hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
3da9aa5ebc152ee0fe46e891f2595730d9228fdc
1,588
agda
Agda
Cubical/Algebra/CommRing/Instances/QuoInt.agda
anuyts/cubical
2868ce7542c0b63f185344cffbd90c1cc033027c
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Instances/QuoInt.agda
anuyts/cubical
2868ce7542c0b63f185344cffbd90c1cc033027c
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Instances/QuoInt.agda
anuyts/cubical
2868ce7542c0b63f185344cffbd90c1cc033027c
[ "MIT" ]
null
null
null
{- ℤ is a Commutative Ring (using QuoInt) -} {-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.Instances.QuoInt where open import Cubical.Foundations.Prelude open import Cubical.Algebra.CommRing open import Cubical.Data.Nat using (ℕ ; zero ; suc) open import Cubical.Data.Bool using (not) open import Cubical.Data.Int.MoreInts.QuoInt renaming (ℤ to ℤType ; _+_ to _+ℤ_; _·_ to _·ℤ_; -_ to -ℤ_) open CommRingStr -- The missing additive inversion +InvL' : ∀ n s → signed (not s) n +ℤ signed s n ≡ signed s zero +InvL' zero _ = refl +InvL' (suc n) spos = predℤ-+ʳ (neg n) (pos (suc n)) ∙ (λ i → neg n +ℤ predSucℤ (pos n) i) ∙ +InvL' n spos +InvL' (suc n) sneg = sucℤ-+ʳ (pos n) (neg (suc n)) ∙ (λ i → pos n +ℤ sucPredℤ (neg n) i) ∙ +InvL' n sneg +InvL : (n : ℤType) → (-ℤ n) +ℤ n ≡ 0 +InvL (signed spos n) = +InvL' n spos +InvL (signed sneg n) = +InvL' n sneg ∙ sym posneg +InvL (posneg i) j = hcomp (λ k → λ { (i = i0) → 0 ; (i = i1) → compPath-filler refl (sym posneg) k j ; (j = i0) → posneg i ; (j = i1) → posneg (i ∧ ~ k) }) (posneg i) +InvR : (n : ℤType) → n +ℤ (-ℤ n) ≡ 0 +InvR n = +-comm n (-ℤ n) ∙ +InvL n ℤCommRing : CommRing ℓ-zero ℤCommRing .fst = ℤType ℤCommRing .snd .0r = 0 ℤCommRing .snd .1r = 1 ℤCommRing .snd ._+_ = _+ℤ_ ℤCommRing .snd ._·_ = _·ℤ_ ℤCommRing .snd .-_ = -ℤ_ ℤCommRing .snd .isCommRing = isCommRingℤ where abstract isCommRingℤ : IsCommRing 0 1 _+ℤ_ _·ℤ_ -ℤ_ isCommRingℤ = makeIsCommRing isSetℤ +-assoc (+-zeroʳ _) +InvR +-comm ·-assoc ·-identityʳ (λ x y z → sym (·-distribˡ x y z)) ·-comm
28.357143
106
0.61398
1afffb0da3abfd436439f361fec63588f59394b1
277
agda
Agda
prototyping/Utility/Bool.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
1
2021-12-05T21:53:03.000Z
2021-12-05T21:53:03.000Z
prototyping/Utility/Bool.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
prototyping/Utility/Bool.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
module Utility.Bool where open import Agda.Builtin.Bool using (Bool; true; false) not : Bool → Bool not false = true not true = false _or_ : Bool → Bool → Bool true or _ = true _ or true = true _ or _ = false _and_ : Bool → Bool → Bool true and true = true _ and _ = false
16.294118
55
0.68231
135c08b178be29393f866007bd95d66780ef701a
373
agda
Agda
test/interaction/Issue643.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue643.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue643.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue643 where module M₁ (A : Set) where record R : Set₁ where field P : A → Set module M₂ (A : Set) where open M₁ A postulate r : R T : R → Set open R r p : ∀ x → P x p x = {!!} -- The goal was printed as "P" rather than "P x". q : T r q = {!!} -- This goal was printed as T P at an intermediate stage of fixing
14.92
83
0.538874
416f8f55ead530629d8abcb8fc319a7e6c8e3bc8
1,880
agda
Agda
test/Succeed/Issue2288b.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2288b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2288b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Primitive record Functor {a b} (F : Set a → Set b) : Set (lsuc a ⊔ b) where field fmap : ∀ {A B} → (A → B) → F A → F B open Functor {{...}} public module _ {a b} (F : Set a → Set b) where record FunctorZero : Set (lsuc a ⊔ b) where field empty : ∀ {A} → F A overlap {{super}} : Functor F record Alternative : Set (lsuc a ⊔ b) where infixl 3 _<|>_ field _<|>_ : ∀ {A} → F A → F A → F A overlap {{super}} : FunctorZero open FunctorZero {{...}} public open Alternative {{...}} public record StateT {a} (S : Set a) (M : Set a → Set a) (A : Set a) : Set a where no-eta-equality constructor stateT field runStateT : S → M A open StateT public module _ {a} {S : Set a} {M : Set a → Set a} where instance FunctorStateT : {{_ : Functor M}} → Functor {a = a} (StateT S M) runStateT (fmap {{FunctorStateT}} f m) s = fmap f (runStateT m s) FunctorZeroStateT : {{_ : FunctorZero M}} → FunctorZero {a = a} (StateT S M) runStateT (empty {{FunctorZeroStateT}}) s = empty AlternativeStateT : {{_ : Alternative M}} → Alternative {a = a} (StateT S M) runStateT (_<|>_ {{AlternativeStateT}} x y) s = runStateT x s <|> runStateT y s --- Example with some module parameter instantiations open import Agda.Builtin.Nat open import Agda.Builtin.Unit data Vec (A : Set) : Nat → Set where [] : Vec A 0 _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) postulate C₁ : Set → Set record C₂ (A : Set) : Set where field f : A → A overlap {{super}} : C₁ A open C₂ {{...}} postulate T : (A : Set) → A → Set module M (A : Set) (n : Nat) (xs : Vec A n) where unpackT : Vec A n → Set unpackT (x ∷ xs) = C₂ (T A x) unpackT [] = ⊤ postulate instance C₁T : ∀ {x} {{C₁A : C₁ A}} → C₁ (T A x) C₂T : {{C₂A : C₂ A}} (ys : Vec A n) → unpackT ys C₂T [] = _ f {{C₂T (y ∷ ys)}} x = x
24.102564
83
0.569681
1cfb0c1afa18b3878632c6274971e0c4b23d0dac
1,754
agda
Agda
Rings/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Rings/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Rings/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import Groups.Definition open import Setoids.Setoids open import Sets.EquivalenceRelations open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) -- Following Part IB's course Groups, Rings, and Modules, we take rings to be commutative with one. module Rings.Definition where record Ring {n m} {A : Set n} (S : Setoid {n} {m} A) (_+_ : A → A → A) (_*_ : A → A → A) : Set (lsuc n ⊔ m) where field additiveGroup : Group S _+_ open Group additiveGroup open Setoid S open Equivalence eq 0R : A 0R = 0G _-R_ : A → A → A a -R b = a + (inverse b) field *WellDefined : {r s t u : A} → (r ∼ t) → (s ∼ u) → r * s ∼ t * u 1R : A groupIsAbelian : {a b : A} → a + b ∼ b + a *Associative : {a b c : A} → (a * (b * c)) ∼ (a * b) * c *Commutative : {a b : A} → a * b ∼ b * a *DistributesOver+ : {a b c : A} → a * (b + c) ∼ (a * b) + (a * c) identIsIdent : {a : A} → 1R * a ∼ a timesZero : {a : A} → a * 0R ∼ 0R timesZero {a} = symmetric (transitive (transitive (symmetric invLeft) (+WellDefined reflexive (transitive (*WellDefined {a} {a} reflexive (symmetric identRight)) *DistributesOver+))) (transitive +Associative (transitive (+WellDefined invLeft reflexive) identLeft))) timesZero' : {a : A} → 0R * a ∼ 0R timesZero' {a} = transitive *Commutative timesZero *DistributesOver+' : {a b c : A} → (a + b) * c ∼ (a * c) + (b * c) *DistributesOver+' = transitive *Commutative (transitive *DistributesOver+ (+WellDefined *Commutative *Commutative)) *Associative' : {a b c : A} → ((a * b) * c) ∼ (a * (b * c)) *Associative' = symmetric *Associative identIsIdent' : {a : A} → a * 1R ∼ a identIsIdent' = transitive *Commutative identIsIdent
43.85
267
0.606613
13918fa9f3dbb7febc4cca1f326c3827fef3f661
2,782
agda
Agda
Cubical/Data/Nat/Divisibility.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Data/Nat/Divisibility.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
Cubical/Data/Nat/Divisibility.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Nat.Divisibility where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Data.Sigma open import Cubical.Data.Empty as ⊥ open import Cubical.HITs.PropositionalTruncation as PropTrunc open import Cubical.Data.Nat.Base open import Cubical.Data.Nat.Properties open import Cubical.Data.Nat.Order private variable l m n : ℕ _∣_ : ℕ → ℕ → Type₀ m ∣ n = ∃[ c ∈ ℕ ] c * m ≡ n isProp∣ : isProp (m ∣ n) isProp∣ = squash prediv : ℕ → ℕ → Type₀ prediv m n = Σ[ c ∈ ℕ ] c * m ≡ n -- an alternate definition of m ∣ n that doesn't use truncation _∣'_ : ℕ → ℕ → Type₀ zero ∣' n = zero ≡ n suc m ∣' n = Σ[ c ∈ ℕ ] c * suc m ≡ n isProp∣' : isProp (m ∣' n) isProp∣' {zero} {n} = isSetℕ _ _ isProp∣' {suc m} {n} (c₁ , p₁) (c₂ , p₂) = ΣProp≡ (λ _ → isSetℕ _ _) (inj-*sm {c₁} {m} {c₂} (p₁ ∙ sym p₂)) ∣≃∣' : (m ∣ n) ≃ (m ∣' n) ∣≃∣' {zero} = PropEquiv→Equiv isProp∣ isProp∣' (PropTrunc.rec (isSetℕ _ _) λ { (c , p) → 0≡m*0 c ∙ p }) (λ p → ∣ zero , p ∣) ∣≃∣' {suc m} = propTruncIdempotent≃ isProp∣' ∣-untrunc : m ∣ n → Σ[ c ∈ ℕ ] c * m ≡ n ∣-untrunc {zero} p = zero , equivFun ∣≃∣' p ∣-untrunc {suc m} = equivFun ∣≃∣' -- basic properties of ∣ ∣-refl : m ≡ n → m ∣ n ∣-refl p = ∣ 1 , +-zero _ ∙ p ∣ ∣-trans : l ∣ m → m ∣ n → l ∣ n ∣-trans = PropTrunc.map2 λ { (c₁ , p) (c₂ , q) → (c₂ * c₁ , sym (*-assoc c₂ c₁ _) ∙ cong (c₂ *_) p ∙ q) } ∣-cancelʳ : ∀ k → (m * suc k) ∣ (n * suc k) → m ∣ n ∣-cancelʳ k = PropTrunc.map λ { (c , p) → (c , inj-*sm (sym (*-assoc c _ (suc k)) ∙ p)) } ∣-multʳ : ∀ k → m ∣ n → (m * k) ∣ (n * k) ∣-multʳ k = PropTrunc.map λ { (c , p) → (c , *-assoc c _ k ∙ cong (_* k) p) } ∣-zeroˡ : zero ∣ m → zero ≡ m ∣-zeroˡ = equivFun ∣≃∣' ∣-zeroʳ : ∀ m → m ∣ zero ∣-zeroʳ m = ∣ zero , refl ∣ ∣-oneˡ : ∀ m → 1 ∣ m ∣-oneˡ m = ∣ m , *-identityʳ m ∣ -- if n > 0, then the constant c (s.t. c * m ≡ n) is also > 0 ∣s-untrunc : m ∣ suc n → Σ[ c ∈ ℕ ] (suc c) * m ≡ suc n ∣s-untrunc ∣p∣ with ∣-untrunc ∣p∣ ... | (zero , p) = ⊥.rec (znots p) ... | (suc c , p) = (c , p) m∣sn→m≤sn : m ∣ suc n → m ≤ suc n m∣sn→m≤sn {m} {n} = f ∘ ∣s-untrunc where f : Σ[ c ∈ ℕ ] (suc c) * m ≡ suc n → Σ[ c ∈ ℕ ] c + m ≡ suc n f (c , p) = (c * m) , (+-comm (c * m) m ∙ p) m∣sn→z<m : m ∣ suc n → zero < m m∣sn→z<m {zero} p = ⊥.rec (znots (∣-zeroˡ p)) m∣sn→z<m {suc m} p = suc-≤-suc zero-≤ antisym∣ : ∀ {m n} → m ∣ n → n ∣ m → m ≡ n antisym∣ {zero} {n} z∣n _ = ∣-zeroˡ z∣n antisym∣ {m} {zero} _ z∣m = sym (∣-zeroˡ z∣m) antisym∣ {suc m} {suc n} p q = ≤-antisym (m∣sn→m≤sn p) (m∣sn→m≤sn q)
28.10101
86
0.525521
4dbb0853eff514ee65a64d28bbe06432ccbc6ec1
4,882
agda
Agda
cohomology/CofiberSequence.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
cohomology/CofiberSequence.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
cohomology/CofiberSequence.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT open import cohomology.FunctionOver open import cohomology.FlipPushout module cohomology.CofiberSequence {i} where {- Lemma: pushing flip-susp through susp-fmap -} flip-susp-fmap : {A B : Type i} (f : A → B) → ∀ σ → flip-susp (susp-fmap f σ) == susp-fmap f (flip-susp σ) flip-susp-fmap f = Suspension-elim _ idp idp $ λ y → ↓-='-in $ ap-∘ (susp-fmap f) flip-susp (merid _ y) ∙ ap (ap (susp-fmap f)) (FlipSusp.glue-β y) ∙ ap-! (susp-fmap f) (merid _ y) ∙ ap ! (SuspFmap.glue-β f y) ∙ ! (FlipSusp.glue-β (f y)) ∙ ! (ap (ap flip-susp) (SuspFmap.glue-β f y)) ∙ ∘-ap flip-susp (susp-fmap f) (merid _ y) {- Useful abbreviations -} module _ {X Y : Ptd i} (f : fst (X ⊙→ Y)) where ⊙Cof² = ⊙Cof (⊙cfcod f) ⊙cfcod² = ⊙cfcod (⊙cfcod f) cfcod² = fst ⊙cfcod² ⊙Cof³ = ⊙Cof ⊙cfcod² ⊙cfcod³ = ⊙cfcod ⊙cfcod² cfcod³ = fst ⊙cfcod³ {- For [f : X → Y], the cofiber space [Cof(cfcod f)] is equivalent to - [Suspension X]. This is essentially an application of the two pushouts - lemma: - - f - X ––––> Y ––––––––––––––> ∙ - | | | - | |cfcod f | - v v v - ∙ ––> Cof f ––––––––––> Cof² f - cfcod² f - - The map [cfcod² f : Cof f → Cof² f] becomes [ext-glue : Cof f → ΣX], - and the map [ext-glue : Cof² f → ΣY] becomes [susp-fmap f : ΣX → ΣY]. -} module Cof² {X Y : Ptd i} (f : fst (X ⊙→ Y)) where module Equiv {X Y : Ptd i} (f : fst (X ⊙→ Y)) where module Into = CofiberRec (cfcod (fst f)) {C = fst (⊙Susp X)} (south _) ext-glue (λ _ → idp) into = Into.f ⊙into : fst (⊙Cof² f ⊙→ ⊙Susp X) ⊙into = (into , ! (merid _ (snd X))) module Out = SuspensionRec (fst X) {C = fst (⊙Cof² f)} (cfcod _ (cfbase _)) (cfbase _) (λ x → ap (cfcod _) (cfglue _ x) ∙ ! (cfglue _ (fst f x))) out = Out.f into-out : ∀ σ → into (out σ) == σ into-out = Suspension-elim (fst X) idp idp (λ x → ↓-∘=idf-in into out $ ap (ap into) (Out.glue-β x) ∙ ap-∙ into (ap (cfcod _) (cfglue _ x)) (! (cfglue _ (fst f x))) ∙ ap (λ w → ap into (ap (cfcod _) (cfglue _ x)) ∙ w) (ap-! into (cfglue _ (fst f x)) ∙ ap ! (Into.glue-β (fst f x))) ∙ ∙-unit-r _ ∙ ∘-ap into (cfcod _) (cfglue _ x) ∙ ExtGlue.glue-β x) out-into : ∀ κ → out (into κ) == κ out-into = Cofiber-elim (cfcod (fst f)) idp (Cofiber-elim (fst f) idp (cfglue _) (λ x → ↓-='-from-square $ (ap-∘ out ext-glue (cfglue _ x) ∙ ap (ap out) (ExtGlue.glue-β x) ∙ Out.glue-β x) ∙v⊡ (vid-square {p = ap (cfcod _) (cfglue _ x)} ⊡h rt-square (cfglue _ (fst f x))) ⊡v∙ ∙-unit-r _)) (λ y → ↓-∘=idf-from-square out into $ ap (ap out) (Into.glue-β y) ∙v⊡ connection) eq = equiv into out into-out out-into space-path : ⊙Cof² f == ⊙Susp X space-path = ⊙ua (⊙ify-eq eq (! (merid _ (snd X)))) cfcod²-over : cfcod² f == ext-glue [ (λ U → fst (⊙Cof f) → fst U) ↓ Equiv.space-path f ] cfcod²-over = ↓-cst2-in _ _ $ codomain-over-equiv (cfcod² f) _ cfcod³-over : ext-glue == flip-susp ∘ susp-fmap (fst f) [ (λ U → fst U → fst (⊙Susp Y)) ↓ Equiv.space-path f ] cfcod³-over = ↓-cst2-in _ _ $ domain!-over-equiv ext-glue _ ▹ λ= lemma where lemma : (σ : fst (⊙Susp X)) → ext-glue (Equiv.out f σ) == flip-susp (susp-fmap (fst f) σ) lemma = Suspension-elim (fst X) idp idp (λ x → ↓-='-in $ ap-∘ flip-susp (susp-fmap (fst f)) (merid _ x) ∙ ap (ap flip-susp) (SuspFmap.glue-β (fst f) x) ∙ FlipSusp.glue-β (fst f x) ∙ ! (ap-∘ ext-glue (Equiv.out f) (merid _ x) ∙ ap (ap ext-glue) (Equiv.Out.glue-β f x) ∙ ap-∙ ext-glue (ap (cfcod _) (cfglue _ x)) (! (cfglue _ (fst f x))) ∙ (∘-ap ext-glue (cfcod _) (cfglue _ x) ∙ ap-cst (south _) (cfglue _ x)) ∙2 (ap-! ext-glue (cfglue _ (fst f x)) ∙ ap ! (ExtGlue.glue-β (fst f x))))) open Equiv f public cofiber-sequence : {X Y : Ptd i} (f : fst (X ⊙→ Y)) → Path {A = Σ (Ptd i × Ptd i) (λ {(U , V) → (fst (⊙Cof f) → fst U) × (fst U → fst V)})} ((⊙Cof² f , ⊙Cof³ f) , cfcod² f , cfcod³ f) ((⊙Susp X , ⊙Susp Y) , ext-glue , susp-fmap (fst f)) cofiber-sequence {X} {Y} f = ap (λ {(Z , g) → ((⊙Cof² f , Z) , cfcod² f , g)}) (pair= (Cof².space-path (⊙cfcod f)) (Cof².cfcod²-over (⊙cfcod f))) ∙ ap (λ {(Z , g , h) → ((Z , ⊙Susp Y) , g , h)}) (pair= (Cof².space-path f) (↓-×-in (Cof².cfcod²-over f) (Cof².cfcod³-over f))) ∙ ap (λ {(Z , g) → ((⊙Susp X , Z) , ext-glue , g)}) (pair= (flip-⊙pushout-path (suspension-⊙span Y)) (↓-cst2-in _ _ $ codomain!-over-equiv _ _))
36.432836
76
0.500615
cb887cdc827a9f7bc46cf7fed648a775f80a9464
5,086
agda
Agda
Cubical/Modalities/Modality.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Modalities/Modality.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Modalities/Modality.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
1
2021-03-12T20:08:45.000Z
2021-03-12T20:08:45.000Z
{-# OPTIONS --safe #-} module Cubical.Modalities.Modality where {- translated from https://github.com/HoTT/HoTT-Agda/blob/master/core/lib/types/Modality.agda -} open import Cubical.Foundations.Everything record Modality ℓ : Type (ℓ-suc ℓ) where field isModal : Type ℓ → Type ℓ isModalIsProp : {A : Type ℓ} → isProp (isModal A) ◯ : Type ℓ → Type ℓ -- \ciO ◯-isModal : {A : Type ℓ} → isModal (◯ A) η : {A : Type ℓ} → A → ◯ A ◯-elim : {A : Type ℓ} {B : ◯ A → Type ℓ} (B-modal : (x : ◯ A) → isModal (B x)) → ((x : A) → (B (η x))) → ((x : ◯ A) → B x) ◯-elim-β : {A : Type ℓ} {B : ◯ A → Type ℓ} (B-modal : (x : ◯ A) → isModal (B x)) (f : (x : A) → (B (η x))) → (a : A) → ◯-elim B-modal f (η a) ≡ f a ◯-=-isModal : {A : Type ℓ} (x y : ◯ A) → isModal (x ≡ y) ◯-Types : Type (ℓ-suc ℓ) ◯-Types = TypeWithStr ℓ isModal {- elimination rules -} module ◯Elim {A : Type ℓ} {B : ◯ A → Type ℓ} (B-modal : (x : ◯ A) → isModal (B x)) (η* : (x : A) → (B (η x))) where f : (x : ◯ A) → B x f = ◯-elim B-modal η* η-β : (a : A) → ◯-elim B-modal η* (η a) ≡ η* a η-β = ◯-elim-β B-modal η* module ◯Rec {A : Type ℓ} {B : Type ℓ} (B-modal : isModal B) (η* : A → B) = ◯Elim (λ _ → B-modal) η* ◯-rec = ◯Rec.f ◯-rec-β = ◯Rec.η-β {- functoriality -} module ◯Fmap {A B : Type ℓ} (f : A → B) = ◯Rec ◯-isModal (η ∘ f) ◯-map = ◯Fmap.f ◯-map-β = ◯Fmap.η-β ◯-preservesEquiv : {A B : Type ℓ} (f : A → B) → isEquiv f → isEquiv (◯-map f) ◯-preservesEquiv f f-ise = isoToIsEquiv (iso _ (◯-map inv) to-from from-to) where open Iso (equivToIso (f , f-ise)) to-from : ∀ ◯b → ◯-map f (◯-map inv ◯b) ≡ ◯b to-from = ◯-elim (λ ◯b → ◯-=-isModal (◯-map f (◯-map inv ◯b)) ◯b) (λ b → cong (◯-map f) (◯-map-β inv b) ∙ ◯-map-β f (inv b) ∙ cong η (rightInv b)) from-to : ∀ ◯a → ◯-map inv (◯-map f ◯a) ≡ ◯a from-to = ◯-elim (λ ◯a → ◯-=-isModal (◯-map inv (◯-map f ◯a)) ◯a) (λ a → cong (◯-map inv) (◯-map-β f a) ∙ ◯-map-β inv (f a) ∙ cong η (leftInv a)) ◯-equiv : {A B : Type ℓ} → A ≃ B → ◯ A ≃ ◯ B ◯-equiv (f , f-ise) = ◯-map f , ◯-preservesEquiv f f-ise {- equivalences preserve being modal -} equivPreservesIsModal : {A B : Type ℓ} → A ≃ B → isModal A → isModal B equivPreservesIsModal eq = fst (pathToEquiv (cong isModal (ua eq))) {- modal types and [η] being an equivalence -} isModalToIso : {A : Type ℓ} → isModal A → Iso A (◯ A) Iso.fun (isModalToIso _) = η Iso.inv (isModalToIso w) = ◯-rec w (idfun _) Iso.rightInv (isModalToIso w) = ◯-elim (λ _ → ◯-=-isModal _ _) (λ a₀ → cong η (◯-rec-β w (idfun _) a₀)) Iso.leftInv (isModalToIso w) = ◯-rec-β w (idfun _) isModalToIsEquiv : {A : Type ℓ} → isModal A → isEquiv (η {A}) isModalToIsEquiv {A} w = isoToIsEquiv (isModalToIso w) isEquivToIsModal : {A : Type ℓ} → isEquiv (η {A}) → isModal A isEquivToIsModal {A} eq = equivPreservesIsModal (invEquiv (η , eq)) ◯-isModal retractIsModal : {A B : Type ℓ} (w : isModal A) (f : A → B) (g : B → A) (r : (b : B) → f (g b) ≡ b) → isModal B retractIsModal {A} {B} w f g r = isEquivToIsModal (isoToIsEquiv (iso η η-inv inv-l inv-r)) where η-inv : ◯ B → B η-inv = f ∘ (◯-rec w g) inv-r : (b : B) → η-inv (η b) ≡ b inv-r b = cong f (◯-rec-β w g b) ∙ r b inv-l : (b : ◯ B) → η (η-inv b) ≡ b inv-l = ◯-elim (λ b → ◯-=-isModal _ _) (λ b → cong η (inv-r b)) {- function types with modal codomain are modal -} Π-isModal : {A : Type ℓ} {B : A → Type ℓ} (w : (a : A) → isModal (B a)) → isModal ((x : A) → B x) Π-isModal {A} {B} w = retractIsModal {◯ _} {(x : A) → B x} ◯-isModal η-inv η r where η-inv : ◯ ((x : A) → B x) → (x : A) → B x η-inv φ' a = ◯-rec (w a) (λ φ → φ a) φ' r : (φ : (x : A) → B x) → η-inv (η φ) ≡ φ r φ = funExt (λ a → ◯-rec-β (w a) (λ φ₀ → φ₀ a) φ) →-isModal : {A B : Type ℓ} → isModal B → isModal (A → B) →-isModal w = Π-isModal (λ _ → w) {- sigma types of a modal dependent type with modal base are modal -} Σ-isModal : {A : Type ℓ} (B : A → Type ℓ) → isModal A → ((a : A) → isModal (B a)) → isModal (Σ A B) Σ-isModal {A} B A-modal B-modal = retractIsModal {◯ (Σ A B)} {Σ A B} ◯-isModal η-inv η r where h : ◯ (Σ A B) → A h = ◯-rec A-modal fst h-β : (x : Σ A B) → h (η x) ≡ fst x h-β = ◯-rec-β A-modal fst f : (j : I) → (x : Σ A B) → B (h-β x j) f j x = transp (λ i → B (h-β x ((~ i) ∨ j))) j (snd x) k : (y : ◯ (Σ A B)) → B (h y) k = ◯-elim (B-modal ∘ h) (f i0) η-inv : ◯ (Σ A B) → Σ A B η-inv y = h y , k y p : (x : Σ A B) → k (η x) ≡ f i0 x p = ◯-elim-β (B-modal ∘ h) (f i0) almost : (x : Σ A B) → (h (η x) , f i0 x) ≡ x almost x i = h-β x i , f i x r : (x : Σ A B) → η-inv (η x) ≡ x r x = (λ i → h (η x) , p x i) ∙ (almost x)
32.602564
105
0.470507
591500a3823eaa9d0c6aa4187f74899d78d8dd88
3,303
agda
Agda
Cubical/Relation/Binary/Raw/Construct/NonStrictToStrict.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Relation/Binary/Raw/Construct/NonStrictToStrict.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Relation/Binary/Raw/Construct/NonStrictToStrict.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Core.Everything open import Cubical.Relation.Binary.Raw module Cubical.Relation.Binary.Raw.Construct.NonStrictToStrict {a ℓ} {A : Type a} (_≤_ : RawRel A ℓ) where open import Cubical.Relation.Binary.Raw.Properties open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Data.Sum.Base using (inl; inr) open import Cubical.Data.Empty hiding (rec) open import Cubical.Foundations.Function using (_∘_; flip) open import Cubical.Relation.Nullary open import Cubical.HITs.PropositionalTruncation hiding (elim) private _≢_ : RawRel A a x ≢ y = ¬ (x ≡ y) ------------------------------------------------------------------------ -- _≤_ can be turned into _<_ as follows: _<_ : RawRel A _ x < y = x ≤ y × x ≢ y ------------------------------------------------------------------------ -- Relationship between relations <⇒≤ : _<_ ⇒ _≤_ <⇒≤ = fst <⇒≢ : _<_ ⇒ _≢_ <⇒≢ = snd ≤∧≢⇒< : ∀ {x y} → x ≤ y → x ≢ y → x < y ≤∧≢⇒< = _,_ <⇒≱ : Antisymmetric _≤_ → ∀ {x y} → x < y → ¬ (y ≤ x) <⇒≱ antisym (x≤y , x≢y) y≤x = x≢y (antisym x≤y y≤x) ≤⇒≯ : Antisymmetric _≤_ → ∀ {x y} → x ≤ y → ¬ (y < x) ≤⇒≯ antisym x≤y y<x = <⇒≱ antisym y<x x≤y ≰⇒> : Reflexive _≤_ → Total _≤_ → ∀ {x y} → ¬ (x ≤ y) → y < x ≰⇒> rfl total {x} {y} x≰y with total x y ... | inl x≤y = elim (x≰y x≤y) ... | inr y≤x = y≤x , x≰y ∘ reflx→fromeq _≤_ rfl ∘ sym ≮⇒≥ : Discrete A → Reflexive _≤_ → Total _≤_ → ∀ {x y} → ¬ (x < y) → y ≤ x ≮⇒≥ _≟_ ≤-refl _≤?_ {x} {y} x≮y with x ≟ y ... | yes x≈y = reflx→fromeq _≤_ ≤-refl (sym x≈y) ... | no x≢y with y ≤? x ... | inl y≤x = y≤x ... | inr x≤y = elim (x≮y (x≤y , x≢y)) ------------------------------------------------------------------------ -- Relational properties <-isPropValued : isPropValued _≤_ → isPropValued _<_ <-isPropValued propv x y = isProp× (propv x y) (isPropΠ λ _ → isProp⊥) <-toNotEq : ToNotEq _<_ <-toNotEq (_ , x≢y) x≡y = x≢y x≡y <-irrefl : Irreflexive _<_ <-irrefl = tonoteq→irrefl _<_ <-toNotEq <-transitive : IsPartialOrder _≤_ → Transitive _<_ <-transitive po (x≤y , x≢y) (y≤z , y≉z) = (transitive x≤y y≤z , x≢y ∘ antisym x≤y ∘ transitive y≤z ∘ fromEq ∘ sym) where open IsPartialOrder po <-≤-trans : Transitive _≤_ → Antisymmetric _≤_ → Trans _<_ _≤_ _<_ <-≤-trans transitive antisym (x≤y , x≢y) y≤z = transitive x≤y y≤z , (λ x≡z → x≢y (antisym x≤y (Respectsʳ≡ _≤_ (sym x≡z) y≤z))) ≤-<-trans : Transitive _≤_ → Antisymmetric _≤_ → Trans _≤_ _<_ _<_ ≤-<-trans trans antisym x≤y (y≤z , y≢z) = trans x≤y y≤z , (λ x≡z → y≢z (antisym y≤z (Respectsˡ≡ _≤_ x≡z x≤y))) <-asym : Antisymmetric _≤_ → Asymmetric _<_ <-asym antisym (x≤y , x≢y) (y≤x , _) = x≢y (antisym x≤y y≤x) <-decidable : Discrete A → Decidable _≤_ → Decidable _<_ <-decidable _≟_ _≤?_ x y with x ≤? y ... | no ¬p = no (¬p ∘ fst) ... | yes p with x ≟ y ... | yes q = no (λ x<y → snd x<y q) ... | no ¬q = yes (p , ¬q) ------------------------------------------------------------------------ -- Structures isStrictPartialOrder : IsPartialOrder _≤_ → IsStrictPartialOrder _<_ isStrictPartialOrder po = record { irrefl = <-irrefl ; transitive = <-transitive po } where open IsPartialOrder po
30.869159
81
0.539812
58cb4a2b1ba8c42a7d15c67bac8a4aa738b63cb6
3,041
agda
Agda
LargeCombinators.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
1
2021-02-13T14:48:45.000Z
2021-02-13T14:48:45.000Z
LargeCombinators.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
null
null
null
LargeCombinators.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Yet another implementation of the Fibonacci sequence using tail ------------------------------------------------------------------------ module LargeCombinators where open import Codata.Musical.Notation open import Codata.Musical.Stream as S using (Stream; _∷_; _≈_) open import Data.Nat import Relation.Binary.PropositionalEquality as P -- Stream programs. Note that the destructor tail is encapsulated in a -- larger combinator, which also incorporates a constructor. This -- ensures that the combinator can be used freely, with no risk of -- destroying productivity. -- -- Note that, in the general case, the implementation of whnf for the -- "large combinator" may be quite tricky. In this case the -- implementation turns out to be very simple, though. -- -- The idea to use a "large combinator" is due to Thorsten Altenkirch. infixr 5 _∷_ data StreamP (A : Set) : Set where _∷_ : (x : A) (xs : ∞ (StreamP A)) → StreamP A zipWith : (f : A → A → A) (xs ys : StreamP A) → StreamP A -- The intention is that ⟦ x ∷zipWith f · xs [tail ys ] ⟧P should be -- equal to x ∷ ♯ S.zipWith f ⟦ xs ⟧P (S.tail ⟦ ys ⟧P). _∷zipWith_·_[tail_] : (x : A) (f : A → A → A) (xs ys : StreamP A) → StreamP A -- WHNFs. data StreamW (A : Set) : Set where _∷_ : (x : A) (xs : StreamP A) → StreamW A -- Stream programs can be turned into streams. whnf : ∀ {A} → StreamP A → StreamW A whnf (x ∷ xs) = x ∷ ♭ xs whnf (x ∷zipWith f · xs′ [tail ys ]) with whnf ys ... | _ ∷ ys′ = x ∷ zipWith f xs′ ys′ whnf (zipWith f xs ys) with whnf xs | whnf ys ... | x ∷ xs′ | y ∷ ys′ = f x y ∷ zipWith f xs′ ys′ mutual ⟦_⟧W : ∀ {A} → StreamW A → Stream A ⟦ x ∷ xs ⟧W = x ∷ ♯ ⟦ xs ⟧P ⟦_⟧P : ∀ {A} → StreamP A → Stream A ⟦ xs ⟧P = ⟦ whnf xs ⟧W -- The Fibonacci sequence. fib : StreamP ℕ fib = 0 ∷ ♯ (1 ∷zipWith _+_ · fib [tail fib ]) -- ⟦_⟧P is homomorphic with respect to zipWith/S.zipWith. zipWith-hom : ∀ {A} (f : A → A → A) (xs ys : StreamP A) → ⟦ zipWith f xs ys ⟧P ≈ S.zipWith f ⟦ xs ⟧P ⟦ ys ⟧P zipWith-hom f xs ys with whnf xs | whnf ys ... | x ∷ xs′ | y ∷ ys′ = P.refl ∷ ♯ zipWith-hom f xs′ ys′ -- The stream ⟦ fib ⟧P satisfies its intended defining equation. fib-correct : ⟦ fib ⟧P ≈ 0 ∷ ♯ (1 ∷ ♯ (S.zipWith _+_ ⟦ fib ⟧P (S.tail ⟦ fib ⟧P))) fib-correct = P.refl ∷ ♯ (P.refl ∷ ♯ zipWith-hom _+_ fib (1 ∷zipWith _+_ · fib [tail fib ])) -- For completeness, let us show that _∷zipWith_·_[tail_] is correctly -- implemented. open import Relation.Binary.PropositionalEquality as P using (_≡_; [_]) _∷zipWith_·_[tail_]-hom : ∀ {A} (x : A) (f : A → A → A) (xs ys : StreamP A) → ⟦ x ∷zipWith f · xs [tail ys ] ⟧P ≈ x ∷ ♯ S.zipWith f ⟦ xs ⟧P (S.tail ⟦ ys ⟧P) x ∷zipWith f · xs [tail ys ]-hom with whnf ys | P.inspect whnf ys ... | y ∷ ys′ | [ eq ] = P.refl ∷ ♯ helper eq where helper : whnf ys ≡ y ∷ ys′ → ⟦ zipWith f xs ys′ ⟧P ≈ S.zipWith f ⟦ xs ⟧P (S.tail ⟦ ys ⟧P) helper eq rewrite eq = zipWith-hom f xs ys′
32.351064
72
0.581059
c774f268d6925912ea59a6acb74416a9fcd0ab37
6,382
agda
Agda
Cubical/HITs/Susp/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/HITs/Susp/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/HITs/Susp/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.HITs.Susp.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Pointed open import Cubical.Data.Bool open import Cubical.Data.Empty open import Cubical.HITs.S1 open import Cubical.HITs.S2 open import Cubical.HITs.S3 open Iso private variable ℓ ℓ′ : Level data Susp (A : Type ℓ) : Type ℓ where north : Susp A south : Susp A merid : (a : A) → north ≡ south Susp∙ : (A : Type ℓ) → Pointed ℓ Susp∙ A = Susp A , north -- induced function suspFun : {A : Type ℓ} {B : Type ℓ′} (f : A → B) → Susp A → Susp B suspFun f north = north suspFun f south = south suspFun f (merid a i) = merid (f a) i BoolIsoSusp⊥ : Iso Bool (Susp ⊥) fun BoolIsoSusp⊥ = λ {true → north; false → south} inv BoolIsoSusp⊥ = λ {north → true; south → false} rightInv BoolIsoSusp⊥ = λ {north → refl; south → refl} leftInv BoolIsoSusp⊥ = λ {true → refl; false → refl} Bool≃Susp⊥ : Bool ≃ Susp ⊥ Bool≃Susp⊥ = isoToEquiv BoolIsoSusp⊥ SuspBool : Type₀ SuspBool = Susp Bool SuspBool→S¹ : SuspBool → S¹ SuspBool→S¹ north = base SuspBool→S¹ south = base SuspBool→S¹ (merid false i) = loop i SuspBool→S¹ (merid true i) = base S¹→SuspBool : S¹ → SuspBool S¹→SuspBool base = north S¹→SuspBool (loop i) = (merid false ∙ sym (merid true)) i SuspBool→S¹→SuspBool : (x : SuspBool) → Path _ (S¹→SuspBool (SuspBool→S¹ x)) x SuspBool→S¹→SuspBool north = refl SuspBool→S¹→SuspBool south = merid true SuspBool→S¹→SuspBool (merid false i) j = hcomp (λ k → (λ { (j = i1) → merid false i ; (i = i0) → north ; (i = i1) → merid true (j ∨ ~ k)})) (merid false i) SuspBool→S¹→SuspBool (merid true i) j = merid true (i ∧ j) S¹→SuspBool→S¹ : (x : S¹) → SuspBool→S¹ (S¹→SuspBool x) ≡ x S¹→SuspBool→S¹ base = refl S¹→SuspBool→S¹ (loop i) j = hfill (λ k → λ { (i = i0) → base ; (i = i1) → base }) (inS (loop i)) (~ j) S¹IsoSuspBool : Iso S¹ SuspBool fun S¹IsoSuspBool = S¹→SuspBool inv S¹IsoSuspBool = SuspBool→S¹ rightInv S¹IsoSuspBool = SuspBool→S¹→SuspBool leftInv S¹IsoSuspBool = S¹→SuspBool→S¹ S¹≃SuspBool : S¹ ≃ SuspBool S¹≃SuspBool = isoToEquiv S¹IsoSuspBool S¹≡SuspBool : S¹ ≡ SuspBool S¹≡SuspBool = ua S¹≃SuspBool -- Now the sphere SuspS¹ : Type₀ SuspS¹ = Susp S¹ SuspS¹→S² : SuspS¹ → S² SuspS¹→S² north = base SuspS¹→S² south = base SuspS¹→S² (merid base i) = base SuspS¹→S² (merid (loop j) i) = surf i j meridian-contraction : I → I → I → SuspS¹ meridian-contraction i j l = hfill (λ k → λ { (i = i0) → north ; (i = i1) → merid base (~ k) ; (j = i0) → merid base (~ k ∧ i) ; (j = i1) → merid base (~ k ∧ i) }) (inS (merid (loop j) i)) l S²→SuspS¹ : S² → SuspS¹ S²→SuspS¹ base = north S²→SuspS¹ (surf i j) = meridian-contraction i j i1 S²→SuspS¹→S² : ∀ x → SuspS¹→S² (S²→SuspS¹ x) ≡ x S²→SuspS¹→S² base k = base S²→SuspS¹→S² (surf i j) k = SuspS¹→S² (meridian-contraction i j (~ k)) SuspS¹→S²→SuspS¹ : ∀ x → S²→SuspS¹ (SuspS¹→S² x) ≡ x SuspS¹→S²→SuspS¹ north k = north SuspS¹→S²→SuspS¹ south k = merid base k SuspS¹→S²→SuspS¹ (merid base j) k = merid base (k ∧ j) SuspS¹→S²→SuspS¹ (merid (loop j) i) k = meridian-contraction i j (~ k) S²IsoSuspS¹ : Iso S² SuspS¹ fun S²IsoSuspS¹ = S²→SuspS¹ inv S²IsoSuspS¹ = SuspS¹→S² rightInv S²IsoSuspS¹ = SuspS¹→S²→SuspS¹ leftInv S²IsoSuspS¹ = S²→SuspS¹→S² S²≃SuspS¹ : S² ≃ SuspS¹ S²≃SuspS¹ = isoToEquiv S²IsoSuspS¹ S²≡SuspS¹ : S² ≡ SuspS¹ S²≡SuspS¹ = ua S²≃SuspS¹ -- And the 3-sphere SuspS² : Type₀ SuspS² = Susp S² SuspS²→S³ : SuspS² → S³ SuspS²→S³ north = base SuspS²→S³ south = base SuspS²→S³ (merid base i) = base SuspS²→S³ (merid (surf j k) i) = surf i j k meridian-contraction-2 : I → I → I → I → SuspS² meridian-contraction-2 i j k l = hfill (λ m → λ { (i = i0) → north ; (i = i1) → merid base (~ m) ; (j = i0) → merid base (~ m ∧ i) ; (j = i1) → merid base (~ m ∧ i) ; (k = i0) → merid base (~ m ∧ i) ; (k = i1) → merid base (~ m ∧ i) }) (inS (merid (surf j k) i)) l S³→SuspS² : S³ → SuspS² S³→SuspS² base = north S³→SuspS² (surf i j k) = meridian-contraction-2 i j k i1 S³→SuspS²→S³ : ∀ x → SuspS²→S³ (S³→SuspS² x) ≡ x S³→SuspS²→S³ base l = base S³→SuspS²→S³ (surf i j k) l = SuspS²→S³ (meridian-contraction-2 i j k (~ l)) SuspS²→S³→SuspS² : ∀ x → S³→SuspS² (SuspS²→S³ x) ≡ x SuspS²→S³→SuspS² north l = north SuspS²→S³→SuspS² south l = merid base l SuspS²→S³→SuspS² (merid base j) l = merid base (l ∧ j) SuspS²→S³→SuspS² (merid (surf j k) i) l = meridian-contraction-2 i j k (~ l) S³IsoSuspS² : Iso S³ SuspS² fun S³IsoSuspS² = S³→SuspS² inv S³IsoSuspS² = SuspS²→S³ rightInv S³IsoSuspS² = SuspS²→S³→SuspS² leftInv S³IsoSuspS² = S³→SuspS²→S³ S³≃SuspS² : S³ ≃ SuspS² S³≃SuspS² = isoToEquiv S³IsoSuspS² S³≡SuspS² : S³ ≡ SuspS² S³≡SuspS² = ua S³≃SuspS² IsoType→IsoSusp : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → Iso A B → Iso (Susp A) (Susp B) fun (IsoType→IsoSusp is) north = north fun (IsoType→IsoSusp is) south = south fun (IsoType→IsoSusp is) (merid a i) = merid (fun is a) i inv (IsoType→IsoSusp is) north = north inv (IsoType→IsoSusp is) south = south inv (IsoType→IsoSusp is) (merid a i) = merid (inv is a) i rightInv (IsoType→IsoSusp is) north = refl rightInv (IsoType→IsoSusp is) south = refl rightInv (IsoType→IsoSusp is) (merid a i) j = merid (rightInv is a j) i leftInv (IsoType→IsoSusp is) north = refl leftInv (IsoType→IsoSusp is) south = refl leftInv (IsoType→IsoSusp is) (merid a i) j = merid (leftInv is a j) i IsoSuspS²SuspSuspS¹ : Iso (Susp S²) (Susp (Susp S¹)) IsoSuspS²SuspSuspS¹ = IsoType→IsoSusp S²IsoSuspS¹ IsoS³S3 : Iso S³ (Susp (Susp S¹)) IsoS³S3 = compIso S³IsoSuspS² IsoSuspS²SuspSuspS¹
32.561224
93
0.600752
2ef6f632a2bd8080c0979d243748019317fcc99a
1,904
agda
Agda
presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/spaceShipCell.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
23
2016-06-19T12:57:55.000Z
2020-10-12T23:15:25.000Z
presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/spaceShipCell.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
null
null
null
presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/spaceShipCell.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
2
2018-09-01T15:02:37.000Z
2022-03-12T11:41:00.000Z
module spaceShipCell where open import Unit open import Data.List.Base hiding ([]) open import Data.Bool.Base open import Data.Integer open import Data.Product hiding (map) open import NativeIO open import SizedIO.Object open import SizedIO.IOObject open import StateSizedIO.GUI.WxBindingsFFI open import StateSizedIO.GUI.WxGraphicsLib open import StateSized.GUI.ShipBitMap open import SizedIO.Base open import StateSizedIO.GUI.BaseStateDependent open import StateSizedIO.GUI.VariableList open import Sized.SimpleCell hiding (main; program) VarType = Object (cellI ℤ) cellℤC : (z : ℤ ) → VarType objectMethod (cellℤC z) get = ( z , cellℤC z ) objectMethod (cellℤC z) (put z') = ( _ , cellℤC z' ) varInit : VarType varInit = cellℤC (+ 150) onPaint : ∀{i} → VarType → DC → Rect → IO GuiLev1Interface i VarType onPaint c dc rect = let (z , c₁) = objectMethod c get in do (drawBitmap dc ship (z , (+ 150)) true) λ _ → return c₁ moveSpaceShip : ∀{i} → Frame → VarType → IO GuiLev1Interface i VarType moveSpaceShip fra c = let (z , c₁) = objectMethod c get (_ , c₂) = objectMethod c₁ (put (z + + 20)) in return c₂ callRepaint : ∀{i} → Frame → VarType → IO GuiLev1Interface i VarType callRepaint fra c = do (repaint fra) λ _ → return c buttonHandler : ∀{i} → Frame → List (VarType → IO GuiLev1Interface i VarType) buttonHandler fra = moveSpaceShip fra ∷ [ callRepaint fra ] program : ∀{i} → IOˢ GuiLev2Interface i (λ _ → Unit) [] program = doˢ (level1C makeFrame) λ fra → doˢ (level1C (makeButton fra)) λ bt → doˢ (level1C (addButton fra bt)) λ _ → doˢ (createVar varInit) λ _ → doˢ (setButtonHandler bt (buttonHandler fra)) λ _ → doˢ (setOnPaint fra [ onPaint ]) returnˢ main : NativeIO Unit main = start (translateLev2 program)
32.271186
78
0.664916
5907ce72f9eecb18a5fc4519c10e1dfc5bea82fa
370
agda
Agda
src/prototyping/term/tests/Pruning.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
src/prototyping/term/tests/Pruning.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
src/prototyping/term/tests/Pruning.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
module Pruning where le2 : {B : Set} -> (A : Set) -> A -> (C : Set) -> C -> (A -> C -> B) -> B le2 _ x _ y f = f x y test : le2 Set _ (Set -> Set) _ (\ H -> (\M -> (z : Set) -> H == M z)) test z = refl {- let : {B : Set} -> (A : Set) -> A -> (A -> B) -> B let A x f = f x test : let Set _ (\ H -> let (Set -> Set) _ (\ M -> (z : Set) -> H == M z)) test z = refl -}
24.666667
75
0.4
ad3f0b4e5c67aa2a7318e913c5866110bda8a9c8
1,221
agda
Agda
Cubical/Algebra/Group/DirProd.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/DirProd.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/DirProd.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.Group.DirProd where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Monoid open import Cubical.Algebra.Semigroup open GroupStr open IsGroup hiding (·IdR ; ·IdL ; ·InvR ; ·InvL) open IsMonoid hiding (·IdR ; ·IdL) open IsSemigroup DirProd : ∀ {ℓ ℓ'} → Group ℓ → Group ℓ' → Group (ℓ-max ℓ ℓ') fst (DirProd G H) = (fst G) × (fst H) 1g (snd (DirProd G H)) = (1g (snd G)) , (1g (snd H)) _·_ (snd (DirProd G H)) (g , h) (g' , h') = _·_ (snd G) g g' , _·_ (snd H) h h' inv (snd (DirProd G H)) (g , h) = (inv (snd G) g) , (inv (snd H) h) isGroup (snd (DirProd G H)) = makeIsGroup (isSet× (is-set (snd G)) (is-set (snd H))) (λ x y z → ≡-× (·Assoc (snd G) _ _ _) (·Assoc (snd H) _ _ _)) (λ x → ≡-× (·IdR (snd G) _) (·IdR (snd H) _)) (λ x → ≡-× (·IdL (snd G) _) (·IdL (snd H) _)) (λ x → ≡-× (·InvR (snd G) _) (·InvR (snd H) _)) λ x → ≡-× (·InvL (snd G) _) (·InvL (snd H) _)
43.607143
91
0.511057
ad1e89a27aba3c8cc9dafd97df4470f7ff85f7a9
1,986
agda
Agda
src/Prelude/Alternative.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
111
2015-01-05T11:28:15.000Z
2022-02-12T23:29:26.000Z
src/Prelude/Alternative.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
59
2016-02-09T05:36:44.000Z
2022-01-14T07:32:36.000Z
src/Prelude/Alternative.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
24
2015-03-12T18:03:45.000Z
2021-04-22T06:10:41.000Z
module Prelude.Alternative where open import Agda.Primitive open import Prelude.Bool open import Prelude.Maybe open import Prelude.List open import Prelude.Sum open import Prelude.Decidable open import Prelude.Functor open import Prelude.Applicative open import Prelude.Function open import Prelude.Monoid open import Prelude.Variables renaming (ℓ₁ to a; ℓ₂ to b) module _ (F : Set a → Set b) where record FunctorZero : Set (lsuc a ⊔ b) where field empty : ∀ {A} → F A overlap {{super}} : Functor F record Alternative : Set (lsuc a ⊔ b) where infixl 3 _<|>_ field _<|>_ : ∀ {A} → F A → F A → F A overlap {{super}} : FunctorZero open FunctorZero {{...}} public open Alternative {{...}} public {-# DISPLAY FunctorZero.empty _ = empty #-} {-# DISPLAY Alternative._<|>_ _ x y = x <|> y #-} instance FunctorZeroMaybe : FunctorZero (Maybe {a}) empty {{FunctorZeroMaybe}} = nothing -- Left-biased choice AlternativeMaybe : Alternative (Maybe {a}) _<|>_ {{AlternativeMaybe}} nothing y = y _<|>_ {{AlternativeMaybe}} x y = x FunctorZeroList : FunctorZero (List {a}) empty {{FunctorZeroList}} = [] AlternativeList : Alternative (List {a}) _<|>_ {{AlternativeList}} = _++_ FunctorZeroEither : ⦃ Monoid A ⦄ → FunctorZero (Either {b = a} A) empty {{FunctorZeroEither}} = left mempty AlternativeEither : ⦃ Monoid A ⦄ → Alternative (Either {b = a} A) _<|>_ {{AlternativeEither}} x y = either (const y) right x module _ ⦃ _ : FunctorZero F ⦄ where guard! : Bool → F A → F A guard! true x = x guard! false _ = empty guard : (d : Dec A) → (⦃ A ⦄ → F B) → F B guard (yes p) x = x ⦃ p ⦄ guard (no _) _ = empty yes! : ⦃ Applicative F ⦄ → (d : Dec A) → F A yes! (yes p) = pure p yes! (no _) = empty module _ ⦃ _ : Alternative F ⦄ where choice : List (F A) → F A choice = foldr _<|>_ empty maybeA : ⦃ Applicative F ⦄ → F A → F (Maybe A) maybeA x = just <$> x <|> pure nothing
25.792208
67
0.628399
4d1fe4041df7e4a585de9400ef0b8d143ecc3376
145
agda
Agda
test/interaction/Issue2568.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue2568.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue2568.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
postulate A : Set T : A → Set g : {{a : A}} → Set → T a test : {{a b : A}} → Set test {{a}} {{b}} = {!g A!} -- C-u C-u C-c C-d gives T b
16.111111
55
0.406897
57c897b5070243d157f710d6e07e241b9de0cbb3
5,753
agda
Agda
src/Semantics/Soundness.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
4
2018-05-31T20:37:04.000Z
2022-01-04T09:33:48.000Z
src/Semantics/Soundness.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
null
null
null
src/Semantics/Soundness.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
null
null
null
-- Soundness of term equality module Semantics.Soundness where open import Syntax.Types open import Syntax.Context renaming (_,_ to _,,_) open import Syntax.Terms open import Syntax.Equality open import Syntax.Substitution open import Semantics.Types open import Semantics.Context open import Semantics.Terms open import Semantics.Substitution open import Semantics.Bind open import CategoryTheory.Categories using (ext) open import CategoryTheory.BCCCs.Cartesian using (Product) open import CategoryTheory.BCCCs open import CategoryTheory.Instances.Reactive renaming (top to Top) open import CategoryTheory.NatTrans open import CategoryTheory.Monad open import TemporalOps.Diamond open import TemporalOps.OtherOps open import Data.Sum open import Data.Product using (_,_ ; proj₁ ; proj₂) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_ ; refl ; sym ; trans ; cong ; cong₂ ; subst) open ≡.≡-Reasoning open Monad M-◇ open import Holes.Term using (⌞_⌟) open import Holes.Cong.Propositional open ⟦Kit⟧ ⟦𝒯erm⟧ open Kit 𝒯erm open ⟦K⟧ ⟦𝒯erm⟧ open K 𝒯erm mutual -- Soundness of term equality: equal terms have equal denotations sound : ∀{A Γ} {M₁ M₂ : Γ ⊢ A} -> Γ ⊢ M₁ ≡ M₂ ∷ A -> ⟦ M₁ ⟧ₘ ≈ ⟦ M₂ ⟧ₘ sound (refl M) = refl sound (Eq.sym eq) = ≡.sym (sound eq) sound (Eq.trans eq₁ eq₂) = ≡.trans (sound eq₁) (sound eq₂) sound (β-lam N M) {n} {⟦Γ⟧} rewrite subst-sound M N {n} {⟦Γ⟧} = refl sound (β-fst M N) = refl sound (β-snd M N) = refl sound (β-inl M N₁ N₂) {n} {⟦Γ⟧} rewrite subst-sound M N₁ {n} {⟦Γ⟧} = refl sound (β-inr M N₁ N₂) {n} {⟦Γ⟧} rewrite subst-sound M N₂ {n} {⟦Γ⟧} = refl sound (β-sig N M) {n} {⟦Γ⟧} rewrite subst-sound M N {n} {⟦Γ⟧} = refl sound (η-lam {A} M) {n} {⟦Γ⟧} = ext λ ⟦A⟧ → cong (λ x → x ⟦A⟧) (≡.sym (⟦𝓌⟧ (A now) M {n} {⟦Γ⟧ , ⟦A⟧})) sound (η-pair M) = ≡.sym (⊗-η-exp {m = ⟦ M ⟧ₘ}) sound (η-unit M) = refl sound (η-sum M) {n} {⟦Γ⟧} with ⟦ M ⟧ₘ n ⟦Γ⟧ sound (η-sum M) {n} {a} | inj₁ _ = refl sound (η-sum M) {n} {a} | inj₂ _ = refl sound (η-sig M) = refl sound {Γ = Γ} (η-evt {A} M) {n} {a} rewrite bind-to->>= Γ (⟦ M ⟧ₘ) (η.at ⟦ A ⟧ₜ ∘ π₂) n a = ≡.sym (>>=-unit-right (⟦ M ⟧ₘ n a)) sound (cong-pair eq₁ eq₂) {n} {a} rewrite sound eq₁ {n} {a} | sound eq₂ {n} {a} = refl sound (cong-fst eq) {n} {a} rewrite sound eq {n} {a} = refl sound (cong-snd eq) {n} {a} rewrite sound eq {n} {a} = refl sound (cong-lam eq) {n} {a} = ext λ ⟦A⟧ → sound eq sound (cong-app eq₁ eq₂) {n} {a} rewrite sound eq₁ {n} {a} | sound eq₂ {n} {a} = refl sound (cong-inl eq) {n} {a} rewrite sound eq {n} {a} = refl sound (cong-inr eq) {n} {a} rewrite sound eq {n} {a} = refl sound (cong-case eq N₁ N₂) {n} {a} rewrite sound eq {n} {a} = refl sound (cong-sig eq) {n} {a} rewrite sound eq {n} {a} = refl sound (cong-letSig eq N) {n} {a} rewrite sound eq {n} {a} = refl sound (cong-sample eq) {n} {a} rewrite sound eq {n} {a} = refl sound (cong-stable eq) = ext λ k → sound eq sound (cong-event eq) {n} {a} rewrite sound′ eq {n} {a} = refl -- Soundness of computational term equality: equal terms have equal denotations sound′ : ∀{A Γ} {M₁ M₂ : Γ ⊨ A} -> Γ ⊨ M₁ ≡ M₂ ∷ A -> ⟦ M₁ ⟧ᵐ ≈ ⟦ M₂ ⟧ᵐ sound′ (refl M) = refl sound′ (Eq′.sym eq) = ≡.sym (sound′ eq) sound′ (Eq′.trans eq₁ eq₂) = ≡.trans (sound′ eq₁) (sound′ eq₂) sound′ (β-sig′ C M) {n} {⟦Γ⟧} rewrite subst′-sound M C {n} {⟦Γ⟧} = refl sound′ (β-evt′ C D) {n} {⟦Γ⟧} rewrite subst″-sound D C {n} {⟦Γ⟧} = refl sound′ {_}{Γ} (β-selectₚ {A}{B}{C} C₁ C₂ C₃ M₁ M₂) {n} {⟦Γ⟧} = begin ⟦ select event (pure M₁) ↦ C₁ || event (pure M₂) ↦ C₂ ||both↦ C₃ ⟧ᵐ n ⟦Γ⟧ ≡⟨⟩ ⟦ C₃ ⟧ᵐ n ((⌞ ⟦ Γ ˢ⟧□ n ⟦Γ⟧ n ⌟ , ⟦ M₁ ⟧ₘ n ⟦Γ⟧) , ⟦ M₂ ⟧ₘ n ⟦Γ⟧) ≡⟨ cong! (⟦ˢ⟧-factor Γ {n} {⟦Γ⟧}) ⟩ ⟦ C₃ ⟧ᵐ n ((⌞ ⟦ Γ ˢ⟧ n ⟦Γ⟧ ⌟ , ⟦ M₁ ⟧ₘ n ⟦Γ⟧) , ⟦ M₂ ⟧ₘ n ⟦Γ⟧) ≡⟨ cong! (⟦subst⟧-Γˢ⊆Γ Γ {n} {⟦Γ⟧}) ⟩ ⟦ C₃ ⟧ᵐ n (⌞ (⟦subst⟧ (Γˢ⊆Γ Γ ⊆ₛ 𝒯erm) n ⟦Γ⟧ , ⟦ M₁ ⟧ₘ n ⟦Γ⟧) ⌟ , ⟦ M₂ ⟧ₘ n ⟦Γ⟧ ) ≡⟨ cong! (⟦↑⟧ (A now) (Γˢ⊆Γ Γ ⊆ₛ 𝒯erm) {n} {⟦Γ⟧ , (⟦ M₁ ⟧ₘ n ⟦Γ⟧)}) ⟩ ⟦ C₃ ⟧ᵐ n ⌞ ((⟦subst⟧ (_↑_ {A now} (Γˢ⊆Γ Γ ⊆ₛ 𝒯erm) 𝒯erm) n (⟦Γ⟧ , ⟦ M₁ ⟧ₘ n ⟦Γ⟧)) , ⟦ M₂ ⟧ₘ n ⟦Γ⟧) ⌟ ≡⟨ cong! (⟦↑⟧ (B now) (_↑_ {A now} (Γˢ⊆Γ Γ ⊆ₛ 𝒯erm) 𝒯erm) {n} {(⟦Γ⟧ , ⟦ M₁ ⟧ₘ n ⟦Γ⟧) , (⟦ M₂ ⟧ₘ n ⟦Γ⟧)}) ⟩ ⟦ C₃ ⟧ᵐ n (⟦subst⟧ (_↑_ {B now} (_↑_ {A now} (Γˢ⊆Γ Γ ⊆ₛ 𝒯erm) 𝒯erm) 𝒯erm) n ((⟦Γ⟧ , ⟦ M₁ ⟧ₘ n ⟦Γ⟧) , ⌞ ⟦ M₂ ⟧ₘ n ⟦Γ⟧ ⌟)) ≡⟨ cong! (⟦𝓌⟧ (A now) M₂ {n} {⟦Γ⟧ , (⟦ M₁ ⟧ₘ n ⟦Γ⟧)}) ⟩ ⟦ C₃ ⟧ᵐ n (⟦subst⟧ (weakₛ 𝒯ermₛ s) n ((⟦Γ⟧ , ⟦ M₁ ⟧ₘ n ⟦Γ⟧) , ⟦ 𝓌 M₂ ⟧ₘ n (⟦Γ⟧ , ⟦ M₁ ⟧ₘ n ⟦Γ⟧))) ≡⟨ ≡.sym (traverse′-sound ⟦𝒯erm⟧ (weakₛ 𝒯ermₛ s) C₃ {n} {(⟦Γ⟧ , ⟦ M₁ ⟧ₘ n ⟦Γ⟧) , ⟦ 𝓌 M₂ ⟧ₘ n (⟦Γ⟧ , (⟦ M₁ ⟧ₘ n ⟦Γ⟧))}) ⟩ ⟦ traverse′ (weakₛ 𝒯ermₛ s) C₃ ⟧ᵐ n ((⟦Γ⟧ , ⟦ M₁ ⟧ₘ n ⟦Γ⟧) , ⟦ 𝓌 M₂ ⟧ₘ n (⟦Γ⟧ , (⟦ M₁ ⟧ₘ n ⟦Γ⟧))) ≡⟨ ≡.sym (subst′-sound (𝓌 M₂) (weakening′ s C₃) {n} {⟦Γ⟧ , (⟦ M₁ ⟧ₘ n ⟦Γ⟧)}) ⟩ ⟦ [ 𝓌 M₂ /′] (weakening′ s C₃) ⟧ᵐ n (⟦Γ⟧ , (⟦ M₁ ⟧ₘ n ⟦Γ⟧)) ≡⟨ ≡.sym (subst′-sound M₁ ([ 𝓌 M₂ /′] (weakening′ s C₃)) {n} {⟦Γ⟧} ) ⟩ ⟦ [ M₁ /′] ([ 𝓌 M₂ /′] (weakening′ s C₃)) ⟧ᵐ n ⟦Γ⟧ ∎ where s : Γ ˢ ,, A now ,, B now ⊆ Γ ,, A now ,, B now s = keep (keep (Γˢ⊆Γ Γ)) sound′ (η-sig′ M) = refl sound′ (cong-pure′ eq) {n} {⟦Γ⟧} rewrite sound eq {n} {⟦Γ⟧} = refl sound′ (cong-letSig′ eq B) {n} {⟦Γ⟧} rewrite sound eq {n} {⟦Γ⟧} = refl sound′ (cong-letEvt′ eq D) {n} {⟦Γ⟧} rewrite sound eq {n} {⟦Γ⟧} = refl
46.772358
132
0.505475
581330ae02c2543fb855a8bc29ba899dc61d9348
1,696
agda
Agda
examples/outdated-and-incorrect/Alonzo/PreludeList.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/Alonzo/PreludeList.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/Alonzo/PreludeList.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module PreludeList where open import AlonzoPrelude as Prelude open import PreludeNat infixr 50 _::_ _++_ data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _::_ #-} [_] : {A : Set} -> A -> List A [ x ] = x :: [] length : {A : Set} -> List A -> Nat length [] = 0 length (_ :: xs) = 1 + length xs map : {A B : Set} -> (A -> B) -> List A -> List B map f [] = [] map f (x :: xs) = f x :: map f xs _++_ : {A : Set} -> List A -> List A -> List A [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) zipWith : {A B C : Set} -> (A -> B -> C) -> List A -> List B -> List C zipWith f [] [] = [] zipWith f (x :: xs) (y :: ys) = f x y :: zipWith f xs ys zipWith f [] (_ :: _) = [] zipWith f (_ :: _) [] = [] foldr : {A B : Set} -> (A -> B -> B) -> B -> List A -> B foldr f z [] = z foldr f z (x :: xs) = f x (foldr f z xs) foldl : {A B : Set} -> (B -> A -> B) -> B -> List A -> B foldl f z [] = z foldl f z (x :: xs) = foldl f (f z x) xs replicate : {A : Set} -> Nat -> A -> List A replicate zero x = [] replicate (suc n) x = x :: replicate n x iterate : {A : Set} -> Nat -> (A -> A) -> A -> List A iterate zero f x = [] iterate (suc n) f x = x :: iterate n f (f x) splitAt : {A : Set} -> Nat -> List A -> List A × List A splitAt zero xs = < [] , xs > splitAt (suc n) [] = < [] , [] > splitAt (suc n) (x :: xs) = add x $ splitAt n xs where add : _ -> List _ × List _ -> List _ × List _ add x < ys , zs > = < x :: ys , zs > reverse : {A : Set} -> List A -> List A reverse xs = foldl (flip _::_) [] xs
25.69697
70
0.45283
410637d378dd66d4a359a8dbe0ca52cea87ba5e1
2,640
agda
Agda
src/Tactic/Nat/Generic.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
111
2015-01-05T11:28:15.000Z
2022-02-12T23:29:26.000Z
src/Tactic/Nat/Generic.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
59
2016-02-09T05:36:44.000Z
2022-01-14T07:32:36.000Z
src/Tactic/Nat/Generic.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
24
2015-03-12T18:03:45.000Z
2021-04-22T06:10:41.000Z
open import Agda.Builtin.Reflection using (Name) -- See Tactic.Nat for a description of the various tactics. module Tactic.Nat.Generic (`≤ `toLeq `fromLeq : Name) where open import Prelude open import Tactic.Reflection open import Tactic.Nat.Induction using (nat-induction) open import Tactic.Nat.Subtract using (autosub-tactic; by-tactic; refutesub-tactic; simplifygoal-tactic; simplifysub-tactic) private a→0 : Type → Term a→0 (def op _) = ifYes op == `≤ then def₀ `toLeq else def₀ (quote id) a→0 _ = def₀ (quote id) -- TODO perhaps return unknown? 0→a : Type → Term 0→a (def op _) = ifYes op == `≤ then def₀ `fromLeq else def₀ (quote id) 0→a _ = def₀ (quote id) -- TODO perhaps return unknown? applyTactic : (Type → TC Term) → Term → TC ⊤ applyTactic tac hole = do goal ← inferType hole unify hole ∘ (0→a goal `$_) =<< tac =<< inferNormalisedType (a→0 goal `$ hole) macro auto : Tactic auto hole = applyTactic autosub-tactic hole by : Term → Tactic by prf hole = do Prf ← inferNormalisedType prf applyTactic (by-tactic (a→0 Prf `$ prf)) hole refute : Term → Tactic refute prf hole = do Prf ← inferNormalisedType prf unify hole =<< refutesub-tactic (a→0 Prf `$ prf) simplify-goal : Tactic simplify-goal hole = do goal ← inferFunRange hole s-goal₀ ← simplifygoal-tactic =<< inferFunRange (a→0 goal `∘ hole) hole =′ 0→a goal `∘ s-goal₀ `∘ a→0 goal simplify : Term → Tactic simplify prf hole = do goal ← inferFunRange hole Prf ← inferNormalisedType prf s-goal₀ ← simplifysub-tactic (a→0 Prf `$ prf) =<< inferFunRange (a→0 goal `∘ hole) hole =′ (`λ $ 0→a goal `$ weaken 1 s-goal₀ `$ `λ $ a→0 goal `$ var₁ 1 (0→a Prf `$ var₀ 0)) induction : Tactic induction hole = do pi _ (abs _ goal) ← inferNormalisedType hole where meta x _ → blockOnMeta x _ → typeErrorS "Induction tactic must be applied to a function goal" hole₀ ← (a→0 goal `∘ hole) :′ unknown pi a b ← inferNormalisedType hole₀ where meta x _ → blockOnMeta x _ → typeErrorS "Induction tactic must be applied to a function goal" let P = lam visible b inStepCxt : {A : Set} → TC A → TC A inStepCxt {_} = λ′ (vArg (quoteTerm Nat)) ∘ λ′ (vArg unknown) base ← unknown :′ unknown step ← inStepCxt $ unknown :′ unknown hole =′ 0→a goal `∘ def₃ (quote nat-induction) P base (`λ $ `λ step) unify base =<< autosub-tactic =<< inferNormalisedType base inStepCxt (unify step =<< by-tactic (var₀ 0) =<< inferNormalisedType step)
36.164384
124
0.63447
043ec2ef579250c549da632cc6386d4815276228
2,007
agda
Agda
Thesis/ANormal.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
10
2015-03-04T06:09:20.000Z
2019-07-19T07:06:59.000Z
Thesis/ANormal.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
6
2015-07-01T18:09:31.000Z
2017-05-04T13:53:59.000Z
Thesis/ANormal.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
1
2016-02-18T12:26:44.000Z
2016-02-18T12:26:44.000Z
-- -- Formalize correctness of differentiation for the source calculus in the -- static caching paper (typed version). -- module Thesis.ANormal where open import Thesis.Types public open import Thesis.Contexts public open import Relation.Binary.PropositionalEquality data Term (Γ : Context) (τ : Type) : Set where var : (x : Var Γ τ) → Term Γ τ lett : ∀ {σ τ₁} → (f : Var Γ (σ ⇒ τ₁)) → (x : Var Γ σ) → Term (τ₁ • Γ) τ → Term Γ τ -- Also represent top-level definitions, so that we can somehow create functions -- via syntax. Made up on the moment. -- WARNING: this allows nested lambdas. That's more powerful than allowing only -- closures whose bodies can't contain lambdas, like in the paper. data Fun (Γ : Context) : (τ : Type) → Set where term : ∀ {τ} → Term Γ τ → Fun Γ τ abs : ∀ {σ τ} → Fun (σ • Γ) τ → Fun Γ (σ ⇒ τ) -- Indeed, caching doesn't work there with Fun. It works on FunR. Eventually -- should adapt definitions to FunR. data FunR (Γ : Context) : (τ : Type) → Set where cabsterm : ∀ {σ τ} → Term (σ • Γ) τ → FunR Γ (σ ⇒ τ) open import Thesis.Environments public ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧Context → ⟦ τ ⟧Type ⟦ var x ⟧Term ρ = ⟦ x ⟧Var ρ ⟦ lett f x t ⟧Term ρ = ⟦ t ⟧Term (⟦ f ⟧Var ρ (⟦ x ⟧Var ρ) • ρ) ⟦_⟧Fun : ∀ {Γ τ} → Fun Γ τ → ⟦ Γ ⟧Context → ⟦ τ ⟧Type ⟦ term t ⟧Fun ρ = ⟦ t ⟧Term ρ ⟦ abs f ⟧Fun ρ = λ v → ⟦ f ⟧Fun (v • ρ) -- Next steps: -- 1. Add a functional big-step semantics for this language: DONE. -- 2. Prove it sound wrt. the denotational semantics: DONE. -- 3. Add an erasure to a uni-typed language. DONE. -- 4. Redo 1 with an *untyped* functional big-step semantics. -- 5. Prove that evaluation and erasure commute: -- -- erasure-commute-term : ∀ {Γ τ} (t : T.Term Γ τ) ρ n → -- -- erase-errVal (T.eval-term t ρ n) ≡ eval-term (erase-term t) (erase-env ρ) n -- 6. Define new caching transformation into untyped language. -- -- 7. Prove the new transformation correct in the untyped language, by reusing -- evaluation on the source language.
37.166667
85
0.648729
58e504278fda38ee0c85284347bda12876ae4870
2,827
agda
Agda
nicolai/anonymousExistence/Sec6populatedness.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
nicolai/anonymousExistence/Sec6populatedness.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
null
null
null
nicolai/anonymousExistence/Sec6populatedness.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import library.Basics hiding (Type ; Σ) open import library.types.Sigma open import Sec2preliminaries open import Sec3hedberg open import Sec4hasConstToSplit -- In this section, we require function extensionality again. module Sec6populatedness where -- Definition 6.1 Pop : Type → Type Pop X = (f : X → X) → const f → fix f -- Theorem 6.2 Trunc→Pop : {X : Type} → Trunc X → Pop X Trunc→Pop z f c = rec {P = fix f} (fixed-point f c) (to-fix f c) z -- Lemma 6.3 module _ {X : Type} where pop→splitSup→X : Pop X → splitSup X → X pop→splitSup→X pop sps = fst (pop (fst fc) (snd fc)) where fc = (snd hasConst↔splitSup sps) use-funct : (splitSup X → X) → Trunc (splitSup X) → Trunc X use-funct f = trunc-functorial f tr-hst-X→pop : (Trunc (splitSup X) → Trunc X) → Pop X tr-hst-X→pop g f c = rec (fixed-point f c) (to-fix f c) (g ∣ hasConst→splitSup (f , c) ∣) -- we formulate the two logical equivalence that we will need explicitly: pop-alt : Pop X ↔ (Trunc (splitSup X) → Trunc X) pop-alt = use-funct ∘ pop→splitSup→X , tr-hst-X→pop pop-alt' : Pop X ↔ (splitSup X → X) pop-alt' = pop→splitSup→X , tr-hst-X→pop ∘ use-funct -- Theorem 6.4 pop-alt₂ : {X : Type} → Pop X ↔₀₁ ((P : Type) → (is-prop P) → (X ↔ P) → P) pop-alt₂ {X} = one , two where one : Pop X → (P : Type) → is-prop P → (X ↔ P) → P one pop P pp (xp , px) = xp (fst (pop f c)) where f : X → X f = px ∘ xp c : const f c x₁ x₂ = ap px (prop-has-all-paths pp _ _) two : ((P : Type) → is-prop P → (X ↔ P) → P) → Pop X two rest f c = rest (fix f) (fixed-point f c) (to-fix f c , from-fix f) -- Theorem 6.5 pop-property₁ : {X : Type} → X → Pop X pop-property₁ = Trunc→Pop ∘ ∣_∣ -- this (and the following results of this section) needs function extensionality open import library.types.Pi pop-property₂ : {X : Type} → is-prop (Pop X) pop-property₂ = Π-is-prop (λ f → Π-is-prop (λ c → fixed-point f c)) -- Theorem 6.6 hasConst↔PopX→X : {X : Type} → (hasConst X) ↔ (Pop X → X) hasConst↔PopX→X {X} = hasConst→PopX→X , rev where hasConst→PopX→X : hasConst X → Pop X → X hasConst→PopX→X (f , c) pop = fst (pop f c) rev : (Pop X → X) → hasConst X rev pp = (pp ∘ pop-property₁) , (λ x₁ x₂ → ap pp (prop-has-all-paths pop-property₂ _ _)) -- Theorem 6.6, second part prop→hasConst×PopX→X : {X : Type} → (is-prop X) → (hasConst X) × (Pop X → X) prop→hasConst×PopX→X p = fc , fst hasConst↔PopX→X fc where fc = idf _ , prop-has-all-paths p -- Theorem 6.7 pop-idem : {X : Type} → (Pop (Pop X)) ≃ (Pop X) pop-idem {X} = equiv f g auto₁ auto₂ where f = snd (prop→hasConst×PopX→X pop-property₂) g = pop-property₁ auto₁ = λ _ → prop-has-all-paths pop-property₂ _ _ auto₂ = λ _ → prop-has-all-paths pop-property₂ _ _
28.555556
92
0.60948
411cf7569540e96b36c436296959e52205fd6b95
1,855
agda
Agda
core/lib/groups/Unit.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/groups/Unit.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/groups/Unit.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Group open import lib.types.Unit open import lib.groups.SubgroupProp open import lib.groups.Homomorphism open import lib.groups.Isomorphism open import lib.groups.Lift module lib.groups.Unit where Unit-group-structure : GroupStructure Unit Unit-group-structure = record { ident = unit ; inv = λ _ → unit ; comp = λ _ _ → unit ; unit-l = λ _ → idp ; assoc = λ _ _ _ → idp ; inv-l = λ _ → idp } Unit-group : Group lzero Unit-group = group _ Unit-is-set Unit-group-structure 0ᴳ = Unit-group abstract Unit-group-is-trivial : is-trivialᴳ Unit-group Unit-group-is-trivial = λ _ → idp iso-Unit-is-trivial : ∀ {i} {G : Group i} → G ≃ᴳ Unit-group → is-trivialᴳ G iso-Unit-is-trivial G-iso-0 = iso-preserves'-trivial G-iso-0 Unit-group-is-trivial 0ᴳ-is-trivial = Unit-group-is-trivial iso-0ᴳ-is-trivial = iso-Unit-is-trivial trivial-iso-Unit : ∀ {i} {G : Group i} → is-trivialᴳ G → G ≃ᴳ Unit-group trivial-iso-Unit {G = G} G-triv = group-hom (λ _ → tt) (λ _ _ → idp) , is-eq _ (λ _ → Group.ident G) (λ _ → idp) (λ _ → ! (G-triv _)) trivial-iso-0ᴳ = trivial-iso-Unit {- the following should be replaced by [is-trivial] completely -} abstract contr-iso-Unit : ∀ {i} (G : Group i) → is-contr (Group.El G) → G ≃ᴳ Unit-group contr-iso-Unit G pA = ≃-to-≃ᴳ (contr-equiv-Unit pA) (λ _ _ → idp) contr-iso-0ᴳ = contr-iso-Unit Unit-group-is-abelian : is-abelian 0ᴳ Unit-group-is-abelian _ _ = idp 0ᴳ-is-abelian = Unit-group-is-abelian Unit-abgroup : AbGroup₀ Unit-abgroup = Unit-group , Unit-group-is-abelian 0ᴳ-abgroup = Unit-abgroup abstract hom₁-Unit-is-trivial : ∀ {i} (G : AbGroup i) → is-trivialᴳ (hom-group Unit-group G) hom₁-Unit-is-trivial G φ = group-hom= $ λ= λ _ → GroupHom.pres-ident φ hom₁-0ᴳ-is-trivial = hom₁-Unit-is-trivial
28.106061
85
0.679784
29777d5862ca3b41952909c2a7f1d6048660dd7f
1,691
agda
Agda
test/succeed/InductiveAndCoinductiveConstructors.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
null
null
null
test/succeed/InductiveAndCoinductiveConstructors.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
null
null
null
test/succeed/InductiveAndCoinductiveConstructors.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
null
null
null
module InductiveAndCoinductiveConstructors where open import Common.Coinduction record ⊤ : Set where data _×_ (A : Set) (B : Set) : Set where _,_ : (x : A) (y : B) → A × B data Stream (A : Set) : Set where _≺_ : (x : A) (xs : ∞ (Stream A)) → Stream A data U : Set where stream : (a : U) → U _⊗_ : (a b : U) → U unit : U El : U → Set El (stream a) = Stream (El a) El (a ⊗ b) = El a × El b El unit = ⊤ mutual data WHNF : U → Set where _≺_ : ∀ {a} → El a → Prog (stream a) → WHNF (stream a) _,_ : ∀ {a b} → WHNF a → WHNF b → WHNF (a ⊗ b) data Prog : U → Set where ↓_ : ∀ {a} → ∞ (WHNF a) → Prog a fst : ∀ {a b} → Prog (a ⊗ b) → Prog a snd : ∀ {a b} → Prog (a ⊗ b) → Prog b lab : Prog (stream unit) → Prog (stream (stream unit)) → Prog (stream unit ⊗ stream (stream unit)) whnf : ∀ {a} → Prog a → WHNF a whnf (↓ w) = ♭ w whnf (fst p) with whnf p ... | (x , y) = x whnf (snd p) with whnf p ... | (x , y) = y whnf (lab xs lss) with whnf xs | whnf lss ... | _ ≺ xs′ | (x ≺ ls) ≺ lss′ = ((_ ≺ fst (lab xs′ lss′)) , (♭ ls ≺ snd (lab xs′ lss′))) ⟦_⟧ : Prog (stream unit) → Stream ⊤ ⟦ p ⟧ with whnf p ... | x ≺ xs = x ≺ ♯ ⟦ xs ⟧ data _≈_ : Stream ⊤ → Stream ⊤ → Set where cons : ∀ {xs xs′} → ∞ ((♭ xs) ≈ (♭ xs′)) → (_ ≺ xs) ≈ (_ ≺ xs′) lemma : ∀ xs lss → ⟦ fst (lab xs lss) ⟧ ≈ ⟦ xs ⟧ lemma xs lss with whnf xs | whnf lss ... | _ ≺ xs′ | (x ≺ ls) ≺ lss′ = cons (♯ lemma xs′ lss′) label : Prog (stream unit) → Stream ⊤ → Prog (stream unit ⊗ stream (stream unit)) label xs ls = lab xs (↓ (♯ (ls ≺ snd (label xs ls)))) shape-preserved : ∀ xs ls → ⟦ fst (label xs ls) ⟧ ≈ ⟦ xs ⟧ shape-preserved xs ls = lemma xs _
26.84127
65
0.502661
addb5966595eccdd731366a133da6f87768d8f36
4,999
agda
Agda
Cubical/Data/Queue/Truncated2List.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Data/Queue/Truncated2List.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Data/Queue/Truncated2List.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --no-exact-split --safe #-} module Cubical.Data.Queue.Truncated2List where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.SIP open import Cubical.Structures.Queue open import Cubical.Data.Maybe open import Cubical.Data.List open import Cubical.Data.Sigma open import Cubical.Data.Queue.1List module Truncated2List {ℓ} (A : Type ℓ) (Aset : isSet A) where open Queues-on A Aset data Q : Type ℓ where Q⟨_,_⟩ : (xs ys : List A) → Q tilt : ∀ xs ys z → Q⟨ xs ++ [ z ] , ys ⟩ ≡ Q⟨ xs , ys ++ [ z ] ⟩ trunc : (q q' : Q) (α β : q ≡ q') → α ≡ β multitilt : (xs ys zs : List A) → Q⟨ xs ++ rev zs , ys ⟩ ≡ Q⟨ xs , ys ++ zs ⟩ multitilt xs ys [] = cong₂ Q⟨_,_⟩ (++-unit-r xs) (sym (++-unit-r ys)) multitilt xs ys (z ∷ zs) = cong (λ ws → Q⟨ ws , ys ⟩) (sym (++-assoc xs (rev zs) [ z ])) ∙ tilt (xs ++ rev zs) ys z ∙ multitilt xs (ys ++ [ z ]) zs ∙ cong (λ ws → Q⟨ xs , ws ⟩) (++-assoc ys [ z ] zs) -- enq into the first list, deq from the second if possible emp : Q emp = Q⟨ [] , [] ⟩ enq : A → Q → Q enq a Q⟨ xs , ys ⟩ = Q⟨ a ∷ xs , ys ⟩ enq a (tilt xs ys z i) = tilt (a ∷ xs) ys z i enq a (trunc q q' α β i j) = trunc _ _ (cong (enq a) α) (cong (enq a) β) i j deqFlush : List A → Maybe (Q × A) deqFlush [] = nothing deqFlush (x ∷ xs) = just (Q⟨ [] , xs ⟩ , x) deq : Q → Maybe (Q × A) deq Q⟨ xs , [] ⟩ = deqFlush (rev xs) deq Q⟨ xs , y ∷ ys ⟩ = just (Q⟨ xs , ys ⟩ , y) deq (tilt xs [] z i) = path i where path : deqFlush (rev (xs ++ [ z ])) ≡ just (Q⟨ xs , [] ⟩ , z) path = cong deqFlush (rev-++ xs [ z ]) ∙ cong (λ q → just (q , z)) (sym (multitilt [] [] (rev xs))) ∙ cong (λ ys → just (Q⟨ ys , [] ⟩ , z)) (rev-rev xs) deq (tilt xs (y ∷ ys) z i) = just (tilt xs ys z i , y) deq (trunc q q' α β i j) = isOfHLevelMaybe 0 (isSetΣ trunc λ _ → Aset) (deq q) (deq q') (cong deq α) (cong deq β) i j Raw : RawQueue Raw = (Q , emp , enq , deq) -- We construct an equivalence to 1Lists and prove this is an equivalence of queue structures private module One = 1List A Aset open One renaming (Q to Q₁; emp to emp₁; enq to enq₁; deq to deq₁) using () quot : Q₁ → Q quot xs = Q⟨ xs , [] ⟩ eval : Q → Q₁ eval Q⟨ xs , ys ⟩ = xs ++ rev ys eval (tilt xs ys z i) = path i where path : (xs ++ [ z ]) ++ rev ys ≡ xs ++ rev (ys ++ [ z ]) path = ++-assoc xs [ z ] (rev ys) ∙ cong (_++_ xs) (sym (rev-++ ys [ z ])) eval (trunc q q' α β i j) = -- truncated case isOfHLevelList 0 Aset (eval q) (eval q') (cong eval α) (cong eval β) i j quot∘eval : ∀ q → quot (eval q) ≡ q quot∘eval Q⟨ xs , ys ⟩ = multitilt xs [] ys quot∘eval (tilt xs ys z i) = -- truncated case isOfHLevelPathP' {A = λ i → quot (eval (tilt xs ys z i)) ≡ tilt xs ys z i} 0 (trunc _ _) (multitilt (xs ++ [ z ]) [] ys) (multitilt xs [] (ys ++ [ z ])) .fst i quot∘eval (trunc q q' α β i j) = -- truncated case isOfHLevelPathP' {A = λ i → PathP (λ j → quot (eval (trunc q q' α β i j)) ≡ trunc q q' α β i j) (quot∘eval q) (quot∘eval q')} 0 (isOfHLevelPathP' 1 (isOfHLevelSuc 2 trunc _ _) _ _) (cong quot∘eval α) (cong quot∘eval β) .fst i j eval∘quot : ∀ xs → eval (quot xs) ≡ xs eval∘quot = ++-unit-r -- We get our desired equivalence quotEquiv : Q₁ ≃ Q quotEquiv = isoToEquiv (iso quot eval quot∘eval eval∘quot) -- Now it only remains to prove that this is an equivalence of queue structures quot∘emp : quot emp₁ ≡ emp quot∘emp = refl quot∘enq : ∀ x xs → quot (enq₁ x xs) ≡ enq x (quot xs) quot∘enq x xs = refl quot∘deq : ∀ xs → deqMap quot (deq₁ xs) ≡ deq (quot xs) quot∘deq [] = refl quot∘deq (x ∷ []) = refl quot∘deq (x ∷ x' ∷ xs) = deqMap-∘ quot (enq₁ x) (deq₁ (x' ∷ xs)) ∙ sym (deqMap-∘ (enq x) quot (deq₁ (x' ∷ xs))) ∙ cong (deqMap (enq x)) (quot∘deq (x' ∷ xs)) ∙ lemma x x' (rev xs) where lemma : ∀ x x' ys → deqMap (enq x) (deqFlush (ys ++ [ x' ])) ≡ deqFlush ((ys ++ [ x' ]) ++ [ x ]) lemma x x' [] i = just (tilt [] [] x i , x') lemma x x' (y ∷ ys) i = just (tilt [] (ys ++ [ x' ]) x i , y) quotEquivHasQueueEquivStr : RawQueueEquivStr One.Raw Raw quotEquiv quotEquivHasQueueEquivStr = quot∘emp , quot∘enq , quot∘deq -- And we get a path between the raw 1Lists and 2Lists Raw-1≡2 : One.Raw ≡ Raw Raw-1≡2 = sip rawQueueUnivalentStr _ _ (quotEquiv , quotEquivHasQueueEquivStr) -- We derive the axioms for 2List from those for 1List WithLaws : Queue WithLaws = Q , str Raw , subst (uncurry QueueAxioms) Raw-1≡2 (snd (str One.WithLaws)) WithLaws-1≡2 : One.WithLaws ≡ WithLaws WithLaws-1≡2 = sip queueUnivalentStr _ _ (quotEquiv , quotEquivHasQueueEquivStr) Finite : FiniteQueue Finite = Q , str WithLaws , subst (uncurry FiniteQueueAxioms) WithLaws-1≡2 (snd (str One.Finite))
32.251613
98
0.580716
2fe41ef30669dae674d6bfd3d3d4a8cdbcd106dc
159
agda
Agda
test/Succeed/Issue1063.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1063.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1063.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where module M (A : _) where y = Set -- type of A is solved if this is removed x : Set x = A -- WAS: yellow on type of A -- SHOULD: succeed
13.25
51
0.610063
226f251f09e8a1094a8c23b3bcaef9730def83f9
342
agda
Agda
Cubical/HITs/PropositionalTruncation/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/HITs/PropositionalTruncation/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/HITs/PropositionalTruncation/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{- This file contains: - Definition of propositional truncation -} {-# OPTIONS --safe #-} module Cubical.HITs.PropositionalTruncation.Base where open import Cubical.Core.Primitives -- Propositional truncation as a higher inductive type: data ∥_∥₁ {ℓ} (A : Type ℓ) : Type ℓ where ∣_∣₁ : A → ∥ A ∥₁ squash₁ : ∀ (x y : ∥ A ∥₁) → x ≡ y
19
55
0.666667
131077dae4906b4b50aafba7e7a6947c472311a8
1,678
agda
Agda
examples/outdated-and-incorrect/AIM6/Cat/lib/Data/List.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/AIM6/Cat/lib/Data/List.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/AIM6/Cat/lib/Data/List.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Data.List where import Prelude import Data.Nat import Data.Tuple open Prelude open Data.Nat open Data.Tuple infixr 50 _::_ _++_ data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _::_ #-} length : {A : Set} -> List A -> Nat length [] = 0 length (_ :: xs) = 1 + length xs map : {A B : Set} -> (A -> B) -> List A -> List B map f [] = [] map f (x :: xs) = f x :: map f xs _++_ : {A : Set} -> List A -> List A -> List A [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) zipWith : {A B C : Set} -> (A -> B -> C) -> List A -> List B -> List C zipWith f [] [] = [] zipWith f (x :: xs) (y :: ys) = f x y :: zipWith f xs ys zipWith f [] (_ :: _) = [] zipWith f (_ :: _) [] = [] foldr : {A B : Set} -> (A -> B -> B) -> B -> List A -> B foldr f z [] = z foldr f z (x :: xs) = f x (foldr f z xs) foldl : {A B : Set} -> (B -> A -> B) -> B -> List A -> B foldl f z [] = z foldl f z (x :: xs) = foldl f (f z x) xs replicate : {A : Set} -> Nat -> A -> List A replicate zero x = [] replicate (suc n) x = x :: replicate n x iterate : {A : Set} -> Nat -> (A -> A) -> A -> List A iterate zero f x = [] iterate (suc n) f x = x :: iterate n f (f x) splitAt : {A : Set} -> Nat -> List A -> List A × List A splitAt zero xs = < [] , xs > splitAt (suc n) [] = < [] , [] > splitAt (suc n) (x :: xs) = add x $ splitAt n xs where add : _ -> List _ × List _ -> List _ × List _ add x < ys , zs > = < x :: ys , zs > reverse : {A : Set} -> List A -> List A reverse xs = foldl (flip _::_) [] xs
25.044776
70
0.462455
4125cdf9cc7e223ba287d6624518bca0d4a2ae3f
102
agda
Agda
test/Succeed/Issue1425.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1425.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1425.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
postulate A B : Set C : .{{_ : B}} → Set instance f : {{_ : A}} → B test : {{x : A}} → C
12.75
22
0.382353
ad35e96a9f32585f8fd28f745ac78388f461c4a3
348
agda
Agda
test/Succeed/Issue2117.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2117.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2117.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-07-27, issue #2117 reported by Guillermo Calderon -- {-# OPTIONS -v tc:10 #-} record R : Set₁ where field A : Set open R {{...}} record S (r : R) : Set where instance i = r field f : A -- ERROR WAS: -- No instance of type R was found in scope. -- when checking that the expression A has type Set -- Should succeed!
17.4
66
0.632184
0e7a6508d1b828ff2ec9567a252c090c79c232dd
6,275
agda
Agda
Thesis/Derive.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
10
2015-03-04T06:09:20.000Z
2019-07-19T07:06:59.000Z
Thesis/Derive.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
6
2015-07-01T18:09:31.000Z
2017-05-04T13:53:59.000Z
Thesis/Derive.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
1
2016-02-18T12:26:44.000Z
2016-02-18T12:26:44.000Z
module Thesis.Derive where open import Thesis.Lang open import Thesis.Changes open import Thesis.LangChanges open import Thesis.LangOps open import Relation.Binary.PropositionalEquality Γ≼ΔΓ : ∀ {Γ} → Γ ≼ ΔΓ Γ Γ≼ΔΓ {∅} = ∅ Γ≼ΔΓ {τ • Γ} = drop Δt τ • keep τ • Γ≼ΔΓ fit : ∀ {τ Γ} → Term Γ τ → Term (ΔΓ Γ) τ fit = weaken Γ≼ΔΓ ⟦Γ≼ΔΓ⟧ : ∀ {Γ ρ1 ρ2 dρ} → (dρρ : [ Γ ]Γ dρ from ρ1 to ρ2) → ρ1 ≡ ⟦ Γ≼ΔΓ ⟧≼ dρ ⟦Γ≼ΔΓ⟧ v∅ = refl ⟦Γ≼ΔΓ⟧ (dvv v• dρρ) = cong₂ _•_ refl (⟦Γ≼ΔΓ⟧ dρρ) fit-sound : ∀ {Γ τ} → (t : Term Γ τ) → ∀ {dρ ρ1 ρ2} → [ Γ ]Γ dρ from ρ1 to ρ2 → ⟦ t ⟧Term ρ1 ≡ ⟦ fit t ⟧Term dρ fit-sound t dρρ = trans (cong ⟦ t ⟧Term (⟦Γ≼ΔΓ⟧ dρρ)) (sym (weaken-sound t _)) deriveConst : ∀ {τ} → Const τ → Term ∅ (Δt τ) deriveConst unit = const unit deriveConst (lit n) = const (lit (+ 0)) deriveConst plus = abs (abs (abs (abs (app₂ (const plus) (var (that (that this))) (var this))))) -- minus = λ m n → m - n -- dminus = λ m dm n dn → (m + dm) - (n + dn) - (m - n) = dm - dn deriveConst minus = abs (abs (abs (abs (app₂ (const minus) (var (that (that this))) (var this))))) deriveConst cons = abs (abs (abs (abs (app (app (const cons) (var (that (that this)))) (var this))))) deriveConst fst = abs (abs (app (const fst) (var this))) deriveConst snd = abs (abs (app (const snd) (var this))) deriveConst linj = abs (abs (app (const linj) (app (const linj) (var this)))) deriveConst rinj = abs (abs (app (const linj) (app (const rinj) (var this)))) deriveConst (match {t1} {t2} {t3}) = -- λ s ds f df g dg → abs (abs (abs (abs (abs (abs -- match ds (app₃ (const match) (var (that (that (that (that this))))) -- λ ds₁ → match ds₁ (abs (app₃ (const match) (var this) -- case inj₁ da → absV 1 (λ da → match s (abs (app₃ (const match) (var (that (that (that (that (that (that (that this)))))))) -- λ a → app₂ df a da (abs (app₂ (var (that (that (that (that (that this)))))) (var this) (var (that this)))) -- absurd: λ b → dg b (nil b) (abs (app₂ (var (that (that (that this)))) (var this) (app (onilτo t2) (var this)))))) -- case inj₂ db → absV 1 (λ db → match s (abs (app₃ (const match) (var (that (that (that (that (that (that (that this)))))))) -- absurd: λ a → df a (nil a) (abs (app₂ (var (that (that (that (that (that this)))))) (var this) (app (onilτo t1) (var this)))) -- λ b → app₂ dg b db (abs (app₂ (var (that (that (that this)))) (var this) (var (that this)))))))) -- recomputation branch: -- λ s2 → ominus (match s2 (f ⊕ df) (g ⊕ dg)) (match s f g) (abs (app₂ (ominusτo t3) -- (match s2 (f ⊕ df) (g ⊕ dg)) (app₃ (const match) (var this) (app₂ (oplusτo (t1 ⇒ t3)) (var (that (that (that (that this))))) (var (that (that (that this))))) (app₂ (oplusτo (t2 ⇒ t3)) (var (that (that this))) (var (that this)))) -- (match s f g) (app₃ (const match) (var (that (that (that (that (that (that this))))))) (var (that (that (that (that this))))) (var (that (that this)))))))))))) {- derive (λ s f g → match s f g) = λ s ds f df g dg → case ds of ch1 da → case s of inj1 a → df a da inj2 b → {- absurd -} dg b (nil b) ch2 db → case s of inj2 b → dg b db inj1 a → {- absurd -} df a (nil a) rp s2 → match (f ⊕ df) (g ⊕ dg) s2 ⊝ match f g s -} derive-var : ∀ {Γ τ} → Var Γ τ → Var (ΔΓ Γ) (Δt τ) derive-var this = this derive-var (that x) = that (that (derive-var x)) derive : ∀ {Γ τ} → Term Γ τ → Term (ΔΓ Γ) (Δt τ) derive (const c) = weaken (∅≼Γ {ΔΓ _}) (deriveConst c) derive (var x) = var (derive-var x) derive (app s t) = app (app (derive s) (fit t)) (derive t) derive (abs t) = abs (abs (derive t)) ⟦_⟧ΔVar : ∀ {Γ τ} → (x : Var Γ τ) → (ρ : ⟦ Γ ⟧Context) (dρ : ChΓ Γ) → Chτ τ ⟦ x ⟧ΔVar ρ dρ = ⟦ derive-var x ⟧Var dρ ⟦_⟧ΔTerm : ∀ {Γ τ} → (t : Term Γ τ) → (ρ : ⟦ Γ ⟧Context) (dρ : ChΓ Γ) → Chτ τ ⟦ t ⟧ΔTerm ρ dρ = ⟦ derive t ⟧Term dρ ⟦_⟧ΔConst : ∀ {τ} (c : Const τ) → Chτ τ ⟦ c ⟧ΔConst = ⟦ deriveConst c ⟧Term ∅ ⟦_⟧ΔConst-rewrite : ∀ {τ Γ} (c : Const τ) (ρ : ⟦ Γ ⟧Context) dρ → ⟦_⟧ΔTerm (const c) ρ dρ ≡ ⟦ c ⟧ΔConst ⟦ c ⟧ΔConst-rewrite ρ dρ rewrite weaken-sound {Γ₁≼Γ₂ = ∅≼Γ} (deriveConst c) dρ | ⟦∅≼Γ⟧-∅ dρ = refl module _ {t1 t2 t3 : Type} (f : ⟦ t1 ⟧Type → ⟦ t3 ⟧Type) (df : Chτ (t1 ⇒ t3)) (g : ⟦ t2 ⟧Type → ⟦ t3 ⟧Type) (dg : Chτ (t2 ⇒ t3)) where private Γ : Context Γ = sum t1 t2 • (t2 ⇒ Δt t2 ⇒ Δt t3) • (t2 ⇒ t3) • (t1 ⇒ Δt t1 ⇒ Δt t3) • (t1 ⇒ t3) • sum (sum (Δt t1) (Δt t2)) (sum t1 t2) • sum t1 t2 • ∅ module _ where private Γ′ Γ′′ : Context Γ′ = t2 • (t2 ⇒ Δt t2 ⇒ Δt t3) • (t2 ⇒ t3) • Γ Γ′′ = t2 • Γ′ changeMatchSem-lem1 : ∀ a1 b2 → ⟦ match ⟧ΔConst (inj₁ a1) (inj₂ (inj₂ b2)) f df g dg ≡ g b2 ⊕ dg b2 (nil b2) ⊝ f a1 changeMatchSem-lem1 a1 b2 rewrite ominusτ-equiv-ext t2 Γ′′ | oplusτ-equiv-ext t3 Γ′ | ominusτ-equiv-ext t3 Γ = refl module _ where private Γ′ Γ′′ : Context Γ′ = t1 • (t1 ⇒ Δt t1 ⇒ Δt t3) • (t1 ⇒ t3) • Γ Γ′′ = t1 • Γ′ changeMatchSem-lem2 : ∀ b1 a2 → ⟦ match ⟧ΔConst (inj₂ b1) (inj₂ (inj₁ a2)) f df g dg ≡ f a2 ⊕ df a2 (nil a2) ⊝ g b1 changeMatchSem-lem2 b1 a2 rewrite ominusτ-equiv-ext t1 Γ′′ | oplusτ-equiv-ext t3 Γ′ | ominusτ-equiv-ext t3 Γ = refl module _ where private Γ′ Γ′′ : Context Γ′ = t1 • (t1 ⇒ Δt t1 ⇒ Δt t3) • (t1 ⇒ t3) • Γ Γ′′ = t1 • Γ′ changeMatchSem-lem3 : ∀ a1 a2 → ⟦ match ⟧ΔConst (inj₁ a1) (inj₂ (inj₁ a2)) f df g dg ≡ f a2 ⊕ df a2 (nil a2) ⊝ f a1 changeMatchSem-lem3 a1 a2 rewrite ominusτ-equiv-ext t1 Γ′′ | oplusτ-equiv-ext t3 Γ′ | ominusτ-equiv-ext t3 Γ = refl module _ where private Γ′ Γ′′ : Context Γ′ = t2 • (t2 ⇒ Δt t2 ⇒ Δt t3) • (t2 ⇒ t3) • Γ Γ′′ = t2 • Γ′ changeMatchSem-lem4 : ∀ b1 b2 → ⟦ match ⟧ΔConst (inj₂ b1) (inj₂ (inj₂ b2)) f df g dg ≡ g b2 ⊕ dg b2 (nil b2) ⊝ g b1 changeMatchSem-lem4 b1 b2 rewrite ominusτ-equiv-ext t2 Γ′′ | oplusτ-equiv-ext t3 Γ′ | ominusτ-equiv-ext t3 Γ = refl
35.451977
119
0.52494
06c3a3467f89f5b487ee8d79b7ea1fc04af1a53b
826
agda
Agda
relations.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
relations.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
relations.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
{- This file describes properties of computable relations. -} open import bool open import level open import eq open import product open import product-thms open import negation module relations where -- Decidable relations. -- This was taken from the Agda STDLIB. data Dec {p} (P : Set p) : Set p where yes : ( p : P) → Dec P no : (¬p : ¬ P) → Dec P module relationsOld {ℓ ℓ' : level}{A : Set ℓ} (_≥A_ : A → A → Set ℓ') where reflexive : Set (ℓ ⊔ ℓ') reflexive = ∀ {a : A} → a ≥A a transitive : Set (ℓ ⊔ ℓ') transitive = ∀ {a b c : A} → a ≥A b → b ≥A c → a ≥A c preorder : Set (ℓ ⊔ ℓ') preorder = reflexive ∧ transitive _iso_ : A → A → Set ℓ' d iso d' = d ≥A d' ∧ d' ≥A d iso-intro : ∀{x y : A} → x ≥A y → y ≥A x → x iso y iso-intro p1 p2 = p1 , p2
22.944444
77
0.558111
c7565402e91cef0185d3431ebcb3649ba6bcce28
525
agda
Agda
test/Succeed/Issue1345.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue1345.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue1345.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- {-# OPTIONS -v reify:80 #-} open import Common.Prelude open import Common.Reflection open import Common.Equality module Issue1345 (A : Set) where -- Andreas, 2016-07-17 -- Also test correct handling of abstract abstract unquoteDecl idNat = define (vArg idNat) (funDef (pi (vArg (def (quote Nat) [])) (abs "" (def (quote Nat) []))) (clause (vArg (var "") ∷ []) (var 0 []) ∷ [])) -- This raised the UselessAbstract error in error. -- Should work. abstract thm : ∀ n → idNat n ≡ n thm n = refl
23.863636
74
0.628571
c73a67d76fe4835ede902dabb05f1847d6dfdfcc
16,855
agda
Agda
TotalParserCombinators/Lib.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
1
2020-07-03T08:56:13.000Z
2020-07-03T08:56:13.000Z
TotalParserCombinators/Lib.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
null
null
null
TotalParserCombinators/Lib.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- A small library of derived parser combinators ------------------------------------------------------------------------ module TotalParserCombinators.Lib where open import Category.Monad open import Codata.Musical.Notation open import Function.Base open import Function.Equality using (_⟶_; _⟨$⟩_) open import Function.Injection using (Injection; Injective) open import Function.Inverse using (_↔_; module Inverse) open import Data.Bool hiding (_≤?_) open import Data.Char as Char using (Char; _==_) open import Data.List as List import Data.List.Categorical open import Data.List.Membership.Propositional import Data.List.Membership.Propositional.Properties as ∈ open import Data.List.NonEmpty as List⁺ using (List⁺; _∷_) open import Data.List.Relation.Unary.Any open import Data.Maybe hiding (_>>=_) open import Data.Nat hiding (_^_) open import Data.Product as Prod open import Data.Unit using (⊤) open import Data.Vec as Vec using (Vec; []; _∷_) import Level open import Relation.Binary open import Relation.Binary.HeterogeneousEquality as H using (_≅_) open import Relation.Binary.PropositionalEquality as P using (_≡_) import Relation.Binary.PropositionalEquality.WithK as P open import Relation.Nullary open import Relation.Nullary.Decidable private open module ListMonad = RawMonad {f = Level.zero} Data.List.Categorical.monad using () renaming (_<$>_ to _<$>′_; _⊛_ to _⊛′_; _>>=_ to _>>=′_) import TotalParserCombinators.InitialBag as I open import TotalParserCombinators.Parser open import TotalParserCombinators.Semantics as S hiding (_≅_; return; token) ------------------------------------------------------------------------ -- Kleene star -- The intended semantics of the Kleene star. infixr 5 _∷_ infix 4 _∈[_]⋆·_ data _∈[_]⋆·_ {Tok R xs} : List R → Parser Tok R xs → List Tok → Set₁ where [] : ∀ {p} → [] ∈[ p ]⋆· [] _∷_ : ∀ {x xs s₁ s₂ p} → (x∈p : x ∈ p · s₁) (xs∈p⋆ : xs ∈[ p ]⋆· s₂) → x ∷ xs ∈[ p ]⋆· s₁ ++ s₂ -- An implementation which requires that the argument parser is not -- nullable. infix 55 _⋆ _+ mutual _⋆ : ∀ {Tok R} → Parser Tok R [] → Parser Tok (List R) [ [] ] p ⋆ = return [] ∣ p + _+ : ∀ {Tok R} → Parser Tok R [] → Parser Tok (List R) [] p + = _∷_ <$> p ⊛ ♯ (p ⋆) module KleeneStar where -- The implementation is correct. sound : ∀ {Tok R xs s} {p : Parser Tok R []} → xs ∈ p ⋆ · s → xs ∈[ p ]⋆· s sound (∣-left S.return) = [] sound (∣-right ._ (<$> x∈p ⊛ xs∈p⋆)) = x∈p ∷ sound xs∈p⋆ complete : ∀ {Tok R xs s} {p : Parser Tok R []} → xs ∈[ p ]⋆· s → xs ∈ p ⋆ · s complete [] = ∣-left S.return complete (_∷_ {s₁ = []} x∈p xs∈p⋆) with I.complete x∈p ... | () complete (_∷_ {s₁ = _ ∷ _} x∈p xs∈p⋆) = ∣-right [ [] ] ([ ○ - ◌ ] <$> x∈p ⊛ complete xs∈p⋆) complete∘sound : ∀ {Tok R xs s} {p : Parser Tok R []} (xs∈ : xs ∈ p ⋆ · s) → complete (sound xs∈) ≡ xs∈ complete∘sound (∣-left S.return) = P.refl complete∘sound (∣-right ._ (_⊛_ {s₁ = _ ∷ _} (<$> x∈p) xs∈p⋆)) rewrite complete∘sound xs∈p⋆ = P.refl complete∘sound (∣-right ._ (_⊛_ {s₁ = []} (<$> x∈p) xs∈p⋆)) with I.complete x∈p ... | () sound∘complete : ∀ {Tok R xs s} {p : Parser Tok R []} (xs∈ : xs ∈[ p ]⋆· s) → sound (complete xs∈) ≡ xs∈ sound∘complete [] = P.refl sound∘complete (_∷_ {s₁ = []} x∈p xs∈p⋆) with I.complete x∈p ... | () sound∘complete (_∷_ {s₁ = _ ∷ _} x∈p xs∈p⋆) = P.cong (_∷_ x∈p) $ sound∘complete xs∈p⋆ correct : ∀ {Tok R xs s} {p : Parser Tok R []} → xs ∈ p ⋆ · s ↔ xs ∈[ p ]⋆· s correct = record { to = P.→-to-⟶ sound ; from = P.→-to-⟶ complete ; inverse-of = record { left-inverse-of = complete∘sound ; right-inverse-of = sound∘complete } } -- The definition of _⋆ is restricted to non-nullable parsers. This -- restriction cannot be removed: an unrestricted Kleene star -- operator would be incomplete because, in the present framework, a -- parser can only return a finite number of results. unrestricted-incomplete : ∀ {R Tok} → R → (f : ∀ {xs} → Parser Tok R xs → List (List R)) → (_⋆′ : ∀ {xs} (p : Parser Tok R xs) → Parser Tok (List R) (f p)) → ¬ (∀ {xs ys s} {p : Parser Tok R ys} → xs ∈[ p ]⋆· s → xs ∈ p ⋆′ · s) unrestricted-incomplete {R} x f _⋆′ complete = ∈.finite (record { to = to; injective = injective }) (f (return x)) (I.complete ∘ complete ∘ lemma) where to : P.setoid ℕ ⟶ P.setoid (List R) to = P.→-to-⟶ (flip replicate x) helper : ∀ {xs ys} → _≡_ {A = List R} (x ∷ xs) (x ∷ ys) → xs ≡ ys helper P.refl = P.refl injective : Injective to injective {zero} {zero} _ = P.refl injective {suc m} {suc n} eq = P.cong suc $ injective $ helper eq injective {zero} {suc n} () injective {suc m} {zero} () lemma : ∀ i → replicate i x ∈[ return x ]⋆· [] lemma zero = [] lemma (suc i) = S.return ∷ lemma i ------------------------------------------------------------------------ -- A combinator for recognising a string a fixed number of times infixl 55 _^_ _↑_ ^-initial : ∀ {R} → List R → (n : ℕ) → List (Vec R n) ^-initial xs zero = [ [] ] ^-initial xs (suc n) = List.map _∷_ xs ⊛′ ^-initial xs n _^_ : ∀ {Tok R xs} → Parser Tok R xs → (n : ℕ) → Parser Tok (Vec R n) (^-initial xs n) p ^ 0 = return [] p ^ suc n = _∷_ <$> p ⊛ p ^ n mutual -- A variant. -- The two functions below are not actually mutually recursive, but -- are placed in a mutual block to ensure that the constraints -- generated by the second function can be used to instantiate the -- underscores in the body of the first. ↑-initial : ∀ {R} → List R → ℕ → List (List R) ↑-initial _ _ = _ _↑_ : ∀ {Tok R xs} → Parser Tok R xs → (n : ℕ) → Parser Tok (List R) (↑-initial xs n) p ↑ n = Vec.toList <$> p ^ n -- Some lemmas relating _↑_ to _⋆. module Exactly where ↑≲⋆ : ∀ {Tok R} {p : Parser Tok R []} n → p ↑ n ≲ p ⋆ ↑≲⋆ {R = R} {p} n (<$> ∈pⁿ) = KleeneStar.complete $ helper n ∈pⁿ where helper : ∀ n {xs s} → xs ∈ p ^ n · s → Vec.toList xs ∈[ p ]⋆· s helper zero S.return = [] helper (suc n) (<$> ∈p ⊛ ∈pⁿ) = ∈p ∷ helper n ∈pⁿ ⋆≲∃↑ : ∀ {Tok R} {p : Parser Tok R []} {xs s} → xs ∈ p ⋆ · s → ∃ λ i → xs ∈ p ↑ i · s ⋆≲∃↑ {R = R} {p} ∈p⋆ with helper $ KleeneStar.sound ∈p⋆ where helper : ∀ {xs s} → xs ∈[ p ]⋆· s → ∃₂ λ i (ys : Vec R i) → xs ≡ Vec.toList ys × ys ∈ p ^ i · s helper [] = (0 , [] , P.refl , S.return) helper (∈p ∷ ∈p⋆) = Prod.map suc (λ {i} → Prod.map (_∷_ _) ( Prod.map (P.cong (_∷_ _)) (λ ∈pⁱ → [ ○ - ○ ] <$> ∈p ⊛ ∈pⁱ))) (helper ∈p⋆) ... | (i , ys , P.refl , ∈pⁱ) = (i , <$> ∈pⁱ) ------------------------------------------------------------------------ -- A parser which returns any element in a given list return⋆ : ∀ {Tok R} (xs : List R) → Parser Tok R xs return⋆ [] = fail return⋆ (x ∷ xs) = return x ∣ return⋆ xs module Return⋆ where sound : ∀ {Tok R x} {s : List Tok} (xs : List R) → x ∈ return⋆ xs · s → s ≡ [] × x ∈ xs sound [] () sound (y ∷ ys) (∣-left S.return) = (P.refl , here P.refl) sound (y ∷ ys) (∣-right .([ y ]) x∈ys) = Prod.map id there $ sound ys x∈ys complete : ∀ {Tok R x} {xs : List R} → x ∈ xs → x ∈ return⋆ {Tok} xs · [] complete (here P.refl) = ∣-left S.return complete (there x∈xs) = ∣-right [ _ ] (complete x∈xs) complete∘sound : ∀ {Tok R x} {s : List Tok} (xs : List R) (x∈xs : x ∈ return⋆ xs · s) → complete {Tok = Tok} (proj₂ $ sound xs x∈xs) ≅ x∈xs complete∘sound [] () complete∘sound (y ∷ ys) (∣-left S.return) = H.refl complete∘sound (y ∷ ys) (∣-right .([ y ]) x∈ys) with sound ys x∈ys | complete∘sound ys x∈ys complete∘sound (y ∷ ys) (∣-right .([ y ]) .(complete p)) | (P.refl , p) | H.refl = H.refl sound∘complete : ∀ {Tok R x} {xs : List R} (x∈xs : x ∈ xs) → sound {Tok = Tok} {s = []} xs (complete x∈xs) ≡ (P.refl , x∈xs) sound∘complete (here P.refl) = P.refl sound∘complete {Tok} (there {xs = xs} x∈xs) with sound {Tok = Tok} xs (complete x∈xs) | sound∘complete {Tok} {xs = xs} x∈xs sound∘complete (there x∈xs) | .(P.refl , x∈xs) | P.refl = P.refl correct : ∀ {Tok R} {xs : List R} {x s} → (s ≡ [] × x ∈ xs) ↔ x ∈ return⋆ {Tok} xs · s correct {xs = xs} {x} = record { to = P.→-to-⟶ complete′ ; from = P.→-to-⟶ $ sound xs ; inverse-of = record { left-inverse-of = sound∘complete′ ; right-inverse-of = complete′∘sound xs } } where complete′ : ∀ {Tok R x} {xs : List R} {s : List Tok} → s ≡ [] × x ∈ xs → x ∈ return⋆ xs · s complete′ (P.refl , x∈xs) = complete x∈xs sound∘complete′ : ∀ {Tok R x} {xs : List R} {s : List Tok} (p : s ≡ [] × x ∈ xs) → sound xs (complete′ p) ≡ p sound∘complete′ (P.refl , x∈xs) = sound∘complete x∈xs complete′∘sound : ∀ {Tok R x} {s : List Tok} (xs : List R) (x∈xs : x ∈ return⋆ xs · s) → complete′ (sound xs x∈xs) ≡ x∈xs complete′∘sound xs x∈ with sound xs x∈ | complete∘sound xs x∈ complete′∘sound xs .(complete x∈xs) | (P.refl , x∈xs) | H.refl = P.refl ------------------------------------------------------------------------ -- The sat parser module Sat where -- Helper functions for sat. mutual ok-bag : {R : Set} → Maybe R → List R ok-bag nothing = _ ok-bag (just _) = _ ok : {Tok R : Set} → (x : Maybe R) → Parser Tok R (ok-bag x) ok nothing = fail ok (just x) = return x ok-correct : ∀ {Tok R x s} (m : Maybe R) → (s ≡ [] × m ≡ just x) ↔ x ∈ ok {Tok} m · s ok-correct {Tok} {x = x} m = record { to = P.→-to-⟶ (to m) ; from = P.→-to-⟶ (from m) ; inverse-of = record { left-inverse-of = from∘to m ; right-inverse-of = to∘from m } } where to : ∀ {s} m → (s ≡ [] × m ≡ just x) → x ∈ ok {Tok} m · s to (just .x) (P.refl , P.refl) = S.return to nothing (P.refl , ()) from : ∀ {s} m → x ∈ ok {Tok} m · s → s ≡ [] × m ≡ just x from (just .x) S.return = (P.refl , P.refl) from nothing () from∘to : ∀ {s} m (eqs : s ≡ [] × m ≡ just x) → from m (to m eqs) ≡ eqs from∘to (just .x) (P.refl , P.refl) = P.refl from∘to nothing (P.refl , ()) to∘from : ∀ {s} m (x∈ : x ∈ ok {Tok} m · s) → to m (from m x∈) ≡ x∈ to∘from (just .x) S.return = P.refl to∘from nothing () -- sat p accepts a single token t iff p t ≡ just x for some x. The -- returned value is x. sat : ∀ {Tok R} → (Tok → Maybe R) → Parser Tok R _ sat p = token >>= (ok ∘ p) correct : ∀ {Tok R x s} (p : Tok → Maybe R) → (∃ λ t → s ≡ [ t ] × p t ≡ just x) ↔ x ∈ sat p · s correct {x = x} p = record { to = P.→-to-⟶ to ; from = P.→-to-⟶ from ; inverse-of = record { left-inverse-of = from∘to ; right-inverse-of = to∘from } } where to : ∀ {s} → (∃ λ t → s ≡ [ t ] × p t ≡ just x) → x ∈ sat p · s to (t , P.refl , p-t≡just-x) = [ ○ - ○ ] S.token >>= (Inverse.to (ok-correct (p t)) ⟨$⟩ (P.refl , p-t≡just-x)) from : ∀ {s} → x ∈ sat p · s → ∃ λ t → s ≡ [ t ] × p t ≡ just x from (S.token {x = t} >>= x∈ok-p-t) = (t , Prod.map (P.cong (_∷_ t)) id (Inverse.from (ok-correct (p t)) ⟨$⟩ x∈ok-p-t)) from∘to : ∀ {s} (eqs : ∃ λ t → s ≡ [ t ] × p t ≡ just x) → from (to eqs) ≡ eqs from∘to (t , P.refl , p-t≡just-x) = P.cong₂ (λ eq₁ eq₂ → (t , eq₁ , eq₂)) (P.≡-irrelevant _ _) (P.≡-irrelevant _ _) to∘from : ∀ {s} (x∈ : x ∈ sat p · s) → to (from x∈) ≡ x∈ to∘from (S.token {x = t} >>= x∈ok-p-t) with Inverse.from (ok-correct (p t)) ⟨$⟩ x∈ok-p-t | Inverse.right-inverse-of (ok-correct (p t)) x∈ok-p-t to∘from (S.token {x = t} >>= .(Inverse.to (ok-correct (p t)) ⟨$⟩ (P.refl , p-t≡just-x))) | (P.refl , p-t≡just-x) | P.refl = P.refl open Sat public using (sat) -- A simplified variant of sat. Does not return anything interesting. sat′ : ∀ {Tok} → (Tok → Bool) → Parser Tok ⊤ _ sat′ p = sat (boolToMaybe ∘ p) -- Accepts a single whitespace character (from a limited set of such -- characters). whitespace : Parser Char ⊤ _ whitespace = sat′ isSpace where isSpace = λ c → (c == ' ') ∨ (c == '\t') ∨ (c == '\n') ∨ (c == '\r') ------------------------------------------------------------------------ -- A parser for a given token module Token (Tok : Set) (_≟_ : Decidable (_≡_ {A = Tok})) where private p : Tok → Tok → Maybe Tok p t t′ = if ⌊ t ≟ t′ ⌋ then just t′ else nothing tok : Tok → Parser Tok Tok [] tok t = sat (p t) sound : ∀ t {t′ s} → t′ ∈ tok t · s → t ≡ t′ × s ≡ [ t′ ] sound t t′∈ with Inverse.from (Sat.correct (p t)) ⟨$⟩ t′∈ sound t t′∈ | (t″ , P.refl , p-t-t″≡just-t′) with t ≟ t″ sound t t∈ | (.t , P.refl , P.refl) | yes P.refl = (P.refl , P.refl) sound t t′∈ | (t″ , P.refl , ()) | no _ private p-lemma : ∀ t → p t t ≡ just t p-lemma t with t ≟ t ... | yes P.refl = P.refl ... | no t≢t with t≢t P.refl ... | () complete : ∀ {t} → t ∈ tok t · [ t ] complete {t} = Inverse.to (Sat.correct (p t)) ⟨$⟩ (t , P.refl , p-lemma t) η : ∀ {t} (t∈ : t ∈ tok t · [ t ]) → t∈ ≡ complete {t = t} η {t = t} t∈ = H.≅-to-≡ $ helper t∈ P.refl where helper₂ : (t∈ : t ∈ Sat.ok {Tok = Tok} (p t t) · []) → t∈ ≡ Inverse.to (Sat.ok-correct (p t t)) ⟨$⟩ (P.refl , p-lemma t) helper₂ t∈ with t ≟ t helper₂ S.return | yes P.refl = P.refl helper₂ t∈ | no t≢t with t≢t P.refl helper₂ t∈ | no t≢t | () helper : ∀ {s} (t∈ : t ∈ tok t · s) → s ≡ [ t ] → t∈ ≅ complete {t = t} helper (S.token >>= t∈) P.refl rewrite helper₂ t∈ = H.refl ------------------------------------------------------------------------ -- Map then choice -- y ∈ ⋁ f xs · s iff ∃ x ∈ xs. y ∈ f x · s. ⋁ : ∀ {Tok R₁ R₂} {f : R₁ → List R₂} → ((x : R₁) → Parser Tok R₂ (f x)) → (xs : List R₁) → Parser Tok R₂ (xs >>=′ f) ⋁ f xs = return⋆ xs >>= f module ⋁ where sound : ∀ {Tok R₁ R₂ y s} {i : R₁ → List R₂} → (f : (x : R₁) → Parser Tok R₂ (i x)) (xs : List R₁) → y ∈ ⋁ f xs · s → ∃ λ x → (x ∈ xs) × (y ∈ f x · s) sound f xs (∈ret⋆ >>= y∈fx) with Return⋆.sound xs ∈ret⋆ ... | (P.refl , x∈xs) = (_ , x∈xs , y∈fx) complete : ∀ {Tok R₁ R₂ x y s} {i : R₁ → List R₂} → (f : (x : R₁) → Parser Tok R₂ (i x)) {xs : List R₁} → x ∈ xs → y ∈ f x · s → y ∈ ⋁ f xs · s complete f x∈xs y∈fx = [ ○ - ○ ] Return⋆.complete x∈xs >>= y∈fx complete∘sound : ∀ {Tok R₁ R₂ y s} {i : R₁ → List R₂} → (f : (x : R₁) → Parser Tok R₂ (i x)) (xs : List R₁) (y∈⋁fxs : y ∈ ⋁ f xs · s) → let p = proj₂ $ sound f xs y∈⋁fxs in complete f (proj₁ p) (proj₂ p) ≡ y∈⋁fxs complete∘sound f xs (∈ret⋆ >>= y∈fx) with Return⋆.sound xs ∈ret⋆ | Inverse.right-inverse-of Return⋆.correct ∈ret⋆ complete∘sound f xs (.(Return⋆.complete x∈xs) >>= y∈fx) | (P.refl , x∈xs) | P.refl = P.refl sound∘complete : ∀ {Tok R₁ R₂ x y s} {i : R₁ → List R₂} → (f : (x : R₁) → Parser Tok R₂ (i x)) {xs : List R₁} → (x∈xs : x ∈ xs) (y∈fx : y ∈ f x · s) → sound f xs (complete f x∈xs y∈fx) ≡ (x , x∈xs , y∈fx) sound∘complete {Tok} f {xs} x∈xs y∈fx with Return⋆.sound {Tok = Tok} xs (Return⋆.complete x∈xs) | Inverse.left-inverse-of (Return⋆.correct {Tok = Tok}) (P.refl , x∈xs) ... | (P.refl , .x∈xs) | P.refl = P.refl ------------------------------------------------------------------------ -- Digits and numbers -- Digits. digit = sat (λ t → if in-range t then just (to-number t) else nothing) where in-range : Char → Bool in-range t = ⌊ Char.toℕ '0' ≤? Char.toℕ t ⌋ ∧ ⌊ Char.toℕ t ≤? Char.toℕ '9' ⌋ to-number : Char → ℕ to-number t = Char.toℕ t ∸ Char.toℕ '0' -- Numbers. number : Parser Char ℕ _ number = digit + >>= (return ∘ foldl (λ n d → 10 * n + d) 0)
33.913481
73
0.478908
dce7bd56f4cca43a2747d912655f5048d80a8234
2,645
agda
Agda
Cubical/Algebra/CommRing/Ideal.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Algebra/CommRing/Ideal.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Algebra/CommRing/Ideal.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{- This is mostly for convenience, when working with ideals (which are defined for general rings) in a commutative ring. -} {-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.Ideal where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Powerset open import Cubical.Data.Nat using (ℕ ; zero ; suc) open import Cubical.Data.FinData open import Cubical.Algebra.CommRing.Base open import Cubical.Algebra.Ring.Ideal renaming (IdealsIn to IdealsInRing) open import Cubical.Algebra.Ring.BigOps open import Cubical.Algebra.RingSolver.ReflectionSolving private variable ℓ : Level IdealsIn : (R : CommRing ℓ) → Type _ IdealsIn R = IdealsInRing (CommRing→Ring R) module _ (Ring@(R , str) : CommRing ℓ) where open CommRingStr str makeIdeal : (I : R → hProp ℓ) → (+-closed : {x y : R} → x ∈ I → y ∈ I → (x + y) ∈ I) → (0r-closed : 0r ∈ I) → (·-closedLeft : {x : R} → (r : R) → x ∈ I → r · x ∈ I) → IdealsIn (R , str) makeIdeal I +-closed 0r-closed ·-closedLeft = I , (record { +-closed = +-closed ; -closed = λ x∈I → subst-∈ I (useSolver _) (·-closedLeft (- 1r) x∈I) ; 0r-closed = 0r-closed ; ·-closedLeft = ·-closedLeft ; ·-closedRight = λ r x∈I → subst-∈ I (·-comm r _) (·-closedLeft r x∈I) }) where useSolver : (x : R) → - 1r · x ≡ - x useSolver = solve Ring -- better? module _ (R' : CommRing ℓ) where private R = fst R' open CommRingStr (snd R') open Sum (CommRing→Ring R') record isCommIdeal (I : ℙ R) : Type ℓ where constructor makeIsCommIdeal field +Closed : ∀ {x y : R} → x ∈ I → y ∈ I → (x + y) ∈ I contains0 : 0r ∈ I ·Closed : ∀ {x : R} (r : R) → x ∈ I → r · x ∈ I open isCommIdeal isPropIsCommIdeal : (I : ℙ R) → isProp (isCommIdeal I) +Closed (isPropIsCommIdeal I ici₁ ici₂ i) x∈I y∈I = I _ .snd (ici₁ .+Closed x∈I y∈I) (ici₂ .+Closed x∈I y∈I) i contains0 (isPropIsCommIdeal I ici₁ ici₂ i) = I 0r .snd (ici₁ .contains0) (ici₂ .contains0) i ·Closed (isPropIsCommIdeal I ici₁ ici₂ i) r x∈I = I _ .snd (ici₁ .·Closed r x∈I) (ici₂ .·Closed r x∈I) i CommIdeal : Type _ CommIdeal = Σ[ I ∈ ℙ R ] isCommIdeal I ∑Closed : (I : CommIdeal) {n : ℕ} (V : FinVec R n) → (∀ i → V i ∈ fst I) → ∑ V ∈ fst I ∑Closed I {n = zero} _ _ = I .snd .contains0 ∑Closed I {n = suc n} V h = I .snd .+Closed (h zero) (∑Closed I (V ∘ suc) (h ∘ suc))
33.0625
94
0.579962
31e90b0912c5673258df1f86e91676621d00d2f4
5,040
agda
Agda
formalization/agda/Spire/IDarkwingDuck/Primitive.agda
spire/spire
3d67f137ee9423b7e6f8593634583998cd692353
[ "BSD-3-Clause" ]
43
2015-05-28T23:25:33.000Z
2022-03-08T17:10:59.000Z
formalization/agda/Spire/IDarkwingDuck/Primitive.agda
spire/spire
3d67f137ee9423b7e6f8593634583998cd692353
[ "BSD-3-Clause" ]
null
null
null
formalization/agda/Spire/IDarkwingDuck/Primitive.agda
spire/spire
3d67f137ee9423b7e6f8593634583998cd692353
[ "BSD-3-Clause" ]
1
2015-08-17T21:00:07.000Z
2015-08-17T21:00:07.000Z
module Spire.IDarkwingDuck.Primitive where ---------------------------------------------------------------------- infixr 4 _,_ infixr 5 _∷_ ---------------------------------------------------------------------- postulate String : Set {-# BUILTIN STRING String #-} ---------------------------------------------------------------------- data ⊥ : Set where elimBot : (P : ⊥ → Set) (v : ⊥) → P v elimBot P () ---------------------------------------------------------------------- data ⊤ : Set where tt : ⊤ elimUnit : (P : ⊤ → Set) (ptt : P tt) (u : ⊤) → P u elimUnit P ptt tt = ptt ---------------------------------------------------------------------- data Σ (A : Set) (B : A → Set) : Set where _,_ : (a : A) (b : B a) → Σ A B elimPair : {A : Set} {B : A → Set} (P : Σ A B → Set) (ppair : (a : A) (b : B a) → P (a , b)) (ab : Σ A B) → P ab elimPair P ppair (a , b) = ppair a b ---------------------------------------------------------------------- data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x elimEq : {A : Set} {x : A} (P : (y : A) → x ≡ y → Set) (prefl : P x refl) (y : A) (q : x ≡ y) → P y q elimEq P prefl x refl = prefl ---------------------------------------------------------------------- data List (A : Set) : Set where [] : List A _∷_ : (x : A) (xs : List A) → List A elimList : {A : Set} (P : List A → Set) (pnil : P []) (pcons : (x : A) (xs : List A) → P xs → P (x ∷ xs)) (xs : List A) → P xs elimList P pnil pcons [] = pnil elimList P pnil pcons (x ∷ xs) = pcons x xs (elimList P pnil pcons xs) ---------------------------------------------------------------------- data PointsTo (A : Set) : List A → Set where here : ∀{x xs} → PointsTo A (x ∷ xs) there : ∀{x xs} → PointsTo A xs → PointsTo A (x ∷ xs) elimPointsTo : {A : Set} (P : (xs : List A) → PointsTo A xs → Set) (phere : (x : A) (xs : List A) → P (x ∷ xs) here) (pthere : (x : A) (xs : List A) (t : PointsTo A xs) → P xs t → P (x ∷ xs) (there t)) (xs : List A) (t : PointsTo A xs) → P xs t elimPointsTo P phere pthere (x ∷ xs) here = phere x xs elimPointsTo P phere pthere (x ∷ xs) (there t) = pthere x xs t (elimPointsTo P phere pthere xs t) ---------------------------------------------------------------------- data Tel : Set₁ where End : Tel Arg IArg : (A : Set) (B : A → Tel) → Tel elimTel : (P : Tel → Set) (pend : P End) (parg : (A : Set) (B : A → Tel) (pb : (a : A) → P (B a)) → P (Arg A B)) (piarg : (A : Set) (B : A → Tel) (pb : (a : A) → P (B a)) → P (IArg A B)) (T : Tel) → P T elimTel P pend parg piarg End = pend elimTel P pend parg piarg (Arg A B) = parg A B (λ a → elimTel P pend parg piarg (B a)) elimTel P pend parg piarg (IArg A B) = piarg A B (λ a → elimTel P pend parg piarg (B a)) ---------------------------------------------------------------------- data Desc (I : Set) : Set₁ where End : (i : I) → Desc I Rec : (i : I) (D : Desc I) → Desc I Arg : (A : Set) (B : A → Desc I) → Desc I IArg : (A : Set) (B : A → Desc I) → Desc I elimDesc : {I : Set} (P : Desc I → Set) (pend : (i : I) → P (End i)) (prec : (i : I) (D : Desc I) (pd : P D) → P (Rec i D)) (parg : (A : Set) (B : A → Desc I) (pb : (a : A) → P (B a)) → P (Arg A B)) (piarg : (A : Set) (B : A → Desc I) (pb : (a : A) → P (B a)) → P (IArg A B)) (D : Desc I) → P D elimDesc P pend prec parg piarg (End i) = pend i elimDesc P pend prec parg piarg (Rec i D) = prec i D (elimDesc P pend prec parg piarg D) elimDesc P pend prec parg piarg (Arg A B) = parg A B (λ a → elimDesc P pend prec parg piarg (B a)) elimDesc P pend prec parg piarg (IArg A B) = piarg A B (λ a → elimDesc P pend prec parg piarg (B a)) Elᴰ : {I : Set} (D : Desc I) → (I → Set) → I → Set Elᴰ (End j) X i = j ≡ i Elᴰ (Rec j D) X i = Σ (X j) (λ _ → Elᴰ D X i) Elᴰ (Arg A B) X i = Σ A (λ a → Elᴰ (B a) X i) Elᴰ (IArg A B) X i = Σ A (λ a → Elᴰ (B a) X i) Hyps : {I : Set} (D : Desc I) (X : I → Set) (P : (i : I) → X i → Set) (i : I) (xs : Elᴰ D X i) → Set Hyps (End j) X P i q = ⊤ Hyps (Rec j D) X P i (x , xs) = Σ (P j x) (λ _ → Hyps D X P i xs) Hyps (Arg A B) X P i (a , b) = Hyps (B a) X P i b Hyps (IArg A B) X P i (a , b) = Hyps (B a) X P i b ---------------------------------------------------------------------- data μ {I : Set} (D : Desc I) (i : I) : Set where init : Elᴰ D (μ D) i → μ D i ind : {I : Set} (D : Desc I) (M : (i : I) → μ D i → Set) (α : ∀ i (xs : Elᴰ D (μ D) i) (ihs : Hyps D (μ D) M i xs) → M i (init xs)) (i : I) (x : μ D i) → M i x prove : {I : Set} (D E : Desc I) (M : (i : I) → μ E i → Set) (α : ∀ i (xs : Elᴰ E (μ E) i) (ihs : Hyps E (μ E) M i xs) → M i (init xs)) (i : I) (xs : Elᴰ D (μ E) i) → Hyps D (μ E) M i xs ind D M α i (init xs) = α i xs (prove D D M α i xs) prove (End j) E M α i q = tt prove (Rec j D) E M α i (x , xs) = ind E M α j x , prove D E M α i xs prove (Arg A B) E M α i (a , xs) = prove (B a) E M α i xs prove (IArg A B) E M α i (a , xs) = prove (B a) E M α i xs ----------------------------------------------------------------------
33.825503
100
0.418651
136e4d5579338a02ba102ba10c73d63476fce0d1
4,582
agda
Agda
theorems/cohomology/SubFinBouquet.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/cohomology/SubFinBouquet.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/cohomology/SubFinBouquet.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.Bouquet open import homotopy.FinWedge open import cohomology.Theory module cohomology.SubFinBouquet (OT : OrdinaryTheory lzero) where open OrdinaryTheory OT open import cohomology.Sphere OT open import cohomology.SubFinWedge cohomology-theory open import cohomology.Bouquet OT C-SubFinBouquet-diag : ∀ n {A B : Type₀} (B-ac : has-choice 0 B lzero) {I} (p : Fin I → Coprod A B) → C (ℕ-to-ℤ n) (⊙Bouquet B n) ≃ᴳ Πᴳ B (λ _ → C2 0) C-SubFinBouquet-diag n {B = B} B-ac p = C-Bouquet-diag n B B-ac C-FinBouquet-diag : ∀ n I → C (ℕ-to-ℤ n) (⊙FinBouquet I n) ≃ᴳ Πᴳ (Fin I) (λ _ → C2 0) C-FinBouquet-diag n I = C-SubFinBouquet-diag n {A = Empty} {B = Fin I} (Fin-has-choice 0 lzero) inr abstract C-SubFinBouquet-diag-β : ∀ n {A B : Type₀} (B-ac : has-choice 0 B lzero) {I} (p : Fin I → Coprod A B) g b → GroupIso.f (C-FinBouquet-diag n I) g b == GroupIso.f (C-Sphere-diag n) (CEl-fmap (ℕ-to-ℤ n) ⊙lower (CEl-fmap (ℕ-to-ℤ n) (⊙bwin b) g)) C-SubFinBouquet-diag-β n B-ac p g b = GroupIso.f (C-Sphere-diag n) (CEl-fmap (ℕ-to-ℤ n) (⊙bwin b) (CEl-fmap (ℕ-to-ℤ n) (⊙–> (⊙BigWedge-emap-r (λ _ → ⊙lower-equiv))) g)) =⟨ ap (GroupIso.f (C-Sphere-diag n)) $ ∘-CEl-fmap (ℕ-to-ℤ n) (⊙bwin b) (⊙–> (⊙BigWedge-emap-r (λ _ → ⊙lower-equiv))) g ∙ CEl-fmap-base-indep (ℕ-to-ℤ n) (λ _ → idp) g ∙ CEl-fmap-∘ (ℕ-to-ℤ n) (⊙bwin b) ⊙lower g ⟩ GroupIso.f (C-Sphere-diag n) (CEl-fmap (ℕ-to-ℤ n) ⊙lower (CEl-fmap (ℕ-to-ℤ n) (⊙bwin b) g)) =∎ C-FinBouquet-diag-β : ∀ n I g <I → GroupIso.f (C-FinBouquet-diag n I) g <I == GroupIso.f (C-Sphere-diag n) (CEl-fmap (ℕ-to-ℤ n) ⊙lower (CEl-fmap (ℕ-to-ℤ n) (⊙bwin <I) g)) C-FinBouquet-diag-β n I = C-SubFinBouquet-diag-β n {A = Empty} {B = Fin I} (Fin-has-choice 0 lzero) inr inverse-C-SubFinBouquet-diag-β : ∀ n {A B : Type₀} (B-ac : has-choice 0 B lzero) (B-dec : has-dec-eq B) {I} (p : Fin I ≃ Coprod A B) g → GroupIso.g (C-SubFinBouquet-diag n B-ac (–> p)) g == Group.subsum-r (C (ℕ-to-ℤ n) (⊙Bouquet B n)) (–> p) (λ b → CEl-fmap (ℕ-to-ℤ n) (⊙bwproj B-dec b) (CEl-fmap (ℕ-to-ℤ n) ⊙lift (GroupIso.g (C-Sphere-diag n) (g b)))) inverse-C-SubFinBouquet-diag-β n {B = B} B-ac B-dec p g = CEl-fmap (ℕ-to-ℤ n) (⊙<– (⊙BigWedge-emap-r (λ _ → ⊙lower-equiv))) (GroupIso.g (C-subfinite-additive-iso (ℕ-to-ℤ n) (–> p) (⊙Lift (⊙Sphere n)) B-ac) (GroupIso.g (C-Sphere-diag n) ∘ g)) =⟨ ap (CEl-fmap (ℕ-to-ℤ n) (⊙<– (⊙BigWedge-emap-r (λ _ → ⊙lower-equiv)))) $ inverse-C-subfinite-additive-β (ℕ-to-ℤ n) B-ac B-dec p (GroupIso.g (C-Sphere-diag n) ∘ g) ⟩ CEl-fmap (ℕ-to-ℤ n) (⊙<– (⊙BigWedge-emap-r (λ _ → ⊙lower-equiv))) (Group.subsum-r (C (ℕ-to-ℤ n) (⊙BouquetLift B n)) (–> p) (λ b → CEl-fmap (ℕ-to-ℤ n) (⊙bwproj B-dec b) (GroupIso.g (C-Sphere-diag n) (g b)))) =⟨ GroupHom.pres-subsum-r (C-fmap (ℕ-to-ℤ n) (⊙<– (⊙BigWedge-emap-r (λ _ → ⊙lower-equiv)))) (–> p) $ (λ b → CEl-fmap (ℕ-to-ℤ n) (⊙bwproj B-dec b) (GroupIso.g (C-Sphere-diag n) (g b))) ⟩ Group.subsum-r (C (ℕ-to-ℤ n) (⊙Bouquet B n)) (–> p) (λ b → CEl-fmap (ℕ-to-ℤ n) (⊙<– (⊙BigWedge-emap-r (λ _ → ⊙lower-equiv))) (CEl-fmap (ℕ-to-ℤ n) (⊙bwproj B-dec b) (GroupIso.g (C-Sphere-diag n) (g b)))) =⟨ ap (Group.subsum-r (C (ℕ-to-ℤ n) (⊙Bouquet B n)) (–> p)) (λ= λ b → ∘-CEl-fmap (ℕ-to-ℤ n) (⊙<– (⊙BigWedge-emap-r (λ _ → ⊙lower-equiv))) (⊙bwproj B-dec b) (GroupIso.g (C-Sphere-diag n) (g b)) ∙ CEl-fmap-base-indep (ℕ-to-ℤ n) (bwproj-BigWedge-emap-r-lift B-dec b) (GroupIso.g (C-Sphere-diag n) (g b)) ∙ CEl-fmap-∘ (ℕ-to-ℤ n) ⊙lift (⊙bwproj B-dec b) (GroupIso.g (C-Sphere-diag n) (g b))) ⟩ Group.subsum-r (C (ℕ-to-ℤ n) (⊙Bouquet B n)) (–> p) (λ b → CEl-fmap (ℕ-to-ℤ n) (⊙bwproj B-dec b) (CEl-fmap (ℕ-to-ℤ n) ⊙lift (GroupIso.g (C-Sphere-diag n) (g b)))) =∎ inverse-C-FinBouquet-diag-β : ∀ n I g → GroupIso.g (C-FinBouquet-diag n I) g == Group.sum (C (ℕ-to-ℤ n) (⊙FinBouquet I n)) (λ <I → CEl-fmap (ℕ-to-ℤ n) (⊙fwproj <I) (CEl-fmap (ℕ-to-ℤ n) ⊙lift (GroupIso.g (C-Sphere-diag n) (g <I)))) inverse-C-FinBouquet-diag-β n I = inverse-C-SubFinBouquet-diag-β n {A = Empty} {B = Fin I} (Fin-has-choice 0 lzero) Fin-has-dec-eq (⊔₁-Empty (Fin I) ⁻¹)
47.729167
107
0.541685
2e1c4a16b3287b59508d7cf449f195e67c1fe747
1,450
agda
Agda
agda/Avionics/List.agda
RPI-WCL/safety-envelopes-sentinels
896e67a2ad21041a1c9ef5f3ad6318c67d730341
[ "BSD-3-Clause" ]
null
null
null
agda/Avionics/List.agda
RPI-WCL/safety-envelopes-sentinels
896e67a2ad21041a1c9ef5f3ad6318c67d730341
[ "BSD-3-Clause" ]
null
null
null
agda/Avionics/List.agda
RPI-WCL/safety-envelopes-sentinels
896e67a2ad21041a1c9ef5f3ad6318c67d730341
[ "BSD-3-Clause" ]
1
2020-09-20T00:36:09.000Z
2020-09-20T00:36:09.000Z
module Avionics.List where open import Data.Bool using (Bool; true; false; T) open import Data.List as List using (List; []; _∷_; any) open import Data.List.Relation.Unary.Any using (Any; here; there) open import Function using (_∘_) open import Relation.Binary.PropositionalEquality using (_≡_; inspect; [_]; refl) open import Avionics.Bool using (≡→T) ≡→any : ∀ {a} {A : Set a} (f) (ns : List A) → any f ns ≡ true → Any (T ∘ f) ns --→ Any (λ x → T (f x)) ns ≡→any f [] () ≡→any f (n ∷ ns) any-f-⟨n∷ns⟩≡true with f n | inspect f n ... | true | [ fn≡t ] = here (≡→T fn≡t) ... | false | _ = there (≡→any f ns any-f-⟨n∷ns⟩≡true) any→≡ : ∀ {a} {A : Set a} (f) (ns : List A) → Any (T ∘ f) ns → any f ns ≡ true any→≡ f (n ∷ _) (here _) with f n ... | true = refl -- or: T→≡ [*proof*from*here*] any→≡ f (n ∷ ns) (there Any[T∘f]ns) with f n ... | true = refl ... | false = any→≡ f ns Any[T∘f]ns any-map : ∀ {A B : Set} {p : B → Set} {ls : List A} (f : A → B) → Any p (List.map f ls) → Any (p ∘ f) ls --any-map {ls = []} _ () any-map {ls = l ∷ ls} f (here pb) = here pb any-map {ls = l ∷ ls} f (there pb) = there (any-map f pb) any-map-rev : ∀ {A B : Set} {p : B → Set} {ls : List A} (f : A → B) → Any (p ∘ f) ls → Any p (List.map f ls) any-map-rev {ls = l ∷ ls} f (here pb) = here pb any-map-rev {ls = l ∷ ls} f (there pb) = there (any-map-rev f pb)
32.954545
81
0.513793
50f3c8c37e924e2c4b0e373478c3d99e84a1a60d
1,504
agda
Agda
examples/outdated-and-incorrect/lattice/PartialOrder.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
examples/outdated-and-incorrect/lattice/PartialOrder.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/outdated-and-incorrect/lattice/PartialOrder.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module PartialOrder where open import Prelude record PartialOrder (A : Set) : Set1 where field _==_ : A -> A -> Set _≤_ : A -> A -> Set ==-def : forall {x y} -> (x == y) ⇐⇒ (x ≤ y) ∧ (y ≤ x) ≤-refl : forall {x} -> x ≤ x ≤-trans : forall {x y z} -> x ≤ y -> y ≤ z -> x ≤ z module POrder {A : Set}(ord : PartialOrder A) where private module POrd = PartialOrder ord open POrd public infix 60 _≤_ _==_ Monotone : (A -> A) -> Set Monotone f = forall {x y} -> x ≤ y -> f x ≤ f y Antitone : (A -> A) -> Set Antitone f = forall {x y} -> x ≤ y -> f y ≤ f x ≤-antisym : forall {x y} -> x ≤ y -> y ≤ x -> x == y ≤-antisym p q = snd ==-def (p , q) ==≤-L : forall {x y} -> x == y -> x ≤ y ==≤-L x=y = fst (fst ==-def x=y) ==≤-R : forall {x y} -> x == y -> y ≤ x ==≤-R x=y = snd (fst ==-def x=y) ==-refl : forall {x} -> x == x ==-refl = ≤-antisym ≤-refl ≤-refl ==-sym : forall {x y} -> x == y -> y == x ==-sym xy = snd ==-def (swap (fst ==-def xy)) ==-trans : forall {x y z} -> x == y -> y == z -> x == z ==-trans xy yz = ≤-antisym (≤-trans x≤y y≤z) (≤-trans z≤y y≤x) where x≤y = ==≤-L xy y≤z = ==≤-L yz y≤x = ==≤-R xy z≤y = ==≤-R yz Dual : PartialOrder A Dual = record { _==_ = _==_ ; _≤_ = \x y -> y ≤ x ; ==-def = (swap ∘ fst ==-def , snd ==-def ∘ swap) ; ≤-refl = ≤-refl ; ≤-trans = \yx zy -> ≤-trans zy yx }
25.066667
59
0.420878
59960ee529c756b03057ec9490531f6c28d96d17
1,085
agda
Agda
examples/examplesPaperJFP/VariableList.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
23
2016-06-19T12:57:55.000Z
2020-10-12T23:15:25.000Z
examples/examplesPaperJFP/VariableList.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
null
null
null
examples/examplesPaperJFP/VariableList.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
2
2018-09-01T15:02:37.000Z
2022-03-12T11:41:00.000Z
module examplesPaperJFP.VariableList where open import Data.Product hiding (map) open import Data.List open import NativeIO open import StateSizedIO.GUI.WxBindingsFFI open import Relation.Binary.PropositionalEquality data VarList : Set₁ where [] : VarList addVar : (A : Set) → Var A → VarList → VarList prod : VarList → Set prod [] = Unit prod (addVar A v []) = A prod (addVar A v l) = A × prod l takeVar : (l : VarList) → NativeIO (prod l) takeVar [] = nativeReturn unit takeVar (addVar A v []) = nativeTakeVar {A} v takeVar (addVar A v (addVar B v′ l)) = nativeTakeVar {A} v native>>= λ a → takeVar (addVar B v′ l) native>>= λ rest → nativeReturn ( a , rest ) putVar : (l : VarList) → prod l → NativeIO Unit putVar [] _ = nativeReturn unit putVar (addVar A v []) a = nativePutVar {A} v a putVar (addVar A v (addVar B v′ l)) (a , rest) = nativePutVar {A} v a native>>= λ _ → putVar (addVar B v′ l) rest
29.324324
71
0.574194
3d1ebcda32370e4e9841def1727a6d872b2ce7a8
3,110
agda
Agda
Grammar/Abstract.agda
nad/pretty
b956803ba90b6c5f57bbbaab01bb18485d948492
[ "MIT" ]
null
null
null
Grammar/Abstract.agda
nad/pretty
b956803ba90b6c5f57bbbaab01bb18485d948492
[ "MIT" ]
null
null
null
Grammar/Abstract.agda
nad/pretty
b956803ba90b6c5f57bbbaab01bb18485d948492
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Abstract grammars ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Grammar.Abstract where open import Data.Bool open import Data.Char open import Data.Empty open import Data.List open import Data.Product open import Data.Sum open import Function open import Relation.Binary.PropositionalEquality using (_≡_) ------------------------------------------------------------------------ -- Grammars -- I use an abstract and general definition of grammars: a grammar is -- a predicate that relates strings with parse results. Grammar : Set → Set₁ Grammar A = A → List Char → Set ------------------------------------------------------------------------ -- Grammar combinators -- A grammar for no strings. fail : ∀ {A} → Grammar A fail = λ _ _ → ⊥ -- Symmetric choice. infixl 10 _∣_ _∣_ : ∀ {A} → Grammar A → Grammar A → Grammar A g₁ ∣ g₂ = λ x s → g₁ x s ⊎ g₂ x s -- Grammars for the empty string. return : ∀ {A} → A → Grammar A return x = λ y s → y ≡ x × s ≡ [] -- Map. infixl 20 _<$>_ _<$_ _<$>_ : ∀ {A B} → (A → B) → Grammar A → Grammar B f <$> g = λ x s → ∃ λ y → g y s × x ≡ f y _<$_ : ∀ {A B} → A → Grammar B → Grammar A x <$ g = const x <$> g -- A sequencing combinator for partially applied grammars. seq : (List Char → Set) → (List Char → Set) → (List Char → Set) seq p₁ p₂ = λ s → ∃₂ λ s₁ s₂ → p₁ s₁ × p₂ s₂ × s ≡ s₁ ++ s₂ -- Monadic bind. infixl 15 _>>=_ _>>_ _>>=_ : ∀ {A B} → Grammar A → (A → Grammar B) → Grammar B g₁ >>= g₂ = λ y s → ∃ λ x → seq (g₁ x) (g₂ x y) s _>>_ : ∀ {A B} → Grammar A → Grammar B → Grammar B g₁ >> g₂ = g₁ >>= λ _ → g₂ -- "Applicative" sequencing. infixl 20 _⊛_ _<⊛_ _⊛>_ _⊛_ : ∀ {A B} → Grammar (A → B) → Grammar A → Grammar B g₁ ⊛ g₂ = g₁ >>= λ f → f <$> g₂ _<⊛_ : ∀ {A B} → Grammar A → Grammar B → Grammar A g₁ <⊛ g₂ = λ x s → ∃ λ y → seq (g₁ x) (g₂ y) s _⊛>_ : ∀ {A B} → Grammar A → Grammar B → Grammar B _⊛>_ = _>>_ -- Kleene star. infix 30 _⋆ _+ _⋆ : ∀ {A} → Grammar A → Grammar (List A) (g ⋆) [] s = s ≡ [] (g ⋆) (x ∷ xs) s = seq (g x) ((g ⋆) xs) s _+ : ∀ {A} → Grammar A → Grammar (List A) (g +) [] s = ⊥ (g +) (x ∷ xs) s = (g ⋆) (x ∷ xs) s -- Elements separated by something. infixl 18 _sep-by_ _sep-by_ : ∀ {A B} → Grammar A → Grammar B → Grammar (List A) g sep-by sep = _∷_ <$> g ⊛ (sep >> g) ⋆ -- A grammar for an arbitrary token. token : Grammar Char token = λ c s → s ≡ [ c ] -- A grammar for a given token. tok : Char → Grammar Char tok c = λ c′ s → c′ ≡ c × token c′ s -- A grammar for tokens satisfying a given predicate. sat : (p : Char → Bool) → Grammar (∃ λ t → T (p t)) sat _ = λ { (c , _) s → token c s } -- A grammar for whitespace. whitespace : Grammar Char whitespace = tok ' ' ∣ tok '\n' -- A grammar for a given string. string : List Char → Grammar (List Char) string s = λ s′ s″ → s′ ≡ s × s″ ≡ s -- A grammar for the given string, possibly followed by some -- whitespace. symbol : List Char → Grammar (List Char) symbol s = string s <⊛ whitespace ⋆
23.208955
72
0.524116
df370493c6fe0e76d300f1e1bfefd154472ea146
2,797
agda
Agda
Definition/Typed/Consequences/Equality.agda
loic-p/logrel-mltt
2251b8da423be0c6fb916f2675d7bd8537e4cd96
[ "MIT" ]
null
null
null
Definition/Typed/Consequences/Equality.agda
loic-p/logrel-mltt
2251b8da423be0c6fb916f2675d7bd8537e4cd96
[ "MIT" ]
null
null
null
Definition/Typed/Consequences/Equality.agda
loic-p/logrel-mltt
2251b8da423be0c6fb916f2675d7bd8537e4cd96
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Definition.Typed.Consequences.Equality where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.EqRelInstance open import Definition.LogicalRelation open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Fundamental.Reducibility open import Tools.Embedding open import Tools.Product import Tools.PropositionalEquality as PE U≡A′ : ∀ {A Γ l} ([U] : Γ ⊩⟨ l ⟩U) → Γ ⊩⟨ l ⟩ U ≡ A / (U-intr [U]) → A PE.≡ U U≡A′ (noemb [U]) (U₌ [U≡A]) = [U≡A] U≡A′ (emb 0<1 [U]) (ιx [U≡A]) = U≡A′ [U] [U≡A] -- If A is judgmentally equal to U, then A is propsitionally equal to U. U≡A : ∀ {A Γ} → Γ ⊢ U ≡ A → A PE.≡ U U≡A {A} U≡A with reducibleEq U≡A U≡A {A} U≡A | [U] , [A] , [U≡A] = U≡A′ (U-elim [U]) (irrelevanceEq [U] (U-intr (U-elim [U])) [U≡A]) ℕ≡A′ : ∀ {A Γ l} ([ℕ] : Γ ⊩⟨ l ⟩ℕ ℕ) → Γ ⊩⟨ l ⟩ ℕ ≡ A / (ℕ-intr [ℕ]) → Whnf A → A PE.≡ ℕ ℕ≡A′ (noemb x) (ιx (ℕ₌ [ℕ≡A])) whnfA = whnfRed* [ℕ≡A] whnfA ℕ≡A′ (emb 0<1 [ℕ]) (ιx [ℕ≡A]) whnfA = ℕ≡A′ [ℕ] [ℕ≡A] whnfA -- If A in WHNF is judgmentally equal to ℕ, then A is propsitionally equal to ℕ. ℕ≡A : ∀ {A Γ} → Γ ⊢ ℕ ≡ A → Whnf A → A PE.≡ ℕ ℕ≡A {A} ℕ≡A whnfA with reducibleEq ℕ≡A ℕ≡A {A} ℕ≡A whnfA | [ℕ] , [A] , [ℕ≡A] = ℕ≡A′ (ℕ-elim [ℕ]) (irrelevanceEq [ℕ] (ℕ-intr (ℕ-elim [ℕ])) [ℕ≡A]) whnfA ne≡A′ : ∀ {A K Γ l} → ([K] : Γ ⊩⟨ l ⟩ne K) → Γ ⊩⟨ l ⟩ K ≡ A / (ne-intr [K]) → Whnf A → ∃ λ M → Neutral M × A PE.≡ M ne≡A′ (noemb [K]) (ιx (ne₌ M D′ neM K≡M)) whnfA = M , neM , (whnfRed* (red D′) whnfA) ne≡A′ (emb 0<1 [K]) (ιx [K≡A]) whnfA = ne≡A′ [K] [K≡A] whnfA -- If A in WHNF is judgmentally equal to K, then there exists a M such that -- A is propsitionally equal to M. ne≡A : ∀ {A K Γ} → Neutral K → Γ ⊢ K ≡ A → Whnf A → ∃ λ M → Neutral M × A PE.≡ M ne≡A {A} neK ne≡A whnfA with reducibleEq ne≡A ne≡A {A} neK ne≡A whnfA | [ne] , [A] , [ne≡A] = ne≡A′ (ne-elim neK [ne]) (irrelevanceEq [ne] (ne-intr (ne-elim neK [ne])) [ne≡A]) whnfA Π≡A′ : ∀ {A F G Γ l} ([Π] : Γ ⊩⟨ l ⟩Π Π F ▹ G) → Γ ⊩⟨ l ⟩ Π F ▹ G ≡ A / (Π-intr [Π]) → Whnf A → ∃₂ λ H E → A PE.≡ Π H ▹ E Π≡A′ (noemb [Π]) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) whnfA = F′ , G′ , whnfRed* D′ whnfA Π≡A′ (emb 0<1 [Π]) (ιx [Π≡A]) whnfA = Π≡A′ [Π] [Π≡A] whnfA -- If A is judgmentally equal to Π F ▹ G, then there exists H and E such that -- A is propsitionally equal to Π H ▹ E. Π≡A : ∀ {A F G Γ} → Γ ⊢ Π F ▹ G ≡ A → Whnf A → ∃₂ λ H E → A PE.≡ Π H ▹ E Π≡A {A} Π≡A whnfA with reducibleEq Π≡A Π≡A {A} Π≡A whnfA | [Π] , [A] , [Π≡A] = Π≡A′ (Π-elim [Π]) (irrelevanceEq [Π] (Π-intr (Π-elim [Π])) [Π≡A]) whnfA
32.149425
80
0.543797
0e79fa7c05b86b73e4be6e69d150ee04912055a0
2,130
agda
Agda
Agda/Squaring.agda
Brethland/LEARNING-STUFF
eb2cef0556efb9a4ce11783f8516789ea48cc344
[ "MIT" ]
2
2020-02-03T05:05:52.000Z
2020-03-11T10:35:42.000Z
Agda/Squaring.agda
Brethland/LEARNING-STUFF
eb2cef0556efb9a4ce11783f8516789ea48cc344
[ "MIT" ]
null
null
null
Agda/Squaring.agda
Brethland/LEARNING-STUFF
eb2cef0556efb9a4ce11783f8516789ea48cc344
[ "MIT" ]
1
2019-12-13T04:50:46.000Z
2019-12-13T04:50:46.000Z
{-# OPTIONS --safe #-} module Squaring where open import Relation.Binary.PropositionalEquality open import Data.Nat open import Data.Product open import Data.Bool hiding (_≤_;_<_) open import Data.Nat.Properties open ≡-Reasoning div-mod2 : ℕ → ℕ × Bool div-mod2 0 = 0 , false div-mod2 (suc 0) = 0 , true div-mod2 (suc (suc n)) = let q , r = div-mod2 n in suc q , r -- The first argument (k) helps Agda to prove -- that the function terminates pow-sqr-aux : ℕ → ℕ → ℕ → ℕ pow-sqr-aux 0 _ _ = 1 pow-sqr-aux _ _ 0 = 1 pow-sqr-aux (suc k) b e with div-mod2 e ... | e' , false = pow-sqr-aux k (b * b) e' ... | e' , true = b * pow-sqr-aux k (b * b) e' pow-sqr : ℕ → ℕ → ℕ pow-sqr b e = pow-sqr-aux e b e div-mod2-spec : ∀ n → let q , r = div-mod2 n in 2 * q + (if r then 1 else 0) ≡ n div-mod2-spec 0 = refl div-mod2-spec 1 = refl div-mod2-spec (suc (suc n)) with div-mod2 n | div-mod2-spec n ... | q , r | eq rewrite +-suc q (q + 0) | eq = refl div-mod2-lt : ∀ n → 0 < n → proj₁ (div-mod2 n) < n div-mod2-lt 0 lt = lt div-mod2-lt 1 lt = lt div-mod2-lt 2 lt = s≤s (s≤s z≤n) div-mod2-lt (suc (suc (suc n))) lt with div-mod2 (suc n) | div-mod2-lt (suc n) (s≤s z≤n) ... | q , r | ih = ≤-step (s≤s ih) pow-lemma : ∀ b e → (b * b) ^ e ≡ b ^ (2 * e) pow-lemma b e = begin (b * b) ^ e ≡⟨ cong (λ t → (b * t) ^ e) (sym (*-identityʳ b)) ⟩ (b ^ 2) ^ e ≡⟨ ^-*-assoc b 2 e ⟩ b ^ (2 * e) ∎ pow-sqr-lemma : ∀ k b e → e ≤ k → pow-sqr-aux k b e ≡ b ^ e pow-sqr-lemma 0 _ 0 _ = refl pow-sqr-lemma (suc k) _ 0 _ = refl pow-sqr-lemma (suc k) b (suc e) (s≤s le) with div-mod2 (suc e) | div-mod2-spec (suc e) | div-mod2-lt (suc e) (s≤s z≤n) ... | e' , false | eq | lt = begin pow-sqr-aux k (b * b) e' ≡⟨ pow-sqr-lemma k (b * b) e' (≤-trans (≤-pred lt) le) ⟩ (b * b) ^ e' ≡⟨ pow-lemma b e' ⟩ b ^ (2 * e') ≡⟨ cong (b ^_) (trans (sym (+-identityʳ (e' + (e' + 0)))) eq) ⟩ b ^ suc e ∎ ... | e' , true | eq | lt = cong (b *_) (begin pow-sqr-aux k (b * b) e' ≡⟨ pow-sqr-lemma k (b * b) e' (≤-trans (≤-pred lt) le) ⟩ (b * b) ^ e' ≡⟨ pow-lemma b e' ⟩ b ^ (2 * e') ≡⟨ cong (b ^_) (suc-injective (trans (+-comm 1 _) eq)) ⟩ b ^ e ∎)
32.769231
83
0.541315
1aff282ebdecfdb8002d87d17de46eb12a9401fd
5,318
agda
Agda
doc/test.agda
StillerHarpo/masterarbeit
68afff2b0a7183751737ef20e713df1fef3d4cf2
[ "BSD-3-Clause" ]
null
null
null
doc/test.agda
StillerHarpo/masterarbeit
68afff2b0a7183751737ef20e713df1fef3d4cf2
[ "BSD-3-Clause" ]
null
null
null
doc/test.agda
StillerHarpo/masterarbeit
68afff2b0a7183751737ef20e713df1fef3d4cf2
[ "BSD-3-Clause" ]
null
null
null
module test where open import Relation.Binary.PropositionalEquality module NewCodata where open import Data.Nat open import Data.List open import Data.Maybe record Pair (A B : Set) : Set where field fst : A snd : B record Stream (A : Set) : Set where coinductive field hd : A tl : Stream A open Stream repeat : ∀ {A : Set} → A → Stream A hd (repeat x) = x tl (repeat x) = repeat x nth : ∀ {A : Set} → ℕ → Stream A → A nth zero s = hd s nth (suc n) s = nth n (tl s) mutual data μColist (A : Set) : Set where [] : μColist A _∷_ : (x : A) (xs : νColist A) → μColist A record νColist (A : Set) : Set where coinductive field out : μColist A open νColist record νTree (A : Set) : Set where coinductive field label : A subs : List (νTree A) open νTree append : {A : Set} → List A → νColist A → νColist A out (append [] ys) = out ys out (append (x ∷ xs) ys) = x ∷ append xs ys appendS : {A : Set} → List A → Stream A → Stream A hd (appendS [] s) = hd s hd (appendS (x ∷ xs) s) = x tl (appendS [] s) = tl s tl (appendS (x ∷ xs) s) = tl (appendS xs s) record Pi (A : Set) (B : A → Set) : Set where field _$_ : (x : A) → B x infixl 20 _$_ open Pi _→'_ : Set → Set → Set A →' B = Pi A (λ _ → B) infixr 20 _→'_ plus2 : ℕ →' ℕ plus2 $ x = suc (suc x) plus : ℕ →' ℕ →' ℕ plus $ 0 $ m = m plus $ (suc n) $ m = suc (plus $ n $ m) data Vec (A : Set) : ℕ → Set where nil : Vec A 0 _:::_ : {n : ℕ} → A → Vec A n → Vec A (suc n) test : Vec ℕ 2 test = 2 ::: (2 ::: nil) repeat2V : Pi ℕ (λ n → Vec ℕ n) repeat2V $ 0 = nil repeat2V $ suc n = 2 ::: (repeat2V $ n) {- bf : {A : Set} → List (νTree A) → νColist A out (bf []) = [] out (bf (t ∷ ts)) = label t ∷ append (map label ts) (bf (concatMap subs (t ∷ ts))) -} record ℕ∞ : Set where coinductive field pred∞ : Maybe ℕ∞ open ℕ∞ infinity : ℕ∞ pred∞ infinity = just infinity zero∞ : ℕ∞ pred∞ zero∞ = nothing one∞ : ℕ∞ pred∞ one∞ = just zero∞ suc∞ : ℕ∞ → ℕ∞ pred∞ (suc∞ x) = just x plus∞ : ℕ∞ → ℕ∞ → ℕ∞ pred∞ (plus∞ n m) with pred∞ n ... | nothing = pred∞ m ... | just n' = just (plus∞ n' m) {- record PStr (A : Set) (n : ℕ∞) : Set where coinductive field phd : (k : ℕ∞) → PStr A (suc∞ k) → A ptl : (k : ℕ∞) → PStr A (suc∞ k) → PStr A k -} module OldCodata where open import Codata.Musical.Notation open import Data.Nat data Stream (A : Set) : Set where cons : A → ∞ (Stream A) → Stream A repeat : {A : Set} → A → Stream A repeat x = cons x (♯ (repeat x)) nth : {A : Set} → ℕ → Stream A → A nth 0 (cons x _) = x nth (suc n) (cons _ xs) = nth n (♭ xs) data ℕ∞ : Set where zero∞ : ℕ∞ suc∞ : ∞ (ℕ∞) → ℕ∞ infinity : ℕ∞ infinity = suc∞ (♯ infinity) module NonTerminating where open import Data.Nat {- _/_ : ℕ → ℕ → ℕ zero / y = zero suc x / y = suc ( (x ∸ y) / y) -} module PositiveSizedTypes where open import Agda.Builtin.Size data ℕ : Size → Set where zero : {i : Size} → ℕ i suc : {i : Size} → ℕ i → ℕ (↑ i) one : ℕ ∞ one = suc zero two : ℕ ∞ two = suc one three : ℕ ∞ three = suc two four : ℕ ∞ four = suc three five : ℕ ∞ five = suc four _-_ : {i : Size} → ℕ i → ℕ ∞ → ℕ i zero - _ = zero n - zero = n (suc n) - (suc m) = n - m infixl 20 _-_ -test₁ : five - two ≡ three -test₁ = refl _/_ : {i : Size} → ℕ i → ℕ ∞ → ℕ i zero / _ = zero suc x / y = suc ( (x - y) / y) infixl 30 _/_ _+_ : ℕ ∞ → ℕ ∞ → ℕ ∞ zero + y = y suc x + y = suc (x + y) infixl 20 _+_ _*_ : ℕ ∞ → ℕ ∞ → ℕ ∞ zero * _ = zero suc x * y = x + x * y infixl 30 _*_ min : {i : Size} → ℕ i → ℕ i → ℕ i min zero _ = zero min _ zero = zero min (suc m) (suc n) = suc (min m n) test₁ : zero / zero ≡ zero test₁ = refl test₂ : zero / five ≡ zero test₂ = refl test₃ : one / one ≡ one test₃ = refl test₄ : two / two ≡ one test₄ = refl test₅ : five / five ≡ one test₅ = refl test₆ : one / zero ≡ one test₆ = refl test₇ : two / one ≡ one test₇ = refl test₈ : four / two ≡ two test₈ = refl module NegativSizedTypes where open import Agda.Builtin.Size open import Data.Nat open import Data.Bool using (if_then_else_) open import Relation.Nullary.Decidable using (⌊_⌋) record Stream (i : Size) (A : Set) : Set where coinductive field hd : A tl : ∀ {j : Size< i} → Stream j A open Stream cons : {i : Size} {A : Set} → A -> Stream i A → Stream i A hd (cons x _) = x tl (cons _ xs) = xs map : {A B : Set} {i : Size} → (A → B) → Stream i A → Stream i B hd (map f xs) = f (hd xs) tl (map f xs) = map f (tl xs) merge : {i : Size} → Stream i ℕ → Stream i ℕ → Stream i ℕ hd (merge xs ys) = hd xs ⊓ hd ys tl (merge xs ys) = if ⌊ hd xs ≤? hd ys ⌋ then cons (hd ys) (merge (tl xs) (tl ys)) else cons (hd xs) (merge (tl xs) (tl ys)) ham : {i : Size} → Stream i ℕ hd ham = 1 tl ham = (merge (map (_*_ 2) ham) (map (_*_ 3) ham))
21.272
66
0.503949
c7c9b398add3a7c3391f132d41fb2ba48e4916bb
2,522
agda
Agda
lib/Haskell/Prim/Bounded.agda
JonathanBrouwer/agda2hs
dcf63cc7ce51a325a97ac58bdd0aeace24c08b15
[ "MIT" ]
55
2020-10-20T13:36:25.000Z
2022-03-26T21:57:56.000Z
lib/Haskell/Prim/Bounded.agda
SNU-2D/agda2hs
160478a51bc78b0fdab07b968464420439f9fed6
[ "MIT" ]
63
2020-10-22T05:19:27.000Z
2022-02-25T15:47:30.000Z
lib/Haskell/Prim/Bounded.agda
SNU-2D/agda2hs
160478a51bc78b0fdab07b968464420439f9fed6
[ "MIT" ]
18
2020-10-21T22:19:09.000Z
2022-03-12T11:42:52.000Z
module Haskell.Prim.Bounded where open import Agda.Builtin.Nat open import Agda.Builtin.Bool open import Agda.Builtin.Char open import Agda.Builtin.Equality open import Agda.Builtin.List open import Haskell.Prim open import Haskell.Prim.Eq open import Haskell.Prim.Int open import Haskell.Prim.Maybe open import Haskell.Prim.Ord open import Haskell.Prim.Tuple open import Haskell.Prim.Word -------------------------------------------------- -- Bounded record BoundedBelow (a : Set) : Set where field minBound : a record BoundedAbove (a : Set) : Set where field maxBound : a record Bounded (a : Set) : Set where field overlap ⦃ below ⦄ : BoundedBelow a overlap ⦃ above ⦄ : BoundedAbove a {-# COMPILE AGDA2HS Bounded existing-class #-} open BoundedBelow ⦃ ... ⦄ public open BoundedAbove ⦃ ... ⦄ public instance iBounded : ⦃ BoundedBelow a ⦄ → ⦃ BoundedAbove a ⦄ → Bounded a iBounded .Bounded.below = it iBounded .Bounded.above = it instance iBoundedBelowNatural : BoundedBelow Nat iBoundedBelowNatural .minBound = 0 iBoundedBelowWord : BoundedBelow Word iBoundedBelowWord .minBound = 0 iBoundedAboveWord : BoundedAbove Word iBoundedAboveWord .maxBound = 18446744073709551615 iBoundedBelowInt : BoundedBelow Int iBoundedBelowInt .minBound = -9223372036854775808 iBoundedAboveInt : BoundedAbove Int iBoundedAboveInt .maxBound = 9223372036854775807 iBoundedBelowBool : BoundedBelow Bool iBoundedBelowBool .minBound = false iBoundedAboveBool : BoundedAbove Bool iBoundedAboveBool .maxBound = true iBoundedBelowChar : BoundedBelow Char iBoundedBelowChar .minBound = '\0' iBoundedAboveChar : BoundedAbove Char iBoundedAboveChar .maxBound = '\1114111' iBoundedBelowTuple₀ : BoundedBelow (Tuple []) iBoundedBelowTuple₀ .minBound = [] iBoundedAboveTuple₀ : BoundedAbove (Tuple []) iBoundedAboveTuple₀ .maxBound = [] iBoundedBelowTuple : ∀ {as} → ⦃ BoundedBelow a ⦄ → ⦃ BoundedBelow (Tuple as) ⦄ → BoundedBelow (Tuple (a ∷ as)) iBoundedBelowTuple .minBound = minBound ∷ minBound iBoundedAboveTuple : ∀ {as} → ⦃ BoundedAbove a ⦄ → ⦃ BoundedAbove (Tuple as) ⦄ → BoundedAbove (Tuple (a ∷ as)) iBoundedAboveTuple .maxBound = maxBound ∷ maxBound iBoundedBelowOrdering : BoundedBelow Ordering iBoundedBelowOrdering .minBound = LT iBoundedAboveOrdering : BoundedAbove Ordering iBoundedAboveOrdering .maxBound = GT -- Sanity checks private _ : addWord maxBound 1 ≡ minBound _ = refl _ : addInt maxBound 1 ≡ minBound _ = refl
27.714286
112
0.735527
a102fd19b4d0ca9bba6330a618d6dc03e423eeec
1,124
agda
Agda
examples/Introduction/Data/Parameterised.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/Introduction/Data/Parameterised.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/Introduction/Data/Parameterised.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- This module introduces parameterised datatypes. module Introduction.Data.Parameterised where -- First some of our old friends. data Nat : Set where zero : Nat suc : Nat -> Nat data Bool : Set where false : Bool true : Bool -- A datatype can be parameterised over a telescope, (A : Set) in the case of -- lists. The parameters are bound in the types of the constructors. data List (A : Set) : Set where nil : List A cons : A -> List A -> List A -- When using the constructors the parameters to the datatype becomes implicit -- arguments. In this case, the types of the constructors are : -- nil : {A : Set} -> List A -- cons : {A : Set} -> A -> List A -> List A -- So, we can write nilNat = nil {Nat} -- the type of this will be List Nat -- When pattern matching on elements of a parameterised datatype you cannot -- refer to the parameters--it wouldn't make sense to pattern match on the -- element type of the list. So you can say null : {A : Set} -> List A -> Bool null nil = true null (cons _ _) = false -- but not -- null (nil {A}) = true -- null (cons {A} _ _) = false
24.434783
78
0.660142
040932de07207c23764a135ee41ff80587a1da0f
1,883
agda
Agda
test/Succeed/Issue1606.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue1606.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue1606.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
-- Andreas, 2015-07-07 continuation of issue 665 {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.with.strip:60 -v tc.lhs:10 #-} postulate C : Set anything : C record I : Set where constructor c field f : C data Wrap : (j : I) → Set where wrap : ∀ {j} → Wrap j works1 : ∀ {j} → Wrap j → C works1 {c ._} (wrap {c x}) with anything ... | z = z works2 : ∀ {j} → Wrap j → C works2 (wrap {_}) with anything ... | z = z works3 : ∀ {j} → Wrap j → C works3 wrap with anything ... | z = z works : ∀ {j} → Wrap j → C works {c _} (wrap {c ._}) with anything works {c _} (wrap .{c _}) | z = z -- The following should not pass, but issue 142 is hard to fix -- with the current infrastructure for with-clauses. -- Not many attempts have been made since 2009, and none succeeded. issue142 : ∀ {j} → Wrap j → C issue142 {c _} (wrap {c ._}) with anything issue142 {c _} (wrap .{c anything}) | z = z test : ∀ {j} → Wrap j → C test {c _} (wrap {c ._}) with anything test {c _} (wrap {c ._}) | z = z test' : ∀ {j} → Wrap j → C test' {c _} (wrap {c ._}) with anything ... | z = z -- ERROR WAS:: -- Inaccessible (dotted) patterns from the parent clause must also be -- inaccessible in the with clause, when checking the pattern {c ._}, -- when checking that the clause -- test {c _} (wrap {c ._}) with anything -- test {c _} (wrap {c ._}) | z = z -- has type {j : I} → Wrap j → C works1a : ∀ {j} → Wrap j → C works1a {c ._} (wrap {c x}) with anything works1a {c ._} (wrap {c x}) | z = z works1b : ∀ {j} → Wrap j → C works1b {c ._} (wrap {c x}) with anything works1b .{c _} (wrap {c x}) | z = z -- ERROR WAS: -- With clause pattern .(c _) is not an instance of its parent pattern -- (c .(Var 0 []) : {I}) -- when checking that the clause -- works1b {c ._} (wrap {c _}) with anything -- works1b {.(c _)} (wrap {c _}) | z = z -- has type {j : I} → Wrap j → C -- should pass
25.445946
70
0.584174
06e504ae30a3c0068b4f3bbe2e3bf7861dc19d34
1,381
agda
Agda
old/Algebra/F2NotCommutative.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
old/Algebra/F2NotCommutative.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
old/Algebra/F2NotCommutative.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K #-} open import Base module Algebra.F2NotCommutative where import Algebra.FreeGroup open Algebra.FreeGroup (bool {zero}) renaming (freegroup to F2) X : Set X = bool × bool X-is-set : is-set X X-is-set = ×-is-truncated _ bool-is-set bool-is-set pattern a = (true , true ) pattern b = (true , false) pattern c = (false , true ) pattern d = (false , false) -- [map1] and [map2] are two involutive noncommutating bijections of [X] map1 : X → X map1 a = b map1 b = a map1 c = c map1 d = d map2 : X → X map2 a = c map2 b = b map2 c = a map2 d = d act : bool {zero} → (X → X) act true = map1 act false = map2 act-involutive : (b : bool) (x : X) → (act b (act b x) ≡ x) act-involutive true a = refl act-involutive true b = refl act-involutive true c = refl act-involutive true d = refl act-involutive false a = refl act-involutive false b = refl act-involutive false c = refl act-involutive false d = refl F2-act-on-X : F2 → (X → X) F2-act-on-X = freegroup-rec-nondep (X → X) (id X) (λ b f → f ◯ act b) (λ b f → f ◯ act b) (λ b f → funext (λ x → ap f (act-involutive b x))) (λ b f → funext (λ x → ap f (act-involutive b x))) (→-is-truncated _ X-is-set) ab : F2 ab = true · (false · e) ba : F2 ba = false · (true · e) F2-non-commutative : ab ≢ ba F2-non-commutative p = bool-true≢false (base-path (happly (ap F2-act-on-X p) a))
20.61194
72
0.627082
2272611732b70098d781dee57ee57c18dacef652
8,905
agda
Agda
Structure/Container/IndexedIterable.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Structure/Container/IndexedIterable.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Structure/Container/IndexedIterable.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
open import Type module Structure.Container.IndexedIterable {ℓᵢ} {Index : Type{ℓᵢ}} where import Lvl open import Data open import Data.Boolean open import Data.Boolean.Stmt open import Data.Option import Data.Option.Functions as Option open import Data.Tuple as Tuple using (_⨯_ ; _,_) open import Functional open import Logic.Propositional open import Logic.Predicate open import Numeral.Natural open import Numeral.Natural.Relation.Order open import Relator.Equals private variable ℓ ℓₑ ℓₑ₁ ℓₑ₂ : Lvl.Level private variable T : Type{ℓ} private variable Elem : Type{ℓₑ} private variable i : Index module _ (Iter : Index → Type{ℓ}) where IsEmptyTypeFn = ∀{i} → Iter(i) → Bool IndexStepFn : IsEmptyTypeFn → Type IndexStepFn isEmpty = ∀{i} → (iter : Iter(i)) → (if isEmpty(iter) then Unit else Index) CurrentFn : Type{ℓₑ} → IsEmptyTypeFn → Type CurrentFn Element isEmpty = ∀{i} → (iter : Iter(i)) → (if isEmpty(iter) then Unit else Element) StepFn : Type{ℓₑ} → (isEmpty : IsEmptyTypeFn) → IndexStepFn isEmpty → Type StepFn Element isEmpty indexStep = ∀{i} → (iter : Iter(i)) → Out iter where Out : Iter(i) → Type Out iter with isEmpty iter | indexStep iter ... | 𝑇 | <> = Unit ... | 𝐹 | is = Iter(is) -- An iterator type `Iter` is iterable when there may be elements that the iterator can yield in sequence. -- It should be possible to decide whether the iterator is empty, and when it is not, get the element it points to and advancing to its next state containing the next element in order. record Iterable (Iter : Index → Type{ℓ}) {ℓₑ} : Type{ℓ Lvl.⊔ ℓᵢ Lvl.⊔ Lvl.𝐒(ℓₑ)} where field -- The type of the elements in the iterator. {Element} : Type{ℓₑ} -- Whether there are no elements left in the iterator. isEmpty : IsEmptyTypeFn(Iter) -- The current/frontmost element in the iterator if it is non-empty. current : CurrentFn(Iter) Element isEmpty -- The next iterator index. Advances the index if the iterator is non-empty. {indexStep} : IndexStepFn(Iter) isEmpty -- The next iterator state. Advancing the iterator if it is non-empty. step : StepFn(Iter) Element isEmpty indexStep -- Whether there are at most the given number of elements in the iterator. atMost : ℕ → Iter(i) → Bool atMost(𝟎) iter = isEmpty(iter) atMost(𝐒(n)) iter with isEmpty(iter) | indexStep iter | step iter ... | 𝑇 | <> | <> = 𝑇 ... | 𝐹 | _ | is = atMost(n) is -- Skipping the given number of iterator indices. Advances as many steps as possible. indexWalk : (n : ℕ) → (iter : Iter(i)) → (if(atMost n iter) then Unit else Index) indexWalk {i} 𝟎 iter with isEmpty(iter) ... | 𝑇 = <> ... | 𝐹 = i indexWalk {i} (𝐒(n)) iter with isEmpty(iter) | indexStep iter | step iter ... | 𝑇 | <> | <> = <> ... | 𝐹 | _ | iters = indexWalk n iters WalkFn : Type WalkFn = ∀{i} → (n : ℕ) → (iter : Iter(i)) → Out n iter where Out : ℕ → Iter(i) → Type Out n iter with atMost n iter | indexWalk n iter ... | 𝑇 | <> = Unit ... | 𝐹 | is = Iter(is) {- walk : WalkFn walk(𝟎) iter with isEmpty(iter) ... | 𝑇 = <> ... | 𝐹 = iter walk(𝐒(n)) iter with isEmpty(iter) | indexStep iter | step iter | walk n iter ... | 𝑇 | <> | <> | _ = <> ... | 𝐹 | _ | iters | iters2 = ? -- walk n iters -} Foldᵣ : ∀{ℓ} → Type{ℓ} → Type Foldᵣ(T) = ∀{i} → (Element → T → T) → T → Iter(i) → T FoldᵣCriteria : Foldᵣ(T) → (∀{i} → (Element → T → T) → T → Iter(i) → Type) FoldᵣCriteria foldᵣ(_▫_) id iter with isEmpty iter | indexStep iter | current iter | step iter ... | 𝑇 | <> | <> | <> = (foldᵣ(_▫_) id iter ≡ id) ... | 𝐹 | _ | x | iters = (foldᵣ(_▫_) id iter ≡ x ▫ foldᵣ(_▫_) id iters) -- An iterator is finite when it is possible to fold it (when a fold function exists). -- This works because a fold for an infinite iterator cannot terminate, and only terminating functions exist. -- TODO: But it seems to be impossible to define a "foldUntil" function (though it is up to function extensionality). Finite = ∀{ℓ}{T : Type{ℓ}} → ∃{Obj = Foldᵣ(T)}(foldᵣ ↦ ∀{i}{_▫_}{id : T}{iter : Iter(i)} → FoldᵣCriteria (\{i}(_▫_) id → foldᵣ{i}(_▫_) id) (_▫_) id iter) module _ ⦃ fin : Finite ⦄ where foldᵣ : ∀{i} → (Element → T → T) → T → Iter(i) → T foldᵣ = [∃]-witness fin length : ∀{i} → Iter(i) → ℕ length = foldᵣ(const 𝐒) 𝟎 count : ∀{i} → (Element → Bool) → Iter(i) → ℕ count(P) = foldᵣ(x ↦ if P(x) then 𝐒 else id) 𝟎 foldₗ : (T → Element → T) → T → Iter(i) → T foldₗ(_▫_) = swap(foldᵣ(y ↦ f ↦ x ↦ f(x ▫ y)) id) last : ∀{i} → Iter(i) → Option(Element) last = foldₗ(const Some) None -- Note: Below are possibly inefficient implementations of functions because if they were guaranteed to exit early, the number of computations would be reduced. first : ∀{i} → Iter(i) → Option(Element) first = foldᵣ(const ∘ Some) None -- TODO: Complete = Surjective(step) record Initialed (i : Index) : Type{ℓᵢ Lvl.⊔ ℓ} where constructor initialed eta-equality field iter : Iter(i) left : ℕ Initialed-iterable : Iterable(Initialed) Element Initialed-iterable = Element isEmpty Initialed-iterable (initialed iter 𝟎) = 𝑇 current Initialed-iterable (initialed iter 𝟎) = <> indexStep Initialed-iterable (initialed iter 𝟎) = <> step Initialed-iterable (initialed iter 𝟎) = <> isEmpty Initialed-iterable (initialed iter (𝐒(_))) = isEmpty iter current Initialed-iterable (initialed iter (𝐒(_))) = current iter indexStep Initialed-iterable (initialed iter (𝐒(_))) = indexStep iter step Initialed-iterable (initialed iter (𝐒(n))) with isEmpty iter | indexStep iter | step iter ... | 𝑇 | _ | _ = <> ... | 𝐹 | _ | sIter = initialed sIter n {- record Skipped (i : Index) : Type{ℓᵢ Lvl.⊔ ℓ} where constructor skipped eta-equality field iter : Iter(i) still : ℕ Skipped-iterable : Iterable(Skipped) Element Skipped-iterable = Element isEmpty Skipped-iterable (skipped iter 𝟎) = 𝑇 current Skipped-iterable (skipped iter 𝟎) = <> indexStep Skipped-iterable (skipped iter 𝟎) = <> step Skipped-iterable (skipped iter 𝟎) = <> isEmpty Skipped-iterable (skipped iter (𝐒(_))) = isEmpty (walk (𝐒(n)) iter) current Skipped-iterable (skipped iter (𝐒(_))) = current (walk (𝐒(n)) iter) indexStep Skipped-iterable (skipped iter (𝐒(_))) = indexStep (walk (𝐒(n)) iter) step Skipped-iterable (skipped iter (𝐒(n))) with isEmpty iter | indexStep iter | step iter -} mapped : (Element → Elem) → Iterable(Iter) Element (mapped {Elem = Elem} f) = Elem isEmpty (mapped f) = isEmpty current (mapped f) iter with isEmpty iter | current iter ... | 𝑇 | <> = <> ... | 𝐹 | x = f(x) indexStep (mapped f) iter = indexStep iter step (mapped f) iter = step iter {-record Stored (n : ℕ) {Iter : Index → Type{ℓ₁}} (iterable : Iterable(Iter)) : Type where field Queue(Iterator.Element(iterable)) -} {- TODO: Also needs to store data, so it cannot be the same Iter skipped : ℕ → Iterator{ℓₑ} → Iterator Iterator.Element (skipped _ iterator) = Iterator.Element iterator Iterator.isEmpty (skipped n iterator) = Iterator.atMost n iterator Iterator.current (skipped _ iterator) = Iterator.indexStep (skipped iterator) = Iterator.step (skipped iterator) = -} {- skipped : ℕ → ∀{iter} → Iterable{ℓₑ}(iter) → Iterable(iter) skipped 𝟎 iterable = iterable skipped (𝐒 n) iterable = {!!} -} -- An empty iterator of the iterable. EmptyConstruction : ∀{i} → Iter(i) → Type EmptyConstruction(empty) = IsTrue(isEmpty empty) -- A function prepending an element to an iterator of the iterable. PrependConstruction : ∀{indexPrepend : ∀{i} → Element → Iter(i) → Index} → (∀{i} → (x : Element) → (iter : Iter(i)) → Iter(indexPrepend x iter)) → Type PrependConstruction{indexPrepend} (prepend) = ∀{i}{x}{iter : Iter(i)} → ∃{Obj = IndexStep x iter}(Out x iter) where IndexStep : Element → Iter(i) → Type IndexStep{i} x iter with isEmpty(prepend x iter) | indexStep(prepend x iter) ... | 𝑇 | _ = Empty ... | 𝐹 | p = (p ≡ i) Out : (x : Element) → (iter : Iter(i)) → IndexStep x iter → Type Out x iter stepProof with isEmpty(prepend x iter) | indexStep(prepend x iter) | current(prepend x iter) | step(prepend x iter) ... | 𝐹 | _ | cur | st with [≡]-intro ← stepProof = (x ≡ cur) ∧ (st ≡ iter) module _ {indexEmpty}{empty} ⦃ empty-construciton : EmptyConstruction{indexEmpty}(empty) ⦄ {indexPrepend : ∀{i} → Element → Iter(i) → Index} {prepend : ∀{i} → (x : Element) → (iter : Iter(i)) → Iter(indexPrepend x iter)} ⦃ prepend-construction : PrependConstruction{indexPrepend}(prepend) ⦄ where singleton : (x : Element) → Iter(indexPrepend x empty) singleton x = prepend x empty
40.294118
184
0.634812
1a64dc48bac7f97aa4dc617eca9da5532fd26ebb
658
agda
Agda
Pi-/Everything.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
Pi-/Everything.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
Pi-/Everything.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
module Pi-.Everything where open import Pi-.Syntax -- Syntax of Pi- open import Pi-.Opsem -- Abstract machine semantics of Pi- open import Pi-.AuxLemmas -- Some auxiliary lemmas about opsem for forward/backward deterministic proof open import Pi-.NoRepeat -- Forward/backward deterministic lemmas and Non-repeating lemma open import Pi-.Invariants -- Some invariants about abstract machine semantics open import Pi-.Eval -- Evaluator for Pi- open import Pi-.Interp -- Big-step intepreter for Pi- open import Pi-.Properties -- Properties of Pi- open import Pi-.Examples -- Examples open import Pi-.Category -- Pi- Category
54.833333
105
0.737082
adfbc15cfda13e2b463866fc81604bb5908be255
766
agda
Agda
type-level.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
29
2019-02-06T13:09:31.000Z
2022-03-04T15:05:12.000Z
type-level.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
8
2018-07-09T22:53:38.000Z
2022-03-22T03:43:34.000Z
type-level.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
17
2018-12-03T22:38:15.000Z
2021-11-28T20:13:21.000Z
module type-level where open import bool open import level open import nat {- multiApply{n} applies a sequence f1, f2, ..., f_n of functions to a starting point a: multiApply{n} a f1 f2 ... f_n = f_n (... (f2 (f1 a))) -} multiApplyTh : ℕ → Set → Set lone multiApplyTh 0 A = Lift A multiApplyTh (suc n) A = ∀{B : Set} → (A → B) → multiApplyTh n B multiApplyT : ℕ → Set lone multiApplyT n = ∀{A : Set} → A → multiApplyTh n A multiApply-testT = multiApplyT 2 multiApplyh : {A : Set}{n : ℕ} → A → multiApplyTh n A multiApplyh {n = zero} a = lift a multiApplyh {n = suc n} a f = multiApplyh{n = n} (f a) multiApply : {n : ℕ} → multiApplyT n multiApply = λ a → multiApplyh a multiApply-test1 : Lift 𝔹 multiApply-test1 = multiApply{3} 3 (_+_ 3) is-even ~_
24.709677
66
0.651436
0487d1136a2ec78616b74844a856227063e975db
4,509
agda
Agda
src/Categories/Category/Monoidal/Utilities.agda
sstucki/agda-categories
602ed2ae05dd449d77fc299c07a1cdd02ee5b823
[ "MIT" ]
null
null
null
src/Categories/Category/Monoidal/Utilities.agda
sstucki/agda-categories
602ed2ae05dd449d77fc299c07a1cdd02ee5b823
[ "MIT" ]
null
null
null
src/Categories/Category/Monoidal/Utilities.agda
sstucki/agda-categories
602ed2ae05dd449d77fc299c07a1cdd02ee5b823
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category using (Category; module Commutation) open import Categories.Category.Monoidal.Core using (Monoidal) module Categories.Category.Monoidal.Utilities {o ℓ e} {C : Category o ℓ e} (M : Monoidal C) where open import Level open import Function using (_$_) open import Data.Product using (_×_; _,_; curry′) open import Categories.Category.Product import Categories.Category.Construction.Core as Core open import Categories.Functor renaming (id to idF) open import Categories.Functor.Bifunctor using (Bifunctor; appˡ; appʳ) open import Categories.Functor.Properties using ([_]-resp-≅) open import Categories.NaturalTransformation renaming (id to idN) open import Categories.NaturalTransformation.NaturalIsomorphism hiding (unitorˡ; unitorʳ; associator; _≃_) --open import Categories.Morphism C using (_≅_) --open import Categories.Morphism.IsoEquiv C using (_≃_; ⌞_⌟) open import Categories.Morphism.Isomorphism C using (lift-triangle′; lift-pentagon′) open import Categories.Morphism.Reasoning C private module C = Category C open C hiding (identityˡ; identityʳ; assoc) open Commutation C open Core.Shorthands C private variable X Y Z W A B : Obj f g h i a b : X ⇒ Y open Monoidal M -- for exporting, it makes sense to use the above long names, but for -- internal consumption, the traditional (short!) categorical names are more -- convenient. However, they are not symmetric, even though the concepts are, so -- we'll use ⇒ and ⇐ arrows to indicate that module Shorthands where λ⇒ = unitorˡ.from λ⇐ = unitorˡ.to ρ⇒ = unitorʳ.from ρ⇐ = unitorʳ.to -- eta expansion fixes a problem in 2.6.1, will be reported α⇒ = λ {X} {Y} {Z} → associator.from {X} {Y} {Z} α⇐ = λ {X} {Y} {Z} → associator.to {X} {Y} {Z} open Shorthands private [x⊗y]⊗z : Bifunctor (Product C C) C C [x⊗y]⊗z = ⊗ ∘F (⊗ ⁂ idF) -- note how this one needs re-association to typecheck (i.e. be correct) x⊗[y⊗z] : Bifunctor (Product C C) C C x⊗[y⊗z] = ⊗ ∘F (idF ⁂ ⊗) ∘F assocˡ _ _ _ unitor-coherenceʳ : [ (A ⊗₀ unit) ⊗₀ unit ⇒ A ⊗₀ unit ]⟨ ρ⇒ ⊗₁ C.id ≈ ρ⇒ ⟩ unitor-coherenceʳ = cancel-fromˡ unitorʳ unitorʳ-commute-from unitor-coherenceˡ : [ unit ⊗₀ unit ⊗₀ A ⇒ unit ⊗₀ A ]⟨ C.id ⊗₁ λ⇒ ≈ λ⇒ ⟩ unitor-coherenceˡ = cancel-fromˡ unitorˡ unitorˡ-commute-from -- All the implicits below can be inferred, but being explicit is clearer unitorˡ-naturalIsomorphism : NaturalIsomorphism (unit ⊗-) idF unitorˡ-naturalIsomorphism = record { F⇒G = ntHelper record { η = λ X → λ⇒ {X} ; commute = λ f → unitorˡ-commute-from {f = f} } ; F⇐G = ntHelper record { η = λ X → λ⇐ {X} ; commute = λ f → unitorˡ-commute-to {f = f} } ; iso = λ X → unitorˡ.iso {X} } unitorʳ-naturalIsomorphism : NaturalIsomorphism (-⊗ unit) idF unitorʳ-naturalIsomorphism = record { F⇒G = ntHelper record { η = λ X → ρ⇒ {X} ; commute = λ f → unitorʳ-commute-from {f = f} } ; F⇐G = ntHelper record { η = λ X → ρ⇐ {X} ; commute = λ f → unitorʳ-commute-to {f = f} } ; iso = λ X → unitorʳ.iso {X} } -- skipping the explicit arguments here, it does not increase understandability associator-naturalIsomorphism : NaturalIsomorphism [x⊗y]⊗z x⊗[y⊗z] associator-naturalIsomorphism = record { F⇒G = ntHelper record { η = λ { ((X , Y) , Z) → α⇒ {X} {Y} {Z}} ; commute = λ _ → assoc-commute-from } ; F⇐G = ntHelper record { η = λ _ → α⇐ ; commute = λ _ → assoc-commute-to } ; iso = λ _ → associator.iso } module unitorˡ-natural = NaturalIsomorphism unitorˡ-naturalIsomorphism module unitorʳ-natural = NaturalIsomorphism unitorʳ-naturalIsomorphism module associator-natural = NaturalIsomorphism associator-naturalIsomorphism infixr 10 _⊗ᵢ_ _⊗ᵢ_ : X ≅ Y → Z ≅ W → X ⊗₀ Z ≅ Y ⊗₀ W f ⊗ᵢ g = [ ⊗ ]-resp-≅ record { from = from f , from g ; to = to f , to g ; iso = record { isoˡ = isoˡ f , isoˡ g ; isoʳ = isoʳ f , isoʳ g } } triangle-iso : idᵢ ⊗ᵢ unitorˡ ∘ᵢ associator ≈ᵢ unitorʳ {X} ⊗ᵢ idᵢ {Y} triangle-iso = ⌞ triangle ⌟ triangle-inv : α⇐ ∘ id ⊗₁ λ⇐ ≈ ρ⇐ {X} ⊗₁ id {Y} triangle-inv = to-≈ triangle-iso pentagon-iso : idᵢ ⊗ᵢ associator ∘ᵢ associator ∘ᵢ associator {X} {Y} {Z} ⊗ᵢ idᵢ {W} ≈ᵢ associator ∘ᵢ associator pentagon-iso = ⌞ pentagon ⌟ pentagon-inv : (α⇐ {X} {Y} {Z} ⊗₁ id {W} ∘ α⇐) ∘ id ⊗₁ α⇐ ≈ α⇐ ∘ α⇐ pentagon-inv = to-≈ pentagon-iso refl⊗refl≃refl : idᵢ {A} ⊗ᵢ idᵢ {B} ≈ᵢ idᵢ refl⊗refl≃refl = ⌞ ⊗.identity ⌟
31.3125
97
0.657352
ad2fd123812882ef050956109e1c446d11f4f0f0
212
agda
Agda
archive/agda-3/src/Oscar/Class/Pure.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-3/src/Oscar/Class/Pure.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-3/src/Oscar/Class/Pure.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
open import Oscar.Prelude module Oscar.Class.Pure where module _ {𝔬 𝔣} (𝔉 : Ø 𝔬 → Ø 𝔣) where 𝓹ure = ∀ {𝔒 : Ø 𝔬} → 𝔒 → 𝔉 𝔒 record 𝓟ure : Ø 𝔣 ∙̂ ↑̂ 𝔬 where field pure : 𝓹ure open 𝓟ure ⦃ … ⦄ public
15.142857
33
0.570755
317a8de5a527d5dc51a7e69e0bbbeef029ecfdb0
2,365
agda
Agda
src/Typed/STLC/Delay.agda
laMudri/linear.agda
461077552d88141ac1bba044aa55b65069c3c6c0
[ "MIT" ]
34
2019-12-20T13:57:50.000Z
2021-02-03T15:22:33.000Z
src/Typed/STLC/Delay.agda
laMudri/linear.agda
461077552d88141ac1bba044aa55b65069c3c6c0
[ "MIT" ]
null
null
null
src/Typed/STLC/Delay.agda
laMudri/linear.agda
461077552d88141ac1bba044aa55b65069c3c6c0
[ "MIT" ]
2
2020-01-30T14:15:14.000Z
2020-05-23T00:34:36.000Z
open import Data.Nat open import Data.Bool open import Data.Product open import Function open import Data.List hiding (lookup) open import Data.List.All open import Data.List.Membership.Propositional open import Data.Maybe.Categorical open import Category.Monad open import Agda.Primitive open import Size open import Codata.Thunk open import Codata.Delay open import Codata.Delay.Categorical module Typed.STLC.Delay where data Ty : Set where numt boolt : Ty _⟶_ : Ty → Ty → Ty data Expr : List Ty → Ty → Set where add : ∀ {Γ} → Expr Γ numt → Expr Γ numt → Expr Γ numt num : ∀ {Γ} → ℕ → Expr Γ numt true′ false′ : ∀ {Γ} → Expr Γ boolt if′_then_else : ∀ {Γ} → ∀ {t} → Expr Γ boolt → Expr Γ t → Expr Γ t → Expr Γ t ƛ_ : ∀ {Γ t₁ t₂} → Expr (t₁ ∷ Γ) t₂ → Expr Γ (t₁ ⟶ t₂) _∙_ : ∀ {Γ t₁ t₂} → Expr Γ (t₁ ⟶ t₂) → Expr Γ t₁ → Expr Γ t₂ var : ∀ {Γ t} → t ∈ Γ → Expr Γ t mutual data Val : Ty → Set where numv : ℕ → Val numt boolv : Bool → Val boolt ⟨ƛ_,_⟩ : ∀ {Γ t₁ t₂} → Expr (t₁ ∷ Γ) t₂ → Env Γ → Val (t₁ ⟶ t₂) Env : List Ty → Set Env Γ = All Val Γ ReaderT : ∀ {a} {M : Set a → Set a} (R : Set a) → RawMonad M → RawMonad (λ A → R → M A) ReaderT _ M = record { return = λ a _ → return a ; _>>=_ = λ f k r → f r >>= λ x → k x r } where open RawMonad M module _ {Γ : List Ty} {i} where open RawMonad {lzero} (ReaderT (Env Γ) (Sequential.monad {i})) public M : List Ty → Size → Set → Set M Γ i A = Env Γ → Delay A i getEnv : ∀ {Γ i} → M Γ i (Env Γ) getEnv E = now E withEnv : ∀ {Γ Γ' i A} → Env Γ → M Γ i A → M Γ' i A withEnv E m _ = m E get : ∀ {Γ t i} → t ∈ Γ → M Γ i (Val t) get x E = now (lookup E x) mutual eval : ∀ {Γ t} → Expr Γ t → ∀ {i} → M Γ i (Val t) eval (add e₁ e₂) = do numv n₁ ← eval e₁ numv n₂ ← eval e₁ return (numv (n₁ + n₂)) eval (num n) = do return (numv n) eval true′ = do return (boolv true) eval false′ = do return (boolv false) eval (if′ c then t else e) = do (boolv b) ← eval c if b then eval t else eval e eval (ƛ e) = do E ← getEnv return ⟨ƛ e , E ⟩ eval (f ∙ a) = do ⟨ƛ e , E ⟩ ← eval f v ← eval a withEnv (v ∷ E) (▹eval e) eval (var x) = do get x ▹eval : ∀ {Γ i t} → Expr Γ t → M Γ i (Val t) ▹eval e E = later λ where .force → eval e E
23.186275
87
0.55518
adaa96f6b723b18eb66d2d571c7066f10688b4df
1,244
agda
Agda
test/interaction/Auto-Modules.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Auto-Modules.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Auto-Modules.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Auto-Modules where open import Auto.Prelude hiding (cong; trans) module NonemptySet (X : Set) (x : X) where h0 : (P : X → Set) → (∀ x → P x) → Σ X P h0 = {!!} -- h0 = λ P h → Σ-i x (h x) module WithRAA (RAA : ∀ A → ¬ (¬ A) → A) where h1 : ∀ A → A ∨ ¬ A h1 = {!!} --h1 = λ A → RAA (A ∨ ((x : A) → ⊥)) (λ z → z (∨-i₂ (λ x → z (∨-i₁ x)))) module B where h2 : ∀ A → A ∨ ¬ A h2 = {!!} module A (X : Set) (x : X) where postulate AllSame : {x y : X} → x ≡ y n0 : (P : X → Set) → Σ X P → ∀ x → P x -- n0 = {!subst AllSame!} -- no solution found n0 = λ P h x → subst P (Σ.wit h) x AllSame (Σ.prf h) module B (X : Set) (x y : X) (P : X → Set) where postulate p : P x h3 : P x h3 = {!p!} -- h3 = p module Setoid (X : Set) (Eq : X → X → Set) (refl : ∀ {x} → Eq x x) (symm : ∀ {x₁ x₂} → Eq x₁ x₂ → Eq x₂ x₁) (subst : ∀ {x₁ x₂} → (P : X → Set) → Eq x₁ x₂ → P x₁ → P x₂) where cong : ∀ {x₁ x₂} → (f : X → X) → Eq x₁ x₂ → Eq (f x₁) (f x₂) cong = {!!} -- hole 4 -- cong = λ {x₁} {x₂} f z → subst (λ z₁ → Eq (f x₁) (f z₁)) z refl trans : ∀ {x₁ x₂ x₃} → Eq x₁ x₂ → Eq x₂ x₃ → Eq x₁ x₃ trans = {!!} -- hole 5 -- trans = λ {x₁} {x₂} {x₃} z z₁ → subst (Eq x₁) z₁ z
24.88
74
0.445338
57086400ce456eb25f6753b1323c0ed712a458bd
1,270
agda
Agda
out/Group/Equality.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
39
2021-11-09T20:39:55.000Z
2022-03-19T17:33:12.000Z
out/Group/Equality.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
1
2021-11-21T12:19:32.000Z
2021-11-21T12:19:32.000Z
out/Group/Equality.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
4
2021-11-09T20:39:59.000Z
2022-01-24T12:49:17.000Z
{- This second-order equational theory was created from the following second-order syntax description: syntax Group | G type * : 0-ary term unit : * | ε add : * * -> * | _⊕_ l20 neg : * -> * | ⊖_ r40 theory (εU⊕ᴸ) a |> add (unit, a) = a (εU⊕ᴿ) a |> add (a, unit) = a (⊕A) a b c |> add (add(a, b), c) = add (a, add(b, c)) (⊖N⊕ᴸ) a |> add (neg (a), a) = unit (⊖N⊕ᴿ) a |> add (a, neg (a)) = unit -} module Group.Equality where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Families.Build open import SOAS.ContextMaps.Inductive open import Group.Signature open import Group.Syntax open import SOAS.Metatheory.SecondOrder.Metasubstitution G:Syn open import SOAS.Metatheory.SecondOrder.Equality G:Syn private variable α β γ τ : *T Γ Δ Π : Ctx infix 1 _▹_⊢_≋ₐ_ -- Axioms of equality data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ G) α Γ → (𝔐 ▷ G) α Γ → Set where εU⊕ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ ε ⊕ 𝔞 ≋ₐ 𝔞 εU⊕ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ⊕ ε ≋ₐ 𝔞 ⊕A : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (𝔞 ⊕ 𝔟) ⊕ 𝔠 ≋ₐ 𝔞 ⊕ (𝔟 ⊕ 𝔠) ⊖N⊕ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ (⊖ 𝔞) ⊕ 𝔞 ≋ₐ ε ⊖N⊕ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ⊕ (⊖ 𝔞) ≋ₐ ε open EqLogic _▹_⊢_≋ₐ_ open ≋-Reasoning
23.518519
99
0.533858
22a14df9b2241300df87b0aa413bf54fd41bc47b
2,485
agda
Agda
BasicIPC/Metatheory/ClosedHilbert-TarskiGluedClosedImplicit.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicIPC/Metatheory/ClosedHilbert-TarskiGluedClosedImplicit.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicIPC/Metatheory/ClosedHilbert-TarskiGluedClosedImplicit.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
module BasicIPC.Metatheory.ClosedHilbert-TarskiGluedClosedImplicit where open import BasicIPC.Syntax.ClosedHilbert public open import BasicIPC.Semantics.TarskiGluedClosedImplicit public open ImplicitSyntax (⊢_) public -- Completeness with respect to a particular model. module _ {{_ : Model}} where reify : ∀ {A} → ⊩ A → ⊢ A reify {α P} s = syn s reify {A ▻ B} s = syn s reify {A ∧ B} s = pair (reify (π₁ s)) (reify (π₂ s)) reify {⊤} s = unit -- Additional useful equipment. module _ {{_ : Model}} where ⟪K⟫ : ∀ {A B} → ⊩ A → ⊩ B ▻ A ⟪K⟫ a = app ck (reify a) ⅋ K a ⟪S⟫′ : ∀ {A B C} → ⊩ A ▻ B ▻ C → ⊩ (A ▻ B) ▻ A ▻ C ⟪S⟫′ s₁ = app cs (reify s₁) ⅋ λ s₂ → app (app cs (reify s₁)) (reify s₂) ⅋ ⟪S⟫ s₁ s₂ _⟪,⟫′_ : ∀ {A B} → ⊩ A → ⊩ B ▻ A ∧ B _⟪,⟫′_ a = app cpair (reify a) ⅋ _,_ a -- Soundness with respect to all models, or evaluation, for closed terms only. eval₀ : ∀ {A} → ⊢ A → ⊨ A eval₀ (app t u) = eval₀ t ⟪$⟫ eval₀ u eval₀ ci = ci ⅋ I eval₀ ck = ck ⅋ ⟪K⟫ eval₀ cs = cs ⅋ ⟪S⟫′ eval₀ cpair = cpair ⅋ _⟪,⟫′_ eval₀ cfst = cfst ⅋ π₁ eval₀ csnd = csnd ⅋ π₂ eval₀ unit = ∙ -- Correctness of evaluation with respect to conversion. eval₀✓ : ∀ {{_ : Model}} {A} {t t′ : ⊢ A} → t ⋙ t′ → eval₀ t ≡ eval₀ t′ eval₀✓ refl⋙ = refl eval₀✓ (trans⋙ p q) = trans (eval₀✓ p) (eval₀✓ q) eval₀✓ (sym⋙ p) = sym (eval₀✓ p) eval₀✓ (congapp⋙ p q) = cong² _⟪$⟫_ (eval₀✓ p) (eval₀✓ q) eval₀✓ (congi⋙ p) = cong I (eval₀✓ p) eval₀✓ (congk⋙ p q) = cong² K (eval₀✓ p) (eval₀✓ q) eval₀✓ (congs⋙ p q r) = cong³ ⟪S⟫ (eval₀✓ p) (eval₀✓ q) (eval₀✓ r) eval₀✓ (congpair⋙ p q) = cong² _,_ (eval₀✓ p) (eval₀✓ q) eval₀✓ (congfst⋙ p) = cong π₁ (eval₀✓ p) eval₀✓ (congsnd⋙ p) = cong π₂ (eval₀✓ p) eval₀✓ beta▻ₖ⋙ = refl eval₀✓ beta▻ₛ⋙ = refl eval₀✓ beta∧₁⋙ = refl eval₀✓ beta∧₂⋙ = refl eval₀✓ eta∧⋙ = refl eval₀✓ eta⊤⋙ = refl -- The canonical model. private instance canon : Model canon = record { ⊩ᵅ_ = λ P → ⊢ α P } -- Completeness with respect to all models, or quotation, for closed terms only. quot₀ : ∀ {A} → ⊨ A → ⊢ A quot₀ s = reify s -- Normalisation by evaluation, for closed terms only. norm₀ : ∀ {A} → ⊢ A → ⊢ A norm₀ = quot₀ ∘ eval₀ -- Correctness of normalisation with respect to conversion. norm₀✓ : ∀ {{_ : Model}} {A} {t t′ : ⊢ A} → t ⋙ t′ → norm₀ t ≡ norm₀ t′ norm₀✓ p = cong reify (eval₀✓ p)
26.72043
80
0.55332
cb43cff4fb2a5980d0d5a65777bf5d39566a61d2
3,841
agda
Agda
src/Partiality-monad/Inductive/Strict-omega-continuous.agda
nad/partiality-monad
f69749280969f9093e5e13884c6feb0ad2506eae
[ "MIT" ]
2
2020-05-21T22:59:18.000Z
2020-07-03T08:56:08.000Z
src/Partiality-monad/Inductive/Strict-omega-continuous.agda
nad/partiality-monad
f69749280969f9093e5e13884c6feb0ad2506eae
[ "MIT" ]
null
null
null
src/Partiality-monad/Inductive/Strict-omega-continuous.agda
nad/partiality-monad
f69749280969f9093e5e13884c6feb0ad2506eae
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Strict ω-continuous functions ------------------------------------------------------------------------ {-# OPTIONS --cubical --safe #-} module Partiality-monad.Inductive.Strict-omega-continuous where open import Equality.Propositional.Cubical open import Prelude hiding (⊥) open import Bijection equality-with-J using (_↔_) open import Function-universe equality-with-J hiding (_∘_) open import Monad equality-with-J import Partiality-algebra.Strict-omega-continuous as S open import Partiality-monad.Inductive open import Partiality-monad.Inductive.Eliminators open import Partiality-monad.Inductive.Monad open import Partiality-monad.Inductive.Monotone open import Partiality-monad.Inductive.Omega-continuous -- Definition of strict ω-continuous functions. [_⊥→_⊥]-strict : ∀ {a b} → Type a → Type b → Type (a ⊔ b) [ A ⊥→ B ⊥]-strict = S.[ partiality-algebra A ⟶ partiality-algebra B ]⊥ module [_⊥→_⊥]-strict {a b} {A : Type a} {B : Type b} (f : [ A ⊥→ B ⊥]-strict) = S.[_⟶_]⊥ f open [_⊥→_⊥]-strict -- Identity. id-strict : ∀ {a} {A : Type a} → [ A ⊥→ A ⊥]-strict id-strict = S.id⊥ -- Composition. infixr 40 _∘-strict_ _∘-strict_ : ∀ {a b c} {A : Type a} {B : Type b} {C : Type c} → [ B ⊥→ C ⊥]-strict → [ A ⊥→ B ⊥]-strict → [ A ⊥→ C ⊥]-strict _∘-strict_ = S._∘⊥_ -- Equality characterisation lemma for strict ω-continuous functions. equality-characterisation-strict : ∀ {a b} {A : Type a} {B : Type b} {f g : [ A ⊥→ B ⊥]-strict} → (∀ x → function f x ≡ function g x) ↔ f ≡ g equality-characterisation-strict = S.equality-characterisation-strict -- Composition is associative. ∘-strict-assoc : ∀ {a b c d} {A : Type a} {B : Type b} {C : Type c} {D : Type d} (f : [ C ⊥→ D ⊥]-strict) (g : [ B ⊥→ C ⊥]-strict) (h : [ A ⊥→ B ⊥]-strict) → f ∘-strict (g ∘-strict h) ≡ (f ∘-strict g) ∘-strict h ∘-strict-assoc = S.∘⊥-assoc -- Strict ω-continuous functions satisfy an extra monad law. >>=-∘-return : ∀ {a b} {A : Type a} {B : Type b} → (f : [ A ⊥→ B ⊥]-strict) → ∀ x → x >>=′ (function f ∘ return) ≡ function f x >>=-∘-return fs = ⊥-rec-⊥ (record { P = λ x → x >>=′ (f ∘ return) ≡ f x ; pe = never >>=′ f ∘ return ≡⟨ never->>= ⟩ never ≡⟨ sym (strict fs) ⟩∎ f never ∎ ; po = λ x → now x >>=′ f ∘ return ≡⟨ now->>= ⟩∎ f (now x) ∎ ; pl = λ s p → ⨆ s >>=′ (f ∘ return) ≡⟨ ⨆->>= ⟩ ⨆ ((f ∘ return) ∗-inc s) ≡⟨ cong ⨆ (_↔_.to equality-characterisation-increasing λ n → (f ∘ return) ∗-inc s [ n ] ≡⟨ p n ⟩∎ [ f⊑ $ s ]-inc [ n ] ∎) ⟩ ⨆ [ f⊑ $ s ]-inc ≡⟨ sym $ ω-continuous fs s ⟩∎ f (⨆ s) ∎ ; pp = λ _ → ⊥-is-set }) where f⊑ = monotone-function fs f = function fs -- Strict ω-continuous functions from A ⊥ to B ⊥ are isomorphic to -- functions from A to B ⊥. partial↔strict : ∀ {a b} {A : Type a} {B : Type b} → (A → B ⊥) ↔ [ A ⊥→ B ⊥]-strict partial↔strict {a} = record { surjection = record { logical-equivalence = record { to = λ f → record { ω-continuous-function = f ∗ ; strict = never >>=′ f ≡⟨ never->>= ⟩∎ never ∎ } ; from = λ f x → function f (return x) } ; right-inverse-of = λ f → _↔_.to equality-characterisation-strict λ x → x >>=′ (function f ∘ return) ≡⟨ >>=-∘-return f x ⟩∎ function f x ∎ } ; left-inverse-of = λ f → ⟨ext⟩ λ x → return x >>=′ f ≡⟨ Monad-laws.left-identity x f ⟩∎ f x ∎ }
31.483607
100
0.492059
22e12b91cf14e5541fa0275dd72408c4cb34d108
164
agda
Agda
Cubical/Data/NatPlusOne.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Data/NatPlusOne.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Data/NatPlusOne.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Data.NatPlusOne where open import Cubical.Data.NatPlusOne.Base public open import Cubical.Data.NatPlusOne.Properties public
23.428571
53
0.79878
3d8700d9e2d59d8924a4ef0a81fee6199f060a58
1,127
agda
Agda
src/fot/LTC-PCF/Program/GCD/Total/Definitions.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/LTC-PCF/Program/GCD/Total/Definitions.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/LTC-PCF/Program/GCD/Total/Definitions.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Common stuff used by the gcd example ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Program.GCD.Total.Definitions where open import LTC-PCF.Base open import LTC-PCF.Data.Nat.Divisibility.By0 open import LTC-PCF.Data.Nat.Inequalities open import LTC-PCF.Data.Nat.Type ------------------------------------------------------------------------------ -- Common divisor. CD : D → D → D → Set CD m n cd = cd ∣ m ∧ cd ∣ n -- Divisible for any common divisor. Divisible : D → D → D → Set Divisible m n gcd = ∀ cd → N cd → CD m n cd → cd ∣ gcd -- Greatest common divisor specification. -- -- The gcd is a common divisor and the gcd is divided by any common -- divisor, thefore the gcd is the greatest common divisor according -- to the partial order _∣_. gcdSpec : D → D → D → Set gcdSpec m n gcd = CD m n gcd ∧ Divisible m n gcd
34.151515
78
0.51819
a17b9a7a87cec917db0d69577a1a06507ac4e0fd
1,559
agda
Agda
src/API.agda
asr/alga
01f5f9f53ea81f692215300744aa77e26d8bf332
[ "MIT" ]
null
null
null
src/API.agda
asr/alga
01f5f9f53ea81f692215300744aa77e26d8bf332
[ "MIT" ]
null
null
null
src/API.agda
asr/alga
01f5f9f53ea81f692215300744aa77e26d8bf332
[ "MIT" ]
null
null
null
module API where open import Algebra open import Prelude empty : ∀ {A} -> Graph A empty = ε vertex : ∀ {A} -> A -> Graph A vertex = v overlay : ∀ {A} -> Graph A -> Graph A -> Graph A overlay = _+_ connect : ∀ {A} -> Graph A -> Graph A -> Graph A connect = _*_ edge : ∀ {A} -> A -> A -> Graph A edge x y = connect (vertex x) (vertex y) overlays : ∀ {A} -> List (Graph A) -> Graph A overlays = foldr overlay empty connects : ∀ {A} -> List (Graph A) -> Graph A connects = foldr connect empty vertices : ∀ {A} -> List A -> Graph A vertices = overlays ∘ map vertex edges : ∀ {A} -> List (A × A) -> Graph A edges = overlays ∘ map (uncurry edge) graph : ∀ {A} -> List A -> List (A × A) -> Graph A graph vs es = overlay (vertices vs) (edges es) foldg : ∀ {A} {B : Set} -> B -> (A -> B) -> (B -> B -> B) -> (B -> B -> B) -> Graph A -> B foldg {A} {B} e w o c = go where go : Graph A -> B go ε = e go (v x) = w x go (x + y) = o (go x) (go y) go (x * y) = c (go x) (go y) path : ∀ {A} -> List A -> Graph A path [] = empty path (x :: []) = vertex x path (x :: xs) = edges (zip (x :: xs) xs) circuit : ∀ {A} -> List A -> Graph A circuit [] = empty circuit (x :: xs) = path ([ x ] ++ xs ++ [ x ]) clique : ∀ {A} -> List A -> Graph A clique = connects ∘ map vertex biclique : ∀ {A} -> List A -> List A -> Graph A biclique xs ys = connect (vertices xs) (vertices ys) star : ∀ {A} -> A -> List A -> Graph A star x ys = connect (vertex x) (vertices ys)
24.746032
91
0.504811
ad6e39d8e6186788df60a69ce510f8f534c8a9f5
2,882
agda
Agda
src/Tactic/Deriving/Quotable.agda
L-TChen/agda-prelude
158d299b1b365e186f00d8ef5b8c6844235ee267
[ "MIT" ]
null
null
null
src/Tactic/Deriving/Quotable.agda
L-TChen/agda-prelude
158d299b1b365e186f00d8ef5b8c6844235ee267
[ "MIT" ]
null
null
null
src/Tactic/Deriving/Quotable.agda
L-TChen/agda-prelude
158d299b1b365e186f00d8ef5b8c6844235ee267
[ "MIT" ]
null
null
null
module Tactic.Deriving.Quotable where open import Prelude open import Container.Traversable open import Tactic.Reflection open import Tactic.Reflection.Quote.Class open import Tactic.Deriving private -- Bootstrapping qVis : Visibility → Term qVis visible = con (quote visible) [] qVis hidden = con (quote hidden) [] qVis instance′ = con (quote instance′) [] qRel : Relevance → Term qRel relevant = con (quote relevant) [] qRel irrelevant = con (quote irrelevant) [] qArgInfo : ArgInfo → Term qArgInfo (arg-info v r) = con₂ (quote arg-info) (qVis v) (qRel r) qArg : Arg Term → Term qArg (arg i x) = con₂ (quote arg) (qArgInfo i) x qList : List Term → Term qList = foldr (λ x xs → con₂ (quote List._∷_) x xs) (con₀ (quote List.[])) -- Could compute this from the type of the dictionary constructor quoteType : Name → TC Type quoteType d = caseM instanceTelescope d (quote Quotable) of λ { (tel , vs) → pure $ telPi tel $ def d vs `→ def (quote Term) [] } dictConstructor : TC Name dictConstructor = caseM getConstructors (quote Quotable) of λ { (c ∷ []) → pure c ; _ → typeErrorS "impossible" } patArgs : Telescope → List (Arg Pattern) patArgs tel = zipWith (λ x (_ , a) → var x <$ a) (reverse (from 0 for length tel)) tel quoteArgs′ : Nat → Telescope → List Term quoteArgs′ 0 _ = [] quoteArgs′ _ [] = [] quoteArgs′ (suc n) ((x , a) ∷ tel) = qArg (def₁ (quote `) (var n []) <$ a) ∷ quoteArgs′ n tel quoteArgs : Nat → Telescope → Term quoteArgs pars tel = qList $ replicate pars (qArg $ hArg (con₀ (quote Term.unknown))) ++ quoteArgs′ (length tel - pars) (drop pars tel) constructorClause : Nat → Name → TC Clause constructorClause pars c = do tel , _ ← telView <$> getType c let ps = patArgs tel parPs , conPs = splitAt pars ps pure (clause tel (parPs ++ vArg (con c conPs) ∷ []) (con₂ (quote Term.con) (lit (name c)) (quoteArgs pars tel))) quoteClauses : Name → TC (List Clause) quoteClauses d = do n ← getParameters d caseM getConstructors d of λ where [] → pure [ absurd-clause (("()" , vArg unknown) ∷ []) (vArg (absurd 0) ∷ []) ] cs → mapM (constructorClause n) cs declareQuotableInstance : Name → Name → TC ⊤ declareQuotableInstance iname d = declareDef (iArg iname) =<< instanceType d (quote Quotable) defineQuotableInstance : Name → Name → TC ⊤ defineQuotableInstance iname d = do fname ← freshName ("quote[" & show d & "]") declareDef (vArg fname) =<< quoteType d dictCon ← dictConstructor defineFun iname (clause [] [] (con₁ dictCon (def₀ fname)) ∷ []) defineFun fname =<< quoteClauses d return _ deriveQuotable : Name → Name → TC ⊤ deriveQuotable iname d = declareQuotableInstance iname d >> defineQuotableInstance iname d
32.022222
90
0.638446
506140f5c775dfd6fae0aff2555495be59c0789a
2,358
agda
Agda
examples/simple-lib/Lib/List.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
examples/simple-lib/Lib/List.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/simple-lib/Lib/List.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module Lib.List where open import Lib.Prelude open import Lib.Id infix 30 _∈_ infixr 40 _::_ _++_ infix 45 _!_ data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A {-# COMPILED_DATA List [] [] (:) #-} {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _::_ #-} _++_ : {A : Set} -> List A -> List A -> List A [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) foldr : {A B : Set} -> (A -> B -> B) -> B -> List A -> B foldr f z [] = z foldr f z (x :: xs) = f x (foldr f z xs) map : {A B : Set} -> (A -> B) -> List A -> List B map f [] = [] map f (x :: xs) = f x :: map f xs map-id : forall {A}(xs : List A) -> map id xs ≡ xs map-id [] = refl map-id (x :: xs) with map id xs | map-id xs ... | .xs | refl = refl data _∈_ {A : Set} : A -> List A -> Set where hd : forall {x xs} -> x ∈ x :: xs tl : forall {x y xs} -> x ∈ xs -> x ∈ y :: xs data All {A : Set}(P : A -> Set) : List A -> Set where [] : All P [] _::_ : forall {x xs} -> P x -> All P xs -> All P (x :: xs) head : forall {A}{P : A -> Set}{x xs} -> All P (x :: xs) -> P x head (x :: xs) = x tail : forall {A}{P : A -> Set}{x xs} -> All P (x :: xs) -> All P xs tail (x :: xs) = xs _!_ : forall {A}{P : A -> Set}{x xs} -> All P xs -> x ∈ xs -> P x xs ! hd = head xs xs ! tl n = tail xs ! n tabulate : forall {A}{P : A -> Set}{xs} -> ({x : A} -> x ∈ xs -> P x) -> All P xs tabulate {xs = []} f = [] tabulate {xs = x :: xs} f = f hd :: tabulate (f ∘ tl) mapAll : forall {A B}{P : A -> Set}{Q : B -> Set}{xs}(f : A -> B) -> ({x : A} -> P x -> Q (f x)) -> All P xs -> All Q (map f xs) mapAll f h [] = [] mapAll f h (x :: xs) = h x :: mapAll f h xs mapAll- : forall {A}{P Q : A -> Set}{xs} -> ({x : A} -> P x -> Q x) -> All P xs -> All Q xs mapAll- {xs = xs} f zs with map id xs | map-id xs | mapAll id f zs ... | .xs | refl | r = r infix 20 _⊆_ data _⊆_ {A : Set} : List A -> List A -> Set where stop : [] ⊆ [] drop : forall {xs y ys} -> xs ⊆ ys -> xs ⊆ y :: ys keep : forall {x xs ys} -> xs ⊆ ys -> x :: xs ⊆ x :: ys ⊆-refl : forall {A}{xs : List A} -> xs ⊆ xs ⊆-refl {xs = []} = stop ⊆-refl {xs = x :: xs} = keep ⊆-refl _∣_ : forall {A}{P : A -> Set}{xs ys} -> All P ys -> xs ⊆ ys -> All P xs [] ∣ stop = [] (x :: xs) ∣ drop p = xs ∣ p (x :: xs) ∣ keep p = x :: (xs ∣ p)
28.071429
81
0.450382
fb67676470b975d43a67986969d3261961c4361a
2,012
agda
Agda
test/asset/agda-stdlib-1.0/Data/Integer/Divisibility.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Integer/Divisibility.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Integer/Divisibility.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Unsigned divisibility ------------------------------------------------------------------------ -- For signed divisibility see `Data.Integer.Divisibility.Signed` {-# OPTIONS --without-K --safe #-} module Data.Integer.Divisibility where open import Function open import Data.Integer open import Data.Integer.Properties import Data.Nat as ℕ import Data.Nat.Properties as ℕᵖ import Data.Nat.Divisibility as ℕᵈ import Data.Nat.Coprimality as ℕᶜ open import Level open import Relation.Binary open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------ -- Divisibility infix 4 _∣_ _∣_ : Rel ℤ 0ℓ _∣_ = ℕᵈ._∣_ on ∣_∣ open ℕᵈ public using (divides) ------------------------------------------------------------------------ -- Properties of divisibility *-monoʳ-∣ : ∀ k → (k *_) Preserves _∣_ ⟶ _∣_ *-monoʳ-∣ k {i} {j} i∣j = begin ∣ k * i ∣ ≡⟨ abs-*-commute k i ⟩ ∣ k ∣ ℕ.* ∣ i ∣ ∣⟨ ℕᵈ.*-cong ∣ k ∣ i∣j ⟩ ∣ k ∣ ℕ.* ∣ j ∣ ≡⟨ sym (abs-*-commute k j) ⟩ ∣ k * j ∣ ∎ where open ℕᵈ.∣-Reasoning *-monoˡ-∣ : ∀ k → (_* k) Preserves _∣_ ⟶ _∣_ *-monoˡ-∣ k {i} {j} rewrite *-comm i k | *-comm j k = *-monoʳ-∣ k *-cancelˡ-∣ : ∀ k {i j} → k ≢ + 0 → k * i ∣ k * j → i ∣ j *-cancelˡ-∣ k {i} {j} k≢0 k*i∣k*j = ℕᵈ./-cong (ℕ.pred ∣ k ∣) $ begin let ∣k∣-is-suc = ℕᵖ.m≢0⇒suc[pred[m]]≡m (k≢0 ∘ ∣n∣≡0⇒n≡0) in ℕ.suc (ℕ.pred ∣ k ∣) ℕ.* ∣ i ∣ ≡⟨ cong (ℕ._* ∣ i ∣) (∣k∣-is-suc) ⟩ ∣ k ∣ ℕ.* ∣ i ∣ ≡⟨ sym (abs-*-commute k i) ⟩ ∣ k * i ∣ ∣⟨ k*i∣k*j ⟩ ∣ k * j ∣ ≡⟨ abs-*-commute k j ⟩ ∣ k ∣ ℕ.* ∣ j ∣ ≡⟨ cong (ℕ._* ∣ j ∣) (sym ∣k∣-is-suc) ⟩ ℕ.suc (ℕ.pred ∣ k ∣) ℕ.* ∣ j ∣ ∎ where open ℕᵈ.∣-Reasoning *-cancelʳ-∣ : ∀ k {i j} → k ≢ + 0 → i * k ∣ j * k → i ∣ j *-cancelʳ-∣ k {i} {j} ≢0 = *-cancelˡ-∣ k ≢0 ∘ subst₂ _∣_ (*-comm i k) (*-comm j k)
31.4375
72
0.445328
2fe6d82a62d32884cf4edc2458f071cfb5f07de8
349
agda
Agda
test/succeed/Issue326.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/Issue326.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/Issue326.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
module Issue326 where open import Common.Prelude open import Common.MAlonzo using () -- see issue 561 postulate QName : Set printBool : Bool → IO Unit {-# BUILTIN QNAME QName #-} {-# COMPILED printBool print #-} primitive primQNameEquality : QName → QName → Bool main : IO Unit main = printBool (primQNameEquality (quote Unit) (quote IO))
19.388889
60
0.722063
1a6f92fab3c8344d89fdc6e0742fb384491a2c97
156
agda
Agda
prototyping/Properties.agda
Tr4shh/Roblox-Luau
cd18adc20ecb805b8eeb770a9e5ef8e0cd123734
[ "MIT" ]
null
null
null
prototyping/Properties.agda
Tr4shh/Roblox-Luau
cd18adc20ecb805b8eeb770a9e5ef8e0cd123734
[ "MIT" ]
null
null
null
prototyping/Properties.agda
Tr4shh/Roblox-Luau
cd18adc20ecb805b8eeb770a9e5ef8e0cd123734
[ "MIT" ]
null
null
null
module Properties where import Properties.Contradiction import Properties.Dec import Properties.Equality import Properties.Step import Properties.Remember
19.5
31
0.878205
592c5849230805fbca6cc58b9808ff905ba6e479
7,103
agda
Agda
Cubical/Foundations/Path.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Foundations/Path.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
Cubical/Foundations/Path.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Foundations.Path where open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Transport private variable ℓ ℓ' : Level A : Type ℓ -- Less polymorphic version of `cong`, to avoid some unresolved metas cong′ : ∀ {B : Type ℓ'} (f : A → B) {x y : A} (p : x ≡ y) → Path B (f x) (f y) cong′ f = cong f PathP≡Path : ∀ (P : I → Type ℓ) (p : P i0) (q : P i1) → PathP P p q ≡ Path (P i1) (transport (λ i → P i) p) q PathP≡Path P p q i = PathP (λ j → P (i ∨ j)) (transp (λ j → P (i ∧ j)) (~ i) p) q PathP≃Path : ∀ (P : I → Type ℓ) (p : P i0) (q : P i1) → PathP P p q ≃ Path (P i1) (transport (λ i → P i) p) q PathP≃Path P p q = transportEquiv (PathP≡Path P p q) -- Alternative more unfolded proof toPathP-isEquiv : ∀ (A : I → Set ℓ) {x y} → isEquiv (toPathP {A = A} {x} {y}) toPathP-isEquiv A {x} {y} = isoToIsEquiv (iso toPathP fromPathP to-from from-to) where to-from : ∀ (p : PathP A x y) → toPathP (fromPathP p) ≡ p to-from p h i = outS (hcomp-unique (λ { j (i = i0) → x ; j (i = i1) → fromPathP p j }) (inS (transp (λ j → A (i ∧ j)) (~ i) x)) \ h → inS (sq1 h i)) h where sq1 : (\ h → A [ x ≡ transp (\ j → A (h ∨ j)) h (p h) ]) [ (\ i → transp (λ j → A (i ∧ j)) (~ i) x) ≡ p ] sq1 = \ h i → comp (\ z → (hcomp (\ w → \ { (z = i1) → A (i ∧ (w ∨ h)) ; (z = i0) → A (i ∧ h) ; (i = i0) → A i0 ; (i = i1) → A (h ∨ (w ∧ z)) ; (h = i0) → A (i ∧ (w ∧ z)) ; (h = i1) → A i}) ((A (i ∧ h))))) (\ z → \ { (i = i0) → x ; (i = i1) → transp (\ j → A (h ∨ (z ∧ j))) (h ∨ ~ z) (p h) ; (h = i0) → transp (λ j → A ((i ∧ z) ∧ j)) (~ (i ∧ z)) x ; (h = i1) → p i }) (p (i ∧ h)) from-to : ∀ (q : transp A i0 x ≡ y) → fromPathP (toPathP {A = A} q) ≡ q from-to q = (\ h i → outS (transp-hcomp i {A' = A i1} (\ j → inS (A (i ∨ j))) ((λ { j (i = i0) → x ; j (i = i1) → q j })) (inS ((transp (λ j → A (i ∧ j)) (~ i) x)))) h) ∙ (\ h i → outS (hcomp-unique {A = A i1} ((λ { j (i = i0) → transp A i0 x ; j (i = i1) → q j })) (inS ((transp (λ j → A (i ∨ j)) i (transp (λ j → A (i ∧ j)) (~ i) x)))) \ h → inS (sq2 h i)) h) ∙ sym (lUnit q) where sq2 : (\ h → transp A i0 x ≡ q h) [ (\ i → transp (\ j → A (i ∨ j)) i (transp (\ j → A (i ∧ j)) (~ i) x)) ≡ refl ∙ q ] sq2 = \ h i → comp (\ z → hcomp (\ w → \ { (i = i1) → A i1 ; (i = i0) → A (h ∨ (w ∧ z)) ; (h = i0) → A (i ∨ (w ∧ z)) ; (h = i1) → A i1 ; (z = i0) → A (i ∨ h) ; (z = i1) → A ((i ∨ h) ∨ w) }) (A (i ∨ h))) (\ z → \ { (i = i0) → transp (λ j → A ((z ∨ h) ∧ j)) (~ z ∧ ~ h) x ; (i = i1) → q (z ∧ h) ; (h = i1) → compPath-filler refl q z i ; (h = i0) → transp (\ j → A (i ∨ (z ∧ j))) (i ∨ ~ z) (transp (\ j → A (i ∧ j)) (~ i) x) }) (transp (\ j → A ((i ∨ h) ∧ j)) (~ (i ∨ h)) x) PathP≡compPath : ∀ {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : y ≡ z) (r : x ≡ z) → (PathP (λ i → x ≡ q i) p r) ≡ (p ∙ q ≡ r) PathP≡compPath p q r k = PathP (λ i → p i0 ≡ q (i ∨ k)) (λ j → compPath-filler p q k j) r PathP≡doubleCompPathˡ : ∀ {A : Type ℓ} {w x y z : A} (p : w ≡ y) (q : w ≡ x) (r : y ≡ z) (s : x ≡ z) → (PathP (λ i → p i ≡ s i) q r) ≡ (p ⁻¹ ∙∙ q ∙∙ s ≡ r) PathP≡doubleCompPathˡ p q r s k = PathP (λ i → p (i ∨ k) ≡ s (i ∨ k)) (λ j → doubleCompPath-filler (p ⁻¹) q s k j) r PathP≡doubleCompPathʳ : ∀ {A : Type ℓ} {w x y z : A} (p : w ≡ y) (q : w ≡ x) (r : y ≡ z) (s : x ≡ z) → (PathP (λ i → p i ≡ s i) q r) ≡ (q ≡ p ∙∙ r ∙∙ s ⁻¹) PathP≡doubleCompPathʳ p q r s k = PathP (λ i → p (i ∧ (~ k)) ≡ s (i ∧ (~ k))) q (λ j → doubleCompPath-filler p r (s ⁻¹) k j) compPathl-cancel : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : x ≡ z) → p ∙ (sym p ∙ q) ≡ q compPathl-cancel p q = p ∙ (sym p ∙ q) ≡⟨ assoc p (sym p) q ⟩ (p ∙ sym p) ∙ q ≡⟨ cong (_∙ q) (rCancel p) ⟩ refl ∙ q ≡⟨ sym (lUnit q) ⟩ q ∎ compPathr-cancel : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : z ≡ y) (q : x ≡ y) → (q ∙ sym p) ∙ p ≡ q compPathr-cancel p q = (q ∙ sym p) ∙ p ≡⟨ sym (assoc q (sym p) p) ⟩ q ∙ (sym p ∙ p) ≡⟨ cong (q ∙_) (lCancel p) ⟩ q ∙ refl ≡⟨ sym (rUnit q) ⟩ q ∎ compPathl-isEquiv : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) → isEquiv (λ (q : y ≡ z) → p ∙ q) compPathl-isEquiv p = isoToIsEquiv (iso (p ∙_) (sym p ∙_) (compPathl-cancel p) (compPathl-cancel (sym p))) compPathr-isEquiv : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : y ≡ z) → isEquiv (λ (q : x ≡ y) → q ∙ p) compPathr-isEquiv p = isoToIsEquiv (iso (_∙ p) (_∙ sym p) (compPathr-cancel p) (compPathr-cancel (sym p))) -- Variation of isProp→isSet for PathP isProp→isSet-PathP : ∀ {ℓ} {B : I → Type ℓ} → ((i : I) → isProp (B i)) → (b0 : B i0) (b1 : B i1) → isProp (PathP (λ i → B i) b0 b1) isProp→isSet-PathP {B = B} hB b0 b1 = transport (λ i → isProp (PathP≡Path B b0 b1 (~ i))) (isProp→isSet (hB i1) _ _) -- Flipping a square along its diagonal flipSquare : ∀ {ℓ} {A : Type ℓ} {a₀₀ a₀₁ : A} {a₀₋ : a₀₀ ≡ a₀₁} {a₁₀ a₁₁ : A} {a₁₋ : a₁₀ ≡ a₁₁} {a₋₀ : a₀₀ ≡ a₁₀} {a₋₁ : a₀₁ ≡ a₁₁} → Square a₀₋ a₁₋ a₋₀ a₋₁ → Square a₋₀ a₋₁ a₀₋ a₁₋ flipSquare sq i j = sq j i flipSquarePath : ∀ {ℓ} {A : Type ℓ} {a₀₀ a₀₁ : A} {a₀₋ : a₀₀ ≡ a₀₁} {a₁₀ a₁₁ : A} {a₁₋ : a₁₀ ≡ a₁₁} {a₋₀ : a₀₀ ≡ a₁₀} {a₋₁ : a₀₁ ≡ a₁₁} → Square a₀₋ a₁₋ a₋₀ a₋₁ ≡ Square a₋₀ a₋₁ a₀₋ a₁₋ flipSquarePath = isoToPath (iso flipSquare flipSquare (λ _ → refl) (λ _ → refl))
53.406015
125
0.362804
4115eeacec7f0ee7f2ae44120d6b829a12ba9d7c
18,865
agda
Agda
agda/Number/Instances/QuoInt.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
3
2020-07-31T18:15:26.000Z
2022-02-19T12:15:21.000Z
agda/Number/Instances/QuoInt.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
agda/Number/Instances/QuoInt.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --allow-unsolved-metas #-} module Number.Instances.QuoInt where open import Cubical.Foundations.Everything hiding (⋆) renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Foundations.Logic renaming (inl to inlᵖ; inr to inrᵖ) open import Cubical.Relation.Nullary.Base renaming (¬_ to ¬ᵗ_) open import Cubical.Relation.Binary.Base open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_) open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_) open import Cubical.Data.Sigma open import Cubical.Data.Bool as Bool using (Bool; not; true; false) open import Cubical.Data.Empty renaming (elim to ⊥-elim; ⊥ to ⊥⊥) -- `⊥` and `elim` open import Cubical.Foundations.Logic renaming (¬_ to ¬ᵖ_; inl to inlᵖ; inr to inrᵖ) open import Function.Base using (it; _∋_; _$_) open import Cubical.Foundations.Isomorphism open import Cubical.HITs.PropositionalTruncation --.Properties open import Utils using (!_; !!_) open import MoreLogic.Reasoning open import MoreLogic.Definitions open import MoreLogic.Properties open import MorePropAlgebra.Definitions hiding (_≤''_) open import MorePropAlgebra.Structures open import MorePropAlgebra.Bundles open import MorePropAlgebra.Consequences open import Number.Structures2 open import Number.Bundles2 open import Cubical.Data.Nat.Literals open import Cubical.Data.Nat using (suc; zero; ℕ; HasFromNat) open import Number.Prelude.Nat using (¬-<ⁿ-zero; +ⁿ-comm; ¬suc<ⁿ0; _+ⁿ_; _·ⁿ_; ·ⁿ-reflects-≡ˡ') open import Number.Instances.QuoIntFromInt public open import Cubical.HITs.Ints.QuoInt as QuoInt using ( ℤ ; HasFromNat ; _+_ ; Int≡ℤ ; signed ; posneg ; ℤ→Int ; sucℤ ; predℤ ; sign ; abs ; pos ; neg ; +-comm ; +-assoc ; sucℤ-+ʳ ; sucℤ-+ˡ ; spos ; sneg ; *-pos-suc ; negate-invol ) renaming ( isSetℤ to is-set ; _*_ to _·_ ; -_ to infixl 6 -_ ; *-comm to ·-comm ) open IsLinearlyOrderedCommRing is-LinearlyOrderedCommRing using ( _-_ ; <-irrefl ; <-trans ; +-<-ext ; +-rinv ; +-identity ; ·-identity ; _≤_ ; ·-preserves-< ; <-tricho ; <-asym ; _#_ ; +-inverse ; ·-assoc ) 0<1 : [ 0 < 1 ] 0<1 = 0 , refl -- TODO: import these properties from somewhere else +-reflects-< : ∀ x y z → [ (x + z < y + z) ⇒ ( x < y ) ] +-preserves-< : ∀ x y z → [ ( x < y ) ⇒ (x + z < y + z) ] +-creates-< : ∀ x y z → [ ( x < y ) ⇔ (x + z < y + z) ] +-preserves-< a b x = snd ( ( a < b ) ⇒ᵖ⟨ transport (λ i → [ sym (fst (+-identity a)) i < sym (fst (+-identity b)) i ]) ⟩ ( a + 0 < b + 0 ) ⇒ᵖ⟨ transport (λ i → [ a + sym (+-rinv x) i < b + sym (+-rinv x) i ]) ⟩ ( a + (x - x) < b + (x - x)) ⇒ᵖ⟨ transport (λ i → [ +-assoc a x (- x) i < +-assoc b x (- x) i ]) ⟩ ((a + x) - x < (b + x) - x ) ⇒ᵖ⟨ +-<-ext (a + x) (- x) (b + x) (- x) ⟩ ((a + x < b + x) ⊔ (- x < - x)) ⇒ᵖ⟨ (λ q → case q as (a + x < b + x) ⊔ (- x < - x) ⇒ a + x < b + x of λ { (inl a+x<b+x) → a+x<b+x -- somehow ⊥-elim needs a hint in the next line ; (inr -x<-x ) → ⊥-elim {A = λ _ → [ a + x < b + x ]} (<-irrefl (- x) -x<-x) }) ⟩ a + x < b + x ◼ᵖ) +-reflects-< x y z = snd ( x + z < y + z ⇒ᵖ⟨ +-preserves-< (x + z) (y + z) (- z) ⟩ (x + z) - z < (y + z) - z ⇒ᵖ⟨ transport (λ i → [ +-assoc x z (- z) (~ i) < +-assoc y z (- z) (~ i) ]) ⟩ x + (z - z) < y + (z - z) ⇒ᵖ⟨ transport (λ i → [ x + +-rinv z i < y + +-rinv z i ]) ⟩ x + 0 < y + 0 ⇒ᵖ⟨ transport (λ i → [ fst (+-identity x) i < fst (+-identity y) i ]) ⟩ x < y ◼ᵖ) +-creates-< x y z .fst = +-preserves-< x y z +-creates-< x y z .snd = +-reflects-< x y z suc-creates-< : ∀ x y → [ (x < y) ⇔ (sucℤ x < sucℤ y) ] suc-creates-< x y .fst p = substₚ (λ p → sucℤ x < p) (∣ +-comm y (pos 1) ∣) $ substₚ (λ p → p < y + pos 1) (∣ +-comm x (pos 1) ∣) (+-preserves-< x y (pos 1) p) suc-creates-< x y .snd p = +-reflects-< x y (pos 1) $ substₚ (λ p → p < y + pos 1) (∣ +-comm (pos 1) x ∣) $ substₚ (λ p → sucℤ x < p) (∣ +-comm (pos 1) y ∣) p ·-creates-< : ∀ a b x → [ 0 < x ] → [ (a < b) ⇔ ((a · x) < (b · x)) ] ·-creates-< a b x p .fst q = ·-preserves-< a b x p q ·-creates-< a b x p .snd q = ·-reflects-< a b x p q ·-creates-<ˡ : ∀ a b x → [ 0 < x ] → [ (a < b) ⇔ ((x · a) < (x · b)) ] ·-creates-<ˡ a b x p .fst q = transport (λ i → [ ·-comm a x i < ·-comm b x i ]) $ ·-preserves-< a b x p q ·-creates-<ˡ a b x p .snd q = ·-reflects-< a b x p (transport (λ i → [ ·-comm x a i < ·-comm x b i ]) q) ·-creates-<-≡ : ∀ a b x → [ 0 < x ] → (a < b) ≡ ((a · x) < (b · x)) ·-creates-<-≡ a b x p = ⇔toPath' (·-creates-< a b x p) ·-creates-<ˡ-≡ : ∀ a b x → [ 0 < x ] → (a < b) ≡ ((x · a) < (x · b)) ·-creates-<ˡ-≡ a b x p = ⇔toPath' (·-creates-<ˡ a b x p) +-creates-≤ : ∀ a b x → [ (a ≤ b) ⇔ ((a + x) ≤ (b + x)) ] +-creates-≤ a b x = {! !} ·-creates-≤ : ∀ a b x → [ 0 ≤ x ] → [ (a ≤ b) ⇔ ((a · x) ≤ (b · x)) ] ·-creates-≤ a b x 0≤x .fst p = {! !} ·-creates-≤ a b x 0≤x .snd p = {! !} ·-creates-≤-≡ : ∀ a b x → [ 0 ≤ x ] → (a ≤ b) ≡ ((a · x) ≤ (b · x)) ·-creates-≤-≡ a b x 0≤x = uncurry ⇔toPath $ ·-creates-≤ a b x 0≤x ≤-dicho : ∀ x y → [ (x ≤ y) ⊔ (y ≤ x) ] ≤-dicho x y with <-tricho x y ... | inl (inl x<y) = inlᵖ $ <-asym x y x<y ... | inl (inr y<x) = inrᵖ $ <-asym y x y<x ... | inr x≡y = inlᵖ $ subst (λ p → [ ¬(p < x) ]) x≡y (<-irrefl x) ℤlattice : Lattice {ℓ-zero} {ℓ-zero} ℤlattice = record { LinearlyOrderedCommRing bundle renaming (≤-Lattice to is-Lattice) } open import MorePropAlgebra.Properties.Lattice ℤlattice open OnSet is-set hiding (+-min-distribʳ; ·-min-distribʳ; +-max-distribʳ; ·-max-distribʳ) ≤-min-+ : ∀ a b c w → [ w ≤ (a + c) ] → [ w ≤ (b + c) ] → [ w ≤ (min a b + c) ] ≤-max-+ : ∀ a b c w → [ (a + c) ≤ w ] → [ (b + c) ≤ w ] → [ (max a b + c) ≤ w ] ≤-min-· : ∀ a b c w → [ w ≤ (a · c) ] → [ w ≤ (b · c) ] → [ w ≤ (min a b · c) ] ≤-max-· : ∀ a b c w → [ (a · c) ≤ w ] → [ (b · c) ≤ w ] → [ (max a b · c) ≤ w ] ≤-min-+ = OnType.≤-dicho⇒+.≤-min-+ _+_ ≤-dicho ≤-max-+ = OnType.≤-dicho⇒+.≤-max-+ _+_ ≤-dicho ≤-min-· = OnType.≤-dicho⇒·.≤-min-· _·_ ≤-dicho ≤-max-· = OnType.≤-dicho⇒·.≤-max-· _·_ ≤-dicho +-min-distribʳ : ∀ x y z → (min x y + z) ≡ min (x + z) (y + z) ·-min-distribʳ : ∀ x y z → [ 0 ≤ z ] → (min x y · z) ≡ min (x · z) (y · z) +-max-distribʳ : ∀ x y z → (max x y + z) ≡ max (x + z) (y + z) ·-max-distribʳ : ∀ x y z → [ 0 ≤ z ] → (max x y · z) ≡ max (x · z) (y · z) +-min-distribˡ : ∀ x y z → (z + min x y) ≡ min (z + x) (z + y) ·-min-distribˡ : ∀ x y z → [ 0 ≤ z ] → (z · min x y) ≡ min (z · x) (z · y) +-max-distribˡ : ∀ x y z → (z + max x y) ≡ max (z + x) (z + y) ·-max-distribˡ : ∀ x y z → [ 0 ≤ z ] → (z · max x y) ≡ max (z · x) (z · y) +-min-distribʳ = OnSet.+-min-distribʳ is-set _+_ +-creates-≤ ≤-min-+ ·-min-distribʳ = OnSet.·-min-distribʳ is-set 0 _·_ ·-creates-≤ ≤-min-· +-max-distribʳ = OnSet.+-max-distribʳ is-set _+_ +-creates-≤ ≤-max-+ ·-max-distribʳ = OnSet.·-max-distribʳ is-set 0 _·_ ·-creates-≤ ≤-max-· +-min-distribˡ x y z = +-comm z (min x y) ∙ +-min-distribʳ x y z ∙ (λ i → min (+-comm x z i) (+-comm y z i)) ·-min-distribˡ x y z p = ·-comm z (min x y) ∙ ·-min-distribʳ x y z p ∙ (λ i → min (·-comm x z i) (·-comm y z i)) +-max-distribˡ x y z = +-comm z (max x y) ∙ +-max-distribʳ x y z ∙ (λ i → max (+-comm x z i) (+-comm y z i)) ·-max-distribˡ x y z p = ·-comm z (max x y) ∙ ·-max-distribʳ x y z p ∙ (λ i → max (·-comm x z i) (·-comm y z i)) pos<pos[suc] : ∀ x → [ pos x < pos (suc x) ] pos<pos[suc] 0 = 0<1 pos<pos[suc] (suc x) = suc-creates-< (pos x) (pos (suc x)) .fst (pos<pos[suc] x) 0<ᶻpos[suc] : ∀ x → [ 0 < pos (suc x) ] 0<ᶻpos[suc] 0 = 0<1 0<ᶻpos[suc] (suc x) = <-trans 0 (pos (suc x)) (pos (suc (suc x))) (0<ᶻpos[suc] x) (suc-creates-< (pos x) (pos (suc x)) .fst (pos<pos[suc] x)) ·-nullifiesˡ : ∀(x : ℤ) → 0 · x ≡ 0 ·-nullifiesˡ (pos zero) = refl ·-nullifiesˡ (neg zero) = refl ·-nullifiesˡ (posneg i) = refl ·-nullifiesˡ (pos (suc n)) = refl ·-nullifiesˡ (neg (suc n)) = sym posneg ·-nullifiesʳ : ∀(x : ℤ) → x · 0 ≡ 0 ·-nullifiesʳ x = ·-comm x 0 ∙ ·-nullifiesˡ x ·-preserves-0< : ∀ a b → [ 0 < a ] → [ 0 < b ] → [ 0 < a · b ] ·-preserves-0< a b p q = subst (λ p → [ p < a · b ]) (·-nullifiesˡ b) (·-preserves-< 0 a b q p) private term : ∀ b x → Type ℓ-zero term b x = [ ((pos 0 < x) ⇒ (pos 0 < b)) ⊓ ((pos 0 < b) ⇒ (pos 0 < x)) ] ·-reflects-<ˡ : (x y z : ℤ) → [ pos 0 < z ] → [ z · x < z · y ] → [ x < y ] ·-reflects-<ˡ x y z p q = ·-reflects-< x y z p (transport (λ i → [ ·-comm z x i < ·-comm z y i ]) q) -flips-<0 : ∀ x → [ (x < 0) ⇔ (0 < (- x)) ] -flips-<0 (signed spos zero) = (λ x → x) , (λ x → x) -flips-<0 (signed sneg zero) = (λ x → x) , (λ x → x) -flips-<0 (ℤ.posneg i) = (λ x → x) , (λ x → x) -flips-<0 (signed spos (suc n)) .fst p = ¬-<ⁿ-zero p -flips-<0 (signed sneg (suc n)) .fst tt = n , +ⁿ-comm n 1 -flips-<0 (signed sneg (suc n)) .snd p = tt -- NOTE: this could be a path, if we make `+-creates-<` into a path -flips-< : ∀ x y → [ x < y ] → [ - y < - x ] -flips-< x y p = ( ( x < y ) ⇒ᵖ⟨ +-creates-< x y (- y) .fst ⟩ ( x - y < y - y) ⇒ᵖ⟨ transport (λ i → [ +-comm x (- y) i < +-rinv y i ]) ⟩ ( (- y) + x < 0 ) ⇒ᵖ⟨ +-creates-< ((- y) + x) 0 (- x) .fst ⟩ (((- y) + x) - x < 0 - x) ⇒ᵖ⟨ transport (λ i → [ +-assoc (- y) x (- x) (~ i) < +-identity (- x) .snd i ]) ⟩ ( (- y) + (x - x) < - x ) ⇒ᵖ⟨ transport (λ i → [ (- y) + +-rinv x i < - x ]) ⟩ ( (- y) + 0 < - x ) ⇒ᵖ⟨ transport (λ i → [ +-identity (- y) .fst i < - x ]) ⟩ ( - y < - x ) ◼ᵖ) .snd p -flips-<-⇔ : ∀ x y → [ (x < y) ⇔ (- y < - x) ] -flips-<-⇔ x y .fst = -flips-< x y -flips-<-⇔ x y .snd p = transport (λ i → [ negate-invol x i < negate-invol y i ]) $ -flips-< (- y) (- x) p -flips-<-≡ : ∀ x y → (x < y) ≡ (- y < - x) -flips-<-≡ x y = ⇔toPath' (-flips-<-⇔ x y) -identity-· : ∀ a → (- 1) · a ≡ - a -identity-· (pos zero) j = posneg (~ i0 ∨ ~ j) -identity-· (neg zero) j = posneg (~ i1 ∨ ~ j) -identity-· (posneg i) j = posneg (~ i ∨ ~ j) -identity-· (pos (suc n)) i = neg (suc (+ⁿ-comm n 0 i)) -identity-· (neg (suc n)) i = pos (suc (+ⁿ-comm n 0 i)) -distˡ : ∀ a b → -(a · b) ≡ (- a) · b -distˡ a b = -(a · b) ≡⟨ sym $ -identity-· (a · b) ⟩ (- 1) · (a · b) ≡⟨ ·-assoc (- 1) a b ⟩ ((- 1) · a) · b ≡⟨ (λ i → -identity-· a i · b) ⟩ (- a) · b ∎ private lem : ∀ z → [ z < 0 ] → [ 0 < - z ] lem z p = subst (λ p → [ p < - z ]) (sym posneg) $ -flips-< z 0 p ·-creates-<-flippedˡ-≡ : (x y z : ℤ) → [ z < 0 ] → (z · x < z · y) ≡ (y < x) ·-creates-<-flippedˡ-≡ x y z p = z · x < z · y ≡⟨ -flips-<-≡ (z · x) (z · y) ⟩ - (z · y) < - (z · x) ≡⟨ (λ i → -distˡ z y i < -distˡ z x i) ⟩ (- z) · y < (- z) · x ≡⟨ sym $ ·-creates-<ˡ-≡ y x (- z) (lem z p) ⟩ y < x ∎ ·-creates-<-flippedʳ-≡ : (x y z : ℤ) → [ z < 0 ] → (x · z < y · z) ≡ (y < x) ·-creates-<-flippedʳ-≡ x y z p = (λ i → ·-comm x z i < ·-comm y z i) ∙ ·-creates-<-flippedˡ-≡ x y z p ·-reflects-<-flippedˡ : (x y z : ℤ) → [ z < 0 ] → [ z · x < z · y ] → [ y < x ] ·-reflects-<-flippedˡ x y z p q = pathTo⇒ (·-creates-<-flippedˡ-≡ x y z p) q -- (z · x < z · y ⇒ᵖ⟨ -flips-< (z · x) (z · y) ⟩ -- - (z · y) < - (z · x) ⇒ᵖ⟨ transport (λ i → [ -distˡ z y i < -distˡ z x i ]) ⟩ -- (- z) · y < (- z) · x ⇒ᵖ⟨ ·-creates-<ˡ y x (- z) (lem z p) .snd ⟩ -- y < x ◼ᵖ) .snd q ·-reflects-<-flippedʳ : (x y z : ℤ) → [ z < 0 ] → [ x · z < y · z ] → [ y < x ] ·-reflects-<-flippedʳ x y z p q = ·-reflects-<-flippedˡ x y z p (transport (λ i → [ ·-comm x z i < ·-comm y z i ]) q) -- ·-preserves-<-flippedˡ : (x y z : ℤ) → [ z < 0 ] → [ x < y ] → [ z · y < z · x ] -- ·-preserves-<-flippedˡ x y z p q = {! !} ·-reflects-0< : ∀ a b → [ 0 < a · b ] → [ ((0 < a) ⇔ (0 < b)) ⊓ ((a < 0) ⇔ (b < 0)) ] ·-reflects-0< a b p .fst .fst q = ·-reflects-<ˡ 0 b a q (transport (λ i → [ ·-nullifiesʳ a (~ i) < a · b ]) p) ·-reflects-0< a b p .fst .snd q = ·-reflects-< 0 a b q (transport (λ i → [ ·-nullifiesˡ b (~ i) < a · b ]) p) ·-reflects-0< a b p .snd .fst q = ·-reflects-<-flippedˡ 0 b a q (transport (λ i → [ ·-nullifiesʳ a (~ i) < a · b ]) p) ·-reflects-0< a b p .snd .snd q = ·-reflects-<-flippedʳ 0 a b q (transport (λ i → [ ·-nullifiesˡ b (~ i) < a · b ]) p) #-dicho : ∀ x → [ x # 0 ] ⊎ (x ≡ 0) #-dicho x = <-tricho x 0 ⊕-identityʳ : ∀ s → (s Bool.⊕ spos) ≡ s ⊕-identityʳ spos = refl ⊕-identityʳ sneg = refl ·-preserves-signˡ : ∀ x y → [ 0 < y ] → sign (x · y) ≡ sign x ·-preserves-signˡ x (signed spos zero) p = ⊥-elim {A = λ _ → sign (x · ℤ.posneg i0) ≡ sign x} (¬-<ⁿ-zero p) ·-preserves-signˡ x (signed sneg zero) p = ⊥-elim {A = λ _ → sign (x · ℤ.posneg i1) ≡ sign x} (¬-<ⁿ-zero p) ·-preserves-signˡ x (ℤ.posneg i) p = ⊥-elim {A = λ _ → sign (x · ℤ.posneg i ) ≡ sign x} (¬-<ⁿ-zero p) ·-preserves-signˡ (signed spos zero) (signed spos (suc n)) p = refl ·-preserves-signˡ (signed sneg zero) (signed spos (suc n)) p = refl ·-preserves-signˡ (ℤ.posneg i) (signed spos (suc n)) p = refl ·-preserves-signˡ (signed s (suc n₁)) (signed spos (suc n)) p = ⊕-identityʳ s #⇒≢ : ∀ x → [ x # 0 ] → ¬ᵗ(0 ≡ x) #⇒≢ x (inl p) q = <-irrefl 0 $ subst (λ p → [ p < pos 0 ]) (sym q) p #⇒≢ x (inr p) q = <-irrefl 0 $ subst (λ p → [ pos 0 < p ]) (sym q) p <-split-pos : ∀ z → [ 0 < z ] → Σ[ n ∈ ℕ ] z ≡ pos (suc n) <-split-pos (pos zero) p = ⊥-elim {A = λ _ → Σ[ n ∈ ℕ ] posneg i0 ≡ pos (suc n)} (<-irrefl 0 p) <-split-pos (neg zero) p = ⊥-elim {A = λ _ → Σ[ n ∈ ℕ ] posneg i1 ≡ pos (suc n)} (<-irrefl 0 p) <-split-pos (posneg i) p = ⊥-elim {A = λ _ → Σ[ n ∈ ℕ ] posneg i ≡ pos (suc n)} (<-irrefl 0 p) <-split-pos (pos (suc n)) p = n , refl <-split-neg : ∀ z → [ z < 0 ] → Σ[ n ∈ ℕ ] z ≡ neg (suc n) <-split-neg (pos zero) p = ⊥-elim {A = λ _ → Σ[ n ∈ ℕ ] posneg i0 ≡ neg (suc n)} (<-irrefl 0 p) <-split-neg (neg zero) p = ⊥-elim {A = λ _ → Σ[ n ∈ ℕ ] posneg i1 ≡ neg (suc n)} (<-irrefl 0 p) <-split-neg (posneg i) p = ⊥-elim {A = λ _ → Σ[ n ∈ ℕ ] posneg i ≡ neg (suc n)} (<-irrefl 0 p) <-split-neg (pos (suc m)) p = ⊥-elim {A = λ _ → Σ[ n ∈ ℕ ] pos (suc m) ≡ neg (suc n)} (¬suc<ⁿ0 m p) <-split-neg (neg (suc m)) p = m , refl #-split-abs : ∀ a → [ a # 0 ] → Σ[ x ∈ _ ] (abs a ≡ suc (abs x)) #-split-abs a (inl a<0) with <-split-neg a a<0; ... | (n , p) = neg n , λ i → abs (p i) #-split-abs a (inr 0<a) with <-split-pos a 0<a; ... | (n , p) = pos n , λ i → abs (p i) -- this is QuoInt.signed-zero signed0≡0 : ∀ s → signed s 0 ≡ 0 signed0≡0 spos = refl signed0≡0 sneg i = posneg (~ i) ·-sucIntʳ⁺ : ∀ m n → m · pos (suc n) ≡ m + m · pos n ·-sucIntʳ⁺ m n = ·-comm m (pos (suc n)) ∙ *-pos-suc n m ∙ (λ i → m + ·-comm (pos n) m i) signed-respects-+ : ∀ s a b → signed s (a +ⁿ b) ≡ signed s a + signed s b signed-respects-+ spos zero b = refl signed-respects-+ sneg zero b = refl signed-respects-+ spos (suc a) b i = sucℤ $ signed-respects-+ spos a b i signed-respects-+ sneg (suc a) b i = predℤ $ signed-respects-+ sneg a b i -- this is QuoInt.signed-inv sign-abs-identity : ∀ a → signed (sign a) (abs a) ≡ a sign-abs-identity (pos zero) j = posneg (i0 ∧ j) sign-abs-identity (neg zero) j = posneg (i1 ∧ j) sign-abs-identity (posneg i) j = posneg (i ∧ j) sign-abs-identity (pos (suc n)) = refl sign-abs-identity (neg (suc n)) = refl signed-reflects-≡₁ : ∀ s₁ s₂ n → signed s₁ (suc n) ≡ signed s₂ (suc n) → s₁ ≡ s₂ signed-reflects-≡₁ s₁ s₂ n p i = sign (p i) signed-reflects-≡₂ : ∀ s₁ s₂ a b → signed s₁ a ≡ signed s₂ b → a ≡ b signed-reflects-≡₂ s₁ s₂ a b p i = abs (p i) -abs : ∀ a → abs (- a) ≡ abs a -abs (signed s n) = refl -abs (posneg i) = refl -reflects-≡ : ∀ a b → - a ≡ - b → a ≡ b -reflects-≡ a b p = sym (negate-invol a) ∙ (λ i → - p i) ∙ negate-invol b abs-preserves-· : ∀ a b → abs (a · b) ≡ abs a ·ⁿ abs b abs-preserves-· a b = refl sign-abs-≡ : ∀ a b → sign a ≡ sign b → abs a ≡ abs b → a ≡ b sign-abs-≡ a b p q = transport (λ i → sign-abs-identity a i ≡ sign-abs-identity b i) λ i → signed (p i) (q i) 0<-sign : ∀ z → [ 0 < z ] → sign z ≡ spos 0<-sign z p i = sign $ <-split-pos z p .snd i <0-sign : ∀ z → [ z < 0 ] → sign z ≡ sneg <0-sign z p i = sign $ <-split-neg z p .snd i sign-pos : ∀ n → sign (pos n) ≡ spos sign-pos zero = refl sign-pos (suc n) = refl -- inj-*sm : l * suc m ≡ n * suc m → l ≡ n -- inj-*sm {zero} {m} {n} p = 0≡n*sm→0≡n p -- inj-*sm {l} {m} {zero} p = sym (0≡n*sm→0≡n (sym p)) -- inj-*sm {suc l} {m} {suc n} p = cong suc (inj-*sm (inj-m+ {m = suc m} p)) private lem1 : ∀ a x → sign a ≡ sign (signed (sign a) (abs a +ⁿ x ·ⁿ abs a)) lem1 (pos zero) x = sym $ sign-pos (x ·ⁿ 0) lem1 (neg zero) x = sym $ sign-pos (x ·ⁿ 0) lem1 (posneg i) x = sym $ sign-pos (x ·ⁿ 0) lem1 (pos (suc n)) x = refl lem1 (neg (suc n)) x = refl ·-reflects-≡ˡ⁺ : ∀ a b x → (pos (suc x)) · a ≡ (pos (suc x)) · b → a ≡ b ·-reflects-≡ˡ⁺ a b x p = sym (sign-abs-identity a) ∙ (λ i → signed (κ i) (γ i)) ∙ sign-abs-identity b where φ : suc x ·ⁿ abs a ≡ suc x ·ⁿ abs b φ = signed-reflects-≡₂ _ _ _ _ p γ : abs a ≡ abs b γ = ·ⁿ-reflects-≡ˡ' {x} {abs a} {abs b} φ κ = transport ( sign (signed (sign a) (suc x ·ⁿ abs a)) ≡ sign (signed (sign b) (suc x ·ⁿ abs b)) ≡⟨ (λ i → lem1 a x (~ i) ≡ lem1 b x (~ i)) ⟩ sign a ≡ sign b ∎) (λ i → sign (p i)) ·-reflects-≡ˡ⁻ : ∀ a b x → (neg (suc x)) · a ≡ (neg (suc x)) · b → a ≡ b ·-reflects-≡ˡ⁻ a b x p = sym (sign-abs-identity a) ∙ γ ∙ sign-abs-identity b where φ : suc x ·ⁿ abs a ≡ suc x ·ⁿ abs b φ = signed-reflects-≡₂ _ _ _ _ p κ : abs a ≡ abs b κ = ·ⁿ-reflects-≡ˡ' {x} {abs a} {abs b} φ γ : signed (sign a) (abs a) ≡ signed (sign b) (abs b) γ with #-dicho a ... | inl a#0 = -reflects-≡ _ _ (λ i → signed (θ i) (κ i)) where abstract c = #-split-abs a a#0 .fst q₁ : abs a ≡ suc (abs c) q₁ = #-split-abs a a#0 .snd q₂ : abs b ≡ suc (abs c) q₂ = sym κ ∙ q₁ θ : not (sign a) ≡ not (sign b) θ = signed-reflects-≡₁ _ _ _ (transport (λ i → signed (not (sign a)) (suc x ·ⁿ q₁ i) ≡ signed (not (sign b)) (suc x ·ⁿ q₂ i)) p) ... | inr a≡0 = cong₂ signed refl (λ i → abs (a≡0 i)) ∙ signed0≡0 (sign a) ∙ sym (signed0≡0 (sign b)) ∙ cong₂ signed refl ((λ i → abs (a≡0 (~ i))) ∙ κ) ·-reflects-≡ˡ : ∀ a b x → [ x # 0 ] → x · a ≡ x · b → a ≡ b ·-reflects-≡ˡ a b x (inl x<0) q = let (y , r) = <-split-neg x x<0 in ·-reflects-≡ˡ⁻ a b y (transport (λ i → r i · a ≡ r i · b) q) ·-reflects-≡ˡ a b x (inr 0<x) q = let (y , r) = <-split-pos x 0<x in ·-reflects-≡ˡ⁺ a b y (transport (λ i → r i · a ≡ r i · b) q) ·-reflects-≡ʳ : ∀ a b x → [ x # 0 ] → a · x ≡ b · x → a ≡ b ·-reflects-≡ʳ a b x p q = ·-reflects-≡ˡ a b x p (·-comm x a ∙ q ∙ ·-comm b x)
45.348558
159
0.486986
41d8e9af969fbdb0eda589a66a99977f41e52837
710
agda
Agda
Cubical/Algebra/CommAlgebra/Kernel.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Algebra/CommAlgebra/Kernel.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Algebra/CommAlgebra/Kernel.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.CommAlgebra.Kernel where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Algebra.CommRing.Base open import Cubical.Algebra.CommRing.Ideal using (Ideal→CommIdeal) open import Cubical.Algebra.Ring.Kernel using () renaming (kernelIdeal to ringKernel) open import Cubical.Algebra.CommAlgebra.Base open import Cubical.Algebra.CommAlgebra.Properties open import Cubical.Algebra.CommAlgebra.Ideal private variable ℓ : Level module _ {R : CommRing ℓ} (A B : CommAlgebra R ℓ) (ϕ : CommAlgebraHom A B) where kernel : IdealsIn A kernel = Ideal→CommIdeal (ringKernel (CommAlgebraHom→RingHom {A = A} {B = B} ϕ))
32.272727
85
0.778873
2e16bfa596371cd54ad08b9e03a7b045cb0518c4
242
agda
Agda
src/Data/Maybe/Properties/Extra.agda
metaborg/mj.agda
0c096fea1716d714db0ff204ef2a9450b7a816df
[ "Apache-2.0" ]
10
2017-11-17T17:10:36.000Z
2021-09-24T08:02:33.000Z
src/Data/Maybe/Properties/Extra.agda
metaborg/mj.agda
0c096fea1716d714db0ff204ef2a9450b7a816df
[ "Apache-2.0" ]
1
2019-01-13T13:03:47.000Z
2020-10-14T13:41:58.000Z
src/Data/Maybe/Properties/Extra.agda
metaborg/mj.agda
0c096fea1716d714db0ff204ef2a9450b7a816df
[ "Apache-2.0" ]
1
2021-12-28T17:38:05.000Z
2021-12-28T17:38:05.000Z
module Data.Maybe.Properties.Extra {a}{A : Set a} where open import Data.Maybe open import Relation.Binary.PropositionalEquality open import Relation.Nullary nothing≢just : ∀ {a : A} → ¬ (_≡_ {A = Maybe A} nothing (just a)) nothing≢just ()
26.888889
65
0.72314
4d7037b37514f8ca86ab4a04084fc20432b5f296
48
agda
Agda
test/Fail/FileNotFound.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/FileNotFound.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/FileNotFound.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module FileNotFound where import A.B.WildGoose
12
25
0.833333
59f43c2cfe62b9ea4d3adeaf9a8fb21a3011b4ea
11,334
agda
Agda
Integer8.agda
righ1113/Agda
9117b6bec9880d8c0a5d6ee4399fd841c3544d84
[ "MIT" ]
null
null
null
Integer8.agda
righ1113/Agda
9117b6bec9880d8c0a5d6ee4399fd841c3544d84
[ "MIT" ]
null
null
null
Integer8.agda
righ1113/Agda
9117b6bec9880d8c0a5d6ee4399fd841c3544d84
[ "MIT" ]
null
null
null
module Integer8 where open import Data.Nat open import Data.Nat.Properties open import Data.Product open import Relation.Binary.PropositionalEquality as PropEq -- ---------- record ---------- record IsSemiGroup (A : Set) (_∙_ : A → A → A) : Set where field assoc : ∀ x y z → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z) record IsMonoid (A : Set) (_∙_ : A → A → A) (e : A) : Set where field isSemiGroup : IsSemiGroup A _∙_ identity : (∀ x → e ∙ x ≡ x) × (∀ x → x ∙ e ≡ x) record IsGroup (A : Set) (_∙_ : A → A → A) (e : A) (iF : A → A) : Set where field isMonoid : IsMonoid A _∙_ e inv : (∀ x → (iF x) ∙ x ≡ e) × (∀ x → x ∙ (iF x) ≡ e) record IsAbelianGroup (A : Set) (_∙_ : A → A → A) (e : A) (iF : A → A) : Set where field isGroup : IsGroup A _∙_ e iF comm : ∀ x y → x ∙ y ≡ y ∙ x record IsRing (A : Set) (_⊕_ _⊗_ : A → A → A) (eP eT : A) (iF : A → A) : Set where field ⊕isAbelianGroup : IsAbelianGroup A _⊕_ eP iF ⊗isMonoid : IsMonoid A _⊗_ eT isDistR : (x y z : A) → (x ⊕ y) ⊗ z ≡ (x ⊗ z) ⊕ (y ⊗ z) isDistL : (x y z : A) → x ⊗ (y ⊕ z) ≡ (x ⊗ y) ⊕ (x ⊗ z) -- ---------------------------- -- ---------- practice nat ---------- ℕ+-isSemiGroup : IsSemiGroup ℕ _+_ ℕ+-isSemiGroup = record { assoc = ℕ+-assoc } where ℕ+-assoc : ∀ x y z → (x + y) + z ≡ x + (y + z) ℕ+-assoc zero y z = refl ℕ+-assoc (suc x) y z = cong suc (ℕ+-assoc x y z) ℕ+0-isMonoid : IsMonoid ℕ _+_ 0 ℕ+0-isMonoid = record { isSemiGroup = ℕ+-isSemiGroup ; identity = (0+x≡x , x+0≡x) } where 0+x≡x : ∀ x → 0 + x ≡ x 0+x≡x x = refl x+0≡x : ∀ x → x + 0 ≡ x x+0≡x zero = refl x+0≡x (suc x) = cong suc (x+0≡x x) -- ------------------------- -- ---------- Int ---------- data ℤ : Set where O : ℤ I : ℕ → ℕ → ℤ postulate zeroZ : (x : ℕ) → I x x ≡ O zeroZ₂ : (x y : ℕ) → I (x + y) (y + x) ≡ O -- plusInt _++_ : ℤ → ℤ → ℤ O ++ O = O O ++ X = X X ++ O = X I x y ++ I z w = I (x + z) (y + w) -- productInt _**_ : ℤ → ℤ → ℤ O ** O = O O ** _ = O _ ** O = O I x y ** I z w = I (x * z + y * w) (x * w + y * z) -- ------------------------- -- ---------- Int + ---------- ℤ++-isSemiGroup : IsSemiGroup ℤ _++_ ℤ++-isSemiGroup = record { assoc = ℤ++-assoc } where open IsSemiGroup ℤ++-assoc : ∀ x y z → (x ++ y) ++ z ≡ x ++ (y ++ z) ℤ++-assoc O O O = refl ℤ++-assoc O O (I x x₁) = refl ℤ++-assoc O (I x x₁) O = refl ℤ++-assoc O (I x x₁) (I x₂ x₃) = refl ℤ++-assoc (I x x₁) O O = refl ℤ++-assoc (I x x₁) O (I x₂ x₃) = refl ℤ++-assoc (I x x₁) (I x₂ x₃) O = refl ℤ++-assoc (I x x₁) (I x₂ x₃) (I x₄ x₅) = cong₂ I ((assoc ℕ+-isSemiGroup) x x₂ x₄) ((assoc ℕ+-isSemiGroup) x₁ x₃ x₅) ℤ++O-isMonoid : IsMonoid ℤ _++_ O ℤ++O-isMonoid = record { isSemiGroup = ℤ++-isSemiGroup ; identity = (O++x≡x , x++O≡x) } where O++x≡x : (x : ℤ) → (O ++ x) ≡ x O++x≡x O = refl O++x≡x (I x x₁) = refl x++O≡x : (x : ℤ) → (x ++ O) ≡ x x++O≡x O = refl x++O≡x (I x x₁) = refl invℤ : ℤ → ℤ invℤ O = O invℤ (I x x₁) = I x₁ x ℤ++Oinvℤ-isGroup : IsGroup ℤ _++_ O invℤ ℤ++Oinvℤ-isGroup = record { isMonoid = ℤ++O-isMonoid ; inv = (leftInv , rightInv) } where leftInv : (x : ℤ) → (invℤ x ++ x) ≡ O leftInv O = refl leftInv (I x x₁) = zeroZ₂ x₁ x rightInv : (x : ℤ) → (x ++ invℤ x) ≡ O rightInv O = refl rightInv (I x x₁) = zeroZ₂ x x₁ ℤ++Oinvℤ-isAbelianGroup : IsAbelianGroup ℤ _++_ O invℤ ℤ++Oinvℤ-isAbelianGroup = record { isGroup = ℤ++Oinvℤ-isGroup ; comm = ℤ++Oinvℤ-Comm } where ℤ++Oinvℤ-Comm : (x y : ℤ) → (x ++ y) ≡ (y ++ x) ℤ++Oinvℤ-Comm O O = refl ℤ++Oinvℤ-Comm O (I x x₁) = refl ℤ++Oinvℤ-Comm (I x x₁) O = refl ℤ++Oinvℤ-Comm (I x x₁) (I x₂ x₃) = cong₂ I (+-comm x x₂) (+-comm x₁ x₃) -- --------------------------- -- ---------- Int * ---------- ℤ**-isSemiGroup : IsSemiGroup ℤ _**_ ℤ**-isSemiGroup = record { assoc = ℤ**-assoc } where ℤ**-assoc : ∀ x y z → (x ** y) ** z ≡ x ** (y ** z) ℤ**-assoc O O O = refl ℤ**-assoc O O (I x x₁) = refl ℤ**-assoc O (I x x₁) O = refl ℤ**-assoc O (I x x₁) (I x₂ x₃) = refl ℤ**-assoc (I x x₁) O O = refl ℤ**-assoc (I x x₁) O (I x₂ x₃) = refl ℤ**-assoc (I x x₁) (I x₂ x₃) O = refl ℤ**-assoc (I x x₁) (I x₂ x₃) (I x₄ x₅) = cong₂ I (ℤ**-assoc₁ x x₁ x₂ x₃ x₄ x₅) (ℤ**-assoc₁ x x₁ x₂ x₃ x₅ x₄) where open PropEq.≡-Reasoning open IsSemiGroup ℤ**-assoc₁ : ∀ x y z u v w → (x * z + y * u) * v + (x * u + y * z) * w ≡ x * (z * v + u * w) + y * (z * w + u * v) ℤ**-assoc₁ x y z u v w = begin (x * z + y * u) * v + (x * u + y * z) * w ≡⟨ cong (\ t → (t + (x * u + y * z) * w)) (*-distribʳ-+ v (x * z) (y * u)) ⟩ x * z * v + y * u * v + (x * u + y * z) * w ≡⟨ cong (\ t → (x * z * v + y * u * v + t)) (*-distribʳ-+ w (x * u) (y * z)) ⟩ x * z * v + y * u * v + (x * u * w + y * z * w) ≡⟨ +-assoc (x * z * v) (y * u * v) (x * u * w + y * z * w) ⟩ x * z * v + (y * u * v + (x * u * w + y * z * w)) ≡⟨ cong (\ t → ((x * z * v) + t)) (+-comm (y * u * v) (x * u * w + y * z * w)) ⟩ x * z * v + ((x * u * w + y * z * w) + y * u * v) ≡⟨ sym (+-assoc (x * z * v) (x * u * w + y * z * w) (y * u * v)) ⟩ x * z * v + (x * u * w + y * z * w) + y * u * v ≡⟨ sym (cong (\ t → (t + y * u * v)) ((assoc ℕ+-isSemiGroup) (x * z * v) (x * u * w) (y * z * w))) ⟩ x * z * v + x * u * w + y * z * w + y * u * v ≡⟨ cong (\ t → t + x * u * w + y * z * w + y * u * v) (*-assoc x z v) ⟩ x * (z * v) + x * u * w + y * z * w + y * u * v ≡⟨ cong (\ t → x * (z * v) + t + y * z * w + y * u * v) (*-assoc x u w) ⟩ x * (z * v) + x * (u * w) + y * z * w + y * u * v ≡⟨ cong (\ t → x * (z * v) + x * (u * w) + t + y * u * v) (*-assoc y z w) ⟩ x * (z * v) + x * (u * w) + y * (z * w) + y * u * v ≡⟨ cong (\ t → x * (z * v) + x * (u * w) + y * (z * w) + t) (*-assoc y u v) ⟩ x * (z * v) + x * (u * w) + y * (z * w) + y * (u * v) ≡⟨ sym (cong (\ t → (t + y * (z * w) + y * (u * v))) (*-distribˡ-+ x (z * v) (u * w))) ⟩ x * (z * v + u * w) + y * (z * w) + y * (u * v) ≡⟨ +-assoc (x * (z * v + u * w)) (y * (z * w)) (y * (u * v)) ⟩ x * (z * v + u * w) + (y * (z * w) + y * (u * v)) ≡⟨ sym (cong (\ t → (x * (z * v + u * w) + t)) (*-distribˡ-+ y (z * w) (u * v))) ⟩ x * (z * v + u * w) + y * (z * w + u * v) ∎ ℤ**1-isMonoid : IsMonoid ℤ _**_ (I 1 0) ℤ**1-isMonoid = record { isSemiGroup = ℤ**-isSemiGroup ; identity = (1**x≡x , x**1≡x) } where 1**x≡x : (x : ℤ) → (I 1 0 ** x) ≡ x 1**x≡x O = refl 1**x≡x (I x x₁) = cong₂ I (x+z+z≡x x) (x+z+z≡x x₁) where x+z+z≡x : (x : ℕ) → x + 0 + 0 ≡ x x+z+z≡x zero = refl x+z+z≡x (suc x) = cong suc (x+z+z≡x x) x**1≡x : (x : ℤ) → (x ** I 1 0) ≡ x x**1≡x O = refl x**1≡x (I x x₁) = cong₂ I (x*1+x*0≡x x x₁) (x*0+x*1=x x x₁) where x*1+x*0≡x : (x x₁ : ℕ) → x * 1 + x₁ * 0 ≡ x x*1+x*0≡x zero zero = refl x*1+x*0≡x zero (suc x₁) = x*1+x*0≡x zero x₁ x*1+x*0≡x (suc x) zero = cong suc (x*1+x*0≡x x zero) x*1+x*0≡x (suc x) (suc x₁) = x*1+x*0≡x (suc x) x₁ x*0+x*1=x : (x x₁ : ℕ) → x * 0 + x₁ * 1 ≡ x₁ x*0+x*1=x zero zero = refl x*0+x*1=x zero (suc x₁) = cong suc (x*0+x*1=x zero x₁) x*0+x*1=x (suc x) zero = x*0+x*1=x x zero x*0+x*1=x (suc x) (suc x₁) = x*0+x*1=x x (suc x₁) -- --------------------------- -- ---------- Int + * ---------- ℤ++0invℤ-**1-isRing : IsRing ℤ _++_ _**_ O (I 1 0) invℤ ℤ++0invℤ-**1-isRing = record { ⊕isAbelianGroup = ℤ++Oinvℤ-isAbelianGroup ; ⊗isMonoid = ℤ**1-isMonoid ; isDistR = ℤdistR ; isDistL = ℤdistL } where ℤdistR : (x y z : ℤ) → (x ++ y) ** z ≡ (x ** z) ++ (y ** z) ℤdistR O O O = refl ℤdistR O O (I x x₁) = refl ℤdistR O (I x x₁) O = refl ℤdistR O (I x x₁) (I x₂ x₃) = refl ℤdistR (I x x₁) O O = refl ℤdistR (I x x₁) O (I x₂ x₃) = refl ℤdistR (I x x₁) (I x₂ x₃) O = refl ℤdistR (I x x₁) (I x₂ x₃) (I x₄ x₅) = cong₂ I (ℤdistR₁ x x₂ x₄ x₁ x₃ x₅) (ℤdistR₁ x x₂ x₅ x₁ x₃ x₄) where open PropEq.≡-Reasoning open IsSemiGroup ℤdistR₁ : (x y z u v w : ℕ) → (x + y) * z + (u + v) * w ≡ x * z + u * w + (y * z + v * w) ℤdistR₁ x y z u v w = begin (x + y) * z + (u + v) * w ≡⟨ cong (\ t → t + (u + v) * w) (*-distribʳ-+ z x y) ⟩ x * z + y * z + (u + v) * w ≡⟨ cong (\ t → (x * z + y * z + t)) (*-distribʳ-+ w u v) ⟩ x * z + y * z + (u * w + v * w) ≡⟨ +-assoc (x * z) (y * z) (u * w + v * w) ⟩ x * z + (y * z + (u * w + v * w)) ≡⟨ cong (\ t → x * z + t) (+-comm (y * z) (u * w + v * w)) ⟩ x * z + ((u * w + v * w) + y * z) ≡⟨ cong (\ t → x * z + t) ((assoc ℕ+-isSemiGroup) (u * w) (v * w) (y * z)) ⟩ x * z + (u * w + (v * w + y * z)) ≡⟨ cong (\ t → x * z + (u * w + t)) (+-comm (v * w) (y * z)) ⟩ x * z + (u * w + (y * z + v * w)) ≡⟨ sym ((assoc ℕ+-isSemiGroup) (x * z) (u * w) (y * z + v * w)) ⟩ x * z + u * w + (y * z + v * w) ∎ ℤdistL : (x y z : ℤ) → x ** (y ++ z) ≡ (x ** y) ++ (x ** z) ℤdistL O O O = refl ℤdistL O O (I x x₁) = refl ℤdistL O (I x x₁) O = refl ℤdistL O (I x x₁) (I x₂ x₃) = refl ℤdistL (I x x₁) O O = refl ℤdistL (I x x₁) O (I x₂ x₃) = refl ℤdistL (I x x₁) (I x₂ x₃) O = refl ℤdistL (I x x₁) (I x₂ x₃) (I x₄ x₅) = cong₂ I (ℤdistL₁ x x₁ x₂ x₃ x₄ x₅) (ℤdistL₁ x x₁ x₃ x₂ x₅ x₄) where open PropEq.≡-Reasoning open IsSemiGroup ℤdistL₁ : (x y z u v w : ℕ) → x * (z + v) + y * (u + w) ≡ x * z + y * u + (x * v + y * w) ℤdistL₁ x y z u v w = begin x * (z + v) + y * (u + w) ≡⟨ cong (\ t → t + y * (u + w)) (*-distribˡ-+ x z v) ⟩ x * z + x * v + y * (u + w) ≡⟨ cong (\ t → x * z + x * v + t) (*-distribˡ-+ y u w) ⟩ x * z + x * v + (y * u + y * w) ≡⟨ +-assoc (x * z) (x * v) (y * u + y * w) ⟩ x * z + (x * v + (y * u + y * w)) ≡⟨ sym (cong (\ t → x * z + t) ((assoc ℕ+-isSemiGroup) (x * v) (y * u) (y * w))) ⟩ x * z + ((x * v + y * u) + y * w) ≡⟨ cong (\ t → x * z + (t + y * w)) (+-comm (x * v) (y * u)) ⟩ x * z + ((y * u + x * v) + y * w) ≡⟨ cong (\ t → x * z + t) ((assoc ℕ+-isSemiGroup) (y * u) (x * v) (y * w)) ⟩ x * z + (y * u + (x * v + y * w)) ≡⟨ sym ((assoc ℕ+-isSemiGroup) (x * z) (y * u) (x * v + y * w)) ⟩ x * z + y * u + (x * v + y * w) ∎ -- --------------------------- -- (-1) * (-1) = 1 minus : I 0 1 ** I 0 1 ≡ I 1 0 minus = refl
40.623656
111
0.374184
13760a127671ba6c32015c0ec9e146366d4dbeae
2,215
agda
Agda
Pi-/AuxLemmas.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
Pi-/AuxLemmas.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
Pi-/AuxLemmas.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
module Pi-.AuxLemmas where open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product open import Relation.Binary.Core open import Relation.Binary open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Data.Nat open import Data.Nat.Properties open import Data.List as L open import Function using (_∘_) open import Pi-.Syntax open import Pi-.Opsem Lemma₁ : ∀ {A B C D v v' κ κ'} {c : A ↔ B} {c' : C ↔ D} → [ c ∣ v ∣ κ ]◁ ↦ ⟨ c' ∣ v' ∣ κ' ⟩◁ → A ≡ C × B ≡ D Lemma₁ ↦⃖₁ = refl , refl Lemma₁ ↦⃖₂ = refl , refl Lemma₂ : ∀ {A B v v' κ κ'} {c c' : A ↔ B} → [ c ∣ v ∣ κ ]◁ ↦ ⟨ c' ∣ v' ∣ κ' ⟩◁ → c ≡ c' × κ ≡ κ' Lemma₂ ↦⃖₁ = refl , refl Lemma₂ ↦⃖₂ = refl , refl Lemma₃ : ∀ {A B v v' κ} {c : A ↔ B} → [ c ∣ v ∣ κ ]◁ ↦ ⟨ c ∣ v' ∣ κ ⟩◁ → base c ⊎ A ≡ B Lemma₃ (↦⃖₁ {b = b}) = inj₁ b Lemma₃ ↦⃖₂ = inj₂ refl Lemma₄ : ∀ {A v v' κ} {c : A ↔ A} → [ c ∣ v ∣ κ ]◁ ↦ ⟨ c ∣ v' ∣ κ ⟩◁ → base c ⊎ c ≡ id↔ Lemma₄ (↦⃖₁ {b = b}) = inj₁ b Lemma₄ ↦⃖₂ = inj₂ refl Lemma₅ : ∀ {A B C D v v' κ κ'} {c : A ↔ B} {c' : C ↔ D} → [ c ∣ v ∣ κ ]◁ ↦ [ c' ∣ v' ∣ κ' ]▷ → A ≡ C × B ≡ D Lemma₅ ↦η₁ = refl , refl Lemma₅ ↦η₂ = refl , refl Lemma₆ : ∀ {A B v v' κ κ'} {c c' : A ↔ B} → [ c ∣ v ∣ κ ]◁ ↦ [ c' ∣ v' ∣ κ' ]▷ → c ≡ c' × κ ≡ κ' Lemma₆ ↦η₁ = refl , refl Lemma₆ ↦η₂ = refl , refl Lemma₇ : ∀ {A B v v' κ} {c : A ↔ B} → [ c ∣ v ∣ κ ]◁ ↦ [ c ∣ v' ∣ κ ]▷ → A ≡ 𝟘 Lemma₇ ↦η₁ = refl Lemma₇ ↦η₂ = refl Lemma₈ : ∀ {A B C D v v' κ κ'} {c : A ↔ B} {c' : C ↔ D} → ⟨ c ∣ v ∣ κ ⟩▷ ↦ [ c' ∣ v' ∣ κ' ]▷ → A ≡ C × B ≡ D Lemma₈ ↦⃗₁ = refl , refl Lemma₈ ↦⃗₂ = refl , refl Lemma₉ : ∀ {A B v v' κ κ'} {c c' : A ↔ B} → ⟨ c ∣ v ∣ κ ⟩▷ ↦ [ c' ∣ v' ∣ κ' ]▷ → c ≡ c' × κ ≡ κ' Lemma₉ ↦⃗₁ = refl , refl Lemma₉ ↦⃗₂ = refl , refl Lemma₁₀ : ∀ {A B v v' κ} {c : A ↔ B} → (r : ⟨ c ∣ v ∣ κ ⟩▷ ↦ [ c ∣ v' ∣ κ ]▷) → base c ⊎ A ≡ B Lemma₁₀ (↦⃗₁ {b = b}) = inj₁ b Lemma₁₀ ↦⃗₂ = inj₂ refl Lemma₁₁ : ∀ {A v v' κ} {c : A ↔ A} → (r : ⟨ c ∣ v ∣ κ ⟩▷ ↦ [ c ∣ v' ∣ κ ]▷) → base c ⊎ c ≡ id↔ Lemma₁₁ (↦⃗₁ {b = b}) = inj₁ b Lemma₁₁ ↦⃗₂ = inj₂ refl
27.012195
55
0.439729
c7afcac6214f57a1f3c81c916c07af15e402135b
309
agda
Agda
agda/SList/Properties.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/SList/Properties.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/SList/Properties.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
{-# OPTIONS --sized-types #-} module SList.Properties (A : Set) where open import Data.List open import List.Permutation.Base A open import SList lemma-unsize-size : (xs : List A) → xs ∼ unsize A (size A xs) lemma-unsize-size [] = ∼[] lemma-unsize-size (x ∷ xs) = ∼x /head /head (lemma-unsize-size xs)
22.071429
67
0.669903
29cf512a4a676f189fb3dde1236c80ede64d4aa7
92
agda
Agda
test/Fail/Issue5410-4.agda
MxmUrw/agda
6ede01fa854c5472e54f7d1799ca2c08ed316129
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue5410-4.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue5410-4.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --without-K #-} variable @0 A : Set record D : Set₁ where field f : A
10.222222
27
0.554348
126095c5c9d0030aad6d912966b67433e7dc48fa
182
agda
Agda
src/LFRef/Readme.agda
ajrouvoet/implicits.agda
ef2e347a4470e55083c83b743efbc2902ef1ad22
[ "MIT" ]
4
2019-04-05T17:57:11.000Z
2021-05-07T04:08:41.000Z
src/LFRef/Readme.agda
ElessarWebb/implicits.agda
ef2e347a4470e55083c83b743efbc2902ef1ad22
[ "MIT" ]
null
null
null
src/LFRef/Readme.agda
ElessarWebb/implicits.agda
ef2e347a4470e55083c83b743efbc2902ef1ad22
[ "MIT" ]
null
null
null
module LFRef.Readme where open import LFRef.Syntax open import LFRef.Welltyped open import LFRef.Eval open import LFRef.Properties.Soundness open import LFRef.Properties.Confluence
22.75
39
0.851648
048361d97a81f2173032e4f2ff98a69221c92d20
1,658
agda
Agda
Cubical/Foundations/Pointed/FunExt.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/Foundations/Pointed/FunExt.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/Foundations/Pointed/FunExt.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Pointed.FunExt where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Pointed.Base open import Cubical.Foundations.Pointed.Properties open import Cubical.Foundations.Pointed.Homotopy private variable ℓ ℓ' : Level module _ {A : Pointed ℓ} {B : typ A → Type ℓ'} {ptB : B (pt A)} where -- pointed function extensionality funExt∙P : {f g : Π∙ A B ptB} → f ∙∼P g → f ≡ g funExt∙P (h , h∙) i = (λ x → h x i) , h∙ i -- inverse of pointed function extensionality funExt∙P⁻ : {f g : Π∙ A B ptB} → f ≡ g → f ∙∼P g funExt∙P⁻ p = (λ a i → p i .fst a) , λ i → p i .snd -- function extensionality is an isomorphism, PathP version funExt∙PIso : (f g : Π∙ A B ptB) → Iso (f ∙∼P g) (f ≡ g) Iso.fun (funExt∙PIso f g) = funExt∙P {f = f} {g = g} Iso.inv (funExt∙PIso f g) = funExt∙P⁻ {f = f} {g = g} Iso.rightInv (funExt∙PIso f g) p = refl Iso.leftInv (funExt∙PIso f g) HP = refl -- transformed to equivalence funExt∙P≃ : (f g : Π∙ A B ptB) → (f ∙∼P g) ≃ (f ≡ g) funExt∙P≃ f g = isoToEquiv (funExt∙PIso f g) -- funExt∙≃ using the other kind of pointed homotopy funExt∙≃ : (f g : Π∙ A B ptB) → (f ∙∼ g) ≃ (f ≡ g) funExt∙≃ f g = compEquiv (∙∼≃∙∼P f g) (funExt∙P≃ f g) -- standard pointed function extensionality and its inverse funExt∙ : {f g : Π∙ A B ptB} → f ∙∼ g → f ≡ g funExt∙ {f = f} {g = g} = equivFun (funExt∙≃ f g) funExt∙⁻ : {f g : Π∙ A B ptB} → f ≡ g → f ∙∼ g funExt∙⁻ {f = f} {g = g} = equivFun (invEquiv (funExt∙≃ f g))
35.276596
69
0.610374
12c5395b526e652d3ae827e210e8708887ace9a0
335
agda
Agda
test/Succeed/Issue616.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue616.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue616.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
module Issue616 where open import Common.Coinduction const : ∀ {a b}{A : Set a}{B : Set b} → A → B → A const x _ = x -- The recursive call should be ignored by the termination checker, -- since ♭ is a projection function and shouldn't store its implicit -- arguments. contrived : Set₁ contrived = ♭ {A = const _ contrived} (♯ Set)
23.928571
68
0.689552
0b836b9f5ffa6396b0efdf0c2864d4989a2d6d4e
588
agda
Agda
proglangs-learning/Agda/Test.agda
helq/old_code
a432faf1b340cb379190a2f2b11b997b02d1cd8d
[ "CC0-1.0" ]
null
null
null
proglangs-learning/Agda/Test.agda
helq/old_code
a432faf1b340cb379190a2f2b11b997b02d1cd8d
[ "CC0-1.0" ]
4
2020-03-10T19:20:21.000Z
2021-06-07T15:39:48.000Z
proglangs-learning/Agda/Test.agda
helq/old_code
a432faf1b340cb379190a2f2b11b997b02d1cd8d
[ "CC0-1.0" ]
null
null
null
module Test where -- To compile code: stack exec -- agda Test.agda -c -- or: agda Test.agda -c --ghc-flag=-dynamic open import IO -- All of these are not necessary but they help to reduce clutter when looking -- at the types of the different things in the code import Agda.Builtin.List as List open import Agda.Builtin.Unit using (⊤) open List using (_∷_) import Agda.Builtin.String as String main = run (putStrLn "Hello, World!") data Bool : Set where true : Bool false : Bool if_then_else_ : { A : Set } → Bool → A → A → A if true then t else e = t if false then t else e = e
25.565217
78
0.70068
c7df4364a4b6c05e60b5c8c094f9b099d0dc8521
166
agda
Agda
test/interaction/Issue1494.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue1494.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue1494.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue1494 where open import Issue1494.Helper module M (r : Record) where open Module r postulate A : Set a b : A Foo : a ≡ b Foo = {!!}
11.066667
28
0.596386
dc4b8dcf1b936845dde3d7d7182c068c84a694d0
2,090
agda
Agda
Cubical/Foundations/Equiv/Fiberwise.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Foundations/Equiv/Fiberwise.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Foundations/Equiv/Fiberwise.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical #-} module Cubical.Foundations.Equiv.Fiberwise where open import Cubical.Core.Everything open import Cubical.Foundations.Everything module _ {a p q} {A : Type a} (P : A → Type p) (Q : A → Type q) (f : ∀ x → P x → Q x) where private total : (Σ A P) → (Σ A Q) total = (\ p → p .fst , f (p .fst) (p .snd)) -- Thm 4.7.6 fibers-total : ∀ {xv} → Iso (fiber total (xv)) (fiber (f (xv .fst)) (xv .snd)) fibers-total {xv} = iso h g h-g g-h where h : ∀ {xv} → fiber total xv → fiber (f (xv .fst)) (xv .snd) h {xv} (p , eq) = J (\ xv eq → fiber (f (xv .fst)) (xv .snd)) ((p .snd) , refl) eq g : ∀ {xv} → fiber (f (xv .fst)) (xv .snd) → fiber total xv g {xv} (p , eq) = (xv .fst , p) , (\ i → _ , eq i) h-g : ∀ {xv} y → h {xv} (g {xv} y) ≡ y h-g {x , v} (p , eq) = J (λ _ eq₁ → h (g (p , eq₁)) ≡ (p , eq₁)) (JRefl (λ xv₁ eq₁ → fiber (f (xv₁ .fst)) (xv₁ .snd)) ((p , refl))) (eq) g-h : ∀ {xv} y → g {xv} (h {xv} y) ≡ y g-h {xv} ((a , p) , eq) = J (λ _ eq₁ → g (h ((a , p) , eq₁)) ≡ ((a , p) , eq₁)) (cong g (JRefl (λ xv₁ eq₁ → fiber (f (xv₁ .fst)) (xv₁ .snd)) (p , refl))) eq -- half of Thm 4.7.7 (fiberwise equivalences) fiberEquiv : ([tf] : isEquiv total) → ∀ x → isEquiv (f x) fiberEquiv [tf] x .equiv-proof y = isContrRetract (fibers-total .Iso.inv) (fibers-total .Iso.fun) (fibers-total .Iso.rightInv) ([tf] .equiv-proof (x , y)) module _ {ℓ : Level} {U : Type ℓ} {ℓr} (_~_ : U → U → Type ℓr) (idTo~ : ∀ {A B} → A ≡ B → A ~ B) (c : ∀ A → isContr (Σ U \ X → A ~ X)) where isContrToUniv : ∀ {A B} → isEquiv (idTo~ {A} {B}) isContrToUniv {A} {B} = fiberEquiv (λ z → A ≡ z) (λ z → A ~ z) (\ B → idTo~ {A} {B}) (λ { .equiv-proof y → isContrΣ ((_ , refl) , (\ z → contrSingl (z .snd))) \ a → isContr→isContrPath (c A) _ _ }) B
42.653061
140
0.439234
ad7418a26dc17b815dbb93d097c19183c9ea2c2f
9,364
agda
Agda
theorems/homotopy/LoopSpaceCircle.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
theorems/homotopy/LoopSpaceCircle.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
theorems/homotopy/LoopSpaceCircle.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT {- This file contains three proofs of Ω(S¹) = ℤ and the fact that the circle is a 1-type: - Something closely related to Mike’s original proof - Dan’s encode-decode proof - Guillaume’s proof using the flattening lemma. This file is divided in a lot of different parts so that common parts can be factored: 1. Definition of the universal cover and the encoding map (this part is common to all three proofs) 2. Proof that [encode (loop^ n) == n] (this part is common to Mike’s proof and the encode-decode proof) 3. Dan’s encode-decode proof that [Ω S¹ ≃ ℤ] 4. Mike’s proof that [Σ S¹ Cover] is contractible 5. Proof with the flattening lemma that [Σ S¹ S¹Cover] is contractible 6. Proof of [Ω S¹ ≃ ℤ] using the fact that [Σ S¹ S¹Cover] is contractible (common to Mike’s proof and the flattening lemma proof) 7. Encode-decode proof of the whole equivalence 8. Proof that the circle is a 1-type (common to all three proofs) Keep - 1, 2, 3 for the encode-decode proof (+ 7, 8 for S¹ is a 1-type) - 1, 2, 4, 6 for Mike’s proof (+ 8) - 1, 5, 6 for the flattening lemma proof (+ 8) -} module homotopy.LoopSpaceCircle where {- 1. Universal cover and encoding map (common to all three proofs) -} module S¹Cover = S¹RecType ℤ succ-equiv S¹Cover : S¹ → Type₀ S¹Cover = S¹Cover.f encode : {x : S¹} (p : base == x) → S¹Cover x encode p = transport S¹Cover p 0 {- 2. Encoding [loop^ n] (common to Mike’s proof and the encode-decode proof) -} -- We define the element of [Ω S¹] which is supposed to correspond to an -- integer [n], this is the loop winding around the circle [n] times. -- This is easy by induction on [n] loop^ : (n : ℤ) → base == base loop^ (pos O) = idp loop^ (pos (S n)) = loop^ (pos n) ∙ loop loop^ (negsucc O) = ! loop loop^ (negsucc (S n)) = loop^ (negsucc n) ∙ (! loop) -- Compatibility of [loop^] with the successor function -- This is again not difficult by induction on [n] loop^succ : (n : ℤ) → loop^ n ∙ loop == loop^ (succ n) loop^succ (pos n) = idp loop^succ (negsucc O) = !-inv-l loop loop^succ (negsucc (S n)) = (loop^ (negsucc n) ∙ ! loop) ∙ loop =⟨ ∙-assoc (loop^ (negsucc n)) (! loop) loop ⟩ loop^ (negsucc n) ∙ (! loop ∙ loop) =⟨ !-inv-l loop |in-ctx (λ u → loop^ (negsucc n) ∙ u) ⟩ loop^ (negsucc n) ∙ idp =⟨ ∙-unit-r _ ⟩ loop^ (negsucc n) ∎ -- Now we check that encoding [loop^ n] gives indeed [n], again by induction -- on [n] encode-loop^ : (n : ℤ) → encode (loop^ n) == n encode-loop^ (pos O) = idp encode-loop^ (pos (S n)) = encode (loop^ (pos n) ∙ loop) =⟨ idp ⟩ coe (ap S¹Cover (loop^ (pos n) ∙ loop)) 0 =⟨ ap-∙ S¹Cover (loop^ (pos n)) loop |in-ctx (λ u → coe u 0) ⟩ coe (ap S¹Cover (loop^ (pos n)) ∙ ap S¹Cover loop) 0 =⟨ coe-∙ (ap S¹Cover (loop^ (pos n))) (ap S¹Cover loop) 0 ⟩ coe (ap S¹Cover loop) (coe (ap S¹Cover (loop^ (pos n))) 0) =⟨ encode-loop^ (pos n) |in-ctx coe (ap S¹Cover loop) ⟩ coe (ap S¹Cover loop) (pos n) =⟨ S¹Cover.coe-loop-β (pos n) ⟩ pos (S n) ∎ encode-loop^ (negsucc O) = coe (ap S¹Cover (! loop)) 0 =⟨ coe-ap-! S¹Cover loop 0 ⟩ coe! (ap S¹Cover loop) 0 =⟨ S¹Cover.coe!-loop-β 0 ⟩ negsucc O ∎ encode-loop^ (negsucc (S n)) = encode (loop^ (negsucc n) ∙ ! loop) =⟨ idp ⟩ coe (ap S¹Cover (loop^ (negsucc n) ∙ ! loop)) 0 =⟨ ap-∙ S¹Cover (loop^ (negsucc n)) (! loop) |in-ctx (λ u → coe u 0) ⟩ coe (ap S¹Cover (loop^ (negsucc n)) ∙ ap S¹Cover (! loop)) 0 =⟨ coe-∙ (ap S¹Cover (loop^ (negsucc n))) (ap S¹Cover (! loop)) 0 ⟩ coe (ap S¹Cover (! loop)) (coe (ap S¹Cover (loop^ (negsucc n))) 0) =⟨ encode-loop^ (negsucc n) |in-ctx coe (ap S¹Cover (! loop)) ⟩ coe (ap S¹Cover (! loop)) (negsucc n) =⟨ coe-ap-! S¹Cover loop (negsucc n) ⟩ coe! (ap S¹Cover loop) (negsucc n) =⟨ S¹Cover.coe!-loop-β (negsucc n) ⟩ negsucc (S n) ∎ {- 3. Dan’s encode-decode proof -} -- The decoding function at [base] is [loop^], but we extend it to the whole -- of [S¹] so that [decode-encode] becomes easier (and we need [loop^succ] to -- be able to extend it) decode : (x : S¹) → (S¹Cover x → base == x) decode = S¹-elim loop^ (↓-→-in (λ {n} q → ↓-cst=idf-in (loop^succ n ∙ ap loop^ (S¹Cover.↓-loop-out q)))) decode-encode : (x : S¹) (p : base == x) → decode x (encode p) == p decode-encode _ p = J (λ x p → decode x (encode p) == p) idp p -- Magic! -- And we get the theorem ΩS¹≃ℤ : (base == base) ≃ ℤ ΩS¹≃ℤ = equiv encode (decode base) encode-loop^ (decode-encode base) {- 4. Mike’s proof that [Σ S¹ Cover] is contractible -} -- We want to prove that every point of [Σ S¹ S¹Cover] is equal to [(base , O)] paths-mike : (xt : Σ S¹ S¹Cover) → (base , 0) == xt paths-mike (x , t) = paths-mike-c x t where -- We do it by circle-induction on the first component. When it’s [base], -- we use the [↓-loop^] below (which is essentially [encode-loop^]) and -- for [loop] we use [loop^succ] and the fact that [ℤ] is a set. paths-mike-c : (x : S¹) (t : S¹Cover x) → (base , 0) == (x , t) :> Σ S¹ S¹Cover paths-mike-c = S¹-elim (λ n → pair= (loop^ n) (↓-loop^ n)) (↓-Π-in (λ {n} {n'} q → ↓-cst=idf-in (pair= (loop^ n) (↓-loop^ n) ∙ pair= loop q =⟨ Σ-∙ (↓-loop^ n) q ⟩ pair= (loop^ n ∙ loop) (↓-loop^ n ∙ᵈ q) =⟨ pair== (loop^succ n ∙ ap loop^ (S¹Cover.↓-loop-out q)) (set-↓-has-all-paths-↓ ℤ-is-set) ⟩ pair= (loop^ n') (↓-loop^ n') ∎))) where ↓-loop^ : (n : ℤ) → 0 == n [ S¹Cover ↓ loop^ n ] ↓-loop^ n = from-transp _ _ (encode-loop^ n) contr-mike : is-contr (Σ S¹ S¹Cover) contr-mike = ((base , 0) , paths-mike) {- 5. Flattening lemma proof that [Σ S¹ Cover] is contractible -} --We import the flattening lemma for the universal cover of the circle --open FlatteningS¹ ℤ succ-equiv open S¹Cover using (module Wt; Wt; cct; ppt; flattening-S¹) -- We prove that the flattened HIT corresponding to the universal cover of the -- circle (the real line) is contractible Wt-is-contr : is-contr Wt Wt-is-contr = (cct tt 0 , Wt.elim (base* ∘ snd) (loop* ∘ snd)) where -- This is basically [loop^] base* : (n : ℤ) → cct tt 0 == cct tt n base* (pos O) = idp base* (pos (S n)) = base* (pos n) ∙ ppt tt (pos n) base* (negsucc O) = ! (ppt tt (negsucc O)) base* (negsucc (S n)) = base* (negsucc n) ∙ ! (ppt tt (negsucc (S n))) loop* : (n : ℤ) → base* n == base* (succ n) [ (λ x → cct tt 0 == x) ↓ ppt tt n ] loop* n = ↓-cst=idf-in (aux n) where -- This is basically [loop^succ] aux : (n : ℤ) → base* n ∙ ppt tt n == base* (succ n) aux (pos n) = idp aux (negsucc O) = !-inv-l (ppt tt (negsucc O)) aux (negsucc (S n)) = base* (negsucc (S n)) ∙ ppt tt (negsucc (S n)) =⟨ idp ⟩ (base* (negsucc n) ∙ ! (ppt tt (negsucc (S n)))) ∙ ppt tt (negsucc (S n)) =⟨ ∙-assoc (base* (negsucc n)) _ _ ⟩ base* (negsucc n) ∙ (! (ppt tt (negsucc (S n))) ∙ ppt tt (negsucc (S n))) =⟨ !-inv-l (ppt tt (negsucc (S n))) |in-ctx (λ u → base* (negsucc n) ∙ u) ⟩ base* (negsucc n) ∙ idp =⟨ ∙-unit-r _ ⟩ base* (negsucc n) ∎ -- Then, using the flattening lemma we get that the total space of [Cover] is -- contractible contr-flattening : is-contr (Σ S¹ S¹Cover) contr-flattening = transport! is-contr flattening-S¹ Wt-is-contr {- 6. Proof that [Ω S¹ ≃ ℤ] using the fact that [Σ S¹ Cover] is contractible -} tot-encode : Σ S¹ (λ x → base == x) → Σ S¹ S¹Cover tot-encode (x , y) = (x , encode y) -- The previous map induces an equivalence on the total spaces, because both -- total spaces are contractible total-is-equiv : is-equiv tot-encode total-is-equiv = contr-to-contr-is-equiv _ (pathfrom-is-contr base) contr-flattening -- Hence it’s an equivalence fiberwise postulate -- TODO, will be only one line using the fact that an equivalence on -- total spaces induces an equivalence fiberwise encode-is-equiv : (x : S¹) → is-equiv (encode {x}) -- We can then conclude that the loop space of the circle is equivalent to [ℤ] ΩS¹≃ℤ' : (base == base) ≃ ℤ ΩS¹≃ℤ' = (encode {base} , encode-is-equiv base) {- 7. Encode-decode proof of the whole fiberwise equivalence -} -- This is quite similar to [paths-mike], we’re doing it by circle-induction, -- the base case is [encode-loop^] and the loop case is using the fact that [ℤ] -- is a set (and [loop^succ] is already used in [decode]) encode-decode : (x : S¹) (t : S¹Cover x) → encode (decode x t) == t encode-decode = S¹-elim {P = λ x → (t : S¹Cover x) → encode (decode x t) == t} encode-loop^ (↓-Π-in (λ q → prop-has-all-paths-↓ (ℤ-is-set _ _))) encode-is-equiv' : (x : S¹) → is-equiv (encode {x}) encode-is-equiv' x = is-eq encode (decode x) (encode-decode x) (decode-encode x) {- 8. Proof that the circle is a 1-type -} S¹Cover-is-set : (y : S¹) → is-set (S¹Cover y) S¹Cover-is-set = S¹-elim ℤ-is-set (prop-has-all-paths-↓ is-set-is-prop) ΩS¹-is-set : (y : S¹) → is-set (base == y) ΩS¹-is-set y = equiv-preserves-level ((encode {y} , encode-is-equiv y) ⁻¹) (S¹Cover-is-set y) S¹-level : has-level 1 S¹ S¹-level = S¹-elim ΩS¹-is-set (prop-has-all-paths-↓ (Π-level (λ x → is-set-is-prop)))
39.510549
84
0.596113
2e71f25b69b076708032dbce1233049ab3208f35
968
agda
Agda
Data/List/Kleene/Relation/Unary.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
Data/List/Kleene/Relation/Unary.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
Data/List/Kleene/Relation/Unary.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --safe #-} module Data.List.Kleene.Relation.Unary where open import Data.List.Kleene open import Prelude open import Data.Fin open import Relation.Nullary private variable p : Level ◇⁺ : ∀ {A : Type a} (P : A → Type p) → A ⁺ → Type _ ◇⁺ P xs = ∃ i × P (xs !⁺ i) ◇⋆ : ∀ {A : Type a} (P : A → Type p) → A ⋆ → Type _ ◇⋆ P xs = ∃ i × P (xs !⋆ i) module Exists {a} {A : Type a} {p} (P : A → Type p) where push : ∀ {x xs} → ◇⋆ P xs → ◇⁺ P (x & xs) push (n , x∈xs) = (fs n , x∈xs) pull : ∀ {x xs} → ¬ P x → ◇⁺ P (x & xs) → ◇⋆ P xs pull ¬Px (f0 , p∈xs) = ⊥-elim (¬Px p∈xs) pull ¬Px (fs n , p∈xs) = (n , p∈xs) ◻⁺ : {A : Type a} (P : A → Type p) → A ⁺ → Type _ ◻⁺ P xs = ∀ i → P (xs !⁺ i) ◻⋆ : {A : Type a} (P : A → Type p) → A ⋆ → Type _ ◻⋆ P xs = ∀ i → P (xs !⋆ i) module Forall {a} {A : Type a} {p} (P : A → Type p) where push⁺ : ∀ {x xs} → P x → ◻⋆ P xs → ◻⁺ P (x & xs) push⁺ px pxs f0 = px push⁺ px pxs (fs n) = pxs n
25.473684
57
0.472107
101541e9055f2b3e633e67e9c776b581c7472de9
4,582
agda
Agda
test/LibSucceed/InstanceArguments/07-subclasses.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/LibSucceed/InstanceArguments/07-subclasses.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/LibSucceed/InstanceArguments/07-subclasses.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- {-# OPTIONS --verbose tc.records.ifs:15 #-} -- {-# OPTIONS --verbose tc.constr.findInScope:15 #-} -- {-# OPTIONS --verbose tc.term.args.ifs:15 #-} -- {-# OPTIONS --verbose cta.record.ifs:15 #-} -- {-# OPTIONS --verbose tc.section.apply:25 #-} -- {-# OPTIONS --verbose tc.mod.apply:100 #-} -- {-# OPTIONS --verbose scope.rec:15 #-} -- {-# OPTIONS --verbose tc.rec.def:15 #-} module InstanceArguments.07-subclasses where module Imports where module L where open import Agda.Primitive public using (Level; _⊔_) renaming (lzero to zero; lsuc to suc) -- extract from Function id : ∀ {a} {A : Set a} → A → A id x = x _$_ : ∀ {a b} {A : Set a} {B : A → Set b} → ((x : A) → B x) → ((x : A) → B x) f $ x = f x _∘_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} → (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → ((x : A) → C (g x)) f ∘ g = λ x → f (g x) -- extract from Data.Bool infixr 5 _∨_ data Bool : Set where true : Bool false : Bool not : Bool → Bool not true = false not false = true _∨_ : Bool → Bool → Bool true ∨ b = true false ∨ b = b -- extract from Relation.Nullary.Decidable and friends infix 3 ¬_ data ⊥ : Set where ¬_ : ∀ {ℓ} → Set ℓ → Set ℓ ¬ P = P → ⊥ data Dec {p} (P : Set p) : Set p where yes : ( p : P) → Dec P no : (¬p : ¬ P) → Dec P ⌊_⌋ : ∀ {p} {P : Set p} → Dec P → Bool ⌊ yes _ ⌋ = true ⌊ no _ ⌋ = false -- extract from Relation.Binary.PropositionalEquality data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x cong : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {x y} → x ≡ y → f x ≡ f y cong f refl = refl -- extract from Data.Nat data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ {-# BUILTIN NATURAL ℕ #-} pred : ℕ → ℕ pred zero = zero pred (suc n) = n _≟_ : (x y : ℕ) → Dec (x ≡ y) zero ≟ zero = yes refl suc m ≟ suc n with m ≟ n suc m ≟ suc .m | yes refl = yes refl suc m ≟ suc n | no prf = no (prf ∘ cong pred) zero ≟ suc n = no λ() suc m ≟ zero = no λ() open Imports -- Begin of actual example! record Eq (A : Set) : Set where field eq : A → A → Bool primEqBool : Bool → Bool → Bool primEqBool true = id primEqBool false = not instance eqBool : Eq Bool eqBool = record { eq = primEqBool } primEqNat : ℕ → ℕ → Bool primEqNat a b = ⌊ a ≟ b ⌋ primLtNat : ℕ → ℕ → Bool primLtNat 0 _ = true primLtNat (suc a) (suc b) = primLtNat a b primLtNat _ _ = false neq : {t : Set} → {{eqT : Eq t}} → t → t → Bool neq a b = not $ eq a b where open Eq {{...}} record Ord₁ (A : Set) : Set where infix 6 _<_ field _<_ : A → A → Bool eqA : Eq A instance ord₁Nat : Ord₁ ℕ ord₁Nat = record { _<_ = primLtNat; eqA = eqNat } where eqNat : Eq ℕ eqNat = record { eq = primEqNat } record Ord₂ {A : Set} (eqA : Eq A) : Set where infix 6 _<_ field _<_ : A → A → Bool instance ord₂Nat : Ord₂ (record { eq = primEqNat }) ord₂Nat = record { _<_ = primLtNat } record Ord₃ (A : Set) : Set where infix 6 _<_ field _<_ : A → A → Bool eqA : Eq A open Eq eqA public instance ord₃Nat : Ord₃ ℕ ord₃Nat = record { _<_ = primLtNat; eqA = eqNat } where eqNat : Eq ℕ eqNat = record { eq = primEqNat } record Ord₄ {A : Set} {{eqA : Eq A}} : Set where infix 6 _<_ field _<_ : A → A → Bool open Eq eqA public instance ord₄Nat : Ord₄ {{record { eq = primEqNat }}} ord₄Nat = record { _<_ = primLtNat } module test₁ where open Ord₁ {{...}} open Eq {{...}} instance eqNat : Eq ℕ eqNat = eqA test₁ = 5 < 3 test₂ = eq 5 3 test₃ = eq true false test₄ : {A : Set} → {{ ordA : Ord₁ A }} → A → A → Bool test₄ a b = a < b ∨ eq a b where instance eqA' : Eq _ eqA' = eqA module test₃ where open Ord₃ {{...}} open Eq {{...}} renaming (eq to eq') test₁ = 5 < 3 test₂ = eq 5 3 test₃ = eq' true false test₄ : {A : Set} → {{ ordA : Ord₃ A }} → A → A → Bool test₄ a b = a < b ∨ eq a b module test₄ where open Ord₄ {{...}} open Eq {{...}} renaming (eq to eq') test₁ = 5 < 3 test₂ = eq 5 3 test₃ = eq' true false test₄ : {A : Set} → {{eqA : Eq A}} → {{ ordA : Ord₄ }} → A → A → Bool test₄ a b = a < b ∨ eq a b module test₄′ where open Ord₄ {{...}} hiding (eq) open Eq {{...}} eqNat : Eq ℕ eqNat = record { eq = primEqNat } test₁ = 5 < 3 test₂ = eq 5 3 test₃ = eq true false test₄ : {A : Set} → {{ eqA : Eq A }} → {{ ordA : Ord₄ }} → A → A → Bool test₄ a b = a < b ∨ eq a b
22.028846
73
0.524225
59f9700a2470bdfad6eb75c2f539fcbed1aed687
33,582
agda
Agda
src/syntax-util.agda
CarlOlson/cedille
f5ce42258b7d9bc66f75cd679c785d6133b82b58
[ "MIT" ]
null
null
null
src/syntax-util.agda
CarlOlson/cedille
f5ce42258b7d9bc66f75cd679c785d6133b82b58
[ "MIT" ]
null
null
null
src/syntax-util.agda
CarlOlson/cedille
f5ce42258b7d9bc66f75cd679c785d6133b82b58
[ "MIT" ]
null
null
null
module syntax-util where open import lib open import cedille-types open import general-util open import constants posinfo-gen : posinfo posinfo-gen = "generated" pi-gen = posinfo-gen first-position : posinfo first-position = "1" dummy-var : var dummy-var = "_dummy" id-term : term id-term = Lam posinfo-gen NotErased posinfo-gen "x" NoClass (Var posinfo-gen "x") compileFailType : type compileFailType = Abs posinfo-gen Erased posinfo-gen "X" (Tkk (Star posinfo-gen)) (TpVar posinfo-gen "X") qualif-info : Set qualif-info = var × args qualif : Set qualif = trie qualif-info {- data json : Set where json-num : ℕ → json json-bln : 𝔹 → json json-str : rope → json json-lst : 𝕃 json → json json-obj : 𝕃 (string × json) → json print-json : json → rope print-json (json-num n) = [[ ℕ-to-string n ]] print-json (json-bln b) = [[ if b then "true" else "false" ]] print-json (json-str r) = r print-json (json-lst l) = [[ "[" ]] ⊹⊹ h l [[]] ⊹⊹ [[ "]" ]] where h : 𝕃 json → rope → rope h [] acc = acc h (j :: []) acc = acc ⊹⊹ print-json j h (j :: js) acc = h js (acc ⊹⊹ print-json j ⊹⊹ [[ ", " ]]) print-json (json-obj o) = [[ "{" ]] ⊹⊹ h o [[]] ⊹⊹ [[ "}" ]] where h : 𝕃 (string × json) → rope → rope h [] acc = acc h ((k , v) :: []) acc = acc ⊹⊹ [[ "\"" ^ k ^ "\": " ]] ⊹⊹ print-json v h ((k , v) :: o) acc = h o (acc ⊹⊹ [[ "\"" ^ k ^ "\": " ]] ⊹⊹ print-json v ⊹⊹ [[ ", " ]]) -} tag : Set tag = string × rope tagged-val : Set tagged-val = string × rope × 𝕃 tag tags-to-rope : 𝕃 tag → rope tags-to-rope [] = [[]] tags-to-rope ((t , v) :: []) = [[ "\"" ^ t ^ "\":" ]] ⊹⊹ v tags-to-rope ((t , v) :: ts) = [[ "\"" ^ t ^ "\":" ]] ⊹⊹ v ⊹⊹ [[ "," ]] ⊹⊹ tags-to-rope ts -- We number these when so we can sort them back in emacs tagged-val-to-rope : ℕ → tagged-val → rope tagged-val-to-rope n (t , v , []) = [[ "\"" ^ t ^ "\":[\"" ^ ℕ-to-string n ^ "\",\"" ]] ⊹⊹ v ⊹⊹ [[ "\"]" ]] tagged-val-to-rope n (t , v , tags) = [[ "\"" ^ t ^ "\":[\"" ^ ℕ-to-string n ^ "\",\"" ]] ⊹⊹ v ⊹⊹ [[ "\",{" ]] ⊹⊹ tags-to-rope tags ⊹⊹ [[ "}]" ]] tagged-vals-to-rope : ℕ → 𝕃 tagged-val → rope tagged-vals-to-rope n [] = [[]] tagged-vals-to-rope n (s :: []) = tagged-val-to-rope n s tagged-vals-to-rope n (s :: (s' :: ss)) = tagged-val-to-rope n s ⊹⊹ [[ "," ]] ⊹⊹ tagged-vals-to-rope (suc n) (s' :: ss) make-tag : (name : string) → (values : 𝕃 tag) → (start : ℕ) → (end : ℕ) → tag make-tag name vs start end = name , [[ "{\"start\":\"" ^ ℕ-to-string start ^ "\",\"end\":\"" ^ ℕ-to-string end ^ "\"" ]] ⊹⊹ vs-to-rope vs ⊹⊹ [[ "}" ]] where vs-to-rope : 𝕃 tag → rope vs-to-rope [] = [[]] vs-to-rope ((t , v) :: ts) = [[ ",\"" ^ t ^ "\":\"" ]] ⊹⊹ v ⊹⊹ [[ "\"" ]] ⊹⊹ vs-to-rope ts posinfo-to-ℕ : posinfo → ℕ posinfo-to-ℕ pi with string-to-ℕ pi posinfo-to-ℕ pi | just n = n posinfo-to-ℕ pi | nothing = 0 -- should not happen posinfo-plus : posinfo → ℕ → posinfo posinfo-plus pi n = ℕ-to-string (posinfo-to-ℕ pi + n) posinfo-plus-str : posinfo → string → posinfo posinfo-plus-str pi s = posinfo-plus pi (string-length s) star : kind star = Star posinfo-gen -- qualify variable by module name _#_ : string → string → string fn # v = fn ^ qual-global-str ^ v _%_ : posinfo → var → string pi % v = pi ^ qual-local-str ^ v compileFail : var compileFail = "compileFail" compileFail-qual = "" % compileFail arg-set-erased : maybeErased → arg → arg arg-set-erased me (TermArg _ t) = TermArg me t arg-set-erased me (TypeArg T) = TypeArg T mk-inst : params → args → trie arg × params mk-inst ((Decl _ _ me x _ _) :: ps) (a :: as) with mk-inst ps as ...| σ , ps' = trie-insert σ x (arg-set-erased me a) , ps' mk-inst ps as = empty-trie , ps apps-term : term → args → term --apps-term f [] = f --apps-term f ((TermArg me t) :: as) = apps-term (App f me t) as --apps-term f ((TypeArg t) :: as) = apps-term (AppTp f t) as apps-term = foldl λ {(TermArg me t) x → App x me t; (TypeArg T) x → AppTp x T} apps-type : type → args → type --apps-type f [] = f --apps-type f ((TermArg _ t) :: as) = apps-type (TpAppt f t) as --apps-type f ((TypeArg t) :: as) = apps-type (TpApp f t) as apps-type = foldl λ {(TermArg _ t) x → TpAppt x t; (TypeArg T) x → TpApp x T} qualif-lookup-term : qualif → string → term qualif-lookup-term σ x with trie-lookup σ x ... | just (x' , as) = apps-term (Var posinfo-gen x') as ... | _ = Var posinfo-gen x qualif-lookup-type : qualif → string → type qualif-lookup-type σ x with trie-lookup σ x ... | just (x' , as) = apps-type (TpVar posinfo-gen x') as ... | _ = TpVar posinfo-gen x qualif-lookup-kind : args → qualif → string → kind qualif-lookup-kind xs σ x with trie-lookup σ x ... | just (x' , as) = KndVar posinfo-gen x' (as ++ xs) ... | _ = KndVar posinfo-gen x xs inst-lookup-term : trie arg → string → term inst-lookup-term σ x with trie-lookup σ x ... | just (TermArg me t) = t ... | _ = Var posinfo-gen x inst-lookup-type : trie arg → string → type inst-lookup-type σ x with trie-lookup σ x ... | just (TypeArg t) = t ... | _ = TpVar posinfo-gen x params-to-args : params → args --params-to-args [] = [] --params-to-args ((Decl _ p me v (Tkt t) _) :: ps) = TermArg me (Var posinfo-gen v) :: params-to-args ps --params-to-args ((Decl _ p _ v (Tkk k) _) :: ps) = TypeArg (TpVar posinfo-gen v) :: params-to-args ps params-to-args = map λ where (Decl _ _ me v (Tkt T) _) → TermArg me (Var posinfo-gen v) (Decl _ _ me v (Tkk k) _) → TypeArg (TpVar posinfo-gen v) qualif-insert-params : qualif → var → var → params → qualif qualif-insert-params σ qv v ps = trie-insert σ v (qv , params-to-args ps) qualif-insert-import : qualif → var → optAs → 𝕃 string → args → qualif qualif-insert-import σ mn oa [] as = σ qualif-insert-import σ mn oa (v :: vs) as = qualif-insert-import (trie-insert σ (import-as v oa) (mn # v , as)) mn oa vs as where import-as : var → optAs → var import-as v NoOptAs = v import-as v (SomeOptAs _ pfx) = pfx # v tk-is-type : tk → 𝔹 tk-is-type (Tkt _) = tt tk-is-type (Tkk _) = ff term-start-pos : term → posinfo type-start-pos : type → posinfo kind-start-pos : kind → posinfo liftingType-start-pos : liftingType → posinfo term-start-pos (App t x t₁) = term-start-pos t term-start-pos (AppTp t tp) = term-start-pos t term-start-pos (Hole pi) = pi term-start-pos (Lam pi x _ x₁ x₂ t) = pi term-start-pos (Let pi _ _ _) = pi term-start-pos (Open pi _ _ _ _) = pi term-start-pos (Parens pi t pi') = pi term-start-pos (Var pi x₁) = pi term-start-pos (Beta pi _ _) = pi term-start-pos (IotaPair pi _ _ _ _) = pi term-start-pos (IotaProj t _ _) = term-start-pos t term-start-pos (Epsilon pi _ _ _) = pi term-start-pos (Phi pi _ _ _ _) = pi term-start-pos (Rho pi _ _ _ _ _) = pi term-start-pos (Chi pi _ _) = pi term-start-pos (Delta pi _ _) = pi term-start-pos (Sigma pi _) = pi term-start-pos (Theta pi _ _ _) = pi term-start-pos (Mu pi _ _ _ _ _ _ _) = pi term-start-pos (Mu' pi _ _ _ _ _ _) = pi type-start-pos (Abs pi _ _ _ _ _) = pi type-start-pos (TpLambda pi _ _ _ _) = pi type-start-pos (Iota pi _ _ _ _) = pi type-start-pos (Lft pi _ _ _ _) = pi type-start-pos (TpApp t t₁) = type-start-pos t type-start-pos (TpAppt t x) = type-start-pos t type-start-pos (TpArrow t _ t₁) = type-start-pos t type-start-pos (TpEq pi _ _ pi') = pi type-start-pos (TpParens pi _ pi') = pi type-start-pos (TpVar pi x₁) = pi type-start-pos (NoSpans t _) = type-start-pos t -- we are not expecting this on input type-start-pos (TpHole pi) = pi --ACG type-start-pos (TpLet pi _ _) = pi kind-start-pos (KndArrow k k₁) = kind-start-pos k kind-start-pos (KndParens pi k pi') = pi kind-start-pos (KndPi pi _ x x₁ k) = pi kind-start-pos (KndTpArrow x k) = type-start-pos x kind-start-pos (KndVar pi x₁ _) = pi kind-start-pos (Star pi) = pi liftingType-start-pos (LiftArrow l l') = liftingType-start-pos l liftingType-start-pos (LiftParens pi l pi') = pi liftingType-start-pos (LiftPi pi x₁ x₂ l) = pi liftingType-start-pos (LiftStar pi) = pi liftingType-start-pos (LiftTpArrow t l) = type-start-pos t term-end-pos : term → posinfo type-end-pos : type → posinfo kind-end-pos : kind → posinfo liftingType-end-pos : liftingType → posinfo tk-end-pos : tk → posinfo lterms-end-pos : posinfo → lterms → posinfo args-end-pos : posinfo → args → posinfo arg-end-pos : arg → posinfo kvar-end-pos : posinfo → var → args → posinfo params-end-pos : posinfo → params → posinfo param-end-pos : decl → posinfo term-end-pos (App t x t') = term-end-pos t' term-end-pos (AppTp t tp) = type-end-pos tp term-end-pos (Hole pi) = posinfo-plus pi 1 term-end-pos (Lam pi x _ x₁ x₂ t) = term-end-pos t term-end-pos (Let _ _ _ t) = term-end-pos t term-end-pos (Open pi _ _ _ t) = term-end-pos t term-end-pos (Parens pi t pi') = pi' term-end-pos (Var pi x) = posinfo-plus-str pi x term-end-pos (Beta pi _ (SomeTerm t pi')) = pi' term-end-pos (Beta pi (SomeTerm t pi') _) = pi' term-end-pos (Beta pi NoTerm NoTerm) = posinfo-plus pi 1 term-end-pos (IotaPair _ _ _ _ pi) = pi term-end-pos (IotaProj _ _ pi) = pi term-end-pos (Epsilon pi _ _ t) = term-end-pos t term-end-pos (Phi _ _ _ _ pi) = pi term-end-pos (Rho pi _ _ _ t t') = term-end-pos t' term-end-pos (Chi pi T t') = term-end-pos t' term-end-pos (Delta pi oT t) = term-end-pos t term-end-pos (Sigma pi t) = term-end-pos t term-end-pos (Theta _ _ t ls) = lterms-end-pos (term-end-pos t) ls term-end-pos (Mu _ _ _ _ _ _ _ pi) = pi term-end-pos (Mu' _ _ _ _ _ _ pi) = pi type-end-pos (Abs pi _ _ _ _ t) = type-end-pos t type-end-pos (TpLambda _ _ _ _ t) = type-end-pos t type-end-pos (Iota _ _ _ _ tp) = type-end-pos tp type-end-pos (Lft pi _ _ _ t) = liftingType-end-pos t type-end-pos (TpApp t t') = type-end-pos t' type-end-pos (TpAppt t x) = term-end-pos x type-end-pos (TpArrow t _ t') = type-end-pos t' type-end-pos (TpEq pi _ _ pi') = pi' type-end-pos (TpParens pi _ pi') = pi' type-end-pos (TpVar pi x) = posinfo-plus-str pi x type-end-pos (TpHole pi) = posinfo-plus pi 1 type-end-pos (NoSpans t pi) = pi type-end-pos (TpLet _ _ t) = type-end-pos t kind-end-pos (KndArrow k k') = kind-end-pos k' kind-end-pos (KndParens pi k pi') = pi' kind-end-pos (KndPi pi _ x x₁ k) = kind-end-pos k kind-end-pos (KndTpArrow x k) = kind-end-pos k kind-end-pos (KndVar pi x ys) = args-end-pos (posinfo-plus-str pi x) ys kind-end-pos (Star pi) = posinfo-plus pi 1 tk-end-pos (Tkt T) = type-end-pos T tk-end-pos (Tkk k) = kind-end-pos k args-end-pos pi (x :: ys) = args-end-pos (arg-end-pos x) ys args-end-pos pi [] = pi arg-end-pos (TermArg me t) = term-end-pos t arg-end-pos (TypeArg T) = type-end-pos T kvar-end-pos pi v = args-end-pos (posinfo-plus-str pi v) params-end-pos pi [] = pi params-end-pos pi (p :: ps) = params-end-pos (param-end-pos p) ps param-end-pos (Decl pi pi' me x atk pi'') = pi'' liftingType-end-pos (LiftArrow l l') = liftingType-end-pos l' liftingType-end-pos (LiftParens pi l pi') = pi' liftingType-end-pos (LiftPi x x₁ x₂ l) = liftingType-end-pos l liftingType-end-pos (LiftStar pi) = posinfo-plus pi 1 liftingType-end-pos (LiftTpArrow x l) = liftingType-end-pos l lterms-end-pos pi [] = posinfo-plus pi 1 -- must add one for the implicit Beta that we will add at the end lterms-end-pos pi ((Lterm _ t) :: ls) = lterms-end-pos (term-end-pos t) ls {- return the end position of the given term if it is there, otherwise the given posinfo -} optTerm-end-pos : posinfo → optTerm → posinfo optTerm-end-pos pi NoTerm = pi optTerm-end-pos pi (SomeTerm x x₁) = x₁ optTerm-end-pos-beta : posinfo → optTerm → optTerm → posinfo optTerm-end-pos-beta pi _ (SomeTerm x pi') = pi' optTerm-end-pos-beta pi (SomeTerm x pi') NoTerm = pi' optTerm-end-pos-beta pi NoTerm NoTerm = posinfo-plus pi 1 optAs-or : optAs → posinfo → var → posinfo × var optAs-or NoOptAs pi x = pi , x optAs-or (SomeOptAs pi x) _ _ = pi , x tk-arrow-kind : tk → kind → kind tk-arrow-kind (Tkk k) k' = KndArrow k k' tk-arrow-kind (Tkt t) k = KndTpArrow t k TpApp-tk : type → var → tk → type TpApp-tk tp x (Tkk _) = TpApp tp (TpVar posinfo-gen x) TpApp-tk tp x (Tkt _) = TpAppt tp (Var posinfo-gen x) -- expression descriptor data exprd : Set where TERM : exprd TYPE : exprd KIND : exprd LIFTINGTYPE : exprd TK : exprd ARG : exprd QUALIF : exprd ⟦_⟧ : exprd → Set ⟦ TERM ⟧ = term ⟦ TYPE ⟧ = type ⟦ KIND ⟧ = kind ⟦ LIFTINGTYPE ⟧ = liftingType ⟦ TK ⟧ = tk ⟦ ARG ⟧ = arg ⟦ QUALIF ⟧ = qualif-info exprd-name : exprd → string exprd-name TERM = "term" exprd-name TYPE = "type" exprd-name KIND = "kind" exprd-name LIFTINGTYPE = "lifting type" exprd-name TK = "type-kind" exprd-name ARG = "argument" exprd-name QUALIF = "qualification" -- checking-sythesizing enum data checking-mode : Set where checking : checking-mode synthesizing : checking-mode untyped : checking-mode maybe-to-checking : {A : Set} → maybe A → checking-mode maybe-to-checking (just _) = checking maybe-to-checking nothing = synthesizing is-app : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-app{TERM} (App _ _ _) = tt is-app{TERM} (AppTp _ _) = tt is-app{TYPE} (TpApp _ _) = tt is-app{TYPE} (TpAppt _ _) = tt is-app _ = ff is-term-level-app : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-term-level-app{TERM} (App _ _ _) = tt is-term-level-app{TERM} (AppTp _ _) = tt is-term-level-app _ = ff is-type-level-app : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-type-level-app{TYPE} (TpApp _ _) = tt is-type-level-app{TYPE} (TpAppt _ _) = tt is-type-level-app _ = ff is-parens : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-parens{TERM} (Parens _ _ _) = tt is-parens{TYPE} (TpParens _ _ _) = tt is-parens{KIND} (KndParens _ _ _) = tt is-parens{LIFTINGTYPE} (LiftParens _ _ _) = tt is-parens _ = ff is-arrow : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-arrow{TYPE} (TpArrow _ _ _) = tt is-arrow{KIND} (KndTpArrow _ _) = tt is-arrow{KIND} (KndArrow _ _) = tt is-arrow{LIFTINGTYPE} (LiftArrow _ _) = tt is-arrow{LIFTINGTYPE} (LiftTpArrow _ _) = tt is-arrow _ = ff is-abs : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-abs{TERM} (Let _ _ _ _) = tt is-abs{TERM} (Lam _ _ _ _ _ _) = tt is-abs{TYPE} (Abs _ _ _ _ _ _) = tt is-abs{TYPE} (TpLambda _ _ _ _ _) = tt is-abs{TYPE} (Iota _ _ _ _ _) = tt is-abs{KIND} (KndPi _ _ _ _ _) = tt is-abs{LIFTINGTYPE} (LiftPi _ _ _ _) = tt is-abs _ = ff is-eq-op : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-eq-op{TERM} (Sigma _ _) = tt is-eq-op{TERM} (Epsilon _ _ _ _) = tt is-eq-op{TERM} (Rho _ _ _ _ _ _) = tt is-eq-op{TERM} (Chi _ _ _) = tt is-eq-op{TERM} (Phi _ _ _ _ _) = tt is-eq-op{TERM} (Delta _ _ _) = tt is-eq-op _ = ff is-beta : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-beta{TERM} (Beta _ _ _) = tt is-beta _ = ff is-hole : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-hole{TERM} (Hole _) = tt is-hole{TERM} _ = ff is-hole{TYPE} (TpHole _) = tt is-hole{TYPE} _ = ff is-hole{KIND} e = ff is-hole{LIFTINGTYPE} e = ff is-hole{TK} (Tkk x) = is-hole x is-hole{TK} (Tkt x) = is-hole x is-hole{ARG} (TermArg e? t) = is-hole t is-hole{ARG} (TypeArg tp) = is-hole tp is-hole{QUALIF} _ = ff record is-eq-tp! : Set where constructor mk-eq-tp! field lhs rhs : term -- left-hand side, right-hand side pil pir : posinfo -- position left, position right is-eq-tp? : {ed : exprd} → ⟦ ed ⟧ → maybe is-eq-tp! is-eq-tp? {TYPE} (NoSpans t _) = is-eq-tp? t is-eq-tp? {TYPE} (TpParens _ t _) = is-eq-tp? t is-eq-tp? {TYPE} (TpEq pi t₁ t₂ pi') = just $ mk-eq-tp! t₁ t₂ pi pi' is-eq-tp?{_} _ = nothing eq-maybeErased : maybeErased → maybeErased → 𝔹 eq-maybeErased Erased Erased = tt eq-maybeErased Erased NotErased = ff eq-maybeErased NotErased Erased = ff eq-maybeErased NotErased NotErased = tt eq-checking-mode : (m₁ m₂ : checking-mode) → 𝔹 eq-checking-mode checking checking = tt eq-checking-mode checking synthesizing = ff eq-checking-mode checking untyped = ff eq-checking-mode synthesizing checking = ff eq-checking-mode synthesizing synthesizing = tt eq-checking-mode synthesizing untyped = ff eq-checking-mode untyped checking = ff eq-checking-mode untyped synthesizing = ff eq-checking-mode untyped untyped = tt ------------------------------------------------------ -- functions intended for building terms for testing ------------------------------------------------------ mlam : var → term → term mlam x t = Lam posinfo-gen NotErased posinfo-gen x NoClass t Mlam : var → term → term Mlam x t = Lam posinfo-gen Erased posinfo-gen x NoClass t mappe : term → term → term mappe t1 t2 = App t1 Erased t2 mapp : term → term → term mapp t1 t2 = App t1 NotErased t2 mvar : var → term mvar x = Var posinfo-gen x mtpvar : var → type mtpvar x = TpVar posinfo-gen x mall : var → tk → type → type mall x tk tp = Abs posinfo-gen All posinfo-gen x tk tp mtplam : var → tk → type → type mtplam x tk tp = TpLambda posinfo-gen posinfo-gen x tk tp {- strip off lambda-abstractions from the term, return the lambda-bound vars and the innermost body. The intention is to call this with at least the erasure of a term, if not the hnf -- so we do not check for parens, etc. -} decompose-lams : term → (𝕃 var) × term decompose-lams (Lam _ _ _ x _ t) with decompose-lams t decompose-lams (Lam _ _ _ x _ t) | vs , body = (x :: vs) , body decompose-lams t = [] , t {- decompose a term into spine form consisting of a non-applications head and arguments. The outer arguments will come earlier in the list than the inner ones. As for decompose-lams, we assume the term is at least erased. -} {-decompose-apps : term → term × (𝕃 term) decompose-apps (App t _ t') with decompose-apps t decompose-apps (App t _ t') | h , args = h , (t' :: args) decompose-apps t = t , []-} decompose-apps : term → term × args decompose-apps = h [] where h : args → term → term × args h acc (App t me t') = h (TermArg me t' :: acc) t h acc (AppTp t T) = h (TypeArg T :: acc) t h acc t = t , acc decompose-var-headed : (var → 𝔹) → term → maybe (var × args) decompose-var-headed is-bound t with decompose-apps t decompose-var-headed is-bound t | Var _ x , args = if is-bound x then nothing else (just (x , args)) decompose-var-headed is-bound t | _ = nothing data tty : Set where tterm : term → tty ttype : type → tty tty-to-arg : maybeErased → tty → arg tty-to-arg me (tterm t) = TermArg me t tty-to-arg me (ttype T) = TypeArg T ttys-to-args : maybeErased → 𝕃 tty → args ttys-to-args = map ∘ tty-to-arg ttys-to-args-for-params : (keep-extra : maybe maybeErased) → params → 𝕃 tty → args ttys-to-args-for-params b ((Decl _ _ me _ _ _) :: ps) ((tterm t) :: as) = TermArg me t :: ttys-to-args-for-params b ps as ttys-to-args-for-params b (_ :: ps) ((ttype T) :: as) = TypeArg T :: ttys-to-args-for-params b ps as ttys-to-args-for-params nothing _ _ = [] ttys-to-args-for-params (just me) _ as = ttys-to-args me as arg-to-tty : arg → tty arg-to-tty (TermArg me t) = tterm t arg-to-tty (TypeArg T) = ttype T args-to-ttys : args → 𝕃 tty args-to-ttys = map arg-to-tty {- decompose-tpapps : type → type × 𝕃 tty decompose-tpapps (TpApp t t') with decompose-tpapps t decompose-tpapps (TpApp t t') | h , args = h , (ttype t') :: args decompose-tpapps (TpAppt t t') with decompose-tpapps t decompose-tpapps (TpAppt t t') | h , args = h , (tterm t') :: args decompose-tpapps (TpParens _ t _) = decompose-tpapps t decompose-tpapps t = t , [] -} decompose-tpapps : type → type × 𝕃 tty decompose-tpapps = h [] where h : 𝕃 tty → type → type × 𝕃 tty h acc (TpApp T T') = h (ttype T' :: acc) T h acc (TpAppt T t) = h (tterm t :: acc) T h acc (TpParens _ T _) = h acc T h acc T = T , acc recompose-tpapps : 𝕃 tty → type → type recompose-tpapps = flip $ foldl λ {(ttype T') T → TpApp T T'; (tterm t) T → TpAppt T t} --recompose-tpapps (h , []) = h --recompose-tpapps (h , ((tterm t') :: args)) = TpAppt (recompose-tpapps (h , args)) t' --recompose-tpapps (h , ((ttype t') :: args)) = TpApp (recompose-tpapps (h , args)) t' recompose-apps : args → term → term recompose-apps = flip $ foldl λ {(TermArg me t') t → App t me t'; (TypeArg T) t → AppTp t T} --recompose-apps me [] h = h --recompose-apps me ((tterm t') :: args) h = App (recompose-apps me args h) me t' --recompose-apps me ((ttype t') :: args) h = AppTp (recompose-apps me args h) t' vars-to-𝕃 : vars → 𝕃 var vars-to-𝕃 (VarsStart v) = [ v ] vars-to-𝕃 (VarsNext v vs) = v :: vars-to-𝕃 vs {- lambda-abstract the input variables in reverse order around the given term (so closest to the top of the list is bound deepest in the resulting term). -} Lam* : 𝕃 var → term → term Lam* [] t = t Lam* (x :: xs) t = Lam* xs (Lam posinfo-gen NotErased posinfo-gen x NoClass t) App* : term → 𝕃 (maybeErased × term) → term App* t [] = t App* t ((m , arg) :: args) = App (App* t args) m arg App*' : term → 𝕃 term → term App*' t [] = t App*' t (arg :: args) = App*' (App t NotErased arg) args TpApp* : type → 𝕃 type → type TpApp* t [] = t TpApp* t (arg :: args) = (TpApp (TpApp* t args) arg) LiftArrow* : 𝕃 liftingType → liftingType → liftingType LiftArrow* [] l = l LiftArrow* (l' :: ls) l = LiftArrow* ls (LiftArrow l' l) is-intro-form : term → 𝔹 is-intro-form (Lam _ _ _ _ _ _) = tt --is-intro-form (IotaPair _ _ _ _ _) = tt is-intro-form _ = ff lterms-to-term : theta → term → lterms → term lterms-to-term AbstractEq t [] = App t Erased (Beta (term-end-pos t) NoTerm NoTerm) lterms-to-term _ t [] = t lterms-to-term u t ((Lterm e t') :: ls) = lterms-to-term u (App t e t') ls erase-args : args → 𝕃 term erase-args [] = [] erase-args (TermArg NotErased t :: as) = t :: erase-args as erase-args (_ :: as) = erase-args as erase-params : params → 𝕃 (var × type) erase-params [] = [] erase-params (Decl _ _ NotErased x (Tkt T) _ :: ps) = (x , T) :: erase-params ps erase-params (_ :: ps) = erase-params ps unerased-arrows : type → ℕ unerased-arrows (TpArrow T NotErased T') = suc $ unerased-arrows T' unerased-arrows (TpArrow T Erased T') = unerased-arrows T' unerased-arrows (Abs _ NotErased _ _ _ T) = suc $ unerased-arrows T unerased-arrows (Abs _ Erased _ _ _ T) = unerased-arrows T unerased-arrows (TpParens _ T _) = unerased-arrows T unerased-arrows T = 0 imps-to-cmds : imports → cmds imps-to-cmds = map ImportCmd -- TODO handle qualif & module args get-imports : start → 𝕃 string get-imports (File is _ _ mn _ cs _) = imports-to-include is ++ get-imports-cmds cs where import-to-include : imprt → string import-to-include (Import _ _ _ x oa _ _) = x imports-to-include : imports → 𝕃 string imports-to-include = map import-to-include singleton-if-include : cmd → 𝕃 string singleton-if-include (ImportCmd imp) = [ import-to-include imp ] singleton-if-include _ = [] get-imports-cmds : cmds → 𝕃 string get-imports-cmds (c :: cs) = singleton-if-include c ++ get-imports-cmds cs get-imports-cmds [] = [] data language-level : Set where ll-term : language-level ll-type : language-level ll-kind : language-level ll-to-string : language-level → string ll-to-string ll-term = "term" ll-to-string ll-type = "type" ll-to-string ll-kind = "kind" split-var-h : 𝕃 char → 𝕃 char × 𝕃 char split-var-h [] = [] , [] split-var-h (qual-global-chr :: xs) = [] , xs split-var-h (x :: xs) with split-var-h xs ... | xs' , ys = (x :: xs') , ys split-var : var → var × var split-var v with split-var-h (reverse (string-to-𝕃char v)) ... | xs , ys = 𝕃char-to-string (reverse ys) , 𝕃char-to-string (reverse xs) var-suffix : var → maybe var var-suffix v with split-var v ... | "" , _ = nothing ... | _ , sfx = just sfx -- unique qualif domain prefixes qual-pfxs : qualif → 𝕃 var qual-pfxs q = uniq (prefixes (trie-strings q)) where uniq : 𝕃 var → 𝕃 var uniq vs = stringset-strings (stringset-insert* empty-stringset vs) prefixes : 𝕃 var → 𝕃 var prefixes [] = [] prefixes (v :: vs) with split-var v ... | "" , sfx = vs ... | pfx , sfx = pfx :: prefixes vs unqual-prefix : qualif → 𝕃 var → var → var → var unqual-prefix q [] sfx v = v unqual-prefix q (pfx :: pfxs) sfx v with trie-lookup q (pfx # sfx) ... | just (v' , _) = if v =string v' then pfx # sfx else v ... | nothing = v unqual-bare : qualif → var → var → var unqual-bare q sfx v with trie-lookup q sfx ... | just (v' , _) = if v =string v' then sfx else v ... | nothing = v unqual-local : var → var unqual-local v = f' (string-to-𝕃char v) where f : 𝕃 char → maybe (𝕃 char) f [] = nothing f ('@' :: t) = f t maybe-or just t f (h :: t) = f t f' : 𝕃 char → string f' (meta-var-pfx :: t) = maybe-else' (f t) v (𝕃char-to-string ∘ _::_ meta-var-pfx) f' t = maybe-else' (f t) v 𝕃char-to-string unqual-all : qualif → var → string unqual-all q v with var-suffix v ... | nothing = v ... | just sfx = unqual-bare q sfx (unqual-prefix q (qual-pfxs q) sfx v) -- Given a qualified variable and a function that renames it, -- we strip away the qualification prefix, call the function, -- then preprend the prefix to the result reprefix : (var → var) → var → var reprefix f x = maybe-else' (pfx (string-to-𝕃char x) []) (f x) $ uncurry λ p s → p ^ f s where ret : 𝕃 char → 𝕃 char → maybe (var × var) ret pfx sfx = just (𝕃char-to-string (reverse pfx) , 𝕃char-to-string sfx) pfx : 𝕃 char → 𝕃 char → maybe (var × var) pfx (qual-global-chr :: xs) acc = pfx xs (qual-global-chr :: acc) maybe-or ret (qual-global-chr :: acc) xs pfx (qual-local-chr :: xs) acc = pfx xs (qual-local-chr :: acc) maybe-or ret (qual-local-chr :: acc) xs pfx (x :: xs) acc = pfx xs (x :: acc) pfx [] pfx = nothing data-to/ = reprefix ("to/" ^_) data-Is/ = reprefix ("Is/" ^_) data-is/ = reprefix ("is/" ^_) mu-Type/ = reprefix ("Type/" ^_) mu-isType/ = reprefix ("isType/" ^_) erased-params : params → 𝕃 string erased-params ((Decl _ _ Erased x (Tkt _) _) :: ps) with var-suffix x ... | nothing = x :: erased-params ps ... | just x' = x' :: erased-params ps erased-params (p :: ps) = erased-params ps erased-params [] = [] lam-expand-term : params → term → term lam-expand-term ((Decl _ _ me x tk _) :: ps) t = Lam posinfo-gen (if tk-is-type tk then me else Erased) posinfo-gen x (SomeClass tk) (lam-expand-term ps t) lam-expand-term [] t = t lam-expand-type : params → type → type lam-expand-type ((Decl _ _ me x tk _) :: ps) t = TpLambda posinfo-gen posinfo-gen x tk (lam-expand-type ps t) lam-expand-type [] t = t abs-expand-type : params → type → type abs-expand-type ((Decl _ _ me x tk _) :: ps) t = Abs posinfo-gen (if tk-is-type tk then me else All) posinfo-gen x tk (abs-expand-type ps t) abs-expand-type [] t = t abs-expand-kind : params → kind → kind abs-expand-kind ((Decl _ _ me x tk _) :: ps) k = KndPi posinfo-gen posinfo-gen x tk (abs-expand-kind ps k) abs-expand-kind [] k = k erased-args-length : args → ℕ erased-args-length ((TermArg NotErased _) :: ps) = suc (erased-args-length ps) erased-args-length ((TermArg Erased _) :: ps) = erased-args-length ps erased-args-length ((TypeArg _) :: ps) = erased-args-length ps erased-args-length [] = 0 me-args-length : maybeErased → args → ℕ me-args-length Erased = erased-args-length me-args-length NotErased = length spineApp : Set spineApp = qvar × 𝕃 arg term-to-spapp : term → maybe spineApp term-to-spapp (App t me t') = term-to-spapp t ≫=maybe (λ { (v , as) → just (v , TermArg me t' :: as) }) term-to-spapp (AppTp t T) = term-to-spapp t ≫=maybe (λ { (v , as) → just (v , TypeArg T :: as) }) term-to-spapp (Var _ v) = just (v , []) term-to-spapp _ = nothing type-to-spapp : type → maybe spineApp type-to-spapp (TpApp T T') = type-to-spapp T ≫=maybe (λ { (v , as) → just (v , TypeArg T' :: as) }) type-to-spapp (TpAppt T t) = type-to-spapp T ≫=maybe (λ { (v , as) → just (v , TermArg NotErased t :: as) }) type-to-spapp (TpVar _ v) = just (v , []) type-to-spapp _ = nothing spapp-term : spineApp → term spapp-term (v , []) = Var posinfo-gen v spapp-term (v , TermArg me t :: as) = App (spapp-term (v , as)) me t spapp-term (v , TypeArg T :: as) = AppTp (spapp-term (v , as)) T spapp-type : spineApp → type spapp-type (v , []) = TpVar posinfo-gen v spapp-type (v , TermArg me t :: as) = TpAppt (spapp-type (v , as)) t spapp-type (v , TypeArg T :: as) = TpApp (spapp-type (v , as)) T caseArgs-to-lams : caseArgs → term → term caseArgs-to-lams = flip $ foldr λ {(CaseTermArg pi me x) → Lam pi-gen me pi-gen x NoClass; (CaseTypeArg pi x) → Lam pi-gen Erased pi-gen x NoClass} expand-case : case → var × term expand-case (Case _ x as t) = x , caseArgs-to-lams as t expand-cases : cases → trie term expand-cases = flip foldr empty-trie λ c σ → uncurry (trie-insert σ) (expand-case c) expand-cases-n : cases → trie (term × ℕ) expand-cases-n = flip foldr empty-trie λ where (Case _ x as t) σ → trie-insert σ x (caseArgs-to-lams as t , length as) caseArg-to-var : caseArg → posinfo × var × maybeErased × 𝔹 caseArg-to-var (CaseTermArg pi me x) = pi , x , me , tt caseArg-to-var (CaseTypeArg pi x) = pi , x , Erased , ff {- cast-abstract-datatype? : var → args → term → term cast-abstract-datatype? x as with string-split x '/' ...| bₓ :: Tₓ :: [] = mapp (recompose-apps as $ mvar $ mu-name-cast bₓ) ...| _ = id -} num-gt : num → ℕ → 𝕃 string num-gt n n' = maybe-else [] (λ n'' → if n'' > n' then [ n ] else []) (string-to-ℕ n) nums-gt : nums → ℕ → 𝕃 string nums-gt (NumsStart n) n' = num-gt n n' nums-gt (NumsNext n ns) n' = maybe-else [] (λ n'' → if n'' > n' || iszero n'' then [ n ] else []) (string-to-ℕ n) ++ nums-gt ns n' nums-to-stringset : nums → stringset × 𝕃 string {- Repeated numbers -} nums-to-stringset (NumsStart n) = stringset-insert empty-stringset n , [] nums-to-stringset (NumsNext n ns) with nums-to-stringset ns ...| ss , rs = if stringset-contains ss n then ss , n :: rs else stringset-insert ss n , rs optNums-to-stringset : optNums → maybe stringset × (ℕ → maybe string) optNums-to-stringset NoNums = nothing , λ _ → nothing optNums-to-stringset (SomeNums ns) with nums-to-stringset ns ...| ss , [] = just ss , λ n → case nums-gt ns n of λ where [] → nothing ns-g → just ("Occurrences not found: " ^ 𝕃-to-string id ", " ns-g ^ " (total occurrences: " ^ ℕ-to-string n ^ ")") ...| ss , rs = just ss , λ n → just ("The list of occurrences contains the following repeats: " ^ 𝕃-to-string id ", " rs) ------------------------------------------------------ -- any delta contradiction → boolean contradiction ------------------------------------------------------ {- nlam : ℕ → term → term nlam 0 t = t nlam (suc n) t = mlam ignored-var (nlam n t) delta-contra-app : ℕ → (ℕ → term) → term delta-contra-app 0 nt = mvar "x" delta-contra-app (suc n) nt = mapp (delta-contra-app n nt) (nt n) delta-contrahh : ℕ → trie ℕ → trie ℕ → var → var → args → args → maybe term delta-contrahh n ls rs x1 x2 as1 as2 with trie-lookup ls x1 | trie-lookup rs x2 ...| just n1 | just n2 = let t1 = nlam (length as1) (mlam "x" (mlam "y" (mvar "x"))) t2 = nlam (length as2) (mlam "x" (mlam "y" (mvar "y"))) in if n1 =ℕ n2 then nothing else just (mlam "x" (delta-contra-app n (λ n → if n =ℕ n1 then t1 else if n =ℕ n2 then t2 else id-term))) ...| _ | _ = nothing {-# TERMINATING #-} delta-contrah : ℕ → trie ℕ → trie ℕ → term → term → maybe term delta-contrah n ls rs (Lam _ _ _ x1 _ t1) (Lam _ _ _ x2 _ t2) = delta-contrah (suc n) (trie-insert ls x1 n) (trie-insert rs x2 n) t1 t2 delta-contrah n ls rs (Lam _ _ _ x1 _ t1) t2 = delta-contrah (suc n) (trie-insert ls x1 n) (trie-insert rs x1 n) t1 (mapp t2 (mvar x1)) delta-contrah n ls rs t1 (Lam _ _ _ x2 _ t2) = delta-contrah (suc n) (trie-insert ls x2 n) (trie-insert rs x2 n) (mapp t1 (mvar x2)) t2 delta-contrah n ls rs t1 t2 with decompose-apps t1 | decompose-apps t2 ...| Var _ x1 , as1 | Var _ x2 , as2 = delta-contrahh n ls rs x1 x2 as1 as2 ...| _ | _ = nothing -- For terms t1 and t2, given that check-beta-inequiv t1 t2 ≡ tt, -- delta-contra produces a function f such that f t1 ≡ tt and f t2 ≡ ff -- If it returns nothing, no contradiction could be found delta-contra : term → term → maybe term delta-contra = delta-contrah 0 empty-trie empty-trie -- postulate: check-beta-inequiv t1 t2 ≡ isJust (delta-contra t1 t2) check-beta-inequiv : term → term → 𝔹 check-beta-inequiv t1 t2 = isJust (delta-contra t1 t2) -} tk-map : tk → (type → type) → (kind → kind) → tk tk-map (Tkt T) fₜ fₖ = Tkt $ fₜ T tk-map (Tkk k) fₜ fₖ = Tkk $ fₖ k tk-map2 : tk → (∀ {ed} → ⟦ ed ⟧ → ⟦ ed ⟧) → tk tk-map2 atk f = tk-map atk f f optTerm-map : optTerm → (term → term) → optTerm optTerm-map NoTerm f = NoTerm optTerm-map (SomeTerm t pi) f = SomeTerm (f t) pi optType-map : optType → (type → type) → optType optType-map NoType f = NoType optType-map (SomeType T) f = SomeType $ f T optGuide-map : optGuide → (var → type → type) → optGuide optGuide-map NoGuide f = NoGuide optGuide-map (Guide pi x T) f = Guide pi x $ f x T optClass-map : optClass → (tk → tk) → optClass optClass-map NoClass f = NoClass optClass-map (SomeClass atk) f = SomeClass $ f atk tk-elim : ∀ {ℓ} {X : Set ℓ} → tk → (type → X) → (kind → X) → X tk-elim (Tkt T) tp kd = tp T tk-elim (Tkk k) tp kd = kd k optTerm-elim : ∀ {ℓ} {X : Set ℓ} → optTerm → X → (term → X) → X optTerm-elim NoTerm nt st = nt optTerm-elim (SomeTerm t _) nt st = st t optType-elim : ∀ {ℓ} {X : Set ℓ} → optType → X → (type → X) → X optType-elim NoType nT sT = nT optType-elim (SomeType T) nT sT = sT T optGuide-elim : ∀ {a} {X : Set a} → optGuide → X → (var → type → X) → X optGuide-elim NoGuide ng sg = ng optGuide-elim (Guide pi x T) ng sg = sg x T optClass-elim : ∀ {ℓ} {X : Set ℓ} → optClass → X → (tk → X) → X optClass-elim NoClass nc sc = nc optClass-elim (SomeClass atk) nc sc = sc atk defTermOrType-is-term : defTermOrType → 𝔹 defTermOrType-is-term (DefTerm _ _ _ _) = tt defTermOrType-is-term (DefType _ _ _ _) = ff defTermOrType-get-var : defTermOrType → var defTermOrType-get-var (DefTerm _ x _ _) = x defTermOrType-get-var (DefType _ x _ _) = x
35.238195
150
0.631439
4a8af3ed5ca543d093a89e643ca4711ef2d231bd
5,656
agda
Agda
Cubical/Foundations/Transport.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/Foundations/Transport.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/Foundations/Transport.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
{- Basic theory about transport: - transport is invertible - transport is an equivalence ([transportEquiv]) -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Transport where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.GroupoidLaws -- Direct definition of transport filler, note that we have to -- explicitly tell Agda that the type is constant (like in CHM) transpFill : ∀ {ℓ} {A : Type ℓ} (φ : I) (A : (i : I) → Type ℓ [ φ ↦ (λ _ → A) ]) (u0 : outS (A i0)) → -------------------------------------- PathP (λ i → outS (A i)) u0 (transp (λ i → outS (A i)) φ u0) transpFill φ A u0 i = transp (λ j → outS (A (i ∧ j))) (~ i ∨ φ) u0 transport⁻ : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → B → A transport⁻ p = transport (λ i → p (~ i)) subst⁻ : ∀ {ℓ ℓ'} {A : Type ℓ} {x y : A} (B : A → Type ℓ') (p : x ≡ y) → B y → B x subst⁻ B p pa = transport⁻ (λ i → B (p i)) pa transport-fillerExt : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → PathP (λ i → A → p i) (λ x → x) (transport p) transport-fillerExt p i x = transport-filler p x i transport⁻-fillerExt : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → PathP (λ i → p i → A) (λ x → x) (transport⁻ p) transport⁻-fillerExt p i x = transp (λ j → p (i ∧ ~ j)) (~ i) x transport-fillerExt⁻ : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → PathP (λ i → p i → B) (transport p) (λ x → x) transport-fillerExt⁻ p = symP (transport⁻-fillerExt (sym p)) transport⁻-fillerExt⁻ : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → PathP (λ i → B → p i) (transport⁻ p) (λ x → x) transport⁻-fillerExt⁻ p = symP (transport-fillerExt (sym p)) transport⁻-filler : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) (x : B) → PathP (λ i → p (~ i)) x (transport⁻ p x) transport⁻-filler p x = transport-filler (λ i → p (~ i)) x transport⁻Transport : ∀ {ℓ} {A B : Type ℓ} → (p : A ≡ B) → (a : A) → transport⁻ p (transport p a) ≡ a transport⁻Transport p a j = transport⁻-fillerExt p (~ j) (transport-fillerExt p (~ j) a) transportTransport⁻ : ∀ {ℓ} {A B : Type ℓ} → (p : A ≡ B) → (b : B) → transport p (transport⁻ p b) ≡ b transportTransport⁻ p b j = transport-fillerExt⁻ p j (transport⁻-fillerExt⁻ p j b) -- Transport is an equivalence isEquivTransport : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → isEquiv (transport p) isEquivTransport {A = A} {B = B} p = transport (λ i → isEquiv (transport-fillerExt p i)) (idIsEquiv A) transportEquiv : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → A ≃ B transportEquiv p = (transport p , isEquivTransport p) substEquiv : ∀ {ℓ ℓ'} {A B : Type ℓ} (P : Type ℓ → Type ℓ') (p : A ≡ B) → P A ≃ P B substEquiv P p = (subst P p , isEquivTransport (λ i → P (p i))) liftEquiv : ∀ {ℓ ℓ'} {A B : Type ℓ} (P : Type ℓ → Type ℓ') (e : A ≃ B) → P A ≃ P B liftEquiv P e = substEquiv P (ua e) transpEquiv : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → ∀ i → p i ≃ B transpEquiv P i .fst = transp (λ j → P (i ∨ j)) i transpEquiv P i .snd = transp (λ k → isEquiv (transp (λ j → P (i ∨ (j ∧ k))) (i ∨ ~ k))) i (idIsEquiv (P i)) uaTransportη : ∀ {ℓ} {A B : Type ℓ} (P : A ≡ B) → ua (transportEquiv P) ≡ P uaTransportη P i j = Glue (P i1) λ where (j = i0) → P i0 , transportEquiv P (i = i1) → P j , transpEquiv P j (j = i1) → P i1 , idEquiv (P i1) pathToIso : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → Iso A B pathToIso x = iso (transport x) (transport⁻ x) (transportTransport⁻ x) (transport⁻Transport x) isInjectiveTransport : ∀ {ℓ : Level} {A B : Type ℓ} {p q : A ≡ B} → transport p ≡ transport q → p ≡ q isInjectiveTransport {p = p} {q} α i = hcomp (λ j → λ { (i = i0) → secEq univalence p j ; (i = i1) → secEq univalence q j }) (invEq univalence ((λ a → α i a) , t i)) where t : PathP (λ i → isEquiv (λ a → α i a)) (pathToEquiv p .snd) (pathToEquiv q .snd) t = isProp→PathP (λ i → isPropIsEquiv (λ a → α i a)) _ _ isSet-subst : ∀ {ℓ ℓ′} {A : Type ℓ} {B : A → Type ℓ′} → (isSet-A : isSet A) → ∀ {a : A} → (p : a ≡ a) → (x : B a) → subst B p x ≡ x isSet-subst {B = B} isSet-A p x = subst (λ p′ → subst B p′ x ≡ x) (isSet-A _ _ refl p) (substRefl {B = B} x) -- substituting along a composite path is equivalent to substituting twice substComposite : ∀ {ℓ ℓ′} {A : Type ℓ} → (B : A → Type ℓ′) → {x y z : A} (p : x ≡ y) (q : y ≡ z) (u : B x) → subst B (p ∙ q) u ≡ subst B q (subst B p u) substComposite B p q Bx i = transport (cong B (compPath-filler' p q (~ i))) (transport-fillerExt (cong B p) i Bx) -- substitution commutes with morphisms in slices substCommSlice : ∀ {ℓ ℓ′} {A : Type ℓ} → (B C : A → Type ℓ′) → (F : ∀ i → B i → C i) → {x y : A} (p : x ≡ y) (u : B x) → subst C p (F x u) ≡ F y (subst B p u) substCommSlice B C F p Bx i = transport-fillerExt⁻ (cong C p) i (F _ (transport-fillerExt (cong B p) i Bx)) -- transports between loop spaces preserve path composition overPathFunct : ∀ {ℓ} {A : Type ℓ} {x y : A} (p q : x ≡ x) (P : x ≡ y) → transport (λ i → P i ≡ P i) (p ∙ q) ≡ transport (λ i → P i ≡ P i) p ∙ transport (λ i → P i ≡ P i) q overPathFunct p q = J (λ y P → transport (λ i → P i ≡ P i) (p ∙ q) ≡ transport (λ i → P i ≡ P i) p ∙ transport (λ i → P i ≡ P i) q) (transportRefl (p ∙ q) ∙ cong₂ _∙_ (sym (transportRefl p)) (sym (transportRefl q)))
42.208955
113
0.530057
4a39a3349ed7ed28b31a98b34dc4c77b7eb78092
1,055
agda
Agda
src/Ints/Add/Invert.agda
ice1k/Theorems
7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc
[ "Apache-2.0" ]
1
2020-04-15T15:28:03.000Z
2020-04-15T15:28:03.000Z
src/Ints/Add/Invert.agda
ice1k/Theorems
7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc
[ "Apache-2.0" ]
null
null
null
src/Ints/Add/Invert.agda
ice1k/Theorems
7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc
[ "Apache-2.0" ]
null
null
null
module Ints.Add.Invert where open import Ints open import Ints.Properties open import Ints.Add.Comm open import Nats.Add.Invert open import Data.Empty open import Relation.Nullary open import Equality open import Function ------------------------------------------------------------------------ -- internal stuffs private nat→int′ : ∀ a b → -[1+ nsuc $ a :+: a ] ≡ -[1+ nsuc $ b :+: b ] → a ≡ b nat→int′ a b = nat-add-invert a b ∘ nat-add-invert-1 (a :+: a) (b :+: b) ∘ eq-neg-int-to-nat impossible : ∀ a b → ¬ (+ a + + a ≡ -[1+ b ] + -[1+ b ]) impossible a b () +-invert : ∀ a b → (a + a ≡ b + b) → a ≡ b +-invert (+ a ) (+ b ) = eq-nat-to-int ∘ nat-add-invert a b ∘ eq-int-to-nat +-invert (+ a ) -[1+ b ] = ⊥-elim ∘ impossible a b +-invert -[1+ a ] (+ b ) = ⊥-elim ∘ impossible b a ∘ sym +-invert -[1+ a ] -[1+ b ] = eq-neg-nat-to-int ∘ nat→int′ a b ------------------------------------------------------------------------ -- public aliases int-add-invert : ∀ a b → (a + a ≡ b + b) → a ≡ b int-add-invert = +-invert
28.513514
94
0.477725
0420bba0d00239a1d2bc580266ad23e3a4398de7
1,194
agda
Agda
test/Common/Prelude.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/Common/Prelude.agda
dagit/agda
4383a3d20328a6c43689161496cee8eb479aca08
[ "MIT" ]
null
null
null
test/Common/Prelude.agda
dagit/agda
4383a3d20328a6c43689161496cee8eb479aca08
[ "MIT" ]
null
null
null
module Common.Prelude where postulate String : Set {-# BUILTIN STRING String #-} data Nat : Set where zero : Nat suc : Nat → Nat {-# BUILTIN NATURAL Nat #-} {-# BUILTIN SUC suc #-} {-# BUILTIN ZERO zero #-} {-# COMPILED_JS Nat function (x,v) { return (x < 1? v.zero(): v.suc(x-1)); } #-} {-# COMPILED_JS zero 0 #-} {-# COMPILED_JS suc function (x) { return x+1; } #-} _+_ : Nat → Nat → Nat zero + n = n suc m + n = suc (m + n) {-# COMPILED_JS _+_ function (x) { return function (y) { return x+y; }; } #-} _∸_ : Nat → Nat → Nat m ∸ zero = m zero ∸ _ = zero suc m ∸ suc n = m ∸ n {-# COMPILED_JS _∸_ function (x) { return function (y) { return Math.max(0,x-y); }; } #-} data List A : Set where [] : List A _∷_ : A → List A → List A infixr 40 _∷_ {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _∷_ #-} data Bool : Set where true false : Bool {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE true #-} {-# BUILTIN FALSE false #-} {-# COMPILED_DATA Bool Bool True False #-} {-# COMPILED_JS Bool function (x,v) { return (x? v["true"](): v["false"]()); } #-} {-# COMPILED_JS true true #-} {-# COMPILED_JS false false #-}
21.709091
89
0.552764
2eec4f5403ff7bf4eca32cfaf3a0db6d013442e2
2,158
agda
Agda
test/asset/agda-stdlib-1.0/Relation/Binary/Indexed/Heterogeneous/Construct/At.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Binary/Indexed/Heterogeneous/Construct/At.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Binary/Indexed/Heterogeneous/Construct/At.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Instantiates indexed binary structures at an index to the equivalent -- non-indexed structures. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary.Indexed.Heterogeneous.Construct.At where open import Relation.Binary open import Relation.Binary.Indexed.Heterogeneous hiding (IsEquivalence; Setoid) ------------------------------------------------------------------------ -- Structures module _ {a i} {I : Set i} {A : I → Set a} where isEquivalence : ∀ {ℓ} {_≈_ : IRel A ℓ} → IsIndexedEquivalence A _≈_ → (index : I) → IsEquivalence (_≈_ {index}) isEquivalence isEq index = record { refl = refl ; sym = sym ; trans = trans } where open IsIndexedEquivalence isEq isPreorder : ∀ {ℓ₁ ℓ₂} {_≈_ : IRel A ℓ₁} {_∼_ : IRel A ℓ₂} → IsIndexedPreorder A _≈_ _∼_ → (index : I) → IsPreorder (_≈_ {index}) _∼_ isPreorder isPreorder index = record { isEquivalence = isEquivalence O.isEquivalence index ; reflexive = O.reflexive ; trans = O.trans } where module O = IsIndexedPreorder isPreorder ------------------------------------------------------------------------ -- Packages module _ {a i} {I : Set i} where setoid : ∀ {ℓ} → IndexedSetoid I a ℓ → I → Setoid a ℓ setoid S index = record { Carrier = S.Carrier index ; _≈_ = S._≈_ ; isEquivalence = isEquivalence S.isEquivalence index } where module S = IndexedSetoid S preorder : ∀ {ℓ₁ ℓ₂} → IndexedPreorder I a ℓ₁ ℓ₂ → I → Preorder a ℓ₁ ℓ₂ preorder O index = record { Carrier = O.Carrier index ; _≈_ = O._≈_ ; _∼_ = O._∼_ ; isPreorder = isPreorder O.isPreorder index } where module O = IndexedPreorder O ------------------------------------------------------------------------ -- Some useful shorthand infix notation module _ {a i} {I : Set i} where _atₛ_ : ∀ {ℓ} → IndexedSetoid I a ℓ → I → Setoid a ℓ _atₛ_ = setoid
31.275362
73
0.514829
133a78b3bbfc5299fca3e1533b9abf4336afeab6
255
agda
Agda
archive/agda-2/Oscar/Data/Proposextensequality.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-2/Oscar/Data/Proposextensequality.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-2/Oscar/Data/Proposextensequality.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module Oscar.Data.Proposextensequality where open import Oscar.Data.Proposequality using (_≡_) open import Oscar.Level infix 4 _≡̇_ _≡̇_ : ∀ {a} {A : Set a} {b} {B : A → Set b} → ((x : A) → B x) → ((x : A) → B x) → Set (a ⊔ b) f ≡̇ g = ∀ x → f x ≡ g x
25.5
94
0.560784
31373b278160a89e2ac193ff2d7a4215107ca9a9
7,436
agda
Agda
Univalence/VecHelpers.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
Univalence/VecHelpers.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
Univalence/VecHelpers.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
{-# OPTIONS --without-K #-} module VecHelpers where open import Data.Nat import Data.Fin as F open import Data.Vec open import Function renaming (_∘_ to _○_) open import Relation.Binary.PropositionalEquality open ≡-Reasoning infixl 10 _∘̬_ -- vector composition ------------------------------------------------------------------ -- VECTOR LEMMAS AND HELPERS vmap : {n : ℕ} → {A B : Set} → (A → B) → Vec A n → Vec B n vmap f [] = [] vmap f (x ∷ xs) = (f x) ∷ (vmap f xs) -- Syntactic sugar for lookup that's a lot nicer _!!_ : {A : Set} → {n : ℕ} → Vec A n → F.Fin n → A _!!_ v i = lookup i v -- XXX: is this in the right order? _∘̬_ : {m n : ℕ} {A : Set} → Vec (F.Fin n) m → Vec A n → Vec A m v₁ ∘̬ v₂ = tabulate (λ i → v₂ !! (v₁ !! i)) _∘̬′_ : {m n : ℕ} {A : Set} → Vec (F.Fin n) m → Vec A n → Vec A m [] ∘̬′ v₂ = [] (i ∷ is) ∘̬′ v₂ = (v₂ !! i) ∷ (is ∘̬′ v₂) ∘̬≡∘̬′ : {m n : ℕ} {A : Set} (v₁ : Vec (F.Fin n) m) (v₂ : Vec A n) → (v₁ ∘̬ v₂) ≡ (v₁ ∘̬′ v₂) ∘̬≡∘̬′ [] v₂ = refl ∘̬≡∘̬′ (x ∷ v₁) v₂ = cong (_∷_ (v₂ !! x)) (∘̬≡∘̬′ v₁ v₂) ntimes : {A : Set} → ℕ → (f : A → A) → A → A ntimes zero f a = a ntimes (suc n) f a = f (ntimes n f a) ntimesD : {A : Set} → {B : A → Set} → {g : A → A} → (n : ℕ) → (f : {a : A} → B a → B (g a)) → {a : A} → B a → B (ntimes n g a) ntimesD zero f b = b ntimesD {g = g} (suc n) f {a = a} b = f {ntimes n g a} (ntimesD {g = g} n (λ {a} → f {a}) {a = a} b) ntails : {A : Set} → {n k : ℕ} → Vec A (ntimes k suc n) → Vec A n ntails {k = zero} v = v ntails {k = suc n} (x ∷ xs) = ntails {k = n} xs ntails₀ : {A : Set} → {k : ℕ} → (v : Vec A (ntimes k suc zero)) → [] ≡ ntails {k = k} v ntails₀ {k = zero} [] = refl ntails₀ {k = suc k} (x ∷ v) = ntails₀ {k = k} v -- Important lemma about lookup; for some reason it doesn't seem to be in the -- library even though it's in the main agda tutorial, iirc map!! : {n : ℕ} → {A B : Set} → (f : A → B) → (v : Vec A n) → (i : F.Fin n) → (vmap f v) !! i ≡ f (v !! i) map!! {zero} f [] () map!! {suc n} f (x ∷ xs) F.zero = refl map!! {suc n} f (x ∷ xs) (F.suc i) = map!! f xs i lookupTab : {A : Set} {n : ℕ} {f : F.Fin n → A} → (i : F.Fin n) → (tabulate f) !! i ≡ (f i) lookupTab {f = f} F.zero = refl lookupTab (F.suc i) = lookupTab i mapTab : {A B : Set} → {n : ℕ} → (f : A → B) → (g : F.Fin n → A) → vmap f (tabulate g) ≡ tabulate (f ○ g) mapTab {n = zero} f g = refl mapTab {n = suc n} f g = cong (_∷_ (f (g F.zero))) (mapTab {n = n} f (g ○ F.suc)) -- Lemma for proving that two vectors are equal if their tabulates agree -- on all inputs. tabf∼g : {n : ℕ} → {A : Set} → (f g : F.Fin n → A) → (∀ x → f x ≡ g x) → tabulate f ≡ tabulate g tabf∼g {zero} f g p = refl tabf∼g {suc n} f g p with f F.zero | g F.zero | p F.zero tabf∼g {suc n} f g p | x | .x | refl = cong (_∷_ x) (tabf∼g {n} (f ○ F.suc) (g ○ F.suc) (p ○ F.suc)) lookup∼vec : {n : ℕ} → {A : Set} → (v₁ v₂ : Vec A n) → (∀ i → v₁ !! i ≡ v₂ !! i) → v₁ ≡ v₂ lookup∼vec [] [] p = refl lookup∼vec (x ∷ v₁) (x₁ ∷ v₂) p with p F.zero lookup∼vec (x ∷ v₁) (.x ∷ v₂) p | refl = cong (_∷_ x) (lookup∼vec v₁ v₂ (p ○ F.suc)) ∘̬id : {A : Set} → {n : ℕ} → (k : ℕ) → (v : Vec A (ntimes k suc n)) → (tabulate {n} (ntimesD {ℕ} {F.Fin} {suc} k F.suc)) ∘̬ v ≡ (tabulate (λ i → v !! (ntimesD {ℕ} {F.Fin} {suc} k F.suc i))) ∘̬id {n = n} k v = begin (tabulate {n} (ntimesD {ℕ} {F.Fin} {suc} k F.suc)) ∘̬ v ≡⟨ refl ⟩ (tabulate (λ i → v !! (tabulate (ntimesD {ℕ} {F.Fin} {suc} k F.suc) !! i))) ≡⟨ tabf∼g (λ i → v !! (tabulate (ntimesD {ℕ} {F.Fin} {suc} k F.suc) !! i)) (λ i → v !! ntimesD {ℕ} {F.Fin} {suc} k F.suc i) (λ i → cong (_!!_ v) (lookupTab i)) ⟩ (tabulate (λ i → v !! (ntimesD {ℕ} {F.Fin} {suc} k F.suc i))) ∎ map2+id : {m n : ℕ} → (v : Vec (F.Fin n) m) → {x y : F.Fin (suc (suc n))} → (vmap F.suc (vmap F.suc v)) ∘̬′ (x ∷ y ∷ tabulate {n} (F.suc ○ F.suc)) ≡ (vmap F.suc (vmap F.suc v)) map2+id [] = refl map2+id {suc m} {n} (i ∷ v) {x} {y} = begin (vmap F.suc (vmap F.suc (i ∷ v))) ∘̬′ (x ∷ y ∷ tabulate (F.suc ○ F.suc)) ≡⟨ refl ⟩ (tabulate (F.suc ○ F.suc) !! i) ∷ (vmap F.suc (vmap F.suc v)) ∘̬′ (x ∷ y ∷ tabulate (F.suc ○ F.suc)) ≡⟨ cong (λ z → z ∷ ((vmap F.suc (vmap F.suc v))) ∘̬′ (x ∷ y ∷ tabulate (F.suc ○ F.suc))) (lookupTab i) ⟩ F.suc (F.suc i) ∷ (vmap F.suc (vmap F.suc v) ∘̬′ (x ∷ y ∷ tabulate (F.suc ○ F.suc))) ≡⟨ cong (_∷_ (F.suc (F.suc i))) (map2+id v) ⟩ F.suc (F.suc i) ∷ (vmap F.suc (vmap F.suc v)) ≡⟨ refl ⟩ (vmap F.suc (vmap F.suc (i ∷ v))) ∎ head!!0 : {n : ℕ} {A : Set} (v : Vec A (suc n)) → v !! F.zero ≡ head v head!!0 (x ∷ v) = refl headmap : {n : ℕ} {A B : Set} {f : A → B} (v : Vec A (suc n)) → head (vmap f v) ≡ f (head v) headmap (x ∷ v) = refl tailmap : {n : ℕ} {A B : Set} {f : A → B} (v : Vec A (suc n)) → tail (vmap f v) ≡ vmap f (tail v) tailmap (x ∷ v) = refl 2suc∘̬2tail : {n : ℕ} {A : Set} (v : Vec A (suc (suc n))) → (tabulate (F.suc ○ F.suc)) ∘̬ v ≡ (tail (tail v)) 2suc∘̬2tail (x ∷ x₁ ∷ v) = begin (tabulate (F.suc ○ F.suc)) ∘̬ (x ∷ x₁ ∷ v) ≡⟨ refl ⟩ tabulate (λ i → (x ∷ x₁ ∷ v) !! (tabulate (F.suc ○ F.suc) !! i)) ≡⟨ lookup∼vec (tabulate (λ i → (x ∷ x₁ ∷ v) !! (tabulate (F.suc ○ F.suc) !! i))) v (λ i → begin tabulate (λ j → (x ∷ x₁ ∷ v) !! (tabulate (F.suc ○ F.suc) !! j)) !! i ≡⟨ lookupTab i ⟩ (x ∷ x₁ ∷ v) !! (tabulate (F.suc ○ F.suc) !! i) ≡⟨ cong (λ q → (x ∷ x₁ ∷ v) !! q) (lookupTab i) ⟩ v !! i ∎) ⟩ v ∎ -- upTo n returns [0, 1, ..., n-1] as Fins upTo : (n : ℕ) → Vec (F.Fin n) n upTo n = tabulate {n} id upToTail : (n : ℕ) → (tail (tail (upTo (suc (suc n))))) ≡ (vmap F.suc (tail (upTo (suc n)))) upToTail n = begin tail (tail (upTo (suc (suc n)))) ≡⟨ refl ⟩ tabulate (F.suc ○ F.suc) ≡⟨ sym (mapTab F.suc F.suc) ⟩ vmap F.suc (tabulate F.suc) ∎ sidfn : {A : Set} {n : ℕ} (v : Vec A n) (i : F.Fin n) → ((upTo n) ∘̬ v) !! i ≡ v !! i sidfn {n = n} v i = begin ((upTo n) ∘̬ v) !! i ≡⟨ lookupTab {f = λ x → v !! ((upTo n) !! x)} i ⟩ v !! ((upTo n) !! i) ≡⟨ cong (_!!_ v) (lookupTab {f = id} i) ⟩ v !! i ∎ ∘̬simpleid : {A : Set} {n : ℕ} (v : Vec A n) → (upTo n) ∘̬ v ≡ v ∘̬simpleid {n = n} v = lookup∼vec (upTo n ∘̬ v) v (sidfn v) lookupMap : {A B : Set} → {n : ℕ} → {f : A → B} → (i : F.Fin n) → (v : Vec A n) → lookup i (vmap f v) ≡ f (lookup i v) lookupMap F.zero (x ∷ _) = refl lookupMap (F.suc i) (_ ∷ v) = lookupMap i v lookup∘tabulate : ∀ {a n} → {A : Set a} → (i : F.Fin n) → (f : F.Fin n → A) → lookup i (tabulate f) ≡ f i lookup∘tabulate F.zero f = refl lookup∘tabulate (F.suc i) f = lookup∘tabulate i (f ○ F.suc) vmap∘vmap : {n : ℕ} {A B C : Set} (f : B → C) (g : A → B) (v : Vec A n) → vmap f (vmap g v) ≡ vmap (f ○ g) v vmap∘vmap {zero} f g [] = refl vmap∘vmap {suc n} f g (x ∷ v) = cong (λ y → f (g x) ∷ y) (vmap∘vmap f g v) vmap∘id : {n : ℕ} {A : Set} {v : Vec A n} {f : A → A } → (∀ {x} → f x ≡ x) → vmap f v ≡ v vmap∘id {zero} {v = []} eq = refl vmap∘id {suc n} {v = (x ∷ v)} {f} eq = cong₂ _∷_ eq (vmap∘id {v = v} eq)
36.45098
92
0.450108
41195b61c8fe11ca3c23c4d1fa7381274c80826e
1,811
agda
Agda
test/Fail/Issue1271a.agda
hborum/agda
aac88412199dd4cbcb041aab499d8a6b7e3f4a2e
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/Issue1271a.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue1271a.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- Empty, unit and equality. ⊥ = (X : Set) → X ⊤ = (X : Set) → X → X data _≡_ {l}{A : Set l}(x : A) : A → Set l where <> : x ≡ x -- The fixpoint of the identity functor as a data definition. module Data where data μId : Set where In : μId → μId -- μId can be proved empty. Here are both a direct proof and one that -- relies on the eliminator for μId. ¬μId : μId → ⊥ ¬μId (In x) = ¬μId x μId-elim : ∀ {l}(P : μId → Set l) → (∀ x → P x → P (In x)) → ∀ x → P x μId-elim P m (In x) = m x (μId-elim P m x) ¬Id' : μId → ⊥ ¬Id' = μId-elim (λ _ → ⊥) (λ _ p → p) -- To prove ∀ x → ¬ (x ≡ In x) it is enough to call ¬μId (or ¬μId'): the -- equality proof is not inspected. ¬id≡In-empty : ∀ {x} → x ≡ In x → ⊥ ¬id≡In-empty {x} _ = ¬μId x -- or ¬Id' x -- Alternatively, one could use an absurd pattern which relies on the -- presence of a cycle. ¬id≡In-pm : ∀ {x} → x ≡ In x → ⊥ ¬id≡In-pm () -- The case of inductive records is a bit different. Here is the fixpoint -- of the identity functor as an inductive record definition. module Record where record μId : Set where inductive constructor In field Out : μId open μId -- It does not seem possible to prove Record.μId empty, as Agda does not -- consider the following definitions as terminating. {-# NON_TERMINATING #-} ¬μId : μId → ⊥ ¬μId (In x) = ¬μId x {-# NON_TERMINATING #-} μId-elim : ∀ {l}(P : μId → Set l) → (∀ x → P x → P (In x)) → ∀ x → P x μId-elim P m (In x) = m x (μId-elim P m x) ¬Id' : μId → ⊥ ¬Id' = μId-elim (λ _ → ⊥) (λ _ p → p) ¬id≡In-empty : ∀ {x} → x ≡ In x → ⊥ ¬id≡In-empty {x} _ = ¬μId x -- or ¬Id' x -- However, we can still use an absurd pattern as in Data.¬id≡In-pm. ¬id≡In-pm : ∀ {x} → x ≡ In x → ⊥ ¬id≡In-pm () -- This should not be possible.
24.146667
73
0.559912
2e77066fb00a47f4e3f7203da6c0571e7ba93f20
978
agda
Agda
src/Definitions.agda
Akshobhya1234/agda-NonAssociativeAlgebra
443e831e536b756acbd1afd0d6bae7bc0d288048
[ "MIT" ]
2
2021-08-15T06:16:13.000Z
2021-08-17T09:14:03.000Z
src/Definitions.agda
Akshobhya1234/agda-NonAssociativeAlgebra
443e831e536b756acbd1afd0d6bae7bc0d288048
[ "MIT" ]
2
2021-10-04T05:30:30.000Z
2021-10-09T08:24:56.000Z
src/Definitions.agda
Akshobhya1234/agda-NonAssociativeAlgebra
443e831e536b756acbd1afd0d6bae7bc0d288048
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Relation.Binary.Core module Definitions {a ℓ} {A : Set a} -- The underlying set (_≈_ : Rel A ℓ) -- The underlying equality where open import Algebra.Core open import Data.Product open import Algebra.Definitions -- (x²y)x = x²(yx) JordanIdentity: : Op₂ A → Set _ JordanIdentity: _∙_ = ∀ x y → (((x ∙ x) ∙ y) ∙ x) ≈ (((x ∙ x) ∙ y) ∙ x) -- x = xyx PesudoInverse₁ : Op₂ A → Set _ PesudoInverse₁ _∙_ = ∀ x y → ((x ∙ y) ∙ x) ≈ x -- y = yxy PseudoInverse₂ : Op₂ A → Set _ PseudoInverse₂ _∙_ = ∀ x y → ((y ∙ x) ∙ y) ≈ y PseudoInverse : Op₂ A → Set _ PseudoInverse ∙ = (PesudoInverse₁ ∙) × (PseudoInverse₂ ∙) -- JacobiIdentity is (x ∙ (y ∙ z)) + ((y ∙ (z ∙ x)) + (z ∙ (x ∙ y))) = 0 -- Using the antisymmetry property Jacobi identity may be rewritten as a modification of the associative property JacobiIdentity : Op₂ A → Op₂ A → Set _ JacobiIdentity _∙_ _-_ = ∀ x y z → (x ∙ (y ∙ z)) ≈ ((y ∙ (z ∙ x)) - (z ∙ (x ∙ y)))
28.764706
113
0.59407
4b5ede7701cc4bde67fe56651026e5c2c4ad2cec
780
agda
Agda
test/Succeed/fol-theorems/Agda/InternalTerms/DefTerm2.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
10
2015-09-03T20:54:16.000Z
2019-12-03T13:44:25.000Z
test/Succeed/fol-theorems/Agda/InternalTerms/DefTerm2.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
121
2015-01-25T13:22:12.000Z
2018-04-22T06:01:44.000Z
test/Succeed/fol-theorems/Agda/InternalTerms/DefTerm2.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
4
2016-05-10T23:06:19.000Z
2016-08-03T03:54:55.000Z
------------------------------------------------------------------------------ -- Testing Agda internal term: @Def@ ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Agda.InternalTerms.DefTerm2 where ------------------------------------------------------------------------------ postulate D : Set _≡_ : D → D → Set P³ : D → D → D → Set a b c : D -- A definition with three arguments. postulate foo : P³ a b c {-# ATP axiom foo #-} -- We need to have at least one conjecture to generate a TPTP file. postulate bar : ∀ d → d ≡ d {-# ATP prove bar #-}
28.888889
78
0.394872
2fea1694e46b50a98d5d0ceb688ab9a0dfcc5aa4
764
agda
Agda
benchmark/Syntacticosmos/UntypedLambda.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
benchmark/Syntacticosmos/UntypedLambda.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
benchmark/Syntacticosmos/UntypedLambda.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module UntypedLambda where open import Basics open import Pr open import Nom import Syntacticosmos data Tag : Set where lamT : Tag appT : Tag open module ULam = Syntacticosmos TT TT (\_ -> Tag) LAM : Kind LAM = Ty _ SigLAM : Kind SigLAM = Pi _ conk where conk : Tag -> Kind conk lamT = (LAM |> LAM) |> LAM conk appT = LAM |> LAM |> LAM Lam : Cxt -> Set Lam G = G [! SigLAM !]- LAM lam : {G : Cxt}(x : Nom){Gx : [| G Hasn't x |]} -> Lam ((G [ x - LAM ]) {Gx}) -> Lam G lam x {Gx} b = G[ lamT G^ G\\ (bind x {Gx} b) G& Gnil ] app : {G : Cxt} -> Lam G -> Lam G -> Lam G app f s = G[ appT G^ f G& s G& Gnil ] moo : Lam EC moo = lam Ze (lam (Su Ze) (var Ze)) noo : Lam EC noo = lam (Su Ze) (lam Ze (var (Su Ze))) coo : Id moo noo coo = refl
18.190476
55
0.568063
1a995fbc70d395ed5ce529c4443746211d660c90
334
agda
Agda
test/Succeed/Issue3900.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3900.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3900.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2019-07-09, issue #3900 -- Regression introduced by the fix of #3434 -- {-# OPTIONS -v tc.inj:100 #-} data Bool : Set where true false : Bool abstract data Unit : Set where unit : Unit f : Unit f with true ... | true = unit ... | false = unit -- Error WAS: -- Not in Scope: unit -- Should succeed.
14.521739
44
0.601796
13d4ea10fa73950daf74c6d6b6f90c047594ca8e
659
agda
Agda
src/Data/Nat/Properties/Extra.agda
metaborg/mj.agda
0c096fea1716d714db0ff204ef2a9450b7a816df
[ "Apache-2.0" ]
10
2017-11-17T17:10:36.000Z
2021-09-24T08:02:33.000Z
src/Data/Nat/Properties/Extra.agda
metaborg/mj.agda
0c096fea1716d714db0ff204ef2a9450b7a816df
[ "Apache-2.0" ]
1
2019-01-13T13:03:47.000Z
2020-10-14T13:41:58.000Z
src/Data/Nat/Properties/Extra.agda
metaborg/mj.agda
0c096fea1716d714db0ff204ef2a9450b7a816df
[ "Apache-2.0" ]
1
2021-12-28T17:38:05.000Z
2021-12-28T17:38:05.000Z
module Data.Nat.Properties.Extra where open import Data.Nat.Base open import Data.Nat.Properties open import Relation.Binary.PropositionalEquality open ≡-Reasoning open import Data.Empty ≤′-unique : ∀ {i u} (p q : i ≤′ u) → p ≡ q ≤′-unique ≤′-refl ≤′-refl = refl ≤′-unique ≤′-refl (≤′-step q) = ⊥-elim (1+n≰n (≤′⇒≤ q)) ≤′-unique (≤′-step p) ≤′-refl = ⊥-elim (1+n≰n (≤′⇒≤ p)) ≤′-unique (≤′-step p) (≤′-step q) = cong ≤′-step (≤′-unique p q) m+n+o≡n+m+o : ∀ m n o → m + (n + o) ≡ n + (m + o) m+n+o≡n+m+o m n o = begin m + (n + o) ≡⟨ sym (+-assoc m n o) ⟩ (m + n) + o ≡⟨ cong (λ x → x + o) (+-comm m n) ⟩ (n + m) + o ≡⟨ +-assoc n m o ⟩ n + (m + o) ∎
29.954545
64
0.518968
1364f4dc17f66f6b1b999973ab5a4ac8542a6567
402
agda
Agda
test/succeed/InstanceGuessesMeta.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
null
null
null
test/succeed/InstanceGuessesMeta.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
null
null
null
test/succeed/InstanceGuessesMeta.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- Andreas, 2012-01-10 -- {-# OPTIONS -v tc.constr.findInScope:50 #-} module InstanceGuessesMeta where data Bool : Set where true false : Bool postulate D : Bool -> Set E : Bool -> Set d : {x : Bool} -> D x f : {x : Bool}{{ dx : D x }} -> E x b : E true b = f -- should succeed -- Agda is now allowed to solve hidden x in type of d by unification, -- when searching for inhabitant of D x
22.333333
69
0.624378
41f98f7479021c31d240cdeab19eea2472e5687d
4,818
agda
Agda
Progress.agda
danelahman/aeff-agda
71ebed9f90a3eb37ae6cd209457bae23a4d122d1
[ "MIT" ]
4
2020-07-17T00:15:00.000Z
2021-03-22T22:48:48.000Z
Progress.agda
danelahman/aeff-agda
71ebed9f90a3eb37ae6cd209457bae23a4d122d1
[ "MIT" ]
null
null
null
Progress.agda
danelahman/aeff-agda
71ebed9f90a3eb37ae6cd209457bae23a4d122d1
[ "MIT" ]
null
null
null
open import Data.Empty open import Data.Maybe open import Data.Product open import Data.Sum open import Data.Unit open import AEff open import AwaitingComputations open import EffectAnnotations open import Preservation open import Renamings open import Substitutions open import Types open import Relation.Binary.PropositionalEquality hiding ([_]) open import Relation.Nullary open import Relation.Nullary.Negation module Progress where -- WRAPPING PROMISES AROUND A CONTEXT ⟨⟨_⟩⟩ : Ctx → Ctx ⟨⟨ [] ⟩⟩ = [] ⟨⟨ Γ ∷ X ⟩⟩ = ⟨⟨ Γ ⟩⟩ ∷ ⟨ X ⟩ -- RESULTS data RunResult⟨_∣_⟩ (Γ : Ctx) : {C : CType} → ⟨⟨ Γ ⟩⟩ ⊢M⦂ C → Set where return : {X : VType} {o : O} {i : I} (V : ⟨⟨ Γ ⟩⟩ ⊢V⦂ X) → ------------------------------------------ RunResult⟨ Γ ∣ return {o = o} {i = i} V ⟩ promise : {X Y : VType} {o o' : O} {i i' : I} {op : Σₛ} {p : lkpᵢ op i ≡ just (o' , i')} {M : ⟨⟨ Γ ⟩⟩ ∷ ``(payload op) ⊢M⦂ ⟨ X ⟩ ! (o' , i')} {N : ⟨⟨ Γ ⟩⟩ ∷ ⟨ X ⟩ ⊢M⦂ Y ! (o , i)} → RunResult⟨ Γ ∷ X ∣ N ⟩ → ---------------------------------------------------- RunResult⟨ Γ ∣ promise op ∣ p ↦ M `in N ⟩ awaiting : {C : CType} {Y : VType} {y : ⟨ Y ⟩ ∈ ⟨⟨ Γ ⟩⟩} {M : ⟨⟨ Γ ⟩⟩ ⊢M⦂ C} → y ⧗ M → --------------------- RunResult⟨ Γ ∣ M ⟩ data CompResult⟨_∣_⟩ (Γ : Ctx) : {C : CType} → ⟨⟨ Γ ⟩⟩ ⊢M⦂ C → Set where comp : {C : CType} {M : ⟨⟨ Γ ⟩⟩ ⊢M⦂ C} → RunResult⟨ Γ ∣ M ⟩ → --------------------- CompResult⟨ Γ ∣ M ⟩ signal : {X : VType} {o : O} {i : I} {op : Σₛ} {p : op ∈ₒ o} {V : ⟨⟨ Γ ⟩⟩ ⊢V⦂ ``(payload op)} {M : ⟨⟨ Γ ⟩⟩ ⊢M⦂ X ! (o , i)} → CompResult⟨ Γ ∣ M ⟩ → -------------------------------- CompResult⟨ Γ ∣ ↑ op p V M ⟩ -- PROGRESS THEOREM FOR PROMISE-OPEN COMPUTATIONS ⇒-not-in-ctx : {Γ : Ctx} {X : VType} {C : CType} → X ⇒ C ∈ ⟨⟨ Γ ⟩⟩ → ⊥ ⇒-not-in-ctx {Γ ∷ y} (Tl x) = ⇒-not-in-ctx x {- THEOREM 3.3 -} progress : {Γ : Ctx} {C : CType} → (M : ⟨⟨ Γ ⟩⟩ ⊢M⦂ C) → ------------------------------- (Σ[ N ∈ ⟨⟨ Γ ⟩⟩ ⊢M⦂ C ] (M ↝ N) ⊎ CompResult⟨ Γ ∣ M ⟩) progress (return V) = inj₂ (comp (return V)) progress (let= M `in N) with progress M ... | inj₁ (M' , r) = inj₁ (_ , context (let= [-] `in N) r) ... | inj₂ (comp (return V)) = inj₁ (_ , let-return V N) ... | inj₂ (comp (promise {_} {_} {_} {_} {_} {_} {_} {p} {M'} {M''} R)) = inj₁ (_ , let-promise p M' M'' N) ... | inj₂ (comp (awaiting R)) = inj₂ (comp (awaiting (let-in R))) ... | inj₂ (signal {_} {_} {_} {_} {p} {V} {M'} R) = inj₁ (_ , let-↑ p V M' N) progress (letrec M `in N) = inj₁ (_ , letrec-unfold M N) progress ((` x) · W) with ⇒-not-in-ctx x ... | () progress (ƛ M · W) = inj₁ (_ , apply M W) progress (↑ op p V M) with progress M ... | inj₁ (M' , r) = inj₁ (_ , context (↑ op p V [-]) r) ... | inj₂ R = inj₂ (signal R) progress (↓ op V M) with progress M ... | inj₁ (M' , r) = inj₁ (_ , context (↓ op V [-]) r) ... | inj₂ (comp (return W)) = inj₁ (_ , (↓-return V W)) ... | inj₂ (comp (awaiting R)) = inj₂ (comp (awaiting (interrupt R))) ... | inj₂ (signal {X} {o} {i} {op'} {p} {W} {M'} R) = inj₁ (_ , (↓-↑ p V W M')) ... | inj₂ (comp (promise {_} {_} {_} {_} {_} {_} {op'} {p} {M'} {M''} R)) with decₛ op op' ... | yes refl = inj₁ (_ , ↓-promise-op p V M' M'') ... | no ¬q = inj₁ (_ , ↓-promise-op' ¬q p V M' M'') progress (promise op ∣ p ↦ M `in N) with progress N ... | inj₁ (M' , r) = inj₁ (_ , context (promise op ∣ p ↦ M `in [-]) r) ... | inj₂ (comp R) = inj₂ (comp (promise R)) ... | inj₂ (signal {_} {_} {_} {_} {q} {V} {M'} R) = inj₁ (_ , promise-↑ p q V M M') progress (await ` x until M) = inj₂ (comp (awaiting await)) progress (await ⟨ V ⟩ until M) = inj₁ (_ , await-promise V M) progress (coerce p q M) with progress M ... | inj₁ (M' , r) = inj₁ (_ , context (coerce p q [-]) r) ... | inj₂ (comp (return V)) = inj₁ (_ , coerce-return V) ... | inj₂ (comp (promise {_} {_} {_} {_} {_} {_} {op'} {r} {M'} {M''} R)) = inj₁ (_ , coerce-promise r M' M'') ... | inj₂ (comp (awaiting R)) = inj₂ (comp (awaiting (coerce R))) ... | inj₂ (signal {_} {_} {_} {_} {r} {V} {M'} R) = inj₁ (_ , coerce-↑ r V M') -- PROGRESS THEOREM FOR CLOSED COMPUTATIONS {- COROLLARY 3.4 -} closed-progress : {C : CType} → (M : [] ⊢M⦂ C) → -------------------------- (Σ[ N ∈ [] ⊢M⦂ C ] (M ↝ N) ⊎ CompResult⟨ [] ∣ M ⟩) closed-progress M = progress M
28.341176
91
0.426526
226a5971297b7c8edd60d17d396d3b990280e88d
5,020
agda
Agda
Categories/DinaturalTransformation.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
98
2015-04-15T14:57:33.000Z
2022-03-08T05:20:36.000Z
Categories/DinaturalTransformation.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
19
2015-05-23T06:47:10.000Z
2019-08-09T16:31:40.000Z
Categories/DinaturalTransformation.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
23
2015-02-05T13:03:09.000Z
2021-11-11T13:50:56.000Z
{-# OPTIONS --universe-polymorphism #-} module Categories.DinaturalTransformation where open import Level open import Data.Product open import Categories.Category import Categories.NaturalTransformation private module NT = Categories.NaturalTransformation open import Categories.Functor using (Functor) renaming (_∘_ to _∘F_) open import Categories.Bifunctor using (Bifunctor; module Functor) open import Categories.Product open import Categories.Square record DinaturalTransformation {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F G : Bifunctor (Category.op C) C D) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where private module C = Category C module D = Category D open Functor F renaming (op to Fop) open Functor G renaming (F₀ to G₀; F₁ to G₁; op to Gop) open D hiding (op) field α : (c : C.Obj) → D [ F₀ (c , c) , G₀ (c , c) ] .commute : ∀ {c c′} (f : C [ c , c′ ]) → G₁ (f , C.id) ∘ α c′ ∘ F₁ ( C.id , f ) ≡ G₁ ( C.id , f ) ∘ α c ∘ F₁ ( f , C.id ) op : DinaturalTransformation {C = C.op} {D = D.op} Gop Fop op = record { α = α; commute = λ f → D.Equiv.trans assoc (D.Equiv.trans (D.Equiv.sym (commute f)) (D.Equiv.sym assoc)) } _<∘_ : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {F G H : Bifunctor (Category.op C) C D} → NT.NaturalTransformation G H → DinaturalTransformation {C = C} F G → DinaturalTransformation {C = C} F H _<∘_ {C = C} {D} {F} {G} {H} eta alpha = record { α = λ c → η (c , c) ∘ α c; commute = λ {c} {c′} f → begin H.F₁ (f , C.id) ∘ ((η (c′ , c′) ∘ α c′) ∘ F.F₁ (C.id , f)) ↓⟨ ∘-resp-≡ʳ assoc ⟩ H.F₁ (f , C.id) ∘ (η (c′ , c′) ∘ (α c′ ∘ F.F₁ (C.id , f))) ↑⟨ assoc ⟩ (H.F₁ (f , C.id) ∘ η (c′ , c′)) ∘ (α c′ ∘ F.F₁ (C.id , f)) ↑⟨ ∘-resp-≡ˡ (eta.commute (f , C.id)) ⟩ (η (c , c′) ∘ G.F₁ (f , C.id)) ∘ (α c′ ∘ F.F₁ (C.id , f)) ↓⟨ pullʳ (commute f) ⟩ η (c , c′) ∘ G.F₁ (C.id , f) ∘ (α c ∘ F.F₁ (f , C.id)) ↓⟨ pullˡ (eta.commute (C.id , f)) ⟩ (H.F₁ (C.id , f) ∘ η (c , c)) ∘ (α c ∘ F.F₁ (f , C.id)) ↓⟨ assoc ⟩ H.F₁ (C.id , f) ∘ (η (c , c) ∘ (α c ∘ F.F₁ (f , C.id))) ↑⟨ ∘-resp-≡ʳ assoc ⟩ H.F₁ (C.id , f) ∘ ((η (c , c) ∘ α c) ∘ F.F₁ (f , C.id)) ∎ {- This uses 'associative-unital reasoning, which is now broken. Above uses direct reasoning, which is heavier, but works. JC. begin H.F₁ (f , C.id) ∙ ((η (c′ , c′) ∙ α c′) ∙ F.F₁ (C.id , f)) ↑⟨ refl ⟩ (H.F₁ (f , C.id) ∙ η (c′ , c′)) ∙ (α c′ ∙ F.F₁ (C.id , f)) ↑≡⟨ ∘-resp-≡ˡ (eta.commute (f , C.id)) ⟩ (η (c , c′) ∙ G.F₁ (f , C.id)) ∙ (α c′ ∙ F.F₁ (C.id , f)) ↓≡⟨ pullʳ (commute f) ⟩ η (c , c′) ∙ G.F₁ (C.id , f) ∙ α c ∙ F.F₁ (f , C.id) ↓≡⟨ pullˡ (eta.commute (C.id , f)) ⟩ (H.F₁ (C.id , f) ∙ η (c , c)) ∙ α c ∙ F.F₁ (f , C.id) ↓⟨ refl ⟩ H.F₁ (C.id , f) ∙ (η (c , c) ∙ α c) ∙ F.F₁ (f , C.id) ∎ -} } where module C = Category C module D = Category D open D open D.Equiv module F = Functor F module G = Functor G module H = Functor H module eta = NT.NaturalTransformation eta open eta using (η) open DinaturalTransformation alpha -- open AUReasoning D open HomReasoning open GlueSquares D _∘>_ : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {F G H : Bifunctor (Category.op C) C D} → DinaturalTransformation {C = C} G H → NT.NaturalTransformation F G → DinaturalTransformation {C = C} F H alpha ∘> eta = DinaturalTransformation.op (eta.op <∘ alpha.op) where module eta = NT.NaturalTransformation eta module alpha = DinaturalTransformation alpha _∘ʳ_ : ∀ {o₀ ℓ₀ e₀ o₁ ℓ₁ e₁ o₂ ℓ₂ e₂} → {C : Category o₀ ℓ₀ e₀} {D : Category o₁ ℓ₁ e₁} {E : Category o₂ ℓ₂ e₂} → {F G : Bifunctor (Category.op C) C D} → (η : DinaturalTransformation {C = C} F G) → (K : Functor E C) → DinaturalTransformation {C = E} (F ∘F ((Functor.op K) ⁂ K)) (G ∘F ((Functor.op K) ⁂ K)) _∘ʳ_ {C = C} {D = D} {E} {F} {G} η K = record { α = λ c → DinaturalTransformation.α η (K.F₀ c) ; commute = λ {c} {c′} f → begin G.F₁ (K.F₁ f , K.F₁ E.id) D.∘ η.α (K.F₀ c′) D.∘ F.F₁ (K.F₁ E.id , K.F₁ f) ↓⟨ G.F-resp-≡ (C.Equiv.refl , K.identity) ⟩∘⟨ D.Equiv.refl ⟩∘⟨ F.F-resp-≡ (K.identity , C.Equiv.refl) ⟩ G.F₁ (K.F₁ f , C.id) D.∘ η.α (K.F₀ c′) D.∘ F.F₁ (C.id , K.F₁ f) ↓⟨ DinaturalTransformation.commute η (K.F₁ f) ⟩ G.F₁ (C.id , K.F₁ f) D.∘ η.α (K.F₀ c) D.∘ F.F₁ (K.F₁ f , C.id) ↑⟨ G.F-resp-≡ (K.identity , C.Equiv.refl) ⟩∘⟨ D.Equiv.refl ⟩∘⟨ F.F-resp-≡ (C.Equiv.refl , K.identity) ⟩ G.F₁ (K.F₁ E.id , K.F₁ f) D.∘ η.α (K.F₀ c) D.∘ F.F₁ (K.F₁ f , K.F₁ E.id) ∎ } where module K = Functor K module C = Category C module D = Category D module E = Category E module F = Functor F module G = Functor G module η = DinaturalTransformation η open D.HomReasoning
42.905983
158
0.521713
233f0a7bae6746f4128f2518d8a396ac6a15e5f6
17,987
agda
Agda
Cubical/HITs/Pushout/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-02-05T01:25:02.000Z
2022-02-05T01:25:02.000Z
Cubical/HITs/Pushout/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/HITs/Pushout/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{- This file contains: - Elimination principle for pushouts - Homotopy natural equivalences of pushout spans Written by: Loïc Pujet, September 2019 - 3×3 lemma for pushouts Written by: Loïc Pujet, April 2019 - Homotopy natural equivalences of pushout spans (unpacked and avoiding transports) -} {-# OPTIONS --safe #-} module Cubical.HITs.Pushout.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.Function open import Cubical.Data.Sigma open import Cubical.Data.Unit open import Cubical.HITs.Pushout.Base private variable ℓ ℓ' ℓ'' ℓ''' : Level A : Type ℓ B : Type ℓ' C : Type ℓ'' {- Elimination for propositions -} elimProp : {f : A → B} {g : A → C} → (P : Pushout f g → Type ℓ''') → ((x : Pushout f g) → isProp (P x)) → ((b : B) → P (inl b)) → ((c : C) → P (inr c)) → (x : Pushout f g) → P x elimProp P isPropP PB PC (inl x) = PB x elimProp P isPropP PB PC (inr x) = PC x elimProp {f = f} {g = g} P isPropP PB PC (push a i) = isOfHLevel→isOfHLevelDep 1 isPropP (PB (f a)) (PC (g a)) (push a) i {- Switching the span does not change the pushout -} pushoutSwitchEquiv : {f : A → B} {g : A → C} → Pushout f g ≃ Pushout g f pushoutSwitchEquiv = isoToEquiv (iso f inv leftInv rightInv) where f = λ {(inr x) → inl x; (inl x) → inr x; (push a i) → push a (~ i)} inv = λ {(inr x) → inl x; (inl x) → inr x; (push a i) → push a (~ i)} leftInv = λ {(inl x) → refl; (inr x) → refl; (push a i) → refl} rightInv = λ {(inl x) → refl; (inr x) → refl; (push a i) → refl} {- Definition of pushout diagrams -} record 3-span : Type₁ where field A0 A2 A4 : Type₀ f1 : A2 → A0 f3 : A2 → A4 3span : {A0 A2 A4 : Type₀} → (A2 → A0) → (A2 → A4) → 3-span 3span f1 f3 = record { f1 = f1 ; f3 = f3 } spanPushout : (s : 3-span) → Type₀ spanPushout s = Pushout (3-span.f1 s) (3-span.f3 s) {- Definition of a homotopy natural diagram equivalence -} record 3-span-equiv (s1 : 3-span) (s2 : 3-span) : Type₀ where field e0 : 3-span.A0 s1 ≃ 3-span.A0 s2 e2 : 3-span.A2 s1 ≃ 3-span.A2 s2 e4 : 3-span.A4 s1 ≃ 3-span.A4 s2 H1 : ∀ x → 3-span.f1 s2 (e2 .fst x) ≡ e0 .fst (3-span.f1 s1 x) H3 : ∀ x → 3-span.f3 s2 (e2 .fst x) ≡ e4 .fst (3-span.f3 s1 x) {- Proof that homotopy equivalent spans are in fact equal -} spanEquivToPath : {s1 : 3-span} → {s2 : 3-span} → (e : 3-span-equiv s1 s2) → s1 ≡ s2 spanEquivToPath {s1} {s2} e = spanPath where open 3-span-equiv e open 3-span path0 : A0 s1 ≡ A0 s2 path0 = ua e0 path2 : A2 s1 ≡ A2 s2 path2 = ua e2 path4 : A4 s1 ≡ A4 s2 path4 = ua e4 spanPath1 : I → 3-span spanPath1 i = record { A0 = path0 i ; A2 = path2 i ; A4 = path4 i ; f1 = λ x → (transp (λ j → path0 (i ∧ j)) (~ i) (f1 s1 (transp (λ j → path2 (~ j ∧ i)) (~ i) x))) ; f3 = λ x → (transp (λ j → path4 (i ∧ j)) (~ i) (f3 s1 (transp (λ j → path2 (~ j ∧ i)) (~ i) x))) } spanPath2 : I → 3-span spanPath2 i = record { A0 = A0 s2 ; A2 = A2 s2 ; A4 = A4 s2 ; f1 = f1Path i ; f3 = f3Path i } where f1Path : I → A2 s2 → A0 s2 f1Path i x = ((uaβ e0 (f1 s1 (transport (λ j → path2 (~ j)) x))) ∙ (H1 (transport (λ j → path2 (~ j)) x)) ⁻¹ ∙ (λ j → f1 s2 (uaβ e2 (transport (λ j → path2 (~ j)) x) (~ j))) ∙ (λ j → f1 s2 (transportTransport⁻ path2 x j))) i f3Path : I → A2 s2 → A4 s2 f3Path i x = ((uaβ e4 (f3 s1 (transport (λ j → path2 (~ j)) x))) ∙ (H3 (transport (λ j → path2 (~ j)) x)) ⁻¹ ∙ (λ j → f3 s2 (uaβ e2 (transport (λ j → path2 (~ j)) x) (~ j))) ∙ (λ j → f3 s2 (transportTransport⁻ path2 x j))) i spanPath : s1 ≡ s2 spanPath = (λ i → spanPath1 i) ∙ (λ i → spanPath2 i) -- as a corollary, they have the same pushout spanEquivToPushoutPath : {s1 : 3-span} → {s2 : 3-span} → (e : 3-span-equiv s1 s2) → spanPushout s1 ≡ spanPushout s2 spanEquivToPushoutPath {s1} {s2} e = cong spanPushout (spanEquivToPath e) {- 3×3 lemma for pushouts Let Aᵢⱼ denote a type, fᵢⱼ a map and Hᵢⱼ a homotopy. Given a diagram of the following shape: A00 ←—f01—— A02 ——f03—→ A04 ↑ ↑ ↑ f10 H11 f12 H13 f14 | | | A20 ←—f21—— A22 ——f23—→ A24 | | | f30 H31 f32 H33 f34 ↓ ↓ ↓ A40 ←—f41—— A42 ——f43—→ A44 one can build its colimit from pushouts in two ways: - either build pushouts A□0, A□2, A□4 of the lines and then build the pushout A□○ of the resulting diagram A□0 ←—f□1—— A□2 ——f□3—→ A□4 ; - or build pushouts of the columns and build the pushout A○□ of the resulting diagram A0□ ← A2□ → A4□. Then the lemma states there is an equivalence A□○ ≃ A○□. -} record 3x3-span : Type₁ where field A00 A02 A04 A20 A22 A24 A40 A42 A44 : Type₀ f10 : A20 → A00 f12 : A22 → A02 f14 : A24 → A04 f30 : A20 → A40 f32 : A22 → A42 f34 : A24 → A44 f01 : A02 → A00 f21 : A22 → A20 f41 : A42 → A40 f03 : A02 → A04 f23 : A22 → A24 f43 : A42 → A44 H11 : ∀ x → f01 (f12 x) ≡ f10 (f21 x) H13 : ∀ x → f03 (f12 x) ≡ f14 (f23 x) H31 : ∀ x → f41 (f32 x) ≡ f30 (f21 x) H33 : ∀ x → f43 (f32 x) ≡ f34 (f23 x) -- pushouts of the lines A□0 : Type₀ A□0 = Pushout f10 f30 A□2 : Type₀ A□2 = Pushout f12 f32 A□4 : Type₀ A□4 = Pushout f14 f34 -- maps between pushouts f□1 : A□2 → A□0 f□1 (inl x) = inl (f01 x) f□1 (inr x) = inr (f41 x) f□1 (push a j) = ((λ i → inl (H11 a i)) ∙∙ push (f21 a) ∙∙ (λ i → inr (H31 a (~ i)))) j f□3 : A□2 → A□4 f□3 (inl x) = inl (f03 x) f□3 (inr x) = inr (f43 x) f□3 (push a j) = ((λ i → inl (H13 a i)) ∙∙ push (f23 a) ∙∙ (λ i → inr (H33 a (~ i)))) j -- total pushout A□○ : Type₀ A□○ = Pushout f□1 f□3 -- pushouts of the columns A0□ : Type₀ A0□ = Pushout f01 f03 A2□ : Type₀ A2□ = Pushout f21 f23 A4□ : Type₀ A4□ = Pushout f41 f43 -- maps between pushouts f1□ : A2□ → A0□ f1□ (inl x) = inl (f10 x) f1□ (inr x) = inr (f14 x) f1□ (push a j) = ((λ i → inl (H11 a (~ i))) ∙∙ push (f12 a) ∙∙ (λ i → inr (H13 a i))) j f3□ : A2□ → A4□ f3□ (inl x) = inl (f30 x) f3□ (inr x) = inr (f34 x) f3□ (push a j) = ((λ i → inl (H31 a (~ i))) ∙∙ push (f32 a) ∙∙ (λ i → inr (H33 a i))) j -- total pushout A○□ : Type₀ A○□ = Pushout f1□ f3□ -- forward map of the equivalence A□○ ≃ A○□ forward-l : A□0 → A○□ forward-l (inl x) = inl (inl x) forward-l (inr x) = inr (inl x) forward-l (push a i) = push (inl a) i forward-r : A□4 → A○□ forward-r (inl x) = inl (inr x) forward-r (inr x) = inr (inr x) forward-r (push a i) = push (inr a) i forward-filler : A22 → I → I → I → A○□ forward-filler a i j = hfill (λ t → λ { (i = i0) → inl (doubleCompPath-filler (λ k → inl (H11 a (~ k))) (push (f12 a)) (λ k → inr (H13 a k)) (~ t) j) ; (i = i1) → inr (doubleCompPath-filler (λ k → inl (H31 a (~ k))) (push (f32 a)) (λ k → inr (H33 a k)) (~ t) j) ; (j = i0) → forward-l (doubleCompPath-filler (λ k → inl (H11 a k)) (push (f21 a)) (λ k → inr (H31 a (~ k))) t i) ; (j = i1) → forward-r (doubleCompPath-filler (λ k → inl (H13 a k)) (push (f23 a)) (λ k → inr (H33 a (~ k))) t i) }) (inS (push (push a j) i)) A□○→A○□ : A□○ → A○□ A□○→A○□ (inl x) = forward-l x A□○→A○□ (inr x) = forward-r x A□○→A○□ (push (inl x) i) = inl (push x i) A□○→A○□ (push (inr x) i) = inr (push x i) A□○→A○□ (push (push a i) j) = forward-filler a i j i1 -- backward map backward-l : A0□ → A□○ backward-l (inl x) = inl (inl x) backward-l (inr x) = inr (inl x) backward-l (push a i) = push (inl a) i backward-r : A4□ → A□○ backward-r (inl x) = inl (inr x) backward-r (inr x) = inr (inr x) backward-r (push a i) = push (inr a) i backward-filler : A22 → I → I → I → A□○ backward-filler a i j = hfill (λ t → λ { (i = i0) → inl (doubleCompPath-filler (λ k → inl (H11 a k)) (push (f21 a)) (λ k → inr (H31 a (~ k))) (~ t) j) ; (i = i1) → inr (doubleCompPath-filler (λ k → inl (H13 a k)) (push (f23 a)) (λ k → inr (H33 a (~ k))) (~ t) j) ; (j = i0) → backward-l (doubleCompPath-filler (λ k → inl (H11 a (~ k))) (push (f12 a)) (λ k → inr (H13 a k)) t i) ; (j = i1) → backward-r (doubleCompPath-filler (λ k → inl (H31 a (~ k))) (push (f32 a)) (λ k → inr (H33 a k)) t i) }) (inS (push (push a j) i)) A○□→A□○ : A○□ → A□○ A○□→A□○ (inl x) = backward-l x A○□→A□○ (inr x) = backward-r x A○□→A□○ (push (inl x) i) = inl (push x i) A○□→A□○ (push (inr x) i) = inr (push x i) A○□→A□○ (push (push a i) j) = backward-filler a i j i1 -- first homotopy homotopy1-l : ∀ x → A□○→A○□ (backward-l x) ≡ inl x homotopy1-l (inl x) = refl homotopy1-l (inr x) = refl homotopy1-l (push a i) = refl homotopy1-r : ∀ x → A□○→A○□ (backward-r x) ≡ inr x homotopy1-r (inl x) = refl homotopy1-r (inr x) = refl homotopy1-r (push a i) = refl A○□→A□○→A○□ : ∀ x → A□○→A○□ (A○□→A□○ x) ≡ x A○□→A□○→A○□ (inl x) = homotopy1-l x A○□→A□○→A○□ (inr x) = homotopy1-r x A○□→A□○→A○□ (push (inl x) i) k = push (inl x) i A○□→A□○→A○□ (push (inr x) i) k = push (inr x) i A○□→A□○→A○□ (push (push a i) j) k = hcomp (λ t → λ { (i = i0) → forward-l (doubleCompPath-filler (λ k → inl (H11 a k)) (push (f21 a)) (λ k → inr (H31 a (~ k))) (~ t) j) ; (i = i1) → forward-r (doubleCompPath-filler (λ k → inl (H13 a k)) (push (f23 a)) (λ k → inr (H33 a (~ k))) (~ t) j) ; (j = i0) → homotopy1-l (doubleCompPath-filler (λ k → inl (H11 a (~ k))) (push (f12 a)) (λ k → inr (H13 a k)) t i) k ; (j = i1) → homotopy1-r (doubleCompPath-filler (λ k → inl (H31 a (~ k))) (push (f32 a)) (λ k → inr (H33 a k)) t i) k ; (k = i0) → A□○→A○□ (backward-filler a i j t) ; (k = i1) → forward-filler a j i (~ t) }) (forward-filler a j i i1) -- second homotopy homotopy2-l : ∀ x → A○□→A□○ (forward-l x) ≡ inl x homotopy2-l (inl x) = refl homotopy2-l (inr x) = refl homotopy2-l (push a i) = refl homotopy2-r : ∀ x → A○□→A□○ (forward-r x) ≡ inr x homotopy2-r (inl x) = refl homotopy2-r (inr x) = refl homotopy2-r (push a i) = refl A□○→A○□→A□○ : ∀ x → A○□→A□○ (A□○→A○□ x) ≡ x A□○→A○□→A□○ (inl x) = homotopy2-l x A□○→A○□→A□○ (inr x) = homotopy2-r x A□○→A○□→A□○ (push (inl x) i) k = push (inl x) i A□○→A○□→A□○ (push (inr x) i) k = push (inr x) i A□○→A○□→A□○ (push (push a i) j) k = hcomp (λ t → λ { (i = i0) → backward-l (doubleCompPath-filler (λ k → inl (H11 a (~ k))) (push (f12 a)) (λ k → inr (H13 a k)) (~ t) j) ; (i = i1) → backward-r (doubleCompPath-filler (λ k → inl (H31 a (~ k))) (push (f32 a)) (λ k → inr (H33 a k)) (~ t) j) ; (j = i0) → homotopy2-l (doubleCompPath-filler (λ k → inl (H11 a k)) (push (f21 a)) (λ k → inr (H31 a (~ k))) t i) k ; (j = i1) → homotopy2-r (doubleCompPath-filler (λ k → inl (H13 a k)) (push (f23 a)) (λ k → inr (H33 a (~ k))) t i) k ; (k = i0) → A○□→A□○ (forward-filler a i j t) ; (k = i1) → backward-filler a j i (~ t) }) (backward-filler a j i i1) 3x3-Iso : Iso A□○ A○□ Iso.fun 3x3-Iso = A□○→A○□ Iso.inv 3x3-Iso = A○□→A□○ Iso.rightInv 3x3-Iso = A○□→A□○→A○□ Iso.leftInv 3x3-Iso = A□○→A○□→A□○ -- the claimed result 3x3-lemma : A□○ ≡ A○□ 3x3-lemma = isoToPath 3x3-Iso PushoutToProp : {f : A → B} {g : A → C} {D : Pushout f g → Type ℓ'''} → ((x : Pushout f g) → isProp (D x)) → ((a : B) → D (inl a)) → ((c : C) → D (inr c)) → (x : Pushout f g) → D x PushoutToProp isset baseB baseC (inl x) = baseB x PushoutToProp isset baseB baseC (inr x) = baseC x PushoutToProp {f = f} {g = g} isset baseB baseC (push a i) = isOfHLevel→isOfHLevelDep 1 isset (baseB (f a)) (baseC (g a)) (push a) i -- explicit characterisation of equivalences -- Pushout f₁ g₁ ≃ Pushout f₂ g₂ avoiding -- transports open Iso private module PushoutIso {ℓ : Level} {A₁ B₁ C₁ A₂ B₂ C₂ : Type ℓ} (A≃ : A₁ ≃ A₂) (B≃ : B₁ ≃ B₂) (C≃ : C₁ ≃ C₂) (f₁ : A₁ → B₁) (g₁ : A₁ → C₁) (f₂ : A₂ → B₂) (g₂ : A₂ → C₂) (id1 : (fst B≃) ∘ f₁ ≡ f₂ ∘ (fst A≃)) (id2 : (fst C≃) ∘ g₁ ≡ g₂ ∘ (fst A≃)) where F : Pushout f₁ g₁ → Pushout f₂ g₂ F (inl x) = inl (fst B≃ x) F (inr x) = inr (fst C≃ x) F (push a i) = ((λ i → inl (funExt⁻ id1 a i)) ∙∙ push (fst A≃ a) ∙∙ λ i → inr (sym (funExt⁻ id2 a) i)) i G : Pushout f₂ g₂ → Pushout f₁ g₁ G (inl x) = inl (invEq B≃ x) G (inr x) = inr (invEq C≃ x) G (push a i) = ((λ i → inl ((sym (cong (invEq B≃) (funExt⁻ id1 (invEq A≃ a) ∙ cong f₂ (secEq A≃ a))) ∙ retEq B≃ (f₁ (invEq A≃ a))) i)) ∙∙ push (invEq A≃ a) ∙∙ λ i → inr (((sym (retEq C≃ (g₁ (invEq A≃ a))) ∙ (cong (invEq C≃) ((funExt⁻ id2 (invEq A≃ a))))) ∙ cong (invEq C≃) (cong g₂ (secEq A≃ a))) i)) i abbrType₁ : {ℓ : Level} {A₁ B₁ C₁ A₂ B₂ C₂ : Type ℓ} (A≃ : A₁ ≃ A₂) (B≃ : B₁ ≃ B₂) (C≃ : C₁ ≃ C₂) → (f₁ : A₁ → B₁) (g₁ : A₁ → C₁) (f₂ : A₂ → B₂) (g₂ : A₂ → C₂) → (id1 : (fst B≃) ∘ f₁ ≡ f₂ ∘ (fst A≃)) (id2 : (fst C≃) ∘ g₁ ≡ g₂ ∘ (fst A≃)) → Type _ abbrType₁ A≃ B≃ C≃ f₁ g₁ f₂ g₂ id1 id2 = ((x : _) → PushoutIso.F A≃ B≃ C≃ f₁ g₁ f₂ g₂ id1 id2 (PushoutIso.G A≃ B≃ C≃ f₁ g₁ f₂ g₂ id1 id2 x) ≡ x) × ((x : _) → PushoutIso.G A≃ B≃ C≃ f₁ g₁ f₂ g₂ id1 id2 (PushoutIso.F A≃ B≃ C≃ f₁ g₁ f₂ g₂ id1 id2 x) ≡ x) abbrType : {ℓ : Level} {A₁ B₁ C₁ A₂ B₂ C₂ : Type ℓ} (A≃ : A₁ ≃ A₂) (B≃ : B₁ ≃ B₂) (C≃ : C₁ ≃ C₂) → Type _ abbrType {A₁ = A₁} {B₁ = B₁} {C₁ = C₁} {A₂ = A₂} {B₂ = B₂} {C₂ = C₂} A≃ B≃ C≃ = (f₁ : A₁ → B₁) (g₁ : A₁ → C₁) (f₂ : A₂ → B₂) (g₂ : A₂ → C₂) (id1 : (fst B≃) ∘ f₁ ≡ f₂ ∘ (fst A≃)) (id2 : (fst C≃) ∘ g₁ ≡ g₂ ∘ (fst A≃)) → abbrType₁ A≃ B≃ C≃ f₁ g₁ f₂ g₂ id1 id2 F-G-cancel : {ℓ : Level} {A₁ B₁ C₁ A₂ B₂ C₂ : Type ℓ} (A≃ : A₁ ≃ A₂) (B≃ : B₁ ≃ B₂) (C≃ : C₁ ≃ C₂) → abbrType A≃ B≃ C≃ F-G-cancel {A₁ = A₁} {B₁ = B₁} {C₁ = C₁} {A₂ = A₂} {B₂ = B₂} {C₂ = C₂} = EquivJ (λ A₁ A≃ → (B≃ : B₁ ≃ B₂) (C≃ : C₁ ≃ C₂) → abbrType A≃ B≃ C≃) (EquivJ (λ B₁ B≃ → (C≃ : C₁ ≃ C₂) → abbrType (idEquiv A₂) B≃ C≃) (EquivJ (λ C₁ C≃ → abbrType (idEquiv A₂) (idEquiv B₂) C≃) λ f₁ g₁ f₂ g₂ → J (λ f₂ id1 → (id2 : g₁ ≡ g₂) → abbrType₁ (idEquiv A₂) (idEquiv B₂) (idEquiv C₂) f₁ g₁ f₂ g₂ id1 id2) (J (λ g₂ id2 → abbrType₁ (idEquiv A₂) (idEquiv B₂) (idEquiv C₂) f₁ g₁ f₁ g₂ refl id2) (postJ f₁ g₁)))) where postJ : (f₁ : A₂ → B₂) (g₁ : A₂ → C₂) → abbrType₁ (idEquiv A₂) (idEquiv B₂) (idEquiv C₂) f₁ g₁ f₁ g₁ refl refl postJ f₁ g₁ = FF-GG , GG-FF where refl-lem : ∀ {ℓ} {A : Type ℓ} (x : A) → (refl {x = x} ∙ refl) ∙ refl ≡ refl refl-lem x = sym (rUnit _) ∙ sym (rUnit _) FF = PushoutIso.F (idEquiv A₂) (idEquiv B₂) (idEquiv C₂) f₁ g₁ f₁ g₁ refl refl GG = PushoutIso.G (idEquiv A₂) (idEquiv B₂) (idEquiv C₂) f₁ g₁ f₁ g₁ refl refl FF-GG : (x : Pushout f₁ g₁) → FF (GG x) ≡ x FF-GG (inl x) = refl FF-GG (inr x) = refl FF-GG (push a i) j = lem j i where lem : Path (Path (Pushout f₁ g₁) (inl (f₁ a)) (inr (g₁ a))) (cong FF ((λ i → inl (((refl ∙ refl) ∙ (refl {x = f₁ a})) i )) ∙∙ push {f = f₁} {g = g₁} a ∙∙ λ i → inr (((refl ∙ refl) ∙ (refl {x = g₁ a})) i))) (push a) lem = (λ i → cong FF ((λ j → inl (refl-lem (f₁ a) i j)) ∙∙ push a ∙∙ λ j → inr (refl-lem (g₁ a) i j))) ∙∙ cong (cong FF) (sym (rUnit (push a))) ∙∙ sym (rUnit (push a)) GG-FF : (x : _) → GG (FF x) ≡ x GG-FF (inl x) = refl GG-FF (inr x) = refl GG-FF (push a i) j = lem j i where lem : cong GG (refl ∙∙ push a ∙∙ refl) ≡ push a lem = cong (cong GG) (sym (rUnit (push a))) ∙∙ (λ i → ((λ j → inl (refl-lem (f₁ a) i j)) ∙∙ push a ∙∙ λ j → inr (refl-lem (g₁ a) i j))) ∙∙ sym (rUnit (push a)) module _ {ℓ : Level} {A₁ B₁ C₁ A₂ B₂ C₂ : Type ℓ} (f₁ : A₁ → B₁) (g₁ : A₁ → C₁) (f₂ : A₂ → B₂) (g₂ : A₂ → C₂) (A≃ : A₁ ≃ A₂) (B≃ : B₁ ≃ B₂) (C≃ : C₁ ≃ C₂) (id1 : fst B≃ ∘ f₁ ≡ f₂ ∘ fst A≃) (id2 : fst C≃ ∘ g₁ ≡ g₂ ∘ fst A≃) where private module P = PushoutIso A≃ B≃ C≃ f₁ g₁ f₂ g₂ id1 id2 l-r-cancel = F-G-cancel A≃ B≃ C≃ f₁ g₁ f₂ g₂ id1 id2 pushoutIso : Iso (Pushout f₁ g₁) (Pushout f₂ g₂) fun pushoutIso = P.F inv pushoutIso = P.G rightInv pushoutIso = fst l-r-cancel leftInv pushoutIso = snd l-r-cancel pushoutEquiv : Pushout f₁ g₁ ≃ Pushout f₂ g₂ pushoutEquiv = isoToEquiv pushoutIso
35.268627
152
0.487352