hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
dc5d9c1bbbe51afcc95e90caffe84119b9b4b2e1
1,100
agda
Agda
test/interaction/Issue373.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T04:41:05.000Z
2019-11-27T04:41:05.000Z
test/interaction/Issue373.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/interaction/Issue373.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module Issue373 where data ⊤ : Set where tt : ⊤ {-# COMPILED_DATA ⊤ () () #-} data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ {-# BUILTIN NATURAL ℕ #-} {-# BUILTIN ZERO zero #-} {-# BUILTIN SUC suc #-} {-# IMPORT Imports.Nat #-} {-# COMPILED_DATA ℕ Imports.Nat.Nat Imports.Nat.Zero Imports.Nat.Suc #-} data List (A : Set) : Set where [] : List A _∷_ : A → List A → List A {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _∷_ #-} {-# COMPILED_DATA List [] [] (:) #-} postulate String : Set {-# BUILTIN STRING String #-} {-# COMPILED_TYPE String String #-} postulate IO : Set → Set {-# BUILTIN IO IO #-} {-# COMPILED_TYPE IO IO #-} infixl 1 _>>=_ postulate _>>=_ : ∀ {A B} → IO A → (A → IO B) → IO B {-# COMPILED _>>=_ (\_ _ -> (>>=) :: IO a -> (a -> IO b) -> IO b) #-} postulate putStrLn : String → IO ⊤ {-# COMPILED putStrLn putStrLn #-} f : ℕ → String f zero = "bad" f _ = "ok" -- Works: -- main = putStrLn (f (suc zero)) -- Compiles, but when the program is run we (used to) get the output -- "bad": main = putStrLn (f 1)
17.460317
72
0.543636
dfbb13bbd225e822ff6a2a00d9b154b5ac8b3fb2
1,641
agda
Agda
Cubical/Data/HomotopyGroup/Base.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Data/HomotopyGroup/Base.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Data/HomotopyGroup/Base.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.HomotopyGroup.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels import Cubical.Foundations.GroupoidLaws as GL open import Cubical.Foundations.Pointed open import Cubical.Data.Nat open import Cubical.Algebra.Group open import Cubical.Homotopy.Loopspace open import Cubical.HITs.SetTruncation as SetTrunc π^_ : ∀ {ℓ} → ℕ → Pointed ℓ → Group π^_ {ℓ} n p = makeGroup e _⨀_ _⁻¹ setTruncIsSet assoc rUnit lUnit rCancel lCancel where n' : ℕ n' = suc n A : Type ℓ A = typ ((Ω^ n') p) e : ∥ A ∥₂ e = ∣ pt ((Ω^ n') p) ∣₂ _⁻¹ : ∥ A ∥₂ → ∥ A ∥₂ _⁻¹ = SetTrunc.elim {B = λ _ → ∥ A ∥₂} (λ x → squash₂) λ a → ∣ sym a ∣₂ _⨀_ : ∥ A ∥₂ → ∥ A ∥₂ → ∥ A ∥₂ _⨀_ = SetTrunc.elim2 (λ _ _ → squash₂) λ a₀ a₁ → ∣ a₀ ∙ a₁ ∣₂ lUnit : (a : ∥ A ∥₂) → (e ⨀ a) ≡ a lUnit = SetTrunc.elim (λ _ → isProp→isSet (squash₂ _ _)) (λ a → cong ∣_∣₂ (sym (GL.lUnit a) )) rUnit : (a : ∥ A ∥₂) → a ⨀ e ≡ a rUnit = SetTrunc.elim (λ _ → isProp→isSet (squash₂ _ _)) (λ a → cong ∣_∣₂ (sym (GL.rUnit a) )) assoc : (a b c : ∥ A ∥₂) → a ⨀ (b ⨀ c) ≡ (a ⨀ b) ⨀ c assoc = SetTrunc.elim3 (λ _ _ _ → isProp→isSet (squash₂ _ _)) (λ a b c → cong ∣_∣₂ (GL.assoc _ _ _)) lCancel : (a : ∥ A ∥₂) → ((a ⁻¹) ⨀ a) ≡ e lCancel = SetTrunc.elim (λ _ → isProp→isSet (squash₂ _ _)) λ a → cong ∣_∣₂ (GL.lCancel _) rCancel : (a : ∥ A ∥₂) → (a ⨀ (a ⁻¹)) ≡ e rCancel = SetTrunc.elim (λ _ → isProp→isSet (squash₂ _ _)) λ a → cong ∣_∣₂ (GL.rCancel _)
30.962264
81
0.551493
4158eb7435fa73af60363bf3314cfc238ed15369
2,087
agda
Agda
src/Data/QuadTree/FunctorProofs/Valid-QuadTreeFunctor.agda
JonathanBrouwer/research-project
4959a3c9cd8563a1726e0e968e6a179008cd4d9f
[ "Unlicense" ]
1
2021-05-25T09:10:20.000Z
2021-05-25T09:10:20.000Z
src/Data/QuadTree/FunctorProofs/Valid-QuadTreeFunctor.agda
JonathanBrouwer/research-project
4959a3c9cd8563a1726e0e968e6a179008cd4d9f
[ "Unlicense" ]
null
null
null
src/Data/QuadTree/FunctorProofs/Valid-QuadTreeFunctor.agda
JonathanBrouwer/research-project
4959a3c9cd8563a1726e0e968e6a179008cd4d9f
[ "Unlicense" ]
null
null
null
-- {-# OPTIONS --show-implicit --show-irrelevant #-} module Data.QuadTree.FunctorProofs.Valid-QuadTreeFunctor where open import Haskell.Prelude renaming (zero to Z; suc to S) open import Data.Logic open import Data.QuadTree.InternalAgda open import Agda.Primitive open import Data.QuadTree.FunctorProofs.FunctorLaws open import Data.QuadTree.FunctorProofs.Valid-QuadrantFunctor open import Data.QuadTree.Implementation.Definition open import Data.QuadTree.Implementation.ValidTypes open import Data.QuadTree.Implementation.Functors open import Data.QuadTree.Implementation.QuadrantLenses ValidFunctor-QuadTree-IdentityLaw : (dep : Nat) -> IdentityLaw (λ y -> VQuadTree y {dep}) {{quadtreeFunctor dep}} ValidFunctor-QuadTree-IdentityLaw dep (CVQuadTree (Wrapper (w , h) qd) {p}) = begin toQt dep w h _ (fmapₑ (quadrantFunctor dep) id (CVQuadrant qd)) =⟨ cong (toQt dep w h _) (ValidFunctor-Quadrant-IdentityLaw dep (CVQuadrant qd)) ⟩ toQt dep w h _ (CVQuadrant qd) end toQt-fmap : {a b : Set} {{eqA : Eq a}} {{eqB : Eq b}} (dep w h : Nat) (g : a -> b) (v : VQuadrant a {dep}) .(q : IsTrue (dep == log2up (if w < h then h else w))) -> toQt dep w h q (fmapₑ (quadrantFunctor dep) g v) ≡ fmapₑ (quadtreeFunctor dep) g (toQt dep w h q v) toQt-fmap dep w h g (CVQuadrant (Leaf x)) q = refl toQt-fmap dep w h g (CVQuadrant (Node qd qd₁ qd₂ qd₃)) q = refl ValidFunctor-QuadTree-CompositionLaw : (dep : Nat) -> CompositionLaw (λ y -> VQuadTree y {dep}) {{quadtreeFunctor dep}} ValidFunctor-QuadTree-CompositionLaw dep (CVQuadTree (Wrapper (w , h) qd) {p} {q}) f g = begin toQt dep w h _ (fmapₑ (quadrantFunctor dep) (g ∘ f) (CVQuadrant qd)) =⟨ cong (toQt dep w h _) (ValidFunctor-Quadrant-CompositionLaw dep (CVQuadrant qd) f g) ⟩ toQt dep w h _ (fmapₑ (quadrantFunctor dep) g (fmapₑ (quadrantFunctor dep) f (CVQuadrant qd))) =⟨ toQt-fmap dep w h g (fmapₑ (quadrantFunctor dep) f (CVQuadrant qd)) q ⟩ fmapₑ (quadtreeFunctor dep) g (toQt dep w h _ (fmapₑ (quadrantFunctor dep) f (CVQuadrant qd))) end where
53.512821
161
0.701485
1db86558239b2c150e8a7127d080f1257080f47c
547
agda
Agda
src/NTypes/Product.agda
vituscze/HoTT-lectures
7730385adfdbdda38ee8b124be3cdeebb7312c65
[ "BSD-3-Clause" ]
null
null
null
src/NTypes/Product.agda
vituscze/HoTT-lectures
7730385adfdbdda38ee8b124be3cdeebb7312c65
[ "BSD-3-Clause" ]
null
null
null
src/NTypes/Product.agda
vituscze/HoTT-lectures
7730385adfdbdda38ee8b124be3cdeebb7312c65
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K #-} module NTypes.Product where open import NTypes open import PathOperations open import PathStructure.Product open import Types ×-isSet : ∀ {a b} {A : Set a} {B : Set b} → isSet A → isSet B → isSet (A × B) ×-isSet A-set B-set x y p q = split-eq p ⁻¹ · ap (λ y → ap₂ _,_ y (ap π₂ p)) (A-set _ _ (ap π₁ p) (ap π₁ q)) · ap (λ y → ap₂ _,_ (ap π₁ q) y) (B-set _ _ (ap π₂ p) (ap π₂ q)) · split-eq q where split-eq : (p : x ≡ y) → ap₂ _,_ (ap π₁ p) (ap π₂ p) ≡ p split-eq = π₂ (π₂ (π₂ split-merge-eq))
26.047619
58
0.570384
1a27eab9a6f7f53e2b7239e7f08d8cf14da28b0d
3,093
agda
Agda
deBruijn/Context/Extension/Isomorphic.agda
nad/dependently-typed-syntax
498f8aefc570f7815fd1d6616508eeb92c52abce
[ "MIT" ]
5
2020-04-16T12:14:44.000Z
2020-07-08T22:51:36.000Z
deBruijn/Context/Extension/Isomorphic.agda
nad/dependently-typed-syntax
498f8aefc570f7815fd1d6616508eeb92c52abce
[ "MIT" ]
null
null
null
deBruijn/Context/Extension/Isomorphic.agda
nad/dependently-typed-syntax
498f8aefc570f7815fd1d6616508eeb92c52abce
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The two definitions of context extensions are isomorphic ------------------------------------------------------------------------ open import Data.Universe.Indexed module deBruijn.Context.Extension.Isomorphic {i u e} (Uni : IndexedUniverse i u e) where import deBruijn.Context.Basics as Basics import deBruijn.Context.Extension.Left as Left import deBruijn.Context.Extension.Right as Right open import Function.Base open import Function.Inverse using (_↔_) import Relation.Binary.PropositionalEquality as P open Basics Uni open Left Uni open Right Uni open P.≡-Reasoning -- Ctxt₊-s can be turned into Ctxt⁺-s. ₊-to-⁺ : ∀ {Γ} → Ctxt₊ Γ → Ctxt⁺ Γ ₊-to-⁺ ε = ε ₊-to-⁺ (σ ◅ Γ₊) = ε ▻ σ ⁺++⁺ ₊-to-⁺ Γ₊ abstract -- The semantics is preserved. ++⁺-₊-to-⁺ : ∀ {Γ} (Γ₊ : Ctxt₊ Γ) → Γ ++₊ Γ₊ ≅-Ctxt Γ ++⁺ ₊-to-⁺ Γ₊ ++⁺-₊-to-⁺ ε = P.refl ++⁺-₊-to-⁺ {Γ} (σ ◅ Γ₊) = begin Γ ▻ σ ++₊ Γ₊ ≡⟨ ++⁺-₊-to-⁺ Γ₊ ⟩ Γ ▻ σ ++⁺ ₊-to-⁺ Γ₊ ≡⟨ ++⁺-++⁺ (ε ▻ σ) (₊-to-⁺ Γ₊) ⟩ Γ ++⁺ (ε ▻ σ ⁺++⁺ ₊-to-⁺ Γ₊) ∎ mutual -- Ctxt⁺-s can be turned into Ctxt₊-s. ⁺-to-₊ : ∀ {Γ} → Ctxt⁺ Γ → Ctxt₊ Γ ⁺-to-₊ ε = ε ⁺-to-₊ (Γ⁺ ▻ σ) = ⁺-to-₊ Γ⁺ ₊++₊ P.subst Ctxt₊ (++₊-⁺-to-₊ Γ⁺) (σ ◅ ε) abstract -- The semantics is preserved. ++₊-⁺-to-₊ : ∀ {Γ} (Γ⁺ : Ctxt⁺ Γ) → Γ ++⁺ Γ⁺ ≅-Ctxt Γ ++₊ ⁺-to-₊ Γ⁺ ++₊-⁺-to-₊ ε = P.refl ++₊-⁺-to-₊ {Γ} (Γ⁺ ▻ σ) = let σ◅ε = P.subst Ctxt₊ (++₊-⁺-to-₊ Γ⁺) (σ ◅ ε) in begin Γ ++⁺ Γ⁺ ▻ σ ≡⟨ P.refl ⟩ Γ ++⁺ Γ⁺ ++₊ (σ ◅ ε) ≡⟨ P.sym $ ++₊-cong $ drop-subst-Ctxt₊ id (++₊-⁺-to-₊ Γ⁺) ⟩ Γ ++₊ ⁺-to-₊ Γ⁺ ++₊ σ◅ε ≡⟨ ++₊-++₊ (⁺-to-₊ Γ⁺) σ◅ε ⟩ Γ ++₊ (⁺-to-₊ Γ⁺ ₊++₊ σ◅ε) ∎ -- Some congruence lemmas. ₊-to-⁺-cong : ∀ {Γ₁} {Γ₊₁ : Ctxt₊ Γ₁} {Γ₂} {Γ₊₂ : Ctxt₊ Γ₂} → Γ₊₁ ≅-Ctxt₊ Γ₊₂ → ₊-to-⁺ Γ₊₁ ≅-Ctxt⁺ ₊-to-⁺ Γ₊₂ ₊-to-⁺-cong P.refl = P.refl ⁺-to-₊-cong : ∀ {Γ₁} {Γ⁺₁ : Ctxt⁺ Γ₁} {Γ₂} {Γ⁺₂ : Ctxt⁺ Γ₂} → Γ⁺₁ ≅-Ctxt⁺ Γ⁺₂ → ⁺-to-₊ Γ⁺₁ ≅-Ctxt₊ ⁺-to-₊ Γ⁺₂ ⁺-to-₊-cong P.refl = P.refl -- Ctxt⁺ and Ctxt₊ are isomorphic. Ctxt⁺↔Ctxt₊ : ∀ Γ → Ctxt⁺ Γ ↔ Ctxt₊ Γ Ctxt⁺↔Ctxt₊ Γ = record { to = P.→-to-⟶ ⁺-to-₊ ; from = P.→-to-⟶ ₊-to-⁺ ; inverse-of = record { left-inverse-of = λ Γ⁺ → ≅-Ctxt⁺-⇒-≡ $ ₊-to-⁺-⁺-to-₊ Γ⁺ ; right-inverse-of = λ Γ₊ → ≅-Ctxt₊-⇒-≡ $ ⁺-to-₊-₊-to-⁺ Γ₊ } } where abstract ₊-to-⁺-⁺-to-₊ : (Γ⁺ : Ctxt⁺ Γ) → ₊-to-⁺ (⁺-to-₊ Γ⁺) ≅-Ctxt⁺ Γ⁺ ₊-to-⁺-⁺-to-₊ Γ⁺ = cancel-++⁺-left _ _ (begin Γ ++⁺ ₊-to-⁺ (⁺-to-₊ Γ⁺) ≡⟨ P.sym $ ++⁺-₊-to-⁺ (⁺-to-₊ Γ⁺) ⟩ Γ ++₊ (⁺-to-₊ Γ⁺) ≡⟨ P.sym $ ++₊-⁺-to-₊ Γ⁺ ⟩ Γ ++⁺ Γ⁺ ∎) ⁺-to-₊-₊-to-⁺ : (Γ₊ : Ctxt₊ Γ) → ⁺-to-₊ (₊-to-⁺ Γ₊) ≅-Ctxt₊ Γ₊ ⁺-to-₊-₊-to-⁺ Γ₊ = cancel-++₊-left _ _ (begin Γ ++₊ ⁺-to-₊ (₊-to-⁺ Γ₊) ≡⟨ P.sym $ ++₊-⁺-to-₊ (₊-to-⁺ Γ₊) ⟩ Γ ++⁺ (₊-to-⁺ Γ₊) ≡⟨ P.sym $ ++⁺-₊-to-⁺ Γ₊ ⟩ Γ ++₊ Γ₊ ∎)
31.242424
93
0.388943
a1d38ed5eaba6fbfdc5770f9b843ddcaafa424ce
968
agda
Agda
test/succeed/Issue458.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/Issue458.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/Issue458.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
-- The type checker was a little too eager to prune metavariables in -- order to get the occurs check to pass. In this particular case it -- got the constraint -- _41 A B x == B (_42 A B (x , y)) -- and tried to make it work by pruning the third argument to _42. The -- correct solution _42 A B p := fst p was thus lost. module Issue458 where data Σ (A : Set) (B : A -> Set) : Set where _,_ : (x : A) (y : B x) → Σ A B uncurry : {A : Set} {B : A → Set} {P : Σ A B → Set} → ((x : A) (y : B x) → P (x , y)) → (p : Σ A B) → P p uncurry f (x , y) = f x y fst : {A : Set} {B : A → Set} → Σ A B → A fst = uncurry λ x y → x snd : {A : Set} {B : A → Set} (p : Σ A B) → B (fst p) snd = uncurry λ x y → y -- Bug.agda:15,7-24 -- Cannot instantiate the metavariable _50 to .B x since it contains -- the variable x which is not in scope of the metavariable -- when checking that the expression uncurry (λ x y → y) has type -- (p : Σ .A .B) → .B (fst p)
35.851852
70
0.577479
13173525c72994e03a8639c37cff471a3a4de5ca
1,554
agda
Agda
src/data/lib/prim/Agda/Builtin/String.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2020-04-26T09:35:17.000Z
2020-04-26T09:35:17.000Z
src/data/lib/prim/Agda/Builtin/String.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2020-05-29T19:45:38.000Z
2020-05-29T19:45:38.000Z
src/data/lib/prim/Agda/Builtin/String.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2021-06-14T11:07:38.000Z
2021-06-14T11:07:38.000Z
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness --no-subtyping #-} module Agda.Builtin.String where open import Agda.Builtin.Bool open import Agda.Builtin.Char open import Agda.Builtin.List open import Agda.Builtin.Maybe open import Agda.Builtin.Nat using (Nat) open import Agda.Builtin.Sigma postulate String : Set {-# BUILTIN STRING String #-} primitive primStringUncons : String → Maybe (Σ Char (λ _ → String)) primStringToList : String → List Char primStringFromList : List Char → String primStringAppend : String → String → String primStringEquality : String → String → Bool primShowChar : Char → String primShowString : String → String primShowNat : Nat → String {-# COMPILE JS primStringUncons = function(x) { if (x === "") { return z_jAgda_Agda_Builtin_Maybe["Maybe"]["nothing"]; }; return z_jAgda_Agda_Builtin_Maybe["Maybe"]["just"](z_jAgda_Agda_Builtin_Sigma["_,_"](x.charAt(0))(x.slice(1))); } #-} {-# COMPILE JS primStringToList = function(x) { return x.split(""); } #-} {-# COMPILE JS primStringFromList = function(x) { return x.join(""); } #-} {-# COMPILE JS primStringAppend = function(x) { return function(y) { return x+y; }; } #-} {-# COMPILE JS primStringEquality = function(x) { return function(y) { return x===y; }; } #-} {-# COMPILE JS primShowChar = function(x) { return JSON.stringify(x); } #-} {-# COMPILE JS primShowString = function(x) { return JSON.stringify(x); } #-} {-# COMPILE JS primShowNat = function(x) { return JSON.stringify(x); } #-}
40.894737
114
0.676319
597446915666b42c732794813b81f9b77d5b7b2d
7,759
agda
Agda
theorems/homotopy/SphereEndomorphism.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
theorems/homotopy/SphereEndomorphism.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
theorems/homotopy/SphereEndomorphism.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.LoopSpaceCircle open import homotopy.PinSn module homotopy.SphereEndomorphism where Sphere-endo : ∀ n → Type₀ Sphere-endo n = Sphere n → Sphere n ⊙Sphere-endo : ∀ n → Type₀ ⊙Sphere-endo n = ⊙Sphere n ⊙→ ⊙Sphere n {- ⊙LiftSphere-endo : ∀ {i} n → Type i ⊙LiftSphere-endo {i} n = ⊙Lift {j = i} (⊙Sphere n) ⊙→ ⊙Lift {j = i} (⊙Sphere n) -} Trunc-Sphere-endo : ∀ n → Type₀ Trunc-Sphere-endo = Trunc 0 ∘ Sphere-endo Trunc-⊙Sphere-endo : ∀ n → Type₀ Trunc-⊙Sphere-endo = Trunc 0 ∘ ⊙Sphere-endo {- Trunc-⊙LiftSphere-endo : ∀ {i} n → Type i Trunc-⊙LiftSphere-endo {i} = Trunc 0 ∘ ⊙LiftSphere-endo {i} -} {- Part 0: pointedness is free -} Trunc-⊙Sphere-endo-out : ∀ n → Trunc-⊙Sphere-endo n → Trunc-Sphere-endo n Trunc-⊙Sphere-endo-out n = Trunc-fmap fst -- For [S¹], the pointedness is free because of the commutativity of its loop space. -- favonia: maybe one can simplify the proofs through -- an intermediate type [Σ S¹ (λ x → x == x)]? private ⊙S¹-endo-in' : (base* : S¹) (loop* : base* == base*) → (⊙S¹ ⊙→ ⊙S¹) ⊙S¹-endo-in' = S¹-elim (λ loop* → S¹-rec base loop* , idp) (↓-app→cst-in λ r → ap (λ loop* → (S¹-rec base loop* , idp)) (lemma₀ r)) where abstract lemma₀ : ∀ {loop₁ loop₂} → loop₁ == loop₂ [ (λ x → x == x) ↓ loop ] → loop₁ == loop₂ lemma₀ {loop₁} {loop₂} p = anti-whisker-right loop $ loop₁ ∙ loop =⟨ ↓-idf=idf-out' p ⟩ loop ∙' loop₂ =⟨ ∙'=∙ loop loop₂ ⟩ loop ∙ loop₂ =⟨ ΩS¹-is-abelian loop loop₂ ⟩ loop₂ ∙ loop =∎ ⊙S¹-endo-in : (S¹ → S¹) → (⊙S¹ ⊙→ ⊙S¹) ⊙S¹-endo-in f = ⊙S¹-endo-in' (f base) (ap f loop) Trunc-⊙S¹-endo-in : Trunc 0 (S¹ → S¹) → Trunc 0 (⊙S¹ ⊙→ ⊙S¹) Trunc-⊙S¹-endo-in = Trunc-fmap ⊙S¹-endo-in abstract Trunc-⊙S¹-endo-in-η : ∀ f → Trunc-⊙S¹-endo-in (Trunc-⊙Sphere-endo-out 1 f) == f Trunc-⊙S¹-endo-in-η = Trunc-elim λ{(f , pt) → ap [_] $ ⊙S¹-endo-in'-shifted pt (ap f loop) ∙ ⊙λ= (S¹-rec-η f , idp)} where -- free one end to apply identification elimination ⊙S¹-endo-in'-shifted : {base* : S¹} (shift : base* == base) (loop* : base* == base*) → ⊙S¹-endo-in' base* loop* == (S¹-rec base* loop* , shift) ⊙S¹-endo-in'-shifted idp _ = idp Trunc-⊙S¹-endo-out-β : ∀ f → Trunc-⊙Sphere-endo-out 1 (Trunc-⊙S¹-endo-in f) == f Trunc-⊙S¹-endo-out-β = Trunc-elim λ f → ! (ap (λ f → [ fst (⊙S¹-endo-in f) ]) (λ= $ S¹-rec-η f)) ∙ ⊙S¹-endo-out-β (f base) (ap f loop) ∙ ap [_] (λ= $ S¹-rec-η f) where -- free [base*] to apply circle elimination ⊙S¹-endo-out-β : (base* : S¹) (loop* : base* == base*) → [ fst (⊙S¹-endo-in (S¹-rec base* loop*)) ] == [ S¹-rec base* loop* ] :> Trunc 0 (S¹ → S¹) ⊙S¹-endo-out-β = S¹-elim (λ loop* → ap (λ loop* → [ S¹-rec base loop* ]) (S¹Rec.loop-β base loop*)) prop-has-all-paths-↓ Trunc-⊙S¹-endo-out-is-equiv : is-equiv (Trunc-⊙Sphere-endo-out 1) Trunc-⊙S¹-endo-out-is-equiv = is-eq _ Trunc-⊙S¹-endo-in Trunc-⊙S¹-endo-out-β Trunc-⊙S¹-endo-in-η -- For [Sphere (S (S n))], the pointedness is free because of its connectivity. private SphereSS-conn : ∀ n → is-connected 1 (Sphere (S (S n))) SphereSS-conn n = connected-≤T (≤T-+2+-l 1 (-2≤T ⟨ n ⟩₋₂)) SphereSS-conn-path : ∀ n (x y : Sphere (S (S n))) → is-connected 0 (x == y) SphereSS-conn-path n x y = path-conn (SphereSS-conn n) SphereSS-has-all-trunc-paths : ∀ n (x y : Sphere (S (S n))) → Trunc 0 (x == y) SphereSS-has-all-trunc-paths n x y = –> (Trunc=-equiv [ x ] [ y ]) (contr-has-all-paths {{SphereSS-conn n}} [ x ] [ y ]) Trunc-⊙SphereSS-endo-in : ∀ n → Trunc-Sphere-endo (S (S n)) → Trunc-⊙Sphere-endo (S (S n)) Trunc-⊙SphereSS-endo-in n = Trunc-rec λ f → Trunc-rec (λ pt → [ f , pt ]) (SphereSS-has-all-trunc-paths n (f north) north) abstract Trunc-⊙SphereSS-endo-in-η : ∀ n f → Trunc-⊙SphereSS-endo-in n (Trunc-⊙Sphere-endo-out (S (S n)) f) == f Trunc-⊙SphereSS-endo-in-η n = Trunc-elim λ{(f , pt) → ap (Trunc-rec (λ pt → [ f , pt ])) (contr-has-all-paths {{SphereSS-conn-path n (f north) north}} (SphereSS-has-all-trunc-paths n (f north) north) [ pt ])} Trunc-⊙SphereSS-endo-out-β : ∀ n f → Trunc-⊙Sphere-endo-out (S (S n)) (Trunc-⊙SphereSS-endo-in n f) == f Trunc-⊙SphereSS-endo-out-β n = Trunc-elim λ f → Trunc-elim {P = λ pt → Trunc-⊙Sphere-endo-out (S (S n)) (Trunc-rec (λ pt → [ f , pt ]) pt) == [ f ]} (λ pt → idp) (SphereSS-has-all-trunc-paths n (f north) north) Trunc-⊙SphereSS-endo-out-is-equiv : ∀ n → is-equiv (Trunc-⊙Sphere-endo-out (S (S n))) Trunc-⊙SphereSS-endo-out-is-equiv n = is-eq (Trunc-⊙Sphere-endo-out (S (S n))) (Trunc-⊙SphereSS-endo-in n) (Trunc-⊙SphereSS-endo-out-β n) (Trunc-⊙SphereSS-endo-in-η n) -- the unified interface Trunc-⊙SphereS-endo-out-is-equiv : ∀ n → is-equiv (Trunc-⊙Sphere-endo-out (S n)) Trunc-⊙SphereS-endo-out-is-equiv 0 = Trunc-⊙S¹-endo-out-is-equiv Trunc-⊙SphereS-endo-out-is-equiv (S n) = Trunc-⊙SphereSS-endo-out-is-equiv n Trunc-⊙SphereS-endo-in : ∀ n → Trunc-Sphere-endo (S n) → Trunc-⊙Sphere-endo (S n) Trunc-⊙SphereS-endo-in n = is-equiv.g (Trunc-⊙SphereS-endo-out-is-equiv n) {- Part 1: suspension is an isomorphism -} private open import homotopy.Freudenthal SSSSk≤SSk+2+SSk : ∀ k → S (S (S (S k))) ≤T S (S k) +2+ S (S k) SSSSk≤SSk+2+SSk k = ≤T-+2+-l 0 $ ≤T-+2+-r (S (S k)) $ -2≤T k SSn≤n+2+n : ∀ n → S (S ⟨ n ⟩) ≤T ⟨ n ⟩ +2+ ⟨ n ⟩ SSn≤n+2+n n = SSSSk≤SSk+2+SSk ⟨ n ⟩₋₂ module F n = FreudenthalEquiv ⟨ n ⟩₋₁ _ (SSn≤n+2+n n) (⊙Sphere (S (S n))) {{Sphere-conn (S (S n))}} import homotopy.TruncationLoopLadder as TLL import homotopy.SuspAdjointLoop as SAL import homotopy.SuspAdjointLoopLadder as SALL import homotopy.CircleHSpace as CHS import homotopy.Pi2HSusp as Pi2 ⊙up : ∀ n → ⊙Sphere n ⊙→ ⊙Ω (⊙Sphere (S n)) ⊙up n = SAL.η (⊙Sphere n) Ω^'S-Trunc-up-is-equiv : ∀ n → is-equiv (Ω^'-fmap (S n) (⊙Trunc-fmap {n = ⟨ S n ⟩} (⊙up (S n)))) Ω^'S-Trunc-up-is-equiv O = snd (Ω-emap (Pi2.⊙eq⁻¹ CHS.⊙S¹-hSpace)) Ω^'S-Trunc-up-is-equiv (S n) = snd (Ω^'-emap (S (S n)) (F.⊙eq n)) Trunc-Ω^'S-up-is-equiv : ∀ n → is-equiv (Trunc-fmap {n = 0} (Ω^'-fmap (S n) (⊙up (S n)))) Trunc-Ω^'S-up-is-equiv n = ⊙CommSquareEquiv-preserves-equiv (TLL.ladder (S n) (⊙up (S n))) (Ω^'S-Trunc-up-is-equiv n) Trunc-post⊙∘-Ω^'S-up-is-equiv : ∀ n → is-equiv (Trunc-fmap {n = 0} ((⊙Ω^'-fmap (S n) (⊙up (S n)) ⊙∘_) :> (_ → ⊙Bool ⊙→ _))) Trunc-post⊙∘-Ω^'S-up-is-equiv n = CommSquareEquiv-preserves'-equiv (Trunc-csemap (⊙Bool→-equiv-idf-nat (⊙Ω^'-fmap (S n) (⊙up (S n))))) (Trunc-Ω^'S-up-is-equiv n) Trunc-post⊙∘-upS-is-equiv : ∀ n → is-equiv (Trunc-fmap {n = 0} ((⊙up (S n) ⊙∘_) :> (_ → ⊙Sphere (S n) ⊙→ _))) Trunc-post⊙∘-upS-is-equiv n = CommSquareEquiv-preserves'-equiv (Trunc-csemap (SALL.ladder (S n) (⊙up (S n)))) (Trunc-post⊙∘-Ω^'S-up-is-equiv n) final-fix : ∀ n → CommSquareEquiv (⊙Susp-fmap :> (⊙Sphere-endo (S n) → _)) (SAL.η _ ⊙∘_) (idf _) (–> (SAL.eq _ _)) final-fix n = comm-sqr (λ f → ! (SAL.η-natural f)) , idf-is-equiv _ , snd (SAL.eq _ _) Trunc-⊙SphereS-endo-Susp-is-equiv : ∀ n → is-equiv (Trunc-fmap ⊙Susp-fmap :> (Trunc-⊙Sphere-endo (S n) → _)) Trunc-⊙SphereS-endo-Susp-is-equiv n = CommSquareEquiv-preserves'-equiv (Trunc-csemap (final-fix n)) (Trunc-post⊙∘-upS-is-equiv n)
38.98995
121
0.559479
1a6ab397a1ed9add09e18c6947fbc8cfe6050ef3
905
agda
Agda
Groups/Isomorphisms/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Groups/Isomorphisms/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Groups/Isomorphisms/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import Setoids.Setoids open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Groups.Definition open import Groups.Homomorphisms.Definition module Groups.Isomorphisms.Definition where record GroupIso {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·A_ : A → A → A} {B : Set n} {T : Setoid {n} {p} B} {_·B_ : B → B → B} (G : Group S _·A_) (H : Group T _·B_) (f : A → B) : Set (m ⊔ n ⊔ o ⊔ p) where open Setoid S renaming (_∼_ to _∼G_) open Setoid T renaming (_∼_ to _∼H_) field groupHom : GroupHom G H f bij : SetoidBijection S T f record GroupsIsomorphic {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·A_ : A → A → A} {B : Set n} {T : Setoid {n} {p} B} {_·B_ : B → B → B} (G : Group S _·A_) (H : Group T _·B_) : Set (m ⊔ n ⊔ o ⊔ p) where field isomorphism : A → B proof : GroupIso G H isomorphism
43.095238
215
0.59779
2e7dd48d2e9d19e27bcd6fa04576f1139bc1e00c
1,061
agda
Agda
old/Spaces/WedgeCircles.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
old/Spaces/WedgeCircles.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
old/Spaces/WedgeCircles.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K #-} open import Base module Spaces.WedgeCircles {i} (A : Set i) where {- The idea is data wedge-circles : Set (suc i) where base : wedge-circles loops : A → base ≡ base -} private data #wedge-circles : Set (suc i) where #base : #wedge-circles wedge-circles : Set (suc i) wedge-circles = #wedge-circles base : wedge-circles base = #base postulate -- HIT loops : A → base ≡ base wedge-circles-rec : ∀ {i} (P : wedge-circles → Set i) (x : P base) (p : (t : A) → transport P (loops t) x ≡ x) → ((t : wedge-circles) → P t) wedge-circles-rec P x p #base = x postulate -- HIT β : ∀ {i} (P : wedge-circles → Set i) (x : P base) (p : (t : A) → transport P (loops t) x ≡ x) (t : A) → apd (wedge-circles-rec P x p) (loops t) ≡ p t wedge-circles-rec-nondep : ∀ {i} (B : Set i) (x : B) (p : A → x ≡ x) → (wedge-circles → B) wedge-circles-rec-nondep B x p #base = x postulate -- HIT β-nondep : ∀ {i} (B : Set i) (x : B) (p : A → x ≡ x) (t : A) → ap (wedge-circles-rec-nondep B x p) (loops t) ≡ p t
24.113636
75
0.569274
0660a8cfdfc52b6dfd4d319ed0887d574624a828
16,220
agda
Agda
src/Implicits/Substitutions/Lemmas/MetaType.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
4
2019-04-05T17:57:11.000Z
2021-05-07T04:08:41.000Z
src/Implicits/Substitutions/Lemmas/MetaType.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
src/Implicits/Substitutions/Lemmas/MetaType.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
open import Prelude hiding (subst; module Fin) module Implicits.Substitutions.Lemmas.MetaType where open import Implicits.Syntax.Type open import Implicits.Syntax.Term hiding (var) open import Implicits.Syntax.Context open import Implicits.WellTyped open import Implicits.Substitutions open import Data.Vec hiding ([_]) open import Data.Fin as Fin using () open import Data.Fin.Substitution open import Data.Fin.Substitution.Lemmas open import Data.Vec.Properties open import Data.Nat.Properties.Simple open import Extensions.Substitution open import Relation.Binary.HeterogeneousEquality as H using () private module HR = H.≅-Reasoning module MetaTypeTypeLemmas where open MetaTypeTypeSubst hiding (_/✶_) open import Implicits.Syntax.MetaType open import Data.Star private module V = VarLemmas module _ {m : ℕ} where MT : ℕ → Set MT = MetaType m open MetaTypeApp hiding (_/_) module _ {T₁ T₂} {lift₁ : MetaLift T₁} {lift₂ : MetaLift T₂} where open Lifted {m} lift₁ using () renaming (_↑✶_ to _↑✶₁_; _/✶_ to _/✶₁_) open Lifted {m} lift₂ using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂_) /✶-↑✶ : ∀ {n n'} (ρs₁ : Subs (T₁ m) n n') (ρs₂ : Subs (T₂ m) n n') → (∀ k x → (simpl (tvar x)) /✶₁ ρs₁ ↑✶₁ k ≡ (simpl (tvar x)) /✶₂ ρs₂ ↑✶₂ k) → ∀ k t → t /✶₁ ρs₁ ↑✶₁ k ≡ t /✶₂ ρs₂ ↑✶₂ k /✶-↑✶ ρs₁ ρs₂ hyp k (a ⇒ b) = begin (a ⇒ b) /✶₁ ρs₁ ↑✶₁ k ≡⟨ ⇒-/✶-↑✶ lift₁ k ρs₁ ⟩ ((a /✶₁ ρs₁ ↑✶₁ k) ⇒ (b /✶₁ ρs₁ ↑✶₁ k)) ≡⟨ cong₂ _⇒_ (/✶-↑✶ ρs₁ ρs₂ hyp k a) (/✶-↑✶ ρs₁ ρs₂ hyp k b) ⟩ (a /✶₂ ρs₂ ↑✶₂ k) ⇒ (b /✶₂ ρs₂ ↑✶₂ k) ≡⟨ sym (⇒-/✶-↑✶ lift₂ k ρs₂) ⟩ (a ⇒ b) /✶₂ ρs₂ ↑✶₂ k ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (∀' t) = begin (∀' t) /✶₁ ρs₁ ↑✶₁ k ≡⟨ ∀'-/✶-↑✶ lift₁ k ρs₁ ⟩ ∀' (t /✶₁ ρs₁ ↑✶₁ (suc k)) ≡⟨ cong ∀' (/✶-↑✶ ρs₁ ρs₂ hyp (suc k) t) ⟩ ∀' (t /✶₂ ρs₂ ↑✶₂ (suc k)) ≡⟨ sym $ ∀'-/✶-↑✶ lift₂ k ρs₂ ⟩ (∀' t) /✶₂ ρs₂ ↑✶₂ k ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (simpl (tvar c)) = hyp k c /✶-↑✶ ρs₁ ρs₂ hyp k (simpl (mvar x)) = begin (simpl (mvar x)) /✶₁ ρs₁ ↑✶₁ k ≡⟨ mvar-/✶-↑✶ lift₁ k ρs₁ ⟩ (simpl (mvar x)) ≡⟨ sym $ mvar-/✶-↑✶ lift₂ k ρs₂ ⟩ (simpl (mvar x)) /✶₂ ρs₂ ↑✶₂ k ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (simpl (a →' b)) = begin (simpl (a →' b)) /✶₁ ρs₁ ↑✶₁ k ≡⟨ →'-/✶-↑✶ lift₁ k ρs₁ ⟩ simpl ((a /✶₁ ρs₁ ↑✶₁ k) →' (b /✶₁ ρs₁ ↑✶₁ k)) ≡⟨ cong₂ (λ a b → simpl (a →' b)) (/✶-↑✶ ρs₁ ρs₂ hyp k a) (/✶-↑✶ ρs₁ ρs₂ hyp k b) ⟩ simpl ((a /✶₂ ρs₂ ↑✶₂ k) →' (b /✶₂ ρs₂ ↑✶₂ k)) ≡⟨ sym (→'-/✶-↑✶ lift₂ k ρs₂) ⟩ (simpl (a →' b)) /✶₂ ρs₂ ↑✶₂ k ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (simpl (tc c)) = begin (simpl (tc c)) /✶₁ ρs₁ ↑✶₁ k ≡⟨ tc-/✶-↑✶ lift₁ k ρs₁ ⟩ (simpl (tc c)) ≡⟨ sym $ tc-/✶-↑✶ lift₂ k ρs₂ ⟩ (simpl (tc c)) /✶₂ ρs₂ ↑✶₂ k ∎ lemmas₃ : Lemmas₃ (MetaType m) lemmas₃ = record { lemmas₂ = record { lemmas₁ = record { lemmas₀ = record { simple = simple } ; weaken-var = λ {_ x} → begin (simpl (tvar x)) /Var V.wk ≡⟨ refl ⟩ (simpl (tvar (lookup x V.wk))) ≡⟨ cong (λ x → simpl (tvar x)) (V.lookup-wk x) ⟩ (simpl (tvar (suc x))) ∎ } ; application = Subst.application subst ; var-/ = refl } ; /✶-↑✶ = /✶-↑✶ } private module L₃ = Lemmas₃ lemmas₃ lemmas₅ : Lemmas₅ (MetaType m) lemmas₅ = record { lemmas₄ = record { lemmas₃ = lemmas₃ ; /-wk = λ {_ t} → begin t / wk ≡⟨ /✶-↑✶ (ε ▻ wk) (ε ▻ V.wk) (λ k x → begin (simpl (tvar x)) / wk ↑⋆ k ≡⟨ L₃.var-/-wk-↑⋆ k x ⟩ (simpl (tvar (Fin.lift k suc x))) ≡⟨ cong (λ x → (simpl (tvar x))) (sym (V.var-/-wk-↑⋆ k x)) ⟩ (simpl (tvar (lookup x (V._↑⋆_ V.wk k)))) ≡⟨ refl ⟩ (simpl (tvar x)) /Var V._↑⋆_ V.wk k ∎) zero t ⟩ t /Var V.wk ≡⟨ refl ⟩ weaken t ∎ } } open Lemmas₅ lemmas₅ public hiding (lemmas₃) module MetaTypeMetaLemmas where open MetaTypeMetaSubst using (module Lifted; MetaLift) open import Implicits.Syntax.MetaType open import Data.Star as Star hiding (map) open import Data.Star.Properties private module V = VarLemmas module MetaTypeAppLemmas {T} (l : MetaLift T) where open Lifted l →'-/✶-↑✶ : ∀ k {ν n n' a b} (ρs : Subs (flip T ν) n n') → (simpl (a →' b)) /✶ ρs ↑✶ k ≡ simpl ((a /✶ ρs ↑✶ k) →' (b /✶ ρs ↑✶ k)) →'-/✶-↑✶ k ε = refl →'-/✶-↑✶ k (r ◅ ρs) = cong₂ _/_ (→'-/✶-↑✶ k ρs) refl ⇒-/✶-↑✶ : ∀ k {ν n n' a b} (ρs : Subs (flip T ν) n n') → (a ⇒ b) /✶ ρs ↑✶ k ≡ (a /✶ ρs ↑✶ k) ⇒ (b /✶ ρs ↑✶ k) ⇒-/✶-↑✶ k ε = refl ⇒-/✶-↑✶ k (r ◅ ρs) = cong₂ _/_ (⇒-/✶-↑✶ k ρs) refl tc-/✶-↑✶ : ∀ k {ν c n n'} (ρs : Subs (flip T ν) n n') → (simpl (tc c)) /✶ ρs ↑✶ k ≡ simpl (tc c) tc-/✶-↑✶ k ε = refl tc-/✶-↑✶ k (r ◅ ρs) = cong₂ _/_ (tc-/✶-↑✶ k ρs) refl tvar-/✶-↑✶ : ∀ k {ν n n' c} (ρs : Subs (flip T ν) n n') → (simpl (tvar c)) /✶ ρs ↑✶ k ≡ simpl (tvar c) tvar-/✶-↑✶ k ε = refl tvar-/✶-↑✶ k (r ◅ ρs) = cong₂ _/_ (tvar-/✶-↑✶ k ρs) refl tpweaken-subs : ∀ {ν n n'} (ρs : Subs (flip T ν) n n') → Subs (flip T (suc ν)) n n' tpweaken-subs ρs = Star.map (λ x → x ↑tp) ρs comm-↑-↑tp : ∀ {ν n n'} (s : Sub (flip T ν) n n') → (s ↑) ↑tp ≡ (s ↑tp) ↑ comm-↑-↑tp s = begin (s ↑) ↑tp ≡⟨ refl ⟩ map tpweaken (var zero ∷ map weaken s) ≡⟨ refl ⟩ (tpweaken (var zero)) ∷ (map tpweaken (map weaken s)) ≡⟨ cong₂ (λ x xs → x ∷ xs) (tpweaken-var zero) (sym $ map-∘ tpweaken weaken s) ⟩ (var zero) ∷ (map (tpweaken ∘ weaken) s) ≡⟨ cong (λ u → var zero ∷ u) (sym $ map-cong comm-weaken-tpweaken s) ⟩ (var zero) ∷ (map (weaken ∘ tpweaken) s) ≡⟨ cong (λ u → (var zero) ∷ u) (map-∘ weaken tpweaken s) ⟩ (s ↑tp) ↑ ∎ comm-↑⋆-↑tp : ∀ k {ν n n'} (s : Sub (flip T ν) n n') → (s ↑⋆ k) ↑tp ≡ (s ↑tp) ↑⋆ k comm-↑⋆-↑tp zero s = refl comm-↑⋆-↑tp (suc k) s = begin ((s ↑⋆ k) ↑) ↑tp ≡⟨ comm-↑-↑tp (s ↑⋆ k) ⟩ ((s ↑⋆ k) ↑tp) ↑ ≡⟨ cong _↑ (comm-↑⋆-↑tp k s) ⟩ (s ↑tp) ↑⋆ (suc k) ∎ comm-tpweaken-↑✶ : ∀ k {ν n n'} (ρs : Subs (flip T ν) n n') → (tpweaken-subs ρs) ↑✶ k ≡ tpweaken-subs (ρs ↑✶ k) comm-tpweaken-↑✶ k ρs = begin (tpweaken-subs ρs) ↑✶ k ≡⟨ refl ⟩ Star.gmap (_+_ k) (λ ρ → ρ ↑⋆ k) (Star.map _↑tp ρs) ≡⟨ gmap-∘ (_+_ k) (λ ρ₁ → ρ₁ ↑⋆ k) Prelude.id _↑tp ρs ⟩ Star.gmap (_+_ k) (λ ρ → (ρ ↑tp) ↑⋆ k) ρs ≡⟨ gmap-cong (_+_ k) (λ ρ₁ → _↑tp ρ₁ ↑⋆ k) (λ ρ₁ → _↑tp (ρ₁ ↑⋆ k)) (λ s → sym $ comm-↑⋆-↑tp k s) ρs ⟩ Star.gmap (_+_ k) (λ ρ → (ρ ↑⋆ k) ↑tp) ρs ≡⟨ sym $ gmap-∘ Prelude.id _↑tp (_+_ k) (λ ρ₁ → ρ₁ ↑⋆ k) ρs ⟩ Star.map _↑tp (Star.gmap (_+_ k) (λ ρ → ρ ↑⋆ k) ρs) ≡⟨ refl ⟩ tpweaken-subs (ρs ↑✶ k) ∎ ∀'-/✶-↑✶ : ∀ k {ν n n' a} (ρs : Subs (flip T ν) n n') → (∀' a) /✶ ρs ↑✶ k ≡ ∀' (a /✶ (tpweaken-subs ρs) ↑✶ k) ∀'-/✶-↑✶ k {a = a} ε = refl ∀'-/✶-↑✶ k {a = a} (x ◅ ρs) = begin (∀' a) /✶ (x ◅ ρs) ↑✶ k ≡⟨ cong (flip _/_ (x ↑⋆ k)) (∀'-/✶-↑✶ k ρs) ⟩ (∀' (a /✶ (tpweaken-subs ρs) ↑✶ k)) / (x ↑⋆ k) ≡⟨ cong (λ u → ∀' (a /✶ u / _↑tp (x ↑⋆ k))) (comm-tpweaken-↑✶ k ρs) ⟩ ∀' (a /✶ (tpweaken-subs ((x ◅ ρs) ↑✶ k))) ≡⟨ sym $ cong (λ u → ∀' (a /✶ u)) (comm-tpweaken-↑✶ k (x ◅ ρs)) ⟩ ∀' (a /✶ (tpweaken-subs (x ◅ ρs)) ↑✶ k) ∎ module _ where open MetaTypeTypeSubst using () renaming (weaken to mtt-weaken) private module MTT = MetaTypeTypeSubst {-}↑tp-mtt-weaken : ∀ {ν m n} x (s : Sub (flip T ν) m n) → (mtt-weaken x) / (s ↑tp) ≡ mtt-weaken (x / s)-} postulate ↑tp-mtt-weaken : ∀ {ν m n } k x (s : Sub (flip T ν) m n) → (x MTT./Var VarSubst.wk VarSubst.↑⋆ k) / (Prelude.subst (λ ν → Sub (flip T ν) m n) (sym $ +-suc k ν) (s ↑tp⋆ (suc k))) ≡ (x / (s ↑tp⋆ k)) MTT./Var VarSubst.wk VarSubst.↑⋆ k {- ↑tp-mtt-weaken k (a ⇒ b) s = cong₂ _⇒_ (↑tp-mtt-weaken k a s) (↑tp-mtt-weaken k b s) ↑tp-mtt-weaken {ν} {m} {n} k (∀' x) s = begin (∀' (x MTT./Var VarSubst.wk VarSubst.↑⋆ (suc k))) / (Prelude.subst (λ ν → Sub (flip T ν) m n) (sym $ +-suc k ν) (s ↑tp⋆ (suc k))) ≡⟨ refl ⟩ ∀' ((x MTT./Var VarSubst.wk VarSubst.↑⋆ (suc k)) / (Prelude.subst (λ ν → Sub (flip T ν) m n) (cong suc (sym $ +-suc k ν)) (s ↑tp⋆ (suc (suc k))))) ≡⟨ cong ∀' (↑tp-mtt-weaken (suc k) {!!} {!!}) ⟩ (∀' ((x / (s ↑tp⋆ (suc k))) MTT./Var VarSubst.wk VarSubst.↑⋆ (suc k))) ≡⟨ refl ⟩ (∀' (x / (s ↑tp⋆ (suc k)))) MTT./Var VarSubst.wk VarSubst.↑⋆ k ≡⟨ refl ⟩ (∀' x / s ↑tp⋆ k) MTT./Var VarSubst.wk VarSubst.↑⋆ k ∎ ↑tp-mtt-weaken k (simpl (tvar x)) s = refl ↑tp-mtt-weaken k (simpl (mvar x)) s = {!!} ↑tp-mtt-weaken k (simpl (a →' b)) s = cong₂ (λ u v → simpl (u →' v)) (↑tp-mtt-weaken k a s) (↑tp-mtt-weaken k b s) ↑tp-mtt-weaken k (simpl (tc x)) s = refl -} tpweaken-subs-var : ∀ {ν n n'} x (ρs : Subs (flip T ν) n n') → (simpl (mvar x)) /✶ (tpweaken-subs ρs) ≡ mtt-weaken ((simpl (mvar x)) /✶ ρs) tpweaken-subs-var x ε = refl tpweaken-subs-var x (s ◅ ρs) = begin (simpl (mvar x)) /✶ (Star.map _↑tp (s ◅ ρs)) ≡⟨ refl ⟩ (simpl (mvar x)) /✶ (tpweaken-subs ρs) / (s ↑tp) ≡⟨ cong (flip _/_ (_↑tp s)) (tpweaken-subs-var x ρs) ⟩ (mtt-weaken ((simpl (mvar x)) /✶ ρs)) / (s ↑tp) ≡⟨ ↑tp-mtt-weaken zero (simpl (mvar x) /✶ ρs) s ⟩ mtt-weaken ((simpl (mvar x)) /✶ (s ◅ ρs)) ∎ module _ {T₁ T₂} {lift₁ : MetaLift T₁} {lift₂ : MetaLift T₂} where open MetaTypeTypeSubst using () renaming (weaken to mtt-weaken) open Lifted lift₁ using () renaming (_↑✶_ to _↑✶₁_; _/✶_ to _/✶₁_; _↑tp to _↑tp₁) open Lifted lift₂ using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂_; _↑tp to _↑tp₂) open MetaTypeAppLemmas weaken-hyp : ∀ {ν n n'} (ρs₁ : Subs (flip T₁ ν) n n') (ρs₂ : Subs (flip T₂ ν) n n') → (∀ k x → (simpl (mvar x)) /✶₁ ρs₁ ↑✶₁ k ≡ (simpl (mvar x)) /✶₂ ρs₂ ↑✶₂ k) → (∀ k x → (simpl (mvar x)) /✶₁ (tpweaken-subs lift₁ ρs₁) ↑✶₁ k ≡ (simpl (mvar x)) /✶₂ (tpweaken-subs lift₂ ρs₂) ↑✶₂ k) weaken-hyp ρs₁ ρs₂ hyp k x = begin simpl (mvar x) /✶₁ (tpweaken-subs lift₁ ρs₁) ↑✶₁ k ≡⟨ cong (λ u → simpl (mvar x) /✶₁ u) (comm-tpweaken-↑✶ lift₁ k ρs₁) ⟩ simpl (mvar x) /✶₁ tpweaken-subs lift₁ (ρs₁ ↑✶₁ k) ≡⟨ tpweaken-subs-var lift₁ x (ρs₁ ↑✶₁ k) ⟩ mtt-weaken (simpl (mvar x) /✶₁ (ρs₁ ↑✶₁ k)) ≡⟨ cong mtt-weaken (hyp k x) ⟩ mtt-weaken (simpl (mvar x) /✶₂ (ρs₂ ↑✶₂ k)) ≡⟨ sym $ tpweaken-subs-var lift₂ x (ρs₂ ↑✶₂ k) ⟩ simpl (mvar x) /✶₂ tpweaken-subs lift₂ (ρs₂ ↑✶₂ k) ≡⟨ cong (λ u → simpl (mvar x) /✶₂ u) (sym $ comm-tpweaken-↑✶ lift₂ k ρs₂) ⟩ simpl (mvar x) /✶₂ (tpweaken-subs lift₂ ρs₂) ↑✶₂ k ∎ /✶-↑✶ : ∀ {ν n n'} (ρs₁ : Subs (flip T₁ ν) n n') (ρs₂ : Subs (flip T₂ ν) n n') → (∀ k x → (simpl (mvar x)) /✶₁ ρs₁ ↑✶₁ k ≡ (simpl (mvar x)) /✶₂ ρs₂ ↑✶₂ k) → ∀ k t → t /✶₁ ρs₁ ↑✶₁ k ≡ t /✶₂ ρs₂ ↑✶₂ k /✶-↑✶ ρs₁ ρs₂ hyp k (a ⇒ b) = begin (a ⇒ b) /✶₁ ρs₁ ↑✶₁ k ≡⟨ ⇒-/✶-↑✶ lift₁ k ρs₁ ⟩ ((a /✶₁ ρs₁ ↑✶₁ k) ⇒ (b /✶₁ ρs₁ ↑✶₁ k)) ≡⟨ cong₂ _⇒_ (/✶-↑✶ ρs₁ ρs₂ hyp k a) (/✶-↑✶ ρs₁ ρs₂ hyp k b) ⟩ (a /✶₂ ρs₂ ↑✶₂ k) ⇒ (b /✶₂ ρs₂ ↑✶₂ k) ≡⟨ sym (⇒-/✶-↑✶ lift₂ k ρs₂) ⟩ (a ⇒ b) /✶₂ ρs₂ ↑✶₂ k ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (∀' t) = begin (∀' t) /✶₁ ρs₁ ↑✶₁ k ≡⟨ ∀'-/✶-↑✶ lift₁ k ρs₁ ⟩ (∀' (t /✶₁ (tpweaken-subs lift₁ ρs₁) ↑✶₁ k)) ≡⟨ cong ∀' (/✶-↑✶ (tpweaken-subs lift₁ ρs₁) (tpweaken-subs lift₂ ρs₂) (weaken-hyp ρs₁ ρs₂ hyp) k t ) ⟩ (∀' (t /✶₂ (tpweaken-subs lift₂ ρs₂) ↑✶₂ k)) ≡⟨ sym $ ∀'-/✶-↑✶ lift₂ k ρs₂ ⟩ (∀' t) /✶₂ ρs₂ ↑✶₂ k ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (simpl (mvar c)) = hyp k c /✶-↑✶ ρs₁ ρs₂ hyp k (simpl (tvar x)) = begin (simpl (tvar x)) /✶₁ ρs₁ ↑✶₁ k ≡⟨ tvar-/✶-↑✶ lift₁ k ρs₁ ⟩ (simpl (tvar x)) ≡⟨ sym $ tvar-/✶-↑✶ lift₂ k ρs₂ ⟩ (simpl (tvar x)) /✶₂ ρs₂ ↑✶₂ k ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (simpl (a →' b)) = begin (simpl (a →' b)) /✶₁ ρs₁ ↑✶₁ k ≡⟨ →'-/✶-↑✶ lift₁ k ρs₁ ⟩ simpl ((a /✶₁ ρs₁ ↑✶₁ k) →' (b /✶₁ ρs₁ ↑✶₁ k)) ≡⟨ cong₂ (λ a b → simpl (a →' b)) (/✶-↑✶ ρs₁ ρs₂ hyp k a) (/✶-↑✶ ρs₁ ρs₂ hyp k b) ⟩ simpl ((a /✶₂ ρs₂ ↑✶₂ k) →' (b /✶₂ ρs₂ ↑✶₂ k)) ≡⟨ sym (→'-/✶-↑✶ lift₂ k ρs₂) ⟩ (simpl (a →' b)) /✶₂ ρs₂ ↑✶₂ k ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (simpl (tc c)) = begin (simpl (tc c)) /✶₁ ρs₁ ↑✶₁ k ≡⟨ tc-/✶-↑✶ lift₁ k ρs₁ ⟩ (simpl (tc c)) ≡⟨ sym $ tc-/✶-↑✶ lift₂ k ρs₂ ⟩ (simpl (tc c)) /✶₂ ρs₂ ↑✶₂ k ∎ module _ {ν : ℕ} where open MetaTypeMetaSubst MT : ℕ → Set MT = flip MetaType ν lemmas₃ : Lemmas₃ (flip MetaType ν) lemmas₃ = record { lemmas₂ = record { lemmas₁ = record { lemmas₀ = record { simple = simple } ; weaken-var = λ {_ x} → begin (simpl (mvar x)) /Var V.wk ≡⟨ refl ⟩ (simpl (mvar (lookup x V.wk))) ≡⟨ cong (λ x → simpl (mvar x)) (V.lookup-wk x) ⟩ (simpl (mvar (suc x))) ∎ } ; application = Subst.application subst ; var-/ = refl } ; /✶-↑✶ = /✶-↑✶ } private module L₃ = Lemmas₃ lemmas₃ lemmas₅ : Lemmas₅ (flip MetaType ν) lemmas₅ = record { lemmas₄ = record { lemmas₃ = lemmas₃ ; /-wk = λ {_ t} → begin t / wk ≡⟨ /✶-↑✶ (ε ▻ wk) (ε ▻ V.wk) (λ k x → begin (simpl (mvar x)) / wk ↑⋆ k ≡⟨ L₃.var-/-wk-↑⋆ k x ⟩ (simpl (mvar (Fin.lift k suc x))) ≡⟨ cong (λ x → (simpl (mvar x))) (sym (V.var-/-wk-↑⋆ k x)) ⟩ (simpl (mvar (lookup x (V._↑⋆_ V.wk k)))) ≡⟨ refl ⟩ (simpl (mvar x)) /Var V._↑⋆_ V.wk k ∎) zero t ⟩ t /Var V.wk ≡⟨ refl ⟩ weaken t ∎ } } open Lemmas₅ lemmas₅ public hiding (lemmas₃) open MetaTypeMetaSubst using (open-meta-k; open-meta; _↑⋆tp_; _↑tp; _◁m; _◁m₁) us↑-⊙-sub-u≡u∷us : ∀ {ν m} (u : MetaType zero ν) (us : Sub (flip MetaType ν) m zero) → us ↑ ⊙ sub u ≡ u ∷ us us↑-⊙-sub-u≡u∷us {ν} {m} u us = cong (λ v → u ∷ v) map-weaken-⊙-sub open-mvar : ∀ {ν m} (x : Fin m) → open-meta {ν = ν} (simpl (mvar x)) ≡ simpl (mvar (suc x)) open-mvar x = weaken-var open-tvar-suc : ∀ {ν m} (x : Fin m) → open-meta {ν} (simpl (tvar (suc x))) ≡ simpl (tvar x) open-tvar-suc x = MetaTypeTypeLemmas.suc-/-sub {t = (simpl (tvar x))} open import Implicits.Substitutions.Type as TS using () open import Implicits.Substitutions.Lemmas.Type as TSLemmas using () private module MTT = MetaTypeTypeSubst
42.020725
141
0.429963
41426d835dbf440440070afa652c260a4638edd3
2,337
agda
Agda
ground-decidable.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
ground-decidable.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
ground-decidable.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
open import Prelude open import dynamics-core module ground-decidable where ground-decidable : (τ : htyp) → (τ ground) + ((τ ground) → ⊥) ground-decidable num = Inl GNum ground-decidable (⦇-⦈ ==> ⦇-⦈) = Inl GArrHole ground-decidable (⦇-⦈ ⊕ ⦇-⦈) = Inl GSumHole ground-decidable ⦇-⦈ = Inr (λ ()) ground-decidable (num ==> τ₁) = Inr (λ ()) ground-decidable (⦇-⦈ ==> num) = Inr (λ ()) ground-decidable (⦇-⦈ ==> τ₁ ==> τ₂) = Inr (λ ()) ground-decidable (⦇-⦈ ==> τ₁ ⊕ τ₂) = Inr (λ ()) ground-decidable ((τ ==> τ₂) ==> τ₁) = Inr (λ ()) ground-decidable ((τ ⊕ τ₂) ==> τ₁) = Inr (λ ()) ground-decidable (num ⊕ τ₁) = Inr (λ ()) ground-decidable (⦇-⦈ ⊕ num) = Inr (λ ()) ground-decidable (⦇-⦈ ⊕ τ₁ ==> τ₂) = Inr (λ ()) ground-decidable (⦇-⦈ ⊕ τ₁ ⊕ τ₂) = Inr (λ ()) ground-decidable ((τ ==> τ₂) ⊕ τ₁) = Inr (λ ()) ground-decidable ((τ ⊕ τ₂) ⊕ τ₁) = Inr (λ ()) ground-decidable (⦇-⦈ ==> τ₁ ⊠ τ₂) = Inr (λ ()) ground-decidable ((τ ⊠ τ₂) ==> τ₁) = Inr (λ ()) ground-decidable (⦇-⦈ ⊕ τ₁ ⊠ τ₂) = Inr (λ ()) ground-decidable ((τ ⊠ τ₂) ⊕ τ₁) = Inr (λ ()) ground-decidable (num ⊠ num) = Inr (λ ()) ground-decidable (num ⊠ ⦇-⦈) = Inr (λ ()) ground-decidable (num ⊠ τ₁ ==> τ₂) = Inr (λ ()) ground-decidable (num ⊠ τ₁ ⊕ τ₂) = Inr (λ ()) ground-decidable (num ⊠ τ₁ ⊠ τ₂) = Inr (λ ()) ground-decidable (⦇-⦈ ⊠ num) = Inr (λ ()) ground-decidable (⦇-⦈ ⊠ ⦇-⦈) = Inl GProdHole ground-decidable (⦇-⦈ ⊠ τ₁ ==> τ₂) = Inr (λ ()) ground-decidable (⦇-⦈ ⊠ τ₁ ⊕ τ₂) = Inr (λ ()) ground-decidable (⦇-⦈ ⊠ τ₁ ⊠ τ₂) = Inr (λ ()) ground-decidable ((τ ==> τ₁) ⊠ num) = Inr (λ ()) ground-decidable ((τ ==> τ₁) ⊠ ⦇-⦈) = Inr (λ ()) ground-decidable ((τ ==> τ₁) ⊠ τ₂ ==> τ₃) = Inr (λ ()) ground-decidable ((τ ==> τ₁) ⊠ τ₂ ⊕ τ₃) = Inr (λ ()) ground-decidable ((τ ==> τ₁) ⊠ τ₂ ⊠ τ₃) = Inr (λ ()) ground-decidable ((τ ⊕ τ₁) ⊠ num) = Inr (λ ()) ground-decidable ((τ ⊕ τ₁) ⊠ ⦇-⦈) = Inr (λ ()) ground-decidable ((τ ⊕ τ₁) ⊠ τ₂ ==> τ₃) = Inr (λ ()) ground-decidable ((τ ⊕ τ₁) ⊠ τ₂ ⊕ τ₃) = Inr (λ ()) ground-decidable ((τ ⊕ τ₁) ⊠ τ₂ ⊠ τ₃) = Inr (λ ()) ground-decidable ((τ ⊠ τ₁) ⊠ num) = Inr (λ ()) ground-decidable ((τ ⊠ τ₁) ⊠ ⦇-⦈) = Inr (λ ()) ground-decidable ((τ ⊠ τ₁) ⊠ τ₂ ==> τ₃) = Inr (λ ()) ground-decidable ((τ ⊠ τ₁) ⊠ τ₂ ⊕ τ₃) = Inr (λ ()) ground-decidable ((τ ⊠ τ₁) ⊠ τ₂ ⊠ τ₃) = Inr (λ ())
45.823529
63
0.507916
2ffee2b52d0d068e7b16700c8978caad372bf727
14,864
agda
Agda
src/ctxt.agda
mb64/cedille
d0f69cc6fbfb69d7ef83a436b623d612328eb016
[ "MIT" ]
328
2018-09-14T20:06:09.000Z
2022-03-26T10:33:07.000Z
src/ctxt.agda
mb64/cedille
d0f69cc6fbfb69d7ef83a436b623d612328eb016
[ "MIT" ]
123
2018-09-17T10:53:20.000Z
2022-01-12T03:51:28.000Z
src/ctxt.agda
mb64/cedille
d0f69cc6fbfb69d7ef83a436b623d612328eb016
[ "MIT" ]
34
2018-09-17T11:51:36.000Z
2022-02-20T18:33:16.000Z
module ctxt where open import cedille-types open import ctxt-types public open import subst open import general-util open import syntax-util open import type-util open import free-vars new-sym-info-trie : trie sym-info new-sym-info-trie = trie-insert empty-trie compileFail-qual ((term-decl compileFailType) , "missing" , "missing") new-qualif : qualif new-qualif = trie-insert empty-trie compileFail (compileFail-qual , []) qualif-nonempty : qualif → 𝔹 qualif-nonempty q = trie-nonempty (trie-remove q compileFail) qualif-insert-params : qualif → var → var → params → qualif qualif-insert-params σ qv v ps = trie-insert σ v (qv , params-to-args ps) qualif-insert-import : qualif → var → maybe import-as → 𝕃 string → args → qualif qualif-insert-import σ mn oa [] as = σ qualif-insert-import σ mn oa (v :: vs) as = qualif-insert-import (trie-insert σ (maybe-else v (λ {(ImportAs _ pfx) → pfx # v}) oa) (mn # v , as)) mn oa vs as new-ctxt : (filename modname : string) → ctxt new-ctxt fn mn = record { fn = fn; mn = mn; ps = []; qual = new-qualif; syms = empty-trie; mod-map = empty-trie; id-map = empty-trie; id-current = 0; id-list = []; i = empty-trie; μ = empty-trie; μ' = empty-trie; Is/μ = empty-trie; μ~ = empty-trie; μᵤ = nothing; μ̲ = empty-stringset } empty-ctxt : ctxt empty-ctxt = new-ctxt "" "" ctxt-get-info : var → ctxt → maybe sym-info ctxt-get-info v Γ = trie-lookup (ctxt.i Γ) v ctxt-get-qi : ctxt → var → maybe qualif-info ctxt-get-qi = trie-lookup ∘ ctxt.qual ctxt-qualif-args-length : ctxt → erased? → var → maybe ℕ ctxt-qualif-args-length Γ me v = ctxt-get-qi Γ v >>= λ qv → just (if me then length (snd qv) else length (erase-args (snd qv))) qi-var-if : maybe qualif-info → var → var qi-var-if (just (v , _)) _ = v qi-var-if nothing v = v --ctxt-restore-info : ctxt → var → maybe qualif-info → maybe sym-info → ctxt --ctxt-restore-info (mk-ctxt (fn , mn , ps , q , ) syms i Δ) v qi si = -- mk-ctxt (fn , mn , ps , f qi v q) syms (f si (qi-var-if qi v) (trie-remove i (qi-var-if (trie-lookup q v) v))) Δ -- where -- f : ∀{A : Set} → maybe A → string → trie A → trie A -- f (just a) s t = trie-insert t s a -- f nothing s t = trie-remove t s --ctxt-restore-info* : ctxt → 𝕃 (string × maybe qualif-info × maybe sym-info) → ctxt --ctxt-restore-info* Γ [] = Γ --ctxt-restore-info* Γ ((v , qi , m) :: ms) = ctxt-restore-info* (ctxt-restore-info Γ v qi m) ms def-params : defScope → params → defParams def-params tt ps = nothing def-params ff ps = just ps inst-term : ctxt → params → args → term → term inst-term Γ ps as t with subst-params-args ps as ...| σ , ps' , as' = lam-expand-term (substs-params Γ σ ps') (substs Γ σ t) -- TODO add renamectxt to avoid capture bugs? inst-type : ctxt → params → args → type → type inst-type Γ ps as T with subst-params-args ps as ...| σ , ps' , as' = abs-expand-type (substs-params Γ σ ps') (substs Γ σ T) inst-kind : ctxt → params → args → kind → kind inst-kind Γ ps as k with subst-params-args ps as ...| σ , ps' , as' = abs-expand-kind (substs-params Γ σ ps') (substs Γ σ k) inst-ctrs : ctxt → params → args → ctrs → ctrs inst-ctrs Γ ps as c with subst-params-args ps as ...| σ , ps' , as' = flip map c λ where (Ctr x T) → Ctr x (abs-expand-type (substs-params Γ σ ps') (substs Γ σ T)) maybe-inst-type = maybe-else (λ as T → T) ∘ inst-type maybe-inst-kind = maybe-else (λ as T → T) ∘ inst-kind maybe-inst-ctrs = maybe-else (λ as c → c) ∘ inst-ctrs ctxt-term-decl : posinfo → var → type → ctxt → ctxt ctxt-term-decl pi v T Γ = let v' = pi % v in record Γ { qual = qualif-insert-params (ctxt.qual Γ) v' v []; i = trie-insert (ctxt.i Γ) v' (term-decl T , ctxt.fn Γ , pi) } ctxt-type-decl : posinfo → var → kind → ctxt → ctxt ctxt-type-decl pi v k Γ = let v' = pi % v in record Γ { qual = qualif-insert-params (ctxt.qual Γ) v' v []; i = trie-insert (ctxt.i Γ) v' (type-decl k , ctxt.fn Γ , pi) } ctxt-tk-decl : posinfo → var → tpkd → ctxt → ctxt ctxt-tk-decl p x (Tkt t) Γ = ctxt-term-decl p x t Γ ctxt-tk-decl p x (Tkk k) Γ = ctxt-type-decl p x k Γ infix 4 _,_-_:`_ _,_-_:`_ : ctxt → posinfo → var → tpkd → ctxt Γ , pi - x :` tk = ctxt-tk-decl pi x tk Γ -- TODO not sure how this and renaming interacts with module scope ctxt-var-decl-if : var → ctxt → ctxt ctxt-var-decl-if v Γ with trie-lookup (ctxt.i Γ) v ... | just (rename-def _ , _) = Γ ... | just (var-decl , _) = Γ ... | _ = ctxt-var-decl v Γ add-indices-to-ctxt : indices → ctxt → ctxt add-indices-to-ctxt = flip $ foldr λ {(Index x _) → ctxt-var-decl x} add-params-to-ctxt : params → ctxt → ctxt add-params-to-ctxt = flip $ foldr λ {(Param me x _) Γ → if ctxt-binds-var Γ (unqual-local x) then Γ else (ctxt-var-decl x ∘ ctxt-var-decl (unqual-local x)) Γ} add-caseArgs-to-ctxt : case-args → ctxt → ctxt add-caseArgs-to-ctxt = flip $ foldr λ {(CaseArg me x _) → ctxt-var-decl x} add-ctrs-to-ctxt : ctrs → ctxt → ctxt add-ctrs-to-ctxt = flip $ foldr λ {(Ctr x T) → ctxt-var-decl x} ctxt-rename-rep : ctxt → var → var ctxt-rename-rep Γ v with trie-lookup (ctxt.i Γ) v ...| just (rename-def v' , _) = v' ...| _ = v -- we assume that only the left variable might have been renamed ctxt-eq-rep : ctxt → var → var → 𝔹 ctxt-eq-rep Γ x y = (ctxt-rename-rep Γ x) =string y {- add a renaming mapping the first variable to the second, unless they are equal. Notice that adding a renaming for v will overwrite any other declarations for v. -} ctxt-rename : var → var → ctxt → ctxt ctxt-rename v v' Γ = record Γ { qual = trie-insert (ctxt.qual Γ) v (v' , []); i = trie-insert (ctxt.i Γ) v (rename-def v' , missing-location) } ---------------------------------------------------------------------- -- lookup functions ---------------------------------------------------------------------- -- lookup mod params from filename lookup-mod-params : ctxt → var → maybe params lookup-mod-params Γ fn = trie-lookup (ctxt.syms Γ) fn >>=c λ mn _ → trie-lookup (ctxt.mod-map Γ) mn >>=c λ fn' → just -- look for a defined kind for the given var, which is assumed to be a type, -- then instantiate its parameters qual-lookup : ctxt → var → maybe (var × args × sym-info) qual-lookup Γ v = trie-lookup (ctxt.qual Γ) v >>=c λ qv as → trie-lookup (ctxt.i Γ) qv >>= λ si → just (qv , as , si) env-lookup : ctxt → var → maybe sym-info env-lookup = trie-lookup ∘ ctxt.i ctxt-lookup-tpkd-var : ctxt → var → maybe (var × args × tpkd) ctxt-lookup-tpkd-var Γ v with qual-lookup Γ v ... | just (qv , as , term-decl T , _) = just $ qv , as , Tkt T ... | just (qv , as , type-decl k , _) = just $ qv , as , Tkk k ... | just (qv , as , term-def mps _ t T , _) = just $ qv , as , Tkt (maybe-inst-type Γ mps as T) ... | just (qv , as , ctr-def ps T _ _ _ , _) = just $ qv , as , Tkt (inst-type Γ ps as T) ... | just (qv , as , type-def mps _ T k , _) = just $ qv , as , Tkk (maybe-inst-kind Γ mps as k) ... | _ = nothing ctxt-lookup-type-var : ctxt → var → maybe (var × args × kind) ctxt-lookup-type-var Γ v = ctxt-lookup-tpkd-var Γ v >>= λ where (qv , as , Tkt T) → nothing (qv , as , Tkk k) → just (qv , as , k) ctxt-lookup-term-var : ctxt → var → maybe (var × args × type) ctxt-lookup-term-var Γ v = ctxt-lookup-tpkd-var Γ v >>= λ where (qv , as , Tkt T) → just (qv , as , T) (qv , as , Tkk k) → nothing ctxt-lookup-term-var-def : ctxt → var → maybe term ctxt-lookup-term-var-def Γ v with env-lookup Γ v ... | just (term-def mps opacity-open (just t) _ , _) = just $ maybe-else id lam-expand-term mps t ... | just (term-udef mps opacity-open t , _) = just $ maybe-else id lam-expand-term mps t ... | _ = nothing ctxt-lookup-type-var-def : ctxt → var → maybe type ctxt-lookup-type-var-def Γ v with env-lookup Γ v ... | just (type-def mps opacity-open (just T) _ , _) = just $ maybe-else id lam-expand-type mps T ... | _ = nothing ctxt-lookup-kind-var-def : ctxt → var → maybe (params × kind) ctxt-lookup-kind-var-def Γ x with qual-lookup Γ x ...| just (_ , as , kind-def ps k , _) = case subst-params-args' Γ ps as k of λ where (k' , ps' , as') → just (ps' , k') ...| _ = nothing ctxt-binds-term-var : ctxt → var → maybe (var × args) ctxt-binds-term-var Γ x with qual-lookup Γ x ...| just (qx , as , term-def _ _ _ _ , _) = just (qx , as) ...| just (qx , as , term-udef _ _ _ , _) = just (qx , as) ...| just (qx , as , term-decl _ , _) = just (qx , as) ...| just (qx , as , ctr-def _ _ _ _ _ , _) = just (qx , as) --...| just (qx , as , var-decl , _) = just (qx , as) ...| _ = nothing ctxt-binds-type-var : ctxt → var → maybe (var × args) ctxt-binds-type-var Γ x with qual-lookup Γ x ...| just (qx , as , type-def _ _ _ _ , _) = just (qx , as) ...| just (qx , as , type-decl _ , _) = just (qx , as) ...| _ = nothing {- inst-enc-defs : ctxt → params → args → encoding-defs → encoding-defs inst-enc-defs Γ ps as (mk-enc-defs ecs gcs Cast cast-in cast-out cast-is Functor functor-in functor-out Fix fix-in fix-out lambek1 lambek2 fix-ind) = let as = arg-set-erased tt <$> as in mk-enc-defs ecs gcs (inst-type Γ ps as Cast) (inst-term Γ ps as cast-in) (inst-term Γ ps as cast-out) (inst-term Γ ps as cast-is) (inst-type Γ ps as Functor) (inst-term Γ ps as functor-in) (inst-term Γ ps as functor-out) (inst-type Γ ps as Fix) (inst-term Γ ps as fix-in) (inst-term Γ ps as fix-out) (inst-term Γ ps as lambek1) (inst-term Γ ps as lambek2) (inst-term Γ ps as fix-ind) -} data-lookup' : ctxt → var → var → 𝕃 tmtp → maybe datatype-info data-lookup' Γ xₒ x as = (maybe-else' {B = maybe (var × args × 𝕃 tmtp × params × kind × kind × ctrs × encoding-defs × encoded-defs)} (trie-lookup (ctxt.μ' Γ) x) -- Is x known locally to be a datatype? (trie-lookup (ctxt.μ Γ) x >>=c λ ps rest → -- No, so is it a global datatype? let asₚ = tmtps-to-args-for-params nothing ps as asᵢ = drop (length ps) as in just (x , asₚ , asᵢ , ps , rest)) λ where (x' , as') → -- Yes, it is a local datatype of x', and gives as' as parameters to x' trie-lookup (ctxt.μ Γ) x' >>= λ rest → just (x' , as' , as , rest)) >>= λ where (x' , asₚ , asᵢ , ps , kᵢ , k , cs , eds , gds) → just $ mk-data-info x' xₒ asₚ asᵢ ps (inst-kind Γ ps asₚ kᵢ) (inst-kind Γ ps asₚ k) cs (inst-ctrs Γ ps asₚ (map-snd (subst Γ (params-to-tpapps ps (TpVar x')) x') <$> cs)) eds {-(inst-enc-defs Γ ps asₚ eds)-} gds --λ y → inst-ctrs Γ ps asₚ (map-snd (rename-var {TYPE} Γ x' y) <$> cs) data-lookup : ctxt → var → 𝕃 tmtp → maybe datatype-info data-lookup Γ x = data-lookup' Γ x x data-lookup-mu : ctxt → var → var → 𝕃 tmtp → maybe datatype-info data-lookup-mu Γ xₒ x as = trie-lookup (ctxt.Is/μ Γ) x >>= λ x' → data-lookup' Γ xₒ x' as data-highlight : ctxt → var → ctxt data-highlight Γ x = record Γ { μ̲ = stringset-insert (ctxt.μ̲ Γ) x } ctxt-lookup-term-loc : ctxt → var → maybe location ctxt-lookup-term-loc Γ x = qual-lookup Γ x >>= λ where (_ , _ , term-decl _ , loc) → just loc (_ , _ , term-def _ _ _ _ , loc) → just loc (_ , _ , term-udef _ _ _ , loc) → just loc (_ , _ , ctr-def _ _ _ _ _ , loc) → just loc (_ , _ , var-decl , loc) → just loc _ → nothing ctxt-lookup-type-loc : ctxt → var → maybe location ctxt-lookup-type-loc Γ x = qual-lookup Γ x >>= λ where (_ , _ , type-decl _ , loc) → just loc (_ , _ , type-def _ _ _ _ , loc) → just loc (_ , _ , var-decl , loc) → just loc _ → nothing ---------------------------------------------------------------------- ctxt-var-location : ctxt → var → location ctxt-var-location Γ x with trie-lookup (ctxt.i Γ) x ... | just (_ , l) = l ... | nothing = missing-location ctxt-clarify-def : ctxt → opacity → var → maybe ctxt ctxt-clarify-def Γ o x with qual-lookup Γ x ...| just (qx , as , type-def ps o' T? k , loc) = ifMaybej (o xor o') (record Γ { i = trie-insert (ctxt.i Γ) qx (type-def ps o T? k , loc) }) ...| just (qx , as , term-def ps o' t? T , loc) = ifMaybej (o xor o') (record Γ { i = trie-insert (ctxt.i Γ) qx (term-def ps o t? T , loc) }) ...| just (qx , as , term-udef ps o' t , loc) = ifMaybej (o xor o') (record Γ { i = trie-insert (ctxt.i Γ) qx (term-udef ps o t , loc) }) ...| _ = nothing ctxt-set-current-file : ctxt → string → string → ctxt ctxt-set-current-file Γ fn mn = record Γ { fn = fn; mn = mn; ps = []; qual = new-qualif } ctxt-set-current-mod : ctxt → string × string × params × qualif → ctxt ctxt-set-current-mod Γ (fn , mn , ps , qual) = record Γ { fn = fn; mn = mn; ps = ps; qual = qual } ctxt-add-current-params : ctxt → ctxt ctxt-add-current-params Γ = record Γ { syms = trie-insert (ctxt.syms Γ) (ctxt.fn Γ) (ctxt.mn Γ , []); mod-map = trie-insert (ctxt.mod-map Γ) (ctxt.mn Γ) (ctxt.fn Γ , ctxt.ps Γ) } ctxt-clear-symbol : ctxt → string → ctxt ctxt-clear-symbol Γ x = let qx = qualif-var Γ x in record Γ { qual = trie-remove (ctxt.qual Γ) x; syms = trie-map (λ ss → fst ss , remove _=string_ x (snd ss)) (ctxt.syms Γ); i = trie-remove (ctxt.i Γ) qx; μ = trie-remove (ctxt.μ Γ) qx; Is/μ = trie-remove (ctxt.Is/μ Γ) qx; μ̲ = trie-remove (ctxt.μ̲ Γ) qx } ctxt-clear-symbols : ctxt → 𝕃 string → ctxt ctxt-clear-symbols Γ [] = Γ ctxt-clear-symbols Γ (v :: vs) = ctxt-clear-symbols (ctxt-clear-symbol Γ v) vs ctxt-clear-symbols-of-file : ctxt → (filename : string) → ctxt ctxt-clear-symbols-of-file Γ fn = elim-pair (trie-lookup𝕃2 (ctxt.syms Γ) fn) λ mn xs → let ps = maybe-else' (trie-lookup (ctxt.mod-map Γ) mn) [] snd in record Γ { syms = trie-insert (ctxt.syms Γ) fn (mn , []); mod-map = trie-insert (ctxt.mod-map Γ) mn (fn , ps); i = hremove (ctxt.i Γ) mn xs; μ = hremove (ctxt.μ Γ) mn xs; Is/μ = hremove (ctxt.Is/μ Γ) mn xs; μ̲ = hremove (ctxt.μ̲ Γ) mn xs } where hremove : ∀ {A : Set} → trie A → var → 𝕃 string → trie A hremove i mn [] = i hremove i mn (x :: xs) = hremove (trie-remove i (mn # x)) mn xs ctxt-add-current-id : ctxt → ctxt ctxt-add-current-id Γ with trie-contains (ctxt.id-map Γ) (ctxt.fn Γ) ...| tt = Γ ...| ff = record Γ { id-map = trie-insert (ctxt.id-map Γ) (ctxt.fn Γ) (suc (ctxt.id-current Γ)); id-current = suc (ctxt.id-current Γ); id-list = ctxt.fn Γ :: ctxt.id-list Γ } ctxt-initiate-file : ctxt → (filename modname : string) → ctxt ctxt-initiate-file Γ fn mn = ctxt-add-current-id (ctxt-set-current-file (ctxt-clear-symbols-of-file Γ fn) fn mn) unqual : ctxt → var → string unqual Γ v = if qualif-nonempty (ctxt.qual Γ) then unqual-local (unqual-all (ctxt.qual Γ) v) else v qualified-ctxt : ctxt → ctxt qualified-ctxt Γ = -- use ctxt.i so we bring ALL defs (even from cousin modules, etc...) into scope record Γ {qual = for trie-strings (ctxt.i Γ) accum empty-trie use λ x q → trie-insert q x (x , [])}
37.535354
158
0.605221
a1cde73d57ec71d83b05f86e8794d68ed5be1180
651
agda
Agda
agda-stdlib/src/Data/List/Relation/Sublist/Propositional/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/List/Relation/Sublist/Propositional/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/List/Relation/Sublist/Propositional/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.List.Relation.Binary.Sublist.Propositional.Properties directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Sublist.Propositional.Properties where open import Data.List.Relation.Binary.Sublist.Propositional.Properties public {-# WARNING_ON_IMPORT "Data.List.Relation.Sublist.Propositional.Properties was deprecated in v1.0. Use Data.List.Relation.Binary.Sublist.Propositional.Properties instead." #-}
34.263158
76
0.614439
2e80d65f33c6c750d661045c106e7d802db8892b
2,665
agda
Agda
examples/AIM6/HelloAgda/Records.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/AIM6/HelloAgda/Records.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/AIM6/HelloAgda/Records.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{- Agda Implementors' Meeting VI Göteborg May 24 - 30, 2007 Hello Agda! Ulf Norell -} -- Records are labeled sigma types. module Records where open import Naturals open import Bool {- A very simple record. -} record Point : Set where field x : Nat y : Nat -- A record can be seen as a one constructor datatype. In this case: data Point' : Set where mkPoint : (x : Nat)(y : Nat) -> Point' -- There are a few differences, though: -- To construct a record you use the syntax record { ..; x = e; .. } origin : Point origin = record { x = 0; y = 0 } -- instead of origin' : Point' origin' = mkPoint 0 0 -- What's more interesting is that you get projection functions -- for free when you declare a record. More precisely, you get a module -- parameterised over a record, containing functions corresponding to the -- fields. In the Point example you get: {- module Point (p : Point) where x : Nat y : Nat -} -- So Point.x : Point -> Nat is the projection function for the field x. getX : Point -> Nat getX = Point.x -- A nifty thing with having the projection functions in a module is that -- you can apply the module to a record value, in effect opening the record. sum : Point -> Nat sum p = x + y where open module Pp = Point p -- The final difference between records and datatypes is that we have -- η-equality on records. data _==_ {A : Set}(x : A) : A -> Set where refl : x == x η-Point : (p : Point) -> p == record { x = Point.x p; y = Point.y p } η-Point p = refl {- The empty record -} -- One interesting benefit of this is that we get a unit type with -- η-equality. record True : Set where tt : True tt = record{} -- Now, since any element of True is equal to tt, metavariables of -- type True will simply disappear. The following cute example exploits -- this: data False : Set where NonZero : Nat -> Set NonZero zero = False NonZero (suc _) = True -- We make the proof that m is non-zero implicit. _/_ : (n m : Nat){p : NonZero m} -> Nat (n / zero) {} zero / suc m = zero suc n / suc m = div (suc n) (suc m) m where div : Nat -> Nat -> Nat -> Nat div zero zero c = suc zero div zero (suc y) c = zero div (suc x) zero c = suc (div x c c) div (suc x) (suc y) c = div x y c -- Now, as long as we're dividing by things which are obviously -- NonZero we can completely ignore the proof. five = 17 / 3 {- A dependent record -} -- Of course, records can be dependent, and have parameters. record ∃ {A : Set}(P : A -> Set) : Set where field witness : A proof : P witness
20.820313
76
0.628893
2227733294ba3389a8d0bbf41bc13f475a11f835
1,194
agda
Agda
src/Network.agda
ilya-fiveisky/agda-network
06defd709b073f951723d7e717fcf96ee30567eb
[ "Unlicense" ]
null
null
null
src/Network.agda
ilya-fiveisky/agda-network
06defd709b073f951723d7e717fcf96ee30567eb
[ "Unlicense" ]
null
null
null
src/Network.agda
ilya-fiveisky/agda-network
06defd709b073f951723d7e717fcf96ee30567eb
[ "Unlicense" ]
null
null
null
module Network where open import Data.Fin hiding (lift; _<_) open import Function open import Data.Nat open import Data.Nat.Show open import Data.String hiding (show) open import Data.Vec hiding (_++_) open import Foreign.Haskell open import IO import IO.Primitive as IOPrim import Network.Primitive as NetPrim withSocketsDo : ∀ {a} {A : Set a} → IO A → IO A withSocketsDo io = lift (NetPrim.withSocketsDo (run io)) byteSize : ℕ byteSize = 256 wordSize : ℕ wordSize = byteSize * byteSize data IPAddress : Set where IPv4 : Vec (Fin byteSize) 4 → IPAddress IPv6 : Vec (Fin wordSize) 8 → IPAddress {- private showIPVec : {m n : ℕ} → Vec (Fin m) n → String showIPVec ip = foldl₁ (λ x y → x ++ "." ++ y) (map (show ∘ toℕ) ip) -} showIP : IPAddress → String showIP (IPv4 ip) = foldl₁ (λ x y → x ++ "." ++ y) (map (show ∘ toℕ) ip) showIP (IPv6 ip) = foldl₁ (λ x y → x ++ ":" ++ y) (map ((showInBase 16) ∘ toℕ) ip) data PortNumber : Set where portNum : Fin wordSize → PortNumber showPort : PortNumber → String showPort (portNum n) = show (toℕ n) connectTo : IPAddress → PortNumber → IO IOPrim.Handle connectTo ip (portNum n) = lift (NetPrim.connectTo (showIP ip) (toInteger (toℕ n)))
26.533333
83
0.68258
add18cfe528ec1fd05214a1d3afa030a9d4f4ebb
1,175
agda
Agda
test/Fail/Issue1427a.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1427a.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1427a.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2015-01-19 Forced constructor arguments should not -- give rise to unification constraints. -- Andreas, 2015-02-27 Forcing analysis is too fragile to have -- such a huge impact. The problem has to be addressed by -- putting heterogeneous unification on a solid foundation. -- Jesper, 2015-12-18 The new unifier now correctly rejects this example. -- {-# OPTIONS -v tc.lhs.unify:15 #-} -- {-# OPTIONS -v tc.force:10 #-} open import Common.Equality open import Common.Prelude data HEq (A : Set) (a : A) : (B : Set) (b : B) → Set1 where refl : HEq A a A a data Fin : (n : Nat) → Set where zero : {n : Nat} → Fin (suc n) suc : {n : Nat} (i : Fin n) → Fin (suc n) inj-Fin-≅ : ∀ {n m} {i : Fin n} {j : Fin m} → HEq (Fin n) i (Fin m) j → n ≡ m inj-Fin-≅ {i = zero} {zero } refl = refl -- Expected to fail, as n /= m inj-Fin-≅ {i = zero} {suc j} () inj-Fin-≅ {i = suc i} {zero } () inj-Fin-≅ {i = suc i} {suc .i} refl = refl -- Expected to fail, as n /= m -- This should not be accepted, as the direct attempt also fails: -- inj-Fin-≅' : ∀ {n m} {i : Fin n} {j : Fin m} → HEq (Fin n) i (Fin m) j → n ≡ m -- inj-Fin-≅' refl = refl
34.558824
81
0.593191
50b0cc650606f6aee96363f53c15686e056303cd
8,424
agda
Agda
src/Erased/With-K.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Erased/With-K.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Erased/With-K.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Some theory of Erased, developed using the K rule and propositional -- equality ------------------------------------------------------------------------ -- This module instantiates and reexports code from Erased. {-# OPTIONS --with-K --safe #-} module Erased.With-K where open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection equality-with-J using (_↔_) open import Embedding equality-with-J as Emb using (Is-embedding) open import Equivalence equality-with-J as Eq using (_≃_; Is-equivalence) import Erased.Basics as EB import Erased.Level-1 equality-with-J as E open import H-level equality-with-J open import Injection equality-with-J using (Injective) private variable a b p : Level A : Type a ------------------------------------------------------------------------ -- Code related to the module Erased -- Given an erased proof of equality of x and y one can show that -- [ x ] is equal to [ y ]. []-cong : {@0 A : Type a} {@0 x y : A} → EB.Erased (x ≡ y) → EB.[ x ] ≡ EB.[ y ] []-cong EB.[ refl ] = refl -- []-cong is an equivalence. []-cong-equivalence : {@0 A : Type a} {@0 x y : A} → Is-equivalence ([]-cong {x = x} {y = y}) []-cong-equivalence {x = x} {y = y} = _≃_.is-equivalence (Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = []-cong ; from = λ eq → EB.[ cong EB.erased eq ] } ; right-inverse-of = λ { refl → refl } } ; left-inverse-of = λ { EB.[ refl ] → refl } })) -- []-cong maps [ refl ] to refl (by definition). []-cong-[refl] : {@0 A : Type a} {@0 x : A} → []-cong EB.[ refl {x = x} ] ≡ refl {x = EB.[ x ]} []-cong-[refl] = refl -- The []-cong axioms can be instantiated. instance-of-[]-cong-axiomatisation : E.[]-cong-axiomatisation a instance-of-[]-cong-axiomatisation = λ where .E.[]-cong-axiomatisation.[]-cong → []-cong .E.[]-cong-axiomatisation.[]-cong-equivalence → []-cong-equivalence .E.[]-cong-axiomatisation.[]-cong-[refl] → []-cong-[refl] -- Some reexported definitions. open import Erased equality-with-J instance-of-[]-cong-axiomatisation public hiding ([]-cong; []-cong-equivalence; []-cong-[refl]; Injective-[]; Π-Erased≃Π0[]; Π-Erased≃Π0) ------------------------------------------------------------------------ -- Other code -- [_]→ is injective. Injective-[] : {@0 A : Type a} → Injective [ A ∣_]→ Injective-[] refl = refl -- [_]→ is an embedding. Is-embedding-[] : {@0 A : Type a} → Is-embedding [ A ∣_]→ Is-embedding-[] _ _ = (λ { refl → refl }) , (λ { refl → refl }) , (λ { refl → refl }) , (λ { refl → refl }) -- If Erased A is a proposition, then A is a proposition. Is-proposition-Erased→Is-proposition : {@0 A : Type a} → Is-proposition (Erased A) → Is-proposition A Is-proposition-Erased→Is-proposition prop x y = Injective-[] (prop [ x ] [ y ]) -- A variant of the previous result. H-level′-1-Erased→H-level′-1 : {@0 A : Type a} → H-level′ 1 (Erased A) → H-level′ 1 A H-level′-1-Erased→H-level′-1 prop x y with proj₁ (prop [ x ] [ y ]) ... | refl = refl , λ { refl → refl } -- Equality is always very stable. Very-stable-≡-trivial : Very-stable-≡ A Very-stable-≡-trivial = _⇔_.from (Very-stable-≡↔Is-embedding-[] _) Is-embedding-[] -- The following four results are inspired by a result in -- Mishra-Linger's PhD thesis (see Section 5.4.1). -- There is a bijection between (x : Erased A) → P x and -- (@0 x : A) → P [ x ]. Π-Erased↔Π0[] : {@0 A : Type a} {@0 P : Erased A → Type p} → ((x : Erased A) → P x) ↔ ((@0 x : A) → P [ x ]) Π-Erased↔Π0[] = record { surjection = record { logical-equivalence = Π-Erased⇔Π0 ; right-inverse-of = λ _ → refl } ; left-inverse-of = λ _ → refl } -- There is an equivalence between (x : Erased A) → P x and -- (@0 x : A) → P [ x ]. -- -- This is not proved by converting Π-Erased↔Π0[] to an equivalence, -- because the type arguments of the conversion function in -- Equivalence are not erased, and P can only be used in erased -- contexts. -- -- This is a strengthening of E.Π-Erased≃Π0[]. Π-Erased≃Π0[] : {@0 A : Type a} {@0 P : Erased A → Type p} → ((x : Erased A) → P x) ≃ ((@0 x : A) → P [ x ]) Π-Erased≃Π0[] = record { to = λ f x → f [ x ] ; is-equivalence = (λ f ([ x ]) → f x) , (λ _ → refl) , (λ _ → refl) , (λ _ → refl) } -- There is a bijection between (x : Erased A) → P (erased x) and -- (@0 x : A) → P x. Π-Erased↔Π0 : {@0 A : Type a} {@0 P : A → Type p} → ((x : Erased A) → P (erased x)) ↔ ((@0 x : A) → P x) Π-Erased↔Π0 = Π-Erased↔Π0[] -- There is an equivalence between (x : Erased A) → P (erased x) and -- (@0 x : A) → P x. -- -- This is a strengthening of E.Π-Erased≃Π0. Π-Erased≃Π0 : {@0 A : Type a} {@0 P : A → Type p} → ((x : Erased A) → P (erased x)) ≃ ((@0 x : A) → P x) Π-Erased≃Π0 = Π-Erased≃Π0[] private -- As an aside it is possible to prove the four previous results -- without relying on eta-equality for Erased. However, the code -- makes use of extensionality, and it also makes use of -- eta-equality for Π. (The use of η-equality for Π could perhaps be -- avoided, but Agda does not, at the time of writing, provide a -- simple way to turn off this kind of η-equality.) data Erased-no-η (@0 A : Type a) : Type a where [_] : @0 A → Erased-no-η A @0 erased-no-η : Erased-no-η A → A erased-no-η [ x ] = x -- Some lemmas. Π-Erased-no-η→Π0[] : {@0 A : Type a} {@0 P : Erased-no-η A → Type p} → ((x : Erased-no-η A) → P x) → (@0 x : A) → P [ x ] Π-Erased-no-η→Π0[] f x = f [ x ] Π0[]→Π-Erased-no-η : {@0 A : Type a} (@0 P : Erased-no-η A → Type p) → ((@0 x : A) → P [ x ]) → (x : Erased-no-η A) → P x Π0[]→Π-Erased-no-η _ f [ x ] = f x Π0[]→Π-Erased-no-η-Π-Erased-no-η→Π0[] : {@0 A : Type a} {@0 P : Erased-no-η A → Type p} (f : (x : Erased-no-η A) → P x) (x : Erased-no-η A) → Π0[]→Π-Erased-no-η P (Π-Erased-no-η→Π0[] f) x ≡ f x Π0[]→Π-Erased-no-η-Π-Erased-no-η→Π0[] f [ x ] = refl -- There is a bijection between (x : Erased-no-η A) → P x and -- (@0 x : A) → P [ x ] (assuming extensionality). Π-Erased-no-η↔Π0[] : {@0 A : Type a} {@0 P : Erased-no-η A → Type p} → Extensionality′ (Erased-no-η A) P → ((x : Erased-no-η A) → P x) ↔ ((@0 x : A) → P [ x ]) Π-Erased-no-η↔Π0[] {P = P} ext = record { surjection = record { logical-equivalence = record { to = Π-Erased-no-η→Π0[] ; from = Π0[]→Π-Erased-no-η _ } ; right-inverse-of = λ _ → refl } ; left-inverse-of = λ f → ext (Π0[]→Π-Erased-no-η-Π-Erased-no-η→Π0[] f) } -- There is an equivalence between (x : Erased-no-η A) → P x and -- (@0 x : A) → P [ x ] (assuming extensionality). -- -- This is not proved by converting Π-Erased-no-η↔Π0[] to an -- equivalence, because the type arguments of the conversion -- function in Equivalence are not erased, and A and P can only be -- used in erased contexts. Π-Erased-no-η≃Π0[] : {@0 A : Type a} {@0 P : Erased-no-η A → Type p} → Extensionality′ (Erased-no-η A) P → ((x : Erased-no-η A) → P x) ≃ ((@0 x : A) → P [ x ]) Π-Erased-no-η≃Π0[] {A = A} {P = P} ext = record { to = λ f x → f [ x ] ; is-equivalence = Π0[]→Π-Erased-no-η _ , (λ _ → refl) , (λ f → ext (Π0[]→Π-Erased-no-η-Π-Erased-no-η→Π0[] f)) , (λ _ → uip _ _) } where uip : {@0 B : Type b} {@0 x y : B} (@0 p q : x ≡ y) → p ≡ q uip refl refl = refl -- There is a bijection between -- (x : Erased-no-η A) → P (erased-no-η x) and (@0 x : A) → P x -- (assuming extensionality). Π-Erased-no-η↔Π0 : {@0 A : Type a} {@0 P : A → Type p} → Extensionality′ (Erased-no-η A) (P ∘ erased-no-η) → ((x : Erased-no-η A) → P (erased-no-η x)) ↔ ((@0 x : A) → P x) Π-Erased-no-η↔Π0 = Π-Erased-no-η↔Π0[] -- There is an equivalence between -- (x : Erased-no-η A) → P (erased-no-η x) and (@0 x : A) → P x -- (assuming extensionality). Π-Erased-no-η≃Π0 : {@0 A : Type a} {@0 P : A → Type p} → Extensionality′ (Erased-no-η A) (P ∘ erased-no-η) → ((x : Erased-no-η A) → P (erased-no-η x)) ≃ ((@0 x : A) → P x) Π-Erased-no-η≃Π0 = Π-Erased-no-η≃Π0[]
31.084871
72
0.540717
3d726055f8587bf3862d990841deb3d0a175b90d
417
agda
Agda
test/interaction/Issue3316.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/interaction/Issue3316.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/interaction/Issue3316.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
module _ where open import Agda.Builtin.List open import Agda.Builtin.Reflection macro easy : Term → TC _ easy t = bindTC (freshName "A") λ A → bindTC (declarePostulate (arg (arg-info visible relevant) A) (agda-sort (lit 0))) λ _ → unify (def A []) t B : Set B = {!easy!} -- WAS: -- Parse error -- ;<ERROR> -- Example.A... -- SHOULD: complain that A is not in scope
17.375
64
0.58753
3151b2f5662cd41ce63cc6e493af2e564b826577
9,286
agda
Agda
homotopy/LoopSpaceCircle.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
homotopy/LoopSpaceCircle.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
homotopy/LoopSpaceCircle.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT {- This file contains three proofs of Ω(S¹) = ℤ and the fact that the circle is a 1-type: - Something closely related to Mike’s original proof - Dan’s encode-decode proof - Guillaume’s proof using the flattening lemma. This file is divided in a lot of different parts so that common parts can be factored: 1. Definition of the universal cover and the encoding map (this part is common to all three proofs) 2. Proof that [encode (loop^ n) == n] (this part is common to Mike’s proof and the encode-decode proof) 3. Dan’s encode-decode proof that [Ω S¹ ≃ ℤ] 4. Mike’s proof that [Σ S¹ Cover] is contractible 5. Proof with the flattening lemma that [Σ S¹ S¹Cover] is contractible 6. Proof of [Ω S¹ ≃ ℤ] using the fact that [Σ S¹ S¹Cover] is contractible (common to Mike’s proof and the flattening lemma proof) 7. Encode-decode proof of the whole equivalence 8. Proof that the circle is a 1-type (common to all three proofs) Keep - 1, 2, 3 for the encode-decode proof (+ 7, 8 for S¹ is a 1-type) - 1, 2, 4, 6 for Mike’s proof (+ 8) - 1, 5, 6 for the flattening lemma proof (+ 8) -} module homotopy.LoopSpaceCircle where {- 1. Universal cover and encoding map (common to all three proofs) -} module S¹Cover = S¹RecType ℤ succ-equiv S¹Cover : S¹ → Type₀ S¹Cover = S¹Cover.f encode : {x : S¹} (p : base == x) → S¹Cover x encode p = transport S¹Cover p O {- 2. Encoding [loop^ n] (common to Mike’s proof and the encode-decode proof) -} -- We define the element of [Ω S¹] which is supposed to correspond to an -- integer [n], this is the loop winding around the circle [n] times. -- This is easy by induction on [n] loop^ : (n : ℤ) → base == base loop^ O = idp loop^ (pos O) = loop loop^ (pos (S n)) = loop^ (pos n) ∙ loop loop^ (neg O) = ! loop loop^ (neg (S n)) = loop^ (neg n) ∙ (! loop) -- Compatibility of [loop^] with the successor function -- This is again not difficult by induction on [n] loop^succ : (n : ℤ) → loop^ n ∙ loop == loop^ (succ n) loop^succ O = idp loop^succ (pos n) = idp loop^succ (neg O) = !-inv-l loop loop^succ (neg (S n)) = (loop^ (neg n) ∙ ! loop) ∙ loop =⟨ ∙-assoc (loop^ (neg n)) (! loop) loop ⟩ loop^ (neg n) ∙ (! loop ∙ loop) =⟨ !-inv-l loop |in-ctx (λ u → loop^ (neg n) ∙ u) ⟩ loop^ (neg n) ∙ idp =⟨ ∙-unit-r _ ⟩ loop^ (neg n) ∎ -- Now we check that encoding [loop^ n] gives indeed [n], again by induction -- on [n] encode-loop^ : (n : ℤ) → encode (loop^ n) == n encode-loop^ O = idp encode-loop^ (pos O) = S¹Cover.coe-loop-β O encode-loop^ (pos (S n)) = encode (loop^ (pos n) ∙ loop) =⟨ idp ⟩ coe (ap S¹Cover (loop^ (pos n) ∙ loop)) O =⟨ ap-∙ S¹Cover (loop^ (pos n)) loop |in-ctx (λ u → coe u O) ⟩ coe (ap S¹Cover (loop^ (pos n)) ∙ ap S¹Cover loop) O =⟨ coe-∙ (ap S¹Cover (loop^ (pos n))) (ap S¹Cover loop) O ⟩ coe (ap S¹Cover loop) (coe (ap S¹Cover (loop^ (pos n))) O) =⟨ encode-loop^ (pos n) |in-ctx coe (ap S¹Cover loop) ⟩ coe (ap S¹Cover loop) (pos n) =⟨ S¹Cover.coe-loop-β (pos n) ⟩ pos (S n) ∎ encode-loop^ (neg O) = coe (ap S¹Cover (! loop)) O =⟨ coe-ap-! S¹Cover loop O ⟩ coe! (ap S¹Cover loop) O =⟨ S¹Cover.coe!-loop-β O ⟩ neg O ∎ encode-loop^ (neg (S n)) = encode (loop^ (neg n) ∙ ! loop) =⟨ idp ⟩ coe (ap S¹Cover (loop^ (neg n) ∙ ! loop)) O =⟨ ap-∙ S¹Cover (loop^ (neg n)) (! loop) |in-ctx (λ u → coe u O) ⟩ coe (ap S¹Cover (loop^ (neg n)) ∙ ap S¹Cover (! loop)) O =⟨ coe-∙ (ap S¹Cover (loop^ (neg n))) (ap S¹Cover (! loop)) O ⟩ coe (ap S¹Cover (! loop)) (coe (ap S¹Cover (loop^ (neg n))) O) =⟨ encode-loop^ (neg n) |in-ctx coe (ap S¹Cover (! loop)) ⟩ coe (ap S¹Cover (! loop)) (neg n) =⟨ coe-ap-! S¹Cover loop (neg n) ⟩ coe! (ap S¹Cover loop) (neg n) =⟨ S¹Cover.coe!-loop-β (neg n) ⟩ neg (S n) ∎ {- 3. Dan’s encode-decode proof -} -- The decoding function at [base] is [loop^], but we extend it to the whole -- of [S¹] so that [decode-encode] becomes easier (and we need [loop^succ] to -- be able to extend it) decode : (x : S¹) → (S¹Cover x → base == x) decode = S¹-elim loop^ (↓-→-in (λ {n} q → ↓-cst=idf-in (loop^succ n ∙ ap loop^ (S¹Cover.↓-loop-out q)))) decode-encode : (x : S¹) (p : base == x) → decode x (encode p) == p decode-encode _ p = J (λ x p → decode x (encode p) == p) idp p -- Magic! -- And we get the theorem ΩS¹≃ℤ : (base == base) ≃ ℤ ΩS¹≃ℤ = equiv encode (decode base) encode-loop^ (decode-encode base) {- 4. Mike’s proof that [Σ S¹ Cover] is contractible -} -- We want to prove that every point of [Σ S¹ S¹Cover] is equal to [(base , O)] paths-mike : (xt : Σ S¹ S¹Cover) → (base , O) == xt paths-mike (x , t) = paths-mike-c x t where -- We do it by circle-induction on the first component. When it’s [base], -- we use the [↓-loop^] below (which is essentially [encode-loop^]) and -- for [loop] we use [loop^succ] and the fact that [ℤ] is a set. paths-mike-c : (x : S¹) (t : S¹Cover x) → (base , O) == (x , t) :> Σ S¹ S¹Cover paths-mike-c = S¹-elim (λ n → pair= (loop^ n) (↓-loop^ n)) (↓-Π-in (λ {n} {n'} q → ↓-cst=idf-in (pair= (loop^ n) (↓-loop^ n) ∙ pair= loop q =⟨ Σ-∙ (↓-loop^ n) q ⟩ pair= (loop^ n ∙ loop) (↓-loop^ n ∙ᵈ q) =⟨ pair== (loop^succ n ∙ ap loop^ (S¹Cover.↓-loop-out q)) (set-↓-has-all-paths-↓ ℤ-is-set) ⟩ pair= (loop^ n') (↓-loop^ n') ∎))) where ↓-loop^ : (n : ℤ) → O == n [ S¹Cover ↓ loop^ n ] ↓-loop^ n = from-transp _ _ (encode-loop^ n) contr-mike : is-contr (Σ S¹ S¹Cover) contr-mike = ((base , O) , paths-mike) {- 5. Flattening lemma proof that [Σ S¹ Cover] is contractible -} --We import the flattening lemma for the universal cover of the circle --open FlatteningS¹ ℤ succ-equiv open S¹Cover using (module Wt; Wt; cct; ppt; flattening-S¹) -- We prove that the flattened HIT corresponding to the universal cover of the -- circle (the real line) is contractible Wt-is-contr : is-contr Wt Wt-is-contr = (cct tt O , Wt.elim (base* ∘ snd) (loop* ∘ snd)) where -- This is basically [loop^] base* : (n : ℤ) → cct tt O == cct tt n base* O = idp base* (pos O) = ppt tt O base* (pos (S n)) = base* (pos n) ∙ ppt tt (pos n) base* (neg O) = ! (ppt tt (neg O)) base* (neg (S n)) = base* (neg n) ∙ ! (ppt tt (neg (S n))) loop* : (n : ℤ) → base* n == base* (succ n) [ (λ x → cct tt O == x) ↓ ppt tt n ] loop* n = ↓-cst=idf-in (aux n) where -- This is basically [loop^succ] aux : (n : ℤ) → base* n ∙ ppt tt n == base* (succ n) aux O = idp aux (pos n) = idp aux (neg O) = !-inv-l (ppt tt (neg O)) aux (neg (S n)) = base* (neg (S n)) ∙ ppt tt (neg (S n)) =⟨ idp ⟩ (base* (neg n) ∙ ! (ppt tt (neg (S n)))) ∙ ppt tt (neg (S n)) =⟨ ∙-assoc (base* (neg n)) _ _ ⟩ base* (neg n) ∙ (! (ppt tt (neg (S n))) ∙ ppt tt (neg (S n))) =⟨ !-inv-l (ppt tt (neg (S n))) |in-ctx (λ u → base* (neg n) ∙ u) ⟩ base* (neg n) ∙ idp =⟨ ∙-unit-r _ ⟩ base* (neg n) ∎ -- Then, using the flattening lemma we get that the total space of [Cover] is -- contractible contr-flattening : is-contr (Σ S¹ S¹Cover) contr-flattening = transport! is-contr flattening-S¹ Wt-is-contr {- 6. Proof that [Ω S¹ ≃ ℤ] using the fact that [Σ S¹ Cover] is contractible -} tot-encode : Σ S¹ (λ x → base == x) → Σ S¹ S¹Cover tot-encode (x , y) = (x , encode y) -- The previous map induces an equivalence on the total spaces, because both -- total spaces are contractible total-is-equiv : is-equiv tot-encode total-is-equiv = contr-to-contr-is-equiv _ (pathfrom-is-contr base) contr-flattening -- Hence it’s an equivalence fiberwise postulate -- TODO, will be only one line using the fact that an equivalence on -- total spaces induces an equivalence fiberwise encode-is-equiv : (x : S¹) → is-equiv (encode {x}) -- We can then conclude that the loop space of the circle is equivalent to [ℤ] ΩS¹≃ℤ' : (base == base) ≃ ℤ ΩS¹≃ℤ' = (encode {base} , encode-is-equiv base) {- 7. Encode-decode proof of the whole fiberwise equivalence -} -- This is quite similar to [paths-mike], we’re doing it by circle-induction, -- the base case is [encode-loop^] and the loop case is using the fact that [ℤ] -- is a set (and [loop^succ] is already used in [decode]) encode-decode : (x : S¹) (t : S¹Cover x) → encode (decode x t) == t encode-decode = S¹-elim {P = λ x → (t : S¹Cover x) → encode (decode x t) == t} encode-loop^ (↓-Π-in (λ q → prop-has-all-paths-↓ (ℤ-is-set _ _))) encode-is-equiv' : (x : S¹) → is-equiv (encode {x}) encode-is-equiv' x = is-eq encode (decode x) (encode-decode x) (decode-encode x) {- 8. Proof that the circle is a 1-type -} S¹Cover-is-set : (y : S¹) → is-set (S¹Cover y) S¹Cover-is-set = S¹-elim ℤ-is-set (prop-has-all-paths-↓ is-set-is-prop) ΩS¹-is-set : (y : S¹) → is-set (base == y) ΩS¹-is-set y = equiv-preserves-level ((encode {y} , encode-is-equiv y) ⁻¹) (S¹Cover-is-set y) S¹-level : has-level ⟨1⟩ S¹ S¹-level = S¹-elim ΩS¹-is-set (prop-has-all-paths-↓ (Π-level (λ x → is-set-is-prop)))
38.371901
84
0.587982
cb947b5fb43e6d1d82997c81da03b7f62cc48860
54
agda
Agda
src-cbpv/Everything.agda
andreasabel/ipl
9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a
[ "Unlicense" ]
19
2018-05-16T08:08:51.000Z
2021-04-27T19:10:49.000Z
src-cbpv/Everything.agda
andreasabel/ipl
9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a
[ "Unlicense" ]
null
null
null
src-cbpv/Everything.agda
andreasabel/ipl
9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a
[ "Unlicense" ]
2
2018-11-13T16:01:46.000Z
2021-02-25T20:39:03.000Z
module Everything where import Library import NfCBPV
10.8
23
0.851852
130c88586c792a20223d1530f41a858361a6801c
25,669
agda
Agda
canonical-indeterminate-forms.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
canonical-indeterminate-forms.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
canonical-indeterminate-forms.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
open import Nat open import Prelude open import contexts open import dynamics-core open import type-assignment-unicity module canonical-indeterminate-forms where -- this type gives somewhat nicer syntax for the output of the canonical -- forms lemma for indeterminates at num type data cif-num : (Δ : hctx) (d : ihexp) → Set where CIFNPlus1 : ∀{Δ d} → Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ] ((d == d1 ·+ d2) × (Δ , ∅ ⊢ d1 :: num) × (Δ , ∅ ⊢ d2 :: num) × (d1 indet) × (d2 final) ) → cif-num Δ d CIFNPlus2 : ∀{Δ d} → Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ] ((d == d1 ·+ d2) × (Δ , ∅ ⊢ d1 :: num) × (Δ , ∅ ⊢ d2 :: num) × (d1 final) × (d2 indet) ) → cif-num Δ d CIFNAp : ∀{Δ d} → Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ] Σ[ τ2 ∈ htyp ] ((d == d1 ∘ d2) × (Δ , ∅ ⊢ d1 :: τ2 ==> num) × (Δ , ∅ ⊢ d2 :: τ2) × (d1 indet) × (d2 final) × ((τ3 τ4 τ3' τ4' : htyp) (d1' : ihexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩)) ) → cif-num Δ d CIFNCase : ∀{Δ d} → Σ[ d1 ∈ ihexp ] Σ[ x ∈ Nat ] Σ[ d2 ∈ ihexp ] Σ[ y ∈ Nat ] Σ[ d3 ∈ ihexp ] Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ] ((d == case d1 x d2 y d3) × (Δ , ∅ ⊢ d1 :: τ1 ⊕ τ2) × (Δ , ■ (x , τ1) ⊢ d2 :: num) × (Δ , ■ (y , τ2) ⊢ d3 :: num) × (d1 indet) × ((τ : htyp) (d' : ihexp) → d1 ≠ inl τ d') × ((τ : htyp) (d' : ihexp) → d1 ≠ inr τ d') × ((τ3 τ4 τ3' τ4' : htyp) (d' : ihexp) → d1 ≠ (d' ⟨(τ3 ⊕ τ4) ⇒ (τ3' ⊕ τ4')⟩)) ) → cif-num Δ d CIFNFst : ∀{Δ d} → Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] ((d == fst d') × (Δ , ∅ ⊢ d' :: num ⊠ τ') × (d' indet) × ((d1 d2 : ihexp) → d' ≠ ⟨ d1 , d2 ⟩) × ((τ3 τ4 τ3' τ4' : htyp) (d'' : ihexp) → d' ≠ (d'' ⟨(τ3 ⊠ τ4) ⇒ (τ3' ⊠ τ4')⟩)) ) → cif-num Δ d CIFNSnd : ∀{Δ d} → Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] ((d == snd d') × (Δ , ∅ ⊢ d' :: τ' ⊠ num) × (d' indet) × ((d1 d2 : ihexp) → d' ≠ ⟨ d1 , d2 ⟩) × ((τ3 τ4 τ3' τ4' : htyp) (d'' : ihexp) → d' ≠ (d'' ⟨(τ3 ⊠ τ4) ⇒ (τ3' ⊠ τ4')⟩)) ) → cif-num Δ d CIFNEHole : ∀{Δ d} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ] ((d == ⦇-⦈⟨ u , σ ⟩) × ((u :: num [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-num Δ d CIFNNEHole : ∀{Δ d} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ] Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] ((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) × (Δ , ∅ ⊢ d' :: τ') × (d' final) × ((u :: num [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-num Δ d CIFNCast : ∀{Δ d} → Σ[ d' ∈ ihexp ] ((d == d' ⟨ ⦇-⦈ ⇒ num ⟩) × (Δ , ∅ ⊢ d' :: ⦇-⦈) × (d' indet) × ((d'' : ihexp) (τ' : htyp) → d' ≠ (d'' ⟨ τ' ⇒ ⦇-⦈ ⟩)) ) → cif-num Δ d CIFNFailedCast : ∀{Δ d} → Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] ((d == d' ⟨ τ' ⇒⦇-⦈⇏ num ⟩) × (Δ , ∅ ⊢ d' :: τ') × (τ' ground) × (τ' ≠ num) ) → cif-num Δ d canonical-indeterminate-forms-num : ∀{Δ d} → Δ , ∅ ⊢ d :: num → d indet → cif-num Δ d canonical-indeterminate-forms-num TANum () canonical-indeterminate-forms-num (TAPlus wt wt₁) (IPlus1 x x₁) = CIFNPlus1 (_ , _ , refl , wt , wt₁ , x , x₁) canonical-indeterminate-forms-num (TAPlus wt wt₁) (IPlus2 x x₁) = CIFNPlus2 (_ , _ , refl , wt , wt₁ , x , x₁) canonical-indeterminate-forms-num (TAVar x₁) () canonical-indeterminate-forms-num (TAAp wt wt₁) (IAp x ind x₁) = CIFNAp (_ , _ , _ , refl , wt , wt₁ , ind , x₁ , x) canonical-indeterminate-forms-num {Δ = Δ} (TACase {τ1 = τ1} {τ2 = τ2} {x = x} {d1 = d1} {y = y} {d2 = d2} wt _ wt₁ _ wt₂) (ICase ninl ninr ncast ind) = CIFNCase (_ , _ , _ , _ , _ , _ , _ , refl , wt , tr (λ Γ' → Δ , Γ' ⊢ d1 :: num) (extend-empty x τ1) wt₁ , tr (λ Γ' → Δ , Γ' ⊢ d2 :: num) (extend-empty y τ2) wt₂ , ind , ninl , ninr , ncast) canonical-indeterminate-forms-num (TAFst wt) (IFst x x₁ ind) = CIFNFst (_ , _ , refl , wt , ind , x , x₁) canonical-indeterminate-forms-num (TASnd wt) (ISnd x x₁ ind) = CIFNSnd (_ , _ , refl , wt , ind , x , x₁) canonical-indeterminate-forms-num (TAEHole x x₁) IEHole = CIFNEHole (_ , _ , _ , refl , x , x₁) canonical-indeterminate-forms-num (TANEHole x wt x₁) (INEHole x₂) = CIFNNEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁) canonical-indeterminate-forms-num (TACast wt x) (ICastHoleGround x₁ ind x₂) = CIFNCast (_ , refl , wt , ind , x₁) canonical-indeterminate-forms-num (TAFailedCast x x₁ x₂ x₃) (IFailedCast x₄ x₅ x₆ x₇) = CIFNFailedCast (_ , _ , refl , x , x₅ , x₇) -- this type gives somewhat nicer syntax for the output of the canonical -- forms lemma for indeterminates at arrow type data cif-arr : (Δ : hctx) (d : ihexp) (τ1 τ2 : htyp) → Set where CIFAEHole : ∀{d Δ τ1 τ2} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ] ((d == ⦇-⦈⟨ u , σ ⟩) × ((u :: (τ1 ==> τ2) [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-arr Δ d τ1 τ2 CIFANEHole : ∀{d Δ τ1 τ2} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] Σ[ Γ ∈ tctx ] ((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) × (Δ , ∅ ⊢ d' :: τ') × (d' final) × ((u :: (τ1 ==> τ2) [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-arr Δ d τ1 τ2 CIFAAp : ∀{d Δ τ1 τ2} → Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ] Σ[ τ2' ∈ htyp ] Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ] ((d == d1 ∘ d2) × (Δ , ∅ ⊢ d1 :: τ2' ==> (τ1 ==> τ2)) × (Δ , ∅ ⊢ d2 :: τ2') × (d1 indet) × (d2 final) × ((τ3 τ4 τ3' τ4' : htyp) (d1' : ihexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩)) ) → cif-arr Δ d τ1 τ2 CIFACase : ∀{Δ d τ1 τ2} → Σ[ d1 ∈ ihexp ] Σ[ x ∈ Nat ] Σ[ d2 ∈ ihexp ] Σ[ y ∈ Nat ] Σ[ d3 ∈ ihexp ] Σ[ τ3 ∈ htyp ] Σ[ τ4 ∈ htyp ] ((d == case d1 x d2 y d3) × (Δ , ∅ ⊢ d1 :: τ3 ⊕ τ4) × (Δ , ■ (x , τ3) ⊢ d2 :: τ1 ==> τ2) × (Δ , ■ (y , τ4) ⊢ d3 :: τ1 ==> τ2) × (d1 indet) × ((τ : htyp) (d' : ihexp) → d1 ≠ inl τ d') × ((τ : htyp) (d' : ihexp) → d1 ≠ inr τ d') × ((τ5 τ6 τ5' τ6' : htyp) (d' : ihexp) → d1 ≠ (d' ⟨(τ5 ⊕ τ6) ⇒ (τ5' ⊕ τ6')⟩)) ) → cif-arr Δ d τ1 τ2 CIFAFst : ∀{Δ d τ1 τ2} → Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] ((d == fst d') × (Δ , ∅ ⊢ d' :: (τ1 ==> τ2) ⊠ τ') × (d' indet) × ((d1 d2 : ihexp) → d' ≠ ⟨ d1 , d2 ⟩) × ((τ3 τ4 τ3' τ4' : htyp) (d'' : ihexp) → d' ≠ (d'' ⟨(τ3 ⊠ τ4) ⇒ (τ3' ⊠ τ4')⟩)) ) → cif-arr Δ d τ1 τ2 CIFASnd : ∀{Δ d τ1 τ2} → Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] ((d == snd d') × (Δ , ∅ ⊢ d' :: τ' ⊠ (τ1 ==> τ2)) × (d' indet) × ((d1 d2 : ihexp) → d' ≠ ⟨ d1 , d2 ⟩) × ((τ3 τ4 τ3' τ4' : htyp) (d'' : ihexp) → d' ≠ (d'' ⟨(τ3 ⊠ τ4) ⇒ (τ3' ⊠ τ4')⟩)) ) → cif-arr Δ d τ1 τ2 CIFACast : ∀{d Δ τ1 τ2} → Σ[ d' ∈ ihexp ] Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ] Σ[ τ1' ∈ htyp ] Σ[ τ2' ∈ htyp ] ((d == d' ⟨ (τ1' ==> τ2') ⇒ (τ1 ==> τ2) ⟩) × (Δ , ∅ ⊢ d' :: τ1' ==> τ2') × (d' indet) × ((τ1' ==> τ2') ≠ (τ1 ==> τ2)) ) → cif-arr Δ d τ1 τ2 CIFACastHole : ∀{d Δ τ1 τ2} → Σ[ d' ∈ ihexp ] ((d == (d' ⟨ ⦇-⦈ ⇒ ⦇-⦈ ==> ⦇-⦈ ⟩)) × (τ1 == ⦇-⦈) × (τ2 == ⦇-⦈) × (Δ , ∅ ⊢ d' :: ⦇-⦈) × (d' indet) × ((d'' : ihexp) (τ' : htyp) → d' ≠ (d'' ⟨ τ' ⇒ ⦇-⦈ ⟩)) ) → cif-arr Δ d τ1 τ2 CIFAFailedCast : ∀{d Δ τ1 τ2} → Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] ((d == (d' ⟨ τ' ⇒⦇-⦈⇏ ⦇-⦈ ==> ⦇-⦈ ⟩) ) × (τ1 == ⦇-⦈) × (τ2 == ⦇-⦈) × (Δ , ∅ ⊢ d' :: τ') × (τ' ground) × (τ' ≠ (⦇-⦈ ==> ⦇-⦈)) ) → cif-arr Δ d τ1 τ2 canonical-indeterminate-forms-arr : ∀{Δ d τ1 τ2 } → Δ , ∅ ⊢ d :: (τ1 ==> τ2) → d indet → cif-arr Δ d τ1 τ2 canonical-indeterminate-forms-arr (TAVar x₁) () canonical-indeterminate-forms-arr (TALam _ wt) () canonical-indeterminate-forms-arr (TAAp wt wt₁) (IAp x ind x₁) = CIFAAp (_ , _ , _ , _ , _ , refl , wt , wt₁ , ind , x₁ , x) canonical-indeterminate-forms-arr {Δ = Δ} (TACase {τ1 = τ1} {τ2 = τ2} {τ = τ3 ==> τ4} {x = x} {d1 = d1} {y = y} {d2 = d2} wt _ wt₁ _ wt₂) (ICase ninl ninr ncast ind) = CIFACase (_ , _ , _ , _ , _ , _ , _ , refl , wt , tr (λ Γ' → Δ , Γ' ⊢ d1 :: τ3 ==> τ4) (extend-empty x τ1) wt₁ , tr (λ Γ' → Δ , Γ' ⊢ d2 :: τ3 ==> τ4) (extend-empty y τ2) wt₂ , ind , ninl , ninr , ncast) canonical-indeterminate-forms-arr (TAFst wt) (IFst x x₁ ind) = CIFAFst (_ , _ , refl , wt , ind , x , x₁) canonical-indeterminate-forms-arr (TASnd wt) (ISnd x x₁ ind) = CIFASnd (_ , _ , refl , wt , ind , x , x₁) canonical-indeterminate-forms-arr (TAEHole x x₁) IEHole = CIFAEHole (_ , _ , _ , refl , x , x₁) canonical-indeterminate-forms-arr (TANEHole x wt x₁) (INEHole x₂) = CIFANEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁) canonical-indeterminate-forms-arr (TACast wt x) (ICastArr x₁ ind) = CIFACast (_ , _ , _ , _ , _ , refl , wt , ind , x₁) canonical-indeterminate-forms-arr (TACast wt TCHole2) (ICastHoleGround x₁ ind GArrHole) = CIFACastHole (_ , refl , refl , refl , wt , ind , x₁) canonical-indeterminate-forms-arr (TAFailedCast x x₁ GArrHole x₃) (IFailedCast x₄ x₅ GArrHole x₇) = CIFAFailedCast (_ , _ , refl , refl , refl , x , x₅ , x₇) -- this type gives somewhat nicer syntax for the output of the canonical -- forms lemma for indeterminates at sum type data cif-sum : (Δ : hctx) (d : ihexp) (τ1 τ2 : htyp) → Set where CIFSEHole : ∀{d Δ τ1 τ2} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ] ((d == ⦇-⦈⟨ u , σ ⟩) × ((u :: (τ1 ⊕ τ2) [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-sum Δ d τ1 τ2 CIFSNEHole : ∀{d Δ τ1 τ2} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] Σ[ Γ ∈ tctx ] ((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) × (Δ , ∅ ⊢ d' :: τ') × (d' final) × ((u :: (τ1 ⊕ τ2) [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-sum Δ d τ1 τ2 CIFSAp : ∀{d Δ τ1 τ2} → Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ] Σ[ τ2' ∈ htyp ] Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ] ((d == d1 ∘ d2) × (Δ , ∅ ⊢ d1 :: τ2' ==> (τ1 ⊕ τ2)) × (Δ , ∅ ⊢ d2 :: τ2') × (d1 indet) × (d2 final) × ((τ3 τ4 τ3' τ4' : htyp) (d1' : ihexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩)) ) → cif-sum Δ d τ1 τ2 CIFSInl : ∀{Δ d τ1 τ2} → Σ[ d' ∈ ihexp ] ((d == inl τ2 d') × (Δ , ∅ ⊢ d' :: τ1) × (d' indet) ) → cif-sum Δ d τ1 τ2 CIFSInr : ∀{Δ d τ1 τ2} → Σ[ d' ∈ ihexp ] ((d == inr τ1 d') × (Δ , ∅ ⊢ d' :: τ2) × (d' indet) ) → cif-sum Δ d τ1 τ2 CIFSCase : ∀{Δ d τ1 τ2} → Σ[ d1 ∈ ihexp ] Σ[ x ∈ Nat ] Σ[ d2 ∈ ihexp ] Σ[ y ∈ Nat ] Σ[ d3 ∈ ihexp ] Σ[ τ3 ∈ htyp ] Σ[ τ4 ∈ htyp ] ((d == case d1 x d2 y d3) × (Δ , ∅ ⊢ d1 :: τ3 ⊕ τ4) × (Δ , ■ (x , τ3) ⊢ d2 :: τ1 ⊕ τ2) × (Δ , ■ (y , τ4) ⊢ d3 :: τ1 ⊕ τ2) × (d1 indet) × ((τ : htyp) (d' : ihexp) → d1 ≠ inl τ d') × ((τ : htyp) (d' : ihexp) → d1 ≠ inr τ d') × ((τ5 τ6 τ5' τ6' : htyp) (d' : ihexp) → d1 ≠ (d' ⟨(τ5 ⊕ τ6) ⇒ (τ5' ⊕ τ6')⟩)) ) → cif-sum Δ d τ1 τ2 CIFSFst : ∀{Δ d τ1 τ2} → Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] ((d == fst d') × (Δ , ∅ ⊢ d' :: (τ1 ⊕ τ2) ⊠ τ') × (d' indet) × ((d1 d2 : ihexp) → d' ≠ ⟨ d1 , d2 ⟩) × ((τ3 τ4 τ3' τ4' : htyp) (d'' : ihexp) → d' ≠ (d'' ⟨(τ3 ⊠ τ4) ⇒ (τ3' ⊠ τ4')⟩)) ) → cif-sum Δ d τ1 τ2 CIFSSnd : ∀{Δ d τ1 τ2} → Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] ((d == snd d') × (Δ , ∅ ⊢ d' :: τ' ⊠ (τ1 ⊕ τ2)) × (d' indet) × ((d1 d2 : ihexp) → d' ≠ ⟨ d1 , d2 ⟩) × ((τ3 τ4 τ3' τ4' : htyp) (d'' : ihexp) → d' ≠ (d'' ⟨(τ3 ⊠ τ4) ⇒ (τ3' ⊠ τ4')⟩)) ) → cif-sum Δ d τ1 τ2 CIFSCast : ∀{d Δ τ1 τ2} → Σ[ d' ∈ ihexp ] Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ] Σ[ τ1' ∈ htyp ] Σ[ τ2' ∈ htyp ] ((d == d' ⟨ (τ1' ⊕ τ2') ⇒ (τ1 ⊕ τ2) ⟩) × (Δ , ∅ ⊢ d' :: τ1' ⊕ τ2') × (d' indet) × ((τ1' ⊕ τ2') ≠ (τ1 ⊕ τ2)) ) → cif-sum Δ d τ1 τ2 CIFSCastHole : ∀{d Δ τ1 τ2} → Σ[ d' ∈ ihexp ] ((d == (d' ⟨ ⦇-⦈ ⇒ ⦇-⦈ ⊕ ⦇-⦈ ⟩)) × (τ1 == ⦇-⦈) × (τ2 == ⦇-⦈) × (Δ , ∅ ⊢ d' :: ⦇-⦈) × (d' indet) × ((d'' : ihexp) (τ' : htyp) → d' ≠ (d'' ⟨ τ' ⇒ ⦇-⦈ ⟩)) ) → cif-sum Δ d τ1 τ2 CIFSFailedCast : ∀{d Δ τ1 τ2} → Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] ((d == (d' ⟨ τ' ⇒⦇-⦈⇏ ⦇-⦈ ⊕ ⦇-⦈ ⟩) ) × (τ1 == ⦇-⦈) × (τ2 == ⦇-⦈) × (Δ , ∅ ⊢ d' :: τ') × (τ' ground) × (τ' ≠ (⦇-⦈ ⊕ ⦇-⦈)) ) → cif-sum Δ d τ1 τ2 canonical-indeterminate-forms-sum : ∀{Δ d τ1 τ2 } → Δ , ∅ ⊢ d :: (τ1 ⊕ τ2) → d indet → cif-sum Δ d τ1 τ2 canonical-indeterminate-forms-sum (TAAp wt wt₁) (IAp x ind x₁) = CIFSAp (_ , _ , _ , _ , _ , refl , wt , wt₁ , ind , x₁ , x) canonical-indeterminate-forms-sum (TAInl wt) (IInl ind) = CIFSInl (_ , refl , wt , ind) canonical-indeterminate-forms-sum (TAInr wt) (IInr ind) = CIFSInr (_ , refl , wt , ind) canonical-indeterminate-forms-sum {Δ = Δ} (TACase {τ1 = τ1} {τ2 = τ2} {τ = τ3 ⊕ τ4} {x = x} {d1 = d1} {y = y} {d2 = d2} wt _ wt₁ _ wt₂) (ICase ninl ninr ncast ind) = CIFSCase (_ , _ , _ , _ , _ , _ , _ , refl , wt , tr (λ Γ' → Δ , Γ' ⊢ d1 :: (τ3 ⊕ τ4)) (extend-empty x τ1) wt₁ , tr (λ Γ' → Δ , Γ' ⊢ d2 :: (τ3 ⊕ τ4)) (extend-empty y τ2) wt₂ , ind , ninl , ninr , ncast) canonical-indeterminate-forms-sum (TAFst wt) (IFst x x₁ ind) = CIFSFst (_ , _ , refl , wt , ind , x , x₁) canonical-indeterminate-forms-sum (TASnd wt) (ISnd x x₁ ind) = CIFSSnd (_ , _ , refl , wt , ind , x , x₁) canonical-indeterminate-forms-sum (TAEHole x x₁) IEHole = CIFSEHole (_ , _ , _ , refl , x , x₁) canonical-indeterminate-forms-sum (TANEHole x wt x₁) (INEHole x₂) = CIFSNEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁) canonical-indeterminate-forms-sum (TACast wt x) (ICastSum x₁ ind) = CIFSCast (_ , _ , _ , _ , _ , refl , wt , ind , x₁) canonical-indeterminate-forms-sum (TACast wt x) (ICastHoleGround x₁ ind GSumHole) = CIFSCastHole (_ , refl , refl , refl , wt , ind , x₁) canonical-indeterminate-forms-sum (TAFailedCast wt x x₁ x₂) (IFailedCast x₃ x₄ GSumHole x₆) = CIFSFailedCast (_ , _ , refl , refl , refl , wt , x₄ , x₆) canonical-indeterminate-forms-sum (TAVar x) () -- this type gives somewhat nicer syntax for the output of the canonical -- forms lemma for indeterminates at product type data cif-prod : (Δ : hctx) (d : ihexp) (τ1 τ2 : htyp) → Set where CIFPEHole : ∀{d Δ τ1 τ2} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ] ((d == ⦇-⦈⟨ u , σ ⟩) × ((u :: (τ1 ⊠ τ2) [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-prod Δ d τ1 τ2 CIFPNEHole : ∀{d Δ τ1 τ2} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] Σ[ Γ ∈ tctx ] ((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) × (Δ , ∅ ⊢ d' :: τ') × (d' final) × ((u :: (τ1 ⊠ τ2) [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-prod Δ d τ1 τ2 CIFPAp : ∀{d Δ τ1 τ2} → Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ] Σ[ τ2' ∈ htyp ] Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ] ((d == d1 ∘ d2) × (Δ , ∅ ⊢ d1 :: τ2' ==> (τ1 ⊠ τ2)) × (Δ , ∅ ⊢ d2 :: τ2') × (d1 indet) × (d2 final) × ((τ3 τ4 τ3' τ4' : htyp) (d1' : ihexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩)) ) → cif-prod Δ d τ1 τ2 CIFPCase : ∀{Δ d τ1 τ2} → Σ[ d1 ∈ ihexp ] Σ[ x ∈ Nat ] Σ[ d2 ∈ ihexp ] Σ[ y ∈ Nat ] Σ[ d3 ∈ ihexp ] Σ[ τ3 ∈ htyp ] Σ[ τ4 ∈ htyp ] ((d == case d1 x d2 y d3) × (Δ , ∅ ⊢ d1 :: τ3 ⊕ τ4) × (Δ , ■ (x , τ3) ⊢ d2 :: τ1 ⊠ τ2) × (Δ , ■ (y , τ4) ⊢ d3 :: τ1 ⊠ τ2) × (d1 indet) × ((τ : htyp) (d' : ihexp) → d1 ≠ inl τ d') × ((τ : htyp) (d' : ihexp) → d1 ≠ inr τ d') × ((τ5 τ6 τ5' τ6' : htyp) (d' : ihexp) → d1 ≠ (d' ⟨(τ5 ⊕ τ6) ⇒ (τ5' ⊕ τ6')⟩)) ) → cif-prod Δ d τ1 τ2 CIFPPair1 : ∀{Δ d τ1 τ2} → Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ] ((d == ⟨ d1 , d2 ⟩) × (Δ , ∅ ⊢ d1 :: τ1) × (Δ , ∅ ⊢ d2 :: τ2) × d1 indet × d2 final ) → cif-prod Δ d τ1 τ2 CIFPPair2 : ∀{Δ d τ1 τ2} → Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ] ((d == ⟨ d1 , d2 ⟩) × (Δ , ∅ ⊢ d1 :: τ1) × (Δ , ∅ ⊢ d2 :: τ2) × d1 final × d2 indet ) → cif-prod Δ d τ1 τ2 CIFPFst : ∀{Δ d τ1 τ2} → Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] ((d == fst d') × (Δ , ∅ ⊢ d' :: (τ1 ⊠ τ2) ⊠ τ') × (d' indet) × ((d1 d2 : ihexp) → d' ≠ ⟨ d1 , d2 ⟩) × ((τ3 τ4 τ3' τ4' : htyp) (d'' : ihexp) → d' ≠ (d'' ⟨(τ3 ⊠ τ4) ⇒ (τ3' ⊠ τ4')⟩)) ) → cif-prod Δ d τ1 τ2 CIFPSnd : ∀{Δ d τ1 τ2} → Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] ((d == snd d') × (Δ , ∅ ⊢ d' :: τ' ⊠ (τ1 ⊠ τ2)) × (d' indet) × ((d1 d2 : ihexp) → d' ≠ ⟨ d1 , d2 ⟩) × ((τ3 τ4 τ3' τ4' : htyp) (d'' : ihexp) → d' ≠ (d'' ⟨(τ3 ⊠ τ4) ⇒ (τ3' ⊠ τ4')⟩)) ) → cif-prod Δ d τ1 τ2 CIFPCast : ∀{d Δ τ1 τ2} → Σ[ d' ∈ ihexp ] Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ] Σ[ τ1' ∈ htyp ] Σ[ τ2' ∈ htyp ] ((d == d' ⟨ (τ1' ⊠ τ2') ⇒ (τ1 ⊠ τ2) ⟩) × (Δ , ∅ ⊢ d' :: τ1' ⊠ τ2') × (d' indet) × ((τ1' ⊠ τ2') ≠ (τ1 ⊠ τ2)) ) → cif-prod Δ d τ1 τ2 CIFPCastHole : ∀{d Δ τ1 τ2} → Σ[ d' ∈ ihexp ] ((d == (d' ⟨ ⦇-⦈ ⇒ ⦇-⦈ ⊠ ⦇-⦈ ⟩)) × (τ1 == ⦇-⦈) × (τ2 == ⦇-⦈) × (Δ , ∅ ⊢ d' :: ⦇-⦈) × (d' indet) × ((d'' : ihexp) (τ' : htyp) → d' ≠ (d'' ⟨ τ' ⇒ ⦇-⦈ ⟩)) ) → cif-prod Δ d τ1 τ2 CIFPFailedCast : ∀{d Δ τ1 τ2} → Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] ((d == (d' ⟨ τ' ⇒⦇-⦈⇏ ⦇-⦈ ⊠ ⦇-⦈ ⟩) ) × (τ1 == ⦇-⦈) × (τ2 == ⦇-⦈) × (Δ , ∅ ⊢ d' :: τ') × (τ' ground) × (τ' ≠ (⦇-⦈ ⊠ ⦇-⦈)) ) → cif-prod Δ d τ1 τ2 canonical-indeterminate-forms-prod : ∀{Δ d τ1 τ2} → Δ , ∅ ⊢ d :: (τ1 ⊠ τ2) → d indet → cif-prod Δ d τ1 τ2 canonical-indeterminate-forms-prod (TAVar x) () canonical-indeterminate-forms-prod (TAAp wt wt₁) (IAp x ind x₁) = CIFPAp (_ , _ , _ , _ , _ , refl , wt , wt₁ , ind , x₁ , x) canonical-indeterminate-forms-prod {Δ = Δ} (TACase {τ1 = τ1} {τ2 = τ2} {τ = τ3 ⊠ τ4} {x = x} {d1 = d1} {y = y} {d2 = d2} wt _ wt₁ _ wt₂) (ICase ninl ninr ncast ind) = CIFPCase (_ , _ , _ , _ , _ , _ , _ , refl , wt , tr (λ Γ' → Δ , Γ' ⊢ d1 :: (τ3 ⊠ τ4)) (extend-empty x τ1) wt₁ , tr (λ Γ' → Δ , Γ' ⊢ d2 :: (τ3 ⊠ τ4)) (extend-empty y τ2) wt₂ , ind , ninl , ninr , ncast) canonical-indeterminate-forms-prod (TAPair wt wt₁) (IPair1 ind x) = CIFPPair1 (_ , _ , refl , wt , wt₁ , ind , x) canonical-indeterminate-forms-prod (TAPair wt wt₁) (IPair2 x ind) = CIFPPair2 (_ , _ , refl , wt , wt₁ , x , ind) canonical-indeterminate-forms-prod (TAFst wt) (IFst x x₁ ind) = CIFPFst (_ , _ , refl , wt , ind , x , x₁) canonical-indeterminate-forms-prod (TASnd wt) (ISnd x x₁ ind) = CIFPSnd (_ , _ , refl , wt , ind , x , x₁) canonical-indeterminate-forms-prod (TAEHole x x₁) IEHole = CIFPEHole (_ , _ , _ , refl , x , x₁) canonical-indeterminate-forms-prod (TANEHole x wt x₁) (INEHole x₂) = CIFPNEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁) canonical-indeterminate-forms-prod (TACast wt x) (ICastProd x₁ ind) = CIFPCast (_ , _ , _ , _ , _ , refl , wt , ind , x₁) canonical-indeterminate-forms-prod (TACast wt x) (ICastHoleGround x₁ ind GProdHole) = CIFPCastHole (_ , refl , refl , refl , wt , ind , x₁) canonical-indeterminate-forms-prod (TAFailedCast wt x GProdHole x₂) (IFailedCast x₃ x₄ GProdHole x₆) = CIFPFailedCast (_ , _ , refl , refl , refl , wt , x₄ , x₆) -- this type gives somewhat nicer syntax for the output of the canonical -- forms lemma for indeterminates at hole type data cif-hole : (Δ : hctx) (d : ihexp) → Set where CIFHEHole : ∀{Δ d} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ] ((d == ⦇-⦈⟨ u , σ ⟩) × ((u :: ⦇-⦈ [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-hole Δ d CIFHNEHole : ∀{Δ d} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] Σ[ Γ ∈ tctx ] ((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) × (Δ , ∅ ⊢ d' :: τ') × (d' final) × ((u :: ⦇-⦈ [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-hole Δ d CIFHAp : ∀{Δ d} → Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ] Σ[ τ2 ∈ htyp ] ((d == d1 ∘ d2) × (Δ , ∅ ⊢ d1 :: (τ2 ==> ⦇-⦈)) × (Δ , ∅ ⊢ d2 :: τ2) × (d1 indet) × (d2 final) × ((τ3 τ4 τ3' τ4' : htyp) (d1' : ihexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩)) ) → cif-hole Δ d CIFHCase : ∀{Δ d} → Σ[ d1 ∈ ihexp ] Σ[ x ∈ Nat ] Σ[ d2 ∈ ihexp ] Σ[ y ∈ Nat ] Σ[ d3 ∈ ihexp ] Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ] ((d == case d1 x d2 y d3) × (Δ , ∅ ⊢ d1 :: τ1 ⊕ τ2) × (Δ , ■ (x , τ1) ⊢ d2 :: ⦇-⦈) × (Δ , ■ (y , τ2) ⊢ d3 :: ⦇-⦈) × (d1 indet) × ((τ : htyp) (d' : ihexp) → d1 ≠ inl τ d') × ((τ : htyp) (d' : ihexp) → d1 ≠ inr τ d') × ((τ3 τ4 τ3' τ4' : htyp) (d' : ihexp) → d1 ≠ (d' ⟨(τ3 ⊕ τ4) ⇒ (τ3' ⊕ τ4')⟩)) ) → cif-hole Δ d CIFHFst : ∀{Δ d} → Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] ((d == fst d') × (Δ , ∅ ⊢ d' :: ⦇-⦈ ⊠ τ') × (d' indet) × ((d1 d2 : ihexp) → d' ≠ ⟨ d1 , d2 ⟩) × ((τ3 τ4 τ3' τ4' : htyp) (d'' : ihexp) → d' ≠ (d'' ⟨(τ3 ⊠ τ4) ⇒ (τ3' ⊠ τ4')⟩)) ) → cif-hole Δ d CIFHSnd : ∀{Δ d} → Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] ((d == snd d') × (Δ , ∅ ⊢ d' :: τ' ⊠ ⦇-⦈) × (d' indet) × ((d1 d2 : ihexp) → d' ≠ ⟨ d1 , d2 ⟩) × ((τ3 τ4 τ3' τ4' : htyp) (d'' : ihexp) → d' ≠ (d'' ⟨(τ3 ⊠ τ4) ⇒ (τ3' ⊠ τ4')⟩)) ) → cif-hole Δ d CIFHCast : ∀{Δ d} → Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] ((d == d' ⟨ τ' ⇒ ⦇-⦈ ⟩) × (Δ , ∅ ⊢ d' :: τ') × (τ' ground) × (d' indet) ) → cif-hole Δ d canonical-indeterminate-forms-hole : ∀{Δ d} → Δ , ∅ ⊢ d :: ⦇-⦈ → d indet → cif-hole Δ d canonical-indeterminate-forms-hole (TAVar x₁) () canonical-indeterminate-forms-hole (TAAp wt wt₁) (IAp x ind x₁) = CIFHAp (_ , _ , _ , refl , wt , wt₁ , ind , x₁ , x) canonical-indeterminate-forms-hole {Δ = Δ} (TACase {τ1 = τ1} {τ2 = τ2} {x = x} {d1 = d1} {y = y} {d2 = d2} wt _ wt₁ _ wt₂) (ICase ninl ninr ncast ind) = CIFHCase (_ , _ , _ , _ , _ , _ , _ , refl , wt , tr (λ Γ' → Δ , Γ' ⊢ d1 :: ⦇-⦈) (extend-empty x τ1) wt₁ , tr (λ Γ' → Δ , Γ' ⊢ d2 :: ⦇-⦈) (extend-empty y τ2) wt₂ , ind , ninl , ninr , ncast) canonical-indeterminate-forms-hole (TAFst wt) (IFst x x₁ ind) = CIFHFst (_ , _ , refl , wt , ind , x , x₁) canonical-indeterminate-forms-hole (TASnd wt) (ISnd x x₁ ind) = CIFHSnd (_ , _ , refl , wt , ind , x , x₁) canonical-indeterminate-forms-hole (TAEHole x x₁) IEHole = CIFHEHole (_ , _ , _ , refl , x , x₁) canonical-indeterminate-forms-hole (TANEHole x wt x₁) (INEHole x₂) = CIFHNEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁) canonical-indeterminate-forms-hole (TACast wt x) (ICastGroundHole x₁ ind) = CIFHCast (_ , _ , refl , wt , x₁ , ind) canonical-indeterminate-forms-hole (TACast wt x) (ICastHoleGround x₁ ind ()) canonical-indeterminate-forms-hole (TAFailedCast x x₁ () x₃) (IFailedCast x₄ x₅ x₆ x₇) canonical-indeterminate-forms-coverage : ∀{Δ d τ} → Δ , ∅ ⊢ d :: τ → d indet → τ ≠ num → ((τ1 : htyp) (τ2 : htyp) → τ ≠ (τ1 ==> τ2)) → ((τ1 : htyp) (τ2 : htyp) → τ ≠ (τ1 ⊕ τ2)) → ((τ1 : htyp) (τ2 : htyp) → τ ≠ (τ1 ⊠ τ2)) → τ ≠ ⦇-⦈ → ⊥ canonical-indeterminate-forms-coverage {τ = num} wt ind nn na ns np nh = nn refl canonical-indeterminate-forms-coverage {τ = ⦇-⦈} wt ind nn na ns np nh = nh refl canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} wt ind nn na ns np nh = na τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ⊕ τ₁} wt ind nn na ns np nh = ns τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ⊠ τ₁} wt ind nn na ns np nh = np τ τ₁ refl
43.953767
372
0.404535
dce0c11399a42ff5d8e97211d4ebc320a9fff276
329
agda
Agda
Cubical/HITs/Sn/Base.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/HITs/Sn/Base.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/HITs/Sn/Base.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.Sn.Base where open import Cubical.HITs.Susp open import Cubical.Data.Nat open import Cubical.Data.NatMinusOne open import Cubical.Data.Empty open import Cubical.Foundations.Prelude S : ℕ₋₁ → Type₀ S neg1 = ⊥ S (ℕ→ℕ₋₁ n) = Susp (S (-1+ n)) S₊ : ℕ → Type₀ S₊ n = S (ℕ→ℕ₋₁ n)
20.5625
39
0.68997
c7ea5d60ada8c5d73e9ba684849a5d5f2c1d19c2
1,001
agda
Agda
Cubical/Categories/Monoidal/Enriched.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/Categories/Monoidal/Enriched.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Categories/Monoidal/Enriched.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
-- Enriched categories {-# OPTIONS --safe #-} module Cubical.Categories.Monoidal.Enriched where open import Cubical.Categories.Monoidal.Base open import Cubical.Foundations.Prelude module _ {ℓV ℓV' : Level} (V : MonoidalCategory ℓV ℓV') (ℓE : Level) where open MonoidalCategory V renaming (ob to obV; Hom[_,_] to V[_,_]; id to idV; _⋆_ to _⋆V_) record EnrichedCategory : Type (ℓ-max (ℓ-max ℓV ℓV') (ℓ-suc ℓE)) where field ob : Type ℓE Hom[_,_] : ob → ob → obV id : ∀ {x} → V[ unit , Hom[ x , x ] ] seq : ∀ x y z → V[ Hom[ x , y ] ⊗ Hom[ y , z ] , Hom[ x , z ] ] -- Axioms ⋆IdL : ∀ x y → η⟨ _ ⟩ ≡ (id {x} ⊗ₕ idV) ⋆V (seq x x y) ⋆IdR : ∀ x y → ρ⟨ _ ⟩ ≡ (idV ⊗ₕ id {y}) ⋆V (seq x y y) ⋆Assoc : ∀ x y z w → α⟨ _ , _ , _ ⟩ ⋆V ((seq x y z) ⊗ₕ idV) ⋆V (seq x z w) ≡ (idV ⊗ₕ (seq y z w)) ⋆V (seq x y w) -- TODO: define underlying category using Hom[ x , y ] := V[ unit , Hom[ x , y ] ]
33.366667
82
0.508492
22382a51ee783fd27c8efcabd325d58d64eb48de
331
agda
Agda
src/Data/Natural.agda
agda/agda-data-bindings
84d51967e20bf248e9f73af37f52972922ffc77c
[ "MIT" ]
2
2019-08-02T23:17:59.000Z
2019-10-24T13:51:16.000Z
src/Data/Natural.agda
agda/agda-data-bindings
84d51967e20bf248e9f73af37f52972922ffc77c
[ "MIT" ]
null
null
null
src/Data/Natural.agda
agda/agda-data-bindings
84d51967e20bf248e9f73af37f52972922ffc77c
[ "MIT" ]
1
2022-03-12T11:40:14.000Z
2022-03-12T11:40:14.000Z
-- A binding to a Haskell natural numbers type open import Data.Nat using ( ℕ ) renaming ( zero to zero' ; suc to suc' ) module Data.Natural where open import Data.Natural.Primitive public using ( Natural ; zero ; suc ; _+_ ; toString ; foldl ; foldl' ; foldr ) renaming ( fromℕ to # ) % : Natural → ℕ % = foldr suc' zero'
25.461538
74
0.670695
ad7b4be74ff18140ee77051c13b405ffaa4f7c2d
9,603
agda
Agda
src/Categories/Category/Construction/Properties/Presheaves/Complete.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/Category/Construction/Properties/Presheaves/Complete.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/Category/Construction/Properties/Presheaves/Complete.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Category.Construction.Properties.Presheaves.Complete {o ℓ e} (C : Category o ℓ e) where open import Data.Product open import Function.Equality using (Π) renaming (_∘_ to _∙_) open import Relation.Binary open import Relation.Binary.Construct.Closure.SymmetricTransitive as ST using (Plus⇔) open Plus⇔ open import Categories.Category.Complete open import Categories.Category.Cocomplete open import Categories.Category.Construction.Presheaves open import Categories.Category.Instance.Setoids open import Categories.Category.Instance.Properties.Setoids open import Categories.Diagram.Limit as Lim open import Categories.Diagram.Colimit open import Categories.Functor open import Categories.NaturalTransformation import Categories.Category.Construction.Cones as Co import Categories.Category.Construction.Cocones as Coc import Relation.Binary.Reasoning.Setoid as SetoidR private module C = Category C open C open Π using (_⟨$⟩_) module _ o′ where private P = Presheaves′ o′ o′ C module P = Category P module _ {J : Category o′ o′ o′} (F : Functor J P) where module J = Category J module F = Functor F open F module F₀ j = Functor (F₀ j) module F₁ {a b} (f : a J.⇒ b) = NaturalTransformation (F₁ f) open Setoid using () renaming (_≈_ to [_]_≈_) F[-,_] : Obj → Functor J (Setoids o′ o′) F[-, X ] = record { F₀ = λ j → F₀.₀ j X ; F₁ = λ f → F₁.η f X ; identity = identity ; homomorphism = homomorphism ; F-resp-≈ = λ eq → F-resp-≈ eq -- this application cannot be eta reduced } -- limit related definitions module LimFX X = Limit (Setoids-Complete _ _ _ o′ o′ F[-, X ]) module FCone (K : Co.Cone F) where open Co.Cone F K public module N = Functor N module ψ j = NaturalTransformation (ψ j) module FCone⇒ {K K′ : Co.Cone F} (K⇒K′ : Co.Cone⇒ F K K′) where open Co.Cone⇒ F K⇒K′ public module arr = NaturalTransformation arr FXcone : ∀ X → (K : Co.Cone F) → Co.Cone F[-, X ] FXcone X K = record { N = N.₀ X ; apex = record { ψ = λ j → ψ.η j X ; commute = λ f → commute f -- this application cannot be eta reduced } } where open FCone K ⊤ : Co.Cone F ⊤ = record { N = record { F₀ = λ X → LimFX.apex X ; F₁ = λ {A B} f → record { _⟨$⟩_ = λ { (S , eq) → (λ j → F₀.₁ j f ⟨$⟩ S j) , λ {X Y} g → let open SetoidR (F₀.₀ Y B) in begin F₁.η g B ⟨$⟩ (F₀.₁ X f ⟨$⟩ S X) ≈⟨ F₁.commute g f (Setoid.refl (F₀.₀ X A)) ⟩ F₀.₁ Y f ⟨$⟩ (F₁.η g A ⟨$⟩ S X) ≈⟨ Π.cong (F₀.₁ Y f) (eq g) ⟩ F₀.₁ Y f ⟨$⟩ S Y ∎ } ; cong = λ eq j → Π.cong (F₀.₁ j f) (eq j) } ; identity = λ eq j → F₀.identity j (eq j) ; homomorphism = λ eq j → F₀.homomorphism j (eq j) ; F-resp-≈ = λ eq eq′ j → F₀.F-resp-≈ j eq (eq′ j) } ; apex = record { ψ = λ j → ntHelper record { η = λ X → record { _⟨$⟩_ = λ { (S , eq) → S j } ; cong = λ eq → eq j } ; commute = λ f eq → Π.cong (F₀.₁ j f) (eq j) } ; commute = λ { {Y} {Z} f {W} {S₁ , eq₁} {S₂ , eq₂} eq → let open SetoidR (F₀.₀ Z W) in begin F₁.η f W ⟨$⟩ S₁ Y ≈⟨ eq₁ f ⟩ S₁ Z ≈⟨ eq Z ⟩ S₂ Z ∎ } } } K⇒⊤′ : ∀ X {K} → Co.Cones F [ K , ⊤ ] → Co.Cones F[-, X ] [ FXcone X K , LimFX.limit X ] K⇒⊤′ X {K} K⇒⊤ = record { arr = arr.η X ; commute = comm } where open FCone⇒ K⇒⊤ renaming (commute to comm) complete : Limit F complete = record { terminal = record { ⊤ = ⊤ ; ! = λ {K} → let module K = FCone K in record { arr = ntHelper record { η = λ X → LimFX.rep X (FXcone X K) ; commute = λ {X Y} f eq j → K.ψ.commute j f eq } ; commute = λ eq → Π.cong (K.ψ.η _ _) eq } ; !-unique = λ K⇒⊤ {X} → LimFX.terminal.!-unique X (K⇒⊤′ X K⇒⊤) } } -- colimit related definitions module ColimFX X = Colimit (Setoids-Cocomplete _ _ _ o′ o′ F[-, X ]) module FCocone (K : Coc.Cocone F) where open Coc.Cocone F K public module N = Functor N module ψ j = NaturalTransformation (ψ j) module FCocone⇒ {K K′ : Coc.Cocone F} (K⇒K′ : Coc.Cocone⇒ F K K′) where open Coc.Cocone⇒ F K⇒K′ public module arr = NaturalTransformation arr FXcocone : ∀ X → (K : Coc.Cocone F) → Coc.Cocone F[-, X ] FXcocone X K = record { N = N.₀ X ; coapex = record { ψ = λ j → ψ.η j X ; commute = λ f → commute f -- this application cannot be eta reduced } } where open FCocone K ⊥ : Coc.Cocone F ⊥ = record { N = record { F₀ = λ X → ColimFX.coapex X ; F₁ = λ {A B} f → record { _⟨$⟩_ = λ { (j , Sj) → j , F₀.₁ j f ⟨$⟩ Sj } ; cong = λ { {a , Sa} {b , Sb} → ST.map (λ { (j , Sj) → j , F₀.₁ j f ⟨$⟩ Sj }) (helper f) } } ; identity = λ { {A} {j , _} eq → forth⁺ (J.id , identity (F₀.identity j (Setoid.refl (F₀.₀ j A)))) eq } ; homomorphism = λ {X Y Z} {f g} → λ { {_} {j , Sj} eq → let open Setoid (F₀.₀ j Z) in ST.trans (coc o′ o′ F[-, Z ]) (ST.map (hom-map f g) (helper (f ∘ g)) eq) (forth (J.id , trans (identity refl) (F₀.homomorphism j (Setoid.refl (F₀.₀ j X))))) } ; F-resp-≈ = λ {A B} {f g} eq → λ { {j , Sj} eq′ → let open Setoid (F₀.₀ j B) in ST.trans (coc o′ o′ F[-, B ]) (forth (J.id , trans (identity refl) (F₀.F-resp-≈ j eq (Setoid.refl (F₀.₀ j A))))) (ST.map (λ { (j , Sj) → (j , F₀.₁ j g ⟨$⟩ Sj) }) (helper g) eq′) } } ; coapex = record { ψ = λ j → ntHelper record { η = λ X → record { _⟨$⟩_ = j ,_ ; cong = λ eq → forth (-, identity eq) } ; commute = λ {X Y} f eq → back (-, identity (Π.cong (F₀.₁ j f) (Setoid.sym (F₀.₀ j X) eq))) } ; commute = λ {a b} f {X} {x y} eq → let open ST.Plus⇔Reasoning (coc o′ o′ F[-, X ]) in back (f , Π.cong (F₁.η f X) (Setoid.sym (F₀.₀ a X) eq)) } } where helper : ∀ {A B} (f : B C.⇒ A) {a Sa b Sb} → Σ (a J.⇒ b) (λ g → [ F₀.₀ b A ] F₁.η g A ⟨$⟩ Sa ≈ Sb) → Σ (a J.⇒ b) λ h → [ F₀.₀ b B ] F₁.η h B ⟨$⟩ (F₀.₁ a f ⟨$⟩ Sa) ≈ F₀.₁ b f ⟨$⟩ Sb helper {A} {B} f {a} {Sa} {b} {Sb} (g , eq′) = let open SetoidR (F₀.₀ b B) in g , (begin F₁.η g B ⟨$⟩ (F₀.₁ a f ⟨$⟩ Sa) ≈⟨ F₁.commute g f (Setoid.refl (F₀.₀ a A)) ⟩ F₀.₁ b f ⟨$⟩ (F₁.η g A ⟨$⟩ Sa) ≈⟨ Π.cong (F₀.₁ b f) eq′ ⟩ F₀.₁ b f ⟨$⟩ Sb ∎) hom-map : ∀ {X Y Z} → Y C.⇒ X → Z C.⇒ Y → Σ J.Obj (λ j → Setoid.Carrier (F₀.₀ j X)) → Σ J.Obj (λ j → Setoid.Carrier (F₀.₀ j Z)) hom-map f g (j , Sj) = j , F₀.₁ j (f ∘ g) ⟨$⟩ Sj ⊥⇒K′ : ∀ X {K} → Coc.Cocones F [ ⊥ , K ] → Coc.Cocones F[-, X ] [ ColimFX.colimit X , FXcocone X K ] ⊥⇒K′ X {K} ⊥⇒K = record { arr = arr.η X ; commute = comm } where open FCocone⇒ ⊥⇒K renaming (commute to comm) ! : {K : Coc.Cocone F} → Coc.Cocone⇒ F ⊥ K ! {K} = record { arr = ntHelper record { η = λ X → ColimFX.rep X (FXcocone X K) ; commute = λ {X Y} f → λ { {a , Sa} {b , Sb} eq → let open SetoidR (K.N.F₀ Y) in begin K.ψ.η a Y ⟨$⟩ (F₀.₁ a f ⟨$⟩ Sa) ≈⟨ K.ψ.commute a f (Setoid.refl (F₀.₀ a X)) ⟩ K.N.F₁ f ⟨$⟩ (K.ψ.η a X ⟨$⟩ Sa) ≈⟨ Π.cong (K.N.F₁ f) (ST.minimal (coc o′ o′ F[-, X ]) (K.N.₀ X) (Kψ X) (helper X) eq) ⟩ K.N.F₁ f ⟨$⟩ (K.ψ.η b X ⟨$⟩ Sb) ∎ } } ; commute = λ eq → Π.cong (K.ψ.η _ _) eq } where module K = FCocone K Kψ : ∀ X → Σ J.Obj (λ j → Setoid.Carrier (F₀.₀ j X)) → Setoid.Carrier (K.N.F₀ X) Kψ X (j , S) = K.ψ.η j X ⟨$⟩ S helper : ∀ X → coc o′ o′ F[-, X ] =[ Kψ X ]⇒ [ K.N.₀ X ]_≈_ helper X {a , Sa} {b , Sb} (f , eq) = begin K.ψ.η a X ⟨$⟩ Sa ≈˘⟨ K.commute f (Setoid.refl (F₀.₀ a X)) ⟩ K.ψ.η b X ⟨$⟩ (F₁.η f X ⟨$⟩ Sa) ≈⟨ Π.cong (K.ψ.η b X) eq ⟩ K.ψ.η b X ⟨$⟩ Sb ∎ where open SetoidR (K.N.₀ X) cocomplete : Colimit F cocomplete = record { initial = record { ⊥ = ⊥ ; ! = ! ; !-unique = λ ⊥⇒K {X} → ColimFX.initial.!-unique X (⊥⇒K′ X ⊥⇒K) } } Presheaves-Complete : Complete o′ o′ o′ P Presheaves-Complete F = complete F Presheaves-Cocomplete : Cocomplete o′ o′ o′ P Presheaves-Cocomplete F = cocomplete F
38.412
141
0.44861
1a4e240285207c6c07648fe45d452beb859a1889
8,213
agda
Agda
Cubical/HITs/FiniteMultiset/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/HITs/FiniteMultiset/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/HITs/FiniteMultiset/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.HITs.FiniteMultiset.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Nat open import Cubical.Data.Empty as ⊥ open import Cubical.Relation.Nullary open import Cubical.HITs.FiniteMultiset.Base open import Cubical.Structures.MultiSet open import Cubical.Relation.Nullary.DecidableEq private variable ℓ : Level A : Type ℓ infixr 30 _++_ _++_ : ∀ (xs ys : FMSet A) → FMSet A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ xs ++ ys comm x y xs i ++ ys = comm x y (xs ++ ys) i trunc xs zs p q i j ++ ys = trunc (xs ++ ys) (zs ++ ys) (cong (_++ ys) p) (cong (_++ ys) q) i j unitl-++ : ∀ (xs : FMSet A) → [] ++ xs ≡ xs unitl-++ xs = refl unitr-++ : ∀ (xs : FMSet A) → xs ++ [] ≡ xs unitr-++ = ElimProp.f (trunc _ _) refl (λ x p → cong (_∷_ x) p) assoc-++ : ∀ (xs ys zs : FMSet A) → xs ++ (ys ++ zs) ≡ (xs ++ ys) ++ zs assoc-++ = ElimProp.f (isPropΠ2 (λ _ _ → trunc _ _)) (λ ys zs → refl) (λ x p ys zs → cong (_∷_ x) (p ys zs)) cons-++ : ∀ (x : A) (xs : FMSet A) → x ∷ xs ≡ xs ++ [ x ] cons-++ x = ElimProp.f (trunc _ _) refl (λ y {xs} p → comm x y xs ∙ cong (_∷_ y) p) comm-++ : ∀ (xs ys : FMSet A) → xs ++ ys ≡ ys ++ xs comm-++ = ElimProp.f (isPropΠ (λ _ → trunc _ _)) (λ ys → sym (unitr-++ ys)) (λ x {xs} p ys → cong (x ∷_) (p ys) ∙ cong (_++ xs) (cons-++ x ys) ∙ sym (assoc-++ ys [ x ] xs)) module FMSetUniversal {ℓ} {M : Type ℓ} (MSet : isSet M) (e : M) (_⊗_ : M → M → M) (comm-⊗ : ∀ x y → x ⊗ y ≡ y ⊗ x) (assoc-⊗ : ∀ x y z → x ⊗ (y ⊗ z) ≡ (x ⊗ y) ⊗ z) (unit-⊗ : ∀ x → e ⊗ x ≡ x) (f : A → M) where f-extend : FMSet A → M f-extend = Rec.f MSet e (λ x m → f x ⊗ m) (λ x y m → comm-⊗ (f x) (f y ⊗ m) ∙ sym (assoc-⊗ (f y) m (f x)) ∙ cong (f y ⊗_) (comm-⊗ m (f x))) f-extend-nil : f-extend [] ≡ e f-extend-nil = refl f-extend-cons : ∀ x xs → f-extend (x ∷ xs) ≡ f x ⊗ f-extend xs f-extend-cons x xs = refl f-extend-sing : ∀ x → f-extend [ x ] ≡ f x f-extend-sing x = comm-⊗ (f x) e ∙ unit-⊗ (f x) f-extend-++ : ∀ xs ys → f-extend (xs ++ ys) ≡ f-extend xs ⊗ f-extend ys f-extend-++ = ElimProp.f (isPropΠ λ _ → MSet _ _) (λ ys → sym (unit-⊗ (f-extend ys))) (λ x {xs} p ys → cong (f x ⊗_) (p ys) ∙ assoc-⊗ (f x) (f-extend xs) (f-extend ys)) module _ (h : FMSet A → M) (h-nil : h [] ≡ e) (h-sing : ∀ x → h [ x ] ≡ f x) (h-++ : ∀ xs ys → h (xs ++ ys) ≡ h xs ⊗ h ys) where f-extend-unique : h ≡ f-extend f-extend-unique = funExt (ElimProp.f (MSet _ _) h-nil (λ x {xs} p → (h-++ [ x ] xs) ∙ cong (_⊗ h xs) (h-sing x) ∙ cong (f x ⊗_) p)) -- We want to construct a multiset-structure on FMSet A, the empty set and insertion are given by the constructors, -- for the count part we use the recursor -- If A has decidable equality we can define the count-function: module _(discA : Discrete A) where FMScount-∷* : A → A → ℕ → ℕ FMScount-∷* a x n with discA a x ... | yes a≡x = suc n ... | no a≢x = n FMScount-comm* : (a x y : A) (n : ℕ) → FMScount-∷* a x (FMScount-∷* a y n) ≡ FMScount-∷* a y (FMScount-∷* a x n) FMScount-comm* a x y n with discA a x | discA a y ... | yes a≡x | yes a≡y = refl ... | yes a≡x | no a≢y = refl ... | no a≢x | yes a≡y = refl ... | no a≢x | no a≢y = refl FMScount : A → FMSet A → ℕ FMScount a = Rec.f isSetℕ 0 (FMScount-∷* a) (FMScount-comm* a) FMS-with-str : MultiSet A (Discrete→isSet discA) FMS-with-str = (FMSet A , [] , _∷_ , FMScount) -- We prove some useful properties of the FMScount function FMScount-≡-lemma : ∀ {a} {x} xs → a ≡ x → FMScount a (x ∷ xs) ≡ suc (FMScount a xs) FMScount-≡-lemma {a} {x} xs a≡x with discA a x ... | yes _ = refl ... | no a≢x = ⊥.rec (a≢x a≡x) FMScount-≡-lemma-refl : ∀ {x} xs → FMScount x (x ∷ xs) ≡ suc (FMScount x xs) FMScount-≡-lemma-refl {x} xs = FMScount-≡-lemma xs refl FMScount-≢-lemma : ∀ {a} {x} xs → ¬ a ≡ x → FMScount a (x ∷ xs) ≡ FMScount a xs FMScount-≢-lemma {a} {x} xs a≢x with discA a x ... | yes a≡x = ⊥.rec (a≢x a≡x) ... | no _ = refl FMScount-0-lemma : ∀ xs → (∀ a → FMScount a xs ≡ 0) → xs ≡ [] FMScount-0-lemma = ElimProp.f (isPropΠ λ _ → trunc _ _) (λ _ → refl) θ where θ : ∀ x {xs} → ((∀ a → FMScount a xs ≡ 0) → xs ≡ []) → ((∀ a → FMScount a (x ∷ xs) ≡ 0) → (x ∷ xs) ≡ []) θ x {xs} _ p = ⊥.rec (snotz (sym (FMScount-≡-lemma-refl xs) ∙ p x)) -- we define a function that removes an element a from a finite multiset once -- by simultaneously defining two lemmas about it remove1 : A → FMSet A → FMSet A remove1 a [] = [] remove1 a (x ∷ xs) with (discA a x) ... | yes _ = xs ... | no _ = x ∷ remove1 a xs remove1 a (comm x y xs i) with discA a x with discA a y ... | yes a≡x | yes a≡y = ((sym a≡y ∙ a≡x) i) ∷ xs ... | yes a≡x | no _ = y ∷ (eq i) where eq : xs ≡ remove1 a (x ∷ xs) eq with discA a x eq | yes _ = refl eq | no a≢x = ⊥.rec (a≢x a≡x) remove1 a (comm x y xs i) | no _ | yes a≡y = x ∷ (eq i) where eq : remove1 a (y ∷ xs) ≡ xs eq with discA a y eq | yes _ = refl eq | no a≢y = ⊥.rec (a≢y a≡y) remove1 a (comm x y xs i) | no a≢x | no a≢y = ((λ i → x ∷ (p i)) ∙∙ comm x y (remove1 a xs) ∙∙ (λ i → y ∷ (sym q i))) i where p : remove1 a (y ∷ xs) ≡ y ∷ (remove1 a xs) p with discA a y p | yes a≡y = ⊥.rec (a≢y a≡y) p | no _ = refl q : remove1 a (x ∷ xs) ≡ x ∷ (remove1 a xs) q with discA a x q | yes a≡x = ⊥.rec (a≢x a≡x) q | no _ = refl remove1 a (trunc xs ys p q i j) = trunc (remove1 a xs) (remove1 a ys) (cong (remove1 a) p) (cong (remove1 a) q) i j remove1-≡-lemma : ∀ {a} {x} xs → a ≡ x → xs ≡ remove1 a (x ∷ xs) remove1-≡-lemma {a} {x} xs a≡x with discA a x ... | yes _ = refl ... | no a≢x = ⊥.rec (a≢x a≡x) remove1-≢-lemma : ∀ {a} {x} xs → ¬ a ≡ x → remove1 a (x ∷ xs) ≡ x ∷ remove1 a xs remove1-≢-lemma {a} {x} xs a≢x with discA a x ... | yes a≡x = ⊥.rec (a≢x a≡x) ... | no _ = refl remove1-predℕ-lemma : ∀ a xs → FMScount a (remove1 a xs) ≡ predℕ (FMScount a xs) remove1-predℕ-lemma a = ElimProp.f (isSetℕ _ _) refl θ where θ : ∀ x {xs} → FMScount a (remove1 a xs) ≡ predℕ (FMScount a xs) → FMScount a (remove1 a (x ∷ xs)) ≡ predℕ (FMScount a (x ∷ xs)) θ x {xs} p with discA a x ... | yes _ = refl ... | no a≢x = FMScount-≢-lemma (remove1 a xs) a≢x ∙ p remove1-zero-lemma : ∀ a xs → FMScount a xs ≡ zero → xs ≡ remove1 a xs remove1-zero-lemma a = ElimProp.f (isPropΠ λ _ → trunc _ _) (λ _ → refl) θ where θ : ∀ x {xs} → (FMScount a xs ≡ zero → xs ≡ remove1 a xs) → FMScount a (x ∷ xs) ≡ zero → x ∷ xs ≡ remove1 a (x ∷ xs) θ x {xs} hyp p with discA a x ... | yes _ = ⊥.rec (snotz p) ... | no _ = cong (x ∷_) (hyp p) remove1-suc-lemma : ∀ a n xs → FMScount a xs ≡ suc n → xs ≡ a ∷ (remove1 a xs) remove1-suc-lemma a n = ElimProp.f (isPropΠ λ _ → trunc _ _) (λ p → ⊥.rec (znots p)) θ where θ : ∀ x {xs} → (FMScount a xs ≡ suc n → xs ≡ a ∷ (remove1 a xs)) → FMScount a (x ∷ xs) ≡ suc n → x ∷ xs ≡ a ∷ (remove1 a (x ∷ xs)) θ x {xs} hyp p with discA a x ... | yes a≡x = (λ i → (sym a≡x i) ∷ xs) ... | no a≢x = cong (x ∷_) (hyp p) ∙ comm x a (remove1 a xs) FMScount-remove1-≢-lemma : ∀ {a} {x} xs → ¬ a ≡ x → FMScount a (remove1 x xs) ≡ FMScount a xs FMScount-remove1-≢-lemma {a} {x} xs a≢x with discreteℕ (FMScount x xs) zero ... | yes p = cong (FMScount a) (sym (remove1-zero-lemma x xs p)) ... | no ¬p = sym (FMScount-≢-lemma (remove1 x xs) a≢x) ∙ cong (FMScount a) eq₁ where eq₁ : (x ∷ remove1 x xs) ≡ xs eq₁ = sym (remove1-suc-lemma x (predℕ (FMScount x xs)) xs (suc-predℕ (FMScount x xs) ¬p))
37.331818
127
0.499696
187755c08b92982944ee494cb9f988213783b559
19,488
agda
Agda
Cubical/Experiments/ZCohomologyOld/Groups/Sn.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Experiments/ZCohomologyOld/Groups/Sn.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Experiments/ZCohomologyOld/Groups/Sn.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Experiments.ZCohomologyOld.Groups.Sn where open import Cubical.ZCohomology.Base open import Cubical.Experiments.ZCohomologyOld.Properties open import Cubical.Experiments.ZCohomologyOld.MayerVietorisUnreduced open import Cubical.Experiments.ZCohomologyOld.Groups.Unit open import Cubical.Experiments.ZCohomologyOld.Groups.Connected open import Cubical.Experiments.ZCohomologyOld.KcompPrelims open import Cubical.Experiments.ZCohomologyOld.Groups.Prelims open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.Prelude open import Cubical.Foundations.Structure open import Cubical.Foundations.Pointed open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.HITs.Pushout open import Cubical.HITs.Sn open import Cubical.HITs.S1 open import Cubical.HITs.Susp open import Cubical.HITs.SetTruncation renaming (rec to sRec ; elim to sElim ; elim2 to sElim2 ; map to sMap) open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; elim to pElim ; elim2 to pElim2 ; ∥_∥ to ∥_∥₁ ; ∣_∣ to ∣_∣₁) hiding (map) open import Cubical.Data.Bool open import Cubical.Data.Sigma open import Cubical.Data.Int renaming (_+_ to _+ℤ_; +-comm to +ℤ-comm ; +-assoc to +ℤ-assoc) open import Cubical.Data.Nat open import Cubical.HITs.Truncation renaming (elim to trElim ; map to trMap ; rec to trRec) open import Cubical.Data.Unit open import Cubical.Homotopy.Connected open import Cubical.Algebra.Group infixr 31 _□_ _□_ : _ _□_ = compGroupIso open GroupEquiv open vSES open GroupIso open GroupHom open BijectionIso Sn-connected : (n : ℕ) (x : typ (S₊∙ (suc n))) → ∥ pt (S₊∙ (suc n)) ≡ x ∥₁ Sn-connected zero = toPropElim (λ _ → propTruncIsProp) ∣ refl ∣₁ Sn-connected (suc zero) = suspToPropElim base (λ _ → propTruncIsProp) ∣ refl ∣₁ Sn-connected (suc (suc n)) = suspToPropElim north (λ _ → propTruncIsProp) ∣ refl ∣₁ H⁰-Sⁿ≅ℤ : (n : ℕ) → GroupIso (coHomGr 0 (S₊ (suc n))) intGroup H⁰-Sⁿ≅ℤ zero = H⁰-connected base (Sn-connected 0) H⁰-Sⁿ≅ℤ (suc n) = H⁰-connected north (Sn-connected (suc n)) -- -- ---------------------------------------------------------------------- --- We will need to switch between Sⁿ defined using suspensions and using pushouts --- in order to apply Mayer Vietoris. S1Iso : Iso S¹ (Pushout {A = Bool} (λ _ → tt) λ _ → tt) S1Iso = S¹IsoSuspBool ⋄ invIso PushoutSuspIsoSusp coHomPushout≅coHomSn : (n m : ℕ) → GroupIso (coHomGr m (S₊ (suc n))) (coHomGr m (Pushout {A = S₊ n} (λ _ → tt) λ _ → tt)) coHomPushout≅coHomSn zero m = Iso+Hom→GrIso (setTruncIso (domIso S1Iso)) (sElim2 (λ _ _ → isSet→isGroupoid setTruncIsSet _ _) (λ _ _ → refl)) coHomPushout≅coHomSn (suc n) m = Iso+Hom→GrIso (setTruncIso (domIso (invIso PushoutSuspIsoSusp))) (sElim2 (λ _ _ → isSet→isGroupoid setTruncIsSet _ _) (λ _ _ → refl)) -------------------------- H⁰(S⁰) ----------------------------- S0→Int : (a : Int × Int) → S₊ 0 → Int S0→Int a true = fst a S0→Int a false = snd a H⁰-S⁰≅ℤ×ℤ : GroupIso (coHomGr 0 (S₊ 0)) (dirProd intGroup intGroup) fun (map H⁰-S⁰≅ℤ×ℤ) = sRec (isSet× isSetInt isSetInt) λ f → (f true) , (f false) isHom (map H⁰-S⁰≅ℤ×ℤ) = sElim2 (λ _ _ → isSet→isGroupoid (isSet× isSetInt isSetInt) _ _) λ a b i → addLemma (a true) (b true) i , addLemma (a false) (b false) i inv H⁰-S⁰≅ℤ×ℤ a = ∣ S0→Int a ∣₂ rightInv H⁰-S⁰≅ℤ×ℤ _ = refl leftInv H⁰-S⁰≅ℤ×ℤ = sElim (λ _ → isSet→isGroupoid setTruncIsSet _ _) λ f → cong ∣_∣₂ (funExt (λ {true → refl ; false → refl})) ------------------------- H¹(S⁰) ≅ 0 ------------------------------- private Hⁿ-S0≃Kₙ×Kₙ : (n : ℕ) → Iso (S₊ 0 → coHomK (suc n)) (coHomK (suc n) × coHomK (suc n)) Iso.fun (Hⁿ-S0≃Kₙ×Kₙ n) f = (f true) , (f false) Iso.inv (Hⁿ-S0≃Kₙ×Kₙ n) (a , b) true = a Iso.inv (Hⁿ-S0≃Kₙ×Kₙ n) (a , b) false = b Iso.rightInv (Hⁿ-S0≃Kₙ×Kₙ n) a = refl Iso.leftInv (Hⁿ-S0≃Kₙ×Kₙ n) b = funExt λ {true → refl ; false → refl} isContrHⁿ-S0 : (n : ℕ) → isContr (coHom (suc n) (S₊ 0)) isContrHⁿ-S0 n = isContrRetract (Iso.fun (setTruncIso (Hⁿ-S0≃Kₙ×Kₙ n))) (Iso.inv (setTruncIso (Hⁿ-S0≃Kₙ×Kₙ n))) (Iso.leftInv (setTruncIso (Hⁿ-S0≃Kₙ×Kₙ n))) (isContrHelper n) where isContrHelper : (n : ℕ) → isContr (∥ (coHomK (suc n) × coHomK (suc n)) ∥₂) fst (isContrHelper zero) = ∣ (0₁ , 0₁) ∣₂ snd (isContrHelper zero) = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ y → elim2 {B = λ x y → ∣ (0₁ , 0₁) ∣₂ ≡ ∣(x , y) ∣₂ } (λ _ _ → isOfHLevelPlus {n = 2} 2 setTruncIsSet _ _) (toPropElim2 (λ _ _ → setTruncIsSet _ _) refl) (fst y) (snd y) isContrHelper (suc zero) = ∣ (0₂ , 0₂) ∣₂ , sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ y → elim2 {B = λ x y → ∣ (0₂ , 0₂) ∣₂ ≡ ∣(x , y) ∣₂ } (λ _ _ → isOfHLevelPlus {n = 2} 3 setTruncIsSet _ _) (suspToPropElim2 base (λ _ _ → setTruncIsSet _ _) refl) (fst y) (snd y) isContrHelper (suc (suc n)) = ∣ (0ₖ (3 + n) , 0ₖ (3 + n)) ∣₂ , sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ y → elim2 {B = λ x y → ∣ (0ₖ (3 + n) , 0ₖ (3 + n)) ∣₂ ≡ ∣(x , y) ∣₂ } (λ _ _ → isProp→isOfHLevelSuc (4 + n) (setTruncIsSet _ _)) (suspToPropElim2 north (λ _ _ → setTruncIsSet _ _) refl) (fst y) (snd y) H¹-S⁰≅0 : (n : ℕ) → GroupIso (coHomGr (suc n) (S₊ 0)) trivialGroup H¹-S⁰≅0 n = IsoContrGroupTrivialGroup (isContrHⁿ-S0 n) ------------------------- H²(S¹) ≅ 0 ------------------------------- Hⁿ-S¹≅0 : (n : ℕ) → GroupIso (coHomGr (2 + n) (S₊ 1)) trivialGroup Hⁿ-S¹≅0 n = IsoContrGroupTrivialGroup (isOfHLevelRetractFromIso 0 helper (_ , helper2)) where helper : Iso ⟨ coHomGr (2 + n) (S₊ 1)⟩ ∥ Σ (hLevelTrunc (4 + n) (S₊ (2 + n))) (λ x → ∥ x ≡ x ∥₂) ∥₂ helper = compIso (setTruncIso IsoFunSpaceS¹) IsoSetTruncateSndΣ helper2 : (x : ∥ Σ (hLevelTrunc (4 + n) (S₊ (2 + n))) (λ x → ∥ x ≡ x ∥₂) ∥₂) → ∣ ∣ north ∣ , ∣ refl ∣₂ ∣₂ ≡ x helper2 = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) (uncurry (trElim (λ _ → isOfHLevelΠ (4 + n) λ _ → isProp→isOfHLevelSuc (3 + n) (setTruncIsSet _ _)) (suspToPropElim (ptSn (suc n)) (λ _ → isPropΠ λ _ → setTruncIsSet _ _) (sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ p → cong ∣_∣₂ (ΣPathP (refl , isContr→isProp helper3 _ _)))))) where helper4 : isConnected (n + 3) (hLevelTrunc (4 + n) (S₊ (2 + n))) helper4 = subst (λ m → isConnected m (hLevelTrunc (4 + n) (S₊ (2 + n)))) (+-comm 3 n) (isOfHLevelRetractFromIso 0 (invIso (truncOfTruncIso (3 + n) 1)) (sphereConnected (2 + n))) helper3 : isContr ∥ ∣ north ∣ ≡ ∣ north ∣ ∥₂ helper3 = isOfHLevelRetractFromIso 0 setTruncTrunc2Iso (isConnectedPath 2 (isConnectedSubtr 3 n helper4) _ _) -- --------------- H¹(Sⁿ), n ≥ 1 -------------------------------------------- H¹-Sⁿ≅0 : (n : ℕ) → GroupIso (coHomGr 1 (S₊ (2 + n))) trivialGroup H¹-Sⁿ≅0 zero = IsoContrGroupTrivialGroup isContrH¹S² where isContrH¹S² : isContr ⟨ coHomGr 1 (S₊ 2) ⟩ isContrH¹S² = ∣ (λ _ → ∣ base ∣) ∣₂ , coHomPointedElim 0 north (λ _ → setTruncIsSet _ _) λ f p → cong ∣_∣₂ (funExt λ x → sym p ∙∙ sym (spoke f north) ∙∙ spoke f x) H¹-Sⁿ≅0 (suc n) = IsoContrGroupTrivialGroup isContrH¹S³⁺ⁿ where anIso : Iso ⟨ coHomGr 1 (S₊ (3 + n)) ⟩ ∥ (S₊ (3 + n) → hLevelTrunc (4 + n) (coHomK 1)) ∥₂ anIso = setTruncIso (codomainIso (invIso (truncIdempotentIso (4 + n) (isOfHLevelPlus' {n = 1 + n} 3 (isOfHLevelTrunc 3))))) isContrH¹S³⁺ⁿ-ish : (f : (S₊ (3 + n) → hLevelTrunc (4 + n) (coHomK 1))) → ∣ (λ _ → ∣ ∣ base ∣ ∣) ∣₂ ≡ ∣ f ∣₂ isContrH¹S³⁺ⁿ-ish f = ind (f north) refl where ind : (x : hLevelTrunc (4 + n) (coHomK 1)) → x ≡ f north → ∣ (λ _ → ∣ ∣ base ∣ ∣) ∣₂ ≡ ∣ f ∣₂ ind = trElim (λ _ → isOfHLevelΠ (4 + n) λ _ → isOfHLevelPlus' {n = (3 + n)} 1 (setTruncIsSet _ _)) (trElim (λ _ → isOfHLevelΠ 3 λ _ → isOfHLevelPlus {n = 1} 2 (setTruncIsSet _ _)) (toPropElim (λ _ → isPropΠ λ _ → setTruncIsSet _ _) λ p → cong ∣_∣₂ (funExt λ x → p ∙∙ sym (spoke f north) ∙∙ spoke f x))) isContrH¹S³⁺ⁿ : isContr ⟨ coHomGr 1 (S₊ (3 + n)) ⟩ isContrH¹S³⁺ⁿ = isOfHLevelRetractFromIso 0 anIso (∣ (λ _ → ∣ ∣ base ∣ ∣) ∣₂ , sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) isContrH¹S³⁺ⁿ-ish) --------- Direct proof of H¹(S¹) ≅ ℤ without Mayer-Vietoris ------- -- The strategy is to use the proof that ΩS¹ ≃ ℤ. Since we only have this for S¹ with the base/loop definition -- we begin with some functions translating between H¹(S₊ 1) and ∥ S¹ → S¹ ∥₀. The latter type is easy to characterise, -- by (S¹ → S¹) ≃ S¹ × ℤ (see Cubical.Experiments.ZCohomologyOld.Groups.Prelims). Truncating this leaves only ℤ, since S¹ is connected. -- The translation mentioned above uses the basechange function. We use basechange-lemma (Cubical.Experiments.ZCohomologyOld.Groups.Prelims) to prove the basechange2⁻ preserves -- path composition (in a more general sense than what is proved in basechange2⁻-morph) -- We can now give the group equivalence. The first bit is just a big composition of our previously defined translations and is pretty uninteresting. -- The harder step is proving that the equivalence is a morphism. This relies heavily on the fact that addition the cohomology groups essentially is defined using an -- application of cong₂, which allows us to use basechange-lemma. coHom1S1≃ℤ : GroupIso (coHomGr 1 (S₊ 1)) intGroup coHom1S1≃ℤ = theIso where F = Iso.fun S¹→S¹≡S¹×Int F⁻ = Iso.inv S¹→S¹≡S¹×Int theIso : GroupIso (coHomGr 1 (S₊ 1)) intGroup fun (map theIso) = sRec isSetInt (λ f → snd (F f)) isHom (map theIso) = sElim2 (λ _ _ → isOfHLevelPath 2 isSetInt _ _) λ f g → ((λ i → winding (guy (ΩKn+1→Kn 1 (Kn→ΩKn+1 1 (f base) ∙ Kn→ΩKn+1 1 (g base))) (λ i → S¹map (ΩKn+1→Kn 1 (Kn→ΩKn+1 1 (f (loop i)) ∙ Kn→ΩKn+1 1 (g (loop i)))))))) ∙∙ cong winding (helper (f base) (g base) f g refl refl) ∙∙ winding-hom (guy (f base) (λ i → S¹map (f (loop i)))) (guy (g base) (λ i → S¹map (g (loop i)))) where guy = basechange2⁻ ∘ S¹map helper : (x y : coHomK 1) (f g : S₊ 1 → coHomK 1) → (f base) ≡ x → (g base) ≡ y → (guy (ΩKn+1→Kn 1 (Kn→ΩKn+1 1 (f base) ∙ Kn→ΩKn+1 1 (g base))) (λ i → S¹map ((ΩKn+1→Kn 1 (Kn→ΩKn+1 1 (f (loop i)) ∙ Kn→ΩKn+1 1 (g (loop i))))))) ≡ (guy (f base) (λ i → S¹map (f (loop i)))) ∙ (guy (g base) (λ i → S¹map ((g (loop i))))) helper = elim2 (λ _ _ → isGroupoidΠ4 λ _ _ _ _ → isOfHLevelPath 3 (isOfHLevelSuc 3 (isGroupoidS¹) base base) _ _) (toPropElim2 (λ _ _ → isPropΠ4 λ _ _ _ _ → isGroupoidS¹ _ _ _ _) λ f g reflf reflg → basechange-lemma base base (S¹map ∘ (ΩKn+1→Kn 1)) ((Kn→ΩKn+1 1) ∘ f) ((Kn→ΩKn+1 1) ∘ g) (cong (Kn→ΩKn+1 1) reflf ∙ Kn→ΩKn+10ₖ 1) (cong (Kn→ΩKn+1 1) reflg ∙ Kn→ΩKn+10ₖ 1) ∙ λ j → guy (Iso.leftInv (Iso-Kn-ΩKn+1 1) (f base) j) (λ i → S¹map (Iso.leftInv (Iso-Kn-ΩKn+1 1) (f (loop i)) j)) ∙ guy (Iso.leftInv (Iso-Kn-ΩKn+1 1) (g base) j) (λ i → S¹map (Iso.leftInv (Iso-Kn-ΩKn+1 1) (g (loop i)) j))) inv theIso a = ∣ (F⁻ (base , a)) ∣₂ rightInv theIso a = cong snd (Iso.rightInv S¹→S¹≡S¹×Int (base , a)) leftInv theIso = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ f → cong ((sRec setTruncIsSet ∣_∣₂) ∘ sRec setTruncIsSet λ x → ∣ F⁻ (x , (snd (F f))) ∣₂) (Iso.inv PathIdTrunc₀Iso (isConnectedS¹ (fst (F f)))) ∙ cong ∣_∣₂ (Iso.leftInv S¹→S¹≡S¹×Int f) ---------------------------- Hⁿ(Sⁿ) ≅ ℤ , n ≥ 1 ------------------- Hⁿ-Sⁿ≅ℤ : (n : ℕ) → GroupIso intGroup (coHomGr (suc n) (S₊ (suc n))) Hⁿ-Sⁿ≅ℤ zero = invGroupIso coHom1S1≃ℤ Hⁿ-Sⁿ≅ℤ (suc n) = Hⁿ-Sⁿ≅ℤ n □ vSES→GroupIso _ _ theIso □ invGroupIso (coHomPushout≅coHomSn (suc n) (suc (suc n))) where module K = MV Unit Unit (S₊ (suc n)) (λ _ → tt) (λ _ → tt) theIso : vSES (coHomGr (suc n) (S₊ (suc n))) (coHomGr (suc (suc n)) (Pushout {A = S₊ (suc n)} (λ _ → tt) (λ _ → tt))) _ _ isTrivialLeft theIso p q = ΣPathP (isOfHLevelSuc 0 (isContrHⁿ-Unit n) (fst p) (fst q) , isOfHLevelSuc 0 (isContrHⁿ-Unit n) (snd p) (snd q)) isTrivialRight theIso p q = ΣPathP (isOfHLevelSuc 0 (isContrHⁿ-Unit (suc n)) (fst p) (fst q) , isOfHLevelSuc 0 (isContrHⁿ-Unit (suc n)) (snd p) (snd q)) left theIso = K.Δ (suc n) right theIso = K.i (2 + n) vSES.ϕ theIso = K.d (suc n) Ker-ϕ⊂Im-left theIso = K.Ker-d⊂Im-Δ (suc n) Ker-right⊂Im-ϕ theIso = K.Ker-i⊂Im-d (suc n) {- More standard proof of H¹(S¹) ≅ ℤ using Mayer-Vietoris. This is much slower than the direct proof, but let's keep it here for completeness. -- --------------------------H¹(S¹) ----------------------------------- {- In order to apply Mayer-Vietoris, we need the following lemma. Given the following diagram a ↦ (a , 0) ψ ϕ A --> A × A -------> B ---> C If ψ is an isomorphism and ϕ is surjective with ker ϕ ≡ {ψ (a , a) ∣ a ∈ A}, then C ≅ B -} diagonalIso : ∀ {ℓ ℓ' ℓ''} {A : Group {ℓ}} (B : Group {ℓ'}) {C : Group {ℓ''}} (ψ : GroupIso (dirProd A A) B) (ϕ : GroupHom B C) → isSurjective _ _ ϕ → ((x : ⟨ B ⟩) → isInKer B C ϕ x → ∃[ y ∈ ⟨ A ⟩ ] x ≡ (fun (map ψ)) (y , y)) → ((x : ⟨ B ⟩) → (∃[ y ∈ ⟨ A ⟩ ] x ≡ (fun (map ψ)) (y , y)) → isInKer B C ϕ x) → GroupIso A C diagonalIso {A = A} B {C = C} ψ ϕ issurj ker→diag diag→ker = BijectionIsoToGroupIso bijIso where open GroupStr module A = GroupStr (snd A) module B = GroupStr (snd B) module C = GroupStr (snd C) module A×A = GroupStr (snd (dirProd A A)) module ψ = GroupIso ψ module ϕ = GroupHom ϕ ψ⁻ = inv ψ fstProj : GroupHom A (dirProd A A) fun fstProj a = a , GroupStr.0g (snd A) isHom fstProj g0 g1 i = (g0 A.+ g1) , GroupStr.lid (snd A) (GroupStr.0g (snd A)) (~ i) bijIso : BijectionIso A C map' bijIso = compGroupHom fstProj (compGroupHom (map ψ) ϕ) inj bijIso a inker = pRec (isSetCarrier A _ _) (λ {(a' , id) → (cong fst (sym (leftInv ψ (a , GroupStr.0g (snd A))) ∙∙ cong ψ⁻ id ∙∙ leftInv ψ (a' , a'))) ∙ cong snd (sym (leftInv ψ (a' , a')) ∙∙ cong ψ⁻ (sym id) ∙∙ leftInv ψ (a , GroupStr.0g (snd A)))}) (ker→diag _ inker) surj bijIso c = pRec propTruncIsProp (λ { (b , id) → ∣ (fst (ψ⁻ b) A.+ (A.- snd (ψ⁻ b))) , ((sym (GroupStr.rid (snd C) _) ∙∙ cong ((fun ϕ) ((fun (map ψ)) (fst (ψ⁻ b) A.+ (A.- snd (ψ⁻ b)) , GroupStr.0g (snd A))) C.+_) (sym (diag→ker (fun (map ψ) ((snd (ψ⁻ b)) , (snd (ψ⁻ b)))) ∣ (snd (ψ⁻ b)) , refl ∣₁)) ∙∙ sym ((isHom ϕ) _ _)) ∙∙ cong (fun ϕ) (sym ((isHom (map ψ)) _ _) ∙∙ cong (fun (map ψ)) (ΣPathP (sym (GroupStr.assoc (snd A) _ _ _) ∙∙ cong (fst (ψ⁻ b) A.+_) (GroupStr.invl (snd A) _) ∙∙ GroupStr.rid (snd A) _ , (GroupStr.lid (snd A) _))) ∙∙ rightInv ψ b) ∙∙ id) ∣₁ }) (issurj c) H¹-S¹≅ℤ : GroupIso intGroup (coHomGr 1 (S₊ 1)) H¹-S¹≅ℤ = diagonalIso (coHomGr 0 (S₊ 0)) (invGroupIso H⁰-S⁰≅ℤ×ℤ) (K.d 0) (λ x → K.Ker-i⊂Im-d 0 x (ΣPathP (isOfHLevelSuc 0 (isContrHⁿ-Unit 0) _ _ , isOfHLevelSuc 0 (isContrHⁿ-Unit 0) _ _))) ((sElim (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelSuc 1 propTruncIsProp) (λ x inker → pRec propTruncIsProp (λ {((f , g) , id') → helper x f g id' inker}) ((K.Ker-d⊂Im-Δ 0 ∣ x ∣₂ inker))))) ((sElim (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ F surj → pRec (setTruncIsSet _ _) (λ { (x , id) → K.Im-Δ⊂Ker-d 0 ∣ F ∣₂ ∣ (∣ (λ _ → x) ∣₂ , ∣ (λ _ → 0) ∣₂) , (cong ∣_∣₂ (funExt (surjHelper x))) ∙ sym id ∣₁ }) surj) ) □ invGroupIso (coHomPushout≅coHomSn 0 1) where module K = MV Unit Unit (S₊ 0) (λ _ → tt) (λ _ → tt) surjHelper : (x : Int) (x₁ : S₊ 0) → x -[ 0 ]ₖ 0 ≡ S0→Int (x , x) x₁ surjHelper x true = Iso.leftInv (Iso-Kn-ΩKn+1 0) x surjHelper x false = Iso.leftInv (Iso-Kn-ΩKn+1 0) x helper : (F : S₊ 0 → Int) (f g : ∥ (Unit → Int) ∥₂) (id : GroupHom.fun (K.Δ 0) (f , g) ≡ ∣ F ∣₂) → isInKer (coHomGr 0 (S₊ 0)) (coHomGr 1 (Pushout (λ _ → tt) (λ _ → tt))) (K.d 0) ∣ F ∣₂ → ∃[ x ∈ Int ] ∣ F ∣₂ ≡ inv H⁰-S⁰≅ℤ×ℤ (x , x) helper F = sElim2 (λ _ _ → isOfHLevelΠ 2 λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelSuc 1 propTruncIsProp) λ f g id inker → pRec propTruncIsProp (λ ((a , b) , id2) → sElim2 {C = λ f g → GroupHom.fun (K.Δ 0) (f , g) ≡ ∣ F ∣₂ → _ } (λ _ _ → isOfHLevelΠ 2 λ _ → isOfHLevelSuc 1 propTruncIsProp) (λ f g id → ∣ (helper2 f g .fst) , (sym id ∙ sym (helper2 f g .snd)) ∣₁) a b id2) (MV.Ker-d⊂Im-Δ _ _ (S₊ 0) (λ _ → tt) (λ _ → tt) 0 ∣ F ∣₂ inker) where helper2 : (f g : Unit → Int) → Σ[ x ∈ Int ] (inv H⁰-S⁰≅ℤ×ℤ (x , x)) ≡ GroupHom.fun (K.Δ 0) (∣ f ∣₂ , ∣ g ∣₂) helper2 f g = (f _ -[ 0 ]ₖ g _) , cong ∣_∣₂ (funExt λ {true → refl ; false → refl}) -}
50.097686
176
0.509904
2fdaf2d2bd74e412cd5dbfaa668ea8607101438f
6,893
agda
Agda
agda-stdlib/src/Relation/Binary/Construct/Add/Supremum/Strict.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Relation/Binary/Construct/Add/Supremum/Strict.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Relation/Binary/Construct/Add/Supremum/Strict.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- The lifting of a strict order to incorporate a new supremum ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- This module is designed to be used with -- Relation.Nullary.Construct.Add.Supremum open import Relation.Binary module Relation.Binary.Construct.Add.Supremum.Strict {a r} {A : Set a} (_<_ : Rel A r) where open import Level using (_⊔_) open import Data.Product open import Function open import Relation.Nullary hiding (Irrelevant) import Relation.Nullary.Decidable as Dec open import Relation.Binary.PropositionalEquality as P using (_≡_; refl) open import Relation.Nullary.Construct.Add.Supremum import Relation.Binary.Construct.Add.Supremum.Equality as Equality import Relation.Binary.Construct.Add.Supremum.NonStrict as NonStrict ------------------------------------------------------------------------ -- Definition infix 4 _<⁺_ data _<⁺_ : Rel (A ⁺) (a ⊔ r) where [_] : {k l : A} → k < l → [ k ] <⁺ [ l ] [_]<⊤⁺ : (k : A) → [ k ] <⁺ ⊤⁺ ------------------------------------------------------------------------ -- Relational properties [<]-injective : ∀ {k l} → [ k ] <⁺ [ l ] → k < l [<]-injective [ p ] = p <⁺-asym : Asymmetric _<_ → Asymmetric _<⁺_ <⁺-asym <-asym [ p ] [ q ] = <-asym p q <⁺-trans : Transitive _<_ → Transitive _<⁺_ <⁺-trans <-trans [ p ] [ q ] = [ <-trans p q ] <⁺-trans <-trans [ p ] [ k ]<⊤⁺ = [ _ ]<⊤⁺ <⁺-dec : Decidable _<_ → Decidable _<⁺_ <⁺-dec _<?_ [ k ] [ l ] = Dec.map′ [_] [<]-injective (k <? l) <⁺-dec _<?_ [ k ] ⊤⁺ = yes [ k ]<⊤⁺ <⁺-dec _<?_ ⊤⁺ [ l ] = no (λ ()) <⁺-dec _<?_ ⊤⁺ ⊤⁺ = no (λ ()) <⁺-irrelevant : Irrelevant _<_ → Irrelevant _<⁺_ <⁺-irrelevant <-irr [ p ] [ q ] = P.cong _ (<-irr p q) <⁺-irrelevant <-irr [ k ]<⊤⁺ [ k ]<⊤⁺ = P.refl module _ {r} {_≤_ : Rel A r} where open NonStrict _≤_ <⁺-transʳ : Trans _≤_ _<_ _<_ → Trans _≤⁺_ _<⁺_ _<⁺_ <⁺-transʳ <-transʳ [ p ] [ q ] = [ <-transʳ p q ] <⁺-transʳ <-transʳ [ p ] [ k ]<⊤⁺ = [ _ ]<⊤⁺ <⁺-transˡ : Trans _<_ _≤_ _<_ → Trans _<⁺_ _≤⁺_ _<⁺_ <⁺-transˡ <-transˡ [ p ] [ q ] = [ <-transˡ p q ] <⁺-transˡ <-transˡ [ p ] ([ _ ] ≤⊤⁺) = [ _ ]<⊤⁺ <⁺-transˡ <-transˡ [ k ]<⊤⁺ (⊤⁺ ≤⊤⁺) = [ k ]<⊤⁺ ------------------------------------------------------------------------ -- Relational properties + propositional equality <⁺-cmp-≡ : Trichotomous _≡_ _<_ → Trichotomous _≡_ _<⁺_ <⁺-cmp-≡ <-cmp ⊤⁺ ⊤⁺ = tri≈ (λ ()) refl (λ ()) <⁺-cmp-≡ <-cmp ⊤⁺ [ l ] = tri> (λ ()) (λ ()) [ l ]<⊤⁺ <⁺-cmp-≡ <-cmp [ k ] ⊤⁺ = tri< [ k ]<⊤⁺ (λ ()) (λ ()) <⁺-cmp-≡ <-cmp [ k ] [ l ] with <-cmp k l ... | tri< a ¬b ¬c = tri< [ a ] (¬b ∘ []-injective) (¬c ∘ [<]-injective) ... | tri≈ ¬a refl ¬c = tri≈ (¬a ∘ [<]-injective) refl (¬c ∘ [<]-injective) ... | tri> ¬a ¬b c = tri> (¬a ∘ [<]-injective) (¬b ∘ []-injective) [ c ] <⁺-irrefl-≡ : Irreflexive _≡_ _<_ → Irreflexive _≡_ _<⁺_ <⁺-irrefl-≡ <-irrefl refl [ x ] = <-irrefl refl x <⁺-respˡ-≡ : _<⁺_ Respectsˡ _≡_ <⁺-respˡ-≡ = P.subst (_<⁺ _) <⁺-respʳ-≡ : _<⁺_ Respectsʳ _≡_ <⁺-respʳ-≡ = P.subst (_ <⁺_) <⁺-resp-≡ : _<⁺_ Respects₂ _≡_ <⁺-resp-≡ = <⁺-respʳ-≡ , <⁺-respˡ-≡ ------------------------------------------------------------------------ -- Relational properties + setoid equality module _ {e} {_≈_ : Rel A e} where open Equality _≈_ <⁺-cmp : Trichotomous _≈_ _<_ → Trichotomous _≈⁺_ _<⁺_ <⁺-cmp <-cmp ⊤⁺ ⊤⁺ = tri≈ (λ ()) ⊤⁺≈⊤⁺ (λ ()) <⁺-cmp <-cmp ⊤⁺ [ l ] = tri> (λ ()) (λ ()) [ l ]<⊤⁺ <⁺-cmp <-cmp [ k ] ⊤⁺ = tri< [ k ]<⊤⁺ (λ ()) (λ ()) <⁺-cmp <-cmp [ k ] [ l ] with <-cmp k l ... | tri< a ¬b ¬c = tri< [ a ] (¬b ∘ [≈]-injective) (¬c ∘ [<]-injective) ... | tri≈ ¬a b ¬c = tri≈ (¬a ∘ [<]-injective) [ b ] (¬c ∘ [<]-injective) ... | tri> ¬a ¬b c = tri> (¬a ∘ [<]-injective) (¬b ∘ [≈]-injective) [ c ] <⁺-irrefl : Irreflexive _≈_ _<_ → Irreflexive _≈⁺_ _<⁺_ <⁺-irrefl <-irrefl [ p ] [ q ] = <-irrefl p q <⁺-respˡ-≈⁺ : _<_ Respectsˡ _≈_ → _<⁺_ Respectsˡ _≈⁺_ <⁺-respˡ-≈⁺ <-respˡ-≈ [ p ] [ q ] = [ <-respˡ-≈ p q ] <⁺-respˡ-≈⁺ <-respˡ-≈ [ p ] ([ l ]<⊤⁺) = [ _ ]<⊤⁺ <⁺-respˡ-≈⁺ <-respˡ-≈ ⊤⁺≈⊤⁺ q = q <⁺-respʳ-≈⁺ : _<_ Respectsʳ _≈_ → _<⁺_ Respectsʳ _≈⁺_ <⁺-respʳ-≈⁺ <-respʳ-≈ [ p ] [ q ] = [ <-respʳ-≈ p q ] <⁺-respʳ-≈⁺ <-respʳ-≈ ⊤⁺≈⊤⁺ q = q <⁺-resp-≈⁺ : _<_ Respects₂ _≈_ → _<⁺_ Respects₂ _≈⁺_ <⁺-resp-≈⁺ = map <⁺-respʳ-≈⁺ <⁺-respˡ-≈⁺ ------------------------------------------------------------------------ -- Structures + propositional equality <⁺-isStrictPartialOrder-≡ : IsStrictPartialOrder _≡_ _<_ → IsStrictPartialOrder _≡_ _<⁺_ <⁺-isStrictPartialOrder-≡ strict = record { isEquivalence = P.isEquivalence ; irrefl = <⁺-irrefl-≡ irrefl ; trans = <⁺-trans trans ; <-resp-≈ = <⁺-resp-≡ } where open IsStrictPartialOrder strict <⁺-isDecStrictPartialOrder-≡ : IsDecStrictPartialOrder _≡_ _<_ → IsDecStrictPartialOrder _≡_ _<⁺_ <⁺-isDecStrictPartialOrder-≡ dectot = record { isStrictPartialOrder = <⁺-isStrictPartialOrder-≡ isStrictPartialOrder ; _≟_ = ≡-dec _≟_ ; _<?_ = <⁺-dec _<?_ } where open IsDecStrictPartialOrder dectot <⁺-isStrictTotalOrder-≡ : IsStrictTotalOrder _≡_ _<_ → IsStrictTotalOrder _≡_ _<⁺_ <⁺-isStrictTotalOrder-≡ strictot = record { isEquivalence = P.isEquivalence ; trans = <⁺-trans trans ; compare = <⁺-cmp-≡ compare } where open IsStrictTotalOrder strictot ------------------------------------------------------------------------ -- Structures + setoid equality module _ {e} {_≈_ : Rel A e} where open Equality _≈_ <⁺-isStrictPartialOrder : IsStrictPartialOrder _≈_ _<_ → IsStrictPartialOrder _≈⁺_ _<⁺_ <⁺-isStrictPartialOrder strict = record { isEquivalence = ≈⁺-isEquivalence isEquivalence ; irrefl = <⁺-irrefl irrefl ; trans = <⁺-trans trans ; <-resp-≈ = <⁺-resp-≈⁺ <-resp-≈ } where open IsStrictPartialOrder strict <⁺-isDecStrictPartialOrder : IsDecStrictPartialOrder _≈_ _<_ → IsDecStrictPartialOrder _≈⁺_ _<⁺_ <⁺-isDecStrictPartialOrder dectot = record { isStrictPartialOrder = <⁺-isStrictPartialOrder isStrictPartialOrder ; _≟_ = ≈⁺-dec _≟_ ; _<?_ = <⁺-dec _<?_ } where open IsDecStrictPartialOrder dectot <⁺-isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_ → IsStrictTotalOrder _≈⁺_ _<⁺_ <⁺-isStrictTotalOrder strictot = record { isEquivalence = ≈⁺-isEquivalence isEquivalence ; trans = <⁺-trans trans ; compare = <⁺-cmp compare } where open IsStrictTotalOrder strictot
36.664894
75
0.487741
d0697094c3788eb2e791d40e7890efd8442ad9e8
22
agda
Agda
silly1.agda
alhassy/agda
6043e77e4a72518711f5f808fb4eb593cbf0bb7c
[ "BSD-3-Clause" ]
null
null
null
silly1.agda
alhassy/agda
6043e77e4a72518711f5f808fb4eb593cbf0bb7c
[ "BSD-3-Clause" ]
null
null
null
silly1.agda
alhassy/agda
6043e77e4a72518711f5f808fb4eb593cbf0bb7c
[ "BSD-3-Clause" ]
null
null
null
mmodule silly1 where
7.333333
20
0.818182
294ff4ff76ea1f9f01c2339399de59d3177bd729
190
agda
Agda
test/Fail/ParseForallAbsurd.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/ParseForallAbsurd.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/ParseForallAbsurd.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2010-09-24 module ParseForallAbsurd where parseFails : forall () -> Set1 parseFails x = Set -- this does no longer give the error message -- "absurd lambda cannot have a body"
21.111111
45
0.731579
1a8fed138a280298744ded9cda8f94ad1934a489
1,108
agda
Agda
vendor/stdlib/src/Data/Char.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Data/Char.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Data/Char.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- Characters ------------------------------------------------------------------------ module Data.Char where open import Data.Nat using (ℕ) open import Data.Bool using (Bool; true; false) open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality as PropEq using (_≡_) ------------------------------------------------------------------------ -- The type postulate Char : Set {-# BUILTIN CHAR Char #-} {-# COMPILED_TYPE Char Char #-} ------------------------------------------------------------------------ -- Operations private primitive primCharToNat : Char → ℕ primCharEquality : Char → Char → Bool toNat : Char → ℕ toNat = primCharToNat infix 4 _==_ _==_ : Char → Char → Bool _==_ = primCharEquality _≟_ : Decidable {Char} _≡_ s₁ ≟ s₂ with s₁ == s₂ ... | true = yes trustMe where postulate trustMe : _ ... | false = no trustMe where postulate trustMe : _ setoid : Setoid setoid = PropEq.setoid Char decSetoid : DecSetoid decSetoid = PropEq.decSetoid _≟_
22.16
72
0.518953
2e5cdb30e95f4d195ea3988f21e74ad8e29fb9f5
1,413
agda
Agda
src/Yasm/Types.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/Yasm/Types.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/Yasm/Types.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Util.Prelude -- This module defines types used in the specification of a SystemModel. module Yasm.Types where -- Actions that can be performed by peers. -- -- For now, the SystemModel supports only one kind of action: to send a -- message. Later it might include things like logging, crashes, assertion -- failures, etc. For example, if an assertion fires, this -- could "kill the process" and make it not send any messages in the future. -- We could also then prove that the handlers do not crash, certain -- messages are logged under certain circumstances, etc. -- -- Alternatively, certain actions can be kept outside the system model by -- defining an application-specific PeerState type (see `Yasm.Base`). -- For example: -- -- > libraHandle : Msg → Status × Log × LState → Status × LState × List Action -- > libraHandle _ (Crashed , l , s) = Crashed , s , [] -- i.e., crashed peers never send messages -- > -- > handle = filter isSend ∘ libraHandle data Action (Msg : Set) : Set where send : (m : Msg) → Action Msg -- Injectivity of `send`. action-send-injective : ∀ {Msg}{m m' : Msg} → send m ≡ send m' → m ≡ m' action-send-injective refl = refl
40.371429
111
0.716207
c5196cf0abe5ed14028d89c715014059ac863565
5,552
agda
Agda
Cubical/Data/Nat/GCD.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Data/Nat/GCD.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Data/Nat/GCD.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Nat.GCD where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Induction.WellFounded open import Cubical.Data.Fin open import Cubical.Data.Sigma as Σ open import Cubical.Data.NatPlusOne open import Cubical.HITs.PropositionalTruncation as PropTrunc open import Cubical.Data.Nat.Base open import Cubical.Data.Nat.Properties open import Cubical.Data.Nat.Order open import Cubical.Data.Nat.Divisibility private variable m n d : ℕ -- common divisors isCD : ℕ → ℕ → ℕ → Type₀ isCD m n d = (d ∣ m) × (d ∣ n) isPropIsCD : isProp (isCD m n d) isPropIsCD = isProp× isProp∣ isProp∣ symCD : isCD m n d → isCD n m d symCD (d∣m , d∣n) = (d∣n , d∣m) -- greatest common divisors isGCD : ℕ → ℕ → ℕ → Type₀ isGCD m n d = (isCD m n d) × (∀ d' → isCD m n d' → d' ∣ d) GCD : ℕ → ℕ → Type₀ GCD m n = Σ ℕ (isGCD m n) isPropIsGCD : isProp (isGCD m n d) isPropIsGCD = isProp× isPropIsCD (isPropΠ2 (λ _ _ → isProp∣)) isPropGCD : isProp (GCD m n) isPropGCD (d , dCD , gr) (d' , d'CD , gr') = Σ≡Prop (λ _ → isPropIsGCD) (antisym∣ (gr' d dCD) (gr d' d'CD)) symGCD : isGCD m n d → isGCD n m d symGCD (dCD , gr) = symCD dCD , λ { d' d'CD → gr d' (symCD d'CD) } divsGCD : m ∣ n → isGCD m n m divsGCD p = (∣-refl refl , p) , λ { d (d∣m , _) → d∣m } oneGCD : ∀ m → isGCD m 1 1 oneGCD m = symGCD (divsGCD (∣-oneˡ m)) -- The base case of the Euclidean algorithm zeroGCD : ∀ m → isGCD m 0 m zeroGCD m = divsGCD (∣-zeroʳ m) private lem₁ : prediv d (suc n) → prediv d (m % suc n) → prediv d m lem₁ {d} {n} {m} (c₁ , p₁) (c₂ , p₂) = (q · c₁ + c₂) , p where r = m % suc n; q = n%k≡n[modk] m (suc n) .fst p = (q · c₁ + c₂) · d ≡⟨ sym (·-distribʳ (q · c₁) c₂ d) ⟩ (q · c₁) · d + c₂ · d ≡⟨ cong (_+ c₂ · d) (sym (·-assoc q c₁ d)) ⟩ q · (c₁ · d) + c₂ · d ≡[ i ]⟨ q · (p₁ i) + (p₂ i) ⟩ q · (suc n) + r ≡⟨ n%k≡n[modk] m (suc n) .snd ⟩ m ∎ lem₂ : prediv d (suc n) → prediv d m → prediv d (m % suc n) lem₂ {d} {n} {m} (c₁ , p₁) (c₂ , p₂) = c₂ ∸ q · c₁ , p where r = m % suc n; q = n%k≡n[modk] m (suc n) .fst p = (c₂ ∸ q · c₁) · d ≡⟨ ∸-distribʳ c₂ (q · c₁) d ⟩ c₂ · d ∸ (q · c₁) · d ≡⟨ cong (c₂ · d ∸_) (sym (·-assoc q c₁ d)) ⟩ c₂ · d ∸ q · (c₁ · d) ≡[ i ]⟨ p₂ i ∸ q · (p₁ i) ⟩ m ∸ q · (suc n) ≡⟨ cong (_∸ q · (suc n)) (sym (n%k≡n[modk] m (suc n) .snd)) ⟩ (q · (suc n) + r) ∸ q · (suc n) ≡⟨ cong (_∸ q · (suc n)) (+-comm (q · (suc n)) r) ⟩ (r + q · (suc n)) ∸ q · (suc n) ≡⟨ ∸-cancelʳ r zero (q · (suc n)) ⟩ r ∎ -- The inductive step of the Euclidean algorithm stepGCD : isGCD (suc n) (m % suc n) d → isGCD m (suc n) d fst (stepGCD ((d∣n , d∣m%n) , gr)) = PropTrunc.map2 lem₁ d∣n d∣m%n , d∣n snd (stepGCD ((d∣n , d∣m%n) , gr)) d' (d'∣m , d'∣n) = gr d' (d'∣n , PropTrunc.map2 lem₂ d'∣n d'∣m) -- putting it all together using well-founded induction euclid< : ∀ m n → n < m → GCD m n euclid< = WFI.induction <-wellfounded λ { m rec zero p → m , zeroGCD m ; m rec (suc n) p → let d , dGCD = rec (suc n) p (m % suc n) (n%sk<sk m n) in d , stepGCD dGCD } euclid : ∀ m n → GCD m n euclid m n with n ≟ m ... | lt p = euclid< m n p ... | gt p = Σ.map-snd symGCD (euclid< n m p) ... | eq p = m , divsGCD (∣-refl (sym p)) isContrGCD : ∀ m n → isContr (GCD m n) isContrGCD m n = euclid m n , isPropGCD _ -- the gcd operator on ℕ gcd : ℕ → ℕ → ℕ gcd m n = euclid m n .fst gcdIsGCD : ∀ m n → isGCD m n (gcd m n) gcdIsGCD m n = euclid m n .snd isGCD→gcd≡ : isGCD m n d → gcd m n ≡ d isGCD→gcd≡ dGCD = cong fst (isContrGCD _ _ .snd (_ , dGCD)) gcd≡→isGCD : gcd m n ≡ d → isGCD m n d gcd≡→isGCD p = subst (isGCD _ _) p (gcdIsGCD _ _) -- multiplicative properties of the gcd isCD-cancelʳ : ∀ k → isCD (m · suc k) (n · suc k) (d · suc k) → isCD m n d isCD-cancelʳ k (dk∣mk , dk∣nk) = (∣-cancelʳ k dk∣mk , ∣-cancelʳ k dk∣nk) isCD-multʳ : ∀ k → isCD m n d → isCD (m · k) (n · k) (d · k) isCD-multʳ k (d∣m , d∣n) = (∣-multʳ k d∣m , ∣-multʳ k d∣n) isGCD-cancelʳ : ∀ k → isGCD (m · suc k) (n · suc k) (d · suc k) → isGCD m n d isGCD-cancelʳ {m} {n} {d} k (dCD , gr) = isCD-cancelʳ k dCD , λ d' d'CD → ∣-cancelʳ k (gr (d' · suc k) (isCD-multʳ (suc k) d'CD)) gcd-factorʳ : ∀ m n k → gcd (m · k) (n · k) ≡ gcd m n · k gcd-factorʳ m n zero = (λ i → gcd (0≡m·0 m (~ i)) (0≡m·0 n (~ i))) ∙ 0≡m·0 (gcd m n) gcd-factorʳ m n (suc k) = sym p ∙ cong (_· suc k) (sym q) where k∣gcd : suc k ∣ gcd (m · suc k) (n · suc k) k∣gcd = gcdIsGCD (m · suc k) (n · suc k) .snd (suc k) (∣-right m , ∣-right n) d' = ∣-untrunc k∣gcd .fst p : d' · suc k ≡ gcd (m · suc k) (n · suc k) p = ∣-untrunc k∣gcd .snd d'GCD : isGCD m n d' d'GCD = isGCD-cancelʳ _ (subst (isGCD _ _) (sym p) (gcdIsGCD (m · suc k) (n · suc k))) q : gcd m n ≡ d' q = isGCD→gcd≡ d'GCD -- Q: Can this be proved directly? (i.e. without a transport) isGCD-multʳ : ∀ k → isGCD m n d → isGCD (m · k) (n · k) (d · k) isGCD-multʳ {m} {n} {d} k dGCD = gcd≡→isGCD (gcd-factorʳ m n k ∙ cong (_· k) r) where r : gcd m n ≡ d r = isGCD→gcd≡ dGCD
34.271605
107
0.525216
1d3f9c06705a8cdfcd32c04fe78d0186e20c4f79
1,608
agda
Agda
TypeTheory/Nat/AnotherMono/Structure.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
3
2020-04-07T17:49:42.000Z
2020-04-21T00:03:43.000Z
TypeTheory/Nat/AnotherMono/Structure.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
TypeTheory/Nat/AnotherMono/Structure.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
module TypeTheory.Nat.AnotherMono.Structure where open import Level renaming (zero to lzero; suc to lsuc) open import Data.Empty using (⊥) open import Data.Product using (Σ; _×_; _,_) open import Relation.Binary using (Rel) open import Relation.Binary.PropositionalEquality open import Relation.Nullary using (¬_) record Nat : Set₁ where field N : Set zero : N suc : N → N ind : (P : N → Set) → P zero → (∀ k → P k → P (suc k)) → ∀ n → P n ind-zero : ∀ P P-zero P-suc → ind P P-zero P-suc zero ≡ P-zero ind-suc : ∀ P P-zero P-suc n → ind P P-zero P-suc (suc n) ≡ P-suc n (ind P P-zero P-suc n) s≢z : ∀ {n} → suc n ≢ zero 0N : N 0N = zero 1N : N 1N = suc zero z≢s : ∀ {n} → zero ≢ suc n z≢s = ≢-sym s≢z rec : {A : Set} → A → (A → A) → N → A rec {A} z s = ind (λ _ → A) z (λ _ → s) rec-zero : ∀ {A} (z : A) s → rec z s zero ≡ z rec-zero z s = ind-zero _ _ _ rec-suc : ∀ {A} (z : A) s n → rec z s (suc n) ≡ s (rec z s n) rec-suc z s n = ind-suc _ _ _ _ infixl 6 _+_ infixl 7 _*_ infix 4 _≤_ _<_ _≥_ _>_ _≰_ -- Arithematic -- Addition _+_ : N → N → N m + n = rec n suc m -- Multiplication _*_ : N → N → N m * n = rec zero (n +_) m -- Order _≤_ : Rel N lzero m ≤ n = Σ N λ o → o + m ≡ n _<_ : Rel N lzero m < n = suc m ≤ n _≥_ : Rel N lzero m ≥ n = n ≤ m _>_ : Rel N lzero m > n = n < m _≰_ : Rel N lzero m ≰ n = ¬ m ≤ n _≮_ : Rel N lzero m ≮ n = ¬ m < n _≱_ : Rel N lzero m ≱ n = ¬ m ≥ n _≯_ : Rel N lzero m ≯ n = ¬ m > n
21.157895
75
0.496891
c54303d2e37d17a015ffefac355cce82980c2694
5,610
agda
Agda
src/chap0.agda
shinji-kono/automaton-in-agda
eba0538f088f3d0c0fedb19c47c081954fbc69cb
[ "MIT" ]
null
null
null
src/chap0.agda
shinji-kono/automaton-in-agda
eba0538f088f3d0c0fedb19c47c081954fbc69cb
[ "MIT" ]
null
null
null
src/chap0.agda
shinji-kono/automaton-in-agda
eba0538f088f3d0c0fedb19c47c081954fbc69cb
[ "MIT" ]
null
null
null
module chap0 where open import Data.List open import Data.Nat hiding (_⊔_) -- open import Data.Integer hiding (_⊔_ ; _≟_ ; _+_ ) open import Data.Product A : List ℕ A = 1 ∷ 2 ∷ [] data Literal : Set where x : Literal y : Literal z : Literal B : List Literal B = x ∷ y ∷ z ∷ [] ListProduct : {A B : Set } → List A → List B → List ( A × B ) ListProduct = {!!} ex05 : List ( ℕ × Literal ) ex05 = ListProduct A B -- (1 , x) ∷ (1 , y) ∷ (1 , z) ∷ (2 , x) ∷ (2 , y) ∷ (2 , z) ∷ [] ex06 : List ( ℕ × Literal × ℕ ) ex06 = ListProduct A (ListProduct B A) ex07 : Set ex07 = ℕ × ℕ data ex08-f : ℕ → ℕ → Set where ex08f0 : ex08-f 0 1 ex08f1 : ex08-f 1 2 ex08f2 : ex08-f 2 3 ex08f3 : ex08-f 3 4 ex08f4 : ex08-f 4 0 data ex09-g : ℕ → ℕ → ℕ → ℕ → Set where ex09g0 : ex09-g 0 1 2 3 ex09g1 : ex09-g 1 2 3 0 ex09g2 : ex09-g 2 3 0 1 ex09g3 : ex09-g 3 0 1 2 open import Data.Nat.DivMod open import Relation.Binary.PropositionalEquality open import Relation.Binary.Core open import Data.Nat.Properties -- _%_ : ℕ → ℕ → ℕ -- _%_ a b with <-cmp a b -- _%_ a b | tri< a₁ ¬b ¬c = a -- _%_ a b | tri≈ ¬a b₁ ¬c = 0 -- _%_ a b | tri> ¬a ¬b c = _%_ (a - b) b _≡7_ : ℕ → ℕ → Set n ≡7 m = (n % 7) ≡ (m % 7 ) refl7 : { n : ℕ} → n ≡7 n refl7 = {!!} sym7 : { n m : ℕ} → n ≡7 m → m ≡7 n sym7 = {!!} trans7 : { n m o : ℕ} → n ≡7 m → m ≡7 o → n ≡7 o trans7 = {!!} open import Level renaming ( zero to Zero ; suc to Suc ) record Graph { v v' : Level } : Set (Suc v ⊔ Suc v' ) where field vertex : Set v edge : vertex → vertex → Set v' open Graph -- open import Data.Fin hiding ( _≟_ ) open import Data.Empty open import Relation.Nullary open import Data.Unit hiding ( _≟_ ) -- data Dec (P : Set) : Set where -- yes : P → Dec P -- no : ¬ P → Dec P -- -- _≟_ : (s t : ℕ ) → Dec ( s ≡ t ) -- ¬ A = A → ⊥ _n≟_ : (s t : ℕ ) → Dec ( s ≡ t ) zero n≟ zero = yes refl zero n≟ suc t = no (λ ()) suc s n≟ zero = no (λ ()) suc s n≟ suc t with s n≟ t ... | yes refl = yes refl ... | no n = no (λ k → n (tt1 k) ) where tt1 : suc s ≡ suc t → s ≡ t tt1 refl = refl open import Data.Bool hiding ( _≟_ ) conn : List ( ℕ × ℕ ) → ℕ → ℕ → Bool conn [] _ _ = false conn ((n1 , m1 ) ∷ t ) n m with n ≟ n1 | m ≟ m1 conn ((n1 , m1) ∷ t) n m | yes refl | yes refl = true conn ((n1 , m1) ∷ t) n m | _ | _ = conn t n m list012a : List ( ℕ × ℕ ) list012a = (1 , 2) ∷ (2 , 3) ∷ (3 , 4) ∷ (4 , 5) ∷ (5 , 1) ∷ [] graph012a : Graph {Zero} {Zero} graph012a = record { vertex = ℕ ; edge = λ s t → (conn list012a s t) ≡ true } data edge012b : ℕ → ℕ → Set where e012b-1 : edge012b 1 2 e012b-2 : edge012b 1 3 e012b-3 : edge012b 1 4 e012b-4 : edge012b 2 3 e012b-5 : edge012b 2 4 e012b-6 : edge012b 3 4 edge? : (E : ℕ → ℕ → Set) → ( a b : ℕ ) → Set edge? E a b = Dec ( E a b ) lemma3 : ( a b : ℕ ) → edge? edge012b a b lemma3 1 2 = yes e012b-1 lemma3 1 3 = yes e012b-2 lemma3 1 4 = yes e012b-3 lemma3 2 3 = yes e012b-4 lemma3 2 4 = yes e012b-5 lemma3 3 4 = yes e012b-6 lemma3 1 1 = no ( λ () ) lemma3 2 1 = no ( λ () ) lemma3 2 2 = no ( λ () ) lemma3 3 1 = no ( λ () ) lemma3 3 2 = no ( λ () ) lemma3 3 3 = no ( λ () ) lemma3 0 _ = no ( λ () ) lemma3 _ 0 = no ( λ () ) lemma3 _ (suc (suc (suc (suc (suc _))))) = no ( λ () ) lemma3 (suc (suc (suc (suc _)))) _ = no ( λ () ) graph012b : Graph {Zero} {Zero} graph012b = record { vertex = ℕ ; edge = edge012b } data connected { V : Set } ( E : V -> V -> Set ) ( x y : V ) : Set where direct : E x y → connected E x y indirect : ( z : V ) -> E x z → connected {V} E z y → connected E x y lemma1 : connected ( edge graph012a ) 1 2 lemma1 = direct refl where lemma1-2 : connected ( edge graph012a ) 1 3 lemma1-2 = indirect 2 refl (direct refl ) lemma2 : connected ( edge graph012b ) 1 2 lemma2 = direct e012b-1 reachable : { V : Set } ( E : V -> V -> Set ) ( x y : V ) -> Set reachable {V} E X Y = Dec ( connected {V} E X Y ) dag : { V : Set } ( E : V -> V -> Set ) -> Set dag {V} E = ∀ (n : V) → ¬ ( connected E n n ) open import Function lemma4 : ¬ ( dag ( edge graph012a) ) lemma4 neg = neg 1 $ indirect 2 refl $ indirect 3 refl $ indirect 4 refl $ indirect 5 refl $ direct refl dgree : List ( ℕ × ℕ ) → ℕ → ℕ dgree [] _ = 0 dgree ((e , e1) ∷ t) e0 with e0 ≟ e | e0 ≟ e1 dgree ((e , e1) ∷ t) e0 | yes _ | _ = 1 + (dgree t e0) dgree ((e , e1) ∷ t) e0 | _ | yes p = 1 + (dgree t e0) dgree ((e , e1) ∷ t) e0 | no _ | no _ = dgree t e0 dgree-c : {t : Set} → List ( ℕ × ℕ ) → ℕ → (ℕ → t) → t dgree-c {t} [] e0 next = next 0 dgree-c {t} ((e , e1) ∷ tail ) e0 next with e0 ≟ e | e0 ≟ e1 ... | yes _ | _ = dgree-c tail e0 ( λ n → next (n + 1 )) ... | _ | yes _ = dgree-c tail e0 ( λ n → next (n + 1 )) ... | no _ | no _ = dgree-c tail e0 next lemma6 = dgree list012a 2 lemma7 = dgree-c list012a 2 ( λ n → n ) even2 : (n : ℕ ) → n % 2 ≡ 0 → (n + 2) % 2 ≡ 0 even2 0 refl = refl even2 1 () even2 (suc (suc n)) eq = trans ([a+n]%n≡a%n n _) eq -- [a+n]%n≡a%n : ∀ a n → (a + suc n) % suc n ≡ a % suc n sum-of-dgree : ( g : List ( ℕ × ℕ )) → ℕ sum-of-dgree [] = 0 sum-of-dgree ((e , e1) ∷ t) = 2 + sum-of-dgree t dgree-even : ( g : List ( ℕ × ℕ )) → sum-of-dgree g % 2 ≡ 0 dgree-even [] = refl dgree-even ((e , e1) ∷ t) = begin sum-of-dgree ((e , e1) ∷ t) % 2 ≡⟨⟩ (2 + sum-of-dgree t ) % 2 ≡⟨ cong ( λ k → k % 2 ) ( +-comm 2 (sum-of-dgree t) ) ⟩ (sum-of-dgree t + 2) % 2 ≡⟨ [a+n]%n≡a%n (sum-of-dgree t) _ ⟩ sum-of-dgree t % 2 ≡⟨ dgree-even t ⟩ 0 ∎ where open ≡-Reasoning
26.587678
108
0.516221
2efc0c7cc5bc8e9e6c621ef521ab2e5a24bdad7e
594
agda
Agda
test/Fail/Issue2985-2.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/Fail/Issue2985-2.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Fail/Issue2985-2.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- This variant of the code is due to Ulf Norell. open import Agda.Builtin.Size data ⊥ : Set where mutual data Unit (i : Size) : Set where c : Unit′ i → Unit i data Unit₁ (i : Size) : Set where c₁ : ⊥ → Unit i → Unit₁ i record Unit′ (i : Size) : Set where coinductive field force : {j : Size< i} → Unit₁ j open Unit′ public tail : Unit ∞ → Unit₁ ∞ tail (c x) = force x u : (∀ {i} → Unit′ i → Unit i) → ∀ {i} → Unit₁ i u cons = tail (cons λ { .force → u cons }) bad : Unit₁ ∞ bad = u c refute : Unit₁ ∞ → ⊥ refute (c₁ () _) loop : ⊥ loop = refute bad
16.054054
49
0.56229
1acd579550160c86f06ac660fe1efbaca64afcc7
7,679
agda
Agda
LibraBFT/Base/KVMap.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
4
2020-12-16T19:43:41.000Z
2021-12-18T19:24:05.000Z
LibraBFT/Base/KVMap.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
72
2021-02-04T05:04:33.000Z
2022-03-25T05:36:11.000Z
LibraBFT/Base/KVMap.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
6
2020-12-16T19:43:52.000Z
2022-02-18T01:04:32.000Z
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Lemmas -- This module contains a model of a key-value store, along with its -- functionality and various properties about it. Most of the properties -- are not currently used, but they are included here based on our -- experience in other work, as we think many of them will be needed when -- reasoning about an actual LibraBFT implementation. -- Although we believe the assumptions here are reasonable, it is always -- possible that we made a mistake in postulating one of the properties, -- making it impossible to implement. Thus, it would a useful contribution -- to: -- -- TODO-1: construct an actual implementation and provide and prove the -- necessary properties to satisfy the requirements of this module -- -- Note that this would require some work, but should be relatively -- straightforward and requires only "local" changes. module LibraBFT.Base.KVMap where private variable Key : Set Val : Set k k' : Key v v' : Val postulate -- valid assumptions, but would be good to eliminate with a reference implementation (above) _≟Key_ : ∀ (k1 k2 : Key) → Dec (k1 ≡ k2) KVMap : Set → Set → Set _∈KV_ : Key → KVMap Key Val → Set _∈KV?_ : (k : Key) (kvm : KVMap Key Val) → Dec (k ∈KV kvm) ∈KV-irrelevant : (k : Key) (kvm : KVMap Key Val) → (r s : k ∈KV kvm) → r ≡ s -- functionality empty : KVMap Key Val ∈KV-empty-⊥ : k ∈KV (empty {Val = Val}) → ⊥ lookup : Key → KVMap Key Val → Maybe Val insert : (k : Key)(v : Val)(kvm : KVMap Key Val) → KVMap Key Val kvm-insert : (k : Key)(v : Val)(kvm : KVMap Key Val) → lookup k kvm ≡ nothing → KVMap Key Val elems : KVMap Key Val → List Val delete : Key → KVMap Key Val → KVMap Key Val singleton : Key → Val → KVMap Key Val fromList : List (Key × Val) → KVMap Key Val toList : KVMap Key Val → List (Key × Val) -- TODO-3: update properties to reflect kvm-update, consider combining insert/update kvm-update : (k : Key)(v : Val)(kvm : KVMap Key Val) → lookup k kvm ≢ nothing → KVMap Key Val kvm-insert-Haskell : (k : Key)(v : Val)(kvm : KVMap Key Val) → KVMap Key Val kvm-member : (k : Key) (kvm : KVMap Key Val) → Bool kvm-size : KVMap Key Val → ℕ -- TODO-1: add properties relating kvm-toList to empty, kvm-insert and kvm-update kvm-keys : KVMap Key Val → List Key kvm-toList : KVMap Key Val → List (Key × Val) kvm-toList-length : (kvm : KVMap Key Val) → length (kvm-toList kvm) ≡ kvm-size kvm kvm-keys-All≢ : ∀ (kvm : KVMap Key Val) → allDistinct (List-map proj₁ (kvm-toList kvm)) kvm-toList-lookup : ∀ (kvm : KVMap Key Val) → let kvmL = kvm-toList kvm key = proj₁ ∘ List-lookup kvmL value = proj₂ ∘ List-lookup kvmL in ∀ {α} → lookup (key α) kvm ≡ just (value α) -- TODO-1: need properties showing that the resulting map contains (k , v) for -- each pair in the list, provided there is no pair (k , v') in the list -- after (k , v). This is consistent with Haskell's Data.Map.fromList kvm-fromList : List (Key × Val) → KVMap Key Val -- properties lookup-correct : {kvm : KVMap Key Val} → (prf : lookup k kvm ≡ nothing) → lookup k (kvm-insert k v kvm prf) ≡ just v -- Haskell's insert updates the value even if the key is already in the map lookup-correct-haskell : {kvm : KVMap Key Val} → lookup k (kvm-insert-Haskell k v kvm) ≡ just v lookup-correct-update : {kvm : KVMap Key Val} → (prf : lookup k kvm ≢ nothing) → lookup k (kvm-update k v kvm prf) ≡ just v lookup-stable : {kvm : KVMap Key Val}{k k' : Key}{v' : Val} → (prf : lookup k kvm ≡ nothing) → lookup k' kvm ≡ just v → lookup k' (kvm-insert k v' kvm prf) ≡ just v insert-target : {kvm : KVMap Key Val} → (prf : lookup k kvm ≡ nothing) → lookup k' kvm ≢ just v → lookup k' (kvm-insert k v' kvm prf) ≡ just v → k' ≡ k × v ≡ v' insert-target-≢ : {kvm : KVMap Key Val}{k k' : Key} → (prf : lookup k kvm ≡ nothing) → k' ≢ k → lookup k' kvm ≡ lookup k' (kvm-insert k v kvm prf) update-target-≢ : {kvm : KVMap Key Val} → ∀ {k1 k2 x} → k2 ≢ k1 → lookup k1 kvm ≡ lookup k1 (kvm-update k2 v kvm x) kvm-empty : lookup {Val = Val} k empty ≡ nothing kvm-empty-⊥ : {k : Key} {v : Val} → lookup k empty ≡ just v → ⊥ KVM-extensionality : ∀ {kvm1 kvm2 : KVMap Key Val} → (∀ (x : Key) → lookup x kvm1 ≡ lookup x kvm2) → kvm1 ≡ kvm2 -- Corollaries lookup-stable-1 : {kvm : KVMap Key Val}{k k' : Key}{v' : Val} → (prf : lookup k kvm ≡ nothing) → lookup k' kvm ≡ just v' → lookup k' (kvm-insert k v kvm prf) ≡ lookup k' kvm lookup-stable-1 prf hyp = trans (lookup-stable prf hyp) (sym hyp) lookup-correct-update-2 : {kvm : KVMap Key Val} → (prf : lookup k kvm ≢ nothing) → lookup k (kvm-update k v kvm prf) ≡ just v' → v ≡ v' lookup-correct-update-2 {kvm} prf lkup = just-injective (trans (sym (lookup-correct-update prf)) lkup) update-target : {kvm : KVMap Key Val} → ∀ {k1 k2 x} → lookup k1 kvm ≢ lookup k1 (kvm-update k2 v kvm x) → k2 ≡ k1 update-target {kvm = kvm}{k1 = k1}{k2 = k2}{x} vneq with k1 ≟Key k2 ...| yes refl = refl ...| no neq = ⊥-elim (vneq (update-target-≢ {k1 = k1} {k2 = k2} (neq ∘ sym))) lookup-correct-update-3 : ∀ {kvm : KVMap Key Val}{k1 k2 v2} → (prf : lookup k2 kvm ≢ nothing) → lookup k2 kvm ≡ just v2 → lookup k1 (kvm-update k2 v2 kvm prf) ≡ lookup k1 kvm lookup-correct-update-3 {kvm = kvm} {k1 = k1} {k2 = k2} {v2 = v2} prf with k1 ≟Key k2 ...| yes refl = λ pr → trans (lookup-correct-update {v = v2} prf) (sym pr) ...| no neq = λ pr → sym (update-target-≢ {k1 = k1} {k2 = k2} {prf} λ k2≢k1 → ⊥-elim (neq (sym k2≢k1))) lookup-correct-update-4 : ∀ {orig : KVMap Key Val}{k1}{v1} {rdy : lookup k1 orig ≢ nothing} → lookup k1 orig ≡ just v1 → kvm-update k1 v1 orig rdy ≡ orig lookup-correct-update-4 {orig = orig} {k1 = k1} {v1 = v1} {rdy = rdy} hyp = KVM-extensionality {kvm1 = kvm-update k1 v1 orig rdy} {kvm2 = orig} λ x → lookup-correct-update-3 rdy hyp insert-target-0 : {kvm : KVMap Key Val} → (prf : lookup k kvm ≡ nothing) → lookup k' kvm ≢ lookup k' (kvm-insert k v kvm prf) → k ≡ k' insert-target-0 {k = k} {k' = k'} prf lookups≢ with k' ≟Key k ...| yes refl = refl ...| no neq = ⊥-elim (lookups≢ (insert-target-≢ prf neq))
39.994792
111
0.541086
134173843db3e47e142372e1bf1149abcfdf9fec
90
agda
Agda
tests/ModusPonens-solution.agda
danr/agder
ece25bed081a24f02e9f85056d05933eae2afabf
[ "BSD-3-Clause" ]
1
2021-05-17T12:07:03.000Z
2021-05-17T12:07:03.000Z
tests/ModusPonens-solution.agda
danr/agder
ece25bed081a24f02e9f85056d05933eae2afabf
[ "BSD-3-Clause" ]
null
null
null
tests/ModusPonens-solution.agda
danr/agder
ece25bed081a24f02e9f85056d05933eae2afabf
[ "BSD-3-Clause" ]
null
null
null
module ModusPonens where modusPonens : ∀ {P Q : Set} → (P → Q) → P → Q modusPonens x = x
18
45
0.611111
590b444ab136537b99e796ba9ba7a8d09dc68266
5,283
agda
Agda
Categories/Functor/Properties.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Functor/Properties.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Functor/Properties.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Properties where -- Properties valid of all Functors open import Level open import Data.Product using (proj₁; proj₂; _,_) open import Function.Surjection using (Surjective) open import Function.Equivalence using (Equivalence) open import Function.Equality hiding (_∘_) open import Categories.Category open import Categories.Functor.Core open import Categories.Functor open import Categories.Morphism as Morphism import Categories.Morphism.Reasoning as Reas open import Categories.Morphism.IsoEquiv as IsoEquiv open import Categories.Morphism.Isomorphism open import Relation.Binary using (_Preserves_⟶_) private variable o ℓ e : Level C D : Category o ℓ e -- a series of [ Functor ]-respects-Thing combinators (with respects -> resp) module _ (F : Functor C D) where private module C = Category C module D = Category D module IsoC = IsoEquiv C module IsoD = IsoEquiv D open C hiding (_∘_) open Functor F private variable A B E : Obj f g h i : A ⇒ B [_]-resp-∘ : C [ C [ f ∘ g ] ≈ h ] → D [ D [ F₁ f ∘ F₁ g ] ≈ F₁ h ] [_]-resp-∘ {f = f} {g = g} {h = h} eq = begin F₁ f ∘ F₁ g ≈˘⟨ homomorphism ⟩ F₁ (C [ f ∘ g ]) ≈⟨ F-resp-≈ eq ⟩ F₁ h ∎ where open D open D.HomReasoning [_]-resp-square : C.CommutativeSquare f g h i → D.CommutativeSquare (F₁ f) (F₁ g) (F₁ h) (F₁ i) [_]-resp-square {f = f} {g = g} {h = h} {i = i} sq = begin F₁ h ∘ F₁ f ≈˘⟨ homomorphism ⟩ F₁ (C [ h ∘ f ]) ≈⟨ F-resp-≈ sq ⟩ F₁ (C [ i ∘ g ]) ≈⟨ homomorphism ⟩ F₁ i ∘ F₁ g ∎ where open D open D.HomReasoning [_]-resp-Iso : Iso C f g → Iso D (F₁ f) (F₁ g) [_]-resp-Iso {f = f} {g = g} iso = record { isoˡ = begin F₁ g ∘ F₁ f ≈⟨ [ isoˡ ]-resp-∘ ⟩ F₁ C.id ≈⟨ identity ⟩ D.id ∎ ; isoʳ = begin F₁ f ∘ F₁ g ≈⟨ [ isoʳ ]-resp-∘ ⟩ F₁ C.id ≈⟨ identity ⟩ D.id ∎ } where open Iso iso open D open D.HomReasoning [_]-resp-≅ : F₀ Preserves _≅_ C ⟶ _≅_ D [_]-resp-≅ i≅j = record { from = F₁ from ; to = F₁ to ; iso = [ iso ]-resp-Iso } where open _≅_ i≅j [_]-resp-≃ : ∀ {f g : _≅_ C A B} → f IsoC.≃ g → [ f ]-resp-≅ IsoD.≃ [ g ]-resp-≅ [_]-resp-≃ ⌞ eq ⌟ = ⌞ F-resp-≈ eq ⌟ homomorphismᵢ : ∀ {f : _≅_ C B E} {g : _≅_ C A B} → [ _∘ᵢ_ C f g ]-resp-≅ IsoD.≃ (_∘ᵢ_ D [ f ]-resp-≅ [ g ]-resp-≅ ) homomorphismᵢ = ⌞ homomorphism ⌟ -- Uses a strong version of Essential Surjectivity. EssSurj×Full×Faithful⇒Invertible : EssentiallySurjective F → Full F → Faithful F → Functor D C EssSurj×Full×Faithful⇒Invertible surj full faith = record { F₀ = λ d → proj₁ (surj d) ; F₁ = λ {A} {B} f → let (a , sa) = surj A in let (b , sb) = surj B in let module S = Surjective (full {a} {b}) in S.from ⟨$⟩ (_≅_.to sb) ∘ f ∘ (_≅_.from sa) ; identity = λ {A} → let (a , sa) = surj A in begin from full ⟨$⟩ _≅_.to sa ∘ D.id ∘ _≅_.from sa ≈⟨ cong (from full) (D.∘-resp-≈ʳ D.identityˡ D.HomReasoning.○ _≅_.isoˡ sa) ⟩ from full ⟨$⟩ D.id ≈˘⟨ cong (from full) identity ⟩ from full ⟨$⟩ F₁ C.id ≈⟨ faith _ _ (right-inverse-of full (F₁ C.id)) ⟩ C.id ∎ ; homomorphism = λ {X} {Y} {Z} {f} {g} → let (x , sx) = surj X in let (y , sy) = surj Y in let (z , sz) = surj Z in let open Morphism._≅_ in faith _ _ (E.begin F₁ (from full ⟨$⟩ to sz ∘ (g ∘ f) ∘ from sx) E.≈⟨ right-inverse-of full _ ⟩ (to sz ∘ (g ∘ f) ∘ from sx) E.≈⟨ D.∘-resp-≈ʳ (D.∘-resp-≈ˡ (D.∘-resp-≈ʳ (introˡ (isoʳ sy)))) ⟩ (to sz ∘ (g ∘ (from sy ∘ to sy) ∘ f) ∘ from sx) E.≈˘⟨ D.assoc ⟩ (to sz ∘ g ∘ ((from sy ∘ to sy) ∘ f)) ∘ from sx E.≈⟨ D.∘-resp-≈ˡ (D.∘-resp-≈ʳ (D.∘-resp-≈ʳ D.assoc)) ⟩ (to sz ∘ g ∘ (from sy ∘ (to sy ∘ f))) ∘ from sx E.≈˘⟨ D.∘-resp-≈ˡ D.assoc ⟩ ((to sz ∘ g) ∘ (from sy ∘ (to sy ∘ f))) ∘ from sx E.≈˘⟨ D.∘-resp-≈ˡ D.assoc ⟩ (((to sz ∘ g) ∘ from sy) ∘ (to sy ∘ f)) ∘ from sx E.≈⟨ D.assoc ⟩ ((to sz ∘ g) ∘ from sy) ∘ ((to sy ∘ f) ∘ from sx) E.≈⟨ D.∘-resp-≈ D.assoc D.assoc ⟩ (to sz ∘ g ∘ from sy) ∘ (to sy ∘ f ∘ from sx) E.≈˘⟨ D.∘-resp-≈ (right-inverse-of full _) (right-inverse-of full _) ⟩ F₁ (from full ⟨$⟩ to sz ∘ g ∘ from sy) ∘ F₁ (from full ⟨$⟩ to sy ∘ f ∘ from sx) E.≈˘⟨ homomorphism ⟩ F₁ ((from full ⟨$⟩ to sz ∘ g ∘ from sy) C.∘ (from full ⟨$⟩ to sy ∘ f ∘ from sx)) E.∎) ; F-resp-≈ = λ f≈g → cong (from full) (D.∘-resp-≈ʳ (D.∘-resp-≈ˡ f≈g)) } where open Morphism D open Reas D open Category D open Surjective open C.HomReasoning module E = D.HomReasoning -- Functor Composition is Associative and the unit laws are found in -- NaturalTransformation.NaturalIsomorphism, reified as associator, unitorˡ and unitorʳ.
40.022727
155
0.504259
208559bf1a06527e041f035161d9fc69385358c9
3,000
agda
Agda
day-2/Day2.agda
Zalastax/adventofcode2017
37956e581dc51bf78008d7dd902bb18d2ee481f6
[ "MIT" ]
null
null
null
day-2/Day2.agda
Zalastax/adventofcode2017
37956e581dc51bf78008d7dd902bb18d2ee481f6
[ "MIT" ]
null
null
null
day-2/Day2.agda
Zalastax/adventofcode2017
37956e581dc51bf78008d7dd902bb18d2ee481f6
[ "MIT" ]
null
null
null
module Day2 where open import Data.String as String open import Data.Maybe open import Foreign.Haskell using (Unit) open import Data.List as List hiding (fromMaybe) open import Data.Nat open import Data.Nat.DivMod import Data.Nat.Show as ℕs open import Data.Char open import Data.Vec as Vec renaming (_>>=_ to _VV=_ ; toList to VecToList) open import Data.Product open import Relation.Nullary open import Data.Nat.Properties open import Data.Bool.Base open import AocIO open import AocUtil open import AocVec import Data.Fin as Fin natDiff : ℕ → ℕ → ℕ natDiff zero y = y natDiff x zero = x natDiff (suc x) (suc y) = natDiff x y fromMaybe : ∀ {a} {A : Set a} → A → Maybe A → A fromMaybe v (just x) = x fromMaybe v nothing = v find : ∀ {a} {A : Set a} → (A → Bool) → List A → Maybe A find pred [] = nothing find pred (x ∷ ls) with (pred x) ... | false = find pred ls ... | true = just x dividesEvenly : ℕ → ℕ → Bool dividesEvenly zero zero = true dividesEvenly zero dividend = false dividesEvenly (suc divisor) dividend with (dividend mod (suc divisor)) ... | Fin.Fin.zero = true ... | Fin.Fin.suc p = false oneDividesTheOther : ℕ → ℕ → Bool oneDividesTheOther x y = dividesEvenly x y ∨ dividesEvenly y x main2 : IO Unit main2 = mainBuilder (readFileMain processFile) where parseLine : List Char → List ℕ parseLine ls with (words ls) ... | line-words = List.map unsafeParseNat line-words minMax : {n : ℕ} → Vec ℕ (suc n) → (ℕ × ℕ) minMax {0} (x ∷ []) = x , x minMax {suc _} (x ∷ ls) with (minMax ls) ... | min , max = (min ⊓ x) , (max ⊔ x) minMaxDiff : List ℕ → ℕ minMaxDiff ls = helper (Vec.fromList ls) where helper : {n : ℕ} → Vec ℕ n → ℕ helper [] = 0 helper (x ∷ vec) with (minMax (x ∷ vec)) ... | min , max = natDiff min max lineDiff : List Char → ℕ lineDiff s = minMaxDiff (parseLine s) processFile : String → IO Unit processFile file-content with (lines (String.toList file-content)) ... | file-lines with (List.map lineDiff file-lines) ... | line-diffs = printString (ℕs.show (List.sum line-diffs)) main : IO Unit main = mainBuilder (readFileMain processFile) where parseLine : List Char → List ℕ parseLine ls with (words ls) ... | line-words = List.map unsafeParseNat line-words pierreDiv : ℕ → ℕ → ℕ pierreDiv x y with (x ⊓ y) | (x ⊔ y) ... | 0 | _ = 0 ... | _ | 0 = 0 ... | (suc min) | (suc max) = (suc max) div (suc min) lineDivider : List ℕ → Maybe ℕ lineDivider [] = nothing lineDivider (x ∷ ln) with (find (oneDividesTheOther x) ln) ... | nothing = lineDivider ln ... | just y = just (pierreDiv x y) lineScore : List Char → ℕ lineScore s = fromMaybe 0 (lineDivider (parseLine s)) processFile : String → IO Unit processFile file-content with (lines (String.toList file-content)) ... | file-lines with (List.map lineScore file-lines) ... | line-scores = printString (ℕs.show (List.sum line-scores))
31.914894
75
0.642667
fbb818299e981749aaaf394300a7e19a216d6686
3,288
agda
Agda
test/asset/agda-stdlib-1.0/Data/Maybe/Relation/Binary/Pointwise.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
test/asset/agda-stdlib-1.0/Data/Maybe/Relation/Binary/Pointwise.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Maybe/Relation/Binary/Pointwise.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Pointwise lifting of relations to maybes ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Maybe.Relation.Binary.Pointwise where open import Level open import Data.Maybe.Base using (Maybe; just; nothing) open import Function.Equivalence using (_⇔_; equivalence) open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary import Relation.Nullary.Decidable as Dec ------------------------------------------------------------------------ -- Definition data Pointwise {a b ℓ} {A : Set a} {B : Set b} (R : REL A B ℓ) : REL (Maybe A) (Maybe B) (a ⊔ b ⊔ ℓ) where just : ∀ {x y} → R x y → Pointwise R (just x) (just y) nothing : Pointwise R nothing nothing ------------------------------------------------------------------------ -- Properties module _ {a b ℓ} {A : Set a} {B : Set b} {R : REL A B ℓ} where drop-just : ∀ {x y} → Pointwise R (just x) (just y) → R x y drop-just (just p) = p just-equivalence : ∀ {x y} → R x y ⇔ Pointwise R (just x) (just y) just-equivalence = equivalence just drop-just ------------------------------------------------------------------------ -- Relational properties module _ {a r} {A : Set a} {R : Rel A r} where refl : Reflexive R → Reflexive (Pointwise R) refl R-refl {just _} = just R-refl refl R-refl {nothing} = nothing reflexive : _≡_ ⇒ R → _≡_ ⇒ Pointwise R reflexive reflexive P.refl = refl (reflexive P.refl) module _ {a b r₁ r₂} {A : Set a} {B : Set b} {R : REL A B r₁} {S : REL B A r₂} where sym : Sym R S → Sym (Pointwise R) (Pointwise S) sym R-sym (just p) = just (R-sym p) sym R-sym nothing = nothing module _ {a b c r₁ r₂ r₃} {A : Set a} {B : Set b} {C : Set c} {R : REL A B r₁} {S : REL B C r₂} {T : REL A C r₃} where trans : Trans R S T → Trans (Pointwise R) (Pointwise S) (Pointwise T) trans R-trans (just p) (just q) = just (R-trans p q) trans R-trans nothing nothing = nothing module _ {a r} {A : Set a} {R : Rel A r} where dec : Decidable R → Decidable (Pointwise R) dec R-dec (just x) (just y) = Dec.map just-equivalence (R-dec x y) dec R-dec (just x) nothing = no (λ ()) dec R-dec nothing (just y) = no (λ ()) dec R-dec nothing nothing = yes nothing isEquivalence : IsEquivalence R → IsEquivalence (Pointwise R) isEquivalence R-isEquivalence = record { refl = refl R.refl ; sym = sym R.sym ; trans = trans R.trans } where module R = IsEquivalence R-isEquivalence isDecEquivalence : IsDecEquivalence R → IsDecEquivalence (Pointwise R) isDecEquivalence R-isDecEquivalence = record { isEquivalence = isEquivalence R.isEquivalence ; _≟_ = dec R._≟_ } where module R = IsDecEquivalence R-isDecEquivalence module _ {c ℓ} where setoid : Setoid c ℓ → Setoid c (c ⊔ ℓ) setoid S = record { isEquivalence = isEquivalence S.isEquivalence } where module S = Setoid S decSetoid : DecSetoid c ℓ → DecSetoid c (c ⊔ ℓ) decSetoid S = record { isDecEquivalence = isDecEquivalence S.isDecEquivalence } where module S = DecSetoid S
33.896907
72
0.575426
2e18f0558e6adf9228e365a51e0ca5c431227eb7
1,755
agda
Agda
test/Succeed/Issue1099.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue1099.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue1099.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- Andreas, 2014-04-11, issue reported by James Chapman -- {-# OPTIONS -v tc.decl.ax:100 #-} -- {-# OPTIONS -v tc.polarity:100 #-} {-# OPTIONS --copatterns --sized-types #-} module _ where open import Common.Size module Works where mutual data Delay i (A : Set) : Set where now : A → Delay i A later : ∞Delay i A → Delay i A record ∞Delay i A : Set where coinductive field force : {j : Size< i} → Delay j A open ∞Delay mutual _=<<_ : ∀{i A B} → Delay i A → (A → Delay i B) → Delay i B now x =<< f = f x later x =<< f = later (x ∞=<< f) _∞=<<_ : ∀{i A B} → ∞Delay i A → (A → Delay i B) → ∞Delay i B force (c ∞=<< f) = force c =<< f -- Polarity of Issue1099.Delay from positivity: [Contravariant,Covariant] -- Refining polarity with type Size → Set → Set -- Polarity of Issue1099.Delay: [Contravariant,Covariant] module Fails where mutual data Delay i A : Set where now : A → Delay i A later : ∞Delay i A → Delay i A record ∞Delay i A : Set where coinductive field force : {j : Size< i} → Delay j A open ∞Delay mutual _=<<_ : ∀{i A B} → Delay i A → (A → Delay i B) → Delay i B now x =<< f = f x later x =<< f = later (x ∞=<< f) _∞=<<_ : ∀{i A B} → ∞Delay i A → (A → Delay i B) → ∞Delay i B force (c ∞=<< f) = force c =<< f -- Polarity of Issue1099.Delay from positivity: [Contravariant,Covariant] -- Refining polarity with type (i₁ : Size) → Set → Set -- WAS: Polarity of Issue1099.Delay: [Invariant,Covariant] -- NOW: Polarity of Issue1099.Delay: [Contravariant,Covariant] -- Polarity refinement calls free variable analysis, which is not in the -- monad. Thus, need to instantiate metas before polarity refinement.
29.745763
73
0.596581
0bd3a764ecd5dfdaf5d268cf5cdaa6bffbbb5b3f
1,058
agda
Agda
src/Categories/Functor/Fibration.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Functor/Fibration.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Functor/Fibration.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Functor -- Cartesian fibration, also known as Grothendieck Fibration, see -- https://ncatlab.org/nlab/show/Grothendieck+fibration module Categories.Functor.Fibration {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F : Functor C D) where open import Level open import Categories.Morphism D using (_≅_) open import Categories.Morphism.Cartesian using (Cartesian) private module C = Category C module D = Category D open Functor F record Fibration : Set (levelOfTerm F) where field universal₀ : ∀ {A B} (f : A D.⇒ F₀ B) → C.Obj universal₁ : ∀ {A B} (f : A D.⇒ F₀ B) → universal₀ f C.⇒ B iso : ∀ {A B} (f : A D.⇒ F₀ B) → F₀ (universal₀ f) ≅ A module iso {A B} (f : A D.⇒ F₀ B) = _≅_ (iso f) field commute : ∀ {A B} (f : A D.⇒ F₀ B) → f D.∘ iso.from f D.≈ F₁ (universal₁ f) cartesian : ∀ {A B} (f : A D.⇒ F₀ B) → Cartesian F (universal₁ f) module cartesian {A B} (f : A D.⇒ F₀ B) = Cartesian (cartesian f)
32.060606
121
0.62949
2f663c603417176a20ab8209b8f47913fbe88baf
2,139
agda
Agda
Definition/Typed/Consequences/Canonicity.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/Typed/Consequences/Canonicity.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/Typed/Consequences/Canonicity.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Definition.Typed.Consequences.Canonicity where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Weakening open import Definition.Typed.Properties open import Definition.Typed.EqRelInstance open import Definition.LogicalRelation open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Fundamental.Reducibility open import Definition.Typed.Consequences.Inversion open import Definition.Typed.Consequences.Inequality open import Tools.Empty open import Tools.Nat open import Tools.Product -- Turns a natural number into its term representation sucᵏ : Nat → Term sucᵏ 0 = zero sucᵏ (1+ n) = suc (sucᵏ n) -- Helper function for canonicity for reducible natural properties canonicity″ : ∀ {t} → Natural-prop ε t → ∃ λ k → ε ⊢ t ≡ sucᵏ k ∷ ℕ canonicity″ (sucᵣ (ℕₜ n₁ d n≡n prop)) = let a , b = canonicity″ prop in 1+ a , suc-cong (trans (subset*Term (redₜ d)) b) canonicity″ zeroᵣ = 0 , refl (zeroⱼ ε) canonicity″ (ne (neNfₜ neK ⊢k k≡k)) = ⊥-elim (noNe ⊢k neK) -- Helper function for canonicity for specific reducible natural numbers canonicity′ : ∀ {t l} → ([ℕ] : ε ⊩⟨ l ⟩ℕ ℕ) → ε ⊩⟨ l ⟩ t ∷ ℕ / ℕ-intr [ℕ] → ∃ λ k → ε ⊢ t ≡ sucᵏ k ∷ ℕ canonicity′ (noemb [ℕ]) (ℕₜ n d n≡n prop) = let a , b = canonicity″ prop in a , trans (subset*Term (redₜ d)) b canonicity′ (emb 0<1 [ℕ]) [t] = canonicity′ [ℕ] [t] -- Canonicity of natural numbers canonicity : ∀ {t} → ε ⊢ t ∷ ℕ → ∃ λ k → ε ⊢ t ≡ sucᵏ k ∷ ℕ canonicity ⊢t with reducibleTerm ⊢t canonicity ⊢t | [ℕ] , [t] = canonicity′ (ℕ-elim [ℕ]) (irrelevanceTerm [ℕ] (ℕ-intr (ℕ-elim [ℕ])) [t]) -- Canonicity for Empty ¬Empty′ : ∀ {n} → ε ⊩Empty n ∷Empty → ⊥ ¬Empty′ (Emptyₜ n _ n≡n (ne (neNfₜ neN ⊢n _))) = noNe ⊢n neN ¬Empty : ∀ {n} → ε ⊢ n ∷ Empty → ⊥ ¬Empty {n} ⊢n = let [Empty] , [n] = reducibleTerm ⊢n [Empty]′ = Emptyᵣ {l = ¹} ([ Emptyⱼ ε , Emptyⱼ ε , id (Emptyⱼ ε) ]) [n]′ = irrelevanceTerm [Empty] [Empty]′ [n] in ¬Empty′ [n]′
31.925373
74
0.647031
18c9fe0ec542765f393e1206215ad5e1d421bc29
625
agda
Agda
test/succeed/InferRecordTypes.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/InferRecordTypes.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/InferRecordTypes.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
-- We can infer the type of a record by comparing the given -- fields against the fields of the currently known records. module InferRecordTypes where data Nat : Set where zero : Nat suc : Nat → Nat record _×_ (A B : Set) : Set where field fst : A snd : B pair = record { fst = zero; snd = zero } record R₁ : Set where field x₁ : Nat r₁ = record { x₁ = zero } data T {A : Set} : A → Set where mkT : ∀ n → T n record R₂ A : Set where field {x₁} : A x₂ : T x₁ r₂ = record { x₂ = mkT (suc zero) } record R₃ : Set where field x₁ x₃ : Nat r₃ = record { x₁ = zero; x₃ = suc zero }
17.361111
60
0.5984
571caa7161650a986a3963a4c173ee3c389d5112
1,440
agda
Agda
agda-stdlib/src/Function/Related/TypeIsomorphisms/Solver.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Function/Related/TypeIsomorphisms/Solver.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Function/Related/TypeIsomorphisms/Solver.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Automatic solver for equations over product and sum types -- -- See examples at the bottom of the file for how to use this solver ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Function.Related.TypeIsomorphisms.Solver where open import Algebra using (CommutativeSemiring) import Algebra.Solver.Ring.NaturalCoefficients.Default open import Data.Empty using (⊥) open import Data.Product using (_×_) open import Data.Sum.Base using (_⊎_) open import Data.Unit using (⊤) open import Level using (Level; Lift) open import Function.Inverse as Inv using (_↔_) open import Function.Related as Related open import Function.Related.TypeIsomorphisms ------------------------------------------------------------------------ -- The solver module ×-⊎-Solver (k : Symmetric-kind) {ℓ} = Algebra.Solver.Ring.NaturalCoefficients.Default (×-⊎-commutativeSemiring k ℓ) ------------------------------------------------------------------------ -- Tests private -- A test of the solver above. test : {ℓ : Level} (A B C : Set ℓ) → (Lift ℓ ⊤ × A × (B ⊎ C)) ↔ (A × B ⊎ C × (Lift ℓ ⊥ ⊎ A)) test = solve 3 (λ A B C → con 1 :* (A :* (B :+ C)) := A :* B :+ C :* (con 0 :+ A)) Inv.id where open ×-⊎-Solver bijection
32.727273
72
0.520139
ad64a6a6a353acfa068c507b71c898e9e0326d66
1,821
agda
Agda
Cubical/HITs/Rationals/SigmaQ/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/Rationals/SigmaQ/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/Rationals/SigmaQ/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Rationals.SigmaQ.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.HITs.Ints.QuoInt open import Cubical.Data.Nat as ℕ hiding (_*_) open import Cubical.Data.NatPlusOne open import Cubical.Data.Sigma open import Cubical.Data.Nat.GCD open import Cubical.Data.Nat.Coprime -- ℚ as the set of coprime pairs in ℤ × ℕ₊₁ ℚ : Type₀ ℚ = Σ[ (a , b) ∈ ℤ × ℕ₊₁ ] areCoprime (abs a , ℕ₊₁→ℕ b) isSetℚ : isSet ℚ isSetℚ = isSetΣ (isSet× isSetℤ (subst isSet 1+Path isSetℕ)) (λ _ → isProp→isSet isPropIsGCD) signedPair : Sign → ℕ × ℕ₊₁ → ℤ × ℕ₊₁ signedPair s (a , b) = (signed s a , b) [_] : ℤ × ℕ₊₁ → ℚ [ signed s a , b ] = signedPair s (toCoprime (a , b)) , toCoprimeAreCoprime (a , b) [ posneg i , b ] = (posneg i , 1) , toCoprimeAreCoprime (0 , b) []-cancelʳ : ∀ ((a , b) : ℤ × ℕ₊₁) k → [ a * pos (ℕ₊₁→ℕ k) , b *₊₁ k ] ≡ [ a , b ] []-cancelʳ (signed s zero , b) k = Σ≡Prop (λ _ → isPropIsGCD) (λ i → signed-zero spos s i , 1) []-cancelʳ (signed s (suc a) , b) k = Σ≡Prop (λ _ → isPropIsGCD) (λ i → signedPair (*S-comm s spos i) (toCoprime-cancelʳ (suc a , b) k i)) []-cancelʳ (posneg i , b) k j = isSet→isSet' isSetℚ ([]-cancelʳ (pos zero , b) k) ([]-cancelʳ (neg zero , b) k) (λ i → [ posneg i * pos (ℕ₊₁→ℕ k) , b *₊₁ k ]) (λ i → [ posneg i , b ]) i j -- Natural number and negative integer literals for ℚ open import Cubical.Data.Nat.Literals public instance fromNatℚ : HasFromNat ℚ fromNatℚ = record { Constraint = λ _ → Unit ; fromNat = λ n → (pos n , 1) , oneGCD n } instance fromNegℚ : HasFromNeg ℚ fromNegℚ = record { Constraint = λ _ → Unit ; fromNeg = λ n → (neg n , 1) , oneGCD n }
33.109091
97
0.602965
0684d8389484929a7e3124ff6b7bf90e0a799311
8,624
agda
Agda
Definition/LogicalRelation/Substitution/Introductions/Emptyrec.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2018-06-21T08:39:01.000Z
2022-01-17T16:13:53.000Z
Definition/LogicalRelation/Substitution/Introductions/Emptyrec.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
null
null
null
Definition/LogicalRelation/Substitution/Introductions/Emptyrec.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2022-01-26T14:55:51.000Z
2022-02-15T19:42:19.000Z
{-# OPTIONS --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Introductions.Emptyrec {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped as U hiding (wk) open import Definition.Untyped.Properties open import Definition.Typed import Definition.Typed.Weakening as T open import Definition.Typed.Properties open import Definition.Typed.RedSteps open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Application open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Properties import Definition.LogicalRelation.Substitution.Irrelevance as S open import Definition.LogicalRelation.Substitution.Reflexivity open import Definition.LogicalRelation.Substitution.Weakening open import Definition.LogicalRelation.Substitution.Introductions.Empty open import Definition.LogicalRelation.Substitution.Introductions.Pi open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst open import Tools.Product open import Tools.Unit open import Tools.Empty open import Tools.Nat import Tools.PropositionalEquality as PE -- Reducibility of natural recursion under a valid substitution. EmptyrecTerm : ∀ {F rF lF lEmpty n Γ Δ σ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ]) (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) ([σn] : Δ ⊩⟨ l ⟩ n ∷ Empty lEmpty ^ [ % , ι lEmpty ] / Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ)))) → Δ ⊩⟨ l ⟩ Emptyrec lF lEmpty (subst σ F) n ∷ subst σ F ^ [ rF , ι lF ] / proj₁ ([F] ⊢Δ [σ]) EmptyrecTerm {F} {rF = !} {lF} {lEmpty} {n} {Γ} {Δ} {σ} {l} [Γ] [F] ⊢Δ [σ] (Emptyₜ (ne d)) = let [Empty] = Emptyᵛ {ll = lEmpty} {l = l} [Γ] [σEmpty] = proj₁ ([Empty] ⊢Δ [σ]) [σF] = proj₁ ([F] ⊢Δ [σ]) ⊢F = escape [σF] ⊢F≡F = escapeEq [σF] (reflEq [σF]) in neuTerm [σF] (Emptyrecₙ) (Emptyrecⱼ ⊢F d) (~-Emptyrec ⊢F≡F d d) EmptyrecTerm {F} {rF = %} {lF} {lEmpty} {n} {Γ} {Δ} {σ} {l} [Γ] [F] ⊢Δ [σ] (Emptyₜ (ne d)) = let [Empty] = Emptyᵛ {ll = lEmpty} {l = l} [Γ] [σEmpty] = proj₁ ([Empty] ⊢Δ [σ]) [σF] = proj₁ ([F] ⊢Δ [σ]) ⊢F = escape [σF] ⊢F≡F = escapeEq [σF] (reflEq [σF]) in logRelIrr [σF] (Emptyrecⱼ ⊢F d) -- Reducibility of natural recursion congurence under a valid substitution equality. Emptyrec-congTerm : ∀ {F F′ rF lF lEmpty n m Γ Δ σ σ′ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ]) ([F′] : Γ ⊩ᵛ⟨ l ⟩ F′ ^ [ rF , ι lF ] / [Γ]) ([F≡F′] : Γ ⊩ᵛ⟨ l ⟩ F ≡ F′ ^ [ rF , ι lF ] / [Γ] / [F]) (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) ([σ′] : Δ ⊩ˢ σ′ ∷ Γ / [Γ] / ⊢Δ) ([σ≡σ′] : Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ]) ([σn] : Δ ⊩⟨ l ⟩ n ∷ Empty lEmpty ^ [ % , ι lEmpty ] / Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ)))) ([σm] : Δ ⊩⟨ l ⟩ m ∷ Empty lEmpty ^ [ % , ι lEmpty ] / Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ)))) → Δ ⊩⟨ l ⟩ Emptyrec lF lEmpty (subst σ F) n ≡ Emptyrec lF lEmpty (subst σ′ F′) m ∷ subst σ F ^ [ rF , ι lF ] / proj₁ ([F] ⊢Δ [σ]) Emptyrec-congTerm {F} {F′} {rF = !} {lF} {lEmpty} {n} {m} {Γ} {Δ} {σ} {σ′} {l} [Γ] [F] [F′] [F≡F′] ⊢Δ [σ] [σ′] [σ≡σ′] (Emptyₜ (ne ⊢n′)) (Emptyₜ (ne ⊢m′)) = let [Empty] = Emptyᵛ {ll = lEmpty} {l = l} [Γ] [σEmpty] = proj₁ ([Empty] ⊢Δ [σ]) [σ′Empty] = proj₁ ([Empty] ⊢Δ [σ′]) [σF] = proj₁ ([F] ⊢Δ [σ]) [σ′F] = proj₁ ([F] ⊢Δ [σ′]) [σ′F′] = proj₁ ([F′] ⊢Δ [σ′]) ⊢F = escape [σF] ⊢F≡F = escapeEq [σF] (reflEq [σF]) ⊢F′ = escape [σ′F′] ⊢F′≡F′ = escapeEq [σ′F′] (reflEq [σ′F′]) ⊢σF≡σ′F = escapeEq [σF] (proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′]) ⊢σ′F≡σ′F′ = escapeEq [σ′F] ([F≡F′] ⊢Δ [σ′]) ⊢F≡F′ = ≅-trans ⊢σF≡σ′F ⊢σ′F≡σ′F′ [σF≡σ′F] = proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′] [σ′F≡σ′F′] = [F≡F′] ⊢Δ [σ′] [σF≡σ′F′] = transEq [σF] [σ′F] [σ′F′] [σF≡σ′F] [σ′F≡σ′F′] EmptyrecN = neuTerm [σF] (Emptyrecₙ) (Emptyrecⱼ ⊢F ⊢n′) (~-Emptyrec ⊢F≡F ⊢n′ ⊢n′) EmptyrecM = neuTerm [σ′F′] (Emptyrecₙ) (Emptyrecⱼ ⊢F′ ⊢m′) (~-Emptyrec ⊢F′≡F′ ⊢m′ ⊢m′) EmptyrecN≡M = neuEqTerm [σF] Emptyrecₙ Emptyrecₙ (Emptyrecⱼ ⊢F ⊢n′) (conv (Emptyrecⱼ ⊢F′ ⊢m′) (sym (≅-eq (escapeEq [σF] (transEq [σF] [σ′F] [σ′F′] [σF≡σ′F] [σ′F≡σ′F′]))))) (~-Emptyrec ⊢F≡F′ ⊢n′ ⊢m′) in EmptyrecN≡M Emptyrec-congTerm {F} {F′} {rF = %} {lF} {lEmpty} {n} {m} {Γ} {Δ} {σ} {σ′} {l} [Γ] [F] [F′] [F≡F′] ⊢Δ [σ] [σ′] [σ≡σ′] (Emptyₜ (ne ⊢n′)) (Emptyₜ (ne ⊢m′)) = let [Empty] = Emptyᵛ {ll = lEmpty} {l = l} [Γ] [σEmpty] = proj₁ ([Empty] ⊢Δ [σ]) [σ′Empty] = proj₁ ([Empty] ⊢Δ [σ′]) [σF] = proj₁ ([F] ⊢Δ [σ]) [σ′F] = proj₁ ([F] ⊢Δ [σ′]) [σ′F′] = proj₁ ([F′] ⊢Δ [σ′]) ⊢F = escape [σF] ⊢F≡F = escapeEq [σF] (reflEq [σF]) ⊢F′ = escape [σ′F′] ⊢F′≡F′ = escapeEq [σ′F′] (reflEq [σ′F′]) ⊢σF≡σ′F = escapeEq [σF] (proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′]) ⊢σ′F≡σ′F′ = escapeEq [σ′F] ([F≡F′] ⊢Δ [σ′]) ⊢F≡F′ = ≅-trans ⊢σF≡σ′F ⊢σ′F≡σ′F′ [σF≡σ′F] = proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′] [σ′F≡σ′F′] = [F≡F′] ⊢Δ [σ′] [σF≡σ′F′] = transEq [σF] [σ′F] [σ′F′] [σF≡σ′F] [σ′F≡σ′F′] in logRelIrrEq [σF] (Emptyrecⱼ ⊢F ⊢n′) (conv (Emptyrecⱼ ⊢F′ ⊢m′) (sym (≅-eq (escapeEq [σF] (transEq [σF] [σ′F] [σ′F′] [σF≡σ′F] [σ′F≡σ′F′]))))) -- Validity of empty recursion. Emptyrecᵛ : ∀ {F rF lF lEmpty n Γ l} ([Γ] : ⊩ᵛ Γ) ([Empty] : Γ ⊩ᵛ⟨ l ⟩ Empty lEmpty ^ [ % , ι lEmpty ] / [Γ]) ([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ]) → ([n] : Γ ⊩ᵛ⟨ l ⟩ n ∷ Empty lEmpty ^ [ % , ι lEmpty ] / [Γ] / [Empty]) → Γ ⊩ᵛ⟨ l ⟩ Emptyrec lF lEmpty F n ∷ F ^ [ rF , ι lF ] / [Γ] / [F] Emptyrecᵛ {F} {rF} {lF} {lEmpty} {n} {l = l} [Γ] [Empty] [F] [n] {Δ = Δ} {σ = σ} ⊢Δ [σ] = let [σn] = irrelevanceTerm {l′ = l} (proj₁ ([Empty] ⊢Δ [σ])) (Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ)))) (proj₁ ([n] ⊢Δ [σ])) in EmptyrecTerm {F = F} [Γ] [F] ⊢Δ [σ] [σn] , λ {σ'} [σ′] [σ≡σ′] → let [σ′n] = irrelevanceTerm {l′ = l} (proj₁ ([Empty] ⊢Δ [σ′])) (Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ)))) (proj₁ ([n] ⊢Δ [σ′])) [σn≡σ′n] = irrelevanceEqTerm {l′ = l} (proj₁ ([Empty] ⊢Δ [σ])) (Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ)))) (proj₂ ([n] ⊢Δ [σ]) [σ′] [σ≡σ′]) congTerm = Emptyrec-congTerm {F = F} {F′ = F} [Γ] [F] [F] (reflᵛ {F} {l = l} [Γ] [F]) ⊢Δ [σ] [σ′] [σ≡σ′] [σn] [σ′n] in congTerm -- Validity of natural recursion congurence. Emptyrec-congᵛ : ∀ {F F′ rF lF lEmpty n n′ Γ l} ([Γ] : ⊩ᵛ Γ) ([Empty] : Γ ⊩ᵛ⟨ l ⟩ Empty lEmpty ^ [ % , ι lEmpty ] / [Γ]) ([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ]) ([F′] : Γ ⊩ᵛ⟨ l ⟩ F′ ^ [ rF , ι lF ] / [Γ]) ([F≡F′] : Γ ⊩ᵛ⟨ l ⟩ F ≡ F′ ^ [ rF , ι lF ] / [Γ] / [F]) ([n] : Γ ⊩ᵛ⟨ l ⟩ n ∷ Empty lEmpty ^ [ % , ι lEmpty ] / [Γ] / [Empty]) ([n′] : Γ ⊩ᵛ⟨ l ⟩ n′ ∷ Empty lEmpty ^ [ % , ι lEmpty ] / [Γ] / [Empty]) → Γ ⊩ᵛ⟨ l ⟩ Emptyrec lF lEmpty F n ≡ Emptyrec lF lEmpty F′ n′ ∷ F ^ [ rF , ι lF ] / [Γ] / [F] Emptyrec-congᵛ {F} {F′} {rF} {lF} {lEmpty} {n} {n′} {l = l} [Γ] [Empty] [F] [F′] [F≡F′] [n] [n′] {Δ = Δ} {σ = σ} ⊢Δ [σ] = let [σn] = irrelevanceTerm {l′ = l} (proj₁ ([Empty] ⊢Δ [σ])) (Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ)))) (proj₁ ([n] ⊢Δ [σ])) [σn′] = irrelevanceTerm {l′ = l} (proj₁ ([Empty] ⊢Δ [σ])) (Emptyᵣ (idRed:*: (univ (Emptyⱼ ⊢Δ)))) (proj₁ ([n′] ⊢Δ [σ])) congTerm = Emptyrec-congTerm {F} {F′} [Γ] [F] [F′] [F≡F′] ⊢Δ [σ] [σ] (reflSubst [Γ] ⊢Δ [σ]) [σn] [σn′] in congTerm
47.646409
115
0.44782
10d45dbd29e809016392cda861751d755c19a315
2,031
agda
Agda
papers/unraveling-recursion/code/src/Compilation/Term.agda
imikushin/plutus
2c5bda20fb94b0f3737ba1a236ef5d7a7fd9f631
[ "Apache-2.0" ]
1,299
2018-10-02T13:41:39.000Z
2022-03-28T01:10:02.000Z
papers/unraveling-recursion/code/src/Compilation/Term.agda
imikushin/plutus
2c5bda20fb94b0f3737ba1a236ef5d7a7fd9f631
[ "Apache-2.0" ]
2,493
2018-09-28T19:28:17.000Z
2022-03-31T15:31:31.000Z
papers/unraveling-recursion/code/src/Compilation/Term.agda
imikushin/plutus
2c5bda20fb94b0f3737ba1a236ef5d7a7fd9f631
[ "Apache-2.0" ]
399
2018-10-05T09:36:10.000Z
2022-03-31T11:18:25.000Z
module Compilation.Term where open import Context open import Type.Core open import Type.NbE import Term.Core as Core open import Compilation.Data open import Compilation.Encode.Core open import Function open import Data.Empty open import Data.Sum.Base open import Data.List.Base as List infix 3 _⊢_ data Recursivity : Set where NonRec Rec : Recursivity caseRec : ∀ {ρ} {R : Set ρ} -> Recursivity -> R -> R -> R caseRec NonRec x y = x caseRec Rec x y = y data _⊢_ {Θ} Γ : Star Θ -> Set where letType : ∀ {σ β} -> (α : Θ ⊢ᵗ σ) -> shiftᶜ Γ ⊢ β -> Γ ⊢ β [ α ]ᵗ letTerm : ∀ {α} Δ rec -> Seq (caseRec rec Γ (Γ ▻▻ Δ) ⊢_) Δ -> Γ ▻▻ Δ ⊢ α -> Γ ⊢ α var : ∀ {α} -> α ∈ Γ -> Γ ⊢ α Λ_ : ∀ {σ α} -> shiftᶜ Γ ⊢ α -> Γ ⊢ π σ α _[_] : ∀ {σ β} -> Γ ⊢ π σ β -> (α : Θ ⊢ᵗ σ) -> Γ ⊢ β [ α ]ᵗ ƛ_ : ∀ {α β} -> Γ ▻ α ⊢ β -> Γ ⊢ α ⇒ β _·_ : ∀ {α β} -> Γ ⊢ α ⇒ β -> Γ ⊢ α -> Γ ⊢ β iwrap : ∀ {κ ψ} {α : Θ ⊢ᵗ κ} -> Γ ⊢ Core.unfold ψ α -> Γ ⊢ μ ψ α unwrap : ∀ {κ ψ} {α : Θ ⊢ᵗ κ} -> Γ ⊢ μ ψ α -> Γ ⊢ Core.unfold ψ α mutual compile : ∀ {Θ} {Γ : Con (Star Θ)} {α} -> Γ ⊢ α -> Γ Core.⊢ α compile (letType α term) = (Core.Λ (compile term)) Core.[ α ] compile (letTerm Δ rec env term) with rec ... | NonRec = Core.instNonRec (map-compile env) (compile term) ... | Rec = Core.instRec (map-compile env) (compile term) compile (var v) = Core.var v compile (Λ body) = Core.Λ (compile body) compile (fun [ α ]) = compile fun Core.[ α ] compile (ƛ body) = Core.ƛ (compile body) compile (fun · arg) = compile fun Core.· compile arg compile (iwrap term) = Core.iwrap (compile term) compile (unwrap term) = Core.unwrap (compile term) -- This is just `mapˢ compile` inlined to convince Agda there are no termination problems. map-compile : ∀ {Θ} {Γ Δ : Con (Star Θ)} -> Seq (Γ ⊢_) Δ -> Seq (Γ Core.⊢_) Δ map-compile ø = ø map-compile (seq ▶ term) = map-compile seq ▶ compile term
38.320755
92
0.544067
2e258e4904583087ad01650a12c3bdc30b499544
1,374
agda
Agda
test/succeed/TerminationListInsertionNaive.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/TerminationListInsertionNaive.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/TerminationListInsertionNaive.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module TerminationListInsertionNaive where data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A infixr 50 _::_ -- non-deterministic choice postulate _⊕_ : {A : Set} -> A -> A -> A infixl 10 _⊕_ -- a funny formulation of insert -- insert (a :: l) inserts a into l -- -- this example cannot be handled with subpatterns -- it is done with structured orders -- could also be done with sized types insert : {A : Set} -> List A -> List A insert [] = [] insert (a :: []) = a :: [] insert (a :: b :: bs) = a :: b :: bs ⊕ -- case a <= b b :: insert (a :: bs) -- case a > b -- list flattening -- termination using structured orders flat : {A : Set} -> List (List A) -> List A flat [] = [] flat ([] :: ll) = flat ll flat ((x :: l) :: ll) = x :: flat (l :: ll) {- generates two recursive calls with the following call matrices [] :: ll (x :: l) ll ll < l < . ll . = during composition, the second is collapsed to =, so the call graph is already complete. Both matrices are idempotent and contain a strictly decreasing argument. It could also be done with sized types; lexicographic in (i,j) with type flat : {A : Set} -> (1 + Listʲ A × List^i (List^∞ A)) -> List^∞ A -}
25.444444
70
0.534934
13442126c5c4432ae5a0ffc693aea063d10d5be4
6,326
agda
Agda
Cubical/Algebra/RingSolver/Solver.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/Algebra/RingSolver/Solver.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Algebra/RingSolver/Solver.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.RingSolver.Solver where open import Cubical.Foundations.Prelude open import Cubical.Data.FinData open import Cubical.Data.Nat using (ℕ) open import Cubical.Data.Nat.Order using (zero-≤) open import Cubical.Data.Vec.Base open import Cubical.Algebra.CommRing open import Cubical.Algebra.Ring open import Cubical.Algebra.RingSolver.RawAlgebra renaming (⟨_⟩ to ⟨_⟩ᵣ) open import Cubical.Algebra.RingSolver.AlgebraExpression open import Cubical.Algebra.RingSolver.IntAsRawRing open import Cubical.Algebra.RingSolver.HornerForms open import Cubical.Algebra.RingSolver.EvalHom open import Cubical.Algebra.RingSolver.HornerEval private variable ℓ : Level module EqualityToNormalform (R : CommRing ℓ) where νR = CommRing→RawℤAlgebra R open CommRingStr (snd R) open RingTheory (CommRing→Ring R) open Eval ℤAsRawRing νR open IteratedHornerOperations νR open HomomorphismProperties R ℤExpr : (n : ℕ) → Type _ ℤExpr = Expr ℤAsRawRing (fst R) normalize : {n : ℕ} → ℤExpr n → IteratedHornerForms νR n normalize {n = n} (K r) = Constant n νR r normalize {n = n} (∣ k) = Variable n νR k normalize (x +' y) = (normalize x) +ₕ (normalize y) normalize (x ·' y) = (normalize x) ·ₕ (normalize y) normalize (-' x) = -ₕ (normalize x) isEqualToNormalform : {n : ℕ} (e : ℤExpr n) (xs : Vec (fst R) n) → eval (normalize e) xs ≡ ⟦ e ⟧ xs isEqualToNormalform (K r) [] = refl isEqualToNormalform {n = ℕ.suc n} (K r) (x ∷ xs) = eval (Constant (ℕ.suc n) νR r) (x ∷ xs) ≡⟨ refl ⟩ eval (0ₕ ·X+ Constant n νR r) (x ∷ xs) ≡⟨ combineCasesEval R 0ₕ (Constant n νR r) x xs ⟩ eval 0ₕ (x ∷ xs) · x + eval (Constant n νR r) xs ≡⟨ cong (λ u → u · x + eval (Constant n νR r) xs) (Eval0H (x ∷ xs)) ⟩ 0r · x + eval (Constant n νR r) xs ≡⟨ cong (λ u → u + eval (Constant n νR r) xs) (0LeftAnnihilates _) ⟩ 0r + eval (Constant n νR r) xs ≡⟨ +Lid _ ⟩ eval (Constant n νR r) xs ≡⟨ isEqualToNormalform (K r) xs ⟩ _ ∎ isEqualToNormalform (∣ zero) (x ∷ xs) = eval (1ₕ ·X+ 0ₕ) (x ∷ xs) ≡⟨ combineCasesEval R 1ₕ 0ₕ x xs ⟩ eval 1ₕ (x ∷ xs) · x + eval 0ₕ xs ≡⟨ cong (λ u → u · x + eval 0ₕ xs) (Eval1ₕ (x ∷ xs)) ⟩ 1r · x + eval 0ₕ xs ≡⟨ cong (λ u → 1r · x + u ) (Eval0H xs) ⟩ 1r · x + 0r ≡⟨ +Rid _ ⟩ 1r · x ≡⟨ ·Lid _ ⟩ x ∎ isEqualToNormalform {n = ℕ.suc n} (∣ (suc k)) (x ∷ xs) = eval (0ₕ ·X+ Variable n νR k) (x ∷ xs) ≡⟨ combineCasesEval R 0ₕ (Variable n νR k) x xs ⟩ eval 0ₕ (x ∷ xs) · x + eval (Variable n νR k) xs ≡⟨ cong (λ u → u · x + eval (Variable n νR k) xs) (Eval0H (x ∷ xs)) ⟩ 0r · x + eval (Variable n νR k) xs ≡⟨ cong (λ u → u + eval (Variable n νR k) xs) (0LeftAnnihilates _) ⟩ 0r + eval (Variable n νR k) xs ≡⟨ +Lid _ ⟩ eval (Variable n νR k) xs ≡⟨ isEqualToNormalform (∣ k) xs ⟩ ⟦ ∣ (suc k) ⟧ (x ∷ xs) ∎ isEqualToNormalform (-' e) [] = eval (-ₕ (normalize e)) [] ≡⟨ -EvalDist (normalize e) [] ⟩ - eval (normalize e) [] ≡⟨ cong -_ (isEqualToNormalform e [] ) ⟩ - ⟦ e ⟧ [] ∎ isEqualToNormalform (-' e) (x ∷ xs) = eval (-ₕ (normalize e)) (x ∷ xs) ≡⟨ -EvalDist (normalize e) (x ∷ xs) ⟩ - eval (normalize e) (x ∷ xs) ≡⟨ cong -_ (isEqualToNormalform e (x ∷ xs) ) ⟩ - ⟦ e ⟧ (x ∷ xs) ∎ isEqualToNormalform (e +' e₁) [] = eval (normalize e +ₕ normalize e₁) [] ≡⟨ +Homeval (normalize e) _ [] ⟩ eval (normalize e) [] + eval (normalize e₁) [] ≡⟨ cong (λ u → u + eval (normalize e₁) []) (isEqualToNormalform e []) ⟩ ⟦ e ⟧ [] + eval (normalize e₁) [] ≡⟨ cong (λ u → ⟦ e ⟧ [] + u) (isEqualToNormalform e₁ []) ⟩ ⟦ e ⟧ [] + ⟦ e₁ ⟧ [] ∎ isEqualToNormalform (e +' e₁) (x ∷ xs) = eval (normalize e +ₕ normalize e₁) (x ∷ xs) ≡⟨ +Homeval (normalize e) _ (x ∷ xs) ⟩ eval (normalize e) (x ∷ xs) + eval (normalize e₁) (x ∷ xs) ≡⟨ cong (λ u → u + eval (normalize e₁) (x ∷ xs)) (isEqualToNormalform e (x ∷ xs)) ⟩ ⟦ e ⟧ (x ∷ xs) + eval (normalize e₁) (x ∷ xs) ≡⟨ cong (λ u → ⟦ e ⟧ (x ∷ xs) + u) (isEqualToNormalform e₁ (x ∷ xs)) ⟩ ⟦ e ⟧ (x ∷ xs) + ⟦ e₁ ⟧ (x ∷ xs) ∎ isEqualToNormalform (e ·' e₁) [] = eval (normalize e ·ₕ normalize e₁) [] ≡⟨ ·Homeval (normalize e) _ [] ⟩ eval (normalize e) [] · eval (normalize e₁) [] ≡⟨ cong (λ u → u · eval (normalize e₁) []) (isEqualToNormalform e []) ⟩ ⟦ e ⟧ [] · eval (normalize e₁) [] ≡⟨ cong (λ u → ⟦ e ⟧ [] · u) (isEqualToNormalform e₁ []) ⟩ ⟦ e ⟧ [] · ⟦ e₁ ⟧ [] ∎ isEqualToNormalform (e ·' e₁) (x ∷ xs) = eval (normalize e ·ₕ normalize e₁) (x ∷ xs) ≡⟨ ·Homeval (normalize e) _ (x ∷ xs) ⟩ eval (normalize e) (x ∷ xs) · eval (normalize e₁) (x ∷ xs) ≡⟨ cong (λ u → u · eval (normalize e₁) (x ∷ xs)) (isEqualToNormalform e (x ∷ xs)) ⟩ ⟦ e ⟧ (x ∷ xs) · eval (normalize e₁) (x ∷ xs) ≡⟨ cong (λ u → ⟦ e ⟧ (x ∷ xs) · u) (isEqualToNormalform e₁ (x ∷ xs)) ⟩ ⟦ e ⟧ (x ∷ xs) · ⟦ e₁ ⟧ (x ∷ xs) ∎ solve : {n : ℕ} (e₁ e₂ : ℤExpr n) (xs : Vec (fst R) n) (p : eval (normalize e₁) xs ≡ eval (normalize e₂) xs) → ⟦ e₁ ⟧ xs ≡ ⟦ e₂ ⟧ xs solve e₁ e₂ xs p = ⟦ e₁ ⟧ xs ≡⟨ sym (isEqualToNormalform e₁ xs) ⟩ eval (normalize e₁) xs ≡⟨ p ⟩ eval (normalize e₂) xs ≡⟨ isEqualToNormalform e₂ xs ⟩ ⟦ e₂ ⟧ xs ∎ ℤExpr : (R : CommRing ℓ) (n : ℕ) → _ ℤExpr R n = EqualityToNormalform.ℤExpr R n solve : (R : CommRing ℓ) {n : ℕ} (e₁ e₂ : ℤExpr R n) (xs : Vec (fst R) n) (p : eval (EqualityToNormalform.normalize R e₁) xs ≡ eval (EqualityToNormalform.normalize R e₂) xs) → _ solve R = EqualityToNormalform.solve R
43.328767
107
0.50411
2eed2f1c63c95b0831b33681bb0f373447d9f4e7
8,646
agda
Agda
test/Succeed/Inlining-Builtin-Reflection-did-not-work.agda
isovector/agda
9a29f3a1f5e24c818bdabbf2c17d0f79887aa8b4
[ "BSD-2-Clause" ]
null
null
null
test/Succeed/Inlining-Builtin-Reflection-did-not-work.agda
isovector/agda
9a29f3a1f5e24c818bdabbf2c17d0f79887aa8b4
[ "BSD-2-Clause" ]
null
null
null
test/Succeed/Inlining-Builtin-Reflection-did-not-work.agda
isovector/agda
9a29f3a1f5e24c818bdabbf2c17d0f79887aa8b4
[ "BSD-2-Clause" ]
null
null
null
module _ where open import Agda.Builtin.Unit open import Agda.Builtin.Bool open import Agda.Builtin.Nat open import Agda.Builtin.Word open import Agda.Builtin.List open import Agda.Builtin.String open import Agda.Builtin.Char open import Agda.Builtin.Float open import Agda.Builtin.Sigma -- Names -- postulate Name : Set {-# BUILTIN QNAME Name #-} primitive primQNameEquality : Name → Name → Bool primQNameLess : Name → Name → Bool primShowQName : Name → String -- Metavariables -- postulate Meta : Set {-# BUILTIN AGDAMETA Meta #-} primitive primMetaEquality : Meta → Meta → Bool primMetaLess : Meta → Meta → Bool primShowMeta : Meta → String -- Arguments -- -- Arguments can be (visible), {hidden}, or {{instance}}. data Visibility : Set where visible hidden instance′ : Visibility {-# BUILTIN HIDING Visibility #-} {-# BUILTIN VISIBLE visible #-} {-# BUILTIN HIDDEN hidden #-} {-# BUILTIN INSTANCE instance′ #-} -- Arguments can be relevant or irrelevant. data Relevance : Set where relevant irrelevant : Relevance {-# BUILTIN RELEVANCE Relevance #-} {-# BUILTIN RELEVANT relevant #-} {-# BUILTIN IRRELEVANT irrelevant #-} -- Arguments also have a quantity. data Quantity : Set where quantity-0 quantity-ω : Quantity {-# BUILTIN QUANTITY Quantity #-} {-# BUILTIN QUANTITY-0 quantity-0 #-} {-# BUILTIN QUANTITY-ω quantity-ω #-} -- Relevance and quantity are combined into a modality. data Modality : Set where modality : (r : Relevance) (q : Quantity) → Modality {-# BUILTIN MODALITY Modality #-} {-# BUILTIN MODALITY-CONSTRUCTOR modality #-} data ArgInfo : Set where arg-info : (v : Visibility) (m : Modality) → ArgInfo data Arg (A : Set) : Set where arg : (i : ArgInfo) (x : A) → Arg A {-# BUILTIN ARGINFO ArgInfo #-} {-# BUILTIN ARGARGINFO arg-info #-} {-# BUILTIN ARG Arg #-} {-# BUILTIN ARGARG arg #-} -- Name abstraction -- data Abs (A : Set) : Set where abs : (s : String) (x : A) → Abs A {-# BUILTIN ABS Abs #-} {-# BUILTIN ABSABS abs #-} -- Literals -- data Literal : Set where nat : (n : Nat) → Literal word64 : (n : Word64) → Literal float : (x : Float) → Literal char : (c : Char) → Literal string : (s : String) → Literal name : (x : Name) → Literal meta : (x : Meta) → Literal {-# BUILTIN AGDALITERAL Literal #-} {-# BUILTIN AGDALITNAT nat #-} {-# BUILTIN AGDALITWORD64 word64 #-} {-# BUILTIN AGDALITFLOAT float #-} {-# BUILTIN AGDALITCHAR char #-} {-# BUILTIN AGDALITSTRING string #-} {-# BUILTIN AGDALITQNAME name #-} {-# BUILTIN AGDALITMETA meta #-} -- Patterns -- -- Terms -- data Sort : Set data Clause : Set data Term : Set Type = Term Telescope = List (Σ String λ _ → Arg Type) data Term where var : (x : Nat) (args : List (Arg Term)) → Term con : (c : Name) (args : List (Arg Term)) → Term def : (f : Name) (args : List (Arg Term)) → Term lam : (v : Visibility) (t : Abs Term) → Term pat-lam : (cs : List Clause) (args : List (Arg Term)) → Term pi : (a : Arg Type) (b : Abs Type) → Term agda-sort : (s : Sort) → Term lit : (l : Literal) → Term meta : (x : Meta) → List (Arg Term) → Term unknown : Term data Sort where set : (t : Term) → Sort lit : (n : Nat) → Sort prop : (t : Term) → Sort propLit : (n : Nat) → Sort inf : (n : Nat) → Sort unknown : Sort data Pattern : Set where con : (c : Name) (ps : List (Arg Pattern)) → Pattern dot : (t : Term) → Pattern var : (x : Nat) → Pattern lit : (l : Literal) → Pattern proj : (f : Name) → Pattern absurd : (x : Nat) → Pattern data Clause where clause : (tel : Telescope) (ps : List (Arg Pattern)) (t : Term) → Clause absurd-clause : (tel : Telescope) (ps : List (Arg Pattern)) → Clause {-# BUILTIN AGDATERM Term #-} {-# BUILTIN AGDASORT Sort #-} {-# BUILTIN AGDAPATTERN Pattern #-} {-# BUILTIN AGDACLAUSE Clause #-} {-# BUILTIN AGDATERMVAR var #-} {-# BUILTIN AGDATERMCON con #-} {-# BUILTIN AGDATERMDEF def #-} {-# BUILTIN AGDATERMMETA meta #-} {-# BUILTIN AGDATERMLAM lam #-} {-# BUILTIN AGDATERMEXTLAM pat-lam #-} {-# BUILTIN AGDATERMPI pi #-} {-# BUILTIN AGDATERMSORT agda-sort #-} {-# BUILTIN AGDATERMLIT lit #-} {-# BUILTIN AGDATERMUNSUPPORTED unknown #-} {-# BUILTIN AGDASORTSET set #-} {-# BUILTIN AGDASORTLIT lit #-} {-# BUILTIN AGDASORTPROP prop #-} {-# BUILTIN AGDASORTPROPLIT propLit #-} {-# BUILTIN AGDASORTINF inf #-} {-# BUILTIN AGDASORTUNSUPPORTED unknown #-} {-# BUILTIN AGDAPATCON con #-} {-# BUILTIN AGDAPATDOT dot #-} {-# BUILTIN AGDAPATVAR var #-} {-# BUILTIN AGDAPATLIT lit #-} {-# BUILTIN AGDAPATPROJ proj #-} {-# BUILTIN AGDAPATABSURD absurd #-} {-# BUILTIN AGDACLAUSECLAUSE clause #-} {-# BUILTIN AGDACLAUSEABSURD absurd-clause #-} -- Definitions -- data Definition : Set where function : (cs : List Clause) → Definition data-type : (pars : Nat) (cs : List Name) → Definition record-type : (c : Name) (fs : List (Arg Name)) → Definition data-cons : (d : Name) → Definition axiom : Definition prim-fun : Definition {-# BUILTIN AGDADEFINITION Definition #-} {-# BUILTIN AGDADEFINITIONFUNDEF function #-} {-# BUILTIN AGDADEFINITIONDATADEF data-type #-} {-# BUILTIN AGDADEFINITIONRECORDDEF record-type #-} {-# BUILTIN AGDADEFINITIONDATACONSTRUCTOR data-cons #-} {-# BUILTIN AGDADEFINITIONPOSTULATE axiom #-} {-# BUILTIN AGDADEFINITIONPRIMITIVE prim-fun #-} -- Errors -- data ErrorPart : Set where strErr : String → ErrorPart termErr : Term → ErrorPart nameErr : Name → ErrorPart {-# BUILTIN AGDAERRORPART ErrorPart #-} {-# BUILTIN AGDAERRORPARTSTRING strErr #-} {-# BUILTIN AGDAERRORPARTTERM termErr #-} {-# BUILTIN AGDAERRORPARTNAME nameErr #-} -- TC monad -- postulate TC : ∀ {a} → Set a → Set a returnTC : ∀ {a} {A : Set a} → A → TC A bindTC : ∀ {a b} {A : Set a} {B : Set b} → TC A → (A → TC B) → TC B unify : Term → Term → TC ⊤ typeError : ∀ {a} {A : Set a} → List ErrorPart → TC A inferType : Term → TC Type checkType : Term → Type → TC Term normalise : Term → TC Term catchTC : ∀ {a} {A : Set a} → TC A → TC A → TC A quoteTC : ∀ {a} {A : Set a} → A → TC Term unquoteTC : ∀ {a} {A : Set a} → Term → TC A getContext : TC Telescope extendContext : ∀ {a} {A : Set a} → String → Arg Type → TC A → TC A inContext : ∀ {a} {A : Set a} → Telescope → TC A → TC A freshName : String → TC Name declareDef : Arg Name → Type → TC ⊤ defineFun : Name → List Clause → TC ⊤ getType : Name → TC Type getDefinition : Name → TC Definition blockOnMeta : ∀ {a} {A : Set a} → Meta → TC A commitTC : TC ⊤ {-# BUILTIN AGDATCM TC #-} {-# BUILTIN AGDATCMRETURN returnTC #-} {-# BUILTIN AGDATCMBIND bindTC #-} {-# BUILTIN AGDATCMUNIFY unify #-} {-# BUILTIN AGDATCMTYPEERROR typeError #-} {-# BUILTIN AGDATCMINFERTYPE inferType #-} {-# BUILTIN AGDATCMCHECKTYPE checkType #-} {-# BUILTIN AGDATCMNORMALISE normalise #-} {-# BUILTIN AGDATCMCATCHERROR catchTC #-} {-# BUILTIN AGDATCMQUOTETERM quoteTC #-} {-# BUILTIN AGDATCMUNQUOTETERM unquoteTC #-} {-# BUILTIN AGDATCMGETCONTEXT getContext #-} {-# BUILTIN AGDATCMEXTENDCONTEXT extendContext #-} {-# BUILTIN AGDATCMINCONTEXT inContext #-} {-# BUILTIN AGDATCMFRESHNAME freshName #-} {-# BUILTIN AGDATCMDECLAREDEF declareDef #-} {-# BUILTIN AGDATCMDEFINEFUN defineFun #-} {-# BUILTIN AGDATCMGETTYPE getType #-} {-# BUILTIN AGDATCMGETDEFINITION getDefinition #-} {-# BUILTIN AGDATCMBLOCKONMETA blockOnMeta #-} {-# BUILTIN AGDATCMCOMMIT commitTC #-} -- The code below used to be rejected, but it was accepted if the code -- above was placed in a separate module. postulate A : Set a : A done : {A : Set} → A helper : Term → Term → TC ⊤ helper hole (meta m args) = bindTC (unify hole (lit (meta m))) λ _ → unify (meta m args) (def (quote a) []) helper _ _ = done macro metaLit : Term → TC ⊤ metaLit hole = bindTC (checkType unknown (def (quote A) [])) (helper hole) m : Meta m = metaLit
30.768683
81
0.590446
57ca7f7109b1d2411138d747f8a3ac59971a7fce
1,691
agda
Agda
agda-stdlib/src/Relation/Binary/Core.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Relation/Binary/Core.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Relation/Binary/Core.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of binary relations ------------------------------------------------------------------------ -- The contents of this module should be accessed via `Relation.Binary`. {-# OPTIONS --without-K --safe #-} module Relation.Binary.Core where open import Function.Base using (_on_) open import Level using (Level; _⊔_; suc) private variable a b c ℓ ℓ₁ ℓ₂ ℓ₃ : Level A : Set a B : Set b C : Set c ------------------------------------------------------------------------ -- Definitions ------------------------------------------------------------------------ -- Heterogeneous binary relations REL : Set a → Set b → (ℓ : Level) → Set (a ⊔ b ⊔ suc ℓ) REL A B ℓ = A → B → Set ℓ -- Homogeneous binary relations Rel : Set a → (ℓ : Level) → Set (a ⊔ suc ℓ) Rel A ℓ = REL A A ℓ ------------------------------------------------------------------------ -- Relationships between relations ------------------------------------------------------------------------ infixr 4 _⇒_ _=[_]⇒_ -- Implication/containment - could also be written _⊆_. _⇒_ : REL A B ℓ₁ → REL A B ℓ₂ → Set _ P ⇒ Q = ∀ {x y} → P x y → Q x y -- Generalised implication - if P ≡ Q it can be read as "f preserves P". _=[_]⇒_ : Rel A ℓ₁ → (A → B) → Rel B ℓ₂ → Set _ P =[ f ]⇒ Q = P ⇒ (Q on f) -- A synonym for _=[_]⇒_. _Preserves_⟶_ : (A → B) → Rel A ℓ₁ → Rel B ℓ₂ → Set _ f Preserves P ⟶ Q = P =[ f ]⇒ Q -- A binary variant of _Preserves_⟶_. _Preserves₂_⟶_⟶_ : (A → B → C) → Rel A ℓ₁ → Rel B ℓ₂ → Rel C ℓ₃ → Set _ _∙_ Preserves₂ P ⟶ Q ⟶ R = ∀ {x y u v} → P x y → Q u v → R (x ∙ u) (y ∙ v)
27.274194
74
0.438794
2e02458b640d4165598dfe281f81441155810500
475
agda
Agda
examples/SizedPoly/Console.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
23
2016-06-19T12:57:55.000Z
2020-10-12T23:15:25.000Z
examples/SizedPoly/Console.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
null
null
null
examples/SizedPoly/Console.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
2
2018-09-01T15:02:37.000Z
2022-03-12T11:41:00.000Z
module SizedPoly.Console where open import SizedPolyIO.Base open import SizedPolyIO.Console hiding (main) open import NativePolyIO open import Level using () renaming (zero to lzero) {-# TERMINATING #-} myProgram : ∀{i} → IOConsole i (Unit {lzero}) myProgram = exec getLine λ line → exec (putStrLn line) λ _ → exec (putStrLn line) λ _ → myProgram main : NativeIO Unit main = translateIOConsole myProgram
22.619048
51
0.648421
22b04c7254bdebee8979ffeef71878248687866c
2,652
agda
Agda
src/STLC/Syntax.agda
mietek/coquand-kovacs
bd626509948fbf8503ec2e31c1852e1ac6edcc79
[ "X11" ]
null
null
null
src/STLC/Syntax.agda
mietek/coquand-kovacs
bd626509948fbf8503ec2e31c1852e1ac6edcc79
[ "X11" ]
null
null
null
src/STLC/Syntax.agda
mietek/coquand-kovacs
bd626509948fbf8503ec2e31c1852e1ac6edcc79
[ "X11" ]
null
null
null
module STLC.Syntax where open import Prelude public -------------------------------------------------------------------------------- -- Types infixr 7 _⇒_ data 𝒯 : Set where ⎵ : 𝒯 _⇒_ : (A B : 𝒯) → 𝒯 -------------------------------------------------------------------------------- -- Contexts data 𝒞 : Set where ∅ : 𝒞 _,_ : (Γ : 𝒞) (A : 𝒯) → 𝒞 length : 𝒞 → Nat length ∅ = zero length (Γ , x) = suc (length Γ) lookup : (Γ : 𝒞) (i : Nat) {{_ : True (length Γ >? i)}} → 𝒯 lookup ∅ i {{()}} lookup (Γ , A) zero {{yes}} = A lookup (Γ , B) (suc i) {{p}} = lookup Γ i -- Variables infix 4 _∋_ data _∋_ : 𝒞 → 𝒯 → Set where zero : ∀ {Γ A} → Γ , A ∋ A suc : ∀ {Γ A B} → (i : Γ ∋ A) → Γ , B ∋ A Nat→∋ : ∀ {Γ} → (i : Nat) {{_ : True (length Γ >? i)}} → Γ ∋ lookup Γ i Nat→∋ {Γ = ∅} i {{()}} Nat→∋ {Γ = Γ , A} zero {{yes}} = zero Nat→∋ {Γ = Γ , B} (suc i) {{p}} = suc (Nat→∋ i) instance num∋ : ∀ {Γ A} → Number (Γ ∋ A) num∋ {Γ} {A} = record { Constraint = λ i → Σ (True (length Γ >? i)) (λ p → lookup Γ i {{p}} ≡ A) ; fromNat = λ { i {{p , refl}} → Nat→∋ i } } -------------------------------------------------------------------------------- -- Terms infix 3 _⊢_ data _⊢_ : 𝒞 → 𝒯 → Set where 𝓋 : ∀ {Γ A} → (i : Γ ∋ A) → Γ ⊢ A ƛ : ∀ {Γ A B} → (M : Γ , A ⊢ B) → Γ ⊢ A ⇒ B _∙_ : ∀ {Γ A B} → (M : Γ ⊢ A ⇒ B) (N : Γ ⊢ A) → Γ ⊢ B instance num⊢ : ∀ {Γ A} → Number (Γ ⊢ A) num⊢ {Γ} {A} = record { Constraint = λ i → Σ (True (length Γ >? i)) (λ p → lookup Γ i {{p}} ≡ A) ; fromNat = λ { i {{p , refl}} → 𝓋 (Nat→∋ i) } } -------------------------------------------------------------------------------- -- Normal forms mutual infix 3 _⊢ⁿᶠ_ data _⊢ⁿᶠ_ : 𝒞 → 𝒯 → Set where ƛ : ∀ {Γ A B} → (M : Γ , A ⊢ⁿᶠ B) → Γ ⊢ⁿᶠ A ⇒ B ne : ∀ {Γ} → (M : Γ ⊢ⁿᵉ ⎵) → Γ ⊢ⁿᶠ ⎵ infix 3 _⊢ⁿᵉ_ data _⊢ⁿᵉ_ : 𝒞 → 𝒯 → Set where 𝓋 : ∀ {Γ A} → (i : Γ ∋ A) → Γ ⊢ⁿᵉ A _∙_ : ∀ {Γ A B} → (M : Γ ⊢ⁿᵉ A ⇒ B) (N : Γ ⊢ⁿᶠ A) → Γ ⊢ⁿᵉ B instance num⊢ⁿᵉ : ∀ {Γ A} → Number (Γ ⊢ⁿᵉ A) num⊢ⁿᵉ {Γ} {A} = record { Constraint = λ i → Σ (True (length Γ >? i)) (λ p → lookup Γ i {{p}} ≡ A) ; fromNat = λ { i {{p , refl}} → 𝓋 (Nat→∋ i) } } --------------------------------------------------------------------------------
21.216
80
0.300905
587d1e5f9a79cfa46e348f9a60922f8a5e819990
22,123
agda
Agda
Cubical/Homotopy/HopfInvariant/HopfMap.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:00.000Z
2022-03-05T00:29:00.000Z
Cubical/Homotopy/HopfInvariant/HopfMap.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Homotopy/HopfInvariant/HopfMap.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} {- This file contains a proof that the generator of Π₃S² has hopf invariant ±1. -} module Cubical.Homotopy.HopfInvariant.HopfMap where open import Cubical.Homotopy.HopfInvariant.Base open import Cubical.Homotopy.Hopf open S¹Hopf open import Cubical.Homotopy.Connected open import Cubical.Homotopy.HSpace open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.Groups.Sn open import Cubical.ZCohomology.RingStructure.CupProduct open import Cubical.ZCohomology.RingStructure.RingLaws open import Cubical.ZCohomology.Gysin open import Cubical.Foundations.Prelude open import Cubical.Foundations.Path open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Pointed open import Cubical.Foundations.Pointed.Homogeneous open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Data.Sum open import Cubical.Data.Sigma open import Cubical.Data.Int hiding (_+'_) open import Cubical.Data.Nat renaming (_+_ to _+ℕ_ ; _·_ to _·ℕ_) open import Cubical.Data.Unit open import Cubical.Algebra.Group renaming (ℤ to ℤGroup ; Unit to UnitGroup) open import Cubical.Algebra.Group.ZAction open import Cubical.Algebra.Group.Exact open import Cubical.HITs.Pushout open import Cubical.HITs.Join open import Cubical.HITs.S1 renaming (_·_ to _*_) open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.HITs.Truncation renaming (rec to trRec ; elim to trElim) open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to sRec2 ; elim to sElim ; elim2 to sElim2 ; map to sMap) open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec) HopfMap : S₊∙ 3 →∙ S₊∙ 2 fst HopfMap x = JoinS¹S¹→TotalHopf (Iso.inv (IsoSphereJoin 1 1) x) .fst snd HopfMap = refl -- We use the Hopf fibration in order to connect it to the Gysin Sequence module hopfS¹ = Hopf S1-AssocHSpace (sphereElim2 _ (λ _ _ → squash) ∣ refl ∣) S¹Hopf = hopfS¹.Hopf E* = hopfS¹.TotalSpacePush²' IsoE*join = hopfS¹.joinIso₂ IsoTotalHopf' = hopfS¹.joinIso₁ CP² = hopfS¹.TotalSpaceHopfPush² fibr = hopfS¹.P TotalHopf' : Type _ TotalHopf' = Σ (S₊ 2) S¹Hopf IsoJoins : (join S¹ (join S¹ S¹)) ≡ join S¹ (S₊ 3) IsoJoins = cong (join S¹) (isoToPath (IsoSphereJoin 1 1)) -- CP² is 1-connected conCP² : (x y : CP²) → ∥ x ≡ y ∥₂ conCP² x y = sRec2 squash₂ (λ p q → ∣ p ∙ sym q ∣₂) (conCP²' x) (conCP²' y) where conCP²' : (x : CP²) → ∥ x ≡ inl tt ∥₂ conCP²' (inl x) = ∣ refl ∣₂ conCP²' (inr x) = sphereElim 1 {A = λ x → ∥ inr x ≡ inl tt ∥₂} (λ _ → squash₂) ∣ sym (push (inl base)) ∣₂ x conCP²' (push a i) = main a i where indLem : ∀ {ℓ} {A : hopfS¹.TotalSpaceHopfPush → Type ℓ} → ((a : _) → isProp (A a)) → A (inl base) → ((a : hopfS¹.TotalSpaceHopfPush) → A a) indLem {A = A} p b = PushoutToProp p (sphereElim 0 (λ _ → p _) b) (sphereElim 0 (λ _ → p _) (subst A (push (base , base)) b)) main : (a : hopfS¹.TotalSpaceHopfPush) → PathP (λ i → ∥ Path CP² (push a i) (inl tt) ∥₂) (conCP²' (inl tt)) (conCP²' (inr (hopfS¹.induced a))) main = indLem (λ _ → isOfHLevelPathP' 1 squash₂ _ _) λ j → ∣ (λ i → push (inl base) (~ i ∧ j)) ∣₂ module GysinS² = Gysin (CP² , inl tt) fibr conCP² 2 idIso refl E'S⁴Iso : Iso GysinS².E' (S₊ 5) E'S⁴Iso = compIso IsoE*join (compIso (Iso→joinIso idIso (IsoSphereJoin 1 1)) (IsoSphereJoin 1 3)) isContrH³E : isContr (coHom 3 (GysinS².E')) isContrH³E = subst isContr (sym (isoToPath (fst (Hⁿ-Sᵐ≅0 2 4 λ p → snotz (sym (cong (predℕ ∘ predℕ) p))))) ∙ cong (coHom 3) (sym (isoToPath E'S⁴Iso))) isContrUnit isContrH⁴E : isContr (coHom 4 (GysinS².E')) isContrH⁴E = subst isContr (sym (isoToPath (fst (Hⁿ-Sᵐ≅0 3 4 λ p → snotz (sym (cong (predℕ ∘ predℕ ∘ predℕ) p))))) ∙ cong (coHom 4) (sym (isoToPath E'S⁴Iso))) isContrUnit -- We will need a bunch of elimination principles joinS¹S¹→Groupoid : ∀ {ℓ} (P : join S¹ S¹ → Type ℓ) → ((x : _) → isGroupoid (P x)) → P (inl base) → (x : _) → P x joinS¹S¹→Groupoid P grp b = transport (λ i → (x : (isoToPath (invIso (IsoSphereJoin 1 1))) i) → P (transp (λ j → isoToPath (invIso (IsoSphereJoin 1 1)) (i ∨ j)) i x)) (sphereElim _ (λ _ → grp _) b) TotalHopf→Gpd : ∀ {ℓ} (P : hopfS¹.TotalSpaceHopfPush → Type ℓ) → ((x : _) → isGroupoid (P x)) → P (inl base) → (x : _) → P x TotalHopf→Gpd P grp b = transport (λ i → (x : sym (isoToPath IsoTotalHopf') i) → P (transp (λ j → isoToPath IsoTotalHopf' (~ i ∧ ~ j)) i x)) (joinS¹S¹→Groupoid _ (λ _ → grp _) b) TotalHopf→Gpd' : ∀ {ℓ} (P : Σ (S₊ 2) hopfS¹.Hopf → Type ℓ) → ((x : _) → isGroupoid (P x)) → P (north , base) → (x : _) → P x TotalHopf→Gpd' P grp b = transport (λ i → (x : ua (_ , hopfS¹.isEquivTotalSpaceHopfPush→TotalSpace) i) → P (transp (λ j → ua (_ , hopfS¹.isEquivTotalSpaceHopfPush→TotalSpace) (i ∨ j)) i x)) (TotalHopf→Gpd _ (λ _ → grp _) b) CP²→Groupoid : ∀ {ℓ} {P : CP² → Type ℓ} → ((x : _) → is2Groupoid (P x)) → (b : P (inl tt)) → (s2 : ((x : _) → P (inr x))) → PathP (λ i → P (push (inl base) i)) b (s2 north) → (x : _) → P x CP²→Groupoid {P = P} grp b s2 pp (inl x) = b CP²→Groupoid {P = P} grp b s2 pp (inr x) = s2 x CP²→Groupoid {P = P} grp b s2 pp (push a i₁) = lem a i₁ where lem : (a : hopfS¹.TotalSpaceHopfPush) → PathP (λ i → P (push a i)) b (s2 _) lem = TotalHopf→Gpd _ (λ _ → isOfHLevelPathP' 3 (grp _) _ _) pp -- The function inducing the iso H²(S²) ≅ H²(CP²) H²S²→H²CP²-raw : (S₊ 2 → coHomK 2) → (CP² → coHomK 2) H²S²→H²CP²-raw f (inl x) = 0ₖ _ H²S²→H²CP²-raw f (inr x) = f x -ₖ f north H²S²→H²CP²-raw f (push a i) = TotalHopf→Gpd (λ x → 0ₖ 2 ≡ f (hopfS¹.TotalSpaceHopfPush→TotalSpace x .fst) -ₖ f north) (λ _ → isOfHLevelTrunc 4 _ _) (sym (rCancelₖ 2 (f north))) a i H²S²→H²CP² : coHomGr 2 (S₊ 2) .fst → coHomGr 2 CP² .fst H²S²→H²CP² = sMap H²S²→H²CP²-raw cancel-H²S²→H²CP² : (f : CP² → coHomK 2) → ∥ H²S²→H²CP²-raw (f ∘ inr) ≡ f ∥ cancel-H²S²→H²CP² f = pRec squash (λ p → pRec squash (λ f → ∣ funExt f ∣) (cancelLem p)) (connLem (f (inl tt))) where connLem : (x : coHomK 2) → ∥ x ≡ 0ₖ 2 ∥ connLem = coHomK-elim _ (λ _ → isOfHLevelSuc 1 squash) ∣ refl ∣ cancelLem : (p : f (inl tt) ≡ 0ₖ 2) → ∥ ((x : CP²) → H²S²→H²CP²-raw (f ∘ inr) x ≡ f x) ∥ cancelLem p = trRec squash (λ pp → ∣ CP²→Groupoid (λ _ → isOfHLevelPath 4 (isOfHLevelTrunc 4) _ _) (sym p) (λ x → (λ i → f (inr x) -ₖ f (push (inl base) (~ i))) ∙∙ (λ i → f (inr x) -ₖ p i) ∙∙ rUnitₖ 2 (f (inr x))) pp ∣) help where help : hLevelTrunc 1 (PathP (λ i₁ → H²S²→H²CP²-raw (f ∘ inr) (push (inl base) i₁) ≡ f (push (inl base) i₁)) (sym p) (((λ i₁ → f (inr north) -ₖ f (push (inl base) (~ i₁))) ∙∙ (λ i₁ → f (inr north) -ₖ p i₁) ∙∙ rUnitₖ 2 (f (inr north))))) help = isConnectedPathP 1 (isConnectedPath 2 (isConnectedKn 1) _ _) _ _ .fst H²CP²≅H²S² : GroupIso (coHomGr 2 CP²) (coHomGr 2 (S₊ 2)) Iso.fun (fst H²CP²≅H²S²) = sMap (_∘ inr) Iso.inv (fst H²CP²≅H²S²) = H²S²→H²CP² Iso.rightInv (fst H²CP²≅H²S²) = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → trRec {B = Iso.fun (fst H²CP²≅H²S²) (Iso.inv (fst H²CP²≅H²S²) ∣ f ∣₂) ≡ ∣ f ∣₂} (isOfHLevelPath 2 squash₂ _ _) (λ p → cong ∣_∣₂ (funExt λ x → cong (λ y → (f x) -ₖ y) p ∙ rUnitₖ 2 (f x))) (Iso.fun (PathIdTruncIso _) (isContr→isProp (isConnectedKn 1) ∣ f north ∣ ∣ 0ₖ 2 ∣)) Iso.leftInv (fst H²CP²≅H²S²) = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → pRec (squash₂ _ _) (cong ∣_∣₂) (cancel-H²S²→H²CP² f) snd H²CP²≅H²S² = makeIsGroupHom (sElim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ f g → refl) H²CP²≅ℤ : GroupIso (coHomGr 2 CP²) ℤGroup H²CP²≅ℤ = compGroupIso H²CP²≅H²S² (Hⁿ-Sⁿ≅ℤ 1) -- ⌣ gives a groupEquiv H²(CP²) ≃ H⁴(CP²) ⌣Equiv : GroupEquiv (coHomGr 2 CP²) (coHomGr 4 CP²) fst (fst ⌣Equiv) = GysinS².⌣-hom 2 .fst snd (fst ⌣Equiv) = isEq⌣ where isEq⌣ : isEquiv (GysinS².⌣-hom 2 .fst) isEq⌣ = SES→isEquiv (GroupPath _ _ .fst (invGroupEquiv (isContr→≃Unit isContrH³E , makeIsGroupHom λ _ _ → refl))) (GroupPath _ _ .fst (invGroupEquiv (isContr→≃Unit isContrH⁴E , makeIsGroupHom λ _ _ → refl))) (GysinS².susp∘ϕ 1) (GysinS².⌣-hom 2) (GysinS².p-hom 4) (GysinS².Ker-⌣e⊂Im-Susp∘ϕ _) (GysinS².Ker-p⊂Im-⌣e _) snd ⌣Equiv = GysinS².⌣-hom 2 .snd -- The generator of H²(CP²) genCP² : coHom 2 CP² genCP² = ∣ CP²→Groupoid (λ _ → isOfHLevelTrunc 4) (0ₖ _) ∣_∣ refl ∣₂ inrInjective : (f g : CP² → coHomK 2) → ∥ f ∘ inr ≡ g ∘ inr ∥ → Path (coHom 2 CP²) ∣ f ∣₂ ∣ g ∣₂ inrInjective f g = pRec (squash₂ _ _) (λ p → pRec (squash₂ _ _) (λ id → trRec (squash₂ _ _) (λ pp → cong ∣_∣₂ (funExt (CP²→Groupoid (λ _ → isOfHLevelPath 4 (isOfHLevelTrunc 4) _ _) id (funExt⁻ p) (compPathR→PathP pp)))) (conn2 (f (inl tt)) (g (inl tt)) id (cong f (push (inl base)) ∙ (funExt⁻ p north) ∙ cong g (sym (push (inl base)))))) (conn (f (inl tt)) (g (inl tt)))) where conn : (x y : coHomK 2) → ∥ x ≡ y ∥ conn = coHomK-elim _ (λ _ → isSetΠ λ _ → isOfHLevelSuc 1 squash) (coHomK-elim _ (λ _ → isOfHLevelSuc 1 squash) ∣ refl ∣) conn2 : (x y : coHomK 2) (p q : x ≡ y) → hLevelTrunc 1 (p ≡ q) conn2 x y p q = Iso.fun (PathIdTruncIso _) (isContr→isProp (isConnectedPath _ (isConnectedKn 1) x y) ∣ p ∣ ∣ q ∣) -- A couple of basic lemma concerning the hSpace structure on S¹ private invLooperLem₁ : (a x : S¹) → (invEq (hopfS¹.μ-eq a) x) * a ≡ (invLooper a * x) * a invLooperLem₁ a x = secEq (hopfS¹.μ-eq a) x ∙∙ cong (_* x) (rCancelS¹ a) ∙∙ AssocHSpace.μ-assoc S1-AssocHSpace a (invLooper a) x ∙ commS¹ _ _ invLooperLem₂ : (a x : S¹) → invEq (hopfS¹.μ-eq a) x ≡ invLooper a * x invLooperLem₂ a x = sym (retEq (hopfS¹.μ-eq a) (invEq (hopfS¹.μ-eq a) x)) ∙∙ cong (invEq (hopfS¹.μ-eq a)) (invLooperLem₁ a x) ∙∙ retEq (hopfS¹.μ-eq a) (invLooper a * x) rotLoop² : (a : S¹) → Path (a ≡ a) (λ i → rotLoop (rotLoop a i) (~ i)) refl rotLoop² = sphereElim 0 (λ _ → isGroupoidS¹ _ _ _ _) λ i j → hcomp (λ {k → λ { (i = i1) → base ; (j = i0) → base ; (j = i1) → base}}) base -- We prove that the generator of CP² given by Gysin is the same one -- as genCP², which is much easier to work with Gysin-e≡genCP² : GysinS².e ≡ genCP² Gysin-e≡genCP² = inrInjective _ _ ∣ funExt (λ x → funExt⁻ (cong fst (main x)) south) ∣ where mainId : (x : Σ (S₊ 2) hopfS¹.Hopf) → Path (hLevelTrunc 4 _) ∣ fst x ∣ ∣ north ∣ mainId = uncurry λ { north → λ y → cong ∣_∣ₕ (merid base ∙ sym (merid y)) ; south → λ y → cong ∣_∣ₕ (sym (merid y)) ; (merid a i) → main a i} where main : (a : S¹) → PathP (λ i → (y : hopfS¹.Hopf (merid a i)) → Path (HubAndSpoke (Susp S¹) 3) ∣ merid a i ∣ ∣ north ∣) (λ y → cong ∣_∣ₕ (merid base ∙ sym (merid y))) λ y → cong ∣_∣ₕ (sym (merid y)) main a = toPathP (funExt λ x → cong (transport (λ i₁ → Path (HubAndSpoke (Susp S¹) 3) ∣ merid a i₁ ∣ ∣ north ∣)) ((λ i → (λ z → cong ∣_∣ₕ (merid base ∙ sym (merid (transport (λ j → uaInvEquiv (hopfS¹.μ-eq a) (~ i) j) x))) z)) ∙ λ i → cong ∣_∣ₕ (merid base ∙ sym (merid (transportRefl (invEq (hopfS¹.μ-eq a) x) i)))) ∙∙ (λ i → transp (λ i₁ → Path (HubAndSpoke (Susp S¹) 3) ∣ merid a (i₁ ∨ i) ∣ ∣ north ∣) i (compPath-filler' (cong ∣_∣ₕ (sym (merid a))) (cong ∣_∣ₕ (merid base ∙ sym (merid (invLooperLem₂ a x i)))) i)) ∙∙ cong ((cong ∣_∣ₕ) (sym (merid a)) ∙_) (cong (cong ∣_∣ₕ) (cong sym (symDistr (merid base) (sym (merid (invLooper a * x))))) ∙ cong sym (SuspS¹-hom (invLooper a) x) ∙ symDistr ((cong ∣_∣ₕ) (merid (invLooper a) ∙ sym (merid base))) ((cong ∣_∣ₕ) (merid x ∙ sym (merid base))) ∙ isCommΩK 2 (sym (λ i₁ → ∣ (merid x ∙ (λ i₂ → merid base (~ i₂))) i₁ ∣)) (sym (λ i₁ → ∣ (merid (invLooper a) ∙ (λ i₂ → merid base (~ i₂))) i₁ ∣)) ∙ cong₂ _∙_ (cong sym (SuspS¹-inv a) ∙ cong-∙ ∣_∣ₕ (merid a) (sym (merid base))) (cong (cong ∣_∣ₕ) (symDistr (merid x) (sym (merid base))) ∙ cong-∙ ∣_∣ₕ (merid base) (sym (merid x)))) ∙∙ (λ j → (λ i₁ → ∣ merid a (~ i₁ ∨ j) ∣) ∙ ((λ i₁ → ∣ merid a (i₁ ∨ j) ∣) ∙ (λ i₁ → ∣ merid base (~ i₁ ∨ j) ∣)) ∙ (λ i₁ → ∣ merid base (i₁ ∨ j) ∣) ∙ (λ i₁ → ∣ merid x (~ i₁) ∣ₕ)) ∙∙ sym (lUnit _) ∙∙ sym (assoc _ _ _) ∙∙ (sym (lUnit _) ∙ sym (lUnit _) ∙ sym (lUnit _))) gen' : (x : S₊ 2) → preThom.Q (CP² , inl tt) fibr (inr x) →∙ coHomK-ptd 2 fst (gen' x) north = ∣ north ∣ fst (gen' x) south = ∣ x ∣ fst (gen' x) (merid a i₁) = mainId (x , a) (~ i₁) snd (gen' x) = refl gen'Id : GysinS².c (inr north) .fst ≡ gen' north .fst gen'Id = cong fst (GysinS².cEq (inr north) ∣ push (inl base) ∣₂) ∙ (funExt lem) where lem : (qb : _) → ∣ (subst (fst ∘ preThom.Q (CP² , inl tt) fibr) (sym (push (inl base))) qb) ∣ ≡ gen' north .fst qb lem north = refl lem south = cong ∣_∣ₕ (sym (merid base)) lem (merid a i) j = hcomp (λ k → λ { (i = i0) → ∣ merid a (~ k ∧ j) ∣ ; (i = i1) → ∣ merid base (~ j) ∣ ; (j = i0) → ∣ transportRefl (merid a i) (~ k) ∣ ; (j = i1) → ∣ compPath-filler (merid base) (sym (merid a)) k (~ i) ∣ₕ}) (hcomp (λ k → λ { (i = i0) → ∣ merid a (j ∨ ~ k) ∣ ; (i = i1) → ∣ merid base (~ j ∨ ~ k) ∣ ; (j = i0) → ∣ merid a (~ k ∨ i) ∣ ; (j = i1) → ∣ merid base (~ i ∨ ~ k) ∣ₕ}) ∣ south ∣) setHelp : (x : S₊ 2) → isSet (preThom.Q (CP² , inl tt) fibr (inr x) →∙ coHomK-ptd 2) setHelp = sphereElim _ (λ _ → isProp→isOfHLevelSuc 1 (isPropIsOfHLevel 2)) (isOfHLevel↑∙' 0 1) main : (x : S₊ 2) → (GysinS².c (inr x) ≡ gen' x) main = sphereElim _ (λ x → isOfHLevelPath 2 (setHelp x) _ _) (→∙Homogeneous≡ (isHomogeneousKn _) gen'Id) isGenerator≃ℤ : ∀ {ℓ} (G : Group ℓ) (g : fst G) → Type ℓ isGenerator≃ℤ G g = Σ[ e ∈ GroupIso G ℤGroup ] abs (Iso.fun (fst e) g) ≡ 1 isGenerator≃ℤ-e : isGenerator≃ℤ (coHomGr 2 CP²) GysinS².e isGenerator≃ℤ-e = subst (isGenerator≃ℤ (coHomGr 2 CP²)) (sym Gysin-e≡genCP²) (H²CP²≅ℤ , refl) -- Alternative definition of the hopfMap HopfMap' : S₊ 3 → S₊ 2 HopfMap' x = hopfS¹.TotalSpaceHopfPush→TotalSpace (Iso.inv IsoTotalHopf' (Iso.inv (IsoSphereJoin 1 1) x)) .fst hopfMap≡HopfMap' : HopfMap ≡ (HopfMap' , refl) hopfMap≡HopfMap' = ΣPathP ((funExt (λ x → cong (λ x → JoinS¹S¹→TotalHopf x .fst) (sym (Iso.rightInv IsoTotalHopf' (Iso.inv (IsoSphereJoin 1 1) x))) ∙ sym (lem (Iso.inv IsoTotalHopf' (Iso.inv (IsoSphereJoin 1 1) x))))) , flipSquare (sym (rUnit refl) ◁ λ _ _ → north)) where lem : (x : _) → hopfS¹.TotalSpaceHopfPush→TotalSpace x .fst ≡ JoinS¹S¹→TotalHopf (Iso.fun IsoTotalHopf' x) .fst lem (inl x) = refl lem (inr x) = refl lem (push (base , snd₁) i) = refl lem (push (loop i₁ , a) i) k = merid (rotLoop² a (~ k) i₁) i CP²' : Type _ CP²' = Pushout {A = S₊ 3} (λ _ → tt) HopfMap' PushoutReplaceBase : ∀ {ℓ ℓ' ℓ''} {A B : Type ℓ} {C : Type ℓ'} {D : Type ℓ''} {f : A → C} {g : A → D} (e : B ≃ A) → Pushout (f ∘ fst e) (g ∘ fst e) ≡ Pushout f g PushoutReplaceBase {f = f} {g = g} = EquivJ (λ _ e → Pushout (f ∘ fst e) (g ∘ fst e) ≡ Pushout f g) refl CP2≡CP²' : CP²' ≡ CP² CP2≡CP²' = PushoutReplaceBase (isoToEquiv (compIso (invIso (IsoSphereJoin 1 1)) (invIso IsoTotalHopf'))) -- packaging everything up: ⌣equiv→pres1 : ∀ {ℓ} {G H : Type ℓ} → (G ≡ H) → (g₁ : coHom 2 G) (h₁ : coHom 2 H) → (fstEq : (Σ[ ϕ ∈ GroupEquiv (coHomGr 2 G) ℤGroup ] abs (fst (fst ϕ) g₁) ≡ 1)) → (sndEq : ((Σ[ ϕ ∈ GroupEquiv (coHomGr 2 H) ℤGroup ] abs (fst (fst ϕ) h₁) ≡ 1))) → isEquiv {A = coHom 2 G} {B = coHom 4 G} (_⌣ g₁) → (3rdEq : GroupEquiv (coHomGr 4 H) ℤGroup) → abs (fst (fst 3rdEq) (h₁ ⌣ h₁)) ≡ 1 ⌣equiv→pres1 {G = G} = J (λ H _ → (g₁ : coHom 2 G) (h₁ : coHom 2 H) → (fstEq : (Σ[ ϕ ∈ GroupEquiv (coHomGr 2 G) ℤGroup ] abs (fst (fst ϕ) g₁) ≡ 1)) → (sndEq : ((Σ[ ϕ ∈ GroupEquiv (coHomGr 2 H) ℤGroup ] abs (fst (fst ϕ) h₁) ≡ 1))) → isEquiv {A = coHom 2 G} {B = coHom 4 G} (_⌣ g₁) → (3rdEq : GroupEquiv (coHomGr 4 H) ℤGroup) → abs (fst (fst 3rdEq) (h₁ ⌣ h₁)) ≡ 1) help where help : (g₁ h₁ : coHom 2 G) → (fstEq : (Σ[ ϕ ∈ GroupEquiv (coHomGr 2 G) ℤGroup ] abs (fst (fst ϕ) g₁) ≡ 1)) → (sndEq : ((Σ[ ϕ ∈ GroupEquiv (coHomGr 2 G) ℤGroup ] abs (fst (fst ϕ) h₁) ≡ 1))) → isEquiv {A = coHom 2 G} {B = coHom 4 G} (_⌣ g₁) → (3rdEq : GroupEquiv (coHomGr 4 G) ℤGroup) → abs (fst (fst 3rdEq) (h₁ ⌣ h₁)) ≡ 1 help g h (ϕ , idg) (ψ , idh) ⌣eq ξ = ⊎→abs _ _ (groupEquivPresGen _ (compGroupEquiv main (compGroupEquiv (invGroupEquiv main) ψ)) h (abs→⊎ _ _ (cong abs (cong (fst (fst ψ)) (retEq (fst main) h)) ∙ idh)) (compGroupEquiv main ξ)) where lem₁ : ((fst (fst ψ) h) ≡ 1) ⊎ (fst (fst ψ) h ≡ -1) → abs (fst (fst ϕ) h) ≡ 1 lem₁ p = ⊎→abs _ _ (groupEquivPresGen _ ψ h p ϕ) lem₂ : ((fst (fst ϕ) h) ≡ 1) ⊎ (fst (fst ϕ) h ≡ -1) → ((fst (fst ϕ) g) ≡ 1) ⊎ (fst (fst ϕ) g ≡ -1) → (h ≡ g) ⊎ (h ≡ (-ₕ g)) lem₂ (inl x) (inl x₁) = inl (sym (retEq (fst ϕ) h) ∙∙ cong (invEq (fst ϕ)) (x ∙ sym x₁) ∙∙ retEq (fst ϕ) g) lem₂ (inl x) (inr x₁) = inr (sym (retEq (fst ϕ) h) ∙∙ cong (invEq (fst ϕ)) x ∙ IsGroupHom.presinv (snd (invGroupEquiv ϕ)) (negsuc zero) ∙∙ cong (-ₕ_) (cong (invEq (fst ϕ)) (sym x₁) ∙ (retEq (fst ϕ) g))) lem₂ (inr x) (inl x₁) = inr (sym (retEq (fst ϕ) h) ∙∙ cong (invEq (fst ϕ)) x ∙∙ (IsGroupHom.presinv (snd (invGroupEquiv ϕ)) 1 ∙ cong (-ₕ_) (cong (invEq (fst ϕ)) (sym x₁) ∙ (retEq (fst ϕ) g)))) lem₂ (inr x) (inr x₁) = inl (sym (retEq (fst ϕ) h) ∙∙ cong (invEq (fst ϕ)) (x ∙ sym x₁) ∙∙ retEq (fst ϕ) g) -ₕeq : ∀ {ℓ} {A : Type ℓ} (n : ℕ) → Iso (coHom n A) (coHom n A) Iso.fun (-ₕeq n) = -ₕ_ Iso.inv (-ₕeq n) = -ₕ_ Iso.rightInv (-ₕeq n) = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt λ x → -ₖ^2 (f x)) Iso.leftInv (-ₕeq n) = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt λ x → -ₖ^2 (f x)) theEq : coHom 2 G ≃ coHom 4 G theEq = compEquiv (_ , ⌣eq) (isoToEquiv (-ₕeq 4)) lem₃ : (h ≡ g) ⊎ (h ≡ (-ₕ g)) → isEquiv {A = coHom 2 G} (_⌣ h) lem₃ (inl x) = subst isEquiv (λ i → _⌣ (x (~ i))) ⌣eq lem₃ (inr x) = subst isEquiv (funExt (λ x → -ₕDistᵣ 2 2 x g) ∙ (λ i → _⌣ (x (~ i)))) (theEq .snd) main : GroupEquiv (coHomGr 2 G) (coHomGr 4 G) fst main = _ , (lem₃ (lem₂ (abs→⊎ _ _ (lem₁ (abs→⊎ _ _ idh))) (abs→⊎ _ _ idg))) snd main = makeIsGroupHom λ g1 g2 → rightDistr-⌣ _ _ g1 g2 h -- The hopf invariant is ±1 for both definitions of the hopf map HopfInvariant-HopfMap' : abs (HopfInvariant zero (HopfMap' , λ _ → HopfMap' (snd (S₊∙ 3)))) ≡ 1 HopfInvariant-HopfMap' = cong abs (cong (Iso.fun (fst (Hopfβ-Iso zero (HopfMap' , refl)))) (transportRefl (⌣-α 0 (HopfMap' , refl)))) ∙ ⌣equiv→pres1 (sym CP2≡CP²') GysinS².e (Hopfα zero (HopfMap' , refl)) (l isGenerator≃ℤ-e) (GroupIso→GroupEquiv (Hopfα-Iso 0 (HopfMap' , refl)) , refl) (snd (fst ⌣Equiv)) (GroupIso→GroupEquiv (Hopfβ-Iso zero (HopfMap' , refl))) where l : Σ[ ϕ ∈ GroupIso (coHomGr 2 CP²) ℤGroup ] (abs (Iso.fun (fst ϕ) GysinS².e) ≡ 1) → Σ[ ϕ ∈ GroupEquiv (coHomGr 2 CP²) ℤGroup ] (abs (fst (fst ϕ) GysinS².e) ≡ 1) l p = (GroupIso→GroupEquiv (fst p)) , (snd p) HopfInvariant-HopfMap : abs (HopfInvariant zero HopfMap) ≡ 1 HopfInvariant-HopfMap = cong abs (cong (HopfInvariant zero) hopfMap≡HopfMap') ∙ HopfInvariant-HopfMap'
39.505357
81
0.527596
2f4128c059f745d163a9439810b4ba6c9fa46e3d
499
agda
Agda
Data/Collection/Core/Properties.agda
banacorn/lambda-calculus
f81b116473582ab7956adc4bf1d7ebf1ae2a213a
[ "MIT" ]
null
null
null
Data/Collection/Core/Properties.agda
banacorn/lambda-calculus
f81b116473582ab7956adc4bf1d7ebf1ae2a213a
[ "MIT" ]
null
null
null
Data/Collection/Core/Properties.agda
banacorn/lambda-calculus
f81b116473582ab7956adc4bf1d7ebf1ae2a213a
[ "MIT" ]
null
null
null
module Data.Collection.Core.Properties where -- open import Data.List public using (List; []; _∷_) -- open import Data.String public using (String; _≟_) -- open import Level using (zero) -- -- open import Function using (flip) -- open import Relation.Nullary -- open import Relation.Nullary.Negation -- open import Relation.Nullary.Decidable renaming (map to mapDec; map′ to mapDec′) -- open import Relation.Unary -- open import Relation.Binary -- open import Relation.Binary.PropositionalEquality
35.642857
83
0.757515
dc3f6dce94cefdfc7062b20d27295672b88e575a
1,929
agda
Agda
src/Logic.agda
acallesalda/setform
4ab3c1a8bfd679cb3ced25500aa8103cb6c4b1f4
[ "MIT" ]
3
2019-08-02T23:13:13.000Z
2022-01-06T20:04:13.000Z
src/Logic.agda
acallesalda/setform
4ab3c1a8bfd679cb3ced25500aa8103cb6c4b1f4
[ "MIT" ]
null
null
null
src/Logic.agda
acallesalda/setform
4ab3c1a8bfd679cb3ced25500aa8103cb6c4b1f4
[ "MIT" ]
null
null
null
----------------------------------- -- First order logic ----------------------------------- module Logic where infix 4 _,_ infix 3 ¬_ infix 1 _∧_ infix 1 _∨_ infix 0 _⇔_ -- Some First order logic I need. -- ∧ data type (conjunction). data _∧_ (A B : Set) : Set where _,_ : A → B → A ∧ B ∧-proj₁ : ∀ {A B} → A ∧ B → A ∧-proj₁ (a , _) = a ∧-proj₂ : ∀ {A B} → A ∧ B → B ∧-proj₂ (_ , b) = b -- ∨ data type (disjunction), with many useful properties. data _∨_ (A B : Set) : Set where inj₁ : A → A ∨ B inj₂ : B → A ∨ B ∨-e : (A B C : Set) → A ∨ B → (A → C) → (B → C) → C ∨-e A B C (inj₁ a) i₁ i₂ = i₁ a ∨-e A B C (inj₂ b) i₁ i₂ = i₂ b ∨-sym : (A B : Set) → A ∨ B → B ∨ A ∨-sym A B (inj₁ a) = inj₂ a ∨-sym A B (inj₂ b) = inj₁ b trivial : (A : Set) → A → A trivial _ A = A ∨-idem : (A : Set) → A ∨ A → A ∨-idem A (inj₁ a) = a ∨-idem A (inj₂ a) = a ∨-prop₁ : {A B C : Set} → (A ∨ B → C) → A → C ∨-prop₁ i a = i (inj₁ a) ∨-prop₂ : {A B C : Set} → (A ∨ B → C) → B → C ∨-prop₂ i b = i (inj₂ b) ∨-prop₃ : {A B C : Set} → A ∨ B → (A → C) → C ∨ B ∨-prop₃ (inj₁ x) i = inj₁ (i x) ∨-prop₃ (inj₂ x) i = inj₂ x ∨-prop₄ : {A B C : Set} → A ∨ B → (B → C) → A ∨ C ∨-prop₄ (inj₁ x) x₁ = inj₁ x ∨-prop₄ (inj₂ x) x₁ = inj₂ (x₁ x) ∨-prop₅ : {A B C D : Set} → A ∨ B → (A → C) → (B → D) → C ∨ D ∨-prop₅ (inj₁ a) a→c b→d = inj₁ (a→c a) ∨-prop₅ (inj₂ b) a→c b→d = inj₂ (b→d b) ∨-∧ : {A B : Set} → (A ∧ B) ∨ (B ∧ A) → A ∧ B ∨-∧ (inj₁ (a , b)) = a , b ∨-∧ (inj₂ (b , a)) = a , b -- Bi-implication. _⇔_ : Set → Set → Set A ⇔ B = (A → B) ∧ (B → A) ⇔-p : (A B C : Set) → A ⇔ (B ∧ C) → (C → B) → A ⇔ C ⇔-p A B C (h₁ , h₂) h₃ = prf₁ , prf₂ where prf₁ : A → C prf₁ A = ∧-proj₂ (h₁ A) prf₂ : C → A prf₂ C = h₂ ((h₃ C) , C) -- Empty data type. data ⊥ : Set where ⊥-elim : {A : Set} → ⊥ → A ⊥-elim () data ⊤ : Set where <> : ⊤ -- Negation ¬_ : Set → Set ¬ A = A → ⊥ cont : (A : Set) → A ∧ ¬ A → ⊥ cont _ (x , ¬x) = ¬x x
19.29
61
0.43183
13671053f87694bb9e1eacd14669f651cc2492aa
2,814
agda
Agda
Categories/FunctorCategory.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
98
2015-04-15T14:57:33.000Z
2022-03-08T05:20:36.000Z
Categories/FunctorCategory.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
19
2015-05-23T06:47:10.000Z
2019-08-09T16:31:40.000Z
Categories/FunctorCategory.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
23
2015-02-05T13:03:09.000Z
2021-11-11T13:50:56.000Z
{-# OPTIONS --universe-polymorphism #-} module Categories.FunctorCategory where open import Data.Product open import Categories.Category import Categories.Functor as Cat open import Categories.Functor hiding (equiv; id; _∘_; _≡_) open import Categories.NaturalTransformation open import Categories.Product open import Categories.Square Functors : ∀ {o ℓ e} {o′ ℓ′ e′} → Category o ℓ e → Category o′ ℓ′ e′ → Category _ _ _ Functors C D = record { Obj = Functor C D ; _⇒_ = NaturalTransformation ; _≡_ = _≡_ ; _∘_ = _∘₁_ ; id = id ; assoc = λ {_} {_} {_} {_} {f} {g} {h} → assoc₁ {X = f} {g} {h} ; identityˡ = λ {_} {_} {f} → identity₁ˡ {X = f} ; identityʳ = λ {_} {_} {f} → identity₁ʳ {X = f} ; equiv = λ {F} {G} → equiv {F = F} {G = G} ; ∘-resp-≡ = λ {_} {_} {_} {f} {h} {g} {i} → ∘₁-resp-≡ {f = f} {h} {g} {i} } eval : ∀ {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e}{D : Category o′ ℓ′ e′} → Functor (Product (Functors C D) C) D eval {C = C} {D = D} = record { F₀ = λ x → let F , c = x in F₀ F c; F₁ = λ { {F , c₁} {G , c₂} (ε , f) → F₁ G f D.∘ η ε _}; identity = λ { {F , c} → begin F₁ F C.id D.∘ D.id ↓⟨ D.identityʳ ⟩ F₁ F C.id ↓⟨ identity F ⟩ D.id ∎}; homomorphism = λ { {F , c₁} {G , c₂} {H , c₃} {ε₁ , f₁} {ε₂ , f₂} → begin F₁ H (f₂ C.∘ f₁) D.∘ η ε₂ c₁ D.∘ η ε₁ c₁ ↑⟨ D.assoc ⟩ (F₁ H (f₂ C.∘ f₁) D.∘ η ε₂ c₁) D.∘ η ε₁ c₁ ↓⟨ D.∘-resp-≡ˡ (begin F₁ H (C [ f₂ ∘ f₁ ]) D.∘ η ε₂ c₁ ↓⟨ D.∘-resp-≡ˡ (homomorphism H) ⟩ (F₁ H f₂ D.∘ F₁ H f₁) D.∘ η ε₂ c₁ ↓⟨ D.assoc ⟩ F₁ H f₂ D.∘ F₁ H f₁ D.∘ η ε₂ c₁ ↑⟨ D.∘-resp-≡ʳ (commute ε₂ f₁) ⟩ F₁ H f₂ D.∘ η ε₂ c₂ D.∘ F₁ G f₁ ↑⟨ D.assoc ⟩ (F₁ H f₂ D.∘ η ε₂ c₂) D.∘ F₁ G f₁ ∎) ⟩ ((F₁ H f₂ D.∘ η ε₂ c₂) D.∘ F₁ G f₁) D.∘ η ε₁ c₁ ↓⟨ D.assoc ⟩ (F₁ H f₂ D.∘ η ε₂ c₂) D.∘ F₁ G f₁ D.∘ η ε₁ c₁ ∎ }; F-resp-≡ = λ { {F , c₁} {G , c₂} {ε₁ , f₁} {ε₂ , f₂} (ε₁≡ε₂ , f₁≡f₂) → D.∘-resp-≡ (F-resp-≡ G f₁≡f₂) ε₁≡ε₂} } where module C = Category C module D = Category D open Functor open NaturalTransformation open D.HomReasoning Cat[-∘_] : ∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ o₃ ℓ₃ e₃} {A : Category o₁ ℓ₁ e₁} {B : Category o₂ ℓ₂ e₂} {C : Category o₃ ℓ₃ e₃} -> Functor A B -> Functor (Functors B C) (Functors A C) Cat[-∘_] {C = C} r = record { F₀ = λ X → X Cat.∘ r ; F₁ = λ η → η ∘ʳ r ; identity = C.Equiv.refl ; homomorphism = C.Equiv.refl ; F-resp-≡ = λ x → x } where module C = Category C
39.633803
110
0.453447
41b9608e6073594dcecf83d333dbdf60618583f4
1,052
agda
Agda
theorems/homotopy/RelativelyConstantToSetExtendsViaSurjection.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/homotopy/RelativelyConstantToSetExtendsViaSurjection.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/homotopy/RelativelyConstantToSetExtendsViaSurjection.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT import homotopy.ConstantToSetExtendsToProp as ConstExt module homotopy.RelativelyConstantToSetExtendsViaSurjection {i j k} {A : Type i} {B : Type j} {C : B → Type k} {{_ : ∀ {b} → is-set (C b)}} (f : A → B) (f-is-surj : is-surj f) (g : (a : A) → C (f a)) (g-is-const : ∀ a₁ a₂ → (p : f a₁ == f a₂) → g a₁ == g a₂ [ C ↓ p ]) where {- (b : A) ----> [ hfiber f b ] ----?----> C ? ^ | hfiber f b -} private lemma : ∀ b → hfiber f b → C b lemma b (a , fa=b) = transport C fa=b (g a) lemma-const : ∀ b → (h₁ h₂ : hfiber f b) → lemma b h₁ == lemma b h₂ lemma-const ._ (a₁ , fa₁=fa₂) (a₂ , idp) = to-transp (g-is-const a₁ a₂ fa₁=fa₂) module CE (b : B) = ConstExt {A = hfiber f b} {B = C b} (lemma b) (lemma-const b) ext : Π B C ext b = CE.ext b (f-is-surj b) β : (a : A) → ext (f a) == g a β a = ap (CE.ext (f a)) (prop-has-all-paths (f-is-surj (f a)) [ a , idp ])
26.974359
71
0.481939
136980fe558d0dc65061016063fc98aee879ece2
7,066
agda
Agda
agda-stdlib/src/Relation/Binary/Bundles.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Relation/Binary/Bundles.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Relation/Binary/Bundles.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Bundles for homogeneous binary relations ------------------------------------------------------------------------ -- The contents of this module should be accessed via `Relation.Binary`. {-# OPTIONS --without-K --safe #-} module Relation.Binary.Bundles where open import Level open import Relation.Nullary using (¬_) open import Relation.Binary.Core open import Relation.Binary.Definitions open import Relation.Binary.Structures ------------------------------------------------------------------------ -- Setoids ------------------------------------------------------------------------ record PartialSetoid a ℓ : Set (suc (a ⊔ ℓ)) where field Carrier : Set a _≈_ : Rel Carrier ℓ isPartialEquivalence : IsPartialEquivalence _≈_ open IsPartialEquivalence isPartialEquivalence public _≉_ : Rel Carrier _ x ≉ y = ¬ (x ≈ y) record Setoid c ℓ : Set (suc (c ⊔ ℓ)) where infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ isEquivalence : IsEquivalence _≈_ open IsEquivalence isEquivalence public partialSetoid : PartialSetoid c ℓ partialSetoid = record { isPartialEquivalence = isPartialEquivalence } open PartialSetoid partialSetoid public using (_≉_) record DecSetoid c ℓ : Set (suc (c ⊔ ℓ)) where infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ isDecEquivalence : IsDecEquivalence _≈_ open IsDecEquivalence isDecEquivalence public setoid : Setoid c ℓ setoid = record { isEquivalence = isEquivalence } open Setoid setoid public using (partialSetoid; _≉_) ------------------------------------------------------------------------ -- Preorders ------------------------------------------------------------------------ record Preorder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _∼_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ -- The underlying equality. _∼_ : Rel Carrier ℓ₂ -- The relation. isPreorder : IsPreorder _≈_ _∼_ open IsPreorder isPreorder public hiding (module Eq) module Eq where setoid : Setoid c ℓ₁ setoid = record { isEquivalence = isEquivalence } open Setoid setoid public ------------------------------------------------------------------------ -- Partial orders ------------------------------------------------------------------------ record Poset c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _≤_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _≤_ : Rel Carrier ℓ₂ isPartialOrder : IsPartialOrder _≈_ _≤_ open IsPartialOrder isPartialOrder public hiding (module Eq) preorder : Preorder c ℓ₁ ℓ₂ preorder = record { isPreorder = isPreorder } open Preorder preorder public using (module Eq) record DecPoset c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _≤_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _≤_ : Rel Carrier ℓ₂ isDecPartialOrder : IsDecPartialOrder _≈_ _≤_ private module DPO = IsDecPartialOrder isDecPartialOrder open DPO public hiding (module Eq) poset : Poset c ℓ₁ ℓ₂ poset = record { isPartialOrder = isPartialOrder } open Poset poset public using (preorder) module Eq where decSetoid : DecSetoid c ℓ₁ decSetoid = record { isDecEquivalence = DPO.Eq.isDecEquivalence } open DecSetoid decSetoid public record StrictPartialOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _<_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _<_ : Rel Carrier ℓ₂ isStrictPartialOrder : IsStrictPartialOrder _≈_ _<_ open IsStrictPartialOrder isStrictPartialOrder public hiding (module Eq) module Eq where setoid : Setoid c ℓ₁ setoid = record { isEquivalence = isEquivalence } open Setoid setoid public record DecStrictPartialOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _<_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _<_ : Rel Carrier ℓ₂ isDecStrictPartialOrder : IsDecStrictPartialOrder _≈_ _<_ private module DSPO = IsDecStrictPartialOrder isDecStrictPartialOrder open DSPO public hiding (module Eq) strictPartialOrder : StrictPartialOrder c ℓ₁ ℓ₂ strictPartialOrder = record { isStrictPartialOrder = isStrictPartialOrder } module Eq where decSetoid : DecSetoid c ℓ₁ decSetoid = record { isDecEquivalence = DSPO.Eq.isDecEquivalence } open DecSetoid decSetoid public ------------------------------------------------------------------------ -- Total orders ------------------------------------------------------------------------ record TotalOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _≤_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _≤_ : Rel Carrier ℓ₂ isTotalOrder : IsTotalOrder _≈_ _≤_ open IsTotalOrder isTotalOrder public hiding (module Eq) poset : Poset c ℓ₁ ℓ₂ poset = record { isPartialOrder = isPartialOrder } open Poset poset public using (module Eq; preorder) record DecTotalOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _≤_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _≤_ : Rel Carrier ℓ₂ isDecTotalOrder : IsDecTotalOrder _≈_ _≤_ private module DTO = IsDecTotalOrder isDecTotalOrder open DTO public hiding (module Eq) totalOrder : TotalOrder c ℓ₁ ℓ₂ totalOrder = record { isTotalOrder = isTotalOrder } open TotalOrder totalOrder public using (poset; preorder) decPoset : DecPoset c ℓ₁ ℓ₂ decPoset = record { isDecPartialOrder = isDecPartialOrder } open DecPoset decPoset public using (module Eq) -- Note that these orders are decidable. The current implementation -- of `Trichotomous` subsumes irreflexivity and asymmetry. Any reasonable -- definition capturing these three properties implies decidability -- as `Trichotomous` necessarily separates out the equality case. record StrictTotalOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _<_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _<_ : Rel Carrier ℓ₂ isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_ open IsStrictTotalOrder isStrictTotalOrder public hiding (module Eq) strictPartialOrder : StrictPartialOrder c ℓ₁ ℓ₂ strictPartialOrder = record { isStrictPartialOrder = isStrictPartialOrder } open StrictPartialOrder strictPartialOrder public using (module Eq) decSetoid : DecSetoid c ℓ₁ decSetoid = record { isDecEquivalence = isDecEquivalence } {-# WARNING_ON_USAGE decSetoid "Warning: decSetoid was deprecated in v1.3. Please use Eq.decSetoid instead." #-}
25.694545
73
0.586329
1a24c51dccfa2425389ea2040d1f65544564f6fd
683
agda
Agda
test/Succeed/Issue1595.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue1595.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue1595.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
-- Andreas, 2015-06-28, issue reported by Nisse {-# OPTIONS -vtc.pos.occ:20 #-} -- KEEP!, this triggered the __IMPOSSIBLE__ -- {-# OPTIONS -vtc.pos.occ:70 -v tc.rec:80 --show-implicit #-} data ⊥ : Set where F : ⊥ → Set F () record R (i : ⊥) : Set₁ where constructor c field P Q : F i → Set -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/Syntax/Translation/InternalToAbstract.hs:874 -- The error is triggered by the use of prettyTCM in -- Agda.TypeChecking.Positivity.getOccurrences. -- tel = (_ : Prop) (_ : Prop) -- WRONG -- perm = id -- ps = (c x x : R @0) _ -- body = λ x _y _z -> x _z -- type = F @1 → Set
24.392857
84
0.635432
59ae61b3338e1a5cac3db115c61d21d04ea990e7
34
agda
Agda
test/Fail/Imports/WronglyNamedModule.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Imports/WronglyNamedModule.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Imports/WronglyNamedModule.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Imports.TheWrongName where
17
33
0.882353
dc86af51e544944ab4d276babe9df100f95d64ae
9,725
agda
Agda
Cubical/Algebra/IntegerMatrix/Elementaries.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Algebra/IntegerMatrix/Elementaries.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Algebra/IntegerMatrix/Elementaries.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
{- Elementary transformation specific to coefficient ℤ -} {-# OPTIONS --safe #-} module Cubical.Algebra.IntegerMatrix.Elementaries where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Data.Nat hiding (_+_ ; _·_) open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Algebra.RingSolver.Reflection open import Cubical.Algebra.Ring.BigOps open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Instances.Int renaming (ℤ to Ringℤ) open import Cubical.Algebra.Matrix open import Cubical.Algebra.Matrix.CommRingCoefficient open import Cubical.Algebra.Matrix.RowTransformation private variable ℓ : Level m n : ℕ -- It seems there are bugs when applying ring solver to integers. -- The following is a work-around. private module Helper {ℓ : Level}(𝓡 : CommRing ℓ) where open CommRingStr (𝓡 .snd) helper1 : (a b x y g : 𝓡 .fst) → (a · x - b · - y) · g ≡ a · (x · g) + b · (y · g) helper1 = solve 𝓡 helper2 : (a b : 𝓡 .fst) → a ≡ 1r · a + 0r · b helper2 = solve 𝓡 open Helper Ringℤ module ElemTransformationℤ where open import Cubical.Foundations.Powerset open import Cubical.Data.Int using (·rCancel) open import Cubical.Data.Int.Divisibility private ℤ = Ringℤ .fst open CommRingStr (Ringℤ .snd) open Sum (CommRing→Ring Ringℤ) open Coefficient Ringℤ open LinearTransformation Ringℤ open Bézout open SimRel open Sim open isLinear open isLinear2×2 -- The Bézout step to simplify one row module _ (x y : ℤ)(b : Bézout x y) where bézout2Mat : Mat 2 2 bézout2Mat zero zero = b .coef₁ bézout2Mat zero one = b .coef₂ bézout2Mat one zero = - (div₂ b) bézout2Mat one one = div₁ b module _ (p : ¬ x ≡ 0) where open Units Ringℤ private detEq : det2×2 bézout2Mat · b .gcd ≡ b .gcd detEq = helper1 (b .coef₁) (b .coef₂) _ _ _ ∙ (λ t → b .coef₁ · divideEq (b .isCD .fst) t + b .coef₂ · divideEq (b .isCD .snd) t) ∙ b .identity det≡1 : det2×2 bézout2Mat ≡ 1 det≡1 = ·rCancel _ _ _ (detEq ∙ sym (·Lid _)) (¬m≡0→¬gcd≡0 b p) isInvBézout2Mat : isInv bézout2Mat isInvBézout2Mat = isInvMat2x2 bézout2Mat (subst (λ r → r ∈ Rˣ) (sym det≡1) RˣContainsOne) module _ (M : Mat 2 (suc n)) where private b = bézout (M zero zero) (M one zero) bézout2Rows : Mat 2 (suc n) bézout2Rows zero i = b .coef₁ · M zero i + b .coef₂ · M one i bézout2Rows one i = - (div₂ b) · M zero i + div₁ b · M one i bézout2Rows-vanish : bézout2Rows one zero ≡ 0 bézout2Rows-vanish = div·- b bézout2Rows-div₁ : (n : ℤ) → M zero zero ∣ n → bézout2Rows zero zero ∣ n bézout2Rows-div₁ n p = subst (λ a → a ∣ n) (sym (b .identity)) (∣-trans (b .isCD .fst) p) bézout2Rows-div₂ : (n : ℤ) → M one zero ∣ n → bézout2Rows zero zero ∣ n bézout2Rows-div₂ n p = subst (λ a → a ∣ n) (sym (b .identity)) (∣-trans (b .isCD .snd) p) bézout2Rows-nonZero : ¬ M zero zero ≡ 0 → ¬ bézout2Rows zero zero ≡ 0 bézout2Rows-nonZero p r = p (sym (∣-zeroˡ (subst (λ a → a ∣ M zero zero) r (bézout2Rows-div₁ (M zero zero) (∣-refl refl))))) bézout2Rows-inv : ¬ M zero zero ≡ 0 → M zero zero ∣ M one zero → M zero ≡ bézout2Rows zero bézout2Rows-inv p q t j = let (c₁≡1 , c₂≡0) = bézout∣ _ _ p q in (helper2 (M zero j) (M one j) ∙ (λ t → c₁≡1 (~ t) · M zero j + c₂≡0 (~ t) · M one j)) t bézout2Rows-commonDiv : (a : ℤ) → ((j : Fin (suc n)) → a ∣ M zero j) → ((j : Fin (suc n)) → a ∣ M one j) → (i : Fin 2)(j : Fin (suc n)) → a ∣ bézout2Rows i j bézout2Rows-commonDiv a p q zero j = ∣-+ (∣-right· {n = b .coef₁} (p j)) (∣-right· {n = b .coef₂} (q j)) bézout2Rows-commonDiv a p q one j = ∣-+ (∣-right· {n = - (div₂ b)} (p j)) (∣-right· {n = div₁ b} (q j)) module _ (M : Mat (suc m) (suc n)) where bézoutRows : Mat (suc m) (suc n) bézoutRows = transRows bézout2Rows M bézoutRows-vanish : (i : Fin m) → bézoutRows (suc i) zero ≡ 0 bézoutRows-vanish = transRowsIndP' _ (λ v → v zero ≡ 0) bézout2Rows-vanish M bézoutRows-div₁-helper : (n : ℤ) → M zero zero ∣ n → bézoutRows zero zero ∣ n bézoutRows-div₁-helper n = transRowsIndP _ (λ v → v zero ∣ n) (λ M → bézout2Rows-div₁ M n) M bézoutRows-div₂-helper : (n : ℤ) → (i : Fin m) → M (suc i) zero ∣ n → bézoutRows zero zero ∣ n bézoutRows-div₂-helper n = transRowsIndPQ' _ (λ v → v zero ∣ n) (λ v → v zero ∣ n) (λ M → bézout2Rows-div₁ M n) (λ M → bézout2Rows-div₂ M n) M bézoutRows-div : (i : Fin (suc m)) → bézoutRows zero zero ∣ M i zero bézoutRows-div zero = bézoutRows-div₁-helper _ (∣-refl refl) bézoutRows-div (suc i) = bézoutRows-div₂-helper _ i (∣-refl refl) bézoutRows-nonZero : ¬ M zero zero ≡ 0 → ¬ bézoutRows zero zero ≡ 0 bézoutRows-nonZero p r = p (sym (∣-zeroˡ (subst (λ a → a ∣ M zero zero) r (bézoutRows-div zero)))) bézoutRows-inv : ¬ M zero zero ≡ 0 → ((i : Fin m) → M zero zero ∣ M (suc i) zero) → M zero ≡ bézoutRows zero bézoutRows-inv = transRowsIndPRelInv _ (λ V → ¬ V zero ≡ 0) (λ U V → U zero ∣ V zero) bézout2Rows-inv M bézoutRows-commonDiv₀ : (a : ℤ) → ((j : Fin (suc n)) → a ∣ M zero j) → ((i : Fin m)(j : Fin (suc n)) → a ∣ M (suc i) j) → (j : Fin (suc n)) → a ∣ bézoutRows zero j bézoutRows-commonDiv₀ a = transRowsIndP₀ _ (λ V → ((j : Fin (suc n)) → a ∣ V j)) (λ N s s' → bézout2Rows-commonDiv N a s s' zero) (λ N s s' → bézout2Rows-commonDiv N a s s' one) _ bézoutRows-commonDiv₁ : (a : ℤ) → ((j : Fin (suc n)) → a ∣ M zero j) → ((i : Fin m)(j : Fin (suc n)) → a ∣ M (suc i) j) → (i : Fin m)(j : Fin (suc n)) → a ∣ bézoutRows (suc i) j bézoutRows-commonDiv₁ a = transRowsIndP₁ _ (λ V → ((j : Fin (suc n)) → a ∣ V j)) (λ N s s' → bézout2Rows-commonDiv N a s s' zero) (λ N s s' → bézout2Rows-commonDiv N a s s' one) _ bézoutRows-commonDiv : ((i : Fin (suc m))(j : Fin (suc n)) → M zero zero ∣ M i j) → (i : Fin (suc m))(j : Fin (suc n)) → M zero zero ∣ bézoutRows i j bézoutRows-commonDiv p zero = bézoutRows-commonDiv₀ _ (p zero) (p ∘ suc) bézoutRows-commonDiv p (suc i) = bézoutRows-commonDiv₁ _ (p zero) (p ∘ suc) i bézoutRows-commonDivInv : ¬ M zero zero ≡ 0 → ((i : Fin (suc m))(j : Fin (suc n)) → M zero zero ∣ M i j) → (i : Fin (suc m))(j : Fin (suc n)) → bézoutRows zero zero ∣ bézoutRows i j bézoutRows-commonDivInv h p i j = let inv = (λ t → bézoutRows-inv h (λ i → p (suc i) zero) t zero) in subst (_∣ bézoutRows i j) inv (bézoutRows-commonDiv p i j) isLinear2Bézout2Rows : isLinear2×2 (bézout2Rows {n = n}) isLinear2Bézout2Rows .transMat M = bézout2Mat _ _ (bézout (M zero zero) (M one zero)) isLinear2Bézout2Rows .transEq M t zero j = mul2 (isLinear2Bézout2Rows .transMat M) M zero j (~ t) isLinear2Bézout2Rows .transEq M t one j = mul2 (isLinear2Bézout2Rows .transMat M) M one j (~ t) isLinearBézoutRows : isLinear (bézoutRows {m = m} {n = n}) isLinearBézoutRows = isLinearTransRows _ isLinear2Bézout2Rows _ isInv2Bézout2Rows : (M : Mat 2 (suc n))(p : ¬ M zero zero ≡ 0) → isInv (isLinear2Bézout2Rows .transMat M) isInv2Bézout2Rows _ p = isInvBézout2Mat _ _ _ p isInvBézout2Rows : (M : Mat (suc m) (suc n))(p : ¬ M zero zero ≡ 0) → isInv (isLinearBézoutRows .transMat M) isInvBézout2Rows = isInvTransRowsInd _ _ (λ V → ¬ V zero ≡ 0) bézout2Rows-nonZero isInv2Bézout2Rows -- Using Bézout identity to eliminate the first column/row record RowsImproved (M : Mat (suc m) (suc n)) : Type where field sim : Sim M div : (i : Fin (suc m)) → sim .result zero zero ∣ M i zero vanish : (i : Fin m) → sim .result (suc i) zero ≡ 0 nonZero : ¬ sim .result zero zero ≡ 0 record ColsImproved (M : Mat (suc m) (suc n)) : Type where field sim : Sim M div : (j : Fin (suc n)) → sim .result zero zero ∣ M zero j vanish : (j : Fin n) → sim .result zero (suc j) ≡ 0 nonZero : ¬ sim .result zero zero ≡ 0 open RowsImproved open ColsImproved improveRows : (M : Mat (suc m) (suc n))(p : ¬ M zero zero ≡ 0) → RowsImproved M improveRows M _ .sim .result = bézoutRows M improveRows M _ .sim .simrel .transMatL = isLinearBézoutRows .transMat M improveRows _ _ .sim .simrel .transMatR = 𝟙 improveRows _ _ .sim .simrel .transEq = isLinearBézoutRows .transEq _ ∙ sym (⋆rUnit _) improveRows _ p .sim .simrel .isInvTransL = isInvBézout2Rows _ p improveRows _ p .sim .simrel .isInvTransR = isInv𝟙 improveRows _ _ .div = bézoutRows-div _ improveRows _ _ .vanish = bézoutRows-vanish _ improveRows M p .nonZero = bézoutRows-nonZero M p improveCols : (M : Mat (suc m) (suc n))(p : ¬ M zero zero ≡ 0) → ColsImproved M improveCols M _ .sim .result = (bézoutRows (M ᵗ))ᵗ improveCols _ _ .sim .simrel .transMatL = 𝟙 improveCols M _ .sim .simrel .transMatR = (isLinearBézoutRows .transMat (M ᵗ))ᵗ improveCols M _ .sim .simrel .transEq = let P = isLinearBézoutRows .transMat (M ᵗ) in (λ t → (isLinearBézoutRows .transEq (M ᵗ) t)ᵗ) ∙ compᵗ P (M ᵗ) ∙ (λ t → idemᵗ M t ⋆ P ᵗ) ∙ (λ t → ⋆lUnit M (~ t) ⋆ P ᵗ) improveCols _ _ .sim .simrel .isInvTransL = isInv𝟙 improveCols M p .sim .simrel .isInvTransR = isInvᵗ {M = isLinearBézoutRows .transMat (M ᵗ)} (isInvBézout2Rows (M ᵗ) p) improveCols _ _ .div = bézoutRows-div _ improveCols _ _ .vanish = bézoutRows-vanish _ improveCols M p .nonZero = bézoutRows-nonZero (M ᵗ) p
38.438735
112
0.613573
138593e91b1626bdc30726bbca96d1622785ac40
916
agda
Agda
src/fot/PA/Inductive/README.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/PA/Inductive/README.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/PA/Inductive/README.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- First-order Peano arithmetic ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module PA.Inductive.README where -- Formalization of first-order Peano arithmetic using Agda data types -- and primitive recursive functions for addition and multiplication. ------------------------------------------------------------------------------ -- Inductive definitions open import PA.Inductive.Base -- Some properties open import PA.Inductive.PropertiesATP open import PA.Inductive.PropertiesI open import PA.Inductive.PropertiesByInduction open import PA.Inductive.PropertiesByInductionATP open import PA.Inductive.PropertiesByInductionI
35.230769
78
0.550218
2e07aa388942b496fb4f19d56850f4e3228f1c7c
260
agda
Agda
src/FRP/LTL/RSet/Until.agda
agda/agda-frp-ltl
e88107d7d192cbfefd0a94505e6a5793afe1a7a5
[ "MIT" ]
21
2015-07-02T20:25:05.000Z
2020-06-15T02:51:13.000Z
src/FRP/LTL/RSet/Until.agda
agda/agda-frp-ltl
e88107d7d192cbfefd0a94505e6a5793afe1a7a5
[ "MIT" ]
2
2015-03-01T07:01:31.000Z
2015-03-02T15:23:53.000Z
src/FRP/LTL/RSet/Until.agda
agda/agda-frp-ltl
e88107d7d192cbfefd0a94505e6a5793afe1a7a5
[ "MIT" ]
3
2015-03-01T07:33:00.000Z
2022-03-12T11:39:04.000Z
open import Data.Product using ( ∃ ; _×_ ) open import FRP.LTL.RSet.Core using ( RSet ; _[_,_⟩ ) open import FRP.LTL.Time using ( _≤_ ) module FRP.LTL.RSet.Until where infixr 2 _U_ _U_ : RSet → RSet → RSet (A U B) t = ∃ λ u → (t ≤ u) × (A [ t , u ⟩) × B u
21.666667
53
0.596154
c7a224a3104071541ef4af5007e61e869bf26946
2,673
agda
Agda
vendor/stdlib/src/Data/Sets.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Data/Sets.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Data/Sets.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- Finite sets (currently only some type signatures) ------------------------------------------------------------------------ module Data.Sets where open import Relation.Nullary open import Relation.Binary open import Relation.Binary.OrderMorphism open import Data.Function open import Data.List as L using (List) open import Data.Product using (∃; _×_) module Sets₁ (dto : DecTotalOrder) where open DecTotalOrder dto public using (_≈_) open DecTotalOrder dto hiding (_≈_) infixr 6 _∪_ infix 5 _∈?_ infix 4 _∈_ _|≈|_ abstract postulate decSetoid : DecSetoid <Set> : Set <Set> = DecSetoid.carrier decSetoid _|≈|_ : Rel <Set> _|≈|_ = DecSetoid._≈_ decSetoid abstract postulate empty : <Set> insert : carrier → <Set> → <Set> _∪_ : <Set> → <Set> → <Set> _∈_ : carrier → <Set> → Set _∈?_ : (x : carrier) → (s : <Set>) → Dec (x ∈ s) toList : <Set> → List carrier postulate prop-∈-insert₁ : ∀ {x y s} → x ≈ y → x ∈ insert y s prop-∈-insert₂ : ∀ {x y s} → x ∈ s → x ∈ insert y s prop-∈-insert₃ : ∀ {x y s} → ¬ x ≈ y → x ∈ insert y s → x ∈ s prop-∈-empty : ∀ {x} → ¬ x ∈ empty prop-∈-∪ : ∀ {x s₁ s₂} → x ∈ s₁ → x ∈ s₁ ∪ s₂ prop-∪₁ : ∀ {s₁ s₂} → s₁ ∪ s₂ |≈| s₂ ∪ s₁ prop-∪₂ : ∀ {s₁ s₂ s₃} → s₁ ∪ (s₂ ∪ s₃) |≈| (s₁ ∪ s₂) ∪ s₃ prop-∈-|≈| : ∀ {x} → (λ s → x ∈ s) Respects _|≈|_ prop-∈-≈ : ∀ {s} → (λ x → x ∈ s) Respects _≈_ -- TODO: Postulates for toList. singleton : carrier → <Set> singleton x = insert x empty ⋃_ : List <Set> → <Set> ⋃_ = L.foldr _∪_ empty fromList : List carrier → <Set> fromList = L.foldr insert empty _⊆_ : <Set> → <Set> → Set s₁ ⊆ s₂ = ∀ x → x ∈ s₁ → x ∈ s₂ open Sets₁ public open DecTotalOrder hiding (_≈_) open _⇒-Poset_ abstract postulate map : ∀ {do₁ do₂} → do₁ ⇒-DTO do₂ → <Set> do₁ → <Set> do₂ mapToSet : ∀ {do₁ do₂} → (carrier do₁ → <Set> do₂) → <Set> do₁ → <Set> do₂ prop-map-∈₁ : ∀ {do₁ do₂ f x s} → x ⟨ _∈_ do₁ ⟩₁ s → fun f x ⟨ _∈_ do₂ ⟩₁ map f s prop-map-∈₂ : ∀ {do₁ do₂ f y s} → y ⟨ _∈_ do₂ ⟩₁ map f s → ∃ λ x → (fun f x ⟨ _≈_ do₂ ⟩₁ y) × ( x ⟨ _∈_ do₁ ⟩₁ s) prop-mapToSet₁ : ∀ {do₁ do₂ f x s} → x ⟨ _∈_ do₁ ⟩₁ s → f x ⟨ _⊆_ do₂ ⟩₁ mapToSet f s prop-mapToSet₂ : ∀ {do₁ do₂ f y s} → y ⟨ _∈_ do₂ ⟩₁ mapToSet f s → ∃ λ x → (y ⟨ _∈_ do₂ ⟩₁ f x) × (x ⟨ _∈_ do₁ ⟩₁ s)
28.136842
72
0.466517
1da4e513700eb391f18d74a4057369244660256d
275
agda
Agda
test/Fail/WithoutK2.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/WithoutK2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/WithoutK2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --without-K #-} module WithoutK2 where -- Equality defined with two indices. data _≡_ {A : Set} : A → A → Set where refl : ∀ x → x ≡ x K : {A : Set} (P : {x : A} → x ≡ x → Set) → (∀ x → P (refl x)) → ∀ {x} (x≡x : x ≡ x) → P x≡x K P p (refl x) = p x
19.642857
43
0.469091
1307a9e10566c953807a335516ad9adb4e259668
487
agda
Agda
Logic/Propositional/Xor.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Logic/Propositional/Xor.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Logic/Propositional/Xor.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Logic.Propositional.Xor where open import Logic.Propositional open import Logic import Lvl -- TODO: Is it possible write a general construction for arbitrary number of xors? Probably by using rotate₃Fn₃Op₂? data _⊕₃_⊕₃_ {ℓ₁ ℓ₂ ℓ₃} (P : Stmt{ℓ₁}) (Q : Stmt{ℓ₂}) (R : Stmt{ℓ₃}) : Stmt{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃} where [⊕₃]-intro₁ : P → (¬ Q) → (¬ R) → (P ⊕₃ Q ⊕₃ R) [⊕₃]-intro₂ : (¬ P) → Q → (¬ R) → (P ⊕₃ Q ⊕₃ R) [⊕₃]-intro₃ : (¬ P) → (¬ Q) → R → (P ⊕₃ Q ⊕₃ R)
40.583333
115
0.572895
2f41756f64def9e877e832f70b543ecc8bfb5b8a
2,115
agda
Agda
examples/outdated-and-incorrect/tactics/bool/Bool.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/tactics/bool/Bool.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/tactics/bool/Bool.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Bool where data Bool : Set where false : Bool true : Bool data IsTrue : Bool -> Set where isTrue : IsTrue true open import Vec open import All allEnvs : {n : Nat} -> List (Vec Bool n) allEnvs {zero } = ε :: [] allEnvs {suc n} = map (_►_ false) allEnvs ++ map (_►_ true) allEnvs ∈++left : {A : Set}{x : A}{xs ys : List A} -> x ∈ xs -> x ∈ (xs ++ ys) ∈++left (hd p) = hd p ∈++left (tl q) = tl (∈++left q) ∈++right : {A : Set}{x : A}{xs ys : List A} -> x ∈ ys -> x ∈ (xs ++ ys) ∈++right {xs = []} p = p ∈++right {xs = x :: xs} p = tl (∈++right {xs = xs} p) ∈map : {A B : Set}{f : A -> B}{x : A}{xs : List A} -> x ∈ xs -> f x ∈ map f xs ∈map (hd refl) = hd refl ∈map (tl q) = tl (∈map q) covered : {n : Nat} -> (xs : Vec Bool n) -> xs ∈ allEnvs covered ε = hd refl covered (false ► xs) = ∈++left (∈map (covered xs)) covered (true ► xs) = ∈++right {xs = map (_►_ false) allEnvs} (∈map (covered xs)) Sat : {A : Set} -> (A -> Bool) -> A -> Set Sat f x = IsTrue (f x) lem₁ : {n : Nat}(f : Vec Bool n -> Bool) -> All (Sat f) allEnvs -> (xs : Vec Bool n) -> Sat f xs lem₁ f p xs with p ! covered xs ... | (.xs , p , refl) = p data False : Set where ¬_ : Set -> Set ¬ P = P -> False data _∨_ (A B : Set) : Set where inl : A -> A ∨ B inr : B -> A ∨ B ¬IsTrue-false : ¬ IsTrue false ¬IsTrue-false () decide : {A : Set}(p : A -> Bool)(x : A) -> Sat p x ∨ ¬ Sat p x decide p x with p x ... | true = inl isTrue ... | false = inr ¬IsTrue-false all : {A : Set}(p : A -> Bool)(xs : List A) -> All (Sat p) xs ∨ Some (\x -> ¬ Sat p x) xs all p [] = inl ∅ all p (x :: xs) with decide p x ... | inr ¬px = inr (hd ¬px) ... | inl px with all p xs ... | inl ps = inl (px ▹ ps) ... | inr q = inr (tl q) data NoProof : Set where no-proof : NoProof Proof : {n : Nat} -> (Vec Bool n -> Bool) -> Set Proof {n} f with all f allEnvs ... | inl _ = (xs : Vec Bool n) -> Sat f xs ... | inr _ = NoProof prove : {n : Nat}(f : Vec Bool n -> Bool) -> Proof f prove f with all f allEnvs ... | inl ps = lem₁ f ps ... | inr _ = no-proof
25.481928
78
0.501182
ad39466859c6bbd0a981bea24277a8aabd266466
10,900
agda
Agda
Cubical/HITs/PropositionalTruncation/Properties.agda
RobertHarper/cubical
d13941587a58895b65f714f1ccc9c1f5986b109c
[ "MIT" ]
null
null
null
Cubical/HITs/PropositionalTruncation/Properties.agda
RobertHarper/cubical
d13941587a58895b65f714f1ccc9c1f5986b109c
[ "MIT" ]
null
null
null
Cubical/HITs/PropositionalTruncation/Properties.agda
RobertHarper/cubical
d13941587a58895b65f714f1ccc9c1f5986b109c
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{- This file contains: - Eliminator for propositional truncation -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.PropositionalTruncation.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation.Base private variable ℓ : Level A B C : Type ℓ rec : ∀ {P : Type ℓ} → isProp P → (A → P) → ∥ A ∥ → P rec Pprop f ∣ x ∣ = f x rec Pprop f (squash x y i) = Pprop (rec Pprop f x) (rec Pprop f y) i rec2 : ∀ {P : Type ℓ} → isProp P → (A → A → P) → ∥ A ∥ → ∥ A ∥ → P rec2 Pprop f = rec (isPropΠ (λ _ → Pprop)) (λ a → rec Pprop (f a)) elim : ∀ {P : ∥ A ∥ → Type ℓ} → ((a : ∥ A ∥) → isProp (P a)) → ((x : A) → P ∣ x ∣) → (a : ∥ A ∥) → P a elim Pprop f ∣ x ∣ = f x elim Pprop f (squash x y i) = isOfHLevel→isOfHLevelDep 1 Pprop (elim Pprop f x) (elim Pprop f y) (squash x y) i elim2 : {P : ∥ A ∥ → ∥ A ∥ → Type ℓ} (Bset : ((x y : ∥ A ∥) → isProp (P x y))) (g : (a b : A) → P ∣ a ∣ ∣ b ∣) (x y : ∥ A ∥) → P x y elim2 Pprop g = elim (λ _ → isPropΠ (λ _ → Pprop _ _)) (λ a → elim (λ _ → Pprop _ _) (g a)) elim3 : {P : ∥ A ∥ → ∥ A ∥ → ∥ A ∥ → Type ℓ} (Bset : ((x y z : ∥ A ∥) → isProp (P x y z))) (g : (a b c : A) → P (∣ a ∣) ∣ b ∣ ∣ c ∣) (x y z : ∥ A ∥) → P x y z elim3 Pprop g = elim2 (λ _ _ → isPropΠ (λ _ → Pprop _ _ _)) (λ a b → elim (λ _ → Pprop _ _ _) (g a b)) propTruncIsProp : isProp ∥ A ∥ propTruncIsProp x y = squash x y propTruncIdempotent≃ : isProp A → ∥ A ∥ ≃ A propTruncIdempotent≃ {A = A} hA = isoToEquiv f where f : Iso ∥ A ∥ A Iso.fun f = rec hA (idfun A) Iso.inv f x = ∣ x ∣ Iso.rightInv f _ = refl Iso.leftInv f = elim (λ _ → isProp→isSet propTruncIsProp _ _) (λ _ → refl) propTruncIdempotent : isProp A → ∥ A ∥ ≡ A propTruncIdempotent hA = ua (propTruncIdempotent≃ hA) -- We could also define the eliminator using the recursor elim' : ∀ {P : ∥ A ∥ → Type ℓ} → ((a : ∥ A ∥) → isProp (P a)) → ((x : A) → P ∣ x ∣) → (a : ∥ A ∥) → P a elim' {P = P} Pprop f a = rec (Pprop a) (λ x → transp (λ i → P (squash ∣ x ∣ a i)) i0 (f x)) a map : (A → B) → (∥ A ∥ → ∥ B ∥) map f = rec squash (∣_∣ ∘ f) map2 : (A → B → C) → (∥ A ∥ → ∥ B ∥ → ∥ C ∥) map2 f = rec (isPropΠ λ _ → squash) (map ∘ f) -- The propositional truncation can be eliminated into non-propositional -- types as long as the function used in the eliminator is 'coherently -- constant.' The details of this can be found in the following paper: -- -- https://arxiv.org/pdf/1411.2682.pdf module SetElim (Bset : isSet B) where Bset' : isSet' B Bset' = isSet→isSet' Bset rec→Set : (f : A → B) (kf : 2-Constant f) → ∥ A ∥ → B helper : (f : A → B) (kf : 2-Constant f) → (t u : ∥ A ∥) → rec→Set f kf t ≡ rec→Set f kf u rec→Set f kf ∣ x ∣ = f x rec→Set f kf (squash t u i) = helper f kf t u i helper f kf ∣ x ∣ ∣ y ∣ = kf x y helper f kf (squash t u i) v = Bset' (helper f kf t v) (helper f kf u v) (helper f kf t u) refl i helper f kf t (squash u v i) = Bset' (helper f kf t u) (helper f kf t v) refl (helper f kf u v) i kcomp : ∀(f : ∥ A ∥ → B) → 2-Constant (f ∘ ∣_∣) kcomp f x y = cong f (squash ∣ x ∣ ∣ y ∣) Fset : isSet (A → B) Fset = isSetΠ (const Bset) Kset : (f : A → B) → isSet (2-Constant f) Kset f = isSetΠ (λ _ → isSetΠ (λ _ → isProp→isSet (Bset _ _))) setRecLemma : (f : ∥ A ∥ → B) → rec→Set (f ∘ ∣_∣) (kcomp f) ≡ f setRecLemma f i t = elim {P = λ t → rec→Set (f ∘ ∣_∣) (kcomp f) t ≡ f t} (λ t → Bset _ _) (λ x → refl) t i mkKmap : (∥ A ∥ → B) → Σ (A → B) 2-Constant mkKmap f = f ∘ ∣_∣ , kcomp f fib : (g : Σ (A → B) 2-Constant) → fiber mkKmap g fib (g , kg) = rec→Set g kg , refl eqv : (g : Σ (A → B) 2-Constant) → ∀ fi → fib g ≡ fi eqv g (f , p) = Σ≡Prop (λ f → isOfHLevelΣ 2 Fset Kset _ _) (cong (uncurry rec→Set) (sym p) ∙ setRecLemma f) trunc→Set≃ : (∥ A ∥ → B) ≃ (Σ (A → B) 2-Constant) trunc→Set≃ .fst = mkKmap trunc→Set≃ .snd .equiv-proof g = fib g , eqv g -- The strategy of this equivalence proof follows the paper more closely. -- It is used further down for the groupoid version, because the above -- strategy does not generalize so easily. e : B → Σ (A → B) 2-Constant e b = const b , λ _ _ → refl eval : A → (γ : Σ (A → B) 2-Constant) → B eval a₀ (g , _) = g a₀ e-eval : ∀ (a₀ : A) γ → e (eval a₀ γ) ≡ γ e-eval a₀ (g , kg) i .fst a₁ = kg a₀ a₁ i e-eval a₀ (g , kg) i .snd a₁ a₂ = Bset' refl (kg a₁ a₂) (kg a₀ a₁) (kg a₀ a₂) i e-isEquiv : A → isEquiv (e {A = A}) e-isEquiv a₀ = isoToIsEquiv (iso e (eval a₀) (e-eval a₀) λ _ → refl) preEquiv₁ : ∥ A ∥ → B ≃ Σ (A → B) 2-Constant preEquiv₁ t = e , rec (isPropIsEquiv e) e-isEquiv t preEquiv₂ : (∥ A ∥ → Σ (A → B) 2-Constant) ≃ Σ (A → B) 2-Constant preEquiv₂ = isoToEquiv (iso to const (λ _ → refl) retr) where to : (∥ A ∥ → Σ (A → B) 2-Constant) → Σ (A → B) 2-Constant to f .fst x = f ∣ x ∣ .fst x to f .snd x y i = f (squash ∣ x ∣ ∣ y ∣ i) .snd x y i retr : retract to const retr f i t .fst x = f (squash ∣ x ∣ t i) .fst x retr f i t .snd x y = Bset' (λ j → f (squash ∣ x ∣ ∣ y ∣ j) .snd x y j) (f t .snd x y) (λ j → f (squash ∣ x ∣ t j) .fst x) (λ j → f (squash ∣ y ∣ t j) .fst y) i trunc→Set≃₂ : (∥ A ∥ → B) ≃ Σ (A → B) 2-Constant trunc→Set≃₂ = compEquiv (equivPi preEquiv₁) preEquiv₂ open SetElim public using (rec→Set; trunc→Set≃) elim→Set : {P : ∥ A ∥ → Type ℓ} → (∀ t → isSet (P t)) → (f : (x : A) → P ∣ x ∣) → (kf : ∀ x y → PathP (λ i → P (squash ∣ x ∣ ∣ y ∣ i)) (f x) (f y)) → (t : ∥ A ∥) → P t elim→Set {A = A} {P = P} Pset f kf t = rec→Set (Pset t) g gk t where g : A → P t g x = transp (λ i → P (squash ∣ x ∣ t i)) i0 (f x) gk : 2-Constant g gk x y i = transp (λ j → P (squash (squash ∣ x ∣ ∣ y ∣ i) t j)) i0 (kf x y i) RecHProp : (P : A → hProp ℓ) (kP : ∀ x y → P x ≡ P y) → ∥ A ∥ → hProp ℓ RecHProp P kP = rec→Set isSetHProp P kP module GpdElim (Bgpd : isGroupoid B) where Bgpd' : isGroupoid' B Bgpd' = isGroupoid→isGroupoid' Bgpd module _ (f : A → B) (3kf : 3-Constant f) where open 3-Constant 3kf rec→Gpd : ∥ A ∥ → B pathHelper : (t u : ∥ A ∥) → rec→Gpd t ≡ rec→Gpd u triHelper₁ : (t u v : ∥ A ∥) → Square (pathHelper t u) (pathHelper t v) refl (pathHelper u v) triHelper₂ : (t u v : ∥ A ∥) → Square (pathHelper t v) (pathHelper u v) (pathHelper t u) refl rec→Gpd ∣ x ∣ = f x rec→Gpd (squash t u i) = pathHelper t u i pathHelper ∣ x ∣ ∣ y ∣ = link x y pathHelper (squash t u j) v = triHelper₂ t u v j pathHelper ∣ x ∣ (squash u v j) = triHelper₁ ∣ x ∣ u v j triHelper₁ ∣ x ∣ ∣ y ∣ ∣ z ∣ = coh₁ x y z triHelper₁ (squash s t i) u v = Bgpd' (triHelper₁ s u v) (triHelper₁ t u v) (triHelper₂ s t u) (triHelper₂ s t v) (λ i → refl) (λ i → pathHelper u v) i triHelper₁ ∣ x ∣ (squash t u i) v = Bgpd' (triHelper₁ ∣ x ∣ t v) (triHelper₁ ∣ x ∣ u v) (triHelper₁ ∣ x ∣ t u) (λ i → pathHelper ∣ x ∣ v) (λ i → refl) (triHelper₂ t u v) i triHelper₁ ∣ x ∣ ∣ y ∣ (squash u v i) = Bgpd' (triHelper₁ ∣ x ∣ ∣ y ∣ u) (triHelper₁ ∣ x ∣ ∣ y ∣ v) (λ i → link x y) (triHelper₁ ∣ x ∣ u v) (λ i → refl) (triHelper₁ ∣ y ∣ u v) i triHelper₂ ∣ x ∣ ∣ y ∣ ∣ z ∣ = coh₂ x y z triHelper₂ (squash s t i) u v = Bgpd' (triHelper₂ s u v) (triHelper₂ t u v) (triHelper₂ s t v) (λ i → pathHelper u v) (triHelper₂ s t u) (λ i → refl) i triHelper₂ ∣ x ∣ (squash t u i) v = Bgpd' (triHelper₂ ∣ x ∣ t v) (triHelper₂ ∣ x ∣ u v) (λ i → pathHelper ∣ x ∣ v) (triHelper₂ t u v) (triHelper₁ ∣ x ∣ t u) (λ i → refl) i triHelper₂ ∣ x ∣ ∣ y ∣ (squash u v i) = Bgpd' (triHelper₂ ∣ x ∣ ∣ y ∣ u) (triHelper₂ ∣ x ∣ ∣ y ∣ v) (triHelper₁ ∣ x ∣ u v) (triHelper₁ ∣ y ∣ u v) (λ i → link x y) (λ i → refl) i preEquiv₁ : (∥ A ∥ → Σ (A → B) 3-Constant) ≃ Σ (A → B) 3-Constant preEquiv₁ = isoToEquiv (iso fn const (λ _ → refl) retr) where open 3-Constant fn : (∥ A ∥ → Σ (A → B) 3-Constant) → Σ (A → B) 3-Constant fn f .fst x = f ∣ x ∣ .fst x fn f .snd .link x y i = f (squash ∣ x ∣ ∣ y ∣ i) .snd .link x y i fn f .snd .coh₁ x y z i j = f (squash ∣ x ∣ (squash ∣ y ∣ ∣ z ∣ i) j) .snd .coh₁ x y z i j retr : retract fn const retr f i t .fst x = f (squash ∣ x ∣ t i) .fst x retr f i t .snd .link x y j = f (squash (squash ∣ x ∣ ∣ y ∣ j) t i) .snd .link x y j retr f i t .snd .coh₁ x y z = Bgpd' (λ k j → f (cb k j i0) .snd .coh₁ x y z k j ) (λ k j → f (cb k j i1) .snd .coh₁ x y z k j) (λ k j → f (cb i0 j k) .snd .link x y j) (λ k j → f (cb i1 j k) .snd .link x z j) (λ _ → refl) (λ k j → f (cb j i1 k) .snd .link y z j) i where cb : I → I → I → ∥ _ ∥ cb i j k = squash (squash ∣ x ∣ (squash ∣ y ∣ ∣ z ∣ i) j) t k e : B → Σ (A → B) 3-Constant e b .fst _ = b e b .snd = record { link = λ _ _ _ → b ; coh₁ = λ _ _ _ _ _ → b } eval : A → Σ (A → B) 3-Constant → B eval a₀ (g , _) = g a₀ module _ where open 3-Constant e-eval : ∀(a₀ : A) γ → e (eval a₀ γ) ≡ γ e-eval a₀ (g , 3kg) i .fst x = 3kg .link a₀ x i e-eval a₀ (g , 3kg) i .snd .link x y = λ j → 3kg .coh₁ a₀ x y j i e-eval a₀ (g , 3kg) i .snd .coh₁ x y z = Bgpd' (λ _ _ → g a₀) (3kg .coh₁ x y z) (λ k j → 3kg .coh₁ a₀ x y j k) (λ k j → 3kg .coh₁ a₀ x z j k) (λ _ → refl) (λ k j → 3kg .coh₁ a₀ y z j k) i e-isEquiv : A → isEquiv (e {A = A}) e-isEquiv a₀ = isoToIsEquiv (iso e (eval a₀) (e-eval a₀) λ _ → refl) preEquiv₂ : ∥ A ∥ → B ≃ Σ (A → B) 3-Constant preEquiv₂ t = e , rec (isPropIsEquiv e) e-isEquiv t trunc→Gpd≃ : (∥ A ∥ → B) ≃ Σ (A → B) 3-Constant trunc→Gpd≃ = compEquiv (equivPi preEquiv₂) preEquiv₁ open GpdElim using (rec→Gpd; trunc→Gpd≃) public RecHSet : (P : A → TypeOfHLevel ℓ 2) → 3-Constant P → ∥ A ∥ → TypeOfHLevel ℓ 2 RecHSet P 3kP = rec→Gpd (isOfHLevelTypeOfHLevel 2) P 3kP
31.594203
81
0.501101
0e952dc79b8e163f2c2ab3e79943edfe3f6c7c9e
773
agda
Agda
agda/BTree/Complete/Alternative/Properties.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/BTree/Complete/Alternative/Properties.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/BTree/Complete/Alternative/Properties.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
module BTree.Complete.Alternative.Properties {A : Set} where open import BTree {A} open import BTree.Equality {A} open import BTree.Equality.Properties {A} open import BTree.Complete.Alternative {A} open import Data.Sum renaming (_⊎_ to _∨_) lemma-⋗-≃ : {t t' t'' : BTree} → t ⋗ t' → t' ≃ t'' → t ⋗ t'' lemma-⋗-≃ (⋗lf x) ≃lf = ⋗lf x lemma-⋗-≃ (⋗nd x x' l≃r l'≃r' l⋗l') (≃nd .x' x'' _ l''≃r'' l'≃l'') = ⋗nd x x'' l≃r l'≃l'' (lemma-⋗-≃ l⋗l' l''≃r'') lemma-≃-⋘ : {l r : BTree} → l ≃ r → l ⋘ r lemma-≃-⋘ ≃lf = lf⋘ lemma-≃-⋘ (≃nd x x' l≃r l≃l' l'≃r') = ll⋘ x x' (lemma-≃-⋘ l≃r) l'≃r' (trans≃ (symm≃ l≃r) l≃l') lemma-⋗-⋙ : {l r : BTree} → l ⋗ r → l ⋙ r lemma-⋗-⋙ (⋗lf x) = ⋙lf x lemma-⋗-⋙ (⋗nd x x' l≃r l'≃r' l⋗l') = ⋙rl x x' l≃r (lemma-≃-⋘ l'≃r') (lemma-⋗-≃ l⋗l' l'≃r')
36.809524
114
0.507115
1331be2d113fc8d95ee85205b6575fe19a92d783
4,394
agda
Agda
src/Calf/CostMonoids.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
29
2021-07-14T03:18:28.000Z
2022-03-22T20:35:11.000Z
src/Calf/CostMonoids.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
null
null
null
src/Calf/CostMonoids.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
2
2021-10-06T10:28:24.000Z
2022-01-29T08:12:01.000Z
{-# OPTIONS --prop --without-K --rewriting #-} -- Common cost monoids. module Calf.CostMonoids where open import Calf.CostMonoid open import Data.Product open import Relation.Binary.PropositionalEquality ℕ-CostMonoid : CostMonoid ℕ-CostMonoid = record { ℂ = ℕ ; _+_ = _+_ ; zero = zero ; _≤_ = _≤_ ; isCostMonoid = record { isMonoid = +-0-isMonoid ; isCancellative = record { ∙-cancel-≡ = +-cancel-≡ } ; isPreorder = ≤-isPreorder ; isMonotone = record { ∙-mono-≤ = +-mono-≤ } } } where open import Data.Nat open import Data.Nat.Properties ℕ-Work-ParCostMonoid : ParCostMonoid ℕ-Work-ParCostMonoid = record { ℂ = ℕ ; _⊕_ = _+_ ; 𝟘 = 0 ; _⊗_ = _+_ ; 𝟙 = 0 ; _≤_ = _≤_ ; isParCostMonoid = record { isMonoid = +-0-isMonoid ; isCommutativeMonoid = +-0-isCommutativeMonoid ; isCancellative = record { ∙-cancel-≡ = +-cancel-≡ } ; isPreorder = ≤-isPreorder ; isMonotone-⊕ = record { ∙-mono-≤ = +-mono-≤ } ; isMonotone-⊗ = record { ∙-mono-≤ = +-mono-≤ } } } where open import Data.Nat open import Data.Nat.Properties ℕ-Span-ParCostMonoid : ParCostMonoid ℕ-Span-ParCostMonoid = record { ℂ = ℕ ; _⊕_ = _+_ ; 𝟘 = 0 ; _⊗_ = _⊔_ ; 𝟙 = 0 ; _≤_ = _≤_ ; isParCostMonoid = record { isMonoid = +-0-isMonoid ; isCommutativeMonoid = ⊔-0-isCommutativeMonoid ; isPreorder = ≤-isPreorder ; isCancellative = record { ∙-cancel-≡ = +-cancel-≡ } ; isMonotone-⊕ = record { ∙-mono-≤ = +-mono-≤ } ; isMonotone-⊗ = record { ∙-mono-≤ = ⊔-mono-≤ } } } where open import Data.Nat open import Data.Nat.Properties combineParCostMonoids : ParCostMonoid → ParCostMonoid → ParCostMonoid combineParCostMonoids pcm₁ pcm₂ = record { ℂ = ℂ pcm₁ × ℂ pcm₂ ; _⊕_ = λ (a₁ , a₂) (b₁ , b₂) → _⊕_ pcm₁ a₁ b₁ , _⊕_ pcm₂ a₂ b₂ ; 𝟘 = 𝟘 pcm₁ , 𝟘 pcm₂ ; _⊗_ = λ (a₁ , a₂) (b₁ , b₂) → _⊗_ pcm₁ a₁ b₁ , _⊗_ pcm₂ a₂ b₂ ; 𝟙 = 𝟙 pcm₁ , 𝟙 pcm₂ ; _≤_ = λ (a₁ , a₂) (b₁ , b₂) → _≤_ pcm₁ a₁ b₁ × _≤_ pcm₂ a₂ b₂ ; isParCostMonoid = record { isMonoid = record { isSemigroup = record { isMagma = record { isEquivalence = isEquivalence ; ∙-cong = λ h₁ h₂ → cong₂ _,_ (cong₂ (_⊕_ pcm₁) (cong proj₁ h₁) (cong proj₁ h₂)) (cong₂ (_⊕_ pcm₂) (cong proj₂ h₁) (cong proj₂ h₂)) } ; assoc = λ (a₁ , a₂) (b₁ , b₂) (c₁ , c₂) → cong₂ _,_ (⊕-assoc pcm₁ a₁ b₁ c₁) (⊕-assoc pcm₂ a₂ b₂ c₂) } ; identity = (λ (a₁ , a₂) → cong₂ _,_ (⊕-identityˡ pcm₁ a₁) (⊕-identityˡ pcm₂ a₂)) , (λ (a₁ , a₂) → cong₂ _,_ (⊕-identityʳ pcm₁ a₁) (⊕-identityʳ pcm₂ a₂)) } ; isCommutativeMonoid = record { isMonoid = record { isSemigroup = record { isMagma = record { isEquivalence = isEquivalence ; ∙-cong = λ h₁ h₂ → cong₂ _,_ (cong₂ (_⊗_ pcm₁) (cong proj₁ h₁) (cong proj₁ h₂)) (cong₂ (_⊗_ pcm₂) (cong proj₂ h₁) (cong proj₂ h₂)) } ; assoc = λ (a₁ , a₂) (b₁ , b₂) (c₁ , c₂) → cong₂ _,_ (⊗-assoc pcm₁ a₁ b₁ c₁) (⊗-assoc pcm₂ a₂ b₂ c₂) } ; identity = (λ (a₁ , a₂) → cong₂ _,_ (⊗-identityˡ pcm₁ a₁) (⊗-identityˡ pcm₂ a₂)) , (λ (a₁ , a₂) → cong₂ _,_ (⊗-identityʳ pcm₁ a₁) (⊗-identityʳ pcm₂ a₂)) } ; comm = λ (a₁ , a₂) (b₁ , b₂) → cong₂ _,_ (⊗-comm pcm₁ a₁ b₁) (⊗-comm pcm₂ a₂ b₂) } ; isCancellative = record { ∙-cancel-≡ = (λ (x₁ , x₂) h → cong₂ _,_ (⊕-cancelˡ-≡ pcm₁ x₁ (cong proj₁ h)) (⊕-cancelˡ-≡ pcm₂ x₂ (cong proj₂ h))) , (λ (y₁ , y₂) (z₁ , z₂) h → cong₂ _,_ (⊕-cancelʳ-≡ pcm₁ y₁ z₁ (cong proj₁ h)) (⊕-cancelʳ-≡ pcm₂ y₂ z₂ (cong proj₂ h))) } ; isPreorder = record { isEquivalence = isEquivalence ; reflexive = λ { refl → ≤-refl pcm₁ , ≤-refl pcm₂ } ; trans = λ (h₁ , h₂) (h₁' , h₂') → ≤-trans pcm₁ h₁ h₁' , ≤-trans pcm₂ h₂ h₂' } ; isMonotone-⊕ = record { ∙-mono-≤ = λ (h₁ , h₂) (h₁' , h₂') → ⊕-mono-≤ pcm₁ h₁ h₁' , ⊕-mono-≤ pcm₂ h₂ h₂' } ; isMonotone-⊗ = record { ∙-mono-≤ = λ (h₁ , h₂) (h₁' , h₂') → ⊗-mono-≤ pcm₁ h₁ h₁' , ⊗-mono-≤ pcm₂ h₂ h₂' } } } where open ParCostMonoid ℕ²-ParCostMonoid : ParCostMonoid ℕ²-ParCostMonoid = combineParCostMonoids ℕ-Work-ParCostMonoid ℕ-Span-ParCostMonoid
32.791045
127
0.540737
13a00528974561d24fb8d3fbc5dbd45653d00575
3,166
agda
Agda
misc/RecursiveDescent/InductiveWithFix/PBM.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
7
2016-12-13T05:23:14.000Z
2021-06-22T05:35:31.000Z
misc/RecursiveDescent/InductiveWithFix/PBM.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
1
2018-01-22T22:21:41.000Z
2018-01-24T16:39:37.000Z
misc/RecursiveDescent/InductiveWithFix/PBM.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- A parser for PBM images; illustrates essential use of bind ------------------------------------------------------------------------ -- Note that I am using the simple "Plain PBM" format, and I try to -- adhere to the following statement from the pbm man page: -- -- "Programs that read this format should be as lenient as possible, -- accepting anything that looks remotely like a bitmap." -- The idea to write this particular parser was taken from "The Power -- of Pi" by Oury and Swierstra. module RecursiveDescent.InductiveWithFix.PBM where import Data.Vec as Vec open Vec using (Vec; _++_; [_]) import Data.List as List open import Data.Nat import Data.String as String open String using (String) renaming (_++_ to _<+>_) import Data.Char as Char open Char using (Char; _==_) open import Data.Product.Record open import Data.Function open import Data.Bool open import Data.Unit open import Data.Maybe import Data.Nat.Show as N open import Relation.Nullary open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import RecursiveDescent.Index open import RecursiveDescent.InductiveWithFix open import RecursiveDescent.InductiveWithFix.Lib open Token Char.decSetoid ------------------------------------------------------------------------ -- The PBM type data Colour : Set where white : Colour black : Colour Matrix : Set -> ℕ -> ℕ -> Set Matrix a rows cols = Vec (Vec a cols) rows record PBM : Set where field rows : ℕ cols : ℕ matrix : Matrix Colour rows cols open PBM makePBM : forall {rows cols} -> Matrix Colour rows cols -> PBM makePBM m = record { rows = _; cols = _; matrix = m } ------------------------------------------------------------------------ -- Showing PBM images showColour : Colour -> Char showColour white = '0' showColour black = '1' show : PBM -> String show i = "P1 # Generated using Agda.\n" <+> N.show (cols i) <+> " " <+> N.show (rows i) <+> "\n" <+> showMatrix (matrix i) where showMatrix = String.fromList ∘ Vec.toList ∘ Vec.concat ∘ Vec.map ((\xs -> xs ++ [ '\n' ]) ∘ Vec.map showColour) ------------------------------------------------------------------------ -- Parsing PBM images data NT : ParserType₁ where comment : NT _ ⊤ colour : NT _ Colour pbm : NT _ PBM grammar : Grammar Char NT grammar comment = tt <$ sym '#' <⊛ sat' (not ∘ _==_ '\n') ⋆ <⊛ sym '\n' grammar colour = white <$ sym '0' ∣ black <$ sym '1' grammar pbm = w∣c ⋆ ⊛> string (String.toVec "P1") ⊛> w∣c ⋆ ⊛> number !>>= \cols -> -- _>>=_ works just as well. w∣c + ⊛> number >>= \rows -> -- _!>>=_ works just as well. w∣c ⊛> (makePBM <$> exactly rows (exactly cols (w∣c ⋆ ⊛> ! colour))) <⊛ any ⋆ where w∣c = whitespace ∣ ! comment module Example where open Vec image = makePBM ((white ∷ black ∷ []) ∷ (black ∷ white ∷ []) ∷ (black ∷ black ∷ []) ∷ []) ex₁ : parse-complete (! pbm) grammar (String.toList (show image)) ≡ List.[_] image ex₁ = refl
28.522523
72
0.559697
41b34ddffd9f4acb7c6215f0d2752e44803d2d0d
5,003
agda
Agda
src/Data/PropFormula/Properties.agda
jonaprieto/agda-prop
a1730062a6aaced2bb74878c1071db06477044ae
[ "MIT" ]
13
2017-05-01T16:45:41.000Z
2022-01-17T03:33:12.000Z
src/Data/PropFormula/Properties.agda
jonaprieto/agda-prop
a1730062a6aaced2bb74878c1071db06477044ae
[ "MIT" ]
18
2017-03-08T14:33:10.000Z
2017-12-18T16:34:21.000Z
src/Data/PropFormula/Properties.agda
jonaprieto/agda-prop
a1730062a6aaced2bb74878c1071db06477044ae
[ "MIT" ]
2
2017-03-30T16:41:56.000Z
2017-12-01T17:01:25.000Z
------------------------------------------------------------------------------ -- Agda-Prop Library. -- Properties. ------------------------------------------------------------------------------ open import Data.Nat using ( ℕ ) module Data.PropFormula.Properties ( n : ℕ ) where ------------------------------------------------------------------------------ open import Data.Bool.Base using ( Bool; false; true; not; T ) open import Data.Fin using ( Fin ; suc; zero ) open import Data.PropFormula.Syntax n open import Data.PropFormula.Dec n open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; cong ) ------------------------------------------------------------------------------ suc-injective : ∀ {o} {m n : Fin o} → Fin.suc m ≡ Fin.suc n → m ≡ n suc-injective refl = refl var-injective : ∀ {x x₁} → Var x ≡ Var x₁ → x ≡ x₁ var-injective refl = refl ∧-injective₁ : ∀ {φ φ₁ ψ ψ₁} → (φ ∧ φ₁) ≡ (ψ ∧ ψ₁) → φ ≡ ψ ∧-injective₁ refl = refl ∧-injective₂ : ∀ {φ φ₁ ψ ψ₁} → (φ ∧ φ₁) ≡ (ψ ∧ ψ₁) → φ₁ ≡ ψ₁ ∧-injective₂ refl = refl ∨-injective₁ : ∀ {φ φ₁ ψ ψ₁} → (φ ∨ φ₁) ≡ (ψ ∨ ψ₁) → φ ≡ ψ ∨-injective₁ refl = refl ∨-injective₂ : ∀ {φ φ₁ ψ ψ₁} → (φ ∨ φ₁) ≡ (ψ ∨ ψ₁) → φ₁ ≡ ψ₁ ∨-injective₂ refl = refl ⊃-injective₁ : ∀ {φ φ₁ ψ ψ₁} → (φ ⊃ φ₁) ≡ (ψ ⊃ ψ₁) → φ ≡ ψ ⊃-injective₁ refl = refl ⊃-injective₂ : ∀ {φ φ₁ ψ ψ₁} → (φ ⊃ φ₁) ≡ (ψ ⊃ ψ₁) → φ₁ ≡ ψ₁ ⊃-injective₂ refl = refl ⇔-injective₁ : ∀ {φ φ₁ ψ ψ₁} → (φ ⇔ φ₁) ≡ (ψ ⇔ ψ₁) → φ ≡ ψ ⇔-injective₁ refl = refl ⇔-injective₂ : ∀ {φ φ₁ ψ ψ₁} → (φ ⇔ φ₁) ≡ (ψ ⇔ ψ₁) → φ₁ ≡ ψ₁ ⇔-injective₂ refl = refl ¬-injective : ∀ {φ ψ} → ¬ φ ≡ ¬ ψ → φ ≡ ψ ¬-injective refl = refl -- Def. _≟_ : {n : ℕ} → Decidable {A = Fin n} _≡_ zero ≟ zero = yes refl zero ≟ suc y = no λ() suc x ≟ zero = no λ() suc x ≟ suc y with x ≟ y ... | yes x≡y = yes (cong Fin.suc x≡y) ... | no x≢y = no (λ r → x≢y (suc-injective r)) -- Def. eq : (φ ψ : PropFormula) → Dec (φ ≡ ψ) -- Equality with Var. eq (Var x) ⊤ = no λ() eq (Var x) ⊥ = no λ() eq (Var x) (ψ ∧ ψ₁) = no λ() eq (Var x) (ψ ∨ ψ₁) = no λ() eq (Var x) (ψ ⊃ ψ₁) = no λ() eq (Var x) (ψ ⇔ ψ₁) = no λ() eq (Var x) (¬ ψ) = no λ() eq (Var x) (Var x₁) with x ≟ x₁ ... | yes refl = yes refl ... | no x≢x₁ = no (λ r → x≢x₁ (var-injective r)) -- Equality with ⊤. eq ⊤ (Var x) = no λ() eq ⊤ ⊥ = no λ() eq ⊤ (ψ ∧ ψ₁) = no λ() eq ⊤ (ψ ∨ ψ₁) = no λ() eq ⊤ (ψ ⊃ ψ₁) = no λ() eq ⊤ (ψ ⇔ ψ₁) = no λ() eq ⊤ (¬ ψ) = no λ() eq ⊤ ⊤ = yes refl -- Equality with ⊥. eq ⊥ (Var x) = no λ() eq ⊥ ⊤ = no λ() eq ⊥ (ψ ∧ ψ₁) = no λ() eq ⊥ (ψ ∨ ψ₁) = no λ() eq ⊥ (ψ ⊃ ψ₁) = no λ() eq ⊥ (ψ ⇔ ψ₁) = no λ() eq ⊥ (¬ ψ) = no λ() eq ⊥ ⊥ = yes refl -- Equality with ∧. eq (φ ∧ φ₁) (Var x) = no λ() eq (φ ∧ φ₁) ⊤ = no λ() eq (φ ∧ φ₁) ⊥ = no λ() eq (φ ∧ φ₁) (ψ ∨ ψ₁) = no λ() eq (φ ∧ φ₁) (ψ ⊃ ψ₁) = no λ() eq (φ ∧ φ₁) (ψ ⇔ ψ₁) = no λ() eq (φ ∧ φ₁) (¬ ψ) = no λ() eq (φ ∧ φ₁) (ψ ∧ ψ₁) with eq φ ψ | eq φ₁ ψ₁ ... | yes refl | yes refl = yes refl ... | yes _ | no φ₁≢ψ₁ = no (λ r → φ₁≢ψ₁ (∧-injective₂ r)) ... | no φ≢ψ | _ = no (λ r → φ≢ψ (∧-injective₁ r)) -- Equality with ∨. eq (φ ∨ φ₁) (Var x) = no λ() eq (φ ∨ φ₁) ⊤ = no λ() eq (φ ∨ φ₁) ⊥ = no λ() eq (φ ∨ φ₁) (ψ ∧ ψ₁) = no λ() eq (φ ∨ φ₁) (ψ ⊃ ψ₁) = no λ() eq (φ ∨ φ₁) (ψ ⇔ ψ₁) = no λ() eq (φ ∨ φ₁) (¬ ψ) = no λ() eq (φ ∨ φ₁) (ψ ∨ ψ₁) with eq φ ψ | eq φ₁ ψ₁ ... | yes refl | yes refl = yes refl ... | yes _ | no φ₁≢ψ₁ = no (λ r → φ₁≢ψ₁ (∨-injective₂ r)) ... | no φ≢ψ | _ = no (λ r → φ≢ψ (∨-injective₁ r)) -- Equality with ⊃. eq (φ ⊃ φ₁) (Var x) = no λ() eq (φ ⊃ φ₁) ⊤ = no λ() eq (φ ⊃ φ₁) ⊥ = no λ() eq (φ ⊃ φ₁) (ψ ∧ ψ₁) = no λ() eq (φ ⊃ φ₁) (ψ ∨ ψ₁) = no λ() eq (φ ⊃ φ₁) (ψ ⇔ ψ₁) = no λ() eq (φ ⊃ φ₁) (¬ ψ) = no λ() eq (φ ⊃ φ₁) (ψ ⊃ ψ₁) with eq φ ψ | eq φ₁ ψ₁ ... | yes refl | yes refl = yes refl ... | yes _ | no φ₁≢ψ₁ = no (λ r → φ₁≢ψ₁ (⊃-injective₂ r)) ... | no φ≢ψ | _ = no (λ r → φ≢ψ (⊃-injective₁ r)) -- Equality with ⇔. eq (φ ⇔ φ₁) (Var x) = no λ() eq (φ ⇔ φ₁) ⊤ = no λ() eq (φ ⇔ φ₁) ⊥ = no λ() eq (φ ⇔ φ₁) (ψ ∧ ψ₁) = no λ() eq (φ ⇔ φ₁) (ψ ∨ ψ₁) = no λ() eq (φ ⇔ φ₁) (ψ ⊃ ψ₁) = no λ() eq (φ ⇔ φ₁) (¬ ψ) = no λ() eq (φ ⇔ φ₁) (ψ ⇔ ψ₁) with eq φ ψ | eq φ₁ ψ₁ ... | yes refl | yes refl = yes refl ... | yes _ | no φ₁≢ψ₁ = no (λ r → φ₁≢ψ₁ (⇔-injective₂ r)) ... | no φ≢ψ | _ = no (λ r → φ≢ψ (⇔-injective₁ r)) -- Equality with ¬. eq (¬ φ) (Var x) = no λ() eq (¬ φ) ⊤ = no λ() eq (¬ φ) ⊥ = no λ() eq (¬ φ) (ψ ∧ ψ₁) = no λ() eq (¬ φ) (ψ ∨ ψ₁) = no λ() eq (¬ φ) (ψ ⊃ ψ₁) = no λ() eq (¬ φ) (ψ ⇔ ψ₁) = no λ() eq (¬ φ) (¬ ψ) with eq φ ψ ... | yes refl = yes refl ... | no φ≢ψ = no (λ r → φ≢ψ (¬-injective r)) -- Theorem. subst : ∀ {Γ} {φ ψ} → φ ≡ ψ → Γ ⊢ φ → Γ ⊢ ψ subst refl o = o -- Theorem. substΓ : ∀ {Γ₁ Γ₂} {φ} → Γ₁ ≡ Γ₂ → Γ₁ ⊢ φ → Γ₂ ⊢ φ substΓ refl o = o
27.949721
78
0.41715
1a796c9bfdc15dc94d53d24daa3d43c197ffcebb
3,234
agda
Agda
src/Examples/Sorting/Parallel.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
29
2021-07-14T03:18:28.000Z
2022-03-22T20:35:11.000Z
src/Examples/Sorting/Parallel.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
null
null
null
src/Examples/Sorting/Parallel.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
2
2021-10-06T10:28:24.000Z
2022-01-29T08:12:01.000Z
{-# OPTIONS --prop --rewriting #-} module Examples.Sorting.Parallel where open import Examples.Sorting.Parallel.Comparable open import Calf costMonoid open import Calf.Types.Nat open import Calf.Types.List open import Relation.Binary.PropositionalEquality as Eq using (_≡_) open import Data.Product using (_,_) open import Data.Nat using (z≤n; s≤s) test/forward = 1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ 7 ∷ 8 ∷ 9 ∷ 10 ∷ 11 ∷ 12 ∷ 13 ∷ 14 ∷ 15 ∷ 16 ∷ [] test/backward = 16 ∷ 15 ∷ 14 ∷ 13 ∷ 12 ∷ 11 ∷ 10 ∷ 9 ∷ 8 ∷ 7 ∷ 6 ∷ 5 ∷ 4 ∷ 3 ∷ 2 ∷ 1 ∷ [] test/shuffled = 4 ∷ 8 ∷ 12 ∷ 16 ∷ 13 ∷ 3 ∷ 5 ∷ 14 ∷ 9 ∷ 6 ∷ 7 ∷ 10 ∷ 11 ∷ 1 ∷ 2 ∷ 15 ∷ [] module Ex/InsertionSort where import Examples.Sorting.Parallel.InsertionSort NatComparable as Sort list' = list nat ex/insert : cmp (F list') ex/insert = Sort.insert 3 (1 ∷ 2 ∷ 4 ∷ []) ex/sort : cmp (F list') ex/sort = Sort.sort (1 ∷ 5 ∷ 3 ∷ 1 ∷ 2 ∷ []) ex/sort/forward : cmp (F list') ex/sort/forward = Sort.sort test/forward -- cost: 15 , 15 ex/sort/backward : cmp (F list') ex/sort/backward = Sort.sort test/backward -- cost: 120 , 120 ex/sort/shuffled : cmp (F list') ex/sort/shuffled = Sort.sort test/shuffled -- cost: 76 , 76 module Ex/MergeSort where import Examples.Sorting.Parallel.MergeSort NatComparable as Sort list' = list nat ex/split : cmp (F Sort.pair) ex/split = Sort.split (6 ∷ 2 ∷ 8 ∷ 3 ∷ 1 ∷ 8 ∷ 5 ∷ []) ex/merge : cmp (F list') ex/merge = Sort.merge (2 ∷ 3 ∷ 6 ∷ 8 ∷ [] , 1 ∷ 5 ∷ 8 ∷ []) ex/sort : cmp (F list') ex/sort = Sort.sort (1 ∷ 5 ∷ 3 ∷ 1 ∷ 2 ∷ []) ex/sort/forward : cmp (F list') ex/sort/forward = Sort.sort test/forward -- cost: 32, 15 ex/sort/backward : cmp (F list') ex/sort/backward = Sort.sort test/backward -- cost: 32, 15 ex/sort/shuffled : cmp (F list') ex/sort/shuffled = Sort.sort test/shuffled -- cost: 47, 26 module Ex/MergeSortPar where import Examples.Sorting.Parallel.MergeSortPar NatComparable as Sort list' = list nat ex/split : cmp (F Sort.pair) ex/split = Sort.split (6 ∷ 2 ∷ 8 ∷ 3 ∷ 1 ∷ 8 ∷ 5 ∷ []) ex/splitMid : cmp (F Sort.triple) ex/splitMid = Sort.splitMid test/forward (s≤s z≤n) ex/splitBy : cmp (F Sort.pair) ex/splitBy = Sort.splitBy test/forward 5 ex/merge : cmp (F list') ex/merge = Sort.merge (2 ∷ 3 ∷ 6 ∷ 8 ∷ [] , 1 ∷ 5 ∷ 8 ∷ []) ex/sort : cmp (F list') ex/sort = Sort.sort (1 ∷ 5 ∷ 3 ∷ 1 ∷ 2 ∷ []) ex/sort/forward : cmp (F list') ex/sort/forward = Sort.sort test/forward -- cost: 40, 21 ex/sort/backward : cmp (F list') ex/sort/backward = Sort.sort test/backward -- cost: 40, 21 ex/sort/shuffled : cmp (F list') ex/sort/shuffled = Sort.sort test/shuffled -- cost: 43, 17 module SortEquivalence (M : Comparable) where open Comparable M open import Examples.Sorting.Parallel.Core M import Examples.Sorting.Parallel.InsertionSort M as ISort import Examples.Sorting.Parallel.MergeSort M as MSort import Examples.Sorting.Parallel.MergeSortPar M as PSort isort≡msort : ◯ (ISort.sort ≡ MSort.sort) isort≡msort = IsSort⇒≡ ISort.sort ISort.sort/correct MSort.sort MSort.sort/correct msort≡psort : ◯ (MSort.sort ≡ PSort.sort) msort≡psort = IsSort⇒≡ MSort.sort MSort.sort/correct PSort.sort PSort.sort/correct
31.096154
89
0.639147
13a3440b21bb7718db82ade7d4b61136915f3a11
5,869
agda
Agda
src/Equality/Path/Univalence.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Equality/Path/Univalence.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Equality/Path/Univalence.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- A proof of univalence ------------------------------------------------------------------------ -- The code is based on code by Anders Mörtberg from Agda's reference -- manual or the cubical library. {-# OPTIONS --cubical --safe #-} module Equality.Path.Univalence where open import Agda.Builtin.Cubical.Glue as Glue hiding (_≃_) open import Equality.Path open import Prelude open import Equivalence equality-with-J as Eq using (_≃_) import Equivalence.Contractible-preimages equality-with-J as CP import Equivalence.Half-adjoint equality-with-J as HA open import Function-universe equality-with-J hiding (id) open import Preimage equality-with-J open import Univalence-axiom equality-with-J hiding (≃⇒≡) private variable a b ℓ : Level A : Type a private -- Conversions between CP._≃_ and Glue._≃_. ≃-CP⇒≃-Glue : {B : Type b} → A CP.≃ B → A Glue.≃ B ≃-CP⇒≃-Glue = Σ-map id (λ eq → record { equiv-proof = eq }) ≃-Glue⇒≃-CP : {B : Type b} → A Glue.≃ B → A CP.≃ B ≃-Glue⇒≃-CP = Σ-map id Glue.isEquiv.equiv-proof -- Equivalences can be converted to equalities (if the two types live -- in the same universe). ≃-CP⇒≡ : {A B : Type ℓ} → A CP.≃ B → A ≡ B ≃-CP⇒≡ {A = A} {B = B} A≃B = λ i → primGlue B (λ { (i = 0̲) → A ; (i = 1̲) → B }) (λ { (i = 0̲) → ≃-CP⇒≃-Glue A≃B ; (i = 1̲) → ≃-CP⇒≃-Glue CP.id }) -- If ≃-CP⇒≡ is applied to the identity equivalence, then the result -- is equal to CP.id. ≃-CP⇒≡-id : ≃-CP⇒≡ CP.id ≡ refl {x = A} ≃-CP⇒≡-id {A = A} = λ i j → primGlue A {φ = max i (max j (- j))} (λ _ → A) (λ _ → ≃-CP⇒≃-Glue CP.id) -- ≃-CP⇒≡ is a left inverse of CP.≡⇒≃. ≃-CP⇒≡∘≡⇒≃ : {A B : Type ℓ} (A≡B : A ≡ B) → ≃-CP⇒≡ (CP.≡⇒≃ A≡B) ≡ A≡B ≃-CP⇒≡∘≡⇒≃ = elim (λ A≡B → ≃-CP⇒≡ (CP.≡⇒≃ A≡B) ≡ A≡B) (λ A → ≃-CP⇒≡ (CP.≡⇒≃ refl) ≡⟨ cong ≃-CP⇒≡ CP.≡⇒≃-refl ⟩ ≃-CP⇒≡ CP.id ≡⟨ ≃-CP⇒≡-id ⟩∎ refl ∎) -- ≃-CP⇒≡ is a right inverse of CP.≡⇒≃. ≡⇒≃∘≃-CP⇒≡ : {A B : Type ℓ} (A≃B : A CP.≃ B) → CP.≡⇒≃ (≃-CP⇒≡ A≃B) ≡ A≃B ≡⇒≃∘≃-CP⇒≡ {A = A} {B = B} A≃B = Σ-≡,≡→≡ (proj₁ (CP.≡⇒≃ (≃-CP⇒≡ A≃B)) ≡⟨⟩ proj₁ (transport (λ i → A CP.≃ ≃-CP⇒≡ A≃B i) 0̲ CP.id) ≡⟨⟩ transport (λ i → A → ≃-CP⇒≡ A≃B i) 0̲ id ≡⟨⟩ transport (λ _ → A → B) 0̲ (proj₁ A≃B) ≡⟨ cong (_$ proj₁ A≃B) $ transport-refl 0̲ ⟩∎ proj₁ A≃B ∎) (CP.propositional ext _ _ _) -- Univalence for CP._≃_. univ-CP : CP.Univalence ℓ univ-CP = Is-equivalence≃Is-equivalence-CP _ $ _≃_.is-equivalence $ Eq.↔→≃ _ ≃-CP⇒≡ ≡⇒≃∘≃-CP⇒≡ ≃-CP⇒≡∘≡⇒≃ -- Univalence. univ : ∀ {ℓ} → Univalence ℓ univ {A = A} {B = B} = record { univalence = from , proofs } where univ′ : Univalence′ A B univ′ = _≃_.from (Univalence≃Univalence-CP ext) univ-CP from : A ≃ B → A ≡ B from = proj₁ (Univalence′.univalence univ′) abstract proofs : HA.Proofs ≡⇒≃ from proofs = proj₂ (Univalence′.univalence univ′) -- Equivalences can be converted to equalities (if the two types live -- in the same universe). ≃⇒≡ : {A B : Type ℓ} → A ≃ B → A ≡ B ≃⇒≡ = _≃_.from Eq.⟨ _ , Univalence′.univalence univ ⟩ private -- The type primGlue A B f is equivalent to A. primGlue≃-CP : (φ : I) (B : Partial φ (Type ℓ)) (f : PartialP φ (λ x → B x Glue.≃ A)) → primGlue A B f CP.≃ A primGlue≃-CP {A = A} φ B f = prim^unglue {φ = φ} , λ x → ( prim^glue (λ p → CP.inverse (proj₂ (f-CP p)) x) (hcomp (lemma₁ x) x) , (hcomp (lemma₁ x) x ≡⟨ sym $ hfill (lemma₁ x) (inˢ x) ⟩∎ x ∎) ) , λ y i → prim^glue (λ { (φ = 1̲) → proj₁ (lemma₂ is-one y i) }) (hcomp (lemma₃ y i) x) , (hcomp (lemma₃ y i) x ≡⟨ sym $ hfill (lemma₃ y i) (inˢ x) ⟩∎ x ∎) where f-CP : PartialP φ (λ x → B x CP.≃ A) f-CP p = ≃-Glue⇒≃-CP (f p) lemma₁ : A → ∀ i → Partial φ A lemma₁ x i (φ = 1̲) = ( x ≡⟨ sym (CP.right-inverse-of (proj₂ (f-CP is-one)) x) ⟩∎ proj₁ (f-CP _) (CP.inverse (proj₂ (f-CP _)) x) ∎) i lemma₂ : ∀ {x} p (y : proj₁ (f-CP p) ⁻¹ x) → ( CP.inverse (proj₂ (f-CP p)) x , CP.right-inverse-of (proj₂ (f-CP p)) x ) ≡ y lemma₂ {x} p = CP.irrelevance (proj₂ (f-CP p)) x lemma₃ : ∀ {x} → prim^unglue {e = f} ⁻¹ x → ∀ i → I → Partial (max φ (max i (- i))) A lemma₃ y i j (φ = 1̲) = sym (proj₂ (lemma₂ is-one y i)) j lemma₃ {x} _ i j (i = 0̲) = hfill (lemma₁ x) (inˢ x) j lemma₃ y i j (i = 1̲) = sym (proj₂ y) j -- An alternative formulation of univalence. other-univ : Other-univalence ℓ other-univ {ℓ = ℓ} {B = B} = $⟨ other-univ-CP ⟩ Contractible (∃ λ (A : Type ℓ) → A CP.≃ B) ↝⟨ (H-level-cong _ 0 $ ∃-cong λ _ → inverse $ ≃≃≃-CP {k = equivalence} ext) ⦂ (_ → _) ⟩□ Contractible (∃ λ (A : Type ℓ) → A ≃ B) □ where other-univ-CP : Contractible (∃ λ (A : Type ℓ) → A CP.≃ B) other-univ-CP = (B , CP.id) , λ (A , A≃B) i → let C : ∀ i → Partial (max i (- i)) (Type ℓ) C = λ { i (i = 0̲) → B ; i (i = 1̲) → A } f : ∀ i → PartialP (max i (- i)) (λ j → C i j Glue.≃ B) f = λ { i (i = 0̲) → ≃-CP⇒≃-Glue CP.id ; i (i = 1̲) → ≃-CP⇒≃-Glue A≃B } in primGlue _ _ (f i) , primGlue≃-CP _ _ (f i)
31.05291
109
0.447436
13a7711e4f124b1618b713d99240a893e9c3747c
3,787
agda
Agda
test/asset/agda-stdlib-1.0/Data/Product.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Product.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Product.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Products ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Product where open import Function open import Level open import Relation.Nullary open import Agda.Builtin.Equality infixr 4 _,′_ infix 4 -,_ infixr 2 _×_ _-×-_ _-,-_ ------------------------------------------------------------------------ -- Definition open import Agda.Builtin.Sigma hiding (module Σ) public renaming (fst to proj₁; snd to proj₂) module Σ = Agda.Builtin.Sigma.Σ renaming (fst to proj₁; snd to proj₂) -- The syntax declaration below is attached to Σ-syntax, to make it -- easy to import Σ without the special syntax. infix 2 Σ-syntax Σ-syntax : ∀ {a b} (A : Set a) → (A → Set b) → Set (a ⊔ b) Σ-syntax = Σ syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B ∃ : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b) ∃ = Σ _ ∃-syntax : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b) ∃-syntax = ∃ syntax ∃-syntax (λ x → B) = ∃[ x ] B ∄ : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b) ∄ P = ¬ ∃ P ∄-syntax : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b) ∄-syntax = ∄ syntax ∄-syntax (λ x → B) = ∄[ x ] B ∃₂ : ∀ {a b c} {A : Set a} {B : A → Set b} (C : (x : A) → B x → Set c) → Set (a ⊔ b ⊔ c) ∃₂ C = ∃ λ a → ∃ λ b → C a b _×_ : ∀ {a b} (A : Set a) (B : Set b) → Set (a ⊔ b) A × B = Σ[ x ∈ A ] B _,′_ : ∀ {a b} {A : Set a} {B : Set b} → A → B → A × B _,′_ = _,_ ------------------------------------------------------------------------ -- Unique existence -- Parametrised on the underlying equality. ∃! : ∀ {a b ℓ} {A : Set a} → (A → A → Set ℓ) → (A → Set b) → Set (a ⊔ b ⊔ ℓ) ∃! _≈_ B = ∃ λ x → B x × (∀ {y} → B y → x ≈ y) ------------------------------------------------------------------------ -- Functions -- Sometimes the first component can be inferred. -,_ : ∀ {a b} {A : Set a} {B : A → Set b} {x} → B x → ∃ B -, y = _ , y <_,_> : ∀ {a b c} {A : Set a} {B : A → Set b} {C : ∀ {x} → B x → Set c} (f : (x : A) → B x) → ((x : A) → C (f x)) → ((x : A) → Σ (B x) C) < f , g > x = (f x , g x) map : ∀ {a b p q} {A : Set a} {B : Set b} {P : A → Set p} {Q : B → Set q} → (f : A → B) → (∀ {x} → P x → Q (f x)) → Σ A P → Σ B Q map f g (x , y) = (f x , g y) map₁ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (A → B) → A × C → B × C map₁ f = map f id map₂ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : A → Set c} → (∀ {x} → B x → C x) → Σ A B → Σ A C map₂ f = map id f zip : ∀ {a b c p q r} {A : Set a} {B : Set b} {C : Set c} {P : A → Set p} {Q : B → Set q} {R : C → Set r} → (_∙_ : A → B → C) → (∀ {x y} → P x → Q y → R (x ∙ y)) → Σ A P → Σ B Q → Σ C R zip _∙_ _∘_ (a , p) (b , q) = ((a ∙ b) , (p ∘ q)) swap : ∀ {a b} {A : Set a} {B : Set b} → A × B → B × A swap (x , y) = (y , x) _-×-_ : ∀ {a b i j} {A : Set a} {B : Set b} → (A → B → Set i) → (A → B → Set j) → (A → B → Set _) f -×- g = f -[ _×_ ]- g _-,-_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} → (A → B → C) → (A → B → D) → (A → B → C × D) f -,- g = f -[ _,_ ]- g curry : ∀ {a b c} {A : Set a} {B : A → Set b} {C : Σ A B → Set c} → ((p : Σ A B) → C p) → ((x : A) → (y : B x) → C (x , y)) curry f x y = f (x , y) curry′ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (A × B → C) → (A → B → C) curry′ = curry uncurry : ∀ {a b c} {A : Set a} {B : A → Set b} {C : Σ A B → Set c} → ((x : A) → (y : B x) → C (x , y)) → ((p : Σ A B) → C p) uncurry f (x , y) = f x y uncurry′ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (A → B → C) → (A × B → C) uncurry′ = uncurry
28.051852
93
0.374175
3171b843d33d9e612be32cfa102d766bc60c5c3c
512
agda
Agda
list-test.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
29
2019-02-06T13:09:31.000Z
2022-03-04T15:05:12.000Z
list-test.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
8
2018-07-09T22:53:38.000Z
2022-03-22T03:43:34.000Z
list-test.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
17
2018-12-03T22:38:15.000Z
2021-11-28T20:13:21.000Z
module list-test where open import bool open import list open import nat open import list-to-string open import bool-to-string open import eq test1 : 𝕃 𝔹 test1 = tt :: tt :: tt :: [] test2 : 𝕃 𝔹 test2 = ff :: ff :: [] test3 = test1 ++ test2 test-lem : test3 ≡ tt :: tt :: tt :: ff :: ff :: [] test-lem = refl test-lem2 : reverse test3 ≡ ff :: ff :: tt :: tt :: tt :: [] test-lem2 = refl test3-string = 𝕃-to-string 𝔹-to-string ", " test3 test4-even = filter is-even (1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: [])
19.692308
67
0.589844
ad0d7315b3ce395e32e8db28346acd58ed00b3bc
2,573
agda
Agda
src/Categories/Category/Construction/Kleisli.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
src/Categories/Category/Construction/Kleisli.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
src/Categories/Category/Construction/Kleisli.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Categories.Category.Construction.Kleisli where open import Level open import Categories.Category open import Categories.Functor using (Functor; module Functor) open import Categories.NaturalTransformation hiding (id) open import Categories.Monad import Categories.Morphism.Reasoning as MR private variable o ℓ e : Level Kleisli : {𝒞 : Category o ℓ e} → Monad 𝒞 → Category o ℓ e Kleisli {𝒞 = 𝒞} M = record { Obj = Obj ; _⇒_ = λ A B → (A ⇒ F₀ B) ; _≈_ = _≈_ ; _∘_ = λ f g → (μ.η _ ∘ F₁ f) ∘ g ; id = η.η _ ; assoc = assoc′ ; sym-assoc = Equiv.sym assoc′ ; identityˡ = identityˡ′ ; identityʳ = identityʳ′ ; identity² = identity²′ ; equiv = equiv ; ∘-resp-≈ = λ f≈h g≈i → ∘-resp-≈ (∘-resp-≈ʳ (F-resp-≈ f≈h)) g≈i } where module M = Monad M open M using (μ; η; F) open Functor F open Category 𝒞 open HomReasoning open MR 𝒞 -- shorthands to make the proofs nicer F≈ = F-resp-≈ assoc′ : ∀ {A B C D} {f : A ⇒ F₀ B} {g : B ⇒ F₀ C} {h : C ⇒ F₀ D} → (μ.η D ∘ (F₁ ((μ.η D ∘ F₁ h) ∘ g))) ∘ f ≈ (μ.η D ∘ F₁ h) ∘ ((μ.η C ∘ F₁ g) ∘ f) assoc′ {A} {B} {C} {D} {f} {g} {h} = begin (μ.η D ∘ F₁ ((μ.η D ∘ F₁ h) ∘ g)) ∘ f ≈⟨ assoc ⟩ μ.η D ∘ (F₁ ((μ.η D ∘ F₁ h) ∘ g) ∘ f) ≈⟨ refl⟩∘⟨ (F≈ assoc ⟩∘⟨refl ) ⟩ μ.η D ∘ (F₁ (μ.η D ∘ (F₁ h ∘ g)) ∘ f) ≈⟨ refl⟩∘⟨ (homomorphism ⟩∘⟨refl) ⟩ μ.η D ∘ ((F₁ (μ.η D) ∘ F₁ (F₁ h ∘ g)) ∘ f) ≈⟨ refl⟩∘⟨ assoc ○ sym-assoc ⟩ (μ.η D ∘ F₁ (μ.η D)) ∘ (F₁ (F₁ h ∘ g) ∘ f) ≈⟨ M.assoc ⟩∘⟨refl ○ assoc ⟩ μ.η D ∘ (μ.η (F₀ D) ∘ F₁ (F₁ h ∘ g) ∘ f) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ homomorphism ⟩∘⟨refl ⟩ μ.η D ∘ μ.η (F₀ D) ∘ (F₁ (F₁ h) ∘ F₁ g) ∘ f ≈⟨ refl⟩∘⟨ center⁻¹ (μ.commute h) Equiv.refl ⟩ μ.η D ∘ ((F₁ h ∘ μ.η C) ∘ F₁ g ∘ f) ≈⟨ refl⟩∘⟨ center Equiv.refl ⟩ μ.η D ∘ (F₁ h ∘ (μ.η C ∘ F₁ g) ∘ f) ≈⟨ sym-assoc ⟩ (μ.η D ∘ F₁ h) ∘ ((μ.η C ∘ F₁ g) ∘ f) ∎ identityˡ′ : ∀ {A B} {f : A ⇒ F₀ B} → (μ.η B ∘ F₁ (η.η B)) ∘ f ≈ f identityˡ′ {A} {B} {f} = elimˡ M.identityˡ identityʳ′ : ∀ {A B} {f : A ⇒ F₀ B} → (μ.η B ∘ F₁ f) ∘ η.η A ≈ f identityʳ′ {A} {B} {f} = begin (μ.η B ∘ F₁ f) ∘ η.η A ≈⟨ assoc ⟩ μ.η B ∘ (F₁ f ∘ η.η A) ≈˘⟨ refl⟩∘⟨ η.commute f ⟩ μ.η B ∘ (η.η (F₀ B) ∘ f) ≈⟨ sym-assoc ⟩ (μ.η B ∘ η.η (F₀ B)) ∘ f ≈⟨ elimˡ M.identityʳ ⟩ f ∎ identity²′ : {A : Obj} → (μ.η A ∘ F₁ (η.η A)) ∘ η.η A ≈ η.η A identity²′ = elimˡ M.identityˡ
35.736111
98
0.467936
2f0d3ee388ad2f7d5533ec83970bc8fc7eb05ad6
4,461
agda
Agda
Numbers/Modulo/Addition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Numbers/Modulo/Addition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Numbers/Modulo/Addition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} -- These are explicitly with-K, because we currently encode an element of Zn as -- a natural together with a proof that it is small. open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Semirings.Definition open import Orders.Total.Definition open import Numbers.Modulo.Definition open import Numbers.Modulo.ModuloFunction open import Numbers.Naturals.Order.Lemmas module Numbers.Modulo.Addition where open TotalOrder ℕTotalOrder _+n_ : {n : ℕ} .(pr : 0 <N n) → ℤn n pr → ℤn n pr → ℤn n pr _+n_ {n} pr a b = record { x = mod n pr (ℤn.x a +N ℤn.x b) ; xLess = mod<N pr _ } plusZnIdentityRight : {n : ℕ} → .(pr : 0 <N n) → (a : ℤn n pr) → (_+n_ pr a record { x = 0 ; xLess = pr }) ≡ a plusZnIdentityRight 0<n record { x = x ; xLess = xLess } rewrite Semiring.sumZeroRight ℕSemiring x = equalityZn (modIsMod 0<n x (<NProp xLess)) plusZnIdentityLeft : {n : ℕ} → .(pr : 0 <N n) → (a : ℤn n pr) → _+n_ pr (record { x = 0 ; xLess = pr }) a ≡ a plusZnIdentityLeft 0<n record { x = x ; xLess = xLess } = equalityZn (modIsMod 0<n x (<NProp xLess)) plusZnCommutative : {n : ℕ} → .(pr : 0 <N n) → (a b : ℤn n pr) → _+n_ pr a b ≡ _+n_ pr b a plusZnCommutative {n} 0<n a b = equalityZn (applyEquality (mod n 0<n) (Semiring.commutative ℕSemiring (ℤn.x a) _)) plusZnAssociative' : {n : ℕ} → .(pr : 0 <N n) → {a b c : ℕ} → (a <N n) → (b <N n) → (c <N n) → mod n pr ((mod n pr (a +N b)) +N c) ≡ mod n pr (a +N (mod n pr (b +N c))) plusZnAssociative' 0<n {a} {b} {c} a<n b<n c<n with modAddition 0<n a<n b<n plusZnAssociative' {n} 0<n {a} {b} {c} a<n b<n c<n | inl a+b=mod with modAddition 0<n b<n c<n ... | inl b+c=mod rewrite equalityCommutative (a+b=mod) | equalityCommutative (b+c=mod) = applyEquality (mod _ 0<n) (equalityCommutative (Semiring.+Associative ℕSemiring a b c)) ... | inr b+c=n+mod rewrite equalityCommutative (a+b=mod) | equalityCommutative (modAnd+n 0<n (a +N mod _ 0<n (b +N c))) | Semiring.+Associative ℕSemiring n a (mod _ 0<n (b +N c)) | Semiring.commutative ℕSemiring n a | equalityCommutative (Semiring.+Associative ℕSemiring a n (mod _ 0<n (b +N c))) | equalityCommutative b+c=n+mod = applyEquality (mod _ 0<n) (equalityCommutative (Semiring.+Associative ℕSemiring a b c)) plusZnAssociative' 0<n {a} {b} {c} a<n b<n c<n | inr a+b=n+mod with modAddition 0<n b<n c<n plusZnAssociative' {n} 0<n {a} {b} {c} a<n b<n c<n | inr a+b=n+mod | inl b+c=mod rewrite equalityCommutative b+c=mod | equalityCommutative (modAnd+n 0<n (mod _ 0<n (a +N b) +N c)) | Semiring.+Associative ℕSemiring n (mod _ 0<n (a +N b)) c | equalityCommutative a+b=n+mod = applyEquality (mod _ 0<n) (equalityCommutative (Semiring.+Associative ℕSemiring a b c)) plusZnAssociative' {n} 0<n {a} {b} {c} a<n b<n c<n | inr a+b=n+mod | inr b+c=n+mod rewrite equalityCommutative (modAnd+n 0<n ((mod _ 0<n (a +N b)) +N c)) | equalityCommutative (modAnd+n 0<n (a +N mod _ 0<n (b +N c))) | Semiring.+Associative ℕSemiring n (mod _ 0<n (a +N b)) c | equalityCommutative (a+b=n+mod) | Semiring.commutative ℕSemiring a (mod n 0<n (b +N c)) | Semiring.+Associative ℕSemiring n (mod n 0<n (b +N c)) a | equalityCommutative b+c=n+mod | Semiring.commutative ℕSemiring (b +N c) a = applyEquality (mod _ 0<n) (equalityCommutative (Semiring.+Associative ℕSemiring a b c)) plusZnAssociative : {n : ℕ} → .(pr : 0 <N n) → (a b c : ℤn n pr) → _+n_ pr (_+n_ pr a b) c ≡ _+n_ pr a (_+n_ pr b c) plusZnAssociative {succ n} 0<sn record { x = a ; xLess = aLess } record { x = b ; xLess = bLess } record { x = c ; xLess = cLess } = equalityZn t where ma = mod (succ n) 0<sn a mb = mod (succ n) 0<sn b mc = mod (succ n) 0<sn c v : mod (succ n) 0<sn ((mod (succ n) 0<sn (ma +N mb)) +N mc) ≡ mod (succ n) 0<sn (ma +N mod (succ n) 0<sn (mb +N mc)) v = plusZnAssociative' 0<sn (mod<N 0<sn a) (mod<N 0<sn b) (mod<N 0<sn c) u : mod (succ n) 0<sn ((mod (succ n) 0<sn (mod (succ n) 0<sn a +N (mod (succ n) 0<sn b))) +N c) ≡ mod (succ n) 0<sn (a +N mod (succ n) 0<sn ((mod (succ n) 0<sn b) +N (mod (succ n) 0<sn c))) u rewrite equalityCommutative (modIsMod 0<sn c (<NProp cLess)) | equalityCommutative (modIsMod 0<sn a (<NProp aLess)) | modIdempotent 0<sn a | modIdempotent 0<sn c = v t : mod (succ n) 0<sn (mod (succ n) 0<sn (a +N b) +N c) ≡ mod (succ n) 0<sn (a +N mod (succ n) 0<sn (b +N c)) t rewrite modExtracts {succ n} 0<sn a b | modExtracts {succ n} 0<sn b c = u
89.22
590
0.643129
227a3fffe974f902edba3ffe9546b418a9e9022c
1,285
agda
Agda
Cubical/Algebra/CommRing/Instances/UnivariatePoly.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Instances/UnivariatePoly.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Instances/UnivariatePoly.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.Instances.UnivariatePoly where open import Cubical.Foundations.Prelude open import Cubical.Algebra.CommRing open import Cubical.Algebra.Polynomials.Univariate.Base open import Cubical.Algebra.Polynomials.Univariate.Properties private variable ℓ : Level UnivariatePoly : (CommRing ℓ) → CommRing ℓ UnivariatePoly R = (PolyMod.Poly R) , str where open CommRingStr --(snd R) str : CommRingStr (PolyMod.Poly R) 0r str = PolyModTheory.0P R 1r str = PolyModTheory.1P R _+_ str = PolyModTheory._Poly+_ R _·_ str = PolyModTheory._Poly*_ R - str = PolyModTheory.Poly- R isCommRing str = makeIsCommRing (PolyMod.isSetPoly R) (PolyModTheory.Poly+Assoc R) (PolyModTheory.Poly+Rid R) (PolyModTheory.Poly+Inverses R) (PolyModTheory.Poly+Comm R) (PolyModTheory.Poly*Associative R) (PolyModTheory.Poly*Rid R) (PolyModTheory.Poly*LDistrPoly+ R) (PolyModTheory.Poly*Commutative R)
37.794118
72
0.565759
57d63313a256a4144162edcd53e05b6366695dc3
798
agda
Agda
focus-formation.agda
hazelgrove/hazel-palette-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
4
2020-10-04T06:45:06.000Z
2021-12-19T15:38:31.000Z
focus-formation.agda
hazelgrove/hazel-palette-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
9
2020-09-30T20:27:56.000Z
2020-10-20T20:44:13.000Z
focus-formation.agda
hazelgrove/hazelnut-livelits-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
null
null
null
open import core module focus-formation where -- every ε is an evaluation context -- trivially, here, since we don't -- include any of the premises in red brackets about finality focus-formation : ∀{d d' ε} → d == ε ⟦ d' ⟧ → ε evalctx focus-formation FHOuter = ECDot focus-formation (FHAp1 sub) = ECAp1 (focus-formation sub) focus-formation (FHAp2 sub) = ECAp2 (focus-formation sub) focus-formation (FHNEHole sub) = ECNEHole (focus-formation sub) focus-formation (FHCast sub) = ECCast (focus-formation sub) focus-formation (FHFailedCast x) = ECFailedCast (focus-formation x) focus-formation (FHFst sub) = ECFst focus-formation (FHSnd sub) = ECSnd focus-formation (FHPair1 sub) = ECPair1 (focus-formation sub) focus-formation (FHPair2 sub) = ECPair2 (focus-formation sub)
46.941176
72
0.72807
13880ea752bf3453125af2bb6d8bbb7328a46cdb
13,055
agda
Agda
test/asset/agda-stdlib-1.0/Data/Product/Relation/Binary/Pointwise/NonDependent.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Product/Relation/Binary/Pointwise/NonDependent.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Product/Relation/Binary/Pointwise/NonDependent.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Pointwise products of binary relations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Product.Relation.Binary.Pointwise.NonDependent where open import Data.Product as Prod open import Data.Sum open import Data.Unit.Base using (⊤) open import Function open import Function.Equality as F using (_⟶_; _⟨$⟩_) open import Function.Equivalence as Eq using (Equivalence; _⇔_; module Equivalence) open import Function.Injection as Inj using (Injection; _↣_; module Injection) open import Function.Inverse as Inv using (Inverse; _↔_; module Inverse) open import Function.LeftInverse as LeftInv using (LeftInverse; _↞_; _LeftInverseOf_; module LeftInverse) open import Function.Related open import Function.Surjection as Surj using (Surjection; _↠_; module Surjection) import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Product open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_) module _ {a₁ a₂ ℓ₁ ℓ₂} {A₁ : Set a₁} {A₂ : Set a₂} where ------------------------------------------------------------------------ -- Pointwise lifting Pointwise : Rel A₁ ℓ₁ → Rel A₂ ℓ₂ → Rel (A₁ × A₂) _ Pointwise _∼₁_ _∼₂_ = (_∼₁_ on proj₁) -×- (_∼₂_ on proj₂) ------------------------------------------------------------------------ -- Pointwise preserves many relational properties ×-reflexive : ∀ {_≈₁_ _∼₁_ _≈₂_ _∼₂_} → _≈₁_ ⇒ _∼₁_ → _≈₂_ ⇒ _∼₂_ → (Pointwise _≈₁_ _≈₂_) ⇒ (Pointwise _∼₁_ _∼₂_) ×-reflexive refl₁ refl₂ (x∼y₁ , x∼y₂) = refl₁ x∼y₁ , refl₂ x∼y₂ ×-refl : ∀ {_∼₁_ _∼₂_} → Reflexive _∼₁_ → Reflexive _∼₂_ → Reflexive (Pointwise _∼₁_ _∼₂_) ×-refl refl₁ refl₂ = refl₁ , refl₂ ×-irreflexive₁ : ∀ {_≈₁_ _<₁_ _≈₂_ _<₂_} → Irreflexive _≈₁_ _<₁_ → Irreflexive (Pointwise _≈₁_ _≈₂_) (Pointwise _<₁_ _<₂_) ×-irreflexive₁ ir x≈y x<y = ir (proj₁ x≈y) (proj₁ x<y) ×-irreflexive₂ : ∀ {_≈₁_ _<₁_ _≈₂_ _<₂_} → Irreflexive _≈₂_ _<₂_ → Irreflexive (Pointwise _≈₁_ _≈₂_) (Pointwise _<₁_ _<₂_) ×-irreflexive₂ ir x≈y x<y = ir (proj₂ x≈y) (proj₂ x<y) ×-symmetric : ∀ {_∼₁_ _∼₂_} → Symmetric _∼₁_ → Symmetric _∼₂_ → Symmetric (Pointwise _∼₁_ _∼₂_) ×-symmetric sym₁ sym₂ (x∼y₁ , x∼y₂) = sym₁ x∼y₁ , sym₂ x∼y₂ ×-transitive : ∀ {_∼₁_ _∼₂_} → Transitive _∼₁_ → Transitive _∼₂_ → Transitive (Pointwise _∼₁_ _∼₂_) ×-transitive trans₁ trans₂ x∼y y∼z = trans₁ (proj₁ x∼y) (proj₁ y∼z) , trans₂ (proj₂ x∼y) (proj₂ y∼z) ×-antisymmetric : ∀ {_≈₁_ _≤₁_ _≈₂_ _≤₂_} → Antisymmetric _≈₁_ _≤₁_ → Antisymmetric _≈₂_ _≤₂_ → Antisymmetric (Pointwise _≈₁_ _≈₂_) (Pointwise _≤₁_ _≤₂_) ×-antisymmetric antisym₁ antisym₂ (x≤y₁ , x≤y₂) (y≤x₁ , y≤x₂) = (antisym₁ x≤y₁ y≤x₁ , antisym₂ x≤y₂ y≤x₂) ×-asymmetric₁ : ∀ {_<₁_ _∼₂_} → Asymmetric _<₁_ → Asymmetric (Pointwise _<₁_ _∼₂_) ×-asymmetric₁ asym₁ x<y y<x = asym₁ (proj₁ x<y) (proj₁ y<x) ×-asymmetric₂ : ∀ {_∼₁_ _<₂_} → Asymmetric _<₂_ → Asymmetric (Pointwise _∼₁_ _<₂_) ×-asymmetric₂ asym₂ x<y y<x = asym₂ (proj₂ x<y) (proj₂ y<x) ×-respects₂ : ∀ {_≈₁_ _∼₁_ _≈₂_ _∼₂_} → _∼₁_ Respects₂ _≈₁_ → _∼₂_ Respects₂ _≈₂_ → (Pointwise _∼₁_ _∼₂_) Respects₂ (Pointwise _≈₁_ _≈₂_) ×-respects₂ {_≈₁_} {_∼₁_} {_≈₂_} {_∼₂_} resp₁ resp₂ = resp¹ , resp² where _∼_ = Pointwise _∼₁_ _∼₂_ _≈_ = Pointwise _≈₁_ _≈₂_ resp¹ : ∀ {x} → (x ∼_) Respects _≈_ resp¹ y≈y' x∼y = proj₁ resp₁ (proj₁ y≈y') (proj₁ x∼y) , proj₁ resp₂ (proj₂ y≈y') (proj₂ x∼y) resp² : ∀ {y} → (_∼ y) Respects _≈_ resp² x≈x' x∼y = proj₂ resp₁ (proj₁ x≈x') (proj₁ x∼y) , proj₂ resp₂ (proj₂ x≈x') (proj₂ x∼y) ×-total : ∀ {_∼₁_ _∼₂_} → Symmetric _∼₁_ → Total _∼₁_ → Total _∼₂_ → Total (Pointwise _∼₁_ _∼₂_) ×-total sym₁ total₁ total₂ (x₁ , x₂) (y₁ , y₂) with total₁ x₁ y₁ | total₂ x₂ y₂ ... | inj₁ x₁∼y₁ | inj₁ x₂∼y₂ = inj₁ ( x₁∼y₁ , x₂∼y₂) ... | inj₁ x₁∼y₁ | inj₂ y₂∼x₂ = inj₂ (sym₁ x₁∼y₁ , y₂∼x₂) ... | inj₂ y₁∼x₁ | inj₂ y₂∼x₂ = inj₂ ( y₁∼x₁ , y₂∼x₂) ... | inj₂ y₁∼x₁ | inj₁ x₂∼y₂ = inj₁ (sym₁ y₁∼x₁ , x₂∼y₂) ×-decidable : ∀ {_∼₁_ _∼₂_} → Decidable _∼₁_ → Decidable _∼₂_ → Decidable (Pointwise _∼₁_ _∼₂_) ×-decidable _≟₁_ _≟₂_ (x₁ , x₂) (y₁ , y₂) = (x₁ ≟₁ y₁) ×-dec (x₂ ≟₂ y₂) -- Some collections of properties which are preserved by ×-Rel. ×-isEquivalence : ∀ {_≈₁_ _≈₂_} → IsEquivalence _≈₁_ → IsEquivalence _≈₂_ → IsEquivalence (Pointwise _≈₁_ _≈₂_) ×-isEquivalence {_≈₁_ = _≈₁_} {_≈₂_ = _≈₂_} eq₁ eq₂ = record { refl = ×-refl {_∼₁_ = _≈₁_} {_∼₂_ = _≈₂_} (refl eq₁) (refl eq₂) ; sym = ×-symmetric {_∼₁_ = _≈₁_} {_∼₂_ = _≈₂_} (sym eq₁) (sym eq₂) ; trans = ×-transitive {_∼₁_ = _≈₁_} {_∼₂_ = _≈₂_} (trans eq₁) (trans eq₂) } where open IsEquivalence ×-isDecEquivalence : ∀ {_≈₁_ _≈₂_} → IsDecEquivalence _≈₁_ → IsDecEquivalence _≈₂_ → IsDecEquivalence (Pointwise _≈₁_ _≈₂_) ×-isDecEquivalence eq₁ eq₂ = record { isEquivalence = ×-isEquivalence (isEquivalence eq₁) (isEquivalence eq₂) ; _≟_ = ×-decidable (_≟_ eq₁) (_≟_ eq₂) } where open IsDecEquivalence ×-isPreorder : ∀ {_≈₁_ _∼₁_ _≈₂_ _∼₂_} → IsPreorder _≈₁_ _∼₁_ → IsPreorder _≈₂_ _∼₂_ → IsPreorder (Pointwise _≈₁_ _≈₂_) (Pointwise _∼₁_ _∼₂_) ×-isPreorder {_∼₁_ = _∼₁_} {_∼₂_ = _∼₂_} pre₁ pre₂ = record { isEquivalence = ×-isEquivalence (isEquivalence pre₁) (isEquivalence pre₂) ; reflexive = ×-reflexive {_∼₁_ = _∼₁_} {_∼₂_ = _∼₂_} (reflexive pre₁) (reflexive pre₂) ; trans = ×-transitive {_∼₁_ = _∼₁_} {_∼₂_ = _∼₂_} (trans pre₁) (trans pre₂) } where open IsPreorder ×-isPartialOrder : ∀ {_≈₁_ _≤₁_ _≈₂_ _≤₂_} → IsPartialOrder _≈₁_ _≤₁_ → IsPartialOrder _≈₂_ _≤₂_ → IsPartialOrder (Pointwise _≈₁_ _≈₂_) (Pointwise _≤₁_ _≤₂_) ×-isPartialOrder {_≤₁_ = _≤₁_} {_≤₂_ = _≤₂_} po₁ po₂ = record { isPreorder = ×-isPreorder (isPreorder po₁) (isPreorder po₂) ; antisym = ×-antisymmetric {_≤₁_ = _≤₁_} {_≤₂_ = _≤₂_} (antisym po₁) (antisym po₂) } where open IsPartialOrder ×-isStrictPartialOrder : ∀ {_≈₁_ _<₁_ _≈₂_ _<₂_} → IsStrictPartialOrder _≈₁_ _<₁_ → IsStrictPartialOrder _≈₂_ _<₂_ → IsStrictPartialOrder (Pointwise _≈₁_ _≈₂_) (Pointwise _<₁_ _<₂_) ×-isStrictPartialOrder {_<₁_ = _<₁_} {_≈₂_ = _≈₂_} {_<₂_ = _<₂_} spo₁ spo₂ = record { isEquivalence = ×-isEquivalence (isEquivalence spo₁) (isEquivalence spo₂) ; irrefl = ×-irreflexive₁ {_<₁_ = _<₁_} {_≈₂_} {_<₂_} (irrefl spo₁) ; trans = ×-transitive {_∼₁_ = _<₁_} {_<₂_} (trans spo₁) (trans spo₂) ; <-resp-≈ = ×-respects₂ (<-resp-≈ spo₁) (<-resp-≈ spo₂) } where open IsStrictPartialOrder ------------------------------------------------------------------------ -- "Packages" can also be combined. module _ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} where ×-preorder : Preorder ℓ₁ ℓ₂ _ → Preorder ℓ₃ ℓ₄ _ → Preorder _ _ _ ×-preorder p₁ p₂ = record { isPreorder = ×-isPreorder (isPreorder p₁) (isPreorder p₂) } where open Preorder ×-setoid : Setoid ℓ₁ ℓ₂ → Setoid ℓ₃ ℓ₄ → Setoid _ _ ×-setoid s₁ s₂ = record { isEquivalence = ×-isEquivalence (isEquivalence s₁) (isEquivalence s₂) } where open Setoid ×-decSetoid : DecSetoid ℓ₁ ℓ₂ → DecSetoid ℓ₃ ℓ₄ → DecSetoid _ _ ×-decSetoid s₁ s₂ = record { isDecEquivalence = ×-isDecEquivalence (isDecEquivalence s₁) (isDecEquivalence s₂) } where open DecSetoid ×-poset : Poset ℓ₁ ℓ₂ _ → Poset ℓ₃ ℓ₄ _ → Poset _ _ _ ×-poset s₁ s₂ = record { isPartialOrder = ×-isPartialOrder (isPartialOrder s₁) (isPartialOrder s₂) } where open Poset ×-strictPartialOrder : StrictPartialOrder ℓ₁ ℓ₂ _ → StrictPartialOrder ℓ₃ ℓ₄ _ → StrictPartialOrder _ _ _ ×-strictPartialOrder s₁ s₂ = record { isStrictPartialOrder = ×-isStrictPartialOrder (isStrictPartialOrder s₁) (isStrictPartialOrder s₂) } where open StrictPartialOrder -- A piece of infix notation for combining setoids infix 4 _×ₛ_ _×ₛ_ : Setoid ℓ₁ ℓ₂ → Setoid ℓ₃ ℓ₄ → Setoid _ _ _×ₛ_ = ×-setoid ------------------------------------------------------------------------ -- The propositional equality setoid over products can be -- decomposed using ×-Rel module _ {a b} {A : Set a} {B : Set b} where ≡×≡⇒≡ : Pointwise _≡_ _≡_ ⇒ _≡_ {A = A × B} ≡×≡⇒≡ (P.refl , P.refl) = P.refl ≡⇒≡×≡ : _≡_ {A = A × B} ⇒ Pointwise _≡_ _≡_ ≡⇒≡×≡ P.refl = (P.refl , P.refl) Pointwise-≡↔≡ : Inverse (P.setoid A ×ₛ P.setoid B) (P.setoid (A × B)) Pointwise-≡↔≡ = record { to = record { _⟨$⟩_ = id; cong = ≡×≡⇒≡ } ; from = record { _⟨$⟩_ = id; cong = ≡⇒≡×≡ } ; inverse-of = record { left-inverse-of = λ _ → (P.refl , P.refl) ; right-inverse-of = λ _ → P.refl } } ≡?×≡?⇒≡? : Decidable {A = A} _≡_ → Decidable {A = B} _≡_ → Decidable {A = A × B} _≡_ ≡?×≡?⇒≡? ≟₁ ≟₂ p q = Dec.map′ ≡×≡⇒≡ ≡⇒≡×≡ (×-decidable ≟₁ ≟₂ p q) ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.15 infixr 2 _×-Rel_ _×-Rel_ = Pointwise {-# WARNING_ON_USAGE _×-Rel_ "Warning: _×-Rel_ was deprecated in v0.15. Please use Pointwise instead." #-} Rel↔≡ = Pointwise-≡↔≡ {-# WARNING_ON_USAGE Rel↔≡ "Warning: Rel↔≡ was deprecated in v0.15. Please use Pointwise-≡↔≡ instead." #-} _×-reflexive_ = ×-reflexive {-# WARNING_ON_USAGE _×-reflexive_ "Warning: _×-reflexive_ was deprecated in v0.15. Please use ×-reflexive instead." #-} _×-refl_ = ×-refl {-# WARNING_ON_USAGE _×-refl_ "Warning: _×-refl_ was deprecated in v0.15. Please use ×-refl instead." #-} _×-symmetric_ = ×-symmetric {-# WARNING_ON_USAGE _×-symmetric_ "Warning: _×-symmetric_ was deprecated in v0.15. Please use ×-symmetric instead." #-} _×-transitive_ = ×-transitive {-# WARNING_ON_USAGE _×-transitive_ "Warning: _×-transitive_ was deprecated in v0.15. Please use ×-transitive instead." #-} _×-antisymmetric_ = ×-antisymmetric {-# WARNING_ON_USAGE _×-antisymmetric_ "Warning: _×-antisymmetric_ was deprecated in v0.15. Please use ×-antisymmetric instead." #-} _×-≈-respects₂_ = ×-respects₂ {-# WARNING_ON_USAGE _×-≈-respects₂_ "Warning: _×-≈-respects₂_ was deprecated in v0.15. Please use ×-respects₂ instead." #-} _×-decidable_ = ×-decidable {-# WARNING_ON_USAGE _×-decidable_ "Warning: _×-decidable_ was deprecated in v0.15. Please use ×-decidable instead." #-} _×-isEquivalence_ = ×-isEquivalence {-# WARNING_ON_USAGE _×-isEquivalence_ "Warning: _×-isEquivalence_ was deprecated in v0.15. Please use ×-isEquivalence instead." #-} _×-isDecEquivalence_ = ×-isDecEquivalence {-# WARNING_ON_USAGE _×-isDecEquivalence_ "Warning: _×-isDecEquivalence_ was deprecated in v0.15. Please use ×-isDecEquivalence instead." #-} _×-isPreorder_ = ×-isPreorder {-# WARNING_ON_USAGE _×-isPreorder_ "Warning: _×-isPreorder_ was deprecated in v0.15. Please use ×-isPreorder instead." #-} _×-isPartialOrder_ = ×-isPartialOrder {-# WARNING_ON_USAGE _×-isPartialOrder_ "Warning: _×-isPartialOrder_ was deprecated in v0.15. Please use ×-isPartialOrder instead." #-} _×-isStrictPartialOrder_ = ×-isStrictPartialOrder {-# WARNING_ON_USAGE _×-isStrictPartialOrder_ "Warning: _×-isStrictPartialOrder_ was deprecated in v0.15. Please use ×-isStrictPartialOrder instead." #-} _×-preorder_ = ×-preorder {-# WARNING_ON_USAGE _×-preorder_ "Warning: _×-preorder_ was deprecated in v0.15. Please use ×-preorder instead." #-} _×-setoid_ = ×-setoid {-# WARNING_ON_USAGE _×-setoid_ "Warning: _×-setoid_ was deprecated in v0.15. Please use ×-setoid instead." #-} _×-decSetoid_ = ×-decSetoid {-# WARNING_ON_USAGE _×-decSetoid_ "Warning: _×-decSetoid_ was deprecated in v0.15. Please use ×-decSetoid instead." #-} _×-poset_ = ×-poset {-# WARNING_ON_USAGE _×-poset_ "Warning: _×-poset_ was deprecated in v0.15. Please use ×-poset instead." #-} _×-strictPartialOrder_ = ×-strictPartialOrder {-# WARNING_ON_USAGE _×-strictPartialOrder_ "Warning: _×-strictPartialOrder_ was deprecated in v0.15. Please use ×-strictPartialOrder instead." #-} _×-≟_ = ≡?×≡?⇒≡? {-# WARNING_ON_USAGE _×-≟_ "Warning: _×-≟_ was deprecated in v0.15. Please use ≡?×≡?⇒≡? instead." #-}
36.263889
72
0.587744
3dcb82d10697c36d3f5ab1355a2d0a10a1dbffac
543
agda
Agda
test/Fail/Issue602.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/Fail/Issue602.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Fail/Issue602.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
{-# OPTIONS --guardedness-preserving-type-constructors #-} module Issue602 where infix 1000 ♯_ postulate ∞ : ∀ {a} (A : Set a) → Set a ♯_ : ∀ {a} {A : Set a} → A → ∞ A ♭ : ∀ {a} {A : Set a} → ∞ A → A {-# BUILTIN INFINITY ∞ #-} {-# BUILTIN SHARP ♯_ #-} {-# BUILTIN FLAT ♭ #-} data CoNat : Set0 where z : CoNat s : ∞ CoNat → CoNat record A : Set2 where field f : Set1 record B (a : ∞ A) : Set1 where field f : A.f (♭ a) postulate a : A e : CoNat → A e z = a e (s n) = record { f = B (♯ e (♭ n)) }
15.083333
58
0.497238
a1b0b94f2c188784bd9bea34c7e109c38f49d218
2,929
agda
Agda
src/fot/GroupTheory/PropertiesATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/GroupTheory/PropertiesATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/GroupTheory/PropertiesATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Group theory properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module GroupTheory.PropertiesATP where open import GroupTheory.Base ------------------------------------------------------------------------------ postulate leftCancellation : ∀ {a b c} → a · b ≡ a · c → b ≡ c {-# ATP prove leftCancellation #-} postulate rightIdentity : ∀ a → a · ε ≡ a {-# ATP prove rightIdentity #-} postulate rightInverse : ∀ a → a · a ⁻¹ ≡ ε {-# ATP prove rightInverse #-} postulate rightCancellation : ∀ {a b c} → b · a ≡ c · a → b ≡ c {-# ATP prove rightCancellation #-} postulate y≡x⁻¹[xy] : ∀ a b → b ≡ a ⁻¹ · (a · b) {-# ATP prove y≡x⁻¹[xy] #-} postulate x≡[xy]y⁻¹ : ∀ a b → a ≡ (a · b) · b ⁻¹ {-# ATP prove x≡[xy]y⁻¹ #-} postulate rightIdentityUnique : ∀ r → (∀ a → a · r ≡ a) → r ≡ ε {-# ATP prove rightIdentityUnique #-} -- A more appropiate version to be used in the proofs. postulate rightIdentityUnique' : ∀ a r → a · r ≡ a → r ≡ ε {-# ATP prove rightIdentityUnique' #-} postulate leftIdentityUnique : ∀ l → (∀ a → l · a ≡ a) → l ≡ ε {-# ATP prove leftIdentityUnique #-} -- A more appropiate version to be used in the proofs. postulate leftIdentityUnique' : ∀ a l → l · a ≡ a → l ≡ ε {-# ATP prove leftIdentityUnique' #-} postulate rightInverseUnique : ∀ {a} → ∃[ r ] (a · r ≡ ε) ∧ (∀ r' → a · r' ≡ ε → r ≡ r') {-# ATP prove rightInverseUnique #-} -- A more appropiate version to be used in the proofs. postulate rightInverseUnique' : ∀ {a r} → a · r ≡ ε → a ⁻¹ ≡ r {-# ATP prove rightInverseUnique' #-} postulate leftInverseUnique : ∀ {a} → ∃[ l ] (l · a ≡ ε) ∧ (∀ l' → l' · a ≡ ε → l ≡ l') {-# ATP prove leftInverseUnique #-} -- A more appropiate version to be used in the proofs. postulate leftInverseUnique' : ∀ {a l} → l · a ≡ ε → a ⁻¹ ≡ l {-# ATP prove leftInverseUnique' #-} postulate ⁻¹-involutive : ∀ a → a ⁻¹ ⁻¹ ≡ a {-# ATP prove ⁻¹-involutive #-} postulate identityInverse : ε ⁻¹ ≡ ε {-# ATP prove identityInverse #-} postulate inverseDistributive : ∀ a b → (a · b) ⁻¹ ≡ b ⁻¹ · a ⁻¹ {-# ATP prove inverseDistributive #-} -- The equation xa = b has an unique solution. postulate xa≡b-uniqueSolution : ∀ a b → ∃[ x ] (x · a ≡ b) ∧ (∀ x' → x' · a ≡ b → x ≡ x') {-# ATP prove xa≡b-uniqueSolution #-} -- The equation ax = b has an unique solution. postulate ax≡b-uniqueSolution : ∀ a b → ∃[ x ] (a · x ≡ b) ∧ (∀ x' → a · x' ≡ b → x ≡ x') {-# ATP prove ax≡b-uniqueSolution #-} -- If the square of every element is the identity, the system is -- commutative. From: TPTP 6.4.0 problem GRP/GRP001-2.p. postulate x²≡ε→comm : (∀ a → a · a ≡ ε) → ∀ {b c d} → b · c ≡ d → c · b ≡ d {-# ATP prove x²≡ε→comm #-}
33.666667
81
0.538409
2e99df9de532ca0021bdb82c2ac3f6543e323c99
7,638
agda
Agda
Tutorials/Wednesday.agda
poncev/agda-bcam
ccd2a78642e93754011deffbe85e9ef5071e4cb7
[ "MIT" ]
27
2021-09-23T17:59:21.000Z
2022-01-03T22:53:51.000Z
Tutorials/Wednesday.agda
poncev/agda-bcam
ccd2a78642e93754011deffbe85e9ef5071e4cb7
[ "MIT" ]
null
null
null
Tutorials/Wednesday.agda
poncev/agda-bcam
ccd2a78642e93754011deffbe85e9ef5071e4cb7
[ "MIT" ]
2
2021-11-23T08:50:13.000Z
2021-11-24T10:50:55.000Z
{-# OPTIONS --allow-unsolved-metas #-} open import Tutorials.Monday-Complete open import Tutorials.Tuesday open List using (List; []; _∷_; _++_) open Vec using (Vec; []; _∷_; _!_) open Fin using (Fin; zero; suc) module Tutorials.Wednesday where ----------- -- Interfaces, isomorphisms ----------- module Isomorphism where -- Why can we import _,_ from both modules without resulting in a nameclash? open Simple using (_⊎_; _×_; _,_; inl; inr) open Product using (Σ-syntax; Σ-⊎; Σ-×; Π-×; Π-→; _,_) infix 2 _≅_ record _≅_ (A B : Set) : Set where constructor Mk≅ field to : A → B from : B → A from∘to : ∀ a → from (to a) ≡ a to∘from : ∀ b → to (from b) ≡ b open _≅_ -- We can use copattern matching to construct a record by defining how to construct each of its fields Σ-⊎-≅ : Σ-⊎ A B ≅ A ⊎ B Σ-⊎-≅ = {!!} Σ-×-≅ : Σ-× A B ≅ A × B Σ-×-≅ = {!!} Π-→-≅ : Π-→ A B ≅ (A → B) to Π-→-≅ = {!!} from Π-→-≅ = {!!} -- Needs η laws for functions (∀ x → f x) ≡ f from∘to Π-→-≅ = {!!} to∘from Π-→-≅ = {!!} -- The following isomorphism needs of function extensionality -- Function extensionality claims that if two functions give the same output on the same input, then they are equal -- This does not hold internally in Agda and we therefore need to postulate it as an axiom postulate extensionality : {P : A → Set} {f g : (a : A) → P a} → (∀ x → f x ≡ g x) → f ≡ g Π-×-≅ : Π-× A B ≅ A × B Π-×-≅ = {!!} curry : Π-→ A (Π-→ B C) → Π-→ (Σ-× A B) C curry f (a , b) = f a b uncurry : Π-→ (Σ-× A B) C → Π-→ A (Π-→ B C) uncurry f a b = f (a , b) curry-uncurry : Π-→ A (Π-→ B C) ≅ Π-→ (Σ-× A B) C curry-uncurry = {!!} Fin-≤-≅ : Fin m ≅ Σ[ n ∈ ℕ ] n < m Fin-≤-≅ = {!!} _iso-∘_ : B ≅ C → A ≅ B → A ≅ C x iso-∘ y = {!!} ----------- -- Decidability ----------- module Dec where open Product using (_×_; _,_; fst; snd) open Simple using (¬_) data Dec (A : Set) : Set where yes : A → Dec A no : ¬ A → Dec A DecEq : Set → Set DecEq A = (x y : A) → Dec (x ≡ y) map : (A → B) → (¬ A → B) → Dec A → B map f g (yes x) = f x map f g (no x) = g x infix 5 _×-dec_ _×-dec_ : Dec A → Dec B → Dec (A × B) yes x ×-dec yes y = yes (x , y) yes x ×-dec no ¬y = no (¬y ∘ snd) no ¬x ×-dec B? = no (¬x ∘ fst) _ℕ-≟_ : (n m : ℕ) → Dec (n ≡ m) n ℕ-≟ m = {!!} suc-injective : {i j : Fin n} → _≡_ {A = Fin (suc n)} (suc i) (suc j) → i ≡ j suc-injective refl = refl _Fin-≟_ : (i j : Fin n) → Dec (i ≡ j) zero Fin-≟ zero = yes refl zero Fin-≟ suc j = no λ () suc i Fin-≟ zero = no λ () suc i Fin-≟ suc j = map (yes ∘ cong suc) (no ∘ (λ neq → neq ∘ suc-injective)) (i Fin-≟ j) ∷-injective : {x y : A} {xs ys : List A} → _≡_ {A = List A} (x ∷ xs) (y ∷ ys) → x ≡ y × xs ≡ ys ∷-injective refl = refl , refl List-≟ : (_A-≟_ : (x y : A) → Dec (x ≡ y)) → (xs ys : List A) → Dec (xs ≡ ys) List-≟ _A-≟_ [] [] = yes refl List-≟ _A-≟_ [] (y ∷ ys) = no λ () List-≟ _A-≟_ (x ∷ xs) [] = no λ () List-≟ _A-≟_ (x ∷ xs) (y ∷ ys) = map (yes ∘ Isomorphism.curry (cong₂ _∷_)) (no ∘ (λ neq → neq ∘ ∷-injective)) (x A-≟ y ×-dec List-≟ _A-≟_ xs ys) ----------- -- Interfaces ----------- -- We define what it is to be a monoid on a carrier set C record Monoid (C : Set) : Set where constructor MkMonoid field ε : C _∙_ : C → C → C -- Including the algebraic laws idˡ : (x : C) → ε ∙ x ≡ x idʳ : (x : C) → x ∙ ε ≡ x assoc : (x y z : C) → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z) module MonoidSolver (Symbol : Set) (symbol-≟ : Dec.DecEq Symbol) where -- The syntax for an expression tree of symbolic monoidal operations infixl 20 _‵∙_ infix 25 ‵_ data Expr : Set where ‵ε : Expr ‵_ : Symbol → Expr _‵∙_ : Expr → Expr → Expr -- And define equations on monoids infix 10 _‵≡_ record Eqn : Set where constructor _‵≡_ field lhs : Expr rhs : Expr -- The canonical normal form for expression trees NormalForm : Set NormalForm = List Symbol normalise : Expr → NormalForm normalise ‵ε = [] normalise (‵ x) = x ∷ [] normalise (xs ‵∙ ys) = normalise xs ++ normalise ys module Eval (M : Monoid C) where open Monoid M -- An environment maps symbols to values in the carrier set Env : Set Env = Symbol → C -- Evaluate the syntax in a given environment ⟦_⟧ : Expr → Env → C ⟦ ‵ε ⟧ Γ = ε ⟦ ‵ x ⟧ Γ = Γ x ⟦ x ‵∙ y ⟧ Γ = ⟦ x ⟧ Γ ∙ ⟦ y ⟧ Γ -- Evaluate the normal form in a given environment ⟦_⟧⇓ : NormalForm → Env → C ⟦ [] ⟧⇓ Γ = ε ⟦ x ∷ xs ⟧⇓ Γ = Γ x ∙ ⟦ xs ⟧⇓ Γ -- The evaluation of normal forms distributes over list concatenation ++-homo : ∀ Γ (xs ys : NormalForm) → ⟦ xs ++ ys ⟧⇓ Γ ≡ ⟦ xs ⟧⇓ Γ ∙ ⟦ ys ⟧⇓ Γ ++-homo Γ [] ys = sym (idˡ _) ++-homo Γ (x ∷ xs) ys = begin Γ x ∙ ⟦ xs ++ ys ⟧⇓ Γ ≡⟨ cong (_ ∙_) (++-homo Γ xs ys) ⟩ Γ x ∙ (⟦ xs ⟧⇓ Γ ∙ ⟦ ys ⟧⇓ Γ) ≡⟨ sym (assoc _ _ _) ⟩ (Γ x ∙ ⟦ xs ⟧⇓ Γ) ∙ ⟦ ys ⟧⇓ Γ ∎ -- Normalising and then evaluating the normal form is equal to evaluating the original expression correct : ∀ Γ (expr : Expr) → ⟦ normalise expr ⟧⇓ Γ ≡ ⟦ expr ⟧ Γ correct Γ ‵ε = refl correct Γ (‵ x) = idʳ _ correct Γ (le ‵∙ re) = begin ⟦ normalise le ++ normalise re ⟧⇓ Γ ≡⟨ ++-homo Γ (normalise le) (normalise re) ⟩ ⟦ normalise le ⟧⇓ Γ ∙ ⟦ normalise re ⟧⇓ Γ ≡⟨ cong₂ _∙_ (correct Γ le) (correct Γ re) ⟩ ⟦ le ⟧ Γ ∙ ⟦ re ⟧ Γ ∎ -- We describe what it is to be a solution to an equation -- If both sides normalise to the same symbols in the same order, -- we claim that the monoid laws make the equations hold in any environment Solution : Eqn → Set Solution (lhs ‵≡ rhs) = Dec.map -- Both sides normalise to a common list of symbols, we must now show that the equation holds under any environment (λ _ → ∀ (Γ : Env) → ⟦ lhs ⟧ Γ ≡ ⟦ rhs ⟧ Γ) -- Both sides do *not* normalise to a common list of symbols, we claim only the trivial (λ _ → ⊤) (Dec.List-≟ symbol-≟ (normalise lhs) (normalise rhs)) -- Now that we have described what a solution is, we show that we can provide one solve : (eqn : Eqn) → Solution eqn -- Pattern matching using with makes the goal type compute solve (lhs ‵≡ rhs) with Dec.List-≟ symbol-≟ (normalise lhs) (normalise rhs) solve (lhs ‵≡ rhs) | Dec.no _ = tt solve (lhs ‵≡ rhs) | Dec.yes lhs⇓≡rhs⇓ = λ Γ → begin ⟦ lhs ⟧ Γ ≡⟨ sym (correct Γ lhs) ⟩ ⟦ normalise lhs ⟧⇓ Γ ≡⟨ cong (λ ● → ⟦ ● ⟧⇓ Γ) lhs⇓≡rhs⇓ ⟩ ⟦ normalise rhs ⟧⇓ Γ ≡⟨ correct Γ rhs ⟩ ⟦ rhs ⟧ Γ ∎ open MonoidSolver -- An example instance of a monoid: natural numbers with addition NAT-MONOID : Monoid ℕ Monoid.ε NAT-MONOID = zero Monoid._∙_ NAT-MONOID = _+_ Monoid.idˡ NAT-MONOID = +-idˡ Monoid.idʳ NAT-MONOID = +-idʳ Monoid.assoc NAT-MONOID = +-assoc -- An example usage of the monoid solver -- We first need to "quote" the goal, i.e. describe it in terms of the expression language / syntax -- NAT-MONOID describes how to interpret the syntax back and evaluate the expression into a value of the carrier set eqn₁-auto : (x y z : ℕ) → (0 + x) + y + (y + z) ≡ x + (0 + y + 0) + (y + z + 0) eqn₁-auto x y z = let ‵x = zero ‵y = suc zero ‵z = suc (suc zero) lhs = (‵ε ‵∙ ‵ ‵x) ‵∙ ‵ ‵y ‵∙ (‵ ‵y ‵∙ ‵ ‵z) rhs = ‵ ‵x ‵∙ (‵ε ‵∙ ‵ ‵y ‵∙ ‵ε) ‵∙ (‵ ‵y ‵∙ ‵ ‵z ‵∙ ‵ε) in Eval.solve (Fin 3) Dec._Fin-≟_ NAT-MONOID (lhs ‵≡ rhs) λ where zero → x (suc zero) → y (suc (suc zero)) → z
30.798387
123
0.530505
41f42ed873a385ff888472abc6b590d3b833a364
1,659
agda
Agda
src/Constants.agda
nad/chi
30966769b8cbd46aa490b6964a4aa0e67a7f9ab1
[ "MIT" ]
2
2020-05-21T22:58:07.000Z
2020-10-20T16:27:00.000Z
src/Constants.agda
nad/chi
30966769b8cbd46aa490b6964a4aa0e67a7f9ab1
[ "MIT" ]
1
2020-05-21T23:29:54.000Z
2020-06-08T11:08:25.000Z
src/Constants.agda
nad/chi
30966769b8cbd46aa490b6964a4aa0e67a7f9ab1
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Various constants ------------------------------------------------------------------------ open import Atom module Constants (atoms : χ-atoms) where open χ-atoms atoms c-zero : Const c-zero = C.name 0 c-suc : Const c-suc = C.name 1 c-nil : Const c-nil = C.name 2 c-cons : Const c-cons = C.name 3 c-apply : Const c-apply = C.name 4 c-case : Const c-case = C.name 5 c-rec : Const c-rec = C.name 6 c-lambda : Const c-lambda = C.name 7 c-const : Const c-const = C.name 8 c-var : Const c-var = C.name 9 c-branch : Const c-branch = C.name 10 c-true : Const c-true = C.name 11 c-false : Const c-false = C.name 12 c-pair : Const c-pair = C.name 13 v-equal : Var v-equal = V.name 0 v-m : Var v-m = V.name 1 v-n : Var v-n = V.name 2 v-x : Var v-x = V.name 3 v-new : Var v-new = V.name 4 v-e : Var v-e = V.name 5 v-subst : Var v-subst = V.name 6 v-e₁ : Var v-e₁ = V.name 7 v-e₂ : Var v-e₂ = V.name 8 v-bs : Var v-bs = V.name 9 v-y : Var v-y = V.name 10 v-c : Var v-c = V.name 11 v-es : Var v-es = V.name 12 v-ys : Var v-ys = V.name 13 v-member : Var v-member = V.name 14 v-xs : Var v-xs = V.name 15 v-lookup : Var v-lookup = V.name 16 v-b : Var v-b = V.name 17 v-c′ : Var v-c′ = V.name 18 v-underscore : Var v-underscore = V.name 19 v-substs : Var v-substs = V.name 20 v-e′ : Var v-e′ = V.name 21 v-map : Var v-map = V.name 22 v-p : Var v-p = V.name 23 v-eval : Var v-eval = V.name 24 v-internal-code : Var v-internal-code = V.name 25 v-halts : Var v-halts = V.name 26 v-z : Var v-z = V.name 27 v-f : Var v-f = V.name 28 v-g : Var v-g = V.name 29
11.683099
72
0.548523
1a88fcac52ff4a1d1e16b18c37ceaa27ea838897
3,274
agda
Agda
test/Succeed/Issue2226.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/Succeed/Issue2226.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue2226.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- Andreas, 2018-03-12 -- The fix for #2963 introduced a change in the quotation behavior -- of method definitions inside a record. open import Agda.Builtin.Float open import Agda.Builtin.Reflection open import Agda.Builtin.List open import Agda.Builtin.Unit open import Agda.Builtin.Equality infixl 6 _>>=_ _>>=_ = bindTC macro getDef : Name → Term → TC ⊤ getDef x a = getDefinition x >>= quoteTC >>= unify a record Foo (A : Set) : Set where constructor mkFoo field foo : A foo₁ : A foo₁ = foo open module FooI = Foo {{...}} postulate A : Set instance FooA : Foo A -- Projection-like foo₂ : {A : Set} {r : Foo A} → A foo₂ {r = mkFoo x} = x bar : A bar = foo bar₁ : A bar₁ = foo₁ bar₂ : A bar₂ = foo₂ {r = FooA} pattern rArg v x = arg (arg-info v relevant) x pattern vArg x = rArg visible x pattern hArg x = rArg hidden x pattern iArg x = rArg instance′ x pattern `? = hArg unknown pattern fun₀ b = function (clause [] b ∷ []) pattern fun₁ p b = function (clause (p ∷ []) b ∷ []) pattern fun₂ p q b = function (clause (p ∷ q ∷ []) b ∷ []) -- foo {{r}} = Foo.foo {_} r foo-def : getDef foo ≡ fun₁ (iArg (var "r")) (def (quote Foo.foo) (`? ∷ vArg (var 0 []) ∷ [])) foo-def = refl -- Andreas, 2018-03-12: Behavior before fix of #2963: -- foo₁ {{r}} = Foo.foo₁ {_} r -- foo₁-def : getDef foo₁ ≡ fun₁ (iArg (var "r")) (def (quote Foo.foo₁) (`? ∷ vArg (var 0 []) ∷ [])) -- NOW: -- foo₁ {A} {{r}} = Foo.foo₁ {A} r foo₁-def : getDef foo₁ ≡ fun₂ (hArg (var "A")) (iArg (var "r")) (def (quote Foo.foo₁) (hArg (var 1 []) ∷ vArg (var 0 []) ∷ [])) foo₁-def = refl -- bar = foo {_} FooA bar-def : getDef bar ≡ fun₀ (def (quote Foo.foo) (`? ∷ vArg (def (quote FooA) []) ∷ [])) bar-def = refl -- bar₁ = foo {_} FooA bar₁-def : getDef bar₁ ≡ fun₀ (def (quote Foo.foo) (`? ∷ vArg (def (quote FooA) []) ∷ [])) bar₁-def = refl -- bar₂ = foo₂ {_} {FooA} bar₂-def : getDef bar₂ ≡ fun₀ (def (quote foo₂) (`? ∷ hArg (def (quote FooA) []) ∷ [])) bar₂-def = refl --- Originally reported test case --- defToTerm : Name → Definition → List (Arg Term) → Term defToTerm _ (function cs) as = pat-lam cs as defToTerm _ (data-cons d) as = con d as defToTerm _ _ _ = unknown derefImmediate : Term → TC Term derefImmediate (def f args) = getDefinition f >>= λ f' → returnTC (defToTerm f f' args) derefImmediate x = returnTC x reflectTerm : Name → TC Term reflectTerm n = getType n >>= λ ty → getDefinition n >>= λ x → derefImmediate (defToTerm n x []) >>= λ x → checkType x ty macro reflect : Name → Term → TC ⊤ reflect n a = reflectTerm n >>= quoteTC >>= unify a {- Define typeclass Semigroup a => Plus a -} record SemigroupLaws {ℓ} (t : Set ℓ) : Set ℓ where infixr 5 _++_ field _++_ : t → t → t -- associative : ∀ {a b c} → (a ++ b) ++ c ≡ a ++ b ++ c record PlusOp {ℓ} (t : Set ℓ) : Set ℓ where field semigroup : SemigroupLaws t infixr 6 _+_ _+_ = SemigroupLaws._++_ semigroup instance floatPlus : PlusOp Float floatPlus = record { semigroup = record { _++_ = Agda.Builtin.Float.primFloatPlus } } open PlusOp {{...}} -- The issue: works : Float works = PlusOp._+_ floatPlus 3.0 5.0 resultWorks : Term resultWorks = reflect works fails : Float fails = 3.0 + 5.0 resultFails : Term resultFails = reflect fails
25.184615
127
0.619731
13d563b0813f0de7325af21af9c2fb894d6c28bc
5,028
agda
Agda
core/lib/types/Pushout.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
core/lib/types/Pushout.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
core/lib/types/Pushout.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Pi open import lib.types.Pointed open import lib.types.Sigma open import lib.types.Span open import lib.types.Paths import lib.types.Generic1HIT as Generic1HIT module lib.types.Pushout where module _ {i j k} where postulate -- HIT Pushout : (d : Span {i} {j} {k}) → Type (lmax (lmax i j) k) module _ {d : Span} where postulate -- HIT left : Span.A d → Pushout d right : Span.B d → Pushout d glue : (c : Span.C d) → left (Span.f d c) == right (Span.g d c) module PushoutElim {d : Span} {l} {P : Pushout d → Type l} (left* : (a : Span.A d) → P (left a)) (right* : (b : Span.B d) → P (right b)) (glue* : (c : Span.C d) → left* (Span.f d c) == right* (Span.g d c) [ P ↓ glue c ]) where postulate -- HIT f : Π (Pushout d) P left-β : ∀ a → f (left a) ↦ left* a right-β : ∀ b → f (right b) ↦ right* b {-# REWRITE left-β #-} {-# REWRITE right-β #-} postulate -- HIT glue-β : (c : Span.C d) → apd f (glue c) == glue* c Pushout-elim = PushoutElim.f module PushoutRec {i j k} {d : Span {i} {j} {k}} {l} {D : Type l} (left* : Span.A d → D) (right* : Span.B d → D) (glue* : (c : Span.C d) → left* (Span.f d c) == right* (Span.g d c)) where private module M = PushoutElim left* right* (λ c → ↓-cst-in (glue* c)) f : Pushout d → D f = M.f glue-β : (c : Span.C d) → ap f (glue c) == glue* c glue-β c = apd=cst-in {f = f} (M.glue-β c) Pushout-rec = PushoutRec.f Pushout-rec-η : ∀ {i j k} {d : Span {i} {j} {k}} {l} {D : Type l} (f : Pushout d → D) → Pushout-rec (f ∘ left) (f ∘ right) (ap f ∘ glue) ∼ f Pushout-rec-η f = Pushout-elim (λ _ → idp) (λ _ → idp) (λ c → ↓-='-in' $ ! $ PushoutRec.glue-β (f ∘ left) (f ∘ right) (ap f ∘ glue) c) module PushoutGeneric {i j k} {d : Span {i} {j} {k}} where open Span d renaming (f to g; g to h) open Generic1HIT (Coprod A B) C (inl ∘ g) (inr ∘ h) public module _ where module To = PushoutRec (cc ∘ inl) (cc ∘ inr) pp to : Pushout d → T to = To.f from-cc : Coprod A B → Pushout d from-cc (inl a) = left a from-cc (inr b) = right b module From = Rec from-cc glue from : T → Pushout d from = From.f abstract to-from : (x : T) → to (from x) == x to-from = elim to-from-cc to-from-pp where to-from-cc : (x : Coprod A B) → to (from (cc x)) == cc x to-from-cc (inl a) = idp to-from-cc (inr b) = idp to-from-pp : (c : C) → idp == idp [ (λ z → to (from z) == z) ↓ pp c ] to-from-pp c = ↓-∘=idf-in' to from (ap to (ap from (pp c)) =⟨ From.pp-β c |in-ctx ap to ⟩ ap to (glue c) =⟨ To.glue-β c ⟩ pp c =∎) from-to : (x : Pushout d) → from (to x) == x from-to = Pushout-elim (λ a → idp) (λ b → idp) (λ c → ↓-∘=idf-in' from to (ap from (ap to (glue c)) =⟨ To.glue-β c |in-ctx ap from ⟩ ap from (pp c) =⟨ From.pp-β c ⟩ glue c =∎)) generic-pushout : Pushout d ≃ T generic-pushout = equiv to from to-from from-to _⊔^[_]_/_ : ∀ {i j k} (A : Type i) (C : Type k) (B : Type j) (fg : (C → A) × (C → B)) → Type (lmax (lmax i j) k) A ⊔^[ C ] B / (f , g) = Pushout (span A B C f g) ⊙Pushout : ∀ {i j k} (d : ⊙Span {i} {j} {k}) → Ptd _ ⊙Pushout d = ⊙[ Pushout (⊙Span-to-Span d) , left (pt (⊙Span.X d)) ] module _ {i j k} (d : ⊙Span {i} {j} {k}) where open ⊙Span d ⊙left : X ⊙→ ⊙Pushout d ⊙left = (left , idp) ⊙right : Y ⊙→ ⊙Pushout d ⊙right = (right , ap right (! (snd g)) ∙ ! (glue (pt Z)) ∙' ap left (snd f)) ⊙glue : (⊙left ⊙∘ f) == (⊙right ⊙∘ g) ⊙glue = pair= (λ= glue) (↓-app=cst-in $ ap left (snd f) ∙ idp =⟨ ∙-unit-r _ ⟩ ap left (snd f) =⟨ lemma (glue (pt Z)) (ap right (snd g)) (ap left (snd f)) ⟩ glue (pt Z) ∙ ap right (snd g) ∙ ! (ap right (snd g)) ∙ ! (glue (pt Z)) ∙' ap left (snd f) =⟨ !-ap right (snd g) |in-ctx (λ w → glue (pt Z) ∙ ap right (snd g) ∙ w ∙ ! (glue (pt Z)) ∙' ap left (snd f)) ⟩ glue (pt Z) ∙ ap right (snd g) ∙ ap right (! (snd g)) ∙ ! (glue (pt Z)) ∙' ap left (snd f) =⟨ ! (app=-β glue (pt Z)) |in-ctx (λ w → w ∙ ap right (snd g) ∙ ap right (! (snd g)) ∙ ! (glue (pt Z)) ∙' ap left (snd f)) ⟩ app= (λ= glue) (pt Z) ∙ ap right (snd g) ∙ ap right (! (snd g)) ∙ ! (glue (pt Z)) ∙' ap left (snd f) =∎) where lemma : ∀ {i} {A : Type i} {x y z w : A} (p : x == y) (q : y == z) (r : x == w) → r == p ∙ q ∙ ! q ∙ ! p ∙' r lemma idp idp idp = idp ⊙pushout-J : ∀ {i j k l} (P : ⊙Span → Type l) → ({A : Type i} {B : Type j} (Z : Ptd k) (f : de⊙ Z → A) (g : de⊙ Z → B) → P (⊙span ⊙[ A , f (pt Z) ] ⊙[ B , g (pt Z) ] Z (f , idp) (g , idp))) → ((ps : ⊙Span) → P ps) ⊙pushout-J P t (⊙span ⊙[ _ , ._ ] ⊙[ _ , ._ ] Z (f , idp) (g , idp)) = t Z f g
31.822785
93
0.478321
127cb1435e528310bf3be317fce0ffd83094544e
248
agda
Agda
test/Succeed/Issue1383.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1383.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1383.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --exact-split #-} module Issue1383 where data Bool : Set where true false : Bool xor : Bool → Bool → Bool xor = \ { true true -> false ; false false -> false ; {-# CATCHALL #-} _ _ -> true }
20.666667
32
0.508065
4ab8757edd84eceb0a2a29f4459e03822d325249
4,874
agda
Agda
Cubical/Relation/Binary/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Relation/Binary/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Relation/Binary/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Relation.Binary.Base where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.Fiberwise open import Cubical.Data.Sigma open import Cubical.HITs.SetQuotients.Base open import Cubical.HITs.PropositionalTruncation.Base private variable ℓA ℓ≅A ℓA' ℓ≅A' : Level Rel : ∀ {ℓ} (A B : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) Rel A B ℓ' = A → B → Type ℓ' PropRel : ∀ {ℓ} (A B : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) PropRel A B ℓ' = Σ[ R ∈ Rel A B ℓ' ] ∀ a b → isProp (R a b) idPropRel : ∀ {ℓ} (A : Type ℓ) → PropRel A A ℓ idPropRel A .fst a a' = ∥ a ≡ a' ∥₁ idPropRel A .snd _ _ = squash₁ invPropRel : ∀ {ℓ ℓ'} {A B : Type ℓ} → PropRel A B ℓ' → PropRel B A ℓ' invPropRel R .fst b a = R .fst a b invPropRel R .snd b a = R .snd a b compPropRel : ∀ {ℓ ℓ' ℓ''} {A B C : Type ℓ} → PropRel A B ℓ' → PropRel B C ℓ'' → PropRel A C (ℓ-max ℓ (ℓ-max ℓ' ℓ'')) compPropRel R S .fst a c = ∥ Σ[ b ∈ _ ] (R .fst a b × S .fst b c) ∥₁ compPropRel R S .snd _ _ = squash₁ graphRel : ∀ {ℓ} {A B : Type ℓ} → (A → B) → Rel A B ℓ graphRel f a b = f a ≡ b module BinaryRelation {ℓ ℓ' : Level} {A : Type ℓ} (R : Rel A A ℓ') where isRefl : Type (ℓ-max ℓ ℓ') isRefl = (a : A) → R a a isSym : Type (ℓ-max ℓ ℓ') isSym = (a b : A) → R a b → R b a isAntisym : Type (ℓ-max ℓ ℓ') isAntisym = (a b : A) → R a b → R b a → a ≡ b isTrans : Type (ℓ-max ℓ ℓ') isTrans = (a b c : A) → R a b → R b c → R a c record isEquivRel : Type (ℓ-max ℓ ℓ') where constructor equivRel field reflexive : isRefl symmetric : isSym transitive : isTrans isPropValued : Type (ℓ-max ℓ ℓ') isPropValued = (a b : A) → isProp (R a b) isSetValued : Type (ℓ-max ℓ ℓ') isSetValued = (a b : A) → isSet (R a b) isEffective : Type (ℓ-max ℓ ℓ') isEffective = (a b : A) → isEquiv (eq/ {R = R} a b) impliesIdentity : Type _ impliesIdentity = {a a' : A} → (R a a') → (a ≡ a') -- the total space corresponding to the binary relation w.r.t. a relSinglAt : (a : A) → Type (ℓ-max ℓ ℓ') relSinglAt a = Σ[ a' ∈ A ] (R a a') -- the statement that the total space is contractible at any a contrRelSingl : Type (ℓ-max ℓ ℓ') contrRelSingl = (a : A) → isContr (relSinglAt a) isUnivalent : Type (ℓ-max ℓ ℓ') isUnivalent = (a a' : A) → (R a a') ≃ (a ≡ a') contrRelSingl→isUnivalent : isRefl → contrRelSingl → isUnivalent contrRelSingl→isUnivalent ρ c a a' = isoToEquiv i where h : isProp (relSinglAt a) h = isContr→isProp (c a) aρa : relSinglAt a aρa = a , ρ a Q : (y : A) → a ≡ y → _ Q y _ = R a y i : Iso (R a a') (a ≡ a') Iso.fun i r = cong fst (h aρa (a' , r)) Iso.inv i = J Q (ρ a) Iso.rightInv i = J (λ y p → cong fst (h aρa (y , J Q (ρ a) p)) ≡ p) (J (λ q _ → cong fst (h aρa (a , q)) ≡ refl) (J (λ α _ → cong fst α ≡ refl) refl (isProp→isSet h _ _ refl (h _ _))) (sym (JRefl Q (ρ a)))) Iso.leftInv i r = J (λ w β → J Q (ρ a) (cong fst β) ≡ snd w) (JRefl Q (ρ a)) (h aρa (a' , r)) isUnivalent→contrRelSingl : isUnivalent → contrRelSingl isUnivalent→contrRelSingl u a = q where abstract f : (x : A) → a ≡ x → R a x f x p = invEq (u a x) p t : singl a → relSinglAt a t (x , p) = x , f x p q : isContr (relSinglAt a) q = isOfHLevelRespectEquiv 0 (t , totalEquiv _ _ f λ x → invEquiv (u a x) .snd) (isContrSingl a) EquivRel : ∀ {ℓ} (A : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) EquivRel A ℓ' = Σ[ R ∈ Rel A A ℓ' ] BinaryRelation.isEquivRel R EquivPropRel : ∀ {ℓ} (A : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) EquivPropRel A ℓ' = Σ[ R ∈ PropRel A A ℓ' ] BinaryRelation.isEquivRel (R .fst) record RelIso {A : Type ℓA} (_≅_ : Rel A A ℓ≅A) {A' : Type ℓA'} (_≅'_ : Rel A' A' ℓ≅A') : Type (ℓ-max (ℓ-max ℓA ℓA') (ℓ-max ℓ≅A ℓ≅A')) where constructor reliso field fun : A → A' inv : A' → A rightInv : (a' : A') → fun (inv a') ≅' a' leftInv : (a : A) → inv (fun a) ≅ a open BinaryRelation RelIso→Iso : {A : Type ℓA} {A' : Type ℓA'} (_≅_ : Rel A A ℓ≅A) (_≅'_ : Rel A' A' ℓ≅A') (uni : impliesIdentity _≅_) (uni' : impliesIdentity _≅'_) (f : RelIso _≅_ _≅'_) → Iso A A' Iso.fun (RelIso→Iso _ _ _ _ f) = RelIso.fun f Iso.inv (RelIso→Iso _ _ _ _ f) = RelIso.inv f Iso.rightInv (RelIso→Iso _ _ uni uni' f) a' = uni' (RelIso.rightInv f a') Iso.leftInv (RelIso→Iso _ _ uni uni' f) a = uni (RelIso.leftInv f a)
32.711409
106
0.547189
1a23e56ba958c034c5bcaef49e3f3de1a540a9e6
1,320
agda
Agda
src/STLC/Properties/Determinism.agda
johnyob/agda-types
aeb2be63381d891fabe5317e3c27553deb6bca6d
[ "MIT" ]
null
null
null
src/STLC/Properties/Determinism.agda
johnyob/agda-types
aeb2be63381d891fabe5317e3c27553deb6bca6d
[ "MIT" ]
null
null
null
src/STLC/Properties/Determinism.agda
johnyob/agda-types
aeb2be63381d891fabe5317e3c27553deb6bca6d
[ "MIT" ]
null
null
null
module STLC.Properties.Determinism where open import STLC.Term open import STLC.Term.Reduction open import Data.Nat using (ℕ; _+_) open import Relation.Nullary using (¬_) open import Relation.Nullary.Negation using (contradiction) open import Data.Product using (Σ; _,_; ∃; Σ-syntax; ∃-syntax) open import Relation.Binary.PropositionalEquality as Eq using (refl; _≡_; cong₂) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎) infix 4 _¬—→ _¬—→ : ∀ { n : ℕ } -> Term n -> Set t₁ ¬—→ = ¬ (∃[ t₂ ] (t₁ —→ t₂)) ¬—→-value : ∀ { n : ℕ } { t : Term n } -> Value t -- -------- -> t ¬—→ ¬—→-value {_} {ƛ _} v = λ () —→-¬value : ∀ { n : ℕ } { t₁ t₂ : Term n } -> t₁ —→ t₂ -- --------- -> ¬ Value t₁ —→-¬value { _ } { _ } { t₂ } s v = ¬—→-value v (t₂ , s) determinism : ∀ { n : ℕ } { t₁ t₂ t₃ : Term n } -> t₁ —→ t₂ -> t₁ —→ t₃ -- -------- -> t₂ ≡ t₃ determinism (β-·₁ s₁) (β-·₁ s₂) = cong₂ (_·_) (determinism s₁ s₂) refl determinism (β-·₂ _ s₁) (β-·₂ _ s₂) = cong₂ (_·_) refl (determinism s₁ s₂) determinism (β-ƛ _) (β-ƛ _) = refl determinism (β-·₁ s) (β-·₂ v _) = contradiction v (—→-¬value s) determinism (β-·₂ v _) (β-·₁ s) = contradiction v (—→-¬value s) determinism (β-·₂ _ s) (β-ƛ v) = contradiction v (—→-¬value s) determinism (β-ƛ v) (β-·₂ _ s) = contradiction v (—→-¬value s)
26.4
75
0.551515
57a8b8e2c0920ed035bb69bc78b745728dcca12c
7,440
agda
Agda
theorems/groups/HomSequence.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/groups/HomSequence.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/groups/HomSequence.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT module groups.HomSequence where infix 15 _⊣|ᴳ infixr 10 _→⟨_⟩ᴳ_ data HomSequence {i} : (G : Group i) (H : Group i) → Type (lsucc i) where _⊣|ᴳ : (G : Group i) → HomSequence G G _→⟨_⟩ᴳ_ : (G : Group i) {H K : Group i} → (G →ᴳ H) → HomSequence H K → HomSequence G K HomSeq-++ : ∀ {i} {G H K : Group i} → HomSequence G H → HomSequence H K → HomSequence G K HomSeq-++ (_ ⊣|ᴳ) seq = seq HomSeq-++ (_ →⟨ φ ⟩ᴳ seq₁) seq₂ = _ →⟨ φ ⟩ᴳ HomSeq-++ seq₁ seq₂ HomSeq-snoc : ∀ {i} {G H K : Group i} → HomSequence G H → (H →ᴳ K) → HomSequence G K HomSeq-snoc seq φ = HomSeq-++ seq (_ →⟨ φ ⟩ᴳ _ ⊣|ᴳ) {- maps between two hom sequences -} infix 15 _↓|ᴳ infixr 10 _↓⟨_⟩ᴳ_ data HomSeqMap {i₀ i₁} : {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} → HomSequence G₀ H₀ → HomSequence G₁ H₁ → (G₀ →ᴳ G₁) → (H₀ →ᴳ H₁) → Type (lsucc (lmax i₀ i₁)) where _↓|ᴳ : {G₀ : Group i₀} {G₁ : Group i₁} (ξ : G₀ →ᴳ G₁) → HomSeqMap (G₀ ⊣|ᴳ) (G₁ ⊣|ᴳ) ξ ξ _↓⟨_⟩ᴳ_ : {G₀ H₀ K₀ : Group i₀} {G₁ H₁ K₁ : Group i₁} → {φ : G₀ →ᴳ H₀} {seq₀ : HomSequence H₀ K₀} → {ψ : G₁ →ᴳ H₁} {seq₁ : HomSequence H₁ K₁} → (ξG : G₀ →ᴳ G₁) {ξH : H₀ →ᴳ H₁} {ξK : K₀ →ᴳ K₁} → CommSquareᴳ φ ψ ξG ξH → HomSeqMap seq₀ seq₁ ξH ξK → HomSeqMap (G₀ →⟨ φ ⟩ᴳ seq₀) (G₁ →⟨ ψ ⟩ᴳ seq₁) ξG ξK HomSeqMap-snoc : ∀ {i₀ i₁} {G₀ H₀ K₀ : Group i₀} {G₁ H₁ K₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {φ₀ : H₀ →ᴳ K₀} {φ₁ : H₁ →ᴳ K₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} {ξK : K₀ →ᴳ K₁} → HomSeqMap seq₀ seq₁ ξG ξH → CommSquareᴳ φ₀ φ₁ ξH ξK → HomSeqMap (HomSeq-snoc seq₀ φ₀) (HomSeq-snoc seq₁ φ₁) ξG ξK HomSeqMap-snoc (ξG ↓|ᴳ) □ = ξG ↓⟨ □ ⟩ᴳ _ ↓|ᴳ HomSeqMap-snoc (ξG ↓⟨ □₁ ⟩ᴳ seq) □₂ = ξG ↓⟨ □₁ ⟩ᴳ HomSeqMap-snoc seq □₂ {- equivalences between two hom sequences -} is-seqᴳ-equiv : ∀ {i₀ i₁} {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} → HomSeqMap seq₀ seq₁ ξG ξH → Type (lmax i₀ i₁) is-seqᴳ-equiv (ξ ↓|ᴳ) = is-equiv (GroupHom.f ξ) is-seqᴳ-equiv (ξ ↓⟨ _ ⟩ᴳ seq) = is-equiv (GroupHom.f ξ) × is-seqᴳ-equiv seq is-seqᴳ-equiv-snoc : ∀ {i₀ i₁} {G₀ H₀ K₀ : Group i₀} {G₁ H₁ K₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {φ₀ : H₀ →ᴳ K₀} {φ₁ : H₁ →ᴳ K₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} {ξK : K₀ →ᴳ K₁} {seq-map : HomSeqMap seq₀ seq₁ ξG ξH} {cs : CommSquareᴳ φ₀ φ₁ ξH ξK} → is-seqᴳ-equiv seq-map → is-equiv (GroupHom.f ξK) → is-seqᴳ-equiv (HomSeqMap-snoc seq-map cs) is-seqᴳ-equiv-snoc {seq-map = ξG ↓|ᴳ} ξG-is-equiv ξH-is-equiv = ξG-is-equiv , ξH-is-equiv is-seqᴳ-equiv-snoc {seq-map = ξG ↓⟨ _ ⟩ᴳ seq} (ξG-is-equiv , seq-is-equiv) ξH-is-equiv = ξG-is-equiv , is-seqᴳ-equiv-snoc seq-is-equiv ξH-is-equiv private is-seqᴳ-equiv-head : ∀ {i₀ i₁} {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} {seq-map : HomSeqMap seq₀ seq₁ ξG ξH} → is-seqᴳ-equiv seq-map → is-equiv (GroupHom.f ξG) is-seqᴳ-equiv-head {seq-map = ξ ↓|ᴳ} ise = ise is-seqᴳ-equiv-head {seq-map = ξ ↓⟨ _ ⟩ᴳ _} ise = fst ise is-seqᴳ-equiv-last : ∀ {i₀ i₁} {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} {seq-map : HomSeqMap seq₀ seq₁ ξG ξH} → is-seqᴳ-equiv seq-map → is-equiv (GroupHom.f ξH) is-seqᴳ-equiv-last {seq-map = ξ ↓|ᴳ} ise = ise is-seqᴳ-equiv-last {seq-map = _ ↓⟨ _ ⟩ᴳ rest} (_ , rest-ise) = is-seqᴳ-equiv-last rest-ise module is-seqᴳ-equiv {i₀ i₁} {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} {seq-map : HomSeqMap seq₀ seq₁ ξG ξH} (seq-map-is-equiv : is-seqᴳ-equiv seq-map) where head = is-seqᴳ-equiv-head seq-map-is-equiv last = is-seqᴳ-equiv-last seq-map-is-equiv HomSeqEquiv : ∀ {i₀ i₁} {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} (seq₀ : HomSequence G₀ H₀) (seq₁ : HomSequence G₁ H₁) (ξG : G₀ →ᴳ G₁) (ξH : H₀ →ᴳ H₁) → Type (lsucc (lmax i₀ i₁)) HomSeqEquiv seq₀ seq₁ ξG ξH = Σ (HomSeqMap seq₀ seq₁ ξG ξH) is-seqᴳ-equiv HomSeqEquiv-inverse : ∀ {i₀ i₁} {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} (equiv : HomSeqEquiv seq₀ seq₁ ξG ξH) → HomSeqEquiv seq₁ seq₀ (GroupIso.g-hom (ξG , is-seqᴳ-equiv-head (snd equiv))) (GroupIso.g-hom (ξH , is-seqᴳ-equiv-last (snd equiv))) HomSeqEquiv-inverse ((ξ ↓|ᴳ) , ξ-ise) = (GroupIso.g-hom (ξ , ξ-ise) ↓|ᴳ) , is-equiv-inverse ξ-ise HomSeqEquiv-inverse ((ξ ↓⟨ □ ⟩ᴳ rest) , (ξ-ise , rest-ise)) = (GroupIso.g-hom (ξ , ξ-ise) ↓⟨ CommSquareᴳ-inverse-v □ ξ-ise (is-seqᴳ-equiv-head rest-ise) ⟩ᴳ fst rest-inverse-equiv) , is-equiv-inverse ξ-ise , snd rest-inverse-equiv where rest-inverse-equiv = HomSeqEquiv-inverse (rest , rest-ise) {- Doesn't seem useful. infix 15 _↕|ᴳ infixr 10 _↕⟨_⟩ᴳ_ _↕|ᴳ : ∀ {i} {G₀ G₁ : Group i} (iso : G₀ ≃ᴳ G₁) → HomSeqEquiv (G₀ ⊣|ᴳ) (G₁ ⊣|ᴳ) (fst iso) (fst iso) iso ↕|ᴳ = (fst iso ↓|ᴳ) , snd iso _↕⟨_⟩ᴳ_ : ∀ {i} {G₀ G₁ H₀ H₁ K₀ K₁ : Group i} → {φ : G₀ →ᴳ H₀} {seq₀ : HomSequence H₀ K₀} → {ψ : G₁ →ᴳ H₁} {seq₁ : HomSequence H₁ K₁} → (isoG : G₀ ≃ᴳ G₁) {isoH : H₀ ≃ᴳ H₁} {isoK : K₀ ≃ᴳ K₁} → HomCommSquare φ ψ (fst isoG) (fst isoH) → HomSeqEquiv seq₀ seq₁ (fst isoH) (fst isoK) → HomSeqEquiv (G₀ →⟨ φ ⟩ᴳ seq₀) (G₁ →⟨ ψ ⟩ᴳ seq₁) (fst isoG) (fst isoK) (ξG , hG-is-equiv) ↕⟨ sqr ⟩ᴳ (seq-map , seq-map-is-equiv) = (ξG ↓⟨ sqr ⟩ᴳ seq-map) , hG-is-equiv , seq-map-is-equiv -} private hom-seq-map-index-type : ∀ {i₀ i₁} {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} → ℕ → HomSeqMap seq₀ seq₁ ξG ξH → Type (lmax i₀ i₁) hom-seq-map-index-type _ (_ ↓|ᴳ) = Lift ⊤ hom-seq-map-index-type O (_↓⟨_⟩ᴳ_ {φ = φ} {ψ = ψ} ξG {ξH} _ _) = CommSquareᴳ φ ψ ξG ξH hom-seq-map-index-type (S n) (_ ↓⟨ _ ⟩ᴳ seq-map) = hom-seq-map-index-type n seq-map abstract hom-seq-map-index : ∀ {i₀ i₁} {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} (n : ℕ) (seq-map : HomSeqMap seq₀ seq₁ ξG ξH) → hom-seq-map-index-type n seq-map hom-seq-map-index _ (_ ↓|ᴳ) = lift tt hom-seq-map-index O (_ ↓⟨ □ ⟩ᴳ _) = □ hom-seq-map-index (S n) (_ ↓⟨ _ ⟩ᴳ seq-map) = hom-seq-map-index n seq-map private hom-seq-equiv-index-type : ∀ {i₀ i₁} {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} → ℕ → HomSeqMap seq₀ seq₁ ξG ξH → Type (lmax i₀ i₁) hom-seq-equiv-index-type {ξG = ξG} O _ = is-equiv (GroupHom.f ξG) hom-seq-equiv-index-type (S _) (_ ↓|ᴳ) = Lift ⊤ hom-seq-equiv-index-type (S n) (_ ↓⟨ _ ⟩ᴳ seq-map) = hom-seq-equiv-index-type n seq-map abstract hom-seq-equiv-index : ∀ {i₀ i₁} {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} (n : ℕ) (seq-equiv : HomSeqEquiv seq₀ seq₁ ξG ξH) → hom-seq-equiv-index-type n (fst seq-equiv) hom-seq-equiv-index O (seq-map , ise) = is-seqᴳ-equiv-head ise hom-seq-equiv-index (S _) ((_ ↓|ᴳ) , _) = lift tt hom-seq-equiv-index (S n) ((_ ↓⟨ _ ⟩ᴳ seq-map) , ise) = hom-seq-equiv-index n (seq-map , snd ise)
40.434783
92
0.592742
295f82d6b64c8b8473f8c21ffe921b10f095baeb
12,318
agda
Agda
LibraBFT/Abstract/RecordChain/Properties.agda
cwjnkins/bft-consensus-agda
71aa2168e4875ffdeece9ba7472ee3cee5fa9084
[ "UPL-1.0" ]
null
null
null
LibraBFT/Abstract/RecordChain/Properties.agda
cwjnkins/bft-consensus-agda
71aa2168e4875ffdeece9ba7472ee3cee5fa9084
[ "UPL-1.0" ]
null
null
null
LibraBFT/Abstract/RecordChain/Properties.agda
cwjnkins/bft-consensus-agda
71aa2168e4875ffdeece9ba7472ee3cee5fa9084
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Abstract.Types open import LibraBFT.Abstract.Types.EpochConfig open WithAbsVote -- This module contains properties about RecordChains, culminating in -- theorem S5, which is the main per-epoch correctness condition. The -- properties are based on the original version of the LibraBFT paper, -- which was current when they were developed: -- https://developers.diem.com/docs/assets/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2019-06-28.pdf -- Even though the implementation has changed since that version of the -- paper, we do not need to redo these proofs because that affects only -- the concrete implementation. This demonstrates one advantage of -- separating these proofs into abstract and concrete pieces. module LibraBFT.Abstract.RecordChain.Properties (UID : Set) (_≟UID_ : (u₀ u₁ : UID) → Dec (u₀ ≡ u₁)) (NodeId : Set) (𝓔 : EpochConfig UID NodeId) (𝓥 : VoteEvidence UID NodeId 𝓔) where open import LibraBFT.Abstract.Types UID NodeId 𝓔 open import LibraBFT.Abstract.System UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.Records UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.Records.Extends UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.RecordChain UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.RecordChain.Assumptions UID _≟UID_ NodeId 𝓔 𝓥 open EpochConfig 𝓔 module WithInvariants {ℓ} (InSys : Record → Set ℓ) (votes-only-once : VotesOnlyOnceRule InSys) (preferred-round-rule : PreferredRoundRule InSys) where open All-InSys-props InSys ---------------------- -- Lemma 2 -- Lemma 2 states that there can be at most one certified block per -- round. If two blocks have a quorum certificate for the same round, -- then they are equal or their unique identifier is not -- injective. This is required because, on the concrete side, this bId -- will be a hash function which might yield collisions. lemmaS2 : {b₀ b₁ : Block}{q₀ q₁ : QC} → InSys (Q q₀) → InSys (Q q₁) → (p₀ : B b₀ ← Q q₀) → (p₁ : B b₁ ← Q q₁) → getRound b₀ ≡ getRound b₁ → NonInjective-≡ bId ⊎ b₀ ≡ b₁ lemmaS2 {b₀} {b₁} {q₀} {q₁} ex₀ ex₁ (B←Q refl h₀) (B←Q refl h₁) refl with b₀ ≟Block b₁ ...| yes done = inj₂ done ...| no imp with bft-assumption (qVotes-C1 q₀) (qVotes-C1 q₁) ...| (a , (a∈q₀mem , a∈q₁mem , honest)) with Any-sym (Any-map⁻ a∈q₀mem) | Any-sym (Any-map⁻ a∈q₁mem) ...| a∈q₀ | a∈q₁ with All-lookup (qVotes-C3 q₀) (∈QC-Vote-correct q₀ a∈q₀) | All-lookup (qVotes-C3 q₁) (∈QC-Vote-correct q₁ a∈q₁) ...| a∈q₀rnd≡ | a∈q₁rnd≡ with <-cmp (abs-vRound (∈QC-Vote q₀ a∈q₀)) (abs-vRound (∈QC-Vote q₁ a∈q₁)) ...| tri< va<va' _ _ = ⊥-elim (<⇒≢ (subst₂ _<_ a∈q₀rnd≡ a∈q₁rnd≡ va<va') refl) ...| tri> _ _ va'<va = ⊥-elim (<⇒≢ (subst₂ _≤_ (cong suc a∈q₁rnd≡) a∈q₀rnd≡ va'<va) refl) ...| tri≈ _ v₀≡v₁ _ = let v₀∈q₀ = ∈QC-Vote-correct q₀ a∈q₀ v₁∈q₁ = ∈QC-Vote-correct q₁ a∈q₁ ppp = trans h₀ (trans (vote≡⇒QPrevId≡ {q₀} {q₁} v₀∈q₀ v₁∈q₁ (votes-only-once a honest ex₀ ex₁ a∈q₀ a∈q₁ v₀≡v₁)) (sym h₁)) in inj₁ ((b₀ , b₁) , (imp , ppp)) ---------------- -- Lemma S3 lemmaS3 : ∀{r₂ q'} {rc : RecordChain r₂} → InSys r₂ → (rc' : RecordChain (Q q')) → InSys (Q q') -- Immediately before a (Q q), we have the certified block (B b), which is the 'B' in S3 → (c3 : 𝕂-chain Contig 3 rc) -- This is B₀ ← C₀ ← B₁ ← C₁ ← B₂ ← C₂ in S3 → round r₂ < getRound q' → NonInjective-≡ bId ⊎ (getRound (kchainBlock (suc (suc zero)) c3) ≤ prevRound rc') lemmaS3 {r₂} {q'} ex₀ (step rc' b←q') ex₁ (s-chain {rc = rc} {b = b₂} {q₂} r←b₂ _ b₂←q₂ c2) hyp with bft-assumption (qVotes-C1 q₂) (qVotes-C1 q') ...| (a , (a∈q₂mem , a∈q'mem , honest)) with Any-sym (Any-map⁻ a∈q₂mem) | Any-sym (Any-map⁻ a∈q'mem) ...| a∈q₂ | a∈q' -- TODO-1: We have done similar reasoning on the order of votes for -- lemmaS2. We should factor out a predicate that analyzes the rounds -- of QC's and returns us a judgement about the order of the votes. with All-lookup (qVotes-C3 q') (∈QC-Vote-correct q' a∈q') | All-lookup (qVotes-C3 q₂) (∈QC-Vote-correct q₂ a∈q₂) ...| a∈q'rnd≡ | a∈q₂rnd≡ with <-cmp (round r₂) (abs-vRound (∈QC-Vote q' a∈q')) ...| tri> _ _ va'<va₂ with subst₂ _<_ a∈q'rnd≡ a∈q₂rnd≡ (≤-trans va'<va₂ (≤-reflexive (sym a∈q₂rnd≡))) ...| res = ⊥-elim (n≮n (getRound q') (≤-trans res (≤-unstep hyp))) lemmaS3 {q' = q'} ex₀ (step rc' b←q') ex₁ (s-chain {rc = rc} {b = b₂} {q₂} r←b₂ P b₂←q₂ c2) hyp | (a , (a∈q₂mem , a∈q'mem , honest)) | a∈q₂ | a∈q' | a∈q'rnd≡ | a∈q₂rnd≡ | tri≈ _ v₂≡v' _ = let v₂∈q₂ = ∈QC-Vote-correct q₂ a∈q₂ v'∈q' = ∈QC-Vote-correct q' a∈q' in ⊥-elim (<⇒≢ hyp (vote≡⇒QRound≡ {q₂} {q'} v₂∈q₂ v'∈q' (votes-only-once a honest {q₂} {q'} ex₀ ex₁ a∈q₂ a∈q' (trans a∈q₂rnd≡ v₂≡v')))) lemmaS3 {r} {q'} ex₀ (step rc' b←q') ex₁ (s-chain {rc = rc} {b = b₂} {q₂} r←b₂ P b₂←q₂ c2) hyp | (a , (a∈q₂mem , a∈q'mem , honest)) | a∈q₂ | a∈q' | a∈q'rnd≡ | a∈q₂rnd≡ | tri< va₂<va' _ _ with b←q' ...| B←Q rrr xxx = preferred-round-rule a honest {q₂} {q'} ex₀ ex₁ (s-chain r←b₂ P b₂←q₂ c2) a∈q₂ (step rc' (B←Q rrr xxx)) a∈q' (≤-trans (≤-reflexive (cong suc a∈q₂rnd≡)) va₂<va') ------------------ -- Proposition S4 -- The base case for lemma S4 resorts to a pretty simple -- arithmetic statement. propS4-base-arith : ∀ n r → n ≤ r → r ≤ (suc (suc n)) → r ∈ (suc (suc n) ∷ suc n ∷ n ∷ []) propS4-base-arith .0 .0 z≤n z≤n = there (there (here refl)) propS4-base-arith .0 .1 z≤n (s≤s z≤n) = there (here refl) propS4-base-arith .0 .2 z≤n (s≤s (s≤s z≤n)) = here refl propS4-base-arith (suc r) (suc n) (s≤s h0) (s≤s h1) = ∈-cong suc (propS4-base-arith r n h0 h1) -- Which is then translated to LibraBFT lingo propS4-base-lemma-1 : ∀{q}{rc : RecordChain (Q q)} → (c3 : 𝕂-chain Contig 3 rc) -- This is B₀ ← C₀ ← B₁ ← C₁ ← B₂ ← C₂ in S4 → (r : ℕ) → getRound (c3 b⟦ suc (suc zero) ⟧) ≤ r → r ≤ getRound (c3 b⟦ zero ⟧) → r ∈ ( getRound (c3 b⟦ zero ⟧) ∷ getRound (c3 b⟦ (suc zero) ⟧) ∷ getRound (c3 b⟦ (suc (suc zero)) ⟧) ∷ []) propS4-base-lemma-1 (s-chain {b = b0} _ p0 (B←Q refl b←q0) (s-chain {b = b1} r←b1 p1 (B←Q refl b←q1) (s-chain {r = R} {b = b2} r←b2 p2 (B←Q refl b←q2) 0-chain))) r hyp0 hyp1 rewrite p0 | p1 = propS4-base-arith (bRound b2) r hyp0 hyp1 propS4-base-lemma-2 : ∀{k r} {rc : RecordChain r} → All-InSys rc → (q' : QC) → InSys (Q q') → {b' : Block} → (rc' : RecordChain (B b')) → (ext : (B b') ← (Q q')) → (c : 𝕂-chain Contig k rc) → (ix : Fin k) → getRound (kchainBlock ix c) ≡ getRound b' → NonInjective-≡ bId ⊎ (kchainBlock ix c ≡ b') propS4-base-lemma-2 {rc = rc} prev∈sys q' q'∈sys rc' ext (s-chain r←b prf b←q c) zero hyp = lemmaS2 (All-InSys⇒last-InSys prev∈sys) q'∈sys b←q ext hyp propS4-base-lemma-2 prev∈sys q' q'∈sys rc' ext (s-chain r←b prf b←q c) (suc ix) = propS4-base-lemma-2 (All-InSys-unstep (All-InSys-unstep prev∈sys)) q' q'∈sys rc' ext c ix propS4-base : ∀{q q'} → {rc : RecordChain (Q q)} → All-InSys rc → (rc' : RecordChain (Q q')) → InSys (Q q') → (c3 : 𝕂-chain Contig 3 rc) -- This is B₀ ← C₀ ← B₁ ← C₁ ← B₂ ← C₂ in S4 → getRound (c3 b⟦ suc (suc zero) ⟧) ≤ getRound q' → getRound q' ≤ getRound (c3 b⟦ zero ⟧) → NonInjective-≡ bId ⊎ B (c3 b⟦ suc (suc zero) ⟧) ∈RC rc' propS4-base {q' = q'} prev∈sys (step {B b} rc'@(step rc'' q←b) b←q@(B←Q refl _)) q'∈sys c3 hyp0 hyp1 with propS4-base-lemma-1 c3 (getRound b) hyp0 hyp1 ...| here r with propS4-base-lemma-2 prev∈sys q' q'∈sys rc' b←q c3 zero (sym r) ...| inj₁ hb = inj₁ hb ...| inj₂ res with 𝕂-chain-∈RC c3 zero (suc (suc zero)) z≤n res rc' ...| inj₁ hb = inj₁ hb ...| inj₂ res' = inj₂ (there b←q res') propS4-base {q} {q'} prev∈sys (step rc' (B←Q refl x₀)) q'∈sys c3 hyp0 hyp1 | there (here r) with propS4-base-lemma-2 prev∈sys q' q'∈sys rc' (B←Q refl x₀) c3 (suc zero) (sym r) ...| inj₁ hb = inj₁ hb ...| inj₂ res with 𝕂-chain-∈RC c3 (suc zero) (suc (suc zero)) (s≤s z≤n) res rc' ...| inj₁ hb = inj₁ hb ...| inj₂ res' = inj₂ (there (B←Q refl x₀) res') propS4-base {q' = q'} prev∈sys (step rc' (B←Q refl x₀)) q'∈sys c3 hyp0 hyp1 | there (there (here r)) with propS4-base-lemma-2 prev∈sys q' q'∈sys rc' (B←Q refl x₀) c3 (suc (suc zero)) (sym r) ...| inj₁ hb = inj₁ hb ...| inj₂ res with 𝕂-chain-∈RC c3 (suc (suc zero)) (suc (suc zero)) (s≤s (s≤s z≤n)) res rc' ...| inj₁ hb = inj₁ hb ...| inj₂ res' = inj₂ (there (B←Q refl x₀) res') propS4 : ∀{q q'} → {rc : RecordChain (Q q)} → All-InSys rc → (rc' : RecordChain (Q q')) → All-InSys rc' → (c3 : 𝕂-chain Contig 3 rc) -- This is B₀ ← C₀ ← B₁ ← C₁ ← B₂ ← C₂ in S4 → getRound (c3 b⟦ suc (suc zero) ⟧) ≤ getRound q' -- In the paper, the proposition states that B₀ ←⋆ B, yet, B is the block preceding -- C, which in our case is 'prevBlock rc''. Hence, to say that B₀ ←⋆ B is -- to say that B₀ is a block in the RecordChain that goes all the way to C. → NonInjective-≡ bId ⊎ B (c3 b⟦ suc (suc zero) ⟧) ∈RC rc' propS4 {q' = q'} {rc} prev∈sys (step rc' b←q') prev∈sys' c3 hyp with getRound q' ≤?ℕ getRound (c3 b⟦ zero ⟧) ...| yes rq≤rb₂ = propS4-base {q' = q'} prev∈sys (step rc' b←q') (All-InSys⇒last-InSys prev∈sys') c3 hyp rq≤rb₂ propS4 {q' = q'} prev∈sys (step rc' b←q') all∈sys c3 hyp | no rb₂<rq with lemmaS3 (All-InSys⇒last-InSys prev∈sys) (step rc' b←q') (All-InSys⇒last-InSys all∈sys) c3 (subst (_< getRound q') (kchainBlockRoundZero-lemma c3) (≰⇒> rb₂<rq)) ...| inj₁ hb = inj₁ hb ...| inj₂ ls3 with rc' | b←q' ...| step rc'' q←b | (B←Q {b} rx x) with rc'' | q←b ...| empty | (I←B _ _) = contradiction (n≤0⇒n≡0 ls3) (¬bRound≡0 (kchain-to-RecordChain-at-b⟦⟧ c3 (suc (suc zero)))) ...| step {r = r} rc''' (B←Q {q = q''} refl bid≡) | (Q←B ry y) with propS4 {q' = q''} prev∈sys (step rc''' (B←Q refl bid≡)) (All-InSys-unstep (All-InSys-unstep all∈sys)) c3 ls3 ...| inj₁ hb' = inj₁ hb' ...| inj₂ final = inj₂ (there (B←Q rx x) (there (Q←B ry y) final)) ------------------- -- Theorem S5 thmS5 : ∀{q q'} → {rc : RecordChain (Q q )} → All-InSys rc → {rc' : RecordChain (Q q')} → All-InSys rc' → {b b' : Block} → CommitRule rc b → CommitRule rc' b' → NonInjective-≡ bId ⊎ ((B b) ∈RC rc' ⊎ (B b') ∈RC rc) -- Not conflicting means one extends the other. thmS5 {rc = rc} prev∈sys {rc'} prev∈sys' (commit-rule c3 refl) (commit-rule c3' refl) with <-cmp (getRound (c3 b⟦ suc (suc zero) ⟧)) (getRound (c3' b⟦ suc (suc zero) ⟧)) ...| tri≈ _ r≡r' _ = inj₁ <⊎$> (propS4 prev∈sys rc' prev∈sys' c3 (≤-trans (≡⇒≤ r≡r') (kchain-round-≤-lemma' c3' (suc (suc zero))))) ...| tri< r<r' _ _ = inj₁ <⊎$> (propS4 prev∈sys rc' prev∈sys' c3 (≤-trans (≤-unstep r<r') (kchain-round-≤-lemma' c3' (suc (suc zero))))) ...| tri> _ _ r'<r = inj₂ <⊎$> (propS4 prev∈sys' rc prev∈sys c3' (≤-trans (≤-unstep r'<r) (kchain-round-≤-lemma' c3 (suc (suc zero)))))
49.272
144
0.547816
1a38e91cc2ea9ffc047bcafb388e8ec25af2e608
399
agda
Agda
Cubical/Algebra/Magma/Construct/Unit.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Algebra/Magma/Construct/Unit.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Algebra/Magma/Construct/Unit.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Magma.Construct.Unit where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Algebra.Magma open import Cubical.Data.Unit _◯_ : Op₂ ⊤ _ ◯ _ = tt ⊤-isMagma : IsMagma ⊤ _◯_ ⊤-isMagma = record { is-set = isSet⊤ } ⊤-Magma : Magma ℓ-zero ⊤-Magma = record { isMagma = ⊤-isMagma }
21
50
0.706767
57860659d90c656b49d44a830718e16156fc3768
945
agda
Agda
test/fail/Issue118Comment9.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T04:41:05.000Z
2019-11-27T04:41:05.000Z
test/fail/Issue118Comment9.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/Issue118Comment9.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
{-# OPTIONS --universe-polymorphism #-} -- coinduction require this module Issue118Comment9 where open import Imports.Level infix 1000 ♯_ postulate ∞ : ∀ {a} (A : Set a) → Set a ♯_ : ∀ {a} {A : Set a} → A → ∞ A ♭ : ∀ {a} {A : Set a} → ∞ A → A {-# BUILTIN INFINITY ∞ #-} {-# BUILTIN SHARP ♯_ #-} {-# BUILTIN FLAT ♭ #-} data Box (A : Set) : Set where [_] : A → Box A postulate I : Set data P : I → Set where c : ∀ {i} → Box (∞ (P i)) → P i F : ∀ {i} → P i → I F (c x) = _ G : ∀ {i} → Box (∞ (P i)) → I G [ x ] = _ mutual f : ∀ {i} (x : P i) → P (F x) f (c x) = c (g x) g : ∀ {i} (x : Box (∞ (P i))) → Box (∞ (P (G x))) g [ x ] = [ ♯ f (♭ x) ] -- The code above type checks, but the termination checker should -- complain because the inferred definitions of F and G are -- F (c x) = G x and G [ x ] = F (♭ x), respectively. -- 2011-04-12 freezing: now the meta-variables remain uninstantiated. -- good.
20.543478
69
0.512169
22829cea626e9d90069058f76001070928b5deda
143
agda
Agda
Cubical/Data/HomotopyGroup.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Data/HomotopyGroup.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Data/HomotopyGroup.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.HomotopyGroup where open import Cubical.Data.HomotopyGroup.Base public
28.6
50
0.769231
5921223fb5fac4f403f9c3e122a6b21f0de96b89
135
agda
Agda
src/index.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
29
2021-07-14T03:18:28.000Z
2022-03-22T20:35:11.000Z
src/index.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
null
null
null
src/index.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
2
2021-10-06T10:28:24.000Z
2022-01-29T08:12:01.000Z
{-# OPTIONS --prop --rewriting #-} module index where -- Calf language implementation: import Calf -- Case studies: import Examples
13.5
34
0.718519