A′ ∥ ∥∥-IdempotentL-×-≃ = isoToEquiv ∥∥-IdempotentL-×-Iso where ∥∥-IdempotentL-×-Iso : Iso (∥ ∥ A ∥ × A′ ∥) (∥ A × A′ ∥) Iso.fun ∥∥-IdempotentL-×-Iso x = rec squash lem x where lem : ∥ A ∥ × A′ → ∥ A × A′ ∥ lem (a , a′) = map2 (λ a a′ → a , a′) a ∣ a′ ∣ Iso.inv ∥∥-IdempotentL-×-Iso x = map lem x where lem : A × A′ → ∥ A ∥ × A′ lem (a , a′) = ∣ a ∣ , a′ Iso.rightInv ∥∥-IdempotentL-×-Iso x = squash (Iso.fun ∥∥-IdempotentL-×-Iso (Iso.inv ∥∥-IdempotentL-×-Iso x)) x Iso.leftInv ∥∥-IdempotentL-×-Iso x = squash (Iso.inv ∥∥-IdempotentL-×-Iso (Iso.fun ∥∥-IdempotentL-×-Iso x)) x ∥∥-IdempotentL-× : ∥ ∥ A ∥ × A′ ∥ ≡ ∥ A × A′ ∥ ∥∥-IdempotentL-× = ua ∥∥-IdempotentL-×-≃ ∥∥-IdempotentR-×-≃ : ∥ A × ∥ A′ ∥ ∥ ≃ ∥ A × A′ ∥ ∥∥-IdempotentR-×-≃ = isoToEquiv ∥∥-IdempotentR-×-Iso where ∥∥-IdempotentR-×-Iso : Iso (∥ A × ∥ A′ ∥ ∥) (∥ A × A′ ∥) Iso.fun ∥∥-IdempotentR-×-Iso x = rec squash lem x where lem : A × ∥ A′ ∥ → ∥ A × A′ ∥ lem (a , a′) = map2 (λ a a′ → a , a′) ∣ a ∣ a′ Iso.inv ∥∥-IdempotentR-×-Iso x = map lem x where lem : A × A′ → A × ∥ A′ ∥ lem (a , a′) = a , ∣ a′ ∣ Iso.rightInv ∥∥-IdempotentR-×-Iso x = squash (Iso.fun ∥∥-IdempotentR-×-Iso (Iso.inv ∥∥-IdempotentR-×-Iso x)) x Iso.leftInv ∥∥-IdempotentR-×-Iso x = squash (Iso.inv ∥∥-IdempotentR-×-Iso (Iso.fun ∥∥-IdempotentR-×-Iso x)) x ∥∥-IdempotentR-× : ∥ A × ∥ A′ ∥ ∥ ≡ ∥ A × A′ ∥ ∥∥-IdempotentR-× = ua ∥∥-IdempotentR-×-≃ ∥∥-Idempotent-× : {A : Type ℓ} {A′ : Type ℓ′} → ∥ ∥ A ∥ × ∥ A′ ∥ ∥ ≡ ∥ A × A′ ∥ ∥∥-Idempotent-× {A = A} {A′} = ∥ ∥ A ∥ × ∥ A′ ∥ ∥ ≡⟨ ∥∥-IdempotentR-× ⟩ ∥ ∥ A ∥ × A′ ∥ ≡⟨ ∥∥-IdempotentL-× ⟩ ∥ A × A′ ∥ ∎
35.345055
118
0.482838
57541db688aab5a75f2ad4bc90a653ca301dc51d
1,216
agda
Agda
test/Succeed/Issue5923-OP.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
null
null
null
test/Succeed/Issue5923-OP.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
null
null
null
test/Succeed/Issue5923-OP.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
null
null
null
{-# OPTIONS --type-in-type --rewriting #-} module _ where postulate _≡_ : {A : Set} → A → A → Set {-# BUILTIN REWRITE _≡_ #-} record ⊤ : Set where constructor [] open ⊤ postulate ID : (Δ : Set) (δ₀ δ₁ : Δ) → Set ID⊤ : (δ₀ δ₁ : ⊤) → ID ⊤ δ₀ δ₁ ≡ ⊤ Id : {Δ : Set} (A : Δ → Set) {δ₀ δ₁ : Δ} (δ₂ : ID Δ δ₀ δ₁) (a₀ : A δ₀) (a₁ : A δ₁) → Set ap : {Δ : Set} {A : Δ → Set} (f : (δ : Δ) → A δ) {δ₀ δ₁ : Δ} (δ₂ : ID Δ δ₀ δ₁) → Id A δ₂ (f δ₀) (f δ₁) AP : {Θ Δ : Set} (f : Θ → Δ) {t₀ t₁ : Θ} (t₂ : ID Θ t₀ t₁) → ID Δ (f t₀) (f t₁) Id-AP : {Θ Δ : Set} (f : Θ → Δ) {t₀ t₁ : Θ} (t₂ : ID Θ t₀ t₁) (A : Δ → Set) (a₀ : A (f t₀)) (a₁ : A (f t₁)) → Id A (AP f t₂) a₀ a₁ ≡ Id (λ w → A (f w)) t₂ a₀ a₁ Copy : Set → Set uncopy : {A : Set} → Copy A → A {-# REWRITE ID⊤ #-} {-# REWRITE Id-AP #-} postulate utr→ : {Δ : Set} (A : Δ → Set) {δ₀ δ₁ : Δ} (δ₂ : ID Δ δ₀ δ₁) (a₁ a₁' : A δ₁) → Id {⊤} (λ _ → A δ₁) [] a₁ a₁' IdU : {Δ : Set} {δ₀ δ₁ : Δ} (δ₂ : ID Δ δ₀ δ₁) (A B : Set) → Id {Δ} (λ _ → Set) δ₂ A B ≡ Copy ((b₀ : B) (b₁ : B) → Id {⊤} (λ _ → B) [] b₀ b₁) {-# REWRITE IdU #-} postulate apU : {Δ : Set} (A : Δ → Set) {δ₀ δ₁ : Δ} (δ₂ : ID Δ δ₀ δ₁) → uncopy (ap A δ₂) ≡ utr→ A δ₂ {-# REWRITE apU #-}
31.179487
111
0.449013
50cd7f79029681dace27e5584b4127fc1d3d8968
3,935
agda
Agda
src/Relation/Binary/Reduction.agda
Blaisorblade/f-omega-int-agda
ae20dac2a5e0c18dff2afda4c19954e24d73a24f
[ "MIT" ]
12
2017-06-13T16:05:35.000Z
2021-09-27T05:53:06.000Z
src/Relation/Binary/Reduction.agda
Blaisorblade/f-omega-int-agda
ae20dac2a5e0c18dff2afda4c19954e24d73a24f
[ "MIT" ]
1
2021-05-14T08:09:40.000Z
2021-05-14T08:54:39.000Z
src/Relation/Binary/Reduction.agda
Blaisorblade/f-omega-int-agda
ae20dac2a5e0c18dff2afda4c19954e24d73a24f
[ "MIT" ]
2
2021-05-13T22:29:48.000Z
2021-05-14T10:25:05.000Z
------------------------------------------------------------------------ -- Generic support for reduction relations. ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module Relation.Binary.Reduction where open import Data.Fin using (Fin) open import Data.Fin.Substitution open import Data.Nat using (ℕ; _+_) open import Function using (_∘_) open import Relation.Binary open import Relation.Binary.Construct.Closure.Equivalence open import Relation.Binary.Construct.Closure.ReflexiveTransitive as Star using (Star; ε; _◅_) import Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties as StarProp open import Relation.Binary.Construct.Closure.Symmetric using (fwd) import Relation.Binary.PropositionalEquality as PropEq import Relation.Binary.Reasoning.Setoid as SetoidReasoning -- Binary relations over abstract terms (i.e. ℕ-indexed sets). TRel : ∀ (T : ℕ → Set) → Set₁ TRel T = ∀ {n} → T n → T n → Set ---------------------------------------------------------------------- -- Generic reduction and equivalence relations record Reduction (T : ℕ → Set) : Set₁ where infix 5 _→1_ _→*_ _↔_ -- One-step reduction. field _→1_ : TRel T -- The reflexive transitive closure of _→1_, i.e. finite sequences -- of reduction steps. _→*_ : TRel T _→*_ = Star _→1_ -- The reflexive, transitive and symmetric closure (aka the -- equivalence closure) of _→1_. _↔_ : TRel T _↔_ = EqClosure _→1_ -- All remaining submodules are parametrized by a given reduction. module _ {T} (reduction : Reduction T) where open Reduction reduction ---------------------------------------------------------------------- -- Properties of the reductions/equivalence -- Inclusions. →1⇒→* : ∀ {n} {a b : T n} → a →1 b → a →* b →1⇒→* a→b = a→b ◅ ε →*⇒↔ : ∀ {n} {a b : T n} → a →* b → a ↔ b →*⇒↔ a→*b = Star.map fwd a→*b →1⇒↔ : ∀ {n} {a b : T n} → a →1 b → a ↔ b →1⇒↔ = →*⇒↔ ∘ →1⇒→* -- Reductions are preorders. →*-preorder : ℕ → Preorder _ _ _ →*-preorder n = StarProp.preorder (_→1_ {n}) -- Preorder reasoning for reductions. module →*-Reasoning {n} = StarProp.StarReasoning (_→1_ {n}) -- Terms together with equivalence form a setoid. ↔-setoid : ℕ → Setoid _ _ ↔-setoid n = setoid (_→1_ {n}) -- Equational reasoning for ↔-equivalence. module ↔-Reasoning {n : ℕ} where open SetoidReasoning (↔-setoid n) public open Setoid (↔-setoid n) using (sym) infixr 2 _→⟨_⟩_ _←⟨_⟩_ _→*⟨_⟩_ _←*⟨_⟩_ _→⟨_⟩_ : ∀ a {b c} → a →1 b → b IsRelatedTo c → a IsRelatedTo c a →⟨ a→b ⟩ b≡c = a ≈⟨ →1⇒↔ a→b ⟩ b≡c _←⟨_⟩_ : ∀ a {b c} → b →1 a → b IsRelatedTo c → a IsRelatedTo c a ←⟨ a←b ⟩ b≡c = a ≈⟨ sym (→1⇒↔ a←b) ⟩ b≡c _→*⟨_⟩_ : ∀ a {b c} → a →* b → b IsRelatedTo c → a IsRelatedTo c a →*⟨ a→*b ⟩ b≡c = a ≈⟨ →*⇒↔ a→*b ⟩ b≡c _←*⟨_⟩_ : ∀ a {b c} → b →* a → b IsRelatedTo c → a IsRelatedTo c a ←*⟨ a←*b ⟩ b≡c = a ≈⟨ sym (→*⇒↔ a←*b) ⟩ b≡c ---------------------------------------------------------------------- -- Substitutions in reductions/equivalence -- -- The applications _/→1_, _/→*_ and _/↔_ below may be considered -- substitution lemmas, i.e. they establish the commutativity of the -- respective reductions/equivalence with substitutions. record RedSubstApp {T′} (app : Application T T′) : Set where open Application app open PropEq infixl 8 _/→1_ _/→*_ _/↔_ field -- Substitution commutes with one-step reduction. _/→1_ : ∀ {m n a b} → a →1 b → (σ : Sub T′ m n) → a / σ →1 b / σ -- Substitution commutes with β-reduction. _/→*_ : ∀ {m n a b} → a →* b → (σ : Sub T′ m n) → a / σ →* b / σ a→*b /→* σ = Star.gmap (λ a → a / σ) (λ a→b → a→b /→1 σ) a→*b -- Substitution commutes with β-equivalence. _/↔_ : ∀ {m n a b} → a ↔ b → (σ : Sub T′ m n) → a / σ ↔ b / σ a≡b /↔ σ = gmap (λ a → a / σ) (λ a→b → a→b /→1 σ) a≡b
32.254098
72
0.547903
410324c1fc06c4df7fc4574efd0a03493f3c61e7
4,733
agda
Agda
agda-stdlib/src/Data/Fin/Substitution.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Fin/Substitution.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Fin/Substitution.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Substitutions ------------------------------------------------------------------------ -- Uses a variant of Conor McBride's technique from "Type-Preserving -- Renaming and Substitution". -- See Data.Fin.Substitution.Example for an example of how this module -- can be used: a definition of substitution for the untyped -- λ-calculus. {-# OPTIONS --without-K --safe #-} module Data.Fin.Substitution where open import Data.Nat hiding (_⊔_) open import Data.Fin.Base using (Fin; zero; suc) open import Data.Vec.Base open import Function as Fun using (flip) open import Relation.Binary.Construct.Closure.ReflexiveTransitive as Star using (Star; ε; _◅_) open import Level using (Level; _⊔_) import Level as L open import Relation.Unary using (Pred) ------------------------------------------------------------------------ -- General functionality -- A Sub T m n is a substitution which, when applied to something with -- at most m variables, yields something with at most n variables. Sub : ∀ {ℓ} → Pred ℕ ℓ → ℕ → ℕ → Set ℓ Sub T m n = Vec (T n) m -- A /reversed/ sequence of matching substitutions. Subs : ∀ {ℓ} → Pred ℕ ℓ → ℕ → ℕ → Set ℓ Subs T = flip (Star (flip (Sub T))) -- Some simple substitutions. record Simple {ℓ : Level} (T : Pred ℕ ℓ) : Set ℓ where infix 10 _↑ infixl 10 _↑⋆_ _↑✶_ field var : ∀ {n} → Fin n → T n -- Takes variables to Ts. weaken : ∀ {n} → T n → T (suc n) -- Weakens Ts. -- Lifting. _↑ : ∀ {m n} → Sub T m n → Sub T (suc m) (suc n) ρ ↑ = var zero ∷ map weaken ρ _↑⋆_ : ∀ {m n} → Sub T m n → ∀ k → Sub T (k + m) (k + n) ρ ↑⋆ zero = ρ ρ ↑⋆ suc k = (ρ ↑⋆ k) ↑ _↑✶_ : ∀ {m n} → Subs T m n → ∀ k → Subs T (k + m) (k + n) ρs ↑✶ k = Star.gmap (_+_ k) (λ ρ → ρ ↑⋆ k) ρs -- The identity substitution. id : ∀ {n} → Sub T n n id {zero} = [] id {suc n} = id ↑ -- Weakening. wk⋆ : ∀ k {n} → Sub T n (k + n) wk⋆ zero = id wk⋆ (suc k) = map weaken (wk⋆ k) wk : ∀ {n} → Sub T n (suc n) wk = wk⋆ 1 -- A substitution which only replaces the first variable. sub : ∀ {n} → T n → Sub T (suc n) n sub t = t ∷ id -- Application of substitutions. record Application {ℓ₁ ℓ₂ : Level} (T₁ : Pred ℕ ℓ₁) (T₂ : Pred ℕ ℓ₂) : Set (ℓ₁ ⊔ ℓ₂) where infixl 8 _/_ _/✶_ infixl 9 _⊙_ -- Post-application of substitutions to things. field _/_ : ∀ {m n} → T₁ m → Sub T₂ m n → T₁ n -- Reverse composition. (Fits well with post-application.) _⊙_ : ∀ {m n k} → Sub T₁ m n → Sub T₂ n k → Sub T₁ m k ρ₁ ⊙ ρ₂ = map (λ t → t / ρ₂) ρ₁ -- Application of multiple substitutions. _/✶_ : ∀ {m n} → T₁ m → Subs T₂ m n → T₁ n _/✶_ = Star.gfold Fun.id _ (flip _/_) {k = zero} -- A combination of the two records above. record Subst {ℓ : Level} (T : Pred ℕ ℓ) : Set ℓ where field simple : Simple T application : Application T T open Simple simple public open Application application public -- Composition of multiple substitutions. ⨀ : ∀ {m n} → Subs T m n → Sub T m n ⨀ ε = id ⨀ (ρ ◅ ε) = ρ -- Convenient optimisation; simplifies some proofs. ⨀ (ρ ◅ ρs) = ⨀ ρs ⊙ ρ ------------------------------------------------------------------------ -- Instantiations and code for facilitating instantiations -- Liftings from T₁ to T₂. record Lift {ℓ₁ ℓ₂ : Level} (T₁ : Pred ℕ ℓ₁) (T₂ : Pred ℕ ℓ₂) : Set (ℓ₁ ⊔ ℓ₂) where field simple : Simple T₁ lift : ∀ {n} → T₁ n → T₂ n open Simple simple public -- Variable substitutions (renamings). module VarSubst where subst : Subst Fin subst = record { simple = record { var = Fun.id; weaken = suc } ; application = record { _/_ = flip lookup } } open Subst subst public -- "Term" substitutions. record TermSubst (T : Pred ℕ L.zero) : Set₁ where field var : ∀ {n} → Fin n → T n app : ∀ {T′ : Pred ℕ L.zero} → Lift T′ T → ∀ {m n} → T m → Sub T′ m n → T n module Lifted {T′ : Pred ℕ L.zero} (lift : Lift T′ T) where application : Application T T′ application = record { _/_ = app lift } open Lift lift public open Application application public varLift : Lift Fin T varLift = record { simple = VarSubst.simple; lift = var } infix 8 _/Var_ _/Var_ : ∀ {m n} → T m → Sub Fin m n → T n _/Var_ = app varLift simple : Simple T simple = record { var = var ; weaken = λ t → t /Var VarSubst.wk } termLift : Lift T T termLift = record { simple = simple; lift = Fun.id } subst : Subst T subst = record { simple = simple ; application = Lifted.application termLift } open Subst subst public hiding (var; simple)
25.583784
79
0.56011
3d69989bcce7036a1ea878b36e0938e0f8605d60
222
agda
Agda
test/Fail/Issue274.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue274.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue274.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue274 where -- data ⊥ : Set where record U : Set where inductive constructor roll field ap : U → U -- lemma : U → ⊥ -- lemma (roll u) = lemma (u (roll u)) -- bottom : ⊥ -- bottom = lemma (roll λ x → x)
14.8
38
0.585586
1c9a9d1215c2c504d8c2355c3a49be8f78f698dc
9,278
agda
Agda
lib/PathOver.agda
sattlerc/HoTT-Agda
c8fb8da3354fc9e0c430ac14160161759b4c5b37
[ "MIT" ]
null
null
null
lib/PathOver.agda
sattlerc/HoTT-Agda
c8fb8da3354fc9e0c430ac14160161759b4c5b37
[ "MIT" ]
null
null
null
lib/PathOver.agda
sattlerc/HoTT-Agda
c8fb8da3354fc9e0c430ac14160161759b4c5b37
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Base open import lib.PathGroupoid open import lib.Equivalences open import lib.Univalence open import lib.Funext {- Structural lemmas about paths over paths The lemmas here have the form [↓-something-in] : introduction rule for the something [↓-something-out] : elimination rule for the something [↓-something-β] : β-reduction rule for the something [↓-something-η] : η-reduction rule for the something The possible somethings are: [cst] : constant fibration [cst2] : fibration constant in the second argument [cst2×] : fibration constant and nondependent in the second argument [ap] : the path below is of the form [ap f p] [fst×] : the fibration is [fst] (nondependent product) [snd×] : the fibration is [snd] (nondependent product) You can also go back and forth between dependent paths and homogeneous paths with a transport on one side with the functions [to-transp], [from-transp], [to-transp-β] [to-transp!], [from-transp!], [to-transp!-β] More lemmas about paths over paths are present in the lib.types.* modules (depending on the type constructor of the fibration) -} module lib.PathOver where {- Dependent paths in a constant fibration -} module _ {i j} {A : Type i} {B : Type j} where ↓-cst-in : {x y : A} {p : x == y} {u v : B} → u == v → u == v [ (λ _ → B) ↓ p ] ↓-cst-in {p = idp} q = q ↓-cst-out : {x y : A} {p : x == y} {u v : B} → u == v [ (λ _ → B) ↓ p ] → u == v ↓-cst-out {p = idp} q = q ↓-cst-β : {x y : A} (p : x == y) {u v : B} (q : u == v) → (↓-cst-out (↓-cst-in {p = p} q) == q) ↓-cst-β idp q = idp {- Interaction of [↓-cst-in] with [_∙_] -} ↓-cst-in-∙ : {x y z : A} (p : x == y) (q : y == z) {u v w : B} (p' : u == v) (q' : v == w) → ↓-cst-in {p = p ∙ q} (p' ∙ q') == ↓-cst-in {p = p} p' ∙ᵈ ↓-cst-in {p = q} q' ↓-cst-in-∙ idp idp idp idp = idp {- Introduction of an equality between [↓-cst-in]s (used to deduce the recursor from the eliminator in HIT with 2-paths) -} ↓-cst-in2 : {a a' : A} {u v : B} {p₀ : a == a'} {p₁ : a == a'} {q₀ q₁ : u == v} {q : p₀ == p₁} → q₀ == q₁ → (↓-cst-in {p = p₀} q₀ == ↓-cst-in {p = p₁} q₁ [ (λ p → u == v [ (λ _ → B) ↓ p ]) ↓ q ]) ↓-cst-in2 {p₀ = idp} {p₁ = .idp} {q₀} {q₁} {idp} k = k -- Dependent paths in a fibration constant in the second argument module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} where ↓-cst2-in : {x y : A} (p : x == y) {b : C x} {c : C y} (q : b == c [ C ↓ p ]) {u : B x} {v : B y} → u == v [ B ↓ p ] → u == v [ (λ xy → B (fst xy)) ↓ (pair= p q) ] ↓-cst2-in idp idp r = r ↓-cst2-out : {x y : A} (p : x == y) {b : C x} {c : C y} (q : b == c [ C ↓ p ]) {u : B x} {v : B y} → u == v [ (λ xy → B (fst xy)) ↓ (pair= p q) ] → u == v [ B ↓ p ] ↓-cst2-out idp idp r = r -- Dependent paths in a fibration constant and non dependent in the -- second argument module _ {i j k} {A : Type i} {B : A → Type j} {C : Type k} where ↓-cst2×-in : {x y : A} (p : x == y) {b c : C} (q : b == c) {u : B x} {v : B y} → u == v [ B ↓ p ] → u == v [ (λ xy → B (fst xy)) ↓ (pair×= p q) ] ↓-cst2×-in idp idp r = r ↓-cst2×-out : {x y : A} (p : x == y) {b c : C} (q : b == c) {u : B x} {v : B y} → u == v [ (λ xy → B (fst xy)) ↓ (pair×= p q) ] → u == v [ B ↓ p ] ↓-cst2×-out idp idp r = r -- Dependent paths over [ap f p] module _ {i j k} {A : Type i} {B : Type j} (C : B → Type k) (f : A → B) where ↓-ap-in : {x y : A} {p : x == y} {u : C (f x)} {v : C (f y)} → u == v [ C ∘ f ↓ p ] → u == v [ C ↓ ap f p ] ↓-ap-in {p = idp} idp = idp ↓-ap-out : {x y : A} (p : x == y) {u : C (f x)} {v : C (f y)} → u == v [ C ↓ ap f p ] → u == v [ C ∘ f ↓ p ] ↓-ap-out idp idp = idp apd↓ : ∀ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k} (f : {a : A} (b : B a) → C a b) {x y : A} {p : x == y} {u : B x} {v : B y} (q : u == v [ B ↓ p ]) → f u == f v [ (λ xy → C (fst xy) (snd xy)) ↓ pair= p q ] apd↓ f {p = idp} idp = idp apd↓=apd : ∀ {i j} {A : Type i} {B : A → Type j} (f : (a : A) → B a) {x y : A} (p : x == y) → (apd f p == ↓-ap-out _ _ p (apd↓ {A = Unit} f {p = idp} p)) apd↓=apd f idp = idp -- Paths in the fibrations [fst] and [snd] module _ {i j} where ↓-fst×-out : {A A' : Type i} {B B' : Type j} (p : A == A') (q : B == B') {u : A} {v : A'} → u == v [ fst ↓ pair×= p q ] → u == v [ (λ X → X) ↓ p ] ↓-fst×-out idp idp h = h ↓-snd×-in : {A A' : Type i} {B B' : Type j} (p : A == A') (q : B == B') {u : B} {v : B'} → u == v [ (λ X → X) ↓ q ] → u == v [ snd ↓ pair×= p q ] ↓-snd×-in idp idp h = h -- Mediating dependent paths with the transport version module _ {i j} {A : Type i} where from-transp : (B : A → Type j) {a a' : A} (p : a == a') {u : B a} {v : B a'} → (transport B p u == v) → (u == v [ B ↓ p ]) from-transp B idp idp = idp to-transp : {B : A → Type j} {a a' : A} {p : a == a'} {u : B a} {v : B a'} → (u == v [ B ↓ p ]) → (transport B p u == v) to-transp {p = idp} idp = idp to-transp-β : (B : A → Type j) {a a' : A} (p : a == a') {u : B a} {v : B a'} (q : transport B p u == v) → to-transp (from-transp B p q) == q to-transp-β B idp idp = idp to-transp-η : {B : A → Type j} {a a' : A} {p : a == a'} {u : B a} {v : B a'} (q : u == v [ B ↓ p ]) → from-transp B p (to-transp q) == q to-transp-η {p = idp} idp = idp to-transp-equiv : (B : A → Type j) {a a' : A} (p : a == a') {u : B a} {v : B a'} → (u == v [ B ↓ p ]) ≃ (transport B p u == v) to-transp-equiv B p = equiv to-transp (from-transp B p) (to-transp-β B p) (to-transp-η) from-transp! : (B : A → Type j) {a a' : A} (p : a == a') {u : B a} {v : B a'} → (u == transport! B p v) → (u == v [ B ↓ p ]) from-transp! B idp idp = idp to-transp! : {B : A → Type j} {a a' : A} {p : a == a'} {u : B a} {v : B a'} → (u == v [ B ↓ p ]) → (u == transport! B p v) to-transp! {p = idp} idp = idp to-transp!-β : (B : A → Type j) {a a' : A} (p : a == a') {u : B a} {v : B a'} (q : u == transport! B p v) → to-transp! (from-transp! B p q) == q to-transp!-β B idp idp = idp to-transp!-η : {B : A → Type j} {a a' : A} {p : a == a'} {u : B a} {v : B a'} (q : u == v [ B ↓ p ]) → from-transp! B p (to-transp! q) == q to-transp!-η {p = idp} idp = idp to-transp!-equiv : (B : A → Type j) {a a' : A} (p : a == a') {u : B a} {v : B a'} → (u == v [ B ↓ p ]) ≃ (u == transport! B p v) to-transp!-equiv B p = equiv to-transp! (from-transp! B p) (to-transp!-β B p) (to-transp!-η) {- Various other lemmas -} {- Used for defining the recursor from the eliminator for 1-HIT -} apd=cst-in : ∀ {i j} {A : Type i} {B : Type j} {f : A → B} {a a' : A} {p : a == a'} {q : f a == f a'} → apd f p == ↓-cst-in q → ap f p == q apd=cst-in {p = idp} x = x ↓-apd-out : ∀ {i j k} {A : Type i} {B : A → Type j} (C : (a : A) → B a → Type k) {f : Π A B} {x y : A} {p : x == y} {q : f x == f y [ B ↓ p ]} (r : apd f p == q) {u : C x (f x)} {v : C y (f y)} → u == v [ uncurry C ↓ pair= p q ] → u == v [ (λ z → C z (f z)) ↓ p ] ↓-apd-out C {p = idp} idp idp = idp -- No idea what that is to-transp-weird : ∀ {i j} {A : Type i} {B : A → Type j} {u v : A} {d : B u} {d' d'' : B v} {p : u == v} (q : d == d' [ B ↓ p ]) (r : transport B p d == d'') → (from-transp B p r ∙'ᵈ (! r ∙ to-transp q)) == q to-transp-weird {p = idp} idp idp = idp -- Something not really clear yet module _ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : A → C) (g : B → C) where ↓-swap : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'} (r : f a == g b') (s : f a' == g b) → (ap f p ∙' s == r [ (λ x → f a == g x) ↓ q ]) → (r == s ∙ ap g q [ (λ x → f x == g b') ↓ p ]) ↓-swap {p = idp} {q = idp} r s t = (! t) ∙ ∙'-unit-l s ∙ ! (∙-unit-r s) ↓-swap! : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'} (r : f a == g b') (s : f a' == g b) → (r == s ∙ ap g q [ (λ x → f x == g b') ↓ p ]) → (ap f p ∙' s == r [ (λ x → f a == g x) ↓ q ]) ↓-swap! {p = idp} {q = idp} r s t = ∙'-unit-l s ∙ ! (∙-unit-r s) ∙ (! t) ↓-swap-β : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'} (r : f a == g b') (s : f a' == g b) (t : ap f p ∙' s == r [ (λ x → f a == g x) ↓ q ]) → ↓-swap! r s (↓-swap r s t) == t ↓-swap-β {p = idp} {q = idp} r s t = coh (∙'-unit-l s) (∙-unit-r s) t where coh : ∀ {i} {X : Type i} {x y z t : X} (p : x == y) (q : z == y) (r : x == t) → p ∙ ! q ∙ ! (! r ∙ p ∙ ! q) == r coh idp idp idp = idp {- Dependent paths over function spaces -} ↓-→-is-square : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} {x y : A} (f : B x → C x) (g : B y → C y) (p : x == y) → ((transport C p ∘ f) == (g ∘ transport B p)) == (f == g [ (λ z → B z → C z) ↓ p ]) ↓-→-is-square _ _ idp = idp trans-↓ : ∀ {i j} {A : Type i} (P : A → Type j) {a₁ a₂ : A} (p : a₁ == a₂) (y : P a₂) → transport P (! p) y == y [ P ↓ p ] trans-↓ _ idp _ = idp trans-ap-↓ : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k) (h : A → B) {a₁ a₂ : A} (p : a₁ == a₂) (y : P (h a₂)) → transport P (! (ap h p)) y == y [ P ∘ h ↓ p ] trans-ap-↓ _ _ idp _ = idp
34.490706
93
0.441367
577278358495e9bc736dd11129dffc381c2fdd62
987
agda
Agda
lib/types/Bool.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
lib/types/Bool.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
lib/types/Bool.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Pointed module lib.types.Bool where data Bool : Type₀ where true : Bool false : Bool ⊙Bool : Ptd₀ ⊙Bool = ⊙[ Bool , true ] if_then_else_ : ∀ {i} {A : Bool → Type i} (b : Bool) (t : A true) (e : A false) → A b if true then t else e = t if false then t else e = e private Bool-true≠false-type : Bool → Type₀ Bool-true≠false-type true = Unit Bool-true≠false-type false = Empty abstract Bool-true≠false : true ≠ false Bool-true≠false p = transport Bool-true≠false-type p unit Bool-false≠true : false ≠ true Bool-false≠true p = transport Bool-true≠false-type (! p) unit Bool-has-dec-eq : has-dec-eq Bool Bool-has-dec-eq true true = inl idp Bool-has-dec-eq true false = inr Bool-true≠false Bool-has-dec-eq false true = inr Bool-false≠true Bool-has-dec-eq false false = inl idp Bool-is-set : is-set Bool Bool-is-set = dec-eq-is-set Bool-has-dec-eq Bool-level = Bool-is-set
22.953488
63
0.670719
1c833049ad15f67cb79ab8957c4e415335d17437
2,752
agda
Agda
Cubical/Functions/Surjection.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Functions/Surjection.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Functions/Surjection.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Functions.Surjection where open import Cubical.Core.Everything open import Cubical.Data.Sigma open import Cubical.Data.Unit open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Functions.Embedding open import Cubical.HITs.PropositionalTruncation as PropTrunc private variable ℓ ℓ' : Level A : Type ℓ B : Type ℓ' f : A → B isSurjection : (A → B) → Type _ isSurjection f = ∀ b → ∥ fiber f b ∥ _↠_ : Type ℓ → Type ℓ' → Type (ℓ-max ℓ ℓ') A ↠ B = Σ[ f ∈ (A → B) ] isSurjection f section→isSurjection : {g : B → A} → section f g → isSurjection f section→isSurjection {g = g} s b = ∣ g b , s b ∣ isPropIsSurjection : isProp (isSurjection f) isPropIsSurjection = isPropΠ λ _ → squash isEquiv→isSurjection : isEquiv f → isSurjection f isEquiv→isSurjection e b = ∣ fst (equiv-proof e b) ∣ isEquiv→isEmbedding×isSurjection : isEquiv f → isEmbedding f × isSurjection f isEquiv→isEmbedding×isSurjection e = isEquiv→isEmbedding e , isEquiv→isSurjection e isEmbedding×isSurjection→isEquiv : isEmbedding f × isSurjection f → isEquiv f equiv-proof (isEmbedding×isSurjection→isEquiv {f = f} (emb , sur)) b = inhProp→isContr (PropTrunc.rec fib' (λ x → x) fib) fib' where hpf : hasPropFibers f hpf = isEmbedding→hasPropFibers emb fib : ∥ fiber f b ∥ fib = sur b fib' : isProp (fiber f b) fib' = hpf b isEquiv≃isEmbedding×isSurjection : isEquiv f ≃ isEmbedding f × isSurjection f isEquiv≃isEmbedding×isSurjection = isoToEquiv (iso isEquiv→isEmbedding×isSurjection isEmbedding×isSurjection→isEquiv (λ _ → isOfHLevelΣ 1 isPropIsEmbedding (\ _ → isPropIsSurjection) _ _) (λ _ → isPropIsEquiv _ _ _)) -- obs: for epi⇒surjective to go through we require a stronger -- hypothesis that one would expect: -- f must cancel functions from a higher universe. rightCancellable : (f : A → B) → Type _ rightCancellable {ℓ} {A} {ℓ'} {B} f = ∀ {C : Type (ℓ-suc (ℓ-max ℓ ℓ'))} → ∀ (g g' : B → C) → (∀ x → g (f x) ≡ g' (f x)) → ∀ y → g y ≡ g' y -- This statement is in Mac Lane & Moerdijk (page 143, corollary 5). epi⇒surjective : (f : A → B) → rightCancellable f → isSurjection f epi⇒surjective f rc y = transport (fact₂ y) tt* where hasPreimage : (A → B) → B → _ hasPreimage f y = ∥ fiber f y ∥ fact₁ : ∀ x → Unit* ≡ hasPreimage f (f x) fact₁ x = hPropExt isPropUnit* isPropPropTrunc (λ _ → ∣ (x , refl) ∣) (λ _ → tt*) fact₂ : ∀ y → Unit* ≡ hasPreimage f y fact₂ = rc _ _ fact₁
33.975309
83
0.660247
58b9197326d21852e004ebe6f91509f560a2dbba
29,577
agda
Agda
Cubical/ZCohomology/RingStructure/RingLaws.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/ZCohomology/RingStructure/RingLaws.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/ZCohomology/RingStructure/RingLaws.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.RingStructure.RingLaws where open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Path open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Pointed.Homogeneous open import Cubical.Foundations.GroupoidLaws hiding (assoc) open import Cubical.Data.Nat open import Cubical.Data.Int renaming (_+_ to _ℤ+_ ; _·_ to _ℤ∙_ ; +Comm to +ℤ-comm ; ·Comm to ∙-comm ; +Assoc to ℤ+-assoc ; -_ to -ℤ_) hiding (_+'_ ; +'≡+) open import Cubical.Data.Sigma open import Cubical.HITs.SetTruncation as ST open import Cubical.HITs.Truncation as T open import Cubical.HITs.S1 hiding (_·_) open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.Homotopy.Loopspace open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.RingStructure.CupProduct private variable ℓ : Level open PlusBis -- Some boring lemmas ·₀≡·ℤ : (x y : ℤ) → _·₀_ {n = zero} x y ≡ x ℤ∙ y ·₀≡·ℤ (pos zero) y = refl ·₀≡·ℤ (pos (suc n)) y = cong (y ℤ+_) (·₀≡·ℤ (pos n) y) ·₀≡·ℤ (negsuc zero) (pos zero) = refl ·₀≡·ℤ (negsuc zero) (pos (suc n)) = -AntiComm 0 (pos (suc n)) ·₀≡·ℤ (negsuc zero) (negsuc n) = -AntiComm 0 (negsuc n) ·₀≡·ℤ (negsuc (suc n)) (pos m) = (cong ((_ℤ+ (pos 0 - pos m))) (·₀≡·ℤ (negsuc n) (pos m)) ∙ cong ((negsuc n ℤ∙ (pos m)) ℤ+_) (-AntiComm 0 (pos m) ∙ cong (-ℤ_) (help m))) ∙ sym (+ℤ-comm (-ℤ (pos m)) (negsuc n ℤ∙ (pos m))) where help : (m : ℕ) → (pos m - 0) ≡ pos m help zero = refl help (suc m) = refl ·₀≡·ℤ (negsuc (suc n)) (negsuc m) = +ℤ-comm (_·₀_{n = zero} (negsuc n) (negsuc m)) (pos 0 - (negsuc m)) ∙∙ cong ((pos 0 - negsuc m) ℤ+_) (·₀≡·ℤ (negsuc n) (negsuc m)) ∙∙ cong (_ℤ+ (negsuc n ℤ∙ negsuc m)) (help m) where help : (m : ℕ) → (pos 0 - negsuc m) ≡ pos (suc m) help zero = refl help (suc n) = cong sucℤ (help n) comm-·₀ : (x y : ℤ) → _·₀_ {n = 0} x y ≡ y ·₀ x comm-·₀ x y = ·₀≡·ℤ x y ∙∙ ∙-comm x y ∙∙ sym (·₀≡·ℤ y x) -- Zero multiplication ⌣ₖ-0ₖ : (n m : ℕ) → (x : coHomK n) → x ⌣ₖ (0ₖ _) ≡ 0ₖ _ ⌣ₖ-0ₖ n m x = snd (⌣ₖ∙ n m x) 0ₖ-⌣ₖ : (n m : ℕ) → (x : coHomK m) → (0ₖ _) ⌣ₖ x ≡ 0ₖ _ 0ₖ-⌣ₖ n m = funExt⁻ (cong fst (snd (⌣ₖ∙∙ n m))) ⌣ₖ-0ₖ≡0ₖ-⌣ₖ : (n m : ℕ) → ⌣ₖ-0ₖ n m (0ₖ _) ≡ 0ₖ-⌣ₖ n m (0ₖ _) ⌣ₖ-0ₖ≡0ₖ-⌣ₖ zero zero = refl ⌣ₖ-0ₖ≡0ₖ-⌣ₖ zero (suc m) = refl ⌣ₖ-0ₖ≡0ₖ-⌣ₖ (suc n) zero = refl ⌣ₖ-0ₖ≡0ₖ-⌣ₖ (suc zero) (suc m) = refl ⌣ₖ-0ₖ≡0ₖ-⌣ₖ (suc (suc n)) (suc m) = refl -- Left distributivity private ⌣ₖ-distrFun : -- z ⌣ₖ (x +ₖ y) (n m : ℕ) → (x y : coHomK n) → coHomK-ptd m →∙ coHomK-ptd (m +' n) fst (⌣ₖ-distrFun n m x y) z = z ⌣ₖ (x +ₖ y) snd (⌣ₖ-distrFun n m x y) = 0ₖ-⌣ₖ m n (x +ₖ y) ⌣ₖ-distrFun2 : -- z ⌣ₖ x +ₖ z ⌣ₖ y (n m : ℕ) → (x y : coHomK n) → coHomK-ptd m →∙ coHomK-ptd (m +' n) fst (⌣ₖ-distrFun2 n m x y) z = z ⌣ₖ x +ₖ z ⌣ₖ y snd (⌣ₖ-distrFun2 n m x y) = cong₂ _+ₖ_ (0ₖ-⌣ₖ m n x) (0ₖ-⌣ₖ m n y) ∙ rUnitₖ _ _ leftDistr-⌣ₖ· : (n m : ℕ) (x y : coHomK (suc n)) → ⌣ₖ-distrFun (suc n) (suc m) x y ≡ ⌣ₖ-distrFun2 (suc n) (suc m) x y leftDistr-⌣ₖ· n m = T.elim2 (λ _ _ → isOfHLevelSuc (2 + n) (hLevHelp n m _ _)) main where hLevHelp : (n m : ℕ) (x y : _) → isOfHLevel (2 + n) ( ⌣ₖ-distrFun (suc n) (suc m) x y ≡ ⌣ₖ-distrFun2 (suc n) (suc m) x y) hLevHelp n m x y = (subst (isOfHLevel (3 + n)) (λ i → (coHomK-ptd (suc m) →∙ coHomK-ptd (suc (suc (+-comm n m i))))) (isOfHLevel↑∙ (suc n) m)) _ _ left-fst : (n : ℕ) (x : S₊ (suc n)) → fst (⌣ₖ-distrFun (suc n) (suc m) ∣ ptSn (suc n) ∣ ∣ x ∣) ≡ fst (⌣ₖ-distrFun2 (suc n) (suc m) ∣ ptSn (suc n) ∣ ∣ x ∣) left-fst zero y = (funExt (λ z → sym (lUnitₖ _ (z ⌣ₖ ∣ y ∣)) ∙ λ i → ⌣ₖ-0ₖ _ _ z (~ i) +ₖ z ⌣ₖ ∣ y ∣)) left-fst (suc n) y = (funExt (λ z → sym (lUnitₖ _ (z ⌣ₖ ∣ y ∣)) ∙ λ i → ⌣ₖ-0ₖ _ _ z (~ i) +ₖ z ⌣ₖ ∣ y ∣)) right-fst : (n : ℕ) (x : S₊ (suc n)) → fst (⌣ₖ-distrFun (suc n) (suc m) ∣ x ∣ (0ₖ _)) ≡ fst (⌣ₖ-distrFun2 (suc n) (suc m) ∣ x ∣ (0ₖ _)) right-fst n x = funExt (λ z → (cong (z ⌣ₖ_) (rUnitₖ _ ∣ x ∣) ∙∙ sym (rUnitₖ _ _) ∙∙ λ i → z ⌣ₖ ∣ x ∣ +ₖ ⌣ₖ-0ₖ _ (suc n) z (~ i))) helper : (n : ℕ) (x : coHomK (suc n)) (p : 0ₖ _ ≡ x) → sym (lUnitₖ _ x) ∙ cong (_+ₖ x) p ≡ sym (rUnitₖ _ x) ∙ cong (x +ₖ_) p helper n x = J (λ x p → sym (lUnitₖ _ x) ∙ cong (_+ₖ x) p ≡ sym (rUnitₖ _ x) ∙ cong (x +ₖ_) p) (helper' n) where helper' : (n : ℕ) → (λ i → lUnitₖ (suc n) (0ₖ (suc n)) (~ i)) ∙ (λ i → 0ₖ (suc n) +ₖ 0ₖ (suc n)) ≡ (λ i → rUnitₖ (suc n) (0ₖ (suc n)) (~ i)) ∙ (λ i → 0ₖ (suc n) +ₖ 0ₖ (suc n)) helper' zero = refl helper' (suc n) = refl left-fst≡right-fst : (n : ℕ) → left-fst n (ptSn _) ≡ right-fst n (ptSn _) left-fst≡right-fst zero i j z = helper _ (z ⌣ₖ ∣ base ∣) (sym (⌣ₖ-0ₖ _ _ z)) i j left-fst≡right-fst (suc n) i j z = helper _ (z ⌣ₖ ∣ north ∣) (sym (⌣ₖ-0ₖ _ (suc (suc n)) z)) i j main : (a b : S₊ (suc n)) → ⌣ₖ-distrFun (suc n) (suc m) ∣ a ∣ₕ ∣ b ∣ₕ ≡ ⌣ₖ-distrFun2 (suc n) (suc m) ∣ a ∣ₕ ∣ b ∣ₕ main = wedgeconFun n n (λ x y → subst (λ l → isOfHLevel l ((⌣ₖ-distrFun (suc n) (suc m) ∣ x ∣ ∣ y ∣) ≡ ⌣ₖ-distrFun2 (suc n) (suc m) ∣ x ∣ ∣ y ∣)) (+-suc n (suc n)) (isOfHLevelPlus {n = 2 + n} n (hLevHelp n m ∣ x ∣ ∣ y ∣))) (λ x → →∙Homogeneous≡ (isHomogeneousKn _) (left-fst n x)) (λ x → →∙Homogeneous≡ (isHomogeneousKn _) (right-fst n x)) (cong (→∙Homogeneous≡ (isHomogeneousKn _)) (sym (left-fst≡right-fst n))) -- Distributivity for 0 dimensional cases leftDistr₀n : (n : ℕ) → (z : coHomK 0) (x y : coHomK n) → z ·₀ (x +[ n ]ₖ y) ≡ z ·₀ x +[ n ]ₖ (z ·₀ y) leftDistr₀n n (pos zero) x y = sym (rUnitₖ n (0ₖ _)) leftDistr₀n n (pos (suc z)) x y = cong ((x +ₖ y) +ₖ_) (leftDistr₀n n (pos z) x y) ∙∙ sym (assocₖ n x y (pos z ·₀ x +[ n ]ₖ (pos z ·₀ y))) ∙∙ cong (x +ₖ_) (assocₖ n y (pos z ·₀ x) (pos z ·₀ y) ∙∙ cong (_+ₖ (pos z ·₀ y)) (commₖ n y (pos z ·₀ x)) ∙∙ sym (assocₖ n (pos z ·₀ x) y (pos z ·₀ y))) ∙ assocₖ n x _ _ leftDistr₀n n (negsuc zero) x y = -distrₖ n x y leftDistr₀n n (negsuc (suc z)) x y = cong₂ (_+ₖ_) (leftDistr₀n n (negsuc z) x y) (-distrₖ n x y) ∙∙ assocₖ n ((negsuc z ·₀ x) +ₖ (negsuc z ·₀ y)) (-ₖ x) (-ₖ y) ∙∙ cong (_-ₖ y) (sym (assocₖ n (negsuc z ·₀ x) (negsuc z ·₀ y) (-ₖ x)) ∙∙ cong ((negsuc z ·₀ x) +ₖ_) (commₖ n (negsuc z ·₀ y) (-ₖ x)) ∙∙ assocₖ n (negsuc z ·₀ x) (-ₖ x) (negsuc z ·₀ y)) ∙ sym (assocₖ n (negsuc (suc z) ·₀ x) _ _) leftDistrn₀ : (n : ℕ) → (z : coHomK n) (x y : coHomK 0) → (x ℤ+ y) ·₀ z ≡ x ·₀ z +[ n ]ₖ (y ·₀ z) leftDistrn₀ n z x (pos zero) = sym (rUnitₖ n (x ·₀ z)) leftDistrn₀ n z x (pos (suc y)) = lem (x +pos y) ∙∙ cong (z +ₖ_) (leftDistrn₀ n z x (pos y) ∙ commₖ n _ _) ∙∙ assocₖ n z _ _ ∙ commₖ n _ _ where lem : (a : ℤ) → (sucℤ a) ·₀ z ≡ z +ₖ (a ·₀ z) lem (pos zero) = refl lem (pos (suc a)) = cong (z +ₖ_) (lem (pos a)) lem (negsuc zero) = sym (rCancelₖ n z) lem (negsuc (suc a)) = sym (-cancelLₖ n z (negsuc a ·₀ z)) ∙ sym (assocₖ n z (negsuc a ·₀ z) (-ₖ z)) leftDistrn₀ n z x (negsuc y) = main y where help : (x : ℤ) → predℤ x ·₀ z ≡ (x ·₀ z -ₖ z) help (pos zero) = sym (lUnitₖ n (-ₖ z)) help (pos (suc x)) = sym (-cancelLₖ n z (pos x ·₀ z)) help (negsuc x) = refl main : (y : _) → (x ℤ+ negsuc y) ·₀ z ≡ (x ·₀ z) +ₖ (negsuc y ·₀ z) main zero = help x main (suc y) = help (x +negsuc y) ∙∙ cong (_-ₖ z) (main y) ∙∙ sym (assocₖ n _ _ _) leftDistr-⌣ₖ : (n m : ℕ) (z : coHomK n) (x y : coHomK m) → z ⌣ₖ (x +ₖ y) ≡ (z ⌣ₖ x +ₖ z ⌣ₖ y) leftDistr-⌣ₖ zero m z x y = leftDistr₀n m z x y leftDistr-⌣ₖ (suc n) zero z x y = leftDistrn₀ (suc n) z x y leftDistr-⌣ₖ (suc n) (suc m) z x y = funExt⁻ (cong fst (leftDistr-⌣ₖ· m n x y)) z -- Right distributivity private ⌣ₖ-distrFun-r : -- (x +ₖ y) ⌣ₖ z (n m : ℕ) → (x y : coHomK n) → coHomK-ptd m →∙ coHomK-ptd (n +' m) fst (⌣ₖ-distrFun-r n m x y) z = (x +ₖ y) ⌣ₖ z snd (⌣ₖ-distrFun-r n m x y) = ⌣ₖ-0ₖ n m (x +ₖ y) -- ⌣ₖ-0ₖ m n (x +ₖ y) ⌣ₖ-distrFun2-r : (n m : ℕ) → (x y : coHomK n) → coHomK-ptd m →∙ coHomK-ptd (n +' m) fst (⌣ₖ-distrFun2-r n m x y) z = x ⌣ₖ z +ₖ y ⌣ₖ z snd (⌣ₖ-distrFun2-r n m x y) = cong₂ _+ₖ_ (⌣ₖ-0ₖ n m x) (⌣ₖ-0ₖ n m y) ∙ rUnitₖ _ _ rightDistr-⌣ₖ· : (n m : ℕ) (x y : coHomK (suc n)) → ⌣ₖ-distrFun-r (suc n) (suc m) x y ≡ ⌣ₖ-distrFun2-r (suc n) (suc m) x y rightDistr-⌣ₖ· n m = T.elim2 (λ _ _ → isOfHLevelPath (3 + n) (isOfHLevel↑∙ (suc n) m) _ _) main where fst-left : (n : ℕ) (y : S₊ (suc n)) → fst (⌣ₖ-distrFun-r (suc n) (suc m) ∣ ptSn (suc n) ∣ ∣ y ∣) ≡ fst (⌣ₖ-distrFun2-r (suc n) (suc m) ∣ ptSn (suc n) ∣ ∣ y ∣) fst-left n y = funExt (λ z → cong (_⌣ₖ z) (lUnitₖ _ ∣ y ∣) ∙∙ sym (lUnitₖ _ (∣ y ∣ ⌣ₖ z)) ∙∙ cong (_+ₖ (∣ y ∣ ⌣ₖ z)) (sym (0ₖ-⌣ₖ _ _ z))) fst-right : (n : ℕ) (x : S₊ (suc n)) → fst (⌣ₖ-distrFun-r (suc n) (suc m) ∣ x ∣ ∣ ptSn (suc n) ∣) ≡ fst (⌣ₖ-distrFun2-r (suc n) (suc m) ∣ x ∣ ∣ ptSn (suc n) ∣) fst-right n x = funExt λ z → cong (_⌣ₖ z) (rUnitₖ _ ∣ x ∣) ∙∙ sym (rUnitₖ _ _) ∙∙ cong (∣ x ∣ ⌣ₖ z +ₖ_) (sym (0ₖ-⌣ₖ _ _ z)) left≡right : (n : ℕ) → fst-left n (ptSn (suc n)) ≡ fst-right n (ptSn (suc n)) left≡right zero = refl left≡right (suc n) = refl main : (a b : S₊ (suc n)) → ⌣ₖ-distrFun-r (suc n) (suc m) ∣ a ∣ₕ ∣ b ∣ₕ ≡ ⌣ₖ-distrFun2-r (suc n) (suc m) ∣ a ∣ₕ ∣ b ∣ₕ main = wedgeconFun n n (λ x y → subst (λ l → isOfHLevel l ((⌣ₖ-distrFun-r (suc n) (suc m) ∣ x ∣ ∣ y ∣) ≡ ⌣ₖ-distrFun2-r (suc n) (suc m) ∣ x ∣ ∣ y ∣)) (+-suc n (suc n)) (isOfHLevelPlus {n = 2 + n} n (isOfHLevel↑∙ (suc n) m _ _))) (λ x → →∙Homogeneous≡ (isHomogeneousKn _) (fst-left n x)) (λ x → →∙Homogeneous≡ (isHomogeneousKn _) (fst-right n x)) (cong (→∙Homogeneous≡ (isHomogeneousKn _)) (sym (left≡right n))) rightDistr-⌣ₖ : (n m : ℕ) (x y : coHomK n) (z : coHomK m) → (x +ₖ y) ⌣ₖ z ≡ (x ⌣ₖ z +ₖ y ⌣ₖ z) rightDistr-⌣ₖ zero zero x y z = comm-·₀ (x ℤ+ y) z ∙∙ leftDistr-⌣ₖ zero zero z x y ∙∙ cong₂ _+ₖ_ (sym (comm-·₀ x z)) (sym (comm-·₀ y z)) rightDistr-⌣ₖ zero (suc m) x y z = leftDistr-⌣ₖ _ zero z x y rightDistr-⌣ₖ (suc n) zero x y z = leftDistr-⌣ₖ zero (suc n) z x y rightDistr-⌣ₖ (suc n) (suc m) x y z = (funExt⁻ (cong fst (rightDistr-⌣ₖ· n m x y))) z -- Associativity private -- We need to give the two associators as (doubly) pointed functions assocer : (n m k : ℕ) → coHomK (suc n) → coHomK-ptd (suc m) →∙ (coHomK-ptd (suc k) →∙ coHomK-ptd ((suc n) +' ((suc m) +' (suc k))) ∙) fst (fst (assocer n m k x) y) z = x ⌣ₖ (y ⌣ₖ z) snd (fst (assocer n m k x) y) = cong (x ⌣ₖ_) (⌣ₖ-0ₖ _ (suc k) y) ∙ ⌣ₖ-0ₖ _ _ x snd (assocer n m k x) = ΣPathP (funExt (λ z → cong (x ⌣ₖ_) (0ₖ-⌣ₖ (suc m) (suc k) z) ∙ ⌣ₖ-0ₖ (suc n) _ x) , help) where h : (n m k : ℕ) (x : coHomK (suc n)) → cong (_⌣ₖ_ x) (⌣ₖ-0ₖ (suc m) (suc k) (0ₖ _)) ≡ (λ i → x ⌣ₖ 0ₖ-⌣ₖ (suc m) (suc k) (0ₖ _) i) h zero zero k x = refl h zero (suc m) k x = refl h (suc n) zero k x = refl h (suc n) (suc m) k x = refl help : PathP (λ i → (cong (x ⌣ₖ_) (0ₖ-⌣ₖ (suc m) (suc k) (0ₖ _)) ∙ ⌣ₖ-0ₖ (suc n) _ x) i ≡ 0ₖ _) (cong (x ⌣ₖ_) (⌣ₖ-0ₖ (suc m) (suc k) (0ₖ _)) ∙ ⌣ₖ-0ₖ (suc n) _ x) refl help = compPathR→PathP (cong (_∙ ⌣ₖ-0ₖ (suc n) ((suc m) +' (suc k)) x) (h n m k x) ∙∙ rUnit _ ∙∙ cong ((cong (x ⌣ₖ_) (0ₖ-⌣ₖ (suc m) (suc k) (0ₖ _)) ∙ ⌣ₖ-0ₖ (suc n) _ x) ∙_) (rUnit refl)) assoc2-sub : (n m k : ℕ) → _ → _ assoc2-sub n m k = subst coHomK (sym (+'-assoc n m k)) assoc2-sub-0 : (n m k : ℕ) → assoc2-sub n m k (0ₖ _) ≡ 0ₖ _ assoc2-sub-0 zero zero zero = refl assoc2-sub-0 zero zero (suc zero) = refl assoc2-sub-0 zero zero (suc (suc k)) = refl assoc2-sub-0 zero (suc zero) zero = refl assoc2-sub-0 zero (suc zero) (suc k) = refl assoc2-sub-0 zero (suc (suc m)) zero = refl assoc2-sub-0 zero (suc (suc m)) (suc k) = refl assoc2-sub-0 (suc zero) zero zero = refl assoc2-sub-0 (suc zero) zero (suc k) = refl assoc2-sub-0 (suc (suc n)) zero zero = refl assoc2-sub-0 (suc (suc n)) zero (suc k) = refl assoc2-sub-0 (suc zero) (suc m) zero = refl assoc2-sub-0 (suc (suc n)) (suc m) zero = refl assoc2-sub-0 (suc zero) (suc m) (suc k) = refl assoc2-sub-0 (suc (suc n)) (suc m) (suc k) = refl assocer2 : (n m k : ℕ) → coHomK (suc n) → coHomK-ptd (suc m) →∙ (coHomK-ptd (suc k) →∙ coHomK-ptd ((suc n) +' ((suc m) +' (suc k))) ∙) fst (fst (assocer2 n m k x) y) z = subst coHomK (sym (+'-assoc (suc n) (suc m) (suc k))) ((x ⌣ₖ y) ⌣ₖ z) -- snd (fst (assocer2 zero m k x) y) = cong (subst coHomK (sym (+'-assoc 1 (suc m) (suc k)))) (⌣ₖ-0ₖ _ _ (x ⌣ₖ y)) snd (fst (assocer2 (suc n) m k x) y) = cong (subst coHomK (sym (+'-assoc (2 + n) (suc m) (suc k)))) (⌣ₖ-0ₖ _ _ (x ⌣ₖ y)) fst (snd (assocer2 zero m k x) i) z = subst coHomK (sym (+'-assoc (suc zero) (suc m) (suc k))) (⌣ₖ-0ₖ _ _ x i ⌣ₖ z) snd (snd (assocer2 zero m k x) i) j = subst coHomK (sym (+'-assoc (suc zero) (suc m) (suc k))) (⌣ₖ-0ₖ _ _ (⌣ₖ-0ₖ _ _ x i) j) fst (snd (assocer2 (suc n) m k x) i) z = subst coHomK (sym (+'-assoc (2 + n) (suc m) (suc k))) (⌣ₖ-0ₖ _ _ x i ⌣ₖ z) snd (snd (assocer2 (suc n) m k x) i) j = subst coHomK (sym (+'-assoc (2 + n) (suc m) (suc k))) (⌣ₖ-0ₖ _ _ (⌣ₖ-0ₖ _ _ x i) j) assocer-helpFun : (n m : ℕ) → coHomK (suc n) → coHomK-ptd (suc m) →∙ Ω (coHomK-ptd (3 + (n + m))) fst (assocer-helpFun n m a) b = Kn→ΩKn+1 _ (a ⌣ₖ b) snd (assocer-helpFun n m a) = cong (Kn→ΩKn+1 _) (⌣ₖ-0ₖ (suc n) (suc m) a) ∙ Kn→ΩKn+10ₖ _ assocer-helpFun2 : (n m : ℕ) → coHomK (suc n) → coHomK-ptd (suc m) →∙ Ω (coHomK-ptd (3 + (n + m))) fst (assocer-helpFun2 n m a) b i = (Kn→ΩKn+1 _ a i) ⌣ₖ b snd (assocer-helpFun2 n m a) i j = ⌣ₖ-0ₖ _ (suc m) (Kn→ΩKn+1 _ a j) i -- Key lemma for associativity assocer-helpFun≡ : (n m : ℕ) → (x : coHomK (suc n)) → assocer-helpFun n m x ≡ assocer-helpFun2 n m x assocer-helpFun≡ n m = T.elim (λ _ → isOfHLevelPath (3 + n) (hLev-assocer-helpFun n m) _ _) λ a → →∙Homogeneous≡ (subst isHomogeneous Kn≃ΩKn+1∙ (isHomogeneousKn _)) (funExt (main n a)) where hLev-assocer-helpFun : (n m : ℕ) → isOfHLevel (3 + n) (coHomK-ptd (suc m) →∙ Ω (coHomK-ptd (3 + (n + m)))) hLev-assocer-helpFun n m = subst (isOfHLevel (3 + n)) (cong (coHomK-ptd (suc m) →∙_) (Kn≃ΩKn+1∙)) (isOfHLevel↑∙ (suc n) m) main : (n : ℕ) (a : S₊ (suc n)) (b : _) → fst (assocer-helpFun n m ∣ a ∣) b ≡ fst (assocer-helpFun2 n m ∣ a ∣) b main zero a b k i = hcomp (λ r → λ {(i = i0) → 0ₖ _ ; (i = i1) → ∣ rCancel (merid north) r (~ k) ∣ ; (k = i0) → Kn→ΩKn+1 _ (∣ a ∣ ⌣ₖ b) i ; (k = i1) → (Kn→ΩKn+1 _ ∣ a ∣ i) ⌣ₖ b}) (∣ compPath-filler (merid a) (sym (merid base)) k i ∣ ⌣ₖ b) main (suc n) a b k i = hcomp (λ r → λ {(i = i0) → 0ₖ _ ; (i = i1) → ∣ rCancel (merid north) r (~ k) ∣ ; (k = i0) → Kn→ΩKn+1 _ (∣ a ∣ ⌣ₖ b) i ; (k = i1) → (Kn→ΩKn+1 _ ∣ a ∣ i) ⌣ₖ b}) (∣ compPath-filler (merid a) (sym (merid north)) k i ∣ ⌣ₖ b) assoc-helper : (n m : ℕ) (x : coHomK (suc n)) (y : coHomK (suc m)) → Kn→ΩKn+1 _ (x ⌣ₖ y) ≡ λ i → (Kn→ΩKn+1 _ x i) ⌣ₖ y assoc-helper n m x y = funExt⁻ (cong fst (assocer-helpFun≡ n m x)) y assoc-⌣ₖ· : (n m k : ℕ) → (x : coHomK (suc n)) → assocer n m k x ≡ assocer2 n m k x assoc-⌣ₖ· n m k = T.elim (λ _ → isOfHLevelPath (3 + n) (transport (λ i → isOfHLevel (3 + n) (coHomK-ptd (suc m) →∙ (coHomK-ptd (suc k) →∙ coHomK-ptd (h (~ i)) ∙))) (isOfHLevel↑∙∙ m k (suc n))) _ _) λ a → →∙Homogeneous≡ (isHomogeneous→∙ (isHomogeneousKn _)) (funExt λ b → →∙Homogeneous≡ (isHomogeneousKn _) (funExt (main n m k a b))) where h : (suc n) +' ((suc m) +' (suc k)) ≡ suc (suc (suc n + m + k)) h = cong (2 +_) (+-suc n (m + k)) ∙ λ i → suc (suc (suc (+-assoc n m k i))) main : (n m k : ℕ) (a : S₊ (suc n)) (b : coHomK (suc m)) (c : coHomK (suc k)) → ∣ a ∣ ⌣ₖ b ⌣ₖ c ≡ (subst coHomK (λ i → +'-assoc (suc n) (suc m) (suc k) (~ i)) ((∣ a ∣ ⌣ₖ b) ⌣ₖ c)) main zero m k a b c = goal a ∙ sym (funExt⁻ t ((∣ a ∣ ⌣ₖ b) ⌣ₖ c)) where t : subst coHomK (λ i → +'-assoc 1 (suc m) (suc k) (~ i)) ≡ idfun _ t = cong (subst coHomK) (isSetℕ _ _ (+'-assoc 1 (suc m) (suc k)) refl) ∙ funExt transportRefl goal : (a : _) → ∣ a ∣ ⌣ₖ b ⌣ₖ c ≡ (∣ a ∣ ⌣ₖ b) ⌣ₖ c goal base = refl goal (loop i) j = assoc-helper m k b c j i main (suc n) m k north b c = refl main (suc n) m k south b c = refl main (suc n) m k (merid a i) b c j = help2 j i where transpLem : (n m : ℕ) (p : n ≡ m) → subst coHomK p (0ₖ _) ≡ 0ₖ _ transpLem zero m = J (λ m p → subst coHomK p (0ₖ _) ≡ 0ₖ _) refl transpLem (suc zero) m = J (λ m p → subst coHomK p (0ₖ _) ≡ 0ₖ _) refl transpLem (suc (suc n)) m = J (λ m p → subst coHomK p (0ₖ _) ≡ 0ₖ _) refl transpLem-refl : transpLem (suc (suc (suc (suc (n + m + k))))) (suc (suc n +' (suc m +' suc k))) (λ i₃ → +'-assoc (2 + n) (suc m) (suc k) (~ i₃)) ≡ refl transpLem-refl = transportRefl refl moveTransports : (n m : ℕ) (x : coHomK n) (p : n ≡ m) (q : (suc n) ≡ suc m) → PathP (λ i → transpLem _ _ q (~ i) ≡ transpLem _ _ q (~ i)) (Kn→ΩKn+1 _ (subst coHomK p x)) (cong (subst coHomK q) (Kn→ΩKn+1 _ x)) moveTransports n m x = J (λ m p → (q : (suc n) ≡ suc m) → PathP (λ i → transpLem _ _ q (~ i) ≡ transpLem _ _ q (~ i)) (Kn→ΩKn+1 _ (subst coHomK p x)) (cong (subst coHomK q) (Kn→ΩKn+1 _ x))) λ q → transport (λ j → PathP (λ i → transpLem (suc n) (suc n) (isSetℕ _ _ refl q j) (~ i) ≡ transpLem (suc n) (suc n) (isSetℕ _ _ refl q j) (~ i)) (Kn→ΩKn+1 _ (subst coHomK refl x)) (cong (subst coHomK (isSetℕ _ _ refl q j)) (Kn→ΩKn+1 _ x))) (h2 n x) where h2 : (n : ℕ) (x : _) → PathP (λ i₁ → transpLem (suc n) (suc n) (λ _ → suc n) (~ i₁) ≡ transpLem (suc n) (suc n) (λ _ → suc n) (~ i₁)) (Kn→ΩKn+1 n (subst coHomK (λ _ → n) x)) (λ i₁ → subst coHomK (λ _ → suc n) (Kn→ΩKn+1 n x i₁)) h2 zero x k i = hcomp (λ j → λ {(i = i0) → transportRefl (refl {x = 0ₖ _}) (~ j) k ; (i = i1) → transportRefl (refl {x = 0ₖ _}) (~ j) k ; (k = i0) → Kn→ΩKn+1 _ (transportRefl x j) i ; (k = i1) → transportRefl (Kn→ΩKn+1 _ x i) (~ j)}) (Kn→ΩKn+1 _ x i) h2 (suc n) x k i = hcomp (λ j → λ {(i = i0) → transportRefl (refl {x = 0ₖ _}) (~ j) k ; (i = i1) → transportRefl (refl {x = 0ₖ _}) (~ j) k ; (k = i0) → Kn→ΩKn+1 _ (transport refl x) i ; (k = i1) → transportRefl (Kn→ΩKn+1 _ x i) (~ j)}) (Kn→ΩKn+1 _ (transportRefl x k) i) finalTransp : (n : ℕ) (a : _) → Kn→ΩKn+1 _ (subst coHomK (λ i₁ → +'-assoc (suc n) (suc m) (suc k) (~ i₁)) ((∣ a ∣ ⌣ₖ b) ⌣ₖ c)) ≡ cong (subst coHomK (λ i₁ → +'-assoc (2 + n) (suc m) (suc k) (~ i₁))) (Kn→ΩKn+1 _ ((∣ a ∣ ⌣ₖ b) ⌣ₖ c)) finalTransp n a = rUnit _ ∙∙ (λ i → (λ j → transpLem (suc (suc (suc (suc (n + m + k))))) (suc (suc n +' (suc m +' suc k))) (λ i₃ → +'-assoc (2 + n) (suc m) (suc k) (~ i₃)) (i ∧ j)) ∙∙ moveTransports _ _ ((∣ a ∣ ⌣ₖ b) ⌣ₖ c) (sym (+'-assoc (suc n) (suc m) (suc k))) (sym (+'-assoc (2 + n) (suc m) (suc k))) i ∙∙ λ j → transpLem (suc (suc (suc (suc (n + m + k))))) (suc (suc n +' (suc m +' suc k))) (λ i₃ → +'-assoc (2 + n) (suc m) (suc k) (~ i₃)) (i ∧ ~ j)) ∙∙ (λ i → transportRefl refl i ∙∙ cong (subst coHomK (λ i₁ → +'-assoc (2 + n) (suc m) (suc k) (~ i₁))) (Kn→ΩKn+1 _ ((∣ a ∣ ⌣ₖ b) ⌣ₖ c)) ∙∙ transportRefl refl i) ∙ sym (rUnit _) help2 : cong (λ x → (∣ x ∣) ⌣ₖ (b ⌣ₖ c)) (merid a) ≡ cong (assoc2-sub (2 + n) (suc m) (suc k)) (cong (λ x → (∣ x ∣ ⌣ₖ b) ⌣ₖ c) (merid a)) help2 = ((λ r → Kn→ΩKn+1 _ (main n m k a b c r))) ∙∙ finalTransp n a ∙∙ λ r i → subst coHomK (sym (+'-assoc (2 + n) (suc m) (suc k))) (assoc-helper _ _ (∣ a ∣ ⌣ₖ b) c r i) -- Some key distributivity lemmas -Distₗ : (n m : ℕ) (x : coHomK n) (y : coHomK m) → (-ₖ (x ⌣ₖ y)) ≡ (-ₖ x) ⌣ₖ y -Distₗ n m x y = sym (rUnitₖ _ (-ₖ (x ⌣ₖ y))) ∙∙ cong ((-ₖ (x ⌣ₖ y)) +ₖ_) (sym (rCancelₖ _ (x ⌣ₖ y))) ∙∙ assocₖ _ (-ₖ (x ⌣ₖ y)) (x ⌣ₖ y) (-ₖ (x ⌣ₖ y)) ∙∙ cong (_-ₖ (x ⌣ₖ y)) help ∙∙ sym (assocₖ _ ((-ₖ x) ⌣ₖ y) (x ⌣ₖ y) (-ₖ (x ⌣ₖ y))) ∙∙ cong ((-ₖ x) ⌣ₖ y +ₖ_) (rCancelₖ _ (x ⌣ₖ y)) ∙∙ rUnitₖ _ ((-ₖ x) ⌣ₖ y) where help : (-ₖ (x ⌣ₖ y)) +ₖ (x ⌣ₖ y) ≡ (-ₖ x) ⌣ₖ y +ₖ (x ⌣ₖ y) help = lCancelₖ _ _ ∙∙ sym (0ₖ-⌣ₖ _ _ y) ∙ cong (_⌣ₖ y) (sym (lCancelₖ _ x)) ∙∙ rightDistr-⌣ₖ _ _ (-ₖ x) x y -Distᵣ : (n m : ℕ) (x : coHomK n) (y : coHomK m) → (-ₖ (x ⌣ₖ y)) ≡ x ⌣ₖ (-ₖ y) -Distᵣ n m x y = sym (rUnitₖ _ (-ₖ (x ⌣ₖ y))) ∙∙ cong ((-ₖ (x ⌣ₖ y)) +ₖ_) (sym (rCancelₖ _ (x ⌣ₖ y))) ∙∙ assocₖ _ (-ₖ (x ⌣ₖ y)) (x ⌣ₖ y) (-ₖ (x ⌣ₖ y)) ∙∙ cong (_-ₖ (x ⌣ₖ y)) help ∙∙ sym (assocₖ _ (x ⌣ₖ (-ₖ y)) (x ⌣ₖ y) (-ₖ (x ⌣ₖ y))) ∙∙ cong (x ⌣ₖ (-ₖ y) +ₖ_) (rCancelₖ _ (x ⌣ₖ y)) ∙∙ rUnitₖ _ (x ⌣ₖ (-ₖ y)) where help : (-ₖ (x ⌣ₖ y)) +ₖ (x ⌣ₖ y) ≡ x ⌣ₖ (-ₖ y) +ₖ (x ⌣ₖ y) help = lCancelₖ _ _ ∙∙ sym (⌣ₖ-0ₖ _ _ x) ∙∙ cong (x ⌣ₖ_) (sym (lCancelₖ _ y)) ∙ leftDistr-⌣ₖ _ _ x (-ₖ y) y assoc₀ : (m k : ℕ) (x : ℤ) (y : coHomK m) (z : coHomK k) → _⌣ₖ_{n = zero} x (y ⌣ₖ z) ≡ (_⌣ₖ_{n = zero} {m = m} x y) ⌣ₖ z assoc₀ m k x y z = main x where h : subst coHomK (sym (+'-assoc zero m k)) ≡ idfun _ h = cong (subst coHomK) (isSetℕ _ _ _ refl) ∙ funExt transportRefl mainPos : (x : ℕ) → _⌣ₖ_ {n = zero} (pos x) (y ⌣ₖ z) ≡ ((_⌣ₖ_ {n = zero} {m = m} (pos x) y) ⌣ₖ z) mainPos zero = sym (0ₖ-⌣ₖ _ _ z) ∙ cong (_⌣ₖ z) (sym (0ₖ-⌣ₖ _ _ y)) mainPos (suc n) = cong (y ⌣ₖ z +ₖ_) (mainPos n) ∙∙ sym (rightDistr-⌣ₖ _ _ y (_⌣ₖ_ {n = zero} {m = m} (pos n) y) z) ∙∙ (λ i → (y +ₖ (_⌣ₖ_ {n = zero} {m = m} (pos n) y)) ⌣ₖ z) main : (x : ℤ) → x ⌣ₖ y ⌣ₖ z ≡ ((_⌣ₖ_ {n = zero} {m = m} x y) ⌣ₖ z) main (pos n) = mainPos n main (negsuc n) = (λ i → _⌣ₖ_ {n = zero} (+ℤ-comm (negsuc n) 0 i) (y ⌣ₖ z)) ∙∙ sym (-Distₗ zero _ (pos (suc n)) (y ⌣ₖ z)) ∙ cong (-ₖ_) (mainPos (suc n)) ∙∙ -Distₗ _ _ (pos (suc n) ⌣ₖ y) z ∙∙ cong (_⌣ₖ z) ((-Distₗ zero _ (pos (suc n)) y)) ∙∙ λ i → (_⌣ₖ_ {n = zero} (+ℤ-comm (negsuc n) 0 (~ i)) y) ⌣ₖ z assoc-⌣ₖ : (n m k : ℕ) (x : coHomK n) (y : coHomK m) (z : coHomK k) → x ⌣ₖ y ⌣ₖ z ≡ subst coHomK (sym (+'-assoc n m k)) ((x ⌣ₖ y) ⌣ₖ z) assoc-⌣ₖ zero m k x y z = assoc₀ _ _ x y z ∙ sym (funExt⁻ h ((x ⌣ₖ y) ⌣ₖ z)) where h : subst coHomK (sym (+'-assoc zero m k)) ≡ idfun _ h = cong (subst coHomK) (isSetℕ _ _ _ refl) ∙ funExt transportRefl assoc-⌣ₖ (suc n) zero k x y z = help y ∙∙ sym (transportRefl ((x ⌣ₖ y) ⌣ₖ z)) ∙∙ λ i → transport (λ j → coHomK ((isSetℕ _ _ ((sym (+'-assoc (suc n) zero k))) refl (~ i) j))) ((_⌣ₖ_ {m = zero} x y) ⌣ₖ z) where helpPos : (y : ℕ) → x ⌣ₖ (_⌣ₖ_ {n = zero} (pos y) z) ≡ ((_⌣ₖ_ {m = zero} x (pos y)) ⌣ₖ z) helpPos zero = (⌣ₖ-0ₖ _ _ x) ∙∙ (sym (0ₖ-⌣ₖ _ _ z)) ∙∙ cong (_⌣ₖ z) (sym (⌣ₖ-0ₖ _ _ x)) helpPos (suc y) = leftDistr-⌣ₖ _ _ x z (_⌣ₖ_{n = zero} (pos y) z) ∙∙ cong ((x ⌣ₖ z) +ₖ_) (helpPos y) ∙∙ sym (rightDistr-⌣ₖ _ _ x (_⌣ₖ_{n = zero} (pos y) x) z) help : (y : ℤ) → x ⌣ₖ (_⌣ₖ_ {n = zero} y z) ≡ ((_⌣ₖ_ {m = zero} x y) ⌣ₖ z) help (pos n) = helpPos n help (negsuc n) = (λ i → x ⌣ₖ (_⌣ₖ_ {n = zero} (+ℤ-comm (negsuc n) 0 i) z)) ∙∙ cong (x ⌣ₖ_) (sym (-Distₗ zero _ (pos (suc n)) z)) ∙∙ sym (-Distᵣ _ _ x _) ∙∙ cong -ₖ_ (helpPos (suc n)) ∙∙ -Distₗ _ _ _ z ∙∙ cong (_⌣ₖ z) (-Distᵣ _ zero x (pos (suc n))) ∙∙ λ i → (_⌣ₖ_ {m = zero} x (+ℤ-comm (negsuc n) 0 (~ i))) ⌣ₖ z assoc-⌣ₖ (suc n) (suc m) zero x y z = (assoc-⌣ₖ (suc n) zero (suc m) x z y) ∙∙ cong (subst coHomK (sym (+'-assoc (suc n) zero (suc m)))) (sym (assoc₀ _ _ z x y)) ∙∙ (funExt⁻ (sym h) (_⌣ₖ_ {n = zero} z (x ⌣ₖ y))) where h : subst coHomK (sym (+'-assoc (suc n) (suc m) zero)) ≡ subst coHomK (λ i → +'-assoc (suc n) zero (suc m) (~ i)) h = cong (subst coHomK) (isSetℕ _ _ _ _) assoc-⌣ₖ (suc n) (suc m) (suc k) x y z = funExt⁻ (cong fst (funExt⁻ (cong fst (assoc-⌣ₖ· n m k x)) y)) z -- Ring laws for ⌣ module _ {A : Type ℓ} (n m : ℕ) where ⌣-0ₕ : (f : coHom n A) → (f ⌣ 0ₕ m) ≡ 0ₕ _ ⌣-0ₕ = ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt λ x → ⌣ₖ-0ₖ n m (f x)) 0ₕ-⌣ : (f : coHom m A) → (0ₕ n ⌣ f) ≡ 0ₕ _ 0ₕ-⌣ = ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt λ x → 0ₖ-⌣ₖ n m (f x)) leftDistr-⌣ : (f : coHom n A) (g h : coHom m A) → f ⌣ (g +ₕ h) ≡ f ⌣ g +ₕ f ⌣ h leftDistr-⌣ = ST.elim (λ _ → isSetΠ2 λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ f → ST.elim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ g h → cong ∣_∣₂ (funExt λ x → leftDistr-⌣ₖ n m (f x) (g x) (h x)) rightDistr-⌣ : (g h : coHom n A) (f : coHom m A) → (g +ₕ h) ⌣ f ≡ g ⌣ f +ₕ h ⌣ f rightDistr-⌣ = ST.elim2 (λ _ _ → isSetΠ (λ _ → isOfHLevelPath 2 squash₂ _ _)) λ g h → ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt λ x → rightDistr-⌣ₖ n m (g x) (h x) (f x)) assoc-⌣ : (l : ℕ) (f : coHom n A) (g : coHom m A) (h : coHom l A) → f ⌣ g ⌣ h ≡ subst (λ x → coHom x A) (sym (+'-assoc n m l)) ((f ⌣ g) ⌣ h) assoc-⌣ l = ST.elim (λ _ → isSetΠ2 λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ f → ST.elim (λ _ → isSetΠ λ _ → isOfHLevelPath 2 squash₂ _ _) λ g → ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ h → cong ∣_∣₂ ((funExt (λ x → assoc-⌣ₖ n m l (f x) (g x) (h x) ∙ cong (subst coHomK (sym (+'-assoc n m l))) λ i → (f (transportRefl x (~ i)) ⌣ₖ g (transportRefl x (~ i))) ⌣ₖ (h (transportRefl x (~ i)))))) -- Additive unit(s) 0⌣ : ∀ {ℓ} {A : Type ℓ} (n m : ℕ) (x : coHom n A) → x ⌣ (0ₕ m) ≡ 0ₕ _ 0⌣ n m = ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt λ x → ⌣ₖ-0ₖ n m (f x)) ⌣0 : ∀ {ℓ} {A : Type ℓ} (n m : ℕ) (x : coHom n A) → (0ₕ m) ⌣ x ≡ 0ₕ _ ⌣0 n m = ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt λ x → 0ₖ-⌣ₖ m n (f x)) -- Multiplicative unit 1⌣ : ∀ {ℓ} {A : Type ℓ} → coHom 0 A 1⌣ = ∣ (λ _ → 1) ∣₂ lUnit⌣ₖ : (n : ℕ) (x : coHomK n) → _⌣ₖ_ {n = 0} (pos 1) x ≡ x lUnit⌣ₖ zero = λ _ → refl lUnit⌣ₖ (suc n) x = rUnitₖ _ x lUnit⌣ : ∀ {ℓ} {A : Type ℓ} (n : ℕ) (x : coHom n A) → x ⌣ 1⌣ ≡ subst (λ n → coHom n A) (sym (+'-rid n)) x lUnit⌣ zero = ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt (λ x → comm-·₀ (f x) (pos 1))) ∙ sym (transportRefl ∣ f ∣₂) lUnit⌣ (suc n) = ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt (λ x → cong (f x +ₖ_) (0ₖ-⌣ₖ zero _ (f x)) ∙ rUnitₖ _ (f x))) ∙ sym (transportRefl ∣ f ∣₂) rUnit⌣ : ∀ {ℓ} {A : Type ℓ} (n : ℕ) (x : coHom n A) → 1⌣ ⌣ x ≡ x rUnit⌣ zero = ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → refl rUnit⌣ (suc n) = ST.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt λ x → rUnitₖ _ (f x)) -ₕDistᵣ : ∀ {ℓ} {A : Type ℓ} (n m : ℕ) (x : coHom n A) (y : coHom m A) → (-ₕ (x ⌣ y)) ≡ x ⌣ (-ₕ y) -ₕDistᵣ n m = ST.elim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ f g → cong ∣_∣₂ (funExt λ x → -Distᵣ n m (f x) (g x)) -ₕDistₗ : ∀ {ℓ} {A : Type ℓ} (n m : ℕ) (x : coHom n A) (y : coHom m A) → (-ₕ (x ⌣ y)) ≡ (-ₕ x) ⌣ y -ₕDistₗ n m = ST.elim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ f g → cong ∣_∣₂ (funExt λ x → -Distₗ n m (f x) (g x)) -ₕDistₗᵣ : ∀ {ℓ} {A : Type ℓ} (n m : ℕ) (x : coHom n A) (y : coHom m A) → (-ₕ x) ⌣ (-ₕ y) ≡ x ⌣ y -ₕDistₗᵣ n m x y = sym (-ₕDistₗ n m x (-ₕ y)) ∙∙ cong -ₕ_ (sym (-ₕDistᵣ n m x y)) ∙∙ ST.elim2 {C = λ x y → (-ₕ (-ₕ (x ⌣ y))) ≡ x ⌣ y} (λ _ _ → isSetPathImplicit) (λ f g → cong ∣_∣₂ (funExt λ _ → -ₖ^2 _)) x y
43.495588
143
0.479156
319b5160941f08a0daf129896412ac392349b0a5
256
agda
Agda
archive/agda-1/Foundation/Primitive.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-1/Foundation/Primitive.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-1/Foundation/Primitive.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module Foundation.Primitive where open import Agda.Primitive infix -65536 ℞_ ℞_ : ∀ ℓ → Set _ ℞_ ℓ = Set ℓ ⟰ : Level → Level ⟰ = lsuc infix -65536 ℞₁_ ℞₁_ : ∀ ℓ → Set _ ℞₁_ ℓ = ℞ ⟰ ℓ 𝟘 : Level 𝟘 = lzero open import Agda.Primitive using (_⊔_) public
12.190476
45
0.628906
0ef9241cac1dfc31468ddf49de11acb4d652493c
973
agda
Agda
test/Succeed/Issue826-2.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue826-2.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue826-2.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
module Issue826-2 where open import Common.Coinduction data _≡_ {A : Set} (x y : A) : Set where data D : Set where c : ∞ D → D delay : D → ∞ D delay x = ♯ x data P : D → Set where o : (x : ∞ D) → P (♭ x) → P (c x) postulate h : (x : D) → P x → P x f : (x : D) → P (c (delay x)) → P x f x (o .(delay x) p) = h x p g : (x : D) → P x → P (c (delay x)) g x p = h (c (delay x)) (o (delay x) p) postulate bar : (x : ∞ D) (p : P (♭ x)) → h (c x) (o x (h (♭ x) p)) ≡ o x p foo : (x : D) (p : P (c (delay x))) → g x (f x p) ≡ p foo x (o .(delay x) p) = goal where x′ = _ goal : _ ≡ o x′ p goal = bar x′ p -- The following error message seems to indicate that an expression is -- not forced properly: -- -- Bug.agda:30,26-30 -- ♭ (.Bug.♯-0 x) != x of type D -- when checking that the expression goal has type -- g x (f x (o (.Bug.♯-0 x) p)) ≡ o (.Bug.♯-0 x) p -- -- Thus it seems as if this problem affects plain type-checking as -- well.
20.702128
70
0.509764
d0daef1cf43cec50a44d4916e8163af0f444bb1a
520
agda
Agda
Agda/subrings.agda
UlrikBuchholtz/HoTT-Intro
1e1f8def50f9359928e52ebb2ee53ed1166487d9
[ "CC-BY-4.0" ]
333
2018-09-26T08:33:30.000Z
2022-03-22T23:50:15.000Z
Agda/subrings.agda
UlrikBuchholtz/HoTT-Intro
1e1f8def50f9359928e52ebb2ee53ed1166487d9
[ "CC-BY-4.0" ]
8
2019-06-18T04:16:04.000Z
2020-10-16T15:27:01.000Z
Agda/subrings.agda
UlrikBuchholtz/HoTT-Intro
1e1f8def50f9359928e52ebb2ee53ed1166487d9
[ "CC-BY-4.0" ]
30
2018-09-26T09:08:57.000Z
2022-03-16T00:33:50.000Z
{-# OPTIONS --without-K --exact-split #-} module subrings where import rings open rings public -------------------------------------------------------------------------------- {- Subrings -} subset-Ring : (l : Level) {l1 : Level} → Ring l1 → UU ((lsuc l) ⊔ l1) subset-Ring l R = type-Ring R → UU-Prop l is-additive-subset-Ring : {l l1 : Level} (R : Ring l1) (S : subset-Ring l R) → UU _ is-additive-subset-Ring R S = (x y : type-Ring R) → type-Prop (S x) → type-Prop (S y) → type-Prop (S (add-Ring R x y))
24.761905
80
0.513462
3de5919dcb02720d3ef7d172e70d92b665f47b95
1,965
agda
Agda
src/Nat/Class.agda
iblech/agda-quotients
1b51e83acf193a556a61d44a4585a6467a383fa3
[ "MIT" ]
1
2021-04-29T13:10:27.000Z
2021-04-29T13:10:27.000Z
src/Nat/Class.agda
iblech/agda-quotients
1b51e83acf193a556a61d44a4585a6467a383fa3
[ "MIT" ]
null
null
null
src/Nat/Class.agda
iblech/agda-quotients
1b51e83acf193a556a61d44a4585a6467a383fa3
[ "MIT" ]
1
2021-04-28T12:49:47.000Z
2021-04-28T12:49:47.000Z
module Nat.Class where open import Relation.Binary.PropositionalEquality open ≡-Reasoning record Nat (ℕ : Set) : Set₁ where field zero : ℕ succ : ℕ → ℕ ind : (P : ℕ → Set) → P zero → (∀ {k} → P k → P (succ k)) → ∀ n → P n _+_ : ℕ → ℕ → ℕ +-zero : ∀ {n} → zero + n ≡ n +-succ : ∀ {m n} → succ m + n ≡ m + succ n module _ {ℕ : Set} {{nn : Nat ℕ}} where open Nat nn +-succˡ : {m n : ℕ} → succ m + n ≡ succ (m + n) +-succˡ {m} {n} = ind Succˡ Succˡ-zero Succˡ-succ m n where Succˡ : ℕ → Set Succˡ m′ = ∀ n′ → succ m′ + n′ ≡ succ (m′ + n′) Succˡ-zero : Succˡ zero Succˡ-zero n′ = begin succ zero + n′ ≡⟨ +-succ ⟩ zero + succ n′ ≡⟨ +-zero ⟩ succ n′ ≡⟨ cong succ (sym +-zero) ⟩ succ (zero + n′) ∎ Succˡ-succ : ∀ {m′} → Succˡ m′ → Succˡ (succ m′) Succˡ-succ {m′} ih n′ = begin succ (succ m′) + n′ ≡⟨ +-succ ⟩ succ m′ + succ n′ ≡⟨ ih (succ n′) ⟩ succ (m′ + succ n′) ≡⟨ cong succ (sym +-succ) ⟩ succ (succ m′ + n′) ∎ +-succʳ : {m n : ℕ} → m + succ n ≡ succ (m + n) +-succʳ = trans (sym +-succ) +-succˡ +-assoc : {m n p : ℕ} → (m + n) + p ≡ m + (n + p) +-assoc {m} {n} {p} = ind Assoc Assoc-zero Assoc-succ m where Assoc : ℕ → Set Assoc k = (k + n) + p ≡ k + (n + p) Assoc-zero : Assoc zero Assoc-zero = begin (zero + n) + p ≡⟨ cong (_+ p) +-zero ⟩ n + p ≡⟨ sym +-zero ⟩ zero + (n + p) ∎ Assoc-succ : ∀ {k} → Assoc k → Assoc (succ k) Assoc-succ {k} ih = begin (succ k + n) + p ≡⟨ cong (_+ p) +-succˡ ⟩ succ (k + n) + p ≡⟨ +-succˡ ⟩ succ ((k + n) + p) ≡⟨ cong succ ih ⟩ succ (k + (n + p)) ≡⟨ sym +-succˡ ⟩ succ k + (n + p) ∎
23.963415
73
0.398982
2f201525dcde7a91c5b74009ca20c89911322162
4,930
agda
Agda
Soundness/agda/Soundness.agda
halfaya/Music
5d9a1bbfbe52f55acf33d960763dce0872689c2b
[ "MIT" ]
1
2020-11-10T04:05:28.000Z
2020-11-10T04:05:28.000Z
Soundness/agda/Soundness.agda
halfaya/Music
5d9a1bbfbe52f55acf33d960763dce0872689c2b
[ "MIT" ]
null
null
null
Soundness/agda/Soundness.agda
halfaya/Music
5d9a1bbfbe52f55acf33d960763dce0872689c2b
[ "MIT" ]
1
2020-11-10T04:05:31.000Z
2020-11-10T04:05:31.000Z
{-# OPTIONS --without-K --erased-cubical --no-import-sorts #-} module Soundness where open import Prelude open import Instruments open import MakeTracks using (makeTrackList) open import Motif using (motif; levels) open import SUtil ---------------- macro getDef : Name → Term → TC ⊤ getDef n h = do d ← getDefinition n t ← quoteTC d unify h t record Line : Type where constructor line field lhs : List Name rhs : List Name open Line Proof : Type Proof = List Line -- Get only visible constructor names getNamesP : List (Arg Pattern) → List Name getNamesP [] = [] getNamesP (arg (arg-info v m) (Pattern.dot t) ∷ ps) = getNamesP ps getNamesP (arg (arg-info v m) (Pattern.var x₁) ∷ ps) = getNamesP ps getNamesP (arg (arg-info v m) (Pattern.lit l) ∷ ps) = getNamesP ps getNamesP (arg (arg-info v m) (Pattern.proj f) ∷ ps) = getNamesP ps getNamesP (arg (arg-info v m) (Pattern.absurd x₁) ∷ ps) = getNamesP ps getNamesP (arg (arg-info hidden m) (Pattern.con n _) ∷ ps) = getNamesP ps getNamesP (arg (arg-info instance′ m) (Pattern.con n _) ∷ ps) = getNamesP ps getNamesP (arg (arg-info visible m) (Pattern.con n _) ∷ ps) = n ∷ getNamesP ps {-# TERMINATING #-} getNamesT : Term → List Name getNamesAT : Arg Term → List Name getNamesT (con n args) = n ∷ concatMap getNamesAT args getNamesT (def n args) = n ∷ concatMap getNamesAT args getNamesT (var x₁ args) = concatMap getNamesAT args getNamesT (pat-lam cs args) = concatMap getNamesAT args getNamesT (lam v t) = [] getNamesT (pi a b) = [] getNamesT (agda-sort s) = [] getNamesT (lit l) = [] getNamesT (meta x₁ x₂) = [] getNamesT unknown = [] getNamesAT (arg i t) = getNamesT t getNamesC : Clause → Line getNamesC (Clause.clause tel ps t) = line (getNamesP ps) (getNamesT t) getNamesC (Clause.absurd-clause tel ps) = line (getNamesP ps) [] getNamesD : Definition → List Line getNamesD (function cs) = map getNamesC cs getNamesD (data-type pars cs) = [] getNamesD (record-type c fs) = [] getNamesD (data-cons d) = [] getNamesD axiom = [] getNamesD prim-fun = [] ---------------- data TopLevel : Type where s↑ : TopLevel s↓ : TopLevel sc↑ : TopLevel sc↓ : TopLevel sct↑ : TopLevel sct↓ : TopLevel topLevelName : TopLevel → Name topLevelName s↑ = quote soundness~↑ topLevelName s↓ = quote soundness~↓ topLevelName sc↑ = quote soundnessConv↑ topLevelName sc↓ = quote soundnessConv↓ topLevelName sct↑ = quote soundnessConv↑Term topLevelName sct↓ = quote soundnessConv↓Term isTopLevel : Name → Maybe TopLevel isTopLevel n = if n == quote soundness~↑ then just s↑ else if n == quote soundness~↓ then just s↓ else if n == quote soundnessConv↑ then just sc↑ else if n == quote soundnessConv↓ then just sc↓ else if n == quote soundnessConv↑Term then just sct↑ else if n == quote soundnessConv↓Term then just sct↓ else nothing topLevelDef : TopLevel → Definition topLevelDef s↑ = getDef soundness~↑ topLevelDef s↓ = getDef soundness~↓ topLevelDef sc↑ = getDef soundnessConv↑ topLevelDef sc↓ = getDef soundnessConv↓ topLevelDef sct↑ = getDef soundnessConv↑Term topLevelDef sct↓ = getDef soundnessConv↓Term topLevelProof : TopLevel → Proof topLevelProof = getNamesD ∘ topLevelDef --------------- -- Number of tracks to create tracks : ℕ tracks = 4 {-# TERMINATING #-} -- First argument n is current level (0 is bottom level; no recursive calls allowed) -- Second argument m is exponent for doubling speed (2^m) proof→notes : ℕ → ℕ → TopLevel → List (List Note) line→notes : ℕ → ℕ → Line → List (List Note) names→notes : ℕ → ℕ → List Name → List (List Note) -- starts with proof name proof→notes n m t = zipFull (2ⁿSpeed m (motif (topLevelName t)) ∷ []) (concatMap (line→notes n m) (topLevelProof t)) -- just use rhs for now line→notes n m (line lhs rhs) = names→notes n m rhs names→notes _ m [] = [] ∷ [] names→notes zero m ns@(_ ∷ _) = 2ⁿSpeed m (concatMap motif ns) ∷ [] names→notes (suc k) m (n ∷ ns) with isTopLevel n ... | just t = proof→notes k (suc m) t ++ names→notes (suc k) m ns ... | nothing = (2ⁿSpeed m (motif n) ∷ []) ++ names→notes (suc k) m ns proof→notesTop : ℕ → TopLevel → List (List Note) proof→notesTop level = proof→notes level 0 --------------- instruments : Vec InstrumentNumber-1 maxChannels instruments = drawbarOrgan ∷ -- 1 piano ∷ -- 2 electricPiano1 ∷ -- 3 churchOrgan ∷ -- 4 piano ∷ -- 5 piano ∷ -- 6 piano ∷ -- 7 piano ∷ -- 8 piano ∷ -- 9 drums ∷ -- 10 (percussion) piano ∷ -- 11 piano ∷ -- 12 piano ∷ -- 13 piano ∷ -- 14 piano ∷ -- 15 piano ∷ -- 16 [] music : Vec (List Note) tracks music = foldIntoVector (proof→notesTop levels s↑) tempo : ℕ tempo = 160 soundTracks : List MidiTrack soundTracks = makeTrackList instruments tempo music
28.830409
84
0.648682
df6277ea7e10158eaac8f5682675f007f660f09d
393
agda
Agda
test/Fail/Issue526.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue526.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue526.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- {-# OPTIONS -v 100 -v tc.meta.name:100 -v interactive.meta:10 #-} module Issue526 where -- Don't just write _49, -- include the corresponding implicit variable name as well (if any) postulate f : {A : Set} → {a : A} → Set1 → {B : Set} → Set test : Set test = f Set test₁ : Set test₁ = f {A = _} Set postulate g : (B : Set) → Set test₂ : Set test₂ = g _ test₃ : _ → Set test₃ ()
15.72
68
0.608142
57ec711c9d5bf581d801b48fd7fc9c583f84bbf7
8,863
agda
Agda
LibraBFT/Base/ByteString.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
4
2020-12-16T19:43:41.000Z
2021-12-18T19:24:05.000Z
LibraBFT/Base/ByteString.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
72
2021-02-04T05:04:33.000Z
2022-03-25T05:36:11.000Z
LibraBFT/Base/ByteString.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
6
2020-12-16T19:43:52.000Z
2022-02-18T01:04:32.000Z
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude -- To enable reasoning about algorithms that concatenate -- ByteStrings and pass the result to a cryptographic hash -- function (as LibraBFT does), it is critical to have an -- injective bitstring concat function ('bs-concat', below). -- -- To see why, suppose we hash a data structure that contains two -- fields of type ByteString by passing its fields to a hash -- function like this: -- -- > h : String -> String -> Hash -- > h a b = hash (concat [a , b]) -- -- This function is /NOT/ collision resistant: -- -- > h "xx" "x" == hash (concat ["xx" , "x"]) -- > == hash "xxx" -- > == hash (concat ["x" , "xx"]) == h "x" "xx" -- -- We cannot solve the problem simply by using an arbitrary field -- separator, because an arbitrary ByteString might contain the -- separator. For example, if we define: -- -- > h a b = hash (concat [ a , ";" , b ]) -- -- Then, we still have: -- -- > h "x;x" "x" == h "x" "x;x" -- -- Two possible approaches to defining an injective `concat` -- function are: -- -- 1) Use some length-prefixed encoding where we know the size of -- each field. This approach will work in practice but we won't -- be able to prove its injectivity for arbitrary ByteStrings in -- Agda: Regardless of how many bytes we reserve for size -- information, there are some inputs that require more. -- -- 2) Encoding the arguments' list structure in the result of -- concat; inverting the concat function then becomes parsing a -- list of values. This approach is analogous to: -- -- > concat : List ByteString -> BitString -- > concat = serialize . toJSON -- -- We take the second approach. module LibraBFT.Base.ByteString where -- A BitString is a list of bits BitString : Set BitString = List Bool _≟BitString_ : (bs1 bs2 : BitString) → Dec (bs1 ≡ bs2) _≟BitString_ = List-≡-dec _≟Bool_ -- A ByteString is a list of bytes ByteString : Set ByteString = List (Vec Bool 8) _≟ByteString_ : (bs1 bs2 : ByteString) → Dec (bs1 ≡ bs2) _≟ByteString_ = List-≡-dec (Vec-≡-dec _≟Bool_) -- Concatenates ByteString prepending '11' to each byte. toBitString-pad' : ByteString → BitString toBitString-pad' = concat ∘ List-map (λ v → true ∷ true ∷ Vec-toList v) -- Concatenates a ByteString distinguishing an empty list from a non-empty list toBitString-pad : ByteString → BitString toBitString-pad [] = false ∷ false ∷ [] toBitString-pad (b ∷ bs) = true ∷ false ∷ Vec-toList b ++ toBitString-pad' bs -- Here's our injective concat function for ByteString bs-concat : List ByteString -> BitString bs-concat = concat ∘ List-map toBitString-pad ------------------------------------------------------------------------------ -- operations -- TODO-1: these are prefixed with "BS∙" because they conflict with the -- versions in List that are imported via Prelude. -- It is possible to rename the List versions when importing them -- but that will make a big diff of the following proofs that -- should (IF renaming is done) in a separate PR. postulate -- to prove these operations BS∙drop : ℕ → ByteString → ByteString BS∙isPrefixOf : ByteString → ByteString → Bool BS∙length : ByteString → ℕ ----------------------- -- Injectivity Proof -- ----------------------- -- The proof is straightforward once we figure out the core reasoning principle: -- Any non-injective cases would be some variation on: -- -- bs-concat ([a] ∷ c) ≡ bs-concat ([b₀ , b₁] ∷ d) -- -- <==> toBitString-pad [a] ++ bs-concat c ≡ toBitString-pad [b₀ , b₁] ++ bs-concat d -- -- <==> 1 1 a₀ ⋯ a₇ ++ bs-concat c ≡ 1 1 b₀₀ ‌⋯ b₀₇ 1 0 b₁₀ ⋯ b₁₇ ++ bs-concat d -- -- { ++ is injective for same-length prefixes } -- -- <==> aᵢ ≡ b₀ᵢ × bs-concat c ≡ 1 0 b₁₀ ⋯ b₁₇ ++ bs-concat d -- -- { impossible, bs-concat c is either empty or starts with 11 } -- -- <==> ⊥ -- -- The actual Agda is a little more involved; but this covers the intuition. -- Appending two lists of the same length is injective. ++-len-injective : ∀{a}{A : Set a}(xs₀ ys₀ : List A){xs₁ ys₁ : List A} → length xs₀ ≡ length ys₀ → xs₀ ++ xs₁ ≡ ys₀ ++ ys₁ → xs₀ ≡ ys₀ × xs₁ ≡ ys₁ ++-len-injective [] [] len hyp = refl , hyp ++-len-injective (x ∷ xs0) (y ∷ ys0) len hyp = let x≡y , tails≡ = ∷-injective hyp a , b = ++-len-injective xs0 ys0 (suc-injective len) tails≡ in cong₂ _∷_ x≡y a , b Vec-toList-length : ∀{a n}{A : Set a}(x : Vec A n) → length (Vec-toList x) ≡ n Vec-toList-length [] = refl Vec-toList-length (_ ∷ xs) = cong suc (Vec-toList-length xs) Vec-toList-inj : ∀{a n}{A : Set a}{x y : Vec A n} → Vec-toList x ≡ Vec-toList y → x ≡ y Vec-toList-inj {x = []} {[]} hyp = refl Vec-toList-inj {x = x ∷ xs} {y ∷ ys} hyp = let x≡y , xs≡ys = ∷-injective hyp in cong₂ _∷_ x≡y (Vec-toList-inj xs≡ys) -- In general, _++_ is not injective. However, we can -- characterize it universally with a /Prefix/ property. data _≺_ {a}{A : Set a} : List A → List A → Set where z≺n : ∀{xs} → [] ≺ xs s≺s : ∀{x xs ys} → xs ≺ ys → (x ∷ xs) ≺ (x ∷ ys) -- Returns the tail of ys; after dropping the prefix xs. ≺-drop : ∀{a}{A : Set a}{xs ys : List A} → xs ≺ ys → List A ≺-drop {ys = ys} z≺n = ys ≺-drop (s≺s a) = ≺-drop a ++-≺ : ∀{a}{A : Set a}(xs ws : List A){ys zs : List A} → xs ++ ys ≡ ws ++ zs → Σ (xs ≺ ws) (λ prf → ≺-drop prf ++ zs ≡ ys) ⊎ Σ (ws ≺ xs) (λ prf → ≺-drop prf ++ ys ≡ zs) ++-≺ [] ys hyp = inj₁ (z≺n , sym hyp) ++-≺ (x ∷ xs) [] hyp = inj₂ (z≺n , hyp) ++-≺ (x ∷ xs) (y ∷ ys) hyp with ∷-injective hyp ...| refl , xs≡ys with ++-≺ xs ys xs≡ys ...| inj₁ (ok , prf) = inj₁ (s≺s ok , prf) ...| inj₂ (ok , prf) = inj₂ (s≺s ok , prf) ≺-respects-++-len : ∀{a}{A : Set a}(xs₀ ys₀ : List A){xs₁ ys₁ : List A} → (p : (xs₀ ++ xs₁) ≺ (ys₀ ++ ys₁)) → length xs₀ ≡ length ys₀ → xs₀ ≡ ys₀ × Σ (xs₁ ≺ ys₁) (λ p' → ≺-drop p ≡ ≺-drop p') ≺-respects-++-len [] [] prf hyp = refl , (prf , refl) ≺-respects-++-len (x ∷ xs) (.x ∷ ys) (s≺s prf) hyp with ≺-respects-++-len xs ys prf (suc-injective hyp) ...| xs≡ys , res , ok = cong (x ∷_) xs≡ys , res , ok bs-concat-[]⊎tf : ∀ as {bs} → true ∷ true ∷ bs ≢ bs-concat as bs-concat-[]⊎tf ([] ∷ as) () bs-concat-[]⊎tf ((_ ∷ _) ∷ as) () toBitString-pad'-≺ : ∀{a b} → (a≺bbs : toBitString-pad' a ≺ toBitString-pad' b) → a ≡ b ⊎ ∃[ tail ] (≺-drop a≺bbs ≡ true ∷ true ∷ tail) toBitString-pad'-≺ {[]} {[]} prf = inj₁ refl toBitString-pad'-≺ {[]} {x ∷ bs} z≺n = inj₂ (Vec-toList x ++ toBitString-pad' bs , refl) toBitString-pad'-≺ {a ∷ as} {b ∷ bs} (s≺s (s≺s prf)) with ≺-respects-++-len (Vec-toList a) (Vec-toList b) prf (trans (Vec-toList-length a) (sym (Vec-toList-length b))) ...| a≡b , prf' , drop≡ with toBitString-pad'-≺ {as} {bs} prf' ...| inj₁ ok = inj₁ (cong₂ _∷_ (Vec-toList-inj a≡b) ok) ...| inj₂ ok = inj₂ (proj₁ ok , trans drop≡ (proj₂ ok)) toBitString-pad-≺ : ∀{a b} → (a≺bbs : toBitString-pad a ≺ toBitString-pad b) → a ≡ b ⊎ ∃[ tail ] (≺-drop a≺bbs ≡ true ∷ true ∷ tail) toBitString-pad-≺ {[]} {[]} prf = inj₁ refl toBitString-pad-≺ {a ∷ as} {b ∷ bs} (s≺s (s≺s prf)) with ≺-respects-++-len (Vec-toList a) (Vec-toList b) prf (trans (Vec-toList-length a) (sym (Vec-toList-length b))) ...| a≡b , prf' , drop≡ with toBitString-pad'-≺ {as} {bs} prf' ...| inj₁ ok = inj₁ (cong₂ _∷_ (Vec-toList-inj a≡b) ok) ...| inj₂ ok = inj₂ (proj₁ ok , trans drop≡ (proj₂ ok)) bs-concat-inj : ∀ bs₁ bs₂ → bs-concat bs₁ ≡ bs-concat bs₂ → bs₁ ≡ bs₂ bs-concat-inj [] [] hyp = refl bs-concat-inj ([] ∷ as) [] () bs-concat-inj [] ([] ∷ bs) () bs-concat-inj [] ((_ ∷ _) ∷ bs) () bs-concat-inj ((_ ∷ _) ∷ as) [] () bs-concat-inj (a ∷ as) (b ∷ bs) hyp -- TODO-1: Eliminate catchall warning or explain why we don't. with ++-≺ (toBitString-pad a) (toBitString-pad b) hyp ...| inj₁ (a≺b , prf) with toBitString-pad-≺ a≺b ...| inj₁ refl = cong (a ∷_) (bs-concat-inj as bs (proj₂ (++-len-injective (toBitString-pad a) _ refl hyp))) ...| inj₂ (tail , aux) rewrite aux = ⊥-elim (bs-concat-[]⊎tf as prf) bs-concat-inj (a ∷ as) (b ∷ bs) hyp | inj₂ (b≺a , prf) with toBitString-pad-≺ b≺a ...| inj₁ refl = cong (a ∷_) (bs-concat-inj as bs (proj₂ (++-len-injective (toBitString-pad a) _ refl hyp))) ...| inj₂ (tail , aux) rewrite aux = ⊥-elim (bs-concat-[]⊎tf bs prf)
39.744395
111
0.573959
57b488aa066f504f645028c0c1dac9087970d3cf
5,767
agda
Agda
test/epic/RunTests.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
null
null
null
test/epic/RunTests.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
null
null
null
test/epic/RunTests.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
null
null
null
{-# OPTIONS --no-termination-check #-} module RunTests where open import Prelude.Bool open import Prelude.Char open import Prelude.Nat open import Prelude.List open import Prelude.IO open import Prelude.String open import Prelude.Unit open import Prelude.Product postulate Stream : Set popen : String -> String -> IO Stream pclose : Stream -> IO Unit readChar : Stream -> IO Char strLen : String -> Nat charAt : (s : String) -> Nat -> Char _`_`_ : {A B C : Set}(x : A)(f : A -> B -> C)(y : B) -> C x ` f ` y = f x y infixr 9 _∘_ _∘_ : {A : Set}{B : A -> Set}{C : (x : A) -> B x -> Set} (f : {a : A}(b : B a)-> C a b) (g : (a : A) -> B a)(x : A) -> C x (g x) f ∘ g = λ x -> f (g x) infixr 1 _$_ _$_ : {A : Set}{B : A -> Set}(f : (x : A) -> B x)(x : A) -> B x f $ x = f x {-# COMPILED_EPIC popen (s : String, m : String, u : Unit) -> Ptr = foreign Ptr "popen" (mkString(s) : String, mkString(m) : String) #-} {-# COMPILED_EPIC pclose (s : Ptr, u : Unit) -> Unit = foreign Int "pclose" (s : Ptr) ; u #-} {-# COMPILED_EPIC readChar (s : Ptr, u : Unit) -> Int = foreign Int "fgetc" (s : Ptr) #-} {-# COMPILED_EPIC strLen (s : Any) -> BigInt = foreign BigInt "intToBig" (foreign Int "strlen" (mkString(s) : String) : Int) #-} {-# COMPILED_EPIC charAt (s : Any, n : BigInt) -> Int = foreign Int "charAtBig" (mkString(s) : String, n : BigInt) #-} readStream : Stream -> IO (List Char) readStream stream = c <- readChar stream , if' charEq eof c then pclose stream ,, return [] else ( cs <- readStream stream , return (c :: cs)) system : String -> IO (List Char) system s = putStrLn $ "system " +S+ s ,, x <- popen s "r" , y <- readStream x , return y span : {A : Set} -> (p : A -> Bool) -> List A -> List A × List A span p [] = [] , [] span p (a :: as) with p a ... | false = [] , a :: as ... | true with span p as ... | xs , ys = (a :: xs) , ys groupBy : {A : Set} -> (A -> A -> Bool) -> List A -> List (List A) groupBy _ [] = [] groupBy eq (x :: xs) with span (eq x) xs ... | ys , zs = (x :: ys) :: groupBy eq zs comparing : {A B : Set} -> (A -> B) -> (B -> B -> Bool) -> A -> A -> Bool comparing f _==_ x y = f x == f y FilePath : Set FilePath = String and : List Bool -> Bool and [] = true and (true :: xs) = and xs and (false :: _) = false sequence : {A : Set} -> List (IO A) -> IO (List A) sequence [] = return [] sequence (x :: xs) = r <- x , rs <- sequence xs , return (r :: rs) mapM : {A B : Set} -> (A -> IO B) -> List A -> IO (List B) mapM f xs = sequence (map f xs) printList : List Char -> IO Unit printList xs = mapM printChar xs ,, printChar '\n' printResult : FilePath -> List Char -> List Char -> IO Unit printResult filename l1 l2 with l1 ` listEq charEq ` l2 ... | true = putStrLn (filename +S+ ": Success!") ... | false = putStrLn (filename +S+ ": Fail!") ,, putStrLn "Expected:" ,, printList l2 ,, putStrLn "Got:" ,, printList l1 compile : FilePath -> FilePath -> IO Unit compile dir file = system $ "agda --epic --compile-dir=" +S+ dir +S+ "bin/ " +S+ dir +S+ file ,, return unit readFile : FilePath -> IO (List Char) readFile file = system $ "cat " +S+ file -- This won't work because of a bug in Epic... {- validFile : List Char -> Bool validFile f with span (not ∘ charEq '.') f ... | _ , ('.' :: 'a' :: 'g' :: 'd' :: 'a' :: []) = true ... | _ , ('.' :: 'o' :: 'u' :: 't' :: []) = true ... | _ = false -} stripFileEnding : FilePath -> FilePath stripFileEnding fp = fromList $ fst $ span (not ∘ charEq '.') (fromString fp) testFile : FilePath -> FilePath -> FilePath -> IO Bool testFile outdir agdafile outfile = compile outdir (agdafile) ,, out <- system $ outdir +S+ "bin/" +S+ stripFileEnding agdafile , expected <- readFile (outdir +S+ outfile) , printResult agdafile out expected ,, return (out ` listEq charEq ` expected) testFile' : FilePath -> List (List Char) -> IO Bool testFile' outdir (agdafile :: outfile :: _) = testFile outdir (fromList agdafile) (fromList outfile) testFile' _ _ = return true isNewline : Char -> Bool isNewline '\n' = true isNewline _ = false lines : List Char -> List (List Char) lines list with span (not ∘ isNewline) list ... | l , [] = l :: [] ... | l , _ :: s' = l :: lines s' getFiles : FilePath -> IO (List (List Char)) getFiles dir = out <- system $ "ls " +S+ dir , putStrLn "getFiles after ls" ,, -- mapM (printList ∘ snd) $ map (span (not ∘ charEq '.')) $ lines out ,, return $ lines out -- filter validFile $ lines out isDot : Char -> Bool isDot '.' = true isDot _ = false testFiles : FilePath -> IO Bool testFiles dir = files <- getFiles dir , putStrLn "Found the following files in the tests directory:" ,, mapM printList files ,, res <- mapM (testFile' dir) (groupBy (comparing (fst ∘ span (not ∘ isDot)) (listEq charEq)) files) , return $ and res getCurrentDirectory : IO FilePath getCurrentDirectory = fromList <$> system "pwd" main : IO Unit main = dir' <- getCurrentDirectory , putStrLn (fromList (fromString dir')) ,, putStrLn "hello" ,, putStrLn (fromList (tail ('h' :: 'e' :: 'j' :: []))) ,, printList (fromString "hej igen") ,, putStrLn (fromList (tail (fromString "hello"))) ,, dir <- fromList ∘ init ∘ fromString <$> getCurrentDirectory , putStrLn dir ,, system ("rm " +S+ dir +S+ "/tests/*.agdai") ,, res <- testFiles (dir +S+ "/tests/") , (if res then putStrLn "All tests succeeded! " else putStrLn "Not all tests succeeded ")
31.342391
136
0.556268
12f402ad5e6697cd8b9d0e337fcc96bac9a97e36
1,103
agda
Agda
examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Real/Base.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Real/Base.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Real/Base.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Data.Real.Base where import Prelude import Data.Rational import Data.Nat as Nat import Data.Bits import Data.Bool import Data.Maybe import Data.Integer import Data.List import Data.Real.Gauge open Prelude open Data.Rational hiding (_-_; !_!) open Data.Bits open Data.Bool open Data.List open Data.Integer hiding (-_; _+_; _≥_; _≤_; _>_; _<_; _==_) renaming ( _*_ to _*'_ ) open Nat using (Nat; zero; suc) open Data.Real.Gauge using (Gauge) Base = Rational bitLength : Int -> Int bitLength x = pos (nofBits ! x !) - pos 1 approxBase : Base -> Gauge -> Base approxBase x e = help err where num = numerator e den = denominator e err = bitLength (den - pos 1) - bitLength num help : Int -> Base help (pos (suc n)) = round (x * fromNat k) % pos k where k = shiftL 1 (suc n) help (pos 0) = x help (neg n) = fromInt $ (round $ x / fromInt k) *' k where k = pos (shiftL 1 ! neg n !) powers : Nat -> Base -> List Base powers n x = iterate n (_*_ x) x sumBase : List Base -> Base sumBase xs = foldr _+_ (fromNat 0) xs
20.811321
57
0.629193
292100f630b8f2baf01bdc3b27639d67f81ee656
1,584
agda
Agda
Cubical/Structures/TypeEqvTo.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Structures/TypeEqvTo.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Structures/TypeEqvTo.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Structures.TypeEqvTo where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.HITs.PropositionalTruncation open import Cubical.Data.Prod hiding (_×_) renaming (_×Σ_ to _×_) open import Cubical.Foundations.SIP renaming (SNS-PathP to SNS) open import Cubical.Foundations.Pointed open import Cubical.Structures.Pointed private variable ℓ ℓ' ℓ'' : Level TypeEqvTo : (ℓ : Level) (X : Type ℓ') → Type (ℓ-max (ℓ-suc ℓ) ℓ') TypeEqvTo ℓ X = TypeWithStr ℓ (λ Y → ∥ Y ≃ X ∥) PointedEqvTo : (ℓ : Level) (X : Type ℓ') → Type (ℓ-max (ℓ-suc ℓ) ℓ') PointedEqvTo ℓ X = TypeWithStr ℓ (λ Y → Y × ∥ Y ≃ X ∥) module _ (X : Type ℓ') where PointedEqvTo-structure : Type ℓ → Type (ℓ-max ℓ ℓ') PointedEqvTo-structure = add-to-structure pointed-structure (λ Y _ → ∥ Y ≃ X ∥) PointedEqvTo-iso : StrIso PointedEqvTo-structure ℓ'' PointedEqvTo-iso = add-to-iso pointed-structure pointed-iso (λ Y _ → ∥ Y ≃ X ∥) PointedEqvTo-is-SNS : SNS {ℓ} PointedEqvTo-structure PointedEqvTo-iso PointedEqvTo-is-SNS = add-axioms-SNS pointed-structure pointed-iso (λ Y _ → ∥ Y ≃ X ∥) (λ _ _ → squash) pointed-is-SNS PointedEqvTo-SIP : (A B : PointedEqvTo ℓ X) → A ≃[ PointedEqvTo-iso ] B ≃ (A ≡ B) PointedEqvTo-SIP = SIP PointedEqvTo-structure PointedEqvTo-iso PointedEqvTo-is-SNS PointedEqvTo-sip : (A B : PointedEqvTo ℓ X) → A ≃[ PointedEqvTo-iso ] B → (A ≡ B) PointedEqvTo-sip A B = equivFun (PointedEqvTo-SIP A B)
37.714286
88
0.661616
588b6b85031bd33f53ff1cacbc50a275e9f2805a
481
agda
Agda
test/interaction/Issue1790.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/interaction/Issue1790.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/interaction/Issue1790.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- Andreas, 2016-01-22, issue 1790 -- Projections should be highlighted as such everywhere, -- even in the parts of a record declaration that -- make the record constructor type. record Σ A (B : A → Set) : Set where field fst : A snd : B fst -- fst should be highlighted as projection here -- Should also work under 'mutual'. mutual record IOInterface : Set₁ where constructor ioInterface field Command : Set Response : (m : Command) → Set
26.722222
64
0.673597
57afbd3a87871b4aa6661de6ad9394ec40d3018f
617
agda
Agda
test/fail/NoPanic.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T04:41:05.000Z
2019-11-27T04:41:05.000Z
test/fail/NoPanic.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/NoPanic.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
{-# OPTIONS --universe-polymorphism #-} module NoPanic where postulate Level : Set lzero : Level lsuc : Level → Level {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO lzero #-} {-# BUILTIN LEVELSUC lsuc #-} module M {A : Set} where postulate I : A → ∀ a → Set a i : ∀ (x : A) {a} → I x a f : {B : Set} → B a : A Foo : Set₁ Foo with i (f a) Foo | _ = Set -- Old (bad) error message: -- NoPanic.agda:24,3-16 -- Panic: Pattern match failure in do expression at -- src/full/Agda/TypeChecking/Rules/Term.hs:646:7-18 -- when checking that the expression _22 {A} has type Level
19.28125
59
0.604538
0e1af70fc12820388e59a4a026d8f4cad4d8f449
23,883
agda
Agda
src/Finite-subset/Kuratowski.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Finite-subset/Kuratowski.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Finite-subset/Kuratowski.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Kuratowski finite subsets ------------------------------------------------------------------------ -- Based on Frumin, Geuvers, Gondelman and van der Weide's "Finite -- Sets in Homotopy Type Theory". {-# OPTIONS --cubical --safe #-} import Equality.Path as P module Finite-subset.Kuratowski {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq hiding (elim) open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection equality-with-J using (_↔_) open import Equality.Path.Isomorphisms eq open import Equivalence equality-with-J as Eq using (_≃_) import Finite-subset.Listed eq as L open import Function-universe equality-with-J hiding (id; _∘_) open import H-level equality-with-J open import H-level.Truncation.Propositional eq as Trunc using (∥_∥; _∥⊎∥_) open import Monad equality-with-J as M using (Raw-monad; Monad) private variable a b p : Level A B : Type a P : A → Type p f g : (x : A) → P x l x y z : A m n : ℕ ------------------------------------------------------------------------ -- Kuratowski finite subsets -- Kuratowski finite subsets of a given type. infixr 5 _∪_ data Finite-subset-of (A : Type a) : Type a where ∅ : Finite-subset-of A singleton : A → Finite-subset-of A _∪_ : Finite-subset-of A → Finite-subset-of A → Finite-subset-of A ∅∪ᴾ : ∅ ∪ x P.≡ x idem-sᴾ : singleton x ∪ singleton x P.≡ singleton x assocᴾ : x ∪ (y ∪ z) P.≡ (x ∪ y) ∪ z commᴾ : x ∪ y P.≡ y ∪ x is-setᴾ : P.Is-set (Finite-subset-of A) -- Variants of some of the constructors. ∅∪ : ∅ ∪ x ≡ x ∅∪ = _↔_.from ≡↔≡ ∅∪ᴾ idem-s : singleton x ∪ singleton x ≡ singleton x idem-s = _↔_.from ≡↔≡ idem-sᴾ assoc : x ∪ (y ∪ z) ≡ (x ∪ y) ∪ z assoc = _↔_.from ≡↔≡ assocᴾ comm : x ∪ y ≡ y ∪ x comm = _↔_.from ≡↔≡ commᴾ is-set : Is-set (Finite-subset-of A) is-set = _↔_.from (H-level↔H-level 2) is-setᴾ -- ∅ is a right identity for _∪_. ∪∅ : x ∪ ∅ ≡ x ∪∅ {x = x} = x ∪ ∅ ≡⟨ comm ⟩ ∅ ∪ x ≡⟨ ∅∪ ⟩∎ x ∎ ------------------------------------------------------------------------ -- Eliminators -- A dependent eliminator, expressed using paths. record Elimᴾ {A : Type a} (P : Finite-subset-of A → Type p) : Type (a ⊔ p) where field ∅ʳ : P ∅ singletonʳ : ∀ x → P (singleton x) ∪ʳ : P x → P y → P (x ∪ y) ∅∪ʳ : (p : P x) → P.[ (λ i → P (∅∪ᴾ {x = x} i)) ] ∪ʳ ∅ʳ p ≡ p idem-sʳ : ∀ x → P.[ (λ i → P (idem-sᴾ {x = x} i)) ] ∪ʳ (singletonʳ x) (singletonʳ x) ≡ singletonʳ x assocʳ : (p : P x) (q : P y) (r : P z) → P.[ (λ i → P (assocᴾ {x = x} {y = y} {z = z} i)) ] ∪ʳ p (∪ʳ q r) ≡ ∪ʳ (∪ʳ p q) r commʳ : (p : P x) (q : P y) → P.[ (λ i → P (commᴾ {x = x} {y = y} i)) ] ∪ʳ p q ≡ ∪ʳ q p is-setʳ : ∀ x → P.Is-set (P x) open Elimᴾ public elimᴾ : Elimᴾ P → (x : Finite-subset-of A) → P x elimᴾ {A = A} {P = P} e = helper where module E = Elimᴾ e helper : (x : Finite-subset-of A) → P x helper ∅ = E.∅ʳ helper (singleton x) = E.singletonʳ x helper (x ∪ y) = E.∪ʳ (helper x) (helper y) helper (∅∪ᴾ {x = x} i) = E.∅∪ʳ (helper x) i helper (idem-sᴾ i) = E.idem-sʳ _ i helper (assocᴾ {x = x} {y = y} {z = z} i) = E.assocʳ (helper x) (helper y) (helper z) i helper (commᴾ {x = x} {y = y} i) = E.commʳ (helper x) (helper y) i helper (is-setᴾ x y i j) = P.heterogeneous-UIP E.is-setʳ (is-setᴾ x y) (λ i → helper (x i)) (λ i → helper (y i)) i j -- A non-dependent eliminator, expressed using paths. record Recᴾ (A : Type a) (B : Type b) : Type (a ⊔ b) where field ∅ʳ : B singletonʳ : A → B ∪ʳ : Finite-subset-of A → Finite-subset-of A → B → B → B ∅∪ʳ : ∀ x p → ∪ʳ ∅ x ∅ʳ p P.≡ p idem-sʳ : ∀ x → ∪ʳ (singleton x) (singleton x) (singletonʳ x) (singletonʳ x) P.≡ singletonʳ x assocʳ : ∀ p q r → ∪ʳ x (y ∪ z) p (∪ʳ y z q r) P.≡ ∪ʳ (x ∪ y) z (∪ʳ x y p q) r commʳ : ∀ p q → ∪ʳ x y p q P.≡ ∪ʳ y x q p is-setʳ : P.Is-set B open Recᴾ public recᴾ : Recᴾ A B → Finite-subset-of A → B recᴾ r = elimᴾ e where module R = Recᴾ r e : Elimᴾ _ e .∅ʳ = R.∅ʳ e .singletonʳ = R.singletonʳ e .∪ʳ {x = x} {y = y} = R.∪ʳ x y e .∅∪ʳ {x = x} = R.∅∪ʳ x e .idem-sʳ = R.idem-sʳ e .assocʳ = R.assocʳ e .commʳ = R.commʳ e .is-setʳ _ = R.is-setʳ -- A dependent eliminator, expressed using equality. record Elim {A : Type a} (P : Finite-subset-of A → Type p) : Type (a ⊔ p) where field ∅ʳ : P ∅ singletonʳ : ∀ x → P (singleton x) ∪ʳ : P x → P y → P (x ∪ y) ∅∪ʳ : (p : P x) → subst P (∅∪ {x = x}) (∪ʳ ∅ʳ p) ≡ p idem-sʳ : ∀ x → subst P (idem-s {x = x}) (∪ʳ (singletonʳ x) (singletonʳ x)) ≡ singletonʳ x assocʳ : (p : P x) (q : P y) (r : P z) → subst P (assoc {x = x} {y = y} {z = z}) (∪ʳ p (∪ʳ q r)) ≡ ∪ʳ (∪ʳ p q) r commʳ : (p : P x) (q : P y) → subst P (comm {x = x} {y = y}) (∪ʳ p q) ≡ ∪ʳ q p is-setʳ : ∀ x → Is-set (P x) open Elim public elim : Elim P → (x : Finite-subset-of A) → P x elim e = elimᴾ e′ where module E = Elim e e′ : Elimᴾ _ e′ .∅ʳ = E.∅ʳ e′ .singletonʳ = E.singletonʳ e′ .∪ʳ = E.∪ʳ e′ .∅∪ʳ p = subst≡→[]≡ (E.∅∪ʳ p) e′ .idem-sʳ x = subst≡→[]≡ (E.idem-sʳ x) e′ .assocʳ p q r = subst≡→[]≡ (E.assocʳ p q r) e′ .commʳ p q = subst≡→[]≡ (E.commʳ p q) e′ .is-setʳ x = _↔_.to (H-level↔H-level 2) (E.is-setʳ x) -- A non-dependent eliminator, expressed using equality. record Rec (A : Type a) (B : Type b) : Type (a ⊔ b) where field ∅ʳ : B singletonʳ : A → B ∪ʳ : Finite-subset-of A → Finite-subset-of A → B → B → B ∅∪ʳ : ∀ x p → ∪ʳ ∅ x ∅ʳ p ≡ p idem-sʳ : ∀ x → ∪ʳ (singleton x) (singleton x) (singletonʳ x) (singletonʳ x) ≡ singletonʳ x assocʳ : ∀ p q r → ∪ʳ x (y ∪ z) p (∪ʳ y z q r) ≡ ∪ʳ (x ∪ y) z (∪ʳ x y p q) r commʳ : ∀ p q → ∪ʳ x y p q ≡ ∪ʳ y x q p is-setʳ : Is-set B open Rec public rec : Rec A B → Finite-subset-of A → B rec r = recᴾ r′ where module R = Rec r r′ : Recᴾ _ _ r′ .∅ʳ = R.∅ʳ r′ .singletonʳ = R.singletonʳ r′ .∪ʳ = R.∪ʳ r′ .∅∪ʳ x p = _↔_.to ≡↔≡ (R.∅∪ʳ x p) r′ .idem-sʳ x = _↔_.to ≡↔≡ (R.idem-sʳ x) r′ .assocʳ p q r = _↔_.to ≡↔≡ (R.assocʳ p q r) r′ .commʳ p q = _↔_.to ≡↔≡ (R.commʳ p q) r′ .is-setʳ = _↔_.to (H-level↔H-level 2) R.is-setʳ -- A dependent eliminator for propositions. record Elim-prop {A : Type a} (P : Finite-subset-of A → Type p) : Type (a ⊔ p) where field ∅ʳ : P ∅ singletonʳ : ∀ x → P (singleton x) ∪ʳ : P x → P y → P (x ∪ y) is-propositionʳ : ∀ x → Is-proposition (P x) open Elim-prop public elim-prop : Elim-prop P → (x : Finite-subset-of A) → P x elim-prop e = elim e′ where module E = Elim-prop e e′ : Elim _ e′ .∅ʳ = E.∅ʳ e′ .singletonʳ = E.singletonʳ e′ .∪ʳ = E.∪ʳ e′ .∅∪ʳ _ = E.is-propositionʳ _ _ _ e′ .idem-sʳ _ = E.is-propositionʳ _ _ _ e′ .assocʳ _ _ _ = E.is-propositionʳ _ _ _ e′ .commʳ _ _ = E.is-propositionʳ _ _ _ e′ .is-setʳ _ = mono₁ 1 (E.is-propositionʳ _) -- A non-dependent eliminator for propositions. record Rec-prop (A : Type a) (B : Type b) : Type (a ⊔ b) where field ∅ʳ : B singletonʳ : A → B ∪ʳ : Finite-subset-of A → Finite-subset-of A → B → B → B is-propositionʳ : Is-proposition B open Rec-prop public rec-prop : Rec-prop A B → Finite-subset-of A → B rec-prop r = elim-prop e where module R = Rec-prop r e : Elim-prop _ e .∅ʳ = R.∅ʳ e .singletonʳ = R.singletonʳ e .∪ʳ {x = x} {y = y} = R.∪ʳ x y e .is-propositionʳ _ = R.is-propositionʳ ------------------------------------------------------------------------ -- Definitions related to listed finite subsets private -- Some definitions used in the implementation of Listed≃Kuratowski -- below. to : L.Finite-subset-of A → Finite-subset-of A to L.[] = ∅ to (x L.∷ y) = singleton x ∪ to y to (L.dropᴾ {x = x} {y = y} i) = (singleton x ∪ (singleton x ∪ to y) P.≡⟨ assocᴾ ⟩ (singleton x ∪ singleton x) ∪ to y P.≡⟨ P.cong (_∪ to y) idem-sᴾ ⟩∎ singleton x ∪ to y ∎) i to (L.swapᴾ {x = x} {y = y} {z = z} i) = (singleton x ∪ (singleton y ∪ to z) P.≡⟨ assocᴾ ⟩ (singleton x ∪ singleton y) ∪ to z P.≡⟨ P.cong (_∪ to z) commᴾ ⟩ (singleton y ∪ singleton x) ∪ to z P.≡⟨ P.sym assocᴾ ⟩∎ singleton y ∪ (singleton x ∪ to z) ∎) i to (L.is-setᴾ x y i j) = is-setᴾ (λ i → to (x i)) (λ i → to (y i)) i j to-∪ : (x : L.Finite-subset-of A) → to (x L.∪ y) ≡ to x ∪ to y to-∪ {y = y} = L.elim-prop e where e : L.Elim-prop _ e .L.is-propositionʳ _ = is-set e .L.[]ʳ = to y ≡⟨ sym ∅∪ ⟩∎ ∅ ∪ to y ∎ e .L.∷ʳ {y = z} x hyp = singleton x ∪ to (z L.∪ y) ≡⟨ cong (singleton x ∪_) hyp ⟩ singleton x ∪ (to z ∪ to y) ≡⟨ assoc ⟩∎ (singleton x ∪ to z) ∪ to y ∎ -- Listed finite subsets are equivalent to Kuratowski finite subsets. Listed≃Kuratowski : L.Finite-subset-of A ≃ Finite-subset-of A Listed≃Kuratowski {A = A} = from-bijection (record { surjection = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = to∘from } ; left-inverse-of = from∘to }) where from : Finite-subset-of A → L.Finite-subset-of A from ∅ = L.[] from (singleton x) = x L.∷ L.[] from (x ∪ y) = from x L.∪ from y from (∅∪ᴾ {x = x} _) = from x from (idem-sᴾ {x = x} i) = L.dropᴾ {x = x} {y = L.[]} i from (assocᴾ {x = x} {y = y} {z = z} i) = _↔_.to ≡↔≡ (L.assoc {y = from y} {z = from z} (from x)) i from (commᴾ {x = x} {y = y} i) = _↔_.to ≡↔≡ (L.comm {y = from y} (from x)) i from (is-setᴾ x y i j) = L.is-setᴾ (λ i → from (x i)) (λ i → from (y i)) i j to∘from : ∀ x → to (from x) ≡ x to∘from = elim-prop e where e : Elim-prop _ e .is-propositionʳ _ = is-set e .∅ʳ = refl _ e .singletonʳ _ = ∪∅ e .∪ʳ {x = x} {y = y} hyp₁ hyp₂ = to (from x L.∪ from y) ≡⟨ to-∪ (from x) ⟩ to (from x) ∪ to (from y) ≡⟨ cong₂ _∪_ hyp₁ hyp₂ ⟩∎ x ∪ y ∎ from∘to : ∀ x → from (to x) ≡ x from∘to = L.elim-prop e where e : L.Elim-prop _ e .L.is-propositionʳ _ = L.is-set e .L.[]ʳ = refl _ e .L.∷ʳ {y = y} x hyp = x L.∷ from (to y) ≡⟨ cong (x L.∷_) hyp ⟩∎ x L.∷ y ∎ -- The forward direction of Listed≃Kuratowski is homomorphic with -- respect to L._∪_/_∪_. to-Listed≃Kuratowski-∪ : (x : L.Finite-subset-of A) → _≃_.to Listed≃Kuratowski (x L.∪ y) ≡ _≃_.to Listed≃Kuratowski x ∪ _≃_.to Listed≃Kuratowski y to-Listed≃Kuratowski-∪ = to-∪ -- The other direction of Listed≃Kuratowski is definitionally -- homomorphic with respect to _∪_/L._∪_. _ : _≃_.from Listed≃Kuratowski (x ∪ y) ≡ _≃_.from Listed≃Kuratowski x L.∪ _≃_.from Listed≃Kuratowski y _ = refl _ -- A list-like dependent eliminator for Finite-subset-of, for -- propositions. record List-elim-prop {A : Type a} (P : Finite-subset-of A → Type p) : Type (a ⊔ p) where field []ʳ : P ∅ ∷ʳ : ∀ x → P y → P (singleton x ∪ y) is-propositionʳ : ∀ x → Is-proposition (P x) open List-elim-prop public list-elim-prop : List-elim-prop P → (x : Finite-subset-of A) → P x list-elim-prop {P = P} l x = subst P (_≃_.right-inverse-of Listed≃Kuratowski x) (L.elim-prop e (_≃_.from Listed≃Kuratowski x)) where module E = List-elim-prop l e : L.Elim-prop (P ∘ _≃_.to Listed≃Kuratowski) e .L.[]ʳ = E.[]ʳ e .L.∷ʳ x = E.∷ʳ x e .L.is-propositionʳ _ = E.is-propositionʳ _ -- A list-like non-dependent eliminator for Finite-subset-of, -- expressed using paths. record List-recᴾ (A : Type a) (B : Type b) : Type (a ⊔ b) where field []ʳ : B ∷ʳ : A → Finite-subset-of A → B → B dropʳ : ∀ x y p → ∷ʳ x (singleton x ∪ y) (∷ʳ x y p) P.≡ ∷ʳ x y p swapʳ : ∀ x y z p → ∷ʳ x (singleton y ∪ z) (∷ʳ y z p) P.≡ ∷ʳ y (singleton x ∪ z) (∷ʳ x z p) is-setʳ : P.Is-set B open List-recᴾ public list-recᴾ : List-recᴾ A B → Finite-subset-of A → B list-recᴾ l = L.recᴾ r ∘ _≃_.from Listed≃Kuratowski where module E = List-recᴾ l r : L.Recᴾ _ _ r .L.[]ʳ = E.[]ʳ r .L.∷ʳ x y = E.∷ʳ x (_≃_.to Listed≃Kuratowski y) r .L.dropʳ x y = E.dropʳ x (_≃_.to Listed≃Kuratowski y) r .L.swapʳ x y z = E.swapʳ x y (_≃_.to Listed≃Kuratowski z) r .L.is-setʳ = E.is-setʳ -- Unit tests documenting some of the computational behaviour of -- list-recᴾ. _ : list-recᴾ l ∅ ≡ l .[]ʳ _ = refl _ _ : list-recᴾ l (singleton x) ≡ l .∷ʳ x ∅ (l .[]ʳ) _ = refl _ _ : let y′ = _≃_.to Listed≃Kuratowski (_≃_.from Listed≃Kuratowski y) in list-recᴾ l (singleton x ∪ y) ≡ l .∷ʳ x y′ (list-recᴾ l y) _ = refl _ -- A list-like non-dependent eliminator for Finite-subset-of, -- expressed using equality. record List-rec (A : Type a) (B : Type b) : Type (a ⊔ b) where field []ʳ : B ∷ʳ : A → Finite-subset-of A → B → B dropʳ : ∀ x y p → ∷ʳ x (singleton x ∪ y) (∷ʳ x y p) ≡ ∷ʳ x y p swapʳ : ∀ x y z p → ∷ʳ x (singleton y ∪ z) (∷ʳ y z p) ≡ ∷ʳ y (singleton x ∪ z) (∷ʳ x z p) is-setʳ : Is-set B open List-rec public list-rec : List-rec A B → Finite-subset-of A → B list-rec l = list-recᴾ l′ where module R = List-rec l l′ : List-recᴾ _ _ l′ .[]ʳ = R.[]ʳ l′ .∷ʳ = R.∷ʳ l′ .dropʳ x y p = _↔_.to ≡↔≡ (R.dropʳ x y p) l′ .swapʳ x y z p = _↔_.to ≡↔≡ (R.swapʳ x y z p) l′ .is-setʳ = _↔_.to (H-level↔H-level 2) R.is-setʳ -- Unit tests documenting some of the computational behaviour of -- list-rec. _ : list-rec l ∅ ≡ l .[]ʳ _ = refl _ _ : list-rec l (singleton x) ≡ l .∷ʳ x ∅ (l .[]ʳ) _ = refl _ _ : let y′ = _≃_.to Listed≃Kuratowski (_≃_.from Listed≃Kuratowski y) in list-rec l (singleton x ∪ y) ≡ l .∷ʳ x y′ (list-rec l y) _ = refl _ ------------------------------------------------------------------------ -- Membership -- Membership. infix 4 _∈_ _∈_ : {A : Type a} → A → Finite-subset-of A → Type a x ∈ y = x L.∈ _≃_.from Listed≃Kuratowski y -- Membership is propositional. ∈-propositional : ∀ y → Is-proposition (x ∈ y) ∈-propositional _ = L.∈-propositional -- A lemma characterising ∅. ∈∅≃ : (x ∈ ∅) ≃ ⊥₀ ∈∅≃ = L.∈[]≃ -- A lemma characterising singleton. ∈singleton≃ : (x ∈ singleton y) ≃ ∥ x ≡ y ∥ ∈singleton≃ = L.∈singleton≃ -- If x is a member of y, then x is a member of y ∪ z. ∈→∈∪ˡ : ∀ y z → x ∈ y → x ∈ y ∪ z ∈→∈∪ˡ {x = x} y z = x ∈ y ↔⟨⟩ x L.∈ _≃_.from Listed≃Kuratowski y ↝⟨ L.∈→∈∪ˡ ⟩ x L.∈ _≃_.from Listed≃Kuratowski y L.∪ _≃_.from Listed≃Kuratowski z ↔⟨⟩ x L.∈ _≃_.from Listed≃Kuratowski (y ∪ z) ↔⟨⟩ x ∈ y ∪ z □ -- If x is a member of z, then x is a member of y ∪ z. ∈→∈∪ʳ : ∀ y z → x ∈ z → x ∈ y ∪ z ∈→∈∪ʳ {x = x} y z = x ∈ z ↔⟨⟩ x L.∈ _≃_.from Listed≃Kuratowski z ↝⟨ L.∈→∈∪ʳ (_≃_.from Listed≃Kuratowski y) ⟩ x L.∈ _≃_.from Listed≃Kuratowski y L.∪ _≃_.from Listed≃Kuratowski z ↔⟨⟩ x ∈ y ∪ z □ -- Membership of a union of two subsets can be expressed in terms of -- membership of the subsets. ∈∪≃ : ∀ y z → (x ∈ y ∪ z) ≃ (x ∈ y ∥⊎∥ x ∈ z) ∈∪≃ {x = x} y z = x ∈ y ∪ z ↔⟨⟩ x L.∈ _≃_.from Listed≃Kuratowski y L.∪ _≃_.from Listed≃Kuratowski z ↝⟨ L.∈∪≃ ⟩ x L.∈ _≃_.from Listed≃Kuratowski y ∥⊎∥ x L.∈ _≃_.from Listed≃Kuratowski z ↔⟨⟩ x ∈ y ∥⊎∥ x ∈ z □ -- If truncated equality is decidable, then membership is also -- decidable. member? : ((x y : A) → Dec ∥ x ≡ y ∥) → (x : A) (y : Finite-subset-of A) → Dec (x ∈ y) member? equal? x = L.member? equal? x ∘ _≃_.from Listed≃Kuratowski -- Subsets. _⊆_ : {A : Type a} → Finite-subset-of A → Finite-subset-of A → Type a x ⊆ y = ∀ z → z ∈ x → z ∈ y -- The subset property can be expressed using _∪_ and _≡_. ⊆≃∪≡ : (x ⊆ y) ≃ (x ∪ y ≡ y) ⊆≃∪≡ {x = x} {y = y} = x ⊆ y ↝⟨ L.⊆≃∪≡ (_≃_.from Listed≃Kuratowski x) ⟩ _≃_.from Listed≃Kuratowski x L.∪ _≃_.from Listed≃Kuratowski y ≡ _≃_.from Listed≃Kuratowski y ↔⟨⟩ _≃_.from Listed≃Kuratowski (x ∪ y) ≡ _≃_.from Listed≃Kuratowski y ↝⟨ Eq.≃-≡ (inverse Listed≃Kuratowski) ⟩□ x ∪ y ≡ y □ -- Extensionality. extensionality : (x ≡ y) ≃ (∀ z → z ∈ x ⇔ z ∈ y) extensionality {x = x} {y = y} = x ≡ y ↝⟨ inverse $ Eq.≃-≡ (inverse Listed≃Kuratowski) ⟩ _≃_.from Listed≃Kuratowski x ≡ _≃_.from Listed≃Kuratowski y ↝⟨ L.extensionality ⟩□ (∀ z → z ∈ x ⇔ z ∈ y) □ ------------------------------------------------------------------------ -- A law -- Union is idempotent. idem : x ∪ x ≡ x idem {x = x} = _≃_.from extensionality λ y → y ∈ x ∪ x ↔⟨ ∈∪≃ x x ⟩ y ∈ x ∥⊎∥ y ∈ x ↔⟨ Trunc.idempotent ⟩ ∥ y ∈ x ∥ ↔⟨ Trunc.∥∥↔ (∈-propositional x) ⟩□ y ∈ x □ ------------------------------------------------------------------------ -- Some operations -- A map function. map : (A → B) → Finite-subset-of A → Finite-subset-of B map f = recᴾ r where r : Recᴾ _ _ r .∅ʳ = ∅ r .singletonʳ x = singleton (f x) r .∪ʳ _ _ = _∪_ r .∅∪ʳ _ _ = ∅∪ᴾ r .idem-sʳ _ = idem-sᴾ r .assocʳ _ _ _ = assocᴾ r .commʳ _ _ = commᴾ r .is-setʳ = is-setᴾ -- A filter function. filter : (A → Bool) → Finite-subset-of A → Finite-subset-of A filter p = rec r where r : Rec _ _ r .∅ʳ = ∅ r .singletonʳ x = if p x then singleton x else ∅ r .∪ʳ _ _ = _∪_ r .∅∪ʳ _ _ = ∅∪ r .idem-sʳ _ = idem r .assocʳ _ _ _ = assoc r .commʳ _ _ = comm r .is-setʳ = is-set -- Join. join : Finite-subset-of (Finite-subset-of A) → Finite-subset-of A join = rec r where r : Rec _ _ r .∅ʳ = ∅ r .singletonʳ = id r .∪ʳ _ _ = _∪_ r .∅∪ʳ _ _ = ∅∪ r .idem-sʳ _ = idem r .assocʳ _ _ _ = assoc r .commʳ _ _ = comm r .is-setʳ = is-set -- A universe-polymorphic variant of bind. infixl 5 _>>=′_ _>>=′_ : Finite-subset-of A → (A → Finite-subset-of B) → Finite-subset-of B x >>=′ f = join (map f x) -- Bind distributes from the right over union. _ : (x ∪ y) >>=′ f ≡ (x >>=′ f) ∪ (y >>=′ f) _ = refl _ -- Bind distributes from the left over union. >>=-left-distributive : ∀ x → (x >>=′ λ x → f x ∪ g x) ≡ (x >>=′ f) ∪ (x >>=′ g) >>=-left-distributive {f = f} {g = g} = elim-prop e where e : Elim-prop _ e .∅ʳ = ∅ ≡⟨ sym idem ⟩∎ ∅ ∪ ∅ ∎ e .singletonʳ _ = refl _ e .is-propositionʳ _ = is-set e .∪ʳ {x = x} {y = y} hyp₁ hyp₂ = (x ∪ y) >>=′ (λ x → f x ∪ g x) ≡⟨⟩ (x >>=′ λ x → f x ∪ g x) ∪ (y >>=′ λ x → f x ∪ g x) ≡⟨ cong₂ _∪_ hyp₁ hyp₂ ⟩ ((x >>=′ f) ∪ (x >>=′ g)) ∪ ((y >>=′ f) ∪ (y >>=′ g)) ≡⟨ sym assoc ⟩ (x >>=′ f) ∪ ((x >>=′ g) ∪ ((y >>=′ f) ∪ (y >>=′ g))) ≡⟨ cong ((x >>=′ f) ∪_) assoc ⟩ (x >>=′ f) ∪ (((x >>=′ g) ∪ (y >>=′ f)) ∪ (y >>=′ g)) ≡⟨ cong (((x >>=′ f) ∪_) ∘ (_∪ (y >>=′ g))) comm ⟩ (x >>=′ f) ∪ (((y >>=′ f) ∪ (x >>=′ g)) ∪ (y >>=′ g)) ≡⟨ cong ((x >>=′ f) ∪_) (sym assoc) ⟩ (x >>=′ f) ∪ ((y >>=′ f) ∪ ((x >>=′ g) ∪ (y >>=′ g))) ≡⟨ assoc ⟩ ((x >>=′ f) ∪ (y >>=′ f)) ∪ ((x >>=′ g) ∪ (y >>=′ g)) ≡⟨⟩ ((x ∪ y) >>=′ f) ∪ ((x ∪ y) >>=′ g) ∎ -- Monad laws. _ : singleton x >>=′ f ≡ f x _ = refl _ >>=-singleton : x >>=′ singleton ≡ x >>=-singleton = elim-prop e _ where e : Elim-prop (λ x → x >>=′ singleton ≡ x) e .∅ʳ = refl _ e .singletonʳ _ = refl _ e .is-propositionʳ _ = is-set e .∪ʳ {x = x} {y = y} hyp₁ hyp₂ = (x ∪ y) >>=′ singleton ≡⟨⟩ (x >>=′ singleton) ∪ (y >>=′ singleton) ≡⟨ cong₂ _∪_ hyp₁ hyp₂ ⟩∎ x ∪ y ∎ >>=-assoc : ∀ x → x >>=′ (λ x → f x >>=′ g) ≡ x >>=′ f >>=′ g >>=-assoc {f = f} {g = g} = elim-prop e where e : Elim-prop _ e .∅ʳ = refl _ e .singletonʳ _ = refl _ e .is-propositionʳ _ = is-set e .∪ʳ {x = x} {y = y} hyp₁ hyp₂ = (x ∪ y) >>=′ (λ x → f x >>=′ g) ≡⟨⟩ (x >>=′ λ x → f x >>=′ g) ∪ (y >>=′ λ x → f x >>=′ g) ≡⟨ cong₂ _∪_ hyp₁ hyp₂ ⟩ (x >>=′ f >>=′ g) ∪ (y >>=′ f >>=′ g) ≡⟨⟩ (x ∪ y) >>=′ f >>=′ g ∎ -- A monad instance. instance raw-monad : Raw-monad {d = a} Finite-subset-of raw-monad .M.return = singleton raw-monad .M._>>=_ = _>>=′_ monad : Monad {d = a} Finite-subset-of monad .M.Monad.raw-monad = raw-monad monad .M.Monad.left-identity _ _ = refl _ monad .M.Monad.right-identity _ = >>=-singleton monad .M.Monad.associativity x _ _ = >>=-assoc x ------------------------------------------------------------------------ -- Size -- Size. infix 4 ∣_∣≡_ ∣_∣≡_ : {A : Type a} → Finite-subset-of A → ℕ → Type a ∣ x ∣≡ n = L.∣ _≃_.from Listed≃Kuratowski x ∣≡ n -- The size predicate is propositional. ∣∣≡-propositional : (x : Finite-subset-of A) → Is-proposition (∣ x ∣≡ n) ∣∣≡-propositional = L.∣∣≡-propositional ∘ _≃_.from Listed≃Kuratowski -- Unit tests documenting some of the computational behaviour of -- ∣_∣≡_. _ : (∣ ∅ {A = A} ∣≡ n) ≡ ↑ _ (n ≡ 0) _ = refl _ _ : ∀ {A : Type a} {x : A} {y} → (∣ singleton x ∪ y ∣≡ zero) ≡ (x ∈ y × ∣ y ∣≡ zero ⊎ ⊥) _ = refl _ _ : (∣ singleton x ∪ y ∣≡ suc n) ≡ (x ∈ y × ∣ y ∣≡ suc n ⊎ ¬ x ∈ y × ∣ y ∣≡ n) _ = refl _ -- The size predicate is functional. ∣∣≡-functional : (x : Finite-subset-of A) → ∣ x ∣≡ m → ∣ x ∣≡ n → m ≡ n ∣∣≡-functional = L.∣∣≡-functional ∘ _≃_.from Listed≃Kuratowski -- If truncated equality is decidable, then one can compute the size -- of a finite subset. size : ((x y : A) → Dec ∥ x ≡ y ∥) → (x : Finite-subset-of A) → ∃ λ n → ∣ x ∣≡ n size equal? = L.size equal? ∘ _≃_.from Listed≃Kuratowski
30.540921
114
0.455805
31d19632181f2dc8f0f19464b4439ed34a914000
4,858
agda
Agda
src/logic.agda
shinji-kono/HyperReal-in-agda
64d5f1ec0a6d81b7b9c45a289f669bbf32c9c891
[ "MIT" ]
null
null
null
src/logic.agda
shinji-kono/HyperReal-in-agda
64d5f1ec0a6d81b7b9c45a289f669bbf32c9c891
[ "MIT" ]
null
null
null
src/logic.agda
shinji-kono/HyperReal-in-agda
64d5f1ec0a6d81b7b9c45a289f669bbf32c9c891
[ "MIT" ]
null
null
null
module logic where open import Level open import Relation.Nullary open import Relation.Binary hiding (_⇔_ ) open import Data.Empty data Bool : Set where true : Bool false : Bool record _∧_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n ⊔ m) where constructor ⟪_,_⟫ field proj1 : A proj2 : B data _∨_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n ⊔ m) where case1 : A → A ∨ B case2 : B → A ∨ B _⇔_ : {n m : Level } → ( A : Set n ) ( B : Set m ) → Set (n ⊔ m) _⇔_ A B = ( A → B ) ∧ ( B → A ) ∧-exch : {n m : Level} {A : Set n} { B : Set m } → A ∧ B → B ∧ A ∧-exch p = ⟪ _∧_.proj2 p , _∧_.proj1 p ⟫ ∨-exch : {n m : Level} {A : Set n} { B : Set m } → A ∨ B → B ∨ A ∨-exch (case1 x) = case2 x ∨-exch (case2 x) = case1 x contra-position : {n m : Level } {A : Set n} {B : Set m} → (A → B) → ¬ B → ¬ A contra-position {n} {m} {A} {B} f ¬b a = ¬b ( f a ) double-neg : {n : Level } {A : Set n} → A → ¬ ¬ A double-neg A notnot = notnot A double-neg2 : {n : Level } {A : Set n} → ¬ ¬ ¬ A → ¬ A double-neg2 notnot A = notnot ( double-neg A ) de-morgan : {n : Level } {A B : Set n} → A ∧ B → ¬ ( (¬ A ) ∨ (¬ B ) ) de-morgan {n} {A} {B} and (case1 ¬A) = ⊥-elim ( ¬A ( _∧_.proj1 and )) de-morgan {n} {A} {B} and (case2 ¬B) = ⊥-elim ( ¬B ( _∧_.proj2 and )) dont-or : {n m : Level} {A : Set n} { B : Set m } → A ∨ B → ¬ A → B dont-or {A} {B} (case1 a) ¬A = ⊥-elim ( ¬A a ) dont-or {A} {B} (case2 b) ¬A = b dont-orb : {n m : Level} {A : Set n} { B : Set m } → A ∨ B → ¬ B → A dont-orb {A} {B} (case2 b) ¬B = ⊥-elim ( ¬B b ) dont-orb {A} {B} (case1 a) ¬B = a infixr 130 _∧_ infixr 140 _∨_ infixr 150 _⇔_ _/\_ : Bool → Bool → Bool true /\ true = true _ /\ _ = false _\/_ : Bool → Bool → Bool false \/ false = false _ \/ _ = true not_ : Bool → Bool not true = false not false = true _<=>_ : Bool → Bool → Bool true <=> true = true false <=> false = true _ <=> _ = false open import Relation.Binary.PropositionalEquality record Bijection {n m : Level} (R : Set n) (S : Set m) : Set (n Level.⊔ m) where field fun← : S → R fun→ : R → S fiso← : (x : R) → fun← ( fun→ x ) ≡ x fiso→ : (x : S ) → fun→ ( fun← x ) ≡ x injection : {n m : Level} (R : Set n) (S : Set m) (f : R → S ) → Set (n Level.⊔ m) injection R S f = (x y : R) → f x ≡ f y → x ≡ y ¬t=f : (t : Bool ) → ¬ ( not t ≡ t) ¬t=f true () ¬t=f false () infixr 130 _\/_ infixr 140 _/\_ ≡-Bool-func : {A B : Bool } → ( A ≡ true → B ≡ true ) → ( B ≡ true → A ≡ true ) → A ≡ B ≡-Bool-func {true} {true} a→b b→a = refl ≡-Bool-func {false} {true} a→b b→a with b→a refl ... | () ≡-Bool-func {true} {false} a→b b→a with a→b refl ... | () ≡-Bool-func {false} {false} a→b b→a = refl bool-≡-? : (a b : Bool) → Dec ( a ≡ b ) bool-≡-? true true = yes refl bool-≡-? true false = no (λ ()) bool-≡-? false true = no (λ ()) bool-≡-? false false = yes refl ¬-bool-t : {a : Bool} → ¬ ( a ≡ true ) → a ≡ false ¬-bool-t {true} ne = ⊥-elim ( ne refl ) ¬-bool-t {false} ne = refl ¬-bool-f : {a : Bool} → ¬ ( a ≡ false ) → a ≡ true ¬-bool-f {true} ne = refl ¬-bool-f {false} ne = ⊥-elim ( ne refl ) ¬-bool : {a : Bool} → a ≡ false → a ≡ true → ⊥ ¬-bool refl () lemma-∧-0 : {a b : Bool} → a /\ b ≡ true → a ≡ false → ⊥ lemma-∧-0 {true} {true} refl () lemma-∧-0 {true} {false} () lemma-∧-0 {false} {true} () lemma-∧-0 {false} {false} () lemma-∧-1 : {a b : Bool} → a /\ b ≡ true → b ≡ false → ⊥ lemma-∧-1 {true} {true} refl () lemma-∧-1 {true} {false} () lemma-∧-1 {false} {true} () lemma-∧-1 {false} {false} () bool-and-tt : {a b : Bool} → a ≡ true → b ≡ true → ( a /\ b ) ≡ true bool-and-tt refl refl = refl bool-∧→tt-0 : {a b : Bool} → ( a /\ b ) ≡ true → a ≡ true bool-∧→tt-0 {true} {true} refl = refl bool-∧→tt-0 {false} {_} () bool-∧→tt-1 : {a b : Bool} → ( a /\ b ) ≡ true → b ≡ true bool-∧→tt-1 {true} {true} refl = refl bool-∧→tt-1 {true} {false} () bool-∧→tt-1 {false} {false} () bool-or-1 : {a b : Bool} → a ≡ false → ( a \/ b ) ≡ b bool-or-1 {false} {true} refl = refl bool-or-1 {false} {false} refl = refl bool-or-2 : {a b : Bool} → b ≡ false → (a \/ b ) ≡ a bool-or-2 {true} {false} refl = refl bool-or-2 {false} {false} refl = refl bool-or-3 : {a : Bool} → ( a \/ true ) ≡ true bool-or-3 {true} = refl bool-or-3 {false} = refl bool-or-31 : {a b : Bool} → b ≡ true → ( a \/ b ) ≡ true bool-or-31 {true} {true} refl = refl bool-or-31 {false} {true} refl = refl bool-or-4 : {a : Bool} → ( true \/ a ) ≡ true bool-or-4 {true} = refl bool-or-4 {false} = refl bool-or-41 : {a b : Bool} → a ≡ true → ( a \/ b ) ≡ true bool-or-41 {true} {b} refl = refl bool-and-1 : {a b : Bool} → a ≡ false → (a /\ b ) ≡ false bool-and-1 {false} {b} refl = refl bool-and-2 : {a b : Bool} → b ≡ false → (a /\ b ) ≡ false bool-and-2 {true} {false} refl = refl bool-and-2 {false} {false} refl = refl
28.080925
87
0.502264
2920760d05b33f9ce78cf7293983e1e478a34dde
1,442
agda
Agda
Setoids/DirectSum.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Setoids/DirectSum.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Setoids/DirectSum.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Sets.EquivalenceRelations open import Setoids.Setoids module Setoids.DirectSum {m n o p : _} {A : Set m} {B : Set n} (R : Setoid {m} {o} A) (S : Setoid {n} {p} B) where directSumSetoid : Setoid {m ⊔ n} (A || B) Setoid._∼_ directSumSetoid (inl x) (inl y) = embedLevel {o} {p} (Setoid._∼_ R x y) Setoid._∼_ directSumSetoid (inl x) (inr y) = False' Setoid._∼_ directSumSetoid (inr x) (inl y) = False' Setoid._∼_ directSumSetoid (inr x) (inr y) = embedLevel {p} {o} (Setoid._∼_ S x y) Equivalence.reflexive (Setoid.eq directSumSetoid) {inl x} = Equivalence.reflexive (Setoid.eq R) {x} ,, record {} Equivalence.reflexive (Setoid.eq directSumSetoid) {inr x} = Equivalence.reflexive (Setoid.eq S) {x} ,, record {} Equivalence.symmetric (Setoid.eq directSumSetoid) {inl x} {inl y} (x=y ,, _) = (Equivalence.symmetric (Setoid.eq R) x=y) ,, record {} Equivalence.symmetric (Setoid.eq directSumSetoid) {inr x} {inr y} (x=y ,, _) = (Equivalence.symmetric (Setoid.eq S) x=y) ,, record {} Equivalence.transitive (Setoid.eq directSumSetoid) {inl x} {inl y} {inl z} (x=y ,, _) (y=z ,, _) = Equivalence.transitive (Setoid.eq R) x=y y=z ,, record {} Equivalence.transitive (Setoid.eq directSumSetoid) {inr x} {inr y} {inr z} (x=y ,, _) (y=z ,, _) = Equivalence.transitive (Setoid.eq S) x=y y=z ,, record {}
68.666667
156
0.677531
22631d8622c2e30eb542419ea50c184394168738
13,166
agda
Agda
Cubical/ZCohomology/MayerVietorisUnreduced.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/ZCohomology/MayerVietorisUnreduced.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/ZCohomology/MayerVietorisUnreduced.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.ZCohomology.MayerVietorisUnreduced where open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.GroupStructure open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Prelude open import Cubical.Foundations.Path open import Cubical.Foundations.Structure open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Data.Sigma open import Cubical.HITs.Pushout open import Cubical.HITs.Sn open import Cubical.HITs.S1 open import Cubical.HITs.Susp open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to sRec2 ; elim to sElim ; elim2 to sElim2) open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; elim to pElim ; elim2 to pElim2 ; ∥_∥ to ∥_∥₁ ; ∣_∣ to ∣_∣₁) open import Cubical.Data.Nat open import Cubical.Algebra.Group open import Cubical.HITs.Truncation renaming (elim to trElim ; map to trMap ; rec to trRec ; elim3 to trElim3) open IsGroupHom module MV {ℓ ℓ' ℓ''} (A : Type ℓ) (B : Type ℓ') (C : Type ℓ'') (f : C → A) (g : C → B) where -- Proof from Brunerie 2016. -- We first define the three morphisms involved: i, Δ and d. private i* : (n : ℕ) → coHom n (Pushout f g) → coHom n A × coHom n B i* n = sRec (isSet× isSetSetTrunc isSetSetTrunc) λ δ → ∣ (λ x → δ (inl x)) ∣₂ , ∣ (λ x → δ (inr x)) ∣₂ iIsHom : (n : ℕ) → IsGroupHom (coHomGr n (Pushout f g) .snd) (i* n) (×coHomGr n A B .snd) iIsHom n = makeIsGroupHom (sElim2 (λ _ _ → isOfHLevelPath 2 (isSet× isSetSetTrunc isSetSetTrunc) _ _) λ _ _ → refl) i : (n : ℕ) → GroupHom (coHomGr n (Pushout f g)) (×coHomGr n A B) fst (i n) = i* n snd (i n) = iIsHom n private distrLem : (n : ℕ) (x y z w : coHomK n) → (x +[ n ]ₖ y) -[ n ]ₖ (z +[ n ]ₖ w) ≡ (x -[ n ]ₖ z) +[ n ]ₖ (y -[ n ]ₖ w) distrLem n x y z w = cong (λ z → (x +[ n ]ₖ y) +[ n ]ₖ z) (-distrₖ n z w) ∙∙ sym (assocₖ n x y ((-[ n ]ₖ z) +[ n ]ₖ (-[ n ]ₖ w))) ∙∙ cong (λ y → x +[ n ]ₖ y) (commₖ n y ((-[ n ]ₖ z) +[ n ]ₖ (-[ n ]ₖ w)) ∙ sym (assocₖ n _ _ _)) ∙∙ assocₖ n _ _ _ ∙∙ cong (λ y → (x -[ n ]ₖ z) +[ n ]ₖ y) (commₖ n (-[ n ]ₖ w) y) Δ' : (n : ℕ) → coHom n A × coHom n B → coHom n C Δ' n (α , β) = coHomFun n f α -[ n ]ₕ coHomFun n g β Δ'-isMorph : (n : ℕ) → IsGroupHom (×coHomGr n A B .snd) (Δ' n) (coHomGr n C .snd) Δ'-isMorph n = makeIsGroupHom (prodElim2 (λ _ _ → isOfHLevelPath 2 isSetSetTrunc _ _ ) λ f' x1 g' x2 i → ∣ (λ x → distrLem n (f' (f x)) (g' (f x)) (x1 (g x)) (x2 (g x)) i) ∣₂) Δ : (n : ℕ) → GroupHom (×coHomGr n A B) (coHomGr n C) fst (Δ n) = Δ' n snd (Δ n) = Δ'-isMorph n d-pre : (n : ℕ) → (C → coHomK n) → Pushout f g → coHomK (suc n) d-pre n γ (inl x) = 0ₖ (suc n) d-pre n γ (inr x) = 0ₖ (suc n) d-pre n γ (push a i) = Kn→ΩKn+1 n (γ a) i dHomHelper : (n : ℕ) (h l : C → coHomK n) (x : Pushout f g) → d-pre n (λ x → h x +[ n ]ₖ l x) x ≡ d-pre n h x +[ suc n ]ₖ d-pre n l x dHomHelper n h l (inl x) = sym (rUnitₖ (suc n) (0ₖ (suc n))) dHomHelper n h l (inr x) = sym (lUnitₖ (suc n) (0ₖ (suc n))) dHomHelper n h l (push a i) j = hcomp (λ k → λ { (i = i0) → rUnitₖ (suc n) (0ₖ (suc n)) (~ j) ; (i = i1) → lUnitₖ (suc n) (0ₖ (suc n)) (~ j) ; (j = i0) → Kn→ΩKn+1-hom n (h a) (l a) (~ k) i ; (j = i1) → cong₂Funct (λ x y → x +[ (suc n) ]ₖ y) (Kn→ΩKn+1 n (h a)) (Kn→ΩKn+1 n (l a)) (~ k) i }) (hcomp (λ k → λ { (i = i0) → rUnitₖ (suc n) (0ₖ (suc n)) (~ j) ; (i = i1) → lUnitₖ (suc n) (Kn→ΩKn+1 n (l a) k) (~ j)}) (hcomp (λ k → λ { (i = i0) → rUnitₖ (suc n) (0ₖ (suc n)) (~ j) ; (i = i1) → lUnitₖ≡rUnitₖ (suc n) (~ k) (~ j) ; (j = i0) → Kn→ΩKn+1 n (h a) i ; (j = i1) → (Kn→ΩKn+1 n (h a) i) +[ (suc n) ]ₖ coHom-pt (suc n)}) (rUnitₖ (suc n) (Kn→ΩKn+1 n (h a) i) (~ j)))) dIsHom : (n : ℕ) → IsGroupHom (coHomGr n C .snd) (sRec isSetSetTrunc λ a → ∣ d-pre n a ∣₂) (coHomGr (suc n) (Pushout f g) .snd) dIsHom n = makeIsGroupHom (sElim2 (λ _ _ → isOfHLevelPath 2 isSetSetTrunc _ _) λ f g i → ∣ funExt (λ x → dHomHelper n f g x) i ∣₂) d : (n : ℕ) → GroupHom (coHomGr n C) (coHomGr (suc n) (Pushout f g)) fst (d n) = sRec isSetSetTrunc λ a → ∣ d-pre n a ∣₂ snd (d n) = dIsHom n -- The long exact sequence Im-d⊂Ker-i : (n : ℕ) (x : ⟨ (coHomGr (suc n) (Pushout f g)) ⟩) → isInIm (d n) x → isInKer (i (suc n)) x Im-d⊂Ker-i n = sElim (λ _ → isSetΠ λ _ → isOfHLevelPath 2 (isSet× isSetSetTrunc isSetSetTrunc) _ _) λ a → pRec (isOfHLevelPath' 1 (isSet× isSetSetTrunc isSetSetTrunc) _ _) (sigmaElim (λ _ → isOfHLevelPath 2 (isSet× isSetSetTrunc isSetSetTrunc) _ _) λ δ b i → sRec (isSet× isSetSetTrunc isSetSetTrunc) (λ δ → ∣ (λ x → δ (inl x)) ∣₂ , ∣ (λ x → δ (inr x)) ∣₂ ) (b (~ i))) Ker-i⊂Im-d : (n : ℕ) (x : ⟨ coHomGr (suc n) (Pushout f g) ⟩) → isInKer (i (suc n)) x → isInIm (d n) x Ker-i⊂Im-d n = sElim (λ _ → isSetΠ λ _ → isProp→isSet isPropPropTrunc) λ a p → pRec {A = (λ x → a (inl x)) ≡ λ _ → 0ₖ (suc n)} (isProp→ isPropPropTrunc) (λ p1 → pRec isPropPropTrunc λ p2 → ∣ ∣ (λ c → ΩKn+1→Kn n (sym (cong (λ F → F (f c)) p1) ∙∙ cong a (push c) ∙∙ cong (λ F → F (g c)) p2)) ∣₂ , cong ∣_∣₂ (funExt (λ δ → helper a p1 p2 δ)) ∣₁) (Iso.fun PathIdTrunc₀Iso (cong fst p)) (Iso.fun PathIdTrunc₀Iso (cong snd p)) where helper : (F : (Pushout f g) → coHomK (suc n)) (p1 : Path (_ → coHomK (suc n)) (λ a₁ → F (inl a₁)) (λ _ → coHom-pt (suc n))) (p2 : Path (_ → coHomK (suc n)) (λ a₁ → F (inr a₁)) (λ _ → coHom-pt (suc n))) → (δ : Pushout f g) → d-pre n (λ c → ΩKn+1→Kn n ((λ i₁ → p1 (~ i₁) (f c)) ∙∙ cong F (push c) ∙∙ cong (λ F → F (g c)) p2)) δ ≡ F δ helper F p1 p2 (inl x) = sym (cong (λ f → f x) p1) helper F p1 p2 (inr x) = sym (cong (λ f → f x) p2) helper F p1 p2 (push a i) j = hcomp (λ k → λ { (i = i0) → p1 (~ j) (f a) ; (i = i1) → p2 (~ j) (g a) ; (j = i0) → Iso.rightInv (Iso-Kn-ΩKn+1 n) ((λ i₁ → p1 (~ i₁) (f a)) ∙∙ cong F (push a) ∙∙ cong (λ F₁ → F₁ (g a)) p2) (~ k) i ; (j = i1) → F (push a i)}) (doubleCompPath-filler (sym (cong (λ F → F (f a)) p1)) (cong F (push a)) (cong (λ F → F (g a)) p2) (~ j) i) Im-i⊂Ker-Δ : (n : ℕ) (x : ⟨ ×coHomGr n A B ⟩) → isInIm (i n) x → isInKer (Δ n) x Im-i⊂Ker-Δ n (Fa , Fb) = sElim {B = λ Fa → (Fb : _) → isInIm (i n) (Fa , Fb) → isInKer (Δ n) (Fa , Fb)} (λ _ → isSetΠ2 λ _ _ → isOfHLevelPath 2 isSetSetTrunc _ _) (λ Fa → sElim (λ _ → isSetΠ λ _ → isOfHLevelPath 2 isSetSetTrunc _ _) λ Fb → pRec (isSetSetTrunc _ _) (sigmaElim (λ x → isProp→isSet (isSetSetTrunc _ _)) λ Fd p → helper n Fa Fb Fd p)) Fa Fb where helper : (n : ℕ) (Fa : A → coHomK n) (Fb : B → coHomK n) (Fd : (Pushout f g) → coHomK n) → (fst (i n) ∣ Fd ∣₂ ≡ (∣ Fa ∣₂ , ∣ Fb ∣₂)) → (fst (Δ n)) (∣ Fa ∣₂ , ∣ Fb ∣₂) ≡ 0ₕ n helper n Fa Fb Fd p = cong (fst (Δ n)) (sym p) ∙∙ (λ i → ∣ (λ x → Fd (inl (f x))) ∣₂ -[ n ]ₕ ∣ (λ x → Fd (push x (~ i))) ∣₂ ) ∙∙ rCancelₕ n ∣ (λ x → Fd (inl (f x))) ∣₂ Ker-Δ⊂Im-i : (n : ℕ) (a : ⟨ ×coHomGr n A B ⟩) → isInKer (Δ n) a → isInIm (i n) a Ker-Δ⊂Im-i n = prodElim (λ _ → isSetΠ (λ _ → isProp→isSet isPropPropTrunc)) (λ Fa Fb p → pRec isPropPropTrunc (λ q → ∣ ∣ helpFun Fa Fb q ∣₂ , refl ∣₁) (helper Fa Fb p)) where helper : (Fa : A → coHomK n) (Fb : B → coHomK n) → fst (Δ n) (∣ Fa ∣₂ , ∣ Fb ∣₂) ≡ 0ₕ n → ∥ Path (_ → _) (λ c → Fa (f c)) (λ c → Fb (g c)) ∥₁ helper Fa Fb p = Iso.fun PathIdTrunc₀Iso (sym (cong ∣_∣₂ (funExt (λ x → sym (assocₖ n _ _ _) ∙∙ cong (λ y → Fa (f x) +[ n ]ₖ y) (lCancelₖ n (Fb (g x))) ∙∙ rUnitₖ n (Fa (f x))))) ∙∙ cong (λ x → x +[ n ]ₕ ∣ (λ c → Fb (g c)) ∣₂) p ∙∙ lUnitₕ n _) helpFun : (Fa : A → coHomK n) (Fb : B → coHomK n) → ((λ c → Fa (f c)) ≡ (λ c → Fb (g c))) → Pushout f g → coHomK n helpFun Fa Fb p (inl x) = Fa x helpFun Fa Fb p (inr x) = Fb x helpFun Fa Fb p (push a i) = p i a private distrHelper : (n : ℕ) (p q : _) → ΩKn+1→Kn n p +[ n ]ₖ (-[ n ]ₖ ΩKn+1→Kn n q) ≡ ΩKn+1→Kn n (p ∙ sym q) distrHelper n p q = cong (λ x → ΩKn+1→Kn n p +[ n ]ₖ x) helper ∙ sym (ΩKn+1→Kn-hom n _ _) where helper : -[ n ]ₖ ΩKn+1→Kn n q ≡ ΩKn+1→Kn n (sym q) helper = sym (rUnitₖ n _) ∙∙ cong (λ x → (-[ n ]ₖ (ΩKn+1→Kn n q)) +[ n ]ₖ x) (sym helper2) ∙∙ (assocₖ n _ _ _ ∙∙ cong (λ x → x +[ n ]ₖ (ΩKn+1→Kn n (sym q))) (lCancelₖ n _) ∙∙ lUnitₖ n _) where helper2 : ΩKn+1→Kn n q +[ n ]ₖ (ΩKn+1→Kn n (sym q)) ≡ coHom-pt n helper2 = sym (ΩKn+1→Kn-hom n q (sym q)) ∙∙ cong (ΩKn+1→Kn n) (rCancel q) ∙∙ ΩKn+1→Kn-refl n Ker-d⊂Im-Δ : (n : ℕ) (a : coHom n C) → isInKer (d n) a → isInIm (Δ n) a Ker-d⊂Im-Δ n = sElim (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelSuc 1 isPropPropTrunc) λ Fc p → pRec isPropPropTrunc (λ p → ∣ (∣ (λ a → ΩKn+1→Kn n (cong (λ f → f (inl a)) p)) ∣₂ , ∣ (λ b → ΩKn+1→Kn n (cong (λ f → f (inr b)) p)) ∣₂) , Iso.inv (PathIdTrunc₀Iso) ∣ funExt (λ c → helper2 Fc p c) ∣₁ ∣₁) (Iso.fun (PathIdTrunc₀Iso) p) where helper2 : (Fc : C → coHomK n) (p : d-pre n Fc ≡ (λ _ → coHom-pt (suc n))) (c : C) → ΩKn+1→Kn n (λ i₁ → p i₁ (inl (f c))) -[ n ]ₖ (ΩKn+1→Kn n (λ i₁ → p i₁ (inr (g c)))) ≡ Fc c helper2 Fc p c = distrHelper n _ _ ∙∙ cong (ΩKn+1→Kn n) helper3 ∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 n) (Fc c) where helper3 : (λ i₁ → p i₁ (inl (f c))) ∙ sym (λ i₁ → p i₁ (inr (g c))) ≡ Kn→ΩKn+1 n (Fc c) helper3 = cong ((λ i₁ → p i₁ (inl (f c))) ∙_) (lUnit _) ∙ sym (PathP→compPathR (cong (λ f → cong f (push c)) p)) Im-Δ⊂Ker-d : (n : ℕ) (a : coHom n C) → isInIm (Δ n) a → isInKer (d n) a Im-Δ⊂Ker-d n = sElim (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelPath 2 isSetSetTrunc _ _) λ Fc → pRec (isOfHLevelPath' 1 isSetSetTrunc _ _) (sigmaProdElim (λ _ → isOfHLevelPath 2 isSetSetTrunc _ _) λ Fa Fb p → pRec (isOfHLevelPath' 1 isSetSetTrunc _ _) (λ q → ((λ i → fst (d n) ∣ (q (~ i)) ∣₂) ∙ dΔ-Id n Fa Fb)) (Iso.fun (PathIdTrunc₀Iso) p)) where d-preLeftId : (n : ℕ) (Fa : A → coHomK n)(d : (Pushout f g)) → d-pre n (Fa ∘ f) d ≡ 0ₖ (suc n) d-preLeftId n Fa (inl x) = Kn→ΩKn+1 n (Fa x) d-preLeftId n Fa (inr x) = refl d-preLeftId n Fa (push a i) j = Kn→ΩKn+1 n (Fa (f a)) (j ∨ i) d-preRightId : (n : ℕ) (Fb : B → coHomK n) (d : (Pushout f g)) → d-pre n (Fb ∘ g) d ≡ 0ₖ (suc n) d-preRightId n Fb (inl x) = refl d-preRightId n Fb (inr x) = sym (Kn→ΩKn+1 n (Fb x)) d-preRightId n Fb (push a i) j = Kn→ΩKn+1 n (Fb (g a)) (~ j ∧ i) dΔ-Id : (n : ℕ) (Fa : A → coHomK n) (Fb : B → coHomK n) → fst (d n) (fst (Δ n) (∣ Fa ∣₂ , ∣ Fb ∣₂)) ≡ 0ₕ (suc n) dΔ-Id n Fa Fb = -distrLemma n (suc n) (d n) ∣ Fa ∘ f ∣₂ ∣ Fb ∘ g ∣₂ ∙∙ (λ i → ∣ (λ x → d-preLeftId n Fa x i) ∣₂ -[ (suc n) ]ₕ ∣ (λ x → d-preRightId n Fb x i) ∣₂) ∙∙ rCancelₕ (suc n) (0ₕ (suc n))
52.454183
133
0.442352
1da4b47799c2d9fdafa63a17c47f652b26840505
7,225
agda
Agda
Structure/OrderedField.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Structure/OrderedField.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Structure/OrderedField.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Structure.OrderedField where import Lvl open import Data.Boolean open import Data.Boolean.Proofs import Data.Either as Either open import Data.Tuple as Tuple open import Functional open import Logic open import Logic.Classical open import Logic.IntroInstances open import Logic.Propositional open import Logic.Predicate open import Numeral.Natural using (ℕ) import Numeral.Natural.Relation.Order as ℕ open import Relator.Ordering import Relator.Ordering.Proofs as OrderingProofs open import Structure.Setoid open import Structure.Function open import Structure.Function.Domain open import Structure.Function.Ordering open import Structure.Operator.Field open import Structure.Operator.Monoid open import Structure.Operator.Group open import Structure.Operator.Proofs open import Structure.Operator.Properties open import Structure.Operator.Ring.Proofs open import Structure.Operator.Ring open import Structure.Operator open import Structure.Relator open import Structure.Relator.Ordering open Structure.Relator.Ordering.Weak.Properties open import Structure.Relator.Properties open import Structure.Relator.Proofs open import Syntax.Implication open import Syntax.Transitivity open import Type private variable ℓ ℓₗ ℓₑ : Lvl.Level private variable F : Type{ℓ} -- TODO: Generalize so that this does not neccessarily need a rng. See linearly ordered groups and partially ordered groups. See also ordered semigroups and monoids where the property is called "compatible". record Ordered ⦃ equiv : Equiv{ℓₑ}(F) ⦄ (_+_ _⋅_ : F → F → F) ⦃ rng : Rng(_+_)(_⋅_) ⦄ (_≤_ : F → F → Stmt{ℓₗ}) : Type{Lvl.of(F) Lvl.⊔ ℓₗ Lvl.⊔ ℓₑ} where open From-[≤] (_≤_) public open Rng(rng) field ⦃ [≤]-totalOrder ⦄ : Weak.TotalOrder(_≤_)(_≡_) [≤][+]ₗ-preserve : ∀{x y z} → (x ≤ y) → ((x + z) ≤ (y + z)) [≤][⋅]-zero : ∀{x y} → (𝟎 ≤ x) → (𝟎 ≤ y) → (𝟎 ≤ (x ⋅ y)) -- TODO: Rename to preserve-sign ⦃ [≤]-binaryRelator ⦄ : BinaryRelator(_≤_) -- TODO: Move this to Structure.Relator.Order or something instance [≡][≤]-sub : (_≡_) ⊆₂ (_≤_) _⊆₂_.proof [≡][≤]-sub p = substitute₂ᵣ(_≤_) p (reflexivity(_≤_)) open Weak.TotalOrder([≤]-totalOrder) public open OrderingProofs.From-[≤] (_≤_) public record NonNegative (x : F) : Stmt{ℓₗ} where constructor intro field proof : (x ≥ 𝟎) record Positive (x : F) : Stmt{ℓₗ} where constructor intro field proof : (x > 𝟎) [≤][+]ᵣ-preserve : ∀{x y z} → (y ≤ z) → ((x + y) ≤ (x + z)) [≤][+]ᵣ-preserve {x}{y}{z} yz = x + y 🝖[ _≡_ ]-[ commutativity(_+_) ]-sub y + x 🝖[ _≤_ ]-[ [≤][+]ₗ-preserve yz ] z + x 🝖[ _≡_ ]-[ commutativity(_+_) ]-sub x + z 🝖-end [≤][+]-preserve : ∀{x₁ x₂ y₁ y₂} → (x₁ ≤ x₂) → (y₁ ≤ y₂) → ((x₁ + y₁) ≤ (x₂ + y₂)) [≤][+]-preserve {x₁}{x₂}{y₁}{y₂} px py = x₁ + y₁ 🝖[ _≤_ ]-[ [≤][+]ₗ-preserve px ] x₂ + y₁ 🝖[ _≤_ ]-[ [≤][+]ᵣ-preserve py ] x₂ + y₂ 🝖[ _≤_ ]-end [≤]-flip-positive : ∀{x} → (𝟎 ≤ x) ↔ ((− x) ≤ 𝟎) [≤]-flip-positive {x} = [↔]-intro l r where l = \p → 𝟎 🝖[ _≡_ ]-[ symmetry(_≡_) (inverseFunctionᵣ(_+_)(−_)) ]-sub x + (− x) 🝖[ _≤_ ]-[ [≤][+]ᵣ-preserve p ] x + 𝟎 🝖[ _≡_ ]-[ identityᵣ(_+_)(𝟎) ]-sub x 🝖-end r = \p → − x 🝖[ _≡_ ]-[ symmetry(_≡_) (identityₗ(_+_)(𝟎)) ]-sub 𝟎 + (− x) 🝖[ _≤_ ]-[ [≤][+]ₗ-preserve p ] x + (− x) 🝖[ _≡_ ]-[ inverseFunctionᵣ(_+_)(−_) ]-sub 𝟎 🝖-end [≤]-non-negative-difference : ∀{x y} → (𝟎 ≤ (y − x)) → (x ≤ y) [≤]-non-negative-difference {x}{y} 𝟎yx = x 🝖[ _≡_ ]-[ symmetry(_≡_) (identityₗ(_+_)(𝟎)) ]-sub 𝟎 + x 🝖[ _≤_ ]-[ [≤][+]ₗ-preserve 𝟎yx ] (y − x) + x 🝖[ _≤_ ]-[] (y + (− x)) + x 🝖[ _≡_ ]-[ associativity(_+_) ]-sub y + ((− x) + x) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(_) (inverseFunctionₗ(_+_)(−_)) ]-sub y + 𝟎 🝖[ _≡_ ]-[ identityᵣ(_+_)(𝟎) ]-sub y 🝖-end [≤]-non-positive-difference : ∀{x y} → ((x − y) ≤ 𝟎) → (x ≤ y) [≤]-non-positive-difference {x}{y} xy𝟎 = x 🝖[ _≡_ ]-[ symmetry(_≡_) (identityᵣ(_+_)(𝟎)) ]-sub x + 𝟎 🝖[ _≡_ ]-[ symmetry(_≡_) (congruence₂ᵣ(_+_)(_) (inverseFunctionₗ(_+_)(−_))) ]-sub x + ((− y) + y) 🝖[ _≡_ ]-[ symmetry(_≡_) (associativity(_+_)) ]-sub (x + (− y)) + y 🝖[ _≤_ ]-[] (x − y) + y 🝖[ _≤_ ]-[ [≤][+]ₗ-preserve xy𝟎 ] 𝟎 + y 🝖[ _≡_ ]-[ identityₗ(_+_)(𝟎) ]-sub y 🝖-end [≤]-with-[−] : ∀{x y} → (x ≤ y) → ((− y) ≤ (− x)) [≤]-with-[−] {x}{y} xy = [≤]-non-positive-difference proof3 where proof3 : (((− y) − (− x)) ≤ 𝟎) proof3 = (− y) − (− x) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(_) (involution(−_)) ]-sub (− y) + x 🝖[ _≡_ ]-[ commutativity(_+_) ]-sub x − y 🝖[ _≤_ ]-[ [≤][+]ₗ-preserve xy ] y − y 🝖[ _≡_ ]-[ inverseFunctionᵣ(_+_)(−_) ]-sub 𝟎 🝖-end [≤]-flip-negative : ∀{x} → (x ≤ 𝟎) ↔ (𝟎 ≤ (− x)) [≤]-flip-negative {x} = [↔]-intro l r where r = \p → 𝟎 🝖[ _≡_ ]-[ symmetry(_≡_) [−]-of-𝟎 ]-sub − 𝟎 🝖[ _≤_ ]-[ [≤]-with-[−] {x}{𝟎} p ] − x 🝖-end l = \p → x 🝖[ _≡_ ]-[ symmetry(_≡_) (involution(−_)) ]-sub −(− x) 🝖[ _≤_ ]-[ [≤]-with-[−] p ] − 𝟎 🝖[ _≡_ ]-[ [−]-of-𝟎 ]-sub 𝟎 🝖-end [≤][−]ₗ-preserve : ∀{x y z} → (x ≤ y) → ((x − z) ≤ (y − z)) [≤][−]ₗ-preserve = [≤][+]ₗ-preserve [≤][−]ᵣ-preserve : ∀{x y z} → (z ≤ y) → ((x − y) ≤ (x − z)) [≤][−]ᵣ-preserve = [≤][+]ᵣ-preserve ∘ [≤]-with-[−] [≤][+]-withoutᵣ : ∀{x₁ x₂ y} → ((x₁ + y) ≤ (x₂ + y)) → (x₁ ≤ x₂) [≤][+]-withoutᵣ {x₁}{x₂}{y} p = x₁ 🝖[ _≡_ ]-[ symmetry(_≡_) (inverseOperᵣ(_+_)(_−_)) ]-sub (x₁ + y) − y 🝖[ _≤_ ]-[ [≤][−]ₗ-preserve p ] (x₂ + y) − y 🝖[ _≡_ ]-[ inverseOperᵣ(_+_)(_−_) ]-sub x₂ 🝖-end [≤][+]-withoutₗ : ∀{x y₁ y₂} → ((x + y₁) ≤ (x + y₂)) → (y₁ ≤ y₂) [≤][+]-withoutₗ {x}{y₁}{y₂} p = y₁ 🝖[ _≡_ ]-[ symmetry(_≡_) (inversePropₗ(_+_)(−_)) ]-sub (− x) + (x + y₁) 🝖[ _≤_ ]-[ [≤][+]ᵣ-preserve p ] (− x) + (x + y₂) 🝖[ _≡_ ]-[ inversePropₗ(_+_)(−_) ]-sub y₂ 🝖-end [<][+]-preserveₗ : ∀{x₁ x₂ y} → (x₁ < x₂) → ((x₁ + y) < (x₂ + y)) [<][+]-preserveₗ {x₁}{x₂}{y} px p = px ([≤][+]-withoutᵣ p) [<][+]-preserveᵣ : ∀{x y₁ y₂} → (y₁ < y₂) → ((x + y₁) < (x + y₂)) [<][+]-preserveᵣ {x₁}{x₂}{y} px p = px ([≤][+]-withoutₗ p) [<][+]-preserve : ∀{x₁ x₂ y₁ y₂} → (x₁ < x₂) → (y₁ < y₂) → ((x₁ + y₁) < (x₂ + y₂)) [<][+]-preserve {x₁}{x₂}{y₁}{y₂} px py = x₁ + y₁ 🝖[ _<_ ]-[ [<][+]-preserveₗ px ] x₂ + y₁ 🝖-semiend x₂ + y₂ 🝖[ _<_ ]-end-from-[ [<][+]-preserveᵣ py ] postulate [<][+]-preserve-subₗ : ∀{x₁ x₂ y₁ y₂} → (x₁ ≤ x₂) → (y₁ < y₂) → ((x₁ + y₁) < (x₂ + y₂)) postulate [<][+]-preserve-subᵣ : ∀{x₁ x₂ y₁ y₂} → (x₁ < x₂) → (y₁ ≤ y₂) → ((x₁ + y₁) < (x₂ + y₂)) -- Theory defining the axioms of an ordered field (a field with a weak total order). record OrderedField ⦃ equiv : Equiv{ℓₑ}(F) ⦄ (_+_ _⋅_ : F → F → F) (_≤_ : F → F → Stmt{ℓₗ}) : Type{Lvl.of(F) Lvl.⊔ ℓₗ Lvl.⊔ ℓₑ} where field ⦃ [+][⋅]-field ⦄ : Field(_+_)(_⋅_) ⦃ ordered ⦄ : Ordered(_+_)(_⋅_)(_≤_) open Field([+][⋅]-field) public open Ordered(ordered) public
39.917127
207
0.505052
4dd08a6a469b53f09b204d9e2045cefa41681e20
4,752
agda
Agda
BasicT/Metatheory/GentzenNormalForm-Unknown.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicT/Metatheory/GentzenNormalForm-Unknown.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicT/Metatheory/GentzenNormalForm-Unknown.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
module BasicT.Metatheory.GentzenNormalForm-Unknown where open import BasicT.Syntax.GentzenNormalForm public -- Forcing. (In a particular model?) infix 3 _⊩_ _⊩_ : Cx Ty → Ty → Set Γ ⊩ α P = Γ ⊢ⁿᶠ α P Γ ⊩ A ▻ B = Γ ⊢ⁿᵉ A ▻ B ⊎ ∀ {Γ′} → Γ ⊆ Γ′ → Γ′ ⊩ A → Γ′ ⊩ B Γ ⊩ A ∧ B = Γ ⊢ⁿᵉ A ∧ B ⊎ Γ ⊩ A × Γ ⊩ B Γ ⊩ ⊤ = Γ ⊢ⁿᶠ ⊤ Γ ⊩ BOOL = Γ ⊢ⁿᶠ BOOL Γ ⊩ NAT = Γ ⊢ⁿᶠ NAT infix 3 _⊩⋆_ _⊩⋆_ : Cx Ty → Cx Ty → Set Γ ⊩⋆ ∅ = 𝟙 Γ ⊩⋆ Ξ , A = Γ ⊩⋆ Ξ × Γ ⊩ A -- Monotonicity with respect to context inclusion. mono⊩ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊩ A → Γ′ ⊩ A mono⊩ {α P} η t = mono⊢ⁿᶠ η t mono⊩ {A ▻ B} η (ι₁ t) = ι₁ (mono⊢ⁿᵉ η t) mono⊩ {A ▻ B} η (ι₂ s) = ι₂ (λ η′ a → s (trans⊆ η η′) a) mono⊩ {A ∧ B} η (ι₁ t) = ι₁ (mono⊢ⁿᵉ η t) mono⊩ {A ∧ B} η (ι₂ s) = ι₂ (mono⊩ {A} η (π₁ s) , mono⊩ {B} η (π₂ s)) mono⊩ {⊤} η t = mono⊢ⁿᶠ η t mono⊩ {BOOL} η t = mono⊢ⁿᶠ η t mono⊩ {NAT} η t = mono⊢ⁿᶠ η t mono⊩⋆ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊩⋆ Ξ → Γ′ ⊩⋆ Ξ mono⊩⋆ {∅} η ∙ = ∙ mono⊩⋆ {Ξ , A} η (γ , a) = mono⊩⋆ {Ξ} η γ , mono⊩ {A} η a -- Soundness and completeness. (With respect to a particular model?) reflect : ∀ {A Γ} → Γ ⊢ⁿᵉ A → Γ ⊩ A reflect {α P} t = neⁿᶠ t reflect {A ▻ B} t = ι₁ t reflect {A ∧ B} t = ι₁ t reflect {⊤} t = neⁿᶠ t reflect {BOOL} t = neⁿᶠ t reflect {NAT} t = neⁿᶠ t reify : ∀ {A Γ} → Γ ⊩ A → Γ ⊢ⁿᶠ A reify {α P} t = t reify {A ▻ B} (ι₁ t) = neⁿᶠ t reify {A ▻ B} (ι₂ s) = lamⁿᶠ (reify (s weak⊆ (reflect {A} (varⁿᵉ top)))) reify {A ∧ B} (ι₁ t) = neⁿᶠ t reify {A ∧ B} (ι₂ s) = pairⁿᶠ (reify (π₁ s)) (reify (π₂ s)) reify {⊤} t = t reify {BOOL} t = t reify {NAT} t = t reflect⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ⁿᵉ Ξ → Γ ⊩⋆ Ξ reflect⋆ {∅} ∙ = ∙ reflect⋆ {Ξ , A} (ts , t) = reflect⋆ ts , reflect t reify⋆ : ∀ {Ξ Γ} → Γ ⊩⋆ Ξ → Γ ⊢⋆ⁿᶠ Ξ reify⋆ {∅} ∙ = ∙ reify⋆ {Ξ , A} (ts , t) = reify⋆ ts , reify t -- Additional useful equipment. _⟪$⟫_ : ∀ {A B w} → w ⊩ A ▻ B → w ⊩ A → w ⊩ B ι₁ t ⟪$⟫ a = reflect (appⁿᵉ t (reify a)) ι₂ s ⟪$⟫ a = s refl⊆ a ⟪π₁⟫ : ∀ {A B w} → w ⊩ A ∧ B → w ⊩ A ⟪π₁⟫ (ι₁ t) = reflect (fstⁿᵉ t) ⟪π₁⟫ (ι₂ s) = π₁ s ⟪π₂⟫ : ∀ {A B w} → w ⊩ A ∧ B → w ⊩ B ⟪π₂⟫ (ι₁ t) = reflect (sndⁿᵉ t) ⟪π₂⟫ (ι₂ s) = π₂ s ⟪if⟫ : ∀ {C w} → w ⊩ BOOL → w ⊩ C → w ⊩ C → w ⊩ C ⟪if⟫ {C} (neⁿᶠ t) s₂ s₃ = reflect {C} (ifⁿᵉ t (reify s₂) (reify s₃)) ⟪if⟫ {C} trueⁿᶠ s₂ s₃ = s₂ ⟪if⟫ {C} falseⁿᶠ s₂ s₃ = s₃ ⟪it⟫ : ∀ {C w} → w ⊩ NAT → w ⊩ C ▻ C → w ⊩ C → w ⊩ C ⟪it⟫ {C} (neⁿᶠ t) s₂ s₃ = reflect {C} (itⁿᵉ t (reify s₂) (reify s₃)) ⟪it⟫ {C} zeroⁿᶠ s₂ s₃ = s₃ ⟪it⟫ {C} (sucⁿᶠ t) s₂ s₃ = s₂ ⟪$⟫ ⟪it⟫ t s₂ s₃ ⟪rec⟫ : ∀ {C w} → w ⊩ NAT → w ⊩ NAT ▻ C ▻ C → w ⊩ C → w ⊩ C ⟪rec⟫ {C} (neⁿᶠ t) s₂ s₃ = reflect {C} (recⁿᵉ t (reify s₂) (reify s₃)) ⟪rec⟫ {C} zeroⁿᶠ s₂ s₃ = s₃ ⟪rec⟫ {C} (sucⁿᶠ t) s₂ s₃ = (s₂ ⟪$⟫ t) ⟪$⟫ ⟪rec⟫ t s₂ s₃ -- Forcing for sequents. (In a particular world of a particular model?) infix 3 _⊩_⇒_ _⊩_⇒_ : Cx Ty → Cx Ty → Ty → Set w ⊩ Γ ⇒ A = w ⊩⋆ Γ → w ⊩ A infix 3 _⊩_⇒⋆_ _⊩_⇒⋆_ : Cx Ty → Cx Ty → Cx Ty → Set w ⊩ Γ ⇒⋆ Ξ = w ⊩⋆ Γ → w ⊩⋆ Ξ -- Entailment. (Forcing in all worlds of all models, for sequents?) infix 3 _⊨_ _⊨_ : Cx Ty → Ty → Set Γ ⊨ A = ∀ {w : Cx Ty} → w ⊩ Γ ⇒ A infix 3 _⊨⋆_ _⊨⋆_ : Cx Ty → Cx Ty → Set Γ ⊨⋆ Ξ = ∀ {w : Cx Ty} → w ⊩ Γ ⇒⋆ Ξ -- Additional useful equipment, for sequents. lookup : ∀ {A Γ w} → A ∈ Γ → w ⊩ Γ ⇒ A lookup top (γ , a) = a lookup (pop i) (γ , b) = lookup i γ -- Evaluation. (Soundness with respect to all models?) eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A eval (var i) γ = lookup i γ eval (lam t) γ = ι₂ (λ η a → eval t (mono⊩⋆ η γ , a)) eval (app t u) γ = eval t γ ⟪$⟫ eval u γ eval (pair t u) γ = ι₂ (eval t γ , eval u γ) eval (fst t) γ = ⟪π₁⟫ (eval t γ) eval (snd t) γ = ⟪π₂⟫ (eval t γ) eval unit γ = unitⁿᶠ eval true γ = trueⁿᶠ eval false γ = trueⁿᶠ eval (if {C} t u v) γ = ⟪if⟫ {C} (eval t γ) (eval u γ) (eval v γ) eval zero γ = zeroⁿᶠ eval (suc t) γ = sucⁿᶠ (eval t γ) eval (it {C} t u v) γ = ⟪it⟫ {C} (eval t γ) (eval u γ) (eval v γ) eval (rec {C} t u v) γ = ⟪rec⟫ {C} (eval t γ) (eval u γ) (eval v γ) eval⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Γ ⊨⋆ Ξ eval⋆ {∅} ∙ γ = ∙ eval⋆ {Ξ , A} (ts , t) γ = eval⋆ ts γ , eval t γ -- Reflexivity and transitivity. refl⊩⋆ : ∀ {Γ} → Γ ⊩⋆ Γ refl⊩⋆ = reflect⋆ refl⊢⋆ⁿᵉ trans⊩⋆ : ∀ {Γ Γ′ Γ″} → Γ ⊩⋆ Γ′ → Γ′ ⊩⋆ Γ″ → Γ ⊩⋆ Γ″ trans⊩⋆ ts us = eval⋆ (trans⊢⋆ (nf→tm⋆ (reify⋆ ts)) (nf→tm⋆ (reify⋆ us))) refl⊩⋆ -- Quotation. (Completeness with respect to all models?) quot : ∀ {A Γ} → Γ ⊨ A → Γ ⊢ A quot s = nf→tm (reify (s refl⊩⋆)) -- Normalisation by evaluation. norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A norm = quot ∘ eval -- TODO: Correctness of normalisation with respect to conversion.
27.468208
80
0.481481
505cf2e4dffd5df6256f07ca776f249a85888023
1,599
agda
Agda
Cubical/HITs/FiniteMultiset/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/FiniteMultiset/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/HITs/FiniteMultiset/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.FiniteMultiset.Base where open import Cubical.Foundations.Prelude open import Cubical.HITs.SetTruncation open import Cubical.Foundations.HLevels private variable ℓ : Level A : Type ℓ infixr 5 _∷_ data FMSet (A : Type ℓ) : Type ℓ where [] : FMSet A _∷_ : (x : A) → (xs : FMSet A) → FMSet A comm : ∀ x y xs → x ∷ y ∷ xs ≡ y ∷ x ∷ xs trunc : isSet (FMSet A) pattern [_] x = x ∷ [] module Elim {ℓ'} {B : FMSet A → Type ℓ'} ([]* : B []) (_∷*_ : (x : A) {xs : FMSet A} → B xs → B (x ∷ xs)) (comm* : (x y : A) {xs : FMSet A} (b : B xs) → PathP (λ i → B (comm x y xs i)) (x ∷* (y ∷* b)) (y ∷* (x ∷* b))) (trunc* : (xs : FMSet A) → isSet (B xs)) where f : (xs : FMSet A) → B xs f [] = []* f (x ∷ xs) = x ∷* f xs f (comm x y xs i) = comm* x y (f xs) i f (trunc xs zs p q i j) = isOfHLevel→isOfHLevelDep 2 trunc* (f xs) (f zs) (cong f p) (cong f q) (trunc xs zs p q) i j module ElimProp {ℓ'} {B : FMSet A → Type ℓ'} (BProp : {xs : FMSet A} → isProp (B xs)) ([]* : B []) (_∷*_ : (x : A) {xs : FMSet A} → B xs → B (x ∷ xs)) where f : (xs : FMSet A) → B xs f = Elim.f []* _∷*_ (λ x y {xs} b → toPathP (BProp (transp (λ i → B (comm x y xs i)) i0 (x ∷* (y ∷* b))) (y ∷* (x ∷* b)))) (λ xs → isProp→isSet BProp) module Rec {ℓ'} {B : Type ℓ'} (BType : isSet B) ([]* : B) (_∷*_ : A → B → B) (comm* : (x y : A) (b : B) → x ∷* (y ∷* b) ≡ y ∷* (x ∷* b)) where f : FMSet A → B f = Elim.f []* (λ x b → x ∷* b) (λ x y b → comm* x y b) (λ _ → BType)
31.352941
96
0.484678
0b1222e2250b2c163aec6deaaf6fb91cff471331
8,142
agda
Agda
Cubical/HITs/Cylinder/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/HITs/Cylinder/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/HITs/Cylinder/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.HITs.Cylinder.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Data.Sigma open import Cubical.Data.Unit open import Cubical.Data.Sum using (_⊎_; inl; inr) open import Cubical.HITs.PropositionalTruncation using (∥_∥₁; ∣_∣₁; squash₁) open import Cubical.HITs.Interval using (Interval; zero; one; seg) -- Cylinder A is a cylinder object in the category of cubical types. -- -- https://ncatlab.org/nlab/show/cylinder+object data Cylinder {ℓ} (A : Type ℓ) : Type ℓ where inl : A → Cylinder A inr : A → Cylinder A cross : ∀ x → inl x ≡ inr x -- Dual to this is the cocylinder or path space object. -- -- https://ncatlab.org/nlab/show/path+space+object Cocylinder : ∀ {ℓ} → Type ℓ → Type ℓ Cocylinder A = Interval → A module _ {ℓ} {A : Type ℓ} where -- The cylinder is part of a factorization of the obvious mapping -- of type A ⊎ A → A into a pair of mappings: -- -- A ⊎ A → Cylinder A ≃ A -- -- include is the first part of the factorization. include : A ⊎ A → Cylinder A include (inl x) = inl x include (inr x) = inr x -- The above inclusion is surjective includeSurjective : ∀ c → ∃[ s ∈ A ⊎ A ] include s ≡ c includeSurjective (inl x) = ∣ inl x , refl ∣₁ includeSurjective (inr x) = ∣ inr x , refl ∣₁ includeSurjective (cross x i) = squash₁ ∣ inl x , (λ j → cross x (i ∧ j)) ∣₁ ∣ inr x , (λ j → cross x (i ∨ ~ j)) ∣₁ i elim : ∀{ℓ'} {B : Cylinder A → Type ℓ'} → (f : (x : A) → B (inl x)) → (g : (x : A) → B (inr x)) → (p : ∀ x → PathP (λ i → B (cross x i)) (f x) (g x)) → (c : Cylinder A) → B c elim f _ _ (inl x) = f x elim _ g _ (inr x) = g x elim _ _ p (cross x i) = p x i private out : Cylinder A → A out (inl x) = x out (inr x) = x out (cross x i) = x inl-out : (c : Cylinder A) → inl (out c) ≡ c inl-out (inl x) = refl inl-out (inr x) = cross x inl-out (cross x i) = λ j → cross x (i ∧ j) out-inl : ∀(x : A) → out (inl x) ≡ x out-inl x = refl -- The second part of the factorization above. CylinderA≃A : Cylinder A ≃ A CylinderA≃A = isoToEquiv (iso out inl out-inl inl-out) -- The cocylinder has a similar equivalence that is part -- of factorizing the diagonal mapping. private inco : A → Cocylinder A inco x _ = x outco : Cocylinder A → A outco f = f zero A→CocylinderA→A : (x : A) → outco (inco x) ≡ x A→CocylinderA→A x = refl CocylinderA→A→CocylinderA : (c : Cocylinder A) → inco (outco c) ≡ c CocylinderA→A→CocylinderA c j zero = c zero CocylinderA→A→CocylinderA c j one = c (seg j) CocylinderA→A→CocylinderA c j (seg i) = c (seg (j ∧ i)) A≃CocylinderA : A ≃ Cocylinder A A≃CocylinderA = isoToEquiv (iso inco outco CocylinderA→A→CocylinderA A→CocylinderA→A) project : Cocylinder A → A × A project c = c zero , c one -- Since we can construct cylinders for every type, Cylinder actually -- constitutes a cylinder functor: -- -- https://ncatlab.org/nlab/show/cylinder+functor -- -- e₀ = inl -- e₁ = inr -- σ = out module Functorial where private variable ℓa ℓb ℓc : Level A : Type ℓa B : Type ℓb C : Type ℓc map : (A → B) → Cylinder A → Cylinder B map f (inl x) = inl (f x) map f (inr x) = inr (f x) map f (cross x i) = cross (f x) i mapId : map (λ(x : A) → x) ≡ (λ x → x) mapId i (inl x) = inl x mapId i (inr x) = inr x mapId i (cross x j) = cross x j map∘ : (f : A → B) → (g : B → C) → map (λ x → g (f x)) ≡ (λ x → map g (map f x)) map∘ f g i (inl x) = inl (g (f x)) map∘ f g i (inr x) = inr (g (f x)) map∘ f g i (cross x j) = cross (g (f x)) j -- There is an adjunction between the cylinder and coyclinder -- functors. -- -- Cylinder ⊣ Cocylinder adj₁ : (Cylinder A → B) → A → Cocylinder B adj₁ f x zero = f (inl x) adj₁ f x one = f (inr x) adj₁ f x (seg i) = f (cross x i) adj₂ : (A → Cocylinder B) → Cylinder A → B adj₂ g (inl x) = g x zero adj₂ g (inr x) = g x one adj₂ g (cross x i) = g x (seg i) adj₁₂ : (g : A → Cocylinder B) → adj₁ (adj₂ g) ≡ g adj₁₂ g _ x zero = g x zero adj₁₂ g _ x one = g x one adj₁₂ g _ x (seg i) = g x (seg i) adj₂₁ : (f : Cylinder A → B) → adj₂ (adj₁ f) ≡ f adj₂₁ f j (inl x) = f (inl x) adj₂₁ f j (inr x) = f (inr x) adj₂₁ f j (cross x i) = f (cross x i) module IntervalEquiv where -- There is an equivalence between the interval and the -- cylinder over the unit type. Interval→CylinderUnit : Interval → Cylinder Unit Interval→CylinderUnit zero = inl _ Interval→CylinderUnit one = inr _ Interval→CylinderUnit (seg i) = cross _ i CylinderUnit→Interval : Cylinder Unit → Interval CylinderUnit→Interval (inl _) = zero CylinderUnit→Interval (inr _) = one CylinderUnit→Interval (cross _ i) = seg i Interval→CylinderUnit→Interval : ∀ i → CylinderUnit→Interval (Interval→CylinderUnit i) ≡ i Interval→CylinderUnit→Interval zero = refl Interval→CylinderUnit→Interval one = refl Interval→CylinderUnit→Interval (seg i) = refl CylinderUnit→Interval→CylinderUnit : ∀ c → Interval→CylinderUnit (CylinderUnit→Interval c) ≡ c CylinderUnit→Interval→CylinderUnit (inl _) = refl CylinderUnit→Interval→CylinderUnit (inr _) = refl CylinderUnit→Interval→CylinderUnit (cross _ i) = refl CylinderUnit≃Interval : Cylinder Unit ≃ Interval CylinderUnit≃Interval = isoToEquiv (iso CylinderUnit→Interval Interval→CylinderUnit Interval→CylinderUnit→Interval CylinderUnit→Interval→CylinderUnit) -- More generally, there is an equivalence between the cylinder -- over any type A and the product of A and the interval. module _ {ℓ} {A : Type ℓ} where private Cyl : Type ℓ Cyl = A × Interval CylinderA→A×Interval : Cylinder A → Cyl CylinderA→A×Interval (inl x) = x , zero CylinderA→A×Interval (inr x) = x , one CylinderA→A×Interval (cross x i) = x , seg i A×Interval→CylinderA : Cyl → Cylinder A A×Interval→CylinderA (x , zero) = inl x A×Interval→CylinderA (x , one) = inr x A×Interval→CylinderA (x , seg i) = cross x i A×Interval→CylinderA→A×Interval : ∀ c → CylinderA→A×Interval (A×Interval→CylinderA c) ≡ c A×Interval→CylinderA→A×Interval (x , zero) = refl A×Interval→CylinderA→A×Interval (x , one) = refl A×Interval→CylinderA→A×Interval (x , seg i) = refl CylinderA→A×Interval→CylinderA : ∀ c → A×Interval→CylinderA (CylinderA→A×Interval c) ≡ c CylinderA→A×Interval→CylinderA (inl x) = refl CylinderA→A×Interval→CylinderA (inr x) = refl CylinderA→A×Interval→CylinderA (cross x i) = refl CylinderA≃A×Interval : Cylinder A ≃ Cyl CylinderA≃A×Interval = isoToEquiv (iso CylinderA→A×Interval A×Interval→CylinderA A×Interval→CylinderA→A×Interval CylinderA→A×Interval→CylinderA) -- The cylinder is also the pushout of the identity on A with itself. module Push {ℓ} {A : Type ℓ} where open import Cubical.HITs.Pushout private Push : Type ℓ Push = Pushout (λ(x : A) → x) (λ x → x) Cyl : Type ℓ Cyl = Cylinder A Cylinder→Pushout : Cyl → Push Cylinder→Pushout (inl x) = inl x Cylinder→Pushout (inr x) = inr x Cylinder→Pushout (cross x i) = push x i Pushout→Cylinder : Push → Cyl Pushout→Cylinder (inl x) = inl x Pushout→Cylinder (inr x) = inr x Pushout→Cylinder (push x i) = cross x i Pushout→Cylinder→Pushout : ∀ p → Cylinder→Pushout (Pushout→Cylinder p) ≡ p Pushout→Cylinder→Pushout (inl x) = refl Pushout→Cylinder→Pushout (inr x) = refl Pushout→Cylinder→Pushout (push x i) = refl Cylinder→Pushout→Cylinder : ∀ c → Pushout→Cylinder (Cylinder→Pushout c) ≡ c Cylinder→Pushout→Cylinder (inl x) = refl Cylinder→Pushout→Cylinder (inr x) = refl Cylinder→Pushout→Cylinder (cross x i) = refl Pushout≃Cylinder : Push ≃ Cyl Pushout≃Cylinder = isoToEquiv (iso Pushout→Cylinder Cylinder→Pushout Cylinder→Pushout→Cylinder Pushout→Cylinder→Pushout)
30.380597
130
0.633014
5814af5d6f6444f3c3fa158b708322333324e12f
12,686
agda
Agda
theorems/cw/cohomology/ReconstructedCochainsEquivCellularCochains.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
theorems/cw/cohomology/ReconstructedCochainsEquivCellularCochains.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
theorems/cw/cohomology/ReconstructedCochainsEquivCellularCochains.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cw.CW open import cw.FinCW open import cw.FinBoundary open import cohomology.Theory open import cohomology.ChainComplex module cw.cohomology.ReconstructedCochainsEquivCellularCochains (OT : OrdinaryTheory lzero) where open OrdinaryTheory OT open import cw.cohomology.cellular.ChainComplex as CCC open import cw.cohomology.reconstructed.cochain.Complex OT as RCC open import cw.cohomology.ReconstructedCochainsIsoCellularCochains OT open import cw.cohomology.cochainequiv.AugmentCommSquare OT open import cw.cohomology.cochainequiv.FirstCoboundaryCommSquare OT open import cw.cohomology.cochainequiv.HigherCoboundaryCommSquare OT private frcc-comm-fccc-Type : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n) {m} (m≤n? : Dec (m ≤ n)) (Sm≤n? : Dec (S m ≤ n)) (coboundary : AbGroup.grp (RCC.cochain-template ⊙⦉ ⊙fin-skel ⦊ m≤n?) →ᴳ AbGroup.grp (RCC.cochain-template ⊙⦉ ⊙fin-skel ⦊ Sm≤n?)) (boundary : AbGroup.grp (CCC.chain-template ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ Sm≤n?) →ᴳ AbGroup.grp (CCC.chain-template ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ m≤n?)) → Type₀ frcc-comm-fccc-Type {n} ⊙fin-skel {m} m≤n? Sm≤n? coboundary boundary = CommSquareᴳ coboundary (pre∘ᴳ-hom (C2-abgroup 0) boundary) (GroupIso.f-hom (rcc-iso-ccc-template ⊙⦉ ⊙fin-skel ⦊ m≤n? (⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel lzero))) (GroupIso.f-hom (rcc-iso-ccc-template ⊙⦉ ⊙fin-skel ⦊ Sm≤n? (⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel lzero))) CCC-boundary-template' : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n) → {m : ℕ} (m≤n? : Dec (m ≤ n)) (Sm≤n? : Dec (S m ≤ n)) → AbGroup.grp (CCC.chain-template ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ Sm≤n?) →ᴳ AbGroup.grp (CCC.chain-template ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ m≤n?) CCC-boundary-template' ⊙fin-skel = CCC.boundary-template ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ (FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel)) (FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel)) RCC-coboundary-template' : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n) → {m : ℕ} (m≤n? : Dec (m ≤ n)) (Sm≤n? : Dec (S m ≤ n)) → AbGroup.grp (RCC.cochain-template ⊙⦉ ⊙fin-skel ⦊ m≤n?) →ᴳ AbGroup.grp (RCC.cochain-template ⊙⦉ ⊙fin-skel ⦊ Sm≤n?) RCC-coboundary-template' ⊙fin-skel = RCC.coboundary-template ⊙⦉ ⊙fin-skel ⦊ abstract {- This can be directly generalized to the non-finite cases. -} frcc-comm-fccc-above : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n) {m} (m≤n? : Dec (m ≤ n)) (Sm≰n : ¬ (S m ≤ n)) → frcc-comm-fccc-Type ⊙fin-skel m≤n? (inr Sm≰n) (RCC-coboundary-template' ⊙fin-skel m≤n? (inr Sm≰n)) (CCC-boundary-template' ⊙fin-skel m≤n? (inr Sm≰n)) frcc-comm-fccc-above ⊙fin-skel m≤n? Sm≰n = (comm-sqrᴳ λ g → group-hom= $ λ= λ _ → ! $ GroupHom.pres-ident (GroupIso.f (rcc-iso-ccc-template ⊙⦉ ⊙fin-skel ⦊ m≤n? (⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel lzero)) g)) frcc-comm-fccc-nth-zero : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n) (0≤n : 0 ≤ n) (1≤n : 1 ≤ n) → frcc-comm-fccc-Type ⊙fin-skel (inl 0≤n) (inl 1≤n) (RCC-coboundary-template' ⊙fin-skel (inl 0≤n) (inl 1≤n)) (CCC-boundary-template' ⊙fin-skel (inl 0≤n) (inl 1≤n)) frcc-comm-fccc-nth-zero ⊙fin-skel (inl idp) (inl 1=0) = ⊥-rec (ℕ-S≠O O 1=0) frcc-comm-fccc-nth-zero ⊙fin-skel (inl idp) (inr ()) frcc-comm-fccc-nth-zero ⊙fin-skel (inr ltS) (inl 1=1) = transport! (λ 1=1 → frcc-comm-fccc-Type ⊙fin-skel (inl lteS) (inl (inl 1=1)) (RCC-coboundary-template' ⊙fin-skel (inl lteS) (inl (inl 1=1))) (CCC-boundary-template' ⊙fin-skel (inl lteS) (inl (inl 1=1)))) (prop-has-all-paths 1=1 idp) (coe! (ap2 (λ p₁ p₂ → frcc-comm-fccc-Type ⊙fin-skel {m = O} (inl (inr ltS)) (inl (inl idp)) p₁ p₂) (RCC.coboundary-first-template-β ⊙⦉ ⊙fin-skel ⦊) (CCC.boundary-template-β ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ (FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel)) (FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel)))) (fst (first-coboundary-comm-sqrᴳ ⊙fin-skel))) frcc-comm-fccc-nth-zero ⊙fin-skel (inr ltS) (inr (ltSR ())) frcc-comm-fccc-nth-zero ⊙fin-skel (inr (ltSR 0<n)) (inl 1=Sn) = ⊥-rec (<-to-≠ (<-ap-S 0<n) 1=Sn) frcc-comm-fccc-nth-zero ⊙fin-skel (inr (ltSR ltS)) (inr 1<2) = transport! (λ 1<2 → frcc-comm-fccc-Type ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr 1<2)) (RCC-coboundary-template' ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr 1<2))) (CCC-boundary-template' ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr 1<2)))) (prop-has-all-paths 1<2 ltS) (coe! (ap2 (λ p₁ p₂ → frcc-comm-fccc-Type ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr ltS)) p₁ p₂) (RCC.coboundary-first-template-descend-from-two ⊙⦉ ⊙fin-skel ⦊) (CCC.boundary-template-descend-from-two-above ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ (FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel)) (FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel)))) (frcc-comm-fccc-nth-zero (⊙fcw-init ⊙fin-skel) (inr ltS) (inl idp))) frcc-comm-fccc-nth-zero ⊙fin-skel (inr (ltSR (ltSR ()))) (inr ltS) frcc-comm-fccc-nth-zero ⊙fin-skel (inr (ltSR (ltSR 0<n))) (inr (ltSR 1<Sn)) = (coe! (ap2 (λ p₁ p₂ → frcc-comm-fccc-Type ⊙fin-skel (inl (inr (ltSR (ltSR 0<n)))) (inl (inr (ltSR 1<Sn))) p₁ p₂) (RCC.coboundary-first-template-descend-from-far ⊙⦉ ⊙fin-skel ⦊ (ltSR 0<n) 1<Sn) (CCC.boundary-template-descend-from-far ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ (FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel)) (FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel)) (ltSR 0<n) 1<Sn)) (frcc-comm-fccc-nth-zero (⊙fcw-init ⊙fin-skel) (inr (ltSR 0<n)) (inr 1<Sn))) frcc-comm-fccc-nth-higher : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n) {m} (Sm≤n : S m ≤ n) (SSm≤n : S (S m) ≤ n) → frcc-comm-fccc-Type ⊙fin-skel (inl Sm≤n) (inl SSm≤n) (RCC-coboundary-template' ⊙fin-skel (inl Sm≤n) (inl SSm≤n)) (CCC-boundary-template' ⊙fin-skel (inl Sm≤n) (inl SSm≤n)) frcc-comm-fccc-nth-higher ⊙fin-skel (inl idp) (inl SSm=Sm) = ⊥-rec (<-to-≠ ltS (! SSm=Sm)) frcc-comm-fccc-nth-higher ⊙fin-skel (inl idp) (inr SSm<Sm) = ⊥-rec (<-to-≠ (<-trans SSm<Sm ltS) idp) frcc-comm-fccc-nth-higher ⊙fin-skel {m} (inr ltS) (inl SSm=SSm) = transport! (λ SSm=SSm → frcc-comm-fccc-Type ⊙fin-skel (inl lteS) (inl (inl SSm=SSm)) (RCC-coboundary-template' ⊙fin-skel (inl lteS) (inl (inl SSm=SSm))) (CCC-boundary-template' ⊙fin-skel (inl lteS) (inl (inl SSm=SSm)))) (prop-has-all-paths SSm=SSm idp) (coe! (ap2 (λ p₁ p₂ → frcc-comm-fccc-Type ⊙fin-skel {m = S m} (inl (inr ltS)) (inl (inl idp)) p₁ p₂) (RCC.coboundary-higher-template-β ⊙⦉ ⊙fin-skel ⦊) (CCC.boundary-template-β ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ (FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel)) (FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel)))) (fst (higher-coboundary-comm-sqrᴳ ⊙fin-skel))) frcc-comm-fccc-nth-higher ⊙fin-skel (inr ltS) (inr SSm<SSm) = ⊥-rec (<-to-≠ SSm<SSm idp) frcc-comm-fccc-nth-higher ⊙fin-skel (inr (ltSR Sm<n)) (inl SSm=Sn) = ⊥-rec (<-to-≠ (<-ap-S Sm<n) SSm=Sn) frcc-comm-fccc-nth-higher ⊙fin-skel (inr (ltSR ltS)) (inr SSm<SSSm) = transport! (λ SSm<SSSm → frcc-comm-fccc-Type ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr SSm<SSSm)) (RCC-coboundary-template' ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr SSm<SSSm))) (CCC-boundary-template' ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr SSm<SSSm)))) (prop-has-all-paths SSm<SSSm ltS) (coe! (ap2 (λ p₁ p₂ → frcc-comm-fccc-Type ⊙fin-skel (inl (inr (ltSR ltS))) (inl (inr ltS)) p₁ p₂) (RCC.coboundary-higher-template-descend-from-one-above ⊙⦉ ⊙fin-skel ⦊) (CCC.boundary-template-descend-from-two-above ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ (FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel)) (FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel)))) (frcc-comm-fccc-nth-higher (⊙fcw-init ⊙fin-skel) (inr ltS) (inl idp))) frcc-comm-fccc-nth-higher ⊙fin-skel (inr (ltSR (ltSR Sm<Sm))) (inr ltS) = ⊥-rec (<-to-≠ Sm<Sm idp) frcc-comm-fccc-nth-higher ⊙fin-skel (inr (ltSR (ltSR Sm<n))) (inr (ltSR SSm<Sn)) = (coe! (ap2 (λ p₁ p₂ → frcc-comm-fccc-Type ⊙fin-skel (inl (inr (ltSR (ltSR Sm<n)))) (inl (inr (ltSR SSm<Sn))) p₁ p₂) (RCC.coboundary-higher-template-descend-from-far ⊙⦉ ⊙fin-skel ⦊ (ltSR Sm<n) SSm<Sn) (CCC.boundary-template-descend-from-far ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ (FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel)) (FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel)) (ltSR Sm<n) SSm<Sn)) (frcc-comm-fccc-nth-higher (⊙fcw-init ⊙fin-skel) (inr (ltSR Sm<n)) (inr SSm<Sn))) frcc-comm-fccc-template : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n) {m} (m≤n? : Dec (m ≤ n)) (Sm≤n? : Dec (S m ≤ n)) → frcc-comm-fccc-Type ⊙fin-skel m≤n? Sm≤n? (RCC-coboundary-template' ⊙fin-skel m≤n? Sm≤n?) (CCC-boundary-template' ⊙fin-skel m≤n? Sm≤n?) frcc-comm-fccc-template ⊙fin-skel m≤n? (inr Sm≰n) = frcc-comm-fccc-above ⊙fin-skel m≤n? Sm≰n frcc-comm-fccc-template ⊙fin-skel (inr m≰n) (inl Sm≤n) = ⊥-rec $ m≰n (≤-trans lteS Sm≤n) frcc-comm-fccc-template ⊙fin-skel {m = O} (inl m≤n) (inl Sm≤n) = frcc-comm-fccc-nth-zero ⊙fin-skel m≤n Sm≤n frcc-comm-fccc-template ⊙fin-skel {m = S m} (inl Sm≤n) (inl SSm≤n) = frcc-comm-fccc-nth-higher ⊙fin-skel Sm≤n SSm≤n frcc-comm-fccc : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n) m → frcc-comm-fccc-Type ⊙fin-skel (≤-dec m n) (≤-dec (S m) n) (RCC-coboundary-template' ⊙fin-skel (≤-dec m n) (≤-dec (S m) n)) (CCC-boundary-template' ⊙fin-skel (≤-dec m n) (≤-dec (S m) n)) frcc-comm-fccc {n} ⊙fin-skel m = frcc-comm-fccc-template ⊙fin-skel {m} (≤-dec m n) (≤-dec (S m) n) frcc-comm-fccc-augment : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n) → CommSquareᴳ (CochainComplex.augment (RCC.cochain-complex ⊙⦉ ⊙fin-skel ⦊)) (pre∘ᴳ-hom (C2-abgroup 0) (FreeAbGroup-extend (Lift-abgroup {j = lzero} ℤ-abgroup) λ _ → lift 1)) (GroupIso.f-hom rhead-iso-chead) (GroupIso.f-hom (rcc-iso-ccc-template ⊙⦉ ⊙fin-skel ⦊ (inl (O≤ n)) (⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel lzero))) frcc-comm-fccc-augment {n = O} ⊙fin-skel = fst (augment-comm-sqrᴳ ⊙fin-skel) frcc-comm-fccc-augment {n = S O} ⊙fin-skel = frcc-comm-fccc-augment (⊙fcw-init ⊙fin-skel) frcc-comm-fccc-augment {n = S (S n)} ⊙fin-skel = frcc-comm-fccc-augment (⊙fcw-init ⊙fin-skel) frcc-equiv-fccc : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n) → CochainComplexEquiv (RCC.cochain-complex ⊙⦉ ⊙fin-skel ⦊) (CCC.cochain-complex ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ (FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel)) (FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel)) (C2-abgroup 0)) frcc-equiv-fccc {n} ⊙fin-skel = record { head = rhead-iso-chead ; cochain = λ m → rcc-iso-ccc ⊙⦉ ⊙fin-skel ⦊ m (⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel lzero) ; augment = frcc-comm-fccc-augment ⊙fin-skel ; coboundary = frcc-comm-fccc ⊙fin-skel} frc-iso-fcc : ∀ {n} (⊙fin-skel : ⊙FinSkeleton n) (m : ℤ) → cohomology-group (RCC.cochain-complex ⊙⦉ ⊙fin-skel ⦊) m ≃ᴳ cohomology-group (CCC.cochain-complex ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ (FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel)) (FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel)) (C2-abgroup 0)) m frc-iso-fcc ⊙fin-skel = cohomology-group-emap (frcc-equiv-fccc ⊙fin-skel)
60.409524
121
0.590966
c7b035d7a9772cfa2fe12b5809254600aad53267
3,953
agda
Agda
Categories/Category/Monoidal/Core.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Category/Monoidal/Core.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Category/Monoidal/Core.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- Definition of Monoidal Category -- Big design decision that differs from the previous version: -- Do not go through "Functor.Power" to encode variables and work -- at the level of NaturalIsomorphisms, instead work at the object/morphism -- level, via the more direct _⊗₀_ _⊗₁_ _⊗- -⊗_. -- The original design needed quite a few contortions to get things working, -- but these are simply not needed when working directly with the morphisms. -- -- Smaller design decision: export some items with long names -- (unitorˡ, unitorʳ and associator), but internally work with the more classical -- short greek names (λ, ρ and α respectively). module Categories.Category.Monoidal.Core {o ℓ e} (C : Category o ℓ e) where open import Level open import Function using (_$_) open import Data.Product using (_×_; _,_; curry′) open import Categories.Category.Product open import Categories.Functor renaming (id to idF) open import Categories.Functor.Bifunctor using (Bifunctor; appˡ; appʳ) open import Categories.Functor.Properties using ([_]-resp-≅) open import Categories.NaturalTransformation renaming (id to idN) open import Categories.NaturalTransformation.NaturalIsomorphism hiding (unitorˡ; unitorʳ; associator; _≃_) open import Categories.Morphism C using (_≅_; module ≅) open import Categories.Morphism.IsoEquiv C using (_≃_; ⌞_⌟) open import Categories.Morphism.Isomorphism C using (_∘ᵢ_; lift-triangle′; lift-pentagon′) open import Categories.Morphism.Reasoning C private module C = Category C open C hiding (id; identityˡ; identityʳ; assoc) open Commutation private variable X Y Z W A B : Obj f g h i a b : X ⇒ Y record Monoidal : Set (o ⊔ ℓ ⊔ e) where infixr 10 _⊗₀_ _⊗₁_ field ⊗ : Bifunctor C C C unit : Obj open Functor ⊗ _⊗₀_ : Obj → Obj → Obj _⊗₀_ = curry′ F₀ -- this is also 'curry', but a very-dependent version _⊗₁_ : X ⇒ Y → Z ⇒ W → X ⊗₀ Z ⇒ Y ⊗₀ W f ⊗₁ g = F₁ (f , g) _⊗- : Obj → Functor C C X ⊗- = appˡ ⊗ X -⊗_ : Obj → Functor C C -⊗ X = appʳ ⊗ X field unitorˡ : unit ⊗₀ X ≅ X unitorʳ : X ⊗₀ unit ≅ X associator : (X ⊗₀ Y) ⊗₀ Z ≅ X ⊗₀ (Y ⊗₀ Z) module unitorˡ {X} = _≅_ (unitorˡ {X = X}) module unitorʳ {X} = _≅_ (unitorʳ {X = X}) module associator {X} {Y} {Z} = _≅_ (associator {X} {Y} {Z}) -- for exporting, it makes sense to use the above long names, but for -- internal consumption, the traditional (short!) categorical names are more -- convenient. However, they are not symmetric, even though the concepts are, so -- we'll use ⇒ and ⇐ arrows to indicate that private λ⇒ = unitorˡ.from λ⇐ = unitorˡ.to ρ⇒ = unitorʳ.from ρ⇐ = unitorʳ.to -- eta expansion fixes a problem in 2.6.1, will be reported α⇒ = λ {X} {Y} {Z} → associator.from {X} {Y} {Z} α⇐ = λ {X} {Y} {Z} → associator.to {X} {Y} {Z} field unitorˡ-commute-from : CommutativeSquare (C.id ⊗₁ f) λ⇒ λ⇒ f unitorˡ-commute-to : CommutativeSquare f λ⇐ λ⇐ (C.id ⊗₁ f) unitorʳ-commute-from : CommutativeSquare (f ⊗₁ C.id) ρ⇒ ρ⇒ f unitorʳ-commute-to : CommutativeSquare f ρ⇐ ρ⇐ (f ⊗₁ C.id) assoc-commute-from : CommutativeSquare ((f ⊗₁ g) ⊗₁ h) α⇒ α⇒ (f ⊗₁ (g ⊗₁ h)) assoc-commute-to : CommutativeSquare (f ⊗₁ (g ⊗₁ h)) α⇐ α⇐ ((f ⊗₁ g) ⊗₁ h) triangle : [ (X ⊗₀ unit) ⊗₀ Y ⇒ X ⊗₀ Y ]⟨ α⇒ ⇒⟨ X ⊗₀ (unit ⊗₀ Y) ⟩ C.id ⊗₁ λ⇒ ≈ ρ⇒ ⊗₁ C.id ⟩ pentagon : [ ((X ⊗₀ Y) ⊗₀ Z) ⊗₀ W ⇒ X ⊗₀ Y ⊗₀ Z ⊗₀ W ]⟨ α⇒ ⊗₁ C.id ⇒⟨ (X ⊗₀ Y ⊗₀ Z) ⊗₀ W ⟩ α⇒ ⇒⟨ X ⊗₀ (Y ⊗₀ Z) ⊗₀ W ⟩ C.id ⊗₁ α⇒ ≈ α⇒ ⇒⟨ (X ⊗₀ Y) ⊗₀ Z ⊗₀ W ⟩ α⇒ ⟩
35.936364
90
0.587655
5862f116dfc1fec464774c58da223427ef80d0e8
41,822
agda
Agda
Cubical/Homotopy/Group/Base.agda
MatthiasHu/cubical
58f2d0dd07e51f8aa5b348a522691097b6695d1c
[ "MIT" ]
1
2022-03-05T00:29:00.000Z
2022-03-05T00:29:00.000Z
Cubical/Homotopy/Group/Base.agda
snu-development/cubical
58f2d0dd07e51f8aa5b348a522691097b6695d1c
[ "MIT" ]
null
null
null
Cubical/Homotopy/Group/Base.agda
snu-development/cubical
58f2d0dd07e51f8aa5b348a522691097b6695d1c
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Homotopy.Group.Base where open import Cubical.Homotopy.Loopspace open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Pointed.Homogeneous open import Cubical.Foundations.HLevels open import Cubical.Foundations.GroupoidLaws renaming (assoc to ∙assoc) open import Cubical.Foundations.Path open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Foundations.Function open import Cubical.Foundations.Transport open import Cubical.Functions.Morphism open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to sRec2 ; elim to sElim ; elim2 to sElim2 ; elim3 to sElim3 ; map to sMap) open import Cubical.HITs.Truncation renaming (rec to trRec ; elim to trElim ; elim2 to trElim2) open import Cubical.HITs.Sn open import Cubical.HITs.Susp renaming (toSusp to σ) open import Cubical.HITs.S1 open import Cubical.Data.Sigma open import Cubical.Data.Nat open import Cubical.Data.Bool open import Cubical.Data.Unit open import Cubical.Algebra.Group open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open Iso open IsGroup open IsSemigroup open IsMonoid open GroupStr {- Homotopy group -} π : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) → Type ℓ π n A = ∥ typ ((Ω^ n) A) ∥₂ {- Alternative formulation. This will be given a group structure in the Properties file -} π' : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) → Type ℓ π' n A = ∥ S₊∙ n →∙ A ∥₂ {- π as a group -} 1π : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} → π n A 1π zero {A = A} = ∣ pt A ∣₂ 1π (suc n) = ∣ refl ∣₂ ·π : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} → π (suc n) A → π (suc n) A → π (suc n) A ·π n = sRec2 squash₂ λ p q → ∣ p ∙ q ∣₂ -π : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} → π (suc n) A → π (suc n) A -π n = sMap sym π-rUnit : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x : π (suc n) A) → (·π n x (1π (suc n))) ≡ x π-rUnit n = sElim (λ _ → isSetPathImplicit) λ p i → ∣ rUnit p (~ i) ∣₂ π-lUnit : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x : π (suc n) A) → (·π n (1π (suc n)) x) ≡ x π-lUnit n = sElim (λ _ → isSetPathImplicit) λ p i → ∣ lUnit p (~ i) ∣₂ π-rCancel : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x : π (suc n) A) → (·π n x (-π n x)) ≡ 1π (suc n) π-rCancel n = sElim (λ _ → isSetPathImplicit) λ p i → ∣ rCancel p i ∣₂ π-lCancel : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x : π (suc n) A) → (·π n (-π n x) x) ≡ 1π (suc n) π-lCancel n = sElim (λ _ → isSetPathImplicit) λ p i → ∣ lCancel p i ∣₂ π-assoc : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x y z : π (suc n) A) → ·π n x (·π n y z) ≡ ·π n (·π n x y) z π-assoc n = sElim3 (λ _ _ _ → isSetPathImplicit) λ p q r i → ∣ ∙assoc p q r i ∣₂ π-comm : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x y : π (suc (suc n)) A) → ·π (suc n) x y ≡ ·π (suc n) y x π-comm n = sElim2 (λ _ _ → isSetPathImplicit) λ p q i → ∣ EH n p q i ∣₂ -- πₙ₊₁ πGr : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) → Group ℓ fst (πGr n A) = π (suc n) A 1g (snd (πGr n A)) = 1π (suc n) GroupStr._·_ (snd (πGr n A)) = ·π n inv (snd (πGr n A)) = -π n is-set (isSemigroup (isMonoid (isGroup (snd (πGr n A))))) = squash₂ assoc (isSemigroup (isMonoid (isGroup (snd (πGr n A))))) = π-assoc n identity (isMonoid (isGroup (snd (πGr n A)))) x = (π-rUnit n x) , (π-lUnit n x) inverse (isGroup (snd (πGr n A))) x = (π-rCancel n x) , (π-lCancel n x) -- Group operations on π'. -- We define the corresponding structure on the untruncated -- (S₊∙ n →∙ A). ∙Π : ∀ {ℓ} {A : Pointed ℓ} {n : ℕ} → (S₊∙ n →∙ A) → (S₊∙ n →∙ A) → (S₊∙ n →∙ A) ∙Π {A = A} {n = zero} p q = (λ _ → pt A) , refl fst (∙Π {A = A} {n = suc zero} (f , p) (g , q)) base = pt A fst (∙Π {A = A} {n = suc zero} (f , p) (g , q)) (loop j) = ((sym p ∙∙ cong f loop ∙∙ p) ∙ (sym q ∙∙ cong g loop ∙∙ q)) j snd (∙Π {A = A} {n = suc zero} (f , p) (g , q)) = refl fst (∙Π {A = A} {n = suc (suc n)} (f , p) (g , q)) north = pt A fst (∙Π {A = A} {n = suc (suc n)} (f , p) (g , q)) south = pt A fst (∙Π {A = A} {n = suc (suc n)} (f , p) (g , q)) (merid a j) = ((sym p ∙∙ cong f (merid a ∙ sym (merid (ptSn (suc n)))) ∙∙ p) ∙ (sym q ∙∙ cong g (merid a ∙ sym (merid (ptSn (suc n)))) ∙∙ q)) j snd (∙Π {A = A} {n = suc (suc n)} (f , p) (g , q)) = refl -Π : ∀ {ℓ} {A : Pointed ℓ} {n : ℕ} → (S₊∙ n →∙ A) → (S₊∙ n →∙ A) -Π {n = zero} f = f fst (-Π {A = A} {n = suc zero} f) base = fst f base fst (-Π {A = A} {n = suc zero} f) (loop j) = fst f (loop (~ j)) snd (-Π {A = A} {n = suc zero} f) = snd f fst (-Π {A = A} {n = suc (suc n)} f) north = fst f north fst (-Π {A = A} {n = suc (suc n)} f) south = fst f north fst (-Π {A = A} {n = suc (suc n)} f) (merid a j) = fst f ((merid a ∙ sym (merid (ptSn _))) (~ j)) snd (-Π {A = A} {n = suc (suc n)} f) = snd f -- to prove that this gives a group structure on π', we first -- prove that Ωⁿ A ≃ (Sⁿ →∙ A). -- We use the following map mutual Ω→SphereMap : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} → typ ((Ω^ n) A) → (S₊∙ n →∙ A) fst (Ω→SphereMap zero a) false = a fst (Ω→SphereMap zero {A = A} a) true = pt A snd (Ω→SphereMap zero a) = refl fst (Ω→SphereMap (suc zero) {A = A} p) base = pt A fst (Ω→SphereMap (suc zero) p) (loop i) = p i snd (Ω→SphereMap (suc zero) p) = refl fst (Ω→SphereMap (suc (suc n)) {A = A} p) north = pt A fst (Ω→SphereMap (suc (suc n)) {A = A} p) south = pt A fst (Ω→SphereMap (suc (suc n)) p) (merid a i) = (sym (Ω→SphereMapId (suc n) a) ∙∙ (λ i → Ω→SphereMap (suc n) (p i) .fst a) ∙∙ Ω→SphereMapId (suc n) a) i snd (Ω→SphereMap (suc (suc n)) p) = refl Ω→SphereMapId : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (a : _) → Ω→SphereMap n {A = A} (pt ((Ω^ n) A)) .fst a ≡ pt A Ω→SphereMapId zero false = refl Ω→SphereMapId zero true = refl Ω→SphereMapId (suc zero) base = refl Ω→SphereMapId (suc zero) (loop i) = refl Ω→SphereMapId (suc (suc n)) north = refl Ω→SphereMapId (suc (suc n)) south = refl Ω→SphereMapId (suc (suc n)) {A = A} (merid a i) j = ∙∙lCancel (Ω→SphereMapId (suc n) {A = A} a) j i Ω→SphereMapId2 : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} → Ω→SphereMap n {A = A} (pt ((Ω^ n) A)) ≡ ((λ _ → pt A) , refl) fst (Ω→SphereMapId2 n {A = A} i) a = funExt (Ω→SphereMapId n {A = A}) i a snd (Ω→SphereMapId2 zero {A = A} i) = refl snd (Ω→SphereMapId2 (suc zero) {A = A} i) = refl snd (Ω→SphereMapId2 (suc (suc n)) {A = A} i) = refl -- Pointed version Ω→SphereMap∙ : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} → ((Ω^ n) A) →∙ (S₊∙ n →∙ A ∙) Ω→SphereMap∙ n .fst = Ω→SphereMap n Ω→SphereMap∙ n .snd = Ω→SphereMapId2 n -- We define the following maps which will be used to -- show that Ω→SphereMap is an equivalence Ω→SphereMapSplit₁ : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → typ ((Ω^ (suc n)) A) → typ (Ω (S₊∙ n →∙ A ∙)) Ω→SphereMapSplit₁ n = Ω→ (Ω→SphereMap∙ n) .fst ΩSphereMap : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → typ (Ω (S₊∙ n →∙ A ∙)) → (S₊∙ (suc n) →∙ A) fst (ΩSphereMap {A = A} zero p) base = p i0 .fst false fst (ΩSphereMap {A = A} zero p) (loop i) = p i .fst false snd (ΩSphereMap {A = A} zero p) = refl ΩSphereMap {A = A} (suc n) = fun IsoΩFunSuspFun -- Functoriality -- The homogeneity assumption is not necessary but simplifying isNaturalΩSphereMap : ∀ {ℓ ℓ'} (A : Pointed ℓ) (B : Pointed ℓ') (homogB : isHomogeneous B) (f : A →∙ B) (n : ℕ) → ∀ g → f ∘∙ ΩSphereMap n g ≡ ΩSphereMap n (Ω→ (post∘∙ (S₊∙ n) f) .fst g) isNaturalΩSphereMap A B homogB f 0 g = →∙Homogeneous≡ homogB (funExt lem) where lem : ∀ x → f .fst (ΩSphereMap 0 g .fst x) ≡ ΩSphereMap 0 (Ω→ (post∘∙ (S₊∙ 0) f) .fst g) .fst x lem base = f .snd lem (loop i) j = hfill (λ j → λ { (i = i0) → post∘∙ _ f .snd j ; (i = i1) → post∘∙ _ f .snd j }) (inS (f ∘∙ g i)) j .fst false isNaturalΩSphereMap A B homogB f (n@(suc _)) g = →∙Homogeneous≡ homogB (funExt lem) where lem : ∀ x → f .fst (ΩSphereMap n g .fst x) ≡ ΩSphereMap n (Ω→ (post∘∙ (S₊∙ n) f) .fst g) .fst x lem north = f .snd lem south = f .snd lem (merid a i) j = hfill (λ j → λ { (i = i0) → post∘∙ _ f .snd j ; (i = i1) → post∘∙ _ f .snd j }) (inS (f ∘∙ g i)) j .fst a SphereMapΩ : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → (S₊∙ (suc n) →∙ A) → typ (Ω (S₊∙ n →∙ A ∙)) SphereMapΩ {A = A} zero (f , p) = ΣPathP ((funExt λ { false → sym p ∙∙ cong f loop ∙∙ p ; true → refl}) , refl) SphereMapΩ {A = A} (suc n) = inv IsoΩFunSuspFun SphereMapΩIso : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → Iso (S₊∙ (suc n) →∙ A) (typ (Ω (S₊∙ n →∙ A ∙))) fun (SphereMapΩIso n) = SphereMapΩ n inv (SphereMapΩIso n) = ΩSphereMap n fst (rightInv (SphereMapΩIso zero) f i j) false = rUnit (λ j → fst (f j) false) (~ i) j fst (rightInv (SphereMapΩIso {A = A} zero) f i j) true = snd (f j) (~ i) snd (rightInv (SphereMapΩIso {A = A} zero) f i j) k = snd (f j) (~ i ∨ k) rightInv (SphereMapΩIso (suc n)) = leftInv IsoΩFunSuspFun leftInv (SphereMapΩIso zero) f = ΣPathP ((funExt (λ { base → sym (snd f) ; (loop i) j → doubleCompPath-filler (sym (snd f)) (cong (fst f) loop) (snd f) (~ j) i})) , λ i j → snd f (~ i ∨ j)) leftInv (SphereMapΩIso (suc n)) = rightInv IsoΩFunSuspFun {- In order to show that Ω→SphereMap is an equivalence, we show that it factors Ω→SphereMapSplit₁ ΩSphereMap Ωⁿ⁺¹A ----------------> Ω (Sⁿ →∙ A) -----------> (Sⁿ⁺¹ →∙ A) -} Ω→SphereMap-split : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) (p : typ ((Ω^ (suc n)) A)) → Ω→SphereMap (suc n) p ≡ ΩSphereMap n (Ω→SphereMapSplit₁ n p) Ω→SphereMap-split {A = A} zero p = ΣPathP ((funExt (λ { base → refl ; (loop i) j → lem (~ j) i})) , refl) where lem : funExt⁻ (cong fst (Ω→SphereMapSplit₁ zero p)) false ≡ p lem = (λ i → funExt⁻ (cong-∙∙ fst (sym (Ω→SphereMapId2 zero)) (cong (Ω→SphereMap zero) p) (Ω→SphereMapId2 zero) i) false) ∙ sym (rUnit _) Ω→SphereMap-split {A = A} (suc n) p = ΣPathP ((funExt (λ { north → refl ; south → refl ; (merid a i) j → lem₂ a j i})) , refl) where lem : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) (a : S₊ (suc n)) → Ω→SphereMapId (suc n) {A = A} a ≡ (λ i → fst (Ω→SphereMapId2 (suc n) {A = A} i) a) lem zero base = refl lem zero (loop i) = refl lem (suc n) north = refl lem (suc n) south = refl lem (suc n) (merid a i) = refl lem₂ : (a : S₊ (suc n)) → ((λ i₁ → Ω→SphereMapId (suc n) {A = A} a (~ i₁)) ∙∙ (λ i₁ → Ω→SphereMap (suc n) (p i₁) .fst a) ∙∙ Ω→SphereMapId (suc n) a) ≡ (λ i → Ω→SphereMapSplit₁ (suc n) p i .fst a) lem₂ a = cong (λ x → sym x ∙∙ funExt⁻ (cong fst (λ i → Ω→SphereMap (suc n) (p i))) a ∙∙ x) (lem n a) ∙∙ sym (cong-∙∙ (λ x → x a) (cong fst (λ i → Ω→SphereMapId2 (suc n) (~ i))) (cong fst (λ i → Ω→SphereMap (suc n) (p i))) (cong fst (Ω→SphereMapId2 (suc n)))) ∙∙ (λ i → funExt⁻ (cong-∙∙ fst (sym (Ω→SphereMapId2 (suc n))) (cong (Ω→SphereMap (suc n)) p) (Ω→SphereMapId2 (suc n)) (~ i)) a) isEquiv-Ω→SphereMap₀ : ∀ {ℓ} {A : Pointed ℓ} → isEquiv (Ω→SphereMap 0 {A = A}) isEquiv-Ω→SphereMap₀ {A = A} = isoToIsEquiv (iso _ (λ f → fst f false) (λ f → ΣPathP ((funExt (λ { false → refl ; true → sym (snd f)})) , λ i j → snd f (~ i ∨ j))) λ p → refl) isEquiv-Ω→SphereMap : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} → isEquiv (Ω→SphereMap n {A = A}) isEquiv-Ω→SphereMap zero {A = A} = (isoToIsEquiv (iso _ (λ f → fst f false) (λ f → ΣPathP ((funExt (λ { false → refl ; true → sym (snd f)})) , λ i j → snd f (~ i ∨ j))) λ _ → refl)) isEquiv-Ω→SphereMap (suc zero) {A = A} = isoToIsEquiv (iso _ invFun sec λ p → sym (rUnit p)) where invFun : S₊∙ 1 →∙ A → typ (Ω A) invFun (f , p) = sym p ∙∙ cong f loop ∙∙ p sec : section (Ω→SphereMap 1) invFun sec (f , p) = ΣPathP ((funExt (λ { base → sym p ; (loop i) j → doubleCompPath-filler (sym p) (cong f loop) p (~ j) i})) , λ i j → p (~ i ∨ j)) isEquiv-Ω→SphereMap (suc (suc n)) = subst isEquiv (sym (funExt (Ω→SphereMap-split (suc n)))) (snd (compEquiv ((Ω→SphereMapSplit₁ (suc n)) , (isEquivΩ→ (Ω→SphereMap (suc n) , Ω→SphereMapId2 (suc n)) (isEquiv-Ω→SphereMap (suc n)))) (invEquiv (isoToEquiv (SphereMapΩIso (suc n)))))) IsoΩSphereMap : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → Iso (typ ((Ω^ n) A)) (S₊∙ n →∙ A) IsoΩSphereMap n = equivToIso (_ , isEquiv-Ω→SphereMap n) IsoSphereMapΩ : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → Iso (S₊∙ n →∙ A) (fst ((Ω^ n) A)) IsoSphereMapΩ {A = A} n = invIso (IsoΩSphereMap n) SphereMap→Ω : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → S₊∙ n →∙ A → fst ((Ω^ n) A) SphereMap→Ω n = fun (IsoSphereMapΩ n) isHom-Ω→SphereMap : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (p q : _) → Ω→SphereMap (suc n) {A = A} (p ∙ q) ≡ ∙Π (Ω→SphereMap (suc n) {A = A} p) (Ω→SphereMap (suc n) {A = A} q) isHom-Ω→SphereMap zero {A = A} p q = ΣPathP ((funExt (λ { base → refl ; (loop i) j → (rUnit p j ∙ rUnit q j) i})) , refl) isHom-Ω→SphereMap (suc n) {A = A} p q = ΣPathP ((funExt (λ { north → refl ; south → refl ; (merid a i) j → main a j i})) , refl) where doubleComp-lem : ∀ {ℓ} {A : Type ℓ} {x y : A} (p : x ≡ y) (q r : y ≡ y) → (p ∙∙ q ∙∙ sym p) ∙ (p ∙∙ r ∙∙ sym p) ≡ (p ∙∙ (q ∙ r) ∙∙ sym p) doubleComp-lem p q r i j = hcomp (λ k → λ { (i = i0) → (doubleCompPath-filler p q (sym p) k ∙ doubleCompPath-filler p r (sym p) k) j ; (i = i1) → doubleCompPath-filler p (q ∙ r) (sym p) k j ; (j = i0) → p (~ k) ; (j = i1) → p (~ k)}) ((q ∙ r) j) lem : (p : typ ((Ω^ (suc (suc n))) A)) → cong (fst (Ω→SphereMap (suc (suc n)) p)) (merid (ptSn _)) ≡ refl lem p = cong (sym (Ω→SphereMapId (suc n) (ptSn _)) ∙∙_∙∙ Ω→SphereMapId (suc n) (ptSn _)) (rUnit _ ∙ (λ j → (λ i → Ω→SphereMap (suc n) {A = A} refl .snd (i ∧ j)) ∙∙ (λ i → Ω→SphereMap (suc n) {A = A} (p i) .snd j) ∙∙ λ i → Ω→SphereMap (suc n) {A = A} refl .snd (~ i ∧ j)) ∙ ∙∙lCancel _) ∙ ∙∙lCancel _ main : (a : S₊ (suc n)) → sym (Ω→SphereMapId (suc n) a) ∙∙ funExt⁻ (cong fst (cong (Ω→SphereMap (suc n)) (p ∙ q))) a ∙∙ Ω→SphereMapId (suc n) a ≡ cong (fst (∙Π (Ω→SphereMap (suc (suc n)) p) (Ω→SphereMap (suc (suc n)) q))) (merid a) main a = (cong (sym (Ω→SphereMapId (suc n) a) ∙∙_∙∙ (Ω→SphereMapId (suc n) a)) (cong-∙ (λ x → Ω→SphereMap (suc n) x .fst a) p q) ∙ sym (doubleComp-lem (sym (Ω→SphereMapId (suc n) a)) _ _)) ∙∙ cong₂ _∙_ (sym (cong (cong (fst (Ω→SphereMap (suc (suc n)) p)) (merid a) ∙_) (cong sym (lem p)) ∙ sym (rUnit _))) (sym (cong (cong (fst (Ω→SphereMap (suc (suc n)) q)) (merid a) ∙_) (cong sym (lem q)) ∙ sym (rUnit _))) ∙∙ λ i → (rUnit (cong-∙ (fst (Ω→SphereMap (suc (suc n)) p)) (merid a) (sym (merid (ptSn _))) (~ i)) i) ∙ (rUnit (cong-∙ (fst (Ω→SphereMap (suc (suc n)) q)) (merid a) (sym (merid (ptSn _)))(~ i)) i) -- The iso is structure preserving IsoSphereMapΩ-pres∙Π : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) (f g : S₊∙ (suc n) →∙ A) → SphereMap→Ω (suc n) (∙Π f g) ≡ SphereMap→Ω (suc n) f ∙ SphereMap→Ω (suc n) g IsoSphereMapΩ-pres∙Π n = morphLemmas.isMorphInv _∙_ ∙Π (Ω→SphereMap (suc n)) (isHom-Ω→SphereMap n) (SphereMap→Ω (suc n)) (leftInv (IsoSphereMapΩ (suc n))) (rightInv (IsoSphereMapΩ (suc n))) -- It is useful to define the ``Group Structure'' on (S₊∙ n →∙ A) -- before doing it on π'. These will be the equivalents of the -- usual groupoid laws on Ω A. 1Π : ∀ {ℓ} {A : Pointed ℓ} {n : ℕ} → (S₊∙ n →∙ A) fst (1Π {A = A}) _ = pt A snd (1Π {A = A}) = refl ∙Π-rUnit : ∀ {ℓ} {A : Pointed ℓ} {n : ℕ} → (f : S₊∙ (suc n) →∙ A) → ∙Π f 1Π ≡ f fst (∙Π-rUnit {A = A} {n = zero} f i) base = snd f (~ i) fst (∙Π-rUnit {A = A} {n = zero} f i) (loop j) = help i j where help : PathP (λ i → snd f (~ i) ≡ snd f (~ i)) (((sym (snd f)) ∙∙ (cong (fst f) loop) ∙∙ snd f) ∙ (refl ∙ refl)) (cong (fst f) loop) help = (cong ((sym (snd f) ∙∙ cong (fst f) loop ∙∙ snd f) ∙_) (sym (rUnit refl)) ∙ sym (rUnit _)) ◁ λ i j → doubleCompPath-filler (sym (snd f)) (cong (fst f) loop) (snd f) (~ i) j snd (∙Π-rUnit {A = A} {n = zero} f i) j = snd f (~ i ∨ j) fst (∙Π-rUnit {A = A} {n = suc n} f i) north = snd f (~ i) fst (∙Π-rUnit {A = A} {n = suc n} f i) south = (sym (snd f) ∙ cong (fst f) (merid (ptSn (suc n)))) i fst (∙Π-rUnit {A = A} {n = suc n} f i) (merid a j) = help i j where help : PathP (λ i → snd f (~ i) ≡ (sym (snd f) ∙ cong (fst f) (merid (ptSn (suc n)))) i) (((sym (snd f)) ∙∙ (cong (fst f) (merid a ∙ sym (merid (ptSn (suc n))))) ∙∙ snd f) ∙ (refl ∙ refl)) (cong (fst f) (merid a)) help = (cong (((sym (snd f)) ∙∙ (cong (fst f) (merid a ∙ sym (merid (ptSn (suc n))))) ∙∙ snd f) ∙_) (sym (rUnit refl)) ∙ sym (rUnit _)) ◁ λ i j → hcomp (λ k → λ { (j = i0) → snd f (~ i ∧ k) ; (j = i1) → compPath-filler' (sym (snd f)) (cong (fst f) (merid (ptSn (suc n)))) k i ; (i = i0) → doubleCompPath-filler (sym (snd f)) (cong (fst f) (merid a ∙ sym (merid (ptSn (suc n))))) (snd f) k j ; (i = i1) → fst f (merid a j)}) (fst f (compPath-filler (merid a) (sym (merid (ptSn _))) (~ i) j)) snd (∙Π-rUnit {A = A} {n = suc n} f i) j = snd f (~ i ∨ j) ∙Π-lUnit : ∀ {ℓ} {A : Pointed ℓ} {n : ℕ} → (f : S₊∙ (suc n) →∙ A) → ∙Π 1Π f ≡ f fst (∙Π-lUnit {n = zero} f i) base = snd f (~ i) fst (∙Π-lUnit {n = zero} f i) (loop j) = s i j where s : PathP (λ i → snd f (~ i) ≡ snd f (~ i)) ((refl ∙ refl) ∙ (sym (snd f) ∙∙ cong (fst f) loop ∙∙ snd f)) (cong (fst f) loop) s = (cong (_∙ (sym (snd f) ∙∙ cong (fst f) loop ∙∙ snd f)) (sym (rUnit refl)) ∙ sym (lUnit _)) ◁ λ i j → doubleCompPath-filler (sym (snd f)) (cong (fst f) loop) (snd f) (~ i) j snd (∙Π-lUnit {n = zero} f i) j = snd f (~ i ∨ j) fst (∙Π-lUnit {n = suc n} f i) north = snd f (~ i) fst (∙Π-lUnit {n = suc n} f i) south = (sym (snd f) ∙ cong (fst f) (merid (ptSn _))) i fst (∙Π-lUnit {n = suc n} f i) (merid a j) = help i j where help : PathP (λ i → snd f (~ i) ≡ (sym (snd f) ∙ cong (fst f) (merid (ptSn (suc n)))) i) ((refl ∙ refl) ∙ ((sym (snd f)) ∙∙ (cong (fst f) (merid a ∙ sym (merid (ptSn (suc n))))) ∙∙ snd f)) (cong (fst f) (merid a)) help = (cong (_∙ ((sym (snd f)) ∙∙ (cong (fst f) (merid a ∙ sym (merid (ptSn (suc n))))) ∙∙ snd f)) (sym (rUnit refl)) ∙ sym (lUnit _)) ◁ λ i j → hcomp (λ k → λ { (j = i0) → snd f (~ i ∧ k) ; (j = i1) → compPath-filler' (sym (snd f)) (cong (fst f) (merid (ptSn (suc n)))) k i ; (i = i0) → doubleCompPath-filler (sym (snd f)) (cong (fst f) (merid a ∙ sym (merid (ptSn (suc n))))) (snd f) k j ; (i = i1) → fst f (merid a j)}) (fst f (compPath-filler (merid a) (sym (merid (ptSn _))) (~ i) j)) snd (∙Π-lUnit {n = suc n} f i) j = snd f (~ i ∨ j) ∙Π-rCancel : ∀ {ℓ} {A : Pointed ℓ} {n : ℕ} → (f : S₊∙ (suc n) →∙ A) → ∙Π f (-Π f) ≡ 1Π fst (∙Π-rCancel {A = A} {n = zero} f i) base = pt A fst (∙Π-rCancel {A = A} {n = zero} f i) (loop j) = rCancel (sym (snd f) ∙∙ cong (fst f) loop ∙∙ snd f) i j snd (∙Π-rCancel {A = A} {n = zero} f i) = refl fst (∙Π-rCancel {A = A} {n = suc n} f i) north = pt A fst (∙Π-rCancel {A = A} {n = suc n} f i) south = pt A fst (∙Π-rCancel {A = A} {n = suc n} f i) (merid a i₁) = lem i i₁ where pl = (sym (snd f) ∙∙ cong (fst f) (merid a ∙ sym (merid (ptSn _))) ∙∙ snd f) lem : pl ∙ ((sym (snd f) ∙∙ cong (fst (-Π f)) (merid a ∙ sym (merid (ptSn _))) ∙∙ snd f)) ≡ refl lem = cong (pl ∙_) (cong (sym (snd f) ∙∙_∙∙ (snd f)) (cong-∙ (fst (-Π f)) (merid a) (sym (merid (ptSn _))) ∙∙ cong₂ _∙_ refl (cong (cong (fst f)) (rCancel (merid (ptSn _)))) ∙∙ sym (rUnit _))) ∙ rCancel pl snd (∙Π-rCancel {A = A} {n = suc n} f i) = refl ∙Π-lCancel : ∀ {ℓ} {A : Pointed ℓ} {n : ℕ} → (f : S₊∙ (suc n) →∙ A) → ∙Π (-Π f) f ≡ 1Π fst (∙Π-lCancel {A = A} {n = zero} f i) base = pt A fst (∙Π-lCancel {A = A} {n = zero} f i) (loop j) = rCancel (sym (snd f) ∙∙ cong (fst f) (sym loop) ∙∙ snd f) i j fst (∙Π-lCancel {A = A} {n = suc n} f i) north = pt A fst (∙Π-lCancel {A = A} {n = suc n} f i) south = pt A fst (∙Π-lCancel {A = A} {n = suc n} f i) (merid a j) = lem i j where pl = (sym (snd f) ∙∙ cong (fst f) (merid a ∙ sym (merid (ptSn _))) ∙∙ snd f) lem : (sym (snd f) ∙∙ cong (fst (-Π f)) (merid a ∙ sym (merid (ptSn _))) ∙∙ snd f) ∙ pl ≡ refl lem = cong (_∙ pl) (cong (sym (snd f) ∙∙_∙∙ (snd f)) (cong-∙ (fst (-Π f)) (merid a) (sym (merid (ptSn _))) ∙∙ cong₂ _∙_ refl (cong (cong (fst f)) (rCancel (merid (ptSn _)))) ∙∙ sym (rUnit _))) ∙ lCancel pl snd (∙Π-lCancel {A = A} {n = zero} f i) = refl snd (∙Π-lCancel {A = A} {n = suc n} f i) = refl ∙Π-assoc : ∀ {ℓ} {A : Pointed ℓ} {n : ℕ} → (f g h : S₊∙ (suc n) →∙ A) → ∙Π f (∙Π g h) ≡ ∙Π (∙Π f g) h ∙Π-assoc {n = n} f g h = sym (leftInv (IsoSphereMapΩ (suc n)) (∙Π f (∙Π g h))) ∙∙ cong (Ω→SphereMap (suc n)) (IsoSphereMapΩ-pres∙Π n f (∙Π g h) ∙∙ cong (SphereMap→Ω (suc n) f ∙_) (IsoSphereMapΩ-pres∙Π n g h) ∙∙ ∙assoc (SphereMap→Ω (suc n) f) (SphereMap→Ω (suc n) g) (SphereMap→Ω (suc n) h) ∙∙ cong (_∙ SphereMap→Ω (suc n) h) (sym (IsoSphereMapΩ-pres∙Π n f g)) ∙∙ sym (IsoSphereMapΩ-pres∙Π n (∙Π f g) h)) ∙∙ leftInv (IsoSphereMapΩ (suc n)) (∙Π (∙Π f g) h) ∙Π-comm : ∀ {ℓ} {A : Pointed ℓ} {n : ℕ} → (f g : S₊∙ (suc (suc n)) →∙ A) → ∙Π f g ≡ ∙Π g f ∙Π-comm {A = A} {n = n} f g = sym (leftInv (IsoSphereMapΩ (suc (suc n))) (∙Π f g)) ∙∙ cong (Ω→SphereMap (suc (suc n))) (IsoSphereMapΩ-pres∙Π (suc n) f g ∙∙ EH _ _ _ ∙∙ sym (IsoSphereMapΩ-pres∙Π (suc n) g f)) ∙∙ leftInv (IsoSphereMapΩ (suc (suc n))) (∙Π g f) {- π'' as a group -} 1π' : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} → π' n A 1π' n {A = A} = ∣ 1Π ∣₂ ·π' : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} → π' (suc n) A → π' (suc n) A → π' (suc n) A ·π' n = sRec2 squash₂ λ p q → ∣ ∙Π p q ∣₂ -π' : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} → π' (suc n) A → π' (suc n) A -π' n = sMap -Π π'-rUnit : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x : π' (suc n) A) → (·π' n x (1π' (suc n))) ≡ x π'-rUnit n = sElim (λ _ → isSetPathImplicit) λ p i → ∣ ∙Π-rUnit p i ∣₂ π'-lUnit : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x : π' (suc n) A) → (·π' n (1π' (suc n)) x) ≡ x π'-lUnit n = sElim (λ _ → isSetPathImplicit) λ p i → ∣ ∙Π-lUnit p i ∣₂ π'-rCancel : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x : π' (suc n) A) → (·π' n x (-π' n x)) ≡ 1π' (suc n) π'-rCancel n = sElim (λ _ → isSetPathImplicit) λ p i → ∣ ∙Π-rCancel p i ∣₂ π'-lCancel : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x : π' (suc n) A) → (·π' n (-π' n x) x) ≡ 1π' (suc n) π'-lCancel n = sElim (λ _ → isSetPathImplicit) λ p i → ∣ ∙Π-lCancel p i ∣₂ π'-assoc : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x y z : π' (suc n) A) → ·π' n x (·π' n y z) ≡ ·π' n (·π' n x y) z π'-assoc n = sElim3 (λ _ _ _ → isSetPathImplicit) λ p q r i → ∣ ∙Π-assoc p q r i ∣₂ π'-comm : ∀ {ℓ} (n : ℕ) {A : Pointed ℓ} (x y : π' (suc (suc n)) A) → ·π' (suc n) x y ≡ ·π' (suc n) y x π'-comm n = sElim2 (λ _ _ → isSetPathImplicit) λ p q i → ∣ ∙Π-comm p q i ∣₂ -- We finally get the group definition π'Gr : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) → Group ℓ fst (π'Gr n A) = π' (suc n) A 1g (snd (π'Gr n A)) = 1π' (suc n) GroupStr._·_ (snd (π'Gr n A)) = ·π' n inv (snd (π'Gr n A)) = -π' n is-set (isSemigroup (isMonoid (isGroup (snd (π'Gr n A))))) = squash₂ assoc (isSemigroup (isMonoid (isGroup (snd (π'Gr n A))))) = π'-assoc n identity (isMonoid (isGroup (snd (π'Gr n A)))) x = (π'-rUnit n x) , (π'-lUnit n x) inverse (isGroup (snd (π'Gr n A))) x = (π'-rCancel n x) , (π'-lCancel n x) -- and finally, the Iso π'Gr≅πGr : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) → GroupIso (π'Gr n A) (πGr n A) fst (π'Gr≅πGr n A) = setTruncIso (IsoSphereMapΩ (suc n)) snd (π'Gr≅πGr n A) = makeIsGroupHom (sElim2 (λ _ _ → isSetPathImplicit) λ p q i → ∣ IsoSphereMapΩ-pres∙Π n p q i ∣₂) {- Proof of πₙ(ΩA) = πₙ₊₁(A) -} Iso-πΩ-π : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → Iso (π n (Ω A)) (π (suc n) A) Iso-πΩ-π {A = A} n = setTruncIso (invIso (flipΩIso n)) GrIso-πΩ-π : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → GroupIso (πGr n (Ω A)) (πGr (suc n) A) fst (GrIso-πΩ-π n) = Iso-πΩ-π _ snd (GrIso-πΩ-π n) = makeIsGroupHom (sElim2 (λ _ _ → isSetPathImplicit) λ p q → cong ∣_∣₂ (flipΩIso⁻pres· n p q)) {- Proof that πₙ(A) ≅ πₙ(∥ A ∥ₙ) -} isContrΩTrunc : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → isContr (typ ((Ω^ n) (hLevelTrunc∙ n A))) isContrΩTrunc {A = A} zero = isContrUnit* isContrΩTrunc {A = A} (suc n) = subst isContr main (isContrΩTrunc {A = Ω A} n) where lem₁ : (n : ℕ) → fun (PathIdTruncIso n) (λ _ → ∣ pt A ∣) ≡ snd (hLevelTrunc∙ n (Ω A)) lem₁ zero = refl lem₁ (suc n) = transportRefl ∣ refl ∣ lem₂ : hLevelTrunc∙ n (Ω A) ≡ (Ω (hLevelTrunc∙ (suc n) A)) lem₂ = sym (ua∙ (isoToEquiv (PathIdTruncIso n)) (lem₁ n)) main : (typ ((Ω^ n) (hLevelTrunc∙ n (Ω A)))) ≡ (typ ((Ω^ suc n) (hLevelTrunc∙ (suc n) A))) main = (λ i → typ ((Ω^ n) (lem₂ i))) ∙ sym (isoToPath (flipΩIso n)) mutual ΩTruncSwitchFun : ∀ {ℓ} {A : Pointed ℓ} (n m : ℕ) → (hLevelTrunc∙ (suc (suc m)) ((Ω^ n) A)) →∙ ((Ω^ n) (hLevelTrunc∙ (suc n + suc m) A)) ΩTruncSwitchFun {A = A} n m = ((λ x → transport (λ i → fst ((Ω^ n) (hLevelTrunc∙ (+-suc n (suc m) i) A))) (Iso.fun (ΩTruncSwitch {A = A} n (suc (suc m))) x)) , cong (transport (λ i → fst ((Ω^ n) (hLevelTrunc∙ (+-suc n (suc m) i) A)))) (ΩTruncSwitch∙ n (suc (suc m))) ∙ λ j → transp (λ i → fst ((Ω^ n) (hLevelTrunc∙ (+-suc n (suc m) (i ∨ j)) A))) j (snd ((Ω^ n) (hLevelTrunc∙ (+-suc n (suc m) j) A)))) ΩTruncSwitchLem : ∀ {ℓ} {A : Pointed ℓ} (n m : ℕ) → Iso (typ (Ω (hLevelTrunc∙ (suc (suc m)) ((Ω^ n) A)))) (typ ((Ω^ suc n) (hLevelTrunc∙ (suc n + suc m) A))) ΩTruncSwitchLem {A = A} n m = (equivToIso (Ω→ (ΩTruncSwitchFun n m) .fst , isEquivΩ→ _ (compEquiv (isoToEquiv (ΩTruncSwitch {A = A} n (suc (suc m)))) (transportEquiv (λ i → typ ((Ω^ n) (hLevelTrunc∙ (+-suc n (suc m) i) A)))) .snd))) ΩTruncSwitch : ∀ {ℓ} {A : Pointed ℓ} (n m : ℕ) → Iso (hLevelTrunc m (fst ((Ω^ n) A))) (typ ((Ω^ n) (hLevelTrunc∙ (n + m) A))) ΩTruncSwitch {A = A} n zero = equivToIso (invEquiv (isContr→≃Unit* (subst isContr (λ i → (typ ((Ω^ n) (hLevelTrunc∙ (+-comm zero n i) A)))) (isContrΩTrunc n)))) ΩTruncSwitch {A = A} zero (suc m) = idIso ΩTruncSwitch {A = A} (suc n) (suc m) = compIso (invIso (PathIdTruncIso _)) (ΩTruncSwitchLem n m) ΩTruncSwitch∙ : ∀ {ℓ} {A : Pointed ℓ} (n m : ℕ) → Iso.fun (ΩTruncSwitch {A = A} n m) (snd (hLevelTrunc∙ m ((Ω^ n) A))) ≡ pt ((Ω^ n) (hLevelTrunc∙ (n + m) A)) ΩTruncSwitch∙ {A = A} n zero = isContr→isProp ((subst isContr (λ i → (typ ((Ω^ n) (hLevelTrunc∙ (+-comm zero n i) A)))) (isContrΩTrunc n))) _ _ ΩTruncSwitch∙ {A = A} zero (suc m) = refl ΩTruncSwitch∙ {A = A} (suc n) (suc m) = ∙∙lCancel _ ΩTruncSwitch-hom : ∀ {ℓ} {A : Pointed ℓ} (n m : ℕ) (p q : _) → Iso.fun (ΩTruncSwitch {A = A} (suc n) (suc m)) ∣ p ∙ q ∣ ≡ Iso.fun (ΩTruncSwitch {A = A} (suc n) (suc m)) ∣ p ∣ ∙ Iso.fun (ΩTruncSwitch {A = A} (suc n) (suc m)) ∣ q ∣ ΩTruncSwitch-hom {A = A} n m p q = cong (Iso.fun (ΩTruncSwitchLem {A = A} n m)) (cong-∙ ∣_∣ₕ p q) ∙ Ω→pres∙ (ΩTruncSwitchFun n m) (cong ∣_∣ₕ p) (cong ∣_∣ₕ q) 2TruncΩIso : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → Iso (hLevelTrunc 2 (fst ((Ω^ n) A))) (typ ((Ω^ n) (hLevelTrunc∙ (2 + n) A))) 2TruncΩIso zero = idIso 2TruncΩIso {A = A} (suc n) = compIso (ΩTruncSwitch (suc n) 2) (pathToIso λ i → typ ((Ω^ suc n) (hLevelTrunc∙ (+-comm (suc n) 2 i) A))) hLevΩ+ : ∀ {ℓ} {A : Pointed ℓ} (n m : ℕ) → isOfHLevel (m + n) (typ A) → isOfHLevel n (typ ((Ω^ m) A)) hLevΩ+ n zero p = p hLevΩ+ {A = A} zero (suc zero) p = refl , λ _ → isProp→isSet p _ _ _ _ hLevΩ+ {A = A} zero (suc (suc zero)) p = refl , λ y → isOfHLevelSuc 2 p _ _ _ _ refl y hLevΩ+ {A = A} zero (suc (suc (suc m))) p = transport (λ i → isContr (typ (Ω (ua∙ (isoToEquiv (flipΩIso {A = A} (suc m))) (flipΩrefl m) (~ i))))) (hLevΩ+ {A = Ω A} zero (suc (suc m)) (subst (λ x → isOfHLevel x (typ (Ω A))) (+-comm zero (suc (suc m))) (lem (pt A) (pt A)))) where lem : isOfHLevel (3 + m) (typ A) lem = subst (λ x → isOfHLevel x (typ A)) (λ i → suc (+-comm (2 + m) zero i)) p hLevΩ+ {A = A} (suc n) (suc m) p = subst (isOfHLevel (suc n)) (sym (ua (isoToEquiv (flipΩIso {A = A} m)))) (hLevΩ+ {A = Ω A} (suc n) m (isOfHLevelPath' (m + suc n) p _ _)) isSetΩTrunc : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → (isSet (typ (Ω ((Ω^ n) (hLevelTrunc∙ (suc (suc (suc n))) A))))) isSetΩTrunc {A = A} zero = isOfHLevelTrunc 3 _ _ isSetΩTrunc {A = A} (suc n) = hLevΩ+ 2 (suc (suc n)) (transport (λ i → isOfHLevel (+-comm 2 (2 + n) i) (hLevelTrunc (4 + n) (typ A))) (isOfHLevelTrunc (suc (suc (suc (suc n)))))) πTruncIso : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → Iso (π n A) (π n (hLevelTrunc∙ (2 + n) A)) πTruncIso {A = A} zero = compIso (invIso (setTruncIdempotentIso squash₂)) (setTruncIso setTruncTrunc2Iso) πTruncIso {A = A} (suc n) = compIso setTruncTrunc2Iso (compIso (2TruncΩIso (suc n)) (invIso (setTruncIdempotentIso (isSetΩTrunc n)))) πTruncGroupIso : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → GroupIso (πGr n A) (πGr n (hLevelTrunc∙ (3 + n) A)) fst (πTruncGroupIso n) = πTruncIso (suc n) snd (πTruncGroupIso {A = A} n) = makeIsGroupHom (sElim2 (λ _ _ → isSetPathImplicit) λ a b → cong (inv (setTruncIdempotentIso (isSetΩTrunc n))) (cong (transport (λ i → typ ((Ω^ suc n) (hLevelTrunc∙ (+-comm (suc n) 2 i) A)))) (ΩTruncSwitch-hom n 1 a b) ∙ transpΩTruncSwitch (λ w → ((Ω^ n) (hLevelTrunc∙ w A))) (+-comm (suc n) 2) _ _)) where transpΩTruncSwitch : ∀ {ℓ} (A : ℕ → Pointed ℓ) {n m : ℕ} (r : n ≡ m) (p q : typ (Ω (A n))) → subst (λ n → typ (Ω (A n))) r (p ∙ q) ≡ subst (λ n → typ (Ω (A n))) r p ∙ subst (λ n → typ (Ω (A n))) r q transpΩTruncSwitch A {n = n} = J (λ m r → (p q : typ (Ω (A n))) → subst (λ n → typ (Ω (A n))) r (p ∙ q) ≡ subst (λ n → typ (Ω (A n))) r p ∙ subst (λ n → typ (Ω (A n))) r q) λ p q → transportRefl _ ∙ cong₂ _∙_ (sym (transportRefl p)) (sym (transportRefl q)) -- Often, we prefer thinking of Ωⁿ A as (Sⁿ →∙ A). -- The goal of the following lemmas is to show that the maps -- Ωⁿ A → Ωⁿ B and Ωⁿ (fib f) →∙ Ωⁿ A get sent to post composition -- under the equivalence Ωⁿ A as (Sⁿ →∙ A). This also gives a proof -- that post composition induces a homomorphism of homotopy groups. -- The following lemmas is not pretty but very helpful private bigLemma : ∀ {ℓ ℓ'} {A₁ B₁ C₁ : Type ℓ} {A₂ B₂ C₂ : Type ℓ'} (A₁→B₁ : A₁ ≃ B₁) (B₁→C₁ : B₁ ≃ C₁) (A₂→B₂ : A₂ ≃ B₂) (B₂→C₂ : B₂ ≃ C₂) (A₁→A₂ : A₁ → A₂) (B₁→B₂ : B₁ → B₂) (C₁→C₂ : C₁ → C₂) → (B₁→B₂ ∘ (fst A₁→B₁)) ≡ (fst A₂→B₂ ∘ A₁→A₂) → C₁→C₂ ∘ fst B₁→C₁ ≡ fst B₂→C₂ ∘ B₁→B₂ → C₁→C₂ ∘ fst B₁→C₁ ∘ fst A₁→B₁ ≡ fst B₂→C₂ ∘ fst A₂→B₂ ∘ A₁→A₂ bigLemma {B₁ = B₁} {C₁ = C₁} {A₂ = A₂} {B₂ = B₂} {C₂ = C₂} = EquivJ (λ A₁ A₁→B₁ → (B₁→C₁ : B₁ ≃ C₁) (A₂→B₂ : A₂ ≃ B₂) (B₂→C₂ : B₂ ≃ C₂) (A₁→A₂ : A₁ → A₂) (B₁→B₂ : B₁ → B₂) (C₁→C₂ : C₁ → C₂) → B₁→B₂ ∘ fst A₁→B₁ ≡ fst A₂→B₂ ∘ A₁→A₂ → C₁→C₂ ∘ fst B₁→C₁ ≡ fst B₂→C₂ ∘ B₁→B₂ → C₁→C₂ ∘ fst B₁→C₁ ∘ fst A₁→B₁ ≡ fst B₂→C₂ ∘ fst A₂→B₂ ∘ A₁→A₂) (EquivJ (λ B₁ B₁→C₁ → (A₂→B₂ : A₂ ≃ B₂) (B₂→C₂ : B₂ ≃ C₂) (A₁→A₂ : B₁ → A₂) (B₁→B₂ : B₁ → B₂) (C₁→C₂ : C₁ → C₂) → (B₁→B₂) ≡ (fst A₂→B₂ ∘ A₁→A₂) → (C₁→C₂ ∘ (fst B₁→C₁)) ≡ (fst B₂→C₂ ∘ (B₁→B₂)) → (C₁→C₂ ∘ (fst B₁→C₁)) ≡ (fst B₂→C₂ ∘ (fst A₂→B₂ ∘ A₁→A₂))) (EquivJ (λ A₂ A₂→B₂ → (B₂→C₂ : B₂ ≃ C₂) (A₁→A₂ : C₁ → A₂) (B₁→B₂ : C₁ → B₂) (C₁→C₂ : C₁ → C₂) → B₁→B₂ ≡ (fst A₂→B₂ ∘ A₁→A₂) → (C₁→C₂) ≡ (fst B₂→C₂ ∘ B₁→B₂) → (C₁→C₂) ≡ fst B₂→C₂ ∘ (fst A₂→B₂ ∘ A₁→A₂)) (EquivJ (λ B₂ B₂→C₂ → (A₁→A₂ B₁→B₂ : C₁ → B₂) (C₁→C₂ : C₁ → C₂) → B₁→B₂ ≡ A₁→A₂ → C₁→C₂ ≡ (fst B₂→C₂ ∘ B₁→B₂) → C₁→C₂ ≡ (fst B₂→C₂ ∘ A₁→A₂)) λ _ _ _ p q → q ∙ p))) {- We want to show that the following square commutes. Ωⁿ f Ωⁿ A ----------→ Ωⁿ B | | | | v f∘_ v (Sⁿ→∙A) ------> (Sⁿ→∙B) -} Ω^→≈post∘∙ : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) → (f : A →∙ B) → Path ((Ω^ (suc n)) A →∙ (S₊∙ (suc n) →∙ B ∙)) (post∘∙ (S₊∙ (suc n)) f ∘∙ Ω→SphereMap∙ (suc n)) (Ω→SphereMap∙ (suc n) ∘∙ Ω^→ (suc n) f) Ω^→≈post∘∙ {A = A} {B = B} zero f = →∙Homogeneous≡ (subst isHomogeneous (ua∙ (Ω→SphereMap 1 , (isEquiv-Ω→SphereMap 1)) (Ω→SphereMap∙ 1 {A = B} .snd)) (isHomogeneousPath _ _)) (funExt λ p → ΣPathP ((funExt (λ { base → snd f ; (loop i) j → doubleCompPath-filler (sym (snd f)) (cong (fst f) p) (snd f) j i})) , (sym (lUnit (snd f)) ◁ λ i j → snd f (i ∨ j)))) Ω^→≈post∘∙ {A = A} {B = B} (suc n) f = →∙Homogeneous≡ (subst isHomogeneous (ua∙ (Ω→SphereMap (2 + n) , (isEquiv-Ω→SphereMap (2 + n))) (Ω→SphereMap∙ (2 + n) {A = B} .snd)) (isHomogeneousPath _ _)) ((funExt λ p → (λ i → post∘∙ (S₊∙ (2 + n)) f .fst (Ω→SphereMap-split (suc n) p i)) ∙∙ funExt⁻ (bigLemma (Ω→SphereMapSplit₁ (suc n) , isEquivΩ→ _ (isEquiv-Ω→SphereMap (suc n))) (ΩSphereMap (suc n) , isoToIsEquiv (invIso (SphereMapΩIso (suc n)))) (Ω→SphereMapSplit₁ (suc n) , isEquivΩ→ _ (isEquiv-Ω→SphereMap (suc n))) (ΩSphereMap (suc n) , isoToIsEquiv (invIso (SphereMapΩIso (suc n)))) (Ω^→ (2 + n) f .fst) (Ω→ (post∘∙ (S₊∙ (suc n)) f) .fst) (post∘∙ (S₊∙ (2 + n)) f .fst) (funExt topSquare) (sym (funExt (bottomSquare f)))) p ∙∙ sym (Ω→SphereMap-split (suc n) (Ω^→ (2 + n) f .fst p)))) where topSquare : (p : typ ((Ω^ (2 + n)) A)) → Path (typ (Ω ((S₊∙ (suc n)) →∙ B ∙))) ((Ω→ (post∘∙ (S₊∙ (suc n)) f) .fst ∘ Ω→ (Ω→SphereMap∙ (suc n)) .fst) p) (((Ω→ (Ω→SphereMap∙ (suc n))) .fst ∘ (Ω^→ (suc (suc n)) f .fst)) p) topSquare p = sym (Ω→∘ (post∘∙ (S₊∙ (suc n)) f) (Ω→SphereMap∙ (suc n)) p) ∙ (λ i → Ω→ (Ω^→≈post∘∙ {A = A} {B = B} n f i) .fst p) ∙ Ω→∘ (Ω→SphereMap∙ (suc n)) (Ω^→ (suc n) f) p bottomSquare : (f : A →∙ B) (g : typ (Ω (S₊∙ (suc n) →∙ A ∙))) → Path (S₊∙ (2 + n) →∙ B) (ΩSphereMap (suc n) (Ω→ (post∘∙ (S₊∙ (suc n)) f) .fst g)) ((post∘∙ (S₊∙ (2 + n)) f .fst ∘ ΩSphereMap (suc n)) g) bottomSquare = →∙J (λ b₀ f → (g : typ (Ω (S₊∙ (suc n) →∙ A ∙))) → Path (S₊∙ (suc (suc n)) →∙ (fst B , b₀)) (ΩSphereMap (suc n) (Ω→ (post∘∙ (S₊∙ (suc n)) f) .fst g)) ((post∘∙ (S₊∙ (suc (suc n))) f .fst ∘ ΩSphereMap (suc n)) g)) λ f g → ΣPathP ((funExt (λ { north → refl ; south → refl ; (merid a i) j → lem f g a j i})) , lUnit refl) where lem : (f : typ A → typ B) (g : typ (Ω (S₊∙ (suc n) →∙ A ∙))) → (a : S₊ (suc n)) → cong (fst (ΩSphereMap (suc n) (Ω→ (post∘∙ (S₊∙ (suc n)) (f , refl)) .fst g))) (merid a) ≡ cong (fst ((f , refl) ∘∙ ΩSphereMap (suc n) g)) (merid a) lem f g a = (λ i → funExt⁻ (cong-∙∙ fst (sym (snd (post∘∙ (S₊∙ (suc n)) (f , (λ _ → f (snd A)))))) (cong (fst (post∘∙ (S₊∙ (suc n)) (f , (λ _ → f (snd A))))) g) (snd (post∘∙ (S₊∙ (suc n)) (f , (λ _ → f (snd A))))) i) a) ∙ sym (rUnit (λ i → f (fst (g i) a))) {- We can use this to define prove that post composition induces a homomorphism πₙ A → πₙ B-} π'∘∙fun : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B) → π' (suc n) A → π' (suc n) B π'∘∙fun n f = sMap (f ∘∙_) GroupHomπ≅π'PathP : ∀ {ℓ ℓ'} (A : Pointed ℓ) (B : Pointed ℓ') (n : ℕ) → GroupHom (πGr n A) (πGr n B) ≡ GroupHom (π'Gr n A) (π'Gr n B) GroupHomπ≅π'PathP A B n i = GroupHom (fst (GroupPath _ _) (GroupIso→GroupEquiv (π'Gr≅πGr n A)) (~ i)) (fst (GroupPath _ _) (GroupIso→GroupEquiv (π'Gr≅πGr n B)) (~ i)) πFun : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B) → π (suc n) A → π (suc n) B πFun n f = sMap (fst (Ω^→ (suc n) f)) πHom : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B) → GroupHom (πGr n A) (πGr n B) fst (πHom n f) = πFun n f snd (πHom n f) = makeIsGroupHom (sElim2 (λ _ _ → isSetPathImplicit) λ p q → cong ∣_∣₂ (Ω^→pres∙ f n p q)) π'∘∙Hom' : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B) → GroupHom (π'Gr n A) (π'Gr n B) π'∘∙Hom' {A = A} {B = B} n f = transport (λ i → GroupHomπ≅π'PathP A B n i) (πHom n f) π'∘∙Hom'≡π'∘∙fun : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B) → π'∘∙Hom' n f .fst ≡ π'∘∙fun n f π'∘∙Hom'≡π'∘∙fun n f = funExt (sElim (λ _ → isSetPathImplicit) λ g → cong ∣_∣₂ ((λ i → inv (IsoSphereMapΩ (suc n)) (transportRefl (Ω^→ (suc n) f .fst (transportRefl (fun (IsoSphereMapΩ (suc n)) g) i)) i)) ∙ sym (funExt⁻ (cong fst (Ω^→≈post∘∙ n f)) (fun (IsoSphereMapΩ (suc n)) g)) ∙ cong (f ∘∙_) (leftInv (IsoSphereMapΩ (suc n)) g))) π'∘∙Hom : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B) → GroupHom (π'Gr n A) (π'Gr n B) fst (π'∘∙Hom n f) = sMap (f ∘∙_) snd (π'∘∙Hom {A = A} {B = B} n f) = isHom∘∙ where abstract isHom∘∙ : IsGroupHom (π'Gr n A .snd) (fst (π'∘∙Hom n f)) (π'Gr n B .snd) isHom∘∙ = transport (λ i → IsGroupHom (π'Gr n A .snd) (π'∘∙Hom'≡π'∘∙fun n f i) (π'Gr n B .snd)) (π'∘∙Hom' n f .snd) -- post composition with an equivalence induces an -- isomorphism of homotopy groups π'eqFun : ∀ {ℓ} {A : Pointed ℓ} {B : Pointed ℓ} (n : ℕ) → A ≃∙ B → (π' (suc n) A) → π' (suc n) B π'eqFun n p = π'∘∙fun n (≃∙map p) π'eqFun-idEquiv : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → π'eqFun n (idEquiv (fst A) , (λ _ → pt A)) ≡ idfun _ π'eqFun-idEquiv n = funExt (sElim (λ _ → isSetPathImplicit) λ f → cong ∣_∣₂ (∘∙-idʳ f)) π'eqFunIsEquiv : ∀ {ℓ} {A : Pointed ℓ} {B : Pointed ℓ} (n : ℕ) → (e : A ≃∙ B) → isEquiv (π'eqFun n e) π'eqFunIsEquiv {B = B} n = Equiv∙J (λ A e → isEquiv (π'eqFun n e)) (subst isEquiv (sym (π'eqFun-idEquiv n)) (idIsEquiv (π' (suc n) B))) π'eqFunIsHom : ∀ {ℓ} {A B : Pointed ℓ}(n : ℕ) → (e : A ≃∙ B) → IsGroupHom (π'Gr n A .snd) (π'eqFun n e) (π'Gr n B .snd) π'eqFunIsHom {B = B} n = Equiv∙J (λ A e → IsGroupHom (π'Gr n A .snd) (π'eqFun n e) (π'Gr n B .snd)) (subst (λ x → IsGroupHom (π'Gr n B .snd) x (π'Gr n B .snd)) (sym (π'eqFun-idEquiv n)) (makeIsGroupHom λ _ _ → refl)) π'Iso : ∀ {ℓ} {A : Pointed ℓ} {B : Pointed ℓ} (n : ℕ) → A ≃∙ B → GroupEquiv (π'Gr n A) (π'Gr n B) fst (fst (π'Iso n e)) = π'eqFun n e snd (fst (π'Iso n e)) = π'eqFunIsEquiv n e snd (π'Iso n e) = π'eqFunIsHom n e πIso : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} → (A ≃∙ B) → (n : ℕ) → GroupEquiv (πGr n A) (πGr n B) fst (fst (πIso e n)) = fst (πHom n (≃∙map e)) snd (fst (πIso e n)) = isoToIsEquiv (setTruncIso (equivToIso (_ , isEquivΩ^→ (suc n) (≃∙map e) (snd (fst e))))) snd (πIso e n) = snd (πHom n (≃∙map e))
39.529301
97
0.482186
c5f6623984dab95eb06e4ae898cec03e62fb3ab6
512
agda
Agda
test/Fail/Issue2723.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2723.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2723.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2017-08-28, issue #2723, reported by Andrea {-# OPTIONS --allow-unsolved-metas #-} -- {-# OPTIONS --warning=error #-} -- {-# OPTIONS -v tc.cover:30 #-} record Test : Set1 where field one two : Set open Test foo : Test foo .one = {!!} foo = {!!} foo .two = {!!} -- WAS: internal error in clause compiler -- THEN: warning about unreachable clause -- NOW: error: -- Cannot split into projections because not all clauses have a -- projection copattern -- when checking the definition of foo
19.692308
63
0.658203
c59c45abdcf0725c2a4916c93210d4d8e8a71c54
814
agda
Agda
Categories/Category.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Category.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Category.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Categories.Category where open import Level -- The main definitions are in: open import Categories.Category.Core public -- Convenience functions for working over mupliple categories at once: -- C [ x , y ] (for x y objects of C) - Hom_C(x , y) -- C [ f ≈ g ] (for f g arrows of C) - that f and g are equivalent arrows -- C [ f ∘ g ] (for f g composables arrows of C) - composition in C infix 10 _[_,_] _[_≈_] _[_∘_] _[_,_] : ∀ {o ℓ e} → (C : Category o ℓ e) → (X : Category.Obj C) → (Y : Category.Obj C) → Set ℓ _[_,_] = Category._⇒_ _[_≈_] : ∀ {o ℓ e} → (C : Category o ℓ e) → ∀ {X Y} (f g : C [ X , Y ]) → Set e _[_≈_] = Category._≈_ _[_∘_] : ∀ {o ℓ e} → (C : Category o ℓ e) → ∀ {X Y Z} (f : C [ Y , Z ]) → (g : C [ X , Y ]) → C [ X , Z ] _[_∘_] = Category._∘_
35.391304
105
0.562654
227a5b13dd7f25afe79aca4e4402cc7814faef67
3,416
agda
Agda
src/Relation/Ternary/Separation/Monad/State/Heap.agda
laMudri/linear.agda
461077552d88141ac1bba044aa55b65069c3c6c0
[ "MIT" ]
34
2019-12-20T13:57:50.000Z
2021-02-03T15:22:33.000Z
src/Relation/Ternary/Separation/Monad/State/Heap.agda
laMudri/linear.agda
461077552d88141ac1bba044aa55b65069c3c6c0
[ "MIT" ]
null
null
null
src/Relation/Ternary/Separation/Monad/State/Heap.agda
laMudri/linear.agda
461077552d88141ac1bba044aa55b65069c3c6c0
[ "MIT" ]
2
2020-01-30T14:15:14.000Z
2020-05-23T00:34:36.000Z
open import Data.List open import Data.Unit open import Relation.Unary hiding (_∈_) open import Relation.Unary.PredicateTransformer using (Pt) open import Relation.Ternary.Separation open import Relation.Ternary.Separation.Construct.Market open import Relation.Ternary.Separation.Monad open import Relation.Ternary.Separation.Morphisms module Relation.Ternary.Separation.Monad.State.Heap {ℓ} -- value types {T : Set ℓ} -- stored values (V : T → Pred (List T) ℓ) where open import Level hiding (Lift) open import Function using (_∘_; case_of_) import Relation.Binary.HeterogeneousEquality as HEq open import Relation.Unary.PredicateTransformer hiding (_⊔_; [_]) open import Relation.Binary.PropositionalEquality using (refl; _≡_) open import Relation.Ternary.Separation.Construct.Product open import Relation.Ternary.Separation.Construct.List T open import Relation.Ternary.Separation.Morphisms open import Relation.Ternary.Separation.Monad open import Relation.Ternary.Separation.Allstar open import Data.Product open import Data.List.Relation.Ternary.Interleaving.Propositional as I module HeapOps -- inner monad (M : Pt (Market (List T)) ℓ) {{monad : Monads.Monad ⊤ ℓ (λ _ _ → M) }} where Cells : Pred (List T × List T) ℓ Cells (Σ , Φ) = Allstar V Σ Φ open import Relation.Ternary.Separation.Monad.State open StateTransformer M public open Monads using (str) open Monads.Monad {{...}} -- Creating a reference to a new cell, filled with a given value. -- Note that in the market monoid this is pure! -- Because we get a reference that consumes the freshly created resource. newref : ∀ {a} → ∀[ V a ⇒ StateT M Cells (Just a) ] app (newref v) (lift st σ₁) (offerᵣ σ₂) = let _ , τ₁ , τ₂ = ⊎-assoc (⊎-comm σ₂) σ₁ in return ( inj refl ×⟨ offerᵣ ⊎-∙ ⟩ lift (cons (v ×⟨ τ₂ ⟩ st)) (⊎-∙ₗ τ₁)) -- A linear read on a store: you lose the reference. -- This is pure, because with the reference being lost, the cell is destroyed: no resources leak. read : ∀ {a} → ∀[ Just a ⇒ StateT M Cells (V a) ] app (read refl) (lift st σ₁) (offerᵣ σ₂) with ⊎-assoc σ₂ σ₁ ... | _ , σ₃ , σ₄ with repartition σ₃ st ... | cons (v ×⟨ σ₅ ⟩ nil) ×⟨ σ₆ ⟩ st' with ⊎-id⁻ʳ σ₅ | ⊎-assoc (⊎-comm σ₆) (⊎-comm σ₄) ... | refl | _ , τ₁ , τ₂ = return (inj v ×⟨ offerᵣ τ₂ ⟩ lift st' (⊎-comm τ₁)) -- Writing into a cell, returning the current contents write : ∀ {a b} → ∀[ Just b ✴ (V a) ⇒ StateT M Cells (Just a ✴ V b) ] app (write (refl ×⟨ σ₁ ⟩ v)) (lift st σ₂) (offerᵣ σ₃) with ⊎-assoc (⊎-comm σ₁) σ₃ -- first we reassociate the arguments in the order that we want to piece it back together ... | _ , τ₁ , τ₂ with ⊎-assoc (⊎-comm τ₁) σ₂ ... | _ , τ₃ , τ₄ with ⊎-assoc τ₂ τ₃ ... | _ , τ₅ , τ₆ -- then we reorganize the store internally to take out the unit value with repartition τ₅ st ... | cons (vb ×⟨ σ₅ ⟩ nil) ×⟨ σ₆ ⟩ st' rewrite ⊎-id⁻ʳ σ₅ = let _ , κ₁ , κ₂ = ⊎-unassoc τ₄ (⊎-comm σ₆) _ , κ₃ , κ₄ = ⊎-assoc κ₂ (⊎-comm τ₆) in return ( inj (refl ×⟨ consˡ ⊎-idˡ ⟩ vb) ×⟨ offerᵣ (consˡ κ₄) ⟩ lift (cons (v ×⟨ κ₁ ⟩ st')) (⊎-∙ₗ (⊎-comm κ₃))) -- A linear (strong) update on the store update! : ∀ {a b} → ∀[ Just a ⇒ (V a ─✴ StateT M Cells (V b)) ─✴ StateT M Cells (Just b) ] app (update! ptr) f σ = do a ×⟨ σ₁ ⟩ f ← read ptr &⟨ σ ⟩ f b ← app f a (⊎-comm σ₁) newref b
37.538462
99
0.643443
129b20e931d2ae83feeb6438703247423470e654
2,495
agda
Agda
agda-stdlib/src/Data/Maybe/Relation/Unary/Any.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Maybe/Relation/Unary/Any.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Maybe/Relation/Unary/Any.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Maybes where one of the elements satisfies a given property ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Maybe.Relation.Unary.Any where open import Data.Maybe.Base using (Maybe; just; nothing) open import Data.Product as Prod using (∃; _,_; -,_) open import Function.Base using (id) open import Function.Equivalence using (_⇔_; equivalence) open import Level open import Relation.Binary.PropositionalEquality as P using (_≡_; cong) open import Relation.Unary open import Relation.Nullary hiding (Irrelevant) import Relation.Nullary.Decidable as Dec ------------------------------------------------------------------------ -- Definition data Any {a p} {A : Set a} (P : Pred A p) : Pred (Maybe A) (a ⊔ p) where just : ∀ {x} → P x → Any P (just x) ------------------------------------------------------------------------ -- Basic operations module _ {a p} {A : Set a} {P : Pred A p} where drop-just : ∀ {x} → Any P (just x) → P x drop-just (just px) = px just-equivalence : ∀ {x} → P x ⇔ Any P (just x) just-equivalence = equivalence just drop-just map : ∀ {q} {Q : Pred A q} → P ⊆ Q → Any P ⊆ Any Q map f (just px) = just (f px) satisfied : ∀ {x} → Any P x → ∃ P satisfied (just p) = -, p ------------------------------------------------------------------------ -- (un/)zip(/With) module _ {a p q r} {A : Set a} {P : Pred A p} {Q : Pred A q} {R : Pred A r} where zipWith : P ∩ Q ⊆ R → Any P ∩ Any Q ⊆ Any R zipWith f (just px , just qx) = just (f (px , qx)) unzipWith : P ⊆ Q ∩ R → Any P ⊆ Any Q ∩ Any R unzipWith f (just px) = Prod.map just just (f px) module _ {a p q} {A : Set a} {P : Pred A p} {Q : Pred A q} where zip : Any P ∩ Any Q ⊆ Any (P ∩ Q) zip = zipWith id unzip : Any (P ∩ Q) ⊆ Any P ∩ Any Q unzip = unzipWith id ------------------------------------------------------------------------ -- Seeing Any as a predicate transformer module _ {a p} {A : Set a} {P : Pred A p} where dec : Decidable P → Decidable (Any P) dec P-dec nothing = no λ () dec P-dec (just x) = Dec.map just-equivalence (P-dec x) irrelevant : Irrelevant P → Irrelevant (Any P) irrelevant P-irrelevant (just p) (just q) = cong just (P-irrelevant p q) satisfiable : Satisfiable P → Satisfiable (Any P) satisfiable P-satisfiable = Prod.map just just P-satisfiable
32.402597
81
0.521042
3d75ba8f5c0ad68ce5be70b8ceccf6359446a423
503
agda
Agda
test/succeed/Epic.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/Epic.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
test/succeed/Epic.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
module Epic where data Nat : Set where Z : Nat S : Nat -> Nat _+_ : Nat -> Nat -> Nat Z + m = m S n + m = S (n + m) _*_ : Nat -> Nat -> Nat Z * m = Z S n * m = m + (n * m) {-# BUILTIN NATURAL Nat #-} {-# BUILTIN NATPLUS _+_ #-} {-# BUILTIN NATTIMES _*_ #-} data Unit : Set where unit : Unit postulate IO : Set -> Set printNat : Nat -> IO Unit {-# COMPILED_EPIC printNat (a : BigInt, u : Unit) -> Unit = putStrLn (bigIntToStr(a)) #-} main : IO Unit main = printNat (7 * 191)
16.225806
89
0.540755
1cb1faac6f3735b9c1f677b1fd7a0da507f1ec9f
415
agda
Agda
test/Fail/Issue3124.agda
alhassy/agda
6043e77e4a72518711f5f808fb4eb593cbf0bb7c
[ "BSD-3-Clause" ]
1
2021-07-07T10:49:57.000Z
2021-07-07T10:49:57.000Z
test/Fail/Issue3124.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue3124.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
-- Andreas, 2018-06-10, issue #3124 -- Wrong context for error IrrelevantDatatype in the coverage checker. data Squash (A : Set) : Prop where squash : A → Squash A test : ∀{A} → Squash (Squash A → A) test = squash λ{ (squash y) → y } -- WAS: de Bruijn index in error message -- Expected error: -- Cannot split on argument of irrelevant datatype (Squash .A) -- when checking the definition of .extendedlambda0
27.666667
70
0.698795
3d0a12e4cd489739dba01e2b6000ad839e13fefe
3,864
agda
Agda
Categories/Category/Monoidal/Closed/IsClosed/Dinatural.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Category/Monoidal/Closed/IsClosed/Dinatural.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Category/Monoidal/Closed/IsClosed/Dinatural.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Category.Monoidal open import Categories.Category.Monoidal.Closed module Categories.Category.Monoidal.Closed.IsClosed.Dinatural {o ℓ e} {C : Category o ℓ e} {M : Monoidal C} (Cl : Closed M) where open import Data.Product using (Σ; _,_) open import Function using (_$_) renaming (_∘_ to _∙_) open import Function.Equality as Π using (Π) open import Categories.Category.Product open import Categories.Category.Monoidal.Properties M open import Categories.Morphism C open import Categories.Morphism.Properties C open import Categories.Morphism.Reasoning C open import Categories.Functor renaming (id to idF) open import Categories.Functor.Bifunctor open import Categories.Functor.Bifunctor.Properties open import Categories.NaturalTransformation hiding (id) open import Categories.NaturalTransformation.Dinatural hiding (_∘ʳ_) open import Categories.NaturalTransformation.NaturalIsomorphism as NI hiding (refl) import Categories.Category.Closed as Cls open Closed Cl private open Category C α⇒ = associator.from α⇐ = associator.to module ℱ = Functor module ⊗ = Functor ⊗ open HomReasoning open Π.Π open adjoint renaming (unit to η; counit to ε; Ladjunct to 𝕃; Ladjunct-comm′ to 𝕃-comm′; Ladjunct-resp-≈ to 𝕃-resp-≈) open import Categories.Category.Monoidal.Closed.IsClosed.Identity Cl open import Categories.Category.Monoidal.Closed.IsClosed.L Cl private id² : {S T : Obj} → [ S , T ]₀ ⇒ [ S , T ]₀ id² = [ id , id ]₁ L-dinatural-comm : ∀ {X′ Y Z X f} → [ [ f , id ]₁ , id² ]₁ ∘ L X′ Y Z ≈ [ id² , [ f , id ]₁ ]₁ ∘ L X Y Z L-dinatural-comm {X′} {Y} {Z} {X} {f} = begin [ fˡ , id² ]₁ ∘ L X′ Y Z ≈⟨ [-,-].F-resp-≈ (refl , [-,-].identity) ⟩∘⟨refl ⟩ [ fˡ , id ]₁ ∘ L X′ Y Z ≈˘⟨ pushˡ [ [-,-] ]-commute ⟩ ([ id , 𝕃 L-inner ]₁ ∘ [ fˡ , id ]₁) ∘ η.η YZ ≈˘⟨ pushʳ (mate.commute₁ [ f , id ]₁) ⟩ [ id , 𝕃 L-inner ]₁ ∘ 𝕃 (id ⊗₁ fˡ) ≈˘⟨ pushˡ (ℱ.homomorphism [ XY ,-]) ⟩ 𝕃 (𝕃 L-inner ∘ id ⊗₁ fˡ) ≈˘⟨ 𝕃-resp-≈ 𝕃-comm′ ⟩ 𝕃 (𝕃 $ L-inner ∘ (id ⊗₁ fˡ) ⊗₁ id) ≈⟨ 𝕃-resp-≈ $ 𝕃-resp-≈ push-f-right ⟩ 𝕃 (𝕃 $ L-inner ∘ (id ⊗₁ id) ⊗₁ f) ≈⟨ 𝕃-resp-≈ $ pushˡ (ℱ.homomorphism [ X′ ,-]) ⟩ 𝕃 ([ id , L-inner {X} ]₁ ∘ 𝕃 ((id ⊗₁ id) ⊗₁ f)) ≈⟨ 𝕃-resp-≈ $ ∘-resp-≈ʳ (∘-resp-≈ˡ (X′-resp-≈ (⊗.F-resp-≈ (⊗.identity , refl))) ○ mate.commute₁ f) ⟩ 𝕃 ([ id , L-inner {X} ]₁ ∘ fˡ ∘ η.η (YZ ⊗₀ XY)) ≈⟨ 𝕃-resp-≈ $ pullˡ [ [-,-] ]-commute ○ assoc ⟩ 𝕃 (fˡ ∘ 𝕃 L-inner) ≈⟨ ∘-resp-≈ˡ (ℱ.homomorphism [ XY ,-]) ○ assoc ⟩ [ id , fˡ ]₁ ∘ L X Y Z ≈˘⟨ [-,-].F-resp-≈ ([-,-].identity , refl) ⟩∘⟨refl ⟩ [ id² , fˡ ]₁ ∘ L X Y Z ∎ where fˡ : ∀ {W} → [ X , W ]₀ ⇒ [ X′ , W ]₀ fˡ = [ f , id ]₁ XY = [ X , Y ]₀ YZ = [ Y , Z ]₀ X′-resp-≈ = ℱ.F-resp-≈ [ X′ ,-] L-inner : ∀ {W} → ([ Y , Z ]₀ ⊗₀ [ W , Y ]₀) ⊗₀ W ⇒ Z L-inner {W} = ε.η Z ∘ (id ⊗₁ ε.η {W} Y) ∘ α⇒ push-f-right : (ε.η Z ∘ (id ⊗₁ ε.η Y) ∘ α⇒) ∘ (id ⊗₁ fˡ) ⊗₁ id ≈ (ε.η Z ∘ (id ⊗₁ ε.η Y) ∘ α⇒) ∘ (id ⊗₁ id) ⊗₁ f push-f-right = begin (ε.η Z ∘ (id ⊗₁ ε.η Y) ∘ α⇒) ∘ (id ⊗₁ fˡ) ⊗₁ id ≈⟨ pull-last assoc-commute-from ⟩ ε.η Z ∘ (id ⊗₁ ε.η Y) ∘ id ⊗₁ fˡ ⊗₁ id ∘ α⇒ ≈˘⟨ refl⟩∘⟨ pushˡ (ℱ.homomorphism (YZ ⊗-)) ⟩ ε.η Z ∘ id ⊗₁ (ε.η Y ∘ fˡ ⊗₁ id) ∘ α⇒ ≈⟨ refl⟩∘⟨ ℱ.F-resp-≈ (YZ ⊗-) (mate.commute₂ f) ⟩∘⟨refl ⟩ ε.η Z ∘ id ⊗₁ (ε.η Y ∘ id ⊗₁ f) ∘ α⇒ ≈⟨ refl⟩∘⟨ ℱ.homomorphism (YZ ⊗-) ⟩∘⟨refl ⟩ ε.η Z ∘ (id ⊗₁ ε.η Y ∘ id ⊗₁ id ⊗₁ f) ∘ α⇒ ≈⟨ center⁻¹ refl (⟺ assoc-commute-from) ○ pullˡ assoc ⟩ (ε.η Z ∘ id ⊗₁ ε.η Y ∘ α⇒) ∘ (id ⊗₁ id) ⊗₁ f ∎
49.538462
156
0.527174
2287ab5653500353be0cebfeb8c85251e4713d2a
346
agda
Agda
test/Fail/TerminationInfiniteRecord.agda
hborum/agda
aac88412199dd4cbcb041aab499d8a6b7e3f4a2e
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/TerminationInfiniteRecord.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Fail/TerminationInfiniteRecord.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- 2010-10-02, see issue 334 module TerminationInfiniteRecord where record Empty : Set where inductive constructor empty field fromEmpty : Empty elimEmpty : Empty -> Set elimEmpty (empty e) = elimEmpty e -- this no longer termination checks -- and it should not, since it is translated to -- elimEmpty e' = elimEmpty (fromEmpty e')
20.352941
47
0.731214
12a28add40ad5648cd3ef98c0392a376f11ae551
395
agda
Agda
test/interaction/Issue4160.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue4160.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue4160.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --show-implicit #-} data Bool : Set where true : Bool false : Bool data D : Set where d : D data E : Set where e : E HSet : Set₁ HSet = {b : Bool} → Set -- Here HA is HSet -- The output of this function is the set E, for input HSet G. ⊨_ : HSet → Set ⊨_ HA = HA {true} G : HSet G {true} = E G {false} = D noo : ⊨ G {false} noo = {!!} boo : ⊨ λ {b} → G {b} boo = {!!}
13.166667
62
0.546835
2254c1a431bc1b864f4888ffc61787b08c97eb69
23
agda
Agda
test/Succeed/installed-libs/Installed.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/installed-libs/Installed.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/installed-libs/Installed.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Installed where
11.5
22
0.869565
3d051057746c25a0f008c09f9481148700a13725
16,746
agda
Agda
Cubical/Data/BinNat/BinNat.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Data/BinNat/BinNat.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Data/BinNat/BinNat.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{- Binary natural numbers (Anders Mörtberg, Jan. 2019) This file defines two representations of binary numbers. We prove that they are equivalent to unary numbers and univalence is then used to transport both programs and properties between the representations. This is an example of how having computational univalence can be useful for practical programming. The first definition is [Binℕ] and the numbers are essentially lists of 0/1 with no trailing zeroes (in little-endian format). The main definitions and examples are: - Equivalence between Binℕ and ℕ ([Binℕ≃ℕ]) with an equality obtained using univalence ([Binℕ≡ℕ]). - Addition on Binℕ defined by transporting addition on ℕ to Binℕ ([_+Binℕ_]) along Binℕ≡ℕ together with a proof that addition on Binℕ is associative obtained by transporting the proof for ℕ ([+Binℕ-assoc]). - Functions testing whether a binary number is odd or even in O(1) ([oddBinℕ], [evenBinℕ]) and the corresponding functions for ℕ obtained by transport. Proof that odd numbers are not even transported from Binℕ to ℕ ([oddℕnotEvenℕ]). - An example of the structure identity principle for natural number structures ([NatImpl]). We first prove that Binℕ≡ℕ lifts to natural number structures ([NatImplℕ≡Binℕ]) and we then use this to transport "+-suc : m + suc n ≡ suc (m + n)" from ℕ to Binℕ ([+Binℕ-suc]). - An example of program/data refinement using the structure identity principle where we transport a property that is infeasible to prove by computation for ℕ ([propDoubleℕ]): 2^20 * 2^10 = 2^5 * (2^15 * 2^10) from the corresponding result on Binℕ which is proved instantly by refl ([propDoubleBinℕ]). These examples are inspired from an old cubicaltt formalization: https://github.com/mortberg/cubicaltt/blob/master/examples/binnat.ctt which itself is based on an even older cubical formalization (from 2014): https://github.com/simhu/cubical/blob/master/examples/binnat.cub The second representation is more non-standard and inspired by: https://github.com/RedPRL/redtt/blob/master/library/cool/nats.red Only some of the experiments have been done for this representation, but it has the virtue of being a bit simpler to prove equivalent to ℕ. The same representation can be found in: http://www.cs.bham.ac.uk/~mhe/agda-new/BinaryNaturals.html -} {-# OPTIONS --cubical --no-exact-split --safe #-} module Cubical.Data.BinNat.BinNat where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Foundations.Isomorphism open import Cubical.Data.Nat open import Cubical.Data.Bool open import Cubical.Data.Empty open import Cubical.Relation.Nullary data Binℕ : Type₀ data Pos : Type₀ -- Binary natural numbers data Binℕ where binℕ0 : Binℕ binℕpos : Pos → Binℕ -- Positive binary numbers data Pos where x0 : Pos → Pos x1 : Binℕ → Pos pattern pos1 = x1 binℕ0 pattern x1-pos n = x1 (binℕpos n) -- Note on notation: -- We use "⇒" for functions that are equivalences (and therefore -- they don't preserve the numerical value where the ranges don't -- match, as with Binℕ⇒Pos). -- -- We use "→" for the opposite situation (numerical value is preserved, -- but the function is not necessarily an equivalence) Binℕ⇒Pos : Binℕ → Pos sucPos : Pos → Pos Binℕ⇒Pos binℕ0 = pos1 Binℕ⇒Pos (binℕpos n) = sucPos n sucPos (x0 ps) = x1-pos ps sucPos (x1 ps) = x0 (Binℕ⇒Pos ps) Binℕ→ℕ : Binℕ → ℕ Pos⇒ℕ : Pos → ℕ Pos→ℕ : Pos → ℕ Binℕ→ℕ binℕ0 = zero Binℕ→ℕ (binℕpos x) = Pos→ℕ x Pos→ℕ ps = suc (Pos⇒ℕ ps) Pos⇒ℕ (x0 ps) = suc (doubleℕ (Pos⇒ℕ ps)) Pos⇒ℕ (x1 ps) = doubleℕ (Binℕ→ℕ ps) posInd : {P : Pos → Type₀} → P pos1 → ((p : Pos) → P p → P (sucPos p)) → (p : Pos) → P p posInd {P} h1 hs ps = f ps where H : (p : Pos) → P (x0 p) → P (x0 (sucPos p)) H p hx0p = hs (x1-pos p) (hs (x0 p) hx0p) f : (ps : Pos) → P ps f pos1 = h1 f (x0 ps) = posInd (hs pos1 h1) H ps f (x1-pos ps) = hs (x0 ps) (posInd (hs pos1 h1) H ps) Binℕ⇒Pos⇒ℕ : (p : Binℕ) → Pos⇒ℕ (Binℕ⇒Pos p) ≡ Binℕ→ℕ p Binℕ⇒Pos⇒ℕ binℕ0 = refl Binℕ⇒Pos⇒ℕ (binℕpos (x0 p)) = refl Binℕ⇒Pos⇒ℕ (binℕpos (x1 x)) = λ i → suc (doubleℕ (Binℕ⇒Pos⇒ℕ x i)) Pos⇒ℕsucPos : (p : Pos) → Pos⇒ℕ (sucPos p) ≡ suc (Pos⇒ℕ p) Pos⇒ℕsucPos p = Binℕ⇒Pos⇒ℕ (binℕpos p) Pos→ℕsucPos : (p : Pos) → Pos→ℕ (sucPos p) ≡ suc (Pos→ℕ p) Pos→ℕsucPos p = cong suc (Binℕ⇒Pos⇒ℕ (binℕpos p)) ℕ⇒Pos : ℕ → Pos ℕ⇒Pos zero = pos1 ℕ⇒Pos (suc n) = sucPos (ℕ⇒Pos n) ℕ→Pos : ℕ → Pos ℕ→Pos zero = pos1 ℕ→Pos (suc n) = ℕ⇒Pos n Pos⇒ℕ⇒Pos : (p : Pos) → ℕ⇒Pos (Pos⇒ℕ p) ≡ p Pos⇒ℕ⇒Pos p = posInd refl hs p where hs : (p : Pos) → ℕ⇒Pos (Pos⇒ℕ p) ≡ p → ℕ⇒Pos (Pos⇒ℕ (sucPos p)) ≡ sucPos p hs p hp = ℕ⇒Pos (Pos⇒ℕ (sucPos p)) ≡⟨ cong ℕ⇒Pos (Pos⇒ℕsucPos p) ⟩ sucPos (ℕ⇒Pos (Pos⇒ℕ p)) ≡⟨ cong sucPos hp ⟩ sucPos p ∎ ℕ⇒Pos⇒ℕ : (n : ℕ) → Pos⇒ℕ (ℕ⇒Pos n) ≡ n ℕ⇒Pos⇒ℕ zero = refl ℕ⇒Pos⇒ℕ (suc n) = Pos⇒ℕ (ℕ⇒Pos (suc n)) ≡⟨ Pos⇒ℕsucPos (ℕ⇒Pos n) ⟩ suc (Pos⇒ℕ (ℕ⇒Pos n)) ≡⟨ cong suc (ℕ⇒Pos⇒ℕ n) ⟩ suc n ∎ ℕ→Binℕ : ℕ → Binℕ ℕ→Binℕ zero = binℕ0 ℕ→Binℕ (suc n) = binℕpos (ℕ⇒Pos n) ℕ→Binℕ→ℕ : (n : ℕ) → Binℕ→ℕ (ℕ→Binℕ n) ≡ n ℕ→Binℕ→ℕ zero = refl ℕ→Binℕ→ℕ (suc n) = cong suc (ℕ⇒Pos⇒ℕ n) Binℕ→ℕ→Binℕ : (n : Binℕ) → ℕ→Binℕ (Binℕ→ℕ n) ≡ n Binℕ→ℕ→Binℕ binℕ0 = refl Binℕ→ℕ→Binℕ (binℕpos p) = cong binℕpos (Pos⇒ℕ⇒Pos p) Binℕ≃ℕ : Binℕ ≃ ℕ Binℕ≃ℕ = isoToEquiv (iso Binℕ→ℕ ℕ→Binℕ ℕ→Binℕ→ℕ Binℕ→ℕ→Binℕ) -- Use univalence (in fact only "ua") to get an equality from the -- above equivalence Binℕ≡ℕ : Binℕ ≡ ℕ Binℕ≡ℕ = ua Binℕ≃ℕ sucBinℕ : Binℕ → Binℕ sucBinℕ x = binℕpos (Binℕ⇒Pos x) Binℕ→ℕsuc : (x : Binℕ) → suc (Binℕ→ℕ x) ≡ Binℕ→ℕ (sucBinℕ x) Binℕ→ℕsuc binℕ0 = refl Binℕ→ℕsuc (binℕpos x) = sym (Pos→ℕsucPos x) -- We can transport addition on ℕ to Binℕ _+Binℕ_ : Binℕ → Binℕ → Binℕ _+Binℕ_ = transport (λ i → Binℕ≡ℕ (~ i) → Binℕ≡ℕ (~ i) → Binℕ≡ℕ (~ i)) _+_ -- Test: 4 + 1 = 5 private _ : binℕpos (x0 (x0 pos1)) +Binℕ binℕpos pos1 ≡ binℕpos (x1-pos (x0 pos1)) _ = refl -- It is easy to test if binary numbers are odd oddBinℕ : Binℕ → Bool oddBinℕ binℕ0 = false oddBinℕ (binℕpos (x0 _)) = false oddBinℕ (binℕpos (x1 _)) = true evenBinℕ : Binℕ → Bool evenBinℕ n = oddBinℕ (sucBinℕ n) -- And prove the following property (without induction) oddBinℕnotEvenBinℕ : (n : Binℕ) → oddBinℕ n ≡ not (evenBinℕ n) oddBinℕnotEvenBinℕ binℕ0 = refl oddBinℕnotEvenBinℕ (binℕpos (x0 x)) = refl oddBinℕnotEvenBinℕ (binℕpos (x1 x)) = refl -- It is also easy to define and prove the property for unary numbers, -- however the definition uses recursion and the proof induction private oddn : ℕ → Bool oddn zero = true oddn (suc x) = not (oddn x) evenn : ℕ → Bool evenn n = not (oddn n) oddnSuc : (n : ℕ) → oddn n ≡ not (evenn n) oddnSuc zero = refl oddnSuc (suc n) = cong not (oddnSuc n) -- So what we can do instead is to transport the odd test from Binℕ to -- ℕ along the equality oddℕ : ℕ → Bool oddℕ = transport (λ i → Binℕ≡ℕ i → Bool) oddBinℕ evenℕ : ℕ → Bool evenℕ = transport (λ i → Binℕ≡ℕ i → Bool) evenBinℕ -- We can then also transport the property oddℕnotEvenℕ : (n : ℕ) → oddℕ n ≡ not (evenℕ n) oddℕnotEvenℕ = let -- We first build a path from oddBinℕ to oddℕ. When i=1 this is -- "transp (λ j → Binℕ≡ℕ j → Bool) i0 oddBinℕ" (i.e. oddℕ) oddp : PathP (λ i → Binℕ≡ℕ i → Bool) oddBinℕ oddℕ oddp i = transp (λ j → Binℕ≡ℕ (i ∧ j) → Bool) (~ i) oddBinℕ -- We then build a path from evenBinℕ to evenℕ evenp : PathP (λ i → Binℕ≡ℕ i → Bool) evenBinℕ evenℕ evenp i = transp (λ j → Binℕ≡ℕ (i ∧ j) → Bool) (~ i) evenBinℕ in -- Then transport oddBinℕnotEvenBinℕ in a suitable equality type -- When i=0 this is "(n : Binℕ) → oddBinℕ n ≡ not (evenBinℕ n)" -- When i=1 this is "(n : ℕ) → oddℕ n ≡ not (evenℕ n)" transport (λ i → (n : Binℕ≡ℕ i) → oddp i n ≡ not (evenp i n)) oddBinℕnotEvenBinℕ -- We can do the same for natural numbers: -- First construct the path addp : PathP (λ i → Binℕ≡ℕ (~ i) → Binℕ≡ℕ (~ i) → Binℕ≡ℕ (~ i)) _+_ _+Binℕ_ addp i = transp (λ j → Binℕ≡ℕ (~ i ∨ ~ j) → Binℕ≡ℕ (~ i ∨ ~ j) → Binℕ≡ℕ (~ i ∨ ~ j)) (~ i) _+_ -- Then transport associativity: +Binℕ-assoc : ∀ m n o → m +Binℕ (n +Binℕ o) ≡ (m +Binℕ n) +Binℕ o +Binℕ-assoc = transport (λ i → (m n o : Binℕ≡ℕ (~ i)) → addp i m (addp i n o) ≡ addp i (addp i m n) o) +-assoc -- We can also define what it means to be an implementation of natural -- numbers and use this to transport properties between different -- implementation of natural numbers. This can be seen as a special -- case of the structure identity principle: any property that holds -- for one structure also holds for an equivalent one. -- An implementation of natural numbers (i.e. a "natural number -- structure") has a zero and successor. record NatImpl (A : Type₀) : Type₀ where field z : A s : A → A open NatImpl NatImplℕ : NatImpl ℕ z NatImplℕ = zero s NatImplℕ = suc NatImplBinℕ : NatImpl Binℕ z NatImplBinℕ = binℕ0 s NatImplBinℕ = sucBinℕ -- Using the equality between binary and unary numbers we can get an -- equality between the two implementations of the NatImpl interface NatImplℕ≡Binℕ : PathP (λ i → NatImpl (Binℕ≡ℕ (~ i))) NatImplℕ NatImplBinℕ z (NatImplℕ≡Binℕ i) = transp (λ j → Binℕ≡ℕ (~ i ∨ ~ j)) (~ i) zero s (NatImplℕ≡Binℕ i) = λ x → glue (λ { (i = i0) → suc x ; (i = i1) → sucBinℕ x }) -- We need to do use and hcomp to do and endpoint -- correction as "suc (unglue x)" connects "suc x" -- with "suc (Binℕ→ℕ x)" along i (which makes sense as -- x varies from ℕ to Binℕ along i), but we need -- something from "suc x" to "Binℕ→ℕ (sucBinℕ x)" for -- the glue to be well-formed (hcomp (λ j → λ { (i = i0) → suc x ; (i = i1) → Binℕ→ℕsuc x j }) (suc (unglue (i ∨ ~ i) x))) -- We then use this to transport +-suc from unary to binary numbers +Binℕ-suc : ∀ m n → m +Binℕ sucBinℕ n ≡ sucBinℕ (m +Binℕ n) +Binℕ-suc = transport (λ i → (m n : Binℕ≡ℕ (~ i)) → addp i m (NatImplℕ≡Binℕ i .s n) ≡ NatImplℕ≡Binℕ i .s (addp i m n)) +-suc -- Doubling experiment: we define a notion of "doubling structure" and -- transport a proof that is proved directly using refl for binary -- numbers to unary numbers. This is an example of program/data -- refinement: we can use univalence to prove properties about -- inefficient data-structures using efficient ones. -- Doubling structures record Double {ℓ} (A : Type ℓ) : Type (ℓ-suc ℓ) where field -- doubling function computing 2 * x double : A → A -- element to double elt : A open Double -- Compute: 2^n * x doubles : ∀ {ℓ} {A : Type ℓ} (D : Double A) → ℕ → A → A doubles D n x = iter n (double D) x Doubleℕ : Double ℕ double Doubleℕ = doubleℕ elt Doubleℕ = n1024 where -- 1024 = 2^8 * 2^2 = 2^10 n1024 : ℕ n1024 = doublesℕ 8 4 -- The doubling operation on binary numbers is O(1), while for unary -- numbers it is O(n). What is of course even more problematic is that -- we cannot handle very big unary natural numbers, but with binary -- there is no problem to represent very big numbers doubleBinℕ : Binℕ → Binℕ doubleBinℕ binℕ0 = binℕ0 doubleBinℕ (binℕpos x) = binℕpos (x0 x) DoubleBinℕ : Double Binℕ double DoubleBinℕ = doubleBinℕ elt DoubleBinℕ = bin1024 where -- 1024 = 2^10 = 10000000000₂ bin1024 : Binℕ bin1024 = binℕpos (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 pos1)))))))))) -- As these function don't commute strictly we have to prove it -- separately and insert it in the proof of DoubleBinℕ≡Doubleℕ below -- (just like we had to in NatImplℕ≡NatImplBinℕ Binℕ→ℕdouble : (x : Binℕ) → doubleℕ (Binℕ→ℕ x) ≡ Binℕ→ℕ (doubleBinℕ x) Binℕ→ℕdouble binℕ0 = refl Binℕ→ℕdouble (binℕpos x) = refl -- We use the equality between Binℕ and ℕ to get an equality of -- doubling structures DoubleBinℕ≡Doubleℕ : PathP (λ i → Double (Binℕ≡ℕ i)) DoubleBinℕ Doubleℕ double (DoubleBinℕ≡Doubleℕ i) = λ x → glue (λ { (i = i0) → doubleBinℕ x ; (i = i1) → doubleℕ x }) (hcomp (λ j → λ { (i = i0) → Binℕ→ℕdouble x j ; (i = i1) → doubleℕ x }) (doubleℕ (unglue (i ∨ ~ i) x))) elt (DoubleBinℕ≡Doubleℕ i) = transp (λ j → Binℕ≡ℕ (i ∨ ~ j)) i (Doubleℕ .elt) -- We can now use transport to prove a property that is too slow to -- check with unary numbers. We define the property we want to check -- as a record so that Agda does not try to unfold it eagerly. record propDouble {ℓ} {A : Type ℓ} (D : Double A) : Type ℓ where field -- 2^20 * e = 2^5 * (2^15 * e) proof : doubles D 20 (elt D) ≡ doubles D 5 (doubles D 15 (elt D)) open propDouble -- The property we want to prove takes too long to typecheck for ℕ: -- propDoubleℕ : propDouble Doubleℕ -- propDoubleℕ = refl -- With binary numbers it is instant propDoubleBinℕ : propDouble DoubleBinℕ proof propDoubleBinℕ = refl -- By transporting the proof along the equality we then get it for -- unary numbers propDoubleℕ : propDouble Doubleℕ propDoubleℕ = transport (λ i → propDouble (DoubleBinℕ≡Doubleℕ i)) propDoubleBinℕ -------------------------------------------------------------------------------- -- -- Alternative encoding of binary natural numbers inspired by: -- https://github.com/RedPRL/redtt/blob/master/library/cool/nats.red -- -- This representation makes the equivalence with ℕ a bit easier to -- prove, but the doubling example wouldn't work as nicely as we -- cannot define it as an O(1) operation data binnat : Type₀ where zero : binnat -- 0 consOdd : binnat → binnat -- 2*n + 1 consEven : binnat → binnat -- 2*{n+1} binnat→ℕ : binnat → ℕ binnat→ℕ zero = 0 binnat→ℕ (consOdd n) = suc (doubleℕ (binnat→ℕ n)) binnat→ℕ (consEven n) = suc (suc (doubleℕ (binnat→ℕ n))) suc-binnat : binnat → binnat suc-binnat zero = consOdd zero suc-binnat (consOdd n) = consEven n suc-binnat (consEven n) = consOdd (suc-binnat n) ℕ→binnat : ℕ → binnat ℕ→binnat zero = zero ℕ→binnat (suc n) = suc-binnat (ℕ→binnat n) binnat→ℕ-suc : (n : binnat) → binnat→ℕ (suc-binnat n) ≡ suc (binnat→ℕ n) binnat→ℕ-suc zero = refl binnat→ℕ-suc (consOdd n) = refl binnat→ℕ-suc (consEven n) = λ i → suc (doubleℕ (binnat→ℕ-suc n i)) ℕ→binnat→ℕ : (n : ℕ) → binnat→ℕ (ℕ→binnat n) ≡ n ℕ→binnat→ℕ zero = refl ℕ→binnat→ℕ (suc n) = (binnat→ℕ-suc (ℕ→binnat n)) ∙ (cong suc (ℕ→binnat→ℕ n)) suc-ℕ→binnat-double : (n : ℕ) → suc-binnat (ℕ→binnat (doubleℕ n)) ≡ consOdd (ℕ→binnat n) suc-ℕ→binnat-double zero = refl suc-ℕ→binnat-double (suc n) = λ i → suc-binnat (suc-binnat (suc-ℕ→binnat-double n i)) binnat→ℕ→binnat : (n : binnat) → ℕ→binnat (binnat→ℕ n) ≡ n binnat→ℕ→binnat zero = refl binnat→ℕ→binnat (consOdd n) = (suc-ℕ→binnat-double (binnat→ℕ n)) ∙ (cong consOdd (binnat→ℕ→binnat n)) binnat→ℕ→binnat (consEven n) = (λ i → suc-binnat (suc-ℕ→binnat-double (binnat→ℕ n) i)) ∙ (cong consEven (binnat→ℕ→binnat n)) ℕ≃binnat : ℕ ≃ binnat ℕ≃binnat = isoToEquiv (iso ℕ→binnat binnat→ℕ binnat→ℕ→binnat ℕ→binnat→ℕ) ℕ≡binnat : ℕ ≡ binnat ℕ≡binnat = ua ℕ≃binnat -- We can transport addition on ℕ to binnat _+binnat_ : binnat → binnat → binnat _+binnat_ = transport (λ i → ℕ≡binnat i → ℕ≡binnat i → ℕ≡binnat i) _+_ -- Test: 4 + 1 = 5 _ : consEven (consOdd zero) +binnat consOdd zero ≡ consOdd (consEven zero) _ = refl oddbinnat : binnat → Bool oddbinnat zero = false oddbinnat (consOdd _) = true oddbinnat (consEven _) = false oddℕ' : ℕ → Bool oddℕ' = transport (λ i → ℕ≡binnat (~ i) → Bool) oddbinnat -- The NatImpl example for this representation of binary numbers private NatImplbinnat : NatImpl binnat z NatImplbinnat = zero s NatImplbinnat = suc-binnat -- Note that the s case is a bit simpler as no end-point correction -- is necessary (things commute strictly) NatImplℕ≡NatImplbinnat : PathP (λ i → NatImpl (ℕ≡binnat i)) NatImplℕ NatImplbinnat z (NatImplℕ≡NatImplbinnat i) = transp (λ j → ℕ≡binnat (i ∨ ~ j)) i zero s (NatImplℕ≡NatImplbinnat i) = λ x → glue (λ { (i = i0) → suc x ; (i = i1) → suc-binnat x }) (suc-binnat (unglue (i ∨ ~ i) x)) oddSuc : (n : binnat) → oddbinnat n ≡ not (oddbinnat (suc-binnat n)) oddSuc zero = refl oddSuc (consOdd _) = refl oddSuc (consEven _) = refl oddℕSuc' : (n : ℕ) → oddℕ' n ≡ not (oddℕ' (suc n)) oddℕSuc' = let eq : (i : I) → ℕ≡binnat (~ i) → Bool eq i = transp (λ j → ℕ≡binnat (~ i ∨ ~ j) → Bool) (~ i) oddbinnat in transport (λ i → (n : ℕ≡binnat (~ i)) → eq i n ≡ not (eq i (NatImplℕ≡NatImplbinnat (~ i) .NatImpl.s n))) oddSuc
33.967546
104
0.645766
dcbe4853d786413d9d8249b745de852e217a1e57
1,687
agda
Agda
test/Succeed/Issue3296.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3296.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3296.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Generalized variables in datatype (and record) parameters module _ where open import Agda.Primitive open import Agda.Builtin.Nat module NotParameterised where variable ℓ : Level A : Set ℓ x y : A m n : Nat data Vec (A : Set ℓ) : Nat → Set ℓ where [] : Vec A zero _∷_ : A → Vec A n → Vec A (suc n) variable xs : Vec A n -- n should be generalized as an index here data All (P : A → Set ℓ) : Vec A n → Set ℓ where [] : All P [] _∷_ : P x → All P xs → All P (x ∷ xs) infix 2 _∈_ -- need an occurrence of ℓ in the params to not generalize it as an index, -- so we bind A explicitly data _∈_ {A : Set ℓ} (x : A) : Vec A n → Set ℓ where zero : x ∈ x ∷ xs suc : x ∈ xs → x ∈ y ∷ xs lookup : {P : A → Set ℓ} → All P xs → x ∈ xs → P x lookup (x ∷ _) zero = x lookup (_ ∷ xs) (suc i) = lookup xs i -- Check that we can do the same in a parameterised module module Parameterised (Dummy : Set) where variable ℓ : Level A : Set ℓ x y : A m n : Nat data Vec (A : Set ℓ) : Nat → Set ℓ where [] : Vec A zero _∷_ : A → Vec A n → Vec A (suc n) variable xs : Vec A n -- n should be generalized as an index here data All (P : A → Set ℓ) : Vec A n → Set ℓ where [] : All P [] _∷_ : P x → All P xs → All P (x ∷ xs) infix 2 _∈_ -- need an occurrence of ℓ in the params to not generalize it as an index, -- so we bind A explicitly data _∈_ {A : Set ℓ} (x : A) : Vec A n → Set ℓ where zero : x ∈ x ∷ xs suc : x ∈ xs → x ∈ y ∷ xs lookup : {P : A → Set ℓ} → All P xs → x ∈ xs → P x lookup (x ∷ _) zero = x lookup (_ ∷ xs) (suc i) = lookup xs i
23.760563
76
0.548903
c782aedd1260222a064a36944bc62baa24f938a8
793
agda
Agda
test/asset/agda-stdlib-1.0/Relation/Binary/Properties/StrictPartialOrder.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
test/asset/agda-stdlib-1.0/Relation/Binary/Properties/StrictPartialOrder.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Binary/Properties/StrictPartialOrder.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties satisfied by strict partial orders ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.Properties.StrictPartialOrder {s₁ s₂ s₃} (SPO : StrictPartialOrder s₁ s₂ s₃) where open Relation.Binary.StrictPartialOrder SPO renaming (trans to <-trans) open import Relation.Binary.Construct.StrictToNonStrict _≈_ _<_ ------------------------------------------------------------------------ -- Strict partial orders can be converted to posets poset : Poset _ _ _ poset = record { isPartialOrder = isPartialOrder isStrictPartialOrder } open Poset poset public
29.37037
72
0.551072
4dcaf0c3519f6020f7229765d7bb2e7c78caa340
1,426
agda
Agda
lib/Haskell/Prim/Word.agda
JonathanBrouwer/agda2hs
dcf63cc7ce51a325a97ac58bdd0aeace24c08b15
[ "MIT" ]
55
2020-10-20T13:36:25.000Z
2022-03-26T21:57:56.000Z
lib/Haskell/Prim/Word.agda
SNU-2D/agda2hs
160478a51bc78b0fdab07b968464420439f9fed6
[ "MIT" ]
63
2020-10-22T05:19:27.000Z
2022-02-25T15:47:30.000Z
lib/Haskell/Prim/Word.agda
SNU-2D/agda2hs
160478a51bc78b0fdab07b968464420439f9fed6
[ "MIT" ]
18
2020-10-21T22:19:09.000Z
2022-03-12T11:42:52.000Z
module Haskell.Prim.Word where open import Agda.Builtin.Nat open import Agda.Builtin.Bool open import Agda.Builtin.List open import Agda.Builtin.Char open import Agda.Builtin.String open import Agda.Builtin.Unit open import Agda.Builtin.Int using (pos; negsuc) import Agda.Builtin.Word renaming (Word64 to Word; primWord64ToNat to w2n; primWord64FromNat to n2w) open Agda.Builtin.Word open Agda.Builtin.Word public using (Word) open import Haskell.Prim open import Haskell.Prim.Integer -------------------------------------------------- -- Literals private 2⁶⁴ : Nat 2⁶⁴ = 18446744073709551616 instance iNumberWord : Number Word iNumberWord .Number.Constraint n = IsTrue (n < 2⁶⁴) iNumberWord .fromNat n = n2w n -------------------------------------------------- -- Arithmetic negateWord : Word → Word negateWord a = n2w (2⁶⁴ - w2n a) addWord : Word → Word → Word addWord a b = n2w (w2n a + w2n b) subWord : Word → Word → Word subWord a b = addWord a (negateWord b) mulWord : Word → Word → Word mulWord a b = n2w (w2n a * w2n b) eqWord : Word → Word → Bool eqWord a b = w2n a == w2n b ltWord : Word → Word → Bool ltWord a b = w2n a < w2n b showWord : Word → List Char showWord a = primStringToList (primShowNat (w2n a)) integerToWord : Integer → Word integerToWord (pos n) = n2w n integerToWord (negsuc n) = negateWord (n2w (suc n)) wordToInteger : Word → Integer wordToInteger n = pos (w2n n)
22.634921
100
0.675316
3d8d371cf1d54491a427382446c87e8a97f8dc11
170
agda
Agda
examples/AIM6/Path/All.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/AIM6/Path/All.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/AIM6/Path/All.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module All where import Prelude import Star import Nat import List import Vec import Elem import Fin import Modal import Lambda import Span import MapTm import Examples
11.333333
16
0.835294
0b0b3cd4157eb2397de86eb04ab0596df4bcf880
3,170
agda
Agda
Cubical/Categories/Morphism.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Categories/Morphism.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Categories/Morphism.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Categories.Morphism where open import Cubical.Foundations.Prelude open import Cubical.Data.Sigma open import Cubical.Categories.Category private variable ℓ ℓ' : Level module _ {C : Precategory ℓ ℓ'} where open Precategory C private variable x y z w : ob isMonic : (Hom[ x , y ]) → Type (ℓ-max ℓ ℓ') isMonic {x} {y} f = ∀ {z : ob} {a a' : Hom[ z , x ]} → (f ∘ a ≡ f ∘ a') → (a ≡ a') isEpic : (Hom[ x , y ]) → Type (ℓ-max ℓ ℓ') isEpic {x} {y} g = ∀ {z : ob} {b b' : Hom[ y , z ]} → (b ∘ g ≡ b' ∘ g) → (b ≡ b') -- A morphism is split monic if it has a *retraction* isSplitMon : (Hom[ x , y ]) → Type ℓ' isSplitMon {x} {y} f = ∃[ r ∈ Hom[ y , x ] ] r ∘ f ≡ id x -- A morphism is split epic if it has a *section* isSplitEpi : (Hom[ x , y ]) → Type ℓ' isSplitEpi {x} {y} g = ∃[ s ∈ Hom[ y , x ] ] g ∘ s ≡ id y record areInv (f : Hom[ x , y ]) (g : Hom[ y , x ]) : Type ℓ' where field sec : g ⋆ f ≡ id y ret : f ⋆ g ≡ id x open areInv symAreInv : ∀ {f : Hom[ x , y ]} {g : Hom[ y , x ]} → areInv f g → areInv g f symAreInv record { sec = sec ; ret = ret } = record { sec = ret ; ret = sec } -- equational reasoning with inverses invMoveR : ∀ {f : Hom[ x , y ]} {g : Hom[ y , x ]} {h : Hom[ z , x ]} {k : Hom[ z , y ]} → areInv f g → h ⋆ f ≡ k → h ≡ k ⋆ g invMoveR {f = f} {g} {h} {k} ai p = h ≡⟨ sym (⋆IdR _) ⟩ (h ⋆ id _) ≡⟨ cong (h ⋆_) (sym (ai .ret)) ⟩ (h ⋆ (f ⋆ g)) ≡⟨ sym (⋆Assoc _ _ _) ⟩ ((h ⋆ f) ⋆ g) ≡⟨ cong (_⋆ g) p ⟩ k ⋆ g ∎ invMoveL : ∀ {f : Hom[ x , y ]} {g : Hom[ y , x ]} {h : Hom[ y , z ]} {k : Hom[ x , z ]} → areInv f g → f ⋆ h ≡ k → h ≡ g ⋆ k invMoveL {f = f} {g} {h} {k} ai p = h ≡⟨ sym (⋆IdL _) ⟩ id _ ⋆ h ≡⟨ cong (_⋆ h) (sym (ai .sec)) ⟩ (g ⋆ f) ⋆ h ≡⟨ ⋆Assoc _ _ _ ⟩ g ⋆ (f ⋆ h) ≡⟨ cong (g ⋆_) p ⟩ (g ⋆ k) ∎ record isIso (f : Hom[ x , y ]) : Type ℓ' where field inv : Hom[ y , x ] sec : inv ⋆ f ≡ id y ret : f ⋆ inv ≡ id x open isIso isIso→areInv : ∀ {f : Hom[ x , y ]} → (isI : isIso f) → areInv f (isI .inv) isIso→areInv record { inv = inv ; sec = sec ; ret = ret } = record { sec = sec ; ret = ret } open CatIso -- isIso agrees with CatIso isIso→CatIso : ∀ {f : C [ x , y ]} → isIso f → CatIso {C = C} x y isIso→CatIso {f = f} record { inv = f⁻¹ ; sec = sec ; ret = ret } = catiso f f⁻¹ sec ret CatIso→isIso : (cIso : CatIso {C = C} x y) → isIso (cIso .mor) CatIso→isIso (catiso mor inv sec ret) = record { inv = inv ; sec = sec ; ret = ret } CatIso→areInv : (cIso : CatIso {C = C} x y) → areInv (cIso .mor) (cIso .inv) CatIso→areInv cIso = isIso→areInv (CatIso→isIso cIso) -- reverse of an iso is also an iso symCatIso : ∀ {x y} → CatIso {C = C} x y → CatIso {C = C} y x symCatIso (catiso mor inv sec ret) = catiso inv mor ret sec
27.807018
94
0.460568
4d0b752d0a46f7e30b8485ca8551087eb9c447f5
187
agda
Agda
src/Impure/STLCRef/Readme.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
src/Impure/STLCRef/Readme.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
src/Impure/STLCRef/Readme.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
module Impure.STLCRef.Readme where open import Impure.STLCRef.Syntax open import Impure.STLCRef.Welltyped open import Impure.STLCRef.Eval open import Impure.STLCRef.Properties.Soundness
26.714286
47
0.855615
581611d1662519059668fdc93d65d5e1acf8eb5c
7,024
agda
Agda
test/asset/agda-stdlib-1.0/Data/Fin/Base.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Fin/Base.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Fin/Base.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Finite sets ------------------------------------------------------------------------ -- Note that elements of Fin n can be seen as natural numbers in the -- set {m | m < n}. The notation "m" in comments below refers to this -- natural number view. {-# OPTIONS --without-K --safe #-} module Data.Fin.Base where open import Data.Empty using (⊥-elim) open import Data.Nat as ℕ using (ℕ; zero; suc; z≤n; s≤s) open import Function using (_∘_; _on_) open import Level using () renaming (zero to ℓ₀) open import Relation.Nullary using (yes; no) open import Relation.Nullary.Decidable using (True; toWitness) open import Relation.Binary open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; cong) ------------------------------------------------------------------------ -- Types -- Fin n is a type with n elements. data Fin : ℕ → Set where zero : {n : ℕ} → Fin (suc n) suc : {n : ℕ} (i : Fin n) → Fin (suc n) -- A conversion: toℕ "i" = i. toℕ : ∀ {n} → Fin n → ℕ toℕ zero = 0 toℕ (suc i) = suc (toℕ i) -- A Fin-indexed variant of Fin. Fin′ : ∀ {n} → Fin n → Set Fin′ i = Fin (toℕ i) ------------------------------------------------------------------------ -- A cast that actually computes on constructors (as opposed to subst) cast : ∀ {m n} → .(_ : m ≡ n) → Fin m → Fin n cast {zero} {zero} eq k = k cast {suc m} {suc n} eq zero = zero cast {suc m} {suc n} eq (suc k) = suc (cast (cong ℕ.pred eq) k) cast {zero} {suc n} () cast {suc m} {zero} () ------------------------------------------------------------------------ -- Conversions -- toℕ is defined above. -- fromℕ n = "n". fromℕ : (n : ℕ) → Fin (suc n) fromℕ zero = zero fromℕ (suc n) = suc (fromℕ n) -- fromℕ≤ {m} _ = "m". fromℕ≤ : ∀ {m n} → m ℕ.< n → Fin n fromℕ≤ (s≤s z≤n) = zero fromℕ≤ (s≤s (s≤s m≤n)) = suc (fromℕ≤ (s≤s m≤n)) -- fromℕ≤″ m _ = "m". fromℕ≤″ : ∀ m {n} → m ℕ.<″ n → Fin n fromℕ≤″ zero (ℕ.less-than-or-equal refl) = zero fromℕ≤″ (suc m) (ℕ.less-than-or-equal refl) = suc (fromℕ≤″ m (ℕ.less-than-or-equal refl)) -- # m = "m". infix 10 #_ #_ : ∀ m {n} {m<n : True (suc m ℕ.≤? n)} → Fin n #_ _ {m<n = m<n} = fromℕ≤ (toWitness m<n) -- raise m "i" = "m + i". raise : ∀ {m} n → Fin m → Fin (n ℕ.+ m) raise zero i = i raise (suc n) i = suc (raise n i) -- reduce≥ "m + i" _ = "i". reduce≥ : ∀ {m n} (i : Fin (m ℕ.+ n)) (i≥m : toℕ i ℕ.≥ m) → Fin n reduce≥ {zero} i i≥m = i reduce≥ {suc m} zero () reduce≥ {suc m} (suc i) (s≤s i≥m) = reduce≥ i i≥m -- inject⋆ m "i" = "i". inject : ∀ {n} {i : Fin n} → Fin′ i → Fin n inject {i = zero} () inject {i = suc i} zero = zero inject {i = suc i} (suc j) = suc (inject j) inject! : ∀ {n} {i : Fin (suc n)} → Fin′ i → Fin n inject! {n = zero} {i = suc ()} _ inject! {i = zero} () inject! {n = suc _} {i = suc _} zero = zero inject! {n = suc _} {i = suc _} (suc j) = suc (inject! j) inject+ : ∀ {m} n → Fin m → Fin (m ℕ.+ n) inject+ n zero = zero inject+ n (suc i) = suc (inject+ n i) inject₁ : ∀ {m} → Fin m → Fin (suc m) inject₁ zero = zero inject₁ (suc i) = suc (inject₁ i) inject≤ : ∀ {m n} → Fin m → m ℕ.≤ n → Fin n inject≤ zero (s≤s le) = zero inject≤ (suc i) (s≤s le) = suc (inject≤ i le) -- lower₁ "i" _ = "i". lower₁ : ∀ {n} → (i : Fin (suc n)) → (n ≢ toℕ i) → Fin n lower₁ {zero} zero ne = ⊥-elim (ne refl) lower₁ {zero} (suc ()) _ lower₁ {suc n} zero _ = zero lower₁ {suc n} (suc i) ne = suc (lower₁ i λ x → ne (cong suc x)) -- A strengthening injection into the minimal Fin fibre. strengthen : ∀ {n} (i : Fin n) → Fin′ (suc i) strengthen zero = zero strengthen (suc i) = suc (strengthen i) ------------------------------------------------------------------------ -- Operations -- Folds. fold : ∀ {t} (T : ℕ → Set t) {m} → (∀ {n} → T n → T (suc n)) → (∀ {n} → T (suc n)) → Fin m → T m fold T f x zero = x fold T f x (suc i) = f (fold T f x i) fold′ : ∀ {n t} (T : Fin (suc n) → Set t) → (∀ i → T (inject₁ i) → T (suc i)) → T zero → ∀ i → T i fold′ T f x zero = x fold′ {n = zero} T f x (suc ()) fold′ {n = suc n} T f x (suc i) = f i (fold′ (T ∘ inject₁) (f ∘ inject₁) x i) -- Lifts functions. lift : ∀ {m n} k → (Fin m → Fin n) → Fin (k ℕ.+ m) → Fin (k ℕ.+ n) lift zero f i = f i lift (suc k) f zero = zero lift (suc k) f (suc i) = suc (lift k f i) -- "i" + "j" = "i + j". infixl 6 _+_ _+_ : ∀ {m n} (i : Fin m) (j : Fin n) → Fin (toℕ i ℕ.+ n) zero + j = j suc i + j = suc (i + j) -- "i" - "j" = "i ∸ j". infixl 6 _-_ _-_ : ∀ {m} (i : Fin m) (j : Fin′ (suc i)) → Fin (m ℕ.∸ toℕ j) i - zero = i zero - suc () suc i - suc j = i - j -- m ℕ- "i" = "m ∸ i". infixl 6 _ℕ-_ _ℕ-_ : (n : ℕ) (j : Fin (suc n)) → Fin (suc n ℕ.∸ toℕ j) n ℕ- zero = fromℕ n zero ℕ- suc () suc n ℕ- suc i = n ℕ- i -- m ℕ-ℕ "i" = m ∸ i. infixl 6 _ℕ-ℕ_ _ℕ-ℕ_ : (n : ℕ) → Fin (suc n) → ℕ n ℕ-ℕ zero = n zero ℕ-ℕ suc () suc n ℕ-ℕ suc i = n ℕ-ℕ i -- pred "i" = "pred i". pred : ∀ {n} → Fin n → Fin n pred zero = zero pred (suc i) = inject₁ i -- The function f(i,j) = if j>i then j-1 else j -- This is a variant of the thick function from Conor -- McBride's "First-order unification by structural recursion". punchOut : ∀ {m} {i j : Fin (suc m)} → i ≢ j → Fin m punchOut {_} {zero} {zero} i≢j = ⊥-elim (i≢j refl) punchOut {_} {zero} {suc j} _ = j punchOut {zero} {suc ()} punchOut {suc m} {suc i} {zero} _ = zero punchOut {suc m} {suc i} {suc j} i≢j = suc (punchOut (i≢j ∘ cong suc)) -- The function f(i,j) = if j≥i then j+1 else j punchIn : ∀ {m} → Fin (suc m) → Fin m → Fin (suc m) punchIn zero j = suc j punchIn (suc i) zero = zero punchIn (suc i) (suc j) = suc (punchIn i j) ------------------------------------------------------------------------ -- Order relations infix 4 _≤_ _<_ _≤_ : ∀ {n} → Rel (Fin n) ℓ₀ _≤_ = ℕ._≤_ on toℕ _<_ : ∀ {n} → Rel (Fin n) ℓ₀ _<_ = ℕ._<_ on toℕ data _≺_ : ℕ → ℕ → Set where _≻toℕ_ : ∀ n (i : Fin n) → toℕ i ≺ n ------------------------------------------------------------------------ -- An ordering view. data Ordering {n : ℕ} : Fin n → Fin n → Set where less : ∀ greatest (least : Fin′ greatest) → Ordering (inject least) greatest equal : ∀ i → Ordering i i greater : ∀ greatest (least : Fin′ greatest) → Ordering greatest (inject least) compare : ∀ {n} (i j : Fin n) → Ordering i j compare zero zero = equal zero compare zero (suc j) = less (suc j) zero compare (suc i) zero = greater (suc i) zero compare (suc i) (suc j) with compare i j compare (suc .(inject least)) (suc .greatest) | less greatest least = less (suc greatest) (suc least) compare (suc .greatest) (suc .(inject least)) | greater greatest least = greater (suc greatest) (suc least) compare (suc .i) (suc .i) | equal i = equal (suc i)
27.015385
72
0.489749
57c03b4c341a1bb31fabe833e57f54941b744ca5
301
agda
Agda
src/JVM/Contexts.agda
ajrouvoet/jvm.agda
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
[ "Apache-2.0" ]
6
2020-10-07T14:07:17.000Z
2021-02-28T21:49:08.000Z
src/JVM/Contexts.agda
ajrouvoet/jvm.agda
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
[ "Apache-2.0" ]
null
null
null
src/JVM/Contexts.agda
ajrouvoet/jvm.agda
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
[ "Apache-2.0" ]
1
2021-12-28T17:37:15.000Z
2021-12-28T17:37:15.000Z
{-# OPTIONS --safe #-} module JVM.Contexts where open import JVM.Types open import Relation.Ternary.Construct.List.Overlapping Ty public renaming ( overlap-rel to ctx-rel ; overlap-commutative to ctx-commutative ; overlap-semigroup to ctx-semigroup ; overlap-monoid to ctx-monoid)
25.083333
65
0.737542
228a0433738d024bd252b33f998d3b871395f288
10,952
agda
Agda
Cubical/Algebra/Group/MorphismProperties.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/MorphismProperties.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/MorphismProperties.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Group.MorphismProperties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Univalence open import Cubical.Foundations.SIP open import Cubical.Foundations.Function using (_∘_; id) open import Cubical.Foundations.GroupoidLaws hiding (_⁻¹) open import Cubical.Functions.Embedding open import Cubical.Data.Sigma open import Cubical.Data.Prod using (isPropProd) open import Cubical.Algebra open import Cubical.Algebra.Properties open import Cubical.Algebra.Group.Morphism open import Cubical.Structures.Axioms open import Cubical.Structures.Auto open import Cubical.Structures.Record open import Cubical.Algebra.Monoid.Properties using (isPropIsMonoid) open import Cubical.Relation.Binary.Reasoning.Equality open Iso private variable ℓ ℓ′ ℓ′′ : Level F : Group ℓ G : Group ℓ′ H : Group ℓ′′ isPropIsGroupHom : ∀ (G : Group ℓ) (H : Group ℓ′) f → isProp (IsGroupHom G H f) isPropIsGroupHom G H f (isgrouphom aHom) (isgrouphom bHom) = cong isgrouphom (isPropHomomorphic₂ (Group.is-set H) f (Group._•_ G) (Group._•_ H) aHom bHom) isSetGroupHom : isSet (G ⟶ᴴ H) isSetGroupHom {G = G} {H = H} = isOfHLevelRespectEquiv 2 equiv (isSetΣ (isSetΠ λ _ → is-set H) (λ f → isProp→isSet (isPropIsGroupHom G H f))) where open Group equiv : (Σ[ g ∈ (⟨ G ⟩ → ⟨ H ⟩) ] IsGroupHom G H g) ≃ GroupHom G H equiv = isoToEquiv (iso (λ (g , m) → grouphom g m) (λ (grouphom g m) → g , m) (λ _ → refl) λ _ → refl) isGroupHomComp : {f : ⟨ F ⟩ → ⟨ G ⟩} {g : ⟨ G ⟩ → ⟨ H ⟩} → IsGroupHom F G f → IsGroupHom G H g → IsGroupHom F H (g ∘ f) isGroupHomComp {g = g} (isgrouphom fHom) (isgrouphom gHom) = isgrouphom (λ _ _ → cong g (fHom _ _) ∙ gHom _ _) private isGroupHomComp′ : (f : F ⟶ᴴ G) (g : G ⟶ᴴ H) → IsGroupHom F H (GroupHom.fun g ∘ GroupHom.fun f) isGroupHomComp′ (grouphom f (isgrouphom fHom)) (grouphom g (isgrouphom gHom)) = isgrouphom (λ _ _ → cong g (fHom _ _) ∙ gHom _ _) compGroupHom : (F ⟶ᴴ G) → (G ⟶ᴴ H) → (F ⟶ᴴ H) compGroupHom f g = grouphom _ (isGroupHomComp′ f g) compGroupEquiv : F ≃ᴴ G → G ≃ᴴ H → F ≃ᴴ H compGroupEquiv f g = groupequiv (compEquiv f.eq g.eq) (isGroupHomComp′ f.hom g.hom) where module f = GroupEquiv f module g = GroupEquiv g isGroupHomId : (G : Group ℓ) → IsGroupHom G G id isGroupHomId G = record { preservesOp = λ _ _ → refl } idGroupHom : (G : Group ℓ) → (G ⟶ᴴ G) idGroupHom G = record { fun = id ; isHom = isGroupHomId G } idGroupEquiv : (G : Group ℓ) → G ≃ᴴ G idGroupEquiv G = record { eq = idEquiv ⟨ G ⟩ ; isHom = isGroupHomId G } -- Isomorphism inversion isGroupHomInv : (eqv : G ≃ᴴ H) → IsGroupHom H G (invEq (GroupEquiv.eq eqv)) isGroupHomInv {G = G} {H = H} (groupequiv eq (isgrouphom hom)) = isgrouphom (λ x y → isInj-f ( f (f⁻¹ (x H.• y)) ≡⟨ retEq eq _ ⟩ x H.• y ≡˘⟨ cong₂ H._•_ (retEq eq x) (retEq eq y) ⟩ f (f⁻¹ x) H.• f (f⁻¹ y) ≡˘⟨ hom (f⁻¹ x) (f⁻¹ y) ⟩ f (f⁻¹ x G.• f⁻¹ y) ∎)) where module G = Group G module H = Group H f = equivFun eq f⁻¹ = invEq eq isInj-f : {x y : ⟨ G ⟩} → f x ≡ f y → x ≡ y isInj-f {x} {y} = invEq (_ , isEquiv→isEmbedding (eq .snd) x y) invGroupHom : G ≃ᴴ H → (H ⟶ᴴ G) invGroupHom eq = record { isHom = isGroupHomInv eq } invGroupEquiv : G ≃ᴴ H → H ≃ᴴ G invGroupEquiv eq = record { eq = invEquiv (GroupEquiv.eq eq) ; isHom = isGroupHomInv eq } groupHomEq : {f g : G ⟶ᴴ H} → (GroupHom.fun f ≡ GroupHom.fun g) → f ≡ g groupHomEq {G = G} {H = H} {grouphom f fm} {grouphom g gm} p i = grouphom (p i) (p-hom i) where p-hom : PathP (λ i → IsGroupHom G H (p i)) fm gm p-hom = toPathP (isPropIsGroupHom G H _ _ _) groupEquivEq : {f g : G ≃ᴴ H} → (GroupEquiv.eq f ≡ GroupEquiv.eq g) → f ≡ g groupEquivEq {G = G} {H = H} {groupequiv f fm} {groupequiv g gm} p i = groupequiv (p i) (p-hom i) where p-hom : PathP (λ i → IsGroupHom G H (p i .fst)) fm gm p-hom = toPathP (isPropIsGroupHom G H _ _ _) module GroupΣTheory {ℓ} where RawGroupStructure : Type ℓ → Type ℓ RawGroupStructure X = (X → X → X) × X × (X → X) RawGroupEquivStr = AutoEquivStr RawGroupStructure rawGroupUnivalentStr : UnivalentStr _ RawGroupEquivStr rawGroupUnivalentStr = autoUnivalentStr RawGroupStructure GroupAxioms : (G : Type ℓ) → RawGroupStructure G → Type ℓ GroupAxioms G (_•_ , ε , _⁻¹) = IsMonoid G _•_ ε × Inverse ε _⁻¹ _•_ GroupStructure : Type ℓ → Type ℓ GroupStructure = AxiomsStructure RawGroupStructure GroupAxioms GroupΣ : Type (ℓ-suc ℓ) GroupΣ = TypeWithStr ℓ GroupStructure isPropGroupAxioms : (G : Type ℓ) (s : RawGroupStructure G) → isProp (GroupAxioms G s) isPropGroupAxioms G (_•_ , ε , _⁻¹) = isPropΣ isPropIsMonoid λ isMonG → isPropInverse (IsMonoid.is-set isMonG) _•_ _⁻¹ ε GroupEquivStr : StrEquiv GroupStructure ℓ GroupEquivStr = AxiomsEquivStr RawGroupEquivStr GroupAxioms GroupAxiomsIsoIsGroup : {G : Type ℓ} (s : RawGroupStructure G) → Iso (GroupAxioms G s) (IsGroup G (s .fst) (s .snd .fst) (s .snd .snd)) fun (GroupAxiomsIsoIsGroup s) (x , y) = isgroup x y inv (GroupAxiomsIsoIsGroup s) (isgroup x y) = (x , y) rightInv (GroupAxiomsIsoIsGroup s) _ = refl leftInv (GroupAxiomsIsoIsGroup s) _ = refl GroupAxioms≡IsGroup : {G : Type ℓ} (s : RawGroupStructure G) → GroupAxioms G s ≡ IsGroup G (s .fst) (s .snd .fst) (s .snd .snd) GroupAxioms≡IsGroup s = isoToPath (GroupAxiomsIsoIsGroup s) Group→GroupΣ : Group ℓ → GroupΣ Group→GroupΣ (mkgroup G _•_ ε _⁻¹ isGroup) = G , (_•_ , ε , _⁻¹) , GroupAxiomsIsoIsGroup (_•_ , ε , _⁻¹) .inv isGroup GroupΣ→Group : GroupΣ → Group ℓ GroupΣ→Group (G , (_•_ , ε , _⁻¹) , isGroupG) = mkgroup G _•_ ε _⁻¹ (GroupAxiomsIsoIsGroup (_•_ , ε , _⁻¹) .fun isGroupG) GroupIsoGroupΣ : Iso (Group ℓ) GroupΣ GroupIsoGroupΣ = iso Group→GroupΣ GroupΣ→Group (λ _ → refl) (λ _ → refl) groupUnivalentStr : UnivalentStr GroupStructure GroupEquivStr groupUnivalentStr = axiomsUnivalentStr _ isPropGroupAxioms rawGroupUnivalentStr GroupΣPath : (G H : GroupΣ) → (G ≃[ GroupEquivStr ] H) ≃ (G ≡ H) GroupΣPath = SIP groupUnivalentStr GroupEquivΣ : (G H : Group ℓ) → Type ℓ GroupEquivΣ G H = Group→GroupΣ G ≃[ GroupEquivStr ] Group→GroupΣ H GroupIsoΣPath : {G H : Group ℓ} → Iso (GroupEquiv G H) (GroupEquivΣ G H) fun GroupIsoΣPath (groupequiv eq hom) = eq , IsGroupHom.preservesOp hom , IsGroupHom.preservesId hom , IsGroupHom.preservesInv hom inv GroupIsoΣPath (eq , hom , _) = groupequiv eq (isgrouphom hom) rightInv (GroupIsoΣPath {H = H}) _ = ΣPathTransport→PathΣ _ _ (refl , ΣPathTransport→PathΣ _ _ (transportRefl _ , ΣPathTransport→PathΣ _ _ (Group.is-set H _ _ _ _ , isPropΠ (λ _ → Group.is-set H _ _) _ _ ) )) leftInv (GroupIsoΣPath {H = H}) _ = refl GroupPath : (G H : Group ℓ) → (GroupEquiv G H) ≃ (G ≡ H) GroupPath G H = GroupEquiv G H ≃⟨ isoToEquiv GroupIsoΣPath ⟩ GroupEquivΣ G H ≃⟨ GroupΣPath _ _ ⟩ Group→GroupΣ G ≡ Group→GroupΣ H ≃⟨ isoToEquiv (invIso (congIso GroupIsoGroupΣ)) ⟩ G ≡ H ■ RawGroupΣ : Type (ℓ-suc ℓ) RawGroupΣ = TypeWithStr ℓ RawGroupStructure Group→RawGroupΣ : Group ℓ → RawGroupΣ Group→RawGroupΣ (mkgroup A _•_ ε _⁻¹ _) = A , _•_ , ε , _⁻¹ InducedGroup : (G : Group ℓ) (H : RawGroupΣ) (e : G .Group.Carrier ≃ H .fst) → RawGroupEquivStr (Group→RawGroupΣ G) H e → Group ℓ InducedGroup G H e r = GroupΣ→Group (inducedStructure rawGroupUnivalentStr (Group→GroupΣ G) H (e , r)) InducedGroupPath : (G : Group ℓ) (H : RawGroupΣ) (e : G .Group.Carrier ≃ H .fst) (E : RawGroupEquivStr (Group→RawGroupΣ G) H e) → G ≡ InducedGroup G H e E InducedGroupPath G H e E = GroupPath G (InducedGroup G H e E) .fst (groupequiv e (isgrouphom (E .fst))) -- We now extract the important results from the above module open GroupΣTheory public using (InducedGroup; InducedGroupPath) isPropIsGroup : {G : Type ℓ} {_•_ : Op₂ G} {ε : G} {_⁻¹ : Op₁ G} → isProp (IsGroup G _•_ ε _⁻¹) isPropIsGroup = subst isProp (GroupΣTheory.GroupAxioms≡IsGroup (_ , _ , _)) (GroupΣTheory.isPropGroupAxioms _ (_ , _ , _)) GroupPath : (G ≃ᴴ H) ≃ (G ≡ H) GroupPath = GroupΣTheory.GroupPath _ _ open Group uaGroup : G ≃ᴴ H → G ≡ H uaGroup = equivFun GroupPath carac-uaGroup : {G H : Group ℓ} (f : G ≃ᴴ H) → cong Carrier (uaGroup f) ≡ ua (GroupEquiv.eq f) carac-uaGroup (groupequiv f m) = (refl ∙∙ ua f ∙∙ refl) ≡˘⟨ rUnit (ua f) ⟩ ua f ∎ Group≡ : (G H : Group ℓ) → ( Σ[ p ∈ ⟨ G ⟩ ≡ ⟨ H ⟩ ] Σ[ q ∈ PathP (λ i → p i → p i → p i) (_•_ G) (_•_ H) ] Σ[ r ∈ PathP (λ i → p i) (ε G) (ε H) ] Σ[ s ∈ PathP (λ i → p i → p i) (_⁻¹ G) (_⁻¹ H) ] PathP (λ i → IsGroup (p i) (q i) (r i) (s i)) (isGroup G) (isGroup H)) ≃ (G ≡ H) Group≡ G H = isoToEquiv (iso (λ (p , q , r , s , t) i → mkgroup (p i) (q i) (r i) (s i) (t i)) (λ p → cong Carrier p , cong _•_ p , cong ε p , cong _⁻¹ p , cong isGroup p) (λ _ → refl) (λ _ → refl)) caracGroup≡ : {G H : Group ℓ} (p q : G ≡ H) → cong Carrier p ≡ cong Carrier q → p ≡ q caracGroup≡ {G = G} {H} p q t = cong (fst (Group≡ G H)) (Σ≡Prop (λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set H) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (is-set H) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ λ _ → is-set H) _ _) λ _ → isOfHLevelPathP 1 isPropIsGroup _ _) t) uaGroupId : (G : Group ℓ) → uaGroup (idGroupEquiv G) ≡ refl uaGroupId G = caracGroup≡ _ _ (carac-uaGroup (idGroupEquiv G) ∙ uaIdEquiv) uaCompGroupEquiv : {F G H : Group ℓ} (f : GroupEquiv F G) (g : GroupEquiv G H) → uaGroup (compGroupEquiv f g) ≡ uaGroup f ∙ uaGroup g uaCompGroupEquiv f g = caracGroup≡ _ _ ( cong Carrier (uaGroup (compGroupEquiv f g)) ≡⟨ carac-uaGroup (compGroupEquiv f g) ⟩ ua (eq (compGroupEquiv f g)) ≡⟨ uaCompEquiv _ _ ⟩ ua (eq f) ∙ ua (eq g) ≡˘⟨ cong (_∙ ua (eq g)) (carac-uaGroup f) ⟩ cong Carrier (uaGroup f) ∙ ua (eq g) ≡˘⟨ cong (cong Carrier (uaGroup f) ∙_) (carac-uaGroup g) ⟩ cong Carrier (uaGroup f) ∙ cong Carrier (uaGroup g) ≡˘⟨ cong-∙ Carrier (uaGroup f) (uaGroup g) ⟩ cong Carrier (uaGroup f ∙ uaGroup g) ∎) where open GroupEquiv
38.975089
133
0.61103
22af90c78e6f4d538cff1d0be86b142e6ef1f229
1,773
agda
Agda
agda-stdlib/src/Data/These/Categorical/Left/Base.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/These/Categorical/Left/Base.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/These/Categorical/Left/Base.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Base definitions for the left-biased universe-sensitive functor and -- monad instances for These. -- -- To minimize the universe level of the RawFunctor, we require that -- elements of B are "lifted" to a copy of B at a higher universe level -- (a ⊔ b). -- See the Data.Product.Categorical.Examples for how this is done in a -- Product-based similar setting. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Level module Data.These.Categorical.Left.Base {a} (A : Set a) (b : Level) where open import Data.These.Base open import Category.Functor open import Category.Applicative open import Category.Monad open import Function Theseₗ : Set (a ⊔ b) → Set (a ⊔ b) Theseₗ B = These A B functor : RawFunctor Theseₗ functor = record { _<$>_ = map₂ } ------------------------------------------------------------------------ -- Get access to other monadic functions module _ {F} (App : RawApplicative {a ⊔ b} F) where open RawApplicative App sequenceA : ∀ {A} → Theseₗ (F A) → F (Theseₗ A) sequenceA (this a) = pure (this a) sequenceA (that b) = that <$> b sequenceA (these a b) = these a <$> b mapA : ∀ {A B} → (A → F B) → Theseₗ A → F (Theseₗ B) mapA f = sequenceA ∘ map₂ f forA : ∀ {A B} → Theseₗ A → (A → F B) → F (Theseₗ B) forA = flip mapA module _ {M} (Mon : RawMonad {a ⊔ b} M) where private App = RawMonad.rawIApplicative Mon sequenceM : ∀ {A} → Theseₗ (M A) → M (Theseₗ A) sequenceM = sequenceA App mapM : ∀ {A B} → (A → M B) → Theseₗ A → M (Theseₗ B) mapM = mapA App forM : ∀ {A B} → Theseₗ A → (A → M B) → M (Theseₗ B) forM = forA App
28.596774
73
0.565144
1232465cf595a8728f2160ca1771d37a220db638
1,496
agda
Agda
test/Common/Reflection.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
4
2017-02-24T16:53:22.000Z
2019-12-23T04:56:23.000Z
test/Common/Reflection.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
6
2017-02-24T19:27:31.000Z
2017-02-24T19:38:17.000Z
test/Common/Reflection.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
1
2022-03-12T11:39:14.000Z
2022-03-12T11:39:14.000Z
module Common.Reflection where open import Agda.Builtin.Reflection public renaming ( arg-info to argInfo ; function to funDef ; data-type to dataDef ; record-type to recordDef ; agda-sort to sort ; name to qname ; absurd-clause to absurdClause ; pat-lam to extLam ; proj to projP ; instance′ to inst ; Visibility to Hiding ; Name to QName) open import Common.Level open import Common.Prelude hiding (_>>=_) pattern vArg x = arg (argInfo visible relevant) x pattern hArg x = arg (argInfo hidden relevant) x pattern iArg x = arg (argInfo inst relevant) x Args = List (Arg Term) data FunDef : Set where funDef : Type → List Clause → FunDef Tactic = Term → TC ⊤ give : Term → Tactic give v = λ hole → unify hole v define : Arg QName → FunDef → TC ⊤ define (arg i f) (funDef a cs) = bindTC (declareDef (arg i f) a) λ _ → defineFun f cs newMeta : Type → TC Term newMeta a = checkType unknown a numberOfParameters : QName → TC Nat numberOfParameters d = bindTC (getDefinition d) λ { (dataDef n _) → returnTC n ; _ → typeError (strErr "Cannot get parameters of non-data type" ∷ nameErr d ∷ []) } getConstructors : QName → TC (List QName) getConstructors d = bindTC (getDefinition d) λ { (dataDef _ cs) → returnTC cs ; (recordDef c) → returnTC (c ∷ []) ; _ → typeError (strErr "Cannot get constructors of non-data or record type" ∷ nameErr d ∷ []) } infixl 1 _>>=_ _>>=_ = bindTC
25.355932
96
0.65508
1d50c2424b2279a5c2a8d38884acec98b76752cb
1,947
agda
Agda
Cubical/Data/DiffInt/Properties.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Data/DiffInt/Properties.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
Cubical/Data/DiffInt/Properties.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.DiffInt.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence open import Cubical.Data.DiffInt.Base open import Cubical.Data.Nat open import Cubical.Data.Sigma open import Cubical.Data.Bool open import Cubical.Relation.Binary.Base open import Cubical.Relation.Nullary open import Cubical.HITs.SetQuotients open BinaryRelation relIsEquiv : isEquivRel rel relIsEquiv = EquivRel {A = ℕ × ℕ} relIsRefl relIsSym relIsTrans where relIsRefl : isRefl rel relIsRefl (a0 , a1) = refl relIsSym : isSym rel relIsSym (a0 , a1) (b0 , b1) p = sym p relIsTrans : isTrans rel relIsTrans (a0 , a1) (b0 , b1) (c0 , c1) p0 p1 = inj-m+ {m = (b0 + b1)} ((b0 + b1) + (a0 + c1) ≡⟨ +-assoc (b0 + b1) a0 c1 ⟩ ((b0 + b1) + a0) + c1 ≡[ i ]⟨ +-comm b0 b1 i + a0 + c1 ⟩ ((b1 + b0) + a0) + c1 ≡[ i ]⟨ +-comm (b1 + b0) a0 i + c1 ⟩ (a0 + (b1 + b0)) + c1 ≡[ i ]⟨ +-assoc a0 b1 b0 i + c1 ⟩ (a0 + b1) + b0 + c1 ≡⟨ sym (+-assoc (a0 + b1) b0 c1) ⟩ (a0 + b1) + (b0 + c1) ≡⟨ cong (λ p → p . fst + p .snd) (transport Σ≡ (p0 , p1))⟩ (b0 + a1) + (c0 + b1) ≡⟨ sym (+-assoc b0 a1 (c0 + b1))⟩ b0 + (a1 + (c0 + b1)) ≡[ i ]⟨ b0 + (a1 + +-comm c0 b1 i) ⟩ b0 + (a1 + (b1 + c0)) ≡[ i ]⟨ b0 + +-comm a1 (b1 + c0) i ⟩ b0 + ((b1 + c0) + a1) ≡[ i ]⟨ b0 + +-assoc b1 c0 a1 (~ i) ⟩ b0 + (b1 + (c0 + a1)) ≡⟨ +-assoc b0 b1 (c0 + a1)⟩ (b0 + b1) + (c0 + a1) ∎ ) relIsProp : BinaryRelation.isPropValued rel relIsProp a b x y = isSetℕ _ _ _ _ discreteℤ : Discrete ℤ discreteℤ = discreteSetQuotients (discreteΣ discreteℕ λ _ → discreteℕ) relIsProp relIsEquiv (λ _ _ → discreteℕ _ _) private _ : Dec→Bool (discreteℤ [ (3 , 5) ] [ (4 , 6) ]) ≡ true _ = refl _ : Dec→Bool (discreteℤ [ (3 , 5) ] [ (4 , 7) ]) ≡ false _ = refl
35.4
115
0.546482
4161353f8f6296cdc723e6706eeda3cddbcfd5b2
3,437
agda
Agda
Basic/Compiler/SplitCode.agda
AndrasKovacs/SemanticsWithApplications
05200d60b4a4b2c6fa37806ced9247055d24db94
[ "MIT" ]
8
2016-09-12T04:25:39.000Z
2020-02-02T10:01:52.000Z
Basic/Compiler/SplitCode.agda
AndrasKovacs/SemanticsWithApplications
05200d60b4a4b2c6fa37806ced9247055d24db94
[ "MIT" ]
null
null
null
Basic/Compiler/SplitCode.agda
AndrasKovacs/SemanticsWithApplications
05200d60b4a4b2c6fa37806ced9247055d24db94
[ "MIT" ]
null
null
null
module Basic.Compiler.SplitCode where open import Basic.Compiler.Code open import Basic.AST open import Basic.BigStep open import Utils.Monoid open import Data.Vec hiding (_++_; [_]; _∷ʳ_) open import Data.Bool renaming (if_then_else_ to ifBool_then_else_) open import Data.Nat open import Data.List hiding ([_]) open import Relation.Binary.PropositionalEquality open import Function open import Data.Product open import Algebra import Level as L private module LM {a}{A : Set a} = Algebra.Monoid (Data.List.monoid A) {- Exercise 3.5 This code logically belongs to either Compiler.Code or Compiler.CorrectFrom. It has its own module solely because it slows down typechecking for the module it's in, which is rather annoying. -} ▷*-split : ∀ {n}{s s' : State n}{e e'} c₁ {c₂} → (p : ⟨ c₁ <> c₂ , e , s ⟩▷*⟨ [] , e' , s' ⟩) → ∃₂ λ s'' e'' → ∃₂ λ (p1 : ⟨ c₁ , e , s ⟩▷*⟨ [] , e'' , s'' ⟩) (p2 : ⟨ c₂ , e'' , s'' ⟩▷*⟨ [] , e' , s' ⟩) → ▷*-length p1 + ▷*-length p2 ≡ ▷*-length p ▷*-split [] p = _ , _ , done , p , refl ▷*-split (.ADD ∷ cs) (ADD a b ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , ADD a b ∷ p1 , p2 , cong suc eqn ▷*-split (.MUL ∷ cs) (MUL a b ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , MUL a b ∷ p1 , p2 , cong suc eqn ▷*-split (.SUB ∷ cs) (SUB a b ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , SUB a b ∷ p1 , p2 , cong suc eqn ▷*-split (.EQ ∷ cs) (EQ a b ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , EQ a b ∷ p1 , p2 , cong suc eqn ▷*-split (.LT ∷ cs) (LT a b ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , LT a b ∷ p1 , p2 , cong suc eqn ▷*-split (.LTE ∷ cs) (LTE a b ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , LTE a b ∷ p1 , p2 , cong suc eqn ▷*-split (.AND ∷ cs) (AND a b ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , AND a b ∷ p1 , p2 , cong suc eqn ▷*-split (.(PUSH n₁) ∷ cs) (PUSH n₁ ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , PUSH n₁ ∷ p1 , p2 , cong suc eqn ▷*-split (.TRUE ∷ cs) (TRUE ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , TRUE ∷ p1 , p2 , cong suc eqn ▷*-split (.FALSE ∷ cs) (FALSE ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , FALSE ∷ p1 , p2 , cong suc eqn ▷*-split (.NOT ∷ cs) (NOT b ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , NOT b ∷ p1 , p2 , cong suc eqn ▷*-split (.(FETCH x) ∷ cs) (FETCH x ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , FETCH x ∷ p1 , p2 , cong suc eqn ▷*-split (.(STORE x) ∷ cs) (STORE x ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , STORE x ∷ p1 , p2 , cong suc eqn ▷*-split (.NOOP ∷ cs) (NOOP ∷ p) with ▷*-split cs p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , NOOP ∷ p1 , p2 , cong suc eqn ▷*-split (._ ∷ cs){c₂} (BRANCH{ca}{cb}{._}{t}{e} ∷ p) rewrite sym $ LM.assoc (ifBool t then ca else cb) cs c₂ with ▷*-split ((ifBool t then ca else cb) <> cs) p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , BRANCH ∷ p1 , p2 , cong suc eqn ▷*-split (._ ∷ cs){c₁} (LOOP{ca}{cb}{._}{e}{s} ∷ p) rewrite sym $ LM.assoc ca (BRANCH (cb ∷ʳ LOOP ca cb) (NOOP ∷ []) ∷ cs) c₁ with ▷*-split (ca <> (BRANCH (cb ∷ʳ LOOP ca cb) (NOOP ∷ []) ∷ cs)) p ... | s'' , e'' , p1 , p2 , eqn = s'' , e'' , LOOP ∷ p1 , p2 , cong suc eqn
45.826667
78
0.508001
3d5a5c58b3a112b2ea2697f07e8d3237460d5d5a
1,915
agda
Agda
old/Sets/ETCS.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
old/Sets/ETCS.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
old/Sets/ETCS.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
import Lvl -- TODO: Is it possible formalize this like this? Is it even correct? -- Based on http://www.maths.ed.ac.uk/~tl/edinburgh_yrm/ (2017-11-22) module Sets.ETCS where open import Logic.Propositional module Theory (S : Set(Lvl.𝟎)) (F : S → S → Set(Lvl.𝟎)) (_∘_ : ∀{a b c} → F(b)(c) → F(a)(b) → F(a)(c)) (_≡_ : ∀{a b} → F(a)(b) → F(a)(b) → Stmt{Lvl.𝟎}) where open import Functional hiding (_∘_) open import Logic.Predicate{Lvl.𝟎}{Lvl.𝟎} open import Logic.Propositional.Theorems{Lvl.𝟎} open import Relator.Equals{Lvl.𝟎} using () renaming (_≡_ to _≡ᵣ_) open import Type{Lvl.𝟎} Terminal : S → Stmt Terminal(x) = (∀{a : S} → (f g : F(a)(x)) → (f ≡ g)) record Axioms : Set(Lvl.𝐒(Lvl.𝟎)) where field associativity : ∀{a b c d : S}{f : F(a)(b)}{g : F(b)(c)}{h : F(c)(d)} → ((h ∘ (g ∘ f)) ≡ ((h ∘ g) ∘ f)) identity : ∀{a : S} → ∃{F(a)(a)}(id ↦ (∀{b : S}{f : F(a)(b)} → ((f ∘ id) ≡ f)) ∧ (∀{b : S}{f : F(b)(a)} → ((id ∘ f) ≡ f))) terminal : ∃(term ↦ Terminal(term)) 𝟏 : S 𝟏 = [∃]-witness(terminal) _∈_ : ∀{a b : S} → F(a)(b) → S → Stmt _∈_ {a}{b} x X = (a ≡ᵣ 𝟏)∧(b ≡ᵣ X) _∉_ : ∀{a b : S} → F(a)(b) → S → Stmt _∉_ x X = ¬(x ∈ X) field empty : ∃{S}(∅ ↦ ∀{a b : S}{f : F(a)(b)} → (f ∉ ∅)) -- TODO module Construction where open import Data open import Functional using (_∘_ ; id) open import Logic.Predicate{Lvl.𝐒(Lvl.𝟎)}{Lvl.𝟎} open import Logic.Propositional.Theorems{Lvl.𝐒(Lvl.𝟎)} open import Relator.Equals{Lvl.𝟎} Terminal : Set → Stmt Terminal(x) = (∀{a : Set}{f g : a → x} → (f ≡ g)) _∈_ : ∀{a b : Set} → (a → b) → Set → Stmt _∈_ {a}{b} _ X = (a ≡ Unit)∧(b ≡ X) ∅ : Set ∅ = Empty -- TODO: Maybe use FunctionEquals instead? -- TODO: Is this construction working? Try to prove some of the theorems of standard set theory
33.017241
159
0.513838
1c5c3ea1b8d36ac97f119198abbca86d4ea0003d
7,992
agda
Agda
core/lib/PathGroupoid.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/PathGroupoid.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/PathGroupoid.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Base module lib.PathGroupoid where module _ {i} {A : Type i} where {- Concatenation of paths There are two different definitions of concatenation of paths, [_∙_] and [_∙'_], with different definitionnal behaviour. Maybe we should have only one but it’s sometimes useful to have both (in particular in lib.types.Paths). -} infixr 80 _∙_ _∙'_ _∙_ : {x y z : A} → (x == y → y == z → x == z) idp ∙ q = q _∙'_ : {x y z : A} → (x == y → y == z → x == z) q ∙' idp = q ∙=∙' : {x y z : A} (p : x == y) (q : y == z) → p ∙ q == p ∙' q ∙=∙' idp idp = idp ∙'=∙ : {x y z : A} (p : x == y) (q : y == z) → p ∙' q == p ∙ q ∙'=∙ idp idp = idp ∙-assoc : {x y z t : A} (p : x == y) (q : y == z) (r : z == t) → (p ∙ q) ∙ r == p ∙ (q ∙ r) ∙-assoc idp _ _ = idp ∙'-assoc : {x y z t : A} (p : x == y) (q : y == z) (r : z == t) → (p ∙' q) ∙' r == p ∙' (q ∙' r) ∙'-assoc _ _ idp = idp -- [∙-unit-l] and [∙'-unit-r] are definitional ∙-unit-r : {x y : A} (q : x == y) → q ∙ idp == q ∙-unit-r idp = idp ∙'-unit-l : {x y : A} (q : x == y) → idp ∙' q == q ∙'-unit-l idp = idp {- Reversal of paths -} ! : {x y : A} → (x == y → y == x) ! idp = idp !-inv-l : {x y : A} (p : x == y) → (! p) ∙ p == idp !-inv-l idp = idp !-inv'-l : {x y : A} (p : x == y) → (! p) ∙' p == idp !-inv'-l idp = idp !-inv-r : {x y : A} (p : x == y) → p ∙ (! p) == idp !-inv-r idp = idp !-inv'-r : {x y : A} (p : x == y) → p ∙' (! p) == idp !-inv'-r idp = idp {- Interactions between operations A lemma of the form [!-∙ …] gives a result of the form [! (_∙_ …) == …], and so on. -} !-∙ : {x y z : A} (p : x == y) (q : y == z) → ! (p ∙ q) == ! q ∙ ! p !-∙ idp idp = idp ∙-! : {x y z : A} (q : y == z) (p : x == y) → ! q ∙ ! p == ! (p ∙ q) ∙-! idp idp = idp !-∙' : {x y z : A} (p : x == y) (q : y == z) → ! (p ∙' q) == ! q ∙' ! p !-∙' idp idp = idp ∙'-! : {x y z : A} (q : y == z) (p : x == y) → ! q ∙' ! p == ! (p ∙' q) ∙'-! idp idp = idp !-! : {x y : A} (p : x == y) → ! (! p) == p !-! idp = idp {- Horizontal compositions -} infixr 80 _∙2_ _∙'2_ _∙2_ : {x y z : A} {p p' : x == y} {q q' : y == z} (α : p == p') (β : q == q') → p ∙ q == p' ∙ q' _∙2_ {p = idp} idp β = β _∙'2_ : {x y z : A} {p p' : x == y} {q q' : y == z} (α : p == p') (β : q == q') → p ∙' q == p' ∙' q' _∙'2_ {q = idp} α idp = α idp∙2idp : {x y z : A} (p : x == y) (q : y == z) → (idp {a = p}) ∙2 (idp {a = q}) == idp idp∙2idp idp idp = idp idp∙'2idp : {x y z : A} (p : x == y) (q : y == z) → (idp {a = p}) ∙'2 (idp {a = q}) == idp idp∙'2idp idp idp = idp {- Sometimes we need to restart a new section in order to have everything in the previous one generalized. -} module _ {i} {A : Type i} where {- Whisker and horizontal composition for Eckmann-Hilton argument -} infixr 80 _∙ᵣ_ _⋆2_ _⋆'2_ infixl 80 _∙ₗ_ _∙ᵣ_ : {x y z : A} {p p' : x == y} (α : p == p') (q : y == z) → p ∙ q == p' ∙ q _∙ᵣ_ {p = p} {p' = p'} α idp = ∙-unit-r p ∙ α ∙ ! (∙-unit-r p') _∙ₗ_ : {x y z : A} {q q' : y == z} (p : x == y) (β : q == q') → p ∙ q == p ∙ q' _∙ₗ_ {q = q} {q' = q'} idp β = β _⋆2_ : {x y z : A} {p p' : x == y} {q q' : y == z} (α : p == p') (β : q == q') → p ∙ q == p' ∙ q' _⋆2_ {p' = p'} {q = q} α β = (α ∙ᵣ q) ∙ (p' ∙ₗ β) _⋆'2_ : {x y z : A} {p p' : x == y} {q q' : y == z} (α : p == p') (β : q == q') → p ∙ q == p' ∙ q' _⋆'2_ {p = p} {q' = q'} α β = (p ∙ₗ β) ∙ (α ∙ᵣ q') ⋆2=⋆'2 : {x y z : A} {p p' : x == y} {q q' : y == z} (α : p == p') (β : q == q') → α ⋆2 β == α ⋆'2 β ⋆2=⋆'2 {p = idp} {q = idp} idp idp = idp module _ {i} {A : Type i} where anti-whisker-right : {x y z : A} (p : y == z) {q r : x == y} → (q ∙ p == r ∙ p → q == r) anti-whisker-right idp {q} {r} h = ! (∙-unit-r q) ∙ (h ∙ ∙-unit-r r) anti-whisker-left : {x y z : A} (p : x == y) {q r : y == z} → (p ∙ q == p ∙ r → q == r) anti-whisker-left idp h = h {- Dependent stuff -} module _ {i j} {A : Type i} {B : A → Type j} where {- Dependent constant path -} idpᵈ : {x : A} {u : B x} → u == u [ B ↓ idp ] idpᵈ = idp {- Dependent opposite path -} !ᵈ : {x y : A} {p : x == y} {u : B x} {v : B y} → (u == v [ B ↓ p ] → v == u [ B ↓ (! p)]) !ᵈ {p = idp} = ! {- Dependent concatenation -} infixr 80 _∙ᵈ_ _∙'ᵈ_ _◃_ _▹_ _!◃_ _▹!_ _∙ᵈ_ : {x y z : A} {p : x == y} {p' : y == z} {u : B x} {v : B y} {w : B z} → (u == v [ B ↓ p ] → v == w [ B ↓ p' ] → u == w [ B ↓ (p ∙ p') ]) _∙ᵈ_ {p = idp} {p' = idp} q r = q ∙ r _◃_ = _∙ᵈ_ ◃idp : {x : A} {v w : B x} (q : w == v) → q ◃ idp == q ◃idp idp = idp idp◃ : {x y : A} {p : x == y} {u : B x} {v : B y} (r : u == v [ B ↓ p ]) → idp ◃ r == r idp◃ {p = idp} r = idp _∙'ᵈ_ : {x y z : A} {p : x == y} {p' : y == z} {u : B x} {v : B y} {w : B z} → (u == v [ B ↓ p ] → v == w [ B ↓ p' ] → u == w [ B ↓ (p ∙' p') ]) _∙'ᵈ_ {p = idp} {p' = idp} q r = q ∙' r _▹_ = _∙'ᵈ_ {- That’s not perfect, because [q] could be a dependent path. But in that case this is not well typed… -} idp▹ : {x : A} {v w : B x} (q : v == w) → idp ▹ q == q idp▹ idp = idp ▹idp : {x y : A} {p : x == y} {u : B x} {v : B y} (q : u == v [ B ↓ p ]) → q ▹ idp == q ▹idp {p = idp} idp = idp _▹!_ : {x y z : A} {p : x == y} {p' : z == y} {u : B x} {v : B y} {w : B z} → u == v [ B ↓ p ] → w == v [ B ↓ p' ] → u == w [ B ↓ p ∙' (! p') ] _▹!_ {p' = idp} q idp = q idp▹! : {x : A} {v w : B x} (q : w == v) → idp ▹! q == ! q idp▹! idp = idp _!◃_ : {x y z : A} {p : y == x} {p' : y == z} {u : B x} {v : B y} {w : B z} → v == u [ B ↓ p ] → v == w [ B ↓ p' ] → u == w [ B ↓ (! p) ∙ p' ] _!◃_ {p = idp} idp q = q !◃idp :{x : A} {v w : B x} (q : v == w) → q !◃ idp == ! q !◃idp idp = idp {- This is some kind of dependent horizontal composition (used in [apd∙]). -} infixr 80 _∙2ᵈ_ _∙'2ᵈ_ _∙2ᵈ_ : {x y z : Π A B} {a a' : A} {p : a == a'} {q : x a == y a} {q' : x a' == y a'} {r : y a == z a} {r' : y a' == z a'} → (q == q' [ (λ a → x a == y a) ↓ p ]) → (r == r' [ (λ a → y a == z a) ↓ p ]) → (q ∙ r == q' ∙ r' [ (λ a → x a == z a) ↓ p ]) _∙2ᵈ_ {p = idp} α β = α ∙2 β _∙'2ᵈ_ : {x y z : Π A B} {a a' : A} {p : a == a'} {q : x a == y a} {q' : x a' == y a'} {r : y a == z a} {r' : y a' == z a'} → (q == q' [ (λ a → x a == y a) ↓ p ]) → (r == r' [ (λ a → y a == z a) ↓ p ]) → (q ∙' r == q' ∙' r' [ (λ a → x a == z a) ↓ p ]) _∙'2ᵈ_ {p = idp} α β = α ∙'2 β {- [apd∙] reduces a term of the form [apd (λ a → q a ∙ r a) p], do not confuse it with [apd-∙] which reduces a term of the form [apd f (p ∙ q)]. -} apd∙ : {a a' : A} {x y z : Π A B} (q : (a : A) → x a == y a) (r : (a : A) → y a == z a) (p : a == a') → apd (λ a → q a ∙ r a) p == apd q p ∙2ᵈ apd r p apd∙ q r idp = ! (idp∙2idp (q _) (r _)) apd∙' : {a a' : A} {x y z : Π A B} (q : (a : A) → x a == y a) (r : (a : A) → y a == z a) (p : a == a') → apd (λ a → q a ∙' r a) p == apd q p ∙'2ᵈ apd r p apd∙' q r idp = ! (idp∙'2idp (q _) (r _)) module _ {i j} {A : Type i} {B : A → Type j} where {- Exchange -} ▹-∙'2ᵈ : {x y z : Π A B} {a a' a'' : A} {p : a == a'} {p' : a' == a''} {q0 : x a == y a} {q0' : x a' == y a'} {r0 : y a == z a} {r0' : y a' == z a'} {q0'' : x a'' == y a''} {r0'' : y a'' == z a''} (q : q0 == q0' [ (λ a → x a == y a) ↓ p ]) (r : r0 == r0' [ (λ a → y a == z a) ↓ p ]) (s : q0' == q0'' [ (λ a → x a == y a) ↓ p' ]) (t : r0' == r0'' [ (λ a → y a == z a) ↓ p' ]) → (q ∙'2ᵈ r) ▹ (s ∙'2ᵈ t) == (q ▹ s) ∙'2ᵈ (r ▹ t) ▹-∙'2ᵈ {p = idp} {p' = idp} {q0} {.q0} {r0} {.r0} idp idp idp idp = ap (λ u → (idp {a = q0} ∙'2 idp {a = r0}) ∙' u) (idp∙'2idp q0 r0)
27.75
82
0.358609
12612c688fac75e20b207f89758fe4af202d918f
2,572
agda
Agda
nicolai/anonymousExistence/library/Univalence.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
nicolai/anonymousExistence/library/Univalence.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
null
null
null
nicolai/anonymousExistence/library/Univalence.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import library.Base open import library.PathGroupoid open import library.PathFunctor open import library.Equivalences module library.Univalence where {- The map [coe-equiv] is the map which is supposed to be an equivalence according to the univalence axiom. We do not define it directly by path induction because it may be helpful to know definitionally what are the components. -} coe-equiv : ∀ {i} {A B : Type i} → A == B → A ≃ B coe-equiv p = equiv (coe p) (coe! p) (coe!-inv-r p) (coe!-inv-l p) {- We postulate the univalence axiom as three separate axioms because it’s more natural this way. But it doesn’t change anything in practice. -} postulate -- Univalence axiom ua : ∀ {i} {A B : Type i} → (A ≃ B) → A == B coe-equiv-β : ∀ {i} {A B : Type i} (e : A ≃ B) → coe-equiv (ua e) == e ua-η : ∀ {i} {A B : Type i} (p : A == B) → ua (coe-equiv p) == p ua-equiv : ∀ {i} {A B : Type i} → (A ≃ B) ≃ (A == B) ua-equiv = equiv ua coe-equiv ua-η coe-equiv-β {- Reductions for coercions along a path constructed with the univalence axiom -} coe-β : ∀ {i} {A B : Type i} (e : A ≃ B) (a : A) → coe (ua e) a == –> e a coe-β e a = ap (λ e → –> e a) (coe-equiv-β e) coe!-β : ∀ {i} {A B : Type i} (e : A ≃ B) (b : B) → coe! (ua e) b == <– e b coe!-β e a = ap (λ e → <– e a) (coe-equiv-β e) {- Paths over a path in a universe in the identity fibration reduces -} ↓-idf-ua-out : ∀ {i} {A B : Type i} (e : A ≃ B) {u : A} {v : B} → u == v [ (λ x → x) ↓ (ua e) ] → –> e u == v ↓-idf-ua-out e p = ! (coe-β e _) ∙ aux (ua e) p where aux : ∀ {i} {A B : Type i} (p : A == B) {u : A} {v : B} → u == v [ (λ x → x) ↓ p ] → coe p u == v aux idp = idf _ ↓-idf-ua-in : ∀ {i} {A B : Type i} (e : A ≃ B) {u : A} {v : B} → –> e u == v → u == v [ (λ x → x) ↓ (ua e) ] ↓-idf-ua-in e p = aux (ua e) (coe-β e _ ∙ p) where aux : ∀ {i} {A B : Type i} (p : A == B) {u : A} {v : B} → coe p u == v → u == v [ (λ x → x) ↓ p ] aux idp = idf _ {- Induction along equivalences If [P] is a predicate over all equivalences in a universe [Type i] and [d] is a proof of [P] over all [ide A], then we get a section of [P] -} equiv-induction : ∀ {i j} (P : {A B : Type i} (f : A ≃ B) → Type j) (d : (A : Type i) → P (ide A)) {A B : Type i} (f : A ≃ B) → P f equiv-induction {i} {j} P d f = transport P (coe-equiv-β f) (aux P d (ua f)) where aux : ∀ {j} (P : {A : Type i} {B : Type i} (f : A ≃ B) → Type j) (d : (A : Type i) → P (ide A)) {A B : Type i} (p : A == B) → P (coe-equiv p) aux P d idp = d _
32.974359
81
0.531104
29163360a70a71269dfa046435b5466a1520c953
179
agda
Agda
src/Tactic/Reflection/Quote/Class.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
111
2015-01-05T11:28:15.000Z
2022-02-12T23:29:26.000Z
src/Tactic/Reflection/Quote/Class.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
59
2016-02-09T05:36:44.000Z
2022-01-14T07:32:36.000Z
src/Tactic/Reflection/Quote/Class.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
24
2015-03-12T18:03:45.000Z
2021-04-22T06:10:41.000Z
module Tactic.Reflection.Quote.Class where open import Builtin.Reflection record Quotable {a} (A : Set a) : Set a where field ` : A → Term open Quotable {{...}} public
14.916667
45
0.675978
c7bc080f842876b7a6f9640cc85da89d6065a6a6
4,804
agda
Agda
agda/book/Programming_Language_Foundations_in_Agda/x07-747Negation.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
36
2015-01-29T14:37:15.000Z
2021-07-30T06:55:03.000Z
agda/book/Programming_Language_Foundations_in_Agda/x07-747Negation.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
null
null
null
agda/book/Programming_Language_Foundations_in_Agda/x07-747Negation.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
8
2015-04-13T21:40:15.000Z
2021-09-21T15:58:10.000Z
module 747Negation where -- Library open import Relation.Binary.PropositionalEquality using (_≡_; refl) -- added last open import Data.Nat using (ℕ; zero; suc) open import Data.Empty using (⊥; ⊥-elim) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_; proj₁; proj₂) -- Negation is defined as implying false. ¬_ : Set → Set ¬ A = A → ⊥ -- if both ¬ A and A hold, then ⊥ holds (not surprisingly). ¬-elim : ∀ {A : Set} → ¬ A → A --- → ⊥ ¬-elim = {!!} infix 3 ¬_ -- Double negation introduction. ¬¬-intro : ∀ {A : Set} → A ----- → ¬ ¬ A ¬¬-intro = {!!} -- Double negation cannot be eliminated in intuitionistic logic. -- Triple negation elimination. ¬¬¬-elim : ∀ {A : Set} → ¬ ¬ ¬ A ------- → ¬ A ¬¬¬-elim = {!!} -- One direction of the contrapositive. contraposition : ∀ {A B : Set} → (A → B) ----------- → (¬ B → ¬ A) contraposition = {!!} -- The other direction cannot be proved in intuitionistic logic. -- not-equal-to. _≢_ : ∀ {A : Set} → A → A → Set x ≢ y = ¬ (x ≡ y) _ : 1 ≢ 2 _ = {!!} -- One of the first-order Peano axioms. peano : ∀ {m : ℕ} → zero ≢ suc m peano = {!!} -- Copied from 747Isomorphism. postulate extensionality : ∀ {A B : Set} {f g : A → B} → (∀ (x : A) → f x ≡ g x) ----------------------- → f ≡ g -- Two proofs of ⊥ → ⊥ which look different but are the same -- (assuming extensionality). id : ⊥ → ⊥ id x = x id′ : ⊥ → ⊥ id′ () id≡id′ : id ≡ id′ id≡id′ = extensionality (λ()) -- Assuming extensionality, any two proofs of a negation are the same assimilation : ∀ {A : Set} (¬x ¬x′ : ¬ A) → ¬x ≡ ¬x′ assimilation ¬x ¬x′ = extensionality λ x → ⊥-elim (¬x x) -- Strict inequality (copied from 747Relations). infix 4 _<_ data _<_ : ℕ → ℕ → Set where z<s : ∀ {n : ℕ} ------------ → zero < suc n s<s : ∀ {m n : ℕ} → m < n ------------- → suc m < suc n -- 747/PLFA exercise: NotFourLTThree (1 point) -- Show ¬ (4 < 3). ¬4<3 : ¬ (4 < 3) ¬4<3 = {!!} -- 747/PLFA exercise: LTIrrefl (1 point) -- < is irreflexive (never reflexive). ¬n<n : ∀ (n : ℕ) → ¬ (n < n) ¬n<n n = {!!} -- 747/PLFA exercise: LTTrich (3 points) -- Show that strict inequality satisfies trichotomy, -- in the sense that exactly one of the three possibilities holds. -- Here is the expanded definition of trichotomy. data Trichotomy (m n : ℕ) : Set where is-< : m < n → ¬ m ≡ n → ¬ n < m → Trichotomy m n is-≡ : m ≡ n → ¬ m < n → ¬ n < m → Trichotomy m n is-> : n < m → ¬ m ≡ n → ¬ m < n → Trichotomy m n <-trichotomy : ∀ (m n : ℕ) → Trichotomy m n <-trichotomy m n = {!!} -- PLFA exercise: one of DeMorgan's Laws as isomorphism -- ⊎-dual-× : ∀ {A B : Set} → ¬ (A ⊎ B) ≃ (¬ A) × (¬ B) -- Expand negation as implies-false, then look in 747Relations -- for a law of which this is a special case. -- What about ¬ (A × B) ≃ (¬ A) ⊎ (¬ B)? -- Answer: RHS implies LHS but converse cannot be proved in intuitionistic logic. -- Intuitionistic vs classical logic. -- The law of the excluded middle (LEM, or just em) cannot be -- proved in intuitionistic logic. -- But we can add it, and get classical logic. -- postulate -- em : ∀ {A : Set} → A ⊎ ¬ A -- How do we know this does not give a contradiction? -- The following theorem of intuitionistic logic demonstrates this. -- (The proof is compact, but takes some thought.) em-irrefutable : ∀ {A : Set} → ¬ ¬ (A ⊎ ¬ A) em-irrefutable = {!!} -- PLFA exercise: classical equivalences -- Excluded middle cannot be proved in intuitionistic logic, -- but adding it is consistent and gives classical logic. -- Here are four other classical theorems with the same property. -- You can show that each of them is logically equivalent to all the others. -- You do not need to prove twenty implications, since implication is transitive. -- But there is a lot of choice as to how to proceed! -- Excluded Middle em = ∀ {A : Set} → A ⊎ ¬ A -- Double Negation Elimination dne = ∀ {A : Set} → ¬ ¬ A → A -- Peirce’s Law peirce = ∀ {A B : Set} → ((A → B) → A) → A -- Implication as disjunction iad = ∀ {A B : Set} → (A → B) → ¬ A ⊎ B -- De Morgan: dem = ∀ {A B : Set} → ¬ (¬ A × ¬ B) → A ⊎ B -- End of classical five exercise. -- Definition: a formula is stable if double negation holds for it. Stable : Set → Set Stable A = ¬ ¬ A → A -- PLFA exercise: every negated formula is stable. -- This is triple negation elimination. -- PLFA exercise: the conjunction of two stable formulas is stable. -- This is the version of DeMorgan's Law that is a special case, above. -- Where negation sits in the standard library. import Relation.Nullary using (¬_) import Relation.Nullary.Negation using (contraposition) -- Unicode used in this chapter: {- ¬ U+00AC NOT SIGN (\neg) ≢ U+2262 NOT IDENTICAL TO (\==n) -}
22.87619
81
0.598043
dc1da6ee49fe5d10a624dc6567741de258045539
1,525
agda
Agda
src/fot/Common/FOL/Relation/Binary/PropositionalEquality.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/Common/FOL/Relation/Binary/PropositionalEquality.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/Common/FOL/Relation/Binary/PropositionalEquality.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Propositional equality ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module is re-exported by (some) "base" modules. module Common.FOL.Relation.Binary.PropositionalEquality where open import Common.FOL.FOL using ( D ) infix 4 _≡_ ------------------------------------------------------------------------------ -- The identity type on the universe of discourse. data _≡_ (x : D) : D → Set where refl : x ≡ x -- Elimination rule. subst : (A : D → Set) → ∀ {x y} → x ≡ y → A x → A y subst A refl Ax = Ax -- Identity properties sym : ∀ {x y} → x ≡ y → y ≡ x sym refl = refl trans : ∀ {x y z} → x ≡ y → y ≡ z → x ≡ z trans refl h = h trans₂ : ∀ {w x y z} → w ≡ x → x ≡ y → y ≡ z → w ≡ z trans₂ refl refl h = h subst₂ : (A : D → D → Set) → ∀ {x x' y y'} → x ≡ y → x' ≡ y' → A x x' → A y y' subst₂ A refl refl Axs = Axs subst₃ : (A : D → D → D → Set) → ∀ {x₁ x₂ x₃ y₁ y₂ y₃} → x₁ ≡ y₁ → x₂ ≡ y₂ → x₃ ≡ y₃ → A x₁ x₂ x₃ → A y₁ y₂ y₃ subst₃ A refl refl refl Axs = Axs subst₄ : (A : D → D → D → D → Set) → ∀ {x₁ x₂ x₃ x₄ y₁ y₂ y₃ y₄} → x₁ ≡ y₁ → x₂ ≡ y₂ → x₃ ≡ y₃ → x₄ ≡ y₄ → A x₁ x₂ x₃ x₄ → A y₁ y₂ y₃ y₄ subst₄ A refl refl refl refl Axs = Axs
27.727273
78
0.428197
58f1dd9d403e48d95ae9f1b23b356dcb2193dfa3
833
agda
Agda
test/api/PrettyInterface.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/api/PrettyInterface.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/api/PrettyInterface.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- {-# OPTIONS -v 20 #-} -- {-# OPTIONS -v tc.polarity:30 #-} -- {-# OPTIONS -v tc.decl:30 #-} -- {-# OPTIONS -v tc.term:30 #-} -- {-# OPTIONS -v tc.conv.coerce:20 #-} -- {-# OPTIONS -v tc.signature:30 #-} -- {-# OPTIONS -v import.iface:100 #-} module PrettyInterface where open import Agda.Primitive open import Agda.Builtin.Nat open import Agda.Builtin.Equality id : ∀{a} {A : Set a} → A → A id {A = A} a = a id2 : ∀{A : id Set} → id A → A id2 x = x plus0 : ∀ x → x + 0 ≡ x plus0 zero = refl plus0 (suc x) rewrite plus0 x = refl Identity : ∀{a} {A : Set a} (f : A → A) → Set a Identity f = ∀ x → f x ≡ x plus-0 : Identity (_+ 0) plus-0 = plus0 my-Fun : ∀{a b} (A : Set a) (F : A → Set b) → Set (a ⊔ b) my-Fun A F = (x : A) → F x syntax my-Fun A (λ x → B) = [ x ∷ A ]=> B my-id : [ A ∷ Set ]=> [ x ∷ A ]=> A my-id A x = x
21.921053
57
0.528211
1d71d14468762a1049607a8ce6a921da3f961221
2,300
agda
Agda
src/agda/Vehicle.agda
vehicle-lang/vehicle
25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0
[ "BSD-3-Clause" ]
9
2022-02-10T12:56:42.000Z
2022-02-17T18:51:05.000Z
src/agda/Vehicle.agda
vehicle-lang/vehicle
25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0
[ "BSD-3-Clause" ]
19
2022-03-07T14:09:13.000Z
2022-03-31T20:49:39.000Z
src/agda/Vehicle.agda
vehicle-lang/vehicle
25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --allow-exec #-} open import Agda.Builtin.FromNat open import Data.Bool.Base using (T; Bool; if_then_else_) open import Data.String using (String; _++_; lines) open import Data.Nat.Base using (ℕ) open import Data.Fin using (Fin) import Data.Fin.Literals as Fin import Data.Nat.Literals as Nat open import Data.Vec.Base using (Vec) open import Data.Float.Base using (Float; _≤ᵇ_) open import Data.List.Base using (List; []; _∷_) open import Data.Unit.Base using (⊤; tt) open import Relation.Nullary using (does) open import Relation.Binary.Core using (Rel) open import Reflection.Argument open import Reflection.Term open import Reflection.External open import Reflection.TypeChecking.Monad open import Reflection.TypeChecking.Monad.Syntax open import Reflection.Show using (showTerm) open import Vehicle.Utils module Vehicle where ------------------------------------------------------------------------ -- Metadata ------------------------------------------------------------------------ VEHICLE_COMMAND : String VEHICLE_COMMAND = "vehicle" ------------------------------------------------------------------------ -- Checking ------------------------------------------------------------------------ record CheckArgs : Set where field proofCache : String checkCmd : CheckArgs → CmdSpec checkCmd checkArgs = cmdSpec VEHICLE_COMMAND ( "check" ∷ ("--proofCache=" ++ proofCache) ∷ []) "" where open CheckArgs checkArgs checkSuccessful : String → Bool checkSuccessful output = "verified" ⊆ output postulate valid : ∀ {a} {A : Set a} → A `valid : Term `valid = def (quote valid) (hArg unknown ∷ []) checkSpecificationMacro : CheckArgs → Term → TC ⊤ checkSpecificationMacro args hole = do goal ← inferType hole -- (showTerm goal) output ← runCmdTC (checkCmd args) if checkSuccessful output then unify hole `valid else typeError (strErr ("Error: " ++ output) ∷ []) macro checkSpecification : CheckArgs → Term → TC ⊤ checkSpecification = checkSpecificationMacro ------------------------------------------------------------------------ -- Other ------------------------------------------------------------------------ instance finNumber : ∀ {n} -> Number (Fin n) finNumber {n} = Fin.number n natNumber : Number ℕ natNumber = Nat.number
28.04878
72
0.593478
06b8f632a53575ac293a5b5ec2c202f53c9fddbf
12,986
agda
Agda
core/lib/types/Truncation.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
core/lib/types/Truncation.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
core/lib/types/Truncation.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.TLevel open import lib.types.Pi open import lib.types.Sigma open import lib.NType2 module lib.types.Truncation where module _ {i} where postulate -- HIT Trunc : (n : ℕ₋₂) (A : Type i) → Type i [_] : {n : ℕ₋₂} {A : Type i} → A → Trunc n A instance Trunc-level : {n : ℕ₋₂} {A : Type i} → has-level n (Trunc n A) module TruncElim {n : ℕ₋₂} {A : Type i} {j} {P : Trunc n A → Type j} {{p : (x : Trunc n A) → has-level n (P x)}} (d : (a : A) → P [ a ]) where postulate -- HIT f : Π (Trunc n A) P [_]-β : ∀ a → f [ a ] ↦ d a {-# REWRITE [_]-β #-} open TruncElim public renaming (f to Trunc-elim) module TruncRec {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} {{p : has-level n B}} (d : A → B) where private module M = TruncElim {{λ x → p}} d f : Trunc n A → B f = M.f open TruncRec public renaming (f to Trunc-rec) module TruncRecType {i j} {n : ℕ₋₂} {A : Type i} (d : A → n -Type j) where open TruncRec {{n -Type-level j}} d public flattening-Trunc : Σ (Trunc (S n) A) (fst ∘ f) ≃ Trunc (S n) (Σ A (fst ∘ d)) flattening-Trunc = equiv to from to-from from-to where to-aux : (x : Trunc (S n) A) → (fst (f x) → Trunc (S n) (Σ A (fst ∘ d))) to-aux = Trunc-elim (λ a b → [ (a , b) ]) to : Σ (Trunc (S n) A) (fst ∘ f) → Trunc (S n) (Σ A (fst ∘ d)) to (x , y) = to-aux x y from-aux : Σ A (fst ∘ d) → Σ (Trunc (S n) A) (fst ∘ f) from-aux (a , b) = ([ a ] , b) from : Trunc (S n) (Σ A (fst ∘ d)) → Σ (Trunc (S n) A) (fst ∘ f) from = Trunc-rec {{Σ-level ⟨⟩ (λ x → raise-level _ (snd (f x)))}} from-aux where to-from : (x : Trunc (S n) (Σ A (fst ∘ d))) → to (from x) == x to-from = Trunc-elim (λ _ → idp) from-to-aux : (a : Trunc (S n) A) (b : fst (f a)) → from (to-aux a b) == (a , b) from-to-aux = Trunc-elim {{λ _ → Π-level (λ _ → =-preserves-level (Σ-level ⟨⟩ (λ x → raise-level _ (snd (f x)))))}} (λ a b → idp) from-to : (x : Σ (Trunc (S n) A) (fst ∘ f)) → from (to x) == x from-to (a , b) = from-to-aux a b ⊙Trunc : ∀ {i} → ℕ₋₂ → Ptd i → Ptd i ⊙Trunc n ⊙[ A , a ] = ⊙[ Trunc n A , [ a ] ] module _ {i} {n : ℕ₋₂} {A : Type i} where Trunc= : (a b : Trunc (S n) A) → n -Type i Trunc= = Trunc-elim (λ a → Trunc-elim ((λ b → (Trunc n (a == b) , Trunc-level)))) Trunc=-equiv : (a b : Trunc (S n) A) → (a == b) ≃ fst (Trunc= a b) Trunc=-equiv a b = equiv (to a b) (from a b) (to-from a b) (from-to a b) where to-aux : (a : Trunc (S n) A) → fst (Trunc= a a) to-aux = Trunc-elim {{λ x → raise-level _ (snd (Trunc= x x))}} (λ a → [ idp ]) to : (a b : Trunc (S n) A) → (a == b → fst (Trunc= a b)) to a .a idp = to-aux a from-aux : (a b : A) → a == b → [ a ] == [ b ] :> Trunc (S n) A from-aux a .a idp = idp from : (a b : Trunc (S n) A) → (fst (Trunc= a b) → a == b) from = Trunc-elim (λ a → Trunc-elim (λ b → Trunc-rec (from-aux a b))) to-from-aux : (a b : A) → (p : a == b) → to _ _ (from-aux a b p) == [ p ] to-from-aux a .a idp = idp to-from : (a b : Trunc (S n) A) (x : fst (Trunc= a b)) → to a b (from a b x) == x to-from = Trunc-elim {{λ x → Π-level (λ y → Π-level (λ _ → =-preserves-level (raise-level _ (snd (Trunc= x y)))))}} (λ a → Trunc-elim {{λ x → Π-level (λ _ → =-preserves-level (raise-level _ (snd (Trunc= [ a ] x))))}} (λ b → Trunc-elim (to-from-aux a b))) from-to-aux : (a : Trunc (S n) A) → from a a (to-aux a) == idp from-to-aux = Trunc-elim (λ _ → idp) from-to : (a b : Trunc (S n) A) (p : a == b) → from a b (to a b p) == p from-to a .a idp = from-to-aux a Trunc=-path : (a b : Trunc (S n) A) → (a == b) == fst (Trunc= a b) Trunc=-path a b = ua (Trunc=-equiv a b) {- Universal property -} abstract Trunc-rec-is-equiv : ∀ {i j} (n : ℕ₋₂) (A : Type i) (B : Type j) {{p : has-level n B}} → is-equiv (Trunc-rec {{p}} :> ((A → B) → (Trunc n A → B))) Trunc-rec-is-equiv n A B {{p}} = is-eq _ (λ f → f ∘ [_]) (λ f → λ= (Trunc-elim (λ a → idp))) (λ f → idp) Trunc-preserves-level : ∀ {i} {A : Type i} {n : ℕ₋₂} (m : ℕ₋₂) → has-level n A → has-level n (Trunc m A) Trunc-preserves-level {n = ⟨-2⟩} _ p = has-level-in ([ contr-center p ] , Trunc-elim (λ a → ap [_] (contr-path p a))) Trunc-preserves-level ⟨-2⟩ _ = contr-has-level Trunc-level Trunc-preserves-level {n = (S n)} (S m) c = has-level-in (λ t₁ t₂ → Trunc-elim {{λ s₁ → prop-has-level-S {A = has-level n (s₁ == t₂)} has-level-is-prop}} (λ a₁ → Trunc-elim {{λ s₂ → prop-has-level-S {A = has-level n ([ a₁ ] == s₂)} has-level-is-prop}} (λ a₂ → equiv-preserves-level ((Trunc=-equiv [ a₁ ] [ a₂ ])⁻¹) {{Trunc-preserves-level {n = n} m (has-level-apply c a₁ a₂)}}) t₂) t₁) {- an n-type is equivalent to its n-truncation -} unTrunc-equiv : ∀ {i} {n : ℕ₋₂} (A : Type i) {{_ : has-level n A}} → Trunc n A ≃ A unTrunc-equiv A = equiv f [_] (λ _ → idp) g-f where f = Trunc-rec (idf _) g-f = Trunc-elim (λ _ → idp) ⊙unTrunc-equiv : ∀ {i} {n : ℕ₋₂} (X : Ptd i) {{_ : has-level n (de⊙ X)}} → ⊙Trunc n X ⊙≃ X ⊙unTrunc-equiv {n = n} X = ≃-to-⊙≃ (unTrunc-equiv (de⊙ X)) idp -- Equivalence associated to the universal property Trunc-extend-equiv : ∀ {i j} (n : ℕ₋₂) (A : Type i) (B : Type j) {{p : has-level n B}} → (A → B) ≃ (Trunc n A → B) Trunc-extend-equiv n A B = (Trunc-rec , Trunc-rec-is-equiv n A B) Trunc-fmap : ∀ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} → ((A → B) → (Trunc n A → Trunc n B)) Trunc-fmap f = Trunc-rec ([_] ∘ f) ⊙Trunc-fmap : ∀ {i j} {n : ℕ₋₂} {X : Ptd i} {Y : Ptd j} → ((X ⊙→ Y) → (⊙Trunc n X ⊙→ ⊙Trunc n Y)) ⊙Trunc-fmap F = Trunc-fmap (fst F) , ap [_] (snd F) Trunc-fmap2 : ∀ {i j k} {n : ℕ₋₂} {A : Type i} {B : Type j} {C : Type k} → ((A → B → C) → (Trunc n A → Trunc n B → Trunc n C)) Trunc-fmap2 f = Trunc-rec (λ a → Trunc-fmap (f a)) -- XXX What is the naming convention? Trunc-fpmap : ∀ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} {f g : A → B} → f ∼ g → Trunc-fmap {n = n} f ∼ Trunc-fmap g Trunc-fpmap h = Trunc-elim (ap [_] ∘ h) Trunc-fmap-idf : ∀ {i} {n : ℕ₋₂} {A : Type i} → ∀ x → Trunc-fmap {n = n} (idf A) x == x Trunc-fmap-idf = Trunc-elim (λ _ → idp) Trunc-fmap-∘ : ∀ {i j k} {n : ℕ₋₂} {A : Type i} {B : Type j} {C : Type k} → (g : B → C) → (f : A → B) → ∀ x → Trunc-fmap {n = n} g (Trunc-fmap f x) == Trunc-fmap (g ∘ f) x Trunc-fmap-∘ g f = Trunc-elim (λ _ → idp) Trunc-csmap : ∀ {i₀ i₁ j₀ j₁} {n : ℕ₋₂} {A₀ : Type i₀} {A₁ : Type i₁} {B₀ : Type j₀} {B₁ : Type j₁} {f : A₀ → B₀} {g : A₁ → B₁} {hA : A₀ → A₁} {hB : B₀ → B₁} → CommSquare f g hA hB → CommSquare (Trunc-fmap {n = n} f) (Trunc-fmap g) (Trunc-fmap hA) (Trunc-fmap hB) Trunc-csmap (comm-sqr cs) = comm-sqr $ Trunc-elim (ap [_] ∘ cs) {- Pushing concatentation through Trunc= -} module _ {i} {n : ℕ₋₂} {A : Type i} where {- concatenation in Trunc= -} Trunc=-∙ : {ta tb tc : Trunc (S n) A} → fst (Trunc= ta tb) → fst (Trunc= tb tc) → fst (Trunc= ta tc) Trunc=-∙ {ta = ta} {tb = tb} {tc = tc} = Trunc-elim {P = λ ta → C ta tb tc} {{λ ta → level ta tb tc}} (λ a → Trunc-elim {P = λ tb → C [ a ] tb tc} {{λ tb → level [ a ] tb tc}} (λ b → Trunc-elim {P = λ tc → C [ a ] [ b ] tc} {{λ tc → level [ a ] [ b ] tc}} (λ c → Trunc-fmap2 _∙_) tc) tb) ta where C : (ta tb tc : Trunc (S n) A) → Type i C ta tb tc = fst (Trunc= ta tb) → fst (Trunc= tb tc) → fst (Trunc= ta tc) level : (ta tb tc : Trunc (S n) A) → has-level (S n) (C ta tb tc) level ta tb tc = raise-level _ $ Π-level (λ _ → Π-level (λ _ → snd (Trunc= ta tc))) {- XXX naming convention -} Trunc=-∙-comm : {x y z : Trunc (S n) A } (p : x == y) (q : y == z) → –> (Trunc=-equiv x z) (p ∙ q) == Trunc=-∙ {ta = x} (–> (Trunc=-equiv x y) p) (–> (Trunc=-equiv y z) q) Trunc=-∙-comm {x = x} idp idp = Trunc-elim {P = λ x → –> (Trunc=-equiv x x) idp == Trunc=-∙ {ta = x} (–> (Trunc=-equiv x x) idp) (–> (Trunc=-equiv x x) idp)} {{λ x → raise-level _ $ =-preserves-level (snd (Trunc= x x))}} (λ a → idp) x {- naturality of Trunc=-equiv -} module _ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} (f : A → B) where Trunc=-fmap : ∀ (a₀ a₁ : Trunc (S n) A) → (fst (Trunc= {n = n} a₀ a₁) → fst (Trunc= {n = n} (Trunc-fmap f a₀) (Trunc-fmap f a₁))) Trunc=-fmap = Trunc-elim {P = λ a₀ → ∀ a₁ → (fst (Trunc= a₀ a₁) → fst (Trunc= (Trunc-fmap f a₀) (Trunc-fmap f a₁)))} {{λ a₀ → Π-level λ a₁ → Π-level λ _ → raise-level _ $ snd (Trunc= (Trunc-fmap f a₀) (Trunc-fmap f a₁))}} (λ a₀ → Trunc-elim {P = λ a₁ → (fst (Trunc= [ a₀ ] a₁) → fst (Trunc= [ f a₀ ] (Trunc-fmap f a₁)))} {{λ a₁ → Π-level λ _ → raise-level _ $ snd (Trunc= [ f a₀ ] (Trunc-fmap f a₁))}} (λ a₁ → Trunc-fmap (ap f))) module _ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} (f : A → B) where Trunc=-equiv-nat : ∀ (a₀ a₁ : Trunc (S n) A) (p : a₀ == a₁) → –> (Trunc=-equiv (Trunc-fmap f a₀) (Trunc-fmap f a₁)) (ap (Trunc-fmap f) p) == Trunc=-fmap f a₀ a₁ (–> (Trunc=-equiv a₀ a₁) p) Trunc=-equiv-nat a₀ .a₀ idp = Trunc-elim {P = λ a → –> (Trunc=-equiv (Trunc-fmap f a) (Trunc-fmap f a)) idp == Trunc=-fmap f a a (–> (Trunc=-equiv a a) idp)} {{λ a → raise-level _ $ =-preserves-level $ snd ((Trunc= (Trunc-fmap f a) (Trunc-fmap f a)))}} (λ _ → idp) a₀ {- Truncation preserves equivalences - more convenient than univalence+ap - when we need to know the forward or backward function explicitly -} module _ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} where Trunc-isemap : {f : A → B} → is-equiv f → is-equiv (Trunc-fmap {n = n} f) Trunc-isemap {f-orig} ie = is-eq f g f-g g-f where f = Trunc-fmap f-orig g = Trunc-fmap (is-equiv.g ie) f-g : ∀ tb → f (g tb) == tb f-g = Trunc-elim (ap [_] ∘ is-equiv.f-g ie) g-f : ∀ ta → g (f ta) == ta g-f = Trunc-elim (ap [_] ∘ is-equiv.g-f ie) Trunc-emap : A ≃ B → Trunc n A ≃ Trunc n B Trunc-emap (f , f-ie) = Trunc-fmap f , Trunc-isemap f-ie Trunc-csemap : ∀ {i₀ i₁ j₀ j₁} {n : ℕ₋₂} {A₀ : Type i₀} {A₁ : Type i₁} {B₀ : Type j₀} {B₁ : Type j₁} {f : A₀ → B₀} {g : A₁ → B₁} {hA : A₀ → A₁} {hB : B₀ → B₁} → CommSquareEquiv f g hA hB → CommSquareEquiv (Trunc-fmap {n = n} f) (Trunc-fmap g) (Trunc-fmap hA) (Trunc-fmap hB) Trunc-csemap (cs , hA-ise , hB-ise) = Trunc-csmap cs , Trunc-isemap hA-ise , Trunc-isemap hB-ise transport-Trunc : ∀ {i j} {A : Type i} {n : ℕ₋₂} (P : A → Type j) {x y : A} (p : x == y) (b : P x) → transport (Trunc n ∘ P) p [ b ] == [ transport P p b ] transport-Trunc _ idp _ = idp Trunc-fuse : ∀ {i} (A : Type i) (m n : ℕ₋₂) → Trunc m (Trunc n A) ≃ Trunc (minT m n) A Trunc-fuse A m n = equiv (Trunc-rec {{raise-level-≤T (minT≤l m n) Trunc-level}} (Trunc-rec {{raise-level-≤T (minT≤r m n) Trunc-level}} [_])) (Trunc-rec ([_] ∘ [_])) (Trunc-elim (λ _ → idp)) (Trunc-elim (Trunc-elim {{λ _ → =-preserves-level (Trunc-preserves-level _ Trunc-level)}} (λ _ → idp))) where instance l : has-level (minT m n) (Trunc m (Trunc n A)) l with (minT-out m n) l | inl p = transport (λ k → has-level k (Trunc m (Trunc n A))) (! p) Trunc-level l | inr q = Trunc-preserves-level _ (transport (λ k → has-level k (Trunc n A)) (! q) Trunc-level) Trunc-fuse-≤ : ∀ {i} (A : Type i) {m n : ℕ₋₂} (m≤n : m ≤T n) → Trunc m (Trunc n A) ≃ Trunc m A Trunc-fuse-≤ A m≤n = equiv (Trunc-rec (Trunc-rec {{raise-level-≤T m≤n Trunc-level}} [_])) (Trunc-rec ([_] ∘ [_])) (Trunc-elim (λ _ → idp)) (Trunc-elim (Trunc-elim {{λ _ → =-preserves-level (Trunc-preserves-level _ Trunc-level)}} (λ _ → idp))) {- Truncating a binary product is equivalent to truncating its components -} Trunc-×-econv : ∀ {i} {j} (n : ℕ₋₂) (A : Type i) (B : Type j) → Trunc n (A × B) ≃ Trunc n A × Trunc n B Trunc-×-econv n A B = equiv f g f-g g-f where f : Trunc n (A × B) → Trunc n A × Trunc n B f = Trunc-rec (λ {(a , b) → [ a ] , [ b ]}) g : Trunc n A × Trunc n B → Trunc n (A × B) g (ta , tb) = Trunc-rec (λ a → Trunc-rec (λ b → [ a , b ]) tb) ta f-g : ∀ p → f (g p) == p f-g (ta , tb) = Trunc-elim {P = λ ta → f (g (ta , tb)) == (ta , tb)} (λ a → Trunc-elim {P = λ tb → f (g ([ a ] , tb)) == ([ a ] , tb)} (λ b → idp) tb) ta g-f : ∀ tab → g (f tab) == tab g-f = Trunc-elim {P = λ tab → g (f tab) == tab} (λ ab → idp) Trunc-×-conv : ∀ {i} {j} (n : ℕ₋₂) (A : Type i) (B : Type j) → Trunc n (A × B) == Trunc n A × Trunc n B Trunc-×-conv n A B = ua (Trunc-×-econv n A B)
38.082111
119
0.5
c70f9fbb86e3fbdc6a2b41ef575f5e4ed9160e0d
3,308
agda
Agda
src/Categories/Functor/Hom.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/Functor/Hom.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/Functor/Hom.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Hom where -- The Hom Functor from C.op × C to Setoids, -- the two 1-argument version fixing one object -- and some notation for the version where the category must be made explicit open import Data.Product open import Function using () renaming (_∘_ to _∙_) open import Categories.Category open import Categories.Functor hiding (id) open import Categories.Functor.Bifunctor open import Categories.Category.Instance.Setoids import Categories.Morphism.Reasoning as MR open import Relation.Binary using (Setoid) module Hom {o ℓ e} (C : Category o ℓ e) where open Category C open MR C Hom[-,-] : Bifunctor (Category.op C) C (Setoids ℓ e) Hom[-,-] = record { F₀ = F₀′ ; F₁ = λ where (f , g) → record { _⟨$⟩_ = λ h → g ∘ h ∘ f ; cong = ∘-resp-≈ʳ ∙ ∘-resp-≈ˡ } ; identity = identity′ ; homomorphism = homomorphism′ ; F-resp-≈ = F-resp-≈′ } where F₀′ : Obj × Obj → Setoid ℓ e F₀′ (A , B) = hom-setoid {A} {B} open HomReasoning identity′ : {A : Obj × Obj} {x y : uncurry _⇒_ A} → x ≈ y → id ∘ x ∘ id ≈ y identity′ {A} {x} {y} x≈y = begin id ∘ x ∘ id ≈⟨ identityˡ ⟩ x ∘ id ≈⟨ identityʳ ⟩ x ≈⟨ x≈y ⟩ y ∎ homomorphism′ : ∀ {X Y Z : Σ Obj (λ x → Obj)} {f : proj₁ Y ⇒ proj₁ X × proj₂ X ⇒ proj₂ Y} {g : proj₁ Z ⇒ proj₁ Y × proj₂ Y ⇒ proj₂ Z} {x y : proj₁ X ⇒ proj₂ X} → x ≈ y → (proj₂ g ∘ proj₂ f) ∘ x ∘ proj₁ f ∘ proj₁ g ≈ proj₂ g ∘ (proj₂ f ∘ y ∘ proj₁ f) ∘ proj₁ g homomorphism′ {f = f₁ , f₂} {g₁ , g₂} {x} {y} x≈y = begin (g₂ ∘ f₂) ∘ x ∘ f₁ ∘ g₁ ≈⟨ refl⟩∘⟨ sym-assoc ⟩ (g₂ ∘ f₂) ∘ (x ∘ f₁) ∘ g₁ ≈⟨ pullʳ (pullˡ (∘-resp-≈ʳ (∘-resp-≈ˡ x≈y))) ⟩ g₂ ∘ (f₂ ∘ y ∘ f₁) ∘ g₁ ∎ F-resp-≈′ : ∀ {A B : Σ Obj (λ x → Obj)} {f g : Σ (proj₁ B ⇒ proj₁ A) (λ x → proj₂ A ⇒ proj₂ B)} → Σ (proj₁ f ≈ proj₁ g) (λ x → proj₂ f ≈ proj₂ g) → {x y : proj₁ A ⇒ proj₂ A} → x ≈ y → proj₂ f ∘ x ∘ proj₁ f ≈ proj₂ g ∘ y ∘ proj₁ g F-resp-≈′ {f = f₁ , f₂} {g₁ , g₂} (f₁≈g₁ , f₂≈g₂) {x} {y} x≈y = begin f₂ ∘ x ∘ f₁ ≈⟨ f₂≈g₂ ⟩∘⟨ x≈y ⟩∘⟨ f₁≈g₁ ⟩ g₂ ∘ y ∘ g₁ ∎ open Functor Hom[-,-] open Equiv open HomReasoning Hom[_,-] : Obj → Functor C (Setoids ℓ e) Hom[_,-] = appˡ Hom[-,-] Hom[-,_] : Obj → Contravariant C (Setoids ℓ e) Hom[-,_] = appʳ Hom[-,-] Hom[_,_] : Obj → Obj → Setoid ℓ e Hom[ A , B ] = hom-setoid {A} {B} -- Notation for when the ambient Category must be specified explicitly. module _ {o ℓ e} (C : Category o ℓ e) where open Category C open Hom C Hom[_][-,-] : Bifunctor (Category.op C) C (Setoids ℓ e) Hom[_][-,-] = Hom[-,-] Hom[_][_,-] : Obj → Functor C (Setoids ℓ e) Hom[_][_,-] B = Hom[ B ,-] Hom[_][-,_] : Obj → Contravariant C (Setoids ℓ e) Hom[_][-,_] B = Hom[-, B ] Hom[_][_,_] : Obj → Obj → Setoid ℓ e Hom[_][_,_] A B = hom-setoid {A} {B}
34.458333
85
0.476421
5814a9b79dd221233e777abc8b5205472d162aa3
35,894
agda
Agda
agda/paper/2009-Dependent_Types_at_Work-Bove_and_Dybjer/x01.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
36
2015-01-29T14:37:15.000Z
2021-07-30T06:55:03.000Z
agda/paper/2009-Dependent_Types_at_Work-Bove_and_Dybjer/x01.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
null
null
null
agda/paper/2009-Dependent_Types_at_Work-Bove_and_Dybjer/x01.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
8
2015-04-13T21:40:15.000Z
2021-09-21T15:58:10.000Z
import Relation.Binary.PropositionalEquality as PE module x01 where import Data.Empty.Polymorphic as DEP open import Data.Unit.Polymorphic import Data.Maybe as Maybe {- Dependent Types at Work Ana Bove and Peter Dybjer Chalmers University of Technology, Göteborg, Sweden intro to functional programming with dependent types - simply typed functional programming in style of Haskell and ML - discuss differences between Agda’s type system and Hindley-Milner type system of Haskell/ML - how to use dependent types for programming - explain ideas behind type-checking dependent types - explain Curry-Howard identification of propositions and types - show a method to encode partial/general recursive functions as total functions using dependent types Dependent types are types that depend on elements of other types (e.g., Vec of length n) Invariants can be expressed with dependent type (e.g., sorted list) Agda's dependent type system is an extension of Martin-Löf type theory [20,21,22,25]. Parametrised types - e.g., [A] - usually not called dependent types - they are are families of types indexed by other types - NOT families of types indexed by ELEMENTS of another type - however, in dependent type theories, there is a type of small types (a universe), so that we have a type [A] of lists of elements of a given small type A. - FORTRAN could define arrays of a given dimension, so a form a dependent type on small type - simply typed lambda calculus and the Hindley-Milner type system, (e.g., Haskell/ML) do not include dependent types, only parametrised types - polymorphic lambda calculus System F [15] has types like ∀X.A where X ranges over all types, but no quantification over ELEMENTS of other types development of dependently typed programming languages has origins in Curry-Howard isomorphism between propositions and types 1930’s : Curry noticed similarity between axioms of implicational logic P ⊃ Q ⊃ P (P ⊃ Q ⊃ R) ⊃ (P ⊃ Q) ⊃ P ⊃ R and types of combinators K and S A → B → A (A → B → C) → (A → B) → A → C K can be viewed as a witness (i.e., proof object) of the truth of P ⊃ Q ⊃ P S can be viewed as a withness of the truth of (P ⊃ Q ⊃ R) ⊃ (P ⊃ Q) ⊃ P ⊃ R typing rule for application corresponds to the inference rule modus ponens: from P ⊃ Q and P conclude Q - f : A → B - a : A - f a → B product types correspond to conjunctions sum types (disjoint unions) to disjunctions to extend this correspondence to predicate logic Howard and de Bruijn introduced dependent types A(x) corresponding to predicates P(x). They formed indexed products Π x : D.A(x) : corresponding to universal quantifications ∀x : D.P (x) indexed sums Σ x : D.A(x) : existential quantifications ∃x : D.P (x) this gives a Curry-Howard interpretation of intuitionistic predicate logic one-to-one correspondence between propositions and types in a type system with dependent types one-to-one correspondence between - proofs of a certain proposition in constructive predicate logic, and - terms of the corresponding type To accommodate equality in predicate logic introduce the type a == b of proofs that a and b are equal. Gives a Curry-Howard interpretation of predicate logic with equality. Can go further and add natural numbers with addition and multiplication to obtain a Curry-Howard version of Heyting (intuitionistic) arithmetic. Curry-Howard interpretation was basis for Martin-Löf’s intuitionistic type theory [20,21,22]. - propositions and types are identified - intended to be a foundational system for constructive mathematics - can also be used as a programming language [21] - from 1980’s and onwards, systems implementing variants of Martin-Löf type theory - NuPRL [6] : implementing an extensional version of the theory - Coq [33] : implementing an intensional impredicative version - Agda : implements an intensional predicative extension About these Notes Agda's type-checking algorithm - Section 5 - ideas first presented by Coquand [7] - more information - Norell’s thesis [26] - Abel, Coquand, and Dybjer [1,2] - Coquand, Kinoshita, Nordström, and Takeyama [8]. more complete understanding of dependent type theory - read a book about Martin-Löf type theory and related systems - Martin-Löf’s “Intuitionistic Type Theory” [22] is a classic - be aware that it describes an extensional version of the theory - Nordström, Petersson, and Smith [25] description of the later intensional theory on which Agda is based - variants of dependent type theory are - Thompson [34] - Constable et al [6] : NuPRL - Bertot and Casteran [4] : Coq - lecture notes (Agda wiki [3]) by Norell - collection of advanced examples of how to use Agda for dependently typed programming - Geuvers’ lecture notes : introduction to type theory - including Barendregt’s pure type systems and important meta-theoretic properties - Bertot’s notes : how dependent types (in Coq) can be used for implementing a number of concepts of programming language theory - focus on abstract interpretation - Barthe, Grégoire, and Riba’s notes - method for making termination-checkers Section 2 : ordinary functional programming Section 3 : basic dependent types and shows how to use them Section 4 : Curry-Howard isomorphism Section 5 : aspects of type-checking and pattern matching with dependent types Section 6 : use Agda as a programming logic Section 7 : how to represent general recursion and partial functions as total functions in Agda ------------------------------------------------------------------------------ 2 Simply Typed Functional Programming in Agda 2.1 Truth Values -} data Bool : Set where true : Bool false : Bool {- states - Bool is a data type with the two (no-arg) constructors - “:” denotes type membership - Bool is a member of the type Set - Set - the type of sets (using a terminology introduced by Martin-Löf [22]) or small types (mentioned in the introduction). - Bool is a small type, but Set itself is not, it is a large type. - allowing Set : Set, would make the system inconsistent -} not : Bool -> Bool not true = false not false = true {- Agda cannot generally infer types. Because Agda type-checking done via normalisation (simplification) - without the normality restriction it may not terminate -} equiv : Bool -> Bool -> Bool equiv false false = true equiv true false = false equiv false true = false equiv true true = true _||_ : Bool -> Bool -> Bool true || _ = true false || true = true false || false = false infixl 60 _||_ -- EXERCISE: Define some more truth functions, such as conjunction and implication/TODO. _&&_ : Bool -> Bool -> Bool false && _ = false true && false = false true && true = true -- infixl ?? _&&_ -- 2.2 Natural Numbers -- such data types known as recursive in Haskell -- in constructive type theory, referred to as inductive types or inductively defined types data Nat : Set where zero : Nat succ : Nat -> Nat {-# BUILTIN NATURAL Nat #-} pred : Nat -> Nat pred zero = zero pred (succ n) = n _+_ : Nat -> Nat -> Nat zero + m = m succ n + m = succ (n + m) {-# BUILTIN NATPLUS _+_ #-} _*_ : Nat -> Nat -> Nat zero * n = zero succ n * m = (n * m) + m {-# BUILTIN NATTIMES _*_ #-} infixl 6 _+_ _∸_ infixl 7 _*_ _ : (2 * 3) + 10 PE.≡ 16 _ = PE.refl {- + and * are defined by PRIMITIVE RECURSION in FIRST ARG. - PRIMITIVE RECURSIION : - upper bound of number of iterations of every loop can be determined before entering loop - time complexity of PR functions bounded by the input size - base case for zero - step case for non zero defined recursively Given a first order data type - distinguish between - canonical form - built by constructors only - e.g., true, false, zero, succ zero, succ (succ zero), ... - non-canonical forms - whereas non-canonical elements might contain defined functions - e.g., not true, zero + zero, zero * zero, succ (zero + zero) Martin-Löf [21] instead considers lazy canonical forms - a term begins with a constructor to be considered a canonical form - e.g., succ (zero + zero) is a lazy canonical form, but not a “full” canonical form - Lazy canonical forms are appropriate for lazy functional programming languages (e.g., Haskell) -- EXERCISE: Write the cut-off subtraction function -- the function on natural numbers, which returns 0 -- if the second argument is greater than or equal to the first. -} _∸_ : Nat -> Nat -> Nat zero ∸ _ = zero succ n ∸ zero = succ n succ n ∸ succ m = n ∸ m _ : 0 ∸ 0 PE.≡ 0 _ = PE.refl _ : 0 ∸ 10 PE.≡ 0 _ = PE.refl _ : 10 ∸ 0 PE.≡ 10 _ = PE.refl _ : 10 ∸ 10 PE.≡ 0 _ = PE.refl _ : 10 ∸ 9 PE.≡ 1 _ = PE.refl -- EXERCISE: Also write some more numerical functions like < or <= _<_ : Nat -> Nat -> Bool zero < zero = false zero < succ _ = true succ _ < zero = false succ n < succ m = n < m _ : 9 < 10 PE.≡ true _ = PE.refl _ : 10 < 10 PE.≡ false _ = PE.refl _<=_ : Nat -> Nat -> Bool zero <= zero = true zero <= succ _ = true succ _ <= zero = false succ n <= succ m = n <= m _ : 9 <= 10 PE.≡ true _ = PE.refl _ : 10 <= 10 PE.≡ true _ = PE.refl _>_ : Nat -> Nat -> Bool zero > zero = false zero > succ _ = false succ _ > zero = true succ n > succ m = n > m {- 2.3 Lambda Notation and Polymorphism Agda is based on the typed lambda calculus. APPLICATION is juxtaposition lambda ABSTRACTION written either - Curry-style (without a type label) \x -> e - Church-style (with a type label) \(x : A) -> e a family of identity functions, one for each small type: -} -- idE(xplicit) idE : (A : Set) -> A -> A idE = \(A : Set) -> \(x : A) -> x {- apply this “generic” identity function id to a type argument A to obtain the identity function from A to A 1st use of dependent types: type A -> A depends on variable A : Set - ranging over the small types Agda’s notation for dependent function types - if A is a type and B[x] is a type which depends on (is indexed by) (x : A) then (x : A) -> B[x] is the type of functions f mapping arguments (x : A) to values f x : B[x]. If the type-checker can figure out value of an arg, can use a wild card character: id _ x : A K and S combinators in Agda (uses telescopic notation (A B : Set) -} K : (A B : Set) -> A -> B -> A K _ _ x _ = x S : (A B C : Set) -> (A -> B -> C) -> (A -> B) -> A -> C S _ _ _ f g x = f x (g x) {- 2.4 Implicit Arguments : declared by enclosing typings in curly brackets -} id : {A : Set} -> A -> A id x = x -- implicit arguments are omitted in applications _ : id zero PE.≡ zero _ = PE.refl -- can explicitly write an implicit argument by using curly brackets if needed _ : id {Nat} zero PE.≡ zero _ = PE.refl _ : id {_} zero PE.≡ zero _ = PE.refl {- 2.5 Gödel System T is a subsystem of Agda. System of primitive recursive functionals [16] - important in logic and a precursor to Martin-Löf type theory recursion restricted to primitive recursion : to make sure programs terminate Gödel System T - based on simply typed lambda calculus - with two base types : truth values and natural numbers - (some formulations code truth values as 0 and 1) - constants for constructors true, false, zero - conditional and primitive recursion combinators -} -- conditional if_then_else_ : {C : Set} -> Bool -> C -> C -> C if true then x else _ = x if false then _ else y = y -- primitive recursion combinator for natural numbers -- natrec is a higher-order function defined by primitive recursion with args -- - (implicit) return type -- - c : element returned in base case -- - 𝕟→c→c : step function -- - the Nat on which to perform the recursion natrec : {C : Set} -> C -> (Nat -> C -> C) -> Nat -> C natrec c 𝕟→c→c zero = c natrec c 𝕟→c→c (succ n) = 𝕟→c→c n (natrec c 𝕟→c→c n) -- natrec definitions of addition and multiplication _plus_ : Nat -> Nat -> Nat _plus_ n m = natrec m (\x y -> succ y) n _mult_ : Nat -> Nat -> Nat _mult_ n m = natrec zero (\x y -> y plus m) n -- compare plus/mult to _+_/_*_ _ : succ (succ zero) + 2 PE.≡ succ (succ zero + 2) _ = PE.refl _ : succ (succ zero + 2) PE.≡ succ (succ (zero + 2)) _ = PE.refl _ : succ (succ (zero + 2)) PE.≡ succ (succ 2 ) _ = PE.refl _ : succ (succ zero) plus 2 PE.≡ natrec 2 (\x y -> succ y) (succ (succ zero)) _ = PE.refl _ : natrec 2 (\x y -> succ y) (succ (succ zero)) PE.≡ (\x y -> succ y) (succ zero) (natrec 2 (\x y -> succ y) (succ zero)) _ = PE.refl _ : (\x y -> succ y) (succ zero) (natrec 2 (\x y -> succ y) (succ zero)) PE.≡ (\ y -> succ y) (natrec 2 (\x y -> succ y) (succ zero)) _ = PE.refl _ : (\ y -> succ y) (natrec 2 (\x y -> succ y) (succ zero)) PE.≡ succ (natrec 2 (\x y -> succ y) (succ zero)) _ = PE.refl _ : succ (natrec 2 (\x y -> succ y) (succ zero)) PE.≡ succ ((\x y -> succ y) zero (natrec 2 (\x y -> succ y) zero)) _ = PE.refl _ : succ ((\x y -> succ y) zero (natrec 2 (\x y -> succ y) zero)) PE.≡ succ ((\ y -> succ y) (natrec 2 (\x y -> succ y) zero)) _ = PE.refl _ : succ ((\ y -> succ y) (natrec 2 (\x y -> succ y) zero)) PE.≡ succ ( succ (natrec 2 (\x y -> succ y) zero)) _ = PE.refl _ : succ ( succ (natrec 2 (\x y -> succ y) zero)) PE.≡ succ ( succ 2 ) _ = PE.refl {- to stay entirely in Gödel system T - use terms built up by variables, application, lambda abstraction, - and constants true, false, zero, succ, if_then_else_, natrec Gödel system T has unusual property (for a programming language) - all typable programs terminate not only do terms in base types Bool and Nat terminate whatever reduction is chosen, but also terms of function type terminate reduction rules - β-reduction - defining equations for if_then_else and natrec reductions can be performed anywhere in a term, so there may be several ways to reduce a term therefore, Gödel system T is strongly normalising - any typable term reaches a normal form whatever reduction strategy is chosen Even in this restrictive Gödel system T, possible to define many numerical functions. Can define all primitive recursive functions (in the usual sense without higher-order functions). Can also define functions which are not primitive recursive, such as the Ackermann function. Gödel system T is important in the history of ideas that led to the Curry-Howard isomorphism and Martin-Löf type theory. Gödel system T - is the simply typed kernel of Martin-Löf’s constructive type theory, Martin-Löf type theory - is the foundational system from which Agda grew relationship between Agda and Martin-Löf type theory is much like the relationship between Haskell and the simply typed lambda calculus. Or compare it with the relationship between Haskell and Plotkin’s PCF [30]. Like Gödel system T, PCF is based on the simply typed lambda calculus with truth values and natural numbers. But PCF includes a fixed point combinator - used for encoding arbitrary general recursive definitions - therefore can define non-terminating functions in PCF. -} -- Exercise/TODO: Define all functions previously given in the text in Gödel System T. -- induction principle for booleans (from Mimram) Bool-rec : (P : Bool → Set) → P false → P true → (b : Bool) → P b Bool-rec P Pf Pt false = Pf Bool-rec P Pf Pt true = Pt not' : Bool -> Bool not' b = Bool-rec (λ bool → Bool) true false b _ : not' false PE.≡ not false _ = PE.refl _ : not' true PE.≡ not true _ = PE.refl equiv' : Bool -> Bool -> Bool equiv' b false = Bool-rec (λ bool → Bool) true false b equiv' b true = Bool-rec (λ bool → Bool) false true b _ : equiv' false false PE.≡ equiv false false _ = PE.refl _ : equiv' true false PE.≡ equiv true false _ = PE.refl _ : equiv' false true PE.≡ equiv false true _ = PE.refl _ : equiv' true true PE.≡ equiv true true _ = PE.refl _||'_ : Bool -> Bool -> Bool b ||' false = Bool-rec (λ bool → Bool) b b b b ||' true = Bool-rec (λ bool → Bool) (not b) b b _ : false ||' false PE.≡ false || false _ = PE.refl _ : false ||' true PE.≡ false || true _ = PE.refl _ : true ||' false PE.≡ true || false _ = PE.refl _ : true ||' true PE.≡ true || true _ = PE.refl _&&'_ : Bool -> Bool -> Bool b &&' false = Bool-rec (λ bool → Bool) false false b b &&' true = Bool-rec (λ bool → Bool) b b b _ : false &&' false PE.≡ false && false _ = PE.refl _ : false &&' true PE.≡ false && true _ = PE.refl _ : true &&' false PE.≡ true && false _ = PE.refl _ : true &&' true PE.≡ true && true _ = PE.refl pred' : Nat -> Nat pred' zero = natrec zero (\x y -> zero) zero pred' (succ n) = natrec zero (\_ _ -> n) n -- test after List def {- 2.6 Parametrised Types Haskell parametrised types : [a] -} data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A infixr 5 _::_ {-# BUILTIN LIST List #-} {- (A : Set) to the left of the colon - tells Agda that A is a parameter - and it becomes an implicit argument to the constructors: [] : {A : Set} -> List A _::_ : {A : Set} -> A -> List A -> List A def only allows defining lists with elements in arbitrary SMALL types - cannot define lists of sets using this definition, since sets form a large type -} -- test for pred' _ : (pred' 0 :: pred' 1 :: pred' 2 :: pred' 101 :: []) PE.≡ (pred 0 :: pred 1 :: pred 2 :: pred 101 :: []) _ = PE.refl mapL : {A B : Set} -> (A -> B) -> List A -> List B mapL f [] = [] mapL f (x :: xs) = f x :: mapL f xs _ : mapL succ (1 :: 2 :: []) PE.≡ (2 :: 3 :: []) _ = PE.refl -- Exercise: Define some more list combinators like for example foldl or filter. filter : {A : Set} -> (A -> Bool) -> List A -> List A filter f [] = [] filter f (x :: xs) = let tail = filter f xs in if f x then x :: tail else tail _ : filter (_< 4) (5 :: 4 :: 3 :: 2 :: 1 :: []) PE.≡ (3 :: 2 :: 1 :: []) _ = PE.refl foldl : {A B : Set} -> (B -> A -> B) -> B -> List A -> B foldl _ b [] = b foldl f b (a :: as) = foldl f (f b a) as foldr : {A B : Set} -> (A -> B -> B) -> B -> List A -> B foldr f b [] = b foldr f b (a :: as) = f a (foldr f b as) _ : foldl _+_ 0 (3 :: 2 :: 1 :: []) PE.≡ 6 _ = PE.refl _ : foldl _∸_ 0 (3 :: 1 :: []) PE.≡ 0 _ = PE.refl _ : foldr _∸_ 0 (3 :: 1 :: []) PE.≡ 2 _ = PE.refl -- Exercise: define list recursion combinator listrec (like natrec, but for lists) -- from Mimram List-rec : {A : Set} → (P : List A → Set) → P [] → ((x : A) → (xs : List A) → P xs → P (x :: xs)) → (xs : List A) → P xs List-rec P Pe Pc [] = Pe List-rec P Pe Pc (x :: xs) = Pc x xs (List-rec P Pe Pc xs) mapL' : {A B : Set} -> (A -> B) -> List A -> List B mapL' {_} {B} f xs = List-rec (λ _ → List B) [] (λ a _ bs → f a :: bs) xs _ : mapL' succ (1 :: 2 :: []) PE.≡ mapL succ (1 :: 2 :: []) _ = PE.refl filter' : {A : Set} -> (A -> Bool) -> List A -> List A filter' {A} f xs = List-rec (λ _ → List A) [] (λ a _ as' → if f a then a :: as' else as') xs _ : filter' (_< 4) (5 :: 4 :: 3 :: 2 :: 1 :: []) PE.≡ filter (_< 4) (5 :: 4 :: 3 :: 2 :: 1 :: []) _ = PE.refl foldl' : {A B : Set} -> (B -> A -> B) -> B -> List A -> B foldl' {_} {B} f b as = List-rec (λ _ → B) b (λ a _ b → f b a) as _ : foldl' _+_ 0 (3 :: 2 :: 1 :: []) PE.≡ foldl _+_ 0 (3 :: 2 :: 1 :: []) _ = PE.refl foldr' : {A B : Set} -> (A -> B -> B) -> B -> List A -> B foldr' {A} {B} f b as = List-rec (λ _ → B) b (λ a as b → f a b) as _ : foldr' _∸_ 0 (3 :: 1 :: []) PE.≡ foldr _∸_ 0 (3 :: 1 :: []) _ = PE.refl -- binary Cartesian product AKA pair data _X_ (A B : Set) : Set where <_,_> : A -> B -> A X B -- prime because these are never used but are redeinfed later fst' : {A B : Set} -> A X B -> A fst' < a , b > = a snd' : {A B : Set} -> A X B -> B snd' < a , b > = b -- Usually want to zip lists of equal length. -- Can fix that with runtime Maybe or compiletime dependent types (later). zipL : {A B : Set} -> List A -> List B -> List (A X B) zipL [] _ = [] zipL (_ :: _) [] = [] zipL (x :: xs) (y :: ys) = < x , y > :: zipL xs ys -- Exercise: Define the sum A + B of two small types with constructors: inl, inr. data Either (A B : Set) : Set where inl : A -> Either A B inr : B -> Either A B -- Exercise: Define a function from A + B to a small type C by cases. toC : {A B C : Set} → (A -> C) -> (B -> C) -> (Either A B) -> C toC ac _ (inl a) = ac a toC _ bc (inr b) = bc b {- 2.7 Termination-checking General recursion allowed in most languages. Therefore possible to define "partial" functions (e.g., divide by 0) How to ensure functions terminate? - one solution : restrict recursion to primitive recursion (like in Gödel system T) - the approach taken in Martin-Löf type theory where primitive recursion as a kind of structural recursion on well-founded data types (see Martin-Löf’s book [22] and Dybjer’s schema for inductive definitions [10]) - but structural recursion (in one argument at a time) is often inconvenient Agda’s termination-checker - generalisation of primitive recursion which is practically useful - enables doing pattern matching on several arguments simultaneously - and having recursive calls to structurally smaller arguments But repeated subtraction is rejected by Agda termination-checker although it is terminating. Because Agda does not recognise the recursive call to (m - n) as structurally smaller. Because subtraction is not a constructor for natural numbers. Further reasoning required to deduce the recursive call is on a smaller argument. Section 7 : describes how partial and general recursive functions can be represented in Agda. Idea is to replace a partial function by a total function with an extra argument: a proof that the function terminates on its arguments. ------------------------------------------------------------------------------ 3 Dependent Types 3.1 Vectors of a Given Length 2 ways to define - Recursive family - by primitive recursion/induction on n - Inductive family - as a family of data types by declaring its constructors and the types of constructors - like def of List, except length info included in types paper mostly uses inductive families -------------------------------------------------- Vectors as a Recursive Family In math : define vectors by induction on n: A 0 = 1 A n+1 = A × An In Agda (and Martin-Löf type theory): -} -- type with only one element data Unit : Set where <> : Unit VecR : Set -> Nat -> Set VecR A zero = Unit VecR A (succ n) = A X VecR A n {- Up till now, only used primitive recursion for defining functions where the range is in a given set (in a given small type). Here, primitive recursion used for defining a family of sets - a family of elements in a given large type. -} zipR : {A B : Set} {n : Nat} -> VecR A n -> VecR B n -> VecR (A X B) n zipR {n = zero} _ _ = <> zipR {n = succ n'} < a , as > < b , bs > = < < a , b > , zipR {n = n'} as bs > {- base case : type-correct since the right hand side has type VecR (A X B) zero = <> step case : type-correct since the right hand side has type VecR (A X B) (succ n) = (A X B) X (VecR (A X B) n) -} -- Exercise. Write the functions head, tail, and map for the recursive vectors. headR : {A : Set} {n : Nat} -> VecR A (succ n) -> A headR < x , _ > = x tailR : {A : Set} {n : Nat} -> VecR A (succ n) -> VecR A n tailR < _ , t > = t mapR : {A B : Set} {n : Nat} -> (A -> B) -> VecR A n -> VecR B n mapR {n = zero} _ _ = <> mapR {n = succ n'} f < a , as > = < f a , mapR {n = n'} f as > _ : mapR succ < 1 , < 2 , < 0 , <> > > > PE.≡ < 2 , < 3 , < 1 , <> > > > _ = PE.refl -------------------------------------------------- -- Vectors as an Inductive Family data Vec (A : Set) : Nat -> Set where [] : Vec A zero _::_ : {n : Nat} -> A -> Vec A n -> Vec A (succ n) {- this time no induction on length instead : constructors generate vectors of different lengths [] : length 0 :: : length (n + 1) Definition style called an inductive family, or an inductively defined family of sets. Terminology comes from constructive type theory, where data types such as Nat and (List A) are called inductive types. Remark: Beware of terminological confusion: - In programming languages one talks about recursive types for such data types defined by declaring the constructors with their types. - May be confusing since the word recursive family was used for a different notion. - Reason for terminological distinction between data types in ordinary functional languages, and data types in languages where all programs terminate. - In terminating languages, there will not be any non-terminating numbers or non-terminating lists. - The set-theoretic meaning of such types is therefore simple: - build the set inductively generated by the constructors, see [9] for details. - In non-terminating language, the semantic domains are more complex. - One typically considers various kinds of Scott domains which are complete partially orders. (Vec A n) has two args: - small type A of the elements - A is a parameter in the sense that it remains the same throughout the definition: for a given A, define the family Vec A : Nat -> Set - length n of type Nat. - n is not a parameter since it varies in the types of the constructors Non-parameters are often called INDICES - say that Vec A is an inductive family indexed by natural numbers In Agda data type definitions - parameters are placed to the left of the colon and become implicit arguments to the constructors - indices are placed to the right -} zip : {A B : Set} {n : Nat} -> Vec A n -> Vec B n -> Vec (A X B) n zip {n = zero} [] [] = [] zip {n = succ n'} (x :: xs) (y :: ys) = < x , y > :: zip {n = n'} xs ys head : {A : Set} {n : Nat} -> Vec A (succ n) -> A head (x :: _) = x tail : {A : Set} {n : Nat} -> Vec A (succ n) -> Vec A n tail (_ :: xs) = xs map : {A B : Set} {n : Nat} -> (A -> B) -> Vec A n -> Vec B n map f [] = [] map f (x :: xs) = f x :: map f xs -------------------------------------------------- -- 3.2 Finite Sets data Fin : Nat -> Set where fzero : {n : Nat} -> Fin (succ n) fsucc : {n : Nat} -> Fin n -> Fin (succ n) {- for each n, Fin n contains n elements e.g., Fin 3 contains fzero, fsucc fzero and fsucc (fsucc fzero) useful to access element in a vector - for Vec A n - position given by (Fin n) - ensures accessing an element inside the vector For empty vector n is zero. So would use (Fin 0) --- which has no elements. There is no such case. Expressed in Agda via "absurd" pattern '()' -} _!_ : {A : Set} {n : Nat} -> Vec A n -> Fin n -> A [] ! () (x :: _) ! fzero = x (_ :: xs) ! fsucc i = xs ! i -- Exercise: Rewrite the function !! so that it has the following type: -- This eliminates the empty vector case, but other cases are needed. _!!_ : {A : Set} {n : Nat} -> Vec A (succ n) -> Fin (succ n) -> A _!!_ {_} {zero} (a :: f_) fzero = a _!!_ {_} {succ n} (a :: _) fzero = a _!!_ {_} {succ n} (_ :: as) (fsucc f) = _!!_ {n = n} as f _!!'_ : {A : Set} {n : Nat} -> Vec A (succ n) -> Fin (succ n) -> A _!!'_ (a :: _) fzero = a _!!'_ {_} {succ n} (_ :: as) (fsucc f) = _!!'_ {n = n} as f _ : (0 :: 1 :: 2 :: []) ! fsucc fzero PE.≡ 1 _ = PE.refl _ : (0 :: 1 :: 2 :: []) !! fsucc fzero PE.≡ 1 _ = PE.refl _ : (0 :: 1 :: 2 :: []) !!' fsucc fzero PE.≡ 1 _ = PE.refl -- Exercise: Give an alternative definition of Fin as a recursive family. -- from Conal Eliot https://raw.githubusercontent.com/conal/agda-play/main/DependentTypesAtWork/RecVec.agda FinR : Nat -> Set FinR zero = DEP.⊥ FinR (succ n) = Maybe.Maybe (FinR n) f5 : FinR 5 f5 = Maybe.nothing f5' : FinR 5 PE.≡ Maybe.Maybe (Maybe.Maybe (Maybe.Maybe (Maybe.Maybe (Maybe.Maybe DEP.⊥)))) f5' = PE.refl f4 : FinR 4 f4 = Maybe.nothing f3 : FinR 3 f3 = Maybe.nothing f2 : FinR 2 f2 = Maybe.nothing f1 : FinR 1 f1 = Maybe.nothing f1' : FinR 1 PE.≡ Maybe.Maybe DEP.⊥ f1' = PE.refl --f0 : FinR 0 --f0 = {!!} -- no solution found f0' : FinR 0 PE.≡ DEP.⊥ f0' = PE.refl _!'_ : {A : Set} {n : Nat} → VecR A n → FinR n → A _!'_ {n = succ m} < a , _ > Maybe.nothing = a _!'_ {n = succ m} < _ , as > (Maybe.just finm) = as !' finm _ : < 0 , < 1 , < 2 , <> > > > !' Maybe.nothing PE.≡ 0 _ = PE.refl _ : < 0 , < 1 , < 2 , <> > > > !' Maybe.just Maybe.nothing PE.≡ 1 _ = PE.refl _ : < 0 , < 1 , < 2 , <> > > > !' Maybe.just (Maybe.just Maybe.nothing) PE.≡ 2 _ = PE.refl -- (Maybe.Maybe _A_645) !=< DEP.⊥ -- _ : < 0 , < 1 , < 2 , <> > > > !' Maybe.just (Maybe.just (Maybe.just Maybe.nothing)) PE.≡ 100 -- _ = PE.refl -------------------------------------------------- -- 3.3 More Inductive Families -- binary trees of a certain height -- any given (t : DBTree A n) is a perfectly balanced tree -- with 2n elements and information in the leaves data DBTree (A : Set) : Nat -> Set where leaf : A -> DBTree A zero node : {n : Nat} -> DBTree A n -> DBTree A n -> DBTree A (succ n) l1 : DBTree Nat 0 l1 = leaf 1 l2 : DBTree Nat 0 l2 = leaf 2 n1-2 : DBTree Nat 1 n1-2 = node l1 l2 l3 : DBTree Nat 0 l3 = leaf 3 l4 : DBTree Nat 0 l4 = leaf 4 n3-4 : DBTree Nat 1 n3-4 = node l3 l4 n1-2-3-4 : DBTree Nat 2 n1-2-3-4 = node n1-2 n3-4 -- Exercise/TODO: Modify DBTree def to define the height balanced binary trees -- i.e., binary trees where difference between heights of left and right subtree is at most one. -- Exercise/TODO: Define lambda terms as an inductive family -- indexed by the maximal number of free variables allowed in the term. -- Exercise/TODO: define typed lambda terms as an inductive family indexed by the type of the term. {- ------------------------------------------------------------------------------ Curry, 1930’s : one-to-one correspondence between propositions in propositional logic and types. 1960’s de Bruijn and Howard introduced dependent types to extend Curry’s correspondence to predicate logic. Scott [31] and Martin-Löf [20], correspondence became building block of foundation for constructive math: - Martin-Löf’s intuitionistic type theory. Will now show how intuitionistic predicate logic with equality is a subsystem of Martin-Löf type theory by realising it as a theory in Agda. 4.1 Propositional Logic isomorphism : each proposition is interpreted as the set of its proofs. To emphazie PROOFS here are FIRST-CLASS mathematical object, say PROOF OBJECTS. aka : CONSTRUCTIONS proposition - is true IFF its set of proofs is inhabited - it is false iff its set of proofs is empty -} -- CONJUNCTION (aka AND) -- A and B are two propositions represented by their sets of proofs. -- A & B is also a set of proofs, representing the conjunction of A and B. -- Note : conjunction is same as Cartesian product of two sets. -- applying & constructor is &-introduction data _&_ (A B : Set) : Set where <_,_> : A -> B -> A & B -- alternate def _&'_ : Set -> Set -> Set A &' B = A X B -- two rules of &-elimination -- rules state that if A & B is true then A and B are also true fst : {A B : Set} -> A & B -> A fst < a , _ > = a snd : {A B : Set} -> A & B -> B snd < _ , b > = b sndP : {A B : Set} -> A &' B -> B sndP < _ , b > = b -- DISJUNCTION (aka OR) -- disjunction corresponds to disjoint union data _\/_ (A B : Set) : Set where inl : A -> A \/ B inr : B -> A \/ B -- alternate def _\/'_ : Set -> Set -> Set A \/' B = Either A B -- rule of \/-elimination is case analysis for a disjoint union case : {A B C : Set} -> A \/ B -> (A -> C) -> (B -> C) -> C case (inl a) d e = d a case (inr b) d e = e b -- proposition which is always true -- corresponds to the unit set (see page 14) according to Curry-Howard: data True : Set where <> : True -- proposition False is the proposition that is false by definition -- corresponds to the the empty set according to Curry-Howard. -- This is the set which is defined by stating that it has no canonical elements. -- sometimes referred as the “absurdity” set and denoted by ⊥ data False : Set where -- rule of ⊥-elimination states that if False has been proved, then can prove any proposition A. -- Can only happen by starting with contradictory assumptions. nocase : {A : Set} -> False -> A nocase () -- tells agda no cases to consider {- Justification of this rule is same as justification of existence of an empty function from the empty set into an arbitrary set. Since the empty set has no elements there is nothing to define; it is definition by no cases. Recall the explanation on page 16 when we used the notation (). -} -- In constructive logic -- - proving negation of a proposition is the same as -- - proving the proposition leads to absurdity: Not : Set -> Set Not A = A -> False {- BHK-interpretation says an implication is proved by providing a method for transforming a proof of A into a proof of B. When Brouwer pioneered this 100 years ago, there were no computers and no models of computation. In contemporary constructive mathematics in general, and in Martin-Löf type theory in particular, a “method” is usually understood as a computable function (or computer program) which transforms proofs. Implication is defined as function space. Emphasized via new notation: -} _==>_ : (A B : Set) -> Set A ==> B = A -> B _ : False ==> False -- T _ = λ () _ : False ==> True -- T _ = λ () _ : True ==> False -- F _ = λ _ → {!!} _ : True ==> True -- T _ = λ _ → <> {- Above def not accepted in Martin-Löf’s version of propositions-as-sets. Because each proposition should be defined by stating what its canonical proofs are. A canonical proof should always begin with a constructor. A function in A -> B does not, unless one considers the lambda-sign as a constructor. Instead, Martin-Löf defines implication as a set with one constructor: Using this, a canonical proof of A ==>' B always begins with the constructor fun. -} data _==>'_ (A B : Set) : Set where fun : (A -> B) -> A ==>' B -- rule of ==>-elimination (modus ponens) apply : {A B : Set} -> A ==>' B -> A -> B apply (fun f) a = f a -- equivalence of propositions _<==>_ : Set -> Set -> Set A <==> B = (A ==> B) & (B ==> A) _ : False <==> False _ = < ( λ () ) , ( λ () ) > _ : False <==> True _ = < (λ () ) , (λ { <> → {!!}}) > _ : True <==> False _ = < (λ { <> → {!!}}) , (λ () ) > _ : True <==> True _ = < (λ _ → <>) , (λ _ → <>) > {- Exercise/TODO: Prove your favourite tautology from propositional logic. Beware that you will not be able to prove the law of the excluded middle A \/ Not A. This is a consequence of the definition of disjunction, can you explain why?. The law of the excluded middle is not available in intuitonistic logic, only in classical logic. -} le : ∀ {P Q : Set} → (P ==> Q) <==> (Not P \/ Q) le {P} {Q} = < (λ {P==>Q → {!!} }) , (λ { (inl NotP) p → {!!} ; (inr q) p → q}) >
34.055028
107
0.62601
10e8f90d8d74f16d43a01cd75daa2e6f142c4216
617
agda
Agda
test/Succeed/Test4687.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Test4687.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Test4687.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Primitive open import Agda.Builtin.List open import Agda.Builtin.Maybe data Coercible (A : Set) (B : Set) : Set where TrustMe : Coercible A B postulate coerce : {A B : Set} {{_ : Coercible A B}} → A → B instance coerce-fun : {A B : Set} {{_ : Coercible A B}} → {C D : Set} {{_ : Coercible C D}} → Coercible (B → C) (A → D) coerce-fun = TrustMe coerce-refl : {A : Set} → Coercible A A coerce-refl = TrustMe postulate primCatMaybes : {A : Set} → List (Maybe A) → List A catMaybes : {A : Set} → List (Maybe A) → List A catMaybes = coerce (primCatMaybes {_})
24.68
60
0.60778
1d0dc9bffcde1f2466e2b0dcd55810408de6b61d
965
agda
Agda
Cubical/HITs/Rationals/HITQ/Base.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/HITs/Rationals/HITQ/Base.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/HITs/Rationals/HITQ/Base.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Rationals.HITQ.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Relation.Nullary open import Cubical.HITs.Ints.QuoInt open import Cubical.Data.Nat as ℕ hiding (_·_) open import Cubical.Data.NatPlusOne open import Cubical.Data.Sigma -- ℚ as a higher inductive type data ℚ : Type₀ where con : (u : ℤ) (a : ℤ) → ¬ (a ≡ pos 0) → ℚ path : ∀ u a v b {p q} → (u · b) ≡ (v · a) → con u a p ≡ con v b q trunc : isSet ℚ [_] : ℤ × ℕ₊₁ → ℚ [ a , 1+ b ] = con a (pos (suc b)) (ℕ.snotz ∘ cong abs) -- Natural number and negative integer literals for ℚ open import Cubical.Data.Nat.Literals public instance fromNatℚ : HasFromNat ℚ fromNatℚ = record { Constraint = λ _ → Unit ; fromNat = λ n → [ pos n , 1 ] } instance fromNegℚ : HasFromNeg ℚ fromNegℚ = record { Constraint = λ _ → Unit ; fromNeg = λ n → [ neg n , 1 ] }
26.081081
79
0.662176
c51ff8f647e1390819c6c6e15cf7ecb74c60c87b
187
agda
Agda
test/Succeed/Issue1109.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1109.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1109.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2014-05-02 Negative fixities allow now. module _ where infix -1 _+_ infix 0 _*_ postulate _+_ : Set1 → Set2 → Set1 _*_ : Set2 → Set2 → Set2 test = Set + Set1 * Set1
14.384615
52
0.636364
1a088d46445671efd86022bcd99bd7065dd0f168
299
agda
Agda
src/Human/Equality.agda
MaisaMilena/AgdaCalculator
e977a5f2a005682cee123568b49462dd7d7b11ad
[ "MIT" ]
1
2019-03-29T02:30:10.000Z
2019-03-29T02:30:10.000Z
src/Human/Equality.agda
MaisaMilena/AgdaCalculator
e977a5f2a005682cee123568b49462dd7d7b11ad
[ "MIT" ]
null
null
null
src/Human/Equality.agda
MaisaMilena/AgdaCalculator
e977a5f2a005682cee123568b49462dd7d7b11ad
[ "MIT" ]
null
null
null
module Human.Equality where data _==_ {A : Set} (x : A) : A -> Set where refl : x == x {-# BUILTIN EQUALITY _==_ #-} sym : {A : Set} (x : A) (y : A) -> x == y -> y == x sym x .x refl = refl cong : {A : Set} {B : Set} (x : A) (y : A) (f : A -> B) -> x == y -> f x == f y cong x y f refl = refl
23
79
0.454849
22c98666f8c3dc390041636fec687fbc9c552380
580
agda
Agda
out/Empty/Signature.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
39
2021-11-09T20:39:55.000Z
2022-03-19T17:33:12.000Z
out/Empty/Signature.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
1
2021-11-21T12:19:32.000Z
2021-11-21T12:19:32.000Z
out/Empty/Signature.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
4
2021-11-09T20:39:59.000Z
2022-01-24T12:49:17.000Z
{- This second-order signature was created from the following second-order syntax description: syntax Empty | E type 𝟘 : 0-ary term abort : 𝟘 -> α theory (𝟘η) e : 𝟘 c : α |> abort(e) = c -} module Empty.Signature where open import SOAS.Context -- Type declaration data ET : Set where 𝟘 : ET open import SOAS.Syntax.Signature ET public open import SOAS.Syntax.Build ET public -- Operator symbols data Eₒ : Set where abortₒ : {α : ET} → Eₒ -- Term signature E:Sig : Signature Eₒ E:Sig = sig λ { (abortₒ {α}) → (⊢₀ 𝟘) ⟼₁ α } open Signature E:Sig public
14.5
91
0.667241
4d069d3b10beb1f0b58008d3800cd378a715c8b3
779
agda
Agda
agda-stdlib/src/Data/Nat/Reflection.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Nat/Reflection.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Nat/Reflection.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Reflection utilities for ℕ ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.Reflection where open import Data.Nat.Base as ℕ open import Data.Fin.Base as Fin open import Data.List.Base using ([]) open import Reflection.Term open import Reflection.Argument ------------------------------------------------------------------------ -- Term toTerm : ℕ → Term toTerm zero = con (quote ℕ.zero) [] toTerm (suc i) = con (quote ℕ.suc) (toTerm i ⟨∷⟩ []) toFinTerm : ℕ → Term toFinTerm zero = con (quote Fin.zero) (1 ⋯⟅∷⟆ []) toFinTerm (suc i) = con (quote Fin.suc) (1 ⋯⟅∷⟆ toFinTerm i ⟨∷⟩ [])
28.851852
72
0.473684
319696614f10c369f4d3a87d64609b941dc95686
585
agda
Agda
test/Succeed/Issue1450.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1450.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1450.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
postulate F : (Set → Set) → Set !_ : Set → Set !_,_ : Set → Set → Set X : Set syntax F (λ X → A) = X , A infix 1 F infix 2 !_ Foo : Set Foo = ! X , X -- This expression can be parsed in exactly one way. However, Agda -- rejects it: -- -- Expected variable name in binding position -- -- The error is thrown from pure code in rebuildBinding, and this -- action circumvents the parser logic. -- -- The error was introduced in the fix for Issue 1129, and the problem -- raised in Issue 1129 was introduced in a fix for Issue 1108 -- ("Operator parser performance").
22.5
70
0.65641
dfc259d8225004a0c184636d6d8fa4287f22410f
4,376
agda
Agda
examples/instance-arguments/13-implicitProofObligations.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2019-11-27T04:41:05.000Z
2019-11-27T04:41:05.000Z
examples/instance-arguments/13-implicitProofObligations.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/instance-arguments/13-implicitProofObligations.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
{-# OPTIONS --universe-polymorphism #-} module 13-implicitProofObligations where module Imports where module L where postulate Level : Set zero : Level suc : Level → Level _⊔_ : Level → Level → Level {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO zero #-} {-# BUILTIN LEVELSUC suc #-} {-# BUILTIN LEVELMAX _⊔_ #-} -- extract from Data.Unit record ⊤ : Set where constructor tt -- extract from Data.Empty data ⊥ : Set where ⊥-elim : ∀ {w} {Whatever : Set w} → ⊥ → Whatever ⊥-elim () -- extract from Function id : ∀ {a} {A : Set a} → A → A id x = x _$_ : ∀ {a b} {A : Set a} {B : A → Set b} → ((x : A) → B x) → ((x : A) → B x) f $ x = f x _∘_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} → (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → ((x : A) → C (g x)) f ∘ g = λ x → f (g x) -- extract from Data.Bool data Bool : Set where true : Bool false : Bool not : Bool → Bool not true = false not false = true T : Bool → Set T true = ⊤ T false = ⊥ -- extract from Relation.Nullary.Decidable and friends infix 3 ¬_ ¬_ : ∀ {ℓ} → Set ℓ → Set ℓ ¬ P = P → ⊥ data Dec {p} (P : Set p) : Set p where yes : ( p : P) → Dec P no : (¬p : ¬ P) → Dec P ⌊_⌋ : ∀ {p} {P : Set p} → Dec P → Bool ⌊ yes _ ⌋ = true ⌊ no _ ⌋ = false False : ∀ {p} {P : Set p} → Dec P → Set False Q = T (not ⌊ Q ⌋) -- extract from Relation.Binary.PropositionalEquality data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x cong : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {x y} → x ≡ y → f x ≡ f y cong f refl = refl _≢_ : ∀ {a} {A : Set a} → A → A → Set a x ≢ y = ¬ x ≡ y -- extract from Data.Nat data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ {-# BUILTIN NATURAL ℕ #-} {-# BUILTIN ZERO zero #-} {-# BUILTIN SUC suc #-} pred : ℕ → ℕ pred zero = zero pred (suc n) = n infixl 6 _+_ _+_ : ℕ → ℕ → ℕ -- zero + n = n -- suc m + n = suc (m + n) zero + n = n suc m + n = suc (m + n) _*_ : ℕ → ℕ → ℕ zero * n = zero suc m * n = n + m * n _≟_ : (x y : ℕ) → Dec (x ≡ y) zero ≟ zero = yes refl suc m ≟ suc n with m ≟ n suc m ≟ suc .m | yes refl = yes refl suc m ≟ suc n | no prf = no (prf ∘ cong pred) zero ≟ suc n = no λ() suc m ≟ zero = no λ() -- extract from Data.Fin data Fin : ℕ → Set where zero : {n : ℕ} → Fin (suc n) suc : {n : ℕ} (i : Fin n) → Fin (suc n) -- A conversion: toℕ "n" = n. toℕ : ∀ {n} → Fin n → ℕ toℕ zero = 0 toℕ (suc i) = suc (toℕ i) -- extract from Data.Product record Σ {a b} (A : Set a) (B : A → Set b) : Set (a L.⊔ b) where constructor _,_ field proj₁ : A proj₂ : B proj₁ _×_ : ∀ {a b} (A : Set a) (B : Set b) → Set (a L.⊔ b) A × B = Σ A (λ (_ : A) → B) -- extract from Data.Nat.DivMod data DivMod : ℕ → ℕ → Set where result : {divisor : ℕ} (q : ℕ) (r : Fin divisor) → DivMod (toℕ r + q * divisor) divisor data DivMod' (dividend divisor : ℕ) : Set where result : (q : ℕ) (r : Fin divisor) (eq : dividend ≡ (toℕ r + q * divisor)) → DivMod' dividend divisor postulate _div_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ _divMod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → DivMod dividend divisor _divMod'_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → DivMod' dividend divisor open Imports -- Begin of actual example! postulate d : ℕ d≢0 : d ≢ 0 -- d≢0' : d ≢ 0 fromWitnessFalse : ∀ {p} {P : Set p} {Q : Dec P} → ¬ P → False Q fromWitnessFalse {Q = yes p} ¬P = ⊥-elim $ ¬P p fromWitnessFalse {Q = no ¬p} ¬P = tt ⋯ : {A : Set} → {{v : A}} → A ⋯ {{v}} = v _divMod′_ : (dividend divisor : ℕ) {{ ≢0 : divisor ≢ 0 }} → ℕ × ℕ _divMod′_ a d {{_}} with _divMod_ a d { fromWitnessFalse ⋯ } ._ divMod′ d | (result q r) = q , toℕ r _div′_ : (dividend divisor : ℕ) {{ ≢0 : divisor ≢ 0 }} → ℕ _div′_ a b {{_}} with a divMod′ b a div′ b | (q , _) = q --Agda can't resolve hiddens -- test : {d≢0 : False (d ≟ 0)} → ℕ -- test = 5 div d -- test2 : {{d≢0 : d ≢ 0}} → ℕ -- test2 = 5 div′ d test3 = 5 div 2 test4 = 5 div′ 2 where nz : 2 ≢ 0 nz ()
23.153439
67
0.48149
58fd14861092bce37bc6823ada5a24db427d7b9b
372
agda
Agda
prototyping/FFI/Data/Maybe.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
1
2022-03-18T04:10:20.000Z
2022-03-18T04:10:20.000Z
prototyping/FFI/Data/Maybe.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
prototyping/FFI/Data/Maybe.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
module FFI.Data.Maybe where open import Agda.Builtin.Equality using (_≡_; refl) {-# FOREIGN GHC import qualified Data.Maybe #-} data Maybe (A : Set) : Set where nothing : Maybe A just : A → Maybe A {-# COMPILE GHC Maybe = data Data.Maybe.Maybe (Data.Maybe.Nothing|Data.Maybe.Just) #-} just-inv : ∀ {A} {x y : A} → (just x ≡ just y) → (x ≡ y) just-inv refl = refl
24.8
86
0.650538
3d3182f0fccd7f6d9fc741a869f7083e8ba92e93
257
agda
Agda
test/Fail/Issue2758b.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2758b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2758b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --experimental-irrelevance #-} open import Agda.Builtin.Bool data Box (A : Set) : ..(x : A) → Set where c : (x : A) → Box A x unbox : {A : Set} → .(x : A) → Box A x → A unbox a (c b) = b postulate .b : Bool b' : Bool b' = unbox b (c _)
16.0625
42
0.536965
59035d50ceec4ed5a208605a7728f901b1a37783
39
agda
Agda
Structure/Topology/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Structure/Topology/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Structure/Topology/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Structure.Topology.Proofs where
19.5
38
0.871795
29c0f50481276b7c34edd3832a3dd0990aec811b
307
agda
Agda
test/Common/Size.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
null
null
null
test/Common/Size.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
null
null
null
test/Common/Size.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K #-} ------------------------------------------------------------------------ -- From the Agda standard library -- -- Sizes for Agda's sized types ------------------------------------------------------------------------ module Common.Size where open import Agda.Builtin.Size public
27.909091
72
0.37785
a18feb3bfc3e2f6b7410ed8b97baf02286935875
17,514
agda
Agda
imper-repeat.agda
JimFixGroupResearch/imper-ial
80d9411b2869614cae488cd4a6272894146c9f3c
[ "MIT" ]
null
null
null
imper-repeat.agda
JimFixGroupResearch/imper-ial
80d9411b2869614cae488cd4a6272894146c9f3c
[ "MIT" ]
null
null
null
imper-repeat.agda
JimFixGroupResearch/imper-ial
80d9411b2869614cae488cd4a6272894146c9f3c
[ "MIT" ]
null
null
null
module imper-repeat where open import lib open import eq-reasoning data Singleton {a} {A : Set a} (x : A) : Set a where _with≡_ : (y : A) → x ≡ y → Singleton x inspect : ∀ {a} {A : Set a} (x : A) → Singleton x inspect x = x with≡ refl -- Unicode notes. I use: -- \Mix, \Mie, \MiF etc for meta-variables 𝑥, 𝑒, 𝐹 etc. -- \mapsto for variable frame bindings and update. -- \| for the frame update operation. -- \|- turnstile ⊢ is used for the semantics relations. -- (\|-n for its negation ⊬) -- \d= for code literal values e.g. ⇓ 42 and ⇓true -- The down arrow is also used for the eval relation. -- \u= for code variable lookups like ⇑ "x" and ⇑ "y" -- superscripts of items with \^e as ᵉ, \c^c as ᶜ -- ↩ for sequencing. This is \lefthookarrow. -- ∷= which is \:: followed by = -- -- variable identifiers -- Id : Set Id = string _=Id_ : Id → Id → 𝔹 _=Id_ = _=string_ -- -- values (just natural numbers here) -- Val : Set Val = ℕ -- -- value and variable expressions -- data Expn : Set where ⇓_ : Val → Expn ⇑_ : Id → Expn _+ᵉ_ : Expn → Expn → Expn _-ᵉ_ : Expn → Expn → Expn _*ᵉ⇓_ : Expn → Val → Expn -- -- conditions on values and variables -- data Cond : Set where ⇓true : Cond ⇓false : Cond _∧ᶜ_ : Cond → Cond → Cond _∨ᶜ_ : Cond → Cond → Cond ¬ᶜ_ : Cond → Cond [_<ᶜ_] : Expn → Expn → Cond [_=ᶜ_] : Expn → Expn → Cond -- -- stack frames containing variable bindings -- Frm : Set Frm = 𝕃 (Id × Val) [_↦_] : Id → Val → Frm [ 𝑥 ↦ 𝑣 ] = [(𝑥 , 𝑣)] [-↦0] : Frm [-↦0] = [] -- -- program statements that transform a frame -- data Stmt : Set where skip : Stmt _∷=_ : Id → Expn → Stmt _↩_ : Stmt → Stmt → Stmt if_then_else_end : Cond → Stmt → Stmt → Stmt by_repeat_end : Id → Stmt → Stmt returns_ : Expn → Stmt infix 10 ⇑_ ⇓_ infix 9 _*ᵉ⇓_ infixl 8 _+ᵉ_ _-ᵉ_ infix 7 ¬ᶜ_ infixl 6 _∨ᶜ_ infixl 5 _∧ᶜ_ infix 4 _∷=_ infix 3 returns_ infixl 2 _↩_ -- -- functional SEMANTICS of frames -- _∥_ : Frm → Id → Val [] ∥ 𝑥 = 0 ((𝑦 , 𝑤) :: 𝐹) ∥ 𝑥 = if (𝑥 =Id 𝑦) then 𝑤 else (𝐹 ∥ 𝑥) _∣_↦_ : Frm → Id → Val → Frm [] ∣ 𝑥 ↦ 𝑣 = [ 𝑥 ↦ 𝑣 ] ((𝑦 , 𝑤) :: 𝐹) ∣ 𝑥 ↦ 𝑣 = if (𝑥 =Id 𝑦) then (𝑦 , 𝑣) :: 𝐹 else (𝑦 , 𝑤) :: (𝐹 ∣ 𝑥 ↦ 𝑣) -- -- functional SEMANTICS of expressions -- ⟦_⟧ᵉ_ : Expn → Frm → Val ⟦ ⇓ 𝑣 ⟧ᵉ _ = 𝑣 ⟦ ⇑ 𝑥 ⟧ᵉ 𝐹 = 𝐹 ∥ 𝑥 ⟦ 𝑒₁ +ᵉ 𝑒₂ ⟧ᵉ 𝐹 = (⟦ 𝑒₁ ⟧ᵉ 𝐹) + (⟦ 𝑒₂ ⟧ᵉ 𝐹) ⟦ 𝑒₁ -ᵉ 𝑒₂ ⟧ᵉ 𝐹 = (⟦ 𝑒₁ ⟧ᵉ 𝐹) ∸ (⟦ 𝑒₂ ⟧ᵉ 𝐹) ⟦ 𝑒₁ *ᵉ⇓ 𝑣₂ ⟧ᵉ 𝐹 = (⟦ 𝑒₁ ⟧ᵉ 𝐹) * 𝑣₂ -- -- functional SEMANTICS of conditions -- ⟦_⟧ᶜ_ : Cond → Frm → 𝔹 ⟦ ⇓true ⟧ᶜ _ = tt ⟦ ⇓false ⟧ᶜ _ = ff ⟦ 𝒸₁ ∧ᶜ 𝒸₂ ⟧ᶜ 𝐹 = (⟦ 𝒸₁ ⟧ᶜ 𝐹) && (⟦ 𝒸₂ ⟧ᶜ 𝐹) ⟦ 𝒸₁ ∨ᶜ 𝒸₂ ⟧ᶜ 𝐹 = (⟦ 𝒸₁ ⟧ᶜ 𝐹) || (⟦ 𝒸₂ ⟧ᶜ 𝐹) ⟦ ¬ᶜ 𝒸 ⟧ᶜ 𝐹 = ~ (⟦ 𝒸 ⟧ᶜ 𝐹) ⟦ [ 𝑒₁ <ᶜ 𝑒₂ ] ⟧ᶜ 𝐹 = (⟦ 𝑒₁ ⟧ᵉ 𝐹) < (⟦ 𝑒₂ ⟧ᵉ 𝐹) ⟦ [ 𝑒₁ =ᶜ 𝑒₂ ] ⟧ᶜ 𝐹 = (⟦ 𝑒₁ ⟧ᵉ 𝐹) =ℕ (⟦ 𝑒₂ ⟧ᵉ 𝐹) -- -- functional SEMANTICS of program execution -- ⟦_∣_∷=_…0⟧ˢ_ : Stmt → Id → ℕ → Frm → Frm ⟦_⟧ˢ_ : Stmt → Frm → Frm ⟦ 𝑠 ∣ 𝑥 ∷= 0 …0⟧ˢ 𝐹 = 𝐹 ⟦ 𝑠 ∣ 𝑥 ∷= (suc 𝑛) …0⟧ˢ 𝐹 = ⟦ 𝑠 ∣ 𝑥 ∷= 𝑛 …0⟧ˢ ((⟦ 𝑠 ⟧ˢ 𝐹) ∣ 𝑥 ↦ 𝑛) ⟦ skip ⟧ˢ 𝐹 = 𝐹 ⟦ 𝑥 ∷= 𝑒 ⟧ˢ 𝐹 = (𝐹 ∣ 𝑥 ↦ (⟦ 𝑒 ⟧ᵉ 𝐹)) ⟦ 𝑠₁ ↩ 𝑠₂ ⟧ˢ 𝐹 = (⟦ 𝑠₂ ⟧ˢ (⟦ 𝑠₁ ⟧ˢ 𝐹)) ⟦ if 𝒸 then 𝑠₁ else 𝑠₂ end ⟧ˢ 𝐹 = if (⟦ 𝒸 ⟧ᶜ 𝐹) then (⟦ 𝑠₁ ⟧ˢ 𝐹) else (⟦ 𝑠₂ ⟧ˢ 𝐹) ⟦ by 𝑥 repeat 𝑠 end ⟧ˢ 𝐹 = ⟦ 𝑠 ∣ 𝑥 ∷= (⟦ ⇑ 𝑥 ⟧ᵉ 𝐹) …0⟧ˢ 𝐹 ⟦ returns 𝑒 ⟧ˢ 𝐹 = 𝐹 ∣ "retval" ↦ (⟦ 𝑒 ⟧ᵉ 𝐹) -- -- SEMANTICS of stack bindings as a relation -- infixl 7 _⊢ᶠ_↦_ infixl 5 _∣_↦_ infixl 4 _⊢ᵉ_⇓_ infixl 3 _⊢ᶜ_ _⊬ᶜ_ -- _↦_ data _⊢ᶠ_↦_ : Frm → Id → Val → Set where var-undef : ∀ {𝑥 : Id} ---------------- → [] ⊢ᶠ 𝑥 ↦ 0 var-match : ∀ {𝑥 𝑦 : Id} {𝐹 : Frm} {𝑤 : Val} → (𝑥 =string 𝑦) ≡ tt --------------------------- → ((𝑦 , 𝑤) :: 𝐹) ⊢ᶠ 𝑥 ↦ 𝑤 var-mismatch : ∀ {𝑥 𝑦 : Id} {𝐹 : Frm} {𝑣 𝑤 : Val} → (𝑥 =string 𝑦) ≡ ff → 𝐹 ⊢ᶠ 𝑥 ↦ 𝑣 ------------------------- → ((𝑦 , 𝑤) :: 𝐹) ⊢ᶠ 𝑥 ↦ 𝑣 if-tt-then : ∀{A : Set} {b : 𝔹} {a1 a2 : A} → b ≡ tt → if b then a1 else a2 ≡ a1 if-tt-then{A}{b}{a1}{a2} b≡tt = begin if b then a1 else a2 ≡⟨ cong3 if_then_else_ b≡tt refl refl ⟩ if tt then a1 else a2 ≡⟨ refl ⟩ a1 ∎ postulate if-ff-then : ∀{A : Set}{b : 𝔹}{a1 a2 : A} → b ≡ ff → if b then a1 else a2 ≡ a2 var-thm-fwd : ∀{x : Id}{F : Frm}{v : Val} → F ⊢ᶠ x ↦ v → F ∥ x ≡ v var-thm-fwd{x}{[]}{0} var-undef = begin [] ∥ x ≡⟨ refl ⟩ 0 ∎ var-thm-fwd (var-match{x}{y}{F}{w} x≡y) = begin ((y , w) :: F) ∥ x ≡⟨ refl ⟩ if (x =Id y) then w else (F ∥ x) ≡⟨ if-tt-then x≡y ⟩ w ∎ var-thm-fwd (var-mismatch{x}{y}{F}{v}{w} x≢y x↦v) = let F∥x≡v : F ∥ x ≡ v F∥x≡v = var-thm-fwd x↦v in begin ((y , w) :: F) ∥ x ≡⟨ refl ⟩ if (x =Id y) then w else (F ∥ x) ≡⟨ if-ff-then x≢y ⟩ F ∥ x ≡⟨ F∥x≡v ⟩ v ∎ var-thm-rev : ∀{x : Id}{F : Frm}{v : Val} → F ∥ x ≡ v → F ⊢ᶠ x ↦ v var-thm-rev{x}{[]}{v} []∥x≡v = let v≡0 : v ≡ 0 v≡0 = begin v ≡⟨ sym []∥x≡v ⟩ [] ∥ x ≡⟨ refl ⟩ 0 ∎ in cong-pred (λ xxx → [] ⊢ᶠ x ↦ xxx) (sym v≡0) var-undef var-thm-rev{x}{(y , w) :: F}{v} y,w::F∥x≡v with inspect (x =string y) ... | tt with≡ same = let v≡w : v ≡ w v≡w = begin v ≡⟨ sym y,w::F∥x≡v ⟩ ((y , w) :: F) ∥ x ≡⟨ refl ⟩ if x =string y then w else F ∥ x ≡⟨ cong3 if_then_else_ same refl refl ⟩ if tt then w else F ∥ x ≡⟨ refl ⟩ w ∎ in cong-pred (λ xxx → ((y , w) :: F) ⊢ᶠ x ↦ xxx) (sym v≡w) (var-match same) ... | ff with≡ diff = let v≡F∥x : v ≡ F ∥ x v≡F∥x = begin v ≡⟨ sym y,w::F∥x≡v ⟩ ((y , w) :: F) ∥ x ≡⟨ refl ⟩ if x =string y then w else F ∥ x ≡⟨ cong3 if_then_else_ diff refl refl ⟩ if ff then w else F ∥ x ≡⟨ refl ⟩ F ∥ x ∎ in (var-mismatch diff (var-thm-rev (sym v≡F∥x))) -- -- SEMANTICS of expression evaluation as a relation -- data _⊢ᵉ_⇓_ : Frm → Expn → Val → Set where e-val : ∀ {𝑣 : Val} {𝐹 : Frm} ---------------- → 𝐹 ⊢ᵉ (⇓ 𝑣) ⇓ 𝑣 e-var : ∀ {𝑥 : Id} {𝐹 : Frm} {𝑣 : Val} → 𝐹 ⊢ᶠ 𝑥 ↦ 𝑣 --------------- → 𝐹 ⊢ᵉ (⇑ 𝑥) ⇓ 𝑣 e-add : ∀ {𝑒₁ 𝑒₂ : Expn} {𝐹 : Frm} {𝑣₁ 𝑣₂ : Val} → 𝐹 ⊢ᵉ 𝑒₁ ⇓ 𝑣₁ → 𝐹 ⊢ᵉ 𝑒₂ ⇓ 𝑣₂ --------------------------- → 𝐹 ⊢ᵉ (𝑒₁ +ᵉ 𝑒₂) ⇓ (𝑣₁ + 𝑣₂) e-sub : ∀ {𝑒₁ 𝑒₂ : Expn} {𝐹 : Frm} {𝑣₁ 𝑣₂ : Val} → 𝐹 ⊢ᵉ 𝑒₁ ⇓ 𝑣₁ → 𝐹 ⊢ᵉ 𝑒₂ ⇓ 𝑣₂ --------------------------- → 𝐹 ⊢ᵉ (𝑒₁ -ᵉ 𝑒₂) ⇓ (𝑣₁ ∸ 𝑣₂) e-scale : ∀ {𝑒₁ : Expn} {𝑣₁ 𝑣₂ : Val} {𝐹 : Frm} → 𝐹 ⊢ᵉ 𝑒₁ ⇓ 𝑣₁ --------------------------- → 𝐹 ⊢ᵉ ( 𝑒₁ *ᵉ⇓ 𝑣₂) ⇓ (𝑣₁ * 𝑣₂) e-thm-fwd : ∀{𝑒 : Expn}{𝐹 : Frm}{𝑣 : Val} → (𝐹 ⊢ᵉ 𝑒 ⇓ 𝑣) → ((⟦ 𝑒 ⟧ᵉ 𝐹) ≡ 𝑣) e-thm-fwd (e-val{v}{F}) = begin ⟦ ⇓ v ⟧ᵉ F ≡⟨ refl ⟩ v ∎ e-thm-fwd (e-var{x}{F}{v} x↦v) = begin ⟦ ⇑ x ⟧ᵉ F ≡⟨ var-thm-fwd x↦v ⟩ v ∎ e-thm-fwd (e-add{e1}{e2}{F}{v1}{v2} e1⇓v1 e2⇓v2) = let ⟦e1⟧≡v1 = e-thm-fwd e1⇓v1 ⟦e2⟧≡v2 = e-thm-fwd e2⇓v2 in begin ⟦ e1 +ᵉ e2 ⟧ᵉ F ≡⟨ refl ⟩ ⟦ e1 ⟧ᵉ F + ⟦ e2 ⟧ᵉ F ≡⟨ cong2 _+_ ⟦e1⟧≡v1 ⟦e2⟧≡v2 ⟩ v1 + v2 ∎ e-thm-fwd (e-sub{e1}{e2}{F}{v1}{v2} e1⇓v1 e2⇓v2) = let ⟦e1⟧≡v1 = e-thm-fwd e1⇓v1 ⟦e2⟧≡v2 = e-thm-fwd e2⇓v2 in begin ⟦ e1 -ᵉ e2 ⟧ᵉ F ≡⟨ refl ⟩ ⟦ e1 ⟧ᵉ F ∸ ⟦ e2 ⟧ᵉ F ≡⟨ cong2 _∸_ ⟦e1⟧≡v1 ⟦e2⟧≡v2 ⟩ v1 ∸ v2 ∎ e-thm-fwd (e-scale{e1}{v1}{v2}{F} e1⇓v1) = let ⟦e1⟧≡v1 = e-thm-fwd e1⇓v1 in begin ⟦ e1 *ᵉ⇓ v2 ⟧ᵉ F ≡⟨ refl ⟩ ⟦ e1 ⟧ᵉ F * v2 ≡⟨ cong2 _*_ ⟦e1⟧≡v1 refl ⟩ v1 * v2 ∎ e-thm-rev : ∀{𝑒 : Expn}{𝐹 : Frm}{𝑣 : Val} → ((⟦ 𝑒 ⟧ᵉ 𝐹) ≡ 𝑣) → (𝐹 ⊢ᵉ 𝑒 ⇓ 𝑣) e-thm-rev{e}{F}{v} ⟦e⟧F≡v with e ... | ⇓ w = cong-pred (λ xxx → F ⊢ᵉ (⇓ w) ⇓ xxx) ⟦e⟧F≡v e-val ... | ⇑ x = let v≡F∥x : v ≡ F ∥ x v≡F∥x = begin v ≡⟨ sym ⟦e⟧F≡v ⟩ ⟦ ⇑ x ⟧ᵉ F ≡⟨ refl ⟩ F ∥ x ∎ in e-var (var-thm-rev (sym v≡F∥x)) ... | e1 +ᵉ e2 = {!!} ... | e1 -ᵉ e2 = {!!} ... | e1 *ᵉ⇓ v2 = {!!} -- -- SEMANTICS of conditions as a decidable relation -- data _⊢ᶜ_ : Frm → Cond → Set data _⊬ᶜ_ : Frm → Cond → Set data _⊢ᶜ_ where c-tt : ∀ {𝐹 : Frm} ----------- → 𝐹 ⊢ᶜ ⇓true c-and : ∀ {𝒸₁ 𝒸₂ : Cond} {𝐹 : Frm} → 𝐹 ⊢ᶜ 𝒸₁ → 𝐹 ⊢ᶜ 𝒸₂ ----------------- → 𝐹 ⊢ᶜ (𝒸₁ ∧ᶜ 𝒸₂) c-or₁ : ∀ {𝒸₁ 𝒸₂ : Cond} {𝐹 : Frm} → 𝐹 ⊢ᶜ 𝒸₁ --------------- → 𝐹 ⊢ᶜ (𝒸₁ ∨ᶜ 𝒸₂) c-or₂ : ∀ {𝒸₁ 𝒸₂ : Cond} {𝐹 : Frm} → 𝐹 ⊢ᶜ 𝒸₂ ---------------- → 𝐹 ⊢ᶜ (𝒸₁ ∨ᶜ 𝒸₂) c-less : ∀ {𝑒₁ 𝑒₂ : Expn} {𝐹 : Frm} {𝑣₁ 𝑣₂ : Val} → 𝑣₁ < 𝑣₂ ≡ tt → 𝐹 ⊢ᵉ 𝑒₁ ⇓ 𝑣₁ → 𝐹 ⊢ᵉ 𝑒₂ ⇓ 𝑣₂ ------------------- → 𝐹 ⊢ᶜ [ 𝑒₁ <ᶜ 𝑒₂ ] c-eq : ∀ {𝑒₁ 𝑒₂ : Expn} {𝐹 : Frm} {𝑣₁ 𝑣₂ : Val} → 𝑣₁ =ℕ 𝑣₂ ≡ tt → 𝐹 ⊢ᵉ 𝑒₁ ⇓ 𝑣₁ → 𝐹 ⊢ᵉ 𝑒₂ ⇓ 𝑣₂ ------------------- → 𝐹 ⊢ᶜ [ 𝑒₁ =ᶜ 𝑒₂ ] c-not : ∀ {𝒸 : Cond} {𝐹 : Frm} → 𝐹 ⊬ᶜ 𝒸 ------------- → 𝐹 ⊢ᶜ (¬ᶜ 𝒸) data _⊬ᶜ_ where ~c-ff : ∀ {𝐹 : Frm} -------------- → 𝐹 ⊬ᶜ ⇓false ~c-or : ∀ {𝒸₁ 𝒸₂ : Cond} {𝐹 : Frm} → 𝐹 ⊬ᶜ 𝒸₁ → 𝐹 ⊬ᶜ 𝒸₂ ---------------- → 𝐹 ⊬ᶜ (𝒸₁ ∨ᶜ 𝒸₂) ~c-and₁ : ∀ {𝒸₁ 𝒸₂ : Cond} {𝐹 : Frm} → 𝐹 ⊬ᶜ 𝒸₁ ----------------- → 𝐹 ⊬ᶜ (𝒸₁ ∧ᶜ 𝒸₂) ~c-and₂ : ∀ {𝒸₁ 𝒸₂ : Cond} {𝐹 : Frm} → 𝐹 ⊬ᶜ 𝒸₂ ----------------- → 𝐹 ⊬ᶜ (𝒸₁ ∧ᶜ 𝒸₂) ~c-eq : ∀ {𝑒₁ 𝑒₂ : Expn} {𝐹 : Frm} {𝑣₁ 𝑣₂ : Val} → 𝑣₁ =ℕ 𝑣₂ ≡ ff → 𝐹 ⊢ᵉ 𝑒₁ ⇓ 𝑣₁ → 𝐹 ⊢ᵉ 𝑒₂ ⇓ 𝑣₂ ------------------- → 𝐹 ⊬ᶜ [ 𝑒₁ =ᶜ 𝑒₂ ] ~c-less : ∀ {𝑒₁ 𝑒₂ : Expn} {𝐹 : Frm} {𝑣₁ 𝑣₂ : Val} → 𝑣₁ < 𝑣₂ ≡ ff → 𝐹 ⊢ᵉ 𝑒₁ ⇓ 𝑣₁ → 𝐹 ⊢ᵉ 𝑒₂ ⇓ 𝑣₂ ------------------- → 𝐹 ⊬ᶜ [ 𝑒₁ <ᶜ 𝑒₂ ] ~c-not : ∀ {𝒸 : Cond} {𝐹 : Frm} → 𝐹 ⊢ᶜ 𝒸 ------------- → 𝐹 ⊬ᶜ (¬ᶜ 𝒸) test3 : [] ⊢ᶜ (⇓true ∧ᶜ (¬ᶜ ⇓false)) test3 = c-and c-tt (c-not ~c-ff) c-thm-fwd : ∀{𝒸 : Cond}{𝐹 : Frm} → 𝐹 ⊢ᶜ 𝒸 → (⟦ 𝒸 ⟧ᶜ 𝐹 ≡ tt) ~c-thm-fwd : ∀{𝒸 : Cond}{𝐹 : Frm} → 𝐹 ⊬ᶜ 𝒸 → (⟦ 𝒸 ⟧ᶜ 𝐹 ≡ ff) c-thm-fwd (c-tt{F}) = begin ⟦ ⇓true ⟧ᶜ F ≡⟨ refl ⟩ tt ∎ c-thm-fwd (c-and{c1}{c2}{F} dat1 dat2) = let ⟦c1⟧F≡tt : ⟦ c1 ⟧ᶜ F ≡ tt ⟦c1⟧F≡tt = c-thm-fwd dat1 ⟦c2⟧F≡tt : ⟦ c2 ⟧ᶜ F ≡ tt ⟦c2⟧F≡tt = c-thm-fwd dat2 in begin ⟦ c1 ∧ᶜ c2 ⟧ᶜ F ≡⟨ refl ⟩ (⟦ c1 ⟧ᶜ F) && (⟦ c2 ⟧ᶜ F) ≡⟨ cong2 _&&_ ⟦c1⟧F≡tt ⟦c2⟧F≡tt ⟩ tt && tt ≡⟨ refl ⟩ tt ∎ c-thm-fwd (c-or₁{c1}{c2}{F} dat1) = let ⟦c1⟧F≡tt : ⟦ c1 ⟧ᶜ F ≡ tt ⟦c1⟧F≡tt = c-thm-fwd dat1 in begin ⟦ c1 ∨ᶜ c2 ⟧ᶜ F ≡⟨ refl ⟩ (⟦ c1 ⟧ᶜ F) || (⟦ c2 ⟧ᶜ F) ≡⟨ cong2 _||_ ⟦c1⟧F≡tt refl ⟩ tt || (⟦ c2 ⟧ᶜ F) ≡⟨ refl ⟩ tt ∎ c-thm-fwd (c-or₂{c1}{c2}{F} dat2) = let ⟦c2⟧F≡tt : ⟦ c2 ⟧ᶜ F ≡ tt ⟦c2⟧F≡tt = c-thm-fwd dat2 in begin ⟦ c1 ∨ᶜ c2 ⟧ᶜ F ≡⟨ refl ⟩ (⟦ c1 ⟧ᶜ F) || (⟦ c2 ⟧ᶜ F) ≡⟨ cong2 _||_ refl ⟦c2⟧F≡tt ⟩ (⟦ c1 ⟧ᶜ F) || tt ≡⟨ ||-tt (⟦ c1 ⟧ᶜ F) ⟩ tt ∎ c-thm-fwd (c-less{e1}{e2}{F}{v1}{v2} v1<v2 e1⇓v1 e2⇓v2) = let ⟦e1⟧F≡v1 : ⟦ e1 ⟧ᵉ F ≡ v1 ⟦e1⟧F≡v1 = e-thm-fwd e1⇓v1 ⟦e2⟧F≡v2 : ⟦ e2 ⟧ᵉ F ≡ v2 ⟦e2⟧F≡v2 = e-thm-fwd e2⇓v2 in begin ⟦ [ e1 <ᶜ e2 ] ⟧ᶜ F ≡⟨ refl ⟩ ⟦ e1 ⟧ᵉ F < ⟦ e2 ⟧ᵉ F ≡⟨ cong2 _<_ ⟦e1⟧F≡v1 ⟦e2⟧F≡v2 ⟩ v1 < v2 ≡⟨ v1<v2 ⟩ tt ∎ c-thm-fwd (c-eq{e1}{e2}{F}{v1}{v2} v1≡v2 e1⇓v1 e2⇓v2) = let ⟦e1⟧F≡v1 : ⟦ e1 ⟧ᵉ F ≡ v1 ⟦e1⟧F≡v1 = e-thm-fwd e1⇓v1 ⟦e2⟧F≡v2 : ⟦ e2 ⟧ᵉ F ≡ v2 ⟦e2⟧F≡v2 = e-thm-fwd e2⇓v2 in begin ⟦ [ e1 =ᶜ e2 ] ⟧ᶜ F ≡⟨ refl ⟩ ⟦ e1 ⟧ᵉ F =ℕ ⟦ e2 ⟧ᵉ F ≡⟨ cong2 _=ℕ_ ⟦e1⟧F≡v1 ⟦e2⟧F≡v2 ⟩ v1 =ℕ v2 ≡⟨ v1≡v2 ⟩ tt ∎ c-thm-fwd (c-not{c}{F} dat) = let ⟦c⟧F≡ff : ⟦ c ⟧ᶜ F ≡ ff ⟦c⟧F≡ff = ~c-thm-fwd dat in begin begin ⟦ ¬ᶜ c ⟧ᶜ F ≡⟨ refl ⟩ ~ ⟦ c ⟧ᶜ F ≡⟨ cong ~_ ⟦c⟧F≡ff ⟩ ~ ff ≡⟨ refl ⟩ tt ∎ ~c-thm-fwd (~c-ff{F}) = begin ⟦ ⇓false ⟧ᶜ F ≡⟨ refl ⟩ ff ∎ ~c-thm-fwd (~c-or{c1}{c2}{F} dat1 dat2) = let ⟦c1⟧F≡ff : ⟦ c1 ⟧ᶜ F ≡ ff ⟦c1⟧F≡ff = ~c-thm-fwd dat1 ⟦c2⟧F≡ff : ⟦ c2 ⟧ᶜ F ≡ ff ⟦c2⟧F≡ff = ~c-thm-fwd dat2 in begin ⟦ c1 ∨ᶜ c2 ⟧ᶜ F ≡⟨ refl ⟩ (⟦ c1 ⟧ᶜ F) || (⟦ c2 ⟧ᶜ F) ≡⟨ cong2 _||_ ⟦c1⟧F≡ff ⟦c2⟧F≡ff ⟩ ff || ff ≡⟨ refl ⟩ ff ∎ ~c-thm-fwd (~c-and₁{c1}{c2}{F} dat1) = let ⟦c1⟧F≡ff : ⟦ c1 ⟧ᶜ F ≡ ff ⟦c1⟧F≡ff = ~c-thm-fwd dat1 in begin ⟦ c1 ∧ᶜ c2 ⟧ᶜ F ≡⟨ refl ⟩ (⟦ c1 ⟧ᶜ F) && (⟦ c2 ⟧ᶜ F) ≡⟨ cong2 _&&_ ⟦c1⟧F≡ff refl ⟩ ff && (⟦ c2 ⟧ᶜ F) ≡⟨ refl ⟩ ff ∎ ~c-thm-fwd (~c-and₂{c1}{c2}{F} dat2) = let ⟦c2⟧F≡ff : ⟦ c2 ⟧ᶜ F ≡ ff ⟦c2⟧F≡ff = ~c-thm-fwd dat2 in begin begin ⟦ c1 ∧ᶜ c2 ⟧ᶜ F ≡⟨ refl ⟩ (⟦ c1 ⟧ᶜ F) && (⟦ c2 ⟧ᶜ F) ≡⟨ cong2 _&&_ refl ⟦c2⟧F≡ff ⟩ (⟦ c1 ⟧ᶜ F) && ff ≡⟨ &&-ff (⟦ c1 ⟧ᶜ F) ⟩ ff ∎ ~c-thm-fwd (~c-less{e1}{e2}{F}{v1}{v2} v1≮v2 e1⇓v1 e2⇓v2) = let ⟦e1⟧F≡v1 : ⟦ e1 ⟧ᵉ F ≡ v1 ⟦e1⟧F≡v1 = e-thm-fwd e1⇓v1 ⟦e2⟧F≡v2 : ⟦ e2 ⟧ᵉ F ≡ v2 ⟦e2⟧F≡v2 = e-thm-fwd e2⇓v2 in begin ⟦ [ e1 <ᶜ e2 ] ⟧ᶜ F ≡⟨ refl ⟩ ⟦ e1 ⟧ᵉ F < ⟦ e2 ⟧ᵉ F ≡⟨ cong2 _<_ ⟦e1⟧F≡v1 ⟦e2⟧F≡v2 ⟩ v1 < v2 ≡⟨ v1≮v2 ⟩ ff ∎ ~c-thm-fwd (~c-eq{e1}{e2}{F}{v1}{v2} v1≢v2 e1⇓v1 e2⇓v2) = let ⟦e1⟧F≡v1 : ⟦ e1 ⟧ᵉ F ≡ v1 ⟦e1⟧F≡v1 = e-thm-fwd e1⇓v1 ⟦e2⟧F≡v2 : ⟦ e2 ⟧ᵉ F ≡ v2 ⟦e2⟧F≡v2 = e-thm-fwd e2⇓v2 in begin ⟦ [ e1 =ᶜ e2 ] ⟧ᶜ F ≡⟨ refl ⟩ ⟦ e1 ⟧ᵉ F =ℕ ⟦ e2 ⟧ᵉ F ≡⟨ cong2 _=ℕ_ ⟦e1⟧F≡v1 ⟦e2⟧F≡v2 ⟩ v1 =ℕ v2 ≡⟨ v1≢v2 ⟩ ff ∎ ~c-thm-fwd (~c-not{c}{F} ⊢c) = begin ⟦ ¬ᶜ c ⟧ᶜ F ≡⟨ refl ⟩ ~ ⟦ c ⟧ᶜ F ≡⟨ cong ~_ (c-thm-fwd ⊢c) ⟩ ~ tt ≡⟨ refl ⟩ ff ∎ -- These can probably be shown just by using -- the contrapositives of c-thm-fwd and ~c-thm-fwd postulate c-thm-rev : ∀{𝒸 : Cond}{𝐹 : Frm} → (⟦ 𝒸 ⟧ᶜ 𝐹 ≡ tt) → 𝐹 ⊢ᶜ 𝒸 ~c-thm-rev : ∀{𝒸 : Cond}{𝐹 : Frm} → (⟦ 𝒸 ⟧ᶜ 𝐹 ≡ ff) → 𝐹 ⊬ᶜ 𝒸 -- -- SEMANTICS of program statements -- as a state transformation relation -- data _=[_]⇒_ : Frm → Stmt → Frm → Set where s-skip : ∀ {𝐹 : Frm} -------------- → 𝐹 =[ skip ]⇒ 𝐹 s-assign : ∀ {𝑥 : Id} {𝑒 : Expn} {𝐹 : Frm} {𝑣 : Val} → 𝐹 ⊢ᵉ 𝑒 ⇓ 𝑣 --------------------------- → 𝐹 =[ 𝑥 ∷= 𝑒 ]⇒ (𝐹 ∣ 𝑥 ↦ 𝑣) s-seq : ∀ {𝑠₁ 𝑠₂ : Stmt} {𝐹₀ 𝐹₁ 𝐹₂ : Frm} → 𝐹₀ =[ 𝑠₁ ]⇒ 𝐹₁ → 𝐹₁ =[ 𝑠₂ ]⇒ 𝐹₂ ------------------- → 𝐹₀ =[ 𝑠₁ ↩ 𝑠₂ ]⇒ 𝐹₂ s-if-then : ∀ {𝒸 : Cond} {𝑠₁ 𝑠₂ : Stmt} {𝐹 𝐹' : Frm} → 𝐹 ⊢ᶜ 𝒸 → 𝐹 =[ 𝑠₁ ]⇒ 𝐹' → 𝐹 =[ 𝑠₂ ]⇒ 𝐹' ------------------------------------ → 𝐹 =[ if 𝒸 then 𝑠₁ else 𝑠₂ end ]⇒ 𝐹' s-if-else : ∀ {𝒸 : Cond} {𝑠₁ 𝑠₂ : Stmt} {𝐹 𝐹' : Frm} → 𝐹 ⊬ᶜ 𝒸 → 𝐹 =[ 𝑠₂ ]⇒ 𝐹' ------------------------------------ → 𝐹 =[ if 𝒸 then 𝑠₁ else 𝑠₂ end ]⇒ 𝐹' s-repeat-0 : ∀ {𝑠 : Stmt} {𝑥 : Id} {𝐹 : Frm} → 𝐹 ⊢ᶠ 𝑥 ↦ 0 ----------------------------- → 𝐹 =[ by 𝑥 repeat 𝑠 end ]⇒ 𝐹 s-repeat-suc : ∀ {𝑛 : ℕ} {𝑠 : Stmt} {𝑥 : Id} {𝐹 𝐹' : Frm} → 𝐹 ⊢ᶠ 𝑥 ↦ suc 𝑛 → 𝐹 =[ 𝑠 ↩ 𝑥 ∷= (⇓ 𝑛) ↩ by 𝑥 repeat 𝑠 end ]⇒ 𝐹' ---------------------------------------------- → 𝐹 =[ by 𝑥 repeat 𝑠 end ]⇒ 𝐹' -- -- A lil cheat: "returns" is just assign; doesn't exit s-return : ∀ {𝑒 : Expn} {𝐹 : Frm} {𝑣 : Val} → 𝐹 ⊢ᵉ 𝑒 ⇓ 𝑣 ------------------------------------- → 𝐹 =[ returns 𝑒 ]⇒ (𝐹 ∣ "retval" ↦ 𝑣) arg1 : Id arg1 = "arg1" arg2 : Id arg2 = "arg2" retval : Id retval = "retval" W : Id W = "w" X : Id X = "x" Y : Id Y = "y" Z : Id Z = "z" pgm0 : Stmt pgm0 = X ∷= ⇓ 3 ↩ Y ∷= ⇓ 1 ↩ Y ∷= ⇑ Y *ᵉ⇓ 2 pgm1 : Stmt pgm1 = X ∷= ⇓ 3 ↩ Y ∷= ⇓ 1 ↩ by X repeat Y ∷= ⇑ Y *ᵉ⇓ 2 end Z∷=X*Y = W ∷= ⇑ X ↩ Z ∷= ⇓ 0 ↩ by W repeat Z ∷= ⇑ Z +ᵉ ⇑ Y end pgm2 = X ∷= ⇓ 3 ↩ Y ∷= ⇓ 1 ↩ by X repeat Z∷=X*Y ↩ Y ∷= ⇑ Z end fact-pgm : Stmt fact-pgm = X ∷= ⇑ arg1 ↩ Y ∷= ⇓ 1 ↩ by X repeat Z∷=X*Y ↩ Y ∷= ⇑ Z end ↩ returns ⇑ Y min-pgm : Stmt min-pgm = if [ ⇑ arg2 <ᶜ ⇑ arg1 ] then X ∷= ⇑ arg1 ↩ arg1 ∷= ⇑ arg2 ↩ arg2 ∷= ⇑ X else skip end result1 = ⟦ pgm1 ⟧ˢ [-↦0] result2 = ⟦ pgm2 ⟧ˢ [-↦0] [➊↦_] : Val → Frm [➊↦ 𝑣 ] = [-↦0] ∣ arg1 ↦ 𝑣 [➊↦_,➋↦_] : Val → Val → Frm [➊↦ 𝑣₁ ,➋↦ 𝑣₂ ] = (([-↦0] ∣ arg1 ↦ 𝑣₁) ∣ arg2 ↦ 𝑣₂ ) frame6 = ((((( [➊↦ 3 ] ∣ X ↦ 0) ∣ Y ↦ 6) ∣ W ↦ 0) ∣ Z ↦ 6) ∣ retval ↦ 6) postulate test6 : [➊↦ 3 ] =[ fact-pgm ]⇒ frame6 exec : Stmt → Frm exec 𝑠 = ⟦ 𝑠 ⟧ˢ [-↦0] exec1 : Stmt → Val → Frm exec1 𝑠 𝑣₁ = ⟦ 𝑠 ⟧ˢ [➊↦ 𝑣₁ ] exec2 : Stmt → Val → Val → Frm exec2 𝑠 𝑣₁ 𝑣₂ = ⟦ 𝑠 ⟧ˢ [➊↦ 𝑣₁ ,➋↦ 𝑣₂ ] test7 = exec2 min-pgm 7 5 test7a : (test7 ∥ arg1) ≡ 5 test7a = refl test7b : (test7 ∥ arg2) ≡ 7 test7b = refl postulate s-thm : ∀ {𝑠 : Stmt } {𝐹 : Frm} → 𝐹 =[ 𝑠 ]⇒ (⟦ 𝑠 ⟧ˢ 𝐹) postulate fact-thm : ∀ {n : ℕ} {𝐹 : Frm} → [➊↦ n ] =[ fact-pgm ]⇒ 𝐹 → 𝐹 ⊢ᶠ retval ↦ (factorial n)
21.837905
89
0.387119
2fb28ffbdb36790a362f71cf3256beef70af1922
7,349
agda
Agda
src/Section6.agda
mietek/coquand
7c000654c4f97024d2939c412702f64dc821d4ec
[ "X11" ]
4
2017-03-27T01:29:58.000Z
2017-09-07T12:44:40.000Z
src/Section6.agda
mietek/coquand
7c000654c4f97024d2939c412702f64dc821d4ec
[ "X11" ]
null
null
null
src/Section6.agda
mietek/coquand
7c000654c4f97024d2939c412702f64dc821d4ec
[ "X11" ]
null
null
null
module Section6 where open import Section5 public -- 6. Application to terms -- ======================= -- -- In practice we may not want to work with proof trees but rather well-typed terms. As an -- application of the results above we show how to give semantics to a formulation of Martin- -- Löf’s substitution calculus [13, 20] in the simply typed setting. In this calculus we have a -- set of untyped terms, `𝕋`, and we define when a term in `𝕋` is well-typed and when two terms -- of a given type are convertible with each other. -- -- In order to give semantics to untyped terms, we first define an erasure function that -- translates a proof tree `M` to an untyped term, denoted `M ⁻`. The main theorem is then to prove -- that if two proof trees `M, N` erase to the same term, `M ⁻ ≡ N ⁻`, then `M ≅ N`; it follows that -- `M` and `N` have the same semantics. For this we first prove that `nf M ⁻ ≡ nf N ⁻` implies -- `M ≅ N`. We also define a reduction on the untyped terms `Γ ⊢ t₁ ⇓ t₂ ∷ A` that is deterministic -- (i.e., if `Γ ⊢ t ⇓ t₁ ∷ A` and `Γ ⊢ t ⇓ t₂ ∷ A`, then `t₁ ≡ t₂`) such that `Γ ⊢ M ⁻ ⇓ nf M ⁻ ∷ A`. -- We then prove that if a proof tree `M` erases to a well-typed term `t`, then `t ⇓ nf M ⁻`. Now, -- if two proof trees `M` and `N` erase to the same well-typed term `t`, then `t ⇓ nf M ⁻` and -- `t ⇓ nf N ⁻`. Since the reduction is deterministic we have that `nf M ⁻` and `nf N ⁻` are the -- same, and hence `M ≅ N`. The idea of this proof comes from Streicher [19] (chapter IV). -- 6.1. Definition of terms -- ------------------------ -- -- We mutually define the set of terms, `𝕋 : Set`, and substitutions, `𝕊 : Set`. (…) mutual data 𝕋 : Set where ν : Name → 𝕋 ƛ : Name → 𝕋 → 𝕋 _∙_ : 𝕋 → 𝕋 → 𝕋 _▶_ : 𝕋 → 𝕊 → 𝕋 data 𝕊 : Set where [] : 𝕊 [_,_≔_] : 𝕊 → Name → 𝕋 → 𝕊 _●_ : 𝕊 → 𝕊 → 𝕊 -- 6.2. Typing rules -- ----------------- -- -- We give the typing rules for terms and substitutions mutually inductively. (…) mutual infix 3 _⊢_∷_ data _⊢_∷_ : 𝒞 → 𝕋 → 𝒯 → Set where ↑⟨_⟩⊢∷ : ∀ {Γ Δ A t} → Γ ⊇ Δ → Δ ⊢ t ∷ A → Γ ⊢ t ∷ A ν : ∀ {Γ A} → (x : Name) → Γ ∋ x ∷ A → Γ ⊢ ν x ∷ A ƛ : ∀ {Γ A B t} → (x : Name) {{_ : T (fresh x Γ)}} → [ Γ , x ∷ A ] ⊢ t ∷ B → Γ ⊢ ƛ x t ∷ A ⊃ B _∙_ : ∀ {Γ A B t₁ t₂} → Γ ⊢ t₁ ∷ A ⊃ B → Γ ⊢ t₂ ∷ A → Γ ⊢ t₁ ∙ t₂ ∷ B _▶_ : ∀ {Γ Δ A s t} → Δ ⊢ t ∷ A → Γ ⋙ s ∷ Δ → Γ ⊢ t ▶ s ∷ A infix 3 _⋙_∷_ data _⋙_∷_ : 𝒞 → 𝕊 → 𝒞 → Set where ↑⟨_⟩⋙∷ : ∀ {Γ Δ Θ s} → Θ ⊇ Γ → Γ ⋙ s ∷ Δ → Θ ⋙ s ∷ Δ ↓⟨_⟩⋙∷ : ∀ {Γ Δ Θ s} → Δ ⊇ Θ → Γ ⋙ s ∷ Δ → Γ ⋙ s ∷ Θ refl⋙∷ : ∀ {Γ} → Γ ⋙ [] ∷ Γ [_,_≔_] : ∀ {Γ Δ A s t} → Γ ⋙ s ∷ Δ → (x : Name) {{_ : T (fresh x Δ)}} → Γ ⊢ t ∷ A → Γ ⋙ [ s , x ≔ t ] ∷ [ Δ , x ∷ A ] _●_ : ∀ {Γ Δ Θ s₁ s₂} → Δ ⋙ s₂ ∷ Θ → Γ ⋙ s₁ ∷ Δ → Γ ⋙ s₂ ● s₁ ∷ Θ module _ where instance raise⊢∷ : ∀ {A t} → Raiseable (_⊢ t ∷ A) raise⊢∷ = record { ↑⟨_⟩ = ↑⟨_⟩⊢∷ } raise⋙∷ : ∀ {Γ s} → Raiseable (_⋙ s ∷ Γ) raise⋙∷ = record { ↑⟨_⟩ = ↑⟨_⟩⋙∷ } lower⋙∷ : ∀ {Δ s} → Lowerable (Δ ⋙ s ∷_) lower⋙∷ = record { ↓⟨_⟩ = ↓⟨_⟩⋙∷ } -- 6.3. Convertibility of terms -- ---------------------------- -- -- We mutually inductively define when two terms are convertible with each other together -- with the definition of convertibility between substitutions. (…) mutual infix 3 _⊢_≊_∷_ data _⊢_≊_∷_ : 𝒞 → 𝕋 → 𝕋 → 𝒯 → Set where refl≊ : ∀ {Γ A t} → Γ ⊢ t ≊ t ∷ A sym≊ : ∀ {Γ A t t′} → Γ ⊢ t ≊ t′ ∷ A → Γ ⊢ t′ ≊ t ∷ A trans≊ : ∀ {Γ A t t′ t″} → Γ ⊢ t ≊ t′ ∷ A → Γ ⊢ t′ ≊ t″ ∷ A → Γ ⊢ t ≊ t″ ∷ A congƛ≊ : ∀ {Γ A B t t′ x} {{_ : T (fresh x Γ)}} → [ Γ , x ∷ A ] ⊢ t ≊ t′ ∷ B → Γ ⊢ ƛ x t ≊ ƛ x t′ ∷ A ⊃ B cong∙≊ : ∀ {Γ A B t t′ u u′} → Γ ⊢ t ≊ t′ ∷ A ⊃ B → Γ ⊢ u ≊ u′ ∷ A → Γ ⊢ t ∙ u ≊ t′ ∙ u′ ∷ B cong▶≊ : ∀ {Γ Δ A t t′ s s′} → Γ ⊢ t ≊ t′ ∷ A → Δ ⋙ s ≊ₛ s′ ∷ Γ → Γ ⊢ t ▶ s ≊ t′ ▶ s′ ∷ A conv₁≊ : ∀ {Γ A t} → Γ ⊢ t ∷ A → Γ ⊢ t ≊ t ∷ A conv₂≊ : ∀ {Γ Δ A B s t₁ t₂ x} {{_ : T (fresh x Δ)}} → Γ ⋙ s ∷ Δ → [ Δ , x ∷ A ] ⊢ t₁ ∷ B → Γ ⊢ t₂ ∷ A → Γ ⊢ (ƛ x t₁ ▶ s) ∙ t₂ ≊ t₁ ▶ [ s , x ≔ t₂ ] ∷ B conv₃≊ : ∀ {Γ A B t x} {{_ : T (fresh x Γ)}} → Γ ⊢ t ∷ A ⊃ B → Γ ⊢ t ≊ ƛ x (t ∙ ν x) ∷ A ⊃ B conv₄≊ : ∀ {Γ Δ A t₁ t₂} → Γ ⊇ Δ → Δ ⊢ t₁ ≊ t₂ ∷ A → Γ ⊢ t₁ ≊ t₂ ∷ A conv₅≊ : ∀ {Γ Δ A s t x} {{_ : T (fresh x Δ)}} → Γ ⋙ s ∷ Δ → Γ ⊢ t ∷ A → Γ ⊢ ν x ▶ [ s , x ≔ t ] ≊ t ∷ A conv₆≊ : ∀ {Γ A t} → Γ ⊢ t ∷ A → Γ ⊢ t ▶ [] ≊ t ∷ A conv₇≊ : ∀ {Γ Δ A B s t₁ t₂} → Δ ⊢ t₁ ∷ A ⊃ B → Δ ⊢ t₂ ∷ A → Γ ⋙ s ∷ Δ → Γ ⊢ (t₁ ∙ t₂) ▶ s ≊ (t₁ ▶ s) ∙ (t₂ ▶ s) ∷ B conv₈≊ : ∀ {Γ₁ Γ₂ Γ₃ A s₁ s₂ t} → Γ₂ ⋙ s₁ ∷ Γ₃ → Γ₁ ⋙ s₂ ∷ Γ₂ → Γ₃ ⊢ t ∷ A → Γ₁ ⊢ (t ▶ s₁) ▶ s₂ ≊ t ▶ (s₁ ● s₂) ∷ A data _⋙_≊ₛ_∷_ : 𝒞 → 𝕊 → 𝕊 → 𝒞 → Set where refl≊ₛ : ∀ {Γ Δ s} → Δ ⋙ s ≊ₛ s ∷ Γ sym≊ₛ : ∀ {Γ Δ s s′} → Δ ⋙ s ≊ₛ s′ ∷ Γ → Δ ⋙ s′ ≊ₛ s ∷ Γ trans≊ₛ : ∀ {Γ Δ s s′ s″} → Δ ⋙ s ≊ₛ s′ ∷ Γ → Δ ⋙ s′ ≊ₛ s″ ∷ Γ → Δ ⋙ s ≊ₛ s″ ∷ Γ cong≔≊ₛ : ∀ {Γ Δ A s s′ t t′ x} {{_ : T (fresh x Δ)}} → Γ ⋙ s ≊ₛ s′ ∷ Δ → Γ ⊢ t ≊ t′ ∷ A → Γ ⋙ [ s , x ≔ t ] ≊ₛ [ s′ , x ≔ t′ ] ∷ [ Δ , x ∷ A ] cong●≊ₛ : ∀ {Γ Δ Θ s₁ s₁′ s₂ s₂′} → Δ ⋙ s₂ ≊ₛ s₂′ ∷ Θ → Γ ⋙ s₁ ≊ₛ s₁′ ∷ Δ → Γ ⋙ s₂ ● s₁ ≊ₛ s₂′ ● s₁′ ∷ Θ conv₁≊ₛ : ∀ {Γ₁ Γ₂ Δ s₁ s₂} → Γ₁ ⊇ Γ₂ → Γ₂ ⋙ s₁ ≊ₛ s₂ ∷ Δ → Γ₁ ⋙ s₁ ≊ₛ s₂ ∷ Δ conv₂≊ₛ : ∀ {Γ Δ₁ Δ₂ s₁ s₂} → Δ₁ ⊇ Δ₂ → Γ ⋙ s₁ ≊ₛ s₂ ∷ Δ₁ → Γ ⋙ s₁ ≊ₛ s₂ ∷ Δ₂ conv₃≊ₛ : ∀ {Γ Δ s} → Γ ⋙ s ∷ Δ → Γ ⋙ s ● [] ≊ₛ s ∷ Δ conv₄≊ₛ : ∀ {Γ₁ Γ₂ Γ₃ Δ s₁ s₂ s₃} → Γ₁ ⋙ s₃ ∷ Γ₂ → Γ₂ ⋙ s₂ ∷ Γ₃ → Γ₃ ⋙ s₁ ∷ Δ → Γ₃ ⋙ (s₁ ● s₂) ● s₃ ≊ₛ s₁ ● (s₂ ● s₃) ∷ Δ conv₅≊ₛ : ∀ {Γ₁ Γ₂ Δ A s₁ s₂ t x} {{_ : T (fresh x Δ)}} → Γ₁ ⋙ s₂ ∷ Γ₂ → Γ₂ ⋙ s₁ ∷ Δ → Γ₂ ⊢ t ∷ A → Γ₁ ⋙ [ s₁ , x ≔ t ] ● s₂ ≊ₛ [ s₁ ● s₂ , x ≔ t ▶ s₂ ] ∷ [ Δ , x ∷ A ] conv₆≊ₛ : ∀ {Γ s} → Γ ⋙ s ∷ [] → Γ ⋙ s ≊ₛ [] ∷ [] conv₇≊ₛ : ∀ {Γ Δ A s x} {{_ : T (fresh x Δ)}} → Γ ⋙ s ∷ [ Δ , x ∷ A ] → Γ ⋙ s ≊ₛ [ s , x ≔ ν x ▶ s ] ∷ [ Δ , x ∷ A ] conv₈≊ₛ : ∀ {Γ Δ A s t x} {{_ : T (fresh x Δ)}} → Γ ⋙ s ∷ Δ → Δ ⊢ t ∷ A → Γ ⋙ [ s , x ≔ t ] ≊ₛ s ∷ Δ conv₉≊ₛ : ∀ {Γ Δ s} → Γ ⋙ s ∷ Δ → Γ ⋙ [] ● s ≊ₛ s ∷ Δ -- It is straightforward to prove that if two terms (substitutions) are convertible with each -- other, then they are also well-typed. -- TODO: What to do about the above paragraph?
36.745
101
0.375289
589bdf404b3e25092d7e0e15ffd11deb9d7e3d91
3,678
agda
Agda
fracGC/PiPointed.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
fracGC/PiPointed.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
fracGC/PiPointed.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
{-# OPTIONS --without-K --safe #-} module PiPointed where open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product renaming (map to map×) open import Relation.Binary.PropositionalEquality open import Singleton open import PlainPi infixr 90 _#_ ------------------------------------------------------------------------------ -- Pointed types and singleton types data ∙𝕌 : Set where _#_ : (t : 𝕌) → (v : ⟦ t ⟧) → ∙𝕌 _∙×ᵤ_ : ∙𝕌 → ∙𝕌 → ∙𝕌 _∙+ᵤl_ : ∙𝕌 → ∙𝕌 → ∙𝕌 _∙+ᵤr_ : ∙𝕌 → ∙𝕌 → ∙𝕌 Singᵤ : ∙𝕌 → ∙𝕌 ∙⟦_⟧ : ∙𝕌 → Σ[ A ∈ Set ] A ∙⟦ t # v ⟧ = ⟦ t ⟧ , v ∙⟦ T₁ ∙×ᵤ T₂ ⟧ = zip _×_ _,_ ∙⟦ T₁ ⟧ ∙⟦ T₂ ⟧ ∙⟦ T₁ ∙+ᵤl T₂ ⟧ = zip _⊎_ (λ x _ → inj₁ x) ∙⟦ T₁ ⟧ ∙⟦ T₂ ⟧ ∙⟦ T₁ ∙+ᵤr T₂ ⟧ = zip _⊎_ (λ _ y → inj₂ y) ∙⟦ T₁ ⟧ ∙⟦ T₂ ⟧ ∙⟦ Singᵤ T ⟧ = < uncurry Singleton , (λ y → proj₂ y , refl) > ∙⟦ T ⟧ data _∙⟶_ : ∙𝕌 → ∙𝕌 → Set where ∙c : {t₁ t₂ : 𝕌} {v : ⟦ t₁ ⟧} → (c : t₁ ⟷ t₂) → t₁ # v ∙⟶ t₂ # (eval c v) ∙id⟷ : {T : ∙𝕌} → T ∙⟶ T _∙⊚_ : {T₁ T₂ T₃ : ∙𝕌} → (T₁ ∙⟶ T₂) → (T₂ ∙⟶ T₃) → (T₁ ∙⟶ T₃) ∙Singᵤ : (T₁ T₂ : ∙𝕌) → (T₁ ∙⟶ T₂) → (Singᵤ T₁ ∙⟶ Singᵤ T₂) -- monad return : (T : ∙𝕌) → T ∙⟶ Singᵤ T join : (T : ∙𝕌) → Singᵤ (Singᵤ T) ∙⟶ Singᵤ T tensorl : (T₁ T₂ : ∙𝕌) → (Singᵤ T₁ ∙×ᵤ T₂) ∙⟶ Singᵤ (T₁ ∙×ᵤ T₂) tensorr : (T₁ T₂ : ∙𝕌) → (T₁ ∙×ᵤ Singᵤ T₂) ∙⟶ Singᵤ (T₁ ∙×ᵤ T₂) tensor : (T₁ T₂ : ∙𝕌) → (Singᵤ T₁ ∙×ᵤ Singᵤ T₂) ∙⟶ Singᵤ (T₁ ∙×ᵤ T₂) untensor : (T₁ T₂ : ∙𝕌) → Singᵤ (T₁ ∙×ᵤ T₂) ∙⟶ (Singᵤ T₁ ∙×ᵤ Singᵤ T₂) plusl : (T₁ T₂ : ∙𝕌) → (Singᵤ T₁ ∙+ᵤl T₂) ∙⟶ Singᵤ (T₁ ∙+ᵤl T₂) plusr : (T₁ T₂ : ∙𝕌) → (T₁ ∙+ᵤr Singᵤ T₂) ∙⟶ Singᵤ (T₁ ∙+ᵤr T₂) -- plus : (T₁ T₂ : ∙𝕌) → (Singᵤ T₁ ∙+ᵤl Singᵤ T₂) ∙⟶ Singᵤ (T₁ ∙+ᵤl T₂) -- lobsided, feels wrong -- comonad extract : (T : ∙𝕌) → Singᵤ T ∙⟶ T duplicate : (T : ∙𝕌) → Singᵤ T ∙⟶ Singᵤ (Singᵤ T) cotensorl : (T₁ T₂ : ∙𝕌) → Singᵤ (T₁ ∙×ᵤ T₂) ∙⟶ (Singᵤ T₁ ∙×ᵤ T₂) cotensorr : (T₁ T₂ : ∙𝕌) → Singᵤ (T₁ ∙×ᵤ T₂) ∙⟶ (T₁ ∙×ᵤ Singᵤ T₂) coplusl : (T₁ T₂ : ∙𝕌) → Singᵤ (T₁ ∙+ᵤl T₂) ∙⟶ (Singᵤ T₁ ∙+ᵤl T₂) coplusr : (T₁ T₂ : ∙𝕌) → Singᵤ (T₁ ∙+ᵤr T₂) ∙⟶ (T₁ ∙+ᵤr Singᵤ T₂) ∙eval : {T₁ T₂ : ∙𝕌} → (C : T₁ ∙⟶ T₂) → let (t₁ , v₁) = ∙⟦ T₁ ⟧ (t₂ , v₂) = ∙⟦ T₂ ⟧ in Σ (t₁ → t₂) (λ f → f v₁ ≡ v₂) ∙eval ∙id⟷ = (λ x → x) , refl ∙eval (∙c c) = eval c , refl ∙eval (C₁ ∙⊚ C₂) with ∙eval C₁ | ∙eval C₂ ... | (f , p) | (g , q) = (λ x → g (f x)) , trans (cong g p) q ∙eval (∙Singᵤ T₁ T₂ C) with ∙⟦ T₁ ⟧ | ∙⟦ T₂ ⟧ | ∙eval C ... | t₁ , v₁ | t₂ , .(f v₁) | f , refl = (λ {(x , refl) → f x , refl}) , refl ∙eval (return T) = (λ _ → proj₂ ∙⟦ T ⟧ , refl) , refl ∙eval (join T) = (λ { (._ , refl) → (proj₂ ∙⟦ T ⟧) , refl} ) , refl ∙eval (tensorl T₁ T₂) = (λ {_ → (proj₂ ∙⟦ T₁ ⟧ , proj₂ ∙⟦ T₂ ⟧) , refl}) , refl ∙eval (tensorr T₁ T₂) = (λ {_ → (proj₂ ∙⟦ T₁ ⟧ , proj₂ ∙⟦ T₂ ⟧) , refl}) , refl ∙eval (tensor T₁ T₂) = (λ {_ → (proj₂ ∙⟦ T₁ ⟧ , proj₂ ∙⟦ T₂ ⟧) , refl}) , refl ∙eval (untensor T₁ T₂) = (λ _ → ((proj₂ ∙⟦ T₁ ⟧ , refl) , (proj₂ ∙⟦ T₂ ⟧ , refl))) , refl ∙eval (plusl T₁ T₂) = (λ _ → inj₁ (proj₂ ∙⟦ T₁ ⟧) , refl) , refl ∙eval (plusr T₁ T₂) = (λ _ → inj₂ (proj₂ ∙⟦ T₂ ⟧) , refl) , refl -- ∙eval (plus T₁ T₂) with ∙⟦ T₁ ⟧ | ∙⟦ T₂ ⟧ -- ... | t₁ , v₁ | t₂ , v₂ = (λ _ → inj₁ v₁ , refl) , refl ∙eval (extract T) = (λ {(w , refl) → w}) , refl ∙eval (duplicate T) = (λ {(w , refl) → (w , refl) , refl}) , refl ∙eval (cotensorl T₁ T₂) = (λ _ → ((proj₂ ∙⟦ T₁ ⟧ , refl) , proj₂ ∙⟦ T₂ ⟧)) , refl ∙eval (cotensorr T₁ T₂) = (λ _ → (proj₂ ∙⟦ T₁ ⟧ , (proj₂ ∙⟦ T₂ ⟧) , refl)) , refl ∙eval (coplusl T₁ T₂) = (λ _ → inj₁ (proj₂ ∙⟦ T₁ ⟧ , refl)) , refl ∙eval (coplusr T₁ T₂) = (λ _ → inj₂ (proj₂ ∙⟦ T₂ ⟧ , refl)) , refl -----------------------------------------------------------------------------
43.270588
102
0.461936