hexsha
stringlengths 40
40
| size
int64 3
1.05M
| ext
stringclasses 163
values | lang
stringclasses 53
values | max_stars_repo_path
stringlengths 3
945
| max_stars_repo_name
stringlengths 4
112
| max_stars_repo_head_hexsha
stringlengths 40
78
| max_stars_repo_licenses
listlengths 1
10
| max_stars_count
float64 1
191k
⌀ | max_stars_repo_stars_event_min_datetime
stringlengths 24
24
⌀ | max_stars_repo_stars_event_max_datetime
stringlengths 24
24
⌀ | max_issues_repo_path
stringlengths 3
945
| max_issues_repo_name
stringlengths 4
113
| max_issues_repo_head_hexsha
stringlengths 40
78
| max_issues_repo_licenses
listlengths 1
10
| max_issues_count
float64 1
116k
⌀ | max_issues_repo_issues_event_min_datetime
stringlengths 24
24
⌀ | max_issues_repo_issues_event_max_datetime
stringlengths 24
24
⌀ | max_forks_repo_path
stringlengths 3
945
| max_forks_repo_name
stringlengths 4
113
| max_forks_repo_head_hexsha
stringlengths 40
78
| max_forks_repo_licenses
listlengths 1
10
| max_forks_count
float64 1
105k
⌀ | max_forks_repo_forks_event_min_datetime
stringlengths 24
24
⌀ | max_forks_repo_forks_event_max_datetime
stringlengths 24
24
⌀ | content
stringlengths 3
1.05M
| avg_line_length
float64 1
966k
| max_line_length
int64 1
977k
| alphanum_fraction
float64 0
1
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
294d3ce4371c56df7e4c233e254fd710f08deb16
| 20,730
|
agda
|
Agda
|
src/Computability.agda
|
nad/chi
|
30966769b8cbd46aa490b6964a4aa0e67a7f9ab1
|
[
"MIT"
] | 2
|
2020-05-21T22:58:07.000Z
|
2020-10-20T16:27:00.000Z
|
src/Computability.agda
|
nad/chi
|
30966769b8cbd46aa490b6964a4aa0e67a7f9ab1
|
[
"MIT"
] | 1
|
2020-05-21T23:29:54.000Z
|
2020-06-08T11:08:25.000Z
|
src/Computability.agda
|
nad/chi
|
30966769b8cbd46aa490b6964a4aa0e67a7f9ab1
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- Partial functions, computability
------------------------------------------------------------------------
open import Atom
module Computability (atoms : χ-atoms) where
open import Equality.Propositional.Cubical
open import Logical-equivalence using (_⇔_)
open import Prelude as P hiding (_∘_; Decidable)
open import Tactic.By.Propositional
open import Bool equality-with-J
open import Bijection equality-with-J using (_↔_)
open import Double-negation equality-with-J
open import Equality.Decision-procedures equality-with-J
import Equivalence equality-with-J as Eq
open import Function-universe equality-with-J hiding (id; _∘_)
open import H-level equality-with-J as H-level
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional equality-with-paths
as Trunc
open import Injection equality-with-J using (Injective)
open import Monad equality-with-J
open import Chi atoms
open import Coding atoms
import Coding.Instances atoms as Dummy
open import Deterministic atoms
open import Free-variables atoms
open import Propositional atoms
open import Reasoning atoms
open import Values atoms
-- Partial functions for which the relation defining the partial
-- function must be propositional.
record _⇀_ {a b} (A : Type a) (B : Type b) : Type (lsuc (a ⊔ b)) where
infix 4 _[_]=_
field
-- The relation defining the partial function.
_[_]=_ : A → B → Type (a ⊔ b)
-- The relation must be deterministic and propositional.
deterministic : ∀ {a b₁ b₂} → _[_]=_ a b₁ → _[_]=_ a b₂ → b₁ ≡ b₂
propositional : ∀ {a b} → Is-proposition (_[_]=_ a b)
-- A simple lemma.
∃[]=-propositional :
∀ {a} →
Is-proposition (∃ (_[_]=_ a))
∃[]=-propositional (b₁ , [a]=b₁) (b₂ , [a]=b₂) =
Σ-≡,≡→≡ (deterministic [a]=b₁ [a]=b₂)
(propositional _ _)
open _⇀_ public using (_[_]=_)
-- Totality. The definition is parametrised by something which could
-- be a modality.
Total : ∀ {a b} {A : Type a} {B : Type b} →
(Type (a ⊔ b) → Type (a ⊔ b)) →
A ⇀ B → Type (a ⊔ b)
Total P f = ∀ a → P (∃ λ b → f [ a ]= b)
-- Totality with ∥_∥ as the modality implies totality with the
-- identity function as the modality.
total-with-∥∥→total :
∀ {a b} {A : Type a} {B : Type b} (f : A ⇀ B) →
Total ∥_∥ f →
Total id f
total-with-∥∥→total f total a =
Trunc.rec
(_⇀_.∃[]=-propositional f)
id
(total a)
-- If the codomain of a function is a set, then the function can be
-- turned into a partial function.
as-partial : ∀ {a b} {A : Type a} {B : Type b} →
Is-set B → (A → B) → A ⇀ B
as-partial {ℓa} B-set f = record
{ _[_]=_ = λ a b → ↑ ℓa (f a ≡ b)
; deterministic = λ {a b₁ b₂} fa≡b₁ fa≡b₂ →
b₁ ≡⟨ sym (lower fa≡b₁) ⟩
f a ≡⟨ lower fa≡b₂ ⟩∎
b₂ ∎
; propositional = ↑-closure 1 (+⇒≡ {n = 1} B-set)
}
-- Composition of partial functions.
infixr 9 _∘_
_∘_ : ∀ {ℓ c} {A B : Type ℓ} {C : Type c} →
B ⇀ C → A ⇀ B → A ⇀ C
f ∘ g = record
{ _[_]=_ = λ a c → ∃ λ b → g [ a ]= b × f [ b ]= c
; deterministic = λ where
(b₁ , g[a]=b₁ , f[b₁]=c₁) (b₂ , g[a]=b₂ , f[b₂]=c₂) →
_⇀_.deterministic f
(subst (f [_]= _) (_⇀_.deterministic g g[a]=b₁ g[a]=b₂) f[b₁]=c₁)
f[b₂]=c₂
; propositional = λ {a c} → $⟨ Σ-closure 1 (_⇀_.∃[]=-propositional g) (λ _ → _⇀_.propositional f) ⟩
Is-proposition (∃ λ (p : ∃ λ b → g [ a ]= b) → f [ proj₁ p ]= c) ↝⟨ H-level.respects-surjection (_↔_.surjection $ inverse Σ-assoc) 1 ⟩□
Is-proposition (∃ λ b → g [ a ]= b × f [ b ]= c) □
}
-- If f is a partial function, g a function whose domain is a set, and
-- f (g a) = c, then (f ∘ g) a = c.
pre-apply : ∀ {ℓ c} {A B : Type ℓ} {C : Type c}
(f : B ⇀ C) {g : A → B} {a c}
(B-set : Is-set B) →
f [ g a ]= c → f ∘ as-partial B-set g [ a ]= c
pre-apply _ _ f[ga]=b = _ , lift refl , f[ga]=b
-- If f is a function whose domain is a set, g a partial function, and
-- g a = b, then (f ∘ g) a = f b.
post-apply : ∀ {ℓ c} {A B : Type ℓ} {C : Type c}
{f : B → C} (g : A ⇀ B) {a b}
(C-set : Is-set C) →
g [ a ]= b → as-partial C-set f ∘ g [ a ]= f b
post-apply _ _ g[a]=b = _ , g[a]=b , lift refl
-- Implements P p f means that p is an implementation of f. The
-- definition is parametrised by P, which could be a modality.
Implements :
∀ {a b} {A : Type a} {B : Type b}
⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ →
(Type (a ⊔ b) → Type (a ⊔ b)) →
Exp → A ⇀ B → Type (a ⊔ b)
Implements P p f =
Closed p
×
(∀ x y → f [ x ]= y → apply p ⌜ x ⌝ ⇓ ⌜ y ⌝)
×
(∀ x y → apply p ⌜ x ⌝ ⇓ y →
P (∃ λ y′ → f [ x ]= y′ × y ≡ ⌜ y′ ⌝))
-- If P maps propositions to propositions, then Implements P p f is a
-- proposition.
Implements-propositional :
∀ {a b} {A : Type a} {B : Type b}
⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ →
{P : Type (a ⊔ b) → Type (a ⊔ b)} {p : Exp}
(f : A ⇀ B) →
(∀ {A} → Is-proposition A → Is-proposition (P A)) →
Is-proposition (Implements P p f)
Implements-propositional f pres =
×-closure 1 Closed-propositional $
×-closure 1 (Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
⇓-propositional)
(Π-closure ext 1 λ x →
Π-closure ext 1 λ y →
Π-closure ext 1 λ _ →
pres $
H-level.respects-surjection
(_↔_.surjection $ inverse Σ-assoc) 1
(Σ-closure 1 (_⇀_.∃[]=-propositional f) λ _ →
Exp-set))
-- Computability. The definition is parametrised by something which
-- could be a modality.
Computable′ :
∀ {a b} {A : Type a} {B : Type b}
⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ →
(Type (a ⊔ b) → Type (a ⊔ b)) →
A ⇀ B → Type (a ⊔ b)
Computable′ P f = ∃ λ p → Implements P p f
-- Computability.
Computable :
∀ {a b} {A : Type a} {B : Type b}
⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ →
A ⇀ B → Type (a ⊔ b)
Computable = Computable′ id
-- If the partial function is total, then one part of the proof of
-- computability can be omitted.
total→almost-computable→computable :
∀ {a b} {A : Type a} {B : Type b}
⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄
(P : Type (a ⊔ b) → Type (a ⊔ b)) →
(∀ {X Y} → (X → Y) → P X → P Y) →
(f : A ⇀ B) →
Total P f →
(∃ λ p →
Closed p
×
(∀ x y → f [ x ]= y → apply p ⌜ x ⌝ ⇓ ⌜ y ⌝)) →
Computable′ P f
total→almost-computable→computable P map f total (p , cl-p , hyp) =
p
, cl-p
, hyp
, λ x y px⇓y →
flip map (total x) λ where
(y′ , f[x]=y′) →
y′ , f[x]=y′ , ⇓-deterministic px⇓y (hyp x y′ f[x]=y′)
-- The semantics of χ as a partial function.
semantics : Closed-exp ⇀ Closed-exp
semantics = record
{ _[_]=_ = _⇓_ on proj₁
; deterministic = λ e⇓v₁ e⇓v₂ →
closed-equal-if-expressions-equal (⇓-deterministic e⇓v₁ e⇓v₂)
; propositional = ⇓-propositional
}
-- Another definition of computability.
Computable″ :
∀ {ℓ} {A B : Type ℓ}
⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ →
A ⇀ B → Type ℓ
Computable″ f =
∃ λ (p : Closed-exp) → ∀ a →
∀ q → semantics [ apply-cl p ⌜ a ⌝ ]= q
⇔
as-partial Closed-exp-set ⌜_⌝ ∘ f [ a ]= q
-- The two definitions of computability are logically equivalent.
Computable⇔Computable″ :
∀ {ℓ} {A B : Type ℓ} ⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ →
(f : A ⇀ B) →
Computable f ⇔ Computable″ f
Computable⇔Computable″ f = record { to = to; from = from }
where
to : Computable f → Computable″ f
to (p , cl , hyp₁ , hyp₂) =
(p , cl) , λ { a (q , cl-q) → record
{ to = Σ-map id (Σ-map id (lift P.∘
closed-equal-if-expressions-equal P.∘
sym))
P.∘
hyp₂ a q
; from = λ { (b , f[a]=b , ⌜b⌝≡q) →
apply p ⌜ a ⌝ ⇓⟨ hyp₁ a b f[a]=b ⟩
⌜ b ⌝ ≡⟨ cong proj₁ (lower ⌜b⌝≡q) ⟩⟶
q ■⟨ subst Value (cong proj₁ (lower ⌜b⌝≡q)) (rep-value b) ⟩ }
} }
from : Computable″ f → Computable f
from ((p , cl) , hyp) =
p , cl ,
(λ a b f[a]=b →
apply p ⌜ a ⌝ ⇓⟨ _⇔_.from (hyp a ⌜ b ⌝) (post-apply f Closed-exp-set f[a]=b) ⟩■
⌜ b ⌝) ,
λ a q p⌜a⌝⇓q →
let cl-q : Closed q
cl-q = closed⇓closed p⌜a⌝⇓q
(Closed′-closed-under-apply
(Closed→Closed′ cl)
(Closed→Closed′ (rep-closed a)))
in
Σ-map id (Σ-map id (cong proj₁ P.∘ sym P.∘ lower))
(_⇔_.to (hyp a (q , cl-q)) p⌜a⌝⇓q)
-- Yet another definition of computability.
Computable‴ :
∀ {a b} {A : Type a} {B : Type b}
⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ →
A ⇀ B → Type (a ⊔ b)
Computable‴ f =
∃ λ (p : Closed-exp) →
∀ a →
∃ λ b →
apply (proj₁ p) ⌜ a ⌝ ⇓ ⌜ b ⌝
×
f [ a ]= b
-- If a partial function is computable by the last definition of
-- computability above, then it is also computable by the first one.
Computable‴→Computable :
∀ {a b} {A : Type a} {B : Type b}
⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ →
(f : A ⇀ B) →
Computable‴ f → Computable f
Computable‴→Computable f ((p , cl-p) , hyp) =
p
, cl-p
, (λ a b f[a]=b → case hyp a of λ where
(b′ , p⌜a⌝⇓⌜b′⌝ , f[a]=b′) →
apply p ⌜ a ⌝ ⇓⟨ p⌜a⌝⇓⌜b′⌝ ⟩
⌜ b′ ⌝ ≡⟨ by (_⇀_.deterministic f f[a]=b f[a]=b′) ⟩⟶
⌜ b ⌝ ■⟨ rep-value b ⟩)
, (λ a v p⌜a⌝⇓v → case hyp a of λ where
(b , p⌜a⌝⇓⌜b⌝ , f[a]=b) →
b
, f[a]=b
, ⇓-deterministic p⌜a⌝⇓v p⌜a⌝⇓⌜b⌝)
module _ {a b c d} {A : Type a} {B : Type b} {C : Type c} {D : Type d}
⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄
⦃ rC : Rep C Consts ⦄ ⦃ rD : Rep D Consts ⦄ where
-- Reductions.
Reduction : A ⇀ B → C ⇀ D → Type (a ⊔ b ⊔ c ⊔ d)
Reduction f g = Computable g → Computable f
-- If f can be reduced to g, and f is not computable, then g is not
-- computable.
Reduction→¬Computable→¬Computable :
(f : A ⇀ B) (g : C ⇀ D) →
Reduction f g → ¬ Computable f → ¬ Computable g
Reduction→¬Computable→¬Computable _ _ red ¬f g = ¬f (red g)
-- Total partial functions to the booleans. Note that totality is
-- defined using the double-negation modality.
_→Bool : ∀ {ℓ} → Type ℓ → Type (lsuc ℓ)
A →Bool = ∃ λ (f : A ⇀ Bool) → Total (λ A → ¬¬ A) f
-- One way to view a predicate as a total partial function to the
-- booleans.
as-function-to-Bool₁ : ∀ {a} {A : Type a} → (A → Type a) → A →Bool
as-function-to-Bool₁ P =
(record
{ _[_]=_ = λ a b →
(P a → b ≡ true)
×
(¬ P a → b ≡ false)
; deterministic = λ where
{b₁ = true} {b₂ = true} _ _ → refl
{b₁ = false} {b₂ = false} _ _ → refl
{b₁ = true} {b₂ = false} f₁ f₂ →
proj₂ f₁ (Bool.true≢false P.∘ sym P.∘ proj₁ f₂)
{b₁ = false} {b₂ = true} f₁ f₂ →
sym (proj₂ f₂ (Bool.true≢false P.∘ sym P.∘ proj₁ f₁))
; propositional = ×-closure 1
(Π-closure ext 1 λ _ →
Bool-set)
(Π-closure ext 1 λ _ →
Bool-set)
})
, λ a →
[ (λ p → true , (λ _ → refl) , ⊥-elim P.∘ (_$ p))
, (λ ¬p → false , ⊥-elim P.∘ ¬p , (λ _ → refl))
] ⟨$⟩ excluded-middle
-- Another way to view a predicate as a total partial function to the
-- booleans.
as-function-to-Bool₂ :
∀ {a} {A : Type a} →
(P : A → Type a) →
(∀ {a} → Is-proposition (P a)) →
A →Bool
as-function-to-Bool₂ P P-prop =
(record
{ _[_]=_ = λ a b →
P a × b ≡ true
⊎
¬ P a × b ≡ false
; deterministic = λ where
(inj₁ (_ , refl)) (inj₁ (_ , refl)) → refl
(inj₁ (p , _)) (inj₂ (¬p , _)) → ⊥-elim (¬p p)
(inj₂ (¬p , _)) (inj₁ (p , _)) → ⊥-elim (¬p p)
(inj₂ (_ , refl)) (inj₂ (_ , refl)) → refl
; propositional = λ {_ b} →
⊎-closure-propositional
(λ { (_ , b≡true) (_ , b≡false) →
Bool.true≢false (
true ≡⟨ sym b≡true ⟩
b ≡⟨ b≡false ⟩∎
false ∎) })
(×-closure 1 P-prop Bool-set)
(×-closure 1 (¬-propositional ext) Bool-set)
})
, λ a →
[ (λ p → true , inj₁ (p , refl))
, (λ ¬p → false , inj₂ (¬p , refl))
] ⟨$⟩ excluded-middle
-- If a is mapped to b by as-function-to-Bool₂ P P-prop, then a is
-- also mapped to b by as-function-to-Bool₁ P.
to-Bool₂→to-Bool₁ :
∀ {a} {A : Type a} ⦃ rA : Rep A Consts ⦄
(P : A → Type a) (P-prop : ∀ {a} → Is-proposition (P a)) {a b} →
proj₁ (as-function-to-Bool₂ P P-prop) [ a ]= b →
proj₁ (as-function-to-Bool₁ P) [ a ]= b
to-Bool₂→to-Bool₁ _ _ = λ where
(inj₁ (Pa , refl)) → (λ _ → refl) , ⊥-elim P.∘ (_$ Pa)
(inj₂ (¬Pa , refl)) → ⊥-elim P.∘ ¬Pa , λ _ → refl
-- If a is mapped to b by as-function-to-Bool₁ P, then a is not not
-- mapped to b by as-function-to-Bool₂ P P-prop.
to-Bool₁→to-Bool₂ :
∀ {a} {A : Type a} ⦃ rA : Rep A Consts ⦄
(P : A → Type a) (P-prop : ∀ {a} → Is-proposition (P a)) {a b} →
proj₁ (as-function-to-Bool₁ P) [ a ]= b →
¬¬ proj₁ (as-function-to-Bool₂ P P-prop) [ a ]= b
to-Bool₁→to-Bool₂ _ _ (Pa→b≡true , ¬Pa→b≡false) =
⊎-map (λ Pa → Pa , Pa→b≡true Pa) (λ ¬Pa → ¬Pa , ¬Pa→b≡false ¬Pa) ⟨$⟩
excluded-middle
-- If as-function-to-Bool₁ P is ¬¬-computable, then
-- as-function-to-Bool₂ P P-prop is also ¬¬-computable.
to-Bool₁-computable→to-Bool₂-computable :
∀ {a} {A : Type a} ⦃ rA : Rep A Consts ⦄
(P : A → Type a) (P-prop : ∀ {a} → Is-proposition (P a)) →
Computable′ (λ A → ¬¬ A) (proj₁ (as-function-to-Bool₁ P)) →
Computable′ (λ A → ¬¬ A) (proj₁ (as-function-to-Bool₂ P P-prop))
to-Bool₁-computable→to-Bool₂-computable
P P-prop (p , cl-p , hyp₁ , hyp₂) =
p
, cl-p
, (λ a b →
proj₁ (as-function-to-Bool₂ P P-prop) [ a ]= b ↝⟨ to-Bool₂→to-Bool₁ P P-prop ⟩
proj₁ (as-function-to-Bool₁ P) [ a ]= b ↝⟨ hyp₁ a b ⟩□
apply p ⌜ a ⌝ ⇓ ⌜ b ⌝ □)
, λ a e →
apply p ⌜ a ⌝ ⇓ e ↝⟨ hyp₂ a e ⟩
¬¬ (∃ λ b → proj₁ (as-function-to-Bool₁ P) [ a ]= b ×
e ≡ ⌜ b ⌝) ↝⟨ _>>= (λ { (b , =b , ≡⌜b⌝) →
to-Bool₁→to-Bool₂ P P-prop =b >>= λ =b →
return (b , =b , ≡⌜b⌝) }) ⟩□
¬¬ (∃ λ b → proj₁ (as-function-to-Bool₂ P P-prop) [ a ]= b ×
e ≡ ⌜ b ⌝) □
-- A lemma related to as-function-to-Bool₂.
×≡true⊎¬×≡false⇔⇔T :
∀ {a} {A : Type a} (P : A → Type a) →
∀ {a b} → P a × b ≡ true ⊎ ¬ P a × b ≡ false ⇔ (P a ⇔ T b)
×≡true⊎¬×≡false⇔⇔T P {a} {b} = record
{ to = λ where
(inj₁ (p , refl)) → record { from = λ _ → p }
(inj₂ (¬p , refl)) → record { to = ¬p; from = ⊥-elim }
; from = helper b
}
where
helper : ∀ b → P a ⇔ T b → P a × b ≡ true ⊎ ¬ P a × b ≡ false
helper true hyp = inj₁ (_⇔_.from hyp _ , refl)
helper false hyp = inj₂ (_⇔_.to hyp , refl)
-- One way to view a predicate as a partial function to the booleans.
as-partial-function-to-Bool₁ :
∀ {a} {A : Type a} → (A → Type a) → A ⇀ Bool
as-partial-function-to-Bool₁ P = record
{ _[_]=_ = λ a b →
(P a → b ≡ true)
×
¬ ¬ P a
; deterministic = λ where
{b₁ = true} {b₂ = true} _ _ → refl
{b₁ = false} {b₂ = false} _ _ → refl
{b₁ = true} {b₂ = false} _ f →
⊥-elim $ proj₂ f (Bool.true≢false P.∘ sym P.∘ proj₁ f)
{b₁ = false} {b₂ = true} f _ →
⊥-elim $ proj₂ f (Bool.true≢false P.∘ sym P.∘ proj₁ f)
; propositional = ×-closure 1
(Π-closure ext 1 λ _ →
Bool-set)
(¬-propositional ext)
}
-- Another way to view a predicate as a partial function to the
-- booleans.
as-partial-function-to-Bool₂ :
∀ {a} {A : Type a} →
(P : A → Type a) →
(∀ {a} → Is-proposition (P a)) →
A ⇀ Bool
as-partial-function-to-Bool₂ P P-prop = record
{ _[_]=_ = λ a b → P a × b ≡ true
; deterministic = λ { (_ , refl) (_ , refl) → refl }
; propositional = ×-closure 1 P-prop Bool-set
}
-- One definition of what it means for a total partial function to the
-- booleans to be decidable.
Decidable :
∀ {a} {A : Type a} ⦃ rA : Rep A Consts ⦄ →
A →Bool → Type a
Decidable = Computable P.∘ proj₁
-- Another definition of what it means for a total partial function to
-- the booleans to be decidable.
Decidable′ :
∀ {a} {A : Type a} ⦃ rA : Rep A Consts ⦄ →
A →Bool → Type a
Decidable′ = Computable‴ P.∘ proj₁
-- Computable functions from a type to a set.
record Computable-function
{a b} (A : Type a) (B : Type b) (B-set : Is-set B)
⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ :
Type (a ⊔ b) where
field
function : A → B
computable : Computable (as-partial B-set function)
open Computable-function
-- An unfolding lemma for Computable-function.
Computable-function↔ :
∀ {a b} {A : Type a} {B : Type b} {B-set : Is-set B}
⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ →
Computable-function A B B-set ↔
∃ λ (f : A → B) → Computable (as-partial B-set f)
Computable-function↔ = record
{ surjection = record
{ logical-equivalence = record
{ to = λ f → function f , computable f
}
; right-inverse-of = λ _ → refl
}
; left-inverse-of = λ _ → refl
}
-- If two computable functions have equal implementations, then they
-- are equal.
equal-implementations→equal :
∀ {a b} {A : Type a} {B : Type b} {B-set : Is-set B}
⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄
(f g : Computable-function A B B-set) →
proj₁ (computable f) ≡ proj₁ (computable g) →
function f ≡ function g
equal-implementations→equal f g hyp = ⟨ext⟩ λ x → $⟨ proj₁ (proj₂ (proj₂ (computable f))) x (function f x) (lift refl)
, proj₁ (proj₂ (proj₂ (computable g))) x (function g x) (lift refl) ⟩
apply (proj₁ (computable f)) ⌜ x ⌝ ⇓ ⌜ function f x ⌝ ×
apply (proj₁ (computable g)) ⌜ x ⌝ ⇓ ⌜ function g x ⌝ ↝⟨ Σ-map id (subst (λ e → apply e _ ⇓ _) (sym hyp)) ⟩
apply (proj₁ (computable f)) ⌜ x ⌝ ⇓ ⌜ function f x ⌝ ×
apply (proj₁ (computable f)) ⌜ x ⌝ ⇓ ⌜ function g x ⌝ ↝⟨ uncurry ⇓-deterministic ⟩
⌜ function f x ⌝ ≡ ⌜ function g x ⌝ ↝⟨ rep-injective ⟩□
function f x ≡ function g x □
instance
-- Representation functions for computable functions.
rep-Computable-function :
∀ {a b} {A : Type a} {B : Type b} {B-set : Is-set B}
⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ →
Rep (Computable-function A B B-set) Consts
rep-Computable-function {A = A} {B = B} {B-set = B-set} = record
{ ⌜_⌝ = ⌜_⌝ P.∘ proj₁ P.∘ computable
; rep-injective = injective
}
where
abstract
injective :
Injective {A = Computable-function A B B-set} {B = Consts}
(⌜_⌝ P.∘ proj₁ P.∘ computable)
injective {f} {g} =
⌜ proj₁ (computable f) ⌝ ≡ ⌜ proj₁ (computable g) ⌝ ↝⟨ rep-injective ⟩
proj₁ (computable f) ≡ proj₁ (computable g) ↝⟨ (λ hyp → cong₂ _,_ (equal-implementations→equal f g hyp) hyp) ⟩
(function f , proj₁ (computable f)) ≡
(function g , proj₁ (computable g)) ↔⟨ ignore-propositional-component $
Implements-propositional (as-partial B-set (function g)) id ⟩
((function f , proj₁ (computable f)) , proj₂ (computable f)) ≡
((function g , proj₁ (computable g)) , proj₂ (computable g)) ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ Σ-assoc) ⟩
(function f , computable f) ≡ (function g , computable g) ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ Computable-function↔) ⟩□
f ≡ g □
| 34.89899
| 143
| 0.498022
|
a1887c87c286953460e8435cf62686c9cff847c3
| 4,515
|
agda
|
Agda
|
src/Terminal.agda
|
cruhland/agda-editor
|
c5ffd117f6d5a98f7c68a2a6b9be54a150c70945
|
[
"MIT"
] | null | null | null |
src/Terminal.agda
|
cruhland/agda-editor
|
c5ffd117f6d5a98f7c68a2a6b9be54a150c70945
|
[
"MIT"
] | null | null | null |
src/Terminal.agda
|
cruhland/agda-editor
|
c5ffd117f6d5a98f7c68a2a6b9be54a150c70945
|
[
"MIT"
] | null | null | null |
module Terminal where
open import Agda.Builtin.Word
open import BasicIO
open import Data.Bool
open import Data.Char hiding (show)
open import Data.List hiding (_++_)
open import Data.String hiding (show)
open import Data.Unit
open import ByteCount
open import Int
open import Function
open import Pair
open import Show
{-# FOREIGN GHC import System.Posix.IO #-}
{-# FOREIGN GHC import System.Posix.Terminal #-}
{-# FOREIGN GHC import System.Posix.Types #-}
data TerminalState : Set where
immediately : TerminalState
whenDrained : TerminalState
whenFlushed : TerminalState
{-# COMPILE GHC TerminalState =
data TerminalState (Immediately | WhenDrained | WhenFlushed)
#-}
data TerminalMode : Set where
interruptOnBreak : TerminalMode
mapCRtoLF : TerminalMode
ignoreBreak : TerminalMode
ignoreCR : TerminalMode
ignoreParityErrors : TerminalMode
mapLFtoCR : TerminalMode
checkParity : TerminalMode
stripHighBit : TerminalMode
startStopInput : TerminalMode
startStopOutput : TerminalMode
markParityErrors : TerminalMode
processOutput : TerminalMode
localMode : TerminalMode
readEnable : TerminalMode
twoStopBits : TerminalMode
hangupOnClose : TerminalMode
enableParity : TerminalMode
oddParity : TerminalMode
enableEcho : TerminalMode
echoErase : TerminalMode
echoKill : TerminalMode
echoLF : TerminalMode
processInput : TerminalMode
extendedFunctions : TerminalMode
keyboardInterrupts : TerminalMode
noFlushOnInterrupt : TerminalMode
backgroundWriteInterrupt : TerminalMode
{-# COMPILE GHC TerminalMode =
data TerminalMode
( InterruptOnBreak
| MapCRtoLF
| IgnoreBreak
| IgnoreCR
| IgnoreParityErrors
| MapLFtoCR
| CheckParity
| StripHighBit
| StartStopInput
| StartStopOutput
| MarkParityErrors
| ProcessOutput
| LocalMode
| ReadEnable
| TwoStopBits
| HangupOnClose
| EnableParity
| OddParity
| EnableEcho
| EchoErase
| EchoKill
| EchoLF
| ProcessInput
| ExtendedFunctions
| KeyboardInterrupts
| NoFlushOnInterrupt
| BackgroundWriteInterrupt
)
#-}
postulate
Fd : Set
TerminalAttributes : Set
stdInput : Fd
stdOutput : Fd
getTerminalAttributes : Fd → IO TerminalAttributes
setTerminalAttributes : Fd → TerminalAttributes → TerminalState → IO ⊤
withoutMode : TerminalAttributes → TerminalMode → TerminalAttributes
inputTime : TerminalAttributes → Int
withTime : TerminalAttributes → Int → TerminalAttributes
minInput : TerminalAttributes → Int
withMinInput : TerminalAttributes → Int → TerminalAttributes
fdRead : Fd → ByteCount → IO (List Char , ByteCount)
fdWrite : Fd → List Char → IO ByteCount
{-# COMPILE GHC Fd = type Fd #-}
{-# COMPILE GHC TerminalAttributes = type TerminalAttributes #-}
{-# COMPILE GHC stdInput = stdInput #-}
{-# COMPILE GHC stdOutput = stdOutput #-}
{-# COMPILE GHC getTerminalAttributes = getTerminalAttributes #-}
{-# COMPILE GHC setTerminalAttributes = setTerminalAttributes #-}
{-# COMPILE GHC withoutMode = withoutMode #-}
{-# COMPILE GHC inputTime = inputTime #-}
{-# COMPILE GHC withTime = withTime #-}
{-# COMPILE GHC minInput = minInput #-}
{-# COMPILE GHC withMinInput = withMinInput #-}
{-# COMPILE GHC fdRead = fdRead #-}
{-# COMPILE GHC fdWrite = fdWrite #-}
clearScreen : String
clearScreen = "\^[[2J"
showCursor : String
showCursor = "\^[[?25h"
hideCursor : String
hideCursor = "\^[[?25l"
altScreenEnable : String
altScreenEnable = "\^[[?1049h"
altScreenDisable : String
altScreenDisable = "\^[[?1049l"
withUpdatedAttributes :
{A : Set} → (TerminalAttributes → TerminalAttributes) → IO A → IO A
withUpdatedAttributes {A} updateFn actions =
bracket (getTerminalAttributes stdOutput) setAttrs updateAndRun
where
setAttrs : TerminalAttributes → IO ⊤
setAttrs attrs = setTerminalAttributes stdOutput attrs immediately
updateAndRun : TerminalAttributes → IO A
updateAndRun attrs = do
_ ← setAttrs (updateFn attrs)
actions
readMaxChars : ByteCount
readMaxChars = mkCSize (primWord64FromNat 1024)
termRead : IO String
termRead = fdRead stdInput readMaxChars >>= (return ∘ fromList ∘ fst)
termWrite : String → IO ByteCount
termWrite = fdWrite stdOutput ∘ toList
printAttrs : TerminalAttributes → IO ⊤
printAttrs attrs =
do _ ← termWrite (formatField "inputTime" (inputTime attrs))
_ ← termWrite (formatField "minInput" (minInput attrs))
return tt
where
formatField : String → Int → String
formatField name value = name ++ " = " ++ show value ++ "\n"
| 27.198795
| 72
| 0.739092
|
4a272dbc778cc9e3c653f61a65c2f5d23205e02b
| 6,822
|
agda
|
Agda
|
agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec1Done.agda
|
haroldcarr/learn-haskell-coq-ml-etc
|
3dc7abca7ad868316bb08f31c77fbba0d3910225
|
[
"Unlicense"
] | 36
|
2015-01-29T14:37:15.000Z
|
2021-07-30T06:55:03.000Z
|
agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec1Done.agda
|
haroldcarr/learn-haskell-coq-ml-etc
|
3dc7abca7ad868316bb08f31c77fbba0d3910225
|
[
"Unlicense"
] | null | null | null |
agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec1Done.agda
|
haroldcarr/learn-haskell-coq-ml-etc
|
3dc7abca7ad868316bb08f31c77fbba0d3910225
|
[
"Unlicense"
] | 8
|
2015-04-13T21:40:15.000Z
|
2021-09-21T15:58:10.000Z
|
module Lec1Done where
-- the -- mark introduces a "comment to end of line"
------------------------------------------------------------------------------
-- some basic "logical" types
------------------------------------------------------------------------------
data Zero : Set where
-- to give a value in a data, choose one constructor
-- there are no constructors
-- so that's impossible
record One : Set where
-- to give a value in a record type, fill all its fields
-- there are no fields
-- so that's trivial
-- (can we have a constructor, for convenience?)
constructor <>
{-# COMPILE GHC One = data () (()) #-}
data _+_ (S : Set)(T : Set) : Set where -- "where" wants an indented block
-- to offer a choice of constructors, list them with their types
inl : S -> S + T -- constructors can pack up stuff
inr : T -> S + T
-- in Haskell, this was called "Either S T"
{-
record _*_ (S : Set)(T : Set) : Set where
field -- introduces a bunch of fields, listed with their types
fst : S
snd : T
-- in Haskell, this was called "(S, T)"
-}
-- _*_ IS GENERALIZED BY SIGMA
record Sg (S : Set)(T : S -> Set) : Set where -- Sg is short for "Sigma"
constructor _,_
field -- introduces a bunch of fields, listed with their types
fst : S
snd : T fst
open Sg public -- brings fst and snd into scope hereafter unto all inheritors
-- make _*_ from Sg ?
_*_ : Set -> Set -> Set
S * T = Sg S \ _ -> T
infixr 4 _*_ _,_
------------------------------------------------------------------------------
-- some simple proofs
------------------------------------------------------------------------------
comm-* : {A : Set}{B : Set} -> A * B -> B * A
comm-* record { fst = a ; snd = b } = record { fst = b ; snd = a }
assocLR-+ : {A B C : Set} -> (A + B) + C -> A + (B + C)
assocLR-+ (inl (inl a)) = inl a
assocLR-+ (inl (inr b)) = inr (inl b)
assocLR-+ (inr c) = inr (inr c)
_$*_ : {A A' B B' : Set} -> (A -> A') -> (B -> B') -> A * B -> A' * B'
(f $* g) record { fst = a ; snd = b } = record { fst = f a ; snd = g b }
-- record syntax is rather ugly for small stuff; can we have constructors?
_$+_ : {A A' B B' : Set} -> (A -> A') -> (B -> B') -> A + B -> A' + B'
(f $+ g) (inl a) = inl (f a)
(f $+ g) (inr b) = inr (g b)
combinatorK : {A E : Set} -> A -> E -> A
combinatorK = \ a _ -> a
combinatorS : {S T E : Set} -> (E -> S -> T) -> (E -> S) -> E -> T
combinatorS = \ f s e -> (f e) (s e)
id : {X : Set} -> X -> X
-- id x = x -- is the easy way; let's do it a funny way to make a point
id = combinatorS combinatorK (combinatorK {_} {Zero})
-- no choice for -^ ^^^^- could be anything
naughtE : {X : Set} -> Zero -> X
naughtE ()
-- standard composition: f << g is "f after g"
_<<_ : {X Y Z : Set} -> (Y -> Z) -> (X -> Y) -> (X -> Z)
(f << g) x = f (g x)
-- diagrammatic composition: f >> g is "f then g"
_>>_ : {X Y Z : Set} -> (X -> Y) -> (Y -> Z) -> (X -> Z)
-- ^^^^^^^^ dominoes!
(f >> g) x = g (f x)
-- infix application
_$_ : {S : Set}{T : S -> Set}(f : (x : S) -> T x)(s : S) -> T s
f $ s = f s
infixl 2 _$_
------------------------------------------------------------------------------
-- from logic to data
------------------------------------------------------------------------------
data Nat : Set where
zero : Nat
suc : Nat -> Nat -- recursive data type
{-# BUILTIN NATURAL Nat #-}
-- ^^^^^^^^^^^^^^^^^^^ this pragma lets us use decimal notation
_+N_ : Nat -> Nat -> Nat
zero +N y = y
suc x +N y = suc (x +N y) -- there are other choices
four : Nat
four = 2 +N 2
------------------------------------------------------------------------------
-- and back to logic
------------------------------------------------------------------------------
data _==_ {X : Set} : X -> X -> Set where
refl : (x : X) -> x == x -- the relation that's "only reflexive"
{-# BUILTIN EQUALITY _==_ #-} -- we'll see what that's for, later
_=$=_ : {X Y : Set}{f f' : X -> Y}{x x' : X} ->
f == f' -> x == x' -> f x == f' x'
refl f =$= refl x = refl (f x)
infixl 2 _=$=_
zero-+N : (n : Nat) -> (zero +N n) == n
zero-+N n = refl n
+N-zero : (n : Nat) -> (n +N zero) == n
+N-zero zero = refl zero
+N-zero (suc n) = refl suc =$= +N-zero n
assocLR-+N : (x y z : Nat) -> ((x +N y) +N z) == (x +N (y +N z))
assocLR-+N zero y z = refl (y +N z)
assocLR-+N (suc x) y z = refl suc =$= assocLR-+N x y z
------------------------------------------------------------------------------
-- computing types
------------------------------------------------------------------------------
_>=_ : Nat -> Nat -> Set
x >= zero = One
zero >= suc y = Zero
suc x >= suc y = x >= y
refl->= : (n : Nat) -> n >= n
refl->= zero = record {}
refl->= (suc n) = refl->= n
trans->= : (x y z : Nat) -> x >= y -> y >= z -> x >= z
trans->= x y zero x>=y y>=z = record {}
trans->= x zero (suc z) x>=y ()
trans->= zero (suc y) (suc z) () y>=z
trans->= (suc x) (suc y) (suc z) x>=y y>=z = trans->= x y z x>=y y>=z
------------------------------------------------------------------------------
-- construction by proof
------------------------------------------------------------------------------
{- -- MOVED UP TO REPLACE _*_
record Sg (S : Set)(T : S -> Set) : Set where -- Sg is short for "Sigma"
constructor _,_
field -- introduces a bunch of fields, listed with their types
fst : S
snd : T fst
-- make _*_ from Sg ?
_*_ : Set -> Set -> Set
S * T = Sg S \ _ -> T
-}
difference : (m n : Nat) -> m >= n -> Sg Nat \ d -> m == (n +N d)
-- ( )
difference m zero m>=n = m , refl m
difference zero (suc n) ()
difference (suc m) (suc n) m>=n with difference m n m>=n
difference (suc m) (suc n) m>=n | d , q = d , (refl suc =$= q)
tryMe = difference 42 37 _
-- don'tTryMe = difference 37 42 {!!}
------------------------------------------------------------------------------
-- things to remember to say
------------------------------------------------------------------------------
-- why the single colon?
-- what's with all the spaces?
-- what's with identifiers mixing letters and symbols?
-- what's with all the braces?
-- what is Set?
-- are there any lowercase/uppercase conventions?
-- what's with all the underscores?
-- (i) placeholders in mixfix operators
-- (ii) don't care (on the left)
-- (iii) go figure (on the right)
-- why use arithmetic operators for types?
-- what's the difference between = and == ?
-- can't we leave out cases?
-- can't we loop?
-- the function type is both implication and universal quantification,
-- but why is it called Pi?
-- why is Sigma called Sigma?
-- B or nor B?
| 29.66087
| 78
| 0.441659
|
13c9745ad8708f1171dd5014975461a78ebec59e
| 1,102
|
agda
|
Agda
|
Cubical/Data/Sigma/Base.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/Data/Sigma/Base.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | 1
|
2022-01-27T02:07:48.000Z
|
2022-01-27T02:07:48.000Z
|
Cubical/Data/Sigma/Base.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | 1
|
2021-11-22T02:02:01.000Z
|
2021-11-22T02:02:01.000Z
|
{- Basic definitions using Σ-types
Σ-types are defined in Core/Primitives as they are needed for Glue types.
The file contains:
- Non-dependent pair types: A × B
- Mere existence: ∃[x ∈ A] B
- Unique existence: ∃![x ∈ A] B
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Sigma.Base where
open import Cubical.Core.Primitives public
open import Cubical.Foundations.Prelude
open import Cubical.HITs.PropositionalTruncation.Base
-- Non-dependent pair types
_×_ : ∀ {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') → Type (ℓ-max ℓ ℓ')
A × B = Σ A (λ _ → B)
infixr 5 _×_
-- Mere existence
∃ : ∀ {ℓ ℓ'} (A : Type ℓ) (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ')
∃ A B = ∥ Σ A B ∥
infix 2 ∃-syntax
∃-syntax : ∀ {ℓ ℓ'} (A : Type ℓ) (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ')
∃-syntax = ∃
syntax ∃-syntax A (λ x → B) = ∃[ x ∈ A ] B
-- Unique existence
∃! : ∀ {ℓ ℓ'} (A : Type ℓ) (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ')
∃! A B = isContr (Σ A B)
infix 2 ∃!-syntax
∃!-syntax : ∀ {ℓ ℓ'} (A : Type ℓ) (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ')
∃!-syntax = ∃!
syntax ∃!-syntax A (λ x → B) = ∃![ x ∈ A ] B
| 20.792453
| 73
| 0.575318
|
419293a8856d5918ffa79373db7a71e11d03baad
| 8,023
|
agda
|
Agda
|
LectureNotes/NumbersAndSets/Examples1.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 4
|
2019-08-08T12:44:19.000Z
|
2022-01-28T06:04:15.000Z
|
LectureNotes/NumbersAndSets/Examples1.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 14
|
2019-01-06T21:11:59.000Z
|
2020-04-11T11:03:39.000Z
|
LectureNotes/NumbersAndSets/Examples1.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 1
|
2021-11-29T13:23:07.000Z
|
2021-11-29T13:23:07.000Z
|
{-# OPTIONS --warning=error --safe --without-K --guardedness #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import LogicalFormulae
open import Numbers.Integers.Integers
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Subtraction
open import Numbers.Naturals.Naturals
open import Numbers.Naturals.Order
open import Numbers.Naturals.Exponentiation
open import Numbers.Primes.PrimeNumbers
open import Maybe
open import Semirings.Definition
open import Numbers.Naturals.EuclideanAlgorithm
open import Sequences
open import Vectors
module LectureNotes.NumbersAndSets.Examples1 where
open Semiring ℕSemiring
open import Semirings.Solver ℕSemiring multiplicationNIsCommutative
private
abstract
q1Lemma1 : {q r : ℕ} → 3 *N succ q +N r ≡ succ (succ (succ (3 *N q +N r)))
q1Lemma1 {q} {r} rewrite sumZeroRight q | commutative q (succ q) | commutative q (succ (succ (q +N q))) | +Associative q q q = refl
q1Lemma : {n : ℕ} → (2 <N n) → ((3 ∣ n) || (3 ∣ (n +N 2))) || (3 ∣ (n +N 4))
q1Lemma {zero} ()
q1Lemma {succ zero} (le zero ())
q1Lemma {succ zero} (le (succ x) ())
q1Lemma {succ (succ zero)} (le (succ x) proof) rewrite Semiring.commutative ℕSemiring x 2 = exFalso (naughtE (equalityCommutative (succInjective (succInjective proof))))
q1Lemma {succ (succ (succ zero))} 2<n = inl (inl (aDivA 3))
q1Lemma {succ (succ (succ (succ zero)))} 2<n = inl (inr (divides (record { quot = 2 ; rem = zero ; pr = refl ; remIsSmall = inl (le 2 refl) ; quotSmall = inl (le 2 refl)}) refl))
q1Lemma {succ (succ (succ (succ (succ zero))))} 2<n = inr (divides (record { quot = 3 ; rem = zero ; pr = refl ; remIsSmall = inl (le 2 refl) ; quotSmall = inl (le 2 refl)}) refl)
q1Lemma {succ (succ (succ (succ (succ (succ n)))))} 2<n with q1Lemma {succ (succ (succ n))} (le n (applyEquality succ (Semiring.commutative ℕSemiring n 2)))
q1Lemma {succ (succ (succ (succ (succ (succ n)))))} 2<n | inl (inl (divides record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = remIsSmall ; quotSmall = quotSmall } x)) = inl (inl (divides (record { quot = succ quot ; rem = rem ; pr = transitivity (q1Lemma1 {quot} {rem}) (applyEquality (λ x → succ (succ (succ x))) pr) ; remIsSmall = remIsSmall ; quotSmall = inl (le 2 refl) }) x))
q1Lemma {succ (succ (succ (succ (succ (succ n)))))} 2<n | inl (inr (divides record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = remIsSmall ; quotSmall = quotSmall } x)) = inl (inr (divides record { quot = succ quot ; rem = rem ; pr = transitivity (q1Lemma1 {quot} {rem}) (applyEquality (λ x → succ (succ (succ x))) pr) ; remIsSmall = remIsSmall ; quotSmall = inl (le 2 refl) } x))
q1Lemma {succ (succ (succ (succ (succ (succ n)))))} 2<n | inr (divides record { quot = quot ; rem = rem ; pr = pr ; remIsSmall = remIsSmall ; quotSmall = quotSmall } x) = inr (divides record { quot = succ quot ; rem = rem ; pr = transitivity (q1Lemma1 {quot} {rem}) (applyEquality (λ x → succ (succ (succ x))) pr) ; remIsSmall = remIsSmall ; quotSmall = inl (le 2 refl) } x)
q1 : {n : ℕ} → Prime n → Prime (n +N 2) → Prime (n +N 4) → n ≡ 3
q1 {succ zero} record { p>1 = (le zero ()) ; pr = pr } pN+2 pN+4
q1 {succ zero} record { p>1 = (le (succ x) ()) ; pr = pr } pN+2 pN+4
q1 {succ (succ zero)} pN record { p>1 = p>1 ; pr = pr } pN+4 with pr {2} (divides (record { quot = 2 ; rem = zero ; pr = refl ; remIsSmall = inl (le 1 refl) ; quotSmall = inl (le 1 refl)}) refl) (le 1 refl) (le 1 refl)
q1 {succ (succ zero)} pN record { p>1 = p>1 ; pr = pr } pN+4 | ()
q1 {succ (succ (succ n))} pN pN+2 pN+4 with q1Lemma {succ (succ (succ n))} (le n (applyEquality succ (commutative n 2)))
q1 {succ (succ (succ n))} pN pN+2 pN+4 | inl (inl 3|n) = equalityCommutative (primeDivPrimeImpliesEqual threeIsPrime pN 3|n)
q1 {succ (succ (succ n))} pN pN+2 pN+4 | inl (inr 3|n+2) with primeDivPrimeImpliesEqual threeIsPrime pN+2 3|n+2
... | bl rewrite commutative n 2 = exFalso (naughtE (succInjective (succInjective (succInjective bl))))
q1 {succ (succ (succ n))} pN pN+2 pN+4 | inr 3|n+4 with primeDivPrimeImpliesEqual threeIsPrime pN+4 3|n+4
... | bl rewrite commutative n 4 = exFalso (naughtE (succInjective (succInjective (succInjective bl))))
q3Differences : ℕ → ℕ
q3Differences a = 2 *N a
q3Seq : (start : ℕ) → ℕ → ℕ
q3Seq start zero = start
q3Seq start (succ n) = q3Differences (succ n) +N q3Seq start n
q3SeqFirst : take 5 (funcToSequence (q3Seq 41)) ≡ 41 ,- 43 ,- 47 ,- 53 ,- 61 ,- []
q3SeqFirst = refl
q3N : (start : ℕ) (a : ℕ) → q3Seq start a ≡ start +N (a +N (a *N a))
q3N start zero = equalityCommutative (sumZeroRight start)
q3N start (succ a) rewrite q3N start a | sumZeroRight a =
from (succ (plus (plus (const a) (succ (const a))) (plus (const start) (plus (const a) (times (const a) (const a))))))
to (plus (const start) (succ (plus (const a) (succ (plus (const a) (times (const a) (succ (const a))))))))
by applyEquality (λ i → succ (succ i)) (transitivity (+Associative (a +N a) start _) (transitivity (transitivity (applyEquality (_+N (a +N a *N a)) (commutative (a +N a) start)) (equalityCommutative (+Associative start _ _))) (applyEquality (start +N_) (equalityCommutative (+Associative a a (a +N a *N a))))))
q3NDivision : (start : ℕ) → start ∣ (q3Seq start start)
q3NDivision 0 = aDivA 0
q3NDivision (succ start) rewrite q3N (succ start) (succ start) = dividesBothImpliesDividesSum {succ start} {succ start} (aDivA (succ start)) (dividesBothImpliesDividesSum {succ start} {succ start} (aDivA (succ start)) (divides (record { quot = succ start ; rem = 0 ; pr = sumZeroRight _ ; remIsSmall = inl (succIsPositive start) ; quotSmall = inl (succIsPositive start) }) refl))
q3 : (start : ℕ) → ((n : ℕ) → Prime (q3Seq start n)) → False
q3 zero a with a 2
... | record { p>1 = p>1 ; pr = pr } with pr {2} (divides (record { quot = 3 ; rem = 0 ; pr = refl ; remIsSmall = inl (le 1 refl) ; quotSmall = inl (le 1 refl) }) refl) (le 3 refl) (succIsPositive 1)
... | ()
q3 (succ zero) a with a 0
... | record { p>1 = le zero () ; pr = pr }
... | record { p>1 = le (succ x) () ; pr = pr }
q3 (succ (succ start)) a with q3NDivision (succ (succ start))
... | r with a (succ (succ start))
... | s = compositeImpliesNotPrime (succ (succ start)) _ (succPreservesInequality (succIsPositive start)) (le (succ (succ start) +N ((start +N succ start) +N q3Seq (succ (succ start)) start)) (applyEquality (λ i → succ (succ i)) (from (succ (plus (plus (const start) (plus (plus (const start) (succ (const start))) (const (q3Seq (succ (succ start)) start)))) (succ (succ (const start))))) to plus (plus (const start) (succ (succ (plus (const start) zero)))) (succ (plus (plus (const start) (succ (plus (const start) zero))) (const (q3Seq (succ (succ start)) start)))) by applyEquality (λ i → succ (succ (succ (succ i)))) (transitivity (commutative _ start) (+Associative start start _))))) r s
q3' : ((n : ℕ) → Prime (q3Seq 41 n)) → False
q3' = q3 41
q6 : {n : ℕ} → 3 ∣ (n *N n) → 3 ∣ n
q6 {n} 3|n^2 with primesArePrime {3} {n} {n} threeIsPrime 3|n^2
q6 {n} 3|n^2 | inl x = x
q6 {n} 3|n^2 | inr x = x
_*q10_ : {a : ℕ} → {b : ℕ} → (0 <N a) → (0 <N b) → ℕ
*q10Pos : {a : ℕ} → {b : ℕ} → (0<a : 0 <N a) → (0<b : 0 <N b) → 0 <N (_*q10_ 0<a 0<b)
_*q10_ {succ zero} {succ b} 0<a 0<b = succ (succ b)
_*q10_ {succ (succ a)} {succ zero} 0<a 0<b = _*q10_ {succ a} {2} (le a (applyEquality succ (sumZeroRight a))) (le 1 refl)
_*q10_ {succ (succ a)} {succ (succ b)} 0<a 0<b = _*q10_ {succ a} {_*q10_ {succ (succ a)} {succ b} 0<a (le b (applyEquality succ (sumZeroRight b)))} (le a (applyEquality succ (sumZeroRight a))) (*q10Pos 0<a (le b (applyEquality succ (sumZeroRight b))))
*q10Pos {succ zero} {succ b} 0<a 0<b = le (succ b) (applyEquality (λ i → succ (succ i)) (sumZeroRight b))
*q10Pos {succ (succ a)} {succ zero} 0<a 0<b = *q10Pos (le a (applyEquality succ (sumZeroRight a))) (le 1 refl)
*q10Pos {succ (succ a)} {succ (succ b)} 0<a 0<b = *q10Pos (le a (applyEquality succ (sumZeroRight a))) (*q10Pos 0<a (le b (applyEquality succ (sumZeroRight b))))
| 81.867347
| 693
| 0.645394
|
13f7d171ffe571ab31261d45297a5b85c08369d1
| 25,260
|
agda
|
Agda
|
prototyping/Properties/TypeSaturation.agda
|
Libertus-Lab/luau
|
f1b46f4b967f11fabe666da1de0e71b225368260
|
[
"MIT"
] | 1
|
2021-11-06T08:03:00.000Z
|
2021-11-06T08:03:00.000Z
|
prototyping/Properties/TypeSaturation.agda
|
sthagen/Roblox-luau
|
39fbd2146a379fb0878369b48764cd7e8772c0fb
|
[
"MIT"
] | null | null | null |
prototyping/Properties/TypeSaturation.agda
|
sthagen/Roblox-luau
|
39fbd2146a379fb0878369b48764cd7e8772c0fb
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --rewriting #-}
module Properties.TypeSaturation where
open import Agda.Builtin.Equality using (_≡_; refl)
open import FFI.Data.Either using (Either; Left; Right)
open import Luau.Subtyping using (Tree; Language; ¬Language; _<:_; _≮:_; witness; scalar; function; function-err; function-ok; function-ok₁; function-ok₂; scalar-function; _,_; never)
open import Luau.Type using (Type; _⇒_; _∩_; _∪_; never; unknown)
open import Luau.TypeNormalization using (_∩ⁿ_; _∪ⁿ_)
open import Luau.TypeSaturation using (_⋓_; _⋒_; _∩ᵘ_; _∩ⁱ_; ∪-saturate; ∩-saturate; saturate)
open import Properties.Subtyping using (dec-language; language-comp; <:-impl-⊇; <:-refl; <:-trans; <:-trans-≮:; <:-impl-¬≮: ; <:-never; <:-unknown; <:-function; <:-union; <:-∪-symm; <:-∪-left; <:-∪-right; <:-∪-lub; <:-∪-assocl; <:-∪-assocr; <:-intersect; <:-∩-symm; <:-∩-left; <:-∩-right; <:-∩-glb; ≮:-function-left; ≮:-function-right; <:-function-∩-∪; <:-function-∩-∩; <:-∩-assocl; <:-∩-assocr; ∩-<:-∪; <:-∩-distl-∪; ∩-distl-∪-<:; <:-∩-distr-∪; ∩-distr-∪-<:)
open import Properties.TypeNormalization using (Normal; FunType; _⇒_; _∩_; _∪_; never; unknown; normal-∪ⁿ; normal-∩ⁿ; ∪ⁿ-<:-∪; ∪-<:-∪ⁿ; ∩ⁿ-<:-∩; ∩-<:-∩ⁿ)
open import Properties.Contradiction using (CONTRADICTION)
open import Properties.Functions using (_∘_)
-- Saturation preserves normalization
normal-⋒ : ∀ {F G} → FunType F → FunType G → FunType (F ⋒ G)
normal-⋒ (R ⇒ S) (T ⇒ U) = (normal-∩ⁿ R T) ⇒ (normal-∩ⁿ S U)
normal-⋒ (R ⇒ S) (G ∩ H) = normal-⋒ (R ⇒ S) G ∩ normal-⋒ (R ⇒ S) H
normal-⋒ (E ∩ F) G = normal-⋒ E G ∩ normal-⋒ F G
normal-⋓ : ∀ {F G} → FunType F → FunType G → FunType (F ⋓ G)
normal-⋓ (R ⇒ S) (T ⇒ U) = (normal-∪ⁿ R T) ⇒ (normal-∪ⁿ S U)
normal-⋓ (R ⇒ S) (G ∩ H) = normal-⋓ (R ⇒ S) G ∩ normal-⋓ (R ⇒ S) H
normal-⋓ (E ∩ F) G = normal-⋓ E G ∩ normal-⋓ F G
normal-∩-saturate : ∀ {F} → FunType F → FunType (∩-saturate F)
normal-∩-saturate (S ⇒ T) = S ⇒ T
normal-∩-saturate (F ∩ G) = (normal-∩-saturate F ∩ normal-∩-saturate G) ∩ normal-⋒ (normal-∩-saturate F) (normal-∩-saturate G)
normal-∪-saturate : ∀ {F} → FunType F → FunType (∪-saturate F)
normal-∪-saturate (S ⇒ T) = S ⇒ T
normal-∪-saturate (F ∩ G) = (normal-∪-saturate F ∩ normal-∪-saturate G) ∩ normal-⋓ (normal-∪-saturate F) (normal-∪-saturate G)
normal-saturate : ∀ {F} → FunType F → FunType (saturate F)
normal-saturate F = normal-∪-saturate (normal-∩-saturate F)
-- Saturation resects subtyping
∪-saturate-<: : ∀ {F} → FunType F → ∪-saturate F <: F
∪-saturate-<: (S ⇒ T) = <:-refl
∪-saturate-<: (F ∩ G) = <:-trans <:-∩-left (<:-intersect (∪-saturate-<: F) (∪-saturate-<: G))
∩-saturate-<: : ∀ {F} → FunType F → ∩-saturate F <: F
∩-saturate-<: (S ⇒ T) = <:-refl
∩-saturate-<: (F ∩ G) = <:-trans <:-∩-left (<:-intersect (∩-saturate-<: F) (∩-saturate-<: G))
saturate-<: : ∀ {F} → FunType F → saturate F <: F
saturate-<: F = <:-trans (∪-saturate-<: (normal-∩-saturate F)) (∩-saturate-<: F)
∩-<:-⋓ : ∀ {F G} → FunType F → FunType G → (F ∩ G) <: (F ⋓ G)
∩-<:-⋓ (R ⇒ S) (T ⇒ U) = <:-trans <:-function-∩-∪ (<:-function (∪ⁿ-<:-∪ R T) (∪-<:-∪ⁿ S U))
∩-<:-⋓ (R ⇒ S) (G ∩ H) = <:-trans (<:-∩-glb (<:-intersect <:-refl <:-∩-left) (<:-intersect <:-refl <:-∩-right)) (<:-intersect (∩-<:-⋓ (R ⇒ S) G) (∩-<:-⋓ (R ⇒ S) H))
∩-<:-⋓ (E ∩ F) G = <:-trans (<:-∩-glb (<:-intersect <:-∩-left <:-refl) (<:-intersect <:-∩-right <:-refl)) (<:-intersect (∩-<:-⋓ E G) (∩-<:-⋓ F G))
∩-<:-⋒ : ∀ {F G} → FunType F → FunType G → (F ∩ G) <: (F ⋒ G)
∩-<:-⋒ (R ⇒ S) (T ⇒ U) = <:-trans <:-function-∩-∩ (<:-function (∩ⁿ-<:-∩ R T) (∩-<:-∩ⁿ S U))
∩-<:-⋒ (R ⇒ S) (G ∩ H) = <:-trans (<:-∩-glb (<:-intersect <:-refl <:-∩-left) (<:-intersect <:-refl <:-∩-right)) (<:-intersect (∩-<:-⋒ (R ⇒ S) G) (∩-<:-⋒ (R ⇒ S) H))
∩-<:-⋒ (E ∩ F) G = <:-trans (<:-∩-glb (<:-intersect <:-∩-left <:-refl) (<:-intersect <:-∩-right <:-refl)) (<:-intersect (∩-<:-⋒ E G) (∩-<:-⋒ F G))
<:-∪-saturate : ∀ {F} → FunType F → F <: ∪-saturate F
<:-∪-saturate (S ⇒ T) = <:-refl
<:-∪-saturate (F ∩ G) = <:-∩-glb (<:-intersect (<:-∪-saturate F) (<:-∪-saturate G)) (<:-trans (<:-intersect (<:-∪-saturate F) (<:-∪-saturate G)) (∩-<:-⋓ (normal-∪-saturate F) (normal-∪-saturate G)))
<:-∩-saturate : ∀ {F} → FunType F → F <: ∩-saturate F
<:-∩-saturate (S ⇒ T) = <:-refl
<:-∩-saturate (F ∩ G) = <:-∩-glb (<:-intersect (<:-∩-saturate F) (<:-∩-saturate G)) (<:-trans (<:-intersect (<:-∩-saturate F) (<:-∩-saturate G)) (∩-<:-⋒ (normal-∩-saturate F) (normal-∩-saturate G)))
<:-saturate : ∀ {F} → FunType F → F <: saturate F
<:-saturate F = <:-trans (<:-∩-saturate F) (<:-∪-saturate (normal-∩-saturate F))
-- Overloads F is the set of overloads of F
data Overloads : Type → Type → Set where
here : ∀ {S T} → Overloads (S ⇒ T) (S ⇒ T)
left : ∀ {S T F G} → Overloads F (S ⇒ T) → Overloads (F ∩ G) (S ⇒ T)
right : ∀ {S T F G} → Overloads G (S ⇒ T) → Overloads (F ∩ G) (S ⇒ T)
normal-overload-src : ∀ {F S T} → FunType F → Overloads F (S ⇒ T) → Normal S
normal-overload-src (S ⇒ T) here = S
normal-overload-src (F ∩ G) (left o) = normal-overload-src F o
normal-overload-src (F ∩ G) (right o) = normal-overload-src G o
normal-overload-tgt : ∀ {F S T} → FunType F → Overloads F (S ⇒ T) → Normal T
normal-overload-tgt (S ⇒ T) here = T
normal-overload-tgt (F ∩ G) (left o) = normal-overload-tgt F o
normal-overload-tgt (F ∩ G) (right o) = normal-overload-tgt G o
-- An inductive presentation of the overloads of F ⋓ G
data ∪-Lift (P Q : Type → Set) : Type → Set where
union : ∀ {R S T U} →
P (R ⇒ S) →
Q (T ⇒ U) →
--------------------
∪-Lift P Q ((R ∪ T) ⇒ (S ∪ U))
-- An inductive presentation of the overloads of F ⋒ G
data ∩-Lift (P Q : Type → Set) : Type → Set where
intersect : ∀ {R S T U} →
P (R ⇒ S) →
Q (T ⇒ U) →
--------------------
∩-Lift P Q ((R ∩ T) ⇒ (S ∩ U))
-- An inductive presentation of the overloads of ∪-saturate F
data ∪-Saturate (P : Type → Set) : Type → Set where
base : ∀ {S T} →
P (S ⇒ T) →
--------------------
∪-Saturate P (S ⇒ T)
union : ∀ {R S T U} →
∪-Saturate P (R ⇒ S) →
∪-Saturate P (T ⇒ U) →
--------------------
∪-Saturate P ((R ∪ T) ⇒ (S ∪ U))
-- An inductive presentation of the overloads of ∩-saturate F
data ∩-Saturate (P : Type → Set) : Type → Set where
base : ∀ {S T} →
P (S ⇒ T) →
--------------------
∩-Saturate P (S ⇒ T)
intersect : ∀ {R S T U} →
∩-Saturate P (R ⇒ S) →
∩-Saturate P (T ⇒ U) →
--------------------
∩-Saturate P ((R ∩ T) ⇒ (S ∩ U))
-- The <:-up-closure of a set of function types
data <:-Close (P : Type → Set) : Type → Set where
defn : ∀ {R S T U} →
P (S ⇒ T) →
R <: S →
T <: U →
------------------
<:-Close P (R ⇒ U)
-- F ⊆ᵒ G whenever every overload of F is an overload of G
_⊆ᵒ_ : Type → Type → Set
F ⊆ᵒ G = ∀ {S T} → Overloads F (S ⇒ T) → Overloads G (S ⇒ T)
-- F <:ᵒ G when every overload of G is a supertype of an overload of F
_<:ᵒ_ : Type → Type → Set
_<:ᵒ_ F G = ∀ {S T} → Overloads G (S ⇒ T) → <:-Close (Overloads F) (S ⇒ T)
-- P ⊂: Q when any type in P is a subtype of some type in Q
_⊂:_ : (Type → Set) → (Type → Set) → Set
P ⊂: Q = ∀ {S T} → P (S ⇒ T) → <:-Close Q (S ⇒ T)
-- <:-Close is a monad
just : ∀ {P S T} → P (S ⇒ T) → <:-Close P (S ⇒ T)
just p = defn p <:-refl <:-refl
infixl 5 _>>=_ _>>=ˡ_ _>>=ʳ_
_>>=_ : ∀ {P Q S T} → <:-Close P (S ⇒ T) → (P ⊂: Q) → <:-Close Q (S ⇒ T)
(defn p p₁ p₂) >>= P⊂Q with P⊂Q p
(defn p p₁ p₂) >>= P⊂Q | defn q q₁ q₂ = defn q (<:-trans p₁ q₁) (<:-trans q₂ p₂)
_>>=ˡ_ : ∀ {P R S T} → <:-Close P (S ⇒ T) → (R <: S) → <:-Close P (R ⇒ T)
(defn p p₁ p₂) >>=ˡ q = defn p (<:-trans q p₁) p₂
_>>=ʳ_ : ∀ {P S T U} → <:-Close P (S ⇒ T) → (T <: U) → <:-Close P (S ⇒ U)
(defn p p₁ p₂) >>=ʳ q = defn p p₁ (<:-trans p₂ q)
-- Properties of ⊂:
⊂:-refl : ∀ {P} → P ⊂: P
⊂:-refl p = just p
_[∪]_ : ∀ {P Q R S T U} → <:-Close P (R ⇒ S) → <:-Close Q (T ⇒ U) → <:-Close (∪-Lift P Q) ((R ∪ T) ⇒ (S ∪ U))
(defn p p₁ p₂) [∪] (defn q q₁ q₂) = defn (union p q) (<:-union p₁ q₁) (<:-union p₂ q₂)
_[∩]_ : ∀ {P Q R S T U} → <:-Close P (R ⇒ S) → <:-Close Q (T ⇒ U) → <:-Close (∩-Lift P Q) ((R ∩ T) ⇒ (S ∩ U))
(defn p p₁ p₂) [∩] (defn q q₁ q₂) = defn (intersect p q) (<:-intersect p₁ q₁) (<:-intersect p₂ q₂)
⊂:-∩-saturate-inj : ∀ {P} → P ⊂: ∩-Saturate P
⊂:-∩-saturate-inj p = defn (base p) <:-refl <:-refl
⊂:-∪-saturate-inj : ∀ {P} → P ⊂: ∪-Saturate P
⊂:-∪-saturate-inj p = just (base p)
⊂:-∩-lift-saturate : ∀ {P} → ∩-Lift (∩-Saturate P) (∩-Saturate P) ⊂: ∩-Saturate P
⊂:-∩-lift-saturate (intersect p q) = just (intersect p q)
⊂:-∪-lift-saturate : ∀ {P} → ∪-Lift (∪-Saturate P) (∪-Saturate P) ⊂: ∪-Saturate P
⊂:-∪-lift-saturate (union p q) = just (union p q)
⊂:-∩-lift : ∀ {P Q R S} → (P ⊂: Q) → (R ⊂: S) → (∩-Lift P R ⊂: ∩-Lift Q S)
⊂:-∩-lift P⊂Q R⊂S (intersect n o) = P⊂Q n [∩] R⊂S o
⊂:-∪-lift : ∀ {P Q R S} → (P ⊂: Q) → (R ⊂: S) → (∪-Lift P R ⊂: ∪-Lift Q S)
⊂:-∪-lift P⊂Q R⊂S (union n o) = P⊂Q n [∪] R⊂S o
⊂:-∩-saturate : ∀ {P Q} → (P ⊂: Q) → (∩-Saturate P ⊂: ∩-Saturate Q)
⊂:-∩-saturate P⊂Q (base p) = P⊂Q p >>= ⊂:-∩-saturate-inj
⊂:-∩-saturate P⊂Q (intersect p q) = (⊂:-∩-saturate P⊂Q p [∩] ⊂:-∩-saturate P⊂Q q) >>= ⊂:-∩-lift-saturate
⊂:-∪-saturate : ∀ {P Q} → (P ⊂: Q) → (∪-Saturate P ⊂: ∪-Saturate Q)
⊂:-∪-saturate P⊂Q (base p) = P⊂Q p >>= ⊂:-∪-saturate-inj
⊂:-∪-saturate P⊂Q (union p q) = (⊂:-∪-saturate P⊂Q p [∪] ⊂:-∪-saturate P⊂Q q) >>= ⊂:-∪-lift-saturate
⊂:-∩-saturate-indn : ∀ {P Q} → (P ⊂: Q) → (∩-Lift Q Q ⊂: Q) → (∩-Saturate P ⊂: Q)
⊂:-∩-saturate-indn P⊂Q QQ⊂Q (base p) = P⊂Q p
⊂:-∩-saturate-indn P⊂Q QQ⊂Q (intersect p q) = (⊂:-∩-saturate-indn P⊂Q QQ⊂Q p [∩] ⊂:-∩-saturate-indn P⊂Q QQ⊂Q q) >>= QQ⊂Q
⊂:-∪-saturate-indn : ∀ {P Q} → (P ⊂: Q) → (∪-Lift Q Q ⊂: Q) → (∪-Saturate P ⊂: Q)
⊂:-∪-saturate-indn P⊂Q QQ⊂Q (base p) = P⊂Q p
⊂:-∪-saturate-indn P⊂Q QQ⊂Q (union p q) = (⊂:-∪-saturate-indn P⊂Q QQ⊂Q p [∪] ⊂:-∪-saturate-indn P⊂Q QQ⊂Q q) >>= QQ⊂Q
∪-saturate-resp-∩-saturation : ∀ {P} → (∩-Lift P P ⊂: P) → (∩-Lift (∪-Saturate P) (∪-Saturate P) ⊂: ∪-Saturate P)
∪-saturate-resp-∩-saturation ∩P⊂P (intersect (base p) (base q)) = ∩P⊂P (intersect p q) >>= ⊂:-∪-saturate-inj
∪-saturate-resp-∩-saturation ∩P⊂P (intersect p (union q q₁)) = (∪-saturate-resp-∩-saturation ∩P⊂P (intersect p q) [∪] ∪-saturate-resp-∩-saturation ∩P⊂P (intersect p q₁)) >>= ⊂:-∪-lift-saturate >>=ˡ <:-∩-distl-∪ >>=ʳ ∩-distl-∪-<:
∪-saturate-resp-∩-saturation ∩P⊂P (intersect (union p p₁) q) = (∪-saturate-resp-∩-saturation ∩P⊂P (intersect p q) [∪] ∪-saturate-resp-∩-saturation ∩P⊂P (intersect p₁ q)) >>= ⊂:-∪-lift-saturate >>=ˡ <:-∩-distr-∪ >>=ʳ ∩-distr-∪-<:
ov-language : ∀ {F t} → FunType F → (∀ {S T} → Overloads F (S ⇒ T) → Language (S ⇒ T) t) → Language F t
ov-language (S ⇒ T) p = p here
ov-language (F ∩ G) p = (ov-language F (p ∘ left) , ov-language G (p ∘ right))
ov-<: : ∀ {F R S T U} → FunType F → Overloads F (R ⇒ S) → ((R ⇒ S) <: (T ⇒ U)) → F <: (T ⇒ U)
ov-<: F here p = p
ov-<: (F ∩ G) (left o) p = <:-trans <:-∩-left (ov-<: F o p)
ov-<: (F ∩ G) (right o) p = <:-trans <:-∩-right (ov-<: G o p)
<:ᵒ-impl-<: : ∀ {F G} → FunType F → FunType G → (F <:ᵒ G) → (F <: G)
<:ᵒ-impl-<: F (T ⇒ U) F<G with F<G here
<:ᵒ-impl-<: F (T ⇒ U) F<G | defn o o₁ o₂ = ov-<: F o (<:-function o₁ o₂)
<:ᵒ-impl-<: F (G ∩ H) F<G = <:-∩-glb (<:ᵒ-impl-<: F G (F<G ∘ left)) (<:ᵒ-impl-<: F H (F<G ∘ right))
⊂:-overloads-left : ∀ {F G} → Overloads F ⊂: Overloads (F ∩ G)
⊂:-overloads-left p = just (left p)
⊂:-overloads-right : ∀ {F G} → Overloads G ⊂: Overloads (F ∩ G)
⊂:-overloads-right p = just (right p)
⊂:-overloads-⋒ : ∀ {F G} → FunType F → FunType G → ∩-Lift (Overloads F) (Overloads G) ⊂: Overloads (F ⋒ G)
⊂:-overloads-⋒ (R ⇒ S) (T ⇒ U) (intersect here here) = defn here (∩-<:-∩ⁿ R T) (∩ⁿ-<:-∩ S U)
⊂:-overloads-⋒ (R ⇒ S) (G ∩ H) (intersect here (left o)) = ⊂:-overloads-⋒ (R ⇒ S) G (intersect here o) >>= ⊂:-overloads-left
⊂:-overloads-⋒ (R ⇒ S) (G ∩ H) (intersect here (right o)) = ⊂:-overloads-⋒ (R ⇒ S) H (intersect here o) >>= ⊂:-overloads-right
⊂:-overloads-⋒ (E ∩ F) G (intersect (left n) o) = ⊂:-overloads-⋒ E G (intersect n o) >>= ⊂:-overloads-left
⊂:-overloads-⋒ (E ∩ F) G (intersect (right n) o) = ⊂:-overloads-⋒ F G (intersect n o) >>= ⊂:-overloads-right
⊂:-⋒-overloads : ∀ {F G} → FunType F → FunType G → Overloads (F ⋒ G) ⊂: ∩-Lift (Overloads F) (Overloads G)
⊂:-⋒-overloads (R ⇒ S) (T ⇒ U) here = defn (intersect here here) (∩ⁿ-<:-∩ R T) (∩-<:-∩ⁿ S U)
⊂:-⋒-overloads (R ⇒ S) (G ∩ H) (left o) = ⊂:-⋒-overloads (R ⇒ S) G o >>= ⊂:-∩-lift ⊂:-refl ⊂:-overloads-left
⊂:-⋒-overloads (R ⇒ S) (G ∩ H) (right o) = ⊂:-⋒-overloads (R ⇒ S) H o >>= ⊂:-∩-lift ⊂:-refl ⊂:-overloads-right
⊂:-⋒-overloads (E ∩ F) G (left o) = ⊂:-⋒-overloads E G o >>= ⊂:-∩-lift ⊂:-overloads-left ⊂:-refl
⊂:-⋒-overloads (E ∩ F) G (right o) = ⊂:-⋒-overloads F G o >>= ⊂:-∩-lift ⊂:-overloads-right ⊂:-refl
⊂:-overloads-⋓ : ∀ {F G} → FunType F → FunType G → ∪-Lift (Overloads F) (Overloads G) ⊂: Overloads (F ⋓ G)
⊂:-overloads-⋓ (R ⇒ S) (T ⇒ U) (union here here) = defn here (∪-<:-∪ⁿ R T) (∪ⁿ-<:-∪ S U)
⊂:-overloads-⋓ (R ⇒ S) (G ∩ H) (union here (left o)) = ⊂:-overloads-⋓ (R ⇒ S) G (union here o) >>= ⊂:-overloads-left
⊂:-overloads-⋓ (R ⇒ S) (G ∩ H) (union here (right o)) = ⊂:-overloads-⋓ (R ⇒ S) H (union here o) >>= ⊂:-overloads-right
⊂:-overloads-⋓ (E ∩ F) G (union (left n) o) = ⊂:-overloads-⋓ E G (union n o) >>= ⊂:-overloads-left
⊂:-overloads-⋓ (E ∩ F) G (union (right n) o) = ⊂:-overloads-⋓ F G (union n o) >>= ⊂:-overloads-right
⊂:-⋓-overloads : ∀ {F G} → FunType F → FunType G → Overloads (F ⋓ G) ⊂: ∪-Lift (Overloads F) (Overloads G)
⊂:-⋓-overloads (R ⇒ S) (T ⇒ U) here = defn (union here here) (∪ⁿ-<:-∪ R T) (∪-<:-∪ⁿ S U)
⊂:-⋓-overloads (R ⇒ S) (G ∩ H) (left o) = ⊂:-⋓-overloads (R ⇒ S) G o >>= ⊂:-∪-lift ⊂:-refl ⊂:-overloads-left
⊂:-⋓-overloads (R ⇒ S) (G ∩ H) (right o) = ⊂:-⋓-overloads (R ⇒ S) H o >>= ⊂:-∪-lift ⊂:-refl ⊂:-overloads-right
⊂:-⋓-overloads (E ∩ F) G (left o) = ⊂:-⋓-overloads E G o >>= ⊂:-∪-lift ⊂:-overloads-left ⊂:-refl
⊂:-⋓-overloads (E ∩ F) G (right o) = ⊂:-⋓-overloads F G o >>= ⊂:-∪-lift ⊂:-overloads-right ⊂:-refl
∪-saturate-overloads : ∀ {F} → FunType F → Overloads (∪-saturate F) ⊂: ∪-Saturate (Overloads F)
∪-saturate-overloads (S ⇒ T) here = just (base here)
∪-saturate-overloads (F ∩ G) (left (left o)) = ∪-saturate-overloads F o >>= ⊂:-∪-saturate ⊂:-overloads-left
∪-saturate-overloads (F ∩ G) (left (right o)) = ∪-saturate-overloads G o >>= ⊂:-∪-saturate ⊂:-overloads-right
∪-saturate-overloads (F ∩ G) (right o) =
⊂:-⋓-overloads (normal-∪-saturate F) (normal-∪-saturate G) o >>=
⊂:-∪-lift (∪-saturate-overloads F) (∪-saturate-overloads G) >>=
⊂:-∪-lift (⊂:-∪-saturate ⊂:-overloads-left) (⊂:-∪-saturate ⊂:-overloads-right) >>=
⊂:-∪-lift-saturate
overloads-∪-saturate : ∀ {F} → FunType F → ∪-Saturate (Overloads F) ⊂: Overloads (∪-saturate F)
overloads-∪-saturate F = ⊂:-∪-saturate-indn (inj F) (step F) where
inj : ∀ {F} → FunType F → Overloads F ⊂: Overloads (∪-saturate F)
inj (S ⇒ T) here = just here
inj (F ∩ G) (left p) = inj F p >>= ⊂:-overloads-left >>= ⊂:-overloads-left
inj (F ∩ G) (right p) = inj G p >>= ⊂:-overloads-right >>= ⊂:-overloads-left
step : ∀ {F} → FunType F → ∪-Lift (Overloads (∪-saturate F)) (Overloads (∪-saturate F)) ⊂: Overloads (∪-saturate F)
step (S ⇒ T) (union here here) = defn here (<:-∪-lub <:-refl <:-refl) <:-∪-left
step (F ∩ G) (union (left (left p)) (left (left q))) = step F (union p q) >>= ⊂:-overloads-left >>= ⊂:-overloads-left
step (F ∩ G) (union (left (left p)) (left (right q))) = ⊂:-overloads-⋓ (normal-∪-saturate F) (normal-∪-saturate G) (union p q) >>= ⊂:-overloads-right
step (F ∩ G) (union (left (right p)) (left (left q))) = ⊂:-overloads-⋓ (normal-∪-saturate F) (normal-∪-saturate G) (union q p) >>= ⊂:-overloads-right >>=ˡ <:-∪-symm >>=ʳ <:-∪-symm
step (F ∩ G) (union (left (right p)) (left (right q))) = step G (union p q) >>= ⊂:-overloads-right >>= ⊂:-overloads-left
step (F ∩ G) (union p (right q)) with ⊂:-⋓-overloads (normal-∪-saturate F) (normal-∪-saturate G) q
step (F ∩ G) (union (left (left p)) (right q)) | defn (union q₁ q₂) q₃ q₄ =
(step F (union p q₁) [∪] just q₂) >>=
⊂:-overloads-⋓ (normal-∪-saturate F) (normal-∪-saturate G) >>=
⊂:-overloads-right >>=ˡ
<:-trans (<:-union <:-refl q₃) <:-∪-assocl >>=ʳ
<:-trans <:-∪-assocr (<:-union <:-refl q₄)
step (F ∩ G) (union (left (right p)) (right q)) | defn (union q₁ q₂) q₃ q₄ =
(just q₁ [∪] step G (union p q₂)) >>=
⊂:-overloads-⋓ (normal-∪-saturate F) (normal-∪-saturate G) >>=
⊂:-overloads-right >>=ˡ
<:-trans (<:-union <:-refl q₃) (<:-∪-lub (<:-trans <:-∪-left <:-∪-right) (<:-∪-lub <:-∪-left (<:-trans <:-∪-right <:-∪-right))) >>=ʳ
<:-trans (<:-∪-lub (<:-trans <:-∪-left <:-∪-right) (<:-∪-lub <:-∪-left (<:-trans <:-∪-right <:-∪-right))) (<:-union <:-refl q₄)
step (F ∩ G) (union (right p) (right q)) | defn (union q₁ q₂) q₃ q₄ with ⊂:-⋓-overloads (normal-∪-saturate F) (normal-∪-saturate G) p
step (F ∩ G) (union (right p) (right q)) | defn (union q₁ q₂) q₃ q₄ | defn (union p₁ p₂) p₃ p₄ =
(step F (union p₁ q₁) [∪] step G (union p₂ q₂)) >>=
⊂:-overloads-⋓ (normal-∪-saturate F) (normal-∪-saturate G) >>=
⊂:-overloads-right >>=ˡ
<:-trans (<:-union p₃ q₃) (<:-∪-lub (<:-union <:-∪-left <:-∪-left) (<:-union <:-∪-right <:-∪-right)) >>=ʳ
<:-trans (<:-∪-lub (<:-union <:-∪-left <:-∪-left) (<:-union <:-∪-right <:-∪-right)) (<:-union p₄ q₄)
step (F ∩ G) (union (right p) q) with ⊂:-⋓-overloads (normal-∪-saturate F) (normal-∪-saturate G) p
step (F ∩ G) (union (right p) (left (left q))) | defn (union p₁ p₂) p₃ p₄ =
(step F (union p₁ q) [∪] just p₂) >>=
⊂:-overloads-⋓ (normal-∪-saturate F) (normal-∪-saturate G) >>=
⊂:-overloads-right >>=ˡ
<:-trans (<:-union p₃ <:-refl) (<:-∪-lub (<:-union <:-∪-left <:-refl) (<:-trans <:-∪-right <:-∪-left)) >>=ʳ
<:-trans (<:-∪-lub (<:-union <:-∪-left <:-refl) (<:-trans <:-∪-right <:-∪-left)) (<:-union p₄ <:-refl)
step (F ∩ G) (union (right p) (left (right q))) | defn (union p₁ p₂) p₃ p₄ =
(just p₁ [∪] step G (union p₂ q)) >>=
⊂:-overloads-⋓ (normal-∪-saturate F) (normal-∪-saturate G) >>=
⊂:-overloads-right >>=ˡ
<:-trans (<:-union p₃ <:-refl) <:-∪-assocr >>=ʳ
<:-trans <:-∪-assocl (<:-union p₄ <:-refl)
step (F ∩ G) (union (right p) (right q)) | defn (union p₁ p₂) p₃ p₄ with ⊂:-⋓-overloads (normal-∪-saturate F) (normal-∪-saturate G) q
step (F ∩ G) (union (right p) (right q)) | defn (union p₁ p₂) p₃ p₄ | defn (union q₁ q₂) q₃ q₄ =
(step F (union p₁ q₁) [∪] step G (union p₂ q₂)) >>=
⊂:-overloads-⋓ (normal-∪-saturate F) (normal-∪-saturate G) >>=
⊂:-overloads-right >>=ˡ
<:-trans (<:-union p₃ q₃) (<:-∪-lub (<:-union <:-∪-left <:-∪-left) (<:-union <:-∪-right <:-∪-right)) >>=ʳ
<:-trans (<:-∪-lub (<:-union <:-∪-left <:-∪-left) (<:-union <:-∪-right <:-∪-right)) (<:-union p₄ q₄)
∪-saturated : ∀ {F} → FunType F → ∪-Lift (Overloads (∪-saturate F)) (Overloads (∪-saturate F)) ⊂: Overloads (∪-saturate F)
∪-saturated F o =
⊂:-∪-lift (∪-saturate-overloads F) (∪-saturate-overloads F) o >>=
⊂:-∪-lift-saturate >>=
overloads-∪-saturate F
∩-saturate-overloads : ∀ {F} → FunType F → Overloads (∩-saturate F) ⊂: ∩-Saturate (Overloads F)
∩-saturate-overloads (S ⇒ T) here = just (base here)
∩-saturate-overloads (F ∩ G) (left (left o)) = ∩-saturate-overloads F o >>= ⊂:-∩-saturate ⊂:-overloads-left
∩-saturate-overloads (F ∩ G) (left (right o)) = ∩-saturate-overloads G o >>= ⊂:-∩-saturate ⊂:-overloads-right
∩-saturate-overloads (F ∩ G) (right o) =
⊂:-⋒-overloads (normal-∩-saturate F) (normal-∩-saturate G) o >>=
⊂:-∩-lift (∩-saturate-overloads F) (∩-saturate-overloads G) >>=
⊂:-∩-lift (⊂:-∩-saturate ⊂:-overloads-left) (⊂:-∩-saturate ⊂:-overloads-right) >>=
⊂:-∩-lift-saturate
overloads-∩-saturate : ∀ {F} → FunType F → ∩-Saturate (Overloads F) ⊂: Overloads (∩-saturate F)
overloads-∩-saturate F = ⊂:-∩-saturate-indn (inj F) (step F) where
inj : ∀ {F} → FunType F → Overloads F ⊂: Overloads (∩-saturate F)
inj (S ⇒ T) here = just here
inj (F ∩ G) (left p) = inj F p >>= ⊂:-overloads-left >>= ⊂:-overloads-left
inj (F ∩ G) (right p) = inj G p >>= ⊂:-overloads-right >>= ⊂:-overloads-left
step : ∀ {F} → FunType F → ∩-Lift (Overloads (∩-saturate F)) (Overloads (∩-saturate F)) ⊂: Overloads (∩-saturate F)
step (S ⇒ T) (intersect here here) = defn here <:-∩-left (<:-∩-glb <:-refl <:-refl)
step (F ∩ G) (intersect (left (left p)) (left (left q))) = step F (intersect p q) >>= ⊂:-overloads-left >>= ⊂:-overloads-left
step (F ∩ G) (intersect (left (left p)) (left (right q))) = ⊂:-overloads-⋒ (normal-∩-saturate F) (normal-∩-saturate G) (intersect p q) >>= ⊂:-overloads-right
step (F ∩ G) (intersect (left (right p)) (left (left q))) = ⊂:-overloads-⋒ (normal-∩-saturate F) (normal-∩-saturate G) (intersect q p) >>= ⊂:-overloads-right >>=ˡ <:-∩-symm >>=ʳ <:-∩-symm
step (F ∩ G) (intersect (left (right p)) (left (right q))) = step G (intersect p q) >>= ⊂:-overloads-right >>= ⊂:-overloads-left
step (F ∩ G) (intersect (right p) q) with ⊂:-⋒-overloads (normal-∩-saturate F) (normal-∩-saturate G) p
step (F ∩ G) (intersect (right p) (left (left q))) | defn (intersect p₁ p₂) p₃ p₄ =
(step F (intersect p₁ q) [∩] just p₂) >>=
⊂:-overloads-⋒ (normal-∩-saturate F) (normal-∩-saturate G) >>=
⊂:-overloads-right >>=ˡ
<:-trans (<:-intersect p₃ <:-refl) (<:-∩-glb (<:-intersect <:-∩-left <:-refl) (<:-trans <:-∩-left <:-∩-right)) >>=ʳ
<:-trans (<:-∩-glb (<:-intersect <:-∩-left <:-refl) (<:-trans <:-∩-left <:-∩-right)) (<:-intersect p₄ <:-refl)
step (F ∩ G) (intersect (right p) (left (right q))) | defn (intersect p₁ p₂) p₃ p₄ =
(just p₁ [∩] step G (intersect p₂ q)) >>=
⊂:-overloads-⋒ (normal-∩-saturate F) (normal-∩-saturate G) >>=
⊂:-overloads-right >>=ˡ
<:-trans (<:-intersect p₃ <:-refl) <:-∩-assocr >>=ʳ
<:-trans <:-∩-assocl (<:-intersect p₄ <:-refl)
step (F ∩ G) (intersect (right p) (right q)) | defn (intersect p₁ p₂) p₃ p₄ with ⊂:-⋒-overloads (normal-∩-saturate F) (normal-∩-saturate G) q
step (F ∩ G) (intersect (right p) (right q)) | defn (intersect p₁ p₂) p₃ p₄ | defn (intersect q₁ q₂) q₃ q₄ =
(step F (intersect p₁ q₁) [∩] step G (intersect p₂ q₂)) >>=
⊂:-overloads-⋒ (normal-∩-saturate F) (normal-∩-saturate G) >>=
⊂:-overloads-right >>=ˡ
<:-trans (<:-intersect p₃ q₃) (<:-∩-glb (<:-intersect <:-∩-left <:-∩-left) (<:-intersect <:-∩-right <:-∩-right)) >>=ʳ
<:-trans (<:-∩-glb (<:-intersect <:-∩-left <:-∩-left) (<:-intersect <:-∩-right <:-∩-right)) (<:-intersect p₄ q₄)
step (F ∩ G) (intersect p (right q)) with ⊂:-⋒-overloads (normal-∩-saturate F) (normal-∩-saturate G) q
step (F ∩ G) (intersect (left (left p)) (right q)) | defn (intersect q₁ q₂) q₃ q₄ =
(step F (intersect p q₁) [∩] just q₂) >>=
⊂:-overloads-⋒ (normal-∩-saturate F) (normal-∩-saturate G) >>=
⊂:-overloads-right >>=ˡ
<:-trans (<:-intersect <:-refl q₃) <:-∩-assocl >>=ʳ
<:-trans <:-∩-assocr (<:-intersect <:-refl q₄)
step (F ∩ G) (intersect (left (right p)) (right q)) | defn (intersect q₁ q₂) q₃ q₄ =
(just q₁ [∩] step G (intersect p q₂) ) >>=
⊂:-overloads-⋒ (normal-∩-saturate F) (normal-∩-saturate G) >>=
⊂:-overloads-right >>=ˡ
<:-trans (<:-intersect <:-refl q₃) (<:-∩-glb (<:-trans <:-∩-right <:-∩-left) (<:-∩-glb <:-∩-left (<:-trans <:-∩-right <:-∩-right))) >>=ʳ
<:-∩-glb (<:-trans <:-∩-right <:-∩-left) (<:-trans (<:-∩-glb <:-∩-left (<:-trans <:-∩-right <:-∩-right)) q₄)
step (F ∩ G) (intersect (right p) (right q)) | defn (intersect q₁ q₂) q₃ q₄ with ⊂:-⋒-overloads (normal-∩-saturate F) (normal-∩-saturate G) p
step (F ∩ G) (intersect (right p) (right q)) | defn (intersect q₁ q₂) q₃ q₄ | defn (intersect p₁ p₂) p₃ p₄ =
(step F (intersect p₁ q₁) [∩] step G (intersect p₂ q₂)) >>=
⊂:-overloads-⋒ (normal-∩-saturate F) (normal-∩-saturate G) >>=
⊂:-overloads-right >>=ˡ
<:-trans (<:-intersect p₃ q₃) (<:-∩-glb (<:-intersect <:-∩-left <:-∩-left) (<:-intersect <:-∩-right <:-∩-right)) >>=ʳ
<:-trans (<:-∩-glb (<:-intersect <:-∩-left <:-∩-left) (<:-intersect <:-∩-right <:-∩-right)) (<:-intersect p₄ q₄)
saturate-overloads : ∀ {F} → FunType F → Overloads (saturate F) ⊂: ∪-Saturate (∩-Saturate (Overloads F))
saturate-overloads F o = ∪-saturate-overloads (normal-∩-saturate F) o >>= (⊂:-∪-saturate (∩-saturate-overloads F))
overloads-saturate : ∀ {F} → FunType F → ∪-Saturate (∩-Saturate (Overloads F)) ⊂: Overloads (saturate F)
overloads-saturate F o = ⊂:-∪-saturate (overloads-∩-saturate F) o >>= overloads-∪-saturate (normal-∩-saturate F)
-- Saturated F whenever
-- * if F has overloads (R ⇒ S) and (T ⇒ U) then F has an overload which is a subtype of ((R ∩ T) ⇒ (S ∩ U))
-- * ditto union
data Saturated (F : Type) : Set where
defn :
(∀ {R S T U} → Overloads F (R ⇒ S) → Overloads F (T ⇒ U) → <:-Close (Overloads F) ((R ∩ T) ⇒ (S ∩ U))) →
(∀ {R S T U} → Overloads F (R ⇒ S) → Overloads F (T ⇒ U) → <:-Close (Overloads F) ((R ∪ T) ⇒ (S ∪ U))) →
-----------
Saturated F
-- saturated F is saturated!
saturated : ∀ {F} → FunType F → Saturated (saturate F)
saturated F = defn
(λ n o → (saturate-overloads F n [∩] saturate-overloads F o) >>= ∪-saturate-resp-∩-saturation ⊂:-∩-lift-saturate >>= overloads-saturate F)
(λ n o → ∪-saturated (normal-∩-saturate F) (union n o))
| 58.202765
| 459
| 0.534125
|
31c1b91cffc6a98984b20f296bfc080858618a9c
| 15,498
|
agda
|
Agda
|
Cubical/HITs/James/Inductive/Coherence.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | 1
|
2021-10-31T17:32:49.000Z
|
2021-10-31T17:32:49.000Z
|
Cubical/HITs/James/Inductive/Coherence.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
Cubical/HITs/James/Inductive/Coherence.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
{-
This file contains:
- Path lemmas used in the colimit-equivalence proof.
Verbose, indeed. But should be simple. The length mainly thanks to:
- Degenerate cubes that seem "obvious", but have to be constructed manually;
- J rule is cubersome to use, especially when iteratively applied,
also it is overcomplicated to construct JRefl in nested cases.
-}
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.HITs.James.Inductive.Coherence where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Function
private
variable
ℓ ℓ' : Level
-- Lots of degenerate cubes used as intial input to J rule
private
module _
{A : Type ℓ}(a : A) where
degenerate1 : (i j k : I) → A
degenerate1 i j k =
hfill (λ k → λ
{ (i = i0) → a
; (i = i1) → doubleCompPath-filler (refl {x = a}) refl refl k j
; (j = i0) → a
; (j = i1) → a})
(inS a) k
degenerate1' : (i j k : I) → A
degenerate1' i j k =
hfill (λ k → λ
{ (i = i0) → a
; (i = i1) → compPath-filler (refl {x = a}) refl k j
; (j = i0) → a
; (j = i1) → a})
(inS a) k
degenerate1'' : (i j k : I) → A
degenerate1'' i j k =
hfill (λ k → λ
{ (i = i0) → a
; (i = i1) → compPath-filler (refl {x = a}) (refl ∙ refl) k j
; (j = i0) → a
; (j = i1) → degenerate1 i k i1})
(inS a) k
module _
{B : Type ℓ'}(f : A → B) where
degenerate2 : (i j k : I) → B
degenerate2 i j k =
hfill (λ k → λ
{ (i = i0) → f a
; (i = i1) → doubleCompPath-filler (refl {x = f a}) refl refl k j
; (j = i0) → f a
; (j = i1) → f a })
(inS (f a)) k
degenerate3 : (i j k : I) → B
degenerate3 i j k =
hfill (λ k → λ
{ (i = i0) → f (doubleCompPath-filler (refl {x = a}) refl refl k j)
; (i = i1) → doubleCompPath-filler (refl {x = f a}) refl refl k j
; (j = i0) → f a
; (j = i1) → f a })
(inS (f a)) k
someCommonDegenerateCube : (i j k : I) → B
someCommonDegenerateCube i j k =
hcomp (λ l → λ
{ (i = i0) → f a
; (i = i1) → degenerate3 k j l
; (j = i0) → f a
; (j = i1) → f a
; (k = i0) → f (degenerate1 i j l)
; (k = i1) → degenerate2 i j l })
(f a)
degenerate4 : (i j k : I) → A
degenerate4 i j k =
hfill (λ k → λ
{ (i = i0) → compPath-filler (refl {x = a}) (refl ∙∙ refl ∙∙ refl) k j
; (i = i1) → doubleCompPath-filler (refl {x = a}) refl refl j k
; (j = i0) → a
; (j = i1) → (refl {x = a} ∙∙ refl ∙∙ refl) k })
(inS a) k
degenerate5 : (i j k : I) → A
degenerate5 i j k =
hcomp (λ l → λ
{ (i = i0) → compPath-filler (refl {x = a}) (refl ∙∙ refl ∙∙ refl) k j
; (i = i1) → doubleCompPath-filler (refl {x = a}) refl refl (j ∧ ~ l) k
; (j = i0) → a
; (j = i1) → doubleCompPath-filler (refl {x = a}) refl refl (~ i ∨ ~ l) k
; (k = i0) → a
; (k = i1) → degenerate4 i j i1 })
(degenerate4 i j k)
degenerate5' : (i j k : I) → A
degenerate5' i j k =
hfill (λ k → λ
{ (i = i0) → doubleCompPath-filler (refl {x = a}) refl (refl ∙ refl) k j
; (i = i1) → a
; (j = i0) → a
; (j = i1) → compPath-filler (refl {x = a}) refl (~ i) k })
(inS a) k
-- Cubes of which mostly are constructed by J rule
module _
{A : Type ℓ}{a : A} where
coh-helper-refl :
(q' : a ≡ a)(h : refl ≡ q')
→ refl ≡ refl ∙∙ refl ∙∙ q'
coh-helper-refl q' h i j =
hcomp (λ k → λ
{ (i = i0) → a
; (i = i1) → doubleCompPath-filler refl refl q' k j
; (j = i0) → a
; (j = i1) → h i k })
a
coh-helper' :
(b : A)(p : a ≡ b)
(c : A)(q : b ≡ c)
(q' : b ≡ c)(r : PathP (λ i → p i ≡ q i) p q')
→ refl ≡ (sym q) ∙∙ refl ∙∙ q'
coh-helper' = J> J> coh-helper-refl
coh-helper'-Refl1 : coh-helper' _ refl ≡ J> coh-helper-refl
coh-helper'-Refl1 = transportRefl _
coh-helper'-Refl2 : coh-helper' _ refl _ refl ≡ coh-helper-refl
coh-helper'-Refl2 = (λ i → coh-helper'-Refl1 i _ refl) ∙ transportRefl _
coh-helper :
{b c : A}(p : a ≡ b)(q q' : b ≡ c)
(h : PathP (λ i → p i ≡ q i) p q')
→ refl ≡ (sym q) ∙∙ refl ∙∙ q'
coh-helper p = coh-helper' _ p _
coh-helper-Refl : coh-helper-refl ≡ coh-helper refl refl
coh-helper-Refl = sym coh-helper'-Refl2
module _
{A : Type ℓ}{B : Type ℓ'}{a b c d : A} where
doubleCompPath-cong-filler :
{a' b' c' d' : B} (f : A → B)
{pa : f a ≡ a'}{pb : f b ≡ b'}{pc : f c ≡ c'}{pd : f d ≡ d'}
(p : a ≡ b)(q : b ≡ c)(r : c ≡ d)
{p' : a' ≡ b'}{q' : b' ≡ c'}{r' : c' ≡ d'}
(h : PathP (λ i → pa i ≡ pb i) (cong f p) p')
(h' : PathP (λ i → pb i ≡ pc i) (cong f q) q')
(h'' : PathP (λ i → pc i ≡ pd i) (cong f r) r')
→ (i j k : I) → B
doubleCompPath-cong-filler f p q r {p' = p'} {q' = q'} {r' = r'} h h' h'' i j k =
hfill (λ k → λ
{ (i = i0) → f (doubleCompPath-filler p q r k j)
; (i = i1) → doubleCompPath-filler p' q' r' k j
; (j = i0) → h i (~ k)
; (j = i1) → h'' i k })
(inS (h' i j)) k
doubleCompPath-cong : (f : A → B)
(p : a ≡ b)(q : b ≡ c)(r : c ≡ d)
→ cong f (p ∙∙ q ∙∙ r) ≡ cong f p ∙∙ cong f q ∙∙ cong f r
doubleCompPath-cong f p q r i j =
doubleCompPath-cong-filler f
{pa = refl} {pb = refl} {pc = refl} {pd = refl}
p q r refl refl refl i j i1
module _
{A : Type ℓ}{a b c : A} where
comp-cong-square' :
(p : a ≡ b)(q : a ≡ c)
(r : b ≡ c)(h : r ≡ sym p ∙∙ refl ∙∙ q)
→ p ∙ r ≡ q
comp-cong-square' p q r h i j =
hcomp (λ k → λ
{ (i = i0) → compPath-filler p r k j
; (i = i1) → doubleCompPath-filler (sym p) refl q j k
; (j = i0) → a
; (j = i1) → h i k })
(p j)
module _
{B : Type ℓ'} where
comp-cong-square : (f : A → B)
(p : a ≡ b)(q : b ≡ c)
→ cong f (p ∙ q) ≡ cong f p ∙ cong f q
comp-cong-square f p q i j =
hcomp (λ k → λ
{ (i = i0) → f (compPath-filler p q k j)
; (i = i1) → compPath-filler (cong f p) (cong f q) k j
; (j = i0) → f a
; (j = i1) → f (q k) })
(f (p j))
module _
{A : Type ℓ}{B : Type ℓ'}{a b c : A}
(f : A → B)(p : a ≡ b)
(q : f a ≡ f c)(r : b ≡ c)
(h : cong f r ≡ sym (cong f p) ∙∙ refl ∙∙ q) where
comp-cong-helper-filler : (i j k : I) → B
comp-cong-helper-filler i j k =
hfill (λ k → λ
{ (i = i0) → comp-cong-square f p r (~ k) j
; (i = i1) → q j
; (j = i0) → f a
; (j = i1) → f c })
(inS (comp-cong-square' _ _ _ h i j)) k
comp-cong-helper : cong f (p ∙ r) ≡ q
comp-cong-helper i j =
comp-cong-helper-filler i j i1
module _
{A : Type ℓ}{a : A} where
push-helper-refl :
(q' : a ≡ a)(h : refl ≡ q')
→ refl ≡ refl ∙ q'
push-helper-refl q' h i j =
hcomp (λ k → λ
{ (i = i0) → a
; (i = i1) → compPath-filler refl q' k j
; (j = i0) → a
; (j = i1) → h i k })
a
push-helper' :
(b : A)(p : a ≡ b)
(c : A)(q : b ≡ c)
(q' : c ≡ c)(h : refl ≡ q')
→ PathP (λ i → p i ≡ q i) p (q ∙ q')
push-helper' = J> J> push-helper-refl
push-helper'-Refl1 : push-helper' _ refl ≡ J> push-helper-refl
push-helper'-Refl1 = transportRefl _
push-helper'-Refl2 : push-helper' _ refl _ refl ≡ push-helper-refl
push-helper'-Refl2 = (λ i → push-helper'-Refl1 i _ refl) ∙ transportRefl _
push-helper : {b c : A}
(p : a ≡ b)(q : b ≡ c)(q' : c ≡ c)(h : refl ≡ q')
→ PathP (λ i → p i ≡ q i) p (q ∙ q')
push-helper p = push-helper' _ p _
push-helper-Refl : push-helper-refl ≡ push-helper refl refl
push-helper-Refl = sym push-helper'-Refl2
module _
{A : Type ℓ}{B : Type ℓ'}{a : A}(f : A → B) where
push-helper-cong-Type : {b c : A}
(p : a ≡ b)(q : b ≡ c)
(q' : c ≡ c)(sqr : refl ≡ q')
→ Type _
push-helper-cong-Type p q q' sqr =
SquareP
(λ i j → f (push-helper p q _ sqr i j)
≡ push-helper (cong f p) (cong f q) _ (λ i j → f (sqr i j)) i j)
(λ i j → f (p i))
(λ i j → comp-cong-square f q q' j i)
(λ i j → f (p i)) (λ i j → f (q i))
push-helper-cong-refl : push-helper-cong-Type refl refl refl refl
push-helper-cong-refl =
transport (λ t →
SquareP
(λ i j → f (push-helper-Refl t _ (λ i j → a) i j)
≡ push-helper-Refl t _ (λ i j → f a) i j)
(λ i j → f a)
(λ i j → comp-cong-square f (refl {x = a}) refl j i)
(λ i j → f a) (λ i j → f a))
(λ i j k → someCommonDegenerateCube a f i j k)
push-helper-cong' :
(b : A)(p : a ≡ b)
(c : A)(q : b ≡ c)
(q' : c ≡ c)(sqr : refl ≡ q')
→ push-helper-cong-Type p q q' sqr
push-helper-cong' = J> J> J> push-helper-cong-refl
push-helper-cong : ∀ {b c} p q q' sqr → push-helper-cong-Type {b = b} {c = c} p q q' sqr
push-helper-cong p = push-helper-cong' _ p _
module _
{A : Type ℓ}{a : A} where
push-coh-helper-Type : {b c : A}
(p : a ≡ b)(q q' : b ≡ c)
(sqr : PathP (λ i → p i ≡ q i) p q')
→ Type _
push-coh-helper-Type p q q' sqr =
SquareP
(λ i j → push-helper p q _ (coh-helper _ _ _ sqr) i j ≡ sqr i j)
(λ i j → p i)
(λ i j → comp-cong-square' q q' _ refl j i)
(λ i j → p i) (λ i j → q i)
push-coh-helper-refl' :
SquareP
(λ i j → push-helper-refl _ (coh-helper-refl _ (λ i j → a)) i j ≡ a)
(λ i j → a)
(λ i j → comp-cong-square' (refl {x = a}) refl _ refl j i)
(λ i j → a)
(λ i j → a)
push-coh-helper-refl' i j k =
hcomp (λ l → λ
{ (i = i0) → a
; (i = i1) → degenerate5 a k j l
; (j = i0) → a
; (j = i1) → degenerate1 a i l (~ k)
; (k = i0) → degenerate1'' a i j l
; (k = i1) → a })
a
push-coh-helper-refl : push-coh-helper-Type refl refl refl refl
push-coh-helper-refl =
transport (λ t →
SquareP
(λ i j → push-helper-Refl t _ (coh-helper-Refl t _ (λ i j → a)) i j ≡ a)
(λ i j → a)
(λ i j → comp-cong-square' (refl {x = a}) refl _ refl j i)
(λ i j → a) (λ i j → a)) push-coh-helper-refl'
push-coh-helper' :
(b : A)(p : a ≡ b)
(c : A)(q : b ≡ c)
(q' : b ≡ c)(sqr : PathP (λ i → p i ≡ q i) p q')
→ push-coh-helper-Type p q q' sqr
push-coh-helper' = J> J> J> push-coh-helper-refl
push-coh-helper : ∀ {b c} p q q' sqr → push-coh-helper-Type {b = b} {c = c} p q q' sqr
push-coh-helper p q q' sqr = push-coh-helper' _ p _ q q' sqr
module _
{A : Type ℓ}{a : A} where
push-square-helper-refl :
refl ∙∙ refl ∙∙ (refl ∙ refl) ≡ refl {x = a}
push-square-helper-refl i j = degenerate5' a i j i1
push-square-helper' :
(b : A)(q : a ≡ b)
(c : A)(q' : b ≡ c)
→ sym q ∙∙ refl ∙∙ (q ∙ q') ≡ q'
push-square-helper' = J> J> push-square-helper-refl
push-square-helper'-Refl1 : push-square-helper' _ refl ≡ J> push-square-helper-refl
push-square-helper'-Refl1 = transportRefl _
push-square-helper'-Refl2 : push-square-helper' _ refl _ refl ≡ push-square-helper-refl
push-square-helper'-Refl2 = (λ i → push-square-helper'-Refl1 i _ refl) ∙ transportRefl _
push-square-helper : {b c : A}
(q : a ≡ b)(q' : b ≡ c)
→ sym q ∙∙ refl ∙∙ (q ∙ q') ≡ q'
push-square-helper p = push-square-helper' _ p _
push-square-helper-Refl : push-square-helper-refl ≡ push-square-helper refl refl
push-square-helper-Refl = sym push-square-helper'-Refl2
module _
{A : Type ℓ}{a : A} where
coh-cube-helper-Type :
{b c : A}(p : a ≡ b)(q : b ≡ c)
(q' : c ≡ c)(sqr : refl ≡ q')
→ Type _
coh-cube-helper-Type {c = c} p q q' sqr =
SquareP
(λ i j → coh-helper _ _ _ (push-helper p q q' sqr) i j ≡ sqr i j)
(λ i j → c)
(λ i j → push-square-helper q q' j i)
(λ i j → c) (λ i j → c)
coh-cube-helper-refl' :
SquareP
(λ i j → coh-helper-refl _ (push-helper-refl refl (λ i j → a)) i j ≡ a)
(λ i j → a)
(λ i j → push-square-helper-refl {a = a} j i)
(λ i j → a) (λ i j → a)
coh-cube-helper-refl' i j k =
hcomp (λ l → λ
{ (i = i0) → a
; (i = i1) → degenerate5' a k j l
; (j = i0) → a
; (j = i1) → degenerate1' a i l (~ k)
; (k = i0) → degenerate1'' a i j l
; (k = i1) → a })
a
coh-cube-helper-refl : coh-cube-helper-Type refl refl refl refl
coh-cube-helper-refl =
transport (λ t →
SquareP
(λ i j → coh-helper-Refl t _ (push-helper-Refl t refl (λ i j → a)) i j ≡ a)
(λ i j → a)
(λ i j → push-square-helper-Refl {a = a} t j i)
(λ i j → a) (λ i j → a)) coh-cube-helper-refl'
coh-cube-helper' :
(b : A)(p : a ≡ b)
(c : A)(q : b ≡ c)
(q' : c ≡ c)(sqr : refl ≡ q')
→ coh-cube-helper-Type p q q' sqr
coh-cube-helper' = J> J> J> coh-cube-helper-refl
coh-cube-helper : ∀ {b c} p q q' sqr → coh-cube-helper-Type {b = b} {c = c} p q q' sqr
coh-cube-helper p q q' sqr = coh-cube-helper' _ p _ q q' sqr
module _
{A : Type ℓ}{B : Type ℓ'}{a : A}(f : A → B) where
coh-helper-cong-Type : {b c : A}{a' b' c' : B}
(pa : f a ≡ a')(pb : f b ≡ b')(pc : f c ≡ c')
{p : a ≡ b }(q r : b ≡ c )
{p' : a' ≡ b'}{q' r' : b' ≡ c'}
(h : PathP (λ i → pa i ≡ pb i) (cong f p) p')
(h' : PathP (λ i → pb i ≡ pc i) (cong f q) q')
(h'' : PathP (λ i → pb i ≡ pc i) (cong f r) r')
(sqr : PathP (λ i → p i ≡ q i) p r)
(sqr' : PathP (λ i → p' i ≡ q' i) p' r')
→ Type _
coh-helper-cong-Type pa pb pc q r h h' h'' sqr sqr' =
SquareP
(λ i j → f (coh-helper _ _ _ sqr i j) ≡ coh-helper _ _ _ (λ i j → sqr' i j) i j)
(λ i j → pc j)
(λ i j → doubleCompPath-cong-filler f (sym q) refl r (λ i j → h' i (~ j)) (λ i j → pb i) h'' j i i1)
(λ i j → pc j) (λ i j → pc j)
coh-helper-cong-refl : coh-helper-cong-Type refl refl refl refl refl refl refl refl refl refl
coh-helper-cong-refl =
transport (λ t →
SquareP
(λ i j → f (coh-helper-Refl t _ (λ i j → a) i j) ≡ coh-helper-Refl t _ (λ i j → f a) i j)
(λ i j → f a)
(λ i j → doubleCompPath-cong-filler f refl refl refl (λ i j → f a) (λ i j → f a) (λ i j → f a) j i i1)
(λ i j → f a) (λ i j → f a))
(λ i j k → someCommonDegenerateCube a f i j k)
coh-helper-cong' :
(b : A)(p : a ≡ b)
(c : A)(q : b ≡ c)
(a' : B)(pa : f a ≡ a')
(b' : B)(pb : f b ≡ b')
(c' : B)(pc : f c ≡ c')
(r : b ≡ c)(sqr : PathP (λ i → p i ≡ q i) p r)
(p' : a' ≡ b')(h : PathP (λ i → pa i ≡ pb i) (cong f p) p')
(q' : b' ≡ c')(h' : PathP (λ i → pb i ≡ pc i) (cong f q) q')
(r' : b' ≡ c')(h'' : PathP (λ i → pb i ≡ pc i) (cong f r) r')
(sqr' : PathP (λ i → p' i ≡ q' i) p' r')
(hsqr : SquareP (λ i j → h i j ≡ h' i j) (λ i j → f (sqr i j)) sqr' h h'')
→ coh-helper-cong-Type pa pb pc q r h h' h'' sqr sqr'
coh-helper-cong' = J> J> J> J> J> J> J> J> J> J> coh-helper-cong-refl
coh-helper-cong :
∀ {b c a' b' c' pa pb pc} p q r {p' q' r' h h' h''} sqr {sqr'}
(hsqr : SquareP (λ i j → f (sqr i j) ≡ sqr' i j)
(λ i j → h j i) (λ i j → h'' j i) (λ i j → h j i) (λ i j → h' j i))
→ coh-helper-cong-Type {b = b} {c = c} {a' = a'} {b' = b'} {c' = c'}
pa pb pc q r {p' = p'} {q' = q'} {r' = r'} h h' h'' sqr sqr'
coh-helper-cong p q r sqr hsqr =
coh-helper-cong' _ p _ q _ _ _ _ _ _ r sqr _ _ _ _ _ _ _ (λ i j k → hsqr j k i)
| 31.564155
| 108
| 0.481352
|
c791c811edc3e703e7adcc7300320334434ebe23
| 58
|
agda
|
Agda
|
n2o/Network/Http.agda
|
o4/n2o
|
d7903dfffcd66ae174eed9347afe008f892b2491
|
[
"BSD-3-Clause"
] | 3
|
2018-11-30T11:37:10.000Z
|
2019-01-02T06:37:47.000Z
|
n2o/Network/Http.agda
|
o4/n2o
|
d7903dfffcd66ae174eed9347afe008f892b2491
|
[
"BSD-3-Clause"
] | null | null | null |
n2o/Network/Http.agda
|
o4/n2o
|
d7903dfffcd66ae174eed9347afe008f892b2491
|
[
"BSD-3-Clause"
] | null | null | null |
{-# OPTIONS --cubical #-}
module n2o.Network.Http where
| 14.5
| 30
| 0.672414
|
13c84a010a089bdbd5e91fc7a91710f439c49112
| 444
|
agda
|
Agda
|
test/Succeed/ImplicitRecordFields.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/ImplicitRecordFields.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/ImplicitRecordFields.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module ImplicitRecordFields where
record R (X Y : Set) : Set₁ where
field
{A} : Set
f : A → A
{B C} D {E} : Set
g : B → C → E → X → Y
postulate A : Set
r : R A A
r = record
{ f = f
; B = A
; D = A
; g = λ (_ _ _ : _) → f
}
where
f : A → A
f x = x
data _≡_ {A : Set₁} (x : A) : A → Set where
refl : x ≡ x
lemma₁ : r ≡ record {}
lemma₁ = refl
lemma₂ : R.B r ≡ A
lemma₂ = refl
| 14.322581
| 43
| 0.441441
|
c713b5f13b23e7c4b28948231beff762a2d2524f
| 444
|
agda
|
Agda
|
test/Common/Prelude.agda
|
favonia/agda
|
8d433b967567c08afe15d04a5cb63b6f6d8884ee
|
[
"BSD-2-Clause"
] | null | null | null |
test/Common/Prelude.agda
|
favonia/agda
|
8d433b967567c08afe15d04a5cb63b6f6d8884ee
|
[
"BSD-2-Clause"
] | 6
|
2021-10-18T08:12:24.000Z
|
2021-11-24T08:31:10.000Z
|
test/Common/Prelude.agda
|
antoinevanmuylder/agda
|
bd59d5b07ffe02a43b28d186d95e1747aac5bc8c
|
[
"BSD-2-Clause"
] | null | null | null |
{-# OPTIONS --cubical-compatible #-}
module Common.Prelude where
import Common.Level
open import Agda.Builtin.Unit public
open import Common.Bool public
open import Common.Char public
open import Common.Float public
open import Common.IO public
open import Common.List public
open import Common.Maybe public
open import Common.Nat public
open import Common.String public
open import Common.Unit public
data ⊥ : Set where
| 23.368421
| 36
| 0.772523
|
adb0e29f937233230ff084f035e0edc607cd0007
| 2,715
|
agda
|
Agda
|
BasicIPC/Metatheory/Hilbert-KripkeConcreteGluedImplicit.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | 29
|
2016-07-03T18:51:56.000Z
|
2022-01-01T10:29:18.000Z
|
BasicIPC/Metatheory/Hilbert-KripkeConcreteGluedImplicit.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | 1
|
2018-06-10T09:11:22.000Z
|
2018-06-10T09:11:22.000Z
|
BasicIPC/Metatheory/Hilbert-KripkeConcreteGluedImplicit.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | null | null | null |
module BasicIPC.Metatheory.Hilbert-KripkeConcreteGluedImplicit where
open import BasicIPC.Syntax.Hilbert public
open import BasicIPC.Semantics.KripkeConcreteGluedImplicit public
open ImplicitSyntax (_⊢_) (mono⊢) public
-- Completeness with respect to a particular model.
module _ {{_ : Model}} where
reify : ∀ {A w} → w ⊩ A → unwrap w ⊢ A
reify {α P} s = syn s
reify {A ▻ B} s = syn s
reify {A ∧ B} s = pair (reify (π₁ s)) (reify (π₂ s))
reify {⊤} s = unit
reify⋆ : ∀ {Ξ w} → w ⊩⋆ Ξ → unwrap w ⊢⋆ Ξ
reify⋆ {∅} ∙ = ∙
reify⋆ {Ξ , A} (ts , t) = reify⋆ ts , reify t
-- Additional useful equipment.
module _ {{_ : Model}} where
⟪K⟫ : ∀ {A B w} → w ⊩ A → w ⊩ B ▻ A
⟪K⟫ {A} a = app ck (reify a) ⅋ λ ξ →
K (mono⊩ {A} ξ a)
⟪S⟫′ : ∀ {A B C w} → w ⊩ A ▻ B ▻ C → w ⊩ (A ▻ B) ▻ A ▻ C
⟪S⟫′ {A} {B} {C} s₁ = app cs (syn s₁) ⅋ λ ξ s₂ →
app (app cs (mono⊢ (unwrap≤ ξ) (syn s₁))) (syn s₂) ⅋ λ ξ′ →
⟪S⟫ (mono⊩ {A ▻ B ▻ C} (trans≤ ξ ξ′) s₁) (mono⊩ {A ▻ B} ξ′ s₂)
_⟪,⟫′_ : ∀ {A B w} → w ⊩ A → w ⊩ B ▻ A ∧ B
_⟪,⟫′_ {A} a = app cpair (reify a) ⅋ λ ξ →
_,_ (mono⊩ {A} ξ a)
-- Soundness with respect to all models, or evaluation.
eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A
eval (var i) γ = lookup i γ
eval (app t u) γ = eval t γ ⟪$⟫ eval u γ
eval ci γ = ci ⅋ K I
eval ck γ = ck ⅋ K ⟪K⟫
eval cs γ = cs ⅋ K ⟪S⟫′
eval cpair γ = cpair ⅋ K _⟪,⟫′_
eval cfst γ = cfst ⅋ K π₁
eval csnd γ = csnd ⅋ K π₂
eval unit γ = ∙
-- TODO: Correctness of evaluation with respect to conversion.
-- The canonical model.
private
instance
canon : Model
canon = record
{ _⊩ᵅ_ = λ w P → unwrap w ⊢ α P
; mono⊩ᵅ = λ ξ t → mono⊢ (unwrap≤ ξ) t
}
-- Soundness with respect to the canonical model.
reflectᶜ : ∀ {A w} → unwrap w ⊢ A → w ⊩ A
reflectᶜ {α P} t = t ⅋ t
reflectᶜ {A ▻ B} t = t ⅋ λ ξ a → reflectᶜ (app (mono⊢ (unwrap≤ ξ) t) (reify a))
reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t)
reflectᶜ {⊤} t = ∙
reflectᶜ⋆ : ∀ {Ξ w} → unwrap w ⊢⋆ Ξ → w ⊩⋆ Ξ
reflectᶜ⋆ {∅} ∙ = ∙
reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t
-- Reflexivity and transitivity.
refl⊩⋆ : ∀ {w} → w ⊩⋆ unwrap w
refl⊩⋆ = reflectᶜ⋆ refl⊢⋆
trans⊩⋆ : ∀ {w w′ w″} → w ⊩⋆ unwrap w′ → w′ ⊩⋆ unwrap w″ → w ⊩⋆ unwrap w″
trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reify⋆ ts) (reify⋆ us))
-- Completeness with respect to all models, or quotation.
quot : ∀ {A Γ} → Γ ⊨ A → Γ ⊢ A
quot s = reify (s refl⊩⋆)
-- Normalisation by evaluation.
norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A
norm = quot ∘ eval
-- TODO: Correctness of normalisation with respect to conversion.
| 26.359223
| 90
| 0.521179
|
4b66e6a146f0b3e77526345221a2f243f0175425
| 518
|
agda
|
Agda
|
PInj.agda
|
kztk-m/sparcl-agda
|
e2fb3a669e733a9020a51b24244d89abd8fcf725
|
[
"BSD-3-Clause"
] | null | null | null |
PInj.agda
|
kztk-m/sparcl-agda
|
e2fb3a669e733a9020a51b24244d89abd8fcf725
|
[
"BSD-3-Clause"
] | null | null | null |
PInj.agda
|
kztk-m/sparcl-agda
|
e2fb3a669e733a9020a51b24244d89abd8fcf725
|
[
"BSD-3-Clause"
] | null | null | null |
{-# OPTIONS --without-K #-}
module PInj where
open import Codata.Delay renaming (length to dlength ; map to dmap )
open import Codata.Thunk
open import Relation.Binary.PropositionalEquality
open import Size
open import Level
open import Data.Product
-- A pair of partial functions that are supposed to form a partial bijection.
record _⊢_⇔_ (i : Size) {ℓ : Level} (A : Set ℓ) (B : Set ℓ) : Set ℓ where
constructor pre-pinj-i
field
forward : A -> Delay B i
backward : B -> Delay A i
open _⊢_⇔_
| 22.521739
| 78
| 0.696911
|
126b9c9a536d60ab8844d1dfb8cd7903066773a6
| 504
|
agda
|
Agda
|
test/interaction/noinfixdecl.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/interaction/noinfixdecl.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/interaction/noinfixdecl.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS -Wall #-}
module noinfixdecl where
-- warning acts on data constructors
data #2 : Set where
one : #2
two : #2
neg_ : #2 → #2
-- warning acts on definitions
infixl 3 _⊓_
_⊔_ : #2 → #2 → #2
_⊓_ : #2 → #2 → #2
one ⊔ n = n
two ⊔ n = two
(neg v) ⊔ n = neg (v ⊓ neg n)
one ⊓ n = one
two ⊓ n = n
(neg m) ⊓ n = neg (m ⊔ (neg n))
-- warning acts on postulates
postulate _≤_ : #2 → #2 → Set
-- warning does not act on 'closed' mixfix definitions
postulate [_] : #2 → Set
| 17.37931
| 54
| 0.549603
|
57efb6555cc2cec6de5e4d49fce311544db81414
| 15,824
|
agda
|
Agda
|
examples/TT.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
examples/TT.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
examples/TT.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --allow-unsolved-metas --no-termination-check #-}
module TT where
module Prelude where
-- Props ------------------------------------------------------------------
data True : Set where
tt : True
data False : Set where
postulate
falseE : (A : Set) -> False -> A
infix 3 _/\_
data _/\_ (P Q : Set) : Set where
andI : P -> Q -> P /\ Q
-- Zero and One -----------------------------------------------------------
data Zero : Set where
data One : Set where
unit : One
-- Natural numbers --------------------------------------------------------
data Nat : Set where
zero : Nat
suc : Nat -> Nat
_+_ : Nat -> Nat -> Nat
zero + m = m
suc n + m = suc (n + m)
module NatEq where
infix 5 _==_
_==_ : Nat -> Nat -> Set
zero == zero = True
suc n == suc m = n == m
_ == _ = False
rewriteEq : (C : Nat -> Set){m n : Nat} -> m == n -> C n -> C m
rewriteEq C {zero} {zero} _ x = x
rewriteEq C {suc _} {suc _} eq x = rewriteEq (\z -> C (suc z)) eq x
rewriteEq C {zero} {suc _} () _
rewriteEq C {suc _} {zero} () _
module Chain {A : Set}(_==_ : A -> A -> Set)
(_trans_ : {x y z : A} -> x == y -> y == z -> x == z)
where
infixl 4 _=-=_
infixl 4 _===_
infixr 8 _since_
_=-=_ : (x : A){y : A} -> x == y -> x == y
x =-= xy = xy
_===_ : {x y z : A} -> x == y -> y == z -> x == z
xy === yz = xy trans yz
_since_ : {x : A}(y : A) -> x == y -> x == y
y since xy = xy
module Fin where
open Prelude
-- Finite sets ------------------------------------------------------------
data Suc (A : Set) : Set where
fzero' : Suc A
fsuc' : A -> Suc A
mutual
data Fin (n : Nat) : Set where
finI : Fin' n -> Fin n
Fin' : Nat -> Set
Fin' zero = Zero
Fin' (suc n) = Suc (Fin n)
fzero : {n : Nat} -> Fin (suc n)
fzero = finI fzero'
fsuc : {n : Nat} -> Fin n -> Fin (suc n)
fsuc i = finI (fsuc' i)
finE : {n : Nat} -> Fin n -> Fin' n
finE (finI i) = i
module FinEq where
infix 5 _==_
_==_ : {n : Nat} -> Fin n -> Fin n -> Set
_==_ {suc _} (finI fzero' ) (finI fzero' ) = True
_==_ {suc _} (finI (fsuc' i)) (finI (fsuc' j)) = i == j
_==_ _ _ = False
rewriteEq : {n : Nat}(C : Fin n -> Set){i j : Fin n} -> i == j -> C j -> C i
rewriteEq {suc _} C {finI fzero' } {finI fzero' } eq x = x
rewriteEq {suc _} C {finI (fsuc' i)} {finI (fsuc' j)} eq x = rewriteEq (\z -> C (fsuc z)) eq x
rewriteEq {suc _} C {finI (fsuc' _)} {finI fzero' } () _
rewriteEq {suc _} C {finI fzero' } {finI (fsuc' _)} () _
rewriteEq {zero} C {finI ()} {_} _ _
module Vec where
open Prelude
open Fin
infixr 15 _::_
-- Vectors ----------------------------------------------------------------
data Nil : Set where
nil' : Nil
data Cons (A As : Set) : Set where
cons' : A -> As -> Cons A As
mutual
data Vec (A : Set)(n : Nat) : Set where
vecI : Vec' A n -> Vec A n
Vec' : Set -> Nat -> Set
Vec' A zero = Nil
Vec' A (suc n) = Cons A (Vec A n)
nil : {A : Set} -> Vec A zero
nil = vecI nil'
_::_ : {A : Set}{n : Nat} -> A -> Vec A n -> Vec A (suc n)
x :: xs = vecI (cons' x xs)
vecE : {A : Set}{n : Nat} -> Vec A n -> Vec' A n
vecE (vecI xs) = xs
vec : {A : Set}(n : Nat) -> A -> Vec A n
vec zero _ = nil
vec (suc n) x = x :: vec n x
map : {n : Nat}{A B : Set} -> (A -> B) -> Vec A n -> Vec B n
map {zero} f (vecI nil') = nil
map {suc n} f (vecI (cons' x xs)) = f x :: map f xs
_!_ : {n : Nat}{A : Set} -> Vec A n -> Fin n -> A
_!_ {zero } _ (finI ())
_!_ {suc n} (vecI (cons' x _ )) (finI fzero') = x
_!_ {suc n} (vecI (cons' _ xs)) (finI (fsuc' i)) = xs ! i
tabulate : {n : Nat}{A : Set} -> (Fin n -> A) -> Vec A n
tabulate {zero} f = nil
tabulate {suc n} f = f fzero :: tabulate (\x -> f (fsuc x))
module Untyped where
open Prelude
open Fin
open Vec
Name = Nat
data Expr (n : Nat) : Set where
eVar : Fin n -> Expr n
eApp : Expr n -> Expr n -> Expr n
eLam : Expr (suc n) -> Expr n
eSet : Expr n
eEl : Expr n
ePi : Expr n
eCon : Name -> Expr n
module ExprEq where
infix 5 _==_
_==_ : {n : Nat} -> Expr n -> Expr n -> Set
eVar i == eVar j = FinEq._==_ i j
eApp e1 e2 == eApp e3 e4 = e1 == e3 /\ e2 == e4
eLam e1 == eLam e2 = e1 == e2
eSet == eSet = True
eEl == eEl = True
ePi == ePi = True
eCon f == eCon g = NatEq._==_ f g
_ == _ = False
rewriteEq : {n : Nat}(C : Expr n -> Set){r s : Expr n} -> r == s -> C s -> C r
rewriteEq C {eVar i } {eVar j } eq x = FinEq.rewriteEq (\z -> C (eVar z)) eq x
rewriteEq C {eLam e1 } {eLam e2 } eq x = rewriteEq (\z -> C (eLam z)) eq x
rewriteEq C {eSet } {eSet } eq x = x
rewriteEq C {eEl } {eEl } eq x = x
rewriteEq C {ePi } {ePi } eq x = x
rewriteEq C {eCon f } {eCon g } eq x = NatEq.rewriteEq (\z -> C (eCon z)) eq x
rewriteEq C {eApp e1 e2} {eApp e3 e4} (andI eq13 eq24) x =
rewriteEq (\z -> C (eApp z e2)) eq13 (
rewriteEq (\z -> C (eApp e3 z)) eq24 x
)
rewriteEq C {eVar _} {eLam _ } () _
rewriteEq C {eVar _} {eSet } () _
rewriteEq C {eVar _} {eEl } () _
rewriteEq C {eVar _} {eCon _ } () _
rewriteEq C {eVar _} {ePi } () _
rewriteEq C {eVar _} {eApp _ _} () _
rewriteEq C {eLam _} {eVar _ } () _
rewriteEq C {eLam _} {eSet } () _
rewriteEq C {eLam _} {eEl } () _
rewriteEq C {eLam _} {eCon _ } () _
rewriteEq C {eLam _} {ePi } () _
rewriteEq C {eLam _} {eApp _ _} () _
rewriteEq C {eSet } {eLam _ } () _
rewriteEq C {eSet } {eVar _ } () _
rewriteEq C {eSet } {eEl } () _
rewriteEq C {eSet } {eCon _ } () _
rewriteEq C {eSet } {ePi } () _
rewriteEq C {eSet } {eApp _ _} () _
rewriteEq C {eEl } {eLam _ } () _
rewriteEq C {eEl } {eSet } () _
rewriteEq C {eEl } {eVar _ } () _
rewriteEq C {eEl } {eCon _ } () _
rewriteEq C {eEl } {ePi } () _
rewriteEq C {eEl } {eApp _ _} () _
rewriteEq C {eCon _} {eLam _ } () _
rewriteEq C {eCon _} {eSet } () _
rewriteEq C {eCon _} {eEl } () _
rewriteEq C {eCon _} {eVar _ } () _
rewriteEq C {eCon _} {ePi } () _
rewriteEq C {eCon _} {eApp _ _} () _
rewriteEq C {ePi } {eLam _ } () _
rewriteEq C {ePi } {eSet } () _
rewriteEq C {ePi } {eEl } () _
rewriteEq C {ePi } {eCon _ } () _
rewriteEq C {ePi } {eVar _ } () _
rewriteEq C {ePi } {eApp _ _} () _
rewriteEq C {eApp _ _} {eLam _ } () _
rewriteEq C {eApp _ _} {eSet } () _
rewriteEq C {eApp _ _} {eEl } () _
rewriteEq C {eApp _ _} {eCon _ } () _
rewriteEq C {eApp _ _} {ePi } () _
rewriteEq C {eApp _ _} {eVar _ } () _
module Typed where
open Prelude
open Fin
open Vec
infixl 15 _&_
infix 13 _!!_
infix 5 _==_
-- Contexts ---------------------------------------------------------------
data CSuc (n : Nat) : Set
Context' : Nat -> Set
Context' zero = Nil
Context' (suc n) = CSuc n
data Context (n : Nat) : Set
data Type {n : Nat}(Γ : Context n) : Set
data CSuc n where
ext : (Γ : Context n) -> Type Γ -> Context' (suc n)
data Context n where
ctxI : Context' n -> Context n
-- Types ------------------------------------------------------------------
_&_ : {n : Nat}(Γ : Context n) -> Type Γ -> Context (suc n)
data Term {n : Nat}(Γ : Context n)(A : Type Γ) : Set
data Type {n} Γ where
SET : Type Γ
Pi : (A : Type Γ) -> Type (Γ & A) -> Type Γ
El : Term Γ SET -> Type Γ
Γ & A = ctxI (ext Γ A)
-- Variables --------------------------------------------------------------
data VarSuc {n : Nat}(Γ : Context n)(B : Type Γ)(A : Type (Γ & B)) : Set
Var' : {n : Nat}(Γ : Context n) -> Type Γ -> Set
Var' {zero} Γ A = Zero
Var' {suc n} (ctxI (ext Γ B)) A = VarSuc Γ B A
_==_ : {n : Nat}{Γ : Context n} -> Type Γ -> Type Γ -> Set
data Ren {n m : Nat}(Γ : Context n)(Δ : Context m) : Set
rename : {n m : Nat}{Γ : Context n}{Δ : Context m} -> Ren Γ Δ -> Type Γ -> Type Δ
upR : {n : Nat}{Γ : Context n}{A : Type Γ} -> Ren Γ (Γ & A)
data Var {n : Nat}(Γ : Context n)(A : Type Γ) : Set
data VarSuc {n} Γ B A where
vzero_ : A == rename upR B -> Var' (Γ & B) A
vsuc_ : (C : Type Γ) -> A == rename upR C -> Var Γ C -> Var' (Γ & B) A
data Var {n} Γ A where
varI : Var' Γ A -> Var Γ A
-- Terms ------------------------------------------------------------------
data Sub {n m : Nat}(Γ : Context n)(Δ : Context m) : Set
subst : {n m : Nat}{Γ : Context n}{Δ : Context m} -> Sub Γ Δ -> Type Γ -> Type Δ
down : {n : Nat}{Γ : Context n}{A : Type Γ} -> Term Γ A -> Sub (Γ & A) Γ
data Term {n} Γ A where
var : (x : Var Γ A) -> Term Γ A
app : {B : Type Γ}{C : Type (Γ & B)} -> Term Γ (Pi B C) -> (t : Term Γ B) ->
A == subst (down t) C -> Term Γ A
lam : {B : Type Γ}{C : Type (Γ & B)} -> Term (Γ & B) C -> A == Pi B C -> Term Γ A
-- Context manipulation ---------------------------------------------------
∅ : Context zero
∅ = ctxI nil'
_!!_ : {n : Nat}(Γ : Context n) -> Fin n -> Type Γ
_!!_ {zero} _ (finI ())
_!!_ {suc _} (ctxI (ext Γ A)) (finI fzero') = rename upR A
_!!_ {suc _} (ctxI (ext Γ A)) (finI (fsuc' i)) = rename upR (Γ !! i)
-- Renamings --------------------------------------------------------------
data ConsRen {n m : Nat}(Γ : Context n)(A : Type Γ)(Δ : Context m) : Set
Ren' : {n m : Nat} -> Context n -> Context m -> Set
Ren' {zero} {m} (ctxI nil') Δ = Nil
Ren' {suc n} {m} (ctxI (ext Γ A)) Δ = ConsRen Γ A Δ
data ConsRen {n m} Γ A Δ where
extRen' : (ρ : Ren Γ Δ) -> Var Δ (rename ρ A) -> Ren' (Γ & A) Δ
data Ren {n m} Γ Δ where
renI : Ren' Γ Δ -> Ren Γ Δ
-- Performing renamings ---------------------------------------------------
rename' : {n m : Nat}{Γ : Context n}{Δ : Context m} -> Ren Γ Δ -> Type Γ -> Type Δ
rename ρ SET = SET
rename ρ A = rename' ρ A
liftR : {n m : Nat}{Γ : Context n}{A : Type Γ}{Δ : Context m} ->
(ρ : Ren Γ Δ) -> Ren (Γ & A) (Δ & rename ρ A)
renameTerm : {n m : Nat}{Γ : Context n}{Δ : Context m}{A : Type Γ}
(ρ : Ren Γ Δ) -> Term Γ A -> Term Δ (rename ρ A)
rename' ρ SET = SET
rename' ρ (Pi A B) = Pi (rename ρ A) (rename (liftR ρ) B)
rename' ρ (El t) = El (renameTerm ρ t)
lookupR : {n m : Nat}{Γ : Context n}{A : Type Γ}{Δ : Context m}
(ρ : Ren Γ Δ)(x : Var Γ A) -> Var Δ (rename ρ A)
cong : {n m : Nat}{Γ : Context n}{Δ : Context m}(f : Type Γ -> Type Δ)
{A B : Type Γ} -> A == B -> f A == f B
_trans_ : {n : Nat}{Γ : Context n}{A B C : Type Γ} -> A == B -> B == C -> A == C
renameSubstCommute :
{n m : Nat}{Γ : Context n}{Δ : Context m}{A : Type Γ}{B : Type (Γ & A)}
{ρ : Ren Γ Δ}{t : Term Γ A} ->
rename ρ (subst (down t) B) == subst (down (renameTerm ρ t)) (rename (liftR ρ) B)
renameTerm ρ (var x) = var (lookupR ρ x)
renameTerm {_}{_}{_}{_}{A} ρ (app{_}{C} s t eq) =
app (renameTerm ρ s) (renameTerm ρ t)
(cong (rename ρ) eq trans renameSubstCommute)
renameTerm ρ (lam t eq) = lam (renameTerm (liftR ρ) t) (cong (rename ρ) eq)
lookupR {zero} _ (varI ())
lookupR {suc n} {_} {ctxI (ext Γ B)} {A} {Δ}
(renI (extRen' ρ z)) (varI (vzero_ eq)) = {!!}
lookupR {suc n} {_} {ctxI (ext Γ B)} {A} {Δ}
(renI (extRen' ρ z)) (varI (vsuc_ C eq x)) = {!!}
-- Building renamings -----------------------------------------------------
extRen : {n m : Nat}{Γ : Context n}{A : Type Γ}{Δ : Context m}
(ρ : Ren Γ Δ) -> Var Δ (rename ρ A) -> Ren (Γ & A) Δ
extRen ρ x = renI (extRen' ρ x)
_coR_ : {n m p : Nat}{Γ : Context n}{Δ : Context m}{Θ : Context p} -> Ren Δ Θ -> Ren Γ Δ -> Ren Γ Θ
liftR {_}{_}{_}{A} ρ = extRen (upR coR ρ) (varI {!!})
idR : {n : Nat} {Γ : Context n} -> Ren Γ Γ
idR = {!!}
_coR_ = {!!}
upR = {!!}
-- Substitutions ----------------------------------------------------------
data ConsSub {n m : Nat}(Γ : Context n)(A : Type Γ)(Δ : Context m) : Set
Sub' : {n m : Nat} -> Context n -> Context m -> Set
Sub' {zero} {m} (ctxI nil') Δ = Nil
Sub' {suc n} {m} (ctxI (ext Γ A)) Δ = ConsSub Γ A Δ
data ConsSub {n m} Γ A Δ where
extSub' : (σ : Sub Γ Δ) -> Term Δ (subst σ A) -> Sub' (Γ & A) Δ
data Sub {n m} Γ Δ where
subI : Sub' Γ Δ -> Sub Γ Δ
-- Performing substitution ------------------------------------------------
subst' : {n m : Nat}{Γ : Context n}{Δ : Context m} -> Sub Γ Δ -> Type Γ -> Type Δ
subst σ SET = SET
subst σ A = subst' σ A
liftS : {n m : Nat}{Γ : Context n}{A : Type Γ}{Δ : Context m} ->
(σ : Sub Γ Δ) -> Sub (Γ & A) (Δ & subst σ A)
substTerm : {n m : Nat}{Γ : Context n}{Δ : Context m}{A : Type Γ} ->
(σ : Sub Γ Δ) -> Term Γ A -> Term Δ (subst σ A)
subst' σ (Pi A B) = Pi (subst σ A) (subst (liftS σ) B)
subst' σ (El t) = El (substTerm σ t)
subst' σ SET = SET
substTerm σ (var x) = {!!}
substTerm σ (app s t eq) = {!!}
substTerm σ (lam t eq) = {!!}
-- Building substitutions -------------------------------------------------
liftS {_}{_}{_}{A} σ = {!!} -- extSub (upS ∘ σ) (var fzero (substCompose upS σ A))
-- Works with hidden args to substCompose when inlined in subst
-- but not here. Weird.
topS : {n : Nat}{Γ : Context n} -> Sub ∅ Γ
topS = subI nil'
extSub : {n m : Nat}{Γ : Context n}{A : Type Γ}{Δ : Context m}
(σ : Sub Γ Δ) -> Term Δ (subst σ A) -> Sub (Γ & A) Δ
extSub σ t = subI (extSub' σ t)
idS : {n : Nat}{Γ : Context n} -> Sub Γ Γ
idS {zero} {ctxI nil'} = topS
idS {suc _} {ctxI (ext Γ A)} = {!!} -- extSub upS (var fzero refl)
convert : {n : Nat}{Γ : Context n}{A B : Type Γ} -> A == B -> Term Γ B -> Term Γ A
_∘_ : {n m p : Nat}{Γ : Context n}{Δ : Context m}{Θ : Context p} -> Sub Δ Θ -> Sub Γ Δ -> Sub Γ Θ
substCompose : {n m p : Nat}{Γ : Context n}{Δ : Context m}{Θ : Context p}
(σ : Sub Δ Θ)(δ : Sub Γ Δ)(A : Type Γ) ->
subst (σ ∘ δ) A == subst σ (subst δ A)
_∘_ {zero} {_}{_} {ctxI nil'} _ _ = topS
_∘_ {suc _}{_}{_} {ctxI (ext Γ A)} σ (subI (extSub' δ t)) =
extSub (σ ∘ δ) (convert (substCompose σ δ A) (substTerm σ t))
upS : {n : Nat}{Γ : Context n}{A : Type Γ} -> Sub Γ (Γ & A)
upS = {!!}
substId : {n : Nat}{Γ : Context n}{A : Type Γ} -> subst idS A == A
down t = extSub idS (convert substId t)
-- Convertibility ---------------------------------------------------------
A == B = {!!}
refl : {n : Nat}{Γ : Context n}{A : Type Γ} -> A == A
refl = {!!}
cong f eq = {!!}
ab trans bc = {!!}
convert eq t = {!!}
-- Properties -------------------------------------------------------------
renameId : {n : Nat}{Γ : Context n}{A : Type Γ} -> rename idR A == A
renameId = {!!}
renameCompose : {n m p : Nat}{Γ : Context n}{Δ : Context m}{Θ : Context p}
(σ : Ren Δ Θ)(δ : Ren Γ Δ)(A : Type Γ) ->
rename (σ coR δ) A == rename σ (rename δ A)
renameCompose σ δ A = {!!}
substId = {!!}
substCompose σ δ A = {!!}
renameSubstCommute = {!!}
| 31.648
| 101
| 0.446411
|
1a3a529da175482e23887e8a99faaacc992689e8
| 7,425
|
agda
|
Agda
|
theorems/homotopy/GroupSetsRepresentCovers.agda
|
timjb/HoTT-Agda
|
66f800adef943afdf08c17b8ecfba67340fead5e
|
[
"MIT"
] | null | null | null |
theorems/homotopy/GroupSetsRepresentCovers.agda
|
timjb/HoTT-Agda
|
66f800adef943afdf08c17b8ecfba67340fead5e
|
[
"MIT"
] | null | null | null |
theorems/homotopy/GroupSetsRepresentCovers.agda
|
timjb/HoTT-Agda
|
66f800adef943afdf08c17b8ecfba67340fead5e
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
import homotopy.ConstantToSetExtendsToProp as ConstExt
open import homotopy.RibbonCover
module homotopy.GroupSetsRepresentCovers {i} (X : Ptd i)
{{_ : is-connected 0 (de⊙ X)}} where
open Cover
private
A : Type i
A = de⊙ X
a₁ : A
a₁ = pt X
-- A covering space constructed from a G-set.
grpset-to-cover : ∀ {j} → GroupSet (πS 0 X) j → Cover A (lmax i j)
grpset-to-cover gs = Ribbon-cover X gs
-- Covering spaces to G-sets.
cover-to-grpset-struct : ∀ {j} (cov : Cover A j)
→ GroupSetStructure (πS 0 X) (Fiber cov a₁)
cover-to-grpset-struct cov = record
{ act = cover-trace cov
; unit-r = cover-trace-idp₀ cov
; assoc = cover-paste cov
}
cover-to-grpset : ∀ {j} → Cover A j → GroupSet (πS 0 X) j
cover-to-grpset cov = record
{ El = Fiber cov a₁
; grpset-struct = cover-to-grpset-struct cov
}
-- This is derivable from connectedness condition.
module _ where
abstract
[base-path] : ∀ {a₂ : A} → Trunc -1 (a₁ == a₂)
[base-path] {a₂} =
–> (Trunc=-equiv [ a₁ ] [ a₂ ]) (contr-has-all-paths [ a₁ ] [ a₂ ])
-- Part 1: Show that the synthesized cover (ribbon) is fiberwisely
-- equivalent to the original fiber.
private
module _ {j} (cov : Cover A j) where
-- Suppose that we get the path, we can compute the ribbon easily.
fiber+path-to-ribbon : ∀ {a₂} (a↑ : Fiber cov a₂) (p : a₁ == a₂)
→ Ribbon X (cover-to-grpset cov) a₂
fiber+path-to-ribbon {a₂} a↑ p =
trace (cover-trace cov a↑ [ ! p ]) [ p ]
abstract
-- Our construction is "constant" with respect to paths.
fiber+path-to-ribbon-is-path-irrelevant :
∀ {a₂} (a↑ : Fiber cov a₂) (p₁ p₂ : a₁ == a₂)
→ fiber+path-to-ribbon a↑ p₁ == fiber+path-to-ribbon a↑ p₂
fiber+path-to-ribbon-is-path-irrelevant a↑ p idp =
trace (cover-trace cov a↑ [ ! p ]) [ p ]
=⟨ paste a↑ [ ! p ] [ p ] ⟩
trace a↑ [ ! p ∙ p ]
=⟨ !₀-inv-l [ p ] |in-ctx trace a↑ ⟩
trace a↑ idp₀
∎
module FiberAndPathToRibbon {a₂} (a↑ : Fiber cov a₂)
= ConstExt
(fiber+path-to-ribbon a↑)
(fiber+path-to-ribbon-is-path-irrelevant a↑)
fiber+path₋₁-to-ribbon : ∀ {a₂} (a↑ : Cover.Fiber cov a₂)
→ Trunc -1 (a₁ == a₂) → Ribbon X (cover-to-grpset cov) a₂
fiber+path₋₁-to-ribbon a↑ = FiberAndPathToRibbon.ext a↑
-- So the conversion from fiber to ribbon is done.
fiber-to-ribbon : ∀ {j} (cov : Cover A j)
→ {a₂ : A} (a↑ : Cover.Fiber cov a₂)
→ Ribbon X (cover-to-grpset cov) a₂
fiber-to-ribbon cov a↑ = fiber+path₋₁-to-ribbon cov a↑ [base-path]
-- The other direction is easy.
ribbon-to-fiber : ∀ {j} (cov : Cover A j) {a₂}
→ Ribbon X (cover-to-grpset cov) a₂ → Cover.Fiber cov a₂
ribbon-to-fiber cov {a₂} r =
Ribbon-rec (cover-trace cov) (cover-paste cov) r
private
-- Some routine computations.
abstract
ribbon-to-fiber-to-ribbon : ∀ {j} (cov : Cover A j) {a₂}
→ (r : Ribbon X (cover-to-grpset cov) a₂)
→ fiber-to-ribbon cov (ribbon-to-fiber cov r) == r
ribbon-to-fiber-to-ribbon cov {a₂} = Ribbon-elim
{P = λ r → fiber-to-ribbon cov (ribbon-to-fiber cov r) == r}
(λ a↑ p → Trunc-elim
-- All ugly things will go away when bp = proj bp′
{{λ bp → has-level-apply Ribbon-is-set
(fiber+path₋₁-to-ribbon cov (cover-trace cov a↑ p) bp)
(trace a↑ p)}}
(lemma a↑ p)
[base-path])
(λ _ _ _ → prop-has-all-paths-↓)
where
abstract
lemma : ∀ {a₂} (a↑ : Cover.Fiber cov a₁) (p : a₁ =₀ a₂) (bp : a₁ == a₂)
→ trace {X = X} {gs = cover-to-grpset cov}
(cover-trace cov (cover-trace cov a↑ p) [ ! bp ]) [ bp ]
== trace {X = X} {gs = cover-to-grpset cov} a↑ p
lemma a↑ p idp =
trace (cover-trace cov a↑ p) idp₀
=⟨ paste a↑ p idp₀ ⟩
trace a↑ (p ∙₀ idp₀)
=⟨ ap (trace a↑) $ ∙₀-unit-r p ⟩
trace a↑ p
∎
fiber-to-ribbon-to-fiber : ∀ {j} (cov : Cover A j) {a₂}
→ (a↑ : Cover.Fiber cov a₂)
→ ribbon-to-fiber cov (fiber-to-ribbon cov {a₂} a↑) == a↑
fiber-to-ribbon-to-fiber cov {a₂} a↑ = Trunc-elim
-- All ugly things will go away when bp = proj bp′
{{λ bp → has-level-apply (Cover.Fiber-is-set cov)
(ribbon-to-fiber cov
(fiber+path₋₁-to-ribbon cov a↑ bp))
a↑}}
(lemma a↑)
[base-path]
where
abstract
lemma : ∀ {a₂} (a↑ : Cover.Fiber cov a₂) (bp : a₁ == a₂)
→ cover-trace cov (cover-trace cov a↑ [ ! bp ]) [ bp ]
== a↑
lemma a↑ idp = idp
cover-to-grpset-to-cover : ∀ {j} (cov : Cover A (lmax i j))
→ grpset-to-cover (cover-to-grpset cov) == cov
cover-to-grpset-to-cover cov = cover= λ _ →
ribbon-to-fiber cov , is-eq
(ribbon-to-fiber cov)
(fiber-to-ribbon cov)
(fiber-to-ribbon-to-fiber cov)
(ribbon-to-fiber-to-ribbon cov)
-- The second direction : grpset -> covering -> grpset
-- Part 2.1: The fiber over the point a is the carrier.
ribbon-a₁-to-El : ∀ {j} {gs : GroupSet (πS 0 X) j}
→ Ribbon X gs a₁ → GroupSet.El gs
ribbon-a₁-to-El {j} {gs} = let open GroupSet gs in
Ribbon-rec act assoc
ribbon-a₁-to-El-equiv : ∀ {j} {gs : GroupSet (πS 0 X) j}
→ Ribbon X gs a₁ ≃ GroupSet.El gs
ribbon-a₁-to-El-equiv {j} {gs} = let open GroupSet gs in
ribbon-a₁-to-El , is-eq _
(λ r → trace r idp₀)
(λ a↑ → unit-r a↑)
(Ribbon-elim
{P = λ r → trace (ribbon-a₁-to-El r) idp₀ == r}
(λ y p →
trace (act y p) idp₀
=⟨ paste y p idp₀ ⟩
trace y (p ∙₀ idp₀)
=⟨ ap (trace y) $ ∙₀-unit-r p ⟩
trace y p
∎)
(λ _ _ _ → prop-has-all-paths-↓))
grpset-to-cover-to-grpset : ∀ {j} (gs : GroupSet (πS 0 X) (lmax i j))
→ cover-to-grpset (grpset-to-cover gs) == gs
grpset-to-cover-to-grpset gs =
groupset=
ribbon-a₁-to-El-equiv
(λ {x₁}{x₂} x= → Trunc-elim λ g →
ribbon-a₁-to-El (transport (Ribbon X gs) g x₁)
=⟨ ap (λ x → ribbon-a₁-to-El (transport (Ribbon X gs) g x))
$ ! $ <–-inv-l ribbon-a₁-to-El-equiv x₁ ⟩
ribbon-a₁-to-El (transport (Ribbon X gs) g (trace (ribbon-a₁-to-El x₁) idp₀))
=⟨ ap (λ x → ribbon-a₁-to-El (transport (Ribbon X gs) g (trace x idp₀))) x= ⟩
ribbon-a₁-to-El (transport (Ribbon X gs) g (trace x₂ idp₀))
=⟨ ap ribbon-a₁-to-El $ transp-trace g x₂ idp₀ ⟩
GroupSet.act gs x₂ [ g ]
∎)
-- Finally...
grpset-equiv-cover : ∀ {j}
→ GroupSet (πS 0 X) (lmax i j) ≃ Cover A (lmax i j)
grpset-equiv-cover {j} =
grpset-to-cover , is-eq
_
(λ c → cover-to-grpset c)
(λ c → cover-to-grpset-to-cover {lmax i j} c)
(grpset-to-cover-to-grpset {lmax i j})
-- The path-set cover is represented by the fundamental group itself
path-set-repr-by-π1 : cover-to-grpset (path-set-cover X)
== group-to-group-set (πS 0 X)
path-set-repr-by-π1 = groupset= (ide _)
(λ {x₁} p g → (transp₀-cst=₀idf g x₁ ∙ ∙₀'=∙₀ x₁ g) ∙' ap (_∙₀ g) p)
| 36.757426
| 87
| 0.539933
|
39f9df67dad1be8074aa2285f0ed4282901b17df
| 485
|
agda
|
Agda
|
test/Fail/Issue555b.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue555b.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue555b.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2012-01-13
module Issue555b where
data Empty : Set where
record Unit : Set where
constructor tt
-- Do we want to allow this?
data Exp (A : Set) : Set1
data Exp where -- ? needs to report that too few parameters are given
var : Exp Empty
app : {A B : Set} → Exp (A → B) → Exp A → Exp B
-- Basically, A is first declared as a parameter, but later,
-- in the definition, it is turned into an index.
bla : {A : Set} → Exp A → Unit
bla var = tt
bla (app f a) = bla f
| 23.095238
| 69
| 0.65567
|
adcdce970d1d8d5e4858534016943a28acbc0bcd
| 5,864
|
agda
|
Agda
|
misc/Short.agda
|
yurrriq/parser-combinators
|
b396d35cc2cb7e8aea50b982429ee385f001aa88
|
[
"MIT"
] | 7
|
2016-12-13T05:23:14.000Z
|
2021-06-22T05:35:31.000Z
|
misc/Short.agda
|
nad/parser-combinators
|
76774f54f466cfe943debf2da731074fe0c33644
|
[
"MIT"
] | 1
|
2018-01-22T22:21:41.000Z
|
2018-01-24T16:39:37.000Z
|
misc/Short.agda
|
nad/parser-combinators
|
76774f54f466cfe943debf2da731074fe0c33644
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- Total parser combinators (very short version)
-- Nils Anders Danielsson
------------------------------------------------------------------------
module Short where
open import Category.Monad
open import Coinduction
open import Data.Bool
import Data.BoundedVec.Inefficient as BoundedVec
open import Data.Char
import Data.Colist as Colist
open import Data.List as List
open import Data.Maybe
open import Data.Nat
open import Data.Nat.Show
open import Data.String using (Costring)
open import Function
open import IO hiding (return) renaming (_>>=_ to _>>=IO_)
open import Relation.Nullary.Decidable
open RawMonadPlus List.monadPlus using () renaming (_>>=_ to _>>=′_)
infix 7 _⋆ _+
infixl 6 _>>=_ _>>=app_
infixl 5 _∣_
------------------------------------------------------------------------
-- Helper functions
flatten : {A : Set} → Maybe (List A) → List A
flatten nothing = []
flatten (just xs) = xs
app : {A B : Set} → Maybe (A → List B) → A → List B
app nothing x = []
app (just f) x = f x
_>>=app_ : {A B : Set} → List A → Maybe (A → List B) → List B
xs >>=app nothing = []
xs >>=app just f = xs >>=′ f
------------------------------------------------------------------------
-- Parsers
mutual
data Parser : (R : Set) → List R → Set₁ where
return : ∀ {R} (x : R) → Parser R [ x ]
fail : ∀ {R} → Parser R []
token : Parser Char []
_∣_ : ∀ {R xs₁ xs₂}
(p₁ : Parser R xs₁ )
(p₂ : Parser R xs₂) →
Parser R (xs₁ ++ xs₂)
_>>=_ : ∀ {R₁ R₂ xs} {f : Maybe (R₁ → List R₂)}
(p₁ : ∞⟨ f ⟩Parser R₁ (flatten xs) )
(p₂ : (x : R₁) → ∞⟨ xs ⟩Parser R₂ (app f x)) →
Parser R₂ (flatten xs >>=app f)
∞⟨_⟩Parser : {R₂ : Set} → Maybe R₂ → (R₁ : Set) → List R₁ → Set₁
∞⟨ nothing ⟩Parser R₁ xs = ∞ (Parser R₁ xs)
∞⟨ just _ ⟩Parser R₁ xs = Parser R₁ xs
------------------------------------------------------------------------
-- Derived combinators
sat : ∀ {R} → (Char → Maybe R) → Parser R []
sat {R} p = token >>= (ok ∘ p)
where
ok-index : Maybe R → List R
ok-index nothing = []
ok-index (just x) = [ x ]
ok : (x : Maybe R) → Parser R (ok-index x)
ok nothing = fail
ok (just x) = return x
tok : Char → Parser Char []
tok t = sat (λ t′ → if t == t′ then just t′ else nothing)
return⋆ : ∀ {R} (xs : List R) → Parser R xs
return⋆ [] = fail
return⋆ (x ∷ xs) = return x ∣ return⋆ xs
mutual
_⋆ : ∀ {R} → Parser R [] → Parser (List R) _
p ⋆ = return [] ∣ p +
_+ : ∀ {R} → Parser R [] → Parser (List R) _
p + = p >>= λ x → ♯ (
p ⋆ >>= λ xs →
return (x ∷ xs) )
digit = sat (λ t → if in-range t then just (to-number t) else nothing)
where
in-range : Char → Bool
in-range t = ⌊ toNat '0' ≤? toNat t ⌋ ∧
⌊ toNat t ≤? toNat '9' ⌋
to-number : Char → ℕ
to-number t = toNat t ∸ toNat '0'
number = digit + >>= return ∘ foldl (λ n d → 10 * n + d) 0
------------------------------------------------------------------------
-- Parser interpreter
delayed? : ∀ {R R′ xs} {m : Maybe R′} → ∞⟨ m ⟩Parser R xs → Maybe R′
delayed? {m = m} _ = m
delayed?′ : ∀ {R₁ R₂ R′ : Set} {m : Maybe R′} {f : R₁ → List R₂} →
((x : R₁) → ∞⟨ m ⟩Parser R₂ (f x)) → Maybe R′
delayed?′ {m = m} _ = m
∂-initial : ∀ {R xs} → Parser R xs → Char → List R
∂-initial (return x) t = []
∂-initial fail t = []
∂-initial token t = [ t ]
∂-initial (p₁ ∣ p₂) t = ∂-initial p₁ t ++ ∂-initial p₂ t
∂-initial (p₁ >>= p₂) t with delayed? p₁ | delayed?′ p₂
... | just f | nothing = ∂-initial p₁ t >>=′ f
... | just f | just xs = (∂-initial p₁ t >>=′ f) ++
(xs >>=′ λ x → ∂-initial (p₂ x) t)
... | nothing | nothing = []
... | nothing | just xs = xs >>=′ λ x → ∂-initial (p₂ x) t
∂ : ∀ {R xs} (p : Parser R xs) (t : Char) → Parser R (∂-initial p t)
∂ (return x) t = fail
∂ fail t = fail
∂ token t = return t
∂ (p₁ ∣ p₂) t = ∂ p₁ t ∣ ∂ p₂ t
∂ (p₁ >>= p₂) t with delayed? p₁ | delayed?′ p₂
... | just f | nothing = ∂ p₁ t >>= (λ x → ♭ (p₂ x))
... | just f | just xs = ∂ p₁ t >>= (λ x → p₂ x)
∣ return⋆ xs >>= λ x → ∂ (p₂ x) t
... | nothing | nothing = ♯ ∂ (♭ p₁) t >>= (λ x → ♭ (p₂ x))
... | nothing | just xs = ♯ ∂ (♭ p₁) t >>= (λ x → p₂ x)
∣ return⋆ xs >>= λ x → ∂ (p₂ x) t
parse : ∀ {R xs} → Parser R xs → List Char → List R
parse {xs = xs} p [] = xs
parse p (t ∷ s) = parse (∂ p t) s
------------------------------------------------------------------------
-- Example
data Expr : Set where
num : (n : ℕ) → Expr
plus : (e₁ e₂ : Expr) → Expr
times : (e₁ e₂ : Expr) → Expr
⟦_⟧ : Expr → ℕ
⟦ num n ⟧ = n
⟦ plus e₁ e₂ ⟧ = ⟦ e₁ ⟧ + ⟦ e₂ ⟧
⟦ times e₁ e₂ ⟧ = ⟦ e₁ ⟧ * ⟦ e₂ ⟧
mutual
term = factor
∣ ♯ term >>= λ e₁ →
tok '+' >>= λ _ →
factor >>= λ e₂ →
return (plus e₁ e₂)
factor = atom
∣ ♯ factor >>= λ e₁ →
tok '*' >>= λ _ →
atom >>= λ e₂ →
return (times e₁ e₂)
atom = (number >>= return ∘ num)
∣ tok '(' >>= λ _ →
♯ term >>= λ e →
tok ')' >>= λ _ →
return e
------------------------------------------------------------------------
-- IO
toList : Costring → List Char
toList = BoundedVec.toList ∘ Colist.take 100000
main = run $
♯ getContents >>=IO λ s → ♯
let s′ = takeWhile (not ∘ _==_ '\n') $ toList s
es = parse term s′ in
mapM′ (putStrLn ∘ show ∘ ⟦_⟧) (Colist.fromList es)
| 30.701571
| 73
| 0.427694
|
3d595415869ccc7844dd2e89a931aed5f4b70ab1
| 20,968
|
agda
|
Agda
|
complexity/complexity-final/Samples.agda
|
benhuds/Agda
|
2404a6ef2688f879bda89860bb22f77664ad813e
|
[
"MIT"
] | 2
|
2016-04-26T20:22:22.000Z
|
2019-08-08T12:27:18.000Z
|
complexity/complexity-final/Samples.agda
|
benhuds/Agda
|
2404a6ef2688f879bda89860bb22f77664ad813e
|
[
"MIT"
] | 1
|
2020-03-23T08:39:04.000Z
|
2020-05-12T00:32:45.000Z
|
complexity/complexity-final/Samples.agda
|
benhuds/Agda
|
2404a6ef2688f879bda89860bb22f77664ad813e
|
[
"MIT"
] | null | null | null |
{- SAMPLE PROGRAMS IN SOURCE LANGUAGE -}
open import Preliminaries
open import Source
open import Pilot2
open import Translation
open import Interp
open import Preorder
module Samples where
s2r : ∀ {Γ τ} → Γ Source.|- τ → (el ([ (⟨⟨ Γ ⟩⟩c) ]c ->p [ (|| τ ||) ]t))
s2r p = interpE || p ||e
-- this works
{- dbl (n : nat) : nat = 2 * n -}
dbl : ∀ {Γ} → Γ Source.|- (nat ->s nat)
dbl = lam (rec (var i0) z (suc (suc (force (var (iS i0))))))
-- this works
{- add (m n : nat) : nat = m + n -}
add : ∀ {Γ} → Γ Source.|- (nat ->s (nat ->s nat))
add = lam (lam (rec (var (iS i0)) (var i0) (suc (force (var (iS i0))))))
-- this works
{- mult (m n : nat) : nat = m * n -}
mult : ∀ {Γ} → Γ Source.|- (nat ->s (nat ->s nat))
mult = lam (lam (rec (var (iS i0)) z (app (app add (var (iS (iS i0)))) (force (var (iS i0))))))
-- this works
{- pred (n : nat) : nat = predecessor of n -}
pred : ∀ {Γ} → Γ Source.|- (nat ->s nat)
pred = lam (rec (var i0) z (var i0))
-- uhhhh
fastfib : ∀ {Γ} → Γ Source.|- (nat ->s (nat ×s nat))
fastfib =
lam (rec (var i0) (prod z (suc z))
(prod (split (force (var (iS i0))) (var (iS i0)))
(app (app add (split (force (var (iS i0))) (var i0))) (split (force (var (iS i0))) (var (iS i0))))))
-- hack : instead of having bool case analysis just do natural number recursion and return 1/0
-- this works
{- iszero (n : nat) : nat = z -> 1 | _ -> 0 -}
isz : ∀ {Γ} → Γ Source.|- (nat ->s nat)
isz = lam (rec (var i0) (suc z) z)
-- this works
{- leq (m n : nat) : nat = m ≤ n -}
leq : ∀ {Γ} → Γ Source.|- (nat ->s (nat ->s nat))
leq = lam (rec (var i0) (lam (suc z)) (lam (rec (var i0) z (app (force (var (iS (iS (iS (iS i0)))))) (var i0)))))
-- this works
{- eq (m n : nat) : nat = m = n -}
eq : ∀ {Γ} → Γ Source.|- (nat ->s (nat ->s nat))
eq = lam (rec (var i0) (lam (app isz (var i0))) (lam (rec (var i0) z (app (force (var (iS (iS (iS (iS i0)))))) (var i0)))))
-- this works
{- len (l : list τ) : nat = [] -> z | x :: xs -> 1 + len xs -}
len : ∀ {Γ τ} → Γ Source.|- (list τ ->s nat)
len = lam (listrec (var i0) z (suc (force (var (iS (iS i0))))))
-- this works
{- nth (n : nat) (l : list τ) : nat = [] -> 1 (return 1+len(l) if element not in list) | x :: xs -> if n = x then 0 else 1 + (nth n xs) -}
nth : ∀ {Γ} → Γ Source.|- (list nat ->s (nat ->s nat))
nth = lam (lam (listrec (var (iS i0)) (suc z) (rec (app (app eq (var (iS (iS (iS i0))))) (var i0)) (suc (force (var (iS (iS i0))))) z)))
-- this works
{- append (l1 l2 : list τ) : list τ = match l1 with [] -> l2 | x :: xs -> x :: (append xs ys) -}
append : ∀ {Γ τ} → Γ Source.|- (list τ ->s (list τ ->s list τ))
append = lam (lam (listrec (var (iS i0)) (var i0) (var i0 ::s force (var (iS (iS i0))))))
-- this works
{- rev (l : list τ) : list τ = [] -> [] | x :: xs -> append (rev xs) [x] -}
rev : ∀ {Γ τ} → Γ Source.|- (list τ ->s list τ)
rev = lam (listrec (var i0) nil (app (app append (force (var (iS (iS i0))))) (var i0 ::s nil)))
{-
{- fast rev -}
rev2piles : ∀ {Γ τ} → Γ Source.|- (list τ ->s (list τ ->s list τ))
rev2piles = lam (lam (listrec (var (iS i0)) (var i0) (app (app rev2piles (var (iS i0))) (var i0 ::s var (iS (iS (iS i0)))))))
fastrev : ∀ {Γ τ} → Γ Source.|- (list τ ->s list τ)
fastrev = lam (app (app rev2piles (var i0)) nil)
-}
-- this works
{- insert (l : list nat) (el : nat) : list nat = [] -> [el] | x :: xs -> (leq el x -> el :: x :: xs | x :: (insert el xs)) -}
insert : ∀ {Γ} → Γ Source.|- (list nat ->s (nat ->s list nat))
insert = lam (lam (listrec (var (iS i0)) (var i0 ::s nil)
(rec (app (app leq (var (iS (iS (iS i0))))) (var i0)) (var i0 ::s force (var (iS (iS i0))))
(var (iS (iS (iS (iS (iS i0))))) ::s (var (iS (iS i0)) ::s var (iS (iS (iS i0))))))))
-- this works
{- insertion sort (l : list nat) : list nat = [] -> [] | x :: xs -> insert x (isort xs) -}
isort : ∀ {Γ} → Γ Source.|- (list nat ->s list nat)
isort = lam (listrec (var i0) nil (app (app insert (force (var (iS (iS i0))))) (var i0)))
-- this works
{- map (l : list τ) (f : τ → τ') : list τ = [] -> [] | x :: xs -> f x :: map f xs -}
map : ∀ {Γ τ τ'} → Γ Source.|- ((τ ->s τ') ->s (list τ ->s list τ'))
map = lam (lam (listrec (var i0) nil (app (var (iS (iS (iS (iS i0))))) (var i0) ::s force (var (iS (iS i0))))))
dbl-trans : ∀ {Γ τ} → {!!} --el ([ (⟨⟨ Γ ⟩⟩c) ]c ->p [ (|| τ ||) ]t)
dbl-trans {Γ} = {!|| dbl ||e!}
example1 : ∀ {Γ τ} → {!!}
example1 {Γ} {τ} = {!!} --copy and paste from this goal to the thing below
{-
dbl-trans : ∀ {Γ} → ⟨⟨ Γ ⟩⟩c Pilot2.|- || nat ->s nat ||
dbl-trans = prod 0C
(lam
(prod
(plusC (l-proj (prod 0C (var i0)))
(l-proj
(rec (r-proj (prod 0C (var i0)))
(prod (plusC 1C (l-proj (prod 0C z))) (r-proj (prod 0C z)))
(prod
(plusC 1C
(l-proj
(prod
(l-proj
(prod
(l-proj
(prod
(plusC (l-proj (prod 0C (var (iS i0))))
(l-proj (r-proj (prod 0C (var (iS i0))))))
(r-proj (r-proj (prod 0C (var (iS i0)))))))
(s
(r-proj
(prod
(plusC (l-proj (prod 0C (var (iS i0))))
(l-proj (r-proj (prod 0C (var (iS i0))))))
(r-proj (r-proj (prod 0C (var (iS i0))))))))))
(s
(r-proj
(prod
(l-proj
(prod
(plusC (l-proj (prod 0C (var (iS i0))))
(l-proj (r-proj (prod 0C (var (iS i0))))))
(r-proj (r-proj (prod 0C (var (iS i0)))))))
(s
(r-proj
(prod
(plusC (l-proj (prod 0C (var (iS i0))))
(l-proj (r-proj (prod 0C (var (iS i0))))))
(r-proj (r-proj (prod 0C (var (iS i0))))))))))))))
(r-proj
(prod
(l-proj
(prod
(l-proj
(prod
(plusC (l-proj (prod 0C (var (iS i0))))
(l-proj (r-proj (prod 0C (var (iS i0))))))
(r-proj (r-proj (prod 0C (var (iS i0)))))))
(s
(r-proj
(prod
(plusC (l-proj (prod 0C (var (iS i0))))
(l-proj (r-proj (prod 0C (var (iS i0))))))
(r-proj (r-proj (prod 0C (var (iS i0))))))))))
(s
(r-proj
(prod
(l-proj
(prod
(plusC (l-proj (prod 0C (var (iS i0))))
(l-proj (r-proj (prod 0C (var (iS i0))))))
(r-proj (r-proj (prod 0C (var (iS i0)))))))
(s
(r-proj
(prod
(plusC (l-proj (prod 0C (var (iS i0))))
(l-proj (r-proj (prod 0C (var (iS i0))))))
(r-proj (r-proj (prod 0C (var (iS i0)))))))))))))))))
(r-proj
(rec (r-proj (prod 0C (var i0)))
(prod (plusC 1C (l-proj (prod 0C z))) (r-proj (prod 0C z)))
(prod
(plusC 1C
(l-proj
(prod
(l-proj
(prod
(l-proj
(prod
(plusC (l-proj (prod 0C (var (iS i0))))
(l-proj (r-proj (prod 0C (var (iS i0))))))
(r-proj (r-proj (prod 0C (var (iS i0)))))))
(s
(r-proj
(prod
(plusC (l-proj (prod 0C (var (iS i0))))
(l-proj (r-proj (prod 0C (var (iS i0))))))
(r-proj (r-proj (prod 0C (var (iS i0))))))))))
(s
(r-proj
(prod
(l-proj
(prod
(plusC (l-proj (prod 0C (var (iS i0))))
(l-proj (r-proj (prod 0C (var (iS i0))))))
(r-proj (r-proj (prod 0C (var (iS i0)))))))
(s
(r-proj
(prod
(plusC (l-proj (prod 0C (var (iS i0))))
(l-proj (r-proj (prod 0C (var (iS i0))))))
(r-proj (r-proj (prod 0C (var (iS i0))))))))))))))
(r-proj
(prod
(l-proj
(prod
(l-proj
(prod
(plusC (l-proj (prod 0C (var (iS i0))))
(l-proj (r-proj (prod 0C (var (iS i0))))))
(r-proj (r-proj (prod 0C (var (iS i0)))))))
(s
(r-proj
(prod
(plusC (l-proj (prod 0C (var (iS i0))))
(l-proj (r-proj (prod 0C (var (iS i0))))))
(r-proj (r-proj (prod 0C (var (iS i0))))))))))
(s
(r-proj
(prod
(l-proj
(prod
(plusC (l-proj (prod 0C (var (iS i0))))
(l-proj (r-proj (prod 0C (var (iS i0))))))
(r-proj (r-proj (prod 0C (var (iS i0)))))))
(s
(r-proj
(prod
(plusC (l-proj (prod 0C (var (iS i0))))
(l-proj (r-proj (prod 0C (var (iS i0))))))
(r-proj (r-proj (prod 0C (var (iS i0))))))))))))))))))
aaa : ∀ {Γ} → interpE (r-proj (dbl-trans {Γ})) == {!!}
aaa = {!!}
interp-dbl-trans : ∀ {Γ} → Monotone (fst [ ⟨⟨ Γ ⟩⟩c ]c) (fst [ ⟨⟨ nat ->s nat ⟩⟩ ]t) (snd [ ⟨⟨ Γ ⟩⟩c ]c) (snd [ ⟨⟨ nat ->s nat ⟩⟩ ]t)
interp-dbl-trans {Γ} = monotone
(λ x →
monotone
(λ p₁ →
(natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) p₁))
(λ a b c →
nat-trans
(fst (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) a))
(fst (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) b))
(fst (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) b))
(fst
(♭h-fix-args (monotone (λ x₁ → 1 , 0) (λ x₁ y z₁ → <> , <>))
(monotone
(λ x₁ → S (fst (snd (fst x₁))) , S (S (snd (snd (fst x₁)))))
(λ x₁ y z₁ → fst (snd (fst z₁)) , snd (snd (fst z₁))))
((x , a) , a) ((x , b) , b) c))
(fst
(♭h-fix-el (monotone (λ x₁ → 1 , 0) (λ x₁ y z₁ → <> , <>))
(monotone
(λ x₁ → S (fst (snd (fst x₁))) , S (S (snd (snd (fst x₁)))))
(λ x₁ y z₁ → fst (snd (fst z₁)) , snd (snd (fst z₁))))
((x , a) , a) ((x , b) , b)
((Preorder-str.refl (snd [ ⟨⟨ Γ ⟩⟩c ]c) x , c) , c)))
,
♭nat-trans
(snd (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) a))
(snd (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) b))
(snd (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) b))
(snd
(♭h-fix-args (monotone (λ x₁ → 1 , 0) (λ x₁ y z₁ → <> , <>))
(monotone
(λ x₁ → S (fst (snd (fst x₁))) , S (S (snd (snd (fst x₁)))))
(λ x₁ y z₁ → fst (snd (fst z₁)) , snd (snd (fst z₁))))
((x , a) , a) ((x , b) , b) c))
(snd
(♭h-fix-el (monotone (λ x₁ → 1 , 0) (λ x₁ y z₁ → <> , <>))
(monotone
(λ x₁ → S (fst (snd (fst x₁))) , S (S (snd (snd (fst x₁)))))
(λ x₁ y z₁ → fst (snd (fst z₁)) , snd (snd (fst z₁))))
((x , a) , a) ((x , b) , b)
((Preorder-str.refl (snd [ ⟨⟨ Γ ⟩⟩c ]c) x , c) , c)))))
(λ x y z₁ w →
nat-trans
(fst (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) w))
(fst (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) w))
(fst (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) w))
(fst
(♭h-fix-args (monotone (λ x₁ → 1 , 0) (λ x₁ y₁ z₂ → <> , <>))
(monotone
(λ x₁ → S (fst (snd (fst x₁))) , S (S (snd (snd (fst x₁)))))
(λ x₁ y₁ z₂ → fst (snd (fst z₂)) , snd (snd (fst z₂))))
((x , w) , w) ((y , w) , w) (♭nat-refl w)))
(fst
(♭h-fix-el (monotone (λ x₁ → 1 , 0) (λ x₁ y₁ z₂ → <> , <>))
(monotone
(λ x₁ → S (fst (snd (fst x₁))) , S (S (snd (snd (fst x₁)))))
(λ x₁ y₁ z₂ → fst (snd (fst z₂)) , snd (snd (fst z₂))))
((x , w) , w) ((y , w) , w) ((z₁ , ♭nat-refl w) , ♭nat-refl w)))
,
♭nat-trans
(snd (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) w))
(snd (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) w))
(snd (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) w))
(snd
(♭h-fix-args (monotone (λ x₁ → 1 , 0) (λ x₁ y₁ z₂ → <> , <>))
(monotone
(λ x₁ → S (fst (snd (fst x₁))) , S (S (snd (snd (fst x₁)))))
(λ x₁ y₁ z₂ → fst (snd (fst z₂)) , snd (snd (fst z₂))))
((x , w) , w) ((y , w) , w) (♭nat-refl w)))
(snd
(♭h-fix-el (monotone (λ x₁ → 1 , 0) (λ x₁ y₁ z₂ → <> , <>))
(monotone
(λ x₁ → S (fst (snd (fst x₁))) , S (S (snd (snd (fst x₁)))))
(λ x₁ y₁ z₂ → fst (snd (fst z₂)) , snd (snd (fst z₂))))
((x , w) , w) ((y , w) , w) ((z₁ , ♭nat-refl w) , ♭nat-refl w))))
-}
{-
{- halve (l : list nat) : (list nat * list nat) = splits a list in half -}
halve : ∀ {Γ} → Γ Source.|- (list nat ->s (list nat ×s list nat))
halve = lam (listrec (var i0)
(prod nil nil)
(listrec (var (iS i0))
(prod (var i0 ::s nil) nil)
(prod (var (iS (iS (iS i0))) ::s split (force (var (iS (iS i0)))) (var i0)) (var i0 ::s split (force (var (iS (iS i0)))) (var (iS i0))))))
test : ∀ {Γ τ} → {!!}
test {Γ} = {!s2r (app halve (z ::s (z ::s (z ::s nil))))!}
{- merge (l1 l2 : list nat) : list nat =
match l1 with
[] -> l2
x :: xs ->
match l2 with
[] -> x :: xs
y :: ys ->
x <= y -> x :: merge xs l2
_ -> y :: merge l1 ys -}
merge : ∀ {Γ} → Γ Source.|- ((list nat ×s list nat) ->s list nat)
merge = lam (listrec (split (var i0) (var i0))
(split (var i0) (var (iS i0)))
(listrec (split (var (iS (iS (iS i0)))) (var (iS i0)))
(split (var (iS (iS (iS i0)))) (var i0))
(rec (app (app leq (var (iS (iS (iS i0))))) (var i0))
(var (iS (iS (iS i0))) ::s force (var (iS (iS (iS (iS (iS i0)))))))
(var i0 ::s app merge (prod (split (var (iS (iS (iS (iS (iS (iS (iS (iS i0))))))))) (var (iS i0))) (var (iS (iS (iS i0)))))))))
{- mergesort (l : list nat) : list nat -}
msort : ∀ {Γ} → Γ Source.|- (list nat ->s list nat)
msort = lam (listrec (var i0)
nil
(listrec (var (iS i0))
(var i0 ::s nil)
(app merge (prod
(app msort (split (app halve (var (iS (iS (iS (iS (iS (iS i0)))))))) (var i0)))
(app msort (split (app halve (var (iS (iS (iS (iS (iS (iS i0)))))))) (var (iS i0))))))))
-}
| 57.763085
| 152
| 0.288869
|
c79531495a5ea75f7f533200330ef01425952b36
| 28
|
agda
|
Agda
|
test/interaction/Issue1232/Nat.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/interaction/Issue1232/Nat.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/interaction/Issue1232/Nat.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module Issue1232.Nat where
| 9.333333
| 26
| 0.821429
|
1372660b57ba6b890bd1d54780c03383fc46f233
| 302
|
agda
|
Agda
|
test/interaction/Issue3152.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/interaction/Issue3152.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/interaction/Issue3152.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
postulate
M : Set → Set
_>>=_ : ∀ {A B} → M A → (A → M B) → M B
_>>_ : ∀ {A B} → M A → M B → M B
_<|>_ : ∀ {A} → M A → M A → M A
infixr 4 _>>=_ _>>_
infixr -100 _<|>_
expr : ∀ {A} → (A → M A) → (A → M A)
expr f a = do
x ← {!f a!}
y ← {!f x <|> f a!}
{!f x <|> f y!}
{!f x <|> f y!}
| 17.764706
| 41
| 0.34106
|
046a4ede0c8066f883bf49194991c2541565d983
| 425
|
agda
|
Agda
|
src/data/lib/prim/Agda/Builtin/FromNeg.agda
|
cagix/agda
|
cc026a6a97a3e517bb94bafa9d49233b067c7559
|
[
"BSD-2-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
src/data/lib/prim/Agda/Builtin/FromNeg.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
src/data/lib/prim/Agda/Builtin/FromNeg.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness #-}
module Agda.Builtin.FromNeg where
open import Agda.Primitive
open import Agda.Builtin.Nat
record Negative {a} (A : Set a) : Set (lsuc a) where
field
Constraint : Nat → Set a
fromNeg : ∀ n → {{_ : Constraint n}} → A
open Negative {{...}} public using (fromNeg)
{-# BUILTIN FROMNEG fromNeg #-}
{-# DISPLAY Negative.fromNeg _ n = fromNeg n #-}
| 25
| 68
| 0.656471
|
57315dad5c52ba579d6781f472830f0de4153e26
| 4,099
|
agda
|
Agda
|
Sort.agda
|
amal029/agda-tutorial-dybjer
|
7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166
|
[
"MIT"
] | 1
|
2019-08-08T12:52:30.000Z
|
2019-08-08T12:52:30.000Z
|
Sort.agda
|
amal029/agda-tutorial-dybjer
|
7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166
|
[
"MIT"
] | null | null | null |
Sort.agda
|
amal029/agda-tutorial-dybjer
|
7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166
|
[
"MIT"
] | null | null | null |
module Sort where
open import Sec4
import Sec2
postulate _≤_ : {A : Set} → A → A → Prop
postulate tot-list : {A : Set} → (a b : A) → (a ≤ b) ∨ (b ≤ a)
postulate trans-list : {A : Set} → (a b c : A) → (a ≤ b) → (b ≤ c) → (a ≤ c)
-- XXX: Definition of a list
data List (A : Set) : Set where
Nil : List A
_∷_ : A → List A → List A
-- XXX: definition of an ordered list
all-ordered-list : {A : Set} → (a : A)
→ (l : List A)
→ Prop
all-ordered-list a Nil = ⊤
all-ordered-list a (x ∷ l) = (a ≤ x) ∧ all-ordered-list a l
ordered-list : {A : Set} → List A → Prop
ordered-list Nil = ⊤
ordered-list (x ∷ l) = all-ordered-list x l ∧ (ordered-list l)
-- XXX: Inserting elements in the list
insert-list : {A : Set} → (a : A) → (l : List A) → List A
insert-list a Nil = a ∷ Nil
insert-list a (x ∷ l) with (tot-list a x)
insert-list a (x ∷ l) | ora h = a ∷ (x ∷ l)
insert-list a (x ∷ l) | orb h = x ∷ (insert-list a l)
lem1 : {A : Set}
→ (a x : A)
→ (l : List A)
→ (p : all-ordered-list x l)
→ (p1 : a ≤ x)
→ (all-ordered-list a l)
lem1 a x Nil p p1 = ⋆
lem1 a x (x₁ ∷ l) (and x₂ x₃) p1 = and (trans-list a x x₁ p1 x₂) (lem1 a x l x₃ p1)
lem2 : {A : Set} → (x a : A) → (l : List A) → (h : x ≤ a)
→ (p1 : all-ordered-list x l) → (p2 : ordered-list l)
→ (v : ordered-list (insert-list a l))
→ all-ordered-list x (insert-list a l)
lem2 x a Nil h p1 p3 v = and h ⋆
lem2 x a (x₁ ∷ l) h p1 p3 v with (tot-list a x₁)
lem2 x₂ a (x₁ ∷ l) h p1 p3 v | ora x = and h p1
lem2 x₂ a (x₁ ∷ l) h (and x₃ x₄) (and x₅ x₆) (and x₇ x₈) | orb x = and x₃ (lem2 x₂ a l h x₄ x₆ x₈)
thm2 : {A : Set}
→ ∀ (a : A)
→ ∀ (l : List A)
→ (p : ordered-list l)
→ (ordered-list (insert-list a l))
thm2 a Nil p = and ⋆ ⋆
thm2 a (x ∷ l) p with (tot-list a x)
thm2 a (x ∷ l) (and x₁ x₂) | ora h = and (and h (lem1 a x l x₁ h)) (and x₁ x₂)
thm2 a (x ∷ l) (and x₁ x₂) | orb h =
let v = (thm2 a l x₂)
in
and (lem2 x a l h x₁ x₂ v) v
-- XXX: append lists
_++_ : {A : Set} → (l : List A) → (m : List A) → List A
Nil ++ m = m
(x ∷ l) ++ m = x ∷ (l ++ m)
-- XXX: Length of a list
length : {A : Set} → (l : List A) → Sec2.ℕ
length Nil = Sec2.Z
length (x ∷ l) = Sec2.S (length l)
-- XXX: reverse of a list
rev : {A : Set} → (List A) → (List A)
rev Nil = Nil
rev (x ∷ l) = (rev l) ++ (x ∷ Nil)
-- XXX: Theorem on length of lists
thm : {A : Set} → (l : List A) → (m : List A) → ((length l) Sec2.+ (length m) Sec2.≡ length (l ++ m))
thm Nil m = Sec2.refl
thm (x ∷ l) m =
let
xx = thm l m
in
Sec2.cong xx
cong : {A : Set} → (x : A) → (l m : List A) → (l Sec2.≡ m)
→ (x ∷ l) Sec2.≡ (x ∷ m)
cong x l .l Sec2.refl = Sec2.refl
cong2 : {A : Set} → (l m q : List A) → (l Sec2.≡ m)
→ (l ++ q) Sec2.≡ (m ++ q)
cong2 l .l q Sec2.refl = Sec2.refl
++-lem : {A : Set} → (l : List A) → ((l ++ Nil) Sec2.≡ l)
++-lem Nil = Sec2.refl
++-lem (x ∷ l) = cong x (l ++ Nil) l (++-lem l)
assoc : {A : Set} → (l m q : List A)
→ l ++ (m ++ q) Sec2.≡ (l ++ m) ++ q
assoc Nil m q = Sec2.refl
assoc (x ∷ l) m q = cong x (l ++ (m ++ q)) ((l ++ m) ++ q) (assoc l m q)
rev-lem : {A : Set} → ∀ (l m : List A)
→ rev (l ++ m) Sec2.≡ (rev m) ++ (rev l)
rev-lem Nil m rewrite
++-lem (rev m) = Sec2.refl
rev-lem (x ∷ l) m rewrite
assoc (rev m) (rev l) (x ∷ Nil)
= let p = rev-lem l m in
cong2 (rev (l ++ m)) (rev m ++ rev l) (x ∷ Nil) p
-- XXX: Involution of reversal of lists
rev-involute : {A : Set} → (l : List A) → l Sec2.≡ (rev (rev l))
rev-involute Nil = Sec2.refl
rev-involute (x ∷ l) rewrite
rev-lem (rev l) (x ∷ Nil)
= cong x l (rev (rev l)) (rev-involute l)
| 33.876033
| 103
| 0.452061
|
c7868da1a41023f3b909b03bb86e125fb8be921c
| 3,956
|
agda
|
Agda
|
TotalParserCombinators/Force.agda
|
yurrriq/parser-combinators
|
b396d35cc2cb7e8aea50b982429ee385f001aa88
|
[
"MIT"
] | 7
|
2016-12-13T05:23:14.000Z
|
2021-06-22T05:35:31.000Z
|
TotalParserCombinators/Force.agda
|
yurrriq/parser-combinators
|
b396d35cc2cb7e8aea50b982429ee385f001aa88
|
[
"MIT"
] | 1
|
2018-01-22T22:21:41.000Z
|
2018-01-24T16:39:37.000Z
|
TotalParserCombinators/Force.agda
|
yurrriq/parser-combinators
|
b396d35cc2cb7e8aea50b982429ee385f001aa88
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- Forcing of parsers (can be used for inspection/debugging purposes)
------------------------------------------------------------------------
{-# OPTIONS --termination-depth=2 #-}
module TotalParserCombinators.Force where
open import Coinduction
import Data.List.Categorical as ListMonad
open import Data.Maybe
open import Data.Nat
open import Function
import Relation.Binary.PropositionalEquality as P
open import TotalParserCombinators.Congruence
open import TotalParserCombinators.Laws
open import TotalParserCombinators.Parser
-- force n p returns p, but with the first n layers of delay
-- constructors removed.
force : ∀ {Tok R xs} → ℕ → Parser Tok R xs → Parser Tok R xs
force zero p = p
force n (return x) = return x
force n fail = fail
force n token = token
force n (p₁ ∣ p₂) = force n p₁ ∣ force n p₂
force n (f <$> p) = f <$> force n p
force n (nonempty p) = nonempty (force n p)
force n (cast xs₁≈xs₂ p) = cast xs₁≈xs₂ (force n p)
force (suc n) (p₁ ⊛ p₂) with forced? p₁ | forced? p₂
... | just xs | nothing = force (suc n) p₁ ⊛ force n (♭ p₂)
... | just xs | just fs = force (suc n) p₁ ⊛ force (suc n) p₂
... | nothing | nothing = force n (♭ p₁) ⊛ force n (♭ p₂)
... | nothing | just fs =
P.subst (Parser _ _) (ListMonad.Applicative.right-zero fs) $
force n (♭ p₁) ⊛ force (suc n) p₂
force (suc n) (p₁ >>= p₂) with forced? p₁ | forced?′ p₂
... | just f | nothing = force (suc n) p₁ >>= λ x → force n (♭ (p₂ x))
... | just f | just xs = force (suc n) p₁ >>= λ x → force (suc n) (p₂ x)
... | nothing | nothing = force n (♭ p₁) >>= λ x → force n (♭ (p₂ x))
... | nothing | just xs =
P.subst (Parser _ _) (ListMonad.MonadProperties.right-zero xs) $
force n (♭ p₁) >>= λ x → force (suc n) (p₂ x)
-- force preserves the semantics of its argument.
correct : ∀ {Tok R xs} (n : ℕ) (p : Parser Tok R xs) → force n p ≅P p
correct zero p = p ∎
correct (suc n) (return x) = return x ∎
correct (suc n) fail = fail ∎
correct (suc n) token = token ∎
correct (suc n) (p₁ ∣ p₂) = correct (suc n) p₁ ∣ correct (suc n) p₂
correct (suc n) (f <$> p) = (λ _ → P.refl) <$> correct (suc n) p
correct (suc n) (nonempty p) = nonempty (correct (suc n) p)
correct (suc n) (cast xs₁≈xs₂ p) = cast (correct (suc n) p)
correct (suc n) (p₁ ⊛ p₂) with forced? p₁ | forced? p₂
... | just xs | nothing = [ ○ - ○ - ○ - ◌ ] correct (suc n) p₁ ⊛ correct n (♭ p₂)
... | just xs | just fs = [ ○ - ○ - ○ - ○ ] correct (suc n) p₁ ⊛ correct (suc n) p₂
... | nothing | nothing = [ ○ - ◌ - ○ - ◌ ] correct n (♭ p₁) ⊛ correct n (♭ p₂)
... | nothing | just fs =
P.subst (Parser _ _) lemma forced ≅⟨ Subst.correct lemma ⟩
forced ≅⟨ [ ○ - ◌ - ○ - ○ ] correct n (♭ p₁) ⊛ correct (suc n) p₂ ⟩
p₁ ⊛ p₂ ∎
where
lemma = ListMonad.Applicative.right-zero fs
forced = force n (♭ p₁) ⊛ force (suc n) p₂
correct (suc n) (p₁ >>= p₂) with forced? p₁ | forced?′ p₂
... | just f | nothing = [ ○ - ○ - ○ - ◌ ] correct (suc n) p₁ >>= λ x → correct n (♭ (p₂ x))
... | just f | just xs = [ ○ - ○ - ○ - ○ ] correct (suc n) p₁ >>= λ x → correct (suc n) (p₂ x)
... | nothing | nothing = [ ○ - ◌ - ○ - ◌ ] correct n (♭ p₁) >>= λ x → correct n (♭ (p₂ x))
... | nothing | just xs =
P.subst (Parser _ _) lemma forced ≅⟨ Subst.correct lemma ⟩
forced ≅⟨ [ ○ - ◌ - ○ - ○ ] correct n (♭ p₁) >>= (λ x → correct (suc n) (p₂ x)) ⟩
p₁ >>= p₂ ∎
where
forced = force n (♭ p₁) >>= λ x → force (suc n) (p₂ x)
lemma = ListMonad.MonadProperties.right-zero xs
| 49.45
| 111
| 0.50455
|
57d36ffcdd4c5a20a8118c6743ad4078f96efbb5
| 1,177
|
agda
|
Agda
|
cohomology/SphereProduct.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | null | null | null |
cohomology/SphereProduct.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | null | null | null |
cohomology/SphereProduct.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K #-}
open import HoTT
open import homotopy.SuspProduct
open import homotopy.SuspSmash
open import homotopy.JoinSusp
open import cohomology.Theory
module cohomology.SphereProduct {i} (CT : CohomologyTheory i) where
open CohomologyTheory CT
open import cohomology.Wedge CT
module _ (n : ℤ) (m : ℕ) (X : Ptd i) where
private
space-path : ⊙Susp (⊙Sphere {i} m ⊙× X)
== ⊙Sphere {i} (S m) ⊙∨ (⊙Susp^ (S m) X ⊙∨ ⊙Susp X)
space-path =
SuspProduct.⊙path (⊙Sphere m) X
∙ ap (λ Z → ⊙Sphere (S m) ⊙∨ (Z ⊙∨ ⊙Susp X))
(SuspSmash.⊙path (⊙Sphere m) X
∙ ⊙join-sphere X m)
C-Sphere× : C n (⊙Sphere {i} m ⊙× X)
== C n (⊙Sphere m) ×ᴳ (C n (⊙Susp^ m X) ×ᴳ C n X)
C-Sphere× =
! (C-Susp n (⊙Sphere m ⊙× X))
∙ ap (C (succ n)) space-path
∙ C-binary-additive (succ n) (⊙Sphere (S m)) (⊙Susp^ (S m) X ⊙∨ ⊙Susp X)
∙ ap (λ H → C (succ n) (⊙Sphere (S m)) ×ᴳ H)
(C-binary-additive (succ n) (⊙Susp^ (S m) X) (⊙Susp X)
∙ ap2 _×ᴳ_ (C-Susp n (⊙Susp^ m X))
(C-Susp n X))
∙ ap (λ H → H ×ᴳ (C n (⊙Susp^ m X) ×ᴳ C n X))
(C-Susp n (⊙Sphere m))
| 30.973684
| 76
| 0.526763
|
31cb9c8c45581808403a57614854f5d6fb7f18de
| 693
|
agda
|
Agda
|
test/Succeed/Issue2308.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue2308.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue2308.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2016-11-19 issue #2308
-- Since fix of #2197, in mutual blocks, records are no-eta-equality
-- until the positivity checker has run.
-- Thus, the record pattern translation might not kick in.
-- Now, there is another pass of record pattern translation
-- after the mutual block has finished.
data Unit : Set where
unit : Unit
mutual -- needed to trigger issue
record R : Set where -- needs to be in mutual block
pattern; constructor wrap
field f : Unit
G : R → Set
G (wrap _) = Unit -- match on wrap needed
test : (x : R) → G x → Set₁
test _ unit = Set
-- ERROR WAS:
-- Type mismatch
-- when checking that the pattern unit has type G x
-- Should succeed.
| 23.1
| 68
| 0.685426
|
adfa205c1c9019600de5ef946dcfa148f9e57912
| 2,957
|
agda
|
Agda
|
test/succeed/Issue840a.agda
|
larrytheliquid/agda
|
477c8c37f948e6038b773409358fd8f38395f827
|
[
"MIT"
] | 1
|
2018-10-10T17:08:44.000Z
|
2018-10-10T17:08:44.000Z
|
test/succeed/Issue840a.agda
|
masondesu/agda
|
70c8a575c46f6a568c7518150a1a64fcd03aa437
|
[
"MIT"
] | null | null | null |
test/succeed/Issue840a.agda
|
masondesu/agda
|
70c8a575c46f6a568c7518150a1a64fcd03aa437
|
[
"MIT"
] | 1
|
2022-03-12T11:35:18.000Z
|
2022-03-12T11:35:18.000Z
|
module Issue840a where
------------------------------------------------------------------------
-- Prelude
record ⊤ : Set where
data ⊥ : Set where
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
data Bool : Set where
true false : Bool
{-# BUILTIN BOOL Bool #-}
{-# BUILTIN TRUE true #-}
{-# BUILTIN FALSE false #-}
postulate String : Set
{-# BUILTIN STRING String #-}
primitive primStringEquality : String → String → Bool
infixr 4 _,_
record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
------------------------------------------------------------------------
-- Other stuff
mutual
infixl 5 _,_∶_
data Signature : Set₁ where
∅ : Signature
_,_∶_ : (Sig : Signature)
(ℓ : String)
(A : Record Sig → Set) →
Signature
record Record (Sig : Signature) : Set where
constructor rec
field fun : Record-fun Sig
Record-fun : Signature → Set
Record-fun ∅ = ⊤
Record-fun (Sig , ℓ ∶ A) = Σ (Record Sig) A
_∈_ : String → Signature → Set
ℓ ∈ ∅ = ⊥
ℓ ∈ (Sig , ℓ′ ∶ A) with primStringEquality ℓ ℓ′
... | true = ⊤
... | false = ℓ ∈ Sig
Restrict : (Sig : Signature) (ℓ : String) → ℓ ∈ Sig → Signature
Restrict ∅ ℓ ()
Restrict (Sig , ℓ′ ∶ A) ℓ ℓ∈ with primStringEquality ℓ ℓ′
... | true = Sig
... | false = Restrict Sig ℓ ℓ∈
Proj : (Sig : Signature) (ℓ : String) {ℓ∈ : ℓ ∈ Sig} →
Record (Restrict Sig ℓ ℓ∈) → Set
Proj ∅ ℓ {}
Proj (Sig , ℓ′ ∶ A) ℓ {ℓ∈} with primStringEquality ℓ ℓ′
... | true = A
... | false = Proj Sig ℓ {ℓ∈}
_∣_ : {Sig : Signature} → Record Sig →
(ℓ : String) {ℓ∈ : ℓ ∈ Sig} → Record (Restrict Sig ℓ ℓ∈)
_∣_ {Sig = ∅} r ℓ {}
_∣_ {Sig = Sig , ℓ′ ∶ A} (rec r) ℓ {ℓ∈} with primStringEquality ℓ ℓ′
... | true = Σ.proj₁ r
... | false = _∣_ (Σ.proj₁ r) ℓ {ℓ∈}
infixl 5 _·_
_·_ : {Sig : Signature} (r : Record Sig)
(ℓ : String) {ℓ∈ : ℓ ∈ Sig} →
Proj Sig ℓ {ℓ∈} (r ∣ ℓ)
_·_ {Sig = ∅} r ℓ {}
_·_ {Sig = Sig , ℓ′ ∶ A} (rec r) ℓ {ℓ∈} with primStringEquality ℓ ℓ′
... | true = Σ.proj₂ r
... | false = _·_ (Σ.proj₁ r) ℓ {ℓ∈}
R : Set → Signature
R A = ∅ , "f" ∶ (λ _ → A → A)
, "x" ∶ (λ _ → A)
, "lemma" ∶ (λ r → ∀ y → (r · "f") y ≡ y)
record GS (A B : Set) : Set where
field
get : A → B
set : A → B → A
get-set : ∀ a b → get (set a b) ≡ b
set-get : ∀ a → set a (get a) ≡ a
f : {A : Set} →
GS (Record (R A))
(Record (∅ , "f" ∶ (λ _ → A → A)
, "lemma" ∶ (λ r → ∀ x → (r · "f") x ≡ x)))
f = record
{ set = λ r f-lemma → rec (rec (rec (rec _
, f-lemma · "f")
, r · "x")
, f-lemma · "lemma")
; get-set = λ { (rec (rec (rec (_ , _) , _) , _))
(rec (rec (_ , _) , _)) → refl }
; set-get = λ { (rec (rec (rec (rec _ , _) , _) , _)) → refl }
}
| 25.273504
| 72
| 0.448089
|
4114ee780adffa2592617cd9d6341aeaff54ddba
| 3,650
|
agda
|
Agda
|
Types.agda
|
bens/hwlc
|
6f3df71dcd958c6a1d1bf4f175dc16c220d42124
|
[
"BSD-3-Clause"
] | null | null | null |
Types.agda
|
bens/hwlc
|
6f3df71dcd958c6a1d1bf4f175dc16c220d42124
|
[
"BSD-3-Clause"
] | null | null | null |
Types.agda
|
bens/hwlc
|
6f3df71dcd958c6a1d1bf4f175dc16c220d42124
|
[
"BSD-3-Clause"
] | null | null | null |
module Types where
open import Data.Bool
open import Data.Fin using (Fin)
import Data.Fin as F
open import Data.Nat renaming (_≟_ to _≟N_)
open import Data.Vec hiding (head; tail)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
infixl 80 _∙_
data Type : Set where
𝔹 : Type
𝔹⁺ : ℕ → Type
ℂ : Type → Type
_⇒_ : Type → Type → Type
_×_ : Type → Type → Type
data Syntax : Set where
bitI : Syntax
bitO : Syntax
[] : Syntax
_∷_ : Syntax → Syntax → Syntax
_nand_ : Syntax → Syntax → Syntax
reg : Syntax → Syntax → Syntax
pair : Syntax → Syntax → Syntax
latest : Syntax → Syntax
head : Syntax → Syntax
tail : Syntax → Syntax
var : ℕ → Syntax
_∙_ : Syntax → Syntax → Syntax
lam : Type → Syntax → Syntax
Ctx : ℕ → Set
Ctx = Vec Type
data Term {n} (Γ : Ctx n) : Type → Set where
bitI : Term Γ 𝔹
bitO : Term Γ 𝔹
[] : Term Γ (𝔹⁺ 0)
_∷_ : ∀ {n} → Term Γ 𝔹 → Term Γ (𝔹⁺ n) → Term Γ (𝔹⁺ (suc n))
_nand_ : Term Γ 𝔹 → Term Γ 𝔹 → Term Γ 𝔹
reg : ∀ {τ σ} → Term Γ τ → Term Γ (τ ⇒ (τ × σ)) → Term Γ (ℂ σ)
pair : ∀ {σ τ} → Term Γ σ → Term Γ τ → Term Γ (σ × τ)
latest : ∀ {τ} → Term Γ (ℂ τ) → Term Γ τ
head : ∀ {n} → Term Γ (𝔹⁺ (suc n)) → Term Γ 𝔹
tail : ∀ {n} → Term Γ (𝔹⁺ (suc n)) → Term Γ (𝔹⁺ n)
var : ∀ {τ} (i : Fin n) → (lookup i Γ ≡ τ) → Term Γ τ
_∙_ : ∀ {σ τ} → Term Γ (σ ⇒ τ) → Term Γ σ → Term Γ τ
lam : ∀ {σ τ} → Term (σ ∷ Γ) τ → Term Γ (σ ⇒ τ)
Closed : Type → Set
Closed τ = ∀ {n} {ctx : Ctx n} → Term ctx τ
≡𝔹⁺ : ∀ {n m} → 𝔹⁺ n ≡ 𝔹⁺ m → n ≡ m
≡𝔹⁺ refl = refl
≡ℂ : ∀ {τ σ} → ℂ τ ≡ ℂ σ → τ ≡ σ
≡ℂ refl = refl
≡⇒₁ : ∀ {σ σ′ τ τ′} → σ ⇒ τ ≡ σ′ ⇒ τ′ → σ ≡ σ′
≡⇒₁ refl = refl
≡⇒₂ : ∀ {σ σ′ τ τ′} → σ ⇒ τ ≡ σ′ ⇒ τ′ → τ ≡ τ′
≡⇒₂ refl = refl
≡×₁ : ∀ {σ σ′ τ τ′} → σ × τ ≡ σ′ × τ′ → σ ≡ σ′
≡×₁ refl = refl
≡×₂ : ∀ {σ σ′ τ τ′} → σ × τ ≡ σ′ × τ′ → τ ≡ τ′
≡×₂ refl = refl
_≟T_ : (σ τ : Type) → Dec (σ ≡ τ)
𝔹 ≟T 𝔹 = yes refl
𝔹 ≟T 𝔹⁺ _ = no (λ ())
𝔹 ≟T ℂ _ = no (λ ())
𝔹 ≟T (_ ⇒ _) = no (λ ())
𝔹 ≟T (_ × _) = no (λ ())
𝔹⁺ _ ≟T 𝔹 = no (λ ())
𝔹⁺ n ≟T 𝔹⁺ m with n ≟N m
𝔹⁺ n ≟T 𝔹⁺ .n | yes refl = yes refl
𝔹⁺ n ≟T 𝔹⁺ m | no ¬p = no (λ x → ¬p (≡𝔹⁺ x))
𝔹⁺ _ ≟T ℂ _ = no (λ ())
𝔹⁺ _ ≟T (y ⇒ y₁) = no (λ ())
𝔹⁺ _ ≟T (y × y₁) = no (λ ())
ℂ _ ≟T 𝔹 = no (λ ())
ℂ _ ≟T 𝔹⁺ n = no (λ ())
ℂ τ ≟T ℂ σ with τ ≟T σ
ℂ τ ≟T ℂ .τ | yes refl = yes refl
ℂ τ ≟T ℂ σ | no ¬p = no (λ x → ¬p (≡ℂ x))
ℂ _ ≟T (_ ⇒ _) = no (λ ())
ℂ _ ≟T (_ × _) = no (λ ())
(_ ⇒ _) ≟T 𝔹 = no (λ ())
(σ ⇒ τ) ≟T 𝔹⁺ x₂ = no (λ ())
(_ ⇒ _) ≟T ℂ _ = no (λ ())
(σ ⇒ τ) ≟T (σ₁ ⇒ τ₁) with σ ≟T σ₁ | τ ≟T τ₁
(σ ⇒ τ) ≟T (σ₁ ⇒ τ₁) | yes p | yes p₁ = yes (cong₂ _⇒_ p p₁)
(σ ⇒ τ) ≟T (σ₁ ⇒ τ₁) | _ | no ¬p = no (λ x → ¬p (≡⇒₂ x))
(σ ⇒ τ) ≟T (σ₁ ⇒ τ₁) | no ¬p | _ = no (λ x → ¬p (≡⇒₁ x))
(_ ⇒ _) ≟T (_ × _) = no (λ ())
(_ × _) ≟T 𝔹 = no (λ ())
(_ × _) ≟T 𝔹⁺ _ = no (λ ())
(_ × _) ≟T ℂ _ = no (λ ())
(_ × _) ≟T (_ ⇒ _) = no (λ ())
(σ × τ) ≟T (σ₁ × τ₁) with σ ≟T σ₁ | τ ≟T τ₁
(σ × τ) ≟T (σ₁ × τ₁) | yes p | yes p₁ = yes (cong₂ _×_ p p₁)
(σ × τ) ≟T (σ₁ × τ₁) | _ | no ¬p = no (λ x → ¬p (≡×₂ x))
(σ × τ) ≟T (σ₁ × τ₁) | no ¬p | _ = no (λ x → ¬p (≡×₁ x))
erase : ∀ {n} {Γ : Ctx n} {τ} → Term Γ τ → Syntax
erase bitI = bitI
erase bitO = bitO
erase [] = []
erase (x ∷ xs) = erase x ∷ erase xs
erase (x nand y) = erase x nand erase y
erase (reg x t) = reg (erase x) (erase t)
erase (pair x y) = pair (erase x) (erase y)
erase (latest x) = latest (erase x)
erase (head x) = head (erase x)
erase (tail x) = tail (erase x)
erase (var v _) = var (F.toℕ v)
erase (t ∙ u) = erase t ∙ erase u
erase (lam {σ} t) = lam σ (erase t)
| 29.2
| 67
| 0.46
|
1a3a9be22febf536859dc98d2bd10fe202d93ccc
| 566
|
agda
|
Agda
|
test/Fail/NoConstraints.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 2
|
2019-10-29T09:40:30.000Z
|
2020-09-20T00:28:57.000Z
|
test/Fail/NoConstraints.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 3
|
2018-11-14T15:31:44.000Z
|
2019-04-01T19:39:26.000Z
|
test/Fail/NoConstraints.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2015-09-15T14:36:15.000Z
|
2015-09-15T14:36:15.000Z
|
open import Agda.Builtin.Bool
open import Agda.Builtin.List
open import Agda.Builtin.Reflection
open import Agda.Builtin.Unit
P : Bool → Set
P true = Bool
P false = Bool
f : (b : Bool) → P b
f true = true
f false = false
pattern varg x = arg (arg-info visible relevant) x
create-constraint : TC Set
create-constraint =
unquoteTC (def (quote P)
(varg (def (quote f) (varg unknown ∷ [])) ∷ []))
macro
should-fail : Term → TC ⊤
should-fail _ =
bindTC (noConstraints create-constraint) λ _ →
returnTC tt
test : ⊤
test = should-fail
| 18.866667
| 63
| 0.662544
|
c7ef9b17e3ca0473017a0052aa5a61edf415c1ab
| 858
|
agda
|
Agda
|
core/lib/types/Lift.agda
|
cmknapp/HoTT-Agda
|
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
|
[
"MIT"
] | null | null | null |
core/lib/types/Lift.agda
|
cmknapp/HoTT-Agda
|
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
|
[
"MIT"
] | null | null | null |
core/lib/types/Lift.agda
|
cmknapp/HoTT-Agda
|
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.types.Pointed
module lib.types.Lift where
⊙Lift : ∀ {i j} → Ptd i → Ptd (lmax i j)
⊙Lift {j = j} (A , a) = ⊙[ Lift {j = j} A , lift a ]
⊙lift : ∀ {i j} {X : Ptd i} → fst (X ⊙→ ⊙Lift {j = j} X)
⊙lift = (lift , idp)
⊙lower : ∀ {i j} {X : Ptd i} → fst (⊙Lift {j = j} X ⊙→ X)
⊙lower = (lower , idp)
lift-equiv : ∀ {i j} {A : Type i} → A ≃ Lift {j = j} A
lift-equiv = equiv lift lower (λ _ → idp) (λ _ → idp)
-- [lower-equiv] is in Equivalences.agda
Lift-level : ∀ {i j} {A : Type i} {n : ℕ₋₂} →
has-level n A → has-level n (Lift {j = j} A)
Lift-level = equiv-preserves-level lift-equiv
⊙lift-equiv : ∀ {i j} {X : Ptd i} → X ⊙≃ ⊙Lift {j = j} X
⊙lift-equiv = (⊙lift , snd lift-equiv)
⊙lower-equiv : ∀ {i j} {X : Ptd i} → ⊙Lift {j = j} X ⊙≃ X
⊙lower-equiv = (⊙lower , snd lower-equiv)
| 27.677419
| 57
| 0.539627
|
c7c93d6ea0174dde82388c20e15141d4fbe72898
| 962
|
agda
|
Agda
|
notes/FOT/FOTC/Program/Mirror/StructurallySmaller/StructurallySmaller.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 11
|
2015-09-03T20:53:42.000Z
|
2021-09-12T16:09:54.000Z
|
notes/FOT/FOTC/Program/Mirror/StructurallySmaller/StructurallySmaller.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 2
|
2016-10-12T17:28:16.000Z
|
2017-01-01T14:34:26.000Z
|
notes/FOT/FOTC/Program/Mirror/StructurallySmaller/StructurallySmaller.agda
|
asr/fotc
|
2fc9f2b81052a2e0822669f02036c5750371b72d
|
[
"MIT"
] | 3
|
2016-09-19T14:18:30.000Z
|
2018-03-14T08:50:00.000Z
|
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Program.Mirror.StructurallySmaller.StructurallySmaller where
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Program.Mirror.Type
------------------------------------------------------------------------------
{-# TERMINATING #-}
foo : ∀ {ts} → Tree ts → D
foo (tree d fnil) = d
foo (tree d (fcons Tt Fts)) = foo (tree d Fts)
{-# TERMINATING #-}
bar : ∀ {ts} → Tree ts → D
bar (tree d fnil) = d
bar (tree d (fcons Tt Fts)) = helper (bar Tt) (bar (tree d Fts))
where
postulate helper : D → D → D
{-# TERMINATING #-}
bar₁ : ∀ ts → Tree ts → D
bar₁ .(node d []) (tree d fnil) = d
bar₁ .(node d (t ∷ ts)) (tree d (fcons {t} {ts} Tt Fts))
= helper (bar₁ t Tt) (bar₁ (node d ts) (tree d Fts))
where
postulate helper : D → D → D
| 29.151515
| 78
| 0.532225
|
13274579864116f9ea5869dcd359cc4cd88ed587
| 3,873
|
agda
|
Agda
|
misc/RecursiveDescent/Hybrid/Mixfix.agda
|
yurrriq/parser-combinators
|
b396d35cc2cb7e8aea50b982429ee385f001aa88
|
[
"MIT"
] | 7
|
2016-12-13T05:23:14.000Z
|
2021-06-22T05:35:31.000Z
|
misc/RecursiveDescent/Hybrid/Mixfix.agda
|
nad/parser-combinators
|
76774f54f466cfe943debf2da731074fe0c33644
|
[
"MIT"
] | 1
|
2018-01-22T22:21:41.000Z
|
2018-01-24T16:39:37.000Z
|
misc/RecursiveDescent/Hybrid/Mixfix.agda
|
nad/parser-combinators
|
76774f54f466cfe943debf2da731074fe0c33644
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- Parsing of mixfix operators
------------------------------------------------------------------------
-- This module defines a grammar for the precedence graph g.
open import RecursiveDescent.Hybrid.Mixfix.Expr
module RecursiveDescent.Hybrid.Mixfix (g : PrecedenceGraph) where
import Data.Vec as Vec
import Data.List as List
open List using (List; []; _∷_; foldr; foldl)
import Data.Vec1 as Vec1
open Vec1 using (Vec₁)
open import Data.Product renaming (_,_ to pair)
open import Data.Product.Record using (_,_)
open import Data.Bool
open import Data.Unit
open import Data.Nat
open import Data.Function hiding (_⟨_⟩_)
import Data.String as String
open import RecursiveDescent.Hybrid.Mixfix.Fixity
open import RecursiveDescent.Index
open import RecursiveDescent.Hybrid
open import RecursiveDescent.Hybrid.Simple
open import RecursiveDescent.Hybrid.Lib
open Token String.decSetoid
-- Note that, even though grammar below is not recursive, these
-- functions are (mutually). Fortunately the recursion is structural,
-- though. Note also that the reason for not using the implementation
--
-- grammar (nodes ts) = choiceMap (\t -> ! node t) ts
--
-- is that this would lead to a definition of node-corners which
-- was not structurally recursive.
nodes-corners : PrecedenceGraph -> Corners
nodes-corners [] = _
nodes-corners (p ∷ ps) = _
node-corners : PrecedenceTree -> Corners
node-corners (precedence ops ps) = _
-- Nonterminals.
data NT : ParserType where
-- Expressions.
expr : NT _ Expr
-- Expressions corresponding to zero or more nodes in the precedence
-- graph: operator applications where the outermost operator has one
-- of the precedences ps. The graph g is used for internal
-- expressions.
nodes : (ps : PrecedenceGraph) -> NT (false , nodes-corners ps) Expr
-- Expressions corresponding to one node in the precedence graph:
-- operator applications where the outermost operator has
-- precedence p. The graph g is used for internal expressions.
node : (p : PrecedenceTree) -> NT (false , node-corners p) Expr
-- The parser type used in this module.
P : Index -> Set -> Set1
P = Parser NamePart NT
-- A vector containing parsers recognising the name parts of the
-- operator.
nameParts : forall {fix arity} -> Operator fix arity ->
Vec₁ (P _ NamePart) (1 + arity)
nameParts (operator ns) = Vec1.map₀₁ sym ns
-- Internal parts (all name parts plus internal expressions) of
-- operators of the given precedence and fixity.
internal : forall {fix}
(ops : List (∃ (Operator fix))) -> P _ (Internal fix)
internal =
choiceMap (\op' -> let op = proj₂ op' in
_∙_ op <$> (! expr between nameParts op))
-- The grammar.
grammar : Grammar NamePart NT
grammar expr = ! nodes g
grammar (nodes []) = fail
grammar (nodes (p ∷ ps)) = ! node p ∣ ! nodes ps
grammar (node (precedence ops ps)) =
⟪_⟫ <$> ⟦ closed ⟧
∣ _⟨_⟩_ <$> ↑ ⊛ ⟦ infx non ⟧ ⊛ ↑
∣ flip (foldr _$_) <$> preRight + ⊛ ↑
∣ foldl (flip _$_) <$> ↑ ⊛ postLeft +
where
-- ⟦ fix ⟧ parses the internal parts of operators with the
-- current precedence level and fixity fix.
⟦_⟧ = \(fix : Fixity) -> internal (ops fix)
-- Operator applications where the outermost operator binds
-- tighter than the current precedence level.
↑ = ! nodes ps
-- Right associative and prefix operators.
preRight = ⟪_⟩_ <$> ⟦ prefx ⟧
∣ _⟨_⟩_ <$> ↑ ⊛ ⟦ infx right ⟧
-- Left associative and postfix operators.
postLeft = flip _⟨_⟫ <$> ⟦ postfx ⟧
∣ (\op e₂ e₁ -> e₁ ⟨ op ⟩ e₂) <$> ⟦ infx left ⟧ ⊛ ↑
-- An expression parser.
parseExpr : List NamePart -> List Expr
parseExpr = parse-complete (! expr) grammar
| 33.102564
| 72
| 0.645236
|
294afd93527e4a3b47c9c932d612662c1773c891
| 878
|
agda
|
Agda
|
src/Prelude.agda
|
lisandrasilva/agda-liveness
|
391e148f391dc2d246249193788a0d203285b38e
|
[
"Apache-2.0"
] | null | null | null |
src/Prelude.agda
|
lisandrasilva/agda-liveness
|
391e148f391dc2d246249193788a0d203285b38e
|
[
"Apache-2.0"
] | null | null | null |
src/Prelude.agda
|
lisandrasilva/agda-liveness
|
391e148f391dc2d246249193788a0d203285b38e
|
[
"Apache-2.0"
] | null | null | null |
-- This is a selection of useful function
-- from the standard library that we tend to use a lot.
module Prelude where
open import Data.Nat
hiding (_⊔_)
public
open import Level
renaming (suc to lsuc; zero to ℓ0)
public
open import Relation.Binary.PropositionalEquality
renaming ([_] to Reveal[_] )
public
open import Relation.Unary
public
open import Data.Unit
using (⊤; tt)
public
open import Data.Sum
public
open import Data.Nat.Properties
public
open import Relation.Nullary
hiding (Irrelevant)
public
open import Data.Product
using (_×_; proj₁; proj₂; Σ; _,_; ∃; Σ-syntax; ∃-syntax)
public
open import Data.Empty
using (⊥; ⊥-elim)
public
open import Function
using (_∘_)
public
open import Data.List.Relation.Unary.Any
using (Any; here; there)
public
| 17.215686
| 60
| 0.66287
|
c7699236b82eb23e9a99032f7b2d08d339f0d169
| 1,397
|
agda
|
Agda
|
src/JVM/Transform/Noooops.agda
|
ajrouvoet/jvm.agda
|
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
|
[
"Apache-2.0"
] | 6
|
2020-10-07T14:07:17.000Z
|
2021-02-28T21:49:08.000Z
|
src/JVM/Transform/Noooops.agda
|
ajrouvoet/jvm.agda
|
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
|
[
"Apache-2.0"
] | null | null | null |
src/JVM/Transform/Noooops.agda
|
ajrouvoet/jvm.agda
|
c84bc6b834295ac140ff30bfc8e55228efbf6d2a
|
[
"Apache-2.0"
] | 1
|
2021-12-28T17:37:15.000Z
|
2021-12-28T17:37:15.000Z
|
{-# OPTIONS --safe --no-qualified-instances #-}
{- Noop removal transformation on bytecode -}
module JVM.Transform.Noooops where
open import Data.Product
open import Data.Sum
open import Function using (case_of_)
open import Data.List
open import Relation.Unary hiding (Empty)
open import Relation.Binary.Structures
open import Relation.Binary.PropositionalEquality using (refl; _≡_)
open import Relation.Ternary.Core
open import Relation.Ternary.Structures
open import Relation.Ternary.Structures.Syntax hiding (_∣_)
open import JVM.Types
open import JVM.Model StackTy
open import JVM.Syntax.Instructions
open import Relation.Ternary.Data.ReflexiveTransitive {{intf-rel}}
open IsEquivalence {{...}} using (sym)
open import Data.Maybe using (just; nothing; Maybe)
is-noop : ∀[ ⟨ 𝑭 ∣ ψ₁ ↝ ψ₂ ⟩ ⇒ (Empty (ψ₁ ≡ ψ₂) ∪ U) ]
is-noop noop = inj₁ (emp refl)
is-noop _ = inj₂ _
noooop : ∀[ ⟪ 𝑭 ∣ ψ₁ ↝ ψ₂ ⟫ ⇒ ⟪ 𝑭 ∣ ψ₁ ↝ ψ₂ ⟫ ]
noooop nil = nil
-- (1) not labeled
noooop (cons (instr (↓ i) ∙⟨ σ ⟩ is)) =
case (is-noop i) of λ where
(inj₂ _) → instr (↓ i) ▹⟨ σ ⟩ noooop is
(inj₁ (emp refl)) → coe (∙-id⁻ˡ σ) (noooop is)
-- (2) is labeled
noooop (cons (li@(labeled (l ∙⟨ σ₀ ⟩ ↓ i)) ∙⟨ σ ⟩ is)) =
case (is-noop i) of λ where
(inj₂ _) → cons (li ∙⟨ σ ⟩ noooop is)
(inj₁ (emp refl)) → label-start noop l ⟨ coe {{∙-respects-≈ˡ}} (≈-sym (∙-id⁻ʳ σ₀)) σ ⟩ (noooop is)
| 32.488372
| 102
| 0.65927
|
dc54c91703a45619458b6d753e635bfc3c440ee1
| 10,751
|
agda
|
Agda
|
Cubical/Algebra/Group/Coset.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/Group/Coset.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/Group/Coset.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
open import Cubical.Core.Everything
open import Cubical.Algebra.Group
module Cubical.Algebra.Group.Coset {ℓ} (G : Group ℓ) where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function using (id; _∘_; flip)
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.HLevels
open import Cubical.Functions.Embedding
open import Cubical.Algebra.Group.Subgroup
open import Cubical.Relation.Unary
open import Cubical.Relation.Unary.Properties
open import Cubical.Relation.Binary using (Reflexive; Symmetric; Transitive)
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Relation.Binary.Reasoning.Equality
open Group G
open GroupLemmas G
private
variable
ℓ′ : Level
_≅[_]ˡ_ : ⟨ G ⟩ → Subgroup G ℓ′ → ⟨ G ⟩ → hProp _
x ≅[ H ]ˡ y = Subgroup.Member H (x ⁻¹ • y)
module _ (H : Subgroup G ℓ′) where
private module H = Subgroup H
≅ˡ-reflexive : Reflexive _≅[ H ]ˡ_
≅ˡ-reflexive = subst⁻ (_∈ H.Member) (inverseˡ _) H.preservesId
≅ˡ-symmetric : Symmetric _≅[ H ]ˡ_
≅ˡ-symmetric {x} {y} = subst (_∈ H.Member) (invDistr (x ⁻¹) y ∙ cong (y ⁻¹ •_) (invInvo x)) ∘ H.preservesInv
≅ˡ-transitive : Transitive _≅[ H ]ˡ_
≅ˡ-transitive {i} {j} {k} x y = subst (_∈ H.Member) eq (H.preservesOp x y)
where
eq : _
eq =
(i ⁻¹ • j) • (j ⁻¹ • k) ≡˘⟨ assoc _ _ _ ⟩
((i ⁻¹ • j) • j ⁻¹) • k ≡⟨ cong (_• k) (assoc _ _ _) ⟩
(i ⁻¹ • (j • j ⁻¹)) • k ≡⟨ cong (λ v → (i ⁻¹ • v) • k) (inverseʳ j) ⟩
(i ⁻¹ • ε) • k ≡⟨ cong (_• k) (identityʳ (i ⁻¹)) ⟩
i ⁻¹ • k ∎
infix 9 _<•_
infixr 9 _<•′_
_<•′_ : ⟨ G ⟩ → Pred ⟨ G ⟩ ℓ′ → Pred ⟨ G ⟩ _
g <•′ H = (g •_) ⊣ H
_<•_ : ⟨ G ⟩ → Subgroup G ℓ′ → Pred ⟨ G ⟩ _
g <• H = g <•′ Subgroup.Member H
module _ (H : Pred ⟨ G ⟩ ℓ′) where
cosetˡ-identity→ : ε <•′ H ⊆ H
cosetˡ-identity→ = rec (isProp[ H ] _)
λ ((h , subh) , εh≡x) → subst (_∈ H) (sym (identityˡ h) ∙ εh≡x) subh
cosetˡ-identity← : H ⊆ ε <•′ H
cosetˡ-identity← x∈H = ∣ (_ , x∈H) , identityˡ _ ∣
cosetˡ-identity : ε <•′ H ⇔ H
cosetˡ-identity = cosetˡ-identity→ , cosetˡ-identity←
cosetˡ-assoc→ : ∀ a b → (a • b) <•′ H ⊆ a <•′ b <•′ H
cosetˡ-assoc→ a b =
map λ ((h , subh) , abh≡x) → (b • h ,
∣ (h , subh) , refl ∣) ,
sym (assoc _ _ _) ∙ abh≡x
cosetˡ-assoc← : ∀ a b → a <•′ b <•′ H ⊆ (a • b) <•′ H
cosetˡ-assoc← a b {x} =
rec squash λ ((h , subh) , ah≡x) →
map (λ ((g , subg) , bg≡h) → (g , subg) , (
a • b • g ≡⟨ assoc a b g ⟩
a • (b • g) ≡⟨ cong (a •_) bg≡h ⟩
a • h ≡⟨ ah≡x ⟩
x ∎
)) subh
cosetˡ-assoc : ∀ a b → (a • b) <•′ H ≡ a <•′ b <•′ H
cosetˡ-assoc a b = ⇔toPath _ _ (cosetˡ-assoc→ a b , cosetˡ-assoc← a b)
module _ (H : Subgroup G ℓ′) where
private module H = Subgroup H
g∈gH : ∀ g → g ∈ g <• H
g∈gH g = ∣ H.ε , identityʳ _ ∣
≅-cosetˡ→ : ∀ x y → ⟨ x ≅[ H ]ˡ y ⟩ → x <• H ⇔ y <• H
≅-cosetˡ→ x y x≅y = xH⊆yH , xH⊇yH
where
xH⊆yH : x <• H ⊆ y <• H
xH⊆yH {a} = map λ ((h , subh) , xh≡a) → (y ⁻¹ • x • h , H.preservesOp (≅ˡ-symmetric H x≅y) subh) ,
(
y • (y ⁻¹ • x • h) ≡˘⟨ assoc y (y ⁻¹ • x) h ⟩
y • (y ⁻¹ • x) • h ≡˘⟨ cong (_• h) (assoc y (y ⁻¹) x) ⟩
y • y ⁻¹ • x • h ≡⟨ cong (λ v → v • x • h) (inverseʳ y) ⟩
ε • x • h ≡⟨ cong (_• h) (identityˡ x) ⟩
x • h ≡⟨ xh≡a ⟩
a ∎)
xH⊇yH : x <• H ⊇ y <• H
xH⊇yH {a} = map λ ((h , subh) , yh≡a) → (x ⁻¹ • y • h , H.preservesOp x≅y subh) ,
(
x • (x ⁻¹ • y • h) ≡˘⟨ assoc x (x ⁻¹ • y) h ⟩
x • (x ⁻¹ • y) • h ≡˘⟨ cong (_• h) (assoc x (x ⁻¹) y) ⟩
x • x ⁻¹ • y • h ≡⟨ cong (λ v → v • y • h) (inverseʳ x) ⟩
ε • y • h ≡⟨ cong (_• h) (identityˡ y) ⟩
y • h ≡⟨ yh≡a ⟩
a ∎)
≅-cosetˡ← : ∀ x y → x <• H ⇔ y <• H → ⟨ x ≅[ H ]ˡ y ⟩
≅-cosetˡ← x y (xH⊆yH , yH⊆xH) = rec ((_ ≅[ H ]ˡ _) .snd)
(λ ((h , subh) , yh≡x) →
subst (_∈ H.Member) (cong _⁻¹ (
h ≡˘⟨ identityˡ h ⟩
ε • h ≡˘⟨ cong (_• h) (inverseˡ y) ⟩
y ⁻¹ • y • h ≡⟨ assoc _ _ _ ⟩
y ⁻¹ • (y • h) ≡⟨ cong (y ⁻¹ •_) yh≡x ⟩
y ⁻¹ • x ∎
) ∙ invDistr (y ⁻¹) x ∙ cong (x ⁻¹ •_) (invInvo y)) (H.preservesInv subh)
)
(xH⊆yH {x} (g∈gH x))
≅-cosetˡ : ∀ x y → ⟨ x ≅[ H ]ˡ y ⟩ ≃ (x <• H ⇔ y <• H)
≅-cosetˡ x y = isPropEquiv→Equiv ((x ≅[ H ]ˡ y) .snd) (isProp⇔ (x <• H) (y <• H))
(≅-cosetˡ→ x y) (≅-cosetˡ← x y)
cosetˡ-idem→ : ((h , _) : ⟨ H ⟩) → h <• H ⊆ H.Member
cosetˡ-idem→ (h , subh) = rec (isProp[ H.Member ] _)
λ ((g , subg) , hg≡x) → subst (_∈ H.Member) hg≡x (H.preservesOp subh subg)
cosetˡ-idem← : ((h , _) : ⟨ H ⟩) → H.Member ⊆ h <• H
cosetˡ-idem← (h , subh) {x} subx =
∣
(h ⁻¹ • x , H.preservesOp (H.preservesInv subh) subx) , (
h • (h ⁻¹ • x) ≡˘⟨ assoc h (h ⁻¹) x ⟩
(h • h ⁻¹) • x ≡⟨ cong (_• x) (inverseʳ h) ⟩
ε • x ≡⟨ identityˡ x ⟩
x ∎)
∣
cosetˡ-idem : ((h , _) : ⟨ H ⟩) → h <• H ⇔ H.Member
cosetˡ-idem h = cosetˡ-idem→ h , cosetˡ-idem← h
_≅[_]ʳ_ : ⟨ G ⟩ → Subgroup G ℓ′ → ⟨ G ⟩ → hProp _
x ≅[ H ]ʳ y = Subgroup.Member H (x • y ⁻¹)
module _ (H : Subgroup G ℓ′) where
private module H = Subgroup H
≅ʳ-reflexive : Reflexive _≅[ H ]ʳ_
≅ʳ-reflexive = subst⁻ (_∈ H.Member) (inverseʳ _) H.preservesId
≅ʳ-symmetric : Symmetric _≅[ H ]ʳ_
≅ʳ-symmetric {x} {y} = subst (_∈ H.Member) (invDistr x (y ⁻¹) ∙ cong (_• x ⁻¹) (invInvo y)) ∘ H.preservesInv
≅ʳ-transitive : Transitive _≅[ H ]ʳ_
≅ʳ-transitive {i} {j} {k} x y = subst (_∈ H.Member) eq (H.preservesOp x y)
where
eq : _
eq =
(i • j ⁻¹) • (j • k ⁻¹) ≡˘⟨ assoc _ _ _ ⟩
((i • j ⁻¹) • j) • k ⁻¹ ≡⟨ cong (_• k ⁻¹) (assoc _ _ _) ⟩
(i • (j ⁻¹ • j)) • k ⁻¹ ≡⟨ cong (λ v → (i • v) • k ⁻¹) (inverseˡ j) ⟩
(i • ε) • k ⁻¹ ≡⟨ cong (_• k ⁻¹) (identityʳ i) ⟩
i • k ⁻¹ ∎
infix 9 _•>_
infixl 9 _•>′_
_•>′_ : Pred ⟨ G ⟩ ℓ′ → ⟨ G ⟩ → Pred ⟨ G ⟩ _
H •>′ g = (_• g) ⊣ H
_•>_ : Subgroup G ℓ′ → ⟨ G ⟩ → Pred ⟨ G ⟩ _
H •> g = Subgroup.Member H •>′ g
module _ (H : Pred ⟨ G ⟩ ℓ′) where
cosetʳ-identity→ : H •>′ ε ⊆ H
cosetʳ-identity→ = rec (isProp[ H ] _)
λ ((h , subh) , hε≡x) → subst (_∈ H) (sym (identityʳ h) ∙ hε≡x) subh
cosetʳ-identity← : H ⊆ H •>′ ε
cosetʳ-identity← x∈H = ∣ (_ , x∈H) , identityʳ _ ∣
cosetʳ-identity : H •>′ ε ⇔ H
cosetʳ-identity = cosetʳ-identity→ , cosetʳ-identity←
cosetʳ-assoc→ : ∀ a b → H •>′ (a • b) ⊆ H •>′ a •>′ b
cosetʳ-assoc→ a b =
map λ ((h , subh) , hab≡x) → (h • a ,
∣ (h , subh) , refl ∣) ,
assoc _ _ _ ∙ hab≡x
cosetʳ-assoc← : ∀ a b → H •>′ a •>′ b ⊆ H •>′ (a • b)
cosetʳ-assoc← a b {x} =
rec squash λ ((h , subh) , hb≡x) →
map (λ ((g , subg) , ga≡h) → (g , subg) , (
g • (a • b) ≡˘⟨ assoc g a b ⟩
(g • a) • b ≡⟨ cong (_• b) ga≡h ⟩
h • b ≡⟨ hb≡x ⟩
x ∎
)) subh
cosetʳ-assoc : ∀ a b → H •>′ (a • b) ≡ H •>′ a •>′ b
cosetʳ-assoc a b = ⇔toPath _ _ (cosetʳ-assoc→ a b , cosetʳ-assoc← a b)
module _ (H : Subgroup G ℓ′) where
private module H = Subgroup H
g∈Hg : ∀ g → g ∈ H •> g
g∈Hg g = ∣ H.ε , identityˡ _ ∣
≅-cosetʳ→ : ∀ x y → ⟨ x ≅[ H ]ʳ y ⟩ → H •> x ⇔ H •> y
≅-cosetʳ→ x y x≅y = Hx⊆Hy , Hx⊇Hy
where
Hx⊆Hy : H •> x ⊆ H •> y
Hx⊆Hy {a} = map
λ ((h , subh) , hx≡a) → (h • (x • y ⁻¹) , H.preservesOp subh x≅y) , (
h • (x • y ⁻¹) • y ≡˘⟨ cong (_• y) (assoc h x (y ⁻¹)) ⟩
h • x • y ⁻¹ • y ≡⟨ assoc (h • x) (y ⁻¹) y ⟩
(h • x) • (y ⁻¹ • y) ≡⟨ cong (h • x •_) (inverseˡ y) ⟩
h • x • ε ≡⟨ identityʳ (h • x) ⟩
h • x ≡⟨ hx≡a ⟩
a ∎)
Hx⊇Hy : H •> x ⊇ H •> y
Hx⊇Hy {a} = map
λ ((h , subh) , hy≡a) → (h • (y • x ⁻¹) , H.preservesOp subh (≅ʳ-symmetric H x≅y)) , (
h • (y • x ⁻¹) • x ≡˘⟨ cong (_• x) (assoc h y (x ⁻¹)) ⟩
h • y • x ⁻¹ • x ≡⟨ assoc (h • y) (x ⁻¹) x ⟩
(h • y) • (x ⁻¹ • x) ≡⟨ cong (h • y •_) (inverseˡ x) ⟩
h • y • ε ≡⟨ identityʳ (h • y) ⟩
h • y ≡⟨ hy≡a ⟩
a ∎)
≅-cosetʳ← : ∀ x y → H •> x ⇔ H •> y → ⟨ x ≅[ H ]ʳ y ⟩
≅-cosetʳ← x y (Hx⊆Hy , Hy⊆Hx) = rec ((_ ≅[ H ]ʳ _) .snd)
(λ ((h , subh) , hy≡x) →
subst (_∈ H.Member) (
h ≡˘⟨ identityʳ h ⟩
h • ε ≡˘⟨ cong (h •_) (inverseʳ y) ⟩
h • (y • y ⁻¹) ≡˘⟨ assoc h y (y ⁻¹) ⟩
(h • y) • y ⁻¹ ≡⟨ cong (_• y ⁻¹) hy≡x ⟩
x • y ⁻¹ ∎
) subh
)
(Hx⊆Hy {x} (g∈Hg x))
≅-cosetʳ : ∀ x y → ⟨ x ≅[ H ]ʳ y ⟩ ≃ (H •> x ⇔ H •> y)
≅-cosetʳ x y = isPropEquiv→Equiv ((x ≅[ H ]ʳ y) .snd) (isProp⇔ (H •> x) (H •> y))
(≅-cosetʳ→ x y) (≅-cosetʳ← x y)
cosetʳ-idem→ : ((h , _) : ⟨ H ⟩) → H •> h ⊆ H.Member
cosetʳ-idem→ (h , subh) = rec (isProp[ H.Member ] _)
λ ((g , subg) , gh≡x) → subst (_∈ H.Member) gh≡x (H.preservesOp subg subh)
cosetʳ-idem← : ((h , _) : ⟨ H ⟩) → H.Member ⊆ H •> h
cosetʳ-idem← (h , subh) {x} subx =
∣
(x • h ⁻¹ , H.preservesOp subx (H.preservesInv subh)) , (
(x • h ⁻¹) • h ≡⟨ assoc x (h ⁻¹) h ⟩
x • (h ⁻¹ • h) ≡⟨ cong (x •_) (inverseˡ h) ⟩
x • ε ≡⟨ identityʳ x ⟩
x ∎)
∣
cosetʳ-idem : ((h , _) : ⟨ H ⟩) → H •> h ⇔ H.Member
cosetʳ-idem h = cosetʳ-idem→ h , cosetʳ-idem← h
| 36.444068
| 110
| 0.396986
|
22af0cbd64cb6d3008b5502ec90f7456040d3afd
| 51,687
|
agda
|
Agda
|
src/LibraBFT/ImplShared/Consensus/Types/EpochIndep.agda
|
LaudateCorpus1/bft-consensus-agda
|
a4674fc473f2457fd3fe5123af48253cfb2404ef
|
[
"UPL-1.0"
] | null | null | null |
src/LibraBFT/ImplShared/Consensus/Types/EpochIndep.agda
|
LaudateCorpus1/bft-consensus-agda
|
a4674fc473f2457fd3fe5123af48253cfb2404ef
|
[
"UPL-1.0"
] | null | null | null |
src/LibraBFT/ImplShared/Consensus/Types/EpochIndep.agda
|
LaudateCorpus1/bft-consensus-agda
|
a4674fc473f2457fd3fe5123af48253cfb2404ef
|
[
"UPL-1.0"
] | null | null | null |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
open import LibraBFT.Impl.OBM.Rust.Duration
open import LibraBFT.Impl.OBM.Rust.RustTypes
open import LibraBFT.ImplShared.Base.Types
open import Optics.All
open import Util.ByteString
open import Util.Encode
open import Util.Hash
open import Util.KVMap as Map
open import Util.PKCS
open import Util.Prelude
------------------------------------------------------------------------------
open import Data.String using (String)
-- Defines the types that /DO NOT/ depend on an epoch config.
-- TODO-3: update types to reflect more recent version of LibraBFT. This is
-- a substantial undertaking that should probably be led by someone who can
-- access our internal implementation.
module LibraBFT.ImplShared.Consensus.Types.EpochIndep where
-- Below here is incremental progress towards something
-- that will eventually mirror the types in LBFT.Consensus.Types
-- that /DO NOT/ depend on the set of active authors
-- or safety rules, which we call the /EpochConfig/.
Author : Set
Author = NodeId
AccountAddress : Set
AccountAddress = Author
AuthorName : Set
AuthorName = Author
aAuthorName : Lens Author AuthorName
aAuthorName = mkLens' (λ x → x) (λ x → const x)
HashValue : Set
HashValue = Hash
TX : Set
TX = ByteString
Instant : Set
Instant = ℕ -- TODO-2: should eventually be a time stamp
postulate -- TODO-1: implement/prove PK equality
_≟-PK_ : (pk1 pk2 : PK) → Dec (pk1 ≡ pk2)
instance
Eq-PK : Eq PK
Eq._≟_ Eq-PK = _≟-PK_
-- LBFT-OBM-DIFF: We do not have world state. We just count the Epoch/Round as the version.
record Version : Set where
constructor Version∙new
field
_vVE : Epoch
_vVR : Round
open Version public
postulate instance enc-Version : Encoder Version
postulate -- TODO-1: implement/prove Version equality
_≟-Version_ : (v1 v2 : Version) → Dec (v1 ≡ v2)
instance
Eq-Version : Eq Version
Eq._≟_ Eq-Version = _≟-Version_
_≤-Version_ : Version → Version → Set
v1 ≤-Version v2 = _vVE v1 < _vVE v2
⊎ _vVE v1 ≡ _vVE v2 × _vVR v1 ≤ _vVR v2
_≤?-Version_ : (v1 v2 : Version) → Dec (v1 ≤-Version v2)
v1 ≤?-Version v2
with _vVE v1 <? _vVE v2
...| yes prf = yes (inj₁ prf)
...| no ege
with _vVE v1 ≟ _vVE v2
...| no rneq = no (⊥-elim ∘ λ { (inj₁ x) → ege x
; (inj₂ (x , _)) → rneq x })
...| yes refl
with _vVR v1 ≤? _vVR v2
...| yes rleq = yes (inj₂ (refl , rleq))
...| no rgt = no (⊥-elim ∘ λ { (inj₁ x) → ege x
; (inj₂ (_ , x)) → rgt x })
_<-Version_ : Version → Version → Set
v1 <-Version v2 = _vVE v1 < _vVE v2
⊎ _vVE v1 ≡ _vVE v2 × _vVR v1 < _vVR v2
_<?-Version_ : (v1 v2 : Version) → Dec (v1 <-Version v2)
v1 <?-Version v2
with _vVE v1 <? _vVE v2
...| yes prf = yes (inj₁ prf)
...| no ege
with _vVE v1 ≟ _vVE v2
...| no rneq = no (⊥-elim ∘ λ { (inj₁ x) → ege x
; (inj₂ (x , _)) → rneq x })
...| yes refl
with _vVR v1 <? _vVR v2
...| yes rleq = yes (inj₂ (refl , rleq))
...| no rgt = no (⊥-elim ∘ λ { (inj₁ x) → ege x
; (inj₂ (_ , x)) → rgt x })
-- ------------------------------------------------------------------------------
record ValidatorSigner : Set where
constructor ValidatorSigner∙new
field
_vsAuthor : AccountAddress
_vsPrivateKey : SK -- Note that the SystemModel doesn't
-- allow one node to examine another's
-- state, so we don't model someone being
-- able to impersonate someone else unless
-- PK is "dishonest", which models the
-- possibility that the corresponding secret
-- key may have been leaked.
open ValidatorSigner public
unquoteDecl vsAuthor vsPrivateKey = mkLens (quote ValidatorSigner)
(vsAuthor ∷ vsPrivateKey ∷ [])
RawEncNetworkAddress = Author
record ValidatorConfig : Set where
constructor ValidatorConfig∙new
field
_vcConsensusPublicKey : PK
_vcValidatorNetworkAddress : RawEncNetworkAddress
open ValidatorConfig public
unquoteDecl vcConsensusPublicKey vcValidatorNetworkAddress = mkLens (quote ValidatorConfig)
(vcConsensusPublicKey ∷ vcValidatorNetworkAddress ∷ [])
record ValidatorInfo : Set where
constructor ValidatorInfo∙new
field
_viAccountAddress : AccountAddress
_viConsensusVotingPower : U64
_viConfig : ValidatorConfig
open ValidatorInfo public
unquoteDecl viAccountAddress viConsensusVotingPower viConfig = mkLens (quote ValidatorInfo)
(viAccountAddress ∷ viConsensusVotingPower ∷ viConfig ∷ [])
-- getter only in Haskell
-- key for validating signed messages from this validator
viConsensusPublicKey : Lens ValidatorInfo PK
viConsensusPublicKey = viConfig ∙ vcConsensusPublicKey
record ValidatorConsensusInfo : Set where
constructor ValidatorConsensusInfo∙new
field
_vciPublicKey : PK
_vciVotingPower : U64
open ValidatorConsensusInfo public
unquoteDecl vciPublicKey vciVotingPower = mkLens (quote ValidatorConsensusInfo)
(vciPublicKey ∷ vciVotingPower ∷ [])
record ValidatorVerifier : Set where
constructor mkValidatorVerifier
field
_vvAddressToValidatorInfo : KVMap AccountAddress ValidatorConsensusInfo
_vvQuorumVotingPower : ℕ -- TODO-2: see above; for now, this is QuorumSize
_vvTotalVotingPower : ℕ -- TODO-2: see above; for now, this is number of peers in EpochConfig
open ValidatorVerifier public
unquoteDecl vvAddressToValidatorInfo vvQuorumVotingPower vvTotalVotingPower = mkLens (quote ValidatorVerifier)
(vvAddressToValidatorInfo ∷ vvQuorumVotingPower ∷ vvTotalVotingPower ∷ [])
-- getter only in Haskell
vvObmAuthors : Lens ValidatorVerifier (List AccountAddress)
vvObmAuthors = mkLens' g s
where
g : ValidatorVerifier → List AccountAddress
g vv = Map.kvm-keys (vv ^∙ vvAddressToValidatorInfo)
s : ValidatorVerifier → List AccountAddress → ValidatorVerifier
s vv _ = vv -- TODO-1 : cannot be done: need a way to defined only getters
data ConsensusScheme : Set where ConsensusScheme∙new : ConsensusScheme
-- instance S.Serialize ConsensusScheme
record ValidatorSet : Set where
constructor ValidatorSet∙new
field
_vsScheme : ConsensusScheme
_vsPayload : List ValidatorInfo
-- instance S.Serialize ValidatorSet
open ValidatorSet public
unquoteDecl vsScheme vsPayload = mkLens (quote ValidatorSet)
(vsScheme ∷ vsPayload ∷ [])
record EpochState : Set where
constructor EpochState∙new
field
_esEpoch : Epoch
_esVerifier : ValidatorVerifier
open EpochState public
unquoteDecl esEpoch esVerifier = mkLens (quote EpochState)
(esEpoch ∷ esVerifier ∷ [])
postulate -- one valid assumption, one that can be proved using it
instance
Enc-EpochState : Encoder EpochState
Enc-EpochStateMB : Encoder (Maybe EpochState) -- TODO-1: make combinator to build this
-- ------------------------------------------------------------------------------
record BlockInfo : Set where
constructor BlockInfo∙new
field
_biEpoch : Epoch
_biRound : Round
_biId : HashValue
_biExecutedStateId : HashValue -- aka liTransactionAccumulatorHash
_biVersion : Version
--, _biTimestamp :: Instant
_biNextEpochState : Maybe EpochState
open BlockInfo public
unquoteDecl biEpoch biRound biId biExecutedStateId biVersion biNextEpochState = mkLens (quote BlockInfo)
(biEpoch ∷ biRound ∷ biId ∷ biExecutedStateId ∷ biVersion ∷ biNextEpochState ∷ [])
postulate instance enc-BlockInfo : Encoder BlockInfo
postulate
_≟-BlockInfo_ : (bi1 bi2 : BlockInfo) → Dec (bi1 ≡ bi2)
instance
Eq-BlockInfo : Eq BlockInfo
Eq._≟_ Eq-BlockInfo = _≟-BlockInfo_
BlockInfo-η : ∀{e1 e2 r1 r2 i1 i2 x1 x2 v1 v2 n1 n2}
→ e1 ≡ e2 → r1 ≡ r2 → i1 ≡ i2 → x1 ≡ x2 → v1 ≡ v2 → n1 ≡ n2
→ BlockInfo∙new e1 r1 i1 x1 v1 n1 ≡ BlockInfo∙new e2 r2 i2 x2 v2 n2
BlockInfo-η refl refl refl refl refl refl = refl
instance
Eq-ByteString : Eq ByteString
Eq._≟_ Eq-ByteString = _≟ByteString_
{-
_≟BlockInfo_ : (b₁ b₂ : BlockInfo) → Dec (b₁ ≡ b₂)
l ≟BlockInfo r with ((l ^∙ biEpoch) ≟ (r ^∙ biEpoch))
...| no no-e = no λ where refl → no-e refl
...| yes refl with ((l ^∙ biRound) ≟ (r ^∙ biRound))
...| no no-r = no λ where refl → no-r refl
...| yes refl with ((l ^∙ biId) ≟ (r ^∙ biId))
...| no no-i = no λ where refl → no-i refl
...| yes refl = yes refl
instance
Eq-BlockInfo : Eq BlockInfo
Eq._≟_ Eq-BlockInfo = _≟BlockInfo_
BlockInfo-η : ∀{e1 e2 r1 r2 i1 i2} → e1 ≡ e2 → r1 ≡ r2 → i1 ≡ i2
→ BlockInfo∙new e1 r1 i1 ≡ BlockInfo∙new e2 r2 i2
BlockInfo-η refl refl refl = refl
-}
biNextBlockEpoch : Lens BlockInfo Epoch
biNextBlockEpoch = mkLens' g s
where
g : BlockInfo → Epoch
g bi = maybeS (bi ^∙ biNextEpochState)
(bi ^∙ biEpoch)
( _^∙ esEpoch)
s : BlockInfo → Epoch → BlockInfo
s bi _ = bi -- TODO-1 : cannot be done: need a way to defined only getters
-- ------------------------------------------------------------------------------
record LedgerInfo : Set where
constructor LedgerInfo∙new
field
_liCommitInfo : BlockInfo
_liConsensusDataHash : HashValue
open LedgerInfo public
unquoteDecl liCommitInfo liConsensusDataHash = mkLens (quote LedgerInfo)
(liCommitInfo ∷ liConsensusDataHash ∷ [])
postulate instance enc-LedgerInfo : Encoder LedgerInfo
postulate instance ws-LedgerInfo : WithSig LedgerInfo
-- GETTER only in Haskell
liEpoch : Lens LedgerInfo Epoch
liEpoch = liCommitInfo ∙ biEpoch
-- GETTER only in Haskell
liNextBlockEpoch : Lens LedgerInfo Epoch
liNextBlockEpoch = liCommitInfo ∙ biNextBlockEpoch
-- GETTER only in Haskell
liConsensusBlockId : Lens LedgerInfo HashValue
liConsensusBlockId = liCommitInfo ∙ biId
-- GETTER only in Haskell
liTransactionAccumulatorHash : Lens LedgerInfo HashValue
liTransactionAccumulatorHash = liCommitInfo ∙ biExecutedStateId
-- GETTER only in Haskell
liVersion : Lens LedgerInfo Version
liVersion = liCommitInfo ∙ biVersion
-- GETTER only in Haskell
liNextEpochState : Lens LedgerInfo (Maybe EpochState)
liNextEpochState = mkLens' g s
where
g : LedgerInfo → Maybe EpochState
g = (_^∙ liCommitInfo ∙ biNextEpochState)
s : LedgerInfo → Maybe EpochState → LedgerInfo
s l _ = l -- TODO-1 : cannot be done: need a way to defined only getters
-- GETTER only in Haskell
liEndsEpoch : Lens LedgerInfo Bool
liEndsEpoch = mkLens' g s
where
g : LedgerInfo → Bool
g = is-just ∘ (_^∙ liNextEpochState)
s : LedgerInfo → Bool → LedgerInfo
s l _ = l -- TODO-1 : cannot be done: need a way to defined only getters
LedgerInfo-η : ∀ {ci1 ci2 : BlockInfo} {cdh1 cdh2 : Hash}
→ ci1 ≡ ci2
→ cdh1 ≡ cdh2
→ (LedgerInfo∙new ci1 cdh1) ≡ (LedgerInfo∙new ci2 cdh2)
LedgerInfo-η refl refl = refl
record LedgerInfoWithSignatures : Set where
constructor LedgerInfoWithSignatures∙new
field
_liwsLedgerInfo : LedgerInfo
_liwsSignatures : KVMap Author Signature
open LedgerInfoWithSignatures public
unquoteDecl liwsLedgerInfo liwsSignatures = mkLens (quote LedgerInfoWithSignatures)
(liwsLedgerInfo ∷ liwsSignatures ∷ [])
postulate instance enc-LedgerInfoWithSignatures : Encoder LedgerInfoWithSignatures
-- GETTER only in Haskell
liwsEpoch : Lens LedgerInfoWithSignatures Epoch
liwsEpoch = liwsLedgerInfo ∙ liEpoch
-- GETTER only in Haskell
liwsVersion : Lens LedgerInfoWithSignatures Version
liwsVersion = liwsLedgerInfo ∙ liVersion
-- GETTER only in Haskell
liwsNextEpochState : Lens LedgerInfoWithSignatures (Maybe EpochState)
liwsNextEpochState = liwsLedgerInfo ∙ liNextEpochState
-- ------------------------------------------------------------------------------
record Timeout : Set where
constructor Timeout∙new
field
_toEpoch : Epoch
_toRound : Round
open Timeout public
unquoteDecl toEpoch toRound = mkLens (quote Timeout)
(toEpoch ∷ toRound ∷ [])
postulate instance enc-Timeout : Encoder Timeout
-- ------------------------------------------------------------------------------
record VoteData : Set where
constructor VoteData∙new
field
_vdProposed : BlockInfo
_vdParent : BlockInfo
open VoteData public
unquoteDecl vdProposed vdParent = mkLens (quote VoteData)
(vdProposed ∷ vdParent ∷ [])
postulate instance enc-VoteData : Encoder VoteData
VoteData-η : ∀ {pr1 par1 pr2 par2 : BlockInfo} → pr1 ≡ pr2 → par1 ≡ par2
→ (VoteData∙new pr1 par1) ≡ (VoteData∙new pr2 par2)
VoteData-η refl refl = refl
-- DESIGN NOTE: The _vAuthor field is included only to facilitate lookup of the public key against
-- which to verify the signature. An alternative would be to use an index into the members of the
-- epoch config, which would save message space and therefore bandwidth.
record Vote : Set where
constructor Vote∙new
field
_vVoteData : VoteData
_vAuthor : Author
_vLedgerInfo : LedgerInfo
_vSignature : Signature
_vTimeoutSignature : Maybe Signature
open Vote public
unquoteDecl vVoteData vAuthor vLedgerInfo vSignature vTimeoutSignature = mkLens (quote Vote)
(vVoteData ∷ vAuthor ∷ vLedgerInfo ∷ vSignature ∷ vTimeoutSignature ∷ [])
postulate instance enc-Vote : Encoder Vote
-- not defined in Haskell
vParent : Lens Vote BlockInfo
vParent = vVoteData ∙ vdParent
-- not defined in Haskell
vProposed : Lens Vote BlockInfo
vProposed = vVoteData ∙ vdProposed
-- not defined in Haskell
vParentId : Lens Vote Hash
vParentId = vVoteData ∙ vdParent ∙ biId
-- not defined in Haskell
vParentRound : Lens Vote Round
vParentRound = vVoteData ∙ vdParent ∙ biRound
-- not defined in Haskell
vProposedId : Lens Vote Hash
vProposedId = vVoteData ∙ vdProposed ∙ biId
-- getter only in Haskell
vEpoch : Lens Vote Epoch
vEpoch = vVoteData ∙ vdProposed ∙ biEpoch
-- getter only in Haskell
vRound : Lens Vote Round
vRound = vVoteData ∙ vdProposed ∙ biRound
-- ------------------------------------------------------------------------------
record QuorumCert : Set where
constructor QuorumCert∙new
field
_qcVoteData : VoteData
_qcSignedLedgerInfo : LedgerInfoWithSignatures
open QuorumCert public
unquoteDecl qcVoteData qcSignedLedgerInfo = mkLens (quote QuorumCert)
(qcVoteData ∷ qcSignedLedgerInfo ∷ [])
postulate instance enc-QuorumCert : Encoder QuorumCert
-- Because QuorumCert has an injective encoding (postulated, for now),
-- we can use it to determine equality of QuorumCerts.
_≟QC_ : (q1 q2 : QuorumCert) → Dec (q1 ≡ q2)
_≟QC_ = ≡-Encoder enc-QuorumCert
_QCBoolEq_ : QuorumCert → QuorumCert → Bool
_QCBoolEq_ q1 q2 = does (q1 ≟QC q2)
-- getter only in Haskell
qcCertifiedBlock : Lens QuorumCert BlockInfo
qcCertifiedBlock = qcVoteData ∙ vdProposed
-- getter only in Haskell
qcParentBlock : Lens QuorumCert BlockInfo
qcParentBlock = qcVoteData ∙ vdParent
-- getter only in Haskell
qcLedgerInfo : Lens QuorumCert LedgerInfoWithSignatures
qcLedgerInfo = qcSignedLedgerInfo
-- getter only in Haskell
qcCommitInfo : Lens QuorumCert BlockInfo
qcCommitInfo = qcSignedLedgerInfo ∙ liwsLedgerInfo ∙ liCommitInfo
-- getter only in Haskell
qcEndsEpoch : Lens QuorumCert Bool
qcEndsEpoch = mkLens' g s
where
g : QuorumCert → Bool
g q = is-just (q ^∙ qcSignedLedgerInfo ∙ liwsLedgerInfo ∙ liNextEpochState)
s : QuorumCert → Bool → QuorumCert
s q _ = q -- TODO-1 : cannot be done: need a way to defined only getters
-- Constructs a 'vote' that was gathered in a QC.
rebuildVote : QuorumCert → Author × Signature → Vote
rebuildVote qc (α , sig)
= record { _vVoteData = _qcVoteData qc
; _vAuthor = α
; _vLedgerInfo = qc ^∙ (qcSignedLedgerInfo ∙ liwsLedgerInfo)
; _vSignature = sig
; _vTimeoutSignature = nothing -- Is this correct? The original vote may have had a
-- timeout signature, but we don't know. Does it
-- matter?
}
-- Two votes are equivalent if they are identical except they may differ on timeout signature
_≈Vote_ : (v1 v2 : Vote) → Set
v1 ≈Vote v2 = v2 ≡ record v1 { _vTimeoutSignature = _vTimeoutSignature v2 }
qcVotesKV : QuorumCert → KVMap Author Signature
qcVotesKV = _liwsSignatures ∘ _qcSignedLedgerInfo
qcVotes : QuorumCert → List (Author × Signature)
qcVotes qc = kvm-toList (qcVotesKV qc)
-- not defined in Haskell
qcCertifies : Lens QuorumCert Hash
qcCertifies = qcVoteData ∙ vdProposed ∙ biId
-- not defined in Haskell
qcRound : Lens QuorumCert Round
qcRound = qcVoteData ∙ vdProposed ∙ biRound
_qcCertifies : QuorumCert → Hash
_qcCertifies q = q ^∙ qcCertifies
_qcRound : QuorumCert → Round
_qcRound q = q ^∙ qcRound
-- ------------------------------------------------------------------------------
record TimeoutCertificate : Set where
constructor mkTimeoutCertificate
field
_tcTimeout : Timeout
_tcSignatures : KVMap Author Signature
open TimeoutCertificate public
unquoteDecl tcTimeout tcSignatures = mkLens (quote TimeoutCertificate)
(tcTimeout ∷ tcSignatures ∷ [])
TimeoutCertificate∙new : Timeout → TimeoutCertificate
TimeoutCertificate∙new to = mkTimeoutCertificate to Map.empty
-- getter only in haskell
tcEpoch : Lens TimeoutCertificate Epoch
tcEpoch = tcTimeout ∙ toEpoch
-- getter only in haskell
tcRound : Lens TimeoutCertificate Round
tcRound = tcTimeout ∙ toRound
-- ------------------------------------------------------------------------------
data BlockType : Set where
Proposal : TX → Author → BlockType
NilBlock : BlockType
Genesis : BlockType
postulate instance enc-BlockType : Encoder BlockType
postulate -- Valid assumption, payloadIsEmpty
-- TODO-1 : Need to decide what empty means.
-- Only important on epoch change.
payloadIsEmpty : TX → Bool
_≟BlockType_ : (b₁ b₂ : BlockType) → Dec (b₁ ≡ b₂)
Genesis ≟BlockType Genesis = true because ofʸ refl
NilBlock ≟BlockType NilBlock = true because ofʸ refl
(Proposal t₁ a₁) ≟BlockType (Proposal t₂ a₂) with t₁ ≟ t₂
...| no no-t = no λ where refl → no-t refl
...| yes refl with a₁ ≟ a₂
...| no no-a = no λ where refl → no-a refl
...| yes refl = yes refl
Genesis ≟BlockType NilBlock = no (λ ())
Genesis ≟BlockType (Proposal _ _) = no (λ ())
NilBlock ≟BlockType Genesis = no (λ ())
NilBlock ≟BlockType (Proposal _ _) = no (λ ())
(Proposal _ _) ≟BlockType Genesis = no (λ ())
(Proposal _ _) ≟BlockType NilBlock = no (λ ())
instance
Eq-BlockType : Eq BlockType
Eq._≟_ Eq-BlockType = _≟BlockType_
record BlockData : Set where
constructor BlockData∙new
field
_bdEpoch : Epoch
_bdRound : Round
-- QUESTION: How do we represent a block that extends the
-- genesis block, which doesn't come with a QC. Maybe the
-- genesis block has an associated QC established for the epoch?
_bdQuorumCert : QuorumCert
_bdBlockType : BlockType
open BlockData public
unquoteDecl bdEpoch bdRound bdQuorumCert bdBlockType = mkLens (quote BlockData)
(bdEpoch ∷ bdRound ∷ bdQuorumCert ∷ bdBlockType ∷ [])
postulate instance enc-BlockData : Encoder BlockData
-- not defined in Haskell
bdParentId : Lens BlockData Hash
bdParentId = bdQuorumCert ∙ qcVoteData ∙ vdParent ∙ biId
-- not defined in Haskell
-- This is the id of a block
bdBlockId : Lens BlockData Hash
bdBlockId = bdQuorumCert ∙ qcVoteData ∙ vdProposed ∙ biId
-- getter only in Haskell
bdAuthor : Lens BlockData (Maybe Author)
bdAuthor = mkLens' g s
where
g : BlockData → Maybe Author
g bd = case (bd ^∙ bdBlockType) of λ where
(Proposal _ author) → just author
_ → nothing
s : BlockData → Maybe Author → BlockData
s bd nothing = bd
s bd (just auth) =
bd & bdBlockType %~ λ where
(Proposal tx _) → Proposal tx auth
bdt → bdt
-- getter only in Haskell
bdPayload : Lens BlockData (Maybe TX)
bdPayload = mkLens' g s
where
g : BlockData → Maybe TX
g bd = case bd ^∙ bdBlockType of λ where
(Proposal a _) → just a
_ → nothing
s : BlockData → Maybe TX → BlockData
s bd _ = bd -- TODO-1 : cannot be done: need a way to define only getters
-- ------------------------------------------------------------------------------
-- The signature is a Maybe to allow us to use 'nothing' as the
-- 'bSignature' when constructing a block to sign later. Also,
-- "nil" blocks are not signed because they are produced
-- independently by different validators. This is to enable
-- committing after an epoch-changing command is processed: we
-- cannot add more commands, but we need to add some quorum
-- certificates in order to commit the epoch-changing command.
record Block : Set where
constructor Block∙new
field
_bId : HashValue
_bBlockData : BlockData
_bSignature : Maybe Signature
open Block public
unquoteDecl bId bBlockData bSignature = mkLens (quote Block)
(bId ∷ bBlockData ∷ bSignature ∷ [])
postulate instance enc : Encoder Block
-- getter only in Haskell
bAuthor : Lens Block (Maybe Author)
bAuthor = bBlockData ∙ bdAuthor
-- getter only in Haskell
bEpoch : Lens Block Epoch
bEpoch = bBlockData ∙ bdEpoch
-- getter only in Haskell
bRound : Lens Block Round
bRound = bBlockData ∙ bdRound
-- getter only in Haskell
bQuorumCert : Lens Block QuorumCert
bQuorumCert = bBlockData ∙ bdQuorumCert
-- getter only in Haskell
bParentId : Lens Block HashValue
bParentId = bQuorumCert ∙ qcCertifiedBlock ∙ biId
-- getter only in Haskell
bPayload : Lens Block (Maybe TX)
bPayload = bBlockData ∙ bdPayload
bdQcSigs : Lens Block (KVMap Author Signature)
bdQcSigs = bBlockData ∙ bdQuorumCert ∙ qcLedgerInfo ∙ liwsSignatures
-- Equivalence of Blocks modulo signatures (both on the Block and in the QuorumCert it contains)
infix 4 _≈Block_
_≈Block_ : (b₁ b₂ : Block) → Set
b₁ ≈Block b₂ = b₁ ≡ (b₂ & bSignature ∙~ (b₁ ^∙ bSignature)
& bdQcSigs ∙~ (b₁ ^∙ bdQcSigs))
sym≈Block : Symmetric _≈Block_
sym≈Block refl = refl
-- ------------------------------------------------------------------------------
record AccumulatorExtensionProof : Set where
constructor AccumulatorExtensionProof∙new
field
_aepObmNumLeaves : Version
open AccumulatorExtensionProof public
unquoteDecl aepObmNumLeaves = mkLens (quote AccumulatorExtensionProof)
(aepObmNumLeaves ∷ [])
record VoteProposal : Set where
constructor VoteProposal∙new
field
_vpAccumulatorExtensionProof : AccumulatorExtensionProof
_vpBlock : Block
_vpNextEpochState : Maybe EpochState
open VoteProposal public
unquoteDecl vpAccumulatorExtensionProof vpBlock vpNextEpochState = mkLens (quote VoteProposal)
(vpAccumulatorExtensionProof ∷ vpBlock ∷ vpNextEpochState ∷ [])
record MaybeSignedVoteProposal : Set where
constructor MaybeSignedVoteProposal∙new
field
_msvpVoteProposal : VoteProposal
open MaybeSignedVoteProposal public
unquoteDecl msvpVoteProposal = mkLens (quote MaybeSignedVoteProposal)
(msvpVoteProposal ∷ [])
-- ------------------------------------------------------------------------------
record LastVoteInfo : Set where
constructor LastVoteInfo∙new
field
_lviLiDigest : HashValue
_lviRound : Round
_lviIsTimeout : Bool
open LastVoteInfo public
record PendingVotes : Set where
constructor mkPendingVotes
field
_pvLiDigestToVotes : KVMap HashValue LedgerInfoWithSignatures
_pvMaybePartialTC : Maybe TimeoutCertificate
_pvAuthorToVote : KVMap Author Vote
open PendingVotes public
unquoteDecl pvLiDigestToVotes pvMaybePartialTC pvAuthorToVote = mkLens (quote PendingVotes)
(pvLiDigestToVotes ∷ pvMaybePartialTC ∷ pvAuthorToVote ∷ [])
PendingVotes∙new : PendingVotes
PendingVotes∙new = mkPendingVotes Map.empty nothing Map.empty
-- ------------------------------------------------------------------------------
record StateComputeResult : Set where
constructor StateComputeResult∙new
field
_scrObmNumLeaves : Version
_scrEpochState : Maybe EpochState
open StateComputeResult public
unquoteDecl scrObmNumLeaves scrEpochState = mkLens (quote StateComputeResult)
(scrObmNumLeaves ∷ scrEpochState ∷ [])
postulate -- TODO: eliminate after fully implementing executeBlockE
stateComputeResult : StateComputeResult
record ExecutedBlock : Set where
constructor ExecutedBlock∙new
field
_ebBlock : Block
_ebStateComputeResult : StateComputeResult
open ExecutedBlock public
unquoteDecl ebBlock ebStateComputeResult = mkLens (quote ExecutedBlock)
(ebBlock ∷ ebStateComputeResult ∷ [])
-- getter only in Haskell
ebId : Lens ExecutedBlock HashValue
ebId = ebBlock ∙ bId
-- getter only in Haskell
ebQuorumCert : Lens ExecutedBlock QuorumCert
ebQuorumCert = ebBlock ∙ bQuorumCert
-- getter only in Haskell
ebParentId : Lens ExecutedBlock HashValue
ebParentId = ebQuorumCert ∙ qcCertifiedBlock ∙ biId
-- getter only in Haskell
ebRound : Lens ExecutedBlock Round
ebRound = ebBlock ∙ bRound
-- ------------------------------------------------------------------------------
record LinkableBlock : Set where
constructor LinkableBlock∙new
field
_lbExecutedBlock : ExecutedBlock
-- _lbChildren : Set HashValue
open LinkableBlock public
unquoteDecl lbExecutedBlock = mkLens (quote LinkableBlock)
(lbExecutedBlock ∷ [])
-- getter only in Haskell
lbId : Lens LinkableBlock HashValue
lbId = lbExecutedBlock ∙ ebId
-- ------------------------------------------------------------------------------
-- A block tree depends on a epoch config but works regardlesss of which
-- EpochConfig we have.
record BlockTree : Set where
constructor mkBlockTree
field
_btIdToBlock : KVMap HashValue LinkableBlock
_btRootId : HashValue
_btHighestCertifiedBlockId : HashValue
_btHighestQuorumCert : QuorumCert
_btHighestTimeoutCert : Maybe TimeoutCertificate
_btHighestCommitCert : QuorumCert
_btIdToQuorumCert : KVMap HashValue QuorumCert
_btPrunedBlockIds : VecDeque
_btMaxPrunedBlocksInMem : ℕ
open BlockTree public
unquoteDecl btIdToBlock btRootId btHighestCertifiedBlockId btHighestQuorumCert
btHighestTimeoutCert btHighestCommitCert
btIdToQuorumCert btPrunedBlockIds
btMaxPrunedBlocksInMem = mkLens (quote BlockTree)
(btIdToBlock ∷ btRootId ∷ btHighestCertifiedBlockId ∷ btHighestQuorumCert ∷
btHighestTimeoutCert ∷ btHighestCommitCert ∷
btIdToQuorumCert ∷ btPrunedBlockIds ∷
btMaxPrunedBlocksInMem ∷ [])
btGetLinkableBlock : HashValue → BlockTree → Maybe LinkableBlock
btGetLinkableBlock hv bt = Map.lookup hv (bt ^∙ btIdToBlock)
btGetBlock : HashValue → BlockTree → Maybe ExecutedBlock
btGetBlock hv bt = (_^∙ lbExecutedBlock) <$> btGetLinkableBlock hv bt
-- getter only in Haskell
btRoot : Lens BlockTree (Maybe ExecutedBlock)
btRoot = mkLens' g s
where
g : BlockTree → Maybe ExecutedBlock
g bt = btGetBlock (bt ^∙ btRootId) bt
-- TODO-1 : the setter is not needed/defined in Haskell
-- Defining it just to make progress, but it can't be defined
-- correctly in terms of type correctness (let alone setting a new root!)
s : BlockTree → Maybe ExecutedBlock → BlockTree
s bt _ = bt -- TODO-1 : cannot be done: need a way to defined only getters
-- getter only in haskell
btHighestCertifiedBlock : Lens BlockTree (Maybe ExecutedBlock)
btHighestCertifiedBlock = mkLens' g s
where
g : BlockTree → (Maybe ExecutedBlock)
g bt = btGetBlock (bt ^∙ btHighestCertifiedBlockId) bt
s : BlockTree → (Maybe ExecutedBlock) → BlockTree
s bt _ = bt -- TODO-1 : cannot be done: need a way to defined only getters
-- ------------------------------------------------------------------------------
record LedgerStore : Set where
constructor mkLedgerStore
field
_lsObmVersionToEpoch : Map.KVMap Version Epoch
_lsObmEpochToLIWS : Map.KVMap Epoch LedgerInfoWithSignatures
_lsLatestLedgerInfo : Maybe LedgerInfoWithSignatures
open LedgerStore public
unquoteDecl lsObmVersionToEpoch lsObmEpochToLIWS lsLatestLedgerInfo = mkLens (quote LedgerStore)
(lsObmVersionToEpoch ∷ lsObmEpochToLIWS ∷ lsLatestLedgerInfo ∷ [])
record DiemDB : Set where
constructor DiemDB∙new
field
_ddbLedgerStore : LedgerStore
open DiemDB public
unquoteDecl ddbLedgerStore = mkLens (quote DiemDB)
(ddbLedgerStore ∷ [])
record LedgerRecoveryData : Set where
constructor LedgerRecoveryData∙new
field
_lrdStorageLedger : LedgerInfo
record MockSharedStorage : Set where
constructor mkMockSharedStorage
field
-- Safety state
_mssBlock : Map.KVMap HashValue Block
_mssQc : Map.KVMap HashValue QuorumCert
_mssLis : Map.KVMap Version LedgerInfoWithSignatures
_mssLastVote : Maybe Vote
-- Liveness state
_mssHighestTimeoutCertificate : Maybe TimeoutCertificate
_mssValidatorSet : ValidatorSet
open MockSharedStorage public
unquoteDecl mssBlock mssQc mssLis mssLastVote
mssHighestTimeoutCertificate mssValidatorSet = mkLens (quote MockSharedStorage)
(mssBlock ∷ mssQc ∷ mssLis ∷ mssLastVote ∷
mssHighestTimeoutCertificate ∷ mssValidatorSet ∷ [])
record MockStorage : Set where
constructor MockStorage∙new
field
_msSharedStorage : MockSharedStorage
_msStorageLedger : LedgerInfo
_msObmDiemDB : DiemDB
open MockStorage public
unquoteDecl msSharedStorage msStorageLedger msObmDiemDB = mkLens (quote MockStorage)
(msSharedStorage ∷ msStorageLedger ∷ msObmDiemDB ∷ [])
PersistentLivenessStorage = MockStorage
-- IMPL-DIFF : This is defined without record fields in Haskell.
-- The record fields below are never used. But RootInfo must be a record for pattern matching.
record RootInfo : Set where
constructor RootInfo∙new
field
_riBlock : Block
_riQC1 : QuorumCert
_riQC2 : QuorumCert
-- ------------------------------------------------------------------------------
record SafetyData : Set where
constructor SafetyData∙new
field
_sdEpoch : Epoch
_sdLastVotedRound : Round
_sdPreferredRound : Round
_sdLastVote : Maybe Vote
open SafetyData public
unquoteDecl sdEpoch sdLastVotedRound sdPreferredRound sdLastVote =
mkLens (quote SafetyData)
(sdEpoch ∷ sdLastVotedRound ∷ sdPreferredRound ∷ sdLastVote ∷ [])
record Waypoint : Set where
constructor Waypoint∙new
field
_wVersion : Version
_wValue : HashValue
open Waypoint public
unquoteDecl wVersion wValue = mkLens (quote Waypoint)
(wVersion ∷ wValue ∷ [])
postulate instance enc-Waypoint : Encoder Waypoint
record PersistentSafetyStorage : Set where
constructor mkPersistentSafetyStorage
field
_pssSafetyData : SafetyData
_pssAuthor : Author
_pssWaypoint : Waypoint
_pssObmSK : Maybe SK
open PersistentSafetyStorage public
unquoteDecl pssSafetyData pssAuthor pssWaypoint pssObmSK = mkLens (quote PersistentSafetyStorage)
(pssSafetyData ∷ pssAuthor ∷ pssWaypoint ∷ pssObmSK ∷ [])
record OnChainConfigPayload : Set where
constructor OnChainConfigPayload∙new
field
_occpEpoch : Epoch
_occpObmValidatorSet : ValidatorSet
open OnChainConfigPayload public
unquoteDecl occpEpoch occpObmValidatorSet = mkLens (quote OnChainConfigPayload)
(occpEpoch ∷ occpObmValidatorSet ∷ [])
-- instance S.Serialize OnChainConfigPayload
record ReconfigEventEpochChange : Set where
constructor ReconfigEventEpochChange∙new
field
_reecOnChainConfigPayload : OnChainConfigPayload
-- instance S.Serialize ReconfigEventEpochChange
-- ------------------------------------------------------------------------------
-- IMPL-DIFF : Haskell StateComputer has pluggable functions.
-- The Agda version just calls them directly
record StateComputer : Set where
constructor StateComputer∙new
field
_scObmVersion : Version
open StateComputer public
unquoteDecl scObmVersion = mkLens (quote StateComputer)
(scObmVersion ∷ [])
StateComputerComputeType
= StateComputer → Block → HashValue
→ Either (List String) StateComputeResult
StateComputerCommitType
= StateComputer → DiemDB → ExecutedBlock → LedgerInfoWithSignatures
→ Either (List String) (StateComputer × DiemDB × Maybe ReconfigEventEpochChange)
StateComputerSyncToType
= LedgerInfoWithSignatures
→ Either (List String) ReconfigEventEpochChange
-- ------------------------------------------------------------------------------
record BlockStore : Set where
constructor BlockStore∙new
field
_bsInner : BlockTree
_bsStateComputer : StateComputer
_bsStorage : PersistentLivenessStorage
open BlockStore public
unquoteDecl bsInner bsStateComputer bsStorage = mkLens (quote BlockStore)
(bsInner ∷ bsStateComputer ∷ bsStorage ∷ [])
postulate -- TODO: stateComputer
stateComputer : StateComputer
-- getter only in Haskell
bsRoot : Lens BlockStore (Maybe ExecutedBlock)
bsRoot = bsInner ∙ btRoot
-- getter only in Haskell
bsHighestQuorumCert : Lens BlockStore QuorumCert
bsHighestQuorumCert = bsInner ∙ btHighestQuorumCert
-- getter only in Haskell
bsHighestCommitCert : Lens BlockStore QuorumCert
bsHighestCommitCert = bsInner ∙ btHighestCommitCert
-- getter only in Haskell
bsHighestTimeoutCert : Lens BlockStore (Maybe TimeoutCertificate)
bsHighestTimeoutCert = bsInner ∙ btHighestTimeoutCert
-- ------------------------------------------------------------------------------
data NewRoundReason : Set where
QCReady : NewRoundReason
TOReady : NewRoundReason
record NewRoundEvent : Set where
constructor NewRoundEvent∙new
field
_nreRound : Round
_nreReason : NewRoundReason
_nreTimeout : Duration
unquoteDecl nreRound nreReason nreTimeout = mkLens (quote NewRoundEvent)
(nreRound ∷ nreReason ∷ nreTimeout ∷ [])
-- LibraBFT.ImplShared.Consensus.Types contains
-- ExponentialTimeInterval, RoundState
-- ------------------------------------------------------------------------------
record ProposalGenerator : Set where
constructor ProposalGenerator∙new
field
_pgLastRoundGenerated : Round
open ProposalGenerator
unquoteDecl pgLastRoundGenerated = mkLens (quote ProposalGenerator)
(pgLastRoundGenerated ∷ [])
-- ------------------------------------------------------------------------------
data ObmNotValidProposerReason : Set where
ProposalDoesNotHaveAnAuthor ProposerForBlockIsNotValidForThisRound NotValidProposer : ObmNotValidProposerReason
record ProposerElection : Set where
constructor ProposerElection∙new
field
_peProposers : List Author -- TODO-1 : this should be 'Set Author'
-- _peObmLeaderOfRound : LeaderOfRoundFn
-- _peObmNodesInOrder : NodesInOrder
open ProposerElection
-- ------------------------------------------------------------------------------
record SafetyRules : Set where
constructor mkSafetyRules
field
_srPersistentStorage : PersistentSafetyStorage
_srExportConsensusKey : Bool
_srValidatorSigner : Maybe ValidatorSigner
_srEpochState : Maybe EpochState
open SafetyRules public
unquoteDecl srPersistentStorage srExportConsensusKey srValidatorSigner srEpochState = mkLens (quote SafetyRules)
(srPersistentStorage ∷ srExportConsensusKey ∷ srValidatorSigner ∷ srEpochState ∷ [])
-- ------------------------------------------------------------------------------
record BlockRetrievalRequest : Set where
constructor BlockRetrievalRequest∙new
field
_brqObmFrom : Author
_brqBlockId : HashValue
_brqNumBlocks : U64
open BlockRetrievalRequest public
unquoteDecl brqObmFrom brqBlockId brqNumBlocks = mkLens (quote BlockRetrievalRequest)
(brqObmFrom ∷ brqBlockId ∷ brqNumBlocks ∷ [])
postulate instance enc-BlockRetrievalRequest : Encoder BlockRetrievalRequest
data BlockRetrievalStatus : Set where
BRSSucceeded BRSIdNotFound BRSNotEnoughBlocks : BlockRetrievalStatus
open BlockRetrievalStatus public
postulate instance enc-BlockRetrievalState : Encoder BlockRetrievalStatus
brs-eq : (brs₁ brs₂ : BlockRetrievalStatus) → Dec (brs₁ ≡ brs₂)
brs-eq BRSSucceeded BRSSucceeded = yes refl
brs-eq BRSSucceeded BRSIdNotFound = no λ ()
brs-eq BRSSucceeded BRSNotEnoughBlocks = no λ ()
brs-eq BRSIdNotFound BRSSucceeded = no λ ()
brs-eq BRSIdNotFound BRSIdNotFound = yes refl
brs-eq BRSIdNotFound BRSNotEnoughBlocks = no λ ()
brs-eq BRSNotEnoughBlocks BRSSucceeded = no λ ()
brs-eq BRSNotEnoughBlocks BRSIdNotFound = no λ ()
brs-eq BRSNotEnoughBlocks BRSNotEnoughBlocks = yes refl
instance
Eq-BlockRetrievalStatus : Eq BlockRetrievalStatus
Eq._≟_ Eq-BlockRetrievalStatus = brs-eq
record BlockRetrievalResponse : Set where
constructor BlockRetrievalResponse∙new
field
_brpObmFrom : (Author × Epoch × Round) -- for logging
_brpStatus : BlockRetrievalStatus
_brpBlocks : List Block
unquoteDecl brpObmFrom brpStatus brpBlocks = mkLens (quote BlockRetrievalResponse)
(brpObmFrom ∷ brpStatus ∷ brpBlocks ∷ [])
postulate instance enc-BlockRetrievalResponse : Encoder BlockRetrievalResponse
-- ------------------------------------------------------------------------------
-- LibraBFT.ImplShared.Consensus.Types contains
-- ObmNeedFetch, RoundManager
-- ------------------------------------------------------------------------------
record BlockRetriever : Set where
constructor BlockRetriever∙new
field
_brDeadline : Instant
_brPreferredPeer : Author
open BlockRetriever public
unquoteDecl brDeadline brPreferredPeer = mkLens (quote BlockRetriever)
(brDeadline ∷ brPreferredPeer ∷ [])
-- ------------------------------------------------------------------------------
record SyncInfo : Set where
constructor mkSyncInfo -- Bare constructor to enable pattern matching against SyncInfo; "smart"
-- constructor SyncInfo∙new is below
field
_siHighestQuorumCert : QuorumCert
_sixxxHighestCommitCert : Maybe QuorumCert
_siHighestTimeoutCert : Maybe TimeoutCertificate
open SyncInfo public
-- Note that we do not automatically derive a lens for siHighestCommitCert;
-- it is defined manually below.
unquoteDecl siHighestQuorumCert sixxxHighestCommitCert siHighestTimeoutCert = mkLens (quote SyncInfo)
(siHighestQuorumCert ∷ sixxxHighestCommitCert ∷ siHighestTimeoutCert ∷ [])
postulate instance enc-SyncInfo : Encoder SyncInfo
SyncInfo∙new : QuorumCert → QuorumCert → Maybe TimeoutCertificate → SyncInfo
SyncInfo∙new highestQuorumCert highestCommitCert highestTimeoutCert =
record { _siHighestQuorumCert = highestQuorumCert
; _sixxxHighestCommitCert = if highestQuorumCert QCBoolEq highestCommitCert
then nothing else (just highestCommitCert)
; _siHighestTimeoutCert = highestTimeoutCert }
-- getter only in Haskell
siHighestCommitCert : Lens SyncInfo QuorumCert
siHighestCommitCert =
mkLens' (λ x → fromMaybe (x ^∙ siHighestQuorumCert) (x ^∙ sixxxHighestCommitCert))
(λ x qc → record x { _sixxxHighestCommitCert = just qc })
-- getter only in Haskell
siHighestCertifiedRound : Lens SyncInfo Round
siHighestCertifiedRound = siHighestQuorumCert ∙ qcCertifiedBlock ∙ biRound
-- getter only in Haskell
siHighestTimeoutRound : Lens SyncInfo Round
siHighestTimeoutRound =
mkLens' (maybe 0 (_^∙ tcRound) ∘ (_^∙ siHighestTimeoutCert))
(λ x _r → x) -- TODO-1
-- getter only in Haskell
siHighestCommitRound : Lens SyncInfo Round
siHighestCommitRound = siHighestCommitCert ∙ qcCommitInfo ∙ biRound
-- getter only in Haskell
siHighestRound : Lens SyncInfo Round
siHighestRound =
mkLens' (λ x → (x ^∙ siHighestCertifiedRound) ⊔ (x ^∙ siHighestTimeoutRound))
(λ x _r → x) -- TODO-1
-- getter only in Haskell
siEpoch : Lens SyncInfo Epoch
siEpoch = siHighestQuorumCert ∙ qcCertifiedBlock ∙ biEpoch
-- getter only in Haskell
siObmRound : Lens SyncInfo Round
siObmRound = siHighestQuorumCert ∙ qcCertifiedBlock ∙ biRound
-- ------------------------------------------------------------------------------
record ProposalMsg : Set where
constructor ProposalMsg∙new
field
_pmProposal : Block
_pmSyncInfo : SyncInfo
open ProposalMsg public
unquoteDecl pmProposal pmSyncInfo = mkLens (quote ProposalMsg)
(pmProposal ∷ pmSyncInfo ∷ [])
postulate instance enc-ProposalMsg : Encoder ProposalMsg
-- getter only in Haskell
pmEpoch : Lens ProposalMsg Epoch
pmEpoch = pmProposal ∙ bEpoch
-- getter only in Haskell
pmRound : Lens ProposalMsg Round
pmRound = pmProposal ∙ bRound
-- getter only in Haskell
pmProposer : Lens ProposalMsg (Maybe Author)
pmProposer = pmProposal ∙ bAuthor
-- ------------------------------------------------------------------------------
record VoteMsg : Set where
constructor VoteMsg∙new
field
_vmVote : Vote
_vmSyncInfo : SyncInfo
open VoteMsg public
unquoteDecl vmVote vmSyncInfo = mkLens (quote VoteMsg)
(vmVote ∷ vmSyncInfo ∷ [])
postulate instance enc-VoteMsg : Encoder VoteMsg
-- not defined in Haskell
vmProposed : Lens VoteMsg BlockInfo
vmProposed = vmVote ∙ vVoteData ∙ vdProposed
-- not defined in Haskell
vmParent : Lens VoteMsg BlockInfo
vmParent = vmVote ∙ vVoteData ∙ vdParent
-- getter-only in Haskell
vmEpoch : Lens VoteMsg Epoch
vmEpoch = vmVote ∙ vEpoch
-- getter-only in Haskell
vmRound : Lens VoteMsg Round
vmRound = vmVote ∙ vRound
-- ------------------------------------------------------------------------------
-- This is a notification of a commit. It may not be explicitly included in an implementation,
-- but we need something to be able to express correctness conditions. It will
-- probably have something different in it, but will serve the purpose for now.
record CommitMsg : Set where
constructor CommitMsg∙new
field
_cmEpoch : Epoch
_cmAuthor : NodeId
_cmRound : Round
_cmCert : QuorumCert -- We assume for now that a CommitMsg contains the QuorumCert of the head of the 3-chain
_cmSigMB : Maybe Signature
open CommitMsg public
unquoteDecl cmEpoch cmAuthor cmRound cmCert cmSigMB = mkLens (quote CommitMsg)
(cmEpoch ∷ cmAuthor ∷ cmRound ∷ cmCert ∷ cmSigMB ∷ [])
postulate instance enc-CommitMsg : Encoder CommitMsg
-- ------------------------------------------------------------------------------
data RootMetadata : Set where RootMetadata∙new : RootMetadata
-- ------------------------------------------------------------------------------
record RecoveryData : Set where
constructor mkRecoveryData
field
_rdLastVote : Maybe Vote
_rdRoot : RootInfo
_rdRootMetadata : RootMetadata
_rdBlocks : List Block
_rdQuorumCerts : List QuorumCert
_rdBlocksToPrune : Maybe (List HashValue)
_rdHighestTimeoutCertificate : Maybe TimeoutCertificate
open RecoveryData public
unquoteDecl rdLastVote rdRoot rdRootMetadata rdBlocks
rdQuorumCerts rdBlocksToPrune rdHighestTimeoutCertificate = mkLens (quote RecoveryData)
(rdLastVote ∷ rdRoot ∷ rdRootMetadata ∷ rdBlocks ∷
rdQuorumCerts ∷ rdBlocksToPrune ∷ rdHighestTimeoutCertificate ∷ [])
------------------------------------------------------------------------------
record EpochChangeProof : Set where
constructor EpochChangeProof∙new
field
_ecpLedgerInfoWithSigs : List LedgerInfoWithSignatures
_ecpMore : Bool
open EpochChangeProof public
unquoteDecl ecpLedgerInfoWithSigs ecpMore = mkLens (quote EpochChangeProof)
(ecpLedgerInfoWithSigs ∷ ecpMore ∷ [])
-- instance S.Serialize EpochChangeProof
record Ledger2WaypointConverter : Set where
constructor mkLedger2WaypointConverter
field
_l2wcEpoch : Epoch
_l2wcRootHash : HashValue
_l2wcVersion : Version
--_l2wcTimestamp : Instant
_l2wcNextEpochState : Maybe EpochState
open Ledger2WaypointConverter public
unquoteDecl l2wcEpoch 2wcRootHash 2wcVersion
{-l2wcTimestamp-} l2wcNextEpochState = mkLens (quote Ledger2WaypointConverter)
(l2wcEpoch ∷ 2wcRootHash ∷ 2wcVersion ∷
{-l2wcTimestamp-} l2wcNextEpochState ∷ [])
record EpochRetrievalRequest : Set where
constructor EpochRetrievalRequest∙new
field
_eprrqStartEpoch : Epoch
_eprrqEndEpoch : Epoch
unquoteDecl eprrqStartEpoch eprrqEndEpoch = mkLens (quote EpochRetrievalRequest)
(eprrqStartEpoch ∷ eprrqEndEpoch ∷ [])
-- instance S.Serialize EpochRetrievalRequest
------------------------------------------------------------------------------
record ConsensusState : Set where
constructor ConsensusState∙new
field
_csSafetyData : SafetyData
_csWaypoint : Waypoint
--_csInValidatorSet : Bool -- LBFT-OBM-DIFF: only used in tests in Rust
open ConsensusState public
unquoteDecl csSafetyData csWaypoint {-csInValidatorSet-} = mkLens (quote ConsensusState)
(csSafetyData ∷ csWaypoint {-∷ csInValidatorSet-} ∷ [])
------------------------------------------------------------------------------
data SafetyRulesWrapper : Set where
SRWLocal : SafetyRules → SafetyRulesWrapper
record SafetyRulesManager : Set where
constructor mkSafetyRulesManager
field
_srmInternalSafetyRules : SafetyRulesWrapper
open SafetyRulesWrapper public
unquoteDecl srmInternalSafetyRules = mkLens (quote SafetyRulesManager)
(srmInternalSafetyRules ∷ [])
data SafetyRulesService : Set where
SRSLocal : SafetyRulesService
record SafetyRulesConfig : Set where
constructor SafetyRulesConfig∙new
field
_srcService : SafetyRulesService
_srcExportConsensusKey : Bool
_srcObmGenesisWaypoint : Waypoint
open SafetyRulesConfig public
unquoteDecl srcService srcExportConsensusKey srcObmGenesisWaypoint = mkLens (quote SafetyRulesConfig)
(srcService ∷ srcExportConsensusKey ∷ srcObmGenesisWaypoint ∷ [])
record ConsensusConfig : Set where
constructor ConsensusConfig∙new
field
_ccMaxPrunedBlocksInMem : Usize
_ccRoundInitialTimeoutMS : U64
_ccSafetyRules : SafetyRulesConfig
_ccSyncOnly : Bool
open ConsensusConfig public
unquoteDecl ccMaxPrunedBlocksInMem ccRoundInitialTimeoutMS ccSafetyRules ccSyncOnly = mkLens (quote ConsensusConfig)
(ccMaxPrunedBlocksInMem ∷ ccRoundInitialTimeoutMS ∷ ccSafetyRules ∷ ccSyncOnly ∷ [])
record NodeConfig : Set where
constructor NodeConfig∙new
field
_ncObmMe : AuthorName
_ncConsensus : ConsensusConfig
open NodeConfig public
unquoteDecl ncObmMe ncConsensus = mkLens (quote NodeConfig)
(ncObmMe ∷ ncConsensus ∷ [])
record RecoveryManager : Set where
constructor RecoveryManager∙new
field
_rcmEpochState : EpochState
_rcmStorage : PersistentLivenessStorage
--_rcmStateComputer : StateComputer
_rcmLastCommittedRound : Round
open RecoveryManager public
unquoteDecl rcmEpochState rcmStorage {- rcmStateComputer-} rcmLastCommittedRound = mkLens (quote RecoveryManager)
(rcmEpochState ∷ rcmStorage {-∷ rcmStateComputer-} ∷ rcmLastCommittedRound ∷ [])
-- RoundProcessor in EpochManagerTypes (because it depends on RoundManager)
-- EpochManager in EpochManagerTypes (because it depends on RoundProcessor)
-- ------------------------------------------------------------------------------
data VoteReceptionResult : Set where
QCVoteAdded : U64 → VoteReceptionResult
TCVoteAdded : U64 → VoteReceptionResult
DuplicateVote : VoteReceptionResult
EquivocateVote : VoteReceptionResult
NewQuorumCertificate : QuorumCert → VoteReceptionResult
NewTimeoutCertificate : TimeoutCertificate → VoteReceptionResult
UnexpectedRound : Round → Round → VoteReceptionResult
VRR_TODO : VoteReceptionResult
-- ------------------------------------------------------------------------------
-- LibraBFT.ImplShared.Interface.Output contains
-- Output
-- ------------------------------------------------------------------------------
data VerifyError : Set where
UnknownAuthor : AuthorName → VerifyError
TooLittleVotingPower : U64 → U64 → VerifyError
TooManySignatures : Usize → Usize → VerifyError
InvalidSignature : VerifyError
| 37.184892
| 124
| 0.647436
|
22d3c1804af3a060be5bfa4dbefbbdd9e3377708
| 317
|
agda
|
Agda
|
Logic.agda
|
cantsin/agda-experiments
|
382fcfae193079783621fc5cf54b6588e22ef759
|
[
"Apache-2.0"
] | null | null | null |
Logic.agda
|
cantsin/agda-experiments
|
382fcfae193079783621fc5cf54b6588e22ef759
|
[
"Apache-2.0"
] | null | null | null |
Logic.agda
|
cantsin/agda-experiments
|
382fcfae193079783621fc5cf54b6588e22ef759
|
[
"Apache-2.0"
] | null | null | null |
import Either
open import Boolean
module Logic where
id : ∀ { A : Set } → A → A
id x = x
Rel : Set → Set₁
Rel X = X → X → Set
Decidable : ∀ { X } → Rel X → Set
Decidable R = ∀ x y → Either (R x y) (¬ (R x y))
where open Either
modusPonens : { P Q : Set } → ( P → Q ) → P → Q
modusPonens = id
| 17.611111
| 50
| 0.520505
|
225dbb459b94ef3d75bba5d9386fb6a4c5d462ad
| 18,849
|
agda
|
Agda
|
agda-stdlib-0.9/src/Data/Fin/Substitution/Lemmas.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | 1
|
2016-10-20T15:52:05.000Z
|
2016-10-20T15:52:05.000Z
|
agda-stdlib-0.9/src/Data/Fin/Substitution/Lemmas.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | null | null | null |
agda-stdlib-0.9/src/Data/Fin/Substitution/Lemmas.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Substitution lemmas
------------------------------------------------------------------------
module Data.Fin.Substitution.Lemmas where
import Category.Applicative.Indexed as Applicative
open import Data.Fin.Substitution
open import Data.Nat
open import Data.Fin using (Fin; zero; suc; lift)
open import Data.Vec
import Data.Vec.Properties as VecProp
open import Function as Fun using (_∘_; _$_)
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; refl; sym; cong; cong₂)
open PropEq.≡-Reasoning
open import Data.Star using (Star; ε; _◅_; _▻_)
-- A lemma which does not refer to any substitutions.
lift-commutes : ∀ {n} k j (x : Fin (j + (k + n))) →
lift j suc (lift j (lift k suc) x) ≡
lift j (lift (suc k) suc) (lift j suc x)
lift-commutes k zero x = refl
lift-commutes k (suc j) zero = refl
lift-commutes k (suc j) (suc x) = cong suc (lift-commutes k j x)
-- The modules below prove a number of substitution lemmas, on the
-- assumption that the underlying substitution machinery satisfies
-- certain properties.
record Lemmas₀ (T : ℕ → Set) : Set where
field simple : Simple T
open Simple simple
extensionality : ∀ {m n} {ρ₁ ρ₂ : Sub T m n} →
(∀ x → lookup x ρ₁ ≡ lookup x ρ₂) → ρ₁ ≡ ρ₂
extensionality {ρ₁ = []} {[]} hyp = refl
extensionality {ρ₁ = t₁ ∷ ρ₁} { t₂ ∷ ρ₂} hyp with hyp zero
extensionality {ρ₁ = t₁ ∷ ρ₁} {.t₁ ∷ ρ₂} hyp | refl =
cong (_∷_ t₁) (extensionality (hyp ∘ suc))
id-↑⋆ : ∀ {n} k → id ↑⋆ k ≡ id {k + n}
id-↑⋆ zero = refl
id-↑⋆ (suc k) = begin
(id ↑⋆ k) ↑ ≡⟨ cong _↑ (id-↑⋆ k) ⟩
id ↑ ∎
lookup-map-weaken-↑⋆ : ∀ {m n} k x {ρ : Sub T m n} →
lookup x (map weaken ρ ↑⋆ k) ≡
lookup (lift k suc x) ((ρ ↑) ↑⋆ k)
lookup-map-weaken-↑⋆ zero x = refl
lookup-map-weaken-↑⋆ (suc k) zero = refl
lookup-map-weaken-↑⋆ (suc k) (suc x) {ρ} = begin
lookup x (map weaken (map weaken ρ ↑⋆ k)) ≡⟨ Applicative.Morphism.op-<$> (VecProp.lookup-morphism x) weaken _ ⟩
weaken (lookup x (map weaken ρ ↑⋆ k)) ≡⟨ cong weaken (lookup-map-weaken-↑⋆ k x) ⟩
weaken (lookup (lift k suc x) ((ρ ↑) ↑⋆ k)) ≡⟨ sym $
Applicative.Morphism.op-<$> (VecProp.lookup-morphism (lift k suc x)) weaken _ ⟩
lookup (lift k suc x) (map weaken ((ρ ↑) ↑⋆ k)) ∎
record Lemmas₁ (T : ℕ → Set) : Set where
field lemmas₀ : Lemmas₀ T
open Lemmas₀ lemmas₀
open Simple simple
field weaken-var : ∀ {n} {x : Fin n} → weaken (var x) ≡ var (suc x)
lookup-map-weaken : ∀ {m n} x {y} {ρ : Sub T m n} →
lookup x ρ ≡ var y →
lookup x (map weaken ρ) ≡ var (suc y)
lookup-map-weaken x {y} {ρ} hyp = begin
lookup x (map weaken ρ) ≡⟨ Applicative.Morphism.op-<$> (VecProp.lookup-morphism x) weaken ρ ⟩
weaken (lookup x ρ) ≡⟨ cong weaken hyp ⟩
weaken (var y) ≡⟨ weaken-var ⟩
var (suc y) ∎
mutual
lookup-id : ∀ {n} (x : Fin n) → lookup x id ≡ var x
lookup-id zero = refl
lookup-id (suc x) = lookup-wk x
lookup-wk : ∀ {n} (x : Fin n) → lookup x wk ≡ var (suc x)
lookup-wk x = lookup-map-weaken x (lookup-id x)
lookup-↑⋆ : ∀ {m n} (f : Fin m → Fin n) {ρ : Sub T m n} →
(∀ x → lookup x ρ ≡ var (f x)) →
∀ k x → lookup x (ρ ↑⋆ k) ≡ var (lift k f x)
lookup-↑⋆ f hyp zero x = hyp x
lookup-↑⋆ f hyp (suc k) zero = refl
lookup-↑⋆ f hyp (suc k) (suc x) =
lookup-map-weaken x (lookup-↑⋆ f hyp k x)
lookup-lift-↑⋆ : ∀ {m n} (f : Fin n → Fin m) {ρ : Sub T m n} →
(∀ x → lookup (f x) ρ ≡ var x) →
∀ k x → lookup (lift k f x) (ρ ↑⋆ k) ≡ var x
lookup-lift-↑⋆ f hyp zero x = hyp x
lookup-lift-↑⋆ f hyp (suc k) zero = refl
lookup-lift-↑⋆ f hyp (suc k) (suc x) =
lookup-map-weaken (lift k f x) (lookup-lift-↑⋆ f hyp k x)
lookup-wk-↑⋆ : ∀ {n} k (x : Fin (k + n)) →
lookup x (wk ↑⋆ k) ≡ var (lift k suc x)
lookup-wk-↑⋆ = lookup-↑⋆ suc lookup-wk
lookup-wk-↑⋆-↑⋆ : ∀ {n} k j (x : Fin (j + (k + n))) →
lookup x (wk ↑⋆ k ↑⋆ j) ≡
var (lift j (lift k suc) x)
lookup-wk-↑⋆-↑⋆ k = lookup-↑⋆ (lift k suc) (lookup-wk-↑⋆ k)
lookup-sub-↑⋆ : ∀ {n t} k (x : Fin (k + n)) →
lookup (lift k suc x) (sub t ↑⋆ k) ≡ var x
lookup-sub-↑⋆ = lookup-lift-↑⋆ suc lookup-id
open Lemmas₀ lemmas₀ public
record Lemmas₂ (T : ℕ → Set) : Set where
field
lemmas₁ : Lemmas₁ T
application : Application T T
open Lemmas₁ lemmas₁
subst : Subst T
subst = record { simple = simple; application = application }
open Subst subst
field var-/ : ∀ {m n x} {ρ : Sub T m n} → var x / ρ ≡ lookup x ρ
suc-/-sub : ∀ {n x} {t : T n} → var (suc x) / sub t ≡ var x
suc-/-sub {x = x} {t} = begin
var (suc x) / sub t ≡⟨ var-/ ⟩
lookup (suc x) (sub t) ≡⟨ refl ⟩
lookup x id ≡⟨ lookup-id x ⟩
var x ∎
lookup-⊙ : ∀ {m n k} x {ρ₁ : Sub T m n} {ρ₂ : Sub T n k} →
lookup x (ρ₁ ⊙ ρ₂) ≡ lookup x ρ₁ / ρ₂
lookup-⊙ x = Applicative.Morphism.op-<$> (VecProp.lookup-morphism x) _ _
lookup-⨀ : ∀ {m n} x (ρs : Subs T m n) →
lookup x (⨀ ρs) ≡ var x /✶ ρs
lookup-⨀ x ε = lookup-id x
lookup-⨀ x (ρ ◅ ε) = sym var-/
lookup-⨀ x (ρ ◅ (ρ′ ◅ ρs′)) = begin
lookup x (⨀ (ρ ◅ ρs)) ≡⟨ refl ⟩
lookup x (⨀ ρs ⊙ ρ) ≡⟨ lookup-⊙ x ⟩
lookup x (⨀ ρs) / ρ ≡⟨ cong₂ _/_ (lookup-⨀ x (ρ′ ◅ ρs′)) refl ⟩
var x /✶ ρs / ρ ∎
where ρs = ρ′ ◅ ρs′
id-⊙ : ∀ {m n} {ρ : Sub T m n} → id ⊙ ρ ≡ ρ
id-⊙ {ρ = ρ} = extensionality λ x → begin
lookup x (id ⊙ ρ) ≡⟨ lookup-⊙ x ⟩
lookup x id / ρ ≡⟨ cong₂ _/_ (lookup-id x) refl ⟩
var x / ρ ≡⟨ var-/ ⟩
lookup x ρ ∎
lookup-wk-↑⋆-⊙ : ∀ {m n} k {x} {ρ : Sub T (k + suc m) n} →
lookup x (wk ↑⋆ k ⊙ ρ) ≡ lookup (lift k suc x) ρ
lookup-wk-↑⋆-⊙ k {x} {ρ} = begin
lookup x (wk ↑⋆ k ⊙ ρ) ≡⟨ lookup-⊙ x ⟩
lookup x (wk ↑⋆ k) / ρ ≡⟨ cong₂ _/_ (lookup-wk-↑⋆ k x) refl ⟩
var (lift k suc x) / ρ ≡⟨ var-/ ⟩
lookup (lift k suc x) ρ ∎
wk-⊙-sub′ : ∀ {n} {t : T n} k → wk ↑⋆ k ⊙ sub t ↑⋆ k ≡ id
wk-⊙-sub′ {t = t} k = extensionality λ x → begin
lookup x (wk ↑⋆ k ⊙ sub t ↑⋆ k) ≡⟨ lookup-wk-↑⋆-⊙ k ⟩
lookup (lift k suc x) (sub t ↑⋆ k) ≡⟨ lookup-sub-↑⋆ k x ⟩
var x ≡⟨ sym (lookup-id x) ⟩
lookup x id ∎
wk-⊙-sub : ∀ {n} {t : T n} → wk ⊙ sub t ≡ id
wk-⊙-sub = wk-⊙-sub′ zero
var-/-wk-↑⋆ : ∀ {n} k (x : Fin (k + n)) →
var x / wk ↑⋆ k ≡ var (lift k suc x)
var-/-wk-↑⋆ k x = begin
var x / wk ↑⋆ k ≡⟨ var-/ ⟩
lookup x (wk ↑⋆ k) ≡⟨ lookup-wk-↑⋆ k x ⟩
var (lift k suc x) ∎
wk-↑⋆-⊙-wk : ∀ {n} k j →
wk {n} ↑⋆ k ↑⋆ j ⊙ wk ↑⋆ j ≡
wk ↑⋆ j ⊙ wk ↑⋆ suc k ↑⋆ j
wk-↑⋆-⊙-wk k j = extensionality λ x → begin
lookup x (wk ↑⋆ k ↑⋆ j ⊙ wk ↑⋆ j) ≡⟨ lookup-⊙ x ⟩
lookup x (wk ↑⋆ k ↑⋆ j) / wk ↑⋆ j ≡⟨ cong₂ _/_ (lookup-wk-↑⋆-↑⋆ k j x) refl ⟩
var (lift j (lift k suc) x) / wk ↑⋆ j ≡⟨ var-/-wk-↑⋆ j (lift j (lift k suc) x) ⟩
var (lift j suc (lift j (lift k suc) x)) ≡⟨ cong var (lift-commutes k j x) ⟩
var (lift j (lift (suc k) suc) (lift j suc x)) ≡⟨ sym (lookup-wk-↑⋆-↑⋆ (suc k) j (lift j suc x)) ⟩
lookup (lift j suc x) (wk ↑⋆ suc k ↑⋆ j) ≡⟨ sym var-/ ⟩
var (lift j suc x) / wk ↑⋆ suc k ↑⋆ j ≡⟨ cong₂ _/_ (sym (lookup-wk-↑⋆ j x)) refl ⟩
lookup x (wk ↑⋆ j) / wk ↑⋆ suc k ↑⋆ j ≡⟨ sym (lookup-⊙ x) ⟩
lookup x (wk ↑⋆ j ⊙ wk ↑⋆ suc k ↑⋆ j) ∎
open Subst subst public hiding (simple; application)
open Lemmas₁ lemmas₁ public
record Lemmas₃ (T : ℕ → Set) : Set where
field lemmas₂ : Lemmas₂ T
open Lemmas₂ lemmas₂
field
/✶-↑✶ : ∀ {m n} (ρs₁ ρs₂ : Subs T m n) →
(∀ k x → var x /✶ ρs₁ ↑✶ k ≡ var x /✶ ρs₂ ↑✶ k) →
∀ k t → t /✶ ρs₁ ↑✶ k ≡ t /✶ ρs₂ ↑✶ k
/✶-↑✶′ : ∀ {m n} (ρs₁ ρs₂ : Subs T m n) →
(∀ k → ⨀ (ρs₁ ↑✶ k) ≡ ⨀ (ρs₂ ↑✶ k)) →
∀ k t → t /✶ ρs₁ ↑✶ k ≡ t /✶ ρs₂ ↑✶ k
/✶-↑✶′ ρs₁ ρs₂ hyp = /✶-↑✶ ρs₁ ρs₂ (λ k x → begin
var x /✶ ρs₁ ↑✶ k ≡⟨ sym (lookup-⨀ x (ρs₁ ↑✶ k)) ⟩
lookup x (⨀ (ρs₁ ↑✶ k)) ≡⟨ cong (lookup x) (hyp k) ⟩
lookup x (⨀ (ρs₂ ↑✶ k)) ≡⟨ lookup-⨀ x (ρs₂ ↑✶ k) ⟩
var x /✶ ρs₂ ↑✶ k ∎)
id-vanishes : ∀ {n} (t : T n) → t / id ≡ t
id-vanishes = /✶-↑✶′ (ε ▻ id) ε id-↑⋆ zero
⊙-id : ∀ {m n} {ρ : Sub T m n} → ρ ⊙ id ≡ ρ
⊙-id {ρ = ρ} = begin
map (λ t → t / id) ρ ≡⟨ VecProp.map-cong id-vanishes ρ ⟩
map Fun.id ρ ≡⟨ VecProp.map-id ρ ⟩
ρ ∎
open Lemmas₂ lemmas₂ public hiding (wk-⊙-sub′)
record Lemmas₄ (T : ℕ → Set) : Set where
field lemmas₃ : Lemmas₃ T
open Lemmas₃ lemmas₃
field /-wk : ∀ {n} {t : T n} → t / wk ≡ weaken t
private
↑-distrib′ : ∀ {m n k} {ρ₁ : Sub T m n} {ρ₂ : Sub T n k} →
(∀ t → t / ρ₂ / wk ≡ t / wk / ρ₂ ↑) →
(ρ₁ ⊙ ρ₂) ↑ ≡ ρ₁ ↑ ⊙ ρ₂ ↑
↑-distrib′ {ρ₁ = ρ₁} {ρ₂} hyp = begin
(ρ₁ ⊙ ρ₂) ↑ ≡⟨ refl ⟩
var zero ∷ map weaken (ρ₁ ⊙ ρ₂) ≡⟨ cong₂ _∷_ (sym var-/) lemma ⟩
var zero / ρ₂ ↑ ∷ map weaken ρ₁ ⊙ ρ₂ ↑ ≡⟨ refl ⟩
ρ₁ ↑ ⊙ ρ₂ ↑ ∎
where
lemma = begin
map weaken (map (λ t → t / ρ₂) ρ₁) ≡⟨ sym (VecProp.map-∘ _ _ _) ⟩
map (λ t → weaken (t / ρ₂)) ρ₁ ≡⟨ VecProp.map-cong (λ t → begin
weaken (t / ρ₂) ≡⟨ sym /-wk ⟩
t / ρ₂ / wk ≡⟨ hyp t ⟩
t / wk / ρ₂ ↑ ≡⟨ cong₂ _/_ /-wk refl ⟩
weaken t / ρ₂ ↑ ∎) ρ₁ ⟩
map (λ t → weaken t / ρ₂ ↑) ρ₁ ≡⟨ VecProp.map-∘ _ _ _ ⟩
map (λ t → t / ρ₂ ↑) (map weaken ρ₁) ∎
↑⋆-distrib′ : ∀ {m n o} {ρ₁ : Sub T m n} {ρ₂ : Sub T n o} →
(∀ k t → t / ρ₂ ↑⋆ k / wk ≡ t / wk / ρ₂ ↑⋆ suc k) →
∀ k → (ρ₁ ⊙ ρ₂) ↑⋆ k ≡ ρ₁ ↑⋆ k ⊙ ρ₂ ↑⋆ k
↑⋆-distrib′ hyp zero = refl
↑⋆-distrib′ {ρ₁ = ρ₁} {ρ₂} hyp (suc k) = begin
(ρ₁ ⊙ ρ₂) ↑⋆ suc k ≡⟨ cong _↑ (↑⋆-distrib′ hyp k) ⟩
(ρ₁ ↑⋆ k ⊙ ρ₂ ↑⋆ k) ↑ ≡⟨ ↑-distrib′ (hyp k) ⟩
ρ₁ ↑⋆ suc k ⊙ ρ₂ ↑⋆ suc k ∎
map-weaken : ∀ {m n} {ρ : Sub T m n} → map weaken ρ ≡ ρ ⊙ wk
map-weaken {ρ = ρ} = begin
map weaken ρ ≡⟨ VecProp.map-cong (λ _ → sym /-wk) ρ ⟩
map (λ t → t / wk) ρ ≡⟨ refl ⟩
ρ ⊙ wk ∎
private
⊙-wk′ : ∀ {m n} {ρ : Sub T m n} k →
ρ ↑⋆ k ⊙ wk ↑⋆ k ≡ wk ↑⋆ k ⊙ ρ ↑ ↑⋆ k
⊙-wk′ {ρ = ρ} k = sym (begin
wk ↑⋆ k ⊙ ρ ↑ ↑⋆ k ≡⟨ lemma ⟩
map weaken ρ ↑⋆ k ≡⟨ cong (λ ρ′ → ρ′ ↑⋆ k) map-weaken ⟩
(ρ ⊙ wk) ↑⋆ k ≡⟨ ↑⋆-distrib′ (λ k t →
/✶-↑✶′ (ε ▻ wk ↑⋆ k ▻ wk) (ε ▻ wk ▻ wk ↑⋆ suc k)
(wk-↑⋆-⊙-wk k) zero t) k ⟩
ρ ↑⋆ k ⊙ wk ↑⋆ k ∎)
where
lemma = extensionality λ x → begin
lookup x (wk ↑⋆ k ⊙ ρ ↑ ↑⋆ k) ≡⟨ lookup-wk-↑⋆-⊙ k ⟩
lookup (lift k suc x) (ρ ↑ ↑⋆ k) ≡⟨ sym (lookup-map-weaken-↑⋆ k x) ⟩
lookup x (map weaken ρ ↑⋆ k) ∎
⊙-wk : ∀ {m n} {ρ : Sub T m n} → ρ ⊙ wk ≡ wk ⊙ ρ ↑
⊙-wk = ⊙-wk′ zero
wk-commutes : ∀ {m n} {ρ : Sub T m n} t →
t / ρ / wk ≡ t / wk / ρ ↑
wk-commutes {ρ = ρ} = /✶-↑✶′ (ε ▻ ρ ▻ wk) (ε ▻ wk ▻ ρ ↑) ⊙-wk′ zero
↑⋆-distrib : ∀ {m n o} {ρ₁ : Sub T m n} {ρ₂ : Sub T n o} →
∀ k → (ρ₁ ⊙ ρ₂) ↑⋆ k ≡ ρ₁ ↑⋆ k ⊙ ρ₂ ↑⋆ k
↑⋆-distrib = ↑⋆-distrib′ (λ _ → wk-commutes)
/-⊙ : ∀ {m n k} {ρ₁ : Sub T m n} {ρ₂ : Sub T n k} t →
t / ρ₁ ⊙ ρ₂ ≡ t / ρ₁ / ρ₂
/-⊙ {ρ₁ = ρ₁} {ρ₂} t =
/✶-↑✶′ (ε ▻ ρ₁ ⊙ ρ₂) (ε ▻ ρ₁ ▻ ρ₂) ↑⋆-distrib zero t
⊙-assoc : ∀ {m n k o}
{ρ₁ : Sub T m n} {ρ₂ : Sub T n k} {ρ₃ : Sub T k o} →
ρ₁ ⊙ (ρ₂ ⊙ ρ₃) ≡ (ρ₁ ⊙ ρ₂) ⊙ ρ₃
⊙-assoc {ρ₁ = ρ₁} {ρ₂} {ρ₃} = begin
map (λ t → t / ρ₂ ⊙ ρ₃) ρ₁ ≡⟨ VecProp.map-cong /-⊙ ρ₁ ⟩
map (λ t → t / ρ₂ / ρ₃) ρ₁ ≡⟨ VecProp.map-∘ _ _ _ ⟩
map (λ t → t / ρ₃) (map (λ t → t / ρ₂) ρ₁) ∎
map-weaken-⊙-sub : ∀ {m n} {ρ : Sub T m n} {t} → map weaken ρ ⊙ sub t ≡ ρ
map-weaken-⊙-sub {ρ = ρ} {t} = begin
map weaken ρ ⊙ sub t ≡⟨ cong₂ _⊙_ map-weaken refl ⟩
ρ ⊙ wk ⊙ sub t ≡⟨ sym ⊙-assoc ⟩
ρ ⊙ (wk ⊙ sub t) ≡⟨ cong (_⊙_ ρ) wk-⊙-sub ⟩
ρ ⊙ id ≡⟨ ⊙-id ⟩
ρ ∎
sub-⊙ : ∀ {m n} {ρ : Sub T m n} t → sub t ⊙ ρ ≡ ρ ↑ ⊙ sub (t / ρ)
sub-⊙ {ρ = ρ} t = begin
sub t ⊙ ρ ≡⟨ refl ⟩
t / ρ ∷ id ⊙ ρ ≡⟨ cong (_∷_ (t / ρ)) id-⊙ ⟩
t / ρ ∷ ρ ≡⟨ cong (_∷_ (t / ρ)) (sym map-weaken-⊙-sub) ⟩
t / ρ ∷ map weaken ρ ⊙ sub (t / ρ) ≡⟨ cong₂ _∷_ (sym var-/) refl ⟩
ρ ↑ ⊙ sub (t / ρ) ∎
suc-/-↑ : ∀ {m n} {ρ : Sub T m n} x →
var (suc x) / ρ ↑ ≡ var x / ρ / wk
suc-/-↑ {ρ = ρ} x = begin
var (suc x) / ρ ↑ ≡⟨ var-/ ⟩
lookup x (map weaken ρ) ≡⟨ cong (lookup x) map-weaken ⟩
lookup x (ρ ⊙ wk) ≡⟨ lookup-⊙ x ⟩
lookup x ρ / wk ≡⟨ cong₂ _/_ (sym var-/) refl ⟩
var x / ρ / wk ∎
open Lemmas₃ lemmas₃ public
hiding (/✶-↑✶; /✶-↑✶′; wk-↑⋆-⊙-wk;
lookup-wk-↑⋆-⊙; lookup-map-weaken-↑⋆)
-- For an example of how AppLemmas can be used, see
-- Data.Fin.Substitution.List.
record AppLemmas (T₁ T₂ : ℕ → Set) : Set where
field
application : Application T₁ T₂
lemmas₄ : Lemmas₄ T₂
open Application application using (_/_; _/✶_)
open Lemmas₄ lemmas₄
using (id; _⊙_; wk; weaken; sub; _↑; ⨀) renaming (_/_ to _⊘_)
field
id-vanishes : ∀ {n} (t : T₁ n) → t / id ≡ t
/-⊙ : ∀ {m n k} {ρ₁ : Sub T₂ m n} {ρ₂ : Sub T₂ n k} t →
t / ρ₁ ⊙ ρ₂ ≡ t / ρ₁ / ρ₂
private module L₄ = Lemmas₄ lemmas₄
/-⨀ : ∀ {m n} t (ρs : Subs T₂ m n) → t / ⨀ ρs ≡ t /✶ ρs
/-⨀ t ε = id-vanishes t
/-⨀ t (ρ ◅ ε) = refl
/-⨀ t (ρ ◅ (ρ′ ◅ ρs′)) = begin
t / ⨀ ρs ⊙ ρ ≡⟨ /-⊙ t ⟩
t / ⨀ ρs / ρ ≡⟨ cong₂ _/_ (/-⨀ t (ρ′ ◅ ρs′)) refl ⟩
t /✶ ρs / ρ ∎
where ρs = ρ′ ◅ ρs′
⨀→/✶ : ∀ {m n} (ρs₁ ρs₂ : Subs T₂ m n) →
⨀ ρs₁ ≡ ⨀ ρs₂ → ∀ t → t /✶ ρs₁ ≡ t /✶ ρs₂
⨀→/✶ ρs₁ ρs₂ hyp t = begin
t /✶ ρs₁ ≡⟨ sym (/-⨀ t ρs₁) ⟩
t / ⨀ ρs₁ ≡⟨ cong (_/_ t) hyp ⟩
t / ⨀ ρs₂ ≡⟨ /-⨀ t ρs₂ ⟩
t /✶ ρs₂ ∎
wk-commutes : ∀ {m n} {ρ : Sub T₂ m n} t →
t / ρ / wk ≡ t / wk / ρ ↑
wk-commutes {ρ = ρ} = ⨀→/✶ (ε ▻ ρ ▻ wk) (ε ▻ wk ▻ ρ ↑) L₄.⊙-wk
sub-commutes : ∀ {m n} {t′} {ρ : Sub T₂ m n} t →
t / sub t′ / ρ ≡ t / ρ ↑ / sub (t′ ⊘ ρ)
sub-commutes {t′ = t′} {ρ} =
⨀→/✶ (ε ▻ sub t′ ▻ ρ) (ε ▻ ρ ↑ ▻ sub (t′ ⊘ ρ)) (L₄.sub-⊙ t′)
wk-sub-vanishes : ∀ {n t′} (t : T₁ n) → t / wk / sub t′ ≡ t
wk-sub-vanishes {t′ = t′} = ⨀→/✶ (ε ▻ wk ▻ sub t′) ε L₄.wk-⊙-sub
/-weaken : ∀ {m n} {ρ : Sub T₂ m n} t → t / map weaken ρ ≡ t / ρ / wk
/-weaken {ρ = ρ} = ⨀→/✶ (ε ▻ map weaken ρ) (ε ▻ ρ ▻ wk) L₄.map-weaken
open Application application public
open L₄ public
hiding (application; _⊙_; _/_; _/✶_;
id-vanishes; /-⊙; wk-commutes)
record Lemmas₅ (T : ℕ → Set) : Set where
field lemmas₄ : Lemmas₄ T
private module L₄ = Lemmas₄ lemmas₄
appLemmas : AppLemmas T T
appLemmas = record
{ application = L₄.application
; lemmas₄ = lemmas₄
; id-vanishes = L₄.id-vanishes
; /-⊙ = L₄./-⊙
}
open AppLemmas appLemmas public hiding (lemmas₄)
------------------------------------------------------------------------
-- Instantiations and code for facilitating instantiations
-- Lemmas about variable substitutions (renamings).
module VarLemmas where
open VarSubst
lemmas₃ : Lemmas₃ Fin
lemmas₃ = record
{ lemmas₂ = record
{ lemmas₁ = record
{ lemmas₀ = record
{ simple = simple
}
; weaken-var = refl
}
; application = application
; var-/ = refl
}
; /✶-↑✶ = λ _ _ hyp → hyp
}
private module L₃ = Lemmas₃ lemmas₃
lemmas₅ : Lemmas₅ Fin
lemmas₅ = record
{ lemmas₄ = record
{ lemmas₃ = lemmas₃
; /-wk = L₃.lookup-wk _
}
}
open Lemmas₅ lemmas₅ public hiding (lemmas₃)
-- Lemmas about "term" substitutions.
record TermLemmas (T : ℕ → Set) : Set₁ where
field
termSubst : TermSubst T
open TermSubst termSubst
field
app-var : ∀ {T′} {lift : Lift T′ T} {m n x} {ρ : Sub T′ m n} →
app lift (var x) ρ ≡ Lift.lift lift (lookup x ρ)
/✶-↑✶ : ∀ {T₁ T₂} {lift₁ : Lift T₁ T} {lift₂ : Lift T₂ T} →
let open Lifted lift₁
using () renaming (_↑✶_ to _↑✶₁_; _/✶_ to _/✶₁_)
open Lifted lift₂
using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂_)
in
∀ {m n} (ρs₁ : Subs T₁ m n) (ρs₂ : Subs T₂ m n) →
(∀ k x → var x /✶₁ ρs₁ ↑✶₁ k ≡ var x /✶₂ ρs₂ ↑✶₂ k) →
∀ k t → t /✶₁ ρs₁ ↑✶₁ k ≡ t /✶₂ ρs₂ ↑✶₂ k
private module V = VarLemmas
lemmas₃ : Lemmas₃ T
lemmas₃ = record
{ lemmas₂ = record
{ lemmas₁ = record
{ lemmas₀ = record
{ simple = simple
}
; weaken-var = λ {_ x} → begin
var x /Var V.wk ≡⟨ app-var ⟩
var (lookup x V.wk) ≡⟨ cong var (V.lookup-wk x) ⟩
var (suc x) ∎
}
; application = Subst.application subst
; var-/ = app-var
}
; /✶-↑✶ = /✶-↑✶
}
private module L₃ = Lemmas₃ lemmas₃
lemmas₅ : Lemmas₅ T
lemmas₅ = record
{ lemmas₄ = record
{ lemmas₃ = lemmas₃
; /-wk = λ {_ t} → begin
t / wk ≡⟨ /✶-↑✶ (ε ▻ wk) (ε ▻ V.wk)
(λ k x → begin
var x / wk ↑⋆ k ≡⟨ L₃.var-/-wk-↑⋆ k x ⟩
var (lift k suc x) ≡⟨ cong var (sym (V.var-/-wk-↑⋆ k x)) ⟩
var (lookup x (V._↑⋆_ V.wk k)) ≡⟨ sym app-var ⟩
var x /Var V._↑⋆_ V.wk k ∎)
zero t ⟩
t /Var V.wk ≡⟨ refl ⟩
weaken t ∎
}
}
open Lemmas₅ lemmas₅ public hiding (lemmas₃)
| 36.458414
| 137
| 0.435142
|
13673c0bc6b9373c21d5ec83857c0e2c6be4350d
| 844
|
agda
|
Agda
|
agda-stdlib-0.9/src/Relation/Binary/Properties/DecTotalOrder.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | 1
|
2016-10-20T15:52:05.000Z
|
2016-10-20T15:52:05.000Z
|
agda-stdlib-0.9/src/Relation/Binary/Properties/DecTotalOrder.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | null | null | null |
agda-stdlib-0.9/src/Relation/Binary/Properties/DecTotalOrder.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties satisfied by decidable total orders
------------------------------------------------------------------------
open import Relation.Binary
module Relation.Binary.Properties.DecTotalOrder
{d₁ d₂ d₃} (DT : DecTotalOrder d₁ d₂ d₃) where
open Relation.Binary.DecTotalOrder DT hiding (trans)
import Relation.Binary.NonStrictToStrict as Conv
open Conv _≈_ _≤_
strictTotalOrder : StrictTotalOrder _ _ _
strictTotalOrder = record
{ isStrictTotalOrder = record
{ isEquivalence = isEquivalence
; trans = trans isPartialOrder
; compare = trichotomous Eq.sym _≟_ antisym total
; <-resp-≈ = <-resp-≈ isEquivalence ≤-resp-≈
}
}
open StrictTotalOrder strictTotalOrder public
| 31.259259
| 72
| 0.588863
|
06c383fde79daed4a15055a4fa9c8dc0c9daef5d
| 4,953
|
agda
|
Agda
|
Categories/Functor/Construction/Inclusion.agda
|
elpinal/exsub-ccc
|
7541ab22debdfe9d529ac7a210e5bd102c788ad9
|
[
"Apache-2.0"
] | 3
|
2022-02-05T06:16:32.000Z
|
2022-02-05T13:30:48.000Z
|
Categories/Functor/Construction/Inclusion.agda
|
elpinal/exsub-ccc
|
7541ab22debdfe9d529ac7a210e5bd102c788ad9
|
[
"Apache-2.0"
] | null | null | null |
Categories/Functor/Construction/Inclusion.agda
|
elpinal/exsub-ccc
|
7541ab22debdfe9d529ac7a210e5bd102c788ad9
|
[
"Apache-2.0"
] | null | null | null |
open import Theory
module Categories.Functor.Construction.Inclusion {ℓ₁ ℓ₂ ℓ₃} (Th : Theory ℓ₁ ℓ₂ ℓ₃) where
open import Syntax
open Theory.Theory Th
open Signature Sg
open Term Sg
open import Categories.Category.Construction.Renaming Sg as Renaming using (Ren; ren; _≐_)
open import Categories.Category.Construction.Classifying Th using (Cl; CC)
open import Categories.Functor
open import Categories.Category
open import Categories.Morphism Cl using (_≅_; Iso)
open import Categories.Category.CartesianClosed Cl
open import Categories.Category.Cartesian Cl
open import Categories.Category.BinaryProducts Cl
open import Data.List using (List; []; _∷_; _++_)
import Relation.Binary.Reasoning.Setoid as Reasoning
module TermReasoning {Γ A} = Reasoning (TermSetoid {Γ} {A})
inclusion : Functor Ren Cl
inclusion = record
{ F₀ = F₀
; F₁ = F₁
; identity = C.Equiv.refl
; homomorphism = λ {Γ₁} {Γ₂} {Γ₃} {f} {g} -> homomorphism f g
; F-resp-≈ = F-resp-≈
}
where
module C = Category Cl
open CartesianClosed CC
open Cartesian cartesian
open BinaryProducts products
open import Categories.Morphism.Reasoning Cl
id⁂id : forall {A B} -> C.id ⁂ C.id C.≈ C.id {A = A * B}
id⁂id = trans (⟨⟩-cong₂ C.identityˡ C.identityˡ) η
F₀ : Context -> Type
F₀ [] = Unit
F₀ (A ∷ Γ) = F₀ Γ * A
F₀/*⇒++ : forall {Γ Δ} -> F₀ Γ * F₀ Δ C.⇒ F₀ (Δ ++ Γ)
F₀/*⇒++ {Γ} {[]} = fst var
F₀/*⇒++ {Γ} {A ∷ Δ} = (F₀/*⇒++ ⁂ C.id) C.∘ assocʳ
F₀/++⇒* : forall {Γ Δ} -> F₀ (Δ ++ Γ) C.⇒ F₀ Γ * F₀ Δ
F₀/++⇒* {Γ} {[]} = pair var unit
F₀/++⇒* {Γ} {A ∷ Δ} = assocˡ C.∘ (F₀/++⇒* ⁂ C.id)
F₀/*≅++ : forall {Γ Δ} -> F₀ Γ * F₀ Δ ≅ F₀ (Δ ++ Γ)
F₀/*≅++ = record
{ from = F₀/*⇒++
; to = F₀/++⇒*
; iso = record { isoˡ = isoˡ ; isoʳ = isoʳ }
}
where
isoˡ : forall {Γ Δ} -> F₀/++⇒* C.∘ F₀/*⇒++ C.≈ C.id {A = F₀ Γ * F₀ Δ}
isoˡ {Γ} {[]} =
begin
pair var unit [ ext ! (fst var) ]
≈⟨ trans comm/pair (cong/pair (var/ext _ _) (comm/unit _ _ _)) ⟩
pair (fst var) unit
≈⟨ cong/pair refl (eta/Unit _) ⟩
pair (fst var) (snd var)
≈⟨ eta/* _ ⟩
var
∎
where open TermReasoning
isoˡ {Γ} {A ∷ Δ} =
begin
(assocˡ C.∘ (F₀/++⇒* ⁂ var)) C.∘ ((F₀/*⇒++ ⁂ var) C.∘ assocʳ)
≈⟨ C.assoc ⟩
assocˡ C.∘ (F₀/++⇒* ⁂ var) C.∘ (F₀/*⇒++ ⁂ var) C.∘ assocʳ
≈⟨ C.∘-resp-≈ʳ (pullˡ ⁂∘⁂) ⟩
assocˡ C.∘ (F₀/++⇒* C.∘ F₀/*⇒++ ⁂ var C.∘ var) C.∘ assocʳ
≈⟨ C.∘-resp-≈ʳ (C.∘-resp-≈ˡ (⁂-cong₂ isoˡ C.identity²)) ⟩
assocˡ C.∘ (var ⁂ var) C.∘ assocʳ
≈⟨ elim-center id⁂id ⟩
assocˡ C.∘ assocʳ
≈⟨ assocˡ∘assocʳ ⟩
var
∎
where open TermReasoning
isoʳ : forall {Γ Δ} -> F₀/*⇒++ C.∘ F₀/++⇒* {Γ = Γ} C.≈ C.id {A = F₀ (Δ ++ Γ)}
isoʳ {Γ} {[]} = trans comm/fst (trans (cong/fst (var/ext _ _)) (beta/*₁ _ _))
isoʳ {Γ} {A ∷ Δ} =
begin
((F₀/*⇒++ ⁂ var) C.∘ assocʳ) C.∘ (assocˡ C.∘ (F₀/++⇒* ⁂ var))
≈⟨ cancelInner assocʳ∘assocˡ ⟩
(F₀/*⇒++ ⁂ var) C.∘ (F₀/++⇒* ⁂ var)
≈⟨ ⁂∘⁂ ⟩
F₀/*⇒++ C.∘ F₀/++⇒* ⁂ var C.∘ var
≈⟨ ⁂-cong₂ isoʳ C.identity² ⟩
var ⁂ var
≈⟨ id⁂id ⟩
var
∎
where open TermReasoning
F₁p : forall {Γ Δ} -> F₀ (Δ ++ Γ) ∷ [] ⊢ F₀ Γ
F₁p = fst var C.∘ F₀/++⇒*
F₁q : forall {Γ Δ} -> F₀ (Δ ++ Γ) ∷ [] ⊢ F₀ Δ
F₁q = snd var C.∘ F₀/++⇒*
F₁ : forall {Γ Δ : Context} -> ren Γ Δ -> F₀ Γ ∷ [] ⊢ F₀ Δ
F₁ Renaming.id = C.id
F₁ (r Renaming.∙ r₁) = F₁ r C.∘ F₁ r₁
F₁ Renaming.! = unit
F₁ Renaming.⟪ r , r₁ ⟫ = F₀/*⇒++ C.∘ pair (F₁ r) (F₁ r₁)
F₁ Renaming.p = F₁p
F₁ Renaming.q = F₁q
homomorphism : forall {Γ₁ Γ₂ Γ₃} (f : ren Γ₁ Γ₂) (g : ren Γ₂ Γ₃)
-> F₀ Γ₁ ∷ [] ⊢ F₁ g [ ext ! (F₁ f) ] ≡ F₁ g [ ext ! (F₁ f) ]
homomorphism f g = refl
F-resp-≈ : forall {Γ Δ} {f g : ren Γ Δ} -> f ≐ g -> F₀ Γ ∷ [] ⊢ F₁ f ≡ F₁ g
F-resp-≈ _≐_.refl = refl
F-resp-≈ (_≐_.sym x) = sym (F-resp-≈ x)
F-resp-≈ (_≐_.trans x x₁) = trans (F-resp-≈ x) (F-resp-≈ x₁)
F-resp-≈ _≐_.identityˡ = var/ext _ _
F-resp-≈ _≐_.identityʳ = trans (cong/sub (trans (cong/ext !-unique refl) η-pair) refl) sub/id
F-resp-≈ _≐_.assoc = C.assoc
F-resp-≈ _≐_.!-unique = eta/Unit _
F-resp-≈ _≐_.β₁/⟪⟫ = trans (cancelInner (Iso.isoˡ (_≅_.iso F₀/*≅++))) project₁
F-resp-≈ _≐_.β₂/⟪⟫ = trans (cancelInner (Iso.isoˡ (_≅_.iso F₀/*≅++))) project₂
F-resp-≈ _≐_.η/⟪⟫ = trans (C.∘-resp-≈ʳ (trans (⟨⟩-cong₂ C.assoc C.assoc) g-η)) (cancelˡ (Iso.isoʳ (_≅_.iso F₀/*≅++)))
F-resp-≈ (_≐_.cong/∙ x x₁) = cong/sub (cong/ext refl (F-resp-≈ x₁)) (F-resp-≈ x)
F-resp-≈ (_≐_.cong/⟪⟫ x x₁) = cong/sub (cong/ext refl (cong/pair (F-resp-≈ x) (F-resp-≈ x₁))) refl
| 36.153285
| 121
| 0.500101
|
139b88a81521ae394d8a361da71adb80c70b0984
| 141
|
agda
|
Agda
|
test/Succeed/Issue2666.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue2666.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue2666.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module _ where
module G where
module H where
module A where
module B where
module C where
open G public
module I = A.B.C.H
| 10.846154
| 19
| 0.666667
|
22f957a6e4929ad31a26b0f9eb65d5024ad8e4e2
| 302
|
agda
|
Agda
|
test/Fail/IrrelevantLevelToSet.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/IrrelevantLevelToSet.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/IrrelevantLevelToSet.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --experimental-irrelevance #-}
{-# OPTIONS --universe-polymorphism #-}
module IrrelevantLevelToSet where
open import Common.Level renaming (lsuc to suc)
-- should fail, because Set i /= Set j for i /= j, so i is not irrelevant in Set i
MySet : .(i : Level) -> Set (suc i)
MySet i = Set i
| 30.2
| 82
| 0.688742
|
2e8f34ecbd0d2043ef448c760a59ee801cbd2723
| 8,514
|
agda
|
Agda
|
misc/Parallel.agda
|
yurrriq/parser-combinators
|
b396d35cc2cb7e8aea50b982429ee385f001aa88
|
[
"MIT"
] | 7
|
2016-12-13T05:23:14.000Z
|
2021-06-22T05:35:31.000Z
|
misc/Parallel.agda
|
nad/parser-combinators
|
76774f54f466cfe943debf2da731074fe0c33644
|
[
"MIT"
] | 1
|
2018-01-22T22:21:41.000Z
|
2018-01-24T16:39:37.000Z
|
misc/Parallel.agda
|
nad/parser-combinators
|
76774f54f466cfe943debf2da731074fe0c33644
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --no-termination-check
#-}
------------------------------------------------------------------------
-- A terminating parser data type and the accompanying interpreter
------------------------------------------------------------------------
-- This code is based on "Parallel Parsing Processes" by Koen
-- Claessen.
module Parallel where
open import Parallel.Index
open import Data.Product renaming (_,_ to pair)
open import Data.Bool
open import Data.Nat
open import Data.Product.Record using (_,_)
import Data.List as List
open List using (List; []; _∷_; _++_)
import Data.Vec as Vec
open Vec using (Vec; []; _∷_) renaming (_++_ to _<+>_)
open import Category.Monad.State
open import Data.Function
open import Data.Maybe
import Relation.Binary.PropositionalEquality as PropEq
open PropEq using (_≡_; refl)
------------------------------------------------------------------------
-- Parser monad
P : Set -> (Set -> Set)
P tok = StateT (List tok) List
------------------------------------------------------------------------
-- Basic parsers (no CPS)
private
module Base where
-- returnPlus below takes a _vector_ of immediate results, since
-- otherwise the returnPlus/returnPlus case of _∣_ would not type
-- check. (Its type would have to be changed.)
--
-- (The vector could just as well have been a list, if it were not
-- for the unused module IncorrectBind below. However, documenting
-- that this list is never empty is not a bad thing, and does not
-- cost much.)
codata Parser (tok r : Set) : Index -> Set where
symbolBind : forall {i : tok -> Index} ->
((c : tok) -> Parser tok r (i c)) -> Parser tok r 0I
fail : Parser tok r 0I
returnPlus : forall {e d n} ->
Vec r (suc n) -> Parser tok r (e , d) ->
Parser tok r (true , suc d)
-- Note that the type of this return function is not suitable if you
-- want to state the monad laws (since (true , 1) is not a zero in
-- the monoid which is used here). The return function defined below
-- has a more suitable type, though.
return : forall {tok r} -> r -> Parser tok r (true , 1)
return x = returnPlus (Vec.[_] x) fail
cast : forall {tok i₁ i₂ r} ->
i₁ ≡ i₂ -> Parser tok r i₁ -> Parser tok r i₂
cast refl p = p
infixl 0 _∣_
_∣_ : forall {tok r i₁ i₂} ->
Parser tok r i₁ -> Parser tok r i₂ -> Parser tok r (i₁ ∣I i₂)
fail ∣ p₂ ~ p₂
returnPlus xs p₁ ∣ fail ~ returnPlus xs p₁
symbolBind f₁ ∣ fail ~ symbolBind f₁
symbolBind f₁ ∣ symbolBind f₂ ~ symbolBind (\c -> f₁ c ∣ f₂ c)
symbolBind f₁ ∣ returnPlus xs p₂ ~ returnPlus xs (symbolBind f₁ ∣ p₂)
returnPlus xs p₁ ∣ symbolBind f₂ ~ returnPlus xs (symbolBind f₂ ∣ p₁)
returnPlus xs₁ p₁ ∣ returnPlus xs₂ p₂ ~ returnPlus (xs₁ <+> xs₂) (p₁ ∣ p₂)
-- parse is structurally recursive over the following lexicographic
-- measure:
--
-- ⑴ The input string.
-- ⑵ The Distance index.
parse : forall {tok r e d} ->
Parser tok r (e , d) -> P tok r
parse (symbolBind f) (c ∷ s) = parse (f c) s
parse (symbolBind f) [] = []
parse fail _ = []
parse (returnPlus xs p) s =
List.map (\x -> pair x s) (Vec.toList xs) ++ parse p s
-- It may be interesting to note that it is hard to define bind
-- directly. Note that the module Incorrect is not used for
-- anything; bind is defined further down using CPS.
private
module IncorrectBind where
-- choice ≈ foldr₁ _∣_.
choice : forall {tok r i n} ->
Vec (Parser tok r i) (suc n) -> Parser tok r i
choice {i = i} =
Vec.foldr₁ (\p₁ p₂ -> cast (∣-idempotent i) (p₁ ∣ p₂))
where open IndexSemiring
-- This function is used to state the type of bind.
bind-index : forall {tok r i} ->
Parser tok r i -> Index -> Index
bind-index (symbolBind f) _ = 0I
bind-index fail _ = 0I
bind-index (returnPlus xs p) i = i
open IndexSemiring
bind-index-lemma : forall {tok r i₁} (p : Parser tok r i₁) i₂ ->
i₂ ∣I bind-index p i₂ ≡ i₂
bind-index-lemma (symbolBind f) i = proj₂ +-identity i
bind-index-lemma fail i = proj₂ +-identity i
bind-index-lemma (returnPlus xs p) i = ∣-idempotent i
-- Note that bind has a non-trivial type. This is not a
-- fundamental problem, though. The big problem is that bind is
-- not productive (in general). The recursive call p >>= g in the
-- last line is not guarded if, for instance, g = const fail, in
-- which case we have (ignoring some casts)
--
-- returnPlus xs p >>= g = p >>= g.
--
-- If furthermore p = returnPlus xs p, then we have a real
-- problem.
_>>=_ : forall {tok r₁ r₂ i₁ i₂} ->
(p₁ : Parser tok r₁ i₁) -> (r₁ -> Parser tok r₂ i₂) ->
Parser tok r₂ (bind-index p₁ i₂)
symbolBind f >>= g ~ symbolBind (\c -> f c >>= g)
fail >>= g ~ fail
returnPlus xs p >>= g ~ cast (bind-index-lemma p _)
(choice (Vec.map g xs) ∣ p >>= g)
------------------------------------------------------------------------
-- CPS transformation
-- The code below manually applies the continuation-passing monad
-- transformer to the Base parser above to improve the efficiency of
-- left-nested uses of bind. (And, in light of Base.Incorrect._>>=_,
-- to enable a well-founded definition of bind.)
data Parser (tok : Set) (i : Index) (r : Set) : Set1 where
parser : (forall {i' r'} ->
(r -> Base.Parser tok r' i') ->
Base.Parser tok r' (i ·I i')) ->
Parser tok i r
private
unP : forall {tok r i r' i'} ->
Parser tok i r ->
(r -> Base.Parser tok r' i') ->
Base.Parser tok r' (i ·I i')
unP (parser p) = p
symbol : forall {tok} -> Parser tok 0I tok
symbol = parser Base.symbolBind
fail : forall {tok r} -> Parser tok 0I r
fail = parser \k -> Base.fail
-- A problematic variant of fail. See Parallel.Lib.
problematic : forall {tok r} -> r -> Parser tok 0I r
problematic x = parser (\k -> helper (k x))
where
helper : forall {tok r' i'} ->
Base.Parser tok r' i' -> Base.Parser tok r' 0I
helper (Base.symbolBind _) = Base.fail
helper Base.fail = Base.fail
helper (Base.returnPlus _ _) = Base.fail
return : forall {tok r} -> r -> Parser tok 1I r
return x = parser \k -> k x
-- Note that _>>=_ cannot easily be given a dependent type (where the
-- second argument has type (x : r₁) -> Parser tok r₂ (i₂ x)). What
-- would the type of the result of _>>=_ be? The type would depend on
-- the input string, which is not an argument to _>>=_.
--
-- Note also that the variant _!>>=_ from Parser/RecursiveDescent.Coinductive
-- cannot (?) be implemented, since the continuation given to p cannot
-- be dependently typed.
infixl 1 _>>=_
_>>=_ : forall {tok r₁ r₂ i₁ i₂} ->
Parser tok i₁ r₁ -> (r₁ -> Parser tok i₂ r₂) ->
Parser tok (i₁ ·I i₂) r₂
_>>=_ {i₁ = i₁} {i₂} (parser p) f = parser
\{i₃} k -> Base.cast (sym $ *-assoc i₁ i₂ i₃)
(p \x -> unP (f x) k)
where open IndexSemiring
infixl 0 _∣_
_∣_ : forall {tok r i₁ i₂} ->
Parser tok i₁ r ->
Parser tok i₂ r ->
Parser tok (i₁ ∣I i₂) r
_∣_ {i₁ = i₁} {i₂ = i₂} (parser p₁) (parser p₂) =
parser \{i₃} k ->
Base.cast (sym $ proj₂ distrib i₃ i₁ i₂)
(Base._∣_ (p₁ k) (p₂ k))
where open IndexSemiring
-- Since _>>=_ has a non-dependent type it is hard to define sat
-- without using the underlying parsers in Base, and hence sat is
-- provided here.
sat : forall {tok r} ->
(tok -> Maybe r) -> Parser tok 0I r
sat {tok} {r} p = parser \k -> Base.symbolBind (\c -> ok k (p c))
where
okIndex : Index -> Maybe r -> Index
okIndex i' nothing = 0I
okIndex i' (just _) = i'
ok : forall {r' i'} ->
(r -> Base.Parser tok r' i') ->
(x : Maybe r) -> Base.Parser tok r' (okIndex i' x)
ok k nothing = Base.fail
ok k (just x) = k x
parse : forall {tok r i} ->
Parser tok i r -> P tok r
parse (parser p) = Base.parse (p Base.return)
-- A variant which only returns parses which leave no remaining input.
parse-complete : forall {tok r i} ->
Parser tok i r -> List tok -> List r
parse-complete p s =
List.map proj₁ (List.filter (List.null ∘ proj₂) (parse p s))
| 34.469636
| 77
| 0.572586
|
57d613fced6e5a76a86bb1cdd06767a73fc30c42
| 1,112
|
agda
|
Agda
|
Test.agda
|
jmchapman/agda2hs
|
0f8b0b8a17ecad9e9be7ef5cae564187787df31d
|
[
"MIT"
] | null | null | null |
Test.agda
|
jmchapman/agda2hs
|
0f8b0b8a17ecad9e9be7ef5cae564187787df31d
|
[
"MIT"
] | null | null | null |
Test.agda
|
jmchapman/agda2hs
|
0f8b0b8a17ecad9e9be7ef5cae564187787df31d
|
[
"MIT"
] | null | null | null |
module _ where
open import Agda.Builtin.List
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
variable
a b : Set
{-# FOREIGN AGDA2HS
import Prelude hiding (map, sum)
#-}
data Exp (v : Set) : Set where
Plus : Exp v → Exp v → Exp v
Int : Nat → Exp v
Var : v → Exp v
{-# COMPILE AGDA2HS Exp #-}
eval : (a → Nat) → Exp a → Nat
eval env (Plus a b) = eval env a + eval env b
eval env (Int n) = n
eval env (Var x) = env x
{-# COMPILE AGDA2HS eval #-}
sum : List Nat → Nat
sum [] = 0
sum (x ∷ xs) = x + sum xs
{-# COMPILE AGDA2HS sum #-}
{-# FOREIGN AGDA2HS -- comment #-}
append : List a → List a → List a
append [] ys = ys
append (x ∷ xs) ys = x ∷ append xs ys
{-# COMPILE AGDA2HS append #-}
map : (a → b) → List a → List b
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
{-# COMPILE AGDA2HS map #-}
assoc : (a b c : Nat) → a + (b + c) ≡ (a + b) + c
assoc zero b c = refl
assoc (suc a) b c rewrite assoc a b c = refl
thm : ∀ xs ys → sum (append xs ys) ≡ sum xs + sum ys
thm [] ys = refl
thm (x ∷ xs) ys rewrite thm xs ys | assoc x (sum xs) (sum ys) = refl
| 19.508772
| 68
| 0.571043
|
046f0745ec5b52593b9418461322b5c82cbe70b5
| 6,856
|
agda
|
Agda
|
Cubical/Data/Fin/Properties.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/Data/Fin/Properties.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/Data/Fin/Properties.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | 1
|
2021-11-22T02:02:01.000Z
|
2021-11-22T02:02:01.000Z
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Fin.Properties where
open import Cubical.Core.Everything
open import Cubical.Functions.Embedding
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Univalence
open import Cubical.Data.Fin.Base as Fin
open import Cubical.Data.Nat
open import Cubical.Data.Nat.Order
open import Cubical.Data.Empty as Empty
open import Cubical.Data.Sum
open import Cubical.Data.Sigma
open import Cubical.Induction.WellFounded
private
variable
a b ℓ : Level
A : Type a
-- Fin 0 is empty, and thus a proposition.
isPropFin0 : isProp (Fin 0)
isPropFin0 = Empty.rec ∘ ¬Fin0
-- Fin 1 has only one value.
isContrFin1 : isContr (Fin 1)
isContrFin1
= fzero , λ
{ (zero , _) → toℕ-injective refl
; (suc k , sk<1) → Empty.rec (¬-<-zero (pred-≤-pred sk<1))
}
-- Regardless of k, Fin k is a set.
isSetFin : ∀{k} → isSet (Fin k)
isSetFin {k} = isSetΣ isSetℕ (λ _ → isProp→isSet m≤n-isProp)
private
subst-app : (B : A → Type b) (f : (x : A) → B x) {x y : A} (x≡y : x ≡ y) →
subst B x≡y (f x) ≡ f y
subst-app B f {x = x} =
J (λ y e → subst B e (f x) ≡ f y) (substRefl {B = B} (f x))
-- Computation rules for the eliminator.
module _ (P : ∀ {k} → Fin k → Type ℓ)
(fz : ∀ {k} → P {suc k} fzero)
(fs : ∀ {k} {fn : Fin k} → P fn → P (fsuc fn))
{k : ℕ} where
elim-fzero : Fin.elim P fz fs {k = suc k} fzero ≡ fz
elim-fzero =
subst P (toℕ-injective _) fz ≡⟨ cong (λ p → subst P p fz) (isSetFin _ _ _ _) ⟩
subst P refl fz ≡⟨ substRefl {B = P} fz ⟩
fz ∎
elim-fsuc : (fk : Fin k) → Fin.elim P fz fs (fsuc fk) ≡ fs (Fin.elim P fz fs fk)
elim-fsuc fk =
subst P (toℕ-injective (λ _ → toℕ (fsuc fk′))) (fs (Fin.elim P fz fs fk′))
≡⟨ cong (λ p → subst P p (fs (Fin.elim P fz fs fk′)) ) (isSetFin _ _ _ _) ⟩
subst P (cong fsuc fk′≡fk) (fs (Fin.elim P fz fs fk′))
≡⟨ subst-app _ (λ fj → fs (Fin.elim P fz fs fj)) fk′≡fk ⟩
fs (Fin.elim P fz fs fk)
∎
where
fk′ = fst fk , pred-≤-pred (snd (fsuc fk))
fk′≡fk : fk′ ≡ fk
fk′≡fk = toℕ-injective refl
-- Helper function for the reduction procedure below.
--
-- If n = expand o k m, then n is congruent to m modulo k.
expand : ℕ → ℕ → ℕ → ℕ
expand 0 k m = m
expand (suc o) k m = k + expand o k m
expand≡ : ∀ k m o → expand o k m ≡ o * k + m
expand≡ k m zero = refl
expand≡ k m (suc o)
= cong (k +_) (expand≡ k m o) ∙ +-assoc k (o * k) m
-- Expand a pair. This is useful because the whole function is
-- injective.
expand× : ∀{k} → (Fin k × ℕ) → ℕ
expand× {k} (f , o) = expand o k (toℕ f)
private
lemma₀ : ∀{k m n r} → r ≡ n → k + m ≡ n → k ≤ r
lemma₀ {k = k} {m} p q = m , +-comm m k ∙ q ∙ sym p
expand×Inj : ∀ k → {t1 t2 : Fin (suc k) × ℕ} → expand× t1 ≡ expand× t2 → t1 ≡ t2
expand×Inj k {f1 , zero} {f2 , zero} p i
= toℕ-injective {fj = f1} {f2} p i , zero
expand×Inj k {f1 , suc o1} {(r , r<sk) , zero} p
= Empty.rec (<-asym r<sk (lemma₀ refl p))
expand×Inj k {(r , r<sk) , zero} {f2 , suc o2} p
= Empty.rec (<-asym r<sk (lemma₀ refl (sym p)))
expand×Inj k {f1 , suc o1} {f2 , suc o2}
= cong (λ { (f , o) → (f , suc o) })
∘ expand×Inj k {f1 , o1} {f2 , o2}
∘ inj-m+ {suc k}
expand×Emb : ∀ k → isEmbedding (expand× {k})
expand×Emb 0 = Empty.rec ∘ ¬Fin0 ∘ fst
expand×Emb (suc k)
= injEmbedding (isSetΣ isSetFin (λ _ → isSetℕ)) isSetℕ (expand×Inj k)
-- A Residue is a family of types representing evidence that a
-- natural is congruent to a value of a finite type.
Residue : ℕ → ℕ → Type₀
Residue k n = Σ[ tup ∈ Fin k × ℕ ] expand× tup ≡ n
extract : ∀{k n} → Residue k n → Fin k
extract = fst ∘ fst
-- There is at most one canonical finite value congruent to each
-- natural.
isPropResidue : ∀ k n → isProp (Residue k n)
isPropResidue k = isEmbedding→hasPropFibers (expand×Emb k)
-- A value of a finite type is its own residue.
Fin→Residue : ∀{k} → (f : Fin k) → Residue k (toℕ f)
Fin→Residue f = (f , 0) , refl
-- Fibers of numbers that differ by k are equivalent in a more obvious
-- way than via the fact that they are propositions.
Residue+k : (k n : ℕ) → Residue k n → Residue k (k + n)
Residue+k k n ((f , o) , p) = (f , suc o) , cong (k +_) p
Residue-k : (k n : ℕ) → Residue k (k + n) → Residue k n
Residue-k k n (((r , r<k) , zero) , p) = Empty.rec (<-asym r<k (lemma₀ p refl))
Residue-k k n ((f , suc o) , p) = ((f , o) , inj-m+ p)
Residue+k-k
: (k n : ℕ)
→ (R : Residue k (k + n))
→ Residue+k k n (Residue-k k n R) ≡ R
Residue+k-k k n (((r , r<k) , zero) , p) = Empty.rec (<-asym r<k (lemma₀ p refl))
Residue+k-k k n ((f , suc o) , p)
= Σ≡Prop (λ tup → isSetℕ (expand× tup) (k + n)) refl
Residue-k+k
: (k n : ℕ)
→ (R : Residue k n)
→ Residue-k k n (Residue+k k n R) ≡ R
Residue-k+k k n ((f , o) , p)
= Σ≡Prop (λ tup → isSetℕ (expand× tup) n) refl
private
Residue≃ : ∀ k n → Residue k n ≃ Residue k (k + n)
Residue≃ k n
= Residue+k k n
, isoToIsEquiv (iso (Residue+k k n) (Residue-k k n)
(Residue+k-k k n) (Residue-k+k k n))
Residue≡ : ∀ k n → Residue k n ≡ Residue k (k + n)
Residue≡ k n = ua (Residue≃ k n)
-- For positive `k`, all `n` have a canonical residue mod `k`.
module Reduce (k₀ : ℕ) where
k : ℕ
k = suc k₀
base : ∀ n (n<k : n < k) → Residue k n
base n n<k = Fin→Residue (n , n<k)
step : ∀ n → Residue k n → Residue k (k + n)
step n = transport (Residue≡ k n)
reduce : ∀ n → Residue k n
reduce = +induction k₀ (Residue k) base step
reduce≡
: ∀ n → transport (Residue≡ k n) (reduce n) ≡ reduce (k + n)
reduce≡ n
= sym (+inductionStep k₀ _ base step n)
reduceP
: ∀ n → PathP (λ i → Residue≡ k n i) (reduce n) (reduce (k + n))
reduceP n = toPathP (reduce≡ n)
open Reduce using (reduce; reduce≡) public
private
lemma₅
: ∀ k n (R : Residue k n)
→ extract R ≡ extract (transport (Residue≡ k n) R)
lemma₅ k n = sym ∘ cong extract ∘ uaβ (Residue≃ k n)
-- The residue of n modulo k is the same as the residue of k + n.
extract≡ : ∀ k n → extract (reduce k n) ≡ extract (reduce k (suc k + n))
extract≡ k n
= lemma₅ (suc k) n (reduce k n) ∙ cong extract (Reduce.reduce≡ k n)
isContrResidue : ∀{k n} → isContr (Residue (suc k) n)
isContrResidue {k} {n} = inhProp→isContr (reduce k n) (isPropResidue (suc k) n)
-- the modulo operator on ℕ
_%_ : ℕ → ℕ → ℕ
n % zero = n
n % (suc k) = toℕ (extract (reduce k n))
n%k≡n[modk] : ∀ n k → Σ[ o ∈ ℕ ] o * k + n % k ≡ n
n%k≡n[modk] n zero = zero , refl
n%k≡n[modk] n (suc k) = o , sym (expand≡ _ _ o) ∙ reduce k n .snd
where o = reduce k n .fst .snd
n%sk<sk : (n k : ℕ) → (n % suc k) < suc k
n%sk<sk n k = extract (reduce k n) .snd
| 31.740741
| 82
| 0.58241
|
0b368956c4f9a2ff926ef1af52856caeea7c34ca
| 18,202
|
agda
|
Agda
|
Formalization/Polynomial.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | 6
|
2020-04-07T17:58:13.000Z
|
2022-02-05T06:53:22.000Z
|
Formalization/Polynomial.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
Formalization/Polynomial.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
module Formalization.Polynomial where
import Lvl
open import Data.ListSized
open import Numeral.Natural as ℕ using (ℕ)
open import Type
private variable ℓ ℓₑ : Lvl.Level
private variable T : Type{ℓ}
private variable n n₁ n₂ : ℕ
-- TODO: Some of the operations should work with arbitrary Rg structures, not just ℕ, and some other stuff should work with more assumptions. Currently, one of the function that needs to be modified is 𝐷 and normalize for this to work because their implementations depend on ℕ.
-- TODO: Composition of polynomials, power operation
module _ where
-- A polynomial of a finite degree represented as a list of its coefficients.
-- Examples:
-- (a₀⋅x⁰ + a₁⋅x¹ + a₂⋅x² + a₃⋅x³ + a₄⋅x⁴) of degree 4 is [a₀,a₁,a₂,a₃,a₄]
-- (5 + 7⋅x + x³) of maximal degree 3 is [5,7,0,1]
Polynomial : ℕ → Type
Polynomial(n) = List(ℕ)(ℕ.𝐒(n))
open import Data.ListSized.Functions
import Functional as Fn
open import Logic.Propositional
open import Logic.Predicate
import Numeral.Natural.Function as ℕ
open import Numeral.Natural.Function.Proofs
import Numeral.Natural.Oper as ℕ
open import Numeral.Natural.Relation.Order
open import Numeral.Natural.Relation.Order.Proofs
open import Relator.Equals
open import Relator.Equals.Proofs.Equiv{T = ℕ}
-- Constant polynomial.
-- Semantically, this corresponds to a constant.
const : ℕ → Polynomial(n)
const {n} a = a ⊰ repeat ℕ.𝟎 n
-- Zero polynomial.
-- Semantically, this corresponds to zero.
𝟎 : Polynomial(n)
𝟎 {n} = const{n} ℕ.𝟎
-- Unit polynomial.
-- Semantically, this corresponds to one.
𝟏 : Polynomial(n)
𝟏 {n} = const{n}(ℕ.𝐒(ℕ.𝟎))
-- Increases the degree of the polynomial by adding a zero term at the beginning.
-- Semantically, this corresponds to multiplying the whole polynomial by the variable.
-- Example: (var⋅ [a₀,a₁,a₂] = [0,a₀,a₁,a₂])
-- x ⋅ (a₀⋅x⁰ + a₁⋅x¹ + a₂⋅x²)
-- = a₀⋅x¹ + a₁⋅x² + a₂⋅x³
var⋅_ : Polynomial(n) → Polynomial(ℕ.𝐒(n))
var⋅_ = ℕ.𝟎 ⊰_
-- Single variable polynomial.
var : Polynomial(ℕ.𝐒(n))
var = var⋅ 𝟏
-- Polynomial addition.
-- Adds the powers component-wise.
-- Examples: ([a₀,a₁,a₂] + [b₀,b₁,b₂] = [a₀b₀ , a₁+b₁ , a₂+b₂])
-- (a₀⋅x⁰ + a₁⋅x¹ + a₂⋅x²) + (b₀⋅x⁰ + b₁⋅x¹ + b₂⋅x²)
-- = (a₀+b₀)⋅x⁰ + (a₁+b₁)⋅x¹ + (a₂+b₂)⋅x²
-- of maximal degree 2 is [a₀+b₀ , a₁+b₁ , a₂+b₂]
_+_ : Polynomial(n₁) → Polynomial(n₂) → Polynomial(ℕ.max n₁ n₂)
_+_ = map₂(ℕ._+_) Fn.id Fn.id
-- Polymonial scalar multiplication.
-- Multiplies every component by a factor.
-- Example: (n ⋅ [a₀,a₁,a₂] = [n⋅a₀ , n⋅a₁ , n⋅a₂])
-- n ⋅ (a₀⋅x⁰ + a₁⋅x¹ + a₂⋅x²)
-- = (n⋅a₀)⋅x⁰ + (n⋅a₁)⋅x¹ + (n⋅a₂)⋅x²
_⋅_ : ℕ → Polynomial(n) → Polynomial(n)
n ⋅ as = map (n ℕ.⋅_) as
-- Increases the degree of the polynomial by adding zero terms at the end.
-- Semantically, this corresponds to adding terms multiplied by zero.
-- Example: (pad [a₀,a₁,a₂] = [a₀,a₁,a₂,0,0])
-- a₀⋅x⁰ + a₁⋅x¹ + a₂⋅x²
-- = a₀⋅x⁰ + a₁⋅x¹ + a₂⋅x² + 0⋅x³ + 0⋅x⁴
pad : ⦃ _ : (n₁ ≤ n₂)⦄ → Polynomial(n₁) → Polynomial(n₂)
pad {n₁ = ℕ.𝟎} {n₂ = ℕ.𝟎} ⦃ min ⦄ (a ⊰ ∅) = singleton a
pad {n₁ = ℕ.𝟎} {n₂ = ℕ.𝐒(n₂)} ⦃ min ⦄ (a ⊰ ∅) = a ⊰ 𝟎
pad {n₁ = ℕ.𝐒(n₁)} {n₂ = ℕ.𝐒(n₂)} ⦃ succ p ⦄ (a ⊰ as) = a ⊰ pad ⦃ p ⦄ as
-- Polynomial multiplication.
-- Proof of step:
-- ∑(0‥𝐒(n₁))(i ↦ aᵢ⋅xⁱ) ⋅ ∑(0‥𝐒(n₂))(i ↦ bᵢ⋅xⁱ)
-- = (a + ∑(1‥𝐒(n₁))(i ↦ aᵢ⋅xⁱ)) ⋅ (b + ∑(1‥𝐒(n₂))(i ↦ bᵢ⋅xⁱ))
-- = (a ⋅ b) + (a ⋅ ∑(1‥𝐒(n₂))(i ↦ bᵢ⋅xⁱ)) + (∑(1‥𝐒(n₁))(i ↦ aᵢ⋅xⁱ) ⋅ b) + (∑(1‥𝐒(n₁))(i ↦ aᵢ⋅xⁱ) ⋅ ∑(1‥𝐒(n₂))(i ↦ bᵢ⋅xⁱ))
-- = (a⋅b) + (a ⋅ ∑(1‥𝐒(n₂))(i ↦ bᵢ⋅xⁱ)) + (∑(1‥𝐒(n₁))(i ↦ aᵢ⋅xⁱ) ⋅ b⋅x) + (∑(1‥𝐒(n₁))(i ↦ aᵢ⋅xⁱ) ⋅ ∑(1‥𝐒(n₂))(i ↦ bᵢ⋅xⁱ))
-- = (a⋅b) + (a ⋅ ∑(0‥n₂)(i ↦ bᵢ⋅xⁱ)⋅x) + (∑(0‥n₁)(i ↦ aᵢ⋅xⁱ)⋅x ⋅ b) + (∑(1‥𝐒(n₁))(i ↦ aᵢ⋅xⁱ) ⋅ ∑(1‥𝐒(n₂))(i ↦ bᵢ⋅xⁱ))
-- = (a⋅b) + (a ⋅ ∑(0‥n₂)(i ↦ bᵢ⋅xⁱ))⋅x + (∑(0‥n₁)(i ↦ aᵢ⋅xⁱ) ⋅ b)⋅x + (∑(0‥n₁)(i ↦ aᵢ⋅xⁱ) ⋅ ∑(0‥n₂)(i ↦ bᵢ⋅xⁱ))⋅x²
-- = (a⋅b) + ((a ⋅ ∑(0‥n₂)(i ↦ bᵢ⋅xⁱ)) + (∑(0‥n₁)(i ↦ aᵢ⋅xⁱ) ⋅ b) + (∑(0‥n₁)(i ↦ aᵢ⋅xⁱ) ⋅ ∑(0‥n₂)(i ↦ bᵢ⋅xⁱ))⋅x)⋅x
-- Also see `eval-preserves-multiplication`.
_⨯_ : Polynomial(n₁) → Polynomial(n₂) → Polynomial(n₁ ℕ.+ n₂)
_⨯_ as@(_ ⊰ _) (b ⊰ ∅) = b ⋅ as
_⨯_ (a ⊰ ∅) bs@(_ ⊰ _ ⊰ _) = a ⋅ bs
_⨯_ {ℕ.𝐒 n₁}{ℕ.𝐒 n₂} (a ⊰ as@(_ ⊰ _)) (b ⊰ bs@(_ ⊰ _)) = (a ℕ.⋅ b) ⊰ lr where
l : Polynomial(n₁ ℕ.+ n₂)
l = pad ⦃ max-order-[+] ⦄ ((b ⋅ as) + (a ⋅ bs))
r : Polynomial(ℕ.𝐒(n₁ ℕ.+ n₂))
r = var⋅ (as ⨯ bs)
lr : Polynomial(ℕ.𝐒(n₁ ℕ.+ n₂))
lr = [≡]-substitutionᵣ ([↔]-to-[→] max-defᵣ [≤]-of-[𝐒]) {Polynomial} (l + r)
normalize : Polynomial(n) → ∃(Polynomial)
normalize {ℕ.𝟎} (x ⊰ ∅) = [∃]-intro ℕ.𝟎 ⦃ x ⊰ ∅ ⦄
normalize {ℕ.𝐒 n} (ℕ.𝟎 ⊰ p) with normalize{n} p
... | [∃]-intro ℕ.𝟎 ⦃ singleton ℕ.𝟎 ⦄ = [∃]-intro ℕ.𝟎 ⦃ singleton ℕ.𝟎 ⦄
{-# CATCHALL #-}
... | [∃]-intro m ⦃ a ⦄ = [∃]-intro (ℕ.𝐒(m)) ⦃ ℕ.𝟎 ⊰ a ⦄
normalize {ℕ.𝐒 n} (ℕ.𝐒(x) ⊰ p) = [∃]-map ℕ.𝐒 (ℕ.𝐒(x) ⊰_) (normalize{n} p)
degree : Polynomial(n) → ℕ
degree = [∃]-witness Fn.∘ normalize
𝐷 : Polynomial(n) → Polynomial(ℕ.𝐏(n))
𝐷 {ℕ.𝟎} = Fn.id
𝐷 {ℕ.𝐒 n} = map₂₌(ℕ._⋅_) (accumulateIterate n ℕ.𝐒(ℕ.𝐒(ℕ.𝟎))) Fn.∘ tail
import Numeral.Natural.Oper.FlooredDivision as ℕ
∫ : Polynomial(n) → Polynomial(ℕ.𝐒(n))
∫ {n} p = var⋅(map₂₌(ℕ._⌊/⌋₀_) p (accumulateIterate n ℕ.𝐒(ℕ.𝐒(ℕ.𝟎))))
module Semantics where
open import Data.ListSized.Functions
open import Logic.Propositional
open import Numeral.Finite as 𝕟 using (𝕟)
import Numeral.Natural.Oper as ℕ
open import Numeral.Natural.Oper.Proofs
open import Numeral.Natural.Relation.Order
open import Relator.Equals.Proofs.Equiv{T = ℕ}
open import Structure.Function.Multi
open import Structure.Operator
open import Structure.Operator.Proofs.Util
open import Structure.Operator.Properties
open import Structure.Relator.Properties
open import Structure.Setoid
open import Syntax.Function
open import Syntax.Transitivity
eval : Polynomial(n) → (ℕ → ℕ)
eval (singleton a) _ = a
eval (a ⊰ al@(_ ⊰ _)) x = a ℕ.+ (x ℕ.⋅ (eval al x))
module Proofs where
eval-of-[⊰] : ∀{x}{a}{al : Polynomial(n)} → (eval (a ⊰ al) x ≡ a ℕ.+ (x ℕ.⋅ (eval al x)))
eval-of-[⊰] {ℕ.𝟎} {x} {a} {b ⊰ ∅} = reflexivity(_≡_)
eval-of-[⊰] {ℕ.𝐒 n} {x} {a} {b ⊰ c ⊰ al} = reflexivity(_≡_)
eval-preserves-var⋅ : ∀{x}{a : Polynomial(n)} → (eval (var⋅ a) x ≡ x ℕ.⋅ (eval a x))
eval-preserves-var⋅ {n}{x}{a} = eval-of-[⊰] {n}{x}{ℕ.𝟎}{a}
eval-preserves-zero : ∀{x} → (eval{n} 𝟎 x ≡ ℕ.𝟎)
eval-preserves-zero {ℕ.𝟎} {x} = reflexivity(_≡_)
eval-preserves-zero {ℕ.𝐒 n} {x} =
eval(𝟎 {ℕ.𝐒 n}) x 🝖[ _≡_ ]-[]
eval(ℕ.𝟎 ⊰ 𝟎 {n}) x 🝖[ _≡_ ]-[]
ℕ.𝟎 ℕ.+ (x ℕ.⋅ eval (𝟎 {n}) x) 🝖[ _≡_ ]-[]
x ℕ.⋅ eval (𝟎 {n}) x 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._⋅_)(x) (eval-preserves-zero{n}{x}) ]
x ℕ.⋅ ℕ.𝟎 🝖[ _≡_ ]-[ absorberᵣ(ℕ._⋅_)(ℕ.𝟎) {x} ]
ℕ.𝟎 🝖-end
eval-preserves-const : ∀{x}{a} → (eval{n} (const a) x ≡ a)
eval-preserves-const {ℕ.𝟎} {x}{a} = reflexivity(_≡_)
eval-preserves-const {ℕ.𝐒 n} {x}{a} =
eval{ℕ.𝐒 n} (const a) x 🝖[ _≡_ ]-[]
eval(a ⊰ repeat ℕ.𝟎 (ℕ.𝐒 n)) x 🝖[ _≡_ ]-[ eval-of-[⊰] {x = x}{a}{repeat ℕ.𝟎 (ℕ.𝐒 n)} ]
a ℕ.+ (x ℕ.⋅ eval(repeat ℕ.𝟎 (ℕ.𝐒 n)) x) 🝖[ _≡_ ]-[]
a ℕ.+ (x ℕ.⋅ eval{n} 𝟎 x) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a) (eval-preserves-zero{ℕ.𝐒 n}{x = x}) ]
a ℕ.+ (x ℕ.⋅ ℕ.𝟎) 🝖[ _≡_ ]-[]
a ℕ.+ ℕ.𝟎 🝖[ _≡_ ]-[ identityᵣ(ℕ._+_)(ℕ.𝟎) ]
a 🝖-end
eval-preserves-one : ∀{x} → (eval{n} 𝟏 x ≡ ℕ.𝐒(ℕ.𝟎))
eval-preserves-one {n}{x} = eval-preserves-const {n}{x}{ℕ.𝐒(ℕ.𝟎)}
eval-preserves-var : ∀{x}{a : Polynomial(n)} → (eval (var{n}) x ≡ x)
eval-preserves-var {n}{x}{a} =
eval (var{n}) x 🝖[ _≡_ ]-[ eval-preserves-var⋅{n}{x}{𝟏} ]
x ℕ.⋅ eval (𝟏 {n}) x 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._⋅_)(x) (eval-preserves-one {n}{x}) ]
x ℕ.⋅ ℕ.𝐒(ℕ.𝟎) 🝖[ _≡_ ]-[ identityᵣ(ℕ._⋅_)(ℕ.𝐒(ℕ.𝟎)) {x} ]
x 🝖-end
eval-preserves-addition : ∀{x}{a : Polynomial(n₁)}{b : Polynomial(n₂)} → (eval (a + b) x ≡ (eval a x) ℕ.+ (eval b x))
eval-preserves-addition {x = x} {singleton a} {singleton b} = reflexivity(_≡_)
eval-preserves-addition {x = x} {singleton a} {b ⊰ bs@(_ ⊰ _)} = associativity(ℕ._+_) {a}{b}
eval-preserves-addition {x = x} {a ⊰ as@(_ ⊰ _)} {singleton b} =
eval ((a ⊰ as) + (singleton b)) x 🝖[ _≡_ ]-[]
(a ℕ.+ b) ℕ.+ (x ℕ.⋅ (eval as x)) 🝖[ _≡_ ]-[ associativity(ℕ._+_) {a}{b} ]
a ℕ.+ (b ℕ.+ (x ℕ.⋅ (eval as x))) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a) (commutativity(ℕ._+_) {x = b}) ]
a ℕ.+ ((x ℕ.⋅ (eval as x)) ℕ.+ b) 🝖[ _≡_ ]-[ associativity(ℕ._+_) {a}{x ℕ.⋅ eval as x} ]-sym
(a ℕ.+ (x ℕ.⋅ (eval as x))) ℕ.+ b 🝖[ _≡_ ]-[]
(eval (a ⊰ as) x) ℕ.+ (eval (singleton b) x) 🝖-end
eval-preserves-addition {x = x} {a ⊰ as@(_ ⊰ _)} {b ⊰ bs@(_ ⊰ _)} =
eval ((a ⊰ as) + (b ⊰ bs)) x 🝖[ _≡_ ]-[]
eval ((a ℕ.+ b) ⊰ (as + bs)) x 🝖[ _≡_ ]-[]
(a ℕ.+ b) ℕ.+ (x ℕ.⋅ (eval (as + bs) x)) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a ℕ.+ b) (congruence₂ᵣ(ℕ._⋅_)(x) (eval-preserves-addition {x = x}{as}{bs})) ]
(a ℕ.+ b) ℕ.+ (x ℕ.⋅ ((eval as x) ℕ.+ (eval bs x))) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a ℕ.+ b) (distributivityₗ(ℕ._⋅_)(ℕ._+_) {x}{eval as x}{eval bs x}) ]
(a ℕ.+ b) ℕ.+ ((x ℕ.⋅ (eval as x)) ℕ.+ (x ℕ.⋅ (eval bs x))) 🝖[ _≡_ ]-[ One.associate-commute4 {a = a}{b = b}{c = x ℕ.⋅ (eval as x)}{d = x ℕ.⋅ (eval bs x)} (commutativity(ℕ._+_) {b}) ]
(a ℕ.+ (x ℕ.⋅ (eval as x))) ℕ.+ (b ℕ.+ (x ℕ.⋅ (eval bs x))) 🝖[ _≡_ ]-[]
(eval (a ⊰ as) x) ℕ.+ (eval (b ⊰ bs) x) 🝖-end
eval-preserves-scalar-multiplication : ∀{x}{a}{b : Polynomial(n)} → (eval (a ⋅ b) x ≡ a ℕ.⋅ (eval b x))
eval-preserves-scalar-multiplication {ℕ.𝟎} {x} {a} {b ⊰ ∅} = reflexivity(_≡_)
eval-preserves-scalar-multiplication {ℕ.𝐒 n} {x} {a} {b ⊰ bs@(_ ⊰ _)} =
eval (a ⋅ (b ⊰ bs)) x 🝖[ _≡_ ]-[]
eval ((a ℕ.⋅ b) ⊰ (a ⋅ bs)) x 🝖[ _≡_ ]-[]
(a ℕ.⋅ b) ℕ.+ (x ℕ.⋅ (eval (a ⋅ bs) x)) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a ℕ.⋅ b) (congruence₂ᵣ(ℕ._⋅_)(x) (eval-preserves-scalar-multiplication {n} {x}{a}{bs})) ]
(a ℕ.⋅ b) ℕ.+ (x ℕ.⋅ (a ℕ.⋅ (eval bs x))) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a ℕ.⋅ b) (One.commuteₗ-assocᵣ {a = x}{b = a}{c = eval bs x}) ]
(a ℕ.⋅ b) ℕ.+ (a ℕ.⋅ (x ℕ.⋅ (eval bs x))) 🝖[ _≡_ ]-[ distributivityₗ(ℕ._⋅_)(ℕ._+_) {x = a}{y = b}{z = x ℕ.⋅ (eval bs x)} ]-sym
a ℕ.⋅ (b ℕ.+ (x ℕ.⋅ (eval bs x))) 🝖[ _≡_ ]-[]
a ℕ.⋅ eval (b ⊰ bs) x 🝖-end
eval-preserves-pad : ∀{x}{a : Polynomial(n₁)} ⦃ ord : (n₁ ≤ n₂) ⦄ → (eval (pad ⦃ ord ⦄ a) x ≡ eval a x)
eval-preserves-pad {ℕ.𝟎} {ℕ.𝟎} {x} {a ⊰ ∅} ⦃ ord@min ⦄ = reflexivity(_≡_)
eval-preserves-pad {ℕ.𝟎} {ℕ.𝐒 n₂} {x} {a ⊰ ∅} ⦃ ord@min ⦄ =
eval (pad ⦃ ord ⦄ (a ⊰ ∅)) x 🝖[ _≡_ ]-[]
a ℕ.+ (x ℕ.⋅ eval (𝟎 {n₂}) x) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a) (congruence₂ᵣ(ℕ._⋅_)(x) (eval-preserves-zero{n₂}{x})) ]
a ℕ.+ (x ℕ.⋅ ℕ.𝟎) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a) (absorberᵣ(ℕ._⋅_)(ℕ.𝟎) {x}) ]
a ℕ.+ ℕ.𝟎 🝖[ _≡_ ]-[ identityᵣ(ℕ._+_)(ℕ.𝟎) ]
a 🝖[ _≡_ ]-[]
eval (a ⊰ ∅) x 🝖-end
eval-preserves-pad {ℕ.𝐒 n₁} {ℕ.𝐒 n₂} {x} {a ⊰ as@(_ ⊰ _)} ⦃ ord@(succ p) ⦄ =
eval (pad ⦃ ord ⦄ (a ⊰ as)) x 🝖[ _≡_ ]-[]
eval (a ⊰ pad ⦃ _ ⦄ as) x 🝖[ _≡_ ]-[ eval-of-[⊰] {n₂}{x}{a}{pad ⦃ p ⦄ as} ]
a ℕ.+ (x ℕ.⋅ eval (pad ⦃ _ ⦄ as) x) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a) (congruence₂ᵣ(ℕ._⋅_)(x) (eval-preserves-pad {n₁}{n₂}{x}{as} ⦃ p ⦄)) ]
a ℕ.+ (x ℕ.⋅ eval as x) 🝖[ _≡_ ]-[ eval-of-[⊰] {n₁}{x}{a}{as} ]-sym
eval (a ⊰ as) x 🝖-end
eval-preserves-multiplication : ∀{x}{a : Polynomial(n₁)}{b : Polynomial(n₂)} → (eval (a ⨯ b) x ≡ (eval a x) ℕ.⋅ (eval b x))
eval-preserves-multiplication {n₁} {ℕ.𝟎} {x} {a ⊰ as} {b ⊰ ∅} =
eval ((a ⊰ as) ⨯ (b ⊰ ∅)) x 🝖[ _≡_ ]-[]
eval (b ⋅ (a ⊰ as)) x 🝖[ _≡_ ]-[ eval-preserves-scalar-multiplication {x = x}{b}{a ⊰ as} ]
b ℕ.⋅ eval (a ⊰ as) x 🝖[ _≡_ ]-[ commutativity(ℕ._⋅_) {b}{eval(a ⊰ as) x} ]
eval (a ⊰ as) x ℕ.⋅ b 🝖[ _≡_ ]-[]
(eval (a ⊰ as) x ℕ.⋅ eval (b ⊰ ∅) x) 🝖-end
eval-preserves-multiplication {ℕ.𝟎} {ℕ.𝐒 n₂}{x} {a ⊰ ∅} {b ⊰ bs@(_ ⊰ _)} =
eval ((a ⊰ ∅) ⨯ (b ⊰ bs)) x 🝖[ _≡_ ]-[]
eval (a ⋅ (b ⊰ bs)) x 🝖[ _≡_ ]-[ eval-preserves-scalar-multiplication {x = x}{a}{b ⊰ bs} ]
a ℕ.⋅ (b ℕ.+ (x ℕ.⋅ eval bs x)) 🝖[ _≡_ ]-[]
eval (a ⊰ ∅) x ℕ.⋅ eval (b ⊰ bs) x 🝖-end
eval-preserves-multiplication {ℕ.𝐒 n₁}{ℕ.𝐒 n₂}{x} {a ⊰ as@(_ ⊰ _)} {b ⊰ bs@(_ ⊰ _)} =
eval((a ℕ.⋅ b) ⊰ lr) x 🝖[ _≡_ ]-[ eval-of-[⊰] {x = x}{a = a ℕ.⋅ b}{al = lr} ]
(a ℕ.⋅ b) ℕ.+ (x ℕ.⋅ eval lr x) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a ℕ.⋅ b) (congruence₂ᵣ(ℕ._⋅_)(x) eval-lr) ]
(a ℕ.⋅ b) ℕ.+ (x ℕ.⋅ (((b ℕ.⋅ eval as x) ℕ.+ (a ℕ.⋅ eval bs x)) ℕ.+ (x ℕ.⋅ (eval as x ℕ.⋅ eval bs x)))) 🝖[ _≡_ ]-[ alg{a}{b}{x}{eval as x}{eval bs x} ]
(a ℕ.+ (x ℕ.⋅ eval as x)) ℕ.⋅ (b ℕ.+ (x ℕ.⋅ eval bs x)) 🝖[ _≡_ ]-[ congruence₂(ℕ._⋅_) (eval-of-[⊰] {x = x}{a = a}{al = as}) (eval-of-[⊰] {x = x}{a = b}{al = bs}) ]
(eval(a ⊰ as) x ℕ.⋅ eval(b ⊰ bs) x) 🝖-end
where
open import Numeral.Natural.Function
open import Numeral.Natural.Function.Proofs
open import Numeral.Natural.Relation.Order.Proofs
open import Relator.Equals using ([≡]-intro)
l : Polynomial(n₁ ℕ.+ n₂)
l = pad ⦃ max-order-[+] ⦄ ((b ⋅ as) + (a ⋅ bs))
r : Polynomial(ℕ.𝐒(n₁ ℕ.+ n₂))
r = var⋅ (as ⨯ bs)
lr : Polynomial(ℕ.𝐒(n₁ ℕ.+ n₂))
lr = [≡]-substitutionᵣ ([↔]-to-[→] max-defᵣ [≤]-of-[𝐒]) {Polynomial} (l + r)
eval-l : (eval l x ≡ (b ℕ.⋅ eval as x) ℕ.+ (a ℕ.⋅ eval bs x))
eval-l =
eval l x 🝖[ _≡_ ]-[]
eval (pad ⦃ max-order-[+] ⦄ ((b ⋅ as) + (a ⋅ bs))) x 🝖[ _≡_ ]-[ eval-preserves-pad {x = x}{(b ⋅ as) + (a ⋅ bs)} ⦃ max-order-[+] ⦄ ]
eval ((b ⋅ as) + (a ⋅ bs)) x 🝖[ _≡_ ]-[ eval-preserves-addition {x = x}{b ⋅ as}{a ⋅ bs} ]
eval (b ⋅ as) x ℕ.+ eval (a ⋅ bs) x 🝖[ _≡_ ]-[ congruence₂(ℕ._+_) (eval-preserves-scalar-multiplication {x = x}{b}{as}) (eval-preserves-scalar-multiplication {x = x}{a}{bs}) ]
(b ℕ.⋅ eval as x) ℕ.+ (a ℕ.⋅ eval bs x) 🝖-end
eval-r : (eval r x ≡ x ℕ.⋅ (eval as x ℕ.⋅ eval bs x))
eval-r =
eval r x 🝖[ _≡_ ]-[]
eval (var⋅ (as ⨯ bs)) x 🝖[ _≡_ ]-[ eval-preserves-var⋅ {x = x}{as ⨯ bs} ]
x ℕ.⋅ eval (as ⨯ bs) x 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._⋅_)(x) (eval-preserves-multiplication {x = x}{as}{bs}) ]
x ℕ.⋅ (eval as x ℕ.⋅ eval bs x) 🝖-end
eval-substitution : ∀{m n}{a : Polynomial(m)}{eq : (m ≡ n)}{x} → (eval ([≡]-substitutionᵣ eq {Polynomial} a) x ≡ eval a x)
eval-substitution {eq = [≡]-intro} = [≡]-intro
eval-lr : (eval lr x ≡ ((b ℕ.⋅ eval as x) ℕ.+ (a ℕ.⋅ eval bs x)) ℕ.+ (x ℕ.⋅ (eval as x ℕ.⋅ eval bs x)))
eval-lr =
eval lr x 🝖[ _≡_ ]-[ eval-substitution{a = l + r}{[↔]-to-[→] max-defᵣ [≤]-of-[𝐒]}{x = x} ]
eval (l + r) x 🝖[ _≡_ ]-[ eval-preserves-addition{x = x}{l}{r} ]
eval l x ℕ.+ eval r x 🝖[ _≡_ ]-[ congruence₂(ℕ._+_) eval-l eval-r ]
((b ℕ.⋅ eval as x) ℕ.+ (a ℕ.⋅ eval bs x)) ℕ.+ (x ℕ.⋅ (eval as x ℕ.⋅ eval bs x)) 🝖-end
alg : ∀{a b x q r} → ((a ℕ.⋅ b) ℕ.+ (x ℕ.⋅ (((b ℕ.⋅ q) ℕ.+ (a ℕ.⋅ r)) ℕ.+ (x ℕ.⋅ (q ℕ.⋅ r)))) ≡ (a ℕ.+ (x ℕ.⋅ q)) ℕ.⋅ (b ℕ.+ (x ℕ.⋅ r)))
alg {a}{b}{x}{q}{r} =
(a ℕ.⋅ b) ℕ.+ (x ℕ.⋅ (((b ℕ.⋅ q) ℕ.+ (a ℕ.⋅ r)) ℕ.+ (x ℕ.⋅ (q ℕ.⋅ r)))) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a ℕ.⋅ b) (distributivityₗ(ℕ._⋅_)(ℕ._+_) {x}{(b ℕ.⋅ q) ℕ.+ (a ℕ.⋅ r)}{x ℕ.⋅ (q ℕ.⋅ r)}) ]
(a ℕ.⋅ b) ℕ.+ ((x ℕ.⋅ ((b ℕ.⋅ q) ℕ.+ (a ℕ.⋅ r))) ℕ.+ (x ℕ.⋅ (x ℕ.⋅ (q ℕ.⋅ r)))) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a ℕ.⋅ b) (congruence₂(ℕ._+_) (distributivityₗ(ℕ._⋅_)(ℕ._+_) {x}{b ℕ.⋅ q}{a ℕ.⋅ r}) (symmetry(_≡_) (associativity(ℕ._⋅_) {x}{x}{q ℕ.⋅ r}))) ]
(a ℕ.⋅ b) ℕ.+ (((x ℕ.⋅ (b ℕ.⋅ q)) ℕ.+ (x ℕ.⋅ (a ℕ.⋅ r))) ℕ.+ ((x ℕ.⋅ x) ℕ.⋅ (q ℕ.⋅ r))) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a ℕ.⋅ b) (congruence₂(ℕ._+_) (congruence₂(ℕ._+_) (One.commuteᵣ-assocᵣ {_▫_ = ℕ._⋅_}{a = x}{b}{q}) (One.commuteₗ-assocᵣ {_▫_ = ℕ._⋅_}{a = x}{a}{r})) (One.associate-commute4-c {_▫_ = ℕ._⋅_}{a = x}{x}{q}{r})) ]
(a ℕ.⋅ b) ℕ.+ ((((x ℕ.⋅ q) ℕ.⋅ b) ℕ.+ (a ℕ.⋅ (x ℕ.⋅ r))) ℕ.+ ((x ℕ.⋅ q) ℕ.⋅ (x ℕ.⋅ r))) 🝖[ _≡_ ]-[ One.associate4-231-222 {_▫_ = ℕ._+_} {a = a ℕ.⋅ b}{(x ℕ.⋅ q) ℕ.⋅ b}{a ℕ.⋅ (x ℕ.⋅ r)}{(x ℕ.⋅ q) ℕ.⋅ (x ℕ.⋅ r)} ]
((a ℕ.⋅ b) ℕ.+ ((x ℕ.⋅ q) ℕ.⋅ b)) ℕ.+ ((a ℕ.⋅ (x ℕ.⋅ r)) ℕ.+ ((x ℕ.⋅ q) ℕ.⋅ (x ℕ.⋅ r))) 🝖[ _≡_ ]-[ OneTypeTwoOp.cross-distribute{a = a}{x ℕ.⋅ q}{b}{x ℕ.⋅ r} ]-sym
(a ℕ.+ (x ℕ.⋅ q)) ℕ.⋅ (b ℕ.+ (x ℕ.⋅ r)) 🝖-end
| 60.072607
| 338
| 0.453192
|
571f5275b6648b445910301a66474619bd744237
| 4,134
|
agda
|
Agda
|
old/Spaces/FlatteningLoopSpaceWedgeCircles.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | 294
|
2015-01-09T16:23:23.000Z
|
2022-03-20T13:54:45.000Z
|
old/Spaces/FlatteningLoopSpaceWedgeCircles.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | 31
|
2015-03-05T20:09:00.000Z
|
2021-10-03T19:15:25.000Z
|
old/Spaces/FlatteningLoopSpaceWedgeCircles.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | 50
|
2015-01-10T01:48:08.000Z
|
2022-02-14T03:03:25.000Z
|
{-# OPTIONS --without-K #-}
open import Base
open import Integers
module Spaces.FlatteningLoopSpaceWedgeCircles {i} (A : Set i) (set : is-set A)
where
import Spaces.WedgeCircles
import Algebra.FreeGroup
import Algebra.FreeGroupProps
import Algebra.FreeGroupAsReducedWords
open Spaces.WedgeCircles A renaming (wedge-circles to WA; base to baseWA)
open Algebra.FreeGroup A renaming (freegroup to FA)
open Algebra.FreeGroupProps A
-- Path fibration
path-fib : WA → Set (suc i)
path-fib t = (t ≡ baseWA)
tot-path-fib : Set (suc i)
tot-path-fib = Σ (WA) path-fib
abstract
tot-path-fib-is-contr : is-contr tot-path-fib
tot-path-fib-is-contr = pathto-is-contr baseWA
-- Universal cover
x·-path : A → FA ≡ FA
x·-path x = eq-to-path (_ , x·-is-equiv x)
universal-cover : WA → Set i
universal-cover = wedge-circles-rec-nondep (Set _) FA x·-path
tot-cover : Set _
tot-cover = Σ WA universal-cover
trans-universal-cover : {u v : WA} (p : u ≡ v) (q : universal-cover u)
→ transport universal-cover p q
≡ transport (λ A → A) (ap universal-cover p) q
trans-universal-cover refl _ = refl
abstract
loops-to-x· : (t : A) (u : FA) → transport universal-cover (loops t) u ≡ t · u
loops-to-x· t u =
trans-universal-cover (loops t) u
∘ (ap (λ t' → transport (λ B → B) t' u) (β-nondep (Set _) FA x·-path t)
∘ trans-id-eq-to-path (_ , x·-is-equiv t) u)
{-
Here is an HIT declaration for the Cayley graph of the free group over A:
data cayley : Set where
z : FA → cayley
e : (t : A) (u : FA) → z u ≡ z (t · u)
We will see that [cayley] is contractible.
We want to show that [tot-cover] has the same introduction and elimination
rules, so that we can prove that [tot-cover] is contractible too.
We do not need to actually have the type [cayley], it is enough to show
that [tot-cover] has the same rules and then we can copy the proof of the
contractibility using the new rules.
-}
-- Introduction rules
CA-z : FA → tot-cover
CA-z u = (baseWA , u)
CA-e : (t : A) (u : FA) → CA-z u ≡ CA-z (t · u)
CA-e t u = Σ-eq (loops t) (loops-to-x· t u)
-- Elimination rule
module equivCA
{i}
(P : tot-cover → Set i)
(z : (u : FA) → P (CA-z u))
(e : (t : A) (u : FA) → transport P (CA-e t u) (z u) ≡ z (t · u)) where
CA-e' : (t : A) (u : FA)
→ CA-z u ≡ CA-z (transport universal-cover (loops t) u)
CA-e' t u = Σ-eq (loops t) refl
abstract
e' : (t : A) (u : FA)
→ transport P (CA-e' t u) (z u)
≡ z (transport universal-cover (loops t) u)
e' t u = (trans-totalpath universal-cover P {x = (baseWA , u)}
{y = (baseWA , transport universal-cover (loops t) u)} (loops t)
refl z
∘ move!-transp-left (λ z → P (baseWA , z)) _ (loops-to-x· t u)
(z (t · u))
(! (trans-totalpath universal-cover P
{x = (baseWA , u)} {y = (baseWA , (t · u))}
(loops t) (loops-to-x· t u) z)
∘ e t u))
∘ apd z (! (loops-to-x· t u))
P-base : (u : universal-cover (baseWA)) → P (baseWA , u)
P-base u = z u
abstract
P-loops : (t : A) (u : universal-cover (baseWA))
→ transport (λ x → (t : universal-cover x) → P (x , t)) (loops t) P-base u
≡ P-base u
P-loops t u =
transport (λ u → transport (λ x → (t : universal-cover x) → P (x , t))
(loops t) P-base u ≡ P-base u)
(trans-trans-opposite universal-cover (loops t) u)
(! (trans-totalpath universal-cover P
{x = (baseWA , transport universal-cover (! (loops t)) u)}
{y = (baseWA , transport universal-cover (loops t)
(transport universal-cover (! (loops t)) u))}
(loops t) refl z)
∘ e' t (transport universal-cover (! (loops t)) u))
P-CA-rec : (x : WA) → (t : universal-cover x) → P (x , t)
P-CA-rec = wedge-circles-rec (λ x → (t : universal-cover x) → P (x , t))
P-base (λ t → funext (P-loops t))
-- Here is the conclusion of the elimination rule
abstract
CA-rec : (t : tot-cover) → P t
CA-rec (x , y) = P-CA-rec x y
| 32.551181
| 80
| 0.576681
|
29a9f15743b0b3b1ee980681c280407766f7f878
| 4,249
|
agda
|
Agda
|
Definition/Typed/Consequences/Equality.agda
|
Vtec234/logrel-mltt
|
4746894adb5b8edbddc8463904ee45c2e9b29b69
|
[
"MIT"
] | null | null | null |
Definition/Typed/Consequences/Equality.agda
|
Vtec234/logrel-mltt
|
4746894adb5b8edbddc8463904ee45c2e9b29b69
|
[
"MIT"
] | null | null | null |
Definition/Typed/Consequences/Equality.agda
|
Vtec234/logrel-mltt
|
4746894adb5b8edbddc8463904ee45c2e9b29b69
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
module Definition.Typed.Consequences.Equality where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.EqRelInstance
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.ShapeView
open import Definition.LogicalRelation.Fundamental.Reducibility
open import Tools.Product
import Tools.PropositionalEquality as PE
U≡A′ : ∀ {A Γ l} ([U] : Γ ⊩⟨ l ⟩U)
→ Γ ⊩⟨ l ⟩ U ≡ A / (U-intr [U])
→ A PE.≡ U
U≡A′ (noemb [U]) [U≡A] = [U≡A]
U≡A′ (emb 0<1 [U]) [U≡A] = U≡A′ [U] [U≡A]
-- If A is judgmentally equal to U, then A is propositionally equal to U.
U≡A : ∀ {A Γ}
→ Γ ⊢ U ≡ A
→ A PE.≡ U
U≡A {A} U≡A with reducibleEq U≡A
U≡A {A} U≡A | [U] , [A] , [U≡A] =
U≡A′ (U-elim [U]) (irrelevanceEq [U] (U-intr (U-elim [U])) [U≡A])
ℕ≡A′ : ∀ {A Γ l} ([ℕ] : Γ ⊩⟨ l ⟩ℕ ℕ)
→ Γ ⊩⟨ l ⟩ ℕ ≡ A / (ℕ-intr [ℕ])
→ Whnf A
→ A PE.≡ ℕ
ℕ≡A′ (noemb x) [ℕ≡A] whnfA = whnfRed* [ℕ≡A] whnfA
ℕ≡A′ (emb 0<1 [ℕ]) [ℕ≡A] whnfA = ℕ≡A′ [ℕ] [ℕ≡A] whnfA
-- If A in WHNF is judgmentally equal to ℕ, then A is propositionally equal to ℕ.
ℕ≡A : ∀ {A Γ}
→ Γ ⊢ ℕ ≡ A
→ Whnf A
→ A PE.≡ ℕ
ℕ≡A {A} ℕ≡A whnfA with reducibleEq ℕ≡A
ℕ≡A {A} ℕ≡A whnfA | [ℕ] , [A] , [ℕ≡A] =
ℕ≡A′ (ℕ-elim [ℕ]) (irrelevanceEq [ℕ] (ℕ-intr (ℕ-elim [ℕ])) [ℕ≡A]) whnfA
-- If A in WHNF is judgmentally equal to Empty, then A is propositionally equal to Empty.
Empty≡A′ : ∀ {A Γ l} ([Empty] : Γ ⊩⟨ l ⟩Empty Empty)
→ Γ ⊩⟨ l ⟩ Empty ≡ A / (Empty-intr [Empty])
→ Whnf A
→ A PE.≡ Empty
Empty≡A′ (noemb x) [Empty≡A] whnfA = whnfRed* [Empty≡A] whnfA
Empty≡A′ (emb 0<1 [Empty]) [Empty≡A] whnfA = Empty≡A′ [Empty] [Empty≡A] whnfA
Empty≡A : ∀ {A Γ}
→ Γ ⊢ Empty ≡ A
→ Whnf A
→ A PE.≡ Empty
Empty≡A {A} Empty≡A whnfA with reducibleEq Empty≡A
Empty≡A {A} Empty≡A whnfA | [Empty] , [A] , [Empty≡A] =
Empty≡A′ (Empty-elim [Empty]) (irrelevanceEq [Empty] (Empty-intr (Empty-elim [Empty])) [Empty≡A]) whnfA
Unit≡A′ : ∀ {A Γ l} ([Unit] : Γ ⊩⟨ l ⟩Unit Unit)
→ Γ ⊩⟨ l ⟩ Unit ≡ A / (Unit-intr [Unit])
→ Whnf A
→ A PE.≡ Unit
Unit≡A′ (noemb x) [Unit≡A] whnfA = whnfRed* [Unit≡A] whnfA
Unit≡A′ (emb 0<1 [Unit]) [Unit≡A] whnfA = Unit≡A′ [Unit] [Unit≡A] whnfA
Unit≡A : ∀ {A Γ}
→ Γ ⊢ Unit ≡ A
→ Whnf A
→ A PE.≡ Unit
Unit≡A {A} Unit≡A whnfA with reducibleEq Unit≡A
Unit≡A {A} Unit≡A whnfA | [Unit] , [A] , [Unit≡A] =
Unit≡A′ (Unit-elim [Unit]) (irrelevanceEq [Unit] (Unit-intr (Unit-elim [Unit])) [Unit≡A]) whnfA
ne≡A′ : ∀ {A K Γ l}
→ ([K] : Γ ⊩⟨ l ⟩ne K)
→ Γ ⊩⟨ l ⟩ K ≡ A / (ne-intr [K])
→ Whnf A
→ ∃ λ M → Neutral M × A PE.≡ M
ne≡A′ (noemb [K]) (ne₌ M D′ neM K≡M) whnfA =
M , neM , (whnfRed* (red D′) whnfA)
ne≡A′ (emb 0<1 [K]) [K≡A] whnfA = ne≡A′ [K] [K≡A] whnfA
-- If A in WHNF is judgmentally equal to K, then there exists a M such that
-- A is propositionally equal to M.
ne≡A : ∀ {A K Γ}
→ Neutral K
→ Γ ⊢ K ≡ A
→ Whnf A
→ ∃ λ M → Neutral M × A PE.≡ M
ne≡A {A} neK ne≡A whnfA with reducibleEq ne≡A
ne≡A {A} neK ne≡A whnfA | [ne] , [A] , [ne≡A] =
ne≡A′ (ne-elim neK [ne])
(irrelevanceEq [ne] (ne-intr (ne-elim neK [ne])) [ne≡A]) whnfA
B≡A′ : ∀ {A F G Γ l} W ([W] : Γ ⊩⟨ l ⟩B⟨ W ⟩ ⟦ W ⟧ F ▹ G)
→ Γ ⊩⟨ l ⟩ ⟦ W ⟧ F ▹ G ≡ A / (B-intr W [W])
→ Whnf A
→ ∃₂ λ H E → A PE.≡ ⟦ W ⟧ H ▹ E
B≡A′ W (noemb [W]) (B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) whnfA =
F′ , G′ , whnfRed* D′ whnfA
B≡A′ W (emb 0<1 [W]) [W≡A] whnfA = B≡A′ W [W] [W≡A] whnfA
Π≡A′ : ∀ {A F G Γ l} → _
Π≡A′ {A} {F} {G} {Γ} {l} = B≡A′ {A} {F} {G} {Γ} {l} BΠ
Σ≡A′ : ∀ {A F G Γ l} → _
Σ≡A′ {A} {F} {G} {Γ} {l} = B≡A′ {A} {F} {G} {Γ} {l} BΣ
-- If A is judgmentally equal to Π F ▹ G, then there exists H and E such that
-- A is propositionally equal to Π H ▹ E.
B≡A : ∀ {A F G Γ} W
→ Γ ⊢ ⟦ W ⟧ F ▹ G ≡ A
→ Whnf A
→ ∃₂ λ H E → A PE.≡ ⟦ W ⟧ H ▹ E
B≡A {A} W W≡A whnfA with reducibleEq W≡A
B≡A {A} W W≡A whnfA | [W] , [A] , [W≡A] =
B≡A′ W (B-elim W [W]) (irrelevanceEq [W] (B-intr W (B-elim W [W])) [W≡A]) whnfA
Π≡A : ∀ {A F G Γ} → _
Π≡A {A} {F} {G} {Γ} = B≡A {A} {F} {G} {Γ} BΠ
Σ≡A : ∀ {A F G Γ} → _
Σ≡A {A} {F} {G} {Γ} = B≡A {A} {F} {G} {Γ} BΣ
| 33.456693
| 105
| 0.532831
|
10c8352ebfa0bf59d7abfd7b8e7e38851d0f6207
| 168
|
agda
|
Agda
|
test/bugs/fixed/HiddenLambda.agda
|
zgrannan/agda
|
5953ce337eb6b77b29ace7180478f49c541aea1c
|
[
"BSD-3-Clause"
] | 3
|
2015-03-28T14:51:03.000Z
|
2015-12-07T20:14:00.000Z
|
test/bugs/fixed/HiddenLambda.agda
|
andersk/agda
|
56928ff709dcb931cb9a48c4790e5ed3739e3032
|
[
"BSD-3-Clause"
] | null | null | null |
test/bugs/fixed/HiddenLambda.agda
|
andersk/agda
|
56928ff709dcb931cb9a48c4790e5ed3739e3032
|
[
"BSD-3-Clause"
] | 1
|
2019-03-05T20:02:38.000Z
|
2019-03-05T20:02:38.000Z
|
module HiddenLambda where
postulate
A : Set
T : A -> Set
H : Set
H = {x : A} -> T x -> T x
-- H doesn't reduce when checking the body of h
h : H
h = \tx -> tx
| 11.2
| 47
| 0.559524
|
adeb8680a09774c9acdd5609415caae51c95fa21
| 1,560
|
agda
|
Agda
|
lib/Explore/One.agda
|
crypto-agda/explore
|
16bc8333503ff9c00d47d56f4ec6113b9269a43e
|
[
"BSD-3-Clause"
] | 2
|
2016-06-05T09:25:32.000Z
|
2017-06-28T19:19:29.000Z
|
lib/Explore/One.agda
|
crypto-agda/explore
|
16bc8333503ff9c00d47d56f4ec6113b9269a43e
|
[
"BSD-3-Clause"
] | 1
|
2019-03-16T14:24:04.000Z
|
2019-03-16T14:24:04.000Z
|
lib/Explore/One.agda
|
crypto-agda/explore
|
16bc8333503ff9c00d47d56f4ec6113b9269a43e
|
[
"BSD-3-Clause"
] | null | null | null |
{-# OPTIONS --without-K #-}
open import Type
open import Type.Identities
open import Level.NP
open import Explore.Core
open import Explore.Properties
open import Explore.Explorable
open import Data.One
open import Data.Fin
open import Function.NP
open import Data.Product
open import HoTT
open import Relation.Binary.PropositionalEquality.NP using (refl; _≡_; !_)
import Explore.Monad
module Explore.One where
module _ {ℓ} where
open Explore.Monad {₀} ℓ
𝟙ᵉ : Explore ℓ 𝟙
𝟙ᵉ = return _
{- or
𝟙ᵉ _ f = f _
-}
𝟙ⁱ : ∀ {p} → ExploreInd p 𝟙ᵉ
𝟙ⁱ = return-ind _
{- or
𝟙ⁱ _ _ Pf = Pf _
-}
module _ {ℓ₁ ℓ₂ ℓᵣ} {R : 𝟙 → 𝟙 → ★₀} {r : R _ _} where
⟦𝟙ᵉ⟧ : ⟦Explore⟧ {ℓ₁} {ℓ₂} ℓᵣ R 𝟙ᵉ 𝟙ᵉ
⟦𝟙ᵉ⟧ _ _ _∙ᵣ_ fᵣ = fᵣ r
module 𝟙ⁱ = FromExploreInd 𝟙ⁱ
open 𝟙ⁱ public using ()
renaming (sum to 𝟙ˢ
;product to 𝟙ᵖ
;reify to 𝟙ʳ
;unfocus to 𝟙ᵘ
)
open Adequacy _≡_
module _ {{_ : UA}} where
Σᵉ𝟙-ok : ∀ {ℓ} → Adequate-Σ {ℓ} (Σᵉ 𝟙ᵉ)
Σᵉ𝟙-ok _ = ! Σ𝟙-snd
Πᵉ𝟙-ok : ∀ {ℓ} → Adequate-Π {ℓ} (Πᵉ 𝟙ᵉ)
Πᵉ𝟙-ok _ = ! Π𝟙-uniq _
𝟙ˢ-ok : Adequate-sum 𝟙ˢ
𝟙ˢ-ok _ = ! 𝟙×-snd
𝟙ᵖ-ok : Adequate-product 𝟙ᵖ
𝟙ᵖ-ok _ = ! Π𝟙-uniq _
adequate-sum𝟙 = 𝟙ˢ-ok
adequate-product𝟙 = 𝟙ᵖ-ok
module _ {ℓ} where
𝟙ˡ : Lookup {ℓ} 𝟙ᵉ
𝟙ˡ = const
𝟙ᶠ : Focus {ℓ} 𝟙ᵉ
𝟙ᶠ = proj₂
explore𝟙 = 𝟙ᵉ
explore𝟙-ind = 𝟙ⁱ
lookup𝟙 = 𝟙ˡ
reify𝟙 = 𝟙ʳ
focus𝟙 = 𝟙ᶠ
unfocus𝟙 = 𝟙ᵘ
sum𝟙 = 𝟙ˢ
product𝟙 = 𝟙ᵖ
| 19.746835
| 74
| 0.567308
|
1313ba8b88ec1a88595204772b2e99aa89db2203
| 2,440
|
agda
|
Agda
|
archive/agda-3/src/Oscar/Class/Congruity.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | null | null | null |
archive/agda-3/src/Oscar/Class/Congruity.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | 1
|
2019-04-29T00:35:04.000Z
|
2019-05-11T23:33:04.000Z
|
archive/agda-3/src/Oscar/Class/Congruity.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | null | null | null |
open import Oscar.Prelude
open import Oscar.Class.Transitivity
module Oscar.Class.Congruity where
module _ where
module _
{ℓ} (_∼_ : ∀ {𝔬} {𝔒 : Ø 𝔬} → 𝔒 → 𝔒 → Ø ℓ)
𝔵 𝔶
where
𝓬ongruity = ∀ {𝔛 : Ø 𝔵} {𝔜 : Ø 𝔶} {x₁ x₂} (f : 𝔛 → 𝔜) → x₁ ∼ x₂ → f x₁ ∼ f x₂
record 𝓒ongruity : Ø ℓ ∙̂ ↑̂ (𝔵 ∙̂ 𝔶) where
field congruity : 𝓬ongruity
open 𝓒ongruity ⦃ … ⦄ public
module _
{ℓ} (_∼_ : ∀ {𝔬} {𝔒 : Ø 𝔬} → 𝔒 → 𝔒 → Ø ℓ)
{𝔵 𝔶} (𝔛 : Ø 𝔵) (𝔜 : Ø 𝔶)
where
𝓬ongruity' = ∀ {x₁ x₂} (f : 𝔛 → 𝔜) → x₁ ∼ x₂ → f x₁ ∼ f x₂
record 𝓒ongruity' : Ø ℓ ∙̂ ↑̂ (𝔵 ∙̂ 𝔶) where
field congruity' : 𝓬ongruity'
open 𝓒ongruity' ⦃ … ⦄ public
module _
{ℓ} {𝔬} (_∼_ : ∀ {𝔒 : Ø 𝔬} → 𝔒 → 𝔒 → Ø ℓ)
(𝔛 𝔜 : Ø 𝔬)
where
𝓬ongruity'' = ∀ {x₁ x₂} (f : 𝔛 → 𝔜) → x₁ ∼ x₂ → f x₁ ∼ f x₂
record 𝓒ongruity'' : Ø ℓ ∙̂ 𝔬 where
field congruity'' : 𝓬ongruity''
open 𝓒ongruity'' ⦃ … ⦄ public
-- a functional replacement of 𝓒ongruity₂ (but note the additional requirement of 𝓣ransitivity)
congruity2 : ∀ {ℓ} {_∼_ : ∀ {x} {X : Ø x} → X → X → Ø ℓ}
{𝔵 𝔶 𝔷}
⦃ _ : 𝓒ongruity _∼_ 𝔵 (𝔶 ∙̂ 𝔷) ⦄
⦃ _ : 𝓒ongruity _∼_ (𝔶 ∙̂ 𝔷) 𝔷 ⦄
⦃ _ : 𝓒ongruity _∼_ 𝔶 (𝔵 ∙̂ 𝔷) ⦄
⦃ _ : 𝓒ongruity _∼_ (𝔵 ∙̂ 𝔷) 𝔷 ⦄
⦃ _ : ∀ {x} {X : Ø x} → Transitivity.class (_∼_ {X = X}) ⦄
→ ∀ {𝔛 : Ø 𝔵} {𝔜 : Ø 𝔶} {ℨ : Ø 𝔷} {x₁ x₂} {y₁ y₂} (f : 𝔛 → 𝔜 → ℨ) → x₁ ∼ x₂ → y₁ ∼ y₂ → f x₁ y₁ ∼ f x₂ y₂
congruity2 {𝔛 = 𝔛}{𝔜}{ℨ}{x₁}{x₂}{y₁}{y₂} f x₁∼x₂ y₁∼y₂ =
let fx1=fx2 = congruity f x₁∼x₂ in
let g2 = λ (fx : 𝔜 → ℨ) → fx y₂ in
let fx1y2=fx2y2 = congruity g2 fx1=fx2 in
let e = flip f in
let ey1=ey2 = congruity e y₁∼y₂ in
let h1 = λ (ex : 𝔛 → ℨ) → ex x₁ in
let fx1y1=fx1y2 = congruity h1 ey1=ey2 in
transitivity fx1y1=fx1y2 fx1y2=fx2y2
module _ where
record 𝓒ongruity₂
{ℓ} (_∼_ : ∀ {x} {X : Ø x} → X → X → Ø ℓ)
𝔵 𝔶 𝔷
: Ø ℓ ∙̂ ↑̂ (𝔵 ∙̂ 𝔶 ∙̂ 𝔷) where
field congruity₂ : ∀ {𝔛 : Ø 𝔵} {𝔜 : Ø 𝔶} {ℨ : Ø 𝔷} {x₁ x₂} {y₁ y₂} (f : 𝔛 → 𝔜 → ℨ) → x₁ ∼ x₂ → y₁ ∼ y₂ → f x₁ y₁ ∼ f x₂ y₂
open 𝓒ongruity₂ ⦃ … ⦄ public
module _ where
module _
𝔬 𝔭
{ℓ} (_∼̇_ : ∀ {⋆ : Ø 𝔬} {⋆̇ : ⋆ → Ø 𝔭} → ((𝓞 : ⋆) → ⋆̇ 𝓞) → ((𝓞 : ⋆) → ⋆̇ 𝓞) → Ø ℓ)
(let infix 4 _∼̇_ ; _∼̇_ = _∼̇_)
where
record 𝓒̇ongruity : Ø ↑̂ (𝔬 ∙̂ 𝔭) ∙̂ ℓ where
field ċongruity : ∀ {⋆ : Ø 𝔬} {⋆̇ : ⋆ → Ø 𝔭} {f₁ f₂ : (𝓞 : ⋆) → ⋆̇ 𝓞} (G : ∀ {𝓞 : ⋆} → ⋆̇ 𝓞 → ⋆̇ 𝓞) → f₁ ∼̇ f₂ → G ∘ f₁ ∼̇ G ∘ f₂
open 𝓒̇ongruity ⦃ … ⦄ public
| 30.886076
| 136
| 0.479098
|
ad35e82af92e5585dafca5872f6d233a5f085410
| 253
|
agda
|
Agda
|
test/interaction/Issue289r.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/interaction/Issue289r.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/interaction/Issue289r.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2016-06-08
-- Better error message when case splitting is invoked in location
-- where there is nothing to split
record R : Set where
field f : {!!}
-- C-c C-c RET here gives:
-- Cannot split here, as we are not in a function definition
| 25.3
| 66
| 0.703557
|
a1dbdc530ebbf77cfa5024e96aab9426f9e037b5
| 3,827
|
agda
|
Agda
|
vendor/stdlib/src/Data/Nat/DivMod.agda
|
isabella232/Lemmachine
|
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
|
[
"MIT"
] | 56
|
2015-01-20T02:11:42.000Z
|
2021-12-21T17:02:19.000Z
|
vendor/stdlib/src/Data/Nat/DivMod.agda
|
larrytheliquid/Lemmachine
|
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
|
[
"MIT"
] | 1
|
2022-03-12T12:17:51.000Z
|
2022-03-12T12:17:51.000Z
|
vendor/stdlib/src/Data/Nat/DivMod.agda
|
isabella232/Lemmachine
|
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
|
[
"MIT"
] | 3
|
2015-07-21T16:37:58.000Z
|
2022-03-12T11:54:10.000Z
|
------------------------------------------------------------------------
-- Integer division
------------------------------------------------------------------------
module Data.Nat.DivMod where
open import Data.Nat
open import Data.Nat.Properties
open SemiringSolver
open import Data.Fin as Fin using (Fin; zero; suc; toℕ; fromℕ)
import Data.Fin.Props as Fin
open import Induction.Nat
open import Relation.Nullary.Decidable
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import Data.Function
------------------------------------------------------------------------
-- Some boring lemmas
private
lem₁ : ∀ m k → _
lem₁ m k = cong suc $ begin
m
≡⟨ Fin.inject+-lemma m k ⟩
toℕ (Fin.inject+ k (fromℕ m))
≡⟨ solve 1 (λ x → x := x :+ con 0) refl _ ⟩
toℕ (Fin.inject+ k (fromℕ m)) + 0
∎
lem₂ : ∀ n → _
lem₂ = solve 1 (λ n → con 1 :+ n := con 1 :+ (n :+ con 0)) refl
lem₃ : ∀ n k q r eq → _
lem₃ n k q r eq = begin
suc n + k
≡⟨ solve 2 (λ n k → con 1 :+ n :+ k := n :+ (con 1 :+ k))
refl n k ⟩
n + suc k
≡⟨ cong (_+_ n) eq ⟩
n + (toℕ r + q * n)
≡⟨ solve 3 (λ n r q → n :+ (r :+ q :* n) :=
r :+ (con 1 :+ q) :* n)
refl n (toℕ r) q ⟩
toℕ r + suc q * n
∎
------------------------------------------------------------------------
-- Division
-- A specification of integer division.
data DivMod : ℕ → ℕ → Set where
result : {divisor : ℕ} (q : ℕ) (r : Fin divisor) →
DivMod (toℕ r + q * divisor) divisor
-- Sometimes the following type is more usable; functions in indices
-- can be inconvenient.
data DivMod' (dividend divisor : ℕ) : Set where
result : (q : ℕ) (r : Fin divisor)
(eq : dividend ≡ toℕ r + q * divisor) →
DivMod' dividend divisor
-- Integer division with remainder.
-- Note that Induction.Nat.<-rec is used to ensure termination of
-- division. The run-time complexity of this implementation of integer
-- division should be linear in the size of the dividend, assuming
-- that well-founded recursion and the equality type are optimised
-- properly (see "Inductive Families Need Not Store Their Indices"
-- (Brady, McBride, McKinna, TYPES 2003)).
_divMod'_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} →
DivMod' dividend divisor
_divMod'_ m n {≢0} = <-rec Pred dm m n {≢0}
where
Pred : ℕ → Set
Pred dividend = (divisor : ℕ) {≢0 : False (divisor ≟ 0)} →
DivMod' dividend divisor
1+_ : ∀ {k n} → DivMod' (suc k) n → DivMod' (suc n + k) n
1+_ {k} {n} (result q r eq) = result (1 + q) r (lem₃ n k q r eq)
dm : (dividend : ℕ) → <-Rec Pred dividend → Pred dividend
dm m rec zero {≢0 = ()}
dm zero rec (suc n) = result 0 zero refl
dm (suc m) rec (suc n) with compare m n
dm (suc m) rec (suc .(suc m + k)) | less .m k = result 0 r (lem₁ m k)
where r = suc (Fin.inject+ k (fromℕ m))
dm (suc m) rec (suc .m) | equal .m = result 1 zero (lem₂ m)
dm (suc .(suc n + k)) rec (suc n) | greater .n k =
1+ rec (suc k) le (suc n)
where le = s≤′s (s≤′s (n≤′m+n n k))
-- A variant.
_divMod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} →
DivMod dividend divisor
_divMod_ m n {≢0} with _divMod'_ m n {≢0}
.(toℕ r + q * n) divMod n | result q r refl = result q r
-- Integer division.
_div_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ
_div_ m n {≢0} with _divMod_ m n {≢0}
.(toℕ r + q * n) div n | result q r = q
-- The remainder after integer division.
_mod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → Fin divisor
_mod_ m n {≢0} with _divMod_ m n {≢0}
.(toℕ r + q * n) mod n | result q r = r
| 33.278261
| 79
| 0.519206
|
1a73960ce6123d80188401a2d3f32e3153b8ea9a
| 361
|
agda
|
Agda
|
test/Fail/Issue1652-2.agda
|
cagix/agda
|
cc026a6a97a3e517bb94bafa9d49233b067c7559
|
[
"BSD-2-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue1652-2.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue1652-2.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{- Example by Andreas (2015-09-18) -}
{- Jesper, 2021-03-19: Since the fix of #5238 this example is no longer allowed -}
{-# OPTIONS --rewriting --local-confluence-check #-}
open import Common.Prelude
open import Common.Equality
{-# BUILTIN REWRITE _≡_ #-}
module _ (A : Set) where
postulate
plus0p : ∀{x} → (x + zero) ≡ x
{-# REWRITE plus0p #-}
| 21.235294
| 82
| 0.645429
|
2e6faa9d069f6ab3b31a003950a49d022d62d767
| 4,499
|
agda
|
Agda
|
agda-stdlib/README/Decidability.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/README/Decidability.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/README/Decidability.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Examples of decision procedures and how to use them
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module README.Decidability where
-- Reflects and Dec are defined in Relation.Nullary, and operations on them can
-- be found in Relation.Nullary.Reflects and Relation.Nullary.Decidable.
open import Relation.Nullary as Nullary
open import Relation.Nullary.Reflects
open import Relation.Nullary.Decidable
open import Data.Bool
open import Data.List
open import Data.List.Properties using (∷-injective)
open import Data.Nat
open import Data.Nat.Properties using (suc-injective)
open import Data.Product
open import Data.Unit
open import Function
open import Relation.Binary.PropositionalEquality
open import Relation.Nary
open import Relation.Nullary.Product
infix 4 _≟₀_ _≟₁_ _≟₂_
-- A proof of `Reflects P b` shows that a proposition `P` has the truth value of
-- the boolean `b`. A proof of `Reflects P true` amounts to a proof of `P`, and
-- a proof of `Reflects P false` amounts to a refutation of `P`.
ex₀ : (n : ℕ) → Reflects (n ≡ n) true
ex₀ n = ofʸ refl
ex₁ : (n : ℕ) → Reflects (zero ≡ suc n) false
ex₁ n = ofⁿ λ ()
ex₂ : (b : Bool) → Reflects (T b) b
ex₂ false = ofⁿ id
ex₂ true = ofʸ tt
-- A proof of `Dec P` is a proof of `Reflects P b` for some `b`.
-- `Dec P` is declared as a record, with fields:
-- does : Bool
-- proof : Reflects P does
ex₃ : (b : Bool) → Dec (T b)
does (ex₃ b) = b
proof (ex₃ b) = ex₂ b
-- We also have pattern synonyms `yes` and `no`, allowing both fields to be
-- given at once.
ex₄ : (n : ℕ) → Dec (zero ≡ suc n)
ex₄ n = no λ ()
-- It is possible, but not ideal, to define recursive decision procedures using
-- only the `yes` and `no` patterns. The following procedure decides whether two
-- given natural numbers are equal.
_≟₀_ : (m n : ℕ) → Dec (m ≡ n)
zero ≟₀ zero = yes refl
zero ≟₀ suc n = no λ ()
suc m ≟₀ zero = no λ ()
suc m ≟₀ suc n with m ≟₀ n
... | yes p = yes (cong suc p)
... | no ¬p = no (¬p ∘ suc-injective)
-- In this case, we can see that `does (suc m ≟ suc n)` should be equal to
-- `does (m ≟ n)`, because a `yes` from `m ≟ n` gives rise to a `yes` from the
-- result, and similarly for `no`. However, in the above definition, this
-- equality does not hold definitionally, because we always do a case split
-- before returning a result. To avoid this, we can return the `does` part
-- separately, before any pattern matching.
_≟₁_ : (m n : ℕ) → Dec (m ≡ n)
zero ≟₁ zero = yes refl
zero ≟₁ suc n = no λ ()
suc m ≟₁ zero = no λ ()
does (suc m ≟₁ suc n) = does (m ≟₁ n)
proof (suc m ≟₁ suc n) with m ≟₁ n
... | yes p = ofʸ (cong suc p)
... | no ¬p = ofⁿ (¬p ∘ suc-injective)
-- We now get definitional equalities such as the following.
_ : (m n : ℕ) → does (5 + m ≟₁ 3 + n) ≡ does (2 + m ≟₁ n)
_ = λ m n → refl
-- Even better, from a maintainability point of view, is to use `map` or `map′`,
-- both of which capture the pattern of the `does` field remaining the same, but
-- the `proof` field being updated.
_≟₂_ : (m n : ℕ) → Dec (m ≡ n)
zero ≟₂ zero = yes refl
zero ≟₂ suc n = no λ ()
suc m ≟₂ zero = no λ ()
suc m ≟₂ suc n = map′ (cong suc) suc-injective (m ≟₂ n)
_ : (m n : ℕ) → does (5 + m ≟₂ 3 + n) ≡ does (2 + m ≟₂ n)
_ = λ m n → refl
-- `map′` can be used in conjunction with combinators such as `_⊎-dec_` and
-- `_×-dec_` to build complex (simply typed) decision procedures.
module ListDecEq₀ {a} {A : Set a} (_≟ᴬ_ : (x y : A) → Dec (x ≡ y)) where
_≟ᴸᴬ_ : (xs ys : List A) → Dec (xs ≡ ys)
[] ≟ᴸᴬ [] = yes refl
[] ≟ᴸᴬ (y ∷ ys) = no λ ()
(x ∷ xs) ≟ᴸᴬ [] = no λ ()
(x ∷ xs) ≟ᴸᴬ (y ∷ ys) =
map′ (uncurry (cong₂ _∷_)) ∷-injective (x ≟ᴬ y ×-dec xs ≟ᴸᴬ ys)
-- The final case says that `x ∷ xs ≡ y ∷ ys` exactly when `x ≡ y` *and*
-- `xs ≡ ys`. The proofs are updated by the first two arguments to `map′`.
-- In the case of ≡-equality tests, the pattern
-- `map′ (congₙ c) c-injective (x₀ ≟ y₀ ×-dec ... ×-dec xₙ₋₁ ≟ yₙ₋₁)`
-- is captured by `≟-mapₙ n c c-injective (x₀ ≟ y₀) ... (xₙ₋₁ ≟ yₙ₋₁)`.
module ListDecEq₁ {a} {A : Set a} (_≟ᴬ_ : (x y : A) → Dec (x ≡ y)) where
_≟ᴸᴬ_ : (xs ys : List A) → Dec (xs ≡ ys)
[] ≟ᴸᴬ [] = yes refl
[] ≟ᴸᴬ (y ∷ ys) = no λ ()
(x ∷ xs) ≟ᴸᴬ [] = no λ ()
(x ∷ xs) ≟ᴸᴬ (y ∷ ys) = ≟-mapₙ 2 _∷_ ∷-injective (x ≟ᴬ y) (xs ≟ᴸᴬ ys)
| 33.827068
| 80
| 0.597022
|
3d3fd86dc6f55a9e1f4792efb174014130cf7cd0
| 490
|
agda
|
Agda
|
src/SizedPolyIO/Object.agda
|
agda/ooAgda
|
7cc45e0148a4a508d20ed67e791544c30fecd795
|
[
"MIT"
] | 23
|
2016-06-19T12:57:55.000Z
|
2020-10-12T23:15:25.000Z
|
src/SizedPolyIO/Object.agda
|
agda/ooAgda
|
7cc45e0148a4a508d20ed67e791544c30fecd795
|
[
"MIT"
] | null | null | null |
src/SizedPolyIO/Object.agda
|
agda/ooAgda
|
7cc45e0148a4a508d20ed67e791544c30fecd795
|
[
"MIT"
] | 2
|
2018-09-01T15:02:37.000Z
|
2022-03-12T11:41:00.000Z
|
module SizedPolyIO.Object where
open import Data.Product
open import Level using (_⊔_) renaming (suc to lsuc)
record Interface μ ρ : Set (lsuc (μ ⊔ ρ)) where
field
Method : Set μ
Result : (m : Method) → Set ρ
open Interface public
-- A simple object just returns for a method the response
-- and the object itself
record Object {μ ρ} (i : Interface μ ρ) : Set (μ ⊔ ρ) where
coinductive
field
objectMethod : (m : Method i) → Result i m × Object i
open Object public
| 23.333333
| 59
| 0.685714
|
12f8dab07b931fdec0a39426b4b6b3b0b398770f
| 1,384
|
agda
|
Agda
|
prototyping/Luau/Heap.agda
|
Tr4shh/Roblox-Luau
|
cd18adc20ecb805b8eeb770a9e5ef8e0cd123734
|
[
"MIT"
] | null | null | null |
prototyping/Luau/Heap.agda
|
Tr4shh/Roblox-Luau
|
cd18adc20ecb805b8eeb770a9e5ef8e0cd123734
|
[
"MIT"
] | null | null | null |
prototyping/Luau/Heap.agda
|
Tr4shh/Roblox-Luau
|
cd18adc20ecb805b8eeb770a9e5ef8e0cd123734
|
[
"MIT"
] | null | null | null |
module Luau.Heap where
open import Agda.Builtin.Equality using (_≡_)
open import FFI.Data.Maybe using (Maybe; just)
open import FFI.Data.Vector using (Vector; length; snoc; empty)
open import Luau.Addr using (Addr)
open import Luau.Var using (Var)
open import Luau.Syntax using (Block; Expr; Annotated; FunDec; nil; addr; function_is_end)
data HeapValue (a : Annotated) : Set where
function_is_end : FunDec a → Block a → HeapValue a
Heap : Annotated → Set
Heap a = Vector (HeapValue a)
data _≡_⊕_↦_ {a} : Heap a → Heap a → Addr → HeapValue a → Set where
defn : ∀ {H val} →
-----------------------------------
(snoc H val) ≡ H ⊕ (length H) ↦ val
_[_] : ∀ {a} → Heap a → Addr → Maybe (HeapValue a)
_[_] = FFI.Data.Vector.lookup
∅ : ∀ {a} → Heap a
∅ = empty
data AllocResult a (H : Heap a) (V : HeapValue a) : Set where
ok : ∀ b H′ → (H′ ≡ H ⊕ b ↦ V) → AllocResult a H V
alloc : ∀ {a} H V → AllocResult a H V
alloc H V = ok (length H) (snoc H V) defn
next : ∀ {a} → Heap a → Addr
next = length
allocated : ∀ {a} → Heap a → HeapValue a → Heap a
allocated = snoc
-- next-emp : (length ∅ ≡ 0)
next-emp = FFI.Data.Vector.length-empty
-- lookup-next : ∀ V H → (lookup (allocated H V) (next H) ≡ just V)
lookup-next = FFI.Data.Vector.lookup-snoc
-- lookup-next-emp : ∀ V → (lookup (allocated emp V) 0 ≡ just V)
lookup-next-emp = FFI.Data.Vector.lookup-snoc-empty
| 27.68
| 90
| 0.629335
|
4be7aefeff775f25d9fe59a70857119d7c81eba6
| 1,503
|
agda
|
Agda
|
examples/outdated-and-incorrect/iird/Identity.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
examples/outdated-and-incorrect/iird/Identity.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
examples/outdated-and-incorrect/iird/Identity.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module Identity where
data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x
elim== : {A : Set}(x : A)(C : (y : A) -> x == y -> Set) ->
C x refl -> (y : A) -> (p : x == y) -> C y p
elim== x C Cx .x refl = Cx
elim==₁ : {A : Set}(x : A)(C : (y : A) -> x == y -> Set1) ->
C x refl -> (y : A) -> (p : x == y) -> C y p
elim==₁ x C Cx .x refl = Cx
sym : {A : Set}{x y : A} -> x == y -> y == x
sym {A}{x}{y} eq = elim== x (\z _ -> z == x) refl y eq
cong : {A B : Set}(f : A -> B){x y : A} -> x == y -> f x == f y
cong {A} f {x}{y} eq = elim== x (\z _ -> f x == f z) refl y eq
subst : {A : Set}{x y : A}(P : A -> Set) -> x == y -> P x -> P y
subst P xy px = elim== _ (\z _ -> P z) px _ xy
subst₁ : {A : Set}{x y : A}(P : A -> Set1) -> x == y -> P x -> P y
subst₁ P xy px = elim==₁ _ (\z _ -> P z) px _ xy
symRef : (A : Set)(x : A) -> sym (refl{A}{x}) == refl
symRef A x = refl
symSym : {A : Set}{x y : A}(p : x == y) -> sym (sym p) == p
symSym {A}{x}{y} p = elim== x (\y q -> sym (sym q) == q) refl y p
-- Proving the symmetric elimination rule is not trivial.
elimS : {A : Set}(x : A)(C : (y : A) -> y == x -> Set) ->
C x refl -> (y : A) -> (p : y == x) -> C y p
elimS x C r y p = subst (C y) (symSym p) h
where
h : C y (sym (sym p))
h = elim== x (\y p -> C y (sym p)) r y (sym p)
data _==¹_ {A : Set1}(x : A) : {B : Set1} -> B -> Set where
refl¹ : x ==¹ x
subst¹ : {A : Set1}{x y : A}(P : A -> Set) -> x ==¹ y -> P x -> P y
subst¹ {A} P refl¹ px = px
| 31.978723
| 67
| 0.424484
|
22950d80b1c79dd4fd2173ec30c2a17f483582f1
| 1,525
|
agda
|
Agda
|
src/PMI.agda
|
acallesalda/setform
|
4ab3c1a8bfd679cb3ced25500aa8103cb6c4b1f4
|
[
"MIT"
] | 3
|
2019-08-02T23:13:13.000Z
|
2022-01-06T20:04:13.000Z
|
src/PMI.agda
|
acallesalda/setform
|
4ab3c1a8bfd679cb3ced25500aa8103cb6c4b1f4
|
[
"MIT"
] | null | null | null |
src/PMI.agda
|
acallesalda/setform
|
4ab3c1a8bfd679cb3ced25500aa8103cb6c4b1f4
|
[
"MIT"
] | null | null | null |
------------------------------------------
-- Mathematical induction derived from Z
------------------------------------------
module PMI where
open import Logic
open import ZAxioms
open import Algebra
open import Subset
open import Pairs
-- Axiom of infinity
postulate
infinity : ∃ (λ I → ∅ ∈ I ∧ ∀ x → x ∈ I → x ∪ singleton x ∈ I)
succ : 𝓢 → 𝓢
succ x = x ∪ singleton x
-- Inductive property
Inductive : 𝓢 → Set
Inductive A = ∅ ∈ A ∧ ((x : 𝓢) → x ∈ A → succ x ∈ A)
-- An inductive set.
I : 𝓢
I = proj₁ infinity
formulaN : 𝓢 → Set
formulaN x = (A : 𝓢) → Inductive A → x ∈ A
fullN : ∃ (λ B → {z : 𝓢} → z ∈ B ⇔ z ∈ I ∧ formulaN z)
fullN = sub formulaN I
ℕ : 𝓢
ℕ = proj₁ fullN
x∈ℕ→x∈InductiveSet : (x : 𝓢) → x ∈ ℕ → (A : 𝓢) → Inductive A → x ∈ A
x∈ℕ→x∈InductiveSet x h = ∧-proj₂ (∧-proj₁ (proj₂ _ fullN) h)
-- PMI version from Ivorra Castillo (n.d.), Teorema 8.13.
PMI : (A : 𝓢) → A ⊆ ℕ → ∅ ∈ A → ((n : 𝓢) → n ∈ A → succ n ∈ A) → A ≡ ℕ
PMI A h₁ h₂ h₃ = equalitySubset A ℕ (prf₁ , prf₂)
where
prf₁ : (z : 𝓢) → z ∈ A → z ∈ ℕ
prf₁ z h = h₁ z h
inductiveA : Inductive A
inductiveA = h₂ , h₃
prf₂ : (z : 𝓢) → z ∈ ℕ → z ∈ A
prf₂ z h = x∈ℕ→x∈InductiveSet z h A inductiveA
-- References
--
-- Suppes, Patrick (1960). Axiomatic Set Theory.
-- The University Series in Undergraduate Mathematics.
-- D. Van Nostrand Company, inc.
--
-- Enderton, Herbert B. (1977). Elements of Set Theory.
-- Academic Press Inc.
--
-- Ivorra Castillo, Carlos (n.d.). Lógica y Teoría de
-- Conjuntos. https://www.uv.es/ivorra/
| 23.828125
| 70
| 0.568525
|
1a962aa0dd5b58b17a9b8344d66292baeb8ca3e7
| 98
|
agda
|
Agda
|
Rings/IntegralDomains/Examples.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 4
|
2019-08-08T12:44:19.000Z
|
2022-01-28T06:04:15.000Z
|
Rings/IntegralDomains/Examples.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 14
|
2019-01-06T21:11:59.000Z
|
2020-04-11T11:03:39.000Z
|
Rings/IntegralDomains/Examples.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 1
|
2021-11-29T13:23:07.000Z
|
2021-11-29T13:23:07.000Z
|
{-# OPTIONS --safe --warning=error --without-K #-}
module Rings.IntegralDomains.Examples where
| 16.333333
| 50
| 0.714286
|
a100beda33e892b265298f769e312a3fbc005e22
| 6,590
|
agda
|
Agda
|
src/type-util.agda
|
bmyerz/cedille
|
a7fa7661c89c71c605b1f7d937d6fab188d96781
|
[
"MIT"
] | null | null | null |
src/type-util.agda
|
bmyerz/cedille
|
a7fa7661c89c71c605b1f7d937d6fab188d96781
|
[
"MIT"
] | null | null | null |
src/type-util.agda
|
bmyerz/cedille
|
a7fa7661c89c71c605b1f7d937d6fab188d96781
|
[
"MIT"
] | null | null | null |
module type-util where
open import cedille-types
open import general-util
open import syntax-util
tmtp-to-arg : erased? → tmtp → arg
tmtp-to-arg ff (inj₁ t) = Arg t
tmtp-to-arg me = ArgE
tmtps-to-args : erased? → 𝕃 tmtp → args
tmtps-to-args = map ∘ tmtp-to-arg
tmtps-to-args-for-params : (keep-extra : maybe erased?) → params → 𝕃 tmtp → args
tmtps-to-args-for-params b (ParamTm _ _ :: ps) (inj₁ t :: as) =
Arg t :: tmtps-to-args-for-params b ps as
tmtps-to-args-for-params b (_ :: ps) (tT :: as) =
ArgE tT :: tmtps-to-args-for-params b ps as
tmtps-to-args-for-params nothing _ _ = []
tmtps-to-args-for-params (just me) _ as = tmtps-to-args me as
arg-to-tmtp : arg → tmtp
arg-to-tmtp a = a >>= id
args-to-tmtps : args → 𝕃 tmtp
args-to-tmtps = map arg-to-tmtp
params-to-args : params → args
params-to-args = map λ where
(ParamTm v _) → Arg (Var v)
(ParamEr v _) → ArgEr (Var v)
(ParamTp v _) → ArgTp (TpVar v)
decompose-lams : term → (𝕃 var) × term
decompose-lams (Lam _ x _ t) with decompose-lams t
decompose-lams (Lam _ x _ t) | vs , body = (x :: vs) , body
decompose-lams t = [] , t
decompose-apps : term → term × args
decompose-apps = h [] where
h : args → term → term × args
h acc (App t t') = h (Arg t' :: acc) t
h acc (AppE t tT) = h (ArgE tT :: acc) t
h acc t = t , acc
decompose-tpapps : type → type × 𝕃 tmtp
decompose-tpapps = h [] where
h : 𝕃 tmtp → type → type × 𝕃 tmtp
h acc (TpApp T tT) = h (tT :: acc) T
h acc T = T , acc
decompose-var-headed : term → maybe (var × args)
decompose-var-headed t with decompose-apps t
decompose-var-headed t | Var x , as = just (x , as)
decompose-var-headed t | _ = nothing
decompose-tpvar-headed : type → maybe (var × 𝕃 tmtp)
decompose-tpvar-headed T with decompose-tpapps T
decompose-tpvar-headed T | TpVar x , as = just (x , as)
decompose-tpvar-headed T | _ = nothing
recompose-apps : args → term → term
recompose-apps = flip $ foldl λ a t → either-else' a (App t) (AppE t)
recompose-tpapps : 𝕃 tmtp → type → type
recompose-tpapps = flip $ foldl $ flip TpApp
apps-term : term → args → term
apps-term = flip recompose-apps
apps-type : type → args → type
apps-type = foldl $ flip TpApp ∘ arg-to-tmtp
lam-expand-term : params → term → term
lam-expand-term = flip $ foldr λ where
(Param me x atk) → Lam me x (just atk)
lam-expand-type : params → type → type
lam-expand-type = flip $ foldr λ where
(Param me x atk) → TpLam x atk
abs-expand-type : params → type → type
abs-expand-type = flip $ foldr λ where
(Param me x atk) → TpAbs me x atk
abs-expand-kind : params → kind → kind
abs-expand-kind = flip $ foldr λ where
(Param me x atk) → KdAbs x atk
case-args-to-lams : case-args → term → term
case-args-to-lams = flip $ foldr λ where
(CaseArg me x atk) → Lam me x atk
expand-case : case → term
expand-case (Case x xs t T) = case-args-to-lams xs t
is-eq-tp? : {ed : exprd} → ⟦ ed ⟧ → maybe (term × term)
is-eq-tp? {TYPE} (TpEq t₁ t₂) = just $ t₁ , t₂
is-eq-tp? _ = nothing
arg-set-erased : erased? → arg → arg
arg-set-erased tt (Arg t) = ArgEr t
arg-set-erased ff (ArgEr t) = Arg t
arg-set-erased e a = a
is-var : tmtp → maybe var
is-var (Ttm (Var x)) = just x
is-var (Ttp (TpVar x)) = just x
is-var _ = nothing
arg-var : arg → maybe var
arg-var = either-else (is-var ∘ Ttm) is-var
is-var-unqual : tmtp → maybe var
is-var-unqual = maybe-map (λ x → maybe-else (unqual-local x) id (var-suffix x)) ∘ is-var
unerased-arrows : type → ℕ
unerased-arrows (TpAbs ff x atk T) = suc (unerased-arrows T)
unerased-arrows (TpAbs tt x atk T) = unerased-arrows T
unerased-arrows _ = zero
lterms-to-term : theta → ex-tm → 𝕃 lterm → ex-tm
lterms-to-term AbstractEq t [] = ExApp t Erased (ExBeta (term-end-pos t) nothing nothing)
lterms-to-term _ t [] = t
lterms-to-term θ t (Lterm e t' :: ls) = lterms-to-term θ (ExApp t e t') ls
is-hole : ∀ {ed} → ⟦ ed ⟧ → 𝔹
is-hole {TERM} (Hole pi) = tt
is-hole {TYPE} (TpHole pi) = tt
is-hole {KIND} (KdHole pi) = tt
is-hole _ = ff
data datatype : Set where
Data : var → params → indices → ctrs → datatype
tk-erased : tpkd → erased? → erased?
tk-erased (Tkk _) me = Erased
tk-erased (Tkt _) me = me
params-set-erased : erased? → params → params
params-set-erased me = map λ where
(Param me' x atk) → Param me x atk
args-set-erased : erased? → args → args
args-set-erased = map ∘ arg-set-erased
indices-to-params : indices → params
indices-to-params = map λ where
(Index x tk) → Param ff x tk
params-to-indices : params → indices
params-to-indices = map λ where
(Param me x tk) → Index x tk
indices-to-tmtps : indices → 𝕃 tmtp
indices-to-tmtps = map λ where
(Index x (Tkt T)) → Ttm (Var x)
(Index x (Tkk k)) → Ttp (TpVar x)
indices-to-kind : indices → kind → kind
indices-to-kind = flip $ foldr λ {(Index x atk) → KdAbs x atk}
params-to-kind : params → kind → kind
params-to-kind = flip $ foldr λ {(Param me x atk) → KdAbs x atk}
indices-to-tplams : indices → (body : type) → type
indices-to-tplams = flip $ foldr λ where
(Index x atk) → TpLam x atk
params-to-tplams : params → (body : type) → type
params-to-tplams = flip $ foldr λ where
(Param me x atk) → TpLam x atk
indices-to-alls : indices → (body : type) → type
indices-to-alls = flip $ foldr λ where
(Index x atk) → TpAbs Erased x atk
params-to-alls : params → (body : type) → type
params-to-alls = flip $ foldr λ where
(Param me x atk) → TpAbs (tk-erased atk me) x atk
indices-to-lams : indices → (body : term) → term
indices-to-lams = flip $ foldr λ where
(Index x atk) → Lam Erased x (just atk)
params-to-lams : params → (body : term) → term
params-to-lams = flip $ foldr λ where
(Param me x atk) → Lam (tk-erased atk me) x (just atk)
indices-to-apps : indices → (body : term) → term
indices-to-apps = flip $ foldl λ where
(Index x (Tkt T)) t → AppEr t (Var x)
(Index x (Tkk k)) t → AppTp t (TpVar x)
params-to-apps : params → (body : term) → term
params-to-apps = recompose-apps ∘ params-to-args
indices-to-tpapps : indices → (body : type) → type
indices-to-tpapps = flip $ foldl λ where
(Index x (Tkt _)) T → TpAppTm T (Var x)
(Index x (Tkk _)) T → TpAppTp T (TpVar x)
params-to-tpapps : params → (body : type) → type
params-to-tpapps = flip apps-type ∘ params-to-args
params-to-case-args : params → case-args
params-to-case-args = map λ where
(Param me x tk) → CaseArg me x (just tk)
ctrs-to-lams : ctrs → term → term
ctrs-to-lams = flip $ foldr λ {(Ctr x T) → Lam NotErased x (just (Tkt T))}
indices-to-args : indices → args
indices-to-args = λ is → map (λ {(Index x atk) → either-else' atk (λ _ → ArgEr (Var x)) (λ _ → ArgTp (TpVar x))}) is
| 30.368664
| 116
| 0.652049
|
2f7a98664ea4ac23a8a53670cdb0a494c05cf221
| 2,515
|
agda
|
Agda
|
src/Selective/Runtime.agda
|
Zalastax/singly-typed-actors
|
ae541df13d069df4eb1464f29fbaa9804aad439f
|
[
"MIT"
] | 1
|
2019-10-29T09:30:26.000Z
|
2019-10-29T09:30:26.000Z
|
src/Selective/Runtime.agda
|
Zalastax/singly-typed-actors
|
ae541df13d069df4eb1464f29fbaa9804aad439f
|
[
"MIT"
] | null | null | null |
src/Selective/Runtime.agda
|
Zalastax/singly-typed-actors
|
ae541df13d069df4eb1464f29fbaa9804aad439f
|
[
"MIT"
] | null | null | null |
module Selective.Runtime where
open import Selective.Simulate
open import Selective.SimulationEnvironment
open import Prelude
open import Data.Nat.Show using (show)
open import Codata.Musical.Notation using ( ♯_ ; ♭)
import IO
open ∞Trace
record BlockedCount : Set₂ where
field
return-count : ℕ
receive-count : ℕ
selective-count : ℕ
count-blocked : (env : Env) → BlockedCount
count-blocked env = loop (Env.blocked-no-progress env)
where
open BlockedCount
loop : ∀ {store inbs bl} → All (IsBlocked store inbs) bl → BlockedCount
loop [] = record { return-count = 0 ; receive-count = 0 ; selective-count = 0 }
loop (BlockedReturn _ _ ∷ xs) =
let rec = loop xs
in record { return-count = suc (rec .return-count) ; receive-count = rec .receive-count ; selective-count = rec .selective-count }
loop (BlockedReceive _ _ _ ∷ xs) =
let rec = loop xs
in record { return-count = rec .return-count ; receive-count = suc (rec .receive-count) ; selective-count = rec .selective-count }
loop (BlockedSelective _ _ _ _ _ ∷ xs) =
let rec = loop xs
in record { return-count = rec .return-count ; receive-count = rec .receive-count ; selective-count = suc (rec .selective-count) }
show-env : Env → String
show-env env =
let count = count-blocked env
open BlockedCount
in "There are " || show (count .return-count) || " finished actors, " || show (count .receive-count) || " receiving actors, and " || show (count .selective-count) || " selecting actors"
show-final-step : ℕ → String
show-final-step n = "Done after " || (show n) || " steps."
-- run-env continously runs the simulation of an environment
-- and transforms the steps taken into output to the console.
run-env : Env → IO.IO ⊤
run-env env = loop 1 ((simulate env) .force)
where
loop : ℕ → Trace ∞ → IO.IO ⊤
loop n (TraceStop env _) = ♯ IO.putStrLn (show-final-step n) IO.>> ♯ IO.putStrLn (show-env env)
loop n (x ∷ xs) = ♯ IO.putStrLn ("Step " || show n ) IO.>> ♯ loop (suc n) (xs .force)
run-env-silent : Env → IO.IO ⊤
run-env-silent env = loop 1 ((simulate env) .force)
where
loop : ℕ → Trace ∞ → IO.IO ⊤
loop n (TraceStop env _) = IO.putStrLn (show-final-step n)
loop n (x ∷ xs) = ♯ IO.return tt IO.>> ♯ loop (suc n) (xs .force)
run-env-end : Env → IO.IO Env
run-env-end env = loop ((simulate env) .force)
where
loop : Trace ∞ → IO.IO Env
loop (TraceStop env _) = IO.return env
loop (x ∷ xs) = ♯ IO.return x IO.>> ♯ loop (xs .force)
| 39.296875
| 187
| 0.650099
|
291dd527628222354ea640ca14db31e1e3e84717
| 68
|
agda
|
Agda
|
test/interaction/Issue2217.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/interaction/Issue2217.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/interaction/Issue2217.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
import Issue2217.M
{-# TERMINATING #-}
A : Set
A = ?
a : A
a = ?
| 6.8
| 19
| 0.514706
|
ad2ba4620ee7437960024a8898ab0b065024167c
| 217
|
agda
|
Agda
|
test/Fail/Issue278.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue278.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue278.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --warning=error #-}
module Issue278 where
open import Agda.Builtin.Equality
abstract
module A where
Foo : Set₁
Foo = Set
module B where
open A
Foo≡Set : Foo ≡ Set
Foo≡Set = refl
| 14.466667
| 33
| 0.640553
|
041138caa5f71ad6d537e1d1e4c7575360a01405
| 223
|
agda
|
Agda
|
src/data/lib/prim/Agda/Builtin/Equality.agda
|
cagix/agda
|
cc026a6a97a3e517bb94bafa9d49233b067c7559
|
[
"BSD-2-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
src/data/lib/prim/Agda/Builtin/Equality.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
src/data/lib/prim/Agda/Builtin/Equality.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness #-}
module Agda.Builtin.Equality where
infix 4 _≡_
data _≡_ {a} {A : Set a} (x : A) : A → Set a where
instance refl : x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
| 22.3
| 68
| 0.61435
|
576cbf200fd286b02ec4cf966ec966baf0bb36eb
| 5,263
|
agda
|
Agda
|
Cats/Util/Simp.agda
|
alessio-b-zak/cats
|
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
|
[
"MIT"
] | null | null | null |
Cats/Util/Simp.agda
|
alessio-b-zak/cats
|
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
|
[
"MIT"
] | null | null | null |
Cats/Util/Simp.agda
|
alessio-b-zak/cats
|
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
|
[
"MIT"
] | null | null | null |
module Cats.Util.Simp where
open import Data.List using (List ; [] ; _∷_)
open import Data.Nat using (ℕ ; zero ; suc)
open import Data.Product using (_×_ ; _,_ ; ∃-syntax)
open import Data.Unit using (⊤)
open import Function using () renaming (_∘_ to _⊚_)
open import Level using (_⊔_) renaming (zero to lzero)
open import Relation.Binary.PropositionalEquality as ≡ using
(_≡_ ; inspect ; [_])
open import Cats.Category.Base
open import Cats.Util.Reflection
_>>=_ = bindTC
return = returnTC
_>>_ : ∀ {a} {A : Set a} {b} {B : Set b} → TC A → TC B → TC B
ma >> mb = ma >>= λ _ → mb
module _ {lo la l≈} (C : Category lo la l≈) where
infixr 9 _∘_
private
module C = Category C
module ≈ = C.≈
open C.≈-Reasoning
data Tm : C.Obj → C.Obj → Set (lo ⊔ la) where
var : ∀ {A B} → A C.⇒ B → Tm A B
id : ∀ {A} → Tm A A
_∘_ : ∀ {A B C} → Tm B C → Tm A B → Tm A C
⟦_⟧ : ∀ {A B} → Tm A B → A C.⇒ B
⟦ var f ⟧ = f
⟦ id ⟧ = C.id
⟦ f ∘ g ⟧ = ⟦ f ⟧ C.∘ ⟦ g ⟧
Method : Set (lo ⊔ la)
Method = ∀ {A B} → Tm A B → Tm A B
Correct : Method → Set (lo ⊔ la ⊔ l≈)
Correct f = ∀ {A B} (t : Tm A B) → ⟦ t ⟧ C.≈ ⟦ f t ⟧
Correct→Injective : (f : Method) → Correct f → ∀ {A B} (t u : Tm A B)
→ ⟦ f t ⟧ C.≈ ⟦ f u ⟧
→ ⟦ t ⟧ C.≈ ⟦ u ⟧
Correct→Injective f fcor t u eq
= ≈.trans (fcor t) (≈.trans eq (≈.sym (fcor u)))
⊚-correct : (f g : Method) → Correct f → Correct g → Correct (f ⊚ g)
⊚-correct _ _ fcor gcor t = ≈.trans (gcor _) (fcor _)
{-# TERMINATING #-}
reassoc : Method
reassoc (var f) = var f
reassoc id = id
reassoc (var f ∘ g) = var f ∘ reassoc g
reassoc (id ∘ g) = id ∘ reassoc g
reassoc ((f ∘ g) ∘ h) = reassoc (f ∘ g ∘ h)
{-# TERMINATING #-}
reassoc-correct : Correct reassoc
reassoc-correct (var f) = C.≈.refl
reassoc-correct id = C.≈.refl
reassoc-correct (var f ∘ g) = C.∘-resp-r (reassoc-correct g)
reassoc-correct (id ∘ f) = C.∘-resp-r (reassoc-correct f)
reassoc-correct ((f ∘ g) ∘ h) = ≈.trans C.assoc (reassoc-correct (f ∘ g ∘ h))
simpId : Method
simpId (var x) = var x
simpId id = id
simpId (f ∘ g) with simpId f | simpId g
... | var f′ | var g′ = var f′ ∘ var g′
... | var f′ | id = var f′
... | var f′ | g′ ∘ g″ = var f′ ∘ g′ ∘ g″
... | id | g′ = g′
... | f′ ∘ f″ | var g′ = f′ ∘ f″ ∘ var g′
... | f′ ∘ f″ | id = f′ ∘ f″
... | f′ ∘ f″ | g′ ∘ g″ = f′ ∘ f″ ∘ g′ ∘ g″
simpId-correct : Correct simpId
simpId-≡ : ∀ {A B} t {u : Tm A B} → simpId t ≡ u → ⟦ t ⟧ C.≈ ⟦ u ⟧
simpId-correct (var x) = C.≈.refl
simpId-correct id = C.≈.refl
simpId-correct (f ∘ g)
with simpId f | inspect simpId f | simpId g | inspect simpId g
... | var f′ | [ eq-f ] | var g′ | [ eq-g ]
= C.∘-resp (simpId-≡ f eq-f) (simpId-≡ g eq-g)
... | var f′ | [ eq-f ] | id | [ eq-g ]
= ≈.trans (C.∘-resp (simpId-≡ f eq-f) (simpId-≡ g eq-g)) C.id-r
... | var f′ | [ eq-f ] | g′ ∘ g″ | [ eq-g ]
= C.∘-resp (simpId-≡ f eq-f) (simpId-≡ g eq-g)
... | id | [ eq-f ] | g' | [ eq-g ]
= ≈.trans (C.∘-resp (simpId-≡ f eq-f) (simpId-≡ g eq-g)) C.id-l
... | f′ ∘ f″ | [ eq-f ] | var x | [ eq-g ]
= ≈.trans (C.∘-resp (simpId-≡ f eq-f) (simpId-≡ g eq-g)) C.assoc
... | f′ ∘ f″ | [ eq-f ] | id | [ eq-g ]
= ≈.trans (C.∘-resp (simpId-≡ f eq-f) (simpId-≡ g eq-g)) C.id-r
... | f′ ∘ f″ | [ eq-f ] | g′ ∘ g″ | [ eq-g ]
= ≈.trans (C.∘-resp (simpId-≡ f eq-f) (simpId-≡ g eq-g)) C.assoc
simpId-≡ t eq
= ≈.trans (simpId-correct t) (≈.reflexive (≡.cong ⟦_⟧ eq))
simp : Method
simp = reassoc ⊚ simpId
simp-correct : Correct simp
simp-correct
= ⊚-correct reassoc simpId reassoc-correct simpId-correct
simp-injective : ∀ {A B} (t u : Tm A B)
→ ⟦ simp t ⟧ C.≈ ⟦ simp u ⟧
→ ⟦ t ⟧ C.≈ ⟦ u ⟧
simp-injective = Correct→Injective simp simp-correct
simp-injective′ : ∀ {A B} (t u : Tm A B)
→ simp t ≡ simp u
→ ⟦ t ⟧ C.≈ ⟦ u ⟧
simp-injective′ t u eq = simp-injective t u (≈.reflexive (≡.cong ⟦_⟧ eq))
reify : Term → Term
reify (def (quote Category.id)
(argH _ ∷ argH _ ∷ argH _ ∷ argD C ∷ argH _ ∷ []))
= con (quote id) []
reify (def (quote Category._∘_)
(argH _ ∷ argH _ ∷ argH _ ∷ argD C ∷ argH _ ∷ argH _ ∷ argH _ ∷ argD f ∷ argD g ∷ []))
= con (quote _∘_) (argD (reify f) ∷ argD (reify g) ∷ [])
reify t = con (quote Tm.var) (argD t ∷ [])
matchGoal : Term → TC (Term × Term)
matchGoal (def (quote Category._≈_)
(argH _ ∷ argH _ ∷ argH _ ∷ argD C ∷ argH A ∷ argH B ∷ argD f ∷ argD g ∷ []))
= return (reify f , reify g)
matchGoal _ = typeError (strErr "matchGoal: not an equality" ∷ [])
macro
simp! : ∀ {lo la l≈} → Category lo la l≈ → Term → TC ⊤
simp! C hole = do
goal ← inferType hole
blockOnAnyMeta goal
(lhs , rhs) ← matchGoal goal
C′ ← quoteTC C
let solution
= def (quote simp-injective′)
( argD C′
∷ argD lhs
∷ argD rhs
∷ argD (con (quote ≡.refl) [])
∷ [])
unify hole solution
module Test {lo la l≈} {C : Category lo la l≈} (let module C = Category C) {A B C′ D} {f : C′ C.⇒ D} {g : B C.⇒ C′} {h : A C.⇒ B} where
test : ((C.id C.∘ f) C.∘ g) C.∘ h C.≈ C.id C.∘ f C.∘ g C.∘ h
test = simp! C
| 28.917582
| 135
| 0.505225
|
4bf45c11d0fa024c0e3246f276d65e0f53bee89f
| 6,967
|
agda
|
Agda
|
Groups/FreeGroup/Group.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 4
|
2019-08-08T12:44:19.000Z
|
2022-01-28T06:04:15.000Z
|
Groups/FreeGroup/Group.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 14
|
2019-01-06T21:11:59.000Z
|
2020-04-11T11:03:39.000Z
|
Groups/FreeGroup/Group.agda
|
Smaug123/agdaproofs
|
0f4230011039092f58f673abcad8fb0652e6b562
|
[
"MIT"
] | 1
|
2021-11-29T13:23:07.000Z
|
2021-11-29T13:23:07.000Z
|
{-# OPTIONS --safe --warning=error #-}
open import Setoids.Setoids
open import Groups.FreeGroup.Definition
open import Groups.Definition
open import Decidable.Sets
open import Numbers.Naturals.Order
open import LogicalFormulae
open import Semirings.Definition
module Groups.FreeGroup.Group {a : _} {A : Set a} (decA : DecidableSet A) where
open import Groups.FreeGroup.Word decA
prepend : ReducedWord → FreeCompletion A → ReducedWord
prepend empty x = prependLetter x empty (wordEmpty refl)
prepend (prependLetter (ofLetter y) w pr) (ofLetter x) = prependLetter (ofLetter x) (prependLetter (ofLetter y) w pr) (wordEnding (succIsPositive _) (freeCompletionEqualFalse decA {ofLetter x} {ofInv x} λ ()))
prepend (prependLetter (ofInv y) w pr) (ofLetter x) with decA x y
... | inl x=y = w
... | inr x!=y = prependLetter (ofLetter x) (prependLetter (ofInv y) w pr) (wordEnding (succIsPositive _) (freeCompletionEqualFalse decA {ofLetter x} {ofLetter y} λ pr → x!=y (ofLetterInjective pr)))
prepend (prependLetter (ofLetter y) w pr) (ofInv x) with decA x y
... | inl x=y = w
... | inr x!=y = prependLetter (ofInv x) (prependLetter (ofLetter y) w pr) (wordEnding (succIsPositive _) (freeCompletionEqualFalse decA λ pr → x!=y (ofInvInjective pr)))
prepend (prependLetter (ofInv y) w pr) (ofInv x) = prependLetter (ofInv x) (prependLetter (ofInv y) w pr) (wordEnding (succIsPositive _) (freeCompletionEqualFalse decA {ofInv x} {ofLetter x} (λ ())))
_+W_ : ReducedWord → ReducedWord → ReducedWord
empty +W b = b
prependLetter letter a x +W b = prepend (a +W b) letter
prependValid : (w : ReducedWord) (l : A) → (x : PrependIsValid w (ofLetter l)) → prepend w (ofLetter l) ≡ prependLetter (ofLetter l) w x
prependValid empty l (wordEmpty refl) = refl
prependValid (prependLetter (ofLetter l2) w x) l pr = prependLetterRefl
prependValid (prependLetter (ofInv l2) w x) l pr with decA l l2
prependValid (prependLetter (ofInv l2) w x) .l2 (wordEnding _ x1) | inl refl = exFalso (freeCompletionEqualFalse' decA x1 refl)
... | inr l!=l2 = prependLetterRefl
prependValid' : (w : ReducedWord) (l : A) → (x : PrependIsValid w (ofInv l)) → prepend w (ofInv l) ≡ prependLetter (ofInv l) w x
prependValid' empty l (wordEmpty refl) = refl
prependValid' (prependLetter (ofLetter l2) w x) l pr with decA l l2
prependValid' (prependLetter (ofLetter l2) w x) .l2 (wordEnding _ x1) | inl refl = exFalso (freeCompletionEqualFalse' decA x1 refl)
... | inr l!=l2 = prependLetterRefl
prependValid' (prependLetter (ofInv l2) w x) l pr = prependLetterRefl
prependInv : (w : ReducedWord) (l : A) → prepend (prepend w (ofLetter l)) (ofInv l) ≡ w
prependInv empty l with decA l l
... | inl l=l = refl
... | inr l!=l = exFalso (l!=l refl)
prependInv (prependLetter (ofLetter l2) w x) l with decA l l
... | inl l=l = refl
... | inr l!=l = exFalso (l!=l refl)
prependInv (prependLetter (ofInv l2) w x) l with decA l l2
prependInv (prependLetter (ofInv l2) w x) .l2 | inl refl = prependValid' w l2 x
... | inr l!=l2 with decA l l
prependInv (prependLetter (ofInv l2) w x) l | inr l!=l2 | inl refl = refl
prependInv (prependLetter (ofInv l2) w x) l | inr l!=l2 | inr bad = exFalso (bad refl)
prependInv' : (w : ReducedWord) (l : A) → prepend (prepend w (ofInv l)) (ofLetter l) ≡ w
prependInv' empty l with decA l l
... | inl l=l = refl
... | inr l!=l = exFalso (l!=l refl)
prependInv' (prependLetter (ofLetter l2) w x) l with decA l l2
prependInv' (prependLetter (ofLetter l2) w x) .l2 | inl refl = prependValid w l2 x
... | inr l!=l2 with decA l l
... | inl refl = refl
... | inr l!=l = exFalso (l!=l refl)
prependInv' (prependLetter (ofInv l2) w x) l with decA l l
prependInv' (prependLetter (ofInv l2) w x) l | inl refl = refl
prependInv' (prependLetter (ofInv l2) w x) l | inr l!=l = exFalso (l!=l refl)
prependAndAdd : (a b : ReducedWord) (l : FreeCompletion A) → prepend (a +W b) l ≡ (prepend a l) +W b
prependAndAdd empty b l = refl
prependAndAdd (prependLetter (ofLetter x) w pr) b (ofLetter y) = refl
prependAndAdd (prependLetter (ofLetter x) w pr) b (ofInv y) with decA y x
prependAndAdd (prependLetter (ofLetter x) w pr) b (ofInv .x) | inl refl = prependInv _ _
... | inr y!=x = refl
prependAndAdd (prependLetter (ofInv x) w pr) b (ofLetter y) with decA y x
prependAndAdd (prependLetter (ofInv x) w pr) b (ofLetter .x) | inl refl = prependInv' _ _
... | inr y!=x = refl
prependAndAdd (prependLetter (ofInv x) w pr) b (ofInv y) = refl
+WAssoc : (a b c : ReducedWord) → (a +W (b +W c)) ≡ ((a +W b) +W c)
+WAssoc empty b c = refl
+WAssoc (prependLetter letter a x) b c rewrite equalityCommutative (prependAndAdd (a +W b) c letter) | +WAssoc a b c = refl
inverseW : ReducedWord → ReducedWord
inverseW empty = empty
inverseW (prependLetter letter w x) = (inverseW w) +W prependLetter (freeInverse letter) empty (wordEmpty refl)
identRightW : (a : ReducedWord) → a +W empty ≡ a
identRightW empty = refl
identRightW (prependLetter (ofLetter l) a x) rewrite identRightW a = prependValid a l x
identRightW (prependLetter (ofInv l) a x) rewrite identRightW a = prependValid' a l x
invLeftW : (a : ReducedWord) → (inverseW a) +W a ≡ empty
invLeftW empty = refl
invLeftW (prependLetter (ofLetter l) a x) rewrite equalityCommutative (+WAssoc (inverseW a) (prependLetter (ofInv l) empty (wordEmpty refl)) (prependLetter (ofLetter l) a x)) = t
where
t : (inverseW a +W (prepend (prependLetter (ofLetter l) a x) (ofInv l))) ≡ empty
t with decA l l
... | inl refl = invLeftW a
... | inr l!=l = exFalso (l!=l refl)
invLeftW (prependLetter (ofInv l) a x) rewrite equalityCommutative (+WAssoc (inverseW a) (prependLetter (ofLetter l) empty (wordEmpty refl)) (prependLetter (ofInv l) a x)) = t
where
t : (inverseW a +W (prepend (prependLetter (ofInv l) a x) (ofLetter l))) ≡ empty
t with decA l l
... | inl refl = invLeftW a
... | inr l!=l = exFalso (l!=l refl)
invRightW : (a : ReducedWord) → a +W (inverseW a) ≡ empty
invRightW empty = refl
invRightW (prependLetter (ofLetter l) a x) rewrite +WAssoc a (inverseW a) (prependLetter (ofInv l) empty (wordEmpty refl)) | invRightW a = t
where
t : prepend (prependLetter (ofInv l) empty (wordEmpty refl)) (ofLetter l) ≡ empty
t with decA l l
... | inl refl = refl
... | inr l!=l = exFalso (l!=l refl)
invRightW (prependLetter (ofInv l) a x) rewrite +WAssoc a (inverseW a) (prependLetter (ofLetter l) empty (wordEmpty refl)) | invRightW a = t
where
t : prepend (prependLetter (ofLetter l) empty (wordEmpty refl)) (ofInv l) ≡ empty
t with decA l l
... | inl refl = refl
... | inr l!=l = exFalso (l!=l refl)
freeGroup : Group (reflSetoid ReducedWord) _+W_
Group.+WellDefined freeGroup refl refl = refl
Group.0G freeGroup = empty
Group.inverse freeGroup = inverseW
Group.+Associative freeGroup {a} {b} {c} = +WAssoc a b c
Group.identRight freeGroup {a} = identRightW a
Group.identLeft freeGroup {a} = refl
Group.invLeft freeGroup {a} = invLeftW a
Group.invRight freeGroup {a} = invRightW a
| 52.383459
| 209
| 0.695278
|
1d786d498e03b528673779225b2915da2ce08b3a
| 4,297
|
agda
|
Agda
|
part1/decidable/decidable.agda
|
akiomik/plfa-solutions
|
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
|
[
"Apache-2.0"
] | 1
|
2020-07-07T09:42:22.000Z
|
2020-07-07T09:42:22.000Z
|
part1/decidable/decidable.agda
|
akiomik/plfa-solutions
|
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
|
[
"Apache-2.0"
] | null | null | null |
part1/decidable/decidable.agda
|
akiomik/plfa-solutions
|
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
|
[
"Apache-2.0"
] | null | null | null |
module decidable where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
open Eq.≡-Reasoning
open import Data.Nat using (ℕ; zero; suc)
open import Data.Product using (_×_) renaming (_,_ to ⟨_,_⟩)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Relation.Nullary using (¬_)
open import Relation.Nullary.Negation using ()
renaming (contradiction to ¬¬-intro)
open import Data.Unit using (⊤; tt)
open import Data.Empty using (⊥; ⊥-elim)
-- open import plfa.part1.Relations using (_<_; z<s; s<s)
-- open import plfa.part1.Isomorphism using (_⇔_)
infix 4 _<_
data _<_ : ℕ → ℕ → Set where
z<s : ∀ {n : ℕ}
------------
→ zero < suc n
s<s : ∀ {m n : ℕ}
→ m < n
-------------
→ suc m < suc n
record _⇔_ (A B : Set) : Set where
field
to : A → B
from : B → A
-- Evidence vs Computation
infix 4 _≤_
data _≤_ : ℕ → ℕ → Set where
z≤n : ∀ {n : ℕ}
--------
→ zero ≤ n
s≤s : ∀ {m n : ℕ}
→ m ≤ n
-------------
→ suc m ≤ suc n
2≤4 : 2 ≤ 4
2≤4 = s≤s (s≤s z≤n)
¬4≤2 : ¬ (4 ≤ 2)
¬4≤2 (s≤s (s≤s ()))
data Bool : Set where
true : Bool
false : Bool
infix 4 _≤ᵇ_
_≤ᵇ_ : ℕ → ℕ → Bool
zero ≤ᵇ n = true
suc m ≤ᵇ zero = false
suc m ≤ᵇ suc n = m ≤ᵇ n
_ : (2 ≤ᵇ 4) ≡ true
_ =
begin
2 ≤ᵇ 4
≡⟨⟩
1 ≤ᵇ 3
≡⟨⟩
0 ≤ᵇ 2
≡⟨⟩
true
∎
_ : (4 ≤ᵇ 2) ≡ false
_ =
begin
4 ≤ᵇ 2
≡⟨⟩
3 ≤ᵇ 1
≡⟨⟩
2 ≤ᵇ 0
≡⟨⟩
false
∎
-- Relating evidence and computation
T : Bool → Set
T true = ⊤
T false = ⊥
T→≡ : ∀ (b : Bool) → T b → b ≡ true
T→≡ true tt = refl
T→≡ false ()
≡→T : ∀ {b : Bool} → b ≡ true → T b
≡→T refl = tt
≤ᵇ→≤ : ∀ (m n : ℕ) → T (m ≤ᵇ n) → m ≤ n
≤ᵇ→≤ zero n tt = z≤n
≤ᵇ→≤ (suc m) zero ()
≤ᵇ→≤ (suc m) (suc n) t = s≤s (≤ᵇ→≤ m n t)
≤→≤ᵇ : ∀ {m n : ℕ} → m ≤ n → T (m ≤ᵇ n)
≤→≤ᵇ z≤n = tt
≤→≤ᵇ (s≤s m≤n) = ≤→≤ᵇ m≤n
-- The best of both worlds
-- decidable
data Dec (A : Set) : Set where
yes : A → Dec A
no : ¬ A → Dec A
¬s≤z : ∀ {m : ℕ} → ¬ (suc m ≤ zero)
¬s≤z ()
¬s≤s : ∀ {m n : ℕ} → ¬ (m ≤ n) → ¬ (suc m ≤ suc n)
¬s≤s ¬m≤n (s≤s m≤n) = ¬m≤n m≤n
_≤?_ : ∀ (m n : ℕ) → Dec (m ≤ n)
zero ≤? n = yes z≤n
suc m ≤? zero = no ¬s≤z
suc m ≤? suc n with m ≤? n
... | yes m≤n = yes (s≤s m≤n)
... | no ¬m≤n = no (¬s≤s ¬m≤n)
_ : 2 ≤? 4 ≡ yes (s≤s (s≤s z≤n))
_ = refl
_ : 4 ≤? 2 ≡ no (¬s≤s (¬s≤s ¬s≤z))
_ = refl
-- Decidables from booleans, and booleans from decidables
_≤?′_ : ∀ (m n : ℕ) → Dec (m ≤ n)
m ≤?′ n with m ≤ᵇ n | ≤ᵇ→≤ m n | ≤→≤ᵇ {m} {n}
... | true | p | _ = yes (p tt)
... | false | _ | ¬p = no ¬p
-- erasure
⌊_⌋ : ∀ {A : Set} → Dec A → Bool
⌊ yes x ⌋ = true
⌊ no ¬x ⌋ = false
_≤ᵇ′_ : ℕ → ℕ → Bool
m ≤ᵇ′ n = ⌊ m ≤? n ⌋
toWitness : ∀ {A : Set} {D : Dec A} → T ⌊ D ⌋ → A
toWitness {A} {yes x} tt = x
toWitness {A} {no ¬x} ()
fromWitness : ∀ {A : Set} {D : Dec A} → A → T ⌊ D ⌋
fromWitness {A} {yes x} _ = tt
fromWitness {A} {no ¬x} x = ¬x x
≤ᵇ′→≤ : ∀ {m n : ℕ} → T (m ≤ᵇ′ n) → m ≤ n
≤ᵇ′→≤ = toWitness
≤→≤ᵇ′ : ∀ {m n : ℕ} → m ≤ n → T (m ≤ᵇ′ n)
≤→≤ᵇ′ = fromWitness
-- Logical connectives (論理演算)
-- 真偽値の論理積
infixr 6 _∧_
_∧_ : Bool → Bool → Bool
true ∧ true = true
false ∧ _ = false
_ ∧ false = false
-- decidableの論理積
infixr 6 _×-dec_
_×-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A × B)
yes x ×-dec yes y = yes ⟨ x , y ⟩
no ¬x ×-dec _ = no λ{ ⟨ x , y ⟩ → ¬x x }
_ ×-dec no ¬y = no λ{ ⟨ x , y ⟩ → ¬y y }
-- 真偽値の論理和
infixr 5 _∨_
_∨_ : Bool → Bool → Bool
true ∨ _ = true
_ ∨ true = true
false ∨ false = false
-- decidableの論理和
infixr 5 _⊎-dec_
_⊎-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A ⊎ B)
yes x ⊎-dec _ = yes (inj₁ x)
_ ⊎-dec yes y = yes (inj₂ y)
no ¬x ⊎-dec no ¬y = no λ{ (inj₁ x) → ¬x x ; (inj₂ y) → ¬y y }
-- 真偽値の否定
not : Bool → Bool
not true = false
not false = true
-- decidableの否定
¬? : ∀ {A : Set} → Dec A → Dec (¬ A)
¬? (yes x) = no (¬¬-intro x)
¬? (no ¬x) = yes ¬x
-- 真偽値の含意
_⊃_ : Bool → Bool → Bool
_ ⊃ true = true
false ⊃ _ = true
true ⊃ false = false
-- decidableの含意
_→-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A → B)
_ →-dec yes y = yes (λ _ → y)
no ¬x →-dec _ = yes (λ x → ⊥-elim (¬x x))
yes x →-dec no ¬y = no (λ f → ¬y (f x))
| 19.621005
| 61
| 0.461717
|
5872c15588b778e6c592fb7f8d02230d5211f4d8
| 2,139
|
agda
|
Agda
|
src/Tactic/Reflection/Replace.agda
|
UlfNorell/agda-prelude
|
d704381936db6bd393e63aa2740345e7364f9732
|
[
"MIT"
] | 111
|
2015-01-05T11:28:15.000Z
|
2022-02-12T23:29:26.000Z
|
src/Tactic/Reflection/Replace.agda
|
UlfNorell/agda-prelude
|
d704381936db6bd393e63aa2740345e7364f9732
|
[
"MIT"
] | 59
|
2016-02-09T05:36:44.000Z
|
2022-01-14T07:32:36.000Z
|
src/Tactic/Reflection/Replace.agda
|
UlfNorell/agda-prelude
|
d704381936db6bd393e63aa2740345e7364f9732
|
[
"MIT"
] | 24
|
2015-03-12T18:03:45.000Z
|
2021-04-22T06:10:41.000Z
|
module Tactic.Reflection.Replace where
open import Prelude
open import Container.Traversable
open import Tactic.Reflection
open import Tactic.Reflection.Equality
{-# TERMINATING #-}
_r[_/_] : Term → Term → Term → Term
p r[ r / l ] =
ifYes p == l
then r
else case p of λ
{ (var x args) → var x $ args r₂[ r / l ]
; (con c args) → con c $ args r₂[ r / l ]
; (def f args) → def f $ args r₂[ r / l ]
; (lam v t) → lam v $ t r₁[ weaken 1 r / weaken 1 l ] -- lam v <$> t r₁[ weaken 1 r / weaken 1 l ]
; (pat-lam cs args) →
let w = length args in
pat-lam (replaceClause (weaken w l) (weaken w r) <$> cs) $ args r₂[ r / l ]
; (pi a b) → pi (a r₁[ r / l ]) (b r₁[ weaken 1 r / weaken 1 l ])
; (agda-sort s) → agda-sort $ replaceSort l r s
; (lit l) → lit l
; (meta x args) → meta x $ args r₂[ r / l ]
; unknown → unknown
}
where
replaceClause : Term → Term → Clause → Clause
replaceClause l r (clause tel pats x) = clause tel pats $ x r[ r / l ]
replaceClause l r (absurd-clause tel pats) = absurd-clause tel pats
replaceSort : Term → Term → Sort → Sort
replaceSort l r (set t) = set $ t r[ r / l ]
replaceSort l r (lit n) = lit n
replaceSort l r (prop t) = prop $ t r[ r / l ]
replaceSort l r (propLit n) = propLit n
replaceSort l r (inf n) = inf n
replaceSort l r unknown = unknown
_r₁[_/_] : {T₀ : Set → Set} {{_ : Traversable T₀}} → T₀ Term → Term → Term → T₀ Term
p r₁[ r / l ] = _r[ r / l ] <$> p
_r₂[_/_] : {T₀ T₁ : Set → Set} {{_ : Traversable T₀}} {{_ : Traversable T₁}} →
T₁ (T₀ Term) → Term → Term → T₁ (T₀ Term)
p r₂[ r / l ] = fmap _r[ r / l ] <$> p
_R[_/_] : List (Arg Type) → Type → Type → List (Arg Type)
Γ R[ L / R ] = go Γ (strengthen 1 L) (strengthen 1 R) where
go : List (Arg Type) → Maybe Term → Maybe Term → List (Arg Type)
go (γ ∷ Γ) (just L) (just R) = (caseF γ of _r[ L / R ]) ∷ go Γ (strengthen 1 L) (strengthen 1 R)
go Γ _ _ = Γ
| 39.611111
| 106
| 0.518934
|
57b9f3cec6d51277842f110775134eadad9cba7f
| 1,030
|
agda
|
Agda
|
test/Fail/Issue970.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue970.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue970.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
data Dec (A : Set) : Set where
yes : A → Dec A
no : Dec A
record ⊤ : Set where constructor tt
data _≡_ {A : Set}(x : A) : A → Set where
refl : x ≡ x
subst : ∀ {A}(P : A → Set){x y} → x ≡ y → P x → P y
subst P refl px = px
cong : ∀ {A B}(f : A → B){x y} → x ≡ y → f x ≡ f y
cong f refl = refl
postulate _≟_ : (n n' : ⊤) → Dec (n ≡ n')
record _×_ (A B : Set) : Set where
constructor _,_
field proj₁ : A
proj₂ : B
open _×_
data Maybe : Set where
nothing : Maybe
data Blah (a : Maybe × ⊤) : Set where
blah : {b : Maybe × ⊤} → Blah b → Blah a
update : {A : Set} → ⊤ → A → A
update n m with n ≟ n
update n m | yes p = m
update n m | no = m
lem-upd : ∀ {A} n (m : A) → update n m ≡ m
lem-upd n m with n ≟ n
... | yes p = refl
... | no = refl
bug : {x : Maybe × ⊤} → proj₁ x ≡ nothing → Blah x
bug ia = blah (bug (subst {⊤}
(λ _ → proj₁ {B = ⊤}
(update tt (nothing , tt)) ≡ nothing)
refl (cong proj₁ (lem-upd _ _))))
| 21.914894
| 72
| 0.475728
|
501a36ee8612845a30f0dc1f5596a957046d874c
| 3,442
|
agda
|
Agda
|
core/lib/types/SetQuotient.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | null | null | null |
core/lib/types/SetQuotient.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | null | null | null |
core/lib/types/SetQuotient.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | 1
|
2018-12-26T21:31:57.000Z
|
2018-12-26T21:31:57.000Z
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.Relation
open import lib.NType2
open import lib.types.Pi
module lib.types.SetQuotient {i} {A : Type i} {j} where
postulate -- HIT
SetQuot : (R : Rel A j) → Type (lmax i j)
module _ {R : Rel A j} where
postulate -- HIT
q[_] : (a : A) → SetQuot R
quot-rel : {a₁ a₂ : A} → R a₁ a₂ → q[ a₁ ] == q[ a₂ ]
SetQuot-level : is-set (SetQuot R)
SetQuot-is-set = SetQuot-level
module SetQuotElim {k} {P : SetQuot R → Type k}
(p : (x : SetQuot R) → is-set (P x)) (q[_]* : (a : A) → P q[ a ])
(rel* : ∀ {a₁ a₂} (r : R a₁ a₂) → q[ a₁ ]* == q[ a₂ ]* [ P ↓ quot-rel r ]) where
postulate -- HIT
f : Π (SetQuot R) P
q[_]-β : (a : A) → f q[ a ] ↦ q[ a ]*
{-# REWRITE q[_]-β #-}
postulate -- HIT
quot-rel-β : ∀ {a₁ a₂} (r : R a₁ a₂) → apd f (quot-rel r) == rel* r
open SetQuotElim public using () renaming (f to SetQuot-elim)
module SetQuotRec {k} {B : Type k} (p : is-set B)
(q[_]* : A → B) (rel* : ∀ {a₁ a₂} (r : R a₁ a₂) → q[ a₁ ]* == q[ a₂ ]*) where
private
module M = SetQuotElim (λ x → p) q[_]* (λ {a₁ a₂} r → ↓-cst-in (rel* r))
f : SetQuot R → B
f = M.f
open SetQuotRec public using () renaming (f to SetQuot-rec)
-- If [R] is an equivalence relation, then [quot-rel] is an equivalence.
module _ {R : Rel A j}
(R-is-prop : ∀ {a b} → is-prop (R a b))
(R-is-refl : is-refl R) (R-is-sym : is-sym R)
(R-is-trans : is-trans R) where
private
Q : Type (lmax i j)
Q = SetQuot R
R'-over-quot : Q → Q → hProp j
R'-over-quot = SetQuot-rec (→-is-set $ hProp-is-set j)
(λ a → SetQuot-rec (hProp-is-set j)
(λ b → R a b , R-is-prop)
(nType=-out ∘ lemma-a))
(λ ra₁a₂ → λ= $ SetQuot-elim
(λ _ → raise-level -1 $ hProp-is-set j _ _)
(λ _ → nType=-out $ lemma-b ra₁a₂)
(λ _ → prop-has-all-paths-↓ $ hProp-is-set j _ _))
where
abstract
lemma-a : ∀ {a b₁ b₂} → R b₁ b₂ → R a b₁ == R a b₂
lemma-a rb₁b₂ = ua $ equiv
(λ rab₁ → R-is-trans rab₁ rb₁b₂)
(λ rab₂ → R-is-trans rab₂ (R-is-sym rb₁b₂))
(λ _ → prop-has-all-paths R-is-prop _ _)
(λ _ → prop-has-all-paths R-is-prop _ _)
lemma-b : ∀ {a₁ a₂ b} → R a₁ a₂ → R a₁ b == R a₂ b
lemma-b ra₁a₂ = ua $ equiv
(λ ra₁b → R-is-trans (R-is-sym ra₁a₂) ra₁b)
(λ ra₂b → R-is-trans ra₁a₂ ra₂b)
(λ _ → prop-has-all-paths R-is-prop _ _)
(λ _ → prop-has-all-paths R-is-prop _ _)
R-over-quot : Q → Q → Type j
R-over-quot q₁ q₂ = fst (R'-over-quot q₁ q₂)
abstract
R-over-quot-is-prop : {q₁ q₂ : Q} → is-prop (R-over-quot q₁ q₂)
R-over-quot-is-prop {q₁} {q₂} = snd (R'-over-quot q₁ q₂)
R-over-quot-is-refl : (q : Q) → R-over-quot q q
R-over-quot-is-refl = SetQuot-elim
(λ q → raise-level -1 (R-over-quot-is-prop {q} {q}))
(λ a → R-is-refl a)
(λ _ → prop-has-all-paths-↓ R-is-prop)
path-to-R-over-quot : {q₁ q₂ : Q} → q₁ == q₂ → R-over-quot q₁ q₂
path-to-R-over-quot {q} idp = R-over-quot-is-refl q
quot-rel-equiv : ∀ {a₁ a₂ : A} → R a₁ a₂ ≃ (q[ a₁ ] == q[ a₂ ])
quot-rel-equiv {a₁} {a₂} = equiv
quot-rel (path-to-R-over-quot {q[ a₁ ]} {q[ a₂ ]})
(λ _ → prop-has-all-paths (SetQuot-is-set _ _) _ _)
(λ _ → prop-has-all-paths R-is-prop _ _)
| 33.096154
| 84
| 0.518594
|
c701136a207356f982c526cfb3dad7ae86fab3c9
| 10,926
|
agda
|
Agda
|
archive/agda-2/Oscar/Object.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | null | null | null |
archive/agda-2/Oscar/Object.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | 1
|
2019-04-29T00:35:04.000Z
|
2019-05-11T23:33:04.000Z
|
archive/agda-2/Oscar/Object.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | null | null | null |
module Oscar.Object {𝔣} (FunctionName : Set 𝔣) where
open import Oscar.Category.Category
open import Oscar.Category.Functor
open import Oscar.Category.Morphism
open import Oscar.Category.Semifunctor
open import Oscar.Category.Semigroupoid
open import Oscar.Category.Setoid
open import Oscar.Data.Nat
{-
open import Oscar.Data.AList FunctionName
open import Oscar.Data.Equality
open import Oscar.Data.Equality.properties
open import Oscar.Data.Fin
open import Oscar.Data.List
open import Oscar.Data.Nat
open import Oscar.Data.Product
open import Oscar.Data.Step FunctionName
open import Oscar.Data.Term FunctionName
open import Oscar.Data.Term.internal.SubstituteAndSubstitution FunctionName
open import Oscar.Data.Unit
-}
open import Oscar.Function
open import Oscar.Level
{-
List : Set
ListNatAction : Nat → Set
ListNatMorphism : Nat → Nat → Set
Nat : Set
NatNatAction : Nat → Set
NatNatMorphism : Nat → Nat → Set
-}
{-
data ⋆ : Set where
∅ : ⋆
↧ : ⋆ → ⋆
data ⟱ {a} {A : Set a} : Set a where
data Nat[_↦_] (m : Nat) : Nat → Set where
zero : Nat[ m ↦ m ]
suc : ∀ {n} → Nat[ m ↦ n ] → Nat[ m ↦ suc n ]
_+²_ : ∀ {i₂ i₃} → Nat[ i₂ ↦ i₃ ] → ∀ {i₁} → Nat[ i₁ ↦ i₂ ] → Nat[ i₁ ↦ i₃ ]
zero +² y = y
suc x +² y = suc (x +² y)
data
Nat↥ = Fin
bar = Nat[ 0 ↦ 3 ]
br = Nat
br2 = Nat↥ 3
-}
open import Oscar.Data5
data Indexed : Set (lsuc ℓ) where
iset₀ : (⟦⟧ → Set) → Indexed
isetℓ : (⟦⟧ → Set ℓ) → Indexed
vec : ⟦⟧ → Indexed → Indexed
list : Indexed → Indexed
function : Indexed → Indexed → Indexed
data IsMonoid : Indexed → Set where
list : ∀ i → IsMonoid (list i)
function : ∀ i j → IsMonoid (function i j)
vec : ∀ n i → IsMonoid
open import Level
test-l : ∀ {ℓ} {ℓ'} → (⟦⟧ → Lift {ℓ = ℓ} Set) → (⟦⟧ → Lift {ℓ = ℓ'} Set)
test-l f n = lift (lower (f n))
data Categorical : Set (lsuc ℓ) where
set₀ : (⟦⟧ → ⟦⟧ → Set) → Categorical
setℓ : (⟦⟧ → ⟦⟧ → Set ℓ) → Categorical
function : Indexed → Indexed → Categorical {- e.g. Fin m → Term n -}
monoidal-function : Indexed → Indexed → Categorical {- e.g. Fin n → Term n -}
alist = setℓ AList
ifin = iset₀ Fin
iterm = isetℓ Term
iterms = λ N → isetℓ (Terms N)
istep = isetℓ Step
iliststep = list (istep)
finterm = relational-function ifin iterm
termterm = relational-function iterm iterm
termsterms = λ N → relational-function (iterms N) (iterms N)
stepstep = relational-function istep istep
data Functorial : Categorical → Categorical → Set (lsuc ℓ) where
unpack : Functorial alist finterm
substitute : Functorial finterm termterm
substitutes : (N : ⟦⟧) → Functorial finterm (termsterms N)
stepify : Functorial termterm stepstep
collapse : (n : Nat) → Arrow (listStepN n) (termtermN n)
reduce : (n : Nat) → Arrow (termtermN n) termterm
COMPOSE : ∀ {o₂ o₃} → Functorial o₂ o₃ → ∀ {o₁} → Functorial o₁ o₂ → Functorial o₁ o₃
data Cat : Set where
identity : Cat
cat : Category → Cat
compose :
-- sustitute : Functorial
-- unpack : Arrow alist finterm
-- substitute : Arrow finterm termterm
-- substitutes : (N : Nat) → Arrow finterm (termsterms N)
-- stepify : Arrow termterm stepstep
-- collapse : (n : Nat) → Arrow (listStepN n) (termtermN n)
-- reduce : (n : Nat) → Arrow (termtermN n) termterm
-- COMPOSE : ∀ {o₂ o₃} → Arrow o₂ o₃ → ∀ {o₁} → Arrow o₁ o₂ → Arrow o₁ o₃
-- finterm : Object
-- termterm : Object
-- termsterms : Nat → Object
-- stepstep : Object
-- listStepN : Nat → Object
-- termtermN : Nat → Object
-- list∘ : Object → Object
-- {-
-- object⋆ : Object → Set _
-- object⋆ alist = Nat
-- object⋆ finterm = Nat
-- object⋆ termterm = Nat
-- object⋆ (termsterms N) = Nat
-- object⋆ stepstep = Nat
-- object⋆ (listStepN _) = ⊤
-- object⋆ (termtermN _) = ⊤
-- objectMorphism : (o : Object) → Morphism (object⋆ o) 𝔣 𝔣
-- objectMorphism alist = ⇧ AList
-- objectMorphism finterm = Fin ⇨ Term
-- objectMorphism termterm = Term ⇨ Term
-- objectMorphism (termsterms N) = Terms N ⇨ Terms N
-- objectMorphism stepstep = Step ⇨ Step
-- Setoid.⋆ ((objectMorphism (listStepN n) Morphism.⇒ _) _) = List (Step n)
-- IsSetoid._≋_ (Setoid.isSetoid ((objectMorphism (listStepN N) Morphism.⇒ _) _)) = _≡_
-- Setoid.⋆ ((objectMorphism (termtermN n) Morphism.⇒ _) _) = Term n → Term n
-- IsSetoid._≋_ (Setoid.isSetoid ((objectMorphism (termtermN N) Morphism.⇒ _) _)) = _≡̇_
-- IsSetoid._≋_ (Morphism.isSetoid (objectMorphism (termtermN N))) = _≡̇_
-- -}
-- objectCategory : Object → Category lzero 𝔣 𝔣
-- objectCategory alist = {!!}
-- objectCategory finterm = 𝔾₁
-- objectCategory termterm = 𝔾₂
-- objectCategory (termsterms N) = 𝔾₂ₛ N
-- objectCategory stepstep = {!!}
-- objectCategory (listStepN x) = {!!}
-- objectCategory (termtermN x) = {!!}
-- Semigroupoid.⋆ (Category.semigroupoid (objectCategory (list∘ G))) = List (Category.⋆ (objectCategory G))
-- Morphism._⇒_ (Semigroupoid.𝔐 (Category.semigroupoid (objectCategory (list∘ G)))) = {!!}
-- Morphism.isSetoid (Semigroupoid.𝔐 (Category.semigroupoid (objectCategory (list∘ G)))) = {!!}
-- Semigroupoid._∙_ (Category.semigroupoid (objectCategory (list∘ G))) = {!!}
-- Semigroupoid.isSemigroupoid (Category.semigroupoid (objectCategory (list∘ G))) = {!!}
-- Category.ε (objectCategory (list∘ G)) = {!!}
-- Category.isCategory (objectCategory (list∘ G)) = {!!}
-- data Arrow : Object → Object → Set where
-- unpack : Arrow alist finterm
-- substitute : Arrow finterm termterm
-- substitutes : (N : Nat) → Arrow finterm (termsterms N)
-- stepify : Arrow termterm stepstep
-- collapse : (n : Nat) → Arrow (listStepN n) (termtermN n)
-- reduce : (n : Nat) → Arrow (termtermN n) termterm
-- COMPOSE : ∀ {o₂ o₃} → Arrow o₂ o₃ → ∀ {o₁} → Arrow o₁ o₂ → Arrow o₁ o₃
-- data SimpleArrow : ∀ {o1 o2} → Arrow o1 o2 → Set where
-- unpack : SimpleArrow unpack
-- substitute : SimpleArrow substitute
-- substitutes : (N : Nat) → SimpleArrow (substitutes N)
-- stepify : SimpleArrow stepify
-- collapse : (n : Nat) → SimpleArrow (collapse n)
-- reduce : (n : Nat) → SimpleArrow (reduce n)
-- import Data.List as LIST
-- open import Algebra using (Monoid)
-- serialiseArrow : ∀ {o1 o2} → Arrow o1 o2 → List (∃ λ o1 → ∃ λ o2 → ∃ λ (a : Arrow o1 o2) → SimpleArrow a)
-- serialiseArrow unpack = (_ , _ , _ , unpack) ∷ []
-- serialiseArrow substitute = {!!}
-- serialiseArrow (substitutes N) = {!!}
-- serialiseArrow stepify = {!!}
-- serialiseArrow (collapse n) = {!!}
-- serialiseArrow (reduce n) = {!!}
-- serialiseArrow (COMPOSE g f) =
-- let g' = serialiseArrow g
-- f' = serialiseArrow f
-- in Monoid._∙_ (LIST.monoid (∃ (λ o1 → ∃ (λ o2 → ∃ SimpleArrow)))) g' f'
-- open import Data.Empty
-- eqArrow : ∀ {o1 o2} → Arrow o1 o2 → Arrow o1 o2 → Set
-- eqArrow x y = serialiseArrow x ≡ serialiseArrow y
-- open IsSemifunctor ⦃ … ⦄ using () renaming (extensionality to ext; distributivity to dist)
-- module _
-- {𝔬₁ 𝔪₁ 𝔮₁ 𝔬₂ 𝔪₂ 𝔮₂ 𝔬₃ 𝔪₃ 𝔮₃}
-- (c₁ : Semigroupoid 𝔬₁ 𝔪₁ 𝔮₁)
-- (c₂ : Semigroupoid 𝔬₂ 𝔪₂ 𝔮₂)
-- (c₃ : Semigroupoid 𝔬₃ 𝔪₃ 𝔮₃)
-- where
-- private
-- module 𝔊₁ = Semigroupoid c₁
-- module 𝔊₂ = Semigroupoid c₂
-- module 𝔊₃ = Semigroupoid c₃
-- composeS : ∀
-- {μ₁₂ : 𝔊₁.⋆ → 𝔊₂.⋆}
-- (𝔣₁₂ : ∀ {x y} → x 𝔊₁.↦ y → μ₁₂ x 𝔊₂.↦ μ₁₂ y)
-- {μ₂₃ : 𝔊₂.⋆ → 𝔊₃.⋆}
-- (𝔣₂₃ : ∀ {x y} → x 𝔊₂.↦ y → μ₂₃ x 𝔊₃.↦ μ₂₃ y)
-- ⦃ _ : IsSemifunctor (c₁ , c₂) 𝔣₁₂ ⦄
-- ⦃ _ : IsSemifunctor (c₂ , c₃) 𝔣₂₃ ⦄
-- → IsSemifunctor (c₁ , c₃) (𝔣₂₃ ∘ 𝔣₁₂)
-- IsSemifunctor.extensionality (composeS 𝔣₁₂ 𝔣₂₃ ⦃ isS₁ ⦄ ⦃ isS₂ ⦄) f₁≋f₂ = ext ⦃ isS₂ ⦄ (ext ⦃ isS₁ ⦄ f₁≋f₂)
-- IsSemifunctor.distributivity (composeS {μ₁₂} 𝔣₁₂ {μ₂₃} 𝔣₂₃ ⦃ isS₁ ⦄ ⦃ isS₂ ⦄) {x} {y} f {z} g =
-- let eq₁ = ext ⦃ isS₂ ⦄ (dist ⦃ isS₁ ⦄ f g)
-- eq₂ = dist ⦃ isS₂ ⦄ (𝔣₁₂ f) (𝔣₁₂ g)
-- instance _ = IsSetoid.isEquivalence 𝔊₃.isSetoid
-- in transitivity eq₁ eq₂
-- module _
-- {𝔬₁ 𝔪₁ 𝔮₁ 𝔬₂ 𝔪₂ 𝔮₂ 𝔬₃ 𝔪₃ 𝔮₃}
-- (c₁ : Category 𝔬₁ 𝔪₁ 𝔮₁)
-- (c₂ : Category 𝔬₂ 𝔪₂ 𝔮₂)
-- (c₃ : Category 𝔬₃ 𝔪₃ 𝔮₃)
-- where
-- private
-- module 𝔊₁ = Category c₁
-- module 𝔊₂ = Category c₂
-- module 𝔊₃ = Category c₃
-- composeF : ∀
-- {μ₁₂ : 𝔊₁.⋆ → 𝔊₂.⋆}
-- (𝔣₁₂ : ∀ {x y} → x 𝔊₁.↦ y → μ₁₂ x 𝔊₂.↦ μ₁₂ y)
-- {μ₂₃ : 𝔊₂.⋆ → 𝔊₃.⋆}
-- (𝔣₂₃ : ∀ {x y} → x 𝔊₂.↦ y → μ₂₃ x 𝔊₃.↦ μ₂₃ y)
-- ⦃ _ : IsFunctor (c₁ , c₂) 𝔣₁₂ ⦄
-- ⦃ _ : IsFunctor (c₂ , c₃) 𝔣₂₃ ⦄
-- → IsFunctor (c₁ , c₃) (𝔣₂₃ ∘ 𝔣₁₂)
-- IsFunctor.isSemifunctor (composeF 𝔣₁₂ 𝔣₂₃ ⦃ isF₁ ⦄ ⦃ isF₂ ⦄) = composeS _ _ _ _ _ ⦃ (IsFunctor.isSemifunctor isF₁) ⦄ ⦃ (IsFunctor.isSemifunctor isF₂) ⦄
-- IsFunctor.identity (composeF {μ₁₂} 𝔣₁₂ 𝔣₂₃ ⦃ isF₁ ⦄ ⦃ isF₂ ⦄) x =
-- let f₁₂ε≋ε = identity ⦃ isF₁ ⦄ x
-- f₂₃f₁₂ε≋f₂₃ε = ext ⦃ IsFunctor.isSemifunctor isF₂ ⦄ f₁₂ε≋ε
-- f₂₃ε≋ε = identity ⦃ isF₂ ⦄ (μ₁₂ x)
-- instance _ = IsSetoid.isEquivalence 𝔊₃.isSetoid
-- in transitivity f₂₃f₁₂ε≋f₂₃ε f₂₃ε≋ε
-- --𝔬₁ 𝔪₁ 𝔮₁ 𝔬₃ 𝔪₃ 𝔮₃
-- --composeF 𝔣₁₂ 𝔣₂₃ = (c₁ , c₃) , (𝔣₂₃ ∘ 𝔣₁₂)
-- arrowIsFunctor : ∀ {o₁ o₂} → Arrow o₁ o₂
-- → ∃ λ μ
-- → (let c1 = objectCategory o₁)
-- (let c2 = objectCategory o₂)
-- (let module 𝔊₁ = Category c1)
-- (let module 𝔊₂ = Category c2)
-- → ∃ λ (f : ∀ {x y} → x 𝔊₁.↦ y → μ x 𝔊₂.↦ μ y)
-- → (IsFunctor (objectCategory o₁ , objectCategory o₂) {μ} f)
-- arrowIsFunctor unpack = {!!}
-- arrowIsFunctor substitute = _ , _ , IsFunctor𝔾₁,₂◂
-- arrowIsFunctor (substitutes N) = _ , _ , IsFunctor𝔾₁,₂ₛ◂ {N}
-- arrowIsFunctor stepify = {!!}
-- arrowIsFunctor (collapse n) = {!!}
-- arrowIsFunctor (reduce n) = {!!}
-- arrowIsFunctor (COMPOSE a1 a2) =
-- let _ , _ , isF1 = arrowIsFunctor a1
-- _ , _ , isF2 = arrowIsFunctor a2
-- in _ , _ , composeF _ _ _ _ _ ⦃ isF2 ⦄ ⦃ isF1 ⦄
-- arrowFunctor : ∀ {o₁ o₂} → Arrow o₁ o₂ → Functor _ _ _ _ _ _
-- arrowFunctor {o₁} {o₂} a =
-- let cs , f , IF = arrowIsFunctor a
-- instance _ = IF
-- in (objectCategory o₁ , objectCategory o₂) , f
-- category : Category _ _ _
-- Semigroupoid.⋆ (Category.semigroupoid category) = Object
-- Setoid.⋆ ((Semigroupoid.𝔐 (Category.semigroupoid category) Morphism.⇒ o1) o2) = Arrow o1 o2
-- IsSetoid._≋_ (Setoid.isSetoid ((Semigroupoid.𝔐 (Category.semigroupoid category) Morphism.⇒ x) x₁)) = {!!}
-- IsSetoid.isEquivalence (Setoid.isSetoid ((Semigroupoid.𝔐 (Category.semigroupoid category) Morphism.⇒ x) x₁)) = {!!}
-- IsSetoid._≋_ (Morphism.isSetoid (Semigroupoid.𝔐 (Category.semigroupoid category))) = eqArrow
-- IsSetoid.isEquivalence (Morphism.isSetoid (Semigroupoid.𝔐 (Category.semigroupoid category))) = {!!}
-- Semigroupoid._∙_ (Category.semigroupoid category) g f = COMPOSE g f
-- IsSemigroupoid.extensionality (Semigroupoid.isSemigroupoid (Category.semigroupoid category)) = {!!}
-- IsSemigroupoid.associativity (Semigroupoid.isSemigroupoid (Category.semigroupoid category)) = {!!}
-- Category.ε category = {!!}
-- IsCategory.left-identity (Category.isCategory category) = {!!}
-- IsCategory.right-identity (Category.isCategory category) = {!!}
| 35.589577
| 156
| 0.63326
|
59375b404ae368d8093c50e35ff5e6b6dc7113a8
| 1,481
|
agda
|
Agda
|
Light/Library/Data/Product.agda
|
zamfofex/lightlib
|
44b1c724f2de95d3a9effe87ca36ef9eca8b4756
|
[
"0BSD"
] | 1
|
2019-12-20T21:33:05.000Z
|
2019-12-20T21:33:05.000Z
|
Light/Library/Data/Product.agda
|
zamfofex/lightlib
|
44b1c724f2de95d3a9effe87ca36ef9eca8b4756
|
[
"0BSD"
] | null | null | null |
Light/Library/Data/Product.agda
|
zamfofex/lightlib
|
44b1c724f2de95d3a9effe87ca36ef9eca8b4756
|
[
"0BSD"
] | null | null | null |
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
module Light.Library.Data.Product where
open import Light.Level using (Level ; Setω)
open import Light.Variable.Sets
open import Light.Variable.Levels
import Light.Library.Data.Both as Both
open import Light.Library.Relation.Binary
using (SelfTransitive ; SelfSymmetric ; Reflexive)
open import Light.Library.Relation.Binary.Equality.Decidable using (DecidableEquality)
record Dependencies : Setω where
record Library (dependencies : Dependencies) : Setω where
field
ℓf : Level → Level → Level
Σ : ∀ (𝕒 : Set aℓ) → (𝕒 → Set bℓ) → Set (ℓf aℓ bℓ)
both : ∀ {𝕓 : 𝕒 → Set bℓ} a (b : 𝕓 a) → Σ 𝕒 𝕓
first : ∀ {𝕓 : 𝕒 → Set bℓ} → Σ 𝕒 𝕓 → 𝕒
second : ∀ {𝕓 : 𝕒 → Set bℓ} (product : Σ 𝕒 𝕓) → 𝕓 (first product)
⦃ equals ⦄ :
∀ ⦃ a‐c‐equals : DecidableEquality 𝕒 𝕔 ⦄ ⦃ b‐d‐equals : DecidableEquality 𝕓 𝕕 ⦄
→ DecidableEquality (Σ 𝕒 (λ _ → 𝕓)) (Σ 𝕔 (λ _ → 𝕕))
∃ : ∀ {𝕒 : Set aℓ} → (𝕒 → Set bℓ) → Set (ℓf aℓ bℓ)
∃ = Σ _
instance both‐library : Both.Library record {}
both‐library = record
{
Both = λ 𝕒 𝕓 → Σ 𝕒 (λ _ → 𝕓) ;
ℓf = ℓf ;
both = both ;
first = first ;
second = second ;
equals = equals
}
open Library ⦃ ... ⦄ public
| 36.121951
| 97
| 0.533423
|
134368b49efd862e7101a59851a6a693de70c01d
| 457
|
agda
|
Agda
|
test/Compiler/simple/Literals.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Compiler/simple/Literals.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Compiler/simple/Literals.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --universe-polymorphism #-}
module Literals where
open import Common.Nat
open import Common.Float
open import Common.Char
open import Common.String
open import Common.Unit
open import Common.IO
afloat : Float
afloat = 1.23
astring : String
astring = "abc"
achar : Char
achar = 'd'
anat : Nat
anat = 123
main : IO Unit
main =
printFloat afloat ,,
putStr astring ,,
printChar achar ,,
printNat anat ,,
putStrLn ""
| 15.233333
| 39
| 0.689278
|
062944f5ddbc3befeccaaa19e16cce803263ff77
| 1,526
|
agda
|
Agda
|
test/fail/Issue882a.agda
|
larrytheliquid/agda
|
477c8c37f948e6038b773409358fd8f38395f827
|
[
"MIT"
] | null | null | null |
test/fail/Issue882a.agda
|
larrytheliquid/agda
|
477c8c37f948e6038b773409358fd8f38395f827
|
[
"MIT"
] | null | null | null |
test/fail/Issue882a.agda
|
larrytheliquid/agda
|
477c8c37f948e6038b773409358fd8f38395f827
|
[
"MIT"
] | 1
|
2022-03-12T11:35:18.000Z
|
2022-03-12T11:35:18.000Z
|
{-# OPTIONS -v impossible:100 #-}
module Issue882a where
open import Common.Level
open import Common.Equality
private
primitive
primTrustMe : ∀ {a} {A : Set a} {x y : A} → x ≡ y
-- trustMe {x = x} {y = y} evaluates to refl if x and y are
-- definitionally equal.
--
-- For an example of the use of trustMe, see Data.String._≟_.
trustMe : ∀ {a} {A : Set a} {x y : A} → x ≡ y
trustMe = primTrustMe
postulate
S : Set
B : Set
b : B
M : Set
M = B -> S
out : M -> M
out m = o
where
s : S
s = m b
postulate
mko : (mm : S) -> s ≡ mm -> M
o : M
o n = mko (m b) trustMe n
postulate
unfold : (M -> M) -> M
inn : M
inn = unfold out
postulate
n : B
iso1 : inn ≡ inn
iso1 rewrite refl {x = n} = {!!}
-- iso1 rewrite (refl {a = lzero}{A = B}{x = n}) = {!!}
{- Error
OLD:
An internal error has occurred. Please report this as a bug.
Location of the error: src/full/Agda/TypeChecking/Conversion.hs:636
NEW:
Some vomit about Setω not equal to Level when checking well-formedness
of with type.
NEWER (2013-11-30):
Cannot instantiate the metavariable _48 to solution m b since it
contains the variable m which is not in scope of the metavariable
or irrelevant in the metavariable but relevant in the solution
when checking that the type
B →
(w : _x_48 ≡ _x_48) →
unfold (λ m → _.mko m (m b) w) ≡ unfold (λ m → _.mko m (m b) w)
of the generated with function is well-formed
NOW (2014-05-17):
Rewriting with refl is a no-op, so no error is triggered any more.
Just an unresolved meta now.
-}
| 19.564103
| 70
| 0.646134
|
4151289fda91fdd9e2129faee26c2c3a99a36092
| 332
|
agda
|
Agda
|
test/Succeed/Issue34.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue34.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue34.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- There was a bug with module applications in let.
module Issue34 where
module A (X : Set) where
postulate A : Set
T : (X : Set) -> let open A X in A -> Set
T X _ = X
record B (X : Set) : Set where
open A X
field f : A
postulate
foo : (X : Set)(b : B X) ->
let open A X
open B b in
A -> Set
| 17.473684
| 51
| 0.548193
|
1aaf63dc1f2a696279bc1a16cfdc3e22b8b71a4d
| 384
|
agda
|
Agda
|
Cubical/HITs/GroupoidTruncation/Base.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/HITs/GroupoidTruncation/Base.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | 1
|
2022-01-27T02:07:48.000Z
|
2022-01-27T02:07:48.000Z
|
Cubical/HITs/GroupoidTruncation/Base.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | 1
|
2021-11-22T02:02:01.000Z
|
2021-11-22T02:02:01.000Z
|
{-
This file contains:
- Definition of groupoid truncations
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.GroupoidTruncation.Base where
open import Cubical.Core.Primitives
-- groupoid truncation as a higher inductive type:
data ∥_∥₃ {ℓ} (A : Type ℓ) : Type ℓ where
∣_∣₃ : A → ∥ A ∥₃
squash₃ : ∀ (x y : ∥ A ∥₃) (p q : x ≡ y) (r s : p ≡ q) → r ≡ s
| 21.333333
| 64
| 0.630208
|
588226f43b247ffb1bdb78ede97b2b98d593d045
| 6,959
|
agda
|
Agda
|
src/DualCoinductive.agda
|
kcaliban/dual-session
|
cd41919582013e75463308c32750e2712cf2de86
|
[
"BSD-2-Clause"
] | null | null | null |
src/DualCoinductive.agda
|
kcaliban/dual-session
|
cd41919582013e75463308c32750e2712cf2de86
|
[
"BSD-2-Clause"
] | null | null | null |
src/DualCoinductive.agda
|
kcaliban/dual-session
|
cd41919582013e75463308c32750e2712cf2de86
|
[
"BSD-2-Clause"
] | null | null | null |
module DualCoinductive where
open import Data.Nat hiding (compare)
open import Data.Nat.Properties
open import Data.Fin hiding (_+_)
open import Function
open import Relation.Binary.PropositionalEquality hiding (Extensionality)
open import Agda.Builtin.Equality.Rewrite
open import Direction
-- variables
variable
n m : ℕ
-- session types coinductively
module COI where
mutual
data Type : Set where
TUnit TInt : Type
TPair : Type → Type → Type
TChan : SType → Type
data STypeF (S : Set) : Set where
transmit : (d : Dir) (t : Type) (s : S) → STypeF S
choice : (d : Dir) (m : ℕ) (alt : Fin m → S) → STypeF S
end : STypeF S
record SType : Set where
coinductive
constructor delay
field force : STypeF SType
open SType
variable
t t₁ t₂ t₃ t₁' t₂' t₃' : Type
s s₁ s₂ s₃ : SType
s' s₁' s₂' s₃' : STypeF SType
-- type equivalence
data EquivT (R : SType → SType → Set) : Type → Type → Set where
eq-unit : EquivT R TUnit TUnit
eq-int : EquivT R TInt TInt
eq-pair : EquivT R t₁ t₁' → EquivT R t₂ t₂' → EquivT R (TPair t₁ t₂) (TPair t₁' t₂')
eq-chan : R s₁ s₂ → EquivT R (TChan s₁) (TChan s₂)
-- session type equivalence
data EquivF (R : SType → SType → Set) : STypeF SType → STypeF SType → Set where
eq-transmit : (d : Dir) → EquivT R t₁ t₂ → R s₁ s₂ → EquivF R (transmit d t₁ s₁) (transmit d t₂ s₂)
eq-choice : ∀ {alt alt'} → (d : Dir) → ((i : Fin m) → R (alt i) (alt' i)) → EquivF R (choice d m alt) (choice d m alt')
eq-end : EquivF R end end
record Equiv (s₁ : SType) (s₂ : SType) : Set where
coinductive
field force : EquivF Equiv (force s₁) (force s₂)
open Equiv
_≈_ = Equiv
_≈'_ = EquivF Equiv
_≈ᵗ_ = EquivT Equiv
-- reflexivity
≈ᵗ-refl : t ≈ᵗ t
≈-refl : s ≈ s
≈'-refl : s' ≈' s'
force (≈-refl {s}) = ≈'-refl
≈'-refl {transmit d t s} = eq-transmit d ≈ᵗ-refl ≈-refl
≈'-refl {choice d m alt} = eq-choice d λ i → ≈-refl
≈'-refl {end} = eq-end
≈ᵗ-refl {TUnit} = eq-unit
≈ᵗ-refl {TInt} = eq-int
≈ᵗ-refl {TPair t t₁} = eq-pair ≈ᵗ-refl ≈ᵗ-refl
≈ᵗ-refl {TChan x} = eq-chan ≈-refl
-- symmetry
≈-symm : s₁ ≈ s₂ → s₂ ≈ s₁
≈'-symm : s₁' ≈' s₂' → s₂' ≈' s₁'
≈ᵗ-symm : t₁ ≈ᵗ t₂ → t₂ ≈ᵗ t₁
force (≈-symm s₁≈s₂) = ≈'-symm (force s₁≈s₂)
≈'-symm (eq-transmit d x x₁) = eq-transmit d (≈ᵗ-symm x) (≈-symm x₁)
≈'-symm (eq-choice d x) = eq-choice d (λ i → ≈-symm (x i))
≈'-symm eq-end = eq-end
≈ᵗ-symm eq-unit = eq-unit
≈ᵗ-symm eq-int = eq-int
≈ᵗ-symm (eq-pair t₁≈t₂ t₁≈t₃) = eq-pair (≈ᵗ-symm t₁≈t₂) (≈ᵗ-symm t₁≈t₃)
≈ᵗ-symm (eq-chan x) = eq-chan (≈-symm x)
-- transitivity
≈-trans : s₁ ≈ s₂ → s₂ ≈ s₃ → s₁ ≈ s₃
≈'-trans : s₁' ≈' s₂' → s₂' ≈' s₃' → s₁' ≈' s₃'
≈ᵗ-trans : t₁ ≈ᵗ t₂ → t₂ ≈ᵗ t₃ → t₁ ≈ᵗ t₃
force (≈-trans s₁≈s₂ s₂≈s₃) = ≈'-trans (force s₁≈s₂) (force s₂≈s₃)
≈'-trans (eq-transmit d tt₁ ss₁) (eq-transmit .d tt₂ ss₂) = eq-transmit d (≈ᵗ-trans tt₁ tt₂) (≈-trans ss₁ ss₂)
≈'-trans (eq-choice d x) (eq-choice .d x₁) = eq-choice d (λ i → ≈-trans (x i) (x₁ i))
≈'-trans eq-end eq-end = eq-end
≈ᵗ-trans eq-unit eq-unit = eq-unit
≈ᵗ-trans eq-int eq-int = eq-int
≈ᵗ-trans (eq-pair t₁≈ᵗt₂ t₁≈ᵗt₃) (eq-pair t₂≈ᵗt₃ t₂≈ᵗt₄) = eq-pair (≈ᵗ-trans t₁≈ᵗt₂ t₂≈ᵗt₃) (≈ᵗ-trans t₁≈ᵗt₃ t₂≈ᵗt₄)
≈ᵗ-trans (eq-chan ss₁) (eq-chan ss₂) = eq-chan (≈-trans ss₁ ss₂)
----------------------------------------------------------------------
-- relational duality
data DualD : Dir → Dir → Set where
dual-sr : DualD SND RCV
dual-rs : DualD RCV SND
-- session type duality
data DualF (R : SType → SType → Set) : STypeF SType → STypeF SType → Set where
dual-transmit : DualD d₁ d₂ → t₁ ≈ᵗ t₂ → R s₁ s₂ → DualF R (transmit d₁ t₁ s₁) (transmit d₂ t₂ s₂)
dual-choice : ∀ {alt alt'} → DualD d₁ d₂ → ((i : Fin m) → R (alt i) (alt' i)) → DualF R (choice d₁ m alt) (choice d₂ m alt')
dual-end : DualF R end end
record Dual (s₁ : SType) (s₂ : SType) : Set where
coinductive
field force : DualF Dual (force s₁) (force s₂)
-- open Dual
_⊥_ = Dual
_⊥'_ = DualF Dual
-- _≈ᵗ_ = EquivT Equiv
-- symmetric
DualD-symm : DualD d₁ d₂ → DualD d₂ d₁
DualD-symm dual-sr = dual-rs
DualD-symm dual-rs = dual-sr
⊥-symm : s₁ ⊥ s₂ → s₂ ⊥ s₁
⊥'-symm : s₁' ⊥' s₂' → s₂' ⊥' s₁'
Dual.force (⊥-symm s₁⊥s₂) = ⊥'-symm (Dual.force s₁⊥s₂)
⊥'-symm (dual-transmit x x₁ x₂) = dual-transmit (DualD-symm x) (≈ᵗ-symm x₁) (⊥-symm x₂)
⊥'-symm (dual-choice x x₁) = dual-choice (DualD-symm x) (⊥-symm ∘ x₁)
⊥'-symm dual-end = dual-end
-- involutory
DualD-inv : DualD d₁ d₂ → DualD d₂ d₃ → d₁ ≡ d₃
DualD-inv dual-sr dual-rs = refl
DualD-inv dual-rs dual-sr = refl
⊥-inv : s₁ ⊥ s₂ → s₂ ⊥ s₃ → s₁ ≈ s₃
⊥'-inv : s₁' ⊥' s₂' → s₂' ⊥' s₃' → s₁' ≈' s₃'
force (⊥-inv s₁⊥s₂ s₂⊥s₃) = ⊥'-inv (Dual.force s₁⊥s₂) (Dual.force s₂⊥s₃)
⊥'-inv (dual-transmit dd₁ tt₁ ss₁) (dual-transmit dd₂ tt₂ ss₂) rewrite DualD-inv dd₁ dd₂ = eq-transmit _ (≈ᵗ-trans tt₁ tt₂) (⊥-inv ss₁ ss₂)
⊥'-inv (dual-choice dd₁ ss₁) (dual-choice dd₂ ss₂) rewrite DualD-inv dd₁ dd₂ = eq-choice _ (λ i → ⊥-inv (ss₁ i) (ss₂ i))
⊥'-inv dual-end dual-end = eq-end
----------------------------------------------------------------------
-- duality
dual : SType → SType
dualF : STypeF SType → STypeF SType
force (dual s) = dualF (force s)
dualF (transmit d t s) = transmit (dual-dir d) t (dual s)
dualF (choice d m alt) = choice (dual-dir d) m (dual ∘ alt)
dualF end = end
-- properties
dual-involution : ∀ s → s ≈ dual (dual s)
dual-involutionF : ∀ s' → s' ≈' dualF (dualF s')
force (dual-involution s) = dual-involutionF (force s)
dual-involutionF (transmit d t s)
rewrite dual-dir-inv d = eq-transmit d ≈ᵗ-refl (dual-involution s)
dual-involutionF (choice d m alt)
rewrite dual-dir-inv d = eq-choice d (dual-involution ∘ alt)
dual-involutionF end = eq-end
-----------------------------------------------------------------------
-- relational duality vs functional duality
-- soundness
dual-soundD : DualD d (dual-dir d)
dual-soundD {SND} = dual-sr
dual-soundD {RCV} = dual-rs
dual-soundS : s ⊥ dual s
dual-soundF : s' ⊥' dualF s'
Dual.force dual-soundS = dual-soundF
dual-soundF {transmit d t s} = dual-transmit dual-soundD ≈ᵗ-refl dual-soundS
dual-soundF {choice d m alt} = dual-choice dual-soundD (λ i → dual-soundS)
dual-soundF {end} = dual-end
-- completeness
dual-completeD : DualD d₁ d₂ → d₁ ≡ dual-dir d₂
dual-completeD dual-sr = refl
dual-completeD dual-rs = refl
dual-completeS : s₁ ⊥ s₂ → s₁ ≈ dual s₂
dual-completeF : s₁' ⊥' s₂' → s₁' ≈' dualF s₂'
force (dual-completeS s₁⊥s₂) = dual-completeF (Dual.force s₁⊥s₂)
dual-completeF (dual-transmit dd tt ss) rewrite dual-completeD dd = eq-transmit _ tt (dual-completeS ss)
dual-completeF (dual-choice dd x₁) rewrite dual-completeD dd = eq-choice _ (λ i → dual-completeS (x₁ i))
dual-completeF dual-end = eq-end
| 31.631818
| 141
| 0.590027
|
5708af080c835b5d4f8bea9b3a4765aca0b1bd74
| 671
|
agda
|
Agda
|
test/succeed/Issue106.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | 1
|
2019-11-27T04:41:05.000Z
|
2019-11-27T04:41:05.000Z
|
test/succeed/Issue106.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
test/succeed/Issue106.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
-- {-# OPTIONS -v tc.cover.splittree:10 -v tc.cc.splittree:10 #-}
module Issue106 where
data ℕ : Set where
zero : ℕ
suc : ℕ -> ℕ
{-# BUILTIN NATURAL ℕ #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}
_+_ : ℕ -> ℕ -> ℕ
zero + m = m
suc n + m = suc (n + m)
record ⊤ : Set where
data C : ℕ -> Set where
c : C 0
data D : Set where
d : forall s (x : C s) (xs : D) -> D
f : D -> ℕ -> ⊤
f (d zero c x) (suc n) = f (d 0 c x) n
f (d .zero c x) n = f x (suc n)
g : D -> ℕ -> ⊤
g (d .zero c x) (suc n) = g (d zero c x) n
g (d .zero c x) n = g x (suc n)
h : D -> ℕ -> ⊤
h (d .zero c x) (suc n) = h (d 0 c x) n
h (d .zero c x) n = h x (suc n)
| 19.171429
| 66
| 0.47392
|
10841e26e270166d162bf80464b1d66afaaa54f1
| 5,728
|
agda
|
Agda
|
src/Tactic/Nat/Auto/Lemmas.agda
|
t-more/agda-prelude
|
da4fca7744d317b8843f2bc80a923972f65548d3
|
[
"MIT"
] | 111
|
2015-01-05T11:28:15.000Z
|
2022-02-12T23:29:26.000Z
|
src/Tactic/Nat/Auto/Lemmas.agda
|
t-more/agda-prelude
|
da4fca7744d317b8843f2bc80a923972f65548d3
|
[
"MIT"
] | 59
|
2016-02-09T05:36:44.000Z
|
2022-01-14T07:32:36.000Z
|
src/Tactic/Nat/Auto/Lemmas.agda
|
t-more/agda-prelude
|
da4fca7744d317b8843f2bc80a923972f65548d3
|
[
"MIT"
] | 24
|
2015-03-12T18:03:45.000Z
|
2021-04-22T06:10:41.000Z
|
module Tactic.Nat.Auto.Lemmas where
open import Prelude
open import Tactic.Nat.NF
open import Tactic.Nat.Exp
open import Container.Bag
open import Prelude.Nat.Properties
map++ : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) (xs ys : List A) →
map f (xs ++ ys) ≡ map f xs ++ map f ys
map++ f [] ys = refl
map++ f (x ∷ xs) ys rewrite map++ f xs ys = refl
prod++ : (xs ys : List Nat) → productR (xs ++ ys) ≡ productR xs * productR ys
prod++ [] ys = sym (add-zero-r (productR ys))
prod++ (x ∷ xs) ys rewrite prod++ xs ys = mul-assoc x _ _
private
shuffle₁ : ∀ a b c d → a + ((b + c) + d) ≡ b + c + (a + d)
shuffle₁ a b c d rewrite add-assoc a (b + c) d
| add-commute a (b + c)
| add-assoc (b + c) a d
= refl
shuffle₂ : ∀ a b c d → a + b + (c + d) ≡ a + c + (b + d)
shuffle₂ a b c d rewrite add-assoc (a + b) c d
| sym (add-assoc a b c)
| add-commute b c
| add-assoc a c b
| add-assoc (a + c) b d
= refl
shuffle₃ : ∀ a b c d → (a * b) * (c * d) ≡ (a * c) * (b * d)
shuffle₃ a b c d rewrite mul-assoc (a * b) c d
| sym (mul-assoc a b c)
| mul-commute b c
| mul-assoc a c b
| mul-assoc (a * c) b d = refl
shuffle₄ : ∀ a b c d → a * (b * c * d) ≡ b * c * (a * d)
shuffle₄ a b c d rewrite mul-assoc a (b * c) d
| mul-commute a (b * c)
| mul-assoc (b * c) a d
= refl
module _ {Atom : Set} {{_ : Ord Atom}} where
⟨+⟩-sound : ∀ v₁ v₂ (ρ : Env Atom) → ⟦ v₁ +nf v₂ ⟧n ρ ≡ ⟦ v₁ ⟧n ρ + ⟦ v₂ ⟧n ρ
⟨+⟩-sound [] [] ρ = refl
⟨+⟩-sound [] (_ ∷ _) ρ = refl
⟨+⟩-sound (t ∷ v₁) [] ρ = sym (add-zero-r _)
⟨+⟩-sound ((i , t₁) ∷ v₁) ((j , t₂) ∷ v₂) ρ with ⟨+⟩-sound v₁ ((j , t₂) ∷ v₂) ρ | compare t₁ t₂
... | ih | less _ rewrite ih
= add-assoc (i * productR (map ρ t₁)) _ _
... | _ | equal eq rewrite eq | ⟨+⟩-sound v₁ v₂ ρ
| mul-distr-r i j (productR (map ρ t₂))
= shuffle₂ (⟦ i , t₂ ⟧t ρ) (⟦ j , t₂ ⟧t ρ) _ _
... | _ | greater _ rewrite ⟨+⟩-sound ((i , t₁) ∷ v₁) v₂ ρ
= shuffle₁ (⟦ j , t₂ ⟧t ρ) (⟦ i , t₁ ⟧t ρ) _ _
map-merge : ∀ x y (ρ : Env Atom) → productR (map ρ (merge x y)) ≡ productR (map ρ x) * productR (map ρ y)
map-merge [] [] ρ = refl
map-merge [] (x ∷ xs) ρ = sym (add-zero-r (productR (ρ x ∷ map ρ xs)))
map-merge (x ∷ xs) [] ρ = sym (mul-one-r _)
map-merge (x ∷ xs) (y ∷ ys) ρ with map-merge xs (y ∷ ys) ρ | x <? y
... | ih | true rewrite ih = mul-assoc (ρ x) _ _
... | _ | false rewrite map-merge (x ∷ xs) ys ρ = shuffle₄ (ρ y) (ρ x) _ _
mulTm-sound : ∀ t t′ (ρ : Env Atom) →
⟦ mulTm t t′ ⟧t ρ ≡ ⟦ t ⟧t ρ * ⟦ t′ ⟧t ρ
mulTm-sound (a , x) (b , y) ρ rewrite map-merge x y ρ
= shuffle₃ a b _ _
mulTmDistr : ∀ t v (ρ : Env Atom) → ⟦ map (mulTm t) v ⟧n ρ ≡ ⟦ t ⟧t ρ * ⟦ v ⟧n ρ
mulTmDistr t [] ρ = sym (mul-zero-r (⟦ t ⟧t ρ))
mulTmDistr t (t′ ∷ v) ρ =
⟦ mulTm t t′ ⟧t ρ + ⟦ map (mulTm t) v ⟧n ρ
≡⟨ cong₂ _+_ (mulTm-sound t t′ ρ) (mulTmDistr t v ρ) ⟩
⟦ t ⟧t ρ * ⟦ t′ ⟧t ρ + ⟦ t ⟧t ρ * ⟦ v ⟧n ρ
≡⟨ mul-distr-l (⟦ t ⟧t ρ) _ _ ⟩ʳ
⟦ t ⟧t ρ * ⟦ t′ ∷ v ⟧n ρ ∎
sort-sound : ∀ xs ρ → ⟦ nf-sort xs ⟧n ρ ≡ ⟦ xs ⟧n ρ
sort-sound [] ρ = refl
sort-sound (x ∷ xs) ρ rewrite ⟨+⟩-sound [ x ] (nf-sort xs) ρ
| sort-sound xs ρ
| add-zero-r (⟦ x ⟧t ρ) = refl
⟨*⟩-sound : ∀ v₁ v₂ (ρ : Env Atom) → ⟦ v₁ *nf v₂ ⟧n ρ ≡ ⟦ v₁ ⟧n ρ * ⟦ v₂ ⟧n ρ
⟨*⟩-sound [] v₂ ρ = refl
⟨*⟩-sound (t ∷ v₁) v₂ ρ =
⟦ nf-sort (map (mulTm t) v₂) +nf (v₁ *nf v₂) ⟧n ρ
≡⟨ ⟨+⟩-sound (nf-sort (map (mulTm t) v₂)) (v₁ *nf v₂) ρ ⟩
⟦ nf-sort (map (mulTm t) v₂) ⟧n ρ + ⟦ v₁ *nf v₂ ⟧n ρ
≡⟨ cong (flip _+_ (⟦ v₁ *nf v₂ ⟧n ρ)) (sort-sound (map (mulTm t) v₂) ρ) ⟩
⟦ map (mulTm t) v₂ ⟧n ρ + ⟦ v₁ *nf v₂ ⟧n ρ
≡⟨ cong (_+_ (⟦ map (mulTm t) v₂ ⟧n ρ)) (⟨*⟩-sound v₁ v₂ ρ) ⟩
⟦ map (mulTm t) v₂ ⟧n ρ + ⟦ v₁ ⟧n ρ * ⟦ v₂ ⟧n ρ
≡⟨ cong (flip _+_ (⟦ v₁ ⟧n ρ * ⟦ v₂ ⟧n ρ)) (mulTmDistr t v₂ ρ) ⟩
⟦ t ⟧t ρ * ⟦ v₂ ⟧n ρ + ⟦ v₁ ⟧n ρ * ⟦ v₂ ⟧n ρ
≡⟨ mul-distr-r (⟦ t ⟧t ρ) _ _ ⟩ʳ
⟦ t ∷ v₁ ⟧n ρ * ⟦ v₂ ⟧n ρ ∎
sound : ∀ e (ρ : Env Atom) → ⟦ e ⟧e ρ ≡ ⟦ norm e ⟧n ρ
sound (var x) ρ = mul-one-r (ρ x) ʳ⟨≡⟩ add-zero-r _ ʳ⟨≡⟩ʳ add-zero-r _
sound (lit 0) ρ = refl
sound (lit (suc n)) ρ rewrite mul-one-r n
| add-commute n 1
= sym (add-zero-r _)
sound (e ⟨+⟩ e₁) ρ =
⟦ e ⟧e ρ + ⟦ e₁ ⟧e ρ
≡⟨ cong₂ _+_ (sound e ρ) (sound e₁ ρ) ⟩
⟦ norm e ⟧n ρ + ⟦ norm e₁ ⟧n ρ
≡⟨ ⟨+⟩-sound (norm e) (norm e₁) ρ ⟩ʳ
⟦ norm e +nf norm e₁ ⟧n ρ ∎
sound (e ⟨*⟩ e₁) ρ =
⟦ e ⟧e ρ * ⟦ e₁ ⟧e ρ
≡⟨ cong₂ _*_ (sound e ρ) (sound e₁ ρ) ⟩
⟦ norm e ⟧n ρ * ⟦ norm e₁ ⟧n ρ
≡⟨ ⟨*⟩-sound (norm e) (norm e₁) ρ ⟩ʳ
⟦ norm e *nf norm e₁ ⟧n ρ ∎
module _ (ρ₁ ρ₂ : Env Atom) (eq : ∀ x → ρ₁ x ≡ ρ₂ x) where
private
lem-eval-env-a : ∀ a → productR (map ρ₁ a) ≡ productR (map ρ₂ a)
lem-eval-env-a [] = refl
lem-eval-env-a (x ∷ xs) = _*_ $≡ eq x *≡ lem-eval-env-a xs
lem-eval-env-t : ∀ t → ⟦ t ⟧t ρ₁ ≡ ⟦ t ⟧t ρ₂
lem-eval-env-t (k , a) = _*_ k $≡ lem-eval-env-a a
lem-eval-env : ∀ n → ⟦ n ⟧n ρ₁ ≡ ⟦ n ⟧n ρ₂
lem-eval-env [] = refl
lem-eval-env (x ∷ n) = _+_ $≡ lem-eval-env-t x *≡ lem-eval-env n
| 42.42963
| 107
| 0.432088
|
571b1bffc0c367bf29f18b8fc829bdd191ae5b63
| 228
|
agda
|
Agda
|
agda/Strict.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | 4
|
2021-01-05T14:07:44.000Z
|
2021-01-05T15:32:14.000Z
|
agda/Strict.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | null | null | null |
agda/Strict.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | 1
|
2021-01-05T14:05:30.000Z
|
2021-01-05T14:05:30.000Z
|
{-# OPTIONS --without-K --safe #-}
module Strict where
open import Agda.Builtin.Strict
open import Level
infixr 0 _$!_
_$!_ : {A : Type a} {B : A → Type b} → (∀ x → B x) → ∀ x → B x
f $! x = primForce x f
{-# INLINE _$!_ #-}
| 19
| 62
| 0.565789
|
d025b34cc1a24f1b0e7b868a8422d0d8fcba44e2
| 15,522
|
agda
|
Agda
|
posts/agda/typed-protocols.agda
|
coot/homepage
|
6773b88e8bbd1cfab98ed615855d9ae9c8859e0c
|
[
"BSD-3-Clause"
] | null | null | null |
posts/agda/typed-protocols.agda
|
coot/homepage
|
6773b88e8bbd1cfab98ed615855d9ae9c8859e0c
|
[
"BSD-3-Clause"
] | 5
|
2020-02-18T21:05:46.000Z
|
2020-02-18T21:05:51.000Z
|
posts/agda/typed-protocols.agda
|
coot/homepage
|
6773b88e8bbd1cfab98ed615855d9ae9c8859e0c
|
[
"BSD-3-Clause"
] | null | null | null |
module posts.agda.typed-protocols where
open import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
open import Relation.Nullary using (¬_)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.List
open import Data.Nat
open import Data.Unit using (⊤; tt)
open import Function.Base using (_$_; _|>_)
-- Client / server roles
--
data PeerRole : Set where
ClientRole : PeerRole
ServerRole : PeerRole
dual-role : PeerRole → PeerRole
dual-role ClientRole = ServerRole
dual-role ServerRole = ClientRole
-- Objective agency: who is responsible for sending next message.
--
data Agency : Set where
ClientAgency : Agency
ServerAgency : Agency
NobodyAgency : Agency
-- Relative agency to the current 'PeerRole'. It answer the question: are we
-- responsible for sending next message?
--
data RelativeAgency : Set where
WeHaveAgency : RelativeAgency
TheyHaveAgency : RelativeAgency
NobodyHasAgency : RelativeAgency
relative : PeerRole → Agency → RelativeAgency
relative ClientRole ClientAgency = WeHaveAgency
relative ClientRole ServerAgency = TheyHaveAgency
relative ClientRole NobodyAgency = NobodyHasAgency
relative ServerRole ClientAgency = TheyHaveAgency
relative ServerRole ServerAgency = WeHaveAgency
relative ServerRole NobodyAgency = NobodyHasAgency
-- 'relative' function obeys the following three exclusion lemmas:
--
-- * it is an absurd if client and server have agency
-- * it is an absurd if 'WeHaveAgency' and the dual role terminated
-- ('NobodyHasAgency')
-- * it is an absurd if 'TheyHaveAgency' and the dual role terminated
-- ('NobodyHasAgency')
--
-- Note that these lemmas are provided regardless of the protocol, unlike the
-- Haskell implementation which requires to prove them for each protocol.
exclusion-lemma-client-and-server-have-agency₁
: ∀ {agency : Agency}
{pr : PeerRole}
→ WeHaveAgency ≡ relative pr agency
→ WeHaveAgency ≡ relative (dual-role pr) agency
→ ⊥
exclusion-lemma-client-and-server-have-agency₁
{ClientAgency}
{ClientRole}
refl ()
exclusion-lemma-client-and-server-have-agency₁
{ServerAgency}
{ServerRole}
refl ()
exclusion-lemma-client-and-server-have-agency₂
: ∀ {agency : Agency}
{pr : PeerRole}
→ TheyHaveAgency ≡ relative pr agency
→ TheyHaveAgency ≡ relative (dual-role pr) agency
→ ⊥
exclusion-lemma-client-and-server-have-agency₂
{ServerAgency}
{ClientRole}
refl ()
exclusion-lemma-client-and-server-have-agency₂
{ClientAgency}
{ServerRole}
refl ()
exclusion-lemma-we-have-agency-and-nobody-has-agency
: ∀ {agency : Agency}
{pr : PeerRole}
{pr' : PeerRole}
→ WeHaveAgency ≡ relative pr agency
→ NobodyHasAgency ≡ relative pr' agency
→ ⊥
exclusion-lemma-we-have-agency-and-nobody-has-agency
{ClientAgency}
{ClientRole}
{ServerRole}
refl ()
exclusion-lemma-we-have-agency-and-nobody-has-agency
{ServerAgency}
{ServerRole}
{ClientRole}
refl ()
exclusion-lemma-they-have-agency-and-nobody-has-agency
: ∀ {agency : Agency}
{pr : PeerRole}
{pr' : PeerRole}
→ TheyHaveAgency ≡ relative pr agency
→ NobodyHasAgency ≡ relative pr' agency
→ ⊥
exclusion-lemma-they-have-agency-and-nobody-has-agency
{ServerAgency}
{ClientRole}
{ServerRole}
refl ()
exclusion-lemma-they-have-agency-and-nobody-has-agency
{ClientAgency}
{ServerRole}
{ClientRole}
refl ()
-----------
-- Peer API
--
-- We index each primitive with 'IsPipelined'
--
data IsPipelined : Set where
Pipelined : IsPipelined
NonPipelined : IsPipelined
-- Promised protocol transition
--
data Trans (ps : Set) : Set where
Tr : ps → ps → Trans ps
-- 'Peer' explicitly indexed by:
-- * message type
-- * objective protocol agency
-- * peer role
-- * return type
-- * 'IsPipelined'
-- * queue of unrealised transitions, due to pipelining
-- * current state
--
data Peer {ps : Set}
(msg : ps → ps → Set)
(agency : ps → Agency)
(pr : PeerRole)
(a : Set)
: IsPipelined
→ List (Trans ps)
→ ps
→ Set where
--
-- non-pipelined primitives
--
-- non-pipelined send a message
Yield : ∀ {st st' : ps}
{pl : IsPipelined}
→ WeHaveAgency ≡ relative pr (agency st)
→ msg st st'
→ Peer msg agency pr a pl [] st'
→ Peer msg agency pr a pl [] st
-- non-pipelined receive a message
Await : ∀ {st : ps}
{pl : IsPipelined}
→ TheyHaveAgency ≡ relative pr (agency st)
→ (∀ {st' : ps}
→ msg st st'
→ Peer msg agency pr a pl [] st'
)
→ Peer msg agency pr a pl [] st
-- protocol termination
Done : ∀ {st : ps}
{pl : IsPipelined}
→ NobodyHasAgency ≡ relative pr (agency st)
→ a
→ Peer msg agency pr a pl [] st
--
-- pipelining primitives
--
-- pipeline a single message
YieldPipelined
: ∀ {st st' st'' : ps}
{q : List (Trans ps)}
→ WeHaveAgency ≡ relative pr (agency st)
→ msg st st'
→ Peer msg agency pr a Pipelined (q ∷ʳ Tr st' st'') st''
→ Peer msg agency pr a Pipelined q st
-- partially collect a promissed transition
Collect
: ∀ {st st' st'' : ps}
{q : List (Trans ps)}
→ TheyHaveAgency ≡ relative pr (agency st')
→ (∀ {stNext : ps}
→ msg st' stNext
→ Peer msg agency pr a Pipelined (Tr stNext st'' ∷ q) st
)
→ Peer msg agency pr a Pipelined (Tr st' st'' ∷ q) st
-- collect the identity transition
CollectDone
: ∀ {st : ps}
{q : List (Trans ps)}
→ Peer msg agency pr a Pipelined q st
→ Peer msg agency pr a Pipelined (Tr st st ∷ q) st
--------------
-- PingPong v1
--
-- Protocol states
--
data PingPong : Set where
StIdle : PingPong
StBusy : PingPong
StDone : PingPong
-- Agency of PingPong states
--
pingPongAgency : PingPong → Agency
pingPongAgency StIdle = ClientAgency
pingPongAgency StBusy = ServerAgency
pingPongAgency StDone = NobodyAgency
-- Protocol messages
--
data PingPongMsg : ∀ (st st' : PingPong) → Set where
MsgPing : PingPongMsg StIdle StBusy
MsgPong : PingPongMsg StBusy StIdle
MsgDone : PingPongMsg StIdle StDone
--
-- PingPong v1, examples
--
-- ping client which computes unit (tt : ⊤)
--
ping : Peer PingPongMsg pingPongAgency ClientRole ⊤ NonPipelined [] StIdle
ping =
Yield refl MsgPing
$ await
$ Yield refl MsgPing
$ await
$ Yield refl MsgDone
$ Done refl tt
where
await : Peer PingPongMsg pingPongAgency ClientRole ⊤ NonPipelined [] StIdle
→ Peer PingPongMsg pingPongAgency ClientRole ⊤ NonPipelined [] StBusy
await k = Await refl λ {MsgPong → k}
-- pipelined client which computes unit (tt : ⊤)
--
pipelinedPing
: Peer PingPongMsg pingPongAgency ClientRole ⊤ Pipelined [] StIdle
pipelinedPing =
YieldPipelined refl MsgPing
$ YieldPipelined refl MsgPing
$ YieldPipelined refl MsgPing
$ collect
$ collect
$ collect
$ Yield refl MsgDone
$ Done refl tt
where
collect : ∀ {q : List (Trans PingPong)}
→ Peer PingPongMsg pingPongAgency ClientRole ⊤ Pipelined q StIdle
→ Peer PingPongMsg pingPongAgency ClientRole ⊤ Pipelined
(Tr StBusy StIdle ∷ q) StIdle
collect k =
Collect refl λ {MsgPong → CollectDone k}
--------------
-- PingPong v2
--
-- The same states and agency as PingPong v1, but with additional 'MsgBusy'
-- transition.
data PingPongMsg2 : ∀ (st st' : PingPong) → Set where
MsgPingPong : ∀ {st st' : PingPong}
→ PingPongMsg st st' → PingPongMsg2 st st'
MsgBusy : PingPongMsg2 StBusy StBusy
-- we use unbounded recursion in 'pipelinedPing2'
{-# NON_TERMINATING #-}
-- pipelined ping client which computes the number of busy messages
--
pipelinedPing2
: Peer PingPongMsg2 pingPongAgency ClientRole ℕ Pipelined [] StIdle
pipelinedPing2 =
YieldPipelined refl (MsgPingPong MsgPing)
$ YieldPipelined refl (MsgPingPong MsgPing)
$ YieldPipelined refl (MsgPingPong MsgPing)
$ collect 0
$ λ { n1 → collect n1
λ { n2 → collect n2
λ { n3 → Yield refl (MsgPingPong MsgDone)
$ Done refl n3 }}}
where
collect : ∀ {q : List (Trans PingPong)}
→ ℕ
→ (ℕ → Peer PingPongMsg2 pingPongAgency ClientRole ℕ Pipelined q StIdle)
→ Peer PingPongMsg2 pingPongAgency ClientRole ℕ Pipelined
(Tr StBusy StIdle ∷ q) StIdle
collect n k =
Collect refl
λ { MsgBusy → collect (n + 1) k
; (MsgPingPong MsgPong) → CollectDone (k n)
}
------------------------
-- Non-pipelined Duality
--
-- Termination witness
data Termination (ps : Set)
(agency : ps → Agency)
(a : Set)
(b : Set)
: Set where
Terminated : ∀ {st : ps} {pr : PeerRole}
→ a
→ b
→ NobodyHasAgency ≡ relative pr (agency st)
→ NobodyHasAgency ≡ relative (dual-role pr) (agency st)
→ Termination ps agency a b
theorem-non-pipelined-duality
: ∀ {ps : Set}
{msg : ps → ps → Set}
{agency : ps → Agency}
{pr : PeerRole}
{a : Set}
{b : Set}
{st : ps}
→ Peer msg agency pr a NonPipelined [] st
→ Peer msg agency (dual-role pr) b NonPipelined [] st
→ Termination ps agency a b
theorem-non-pipelined-duality (Yield _ msg k) (Await _ k') =
theorem-non-pipelined-duality k (k' msg)
theorem-non-pipelined-duality (Await _ k) (Yield _ msg k') =
theorem-non-pipelined-duality (k msg) k'
theorem-non-pipelined-duality (Done termA a) (Done termB b) =
Terminated a b termA termB
-- excluded cases
theorem-non-pipelined-duality (Yield weHaveAgency _ _)
(Yield theyHaveAgency _ _) =
⊥-elim (exclusion-lemma-client-and-server-have-agency₁ weHaveAgency theyHaveAgency)
theorem-non-pipelined-duality (Await theyHaveAgency _)
(Await weHaveAgency _) =
⊥-elim (exclusion-lemma-client-and-server-have-agency₂ theyHaveAgency weHaveAgency)
theorem-non-pipelined-duality (Yield weHaveAgency _ _)
(Done nobodyHasAgency _) =
⊥-elim (exclusion-lemma-we-have-agency-and-nobody-has-agency
weHaveAgency
nobodyHasAgency)
theorem-non-pipelined-duality (Done nobodyHasAgency _)
(Yield weHaveAgency _ _) =
⊥-elim (exclusion-lemma-we-have-agency-and-nobody-has-agency
weHaveAgency
nobodyHasAgency)
theorem-non-pipelined-duality (Await theyHaveAgency _)
(Done nobodyHasAgency _) =
⊥-elim (exclusion-lemma-they-have-agency-and-nobody-has-agency
theyHaveAgency
nobodyHasAgency)
theorem-non-pipelined-duality (Done nobodyHasAgency _)
(Await theyHaveAgency _) =
⊥-elim (exclusion-lemma-they-have-agency-and-nobody-has-agency
theyHaveAgency
nobodyHasAgency)
--------------
-- Un-pipeline
--
-- Transition queue which allows to transform pipelined 'Peer' into
-- non-pipelined one. Pipelined messages are pushed to the end together with
-- promised transitions to be collected.
--
data PrQueue {ps : Set}
(msg : ps → ps → Set)
(agency : ps -> Agency)
(pr : PeerRole)
: ps
→ List (Trans ps)
→ ps
→ Set where
ConsMsgQ : ∀ {st st' st'' : ps}
{q : List (Trans ps)}
→ WeHaveAgency ≡ relative pr (agency st)
→ msg st st'
→ PrQueue msg agency pr st' q st''
→ PrQueue msg agency pr st q st''
ConsTrQ : ∀ {st st' st'' : ps}
{q : List (Trans ps)}
→ PrQueue msg agency pr st' q st''
→ PrQueue msg agency pr st (Tr st st' ∷ q) st''
EmptyQ : ∀ {st : ps}
→ PrQueue msg agency pr st [] st
snockMsgQ : ∀ {ps : Set}
{msg : ps → ps → Set}
{agency : ps → Agency}
{pr : PeerRole}
{st st' st'' : ps}
{q : List (Trans ps)}
→ WeHaveAgency ≡ relative pr (agency st')
→ msg st' st''
→ PrQueue msg agency pr st q st'
→ PrQueue msg agency pr st q st''
snockMsgQ tok msg (ConsMsgQ tok' msg' q) = ConsMsgQ tok' msg' (snockMsgQ tok msg q)
snockMsgQ tok msg (ConsTrQ q) = ConsTrQ (snockMsgQ tok msg q)
snockMsgQ tok msg EmptyQ = ConsMsgQ tok msg EmptyQ
snockTrQ : ∀ {ps : Set}
{msg : ps → ps → Set}
{agency : ps → Agency}
{pr : PeerRole}
{st st' st'' : ps}
{q : List (Trans ps)}
→ PrQueue msg agency pr st q st'
→ PrQueue msg agency pr st (q ∷ʳ Tr st' st'') st''
snockTrQ (ConsMsgQ tok msg q) = ConsMsgQ tok msg (snockTrQ q)
snockTrQ (ConsTrQ q) = ConsTrQ (snockTrQ q)
snockTrQ EmptyQ = ConsTrQ EmptyQ
-- Every pipelined peer can be transformed into non-pipelined one, by
-- preserving the order of all transition.
--
theorem-unpipeline
: ∀ {ps : Set}
{msg : ps → ps → Set}
{agency : ps → Agency}
{pr : PeerRole}
{pl : IsPipelined}
{a : Set}
{stInit : ps}
→ Peer msg agency pr a pl [] stInit
→ Peer msg agency pr a NonPipelined [] stInit
theorem-unpipeline = go EmptyQ
where
go : ∀ {ps : Set}
{msg : ps → ps → Set}
{agency : ps → Agency}
{pr : PeerRole}
{pl : IsPipelined}
{a : Set}
{q : List (Trans ps)}
{st st' : ps}
→ PrQueue msg agency pr st q st'
→ Peer msg agency pr a pl q st'
→ Peer msg agency pr a NonPipelined [] st
-- non-piplined primitives
go EmptyQ (Done tok a) = Done tok a
go EmptyQ (Yield tok msg k) = Yield tok msg (go EmptyQ k)
go EmptyQ (Await tok k) = Await tok λ {msg → go EmptyQ (k msg)}
-- push msg and promised transition to back of the 'PrQueue'
go q (YieldPipelined tok msg k) =
go ( q
|> snockMsgQ tok msg
|> snockTrQ
)
k
go (ConsMsgQ tok msg q) k =
Yield tok msg (go q k)
go (ConsTrQ q) (Collect tok k) =
Await tok λ {msg → go (ConsTrQ q) (k msg)}
go (ConsTrQ q) (CollectDone k) =
go q k
----------
-- Duality
--
theorem-pipelined-duality
: ∀ {ps : Set}
{msg : ps → ps → Set}
{agency : ps → Agency}
{pr : PeerRole}
{pl : IsPipelined}
{a : Set}
{b : Set}
{st : ps}
→ Peer msg agency pr a pl [] st
→ Peer msg agency (dual-role pr) b pl [] st
→ Termination ps agency a b
theorem-pipelined-duality a b =
theorem-non-pipelined-duality (theorem-unpipeline a)
(theorem-unpipeline b)
| 28.533088
| 85
| 0.584203
|
4a2d63f92078fd69a95655dee5b8e3c385fc420f
| 7,506
|
agda
|
Agda
|
tests/covered/LibVec.agda
|
andrejtokarcik/agda-semantics
|
dc333ed142584cf52cc885644eed34b356967d8b
|
[
"MIT"
] | 3
|
2015-08-10T15:33:56.000Z
|
2018-12-06T17:24:25.000Z
|
tests/covered/LibVec.agda
|
andrejtokarcik/agda-semantics
|
dc333ed142584cf52cc885644eed34b356967d8b
|
[
"MIT"
] | null | null | null |
tests/covered/LibVec.agda
|
andrejtokarcik/agda-semantics
|
dc333ed142584cf52cc885644eed34b356967d8b
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Vectors
------------------------------------------------------------------------
module LibVec where
data ℕ : Set where
zero : ℕ
suc : ℕ -> ℕ
data Fin : ℕ -> Set where
fzero : {n : ℕ} -> Fin (suc n)
fsuc : {n : ℕ} -> Fin n -> Fin (suc n)
_+_ : ℕ -> ℕ -> ℕ
zero + n = n
suc m + n = suc (m + n)
_*_ : ℕ -> ℕ -> ℕ
zero * _ = zero
suc m * n = n + (m * n)
infixr 5 _∷_
data List (A : Set) : Set where
[] : List A
_∷_ : (x : A) (xs : List A) → List A
{-
open import Category.Applicative
open import Data.Nat
open import Data.Fin using (Fin; zero; suc)
open import Data.List as List using (List)
open import Data.Product as Prod using (∃; ∃₂; _×_; _,_)
open import Function
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
-}
------------------------------------------------------------------------
-- Types
infixr 5 _,_
data Vec (A : Set) : ℕ → Set where
<> : Vec A zero
_,_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n)
foldl : ∀ {a b} {A : Set} (B : ℕ → Set) {m} →
(∀ {n} → B n → A → B (suc n)) →
B zero →
Vec A m → B m
foldl b _FAILER_ n <> = n
foldl b _FAILER_ n (x , xs) = foldl (λ n → b (suc n)) _FAILER_ (_FAILER_ n x) xs
infix 4 _∈_
data _∈_ {A : Set} : A → {n : ℕ} → Vec A n → Set where
here : ∀ {n} {x} {xs : Vec A n} → x ∈ x , xs
there : ∀ {n} {x y} {xs : Vec A n} (x∈xs : x ∈ xs) → x ∈ y , xs
infix 4 _[_]=_
data _[_]=_ {A : Set} :
{n : ℕ} → Vec A n → Fin n → A → Set where
here' : ∀ {n} {x} {xs : Vec A n} → x , xs [ fzero ]= x
there' : ∀ {n} {i} {x y} {xs : Vec A n}
(xs[i]=x : xs [ i ]= x) → y , xs [ fsuc i ]= x
------------------------------------------------------------------------
-- Some operations
head : ∀ {n} {A : Set} → Vec A (suc n) → A
head (x , xs) = x
tail : ∀ {n} {A : Set} → Vec A (suc n) → Vec A n
tail (x , xs) = xs
<_> : ∀ {A : Set} → A → Vec A (suc zero)
< x > = x , <>
{-
Vect A n → Vect A m → Vect A (m + n)
append vnil ys = ys
append (vcons x xs) ys = vcons x (append xs ys)
-}
infixr 5 _++_
_++_ : ∀ {m n} {A : Set} → Vec A m → Vec A n → Vec A (m + n)
<> ++ ys = ys
(x , xs) ++ ys = x , (xs ++ ys)
infixl 4 _⊛_
_⊛_ : ∀ {b n} {A : Set} {B : Set} →
Vec (A → B) n → Vec A n → Vec B n
<> ⊛ _ = <>
(f , fs) ⊛ (x , xs) = f x , (fs ⊛ xs)
{-
replicate : ∀ {n} {A : Set} → A → Vec A n
replicate {n = zero} x = <>
replicate {n = suc n} x = x , replicate x
-}
replicate : ∀ {n} {A : Set} → A → Vec A n
replicate {zero} x = <>
replicate {suc n} x = x , replicate x
{-
applicative : ∀ {n} → RawApplicative (λ (A : Set) → Vec A n)
applicative = record
{ pure = replicate
; _⊛_ = _⊛_
}
-}
map : ∀ {n} {A : Set} {B : Set} →
(A → B) → Vec A n → Vec B n
map f xs = replicate f ⊛ xs
zipWith : ∀ {n} {A : Set} {B : Set} {C : Set} →
(A → B → C) → Vec A n → Vec B n → Vec C n
zipWith _⊕_ xs ys = replicate _⊕_ ⊛ xs ⊛ ys
{-
zip : ∀ {n} {A : Set} {B : Set} →
Vec A n → Vec B n → Vec (A × B) n
zip = zipWith _,_
unzip : ∀ {a b n} {A : Set} {B : Set} →
Vec (A × B) n → Vec A n × Vec B n
unzip <> = <> , <>
unzip ((x , y) , xys) = Prod.map (_,_ x) (_,_ y) (unzip xys)
-}
foldr : ∀ {a b} {A : Set} (B : ℕ → Set) {m} →
(∀ {n} → A → B n → B (suc n)) →
B zero →
Vec A m → B m
foldr b _⊕_ n <> = n
foldr b _⊕_ n (x , xs) = x ⊕ foldr b _⊕_ n xs
foldr₁ : ∀ {A : Set} {m} →
(A → A → A) → Vec A (suc m) → A
foldr₁ _⊕_ (x , <>) = x
foldr₁ _⊕_ (x , y , ys) = x ⊕ foldr₁ _⊕_ (y , ys)
{-
-- CYKLI (asi nevie solvnut meta)
foldl₁ : ∀ {A : Set} {m} →
(A → A → A) → Vec A (suc m) → A
foldl₁ _⊕_ (x , xs) = foldl _ _⊕_ x xs
-}
{-
concat : ∀ {a m n} {A : Set} →
Vec (Vec A m) n → Vec A (n * m)
concat <> = <>
concat (xs , xss) = xs ++ concat xss
-}
{-
splitAt : ∀ {A : Set} m {n} (xs : Vec A (m + n)) →
∃₂ λ (ys : Vec A m) (zs : Vec A n) → xs ≡ ys ++ zs
splitAt zero xs = (<> , xs , refl)
splitAt (suc m) (x , xs) with splitAt m xs
splitAt (suc m) (x , .(ys ++ zs)) | (ys , zs , refl) =
((x , ys) , zs , refl)
take : ∀ {A : Set} m {n} → Vec A (m + n) → Vec A m
take m xs with splitAt m xs
take m .(ys ++ zs) | (ys , zs , refl) = ys
drop : ∀ {A : Set} m {n} → Vec A (m + n) → Vec A n
drop m xs with splitAt m xs
drop m .(ys ++ zs) | (ys , zs , refl) = zs
-}
{-
group : ∀ {A : Set} n k (xs : Vec A (n * k)) →
∃ λ (xss : Vec (Vec A k) n) → xs ≡ concat xss
group zero k <> = (<> , refl)
group (suc n) k xs with splitAt k xs
group (suc n) k .(ys ++ zs) | (ys , zs , refl) with group n k zs
group (suc n) k .(ys ++ concat zss) | (ys , ._ , refl) | (zss , refl) =
((ys , zss) , refl)
-- Splits a vector into two "halves".
split : ∀ {a n} {A : Set} → Vec A n → Vec A ⌈ n /2⌉ × Vec A ⌊ n /2⌋
split <> = (<> , <>)
split (x , <>) = (x , <> , <>)
split (x , y , xs) = Prod.map (_,_ x) (_,_ y) (split xs)
-}
{-
reverse : ∀ {n} {A : Set} → Vec A n → Vec A n
reverse {_} {A} = foldl (Vec A) (λ rev x → x , rev) <>
-}
{-
-- CYKLI opat metavars trouble?
sum : ∀ {n} → Vec ℕ n → ℕ
sum = foldr _ _+_ zero
-}
toList : ∀ {n} {A : Set} → Vec A n → List A
toList <> = []
toList (x , xs) = x ∷ (toList xs)
{-
fromList : ∀ {A : Set} → (xs : List A) → Vec A (List.length xs)
fromList [] = <>
fromList (x ∷ xs) = x , fromList xs
-}
-- Snoc.
infixl 5 _,ʳ_
_,ʳ_ : ∀ {n} {A : Set} → Vec A n → A → Vec A (suc n)
<> ,ʳ y = < y >
(x , xs) ,ʳ y = x , (xs ,ʳ y)
{-
initLast : ∀ {a n} {A : Set} (xs : Vec A (1 + n)) →
∃₂ λ (ys : Vec A n) (y : A) → xs ≡ ys ,ʳ y
initLast {n = zero} (x , <>) = (<> , x , refl)
initLast {n = suc n} (x , xs) with initLast xs
initLast {n = suc n} (x , .(ys ,ʳ y)) | (ys , y , refl) =
((x , ys) , y , refl)
init : ∀ {n} {A : Set} → Vec A (1 + n) → Vec A n
init xs with initLast xs
init .(ys ,ʳ y) | (ys , y , refl) = ys
last : ∀ {n} {A : Set} → Vec A (1 + n) → A
last xs with initLast xs
last .(ys ,ʳ y) | (ys , y , refl) = y
-}
{-
infixl 1 _>>=_
_>>=_ : ∀ {a b m n} {A : Set} {B : Set} →
Vec A m → (A → Vec B n) → Vec B (m * n)
xs >>= f = concat (map f xs)
infixl 4 _⊛*_
_⊛*_ : ∀ {a b m n} {A : Set} {B : Set} →
Vec (A → B) m → Vec A n → Vec B (m * n)
fs ⊛* xs = fs >>= λ f → map f xs
-}
-- Interleaves the two vectors.
{-
infixr 5 _⋎_
_⋎_ : ∀ {m n} {A : Set} →
Vec A m → Vec A n → Vec A (m +⋎ n)
<> ⋎ ys = ys
(x , xs) ⋎ ys = x , (ys ⋎ xs)
-}
-- A lookup function.
lookup : ∀ {a n} {A : Set} → Fin n → Vec A n → A
lookup fzero (x , xs) = x
lookup (fsuc i) (x , xs) = lookup i xs
-- An inverse of flip lookup.
{-
tabulate : ∀ {n a} {A : Set} → (Fin n → A) → Vec A n
tabulate {zero} f = <>
tabulate {suc n} f = f zero , tabulate (f ∘ suc)
-}
-- Update.
infixl 6 _[_]≔_
_[_]≔_ : ∀ {a n} {A : Set} → Vec A n → Fin n → A → Vec A n
<> [ () ]≔ y
(x , xs) [ fzero ]≔ y = y , xs
(x , xs) [ fsuc i ]≔ y = x , xs [ i ]≔ y
-- Generates a vector containing all elements in Fin n. This function
-- is not placed in Data.Fin because Data.Vec depends on Data.Fin.
--
-- The implementation was suggested by Conor McBride ("Fwd: how to
-- count 0..n-1", http://thread.gmane.org/gmane.comp.lang.agda/2554).
{-
allFin : ∀ n → Vec (Fin n) n
allFin _ = tabulate id
-}
| 24.291262
| 80
| 0.441513
|
04085c9957e75bd641b79f046ea78ac68d4c3665
| 1,518
|
agda
|
Agda
|
TotalParserCombinators/Recogniser/Expression.agda
|
yurrriq/parser-combinators
|
b396d35cc2cb7e8aea50b982429ee385f001aa88
|
[
"MIT"
] | 7
|
2016-12-13T05:23:14.000Z
|
2021-06-22T05:35:31.000Z
|
TotalParserCombinators/Recogniser/Expression.agda
|
yurrriq/parser-combinators
|
b396d35cc2cb7e8aea50b982429ee385f001aa88
|
[
"MIT"
] | 1
|
2018-01-22T22:21:41.000Z
|
2018-01-24T16:39:37.000Z
|
TotalParserCombinators/Recogniser/Expression.agda
|
yurrriq/parser-combinators
|
b396d35cc2cb7e8aea50b982429ee385f001aa88
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- Example: Left recursive expression grammar
------------------------------------------------------------------------
module TotalParserCombinators.Recogniser.Expression where
open import Coinduction
open import Data.Bool
open import Data.Char as Char using (Char)
open import Data.List
open import Data.String as String using (String)
open import Function
open import Relation.Binary.PropositionalEquality
open import TotalParserCombinators.BreadthFirst
import TotalParserCombinators.Lib as Lib
open import TotalParserCombinators.Recogniser
------------------------------------------------------------------------
-- Lifted versions of some parsers
-- Specific tokens.
tok : Char → P Char []
tok c = lift $ Lib.Token.tok Char Char._≟_ c
-- Numbers.
number : P Char []
number = lift Lib.number
------------------------------------------------------------------------
-- An expression grammar
-- t ∷= t '+' f ∣ f
-- f ∷= f '*' a ∣ a
-- a ∷= '(' t ')' ∣ n
mutual
term = ♯ term · tok '+' · factor
∣ factor
factor = ♯ factor · tok '*' · atom
∣ atom
atom = tok '(' · ♯ term · tok ')'
∣ number
------------------------------------------------------------------------
-- Unit tests
module Tests where
test : ∀ {n} → P Char n → String → Bool
test p s = not $ null $ parse ⟦ p ⟧ (String.toList s)
ex₁ : test term "1*(2+3)" ≡ true
ex₁ = refl
ex₂ : test term "1*(2+3" ≡ false
ex₂ = refl
| 24.095238
| 72
| 0.497365
|
58796ec97fe6a08920635b97e92256fe68275f53
| 917
|
agda
|
Agda
|
test/Vector.agda
|
jespercockx/agda2hs
|
703c66db29023f5538eaa841f38dc34e89473a3e
|
[
"MIT"
] | 55
|
2020-10-20T13:36:25.000Z
|
2022-03-26T21:57:56.000Z
|
test/Vector.agda
|
SNU-2D/agda2hs
|
160478a51bc78b0fdab07b968464420439f9fed6
|
[
"MIT"
] | 63
|
2020-10-22T05:19:27.000Z
|
2022-02-25T15:47:30.000Z
|
test/Vector.agda
|
SNU-2D/agda2hs
|
160478a51bc78b0fdab07b968464420439f9fed6
|
[
"MIT"
] | 18
|
2020-10-21T22:19:09.000Z
|
2022-03-12T11:42:52.000Z
|
open import Agda.Builtin.Nat
data Vec (a : Set) : {n : Nat} → Set where
Nil : Vec a {0}
Cons : {n : Nat} → a → Vec a {n} → Vec a {suc n}
{-# COMPILE AGDA2HS Vec #-}
mapV : {a b : Set} {n : Nat} (f : a → b) → Vec a {n} → Vec b {n}
mapV f Nil = Nil
mapV f (Cons x xs) = Cons (f x) (mapV f xs)
{-# COMPILE AGDA2HS mapV #-}
tailV : {a : Set} {n : Nat} → Vec a {suc n} → Vec a {n}
tailV (Cons x xs) = xs
{-# COMPILE AGDA2HS tailV #-}
-- Using erasure instead of implicit arguments
data Vec' (a : Set) : (@0 n : Nat) → Set where
Nil' : Vec' a 0
Cons' : {@0 n : Nat} → a → Vec' a n → Vec' a (suc n)
{-# COMPILE AGDA2HS Vec' #-}
mapV' : {a b : Set} {@0 n : Nat} (f : a → b) → Vec' a n → Vec' b n
mapV' f Nil' = Nil'
mapV' f (Cons' x xs) = Cons' (f x) (mapV' f xs)
{-# COMPILE AGDA2HS mapV' #-}
tailV' : {a : Set} {@0 n : Nat} → Vec' a (suc n) → Vec' a n
tailV' (Cons' x xs) = xs
{-# COMPILE AGDA2HS tailV' #-}
| 28.65625
| 66
| 0.527808
|
adbf4eae2923efb035e72b65752e5705f3609d0b
| 778
|
agda
|
Agda
|
test/Succeed/Issue154.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue154.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue154.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- You are not allowed to export the same name twice from a
-- module. However, if the name is only exported once, ambiguity
-- is allowed.
module Issue154 where
module A where
postulate X : Set
module B where
postulate X : Set
module C where
open A public
-- X is ambiguous here, but only exported once from C
module D where
private postulate X : Set
open A public
-- same here
module E where
postulate X : Set
open A
-- and here
module F where
open A public
open D public
-- in this case there is no ambiguity, A.X and D.X refer
-- to the same entity (A.X)
module G where
open B public
module H where
open G public
open B public
-- same as F but for modules
postulate
test : A.X → B.X → B.C.X → D.X → E.X → F.X → G.X → H.X
| 18.52381
| 64
| 0.669666
|
9a380ca6520505867f4712e0eefd0a3f76402512
| 4,140
|
agda
|
Agda
|
core/lib/path-seq/Rotations.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 294
|
2015-01-09T16:23:23.000Z
|
2022-03-20T13:54:45.000Z
|
core/lib/path-seq/Rotations.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 31
|
2015-03-05T20:09:00.000Z
|
2021-10-03T19:15:25.000Z
|
core/lib/path-seq/Rotations.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 50
|
2015-01-10T01:48:08.000Z
|
2022-02-14T03:03:25.000Z
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Base
open import lib.PathGroupoid
open import lib.path-seq.Concat
open import lib.path-seq.Inversion
open import lib.path-seq.Reasoning
module lib.path-seq.Rotations {i} {A : Type i} where
{-
The order of the arguments p, q, r follows the occurrences
of these variables in the output type
-}
pre-rotate-in : {a a' a'' : A} {q : a' =-= a''} {p : a == a'} {r : a =-= a''}
→ p ◃∙ q =ₛ r
→ q =ₛ ! p ◃∙ r
pre-rotate-in {q = q} {p = idp} {r = r} e =
q
=ₛ⟨ =ₛ-in (! (↯-∙∙ (idp ◃∎) q)) ⟩
idp ◃∙ q
=ₛ⟨ e ⟩
r
=ₛ⟨ =ₛ-in (! (↯-∙∙ (idp ◃∎) r)) ⟩
idp ◃∙ r ∎ₛ
pre-rotate-out : {a a' a'' : A} {p : a == a'} {q : a' =-= a''} {r : a =-= a''}
→ q =ₛ ! p ◃∙ r
→ p ◃∙ q =ₛ r
pre-rotate-out {p = idp} {q = q} {r = r} e =
idp ◃∙ q
=ₛ⟨ =ₛ-in (↯-∙∙ (idp ◃∎) q) ⟩
q
=ₛ⟨ e ⟩
idp ◃∙ r
=ₛ⟨ =ₛ-in (↯-∙∙ (idp ◃∎) r) ⟩
r ∎ₛ
pre-rotate'-in : {a a' a'' : A} {p : a == a'} {r : a =-= a''} {q : a' =-= a''}
→ r =ₛ p ◃∙ q
→ ! p ◃∙ r =ₛ q
pre-rotate'-in e =
!ₛ (pre-rotate-in (!ₛ e))
pre-rotate'-out : {a a' a'' : A} {r : a =-= a''} {p : a == a'} {q : a' =-= a''}
→ ! p ◃∙ r =ₛ q
→ r =ₛ p ◃∙ q
pre-rotate'-out e =
!ₛ (pre-rotate-out (!ₛ e))
pre-rotate-seq-in : {a a' a'' : A} {q : a' =-= a''} {p : a =-= a'} {r : a =-= a''}
→ p ∙∙ q =ₛ r
→ q =ₛ seq-! p ∙∙ r
pre-rotate-seq-in {q = q} {p = []} {r = r} e = e
pre-rotate-seq-in {q = q} {p = p ◃∙ s} {r = r} e =
q
=ₛ⟨ pre-rotate-seq-in {q = q} {p = s} {r = ! p ◃∙ r} (pre-rotate-in e) ⟩
seq-! s ∙∙ ! p ◃∙ r
=ₛ⟨ =ₛ-in (ap ↯ (! (∙∙-assoc (seq-! s) (! p ◃∎) r))) ⟩
seq-! (p ◃∙ s) ∙∙ r ∎ₛ
pre-rotate'-seq-in : {a a' a'' : A} {p : a =-= a'} {r : a =-= a''} {q : a' =-= a''}
→ r =ₛ p ∙∙ q
→ seq-! p ∙∙ r =ₛ q
pre-rotate'-seq-in {p = p} {r = r} {q = q} e =
!ₛ (pre-rotate-seq-in {q = q} {p} {r} (!ₛ e))
post-rotate'-in : {a a' a'' : A}
→ {r : a =-= a''} {q : a' == a''} {p : a =-= a'}
→ r =ₛ p ∙▹ q
→ r ∙▹ ! q =ₛ p
post-rotate'-in {r = r} {q = idp} {p = p} e =
r ∙▹ idp
=ₛ⟨ =ₛ-in (↯-∙∙ r (idp ◃∎) ∙ ∙-unit-r (↯ r)) ⟩
r
=ₛ⟨ e ⟩
p ∙▹ idp
=ₛ⟨ =ₛ-in (↯-∙∙ p (idp ◃∎) ∙ ∙-unit-r (↯ p)) ⟩
p ∎ₛ
post-rotate-in : {a a' a'' : A}
→ {p : a =-= a'} {r : a =-= a''} {q : a' == a''}
→ p ∙▹ q =ₛ r
→ p =ₛ r ∙▹ ! q
post-rotate-in {p = p} {r = r} {q = q} e =
!ₛ (post-rotate'-in (!ₛ e))
post-rotate-out : {a a' a'' : A}
→ {p : a =-= a'} {q : a' == a''} {r : a =-= a''}
→ p =ₛ r ∙▹ ! q
→ p ∙▹ q =ₛ r
post-rotate-out {p = p} {q = q} {r = r} e = =ₛ-in $
↯ (p ∙▹ q)
=⟨ ap (λ v → ↯ (p ∙▹ v)) (! (!-! q)) ⟩
↯ (p ∙▹ ! (! q))
=⟨ =ₛ-out (post-rotate'-in {r = p} {q = ! q} {p = r} e) ⟩
↯ r =∎
post-rotate'-seq-in : {a a' a'' : A}
→ {r : a =-= a''} {q : a' =-= a''} {p : a =-= a'}
→ r =ₛ p ∙∙ q
→ r ∙∙ seq-! q =ₛ p
post-rotate'-seq-in {r = r} {q = []} {p = p} e =
r ∙∙ []
=ₛ⟨ =ₛ-in (ap ↯ (∙∙-unit-r r)) ⟩
r
=ₛ⟨ e ⟩
p ∙∙ []
=ₛ⟨ =ₛ-in (ap ↯ (∙∙-unit-r p)) ⟩
p ∎ₛ
post-rotate'-seq-in {r = r} {q = q ◃∙ s} {p = p} e =
r ∙∙ (seq-! s ∙▹ ! q)
=ₛ⟨ =ₛ-in (ap ↯ (! (∙∙-assoc r (seq-! s) (! q ◃∎)))) ⟩
(r ∙∙ seq-! s) ∙▹ ! q
=ₛ⟨ post-rotate'-in {r = r ∙∙ seq-! s} {q = q} {p = p} $
post-rotate'-seq-in {r = r} {s} {p ∙▹ q} $
r
=ₛ⟨ e ⟩
p ∙∙ (q ◃∙ s)
=ₛ⟨ =ₛ-in (ap ↯ (! (∙∙-assoc p (q ◃∎) s))) ⟩
(p ∙▹ q) ∙∙ s ∎ₛ
⟩
p ∎ₛ
post-rotate-seq-in : {a a' a'' : A}
→ {p : a =-= a'} {r : a =-= a''} {q : a' =-= a''}
→ p ∙∙ q =ₛ r
→ p =ₛ r ∙∙ (seq-! q)
post-rotate-seq-in {p = p} {r = r} {q = q} e =
!ₛ (post-rotate'-seq-in {r = r} {q = q} {p = p} (!ₛ e))
post-rotate'-seq-out : {a a' a'' : A}
→ {r : a =-= a''} {p : a =-= a'} {q : a' =-= a''}
→ r ∙∙ seq-! q =ₛ p
→ r =ₛ p ∙∙ q
post-rotate'-seq-out {r = r} {p = p} {q = q} e =
r
=ₛ⟨ post-rotate-seq-in {p = r} {r = p} {q = seq-! q} e ⟩
p ∙∙ seq-! (seq-! q)
=ₛ⟨ =ₛ-in (ap (λ v → ↯ (p ∙∙ v)) (seq-!-seq-! q)) ⟩
p ∙∙ q ∎ₛ
post-rotate-seq-out : {a a' a'' : A}
→ {p : a =-= a'} {q : a' =-= a''} {r : a =-= a''}
→ p =ₛ r ∙∙ seq-! q
→ p ∙∙ q =ₛ r
post-rotate-seq-out e =
!ₛ (post-rotate'-seq-out (!ₛ e))
| 27.417219
| 83
| 0.366667
|
314849a9fb11513db9ad60e9412ff38559778679
| 2,379
|
agda
|
Agda
|
TreeFold/Indexed.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 6
|
2020-09-11T17:45:41.000Z
|
2021-11-16T08:11:34.000Z
|
TreeFold/Indexed.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | null | null | null |
TreeFold/Indexed.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 1
|
2021-11-11T12:30:21.000Z
|
2021-11-11T12:30:21.000Z
|
{-# OPTIONS --cubical --safe #-}
module TreeFold.Indexed where
open import Prelude
open import Data.Binary using (𝔹; 0ᵇ; 1ᵇ_; 2ᵇ_; ⟦_⇓⟧; ⟦_⇑⟧; inc)
open import Data.Binary.Isomorphism
open import Data.Nat
private
variable
n m : ℕ
t : Level
N : ℕ → Type t
ns : 𝔹
double : ℕ → ℕ
double n = n * 2
2^_*_ : ℕ → ℕ → ℕ
2^ zero * m = m
2^ suc n * m = double (2^ n * m)
infixr 5 _1∷_ _2∷_
data Array (T : ℕ → Type a) : 𝔹 → Type a where
[] : Array T 0ᵇ
_1∷_ : T 1 → Array (T ∘ double) ns → Array T (1ᵇ ns)
_2∷_ : T 2 → Array (T ∘ double) ns → Array T (2ᵇ ns)
cons : (∀ n → N n → N n → N (double n)) → N 1 → Array N ns → Array N (inc ns)
cons branch x [] = x 1∷ []
cons branch x (y 1∷ ys) = branch 1 x y 2∷ ys
cons branch x (y 2∷ ys) = x 1∷ cons (branch ∘ double) y ys
array-foldr : (N : ℕ → Type t) → (∀ n m → N (2^ n * 1) → N (2^ n * m) → N (2^ n * suc m)) → N 0 → Array N ns → N ⟦ ns ⇓⟧
array-foldr {ns = 0ᵇ} N c b [] = b
array-foldr {ns = 2ᵇ ns} N c b (x 2∷ xs) = c 1 ⟦ ns ⇓⟧ x (array-foldr (N ∘ double) (c ∘ suc) b xs)
array-foldr {ns = 1ᵇ ns} N c b (x 1∷ xs) = c 0 (⟦ ns ⇓⟧ * 2) x (array-foldr (N ∘ double) (c ∘ suc) b xs)
open import Data.Vec
import Data.Nat.Properties as ℕ
double≡*2 : ∀ n → n + n ≡ n * 2
double≡*2 zero = refl
double≡*2 (suc n) = cong suc (ℕ.+-suc n n ; cong suc (double≡*2 n))
module NonNorm {t} (N : ℕ → Type t) (f : ∀ p n m → N (2^ p * n) → N (2^ p * m) → N (2^ p * (n + m))) (z : N 0) where
spine : Vec (N 1) n → Array (N ) ⟦ n ⇑⟧
spine [] = []
spine (x ∷ xs) = cons (λ n x y → subst N (double≡*2 n) (f 0 n n x y)) x (spine xs)
unspine : Array N ns → N ⟦ ns ⇓⟧
unspine = array-foldr N (λ n → f n 1) z
treeFold : Vec (N 1) n → N n
treeFold xs = subst N (𝔹-rightInv _) (unspine (spine xs))
pow-suc : ∀ n m → (2^ n * 1) + (2^ n * m) ≡ (2^ n * suc m)
pow-suc zero m = refl
pow-suc (suc n) m = sym (ℕ.+-*-distrib (2^ n * 1) (2^ n * m) 2) ; cong (_* 2) (pow-suc n m)
module _ {t} (N : ℕ → Type t) (f : ∀ {n m} → N n → N m → N (n + m)) (z : N 0) where
spine : Vec (N 1) n → Array (N ) ⟦ n ⇑⟧
spine [] = []
spine (x ∷ xs) = cons (λ n x y → subst N (double≡*2 n) (f x y)) x (spine xs)
unspine : Array N ns → N ⟦ ns ⇓⟧
unspine = array-foldr N (λ n m xs ys → subst N (pow-suc n m) (f xs ys)) z
treeFold : Vec (N 1) n → N n
treeFold xs = subst N (𝔹-rightInv _) (unspine (spine xs))
| 33.041667
| 120
| 0.517444
|
06165aa83cf636bec78f223991434d5a5fb6f432
| 1,118
|
agda
|
Agda
|
test/Succeed/Issue3547.agda
|
zliu41/agda
|
73405f70bced057d24dd4bf122d53f9548544aba
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue3547.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue3547.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- {-# OPTIONS --cubical -vtc.lhs.split.partial:20 #-}
{-# OPTIONS --cubical #-}
module _ where
open import Agda.Primitive.Cubical
open import Agda.Builtin.Equality
postulate
X : Set
P : I → Set
p : P i1
module Test (A : Set) (i : I) (B : Set) where
j = i
R = P j
module Z (r s : A) where
a0 : I → Partial j R
a0 k with k
... | _ = \ { (j = i1) → p }
a : Partial j R
a (j = i1) = p
refining : ∀ (x y : A) → x ≡ y → A → A
refining x y refl = \ x -> x
where
prf : A → Partial j R
prf = \ { _ (j = i1) → p }
refining-dot : ∀ (x y : A) → x ≡ y → A → A
refining-dot x .x refl = \ x -> x
where
prf : A → Partial j R
prf = \ { _ (j = i1) → p }
refining-dot2 : ∀ (x y : A) → x ≡ y → A → A
refining-dot2 x .x refl z = z
where
prf : Partial j R
prf = \ { (i = i1) → p }
refining-cxt : A ≡ X → A → A
refining-cxt refl = \ x -> x
where
prf : Partial j R
prf = \ { (j = i1) → p }
refining-cxt2 : B ≡ X → A → A
refining-cxt2 refl = \ x → x
where
prf : Partial j R
prf = \ { (j = i1) → p }
| 21.09434
| 54
| 0.4678
|
9a43f9819c2756b83cd32fed7fae0743b6e69748
| 2,764
|
agda
|
Agda
|
agda/Number/Prelude/Nat.agda
|
mchristianl/synthetic-reals
|
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
|
[
"MIT"
] | 3
|
2020-07-31T18:15:26.000Z
|
2022-02-19T12:15:21.000Z
|
agda/Number/Prelude/Nat.agda
|
mchristianl/synthetic-reals
|
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
|
[
"MIT"
] | null | null | null |
agda/Number/Prelude/Nat.agda
|
mchristianl/synthetic-reals
|
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-import-sorts #-}
module Number.Prelude.Nat where
open import Cubical.Data.Nat.Order public using () renaming
( _<_ to _<ⁿᵗ_
; <-trans to <ⁿ-trans -- TODO: use different version
; _≟_ to _≟ⁿ_
; lt to ltⁿ
; gt to gtⁿ
; eq to eqⁿ
; ¬-<-zero to ¬-<ⁿ-zero
)
open import Data.Nat public using () renaming
( _⊔_ to maxⁿ
; _⊓_ to minⁿ
; _+_ to _+ⁿ_
; _*_ to _·ⁿ_
; pred to predⁿ
)
open import Cubical.Data.Nat public using (suc; zero; ℕ; HasFromNat) renaming
( +-comm to +ⁿ-comm
; +-assoc to +ⁿ-assoc
; *-comm to ·ⁿ-comm
; *-suc to ·ⁿ-suc
; *-assoc to ·ⁿ-assoc
; +-suc to +ⁿ-suc
; *-distribˡ to ·ⁿ-distribˡ
; *-distribʳ to ·ⁿ-distribʳ
; *-identityʳ to ·ⁿ-identityʳ
; *-identityˡ to ·ⁿ-identityˡ
; snotz to snotzⁿ
; injSuc to injSucⁿ
; isSetℕ to is-setⁿ
; inj-m+ to +ⁿ-preserves-≡ˡ
; inj-+m to +ⁿ-preserves-≡ʳ
; inj-sm* to ·ⁿ-reflects-≡ˡ'
; inj-*sm to ·ⁿ-reflects-≡ʳ'
)
open import Number.Instances.Nat as Nat public using () renaming
( bundle to ℕbundle
; _<_ to _<ⁿ_
; 0<suc to 0<ⁿsuc
; ·-nullifiesˡ to ·ⁿ-nullifiesˡ
; ·-nullifiesʳ to ·ⁿ-nullifiesʳ
; <-irrefl to <ⁿ-irrefl
; suc-creates-< to sucⁿ-creates-<ⁿ
; <-cotrans to <ⁿ-cotrans
; ¬suc<0 to ¬suc<ⁿ0
; ·-reflects-< to ·ⁿ-reflects-<ⁿ
; ·-preserves-< to ·ⁿ-preserves-<ⁿ
; +-createsʳ-< to +ⁿ-createsʳ-<ⁿ
; +-createsˡ-< to +ⁿ-createsˡ-<ⁿ
; min-comm to minⁿ-comm
; min-tightˡ to minⁿ-tightˡ
; min-tightʳ to minⁿ-tightʳ
; min-identity to minⁿ-identity
; max-comm to maxⁿ-comm
; max-tightˡ to maxⁿ-tightˡ
; max-tightʳ to maxⁿ-tightʳ
; max-identity to maxⁿ-identity
; MinTrichtotomy to MinTrichtotomyⁿ
; MaxTrichtotomy to MaxTrichtotomyⁿ
; min-trichotomy to minⁿ-trichotomy
; max-trichotomy to maxⁿ-trichotomy
; is-min to is-minⁿ
; is-max to is-maxⁿ
; +-<-ext to +ⁿ-<ⁿ-ext
; ·-reflects-≡ʳ to ·ⁿ-reflects-≡ʳ
; ·-reflects-≡ˡ to ·ⁿ-reflects-≡ˡ
)
open import MorePropAlgebra.Definitions
open import MorePropAlgebra.Structures
open import Number.Structures2
open IsMonoid Nat.+-Monoid public using () renaming (is-identity to +ⁿ-identity)
open IsMonoid Nat.·-Monoid public using () renaming (is-identity to ·ⁿ-identity)
open IsSemiring Nat.is-Semiring public using () renaming (is-dist to is-distⁿ)
open IsStrictLinearOrder Nat.<-StrictLinearOrder public using () renaming (is-tricho to is-trichoⁿ)
-- <-StrictLinearOrder .IsStrictLinearOrder.is-trans a b c = <-trans {a} {b} {c}
| 33.707317
| 102
| 0.593705
|
ad29bea2628f2f232232bf5421ae0017bbb352e7
| 206
|
agda
|
Agda
|
src/prototyping/term/examples/Prelude.agda
|
larrytheliquid/agda
|
477c8c37f948e6038b773409358fd8f38395f827
|
[
"MIT"
] | 1
|
2018-10-10T17:08:44.000Z
|
2018-10-10T17:08:44.000Z
|
src/prototyping/term/examples/Prelude.agda
|
masondesu/agda
|
70c8a575c46f6a568c7518150a1a64fcd03aa437
|
[
"MIT"
] | null | null | null |
src/prototyping/term/examples/Prelude.agda
|
masondesu/agda
|
70c8a575c46f6a568c7518150a1a64fcd03aa437
|
[
"MIT"
] | 1
|
2022-03-12T11:35:18.000Z
|
2022-03-12T11:35:18.000Z
|
module Prelude where
data _==_ {A : Set}(x : A) : A → Set where
refl : x == x
J : {A : Set} {x y : A} (P : (x y : A) → x == y -> Set) →
(∀ z → P z z refl) → (p : x == y) → P x y p
J P h refl = h _
| 20.6
| 57
| 0.417476
|
ad2dbd3e26817fd3b229fb3b75402100808636df
| 5,047
|
agda
|
Agda
|
src/Categories/Diagram/Pullback/Properties.agda
|
yourboynico/agda-categories
|
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
|
[
"MIT"
] | 279
|
2019-06-01T14:36:40.000Z
|
2022-03-22T00:40:14.000Z
|
src/Categories/Diagram/Pullback/Properties.agda
|
yourboynico/agda-categories
|
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
|
[
"MIT"
] | 236
|
2019-06-01T14:53:54.000Z
|
2022-03-28T14:31:43.000Z
|
src/Categories/Diagram/Pullback/Properties.agda
|
yourboynico/agda-categories
|
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
|
[
"MIT"
] | 64
|
2019-06-02T16:58:15.000Z
|
2022-03-14T02:00:59.000Z
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Diagram.Pullback.Properties {o ℓ e} (C : Category o ℓ e) where
open import Function using (_$_)
open import Categories.Category.BinaryProducts C
open import Categories.Category.Cartesian C
open import Categories.Diagram.Pullback C
open import Categories.Diagram.Equalizer C
open import Categories.Object.Product C
open import Categories.Object.Terminal C
open import Categories.Morphism C
open import Categories.Morphism.Reasoning C
private
open Category C
variable
X Y Z : Obj
f g h i : X ⇒ Y
open HomReasoning
open Equiv
-- pullbacks of a monomorphism along itself give us the identity arrow.
pullback-self-mono : Mono f → IsPullback id id f f
pullback-self-mono mono = record
{ commute = refl
; universal = λ {X} {h₁} {h₂} eq → h₁
; unique = λ id∘i≈h₁ _ → ⟺ identityˡ ○ id∘i≈h₁
; p₁∘universal≈h₁ = identityˡ
; p₂∘universal≈h₂ = λ {X} {h₁} {h₂} {eq} → identityˡ ○ mono h₁ h₂ eq
}
-- pullback from a terminal object is the same as a product
module _ (t : Terminal) where
open Terminal t
pullback-⊤⇒product : Pullback (! {X}) (! {Y}) → Product X Y
pullback-⊤⇒product p = record
{ A×B = P
; π₁ = p₁
; π₂ = p₂
; ⟨_,_⟩ = λ f g → universal (!-unique₂ {f = ! ∘ f} {g = ! ∘ g})
; project₁ = p₁∘universal≈h₁
; project₂ = p₂∘universal≈h₂
; unique = λ eq eq′ → ⟺ (unique eq eq′)
}
where open Pullback p
product⇒pullback-⊤ : Product X Y → Pullback (! {X}) (! {Y})
product⇒pullback-⊤ p = record
{ p₁ = π₁
; p₂ = π₂
; isPullback = record
{ commute = !-unique₂
; universal = λ {_ f g} _ → ⟨ f , g ⟩
; unique = λ eq eq′ → ⟺ (unique eq eq′)
; p₁∘universal≈h₁ = project₁
; p₂∘universal≈h₂ = project₂
}
}
where open Product p
-- pullbacks respect _≈_
module _ (p : Pullback f g) where
open Pullback p
pullback-resp-≈ : f ≈ h → g ≈ i → Pullback h i
pullback-resp-≈ eq eq′ = record
{ p₁ = p₁
; p₂ = p₂
; isPullback = record
{ commute = ∘-resp-≈ˡ (⟺ eq) ○ commute ○ ∘-resp-≈ˡ eq′
; universal = λ eq″ → universal (∘-resp-≈ˡ eq ○ eq″ ○ ∘-resp-≈ˡ (⟺ eq′))
; unique = unique
; p₁∘universal≈h₁ = p₁∘universal≈h₁
; p₂∘universal≈h₂ = p₂∘universal≈h₂
}
}
-- Some facts about pulling back along identity
module _ (p : Pullback id f) where
open Pullback p
-- This is a more subtle way of saying that 'p₂ ≈ id', without involving heterogenous equality.
pullback-identity : universal id-comm-sym ∘ p₂ ≈ id
pullback-identity = begin
universal Basic.id-comm-sym ∘ p₂ ≈⟨ unique ( pullˡ p₁∘universal≈h₁ ) (pullˡ p₂∘universal≈h₂) ⟩
universal eq ≈⟨ universal-resp-≈ (⟺ commute ○ identityˡ) identityˡ ⟩
universal commute ≈˘⟨ Pullback.id-unique p ⟩
id ∎
where
eq : id ∘ f ∘ p₂ ≈ f ∘ id ∘ p₂
eq = begin
(id ∘ f ∘ p₂) ≈⟨ elimˡ Equiv.refl ⟩
(f ∘ p₂) ≈˘⟨ refl⟩∘⟨ identityˡ ⟩
(f ∘ id ∘ p₂) ∎
module _ (pullbacks : ∀ {X Y Z} (f : X ⇒ Z) (g : Y ⇒ Z) → Pullback f g)
(cartesian : Cartesian) where
open Cartesian cartesian
open BinaryProducts products using (⟨_,_⟩; π₁; π₂; ⟨⟩-cong₂; ⟨⟩∘; project₁; project₂)
pullback×cartesian⇒equalizer : Equalizer f g
pullback×cartesian⇒equalizer {f = f} {g = g} = record
{ arr = p.p₁
; isEqualizer = record
{ equality = equality
; equalize = λ {_ h} eq → p.universal $ begin
⟨ f , g ⟩ ∘ h ≈⟨ ⟨⟩∘ ⟩
⟨ f ∘ h , g ∘ h ⟩ ≈˘⟨ ⟨⟩-cong₂ identityˡ (identityˡ ○ eq) ⟩
⟨ id ∘ f ∘ h , id ∘ f ∘ h ⟩ ≈˘⟨ ⟨⟩∘ ⟩
⟨ id , id ⟩ ∘ f ∘ h ∎
; universal = ⟺ p.p₁∘universal≈h₁
; unique = λ eq → p.unique (⟺ eq)
(⟺ (pullˡ eq′) ○ ⟺ (∘-resp-≈ʳ eq))
}
}
where p : Pullback ⟨ f , g ⟩ ⟨ id , id ⟩
p = pullbacks _ _
module p = Pullback p
eq : ⟨ f ∘ p.p₁ , g ∘ p.p₁ ⟩ ≈ ⟨ p.p₂ , p.p₂ ⟩
eq = begin
⟨ f ∘ p.p₁ , g ∘ p.p₁ ⟩ ≈˘⟨ ⟨⟩∘ ⟩
⟨ f , g ⟩ ∘ p.p₁ ≈⟨ p.commute ⟩
⟨ id , id ⟩ ∘ p.p₂ ≈⟨ ⟨⟩∘ ⟩
⟨ id ∘ p.p₂ , id ∘ p.p₂ ⟩ ≈⟨ ⟨⟩-cong₂ identityˡ identityˡ ⟩
⟨ p.p₂ , p.p₂ ⟩ ∎
eq′ : f ∘ p.p₁ ≈ p.p₂
eq′ = begin
f ∘ p.p₁ ≈˘⟨ project₁ ⟩
π₁ ∘ ⟨ f ∘ p.p₁ , g ∘ p.p₁ ⟩ ≈⟨ refl⟩∘⟨ eq ⟩
π₁ ∘ ⟨ p.p₂ , p.p₂ ⟩ ≈⟨ project₁ ⟩
p.p₂ ∎
equality : f ∘ p.p₁ ≈ g ∘ p.p₁
equality = begin
f ∘ p.p₁ ≈⟨ eq′ ⟩
p.p₂ ≈˘⟨ project₂ ⟩
π₂ ∘ ⟨ p.p₂ , p.p₂ ⟩ ≈˘⟨ refl⟩∘⟨ eq ⟩
π₂ ∘ ⟨ f ∘ p.p₁ , g ∘ p.p₁ ⟩ ≈⟨ project₂ ⟩
g ∘ p.p₁ ∎
| 34.806897
| 99
| 0.496929
|
4baf07da2ccc59b4c5f0b88f19e28341b689b45b
| 5,501
|
agda
|
Agda
|
src/Implicits/Syntax/Type/Unification/McBride.agda
|
metaborg/ts.agda
|
7fe638b87de26df47b6437f5ab0a8b955384958d
|
[
"MIT"
] | 4
|
2019-04-05T17:57:11.000Z
|
2021-05-07T04:08:41.000Z
|
src/Implicits/Syntax/Type/Unification/McBride.agda
|
metaborg/ts.agda
|
7fe638b87de26df47b6437f5ab0a8b955384958d
|
[
"MIT"
] | null | null | null |
src/Implicits/Syntax/Type/Unification/McBride.agda
|
metaborg/ts.agda
|
7fe638b87de26df47b6437f5ab0a8b955384958d
|
[
"MIT"
] | null | null | null |
open import Prelude renaming (_≟_ to _N≟_)
module Implicits.Syntax.Type.Unification.McBride where
open import Implicits.Syntax
open import Implicits.Syntax.MetaType
open import Data.Vec hiding (_>>=_)
open import Data.Vec.Properties
open import Data.Nat as N using ()
open import Data.Nat.Properties.Simple
open import Data.Product
open import Category.Monad
open import Data.Maybe hiding (module Maybe; map)
open import Data.Maybe as Maybe using (monad; functor)
open import Level using () renaming (zero to level₀)
open RawMonad {level₀} monad using (_>>=_; return)
open import Category.Functor
open RawFunctor {level₀} functor
open import Data.Star hiding (_>>=_)
open import Data.Fin.Properties as FinProp using ()
open import Data.Fin.Substitution
open import Implicits.Substitutions
open import Implicits.Substitutions.Lemmas
private
module M = MetaTypeMetaSubst
module T = MetaTypeTypeSubst
thin : ∀ {n} → Fin (suc n) → Fin n → Fin (suc n)
thin zero y = suc y
thin (suc x) zero = zero
thin (suc x) (suc y) = suc (thin x y)
thick : ∀ {n} → (x y : Fin (suc n)) → Maybe (Fin n)
thick zero zero = nothing
thick zero (suc y) = just y
thick {zero} (suc ()) zero
thick {suc n} (suc x) zero = just zero
thick {zero} (suc ()) _
thick {suc n} (suc x) (suc y) = suc <$> (thick x y)
check' : ∀ {ν} → Fin (suc ν) → Type (suc ν) → Maybe (Type ν)
check' n (simpl (tvar m)) = (λ n → simpl (tvar n)) <$> (thick n m)
check' n (simpl (tc x)) = just (simpl (tc x))
check' n (simpl (a →' b)) with check' n a | check' n b
check' n (simpl (a →' b)) | just x | just y = just (simpl (x →' y))
check' n (simpl (a →' b)) | _ | nothing = nothing
check' n (simpl (a →' b)) | nothing | _ = nothing
check' n (a ⇒ b) with check' n a | check' n b
check' n (a ⇒ b) | just x | just y = just (x ⇒ y)
check' n (a ⇒ b) | _ | nothing = nothing
check' n (a ⇒ b) | nothing | _ = nothing
check' n (∀' t) with check' (suc n) t
check' n (∀' t) | just x = just (∀' x)
check' n (∀' t) | nothing = nothing
substitute : {ν m n : ℕ} → (Fin m → MetaType n ν) → MetaType m ν → MetaType n ν
substitute f a = a M./ (tabulate f)
_for_ : ∀ {n ν} → Type ν → Fin (suc n) → Fin (suc n) → MetaType n ν
_for_ t' x y with thick x y
_for_ t' x y | just y' = simpl (mvar y')
_for_ t' x y | nothing = to-meta t'
data ASub (ν : ℕ) : ℕ → ℕ → Set where
_//_ : ∀ {m} → (t' : Type ν) → Fin (suc m) → ASub ν (suc m) m
AList : ℕ → ℕ → ℕ → Set
AList ν m n = Star (ASub ν) m n
asub-tp-weaken : ∀ {ν m n} → ASub ν m n → ASub (suc ν) m n
asub-tp-weaken (t' // x) = tp-weaken t' // x
asub-weaken : ∀ {ν m n} → ASub ν m n → ASub ν (suc m) (suc n)
asub-weaken (t' // x) = t' // (suc x)
alist-weaken : ∀ {ν m n} → AList ν m n → AList (suc ν) m n
alist-weaken s = gmap Prelude.id (λ x → asub-tp-weaken x) s
_◇_ : ∀ {l m n ν} → (Fin m → MetaType n ν) → (Fin l → MetaType m ν) → (Fin l → MetaType n ν)
f ◇ g = substitute f ∘ g
asub' : ∀ {ν m n} → (σ : AList ν m n) → Fin m → MetaType n ν
asub' ε = λ n → simpl (mvar n)
asub' (t' // x ◅ y) = asub' y ◇ (t' for x)
asub : ∀ {ν m n} → (σ : AList ν m n) → Sub (flip MetaType ν) m n
asub s = tabulate (asub' s)
mgu : ∀ {m ν} → MetaType m ν → Type ν → Maybe (∃ (AList ν m))
mgu {ν} s t = amgu s t (ν , ε)
where
amgu : ∀ {ν m} (s : MetaType m ν) → (t : Type ν)→ ∃ (AList ν m) → Maybe (∃ (AList ν m))
-- non-matching constructors
amgu (simpl (tc x)) (_ ⇒ _) acc = nothing
amgu (simpl (tc _)) (∀' _) x = nothing
amgu (simpl (tc x)) (simpl (_ →' _)) acc = nothing
amgu (simpl (tc _)) (simpl (tvar _)) x = nothing
amgu (simpl (_ →' _)) (∀' _) x = nothing
amgu (simpl (_ →' _)) (_ ⇒ _) x = nothing
amgu (simpl (_ →' _)) (simpl (tc _)) acc = nothing
amgu (simpl (_ →' _)) (simpl (tvar _)) x = nothing
amgu (_ ⇒ _) (simpl x) acc = nothing
amgu (_ ⇒ _) (∀' _) x = nothing
amgu (∀' _) (_ ⇒ _) x = nothing
amgu (∀' _) (simpl _) x = nothing
amgu (simpl (tvar _)) (_ ⇒ _) x = nothing
amgu (simpl (tvar _)) (∀' _) x = nothing
amgu (simpl (tvar _)) (simpl (tc _)) x = nothing
amgu (simpl (tvar _)) (simpl (_ →' _)) acc = nothing
-- matching constructors
amgu (a ⇒ b) (a' ⇒ b') acc = _>>=_ (amgu b b' acc) (amgu a a')
amgu (simpl (a →' b)) (simpl (a' →' b')) acc = _>>=_ (amgu b b' acc) (amgu a a')
amgu (simpl (tc x)) (simpl (tc y)) acc with x N≟ y
amgu (simpl (tc x)) (simpl (tc y)) acc | yes p = just (, ε)
amgu (simpl (tc x)) (simpl (tc y)) acc | no ¬p = nothing
amgu (∀' a) (∀' b) (m , acc) = σ >>= strengthen'
where
σ = amgu a b (m , alist-weaken acc)
strengthen' : ∀ {ν n} → ∃ (AList (suc ν) n) → Maybe (∃ (AList ν n))
strengthen' (m , ε) = just (m , ε)
strengthen' (m , t' // x ◅ acc) with check' zero t'
strengthen' (m , t' // x ◅ acc) | just z =
(λ { (m , u) → m , z // x ◅ u }) <$> (strengthen' (m , acc))
strengthen' (m , t' // x ◅ acc) | nothing = nothing
-- var-var
amgu ((simpl (tvar x))) ((simpl (tvar y))) (m , ε) with x FinProp.≟ y
amgu ((simpl (tvar x))) ((simpl (tvar y))) (m , ε) | yes _ = just (, ε)
amgu ((simpl (tvar x))) ((simpl (tvar y))) (m , ε) | no _ = nothing
-- var-rigid / rigid-var
amgu (simpl (mvar ())) t (zero , ε)
amgu (simpl (mvar x)) t (suc m , ε) = just (m , t // x ◅ ε)
amgu s t (m , t' // x ◅ us) with amgu (substitute (t' for x) s) t (m , us)
amgu s t (m , t' // x ◅ us) | just (m' , us') = just (m' , t' // x ◅ us')
amgu s t (m , t' // x ◅ us) | nothing = nothing
| 38.201389
| 92
| 0.556808
|
23d8b56e3ca7c3dfcf0f2e9ce668e2386f54d46b
| 506
|
agda
|
Agda
|
prototyping/Luau/Var.agda
|
JohnnyMorganz/luau
|
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
|
[
"MIT"
] | 1
|
2021-11-06T08:03:00.000Z
|
2021-11-06T08:03:00.000Z
|
prototyping/Luau/Var.agda
|
JohnnyMorganz/luau
|
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
|
[
"MIT"
] | null | null | null |
prototyping/Luau/Var.agda
|
JohnnyMorganz/luau
|
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
|
[
"MIT"
] | null | null | null |
module Luau.Var where
open import Agda.Builtin.Bool using (true; false)
open import Agda.Builtin.Equality using (_≡_)
open import Agda.Builtin.String using (String; primStringEquality)
open import Agda.Builtin.TrustMe using (primTrustMe)
open import Properties.Dec using (Dec; yes; no)
open import Properties.Equality using (_≢_)
Var : Set
Var = String
_≡ⱽ_ : (a b : Var) → Dec (a ≡ b)
a ≡ⱽ b with primStringEquality a b
a ≡ⱽ b | false = no p where postulate p : (a ≢ b)
a ≡ⱽ b | true = yes primTrustMe
| 29.764706
| 66
| 0.727273
|
2e705f2ce5f803a42f0900bb37b34d0ca3642ed6
| 189
|
agda
|
Agda
|
theorems/homotopy/WedgeOfCircles.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | null | null | null |
theorems/homotopy/WedgeOfCircles.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | null | null | null |
theorems/homotopy/WedgeOfCircles.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | 1
|
2018-12-26T21:31:57.000Z
|
2018-12-26T21:31:57.000Z
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module homotopy.WedgeOfCircles {i} where
WedgeOfCircles : (I : Type i) → Type i
WedgeOfCircles I = BigWedge {A = I} (λ _ → ⊙S¹)
| 18.9
| 47
| 0.666667
|
c7c1175051a0fdf7ab62502c2b2ee5ce3ae08ccf
| 1,290
|
agda
|
Agda
|
Definition/Typed/Consequences/Consistency.agda
|
CoqHott/logrel-mltt
|
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
|
[
"MIT"
] | 2
|
2018-06-21T08:39:01.000Z
|
2022-01-17T16:13:53.000Z
|
Definition/Typed/Consequences/Consistency.agda
|
CoqHott/logrel-mltt
|
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
|
[
"MIT"
] | null | null | null |
Definition/Typed/Consequences/Consistency.agda
|
CoqHott/logrel-mltt
|
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
|
[
"MIT"
] | 2
|
2022-01-26T14:55:51.000Z
|
2022-02-15T19:42:19.000Z
|
{-# OPTIONS --safe #-}
module Definition.Typed.Consequences.Consistency where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.EqRelInstance
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.ShapeView
open import Definition.LogicalRelation.Fundamental.Reducibility
open import Tools.Empty
open import Tools.Product
import Tools.PropositionalEquality as PE
zero≢one′ : ∀ {Γ l} ([ℕ] : Γ ⊩⟨ l ⟩ℕ ℕ)
→ Γ ⊩⟨ l ⟩ zero ≡ suc zero ∷ ℕ ^ [ ! , ι ⁰ ] / ℕ-intr [ℕ] → ⊥
zero≢one′ (noemb x) (ℕₜ₌ .(suc _) .(suc _) d d′ k≡k′ (sucᵣ x₁)) =
zero≢suc (whnfRed*Term (redₜ d) zeroₙ)
zero≢one′ (noemb x) (ℕₜ₌ .zero .zero d d′ k≡k′ zeroᵣ) =
zero≢suc (PE.sym (whnfRed*Term (redₜ d′) sucₙ))
zero≢one′ (noemb x) (ℕₜ₌ k k′ d d′ k≡k′ (ne (neNfₜ₌ neK neM k≡m))) =
zero≢ne neK (whnfRed*Term (redₜ d) zeroₙ)
zero≢one′ (emb emb< [ℕ]) n = zero≢one′ [ℕ] n
zero≢one′ (emb ∞< [ℕ]) n = zero≢one′ [ℕ] n
-- Zero cannot be judgmentally equal to one.
zero≢one : ∀ {Γ} → Γ ⊢ zero ≡ suc zero ∷ ℕ ^ [ ! , ι ⁰ ] → ⊥
zero≢one 0≡1 =
let [ℕ] , [0≡1] = reducibleEqTerm 0≡1
in zero≢one′ (ℕ-elim [ℕ]) (irrelevanceEqTerm [ℕ] (ℕ-intr (ℕ-elim [ℕ])) [0≡1])
| 36.857143
| 80
| 0.66124
|
3d5269df750aed9c110340b65fa1aab8391ce510
| 14,469
|
agda
|
Agda
|
core/lib/types/Pi.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | null | null | null |
core/lib/types/Pi.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | null | null | null |
core/lib/types/Pi.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | 1
|
2018-12-26T21:31:57.000Z
|
2018-12-26T21:31:57.000Z
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.Empty
open import lib.types.Sigma
open import lib.types.Paths
module lib.types.Pi where
abstract
Π-level : ∀ {i j} {A : Type i} {B : A → Type j} {n : ℕ₋₂}
→ (((x : A) → has-level n (B x)) → has-level n (Π A B))
Π-level {n = ⟨-2⟩} p =
((λ x → fst (p x)) , (λ f → λ= (λ x → snd (p x) (f x))))
Π-level {n = S n} p = λ f g →
equiv-preserves-level λ=-equiv
(Π-level (λ x → p x (f x) (g x)))
module _ {i j} {A : Type i} {B : A → Type j} where
abstract
Π-is-prop : ((x : A) → is-prop (B x)) → is-prop (Π A B)
Π-is-prop = Π-level
Π-is-set : ((x : A) → is-set (B x)) → is-set (Π A B)
Π-is-set = Π-level
module _ {i j} {A : Type i} {B : Type j} where
abstract
→-level : {n : ℕ₋₂} → (has-level n B → has-level n (A → B))
→-level p = Π-level (λ _ → p)
→-is-set : is-set B → is-set (A → B)
→-is-set = →-level
→-is-prop : is-prop B → is-prop (A → B)
→-is-prop = →-level
module _ {i} {A : Type i} where
abstract
¬-is-prop : is-prop (¬ A)
¬-is-prop = →-is-prop ⊥-is-prop
module _ {i j} {X : Ptd i} {Y : Ptd j} where
abstract
⊙→-level : {n : ℕ₋₂} → has-level n (de⊙ Y) → has-level n (X ⊙→ Y)
⊙→-level pY = Σ-level (→-level pY) (λ _ → =-preserves-level pY)
{- Equivalences in a Π-type -}
Π-emap-l : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k)
→ (e : A ≃ B) → Π A (P ∘ –> e) ≃ Π B P
Π-emap-l {A = A} {B = B} P e = equiv f g f-g g-f where
f : Π A (P ∘ –> e) → Π B P
f u b = transport P (<–-inv-r e b) (u (<– e b))
g : Π B P → Π A (P ∘ –> e)
g v a = v (–> e a)
abstract
f-g : ∀ v → f (g v) == v
f-g v = λ= λ b → to-transp (apd v (<–-inv-r e b))
g-f : ∀ u → g (f u) == u
g-f u = λ= λ a → to-transp $ transport (λ p → u _ == _ [ P ↓ p ])
(<–-inv-adj e a)
(↓-ap-in P (–> e)
(apd u $ <–-inv-l e a))
Π-emap-r : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
→ (∀ x → B x ≃ C x) → Π A B ≃ Π A C
Π-emap-r {A = A} {B = B} {C = C} k = equiv f g f-g g-f
where f : Π A B → Π A C
f c x = –> (k x) (c x)
g : Π A C → Π A B
g d x = <– (k x) (d x)
abstract
f-g : ∀ d → f (g d) == d
f-g d = λ= (λ x → <–-inv-r (k x) (d x))
g-f : ∀ c → g (f c) == c
g-f c = λ= (λ x → <–-inv-l (k x) (c x))
{-
favonia: This part is not used.
module _ {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁}
{B₀ : A₀ → Type j₀} {B₁ : A₁ → Type j₁} where
Π-emap : (u : A₀ ≃ A₁) (v : ∀ a → B₀ (<– u a) ≃ B₁ a) → Π A₀ B₀ ≃ Π A₁ B₁
Π-emap u v = Π A₀ B₀ ≃⟨ Π-emap-l _ (u ⁻¹) ⁻¹ ⟩
Π A₁ (B₀ ∘ <– u) ≃⟨ Π-emap-r v ⟩
Π A₁ B₁ ≃∎
Π-emap' : (u : A₀ ≃ A₁) (v : ∀ a → B₀ a ≃ B₁ (–> u a)) → Π A₀ B₀ ≃ Π A₁ B₁
Π-emap' u v = Π A₀ B₀ ≃⟨ Π-emap-r v ⟩
Π A₀ (B₁ ∘ –> u) ≃⟨ Π-emap-l _ u ⟩
Π A₁ B₁ ≃∎
-}
{- Coversions between functions with implicit and explicit arguments -}
expose-equiv : ∀ {i j} {A : Type i} {B : A → Type j}
→ ({x : A} → B x) ≃ ((x : A) → B x)
expose-equiv = (λ f a → f {a}) , is-eq
_
(λ f {a} → f a)
(λ _ → idp)
(λ _ → idp)
{- Dependent paths in a Π-type -}
module _ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k}
where
↓-Π-in : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')}
→ ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t' [ uncurry C ↓ pair= p q ])
→ (u == u' [ (λ x → Π (B x) (C x)) ↓ p ])
↓-Π-in {p = idp} f = λ= (λ x → f (idp {a = x}))
↓-Π-out : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')}
→ (u == u' [ (λ x → Π (B x) (C x)) ↓ p ])
→ ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t' [ uncurry C ↓ pair= p q ])
↓-Π-out {p = idp} q idp = app= q _
↓-Π-β : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')}
→ (f : {t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t' [ uncurry C ↓ pair= p q ])
→ {t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ ↓-Π-out (↓-Π-in f) q == f q
↓-Π-β {p = idp} f idp = app=-β (λ x → f (idp {a = x})) _
↓-Π-η : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')}
→ (q : (u == u' [ (λ x → Π (B x) (C x)) ↓ p ]))
→ ↓-Π-in (↓-Π-out q) == q
↓-Π-η {p = idp} q = ! (λ=-η q)
↓-Π-equiv : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')}
→ ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t' [ uncurry C ↓ pair= p q ])
≃ (u == u' [ (λ x → Π (B x) (C x)) ↓ p ])
↓-Π-equiv {p = idp} = equiv ↓-Π-in ↓-Π-out ↓-Π-η
(λ u → <– (ap-equiv expose-equiv _ _)
(λ= (λ t → <– (ap-equiv expose-equiv _ _)
(λ= (λ t' → λ= (↓-Π-β u))))))
{- Dependent paths in a Π-type where the codomain is not dependent on anything
Right now, this is defined in terms of the previous one. Maybe it’s a good idea,
maybe not.
-}
module _ {i j k} {A : Type i} {B : A → Type j} {C : Type k} {x x' : A}
{p : x == x'} {u : B x → C} {u' : B x' → C} where
↓-app→cst-in :
({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t')
→ (u == u' [ (λ x → B x → C) ↓ p ])
↓-app→cst-in f = ↓-Π-in (λ q → ↓-cst-in (f q))
↓-app→cst-out :
(u == u' [ (λ x → B x → C) ↓ p ])
→ ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t')
↓-app→cst-out r q = ↓-cst-out (↓-Π-out r q)
↓-app→cst-β :
(f : ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t'))
→ {t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ ↓-app→cst-out (↓-app→cst-in f) q == f q
↓-app→cst-β f q =
↓-app→cst-out (↓-app→cst-in f) q
=⟨ idp ⟩
↓-cst-out (↓-Π-out (↓-Π-in (λ qq → ↓-cst-in (f qq))) q)
=⟨ ↓-Π-β (λ qq → ↓-cst-in (f qq)) q |in-ctx
↓-cst-out ⟩
↓-cst-out (↓-cst-in {p = pair= p q} (f q))
=⟨ ↓-cst-β (pair= p q) (f q) ⟩
f q =∎
{- favonia: these lemmas are not used anywhere
{- Similar to above, with domain being the identity function. -}
{- These lemmas were in homotopy.FunctionOver and in different conventions. -}
module _ {i j} {A B : Type i} {C : Type j}
{u : A → C} {v : B → C} where
↓-idf→cst-in : ∀ (p : A == B)
→ u == v ∘ coe p
→ u == v [ (λ x → x → C) ↓ p ]
↓-idf→cst-in idp q = q
↓-idf→cst-ua-in : ∀ (e : A ≃ B)
→ u == v ∘ –> e
→ u == v [ (λ x → x → C) ↓ ua e ]
↓-idf→cst-ua-in e q = ↓-idf→cst-in (ua e) (q ∙ ap (v ∘_) (λ= λ a → ! (coe-β e a)))
↓-idf→cst-in' : ∀ (p : A == B)
→ u ∘ coe! p == v
→ u == v [ (λ x → x → C) ↓ p ]
↓-idf→cst-in' idp q = q
↓-idf→cst-ua-in' : ∀ (e : A ≃ B)
→ u ∘ <– e == v
→ u == v [ (λ x → x → C) ↓ ua e ]
↓-idf→cst-ua-in' e q = ↓-idf→cst-in' (ua e) (ap (u ∘_) (λ= λ a → coe!-β e a) ∙ q)
module _ {i j} {A B : Type i} {C : Type j}
{u : C → A} {v : C → B} where
↓-cst→idf-in : ∀ (p : A == B)
→ coe p ∘ u == v
→ u == v [ (λ x → C → x) ↓ p ]
↓-cst→idf-in idp q = q
↓-cst→idf-ua-in : ∀ (e : A ≃ B)
→ –> e ∘ u == v
→ u == v [ (λ x → C → x) ↓ ua e ]
↓-cst→idf-ua-in e q = ↓-cst→idf-in (ua e) (ap (_∘ u) (λ= λ a → coe-β e a) ∙ q)
↓-cst→idf-in' : ∀ (p : A == B)
→ u == coe! p ∘ v
→ u == v [ (λ x → C → x) ↓ p ]
↓-cst→idf-in' idp q = q
↓-cst→idf-ua-in' : ∀ (e : A ≃ B)
→ u == <– e ∘ v
→ u == v [ (λ x → C → x) ↓ ua e ]
↓-cst→idf-ua-in' e q = ↓-cst→idf-in' (ua e) (q ∙ ap (_∘ v) (λ= λ a → ! (coe!-β e a)))
-}
{- Dependent paths in an arrow type -}
module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
{x x' : A} {p : x == x'} {u : B x → C x} {u' : B x' → C x'} where
↓-→-in :
({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t' [ C ↓ p ])
→ (u == u' [ (λ x → B x → C x) ↓ p ])
↓-→-in f = ↓-Π-in (λ q → ↓-cst2-in p q (f q))
↓-→-out :
(u == u' [ (λ x → B x → C x) ↓ p ])
→ ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t' [ C ↓ p ])
↓-→-out r q = ↓-cst2-out p q (↓-Π-out r q)
{- Transport form of dependent path in an arrow type -}
module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} where
↓-→-from-transp : {x x' : A} {p : x == x'}
{u : B x → C x} {u' : B x' → C x'}
→ transport C p ∘ u == u' ∘ transport B p
→ u == u' [ (λ x → B x → C x) ↓ p ]
↓-→-from-transp {p = idp} q = q
↓-→-to-transp : {x x' : A} {p : x == x'}
{u : B x → C x} {u' : B x' → C x'}
→ u == u' [ (λ x → B x → C x) ↓ p ]
→ transport C p ∘ u == u' ∘ transport B p
↓-→-to-transp {p = idp} q = q
-- Dependent paths in a Π-type where the domain is constant
module _ {i j k} {A : Type i} {B : Type j} {C : A → B → Type k} where
↓-Π-cst-app-in : {x x' : A} {p : x == x'}
{u : (b : B) → C x b} {u' : (b : B) → C x' b}
→ ((b : B) → u b == u' b [ (λ x → C x b) ↓ p ])
→ (u == u' [ (λ x → (b : B) → C x b) ↓ p ])
↓-Π-cst-app-in {p = idp} f = λ= f
↓-Π-cst-app-out : {x x' : A} {p : x == x'}
{u : (b : B) → C x b} {u' : (b : B) → C x' b}
→ (u == u' [ (λ x → (b : B) → C x b) ↓ p ])
→ ((b : B) → u b == u' b [ (λ x → C x b) ↓ p ])
↓-Π-cst-app-out {p = idp} q = app= q
split-ap2 : ∀ {i j k} {A : Type i} {B : A → Type j} {C : Type k} (f : Σ A B → C)
{x y : A} (p : x == y)
{u : B x} {v : B y} (q : u == v [ B ↓ p ])
→ ap f (pair= p q) == ↓-app→cst-out (apd (curry f) p) q
split-ap2 f idp idp = idp
{-
Interaction of [apd] with function composition.
The basic idea is that [apd (g ∘ f) p == apd g (apd f p)] but the version here
is well-typed. Note that we assume a propositional equality [r] between
[apd f p] and [q].
-}
apd-∘ : ∀ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k}
(g : {a : A} → Π (B a) (C a)) (f : Π A B) {x y : A} (p : x == y)
{q : f x == f y [ B ↓ p ]} (r : apd f p == q)
→ apd (g ∘ f) p == ↓-apd-out C r (apd↓ g q)
apd-∘ g f idp idp = idp
{- When [g] is nondependent, it’s much simpler -}
apd-∘' : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
(g : {a : A} → B a → C a) (f : Π A B) {x y : A} (p : x == y)
→ apd (g ∘ f) p == ap↓ g (apd f p)
apd-∘' g f idp = idp
∘'-apd : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
(g : {a : A} → B a → C a) (f : Π A B) {x y : A} (p : x == y)
→ ap↓ g (apd f p) == apd (g ∘ f) p
∘'-apd g f idp = idp
{- And when [f] is nondependent, it’s also a bit simpler -}
apd-∘'' : ∀ {i j k} {A : Type i} {B : Type j} {C : (b : B) → Type k}
(g : Π B C) (f : A → B) {x y : A} (p : x == y)
{q : f x == f y} (r : ap f p == q)
→ apd (g ∘ f) p == ↓-ap-out= C f p r (apd g q) --(apd↓ g q)
apd-∘'' g f idp idp = idp
{- 2-dimensional coherence conditions -}
-- lhs :
-- ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} {f g : Π A B}
-- {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y}
-- (k : (u ◃ apd g p) == (apd f p ▹ v))
-- (h : {a : A} → B a → C a)
-- → ap h u ◃ apd (h ∘ g) p == ap↓ h (u ◃ apd g p)
-- rhs :
-- ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} {f g : Π A B}
-- {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y}
-- (k : (u ◃ apd g p) == (apd f p ▹ v))
-- (h : {a : A} → B a → C a)
-- → ap↓ h (apd f p ▹ v) == apd (h ∘ f) p ▹ ap h v
-- ap↓-↓-=-in :
-- ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} {f g : Π A B}
-- {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y}
-- (k : (u ◃ apd g p) == (apd f p ▹ v))
-- (h : {a : A} → B a → C a)
-- → ap↓ (λ {a} → ap (h {a = a})) (↓-=-in {p = p} {u = u} {v = v} k)
-- == ↓-=-in (lhs {f = f} {g = g} k h ∙ ap (ap↓ (λ {a} → h {a = a})) k
-- ∙ rhs {f = f} {g = g} k h)
{-
Commutation of [ap↓ (ap h)] and [↓-swap!]. This is "just" J, but it’s not as
easy as it seems.
-}
-- module Ap↓-swap! {i j k ℓ} {A : Type i} {B : Type j} {C : Type k}
-- {D : Type ℓ} (h : C → D) (f : A → C) (g : B → C)
-- {a a' : A} {p : a == a'} {b b' : B} {q : b == b'}
-- (r : f a == g b') (s : f a' == g b)
-- (t : r == s ∙ ap g q [ (λ x → f x == g b') ↓ p ])
-- where
-- lhs : ap h (ap f p ∙' s) == ap (h ∘ f) p ∙' ap h s
-- lhs = ap-∙' h (ap f p) s ∙ (ap (λ u → u ∙' ap h s) (∘-ap h f p))
-- rhs : ap h (s ∙ ap g q) == ap h s ∙ ap (h ∘ g) q
-- rhs = ap-∙ h s (ap g q) ∙ (ap (λ u → ap h s ∙ u) (∘-ap h g q))
-- β : ap↓ (ap h) (↓-swap! f g r s t) ==
-- lhs ◃ ↓-swap! (h ∘ f) (h ∘ g) (ap h r) (ap h s) (ap↓ (ap h) t ▹ rhs)
-- β with a | a' | p | b | b' | q | r | s | t
-- β | a | .a | idp | b | .b | idp | r | s | t = coh r s t where
-- T : {x x' : C} (r s : x == x') (t : r == s ∙ idp) → Type _
-- T r s t =
-- ap (ap h) (∙'-unit-l s ∙ ! (∙-unit-r s) ∙ ! t) ==
-- (ap-∙' h idp s ∙ idp)
-- ∙
-- (∙'-unit-l (ap h s) ∙
-- ! (∙-unit-r (ap h s)) ∙
-- !
-- (ap (ap h) t ∙'
-- (ap-∙ h s idp ∙ idp)))
-- coh' : {x x' : C} {r s : x == x'} (t : r == s) → T r s (t ∙ ! (∙-unit-r s))
-- coh' {r = idp} {s = .idp} idp = idp
-- coh : {x x' : C} (r s : x == x') (t : r == s ∙ idp) → T r s t
-- coh r s t = transport (λ t → T r s t) (coh2 t (∙-unit-r s)) (coh' (t ∙ ∙-unit-r s)) where
-- coh2 : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : y == z) → (p ∙ q) ∙ ! q == p
-- coh2 idp idp = idp
-- module _ {i j k} {A : Type i} {B B' : Type j} {C : Type k} (f : A → C) (g' : B' → B) (g : B → C) where
-- abc : {a a' : A} {p : a == a'} {c c' : B'} {q' : c == c'} {q : g' c == g' c'}
-- (r : f a == g (g' c')) (s : f a' == g (g' c))
-- (t : q == ap g' q')
-- (α : r == s ∙ ap g q [ (λ x → f x == g (g' c')) ↓ p ])
-- → {!(↓-swap! f g r s α ▹ ?) ∙'2ᵈ ?!} == ↓-swap! f (g ∘ g') {p = p} {q = q'} r s (α ▹ ap (λ u → s ∙ u) (ap (ap g) t ∙ ∘-ap g g' q'))
-- abc = {!!}
{- Functoriality of application and function extensionality -}
∙-app= : ∀ {i j} {A : Type i} {B : A → Type j} {f g h : Π A B}
(α : f == g) (β : g == h)
→ α ∙ β == λ= (λ x → app= α x ∙ app= β x)
∙-app= idp β = λ=-η β
∙-λ= : ∀ {i j} {A : Type i} {B : A → Type j} {f g h : Π A B}
(α : (x : A) → f x == g x) (β : (x : A) → g x == h x)
→ λ= α ∙ λ= β == λ= (λ x → α x ∙ β x)
∙-λ= α β = ∙-app= (λ= α) (λ= β)
∙ ap λ= (λ= (λ x → ap (λ w → w ∙ app= (λ= β) x) (app=-β α x)
∙ ap (λ w → α x ∙ w) (app=-β β x)))
| 35.118932
| 138
| 0.375078
|
2ecebf435c66043d2de2befccceaebded172fca2
| 1,215
|
agda
|
Agda
|
Cubical/ZCohomology/Base.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | 1
|
2021-10-31T17:32:49.000Z
|
2021-10-31T17:32:49.000Z
|
Cubical/ZCohomology/Base.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
Cubical/ZCohomology/Base.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe #-}
module Cubical.ZCohomology.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed.Base
open import Cubical.Data.Int.Base hiding (_+_)
open import Cubical.Data.Nat.Base
open import Cubical.Data.Sigma
open import Cubical.HITs.Nullification.Base
open import Cubical.HITs.SetTruncation.Base
open import Cubical.HITs.Sn.Base
open import Cubical.HITs.Susp.Base
open import Cubical.HITs.Truncation.Base
open import Cubical.Homotopy.Loopspace
private
variable
ℓ : Level
A : Type ℓ
--- Cohomology ---
{- EM-spaces Kₙ from Brunerie 2016 -}
coHomK : (n : ℕ) → Type₀
coHomK zero = ℤ
coHomK (suc n) = ∥ S₊ (suc n) ∥ (2 + suc n)
{- Cohomology -}
coHom : (n : ℕ) → Type ℓ → Type ℓ
coHom n A = ∥ (A → coHomK n) ∥₂
--- Reduced cohomology ---
coHom-pt : (n : ℕ) → coHomK n
coHom-pt 0 = 0
coHom-pt (suc n) = ∣ (ptSn (suc n)) ∣
{- Pointed version of Kₙ -}
coHomK-ptd : (n : ℕ) → Pointed (ℓ-zero)
coHomK-ptd n = coHomK n , coHom-pt n
{- Reduced cohomology -}
coHomRed : (n : ℕ) → (A : Pointed ℓ) → Type ℓ
coHomRed n A = ∥ A →∙ coHomK-ptd n ∥₂
{- Kₙ, untruncated version -}
coHomKType : (n : ℕ) → Type
coHomKType zero = ℤ
coHomKType (suc n) = S₊ (suc n)
| 22.924528
| 46
| 0.674074
|
c71e5b83fb422c69336ef8cf697fde74f7a1f7c9
| 1,891
|
agda
|
Agda
|
SOAS/Syntax/Build.agda
|
JoeyEremondi/agda-soas
|
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
|
[
"MIT"
] | null | null | null |
SOAS/Syntax/Build.agda
|
JoeyEremondi/agda-soas
|
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
|
[
"MIT"
] | null | null | null |
SOAS/Syntax/Build.agda
|
JoeyEremondi/agda-soas
|
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
|
[
"MIT"
] | null | null | null |
-- Helper operations to construct and build signatures
module SOAS.Syntax.Build (T : Set) where
open import SOAS.Common
open import SOAS.Families.Build {T}
open import SOAS.Context {T}
open import Data.List.Base
open import SOAS.Syntax.Signature T
-- Syntactic sugar to construct arity - sort mappings
⟼₀_ : T → List (Ctx × T) × T
⟼₀_ τ = [] , τ
_⟼₁_ : (Ctx × T) → T → List (Ctx × T) × T
a ⟼₁ τ = [ a ] , τ
_,_⟼₂_ : (a₁ a₂ : Ctx × T) → T → List (Ctx × T) × T
a₁ , a₂ ⟼₂ τ = (a₁ ∷ [ a₂ ]) , τ
_,_,_⟼₃_ : (a₁ a₂ a₃ : Ctx × T) → T → List (Ctx × T) × T
a₁ , a₂ , a₃ ⟼₃ τ = (a₁ ∷ a₂ ∷ [ a₃ ]) , τ
_,_,_,_⟼₄_ : (a₁ a₂ a₃ a₄ : Ctx × T) → T → List (Ctx × T) × T
a₁ , a₂ , a₃ , a₄ ⟼₄ τ = (a₁ ∷ a₂ ∷ a₃ ∷ [ a₄ ]) , τ
_⟼ₙ_ : List (Ctx × T) → T → List (Ctx × T) × T
_⟼ₙ_ = _,_
-- Syntactic sugar to costruct arguments
⊢₀_ : T → Ctx × T
⊢₀ α = ∅ , α
_⊢₁_ : T → T → Ctx × T
τ ⊢₁ α = ⌊ τ ⌋ , α
_,_⊢₂_ : (τ₁ τ₂ : T) → T → Ctx × T
τ₁ , τ₂ ⊢₂ α = ⌊ τ₁ ∙ τ₂ ⌋ , α
_,_,_⊢₃_ : (τ₁ τ₂ τ₃ : T) → T → Ctx × T
τ₁ , τ₂ , τ₃ ⊢₃ α = ⌊ τ₁ ∙ τ₂ ∙ τ₃ ⌋ , α
_⊢ₙ_ : Ctx → T → Ctx × T
Π ⊢ₙ τ = Π , τ
infix 2 ⟼₀_
infix 2 _⟼₁_
infix 2 _,_⟼₂_
infix 2 _,_,_⟼₃_
infix 2 _⟼ₙ_
infix 10 ⊢₀_
infix 10 _⊢₁_
infix 10 _,_⊢₂_
infix 10 _⊢ₙ_
-- Sum of two signatures
_+ˢ_ : {O₁ O₂ : Set} → Signature O₁ → Signature O₂ → Signature (+₂ O₁ O₂)
S1 +ˢ S2 = sig (₂| ∣ S1 ∣ ∣ S2 ∣)
where open Signature
-- Sums of signatures
Σ₂ : {O₁ O₂ : Set} → Signature O₁ → Signature O₂ → Signature (+₂ O₁ O₂)
Σ₂ S₁ S₂ = sig (₂| (∣ S₁ ∣) (∣ S₂ ∣))
where open Signature
Σ₃ : {O₁ O₂ O₃ : Set} → Signature O₁ → Signature O₂ → Signature O₃ → Signature (+₃ O₁ O₂ O₃)
Σ₃ S₁ S₂ S₃ = sig (₃| (∣ S₁ ∣) (∣ S₂ ∣) (∣ S₃ ∣))
where open Signature
Σ₄ : {O₁ O₂ O₃ O₄ : Set} → Signature O₁ → Signature O₂ → Signature O₃ → Signature O₄ → Signature (+₄ O₁ O₂ O₃ O₄)
Σ₄ S₁ S₂ S₃ S₄ = sig (₄| (∣ S₁ ∣) (∣ S₂ ∣) (∣ S₃ ∣) (∣ S₄ ∣))
where open Signature
| 24.558442
| 113
| 0.549445
|
9a2382e2c0157592d060a3449e53d9f8cbc12a1b
| 1,314
|
agda
|
Agda
|
test/Succeed/Issue5201.agda
|
cagix/agda
|
cc026a6a97a3e517bb94bafa9d49233b067c7559
|
[
"BSD-2-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue5201.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue5201.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
open import Agda.Builtin.Sigma
open import Agda.Primitive
infixr 2 _×_
_×_ : ∀ {a b} → Set a → Set b → Set (a ⊔ b)
A × B = Σ A λ _ → B
∃-notation exists-notation :
∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b)
∃-notation = Σ _
exists-notation = Σ _
Σ-notation : ∀ {a b} (A : Set a) → (A → Set b) → Set (a ⊔ b)
Σ-notation = Σ
infixr 2 ∃-notation exists-notation Σ-notation
syntax ∃-notation (λ x → B) = ∃ x × B
syntax exists-notation (λ x → B) = exists x × B
syntax Σ-notation A (λ x → B) = [ x ∶ A ] × B
_ : ∃ b × b ≡ true × Bool
_ = true , refl , false
_ : exists b × b ≡ true
_ = true , refl
_ : [ b ∶ Bool ] × b ≡ true
_ = true , refl
_ : [ b₁ ∶ Bool ] × [ b₂ ∶ Bool ] × b₁ ≡ b₂
_ = true , true , refl
_ : [ b₁ ∶ Bool ] × ∃ b₂ × b₁ ≡ b₂
_ = true , true , refl
_ : [ f ∶ (Bool → Bool) ] × f ≡ λ x → x
_ = (λ x → x) , refl
data List (A : Set) : Set where
[] : List A
cons : A → List A → List A
infixr 5 cons
syntax [] = [ ]
syntax cons x xs = x consed to xs
_ : List Bool
_ = true consed to false consed to [ ]
f : List Bool → Bool
f [ ] = true
f (true consed to [ ]) = false
f (false consed to x consed to [ ]) = x
f _ = true
| 21.9
| 60
| 0.512938
|
3d4d9367bfaf275be90aaf0a2eeed79a294a661c
| 436
|
agda
|
Agda
|
test/Succeed/UnquoteSetOmega.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/UnquoteSetOmega.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/UnquoteSetOmega.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --universe-polymorphism #-}
open import Common.Prelude
open import Common.Level
open import Common.Reflection
module UnquoteSetOmega where
`Level : Term
`Level = def (quote Level) []
-- building the syntax of ∀ ℓ → Set ℓ (of type Setω) is harmless
`∀ℓ→Setℓ : Term
`∀ℓ→Setℓ = pi (vArg `Level) (abs "_" (sort (set (var 0 []))))
-- unquoting it is now also fine (since we have sort Setω₁)
∀ℓ→Setℓ = unquote (give `∀ℓ→Setℓ)
| 25.647059
| 64
| 0.68578
|
Subsets and Splits
HTML Code Excluding Scripts
The query retrieves a limited set of HTML content entries that are longer than 8 characters and do not contain script tags, offering only basic filtering with minimal analytical value.