hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
a157f0b6d69709a08cb23ab91e499a55e86db89f
475
agda
Agda
test/Succeed/Issue4528.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue4528.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue4528.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --allow-unsolved-metas #-} open import Agda.Builtin.Equality open import Agda.Builtin.List postulate A : Set nilA : A consA : A → List A → A w/e : {x y : A} → x ≡ y data D : List A → Set where nil : D [] cons : (x : A) (xs : List A) → D (x ∷ xs) foo : ∀ {xs} (d : D xs) (let f : D xs → A f = λ where nil → nilA (cons y ys) → consA y ys) → f d ≡ nilA foo nil = {!!} foo (cons _ _) = w/e
21.590909
50
0.471579
ad138a0e90c06ee79ce757624e1872e4626699ad
612
agda
Agda
Cubical/Algebra/Semigroup/Construct/Empty.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Algebra/Semigroup/Construct/Empty.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Algebra/Semigroup/Construct/Empty.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Semigroup.Construct.Empty where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Algebra.Semigroup open import Cubical.Data.Empty import Cubical.Algebra.Magma.Construct.Empty as ⊥Magma open ⊥Magma public hiding (⊥-isMagma; ⊥-Magma) ◯-assoc : Associative _◯_ ◯-assoc _ _ _ = isProp⊥ _ _ ⊥-isSemigroup : IsSemigroup ⊥ _◯_ ⊥-isSemigroup = record { isMagma = ⊥Magma.⊥-isMagma ; assoc = ◯-assoc } ⊥-Semigroup : Semigroup ℓ-zero ⊥-Semigroup = record { isSemigroup = ⊥-isSemigroup }
24.48
54
0.730392
2e7b00323d3284c4500ca607f3e66488fd237793
4,024
agda
Agda
core/lib/types/Coproduct.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/types/Coproduct.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/types/Coproduct.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Bool open import lib.types.Empty open import lib.types.Lift open import lib.types.Sigma open import lib.types.Pi module lib.types.Coproduct where module _ {i j} {A : Type i} {B : Type j} where Coprod= : Coprod A B → Coprod A B → Type (lmax i j) Coprod= (inl a₁) (inl a₂) = Lift {j = (lmax i j)} $ a₁ == a₂ Coprod= (inl a₁) (inr b₂) = Lift Empty Coprod= (inr b₁) (inl a₂) = Lift Empty Coprod= (inr b₁) (inr b₂) = Lift {j = (lmax i j)} $ b₁ == b₂ Coprod=-in : {x y : Coprod A B} → (x == y) → Coprod= x y Coprod=-in {inl _} idp = lift idp Coprod=-in {inr _} idp = lift idp Coprod=-out : {x y : Coprod A B} → Coprod= x y → (x == y) Coprod=-out {inl _} {inl _} c = ap inl $ lower c Coprod=-out {inl _} {inr _} c = Empty-rec $ lower c Coprod=-out {inr _} {inl _} c = Empty-rec $ lower c Coprod=-out {inr _} {inr _} c = ap inr (lower c) Coprod=-in-equiv : (x y : Coprod A B) → (x == y) ≃ Coprod= x y Coprod=-in-equiv x y = equiv Coprod=-in Coprod=-out (f-g x y) (g-f x y) where f-g : ∀ x' y' → ∀ c → Coprod=-in (Coprod=-out {x'} {y'} c) == c f-g (inl a₁) (inl .a₁) (lift idp) = idp f-g (inl a₁) (inr b₂) b = Empty-rec $ lower b f-g (inr b₁) (inl a₂) b = Empty-rec $ lower b f-g (inr b₁) (inr .b₁) (lift idp) = idp g-f : ∀ x' y' → ∀ p → Coprod=-out (Coprod=-in {x'} {y'} p) == p g-f (inl _) .(inl _) idp = idp g-f (inr _) .(inr _) idp = idp inl=inl-equiv : (a₁ a₂ : A) → (inl a₁ == inl a₂) ≃ (a₁ == a₂) inl=inl-equiv a₁ a₂ = lower-equiv ∘e Coprod=-in-equiv (inl a₁) (inl a₂) inr=inr-equiv : (b₁ b₂ : B) → (inr b₁ == inr b₂) ≃ (b₁ == b₂) inr=inr-equiv b₁ b₂ = lower-equiv ∘e Coprod=-in-equiv (inr b₁) (inr b₂) inl≠inr : (a₁ : A) (b₂ : B) → (inl a₁ ≠ inr b₂) inl≠inr a₁ b₂ p = lower $ Coprod=-in p inr≠inl : (b₁ : B) (a₂ : A) → (inr b₁ ≠ inl a₂) inr≠inl a₁ b₂ p = lower $ Coprod=-in p ⊔-level : ∀ {n} → has-level (S (S n)) A → has-level (S (S n)) B → has-level (S (S n)) (Coprod A B) ⊔-level pA _ (inl a₁) (inl a₂) = equiv-preserves-level (inl=inl-equiv a₁ a₂ ⁻¹) (pA a₁ a₂) ⊔-level _ _ (inl a₁) (inr b₂) = λ p → Empty-rec (inl≠inr a₁ b₂ p) ⊔-level _ _ (inr b₁) (inl a₂) = λ p → Empty-rec (inr≠inl b₁ a₂ p) ⊔-level _ pB (inr b₁) (inr b₂) = equiv-preserves-level ((inr=inr-equiv b₁ b₂)⁻¹) (pB b₁ b₂) Coprod-level = ⊔-level infix 80 _⊙⊔_ _⊙⊔_ : ∀ {i j} → Ptd i → Ptd j → Ptd (lmax i j) X ⊙⊔ Y = ⊙[ Coprod (de⊙ X) (de⊙ Y) , inl (pt X) ] _⊔⊙_ : ∀ {i j} → Ptd i → Ptd j → Ptd (lmax i j) X ⊔⊙ Y = ⊙[ Coprod (de⊙ X) (de⊙ Y) , inr (pt Y) ] codiag : ∀ {i} {A : Type i} → A ⊔ A → A codiag (inl a) = a codiag (inr a) = a ⊙codiag : ∀ {i} {X : Ptd i} → X ⊙⊔ X ⊙→ X ⊙codiag = (codiag , idp) -- A binary sigma is a coproduct ΣBool-equiv-⊔ : ∀ {i} (Pick : Bool → Type i) → Σ Bool Pick ≃ Pick true ⊔ Pick false ΣBool-equiv-⊔ Pick = equiv into out into-out out-into where into : Σ _ Pick → Pick true ⊔ Pick false into (true , a) = inl a into (false , b) = inr b out : (Pick true ⊔ Pick false) → Σ _ Pick out (inl a) = (true , a) out (inr b) = (false , b) abstract into-out : ∀ c → into (out c) == c into-out (inl a) = idp into-out (inr b) = idp out-into : ∀ s → out (into s) == s out-into (true , a) = idp out-into (false , b) = idp module _ {i j k} {A : Type i} {B : Type j} (P : A ⊔ B → Type k) where Π₁-⊔-equiv-× : Π (A ⊔ B) P ≃ Π A (P ∘ inl) × Π B (P ∘ inr) Π₁-⊔-equiv-× = equiv to from to-from from-to where to : Π (A ⊔ B) P → Π A (P ∘ inl) × Π B (P ∘ inr) to f = (λ a → f (inl a)) , (λ b → f (inr b)) from : Π A (P ∘ inl) × Π B (P ∘ inr) → Π (A ⊔ B) P from (f , g) (inl a) = f a from (f , g) (inr b) = g b abstract to-from : ∀ fg → to (from fg) == fg to-from _ = idp from-to : ∀ fg → from (to fg) == fg from-to fg = λ= λ where (inl _) → idp (inr _) → idp
33.815126
73
0.519135
4b5dbe09c3e3553e281201ca40edbc12cc8e59f7
1,698
agda
Agda
examples/outdated-and-incorrect/Alonzo/PreludeList.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
examples/outdated-and-incorrect/Alonzo/PreludeList.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/outdated-and-incorrect/Alonzo/PreludeList.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module PreludeList where open import AlonzoPrelude as Prelude open import PreludeNat infixr 50 _::_ _++_ data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _::_ #-} [_] : {A : Set} -> A -> List A [ x ] = x :: [] length : {A : Set} -> List A -> Nat length [] = 0 length (_ :: xs) = 1 + length xs map : {A B : Set} -> (A -> B) -> List A -> List B map f [] = [] map f (x :: xs) = f x :: map f xs _++_ : {A : Set} -> List A -> List A -> List A [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) zipWith : {A B C : Set} -> (A -> B -> C) -> List A -> List B -> List C zipWith f [] [] = [] zipWith f (x :: xs) (y :: ys) = f x y :: zipWith f xs ys zipWith f [] (_ :: _) = [] zipWith f (_ :: _) [] = [] foldr : {A B : Set} -> (A -> B -> B) -> B -> List A -> B foldr f z [] = z foldr f z (x :: xs) = f x (foldr f z xs) foldl : {A B : Set} -> (B -> A -> B) -> B -> List A -> B foldl f z [] = z foldl f z (x :: xs) = foldl f (f z x) xs replicate : {A : Set} -> Nat -> A -> List A replicate zero x = [] replicate (suc n) x = x :: replicate n x iterate : {A : Set} -> Nat -> (A -> A) -> A -> List A iterate zero f x = [] iterate (suc n) f x = x :: iterate n f (f x) splitAt : {A : Set} -> Nat -> List A -> List A × List A splitAt zero xs = < [] , xs > splitAt (suc n) [] = < [] , [] > splitAt (suc n) (x :: xs) = add x $ splitAt n xs where add : _ -> List _ × List _ -> List _ × List _ add x < ys , zs > = < x :: ys , zs > reverse : {A : Set} -> List A -> List A reverse xs = foldl (flip _::_) [] xs
25.727273
70
0.452297
583c03b301904cf94447f4be2841895b0fb974cc
271
agda
Agda
test/Fail/SafeFlagPragmas.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/SafeFlagPragmas.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/SafeFlagPragmas.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --allow-unsolved-metas --no-positivity-check --no-termination-check --type-in-type --sized-types --injective-type-constructors --experimental-irrelevance #-} module SafeFlagPragmas where
30.111111
42
0.568266
388ba72f60f4ef9fb0a00202415e8c0833769ada
2,583
agda
Agda
test/asset/agda-stdlib-1.0/Data/BoundedVec.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/BoundedVec.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/BoundedVec.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Bounded vectors ------------------------------------------------------------------------ -- Vectors of a specified maximum length. {-# OPTIONS --without-K --safe #-} module Data.BoundedVec where open import Data.Nat open import Data.List.Base as List using (List) open import Data.Vec as Vec using (Vec) import Data.BoundedVec.Inefficient as Ineff open import Relation.Binary.PropositionalEquality open import Data.Nat.Solver open +-*-Solver ------------------------------------------------------------------------ -- The type abstract data BoundedVec {a} (A : Set a) : ℕ → Set a where bVec : ∀ {m n} (xs : Vec A n) → BoundedVec A (n + m) [] : ∀ {a n} {A : Set a} → BoundedVec A n [] = bVec Vec.[] infixr 5 _∷_ _∷_ : ∀ {a n} {A : Set a} → A → BoundedVec A n → BoundedVec A (suc n) x ∷ bVec xs = bVec (Vec._∷_ x xs) ------------------------------------------------------------------------ -- Pattern matching infixr 5 _∷v_ data View {a} (A : Set a) : ℕ → Set a where []v : ∀ {n} → View A n _∷v_ : ∀ {n} (x : A) (xs : BoundedVec A n) → View A (suc n) abstract view : ∀ {a n} {A : Set a} → BoundedVec A n → View A n view (bVec Vec.[]) = []v view (bVec (Vec._∷_ x xs)) = x ∷v bVec xs ------------------------------------------------------------------------ -- Increasing the bound abstract ↑ : ∀ {a n} {A : Set a} → BoundedVec A n → BoundedVec A (suc n) ↑ {A = A} (bVec {m = m} {n = n} xs) = subst (BoundedVec A) lemma (bVec {m = suc m} xs) where lemma : n + (1 + m) ≡ 1 + (n + m) lemma = solve 2 (λ m n → n :+ (con 1 :+ m) := con 1 :+ (n :+ m)) refl m n ------------------------------------------------------------------------ -- Conversions module _ {a} {A : Set a} where abstract fromList : (xs : List A) → BoundedVec A (List.length xs) fromList xs = subst (BoundedVec A) lemma (bVec {m = zero} (Vec.fromList xs)) where lemma : List.length xs + 0 ≡ List.length xs lemma = solve 1 (λ m → m :+ con 0 := m) refl _ toList : ∀ {n} → BoundedVec A n → List A toList (bVec xs) = Vec.toList xs toInefficient : ∀ {n} → BoundedVec A n → Ineff.BoundedVec A n toInefficient xs with view xs ... | []v = Ineff.[] ... | y ∷v ys = y Ineff.∷ toInefficient ys fromInefficient : ∀ {n} → Ineff.BoundedVec A n → BoundedVec A n fromInefficient Ineff.[] = [] fromInefficient (x Ineff.∷ xs) = x ∷ fromInefficient xs
27.774194
72
0.473868
1a926f3d4dfe5857f1a8684fa23fc2303ffe5441
1,310
agda
Agda
src/Categories/Object/Zero.agda
FintanH/agda-categories
3ef03f73bce18f1efba2890df9ddf3d76ed2de32
[ "MIT" ]
null
null
null
src/Categories/Object/Zero.agda
FintanH/agda-categories
3ef03f73bce18f1efba2890df9ddf3d76ed2de32
[ "MIT" ]
null
null
null
src/Categories/Object/Zero.agda
FintanH/agda-categories
3ef03f73bce18f1efba2890df9ddf3d76ed2de32
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- a zero object is both terminal and initial. module Categories.Object.Zero {o ℓ e} (C : Category o ℓ e) where open import Level using (_⊔_) open import Categories.Object.Terminal C open import Categories.Object.Initial C open import Categories.Morphism C open Category C open HomReasoning record Zero : Set (o ⊔ ℓ ⊔ e) where field zero : Obj ! : ∀ {A} → zero ⇒ A ¡ : ∀ {A} → A ⇒ zero zero⇒ : ∀ {A B : Obj} → A ⇒ B zero⇒ {A} = ! ∘ ¡ field !-unique : ∀ {A} (f : zero ⇒ A) → ! ≈ f ¡-unique : ∀ {A} (f : A ⇒ zero) → ¡ ≈ f ¡-unique₂ : ∀ {A} (f g : A ⇒ zero) → f ≈ g ¡-unique₂ f g = ⟺ (¡-unique f) ○ ¡-unique g !-unique₂ : ∀ {A} (f g : zero ⇒ A) → f ≈ g !-unique₂ f g = ⟺ (!-unique f) ○ !-unique g initial : Initial initial = record { ⊥ = zero ; ⊥-is-initial = record { ! = ! ; !-unique = !-unique } } terminal : Terminal terminal = record { ⊤ = zero ; ⊤-is-terminal = record { ! = ¡ ; !-unique = ¡-unique } } module initial = Initial initial module terminal = Terminal terminal !-Mono : ∀ {A} → Mono (! {A}) !-Mono = from-⊤-is-Mono {t = terminal} ! ¡-Epi : ∀ {A} → Epi (¡ {A}) ¡-Epi = to-⊥-is-Epi {i = initial} ¡
20.46875
64
0.524427
4b46deeed527412324205b2ed3afc2a4d489b881
1,030
agda
Agda
out/STLC/Equality.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
39
2021-11-09T20:39:55.000Z
2022-03-19T17:33:12.000Z
out/STLC/Equality.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
1
2021-11-21T12:19:32.000Z
2021-11-21T12:19:32.000Z
out/STLC/Equality.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
4
2021-11-09T20:39:59.000Z
2022-01-24T12:49:17.000Z
{- This second-order equational theory was created from the following second-order syntax description: syntax STLC | Λ type N : 0-ary _↣_ : 2-ary | r30 term app : α ↣ β α -> β | _$_ l20 lam : α.β -> α ↣ β | ƛ_ r10 theory (ƛβ) b : α.β a : α |> app (lam(x.b[x]), a) = b[a] (ƛη) f : α ↣ β |> lam (x. app(f, x)) = f -} module STLC.Equality where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Families.Build open import SOAS.ContextMaps.Inductive open import STLC.Signature open import STLC.Syntax open import SOAS.Metatheory.SecondOrder.Metasubstitution Λ:Syn open import SOAS.Metatheory.SecondOrder.Equality Λ:Syn private variable α β γ τ : ΛT Γ Δ Π : Ctx infix 1 _▹_⊢_≋ₐ_ -- Axioms of equality data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ Λ) α Γ → (𝔐 ▷ Λ) α Γ → Set where ƛβ : ⁅ α ⊩ β ⁆ ⁅ α ⁆̣ ▹ ∅ ⊢ (ƛ 𝔞⟨ x₀ ⟩) $ 𝔟 ≋ₐ 𝔞⟨ 𝔟 ⟩ ƛη : ⁅ α ↣ β ⁆̣ ▹ ∅ ⊢ ƛ (𝔞 $ x₀) ≋ₐ 𝔞 open EqLogic _▹_⊢_≋ₐ_ open ≋-Reasoning
21.458333
99
0.615534
132c87b9e0a19e951487c657d4c0348f3b076d59
489
agda
Agda
List.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
List.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
List.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
open import Prelude open import Nat module List where -- lets us omit a bunch of parens infixr 99 _::_ infixr 9 _++_ -- standard definition of polymorphic lists data List (A : Set) : Set where [] : List A _::_ : A → List A → List A {-# BUILTIN LIST List #-} -- shorthand notation for small lists [_] : {A : Set} → A → List A [ x ] = x :: [] -- list append _++_ : {A : Set} → List A → List A → List A [] ++ l2 = l2 x :: l1 ++ l2 = x :: (l1 ++ l2)
20.375
45
0.541922
9afb00d936d70c2231c411e20cf3dbe4da378f5a
3,490
agda
Agda
src/Categories/Category/Construction/Properties/CoKleisli.agda
tetrapharmakon/agda-categories
cfa6aefd3069d4db995191b458c886edcfba8294
[ "MIT" ]
5
2019-05-21T17:07:19.000Z
2019-05-22T03:54:24.000Z
src/Categories/Category/Construction/Properties/CoKleisli.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
null
null
null
src/Categories/Category/Construction/Properties/CoKleisli.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} -- verbatim dual of Categories.Category.Construction.Properties.Kleisli module Categories.Category.Construction.Properties.CoKleisli where open import Level import Relation.Binary.PropositionalEquality as ≡ open import Categories.Adjoint open import Categories.Adjoint.Properties open import Categories.Category open import Categories.Functor using (Functor; _∘F_) open import Categories.Functor.Equivalence open import Categories.Comonad import Categories.Morphism.Reasoning as MR open import Categories.Adjoint.Construction.CoKleisli open import Categories.Category.Construction.CoKleisli private variable o ℓ e : Level 𝒞 𝒟 : Category o ℓ e module _ {F : Functor 𝒞 𝒟} {G : Functor 𝒟 𝒞} (F⊣G : Adjoint F G) where private T : Comonad 𝒟 T = adjoint⇒comonad F⊣G 𝒟ₜ : Category _ _ _ 𝒟ₜ = CoKleisli T module 𝒞 = Category 𝒞 module 𝒟 = Category 𝒟 module 𝒟ₜ = Category 𝒟ₜ module T = Comonad T module F = Functor F module G = Functor G open Adjoint F⊣G -- Maclane's Comparison Functor ComparisonF : Functor 𝒟ₜ 𝒞 ComparisonF = record { F₀ = λ X → G.F₀ X ; F₁ = λ {A} {B} f → 𝒞 [ (G.F₁ f) ∘ unit.η (G.F₀ A) ] ; identity = λ {A} → zag ; homomorphism = λ {X} {Y} {Z} {f} {g} → begin G.F₁ (g 𝒟.∘ F.F₁ (G.F₁ f) 𝒟.∘ F.F₁ (unit.η (G.F₀ X))) 𝒞.∘ unit.η (G.F₀ X) ≈⟨ pushˡ G.homomorphism ⟩ G.F₁ g 𝒞.∘ G.F₁ ((F.F₁ (G.F₁ f)) 𝒟.∘ F.F₁ (unit.η (G.F₀ X))) 𝒞.∘ unit.η (G.F₀ X) ≈⟨ (refl⟩∘⟨ pushˡ G.homomorphism) ⟩ G.F₁ g 𝒞.∘ G.F₁ (F.F₁ (G.F₁ f)) 𝒞.∘ G.F₁ (F.F₁ (unit.η (G.F₀ X))) 𝒞.∘ unit.η (G.F₀ X) ≈⟨ (refl⟩∘⟨ (refl⟩∘⟨ sym (unit.commute (unit.η (G.F₀ X))))) ⟩ G.F₁ g 𝒞.∘ G.F₁ (F.F₁ (G.F₁ f)) 𝒞.∘ unit.η (G.F₀ (F.F₀ (G.F₀ X))) 𝒞.∘ unit.η (G.F₀ X) ≈⟨ (refl⟩∘⟨ pullˡ (sym (unit.commute (G.F₁ f)))) ⟩ G.F₁ g 𝒞.∘ (unit.η (G.F₀ Y) 𝒞.∘ G.F₁ f) 𝒞.∘ unit.η (G.F₀ X) ≈⟨ MR.assoc²'' 𝒞 ⟩ (G.F₁ g 𝒞.∘ unit.η (G.F₀ Y)) 𝒞.∘ G.F₁ f 𝒞.∘ unit.η (G.F₀ X) ∎ ; F-resp-≈ = λ eq → 𝒞.∘-resp-≈ (G.F-resp-≈ eq) (Category.Equiv.refl 𝒞) } where open 𝒞.HomReasoning open 𝒞.Equiv open MR 𝒞 private L = ComparisonF module L = Functor L module Gₜ = Functor (Forgetful T) module Fₜ = Functor (Cofree T) F∘L≡Forgetful : (F ∘F L) ≡F Forgetful T F∘L≡Forgetful = record { eq₀ = λ X → ≡.refl ; eq₁ = eq-1 } where open 𝒟.HomReasoning open MR 𝒟 eq-1 : {X Y : 𝒟.Obj} (f : F.F₀ (G.F₀ X) 𝒟.⇒ Y) → 𝒟.id 𝒟.∘ F.F₁ (G.F₁ f 𝒞.∘ unit.η (G.F₀ X)) 𝒟.≈ (F.F₁ (G.F₁ f) 𝒟.∘ F.F₁ (unit.η (G.F₀ X))) 𝒟.∘ 𝒟.id eq-1 {X} {Y} f = begin 𝒟.id 𝒟.∘ F.F₁ (G.F₁ f 𝒞.∘ unit.η (G.F₀ X)) ≈⟨ id-comm-sym ⟩ F.F₁ (G.F₁ f 𝒞.∘ unit.η (G.F₀ X)) 𝒟.∘ 𝒟.id ≈⟨ (F.homomorphism ⟩∘⟨refl) ⟩ (F.F₁ (G.F₁ f) 𝒟.∘ F.F₁ (unit.η (G.F₀ X))) 𝒟.∘ 𝒟.id ∎ L∘Cofree≡G : (L ∘F Cofree T) ≡F G L∘Cofree≡G = record { eq₀ = λ X → ≡.refl ; eq₁ = eq-1 } where open 𝒞.HomReasoning open MR 𝒞 eq-1 : {X Y : 𝒟.Obj} (f : X 𝒟.⇒ Y) → 𝒞.id 𝒞.∘ G.F₁ (f 𝒟.∘ counit.η X) 𝒞.∘ unit.η (G.F₀ X) 𝒞.≈ G.F₁ f 𝒞.∘ 𝒞.id eq-1 {X} {Y} f = begin 𝒞.id 𝒞.∘ G.F₁ (f 𝒟.∘ counit.η X) 𝒞.∘ unit.η (G.F₀ X) ≈⟨ id-comm-sym ⟩ (G.F₁ (f 𝒟.∘ counit.η X) 𝒞.∘ unit.η (G.F₀ X)) 𝒞.∘ 𝒞.id ≈⟨ (pushˡ G.homomorphism ⟩∘⟨refl) ⟩ (G.F₁ f 𝒞.∘ G.F₁ (counit.η X) 𝒞.∘ unit.η (G.F₀ X)) 𝒞.∘ 𝒞.id ≈⟨ (elimʳ zag ⟩∘⟨refl) ⟩ G.F₁ f 𝒞.∘ 𝒞.id ∎
36.354167
153
0.546705
570496de6e63c7f153e81120aff3ac18c0c22638
478
agda
Agda
agda-stdlib/src/Data/Vec/Any.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Vec/Any.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Vec/Any.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.Vec.Relation.Unary.Any directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.Any where open import Data.Vec.Relation.Unary.Any public {-# WARNING_ON_IMPORT "Data.Vec.Any was deprecated in v1.0. Use Data.Vec.Relation.Unary.Any instead." #-}
26.555556
72
0.504184
13e50aa6a5762a288f8c86bcbe04a687b6ccd728
13,850
agda
Agda
Cubical/Algebra/CommRingSolver/Reflection.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Algebra/CommRingSolver/Reflection.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRingSolver/Reflection.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} {- This is inspired by/copied from: https://github.com/agda/agda-stdlib/blob/master/src/Tactic/MonoidSolver.agda https://github.com/agda/agda-stdlib/blob/master/src/Tactic/RingSolver.agda Boilerplate code for calling the ring solver is constructed automatically with agda's reflection features. -} module Cubical.Algebra.CommRingSolver.Reflection where open import Cubical.Foundations.Prelude hiding (Type) open import Cubical.Functions.Logic open import Agda.Builtin.Reflection hiding (Type) open import Agda.Builtin.String open import Cubical.Reflection.Base open import Cubical.Data.Maybe open import Cubical.Data.Sigma open import Cubical.Data.List open import Cubical.Data.Nat.Literals open import Cubical.Data.Int.Base hiding (abs) open import Cubical.Data.Int using (fromNegℤ; fromNatℤ) open import Cubical.Data.Nat using (ℕ) renaming (_+_ to _+ℕ_) open import Cubical.Data.FinData using () renaming (zero to fzero; suc to fsuc) open import Cubical.Data.Bool open import Cubical.Data.Bool.SwitchStatement open import Cubical.Data.Vec using (Vec) renaming ([] to emptyVec; _∷_ to _∷vec_) public open import Cubical.Algebra.CommRingSolver.AlgebraExpression open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRingSolver.RawAlgebra open import Cubical.Algebra.CommRingSolver.IntAsRawRing open import Cubical.Algebra.CommRingSolver.Solver renaming (solve to ringSolve) private variable ℓ : Level _==_ = primQNameEquality {-# INLINE _==_ #-} record RingNames : Type where field is0 : Name → Bool is1 : Name → Bool is· : Name → Bool is+ : Name → Bool is- : Name → Bool getName : Term → Maybe Name getName (con c args) = just c getName (def f args) = just f getName _ = nothing buildMatcher : Name → Maybe Name → Name → Bool buildMatcher n nothing x = n == x buildMatcher n (just m) x = n == x or m == x findRingNames : Term → TC RingNames findRingNames cring = let cringStr = varg (def (quote snd) (varg cring ∷ [])) ∷ [] in do 0altName ← normalise (def (quote CommRingStr.0r) cringStr) 1altName ← normalise (def (quote CommRingStr.1r) cringStr) ·altName ← normalise (def (quote CommRingStr._·_) cringStr) +altName ← normalise (def (quote CommRingStr._+_) cringStr) -altName ← normalise (def (quote (CommRingStr.-_)) cringStr) returnTC record { is0 = buildMatcher (quote CommRingStr.0r) (getName 0altName) ; is1 = buildMatcher (quote CommRingStr.1r) (getName 1altName) ; is· = buildMatcher (quote CommRingStr._·_) (getName ·altName) ; is+ = buildMatcher (quote CommRingStr._+_) (getName +altName) ; is- = buildMatcher (quote (CommRingStr.-_)) (getName -altName) } record VarInfo : Type ℓ-zero where field varName : String varType : Arg Term index : ℕ {- `getLastTwoArgsOf` maps a term 'def n (z₁ ∷ … ∷ zₙ ∷ x ∷ y ∷ [])' to the pair '(x,y)' non-visible arguments are ignored. -} getLastTwoArgsOf : Name → Term → Maybe (Term × Term) getLastTwoArgsOf n' (def n xs) = if n == n' then go xs else nothing where go : List (Arg Term) → Maybe (Term × Term) go (varg x ∷ varg y ∷ []) = just (x , y) go (x ∷ xs) = go xs go _ = nothing getLastTwoArgsOf n' _ = nothing {- `getArgs` maps a term 'x ≡ y' to the pair '(x,y)' -} getArgs : Term → Maybe (Term × Term) getArgs = getLastTwoArgsOf (quote PathP) firstVisibleArg : List (Arg Term) → Maybe Term firstVisibleArg [] = nothing firstVisibleArg (varg x ∷ l) = just x firstVisibleArg (x ∷ l) = firstVisibleArg l {- If the solver needs to be applied during equational reasoning, the right hand side of the equation to solve cannot be given to the solver directly. The folllowing function extracts this term y from a more complex expression as in: x ≡⟨ solve ... ⟩ (y ≡⟨ ... ⟩ z ∎) -} getRhs : Term → Maybe Term getRhs (def n xs) = if n == (quote _∎) then firstVisibleArg xs else (if n == (quote _≡⟨_⟩_) then firstVisibleArg xs else nothing) getRhs _ = nothing private solverCallAsTerm : Term → Arg Term → Term → Term → Term solverCallAsTerm R varList lhs rhs = def (quote ringSolve) (varg R ∷ varg lhs ∷ varg rhs ∷ varList ∷ varg (def (quote refl) []) ∷ []) solverCallWithLambdas : ℕ → List VarInfo → Term → Term → Term → Term solverCallWithLambdas n varInfos R lhs rhs = encloseWithIteratedLambda (map VarInfo.varName varInfos) (solverCallAsTerm R (variableList (rev varInfos)) lhs rhs) where encloseWithIteratedLambda : List String → Term → Term encloseWithIteratedLambda (varName ∷ xs) t = lam visible (abs varName (encloseWithIteratedLambda xs t)) encloseWithIteratedLambda [] t = t variableList : List VarInfo → Arg Term variableList [] = varg (con (quote emptyVec) []) variableList (varInfo ∷ varInfos) = varg (con (quote _∷vec_) (varg (var (VarInfo.index varInfo) []) ∷ (variableList varInfos) ∷ [])) solverCallByVarIndices : ℕ → List ℕ → Term → Term → Term → Term solverCallByVarIndices n varIndices R lhs rhs = solverCallAsTerm R (variableList (rev varIndices)) lhs rhs where variableList : List ℕ → Arg Term variableList [] = varg (con (quote emptyVec) []) variableList (varIndex ∷ varIndices) = varg (con (quote _∷vec_) (varg (var (varIndex) []) ∷ (variableList varIndices) ∷ [])) module pr (R : CommRing ℓ) {n : ℕ} where open CommRingStr (snd R) 0' : Expr ℤAsRawRing (fst R) n 0' = K 0 1' : Expr ℤAsRawRing (fst R) n 1' = K 1 module _ (cring : Term) (names : RingNames) where open pr open RingNames names `0` : List (Arg Term) → Term `0` [] = def (quote 0') (varg cring ∷ []) `0` (varg fstcring ∷ xs) = `0` xs `0` (harg _ ∷ xs) = `0` xs `0` _ = unknown `1` : List (Arg Term) → Term `1` [] = def (quote 1') (varg cring ∷ []) `1` (varg fstcring ∷ xs) = `1` xs `1` (harg _ ∷ xs) = `1` xs `1` _ = unknown mutual private op2 : Name → Term → Term → Term op2 op x y = con op (varg (buildExpression x) ∷ varg (buildExpression y) ∷ []) op1 : Name → Term → Term op1 op x = con op (varg (buildExpression x) ∷ []) `_·_` : List (Arg Term) → Term `_·_` (harg _ ∷ xs) = `_·_` xs `_·_` (varg x ∷ varg y ∷ []) = op2 (quote _·'_) x y `_·_` (varg _ ∷ varg x ∷ varg y ∷ []) = op2 (quote _·'_) x y `_·_` _ = unknown `_+_` : List (Arg Term) → Term `_+_` (harg _ ∷ xs) = `_+_` xs `_+_` (varg x ∷ varg y ∷ []) = op2 (quote _+'_) x y `_+_` (varg _ ∷ varg x ∷ varg y ∷ []) = op2 (quote _+'_) x y `_+_` _ = unknown `-_` : List (Arg Term) → Term `-_` (harg _ ∷ xs) = `-_` xs `-_` (varg x ∷ []) = op1 (quote -'_) x `-_` (varg _ ∷ varg x ∷ []) = op1 (quote -'_) x `-_` _ = unknown K' : List (Arg Term) → Term K' xs = con (quote K) xs finiteNumberAsTerm : ℕ → Term finiteNumberAsTerm ℕ.zero = con (quote fzero) [] finiteNumberAsTerm (ℕ.suc n) = con (quote fsuc) (varg (finiteNumberAsTerm n) ∷ []) buildExpression : Term → Term buildExpression (var index _) = con (quote ∣) (varg (finiteNumberAsTerm index) ∷ []) buildExpression t@(def n xs) = switch (λ f → f n) cases case is0 ⇒ `0` xs break case is1 ⇒ `1` xs break case is· ⇒ `_·_` xs break case is+ ⇒ `_+_` xs break case is- ⇒ `-_` xs break default⇒ (K' xs) buildExpression t@(con n xs) = switch (λ f → f n) cases case is0 ⇒ `0` xs break case is1 ⇒ `1` xs break case is· ⇒ `_·_` xs break case is+ ⇒ `_+_` xs break case is- ⇒ `-_` xs break default⇒ (K' xs) buildExpression t = unknown toAlgebraExpression : Maybe (Term × Term) → Maybe (Term × Term) toAlgebraExpression nothing = nothing toAlgebraExpression (just (lhs , rhs)) = just (buildExpression lhs , buildExpression rhs) private holeMalformedError : {A : Type ℓ} → Term → TC A holeMalformedError hole′ = typeError (strErr "Something went wrong when getting the variable names in " ∷ termErr hole′ ∷ []) astExtractionError : {A : Type ℓ} → Term → TC A astExtractionError equation = typeError (strErr "Error while trying to build ASTs for the equation " ∷ termErr equation ∷ []) variableExtractionError : {A : Type ℓ} → Term → TC A variableExtractionError varsToSolve = typeError (strErr "Error reading variables to solve " ∷ termErr varsToSolve ∷ []) mutual {- this covers just some common cases and should be refined -} adjustDeBruijnIndex : (n : ℕ) → Term → Term adjustDeBruijnIndex n (var k args) = var (k +ℕ n) args adjustDeBruijnIndex n (def m l) = def m (map (adjustDeBruijnArg n) l) adjustDeBruijnIndex n _ = unknown adjustDeBruijnArg : (n : ℕ) → Arg Term → Arg Term adjustDeBruijnArg n (arg i (var k args)) = arg i (var (k +ℕ n) args) adjustDeBruijnArg n (arg i x) = arg i x extractVarIndices : Maybe (List Term) → Maybe (List ℕ) extractVarIndices (just ((var index _) ∷ l)) with extractVarIndices (just l) ... | just indices = just (index ∷ indices) ... | nothing = nothing extractVarIndices (just []) = just [] extractVarIndices _ = nothing listToVec : {A : Type ℓ} → (l : List A) → Vec A (length l) listToVec [] = emptyVec listToVec (x ∷ l) = x ∷vec listToVec l getVarsAndEquation : Term → List VarInfo × Term getVarsAndEquation t = let (rawVars , equationTerm) = extractVars t vars = addIndices (length rawVars) (listToVec rawVars) in (vars , equationTerm) where extractVars : Term → List (String × Arg Term) × Term extractVars (pi argType (abs varName t)) with extractVars t ... | xs , equation = (varName , argType) ∷ xs , equation extractVars equation = [] , equation addIndices : (n : ℕ) → Vec (String × Arg Term) n → List VarInfo addIndices ℕ.zero emptyVec = [] addIndices (ℕ.suc countVar) ((varName , argType) ∷vec list) = record { varName = varName ; varType = argType ; index = countVar } ∷ (addIndices countVar list) toListOfTerms : Term → Maybe (List Term) toListOfTerms (con c []) = if (c == (quote [])) then just [] else nothing toListOfTerms (con c (varg t ∷ varg s ∷ args)) with toListOfTerms s ... | just terms = if (c == (quote _∷_)) then just (t ∷ terms) else nothing ... | nothing = nothing toListOfTerms (con c (harg t ∷ args)) = toListOfTerms (con c args) toListOfTerms _ = nothing checkIsRing : Term → TC Term checkIsRing ring = checkType ring (def (quote CommRing) (varg unknown ∷ [])) solve-macro : Term → Term → TC Unit solve-macro uncheckedCommRing hole = do commRing ← checkIsRing uncheckedCommRing hole′ ← inferType hole >>= normalise names ← findRingNames commRing (varInfos , equation) ← returnTC (getVarsAndEquation hole′) {- The call to the ring solver will be inside a lamba-expression. That means, that we have to adjust the deBruijn-indices of the variables in 'cring' -} adjustedCommRing ← returnTC (adjustDeBruijnIndex (length varInfos) commRing) just (lhs , rhs) ← returnTC (toAlgebraExpression adjustedCommRing names (getArgs equation)) where nothing → astExtractionError equation let solution = solverCallWithLambdas (length varInfos) varInfos adjustedCommRing lhs rhs unify hole solution solveInPlace-macro : Term → Term → Term → TC Unit solveInPlace-macro cring varsToSolve hole = do equation ← inferType hole >>= normalise names ← findRingNames cring just varIndices ← returnTC (extractVarIndices (toListOfTerms varsToSolve)) where nothing → variableExtractionError varsToSolve just (lhs , rhs) ← returnTC (toAlgebraExpression cring names (getArgs equation)) where nothing → astExtractionError equation let solution = solverCallByVarIndices (length varIndices) varIndices cring lhs rhs unify hole solution solveEqReasoning-macro : Term → Term → Term → Term → Term → TC Unit solveEqReasoning-macro lhs cring varsToSolve reasoningToTheRight hole = do names ← findRingNames cring just varIndices ← returnTC (extractVarIndices (toListOfTerms varsToSolve)) where nothing → variableExtractionError varsToSolve just rhs ← returnTC (getRhs reasoningToTheRight) where nothing → typeError( strErr "Failed to extract right hand side of equation to solve from " ∷ termErr reasoningToTheRight ∷ []) just (lhsAST , rhsAST) ← returnTC (toAlgebraExpression cring names (just (lhs , rhs))) where nothing → typeError( strErr "Error while trying to build ASTs from " ∷ termErr lhs ∷ strErr " and " ∷ termErr rhs ∷ []) let solverCall = solverCallByVarIndices (length varIndices) varIndices cring lhsAST rhsAST unify hole (def (quote _≡⟨_⟩_) (varg lhs ∷ varg solverCall ∷ varg reasoningToTheRight ∷ [])) macro solve : Term → Term → TC _ solve = solve-macro solveInPlace : Term → Term → Term → TC _ solveInPlace = solveInPlace-macro infixr 2 _≡⟨solveIn_withVars_⟩_ _≡⟨solveIn_withVars_⟩_ : Term → Term → Term → Term → Term → TC Unit _≡⟨solveIn_withVars_⟩_ = solveEqReasoning-macro fromℤ : (R : CommRing ℓ) → ℤ → fst R fromℤ = scalar
35.788114
109
0.630542
4a45d662e1f3721fd7aa5eb3e553bee69f7084ea
416
agda
Agda
test/Fail/Issue2985-1.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2985-1.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2985-1.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --sized-types #-} open import Agda.Builtin.Size mutual data Unit (i : Size) : Set where c : Unit′ i → Unit i record Unit′ (i : Size) : Set where coinductive field force : {j : Size< i} → Unit j open Unit′ public tail : Unit ∞ → Unit ∞ tail (c x) = force x u : (∀ {i} → Unit′ i → Unit i) → ∀ {i} → Unit i u cons = tail (cons λ { .force → u cons }) bad : Unit ∞ bad = u c
16
42
0.545673
1df293a9034f351e3b1264e0b97cddd4f43f9820
2,877
agda
Agda
canonical-value-forms.agda
hazelgrove/hazelnut-dynamics-agda
229dfb06ea51ebe91cb3b1c973c2f2792e66797c
[ "MIT" ]
16
2018-03-12T14:32:03.000Z
2021-12-19T02:50:23.000Z
canonical-value-forms.agda
hazelgrove/hazelnut-dynamics-agda
229dfb06ea51ebe91cb3b1c973c2f2792e66797c
[ "MIT" ]
54
2017-06-29T20:53:34.000Z
2018-11-29T16:32:40.000Z
canonical-value-forms.agda
hazelgrove/hazelnut-dynamics-agda
229dfb06ea51ebe91cb3b1c973c2f2792e66797c
[ "MIT" ]
1
2019-09-13T18:20:02.000Z
2019-09-13T18:20:02.000Z
open import Nat open import Prelude open import contexts open import core module canonical-value-forms where canonical-value-forms-b : ∀{Δ d} → Δ , ∅ ⊢ d :: b → d val → d == c canonical-value-forms-b TAConst VConst = refl canonical-value-forms-b (TAVar x₁) () canonical-value-forms-b (TAAp wt wt₁) () canonical-value-forms-b (TAEHole x x₁) () canonical-value-forms-b (TANEHole x wt x₁) () canonical-value-forms-b (TACast wt x) () canonical-value-forms-b (TAFailedCast wt x x₁ x₂) () canonical-value-forms-arr : ∀{Δ d τ1 τ2} → Δ , ∅ ⊢ d :: (τ1 ==> τ2) → d val → Σ[ x ∈ Nat ] Σ[ d' ∈ ihexp ] ((d == (·λ x [ τ1 ] d')) × (Δ , ■ (x , τ1) ⊢ d' :: τ2)) canonical-value-forms-arr (TAVar x₁) () canonical-value-forms-arr (TALam _ wt) VLam = _ , _ , refl , wt canonical-value-forms-arr (TAAp wt wt₁) () canonical-value-forms-arr (TAEHole x x₁) () canonical-value-forms-arr (TANEHole x wt x₁) () canonical-value-forms-arr (TACast wt x) () canonical-value-forms-arr (TAFailedCast x x₁ x₂ x₃) () -- this argues (somewhat informally, because you still have to inspect -- the types of the theorems above and manually verify this property) -- that we didn't miss any cases above; this intentionally will make this -- file fail to typecheck if we added more types, hopefully forcing us to -- remember to add canonical forms lemmas as appropriate canonical-value-forms-coverage1 : ∀{Δ d τ} → Δ , ∅ ⊢ d :: τ → d val → τ ≠ b → ((τ1 : htyp) (τ2 : htyp) → τ ≠ (τ1 ==> τ2)) → ⊥ canonical-value-forms-coverage1 TAConst VConst = λ z _ → z refl canonical-value-forms-coverage1 (TAVar x₁) () canonical-value-forms-coverage1 (TALam _ wt) VLam = λ _ z → z _ _ refl canonical-value-forms-coverage1 (TAAp wt wt₁) () canonical-value-forms-coverage1 (TAEHole x x₁) () canonical-value-forms-coverage1 (TANEHole x wt x₁) () canonical-value-forms-coverage1 (TACast wt x) () canonical-value-forms-coverage1 (TAFailedCast wt x x₁ x₂) () canonical-value-forms-coverage2 : ∀{Δ d} → Δ , ∅ ⊢ d :: ⦇-⦈ → d val → ⊥ canonical-value-forms-coverage2 (TAVar x₁) () canonical-value-forms-coverage2 (TAAp wt wt₁) () canonical-value-forms-coverage2 (TAEHole x x₁) () canonical-value-forms-coverage2 (TANEHole x wt x₁) () canonical-value-forms-coverage2 (TACast wt x) () canonical-value-forms-coverage2 (TAFailedCast wt x x₁ x₂) ()
45.666667
80
0.550574
41c5d63c53d74313252afac2bf7073ea0ddc89ee
2,441
agda
Agda
BasicIPC/Metatheory/Hilbert-TarskiConcreteGluedImplicit.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicIPC/Metatheory/Hilbert-TarskiConcreteGluedImplicit.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicIPC/Metatheory/Hilbert-TarskiConcreteGluedImplicit.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
module BasicIPC.Metatheory.Hilbert-TarskiConcreteGluedImplicit where open import BasicIPC.Syntax.Hilbert public open import BasicIPC.Semantics.TarskiConcreteGluedImplicit public open ImplicitSyntax (_⊢_) public -- Completeness with respect to a particular model. module _ {{_ : Model}} where reify : ∀ {A w} → w ⊩ A → unwrap w ⊢ A reify {α P} s = syn s reify {A ▻ B} s = syn s reify {A ∧ B} s = pair (reify (π₁ s)) (reify (π₂ s)) reify {⊤} s = unit reify⋆ : ∀ {Ξ w} → w ⊩⋆ Ξ → unwrap w ⊢⋆ Ξ reify⋆ {∅} ∙ = ∙ reify⋆ {Ξ , A} (ts , t) = reify⋆ ts , reify t -- Additional useful equipment. module _ {{_ : Model}} where ⟪K⟫ : ∀ {A B w} → w ⊩ A → w ⊩ B ▻ A ⟪K⟫ {A} a = app ck (reify a) ⅋ K a ⟪S⟫′ : ∀ {A B C w} → w ⊩ A ▻ B ▻ C → w ⊩ (A ▻ B) ▻ A ▻ C ⟪S⟫′ {A} {B} {C} s₁ = app cs (syn s₁) ⅋ λ s₂ → app (app cs (syn s₁)) (syn s₂) ⅋ ⟪S⟫ s₁ s₂ _⟪,⟫′_ : ∀ {A B w} → w ⊩ A → w ⊩ B ▻ A ∧ B _⟪,⟫′_ {A} a = app cpair (reify a) ⅋ _,_ a -- Soundness with respect to all models, or evaluation. eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A eval (var i) γ = lookup i γ eval (app t u) γ = eval t γ ⟪$⟫ eval u γ eval ci γ = ci ⅋ I eval ck γ = ck ⅋ ⟪K⟫ eval cs γ = cs ⅋ ⟪S⟫′ eval cpair γ = cpair ⅋ _⟪,⟫′_ eval cfst γ = cfst ⅋ π₁ eval csnd γ = csnd ⅋ π₂ eval unit γ = ∙ -- TODO: Correctness of evaluation with respect to conversion. -- The canonical model. private instance canon : Model canon = record { _⊩ᵅ_ = λ w P → unwrap w ⊢ α P } -- Soundness with respect to the canonical model. reflectᶜ : ∀ {A w} → unwrap w ⊢ A → w ⊩ A reflectᶜ {α P} t = t ⅋ t reflectᶜ {A ▻ B} t = t ⅋ λ a → reflectᶜ (app t (reify a)) reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t) reflectᶜ {⊤} t = ∙ reflectᶜ⋆ : ∀ {Ξ w} → unwrap w ⊢⋆ Ξ → w ⊩⋆ Ξ reflectᶜ⋆ {∅} ∙ = ∙ reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t -- Reflexivity and transitivity. refl⊩⋆ : ∀ {w} → w ⊩⋆ unwrap w refl⊩⋆ = reflectᶜ⋆ refl⊢⋆ trans⊩⋆ : ∀ {w w′ w″} → w ⊩⋆ unwrap w′ → w′ ⊩⋆ unwrap w″ → w ⊩⋆ unwrap w″ trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reify⋆ ts) (reify⋆ us)) -- Completeness with respect to all models, or quotation. quot : ∀ {A Γ} → Γ ⊨ A → Γ ⊢ A quot s = reify (s refl⊩⋆) -- Normalisation by evaluation. norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A norm = quot ∘ eval -- TODO: Correctness of normalisation with respect to conversion.
24.656566
73
0.541581
20158d36df05ce3015237e0c6931bd5fd723f7f1
1,103
agda
Agda
tests/covered/Local.agda
andrejtokarcik/agda-semantics
dc333ed142584cf52cc885644eed34b356967d8b
[ "MIT" ]
3
2015-08-10T15:33:56.000Z
2018-12-06T17:24:25.000Z
tests/covered/Local.agda
andrejtokarcik/agda-semantics
dc333ed142584cf52cc885644eed34b356967d8b
[ "MIT" ]
null
null
null
tests/covered/Local.agda
andrejtokarcik/agda-semantics
dc333ed142584cf52cc885644eed34b356967d8b
[ "MIT" ]
null
null
null
-- from http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.LocalDefinition module Local where data Nat : Set where zero : Nat succ : Nat -> Nat infixl 5 _+_ _+_ : Nat -> Nat -> Nat zero + n = n (succ m) + n = succ (m + n) infixl 6 _*_ _*_ : Nat -> Nat -> Nat zero * _ = zero (succ m) * n = n + m * n f : Nat f = let h : Nat -> Nat h m = succ (succ m) in h zero + h (succ zero) t1 : Nat t1 = f h : Nat -> Nat h n = let add2 : Nat add2 = succ (succ n) twice : Nat -> Nat twice m = m * m in twice add2 g : Nat -> Nat g n = fib n + fact n where fib : Nat -> Nat fib zero = succ zero fib (succ zero) = succ zero fib (succ (succ n)) = fib (succ n) + fib n fact : Nat -> Nat fact zero = succ zero fact (succ n) = succ n * fact n k : Nat -> Nat k n = let aux : Nat -> Nat aux m = pred (g m) + h m in aux (pred n) where pred : Nat -> Nat pred zero = zero pred (succ m) = m
20.425926
88
0.474161
38f9d4f96f9dd63458ff7aece3278612724ada64
36
agda
Agda
test/interaction/Error-in-imported-module/M.agda
dagit/agda
4383a3d20328a6c43689161496cee8eb479aca08
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/interaction/Error-in-imported-module/M.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/interaction/Error-in-imported-module/M.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module M where Foo : Set Foo = Set
7.2
14
0.666667
2e8d4394528fe2f8b444bcada87190c56c2c8b16
184
agda
Agda
test/Succeed/RewriteAndUniversePolymorphism.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/RewriteAndUniversePolymorphism.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/RewriteAndUniversePolymorphism.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module RewriteAndUniversePolymorphism where open import Common.Equality data ℕ : Set where zero : ℕ suc : ℕ → ℕ test : (a b : ℕ) → a ≡ b → b ≡ a test a b eq rewrite eq = refl
15.333333
43
0.652174
4bd077b8dca93aaa43909d00297fd1864852ca5e
14,259
agda
Agda
Cubical/ZCohomology/Groups/Torus.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/ZCohomology/Groups/Torus.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/ZCohomology/Groups/Torus.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.Groups.Torus where open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Univalence open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Relation.Nullary open import Cubical.Data.Unit open import Cubical.Data.Nat open import Cubical.Data.Int renaming (_+_ to _+ℤ_; +Comm to +ℤ-comm ; +Assoc to +ℤ-assoc) open import Cubical.Data.Sigma open import Cubical.Algebra.Group open import Cubical.Algebra.Group.DirProd open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Instances.Bool open import Cubical.Algebra.Group.Instances.Int open import Cubical.HITs.SetTruncation as ST open import Cubical.HITs.PropositionalTruncation as PT open import Cubical.HITs.Truncation as T open import Cubical.HITs.Nullification open import Cubical.HITs.Pushout open import Cubical.HITs.S1 open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.HITs.Wedge open import Cubical.Homotopy.Connected open import Cubical.Homotopy.Loopspace open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Groups.Connected open import Cubical.ZCohomology.MayerVietorisUnreduced open import Cubical.ZCohomology.Groups.Unit open import Cubical.ZCohomology.Groups.Sn open import Cubical.ZCohomology.Groups.Prelims open import Cubical.ZCohomology.RingStructure.CupProduct open import Cubical.ZCohomology.Groups.WedgeOfSpheres renaming (to₂ to to₂-∨ ; from₂ to from₂-∨ ; from₁ to from₁-∨ ; to₁ to to₁-∨) hiding (to₀ ; from₀) open IsGroupHom open Iso -- The following section contains stengthened induction principles for cohomology groups of T². They are particularly useful for showing that -- that some Isos are morphisms. They make things type-check faster, but should probably not be used for computations. -- We first need some functions elimFunT² : (n : ℕ) (p q : typ (Ω (coHomK-ptd (suc n)))) → Square q q p p → S¹ × S¹ → coHomK (suc n) elimFunT² n p q P (base , base) = ∣ ptSn (suc n) ∣ elimFunT² n p q P (base , loop i) = q i elimFunT² n p q P (loop i , base) = p i elimFunT² n p q P (loop i , loop j) = P i j elimFunT²' : (n : ℕ) → Square (refl {ℓ-zero} {coHomK (suc n)} {∣ ptSn (suc n) ∣}) refl refl refl → S¹ × S¹ → coHomK (suc n) elimFunT²' n P (x , base) = ∣ ptSn (suc n) ∣ elimFunT²' n P (base , loop j) = ∣ ptSn (suc n) ∣ elimFunT²' n P (loop i , loop j) = P i j elimFunT²'≡elimFunT² : (n : ℕ) → (P : _) → elimFunT²' n P ≡ elimFunT² n refl refl P elimFunT²'≡elimFunT² n P i (base , base) = ∣ ptSn (suc n) ∣ elimFunT²'≡elimFunT² n P i (base , loop k) = ∣ ptSn (suc n) ∣ elimFunT²'≡elimFunT² n P i (loop j , base) = ∣ ptSn (suc n) ∣ elimFunT²'≡elimFunT² n P i (loop j , loop k) = P j k {- The first induction principle says that when proving a proposition for some x : Hⁿ(T²), n ≥ 1, it suffices to show that it holds for (elimFunT² p q P) for any paths p q : ΩKₙ, and square P : Square q q p p. This is useful because elimFunT² p q P (base , base) recudes to 0 -} coHomPointedElimT² : ∀ {ℓ} (n : ℕ) {B : coHom (suc n) (S¹ × S¹) → Type ℓ} → ((x : coHom (suc n) (S¹ × S¹)) → isProp (B x)) → ((p q : _) (P : _) → B ∣ elimFunT² n p q P ∣₂) → (x : coHom (suc n) (S¹ × S¹)) → B x coHomPointedElimT² n {B = B} isprop indp = coHomPointedElim _ (base , base) isprop λ f fId → subst B (cong ∣_∣₂ (funExt (λ { (base , base) → sym fId ; (base , loop i) j → helper f fId i1 i (~ j) ; (loop i , base) j → helper f fId i i1 (~ j) ; (loop i , loop j) k → helper f fId i j (~ k)}))) (indp (λ i → helper f fId i i1 i1) (λ i → helper f fId i1 i i1) λ i j → helper f fId i j i1) where helper : (f : S¹ × S¹ → coHomK (suc n)) → f (base , base) ≡ ∣ ptSn (suc n) ∣ → I → I → I → coHomK (suc n) helper f fId i j k = hfill (λ k → λ {(i = i0) → doubleCompPath-filler (sym fId) (cong f (λ i → (base , loop i))) fId k j ; (i = i1) → doubleCompPath-filler (sym fId) (cong f (λ i → (base , loop i))) fId k j ; (j = i0) → doubleCompPath-filler (sym fId) (cong f (λ i → (loop i , base))) fId k i ; (j = i1) → doubleCompPath-filler (sym fId) (cong f (λ i → (loop i , base))) fId k i}) (inS (f ((loop i) , (loop j)))) k private lem : ∀ {ℓ} (n : ℕ) {B : coHom (2 + n) (S¹ × S¹) → Type ℓ} → ((P : _) → B ∣ elimFunT² (suc n) refl refl P ∣₂) → (p : _) → (refl ≡ p) → (q : _) → (refl ≡ q) → (P : _) → B ∣ elimFunT² (suc n) p q P ∣₂ lem n {B = B} elimP p = J (λ p _ → (q : _) → (refl ≡ q) → (P : _) → B ∣ elimFunT² (suc n) p q P ∣₂) λ q → J (λ q _ → (P : _) → B ∣ elimFunT² (suc n) refl q P ∣₂) elimP {- When working with Hⁿ(T²) , n ≥ 2, we are, in the case described above, allowed to assume that any f : Hⁿ(T²) is elimFunT² n refl refl P -} coHomPointedElimT²' : ∀ {ℓ} (n : ℕ) {B : coHom (2 + n) (S¹ × S¹) → Type ℓ} → ((x : coHom (2 + n) (S¹ × S¹)) → isProp (B x)) → ((P : _) → B ∣ elimFunT² (suc n) refl refl P ∣₂) → (x : coHom (2 + n) (S¹ × S¹)) → B x coHomPointedElimT²' n {B = B} prop ind = coHomPointedElimT² (suc n) prop λ p q P → T.rec (isProp→isOfHLevelSuc n (prop _)) (λ p-refl → T.rec (isProp→isOfHLevelSuc n (prop _)) (λ q-refl → lem n {B = B} ind p (sym p-refl) q (sym q-refl) P) (isConnectedPath _ (isConnectedPathKn (suc n) _ _) q refl .fst)) (isConnectedPath _ (isConnectedPathKn (suc n) _ _) p refl .fst) {- A slight variation of the above which gives definitional equalities for all points (x , base) -} private coHomPointedElimT²'' : ∀ {ℓ} (n : ℕ) {B : coHom (2 + n) (S¹ × S¹) → Type ℓ} → ((x : coHom (2 + n) (S¹ × S¹)) → isProp (B x)) → ((P : _) → B ∣ elimFunT²' (suc n) P ∣₂) → (x : coHom (2 + n) (S¹ × S¹)) → B x coHomPointedElimT²'' n {B = B} prop ind = coHomPointedElimT²' n prop λ P → subst (λ x → B ∣ x ∣₂) (elimFunT²'≡elimFunT² (suc n) P) (ind P) --------- H⁰(T²) ------------ H⁰-T²≅ℤ : GroupIso (coHomGr 0 (S₊ 1 × S₊ 1)) ℤGroup H⁰-T²≅ℤ = H⁰-connected (base , base) λ (a , b) → PT.rec isPropPropTrunc (λ id1 → PT.rec isPropPropTrunc (λ id2 → ∣ ΣPathP (id1 , id2) ∣₁) (Sn-connected 0 b) ) (Sn-connected 0 a) --------- H¹(T²) ------------------------------- H¹-T²≅ℤ×ℤ : GroupIso (coHomGr 1 ((S₊ 1) × (S₊ 1))) (DirProd ℤGroup ℤGroup) H¹-T²≅ℤ×ℤ = theIso □ GroupIsoDirProd (Hⁿ-Sⁿ≅ℤ 0) (H⁰-Sⁿ≅ℤ 0) where typIso : Iso _ _ typIso = setTruncIso (curryIso ⋄ codomainIso S1→K₁≡S1×ℤ ⋄ toProdIso) ⋄ setTruncOfProdIso theIso : GroupIso _ _ fst theIso = typIso snd theIso = makeIsGroupHom (coHomPointedElimT² _ (λ _ → isPropΠ λ _ → isSet× isSetSetTrunc isSetSetTrunc _ _) λ pf qf Pf → coHomPointedElimT² _ (λ _ → isSet× isSetSetTrunc isSetSetTrunc _ _) λ pg qg Pg i → ∣ funExt (helperFst pf qf pg qg Pg Pf) i ∣₂ , ∣ funExt (helperSnd pf qf pg qg Pg Pf) i ∣₂) where module _ (pf qf pg qg : 0ₖ 1 ≡ 0ₖ 1) (Pg : Square qg qg pg pg) (Pf : Square qf qf pf pf) where helperFst : (x : S¹) → fun S1→K₁≡S1×ℤ (λ y → elimFunT² 0 pf qf Pf (x , y) +ₖ elimFunT² 0 pg qg Pg (x , y)) .fst ≡ fun S1→K₁≡S1×ℤ (λ y → elimFunT² 0 pf qf Pf (x , y)) .fst +ₖ fun S1→K₁≡S1×ℤ (λ y → elimFunT² 0 pg qg Pg (x , y)) .fst helperFst base = refl helperFst (loop i) j = loopLem j i where loopLem : cong (λ x → fun S1→K₁≡S1×ℤ (λ y → elimFunT² 0 pf qf Pf (x , y) +ₖ elimFunT² 0 pg qg Pg (x , y)) .fst) loop ≡ cong (λ x → fun S1→K₁≡S1×ℤ (λ y → elimFunT² 0 pf qf Pf (x , y)) .fst +ₖ fun S1→K₁≡S1×ℤ (λ y → elimFunT² 0 pg qg Pg (x , y)) .fst) loop loopLem = (λ i j → S¹map-id (pf j +ₖ pg j) i) ∙ (λ i j → S¹map-id (pf j) (~ i) +ₖ S¹map-id (pg j) (~ i)) helperSnd : (x : S¹) → fun S1→K₁≡S1×ℤ (λ y → elimFunT² 0 pf qf Pf (x , y) +ₖ elimFunT² 0 pg qg Pg (x , y)) .snd ≡ fun S1→K₁≡S1×ℤ (λ y → elimFunT² 0 pf qf Pf (x , y)) .snd +ℤ fun S1→K₁≡S1×ℤ (λ y → elimFunT² 0 pg qg Pg (x , y)) .snd helperSnd = toPropElim (λ _ → isSetℤ _ _) ((λ i → winding (basechange2⁻ base λ j → S¹map (∙≡+₁ qf qg (~ i) j))) ∙∙ cong (winding ∘ basechange2⁻ base) (congFunct S¹map qf qg) ∙∙ (cong winding (basechange2⁻-morph base (cong S¹map qf) (cong S¹map qg)) ∙ winding-hom (basechange2⁻ base (cong S¹map qf)) (basechange2⁻ base (cong S¹map qg)))) ----------------------- H²(T²) ------------------------------ H²-T²≅ℤ : GroupIso (coHomGr 2 (S₊ 1 × S₊ 1)) ℤGroup H²-T²≅ℤ = compGroupIso helper2 (Hⁿ-Sⁿ≅ℤ 0) where helper : Iso (∥ ((a : S¹) → coHomK 2) ∥₂ × ∥ ((a : S¹) → coHomK 1) ∥₂) (coHom 1 S¹) inv helper s = 0ₕ _ , s fun helper = snd leftInv helper _ = ΣPathP (isOfHLevelSuc 0 (isOfHLevelRetractFromIso 0 (fst (Hⁿ-S¹≅0 0)) (isContrUnit)) _ _ , refl) rightInv helper _ = refl theIso : Iso (coHom 2 (S¹ × S¹)) (coHom 1 S¹) theIso = setTruncIso (curryIso ⋄ codomainIso S1→K2≡K2×K1 ⋄ toProdIso) ⋄ setTruncOfProdIso ⋄ helper helper2 : GroupIso (coHomGr 2 (S¹ × S¹)) (coHomGr 1 S¹) helper2 .fst = theIso helper2 .snd = makeIsGroupHom ( coHomPointedElimT²'' 0 (λ _ → isPropΠ λ _ → isSetSetTrunc _ _) λ P → coHomPointedElimT²'' 0 (λ _ → isSetSetTrunc _ _) λ Q → ((λ i → ∣ (λ a → ΩKn+1→Kn 1 (sym (rCancel≡refl 0 i) ∙∙ cong (λ x → (elimFunT²' 1 P (a , x) +ₖ elimFunT²' 1 Q (a , x)) -ₖ ∣ north ∣) loop ∙∙ rCancel≡refl 0 i)) ∣₂)) ∙∙ (λ i → ∣ (λ a → ΩKn+1→Kn 1 (rUnit (cong (λ x → rUnitₖ 2 (elimFunT²' 1 P (a , x) +ₖ elimFunT²' 1 Q (a , x)) i) loop) (~ i))) ∣₂) ∙∙ (λ i → ∣ (λ a → ΩKn+1→Kn 1 (∙≡+₂ 0 (cong (λ x → elimFunT²' 1 P (a , x)) loop) (cong (λ x → elimFunT²' 1 Q (a , x)) loop) (~ i))) ∣₂) ∙∙ (λ i → ∣ (λ a → ΩKn+1→Kn-hom 1 (cong (λ x → elimFunT²' 1 P (a , x)) loop) (cong (λ x → elimFunT²' 1 Q (a , x)) loop) i) ∣₂) ∙∙ (λ i → ∣ ((λ a → ΩKn+1→Kn 1 (rUnit (cong (λ x → rUnitₖ 2 (elimFunT²' 1 P (a , x)) (~ i)) loop) i) +ₖ ΩKn+1→Kn 1 (rUnit (cong (λ x → rUnitₖ 2 (elimFunT²' 1 Q (a , x)) (~ i)) loop) i))) ∣₂) ∙ (λ i → ∣ ((λ a → ΩKn+1→Kn 1 (sym (rCancel≡refl 0 (~ i)) ∙∙ cong (λ x → elimFunT²' 1 P (a , x) +ₖ ∣ north ∣) loop ∙∙ rCancel≡refl 0 (~ i)) +ₖ ΩKn+1→Kn 1 (sym (rCancel≡refl 0 (~ i)) ∙∙ cong (λ x → elimFunT²' 1 Q (a , x) +ₖ ∣ north ∣) loop ∙∙ rCancel≡refl 0 (~ i)))) ∣₂)) private to₂ : coHom 2 (S₊ 1 × S₊ 1) → ℤ to₂ = fun (fst H²-T²≅ℤ) from₂ : ℤ → coHom 2 (S₊ 1 × S₊ 1) from₂ = inv (fst H²-T²≅ℤ) to₁ : coHom 1 (S₊ 1 × S₊ 1) → ℤ × ℤ to₁ = fun (fst H¹-T²≅ℤ×ℤ) from₁ : ℤ × ℤ → coHom 1 (S₊ 1 × S₊ 1) from₁ = inv (fst H¹-T²≅ℤ×ℤ) to₀ : coHom 0 (S₊ 1 × S₊ 1) → ℤ to₀ = fun (fst H⁰-T²≅ℤ) from₀ : ℤ → coHom 0 (S₊ 1 × S₊ 1) from₀ = inv (fst H⁰-T²≅ℤ) {- -- Compute fast: test : to₁ (from₁ (0 , 1) +ₕ from₁ (1 , 0)) ≡ (1 , 1) test = refl test2 : to₁ (from₁ (5 , 1) +ₕ from₁ (-2 , 3)) ≡ (3 , 4) test2 = refl -- Compute pretty fast test3 : to₂ (from₂ 1) ≡ 1 test3 = refl test4 : to₂ (from₂ 2) ≡ 2 test4 = refl test5 : to₂ (from₂ 3) ≡ 3 test5 = refl -- Compute, but slower test6 : to₂ (from₂ 0 +ₕ from₂ 0) ≡ 0 test6 = refl test6 : to₂ (from₂ 0 +ₕ from₂ 1) ≡ 1 test6 = refl -- Does not compute test7 : to₂ (from₂ 1 +ₕ from₂ 0) ≡ 1 test7 = refl -} -- Proof (by computation) that T² ≠ S² ∨ S¹ ∨ S¹ private hasTrivial⌣₁ : ∀ {ℓ} (A : Type ℓ) → Type ℓ hasTrivial⌣₁ A = (x y : coHom 1 A) → x ⌣ y ≡ 0ₕ 2 hasTrivial⌣₁S²∨S¹∨S¹ : hasTrivial⌣₁ S²⋁S¹⋁S¹ hasTrivial⌣₁S²∨S¹∨S¹ x y = x ⌣ y ≡⟨ cong₂ _⌣_ (sym (leftInv (fst (H¹-S²⋁S¹⋁S¹)) x)) (sym (leftInv (fst (H¹-S²⋁S¹⋁S¹)) y)) ⟩ from₁-∨ (to₁-∨ x) ⌣ from₁-∨ (to₁-∨ y) ≡⟨ sym (leftInv (fst (H²-S²⋁S¹⋁S¹)) (from₁-∨ (to₁-∨ x) ⌣ from₁-∨ (to₁-∨ y))) ⟩ from₂-∨ (to₂-∨ (from₁-∨ (to₁-∨ x) ⌣ from₁-∨ (to₁-∨ y))) ≡⟨ refl ⟩ -- holds by computation (even with open terms in the context)! from₂-∨ 0 ≡⟨ hom1g (snd ℤGroup) from₂-∨ (snd (coHomGr 2 S²⋁S¹⋁S¹)) ((invGroupEquiv (GroupIso→GroupEquiv H²-S²⋁S¹⋁S¹)) .snd .pres·) ⟩ 0ₕ 2 ∎ 1≠0 : ¬ (Path ℤ 1 0) 1≠0 p = posNotnegsuc _ _ (cong predℤ p) ¬hasTrivial⌣₁T² : ¬ (hasTrivial⌣₁ (S¹ × S¹)) ¬hasTrivial⌣₁T² p = 1≠0 1=0 where 1=0 : pos 1 ≡ pos 0 1=0 = 1 ≡⟨ refl ⟩ -- holds by computation! to₂ (from₁ (0 , 1) ⌣ from₁ (1 , 0)) ≡⟨ cong to₂ (p (from₁ (0 , 1)) (from₁ (1 , 0))) ⟩ 0 ∎ T²≠S²⋁S¹⋁S¹ : ¬ S¹ × S¹ ≡ S²⋁S¹⋁S¹ T²≠S²⋁S¹⋁S¹ p = ¬hasTrivial⌣₁T² (subst hasTrivial⌣₁ (sym p) hasTrivial⌣₁S²∨S¹∨S¹)
44.981073
151
0.52949
38bb9631bebae8118bc06b55eb24854453dea8b4
231
agda
Agda
test/fail/ATPBadLocalHint1.agda
asr/eagda
7220bebfe9f64297880ecec40314c0090018fdd0
[ "BSD-3-Clause" ]
1
2016-03-17T01:45:59.000Z
2016-03-17T01:45:59.000Z
test/fail/ATPBadLocalHint1.agda
asr/eagda
7220bebfe9f64297880ecec40314c0090018fdd0
[ "BSD-3-Clause" ]
null
null
null
test/fail/ATPBadLocalHint1.agda
asr/eagda
7220bebfe9f64297880ecec40314c0090018fdd0
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- An ATP local hint cannot be equal to the conjecture in which it is -- used. -- This error is detected by Syntax.Translation.ConcreteToAbstract. module ATPBadLocalHint1 where postulate D : Set p : D {-# ATP prove p p #-}
17.769231
69
0.714286
13eb113a07bff8e1dc765a22c90db749c543f640
980
agda
Agda
UniDB/Subst/Sum.agda
skeuchel/unidb-agda
7ae52205db44ad4f463882ba7e5082120fb76349
[ "MIT" ]
null
null
null
UniDB/Subst/Sum.agda
skeuchel/unidb-agda
7ae52205db44ad4f463882ba7e5082120fb76349
[ "MIT" ]
null
null
null
UniDB/Subst/Sum.agda
skeuchel/unidb-agda
7ae52205db44ad4f463882ba7e5082120fb76349
[ "MIT" ]
null
null
null
module UniDB.Subst.Sum where open import UniDB.Subst.Core open import UniDB.Morph.Sum -------------------------------------------------------------------------------- module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} (X : STX) {{wkX : Wk X}} {{apTX : Ap T X}} {{apRelTX : ApRel T X}} (Ξ : MOR) {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} (Ζ : MOR) {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}} where ap-inl : {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) (x : X γ₁) → ap {T} {X} {Sum Ξ Ζ} (inl ξ) x ≡ ap {T} ξ x ap-inl ξ = ap-rel≅ {T} (≃-to-≅` lem) where lem : (δ : Dom) → [ T ] inl {Ξ} {Ζ} ξ ↑ δ ≃ ξ ↑ δ lk≃ (lem δ) i rewrite inl-↑ Ξ Ζ ξ δ = refl ap-inr : {γ₁ γ₂ : Dom} (ζ : Ζ γ₁ γ₂) (x : X γ₁) → ap {T} {X} {Sum Ξ Ζ} (inr ζ) x ≡ ap {T} ζ x ap-inr ζ = ap-rel≅ {T} (≃-to-≅` lem) where lem : (δ : Dom) → [ T ] inr {Ξ} {Ζ} ζ ↑ δ ≃ ζ ↑ δ lk≃ (lem δ) i rewrite inr-↑ Ξ Ζ ζ δ = refl --------------------------------------------------------------------------------
32.666667
80
0.384694
067630df9447bfd41a9358cb807979fd2c942d68
2,991
agda
Agda
src/Algebra/Linear/Morphism/Bundles.agda
felko/linear-algebra
d87c5a1eb5dd0569238272e67bce1899616b789a
[ "MIT" ]
15
2019-11-02T14:11:00.000Z
2020-12-30T06:18:08.000Z
src/Algebra/Linear/Morphism/Bundles.agda
felko/linear-algebra
d87c5a1eb5dd0569238272e67bce1899616b789a
[ "MIT" ]
null
null
null
src/Algebra/Linear/Morphism/Bundles.agda
felko/linear-algebra
d87c5a1eb5dd0569238272e67bce1899616b789a
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Algebra.Structures.Bundles.Field module Algebra.Linear.Morphism.Bundles {k ℓᵏ} (K : Field k ℓᵏ) where open import Algebra.FunctionProperties as FP open import Relation.Binary using (Rel; Setoid) open import Level import Algebra.Linear.Structures.Bundles as VS open import Algebra.Linear.Morphism.VectorSpace K open import Function.Equality as FunEq using (_⟶_; _⟨$⟩_; setoid) module _ {a₁ ℓ₁} (From : VS.VectorSpace K a₁ ℓ₁) {a₂ ℓ₂} (To : VS.VectorSpace K a₂ ℓ₂) where private module F = VS.VectorSpace From module T = VS.VectorSpace To K' : Set k K' = Field.Carrier K open F using () renaming ( Carrier to A ; _≈_ to _≈₁_ ; refl to ≈₁-refl ; sym to ≈₁-sym ; setoid to A-setoid ; _+_ to +₁ ; _∙_ to ∙₁ ) open T using () renaming ( Carrier to B ; _≈_ to _≈₂_ ; refl to ≈₂-refl ; sym to ≈₂-sym ; trans to ≈₂-trans ; setoid to B-setoid ; _+_ to +₂ ; _∙_ to ∙₂ ) hom-setoid : ∀ {Carrier} -> (Carrier -> (A-setoid ⟶ B-setoid)) -> Setoid (suc (k ⊔ a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂)) (a₁ ⊔ ℓ₁ ⊔ ℓ₂) hom-setoid {Carrier} app = record { Carrier = Carrier ; _≈_ = λ f g → ∀ {x y} (r : x ≈₁ y) -> (app f ⟨$⟩ x) ≈₂ (app g ⟨$⟩ y) ; isEquivalence = record { refl = λ {f} -> FunEq.cong (app f) ; sym = λ r rₓ → ≈₂-sym (r (≈₁-sym rₓ)) ; trans = λ r₁ r₂ rₓ → ≈₂-trans (r₁ ≈₁-refl) (r₂ rₓ) } } open LinearDefinitions A B _≈₂_ record LinearMap : Set (suc (k ⊔ a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂)) where field ⟦_⟧ : Morphism isLinearMap : IsLinearMap From To ⟦_⟧ infixr 25 _⟪$⟫_ _⟪$⟫_ : A -> B _⟪$⟫_ = ⟦_⟧ open IsLinearMap isLinearMap public linearMap-setoid : Setoid (suc (k ⊔ a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂)) (a₁ ⊔ ℓ₁ ⊔ ℓ₂) linearMap-setoid = hom-setoid {LinearMap} λ f → record { _⟨$⟩_ = λ x → f LinearMap.⟪$⟫ x ; cong = LinearMap.⟦⟧-cong f } record LinearIsomorphism : Set (suc (k ⊔ a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂)) where field ⟦_⟧ : Morphism isLinearIsomorphism : IsLinearIsomorphism From To ⟦_⟧ open IsLinearIsomorphism isLinearIsomorphism public linearMap : LinearMap linearMap = record { ⟦_⟧ = ⟦_⟧ ; isLinearMap = isLinearMap } open LinearMap linearMap public using (_⟪$⟫_) linearIsomorphism-setoid : Setoid (suc (k ⊔ a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂)) (a₁ ⊔ ℓ₁ ⊔ ℓ₂) linearIsomorphism-setoid = hom-setoid {LinearIsomorphism} λ f → record { _⟨$⟩_ = λ x -> f LinearIsomorphism.⟪$⟫ x ; cong = LinearIsomorphism.⟦⟧-cong f } module _ {a ℓ} (V : VS.VectorSpace K a ℓ) where LinearEndomorphism : Set (suc (k ⊔ a ⊔ ℓ)) LinearEndomorphism = LinearMap V V LinearAutomorphism : Set (suc (k ⊔ a ⊔ ℓ)) LinearAutomorphism = LinearIsomorphism V V
27.190909
86
0.55433
4b16dab43afbf84cb0dc5426479fd316e2444618
10,028
agda
Agda
Cubical/Foundations/Id.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Foundations/Id.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Foundations/Id.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{- This file contains: - Id, refl and J (with definitional computation rule) - Basic theory about Id, proved using J - Lemmas for going back and forth between Path and Id - Function extensionality for Id - fiber, isContr, equiv all defined using Id - The univalence axiom expressed using only Id ([EquivContr]) - Propositional truncation and its elimination principle -} {-# OPTIONS --cubical --safe #-} module Cubical.Foundations.Id where open import Cubical.Foundations.Prelude public hiding ( _≡_ ; _≡⟨_⟩_ ; _∎ ; isPropIsContr) renaming ( refl to reflPath ; transport to transportPath ; J to JPath ; JRefl to JPathRefl ; sym to symPath ; _∙_ to compPath ; cong to congPath ; funExt to funExtPath ; isContr to isContrPath ; isProp to isPropPath ; isSet to isSetPath ; fst to pr₁ -- as in the HoTT book ; snd to pr₂ ) open import Cubical.Foundations.Equiv renaming ( fiber to fiberPath ; isEquiv to isEquivPath ; _≃_ to EquivPath ; equivFun to equivFunPath ) hiding ( isPropIsEquiv ; equivCtr ; equivIsEquiv ) open import Cubical.Foundations.Univalence renaming ( EquivContr to EquivContrPath ) open import Cubical.HITs.PropositionalTruncation public renaming ( squash to squashPath ; rec to recPropTruncPath ; elim to elimPropTruncPath ) open import Cubical.Core.Id public private variable ℓ ℓ' : Level A : Type ℓ -- Version of the constructor for Id where the y is also -- explicit. This is sometimes useful when it is needed for -- typechecking (see JId below). conId : ∀ {x : A} φ (y : A [ φ ↦ (λ _ → x) ]) (w : (Path _ x (outS y)) [ φ ↦ (λ { (φ = i1) → λ _ → x}) ]) → x ≡ outS y conId φ _ w = ⟨ φ , outS w ⟩ -- Reflexivity refl : ∀ {x : A} → x ≡ x refl {x = x} = ⟨ i1 , (λ _ → x) ⟩ -- Definition of J for Id module _ {x : A} (P : ∀ (y : A) → Id x y → Type ℓ') (d : P x refl) where J : ∀ {y : A} (w : x ≡ y) → P y w J {y = y} = elimId P (λ φ y w → comp (λ i → P _ (conId (φ ∨ ~ i) (inS (outS w i)) (inS (λ j → outS w (i ∧ j))))) (λ i → λ { (φ = i1) → d}) d) {y = y} -- Check that J of refl is the identity function Jdefeq : Path _ (J refl) d Jdefeq _ = d -- Basic theory about Id, proved using J transport : ∀ (B : A → Type ℓ') {x y : A} → x ≡ y → B x → B y transport B {x} p b = J (λ y p → B y) b p _⁻¹ : {x y : A} → x ≡ y → y ≡ x _⁻¹ {x = x} p = J (λ z _ → z ≡ x) refl p ap : ∀ {B : Type ℓ'} (f : A → B) → ∀ {x y : A} → x ≡ y → f x ≡ f y ap f {x} = J (λ z _ → f x ≡ f z) refl _∙_ : ∀ {x y z : A} → x ≡ y → y ≡ z → x ≡ z _∙_ {x = x} p = J (λ y _ → x ≡ y) p infix 4 _∙_ infix 3 _∎ infixr 2 _≡⟨_⟩_ _≡⟨_⟩_ : (x : A) {y z : A} → x ≡ y → y ≡ z → x ≡ z _ ≡⟨ p ⟩ q = p ∙ q _∎ : (x : A) → x ≡ x _ ∎ = refl -- Convert between Path and Id pathToId : ∀ {x y : A} → Path _ x y → Id x y pathToId {x = x} = JPath (λ y _ → Id x y) refl pathToIdRefl : ∀ {x : A} → Path _ (pathToId (λ _ → x)) refl pathToIdRefl {x = x} = JPathRefl (λ y _ → Id x y) refl idToPath : ∀ {x y : A} → Id x y → Path _ x y idToPath {x = x} = J (λ y _ → Path _ x y) (λ _ → x) idToPathRefl : ∀ {x : A} → Path _ (idToPath {x = x} refl) reflPath idToPathRefl {x = x} _ _ = x pathToIdToPath : ∀ {x y : A} → (p : Path _ x y) → Path _ (idToPath (pathToId p)) p pathToIdToPath {x = x} = JPath (λ y p → Path _ (idToPath (pathToId p)) p) (λ i → idToPath (pathToIdRefl i)) idToPathToId : ∀ {x y : A} → (p : Id x y) → Path _ (pathToId (idToPath p)) p idToPathToId {x = x} = J (λ b p → Path _ (pathToId (idToPath p)) p) pathToIdRefl -- We get function extensionality by going back and forth between Path and Id funExt : ∀ {B : A → Type ℓ'} {f g : (x : A) → B x} → ((x : A) → f x ≡ g x) → f ≡ g funExt p = pathToId (λ i x → idToPath (p x) i) -- Equivalences expressed using Id fiber : ∀ {A : Type ℓ} {B : Type ℓ'} (f : A → B) (y : B) → Type (ℓ-max ℓ ℓ') fiber {A = A} f y = Σ[ x ∈ A ] f x ≡ y isContr : Type ℓ → Type ℓ isContr A = Σ[ x ∈ A ] (∀ y → x ≡ y) isProp : Type ℓ → Type ℓ isProp A = (x y : A) → x ≡ y isSet : Type ℓ → Type ℓ isSet A = (x y : A) → isProp (x ≡ y) record isEquiv {A : Type ℓ} {B : Type ℓ'} (f : A → B) : Type (ℓ-max ℓ ℓ') where field equiv-proof : (y : B) → isContr (fiber f y) open isEquiv public infix 4 _≃_ _≃_ : ∀ (A : Type ℓ) (B : Type ℓ') → Type (ℓ-max ℓ ℓ') A ≃ B = Σ[ f ∈ (A → B) ] (isEquiv f) equivFun : ∀ {B : Type ℓ'} → A ≃ B → A → B equivFun e = pr₁ e equivIsEquiv : ∀ {B : Type ℓ'} (e : A ≃ B) → isEquiv (equivFun e) equivIsEquiv e = pr₂ e equivCtr : ∀ {B : Type ℓ'} (e : A ≃ B) (y : B) → fiber (equivFun e) y equivCtr e y = e .pr₂ .equiv-proof y .pr₁ -- Functions for going between the various definitions. This could -- also be achieved by making lines in the universe and transporting -- back and forth along them. fiberPathToFiber : ∀ {B : Type ℓ'} {f : A → B} {y : B} → fiberPath f y → fiber f y fiberPathToFiber (x , p) = (x , pathToId p) fiberToFiberPath : ∀ {B : Type ℓ'} {f : A → B} {y : B} → fiber f y → fiberPath f y fiberToFiberPath (x , p) = (x , idToPath p) fiberToFiber : ∀ {B : Type ℓ'} {f : A → B} {y : B} (p : fiber f y) → Path _ (fiberPathToFiber (fiberToFiberPath p)) p fiberToFiber (x , p) = λ i → x , idToPathToId p i fiberPathToFiberPath : ∀ {B : Type ℓ'} {f : A → B} {y : B} (p : fiberPath f y) → Path _ (fiberToFiberPath (fiberPathToFiber p)) p fiberPathToFiberPath (x , p) = λ i → x , pathToIdToPath p i isContrPathToIsContr : isContrPath A → isContr A isContrPathToIsContr (ctr , p) = (ctr , λ y → pathToId (p y)) isContrToIsContrPath : isContr A → isContrPath A isContrToIsContrPath (ctr , p) = (ctr , λ y → idToPath (p y)) isPropPathToIsProp : isPropPath A → isProp A isPropPathToIsProp H x y = pathToId (H x y) isPropToIsPropPath : isProp A → isPropPath A isPropToIsPropPath H x y i = idToPath (H x y) i -- Specialized helper lemmas for going back and forth between -- isContrPath and isContr: helper1 : ∀ {A B : Type ℓ} (f : A → B) (g : B → A) (h : ∀ y → Path _ (f (g y)) y) → isContrPath A → isContr B helper1 f g h (x , p) = (f x , λ y → pathToId (λ i → hcomp (λ j → λ { (i = i0) → f x ; (i = i1) → h y j }) (f (p (g y) i)))) helper2 : ∀ {A B : Type ℓ} (f : A → B) (g : B → A) (h : ∀ y → Path _ (g (f y)) y) → isContr B → isContrPath A helper2 {A = A} f g h (x , p) = (g x , λ y → idToPath (rem y)) where rem : ∀ (y : A) → g x ≡ y rem y = g x ≡⟨ ap g (p (f y)) ⟩ g (f y) ≡⟨ pathToId (h y) ⟩ y ∎ -- This proof is essentially the one for proving that isContr with -- Path is a proposition, but as we are working with Id we have to -- insert a lof of conversion functions. It is still nice that is -- works like this though. isPropIsContr : ∀ (p1 p2 : isContr A) → Path (isContr A) p1 p2 isPropIsContr (a0 , p0) (a1 , p1) j = ( idToPath (p0 a1) j , hcomp (λ i → λ { (j = i0) → λ x → idToPathToId (p0 x) i ; (j = i1) → λ x → idToPathToId (p1 x) i }) (λ x → pathToId (λ i → hcomp (λ k → λ { (i = i0) → idToPath (p0 a1) j ; (i = i1) → idToPath (p0 x) (j ∨ k) ; (j = i0) → idToPath (p0 x) (i ∧ k) ; (j = i1) → idToPath (p1 x) i }) (idToPath (p0 (idToPath (p1 x) i)) j)))) -- We now prove that isEquiv is a proposition isPropIsEquiv : ∀ {A : Type ℓ} {B : Type ℓ} → {f : A → B} → (h1 h2 : isEquiv f) → Path _ h1 h2 equiv-proof (isPropIsEquiv {f = f} h1 h2 i) y = isPropIsContr {A = fiber f y} (h1 .equiv-proof y) (h2 .equiv-proof y) i -- Go from a Path equivalence to an Id equivalence equivPathToEquiv : ∀ {A : Type ℓ} {B : Type ℓ'} → EquivPath A B → A ≃ B equivPathToEquiv (f , p) = (f , λ { .equiv-proof y → helper1 fiberPathToFiber fiberToFiberPath fiberToFiber (p .equiv-proof y) }) -- Go from an Id equivalence to a Path equivalence equivToEquivPath : ∀ {A : Type ℓ} {B : Type ℓ'} → A ≃ B → EquivPath A B equivToEquivPath (f , p) = (f , λ { .equiv-proof y → helper2 fiberPathToFiber fiberToFiberPath fiberPathToFiberPath (p .equiv-proof y) }) equivToEquiv : ∀ {A : Type ℓ} {B : Type ℓ} → (p : A ≃ B) → Path _ (equivPathToEquiv (equivToEquivPath p)) p equivToEquiv (f , p) i = (f , isPropIsEquiv (λ { .equiv-proof y → helper1 fiberPathToFiber fiberToFiberPath fiberToFiber (helper2 fiberPathToFiber fiberToFiberPath fiberPathToFiberPath (p .equiv-proof y)) }) p i) -- We can finally prove univalence with Id everywhere from the one for Path EquivContr : ∀ (A : Type ℓ) → isContr (Σ[ T ∈ Type ℓ ] (T ≃ A)) EquivContr A = helper1 f1 f2 f12 (EquivContrPath A) where f1 : ∀ {ℓ} {A : Type ℓ} → Σ[ T ∈ Type ℓ ] (EquivPath T A) → Σ[ T ∈ Type ℓ ] (T ≃ A) f1 (x , p) = x , equivPathToEquiv p f2 : ∀ {ℓ} {A : Type ℓ} → Σ[ T ∈ Type ℓ ] (T ≃ A) → Σ[ T ∈ Type ℓ ] (EquivPath T A) f2 (x , p) = x , equivToEquivPath p f12 : ∀ {ℓ} {A : Type ℓ} → (y : Σ[ T ∈ Type ℓ ] (T ≃ A)) → Path _ (f1 (f2 y)) y f12 (x , p) = λ i → x , equivToEquiv p i -- Propositional truncation ∥∥-isProp : ∀ (x y : ∥ A ∥) → x ≡ y ∥∥-isProp x y = pathToId (squashPath x y) ∥∥-recursion : ∀ {A : Type ℓ} {P : Type ℓ} → isProp P → (A → P) → ∥ A ∥ → P ∥∥-recursion Pprop f x = recPropTruncPath (isPropToIsPropPath Pprop) f x ∥∥-induction : ∀ {A : Type ℓ} {P : ∥ A ∥ → Type ℓ} → ((a : ∥ A ∥) → isProp (P a)) → ((x : A) → P ∣ x ∣) → (a : ∥ A ∥) → P a ∥∥-induction Pprop f x = elimPropTruncPath (λ a → isPropToIsPropPath (Pprop a)) f x
35.185965
136
0.541484
9a0dada27ea5640c36db780e162ec00318e84adc
944
agda
Agda
src/Categories/Functor/Cocontinuous.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
src/Categories/Functor/Cocontinuous.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
src/Categories/Functor/Cocontinuous.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Cocontinuous where open import Level open import Data.Product using (Σ) open import Categories.Category open import Categories.Functor import Categories.Category.Construction.Cocones as Coc import Categories.Diagram.Colimit as Col import Categories.Morphism as Mor private variable o ℓ e : Level C D E J : Category o ℓ e -- G preserves the colimit of F. ColimitPreserving : (G : Functor C D) {F : Functor J C} (L : Col.Colimit F) → Set _ ColimitPreserving {C = C} {D = D} G {F} L = Σ (Col.Colimit (G ∘F F)) λ L′ → G.F₀ (Col.Colimit.coapex L) ≅ Col.Colimit.coapex L′ where module F = Functor F module G = Functor G open Mor D -- cocontinuous functors preserves all colimits. Cocontinuous : ∀ (o ℓ e : Level) (G : Functor C D) → Set _ Cocontinuous {C = C} o ℓ e G = ∀ {J : Category o ℓ e} {F : Functor J C} (L : Col.Colimit F) → ColimitPreserving G L
32.551724
127
0.685381
04df4be4123e9c59cba694108c3632fae1325abf
581
agda
Agda
TypeTheory/HoTT/Base.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
3
2020-04-07T17:49:42.000Z
2020-04-21T00:03:43.000Z
TypeTheory/HoTT/Base.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
TypeTheory/HoTT/Base.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
-- Homotopy type theory -- https://github.com/agda/cubical {-# OPTIONS --without-K --safe #-} module TypeTheory.HoTT.Base where -- agda-stdlib open import Level renaming (zero to lzero; suc to lsuc) open import Data.Product open import Relation.Binary.PropositionalEquality private variable a b : Level fiber : {A : Set a} {B : Set b} (f : A → B) (y : B) → Set (a ⊔ b) fiber f y = ∃ λ x → f x ≡ y isContr : Set a → Set a isContr A = Σ A λ x → ∀ y → x ≡ y isProp : Set a → Set a isProp A = (x y : A) → x ≡ y isSet : Set a → Set a isSet A = (x y : A) → isProp (x ≡ y)
20.034483
65
0.611015
adf52c2e2aaacb9da67c6689b3fd0c3185bceaaf
11,994
agda
Agda
Categories/Power.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
98
2015-04-15T14:57:33.000Z
2022-03-08T05:20:36.000Z
Categories/Power.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
19
2015-05-23T06:47:10.000Z
2019-08-09T16:31:40.000Z
Categories/Power.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
23
2015-02-05T13:03:09.000Z
2021-11-11T13:50:56.000Z
{-# OPTIONS --universe-polymorphism #-} open import Level hiding (suc; zero) open import Categories.Category module Categories.Power {o ℓ e : Level} (C : Category o ℓ e) where open import Function using () renaming (id to idf) open import Data.Nat using (ℕ; _+_; zero; suc; _≤?_) open import Data.Product using (_,_) open import Data.Fin using (Fin; inject+; raise; zero; suc; #_) open import Data.Sum using (_⊎_; inj₁; inj₂; map) renaming ([_,_] to ⟦_,_⟧; [_,_]′ to ⟦_,_⟧′) open import Function using (flip) renaming (_∘_ to _∙_) open import Relation.Nullary.Decidable using (True) open import Data.Vec.N-ary using (N-ary) open import Categories.Bifunctor using (Bifunctor) open import Categories.Functor using (Functor; module Functor) module C = Category C Exp : (I : Set) → Category o ℓ e Exp I = record { Obj = I → C.Obj ; _⇒_ = λ x y → (i : I) → C [ x i , y i ] ; _≡_ = λ f g → (i : I) → C [ f i ≡ g i ] ; _∘_ = λ f g i → C [ f i ∘ g i ] ; id = λ {x} i → C.id ; assoc = λ {A} {B} {C'} {D} {f} {g} {h} i → C.assoc ; identityˡ = λ {A} {B} {f} i → C.identityˡ ; identityʳ = λ {A} {B} {f} i → C.identityʳ ; equiv = record { refl = λ {x} i → C.Equiv.refl ; sym = λ f i → C.Equiv.sym (f i) ; trans = λ f g i → C.Equiv.trans (f i) (g i) } ; ∘-resp-≡ = λ f≡g h≡i x → C.∘-resp-≡ (f≡g x) (h≡i x) } Power : (n : ℕ) → Category o ℓ e Power n = Exp (Fin n) Powerfunctor′ : (D : Category o ℓ e) (I : Set) → Set (e ⊔ ℓ ⊔ o) Powerfunctor′ D I = Functor (Exp I) D Powerfunctor : (D : Category o ℓ e) (n : ℕ) → Set (e ⊔ ℓ ⊔ o) Powerfunctor D n = Powerfunctor′ D (Fin n) Powerendo′ : (I : Set) → Set (e ⊔ ℓ ⊔ o) Powerendo′ I = Powerfunctor′ C I Powerendo : (n : ℕ) → Set (e ⊔ ℓ ⊔ o) Powerendo n = Powerfunctor C n Hyperendo : (n m : ℕ) → Set (e ⊔ ℓ ⊔ o) Hyperendo n m = Functor (Power n) (Power m) Hyperendo′ : (I J : Set) → Set (e ⊔ ℓ ⊔ o) Hyperendo′ I J = Functor (Exp I) (Exp J) _par_ : ∀ {I I′ J J′} (F : Hyperendo′ I I′) (G : Hyperendo′ J J′) → Hyperendo′ (I ⊎ J) (I′ ⊎ J′) F par G = record { F₀ = λ xs → ⟦ F.F₀ (xs ∙ inj₁) , G.F₀ (xs ∙ inj₂) ⟧′ ; F₁ = λ {A B} fs → ⟦ F.F₁ (fs ∙ inj₁) , G.F₁ (fs ∙ inj₂) ⟧ ; identity = λ {A} → ⟦ F.identity , G.identity ⟧ ; homomorphism = λ {A B C fs gs} → ⟦ F.homomorphism , G.homomorphism ⟧ ; F-resp-≡ = λ {A B fs gs} fs≡gs → ⟦ F.F-resp-≡ (fs≡gs ∙ inj₁) , G.F-resp-≡ (fs≡gs ∙ inj₂) ⟧ } where private module F = Functor F private module G = Functor G flattenP : ∀ {D : Category o ℓ e} {n m} (F : Powerfunctor′ D (Fin n ⊎ Fin m)) → Powerfunctor′ D (Fin (n + m)) flattenP {n = n} {m = m} F = record { F₀ = λ As → F.F₀ (As ∙ pack) ; F₁ = λ {As Bs} fs → F.F₁ (fs ∙ pack) ; identity = λ {As} → F.identity ; homomorphism = λ {As Bs Cs fs gs} → F.homomorphism ; F-resp-≡ = λ {As Bs fs gs} fs≡gs → F.F-resp-≡ (fs≡gs ∙ pack) } where private module F = Functor F pack = ⟦ inject+ m , raise n ⟧′ flattenHʳ : ∀ {I} {n m} (F : Hyperendo′ I (Fin n ⊎ Fin m)) → Hyperendo′ I (Fin (n + m)) flattenHʳ {n = n} {m} F = record { F₀ = λ As → F.F₀ As ∙ chops n ; F₁ = λ {As Bs} fs → F.F₁ fs ∙ chops n ; identity = F.identity ∙ chops n ; homomorphism = F.homomorphism ∙ chops n ; F-resp-≡ = λ fs≡gs → F.F-resp-≡ fs≡gs ∙ chops n } where private module F = Functor F chops : (n : ℕ) → ∀ {m} (k : Fin (n + m)) → Fin n ⊎ Fin m chops 0 k = inj₂ k chops (suc n) zero = inj₁ zero chops (suc n) (suc k) = map suc idf (chops n k) flattenH : ∀ {n m n′ m′} (F : Hyperendo′ (Fin n ⊎ Fin m) (Fin n′ ⊎ Fin m′)) → Hyperendo (n + m) (n′ + m′) flattenH = flattenHʳ ∙ flattenP _∥_ : ∀ {n n′ m m′} (F : Hyperendo n n′) (G : Hyperendo m m′) → Hyperendo (n + m) (n′ + m′) F ∥ G = flattenH (F par G) reduce′ : ∀ (H : Bifunctor C C C) {I J} (F : Powerendo′ I) (G : Powerendo′ J) → Powerendo′ (I ⊎ J) reduce′ H {I} {J} F G = record { F₀ = my-F₀ ; F₁ = my-F₁ ; identity = λ {As} → my-identity {As} ; homomorphism = λ {As Bs Cs fs gs} → my-homomorphism {fs = fs} {gs} ; F-resp-≡ = λ fs → H.F-resp-≡ (F.F-resp-≡ (fs ∙ inj₁) , G.F-resp-≡ (fs ∙ inj₂)) } where private module L = Category (Exp (I ⊎ J)) private module F = Functor F private module G = Functor G private module H = Functor H open L using () renaming (_≡_ to _≡≡_; _∘_ to _∘∘_) open C using (_≡_; _∘_) my-F₀ = λ As → H.F₀ ((F.F₀ (As ∙ inj₁)) , (G.F₀ (As ∙ inj₂))) my-F₁ : ∀ {As Bs} → L._⇒_ As Bs → C [ my-F₀ As , my-F₀ Bs ] my-F₁ {As} {Bs} fs = H.F₁ (F.F₁ (fs ∙ inj₁) , G.F₁ (fs ∙ inj₂)) .my-identity : ∀ {As} → my-F₁ (L.id {As}) ≡ C.id my-identity {As} = begin H.F₁ (F.F₁ (λ i → C.id {As (inj₁ i)}) , G.F₁ (λ i → C.id {As (inj₂ i)})) ↓⟨ H.F-resp-≡ (F.identity , G.identity) ⟩ H.F₁ (C.id , C.id) ↓⟨ H.identity ⟩ C.id ∎ where open C.HomReasoning .my-homomorphism : ∀ {As Bs Cs} {fs : L._⇒_ As Bs} {gs : L._⇒_ Bs Cs} → my-F₁ (gs ∘∘ fs) ≡ (my-F₁ gs ∘ my-F₁ fs) my-homomorphism {fs = fs} {gs} = begin my-F₁ (gs ∘∘ fs) ↓⟨ H.F-resp-≡ (F.homomorphism , G.homomorphism) ⟩ H.F₁ ((F.F₁ (gs ∙ inj₁) ∘ F.F₁ (fs ∙ inj₁)) , (G.F₁ (gs ∙ inj₂) ∘ G.F₁ (fs ∙ inj₂))) ↓⟨ H.homomorphism ⟩ my-F₁ gs ∘ my-F₁ fs ∎ where open C.HomReasoning reduce : ∀ (H : Bifunctor C C C) {n m} (F : Powerendo n) (G : Powerendo m) → Powerendo (n + m) reduce H F G = flattenP (reduce′ H F G) flattenP-assocʳ : ∀ {n₁ n₂ n₃} (F : Powerendo′ (Fin n₁ ⊎ (Fin n₂ ⊎ Fin n₃))) → Powerendo ((n₁ + n₂) + n₃) flattenP-assocʳ {n₁} {n₂} {n₃} F = record { F₀ = λ As → F.F₀ (As ∙ pack) ; F₁ = λ {As Bs} fs → F.F₁ (fs ∙ pack) ; identity = λ {As} → F.identity ; homomorphism = λ {As Bs Cs fs gs} → F.homomorphism ; F-resp-≡ = λ {As Bs fs gs} fs≡gs → F.F-resp-≡ (fs≡gs ∙ pack) } where module F = Functor F pack = ⟦ inject+ n₃ ∙ inject+ n₂ , ⟦ inject+ n₃ ∙ raise n₁ , raise (n₁ + n₂) ⟧′ ⟧′ reduce2ʳ : ∀ (G : Bifunctor C C C) {n₁ n₂ n₃} (F₁ : Powerendo n₁) (F₂ : Powerendo n₂) (F₃ : Powerendo n₃) → Powerendo ((n₁ + n₂) + n₃) reduce2ʳ G F₁ F₂ F₃ = flattenP-assocʳ (reduce′ G F₁ (reduce′ G F₂ F₃)) overlaps : ∀ {D E} (H : Bifunctor D D E) {I} (F G : Powerfunctor′ D I) → Powerfunctor′ E I overlaps {D} {E} H {I} F G = record { F₀ = my-F₀ ; F₁ = my-F₁ ; identity = λ {As} → my-identity {As} ; homomorphism = λ {As Bs Cs fs gs} → my-homomorphism {fs = fs} {gs} ; F-resp-≡ = λ fs → H.F-resp-≡ (F.F-resp-≡ fs , G.F-resp-≡ fs) } where private module L = Category (Exp I) private module F = Functor F private module G = Functor G private module H = Functor H private module D = Category D private module E = Category E open L using () renaming (_≡_ to _≡≡_; _∘_ to _∘∘_) open E using (_≡_; _∘_) open D using () renaming (_∘_ to _∘D_) my-F₀ = λ As → H.F₀ (F.F₀ As , G.F₀ As) my-F₁ : ∀ {As Bs} → (Exp I) [ As , Bs ] → E [ my-F₀ As , my-F₀ Bs ] my-F₁ {As} {Bs} fs = H.F₁ (F.F₁ fs , G.F₁ fs) .my-identity : ∀ {As} → my-F₁ (L.id {As}) ≡ E.id my-identity {As} = begin H.F₁ (F.F₁ (λ i → C.id {As i}) , G.F₁ (λ i → C.id {As i})) ↓⟨ H.F-resp-≡ (F.identity , G.identity) ⟩ H.F₁ (D.id , D.id) ↓⟨ H.identity ⟩ E.id ∎ where open E.HomReasoning .my-homomorphism : ∀ {As Bs Cs} {fs : (Exp I) [ As , Bs ]} {gs : (Exp I) [ Bs , Cs ]} → my-F₁ (gs ∘∘ fs) ≡ (my-F₁ gs ∘ my-F₁ fs) my-homomorphism {fs = fs} {gs} = begin my-F₁ (gs ∘∘ fs) ↓⟨ H.F-resp-≡ (F.homomorphism , G.homomorphism) ⟩ H.F₁ ((F.F₁ gs ∘D F.F₁ fs) , (G.F₁ gs ∘D G.F₁ fs)) ↓⟨ H.homomorphism ⟩ my-F₁ gs ∘ my-F₁ fs ∎ where open E.HomReasoning overlap2ʳ : ∀ (G : Bifunctor C C C) {n} (F₁ F₂ F₃ : Powerendo n) → Powerendo n overlap2ʳ G F₁ F₂ F₃ = (overlaps {C} G F₁ (overlaps {C} G F₂ F₃)) select′ : ∀ {I} (i : I) → Powerendo′ I select′ {I} i = record { F₀ = λ xs → xs i ; F₁ = λ fs → fs i ; identity = C.Equiv.refl ; homomorphism = C.Equiv.refl ; F-resp-≡ = λ eqs → eqs i } select : ∀ m {n} {m<n : True (suc m ≤? n)} → Powerendo n select m {n} {m<n} = select′ (#_ m {n} {m<n}) triv : (n : ℕ) → Hyperendo n n triv n = record { F₀ = λ x → x ; F₁ = λ x → x ; identity = λ _ → C.Equiv.refl ; homomorphism = λ _ → C.Equiv.refl ; F-resp-≡ = λ x → x } pad : ∀ (l r : ℕ) {n m} (F : Hyperendo n m) → Hyperendo ((l + n) + r) ((l + m) + r) pad l r F = (triv l ∥ F) ∥ triv r padˡ : ∀ (l : ℕ) {n m} (F : Hyperendo n m) → Hyperendo (l + n) (l + m) padˡ l F = triv l ∥ F padʳ : ∀ (r : ℕ) {n m} (F : Hyperendo n m) → Hyperendo (n + r) (m + r) padʳ r F = F ∥ triv r unary : (F : Functor C C) → Powerendo 1 unary F = record { F₀ = λ As → F.F₀ (As zero) ; F₁ = λ fs → F.F₁ (fs zero) ; identity = F.identity ; homomorphism = F.homomorphism ; F-resp-≡ = λ fs≡gs → F.F-resp-≡ (fs≡gs zero) } where module F = Functor F unaryH : (F : Functor C C) → Hyperendo 1 1 unaryH F = record { F₀ = λ As → F.F₀ ∙ As ; F₁ = λ fs → F.F₁ ∙ fs ; identity = λ _ → F.identity ; homomorphism = λ _ → F.homomorphism ; F-resp-≡ = λ fs≡gs → F.F-resp-≡ ∙ fs≡gs } where module F = Functor F nullary : (X : C.Obj) → Powerendo 0 nullary X = record { F₀ = λ _ → X ; F₁ = λ _ → C.id ; identity = C.Equiv.refl ; homomorphism = C.Equiv.sym C.identityˡ ; F-resp-≡ = λ _ → C.Equiv.refl } nullaryH : (X : C.Obj) → Hyperendo 0 1 nullaryH X = record { F₀ = λ _ _ → X ; F₁ = λ _ _ → C.id ; identity = λ _ → C.Equiv.refl ; homomorphism = λ _ → C.Equiv.sym C.identityˡ ; F-resp-≡ = λ _ _ → C.Equiv.refl } binary : (F : Bifunctor C C C) → Powerendo 2 binary F = record { F₀ = λ As → F.F₀ (As zero , As (suc zero)) ; F₁ = λ fs → F.F₁ (fs zero , fs (suc zero)) ; identity = F.identity ; homomorphism = F.homomorphism ; F-resp-≡ = λ fs≡gs → F.F-resp-≡ (fs≡gs zero , fs≡gs (suc zero)) } where module F = Functor F binaryH : (F : Bifunctor C C C) → Hyperendo 2 1 binaryH F = record { F₀ = λ As _ → F.F₀ (As zero , As (suc zero)) ; F₁ = λ fs _ → F.F₁ (fs zero , fs (suc zero)) ; identity = λ _ → F.identity ; homomorphism = λ _ → F.homomorphism ; F-resp-≡ = λ fs≡gs _ → F.F-resp-≡ (fs≡gs zero , fs≡gs (suc zero)) } where module F = Functor F hyp : ∀ {n} (F : Powerendo n) → Hyperendo n 1 hyp F = record { F₀ = λ As _ → F.F₀ As ; F₁ = λ fs _ → F.F₁ fs ; identity = λ _ → F.identity ; homomorphism = λ _ → F.homomorphism ; F-resp-≡ = λ fs≡gs _ → F.F-resp-≡ fs≡gs } where module F = Functor F private curryⁿ : ∀ n {a b} {A : Set a} {B : Set b} → ((Fin n → A) → B) → N-ary n A B curryⁿ zero f = f (λ ()) curryⁿ (suc n) {A = A} f = λ x → curryⁿ n (f ∙ addon x) where addon : A → (Fin n → A) → Fin (suc n) → A addon x _ zero = x addon _ g (suc i) = g i plex′ : ∀ {J I} → (J → Powerendo′ I) → Hyperendo′ I J plex′ Fs = record { F₀ = flip (Functor.F₀ ∙ Fs) ; F₁ = flip (λ j → Functor.F₁ (Fs j)) ; identity = λ j → Functor.identity (Fs j) ; homomorphism = λ j → Functor.homomorphism (Fs j) ; F-resp-≡ = flip (λ j → Functor.F-resp-≡ (Fs j)) } plex : ∀ {n} {I} → N-ary n (Powerendo′ I) (Hyperendo′ I (Fin n)) plex {n} = curryⁿ n plex′ widenˡ : ∀ (l : ℕ) {n} (F : Powerendo n) → Powerendo (l + n) widenˡ l F = record { F₀ = λ As → F.F₀ (As ∙ pack) ; F₁ = λ {As Bs} fs → F.F₁ (fs ∙ pack) ; identity = λ {As} → F.identity ; homomorphism = λ {As Bs Cs fs gs} → F.homomorphism ; F-resp-≡ = λ {As Bs fs gs} fs≡gs → F.F-resp-≡ (fs≡gs ∙ pack) } where private module F = Functor F pack = raise l widenʳ : ∀ (r : ℕ) {n} (F : Powerendo n) → Powerendo (n + r) widenʳ r F = record { F₀ = λ As → F.F₀ (As ∙ pack) ; F₁ = λ {As Bs} fs → F.F₁ (fs ∙ pack) ; identity = λ {As} → F.identity ; homomorphism = λ {As Bs Cs fs gs} → F.homomorphism ; F-resp-≡ = λ {As Bs fs gs} fs≡gs → F.F-resp-≡ (fs≡gs ∙ pack) } where private module F = Functor F pack = inject+ r
33.691011
134
0.533267
2fba5e738c4a532cca9b977afd423a8239152e1e
1,877
agda
Agda
vendor/stdlib/src/Data/List/All/Properties.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Data/List/All/Properties.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Data/List/All/Properties.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- Properties relating All to various list functions ------------------------------------------------------------------------ module Data.List.All.Properties where open import Data.Bool open import Data.Bool.Properties open import Data.Function open import Data.List as List import Data.List.Any as Any open Any.Membership-≡ open import Data.List.All as All using (All; []; _∷_) open import Data.Product open import Relation.Unary using (Pred) renaming (_⊆_ to _⋐_) -- Functions can be shifted between the predicate and the list. All-map : ∀ {A B} {P : Pred B} {f : A → B} {xs} → All (P ∘₀ f) xs → All P (List.map f xs) All-map [] = [] All-map (p ∷ ps) = p ∷ All-map ps map-All : ∀ {A B} {P : Pred B} {f : A → B} {xs} → All P (List.map f xs) → All (P ∘₀ f) xs map-All {xs = []} [] = [] map-All {xs = _ ∷ _} (p ∷ ps) = p ∷ map-All ps -- A variant of All.map. gmap : ∀ {A B} {P : A → Set} {Q : B → Set} {f : A → B} → P ⋐ Q ∘₀ f → All P ⋐ All Q ∘₀ List.map f gmap g = All-map ∘ All.map g -- All and all are related via T. All-all : ∀ {A} (p : A → Bool) {xs} → All (T ∘₀ p) xs → T (all p xs) All-all p [] = _ All-all p (px ∷ pxs) = proj₂ T-∧ (px , All-all p pxs) all-All : ∀ {A} (p : A → Bool) xs → T (all p xs) → All (T ∘₀ p) xs all-All p [] _ = [] all-All p (x ∷ xs) px∷xs with proj₁ (T-∧ {p x}) px∷xs all-All p (x ∷ xs) px∷xs | (px , pxs) = px ∷ all-All p xs pxs -- All is anti-monotone. anti-mono : ∀ {A} {P : Pred A} {xs ys} → xs ⊆ ys → All P ys → All P xs anti-mono xs⊆ys pys = All.tabulate (All.lookup pys ∘ xs⊆ys) -- all is anti-monotone. all-anti-mono : ∀ {A} (p : A → Bool) {xs ys} → xs ⊆ ys → T (all p ys) → T (all p xs) all-anti-mono p xs⊆ys = All-all p ∘ anti-mono xs⊆ys ∘ all-All p _
32.362069
72
0.508791
590b071b2f17e58c1d3c1c5da8d8f9c77d669b5e
2,697
agda
Agda
src/Implicits/WellTyped.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
4
2019-04-05T17:57:11.000Z
2021-05-07T04:08:41.000Z
src/Implicits/WellTyped.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
src/Implicits/WellTyped.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
open import Prelude hiding (id; erase) module Implicits.WellTyped where open import Data.Fin.Substitution open import Data.Vec hiding ([_]) open import Data.List as List hiding ([_]; map) open import Implicits.Syntax.Type open import Implicits.Syntax.Term open import Implicits.Syntax.Context open import Implicits.Substitutions module TypingRules (_⊢ᵣ_ : ∀ {ν} → ICtx ν → Type ν → Set) where infixl 4 _⊢_∈_ ----------------------------------------------------------------------------- -- typings data _⊢_∈_ {ν n} (K : Ktx ν n) : Term ν n → Type ν → Set where var : (x : Fin n) → K ⊢ var x ∈ (lookup x (proj₁ K)) λ' : ∀ {t b} a → a ∷Γ K ⊢ t ∈ b → K ⊢ λ' a t ∈ simpl (a →' b) Λ : ∀ {t} {a : Type (suc ν)} → ktx-weaken K ⊢ t ∈ a → K ⊢ Λ t ∈ ∀' a _[_] : ∀ {t} {a : Type (suc ν)} → K ⊢ t ∈ ∀' a → (b : Type ν) → K ⊢ t [ b ] ∈ a tp[/tp b ] _·_ : ∀ {f t a b} → K ⊢ f ∈ simpl (a →' b) → K ⊢ t ∈ a → K ⊢ f · t ∈ b -- implicit abstract/application ρ : ∀ {t b a} → [] ⊢unamb a → a ∷K K ⊢ t ∈ b → K ⊢ ρ a t ∈ (a ⇒ b) _⟨_⟩ : ∀ {a b f} → K ⊢ f ∈ a ⇒ b → (proj₂ K) ⊢ᵣ a → K ⊢ f ⟨⟩ ∈ b _with'_ : ∀ {r e a b} → K ⊢ r ∈ a ⇒ b → K ⊢ e ∈ a → K ⊢ r with' e ∈ b _⊢_∉_ : ∀ {ν n} → (K : Ktx ν n) → Term ν n → Type ν → Set _⊢_∉_ K t τ = ¬ K ⊢ t ∈ τ ----------------------------------------------------------------------------- -- syntactic sugar let'_in'_ : ∀ {ν n} {e₁ : Term ν n} {e₂ : Term ν (suc n)} {a b} {K} → K ⊢ e₁ ∈ a → a ∷Γ K ⊢ e₂ ∈ b → K ⊢ (let' e₁ ∶ a in' e₂) ∈ b let' e₁ in' e₂ = (λ' _ e₂) · e₁ implicit'_∶_in'_ : ∀ {ν n} {e₁ : Term ν n} {e₂ : Term ν (suc n)} {a b} {K} → K ⊢ e₁ ∈ a → [] ⊢unamb a → a ∷K K ⊢ e₂ ∈ b → K ⊢ (implicit e₁ ∶ a in' e₂) ∈ b implicit' e₁ ∶ a in' e₂ = (ρ a e₂) with' e₁ wt-¿ : ∀ {ν n} {r : Type ν} {K : Ktx ν n} → [] ⊢unamb r → (proj₂ K) ⊢ᵣ r → K ⊢ (¿ r) ∈ r wt-¿ r x = (ρ r (var zero)) ⟨ x ⟩ ----------------------------------------------------------------------------- -- utilities erase : ∀ {ν n} {K : Ktx ν n} {t a} → K ⊢ t ∈ a → Term ν n erase {t = t} _ = t -- Collections of typing derivations for well-typed terms. data _⊢ⁿ_∈_ {m n} (Γ : Ktx n m) : ∀ {k} → Vec (Term n m) k → Vec (Type n) k → Set where [] : Γ ⊢ⁿ [] ∈ [] _∷_ : ∀ {t a k} {ts : Vec (Term n m) k} {as : Vec (Type n) k} → Γ ⊢ t ∈ a → Γ ⊢ⁿ ts ∈ as → Γ ⊢ⁿ t ∷ ts ∈ (a ∷ as) -- Lookup a well-typed term in a collection thereof. lookup-⊢ : ∀ {m n k} {Γ : Ktx n m} {ts : Vec (Term n m) k} {as : Vec (Type n) k} → (x : Fin k) → Γ ⊢ⁿ ts ∈ as → Γ ⊢ lookup x ts ∈ lookup x as lookup-⊢ zero (⊢t ∷ ⊢ts) = ⊢t lookup-⊢ (suc x) (⊢t ∷ ⊢ts) = lookup-⊢ x ⊢ts
40.253731
91
0.429366
222894395697c7ab72266a3161085b70d6c135c0
912
agda
Agda
misc/RecursiveDescent/Inductive/Token.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
7
2016-12-13T05:23:14.000Z
2021-06-22T05:35:31.000Z
misc/RecursiveDescent/Inductive/Token.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
1
2018-01-22T22:21:41.000Z
2018-01-24T16:39:37.000Z
misc/RecursiveDescent/Inductive/Token.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Some parsers which require a decidable token equality ------------------------------------------------------------------------ open import Relation.Binary module RecursiveDescent.Inductive.Token (D : DecSetoid) where open DecSetoid D using (_≟_) renaming (carrier to tok) open import RecursiveDescent.Inductive open import RecursiveDescent.Inductive.SimpleLib open import Data.Maybe open import Relation.Nullary open import Data.Vec open import Data.Vec1 -- Parsing a given token (or, really, a given equivalence class of -- tokens). sym : forall {nt} -> tok -> Parser tok nt _ tok sym c = sat p where p : tok -> Maybe tok p x with c ≟ x ... | yes _ = just x ... | no _ = nothing -- Parsing a sequence of tokens. string : forall {nt n} -> Vec tok n -> Parser tok nt _ (Vec tok n) string cs = sequence (map₀₁ sym cs)
26.823529
72
0.600877
4120fe3ca782570d97aab9ac072947b841139e5c
3,925
agda
Agda
doc/icfp20/code/Midi.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
28
2017-04-21T09:08:52.000Z
2022-03-04T18:04:07.000Z
doc/icfp20/code/Midi.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
1
2020-11-13T01:26:20.000Z
2020-11-17T00:58:55.000Z
doc/icfp20/code/Midi.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
3
2019-01-12T17:02:36.000Z
2020-11-10T04:04:40.000Z
{-# OPTIONS --without-K #-} module Midi where open import Agda.Builtin.String using (String) open import Data.Fin using (toℕ) open import Data.Nat using (ℕ) open import Data.List open import Data.Product using (_,_) open import Note open import Pitch open import MidiEvent open import Music {-# FOREIGN GHC import Codec.Midi import Data.Text (Text, unpack) import Data.List (sort) type HsTicksPerBeat = Integer type HsTicks = Integer type HsKey = Integer type HsVelocity = Integer type HsPreset = Integer type HsChannel = Integer type HsTempo = Integer type HsAbsTime = Integer type HsTrackName = Text -- convert beats per minute to microseconds per beat bpmToTempo :: Int -> Tempo bpmToTempo bpm = round $ 1000000 * 60 / fromIntegral bpm data HsMidiMessage = HsNoteOn HsVelocity HsTicks HsKey | HsNoteOff HsVelocity HsTicks HsKey deriving Eq getTicks :: HsMidiMessage -> HsTicks getTicks (HsNoteOn _ t _) = t getTicks (HsNoteOff _ t _) = t instance Ord HsMidiMessage where a <= b = getTicks a <= getTicks b data HsMidiTrack = HsMidiTrack HsTrackName HsPreset HsChannel HsTempo [HsMidiMessage] fi = fromInteger makeTrack :: Channel -> HsAbsTime -> [HsMidiMessage] -> (Track Ticks , HsAbsTime) makeTrack c t [] = ([(0, TrackEnd)], t) makeTrack c t (HsNoteOn v t' k : ms) = let (rest, t'') = makeTrack c t' ms in ((fi (t' - t), NoteOn c (fi k) (fi v)) : rest, t'') makeTrack c t (HsNoteOff v t' k : ms) = let (rest, t'') = makeTrack c t' ms in ((fi (t' - t), NoteOff c (fi k) (fi v)) : rest, t'') toTrack :: HsMidiTrack -> Track Ticks toTrack (HsMidiTrack name preset channel tempo messages) = (0, TrackName (unpack name)) : (0, ProgramChange (fi channel) (fi preset)) : (0, TempoChange (bpmToTempo (fi tempo))) : fst (makeTrack (fi channel) 0 (sort messages)) toMidi :: HsTicksPerBeat -> [HsMidiTrack] -> Midi toMidi ticks tracks = let mtracks = map toTrack tracks in Midi MultiTrack (TicksPerBeat (fi ticks)) mtracks exportTracks :: Text -> HsTicksPerBeat -> [HsMidiTrack] -> IO () exportTracks filePath ticksPerBeat tracks = do let path = unpack filePath putStrLn $ "Writing file " ++ path -- putStrLn $ show $ toMidi ticksPerBeat tracks exportFile path (toMidi ticksPerBeat tracks) #-} data Unit : Set where unit : Unit {-# COMPILE GHC Unit = data () (()) #-} postulate IO : Set → Set {-# BUILTIN IO IO #-} {-# COMPILE GHC IO = type IO #-} FilePath = String data Pair (A : Set) (B : Set) : Set where pair : A → B → Pair A B {-# COMPILE GHC Pair = data (,) ((,)) #-} HInstrument HPitch HVelocity : Set HInstrument = ℕ HPitch = ℕ HVelocity = ℕ HChannel = ℕ HTempo = ℕ data MidiMessage : Set where noteOn : HVelocity → Tick → HPitch → MidiMessage noteOff : HVelocity → Tick → HPitch → MidiMessage {-# COMPILE GHC MidiMessage = data HsMidiMessage (HsNoteOn | HsNoteOff) #-} event→messages : MidiEvent → List MidiMessage event→messages (midiEvent p start stop v) = let v' = toℕ v p' = unpitch p in noteOn v' start p' ∷ noteOff v' stop p' ∷ [] data HMidiTrack : Set where htrack : String → HInstrument → HChannel → HTempo → List MidiMessage → HMidiTrack {-# COMPILE GHC HMidiTrack = data HsMidiTrack (HsMidiTrack) #-} track→htrack : MidiTrack → HMidiTrack track→htrack (track n i c t m) = htrack n (toℕ i) (toℕ c) t (concatMap event→messages m) postulate exportTracks : FilePath → -- path to the file to save the MIDI data to ℕ → -- number of ticks per beat (by default a beat is a quarter note) List HMidiTrack → -- tracks, one per instrument IO Unit {-# COMPILE GHC exportTracks = exportTracks #-}
30.426357
100
0.635414
229635ced01e9962eed274e0f6685ff47c754d92
7,614
agda
Agda
src/Bisimilarity/6-2-5.agda
nad/up-to
b936ff85411baf3401ad85ce85d5ff2e9aa0ca14
[ "MIT" ]
null
null
null
src/Bisimilarity/6-2-5.agda
nad/up-to
b936ff85411baf3401ad85ce85d5ff2e9aa0ca14
[ "MIT" ]
null
null
null
src/Bisimilarity/6-2-5.agda
nad/up-to
b936ff85411baf3401ad85ce85d5ff2e9aa0ca14
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Some results related to an LTS from Section 6.2.5 of "Enhancements -- of the bisimulation proof method" by Pous and Sangiorgi, -- implemented using the coinductive definition of bisimilarity ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Prelude module Bisimilarity.6-2-5 {Name : Type} where open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Prelude.Size open import Function-universe equality-with-J hiding (id; _∘_) import Bisimilarity.Equational-reasoning-instances open import Equational-reasoning open import Indexed-container using (⟦_⟧) open import Labelled-transition-system.6-2-5 Name open import Relation open import Bisimilarity 6-2-5 open import Bisimilarity.Up-to 6-2-5 -- Some simple lemmas. The first two are stated by Pous and Sangiorgi, -- and the third one is a generalisation of a result stated by Pous -- and Sangiorgi. op·∅ : ∀ {a} → op (a · ∅) ∼ ∅ op·∅ {a} = ⟨ lr , (λ ()) ⟩ where lr : ∀ {P′ μ} → op (a · ∅) [ μ ]⟶ P′ → ∃ λ Q′ → ∅ [ μ ]⟶ Q′ × P′ ∼′ Q′ lr (op action ()) op··∅ : ∀ {a} → op (a · a · ∅) ∼ a · ∅ op··∅ {a} = ⟨ lr , rl ⟩ where lr : ∀ {P′ μ b} → op (a · b · ∅) [ μ ]⟶ P′ → ∃ λ Q′ → b · ∅ [ μ ]⟶ Q′ × P′ ∼′ Q′ lr (op action action) = _ , action , reflexive rl : ∀ {Q′ μ} → a · ∅ [ μ ]⟶ Q′ → ∃ λ P′ → op (a · a · ∅) [ μ ]⟶ P′ × P′ ∼′ Q′ rl action = _ , op action action , reflexive a≁b·c : ∀ {a b c} → ¬ (a · ∅ ∼ b · c · ∅) a≁b·c a∼b·c with right-to-left a∼b·c action ... | .∅ , action , ∅∼a with right-to-left (force ∅∼a) action ... | _ , () , _ -- Pous and Sangiorgi note that every context preserves bisimilarity. -- One can prove that a ·_ preserves bisimilarity in a size-preserving -- way. ·-cong : ∀ {i a P Q} → [ i ] P ∼ Q → [ i ] a · P ∼ a · Q ·-cong {i} {a} P∼Q = ⟨ lr P∼Q , Σ-map id (Σ-map id symmetric) ∘ lr (symmetric P∼Q) ⟩ where lr : ∀ {P P′ Q μ} → [ i ] P ∼ Q → a · P [ μ ]⟶ P′ → ∃ λ Q′ → a · Q [ μ ]⟶ Q′ × [ i ] P′ ∼′ Q′ lr P∼Q action = _ , action , convert P∼Q -- The operator op also preserves bisimilarity, but this lemma is not -- claimed to be size-preserving. op-cong : ∀ {i} {j : Size< i} {P Q} → [ i ] P ∼ Q → [ j ] op P ∼ op Q op-cong {i} {j} P∼Q = ⟨ lr P∼Q , Σ-map id (Σ-map id symmetric) ∘ lr (symmetric P∼Q) ⟩ where lr : ∀ {P P′ Q μ} → [ i ] P ∼ Q → op P [ μ ]⟶ P′ → ∃ λ Q′ → op Q [ μ ]⟶ Q′ × [ j ] P′ ∼′ Q′ lr P∼Q (op P⟶P′ P′⟶P″) = let Q′ , Q⟶Q′ , P′∼Q′ = left-to-right P∼Q P⟶P′ Q″ , Q′⟶Q″ , P″∼Q″ = left-to-right (force P′∼Q′) P′⟶P″ in Q″ , op Q⟶Q′ Q′⟶Q″ , P″∼Q″ -- Let us assume that the Name type is inhabited. In that case op-cong -- /cannot/ preserve the size of its argument. -- -- The proof is based on an argument presented by Pous and Sangiorgi. op-cong-cannot-preserve-size : Name → ¬ (∀ {i P Q} → [ i ] P ∼ Q → [ i ] op P ∼ op Q) op-cong-cannot-preserve-size a op-cong = a≁b·c a∼a·a where op-cong′ : ∀ {i P Q} → [ i ] P ∼′ Q → [ i ] op P ∼′ op Q force (op-cong′ P∼′Q) = op-cong (force P∼′Q) a∼a·a : ∀ {i} → [ i ] a · ∅ ∼ a · a · ∅ a∼a·a {i} = ⟨ lr , rl ⟩ where a∼′a·a : ∀ {i} → [ i ] a · ∅ ∼′ a · a · ∅ force a∼′a·a = a∼a·a lemma = ∅ ∼⟨ symmetric op·∅ ⟩ op (a · ∅) ∼⟨ op-cong′ (a∼′a·a {i = i}) ⟩ op (a · a · ∅) ∼⟨ op··∅ ⟩■ a · ∅ lr : ∀ {P′ μ} → a · ∅ [ μ ]⟶ P′ → ∃ λ Q′ → a · a · ∅ [ μ ]⟶ Q′ × [ i ] P′ ∼′ Q′ lr action = a · ∅ , action , lemma rl : ∀ {Q′ μ} → a · a · ∅ [ μ ]⟶ Q′ → ∃ λ P′ → a · ∅ [ μ ]⟶ P′ × [ i ] P′ ∼′ Q′ rl action = ∅ , action , lemma -- Up to context (for monadic contexts). Up-to-context : Trans₂ (# 0) Proc Up-to-context R (P , Q) = ∃ λ (C : Context 1) → ∃ λ P′ → ∃ λ Q′ → P ≡ C [ (λ _ → P′) ] × Q ≡ C [ (λ _ → Q′) ] × R (P′ , Q′) -- Up to context is monotone. up-to-context-monotone : Monotone Up-to-context up-to-context-monotone R⊆S = Σ-map id $ Σ-map id $ Σ-map id $ Σ-map id $ Σ-map id R⊆S -- Up to bisimilarity and context. Up-to-bisimilarity-and-context : Trans₂ (# 0) Proc Up-to-bisimilarity-and-context = Up-to-bisimilarity ∘ Up-to-context -- Up to bisimilarity and context is monotone. up-to-bisimilarity-and-context-monotone : Monotone Up-to-bisimilarity-and-context up-to-bisimilarity-and-context-monotone = up-to-bisimilarity-monotone ∘ up-to-context-monotone -- Up to bisimilarity and context is not sound (assuming that Name is -- inhabited). -- -- This result is due to Pous and Sangiorgi. ¬-up-to-bisimilarity-and-context : Name → ¬ Up-to-technique Up-to-bisimilarity-and-context ¬-up-to-bisimilarity-and-context a = Up-to-technique Up-to-bisimilarity-and-context ↝⟨ _$ R⊆ ⟩ R ⊆ Bisimilarity ∞ ↝⟨ R⊈∼ ⟩□ ⊥ □ where data R : Rel₂ (# 0) Proc where base : R (a · ∅ , a · a · ∅) lemma : Up-to-bisimilarity-and-context R (∅ , a · ∅) lemma = op (a · ∅) , symmetric op·∅ , op (a · a · ∅) , (op (hole fzero) , a · ∅ , a · a · ∅ , refl , refl , base) , op··∅ R⊆ : R ⊆ ⟦ StepC ⟧ (Up-to-bisimilarity-and-context R) R⊆ base = ⟨ (λ { action → a · ∅ , action , lemma }) , (λ { action → ∅ , action , lemma }) ⟩ R⊈∼ : ¬ R ⊆ Bisimilarity ∞ R⊈∼ = R ⊆ Bisimilarity ∞ ↝⟨ (λ R⊆∼ → R⊆∼ base) ⟩ a · ∅ ∼ a · a · ∅ ↝⟨ a≁b·c ⟩□ ⊥ □ -- The last result above can be used to give another proof showing -- that op-cong cannot preserve the size of its argument (assuming -- that Name is inhabited). op-cong-cannot-preserve-size′ : Name → ¬ (∀ {i P Q} → [ i ] P ∼ Q → [ i ] op P ∼ op Q) op-cong-cannot-preserve-size′ a = (∀ {i P Q} → [ i ] P ∼ Q → [ i ] op P ∼ op Q) ↝⟨ (λ op-cong C P∼Q → []-cong op-cong C (λ _ → P∼Q)) ⟩ (∀ {i P Q} (C : Context 1) → [ i ] P ∼ Q → [ i ] C [ (λ _ → P) ] ∼ C [ (λ _ → Q) ]) ↝⟨ (λ []-cong → λ where {x = P , Q} (_ , P∼C[R₁] , _ , (C , R₁ , R₂ , refl , refl , R₁∼R₂) , C[R₂]∼Q) → P ∼⟨ P∼C[R₁] ⟩ C [ (λ _ → R₁) ] ∼⟨ []-cong C R₁∼R₂ ⟩ C [ (λ _ → R₂) ] ∼⟨ C[R₂]∼Q ⟩■ Q) ⟩ (∀ {i} → Up-to-bisimilarity-and-context (Bisimilarity i) ⊆ Bisimilarity i) ↝⟨ _⇔_.from (monotone→⇔ up-to-bisimilarity-and-context-monotone) ⟩ Size-preserving Up-to-bisimilarity-and-context ↝⟨ size-preserving→up-to ⟩ Up-to-technique Up-to-bisimilarity-and-context ↝⟨ ¬-up-to-bisimilarity-and-context a ⟩□ ⊥ □ where []-cong : (∀ {i P Q} → [ i ] P ∼ Q → [ i ] op P ∼ op Q) → ∀ {i n Ps Qs} (C : Context n) → (∀ x → [ i ] Ps x ∼ Qs x) → [ i ] C [ Ps ] ∼ C [ Qs ] []-cong op-cong (hole x) Ps∼Qs = Ps∼Qs x []-cong op-cong (op C) Ps∼Qs = op-cong ([]-cong op-cong C Ps∼Qs) []-cong op-cong (a · C) Ps∼Qs = ·-cong ([]-cong op-cong C Ps∼Qs) []-cong op-cong ∅ Ps∼Qs = reflexive
32.961039
129
0.463357
13afc28ca4e2899bdde637a0d7521e11c9baced7
406
agda
Agda
src/Categories/Category/Cocomplete.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Category/Cocomplete.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Category/Cocomplete.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Category.Cocomplete where open import Level open import Categories.Category using (Category) open import Categories.Functor using (Functor) open import Categories.Diagram.Colimit using (Colimit) Cocomplete : (o ℓ e : Level) {o′ ℓ′ e′ : Level} (C : Category o′ ℓ′ e′) → Set _ Cocomplete o ℓ e C = ∀ {J : Category o ℓ e} (F : Functor J C) → Colimit F
31.230769
79
0.70197
9a6b5619b57344013d4ef5b4e533a41b009cfbe8
7,533
agda
Agda
src/LEMC.agda
shinji-kono/zf-in-agda
031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0
[ "MIT" ]
5
2019-10-02T13:46:23.000Z
2021-01-10T13:27:48.000Z
src/LEMC.agda
shinji-kono/zf-in-agda
031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0
[ "MIT" ]
null
null
null
src/LEMC.agda
shinji-kono/zf-in-agda
031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0
[ "MIT" ]
null
null
null
open import Level open import Ordinals open import logic open import Relation.Nullary module LEMC {n : Level } (O : Ordinals {n} ) (p∨¬p : ( p : Set n) → p ∨ ( ¬ p )) where open import zf open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import nat import OD open inOrdinal O open OD O open OD.OD open OD._==_ open ODAxiom odAxiom import OrdUtil import ODUtil open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext open OrdUtil O open ODUtil O open import zfc open HOD open _⊆_ decp : ( p : Set n ) → Dec p -- assuming axiom of choice decp p with p∨¬p p decp p | case1 x = yes x decp p | case2 x = no x ∋-p : (A x : HOD ) → Dec ( A ∋ x ) ∋-p A x with p∨¬p ( A ∋ x) -- LEM ∋-p A x | case1 t = yes t ∋-p A x | case2 t = no (λ x → t x) double-neg-eilm : {A : Set n} → ¬ ¬ A → A -- we don't have this in intutionistic logic double-neg-eilm {A} notnot with decp A -- assuming axiom of choice ... | yes p = p ... | no ¬p = ⊥-elim ( notnot ¬p ) power→⊆ : ( A t : HOD) → Power A ∋ t → t ⊆ A power→⊆ A t PA∋t = record { incl = λ {x} t∋x → double-neg-eilm (λ not → t1 t∋x (λ x → not x) ) } where t1 : {x : HOD } → t ∋ x → ¬ ¬ (A ∋ x) t1 = power→ A t PA∋t --- With assuption of HOD is ordered, p ∨ ( ¬ p ) <=> axiom of choice --- record choiced ( X : Ordinal ) : Set n where field a-choice : Ordinal is-in : odef (* X) a-choice open choiced -- ∋→d : ( a : HOD ) { x : HOD } → * (& a) ∋ x → X ∋ * (a-choice (choice-func X not)) -- ∋→d a lt = subst₂ (λ j k → odef j k) *iso (sym &iso) lt oo∋ : { a : HOD} { x : Ordinal } → odef (* (& a)) x → a ∋ * x oo∋ lt = subst₂ (λ j k → odef j k) *iso (sym &iso) lt ∋oo : { a : HOD} { x : Ordinal } → a ∋ * x → odef (* (& a)) x ∋oo lt = subst₂ (λ j k → odef j k ) (sym *iso) &iso lt OD→ZFC : ZFC OD→ZFC = record { ZFSet = HOD ; _∋_ = _∋_ ; _≈_ = _=h=_ ; ∅ = od∅ ; Select = Select ; isZFC = isZFC } where -- infixr 200 _∈_ -- infixr 230 _∩_ _∪_ isZFC : IsZFC (HOD ) _∋_ _=h=_ od∅ Select isZFC = record { choice-func = λ A {X} not A∋X → * (a-choice (choice-func X not) ); choice = λ A {X} A∋X not → oo∋ (is-in (choice-func X not)) } where -- -- the axiom choice from LEM and OD ordering -- choice-func : (X : HOD ) → ¬ ( X =h= od∅ ) → choiced (& X) choice-func X not = have_to_find where ψ : ( ox : Ordinal ) → Set n ψ ox = (( x : Ordinal ) → x o< ox → ( ¬ odef X x )) ∨ choiced (& X) lemma-ord : ( ox : Ordinal ) → ψ ox lemma-ord ox = TransFinite0 {ψ} induction ox where ∀-imply-or : {A : Ordinal → Set n } {B : Set n } → ((x : Ordinal ) → A x ∨ B) → ((x : Ordinal ) → A x) ∨ B ∀-imply-or {A} {B} ∀AB with p∨¬p ((x : Ordinal ) → A x) -- LEM ∀-imply-or {A} {B} ∀AB | case1 t = case1 t ∀-imply-or {A} {B} ∀AB | case2 x = case2 (lemma (λ not → x not )) where lemma : ¬ ((x : Ordinal ) → A x) → B lemma not with p∨¬p B lemma not | case1 b = b lemma not | case2 ¬b = ⊥-elim (not (λ x → dont-orb (∀AB x) ¬b )) induction : (x : Ordinal) → ((y : Ordinal) → y o< x → ψ y) → ψ x induction x prev with ∋-p X ( * x) ... | yes p = case2 ( record { a-choice = x ; is-in = ∋oo p } ) ... | no ¬p = lemma where lemma1 : (y : Ordinal) → (y o< x → odef X y → ⊥) ∨ choiced (& X) lemma1 y with ∋-p X (* y) lemma1 y | yes y<X = case2 ( record { a-choice = y ; is-in = ∋oo y<X } ) lemma1 y | no ¬y<X = case1 ( λ lt y<X → ¬y<X (d→∋ X y<X) ) lemma : ((y : Ordinal) → y o< x → odef X y → ⊥) ∨ choiced (& X) lemma = ∀-imply-or lemma1 odef→o< : {X : HOD } → {x : Ordinal } → odef X x → x o< & X odef→o< {X} {x} lt = o<-subst {_} {_} {x} {& X} ( c<→o< ( subst₂ (λ j k → odef j k ) (sym *iso) (sym &iso) lt )) &iso &iso have_to_find : choiced (& X) have_to_find = dont-or (lemma-ord (& X )) ¬¬X∋x where ¬¬X∋x : ¬ ((x : Ordinal) → x o< (& X) → odef X x → ⊥) ¬¬X∋x nn = not record { eq→ = λ {x} lt → ⊥-elim (nn x (odef→o< lt) lt) ; eq← = λ {x} lt → ⊥-elim ( ¬x<0 lt ) } -- -- axiom regurality from ε-induction (using axiom of choice above) -- -- from https://math.stackexchange.com/questions/2973777/is-it-possible-to-prove-regularity-with-transfinite-induction-only -- -- FIXME : don't use HOD make this level n, so we can remove ε-induction1 record Minimal (x : HOD) : Set (suc n) where field min : HOD x∋min : x ∋ min min-empty : (y : HOD ) → ¬ ( min ∋ y) ∧ (x ∋ y) open Minimal open _∧_ induction : {x : HOD} → ({y : HOD} → x ∋ y → (u : HOD ) → (u∋x : u ∋ y) → Minimal u ) → (u : HOD ) → (u∋x : u ∋ x) → Minimal u induction {x} prev u u∋x with p∨¬p ((y : Ordinal ) → ¬ (odef x y) ∧ (odef u y)) ... | case1 P = record { min = x ; x∋min = u∋x ; min-empty = λ y → P (& y) } ... | case2 NP = min2 where p : HOD p = record { od = record { def = λ y1 → odef x y1 ∧ odef u y1 } ; odmax = omin (odmax x) (odmax u) ; <odmax = lemma } where lemma : {y : Ordinal} → OD.def (od x) y ∧ OD.def (od u) y → y o< omin (odmax x) (odmax u) lemma {y} lt = min1 (<odmax x (proj1 lt)) (<odmax u (proj2 lt)) np : ¬ (p =h= od∅) np p∅ = NP (λ y p∋y → ∅< {p} {_} (d→∋ p p∋y) p∅ ) y1choice : choiced (& p) y1choice = choice-func p np y1 : HOD y1 = * (a-choice y1choice) y1prop : (x ∋ y1) ∧ (u ∋ y1) y1prop = oo∋ (is-in y1choice) min2 : Minimal u min2 = prev (proj1 y1prop) u (proj2 y1prop) Min2 : (x : HOD) → (u : HOD ) → (u∋x : u ∋ x) → Minimal u Min2 x u u∋x = (ε-induction {λ y → (u : HOD ) → (u∋x : u ∋ y) → Minimal u } induction x u u∋x ) cx : {x : HOD} → ¬ (x =h= od∅ ) → choiced (& x ) cx {x} nx = choice-func x nx minimal : (x : HOD ) → ¬ (x =h= od∅ ) → HOD minimal x ne = min (Min2 (* (a-choice (cx {x} ne) )) x ( oo∋ (is-in (cx ne))) ) x∋minimal : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → odef x ( & ( minimal x ne ) ) x∋minimal x ne = x∋min (Min2 (* (a-choice (cx {x} ne) )) x ( oo∋ (is-in (cx ne))) ) minimal-1 : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → (y : HOD ) → ¬ ( odef (minimal x ne) (& y)) ∧ (odef x (& y) ) minimal-1 x ne y = min-empty (Min2 (* (a-choice (cx ne) )) x ( oo∋ (is-in (cx ne)))) y
42.083799
143
0.443648
2ebbccc32e64debc1c9e60087cdec51fcf3d12fc
779
agda
Agda
agda/Algebra/Construct/Free/Semilattice/FromList.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
agda/Algebra/Construct/Free/Semilattice/FromList.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
agda/Algebra/Construct/Free/Semilattice/FromList.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --safe #-} module Algebra.Construct.Free.Semilattice.FromList where open import Prelude open import Algebra.Construct.Free.Semilattice.Definition open import Algebra.Construct.Free.Semilattice.Eliminators open import Algebra.Construct.Free.Semilattice.Relation.Unary open import Data.List import Data.List.Membership as ℰ open import Data.Fin using (Fin; fs; f0) open import HITs.PropositionalTruncation.Sugar open import HITs.PropositionalTruncation.Properties fromList : List A → 𝒦 A fromList = foldr _∷_ [] ∈List⇒∈𝒦 : ∀ xs {x : A} → ∥ x ℰ.∈ xs ∥ → x ∈ fromList xs ∈List⇒∈𝒦 [] ∣x∈xs∣ = ⊥-elim (refute-trunc (λ ()) ∣x∈xs∣) ∈List⇒∈𝒦 (x ∷ xs) ∣x∈xs∣ = do (fs n , x∈xs) ← ∣x∈xs∣ where (f0 , x∈xs) → ∣ inl x∈xs ∣ ∣ inr (∈List⇒∈𝒦 xs ∣ n , x∈xs ∣) ∣
32.458333
61
0.690629
38258479c8eeaa4f974c80d2e97ba56803c99fa6
356
agda
Agda
test/Fail/Issue2403.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2403.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2403.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2017-01-13, issue #2403 open import Common.Nat postulate P : Nat → Set f : ∀{n} → P n → P (pred n) test : ∀ n → P n → Set test zero p = Nat test (suc n) p = test _ (f p) -- WAS: -- The meta-variable is solved to (pred (suc n)) -- Termination checking fails. -- NOW: If the termination checker normalizes the argument and it passes.
19.777778
73
0.632022
1e1461a14a8579a2f9329dd287d6519c4a4f9d52
1,472
agda
Agda
GSeTT/Typed-Syntax.agda
ThiBen/catt-formalization
ed45935b38d6a86fa662f561866140122ee3dcef
[ "MIT" ]
2
2020-05-01T08:26:53.000Z
2020-05-20T00:41:09.000Z
GSeTT/Typed-Syntax.agda
ThiBen/catt-formalization
ed45935b38d6a86fa662f561866140122ee3dcef
[ "MIT" ]
null
null
null
GSeTT/Typed-Syntax.agda
ThiBen/catt-formalization
ed45935b38d6a86fa662f561866140122ee3dcef
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import Agda.Primitive open import Prelude open import GSeTT.Syntax open import GSeTT.Rules open import GSeTT.CwF-structure open import GSeTT.Uniqueness-Derivations {- Typed syntax for type theory for globular sets -} module GSeTT.Typed-Syntax where Ctx : Set₁ Ctx = Σ Pre-Ctx (λ Γ → Γ ⊢C) Ty : Ctx → Set₁ Ty (Γ , _) = Σ Pre-Ty (λ A → Γ ⊢T A) Tm : ∀ (Γ : Ctx) → Ty Γ → Set₁ Tm (Γ , _) (A , _) = Σ Pre-Tm (λ t → Γ ⊢t t # A) Sub : ∀ (Δ : Ctx) (Γ : Ctx) → Set₁ Sub (Δ , _) (Γ , _) = Σ Pre-Sub (λ γ → Δ ⊢S γ > Γ) eqC : ∀ (Γ Δ : Ctx) → fst Γ == fst Δ → Γ == Δ eqC (Γ , Γ⊢) (.Γ , Γ⊢') idp = Σ= idp (has-all-paths-⊢C _ _) eqT : ∀ {Γ} (A B : Ty Γ) → fst A == fst B → A == B eqT (A , Γ⊢A) (.A , Γ⊢'A) idp = Σ= idp (has-all-paths-⊢T _ _) eqt : ∀ {Γ A} (t u : Tm Γ A) → fst t == fst u → t == u eqt (t , Γ⊢t:A) (.t , Γ⊢':A) idp = Σ= idp (has-all-paths-⊢t _ _) eqS : ∀ {Γ Δ} (γ δ : Sub Γ Δ) → fst γ == fst δ → γ == δ eqS (γ , Γ⊢γ:Δ) (.γ , Γ⊢'γ:Δ) idp = Σ= idp (has-all-paths-⊢S _ _) trS : ∀ {Γ Δ Θ : Ctx} → (p : Δ == Θ) → {γ : Sub Γ Δ} → {δ : Sub Γ Θ} → fst γ == fst δ → transport p γ == δ trS {Γ} {Δ} {Θ} idp {γ} {δ} x = eqS {Γ} {Θ} γ δ x eqdec-Ty : ∀ Γ → eqdec (Ty Γ) eqdec-Ty Γ (A , Γ⊢A) (B , Γ⊢B) with eqdec-PreTy A B ... | inl idp = inl (eqT {Γ} (A , Γ⊢A) (B , Γ⊢B) idp) ... | inr A≠B = inr λ p → A≠B (fst-is-inj p) is-set-Ty : ∀ Γ → is-set (Ty Γ) is-set-Ty Γ = eqdec-is-set (eqdec-Ty Γ)
32
108
0.497283
0e9b90e1cff47752e8d5e3241056316a6623cde0
13,698
agda
Agda
archive/agda-2/Oscar/Data/Permutation.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-2/Oscar/Data/Permutation.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-2/Oscar/Data/Permutation.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module Oscar.Data.Permutation where --open import Data.Permutation public import Data.Permutation as P open import Data.Permutation renaming (delete to deleteP; _∘_ to _∘P_; enum to allInj) open import Oscar.Data.Vec renaming (delete to deleteV; map to mapV) open import Relation.Binary.PropositionalEquality open import Data.Product open import Data.Fin renaming (inject to injectF) open ≡-Reasoning open import Data.Permutation.Properties open import Oscar.Data.Vec.Properties open import Function open import Data.Sum open import Agda.Builtin.Nat <>-inv : ∀ {n} (ps : Permutation n) i → i ≡ < ps > (< ps ⁻¹ > i) <>-inv ps i = trans (sym (id-is-id i)) (subst (< P.id > _ ≡_) (inj-correct (ps ⁻¹) ps i) (cong (flip <_> _) (sym (inv-left ps)))) _⋟_÷_ : ∀ {a m n} {A : Set a} → Vec A n → Vec A m → Inj m n → Set a x ⋟ px ÷ p = ∀ i → lookup i px ≡ lookup (< p > i) x lookup-ext : ∀ {a n} {A : Set a} {pv₁ pv₂ : Vec A n} → (∀ i → lookup i pv₁ ≡ lookup i pv₂) → pv₁ ≡ pv₂ lookup-ext {pv₁ = []} {[]} x = refl lookup-ext {pv₁ = x₁ ∷ pv₁} {x₂ ∷ pv₂} x with lookup-ext {pv₁ = pv₁} {pv₂} (x ∘ suc) | x zero … | refl | refl = refl injected-inj : ∀ {a n m} {A : Set a} {v : Vec A m} {pv₁ pv₂ : Vec A n} {p : Inj n m} → v ⋟ pv₁ ÷ p → v ⋟ pv₂ ÷ p → pv₁ ≡ pv₂ injected-inj {pv₁ = pv₁} {pv₂} v⋟pv₁÷p v⋟pv₂÷p = lookup-ext foo where foo : (i : Fin _) → lookup i pv₁ ≡ lookup i pv₂ foo i = trans (v⋟pv₁÷p i) (sym (v⋟pv₂÷p i)) permuted-inj : ∀ {a n} {A : Set a} {v : Vec A n} {pv₁ pv₂ : Vec A n} {p : Permutation n} → v ⋟ pv₁ ÷ p → v ⋟ pv₂ ÷ p → pv₁ ≡ pv₂ permuted-inj {pv₁ = pv₁} {pv₂} v⋟pv₁÷p v⋟pv₂÷p = lookup-ext foo where foo : (i : Fin _) → lookup i pv₁ ≡ lookup i pv₂ foo i = trans (v⋟pv₁÷p i) (sym (v⋟pv₂÷p i)) permutedLookup : ∀ {a n} {A : Set a} → Permutation n → Vec A n → Fin n → A permutedLookup p v = flip lookup v ∘ < p > inject : ∀ {a n m} {A : Set a} → (p : Inj n m) → (v : Vec A m) → Vec A n inject p v = tabulate (flip lookup v ∘ < p >) permute : ∀ {a n} {A : Set a} → (p : Permutation n) → (v : Vec A n) → Vec A n permute p v = tabulate (flip lookup v ∘ < p >) inject-correct : ∀ {a n m} {A : Set a} → (p : Inj n m) → (v : Vec A m) → v ⋟ inject p v ÷ p inject-correct p v = lookup∘tabulate (flip lookup v ∘ < p >) permute-correct : ∀ {a n} {A : Set a} → (p : Permutation n) → (v : Vec A n) → v ⋟ permute p v ÷ p permute-correct p v = lookup∘tabulate (flip lookup v ∘ < p >) Permute : ∀ {a n} {A : Set a} → (p : Permutation n) → (v : Vec A n) → ∃ (v ⋟_÷ p) Permute p v = permute p v , permute-correct p v _⋟_÷? : ∀ {a m n} {A : Set a} → Vec A n → Vec A m → Set a _⋟_÷? x px = ∃ (x ⋟ px ÷_) ∈-allInj : ∀ {n m} (i : Inj n m) → i ∈ allInj n m ∈-allInj {zero} [] = here ∈-allInj {suc n} (i ∷ is) = ∈-map₂ _∷_ (∈-allFin i) (∈-allInj is) tabulate₂ : ∀ {n m a} {A : Set a} → (Inj n m → A) → Vec A (size n m) tabulate₂ f = mapV f (allInj _ _) ∈-tabulate₂ : ∀ {n m a} {A : Set a} (f : Inj n m → A) i → f i ∈ tabulate₂ f ∈-tabulate₂ f i = ∈-map f (∈-allInj i) ENUM₂ : ∀ {a n} {A : Set a} → (v : Vec A n) → Vec (∃ (v ⋟_÷?)) (size n n) ENUM₂ v = tabulate₂ (λ p → permute p v , p , permute-correct p v) enumᵢ : ∀ {a n m} {A : Set a} → Vec A m → Vec (Vec A n) (size n m) enumᵢ v = tabulate₂ (flip inject v) enum₂ : ∀ {a n} {A : Set a} → Vec A n → Vec (Vec A n) (size n n) enum₂ v = tabulate₂ (flip permute v) enumᵢ-sound : ∀ {a} {A : Set a} {n m} (x : Vec A m) (px : Vec A n) → px ∈ enumᵢ x → x ⋟ px ÷? enumᵢ-sound x _ px∈enum₂x with map-∈ px∈enum₂x enumᵢ-sound x _ _ | p , refl = p , inject-correct p x enum₂-sound : ∀ {a} {A : Set a} {n} (x px : Vec A n) → px ∈ enum₂ x → x ⋟ px ÷? enum₂-sound x _ px∈enum₂x with map-∈ px∈enum₂x enum₂-sound x _ _ | p , refl = p , permute-correct p x remove-÷-zero : ∀ {n a} {A : Set a} {x : A} {xs : Vec A n} {px : A} {pxs : Vec A n} {ps : Inj n n} → (x ∷ xs) ⋟ px ∷ pxs ÷ (zero ∷ ps) → xs ⋟ pxs ÷ ps remove-÷-zero f i = f (suc i) enumᵢ-complete : ∀ {a} {A : Set a} {n m} (x : Vec A m) (px : Vec A n) → x ⋟ px ÷? → px ∈ enumᵢ x enumᵢ-complete x px (p , x⋟px÷p) = proof where p∈allInj : p ∈ allInj _ _ p∈allInj = ∈-allInj p permutepx∈enum₂x : inject p x ∈ enumᵢ x permutepx∈enum₂x = ∈-map (flip inject x) p∈allInj x⋟permutepx÷p : x ⋟ inject p x ÷ p x⋟permutepx÷p = inject-correct p x proof : px ∈ enumᵢ x proof = subst (_∈ _) (injected-inj {p = p} x⋟permutepx÷p x⋟px÷p) permutepx∈enum₂x enum₂-complete : ∀ {a} {A : Set a} {n} (x px : Vec A n) → x ⋟ px ÷? → px ∈ enum₂ x enum₂-complete x px (p , x⋟px÷p) = proof where p∈allInj : p ∈ allInj _ _ p∈allInj = ∈-allInj p permutepx∈enum₂x : permute p x ∈ enum₂ x permutepx∈enum₂x = ∈-map (flip permute x) p∈allInj x⋟permutepx÷p : x ⋟ permute p x ÷ p x⋟permutepx÷p = permute-correct p x proof : px ∈ enum₂ x proof = subst (_∈ _) (permuted-inj {p = p} x⋟permutepx÷p x⋟px÷p) permutepx∈enum₂x Enum₂ : ∀ {a n} {A : Set a} → (x : Vec A n) → Σ[ pxs ∈ Vec (Vec A n) (size n n) ] (∀ px → (px ∈ pxs → x ⋟ px ÷?) × (x ⋟ px ÷? → px ∈ pxs)) Enum₂ x = enum₂ x , (λ px → enum₂-sound x px , enum₂-complete x px) _∃⊎∀_ : ∀ {a} {A : Set a} {l r} (L : A → Set l) (R : A → Set r) {p} (P : A → Set p) → Set _ (L ∃⊎∀ R) P = (∃ λ x → P x × L x) ⊎ (∀ x → P x → R x) open import Agda.Primitive stepDecide∃⊎∀ : ∀ {a} {A : Set a} {l r} {L : A → Set l} {R : A → Set r} → (∀ y → L y ⊎ R y) → ∀ {p} (P : A → Set p) → ∀ {d} (done : Vec A d) {nd} (not-done : Vec A nd) → (∀ y → y ∈ done ⊎ y ∈ not-done → P y) → (∀ y → P y → y ∈ done ⊎ y ∈ not-done) → (∀ y → y ∈ done → R y) → (L ∃⊎∀ R) P stepDecide∃⊎∀ dec P done {zero} not-done dnd-sound dnd-complete done-R = inj₂ (λ y Py → done-R y (dnd-done y Py)) where dnd-done : ∀ y → P y → y ∈ done dnd-done y Py with dnd-complete y Py dnd-done y Py | inj₁ y∈done = y∈done dnd-done y Py | inj₂ () stepDecide∃⊎∀ dec P done {suc nd} (step ∷ not-dones) dnd-sound dnd-complete done-R with dec step … | inj₁ l = inj₁ (step , (dnd-sound step (inj₂ here)) , l) … | inj₂ r = stepDecide∃⊎∀ dec P (step ∷ done) not-dones stepdnd-sound stepdnd-complete (stepdone-R r) where stepdnd-sound : ∀ y → y ∈ step ∷ done ⊎ y ∈ not-dones → P y stepdnd-sound _ (inj₁ here) = dnd-sound step (inj₂ here) stepdnd-sound y (inj₁ (there y∈done)) = dnd-sound y (inj₁ y∈done) stepdnd-sound y (inj₂ y∈not-dones) = dnd-sound y (inj₂ (there y∈not-dones)) stepdnd-complete : ∀ y → P y → y ∈ step ∷ done ⊎ y ∈ not-dones stepdnd-complete y Py with dnd-complete y Py stepdnd-complete y Py | inj₁ y∈done = inj₁ (there y∈done) stepdnd-complete y Py | inj₂ here = inj₁ here stepdnd-complete y Py | inj₂ (there y∈not-dones) = inj₂ y∈not-dones stepdone-R : _ → ∀ y → y ∈ step ∷ done → _ stepdone-R Rstep _ here = Rstep stepdone-R Rstep y (there y∈done) = done-R y y∈done decide∃⊎∀ : ∀ {a} {A : Set a} {l r} {L : A → Set l} {R : A → Set r} → (∀ y → L y ⊎ R y) → ∀ {p} (P : A → Set p) → ∀ {nd} (not-done : Vec A nd) → (∀ y → y ∈ not-done → P y) → (∀ y → P y → y ∈ not-done) → (L ∃⊎∀ R) P decide∃⊎∀ dec P not-done nd-sound nd-complete = stepDecide∃⊎∀ dec P [] not-done []nd-sound []nd-complete (λ {_ ()}) where []nd-sound : ∀ y → y ∈ [] ⊎ y ∈ not-done → P y []nd-sound y (inj₁ ()) []nd-sound y (inj₂ y∈not-done) = nd-sound y y∈not-done []nd-complete : ∀ y → P y → y ∈ [] ⊎ y ∈ not-done []nd-complete y Py = inj₂ (nd-complete y Py) decidePermutations : ∀ {a n} {A : Set a} {l r} {L : Vec A n → Set l} {R : Vec A n → Set r} → ∀ x → (∀ y → L y ⊎ R y) → (L ∃⊎∀ R) (x ⋟_÷?) decidePermutations x f = decide∃⊎∀ f _ (enum₂ x) (enum₂-sound x) (enum₂-complete x) decideInjections : ∀ {a n m} {A : Set a} {l r} {L : Vec A n → Set l} {R : Vec A n → Set r} → ∀ (x : Vec A m) → (∀ y → L y ⊎ R y) → (L ∃⊎∀ R) (x ⋟_÷?) decideInjections x f = decide∃⊎∀ f _ (enumᵢ x) (enumᵢ-sound x) (enumᵢ-complete x) -- -- sym-⋟∣ : ∀ {a n} {A : Set a} → (y x : Vec A n) → (p : Permutation n) → -- -- y ⋟ x ∣ p → x ⋟ y ∣ (p ⁻¹) -- -- sym-⋟∣ y x ps y⋟x∣p i = -- -- trans (cong (flip lookup x) {x = i} {y = < ps > (< ps ⁻¹ > i)} (<>-inv ps i)) (sym (y⋟x∣p (< ps ⁻¹ > i))) -- -- open import Oscar.Data.Vec.Properties -- -- Permute : ∀ {a n} {A : Set a} → (p : Permutation n) → (v : Vec A n) → -- -- ∃ λ w → w ⋟ v ∥ p -- -- Permute [] v = v , λ () -- -- Permute p@(p' ∷ ps) v@(v' ∷ vs) = -- -- let ws , [vs≡ws]ps = Permute ps (deleteV p' v) -- -- w = lookup p' v ∷ ws -- -- [v≡w]p : w ⋟ v ∥ p -- -- [v≡w]p = {!!} -- -- {- -- -- [v≡w]p = λ -- -- { zero → here -- -- ; (suc f) → there (subst (ws [ f ]=_) -- -- (lookup-delete-thin p' (< ps > f) v) -- -- ([vs≡ws]ps f)) } -- -- -} -- -- in -- -- w , [v≡w]p -- -- -- permute : ∀ {a n} {A : Set a} → Permutation n → Vec A n → Vec A n -- -- -- permute p v = proj₁ (Permute p v) -- -- -- permute-correct : ∀ {a n} {A : Set a} → (p : Permutation n) → (v : Vec A n) → v ⋟ permute p v ∥ p -- -- -- permute-correct p v = proj₂ (Permute p v) -- -- -- open import Function -- -- -- --∈-map-proj₁ : mapV proj₁ (mapV (λ p → F p , G p) xs) ≡ mapV F xs -- -- -- open import Data.Nat -- -- -- ∈-enum : ∀ {n m} (i : Inj n m) → i ∈ enum n m -- -- -- ∈-enum {zero} [] = here -- -- -- ∈-enum {suc n} (i ∷ is) = ∈-map₂ _∷_ (∈-allFin i) (∈-enum is) -- -- -- open import Data.Permutation.Properties -- -- -- [thin]=→delete[]= : ∀ {a n} {A : Set a} {i j} {v : Vec A (suc n)} {x} → v [ thin i j ]= x → deleteV i v [ j ]= x -- -- -- [thin]=→delete[]= {i = zero} {v = x ∷ v} (there x₂) = x₂ -- -- -- [thin]=→delete[]= {n = zero} {i = suc ()} x₁ -- -- -- [thin]=→delete[]= {n = suc n} {i = suc i} {zero} {x ∷ v} here = here -- -- -- [thin]=→delete[]= {n = suc n} {i = suc i} {suc j} {x ∷ v} (there v[thinij]=?) = there ([thin]=→delete[]= {i = i} v[thinij]=?) -- -- -- delete≡Permutation : ∀ {a n} {A : Set a} {v₀ : A} {v₊ : Vec A n} {w : Vec A (suc n)} {p : Permutation (suc n)} → -- -- -- (v₀ ∷ v₊) ⋟ w ∥ p → -- -- -- v₊ ⋟ deleteV (annihilator p) w ∥ delete (annihilator p) p -- -- -- delete≡Permutation {v₀ = v₀} {v₊} {w} {p} [v₀∷v₊≡w]p f = [thin]=→delete[]= {i = annihilator p} {j = f} qux where -- -- -- foo : thin (< p > (annihilator p)) (< delete (annihilator p) p > f) ≡ < p > (thin (annihilator p) f) -- -- -- foo = inj-thin p (annihilator p) f -- -- -- foo2 : suc (< delete (annihilator p) p > f) ≡ < p > (thin (annihilator p) f) -- -- -- foo2 = subst (λ y → thin y (< delete (annihilator p) p > f) ≡ < p > (thin (annihilator p) f)) (ann-correct p) foo -- -- -- bar : w [ thin (annihilator p) f ]= lookup (< p > (thin (annihilator p) f)) (v₀ ∷ v₊) -- -- -- bar = [v₀∷v₊≡w]p (thin (annihilator p) f) -- -- -- qux : w [ thin (annihilator p) f ]= lookup (< delete (annihilator p) p > f) v₊ -- -- -- qux = subst (λ y → w [ thin (annihilator p) f ]= lookup y (v₀ ∷ v₊)) (sym foo2) bar -- -- -- permute-complete-step : ∀ {a n} {A : Set a} {v₀ : A} {w : Vec A (suc n)} {v₊ : Vec A n} (x : Fin (suc n)) → -- -- -- w [ x ]= v₀ → -- -- -- deleteV x w ∈ mapV (flip permute v₊) (enum n n) → -- -- -- w ∈ mapV (flip permute (v₀ ∷ v₊)) (enum (suc n) (suc n)) -- -- -- permute-complete-step {n = zero} {w = x₃ ∷ []} {[]} zero here here = here -- -- -- permute-complete-step {n = zero} {w = x₃ ∷ []} {[]} zero x₁ (there ()) -- -- -- permute-complete-step {n = zero} {w = x₃ ∷ []} {[]} (suc ()) x₁ x₂ -- -- -- permute-complete-step {n = suc n} {w = w ∷ ws} x w∷ws[x]=v₀ x₂ = {!!} -- -- -- permute-lemma : ∀ {a n} {A : Set a} (v w : Vec A n) (p : Permutation n) → -- -- -- v ⋟ w ∥ p → -- -- -- w ≡ permute (p ⁻¹) v -- -- -- permute-lemma v w p x = {!permute-correct p w!} -- -- -- {- -- -- -- permute-complete' : ∀ {a n} {A : Set a} (v w : Vec A n) (p : Permutation n) → -- -- -- v ⋟ w ∥ p → -- -- -- ∀ {m} {ps : Vec (Permutation n) m} → p ∈ ps → -- -- -- w ≡ permute p v -- -- -- w ∈ mapV (flip -- -- -- -} -- -- -- permute-complete : ∀ {a n} {A : Set a} (v w : Vec A n) → -- -- -- v ∃≡Permutation w → -- -- -- w ∈ mapV (flip permute v) (enum n n) -- -- -- permute-complete [] [] (p , [v≡w]p) = here -- -- -- permute-complete {n = suc n} v@(v₀ ∷ v₊) w (p , [v≡w]p) = permute-complete-step (annihilator p) w[ap]=v₀ pc' where -- -- -- w[ap]=v₀ : w [ annihilator p ]= v₀ -- -- -- w[ap]=v₀ = {![v≡w]p (annihilator p)!} -- -- -- pc' : deleteV (annihilator p) w ∈ mapV (flip permute v₊) (enum n n) -- -- -- pc' = permute-complete v₊ (deleteV (annihilator p) w) (delete (annihilator p) p , delete≡Permutation {p = p} [v≡w]p) -- -- -- EnumPermutations : ∀ {a n} {A : Set a} → (v : Vec A n) → -- -- -- Σ (Vec (∃ (v ∃≡Permutation_)) (size n n)) λ ws -- -- -- → ∀ w → (v ∃≡Permutation w → w ∈ mapV proj₁ ws) -- -- -- EnumPermutations {n = n} v = mapV (λ p → permute p v , p , permute-correct p v) (enum n n) , (λ w v∃≡Pw → subst (w ∈_) (map-∘ proj₁ (λ p → permute p v , p , permute-correct p v) (enum n n)) (permute-complete v w v∃≡Pw)) -- -- -- enumPermutations : ∀ {a n} {A : Set a} → Vec A n → Vec (Vec A n) (size n n) -- -- -- enumPermutations {n = n} xs = mapV (λ p → permute p xs) (enum n n) -- -- -- tryPermutations : ∀ {a n} {A : Set a} {l r} {L : Vec A n → Set l} {R : Vec A n → Set r} → ∀ x → (f : ∀ y → L y ⊎ R y) → Vec (∃ λ y → x ∃≡Permutation y × L y ⊎ R y) (size n n) -- -- -- tryPermutations x f = mapV (λ x₁ → x₁ , {!!}) (enumPermutations x)
46.433898
228
0.501533
389c76603898928d22b4a3c0a501a8a294369d00
7,193
agda
Agda
homotopy/CoverClassification.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
homotopy/CoverClassification.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
homotopy/CoverClassification.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT open import homotopy.RibbonCover module homotopy.CoverClassification {i} (A∙ : Ptd i) (A-conn : is-connected ⟨0⟩ (fst A∙)) where open Cover private A : Type i A = fst A∙ a₁ : A a₁ = snd A∙ π1A = fundamental-group A∙ -- A covering space constructed from a G-set. gset-to-cover : ∀ {j} → Gset π1A j → Cover A (lmax i j) gset-to-cover gs = Ribbon-cover A∙ gs -- Covering spaces to G-sets. cover-to-gset-struct : ∀ {j} (cov : Cover A j) → GsetStructure π1A (Fiber cov a₁) (Fiber-is-set cov a₁) cover-to-gset-struct cov = record { act = cover-trace cov ; unit-r = cover-trace-idp₀ cov ; assoc = cover-paste cov } cover-to-gset : ∀ {j} → Cover A j → Gset π1A j cover-to-gset cov = record { El = Fiber cov a₁ ; El-level = Fiber-level cov a₁ ; gset-struct = cover-to-gset-struct cov } -- This is derivable from connectedness condition. module _ where abstract [base-path] : ∀ {a₂ : A} → Trunc ⟨-1⟩ (a₁ == a₂) [base-path] {a₂} = –> (Trunc=-equiv [ a₁ ] [ a₂ ]) (contr-has-all-paths A-conn [ a₁ ] [ a₂ ]) -- Part 1: Show that the synthesized cover (ribbon) is fiberwisely -- equivalent to the original fiber. private module _ {j} (cov : Cover A j) where -- Suppose that we get the path, we can compute the ribbon easily. fiber+path-to-ribbon : ∀ {a₂} (a↑ : Fiber cov a₂) (p : a₁ == a₂) → Ribbon A∙ (cover-to-gset cov) a₂ fiber+path-to-ribbon {a₂} a↑ p = trace (cover-trace cov a↑ [ ! p ]) [ p ] abstract -- Our construction is "constant" with respect to paths. fiber+path-to-ribbon-is-path-irrelevant : ∀ {a₂} (a↑ : Fiber cov a₂) (p₁ p₂ : a₁ == a₂) → fiber+path-to-ribbon a↑ p₁ == fiber+path-to-ribbon a↑ p₂ fiber+path-to-ribbon-is-path-irrelevant a↑ p idp = trace (cover-trace cov a↑ [ ! p ]) [ p ] =⟨ paste a↑ [ ! p ] [ p ] ⟩ trace a↑ [ ! p ∙ p ] =⟨ ap (trace a↑) $ !₀-inv-l [ p ] ⟩ trace a↑ idp₀ ∎ open import homotopy.ConstantToSetFactorization fiber+path₋₁-to-ribbon : ∀ {a₂} (a↑ : Cover.Fiber cov a₂) → Trunc ⟨-1⟩ (a₁ == a₂) → Ribbon A∙ (cover-to-gset cov) a₂ fiber+path₋₁-to-ribbon a↑ = cst-extend Ribbon-is-set (fiber+path-to-ribbon a↑) (fiber+path-to-ribbon-is-path-irrelevant a↑) -- So the conversion from fiber to ribbon is done. fiber-to-ribbon : ∀ {j} (cov : Cover A j) → {a₂ : A} (a↑ : Cover.Fiber cov a₂) → Ribbon A∙ (cover-to-gset cov) a₂ fiber-to-ribbon cov a↑ = fiber+path₋₁-to-ribbon cov a↑ [base-path] -- The other direction is easy. ribbon-to-fiber : ∀ {j} (cov : Cover A j) {a₂} → Ribbon A∙ (cover-to-gset cov) a₂ → Cover.Fiber cov a₂ ribbon-to-fiber cov {a₂} r = Ribbon-rec (Fiber-is-set cov a₂) (cover-trace cov) (cover-paste cov) r private -- Some routine computations. abstract ribbon-to-fiber-to-ribbon : ∀ {j} (cov : Cover A j) {a₂} → (r : Ribbon A∙ (cover-to-gset cov) a₂) → fiber-to-ribbon cov (ribbon-to-fiber cov r) == r ribbon-to-fiber-to-ribbon cov {a₂} = Ribbon-elim {P = λ r → fiber-to-ribbon cov (ribbon-to-fiber cov r) == r} (λ {_} → =-preserves-set Ribbon-is-set) (λ a↑ p → Trunc-elim -- All ugly things will go away when bp = proj bp′ (λ bp → Ribbon-is-set (fiber+path₋₁-to-ribbon cov (cover-trace cov a↑ p) bp) (trace a↑ p)) (lemma a↑ p) [base-path]) (λ _ _ _ → prop-has-all-paths-↓ (Ribbon-is-set _ _)) where abstract lemma : ∀ {a₂} (a↑ : Cover.Fiber cov a₁) (p : a₁ =₀ a₂) (bp : a₁ == a₂) → trace {A∙ = A∙} {gs = cover-to-gset cov} (cover-trace cov (cover-trace cov a↑ p) [ ! bp ]) [ bp ] == trace {A∙ = A∙} {gs = cover-to-gset cov} a↑ p lemma a↑ p idp = trace (cover-trace cov a↑ p) idp₀ =⟨ paste a↑ p idp₀ ⟩ trace a↑ (p ∙₀ idp₀) =⟨ ap (trace a↑) $ ∙₀-unit-r p ⟩ trace a↑ p ∎ fiber-to-ribbon-to-fiber : ∀ {j} (cov : Cover A j) {a₂} → (a↑ : Cover.Fiber cov a₂) → ribbon-to-fiber cov (fiber-to-ribbon cov {a₂} a↑) == a↑ fiber-to-ribbon-to-fiber cov {a₂} a↑ = Trunc-elim -- All ugly things will go away when bp = proj bp′ (λ bp → Cover.Fiber-is-set cov a₂ (ribbon-to-fiber cov (fiber+path₋₁-to-ribbon cov a↑ bp)) a↑) (lemma a↑) [base-path] where abstract lemma : ∀ {a₂} (a↑ : Cover.Fiber cov a₂) (bp : a₁ == a₂) → cover-trace cov (cover-trace cov a↑ [ ! bp ]) [ bp ] == a↑ lemma a↑ idp = idp cover-to-gset-to-cover : ∀ {j} (cov : Cover A (lmax i j)) → gset-to-cover (cover-to-gset cov) == cov cover-to-gset-to-cover cov = cover= λ _ → ribbon-to-fiber cov , is-eq (ribbon-to-fiber cov) (fiber-to-ribbon cov) (fiber-to-ribbon-to-fiber cov) (ribbon-to-fiber-to-ribbon cov) -- The second direction : gset -> covering -> gset -- Part 2.1: The fiber over the point a is the carrier. ribbon-a₁-to-El : ∀ {j} {gs : Gset π1A j} → Ribbon A∙ gs a₁ → Gset.El gs ribbon-a₁-to-El {j} {gs} = let open Gset gs in Ribbon-rec El-level act assoc ribbon-a₁-to-El-equiv : ∀ {j} {gs : Gset π1A j} → Ribbon A∙ gs a₁ ≃ Gset.El gs ribbon-a₁-to-El-equiv {j} {gs} = let open Gset gs in ribbon-a₁-to-El , is-eq _ (λ r → trace r idp₀) (λ a↑ → unit-r a↑) (Ribbon-elim {P = λ r → trace (ribbon-a₁-to-El r) idp₀ == r} (=-preserves-set Ribbon-is-set) (λ y p → trace (act y p) idp₀ =⟨ paste y p idp₀ ⟩ trace y (p ∙₀ idp₀) =⟨ ap (trace y) $ ∙₀-unit-r p ⟩ trace y p ∎) (λ _ _ _ → prop-has-all-paths-↓ (Ribbon-is-set _ _))) gset-to-cover-to-gset : ∀ {j} (gs : Gset π1A (lmax i j)) → cover-to-gset (gset-to-cover gs) == gs gset-to-cover-to-gset gs = gset= ribbon-a₁-to-El-equiv (λ {x₁}{x₂} x= → Trunc-elim (λ _ → =-preserves-set $ Gset.El-is-set gs) λ g → ribbon-a₁-to-El (transport (Ribbon A∙ gs) g x₁) =⟨ ap (λ x → ribbon-a₁-to-El (transport (Ribbon A∙ gs) g x)) $ ! $ <–-inv-l ribbon-a₁-to-El-equiv x₁ ⟩ ribbon-a₁-to-El (transport (Ribbon A∙ gs) g (trace (ribbon-a₁-to-El x₁) idp₀)) =⟨ ap (λ x → ribbon-a₁-to-El (transport (Ribbon A∙ gs) g (trace x idp₀))) x= ⟩ ribbon-a₁-to-El (transport (Ribbon A∙ gs) g (trace x₂ idp₀)) =⟨ ap ribbon-a₁-to-El $ trans-trace g x₂ idp₀ ⟩ Gset.act gs x₂ [ g ] ∎) -- Finally... gset-to-cover-equiv : ∀ {j} → Gset π1A (lmax i j) ≃ Cover A (lmax i j) gset-to-cover-equiv {j} = gset-to-cover , is-eq _ (λ c → cover-to-gset c) (λ c → cover-to-gset-to-cover {lmax i j} c) (gset-to-cover-to-gset {lmax i j})
36.145729
88
0.528847
2eb8cd6c2dcfb13a3500cbc7b85322003cfa1dc2
408
agda
Agda
testData/parse/agda/records.agda
ice1000/intellij-minitt
7e601041978a0497db7d4cf3bcf4971f532235cd
[ "Apache-2.0" ]
30
2019-05-11T16:26:38.000Z
2022-01-29T13:18:34.000Z
testData/parse/agda/records.agda
ice1000/intellij-minitt
7e601041978a0497db7d4cf3bcf4971f532235cd
[ "Apache-2.0" ]
16
2019-03-30T04:29:32.000Z
2021-03-15T17:04:36.000Z
testData/parse/agda/records.agda
owo-lang/intellij-owo
7e601041978a0497db7d4cf3bcf4971f532235cd
[ "Apache-2.0" ]
3
2019-10-07T01:38:12.000Z
2021-03-12T21:33:35.000Z
-- -- Created by Dependently-Typed Lambda Calculus on 2019-05-15 -- records -- Author: ice10 -- {-# OPTIONS --without-K --safe #-} record List (A : Set) : Set where coinductive field head : A tail : List A open List -- | Bisimulation as equality record _==_ (x : List A) (y : List A) : Set where coinductive field refl-head : head x ≡ head y refl-tail : tail x == tail y open _==_
17.73913
61
0.622549
061b75c72676979b98dd5d943097984987a1546f
2,913
agda
Agda
src/sets/int/definition.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
20
2015-06-12T12:20:17.000Z
2022-02-01T11:25:54.000Z
src/sets/int/definition.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T14:32:16.000Z
2016-10-26T11:57:26.000Z
src/sets/int/definition.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T12:17:00.000Z
2019-05-04T19:31:00.000Z
{-# OPTIONS --without-K #-} module sets.int.definition where open import sum open import equality open import function open import sets.nat.core open import hott.level private data Z : Set where mk-int : ℕ → ℕ → Z ℤ : Set ℤ = Z _[-]_ : ℕ → ℕ → ℤ _[-]_ = mk-int postulate eq-ℤ : (n m d : ℕ) → n [-] m ≡ (d + n) [-] (d + m) hℤ : h 2 ℤ IsAlg-ℤ : ∀ {i} → Set i → Set _ IsAlg-ℤ X = Σ (ℕ → ℕ → X) λ f → (∀ n m d → f n m ≡ f (d + n) (d + m)) aℤ : IsAlg-ℤ ℤ aℤ = _[-]_ , eq-ℤ map-Alg-ℤ : ∀ {i j}{X : Set i}{Y : Set j} → (X → Y) → IsAlg-ℤ X → IsAlg-ℤ Y map-Alg-ℤ {X = X}{Y} h (f , u) = (g , v) where g : ℕ → ℕ → Y g n m = h (f n m) v : ∀ n m d → g n m ≡ g (d + n) (d + m) v n m d = ap h (u n m d) map-Alg-ℤ-id : ∀ {i}{X : Set i}(aX : IsAlg-ℤ X) → map-Alg-ℤ (λ x → x) aX ≡ aX map-Alg-ℤ-id aX = unapΣ (refl , funext λ n → funext λ m → funext λ d → ap-id _) map-Alg-ℤ-hom : ∀ {i j k}{X : Set i}{Y : Set j}{Z : Set k} → (f : Y → Z)(g : X → Y)(aX : IsAlg-ℤ X) → map-Alg-ℤ (f ∘' g) aX ≡ map-Alg-ℤ f (map-Alg-ℤ g aX) map-Alg-ℤ-hom f g aX = unapΣ (refl , funext λ n → funext λ m → funext λ d → sym (ap-hom g f _)) Hom-ℤ : ∀ {i j}{X : Set i}{Y : Set j} → IsAlg-ℤ X → IsAlg-ℤ Y → Set _ Hom-ℤ {X = X}{Y} aX aY = Σ (X → Y) λ h → map-Alg-ℤ h aX ≡ aY id-ℤ : ∀ {i}{X : Set i}(aX : IsAlg-ℤ X) → Hom-ℤ aX aX id-ℤ aX = (λ x → x) , map-Alg-ℤ-id aX _⋆ℤ_ : ∀ {i j k}{X : Set i}{Y : Set j}{Z : Set k} → {aX : IsAlg-ℤ X}{aY : IsAlg-ℤ Y}{aZ : IsAlg-ℤ Z} → Hom-ℤ aY aZ → Hom-ℤ aX aY → Hom-ℤ aX aZ _⋆ℤ_ {aX = aX} (f , u) (g , v) = f ∘' g , map-Alg-ℤ-hom f g aX · ap (map-Alg-ℤ f) v · u module _ {i}{X : Set i}(hX : h 2 X)(aX : IsAlg-ℤ X) where elim-ℤ : ℤ → X elim-ℤ (mk-int n n') = proj₁ aX n n' postulate elim-β-ℤ : ∀ n m d → ap elim-ℤ (eq-ℤ n m d) ≡ proj₂ aX n m d elim-Alg-β-ℤ : map-Alg-ℤ elim-ℤ aℤ ≡ aX elim-Alg-β-ℤ = unapΣ (refl , funext λ n → funext λ m → funext λ d → elim-β-ℤ n m d) elim-Alg-ℤ : Hom-ℤ aℤ aX elim-Alg-ℤ = elim-ℤ , elim-Alg-β-ℤ postulate univ-ℤ : (h : Hom-ℤ aℤ aX) → elim-Alg-ℤ ≡ h Hom-ℤ-contr : contr (Hom-ℤ aℤ aX) Hom-ℤ-contr = elim-Alg-ℤ , univ-ℤ elim-prop-ℤ : ∀ {i}{X : ℤ → Set i} → (∀ n → h 1 (X n)) → (f : ∀ n m → X (n [-] m)) → ∀ n → X n elim-prop-ℤ {X = X} hX f n = subst X (i-β₀ n) (proj₂ (s₀ n)) where Y : Set _ Y = Σ ℤ X hY : h 2 Y hY = Σ-level hℤ λ n → h↑ (hX n) aY : IsAlg-ℤ Y aY = (λ n m → (n [-] m , f n m)) , (λ n m d → unapΣ (eq-ℤ n m d , h1⇒prop (hX ((d + n) [-] (d + m))) _ _)) pY : Hom-ℤ aY aℤ pY = proj₁ , unapΣ (refl , h1⇒prop (Π-level λ n → Π-level λ m → Π-level λ p → hℤ _ _) _ _) s : Hom-ℤ aℤ aY s = elim-Alg-ℤ hY aY s₀ : ℤ → Y s₀ = proj₁ s i-β₀ : ∀ n → proj₁ (s₀ n) ≡ n i-β₀ n = ap (λ f → proj₁ f n) (contr⇒prop (Hom-ℤ-contr hℤ aℤ) (pY ⋆ℤ s) (id-ℤ aℤ))
26.008929
87
0.472365
9ae7d127a7998a3d1ff23c8b7f882c18c9e81fa1
3,111
agda
Agda
Cubical/Structures/Monoid.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Structures/Monoid.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Structures/Monoid.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Structures.Monoid where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Data.Prod.Base hiding (_×_) renaming (_×Σ_ to _×_) open import Cubical.Foundations.SIP renaming (SNS-PathP to SNS) open import Cubical.Structures.Pointed open import Cubical.Structures.InftyMagma private variable ℓ : Level -- Now we're getting serious: Monoids raw-monoid-structure : Type ℓ → Type ℓ raw-monoid-structure X = X × (X → X → X) raw-monoid-iso : StrIso raw-monoid-structure ℓ raw-monoid-iso (M , e , _·_) (N , d , _∗_) f = (equivFun f e ≡ d) × ((x y : M) → equivFun f (x · y) ≡ (equivFun f x) ∗ (equivFun f y)) -- If we ignore the axioms we get something like a "raw" monoid, which -- essentially is the join of a pointed type and an ∞-magma raw-monoid-is-SNS : SNS {ℓ} raw-monoid-structure raw-monoid-iso raw-monoid-is-SNS = join-SNS pointed-structure pointed-iso pointed-is-SNS ∞-magma-structure ∞-magma-iso ∞-magma-is-SNS -- Now define monoids monoid-axioms : (X : Type ℓ) → raw-monoid-structure X → Type ℓ monoid-axioms X (e , _·_ ) = isSet X × ((x y z : X) → (x · (y · z)) ≡ ((x · y) · z)) × ((x : X) → (x · e) ≡ x) × ((x : X) → (e · x) ≡ x) monoid-structure : Type ℓ → Type ℓ monoid-structure = add-to-structure (raw-monoid-structure) monoid-axioms Monoids : Type (ℓ-suc ℓ) Monoids {ℓ} = TypeWithStr ℓ monoid-structure monoid-iso : StrIso monoid-structure ℓ monoid-iso = add-to-iso raw-monoid-structure raw-monoid-iso monoid-axioms -- We have to show that the monoid axioms are indeed propositions monoid-axioms-are-Props : (X : Type ℓ) (s : raw-monoid-structure X) → isProp (monoid-axioms X s) monoid-axioms-are-Props X (e , _·_) s = β s where α = s .fst -- TODO: it would be nice to have versions of this lemmas for higher arities β = isPropΣ isPropIsSet λ _ → isPropΣ (isPropPi (λ x → isPropPi (λ y → isPropPi (λ z → α (x · (y · z)) ((x · y) · z))))) λ _ → isPropΣ (isPropPi (λ x → α (x · e) x)) λ _ → isPropPi (λ x → α (e · x) x) monoid-is-SNS : SNS {ℓ} monoid-structure monoid-iso monoid-is-SNS = add-axioms-SNS raw-monoid-structure raw-monoid-iso monoid-axioms monoid-axioms-are-Props raw-monoid-is-SNS MonoidPath : (M N : Monoids {ℓ}) → (M ≃[ monoid-iso ] N) ≃ (M ≡ N) MonoidPath M N = SIP monoid-structure monoid-iso monoid-is-SNS M N -- Added for groups -- If there exists a inverse of an element it is unique inv-lemma : (X : Type ℓ) (e : X) (_·_ : X → X → X) → monoid-axioms X (e , _·_) → (x y z : X) → y · x ≡ e → x · z ≡ e → y ≡ z inv-lemma X e _·_ (is-set-X , assoc , runit , lunit) x y z left-inverse right-inverse = y ≡⟨ sym (runit y) ⟩ y · e ≡⟨ cong (y ·_) (sym right-inverse) ⟩ y · (x · z) ≡⟨ assoc y x z ⟩ (y · x) · z ≡⟨ cong (_· z) left-inverse ⟩ e · z ≡⟨ lunit z ⟩ z ∎
37.481928
101
0.601414
58d75389ba2bca89c57ea3ec04fe04305e7f2dd3
1,069
agda
Agda
homotopy/PathSetIsInital.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
homotopy/PathSetIsInital.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
homotopy/PathSetIsInital.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT module homotopy.PathSetIsInital {i} (A : Type i) -- (A-conn : is-connected ⟨0⟩ A) where open Cover module _ (a₁ : A) -- And an arbitrary covering. {k} (cov : Cover A k) -- (cov-conn : is-connected ⟨0⟩ (Cover.TotalSpace cov)) (a↑₁ : Fiber cov a₁) where private univ-cover = path-set-cover ⊙[ A , a₁ ] -- Weak initiality by transport. quotient-cover : CoverHom univ-cover cov quotient-cover _ p = cover-trace cov a↑₁ p -- Strong initiality by path induction. module Uniqueness (cover-hom : CoverHom univ-cover cov) (pres-a↑₁ : cover-hom a₁ idp₀ == a↑₁) where private lemma₁ : ∀ a p → cover-hom a [ p ] == quotient-cover a [ p ] lemma₁ ._ idp = pres-a↑₁ lemma₂ : ∀ a p → cover-hom a p == quotient-cover a p lemma₂ a = Trunc-elim (λ p → =-preserves-level ⟨0⟩ (Cover.Fiber-level cov a)) (lemma₁ a) theorem : cover-hom == quotient-cover theorem = λ= λ a → λ= $ lemma₂ a
24.860465
68
0.570627
29e771d39f88ed66a011206d635ca9eac3a88909
897
agda
Agda
Type/Identity.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Type/Identity.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Type/Identity.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Type.Identity where import Lvl open import Type private variable ℓ : Lvl.Level private variable T : Type{ℓ} -- Identity type. -- Also called: Propositional equality. -- Two terms are identical/equal when their data representation are the same. data Id {T : Type{ℓ}} : T → T → Type{ℓ} where instance intro : ∀{x : T} → Id x x -- Interpretation: -- The only way to construct something of type Id is to use identical objects for both arguments. -- When matching on the constructor, the type checker "unifies" the two terms making them the same. -- This is how the builtin pattern matching by intro works, and therefore many propositions for identity becomes "trivial" syntactically. {-# BUILTIN EQUALITY Id #-} {-# BUILTIN REWRITE Id #-} elim : (P : ∀{x y : T} → (Id x y) → Type{ℓ}) → (∀{x} → P(intro{x = x})) → (∀{x y} → (eq : (Id x y)) → P(eq)) elim _ p intro = p
37.375
141
0.670011
cb9287e951298f7a1571cb90cad92433c2fd7f47
15,572
agda
Agda
src/Lambda/Compiler-correctness/Steps-match.agda
nad/definitional-interpreters
dec8cd2d2851340840de25acb0feb78f7b5ffe96
[ "MIT" ]
null
null
null
src/Lambda/Compiler-correctness/Steps-match.agda
nad/definitional-interpreters
dec8cd2d2851340840de25acb0feb78f7b5ffe96
[ "MIT" ]
null
null
null
src/Lambda/Compiler-correctness/Steps-match.agda
nad/definitional-interpreters
dec8cd2d2851340840de25acb0feb78f7b5ffe96
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The "time complexity" of the compiled program matches the one -- obtained from the instrumented interpreter ------------------------------------------------------------------------ open import Prelude hiding (_+_; _*_) import Lambda.Syntax module Lambda.Compiler-correctness.Steps-match {Name : Type} (open Lambda.Syntax Name) (def : Name → Tm 1) where import Equality.Propositional as E open import Logical-equivalence using (_⇔_) import Tactic.By.Propositional as By open import Prelude.Size open import Conat E.equality-with-J as Conat using (Conat; zero; suc; force; ⌜_⌝; _+_; _*_; max; [_]_≤_; step-≤; step-∼≤; _∎≤) open import Function-universe E.equality-with-J hiding (_∘_) open import List E.equality-with-J using (_++_) open import Monad E.equality-with-J using (return; _>>=_; _⟨$⟩_) open import Vec.Data E.equality-with-J open import Delay-monad open import Delay-monad.Bisimilarity open import Delay-monad.Quantitative-weak-bisimilarity open import Lambda.Compiler def open import Lambda.Delay-crash open import Lambda.Interpreter.Steps def open import Lambda.Virtual-machine.Instructions Name hiding (crash) open import Lambda.Virtual-machine comp-name private module C = Closure Code module T = Closure Tm ------------------------------------------------------------------------ -- Some lemmas -- A rearrangement lemma for ⟦_⟧. ⟦⟧-· : ∀ {n} (t₁ t₂ : Tm n) {ρ} {k : T.Value → Delay-crash C.Value ∞} → ⟦ t₁ · t₂ ⟧ ρ >>= k ∼ ⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂ >>= k ⟦⟧-· t₁ t₂ {ρ} {k} = ⟦ t₁ · t₂ ⟧ ρ >>= k ∼⟨⟩ (do v₁ ← ⟦ t₁ ⟧ ρ v₂ ← ⟦ t₂ ⟧ ρ v₁ ∙ v₂) >>= k ∼⟨ symmetric (associativity (⟦ t₁ ⟧ _) _ _) ⟩ (do v₁ ← ⟦ t₁ ⟧ ρ (do v₂ ← ⟦ t₂ ⟧ ρ v₁ ∙ v₂) >>= k) ∼⟨ (⟦ t₁ ⟧ _ ∎) >>=-cong (λ _ → symmetric (associativity (⟦ t₂ ⟧ _) _ _)) ⟩ (do v₁ ← ⟦ t₁ ⟧ ρ v₂ ← ⟦ t₂ ⟧ ρ v₁ ∙ v₂ >>= k) ∎ -- Lemmas related to conatural numbers. private lemma₁ : ∀ {δ} → [ ∞ ] δ ≤ ⌜ 1 ⌝ + δ lemma₁ = Conat.≤suc lemma₂ : ∀ {δ} → [ ∞ ] δ ≤ max ⌜ 1 ⌝ δ lemma₂ = Conat.ʳ≤max ⌜ 1 ⌝ _ lemma₃ : ∀ {δ} → [ ∞ ] max ⌜ 1 ⌝ δ ≤ max ⌜ 1 ⌝ δ + ⌜ 1 ⌝ lemma₃ = Conat.m≤m+n lemma₄ : ∀ {δ} → [ ∞ ] δ ≤ max ⌜ 1 ⌝ δ + ⌜ 1 ⌝ lemma₄ {δ} = δ ≤⟨ lemma₂ ⟩ max ⌜ 1 ⌝ δ ≤⟨ lemma₃ {δ = δ} ⟩ max ⌜ 1 ⌝ δ + ⌜ 1 ⌝ ∎≤ lemma₅ : ∀ {δ} → [ ∞ ] ⌜ 1 ⌝ + δ ≤ δ + ⌜ 1 ⌝ lemma₅ {δ} = ⌜ 1 ⌝ + δ ∼⟨ Conat.+-comm ⌜ 1 ⌝ ⟩≤ δ + ⌜ 1 ⌝ ∎≤ lemma₆ : ∀ {δ} → [ ∞ ] ⌜ 1 ⌝ + δ ≤ max ⌜ 1 ⌝ δ + ⌜ 1 ⌝ lemma₆ {δ} = ⌜ 1 ⌝ + δ ≤⟨ lemma₅ ⟩ δ + ⌜ 1 ⌝ ≤⟨ lemma₂ Conat.+-mono (⌜ 1 ⌝ ∎≤) ⟩ max ⌜ 1 ⌝ δ + ⌜ 1 ⌝ ∎≤ lemma₇ : ∀ {δ} → [ ∞ ] max ⌜ 1 ⌝ (⌜ 1 ⌝ + δ) ≤ ⌜ 1 ⌝ + δ lemma₇ {δ} = suc λ { .force → δ ∎≤ } lemma₈ : ∀ {δ} → [ ∞ ] max ⌜ 1 ⌝ (max ⌜ 1 ⌝ δ) ≤ max ⌜ 1 ⌝ δ lemma₈ {δ} = suc λ { .force → Conat.pred δ ∎≤ } lemma₉ : ∀ {δ} → [ ∞ ] max ⌜ 1 ⌝ (max ⌜ 1 ⌝ (max ⌜ 1 ⌝ δ)) ≤ max ⌜ 1 ⌝ δ lemma₉ {δ} = max ⌜ 1 ⌝ (max ⌜ 1 ⌝ (max ⌜ 1 ⌝ δ)) ≤⟨ lemma₈ ⟩ max ⌜ 1 ⌝ (max ⌜ 1 ⌝ δ) ≤⟨ lemma₈ ⟩ max ⌜ 1 ⌝ δ ∎≤ lemma₁₀ : ∀ {δ} → [ ∞ ] ⌜ 1 ⌝ + ⌜ 0 ⌝ ≤ max ⌜ 1 ⌝ δ lemma₁₀ = suc λ { .force → zero } lemma₁₁ : Conat.[ ∞ ] max ⌜ 1 ⌝ ⌜ 1 ⌝ ∼ ⌜ 1 ⌝ lemma₁₁ = suc λ { .force → zero } lemma₁₂ : Conat.[ ∞ ] ⌜ 1 ⌝ + ⌜ 1 ⌝ ∼ ⌜ 2 ⌝ lemma₁₂ = Conat.symmetric-∼ (Conat.⌜⌝-+ 1) ------------------------------------------------------------------------ -- Well-formed continuations and stacks -- A continuation is OK with respect to a certain state and conatural -- number if the following property is satisfied. Cont-OK : Size → State → (T.Value → Delay-crash C.Value ∞) → Conat ∞ → Type Cont-OK i ⟨ c , s , ρ ⟩ k δ = ∀ v → [ i ∣ ⌜ 1 ⌝ ∣ δ ] exec ⟨ c , val (comp-val v) ∷ s , ρ ⟩ ≳ k v -- If the In-tail-context parameter indicates that we are in a tail -- context, then the stack must have a certain shape, and it must be -- related to the continuation and the conatural number in a certain -- way. data Stack-OK (i : Size) (k : T.Value → Delay-crash C.Value ∞) (δ : Conat ∞) : In-tail-context → Stack → Type where unrestricted : ∀ {s} → Stack-OK i k δ false s restricted : ∀ {s n} {c : Code n} {ρ : C.Env n} → Cont-OK i ⟨ c , s , ρ ⟩ k δ → Stack-OK i k δ true (ret c ρ ∷ s) -- A lemma that can be used to show that certain stacks are OK. ret-ok : ∀ {p i s n c} {ρ : C.Env n} {k δ} → Cont-OK i ⟨ c , s , ρ ⟩ k δ → Stack-OK i k (⌜ 1 ⌝ + δ) p (ret c ρ ∷ s) ret-ok {true} c-ok = restricted (weakenˡ lemma₁ ∘ c-ok) ret-ok {false} _ = unrestricted ------------------------------------------------------------------------ -- The semantics of the compiled program matches that of the source -- code mutual -- Some lemmas making up the main part of the compiler correctness -- result. ⟦⟧-correct : ∀ {i n} (t : Tm n) (ρ : T.Env n) {c s} {k : T.Value → Delay-crash C.Value ∞} {tc δ} → Stack-OK i k δ tc s → Cont-OK i ⟨ c , s , comp-env ρ ⟩ k δ → [ i ∣ ⌜ 1 ⌝ ∣ max ⌜ 1 ⌝ δ ] exec ⟨ comp tc t c , s , comp-env ρ ⟩ ≳ ⟦ t ⟧ ρ >>= k ⟦⟧-correct (var x) ρ {c} {s} {k} _ c-ok = exec ⟨ var x ∷ c , s , comp-env ρ ⟩ ≳⟨ later (λ { .force → exec ⟨ c , val By.⟨ index (comp-env ρ) x ⟩ ∷ s , comp-env ρ ⟩ ≡⟨ By.⟨by⟩ (comp-index ρ x) ⟩ˢ exec ⟨ c , val (comp-val (index ρ x)) ∷ s , comp-env ρ ⟩ ≳⟨ weakenˡ lemma₄ (c-ok (index ρ x)) ⟩ˢ k (index ρ x) ∎ }) ⟩ˢ ⟦ var x ⟧ ρ >>= k ∎ ⟦⟧-correct (lam t) ρ {c} {s} {k} _ c-ok = exec ⟨ clo (comp-body t) ∷ c , s , comp-env ρ ⟩ ≳⟨ later (λ { .force → exec ⟨ c , val (comp-val (T.lam t ρ)) ∷ s , comp-env ρ ⟩ ≳⟨ weakenˡ lemma₄ (c-ok (T.lam t ρ)) ⟩ˢ k (T.lam t ρ) ∎ }) ⟩ˢ ⟦ lam t ⟧ ρ >>= k ∎ ⟦⟧-correct (t₁ · t₂) ρ {c} {s} {k} _ c-ok = exec ⟨ comp false t₁ (comp false t₂ (app ∷ c)) , s , comp-env ρ ⟩ ≳⟨ weakenˡ lemma₉ (⟦⟧-correct t₁ _ unrestricted λ v₁ → exec ⟨ comp false t₂ (app ∷ c) , val (comp-val v₁) ∷ s , comp-env ρ ⟩ ≳⟨ (⟦⟧-correct t₂ _ unrestricted λ v₂ → exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val v₁) ∷ s , comp-env ρ ⟩ ≳⟨ ∙-correct v₁ v₂ c-ok ⟩ˢ v₁ ∙ v₂ >>= k ∎) ⟩ˢ (⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂ >>= k) ∎) ⟩ˢ (⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂ >>= k) ∼⟨ symmetric (⟦⟧-· t₁ t₂) ⟩ ⟦ t₁ · t₂ ⟧ ρ >>= k ∎ ⟦⟧-correct (call f t) ρ {c} {s} {k} unrestricted c-ok = exec ⟨ comp false (call f t) c , s , comp-env ρ ⟩ ∼⟨⟩ˢ exec ⟨ comp false t (cal f ∷ c) , s , comp-env ρ ⟩ ≳⟨ (⟦⟧-correct t _ unrestricted λ v → exec ⟨ cal f ∷ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≳⟨ (later λ { .force → weakenˡ lemma₅ ( exec ⟨ comp-name f , ret c (comp-env ρ) ∷ s , comp-val v ∷ [] ⟩ ≳⟨ body-lemma (def f) [] c-ok ⟩ˢ (⟦ def f ⟧ (v ∷ []) >>= k) ∎) }) ⟩ˢ (T.lam (def f) [] ∙ v >>= k) ∎) ⟩ˢ (⟦ t ⟧ ρ >>= λ v → T.lam (def f) [] ∙ v >>= k) ∼⟨ associativity (⟦ t ⟧ ρ) _ _ ⟩ (⟦ t ⟧ ρ >>= λ v → T.lam (def f) [] ∙ v) >>= k ∼⟨⟩ ⟦ call f t ⟧ ρ >>= k ∎ ⟦⟧-correct (call f t) ρ {c} {ret c′ ρ′ ∷ s} {k} (restricted c-ok) _ = exec ⟨ comp true (call f t) c , ret c′ ρ′ ∷ s , comp-env ρ ⟩ ∼⟨⟩ˢ exec ⟨ comp false t (tcl f ∷ c) , ret c′ ρ′ ∷ s , comp-env ρ ⟩ ≳⟨ (⟦⟧-correct t _ unrestricted λ v → exec ⟨ tcl f ∷ c , val (comp-val v) ∷ ret c′ ρ′ ∷ s , comp-env ρ ⟩ ≳⟨ (later λ { .force → weakenˡ lemma₅ ( exec ⟨ comp-name f , ret c′ ρ′ ∷ s , comp-val v ∷ [] ⟩ ≳⟨ body-lemma (def f) [] c-ok ⟩ˢ ⟦ def f ⟧ (v ∷ []) >>= k ∎) }) ⟩ˢ T.lam (def f) [] ∙ v >>= k ∎) ⟩ˢ (⟦ t ⟧ ρ >>= λ v → T.lam (def f) [] ∙ v >>= k) ∼⟨ associativity (⟦ t ⟧ ρ) _ _ ⟩ (⟦ t ⟧ ρ >>= λ v → T.lam (def f) [] ∙ v) >>= k ∼⟨⟩ ⟦ call f t ⟧ ρ >>= k ∎ ⟦⟧-correct (con b) ρ {c} {s} {k} _ c-ok = exec ⟨ con b ∷ c , s , comp-env ρ ⟩ ≳⟨ later (λ { .force → exec ⟨ c , val (comp-val (T.con b)) ∷ s , comp-env ρ ⟩ ≳⟨ weakenˡ lemma₄ (c-ok (T.con b)) ⟩ˢ k (T.con b) ∎ }) ⟩ˢ ⟦ con b ⟧ ρ >>= k ∎ ⟦⟧-correct (if t₁ t₂ t₃) ρ {c} {s} {k} {tc} s-ok c-ok = exec ⟨ comp false t₁ (bra (comp tc t₂ []) (comp tc t₃ []) ∷ c) , s , comp-env ρ ⟩ ≳⟨ weakenˡ lemma₈ (⟦⟧-correct t₁ _ unrestricted λ v₁ → ⟦if⟧-correct v₁ t₂ t₃ s-ok c-ok) ⟩ˢ (⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦if⟧ v₁ t₂ t₃ ρ >>= k) ∼⟨ associativity (⟦ t₁ ⟧ ρ) _ _ ⟩ (⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦if⟧ v₁ t₂ t₃ ρ) >>= k ∼⟨⟩ ⟦ if t₁ t₂ t₃ ⟧ ρ >>= k ∎ body-lemma : ∀ {i n n′} (t : Tm (suc n)) ρ {ρ′ : C.Env n′} {c s v} {k : T.Value → Delay-crash C.Value ∞} {δ} → Cont-OK i ⟨ c , s , ρ′ ⟩ k δ → [ i ∣ ⌜ 1 ⌝ ∣ ⌜ 1 ⌝ + δ ] exec ⟨ comp-body t , ret c ρ′ ∷ s , comp-val v ∷ comp-env ρ ⟩ ≳ ⟦ t ⟧ (v ∷ ρ) >>= k body-lemma t ρ {ρ′} {c} {s} {v} {k} c-ok = exec ⟨ comp-body t , ret c ρ′ ∷ s , comp-val v ∷ comp-env ρ ⟩ ∼⟨⟩ˢ exec ⟨ comp-body t , ret c ρ′ ∷ s , comp-env (v ∷ ρ) ⟩ ≳⟨ weakenˡ lemma₇ (⟦⟧-correct t (_ ∷ _) (ret-ok c-ok) λ v′ → exec ⟨ ret ∷ [] , val (comp-val v′) ∷ ret c ρ′ ∷ s , comp-env (v ∷ ρ) ⟩ ≳⟨⟩ˢ exec ⟨ c , val (comp-val v′) ∷ s , ρ′ ⟩ ≳⟨ c-ok v′ ⟩ˢ k v′ ∎) ⟩ˢ ⟦ t ⟧ (v ∷ ρ) >>= k ∎ ∙-correct : ∀ {i n} v₁ v₂ {ρ : C.Env n} {c s} {k : T.Value → Delay-crash C.Value ∞} {δ} → Cont-OK i ⟨ c , s , ρ ⟩ k δ → [ i ∣ ⌜ 1 ⌝ ∣ max ⌜ 1 ⌝ δ ] exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val v₁) ∷ s , ρ ⟩ ≳ v₁ ∙ v₂ >>= k ∙-correct (T.lam t₁ ρ₁) v₂ {ρ} {c} {s} {k} c-ok = exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val (T.lam t₁ ρ₁)) ∷ s , ρ ⟩ ≳⟨ later (λ { .force → weakenˡ lemma₆ ( exec ⟨ comp-body t₁ , ret c ρ ∷ s , comp-val v₂ ∷ comp-env ρ₁ ⟩ ≳⟨ body-lemma t₁ _ c-ok ⟩ˢ ⟦ t₁ ⟧ (v₂ ∷ ρ₁) >>= k ∎) }) ⟩ˢ T.lam t₁ ρ₁ ∙ v₂ >>= k ∎ ∙-correct (T.con b) v₂ {ρ} {c} {s} {k} _ = weakenˡ lemma₁₀ ( exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val (T.con b)) ∷ s , ρ ⟩ ≳⟨⟩ˢ crash ∼⟨⟩ˢ T.con b ∙ v₂ >>= k ∎ˢ) ⟦if⟧-correct : ∀ {i n} v₁ (t₂ t₃ : Tm n) {ρ : T.Env n} {c s} {k : T.Value → Delay-crash C.Value ∞} {tc δ} → Stack-OK i k δ tc s → Cont-OK i ⟨ c , s , comp-env ρ ⟩ k δ → [ i ∣ ⌜ 1 ⌝ ∣ max ⌜ 1 ⌝ δ ] exec ⟨ bra (comp tc t₂ []) (comp tc t₃ []) ∷ c , val (comp-val v₁) ∷ s , comp-env ρ ⟩ ≳ ⟦if⟧ v₁ t₂ t₃ ρ >>= k ⟦if⟧-correct (T.lam t₁ ρ₁) t₂ t₃ {ρ} {c} {s} {k} {tc} _ _ = weakenˡ lemma₁₀ ( exec ⟨ bra (comp tc t₂ []) (comp tc t₃ []) ∷ c , val (comp-val (T.lam t₁ ρ₁)) ∷ s , comp-env ρ ⟩ ≳⟨⟩ˢ crash ∼⟨⟩ˢ ⟦if⟧ (T.lam t₁ ρ₁) t₂ t₃ ρ >>= k ∎ˢ) ⟦if⟧-correct (T.con true) t₂ t₃ {ρ} {c} {s} {k} {tc} s-ok c-ok = exec ⟨ bra (comp tc t₂ []) (comp tc t₃ []) ∷ c , val (comp-val (T.con true)) ∷ s , comp-env ρ ⟩ ≳⟨ later (λ { .force → weakenˡ lemma₃ ( exec ⟨ comp tc t₂ [] ++ c , s , comp-env ρ ⟩ ≡⟨ By.by (comp-++ _ t₂) ⟩ˢ exec ⟨ comp tc t₂ c , s , comp-env ρ ⟩ ≳⟨ ⟦⟧-correct t₂ _ s-ok c-ok ⟩ˢ ⟦ t₂ ⟧ ρ >>= k ∎) }) ⟩ˢ ⟦if⟧ (T.con true) t₂ t₃ ρ >>= k ∎ ⟦if⟧-correct (T.con false) t₂ t₃ {ρ} {c} {s} {k} {tc} s-ok c-ok = exec ⟨ bra (comp tc t₂ []) (comp tc t₃ []) ∷ c , val (comp-val (T.con false)) ∷ s , comp-env ρ ⟩ ≳⟨ later (λ { .force → weakenˡ lemma₃ ( exec ⟨ comp tc t₃ [] ++ c , s , comp-env ρ ⟩ ≡⟨ By.by (comp-++ _ t₃) ⟩ˢ exec ⟨ comp tc t₃ c , s , comp-env ρ ⟩ ≳⟨ ⟦⟧-correct t₃ _ s-ok c-ok ⟩ˢ ⟦ t₃ ⟧ ρ >>= k ∎) }) ⟩ˢ ⟦if⟧ (T.con false) t₂ t₃ ρ >>= k ∎ -- The "time complexity" of the compiled program is linear in the time -- complexity obtained from the instrumented interpreter, and vice -- versa. steps-match : (t : Tm 0) → [ ∞ ] steps (⟦ t ⟧ []) ≤ steps (exec ⟨ comp₀ t , [] , [] ⟩) × [ ∞ ] steps (exec ⟨ comp₀ t , [] , [] ⟩) ≤ ⌜ 1 ⌝ + ⌜ 2 ⌝ * steps (⟦ t ⟧ []) steps-match t = $⟨ ⟦⟧-correct t [] unrestricted (λ v → laterˡ (return (comp-val v) ∎ˢ)) ⟩ [ ∞ ∣ ⌜ 1 ⌝ ∣ max ⌜ 1 ⌝ ⌜ 1 ⌝ ] exec ⟨ comp₀ t , [] , [] ⟩ ≳ comp-val ⟨$⟩ ⟦ t ⟧ [] ↝⟨ proj₂ ∘ _⇔_.to ≳⇔≈×steps≤steps² ⟩ [ ∞ ] steps (comp-val ⟨$⟩ ⟦ t ⟧ []) ≤ steps (exec ⟨ comp₀ t , [] , [] ⟩) × [ ∞ ] steps (exec ⟨ comp₀ t , [] , [] ⟩) ≤ max ⌜ 1 ⌝ ⌜ 1 ⌝ + (⌜ 1 ⌝ + ⌜ 1 ⌝) * steps (comp-val ⟨$⟩ ⟦ t ⟧ []) ↝⟨ _⇔_.to (steps-⟨$⟩ Conat.≤-cong-∼ (_ Conat.∎∼) ×-cong (_ Conat.∎∼) Conat.≤-cong-∼ lemma₁₁ Conat.+-cong lemma₁₂ Conat.*-cong steps-⟨$⟩) ⟩□ [ ∞ ] steps (⟦ t ⟧ []) ≤ steps (exec ⟨ comp₀ t , [] , [] ⟩) × [ ∞ ] steps (exec ⟨ comp₀ t , [] , [] ⟩) ≤ ⌜ 1 ⌝ + ⌜ 2 ⌝ * steps (⟦ t ⟧ []) □
38.449383
145
0.37028
0460206dc304ddd7e787a0df36f97239574337d8
11,230
agda
Agda
src/Categories/Bicategory/Extras.agda
maxsnew/agda-categories
8f3c844d929508040dfa21f681fa260056214b73
[ "MIT" ]
null
null
null
src/Categories/Bicategory/Extras.agda
maxsnew/agda-categories
8f3c844d929508040dfa21f681fa260056214b73
[ "MIT" ]
null
null
null
src/Categories/Bicategory/Extras.agda
maxsnew/agda-categories
8f3c844d929508040dfa21f681fa260056214b73
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Bicategory using (Bicategory) module Categories.Bicategory.Extras {o ℓ e t} (Bicat : Bicategory o ℓ e t) where open import Data.Product using (_,_) import Categories.Category.Construction.Core as Core open import Categories.Category.Construction.Functors using (Functors; module curry) open import Categories.Functor using (Functor) open import Categories.Functor.Bifunctor using (flip-bifunctor) open import Categories.Functor.Bifunctor.Properties open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism) import Categories.Morphism as Mor import Categories.Morphism.Reasoning as MR open import Categories.NaturalTransformation.NaturalIsomorphism.Properties using (push-eq) open Bicategory Bicat public private variable A B C D : Obj f g h i : A ⇒₁ B α β γ δ : f ⇒₂ g infixr 10 _▷ᵢ_ infixl 10 _◁ᵢ_ infixr 6 _⟩⊚⟨_ refl⟩⊚⟨_ infixl 7 _⟩⊚⟨refl module ⊚ {A B C} = Functor (⊚ {A} {B} {C}) module ⊚-assoc {A B C D} = NaturalIsomorphism (⊚-assoc {A} {B} {C} {D}) module unitˡ {A B} = NaturalIsomorphism (unitˡ {A} {B}) module unitʳ {A B} = NaturalIsomorphism (unitʳ {A} {B}) module id {A} = Functor (id {A}) private module MR′ {A} {B} where open Core.Shorthands (hom A B) public open MR (hom A B) public hiding (push-eq) open MR′ unitorˡ : {A B : Obj} {f : A ⇒₁ B} → id₁ ∘₁ f ≅ f unitorˡ {_} {_} {f} = record { from = unitˡ.⇒.η (_ , f) ; to = unitˡ.⇐.η (_ , f) ; iso = unitˡ.iso (_ , f) } module unitorˡ {A B f} = _≅_ (unitorˡ {A} {B} {f}) unitorʳ : {A B : Obj} {f : A ⇒₁ B} → f ∘₁ id₁ ≅ f unitorʳ {_} {_} {f} = record { from = unitʳ.⇒.η (f , _) ; to = unitʳ.⇐.η (f , _) ; iso = unitʳ.iso (f , _) } module unitorʳ {A B f} = _≅_ (unitorʳ {A} {B} {f}) associator : {A B C D : Obj} {f : D ⇒₁ B} {g : C ⇒₁ D} {h : A ⇒₁ C} → (f ∘₁ g) ∘₁ h ≅ f ∘₁ g ∘₁ h associator {_} {_} {_} {_} {f} {g} {h} = record { from = ⊚-assoc.⇒.η ((f , g) , h) ; to = ⊚-assoc.⇐.η ((f , g) , h) ; iso = ⊚-assoc.iso ((f , g) , h) } module associator {A B C D} {f : C ⇒₁ B} {g : D ⇒₁ C} {h} = _≅_ (associator {A = A} {B = B} {f = f} {g = g} {h = h}) module Shorthands where λ⇒ = unitorˡ.from λ⇐ = unitorˡ.to ρ⇒ = unitorʳ.from ρ⇐ = unitorʳ.to α⇒ = associator.from α⇐ = associator.to open Shorthands -- Two curried versions of ⊚. -⊚[-] : Functor (hom A B) (Functors (hom B C) (hom A C)) -⊚[-] = curry.F₀ (flip-bifunctor ⊚) [-]⊚- : Functor (hom B C) (Functors (hom A B) (hom A C)) [-]⊚- = curry.F₀ ⊚ -⊚_ : A ⇒₁ B → Functor (hom B C) (hom A C) -⊚_ = Functor.F₀ -⊚[-] _⊚- : B ⇒₁ C → Functor (hom A B) (hom A C) _⊚- = Functor.F₀ [-]⊚- -▷_ : ∀ {C} → f ⇒₂ g → NaturalTransformation (-⊚_ {C = C} f) (-⊚ g) -▷_ = Functor.F₁ -⊚[-] _◁- : ∀ {A} → f ⇒₂ g → NaturalTransformation (_⊚- {A = A} f) (g ⊚-) _◁- = Functor.F₁ [-]⊚- identity₂ˡ : id₂ ∘ᵥ α ≈ α identity₂ˡ = hom.identityˡ identity₂ʳ : α ∘ᵥ id₂ ≈ α identity₂ʳ = hom.identityʳ assoc₂ : (α ∘ᵥ β) ∘ᵥ γ ≈ α ∘ᵥ β ∘ᵥ γ assoc₂ = hom.assoc id₂◁ : id₂ {f = g} ◁ f ≈ id₂ id₂◁ = ⊚.identity ▷id₂ : f ▷ id₂ {f = g} ≈ id₂ ▷id₂ = ⊚.identity open hom.HomReasoning open hom.Equiv _⊚ᵢ_ : f ≅ h → g ≅ i → f ⊚₀ g ≅ h ⊚₀ i α ⊚ᵢ β = record { from = from α ⊚₁ from β ; to = to α ⊚₁ to β ; iso = record { isoˡ = [ ⊚ ]-merge (isoˡ α) (isoˡ β) ○ ⊚.identity ; isoʳ = [ ⊚ ]-merge (isoʳ α) (isoʳ β) ○ ⊚.identity } } _◁ᵢ_ : {g h : B ⇒₁ C} (α : g ≅ h) (f : A ⇒₁ B) → g ∘₁ f ≅ h ∘₁ f α ◁ᵢ _ = α ⊚ᵢ idᵢ _▷ᵢ_ : {f g : A ⇒₁ B} (h : B ⇒₁ C) (α : f ≅ g) → h ∘₁ f ≅ h ∘₁ g _ ▷ᵢ α = idᵢ ⊚ᵢ α ⊚-resp-≈ : α ≈ β → γ ≈ δ → α ⊚₁ γ ≈ β ⊚₁ δ ⊚-resp-≈ p q = ⊚.F-resp-≈ (p , q) ⊚-resp-≈ˡ : α ≈ β → α ⊚₁ γ ≈ β ⊚₁ γ ⊚-resp-≈ˡ p = ⊚.F-resp-≈ (p , hom.Equiv.refl) ⊚-resp-≈ʳ : γ ≈ δ → α ⊚₁ γ ≈ α ⊚₁ δ ⊚-resp-≈ʳ q = ⊚.F-resp-≈ (hom.Equiv.refl , q) _⟩⊚⟨_ : α ≈ β → γ ≈ δ → α ⊚₁ γ ≈ β ⊚₁ δ _⟩⊚⟨_ = ⊚-resp-≈ refl⟩⊚⟨_ : γ ≈ δ → α ⊚₁ γ ≈ α ⊚₁ δ refl⟩⊚⟨_ = ⊚-resp-≈ʳ _⟩⊚⟨refl : α ≈ β → α ⊚₁ γ ≈ β ⊚₁ γ _⟩⊚⟨refl = ⊚-resp-≈ˡ ∘ᵥ-distr-◁ : (α ◁ f) ∘ᵥ (β ◁ f) ≈ (α ∘ᵥ β) ◁ f ∘ᵥ-distr-◁ {f = f} = ⟺ (Functor.homomorphism (-⊚ f)) ∘ᵥ-distr-▷ : (f ▷ α) ∘ᵥ (f ▷ β) ≈ f ▷ (α ∘ᵥ β) ∘ᵥ-distr-▷ {f = f} = ⟺ (Functor.homomorphism (f ⊚-)) λ⇒-∘ᵥ-▷ : λ⇒ ∘ᵥ (id₁ ▷ α) ≈ α ∘ᵥ λ⇒ λ⇒-∘ᵥ-▷ {α = α} = begin λ⇒ ∘ᵥ (id₁ ▷ α) ≈˘⟨ refl⟩∘⟨ id.identity ⟩⊚⟨refl ⟩ λ⇒ ∘ᵥ id.F₁ _ ⊚₁ α ≈⟨ unitˡ.⇒.commute (_ , α) ⟩ α ∘ᵥ λ⇒ ∎ ▷-∘ᵥ-λ⇐ : (id₁ ▷ α) ∘ᵥ λ⇐ ≈ λ⇐ ∘ᵥ α ▷-∘ᵥ-λ⇐ = conjugate-to (unitorˡ ⁻¹) (unitorˡ ⁻¹) λ⇒-∘ᵥ-▷ ρ⇒-∘ᵥ-◁ : ρ⇒ ∘ᵥ (α ◁ id₁) ≈ α ∘ᵥ ρ⇒ ρ⇒-∘ᵥ-◁ {α = α} = begin ρ⇒ ∘ᵥ (α ◁ id₁) ≈˘⟨ refl⟩∘⟨ refl⟩⊚⟨ id.identity ⟩ ρ⇒ ∘ᵥ (α ⊚₁ id.F₁ _) ≈⟨ unitʳ.⇒.commute (α , _) ⟩ α ∘ᵥ ρ⇒ ∎ ◁-∘ᵥ-ρ⇐ : (α ◁ id₁) ∘ᵥ ρ⇐ ≈ ρ⇐ ∘ᵥ α ◁-∘ᵥ-ρ⇐ = conjugate-to (unitorʳ ⁻¹) (unitorʳ ⁻¹) ρ⇒-∘ᵥ-◁ α⇐-◁-∘₁ : α⇐ ∘ᵥ (γ ◁ (g ∘₁ f)) ≈ ((γ ◁ g) ◁ f) ∘ᵥ α⇐ α⇐-◁-∘₁ {γ = γ} {g = g} {f = f} = begin α⇐ ∘ᵥ (γ ◁ (g ∘₁ f)) ≈˘⟨ refl⟩∘⟨ refl⟩⊚⟨ ⊚.identity ⟩ α⇐ ∘ᵥ (γ ⊚₁ id₂ ⊚₁ id₂) ≈⟨ ⊚-assoc.⇐.commute ((γ , id₂) , id₂) ⟩ ((γ ◁ g) ◁ f) ∘ᵥ α⇐ ∎ α⇒-◁-∘₁ : α⇒ ∘ᵥ γ ◁ g ◁ f ≈ γ ◁ (g ∘₁ f) ∘ᵥ α⇒ α⇒-◁-∘₁ = ⟺ (conjugate-to associator associator α⇐-◁-∘₁) α⇐-▷-◁ : α⇐ ∘ᵥ (f ▷ (γ ◁ g)) ≈ ((f ▷ γ) ◁ g) ∘ᵥ α⇐ α⇐-▷-◁ {f = f} {γ = γ} {g = g} = ⊚-assoc.⇐.commute ((id₂ , γ) , id₂) α⇒-▷-∘₁ : α⇒ ∘ᵥ (f ∘₁ g) ▷ γ ≈ f ▷ g ▷ γ ∘ᵥ α⇒ α⇒-▷-∘₁{f = f} {g = g} {γ = γ} = begin α⇒ ∘ᵥ (f ⊚₀ g) ▷ γ ≈˘⟨ refl⟩∘⟨ ⊚.identity ⟩⊚⟨refl ⟩ α⇒ ∘ᵥ (f ▷ id₂) ⊚₁ γ ≈⟨ ⊚-assoc.⇒.commute ((id₂ , id₂) , γ) ⟩ f ▷ g ▷ γ ∘ᵥ α⇒ ∎ α⇐-▷-∘₁ : α⇐ ∘ᵥ (g ▷ (f ▷ γ)) ≈ ((g ∘₁ f) ▷ γ) ∘ᵥ α⇐ α⇐-▷-∘₁ = conjugate-from associator associator (⟺ α⇒-▷-∘₁) ◁-▷-exchg : ∀ {α : f ⇒₂ g} {β : h ⇒₂ i} → (i ▷ α) ∘ᵥ (β ◁ f) ≈ (β ◁ g) ∘ᵥ (h ▷ α) ◁-▷-exchg = [ ⊚ ]-commute triangle-iso : {f : A ⇒₁ B} {g : B ⇒₁ C} → (g ▷ᵢ unitorˡ ∘ᵢ associator) ≈ᵢ (unitorʳ ◁ᵢ f) triangle-iso = ⌞ triangle ⌟ triangle-inv : {f : A ⇒₁ B} {g : B ⇒₁ C} → α⇐ ∘ᵥ g ▷ λ⇐ ≈ ρ⇐ ◁ f triangle-inv = to-≈ triangle-iso pentagon-iso : ∀ {E} {f : A ⇒₁ B} {g : B ⇒₁ C} {h : C ⇒₁ D} {i : D ⇒₁ E} → (i ▷ᵢ associator ∘ᵢ associator ∘ᵢ associator ◁ᵢ f) ≈ᵢ (associator {f = i} {h} {g ∘₁ f} ∘ᵢ associator) pentagon-iso = ⌞ pentagon ⌟ pentagon-inv : ∀ {E} {f : A ⇒₁ B} {g : B ⇒₁ C} {h : C ⇒₁ D} {i : D ⇒₁ E} → (α⇐ ◁ f ∘ᵥ α⇐) ∘ᵥ i ▷ α⇐ ≈ α⇐ ∘ᵥ α⇐ {f = i} {h} {g ∘₁ f} pentagon-inv = to-≈ pentagon-iso module UnitorCoherence where -- Extra coherence laws for the unitors. -- -- These are similar to the extra coherence laws for monoidal -- categories that Kelly proved admissible in 1964. The proofs are -- largely the same. See Categories.Category.Monoidal.Properties -- for the monoidal versions and -- -- https://ncatlab.org/nlab/show/monoidal+category -- -- for an explanation of the proof and references to Kelly's paper. open ComHom -- As described on nLab, we start by proving that the 'perimeters' -- of two large diagrams commute... id▷λ-perimeter : [ ((id₁ ⊚₀ id₁) ⊚₀ f) ⊚₀ g ⇒ id₁ ⊚₀ (f ⊚₀ g) ]⟨ α⇒ ◁ g ⇒⟨ (id₁ ⊚₀ (id₁ ⊚₀ f)) ⊚₀ g ⟩ α⇒ ⇒⟨ id₁ ⊚₀ ((id₁ ⊚₀ f) ⊚₀ g) ⟩ id₁ ▷ α⇒ ⇒⟨ id₁ ⊚₀ (id₁ ⊚₀ (f ⊚₀ g)) ⟩ id₁ ▷ λ⇒ ≈ ρ⇒ ◁ f ◁ g ⇒⟨ (id₁ ⊚₀ f) ⊚₀ g ⟩ α⇒ ⟩ id▷λ-perimeter {f = f} {g = g} = begin id₁ ▷ λ⇒ ∘ᵥ id₁ ▷ α⇒ ∘ᵥ α⇒ ∘ᵥ α⇒ ◁ g ≈⟨ refl⟩∘⟨ pentagon ⟩ id₁ ▷ λ⇒ ∘ᵥ α⇒ ∘ᵥ α⇒ ≈⟨ pullˡ triangle ⟩ ρ⇒ ◁ (f ⊚₀ g) ∘ᵥ α⇒ ≈˘⟨ refl⟩⊚⟨ ⊚.identity ⟩∘⟨refl ⟩ ρ⇒ ⊚₁ (id₂ ◁ g) ∘ᵥ α⇒ ≈˘⟨ ⊚-assoc.⇒.commute _ ⟩ α⇒ ∘ᵥ ρ⇒ ◁ f ◁ g ∎ ρ◁id-perimeter : [ ((f ⊚₀ g) ⊚₀ id₁) ⊚₀ id₁ ⇒ f ⊚₀ (g ⊚₀ id₁) ]⟨ α⇒ ◁ id₁ ⇒⟨ (f ⊚₀ (g ⊚₀ id₁)) ⊚₀ id₁ ⟩ α⇒ ⇒⟨ f ⊚₀ ((g ⊚₀ id₁) ⊚₀ id₁) ⟩ f ▷ α⇒ ⇒⟨ f ⊚₀ (g ⊚₀ (id₁ ⊚₀ id₁)) ⟩ f ▷ g ▷ λ⇒ ≈ ρ⇒ ◁ id₁ ⇒⟨ (f ⊚₀ g) ⊚₀ id₁ ⟩ α⇒ ⟩ ρ◁id-perimeter {f = f} {g = g} = begin f ▷ g ▷ λ⇒ ∘ᵥ f ▷ α⇒ ∘ᵥ α⇒ ∘ᵥ α⇒ ◁ id₁ ≈⟨ refl⟩∘⟨ pentagon ⟩ f ▷ g ▷ λ⇒ ∘ᵥ α⇒ ∘ᵥ α⇒ ≈˘⟨ pushˡ (⊚-assoc.⇒.commute _) ⟩ (α⇒ ∘ᵥ (f ▷ id₂) ⊚₁ λ⇒) ∘ᵥ α⇒ ≈⟨ pullʳ (⊚.identity ⟩⊚⟨refl ⟩∘⟨refl) ⟩ α⇒ ∘ᵥ (f ⊚₀ g) ▷ λ⇒ ∘ᵥ α⇒ ≈⟨ refl⟩∘⟨ triangle ⟩ α⇒ ∘ᵥ ρ⇒ ◁ id₁ ∎ -- ... which allow us to prove that the following triangles commute... id▷λ-coherence : [ id₁ ⊚₀ ((id₁ ⊚₀ f) ⊚₀ g) ⇒ id₁ ⊚₀ (f ⊚₀ g) ]⟨ id₁ ▷ (λ⇒ ◁ g) ≈ id₁ ▷ α⇒ ⇒⟨ id₁ ⊚₀ (id₁ ⊚₀ (f ⊚₀ g)) ⟩ id₁ ▷ λ⇒ ⟩ id▷λ-coherence {f = f} {g = g} = begin id₁ ▷ (λ⇒ ◁ g) ≈⟨ switch-fromtoʳ associator (⟺ (⊚-assoc.⇒.commute _)) ⟩ (α⇒ ∘ᵥ (id₁ ▷ λ⇒) ◁ g) ∘ᵥ α⇐ ≈⟨ (refl⟩∘⟨ switch-fromtoʳ associator triangle ⟩⊚⟨refl) ⟩∘⟨refl ⟩ (α⇒ ∘ᵥ ((ρ⇒ ◁ f ∘ᵥ α⇐) ◁ g)) ∘ᵥ α⇐ ≈⟨ pushˡ (pushʳ (Functor.homomorphism (-⊚ g))) ⟩ (α⇒ ∘ᵥ ρ⇒ ◁ f ◁ g) ∘ᵥ (α⇐ ◁ g ∘ᵥ α⇐) ≈˘⟨ switch-fromtoʳ (associator ∘ᵢ (associator ⊚ᵢ idᵢ)) (hom.assoc ○ id▷λ-perimeter) ⟩ id₁ ▷ λ⇒ ∘ᵥ id₁ ▷ α⇒ ∎ ρ◁id-coherence : [ ((f ⊚₀ g) ⊚₀ id₁) ⊚₀ id₁ ⇒ (f ⊚₀ g) ⊚₀ id₁ ]⟨ ρ⇒ ◁ id₁ ≈ α⇒ ◁ id₁ ⇒⟨ (f ⊚₀ (g ⊚₀ id₁)) ⊚₀ id₁ ⟩ (f ▷ ρ⇒) ◁ id₁ ⟩ ρ◁id-coherence {f = f} {g = g} = begin ρ⇒ ◁ id₁ ≈⟨ switch-fromtoˡ associator (⟺ ρ◁id-perimeter) ⟩ α⇐ ∘ᵥ f ▷ g ▷ λ⇒ ∘ᵥ f ▷ α⇒ ∘ᵥ α⇒ ∘ᵥ α⇒ ◁ id₁ ≈˘⟨ pullʳ (pushˡ (Functor.homomorphism (f ⊚-))) ⟩ (α⇐ ∘ᵥ f ▷ (g ▷ λ⇒ ∘ᵥ α⇒)) ∘ᵥ α⇒ ∘ᵥ α⇒ ◁ id₁ ≈⟨ pullˡ (pushˡ (refl⟩∘⟨ refl⟩⊚⟨ triangle)) ⟩ (α⇐ ∘ᵥ f ▷ (ρ⇒ ◁ id₁) ∘ᵥ α⇒) ∘ᵥ α⇒ ◁ id₁ ≈˘⟨ switch-fromtoˡ associator (⊚-assoc.⇒.commute _) ⟩∘⟨refl ⟩ (f ▷ ρ⇒) ◁ id₁ ∘ᵥ α⇒ ◁ id₁ ∎ -- ... which are the results modulo (id₁ ⊚-) and (-⊚ id₁). unitorˡ-coherence : [ (id₁ ⊚₀ f) ⊚₀ g ⇒ f ⊚₀ g ]⟨ λ⇒ ◁ g ≈ α⇒ ⇒⟨ id₁ ⊚₀ (f ⊚₀ g) ⟩ λ⇒ ⟩ unitorˡ-coherence {f = f} {g = g} = push-eq unitˡ (begin id.F₁ _ ⊚₁ (λ⇒ ◁ g) ≈⟨ id.identity ⟩⊚⟨refl ⟩ id₁ ▷ (λ⇒ ◁ g) ≈⟨ id▷λ-coherence ⟩ id₁ ▷ λ⇒ ∘ᵥ id₁ ▷ α⇒ ≈˘⟨ Functor.homomorphism (id₁ ⊚-) ⟩ id₁ ▷ (λ⇒ ∘ᵥ α⇒) ≈˘⟨ id.identity ⟩⊚⟨refl ⟩ id.F₁ _ ⊚₁ (λ⇒ ∘ᵥ α⇒) ∎) unitorʳ-coherence : [ (f ⊚₀ g) ⊚₀ id₁ ⇒ f ⊚₀ g ]⟨ ρ⇒ ≈ α⇒ ⇒⟨ f ⊚₀ (g ⊚₀ id₁) ⟩ f ▷ ρ⇒ ⟩ unitorʳ-coherence {f = f} {g = g} = push-eq unitʳ (begin ρ⇒ ⊚₁ id.F₁ _ ≈⟨ refl⟩⊚⟨ id.identity ⟩ ρ⇒ ◁ id₁ ≈⟨ ρ◁id-coherence ⟩ (f ▷ ρ⇒) ◁ id₁ ∘ᵥ α⇒ ◁ id₁ ≈˘⟨ Functor.homomorphism (-⊚ id₁) ⟩ (f ▷ ρ⇒ ∘ᵥ α⇒) ◁ id₁ ≈˘⟨ refl⟩⊚⟨ id.identity ⟩ (f ▷ ρ⇒ ∘ᵥ α⇒) ⊚₁ id.F₁ _ ∎) open UnitorCoherence public using (unitorˡ-coherence; unitorʳ-coherence)
33.825301
116
0.453517
4b26763d2729eeb98a181fc17774a7740fa7dc8e
9,064
agda
Agda
Cubical/Data/Nat/Order.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
null
null
null
Cubical/Data/Nat/Order.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
null
null
null
Cubical/Data/Nat/Order.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
1
2021-03-12T20:08:45.000Z
2021-03-12T20:08:45.000Z
{-# OPTIONS --no-exact-split --safe #-} module Cubical.Data.Nat.Order where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Sigma open import Cubical.Data.Sum as ⊎ open import Cubical.Data.Nat.Base open import Cubical.Data.Nat.Properties open import Cubical.Induction.WellFounded open import Cubical.Relation.Nullary infix 4 _≤_ _<_ _≤_ : ℕ → ℕ → Type₀ m ≤ n = Σ[ k ∈ ℕ ] k + m ≡ n _<_ : ℕ → ℕ → Type₀ m < n = suc m ≤ n data Trichotomy (m n : ℕ) : Type₀ where lt : m < n → Trichotomy m n eq : m ≡ n → Trichotomy m n gt : n < m → Trichotomy m n private variable k l m n : ℕ private witness-prop : ∀ j → isProp (j + m ≡ n) witness-prop {m} {n} j = isSetℕ (j + m) n m≤n-isProp : isProp (m ≤ n) m≤n-isProp {m} {n} (k , p) (l , q) = Σ≡Prop witness-prop lemma where lemma : k ≡ l lemma = inj-+m (p ∙ (sym q)) zero-≤ : 0 ≤ n zero-≤ {n} = n , +-zero n suc-≤-suc : m ≤ n → suc m ≤ suc n suc-≤-suc (k , p) = k , (+-suc k _) ∙ (cong suc p) ≤-+k : m ≤ n → m + k ≤ n + k ≤-+k {m} {k = k} (i , p) = i , +-assoc i m k ∙ cong (_+ k) p ≤-k+ : m ≤ n → k + m ≤ k + n ≤-k+ {m} {n} {k} = subst (_≤ k + n) (+-comm m k) ∘ subst (m + k ≤_) (+-comm n k) ∘ ≤-+k pred-≤-pred : suc m ≤ suc n → m ≤ n pred-≤-pred (k , p) = k , injSuc ((sym (+-suc k _)) ∙ p) ≤-refl : m ≤ m ≤-refl = 0 , refl ≤-suc : m ≤ n → m ≤ suc n ≤-suc (k , p) = suc k , cong suc p ≤-predℕ : predℕ n ≤ n ≤-predℕ {zero} = ≤-refl ≤-predℕ {suc n} = ≤-suc ≤-refl ≤-trans : k ≤ m → m ≤ n → k ≤ n ≤-trans {k} {m} {n} (i , p) (j , q) = i + j , l2 ∙ (l1 ∙ q) where l1 : j + i + k ≡ j + m l1 = (sym (+-assoc j i k)) ∙ (cong (j +_) p) l2 : i + j + k ≡ j + i + k l2 = cong (_+ k) (+-comm i j) ≤-antisym : m ≤ n → n ≤ m → m ≡ n ≤-antisym {m} (i , p) (j , q) = (cong (_+ m) l3) ∙ p where l1 : j + i + m ≡ m l1 = (sym (+-assoc j i m)) ∙ ((cong (j +_) p) ∙ q) l2 : j + i ≡ 0 l2 = m+n≡n→m≡0 l1 l3 : 0 ≡ i l3 = sym (snd (m+n≡0→m≡0×n≡0 l2)) ≤-k+-cancel : k + m ≤ k + n → m ≤ n ≤-k+-cancel {k} {m} (l , p) = l , inj-m+ (sub k m ∙ p) where sub : ∀ k m → k + (l + m) ≡ l + (k + m) sub k m = +-assoc k l m ∙ cong (_+ m) (+-comm k l) ∙ sym (+-assoc l k m) ≤-+k-cancel : m + k ≤ n + k → m ≤ n ≤-+k-cancel {m} {k} {n} (l , p) = l , cancelled where cancelled : l + m ≡ n cancelled = inj-+m (sym (+-assoc l m k) ∙ p) ≤-·k : m ≤ n → m · k ≤ n · k ≤-·k {m} {n} {k} (d , r) = d · k , reason where reason : d · k + m · k ≡ n · k reason = d · k + m · k ≡⟨ ·-distribʳ d m k ⟩ (d + m) · k ≡⟨ cong (_· k) r ⟩ n · k ∎ <-k+-cancel : k + m < k + n → m < n <-k+-cancel {k} {m} {n} = ≤-k+-cancel ∘ subst (_≤ k + n) (sym (+-suc k m)) ¬-<-zero : ¬ m < 0 ¬-<-zero (k , p) = snotz ((sym (+-suc k _)) ∙ p) ¬m<m : ¬ m < m ¬m<m {m} = ¬-<-zero ∘ ≤-+k-cancel {k = m} ≤0→≡0 : n ≤ 0 → n ≡ 0 ≤0→≡0 {zero} ineq = refl ≤0→≡0 {suc n} ineq = ⊥.rec (¬-<-zero ineq) predℕ-≤-predℕ : m ≤ n → (predℕ m) ≤ (predℕ n) predℕ-≤-predℕ {zero} {zero} ineq = ≤-refl predℕ-≤-predℕ {zero} {suc n} ineq = zero-≤ predℕ-≤-predℕ {suc m} {zero} ineq = ⊥.rec (¬-<-zero ineq) predℕ-≤-predℕ {suc m} {suc n} ineq = pred-≤-pred ineq ¬m+n<m : ¬ m + n < m ¬m+n<m {m} {n} = ¬-<-zero ∘ <-k+-cancel ∘ subst (m + n <_) (sym (+-zero m)) <-weaken : m < n → m ≤ n <-weaken (k , p) = suc k , sym (+-suc k _) ∙ p ≤<-trans : l ≤ m → m < n → l < n ≤<-trans p = ≤-trans (suc-≤-suc p) <≤-trans : l < m → m ≤ n → l < n <≤-trans = ≤-trans <-trans : l < m → m < n → l < n <-trans p = ≤<-trans (<-weaken p) <-asym : m < n → ¬ n ≤ m <-asym m<n = ¬m<m ∘ <≤-trans m<n <-+k : m < n → m + k < n + k <-+k p = ≤-+k p <-k+ : m < n → k + m < k + n <-k+ {m} {n} {k} p = subst (λ km → km ≤ k + n) (+-suc k m) (≤-k+ p) <-·sk : m < n → m · suc k < n · suc k <-·sk {m} {n} {k} (d , r) = (d · suc k + k) , reason where reason : (d · suc k + k) + suc (m · suc k) ≡ n · suc k reason = (d · suc k + k) + suc (m · suc k) ≡⟨ sym (+-assoc (d · suc k) k _) ⟩ d · suc k + (k + suc (m · suc k)) ≡[ i ]⟨ d · suc k + +-suc k (m · suc k) i ⟩ d · suc k + suc m · suc k ≡⟨ ·-distribʳ d (suc m) (suc k) ⟩ (d + suc m) · suc k ≡⟨ cong (_· suc k) r ⟩ n · suc k ∎ ≤-∸-+-cancel : m ≤ n → (n ∸ m) + m ≡ n ≤-∸-+-cancel {zero} {n} _ = +-zero _ ≤-∸-+-cancel {suc m} {zero} m≤n = ⊥.rec (¬-<-zero m≤n) ≤-∸-+-cancel {suc m} {suc n} m+1≤n+1 = +-suc _ _ ∙ cong suc (≤-∸-+-cancel (pred-≤-pred m+1≤n+1)) left-≤-max : m ≤ max m n left-≤-max {zero} {n} = zero-≤ left-≤-max {suc m} {zero} = ≤-refl left-≤-max {suc m} {suc n} = suc-≤-suc left-≤-max right-≤-max : n ≤ max m n right-≤-max {zero} {m} = zero-≤ right-≤-max {suc n} {zero} = ≤-refl right-≤-max {suc n} {suc m} = suc-≤-suc right-≤-max min-≤-left : min m n ≤ m min-≤-left {zero} {n} = ≤-refl min-≤-left {suc m} {zero} = zero-≤ min-≤-left {suc m} {suc n} = suc-≤-suc min-≤-left min-≤-right : min m n ≤ n min-≤-right {zero} {n} = zero-≤ min-≤-right {suc m} {zero} = ≤-refl min-≤-right {suc m} {suc n} = suc-≤-suc min-≤-right Trichotomy-suc : Trichotomy m n → Trichotomy (suc m) (suc n) Trichotomy-suc (lt m<n) = lt (suc-≤-suc m<n) Trichotomy-suc (eq m=n) = eq (cong suc m=n) Trichotomy-suc (gt n<m) = gt (suc-≤-suc n<m) _≟_ : ∀ m n → Trichotomy m n zero ≟ zero = eq refl zero ≟ suc n = lt (n , +-comm n 1) suc m ≟ zero = gt (m , +-comm m 1) suc m ≟ suc n = Trichotomy-suc (m ≟ n) <-split : m < suc n → (m < n) ⊎ (m ≡ n) <-split {n = zero} = inr ∘ snd ∘ m+n≡0→m≡0×n≡0 ∘ snd ∘ pred-≤-pred <-split {zero} {suc n} = λ _ → inl (suc-≤-suc zero-≤) <-split {suc m} {suc n} = ⊎.map suc-≤-suc (cong suc) ∘ <-split ∘ pred-≤-pred private acc-suc : Acc _<_ n → Acc _<_ (suc n) acc-suc a = acc λ y y<sn → case <-split y<sn of λ { (inl y<n) → access a y y<n ; (inr y≡n) → subst _ (sym y≡n) a } <-wellfounded : WellFounded _<_ <-wellfounded zero = acc λ _ → ⊥.rec ∘ ¬-<-zero <-wellfounded (suc n) = acc-suc (<-wellfounded n) <→≢ : n < m → ¬ n ≡ m <→≢ {n} {m} p q = ¬m<m (subst (_< m) q p) module _ (b₀ : ℕ) (P : ℕ → Type₀) (base : ∀ n → n < suc b₀ → P n) (step : ∀ n → P n → P (suc b₀ + n)) where open WFI (<-wellfounded) private dichotomy : ∀ b n → (n < b) ⊎ (Σ[ m ∈ ℕ ] n ≡ b + m) dichotomy b n = case n ≟ b return (λ _ → (n < b) ⊎ (Σ[ m ∈ ℕ ] n ≡ b + m)) of λ { (lt o) → inl o ; (eq p) → inr (0 , p ∙ sym (+-zero b)) ; (gt (m , p)) → inr (suc m , sym p ∙ +-suc m b ∙ +-comm (suc m) b) } dichotomy<≡ : ∀ b n → (n<b : n < b) → dichotomy b n ≡ inl n<b dichotomy<≡ b n n<b = case dichotomy b n return (λ d → d ≡ inl n<b) of λ { (inl x) → cong inl (m≤n-isProp x n<b) ; (inr (m , p)) → ⊥.rec (<-asym n<b (m , sym (p ∙ +-comm b m))) } dichotomy+≡ : ∀ b m n → (p : n ≡ b + m) → dichotomy b n ≡ inr (m , p) dichotomy+≡ b m n p = case dichotomy b n return (λ d → d ≡ inr (m , p)) of λ { (inl n<b) → ⊥.rec (<-asym n<b (m , +-comm m b ∙ sym p)) ; (inr (m' , q)) → cong inr (Σ≡Prop (λ x → isSetℕ n (b + x)) (inj-m+ {m = b} (sym q ∙ p))) } b = suc b₀ lemma₁ : ∀{x y z} → x ≡ suc z + y → y < x lemma₁ {y = y} {z} p = z , +-suc z y ∙ sym p subStep : (n : ℕ) → (∀ m → m < n → P m) → (n < b) ⊎ (Σ[ m ∈ ℕ ] n ≡ b + m) → P n subStep n _ (inl l) = base n l subStep n rec (inr (m , p)) = transport (cong P (sym p)) (step m (rec m (lemma₁ p))) wfStep : (n : ℕ) → (∀ m → m < n → P m) → P n wfStep n rec = subStep n rec (dichotomy b n) wfStepLemma₀ : ∀ n (n<b : n < b) rec → wfStep n rec ≡ base n n<b wfStepLemma₀ n n<b rec = cong (subStep n rec) (dichotomy<≡ b n n<b) wfStepLemma₁ : ∀ n rec → wfStep (b + n) rec ≡ step n (rec n (lemma₁ refl)) wfStepLemma₁ n rec = cong (subStep (b + n) rec) (dichotomy+≡ b n (b + n) refl) ∙ transportRefl _ +induction : ∀ n → P n +induction = induction wfStep +inductionBase : ∀ n → (l : n < b) → +induction n ≡ base n l +inductionBase n l = induction-compute wfStep n ∙ wfStepLemma₀ n l _ +inductionStep : ∀ n → +induction (b + n) ≡ step n (+induction n) +inductionStep n = induction-compute wfStep (b + n) ∙ wfStepLemma₁ n _ module <-Reasoning where -- TODO: would it be better to mirror the way it is done in the agda-stdlib? infixr 2 _<⟨_⟩_ _≤<⟨_⟩_ _≤⟨_⟩_ _<≤⟨_⟩_ _≡<⟨_⟩_ _≡≤⟨_⟩_ _<≡⟨_⟩_ _≤≡⟨_⟩_ _<⟨_⟩_ : ∀ k → k < n → n < m → k < m _ <⟨ p ⟩ q = <-trans p q _≤<⟨_⟩_ : ∀ k → k ≤ n → n < m → k < m _ ≤<⟨ p ⟩ q = ≤<-trans p q _≤⟨_⟩_ : ∀ k → k ≤ n → n ≤ m → k ≤ m _ ≤⟨ p ⟩ q = ≤-trans p q _<≤⟨_⟩_ : ∀ k → k < n → n ≤ m → k < m _ <≤⟨ p ⟩ q = <≤-trans p q _≡≤⟨_⟩_ : ∀ k → k ≡ l → l ≤ m → k ≤ m _ ≡≤⟨ p ⟩ q = subst (λ k → k ≤ _) (sym p) q _≡<⟨_⟩_ : ∀ k → k ≡ l → l < m → k < m _ ≡<⟨ p ⟩ q = _ ≡≤⟨ cong suc p ⟩ q _≤≡⟨_⟩_ : ∀ k → k ≤ l → l ≡ m → k ≤ m _ ≤≡⟨ p ⟩ q = subst (λ l → _ ≤ l) q p _<≡⟨_⟩_ : ∀ k → k < l → l ≡ m → k < m _ <≡⟨ p ⟩ q = _ ≤≡⟨ p ⟩ q
29.144695
96
0.466461
2f9346dc0670469463dc35774b4f8de398c8f83f
359
agda
Agda
test/Succeed/CoinductiveAfterEvaluation.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/CoinductiveAfterEvaluation.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/CoinductiveAfterEvaluation.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --guardedness #-} module CoinductiveAfterEvaluation where open import Common.Coinduction data Functor : Set where Id : Functor _·_ : Functor → Set → Set Id · A = A data ν (F : Functor) : Set where inn : ∞ (F · ν F) → ν F -- Evaluation is required to see that Id · ν Id is a coinductive type. foo : ∀ F → F · ν F foo Id = inn (♯ foo Id)
17.95
70
0.640669
1d114b489c89a630f1e96ceb7f6a8161d6fbd5d0
2,504
agda
Agda
nat-to-string.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
29
2019-02-06T13:09:31.000Z
2022-03-04T15:05:12.000Z
nat-to-string.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
8
2018-07-09T22:53:38.000Z
2022-03-22T03:43:34.000Z
nat-to-string.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
17
2018-12-03T22:38:15.000Z
2021-11-28T20:13:21.000Z
module nat-to-string where open import bool open import char open import eq open import list open import maybe open import nat open import nat-division open import nat-thms open import product open import string open import termination module slow-ℕ-to-digits where {- this version of ℕ-to-digits is statically shown terminating -- but the termination reasoning makes it pretty slow in practice! -} ℕ-to-digitsh : (base : ℕ) → 1 < base ≡ tt → (x : ℕ) → ↓𝔹 _>_ x → 𝕃 ℕ ℕ-to-digitsh _ _ 0 _ = [] ℕ-to-digitsh base bp (suc x) (pf↓ fx) with (suc x) ÷ base ! (<=ℕff2 base bp) ... | q , r , p , _ = r :: (ℕ-to-digitsh base bp q (fx (÷<{base}{q}{r}{x} bp p))) ℕ-to-digits : ℕ → 𝕃 ℕ ℕ-to-digits x = reverse (ℕ-to-digitsh 10 refl x (↓-> x)) {-# TERMINATING #-} ℕ-to-digitsh : (base : ℕ) → 1 < base ≡ tt → (x : ℕ) → 𝕃 ℕ ℕ-to-digitsh _ _ 0 = [] ℕ-to-digitsh base bp (suc x) with (suc x) ÷ base ! (<=ℕff2 base bp) ... | q , r , p = r :: (ℕ-to-digitsh base bp q) ℕ-to-digits : ℕ → 𝕃 ℕ ℕ-to-digits x = reverse (ℕ-to-digitsh 10 refl x) digit-to-string : ℕ → string digit-to-string 0 = "0" digit-to-string 1 = "1" digit-to-string 2 = "2" digit-to-string 3 = "3" digit-to-string 4 = "4" digit-to-string 5 = "5" digit-to-string 6 = "6" digit-to-string 7 = "7" digit-to-string 8 = "8" digit-to-string 9 = "9" digit-to-string _ = "unexpected-digit" digits-to-string : 𝕃 ℕ → string digits-to-string [] = "" digits-to-string (d :: ds) = (digit-to-string d) ^ (digits-to-string ds) ℕ-to-string : ℕ → string ℕ-to-string 0 = "0" ℕ-to-string (suc x) = digits-to-string (ℕ-to-digits (suc x)) string-to-digit : char → maybe ℕ string-to-digit '0' = just 0 string-to-digit '1' = just 1 string-to-digit '2' = just 2 string-to-digit '3' = just 3 string-to-digit '4' = just 4 string-to-digit '5' = just 5 string-to-digit '6' = just 6 string-to-digit '7' = just 7 string-to-digit '8' = just 8 string-to-digit '9' = just 9 string-to-digit _ = nothing -- the digits are in order from least to most significant digits-to-ℕh : ℕ → ℕ → 𝕃 ℕ → ℕ digits-to-ℕh multiplier sum [] = sum digits-to-ℕh multiplier sum (x :: xs) = digits-to-ℕh (10 * multiplier) (x * multiplier + sum) xs digits-to-ℕ : 𝕃 ℕ → ℕ digits-to-ℕ digits = digits-to-ℕh 1 0 digits string-to-ℕ : string → maybe ℕ string-to-ℕ s with 𝕃maybe-map string-to-digit (reverse (string-to-𝕃char s)) ... | nothing = nothing ... | just ds = just (digits-to-ℕ ds) string-to-ℕ0 : string → ℕ string-to-ℕ0 s with string-to-ℕ s ... | nothing = 0 ... | just x = x
29.116279
96
0.638978
57f87839b992fb1d3fb66d156002849281a4a51e
619
agda
Agda
Cubical/HITs/DunceCap/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/HITs/DunceCap/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/HITs/DunceCap/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.HITs.DunceCap.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.HITs.S1 using (S¹; base) import Cubical.HITs.S1 as S¹ open import Cubical.HITs.MappingCones -- definition of the dunce cap as a HIT data Dunce : Type₀ where base : Dunce loop : base ≡ base surf : PathP (λ i → loop i ≡ loop i) loop refl -- definition of the dunce cap as a mapping cone dunceMap : S¹ → S¹ dunceMap base = base dunceMap (S¹.loop i) = (S¹.loop ⁻¹ ∙∙ S¹.loop ∙∙ S¹.loop) i DunceCone : Type₀ DunceCone = Cone dunceMap
22.107143
59
0.71567
04468b9c261cb5747e68831bdee00ed4ad1dc9fc
718
agda
Agda
Chapter1/#2.agda
CodaFi/HoTT-Exercises
3411b253b0a49a5f9c3301df175ae8ecdc563b12
[ "MIT" ]
null
null
null
Chapter1/#2.agda
CodaFi/HoTT-Exercises
3411b253b0a49a5f9c3301df175ae8ecdc563b12
[ "MIT" ]
null
null
null
Chapter1/#2.agda
CodaFi/HoTT-Exercises
3411b253b0a49a5f9c3301df175ae8ecdc563b12
[ "MIT" ]
null
null
null
module #2 where open import Data.Product open import Data.Sum open import Relation.Binary.PropositionalEquality {- Exercise 1.2. Derive the recursion principle for products recA×B using only the projections, and verify that the definitional equalities are valid. Do the same for Σ-types. -} module Products { a b c }{A : Set a}{B : Set b}{C : Set c}(g : A → B → C) where recₓ : A × B → C recₓ x = g (proj₁ x) (proj₂ x) rec-β : (x : A)(y : B) → recₓ (x , y) ≡ g x y rec-β x y = refl module Sums { a b c }{A : Set a}{B : A → Set b}{C : Set c}(g : (x : A) → B x → C) where rec-Σ : Σ A B → C rec-Σ x = g (proj₁ x) (proj₂ x) rec-Σ-β : (x : A)(y : B x) → rec-Σ (x , y) ≡ g x y rec-Σ-β x y = refl
26.592593
96
0.590529
4b8f1b069d6877c006762621c00a3445df642b09
11,344
agda
Agda
Lambda/Closure/Equivalences.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
1
2021-02-13T14:48:45.000Z
2021-02-13T14:48:45.000Z
Lambda/Closure/Equivalences.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
null
null
null
Lambda/Closure/Equivalences.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- A very brief treatment of different kinds of term equivalences, -- including contextual equivalence and applicative bisimilarity ------------------------------------------------------------------------ module Lambda.Closure.Equivalences where open import Category.Monad.Partiality as Partiality using (_⊥; later⁻¹; laterˡ⁻¹; laterʳ⁻¹) open import Codata.Musical.Notation open import Data.Fin using (Fin; zero) open import Data.Maybe hiding (_>>=_) open import Data.Maybe.Relation.Binary.Pointwise as Maybe using (just; nothing) open import Data.Nat open import Data.Product as Prod open import Data.Unit open import Data.Vec using ([]; _∷_) open import Function.Base open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (_⇔_; equivalence; module Equivalence) open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary open Partiality._⊥ private open module EP {A : Set} = Partiality.Equality (_≡_ {A = A}) open module RP {A : Set} = Partiality.Reasoning (P.isEquivalence {A = A}) open module RC {A : Set} = Partiality.Reasoning {_∼_ = λ (_ _ : A) → ⊤} _ using () renaming (_≈⟨_⟩_ to _≈○⟨_⟩_; _∎ to _∎○) open import Lambda.Closure.Functional open PF using (return; _>>=_; fail) open import Lambda.Syntax open Closure Tm ------------------------------------------------------------------------ -- Two equivalent notions of equivalence of partial values -- _≈○_ is a notion of weak bisimilarity which identifies all values. open module EC {A : Set} = Partiality.Equality (λ (_ _ : A) → ⊤) using () renaming (_≈_ to _≈○_) -- _≈○_ is equivalent to "terminates iff terminates". ≈○⇔⇓≈⇓ : {A : Set} {x y : A ⊥} → x ≈○ y ⇔ (x ⇓ ⇔ y ⇓) ≈○⇔⇓≈⇓ {A} = equivalence (λ x≈y → equivalence (h₁ x≈y) (h₁ (RC.sym x≈y))) (h₂ _ _) where h₁ : {x y : A ⊥} → x ≈○ y → x ⇓ → y ⇓ h₁ (EC.now _) (v , now P.refl) = -, now P.refl h₁ (EC.later x≈y) (v , laterˡ x⇓v) = Prod.map id laterˡ $ h₁ (♭ x≈y) (v , x⇓v) h₁ (EC.laterʳ x≈y) (v , x⇓v) = Prod.map id laterˡ $ h₁ x≈y (v , x⇓v) h₁ (EC.laterˡ x≈y) (v , laterˡ x⇓v) = h₁ x≈y (v , x⇓v) h₂ : (x y : A ⊥) → x ⇓ ⇔ y ⇓ → x ≈○ y h₂ (now v) y x⇓⇔y⇓ = now v ≈○⟨ EC.now _ ⟩ now _ ≈○⟨ Partiality.map _ (sym $ proj₂ $ Equivalence.to x⇓⇔y⇓ ⟨$⟩ (-, now P.refl)) ⟩ y ∎○ h₂ x (now v) x⇓⇔y⇓ = x ≈○⟨ Partiality.map _ ( proj₂ $ Equivalence.from x⇓⇔y⇓ ⟨$⟩ (-, now P.refl)) ⟩ now _ ≈○⟨ EC.now _ ⟩ now v ∎○ h₂ (later x) (later y) x⇓⇔y⇓ = EC.later (♯ h₂ (♭ x) (♭ y) (equivalence (lemma (_⟨$⟩_ (Equivalence.to x⇓⇔y⇓))) (lemma (_⟨$⟩_ (Equivalence.from x⇓⇔y⇓))))) where lemma : {A : Set} {x y : ∞ (A ⊥)} → (later x ⇓ → later y ⇓) → (♭ x ⇓ → ♭ y ⇓) lemma hyp (v , x⇓) = Prod.map id laterˡ⁻¹ $ hyp (v , laterˡ x⇓) ------------------------------------------------------------------------ -- Two equivalent definitions of contextual equivalence -- Context m n consists of contexts with zero or more holes. The holes -- expect terms of type Tm m, and if we fill those holes we get a term -- of type Tm n. infixl 9 _·_ data Context (m : ℕ) : ℕ → Set where • : Context m m con : ∀ {n} (i : ℕ) → Context m n var : ∀ {n} (x : Fin n) → Context m n ƛ : ∀ {n} (C : Context m (suc n)) → Context m n _·_ : ∀ {n} (C₁ C₂ : Context m n) → Context m n -- Fills all the holes. infix 10 _[_] _[_] : ∀ {m n} → Context m n → Tm m → Tm n • [ t ] = t con i [ t ] = con i var x [ t ] = var x ƛ C [ t ] = ƛ (C [ t ]) (C₁ · C₂) [ t ] = C₁ [ t ] · C₂ [ t ] -- Contextual equivalence. -- -- Termination is the only observation. This is perhaps a bit strange: -- there is no way to observe the difference between con i and con j -- for i ≢ j. infix 4 _≈C_ _≈C_ : ∀ {n} → Tm n → Tm n → Set t₁ ≈C t₂ = ∀ C → ⟦ C [ t₁ ] ⟧ [] ≈○ ⟦ C [ t₂ ] ⟧ [] -- Alternative definition of contextual equivalence. infix 4 _≈C′_ _≈C′_ : ∀ {n} → Tm n → Tm n → Set t₁ ≈C′ t₂ = ∀ C → ⟦ C [ t₁ ] ⟧ [] ⇓ ⇔ ⟦ C [ t₂ ] ⟧ [] ⇓ -- These definitions are equivalent. ≈C⇔≈C′ : ∀ {n} {t₁ t₂ : Tm n} → t₁ ≈C t₂ ⇔ t₁ ≈C′ t₂ ≈C⇔≈C′ = equivalence (λ t₁≈t₂ C → Equivalence.to ≈○⇔⇓≈⇓ ⟨$⟩ t₁≈t₂ C) (λ t₁≈t₂ C → Equivalence.from ≈○⇔⇓≈⇓ ⟨$⟩ t₁≈t₂ C) ------------------------------------------------------------------------ -- A very strict term equivalence -- A term equivalence defined directly on top of the semantics. infix 4 _≈!_ _≈!_ : ∀ {n} → Tm n → Tm n → Set t₁ ≈! t₂ = ∀ ρ → ⟦ t₁ ⟧ ρ ≈ ⟦ t₂ ⟧ ρ -- This equivalence is not compatible. -- -- Note that the proof does not use constants (con). ¬-compatible : ¬ ((t₁ t₂ : Tm 1) → t₁ ≈! t₂ → ƛ t₁ ≈! ƛ t₂) ¬-compatible ƛ-cong with ƛ-cong (ƛ (vr 1) · ƛ (ƛ (vr 0))) (ƛ (vr 1) · ƛ (vr 0)) (λ _ → later (♯ now P.refl)) [] ... | now () ------------------------------------------------------------------------ -- Incorrect definition of applicative bisimilarity -- The difference between this definition and the one below is that in -- this definition ƛ is inductive rather than coinductive. module Incorrect where infix 4 _≈mv_ _≈v_ -- _≈mv_, _≈c_ and _≈v_ are defined mutually (coinductively). data _≈v_ : Value → Value → Set -- Equivalence of possibly exceptional values. _≈mv_ : Maybe Value → Maybe Value → Set _≈mv_ = Maybe.Pointwise _≈v_ -- Equivalence of computations. open module EA = Partiality.Equality _≈mv_ using () renaming (_≈_ to _≈c_) -- Equivalence of values. data _≈v_ where con : ∀ {i} → con i ≈v con i ƛ : ∀ {n₁} {t₁ : Tm (1 + n₁)} {ρ₁} {n₂} {t₂ : Tm (1 + n₂)} {ρ₂} (t₁≈t₂ : ∀ v → ⟦ t₁ ⟧ (v ∷ ρ₁) ≈c ⟦ t₂ ⟧ (v ∷ ρ₂)) → ƛ t₁ ρ₁ ≈v ƛ t₂ ρ₂ -- Applicative bisimilarity. infix 4 _≈t_ _≈t_ : ∀ {n} → Tm n → Tm n → Set t₁ ≈t t₂ = ∀ ρ → ⟦ t₁ ⟧ ρ ≈c ⟦ t₂ ⟧ ρ -- This notion of applicative bisimilarity is not reflexive. -- -- Note that the definition above is a bit strange in Agda: it is -- subject to the quantifier inversion described by Thorsten -- Altenkirch and myself in "Termination Checking in the Presence of -- Nested Inductive and Coinductive Types". However, for this proof -- it does not matter if _≈c_ is seen as having the form -- μX.νY.μZ. F X Y Z or νX.μY. F X Y; the ν part is never used. mutual distinct-c : ¬ now (just (ƛ (var zero) [])) ≈c now (just (ƛ (var zero) [])) distinct-c (now eq) = distinct-mv eq distinct-mv : ¬ just (ƛ (var zero) []) ≈mv just (ƛ (var zero) []) distinct-mv (just eq) = distinct-v eq distinct-v : ¬ ƛ (var zero) [] ≈v ƛ (var zero) [] distinct-v (ƛ eq) = distinct-c (eq (ƛ (var zero) [])) distinct-t : ¬ ƛ (var zero) ≈t (Tm 0 ∋ ƛ (var zero)) distinct-t eq = distinct-c (eq []) ------------------------------------------------------------------------ -- Applicative bisimilarity infix 4 _≈mv_ _≈v_ -- _≈mv_, _≈c_ and _≈v_ are defined mutually (coinductively). data _≈v_ : Value → Value → Set -- Equivalence of possibly exceptional values. _≈mv_ : Maybe Value → Maybe Value → Set _≈mv_ = Maybe.Pointwise _≈v_ -- Equivalence of computations. open module EA = Partiality.Equality _≈mv_ using () renaming (_≈_ to _≈c_) -- Equivalence of values. data _≈v_ where con : ∀ {i} → con i ≈v con i ƛ : ∀ {n₁} {t₁ : Tm (1 + n₁)} {ρ₁} {n₂} {t₂ : Tm (1 + n₂)} {ρ₂} (t₁≈t₂ : ∀ v → ∞ (⟦ t₁ ⟧ (v ∷ ρ₁) ≈c ⟦ t₂ ⟧ (v ∷ ρ₂))) → ƛ t₁ ρ₁ ≈v ƛ t₂ ρ₂ -- Applicative bisimilarity. infix 4 _≈t_ _≈t_ : ∀ {n} → Tm n → Tm n → Set t₁ ≈t t₂ = ∀ ρ → ⟦ t₁ ⟧ ρ ≈c ⟦ t₂ ⟧ ρ -- Applicative bisimilarity is reflexive. mutual infix 3 _∎mv _∎c _∎v _∎mv : (v : Maybe Value) → v ≈mv v just v ∎mv = just (v ∎v) nothing ∎mv = nothing _∎c : (x : Maybe Value ⊥) → x ≈c x now mv ∎c = EA.now (mv ∎mv) later x ∎c = EA.later (♯ (♭ x ∎c)) _∎v : (v : Value) → v ≈v v con i ∎v = con ƛ t ρ ∎v = ƛ (λ v → ♯ (⟦ t ⟧ (v ∷ ρ) ∎c)) infix 3 _∎t _∎t : ∀ {n} (t : Tm n) → t ≈t t t ∎t = λ ρ → ⟦ t ⟧ ρ ∎c -- Applicative bisimilarity is symmetric. mutual sym-mv : ∀ {v₁ v₂} → v₁ ≈mv v₂ → v₂ ≈mv v₁ sym-mv (just v₁≈v₂) = just (sym-v v₁≈v₂) sym-mv nothing = nothing sym-c : ∀ {x₁ x₂} → x₁ ≈c x₂ → x₂ ≈c x₁ sym-c (EA.now v₁≈v₂) = EA.now (sym-mv v₁≈v₂) sym-c (EA.later x₁≈x₂) = EA.later (♯ sym-c (♭ x₁≈x₂)) sym-c (EA.laterˡ x₁≈x₂) = EA.laterʳ (sym-c x₁≈x₂) sym-c (EA.laterʳ x₁≈x₂) = EA.laterˡ (sym-c x₁≈x₂) sym-v : ∀ {v₁ v₂} → v₁ ≈v v₂ → v₂ ≈v v₁ sym-v con = con sym-v (ƛ t₁≈t₂) = ƛ (λ v → ♯ sym-c (♭ (t₁≈t₂ v))) sym-t : ∀ {n} {t₁ t₂ : Tm n} → t₁ ≈t t₂ → t₂ ≈t t₁ sym-t t₁≈t₂ = λ ρ → sym-c (t₁≈t₂ ρ) -- Applicative bisimilarity is transitive. mutual trans-mv : ∀ {v₁ v₂ v₃} → v₁ ≈mv v₂ → v₂ ≈mv v₃ → v₁ ≈mv v₃ trans-mv (just v₁≈v₂) (just v₂≈v₃) = just (trans-v v₁≈v₂ v₂≈v₃) trans-mv nothing nothing = nothing private now-trans-c : ∀ {x₁ x₂ v₃} → x₁ ≈c x₂ → x₂ ≈c now v₃ → x₁ ≈c now v₃ now-trans-c (EA.now v₁≈v₂) (EA.now v₂≈v₃) = EA.now (trans-mv v₁≈v₂ v₂≈v₃) now-trans-c (EA.laterˡ x₁≈x₂) x₂≈v₃ = EA.laterˡ (now-trans-c x₁≈x₂ x₂≈v₃) now-trans-c x₁≈lx₂ (EA.laterˡ x₂≈v₃) = now-trans-c (laterʳ⁻¹ x₁≈lx₂) x₂≈v₃ later-trans-c : ∀ {x₁ x₂ x₃} → x₁ ≈c x₂ → x₂ ≈c later x₃ → x₁ ≈c later x₃ later-trans-c (EA.later x₁≈x₂) lx₂≈lx₃ = EA.later (♯ trans-c (♭ x₁≈x₂) (later⁻¹ lx₂≈lx₃)) later-trans-c (EA.laterˡ x₁≈x₂) x₂≈lx₃ = EA.later (♯ trans-c x₁≈x₂ (laterʳ⁻¹ x₂≈lx₃)) later-trans-c (EA.laterʳ x₁≈x₂) lx₂≈lx₃ = later-trans-c x₁≈x₂ (laterˡ⁻¹ lx₂≈lx₃) later-trans-c x₁≈x₂ (EA.laterʳ x₂≈x₃) = EA.laterʳ ( trans-c x₁≈x₂ x₂≈x₃ ) trans-c : ∀ {x₁ x₂ x₃} → x₁ ≈c x₂ → x₂ ≈c x₃ → x₁ ≈c x₃ trans-c {x₃ = now v₃} x₁≈x₂ x₂≈v₃ = now-trans-c x₁≈x₂ x₂≈v₃ trans-c {x₃ = later z₃} x₁≈x₂ x₂≈lx₃ = later-trans-c x₁≈x₂ x₂≈lx₃ trans-v : ∀ {v₁ v₂ v₃} → v₁ ≈v v₂ → v₂ ≈v v₃ → v₁ ≈v v₃ trans-v con con = con trans-v (ƛ t₁≈t₂) (ƛ t₂≈t₃) = ƛ (λ v → ♯ trans-c (♭ (t₁≈t₂ v)) (♭ (t₂≈t₃ v))) trans-t : ∀ {n} {t₁ t₂ t₃ : Tm n} → t₁ ≈t t₂ → t₂ ≈t t₃ → t₁ ≈t t₃ trans-t t₁≈t₂ t₂≈t₃ = λ ρ → trans-c (t₁≈t₂ ρ) (t₂≈t₃ ρ) -- Bind preserves applicative bisimilarity. infixl 1 _>>=-cong-c_ _>>=-cong-c_ : ∀ {x₁ x₂ f₁ f₂} → x₁ ≈c x₂ → (∀ {v₁ v₂} → v₁ ≈v v₂ → f₁ v₁ ≈c f₂ v₂) → (x₁ >>= f₁) ≈c (x₂ >>= f₂) _>>=-cong-c_ {f₁ = f₁} {f₂} x₁≈x₂ f₁≈f₂ = Partiality._>>=-cong_ x₁≈x₂ helper where helper : ∀ {mv₁ mv₂} → mv₁ ≈mv mv₂ → maybe f₁ fail mv₁ ≈c maybe f₂ fail mv₂ helper nothing = EA.now nothing helper (just v₁≈v₂) = f₁≈f₂ v₁≈v₂ -- _≈!_ is stronger than applicative bisimilarity. ≈!⇒≈t : ∀ {n} {t₁ t₂ : Tm n} → t₁ ≈! t₂ → t₁ ≈t t₂ ≈!⇒≈t t₁≈t₂ = λ ρ → Partiality.map (λ {v₁} v₁≡v₂ → P.subst (_≈mv_ v₁) v₁≡v₂ (v₁ ∎mv)) (t₁≈t₂ ρ) ¬≈t⇒≈! : ¬ ((t₁ t₂ : Tm 0) → t₁ ≈t t₂ → t₁ ≈! t₂) ¬≈t⇒≈! hyp with hyp t₁ t₂ bisimilar [] where t₁ : Tm 0 t₁ = ƛ (ƛ (vr 0)) · con 0 t₂ : Tm 0 t₂ = ƛ (vr 0) bisimilar : t₁ ≈t t₂ bisimilar [] = EA.laterˡ (EA.now (just (ƛ (λ v → ♯ (return v ∎c))))) ... | laterˡ (now ())
30.994536
103
0.530765
9a9cfcce6d1643c14a1ecbda2af2aaf7f07b222e
401
agda
Agda
src/Util/Relation/Binary/Closure/SymmetricTransitive.agda
JLimperg/msc-thesis-code
104cddc6b65386c7e121c13db417aebfd4b7a863
[ "MIT" ]
5
2021-04-13T21:31:17.000Z
2021-06-26T06:37:31.000Z
src/Util/Relation/Binary/Closure/SymmetricTransitive.agda
JLimperg/msc-thesis-code
104cddc6b65386c7e121c13db417aebfd4b7a863
[ "MIT" ]
null
null
null
src/Util/Relation/Binary/Closure/SymmetricTransitive.agda
JLimperg/msc-thesis-code
104cddc6b65386c7e121c13db417aebfd4b7a863
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Util.Relation.Binary.Closure.SymmetricTransitive where open import Relation.Binary using (Rel) open import Util.Prelude data SymTrans {α ρ} {A : Set α} (R : Rel A ρ) : Rel A (α ⊔ℓ ρ) where `base : ∀ {x y} → R x y → SymTrans R x y `sym : ∀ {x y} → SymTrans R y x → SymTrans R x y `trans : ∀ {x y z} → SymTrans R x y → SymTrans R y z → SymTrans R x z
30.846154
71
0.628429
2ee082575d0451d4eaa9f58291c8d4b8ab25692a
506
agda
Agda
test/Fail/Issue958b.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue958b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue958b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where open import Imports.Issue958 -- Extra parameterised module to make sure checkpoints line up with -- the checkpoints in the imported module. module Dummy (X : Set) where module M (_ fun : IsFunctor) where open IsFunctor -- Here we're in the "same" checkpoint as when the display form was -- created. It's not the same though, so the display form should be -- generalized and lifted to the appropriate context. test : map fun test = fun -- EXPECTED: IsFunctor !=< map fun
24.095238
69
0.72332
3df3f3e888f3d7fb6976e997a66fc3272d0303f1
1,258
agda
Agda
src/Implicits/Resolution/Scala/Terminates.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
4
2019-04-05T17:57:11.000Z
2021-05-07T04:08:41.000Z
src/Implicits/Resolution/Scala/Terminates.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
src/Implicits/Resolution/Scala/Terminates.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
open import Prelude module Implicits.Resolution.Scala.Terminates where open import Implicits.Syntax open import Implicits.Substitutions open import Implicits.Resolution.Infinite.Algorithm open import Implicits.Resolution.Scala.Type open import Category.Monad.Partiality open import Category.Monad.Partiality as P open Workaround open import Category.Monad.Partiality.All using (All; module Alternative) open Alternative renaming (sound to AllP-sound) hiding (complete) private open import Relation.Binary.PropositionalEquality as PEq using (_≡_) open module PartialEq = P.Equality {A = Bool} _≡_ open module PartialReasoning = P.Reasoning (PEq.isEquivalence {A = Bool}) match-terminates : ∀ {ν} (Δ : ICtx ν) → (τ : SimpleType ν) → (r : Type ν) → (match Δ τ r) ⇓ match-terminates Δ τ r = ? match1st-terminates : ∀ {ν} (Δ : ICtx ν) → (ρs : ICtx ν) → (τ : SimpleType ν) → (match1st Δ ρs τ) ⇓ match1st-terminates Δ List.[] τ = false , (now refl) match1st-terminates Δ (x List.∷ ρs) τ = {!!} terminates : ∀ {ν} (Δ : ICtx ν) (a : Type ν) → ScalaICtx Δ → ScalaType a → (resolve Δ a) ⇓ terminates Δ (simpl x) p q = match1st-terminates Δ Δ x terminates Δ (∀' a) p (∀' q) = terminates (ictx-weaken Δ) a (weaken-scalaictx p) q terminates Δ (a ⇒ b) p ()
39.3125
99
0.715421
132c9dfb5242f064ac0c1e19f9cc45b351805aff
1,521
agda
Agda
src/Implicits/Syntax/Type/Unification.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
4
2019-04-05T17:57:11.000Z
2021-05-07T04:08:41.000Z
src/Implicits/Syntax/Type/Unification.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
src/Implicits/Syntax/Type/Unification.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
open import Prelude module Implicits.Syntax.Type.Unification where open import Data.Maybe as Maybe open import Data.Unit open import Implicits.Syntax open import Implicits.Syntax.Type.Unification.McBride as McBride using ( substitute; asub; AList; _//_) public open import Data.Vec.Properties open import Data.Nat as N using () open import Data.Nat.Properties.Simple open import Category.Monad open import Data.Fin.Substitution open import Implicits.Substitutions open import Implicits.Syntax.MetaType public open import Implicits.Substitutions.Lemmas open McBride using (substitute; asub; AList; ASub; _//_; asub-weaken) public private module M = MetaTypeMetaSubst module T = MetaTypeTypeSubst -- Just a bit stricter than mcbride.mgu -- We require here as well that all meta variables are instantiated -- (this is equivalent to the ⊢unamb constraint in Oliveira) mgu : ∀ {m ν} (a : MetaType m ν) → (b : SimpleType ν) → Maybe (Sub (flip MetaType ν) m zero) mgu a b with McBride.mgu a (simpl b) mgu a b | just (zero , u) = just (asub u) mgu a b | just (suc m , _) = nothing mgu a b | nothing = nothing Unifier : ∀ {m ν} → (MetaType m ν) → SimpleType ν → (Sub (flip MetaType ν) m zero) → Set Unifier {m} a b u = from-meta (a M./ u) ≡ (simpl b) Unifiable : ∀ {m ν} → (MetaType m ν) → SimpleType ν → Set Unifiable a τ = ∃ (Unifier a τ) ◁-Unifiable : ∀ {m ν} → MetaType m ν → SimpleType ν → Set ◁-Unifiable x τ = Unifiable (x M.◁m) τ meta-weaken = M.weaken smeta-weaken = M.smeta-weaken open-meta = M.open-meta
33.065217
92
0.722551
1a2eb7f674ec4561c12315c884c154bf40eaf02f
2,749
agda
Agda
src/Data/QuadTree/Implementation/PropDepthRelation.agda
JonathanBrouwer/research-project
4959a3c9cd8563a1726e0e968e6a179008cd4d9f
[ "Unlicense" ]
1
2021-05-25T09:10:20.000Z
2021-05-25T09:10:20.000Z
src/Data/QuadTree/Implementation/PropDepthRelation.agda
JonathanBrouwer/research-project
4959a3c9cd8563a1726e0e968e6a179008cd4d9f
[ "Unlicense" ]
null
null
null
src/Data/QuadTree/Implementation/PropDepthRelation.agda
JonathanBrouwer/research-project
4959a3c9cd8563a1726e0e968e6a179008cd4d9f
[ "Unlicense" ]
null
null
null
module Data.QuadTree.Implementation.PropDepthRelation where open import Haskell.Prelude open import Data.Logic ---- Properties of depth lteTransitiveWeird : (x y d : Nat) -> IsTrue (x < y) -> (y <= d) ≡ ((x <= d) && (y <= d)) lteTransitiveWeird zero zero zero xlty = refl lteTransitiveWeird zero zero (suc d) xlty = refl lteTransitiveWeird zero (suc y) zero xlty = refl lteTransitiveWeird zero (suc y) (suc d) xlty = refl lteTransitiveWeird (suc x) (suc y) zero xlty = refl lteTransitiveWeird (suc x) (suc y) (suc d) xlty = lteTransitiveWeird x y d xlty lteTransitiveWeirdInv : (x y d : Nat) -> IsFalse (x < y) -> (x <= d) ≡ ((x <= d) && (y <= d)) lteTransitiveWeirdInv zero zero zero xnlty = refl lteTransitiveWeirdInv zero zero (suc d) xnlty = refl lteTransitiveWeirdInv (suc x) zero zero xnlty = refl lteTransitiveWeirdInv (suc x) zero (suc d) xnlty = begin (suc x <= suc d) =⟨ sym $ boolAndTrue (suc x <= suc d) ⟩ (suc x <= suc d) && true =⟨⟩ ((suc x <= suc d) && (zero <= suc d)) end lteTransitiveWeirdInv (suc x) (suc y) zero xnlty = refl lteTransitiveWeirdInv (suc x) (suc y) (suc d) xnlty = lteTransitiveWeirdInv x y d xnlty ifComparisonMap : (x y d : Nat) -> ((x <= d) && (y <= d)) ≡ (if x < y then (y <= d) else (x <= d)) ifComparisonMap x y d = ifc x < y then (λ {{xlty}} -> begin (x <= d) && (y <= d) =⟨ sym $ lteTransitiveWeird x y d xlty ⟩ y <= d =⟨ sym $ ifTrue (x < y) xlty ⟩ (if x < y then (y <= d) else (x <= d)) end ) else (λ {{xnlty}} -> begin (x <= d) && (y <= d) =⟨ sym $ lteTransitiveWeirdInv x y d xnlty ⟩ x <= d =⟨ sym $ ifFalse (x < y) xnlty ⟩ (if x < y then (y <= d) else (x <= d)) end ) propMaxLte : (x y d : Nat) -> ((x <= d) && (y <= d)) ≡ (max x y <= d) propMaxLte x y d = begin (x <= d) && (y <= d) =⟨ ifComparisonMap x y d ⟩ (if x < y then (y <= d) else (x <= d)) =⟨ propFnIf (λ v -> v <= d) ⟩ (if x < y then y else x) <= d =⟨⟩ max x y <= d end propAndMap : (a b c d : Bool) -> a ≡ c -> b ≡ d -> (a && b) ≡ (c && d) propAndMap false false false false ac bd = refl propAndMap false true false true ac bd = refl propAndMap true false true false ac bd = refl propAndMap true true true true ac bd = refl propMaxLte4 : (w x y z d : Nat) -> (((w <= d) && (x <= d)) && ((y <= d) && (z <= d))) ≡ (max (max w x) (max y z) <= d) propMaxLte4 w x y z d = begin ((w <= d) && (x <= d)) && ((y <= d) && (z <= d)) =⟨ propAndMap ((w <= d) && (x <= d)) ((y <= d) && (z <= d)) (max w x <= d) (max y z <= d) (propMaxLte w x d) (propMaxLte y z d) ⟩ (max w x <= d) && (max y z <= d) =⟨ propMaxLte (if w < x then x else w) (if y < z then z else y) d ⟩ (max (max w x) (max y z) <= d) end
34.797468
131
0.545289
0409ecda60bdf59158f42ba37078cbd3c11a2a98
3,531
agda
Agda
Cats/Category/Cat.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
24
2017-11-03T15:18:57.000Z
2021-08-06T05:00:46.000Z
Cats/Category/Cat.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
null
null
null
Cats/Category/Cat.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
1
2019-03-18T15:35:07.000Z
2019-03-18T15:35:07.000Z
{-# OPTIONS --without-K --safe #-} module Cats.Category.Cat where open import Cats.Functor public using (Functor ; _∘_ ; id) open import Data.Product using (_,_) open import Data.Unit using (⊤ ; tt) open import Level open import Relation.Binary using (IsEquivalence ; _Preserves_⟶_ ; _Preserves₂_⟶_⟶_) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) open import Cats.Category.Base open import Cats.Category.Zero open import Cats.Category.One open import Cats.Trans.Iso as NatIso using (NatIso ; iso ; forth-natural) import Cats.Category.Constructions.Iso as Iso open Functor open Iso.Build._≅_ private module ≅ {lo la l≈} (C : Category lo la l≈) = Iso.Build.≅ C _⇒_ : ∀ {lo la l≈ lo′ la′ l≈′} → Category lo la l≈ → Category lo′ la′ l≈′ → Set _ C ⇒ D = Functor C D module _ {lo la l≈ lo′ la′ l≈′} {C : Category lo la l≈} {D : Category lo′ la′ l≈′} where infixr 4 _≈_ _≈_ : (F G : C ⇒ D) → Set (lo ⊔ la ⊔ lo′ ⊔ la′ ⊔ l≈′) F ≈ G = NatIso F G equiv : IsEquivalence _≈_ equiv = record { refl = NatIso.id ; sym = NatIso.sym ; trans = λ eq₁ eq₂ → eq₂ NatIso.∘ eq₁ } module _ {lo la l≈ lo′ la′ l≈′} {C : Category lo la l≈} {D : Category lo′ la′ l≈′} where ∘-resp : ∀ {lo″ la″ l≈″} {E : Category lo″ la″ l≈″} → {F G : D ⇒ E} {H I : C ⇒ D} → F ≈ G → H ≈ I → F ∘ H ≈ G ∘ I ∘-resp {E = E} {F} {G} {H} {I} record { iso = F≅G ; forth-natural = fnat-GH } record { iso = H≅I ; forth-natural = fnat-HI } = record { iso = ≅.trans E F≅G (fobj-resp G H≅I) ; forth-natural = λ {_} {_} {f} → begin (fmap G (forth H≅I) E.∘ forth F≅G) E.∘ fmap F (fmap H f) ≈⟨ E.assoc ⟩ fmap G (forth H≅I) E.∘ forth F≅G E.∘ fmap F (fmap H f) ≈⟨ E.∘-resp-r fnat-GH ⟩ fmap G (forth H≅I) E.∘ fmap G (fmap H f) E.∘ forth F≅G ≈⟨ E.unassoc ⟩ (fmap G (forth H≅I) E.∘ fmap G (fmap H f)) E.∘ forth F≅G ≈⟨ E.∘-resp-l (fmap-∘ G) ⟩ fmap G (forth H≅I D.∘ fmap H f) E.∘ forth F≅G ≈⟨ E.∘-resp-l (fmap-resp G fnat-HI) ⟩ fmap G (fmap I f D.∘ forth H≅I) E.∘ forth F≅G ≈⟨ E.∘-resp-l (E.≈.sym (fmap-∘ G)) ⟩ (fmap G (fmap I f) E.∘ fmap G (forth H≅I)) E.∘ forth F≅G ≈⟨ E.assoc ⟩ fmap G (fmap I f) E.∘ fmap G (forth H≅I) E.∘ forth F≅G ∎ } where module D = Category D module E = Category E open E.≈-Reasoning id-r : {F : C ⇒ D} → F ∘ id ≈ F id-r {F} = record { iso = ≅.refl D ; forth-natural = D.≈.trans D.id-l (D.≈.sym D.id-r) } where module D = Category D id-l : {F : C ⇒ D} → id ∘ F ≈ F id-l {F} = record { iso = ≅.refl D ; forth-natural = D.≈.trans D.id-l (D.≈.sym D.id-r) } where module D = Category D assoc : ∀ {lo″ la″ l≈″ lo‴ la‴ l≈‴} → {E : Category lo″ la″ l≈″} {X : Category lo‴ la‴ l≈‴} → (F : E ⇒ X) (G : D ⇒ E) (H : C ⇒ D) → (F ∘ G) ∘ H ≈ F ∘ (G ∘ H) assoc {E = E} {X} _ _ _ = record { iso = ≅.refl X ; forth-natural = X.≈.trans X.id-l (X.≈.sym X.id-r) } where module X = Category X Cat : ∀ lo la l≈ → Category (suc (lo ⊔ la ⊔ l≈)) (lo ⊔ la ⊔ l≈) (lo ⊔ la ⊔ l≈) Cat lo la l≈ = record { Obj = Category lo la l≈ ; _⇒_ = _⇒_ ; _≈_ = _≈_ ; id = id ; _∘_ = _∘_ ; equiv = equiv ; ∘-resp = ∘-resp ; id-r = id-r ; id-l = id-l ; assoc = λ {_} {_} {_} {_} {F} {G} {H} → assoc F G H }
26.155556
73
0.492778
1aa8e00c317c6c38870969d358cf747bba66dd94
1,809
agda
Agda
examples/Termination/Nat.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/Termination/Nat.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/Termination/Nat.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Nat where data Rel (A : Set) : Set1 where rel : (A -> A -> Set) -> Rel A _is_than_ : {A : Set} -> A -> Rel A -> A -> Set x is rel f than y = f x y data Acc {A : Set} (less : Rel A) (x : A) : Set where acc : ((y : A) -> x is less than y -> Acc less y) -> Acc less x data WO {A : Set} (less : Rel A) : Set where wo : ((x : A) -> Acc less x) -> WO less data False : Set where data True : Set where tt : True data Nat : Set where Z : Nat S : Nat -> Nat data ∏ {A : Set} (f : A -> Set) : Set where ∏I : ((z : A) -> f z) -> ∏ f ltNat : Nat -> Nat -> Set ltNat Z Z = False ltNat Z (S n) = True ltNat (S m) (S n) = ltNat m n ltNat (S m) Z = False ltNatRel : Rel Nat ltNatRel = rel ltNat postulate woltNat : WO ltNatRel idN : Nat -> Nat idN x = x id : {A : Set} -> A -> A id x = x down1 : Nat -> Nat down1 Z = Z down1 (S n) = down1 n -- measure down1 = (woNat, id) -- For a function f : (x:A) -> B(x) -- f(p) = ... f(x1) ... f(x2) -- measure_set : Set -- measure_rel : Rel measure_set -- measure_ord : WO measure_rel -- measure_fun : A -> measure_set -- For j-th call of f in i-th clause of f: -- measure_i_j_hint : xj is measure_rel than p data Measure : Set1 where μ : {M : Set} -> {rel : Rel M} -> (ord : WO rel) -> Measure {- down1_measure_set : Set down1_measure_set = Nat down1_measure_rel : Rel down1_measure_set down1_measure_rel = ltNatRel down1_measure_ord : WO measure_rel down1_measure_ord = woltNat -} down1-measure : Measure down1-measure = μ woltNat down1-2-1-hint : (n : Nat) -> n is ltNatRel than (S n) down1-2-1-hint Z = tt down1-2-1-hint (S n) = down1-2-1-hint n {- down2 : Nat -> Nat down2 Z = Z down2 (S n) = down2 (idN n) down3 : Nat -> Nat down3 Z = Z down3 (S n) = down3 (id n) plus : Nat -> Nat -> Nat plus Z n = n plus (S m) n = S(plus m n) -}
19.663043
65
0.590381
31faa976d2240ccdf63a98d55978859ed534faaa
1,317
agda
Agda
src/Fragment/Algebra/Properties.agda
yallop/agda-fragment
f2a6b1cf4bc95214bd075a155012f84c593b9496
[ "MIT" ]
18
2021-06-15T15:45:39.000Z
2022-01-17T17:26:09.000Z
src/Fragment/Algebra/Properties.agda
yallop/agda-fragment
f2a6b1cf4bc95214bd075a155012f84c593b9496
[ "MIT" ]
1
2021-06-16T09:44:31.000Z
2021-06-16T10:24:15.000Z
src/Fragment/Algebra/Properties.agda
yallop/agda-fragment
f2a6b1cf4bc95214bd075a155012f84c593b9496
[ "MIT" ]
3
2021-06-15T15:34:50.000Z
2021-06-16T08:04:31.000Z
{-# OPTIONS --without-K --exact-split --safe #-} open import Fragment.Algebra.Signature module Fragment.Algebra.Properties where open import Fragment.Algebra.Algebra open import Fragment.Algebra.Free open import Level using (Level) open import Data.Nat using (ℕ) open import Data.Vec using (Vec; []; _∷_) private variable a ℓ : Level mutual map-extend : ∀ {Σ O a n} → {A : Set a} → Vec (Term Σ A) n → Vec (Term (Σ ⦅ O ⦆) A) n map-extend [] = [] map-extend (x ∷ xs) = extend x ∷ map-extend xs extend : ∀ {Σ O} → {A : Set a} → Term Σ A → Term (Σ ⦅ O ⦆) A extend (atom x) = atom x extend (term f xs) = term (oldₒ f) (map-extend xs) forgetₒ : ∀ {Σ O} → Algebra (Σ ⦅ O ⦆) {a} {ℓ} → Algebra Σ {a} {ℓ} forgetₒ {Σ = Σ} A = record { ∥_∥/≈ = ∥ A ∥/≈ ; ∥_∥/≈-isAlgebra = forget-isAlgebra } where forget-⟦_⟧ : Interpretation Σ ∥ A ∥/≈ forget-⟦ f ⟧ x = A ⟦ oldₒ f ⟧ x forget-⟦⟧-cong : Congruence Σ ∥ A ∥/≈ forget-⟦_⟧ forget-⟦⟧-cong f x = (A ⟦ oldₒ f ⟧-cong) x forget-isAlgebra : IsAlgebra Σ ∥ A ∥/≈ forget-isAlgebra = record { ⟦_⟧ = forget-⟦_⟧ ; ⟦⟧-cong = forget-⟦⟧-cong }
29.266667
65
0.495824
4ba58730399dfbc6e509548129f1ec3b881e92b9
505
agda
Agda
src/data/lib/prim/Agda/Builtin/Char.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
src/data/lib/prim/Agda/Builtin/Char.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
src/data/lib/prim/Agda/Builtin/Char.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2021-04-01T18:30:09.000Z
2021-04-01T18:30:09.000Z
{-# OPTIONS --without-K --safe --no-universe-polymorphism --no-sized-types --no-guardedness #-} module Agda.Builtin.Char where open import Agda.Builtin.Nat open import Agda.Builtin.Bool postulate Char : Set {-# BUILTIN CHAR Char #-} primitive primIsLower primIsDigit primIsAlpha primIsSpace primIsAscii primIsLatin1 primIsPrint primIsHexDigit : Char → Bool primToUpper primToLower : Char → Char primCharToNat : Char → Nat primNatToChar : Nat → Char primCharEquality : Char → Char → Bool
28.055556
95
0.750495
13d719c2fd63f6dd877570b0befc04b9663b5ce7
1,166
agda
Agda
Numeral/Natural/Relation/Properties.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Numeral/Natural/Relation/Properties.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Numeral/Natural/Relation/Properties.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Numeral.Natural.Relation.Properties where import Lvl open import Data.Tuple as Tuple using (_⨯_ ; _,_) open import Functional open import Logic.Propositional open import Logic.Propositional.Theorems open import Logic.Predicate open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Proofs open import Numeral.Natural.Induction open import Numeral.Natural.Relation open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Function.Domain open import Structure.Operator.Properties open import Structure.Relator.Ordering open import Structure.Relator.Properties open import Type [ℕ]-zero-or-nonzero : ∀{n : ℕ} → (n ≡ 𝟎)∨(n ≢ 𝟎) [ℕ]-zero-or-nonzero {𝟎} = [∨]-introₗ [≡]-intro [ℕ]-zero-or-nonzero {𝐒(_)} = [∨]-introᵣ \() [≡][ℕ]-excluded-middle : ∀{a b : ℕ} → (a ≡ b)∨(a ≢ b) [≡][ℕ]-excluded-middle {𝟎} {𝟎} = [∨]-introₗ [≡]-intro [≡][ℕ]-excluded-middle {𝟎} {𝐒(_)} = [∨]-introᵣ \() [≡][ℕ]-excluded-middle {𝐒(_)}{𝟎} = [∨]-introᵣ \() [≡][ℕ]-excluded-middle {𝐒(a)}{𝐒(b)} = [∨]-elim ([∨]-introₗ ∘ [≡]-with(𝐒)) ([∨]-introᵣ ∘ (contrapositiveᵣ(injective(𝐒)))) ([≡][ℕ]-excluded-middle {a}{b})
37.612903
152
0.686106
2ef01610b7a43051e9815a6c4353005c28f9df86
720
agda
Agda
test/Succeed/Issue2727.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2727.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2727.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where open import Agda.Builtin.Equality using (_≡_; refl) -- First example -- module M (A : Set) where record R : Set where data D : Set where open R (record {}) postulate x : A F : D → Set₁ F _ rewrite refl {x = x} = Set -- Second example -- record ⊤ : Set where no-eta-equality constructor tt data Box (A : Set) : Set where [_] : A → Box A Unit : Set Unit = Box ⊤ F : Unit → Set → Set F [ _ ] x = x G : {P : Unit → Set} → ((x : ⊤) → P [ x ]) → ((x : Unit) → P x) G f [ x ] = f x record R : Set₁ where no-eta-equality field f : (x : Unit) → Box (F x ⊤) data ⊥ : Set where r : R r = record { f = G [_] } open R r H : ⊥ → Set₁ H _ rewrite refl {x = tt} = Set
13.584906
63
0.533333
04657132a85f6b9b0267073316911f70c4e674fb
104
agda
Agda
src/Extensions/Fin.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
4
2019-04-05T17:57:11.000Z
2021-05-07T04:08:41.000Z
src/Extensions/Fin.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
src/Extensions/Fin.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
module Extensions.Fin where open import Prelude open import Data.Fin hiding (_<_) open import Data.Nat
17.333333
33
0.798077
d06648168e36676e7375c834c1b4f73173d52c0d
151
agda
Agda
test/Succeed/Imports/Issue5583.agda
MxmUrw/agda
6ede01fa854c5472e54f7d1799ca2c08ed316129
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Imports/Issue5583.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Imports/Issue5583.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Builtin.Unit module Imports.Issue5583 (_ : ⊤) where it : ∀ {A : Set} → ⦃ A ⦄ → A it ⦃ x ⦄ = x data X : Set where instance x : X
13.727273
38
0.582781
0489857f026e004f6d805e48b6709842b76abb32
26,178
agda
Agda
delta-lemmas.agda
nickcollins/dependent-dicts-agda
db857f3e7dc9a4793f68504e6365d93ed75d7f88
[ "MIT" ]
null
null
null
delta-lemmas.agda
nickcollins/dependent-dicts-agda
db857f3e7dc9a4793f68504e6365d93ed75d7f88
[ "MIT" ]
null
null
null
delta-lemmas.agda
nickcollins/dependent-dicts-agda
db857f3e7dc9a4793f68504e6365d93ed75d7f88
[ "MIT" ]
null
null
null
open import Prelude open import Nat open import List open import Bij module delta-lemmas (K : Set) {{bij : bij K Nat}} where -- abbreviations for conversion between K and Nat key : Nat → K key = convert-inv {{bij}} nat : K → Nat nat = bij.convert bij -- another bij-related convenience functions inj-cp : ∀{k1 k2} → k1 ≠ k2 → nat k1 ≠ nat k2 inj-cp ne eq = abort (ne (bij.inj bij eq)) -- helper function delta : ∀{n m} → n < m → Nat delta n<m = difference (n<m→1+n≤m n<m) -- raw underlying list-of-pairs type dl : (V : Set) → Set dl V = List (Nat ∧ V) ---- helper definitions ---- _lkup_ : {V : Set} → dl V → Nat → Maybe V [] lkup x = None ((hn , hv) :: t) lkup n with <dec n hn ... | Inl n<hn = None ... | Inr (Inl refl) = Some hv ... | Inr (Inr hn<n) = t lkup (delta hn<n) _,,'_ : ∀{V} → dl V → (Nat ∧ V) → dl V [] ,,' (n , v) = (n , v) :: [] ((hn , hv) :: t) ,,' (n , v) with <dec n hn ... | Inl n<hn = (n , v) :: ((delta n<hn , hv) :: t) ... | Inr (Inl refl) = (n , v) :: t ... | Inr (Inr hn<n) = (hn , hv) :: (t ,,' (delta hn<n , v)) data _∈'_ : {V : Set} (p : Nat ∧ V) → (d : dl V) → Set where InH : {V : Set} {d : dl V} {n : Nat} {v : V} → (n , v) ∈' ((n , v) :: d) InT : {V : Set} {d : dl V} {n s : Nat} {v v' : V} → (n , v) ∈' d → (n + 1+ s , v) ∈' ((s , v') :: d) dom' : {V : Set} → dl V → Nat → Set dom' {V} d n = Σ[ v ∈ V ] ((n , v) ∈' d) _#'_ : {V : Set} (n : Nat) → (d : dl V) → Set n #' d = dom' d n → ⊥ ---- lemmas ---- undelta : (x s : Nat) → (x<s+1+x : x < s + 1+ x) → s == delta x<s+1+x undelta x s x<s+1+x rewrite n+1+m==1+n+m {s} {x} | ! (m-n==1+m-1+n n≤m+n (n<m→1+n≤m x<s+1+x)) | +comm {s} {x} = ! (n+m-n==m n≤n+m) n#'[] : {V : Set} {n : Nat} → _#'_ {V} n [] n#'[] (_ , ()) too-small : {V : Set} {d : dl V} {xl xb : Nat} {v : V} → xl < xb → dom' ((xb , v) :: d) xl → ⊥ too-small (_ , ne) (_ , InH) = ne refl too-small (x+1+xb≤xb , x+1+xb==xb) (_ , InT _) = x+1+xb==xb (≤antisym x+1+xb≤xb (≤trans (≤1+ ≤refl) n≤m+n)) all-not-none : {V : Set} {d : dl V} {x : Nat} {v : V} → None ≠ (((x , v) :: d) lkup x) all-not-none {x = x} rewrite <dec-refl x = λ () all-bindings-==-rec-eq : {V : Set} {d1 d2 : dl V} {x : Nat} {v : V} → ((x' : Nat) → ((x , v) :: d1) lkup x' == ((x , v) :: d2) lkup x') → ((x' : Nat) → d1 lkup x' == d2 lkup x') all-bindings-==-rec-eq {x = x} h x' with h (x' + 1+ x) ... | eq with <dec (x' + 1+ x) x ... | Inl x'+1+x<x = abort (<antisym x'+1+x<x (n<m→n<s+m n<1+n)) ... | Inr (Inl x'+1+x==x) = abort ((flip n≠n+1+m) (n+1+m==1+n+m · (+comm {1+ x} · x'+1+x==x))) ... | Inr (Inr x<x'+1+x) rewrite ! (undelta x x' x<x'+1+x) = eq all-bindings-==-rec : {V : Set} {d1 d2 : dl V} {x1 x2 : Nat} {v1 v2 : V} → ((x : Nat) → ((x1 , v1) :: d1) lkup x == ((x2 , v2) :: d2) lkup x) → ((x : Nat) → d1 lkup x == d2 lkup x) all-bindings-==-rec {x1 = x1} {x2} h x with h x1 | h x2 ... | eq1 | eq2 rewrite <dec-refl x1 | <dec-refl x2 with <dec x1 x2 | <dec x2 x1 ... | Inl _ | _ = abort (somenotnone eq1) ... | Inr _ | Inl _ = abort (somenotnone (! eq2)) ... | Inr (Inl refl) | Inr (Inl refl) rewrite someinj eq1 | someinj eq2 = all-bindings-==-rec-eq h x ... | Inr (Inl refl) | Inr (Inr x2<x2) = abort (<antirefl x2<x2) ... | Inr (Inr x2<x2) | Inr (Inl refl) = abort (<antirefl x2<x2) ... | Inr (Inr x2<x1) | Inr (Inr x1<x2) = abort (<antisym x1<x2 x2<x1) sad-lemma : {V : Set} {d : dl V} {x n : Nat} {v v' : V} → (x + 1+ n , v') ∈' ((n , v) :: d) → Σ[ x' ∈ Nat ] Σ[ d' ∈ dl V ] ( d' == ((n , v) :: d) ∧ x' == x + 1+ n ∧ (x' , v') ∈' d') sad-lemma h = _ , _ , refl , refl , h lemma-math' : ∀{x x1 n} → x ≠ x1 + (n + 1+ x) lemma-math' {x} {x1} {n} rewrite ! (+assc {x1} {n} {1+ x}) | n+1+m==1+n+m {x1 + n} {x} | +comm {1+ x1 + n} {x} = n≠n+1+m lookup-cons-2' : {V : Set} {d : dl V} {n : Nat} {v : V} → d lkup n == Some v → (n , v) ∈' d lookup-cons-2' {d = []} () lookup-cons-2' {d = ((hn , hv) :: t)} {n} h with <dec n hn lookup-cons-2' {d = ((hn , hv) :: t)} {n} () | Inl _ lookup-cons-2' {d = ((hn , hv) :: t)} {.hn} refl | Inr (Inl refl) = InH lookup-cons-2' {d = ((hn , hv) :: t)} {n} {v} h | Inr (Inr hn<n) = tr (λ y → (y , v) ∈' ((hn , hv) :: t)) (m-n+n==m (n<m→1+n≤m hn<n)) (InT (lookup-cons-2' {d = t} h)) lookup-cons-1' : {V : Set} {d : dl V} {n : Nat} {v : V} → (n , v) ∈' d → d lkup n == Some v lookup-cons-1' {n = x} InH rewrite <dec-refl x = refl lookup-cons-1' (InT {d = d} {n = x} {s} {v} x∈d) with <dec (x + 1+ s) s ... | Inl x+1+s<s = abort (<antisym x+1+s<s (n<m→n<s+m n<1+n)) ... | Inr (Inl x+1+s==s) = abort ((flip n≠n+1+m) (n+1+m==1+n+m · (+comm {1+ s} · x+1+s==s))) ... | Inr (Inr s<x+1+s) with lookup-cons-1' x∈d ... | h rewrite ! (undelta s x s<x+1+s) = h n,v∈'d,,n,v : {V : Set} {d : dl V} {n : Nat} {v : V} → (n , v) ∈' (d ,,' (n , v)) n,v∈'d,,n,v {d = []} {n} {v} = InH n,v∈'d,,n,v {d = ((hn , hv) :: t)} {n} {v} with <dec n hn ... | Inl _ = InH ... | Inr (Inl refl) = InH ... | Inr (Inr hn<n) = tr (λ y → (y , v) ∈' ((hn , hv) :: (t ,,' (delta hn<n , v)))) (m-n+n==m (n<m→1+n≤m hn<n)) (InT (n,v∈'d,,n,v {d = t} {delta hn<n})) n∈d+→'n∈d : {V : Set} {d : dl V} {n n' : Nat} {v v' : V} → n ≠ n' → (n , v) ∈' (d ,,' (n' , v')) → (n , v) ∈' d n∈d+→'n∈d {d = []} n≠n' InH = abort (n≠n' refl) n∈d+→'n∈d {d = []} n≠n' (InT ()) n∈d+→'n∈d {d = (hn , hv) :: t} {n' = n'} n≠n' n∈d+ with <dec n' hn n∈d+→'n∈d {_} {(hn , hv) :: t} {n' = n'} n≠n' InH | Inl n'<hn = abort (n≠n' refl) n∈d+→'n∈d {_} {(hn , hv) :: t} {n' = n'} n≠n' (InT InH) | Inl n'<hn rewrite m-n+n==m (n<m→1+n≤m n'<hn) = InH n∈d+→'n∈d {_} {(hn , hv) :: t} {n' = n'} n≠n' (InT (InT {n = n} n∈d+)) | Inl n'<hn rewrite +assc {n} {1+ (delta n'<hn)} {1+ n'} | m-n+n==m (n<m→1+n≤m n'<hn) = InT n∈d+ n∈d+→'n∈d {_} {(hn , hv) :: t} {n' = .hn} n≠n' InH | Inr (Inl refl) = abort (n≠n' refl) n∈d+→'n∈d {_} {(hn , hv) :: t} {n' = .hn} n≠n' (InT n∈d+) | Inr (Inl refl) = InT n∈d+ n∈d+→'n∈d {_} {(hn , hv) :: t} {n' = n'} n≠n' InH | Inr (Inr hn<n') = InH n∈d+→'n∈d {_} {(hn , hv) :: t} {n' = n'} n≠n' (InT n∈d+) | Inr (Inr hn<n') = InT (n∈d+→'n∈d (λ where refl → n≠n' (m-n+n==m (n<m→1+n≤m hn<n'))) n∈d+) n∈d→'n∈d+ : {V : Set} {d : dl V} {n n' : Nat} {v v' : V} → n ≠ n' → (n , v) ∈' d → (n , v) ∈' (d ,,' (n' , v')) n∈d→'n∈d+ {n = n} {n'} {v} {v'} n≠n' (InH {d = d'}) with <dec n' n ... | Inl n'<n = tr (λ y → (y , v) ∈' ((n' , v') :: ((delta n'<n , v) :: d'))) (m-n+n==m (n<m→1+n≤m n'<n)) (InT InH) ... | Inr (Inl refl) = abort (n≠n' refl) ... | Inr (Inr n<n') = InH n∈d→'n∈d+ {n = .(_ + 1+ _)} {n'} {v} {v'} n≠n' (InT {d = d} {n} {s} {v' = v''} n∈d) with <dec n' s ... | Inl n'<s = tr (λ y → (y , v) ∈' ((n' , v') :: ((delta n'<s , v'') :: d))) ((+assc {b = 1+ (delta n'<s)}) · (ap1 (n +_) (1+ap (m-n+n==m (n<m→1+n≤m n'<s))))) (InT (InT n∈d)) ... | Inr (Inl refl) = InT n∈d ... | Inr (Inr s<n') = InT (n∈d→'n∈d+ (λ where refl → n≠n' (m-n+n==m (n<m→1+n≤m s<n'))) n∈d) mem-dec' : {V : Set} (d : dl V) (n : Nat) → dom' d n ∨ n #' d mem-dec' [] n = Inr (λ ()) mem-dec' ((hn , hv) :: t) n with <dec n hn ... | Inl n<hn = Inr (too-small n<hn) ... | Inr (Inl refl) = Inl (hv , InH) ... | Inr (Inr hn<n) with mem-dec' t (delta hn<n) mem-dec' ((hn , hv) :: t) n | Inr (Inr hn<n) | Inl (v , rec) = Inl (v , tr (λ y → (y , v) ∈' ((hn , hv) :: t)) (m-n+n==m (n<m→1+n≤m hn<n)) (InT rec)) mem-dec' {V} ((hn , hv) :: t) n | Inr (Inr hn<n) | Inr dne = Inr n∉d where n∉d : Σ[ v ∈ V ] ((n , v) ∈' ((hn , hv) :: t)) → ⊥ n∉d (_ , n∈d) with n∈d ... | InH = (π2 hn<n) refl ... | InT {n = s} n-hn-1∈t rewrite ! (undelta hn s hn<n) = dne (_ , n-hn-1∈t) extensional' : {V : Set} {d1 d2 : dl V} → ((n : Nat) → d1 lkup n == d2 lkup n) → d1 == d2 extensional' {d1 = []} {[]} all-bindings-== = refl extensional' {d1 = []} {(hn2 , hv2) :: t2} all-bindings-== = abort (all-not-none {d = t2} {x = hn2} (all-bindings-== hn2)) extensional' {d1 = (hn1 , hv1) :: t1} {[]} all-bindings-== = abort (all-not-none {d = t1} {x = hn1} (! (all-bindings-== hn1))) extensional' {d1 = (hn1 , hv1) :: t1} {(hn2 , hv2) :: t2} all-bindings-== rewrite extensional' {d1 = t1} {t2} (all-bindings-==-rec all-bindings-==) with all-bindings-== hn1 | all-bindings-== hn2 ... | hv1== | hv2== rewrite <dec-refl hn1 | <dec-refl hn2 with <dec hn1 hn2 | <dec hn2 hn1 ... | Inl hn1<hn2 | _ = abort (somenotnone hv1==) ... | Inr (Inl refl) | Inl hn2<hn1 = abort (somenotnone (! hv2==)) ... | Inr (Inr hn2<hn1) | Inl hn2<'hn1 = abort (somenotnone (! hv2==)) ... | Inr (Inl refl) | Inr _ rewrite someinj hv1== = refl ... | Inr (Inr hn2<hn1) | Inr (Inl refl) rewrite someinj hv2== = refl ... | Inr (Inr hn2<hn1) | Inr (Inr hn1<hn2) = abort (<antisym hn1<hn2 hn2<hn1) ==-dec' : {V : Set} (d1 d2 : dl V) → ((v1 v2 : V) → v1 == v2 ∨ v1 ≠ v2) → d1 == d2 ∨ d1 ≠ d2 ==-dec' [] [] _ = Inl refl ==-dec' [] (_ :: _) _ = Inr (λ ()) ==-dec' (_ :: _) [] _ = Inr (λ ()) ==-dec' ((hn1 , hv1) :: t1) ((hn2 , hv2) :: t2) V==dec with natEQ hn1 hn2 | V==dec hv1 hv2 | ==-dec' t1 t2 V==dec ... | Inl refl | Inl refl | Inl refl = Inl refl ... | Inl refl | Inl refl | Inr ne = Inr λ where refl → ne refl ... | Inl refl | Inr ne | _ = Inr λ where refl → ne refl ... | Inr ne | _ | _ = Inr λ where refl → ne refl delete' : {V : Set} {d : dl V} {n : Nat} {v : V} → (n , v) ∈' d → Σ[ d⁻ ∈ dl V ] ( d == d⁻ ,,' (n , v) ∧ n #' d⁻) delete' {d = (n' , v') :: d} {n} n∈d with <dec n n' ... | Inl n<n' = abort (too-small n<n' (_ , n∈d)) delete' {_} {(n' , v') :: []} {.n'} InH | Inr (Inl _) = [] , refl , λ () delete' {_} {(n' , v') :: ((n'' , v'') :: d)} {.n'} InH | Inr (Inl _) = ((n'' + 1+ n' , v'') :: d) , lem , λ {(_ , n'∈d+) → abort (too-small (n<m→n<s+m n<1+n) (_ , n'∈d+))} where lem : ((n' , v') :: ((n'' , v'') :: d)) == ((n'' + 1+ n' , v'') :: d) ,,' (n' , v') lem with <dec n' (n'' + 1+ n') lem | Inl n'<n''+1+n' rewrite ! (undelta n' n'' n'<n''+1+n') = refl lem | Inr (Inl false) = abort (lemma-math' {x1 = Z} false) lem | Inr (Inr false) = abort (<antisym false (n<m→n<s+m n<1+n)) delete' {d = (n' , v') :: d} InH | Inr (Inr n'<n') = abort (<antirefl n'<n') delete' {d = (n' , v') :: d} (InT n∈d) | Inr _ with delete' {d = d} n∈d delete' {d = (n' , v') :: d} {.(_ + 1+ n')} {v} (InT {n = x} n∈d) | Inr _ | d⁻ , refl , x#d⁻ = _ , lem' , lem where lem : (x + 1+ n') #' ((n' , v') :: d⁻) lem (_ , x+1+n'∈d?) with sad-lemma x+1+n'∈d? ... | _ , _ , refl , n'==x+1+n' , InH = abort (lemma-math' {x1 = Z} n'==x+1+n') ... | _ , _ , refl , n'==x+1+n' , InT x+1+n'∈d' rewrite +inj {b = 1+ n'} n'==x+1+n' = x#d⁻ (_ , x+1+n'∈d') lem' : ((n' , v') :: (d⁻ ,,' (x , v))) == (((n' , v') :: d⁻) ,,' (x + 1+ n' , v)) lem' with <dec (x + 1+ n') n' lem' | Inl x+1+n'<n' = abort (<antisym x+1+n'<n' (n<m→n<s+m n<1+n)) lem' | Inr (Inl false) = abort (lemma-math' {x1 = Z} (! false)) lem' | Inr (Inr n'<x+1+n') rewrite ! (undelta n' x n'<x+1+n') = refl extend-size' : {V : Set} {d : dl V} {n : Nat} {v : V} → n #' d → ∥ d ,,' (n , v) ∥ == 1+ ∥ d ∥ extend-size' {d = []} n#d = refl extend-size' {d = (n' , v') :: d} {n} n#d with <dec n n' ... | Inl n<n' = refl ... | Inr (Inl refl) = abort (n#d (_ , InH)) ... | Inr (Inr n'<n) = 1+ap (extend-size' λ {(v , diff∈d) → n#d (v , tr (λ y → (y , v) ∈' ((n' , v') :: d)) (m-n+n==m (n<m→1+n≤m n'<n)) (InT diff∈d))}) ---- contrapositives of some previous lemmas ---- lookup-dec' : {V : Set} (d : dl V) (n : Nat) → Σ[ v ∈ V ] (d lkup n == Some v) ∨ d lkup n == None lookup-dec' d n with d lkup n ... | Some v = Inl (v , refl) ... | None = Inr refl lookup-cp-2' : {V : Set} {d : dl V} {n : Nat} → n #' d → d lkup n == None lookup-cp-2' {d = d} {n} n#d with lookup-dec' d n ... | Inl (_ , n∈d) = abort (n#d (_ , lookup-cons-2' n∈d)) ... | Inr n#'d = n#'d n#d→'n#d+ : {V : Set} {d : dl V} {n n' : Nat} {v' : V} → n ≠ n' → n #' d → n #' (d ,,' (n' , v')) n#d→'n#d+ {d = d} {n} {n'} {v'} n≠n' n#d with mem-dec' (d ,,' (n' , v')) n ... | Inl (_ , n∈d+) = abort (n#d (_ , n∈d+→'n∈d n≠n' n∈d+)) ... | Inr n#d+ = n#d+ ---- union, and dlt <=> list conversion definitions merge' : {V : Set} → (V → V → V) → Maybe V → V → V merge' merge ma1 v2 with ma1 ... | None = v2 ... | Some v1 = merge v1 v2 union' : {V : Set} → (V → V → V) → dl V → dl V → Nat → dl V union' merge d1 [] _ = d1 union' merge d1 ((hn , hv) :: d2) offset with d1 ,,' (hn + offset , merge' merge (d1 lkup hn + offset) hv) ... | d1+ = union' merge d1+ d2 (1+ hn + offset) dlt⇒list' : {V : Set} (d : dl V) → dl V dlt⇒list' [] = [] dlt⇒list' ((x , v) :: d) = (x , v) :: map (λ {(x' , v') → x' + 1+ x , v'}) (dlt⇒list' d) list⇒dlt' : {V : Set} (d : dl V) → dl V list⇒dlt' = foldr _,,'_ [] ---- union, dlt <=> list, etc lemmas ---- lemma-union'-0 : {V : Set} {m : V → V → V} {d1 d2 : dl V} {x n : Nat} {v : V} → (x , v) ∈' d1 → (x , v) ∈' (union' m d1 d2 (n + 1+ x)) lemma-union'-0 {d2 = []} x∈d1 = x∈d1 lemma-union'-0 {d2 = (x1 , v1) :: d2} {x} {n} x∈d1 rewrite ! (+assc {1+ x1} {n} {1+ x}) = lemma-union'-0 {d2 = d2} {n = 1+ x1 + n} (n∈d→'n∈d+ (lemma-math' {x1 = x1} {n}) x∈d1) lemma-union'-1 : {V : Set} {m : V → V → V} {d1 d2 : dl V} {x n : Nat} {v : V} → (x , v) ∈' d1 → (n≤x : n ≤ x) → (difference n≤x) #' d2 → (x , v) ∈' (union' m d1 d2 n) lemma-union'-1 {d2 = []} {x} x∈d1 n≤x x-n#d2 = x∈d1 lemma-union'-1 {m = m} {d1} {(x1 , v1) :: d2} {x} {n} {v} x∈d1 n≤x x-n#d2 with <dec x (x1 + n) lemma-union'-1 {m = m} {d1} {(x1 , v1) :: d2} {x} {n} {v} x∈d1 n≤x x-n#d2 | Inl x<x1+n with d1 lkup x1 + n lemma-union'-1 {m = m} {d1} {(x1 , v1) :: d2} {x} {n} {v} x∈d1 n≤x x-n#d2 | Inl x<x1+n | Some v' with expr-eq (λ _ → d1 ,,' (x1 + n , m v' v1)) lemma-union'-1 {m = m} {d1} {(x1 , v1) :: d2} {x} {n} {v} x∈d1 n≤x x-n#d2 | Inl x<x1+n | Some v' | d1+ , refl = tr (λ y → (x , v) ∈' (union' m d1+ d2 y)) (n+1+m==1+n+m {difference (π1 x<x1+n)} · 1+ap (m-n+n==m (π1 x<x1+n))) (lemma-union'-0 {d2 = d2} (n∈d→'n∈d+ (π2 x<x1+n) x∈d1)) lemma-union'-1 {m = m} {d1} {(x1 , v1) :: d2} {x} {n} {v} x∈d1 n≤x x-n#d2 | Inl x<x1+n | None with expr-eq (λ _ → d1 ,,' (x1 + n , v1)) lemma-union'-1 {m = m} {d1} {(x1 , v1) :: d2} {x} {n} {v} x∈d1 n≤x x-n#d2 | Inl x<x1+n | None | d1+ , refl = tr (λ y → (x , v) ∈' (union' m d1+ d2 y)) (n+1+m==1+n+m {difference (π1 x<x1+n)} · 1+ap (m-n+n==m (π1 x<x1+n))) (lemma-union'-0 {d2 = d2} (n∈d→'n∈d+ (π2 x<x1+n) x∈d1)) lemma-union'-1 {m = m} {d1} {(x1 , v1) :: d2} {x} {n} {v} x∈d1 n≤x x-n#d2 | Inr (Inl refl) rewrite +comm {x1} {n} | n+m-n==m n≤x = abort (x-n#d2 (_ , InH)) lemma-union'-1 {m = m} {d1} {(x1 , v1) :: d2} {x} {n} {v} x∈d1 n≤x x-n#d2 | Inr (Inr x1+n<x) rewrite (! (a+b==c→a==c-b (+assc {delta x1+n<x} · m-n+n==m (n<m→1+n≤m x1+n<x)) n≤x)) = lemma-union'-1 (n∈d→'n∈d+ (flip (π2 x1+n<x)) x∈d1) (n<m→1+n≤m x1+n<x) λ {(_ , x-x1-n∈d2) → x-n#d2 (_ , InT x-x1-n∈d2)} lemma-union'-2 : {V : Set} {m : V → V → V} {d1 d2 : dl V} {x n : Nat} {v : V} → (x + n) #' d1 → (x , v) ∈' d2 → (x + n , v) ∈' (union' m d1 d2 n) lemma-union'-2 {d1 = d1} x+n#d1 (InH {d = d2}) rewrite lookup-cp-2' x+n#d1 = lemma-union'-0 {d2 = d2} {n = Z} (n,v∈'d,,n,v {d = d1}) lemma-union'-2 {d1 = d1} {n = n} x+n#d1 (InT {d = d2} {n = x} {s} x∈d2) rewrite +assc {x} {1+ s} {n} with d1 lkup s + n ... | Some v' = lemma-union'-2 (λ {(_ , x∈d1+) → x+n#d1 (_ , n∈d+→'n∈d (flip (lemma-math' {x1 = Z})) x∈d1+)}) x∈d2 ... | None = lemma-union'-2 (λ {(_ , x∈d1+) → x+n#d1 (_ , n∈d+→'n∈d (flip (lemma-math' {x1 = Z})) x∈d1+)}) x∈d2 lemma-union'-3 : {V : Set} {m : V → V → V} {d1 d2 : dl V} {x n : Nat} {v1 v2 : V} → (x + n , v1) ∈' d1 → (x , v2) ∈' d2 → (x + n , m v1 v2) ∈' (union' m d1 d2 n) lemma-union'-3 {d1 = d1} x+n∈d1 (InH {d = d2}) rewrite lookup-cons-1' x+n∈d1 = lemma-union'-0 {d2 = d2} {n = Z} (n,v∈'d,,n,v {d = d1}) lemma-union'-3 {d1 = d1} {n = n} x+n∈d1 (InT {d = d2} {n = x} {s} x∈d2) rewrite +assc {x} {1+ s} {n} with d1 lkup s + n ... | Some v' = lemma-union'-3 (n∈d→'n∈d+ (flip (lemma-math' {x1 = Z})) x+n∈d1) x∈d2 ... | None = lemma-union'-3 (n∈d→'n∈d+ (flip (lemma-math' {x1 = Z})) x+n∈d1) x∈d2 lemma-union'-4 : {V : Set} {m : V → V → V} {d1 d2 : dl V} {x n : Nat} → dom' (union' m d1 d2 n) x → dom' d1 x ∨ (Σ[ s ∈ Nat ] (x == n + s ∧ dom' d2 s)) lemma-union'-4 {d2 = []} x∈un = Inl x∈un lemma-union'-4 {d1 = d1} {(x1 , _) :: d2} {x} {n} x∈un with lemma-union'-4 {d2 = d2} x∈un ... | Inr (s , refl , _ , s∈d2) rewrite +comm {x1} {n} | ! (n+1+m==1+n+m {n + x1} {s}) | +assc {n} {x1} {1+ s} | +comm {x1} {1+ s} | ! (n+1+m==1+n+m {s} {x1}) = Inr (_ , refl , _ , InT s∈d2) ... | Inl (_ , x∈d1+) with natEQ x (n + x1) ... | Inl refl = Inr (_ , refl , _ , InH) ... | Inr x≠n+x1 rewrite +comm {x1} {n} = Inl (_ , n∈d+→'n∈d x≠n+x1 x∈d1+) dlt⇒list-size' : {V : Set} {d : dl V} → ∥ dlt⇒list' d ∥ == ∥ d ∥ dlt⇒list-size' {d = []} = refl dlt⇒list-size' {d = _ :: d} = 1+ap (map-len · dlt⇒list-size') dlt⇒list-In-1' : {V : Set} {d : dl V} {n : Nat} {v : V} → (n , v) ∈' d → (n , v) In dlt⇒list' d dlt⇒list-In-1' InH = LInH dlt⇒list-In-1' (InT ∈h) = LInT <| map-In <| dlt⇒list-In-1' ∈h too-small-list : {V : Set} {d : dl V} {m m' : Nat} {v : V} → m ≤ m' → (m , v) In (map (λ { (n'' , v'') → n'' + 1+ m' , v'' }) (dlt⇒list' d)) → ⊥ too-small-list {d = (n2 , v2) :: d} n≤n' LInH = abort (lemma-math' {x1 = Z} (≤antisym (≤trans n≤m+n (n≤m+n {m = n2})) n≤n')) too-small-list {d = (n2 , v2) :: d} {m} {m'} {v} m≤m' (LInT in') = too-small-list (≤trans m≤m' (≤trans n≤m+n (n≤m+n {m = n2}))) rec-in where rec-in = tr (λ y → (m , v) In y) (map^2 {f = (λ { (n'' , v'') → n'' + 1+ m' , v'' })} {(λ { (n'' , v'') → n'' + 1+ n2 , v'' })} {dlt⇒list' d} · map-ext (λ where (n'' , v'') → ap1 (λ y' → y' , v'') <| +assc {n''} {b = 1+ n2} {c = 1+ m'})) in' dlt⇒list-In-2' : {V : Set} {d : dl V} {n : Nat} {v : V} → (n , v) In dlt⇒list' d → (n , v) ∈' d dlt⇒list-In-2' {d = _ :: d} LInH = InH dlt⇒list-In-2' {d = (n' , v') :: d} {n} (LInT in') with <dec n n' ... | Inl n<n' = abort (too-small-list (π1 n<n') in') ... | Inr (Inl refl) = abort (too-small-list ≤refl in') ... | Inr (Inr n'<n) with n<m→s+1+n=m n'<n ... | _ , refl = InT (dlt⇒list-In-2' (lem2 in')) where lem1 : ∀{V l} {m1 m2 : Nat} {vv1 vv2 : V} → m1 ≠ m2 → (in'' : (m1 , vv1) In ((m2 , vv2) :: l)) → Σ[ in2 ∈ ((m1 , vv1) In l) ] (in'' == LInT in2) lem1 ne LInH = abort (ne refl) lem1 ne (LInT in'') = in'' , refl lem2 : ∀{V s l} {vv : V} → (s + 1+ n' , vv) In map (λ { (n'' , v'') → n'' + 1+ n' , v'' }) l → (s , vv) In l lem2 {s = s} {(n2 , v2) :: l} in'' with natEQ s n2 lem2 {s = s} {(s , v2) :: l} LInH | Inl refl = LInH lem2 {s = s} {(s , v2) :: l} (LInT in'') | Inl refl = LInT (lem2 in'') ... | Inr ne with lem1 (+inj-cp ne) in'' ... | in2 , refl = LInT (lem2 in2) list⇒dlt-In' : {V : Set} {l : dl V} {n : Nat} {v : V} → (n , v) ∈' list⇒dlt' l → (n , v) In l list⇒dlt-In' {l = (n' , v') :: l} {n} ∈h rewrite foldl-++ {l1 = reverse l} {(n' , v') :: []} {_,,'_} {[]} with natEQ n n' ... | Inr ne = LInT (list⇒dlt-In' (n∈d+→'n∈d ne ∈h)) ... | Inl refl rewrite someinj <| (! <| lookup-cons-1' ∈h) · (lookup-cons-1' {n = n} {v'} <| n,v∈'d,,n,v {d = foldl _,,'_ [] (reverse l)}) = LInH list⇒dlt-order' : {V : Set} {l1 l2 : dl V} {n : Nat} {v1 v2 : V} → (n , v1) ∈' (list⇒dlt' ((n , v1) :: l1 ++ ((n , v2) :: l2))) list⇒dlt-order' {l1 = l1} {l2} {n} {v1} {v2} rewrite foldl-++ {l1 = reverse (l1 ++ ((n , v2) :: l2))} {(n , v1) :: []} {_,,'_} {[]} = n,v∈'d,,n,v {d = foldl _,,'_ [] <| reverse (l1 ++ ((n , v2) :: l2))} bij-pair-1 : {V : Set} (nv : Nat ∧ V) → (nat <| key <| π1 nv , π2 nv) == nv bij-pair-1 (n , v) rewrite convert-bij2 {t = n} = refl bij-pair-2 : {V : Set} (kv : K ∧ V) → (key <| nat <| π1 kv , π2 kv) == kv bij-pair-2 (k , v) rewrite convert-bij1 {f = k} = refl dltmap-func' : {V1 V2 : Set} {d : dl V1} {f : V1 → V2} {n : Nat} {v : V1} → (map (λ { (hn , hv) → hn , f hv }) (d ,,' (n , v))) == (map (λ { (hn , hv) → hn , f hv }) d ,,' (n , f v)) dltmap-func' {d = []} = refl dltmap-func' {d = (nh , vh) :: d} {f = f} {n} with <dec n nh ... | Inl n<nh = refl ... | Inr (Inl refl) = refl ... | Inr (Inr nh<n) = ap1 ((nh , f vh) ::_) (dltmap-func' {d = d}) -- these proofs could use refactoring - -- contraction should probably make use of ==-dec' -- and exchange is way too long and repetitive contraction' : {V : Set} {d : dl V} {n : Nat} {v v' : V} → (d ,,' (n , v')) ,,' (n , v) == d ,,' (n , v) contraction' {d = []} {n} rewrite <dec-refl n = refl contraction' {d = (hn , hv) :: t} {n} {v} {v'} with <dec n hn ... | Inl _ rewrite <dec-refl n = refl ... | Inr (Inl refl) rewrite <dec-refl hn = refl ... | Inr (Inr hn<n) with <dec n hn ... | Inl n<hn = abort (<antisym n<hn hn<n) ... | Inr (Inl refl) = abort (<antirefl hn<n) ... | Inr (Inr hn<'n) with contraction' {d = t} {delta hn<'n} {v} {v'} ... | eq rewrite diff-proof-irrelevance (n<m→1+n≤m hn<n) (n<m→1+n≤m hn<'n) | eq = refl exchange' : {V : Set} {d : dl V} {n1 n2 : Nat} {v1 v2 : V} → n1 ≠ n2 → (d ,,' (n1 , v1)) ,,' (n2 , v2) == (d ,,' (n2 , v2)) ,,' (n1 , v1) exchange' {V} {d} {n1} {n2} {v1} {v2} n1≠n2 = extensional' fun where fun : (n : Nat) → ((d ,,' (n1 , v1)) ,,' (n2 , v2)) lkup n == ((d ,,' (n2 , v2)) ,,' (n1 , v1)) lkup n fun n with natEQ n n1 | natEQ n n2 | mem-dec' d n fun n | Inl refl | Inl refl | _ = abort (n1≠n2 refl) fun n1 | Inl refl | Inr n≠n2 | Inl (_ , n1∈d) with n,v∈'d,,n,v {d = d} {n1} {v1} ... | n∈d+1 with n∈d→'n∈d+ {v' = v2} n≠n2 n∈d+1 | n,v∈'d,,n,v {d = d ,,' (n2 , v2)} {n1} {v1} ... | n∈d++1 | n∈d++2 rewrite lookup-cons-1' n∈d++1 | lookup-cons-1' n∈d++2 = refl fun n1 | Inl refl | Inr n≠n2 | Inr n1#d with n,v∈'d,,n,v {d = d} {n1} {v1} ... | n∈d+1 with n∈d→'n∈d+ {v' = v2} n≠n2 n∈d+1 | n,v∈'d,,n,v {d = d ,,' (n2 , v2)} {n1} {v1} ... | n∈d++1 | n∈d++2 rewrite lookup-cons-1' n∈d++1 | lookup-cons-1' n∈d++2 = refl fun n2 | Inr n≠n1 | Inl refl | Inl (_ , n2∈d) with n,v∈'d,,n,v {d = d} {n2} {v2} ... | n∈d+2 with n∈d→'n∈d+ {v' = v1} n≠n1 n∈d+2 | n,v∈'d,,n,v {d = d ,,' (n1 , v1)} {n2} {v2} ... | n∈d++1 | n∈d++2 rewrite lookup-cons-1' n∈d++1 | lookup-cons-1' n∈d++2 = refl fun n2 | Inr n≠n1 | Inl refl | Inr n2#d with n,v∈'d,,n,v {d = d} {n2} {v2} ... | n∈d+2 with n∈d→'n∈d+ {v' = v1} n≠n1 n∈d+2 | n,v∈'d,,n,v {d = d ,,' (n1 , v1)} {n2} {v2} ... | n∈d++1 | n∈d++2 rewrite lookup-cons-1' n∈d++1 | lookup-cons-1' n∈d++2 = refl fun n | Inr n≠n1 | Inr n≠n2 | Inl (_ , n∈d) with n∈d→'n∈d+ {v' = v1} n≠n1 n∈d | n∈d→'n∈d+ {v' = v2} n≠n2 n∈d ... | n∈d+1 | n∈d+2 with n∈d→'n∈d+ {v' = v2} n≠n2 n∈d+1 | n∈d→'n∈d+ {v' = v1} n≠n1 n∈d+2 ... | n∈d++1 | n∈d++2 rewrite lookup-cons-1' n∈d++1 | lookup-cons-1' n∈d++2 = refl fun n | Inr n≠n1 | Inr n≠n2 | Inr n#d with n#d→'n#d+ {v' = v1} n≠n1 n#d | n#d→'n#d+ {v' = v2} n≠n2 n#d ... | n#d+1 | n#d+2 with n#d→'n#d+ {v' = v2} n≠n2 n#d+1 | n#d→'n#d+ {v' = v1} n≠n1 n#d+2 ... | n#d++1 | n#d++2 rewrite lookup-cp-2' n#d++1 | lookup-cp-2' n#d++2 = refl
41.420886
127
0.392238
59237ceac539e1305e37ed6382bd30764d333bd5
4,044
agda
Agda
test/Succeed/test-recons.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
1
2020-04-26T09:35:17.000Z
2020-04-26T09:35:17.000Z
test/Succeed/test-recons.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/test-recons.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
1
2020-05-16T20:10:05.000Z
2020-05-16T20:10:05.000Z
open import Agda.Builtin.Nat open import Agda.Builtin.Unit open import Agda.Builtin.Reflection renaming (bindTC to _>>=_) open import Agda.Builtin.List open import Agda.Builtin.Sigma open import Agda.Builtin.Equality infix 0 case_of_ case_of_ : ∀ {a b}{A : Set a}{B : Set b} → A → (A → B) → B case x of f = f x map : ∀ {a b}{A : Set a}{B : Set b} → (A → B) → List A → List B map f [] = [] map f (x ∷ xs) = f x ∷ map f xs reverse : ∀ {a}{A : Set a} → List A → List A reverse {A = A} xs = reverseAcc xs [] where reverseAcc : List A → List A → List A reverseAcc [] a = a reverseAcc (x ∷ xs) a = reverseAcc xs (x ∷ a) data Maybe (X : Set) : Set where nothing : Maybe X just : X → Maybe X data Fin : Nat → Set where zero : ∀ {n} → Fin (suc n) suc : ∀ {n} → Fin n → Fin (suc n) record RVec {a} (X : Set a) (n : Nat) : Set a where constructor vec field sel : Fin n → X test-rvec : Nat → RVec Nat 5 test-rvec x = vec λ _ → x get-len : Definition → TC Term get-len (function (clause _ _ (con (quote vec) (_ ∷ _ ∷ (arg _ a) ∷ _)) ∷ [])) = quoteTC a get-len _ = quoteTC "ERROR" macro def-reg : Name → Term → TC ⊤ def-reg n hole = do d ← getDefinition n l ← get-len d unify hole l def-recons : Name → Term → TC ⊤ def-recons n hole = do d ← withReconstructed (getDefinition n) l ← get-len d unify hole l -- normaliseR perserves reconstructed expressions. def-normR : Name → Term → TC ⊤ def-normR n hole = do (function (clause tel ps t ∷ [])) ← withReconstructed (getDefinition n) where _ → quoteTC "ERROR" >>= unify hole let ctx = map snd tel t ← inContext (reverse ctx) (withReconstructed (normalise t)) let d = function (clause tel ps t ∷ []) get-len d >>= unify hole -- normaliseR perserves reconstructed expressions. def-redR : Name → Term → TC ⊤ def-redR n hole = do (function (clause tel ps t ∷ [])) ← withReconstructed (getDefinition n) where _ → quoteTC "ERROR" >>= unify hole let ctx = map snd tel t ← inContext (reverse ctx) (withReconstructed (reduce t)) let d = function (clause tel ps t ∷ []) get-len d >>= unify hole test₁ : unknown ≡ def-reg test-rvec test₁ = refl test₂ : (lit (nat 5)) ≡ def-recons test-rvec test₂ = refl test₃ : (lit (nat 5)) ≡ def-normR test-rvec test₃ = refl test₄ : (lit (nat 5)) ≡ def-redR test-rvec test₄ = refl pictx : Term → List (Arg Type) pictx (pi a (abs s x)) = a ∷ pictx x pictx _ = [] macro get-ctx : Name → Term → TC ⊤ get-ctx n hole = do t ← getType n let c = pictx t c ← withReconstructed (inContext (reverse c) getContext) quoteTC c >>= unify hole bar : (A : Set) (eq : [] {A = A} ≡ []) (x : Nat) → ⊤ bar _ _ _ = tt -- if getContext were to work incorrectly, this function wouldn't typecheck test₅ : List (Arg Type) test₅ = get-ctx bar data NotAVec (X : Set) (y : Nat) : Set where mk : NotAVec X y f : ∀ {n} → NotAVec Nat n → NotAVec Nat (suc n) f mk = mk macro chk-type : Term → TC ⊤ chk-type hole = do T ← quoteTC (NotAVec Nat 5) t ← quoteTC (mk {X = Nat} {y = 5}) (con _ (_ ∷ arg _ t ∷ [])) ← withReconstructed (checkType t T) where _ → quoteTC "ERROR" >>= unify hole quoteTC t >>= unify hole -- checkType would leave unknown's without the call to withReconstructed test₆ : chk-type ≡ lit (nat 5) test₆ = refl q : [] {A = Nat} ≡ [] {A = Nat} q = refl macro inf-type : Term → TC ⊤ inf-type hole = do (function (clause _ _ b ∷ [])) ← withReconstructed (getDefinition (quote q)) where _ → quoteTC "ERROR" >>= unify hole (def _ (l ∷ L ∷ e₁ ∷ e₂ ∷ [])) ← withReconstructed (inferType b) where _ → quoteTC "ERROR" >>= unify hole (arg _ (con _ (_ ∷ (arg _ N) ∷ []))) ← returnTC e₁ where _ → quoteTC "ERROR" >>= unify hole quoteTC N >>= unify hole -- inferType would not reconstruct the arguments within the type -- without the call to withReconstructed test₇ : inf-type ≡ def (quote Nat) [] test₇ = refl
26.25974
80
0.59817
0bb3d057fd21df0d9ad27f3891dfc407171a10ed
2,348
agda
Agda
CombinatoryLogic/Semantics.agda
splintah/combinatory-logic
df8bf877e60b3059532c54a247a36a3d83cd55b0
[ "MIT" ]
1
2022-02-28T23:44:42.000Z
2022-02-28T23:44:42.000Z
CombinatoryLogic/Semantics.agda
splintah/combinatory-logic
df8bf877e60b3059532c54a247a36a3d83cd55b0
[ "MIT" ]
null
null
null
CombinatoryLogic/Semantics.agda
splintah/combinatory-logic
df8bf877e60b3059532c54a247a36a3d83cd55b0
[ "MIT" ]
null
null
null
module CombinatoryLogic.Semantics where open import Relation.Binary using (Rel) open import CombinatoryLogic.Syntax -- Kapitel 1, Abschnitt C, §5 (Axiome) data Axiom : Combinator → Set where Q : Axiom (Π ∙ (W ∙ (C ∙ Q))) B : Axiom (C ∙ (B ∙ B ∙ (B ∙ B ∙ B)) ∙ B == B ∙ (B ∙ B) ∙ B) C : Axiom (C ∙ (B ∙ B ∙ (B ∙ B ∙ B)) ∙ W ∙ C == B ∙ (B ∙ C) ∙ (B ∙ B ∙ B)) W : Axiom (C ∙ (B ∙ B ∙ B) ∙ W == B ∙ (B ∙ W) ∙ (B ∙ B ∙ B)) -- NOTE (Curry): this axiom can be proved from the others. I₁ : Axiom (C ∙ (B ∙ B ∙ B) ∙ K == B ∙ (B ∙ K) ∙ I) BC : Axiom (B ∙ B ∙ C == B ∙ (B ∙ (B ∙ C) ∙ C) ∙ (B ∙ B)) BW : Axiom (B ∙ B ∙ W == B ∙ (B ∙ (B ∙ (B ∙ (B ∙ W) ∙ W) ∙ (B ∙ C)) ∙ B ∙ (B ∙ B)) ∙ B) BK : Axiom (B ∙ B ∙ K == B ∙ K ∙ K) CC₁ : Axiom (B ∙ C ∙ C ∙ B ∙ (B ∙ I)) CC₂ : Axiom (B ∙ (B ∙ (B ∙ C) ∙ C) ∙ (B ∙ C) == B ∙ (B ∙ C ∙ (B ∙ C)) ∙ C) CW : Axiom (B ∙ C ∙ W == B ∙ (B ∙ (B ∙ W) ∙ C) ∙ (B ∙ C)) CK : Axiom (B ∙ C ∙ K == B ∙ K) WC : Axiom (B ∙ W ∙ C == W) WW : Axiom (B ∙ W ∙ W == B ∙ W ∙ (B ∙ W)) WK : Axiom (B ∙ W ∙ K == B ∙ I) I₂ : Axiom (B ∙ I == I) -- Kapitel 1, Abschnitt C, §4 (Symbolische Festsetzungen), Festsetzung 1 infix 4 ⊢_ data ⊢_ : Combinator → Set where ax : ∀ {X} → Axiom X → ⊢ X -- Kapitel 1, Abschnitt C, §6 (Regeln) Q₁ : ∀ {X Y} → ⊢ X → ⊢ X == Y → ⊢ Y Q₂ : ∀ {X Y Z} → ⊢ X == Y → ⊢ Z ∙ X == Z ∙ Y Π : ∀ {X Y} → ⊢ Π ∙ X → ⊢ X ∙ Y B : ∀ {X Y Z} → ⊢ B ∙ X ∙ Y ∙ Z == X ∙ (Y ∙ Z) C : ∀ {X Y Z} → ⊢ C ∙ X ∙ Y ∙ Z == X ∙ Z ∙ Y W : ∀ {X Y} → ⊢ W ∙ X ∙ Y == X ∙ Y ∙ Y K : ∀ {X Y} → ⊢ K ∙ X ∙ Y == X P : ∀ {X Y} → ⊢ X → ⊢ P ∙ X ∙ Y → ⊢ Y ∧ : ∀ {X Y} → ⊢ X → ⊢ Y → ⊢ ∧ ∙ X ∙ Y -- We introduce convenience notation for the equality defined in Kapitel 1, -- Abschnitt C, §4 (Symbolische Festsetzungen), Festsetzung 3 (Gleichheit). _≈_ : Rel Combinator _ X ≈ Y = ⊢ X == Y infix 0 _[_] -- An operator that helps write proofs in the style of Curry. Where Curry writes -- ⟨statement⟩ (⟨rule⟩) -- we write -- ⟨statement⟩ [ ⟨rule⟩ ] -- -- Later, we can also use the Agda standard library's reasoning combinators -- (e.g. _≈⟨_⟩_) for proving equalities, but not before it is shown that the -- equality _≈_ is an equivalence relation, which Curry does in propositions 1, -- 2 and 3 of Kapitel 1, Abschnitt D (Die Eigenschaften der Gleichheit). _[_] : ∀ {a} (A : Set a) (x : A) → A _ [ x ] = x
38.491803
89
0.477428
2e932e928d414fc25378f4c75103cc8b80f9907d
1,450
agda
Agda
Cubical/Algebra/CommRing/Ideal.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Ideal.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Ideal.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
null
null
null
{- This is mostly for convenience, when working with ideals (which are defined for general rings) in a commutative ring. -} {-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.Ideal where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Powerset open import Cubical.Algebra.CommRing.Base open import Cubical.Algebra.Ring.Ideal renaming (IdealsIn to IdealsInRing) open import Cubical.Algebra.RingSolver.ReflectionSolving private variable ℓ : Level IdealsIn : (R : CommRing ℓ) → Type _ IdealsIn R = IdealsInRing (CommRing→Ring R) module _ (Ring@(R , str) : CommRing ℓ) where open CommRingStr str makeIdeal : (I : R → hProp ℓ) → (+-closed : {x y : R} → x ∈ I → y ∈ I → (x + y) ∈ I) → (0r-closed : 0r ∈ I) → (·-closedLeft : {x : R} → (r : R) → x ∈ I → r · x ∈ I) → IdealsIn (R , str) makeIdeal I +-closed 0r-closed ·-closedLeft = I , (record { +-closed = +-closed ; -closed = λ x∈I → subst (_∈ I) (useSolver _) (·-closedLeft (- 1r) x∈I) ; 0r-closed = 0r-closed ; ·-closedLeft = ·-closedLeft ; ·-closedRight = λ r x∈I → subst (_∈ I) (·-comm r _) (·-closedLeft r x∈I) }) where useSolver : (x : R) → - 1r · x ≡ - x useSolver = solve Ring
32.954545
74
0.557241
adae7e5c886316a10e8a533ba4159d193bd686a7
11,070
agda
Agda
LibraBFT/Impl/Properties/Common.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
4
2020-12-16T19:43:41.000Z
2021-12-18T19:24:05.000Z
LibraBFT/Impl/Properties/Common.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
72
2021-02-04T05:04:33.000Z
2022-03-25T05:36:11.000Z
LibraBFT/Impl/Properties/Common.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
6
2020-12-16T19:43:52.000Z
2022-02-18T01:04:32.000Z
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.PKCS open import LibraBFT.Concrete.System open import LibraBFT.Concrete.System.Parameters import LibraBFT.Concrete.Properties.Common as Common import LibraBFT.Concrete.Properties.VotesOnce as VO open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Consensus.Types.EpochDep open import LibraBFT.ImplShared.Interface.Output open import LibraBFT.ImplShared.Util.Crypto open import LibraBFT.ImplShared.Util.Util open import LibraBFT.Impl.Consensus.Network as Network open import LibraBFT.Impl.Consensus.Network.Properties as NetworkProps open import LibraBFT.Impl.Consensus.RoundManager import LibraBFT.Impl.Handle as Handle open import LibraBFT.Impl.IO.OBM.InputOutputHandlers open import LibraBFT.Impl.IO.OBM.Properties.InputOutputHandlers open import LibraBFT.Impl.Handle.Properties open import LibraBFT.Impl.Properties.Util open import LibraBFT.Lemmas open import LibraBFT.Prelude open import Optics.All open Invariants open RoundManagerTransProps open import LibraBFT.Abstract.Types.EpochConfig UID NodeId open ParamsWithInitAndHandlers Handle.InitHandler.InitAndHandlers open PeerCanSignForPK open import LibraBFT.ImplShared.Util.HashCollisions Handle.InitHandler.InitAndHandlers open import LibraBFT.Yasm.Yasm ℓ-RoundManager ℓ-VSFP ConcSysParms Handle.InitHandler.InitAndHandlers PeerCanSignForPK PeerCanSignForPK-stable open import LibraBFT.Impl.Handle.InitProperties open initHandlerSpec -- This module contains definitions and lemmas used by proofs of the -- implementation obligations for VotesOnce and PreferredRoundRule. module LibraBFT.Impl.Properties.Common where postulate -- TODO-3: prove (note: advanced; waiting on: `handle`) -- This will require updates to the existing proofs for the peer handlers. We -- will need to show that honest peers sign things only for their only PK, and -- that they either resend messages signed before or if sending a new one, -- that signature hasn't been sent before impl-sps-avp : StepPeerState-AllValidParts open Structural impl-sps-avp -- We can prove this easily for the Agda model because (unlike the Haskell -- prototype) it does not yet do epoch changes, so only the initial EC is -- relevant. Later, this will require us to use the fact that epoch changes -- require proof of committing an epoch-changing transaction. availEpochsConsistent : ∀{pid pid' v v' pk}{st : SystemState} → (pkvpf : PeerCanSignForPK st v pid pk) → (pkvpf' : PeerCanSignForPK st v' pid' pk) → v ^∙ vEpoch ≡ v' ^∙ vEpoch → pcs4𝓔 pkvpf ≡ pcs4𝓔 pkvpf' availEpochsConsistent (mkPCS4PK _ (inBootstrapInfo refl) _) (mkPCS4PK _ (inBootstrapInfo refl) _) refl = refl postulate -- TODO-1: Prove (waiting on: complete definition of `initRM`) uninitQcs∈Bootstrap : ∀ {pid qc vs}{st : SystemState} → ReachableSystemState st → initialised st pid ≡ uninitd → qc QCProps.∈RoundManager (peerStates st pid) → vs ∈ qcVotes qc → ∈BootstrapInfo-impl fakeBootstrapInfo (proj₂ vs) module ∈BootstrapInfoProps where sameSig∉ : ∀ {pk} {v v' : Vote} → (sig : WithVerSig pk v) (sig' : WithVerSig pk v') → ¬ ∈BootstrapInfo-impl fakeBootstrapInfo (ver-signature sig) → ver-signature sig' ≡ ver-signature sig → ¬ ∈BootstrapInfo-impl fakeBootstrapInfo (ver-signature sig') sameSig∉ _ _ ¬bootstrap ≡sig rewrite ≡sig = ¬bootstrap -- Lemmas for `PeerCanSignForPK` module PeerCanSignForPKProps where msb4 -- NOTE: This proof requires updating when we model epoch changes. : ∀ {pid v pk}{pre post : SystemState} → ReachableSystemState pre → Step pre post → PeerCanSignForPK post v pid pk → Meta-Honest-PK pk → (sig : WithVerSig pk v) → MsgWithSig∈ pk (ver-signature sig) (msgPool pre) → PeerCanSignForPK pre v pid pk msb4 preach step (mkPCS4PK 𝓔@._ (inBootstrapInfo refl) (mkPCS4PKin𝓔 𝓔id≡ mbr nid≡ pk≡)) hpk sig mws∈pool = mkPCS4PK 𝓔 (inBootstrapInfo refl) (mkPCS4PKin𝓔 𝓔id≡ mbr nid≡ pk≡) msb4-eid≡ : ∀ {pre post : SystemState} {v v' pid pk} → ReachableSystemState pre → Step pre post → Meta-Honest-PK pk → PeerCanSignForPK post v pid pk → v ≡L v' at vEpoch → (sig' : WithVerSig pk v') → MsgWithSig∈ pk (ver-signature sig') (msgPool pre) → PeerCanSignForPK pre v pid pk msb4-eid≡ rss step hpk pcsfpk ≡eid sig' mws' = peerCanSignEp≡ (msb4 rss step (peerCanSignEp≡ pcsfpk ≡eid) hpk sig' mws') (sym ≡eid) pidInjective : ∀ {pid pid' pk v v'}{st : SystemState} → PeerCanSignForPK st v pid pk → PeerCanSignForPK st v' pid' pk → v ^∙ vEpoch ≡ v' ^∙ vEpoch → pid ≡ pid' pidInjective{pid}{pid'}{pk} pcsfpk₁ pcsfpk₂ ≡epoch = begin pid ≡⟨ sym (nid≡ (pcs4in𝓔 pcsfpk₁)) ⟩ pcsfpk₁∙pid ≡⟨ PK-inj-same-ECs{pcs4𝓔 pcsfpk₁}{pcs4𝓔 pcsfpk₂} (availEpochsConsistent pcsfpk₁ pcsfpk₂ ≡epoch) pcsfpk∙pk≡ ⟩ pcsfpk₂∙pid ≡⟨ nid≡ (pcs4in𝓔 pcsfpk₂) ⟩ pid' ∎ where open ≡-Reasoning open PeerCanSignForPKinEpoch open PeerCanSignForPK pcsfpk₁∙pid = EpochConfig.toNodeId (pcs4𝓔 pcsfpk₁) (mbr (pcs4in𝓔 pcsfpk₁)) pcsfpk₂∙pid = EpochConfig.toNodeId (pcs4𝓔 pcsfpk₂) (mbr (pcs4in𝓔 pcsfpk₂)) pcsfpk₁∙pk = EpochConfig.getPubKey (pcs4𝓔 pcsfpk₁) (mbr (pcs4in𝓔 pcsfpk₁)) pcsfpk₂∙pk = EpochConfig.getPubKey (pcs4𝓔 pcsfpk₂) (mbr (pcs4in𝓔 pcsfpk₂)) pcsfpk∙pk≡ : pcsfpk₁∙pk ≡ pcsfpk₂∙pk pcsfpk∙pk≡ = begin pcsfpk₁∙pk ≡⟨ pk≡ (pcs4in𝓔 pcsfpk₁) ⟩ pk ≡⟨ sym (pk≡ (pcs4in𝓔 pcsfpk₂)) ⟩ pcsfpk₂∙pk ∎ module ReachableSystemStateProps where mws∈pool⇒initd : ∀ {pid pk v}{st : SystemState} → ReachableSystemState st → PeerCanSignForPK st v pid pk → Meta-Honest-PK pk → (sig : WithVerSig pk v) → ¬ (∈BootstrapInfo-impl fakeBootstrapInfo (ver-signature sig)) → MsgWithSig∈ pk (ver-signature sig) (msgPool st) → initialised st pid ≡ initd mws∈pool⇒initd{pk = pk}{v} (step-s{pre = pre} rss step@(step-peer sp@(step-cheat cmc))) pcsfpk hpk sig ¬bootstrap mws∈pool = peersRemainInitialized step (mws∈pool⇒initd rss (PeerCanSignForPKProps.msb4 rss step pcsfpk hpk sig mws∈poolPre) hpk sig ¬bootstrap mws∈poolPre) where ¬bootstrap' = ∈BootstrapInfoProps.sameSig∉ sig (msgSigned mws∈pool) ¬bootstrap (msgSameSig mws∈pool) mws∈poolPre : MsgWithSig∈ pk (ver-signature sig) (msgPool pre) mws∈poolPre = ¬cheatForgeNew sp refl unit hpk mws∈pool ¬bootstrap' mws∈pool⇒initd{pid₁}{pk = pk} (step-s{pre = pre} rss step@(step-peer sp@(step-honest{pid₂} sps@(step-init {rm} rm×acts uni)))) pcsfpk hpk sig ¬bootstrap mws∈pool with pid₁ ≟ pid₂ ...| yes refl = StepPeer-post-lemma2 {pre = pre} sps ...| no neq with newMsg⊎msgSentB4 rss sps hpk (msgSigned mws∈pool) ¬bootstrap' (msg⊆ mws∈pool) (msg∈pool mws∈pool) where ¬bootstrap' = ∈BootstrapInfoProps.sameSig∉ sig (msgSigned mws∈pool) ¬bootstrap (msgSameSig mws∈pool) ...| Right mws∈poolPre = peersRemainInitialized step (mws∈pool⇒initd rss (PeerCanSignForPKProps.msb4 rss step pcsfpk hpk sig mws∈poolPre') hpk sig ¬bootstrap mws∈poolPre') where mws∈poolPre' : MsgWithSig∈ pk (ver-signature sig) (msgPool pre) mws∈poolPre' rewrite msgSameSig mws∈pool = mws∈poolPre ...| Left (send∈acts , _ , _) with initHandlerSpec.contract pid₂ fakeBootstrapInfo rm×acts ...| init-contract with msg⊆ mws∈pool ...| vote∈vm = ⊥-elim (P≢V (sym (proj₁ (proj₂ (initHandlerSpec.ContractOk.isInitPM init-contract send∈acts))))) ...| vote∈qc vs∈qc _ qc∈pm with initHandlerSpec.ContractOk.isInitPM init-contract send∈acts ...| (_ , refl , noSigs) = ⊥-elim (noSigs vs∈qc qc∈pm) mws∈pool⇒initd{pid₁}{pk}{v} (step-s{pre = pre} rss step@(step-peer{pid₂} sp@(step-honest sps@(step-msg _ ini)))) pcsfpk hpk sig ¬bootstrap mws∈pool with newMsg⊎msgSentB4 rss sps hpk (msgSigned mws∈pool) ¬bootstrap' (msg⊆ mws∈pool) (msg∈pool mws∈pool) where ¬bootstrap' = ∈BootstrapInfoProps.sameSig∉ sig (msgSigned mws∈pool) ¬bootstrap (msgSameSig mws∈pool) ...| Left (m∈outs , pcsfpk' , ¬msb4) with pid≡ where vd₁≡vd₂ : v ≡L msgPart mws∈pool at vVoteData vd₁≡vd₂ = either (⊥-elim ∘ PerReachableState.meta-no-collision rss) id (sameSig⇒sameVoteData (msgSigned mws∈pool) sig (msgSameSig mws∈pool)) pid≡ : pid₁ ≡ pid₂ pid≡ = PeerCanSignForPKProps.pidInjective pcsfpk pcsfpk' (cong (_^∙ vdProposed ∙ biEpoch) vd₁≡vd₂) ...| refl rewrite StepPeer-post-lemma2{pid₂}{pre = pre} sps = refl mws∈pool⇒initd{pid₁}{pk} (step-s{pre = pre} rss step@(step-peer{pid₂} sp@(step-honest sps@(step-msg _ ini)))) pcsfpk hpk sig ¬bootstrap mws∈pool | Right mws∈poolPre = peersRemainInitialized step (mws∈pool⇒initd rss (PeerCanSignForPKProps.msb4 rss step pcsfpk hpk sig mws∈poolPre') hpk sig ¬bootstrap mws∈poolPre') where mws∈poolPre' : MsgWithSig∈ pk (ver-signature sig) (msgPool pre) mws∈poolPre' rewrite msgSameSig mws∈pool = mws∈poolPre mws∈pool⇒epoch≡ : ∀ {pid v s' outs pk}{st : SystemState} → ReachableSystemState st → (sps : StepPeerState pid (msgPool st) (initialised st) (peerStates st pid) (s' , outs)) → PeerCanSignForPK st v pid pk → Meta-Honest-PK pk → (sig : WithVerSig pk v) → ¬ (∈BootstrapInfo-impl fakeBootstrapInfo (ver-signature sig)) → MsgWithSig∈ pk (ver-signature sig) (msgPool st) → s' ^∙ rmEpoch ≡ v ^∙ vEpoch → peerStates st pid ^∙ rmEpoch ≡ v ^∙ vEpoch mws∈pool⇒epoch≡ rss (step-init _ uni) pcsfpk hpk sig ¬bootstrap mws∈pool epoch≡ = absurd (uninitd ≡ initd) case (trans (sym uni) ini) of λ () where ini = mws∈pool⇒initd rss pcsfpk hpk sig ¬bootstrap mws∈pool mws∈pool⇒epoch≡{pid}{v}{st = st} rss (step-msg{_ , P pm} m∈pool ini) pcsfpk hpk sig ¬bootstrap mws∈pool epoch≡ = begin hpPre ^∙ rmEpoch ≡⟨ noEpochChange ⟩ hpPos ^∙ rmEpoch ≡⟨ epoch≡ ⟩ v ^∙ vEpoch ∎ where hpPool = msgPool st hpPre = peerStates st pid hpPos = LBFT-post (handleProposal 0 pm) hpPre open handleProposalSpec.Contract (handleProposalSpec.contract! 0 pm hpPool hpPre) open ≡-Reasoning mws∈pool⇒epoch≡{pid}{v}{st = st} rss (step-msg{sndr , V vm} _ _) pcsfpk hpk sig ¬bootstrap mws∈pool epoch≡ = begin hvPre ^∙ rmEpoch ≡⟨ noEpochChange ⟩ hvPos ^∙ rmEpoch ≡⟨ epoch≡ ⟩ v ^∙ vEpoch ∎ where hvPre = peerStates st pid hvPos = LBFT-post (handleVote 0 vm) hvPre open handleVoteSpec.Contract (handleVoteSpec.contract! 0 vm (msgPool st) hvPre) open ≡-Reasoning mws∈pool⇒epoch≡{pid}{v}{st = st} rss (step-msg{sndr , C cm} _ _) pcsfpk hpk sig ¬bootstrap mws∈pool epoch≡ = epoch≡
45.743802
173
0.692412
5919db32bb14b20debc930bdc38969d4855ae2c2
449
agda
Agda
test/Common/MAlonzo.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
7
2018-11-05T22:13:36.000Z
2018-11-06T16:38:43.000Z
test/Common/MAlonzo.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
16
2018-10-08T00:32:04.000Z
2019-09-08T13:47:04.000Z
test/Common/MAlonzo.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
module Common.MAlonzo where open import Common.Prelude hiding (putStrLn) open import Common.Coinduction {-# FOREIGN GHC import qualified Data.Text.IO #-} postulate putStrLn : ∞ String → IO Unit {-# COMPILE GHC putStrLn = Data.Text.IO.putStrLn . MAlonzo.RTE.flat #-} main = putStrLn (♯ "This is a dummy main routine.") mainPrint : String → _ mainPrint s = putStrLn (♯ s) mainPrintNat : Nat → _ mainPrintNat n = putStrLn (♯ (natToString n))
21.380952
71
0.714922
3826d52dde5dcbc4ac503df8db76163a6cd2d75e
537
agda
Agda
neg-datatype-nonterm.agda
logicshan/IAL
2ad96390a9be5c238e73709a21533c7354cedd0c
[ "MIT" ]
null
null
null
neg-datatype-nonterm.agda
logicshan/IAL
2ad96390a9be5c238e73709a21533c7354cedd0c
[ "MIT" ]
null
null
null
neg-datatype-nonterm.agda
logicshan/IAL
2ad96390a9be5c238e73709a21533c7354cedd0c
[ "MIT" ]
null
null
null
{-# OPTIONS --no-positivity-check #-} {- This file gives a standard example showing that if arguments to constructors can use the datatype in a negative position (to the left of one or an odd number of arrows), then termination and logical consistency is lost. -} module neg-datatype-nonterm where open import empty data Bad : Set where bad : (Bad → ⊥) → Bad badFunc : Bad → ⊥ badFunc (bad f) = f (bad f) -- if you try to normalize the following, it will diverge inconsistency : ⊥ inconsistency = badFunc (bad badFunc)
25.571429
67
0.713222
2221a676e1cc9ad5ef5ed666abd019ed449c2269
1,536
agda
Agda
agda-stdlib/src/Data/Nat/Show.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Nat/Show.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Nat/Show.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Showing natural numbers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.Show where open import Data.Char as Char using (Char) open import Data.Digit using (showDigit; toDigits; toNatDigits) open import Function using (_∘_; _$_) open import Data.List.Base using (List; []; _∷_; map; reverse) open import Data.Nat open import Data.Product using (proj₁) open import Data.String as String using (String) open import Relation.Nullary.Decidable using (True) ------------------------------------------------------------------------ -- Conversion from unary representation to the representation by the -- given base. toDigitChar : (n : ℕ) → Char toDigitChar n = Char.fromℕ (n + (Char.toℕ '0')) toDecimalChars : ℕ → List Char toDecimalChars = map toDigitChar ∘ toNatDigits 10 ------------------------------------------------------------------------ -- Show -- Time complexity is O(log₁₀(n)) show : ℕ → String show = String.fromList ∘ toDecimalChars -- Warning: when compiled the time complexity of `showInBase b n` is -- O(n) instead of the expected O(log(n)). showInBase : (base : ℕ) {base≥2 : True (2 ≤? base)} {base≤16 : True (base ≤? 16)} → ℕ → String showInBase base {base≥2} {base≤16} n = String.fromList $ map (showDigit {base≤16 = base≤16}) $ reverse $ proj₁ $ toDigits base {base≥2 = base≥2} n
30.72
72
0.550781
2f73306e758a367cc0fd64b78d992fbe0d310024
4,994
agda
Agda
Cubical/Data/FinSet/Quotients.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Data/FinSet/Quotients.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Data/FinSet/Quotients.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{- This file contains: - The quotient of finite sets by decidable equivalence relation is still finite, by using equivalence class. -} {-# OPTIONS --safe #-} module Cubical.Data.FinSet.Quotients where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv renaming (_∙ₑ_ to _⋆_) open import Cubical.Foundations.Equiv.Properties open import Cubical.Foundations.Univalence open import Cubical.HITs.PropositionalTruncation as Prop open import Cubical.HITs.SetQuotients as SetQuot open import Cubical.HITs.SetQuotients.EqClass open import Cubical.Data.Nat open import Cubical.Data.Bool open import Cubical.Data.Sigma open import Cubical.Data.SumFin open import Cubical.Data.FinSet.Base open import Cubical.Data.FinSet.Properties open import Cubical.Data.FinSet.DecidablePredicate open import Cubical.Data.FinSet.Constructors open import Cubical.Data.FinSet.Cardinality open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.DecidablePropositions open import Cubical.Relation.Binary private variable ℓ ℓ' ℓ'' : Level LiftDecProp : {ℓ ℓ' : Level}{P : Type ℓ} → (p : isDecProp P) → P ≃ Bool→Type* {ℓ'} (p .fst) LiftDecProp p = p .snd ⋆ BoolProp≃BoolProp* open Iso module _ (X : Type ℓ) where ℙEff : Type ℓ ℙEff = X → Bool isSetℙEff : isSet ℙEff isSetℙEff = isSetΠ (λ _ → isSetBool) ℙEff→ℙDec : ℙEff → ℙDec {ℓ' = ℓ'} X ℙEff→ℙDec f .fst x = Bool→Type* (f x) , isPropBool→Type* ℙEff→ℙDec f .snd x = DecBool→Type* Iso-ℙEff-ℙDec : Iso ℙEff (ℙDec {ℓ' = ℓ'} X) Iso-ℙEff-ℙDec .fun = ℙEff→ℙDec Iso-ℙEff-ℙDec .inv (P , dec) x = Dec→Bool (dec x) Iso-ℙEff-ℙDec {ℓ' = ℓ'} .leftInv f i x = Bool≡BoolDec* {ℓ = ℓ'} {a = f x} (~ i) Iso-ℙEff-ℙDec .rightInv (P , dec) i .fst x .fst = ua (Dec≃DecBool* (P x .snd) (dec x)) (~ i) Iso-ℙEff-ℙDec .rightInv (P , dec) i .fst x .snd = isProp→PathP {B = λ i → isProp (Iso-ℙEff-ℙDec .rightInv (P , dec) i .fst x .fst)} (λ i → isPropIsProp) (Iso-ℙEff-ℙDec .fun (Iso-ℙEff-ℙDec .inv (P , dec)) .fst x .snd) (P x .snd) i Iso-ℙEff-ℙDec .rightInv (P , dec) i .snd x = isProp→PathP {B = λ i → Dec (Iso-ℙEff-ℙDec .rightInv (P , dec) i .fst x .fst)} (λ i → isPropDec (Iso-ℙEff-ℙDec .rightInv (P , dec) i .fst x .snd)) (Iso-ℙEff-ℙDec .fun (Iso-ℙEff-ℙDec .inv (P , dec)) .snd x) (dec x) i ℙEff≃ℙDec : ℙEff ≃ (ℙDec {ℓ' = ℓ'} X) ℙEff≃ℙDec = isoToEquiv Iso-ℙEff-ℙDec module _ (X : Type ℓ)(p : isFinOrd X) where private e = p .snd isFinOrdℙEff : isFinOrd (ℙEff X) isFinOrdℙEff = _ , preCompEquiv (invEquiv e) ⋆ SumFinℙ≃ _ module _ (X : FinSet ℓ) where isFinSetℙEff : isFinSet (ℙEff (X .fst)) isFinSetℙEff = 2 ^ (card X) , Prop.elim (λ _ → isPropPropTrunc {A = _ ≃ Fin _}) (λ p → ∣ isFinOrdℙEff (X .fst) (_ , p) .snd ∣₁) (X .snd .snd) module _ (X : FinSet ℓ) (R : X .fst → X .fst → Type ℓ') (dec : (x x' : X .fst) → isDecProp (R x x')) where isEqClassEff : ℙEff (X .fst) → Type ℓ isEqClassEff f = ∥ Σ[ x ∈ X .fst ] ((a : X .fst) → f a ≡ dec a x .fst) ∥₁ isDecPropIsEqClassEff : {f : ℙEff (X .fst)} → isDecProp (isEqClassEff f) isDecPropIsEqClassEff = isDecProp∃ X (λ _ → _ , isDecProp∀ X (λ _ → _ , _ , Bool≡≃ _ _)) isEqClassEff→isEqClass' : (f : ℙEff (X .fst))(x : X .fst) → ((a : X .fst) → f a ≡ dec a x .fst) → (a : X .fst) → Bool→Type* {ℓ = ℓ'} (f a) ≃ ∥ R a x ∥₁ isEqClassEff→isEqClass' f x h a = pathToEquiv (cong Bool→Type* (h a)) ⋆ invEquiv (LiftDecProp (dec a x)) ⋆ invEquiv (propTruncIdempotent≃ (isDecProp→isProp (dec a x))) isEqClass→isEqClassEff' : (f : ℙEff (X .fst))(x : X .fst) → ((a : X .fst) → Bool→Type* {ℓ = ℓ'} (f a) ≃ ∥ R a x ∥₁) → (a : X .fst) → f a ≡ dec a x .fst isEqClass→isEqClassEff' f x h a = Bool→TypeInj* _ _ (h a ⋆ propTruncIdempotent≃ (isDecProp→isProp (dec a x)) ⋆ LiftDecProp (dec a x)) isEqClassEff→isEqClass : (f : ℙEff (X .fst)) → isEqClassEff f ≃ isEqClass {ℓ' = ℓ'} _ R (ℙEff→ℙDec _ f .fst) isEqClassEff→isEqClass f = propBiimpl→Equiv isPropPropTrunc isPropPropTrunc (Prop.map (λ (x , p) → x , isEqClassEff→isEqClass' f x p)) (Prop.map (λ (x , p) → x , isEqClass→isEqClassEff' f x p)) _∥Eff_ : Type ℓ _∥Eff_ = Σ[ f ∈ ℙEff (X .fst) ] isEqClassEff f ∥Eff≃∥Dec : _∥Eff_ ≃ _∥Dec_ (X .fst) R (λ x x' → isDecProp→Dec (dec x x')) ∥Eff≃∥Dec = Σ-cong-equiv (ℙEff≃ℙDec (X .fst)) isEqClassEff→isEqClass isFinSet∥Eff : isFinSet _∥Eff_ isFinSet∥Eff = isFinSetSub (_ , isFinSetℙEff X) (λ _ → _ , isDecPropIsEqClassEff) open BinaryRelation module _ (X : FinSet ℓ) (R : X .fst → X .fst → Type ℓ') (h : isEquivRel R) (dec : (x x' : X .fst) → isDecProp (R x x')) where isFinSetQuot : isFinSet (X .fst / R) isFinSetQuot = EquivPresIsFinSet ( ∥Eff≃∥Dec X _ dec ⋆ ∥Dec≃∥ _ _ (λ x x' → isDecProp→Dec (dec x x')) ⋆ invEquiv (equivQuot {ℓ' = ℓ'} _ _ h)) (isFinSet∥Eff X _ dec)
33.293333
111
0.633761
38b58e4573b6d367ca153ecb867e8ba0d59dbc9c
6,809
agda
Agda
Cubical/HITs/Nullification/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/HITs/Nullification/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/HITs/Nullification/Properties.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.Nullification.Properties where open import Cubical.Foundations.Everything open isPathSplitEquiv open import Cubical.Modalities.Everything open Modality open import Cubical.HITs.Localization renaming (rec to Localize-rec) open import Cubical.Data.Unit open import Cubical.HITs.Nullification.Base rec : ∀ {ℓ ℓ' ℓ''} {S : Type ℓ} {A : Type ℓ'} {B : Type ℓ''} → (nB : isNull S B) → (A → B) → Null S A → B rec nB g ∣ x ∣ = g x rec nB g (hub f) = fst (sec nB) (λ s → rec nB g (f s)) rec nB g (spoke f s i) = snd (sec nB) (λ s → rec nB g (f s)) i s rec nB g (≡hub {x} {y} p i) = fst (secCong nB (rec nB g x) (rec nB g y)) (λ i s → rec nB g (p s i)) i rec nB g (≡spoke {x} {y} p s i j) = snd (secCong nB (rec nB g x) (rec nB g y)) (λ i s → rec nB g (p s i)) i j s toPathP⁻ : ∀ {ℓ} (A : I → Type ℓ) {x : A i0} {y : A i1} → x ≡ transport⁻ (λ i → A i) y → PathP A x y toPathP⁻ A p i = toPathP {A = λ i → A (~ i)} (sym p) (~ i) toPathP⁻-sq : ∀ {ℓ} {A : Type ℓ} (x : A) → Square (toPathP⁻ (λ _ → A) (λ _ → transport refl x)) refl (transportRefl x) refl toPathP⁻-sq x j i = hcomp (λ l → λ { (i = i0) → transportRefl x j ; (i = i1) → x ; (j = i1) → x }) (transportRefl x (i ∨ j)) module _ {ℓ ℓ' ℓ''} {S : Type ℓ} {A : Type ℓ'} {B : Null S A → Type ℓ''} where private secCongDep' : ∀ (nB : (x : Null S A) → isNull S (B x)) {x y : Null S A} (p : x ≡ y) → (∀ (bx : B x) (by : B y) → hasSection (cong₂ (λ x (b : B x) (_ : S) → b) p)) secCongDep' nB p = secCongDep (λ _ → const) p (λ a → secCong (nB a)) elim : (nB : (x : Null S A) → isNull S (B x)) → ((a : A) → B ∣ a ∣) → (x : Null S A) → B x elim nB g ∣ x ∣ = g x elim nB g (hub f) = fst (sec (nB (hub f))) (λ s → transport (λ i → B (spoke f s (~ i))) (elim nB g (f s))) elim nB g (spoke f s i) = toPathP⁻ (λ i → B (spoke f s i)) (funExt⁻ ( snd (sec (nB (hub f))) (λ s → transport (λ i → B (spoke f s (~ i))) (elim nB g (f s))) ) s) i elim nB g (≡hub {x} {y} p i) = hcomp (λ k → λ { (i = i0) → transportRefl (elim nB g x) k ; (i = i1) → transportRefl (elim nB g y) k }) (fst (secCongDep' nB (≡hub p) (transport refl (elim nB g x)) (transport refl (elim nB g y))) (λ i s → transport (λ j → B (≡spoke p s (~ j) i)) (elim nB g (p s i))) i) elim nB g (≡spoke {x} {y} p s j i) = hcomp (λ k → λ { (i = i0) → toPathP⁻-sq (elim nB g x) k j ; (i = i1) → toPathP⁻-sq (elim nB g y) k j ; (j = i1) → elim nB g (p s i) }) (q₂ j i) where q₁ : Path (PathP (λ i → B (≡hub p i)) (transport refl (elim nB g x)) (transport refl (elim nB g y))) (fst (secCongDep' nB (≡hub p) (transport refl (elim nB g x)) (transport refl (elim nB g y))) (λ i s → transport (λ j → B (≡spoke p s (~ j) i)) (elim nB g (p s i)))) (λ i → transport (λ j → B (≡spoke p s (~ j) i)) (elim nB g (p s i))) q₁ j i = snd (secCongDep' nB (≡hub p) (transport refl (elim nB g x)) (transport refl (elim nB g y))) (λ i s → transport (λ j → B (≡spoke p s (~ j) i)) (elim nB g (p s i))) j i s q₂ : PathP (λ j → PathP (λ i → B (≡spoke p s j i)) (toPathP⁻ (λ _ → B x) (λ _ → transport refl (elim nB g x)) j) (toPathP⁻ (λ _ → B y) (λ _ → transport refl (elim nB g y)) j)) (fst (secCongDep' nB (≡hub p) (transport refl (elim nB g x)) (transport refl (elim nB g y))) (λ i s → transport (λ j → B (≡spoke p s (~ j) i)) (elim nB g (p s i)))) (λ i → elim nB g (p s i)) q₂ j i = toPathP⁻ (λ j → B (≡spoke p s j i)) (λ j → q₁ j i) j -- nullification is a modality NullModality : ∀ {ℓ} (S : Type ℓ) → Modality ℓ isModal (NullModality S) = isNull S isModalIsProp (NullModality S) = isPropIsPathSplitEquiv _ ◯ (NullModality S) = Null S ◯-isModal (NullModality S) = isNull-Null η (NullModality S) = ∣_∣ ◯-elim (NullModality S) = elim ◯-elim-β (NullModality S) = λ _ _ _ → refl ◯-=-isModal (NullModality S) x y = fromIsEquiv _ e where e : isEquiv (λ (p : x ≡ y) → const {B = S} p) e = transport (λ i → isEquiv {B = funExtPath {A = S} {f = const x} {g = const y} (~ i)} (λ p → ua-gluePath funExtEquiv {x = const p} {y = cong const p} refl (~ i))) (isEquivCong (_ , toIsEquiv _ isNull-Null)) idemNull : ∀ {ℓ} (S A : Type ℓ) → isNull S A → A ≃ Null S A idemNull S A nA = ∣_∣ , isModalToIsEquiv (NullModality S) nA -- nullification is localization at a map (S → 1) module Null-iso-Localize {ℓ ℓ'} (S : Type ℓ) (A : Type ℓ') where to : Null S A → Localize {A = Unit} (λ _ → const {B = S} tt) A to ∣ x ∣ = ∣ x ∣ to (hub f) = ext tt (to ∘ f) tt to (spoke f s i) = isExt tt (to ∘ f) s i to (≡hub {x} {y} p i) = ≡ext tt (const (to x)) (const (to y)) (cong to ∘ p) tt i to (≡spoke {x} {y} p s i j) = ≡isExt tt (const (to x)) (const (to y)) (cong to ∘ p) s i j from : Localize {A = Unit} (λ _ → const {B = S} tt) A → Null S A from ∣ x ∣ = ∣ x ∣ from (ext tt f tt) = hub (from ∘ f) from (isExt tt f s i) = spoke (from ∘ f) s i from (≡ext tt g h p tt i) = ≡hub {x = from (g tt)} {from (h tt)} (cong from ∘ p) i from (≡isExt tt g h p s i j) = ≡spoke {x = from (g tt)} {from (h tt)} (cong from ∘ p) s i j to-from : ∀ (x : Localize {A = Unit} (λ _ → const {B = S} tt) A) → to (from x) ≡ x to-from ∣ x ∣ k = ∣ x ∣ to-from (ext tt f tt) k = ext tt (λ s → to-from (f s) k) tt to-from (isExt tt f s i) k = isExt tt (λ s → to-from (f s) k) s i to-from (≡ext tt g h p tt i) k = ≡ext tt (λ _ → to-from (g tt) k) (λ _ → to-from (h tt) k) (λ s j → to-from (p s j) k) tt i to-from (≡isExt tt g h p s i j) k = ≡isExt tt (λ _ → to-from (g tt) k) (λ _ → to-from (h tt) k) (λ s j → to-from (p s j) k) s i j from-to : ∀ (x : Null S A) → from (to x) ≡ x from-to ∣ x ∣ k = ∣ x ∣ from-to (hub f) k = hub (λ s → from-to (f s) k) from-to (spoke f s i) k = spoke (λ s → from-to (f s) k) s i from-to (≡hub {x} {y} p i) k = ≡hub {x = from-to x k} {from-to y k} (λ s j → from-to (p s j) k) i from-to (≡spoke {x} {y} p s i j) k = ≡spoke {x = from-to x k} {from-to y k} (λ s j → from-to (p s j) k) s i j isom : Iso (Null S A) (Localize {A = Unit} (λ _ → const {B = S} tt) A) isom = iso to from to-from from-to Null≃Localize : ∀ {ℓ ℓ'} (S : Type ℓ) (A : Type ℓ') → Null S A ≃ Localize (λ _ → const tt) A Null≃Localize S A = isoToEquiv (Null-iso-Localize.isom S A)
52.376923
131
0.493465
29a1fb9b8ebfef25a537f091efa812a24ab33728
522
agda
Agda
agda/Heapsort/Impl1/Correctness/Order.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/Heapsort/Impl1/Correctness/Order.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/Heapsort/Impl1/Correctness/Order.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
open import Relation.Binary.Core module Heapsort.Impl1.Correctness.Order {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) (trans≤ : Transitive _≤_) where open import Data.List open import Function using (_∘_) open import Heapsort.Impl1 _≤_ tot≤ trans≤ open import List.Sorted _≤_ open import OList _≤_ open import OList.Properties _≤_ theorem-heapsort-sorted : (xs : List A) → Sorted (forget (heapsort xs)) theorem-heapsort-sorted = lemma-olist-sorted ∘ heapsort
30.705882
71
0.657088
0628951b060a470d9ed7e2b1b955a648ae501dc2
5,311
agda
Agda
prototyping/Luau/StrictMode.agda
Libertus-Lab/luau
f1b46f4b967f11fabe666da1de0e71b225368260
[ "MIT" ]
1
2021-11-06T08:03:00.000Z
2021-11-06T08:03:00.000Z
prototyping/Luau/StrictMode.agda
sthagen/Roblox-luau
39fbd2146a379fb0878369b48764cd7e8772c0fb
[ "MIT" ]
null
null
null
prototyping/Luau/StrictMode.agda
sthagen/Roblox-luau
39fbd2146a379fb0878369b48764cd7e8772c0fb
[ "MIT" ]
null
null
null
{-# OPTIONS --rewriting #-} module Luau.StrictMode where open import Agda.Builtin.Equality using (_≡_) open import FFI.Data.Maybe using (just; nothing) open import Luau.Syntax using (Expr; Stat; Block; BinaryOperator; yes; nil; addr; var; binexp; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; name; +; -; *; /; <; >; <=; >=; ··) open import Luau.Type using (Type; nil; number; string; boolean; _⇒_; _∪_; _∩_) open import Luau.ResolveOverloads using (src; resolve) open import Luau.Subtyping using (_≮:_) open import Luau.Heap using (Heap; function_is_end) renaming (_[_] to _[_]ᴴ) open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ) open import Luau.TypeCheck using (_⊢ᴮ_∈_; _⊢ᴱ_∈_; ⊢ᴴ_; ⊢ᴼ_; _⊢ᴴᴱ_▷_∈_; _⊢ᴴᴮ_▷_∈_; var; addr; app; binexp; block; return; local; function; srcBinOp) open import Properties.Contradiction using (¬) open import Properties.TypeCheck using (typeCheckᴮ) open import Properties.Product using (_,_) data Warningᴱ (H : Heap yes) {Γ} : ∀ {M T} → (Γ ⊢ᴱ M ∈ T) → Set data Warningᴮ (H : Heap yes) {Γ} : ∀ {B T} → (Γ ⊢ᴮ B ∈ T) → Set data Warningᴱ H {Γ} where UnallocatedAddress : ∀ {a T} → (H [ a ]ᴴ ≡ nothing) → --------------------- Warningᴱ H (addr {a} T) UnboundVariable : ∀ {x T p} → (Γ [ x ]ⱽ ≡ nothing) → ------------------------ Warningᴱ H (var {x} {T} p) FunctionCallMismatch : ∀ {M N T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴱ N ∈ U} → (U ≮: src T) → ----------------- Warningᴱ H (app D₁ D₂) app₁ : ∀ {M N T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴱ N ∈ U} → Warningᴱ H D₁ → ----------------- Warningᴱ H (app D₁ D₂) app₂ : ∀ {M N T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴱ N ∈ U} → Warningᴱ H D₂ → ----------------- Warningᴱ H (app D₁ D₂) BinOpMismatch₁ : ∀ {op M N T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴱ N ∈ U} → (T ≮: srcBinOp op) → ------------------------------ Warningᴱ H (binexp {op} D₁ D₂) BinOpMismatch₂ : ∀ {op M N T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴱ N ∈ U} → (U ≮: srcBinOp op) → ------------------------------ Warningᴱ H (binexp {op} D₁ D₂) bin₁ : ∀ {op M N T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴱ N ∈ U} → Warningᴱ H D₁ → ------------------------------ Warningᴱ H (binexp {op} D₁ D₂) bin₂ : ∀ {op M N T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴱ N ∈ U} → Warningᴱ H D₂ → ------------------------------ Warningᴱ H (binexp {op} D₁ D₂) FunctionDefnMismatch : ∀ {f x B T U V} {D : (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V} → (V ≮: U) → ------------------------- Warningᴱ H (function {f} {U = U} D) function₁ : ∀ {f x B T U V} {D : (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V} → Warningᴮ H D → ------------------------- Warningᴱ H (function {f} {U = U} D) BlockMismatch : ∀ {b B T U} {D : Γ ⊢ᴮ B ∈ U} → (U ≮: T) → ------------------------------ Warningᴱ H (block {b} {T = T} D) block₁ : ∀ {b B T U} {D : Γ ⊢ᴮ B ∈ U} → Warningᴮ H D → ------------------------------ Warningᴱ H (block {b} {T = T} D) data Warningᴮ H {Γ} where return : ∀ {M B T U} {D₁ : Γ ⊢ᴱ M ∈ T} {D₂ : Γ ⊢ᴮ B ∈ U} → Warningᴱ H D₁ → ------------------ Warningᴮ H (return D₁ D₂) LocalVarMismatch : ∀ {x M B T U V} {D₁ : Γ ⊢ᴱ M ∈ U} {D₂ : (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V} → (U ≮: T) → -------------------- Warningᴮ H (local D₁ D₂) local₁ : ∀ {x M B T U V} {D₁ : Γ ⊢ᴱ M ∈ U} {D₂ : (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V} → Warningᴱ H D₁ → -------------------- Warningᴮ H (local D₁ D₂) local₂ : ∀ {x M B T U V} {D₁ : Γ ⊢ᴱ M ∈ U} {D₂ : (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V} → Warningᴮ H D₂ → -------------------- Warningᴮ H (local D₁ D₂) FunctionDefnMismatch : ∀ {f x B C T U V W} {D₁ : (Γ ⊕ x ↦ T) ⊢ᴮ C ∈ V} {D₂ : (Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ B ∈ W} → (V ≮: U) → ------------------------------------- Warningᴮ H (function D₁ D₂) function₁ : ∀ {f x B C T U V W} {D₁ : (Γ ⊕ x ↦ T) ⊢ᴮ C ∈ V} {D₂ : (Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ B ∈ W} → Warningᴮ H D₁ → -------------------- Warningᴮ H (function D₁ D₂) function₂ : ∀ {f x B C T U V W} {D₁ : (Γ ⊕ x ↦ T) ⊢ᴮ C ∈ V} {D₂ : (Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ B ∈ W} → Warningᴮ H D₂ → -------------------- Warningᴮ H (function D₁ D₂) data Warningᴼ (H : Heap yes) : ∀ {V} → (⊢ᴼ V) → Set where FunctionDefnMismatch : ∀ {f x B T U V} {D : (x ↦ T) ⊢ᴮ B ∈ V} → (V ≮: U) → --------------------------------- Warningᴼ H (function {f} {U = U} D) function₁ : ∀ {f x B T U V} {D : (x ↦ T) ⊢ᴮ B ∈ V} → Warningᴮ H D → --------------------------------- Warningᴼ H (function {f} {U = U} D) data Warningᴴ H (D : ⊢ᴴ H) : Set where addr : ∀ a {O} → (p : H [ a ]ᴴ ≡ O) → Warningᴼ H (D a p) → --------------- Warningᴴ H D data Warningᴴᴱ H {Γ M T} : (Γ ⊢ᴴᴱ H ▷ M ∈ T) → Set where heap : ∀ {D₁ : ⊢ᴴ H} {D₂ : Γ ⊢ᴱ M ∈ T} → Warningᴴ H D₁ → ----------------- Warningᴴᴱ H (D₁ , D₂) expr : ∀ {D₁ : ⊢ᴴ H} {D₂ : Γ ⊢ᴱ M ∈ T} → Warningᴱ H D₂ → --------------------- Warningᴴᴱ H (D₁ , D₂) data Warningᴴᴮ H {Γ B T} : (Γ ⊢ᴴᴮ H ▷ B ∈ T) → Set where heap : ∀ {D₁ : ⊢ᴴ H} {D₂ : Γ ⊢ᴮ B ∈ T} → Warningᴴ H D₁ → ----------------- Warningᴴᴮ H (D₁ , D₂) block : ∀ {D₁ : ⊢ᴴ H} {D₂ : Γ ⊢ᴮ B ∈ T} → Warningᴮ H D₂ → --------------------- Warningᴴᴮ H (D₁ , D₂)
27.235897
211
0.434005
3881c4b1dff1a4c00f754f3e7dbe982873c9f8ff
1,026
agda
Agda
src/Categories/Category/Topos.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/Category/Topos.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/Category/Topos.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Category.Topos {o ℓ e} (C : Category o ℓ e) where open import Level open import Categories.Category.CartesianClosed C open import Categories.Category.Complete.Finitely C open import Categories.Diagram.Equalizer C open import Categories.Diagram.SubobjectClassifier C import Categories.Category.Complete.Finitely.Properties as Fₚ open Category C record Topos : Set (levelOfTerm C) where field cartesianClosed : CartesianClosed subobjectClassifier : SubobjectClassifier equalizer : ∀ {A B} (f g : A ⇒ B) → Equalizer f g open CartesianClosed cartesianClosed public module subobjectClassifier = SubobjectClassifier subobjectClassifier finitelyComplete : FinitelyComplete finitelyComplete = record { cartesian = cartesian ; equalizer = equalizer } open FinitelyComplete finitelyComplete using (module equalizer; pullback) public open Fₚ finitelyComplete using (finiteLimit) public
27.72973
82
0.768031
38fac901e1e7139cd21e422f40307f69d8c0598e
202
agda
Agda
test/Succeed/Issue447.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue447.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue447.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Abstract definitions can't be projection-like module Issue447 where postulate I : Set R : I → Set module M (i : I) (r : R i) where abstract P : Set₂ P = Set₁ p : P p = Set
11.882353
48
0.579208
580842b49bc05c977777d6d51b91eb9b49b4ab69
1,921
agda
Agda
contraction.agda
hazelgrove/hazel-palette-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
16
2018-03-12T14:32:03.000Z
2021-12-19T02:50:23.000Z
contraction.agda
hazelgrove/hazel-palette-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
54
2017-06-29T20:53:34.000Z
2018-11-29T16:32:40.000Z
contraction.agda
hazelgrove/hazelnut-livelits-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
1
2019-09-13T18:20:02.000Z
2019-09-13T18:20:02.000Z
open import Prelude open import Nat open import core open import contexts open import lemmas-disjointness module contraction where -- in the same style as the proofs of exchange, this argument along with -- trasnport allows you to prove contraction for all the hypothetical -- judgements uniformly. we never explicitly use contraction anywhere, so -- we omit any of the specific instances for concision; they are entirely -- mechanical, as are the specific instances of exchange. one is shown -- below as an example. contract : {A : Set} {x : Nat} {τ : A} (Γ : A ctx) → ((Γ ,, (x , τ)) ,, (x , τ)) == (Γ ,, (x , τ)) contract {A} {x} {τ} Γ = funext guts where guts : (y : Nat) → (Γ ,, (x , τ) ,, (x , τ)) y == (Γ ,, (x , τ)) y guts y with natEQ x y guts .x | Inl refl with Γ x guts .x | Inl refl | Some x₁ = refl guts .x | Inl refl | None with natEQ x x guts .x | Inl refl | None | Inl refl = refl guts .x | Inl refl | None | Inr x₁ = abort (x₁ refl) guts y | Inr x₁ with Γ y guts y | Inr x₂ | Some x₁ = refl guts y | Inr x₁ | None with natEQ x y guts .x | Inr x₂ | None | Inl refl = refl guts y | Inr x₂ | None | Inr x₁ with natEQ x y guts .x | Inr x₃ | None | Inr x₂ | Inl refl = abort (x₃ refl) guts y | Inr x₃ | None | Inr x₂ | Inr x₁ = refl contract-synth : ∀{ Γ x τ e τ'} → (Γ ,, (x , τ) ,, (x , τ)) ⊢ e => τ' → (Γ ,, (x , τ)) ⊢ e => τ' contract-synth {Γ = Γ} {e = e} {τ' = τ'} = tr (λ qq → qq ⊢ e => τ') (contract Γ) -- as an aside, this also establishes the other direction which is rarely -- mentioned, since equality is symmetric elab-synth : ∀{ Γ x τ e τ'} → (Γ ,, (x , τ)) ⊢ e => τ' → (Γ ,, (x , τ) ,, (x , τ)) ⊢ e => τ' elab-synth {Γ = Γ} {e = e} {τ' = τ'} = tr (λ qq → qq ⊢ e => τ') (! (contract Γ))
41.76087
75
0.536179
578f6a17aa4d88c5d7dd96297033c94a40db8937
697
agda
Agda
test/Fail/TerminationCheckUnquote.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/TerminationCheckUnquote.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/TerminationCheckUnquote.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Check that unquoted functions are termination checked. module _ where open import Common.Prelude hiding (_>>=_) open import Common.Reflection open import Common.Equality `⊥ : Type `⊥ = def (quote ⊥) [] ⊥-elim : ∀ {a} {A : Set a} → ⊥ → A ⊥-elim () {- Generate cheat : ⊥ cheat = cheat -} makeLoop : TC Term makeLoop = freshName "cheat" >>= λ cheat → declareDef (vArg cheat) `⊥ >>= λ _ → defineFun cheat (clause [] [] (def cheat []) ∷ []) >>= λ _ → returnTC (def cheat []) macro magic : Tactic magic hole = makeLoop >>= λ loop → unify hole (def (quote ⊥-elim) (vArg loop ∷ [])) postulate ComplexityClass : Set P NP : ComplexityClass thm : P ≡ NP → ⊥ thm = magic
18.342105
62
0.609756
9af365e3f0f4a622791bcde32a027a264fd7c824
138
agda
Agda
test/interaction/Issue4333/N0.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue4333/N0.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue4333/N0.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --rewriting --confluence-check #-} module Issue4333.N0 where open import Issue4333.M {-# REWRITE p₀ #-} b₀' : B a₀' b₀' = b
15.333333
46
0.652174
381d5a96e0ba3252debc369301ae12fbe0e32b3b
8,570
agda
Agda
Cubical/Algebra/Semilattice/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:28:39.000Z
2022-03-05T00:28:39.000Z
Cubical/Algebra/Semilattice/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Algebra/Semilattice/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{- following Johnstone's book "Stone Spaces" we define semilattices to be commutative monoids such that every element is idempotent. In particular, we take every semilattice to have a neutral element that is either the maximal or minimal element depending on whether we have a join or meet semilattice. -} {-# OPTIONS --safe #-} module Cubical.Algebra.Semilattice.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.CommMonoid open import Cubical.Displayed.Base open import Cubical.Displayed.Auto open import Cubical.Displayed.Record open import Cubical.Displayed.Universe open import Cubical.Relation.Binary open import Cubical.Relation.Binary.Poset open import Cubical.Reflection.RecordEquiv open Iso private variable ℓ ℓ' : Level record IsSemilattice {A : Type ℓ} (ε : A) (_·_ : A → A → A) : Type ℓ where constructor issemilattice field isCommMonoid : IsCommMonoid ε _·_ idem : (x : A) → x · x ≡ x open IsCommMonoid isCommMonoid public unquoteDecl IsSemilatticeIsoΣ = declareRecordIsoΣ IsSemilatticeIsoΣ (quote IsSemilattice) record SemilatticeStr (A : Type ℓ) : Type ℓ where constructor semilatticestr field ε : A _·_ : A → A → A isSemilattice : IsSemilattice ε _·_ infixl 7 _·_ open IsSemilattice isSemilattice public Semilattice : ∀ ℓ → Type (ℓ-suc ℓ) Semilattice ℓ = TypeWithStr ℓ SemilatticeStr semilattice : (A : Type ℓ) (ε : A) (_·_ : A → A → A) (h : IsSemilattice ε _·_) → Semilattice ℓ semilattice A ε _·_ h = A , semilatticestr ε _·_ h -- Easier to use constructors makeIsSemilattice : {L : Type ℓ} {ε : L} {_·_ : L → L → L} (is-setL : isSet L) (assoc : (x y z : L) → x · (y · z) ≡ (x · y) · z) (rid : (x : L) → x · ε ≡ x) (lid : (x : L) → ε · x ≡ x) (comm : (x y : L) → x · y ≡ y · x) (idem : (x : L) → x · x ≡ x) → IsSemilattice ε _·_ IsSemilattice.isCommMonoid (makeIsSemilattice is-setL assoc rid lid comm idem) = makeIsCommMonoid is-setL assoc rid lid comm IsSemilattice.idem (makeIsSemilattice is-setL assoc rid lid comm idem) = idem makeSemilattice : {L : Type ℓ} (ε : L) (_·_ : L → L → L) (is-setL : isSet L) (assoc : (x y z : L) → x · (y · z) ≡ (x · y) · z) (rid : (x : L) → x · ε ≡ x) (lid : (x : L) → ε · x ≡ x) (comm : (x y : L) → x · y ≡ y · x) (idem : (x : L) → x · x ≡ x) → Semilattice ℓ makeSemilattice ε _·_ is-setL assoc rid lid comm idem = semilattice _ ε _·_ (makeIsSemilattice is-setL assoc rid lid comm idem) SemilatticeStr→MonoidStr : {A : Type ℓ} → SemilatticeStr A → MonoidStr A SemilatticeStr→MonoidStr (semilatticestr _ _ H) = monoidstr _ _ (H .IsSemilattice.isCommMonoid .IsCommMonoid.isMonoid) Semilattice→Monoid : Semilattice ℓ → Monoid ℓ Semilattice→Monoid (_ , semilatticestr _ _ H) = _ , monoidstr _ _ (H .IsSemilattice.isCommMonoid .IsCommMonoid.isMonoid) Semilattice→CommMonoid : Semilattice ℓ → CommMonoid ℓ Semilattice→CommMonoid (_ , semilatticestr _ _ H) = _ , commmonoidstr _ _ (H .IsSemilattice.isCommMonoid) SemilatticeHom : (L : Semilattice ℓ) (M : Semilattice ℓ') → Type (ℓ-max ℓ ℓ') SemilatticeHom L M = MonoidHom (Semilattice→Monoid L) (Semilattice→Monoid M) IsSemilatticeEquiv : {A : Type ℓ} {B : Type ℓ'} (M : SemilatticeStr A) (e : A ≃ B) (N : SemilatticeStr B) → Type (ℓ-max ℓ ℓ') IsSemilatticeEquiv M e N = IsMonoidHom (SemilatticeStr→MonoidStr M) (e .fst) (SemilatticeStr→MonoidStr N) SemilatticeEquiv : (M : Semilattice ℓ) (N : Semilattice ℓ') → Type (ℓ-max ℓ ℓ') SemilatticeEquiv M N = Σ[ e ∈ (M .fst ≃ N .fst) ] IsSemilatticeEquiv (M .snd) e (N .snd) isPropIsSemilattice : {L : Type ℓ} (ε : L) (_·_ : L → L → L) → isProp (IsSemilattice ε _·_) isPropIsSemilattice ε _·_ (issemilattice LL LC) (issemilattice SL SC) = λ i → issemilattice (isPropIsCommMonoid _ _ LL SL i) (isPropIdem LC SC i) where isSetL : isSet _ isSetL = LL .IsCommMonoid.isMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set isPropIdem : isProp ((x : _) → x · x ≡ x) isPropIdem = isPropΠ λ _ → isSetL _ _ 𝒮ᴰ-Semilattice : DUARel (𝒮-Univ ℓ) SemilatticeStr ℓ 𝒮ᴰ-Semilattice = 𝒮ᴰ-Record (𝒮-Univ _) IsSemilatticeEquiv (fields: data[ ε ∣ autoDUARel _ _ ∣ presε ] data[ _·_ ∣ autoDUARel _ _ ∣ isHom ] prop[ isSemilattice ∣ (λ _ _ → isPropIsSemilattice _ _) ]) where open SemilatticeStr open IsMonoidHom SemilatticePath : (L K : Semilattice ℓ) → SemilatticeEquiv L K ≃ (L ≡ K) SemilatticePath = ∫ 𝒮ᴰ-Semilattice .UARel.ua -- TODO: decide if that's the right approach module JoinSemilattice (L' : Semilattice ℓ) where private L = fst L' open SemilatticeStr (snd L') renaming (_·_ to _∨l_ ; ε to 1l) open CommMonoidTheory (Semilattice→CommMonoid L') _≤_ : L → L → Type ℓ x ≤ y = x ∨l y ≡ y infix 4 _≤_ IndPoset : Poset ℓ ℓ fst IndPoset = L PosetStr._≤_ (snd IndPoset) = _≤_ IsPoset.is-set (PosetStr.isPoset (snd IndPoset)) = is-set IsPoset.is-prop-valued (PosetStr.isPoset (snd IndPoset)) = λ _ _ → is-set _ _ IsPoset.is-refl (PosetStr.isPoset (snd IndPoset)) = idem IsPoset.is-trans (PosetStr.isPoset (snd IndPoset)) = path where path : (a b c : L) → a ∨l b ≡ b → b ∨l c ≡ c → a ∨l c ≡ c path a b c a∨b≡b b∨c≡c = a ∨l c ≡⟨ cong (a ∨l_) (sym b∨c≡c) ⟩ a ∨l (b ∨l c) ≡⟨ assoc _ _ _ ⟩ (a ∨l b) ∨l c ≡⟨ cong (_∨l c) a∨b≡b ⟩ b ∨l c ≡⟨ b∨c≡c ⟩ c ∎ IsPoset.is-antisym (PosetStr.isPoset (snd IndPoset)) = λ _ _ a∨b≡b b∨a≡a → sym b∨a≡a ∙∙ comm _ _ ∙∙ a∨b≡b ∨lIsMax : ∀ x y z → x ≤ z → y ≤ z → x ∨l y ≤ z ∨lIsMax x y z x≤z y≤z = cong ((x ∨l y) ∨l_) (sym (idem z)) ∙ commAssocSwap x y z z ∙ cong₂ (_∨l_) x≤z y≤z ∙ idem z ∨≤LCancel : ∀ x y → y ≤ x ∨l y ∨≤LCancel x y = commAssocl y x y ∙ cong (x ∨l_) (idem y) ∨≤RCancel : ∀ x y → x ≤ x ∨l y ∨≤RCancel x y = assoc _ _ _ ∙ cong (_∨l y) (idem x) ≤-∨Pres : ∀ x y u w → x ≤ y → u ≤ w → x ∨l u ≤ y ∨l w ≤-∨Pres x y u w x≤y u≤w = commAssocSwap x u y w ∙ cong₂ (_∨l_) x≤y u≤w ≤-∨LPres : ∀ x y z → x ≤ y → z ∨l x ≤ z ∨l y ≤-∨LPres x y z x≤y = ≤-∨Pres _ _ _ _ (idem z) x≤y module MeetSemilattice (L' : Semilattice ℓ) where private L = fst L' open SemilatticeStr (snd L') renaming (_·_ to _∧l_ ; ε to 0l) open CommMonoidTheory (Semilattice→CommMonoid L') _≤_ : L → L → Type ℓ x ≤ y = x ∧l y ≡ x infix 4 _≤_ IndPoset : Poset ℓ ℓ fst IndPoset = L PosetStr._≤_ (snd IndPoset) = _≤_ IsPoset.is-set (PosetStr.isPoset (snd IndPoset)) = is-set IsPoset.is-prop-valued (PosetStr.isPoset (snd IndPoset)) = λ _ _ → is-set _ _ IsPoset.is-refl (PosetStr.isPoset (snd IndPoset)) = idem IsPoset.is-trans (PosetStr.isPoset (snd IndPoset)) = path where path : (a b c : L) → a ∧l b ≡ a → b ∧l c ≡ b → a ∧l c ≡ a path a b c a∧b≡a b∧c≡b = a ∧l c ≡⟨ cong (_∧l c) (sym a∧b≡a) ⟩ (a ∧l b) ∧l c ≡⟨ sym (assoc _ _ _) ⟩ a ∧l (b ∧l c) ≡⟨ cong (a ∧l_) b∧c≡b ⟩ a ∧l b ≡⟨ a∧b≡a ⟩ a ∎ IsPoset.is-antisym (PosetStr.isPoset (snd IndPoset)) = λ _ _ a∧b≡a b∧a≡b → sym a∧b≡a ∙∙ comm _ _ ∙∙ b∧a≡b ≤-∧LPres : ∀ x y z → x ≤ y → z ∧l x ≤ z ∧l y ≤-∧LPres x y z x≤y = commAssocSwap z x z y ∙∙ cong (_∧l (x ∧l y)) (idem z) ∙∙ cong (z ∧l_) x≤y ∧≤LCancel : ∀ x y → x ∧l y ≤ y ∧≤LCancel x y = sym (assoc _ _ _) ∙ cong (x ∧l_) (idem y) ∧≤RCancel : ∀ x y → x ∧l y ≤ x ∧≤RCancel x y = commAssocr x y x ∙ cong (_∧l y) (idem x) ∧lIsMin : ∀ x y z → z ≤ x → z ≤ y → z ≤ x ∧l y ∧lIsMin x y z z≤x z≤y = cong (_∧l (x ∧l y)) (sym (idem z)) ∙ commAssocSwap z z x y ∙ cong₂ (_∧l_) z≤x z≤y ∙ idem z
36.623932
97
0.588215
04a290679b8e66622f2634fc07662eec86cf8b68
16,617
agda
Agda
agda-stdlib-0.9/src/Relation/Binary/Sigma/Pointwise.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Relation/Binary/Sigma/Pointwise.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Relation/Binary/Sigma/Pointwise.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Pointwise lifting of binary relations to sigma types ------------------------------------------------------------------------ module Relation.Binary.Sigma.Pointwise where open import Data.Product as Prod open import Level open import Function open import Function.Equality as F using (_⟶_; _⟨$⟩_) open import Function.Equivalence as Eq using (Equivalence; _⇔_; module Equivalence) open import Function.Injection as Inj using (Injection; _↣_; module Injection; Injective) open import Function.Inverse as Inv using (Inverse; _↔_; module Inverse) open import Function.LeftInverse as LeftInv using (LeftInverse; _↞_; module LeftInverse; _LeftInverseOf_; _RightInverseOf_) open import Function.Related as Related using (_∼[_]_; lam; app-←; app-↢) open import Function.Surjection as Surj using (Surjection; _↠_; module Surjection) import Relation.Binary as B open import Relation.Binary.Indexed as I using (_at_) import Relation.Binary.HeterogeneousEquality as H import Relation.Binary.PropositionalEquality as P ------------------------------------------------------------------------ -- Pointwise lifting infixr 4 _,_ data REL {a₁ a₂ b₁ b₂ ℓ₁ ℓ₂} {A₁ : Set a₁} (B₁ : A₁ → Set b₁) {A₂ : Set a₂} (B₂ : A₂ → Set b₂) (_R₁_ : B.REL A₁ A₂ ℓ₁) (_R₂_ : I.REL B₁ B₂ ℓ₂) : B.REL (Σ A₁ B₁) (Σ A₂ B₂) (a₁ ⊔ a₂ ⊔ b₁ ⊔ b₂ ⊔ ℓ₁ ⊔ ℓ₂) where _,_ : {x₁ : A₁} {y₁ : B₁ x₁} {x₂ : A₂} {y₂ : B₂ x₂} (x₁Rx₂ : x₁ R₁ x₂) (y₁Ry₂ : y₁ R₂ y₂) → REL B₁ B₂ _R₁_ _R₂_ (x₁ , y₁) (x₂ , y₂) Rel : ∀ {a b ℓ₁ ℓ₂} {A : Set a} (B : A → Set b) (_R₁_ : B.Rel A ℓ₁) (_R₂_ : I.Rel B ℓ₂) → B.Rel (Σ A B) _ Rel B = REL B B ------------------------------------------------------------------------ -- Rel preserves many properties module _ {a b ℓ₁ ℓ₂} {A : Set a} {B : A → Set b} {R₁ : B.Rel A ℓ₁} {R₂ : I.Rel B ℓ₂} where refl : B.Reflexive R₁ → I.Reflexive B R₂ → B.Reflexive (Rel B R₁ R₂) refl refl₁ refl₂ {x = (x , y)} = (refl₁ , refl₂) symmetric : B.Symmetric R₁ → I.Symmetric B R₂ → B.Symmetric (Rel B R₁ R₂) symmetric sym₁ sym₂ (x₁Rx₂ , y₁Ry₂) = (sym₁ x₁Rx₂ , sym₂ y₁Ry₂) transitive : B.Transitive R₁ → I.Transitive B R₂ → B.Transitive (Rel B R₁ R₂) transitive trans₁ trans₂ (x₁Rx₂ , y₁Ry₂) (x₂Rx₃ , y₂Ry₃) = (trans₁ x₁Rx₂ x₂Rx₃ , trans₂ y₁Ry₂ y₂Ry₃) isEquivalence : B.IsEquivalence R₁ → I.IsEquivalence B R₂ → B.IsEquivalence (Rel B R₁ R₂) isEquivalence eq₁ eq₂ = record { refl = refl (B.IsEquivalence.refl eq₁) (I.IsEquivalence.refl eq₂) ; sym = symmetric (B.IsEquivalence.sym eq₁) (I.IsEquivalence.sym eq₂) ; trans = transitive (B.IsEquivalence.trans eq₁) (I.IsEquivalence.trans eq₂) } setoid : ∀ {b₁ b₂ i₁ i₂} → (A : B.Setoid b₁ b₂) → I.Setoid (B.Setoid.Carrier A) i₁ i₂ → B.Setoid _ _ setoid s₁ s₂ = record { isEquivalence = isEquivalence (B.Setoid.isEquivalence s₁) (I.Setoid.isEquivalence s₂) } ------------------------------------------------------------------------ -- The propositional equality setoid over sigma types can be -- decomposed using Rel Rel↔≡ : ∀ {a b} {A : Set a} {B : A → Set b} → Inverse (setoid (P.setoid A) (H.indexedSetoid B)) (P.setoid (Σ A B)) Rel↔≡ {a} {b} {A} {B} = record { to = record { _⟨$⟩_ = id; cong = to-cong } ; from = record { _⟨$⟩_ = id; cong = from-cong } ; inverse-of = record { left-inverse-of = uncurry (λ _ _ → (P.refl , H.refl)) ; right-inverse-of = λ _ → P.refl } } where open I using (_=[_]⇒_) to-cong : Rel B P._≡_ (λ x y → H._≅_ x y) =[ id {a = a ⊔ b} ]⇒ P._≡_ to-cong (P.refl , H.refl) = P.refl from-cong : P._≡_ =[ id {a = a ⊔ b} ]⇒ Rel B P._≡_ (λ x y → H._≅_ x y) from-cong {i = (x , y)} P.refl = (P.refl , H.refl) ------------------------------------------------------------------------ -- Some properties related to "relatedness" ⟶ : ∀ {a₁ a₂ b₁ b₁′ b₂ b₂′} {A₁ : Set a₁} {A₂ : Set a₂} {B₁ : I.Setoid A₁ b₁ b₁′} (B₂ : I.Setoid A₂ b₂ b₂′) (f : A₁ → A₂) → (∀ {x} → (B₁ at x) ⟶ (B₂ at f x)) → setoid (P.setoid A₁) B₁ ⟶ setoid (P.setoid A₂) B₂ ⟶ {A₁ = A₁} {A₂} {B₁} B₂ f g = record { _⟨$⟩_ = fg ; cong = fg-cong } where open B.Setoid (setoid (P.setoid A₁) B₁) using () renaming (_≈_ to _≈₁_) open B.Setoid (setoid (P.setoid A₂) B₂) using () renaming (_≈_ to _≈₂_) open B using (_=[_]⇒_) fg = Prod.map f (_⟨$⟩_ g) fg-cong : _≈₁_ =[ fg ]⇒ _≈₂_ fg-cong (P.refl , ∼) = (P.refl , F.cong g ∼) equivalence : ∀ {a₁ a₂ b₁ b₁′ b₂ b₂′} {A₁ : Set a₁} {A₂ : Set a₂} {B₁ : I.Setoid A₁ b₁ b₁′} {B₂ : I.Setoid A₂ b₂ b₂′} (A₁⇔A₂ : A₁ ⇔ A₂) → (∀ {x} → _⟶_ (B₁ at x) (B₂ at (Equivalence.to A₁⇔A₂ ⟨$⟩ x))) → (∀ {y} → _⟶_ (B₂ at y) (B₁ at (Equivalence.from A₁⇔A₂ ⟨$⟩ y))) → Equivalence (setoid (P.setoid A₁) B₁) (setoid (P.setoid A₂) B₂) equivalence {B₁ = B₁} {B₂} A₁⇔A₂ B-to B-from = record { to = ⟶ B₂ (_⟨$⟩_ (to A₁⇔A₂)) B-to ; from = ⟶ B₁ (_⟨$⟩_ (from A₁⇔A₂)) B-from } where open Equivalence private subst-cong : ∀ {i a p} {I : Set i} {A : I → Set a} (P : ∀ {i} → A i → A i → Set p) {i i′} {x y : A i} (i≡i′ : P._≡_ i i′) → P x y → P (P.subst A i≡i′ x) (P.subst A i≡i′ y) subst-cong P P.refl p = p equivalence-↞ : ∀ {a₁ a₂ b₁ b₁′ b₂ b₂′} {A₁ : Set a₁} {A₂ : Set a₂} (B₁ : I.Setoid A₁ b₁ b₁′) {B₂ : I.Setoid A₂ b₂ b₂′} (A₁↞A₂ : A₁ ↞ A₂) → (∀ {x} → Equivalence (B₁ at (LeftInverse.from A₁↞A₂ ⟨$⟩ x)) (B₂ at x)) → Equivalence (setoid (P.setoid A₁) B₁) (setoid (P.setoid A₂) B₂) equivalence-↞ B₁ {B₂} A₁↞A₂ B₁⇔B₂ = equivalence (LeftInverse.equivalence A₁↞A₂) B-to B-from where B-to : ∀ {x} → _⟶_ (B₁ at x) (B₂ at (LeftInverse.to A₁↞A₂ ⟨$⟩ x)) B-to = record { _⟨$⟩_ = λ x → Equivalence.to B₁⇔B₂ ⟨$⟩ P.subst (I.Setoid.Carrier B₁) (P.sym $ LeftInverse.left-inverse-of A₁↞A₂ _) x ; cong = F.cong (Equivalence.to B₁⇔B₂) ∘ subst-cong (λ {x} → I.Setoid._≈_ B₁ {x} {x}) (P.sym (LeftInverse.left-inverse-of A₁↞A₂ _)) } B-from : ∀ {y} → _⟶_ (B₂ at y) (B₁ at (LeftInverse.from A₁↞A₂ ⟨$⟩ y)) B-from = Equivalence.from B₁⇔B₂ equivalence-↠ : ∀ {a₁ a₂ b₁ b₁′ b₂ b₂′} {A₁ : Set a₁} {A₂ : Set a₂} {B₁ : I.Setoid A₁ b₁ b₁′} (B₂ : I.Setoid A₂ b₂ b₂′) (A₁↠A₂ : A₁ ↠ A₂) → (∀ {x} → Equivalence (B₁ at x) (B₂ at (Surjection.to A₁↠A₂ ⟨$⟩ x))) → Equivalence (setoid (P.setoid A₁) B₁) (setoid (P.setoid A₂) B₂) equivalence-↠ {B₁ = B₁} B₂ A₁↠A₂ B₁⇔B₂ = equivalence (Surjection.equivalence A₁↠A₂) B-to B-from where B-to : ∀ {x} → B₁ at x ⟶ B₂ at (Surjection.to A₁↠A₂ ⟨$⟩ x) B-to = Equivalence.to B₁⇔B₂ B-from : ∀ {y} → B₂ at y ⟶ B₁ at (Surjection.from A₁↠A₂ ⟨$⟩ y) B-from = record { _⟨$⟩_ = λ x → Equivalence.from B₁⇔B₂ ⟨$⟩ P.subst (I.Setoid.Carrier B₂) (P.sym $ Surjection.right-inverse-of A₁↠A₂ _) x ; cong = F.cong (Equivalence.from B₁⇔B₂) ∘ subst-cong (λ {x} → I.Setoid._≈_ B₂ {x} {x}) (P.sym (Surjection.right-inverse-of A₁↠A₂ _)) } ⇔ : ∀ {a₁ a₂ b₁ b₂} {A₁ : Set a₁} {A₂ : Set a₂} {B₁ : A₁ → Set b₁} {B₂ : A₂ → Set b₂} (A₁⇔A₂ : A₁ ⇔ A₂) → (∀ {x} → B₁ x → B₂ (Equivalence.to A₁⇔A₂ ⟨$⟩ x)) → (∀ {y} → B₂ y → B₁ (Equivalence.from A₁⇔A₂ ⟨$⟩ y)) → Σ A₁ B₁ ⇔ Σ A₂ B₂ ⇔ {B₁ = B₁} {B₂} A₁⇔A₂ B-to B-from = Inverse.equivalence (Rel↔≡ {B = B₂}) ⟨∘⟩ equivalence A₁⇔A₂ (Inverse.to (H.≡↔≅ B₂) ⊚ P.→-to-⟶ B-to ⊚ Inverse.from (H.≡↔≅ B₁)) (Inverse.to (H.≡↔≅ B₁) ⊚ P.→-to-⟶ B-from ⊚ Inverse.from (H.≡↔≅ B₂)) ⟨∘⟩ Eq.sym (Inverse.equivalence (Rel↔≡ {B = B₁})) where open Eq using () renaming (_∘_ to _⟨∘⟩_) open F using () renaming (_∘_ to _⊚_) ⇔-↠ : ∀ {a₁ a₂ b₁ b₂} {A₁ : Set a₁} {A₂ : Set a₂} {B₁ : A₁ → Set b₁} {B₂ : A₂ → Set b₂} (A₁↠A₂ : A₁ ↠ A₂) → (∀ {x} → _⇔_ (B₁ x) (B₂ (Surjection.to A₁↠A₂ ⟨$⟩ x))) → _⇔_ (Σ A₁ B₁) (Σ A₂ B₂) ⇔-↠ {B₁ = B₁} {B₂} A₁↠A₂ B₁⇔B₂ = Inverse.equivalence (Rel↔≡ {B = B₂}) ⟨∘⟩ equivalence-↠ (H.indexedSetoid B₂) A₁↠A₂ (λ {x} → Inverse.equivalence (H.≡↔≅ B₂) ⟨∘⟩ B₁⇔B₂ {x} ⟨∘⟩ Inverse.equivalence (Inv.sym (H.≡↔≅ B₁))) ⟨∘⟩ Eq.sym (Inverse.equivalence (Rel↔≡ {B = B₁})) where open Eq using () renaming (_∘_ to _⟨∘⟩_) injection : ∀ {a₁ a₂ b₁ b₁′ b₂ b₂′} {A₁ : Set a₁} {A₂ : Set a₂} {B₁ : I.Setoid A₁ b₁ b₁′} (B₂ : I.Setoid A₂ b₂ b₂′) → (A₁↣A₂ : A₁ ↣ A₂) → (∀ {x} → Injection (B₁ at x) (B₂ at (Injection.to A₁↣A₂ ⟨$⟩ x))) → Injection (setoid (P.setoid A₁) B₁) (setoid (P.setoid A₂) B₂) injection {B₁ = B₁} B₂ A₁↣A₂ B₁↣B₂ = record { to = to ; injective = inj } where to = ⟶ B₂ (_⟨$⟩_ (Injection.to A₁↣A₂)) (Injection.to B₁↣B₂) inj : Injective to inj (x , y) = Injection.injective A₁↣A₂ x , lemma (Injection.injective A₁↣A₂ x) y where lemma : ∀ {x x′} {y : I.Setoid.Carrier B₁ x} {y′ : I.Setoid.Carrier B₁ x′} → P._≡_ x x′ → (eq : I.Setoid._≈_ B₂ (Injection.to B₁↣B₂ ⟨$⟩ y) (Injection.to B₁↣B₂ ⟨$⟩ y′)) → I.Setoid._≈_ B₁ y y′ lemma P.refl = Injection.injective B₁↣B₂ ↣ : ∀ {a₁ a₂ b₁ b₂} {A₁ : Set a₁} {A₂ : Set a₂} {B₁ : A₁ → Set b₁} {B₂ : A₂ → Set b₂} (A₁↣A₂ : A₁ ↣ A₂) → (∀ {x} → B₁ x ↣ B₂ (Injection.to A₁↣A₂ ⟨$⟩ x)) → Σ A₁ B₁ ↣ Σ A₂ B₂ ↣ {B₁ = B₁} {B₂} A₁↣A₂ B₁↣B₂ = Inverse.injection (Rel↔≡ {B = B₂}) ⟨∘⟩ injection (H.indexedSetoid B₂) A₁↣A₂ (λ {x} → Inverse.injection (H.≡↔≅ B₂) ⟨∘⟩ B₁↣B₂ {x} ⟨∘⟩ Inverse.injection (Inv.sym (H.≡↔≅ B₁))) ⟨∘⟩ Inverse.injection (Inv.sym (Rel↔≡ {B = B₁})) where open Inj using () renaming (_∘_ to _⟨∘⟩_) left-inverse : ∀ {a₁ a₂ b₁ b₁′ b₂ b₂′} {A₁ : Set a₁} {A₂ : Set a₂} (B₁ : I.Setoid A₁ b₁ b₁′) {B₂ : I.Setoid A₂ b₂ b₂′} → (A₁↞A₂ : A₁ ↞ A₂) → (∀ {x} → LeftInverse (B₁ at (LeftInverse.from A₁↞A₂ ⟨$⟩ x)) (B₂ at x)) → LeftInverse (setoid (P.setoid A₁) B₁) (setoid (P.setoid A₂) B₂) left-inverse B₁ {B₂} A₁↞A₂ B₁↞B₂ = record { to = Equivalence.to eq ; from = Equivalence.from eq ; left-inverse-of = left } where eq = equivalence-↞ B₁ A₁↞A₂ (LeftInverse.equivalence B₁↞B₂) left : Equivalence.from eq LeftInverseOf Equivalence.to eq left (x , y) = LeftInverse.left-inverse-of A₁↞A₂ x , I.Setoid.trans B₁ (LeftInverse.left-inverse-of B₁↞B₂ _) (lemma (P.sym (LeftInverse.left-inverse-of A₁↞A₂ x))) where lemma : ∀ {x x′ y} (eq : P._≡_ x x′) → I.Setoid._≈_ B₁ (P.subst (I.Setoid.Carrier B₁) eq y) y lemma P.refl = I.Setoid.refl B₁ ↞ : ∀ {a₁ a₂ b₁ b₂} {A₁ : Set a₁} {A₂ : Set a₂} {B₁ : A₁ → Set b₁} {B₂ : A₂ → Set b₂} (A₁↞A₂ : A₁ ↞ A₂) → (∀ {x} → B₁ (LeftInverse.from A₁↞A₂ ⟨$⟩ x) ↞ B₂ x) → Σ A₁ B₁ ↞ Σ A₂ B₂ ↞ {B₁ = B₁} {B₂} A₁↞A₂ B₁↞B₂ = Inverse.left-inverse (Rel↔≡ {B = B₂}) ⟨∘⟩ left-inverse (H.indexedSetoid B₁) A₁↞A₂ (λ {x} → Inverse.left-inverse (H.≡↔≅ B₂) ⟨∘⟩ B₁↞B₂ {x} ⟨∘⟩ Inverse.left-inverse (Inv.sym (H.≡↔≅ B₁))) ⟨∘⟩ Inverse.left-inverse (Inv.sym (Rel↔≡ {B = B₁})) where open LeftInv using () renaming (_∘_ to _⟨∘⟩_) surjection : ∀ {a₁ a₂ b₁ b₁′ b₂ b₂′} {A₁ : Set a₁} {A₂ : Set a₂} {B₁ : I.Setoid A₁ b₁ b₁′} (B₂ : I.Setoid A₂ b₂ b₂′) → (A₁↠A₂ : A₁ ↠ A₂) → (∀ {x} → Surjection (B₁ at x) (B₂ at (Surjection.to A₁↠A₂ ⟨$⟩ x))) → Surjection (setoid (P.setoid A₁) B₁) (setoid (P.setoid A₂) B₂) surjection {B₁} B₂ A₁↠A₂ B₁↠B₂ = record { to = Equivalence.to eq ; surjective = record { from = Equivalence.from eq ; right-inverse-of = right } } where eq = equivalence-↠ B₂ A₁↠A₂ (Surjection.equivalence B₁↠B₂) right : Equivalence.from eq RightInverseOf Equivalence.to eq right (x , y) = Surjection.right-inverse-of A₁↠A₂ x , I.Setoid.trans B₂ (Surjection.right-inverse-of B₁↠B₂ _) (lemma (P.sym $ Surjection.right-inverse-of A₁↠A₂ x)) where lemma : ∀ {x x′ y} (eq : P._≡_ x x′) → I.Setoid._≈_ B₂ (P.subst (I.Setoid.Carrier B₂) eq y) y lemma P.refl = I.Setoid.refl B₂ ↠ : ∀ {a₁ a₂ b₁ b₂} {A₁ : Set a₁} {A₂ : Set a₂} {B₁ : A₁ → Set b₁} {B₂ : A₂ → Set b₂} (A₁↠A₂ : A₁ ↠ A₂) → (∀ {x} → B₁ x ↠ B₂ (Surjection.to A₁↠A₂ ⟨$⟩ x)) → Σ A₁ B₁ ↠ Σ A₂ B₂ ↠ {B₁ = B₁} {B₂} A₁↠A₂ B₁↠B₂ = Inverse.surjection (Rel↔≡ {B = B₂}) ⟨∘⟩ surjection (H.indexedSetoid B₂) A₁↠A₂ (λ {x} → Inverse.surjection (H.≡↔≅ B₂) ⟨∘⟩ B₁↠B₂ {x} ⟨∘⟩ Inverse.surjection (Inv.sym (H.≡↔≅ B₁))) ⟨∘⟩ Inverse.surjection (Inv.sym (Rel↔≡ {B = B₁})) where open Surj using () renaming (_∘_ to _⟨∘⟩_) inverse : ∀ {a₁ a₂ b₁ b₁′ b₂ b₂′} {A₁ : Set a₁} {A₂ : Set a₂} {B₁ : I.Setoid A₁ b₁ b₁′} (B₂ : I.Setoid A₂ b₂ b₂′) → (A₁↔A₂ : A₁ ↔ A₂) → (∀ {x} → Inverse (B₁ at x) (B₂ at (Inverse.to A₁↔A₂ ⟨$⟩ x))) → Inverse (setoid (P.setoid A₁) B₁) (setoid (P.setoid A₂) B₂) inverse {B₁ = B₁} B₂ A₁↔A₂ B₁↔B₂ = record { to = Surjection.to surj ; from = Surjection.from surj ; inverse-of = record { left-inverse-of = left ; right-inverse-of = Surjection.right-inverse-of surj } } where surj = surjection B₂ (Inverse.surjection A₁↔A₂) (Inverse.surjection B₁↔B₂) left : Surjection.from surj LeftInverseOf Surjection.to surj left (x , y) = Inverse.left-inverse-of A₁↔A₂ x , I.Setoid.trans B₁ (lemma (P.sym (Inverse.left-inverse-of A₁↔A₂ x)) (P.sym (Inverse.right-inverse-of A₁↔A₂ (Inverse.to A₁↔A₂ ⟨$⟩ x)))) (Inverse.left-inverse-of B₁↔B₂ y) where lemma : ∀ {x x′ y} → P._≡_ x x′ → (eq : P._≡_ (Inverse.to A₁↔A₂ ⟨$⟩ x) (Inverse.to A₁↔A₂ ⟨$⟩ x′)) → I.Setoid._≈_ B₁ (Inverse.from B₁↔B₂ ⟨$⟩ P.subst (I.Setoid.Carrier B₂) eq y) (Inverse.from B₁↔B₂ ⟨$⟩ y) lemma P.refl P.refl = I.Setoid.refl B₁ ↔ : ∀ {a₁ a₂ b₁ b₂} {A₁ : Set a₁} {A₂ : Set a₂} {B₁ : A₁ → Set b₁} {B₂ : A₂ → Set b₂} (A₁↔A₂ : A₁ ↔ A₂) → (∀ {x} → B₁ x ↔ B₂ (Inverse.to A₁↔A₂ ⟨$⟩ x)) → Σ A₁ B₁ ↔ Σ A₂ B₂ ↔ {B₁ = B₁} {B₂} A₁↔A₂ B₁↔B₂ = Rel↔≡ {B = B₂} ⟨∘⟩ inverse (H.indexedSetoid B₂) A₁↔A₂ (λ {x} → H.≡↔≅ B₂ ⟨∘⟩ B₁↔B₂ {x} ⟨∘⟩ Inv.sym (H.≡↔≅ B₁)) ⟨∘⟩ Inv.sym (Rel↔≡ {B = B₁}) where open Inv using () renaming (_∘_ to _⟨∘⟩_) private swap-coercions : ∀ {k a₁ a₂ b₁ b₂} {A₁ : Set a₁} {A₂ : Set a₂} {B₁ : A₁ → Set b₁} (B₂ : A₂ → Set b₂) (A₁↔A₂ : _↔_ A₁ A₂) → (∀ {x} → B₁ x ∼[ k ] B₂ (Inverse.to A₁↔A₂ ⟨$⟩ x)) → ∀ {x} → B₁ (Inverse.from A₁↔A₂ ⟨$⟩ x) ∼[ k ] B₂ x swap-coercions {k} {B₁ = B₁} B₂ A₁↔A₂ eq {x} = B₁ (Inverse.from A₁↔A₂ ⟨$⟩ x) ∼⟨ eq ⟩ B₂ (Inverse.to A₁↔A₂ ⟨$⟩ (Inverse.from A₁↔A₂ ⟨$⟩ x)) ↔⟨ B.Setoid.reflexive (Related.setoid Related.bijection _) (P.cong B₂ $ Inverse.right-inverse-of A₁↔A₂ x) ⟩ B₂ x ∎ where open Related.EquationalReasoning cong : ∀ {k a₁ a₂ b₁ b₂} {A₁ : Set a₁} {A₂ : Set a₂} {B₁ : A₁ → Set b₁} {B₂ : A₂ → Set b₂} (A₁↔A₂ : _↔_ A₁ A₂) → (∀ {x} → B₁ x ∼[ k ] B₂ (Inverse.to A₁↔A₂ ⟨$⟩ x)) → Σ A₁ B₁ ∼[ k ] Σ A₂ B₂ cong {Related.implication} = λ A₁↔A₂ → Prod.map (_⟨$⟩_ (Inverse.to A₁↔A₂)) cong {Related.reverse-implication} {B₂ = B₂} = λ A₁↔A₂ B₁←B₂ → lam (Prod.map (_⟨$⟩_ (Inverse.from A₁↔A₂)) (app-← (swap-coercions B₂ A₁↔A₂ B₁←B₂))) cong {Related.equivalence} = ⇔-↠ ∘ Inverse.surjection cong {Related.injection} = ↣ ∘ Inverse.injection cong {Related.reverse-injection} {B₂ = B₂} = λ A₁↔A₂ B₁↢B₂ → lam (↣ (Inverse.injection (Inv.sym A₁↔A₂)) (app-↢ (swap-coercions B₂ A₁↔A₂ B₁↢B₂))) cong {Related.left-inverse} = λ A₁↔A₂ → ↞ (Inverse.left-inverse A₁↔A₂) ∘ swap-coercions _ A₁↔A₂ cong {Related.surjection} = ↠ ∘ Inverse.surjection cong {Related.bijection} = ↔
37.174497
117
0.512608
3d1d30277a8c99d6247376e8bb93479f0621c3b2
9,589
agda
Agda
src/LFRef/Properties/Soundness.agda
ajrouvoet/implicits.agda
ef2e347a4470e55083c83b743efbc2902ef1ad22
[ "MIT" ]
4
2019-04-05T17:57:11.000Z
2021-05-07T04:08:41.000Z
src/LFRef/Properties/Soundness.agda
ElessarWebb/implicits.agda
ef2e347a4470e55083c83b743efbc2902ef1ad22
[ "MIT" ]
null
null
null
src/LFRef/Properties/Soundness.agda
ElessarWebb/implicits.agda
ef2e347a4470e55083c83b743efbc2902ef1ad22
[ "MIT" ]
null
null
null
module LFRef.Properties.Soundness where open import Data.Nat open import Data.Sum open import Data.Product as Pr open import Data.List as List hiding (monad) open import Data.Fin using (fromℕ≤; Fin) open import Data.Vec hiding (_∷ʳ_; _>>=_) open import Data.Star hiding (_>>=_) open import Function open import Extensions.List as L open import Relation.Binary.PropositionalEquality as P open import Relation.Binary.Core using (REL; Reflexive) open import Relation.Binary.List.Pointwise as PRel hiding (refl) open import LFRef.Syntax open import LFRef.Welltyped open import LFRef.Eval open import LFRef.Properties.Decidable progress : ∀ {𝕊 Σ A} {e : Exp 0} {μ} → 𝕊 , Σ ⊢ μ → 𝕊 , Σ , [] ⊢ₑ e ∶ A → -------------------------------------- (ExpVal e) ⊎ (∃₂ λ e' μ' → (𝕊 ⊢ e , μ ≻ e' , μ')) progress p (tm (con k ts _)) = inj₁ (tm con) progress p (tm unit) = inj₁ (tm unit) progress p (tm (var ())) progress p (tm (loc x)) = inj₁ (tm loc) progress p (fn ·★[ q ] ts) = inj₂ (, (, funapp-β fn (tele-fit-length ts))) progress p (ref e) with progress p e progress p (ref {_} {tm _} (tm _)) | inj₁ (tm v) = inj₂ (, (, ref-val v)) progress p (ref {_} {_ ·★ _} e) | inj₁ () progress p (ref {_} {ref x} e) | inj₁ () progress p (ref {_} { ! x } e) | inj₁ () progress p (ref {_} {x ≔ x₁} e) | inj₁ () progress p (ref e) | inj₂ (e' , μ' , step) = inj₂ (, (, ref-clos step)) progress p (!_ {x = x} e) with progress p e progress p (!_ {_} {tm .(loc _)} (tm (loc x))) | inj₁ (tm _) = inj₂ (, (, !-val (P.subst (_<_ _) (pointwise-length p) ([]=-length x)))) progress p (!_ {_} {tm (var ())} e) | _ progress p (!_ {_} {_ ·★ _} e) | inj₁ () progress p (!_ {_} {ref x} e) | inj₁ () progress p (!_ {_} { ! x } e) | inj₁ () progress p (!_ {_} {x ≔ x₁} e) | inj₁ () progress p (! e) | inj₂ (e' , μ' , step) = inj₂ (, (, !-clos step)) progress p (l ≔ e) with progress p l | progress p e progress p (tm () ≔ e) | inj₁ (tm unit) | (inj₁ (tm x₁)) progress p (tm () ≔ e) | inj₁ (tm con) | (inj₁ (tm x₁)) progress p (tm (loc x) ≔ e) | inj₁ (tm loc) | (inj₁ (tm v)) = inj₂ (, (, ≔-val (P.subst (_<_ _) (pointwise-length p) ([]=-length x)) v)) progress p (l ≔ e) | inj₂ (_ , _ , step) | _ = inj₂ (, (, ≔-clos₁ step)) progress p (l ≔ e) | inj₁ v | (inj₂ (_ , _ , step)) = inj₂ (, (, ≔-clos₂ v step)) progress-seq : ∀ {𝕊 Σ A} {e : SeqExp 0} {μ} → 𝕊 , Σ ⊢ μ → 𝕊 , Σ , [] ⊢ₛ e ∶ A → -------------------------------------- SeqExpVal e ⊎ ∃₂ λ e' μ' → (𝕊 ⊢ e , μ ≻ₛ e' , μ') progress-seq p (ret e) with progress p e ... | inj₁ (tm v) = inj₁ (ret-tm v) ... | inj₂ (e' , μ' , step) = inj₂ (, , ret-clos step) progress-seq p (lett x e) with progress p x progress-seq p (lett x e) | inj₁ (tm v) = inj₂ (, (, lett-β)) progress-seq p (lett x e) | inj₂ (x' , μ' , step) = inj₂ (, (, lett-clos step)) postulate lem₂ : ∀ {n 𝕊 Σ e a b t} {Γ : Ctx n} → 𝕊 , Σ , (a :+: Γ) ⊢ₑ e ∶ weaken₁-tp b → 𝕊 , Σ , Γ ⊢ t ∶ a → 𝕊 , Σ , Γ ⊢ₑ (e exp/ (sub t)) ∶ b lem₃ : ∀ {n 𝕊 Σ e a b t} {Γ : Ctx n} → 𝕊 , Σ , (a :+: Γ) ⊢ₛ e ∶ weaken₁-tp b → 𝕊 , Σ , Γ ⊢ t ∶ a → 𝕊 , Σ , Γ ⊢ₛ (e seq/ (sub t)) ∶ b lem₁ : ∀ {n 𝕊 Σ φ ts} {Γ : Ctx n} → 𝕊 ⊢ φ fnOk → (p : 𝕊 , Σ , Γ ⊢ ts ∶ⁿ weaken+-tele n (Fun.args φ)) → (q : length ts ≡ (Fun.m φ)) → 𝕊 , Σ , Γ ⊢ₑ (!call (Fun.body φ) ts q) ∶ ((Fun.returntype φ) fun[ ts / q ]) -- loading from a welltyped store results in a welltyped term !load-ok : ∀ {Σ Σ' A μ i 𝕊} → -- store-welltypedness type (strengthened for induction) Rel (λ A x → 𝕊 , Σ , [] ⊢ (proj₁ x) ∶ A) Σ' μ → Σ' L.[ i ]= A → (l : i < length μ) → 𝕊 , Σ , [] ⊢ (!load μ l) ∶ A !load-ok [] () !load-ok (x∼y ∷ p) here (s≤s z≤n) = x∼y !load-ok (x∼y ∷ p) (there q) (s≤s l) = !load-ok p q l mutual ⊒-preserves-tm : ∀ {n Γ Σ Σ' A 𝕊} {t : Term n} → Σ' ⊒ Σ → 𝕊 , Σ , Γ ⊢ t ∶ A → 𝕊 , Σ' , Γ ⊢ t ∶ A ⊒-preserves-tm ext unit = unit ⊒-preserves-tm ext (var x) = var x ⊒-preserves-tm ext (con x p q) = con x (⊒-preserves-tele ext p) q ⊒-preserves-tm ext (loc x) = loc (xs⊒ys[i] x ext) ⊒-preserves-tele : ∀ {n m Γ Σ Σ' 𝕊} {ts : List (Term n)} {T : Tele n m} → Σ' ⊒ Σ → 𝕊 , Σ , Γ ⊢ ts ∶ⁿ T → 𝕊 , Σ' , Γ ⊢ ts ∶ⁿ T ⊒-preserves-tele ext ε = ε ⊒-preserves-tele ext (x ⟶ p) = ⊒-preserves-tm ext x ⟶ (⊒-preserves-tele ext p) -- welltypedness is preseved under store extensions ⊒-preserves : ∀ {n Γ Σ Σ' A 𝕊} {e : Exp n} → Σ' ⊒ Σ → 𝕊 , Σ , Γ ⊢ₑ e ∶ A → 𝕊 , Σ' , Γ ⊢ₑ e ∶ A ⊒-preserves ext (tm x) = tm (⊒-preserves-tm ext x) ⊒-preserves ext (x ·★[ refl ] p) with ⊒-preserves-tele ext p ... | p' = x ·★[ refl ] p' ⊒-preserves ext (ref p) = ref (⊒-preserves ext p) ⊒-preserves ext (! p) = ! (⊒-preserves ext p) ⊒-preserves ext (p ≔ q) = ⊒-preserves ext p ≔ ⊒-preserves ext q ⊒-preserves-seq : ∀ {n Γ Σ Σ' A 𝕊} {e : SeqExp n} → Σ' ⊒ Σ → 𝕊 , Σ , Γ ⊢ₛ e ∶ A → 𝕊 , Σ' , Γ ⊢ₛ e ∶ A ⊒-preserves-seq ext (ret e) = ret (⊒-preserves ext e) ⊒-preserves-seq ext (lett e c) = lett (⊒-preserves ext e) (⊒-preserves-seq ext c) -- helper for lifting preserving reductions into their closure clos-cong : ∀ {Σ μ 𝕊 A B} {e : Exp 0} (c : Exp 0 → Exp 0) → (f : ∀ {Σ'} (ext : Σ' ⊒ Σ) → 𝕊 , Σ' , [] ⊢ₑ e ∶ A → 𝕊 , Σ' , [] ⊢ₑ c e ∶ B) → (∃ λ Σ' → 𝕊 , Σ' , [] ⊢ₑ e ∶ A × Σ' ⊒ Σ × 𝕊 , Σ' ⊢ μ) → ∃ λ Σ' → 𝕊 , Σ' , [] ⊢ₑ c e ∶ B × Σ' ⊒ Σ × 𝕊 , Σ' ⊢ μ clos-cong _ f (Σ , wte , ext , μ-wt) = Σ , f ext wte , ext , μ-wt ≻-preserves : ∀ {𝕊 Σ A} {e : Exp 0} {e' μ' μ} → 𝕊 , [] ⊢ok → 𝕊 , Σ , [] ⊢ₑ e ∶ A → 𝕊 , Σ ⊢ μ → 𝕊 ⊢ e , μ ≻ e' , μ' → ---------------------------------------------------- ∃ λ Σ' → 𝕊 , Σ' , [] ⊢ₑ e' ∶ A × Σ' ⊒ Σ × 𝕊 , Σ' ⊢ μ' -- variables ≻-preserves ok (tm x) q () -- function application ≻-preserves {Σ = Σ} ok (fn ·★[ refl ] ts) q (funapp-β x refl) with []=-functional _ _ fn x | all-lookup fn (_,_⊢ok.funs-ok ok) ... | refl | fn-ok = Σ , (lem₁ fn-ok ts refl) , ⊑-refl , q -- new references ≻-preserves {Σ = Σ} ok (ref {A = A} (tm x)) q (ref-val v) = let ext = (∷ʳ-⊒ A Σ) in Σ ∷ʳ A , (tm (loc (P.subst (λ i → _ L.[ i ]= _) (pointwise-length q) (∷ʳ[length] Σ A)))) , ext , pointwise-∷ʳ (PRel.map (⊒-preserves-tm ext) q) (⊒-preserves-tm ext x) ≻-preserves ok (ref p) q (ref-clos step) = clos-cong ref (const ref) (≻-preserves ok p q step) -- dereferencing ≻-preserves {Σ = Σ₁} ok (! tm (loc x)) q (!-val p) = Σ₁ , tm (!load-ok q x p) , ⊑-refl , q ≻-preserves ok (! p) q (!-clos step) = clos-cong !_ (const !_) (≻-preserves ok p q step) -- assignment ≻-preserves {Σ = Σ₁} ok (_≔_ (tm (loc x)) (tm y)) q (≔-val p v) = Σ₁ , tm unit , ⊑-refl , pointwise-[]≔ q x p y ≻-preserves ok (p ≔ p₁) q (≔-clos₁ step) = clos-cong (λ p' → p' ≔ _) (λ ext p' → p' ≔ ⊒-preserves ext p₁) (≻-preserves ok p q step) ≻-preserves ok (p ≔ p₁) q (≔-clos₂ v step) = clos-cong (λ p' → _ ≔ p') (λ ext p' → ⊒-preserves ext p ≔ p') (≻-preserves ok p₁ q step) -- let binding ≻ₛ-preserves : ∀ {𝕊 Σ A} {e : SeqExp 0} {e' μ' μ} → 𝕊 , [] ⊢ok → 𝕊 , Σ , [] ⊢ₛ e ∶ A → 𝕊 , Σ ⊢ μ → 𝕊 ⊢ e , μ ≻ₛ e' , μ' → ------------------------------------------------------- ∃ λ Σ' → 𝕊 , Σ' , [] ⊢ₛ e' ∶ A × Σ' ⊒ Σ × 𝕊 , Σ' ⊢ μ' ≻ₛ-preserves {Σ = Σ} ok (lett (tm x) p) q lett-β = Σ , lem₃ p x , ⊑-refl , q ≻ₛ-preserves ok (lett p p₁) q (lett-clos step) with ≻-preserves ok p q step ... | Σ₂ , wte' , Σ₂⊒Σ₁ , q' = Σ₂ , lett wte' ((⊒-preserves-seq Σ₂⊒Σ₁ p₁)) , Σ₂⊒Σ₁ , q' ≻ₛ-preserves ok (ret e) q (ret-clos step) with ≻-preserves ok e q step ... | Σ₂ , wte' , Σ₂⊒Σ₁ , q' = Σ₂ , ret wte' , Σ₂⊒Σ₁ , q' module SafeEval where open import Category.Monad.Partiality open import Category.Monad open import Coinduction open import Level as Lev open RawMonad {f = Lev.zero} monad -- typesafe evaluation in the partiality/delay-monad; -- or "soundness" modulo non-trivial divergence eval : ∀ {𝕊 Σ a μ} {e : SeqExp 0} → 𝕊 , [] ⊢ok → -- given an ok signature context, 𝕊 , Σ , [] ⊢ₛ e ∶ a → -- a welltyped closed expression, 𝕊 , Σ ⊢ μ → -- and a welltyped store --------------------------------------------------------------------------------------- -- eval will either diverge or provide evidence of a term v, store μ' and storetype Σ' (∃ λ v → ∃ λ μ' → ∃ λ Σ' → -- such that v is a value, (SeqExpVal v) × -- ...there is a sequence of small steps from e to v (𝕊 ⊢ e , μ ≻⋆ v , μ') × -- ...v has the same type as e (𝕊 , Σ' , [] ⊢ₛ v ∶ a) × -- ...μ' is typed by Σ' (𝕊 , Σ' ⊢ μ') × -- ...and finally, Σ' is an extension of Σ (Σ' ⊒ Σ)) ⊥ eval 𝕊-ok wte μ-ok with progress-seq μ-ok wte eval 𝕊-ok wte μ-ok | inj₁ v = now (_ , _ , _ , v , ε , wte , μ-ok , ⊑-refl) eval 𝕊-ok wte μ-ok | inj₂ (e' , μ' , step) with ≻ₛ-preserves 𝕊-ok wte μ-ok step ... | (Σ' , wte' , ext₁ , μ'-ok) with later (♯ (eval 𝕊-ok wte' μ'-ok)) ... | (now (v' , μ'' , Σ'' , val , steps , wte'' , μ''-ok , ext₂)) = now (v' , (μ'' , (Σ'' , val , ((steps ▻ step) , (wte'' , μ''-ok , ⊑-trans ext₁ ext₂))))) ... | (later x) = later (♯ (♭ x >>= λ{ (v' , μ'' , Σ'' , val , steps , wte'' , μ''-ok , ext₂) → now (v' , μ'' , Σ'' , val , steps ▻ step , wte'' , μ''-ok , ⊑-trans ext₁ ext₂) }))
40.631356
101
0.477735
d04f404e542244a215f564e981e3571ed953af1b
3,318
agda
Agda
src/Ints/Add/Assoc.agda
ice1k/Theorems
7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc
[ "Apache-2.0" ]
1
2020-04-15T15:28:03.000Z
2020-04-15T15:28:03.000Z
src/Ints/Add/Assoc.agda
ice1k/Theorems
7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc
[ "Apache-2.0" ]
null
null
null
src/Ints/Add/Assoc.agda
ice1k/Theorems
7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc
[ "Apache-2.0" ]
null
null
null
module Ints.Add.Assoc where open import Ints open import Nats renaming (suc to nsuc; _+_ to _:+:_) open import Nats.Add.Assoc open import Nats.Add.Comm open import Ints.Add.Comm open import Equality open import Function ------------------------------------------------------------------------ -- internal stuffs private 0+a=a : ∀ a → + 0 + a ≡ a 0+a=a (+ n ) = refl 0+a=a (-[1+ n ]) = refl a+0=a : ∀ a → a + + 0 ≡ a a+0=a a rewrite int-add-comm a (+ 0) | 0+a=a a = refl z+/b+c/=/z+b/+c : ∀ b c → + 0 + (b + c) ≡ (+ 0 + b) + c z+/b+c/=/z+b/+c (+ a ) (+ b ) = refl z+/b+c/=/z+b/+c (-[1+ a ]) (-[1+ b ]) = refl z+/b+c/=/z+b/+c (+ a ) (-[1+ b ]) rewrite 0+a=a (a ⊖ nsuc b) = refl z+/b+c/=/z+b/+c (-[1+ a ]) (+ b ) rewrite 0+a=a (b ⊖ nsuc a) = refl a+b=a--b : ∀ a b → a + b ≡ a - (- b) a+b=a--b a (+ zero ) = refl a+b=a--b a (+ nsuc n) rewrite a+b=a--b a (+ n) = refl a+b=a--b a (-[1+ n ]) = refl a-b+c=a+c-b : ∀ a b c → a ⊖ b + + c ≡ a :+: c ⊖ b a-b+c=a+c-b zero zero _ = refl a-b+c=a+c-b zero (nsuc _) _ = refl a-b+c=a+c-b (nsuc _) zero _ = refl a-b+c=a+c-b (nsuc a) (nsuc b) c = a-b+c=a+c-b a b c a+/b-c/=a+b-c : ∀ a b c → + a + (b ⊖ c) ≡ a :+: b ⊖ c a+/b-c/=a+b-c a b c rewrite int-add-comm (+ a) $ b ⊖ c | a-b+c=a+c-b b c a | nat-add-comm a b = refl b-c-a=b-/c+a/ : ∀ a b c → b ⊖ c + -[1+ a ] ≡ b ⊖ (nsuc c :+: a) b-c-a=b-/c+a/ _ zero zero = refl b-c-a=b-/c+a/ _ zero (nsuc _) = refl b-c-a=b-/c+a/ _ (nsuc _) zero = refl b-c-a=b-/c+a/ a (nsuc b) (nsuc c) = b-c-a=b-/c+a/ a b c -a+/b-c/=b-/a+c/ : ∀ a b c → -[1+ a ] + (b ⊖ c) ≡ b ⊖ (nsuc a :+: c) -a+/b-c/=b-/a+c/ a b c rewrite int-add-comm -[1+ a ] $ b ⊖ c | b-c-a=b-/c+a/ a b c | nat-add-comm a c = refl a+/b+c/=/a+b/+c : ∀ a b c → a + (b + c) ≡ a + b + c a+/b+c/=/a+b/+c (+ zero) b c rewrite 0+a=a (b + c) | 0+a=a b = refl a+/b+c/=/a+b/+c a (+ zero) c rewrite 0+a=a c | a+0=a a = refl a+/b+c/=/a+b/+c a b (+ zero) rewrite a+0=a b | a+0=a (a + b) = refl a+/b+c/=/a+b/+c (+ a) (+ b) (+ c) rewrite nat-add-assoc a b c = refl a+/b+c/=/a+b/+c -[1+ a ] -[1+ b ] (+ nsuc c) rewrite -a+/b-c/=b-/a+c/ a c b = refl a+/b+c/=/a+b/+c -[1+ a ] (+ nsuc b) -[1+ c ] rewrite -a+/b-c/=b-/a+c/ a b c | b-c-a=b-/c+a/ c b a = refl a+/b+c/=/a+b/+c (+ nsuc a) -[1+ b ] -[1+ c ] rewrite b-c-a=b-/c+a/ c a b = refl a+/b+c/=/a+b/+c (+ nsuc a) -[1+ b ] (+ nsuc c) rewrite a-b+c=a+c-b a b $ nsuc c | a+/b-c/=a+b-c (nsuc a) c b | sym $ nat-add-assoc a 1 c | nat-add-comm a 1 = refl a+/b+c/=/a+b/+c -[1+ a ] (+ nsuc b) (+ nsuc c) rewrite a-b+c=a+c-b b a (nsuc c) = refl a+/b+c/=/a+b/+c -[1+ a ] -[1+ b ] -[1+ c ] rewrite nat-add-comm a $ nsuc $ b :+: c | nat-add-comm (b :+: c) a | nat-add-assoc a b c = refl a+/b+c/=/a+b/+c (+ nsuc a) (+ nsuc b) -[1+ c ] rewrite a+/b-c/=a+b-c (nsuc a) b c | sym $ nat-add-assoc a 1 b | nat-add-comm a 1 = refl ------------------------------------------------------------------------ -- public aliases int-add-assoc : ∀ a b c → a + (b + c) ≡ a + b + c int-add-assoc = a+/b+c/=/a+b/+c
31.903846
72
0.402954
1e6f9021050f6c43f707e07aa9114e849856d993
383
agda
Agda
examples/compiler/Not-named-according-to-the-Haskell-lexical-syntax.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
examples/compiler/Not-named-according-to-the-Haskell-lexical-syntax.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/compiler/Not-named-according-to-the-Haskell-lexical-syntax.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
module Not-named-according-to-the-Haskell-lexical-syntax where postulate IO : Set -> Set {-# BUILTIN IO IO #-} {-# COMPILED_TYPE IO IO #-} postulate return : {A : Set} -> A -> IO A {-# COMPILED return (\_ -> return :: a -> IO a) #-} {-# COMPILED_EPIC return (u1 : Unit, a : Any) -> Any = ioreturn(a) #-} data Unit : Set where unit : Unit {-# COMPILED_DATA Unit () () #-}
20.157895
70
0.5953
4d72638be9b30d7965c760a3f667b9d4ac0a2277
8,132
agda
Agda
Cubical/HITs/SetTruncation/Properties.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/HITs/SetTruncation/Properties.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/HITs/SetTruncation/Properties.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{- This file contains: - Properties of set truncations -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.SetTruncation.Properties where open import Cubical.HITs.SetTruncation.Base open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Univalence open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; elim to pElim) hiding (elim2 ; elim3 ; rec2 ; map) private variable ℓ ℓ' : Level A B C D : Type ℓ rec : isSet B → (A → B) → ∥ A ∥₂ → B rec Bset f ∣ x ∣₂ = f x rec Bset f (squash₂ x y p q i j) = Bset _ _ (cong (rec Bset f) p) (cong (rec Bset f) q) i j rec2 : isSet C → (A → B → C) → ∥ A ∥₂ → ∥ B ∥₂ → C rec2 Cset f ∣ x ∣₂ ∣ y ∣₂ = f x y rec2 Cset f ∣ x ∣₂ (squash₂ y z p q i j) = Cset _ _ (cong (rec2 Cset f ∣ x ∣₂) p) (cong (rec2 Cset f ∣ x ∣₂) q) i j rec2 Cset f (squash₂ x y p q i j) z = Cset _ _ (cong (λ a → rec2 Cset f a z) p) (cong (λ a → rec2 Cset f a z) q) i j -- Old version: -- rec2 Cset f = rec (isSetΠ λ _ → Cset) λ x → rec Cset (f x) -- lemma 6.9.1 in HoTT book elim : {B : ∥ A ∥₂ → Type ℓ} (Bset : (x : ∥ A ∥₂) → isSet (B x)) (f : (a : A) → B (∣ a ∣₂)) (x : ∥ A ∥₂) → B x elim Bset f ∣ a ∣₂ = f a elim Bset f (squash₂ x y p q i j) = isOfHLevel→isOfHLevelDep 2 Bset _ _ (cong (elim Bset f) p) (cong (elim Bset f) q) (squash₂ x y p q) i j elim2 : {C : ∥ A ∥₂ → ∥ B ∥₂ → Type ℓ} (Cset : ((x : ∥ A ∥₂) (y : ∥ B ∥₂) → isSet (C x y))) (f : (a : A) (b : B) → C ∣ a ∣₂ ∣ b ∣₂) (x : ∥ A ∥₂) (y : ∥ B ∥₂) → C x y elim2 Cset f ∣ x ∣₂ ∣ y ∣₂ = f x y elim2 Cset f ∣ x ∣₂ (squash₂ y z p q i j) = isOfHLevel→isOfHLevelDep 2 (λ a → Cset ∣ x ∣₂ a) _ _ (cong (elim2 Cset f ∣ x ∣₂) p) (cong (elim2 Cset f ∣ x ∣₂) q) (squash₂ y z p q) i j elim2 Cset f (squash₂ x y p q i j) z = isOfHLevel→isOfHLevelDep 2 (λ a → Cset a z) _ _ (cong (λ a → elim2 Cset f a z) p) (cong (λ a → elim2 Cset f a z) q) (squash₂ x y p q) i j -- Old version: -- elim2 Cset f = elim (λ _ → isSetΠ (λ _ → Cset _ _)) -- (λ a → elim (λ _ → Cset _ _) (f a)) -- TODO: generalize elim3 : {B : (x y z : ∥ A ∥₂) → Type ℓ} (Bset : ((x y z : ∥ A ∥₂) → isSet (B x y z))) (g : (a b c : A) → B ∣ a ∣₂ ∣ b ∣₂ ∣ c ∣₂) (x y z : ∥ A ∥₂) → B x y z elim3 Bset g = elim2 (λ _ _ → isSetΠ (λ _ → Bset _ _ _)) (λ a b → elim (λ _ → Bset _ _ _) (g a b)) map : (A → B) → ∥ A ∥₂ → ∥ B ∥₂ map f = rec squash₂ λ x → ∣ f x ∣₂ setTruncUniversal : isSet B → (∥ A ∥₂ → B) ≃ (A → B) setTruncUniversal {B = B} Bset = isoToEquiv (iso (λ h x → h ∣ x ∣₂) (rec Bset) (λ _ → refl) rinv) where rinv : (f : ∥ A ∥₂ → B) → rec Bset (λ x → f ∣ x ∣₂) ≡ f rinv f i x = elim (λ x → isProp→isSet (Bset (rec Bset (λ x → f ∣ x ∣₂) x) (f x))) (λ _ → refl) x i setTruncIsSet : isSet ∥ A ∥₂ setTruncIsSet a b p q = squash₂ a b p q setTruncIdempotentIso : isSet A → Iso ∥ A ∥₂ A Iso.fun (setTruncIdempotentIso hA) = rec hA (idfun _) Iso.inv (setTruncIdempotentIso hA) x = ∣ x ∣₂ Iso.rightInv (setTruncIdempotentIso hA) _ = refl Iso.leftInv (setTruncIdempotentIso hA) = elim (λ _ → isSet→isGroupoid setTruncIsSet _ _) (λ _ → refl) setTruncIdempotent≃ : isSet A → ∥ A ∥₂ ≃ A setTruncIdempotent≃ {A = A} hA = isoToEquiv (setTruncIdempotentIso hA) setTruncIdempotent : isSet A → ∥ A ∥₂ ≡ A setTruncIdempotent hA = ua (setTruncIdempotent≃ hA) isContr→isContrSetTrunc : isContr A → isContr (∥ A ∥₂) isContr→isContrSetTrunc contr = ∣ fst contr ∣₂ , elim (λ _ → isOfHLevelPath 2 (setTruncIsSet) _ _) λ a → cong ∣_∣₂ (snd contr a) setTruncIso : Iso A B → Iso ∥ A ∥₂ ∥ B ∥₂ Iso.fun (setTruncIso is) = rec setTruncIsSet (λ x → ∣ Iso.fun is x ∣₂) Iso.inv (setTruncIso is) = rec setTruncIsSet (λ x → ∣ Iso.inv is x ∣₂) Iso.rightInv (setTruncIso is) = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ a → cong ∣_∣₂ (Iso.rightInv is a) Iso.leftInv (setTruncIso is) = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ a → cong ∣_∣₂ (Iso.leftInv is a) setSigmaIso : {B : A → Type ℓ} → Iso ∥ Σ A B ∥₂ ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂ setSigmaIso {A = A} {B = B} = iso fun funinv sect retr where {- writing it out explicitly to avoid yellow highlighting -} fun : ∥ Σ A B ∥₂ → ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂ fun = rec setTruncIsSet λ {(a , p) → ∣ a , ∣ p ∣₂ ∣₂} funinv : ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂ → ∥ Σ A B ∥₂ funinv = rec setTruncIsSet (λ {(a , p) → rec setTruncIsSet (λ p → ∣ a , p ∣₂) p}) sect : section fun funinv sect = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ { (a , p) → elim {B = λ p → fun (funinv ∣ a , p ∣₂) ≡ ∣ a , p ∣₂} (λ p → isOfHLevelPath 2 setTruncIsSet _ _) (λ _ → refl) p } retr : retract fun funinv retr = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ { _ → refl } sigmaElim : {B : ∥ A ∥₂ → Type ℓ} {C : Σ ∥ A ∥₂ B → Type ℓ'} (Bset : (x : Σ ∥ A ∥₂ B) → isSet (C x)) (g : (a : A) (b : B ∣ a ∣₂) → C (∣ a ∣₂ , b)) (x : Σ ∥ A ∥₂ B) → C x sigmaElim {B = B} {C = C} set g (x , y) = elim {B = λ x → (y : B x) → C (x , y)} (λ _ → isSetΠ λ _ → set _) g x y sigmaProdElim : {C : ∥ A ∥₂ × ∥ B ∥₂ → Type ℓ} {D : Σ (∥ A ∥₂ × ∥ B ∥₂) C → Type ℓ'} (Bset : (x : Σ (∥ A ∥₂ × ∥ B ∥₂) C) → isSet (D x)) (g : (a : A) (b : B) (c : C (∣ a ∣₂ , ∣ b ∣₂)) → D ((∣ a ∣₂ , ∣ b ∣₂) , c)) (x : Σ (∥ A ∥₂ × ∥ B ∥₂) C) → D x sigmaProdElim {B = B} {C = C} {D = D} set g ((x , y) , c) = elim {B = λ x → (y : ∥ B ∥₂) (c : C (x , y)) → D ((x , y) , c)} (λ _ → isSetΠ λ _ → isSetΠ λ _ → set _) (λ x → elim (λ _ → isSetΠ λ _ → set _) (g x)) x y c prodElim : {C : ∥ A ∥₂ × ∥ B ∥₂ → Type ℓ} → ((x : ∥ A ∥₂ × ∥ B ∥₂) → isSet (C x)) → ((a : A) (b : B) → C (∣ a ∣₂ , ∣ b ∣₂)) → (x : ∥ A ∥₂ × ∥ B ∥₂) → C x prodElim setC f (a , b) = elim2 (λ x y → setC (x , y)) f a b prodRec : {C : Type ℓ} → isSet C → (A → B → C) → ∥ A ∥₂ × ∥ B ∥₂ → C prodRec setC f (a , b) = rec2 setC f a b prodElim2 : {E : (∥ A ∥₂ × ∥ B ∥₂) → (∥ C ∥₂ × ∥ D ∥₂) → Type ℓ} → ((x : ∥ A ∥₂ × ∥ B ∥₂) (y : ∥ C ∥₂ × ∥ D ∥₂) → isSet (E x y)) → ((a : A) (b : B) (c : C) (d : D) → E (∣ a ∣₂ , ∣ b ∣₂) (∣ c ∣₂ , ∣ d ∣₂)) → ((x : ∥ A ∥₂ × ∥ B ∥₂) (y : ∥ C ∥₂ × ∥ D ∥₂) → (E x y)) prodElim2 isset f = prodElim (λ _ → isSetΠ λ _ → isset _ _) λ a b → prodElim (λ _ → isset _ _) λ c d → f a b c d setTruncOfProdIso : Iso ∥ A × B ∥₂ (∥ A ∥₂ × ∥ B ∥₂) Iso.fun setTruncOfProdIso = rec (isSet× setTruncIsSet setTruncIsSet) λ { (a , b) → ∣ a ∣₂ , ∣ b ∣₂ } Iso.inv setTruncOfProdIso = prodRec setTruncIsSet λ a b → ∣ a , b ∣₂ Iso.rightInv setTruncOfProdIso = prodElim (λ _ → isOfHLevelPath 2 (isSet× setTruncIsSet setTruncIsSet) _ _) λ _ _ → refl Iso.leftInv setTruncOfProdIso = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ {(a , b) → refl} IsoSetTruncateSndΣ : {A : Type ℓ} {B : A → Type ℓ'} → Iso ∥ Σ A B ∥₂ ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂ Iso.fun IsoSetTruncateSndΣ = map λ a → (fst a) , ∣ snd a ∣₂ Iso.inv IsoSetTruncateSndΣ = rec setTruncIsSet (uncurry λ x → map λ b → x , b) Iso.rightInv IsoSetTruncateSndΣ = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) (uncurry λ a → elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ _ → refl) Iso.leftInv IsoSetTruncateSndΣ = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ _ → refl PathIdTrunc₀Iso : {a b : A} → Iso (∣ a ∣₂ ≡ ∣ b ∣₂) ∥ a ≡ b ∥ Iso.fun (PathIdTrunc₀Iso {b = b}) p = transport (λ i → rec {B = TypeOfHLevel _ 1} (isOfHLevelTypeOfHLevel 1) (λ a → ∥ a ≡ b ∥ , squash) (p (~ i)) .fst) ∣ refl ∣ Iso.inv PathIdTrunc₀Iso = pRec (squash₂ _ _) (cong ∣_∣₂) Iso.rightInv PathIdTrunc₀Iso _ = squash _ _ Iso.leftInv PathIdTrunc₀Iso _ = squash₂ _ _ _ _
41.070707
101
0.526685
0489ce1a17fc9fccdcaea5560f1fc707293baee9
652
agda
Agda
test/Test/Compile/Golden/increasing/increasing-output.agda
vehicle-lang/vehicle
25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0
[ "BSD-3-Clause" ]
9
2022-02-10T12:56:42.000Z
2022-02-17T18:51:05.000Z
test/Test/Compile/Golden/increasing/increasing-output.agda
vehicle-lang/vehicle
25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0
[ "BSD-3-Clause" ]
19
2022-03-07T14:09:13.000Z
2022-03-31T20:49:39.000Z
test/Test/Compile/Golden/increasing/increasing-output.agda
vehicle-lang/vehicle
25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0
[ "BSD-3-Clause" ]
null
null
null
-- WARNING: This file was generated automatically by Vehicle -- and should not be modified manually! -- Metadata -- - Agda version: 2.6.2 -- - AISEC version: 0.1.0.1 -- - Time generated: ??? {-# OPTIONS --allow-exec #-} open import Vehicle open import Vehicle.Data.Tensor open import Data.Rational as ℚ using (ℚ) open import Data.Fin as Fin using (Fin; #_) open import Data.List module increasing-temp-output where postulate f : Tensor ℚ (1 ∷ []) → Tensor ℚ (1 ∷ []) abstract increasing : ∀ (x : ℚ) → x ℚ.≤ f (x ∷ []) (# 0) increasing = checkSpecification record { proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp" }
27.166667
71
0.670245
2227b59f72f7b8cda7a5d826fcee2a3d30bd3d68
232
agda
Agda
examples/Termination/Common/Coinduction.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/Termination/Common/Coinduction.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/Termination/Common/Coinduction.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Common.Coinduction where postulate ∞ : ∀ {a} (A : Set a) → Set a ♯_ : ∀ {a} {A : Set a} → A → ∞ A ♭ : ∀ {a} {A : Set a} → ∞ A → A {-# BUILTIN INFINITY ∞ #-} {-# BUILTIN SHARP ♯_ #-} {-# BUILTIN FLAT ♭ #-}
19.333333
34
0.443966
c727eb2b2cd9f7d6821989ca97ce06f484f8dd6e
668
agda
Agda
test/Fail/Issue4560NoPatternMatchingWithoutEta.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2021-06-14T11:08:59.000Z
2021-06-14T11:08:59.000Z
test/Fail/Issue4560NoPatternMatchingWithoutEta.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2020-05-29T19:45:38.000Z
2020-05-29T19:45:38.000Z
test/Fail/Issue4560NoPatternMatchingWithoutEta.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2021-06-14T11:07:38.000Z
2021-06-14T11:07:38.000Z
-- Andreas, 2020-04-19, issue #4560, raised by Andrea -- Having both matching on constructor and copattern matching -- for non-eta records leads to loss of subject reduction. open import Agda.Builtin.Equality postulate A : Set a : A record R : Set where constructor con no-eta-equality field X Y : A foo : R → A foo (con x y) = x -- Expected error here: -- Pattern matching on no-eta record types is by default not allowed -- when checking that the pattern con x y has type R bar : R bar .R.X = a bar .R.Y = a test : foo bar ≡ a test = refl -- Problem was: -- foo bar != a of type A -- when checking that the expression refl has type foo bar ≡ a
19.647059
68
0.685629
59f856e1bc7d3033edb89817d3fd6ac3a2e863b0
3,989
agda
Agda
part1/relations/Relations.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
1
2020-07-07T09:42:22.000Z
2020-07-07T09:42:22.000Z
part1/relations/Relations.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
null
null
null
part1/relations/Relations.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
null
null
null
module Relations where -- Imports import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong) open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Nat.Properties using (+-comm) -- Defining relations data _≤_ : ℕ → ℕ → Set where z≤n : ∀ {n : ℕ} -------- → zero ≤ n s≤s : ∀ {m n : ℕ} → m ≤ n ------------- → suc m ≤ suc n _ : 2 ≤ 4 _ = s≤s (s≤s z≤n) -- Implicit arguments _ : 2 ≤ 4 _ = s≤s {1} {3} (s≤s {0} {2} (z≤n {2})) _ : 2 ≤ 4 _ = s≤s {m = 1} {n = 3} (s≤s {m = 0} {n = 2} (z≤n {n = 2})) _ : 2 ≤ 4 _ = s≤s {n = 3} (s≤s {n = 2} z≤n) -- Precedence infix 4 _≤_ -- Inversion inv-s≤s : ∀ {m n : ℕ} → suc m ≤ suc n ------------- → m ≤ n inv-s≤s (s≤s m≤n) = m≤n inv-z≤n : ∀ {m : ℕ} → m ≤ zero -------- → m ≡ zero inv-z≤n z≤n = refl -- Reflexivity (反射律) ≤-refl : ∀ {n : ℕ} ----- → n ≤ n ≤-refl {zero} = z≤n ≤-refl {suc n} = s≤s ≤-refl -- Transitivity (推移律) ≤-trans : ∀ {m n p : ℕ} → m ≤ n → n ≤ p ----- → m ≤ p ≤-trans z≤n _ = z≤n ≤-trans (s≤s m≤n) (s≤s n≤p) = s≤s (≤-trans m≤n n≤p) ≤-trans′ : ∀ (m n p : ℕ) → m ≤ n → n ≤ p ----- → m ≤ p ≤-trans′ zero _ _ z≤n _ = z≤n ≤-trans′ (suc m) (suc n) (suc p) (s≤s m≤n) (s≤s n≤p) = s≤s (≤-trans′ m n p m≤n n≤p) -- Anti-symmetry (非対称律) ≤-antisym : ∀ {m n : ℕ} → m ≤ n → n ≤ m ----- → m ≡ n ≤-antisym z≤n z≤n = refl ≤-antisym (s≤s m≤n) (s≤s n≤m) = cong suc (≤-antisym m≤n n≤m) -- Total (全順序) data Total (m n : ℕ) : Set where forward : m ≤ n --------- → Total m n flipped : n ≤ m --------- → Total m n data Total′ : ℕ → ℕ → Set where forward′ : ∀ {m n : ℕ} → m ≤ n ---------- → Total′ m n flipped′ : ∀ {m n : ℕ} → n ≤ m ---------- → Total′ m n ≤-total : ∀ (m n : ℕ) → Total m n ≤-total zero n = forward z≤n ≤-total (suc m) zero = flipped z≤n ≤-total (suc m) (suc n) with ≤-total m n ... | forward m≤n = forward (s≤s m≤n) ... | flipped n≤m = flipped (s≤s n≤m) ≤-total′ : ∀ (m n : ℕ) → Total m n ≤-total′ zero n = forward z≤n ≤-total′ (suc m) zero = flipped z≤n ≤-total′ (suc m) (suc n) = helper (≤-total′ m n) where helper : Total m n → Total (suc m) (suc n) helper (forward m≤n) = forward (s≤s m≤n) helper (flipped n≤m) = flipped (s≤s n≤m) ≤-total″ : ∀ (m n : ℕ) → Total m n ≤-total″ m zero = flipped z≤n ≤-total″ zero (suc n) = forward z≤n ≤-total″ (suc m) (suc n) with ≤-total″ m n ... | forward m≤n = forward (s≤s m≤n) ... | flipped n≤m = flipped (s≤s n≤m) -- Monotonicity (単調性) +-monoʳ-≤ : ∀ (n p q : ℕ) → p ≤ q ------------- → n + p ≤ n + q +-monoʳ-≤ zero p q p≤q = p≤q +-monoʳ-≤ (suc n) p q p≤q = s≤s (+-monoʳ-≤ n p q p≤q) +-monoˡ-≤ : ∀ (m n p : ℕ) → m ≤ n ------------- → m + p ≤ n + p +-monoˡ-≤ m n p m≤n rewrite +-comm m p | +-comm n p = +-monoʳ-≤ p m n m≤n +-mono-≤ : ∀ (m n p q : ℕ) → m ≤ n → p ≤ q ------------- → m + p ≤ n + q +-mono-≤ m n p q m≤n p≤q = ≤-trans (+-monoˡ-≤ m n p m≤n) (+-monoʳ-≤ n p q p≤q) -- Strict inequality infix 4 _<_ data _<_ : ℕ → ℕ → Set where z<s : ∀ {n : ℕ} ------------ → zero < suc n s<s : ∀ {m n : ℕ} → m < n ------------- → suc m < suc n -- Even and odd data even : ℕ → Set data odd : ℕ → Set data even where zero : --------- even zero suc : ∀ {n : ℕ} → odd n ------------ → even (suc n) data odd where suc : ∀ {n : ℕ} → even n ----------- → odd (suc n) e+e≡e : ∀ {m n : ℕ} → even m → even n ------------ → even (m + n) o+e≡o : ∀ {m n : ℕ} → odd m → even n ----------- → odd (m + n) e+e≡e zero en = en e+e≡e (suc om) en = suc (o+e≡o om en) o+e≡o (suc em) en = suc (e+e≡e em en)
18.467593
83
0.401604
133546f0b464fc86c5aa69069e83402e1d71fbce
1,159
agda
Agda
Cats/Category/Product/Binary/Facts.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
Cats/Category/Product/Binary/Facts.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
Cats/Category/Product/Binary/Facts.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
module Cats.Category.Product.Binary.Facts where open import Cats.Category open import Cats.Category.Product.Binary using (_×_) open import Cats.Functor open import Cats.Util.Logic.Constructive using (_∧_ ; _,_ ; ∧-eliml ; ∧-elimr) module _ {lo la l≈ lo′ la′ l≈′} {C : Category lo la l≈} {D : Category lo′ la′ l≈′} where private module C = Category C module D = Category D module × = Category (C × D) open Category._≅_ iso-intro : ∀ {A A′ B B′} → A C.≅ A′ → B D.≅ B′ → (A , B) ×.≅ (A′ , B′) iso-intro f g = record { forth = forth f , forth g ; back = back f , back g ; back-forth = back-forth f , back-forth g ; forth-back = forth-back f , forth-back g } iso-elim : ∀ {A A′ B B′} → (A , B) ×.≅ (A′ , B′) → A C.≅ A′ ∧ B D.≅ B′ iso-elim f = record { forth = ∧-eliml (forth f) ; back = ∧-eliml (back f) ; back-forth = ∧-eliml (back-forth f) ; forth-back = ∧-eliml (forth-back f) } , record { forth = ∧-elimr (forth f) ; back = ∧-elimr (back f) ; back-forth = ∧-elimr (back-forth f) ; forth-back = ∧-elimr (forth-back f) }
25.755556
78
0.537532
38f604ab7d0ba1cc0e838725fef293b5ae10dbfc
1,059
agda
Agda
Cubical/Algebra/RingSolver/RingExpression.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Algebra/RingSolver/RingExpression.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Algebra/RingSolver/RingExpression.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Algebra.RingSolver.RingExpression where open import Cubical.Foundations.Prelude open import Cubical.Data.FinData open import Cubical.Data.Nat using (ℕ) open import Cubical.Data.Nat.Order using (zero-≤) open import Cubical.Data.Vec.Base open import Cubical.Algebra.RingSolver.AlmostRing open import Cubical.Algebra.RingSolver.RawRing renaming (⟨_⟩ to ⟨_⟩ᵣ) private variable ℓ : Level infixl 6 _⊕_ infixl 7 _⊗_ -- Expression in a ring on A with n variables data Expr {ℓ} (A : Type ℓ) (n : ℕ) : Type ℓ where K : A → Expr A n ∣ : Fin n → Expr A n _⊕_ : Expr A n → Expr A n → Expr A n _⊗_ : Expr A n → Expr A n → Expr A n -- _⊛_ : Expr A n → ℕ → Expr A n -- exponentiation ⊝_ : Expr A n → Expr A n module Eval (R : RawRing ℓ) where open import Cubical.Data.Vec open RawRing R ⟦_⟧ : ∀ {n} → Expr ⟨ R ⟩ᵣ n → Vec ⟨ R ⟩ᵣ n → ⟨ R ⟩ᵣ ⟦ K r ⟧ v = r ⟦ ∣ k ⟧ v = lookup k v ⟦ x ⊕ y ⟧ v = ⟦ x ⟧ v + ⟦ y ⟧ v ⟦ x ⊗ y ⟧ v = ⟦ x ⟧ v · ⟦ y ⟧ v -- ⟦ x ⊛ l ⟧ v = ⟦ x ⟧ v ^ l ⟦ ⊝ x ⟧ v = - ⟦ x ⟧ v
26.475
69
0.596789
9a17abcfd5bf3cea918f82344a52fb04ff9b0266
1,626
agda
Agda
notes/FOT/FOL/ImplicitArgumentSubst.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/FOT/FOL/ImplicitArgumentSubst.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/FOT/FOL/ImplicitArgumentSubst.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Testing subst using an implicit arguments for the propositional function. ------------------------------------------------------------------------------ {-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOL.ImplicitArgumentSubst where infix 7 _≡_ postulate D : Set _·_ : D → D → D zero succ pred : D succ₁ : D → D succ₁ n = succ · n pred₁ : D → D pred₁ n = pred · n -- The identity type on the universe of discourse. data _≡_ (x : D) : D → Set where refl : x ≡ x -- The propositional function is not an implicit argument. subst : (A : D → Set) → ∀ {x y} → x ≡ y → A x → A y subst A refl Ax = Ax -- The propositional formula is an implicit argument. subst' : {A : D → Set} → ∀ {x y} → x ≡ y → A x → A y subst' refl Ax = Ax sym : ∀ {x y} → x ≡ y → y ≡ x sym refl = refl -- Conversion rules. postulate pred-0 : pred₁ zero ≡ zero pred-S : ∀ n → pred₁ (succ₁ n) ≡ n -- The FOTC natural numbers type. data N : D → Set where nzero : N zero nsucc : ∀ {n} → N n → N (succ₁ n) -- Works using subst. pred-N : ∀ {n} → N n → N (pred₁ n) pred-N nzero = subst N (sym pred-0) nzero pred-N (nsucc {n} Nn) = subst N (sym (pred-S n)) Nn -- Fails using subst'. pred-N' : ∀ {n} → N n → N (pred₁ n) pred-N' nzero = subst' (sym pred-0) nzero pred-N' (nsucc {n} Nn) = subst' (sym (pred-S n)) Nn
27.1
78
0.501845
50b9bc1e3f5ffabd84a8a13fa6488df405957022
3,170
agda
Agda
theorems/homotopy/SuspAdjointLoop.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
theorems/homotopy/SuspAdjointLoop.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
theorems/homotopy/SuspAdjointLoop.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT open import homotopy.PtdAdjoint module homotopy.SuspAdjointLoop where module Σ⊣Ω {i} where SuspFunctor : PtdFunctor i i SuspFunctor = record { obj = ⊙Susp; arr = ⊙susp-fmap; id = ⊙susp-fmap-idf; comp = ⊙susp-fmap-∘} LoopFunctor : PtdFunctor i i LoopFunctor = record { obj = ⊙Ω; arr = ⊙ap; id = λ _ → ⊙ap-idf; comp = ⊙ap-∘} module _ (X : Ptd i) where η : fst X → Ω (⊙Susp X) η x = merid x ∙ ! (merid (snd X)) module E = SuspensionRec (snd X) (snd X) (idf _) ε : fst (⊙Susp (⊙Ω X)) → fst X ε = E.f ⊙η : fst (X ⊙→ ⊙Ω (⊙Susp X)) ⊙η = (η , !-inv-r (merid (snd X))) ⊙ε : fst (⊙Susp (⊙Ω X) ⊙→ X) ⊙ε = (ε , idp) η-natural : {X Y : Ptd i} (f : fst (X ⊙→ Y)) → ⊙η Y ⊙∘ f == ⊙ap (⊙susp-fmap f) ⊙∘ ⊙η X η-natural {X = X} (f , idp) = ⊙λ= (λ x → ! $ ap-∙ (susp-fmap f) (merid x) (! (merid (snd X))) ∙ SuspFmap.merid-β f x ∙2 (ap-! (susp-fmap f) (merid (snd X)) ∙ ap ! (SuspFmap.merid-β f (snd X)))) (pt-lemma (susp-fmap f) (merid (snd X)) (SuspFmap.merid-β f (snd X))) where pt-lemma : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {x y : A} (p : x == y) {q : f x == f y} (α : ap f p == q) → !-inv-r q == (! $ ap-∙ f p (! p) ∙ α ∙2 (ap-! f p ∙ ap ! α)) ∙ ap (ap f) (!-inv-r p) ∙ idp pt-lemma f idp idp = idp ε-natural : {X Y : Ptd i} (f : fst (X ⊙→ Y)) → ⊙ε Y ⊙∘ ⊙susp-fmap (⊙ap f) == f ⊙∘ ⊙ε X ε-natural (f , idp) = ⊙λ= (SuspensionElim.f idp idp (λ p → ↓-='-from-square $ vert-degen-square $ ap-∘ (ε _) (susp-fmap (ap f)) (merid p) ∙ ap (ap (ε _)) (SuspFmap.merid-β (ap f) p) ∙ E.merid-β _ (ap f p) ∙ ap (ap f) (! (E.merid-β _ p)) ∙ ∘-ap f (ε _) (merid p))) idp εΣ-Ση : (X : Ptd i) → ⊙ε (⊙Susp X) ⊙∘ ⊙susp-fmap (⊙η X) == ⊙idf _ εΣ-Ση X = ⊙λ= (SuspensionElim.f idp (merid (snd X)) (λ x → ↓-='-from-square $ (ap-∘ (ε (⊙Susp X)) (susp-fmap (η X)) (merid x) ∙ ap (ap (ε (⊙Susp X))) (SuspFmap.merid-β (η X) x) ∙ E.merid-β _ (merid x ∙ ! (merid (snd X)))) ∙v⊡ square-lemma (merid x) (merid (snd X)) ⊡v∙ ! (ap-idf (merid x)))) idp where square-lemma : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : z == y) → Square idp (p ∙ ! q) p q square-lemma idp idp = ids Ωε-ηΩ : (X : Ptd i) → ⊙ap (⊙ε X) ⊙∘ ⊙η (⊙Ω X) == ⊙idf _ Ωε-ηΩ X = ⊙λ= (λ p → ap-∙ (ε X) (merid p) (! (merid idp)) ∙ (E.merid-β X p ∙2 (ap-! (ε X) (merid idp) ∙ ap ! (E.merid-β X idp))) ∙ ∙-unit-r _) (pt-lemma (ε X) (merid idp) (E.merid-β X idp)) where pt-lemma : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {x y : A} (p : x == y) {q : f x == f y} (α : ap f p == q) → ap (ap f) (!-inv-r p) ∙ idp == (ap-∙ f p (! p) ∙ (α ∙2 (ap-! f p ∙ ap ! α)) ∙ !-inv-r q) ∙ idp pt-lemma f idp idp = idp adj : CounitUnitAdjoint SuspFunctor LoopFunctor adj = record { η = ⊙η; ε = ⊙ε; η-natural = η-natural; ε-natural = ε-natural; εF-Fη = εΣ-Ση; Gε-ηG = Ωε-ηΩ}
28.818182
79
0.447319
5736d95f43f65573fe9d462d79613e7022c07a96
3,104
agda
Agda
agda-stdlib/README/Data/Interleaving.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/README/Data/Interleaving.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/README/Data/Interleaving.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Examples showing how the notion of Interleaving can be used ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module README.Data.Interleaving where open import Level open import Data.List.Base hiding (filter) open import Data.List.Relation.Unary.All open import Function open import Relation.Nullary open import Relation.Unary -- In its most general form, `Interleaving` is parametrised by two relations -- `L` (for Left) and `R` (for Right). Given three lists, `xs`, `ys` and `zs`, -- a proof of `Interleaving xs ys zs` is essentially a diagram explaining how -- `zs` can be pulled apart into `xs` and `ys` in a way compatible with `L` -- and `R`. For instance: -- xs zs ys -- -- x₁ -- L x₁ z₁ -- z₁ -- x₂ -- L x₂ z₂ -- z₂ -- z₃ -- R z₃ z₁ -- y₁ -- x₃ -- L x₃ z₄ -- z₄ -- z₅ -- R z₅ y₂ -- y₂ open import Data.List.Relation.Ternary.Interleaving.Propositional -- The special case we will focus on here is the propositional case: both -- `L` and ̀R` are propositional equality. Rethinking our previous example, -- this gives us the proof that [z₁, ⋯, z₅] can be partitioned into -- [z₁, z₂, z₄] on the one hand and [z₃, z₅] in the other. -- One possible use case for such a relation is the definition of a very -- precise filter function. Provided a decidable predicate `P`, it will -- prove not only that the retained values satisfy `P` but that the ones -- that didn't make the cut satisfy the negation of P. -- We can make this formal by defining the following record type: infix 3 _≡_⊎_ record Filter {a p} {A : Set a} (P : Pred A p) (xs : List A) : Set (a ⊔ p) where constructor _≡_⊎_ field -- The result of running filter is two lists: -- * the elements we have kept -- * and the ones we have thrown away -- We leave these implicit: they can be inferred from the rest {kept} : List A {thrown} : List A -- There is a way for us to recover the original -- input by interleaving the two lists cover : Interleaving kept thrown xs -- Finally, the partition was made according to the predicate allP : All P kept all¬P : All (∁ P) thrown -- Once we have this type written down, we can write the function. -- We use an anonymous module to clean up the function's type. module _ {a p} {A : Set a} {P : Pred A p} (P? : Decidable P) where filter : ∀ xs → Filter P xs -- If the list is empty, we are done. filter [] = [] ≡ [] ⊎ [] filter (x ∷ xs) = -- otherwise we start by running filter on the tail let xs' ≡ ps ⊎ ¬ps = filter xs in -- And depending on whether `P` holds of the head, -- we cons it to the `kept` or `thrown` list. case P? x of λ where -- [1] (yes p) → consˡ xs' ≡ p ∷ ps ⊎ ¬ps (no ¬p) → consʳ xs' ≡ ps ⊎ ¬p ∷ ¬ps -- [1] See the following module for explanations of `case_of_` and -- pattern-matching lambdas import README.Case
36.517647
80
0.61308
1283623cd7d638ee7eebcb463b8e2e1386f3877c
1,644
agda
Agda
Numeral/Natural/Relation/Order/Classical.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Numeral/Natural/Relation/Order/Classical.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Numeral/Natural/Relation/Order/Classical.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Numeral.Natural.Relation.Order.Classical where import Lvl open import Logic.Propositional open import Numeral.Natural open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Decidable open import Numeral.Natural.Relation.Order.Proofs open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Relator.Properties open import Relator.Ordering.Proofs open import Type.Properties.Decidable.Proofs open import Type instance [≰][>]-sub : (_≰_) ⊆₂ (_>_) [≰][>]-sub = From-[≤][<].ByReflTriSub.[≰][>]-sub (_≤_)(_<_) ⦃ [<][≤]-sub = intro(sub₂(_<_)(_≤_)) ⦄ ⦃ [<]-classical = decider-classical _ ⦄ instance [≯][≤]-sub : (_≯_) ⊆₂ (_≤_) [≯][≤]-sub = From-[≤][<].ByReflTriSub.[≯][≤]-sub (_≤_)(_<_) ⦃ [<][≤]-sub = intro(sub₂(_<_)(_≤_)) ⦄ ⦃ [≤]-classical = decider-classical _ ⦄ instance [≱][<]-sub : (_≱_) ⊆₂ (_<_) [≱][<]-sub = From-[≤][<].ByReflTriSub.[≱][<]-sub (_≤_)(_<_) ⦃ [<][≤]-sub = intro(sub₂(_<_)(_≤_)) ⦄ ⦃ [<]-classical = decider-classical _ ⦄ instance [≮][≥]-sub : (_≮_) ⊆₂ (_≥_) [≮][≥]-sub = From-[≤][<].ByReflTriSub.[≮][≥]-sub (_≤_)(_<_) ⦃ [<][≤]-sub = intro(sub₂(_<_)(_≤_)) ⦄ ⦃ [≤]-classical = decider-classical _ ⦄ [≤]-or-[>] : ∀{a b : ℕ} → (a ≤ b) ∨ (a > b) [≤]-or-[>] = From-[≤][<].ByReflTriSub.[≤]-or-[>] (_≤_)(_<_) ⦃ [<][≤]-sub = intro(sub₂(_<_)(_≤_)) ⦄ ⦃ [≤]-classical = decider-classical _ ⦄ ⦃ [<]-classical = decider-classical _ ⦄ [≥]-or-[<] : ∀{a b : ℕ} → (a ≥ b) ∨ (a < b) [≥]-or-[<] = From-[≤][<].ByReflTriSub.[≥]-or-[<] (_≤_)(_<_) ⦃ [<][≤]-sub = intro(sub₂(_<_)(_≤_)) ⦄ ⦃ [≤]-classical = decider-classical _ ⦄ ⦃ [<]-classical = decider-classical _ ⦄
44.432432
178
0.574209
57f603839e09c625c46cc1c92eeeacb30ccb20a0
1,034
agda
Agda
agda/Everything.agda
HuStmpHrrr/popl20-artifact
48214a55ebb484fd06307df4320813d4a002535b
[ "MIT" ]
1
2021-09-23T08:40:28.000Z
2021-09-23T08:40:28.000Z
agda/Everything.agda
HuStmpHrrr/popl20-artifact
48214a55ebb484fd06307df4320813d4a002535b
[ "MIT" ]
null
null
null
agda/Everything.agda
HuStmpHrrr/popl20-artifact
48214a55ebb484fd06307df4320813d4a002535b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} -- The Everything module of undecidability analysis -- In Agda, we use first order de Bruijn indices to represent variables, that is, the -- natural numbers. module Everything where -- Subtyping problems of all following calculi are undecidable. In this technical -- work, our reduction proofs stop at F<: deterministic (F<:ᵈ), the undecidability of -- which is justified by Pierce92. -- F<: F<:⁻ F<:ᵈ import FsubMinus -- D<: -- -- The examination of D<: is composed of the following files: import DsubDef -- defines the syntax of D<:. import Dsub -- defines the simplified subtyping judgment per Lemma 2 in the paper. import DsubFull -- defines the original definition of D<:. import DsubEquivSimpler -- defines D<: normal form and shows that D<: subtyping is undecidable. import DsubNoTrans -- shows that D<: subtyping without transitivity remains undecidable. import DsubTermUndec -- shows that D<: term typing is also undecidable. -- other things -- properties of F<:⁻ import FsubMinus2
35.655172
95
0.745648
4b4866f466dbe631047d8f2987bf59ed1fdfbc72
612
agda
Agda
test/Succeed/Issue4383.agda
zliu41/agda
73405f70bced057d24dd4bf122d53f9548544aba
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue4383.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue4383.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --rewriting #-} {-# OPTIONS --local-confluence-check #-} open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite module _ (A : Set) where postulate D : Set f : D → D → D r : (x y z : D) → f x (f y z) ≡ f x z {-# REWRITE r #-} -- WAS: -- Confluence check failed: f x (f y (f y₁ z)) reduces to both -- f x (f y₁ z) and f x (f y z) which are not equal because -- y != y₁ of type D -- when checking confluence of the rewrite rule r with itself module _ (x y y₁ z : D) where -- SUCCEEDS: _ : f x (f y₁ z) ≡ f x (f y z) _ = refl
25.5
64
0.565359
4d07834fa67100e0a6d70e855cb2d695678e6f4b
5,327
agda
Agda
Cubical/Data/Bool/Properties.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Data/Bool/Properties.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Data/Bool/Properties.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Bool.Properties where open import Cubical.Core.Everything open import Cubical.Functions.Involution open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Data.Bool.Base open import Cubical.Data.Empty open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.DecidableEq notnot : ∀ x → not (not x) ≡ x notnot true = refl notnot false = refl notIsEquiv : isEquiv not notIsEquiv = involIsEquiv {f = not} notnot notEquiv : Bool ≃ Bool notEquiv = involEquiv {f = not} notnot notEq : Bool ≡ Bool notEq = involPath {f = not} notnot private variable ℓ : Level -- This computes to false as expected nfalse : Bool nfalse = transp (λ i → notEq i) i0 true -- Sanity check nfalsepath : nfalse ≡ false nfalsepath = refl K-Bool : (P : {b : Bool} → b ≡ b → Type ℓ) → (∀{b} → P {b} refl) → ∀{b} → (q : b ≡ b) → P q K-Bool P Pr {false} = J (λ{ false q → P q ; true _ → Lift ⊥ }) Pr K-Bool P Pr {true} = J (λ{ true q → P q ; false _ → Lift ⊥ }) Pr isSetBool : isSet Bool isSetBool a b = J (λ _ p → ∀ q → p ≡ q) (K-Bool (refl ≡_) refl) true≢false : ¬ true ≡ false true≢false p = subst (λ b → if b then Bool else ⊥) p true false≢true : ¬ false ≡ true false≢true p = subst (λ b → if b then ⊥ else Bool) p true not≢const : ∀ x → ¬ not x ≡ x not≢const false = true≢false not≢const true = false≢true zeroˡ : ∀ x → true or x ≡ true zeroˡ false = refl zeroˡ true = refl zeroʳ : ∀ x → x or true ≡ true zeroʳ false = refl zeroʳ true = refl or-identityˡ : ∀ x → false or x ≡ x or-identityˡ false = refl or-identityˡ true = refl or-identityʳ : ∀ x → x or false ≡ x or-identityʳ false = refl or-identityʳ true = refl or-comm : ∀ x y → x or y ≡ y or x or-comm false y = false or y ≡⟨ or-identityˡ y ⟩ y ≡⟨ sym (or-identityʳ y) ⟩ y or false ∎ or-comm true y = true or y ≡⟨ zeroˡ y ⟩ true ≡⟨ sym (zeroʳ y) ⟩ y or true ∎ or-assoc : ∀ x y z → x or (y or z) ≡ (x or y) or z or-assoc false y z = false or (y or z) ≡⟨ or-identityˡ _ ⟩ y or z ≡[ i ]⟨ or-identityˡ y (~ i) or z ⟩ ((false or y) or z) ∎ or-assoc true y z = true or (y or z) ≡⟨ zeroˡ _ ⟩ true ≡⟨ sym (zeroˡ _) ⟩ true or z ≡[ i ]⟨ zeroˡ y (~ i) or z ⟩ (true or y) or z ∎ or-idem : ∀ x → x or x ≡ x or-idem false = refl or-idem true = refl ⊕-identityʳ : ∀ x → x ⊕ false ≡ x ⊕-identityʳ false = refl ⊕-identityʳ true = refl ⊕-comm : ∀ x y → x ⊕ y ≡ y ⊕ x ⊕-comm false false = refl ⊕-comm false true = refl ⊕-comm true false = refl ⊕-comm true true = refl ⊕-assoc : ∀ x y z → x ⊕ (y ⊕ z) ≡ (x ⊕ y) ⊕ z ⊕-assoc false y z = refl ⊕-assoc true false z = refl ⊕-assoc true true z = notnot z not-⊕ˡ : ∀ x y → not (x ⊕ y) ≡ not x ⊕ y not-⊕ˡ false y = refl not-⊕ˡ true y = notnot y ⊕-invol : ∀ x y → x ⊕ (x ⊕ y) ≡ y ⊕-invol false x = refl ⊕-invol true x = notnot x isEquiv-⊕ : ∀ x → isEquiv (x ⊕_) isEquiv-⊕ x = involIsEquiv (⊕-invol x) ⊕-Path : ∀ x → Bool ≡ Bool ⊕-Path x = involPath {f = x ⊕_} (⊕-invol x) ⊕-Path-refl : ⊕-Path false ≡ refl ⊕-Path-refl = isInjectiveTransport refl ¬transportNot : ∀(P : Bool ≡ Bool) b → ¬ (transport P (not b) ≡ transport P b) ¬transportNot P b eq = not≢const b sub where sub : not b ≡ b sub = subst {A = Bool → Bool} (λ f → f (not b) ≡ f b) (λ i c → transport⁻Transport P c i) (cong (transport⁻ P) eq) module BoolReflection where data Table (A : Type₀) (P : Bool ≡ A) : Type₀ where inspect : (b c : A) → transport P false ≡ b → transport P true ≡ c → Table A P table : ∀ P → Table Bool P table = J Table (inspect false true refl refl) reflLemma : (P : Bool ≡ Bool) → transport P false ≡ false → transport P true ≡ true → transport P ≡ transport (⊕-Path false) reflLemma P ff tt i false = ff i reflLemma P ff tt i true = tt i notLemma : (P : Bool ≡ Bool) → transport P false ≡ true → transport P true ≡ false → transport P ≡ transport (⊕-Path true) notLemma P ft tf i false = ft i notLemma P ft tf i true = tf i categorize : ∀ P → transport P ≡ transport (⊕-Path (transport P false)) categorize P with table P categorize P | inspect false true p q = subst (λ b → transport P ≡ transport (⊕-Path b)) (sym p) (reflLemma P p q) categorize P | inspect true false p q = subst (λ b → transport P ≡ transport (⊕-Path b)) (sym p) (notLemma P p q) categorize P | inspect false false p q = rec (¬transportNot P false (q ∙ sym p)) categorize P | inspect true true p q = rec (¬transportNot P false (q ∙ sym p)) ⊕-complete : ∀ P → P ≡ ⊕-Path (transport P false) ⊕-complete P = isInjectiveTransport (categorize P) ⊕-comp : ∀ p q → ⊕-Path p ∙ ⊕-Path q ≡ ⊕-Path (q ⊕ p) ⊕-comp p q = isInjectiveTransport (λ i x → ⊕-assoc q p x i) open Iso reflectIso : Iso Bool (Bool ≡ Bool) reflectIso .fun = ⊕-Path reflectIso .inv P = transport P false reflectIso .leftInv = ⊕-identityʳ reflectIso .rightInv P = sym (⊕-complete P) reflectEquiv : Bool ≃ (Bool ≡ Bool) reflectEquiv = isoToEquiv reflectIso
27.178571
80
0.606908