hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
2e1ad682f6e7bd17e316f0c45e921fd71093321d
5,246
agda
Agda
UniDB/Subst/Core.agda
skeuchel/unidb-agda
7ae52205db44ad4f463882ba7e5082120fb76349
[ "MIT" ]
null
null
null
UniDB/Subst/Core.agda
skeuchel/unidb-agda
7ae52205db44ad4f463882ba7e5082120fb76349
[ "MIT" ]
null
null
null
UniDB/Subst/Core.agda
skeuchel/unidb-agda
7ae52205db44ad4f463882ba7e5082120fb76349
[ "MIT" ]
null
null
null
module UniDB.Subst.Core where open import UniDB.Spec public open import UniDB.Morph.Unit record Ap (T X : STX) : Set₁ where field ap : {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) (x : X γ₁) → X γ₂ open Ap {{...}} public record ApVr (T : STX) {{vrT : Vr T}} {{apTT : Ap T T}} : Set₁ where field ap-vr : {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) → (i : Ix γ₁) → ap {T} ξ (vr i) ≡ lk {T} ξ i open ApVr {{...}} public record LkCompAp (T : STX) {{vrT : Vr T}} {{apTT : Ap T T}} (Ξ : MOR) {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{compΞ : Comp Ξ}} : Set₁ where field lk-⊙-ap : {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Ξ γ₁ γ₂) (ξ₂ : Ξ γ₂ γ₃) (i : Ix γ₁) → lk {T} (ξ₁ ⊙ ξ₂) i ≡ ap {T} ξ₂ (lk ξ₁ i) open LkCompAp {{...}} public record ApIdm (T : STX) {{vrT : Vr T}} (X : STX) {{apTX : Ap T X}} : Set₁ where field ap-idm : {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{idmΞ : Idm Ξ}} {{lkIdmTΞ : LkIdm T Ξ}} {{upIdmΞ : UpIdm Ξ}} {γ : Dom} (x : X γ) → ap {T} (idm {Ξ} γ) x ≡ x open ApIdm {{...}} public record ApRel (T : STX) {{vrT : Vr T}} (X : STX) {{apTX : Ap T X}} : Set₁ where field ap-rel≅ : {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {Ζ : MOR} {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}} {γ₁ γ₂ : Dom} {ξ : Ξ γ₁ γ₂} {ζ : Ζ γ₁ γ₂} (hyp : [ T ] ξ ≅ ζ) (x : X γ₁) → ap {T} ξ x ≡ ap {T} ζ x ap-rel≃ : {{wkT : Wk T}} {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{lkUpTΞ : LkUp T Ξ}} {Ζ : MOR} {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}} {{lkUpTΖ : LkUp T Ζ}} {γ₁ γ₂ : Dom} {ξ : Ξ γ₁ γ₂} {ζ : Ζ γ₁ γ₂} (hyp : [ T ] ξ ≃ ζ) (x : X γ₁) → ap {T} ξ x ≡ ap {T} ζ x ap-rel≃ hyp = ap-rel≅ (≃-to-≅` (≃-↑ hyp)) open ApRel {{...}} public module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} (X : STX) {{wkX : Wk X}} {{apTX : Ap T X}} where record ApWkmWk : Set₁ where field ap-wkm-wk₁ : {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{wkmΞ : Wkm Ξ}} {{lkUpTΞ : LkUp T Ξ}} {{lkWkmTΞ : LkWkm T Ξ}} {γ : Dom} (x : X γ) → ap {T} (wkm {Ξ} 1) x ≡ wk₁ x ap-wkm-wk : {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{wkmΞ : Wkm Ξ}} {{lkUpTΞ : LkUp T Ξ}} {{lkWkmTΞ : LkWkm T Ξ}} {γ : Dom} (δ : Dom) (x : X γ) → ap {T} (wkm {Ξ} δ) x ≡ wk δ x open ApWkmWk {{...}} public module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} (X : STX) {{wkX : Wk X}} {{apTX : Ap T X}} where record ApWk : Set₁ where field ap-wk₁ : {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{lkUpTΞ : LkUp T Ξ}} {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) (x : X γ₁) → ap {T} (ξ ↑₁) (wk₁ x) ≡ wk₁ (ap {T} ξ x) open ApWk {{...}} public module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} (X : STX) {{apTX : Ap T X}} where record ApComp : Set₁ where field ap-⊙ : {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{compΞ : Comp Ξ}} {{upCompΞ : UpComp Ξ}} {{lkCompTΞ : LkCompAp T Ξ}} {γ₁ γ₂ γ₃ : Dom} (ξ₁ : Ξ γ₁ γ₂) (ξ₂ : Ξ γ₂ γ₃) → (x : X γ₁) → ap {T} (ξ₁ ⊙ ξ₂) x ≡ ap {T} ξ₂ (ap {T} ξ₁ x) open ApComp {{...}} public instance iApIx : Ap Ix Ix ap {{iApIx}} = lk iApVrIx : ApVr Ix ap-vr {{iApVrIx}} ξ i = refl iApIdmIxIx : ApIdm Ix Ix ap-idm {{iApIdmIxIx}} {Ξ} = lk-idm {Ix} {Ξ} iApWkmWkIxIx : ApWkmWk Ix Ix ap-wkm-wk₁ {{iApWkmWkIxIx}} {Ξ} = lk-wkm {Ix} {Ξ} 1 ap-wkm-wk {{iApWkmWkIxIx}} {Ξ} = lk-wkm {Ix} {Ξ} iApRelIxIx : ApRel Ix Ix ap-rel≅ {{iApRelIxIx}} = lk≃ ∘ ≅-to-≃ iApWkIxIx : ApWk Ix Ix ap-wk₁ {{iApWkIxIx}} {Ξ} ξ i = lk-↑₁-suc {Ix} {Ξ} ξ i -- TODO: Remove module _ (T : STX) {{vrT : Vr T}} {{apTT : Ap T T}} (Ξ : MOR) {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} (Ζ : MOR) {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}} (Θ : MOR) {{lkTΘ : Lk T Θ}} {{upΘ : Up Θ}} {{hcompΞΖΘ : HComp Ξ Ζ Θ}} where record LkHCompAp : Set₁ where field lk-⊡-ap : {γ₁ γ₂ γ₃ : Dom} (ξ : Ξ γ₁ γ₂) (ζ : Ζ γ₂ γ₃) (i : Ix γ₁) → lk {T} {Θ} (ξ ⊡ ζ) i ≡ ap {T} ζ (lk ξ i) open LkHCompAp {{...}} public -- TODO: Remove module _ (T : STX) {{vrT : Vr T}} {{wkT : Wk T}} {{apTT : Ap T T}} (X : STX) {{apTX : Ap T X}} where record ApHComp : Set₁ where field ap-⊡ : {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {Ζ : MOR} {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}} {Θ : MOR} {{lkTΘ : Lk T Θ}} {{upΘ : Up Θ}} {{hcompΞΖΘ : HComp Ξ Ζ Θ}} {{upHCompΞ : UpHComp Ξ Ζ Θ}} {{lkHCompTΞΖΘ : LkHCompAp T Ξ Ζ Θ}} {γ₁ γ₂ γ₃ : Dom} (ξ : Ξ γ₁ γ₂) (ζ : Ζ γ₂ γ₃) → (x : X γ₁) → ap {T} {X} {Θ} (ξ ⊡ ζ) x ≡ ap {T} ζ (ap {T} ξ x) open ApHComp {{...}} public -- TODO: Move module _ {T : STX} {{vrT : Vr T}} {{wkT : Wk T}} {{wkVrT : WkVr T}} {X : STX} {{wkX : Wk X}} {{apTX : Ap T X}} {{apRelTX : ApRel T X}} {{apIdmTX : ApIdm T X}} {Ξ : MOR} {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}} {{idmΞ : Idm Ξ}} {{lkIdmTΞ : LkIdm T Ξ}} {{lkUpTΞ : LkUp T Ξ}} where ap-idm` : {γ : Dom} (x : X γ) → ap {T} (idm {Ξ} γ) x ≡ x ap-idm` {γ} x = begin ap {T} (idm {Ξ} γ) x ≡⟨ ap-rel≃ {T} lem x ⟩ ap {T} (idm {Unit} γ) x ≡⟨ ap-idm {T} x ⟩ x ∎ where lem : [ T ] idm {Ξ} γ ≃ unit lk≃ lem = lk-idm {T} {Ξ}
29.977143
92
0.454823
1e8ee9f27cc98fba05a352fa5b08851ae71a63ad
2,323
agda
Agda
theorems/homotopy/elims/Lemmas.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/homotopy/elims/Lemmas.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/homotopy/elims/Lemmas.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT module homotopy.elims.Lemmas where fill-upper-right : ∀ {i j} {A : Type i} {B : A → Type j} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) {b₀₀ : B a₀₀} {b₀₁ : B a₀₁} {b₁₀ b₁₀' : B a₁₀} {b₁₁ : B a₁₁} (q₀₋ : b₀₀ == b₀₁ [ B ↓ p₀₋ ]) (q₋₀ : b₀₀ == b₁₀ [ B ↓ p₋₀ ]) (q₋₁ : b₀₁ == b₁₁ [ B ↓ p₋₁ ]) (q₁₋ : b₁₀' == b₁₁ [ B ↓ p₁₋ ]) → Σ (b₁₀ == b₁₀') (λ r → SquareOver B sq q₀₋ q₋₀ q₋₁ (r ◃ q₁₋)) fill-upper-right ids idp idp idp idp = (idp , ids) fill-upper-right-unique : ∀ {i j} {A : Type i} {B : A → Type j} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) {b₀₀ : B a₀₀} {b₀₁ : B a₀₁} {b₁₀ b₁₀' : B a₁₀} {b₁₁ : B a₁₁} (q₀₋ : b₀₀ == b₀₁ [ B ↓ p₀₋ ]) (q₋₀ : b₀₀ == b₁₀ [ B ↓ p₋₀ ]) (q₋₁ : b₀₁ == b₁₁ [ B ↓ p₋₁ ]) (q₁₋ : b₁₀' == b₁₁ [ B ↓ p₁₋ ]) (r : b₁₀ == b₁₀') → SquareOver B sq q₀₋ q₋₀ q₋₁ (r ◃ q₁₋) → r == fst (fill-upper-right sq q₀₋ q₋₀ q₋₁ q₁₋) fill-upper-right-unique {B = B} ids idp idp idp idp r sq' = ! (◃idp {B = B} r) ∙ ! (horiz-degen-path sq') fill-upper-left : ∀ {i j} {A : Type i} {B : A → Type j} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) {b₀₀ b₀₀' : B a₀₀} {b₀₁ : B a₀₁} {b₁₀ : B a₁₀} {b₁₁ : B a₁₁} (q₀₋ : b₀₀' == b₀₁ [ B ↓ p₀₋ ]) (q₋₀ : b₀₀ == b₁₀ [ B ↓ p₋₀ ]) (q₋₁ : b₀₁ == b₁₁ [ B ↓ p₋₁ ]) (q₁₋ : b₁₀ == b₁₁ [ B ↓ p₁₋ ]) → Σ (b₀₀ == b₀₀') (λ r → SquareOver B sq (r ◃ q₀₋) q₋₀ q₋₁ q₁₋) fill-upper-left ids idp idp idp idp = (idp , ids) fill-upper-left-unique : ∀ {i j} {A : Type i} {B : A → Type j} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) {b₀₀ b₀₀' : B a₀₀} {b₀₁ : B a₀₁} {b₁₀ : B a₁₀} {b₁₁ : B a₁₁} (q₀₋ : b₀₀' == b₀₁ [ B ↓ p₀₋ ]) (q₋₀ : b₀₀ == b₁₀ [ B ↓ p₋₀ ]) (q₋₁ : b₀₁ == b₁₁ [ B ↓ p₋₁ ]) (q₁₋ : b₁₀ == b₁₁ [ B ↓ p₁₋ ]) (r : b₀₀ == b₀₀') → SquareOver B sq (r ◃ q₀₋) q₋₀ q₋₁ q₁₋ → r == fst (fill-upper-left sq q₀₋ q₋₀ q₋₁ q₁₋) fill-upper-left-unique {B = B} ids idp idp idp idp r sq' = ! (◃idp {B = B} r) ∙ horiz-degen-path sq'
43.018519
77
0.475678
1cf1eeb474ab642b7bbe0caf050eee112b3ccf39
8,057
agda
Agda
core/lib/types/Suspension/IteratedTrunc.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
core/lib/types/Suspension/IteratedTrunc.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
core/lib/types/Suspension/IteratedTrunc.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Bool open import lib.types.FunctionSeq open import lib.types.Pointed open import lib.types.Suspension.Core open import lib.types.Suspension.Iterated open import lib.types.Suspension.Trunc open import lib.types.TLevel open import lib.types.Truncation module lib.types.Suspension.IteratedTrunc where module _ {i} (A : Type i) (m : ℕ₋₂) where Susp^-Trunc-swap : ∀ (n : ℕ) → Susp^ n (Trunc m A) → Trunc (⟨ n ⟩₋₂ +2+ m) (Susp^ n A) Susp^-Trunc-swap O = idf _ Susp^-Trunc-swap (S n) = Susp-Trunc-swap (Susp^ n A) (⟨ n ⟩₋₂ +2+ m) ∘ Susp-fmap (Susp^-Trunc-swap n) private to : ∀ n → Trunc (⟨ n ⟩₋₂ +2+ m) (Susp^ n (Trunc m A)) → Trunc (⟨ n ⟩₋₂ +2+ m) (Susp^ n A) to n = Trunc-rec {{Trunc-level}} (Susp^-Trunc-swap n) from : ∀ n → Trunc (⟨ n ⟩₋₂ +2+ m) (Susp^ n A) → Trunc (⟨ n ⟩₋₂ +2+ m) (Susp^ n (Trunc m A)) from n = Trunc-fmap (Susp^-fmap n [_]) abstract from-Susp^-Trunc-swap : ∀ n → from n ∘ Susp^-Trunc-swap n ∼ [_] from-Susp^-Trunc-swap O = Trunc-elim {P = λ s → from 0 (Susp^-Trunc-swap 0 s) == [ s ]} {{λ s → =-preserves-level Trunc-level}} (λ a → idp) from-Susp^-Trunc-swap (S n) x = (from (S n) $ Susp-Trunc-swap (Susp^ n A) (⟨ n ⟩₋₂ +2+ m) $ Susp-fmap (Susp^-Trunc-swap n) x) =⟨ ! $ Susp-Trunc-swap-natural (Susp^-fmap n [_]) (⟨ n ⟩₋₂ +2+ m) $ Susp-fmap (Susp^-Trunc-swap n) x ⟩ (Susp-Trunc-swap (Susp^ n (Trunc m A)) (⟨ n ⟩₋₂ +2+ m) $ Susp-fmap (Trunc-fmap (Susp^-fmap n [_])) $ Susp-fmap (Susp^-Trunc-swap n) x) =⟨ ap (Susp-Trunc-swap (Susp^ n (Trunc m A)) (⟨ n ⟩₋₂ +2+ m)) $ ! $ Susp-fmap-∘ (Trunc-fmap (Susp^-fmap n [_])) (Susp^-Trunc-swap n) x ⟩ (Susp-Trunc-swap (Susp^ n (Trunc m A)) (⟨ n ⟩₋₂ +2+ m) $ Susp-fmap (from n ∘ Susp^-Trunc-swap n) x) =⟨ ap (Susp-Trunc-swap (Susp^ n (Trunc m A)) (⟨ n ⟩₋₂ +2+ m)) $ ap (λ f → Susp-fmap f x) (λ= (from-Susp^-Trunc-swap n)) ⟩ Susp-Trunc-swap (Susp^ n (Trunc m A)) (⟨ n ⟩₋₂ +2+ m) (Susp-fmap [_] x) =⟨ Susp-Trunc-swap-Susp-fmap-trunc (Susp^ n (Trunc m A)) (⟨ n ⟩₋₂ +2+ m) x ⟩ [ x ] =∎ from-to : ∀ n → from n ∘ to n ∼ idf _ from-to n = Trunc-elim {P = λ t → from n (to n t) == t} {{λ t → =-preserves-level Trunc-level}} (from-Susp^-Trunc-swap n) Susp^-Trunc-swap-Susp^-fmap-trunc : ∀ n → Susp^-Trunc-swap n ∘ Susp^-fmap n [_] ∼ [_] Susp^-Trunc-swap-Susp^-fmap-trunc 0 s = idp Susp^-Trunc-swap-Susp^-fmap-trunc (S n) s = (Susp-Trunc-swap (Susp^ n A) (⟨ n ⟩₋₂ +2+ m) $ Susp-fmap (Susp^-Trunc-swap n) $ Susp^-fmap (S n) [_] s) =⟨ ap (Susp-Trunc-swap (Susp^ n A) (⟨ n ⟩₋₂ +2+ m)) $ ! $ Susp-fmap-∘ (Susp^-Trunc-swap n) (Susp^-fmap n [_]) s ⟩ (Susp-Trunc-swap (Susp^ n A) (⟨ n ⟩₋₂ +2+ m) $ Susp-fmap (Susp^-Trunc-swap n ∘ Susp^-fmap n [_]) s) =⟨ ap (Susp-Trunc-swap (Susp^ n A) (⟨ n ⟩₋₂ +2+ m)) $ app= (ap Susp-fmap (λ= (Susp^-Trunc-swap-Susp^-fmap-trunc n))) s ⟩ Susp-Trunc-swap (Susp^ n A) (⟨ n ⟩₋₂ +2+ m) (Susp-fmap [_] s) =⟨ Susp-Trunc-swap-Susp-fmap-trunc (Susp^ n A) (⟨ n ⟩₋₂ +2+ m) s ⟩ [ s ] =∎ to-from : ∀ n → to n ∘ from n ∼ idf _ to-from n = Trunc-elim {{λ t → =-preserves-level Trunc-level}} (Susp^-Trunc-swap-Susp^-fmap-trunc n) Susp^-Trunc-equiv : ∀ (n : ℕ) → Trunc (⟨ n ⟩₋₂ +2+ m) (Susp^ n (Trunc m A)) ≃ Trunc (⟨ n ⟩₋₂ +2+ m) (Susp^ n A) Susp^-Trunc-equiv n = equiv (to n) (from n) (to-from n) (from-to n) module _ {i} (X : Ptd i) (m : ℕ₋₂) where Susp^-Trunc-swap-pt : ∀ (n : ℕ) → Susp^-Trunc-swap (de⊙ X) m n (pt (⊙Susp^ n (⊙Trunc m X))) == pt (⊙Trunc (⟨ n ⟩₋₂ +2+ m) (⊙Susp^ n X)) Susp^-Trunc-swap-pt O = idp Susp^-Trunc-swap-pt (S n) = idp ⊙Susp^-Trunc-swap : ∀ (n : ℕ) → ⊙Susp^ n (⊙Trunc m X) ⊙→ ⊙Trunc (⟨ n ⟩₋₂ +2+ m) (⊙Susp^ n X) ⊙Susp^-Trunc-swap n = Susp^-Trunc-swap (de⊙ X) m n , Susp^-Trunc-swap-pt n ⊙Susp^-⊙Trunc-equiv : ∀ (n : ℕ) → ⊙Trunc (⟨ n ⟩₋₂ +2+ m) (⊙Susp^ n (⊙Trunc m X)) ⊙≃ ⊙Trunc (⟨ n ⟩₋₂ +2+ m) (⊙Susp^ n X) ⊙Susp^-⊙Trunc-equiv n = ⊙to , snd (Susp^-Trunc-equiv (de⊙ X) m n) where ⊙to : ⊙Trunc (⟨ n ⟩₋₂ +2+ m) (⊙Susp^ n (⊙Trunc m X)) ⊙→ ⊙Trunc (⟨ n ⟩₋₂ +2+ m) (⊙Susp^ n X) ⊙to = ⊙Trunc-rec {{Trunc-level}} (⊙Susp^-Trunc-swap n) module _ {i} {X Y : Ptd i} (f : X ⊙→ Y) (m : ℕ₋₂) where ⊙Susp^-Trunc-swap-natural : ∀ (n : ℕ) → ⊙Susp^-Trunc-swap Y m n ◃⊙∘ ⊙Susp^-fmap n (⊙Trunc-fmap f) ◃⊙idf =⊙∘ ⊙Trunc-fmap (⊙Susp^-fmap n f) ◃⊙∘ ⊙Susp^-Trunc-swap X m n ◃⊙idf ⊙Susp^-Trunc-swap-natural O = =⊙∘-in (⊙λ= (⊙∘-unit-l _)) ⊙Susp^-Trunc-swap-natural (S n) = ⊙Susp^-Trunc-swap Y m (S n) ◃⊙∘ ⊙Susp^-fmap (S n) (⊙Trunc-fmap f) ◃⊙idf =⊙∘⟨ 0 & 1 & ⊙expand $ ⊙Susp-Trunc-swap (Susp^ n (de⊙ Y)) (⟨ n ⟩₋₂ +2+ m) ◃⊙∘ ⊙Susp-fmap (Susp^-Trunc-swap (de⊙ Y) m n) ◃⊙idf ⟩ ⊙Susp-Trunc-swap (Susp^ n (de⊙ Y)) (⟨ n ⟩₋₂ +2+ m) ◃⊙∘ ⊙Susp-fmap (Susp^-Trunc-swap (de⊙ Y) m n) ◃⊙∘ ⊙Susp^-fmap (S n) (⊙Trunc-fmap f) ◃⊙idf =⊙∘⟨ 1 & 2 & ⊙Susp-fmap-seq-=⊙∘ $ de⊙-seq-=⊙∘ $ ⊙Susp^-Trunc-swap-natural n ⟩ ⊙Susp-Trunc-swap (Susp^ n (de⊙ Y)) (⟨ n ⟩₋₂ +2+ m) ◃⊙∘ ⊙Susp-fmap (Trunc-fmap (Susp^-fmap n (fst f))) ◃⊙∘ ⊙Susp-fmap (Susp^-Trunc-swap (de⊙ X) m n) ◃⊙idf =⊙∘⟨ 0 & 2 & =⊙∘-in {gs = ⊙Trunc-fmap (⊙Susp-fmap (Susp^-fmap n (fst f))) ◃⊙∘ ⊙Susp-Trunc-swap (Susp^ n (de⊙ X)) (⟨ n ⟩₋₂ +2+ m) ◃⊙idf} $ ⊙Susp-Trunc-swap-natural (Susp^-fmap n (fst f)) (⟨ n ⟩₋₂ +2+ m) ⟩ ⊙Trunc-fmap (⊙Susp-fmap (Susp^-fmap n (fst f))) ◃⊙∘ ⊙Susp-Trunc-swap (Susp^ n (de⊙ X)) (⟨ n ⟩₋₂ +2+ m) ◃⊙∘ ⊙Susp-fmap (Susp^-Trunc-swap (de⊙ X) m n) ◃⊙idf =⊙∘⟨ 1 & 2 & ⊙contract ⟩ ⊙Trunc-fmap (⊙Susp^-fmap (S n) f) ◃⊙∘ ⊙Susp^-Trunc-swap X m (S n) ◃⊙idf ∎⊙∘ ⊙Susp^-⊙Trunc-equiv-natural : ∀ (n : ℕ) → ⊙–> (⊙Susp^-⊙Trunc-equiv Y m n) ◃⊙∘ ⊙Trunc-fmap (⊙Susp^-fmap n (⊙Trunc-fmap f)) ◃⊙idf =⊙∘ ⊙Trunc-fmap (⊙Susp^-fmap n f) ◃⊙∘ ⊙–> (⊙Susp^-⊙Trunc-equiv X m n) ◃⊙idf ⊙Susp^-⊙Trunc-equiv-natural n = =⊙∘-in $ ⊙–> (⊙Susp^-⊙Trunc-equiv Y m n) ⊙∘ ⊙Trunc-fmap (⊙Susp^-fmap n (⊙Trunc-fmap f)) =⟨ ⊙Trunc-rec-⊙Trunc-fmap {{Trunc-level}} (⊙Susp^-Trunc-swap Y m n) (⊙Susp^-fmap n (⊙Trunc-fmap f)) ⟩ ⊙Trunc-rec {{Trunc-level}} (⊙Susp^-Trunc-swap Y m n ⊙∘ ⊙Susp^-fmap n (⊙Trunc-fmap f)) =⟨ ap (⊙Trunc-rec {{Trunc-level}}) $ =⊙∘-out $ ⊙Susp^-Trunc-swap-natural n ⟩ ⊙Trunc-rec {{Trunc-level}} (⊙Trunc-fmap (⊙Susp^-fmap n f) ⊙∘ ⊙Susp^-Trunc-swap X m n) =⟨ ⊙Trunc-rec-post-⊙∘ {{Trunc-level}} {{Trunc-level}} (⊙Trunc-fmap (⊙Susp^-fmap n f)) (⊙Susp^-Trunc-swap X m n) ⟩ ⊙Trunc-fmap (⊙Susp^-fmap n f) ⊙∘ ⊙–> (⊙Susp^-⊙Trunc-equiv X m n) =∎ ⊙Susp^-⊙Trunc-equiv-natural' : ∀ (n : ℕ) → ⊙<– (⊙Susp^-⊙Trunc-equiv Y m n) ◃⊙∘ ⊙Trunc-fmap (⊙Susp^-fmap n f) ◃⊙idf =⊙∘ ⊙Trunc-fmap (⊙Susp^-fmap n (⊙Trunc-fmap f)) ◃⊙∘ ⊙<– (⊙Susp^-⊙Trunc-equiv X m n) ◃⊙idf ⊙Susp^-⊙Trunc-equiv-natural' n = ⊙<– (⊙Susp^-⊙Trunc-equiv Y m n) ◃⊙∘ ⊙Trunc-fmap (⊙Susp^-fmap n f) ◃⊙idf =⊙∘⟨ 2 & 0 & !⊙∘ $ ⊙<–-inv-r-=⊙∘ (⊙Susp^-⊙Trunc-equiv X m n) ⟩ ⊙<– (⊙Susp^-⊙Trunc-equiv Y m n) ◃⊙∘ ⊙Trunc-fmap (⊙Susp^-fmap n f) ◃⊙∘ ⊙–> (⊙Susp^-⊙Trunc-equiv X m n) ◃⊙∘ ⊙<– (⊙Susp^-⊙Trunc-equiv X m n) ◃⊙idf =⊙∘⟨ 1 & 2 & !⊙∘ $ ⊙Susp^-⊙Trunc-equiv-natural n ⟩ ⊙<– (⊙Susp^-⊙Trunc-equiv Y m n) ◃⊙∘ ⊙–> (⊙Susp^-⊙Trunc-equiv Y m n) ◃⊙∘ ⊙Trunc-fmap (⊙Susp^-fmap n (⊙Trunc-fmap f)) ◃⊙∘ ⊙<– (⊙Susp^-⊙Trunc-equiv X m n) ◃⊙idf =⊙∘⟨ 0 & 2 & ⊙<–-inv-l-=⊙∘ (⊙Susp^-⊙Trunc-equiv Y m n) ⟩ ⊙Trunc-fmap (⊙Susp^-fmap n (⊙Trunc-fmap f)) ◃⊙∘ ⊙<– (⊙Susp^-⊙Trunc-equiv X m n) ◃⊙idf ∎⊙∘
42.856383
96
0.48914
1e927dca48e9ea6b6b2d06784b58bdb668cc1033
3,825
agda
Agda
src/Examples/TreeSum.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
29
2021-07-14T03:18:28.000Z
2022-03-22T20:35:11.000Z
src/Examples/TreeSum.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
null
null
null
src/Examples/TreeSum.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
2
2021-10-06T10:28:24.000Z
2022-01-29T08:12:01.000Z
{-# OPTIONS --prop --rewriting #-} module Examples.TreeSum where open import Calf.CostMonoid open import Calf.CostMonoids using (ℕ²-ParCostMonoid) parCostMonoid = ℕ²-ParCostMonoid open ParCostMonoid parCostMonoid open import Calf costMonoid open import Calf.ParMetalanguage parCostMonoid open import Calf.Types.Nat open import Calf.Types.Bounded costMonoid open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; _≢_; module ≡-Reasoning) open import Data.Nat as Nat using (_+_; _⊔_) open import Data.Nat.Properties as N using () open import Data.Product add : cmp (Π nat λ _ → Π nat λ _ → F nat) add m n = step (F nat) (1 , 1) (ret (m + n)) add/cost : cmp (Π nat λ _ → Π nat λ _ → cost) add/cost m n = (1 , 1) ⊕ 𝟘 add/cost/closed : cmp (Π nat λ _ → Π nat λ _ → cost) add/cost/closed m n = (1 , 1) add/cost≤add/cost/closed : ∀ m n → ◯ (add/cost m n ≤ add/cost/closed m n) add/cost≤add/cost/closed m n u = ≤-reflexive (⊕-identityʳ (1 , 1)) add≤add/cost : ∀ m n → IsBounded nat (add m n) (add/cost m n) add≤add/cost m n = bound/step (1 , 1) _ bound/ret add≤add/cost/closed : ∀ m n → IsBounded nat (add m n) (add/cost/closed m n) add≤add/cost/closed m n = bound/relax (add/cost≤add/cost/closed m n) (add≤add/cost m n) data Tree : Set where leaf : val nat → Tree node : Tree → Tree → Tree tree : tp pos tree = U (meta Tree) sum : cmp (Π tree λ _ → F nat) sum (leaf x) = ret x sum (node t₁ t₂) = bind (F nat) (sum t₁ & sum t₂) λ (n₁ , n₂) → add n₁ n₂ sum/total : ∀ t → ◯ (∃ λ n → sum t ≡ ret n) sum/total (leaf x) u = x , refl sum/total (node t₁ t₂) u = let (n₁ , ≡₁) = sum/total t₁ u (n₂ , ≡₂) = sum/total t₂ u in n₁ + n₂ , ( let open ≡-Reasoning in begin (bind (F nat) (sum t₁ & sum t₂) λ (n₁ , n₂) → add n₁ n₂) ≡⟨ Eq.cong₂ (λ e₁ e₂ → bind (F nat) (e₁ & e₂) _) ≡₁ ≡₂ ⟩ add n₁ n₂ ≡⟨⟩ step (F nat) (1 , 1) (ret (n₁ + n₂)) ≡⟨ step/ext (F nat) _ (1 , 1) u ⟩ ret (n₁ + n₂) ∎ ) sum/cost : cmp (Π tree λ _ → cost) sum/cost (leaf x) = 𝟘 sum/cost (node t₁ t₂) = bind cost (sum t₁ & sum t₂) λ (n₁ , n₂) → (sum/cost t₁ ⊗ sum/cost t₂) ⊕ add/cost/closed n₁ n₂ size : val tree → val nat size (leaf x) = 0 size (node t₁ t₂) = suc (size t₁ + size t₂) depth : val tree → val nat depth (leaf x) = 0 depth (node t₁ t₂) = suc (depth t₁ ⊔ depth t₂) sum/cost/closed : cmp (Π tree λ _ → cost) sum/cost/closed t = size t , depth t sum/cost≤sum/cost/closed : ∀ t → ◯ (sum/cost t ≤ sum/cost/closed t) sum/cost≤sum/cost/closed (leaf x) u = ≤-refl sum/cost≤sum/cost/closed (node t₁ t₂) u = let (_ , ≡₁) = sum/total t₁ u (_ , ≡₂) = sum/total t₂ u in begin sum/cost (node t₁ t₂) ≡⟨⟩ (bind cost (sum t₁ & sum t₂) λ (n₁ , n₂) → (sum/cost t₁ ⊗ sum/cost t₂) ⊕ add/cost/closed n₁ n₂) ≡⟨ Eq.cong₂ (λ e₁ e₂ → bind cost (e₁ & e₂) λ (n₁ , n₂) → (sum/cost t₁ ⊗ sum/cost t₂) ⊕ _) ≡₁ ≡₂ ⟩ sum/cost t₁ ⊗ sum/cost t₂ ⊕ (1 , 1) ≤⟨ ⊕-monoˡ-≤ (1 , 1) (⊗-mono-≤ (sum/cost≤sum/cost/closed t₁ u) (sum/cost≤sum/cost/closed t₂ u)) ⟩ sum/cost/closed t₁ ⊗ sum/cost/closed t₂ ⊕ (1 , 1) ≡⟨⟩ (size t₁ , depth t₁) ⊗ (size t₂ , depth t₂) ⊕ (1 , 1) ≡⟨⟩ size t₁ + size t₂ + 1 , depth t₁ ⊔ depth t₂ + 1 ≡⟨ Eq.cong₂ _,_ (N.+-comm _ 1) (N.+-comm _ 1) ⟩ suc (size t₁ + size t₂) , suc (depth t₁ ⊔ depth t₂) ≡⟨⟩ sum/cost/closed (node t₁ t₂) ∎ where open ≤-Reasoning sum≤sum/cost : ∀ t → IsBounded nat (sum t) (sum/cost t) sum≤sum/cost (leaf x) = bound/ret sum≤sum/cost (node t₁ t₂) = bound/bind (sum/cost t₁ ⊗ sum/cost t₂) _ (bound/par (sum≤sum/cost t₁) (sum≤sum/cost t₂)) λ (n₁ , n₂) → add≤add/cost/closed n₁ n₂ sum≤sum/cost/closed : ∀ t → IsBounded nat (sum t) (sum/cost/closed t) sum≤sum/cost/closed t = bound/relax (sum/cost≤sum/cost/closed t) (sum≤sum/cost t)
30.846774
104
0.595033
1e7a6ee7e0e427ccb1c197b3f761f3e1912f2eac
4,916
agda
Agda
src/LibraBFT/Impl/Storage/DiemDB/LedgerStore/LedgerStore.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/Storage/DiemDB/LedgerStore/LedgerStore.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/Storage/DiemDB/LedgerStore/LedgerStore.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types open import LibraBFT.Impl.OBM.Logging.Logging open import LibraBFT.ImplShared.Consensus.Types hiding (getEpoch) open import Optics.All import Util.KVMap as Map open import Util.Prelude ------------------------------------------------------------------------------ open import Data.String using (String) module LibraBFT.Impl.Storage.DiemDB.LedgerStore.LedgerStore where record EpochEndingLedgerInfoIter : Set where constructor EpochEndingLedgerInfoIter∙new field _eeliiObmLIWS : List LedgerInfoWithSignatures open EpochEndingLedgerInfoIter public new : LedgerStore new = mkLedgerStore Map.empty Map.empty nothing -- OBM-LBFT-DIFF : the entire Haskell impl file is VERY different from the Rust code. -- The Agda below mirrors Haskell. getEpoch : LedgerStore → Version → Either ErrLog Epoch getEpoch self version = maybeS (Map.lookup version (self ^∙ lsObmVersionToEpoch)) -- COMMENT FROM RUST CODE: -- There should be a genesis LedgerInfo at version 0. -- This normally doesn't happen. -- This part of impl does not need to rely on this assumption. (pure 0) pure getEpochEndingLedgerInfo : LedgerStore → Version → Either ErrLog LedgerInfoWithSignatures getEpochEndingLedgerInfo self version = do epoch ← getEpoch self version case Map.lookup epoch (self ^∙ lsObmEpochToLIWS) of λ where nothing → Left fakeErr -- ["DiemDbError::NotFound", "LedgerInfo for epoch", lsE epoch] (just li) → grd‖ li ^∙ liwsLedgerInfo ∙ liVersion /= version ≔ Left fakeErr --["epoch did not end at version", lsE epoch, lsVersion version] ‖ is-nothing (li ^∙ liwsLedgerInfo ∙ liNextEpochState) ≔ Left fakeErr -- ["not an epoch change at version", lsVersion version] ‖ otherwise≔ pure li --where -- here t = "LedgerStore":"getEpochEndingLedgerInfo":t getEpochState : LedgerStore → Epoch → Either ErrLog EpochState getEpochState self epoch = do lcheck (epoch >? 0) (here' ("EpochState only queryable for epoch >= 1" {-∷ lsE epoch-} ∷ [])) case Map.lookup (epoch ∸ 1) (self ^∙ lsObmEpochToLIWS) of λ where nothing → Left fakeErr --[ "DiemDbError::NotFound" --, "last LedgerInfo of epoch", lsE (epoch - 1) ])) (just ledgerInfoWithSigs) → maybeS (ledgerInfoWithSigs ^∙ liwsNextEpochState) (Left fakeErr) --[ "last LedgerInfo in epoch must carry nextEpochState" --, lsE epoch, lsLI (ledgerInfoWithSigs^.liwsLedgerInfo) ] pure where here' : List String → List String here' t = "LedgerStore" ∷ "getEPochState" ∷ t -- iterator that yields epoch ending ledger infos -- starting from `start_epoch` -- ends at the one before `end_epoch` getEpochEndingLedgerInfoIter : LedgerStore → Epoch → Epoch → Either ErrLog EpochEndingLedgerInfoIter getEpochEndingLedgerInfoIter self startEpoch endEpoch = -- TODO-2: prove endEpoch > 0 -- Use of monus in context where it is not clear that endEpoch > 0. -- If not, Agda and Haskell code would behave differently. -- TODO-2: IMPL-DIFF: Haskell uses a list comprehension; Agda uses homegrown 'fromToList' -- The combination of monus and fromToList risks misunderstanding/misuse of fromToList later. -- Ranges would differ in Haskell and Agda if, say, startEpoch were negative and endEpoch was 0. -- It could be correct and verified in Agda, but wrong in Haskell -- (e.g., if the Haskell code accidentally calculates a negative epoch). EpochEndingLedgerInfoIter∙new <$> (foldM) go [] (fromToList startEpoch (endEpoch ∸ 1)) where go : List LedgerInfoWithSignatures → Epoch → Either ErrLog (List LedgerInfoWithSignatures) go acc e = maybeS (Map.lookup e (self ^∙ lsObmEpochToLIWS)) (Left fakeErr) --[ "LedgerStore", "getEpochEndingLedgerInfoIter" --, "no LIWS for epoch", lsE e ] (λ x → Right (acc ++ (x ∷ []))) -- TODO putLedgerInfo : LedgerStore → LedgerInfoWithSignatures → Either ErrLog LedgerStore putLedgerInfo self ledgerInfoWithSigs = let ledgerInfo = ledgerInfoWithSigs ^∙ liwsLedgerInfo in pure $ mkLedgerStore ((if ledgerInfo ^∙ liEndsEpoch then Map.insert (ledgerInfo ^∙ liVersion) (ledgerInfo ^∙ liEpoch) else identity) (self ^∙ lsObmVersionToEpoch)) (Map.insert (ledgerInfo ^∙ liEpoch) ledgerInfoWithSigs (self ^∙ lsObmEpochToLIWS)) (self ^∙ lsLatestLedgerInfo) obmEELIICollect : EpochEndingLedgerInfoIter → List LedgerInfoWithSignatures obmEELIICollect = _eeliiObmLIWS
45.943925
111
0.68572
04061c9f92aa3df636b4a963f13a67e151e6acdc
885
agda
Agda
test/succeed/Issue553c.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/Issue553c.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/Issue553c.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
-- Andreas, 2012-01-17 -- {-# OPTIONS -v tc.proj.like:50 #-} -- {-# OPTIONS -v tc.conv.atom:50 #-} module Issue553c where postulate A : Set a : A data Bool : Set where true false : Bool data WrapBool (C : Set) : Set where wrap : Bool -> WrapBool C -- a projection-like function (must not be constructor-headed!) -- the dummy C is to make Agda accept f as projection like f : {C : Set} -> WrapBool C -> A f (wrap true) = a f (wrap false) = a data _≡_ {A : Set}(a : A) : A -> Set where refl : a ≡ a -- it is important that f does not reduce, in order to enter compareAtom test : (b : Bool) -> f {C = A} (wrap b) ≡ f (wrap b) test b = refl -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/TypeChecking/Conversion.hs:335 -- the problem is fixed now, since f is no longer projection-like -- because of deep matching
27.65625
72
0.654237
4be7cb29ed3cefe94f434c45a13a9405f63c0d76
604
agda
Agda
test/Succeed/Issue2168b.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2168b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2168b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-09-19, issue #2168, reported by Nisse -- {-# OPTIONS -v tc.cover:10 #-} -- {-# OPTIONS -v tc.cover.splittree:30 -v tc.cc:40 -v tc.cover.split.con:30 #-} open import Common.Equality data Three : Set where one two three : Three data Bool : Set where true false : Bool P : Bool → Bool → Three P z false = one P false = λ _ → two -- This caused internal error during clause compilation. P z true = three test-one : ∀ x → P x false ≡ one test-one true = refl test-one false = refl test-two : P false true ≡ two test-two = refl test-three : P true true ≡ three test-three = refl
21.571429
80
0.663907
1ee9d99af0b2fb32ef3ef52d2ad0c8d66e0910cc
2,933
agda
Agda
src/fot/LTC-PCF/Data/Nat/Divisibility/By0/Properties.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/LTC-PCF/Data/Nat/Divisibility/By0/Properties.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/LTC-PCF/Data/Nat/Divisibility/By0/Properties.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Properties of the divisibility relation ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Data.Nat.Divisibility.By0.Properties where open import Common.FOL.Relation.Binary.EqReasoning open import LTC-PCF.Base open import LTC-PCF.Base.Properties open import LTC-PCF.Data.Nat open import LTC-PCF.Data.Nat.Properties open import LTC-PCF.Data.Nat.Divisibility.By0 open import LTC-PCF.Data.Nat.Inequalities open import LTC-PCF.Data.Nat.Inequalities.Properties open import LTC-PCF.Data.Nat.Properties open import LTC-PCF.Data.Nat.UnaryNumbers open import LTC-PCF.Data.Nat.UnaryNumbers.Totality ------------------------------------------------------------------------------ -- Any positive number divides 0. S∣0 : ∀ {n} → N n → succ₁ n ∣ zero S∣0 {n} Nn = zero , nzero , sym (*-leftZero (succ₁ n)) -- 0 divides 0. 0∣0 : zero ∣ zero 0∣0 = zero , nzero , sym (*-leftZero zero) -- The divisibility relation is reflexive. ∣-refl : ∀ {n} → N n → n ∣ n ∣-refl {n} Nn = [1] , 1-N , sym (*-leftIdentity Nn) -- If x divides y and z then x divides y ∸ z. x∣y→x∣z→x∣y∸z-helper : ∀ {m n o k k'} → N m → N k → N k' → n ≡ k * m → o ≡ k' * m → n ∸ o ≡ (k ∸ k') * m x∣y→x∣z→x∣y∸z-helper Nm Nk Nk' refl refl = sym (*∸-leftDistributive Nk Nk' Nm) x∣y→x∣z→x∣y∸z : ∀ {m n o} → N m → N n → N o → m ∣ n → m ∣ o → m ∣ n ∸ o x∣y→x∣z→x∣y∸z Nm Nn No (k , Nk , h₁) (k' , Nk' , h₂) = k ∸ k' , ∸-N Nk Nk' , x∣y→x∣z→x∣y∸z-helper Nm Nk Nk' h₁ h₂ -- If x divides y and z then x divides y + z. x∣y→x∣z→x∣y+z-helper : ∀ {m n o k k'} → N m → N k → N k' → n ≡ k * m → o ≡ k' * m → n + o ≡ (k + k') * m x∣y→x∣z→x∣y+z-helper Nm Nk Nk' refl refl = sym (*+-leftDistributive Nk Nk' Nm) x∣y→x∣z→x∣y+z : ∀ {m n o} → N m → N n → N o → m ∣ n → m ∣ o → m ∣ n + o x∣y→x∣z→x∣y+z Nm Nn No (k , Nk , h₁) (k' , Nk' , h₂) = k + k' , +-N Nk Nk' , x∣y→x∣z→x∣y+z-helper Nm Nk Nk' h₁ h₂ -- If x divides y and y is positive, then x ≤ y. x∣S→x≤S : ∀ {m n} → N m → N n → m ∣ (succ₁ n) → m ≤ succ₁ n x∣S→x≤S {m} Nm Nn (.zero , nzero , Sn≡0*m) = ⊥-elim (0≢S (trans (sym (*-leftZero m)) (sym Sn≡0*m))) x∣S→x≤S {m} Nm Nn (.(succ₁ k) , nsucc {k} Nk , Sn≡Sk*m) = subst (λ t₁ → m ≤ t₁) (sym Sn≡Sk*m) (subst (λ t₂ → m ≤ t₂) (sym (*-Sx k m)) (x≤x+y Nm (*-N Nk Nm))) 0∣x→x≡0 : ∀ {m} → N m → zero ∣ m → m ≡ zero 0∣x→x≡0 nzero _ = refl 0∣x→x≡0 (nsucc {m} Nm) (k , Nk , Sm≡k*0) = ⊥-elim (0≢S (trans (sym (*-leftZero k)) (trans (*-comm nzero Nk) (sym Sm≡k*0))))
38.592105
78
0.474258
a0a10d2b66ae547767635384756ab914fe7f16cd
508
agda
Agda
test/Fail/errors-shelltestrunner/Issue62/NoTheorem.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
10
2015-09-03T20:54:16.000Z
2019-12-03T13:44:25.000Z
test/Fail/errors-shelltestrunner/Issue62/NoTheorem.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
121
2015-01-25T13:22:12.000Z
2018-04-22T06:01:44.000Z
test/Fail/errors-shelltestrunner/Issue62/NoTheorem.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
4
2016-05-10T23:06:19.000Z
2016-08-03T03:54:55.000Z
------------------------------------------------------------------------------ -- No theorem used by the shelltestrunner test ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Issue62.NoTheorem where postulate D : Set _≡_ : D → D → Set a b : D postulate foo : a ≡ b {-# ATP prove foo #-}
26.736842
78
0.377953
a05ce34f3c47eff397f67f7a8be5cc24ac5ff094
6,760
agda
Agda
Groups/FreeProduct/Setoid.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Groups/FreeProduct/Setoid.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Groups/FreeProduct/Setoid.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error #-} open import Sets.EquivalenceRelations open import Functions.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_; Setω) open import Setoids.Setoids open import Groups.Definition open import LogicalFormulae open import Orders.WellFounded.Definition open import Numbers.Naturals.Semiring open import Groups.Lemmas module Groups.FreeProduct.Setoid {i : _} {I : Set i} (decidableIndex : (x y : I) → ((x ≡ y) || ((x ≡ y) → False))) {a b : _} {A : I → Set a} {S : (i : I) → Setoid {a} {b} (A i)} {_+_ : (i : I) → (A i) → (A i) → A i} (decidableGroups : (i : I) → (x y : A i) → ((Setoid._∼_ (S i) x y)) || ((Setoid._∼_ (S i) x y) → False)) (G : (i : I) → Group (S i) (_+_ i)) where open import Groups.FreeProduct.Definition decidableIndex decidableGroups G =RP' : {m n : _} (s1 : ReducedSequenceBeginningWith m) (s2 : ReducedSequenceBeginningWith n) → Set b =RP' (ofEmpty i g nonZero) (ofEmpty j h nonZero₁) with decidableIndex i j =RP' (ofEmpty i g nonZero) (ofEmpty .i h nonZero₁) | inl refl = Setoid._∼_ (S i) g h =RP' (ofEmpty i g nonZero) (ofEmpty j h nonZero₁) | inr x = False' =RP' (ofEmpty i g nonZero) (prependLetter i₁ g₁ nonZero₁ s2 x) = False' =RP' (prependLetter i g nonZero s1 x) (ofEmpty i₁ g₁ nonZero₁) = False' =RP' (prependLetter i g nonZero s1 x) (prependLetter j h nonZero₁ s2 x₁) with decidableIndex i j =RP' (prependLetter i g nonZero s1 x) (prependLetter .i h nonZero₁ s2 x₁) | inl refl = Setoid._∼_ (S i) g h && =RP' s1 s2 =RP' (prependLetter i g nonZero s1 x) (prependLetter j h nonZero₁ s2 x₁) | inr x₂ = False' _=RP_ : Rel ReducedSequence empty =RP empty = True' empty =RP nonempty i x = False' nonempty i x =RP empty = False' nonempty i x =RP nonempty j y = =RP' x y =RP'reflex : {i : _} (x : ReducedSequenceBeginningWith i) → =RP' x x =RP'reflex (ofEmpty i g nonZero) with decidableIndex i i =RP'reflex (ofEmpty i g nonZero) | inl refl = Equivalence.reflexive (Setoid.eq (S i)) =RP'reflex (ofEmpty i g nonZero) | inr x = exFalso (x refl) =RP'reflex (prependLetter i g nonZero x x₁) with decidableIndex i i =RP'reflex (prependLetter i g nonZero x x₁) | inl refl = Equivalence.reflexive (Setoid.eq (S i)) ,, =RP'reflex x =RP'reflex (prependLetter i g nonZero x x₁) | inr bad = exFalso (bad refl) private reflex : Reflexive _=RP_ reflex {empty} = record {} reflex {nonempty i (ofEmpty .i g nonZero)} with decidableIndex i i reflex {nonempty i (ofEmpty .i g nonZero)} | inl refl = Equivalence.reflexive (Setoid.eq (S i)) ... | inr bad = exFalso (bad refl) reflex {nonempty i (prependLetter .i g nonZero x x₁)} with decidableIndex i i reflex {nonempty i (prependLetter .i g nonZero x x₁)} | inl refl = Equivalence.reflexive (Setoid.eq (S i)) ,, =RP'reflex x reflex {nonempty i (prependLetter .i g nonZero x x₁)} | inr bad = exFalso (bad refl) =RP'symm : {i j : _} (x : ReducedSequenceBeginningWith i) (y : ReducedSequenceBeginningWith j) → =RP' x y → =RP' y x =RP'symm (ofEmpty i g nonZero) (ofEmpty j h nonZero2) with decidableIndex i j =RP'symm (ofEmpty i g nonZero) (ofEmpty j h nonZero2) | inl pr with decidableIndex j i =RP'symm (ofEmpty .j g nonZero) (ofEmpty j h nonZero2) | inl refl | inl refl = Equivalence.symmetric (Setoid.eq (S j)) {g} {h} =RP'symm (ofEmpty i g nonZero) (ofEmpty j h nonZero2) | inl pr | inr x = exFalso (x (equalityCommutative pr)) =RP'symm (ofEmpty i g nonZero) (ofEmpty j h nonZero2) | inr x with decidableIndex j i =RP'symm (ofEmpty i g nonZero) (ofEmpty j h nonZero2) | inr x | inl pr = exFalso (x (equalityCommutative pr)) =RP'symm (ofEmpty i g nonZero) (ofEmpty j h nonZero2) | inr x | inr _ = id =RP'symm (ofEmpty i g nonZero) (prependLetter i₁ g₁ nonZero₁ y x) = id =RP'symm (prependLetter i g nonZero x x₁) (ofEmpty i₁ g₁ nonZero₁) = id =RP'symm (prependLetter i g nonZero x x₁) (prependLetter j h nonZero2 y pr2) pr with decidableIndex i j =RP'symm (prependLetter .j g nonZero x x₁) (prependLetter j h nonZero2 y pr2) pr | inl refl with decidableIndex j j =RP'symm (prependLetter .j g nonZero x x₁) (prependLetter j h nonZero2 y pr2) (fst ,, snd) | inl refl | inl refl = Equivalence.symmetric (Setoid.eq (S j)) fst ,, =RP'symm x y snd =RP'symm (prependLetter .j g nonZero x x₁) (prependLetter j h nonZero2 y pr2) pr | inl refl | inr bad = exFalso (bad refl) =RP'symm (prependLetter i g nonZero x x₁) (prependLetter j h nonZero2 y pr2) () | inr i!=j private symm : Symmetric _=RP_ symm {empty} {empty} x = record {} symm {nonempty i m} {nonempty i₁ n} x = =RP'symm m n x =RP'trans : {i j k : _} (x : ReducedSequenceBeginningWith i) (y : ReducedSequenceBeginningWith j) (z : ReducedSequenceBeginningWith k) → =RP' x y → =RP' y z → =RP' x z =RP'trans (ofEmpty i g nonZero) (ofEmpty j g₁ nonZero₁) (ofEmpty k g₂ nonZero₂) x=y y=z with decidableIndex i j =RP'trans (ofEmpty .j g nonZero) (ofEmpty j g₁ nonZero₁) (ofEmpty k g₂ nonZero₂) x=y y=z | inl refl with decidableIndex j k =RP'trans (ofEmpty .j g nonZero) (ofEmpty j g₁ nonZero₁) (ofEmpty .j g₂ nonZero₂) x=y y=z | inl refl | inl refl = Equivalence.transitive (Setoid.eq (S j)) x=y y=z =RP'trans (prependLetter i g nonZero x x₁) (prependLetter j g₁ nonZero₁ y x₂) (prependLetter k g₂ nonZero₂ z x₃) x=y y=z with decidableIndex i j =RP'trans (prependLetter .j g nonZero x x₁) (prependLetter j g₁ nonZero₁ y x₂) (prependLetter k g₂ nonZero₂ z x₃) x=y y=z | inl refl with decidableIndex j k =RP'trans (prependLetter .j g nonZero x x₁) (prependLetter j g₁ nonZero₁ y x₂) (prependLetter .j g₂ nonZero₂ z x₃) (fst1 ,, snd1) (fst2 ,, snd2) | inl refl | inl refl = Equivalence.transitive (Setoid.eq (S j)) fst1 fst2 ,, =RP'trans x y z snd1 snd2 private trans : (x y z : ReducedSequence) → x =RP y → y =RP z → x =RP z trans empty empty empty x=y y=z = record {} trans (nonempty i x) (nonempty i₁ y) (nonempty i₂ z) x=y y=z = =RP'trans x y z x=y y=z notEqualIfStartDifferent : {j1 j2 : I} (neq : (j1 ≡ j2) → False) → (x1 : ReducedSequenceBeginningWith j1) (x2 : ReducedSequenceBeginningWith j2) → =RP' x1 x2 → False notEqualIfStartDifferent neq (ofEmpty i g nonZero) (ofEmpty j g₁ nonZero₁) eq with decidableIndex i j notEqualIfStartDifferent neq (ofEmpty i g nonZero) (ofEmpty j g₁ nonZero₁) eq | inl i=j = neq i=j notEqualIfStartDifferent neq (prependLetter i g nonZero x1 x) (prependLetter j g₁ nonZero₁ x2 x₁) eq with decidableIndex i j notEqualIfStartDifferent neq (prependLetter i g nonZero x1 x) (prependLetter j g₁ nonZero₁ x2 x₁) eq | inl eq' = neq eq' freeProductSetoid : Setoid ReducedSequence Setoid._∼_ freeProductSetoid = _=RP_ Equivalence.reflexive (Setoid.eq freeProductSetoid) {x} = reflex {x} Equivalence.symmetric (Setoid.eq freeProductSetoid) {a} {b} = symm {a} {b} Equivalence.transitive (Setoid.eq freeProductSetoid) {x} {y} {z} = trans x y z
69.690722
362
0.70074
ada21654d68355a2e75f39555392b669c1a413e0
15,963
agda
Agda
Agda/subuniverses.agda
tmoux/HoTT-Intro
22023fd35023cb6804424ce12cd10d252b80fd29
[ "CC-BY-4.0" ]
null
null
null
Agda/subuniverses.agda
tmoux/HoTT-Intro
22023fd35023cb6804424ce12cd10d252b80fd29
[ "CC-BY-4.0" ]
null
null
null
Agda/subuniverses.agda
tmoux/HoTT-Intro
22023fd35023cb6804424ce12cd10d252b80fd29
[ "CC-BY-4.0" ]
null
null
null
{-# OPTIONS --without-K --allow-unsolved-metas #-} module subuniverses where import 14-univalence open 14-univalence public {- is-local : {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} (f : (i : I) → A i → B i) (X : UU l4) → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ l4))) is-local {I = I} {B = B} f X = (i : I) → is-equiv (λ (h : B i → X) → h ∘ (f i)) is-subuniverse-is-local : {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} (f : (i : I) → A i → B i) → is-subuniverse (is-local {l4 = l4} f) is-subuniverse-is-local f X = is-prop-Π (λ i → is-subtype-is-equiv _) -} universal-property-localization : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) (Y : total-subuniverse P) (l : X → pr1 Y) → UU ((lsuc l1) ⊔ l2) universal-property-localization {l1} (pair P H) X (pair Y p) l = (Z : UU l1) (q : P Z) → is-equiv (λ (h : Y → Z) → h ∘ l) universal-property-localization' : (l : Level) (α : Level → Level) (P : (l : Level) → subuniverse l (α l)) (g : (l1 l2 : Level) → is-global-subuniverse α P l1 l2) {l1 l2 : Level} (X : UU l1) (Y : total-subuniverse (P l2)) (f : X → pr1 Y) → UU ((lsuc l) ⊔ ((α l) ⊔ (l1 ⊔ l2))) universal-property-localization' l α P g X Y f = (Z : total-subuniverse (P l)) → is-equiv (λ (h : (pr1 Y) → (pr1 Z)) → h ∘ f) is-prop-universal-property-localization : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) (Y : total-subuniverse P) (l : X → pr1 Y) → is-prop (universal-property-localization P X Y l) is-prop-universal-property-localization (pair P H) X (pair Y p) l = is-prop-Π (λ Z → is-prop-Π (λ q → is-subtype-is-equiv _)) has-localization : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) → UU ((lsuc l1) ⊔ l2) has-localization {l1} P X = Σ ( total-subuniverse P) ( λ Y → Σ (X → pr1 Y) (universal-property-localization P X Y)) Eq-localizations : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) → ( s t : has-localization P X) → UU l1 Eq-localizations (pair P H) X (pair (pair Y p) (pair l up)) t = let Y' = pr1 (pr1 t) p' = pr1 (pr1 t) l' = pr1 (pr2 t) up' = pr2 (pr2 t) in Σ ( Y ≃ Y') ( λ e → ((map-equiv e) ∘ l) ~ l' ) reflexive-Eq-localizations : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) → (s : has-localization P X) → Eq-localizations P X s s reflexive-Eq-localizations (pair P H) X (pair (pair Y p) (pair l up)) = pair (equiv-id Y) (htpy-refl l) Eq-localizations-eq : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) → ( s t : has-localization P X) → Id s t → Eq-localizations P X s t Eq-localizations-eq P X s s refl = reflexive-Eq-localizations P X s is-contr-total-Eq-localizations : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) (s : has-localization P X) → is-contr (Σ (has-localization P X) (Eq-localizations P X s)) is-contr-total-Eq-localizations (pair P H) X (pair (pair Y p) (pair l up)) = is-contr-total-Eq-structure ( λ Y' l' e → ((map-equiv e) ∘ l) ~ (pr1 l')) ( is-contr-total-Eq-total-subuniverse (pair P H) (pair Y p)) ( pair (pair Y p) (equiv-id Y)) ( is-contr-total-Eq-substructure ( is-contr-total-htpy l) ( is-prop-universal-property-localization (pair P H) X (pair Y p)) ( l) ( htpy-refl _) ( up)) is-equiv-Eq-localizations-eq : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) → ( s t : has-localization P X) → is-equiv (Eq-localizations-eq P X s t) is-equiv-Eq-localizations-eq P X s = fundamental-theorem-id s ( reflexive-Eq-localizations P X s) ( is-contr-total-Eq-localizations P X s) ( Eq-localizations-eq P X s) eq-Eq-localizations : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) ( s t : has-localization P X) → (Eq-localizations P X s t) → Id s t eq-Eq-localizations P X s t = inv-is-equiv (is-equiv-Eq-localizations-eq P X s t) uniqueness-localizations : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) → ( s t : has-localization P X) → Eq-localizations P X s t uniqueness-localizations (pair P H) X (pair (pair Y p) (pair l up)) (pair (pair Y' p') (pair l' up')) = pair ( pair ( inv-is-equiv (up Y' p') l') ( is-equiv-has-inverse ( pair ( inv-is-equiv (up' Y p) l) ( pair ( htpy-eq ( ap ( pr1 {B = λ h → Id (h ∘ l') l'}) ( center ( is-prop-is-contr ( is-contr-map-is-equiv (up' Y' p') l') ( pair ( ( inv-is-equiv (up Y' p') l') ∘ ( inv-is-equiv (up' Y p) l)) ( ( ap ( λ t → (inv-is-equiv (up Y' p') l') ∘ t) ( issec-inv-is-equiv (up' Y p) l)) ∙ ( issec-inv-is-equiv (up Y' p') l'))) ( pair id refl))))) ( htpy-eq ( ap ( pr1 {B = λ h → Id (h ∘ l) l}) ( center ( is-prop-is-contr ( is-contr-map-is-equiv (up Y p) l) ( pair ( ( inv-is-equiv (up' Y p) l) ∘ ( inv-is-equiv (up Y' p') l')) ( ( ap ( λ t → (inv-is-equiv (up' Y p) l) ∘ t) ( issec-inv-is-equiv (up Y' p') l')) ∙ issec-inv-is-equiv (up' Y p) l)) ( pair id refl))))))))) ( htpy-eq (issec-inv-is-equiv (up Y' p') l')) is-prop-localizations : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) → is-prop (has-localization P X) is-prop-localizations P X = is-prop-is-prop' ( λ Y Y' → eq-Eq-localizations P X Y Y' ( uniqueness-localizations P X Y Y')) universal-property-localization-equiv-is-local : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) → (Y : UU l1) (p : (pr1 P) Y) (l : X → Y) → is-equiv l → universal-property-localization P X (pair Y p) l universal-property-localization-equiv-is-local (pair P H) X Y p l is-equiv-l Z q = is-equiv-precomp-is-equiv l is-equiv-l Z universal-property-localization-id-is-local : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) (q : (pr1 P) X) → universal-property-localization P X (pair X q) id universal-property-localization-id-is-local P X q = universal-property-localization-equiv-is-local P X X q id (is-equiv-id X) is-equiv-localization-is-local : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) → ( Y : has-localization P X) → (pr1 P) X → is-equiv (pr1 (pr2 Y)) is-equiv-localization-is-local (pair P H) X (pair (pair Y p) (pair l up)) q = is-equiv-right-factor ( id) ( inv-is-equiv (up X q) id) ( l) ( htpy-eq (inv (issec-inv-is-equiv (up X q) id))) ( pr2 ( pr1 ( uniqueness-localizations (pair P H) X ( pair (pair Y p) (pair l up)) ( pair ( pair X q) ( pair id ( universal-property-localization-id-is-local (pair P H) X q)))))) ( is-equiv-id X) is-local-is-equiv-localization : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) → ( Y : has-localization P X) → is-equiv (pr1 (pr2 Y)) → (pr1 P) X is-local-is-equiv-localization (pair P H) X (pair (pair Y p) (pair l up)) is-equiv-l = in-subuniverse-equiv' P (pair l is-equiv-l) p strong-retraction-property-localization : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) → (Y : total-subuniverse P) (l : X → pr1 Y) → UU l1 strong-retraction-property-localization (pair P H) X (pair Y p) l = is-equiv (λ (h : Y → X) → h ∘ l) retraction-property-localization : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) → (Y : total-subuniverse P) (l : X → pr1 Y) → UU l1 retraction-property-localization (pair P H) X (pair Y p) l = retr l strong-retraction-property-localization-is-equiv-localization : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) → (Y : total-subuniverse P) (l : X → pr1 Y) → is-equiv l → strong-retraction-property-localization P X Y l strong-retraction-property-localization-is-equiv-localization (pair P H) X (pair Y p) l is-equiv-l = is-equiv-precomp-is-equiv l is-equiv-l X retraction-property-localization-strong-retraction-property-localization : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) → (Y : total-subuniverse P) (l : X → pr1 Y) → strong-retraction-property-localization P X Y l → retraction-property-localization P X Y l retraction-property-localization-strong-retraction-property-localization (pair P H) X (pair Y p) l s = tot (λ h → htpy-eq) (center (is-contr-map-is-equiv s id)) is-equiv-localization-retraction-property-localization : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) → (Y : has-localization P X) → retraction-property-localization P X (pr1 Y) (pr1 (pr2 Y)) → is-equiv (pr1 (pr2 Y)) is-equiv-localization-retraction-property-localization (pair P H) X (pair (pair Y p) (pair l up)) (pair g isretr-g) = is-equiv-has-inverse ( pair g ( pair ( htpy-eq ( ap ( pr1 {B = λ (h : Y → Y) → Id (h ∘ l) l}) ( center ( is-prop-is-contr ( is-contr-map-is-equiv (up Y p) l) ( pair (l ∘ g) (ap (λ t → l ∘ t) (eq-htpy isretr-g))) ( pair id refl))))) ( isretr-g))) is-local-retraction-property-localization : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) → (Y : has-localization P X) → retraction-property-localization P X (pr1 Y) (pr1 (pr2 Y)) → (pr1 P) X is-local-retraction-property-localization P X Y r = is-local-is-equiv-localization P X Y ( is-equiv-localization-retraction-property-localization P X Y r) is-local-has-localization-is-contr : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) → is-contr X → has-localization P X → (pr1 P) X is-local-has-localization-is-contr (pair P H) X is-contr-X (pair (pair Y p) (pair l up)) = is-local-retraction-property-localization (pair P H) X ( pair (pair Y p) (pair l up)) ( pair ( λ _ → center is-contr-X) ( contraction is-contr-X)) has-localization-is-local-is-contr : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) → is-contr X → (pr1 P) X → has-localization P X has-localization-is-local-is-contr (pair P H) X is-contr-X p = pair ( pair X p) ( pair id (universal-property-localization-id-is-local (pair P H) X p)) is-contr-raise-unit : (l : Level) → is-contr (raise l unit) is-contr-raise-unit l = is-contr-is-equiv' unit ( map-raise l unit) ( is-equiv-map-raise l unit) ( is-contr-unit) is-local-unit-localization-unit : {l1 l2 : Level} (P : subuniverse l1 l2) → (Y : has-localization P (raise l1 unit)) → (pr1 P) (raise l1 unit) is-local-unit-localization-unit P Y = is-local-has-localization-is-contr P (raise _ unit) (is-contr-raise-unit _) Y toto-dependent-elimination-localization : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) → (has-loc-X : has-localization P X) → let Y = pr1 (pr1 has-loc-X) l = pr1 (pr2 has-loc-X) in (Z : Y → UU l1) → Σ (Y → Y) (λ h → (y : Y) → Z (h y)) → Σ (X → Y) (λ h → (x : X) → Z (h x)) toto-dependent-elimination-localization (pair P H) X (pair (pair Y p) (pair l up)) Z = toto ( λ (h : X → Y) → (x : X) → Z (h x)) ( λ h → h ∘ l) ( λ h h' x → h' (l x)) square-dependent-elimination-localization : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) → (has-loc-X : has-localization P X) → let Y = pr1 (pr1 has-loc-X) l = pr1 (pr2 has-loc-X) in (Z : Y → UU l1) (q : (pr1 P) (Σ _ Z)) → ( ( λ (h : Y → Σ Y Z) → h ∘ l) ∘ ( inv-choice-∞)) ~ ( ( inv-choice-∞) ∘ ( toto-dependent-elimination-localization P X has-loc-X Z)) square-dependent-elimination-localization (pair P H) X (pair (pair Y p) (pair l up)) Z q = htpy-refl is-equiv-toto-dependent-elimination-localization : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) → (has-loc-X : has-localization P X) (Z : pr1 (pr1 has-loc-X) → UU l1) (q : (pr1 P) (Σ _ Z)) → is-equiv (toto-dependent-elimination-localization P X has-loc-X Z) is-equiv-toto-dependent-elimination-localization (pair P H) X (pair (pair Y p) (pair l up)) Z q = is-equiv-top-is-equiv-bottom-square ( inv-choice-∞) ( inv-choice-∞) ( toto-dependent-elimination-localization (pair P H) X (pair (pair Y p) (pair l up)) Z) ( λ h → h ∘ l) ( square-dependent-elimination-localization (pair P H) X (pair (pair Y p) (pair l up)) Z q) ( is-equiv-inv-choice-∞) ( is-equiv-inv-choice-∞) ( up (Σ Y Z) q) dependent-elimination-localization : {l1 l2 : Level} (P : subuniverse l1 l2) → (X : UU l1) (Y : has-localization P X) → (Z : (pr1 (pr1 Y)) → UU l1) (q : (pr1 P) (Σ _ Z)) → is-equiv (λ (h : (y : (pr1 (pr1 Y))) → (Z y)) → λ x → h (pr1 (pr2 Y) x)) dependent-elimination-localization (pair P H) X (pair (pair Y p) (pair l up)) Z q = is-fiberwise-equiv-is-equiv-toto-is-equiv-base-map ( λ (h : X → Y) → (x : X) → Z (h x)) ( λ (h : Y → Y) → h ∘ l) ( λ (h : Y → Y) (h' : (y : Y) → Z (h y)) (x : X) → h' (l x)) ( up Y p) ( is-equiv-toto-dependent-elimination-localization (pair P H) X (pair (pair Y p) (pair l up)) Z q) ( id) is-reflective-subuniverse : {l1 l2 : Level} (P : subuniverse l1 l2) → UU ((lsuc l1) ⊔ l2) is-reflective-subuniverse {l1} P = (X : UU l1) → has-localization P X reflective-subuniverse : (l1 l2 : Level) → UU ((lsuc l1) ⊔ (lsuc l2)) reflective-subuniverse l1 l2 = Σ (subuniverse l1 l2) is-reflective-subuniverse is-local : {l1 l2 : Level} (L : reflective-subuniverse l1 l2) → UU l1 → UU l2 is-local L = pr1 (pr1 L) is-prop-is-local : {l1 l2 : Level} (L : reflective-subuniverse l1 l2) → (X : UU l1) → is-prop (is-local L X) is-prop-is-local L = pr2 (pr1 L) total-reflective-subuniverse : {l1 l2 : Level} (L : reflective-subuniverse l1 l2) → UU ((lsuc l1) ⊔ l2) total-reflective-subuniverse L = total-subuniverse (pr1 L) local-type-localization : {l1 l2 : Level} (L : reflective-subuniverse l1 l2) (X : UU l1) → total-reflective-subuniverse L local-type-localization L X = pr1 ((pr2 L) X) type-localization : {l1 l2 : Level} (L : reflective-subuniverse l1 l2) → UU l1 → UU l1 type-localization L X = pr1 (local-type-localization L X) is-local-type-localization : {l1 l2 : Level} (L : reflective-subuniverse l1 l2) (X : UU l1) → is-local L (type-localization L X) is-local-type-localization L X = pr2 (local-type-localization L X) universal-map-localization : {l1 l2 : Level} (L : reflective-subuniverse l1 l2) (X : UU l1) → Σ ( X → type-localization L X) ( universal-property-localization (pr1 L) X (local-type-localization L X)) universal-map-localization L X = pr2 ((pr2 L) X) unit-localization : {l1 l2 : Level} (L : reflective-subuniverse l1 l2) (X : UU l1) → X → type-localization L X unit-localization L X = pr1 (universal-map-localization L X) universal-property-map-localization : {l1 l2 : Level} (L : reflective-subuniverse l1 l2) (X : UU l1) → universal-property-localization (pr1 L) X ( local-type-localization L X) ( unit-localization L X) universal-property-map-localization L X = pr2 (universal-map-localization L X) dependent-elimination-reflective-subuniverse : {l1 l2 : Level} (L : reflective-subuniverse l1 l2) (X : UU l1) → (Y : type-localization L X → UU l1) (is-loc-total-Y : is-local L (Σ _ Y)) → is-equiv ( λ (h : (x' : type-localization L X) → Y x') x → h (unit-localization L X x)) dependent-elimination-reflective-subuniverse L X = dependent-elimination-localization (pr1 L) X ((pr2 L) X) is-contr-square-localization : {l1 l2 : Level} (L : reflective-subuniverse l1 l2) {X Y : UU l1} (f : X → Y) → is-contr ( Σ (type-localization L X → type-localization L Y) ( λ Lf → coherence-square (unit-localization L X) f Lf (unit-localization L Y))) is-contr-square-localization L f = {!!}
37.384075
86
0.58291
4b6c41778a872294af7045ab155277c4cf432779
273
agda
Agda
slides/Background.agda
larrytheliquid/generic-elim
832383d7adf37aa2364213fb0aeb67e9f61a248f
[ "MIT" ]
11
2015-06-02T14:05:20.000Z
2021-09-09T08:46:42.000Z
slides/Background.agda
larrytheliquid/generic-elim
832383d7adf37aa2364213fb0aeb67e9f61a248f
[ "MIT" ]
null
null
null
slides/Background.agda
larrytheliquid/generic-elim
832383d7adf37aa2364213fb0aeb67e9f61a248f
[ "MIT" ]
2
2016-05-02T08:56:15.000Z
2022-03-12T11:31:22.000Z
module Background where postulate Bits : Set module Open where data U : Set where postulate El : U → Set marshal : (u : U) → El u → Bits module Closed where data Desc : Set where postulate μ : Desc → Set marshal : (D : Desc) → μ D → Bits
13.65
37
0.600733
2ea530bbb3071c193e62d0e37f7f954524d36635
1,334
agda
Agda
Cubical/Relation/Nullary/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Relation/Nullary/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Relation/Nullary/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Nullary.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Data.Empty as ⊥ open import Cubical.HITs.PropositionalTruncation.Base open import Cubical.Functions.Fixpoint open import Cubical.Relation.Nullary.Decidable public private variable ℓ : Level A : Type ℓ toWitness : {Q : Dec A} → IsYes Q → A toWitness {Q = yes x} isYes = x NonEmpty : Type ℓ → Type ℓ NonEmpty A = ¬ ¬ A Stable : Type ℓ → Type ℓ Stable A = NonEmpty A → A -- reexport propositional truncation for uniformity open Cubical.HITs.PropositionalTruncation.Base using (∥_∥) public SplitSupport : Type ℓ → Type ℓ SplitSupport A = ∥ A ∥ → A Collapsible : Type ℓ → Type ℓ Collapsible A = Σ[ f ∈ (A → A) ] 2-Constant f Populated ⟪_⟫ : Type ℓ → Type ℓ Populated A = (f : Collapsible A) → Fixpoint (f .fst) ⟪_⟫ = Populated PStable : Type ℓ → Type ℓ PStable A = ⟪ A ⟫ → A onAllPaths : (Type ℓ → Type ℓ) → Type ℓ → Type ℓ onAllPaths S A = (x y : A) → S (x ≡ y) Separated : Type ℓ → Type ℓ Separated = onAllPaths Stable HSeparated : Type ℓ → Type ℓ HSeparated = onAllPaths SplitSupport PStable≡ : Type ℓ → Type ℓ PStable≡ = onAllPaths PStable Collapsible≡ : Type ℓ → Type ℓ Collapsible≡ = onAllPaths Collapsible
23
53
0.702399
0401ce367792165a644f613408acae8cbedd10b5
1,623
agda
Agda
core/lib/groups/CommutingSquare.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/groups/CommutingSquare.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/groups/CommutingSquare.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Group open import lib.types.CommutingSquare open import lib.groups.Homomorphism open import lib.groups.Isomorphism module lib.groups.CommutingSquare where -- A new type to keep the parameters. record CommSquareᴳ {i₀ i₁ j₀ j₁} {G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁} (φ₀ : G₀ →ᴳ H₀) (φ₁ : G₁ →ᴳ H₁) (ξG : G₀ →ᴳ G₁) (ξH : H₀ →ᴳ H₁) : Type (lmax (lmax i₀ i₁) (lmax j₀ j₁)) where constructor comm-sqrᴳ field commutesᴳ : ∀ g₀ → GroupHom.f (ξH ∘ᴳ φ₀) g₀ == GroupHom.f (φ₁ ∘ᴳ ξG) g₀ infix 0 _□$ᴳ_ _□$ᴳ_ = CommSquareᴳ.commutesᴳ CommSquareᴳ-∘v : ∀ {i₀ i₁ i₂ j₀ j₁ j₂} {G₀ : Group i₀} {G₁ : Group i₁} {G₂ : Group i₂} {H₀ : Group j₀} {H₁ : Group j₁} {H₂ : Group j₂} {φ : G₀ →ᴳ H₀} {ψ : G₁ →ᴳ H₁} {χ : G₂ →ᴳ H₂} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} {μA : G₁ →ᴳ G₂} {μB : H₁ →ᴳ H₂} → CommSquareᴳ ψ χ μA μB → CommSquareᴳ φ ψ ξG ξH → CommSquareᴳ φ χ (μA ∘ᴳ ξG) (μB ∘ᴳ ξH) CommSquareᴳ-∘v {ξG = ξG} {μB = μB} (comm-sqrᴳ □₁₂) (comm-sqrᴳ □₀₁) = comm-sqrᴳ λ g₀ → ap (GroupHom.f μB) (□₀₁ g₀) ∙ □₁₂ (GroupHom.f ξG g₀) CommSquareᴳ-inverse-v : ∀ {i₀ i₁ j₀ j₁} {G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁} {φ₀ : G₀ →ᴳ H₀} {φ₁ : G₁ →ᴳ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} → CommSquareᴳ φ₀ φ₁ ξG ξH → (ξG-ise : is-equiv (GroupHom.f ξG)) (ξH-ise : is-equiv (GroupHom.f ξH)) → CommSquareᴳ φ₁ φ₀ (GroupIso.g-hom (ξG , ξG-ise)) (GroupIso.g-hom (ξH , ξH-ise)) CommSquareᴳ-inverse-v (comm-sqrᴳ □) ξG-ise ξH-ise = comm-sqrᴳ (commutes (CommSquare-inverse-v (comm-sqr □) ξG-ise ξH-ise))
37.744186
83
0.616143
adf68ce6285d47bd5b8424f3ee8b9b965263be4c
2,090
agda
Agda
test/interaction/Auto/Prelude.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Auto/Prelude.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Auto/Prelude.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Auto.Prelude where open import Agda.Primitive public using (Level) data ⊥ : Set where ¬ : Set → Set ¬ A = A → ⊥ ⊥-e : (A : Set) → ⊥ → A ⊥-e A () record ⊤ : Set where record _∧_ (A B : Set) : Set where constructor ∧-i field fst : A snd : B data _∨_ (A B : Set) : Set where ∨-i₁ : A → A ∨ B ∨-i₂ : B → A ∨ B ∨-e : (A B C : Set) → A ∨ B → (A → C) → (B → C) → C ∨-e A B C (∨-i₁ x) h₁ h₂ = h₁ x ∨-e A B C (∨-i₂ x) h₁ h₂ = h₂ x data Π (A : Set) (F : A → Set) : Set where fun : ((a : A) → F a) → Π A F record Σ (X : Set) (P : X → Set) : Set where constructor Σ-i field wit : X prf : P wit data ℕ : Set where zero : ℕ succ : ℕ → ℕ _+_ : ℕ → ℕ → ℕ zero + n = n succ m + n = succ (m + n) data Fin : ℕ → Set where zero : ∀ {n} → Fin (succ n) suc : ∀ {n} → Fin n → Fin (succ n) data List (X : Set) : Set where [] : List X _∷_ : X → List X → List X _++_ : {X : Set} → List X → List X → List X [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) data Vec (X : Set) : ℕ → Set where [] : Vec X zero _∷_ : ∀ {n} → X → Vec X n → Vec X (succ n) -- ----------------------------------- data _≡_ {a} {A : Set a} (x : A) : A → Set where refl : x ≡ x subst : {i j : Level} {X : Set i} → (P : X → Set j) → (x y : X) → y ≡ x → P x → P y subst P x .x refl h = h trans : ∀ {a} {A : Set a} → {x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl refl = refl sym : ∀ {a} {A : Set a} → {x y : A} → x ≡ y → y ≡ x sym refl = refl cong : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {x y} → x ≡ y → f x ≡ f y cong f refl = refl data _IsRelatedTo_ {a : Level} {Carrier : Set a} (x y : Carrier) : Set a where relTo : (x∼y : x ≡ y) → x IsRelatedTo y begin_ : {a : Level} {Carrier : Set a} → {x y : Carrier} → x IsRelatedTo y → x ≡ y begin relTo x∼y = x∼y _∎ : {a : Level} {Carrier : Set a} → (x : Carrier) → x IsRelatedTo x _∎ _ = relTo refl _≡⟨_⟩_ : {a : Level} {Carrier : Set a} → (x : Carrier) {y z : Carrier} → x ≡ y → y IsRelatedTo z → x IsRelatedTo z _ ≡⟨ x∼y ⟩ relTo y∼z = relTo (trans x∼y y∼z) -- -----------------------------------
20.693069
114
0.464115
ad7ee2c8d4911597360fde81f08e2aabbc4e0769
155
agda
Agda
test/Fail/CoinductiveBuiltinNatural.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/CoinductiveBuiltinNatural.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Fail/CoinductiveBuiltinNatural.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2021-06-14T11:07:38.000Z
2021-06-14T11:07:38.000Z
module CoinductiveBuiltinNatural where open import Common.Coinduction data ℕ : Set where zero : ℕ suc : (n : ∞ ℕ) → ℕ {-# BUILTIN NATURAL ℕ #-}
15.5
38
0.658065
3d6a1e1df3bf3c614d3eedecf11a7f5e74c94f8d
494
agda
Agda
test/Fail/Issue4012UnquotePrivate.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue4012UnquotePrivate.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue4012UnquotePrivate.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2019-08-20, issue #4012 -- unquoteDef and unquoteDecl should respect `private` open import Agda.Builtin.Reflection renaming (bindTC to _>>=_) open import Agda.Builtin.List data D : Set where c : D module M where private unquoteDecl g = do ty ← quoteTC D _ ← declareDef (arg (arg-info visible relevant) g) ty qc ← quoteTC c defineFun g (clause [] qc ∷ []) open M test = g -- Expect failure. -- g is private in M, thus, should not be in scope
19
62
0.657895
1e7a2d44a897d892b0ea9c60e78878c282f5aeb6
469
agda
Agda
test/Fail/Issue3604.agda
MxmUrw/agda
6ede01fa854c5472e54f7d1799ca2c08ed316129
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue3604.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue3604.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --guardedness #-} data Maybe (A : Set) : Set where just : A → Maybe A nothing : Maybe A data Is-nothing {A} : Maybe A → Set where nothing : Is-nothing nothing record ℕ∞ : Set where coinductive field prd∞ : Maybe ℕ∞ open ℕ∞ f : ℕ∞ → ℕ∞ prd∞ (f m) with prd∞ m prd∞ (f m) | just pm with f pm prd∞ (f m) | just pm | x = prd∞ x prd∞ (f m) | nothing = nothing inf∞ : ℕ∞ prd∞ inf∞ = just inf∞ test : Is-nothing (prd∞ (f inf∞)) test = nothing
16.75
41
0.588486
4d039a7b344b824c02d86e2cd4b92467e44b0133
186
agda
Agda
test/Fail/Issue3064.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue3064.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue3064.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Builtin.Char open import Agda.Builtin.Sigma CC = Σ Char λ _ → Char Test : (c : Char) → Set Test 'a' = CC Test _ = CC test : (c : Char) → Test c test 'a' .fst = 'a'
15.5
30
0.607527
a049162fc68e42c1be2d4c971cf4c241bc0dbf76
22
agda
Agda
test/Fail/customised/Issue4671.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/customised/Issue4671.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/customised/Issue4671.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
import Agda.PRIMITIVE
11
21
0.863636
291eb77f0946ee9c4be4c39257461d1ad09c4b3b
578
agda
Agda
test/Fail/Issue4752.agda
zliu41/agda
73405f70bced057d24dd4bf122d53f9548544aba
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue4752.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue4752.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2020-06-16, issue #4752 -- Disallow @-patterns in pattern synonyms. -- -- Agda 2.5.2 implemented @-patterns and accidentially -- allowed them in pattern synonyms. -- However they just lead to a panic when used. data Nat : Set where suc : Nat → Nat pattern ss x = suc x@(suc _) -- EXPECTED: -- -- @-patterns are not allowed in pattern synonyms -- when scope checking the declaration -- pattern ss x = suc x@(suc _) test : Nat → Set test (ss x) = test x -- WAS (from 2.5.2): -- -- Panic: unbound variable x -- when checking that the expression x has type Nat
22.230769
54
0.678201
2233117c212bc3dc03e7ab6324f83d685b9acd43
579
agda
Agda
examples/simple-lib/Lib/Prelude.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/simple-lib/Lib/Prelude.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/simple-lib/Lib/Prelude.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Lib.Prelude where infixr 90 _∘_ infixr 1 _,_ id : {A : Set} -> A -> A id x = x _∘_ : {A : Set}{B : A -> Set}{C : {x : A} -> B x -> Set} (f : {x : A}(y : B x) -> C y)(g : (x : A) -> B x)(x : A) -> C (g x) (f ∘ g) x = f (g x) data Unit : Set where unit : Unit {-# COMPILE GHC Unit = data () (()) #-} postulate String : Set {-# BUILTIN STRING String #-} data _×_ (A B : Set) : Set where _,_ : A -> B -> A × B {-# COMPILE GHC _×_ = data (,) ((,)) #-} fst : {A B : Set} -> A × B -> A fst (x , y) = x snd : {A B : Set} -> A × B -> B snd (x , y) = y
16.542857
65
0.430052
045a83fe39a9f38b7a84dcee87250c9226e1e82e
4,533
agda
Agda
src/Algebra/Dioid/Bool/Theorems.agda
algebraic-graphs/alga-theory
0fdb96c0233d9be83eba637f0434d0fd22aefb1d
[ "MIT" ]
60
2017-12-27T14:57:04.000Z
2022-03-22T23:05:29.000Z
src/Algebra/Dioid/Bool/Theorems.agda
algebraic-graphs/alga-theory
0fdb96c0233d9be83eba637f0434d0fd22aefb1d
[ "MIT" ]
3
2018-04-12T16:25:13.000Z
2018-06-23T13:54:02.000Z
src/Algebra/Dioid/Bool/Theorems.agda
algebraic-graphs/alga-theory
0fdb96c0233d9be83eba637f0434d0fd22aefb1d
[ "MIT" ]
6
2017-12-17T20:48:20.000Z
2019-05-09T23:53:28.000Z
module Algebra.Dioid.Bool.Theorems where open import Algebra.Dioid open import Algebra.Dioid.Bool or-left-congruence : ∀ {b c d : Bool} -> b ≡ c -> (b or d) ≡ (c or d) or-left-congruence {b} {.b} {d} reflexivity = reflexivity or-left-congruence {b} {c} {d} (symmetry eq) = symmetry (or-left-congruence eq) or-left-congruence {b} {c} {d} (transitivity eq eq₁) = transitivity (or-left-congruence eq) (or-left-congruence eq₁) or-right-congruence : ∀ {b c d : Bool} -> c ≡ d -> (b or c) ≡ (b or d) or-right-congruence {b} {c} {.c} reflexivity = reflexivity or-right-congruence {b} {c} {d} (symmetry eq) = symmetry (or-right-congruence eq) or-right-congruence {b} {c} {d} (transitivity eq eq₁) = transitivity (or-right-congruence eq) (or-right-congruence eq₁) and-left-congruence : ∀ {b c d : Bool} -> b ≡ c -> (b and d) ≡ (c and d) and-left-congruence {b} {.b} {d} reflexivity = reflexivity and-left-congruence {b} {c} {d} (symmetry eq) = symmetry (and-left-congruence eq) and-left-congruence {b} {c} {d} (transitivity eq eq₁) = transitivity (and-left-congruence eq) (and-left-congruence eq₁) and-right-congruence : ∀ {b c d : Bool} -> c ≡ d -> (b and c) ≡ (b and d) and-right-congruence {b} {c} {.c} reflexivity = reflexivity and-right-congruence {b} {c} {d} (symmetry eq) = symmetry (and-right-congruence eq) and-right-congruence {b} {c} {d} (transitivity eq eq₁) = transitivity (and-right-congruence eq) (and-right-congruence eq₁) or-idempotence : ∀ {b : Bool} -> (b or b) ≡ b or-idempotence {true} = reflexivity or-idempotence {false} = reflexivity or-commutativity : ∀ {b c : Bool} -> (b or c) ≡ (c or b) or-commutativity {true} {true} = reflexivity or-commutativity {true} {false} = reflexivity or-commutativity {false} {true} = reflexivity or-commutativity {false} {false} = reflexivity or-associativity : ∀ {b c d : Bool} -> (b or (c or d)) ≡ ((b or c) or d) or-associativity {true} {c} {d} = reflexivity or-associativity {false} {true} {d} = reflexivity or-associativity {false} {false} {true} = reflexivity or-associativity {false} {false} {false} = reflexivity or-false-identity : ∀ {b : Bool} -> (b or false) ≡ b or-false-identity {true} = reflexivity or-false-identity {false} = reflexivity and-associativity : ∀ {b c d : Bool} -> (b and (c and d)) ≡ ((b and c) and d) and-associativity {true} {true} {true} = reflexivity and-associativity {true} {true} {false} = reflexivity and-associativity {true} {false} {d} = reflexivity and-associativity {false} {c} {d} = reflexivity and-left-false : ∀ {b : Bool} -> (false and b) ≡ false and-left-false {b} = reflexivity and-right-false : ∀ {b : Bool} -> (b and false) ≡ false and-right-false {true} = reflexivity and-right-false {false} = reflexivity and-left-true : ∀ {b : Bool} -> (true and b) ≡ b and-left-true {true} = reflexivity and-left-true {false} = reflexivity and-right-true : ∀ {b : Bool} -> (b and true) ≡ b and-right-true {true} = reflexivity and-right-true {false} = reflexivity left-distributivity : ∀ {b c d : Bool} -> (b and (c or d)) ≡ ((b and c) or (b and d)) left-distributivity {true} {true} {d} = reflexivity left-distributivity {true} {false} {true} = reflexivity left-distributivity {true} {false} {false} = reflexivity left-distributivity {false} {c} {d} = reflexivity right-distributivity : ∀ {b c d : Bool} -> ((b or c) and d) ≡ ((b and d) or (c and d)) right-distributivity {true} {true} {true} = reflexivity right-distributivity {true} {true} {false} = reflexivity right-distributivity {true} {false} {true} = reflexivity right-distributivity {true} {false} {false} = reflexivity right-distributivity {false} {true} {true} = reflexivity right-distributivity {false} {true} {false} = reflexivity right-distributivity {false} {false} {d} = reflexivity bool-dioid : Dioid Bool _≡_ bool-dioid = record { zero = false ; one = true ; _+_ = _or_ ; _*_ = _and_ ; reflexivity = reflexivity ; symmetry = symmetry ; transitivity = transitivity ; +left-congruence = or-left-congruence ; *left-congruence = and-left-congruence ; *right-congruence = and-right-congruence ; +idempotence = or-idempotence ; +commutativity = or-commutativity ; +associativity = or-associativity ; +zero-identity = or-false-identity ; *associativity = and-associativity ; *left-zero = λ {r} → reflexivity ; *right-zero = and-right-false ; *left-identity = and-left-true ; *right-identity = and-right-true ; left-distributivity = left-distributivity ; right-distributivity = right-distributivity }
41.209091
122
0.67505
a015af22a24cda271156fbe021a59b96d211d334
6,597
agda
Agda
Data/Bag.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
Data/Bag.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
Data/Bag.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --safe #-} module Data.Bag where open import Prelude open import Algebra open import Path.Reasoning infixr 5 _∷_ data ⟅_⟆ (A : Type a) : Type a where [] : ⟅ A ⟆ _∷_ : A → ⟅ A ⟆ → ⟅ A ⟆ com : ∀ x y xs → x ∷ y ∷ xs ≡ y ∷ x ∷ xs trunc : isSet ⟅ A ⟆ record Elim {a ℓ} (A : Type a) (P : ⟅ A ⟆ → Type ℓ) : Type (a ℓ⊔ ℓ) where constructor elim field ⟅_⟆-set : ∀ {xs} → isSet (P xs) ⟅_⟆[] : P [] ⟅_⟆_∷_⟨_⟩ : ∀ x xs → P xs → P (x ∷ xs) private z = ⟅_⟆[]; f = ⟅_⟆_∷_⟨_⟩ field ⟅_⟆-com : (∀ x y xs pxs → PathP (λ i → P (com x y xs i)) (f x (y ∷ xs) (f y xs pxs)) (f y (x ∷ xs) (f x xs pxs))) ⟅_⟆⇓ : (xs : ⟅ A ⟆) → P xs ⟅ [] ⟆⇓ = z ⟅ x ∷ xs ⟆⇓ = f x xs ⟅ xs ⟆⇓ ⟅ com x y xs i ⟆⇓ = ⟅_⟆-com x y xs ⟅ xs ⟆⇓ i ⟅ trunc xs ys x y i j ⟆⇓ = isOfHLevel→isOfHLevelDep 2 (λ xs → ⟅_⟆-set {xs}) ⟅ xs ⟆⇓ ⟅ ys ⟆⇓ (cong ⟅_⟆⇓ x) (cong ⟅_⟆⇓ y) (trunc xs ys x y) i j open Elim infixr 0 elim-syntax elim-syntax : ∀ {a ℓ} → (A : Type a) → (⟅ A ⟆ → Type ℓ) → Type (a ℓ⊔ ℓ) elim-syntax = Elim syntax elim-syntax A (λ xs → Pxs) = xs ⦂⟅ A ⟆→ Pxs record ElimProp {a ℓ} (A : Type a) (P : ⟅ A ⟆ → Type ℓ) : Type (a ℓ⊔ ℓ) where constructor elim-prop field ⟦_⟧-prop : ∀ {xs} → isProp (P xs) ⟦_⟧[] : P [] ⟦_⟧_∷_⟨_⟩ : ∀ x xs → P xs → P (x ∷ xs) private z = ⟦_⟧[]; f = ⟦_⟧_∷_⟨_⟩ ⟦_⟧⇑ = elim (isProp→isSet ⟦_⟧-prop) z f (λ x y xs pxs → toPathP (⟦_⟧-prop (transp (λ i → P (com x y xs i)) i0 (f x (y ∷ xs) (f y xs pxs))) (f y (x ∷ xs) (f x xs pxs)))) ⟦_⟧⇓ = ⟅ ⟦_⟧⇑ ⟆⇓ open ElimProp infixr 0 elim-prop-syntax elim-prop-syntax : ∀ {a ℓ} → (A : Type a) → (⟅ A ⟆ → Type ℓ) → Type (a ℓ⊔ ℓ) elim-prop-syntax = ElimProp syntax elim-prop-syntax A (λ xs → Pxs) = xs ⦂⟅ A ⟆→∥ Pxs ∥ record [⟅_⟆→_] {a b} (A : Type a) (B : Type b) : Type (a ℓ⊔ b) where constructor rec field [_]-set : isSet B [_]_∷_ : A → B → B [_][] : B private f = [_]_∷_; z = [_][] field [_]-com : ∀ x y xs → f x (f y xs) ≡ f y (f x xs) [_]⇑ = elim [_]-set z (λ x _ → f x) (λ x y _ → [_]-com x y) [_]↓ = ⟅ [_]⇑ ⟆⇓ open [⟅_⟆→_] infixr 5 _∪_ _∪_ : ⟅ A ⟆ → ⟅ A ⟆ → ⟅ A ⟆ _∪_ = λ xs ys → [ ys ∪′ ]↓ xs where _∪′ : ⟅ A ⟆ → [⟅ A ⟆→ ⟅ A ⟆ ] [ ys ∪′ ]-set = trunc [ ys ∪′ ] x ∷ xs = x ∷ xs [ ys ∪′ ][] = ys [ ys ∪′ ]-com = com ∪-assoc : (xs ys zs : ⟅ A ⟆) → (xs ∪ ys) ∪ zs ≡ xs ∪ (ys ∪ zs) ∪-assoc = λ xs ys zs → ⟦ ∪-assoc′ ys zs ⟧⇓ xs where ∪-assoc′ : ∀ ys zs → xs ⦂⟅ A ⟆→∥ (xs ∪ ys) ∪ zs ≡ xs ∪ (ys ∪ zs) ∥ ⟦ ∪-assoc′ ys zs ⟧-prop = trunc _ _ ⟦ ∪-assoc′ ys zs ⟧[] = refl ⟦ ∪-assoc′ ys zs ⟧ x ∷ xs ⟨ P ⟩ = cong (x ∷_) P ∪-cons : ∀ (x : A) xs ys → (x ∷ xs) ∪ ys ≡ xs ∪ (x ∷ ys) ∪-cons = λ x xs ys → ⟦ ∪-cons′ x ys ⟧⇓ xs where ∪-cons′ : ∀ x ys → xs ⦂⟅ A ⟆→∥ (x ∷ xs) ∪ ys ≡ xs ∪ (x ∷ ys) ∥ ⟦ ∪-cons′ x ys ⟧-prop = trunc _ _ ⟦ ∪-cons′ x ys ⟧[] = refl ⟦ ∪-cons′ x ys ⟧ y ∷ xs ⟨ P ⟩ = cong (_∪ ys) (com x y xs) ; cong (y ∷_) P ∪-idʳ : (xs : ⟅ A ⟆) → xs ∪ [] ≡ xs ∪-idʳ = ⟦ ∪-idʳ′ ⟧⇓ where ∪-idʳ′ : xs ⦂⟅ A ⟆→∥ xs ∪ [] ≡ xs ∥ ⟦ ∪-idʳ′ ⟧-prop = trunc _ _ ⟦ ∪-idʳ′ ⟧[] = refl ⟦ ∪-idʳ′ ⟧ x ∷ xs ⟨ P ⟩ = cong (x ∷_) P ∪-comm : (xs ys : ⟅ A ⟆) → xs ∪ ys ≡ ys ∪ xs ∪-comm {A = A} = λ xs ys → ⟦ ∪-comm′ ys ⟧⇓ xs where ∪-comm′ : (ys : ⟅ A ⟆) → xs ⦂⟅ A ⟆→∥ xs ∪ ys ≡ ys ∪ xs ∥ ⟦ ∪-comm′ ys ⟧-prop = trunc _ _ ⟦ ∪-comm′ ys ⟧[] = sym (∪-idʳ ys) ⟦ ∪-comm′ ys ⟧ x ∷ xs ⟨ P ⟩ = (x ∷ xs) ∪ ys ≡⟨ cong (x ∷_) P ⟩ (x ∷ ys) ∪ xs ≡⟨ ∪-cons x ys xs ⟩ ys ∪ x ∷ xs ∎ ⟅⟆-commutative-monoid : ∀ {a} (A : Type a) → CommutativeMonoid _ Monoid.𝑆 (CommutativeMonoid.monoid (⟅⟆-commutative-monoid A)) = ⟅ A ⟆ Monoid._∙_ (CommutativeMonoid.monoid (⟅⟆-commutative-monoid A)) = _∪_ Monoid.ε (CommutativeMonoid.monoid (⟅⟆-commutative-monoid A)) = [] Monoid.assoc (CommutativeMonoid.monoid (⟅⟆-commutative-monoid A)) = ∪-assoc Monoid.ε∙ (CommutativeMonoid.monoid (⟅⟆-commutative-monoid A)) _ = refl Monoid.∙ε (CommutativeMonoid.monoid (⟅⟆-commutative-monoid A)) = ∪-idʳ CommutativeMonoid.comm (⟅⟆-commutative-monoid A) = ∪-comm module _ {ℓ} (mon : CommutativeMonoid ℓ) (sIsSet : isSet (CommutativeMonoid.𝑆 mon)) where open CommutativeMonoid mon ⟦_⟧ : (A → 𝑆) → ⟅ A ⟆ → 𝑆 ⟦_⟧ = λ h → [ ⟦ h ⟧′ ]↓ where ⟦_⟧′ : (A → 𝑆) → [⟅ A ⟆→ 𝑆 ] [ ⟦ h ⟧′ ] x ∷ xs = h x ∙ xs [ ⟦ h ⟧′ ][] = ε [ ⟦ h ⟧′ ]-com x y xs = h x ∙ (h y ∙ xs) ≡˘⟨ assoc _ _ _ ⟩ (h x ∙ h y) ∙ xs ≡⟨ cong (_∙ xs) (comm _ _) ⟩ (h y ∙ h x) ∙ xs ≡⟨ assoc _ _ _ ⟩ h y ∙ (h x ∙ xs) ∎ [ ⟦ h ⟧′ ]-set = sIsSet record ⟦_≡_⟧ {a b} {A : Type a} {B : Type b} (h : ⟅ A ⟆ → B) (xf : [⟅ A ⟆→ B ]) : Type (a ℓ⊔ b) where constructor elim-univ field ⟦_≡⟧_∷_ : ∀ x xs → h (x ∷ xs) ≡ [ xf ] x ∷ h xs ⟦_≡⟧[] : h [] ≡ [ xf ][] ⟦_≡⟧⇓ : ∀ xs → h xs ≡ [ xf ]↓ xs ⟦_≡⟧⇓ = ⟦ ≡⇓′ ⟧⇓ where ≡⇓′ : xs ⦂⟅ A ⟆→∥ h xs ≡ [ xf ]↓ xs ∥ ⟦ ≡⇓′ ⟧-prop = [ xf ]-set _ _ ⟦ ≡⇓′ ⟧[] = ⟦_≡⟧[] ⟦ ≡⇓′ ⟧ x ∷ xs ⟨ P ⟩ = ⟦_≡⟧_∷_ x _ ; cong ([ xf ] x ∷_) P open ⟦_≡_⟧ record ⟦_⊚_≡_⟧ {a b c} {A : Type a} {B : Type b} {C : Type c} (h : B → C) (xf : [⟅ A ⟆→ B ]) (yf : [⟅ A ⟆→ C ]) : Type (a ℓ⊔ b ℓ⊔ c) where constructor elim-fuse field ⟦_∘≡⟧_∷_ : ∀ x xs → h ([ xf ] x ∷ xs) ≡ [ yf ] x ∷ h xs ⟦_∘≡⟧[] : h [ xf ][] ≡ [ yf ][] ⟦_∘≡⟧⇓ : ∀ xs → h ([ xf ]↓ xs) ≡ [ yf ]↓ xs ⟦_∘≡⟧⇓ = ⟦ ≡⇓′ ⟧⇓ where ≡⇓′ : xs ⦂⟅ A ⟆→∥ h ([ xf ]↓ xs) ≡ [ yf ]↓ xs ∥ ⟦ ≡⇓′ ⟧-prop = [ yf ]-set _ _ ⟦ ≡⇓′ ⟧[] = ⟦_∘≡⟧[] ⟦ ≡⇓′ ⟧ x ∷ xs ⟨ P ⟩ = ⟦_∘≡⟧_∷_ x _ ; cong ([ yf ] x ∷_) P open ⟦_⊚_≡_⟧ map-alg : (A → B) → [⟅ A ⟆→ ⟅ B ⟆ ] [ map-alg f ]-set = trunc [ map-alg f ][] = [] [ map-alg f ] x ∷ xs = f x ∷ xs [ map-alg f ]-com x y = com (f x) (f y) map : (A → B) → ⟅ A ⟆ → ⟅ B ⟆ map f = [ map-alg f ]↓ [_]∘_ : [⟅ B ⟆→ C ] → (A → B) → [⟅ A ⟆→ C ] [ [ g ]∘ f ]-set = [ g ]-set [ [ g ]∘ f ][] = [ g ][] [ [ g ]∘ f ] x ∷ xs = [ g ] f x ∷ xs [ [ g ]∘ f ]-com x y = [ g ]-com (f x) (f y) map-fuse : ∀ (g : [⟅ B ⟆→ C ]) (f : A → B) → [ g ]↓ ∘ map f ≡ [ [ g ]∘ f ]↓ map-fuse g f = funExt ⟦ map-fuse′ g f ∘≡⟧⇓ where map-fuse′ : (g : [⟅ B ⟆→ C ]) (f : A → B) → ⟦ [ g ]↓ ⊚ map-alg f ≡ [ g ]∘ f ⟧ ⟦ map-fuse′ g f ∘≡⟧ x ∷ xs = refl ⟦ map-fuse′ g f ∘≡⟧[] = refl bind : ⟅ A ⟆ → (A → ⟅ B ⟆) → ⟅ B ⟆ bind xs f = ⟦ ⟅⟆-commutative-monoid _ ⟧ trunc f xs
28.80786
89
0.405033
0480c257a4bc839469d67e66f03570ce6c1c8595
145
agda
Agda
data/expression/Lam.agda
msuperdock/agda-unused
f327f9aab8dcb07022b857736d8201906bba02e9
[ "MIT" ]
6
2020-10-29T09:38:43.000Z
2022-03-01T16:38:05.000Z
data/expression/Lam.agda
msuperdock/agda-unused
f327f9aab8dcb07022b857736d8201906bba02e9
[ "MIT" ]
null
null
null
data/expression/Lam.agda
msuperdock/agda-unused
f327f9aab8dcb07022b857736d8201906bba02e9
[ "MIT" ]
1
2022-03-01T16:38:14.000Z
2022-03-01T16:38:14.000Z
module Lam where f : {A : Set} → A → A f x = (λ y z → z) x x g : {A : Set} → A → A g {A = A} x = (λ (y' : A) (z : A) → z) x x
8.529412
32
0.331034
296616c5a5165f3a1ce24c2f4182f096c80fa623
6,219
agda
Agda
src/Categories/Category/Cartesian/Monoidal.agda
yourboynico/agda-categories
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Category/Cartesian/Monoidal.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Category/Cartesian/Monoidal.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category using (Category; module Commutation) -- Defines the induced Monoidal structure of a Cartesian Category module Categories.Category.Cartesian.Monoidal {o ℓ e} {𝒞 : Category o ℓ e} where open Category 𝒞 open HomReasoning open import Categories.Category.BinaryProducts 𝒞 using (BinaryProducts; module BinaryProducts) open import Categories.Category.Cartesian using (Cartesian) open import Categories.Object.Terminal 𝒞 using (Terminal) open import Categories.Object.Product.Core 𝒞 using (module Product) open import Categories.Morphism 𝒞 using (_≅_; module ≅) open import Categories.Morphism.Reasoning 𝒞 using (cancelˡ; pullʳ; pullˡ) open import Categories.Category.Monoidal using (Monoidal) open import Categories.Functor using (Functor) renaming (id to idF) open import Categories.NaturalTransformation using (ntHelper) open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism) private variable A B C D W X Y Z : Obj f f′ g g′ h i : A ⇒ B -- The cartesian structure induces a monoidal one: 𝒞 is cartesian monoidal. module CartesianMonoidal (cartesian : Cartesian 𝒞) where open Commutation 𝒞 open Terminal (Cartesian.terminal cartesian) using (⊤; !; !-unique; !-unique₂) open BinaryProducts (Cartesian.products cartesian) using (π₁; π₂; ⟨_,_⟩; _×_; _⁂_; _×-; -×_; ⟨⟩∘; ⟨⟩-cong₂; -×-; ×-assoc; assocˡ∘⁂; assocʳ∘⁂; ⁂∘⟨⟩; first∘⟨⟩; second∘⟨⟩; ⟨⟩-congˡ; ⟨⟩-congʳ; π₁∘⁂; π₂∘⁂; assocˡ∘⟨⟩; assocˡ; assocʳ; η; unique; project₁; project₂) ⊤×A≅A : ⊤ × A ≅ A ⊤×A≅A = record { from = π₂ ; to = ⟨ ! , id ⟩ ; iso = record { isoˡ = begin ⟨ ! , id ⟩ ∘ π₂ ≈˘⟨ unique !-unique₂ (cancelˡ project₂) ⟩ ⟨ π₁ , π₂ ⟩ ≈⟨ η ⟩ id ∎ ; isoʳ = project₂ } } A×⊤≅A : A × ⊤ ≅ A A×⊤≅A = record { from = π₁ ; to = ⟨ id , ! ⟩ ; iso = record { isoˡ = begin ⟨ id , ! ⟩ ∘ π₁ ≈˘⟨ unique (cancelˡ project₁) !-unique₂ ⟩ ⟨ π₁ , π₂ ⟩ ≈⟨ η ⟩ id ∎ ; isoʳ = project₁ } } ⊤×--id : NaturalIsomorphism (⊤ ×-) idF ⊤×--id = record { F⇒G = ntHelper record { η = λ _ → π₂ ; commute = λ _ → project₂ } ; F⇐G = ntHelper record { η = λ _ → ⟨ ! , id ⟩ ; commute = λ f → begin ⟨ ! , id ⟩ ∘ f ≈⟨ ⟨⟩∘ ⟩ ⟨ ! ∘ f , id ∘ f ⟩ ≈⟨ ⟨⟩-cong₂ (⟺ (!-unique _)) identityˡ ⟩ ⟨ ! , f ⟩ ≈˘⟨ ⟨⟩-cong₂ identityˡ identityʳ ⟩ ⟨ id ∘ ! , f ∘ id ⟩ ≈˘⟨ ⟨⟩-cong₂ (pullʳ project₁) (pullʳ project₂) ⟩ ⟨ (id ∘ π₁) ∘ ⟨ ! , id ⟩ , (f ∘ π₂) ∘ ⟨ ! , id ⟩ ⟩ ≈˘⟨ ⟨⟩∘ ⟩ ⟨ id ∘ π₁ , f ∘ π₂ ⟩ ∘ ⟨ ! , id ⟩ ∎ } ; iso = λ _ → _≅_.iso ⊤×A≅A } -×⊤-id : NaturalIsomorphism (-× ⊤) idF -×⊤-id = record { F⇒G = ntHelper record { η = λ _ → π₁ ; commute = λ _ → project₁ } ; F⇐G = ntHelper record { η = λ _ → ⟨ id , ! ⟩ ; commute = λ f → begin ⟨ id , ! ⟩ ∘ f ≈⟨ ⟨⟩∘ ⟩ ⟨ id ∘ f , ! ∘ f ⟩ ≈⟨ ⟨⟩-cong₂ identityˡ (⟺ (!-unique _)) ⟩ ⟨ f , ! ⟩ ≈˘⟨ ⟨⟩-cong₂ identityʳ identityˡ ⟩ ⟨ f ∘ id , id ∘ ! ⟩ ≈˘⟨ ⟨⟩-cong₂ (pullʳ project₁) (pullʳ project₂) ⟩ ⟨ (f ∘ π₁) ∘ ⟨ id , ! ⟩ , (id ∘ π₂) ∘ ⟨ id , ! ⟩ ⟩ ≈˘⟨ ⟨⟩∘ ⟩ ⟨ f ∘ π₁ , id ∘ π₂ ⟩ ∘ ⟨ id , ! ⟩ ∎ } ; iso = λ _ → _≅_.iso A×⊤≅A } private infixr 7 _⊗₀_ infixr 8 _⊗₁_ _⊗₀_ = _×_ _⊗₁_ = _⁂_ α⇒ = assocˡ private pentagon : [ ((X ⊗₀ Y) ⊗₀ Z) ⊗₀ W ⇒ X ⊗₀ Y ⊗₀ Z ⊗₀ W ]⟨ α⇒ ⊗₁ id ⇒⟨ (X ⊗₀ Y ⊗₀ Z) ⊗₀ W ⟩ α⇒ ⇒⟨ X ⊗₀ (Y ⊗₀ Z) ⊗₀ W ⟩ id ⊗₁ α⇒ ≈ α⇒ ⇒⟨ (X ⊗₀ Y) ⊗₀ Z ⊗₀ W ⟩ α⇒ ⟩ pentagon = begin (id ⁂ α⇒) ∘ α⇒ ∘ (α⇒ ⁂ id) ≈⟨ pullˡ second∘⟨⟩ ⟩ ⟨ π₁ ∘ π₁ , α⇒ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ∘ (α⇒ ⁂ id) ≈⟨ ⟨⟩∘ ⟩ ⟨ (π₁ ∘ π₁) ∘ (α⇒ ⁂ id) , (α⇒ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩) ∘ (α⇒ ⁂ id) ⟩ ≈⟨ ⟨⟩-cong₂ (pullʳ π₁∘⁂) (pullʳ ⟨⟩∘) ⟩ ⟨ π₁ ∘ α⇒ ∘ π₁ , α⇒ ∘ ⟨ (π₂ ∘ π₁) ∘ (α⇒ ⁂ id) , π₂ ∘ (α⇒ ⁂ id) ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ (pullˡ project₁) ( refl⟩∘⟨ ⟨⟩-cong₂ (pullʳ π₁∘⁂) π₂∘⁂) ⟩ ⟨ (π₁ ∘ π₁) ∘ π₁ , α⇒ ∘ ⟨ π₂ ∘ α⇒ ∘ π₁ , id ∘ π₂ ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ assoc (refl⟩∘⟨ ⟨⟩-cong₂ (pullˡ project₂) identityˡ) ⟩ ⟨ π₁₁₁ , α⇒ ∘ ⟨ ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ ⟨⟩-congˡ (refl⟩∘⟨ ⟨⟩-congʳ ⟨⟩∘) ⟩ ⟨ π₁₁₁ , α⇒ ∘ ⟨ ⟨ (π₂ ∘ π₁) ∘ π₁ , π₂ ∘ π₁ ⟩ , π₂ ⟩ ⟩ ≈⟨ ⟨⟩-congˡ assocˡ∘⟨⟩ ⟩ ⟨ π₁₁₁ , ⟨ (π₂ ∘ π₁) ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ⟩ ≈˘⟨ ⟨⟩-congˡ (⟨⟩-cong₂ (Equiv.trans (pullʳ project₁) sym-assoc) project₂) ⟩ ⟨ π₁₁₁ , ⟨ (π₂ ∘ π₁) ∘ α⇒ , π₂ ∘ α⇒ ⟩ ⟩ ≈˘⟨ ⟨⟩-cong₂ (pullʳ project₁) ⟨⟩∘ ⟩ ⟨ (π₁ ∘ π₁) ∘ α⇒ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ α⇒ ⟩ ≈˘⟨ ⟨⟩∘ ⟩ α⇒ ∘ α⇒ ∎ where π₁₁₁ = π₁ ∘ π₁ ∘ π₁ monoidal : Monoidal 𝒞 monoidal = record { ⊗ = -×- ; unit = ⊤ ; unitorˡ = ⊤×A≅A ; unitorʳ = A×⊤≅A ; associator = ≅.sym ×-assoc ; unitorˡ-commute-from = project₂ ; unitorˡ-commute-to = let open NaturalIsomorphism ⊤×--id in ⇐.commute _ ; unitorʳ-commute-from = project₁ ; unitorʳ-commute-to = let open NaturalIsomorphism -×⊤-id in ⇐.commute _ ; assoc-commute-from = assocˡ∘⁂ ; assoc-commute-to = assocʳ∘⁂ ; triangle = begin (id ⁂ π₂) ∘ assocˡ ≈⟨ ⁂∘⟨⟩ ⟩ ⟨ id ∘ π₁ ∘ π₁ , π₂ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ (pullˡ identityˡ) (project₂ ○ (⟺ identityˡ)) ⟩ π₁ ⁂ id ∎ ; pentagon = pentagon }
40.647059
151
0.423058
2eca80d5b5d669ab8e2069b589f364a4d5a25750
1,884
agda
Agda
Examples/Identifier-list.agda
nad/pretty
b956803ba90b6c5f57bbbaab01bb18485d948492
[ "MIT" ]
null
null
null
Examples/Identifier-list.agda
nad/pretty
b956803ba90b6c5f57bbbaab01bb18485d948492
[ "MIT" ]
null
null
null
Examples/Identifier-list.agda
nad/pretty
b956803ba90b6c5f57bbbaab01bb18485d948492
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Lists of identifiers ------------------------------------------------------------------------ -- This example is based on one in Swierstra and Chitil's "Linear, -- bounded, functional pretty-printing". {-# OPTIONS --guardedness #-} module Examples.Identifier-list where open import Codata.Musical.Notation open import Data.List import Data.List.NonEmpty as List⁺ open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Examples.Identifier open import Grammar.Infinite as Grammar using (Grammar) hiding (module Grammar) open import Pretty using (Pretty-printer) open import Renderer open import Utilities identifier-list-body : Grammar (List Identifier) identifier-list-body = return [] ∣ List⁺.toList <$> (identifier-w sep-by symbol′ ",") where open Grammar identifier-list : Grammar (List Identifier) identifier-list = symbol′ "[" ⊛> identifier-list-body <⊛ symbol′ "]" where open Grammar open Pretty identifier-list-printer : Pretty-printer identifier-list identifier-list-printer ns = symbol ⊛> body ns <⊛ symbol where body : Pretty-printer identifier-list-body body [] = left nil body (n ∷ ns) = right (<$> (<$> identifier-w-printer n ⊛ map⋆ (λ n → group symbol-line ⊛> identifier-w-printer n) ns)) identifiers : List Identifier identifiers = str⁺ "aaa" ∷ str⁺ "bbbbb" ∷ str⁺ "ccc" ∷ str⁺ "dd" ∷ str⁺ "eee" ∷ [] test₁ : render 80 (identifier-list-printer identifiers) ≡ "[aaa, bbbbb, ccc, dd, eee]" test₁ = refl test₂ : render 11 (identifier-list-printer identifiers) ≡ "[aaa,\nbbbbb, ccc,\ndd, eee]" test₂ = refl test₃ : render 8 (identifier-list-printer identifiers) ≡ "[aaa,\nbbbbb,\nccc, dd,\neee]" test₃ = refl
29.904762
72
0.613588
297d3a2ac080286b9d9035aa29d6caf8187b3694
1,122
agda
Agda
lib/groups/Unit.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
lib/groups/Unit.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
lib/groups/Unit.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Group open import lib.types.Unit open import lib.groups.Homomorphisms open import lib.groups.Lift module lib.groups.Unit where Unit-group-structure : GroupStructure Unit Unit-group-structure = record { ident = unit ; inv = λ _ → unit ; comp = λ _ _ → unit ; unitl = λ _ → idp ; unitr = λ _ → idp ; assoc = λ _ _ _ → idp ; invr = λ _ → idp ; invl = λ _ → idp } Unit-Group : Group lzero Unit-Group = group _ Unit-is-set Unit-group-structure LiftUnit-Group : ∀ {i} → Group i LiftUnit-Group = Lift-Group Unit-Group 0ᴳ = LiftUnit-Group contr-is-0ᴳ : ∀ {i} (G : Group i) → is-contr (Group.El G) → G == 0ᴳ contr-is-0ᴳ G pA = group-ua (group-hom (λ _ → lift unit) (λ _ _ → idp) , snd (contr-equiv-LiftUnit pA)) 0ᴳ-hom-out-level : ∀ {i j} {G : Group i} → is-contr (0ᴳ {j} →ᴳ G) 0ᴳ-hom-out-level {G = G} = (cst-hom , λ φ → hom= _ _ (λ= (λ {(lift unit) → ! (GroupHom.pres-ident φ)}))) 0ᴳ-hom-in-level : ∀ {i j} {G : Group i} → is-contr (G →ᴳ 0ᴳ {j}) 0ᴳ-hom-in-level {G = G} = (cst-hom , λ φ → hom= _ _ (λ= (λ _ → idp)))
24.933333
77
0.606952
c757cd254a50a642ef0a76dba21e607cadac36e5
64
agda
Agda
test/api/Issue1168.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
null
null
null
test/api/Issue1168.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
null
null
null
test/api/Issue1168.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
null
null
null
module Issue1168 where id : {A : Set} → A → A id {A = A} a = a
12.8
22
0.53125
a0db2e6a25850c8eab204567f0e94b71ccdc8fc1
5,543
agda
Agda
Categories/Category/Core.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Category/Core.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Category/Core.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Categories.Category.Core where open import Level open import Function using (flip) open import Relation.Binary hiding (_⇒_) import Relation.Binary.PropositionalEquality as ≡ import Relation.Binary.Reasoning.Setoid as SetoidR -- Basic definition of a |Category| with a Hom setoid. -- Also comes with some reasoning combinators (see HomReasoning) record Category (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where eta-equality infix 4 _≈_ _⇒_ infixr 9 _∘_ field Obj : Set o _⇒_ : Rel Obj ℓ _≈_ : ∀ {A B} → Rel (A ⇒ B) e id : ∀ {A} → (A ⇒ A) _∘_ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C) field assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D} → (h ∘ g) ∘ f ≈ h ∘ (g ∘ f) -- We add a symmetric proof of associativity so that the opposite category of the -- opposite category is definitionally equal to the original category. See how -- `op` is implemented. sym-assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D} → h ∘ (g ∘ f) ≈ (h ∘ g) ∘ f identityˡ : ∀ {A B} {f : A ⇒ B} → id ∘ f ≈ f identityʳ : ∀ {A B} {f : A ⇒ B} → f ∘ id ≈ f -- We add a proof of "neutral" identity proof, in order to ensure the opposite of -- constant functor is definitionally equal to itself. identity² : ∀ {A} → id ∘ id {A} ≈ id {A} equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B}) ∘-resp-≈ : ∀ {A B C} {f h : B ⇒ C} {g i : A ⇒ B} → f ≈ h → g ≈ i → f ∘ g ≈ h ∘ i module Equiv {A B : Obj} = IsEquivalence (equiv {A} {B}) open Equiv dom : ∀ {A B} → (A ⇒ B) → Obj dom {A} _ = A cod : ∀ {A B} → (A ⇒ B) → Obj cod {B = B} _ = B ∘-resp-≈ˡ : ∀ {A B C} {f h : B ⇒ C} {g : A ⇒ B} → f ≈ h → f ∘ g ≈ h ∘ g ∘-resp-≈ˡ pf = ∘-resp-≈ pf refl ∘-resp-≈ʳ : ∀ {A B C} {f h : A ⇒ B} {g : B ⇒ C} → f ≈ h → g ∘ f ≈ g ∘ h ∘-resp-≈ʳ pf = ∘-resp-≈ refl pf hom-setoid : ∀ {A B} → Setoid _ _ hom-setoid {A} {B} = record { Carrier = A ⇒ B ; _≈_ = _≈_ ; isEquivalence = equiv } -- Reasoning combinators. _≈⟨_⟩_ and _≈˘⟨_⟩_ from SetoidR. -- Also some useful combinators for doing reasoning on _∘_ chains module HomReasoning {A B : Obj} where open SetoidR (hom-setoid {A} {B}) public open Equiv {A = A} {B = B} public infixr 4 _⟩∘⟨_ refl⟩∘⟨_ infixl 5 _⟩∘⟨refl _⟩∘⟨_ : ∀ {M} {f h : M ⇒ B} {g i : A ⇒ M} → f ≈ h → g ≈ i → f ∘ g ≈ h ∘ i _⟩∘⟨_ = ∘-resp-≈ refl⟩∘⟨_ : ∀ {M} {f : M ⇒ B} {g i : A ⇒ M} → g ≈ i → f ∘ g ≈ f ∘ i refl⟩∘⟨_ = Equiv.refl ⟩∘⟨_ _⟩∘⟨refl : ∀ {M} {f h : M ⇒ B} {g : A ⇒ M} → f ≈ h → f ∘ g ≈ h ∘ g _⟩∘⟨refl = _⟩∘⟨ Equiv.refl -- convenient inline versions infix 2 ⟺ infixr 3 _○_ ⟺ : {f g : A ⇒ B} → f ≈ g → g ≈ f ⟺ = Equiv.sym _○_ : {f g h : A ⇒ B} → f ≈ g → g ≈ h → f ≈ h _○_ = Equiv.trans -- for reasoning in the Strict cases ≡⇒≈ : {f g : A ⇒ B} → f ≡.≡ g → f ≈ g ≡⇒≈ ≡.refl = Equiv.refl subst₂≈ : {C D : Obj} {f g : A ⇒ B} → f ≈ g → (eq₁ : A ≡.≡ C) (eq₂ : B ≡.≡ D) → ≡.subst₂ (_⇒_) eq₁ eq₂ f ≈ ≡.subst₂ (_⇒_) eq₁ eq₂ g subst₂≈ f≈g ≡.refl ≡.refl = f≈g -- Combinators for commutative diagram -- The idea is to use the combinators to write commutations in a more readable way. -- It starts with [_⇒_]⟨_≈_⟩, and within the third and fourth places, use _⇒⟨_⟩_ to -- connect morphisms with the intermediate object specified. module Commutation where infix 1 [_⇒_]⟨_≈_⟩ [_⇒_]⟨_≈_⟩ : ∀ (A B : Obj) → A ⇒ B → A ⇒ B → Set _ [ A ⇒ B ]⟨ f ≈ g ⟩ = f ≈ g infixl 2 connect connect : ∀ {A C : Obj} (B : Obj) → A ⇒ B → B ⇒ C → A ⇒ C connect B f g = g ∘ f syntax connect B f g = f ⇒⟨ B ⟩ g op : Category o ℓ e op = record { Obj = Obj ; _⇒_ = flip _⇒_ ; _≈_ = _≈_ ; _∘_ = flip _∘_ ; id = id ; assoc = sym-assoc ; sym-assoc = assoc ; identityˡ = identityʳ ; identityʳ = identityˡ ; identity² = identity² ; equiv = equiv ; ∘-resp-≈ = flip ∘-resp-≈ } -- Q: Should this really be defined here? CommutativeSquare : ∀ {A B C D} → (f : A ⇒ B) (g : A ⇒ C) (h : B ⇒ D) (i : C ⇒ D) → Set _ CommutativeSquare f g h i = h ∘ f ≈ i ∘ g -- Since we add extra proofs in the definition of `Category` (i.e. `sym-assoc` and -- `identity²`), we might still want to construct a `Category` in its originally -- easier manner. Thus, this redundant definition is here to ease the construction. record CategoryHelper (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where infix 4 _≈_ _⇒_ infixr 9 _∘_ field Obj : Set o _⇒_ : Rel Obj ℓ _≈_ : ∀ {A B} → Rel (A ⇒ B) e id : ∀ {A} → (A ⇒ A) _∘_ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C) field assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D} → (h ∘ g) ∘ f ≈ h ∘ (g ∘ f) identityˡ : ∀ {A B} {f : A ⇒ B} → id ∘ f ≈ f identityʳ : ∀ {A B} {f : A ⇒ B} → f ∘ id ≈ f equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B}) ∘-resp-≈ : ∀ {A B C} {f h : B ⇒ C} {g i : A ⇒ B} → f ≈ h → g ≈ i → f ∘ g ≈ h ∘ i categoryHelper : ∀ {o ℓ e} → CategoryHelper o ℓ e → Category o ℓ e categoryHelper C = record { Obj = Obj ; _⇒_ = _⇒_ ; _≈_ = _≈_ ; id = id ; _∘_ = _∘_ ; assoc = assoc ; sym-assoc = sym assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identityˡ ; equiv = equiv ; ∘-resp-≈ = ∘-resp-≈ } where open CategoryHelper C module _ {A B} where open IsEquivalence (equiv {A} {B}) public
32.415205
91
0.498647
380f1b3006d9bc4a770fea5f76fd33fb76706638
5,421
agda
Agda
Cubical/Algebra/CommRingSolver/HornerEval.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Algebra/CommRingSolver/HornerEval.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRingSolver/HornerEval.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.CommRingSolver.HornerEval where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat using (ℕ) open import Cubical.Data.Int hiding (_+_ ; _·_ ; -_) open import Cubical.Data.Vec open import Cubical.Data.Bool open import Cubical.Relation.Nullary.Base using (¬_; yes; no) open import Cubical.Algebra.CommRingSolver.Utility open import Cubical.Algebra.CommRingSolver.RawAlgebra open import Cubical.Algebra.CommRingSolver.IntAsRawRing open import Cubical.Algebra.CommRingSolver.HornerForms open import Cubical.Algebra.CommRing open import Cubical.Algebra.Ring private variable ℓ ℓ' : Level eval : {A : RawAlgebra ℤAsRawRing ℓ'} {n : ℕ} (P : IteratedHornerForms A n) → Vec ⟨ A ⟩ n → ⟨ A ⟩ eval {A = A} (const r) [] = RawAlgebra.scalar A r eval {A = A} 0H (_ ∷ _) = RawAlgebra.0r A eval {A = A} (P ·X+ Q) (x ∷ xs) = let open RawAlgebra A P' = (eval P (x ∷ xs)) Q' = eval Q xs in if (isZero A P) then Q' else P' · x + Q' module _ (R : CommRing ℓ) where private νR = CommRing→RawℤAlgebra R open CommRingStr (snd R) open RingTheory (CommRing→Ring R) open IteratedHornerOperations νR someCalculation : {x : fst R} → _ ≡ _ someCalculation {x = x} = 0r ≡⟨ sym (+Rid 0r) ⟩ 0r + 0r ≡[ i ]⟨ 0LeftAnnihilates x (~ i) + 0r ⟩ 0r · x + 0r ∎ evalIsZero : {n : ℕ} (P : IteratedHornerForms νR n) → (l : Vec (fst R) n) → isZero νR P ≡ true → eval P l ≡ 0r evalIsZero (const (pos ℕ.zero)) [] isZeroP = refl evalIsZero (const (pos (ℕ.suc n))) [] isZeroP = byBoolAbsurdity isZeroP evalIsZero (const (negsuc _)) [] isZeroP = byBoolAbsurdity isZeroP evalIsZero 0H (x ∷ xs) _ = refl evalIsZero {n = ℕ.suc n} (P ·X+ Q) (x ∷ xs) isZeroPandQ with isZero νR P ... | true = eval Q xs ≡⟨ evalIsZero Q xs isZeroQ ⟩ 0r ∎ where isZeroQ = snd (extractFromAnd _ _ isZeroPandQ) ... | false = byBoolAbsurdity isZeroP where isZeroP = fst (extractFromAnd _ _ isZeroPandQ) computeEvalSummandIsZero : {n : ℕ} (P : IteratedHornerForms νR (ℕ.suc n)) (Q : IteratedHornerForms νR n) → (xs : Vec (fst R) n) → (x : (fst R)) → isZero νR P ≡ true → eval (P ·X+ Q) (x ∷ xs) ≡ eval Q xs computeEvalSummandIsZero P Q xs x isZeroP with isZero νR P ... | true = refl ... | false = byBoolAbsurdity isZeroP computeEvalNotZero : {n : ℕ} (P : IteratedHornerForms νR (ℕ.suc n)) (Q : IteratedHornerForms νR n) → (xs : Vec (fst R) n) → (x : (fst R)) → ¬ (isZero νR P ≡ true) → eval (P ·X+ Q) (x ∷ xs) ≡ (eval P (x ∷ xs)) · x + eval Q xs computeEvalNotZero P Q xs x notZeroP with isZero νR P ... | true = byBoolAbsurdity (sym (¬true→false true notZeroP)) ... | false = refl combineCasesEval : {n : ℕ} (P : IteratedHornerForms νR (ℕ.suc n)) (Q : IteratedHornerForms νR n) (x : (fst R)) (xs : Vec (fst R) n) → eval (P ·X+ Q) (x ∷ xs) ≡ (eval P (x ∷ xs)) · x + eval Q xs combineCasesEval P Q x xs with isZero νR P ≟ true ... | yes p = eval (P ·X+ Q) (x ∷ xs) ≡⟨ computeEvalSummandIsZero P Q xs x p ⟩ eval Q xs ≡⟨ sym (+Lid _) ⟩ 0r + eval Q xs ≡[ i ]⟨ 0LeftAnnihilates x (~ i) + eval Q xs ⟩ 0r · x + eval Q xs ≡[ i ]⟨ (evalIsZero P (x ∷ xs) p (~ i)) · x + eval Q xs ⟩ (eval P (x ∷ xs)) · x + eval Q xs ∎ ... | no p = computeEvalNotZero P Q xs x p compute+ₕEvalBothZero : (n : ℕ) (P Q : IteratedHornerForms νR (ℕ.suc n)) (r s : IteratedHornerForms νR n) (x : (fst R)) (xs : Vec (fst R) n) → (isZero νR (P +ₕ Q) and isZero νR (r +ₕ s)) ≡ true → eval ((P ·X+ r) +ₕ (Q ·X+ s)) (x ∷ xs) ≡ eval ((P +ₕ Q) ·X+ (r +ₕ s)) (x ∷ xs) compute+ₕEvalBothZero n P Q r s x xs bothZero with isZero νR (P +ₕ Q) and isZero νR (r +ₕ s) | bothZero ... | true | p = eval {A = νR} 0H (x ∷ xs) ≡⟨ refl ⟩ 0r ≡⟨ someCalculation ⟩ 0r · x + 0r ≡⟨ step1 ⟩ (eval (P +ₕ Q) (x ∷ xs)) · x + eval (r +ₕ s) xs ≡⟨ step2 ⟩ eval ((P +ₕ Q) ·X+ (r +ₕ s)) (x ∷ xs) ∎ where step1 : 0r · x + 0r ≡ (eval (P +ₕ Q) (x ∷ xs)) · x + eval (r +ₕ s) xs step1 i = (evalIsZero (P +ₕ Q) (x ∷ xs) (fst (extractFromAnd _ _ (bothZero))) (~ i)) · x + (evalIsZero (r +ₕ s) xs (snd (extractFromAnd _ _ (bothZero))) (~ i)) step2 = sym (combineCasesEval (P +ₕ Q) (r +ₕ s) x xs) ... | false | p = byBoolAbsurdity p compute+ₕEvalNotBothZero : (n : ℕ) (P Q : IteratedHornerForms νR (ℕ.suc n)) (r s : IteratedHornerForms νR n) (x : (fst R)) (xs : Vec (fst R) n) → (isZero νR (P +ₕ Q) and isZero νR (r +ₕ s)) ≡ false → eval ((P ·X+ r) +ₕ (Q ·X+ s)) (x ∷ xs) ≡ eval ((P +ₕ Q) ·X+ (r +ₕ s)) (x ∷ xs) compute+ₕEvalNotBothZero n P Q r s _ _ notBothZero with isZero νR (P +ₕ Q) and isZero νR (r +ₕ s) | notBothZero ... | true | p = byBoolAbsurdity (sym p) ... | false | p = refl
40.455224
106
0.521306
04ef333d30e179f6c0c7ee80169fcb0ca39b49e1
562
agda
Agda
test/Succeed/Issue2150.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2150.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2150.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Primitive postulate X : Set Id : Set → Set module Generic1HIT (S : Set) where module RecType k (C : Set k) (Necc : Set) where postulate P : Set module Flattening k (F : Set → Set) (C : Set k) (Necc : Set) where -- order f before C matters! module W = Generic1HIT (F X) -- use of F matters, application of F matters module M = W.RecType k C X -- k matters module S¹RecType i (A : Set i) where module FlatteningS¹ = Flattening i Id A X -- i matters here module HopfJunior = S¹RecType _ Set -- meta variable matters
26.761905
77
0.66548
22f266cf5df1086cda99d274685ff6a54b130af9
982
agda
Agda
Cubical/Algebra/MonoidSolver/Examples.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Algebra/MonoidSolver/Examples.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Algebra/MonoidSolver/Examples.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.MonoidSolver.Examples where open import Cubical.Foundations.Prelude open import Cubical.Algebra.Monoid.Base open import Cubical.Algebra.CommMonoid.Base open import Cubical.Algebra.MonoidSolver.Reflection private variable ℓ : Level module ExamplesMonoid (M : Monoid ℓ) where open MonoidStr (snd M) _ : ε ≡ ε _ = solveMonoid M _ : ε · ε · ε ≡ ε _ = solveMonoid M _ : ∀ x → ε · x ≡ x _ = solveMonoid M _ : ∀ x y z → (x · y) · z ≡ x · (y · z) _ = solveMonoid M _ : ∀ x y z → z · (x · y) · ε · z ≡ z · x · (y · z) _ = solveMonoid M module ExamplesCommMonoid (M : CommMonoid ℓ) where open CommMonoidStr (snd M) _ : ε ≡ ε _ = solveCommMonoid M _ : ε · ε · ε ≡ ε _ = solveCommMonoid M _ : ∀ x → ε · x ≡ x _ = solveCommMonoid M _ : ∀ x y z → (x · z) · y ≡ x · (y · z) _ = solveCommMonoid M _ : ∀ x y → (x · y) · y · x · (x · y) ≡ x · x · x · (y · y · y) _ = solveCommMonoid M
19.64
66
0.576375
1e5f3c0e4fe7348cd59e48c1781253f299dd4cfb
787
agda
Agda
test/succeed/NewWithoutK.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/NewWithoutK.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
test/succeed/NewWithoutK.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} module NewWithoutK where data ℕ : Set where zero : ℕ suc : ℕ → ℕ infixl 20 _+_ _+_ : ℕ → ℕ → ℕ zero + n = n (suc m) + n = suc (m + n) infixl 30 _*_ _*_ : ℕ → ℕ → ℕ zero * n = zero (suc m) * n = n + (m * n) infixl 5 _⊎_ data _⊎_ (A B : Set) : Set where inj₁ : A → A ⊎ B inj₂ : B → A ⊎ B infixl 10 _≡_ data _≡_ {A : Set} (a : A) : A → Set where refl : a ≡ a data _≤_ : ℕ → ℕ → Set where z≤n : {n : ℕ} → zero ≤ n s≤s : {m n : ℕ} → m ≤ n → suc m ≤ suc n foo : (k l m : ℕ) → k ≡ l + m → ℕ foo .(l + m) l m refl = zero bar : (n : ℕ) → n ≤ n → ℕ bar .zero z≤n = zero bar .(suc m) (s≤s {m} p) = zero baz : ∀ m n → m * n ≡ zero → m ≡ zero ⊎ n ≡ zero baz zero n h = inj₁ refl baz (suc m) zero h = inj₂ refl baz (suc x) (suc x₁) ()
18.302326
48
0.475222
387460c9b1335587386c0d3133bf165077469bb0
529
agda
Agda
benchmark/ac/Nat.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
benchmark/ac/Nat.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
benchmark/ac/Nat.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Nat where import Bool open Bool data Nat : Set where zero : Nat suc : Nat -> Nat infixr 25 _+_ _+_ : Nat -> Nat -> Nat zero + m = m suc n + m = suc (n + m) infix 10 _==_ _<_ _==_ : Nat -> Nat -> Bool zero == zero = true suc n == zero = false zero == suc m = false suc n == suc m = n == m _<_ : Nat -> Nat -> Bool n < zero = false zero < suc m = true suc n < suc m = n < m {-# BUILTIN NATURAL Nat #-} -- {-# BUILTIN NATPLUS _+_ #-} -- {-# BUILTIN NATEQUALS _==_ #-} -- {-# BUILTIN NATLESS _<_ #-}
15.114286
33
0.533081
2edcbecd537dea0c8536015ce14f5cebf75614a0
2,847
agda
Agda
src/cedille-options.agda
ice1000/cedille
bf62d3d338809a30bc21a1affed07936b1ac60ac
[ "MIT" ]
null
null
null
src/cedille-options.agda
ice1000/cedille
bf62d3d338809a30bc21a1affed07936b1ac60ac
[ "MIT" ]
null
null
null
src/cedille-options.agda
ice1000/cedille
bf62d3d338809a30bc21a1affed07936b1ac60ac
[ "MIT" ]
null
null
null
module cedille-options where open import general-util open import options-types public open import cedille-types record options : Set where constructor mk-options field include-path : 𝕃 string × stringset use-cede-files : 𝔹 make-rkt-files : 𝔹 generate-logs : 𝔹 show-qualified-vars : 𝔹 erase-types : 𝔹 datatype-encoding : maybe (filepath × maybe file) pretty-print-columns : ℕ -- Internal use only during-elaboration : 𝔹 pretty-print : 𝔹 show-progress-updates : 𝔹 default-options : options default-options = record { include-path = [] , empty-stringset; use-cede-files = tt; make-rkt-files = ff; generate-logs = ff; show-qualified-vars = ff; erase-types = tt; datatype-encoding = nothing; pretty-print-columns = 80; during-elaboration = ff; pretty-print = ff ; show-progress-updates = ff} include-path-insert : string → 𝕃 string × stringset → 𝕃 string × stringset include-path-insert s (l , ss) = if stringset-contains ss s then l , ss else s :: l , stringset-insert ss s options-to-rope : options → rope options-to-rope ops = comment "Cedille Options File" ⊹⊹ [[ "\n" ]] ⊹⊹ comment "List of directories to search for imported files in" ⊹⊹ comment "Each directory should be space-delimited and inside double quotes" ⊹⊹ comment "The current file's directory is automatically searched first, before import-directories" ⊹⊹ comment "If a filepath is relative, it is considered relative to this options file" ⊹⊹ option "import-directories" (𝕃-to-string (λ fp → "\"" ^ fp ^ "\"") " " (fst (options.include-path ops))) ⊹⊹ comment "Cache navigation spans for performance" ⊹⊹ option "use-cede-files" (𝔹-s options.use-cede-files) ⊹⊹ -- comment "Compile Cedille files to Racket after they are checked"⊹⊹ -- option "make-rkt-files" (𝔹-s options.make-rkt-files) ⊹⊹ comment "Write logs to ~/.cedille/log" ⊹⊹ option "generate-logs" (𝔹-s options.generate-logs) ⊹⊹ comment "Print variables fully qualified" ⊹⊹ option "show-qualified-vars" (𝔹-s options.show-qualified-vars) ⊹⊹ comment "Print types erased" ⊹⊹ option "erase-types" (𝔹-s options.erase-types) ⊹⊹ comment "Preferred number of columns to pretty print elaborated files with" ⊹⊹ option "pretty-print-columns" (ℕ-to-string (options.pretty-print-columns ops)) ⊹⊹ comment "Encoding to use when elaborating datatypes to Cedille Core" ⊹⊹ option "datatype-encoding" (maybe-else' (options.datatype-encoding ops) "" λ fp → "\"" ^ fst fp ^ "\"") where 𝔹-s : (options → 𝔹) → string 𝔹-s f = if f ops then "true" else "false" comment : string → rope comment s = [[ "-- " ]] ⊹⊹ [[ s ]] ⊹⊹ [[ "\n" ]] option : (name : string) → (value : string) → rope option name value = [[ name ]] ⊹⊹ [[ " = " ]] ⊹⊹ [[ value ]] ⊹⊹ [[ ".\n\n" ]]
37.96
106
0.656832
4b47020ddc6666d6bf5c58c46a764fa60ba86296
5,871
agda
Agda
agda/DivModAlt.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
28
2017-04-21T09:08:52.000Z
2022-03-04T18:04:07.000Z
agda/DivModAlt.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
1
2020-11-13T01:26:20.000Z
2020-11-17T00:58:55.000Z
agda/DivModAlt.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
3
2019-01-12T17:02:36.000Z
2020-11-10T04:04:40.000Z
{-# OPTIONS --cubical --safe #-} module DivModAlt where open import Cubical.Core.Everything using (_≡_; Level; Type; Σ; _,_; fst; snd; _≃_; ~_) open import Cubical.Foundations.Prelude using (refl; sym; _∙_; cong; transport; subst; funExt; transp; I; i0; i1; hcomp; primPOr; _∨_) open import Cubical.Foundations.Function using (_∘_) open import Cubical.Foundations.Isomorphism using (iso; Iso; isoToPath; section; retract; isoToEquiv) open import Data.Empty using (⊥) open import Data.Fin using (Fin; toℕ; fromℕ<; #_; _≟_) renaming (zero to fz; suc to fs) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _≤_ ; _>_; _<_; _≥_; z≤n; s≤s; NonZero) open import Data.Product using (_×_) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Unit using (⊤; tt) open import Fin +-assoc : (m n o : ℕ) → (m + n) + o ≡ m + (n + o) +-assoc zero _ _ = refl +-assoc (suc m) n o = cong suc (+-assoc m n o) ≤-refl : {n : ℕ} → n ≤ n ≤-refl {zero} = z≤n ≤-refl {suc n} = s≤s (≤-refl {n}) ≤-trans : {m n o : ℕ} → m ≤ n → n ≤ o → m ≤ o ≤-trans z≤n _ = z≤n ≤-trans (s≤s x) (s≤s y) = s≤s (≤-trans x y) ≤-step : {m n : ℕ} → m ≤ n → m ≤ 1 + n ≤-step z≤n = z≤n ≤-step (s≤s m≤n) = s≤s (≤-step m≤n) n≤1+n : (n : ℕ) → n ≤ 1 + n n≤1+n _ = ≤-step ≤-refl ≤-pred : {m n : ℕ} → suc m ≤ suc n → m ≤ n ≤-pred (s≤s m≤n) = m≤n _-_ : (n m : ℕ) → {m ≤ n} → ℕ (n - zero) {z≤n} = n (suc n - suc m) {s≤s p} = _-_ n m {p} <-∨-≥ : (m n : ℕ) → m < n ⊎ m ≥ n <-∨-≥ zero zero = inj₂ z≤n <-∨-≥ zero (suc n) = inj₁ (s≤s z≤n) <-∨-≥ (suc m) zero = inj₂ z≤n <-∨-≥ (suc m) (suc n) with <-∨-≥ m n ... | inj₁ m<n = inj₁ (s≤s m<n) ... | inj₂ m≥n = inj₂ (s≤s m≥n) sucn-1 : (n : ℕ) → (suc n - 1) {s≤s z≤n} ≡ n sucn-1 n = refl -decreasing : (n m : ℕ) → (m≤n : suc m ≤ n) → ((n - suc m) {m≤n}) < n -decreasing (suc n) zero (s≤s z≤n) = ≤-refl -decreasing (suc n) (suc m) (s≤s m≤n) = ≤-trans (-decreasing n m m≤n) (n≤1+n n) -decreasing1 : (c n m : ℕ) → (m≤n : suc m ≤ n) → (n ≤ suc c) → ((n - suc m) {m≤n}) ≤ c -decreasing1 c (suc n) m (s≤s m≤n) (s≤s n≤c) = ≤-trans (≤-pred (-decreasing (suc n) m (s≤s m≤n))) n≤c lemma1 : (n m : ℕ) → {m≤n : m ≤ n} → m + ((n - m) {m≤n}) ≡ n lemma1 n zero {z≤n} = refl lemma1 (suc n) (suc m) {s≤s p} = cong suc (lemma1 n m {p}) lemma2 : (n m a : ℕ) → {m≤n : m ≤ n} → (n - m) {m≤n} ≡ a → n ≡ m + a lemma2 n m a {m≤n} x = subst (λ y → y ≡ m + a) (lemma1 n m {m≤n} ) (cong (m +_) x) lemma3 : (n m d r : ℕ) → {m≤n : m ≤ n} → (n - m) {m≤n} ≡ d * m + r → n ≡ (suc d) * m + r lemma3 n m d r {m≤n} x = lemma2 n m (d * m + r) x ∙ sym (+-assoc m (d * m) r) --infixl 7 _div_ _mod_ _mod'_ record DivMod (n m : ℕ) : Type where constructor divMod field q : ℕ r : Fin m n=q*m+r : n ≡ q * m + toℕ r record DivMod0 (n m : ℕ) : Type where constructor divMod0 field q : ℕ r : ℕ r<m : r < m n=q*m+r : n ≡ q * m + r record DivMod1 (n m : ℕ) : Type where constructor divMod1 field q : ℕ r : Fin1 m n=q*m+r : n ≡ q * m + Fin1.r r divmod1 : (c n m : ℕ) → (n ≤ c) → {m > 0} → DivMod n m divmod1 zero zero (suc m) z≤n = divMod 0 (# 0) refl divmod1 (suc c) n (suc m) n≤c with <-∨-≥ n (suc m) ... | inj₁ n<m = divMod 0 (fromℕ< n<m) (sym (toℕ-fromℕ< n<m)) ... | inj₂ n≥m = let (divMod q r n-m≡q*m+r) = divmod1 c ((n - (suc m)) {n≥m}) (suc m) (-decreasing1 c n m n≥m n≤c ) {s≤s z≤n} in divMod (suc q) r (lemma3 n (suc m) q (toℕ r) n-m≡q*m+r) divmod : (n m : ℕ) → {m > 0} → DivMod n m divmod n (suc m) = divmod1 n n (suc m) ≤-refl {s≤s z≤n} -- NOTE: We can't use {m > 0} here because Agda can't figure out -- the implicit proof (even for constants), so use {NonZero m} instead. _div_ : (n m : ℕ) → {NonZero m} → ℕ n div (suc m) = DivMod.q (divmod n (suc m) {s≤s z≤n}) _mod_ : (n m : ℕ) → {NonZero m} → Fin m n mod (suc m) = DivMod.r (divmod n (suc m) {s≤s z≤n}) _mod'_ : (n m : ℕ) → {NonZero m} → ℕ n mod' (suc m) = toℕ (n mod (suc m)) --------- dm0→dm1 : {m n : ℕ} → DivMod0 n m → DivMod1 n m dm0→dm1 {m} {n} (divMod0 q r r<m n=q*m+r) = divMod1 q (fin1 r r<m) n=q*m+r dm1→dm0 : {m n : ℕ} → DivMod1 n m → DivMod0 n m dm1→dm0 (divMod1 q r n=q*m+r) = divMod0 q (Fin1.r r) (Fin1.r<n r) n=q*m+r dm0→dm1→dm0 : {m n : ℕ} → (dm0 : DivMod0 n m) → (dm1→dm0 ∘ dm0→dm1) dm0 ≡ dm0 dm0→dm1→dm0 _ = refl dm1→dm0→dm1 : {m n : ℕ} → (dm1 : DivMod1 n m) → (dm0→dm1 ∘ dm1→dm0) dm1 ≡ dm1 dm1→dm0→dm1 _ = refl dm0≃dm1 : {n m : ℕ} → Iso (DivMod0 n m) (DivMod1 n m) dm0≃dm1 = iso dm0→dm1 dm1→dm0 dm1→dm0→dm1 dm0→dm1→dm0 dm0≡dm1 : {n m : ℕ} → DivMod0 n m ≡ DivMod1 n m dm0≡dm1 = isoToPath dm0≃dm1 --------- dm1→dm : {m n : ℕ} → DivMod1 n m → DivMod n m dm1→dm {m} {n} (divMod1 q r n=q*m+r) = divMod q (fin1→fin r) (subst (λ x → n ≡ q * m + x) (sym (Fin1r≡toℕ1 r)) n=q*m+r) dm→dm1 : {m n : ℕ} → DivMod n m → DivMod1 n m dm→dm1 {m} {n} (divMod q r n=q*m+r) = divMod1 q (fin→fin1 r) (subst (λ x → n ≡ q * m + x) (toℕ≡Fin1r1 r) n=q*m+r) dm1→dm→dm1 : {m n : ℕ} → (dm1 : DivMod1 n m) → (dm→dm1 ∘ dm1→dm) dm1 ≡ dm1 dm1→dm→dm1 {m} {n} (divMod1 q r n=q*m+r) i = divMod1 q (fin1→fin→fin1 r i) {!!} dm→dm1→dm : {m n : ℕ} → (dm : DivMod n m) → (dm1→dm ∘ dm→dm1) dm ≡ dm dm→dm1→dm (divMod q r n=q*m+r) i = divMod q (fin→fin1→fin r i) (λ j → {!n=q*m+r j!}) dm1≃dm : {n m : ℕ} → Iso (DivMod1 n m) (DivMod n m) dm1≃dm = iso dm1→dm dm→dm1 dm→dm1→dm dm1→dm→dm1 dm1≡dm : {n m : ℕ} → DivMod1 n m ≡ DivMod n m dm1≡dm = isoToPath dm1≃dm --------- dm0≡dm : {n m : ℕ} → DivMod0 n m ≡ DivMod n m dm0≡dm = dm0≡dm1 ∙ dm1≡dm --------- n%m<m : (n m : ℕ) {m≠0 : NonZero m} → toℕ ((n mod m) {m≠0}) < m n%m<m n (suc m) = toℕ<n (DivMod.r (divmod n (suc m) {s≤s z≤n})) n≡divmod : (n m : ℕ) {m≠0 : NonZero m} → n ≡ ((n div m) {m≠0}) * m + toℕ ((n mod m) {m≠0}) n≡divmod n (suc m) = DivMod.n=q*m+r (divmod n (suc m) {s≤s z≤n})
33.357955
138
0.512519
4bed8fc67385a11db50395a6b5339a5e395ff724
3,720
agda
Agda
test/asset/Test.agda
erydo/agda-mode
67d4db3b1050e6acfbdfdc05f8a656fd4c1f0b07
[ "MIT" ]
58
2015-01-10T10:24:09.000Z
2021-06-11T01:42:34.000Z
test/asset/Test.agda
erydo/agda-mode
67d4db3b1050e6acfbdfdc05f8a656fd4c1f0b07
[ "MIT" ]
126
2015-02-02T05:47:54.000Z
2020-12-23T23:00:13.000Z
test/asset/Test.agda
erydo/agda-mode
67d4db3b1050e6acfbdfdc05f8a656fd4c1f0b07
[ "MIT" ]
18
2015-05-24T04:15:44.000Z
2019-11-21T10:12:31.000Z
{-# OPTIONS --without-K #-} module Test where open import Level infixl 4 _≡_ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x J : {a b : Level} (A : Set a) (C : (x y : A) → x ≡ y → Set b) → ((x : A) → C x x refl) → (x y : A) (P : x ≡ y) → C x y P J A C b x .x refl = b x -- K : (A : Set) (x : A) (C : x ≡ x → Set) -- → C refl -- → (loop : x ≡ x) -- → C loop -- K A x C b p = {! p !} -- Lemma 2.1.1 (inversion of paths) infix 6 ¬_ ¬_ : {a : Level} {A : Set a} {x y : A} → x ≡ y → y ≡ x ¬_ {a} {A} {x} {y} p = J A D d x y p where D : (x y : A) (p : x ≡ y) → Set a D x y p = y ≡ x d : (x : A) → D x x refl d x = refl -- Lemma 2.1.2 (concatenation of paths) infixl 5 _∙_ _∙_ : {a : Level} {A : Set a} {x y z : A} → x ≡ y → y ≡ z → x ≡ z _∙_ {a} {A} {x} {y} {z} p q = J {a} {a} A D d x y p z q where -- the predicate D : (x y : A) (p : x ≡ y) → Set a D x y p = (z : A) (q : y ≡ z) → x ≡ z -- base case d : (x : A) → D x x refl d x z q = J A E e x z q where -- the predicate E : (x z : A) (q : x ≡ z) → Set a E x z q = x ≡ z -- base case e : (x : A) → E x x refl e x = refl -- Lemma 2.1.4.i (identity of path concatenation) ∙-identityʳ : {a : Level} {A : Set a} {x y : A} (p : x ≡ y) → p ≡ p ∙ refl ∙-identityʳ {a} {A} {x} {y} p = J A D d x y p where -- the predicate D : (x y : A) (p : x ≡ y) → Set a D x y p = p ≡ p ∙ refl -- base case d : (x : A) → D x x refl d x = refl ∙-identityˡ : {a : Level} {A : Set a} {x y : A} (p : x ≡ y) → p ≡ refl ∙ p ∙-identityˡ {a} {A} {x} {y} p = J A D d x y p where -- the predicate D : (x y : A) (p : x ≡ y) → Set a D x y p = p ≡ refl ∙ p -- base case d : (x : A) → D x x refl d x = refl -- Lemma 2.1.4.ii (identity of path inversion) ¬-identityʳ : {a : Level} {A : Set a} {x y : A} (p : x ≡ y) → ¬ p ∙ p ≡ refl ¬-identityʳ {a} {A} {x} {y} p = J A D d x y p where -- the predicate D : (x y : A) (p : x ≡ y) → Set a D x y p = ¬ p ∙ p ≡ refl -- base case d : (x : A) → D x x refl d x = refl ¬-identityˡ : {a : Level} {A : Set a} {x y : A} (p : x ≡ y) → p ∙ ¬ p ≡ refl ¬-identityˡ {a} {A} {x} {y} p = J A D d x y p where -- the predicate D : (x y : A) (p : x ≡ y) → Set a D x y p = p ∙ ¬ p ≡ refl -- base case d : (x : A) → D x x refl d x = refl -- Lemma 2.1.4.iii (involution of path inversion) involution : {A : Set} {x y : A} (p : x ≡ y) → ¬ ¬ p ≡ p involution {A} {x} {y} p = J A D d x y p where -- the predicate D : (x y : A) (p : x ≡ y) → Set D x y p = ¬ ¬ p ≡ p -- base case d : (x : A) → D x x refl d x = refl -- Lemma 2.1.4.iv (associativity of path concatenation) ∙-assoc : {a : Level} {A : Set a} {w x y z : A} → (p : w ≡ x) (q : x ≡ y) (r : y ≡ z) → p ∙ (q ∙ r) ≡ (p ∙ q) ∙ r ∙-assoc {a} {A} {w} {x} {y} {z} p q r = J A D d w x p y q z r where -- the predicate D : (w x : A) (p : w ≡ x) → Set a D w x p = (y : A) (q : x ≡ y) → (z : A) (r : y ≡ z) → p ∙ (q ∙ r) ≡ (p ∙ q) ∙ r -- base case d : (x : A) → D x x refl d x y q z r = J A E e x y q z r where -- the predicate E : (x y : A) (q : x ≡ y) → Set a E x y q = (z : A) (r : y ≡ z) → refl ∙ (q ∙ r) ≡ refl ∙ q ∙ r -- base case e : (x : A) → E x x refl e x z r = J A F f x z r where -- the predicate F : (y z : A) (r : y ≡ z) → Set a F y z r = refl ∙ (refl ∙ r) ≡ refl ∙ refl ∙ r -- base case f : (x : A) → F x x refl f x = {! !}
24.635762
76
0.397312
a0a65543b5fa08ad7fa234224d55a8fde2d3e285
1,952
agda
Agda
proglangs-learning/Agda/sv20/assign2/SetTheory/Logic.agda
helq/old_code
a432faf1b340cb379190a2f2b11b997b02d1cd8d
[ "CC0-1.0" ]
null
null
null
proglangs-learning/Agda/sv20/assign2/SetTheory/Logic.agda
helq/old_code
a432faf1b340cb379190a2f2b11b997b02d1cd8d
[ "CC0-1.0" ]
4
2020-03-10T19:20:21.000Z
2021-06-07T15:39:48.000Z
proglangs-learning/Agda/sv20/assign2/SetTheory/Logic.agda
helq/old_code
a432faf1b340cb379190a2f2b11b997b02d1cd8d
[ "CC0-1.0" ]
null
null
null
----------------------------------- -- First order logic ----------------------------------- module sv20.assign2.SetTheory.Logic where infix 4 _,_ infix 3 ¬_ infix 1 _∧_ infix 1 _∨_ infix 0 _⇔_ -- Some First order logic I need. -- ∧ data type (conjunction). data _∧_ (A B : Set) : Set where _,_ : A → B → A ∧ B ∧-proj₁ : ∀ {A B} → A ∧ B → A ∧-proj₁ (a , _) = a ∧-proj₂ : ∀ {A B} → A ∧ B → B ∧-proj₂ (_ , b) = b -- ∨ data type (disjunction), with many useful properties. data _∨_ (A B : Set) : Set where inj₁ : A → A ∨ B inj₂ : B → A ∨ B ∨-e : (A B C : Set) → A ∨ B → (A → C) → (B → C) → C ∨-e A B C (inj₁ a) i₁ i₂ = i₁ a ∨-e A B C (inj₂ b) i₁ i₂ = i₂ b ∨-sym : (A B : Set) → A ∨ B → B ∨ A ∨-sym A B (inj₁ a) = inj₂ a ∨-sym A B (inj₂ b) = inj₁ b trivial : (A : Set) → A → A trivial _ A = A ∨-idem : (A : Set) → A ∨ A → A ∨-idem A (inj₁ a) = a ∨-idem A (inj₂ a) = a ∨-prop₁ : {A B C : Set} → (A ∨ B → C) → A → C ∨-prop₁ i a = i (inj₁ a) ∨-prop₂ : {A B C : Set} → (A ∨ B → C) → B → C ∨-prop₂ i b = i (inj₂ b) ∨-prop₃ : {A B C : Set} → A ∨ B → (A → C) → C ∨ B ∨-prop₃ (inj₁ x) i = inj₁ (i x) ∨-prop₃ (inj₂ x) i = inj₂ x ∨-prop₄ : {A B C : Set} → A ∨ B → (B → C) → A ∨ C ∨-prop₄ (inj₁ x) x₁ = inj₁ x ∨-prop₄ (inj₂ x) x₁ = inj₂ (x₁ x) ∨-prop₅ : {A B C D : Set} → A ∨ B → (A → C) → (B → D) → C ∨ D ∨-prop₅ (inj₁ a) a→c b→d = inj₁ (a→c a) ∨-prop₅ (inj₂ b) a→c b→d = inj₂ (b→d b) ∨-∧ : {A B : Set} → (A ∧ B) ∨ (B ∧ A) → A ∧ B ∨-∧ (inj₁ (a , b)) = a , b ∨-∧ (inj₂ (b , a)) = a , b -- Bi-implication. _⇔_ : Set → Set → Set A ⇔ B = (A → B) ∧ (B → A) ⇔-p : (A B C : Set) → A ⇔ (B ∧ C) → (C → B) → A ⇔ C ⇔-p A B C (h₁ , h₂) h₃ = prf₁ , prf₂ where prf₁ : A → C prf₁ A = ∧-proj₂ (h₁ A) prf₂ : C → A prf₂ C = h₂ ((h₃ C) , C) -- Empty data type. data ⊥ : Set where ⊥-elim : {A : Set} → ⊥ → A ⊥-elim () data ⊤ : Set where tt : ⊤ -- Negation ¬_ : Set → Set ¬ A = A → ⊥ cont : (A : Set) → A ∧ ¬ A → ⊥ cont _ (x , ¬x) = ¬x x
19.52
61
0.438012
598381959c948e7e2c1596f5d482f52e562b4896
970
agda
Agda
vendor/stdlib/src/Relation/Binary/OrderMorphism.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Relation/Binary/OrderMorphism.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Relation/Binary/OrderMorphism.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- Order morphisms ------------------------------------------------------------------------ module Relation.Binary.OrderMorphism where open import Relation.Binary open Poset import Data.Function as F record _⇒-Poset_ (po₁ po₂ : Poset) : Set where field fun : carrier po₁ → carrier po₂ monotone : _≤_ po₁ =[ fun ]⇒ _≤_ po₂ _⇒-DTO_ : (dto₁ dto₂ : DecTotalOrder) → Set dto₁ ⇒-DTO dto₂ = poset dto₁ ⇒-Poset poset dto₂ where open DecTotalOrder open _⇒-Poset_ id : ∀ {po} → po ⇒-Poset po id = record { fun = F.id ; monotone = F.id } _∘_ : ∀ {po₁ po₂ po₃} → po₂ ⇒-Poset po₃ → po₁ ⇒-Poset po₂ → po₁ ⇒-Poset po₃ f ∘ g = record { fun = F._∘_ (fun f) (fun g) ; monotone = F._∘_ (monotone f) (monotone g) } const : ∀ {po₁ po₂} → carrier po₂ → po₁ ⇒-Poset po₂ const {po₂ = po₂} x = record { fun = F.const x ; monotone = F.const (refl po₂) }
24.25
72
0.512371
a167a3a1e784dc3a3f61f6810945f52db09976e6
1,141
agda
Agda
Cats/Category/Lift.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
Cats/Category/Lift.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
Cats/Category/Lift.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
module Cats.Category.Lift where open import Relation.Binary using (IsEquivalence) open import Level as L using (Level ; suc ; _⊔_ ; lift ; lower) open import Cats.Category.Base open IsEquivalence LCategory : (l : Level) → Set (suc l) LCategory l = Category l l l Lift : ∀ {lo la l≈ lo′ la′ l≈′} → Category lo la l≈ → Category (lo ⊔ lo′) (la ⊔ la′) (l≈ ⊔ l≈′) Lift {lo′ = lo′} {la′} {l≈′} C = record { Obj = L.Lift lo′ C.Obj ; _⇒_ = λ A B → L.Lift la′ (lower A C.⇒ lower B) ; _≈_ = λ f g → L.Lift l≈′ (lower f C.≈ lower g) ; id = lift C.id ; _∘_ = λ f g → lift (lower f C.∘ lower g) ; equiv = record { refl = lift (refl C.equiv) ; sym = λ eq → lift (sym C.equiv (lower eq)) ; trans = λ eq₁ eq₂ → lift (trans C.equiv (lower eq₁) (lower eq₂)) } ; ∘-resp = λ eq₁ eq₂ → lift (C.∘-resp (lower eq₁) (lower eq₂)) ; id-r = lift C.id-r ; id-l = lift C.id-l ; assoc = lift C.assoc } where module C = Category C LiftEq : ∀ {lo la l≈} → Category lo la l≈ → LCategory (lo ⊔ la ⊔ l≈) LiftEq {lo} {la} {l≈} = Lift {lo′ = la ⊔ l≈} {la′ = lo ⊔ l≈} {l≈′ = lo ⊔ la}
28.525
76
0.538124
06331551b39d7a061634aa53ce19c927e3fe523c
2,781
agda
Agda
src/Pts/Typing/Progress.agda
asr/pts-agda
d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43
[ "BSD-3-Clause" ]
21
2016-05-13T12:11:10.000Z
2021-08-31T10:47:57.000Z
src/Pts/Typing/Progress.agda
asr/pts-agda
d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43
[ "BSD-3-Clause" ]
1
2017-08-21T14:48:09.000Z
2017-08-21T16:01:50.000Z
src/Pts/Typing/Progress.agda
asr/pts-agda
d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43
[ "BSD-3-Clause" ]
4
2017-08-20T10:29:44.000Z
2019-08-11T23:28:33.000Z
------------------------------------------------------------------------ -- Progress of CBV reductions in pure type systems (PTS) ------------------------------------------------------------------------ -- This module contains a variant of the "progress" theorem for PTS. -- Progress says roughly that well-typed terms do not get stuck. -- I.e. a well-typed term is either a value or it can take a CBV -- reduction step. Together with the subject reduction (aka -- "preservation") theorem from Pts.Typing, progress ensures type -- soundness. For detials, see e.g. -- -- * B. C. Pierce, TAPL (2002), pp. 95. -- -- * A. Wright and M. Felleisen, "A Syntactic Approach to Type -- Soundness" (1994). module Pts.Typing.Progress where open import Data.Product using (_,_; ∃; _×_) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Relation.Binary.PropositionalEquality open import Relation.Nullary using (¬_) open import Relation.Nullary.Negation using (contradiction) open import Pts.Typing open import Pts.Reduction.Cbv open import Pts.Reduction.Full -- Definitions and lemmas are parametrized by a given PTS instance. module _ {pts} where open PTS pts open Syntax open Ctx open Substitution using (_[_]) open Typing pts -- A helper lemma: sorts are not product types. Π≢sort : ∀ {n s} {a : Term n} {b} → ¬ (Π a b ≡β sort s) Π≢sort Πab≡s = let _ , Πab→*c , s→*c = ≡β⇒→β* Πab≡s _ , _ , _ , _ , Πa′b′≡c = Π-→β* Πab→*c in contradiction Πa′b′≡c (sort⇒¬Π (sort-→β* s→*c)) where sort⇒¬Π : ∀ {n s a b} {c : Term n} → sort s ≡ c → ¬ (Π a b ≡ c) sort⇒¬Π refl () -- A canonical forms lemma for dependent product values: closed -- values of product type are abstractions. Π-can : ∀ {f a b} → Val f → [] ⊢ f ∈ Π a b → ∃ λ a′ → ∃ λ t → f ≡ ƛ a′ t Π-can (sort s) s∈Πab = let _ , _ , Πab≡s′ = sort-gen s∈Πab in contradiction Πab≡s′ Π≢sort Π-can (Π c d) Πcd∈Πab = let _ , _ , _ , _ , _ , _ , Πab≡s = Π-gen Πcd∈Πab in contradiction Πab≡s Π≢sort Π-can (ƛ a′ t) (ƛ a∈s t∈b) = a′ , t , refl Π-can (ƛ a′ t) (conv λa′t∈c c∈s c≡Πab) = a′ , t , refl -- Progress: well-typed terms do not get stuck (under CBV reduction). prog : ∀ {a b} → [] ⊢ a ∈ b → Val a ⊎ (∃ λ a′ → a →v a′) prog (var () Γ-wf) prog (axiom a Γ-wf) = inj₁ (sort _) prog (Π r a∈s₁ b∈s₂) = inj₁ (Π _ _) prog (ƛ t∈b Πab∈s) = inj₁ (ƛ _ _) prog (f∈Πab · t∈a) with prog f∈Πab prog (f∈Πab · t∈a) | inj₁ u with prog t∈a prog (f∈Πab · t∈a) | inj₁ u | inj₁ v with Π-can u f∈Πab ...| a′ , t′ , refl = inj₂ (_ , cont a′ t′ v) prog (f∈Πab · t∈a) | inj₁ u | inj₂ (t′ , t→t′) = inj₂ (_ , u ·₂ t→t′) prog (f∈Πab · t∈a) | inj₂ (f′ , f→f′) = inj₂ (_ , f→f′ ·₁ _) prog (conv a∈b₁ b₂∈s b₁≡b₂) = prog a∈b₁
38.09589
74
0.562028
57100c5b6fe2e605dbe0d2031df93155b97cc16c
11,146
agda
Agda
Cubical/HITs/Pushout/Properties.agda
Rotsor/cubical
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
[ "MIT" ]
null
null
null
Cubical/HITs/Pushout/Properties.agda
Rotsor/cubical
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
[ "MIT" ]
null
null
null
Cubical/HITs/Pushout/Properties.agda
Rotsor/cubical
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
[ "MIT" ]
null
null
null
{- This file contains: - Homotopy natural equivalences of pushout spans Written by: Loïc Pujet, September 2019 - 3×3 lemma for pushouts Written by: Loïc Pujet, April 2019 -} {-# OPTIONS --cubical --safe #-} module Cubical.HITs.Pushout.Properties where open import Cubical.Core.Glue open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HAEquiv open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Data.Prod.Base open import Cubical.Data.Unit open import Cubical.HITs.Pushout.Base {- Definition of pushout diagrams -} record 3-span : Type₁ where field A0 A2 A4 : Type₀ f1 : A2 → A0 f3 : A2 → A4 spanPushout : (s : 3-span) → Type₀ spanPushout s = Pushout (3-span.f1 s) (3-span.f3 s) {- Definition of a homotopy natural diagram equivalence -} record 3-span-equiv (s1 : 3-span) (s2 : 3-span) : Type₀ where field e0 : 3-span.A0 s1 ≃ 3-span.A0 s2 e2 : 3-span.A2 s1 ≃ 3-span.A2 s2 e4 : 3-span.A4 s1 ≃ 3-span.A4 s2 H1 : ∀ x → 3-span.f1 s2 (e2 .fst x) ≡ e0 .fst (3-span.f1 s1 x) H3 : ∀ x → 3-span.f3 s2 (e2 .fst x) ≡ e4 .fst (3-span.f3 s1 x) {- Proof that homotopy equivalent spans are in fact equal -} spanEquivToPath : {s1 : 3-span} → {s2 : 3-span} → (e : 3-span-equiv s1 s2) → s1 ≡ s2 spanEquivToPath {s1} {s2} e = spanPath where open 3-span-equiv e open 3-span path0 : A0 s1 ≡ A0 s2 path0 = ua e0 path2 : A2 s1 ≡ A2 s2 path2 = ua e2 path4 : A4 s1 ≡ A4 s2 path4 = ua e4 spanPath1 : I → 3-span spanPath1 i = record { A0 = path0 i ; A2 = path2 i ; A4 = path4 i ; f1 = λ x → (transp (λ j → path0 (i ∧ j)) (~ i) (f1 s1 (transp (λ j → path2 (~ j ∧ i)) (~ i) x))) ; f3 = λ x → (transp (λ j → path4 (i ∧ j)) (~ i) (f3 s1 (transp (λ j → path2 (~ j ∧ i)) (~ i) x))) } spanPath2 : I → 3-span spanPath2 i = record { A0 = A0 s2 ; A2 = A2 s2 ; A4 = A4 s2 ; f1 = f1Path i ; f3 = f3Path i } where f1Path : I → A2 s2 → A0 s2 f1Path i x = ((uaβ e0 (f1 s1 (transport (λ j → path2 (~ j)) x))) ∙ (H1 (transport (λ j → path2 (~ j)) x)) ⁻¹ ∙ (λ j → f1 s2 (uaβ e2 (transport (λ j → path2 (~ j)) x) (~ j))) ∙ (λ j → f1 s2 (transportTransport⁻ path2 x j))) i f3Path : I → A2 s2 → A4 s2 f3Path i x = ((uaβ e4 (f3 s1 (transport (λ j → path2 (~ j)) x))) ∙ (H3 (transport (λ j → path2 (~ j)) x)) ⁻¹ ∙ (λ j → f3 s2 (uaβ e2 (transport (λ j → path2 (~ j)) x) (~ j))) ∙ (λ j → f3 s2 (transportTransport⁻ path2 x j))) i spanPath : s1 ≡ s2 spanPath = (λ i → spanPath1 i) ∙ (λ i → spanPath2 i) -- as a corollary, they have the same pushout spanEquivToPushoutPath : {s1 : 3-span} → {s2 : 3-span} → (e : 3-span-equiv s1 s2) → spanPushout s1 ≡ spanPushout s2 spanEquivToPushoutPath {s1} {s2} e = cong spanPushout (spanEquivToPath e) {- 3×3 lemma for pushouts Let Aᵢⱼ denote a type, fᵢⱼ a map and Hᵢⱼ a homotopy. Given a diagram of the following shape: A00 ←—f01—— A02 ——f03—→ A04 ↑ ↑ ↑ f10 H11 f12 H13 f14 | | | A20 ←—f21—— A22 ——f23—→ A24 | | | f30 H31 f32 H33 f34 ↓ ↓ ↓ A40 ←—f41—— A42 ——f43—→ A44 one can build its colimit from pushouts in two ways: - either build pushouts A□0, A□2, A□4 of the lines and then build the pushout A□○ of the resulting diagram A□0 ←—f□1—— A□2 ——f□3—→ A□4 ; - or build pushouts of the columns and build the pushout A○□ of the resulting diagram A0□ ← A2□ → A4□. Then the lemma states there is an equivalence A□○ ≃ A○□. -} record 3x3-span : Type₁ where field A00 A02 A04 A20 A22 A24 A40 A42 A44 : Type₀ f10 : A20 → A00 f12 : A22 → A02 f14 : A24 → A04 f30 : A20 → A40 f32 : A22 → A42 f34 : A24 → A44 f01 : A02 → A00 f21 : A22 → A20 f41 : A42 → A40 f03 : A02 → A04 f23 : A22 → A24 f43 : A42 → A44 H11 : ∀ x → f01 (f12 x) ≡ f10 (f21 x) H13 : ∀ x → f03 (f12 x) ≡ f14 (f23 x) H31 : ∀ x → f41 (f32 x) ≡ f30 (f21 x) H33 : ∀ x → f43 (f32 x) ≡ f34 (f23 x) -- pushouts of the lines A□0 : Type₀ A□0 = Pushout f10 f30 A□2 : Type₀ A□2 = Pushout f12 f32 A□4 : Type₀ A□4 = Pushout f14 f34 -- maps between pushouts f□1 : A□2 → A□0 f□1 (inl x) = inl (f01 x) f□1 (inr x) = inr (f41 x) f□1 (push a j) = ((λ i → inl (H11 a i)) ∙∙ push (f21 a) ∙∙ (λ i → inr (H31 a (~ i)))) j f□3 : A□2 → A□4 f□3 (inl x) = inl (f03 x) f□3 (inr x) = inr (f43 x) f□3 (push a j) = ((λ i → inl (H13 a i)) ∙∙ push (f23 a) ∙∙ (λ i → inr (H33 a (~ i)))) j -- total pushout A□○ : Type₀ A□○ = Pushout f□1 f□3 -- pushouts of the columns A0□ : Type₀ A0□ = Pushout f01 f03 A2□ : Type₀ A2□ = Pushout f21 f23 A4□ : Type₀ A4□ = Pushout f41 f43 -- maps between pushouts f1□ : A2□ → A0□ f1□ (inl x) = inl (f10 x) f1□ (inr x) = inr (f14 x) f1□ (push a j) = ((λ i → inl (H11 a (~ i))) ∙∙ push (f12 a) ∙∙ (λ i → inr (H13 a i))) j f3□ : A2□ → A4□ f3□ (inl x) = inl (f30 x) f3□ (inr x) = inr (f34 x) f3□ (push a j) = ((λ i → inl (H31 a (~ i))) ∙∙ push (f32 a) ∙∙ (λ i → inr (H33 a i))) j -- total pushout A○□ : Type₀ A○□ = Pushout f1□ f3□ -- the claimed result 3x3-lemma : A□○ ≡ A○□ 3x3-lemma = isoToPath (iso A□○→A○□ A○□→A□○ A○□→A□○→A○□ A□○→A○□→A□○) where -- forward map of the equivalence A□○ ≃ A○□ forward-l : A□0 → A○□ forward-l (inl x) = inl (inl x) forward-l (inr x) = inr (inl x) forward-l (push a i) = push (inl a) i forward-r : A□4 → A○□ forward-r (inl x) = inl (inr x) forward-r (inr x) = inr (inr x) forward-r (push a i) = push (inr a) i forward-filler : A22 → I → I → I → A○□ forward-filler a i j = hfill (λ t → λ { (i = i0) → inl (doubleCompPath-filler (λ k → inl (H11 a (~ k))) (push (f12 a)) (λ k → inr (H13 a k)) j (~ t)) ; (i = i1) → inr (doubleCompPath-filler (λ k → inl (H31 a (~ k))) (push (f32 a)) (λ k → inr (H33 a k)) j (~ t)) ; (j = i0) → forward-l (doubleCompPath-filler (λ k → inl (H11 a k)) (push (f21 a)) (λ k → inr (H31 a (~ k))) i t) ; (j = i1) → forward-r (doubleCompPath-filler (λ k → inl (H13 a k)) (push (f23 a)) (λ k → inr (H33 a (~ k))) i t) }) (inS (push (push a j) i)) A□○→A○□ : A□○ → A○□ A□○→A○□ (inl x) = forward-l x A□○→A○□ (inr x) = forward-r x A□○→A○□ (push (inl x) i) = inl (push x i) A□○→A○□ (push (inr x) i) = inr (push x i) A□○→A○□ (push (push a i) j) = forward-filler a i j i1 -- backward map backward-l : A0□ → A□○ backward-l (inl x) = inl (inl x) backward-l (inr x) = inr (inl x) backward-l (push a i) = push (inl a) i backward-r : A4□ → A□○ backward-r (inl x) = inl (inr x) backward-r (inr x) = inr (inr x) backward-r (push a i) = push (inr a) i backward-filler : A22 → I → I → I → A□○ backward-filler a i j = hfill (λ t → λ { (i = i0) → inl (doubleCompPath-filler (λ k → inl (H11 a k)) (push (f21 a)) (λ k → inr (H31 a (~ k))) j (~ t)) ; (i = i1) → inr (doubleCompPath-filler (λ k → inl (H13 a k)) (push (f23 a)) (λ k → inr (H33 a (~ k))) j (~ t)) ; (j = i0) → backward-l (doubleCompPath-filler (λ k → inl (H11 a (~ k))) (push (f12 a)) (λ k → inr (H13 a k)) i t) ; (j = i1) → backward-r (doubleCompPath-filler (λ k → inl (H31 a (~ k))) (push (f32 a)) (λ k → inr (H33 a k)) i t) }) (inS (push (push a j) i)) A○□→A□○ : A○□ → A□○ A○□→A□○ (inl x) = backward-l x A○□→A□○ (inr x) = backward-r x A○□→A□○ (push (inl x) i) = inl (push x i) A○□→A□○ (push (inr x) i) = inr (push x i) A○□→A□○ (push (push a i) j) = backward-filler a i j i1 -- first homotopy homotopy1-l : ∀ x → A□○→A○□ (backward-l x) ≡ inl x homotopy1-l (inl x) = refl homotopy1-l (inr x) = refl homotopy1-l (push a i) = refl homotopy1-r : ∀ x → A□○→A○□ (backward-r x) ≡ inr x homotopy1-r (inl x) = refl homotopy1-r (inr x) = refl homotopy1-r (push a i) = refl A○□→A□○→A○□ : ∀ x → A□○→A○□ (A○□→A□○ x) ≡ x A○□→A□○→A○□ (inl x) = homotopy1-l x A○□→A□○→A○□ (inr x) = homotopy1-r x A○□→A□○→A○□ (push (inl x) i) k = push (inl x) i A○□→A□○→A○□ (push (inr x) i) k = push (inr x) i A○□→A□○→A○□ (push (push a i) j) k = hcomp (λ t → λ { (i = i0) → forward-l (doubleCompPath-filler (λ k → inl (H11 a k)) (push (f21 a)) (λ k → inr (H31 a (~ k))) j (~ t)) ; (i = i1) → forward-r (doubleCompPath-filler (λ k → inl (H13 a k)) (push (f23 a)) (λ k → inr (H33 a (~ k))) j (~ t)) ; (j = i0) → homotopy1-l (doubleCompPath-filler (λ k → inl (H11 a (~ k))) (push (f12 a)) (λ k → inr (H13 a k)) i t) k ; (j = i1) → homotopy1-r (doubleCompPath-filler (λ k → inl (H31 a (~ k))) (push (f32 a)) (λ k → inr (H33 a k)) i t) k ; (k = i0) → A□○→A○□ (backward-filler a i j t) ; (k = i1) → forward-filler a j i (~ t) }) (forward-filler a j i i1) -- second homotopy homotopy2-l : ∀ x → A○□→A□○ (forward-l x) ≡ inl x homotopy2-l (inl x) = refl homotopy2-l (inr x) = refl homotopy2-l (push a i) = refl homotopy2-r : ∀ x → A○□→A□○ (forward-r x) ≡ inr x homotopy2-r (inl x) = refl homotopy2-r (inr x) = refl homotopy2-r (push a i) = refl A□○→A○□→A□○ : ∀ x → A○□→A□○ (A□○→A○□ x) ≡ x A□○→A○□→A□○ (inl x) = homotopy2-l x A□○→A○□→A□○ (inr x) = homotopy2-r x A□○→A○□→A□○ (push (inl x) i) k = push (inl x) i A□○→A○□→A□○ (push (inr x) i) k = push (inr x) i A□○→A○□→A□○ (push (push a i) j) k = hcomp (λ t → λ { (i = i0) → backward-l (doubleCompPath-filler (λ k → inl (H11 a (~ k))) (push (f12 a)) (λ k → inr (H13 a k)) j (~ t)) ; (i = i1) → backward-r (doubleCompPath-filler (λ k → inl (H31 a (~ k))) (push (f32 a)) (λ k → inr (H33 a k)) j (~ t)) ; (j = i0) → homotopy2-l (doubleCompPath-filler (λ k → inl (H11 a k)) (push (f21 a)) (λ k → inr (H31 a (~ k))) i t) k ; (j = i1) → homotopy2-r (doubleCompPath-filler (λ k → inl (H13 a k)) (push (f23 a)) (λ k → inr (H33 a (~ k))) i t) k ; (k = i0) → A○□→A□○ (forward-filler a i j t) ; (k = i1) → backward-filler a j i (~ t) }) (backward-filler a j i i1)
35.496815
156
0.485376
38e485ca67430844f1bbac66f265ded754615c85
803
agda
Agda
src/Categories/Morphism/Regular/Properties.agda
maxsnew/agda-categories
8f3c844d929508040dfa21f681fa260056214b73
[ "MIT" ]
null
null
null
src/Categories/Morphism/Regular/Properties.agda
maxsnew/agda-categories
8f3c844d929508040dfa21f681fa260056214b73
[ "MIT" ]
null
null
null
src/Categories/Morphism/Regular/Properties.agda
maxsnew/agda-categories
8f3c844d929508040dfa21f681fa260056214b73
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Core module Categories.Morphism.Regular.Properties {o ℓ e} (𝒞 : Category o ℓ e) where open import Categories.Morphism 𝒞 open import Categories.Morphism.Regular 𝒞 open import Categories.Diagram.Equalizer 𝒞 open import Categories.Diagram.Equalizer.Properties 𝒞 open import Categories.Diagram.Coequalizer.Properties 𝒞 open Category 𝒞 private variable A B : Obj f g : A ⇒ B Section⇒RegularMono : f SectionOf g → RegularMono f Section⇒RegularMono {f = f} {g = g} g∘f≈id = record { g = id ; h = f ∘ g ; equalizer = section-equalizer g∘f≈id } Retract⇒RegularEpi : f RetractOf g → RegularEpi f Retract⇒RegularEpi {f = f} {g = g} f∘g≈id = record { h = g ∘ f ; g = id ; coequalizer = retract-coequalizer f∘g≈id }
24.333333
80
0.702366
04839eccccbadac82f5477831cead1374e2dd85e
279
agda
Agda
Ix.agda
pigworker/InteriorDesign
454cdd18f56db0b0d1643a1fcf36951b5ece395c
[ "BSD-3-Clause" ]
6
2018-06-18T15:25:39.000Z
2018-07-31T02:00:13.000Z
Ix.agda
pigworker/InteriorDesign
454cdd18f56db0b0d1643a1fcf36951b5ece395c
[ "BSD-3-Clause" ]
null
null
null
Ix.agda
pigworker/InteriorDesign
454cdd18f56db0b0d1643a1fcf36951b5ece395c
[ "BSD-3-Clause" ]
null
null
null
module Ix where _-:>_ : {I : Set} -> (I -> Set) -> (I -> Set) -> (I -> Set) (S -:> T) i = S i -> T i infixr 4 _-:>_ [_] : {I : Set} -> (I -> Set) -> Set [ P ] = forall i -> P i Algebra : {I : Set}(F : (I -> Set) -> (I -> Set)) -> (I -> Set) -> Set Algebra F X = [ F X -:> X ]
23.25
70
0.387097
1317f3eccb36f8324e73acc3e7cf64bd78d57a1a
2,023
agda
Agda
Cubical/README.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/README.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/README.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
{-# OPTIONS --guardedness #-} module Cubical.README where ------------------------------------------------------------------------ -- An experimental library for Cubical Agda ----------------------------------------------------------------------- -- The library comes with a .agda-lib file, for use with the library -- management system. ------------------------------------------------------------------------ -- Module hierarchy ------------------------------------------------------------------------ -- The core library for Cubical Agda. -- It contains basic primitives, equivalences, glue types. import Cubical.Core.Everything -- The foundations for Cubical Agda. -- The Prelude module is self-explanatory. import Cubical.Foundations.Prelude import Cubical.Foundations.Everything -- Kinds and properties of functions import Cubical.Functions.Everything -- Data types and properties import Cubical.Data.Everything -- Higher-inductive types import Cubical.HITs.Everything -- Coinductive data types and properties import Cubical.Codata.Everything -- Papers import Cubical.Papers.Everything -- Properties and proofs about relations import Cubical.Relation.Everything -- Category theory import Cubical.Categories.Everything -- Homotopy theory import Cubical.Homotopy.Everything -- Properties and kinds of Modalities import Cubical.Modalities.Everything -- Various experiments using Cubical Agda import Cubical.Experiments.Everything -- Other modules (TODO: add descriptions) import Cubical.Induction.Everything import Cubical.Structures.Everything -- general definition of cohomology import Cubical.Cohomology.Everything -- cohomology with constant Integer coefficients import Cubical.ZCohomology.Everything -- Algebra library (in development) import Cubical.Algebra.Everything -- Various talks import Cubical.Talks.Everything -- Reflection import Cubical.Reflection.Everything -- Displayed univalent graphs import Cubical.Displayed.Everything -- Syntax typeclasses import Cubical.Syntax.Everything
25.607595
72
0.69303
38e92b837bb6cf873f0298596d98230f974f932a
15,568
agda
Agda
src/Equivalence/Erased/Contractible-preimages.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Equivalence/Erased/Contractible-preimages.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Equivalence/Erased/Contractible-preimages.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Equivalences with erased "proofs", defined in terms of partly -- erased contractible fibres ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Equivalence.Erased.Contractible-preimages {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open Derived-definitions-and-properties eq open import Prelude open import Bijection eq using (_↔_) open import Equivalence eq as Eq using (_≃_; Is-equivalence) import Equivalence.Contractible-preimages eq as CP open import Erased.Level-1 eq as Erased hiding (module []-cong; module []-cong₁; module []-cong₂) open import Function-universe eq hiding (id; _∘_) open import H-level eq as H-level open import H-level.Closure eq open import Preimage eq as Preimage using (_⁻¹_) open import Surjection eq using (_↠_; Split-surjective) private variable a b ℓ ℓ₁ ℓ₂ : Level A B : Type a c ext k k′ p x y : A P : A → Type p f : (x : A) → P x ------------------------------------------------------------------------ -- Some basic types -- "Preimages" with erased proofs. infix 5 _⁻¹ᴱ_ _⁻¹ᴱ_ : {A : Type a} {@0 B : Type b} → @0 (A → B) → @0 B → Type (a ⊔ b) f ⁻¹ᴱ y = ∃ λ x → Erased (f x ≡ y) -- Contractibility with an erased proof. Contractibleᴱ : Type ℓ → Type ℓ Contractibleᴱ A = ∃ λ (x : A) → Erased (∀ y → x ≡ y) -- The property of being an equivalence (with erased proofs). Is-equivalenceᴱ : {A : Type a} {B : Type b} → @0 (A → B) → Type (a ⊔ b) Is-equivalenceᴱ f = ∀ y → Contractibleᴱ (f ⁻¹ᴱ y) -- Equivalences with erased proofs. _≃ᴱ_ : Type a → Type b → Type (a ⊔ b) A ≃ᴱ B = ∃ λ (f : A → B) → Is-equivalenceᴱ f ------------------------------------------------------------------------ -- Some conversion lemmas -- Conversions between _⁻¹_ and _⁻¹ᴱ_. ⁻¹→⁻¹ᴱ : {@0 A : Type a} {@0 B : Type b} {@0 f : A → B} {@0 y : B} → f ⁻¹ y → f ⁻¹ᴱ y ⁻¹→⁻¹ᴱ = Σ-map id [_]→ @0 ⁻¹ᴱ→⁻¹ : f ⁻¹ᴱ x → f ⁻¹ x ⁻¹ᴱ→⁻¹ = Σ-map id erased @0 ⁻¹≃⁻¹ᴱ : f ⁻¹ y ≃ f ⁻¹ᴱ y ⁻¹≃⁻¹ᴱ {f = f} {y = y} = (∃ λ x → f x ≡ y) ↝⟨ (∃-cong λ _ → Eq.inverse $ Eq.↔⇒≃ $ erased Erased↔) ⟩□ (∃ λ x → Erased (f x ≡ y)) □ _ : _≃_.to ⁻¹≃⁻¹ᴱ p ≡ ⁻¹→⁻¹ᴱ p _ = refl _ @0 _ : _≃_.from ⁻¹≃⁻¹ᴱ p ≡ ⁻¹ᴱ→⁻¹ p _ = refl _ -- Conversions between Contractible and Contractibleᴱ. Contractible→Contractibleᴱ : {@0 A : Type a} → Contractible A → Contractibleᴱ A Contractible→Contractibleᴱ = Σ-map id [_]→ @0 Contractibleᴱ→Contractible : Contractibleᴱ A → Contractible A Contractibleᴱ→Contractible = Σ-map id erased @0 Contractible≃Contractibleᴱ : Contractible A ≃ Contractibleᴱ A Contractible≃Contractibleᴱ = (∃ λ x → ∀ y → x ≡ y) ↝⟨ (∃-cong λ _ → Eq.inverse $ Eq.↔⇒≃ $ erased Erased↔) ⟩□ (∃ λ x → Erased (∀ y → x ≡ y)) □ _ : _≃_.to Contractible≃Contractibleᴱ c ≡ Contractible→Contractibleᴱ c _ = refl _ @0 _ : _≃_.from Contractible≃Contractibleᴱ c ≡ Contractibleᴱ→Contractible c _ = refl _ -- Conversions between CP.Is-equivalence and Is-equivalenceᴱ. Is-equivalence→Is-equivalenceᴱ : {@0 A : Type a} {@0 B : Type b} {@0 f : A → B} → CP.Is-equivalence f → Is-equivalenceᴱ f Is-equivalence→Is-equivalenceᴱ eq y = ⁻¹→⁻¹ᴱ (proj₁₀ (eq y)) , [ cong ⁻¹→⁻¹ᴱ ∘ proj₂ (eq y) ∘ ⁻¹ᴱ→⁻¹ ] @0 Is-equivalenceᴱ→Is-equivalence : Is-equivalenceᴱ f → CP.Is-equivalence f Is-equivalenceᴱ→Is-equivalence eq y = ⁻¹ᴱ→⁻¹ (proj₁ (eq y)) , cong ⁻¹ᴱ→⁻¹ ∘ erased (proj₂ (eq y)) ∘ ⁻¹→⁻¹ᴱ private -- In an erased context CP.Is-equivalence and Is-equivalenceᴱ are -- pointwise equivalent (assuming extensionality). -- -- This lemma is not exported. See Is-equivalence≃Is-equivalenceᴱ -- below, which computes in a different way. @0 Is-equivalence≃Is-equivalenceᴱ′ : {A : Type a} {B : Type b} {f : A → B} → CP.Is-equivalence f ↝[ a ⊔ b ∣ a ⊔ b ] Is-equivalenceᴱ f Is-equivalence≃Is-equivalenceᴱ′ {a = a} {f = f} {k = k} ext = (∀ y → Contractible (f ⁻¹ y)) ↝⟨ (∀-cong ext′ λ _ → H-level-cong ext 0 ⁻¹≃⁻¹ᴱ) ⟩ (∀ y → Contractible (f ⁻¹ᴱ y)) ↝⟨ (∀-cong ext′ λ _ → from-isomorphism Contractible≃Contractibleᴱ) ⟩□ (∀ y → Contractibleᴱ (f ⁻¹ᴱ y)) □ where ext′ = lower-extensionality? k a lzero ext ------------------------------------------------------------------------ -- Some type formers are propositional in erased contexts -- In an erased context Contractibleᴱ is propositional (assuming -- extensionality). @0 Contractibleᴱ-propositional : {A : Type a} → Extensionality a a → Is-proposition (Contractibleᴱ A) Contractibleᴱ-propositional ext = H-level.respects-surjection (_≃_.surjection Contractible≃Contractibleᴱ) 1 (Contractible-propositional ext) -- In an erased context Is-equivalenceᴱ f is a proposition (assuming -- extensionality). -- -- See also Is-equivalenceᴱ-propositional-for-Erased below. @0 Is-equivalenceᴱ-propositional : {A : Type a} {B : Type b} → Extensionality (a ⊔ b) (a ⊔ b) → (f : A → B) → Is-proposition (Is-equivalenceᴱ f) Is-equivalenceᴱ-propositional ext f = H-level.respects-surjection (_≃_.surjection $ Is-equivalence≃Is-equivalenceᴱ′ ext) 1 (CP.propositional ext f) ------------------------------------------------------------------------ -- More conversion lemmas -- In an erased context CP.Is-equivalence and Is-equivalenceᴱ are -- pointwise equivalent (assuming extensionality). @0 Is-equivalence≃Is-equivalenceᴱ : {A : Type a} {B : Type b} {f : A → B} → CP.Is-equivalence f ↝[ a ⊔ b ∣ a ⊔ b ] Is-equivalenceᴱ f Is-equivalence≃Is-equivalenceᴱ {k = equivalence} ext = Eq.with-other-function (Eq.with-other-inverse (Is-equivalence≃Is-equivalenceᴱ′ ext) Is-equivalenceᴱ→Is-equivalence (λ _ → CP.propositional ext _ _ _)) Is-equivalence→Is-equivalenceᴱ (λ _ → Is-equivalenceᴱ-propositional ext _ _ _) Is-equivalence≃Is-equivalenceᴱ = Is-equivalence≃Is-equivalenceᴱ′ _ : _≃_.to (Is-equivalence≃Is-equivalenceᴱ ext) p ≡ Is-equivalence→Is-equivalenceᴱ p _ = refl _ @0 _ : _≃_.from (Is-equivalence≃Is-equivalenceᴱ ext) p ≡ Is-equivalenceᴱ→Is-equivalence p _ = refl _ -- Conversions between CP._≃_ and _≃ᴱ_. ≃→≃ᴱ : {@0 A : Type a} {@0 B : Type b} → A CP.≃ B → A ≃ᴱ B ≃→≃ᴱ = Σ-map id Is-equivalence→Is-equivalenceᴱ @0 ≃ᴱ→≃ : A ≃ᴱ B → A CP.≃ B ≃ᴱ→≃ = Σ-map id Is-equivalenceᴱ→Is-equivalence -- In an erased context CP._≃_ and _≃ᴱ_ are pointwise equivalent -- (assuming extensionality). @0 ≃≃≃ᴱ : {A : Type a} {B : Type b} → (A CP.≃ B) ↝[ a ⊔ b ∣ a ⊔ b ] (A ≃ᴱ B) ≃≃≃ᴱ {A = A} {B = B} ext = A CP.≃ B ↔⟨⟩ (∃ λ f → CP.Is-equivalence f) ↝⟨ (∃-cong λ _ → Is-equivalence≃Is-equivalenceᴱ ext) ⟩ (∃ λ f → Is-equivalenceᴱ f) ↔⟨⟩ A ≃ᴱ B □ _ : _≃_.to (≃≃≃ᴱ ext) p ≡ ≃→≃ᴱ p _ = refl _ @0 _ : _≃_.from (≃≃≃ᴱ ext) p ≡ ≃ᴱ→≃ p _ = refl _ -- An isomorphism relating _⁻¹ᴱ_ to _⁻¹_. Erased-⁻¹ᴱ↔Erased-⁻¹ : {@0 A : Type a} {@0 B : Type b} {@0 f : A → B} {@0 y : B} → Erased (f ⁻¹ᴱ y) ↔ Erased (f ⁻¹ y) Erased-⁻¹ᴱ↔Erased-⁻¹ {f = f} {y = y} = Erased (∃ λ x → Erased (f x ≡ y)) ↝⟨ Erased-Σ↔Σ ⟩ (∃ λ x → Erased (Erased (f (erased x) ≡ y))) ↝⟨ (∃-cong λ _ → Erased-Erased↔Erased) ⟩ (∃ λ x → Erased (f (erased x) ≡ y)) ↝⟨ inverse Erased-Σ↔Σ ⟩□ Erased (∃ λ x → f x ≡ y) □ -- An isomorphism relating Contractibleᴱ to Contractible. Erased-Contractibleᴱ↔Erased-Contractible : {@0 A : Type a} → Erased (Contractibleᴱ A) ↔ Erased (Contractible A) Erased-Contractibleᴱ↔Erased-Contractible = Erased (∃ λ x → Erased (∀ y → x ≡ y)) ↝⟨ Erased-Σ↔Σ ⟩ (∃ λ x → Erased (Erased (∀ y → erased x ≡ y))) ↝⟨ (∃-cong λ _ → Erased-Erased↔Erased) ⟩ (∃ λ x → Erased (∀ y → erased x ≡ y)) ↝⟨ inverse Erased-Σ↔Σ ⟩□ Erased (∃ λ x → ∀ y → x ≡ y) □ ------------------------------------------------------------------------ -- Some results related to Contractibleᴱ -- Contractibleᴱ respects split surjections with erased proofs. Contractibleᴱ-respects-surjection : {@0 A : Type a} {@0 B : Type b} (f : A → B) → @0 Split-surjective f → Contractibleᴱ A → Contractibleᴱ B Contractibleᴱ-respects-surjection {A = A} {B = B} f s h@(x , _) = f x , [ proj₂ (H-level.respects-surjection surj 0 (Contractibleᴱ→Contractible h)) ] where @0 surj : A ↠ B surj = record { logical-equivalence = record { to = f ; from = proj₁ ∘ s } ; right-inverse-of = proj₂ ∘ s } -- "Preimages" (with erased proofs) of an erased function with a -- quasi-inverse with erased proofs are contractible. Contractibleᴱ-⁻¹ᴱ : {@0 A : Type a} {@0 B : Type b} (@0 f : A → B) (g : B → A) (@0 f∘g : ∀ x → f (g x) ≡ x) (@0 g∘f : ∀ x → g (f x) ≡ x) → ∀ y → Contractibleᴱ (f ⁻¹ᴱ y) Contractibleᴱ-⁻¹ᴱ {A = A} {B = B} f g f∘g g∘f y = (g y , [ proj₂ (proj₁ c′) ]) , [ cong ⁻¹→⁻¹ᴱ ∘ proj₂ c′ ∘ ⁻¹ᴱ→⁻¹ ] where @0 A↔B : A ↔ B A↔B = record { surjection = record { logical-equivalence = record { to = f ; from = g } ; right-inverse-of = f∘g } ; left-inverse-of = g∘f } @0 c′ : Contractible (f ⁻¹ y) c′ = Preimage.bijection⁻¹-contractible A↔B y -- If an inhabited type comes with an erased proof of -- propositionality, then it is contractible (with erased proofs). inhabited→Is-proposition→Contractibleᴱ : {@0 A : Type a} → A → @0 Is-proposition A → Contractibleᴱ A inhabited→Is-proposition→Contractibleᴱ x prop = (x , [ prop x ]) -- Some closure properties. Contractibleᴱ-Σ : {@0 A : Type a} {@0 P : A → Type p} → Contractibleᴱ A → (∀ x → Contractibleᴱ (P x)) → Contractibleᴱ (Σ A P) Contractibleᴱ-Σ cA@(a , _) cP = (a , proj₁₀ (cP a)) , [ proj₂ $ Σ-closure 0 (Contractibleᴱ→Contractible cA) (Contractibleᴱ→Contractible ∘ cP) ] Contractibleᴱ-× : {@0 A : Type a} {@0 B : Type b} → Contractibleᴱ A → Contractibleᴱ B → Contractibleᴱ (A × B) Contractibleᴱ-× cA cB = Contractibleᴱ-Σ cA (λ _ → cB) Contractibleᴱ-Π : {@0 A : Type a} {@0 P : A → Type p} → @0 Extensionality a p → (∀ x → Contractibleᴱ (P x)) → Contractibleᴱ ((x : A) → P x) Contractibleᴱ-Π ext c = proj₁₀ ∘ c , [ proj₂ $ Π-closure ext 0 (Contractibleᴱ→Contractible ∘ c) ] Contractibleᴱ-↑ : {@0 A : Type a} → Contractibleᴱ A → Contractibleᴱ (↑ ℓ A) Contractibleᴱ-↑ c@(a , _) = lift a , [ proj₂ $ ↑-closure 0 (Contractibleᴱ→Contractible c) ] ------------------------------------------------------------------------ -- Results that follow if the []-cong axioms hold for one universe -- level module []-cong₁ (ax : []-cong-axiomatisation ℓ) where open Erased-cong ax ax open Erased.[]-cong₁ ax ---------------------------------------------------------------------- -- Some results related to _⁻¹ᴱ_ -- The function _⁻¹ᴱ y respects erased extensional equality. ⁻¹ᴱ-respects-extensional-equality : {@0 B : Type ℓ} {@0 f g : A → B} {@0 y : B} → @0 (∀ x → f x ≡ g x) → f ⁻¹ᴱ y ≃ g ⁻¹ᴱ y ⁻¹ᴱ-respects-extensional-equality {f = f} {g = g} {y = y} f≡g = (∃ λ x → Erased (f x ≡ y)) ↝⟨ (∃-cong λ _ → Erased-cong-≃ (≡⇒↝ _ (cong (_≡ _) $ f≡g _))) ⟩□ (∃ λ x → Erased (g x ≡ y)) □ -- An isomorphism relating _⁻¹ᴱ_ to _⁻¹_. ⁻¹ᴱ[]↔⁻¹[] : {@0 B : Type ℓ} {f : A → Erased B} {@0 y : B} → f ⁻¹ᴱ [ y ] ↔ f ⁻¹ [ y ] ⁻¹ᴱ[]↔⁻¹[] {f = f} {y = y} = (∃ λ x → Erased (f x ≡ [ y ])) ↔⟨ (∃-cong λ _ → Erased-cong-≃ (Eq.≃-≡ $ Eq.↔⇒≃ $ inverse $ erased Erased↔)) ⟩ (∃ λ x → Erased (erased (f x) ≡ y)) ↝⟨ (∃-cong λ _ → Erased-≡↔[]≡[]) ⟩□ (∃ λ x → f x ≡ [ y ]) □ -- Erased "commutes" with _⁻¹ᴱ_. Erased-⁻¹ᴱ : {@0 A : Type a} {@0 B : Type ℓ} {@0 f : A → B} {@0 y : B} → Erased (f ⁻¹ᴱ y) ↔ map f ⁻¹ᴱ [ y ] Erased-⁻¹ᴱ {f = f} {y = y} = Erased (f ⁻¹ᴱ y) ↝⟨ Erased-⁻¹ᴱ↔Erased-⁻¹ ⟩ Erased (f ⁻¹ y) ↝⟨ Erased-⁻¹ ⟩ map f ⁻¹ [ y ] ↝⟨ inverse ⁻¹ᴱ[]↔⁻¹[] ⟩□ map f ⁻¹ᴱ [ y ] □ ---------------------------------------------------------------------- -- Some results related to Contractibleᴱ -- Erased commutes with Contractibleᴱ. Erased-Contractibleᴱ↔Contractibleᴱ-Erased : {@0 A : Type ℓ} → Erased (Contractibleᴱ A) ↝[ ℓ ∣ ℓ ]ᴱ Contractibleᴱ (Erased A) Erased-Contractibleᴱ↔Contractibleᴱ-Erased {A = A} ext = Erased (∃ λ x → Erased ((y : A) → x ≡ y)) ↔⟨ Erased-cong-↔ (∃-cong λ _ → erased Erased↔) ⟩ Erased (∃ λ x → (y : A) → x ≡ y) ↔⟨ Erased-Σ↔Σ ⟩ (∃ λ x → Erased ((y : A) → erased x ≡ y)) ↝⟨ (∃-cong λ _ → Erased-cong? (λ ext → ∀-cong ext λ _ → from-isomorphism (inverse $ erased Erased↔)) ext) ⟩ (∃ λ x → Erased ((y : A) → Erased (erased x ≡ y))) ↝⟨ (∃-cong λ _ → Erased-cong? (λ ext → Π-cong ext (inverse $ erased Erased↔) λ _ → from-isomorphism Erased-≡↔[]≡[]) ext) ⟩□ (∃ λ x → Erased ((y : Erased A) → x ≡ y)) □ -- An isomorphism relating Contractibleᴱ to Contractible. Contractibleᴱ-Erased↔Contractible-Erased : {@0 A : Type ℓ} → Contractibleᴱ (Erased A) ↝[ ℓ ∣ ℓ ] Contractible (Erased A) Contractibleᴱ-Erased↔Contractible-Erased {A = A} ext = Contractibleᴱ (Erased A) ↝⟨ inverse-erased-ext? Erased-Contractibleᴱ↔Contractibleᴱ-Erased ext ⟩ Erased (Contractibleᴱ A) ↔⟨ Erased-Contractibleᴱ↔Erased-Contractible ⟩ Erased (Contractible A) ↝⟨ Erased-H-level↔H-level 0 ext ⟩□ Contractible (Erased A) □ ------------------------------------------------------------------------ -- Results that follow if the []-cong axioms hold for two universe -- levels module []-cong₂ (ax₁ : []-cong-axiomatisation ℓ₁) (ax₂ : []-cong-axiomatisation ℓ₂) where open Erased-cong ax₁ ax₂ ---------------------------------------------------------------------- -- A result related to Contractibleᴱ -- Contractibleᴱ preserves isomorphisms (assuming extensionality). Contractibleᴱ-cong : {A : Type ℓ₁} {B : Type ℓ₂} → @0 Extensionality? k′ (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) → A ↔[ k ] B → Contractibleᴱ A ↝[ k′ ] Contractibleᴱ B Contractibleᴱ-cong {A = A} {B = B} ext A↔B = (∃ λ (x : A) → Erased ((y : A) → x ≡ y)) ↝⟨ (Σ-cong A≃B′ λ _ → Erased-cong? (λ ext → Π-cong ext A≃B′ λ _ → from-isomorphism $ inverse $ Eq.≃-≡ A≃B′) ext) ⟩□ (∃ λ (x : B) → Erased ((y : B) → x ≡ y)) □ where A≃B′ = from-isomorphism A↔B ------------------------------------------------------------------------ -- Results that follow if the []-cong axioms hold for all universe -- levels module []-cong (ax : ∀ {ℓ} → []-cong-axiomatisation ℓ) where private open module BC₁ {ℓ} = []-cong₁ (ax {ℓ = ℓ}) public open module BC₂ {ℓ₁ ℓ₂} = []-cong₂ (ax {ℓ = ℓ₁}) (ax {ℓ = ℓ₂}) public
33.551724
119
0.524024
cbd3b7c6aeb6db17928f32252382022e97c86ec5
389
agda
Agda
src/Algebra/Linear/Core.agda
felko/linear-algebra
d87c5a1eb5dd0569238272e67bce1899616b789a
[ "MIT" ]
15
2019-11-02T14:11:00.000Z
2020-12-30T06:18:08.000Z
src/Algebra/Linear/Core.agda
felko/linear-algebra
d87c5a1eb5dd0569238272e67bce1899616b789a
[ "MIT" ]
null
null
null
src/Algebra/Linear/Core.agda
felko/linear-algebra
d87c5a1eb5dd0569238272e67bce1899616b789a
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Algebra.Linear.Core where open import Relation.Binary open import Relation.Nullary using (¬_) open import Level using (_⊔_) open import Data.Fin using (Fin; suc; zero) VectorAddition : ∀ {c} -> Set c -> Set c VectorAddition V = V -> V -> V ScalarMultiplication : ∀ {c k} -> Set k -> Set c -> Set (k ⊔ c) ScalarMultiplication K V = K -> V -> V
25.933333
63
0.660668
dc4d8f40032e3a363df0c7238b208f642eb93d73
801
agda
Agda
agda-stdlib-0.9/src/Relation/Binary/Simple.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Relation/Binary/Simple.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Relation/Binary/Simple.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Some simple binary relations ------------------------------------------------------------------------ module Relation.Binary.Simple where open import Relation.Binary open import Data.Unit open import Data.Empty open import Level -- Constant relations. Const : ∀ {a b c} {A : Set a} {B : Set b} → Set c → REL A B c Const I = λ _ _ → I -- The universally true relation. Always : ∀ {a ℓ} {A : Set a} → Rel A ℓ Always = Const (Lift ⊤) Always-setoid : ∀ {a ℓ} (A : Set a) → Setoid a ℓ Always-setoid A = record { Carrier = A ; _≈_ = Always ; isEquivalence = record {} } -- The universally false relation. Never : ∀ {a ℓ} {A : Set a} → Rel A ℓ Never = Const (Lift ⊥)
22.885714
72
0.508115
2fba9d77a412901541eee834ac5c285b8b4175a6
1,043
agda
Agda
theorems/cw/cohomology/reconstructed/FirstGroupOnDiag.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/cw/cohomology/reconstructed/FirstGroupOnDiag.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/cw/cohomology/reconstructed/FirstGroupOnDiag.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cohomology.Theory open import cohomology.PtdMapSequence open import groups.ExactSequence open import groups.Exactness open import groups.HomSequence open import cw.CW module cw.cohomology.reconstructed.FirstGroupOnDiag {i} (OT : OrdinaryTheory i) (⊙skel : ⊙Skeleton {i} 1) (ac : ⊙has-cells-with-choice 0 ⊙skel i) where open OrdinaryTheory OT open import cw.cohomology.WedgeOfCells OT open import cw.cohomology.reconstructed.TipCoboundary OT ⊙skel open import cw.cohomology.reconstructed.TipGrid OT ⊙skel ac {- Coker ≃ C(X₁) = C(X) ^ | | C(X₁/X₀) WoC WoC := Wedges of Cells -} open import groups.KernelImage {K = Lift-group {j = i} Unit-group} cst-hom cw-co∂-head CX₁/X₀-is-abelian open import groups.KernelCstImage (Lift-group {j = i} Unit-group) cw-co∂-head CX₁/X₀-is-abelian C-cw-iso-ker/im : C 1 ⊙⟦ ⊙skel ⟧ ≃ᴳ Ker/Im C-cw-iso-ker/im = Ker-cst-quot-Im ⁻¹ᴳ ∘eᴳ Coker-cw-co∂-head ⁻¹ᴳ where
28.972222
104
0.685523
38c8ea832bc83baf3ec010119ef3d9bad1cde15f
7,095
agda
Agda
agda/PiPath.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
agda/PiPath.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
agda/PiPath.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
{-# OPTIONS --no-termination-check #-} module PiPath where open import Level open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------------ -- Universe of types -- The type < v > is the singleton type containing the one value v. We can -- construct values of this type using (singleton v' proof) where the proof -- asserts that v is propositionally equal to v. data <_> {a : Level} {A : Set a} (x : A) : Set a where singleton : (y : A) → y ≡ x → < x > -- The types of Pi include 0, 1, +, * as usual but data B : Set where ZERO : B ONE : B PLUS : B → B → B TIMES : B → B → B RECIP : B → (B → B) → B ⟦_⟧ : B → Set ⟦ ZERO ⟧ = ⊥ ⟦ ONE ⟧ = ⊤ ⟦ PLUS b₁ b₂ ⟧ = ⟦ b₁ ⟧ ⊎ ⟦ b₂ ⟧ ⟦ TIMES b₁ b₂ ⟧ = ⟦ b₁ ⟧ × ⟦ b₂ ⟧ ⟦ RECIP b ⟧ = (v : ⟦ b ⟧) → ⊤ ------------------------------------------------------------------------------ -- syntax and types of combinators ⟷ refers to eval -- eval refers to evalB -- evalB refers to eval and reverse -- reverse refers to reverse' -- reverse' refers to reverse -- syntax and types of combinators data _⟷_ : B → B → Set₁ where unite₊ : {b : B} → PLUS ZERO b ⟷ b uniti₊ : {b : B} → b ⟷ PLUS ZERO b swap₊ : {b₁ b₂ : B} → PLUS b₁ b₂ ⟷ PLUS b₂ b₁ assocl₊ : { b₁ b₂ b₃ : B } → PLUS b₁ (PLUS b₂ b₃) ⟷ PLUS (PLUS b₁ b₂) b₃ assocr₊ : { b₁ b₂ b₃ : B } → PLUS (PLUS b₁ b₂) b₃ ⟷ PLUS b₁ (PLUS b₂ b₃) unite⋆ : { b : B } → TIMES ONE b ⟷ b uniti⋆ : { b : B } → b ⟷ TIMES ONE b swap⋆ : {b₁ b₂ : B} → TIMES b₁ b₂ ⟷ TIMES b₂ b₁ assocl⋆ : { b₁ b₂ b₃ : B } → TIMES b₁ (TIMES b₂ b₃) ⟷ TIMES (TIMES b₁ b₂) b₃ assocr⋆ : { b₁ b₂ b₃ : B } → TIMES (TIMES b₁ b₂) b₃ ⟷ TIMES b₁ (TIMES b₂ b₃) id⟷ : {b : B } → b ⟷ b op : { b₁ b₂ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₁) _◎_ : { b₁ b₂ b₃ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₃) → (b₁ ⟷ b₃) _⊕_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (PLUS b₁ b₂ ⟷ PLUS b₃ b₄) _⊗_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (TIMES b₁ b₂ ⟷ TIMES b₃ b₄) ε : {b₁ : B} → TIMES b₁ (TIMES b₁ (RECIP b₁)) ⟷ b₁ -- Semantics mutual eval : {b₁ b₂ : B} → (c : b₁ ⟷ b₂) → ⟦ b₁ ⟧ → ⟦ b₂ ⟧ eval unite₊ (inj₁ ()) eval unite₊ (inj₂ v) = v eval uniti₊ v = inj₂ v eval swap₊ (inj₁ x) = inj₂ x eval swap₊ (inj₂ y) = inj₁ y eval assocl₊ (inj₁ x) = inj₁ (inj₁ x) eval assocl₊ (inj₂ (inj₁ x)) = inj₁ (inj₂ x) eval assocl₊ (inj₂ (inj₂ x)) = inj₂ x eval assocr₊ (inj₁ (inj₁ x)) = inj₁ x eval assocr₊ (inj₁ (inj₂ y)) = inj₂ (inj₁ y) eval assocr₊ (inj₂ y) = inj₂ (inj₂ y) eval unite⋆ (tt , x) = x eval uniti⋆ v = ( tt , v) eval swap⋆ (v₁ , v₂) = (v₂ , v₁) eval assocl⋆ (x , (y , z)) = ((x , y), z) eval assocr⋆ ((x , y), z) = (x , (y , z)) eval id⟷ v = v eval (op c) v = evalB c v eval (c₁ ◎ c₂) v = eval c₂ (eval c₁ v) eval (c₁ ⊕ c₂) (inj₁ x) = inj₁ (eval c₁ x) eval (c₁ ⊕ c₂) (inj₂ y) = inj₂ (eval c₂ y) eval (c₁ ⊗ c₂) (x , y) = (eval c₁ x , eval c₂ y) eval ε (x , y , z) = x evalB : {b₁ b₂ : B} → (c : b₁ ⟷ b₂) → ⟦ b₂ ⟧ → ⟦ b₁ ⟧ evalB uniti₊ (inj₁ ()) evalB uniti₊ (inj₂ v) = v evalB unite₊ v = inj₂ v evalB swap₊ (inj₁ x) = inj₂ x evalB swap₊ (inj₂ y) = inj₁ y evalB assocr₊ (inj₁ x) = inj₁ (inj₁ x) evalB assocr₊ (inj₂ (inj₁ x)) = inj₁ (inj₂ x) evalB assocr₊ (inj₂ (inj₂ x)) = inj₂ x evalB assocl₊ (inj₁ (inj₁ x)) = inj₁ x evalB assocl₊ (inj₁ (inj₂ y)) = inj₂ (inj₁ y) evalB assocl₊ (inj₂ y) = inj₂ (inj₂ y) evalB uniti⋆ (tt , x) = x evalB unite⋆ v = ( tt , v) evalB swap⋆ (v₁ , v₂) = (v₂ , v₁) evalB assocr⋆ (x , (y , z)) = ((x , y), z) evalB assocl⋆ ((x , y), z) = (x , (y , z)) evalB id⟷ v = v evalB (op c) v = eval c v evalB (c₁ ◎ c₂) v = evalB c₁ (evalB c₂ v) evalB (c₁ ⊕ c₂) (inj₁ x) = inj₁ (evalB c₁ x) evalB (c₁ ⊕ c₂) (inj₂ y) = inj₂ (evalB c₂ y) evalB (c₁ ⊗ c₂) (x , y) = (evalB c₁ x , evalB c₂ y) evalB ε x = x , x , (λ _ → tt) -- reversibility mutual reverse : {b₁ b₂ : B} (c : b₁ ⟷ b₂) → (v : ⟦ b₁ ⟧) → v ≡ evalB c (eval c v) reverse unite₊ (inj₁ ()) reverse unite₊ (inj₂ y) = refl reverse uniti₊ v = refl reverse swap₊ (inj₁ x) = refl reverse swap₊ (inj₂ y) = refl reverse assocl₊ (inj₁ x) = refl reverse assocl₊ (inj₂ (inj₁ x)) = refl reverse assocl₊ (inj₂ (inj₂ y)) = refl reverse assocr₊ (inj₁ (inj₁ x)) = refl reverse assocr₊ (inj₁ (inj₂ y)) = refl reverse assocr₊ (inj₂ y) = refl reverse unite⋆ v = refl reverse uniti⋆ v = refl reverse swap⋆ v = refl reverse assocl⋆ v = refl reverse assocr⋆ v = refl reverse id⟷ v = refl reverse (op c) v = reverse' c v reverse (c ◎ c₁) v = trans (reverse c v) (cong (evalB c) (reverse c₁ (eval c v))) reverse (c ⊕ _) (inj₁ x) = cong inj₁ (reverse c x) reverse (_ ⊕ c) (inj₂ y) = cong inj₂ (reverse c y) reverse (c₁ ⊗ c₂) (x , y) = cong₂ _,_ (reverse c₁ x) (reverse c₂ y) reverse ε (x , y , z) = {!!} reverse' : {b₁ b₂ : B} (c : b₁ ⟷ b₂) → (w : ⟦ b₂ ⟧) → w ≡ eval c (evalB c w) reverse' unite₊ w = refl reverse' uniti₊ (inj₁ ()) reverse' uniti₊ (inj₂ y) = refl reverse' swap₊ (inj₁ x) = refl reverse' swap₊ (inj₂ y) = refl reverse' assocl₊ (inj₁ (inj₁ x)) = refl reverse' assocl₊ (inj₁ (inj₂ y)) = refl reverse' assocl₊ (inj₂ y) = refl reverse' assocr₊ (inj₁ x) = refl reverse' assocr₊ (inj₂ (inj₁ x)) = refl reverse' assocr₊ (inj₂ (inj₂ y)) = refl reverse' unite⋆ w = refl reverse' uniti⋆ w = refl reverse' swap⋆ w = refl reverse' assocl⋆ w = refl reverse' assocr⋆ w = refl reverse' id⟷ w = refl reverse' (op c) w = reverse c w reverse' (c ◎ c₁) w = trans (reverse' c₁ w) (cong (eval c₁) (reverse' c (evalB c₁ w))) reverse' (c ⊕ _) (inj₁ x) = cong inj₁ (reverse' c x) reverse' (_ ⊕ c) (inj₂ y) = cong inj₂ (reverse' c y) reverse' (c₁ ⊗ c₂) (x , y) = cong₂ _,_ (reverse' c₁ x) (reverse' c₂ y) reverse' ε _ = refl ------------------------------------------------------------------------------ -- Proofs of reversibility {- -- they are properly inverse of each other -- easy direction η∘ε : {b : B} (v : ⟦ b ⟧) → eval {b} (η ◎ ε) v ≡ v η∘ε _ = refl -- hard direction. ε∘η : {b : B} (v : ⟦ b ⟧) → { w : Σ < v > (λ _ → < v > → ⊤) } → (eval {DTIMES b (leftIdemp {b}) } {_} (ε ◎ η) (v , w)) ≡ (v , w) ε∘η {b} v {(singleton .v refl , r )} = cong f {v , v , (singleton v refl)} refl where f : Σ ⟦ b ⟧ (λ x → Σ ⟦ b ⟧ (λ y → < v >)) → Σ ⟦ b ⟧ (λ z → Σ < z > (λ x → < z > → ⊤ )) f (_ , (_ , j)) = (v , j , r) ------------------------------------------------------------------------------ -- Examples -- Now need to write some actual programs... makeFunc : {b₁ b₂ : B} → (c : b₁ ⟷ b₂) → b₁ ⟷ DTIMES b₁ (λ x → TIMES (SING (eval c x)) (RECIP x)) makeFunc c = η ◎ slide (λ {_} → (lift c refl) ⊗ id⟷) -} ------------------------------------------------------------------------------ ------------------------------------------------------------------------------
35.298507
79
0.497111
0461d168c961cea0b06e1cde29d8dc023f9f037c
3,777
agda
Agda
src/DualTail1.agda
peterthiemann/dual-session
7a8bc1f6b2f808bd2a22c592bd482dbcc271979c
[ "BSD-2-Clause" ]
1
2022-02-13T05:43:25.000Z
2022-02-13T05:43:25.000Z
src/DualTail1.agda
peterthiemann/dual-session
7a8bc1f6b2f808bd2a22c592bd482dbcc271979c
[ "BSD-2-Clause" ]
null
null
null
src/DualTail1.agda
peterthiemann/dual-session
7a8bc1f6b2f808bd2a22c592bd482dbcc271979c
[ "BSD-2-Clause" ]
1
2019-12-07T16:12:50.000Z
2019-12-07T16:12:50.000Z
module DualTail1 where open import Data.Nat open import Data.Fin using (Fin; zero; suc) open import Data.Product open import Function using (id; _∘_) open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Types.Direction open import Types.IND1 as IND hiding (GType; Type; SType; _≈_; _≈'_) import Types.COI as COI open import Types.Tail1 private variable n : ℕ -- instead of unrolling and substituting, we maintain a stack of bodies of recursive types data Stack {GType : ℕ → Set} : ℕ → Set where ε : Stack 0 ⟪_,_⟫ : Stack {GType} n → GType (suc n) → Stack (suc n) -- obtain an entry from the stack -- technically m = n - i, but we don't need to know get : ∀ {GType} (i : Fin n) → Stack {GType} n → Σ ℕ λ m → Stack {GType} m × GType (suc m) get zero ⟪ σ , x ⟫ = _ , (σ , x) get (suc i) ⟪ σ , x ⟫ = get i σ -- the dual of a stack dual-stack : Stack {GType} n → Stack {GType} n dual-stack ε = ε dual-stack ⟪ σ , g ⟫ = ⟪ dual-stack σ , dualG g ⟫ -- relate a stack entry to the corresponding entry on the dual stack get-dual-stack : (x : Fin n) (σ : Stack n) → get x (dual-stack σ) ≡ map id (map dual-stack dualG) (get x σ) get-dual-stack zero ⟪ σ , x ⟫ = refl get-dual-stack (suc x) ⟪ σ , x₁ ⟫ = get-dual-stack x σ -- stacked version of general mapping of inductive session type to COI ind2coiS : Stack {IND.GType} n → IND.SType n → COI.SType ind2coiG : Stack {IND.GType} n → IND.GType n → COI.STypeF COI.SType ind2coiT : Stack {IND.GType} n → IND.TType n → COI.Type COI.SType.force (ind2coiS σ (gdd G)) = ind2coiG σ G COI.SType.force (ind2coiS σ (rec G)) = ind2coiG ⟪ σ , G ⟫ G COI.SType.force (ind2coiS σ (var x)) with get x σ ... | m , σ' , gxs = ind2coiG ⟪ σ' , gxs ⟫ gxs ind2coiG σ (transmit d T S) = COI.transmit d (ind2coiT σ T) (ind2coiS σ S) ind2coiG σ (choice d m alt) = COI.choice d m (ind2coiS σ ∘ alt) ind2coiG σ end = COI.end ind2coiT σ TUnit = COI.TUnit ind2coiT σ TInt = COI.TInt ind2coiT σ (TPair T T₁) = COI.TPair (ind2coiT σ T) (ind2coiT σ T₁) ind2coiT σ (TChan S) = COI.TChan (ind2coiS σ S) -- mapping tail recursive session types to coinductive session types -- relies on a stack to unfold variables on the fly tail2coiT : Type → COI.Type tail2coiS : Stack {GType} n → SType n → COI.SType tail2coiG : Stack {GType} n → GType n → COI.STypeF COI.SType tail2coiT TUnit = COI.TUnit tail2coiT TInt = COI.TInt tail2coiT (TPair t t₁) = COI.TPair (tail2coiT t) (tail2coiT t₁) tail2coiT (TChan s) = COI.TChan (ind2coiS ε s) COI.SType.force (tail2coiS σ (gdd g)) = tail2coiG σ g COI.SType.force (tail2coiS σ (rec g)) = tail2coiG ⟪ σ , g ⟫ g COI.SType.force (tail2coiS σ (var x)) with get x σ ... | m , σ' , gxs = tail2coiG ⟪ σ' , gxs ⟫ gxs tail2coiG σ (transmit d t s) = COI.transmit d (tail2coiT t) (tail2coiS σ s) tail2coiG σ (choice d m alt) = COI.choice d m (tail2coiS σ ∘ alt) tail2coiG σ end = COI.end -- get coinductive bisimulation in scope _≈_ = COI._≈_ _≈'_ = COI._≈'_ -- main proposition dual-tailS : (σ : Stack {GType} n) (s : SType n) → COI.dual (tail2coiS σ s) ≈ tail2coiS (dual-stack σ) (dualS s) dual-tailG : (σ : Stack {GType} n) (g : GType n) → COI.dualF (tail2coiG σ g) ≈' tail2coiG (dual-stack σ) (dualG g) COI.Equiv.force (dual-tailS σ (gdd g)) = dual-tailG σ g COI.Equiv.force (dual-tailS σ (rec g)) = dual-tailG ⟪ σ , g ⟫ g COI.Equiv.force (dual-tailS σ (var x)) rewrite get-dual-stack x σ with get x σ ... | m , σ' , g = dual-tailG ⟪ σ' , g ⟫ g dual-tailG σ (transmit d t s) = COI.eq-transmit (dual-dir d) COI.≈ᵗ-refl (dual-tailS σ s) dual-tailG σ (choice d m alt) = COI.eq-choice (dual-dir d) (dual-tailS σ ∘ alt) dual-tailG σ end = COI.eq-end -- corrolary for SType 0 dual-tail : ∀ s → COI.dual (tail2coiS ε s) ≈ tail2coiS ε (dualS s) dual-tail = dual-tailS ε
31.739496
90
0.663754
13fee178b5e35457a7f347776d51f9aa9cdd0e7b
1,283
agda
Agda
vendor/stdlib/src/Data/DifferenceVec.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Data/DifferenceVec.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Data/DifferenceVec.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- Vectors with fast append ------------------------------------------------------------------------ module Data.DifferenceVec where open import Data.DifferenceNat open import Data.Vec as V using (Vec) open import Data.Function import Data.Nat as N infixr 5 _∷_ _++_ DiffVec : Set → Diffℕ → Set DiffVec A m = ∀ {n} → Vec A n → Vec A (m n) [] : ∀ {A} → DiffVec A 0# [] = λ k → k _∷_ : ∀ {A n} → A → DiffVec A n → DiffVec A (suc n) x ∷ xs = λ k → V._∷_ x (xs k) [_] : ∀ {A} → A → DiffVec A 1# [ x ] = x ∷ [] _++_ : ∀ {A m n} → DiffVec A m → DiffVec A n → DiffVec A (m + n) xs ++ ys = λ k → xs (ys k) toVec : ∀ {A n} → DiffVec A n → Vec A (toℕ n) toVec xs = xs V.[] -- fromVec xs is linear in the length of xs. fromVec : ∀ {A n} → Vec A n → DiffVec A (fromℕ n) fromVec xs = λ k → xs ⟨ V._++_ ⟩ k head : ∀ {A n} → DiffVec A (suc n) → A head xs = V.head (toVec xs) tail : ∀ {A n} → DiffVec A (suc n) → DiffVec A n tail xs = λ k → V.tail (xs k) take : ∀ {a} m {n} → DiffVec a (fromℕ m + n) → DiffVec a (fromℕ m) take N.zero xs = [] take (N.suc m) xs = head xs ∷ take m (tail xs) drop : ∀ {a} m {n} → DiffVec a (fromℕ m + n) → DiffVec a n drop N.zero xs = xs drop (N.suc m) xs = drop m (tail xs)
25.66
72
0.493375
1ea83136a88308cbaac07074192e8218a5e8055b
1,267
agda
Agda
test/Succeed/UnquoteExtLam.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/UnquoteExtLam.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/UnquoteExtLam.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Common.Reflection open import Common.Prelude open import Common.Equality open import Agda.Builtin.Sigma pattern `Nat = def (quote Nat) [] pattern _`→_ a b = pi (vArg a) (abs "_" b) pattern `Set = sort (lit 0) pattern `⊥ = def (quote ⊥) [] pattern `zero = con (quote zero) [] pattern `suc n = con (quote suc) (vArg n ∷ []) prDef : FunDef prDef = funDef (`Nat `→ `Nat) ( clause [] [] (extLam ( clause [] (vArg `zero ∷ []) `zero ∷ clause (("x" , vArg `Nat) ∷ []) (vArg (`suc (var 0)) ∷ []) (var 0 []) ∷ []) []) ∷ [] ) magicDef : FunDef magicDef = funDef (pi (hArg `Set) (abs "A" (`⊥ `→ var 1 []))) ( clause [] [] (extLam ( absurdClause (("()" , vArg `⊥) ∷ []) (vArg (absurd 0) ∷ []) ∷ []) []) ∷ [] ) unquoteDecl magic = define (vArg magic) magicDef checkMagic : {A : Set} → ⊥ → A checkMagic = magic unquoteDecl pr = define (vArg pr) prDef magic′ : {A : Set} → ⊥ → A magic′ = unquote (give (extLam (absurdClause (("()" , vArg `⊥) ∷ []) (vArg (absurd 0) ∷ []) ∷ []) [])) module Pred (A : Set) where unquoteDecl pr′ = define (vArg pr′) prDef check : pr 10 ≡ 9 check = refl check′ : Pred.pr′ ⊥ 10 ≡ 9 check′ = refl
26.395833
102
0.509866
2980f84052b6f1a00e58f67b4fb40adffdeafbb1
2,569
agda
Agda
BasicIPC/Metatheory/Hilbert-TarskiGluedClosedImplicit.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicIPC/Metatheory/Hilbert-TarskiGluedClosedImplicit.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicIPC/Metatheory/Hilbert-TarskiGluedClosedImplicit.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
module BasicIPC.Metatheory.Hilbert-TarskiGluedClosedImplicit where open import BasicIPC.Syntax.Hilbert public open import BasicIPC.Semantics.TarskiGluedClosedImplicit public open ImplicitSyntax (∅ ⊢_) public -- Completeness with respect to a particular model, for closed terms only. module _ {{_ : Model}} where reify : ∀ {A} → ⊩ A → ∅ ⊢ A reify {α P} s = syn s reify {A ▻ B} s = syn s reify {A ∧ B} s = pair (reify (π₁ s)) (reify (π₂ s)) reify {⊤} s = unit -- Additional useful equipment. module _ {{_ : Model}} where ⟪K⟫ : ∀ {A B} → ⊩ A → ⊩ B ▻ A ⟪K⟫ a = app ck (reify a) ⅋ K a ⟪S⟫′ : ∀ {A B C} → ⊩ A ▻ B ▻ C → ⊩ (A ▻ B) ▻ A ▻ C ⟪S⟫′ s₁ = app cs (reify s₁) ⅋ λ s₂ → app (app cs (reify s₁)) (reify s₂) ⅋ ⟪S⟫ s₁ s₂ _⟪,⟫′_ : ∀ {A B} → ⊩ A → ⊩ B ▻ A ∧ B _⟪,⟫′_ a = app cpair (reify a) ⅋ _,_ a -- Soundness with respect to all models, or evaluation. eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A eval (var i) γ = lookup i γ eval (app t u) γ = eval t γ ⟪$⟫ eval u γ eval ci γ = ci ⅋ I eval ck γ = ck ⅋ ⟪K⟫ eval cs γ = cs ⅋ ⟪S⟫′ eval cpair γ = cpair ⅋ _⟪,⟫′_ eval cfst γ = cfst ⅋ π₁ eval csnd γ = csnd ⅋ π₂ eval unit γ = ∙ -- Correctness of evaluation with respect to conversion. eval✓ : ∀ {{_ : Model}} {A Γ} {t t′ : Γ ⊢ A} → t ⋙ t′ → eval t ≡ eval t′ eval✓ refl⋙ = refl eval✓ (trans⋙ p q) = trans (eval✓ p) (eval✓ q) eval✓ (sym⋙ p) = sym (eval✓ p) eval✓ (congapp⋙ p q) = cong² _⟦$⟧_ (eval✓ p) (eval✓ q) eval✓ (congi⋙ p) = cong I (eval✓ p) eval✓ (congk⋙ p q) = cong² K (eval✓ p) (eval✓ q) eval✓ (congs⋙ p q r) = cong³ ⟦S⟧ (eval✓ p) (eval✓ q) (eval✓ r) eval✓ (congpair⋙ {A} {B} p q) = cong² (_⟦,⟧_ {A} {B}) (eval✓ p) (eval✓ q) eval✓ (congfst⋙ {A} {B} p) = cong (⟦π₁⟧ {A} {B}) (eval✓ p) eval✓ (congsnd⋙ {A} {B} p) = cong (⟦π₂⟧ {A} {B}) (eval✓ p) eval✓ beta▻ₖ⋙ = refl eval✓ beta▻ₛ⋙ = refl eval✓ beta∧₁⋙ = refl eval✓ beta∧₂⋙ = refl eval✓ eta∧⋙ = refl eval✓ eta⊤⋙ = refl -- The canonical model. private instance canon : Model canon = record { ⊩ᵅ_ = λ P → ∅ ⊢ α P } -- Completeness with respect to all models, or quotation, for closed terms only. quot₀ : ∀ {A} → ∅ ⊨ A → ∅ ⊢ A quot₀ t = reify (t ∙) -- Normalisation by evaluation, for closed terms only. norm₀ : ∀ {A} → ∅ ⊢ A → ∅ ⊢ A norm₀ = quot₀ ∘ eval -- TODO: Correctness of normalisation with respect to conversion.
28.230769
80
0.511872
396718d892013ec0be7d8f885cb0fea80345c50b
272
agda
Agda
test/Succeed/Issue1652-2.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/Succeed/Issue1652-2.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue1652-2.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
{- Example by Andreas (2015-09-18) -} {-# OPTIONS --rewriting --confluence-check #-} open import Common.Prelude open import Common.Equality {-# BUILTIN REWRITE _≡_ #-} module _ (A : Set) where postulate plus0p : ∀{x} → (x + zero) ≡ x {-# REWRITE plus0p #-}
17
46
0.621324
9a7d39318724c1838dfb23d77bfece152c67ab84
250
agda
Agda
test/Fail/Issue998b.agda
alex-mckenna/agda
78b62cd24bbd570271a7153e44ad280e52ef3e29
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/Issue998b.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue998b.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
postulate A : Set data D : Set → Set₁ where d : (A : Set) → D A f : Set → D A f A = d A -- Expected error: -- A != A of type Set -- (because one is a variable and one a defined identifier) -- when checking that the expression d A has type D A
17.857143
59
0.624
1eee78bff8ec411aee192e49b1aaca2df5beaaac
1,059
agda
Agda
Base/Data/DependentList.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
10
2015-03-04T06:09:20.000Z
2019-07-19T07:06:59.000Z
Base/Data/DependentList.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
6
2015-07-01T18:09:31.000Z
2017-05-04T13:53:59.000Z
Base/Data/DependentList.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
1
2016-02-18T12:26:44.000Z
2016-02-18T12:26:44.000Z
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Reexport Data.List.All from the standard library. -- -- At one point, we reinvented Data.List.All from the Agda -- standard library, under the name dependent list. We later -- replaced our reinvention by this adapter module that just -- exports the standard library's version with partly different -- names. ------------------------------------------------------------------------ module Base.Data.DependentList where open import Data.List.All public using ( head ; tail ; map ; tabulate ) renaming ( All to DependentList ; _∷_ to _•_ ; [] to ∅ ) -- Maps a binary function over two dependent lists. -- Should this be in the Agda standard library? zipWith : ∀ {a p q r} {A : Set a} {P : A → Set p} {Q : A → Set q} {R : A → Set r} → (f : {a : A} → P a → Q a → R a) → ∀ {xs} → DependentList P xs → DependentList Q xs → DependentList R xs zipWith f ∅ ∅ = ∅ zipWith f (p • ps) (q • qs) = f p q • zipWith f ps qs
30.257143
83
0.548631
4bafbfb38a2d9b2565e684c32af7d9bb5bcf4a86
265
agda
Agda
test/fail/BadInductionRecursion1.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/fail/BadInductionRecursion1.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/BadInductionRecursion1.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module BadInductionRecursion1 where data Unit : Set where unit : Unit mutual data D : Set where d : forall u -> (D′ u -> D′ u) -> D D′ : Unit -> Set D′ unit = D _·_ : D -> D -> D d unit f · x = f x ω : D ω = d unit (\x -> x · x) Ω : D Ω = ω · ω
12.045455
39
0.501887
a0ec74f0e3deed159eacd3810506d3a42120f155
108
agda
Agda
test/Fail/Impossible.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Impossible.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Impossible.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Impossible where -- The only way to trigger an __IMPOSSIBLE__ that isn't a bug. {-# IMPOSSIBLE #-}
18
62
0.722222
0ecdefc1c504bd23fda29c6733c76562fa9b8d5c
688
agda
Agda
src/fot/GroupTheory/AbelianGroup/Base.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/GroupTheory/AbelianGroup/Base.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/GroupTheory/AbelianGroup/Base.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Abelian group base ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module GroupTheory.AbelianGroup.Base where -- We use the group theory base open import GroupTheory.Base public ------------------------------------------------------------------------------ -- Abelian group theory axioms -- We only need to add the commutativity axiom. postulate comm : ∀ a b → a · b ≡ b · a {-# ATP axiom comm #-}
32.761905
78
0.405523
04557016a6765fbdb18bb660de8ad43fd6a43ed4
6,832
agda
Agda
examples/ParenDepTac.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
examples/ParenDepTac.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/ParenDepTac.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- Author: Makoto Takeyama module ParenDepTac where ---------------------------------------------------------------------- -- Preliminary ---------------------------------------------------------------------- infix 3 _≡_ data _≡_ {A : Set}(x : A) : A -> Set where refl : x ≡ x subst : {A : Set}(C : A -> Set){x y : A} -> x ≡ y -> C y -> C x subst C refl c = c sym : {A : Set}{x y : A} -> x ≡ y -> y ≡ x sym refl = refl cong : {A B : Set}(f : A -> B){x y : A} -> x ≡ y -> f x ≡ f y cong f refl = refl infixl 2 _`tran`_ _`tran`_ : {A : Set}{x y z : A} -> x ≡ y -> y ≡ z -> x ≡ z refl `tran` refl = refl data FALSE : Set where data TRUE : Set where tt : TRUE data Nat : Set where zer : Nat suc : Nat -> Nat _+_ : Nat -> Nat -> Nat zer + n = n suc m + n = suc ( m + n ) ---------------------------------------------------------------------- -- Strings of parentheses ---------------------------------------------------------------------- infix 5 ≪_ ≫_ data Parens : Set where ε : Parens ≪_ : Parens -> Parens ≫_ : Parens -> Parens infixr 5 _·_ _·_ : Parens -> Parens -> Parens ε · ys = ys ≪ xs · ys = ≪ (xs · ys) ≫ xs · ys = ≫ (xs · ys) ·ass : (xs : Parens){ys zs : Parens} -> xs · (ys · zs) ≡ (xs · ys) · zs ·ass ε = refl ·ass (≪ xs) = cong ≪_ (·ass xs) ·ass (≫ xs) = cong ≫_ (·ass xs) ·unitR : {xs : Parens} -> xs · ε ≡ xs ·unitR {ε} = refl ·unitR {≪ xs} = cong ≪_ ·unitR ·unitR {≫ xs} = cong ≫_ ·unitR _≫' : Parens -> Parens xs ≫' = xs · ≫ ε _≪' : Parens -> Parens xs ≪' = xs · ≪ ε ---------------------------------------------------------------------- -- A poorman's tactics for equational reasoning ---------------------------------------------------------------------- infixr 5 _⊙_ data Exp : Set where Var : Nat -> Exp Lit : Parens -> Exp _⊙_ : Exp -> Exp -> Exp nf0 : Exp -> Exp -> Exp nf0 (Var x) e0 = Var x ⊙ e0 nf0 (Lit a) e0 = Lit a ⊙ e0 nf0 (e1 ⊙ e2) e0 = nf0 e1 (nf0 e2 e0) nf : Exp -> Exp nf e = nf0 e (Lit ε) Env = Nat -> Parens module withEnv(ρ : Env) where ⟦_⟧ : Exp -> Parens ⟦ Var x ⟧ = ρ x ⟦ Lit a ⟧ = a ⟦ e1 ⊙ e2 ⟧ = ⟦ e1 ⟧ · ⟦ e2 ⟧ nfSound0 : (e e0 : Exp) -> ⟦ e ⊙ e0 ⟧ ≡ ⟦ nf0 e e0 ⟧ nfSound0 (Var x) e0 = refl nfSound0 (Lit a) e0 = refl nfSound0 (e1 ⊙ e2) e0 = sym (·ass ⟦ e1 ⟧) `tran` cong (_·_ ⟦ e1 ⟧) (nfSound0 e2 e0) `tran` nfSound0 e1 (nf0 e2 e0) nfSound : (e : Exp) -> ⟦ e ⟧ ≡ ⟦ nf e ⟧ nfSound e = sym ·unitR `tran` nfSound0 e (Lit ε) tac : (e1 e2 : Exp) -> nf e1 ≡ nf e2 -> ⟦ e1 ⟧ ≡ ⟦ e2 ⟧ tac e1 e2 p = nfSound e1 `tran` subst (\x -> ⟦ x ⟧ ≡ ⟦ nf e2 ⟧) p refl `tran` sym (nfSound e2) module tac4 (a0 a1 a2 a3 : Parens) where ρ : Env ρ zer = a0 ρ (suc zer) = a1 ρ (suc (suc zer)) = a2 ρ (suc (suc (suc zer))) = a3 ρ (suc (suc (suc (suc _ )))) = ε open module tac4' = withEnv ρ public using (tac) v0 = Var zer v1 = Var (suc zer) v2 = Var (suc (suc zer)) v3 = Var (suc (suc (suc zer))) [≪] = Lit (≪ ε) [≫] = Lit (≫ ε) ---------------------------------------------------------------------- -- Derivations of S and T grammars -- indexed by their underlying strings ---------------------------------------------------------------------- infix 3 _∈S _∈T infix 4 <_> _⟨_⟩ infixl 4 _•_ data _∈S : Parens -> Set where εS : ε ∈S <_> : {xs : Parens} -> xs ∈S -> ≪ xs ≫' ∈S _•_ : {xs ys : Parens} -> xs ∈S -> ys ∈S -> xs · ys ∈S data _∈T : Parens -> Set where εT : ε ∈T _⟨_⟩ : {xs ys : Parens} -> xs ∈T -> ys ∈T -> xs · ≪ ys ≫' ∈T ---------------------------------------------------------------------- -- Equivalence of S and T grammars ---------------------------------------------------------------------- infixl 3 _○_ _○_ : {xs ys : Parens} -> xs ∈T -> ys ∈T -> xs · ys ∈T t ○ εT = subst _∈T ·unitR t _○_ {xs} t (t1 ⟨ t2 ⟩) = subst _∈T (·ass xs) ((t ○ t1) ⟨ t2 ⟩) S⊂T : {xs : Parens} -> xs ∈S -> xs ∈T S⊂T εS = εT S⊂T (< s >) = εT ⟨ S⊂T s ⟩ S⊂T (s1 • s2) = S⊂T s1 ○ S⊂T s2 T⊂S : {xs : Parens} -> xs ∈T -> xs ∈S T⊂S εT = εS T⊂S (t1 ⟨ t2 ⟩) = T⊂S t1 • < T⊂S t2 > ---------------------------------------------------------------------- -- Recursively defined test function ---------------------------------------------------------------------- Test : Nat -> Parens -> Set Test n (≪ xs) = Test (suc n) xs Test (suc n) (≫ xs) = Test n xs Test zer (≫ xs) = FALSE Test (suc n) ε = FALSE Test zer ε = TRUE ---------------------------------------------------------------------- -- Soundness of Test ---------------------------------------------------------------------- lemTest : (m : Nat)(xs : Parens) -> Test m xs -> (n : Nat)(ys : Parens) -> Test n ys -> Test (m + n) (xs · ys) lemTest m (≪ xs) p = lemTest (suc m) xs p lemTest (suc m) (≫ xs) p = lemTest m xs p lemTest zer (≫ xs) () lemTest (suc m) ε () lemTest zer ε tt = \ n ys q -> q sound : {xs : Parens} -> xs ∈S -> Test zer xs sound εS = tt sound (<_>{xs} s) = lemTest zer xs (sound s) (suc zer) (≫ ε) tt sound (_•_{xs}{ys} s1 s2) = lemTest zer xs (sound s1) zer ys (sound s2) ---------------------------------------------------------------------- -- Completeness of Test ---------------------------------------------------------------------- complete : (xs : Parens) -> Test zer xs -> xs ∈S complete xs0 p0 = parse init εS xs0 p0 where data St : Nat -> Parens -> Set where init : St zer ε _*_≪ : {n : Nat} -> {xs : Parens} -> St n xs -> {ys : Parens} -> ys ∈S -> St (suc n) (xs · ys ≪') stPar : forall {n xs} -> St n xs -> Parens stPar {xs = xs} _ = xs ∈SPar : forall {xs} -> xs ∈S -> Parens ∈SPar {xs} _ = xs parse : {n : Nat} -> {xs : Parens} -> St n xs -> {ys : Parens} -> ys ∈S -> (zs : Parens) -> Test n zs -> xs · ys · zs ∈S -- <SHIFT> (st , s , ≪ zs ) ↦ (st * s ≪ , εS , zs) -- <REDUCE> (st * s3 ≪ , s , ≫ zs ) ↦ (st , s3 • < s > , zs) -- <FINISH> (init , s , ε ) ↦ s parse {_} {xs} st {ys} s (≪ zs) p = subst _∈S eq (parse (st * s ≪) εS zs p) where open module foo = tac4 xs ys zs ε eq = tac (v0 ⊙ v1 ⊙ [≪] ⊙ v2) ((v0 ⊙ v1 ⊙ [≪]) ⊙ v2) refl parse (st * s3 ≪) {ys} s (≫ zs) p = subst _∈S eq (parse st (s3 • < s >) zs p) where open module foo = tac4 (stPar st) (∈SPar s3) ys zs eq = tac ((v0 ⊙ v1 ⊙ [≪]) ⊙ v2 ⊙ [≫] ⊙ v3) ( v0 ⊙ (v1 ⊙ [≪] ⊙ v2 ⊙ [≫]) ⊙ v3) refl parse ( _ * _ ≪) _ ε () parse init _ (≫ zs) () parse init s ε tt = subst _∈S ·unitR s
28.949153
79
0.384807
591ce2add6f3a556dea4a21a18db0f993815df61
3,184
agda
Agda
test/Succeed/Issue1435.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1435.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1435.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Reported by nils.anders.danielsson, Feb 17, 2015 -- See also Issue 292 , Issue 1406 , and Issue 1427. -- The code below is accepted by Agda 2.4.2.2, but not by the current -- maintenance or master branches. data Box (A : Set) : Set where [_] : A → Box A data _≡_ (A : Set) : Set → Set₁ where refl : A ≡ A data _≅_ {A : Set₁} (x : A) : {B : Set₁} → B → Set₂ where refl : x ≅ x -- C could be a typed DSEL. data C : Set → Set₁ where c₁ c₂ : (A : Set) → C (Box A) -- If A is considered forced, the code no longer type-checks. -- D could be some kind of semantics for C. data D : {A : Set} → C A → Set₂ where d₁ : (A : Set) → D (c₁ A) d₂ : (A : Set) → D (c₂ A) module Doesn't-work where -- Let's try to write an eliminator for the part of the semantics -- that concerns c₁ programs. The basic approach doesn't work: D-elim-c₁ : (P : {A : Set} → D (c₁ A) → Set₂) → ((A : Set) → P (d₁ A)) → {A : Set} (x : D (c₁ A)) → P x D-elim-c₁ P p (d₁ A) = p A -- The following trick also fails (but for some reason the absurd -- case is accepted): -- Jesper 2015-12-18 update: this is no longer accepted by the new unifier. --D-elim-c₁-helper : -- (P : {A B : Set} {c : C A} → -- D c → A ≡ Box B → c ≅ c₁ B → Set₂) → -- ((A : Set) → P (d₁ A) refl refl) → -- {A B : Set} {c : C A} -- (x : D c) (eq₂ : c ≅ c₁ B) (eq₁ : A ≡ Box B) → P x eq₁ eq₂ --D-elim-c₁-helper P p (d₂ A) () _ --D-elim-c₁-helper P p (d₁ A) refl refl = p A module Works where -- I can define the eliminators by first defining and proving no -- confusion (following McBride, Goguen and McKinna). However, this -- requires a fair amount of work, and easy dependent pattern -- matching is arguably one of the defining features of Agda. -- -- A quote from "A Few Constructions on Constructors": "The Epigram -- language and system [25, 23] takes these constructions for -- granted. We see no reason why the users of other systems should -- work harder than we do." data ⊥ : Set₁ where No-confusion : ∀ {A B} → C A → C B → Set₁ No-confusion (c₁ A) (c₁ B) = A ≡ B No-confusion (c₂ A) (c₂ B) = A ≡ B No-confusion _ _ = ⊥ no-confusion : ∀ {A B} (x : C A) (y : C B) → A ≡ B → x ≅ y → No-confusion x y no-confusion (c₁ A) .(c₁ A) refl refl = refl no-confusion (c₂ A) .(c₂ A) refl refl = refl D-elim-c₁-helper : (P : {A B : Set} {c : C A} → D c → A ≡ Box B → c ≅ c₁ B → Set₂) → ((A : Set) → P (d₁ A) refl refl) → {A B : Set} {c : C A} (x : D c) (eq₂ : c ≅ c₁ B) (eq₁ : A ≡ Box B) → P x eq₁ eq₂ D-elim-c₁-helper P p (d₁ A) eq₂ eq₁ with no-confusion _ _ eq₁ eq₂ D-elim-c₁-helper P p (d₁ B) refl refl | refl = p B D-elim-c₁-helper P p (d₂ A) eq₂ eq₁ with no-confusion _ _ eq₁ eq₂ D-elim-c₁-helper P p (d₂ A) eq₂ eq₁ | () cast : {A B : Set} {x : C A} {y : C B} → A ≡ B → x ≅ y → D x → D y cast refl refl x = x D-elim-c₁ : (P : {A : Set} → D (c₁ A) → Set₂) → ((A : Set) → P (d₁ A)) → {A : Set} (x : D (c₁ A)) → P x D-elim-c₁ P p x = D-elim-c₁-helper (λ x eq₁ eq₂ → P (cast eq₁ eq₂ x)) p x refl refl -- should type-check
32.161616
77
0.557161
3d7ae9d208b14f15a1346d65bf3cff1ebda6153e
2,370
agda
Agda
Numeral/Natural/LinearSearch.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Numeral/Natural/LinearSearch.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Numeral/Natural/LinearSearch.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Numeral.Natural.LinearSearch where open import Data.Boolean open import Data.Boolean.Stmt open import Data.List import Data.List.Functions as List open import Data.List.Relation.Membership using (_∈_) open import Data.List.Relation.Membership.Proofs open import Data.List.Relation.Quantification open import Data.List.Relation.Quantification.Proofs open import Data.List.Sorting open import Functional open import Logic.Propositional open import Numeral.Finite import Numeral.Finite.LinearSearch as 𝕟 open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Comparisons open import Numeral.Natural.Relation.Order open import Relator.Equals open import Relator.Equals.Proofs.Equiv open import Structure.Function private variable a b n i j : ℕ private variable f : ℕ → Bool {- findBoundedMin : ℕ → ℕ → (ℕ → Bool) → Option(ℕ) findBoundedMin a b f = Option.map 𝕟-to-ℕ (𝕟.findMin{b −₀ a}(f ∘ (_+ a) ∘ 𝕟-to-ℕ)) findBoundedMin-None-correctness : (a < b) → (findBoundedMin a b f ≡ None) ↔ (∀{i} → (a ≤ i) → (i < b) → IsFalse(f(i))) findBoundedMin-None-correctness{a}{b}{f} ab with [↔]-intro l r ← 𝕟.findMin-None-correctness{b −₀ a}{f ∘ (_+ a) ∘ 𝕟-to-ℕ} = [↔]-intro (\p → congruence₁(Option.map 𝕟-to-ℕ) (l (\{i} → p ([≤]-of-[+]ᵣ {𝕟-to-ℕ i}) {![<]-with-[+]-weak ([∨]-introₗ ([∧]-intro ? ?))!}))) (\p{i} ai ib → {!r ? {?}!}) -} findBoundedAll : ℕ → ℕ → (ℕ → Bool) → List(ℕ) findBoundedAll a b f = List.map ((_+ a) ∘ 𝕟-to-ℕ) (𝕟.findAll{b −₀ a} (f ∘ (_+ a) ∘ 𝕟-to-ℕ)) findBoundedAll-correctness : AllElements(IsTrue ∘ f)(findBoundedAll a b f) findBoundedAll-correctness {f} {a} {b} with 𝕟.findAll{b −₀ a} (f ∘ (_+ a) ∘ 𝕟-to-ℕ) | 𝕟.findAll-correctness{b −₀ a}{f ∘ (_+ a) ∘ 𝕟-to-ℕ} ... | ∅ | ∅ = ∅ ... | _ ⊰ _ | p ⊰ ps = p ⊰ AllElements-mapᵣ ((_+ a) ∘ 𝕟-to-ℕ) id ps postulate findBoundedAll-completeness : IsTrue(f(i)) → (a ≤ i) → (i < b) → (i ∈ findBoundedAll a b f) -- findBoundedAll-completeness {f}{i}{a}{b} ai ib fi = {![∈]-map {f = 𝕟-to-ℕ} (𝕟.findAll-completeness{b −₀ a}{f ∘ (_+ a) ∘ 𝕟-to-ℕ}{ℕ-to-𝕟 (i −₀ a) ⦃ ? ⦄} ?)!} postulate findBoundedAll-emptyness : (∀{i} → (a ≤ i) → (i < b) → IsFalse(f(i))) ↔ (findBoundedAll a b f ≡ ∅) postulate findBoundedAll-sorted : Sorted(_≤?_)(findBoundedAll a b f) postulate findBoundedAll-membership : (i ∈ findBoundedAll a b f) ↔ ((a ≤ i) ∧ (i < b) ∧ IsTrue(f(i)))
43.888889
170
0.650633
04ed442343906bbba934b24050f0868e2c6dd7d6
13,299
agda
Agda
agda/Number/Operations/Specification.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
3
2020-07-31T18:15:26.000Z
2022-02-19T12:15:21.000Z
agda/Number/Operations/Specification.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
agda/Number/Operations/Specification.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --allow-unsolved-metas #-} module Number.Operations.Specification where open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Data.Unit.Base -- Unit open import Number.Postulates open import Number.Base open ℕⁿ open ℤᶻ open ℚᶠ open ℝʳ open ℂᶜ open PatternsType -- workflow: -- 1. split on the both positivities at once -- 2. add a general clause on top -- 3. check file -- 4. remove all unreachable clauses and goto 2. -- feel free to remove too many clauses and let agda display the missing ones +-Positivityᵒʳ : PositivityKindOrderedRing → PositivityKindOrderedRing → PositivityKindOrderedRing +-Positivityᵒʳ _ X = X +-Positivityᵒʳ X _ = X +-Positivityᵒʳ _ X⁺⁻ = X +-Positivityᵒʳ X⁺⁻ _ = X -- clauses with same sign +-Positivityᵒʳ X₀⁺ X₀⁺ = X₀⁺ +-Positivityᵒʳ X₀⁻ X₀⁻ = X₀⁻ +-Positivityᵒʳ X₀⁺ X⁺ = X⁺ +-Positivityᵒʳ X⁺ X₀⁺ = X⁺ +-Positivityᵒʳ X⁺ X⁺ = X⁺ +-Positivityᵒʳ X₀⁻ X⁻ = X⁻ +-Positivityᵒʳ X⁻ X⁻ = X⁻ +-Positivityᵒʳ X⁻ X₀⁻ = X⁻ -- remaining clauses with alternating sign +-Positivityᵒʳ X₀⁻ X₀⁺ = X +-Positivityᵒʳ X₀⁺ X₀⁻ = X +-Positivityᵒʳ X⁻ X₀⁺ = X +-Positivityᵒʳ X₀⁺ X⁻ = X +-Positivityᵒʳ X⁻ X⁺ = X +-Positivityᵒʳ X⁺ X⁻ = X +-Positivityᵒʳ X₀⁻ X⁺ = X +-Positivityᵒʳ X⁺ X₀⁻ = X +-Positivityᶠ : PositivityKindField → PositivityKindField → PositivityKindField -- positivity information is lost after _+_ on a field +-Positivityᶠ x y = X +-Positivityʰ : (l : NumberKind) → PositivityKindType l → PositivityKindType l → PositivityKindType l +-Positivityʰ isNat = +-Positivityᵒʳ +-Positivityʰ isInt = +-Positivityᵒʳ +-Positivityʰ isRat = +-Positivityᵒʳ +-Positivityʰ isReal = +-Positivityᵒʳ +-Positivityʰ isComplex = +-Positivityᶠ ·-Positivityᵒʳ : PositivityKindOrderedRing → PositivityKindOrderedRing → PositivityKindOrderedRing ·-Positivityᵒʳ _ X = X ·-Positivityᵒʳ X _ = X ·-Positivityᵒʳ X₀⁺ X⁺⁻ = X ·-Positivityᵒʳ X⁺⁻ X₀⁺ = X ·-Positivityᵒʳ X₀⁻ X⁺⁻ = X ·-Positivityᵒʳ X⁺⁻ X₀⁻ = X -- multiplying nonzero numbers gives a nonzero number ·-Positivityᵒʳ X⁺⁻ X⁺⁻ = X⁺⁻ ·-Positivityᵒʳ X⁺ X⁺⁻ = X⁺⁻ ·-Positivityᵒʳ X⁺⁻ X⁺ = X⁺⁻ ·-Positivityᵒʳ X⁻ X⁺⁻ = X⁺⁻ ·-Positivityᵒʳ X⁺⁻ X⁻ = X⁺⁻ -- multiplying positive numbers gives a positive number ·-Positivityᵒʳ X₀⁺ X₀⁺ = X₀⁺ ·-Positivityᵒʳ X₀⁺ X⁺ = X₀⁺ ·-Positivityᵒʳ X⁺ X₀⁺ = X₀⁺ ·-Positivityᵒʳ X⁺ X⁺ = X⁺ -- multiplying negative numbers gives a positive number ·-Positivityᵒʳ X₀⁻ X⁻ = X₀⁺ ·-Positivityᵒʳ X⁻ X₀⁻ = X₀⁺ ·-Positivityᵒʳ X₀⁻ X₀⁻ = X₀⁺ ·-Positivityᵒʳ X⁻ X⁻ = X⁺ -- multiplying a positive and a negative number gives a negative number ·-Positivityᵒʳ X⁻ X₀⁺ = X₀⁻ ·-Positivityᵒʳ X₀⁺ X⁻ = X₀⁻ ·-Positivityᵒʳ X₀⁻ X⁺ = X₀⁻ ·-Positivityᵒʳ X⁺ X₀⁻ = X₀⁻ ·-Positivityᵒʳ X₀⁻ X₀⁺ = X₀⁻ ·-Positivityᵒʳ X₀⁺ X₀⁻ = X₀⁻ ·-Positivityᵒʳ X⁻ X⁺ = X⁻ ·-Positivityᵒʳ X⁺ X⁻ = X⁻ ·-Positivityᶠ : PositivityKindField → PositivityKindField → PositivityKindField ·-Positivityᶠ X X = X ·-Positivityᶠ X X⁺⁻ = X ·-Positivityᶠ X⁺⁻ X = X -- multiplying nonzero numbers gives a nonzero number ·-Positivityᶠ X⁺⁻ X⁺⁻ = X⁺⁻ ·-Positivityʰ : (l : NumberKind) → PositivityKindType l → PositivityKindType l → PositivityKindType l ·-Positivityʰ isNat = ·-Positivityᵒʳ ·-Positivityʰ isInt = ·-Positivityᵒʳ ·-Positivityʰ isRat = ·-Positivityᵒʳ ·-Positivityʰ isReal = ·-Positivityᵒʳ ·-Positivityʰ isComplex = ·-Positivityᶠ min-Positivityᵒʳ : PositivityKindOrderedRing → PositivityKindOrderedRing → PositivityKindOrderedRing min-Positivityᵒʳ X X = X min-Positivityᵒʳ X X⁺⁻ = X min-Positivityᵒʳ X X₀⁺ = X min-Positivityᵒʳ X X⁺ = X min-Positivityᵒʳ X X⁻ = X⁻ min-Positivityᵒʳ X X₀⁻ = X₀⁻ min-Positivityᵒʳ X⁺⁻ X = X min-Positivityᵒʳ X⁺⁻ X⁺⁻ = X⁺⁻ min-Positivityᵒʳ X⁺⁻ X₀⁺ = X min-Positivityᵒʳ X⁺⁻ X⁺ = X⁺⁻ min-Positivityᵒʳ X⁺⁻ X⁻ = X⁻ min-Positivityᵒʳ X⁺⁻ X₀⁻ = X₀⁻ min-Positivityᵒʳ X₀⁺ X = X min-Positivityᵒʳ X₀⁺ X⁺⁻ = X min-Positivityᵒʳ X₀⁺ X₀⁺ = X₀⁺ min-Positivityᵒʳ X₀⁺ X⁺ = X₀⁺ min-Positivityᵒʳ X₀⁺ X⁻ = X⁻ min-Positivityᵒʳ X₀⁺ X₀⁻ = X₀⁻ min-Positivityᵒʳ X⁺ X = X min-Positivityᵒʳ X⁺ X⁺⁻ = X⁺⁻ min-Positivityᵒʳ X⁺ X₀⁺ = X₀⁺ min-Positivityᵒʳ X⁺ X⁺ = X⁺ min-Positivityᵒʳ X⁺ X⁻ = X⁻ min-Positivityᵒʳ X⁺ X₀⁻ = X₀⁻ min-Positivityᵒʳ X⁻ X = X⁻ min-Positivityᵒʳ X⁻ X⁺⁻ = X⁻ min-Positivityᵒʳ X⁻ X₀⁺ = X⁻ min-Positivityᵒʳ X⁻ X⁺ = X⁻ min-Positivityᵒʳ X⁻ X⁻ = X⁻ min-Positivityᵒʳ X⁻ X₀⁻ = X⁻ min-Positivityᵒʳ X₀⁻ X = X₀⁻ min-Positivityᵒʳ X₀⁻ X⁺⁻ = X₀⁻ min-Positivityᵒʳ X₀⁻ X₀⁺ = X₀⁻ min-Positivityᵒʳ X₀⁻ X⁺ = X₀⁻ min-Positivityᵒʳ X₀⁻ X⁻ = X⁻ min-Positivityᵒʳ X₀⁻ X₀⁻ = X₀⁻ max-Positivityᵒʳ : PositivityKindOrderedRing → PositivityKindOrderedRing → PositivityKindOrderedRing max-Positivityᵒʳ X X = X max-Positivityᵒʳ X X⁺⁻ = X max-Positivityᵒʳ X X₀⁺ = X₀⁺ max-Positivityᵒʳ X X⁺ = X⁺ max-Positivityᵒʳ X X⁻ = X max-Positivityᵒʳ X X₀⁻ = X max-Positivityᵒʳ X⁺⁻ X = X max-Positivityᵒʳ X⁺⁻ X⁺⁻ = X⁺⁻ max-Positivityᵒʳ X⁺⁻ X₀⁺ = X₀⁺ max-Positivityᵒʳ X⁺⁻ X⁺ = X⁺ max-Positivityᵒʳ X⁺⁻ X⁻ = X⁺⁻ max-Positivityᵒʳ X⁺⁻ X₀⁻ = X max-Positivityᵒʳ X₀⁺ X = X₀⁺ max-Positivityᵒʳ X₀⁺ X⁺⁻ = X₀⁺ max-Positivityᵒʳ X₀⁺ X₀⁺ = X₀⁺ max-Positivityᵒʳ X₀⁺ X⁺ = X⁺ max-Positivityᵒʳ X₀⁺ X⁻ = X₀⁺ max-Positivityᵒʳ X₀⁺ X₀⁻ = X₀⁺ max-Positivityᵒʳ X⁺ X = X⁺ max-Positivityᵒʳ X⁺ X⁺⁻ = X⁺ max-Positivityᵒʳ X⁺ X₀⁺ = X⁺ max-Positivityᵒʳ X⁺ X⁺ = X⁺ max-Positivityᵒʳ X⁺ X⁻ = X⁺ max-Positivityᵒʳ X⁺ X₀⁻ = X⁺ max-Positivityᵒʳ X⁻ X = X max-Positivityᵒʳ X⁻ X⁺⁻ = X⁺⁻ max-Positivityᵒʳ X⁻ X₀⁺ = X₀⁺ max-Positivityᵒʳ X⁻ X⁺ = X⁺ max-Positivityᵒʳ X⁻ X⁻ = X⁻ max-Positivityᵒʳ X⁻ X₀⁻ = X₀⁻ max-Positivityᵒʳ X₀⁻ X = X max-Positivityᵒʳ X₀⁻ X⁺⁻ = X max-Positivityᵒʳ X₀⁻ X₀⁺ = X₀⁺ max-Positivityᵒʳ X₀⁻ X⁺ = X⁺ max-Positivityᵒʳ X₀⁻ X⁻ = X₀⁻ max-Positivityᵒʳ X₀⁻ X₀⁻ = X₀⁻ min-Positivityʰ : (l : NumberKind) → PositivityKindType l → PositivityKindType l → PositivityKindType l min-Positivityʰ isNat = min-Positivityᵒʳ min-Positivityʰ isInt = min-Positivityᵒʳ min-Positivityʰ isRat = min-Positivityᵒʳ min-Positivityʰ isReal = min-Positivityᵒʳ min-Positivityʰ isComplex = λ _ _ → X -- doesn't matter since `min` is undefined for ℂ max-Positivityʰ : (l : NumberKind) → PositivityKindType l → PositivityKindType l → PositivityKindType l max-Positivityʰ isNat = max-Positivityᵒʳ max-Positivityʰ isInt = max-Positivityᵒʳ max-Positivityʰ isRat = max-Positivityᵒʳ max-Positivityʰ isReal = max-Positivityᵒʳ max-Positivityʰ isComplex = λ _ _ → X -- doesn't matter since `max` is undefined for ℂ +-Types : NumberProp → NumberProp → NumberProp +-Types (level₀ , pos₀) (level₁ , pos₁) = let level = maxₙₗ level₀ level₁ in level , +-Positivityʰ level (coerce-PositivityKind level₀ level pos₀) (coerce-PositivityKind level₁ level pos₁) ·-Types : NumberProp → NumberProp → NumberProp ·-Types (level₀ , pos₀) (level₁ , pos₁) = let level = maxₙₗ level₀ level₁ in level , ·-Positivityʰ level (coerce-PositivityKind level₀ level pos₀) (coerce-PositivityKind level₁ level pos₁) ⁻¹-Types : ∀{l p} → Number (l , p) → Type (ℓ-max (NumberLevel (maxₙₗ l isRat)) (NumberKindProplevel l)) -- numbers that can be zero need an additional apartness proof ⁻¹-Types {isNat } {X } (x ,, p) = ∀{{ q : x #ⁿ 0ⁿ }} → Number (isRat , X⁺⁻) ⁻¹-Types {isInt } {X } (x ,, p) = ∀{{ q : x #ᶻ 0ᶻ }} → Number (isRat , X⁺⁻) ⁻¹-Types {isRat } {X } (x ,, p) = ∀{{ q : x #ᶠ 0ᶠ }} → Number (isRat , X⁺⁻) ⁻¹-Types {isReal } {X } (x ,, p) = ∀{{ q : x #ʳ 0ʳ }} → Number (isReal , X⁺⁻) ⁻¹-Types {isComplex} {X } (x ,, p) = ∀{{ q : x #ᶜ 0ᶜ }} → Number (isComplex , X⁺⁻) ⁻¹-Types {isNat } {X₀⁺} (x ,, p) = ∀{{ q : x #ⁿ 0ⁿ }} → Number (isRat , X⁺ ) ⁻¹-Types {isInt } {X₀⁺} (x ,, p) = ∀{{ q : x #ᶻ 0ᶻ }} → Number (isRat , X⁺ ) ⁻¹-Types {isRat } {X₀⁺} (x ,, p) = ∀{{ q : x #ᶠ 0ᶠ }} → Number (isRat , X⁺ ) ⁻¹-Types {isReal } {X₀⁺} (x ,, p) = ∀{{ q : x #ʳ 0ʳ }} → Number (isReal , X⁺ ) ⁻¹-Types {isNat } {X₀⁻} (x ,, p) = ∀{{ q : x #ⁿ 0ⁿ }} → Number (isRat , X⁻ ) ⁻¹-Types {isInt } {X₀⁻} (x ,, p) = ∀{{ q : x #ᶻ 0ᶻ }} → Number (isRat , X⁻ ) ⁻¹-Types {isRat } {X₀⁻} (x ,, p) = ∀{{ q : x #ᶠ 0ᶠ }} → Number (isRat , X⁻ ) ⁻¹-Types {isReal } {X₀⁻} (x ,, p) = ∀{{ q : x #ʳ 0ʳ }} → Number (isReal , X⁻ ) -- positive, negative and nonzero numbers are already apart from zero ⁻¹-Types {isNat } {X⁺⁻} (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isNat } Unit }} → Number (isRat , X⁺⁻) ⁻¹-Types {isNat } {X⁺ } (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isNat } Unit }} → Number (isRat , X⁺ ) ⁻¹-Types {isInt } {X⁺⁻} (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isInt } Unit }} → Number (isRat , X⁺⁻) ⁻¹-Types {isInt } {X⁺ } (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isInt } Unit }} → Number (isRat , X⁺ ) ⁻¹-Types {isInt } {X⁻ } (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isInt } Unit }} → Number (isRat , X⁻ ) ⁻¹-Types {isRat } {X⁺⁻} (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isRat } Unit }} → Number (isRat , X⁺⁻) ⁻¹-Types {isRat } {X⁺ } (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isRat } Unit }} → Number (isRat , X⁺ ) ⁻¹-Types {isRat } {X⁻ } (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isRat } Unit }} → Number (isRat , X⁻ ) ⁻¹-Types {isReal } {X⁺⁻} (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isReal } Unit }} → Number (isReal , X⁺⁻) ⁻¹-Types {isReal } {X⁺ } (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isReal } Unit }} → Number (isReal , X⁺ ) ⁻¹-Types {isReal } {X⁻ } (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isReal } Unit }} → Number (isReal , X⁻ ) ⁻¹-Types {isComplex} {X⁺⁻} (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isComplex} Unit }} → Number (isComplex , X⁺⁻) -Types : ∀{l p} → Number (l , p) → Type (NumberLevel (maxₙₗ l isInt)) -Types {isInt } {X } (x ,, p) = Number (isInt , X) -Types {isRat } {X } (x ,, p) = Number (isRat , X) -Types {isReal } {X } (x ,, p) = Number (isReal , X) -Types {isComplex} {X } (x ,, p) = Number (isComplex , X) -- the negative of a natural number is a Nonpositive integer -Types {isNat } {X } (x ,, p) = Number (isInt , X₀⁻) -- the negative of a nonzero number is a nonzero number -Types {isNat } {X⁺⁻} (x ,, p) = Number (isInt , X⁺⁻) -Types {isInt } {X⁺⁻} (x ,, p) = Number (isInt , X⁺⁻) -Types {isRat } {X⁺⁻} (x ,, p) = Number (isRat , X⁺⁻) -Types {isReal } {X⁺⁻} (x ,, p) = Number (isReal , X⁺⁻) -Types {isComplex} {X⁺⁻} (x ,, p) = Number (isComplex , X⁺⁻) -- the negative of a positive number is a negative number -Types {isNat } {X₀⁺} (x ,, p) = Number (isInt , X₀⁻) -Types {isInt } {X₀⁺} (x ,, p) = Number (isInt , X₀⁻) -Types {isRat } {X₀⁺} (x ,, p) = Number (isRat , X₀⁻) -Types {isReal } {X₀⁺} (x ,, p) = Number (isReal , X₀⁻) -Types {isNat } {X⁺ } (x ,, p) = Number (isInt , X⁻ ) -Types {isInt } {X⁺ } (x ,, p) = Number (isInt , X⁻ ) -Types {isRat } {X⁺ } (x ,, p) = Number (isRat , X⁻ ) -Types {isReal } {X⁺ } (x ,, p) = Number (isReal , X⁻ ) -- the negative of a negative number is a positive number -Types {isNat } {X₀⁻} (x ,, p) = Number (isInt , X₀⁺) -Types {isInt } {X₀⁻} (x ,, p) = Number (isInt , X₀⁺) -Types {isRat } {X₀⁻} (x ,, p) = Number (isRat , X₀⁺) -Types {isReal } {X₀⁻} (x ,, p) = Number (isReal , X₀⁺) -Types {isInt } {X⁻ } (x ,, p) = Number (isInt , X⁺ ) -Types {isRat } {X⁻ } (x ,, p) = Number (isRat , X⁺ ) -Types {isReal } {X⁻ } (x ,, p) = Number (isReal , X⁺ ) abs-Types : ∀{l p} → Number (l , p) → Type (NumberLevel (minₙₗ l isReal)) abs-Types {isNat } {X } (x ,, p) = Number (isNat , X₀⁺) abs-Types {isNat } {X⁺⁻} (x ,, p) = Number (isNat , X⁺ ) abs-Types {isNat } {X₀⁺} (x ,, p) = Number (isNat , X₀⁺) abs-Types {isNat } {X⁺ } (x ,, p) = Number (isNat , X⁺ ) abs-Types {isNat } {X₀⁻} (x ,, p) = Number (isNat , X₀⁺) abs-Types {isInt } {X } (x ,, p) = Number (isInt , X₀⁺) abs-Types {isInt } {X⁺⁻} (x ,, p) = Number (isInt , X⁺ ) abs-Types {isInt } {X₀⁺} (x ,, p) = Number (isInt , X₀⁺) abs-Types {isInt } {X⁺ } (x ,, p) = Number (isInt , X⁺ ) abs-Types {isInt } {X⁻ } (x ,, p) = Number (isInt , X⁺ ) abs-Types {isInt } {X₀⁻} (x ,, p) = Number (isInt , X₀⁺) abs-Types {isRat } {X } (x ,, p) = Number (isRat , X₀⁺) abs-Types {isRat } {X⁺⁻} (x ,, p) = Number (isRat , X⁺ ) abs-Types {isRat } {X₀⁺} (x ,, p) = Number (isRat , X₀⁺) abs-Types {isRat } {X⁺ } (x ,, p) = Number (isRat , X⁺ ) abs-Types {isRat } {X⁻ } (x ,, p) = Number (isRat , X⁺ ) abs-Types {isRat } {X₀⁻} (x ,, p) = Number (isRat , X₀⁺) abs-Types {isReal } {X } (x ,, p) = Number (isReal , X₀⁺) abs-Types {isReal } {X⁺⁻} (x ,, p) = Number (isReal , X⁺ ) abs-Types {isReal } {X₀⁺} (x ,, p) = Number (isReal , X₀⁺) abs-Types {isReal } {X⁺ } (x ,, p) = Number (isReal , X⁺ ) abs-Types {isReal } {X⁻ } (x ,, p) = Number (isReal , X⁺ ) abs-Types {isReal } {X₀⁻} (x ,, p) = Number (isReal , X₀⁺) abs-Types {isComplex} {X } (x ,, p) = Number (isReal , X₀⁺) abs-Types {isComplex} {X⁺⁻} (x ,, p) = Number (isReal , X⁺ )
45.389078
121
0.589894
a00e31a47e9720b70e50486b21e716f1a359f8f3
259
agda
Agda
test/Compiler/simple/Issue223.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Compiler/simple/Issue223.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Compiler/simple/Issue223.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# FOREIGN GHC import qualified Issue223 #-} data A : Set data B : Set data A where BA : B → A data B where AB : A → B BB : B {-# COMPILE GHC A = data Issue223.A (Issue223.BA) #-} {-# COMPILE GHC B = data Issue223.B (Issue223.AB | Issue223.BB) #-}
17.266667
67
0.610039
31f5d882f82b053ff07c428cc564542fc86a511e
1,904
agda
Agda
Definition/LogicalRelation/Properties/Reflexivity.agda
loic-p/logrel-mltt
2251b8da423be0c6fb916f2675d7bd8537e4cd96
[ "MIT" ]
null
null
null
Definition/LogicalRelation/Properties/Reflexivity.agda
loic-p/logrel-mltt
2251b8da423be0c6fb916f2675d7bd8537e4cd96
[ "MIT" ]
null
null
null
Definition/LogicalRelation/Properties/Reflexivity.agda
loic-p/logrel-mltt
2251b8da423be0c6fb916f2675d7bd8537e4cd96
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Properties.Reflexivity {{eqrel : EqRelSet}} where open import Definition.Untyped open import Definition.Typed open import Definition.LogicalRelation open import Tools.Embedding open import Tools.Product import Tools.PropositionalEquality as PE -- Reflexivity of reducible types. reflEq : ∀ {l Γ A} ([A] : Γ ⊩⟨ l ⟩ A) → Γ ⊩⟨ l ⟩ A ≡ A / [A] reflEq (Uᵣ′ l′ l< ⊢Γ) = (U₌ PE.refl) reflEq (ℕᵣ D) = ιx (ℕ₌ (red D)) reflEq (ne′ K [ ⊢A , ⊢B , D ] neK K≡K) = ιx (ne₌ _ [ ⊢A , ⊢B , D ] neK K≡K) reflEq (Πᵣ′ F G [ ⊢A , ⊢B , D ] ⊢F ⊢G A≡A [F] [G] G-ext) = Π₌ _ _ D A≡A (λ ρ ⊢Δ → reflEq ([F] ρ ⊢Δ)) (λ ρ ⊢Δ [a] → reflEq ([G] ρ ⊢Δ [a])) reflEq (emb′ 0<1 [A]) = ιx (reflEq [A]) reflNatural-prop : ∀ {Γ n} → Natural-prop Γ n → [Natural]-prop Γ n n reflNatural-prop (sucᵣ (ℕₜ n d t≡t prop)) = sucᵣ (ℕₜ₌ n n d d t≡t (reflNatural-prop prop)) reflNatural-prop zeroᵣ = zeroᵣ reflNatural-prop (ne (neNfₜ neK ⊢k k≡k)) = ne (neNfₜ₌ neK neK k≡k) -- Reflexivity of reducible terms. reflEqTerm : ∀ {l Γ A t} ([A] : Γ ⊩⟨ l ⟩ A) → Γ ⊩⟨ l ⟩ t ∷ A / [A] → Γ ⊩⟨ l ⟩ t ≡ t ∷ A / [A] reflEqTerm (Uᵣ′ ⁰ 0<1 ⊢Γ) (Uₜ A d typeA A≡A [A]) = Uₜ₌ A A d d typeA typeA A≡A [A] [A] (reflEq [A]) reflEqTerm (ℕᵣ D) (ιx (ℕₜ n [ ⊢t , ⊢u , d ] t≡t prop)) = ιx (ℕₜ₌ n n [ ⊢t , ⊢u , d ] [ ⊢t , ⊢u , d ] t≡t (reflNatural-prop prop)) reflEqTerm (ne′ K D neK K≡K) (ιx (neₜ k d (neNfₜ neK₁ ⊢k k≡k))) = ιx (neₜ₌ k k d d (neNfₜ₌ neK₁ neK₁ k≡k)) reflEqTerm (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πₜ f d funcF f≡f [f] [f]₁) = Πₜ₌ f f d d funcF funcF f≡f (Πₜ f d funcF f≡f [f] [f]₁) (Πₜ f d funcF f≡f [f] [f]₁) (λ ρ ⊢Δ [a] → [f] ρ ⊢Δ [a] [a] (reflEqTerm ([F] ρ ⊢Δ) [a])) reflEqTerm (emb′ 0<1 [A]) (ιx t) = ιx (reflEqTerm [A] t)
35.259259
83
0.540966
c75f369bff6e2f168a8325bd19c8b1f9f42fdb7b
1,253
agda
Agda
test/fail/IrrelevantMatchRefl.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/fail/IrrelevantMatchRefl.agda
dagit/agda
4383a3d20328a6c43689161496cee8eb479aca08
[ "MIT" ]
null
null
null
test/fail/IrrelevantMatchRefl.agda
dagit/agda
4383a3d20328a6c43689161496cee8eb479aca08
[ "MIT" ]
null
null
null
-- Andreas, 2011-10-04, transcription of Dan Doel's post on the Agda list {-# OPTIONS --experimental-irrelevance #-} module IrrelevantMatchRefl where postulate Level : Set lzero : Level lsuc : (i : Level) → Level _⊔_ : Level -> Level -> Level {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO lzero #-} {-# BUILTIN LEVELSUC lsuc #-} {-# BUILTIN LEVELMAX _⊔_ #-} infixl 6 _⊔_ data _≡_ {i : Level}{A : Set i}(a : A) : A → Set where refl : a ≡ a sym : ∀ {i}{A B : Set i} → A ≡ B → B ≡ A sym refl = refl -- irrelevant subst should be rejected, because it suggests -- that the equality proof is irrelevant also for reduction subst : ∀ {i j}{A : Set i}(P : A → Set j){a b : A} → .(a ≡ b) → P a → P b subst P refl x = x postulate D : Set lie : (D → D) ≡ D -- the following two substs may not reduce! ... abs : (D → D) → D abs f = subst (λ T → T) lie f app : D → D → D app d = subst (λ T → T) (sym lie) d ω : D ω = abs (λ d → app d d) -- ... otherwise Ω loops Ω : D Ω = app ω ω -- ... and this would be a real fixed-point combinator Y : (D → D) → D Y f = app δ δ where δ = abs (λ x → f (app x x)) K : D → D K x = abs (λ y → x) K∞ : D K∞ = Y K mayloop : K∞ ≡ abs (λ y → K∞) mayloop = refl -- gives error D != D → D
20.540984
73
0.564246
9ab94152c4a07ea06dbd89e0cdcc9b60a606d215
2,207
agda
Agda
src/Categories/Object/Product/Construction.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Object/Product/Construction.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Object/Product/Construction.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Object.Terminal -- Various constructors of Product Objects module Categories.Object.Product.Construction {o ℓ e} (C : Category o ℓ e) (T : Terminal C) where open import Categories.Object.Exponential C hiding (repack) open import Categories.Object.Product C open Category C open Terminal T open HomReasoning -- we can get some products [⊤×⊤]-product : Product ⊤ ⊤ [⊤×⊤]-product = record { A×B = ⊤ ; π₁ = ! ; π₂ = ! ; ⟨_,_⟩ = λ _ _ → ! ; project₁ = !-unique₂ ; project₂ = !-unique₂ ; unique = λ _ _ → !-unique _ } [⊤×_]-product : (X : Obj) → Product ⊤ X [⊤×_]-product X = record { A×B = X ; π₁ = ! ; π₂ = id ; ⟨_,_⟩ = λ _ y → y ; project₁ = !-unique₂ ; project₂ = identityˡ ; unique = λ _ id∘h≈j → ⟺ id∘h≈j ○ identityˡ } [_×⊤]-product : (X : Obj) → Product X ⊤ [_×⊤]-product X = Reversible [⊤× X ]-product -- and some exponentials too [_↑⊤]-exponential : (B : Obj) → Exponential ⊤ B [ B ↑⊤]-exponential = record { B^A = B ; product = [ B ×⊤]-product ; eval = id ; λg = λ {X} X×⊤ X⇒B → X⇒B ∘ repack [ X ×⊤]-product X×⊤ ; β = λ p {g} → begin id ∘ (g ∘ [ p ]⟨ id , ! ⟩) ∘ [ p ]π₁ ≈⟨ identityˡ ○ assoc ⟩ g ∘ [ p ]⟨ id , ! ⟩ ∘ [ p ]π₁ ≈⟨ refl⟩∘⟨ [ p ]⟨⟩∘ ⟩ g ∘ [ p ]⟨ id ∘ [ p ]π₁ , ! ∘ [ p ]π₁ ⟩ ≈⟨ refl⟩∘⟨ ⟨⟩-cong₂ p identityˡ !-unique₂ ⟩ g ∘ [ p ]⟨ [ p ]π₁ , [ p ]π₂ ⟩ ≈⟨ refl⟩∘⟨ η p ○ identityʳ ⟩ g ∎ ; λ-unique = λ {X} p {g} {h} h-comm → begin h ≈˘⟨ identityʳ ⟩ h ∘ id ≈˘⟨ refl⟩∘⟨ project₁ p ⟩ h ∘ [ p ]π₁ ∘ [ p ]⟨ id , ! ⟩ ≈⟨ sym-assoc ⟩ (h ∘ [ p ]π₁) ∘ [ p ]⟨ id , ! ⟩ ≈˘⟨ identityˡ ⟩∘⟨refl ⟩ (id ∘ h ∘ [ p ]π₁) ∘ [ p ]⟨ id , ! ⟩ ≈⟨ h-comm ⟩∘⟨refl ⟩ g ∘ repack [ X ×⊤]-product p ∎ } where open Product [⊤↑_]-exponential : (A : Obj) → Exponential A ⊤ [⊤↑ A ]-exponential = record { B^A = ⊤ ; product = [⊤× A ]-product ; eval = ! ; λg = λ _ _ → ! ; β = λ _ → !-unique₂ ; λ-unique = λ _ _ → !-unique₂ }
29.824324
97
0.463525
9a1b5459e2707c54360ea125a1f026ea3d839391
876
agda
Agda
sets/bool.agda
HoTT/M-types
beebe176981953ab48f37de5eb74557cfc5402f4
[ "BSD-3-Clause" ]
27
2015-04-14T15:47:03.000Z
2022-01-09T07:26:57.000Z
src/sets/bool.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T14:32:16.000Z
2016-10-26T11:57:26.000Z
src/sets/bool.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T12:17:00.000Z
2019-05-04T19:31:00.000Z
{-# OPTIONS --without-K #-} module sets.bool where open import sets.empty using (⊥) open import sets.unit using (⊤) open import decidable using (Dec; yes; no) open import equality.core using (_≡_; refl) open import level using (Level) infixr 6 _∧_ infixr 5 _∨_ _xor_ infix 0 if_then_else_ data Bool : Set where true false : Bool not : Bool → Bool not true = false not false = true T : Bool → Set T true = ⊤ T false = ⊥ if_then_else_ : {a : Level} {A : Set a} → Bool → A → A → A if true then t else f = t if false then t else f = f _∧_ : Bool → Bool → Bool true ∧ b = b false ∧ b = false _∨_ : Bool → Bool → Bool true ∨ b = true false ∨ b = b _xor_ : Bool → Bool → Bool true xor b = not b false xor b = b _≟_ : (a b : Bool) → Dec (a ≡ b) true ≟ true = yes refl false ≟ false = yes refl true ≟ false = no λ () false ≟ true = no λ ()
18.638298
58
0.606164
4b5e7c548cb89f3c0df2fab9be87b563cbdf7ddf
11,248
agda
Agda
Cubical/Foundations/Id.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Foundations/Id.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Foundations/Id.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{- This file contains: - Id, refl and J (with definitional computation rule) - Basic theory about Id, proved using J - Lemmas for going back and forth between Path and Id - Function extensionality for Id - fiber, isContr, equiv all defined using Id - The univalence axiom expressed using only Id ([EquivContr]) - Propositional truncation and its elimination principle -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Id where open import Cubical.Foundations.Prelude public hiding ( _≡_ ; _≡⟨_⟩_ ; _∎ ; isPropIsContr) renaming ( refl to reflPath ; transport to transportPath ; J to JPath ; JRefl to JPathRefl ; sym to symPath ; _∙_ to compPath ; cong to congPath ; funExt to funExtPath ; isContr to isContrPath ; isProp to isPropPath ; isSet to isSetPath ; fst to pr₁ -- as in the HoTT book ; snd to pr₂ ) open import Cubical.Foundations.Equiv renaming ( fiber to fiberPath ; isEquiv to isEquivPath ; _≃_ to EquivPath ; equivFun to equivFunPath ; isPropIsEquiv to isPropIsEquivPath ) hiding ( equivCtr ; equivIsEquiv ) open import Cubical.Foundations.Univalence renaming ( EquivContr to EquivContrPath ) open import Cubical.Foundations.Isomorphism open import Cubical.HITs.PropositionalTruncation public renaming ( squash to squashPath ; rec to recPropTruncPath ; elim to elimPropTruncPath ) open import Cubical.Core.Id public private variable ℓ ℓ' : Level A : Type ℓ -- Version of the constructor for Id where the y is also -- explicit. This is sometimes useful when it is needed for -- typechecking (see JId below). conId : ∀ {x : A} φ (y : A [ φ ↦ (λ _ → x) ]) (w : (Path _ x (outS y)) [ φ ↦ (λ { (φ = i1) → λ _ → x}) ]) → x ≡ outS y conId φ _ w = ⟨ φ , outS w ⟩ -- Reflexivity refl : ∀ {x : A} → x ≡ x refl {x = x} = ⟨ i1 , (λ _ → x) ⟩ -- Definition of J for Id module _ {x : A} (P : ∀ (y : A) → Id x y → Type ℓ') (d : P x refl) where J : ∀ {y : A} (w : x ≡ y) → P y w J {y = y} = elimId P (λ φ y w → comp (λ i → P _ (conId (φ ∨ ~ i) (inS (outS w i)) (inS (λ j → outS w (i ∧ j))))) (λ i → λ { (φ = i1) → d}) d) {y = y} -- Check that J of refl is the identity function Jdefeq : Path _ (J refl) d Jdefeq _ = d -- Basic theory about Id, proved using J transport : ∀ (B : A → Type ℓ') {x y : A} → x ≡ y → B x → B y transport B {x} p b = J (λ y p → B y) b p _⁻¹ : {x y : A} → x ≡ y → y ≡ x _⁻¹ {x = x} p = J (λ z _ → z ≡ x) refl p ap : ∀ {B : Type ℓ'} (f : A → B) → ∀ {x y : A} → x ≡ y → f x ≡ f y ap f {x} = J (λ z _ → f x ≡ f z) refl _∙_ : ∀ {x y z : A} → x ≡ y → y ≡ z → x ≡ z _∙_ {x = x} p = J (λ y _ → x ≡ y) p infix 4 _∙_ infix 3 _∎ infixr 2 _≡⟨_⟩_ _≡⟨_⟩_ : (x : A) {y z : A} → x ≡ y → y ≡ z → x ≡ z _ ≡⟨ p ⟩ q = p ∙ q _∎ : (x : A) → x ≡ x _ ∎ = refl -- Convert between Path and Id pathToId : ∀ {x y : A} → Path _ x y → Id x y pathToId {x = x} = JPath (λ y _ → Id x y) refl pathToIdRefl : ∀ {x : A} → Path _ (pathToId (λ _ → x)) refl pathToIdRefl {x = x} = JPathRefl (λ y _ → Id x y) refl idToPath : ∀ {x y : A} → Id x y → Path _ x y idToPath {x = x} = J (λ y _ → Path _ x y) (λ _ → x) idToPathRefl : ∀ {x : A} → Path _ (idToPath {x = x} refl) reflPath idToPathRefl {x = x} _ _ = x pathToIdToPath : ∀ {x y : A} → (p : Path _ x y) → Path _ (idToPath (pathToId p)) p pathToIdToPath {x = x} = JPath (λ y p → Path _ (idToPath (pathToId p)) p) (λ i → idToPath (pathToIdRefl i)) idToPathToId : ∀ {x y : A} → (p : Id x y) → Path _ (pathToId (idToPath p)) p idToPathToId {x = x} = J (λ b p → Path _ (pathToId (idToPath p)) p) pathToIdRefl -- We get function extensionality by going back and forth between Path and Id funExt : ∀ {B : A → Type ℓ'} {f g : (x : A) → B x} → ((x : A) → f x ≡ g x) → f ≡ g funExt p = pathToId (λ i x → idToPath (p x) i) -- Equivalences expressed using Id fiber : ∀ {A : Type ℓ} {B : Type ℓ'} (f : A → B) (y : B) → Type (ℓ-max ℓ ℓ') fiber {A = A} f y = Σ[ x ∈ A ] f x ≡ y isContr : Type ℓ → Type ℓ isContr A = Σ[ x ∈ A ] (∀ y → x ≡ y) isProp : Type ℓ → Type ℓ isProp A = (x y : A) → x ≡ y isSet : Type ℓ → Type ℓ isSet A = (x y : A) → isProp (x ≡ y) record isEquiv {A : Type ℓ} {B : Type ℓ'} (f : A → B) : Type (ℓ-max ℓ ℓ') where field equiv-proof : (y : B) → isContr (fiber f y) open isEquiv public infix 4 _≃_ _≃_ : ∀ (A : Type ℓ) (B : Type ℓ') → Type (ℓ-max ℓ ℓ') A ≃ B = Σ[ f ∈ (A → B) ] (isEquiv f) equivFun : ∀ {B : Type ℓ'} → A ≃ B → A → B equivFun e = pr₁ e equivIsEquiv : ∀ {B : Type ℓ'} (e : A ≃ B) → isEquiv (equivFun e) equivIsEquiv e = pr₂ e equivCtr : ∀ {B : Type ℓ'} (e : A ≃ B) (y : B) → fiber (equivFun e) y equivCtr e y = e .pr₂ .equiv-proof y .pr₁ -- Functions for going between the various definitions. This could -- also be achieved by making lines in the universe and transporting -- back and forth along them. fiberPathToFiber : ∀ {B : Type ℓ'} {f : A → B} {y : B} → fiberPath f y → fiber f y fiberPathToFiber (x , p) = (x , pathToId p) fiberToFiberPath : ∀ {B : Type ℓ'} {f : A → B} {y : B} → fiber f y → fiberPath f y fiberToFiberPath (x , p) = (x , idToPath p) fiberToFiber : ∀ {B : Type ℓ'} {f : A → B} {y : B} (p : fiber f y) → Path _ (fiberPathToFiber (fiberToFiberPath p)) p fiberToFiber (x , p) = λ i → x , idToPathToId p i fiberPathToFiberPath : ∀ {B : Type ℓ'} {f : A → B} {y : B} (p : fiberPath f y) → Path _ (fiberToFiberPath (fiberPathToFiber p)) p fiberPathToFiberPath (x , p) = λ i → x , pathToIdToPath p i isContrPathToIsContr : isContrPath A → isContr A isContrPathToIsContr (ctr , p) = (ctr , λ y → pathToId (p y)) isContrToIsContrPath : isContr A → isContrPath A isContrToIsContrPath (ctr , p) = (ctr , λ y → idToPath (p y)) isPropPathToIsProp : isPropPath A → isProp A isPropPathToIsProp H x y = pathToId (H x y) isPropToIsPropPath : isProp A → isPropPath A isPropToIsPropPath H x y i = idToPath (H x y) i -- Specialized helper lemmas for going back and forth between -- isContrPath and isContr: helper1 : ∀ {A B : Type ℓ} (f : A → B) (g : B → A) (h : (y : B) → Path B (f (g y)) y) → isContrPath A → isContr B helper1 f g h (x , p) = (f x , λ y → pathToId (λ i → hcomp (λ j → λ { (i = i0) → f x ; (i = i1) → h y j }) (f (p (g y) i)))) helper2 : ∀ {A B : Type ℓ} (f : A → B) (g : B → A) (h : (y : A) → Path A (g (f y)) y) → isContr B → isContrPath A helper2 {A = A} f g h (x , p) = (g x , λ y → idToPath (rem y)) where rem : ∀ (y : A) → g x ≡ y rem y = g x ≡⟨ ap g (p (f y)) ⟩ g (f y) ≡⟨ pathToId (h y) ⟩ y ∎ -- This proof is essentially the one for proving that isContr with -- Path is a proposition, but as we are working with Id we have to -- insert a lof of conversion functions. It is still nice that is -- works like this though. isPropIsContr : ∀ (p1 p2 : isContr A) → Path (isContr A) p1 p2 isPropIsContr (a0 , p0) (a1 , p1) j = ( idToPath (p0 a1) j , hcomp (λ i → λ { (j = i0) → λ x → idToPathToId (p0 x) i ; (j = i1) → λ x → idToPathToId (p1 x) i }) (λ x → pathToId (λ i → hcomp (λ k → λ { (i = i0) → idToPath (p0 a1) j ; (i = i1) → idToPath (p0 x) (j ∨ k) ; (j = i0) → idToPath (p0 x) (i ∧ k) ; (j = i1) → idToPath (p1 x) i }) (idToPath (p0 (idToPath (p1 x) i)) j)))) -- We now prove that isEquiv is a proposition isPropIsEquiv : ∀ {A : Type ℓ} {B : Type ℓ} → {f : A → B} → (h1 h2 : isEquiv f) → Path _ h1 h2 equiv-proof (isPropIsEquiv {f = f} h1 h2 i) y = isPropIsContr {A = fiber f y} (h1 .equiv-proof y) (h2 .equiv-proof y) i -- Go from a Path equivalence to an Id equivalence equivPathToEquiv : ∀ {A : Type ℓ} {B : Type ℓ'} → EquivPath A B → A ≃ B equivPathToEquiv (f , p) = (f , λ { .equiv-proof y → helper1 fiberPathToFiber fiberToFiberPath fiberToFiber (p .equiv-proof y) }) -- Go from an Id equivalence to a Path equivalence equivToEquivPath : ∀ {A : Type ℓ} {B : Type ℓ'} → A ≃ B → EquivPath A B equivToEquivPath (f , p) = (f , λ { .equiv-proof y → helper2 fiberPathToFiber fiberToFiberPath fiberPathToFiberPath (p .equiv-proof y) }) equivToEquiv : ∀ {A : Type ℓ} {B : Type ℓ} → (p : A ≃ B) → Path _ (equivPathToEquiv (equivToEquivPath p)) p equivToEquiv (f , p) i = (f , isPropIsEquiv (λ { .equiv-proof y → helper1 fiberPathToFiber fiberToFiberPath fiberToFiber (helper2 fiberPathToFiber fiberToFiberPath fiberPathToFiberPath (p .equiv-proof y)) }) p i) -- We can finally prove univalence with Id everywhere from the one for Path EquivContr : ∀ (A : Type ℓ) → isContr (Σ[ T ∈ Type ℓ ] (T ≃ A)) EquivContr {ℓ = ℓ} A = helper1 f1 f2 f12 (EquivContrPath A) where f1 : {A : Type ℓ} → Σ[ T ∈ Type ℓ ] (EquivPath T A) → Σ[ T ∈ Type ℓ ] (T ≃ A) f1 (x , p) = x , equivPathToEquiv p f2 : {A : Type ℓ} → Σ[ T ∈ Type ℓ ] (T ≃ A) → Σ[ T ∈ Type ℓ ] (EquivPath T A) f2 (x , p) = x , equivToEquivPath p f12 : (y : Σ[ T ∈ Type ℓ ] (T ≃ A)) → Path (Σ[ T ∈ Type ℓ ] (T ≃ A)) (f1 (f2 y)) y f12 (x , p) i = x , equivToEquiv {A = x} {B = A} p i -- Propositional truncation ∥∥-isProp : ∀ (x y : ∥ A ∥) → x ≡ y ∥∥-isProp x y = pathToId (squashPath x y) ∥∥-recursion : ∀ {A : Type ℓ} {P : Type ℓ} → isProp P → (A → P) → ∥ A ∥ → P ∥∥-recursion Pprop f x = recPropTruncPath (isPropToIsPropPath Pprop) f x ∥∥-induction : ∀ {A : Type ℓ} {P : ∥ A ∥ → Type ℓ} → ((a : ∥ A ∥) → isProp (P a)) → ((x : A) → P ∣ x ∣) → (a : ∥ A ∥) → P a ∥∥-induction Pprop f x = elimPropTruncPath (λ a → isPropToIsPropPath (Pprop a)) f x -- Univalence path≡Id : ∀ {ℓ} {A B : Type ℓ} → Path _ (Path _ A B) (Id A B) path≡Id = isoToPath (iso pathToId idToPath idToPathToId pathToIdToPath ) equivPathToEquivPath : ∀ {ℓ} {A : Type ℓ} {B : Type ℓ} → (p : EquivPath A B) → Path _ (equivToEquivPath (equivPathToEquiv p)) p equivPathToEquivPath (f , p) i = ( f , isPropIsEquivPath f (equivToEquivPath (equivPathToEquiv (f , p)) .pr₂) p i ) equivPath≡Equiv : ∀ {ℓ} {A B : Type ℓ} → Path _ (EquivPath A B) (A ≃ B) equivPath≡Equiv {ℓ} = isoToPath (iso (equivPathToEquiv {ℓ}) equivToEquivPath equivToEquiv equivPathToEquivPath) univalenceId : ∀ {ℓ} {A B : Type ℓ} → (A ≡ B) ≃ (A ≃ B) univalenceId {ℓ} {A = A} {B = B} = equivPathToEquiv rem where rem0 : Path _ (Lift (EquivPath A B)) (Lift (A ≃ B)) rem0 = congPath Lift equivPath≡Equiv rem1 : Path _ (Id A B) (Lift (A ≃ B)) rem1 i = hcomp (λ j → λ { (i = i0) → path≡Id {A = A} {B = B} j ; (i = i1) → rem0 j }) (univalencePath {A = A} {B = B} i) rem : EquivPath (Id A B) (A ≃ B) rem = compEquiv (eqweqmap rem1) (invEquiv LiftEquiv)
35.936102
136
0.547742
3d675eed1d00797a484836bc1b4c12f813d9ae20
12,997
agda
Agda
Cubical/HITs/SetQuotients/Properties.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/HITs/SetQuotients/Properties.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/HITs/SetQuotients/Properties.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{- Set quotients: -} {-# OPTIONS --safe #-} module Cubical.HITs.SetQuotients.Properties where open import Cubical.HITs.SetQuotients.Base open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Univalence open import Cubical.Functions.FunExtEquiv open import Cubical.Data.Sigma open import Cubical.Relation.Nullary open import Cubical.Relation.Binary.Base open import Cubical.HITs.TypeQuotients as TypeQuot using (_/ₜ_ ; [_] ; eq/) open import Cubical.HITs.PropositionalTruncation as PropTrunc using (∥_∥₁ ; ∣_∣₁ ; squash₁) renaming (rec to propRec) open import Cubical.HITs.SetTruncation as SetTrunc using (∥_∥₂ ; ∣_∣₂ ; squash₂ ; isSetSetTrunc) private variable ℓ ℓ' ℓ'' : Level A B C Q : Type ℓ R S T W : A → A → Type ℓ elimProp : {P : A / R → Type ℓ} → (∀ x → isProp (P x)) → (∀ a → P [ a ]) → ∀ x → P x elimProp prop f [ x ] = f x elimProp prop f (squash/ x y p q i j) = isOfHLevel→isOfHLevelDep 2 (λ x → isProp→isSet (prop x)) (g x) (g y) (cong g p) (cong g q) (squash/ x y p q) i j where g = elimProp prop f elimProp prop f (eq/ a b r i) = isProp→PathP (λ i → prop (eq/ a b r i)) (f a) (f b) i elimProp2 : {P : A / R → B / S → Type ℓ} → (∀ x y → isProp (P x y)) → (∀ a b → P [ a ] [ b ]) → ∀ x y → P x y elimProp2 prop f = elimProp (λ x → isPropΠ (prop x)) λ a → elimProp (prop [ a ]) (f a) elimProp3 : {P : A / R → B / S → C / T → Type ℓ} → (∀ x y z → isProp (P x y z)) → (∀ a b c → P [ a ] [ b ] [ c ]) → ∀ x y z → P x y z elimProp3 prop f = elimProp (λ x → isPropΠ2 (prop x)) λ a → elimProp2 (prop [ a ]) (f a) elimProp4 : {P : A / R → B / S → C / T → Q / W → Type ℓ} → (∀ x y z t → isProp (P x y z t)) → (∀ a b c d → P [ a ] [ b ] [ c ] [ d ]) → ∀ x y z t → P x y z t elimProp4 prop f = elimProp (λ x → isPropΠ3 (prop x)) λ a → elimProp3 (prop [ a ]) (f a) -- sometimes more convenient: elimContr : {P : A / R → Type ℓ} → (∀ a → isContr (P [ a ])) → ∀ x → P x elimContr contr = elimProp (elimProp (λ _ → isPropIsProp) λ _ → isContr→isProp (contr _)) λ _ → contr _ .fst elimContr2 : {P : A / R → B / S → Type ℓ} → (∀ a b → isContr (P [ a ] [ b ])) → ∀ x y → P x y elimContr2 contr = elimContr λ _ → isOfHLevelΠ 0 (elimContr λ _ → inhProp→isContr (contr _ _) isPropIsContr) -- lemma 6.10.2 in hott book []surjective : (x : A / R) → ∃[ a ∈ A ] [ a ] ≡ x []surjective = elimProp (λ x → squash₁) (λ a → ∣ a , refl ∣₁) elim : {P : A / R → Type ℓ} → (∀ x → isSet (P x)) → (f : (a : A) → (P [ a ])) → ((a b : A) (r : R a b) → PathP (λ i → P (eq/ a b r i)) (f a) (f b)) → ∀ x → P x elim set f feq [ a ] = f a elim set f feq (eq/ a b r i) = feq a b r i elim set f feq (squash/ x y p q i j) = isOfHLevel→isOfHLevelDep 2 set (g x) (g y) (cong g p) (cong g q) (squash/ x y p q) i j where g = elim set f feq rec : isSet B → (f : A → B) → ((a b : A) (r : R a b) → f a ≡ f b) → A / R → B rec set f feq [ a ] = f a rec set f feq (eq/ a b r i) = feq a b r i rec set f feq (squash/ x y p q i j) = set (g x) (g y) (cong g p) (cong g q) i j where g = rec set f feq rec2 : isSet C → (f : A → B → C) → (∀ a b c → R a b → f a c ≡ f b c) → (∀ a b c → S b c → f a b ≡ f a c) → A / R → B / S → C rec2 set f feql feqr = rec (isSetΠ (λ _ → set)) (λ a → rec set (f a) (feqr a)) (λ a b r → funExt (elimProp (λ _ → set _ _) (λ c → feql a b c r))) -- the recursor for maps into groupoids: -- i.e. for any type A with a binary relation R and groupoid B, -- we can construct a map A / R → B from a map A → B satisfying the conditions -- (i) ∀ (a b : A) → R a b → f a ≡ f b -- (ii) ∀ (a b : A) → isProp (f a ≡ f b) -- We start by proving that we can recover the set-quotient -- by set-truncating the (non-truncated type quotient) typeQuotSetTruncIso : Iso (A / R) ∥ A /ₜ R ∥₂ Iso.fun typeQuotSetTruncIso = rec isSetSetTrunc (λ a → ∣ [ a ] ∣₂) λ a b r → cong ∣_∣₂ (eq/ a b r) Iso.inv typeQuotSetTruncIso = SetTrunc.rec squash/ (TypeQuot.rec [_] eq/) Iso.rightInv typeQuotSetTruncIso = SetTrunc.elim (λ _ → isProp→isSet (squash₂ _ _)) (TypeQuot.elimProp (λ _ → squash₂ _ _) λ _ → refl) Iso.leftInv typeQuotSetTruncIso = elimProp (λ _ → squash/ _ _) λ _ → refl module rec→Gpd {B : Type ℓ''} (Bgpd : isGroupoid B) (f : A → B) (feq : ∀ (a b : A) → R a b → f a ≡ f b) (fprop : ∀ (a b : A) → isProp (f a ≡ f b)) where fun : A / R → B fun = f₁ ∘ f₂ where f₁ : ∥ A /ₜ R ∥₂ → B f₁ = SetTrunc.rec→Gpd.fun Bgpd f/ congF/Const where f/ : A /ₜ R → B f/ = TypeQuot.rec f feq congF/Const : (a b : A /ₜ R) (p q : a ≡ b) → cong f/ p ≡ cong f/ q congF/Const = TypeQuot.elimProp2 (λ _ _ → isPropΠ2 λ _ _ → Bgpd _ _ _ _) (λ a b p q → fprop a b (cong f/ p) (cong f/ q)) f₂ : A / R → ∥ A /ₜ R ∥₂ f₂ = Iso.fun typeQuotSetTruncIso setQuotUniversalIso : isSet B → Iso (A / R → B) (Σ[ f ∈ (A → B) ] ((a b : A) → R a b → f a ≡ f b)) Iso.fun (setQuotUniversalIso Bset) g = (λ a → g [ a ]) , λ a b r i → g (eq/ a b r i) Iso.inv (setQuotUniversalIso Bset) h = rec Bset (fst h) (snd h) Iso.rightInv (setQuotUniversalIso Bset) h = refl Iso.leftInv (setQuotUniversalIso Bset) g = funExt λ x → PropTrunc.rec (Bset (out (intro g) x) (g x)) (λ sur → cong (out (intro g)) (sym (snd sur)) ∙ (cong g (snd sur))) ([]surjective x) where intro = Iso.fun (setQuotUniversalIso Bset) out = Iso.inv (setQuotUniversalIso Bset) setQuotUniversal : isSet B → (A / R → B) ≃ (Σ[ f ∈ (A → B) ] ((a b : A) → R a b → f a ≡ f b)) setQuotUniversal Bset = isoToEquiv (setQuotUniversalIso Bset) open BinaryRelation setQuotUnaryOp : (-_ : A → A) → (∀ a a' → R a a' → R (- a) (- a')) → (A / R → A / R) setQuotUnaryOp -_ h = rec squash/ (λ a → [ - a ]) (λ a b x → eq/ _ _ (h _ _ x)) -- characterisation of binary functions/operations on set-quotients setQuotUniversal2Iso : isSet C → isRefl R → isRefl S → Iso (A / R → B / S → C) (Σ[ _∗_ ∈ (A → B → C) ] (∀ a a' b b' → R a a' → S b b' → a ∗ b ≡ a' ∗ b')) Iso.fun (setQuotUniversal2Iso {R = R} {S = S} Bset isReflR isReflS) _∗/_ = _∗_ , h where _∗_ = λ a b → [ a ] ∗/ [ b ] h : ∀ a a' b b' → R a a' → S b b' → a ∗ b ≡ a' ∗ b' h a a' b b' r s = cong (_∗/ [ b ]) (eq/ _ _ r) ∙ cong ([ a' ] ∗/_) (eq/ _ _ s) Iso.inv (setQuotUniversal2Iso {R = R} {S = S} Bset isReflR isReflS) (_∗_ , h) = rec2 Bset _∗_ hleft hright where hleft : ∀ a a' b → R a a' → (a ∗ b) ≡ (a' ∗ b) hleft _ _ b r = h _ _ _ _ r (isReflS b) hright : ∀ a b b' → S b b' → (a ∗ b) ≡ (a ∗ b') hright a _ _ r = h _ _ _ _ (isReflR a) r Iso.rightInv (setQuotUniversal2Iso Bset isReflR isReflS) (_∗_ , h) = Σ≡Prop (λ _ → isPropΠ4 λ _ _ _ _ → isPropΠ2 λ _ _ → Bset _ _) refl Iso.leftInv (setQuotUniversal2Iso Bset isReflR isReflS) _∗/_ = funExt₂ (elimProp2 (λ _ _ → Bset _ _) λ _ _ → refl) setQuotUniversal2 : isSet C → isRefl R → isRefl S → (A / R → B / S → C) ≃ (Σ[ _∗_ ∈ (A → B → C) ] (∀ a a' b b' → R a a' → S b b' → a ∗ b ≡ a' ∗ b')) setQuotUniversal2 Bset isReflR isReflS = isoToEquiv (setQuotUniversal2Iso Bset isReflR isReflS) -- corollary for binary operations -- TODO: prove truncated inverse for effective relations setQuotBinOp : isRefl R → isRefl S → (_∗_ : A → B → C) → (∀ a a' b b' → R a a' → S b b' → T (a ∗ b) (a' ∗ b')) → (A / R → B / S → C / T) setQuotBinOp isReflR isReflS _∗_ h = rec2 squash/ (λ a b → [ a ∗ b ]) (λ _ _ _ r → eq/ _ _ (h _ _ _ _ r (isReflS _))) (λ _ _ _ s → eq/ _ _ (h _ _ _ _ (isReflR _) s)) setQuotSymmBinOp : isRefl R → isTrans R → (_∗_ : A → A → A) → (∀ a b → R (a ∗ b) (b ∗ a)) → (∀ a a' b → R a a' → R (a ∗ b) (a' ∗ b)) → (A / R → A / R → A / R) setQuotSymmBinOp {A = A} {R = R} isReflR isTransR _∗_ ∗Rsymm h = setQuotBinOp isReflR isReflR _∗_ h' where h' : ∀ a a' b b' → R a a' → R b b' → R (a ∗ b) (a' ∗ b') h' a a' b b' ra rb = isTransR _ _ _ (h a a' b ra) (isTransR _ _ _ (∗Rsymm a' b) (isTransR _ _ _ (h b b' a' rb) (∗Rsymm b' a'))) effective : (Rprop : isPropValued R) (Requiv : isEquivRel R) → (a b : A) → [ a ] ≡ [ b ] → R a b effective {A = A} {R = R} Rprop (equivRel R/refl R/sym R/trans) a b p = transport aa≡ab (R/refl _) where helper : A / R → hProp _ helper = rec isSetHProp (λ c → (R a c , Rprop a c)) (λ c d cd → Σ≡Prop (λ _ → isPropIsProp) (hPropExt (Rprop a c) (Rprop a d) (λ ac → R/trans _ _ _ ac cd) (λ ad → R/trans _ _ _ ad (R/sym _ _ cd)))) aa≡ab : R a a ≡ R a b aa≡ab i = helper (p i) .fst isEquivRel→effectiveIso : isPropValued R → isEquivRel R → (a b : A) → Iso ([ a ] ≡ [ b ]) (R a b) Iso.fun (isEquivRel→effectiveIso {R = R} Rprop Req a b) = effective Rprop Req a b Iso.inv (isEquivRel→effectiveIso {R = R} Rprop Req a b) = eq/ a b Iso.rightInv (isEquivRel→effectiveIso {R = R} Rprop Req a b) _ = Rprop a b _ _ Iso.leftInv (isEquivRel→effectiveIso {R = R} Rprop Req a b) _ = squash/ _ _ _ _ isEquivRel→isEffective : isPropValued R → isEquivRel R → isEffective R isEquivRel→isEffective Rprop Req a b = isoToIsEquiv (invIso (isEquivRel→effectiveIso Rprop Req a b)) discreteSetQuotients : Discrete A → isPropValued R → isEquivRel R → (∀ a₀ a₁ → Dec (R a₀ a₁)) → Discrete (A / R) discreteSetQuotients {A = A} {R = R} Adis Rprop Req Rdec = elim (λ a₀ → isSetΠ (λ a₁ → isProp→isSet (isPropDec (squash/ a₀ a₁)))) discreteSetQuotients' discreteSetQuotients'-eq where discreteSetQuotients' : (a : A) (y : A / R) → Dec ([ a ] ≡ y) discreteSetQuotients' a₀ = elim (λ a₁ → isProp→isSet (isPropDec (squash/ [ a₀ ] a₁))) dis dis-eq where dis : (a₁ : A) → Dec ([ a₀ ] ≡ [ a₁ ]) dis a₁ with Rdec a₀ a₁ ... | (yes p) = yes (eq/ a₀ a₁ p) ... | (no ¬p) = no λ eq → ¬p (effective Rprop Req a₀ a₁ eq ) dis-eq : (a b : A) (r : R a b) → PathP (λ i → Dec ([ a₀ ] ≡ eq/ a b r i)) (dis a) (dis b) dis-eq a b ab = J (λ b ab → ∀ k → PathP (λ i → Dec ([ a₀ ] ≡ ab i)) (dis a) k) (λ k → isPropDec (squash/ _ _) _ _) (eq/ a b ab) (dis b) discreteSetQuotients'-eq : (a b : A) (r : R a b) → PathP (λ i → (y : A / R) → Dec (eq/ a b r i ≡ y)) (discreteSetQuotients' a) (discreteSetQuotients' b) discreteSetQuotients'-eq a b ab = J (λ b ab → ∀ k → PathP (λ i → (y : A / R) → Dec (ab i ≡ y)) (discreteSetQuotients' a) k) (λ k → funExt (λ x → isPropDec (squash/ _ _) _ _)) (eq/ a b ab) (discreteSetQuotients' b) -- Quotienting by the truncated relation is equivalent to quotienting by untruncated relation truncRelIso : Iso (A / R) (A / (λ a b → ∥ R a b ∥₁)) Iso.fun truncRelIso = rec squash/ [_] λ _ _ r → eq/ _ _ ∣ r ∣₁ Iso.inv truncRelIso = rec squash/ [_] λ _ _ → PropTrunc.rec (squash/ _ _) λ r → eq/ _ _ r Iso.rightInv truncRelIso = elimProp (λ _ → squash/ _ _) λ _ → refl Iso.leftInv truncRelIso = elimProp (λ _ → squash/ _ _) λ _ → refl truncRelEquiv : A / R ≃ A / (λ a b → ∥ R a b ∥₁) truncRelEquiv = isoToEquiv truncRelIso -- Using this we can obtain a useful characterization of -- path-types for equivalence relations (not prop-valued) -- and their quotients isEquivRel→TruncIso : isEquivRel R → (a b : A) → Iso ([ a ] ≡ [ b ]) ∥ R a b ∥₁ isEquivRel→TruncIso {A = A} {R = R} Req a b = compIso (isProp→Iso (squash/ _ _) (squash/ _ _) (cong (Iso.fun truncRelIso)) (cong (Iso.inv truncRelIso))) (isEquivRel→effectiveIso (λ _ _ → PropTrunc.isPropPropTrunc) ∥R∥eq a b) where open isEquivRel ∥R∥eq : isEquivRel λ a b → ∥ R a b ∥₁ reflexive ∥R∥eq a = ∣ reflexive Req a ∣₁ symmetric ∥R∥eq a b = PropTrunc.map (symmetric Req a b) transitive ∥R∥eq a b c = PropTrunc.map2 (transitive Req a b c) -- quotienting by 'logically equivalent' relations gives the same quotient relBiimpl→TruncIso : ({a b : A} → R a b → S a b) → ({a b : A} → S a b → R a b) → Iso (A / R) (A / S) Iso.fun (relBiimpl→TruncIso R→S S→R) = rec squash/ [_] λ _ _ Rab → eq/ _ _ (R→S Rab) Iso.inv (relBiimpl→TruncIso R→S S→R) = rec squash/ [_] λ _ _ Sab → eq/ _ _ (S→R Sab) Iso.rightInv (relBiimpl→TruncIso R→S S→R) = elimProp (λ _ → squash/ _ _) λ _ → refl Iso.leftInv (relBiimpl→TruncIso R→S S→R) = elimProp (λ _ → squash/ _ _) λ _ → refl descendMapPath : {M : Type ℓ} (f g : A / R → M) (isSetM : isSet M) → ((x : A) → f [ x ] ≡ g [ x ]) → f ≡ g descendMapPath f g isSetM path i x = propRec (isSetM (f x) (g x)) (λ {(x' , p) → f x ≡⟨ cong f (sym p) ⟩ f [ x' ] ≡⟨ path x' ⟩ g [ x' ] ≡⟨ cong g p ⟩ g x ∎ }) ([]surjective x) i
36.304469
100
0.555205
29d246b53281354a49985b151c39e096a15a6772
817
agda
Agda
src/fot/FOTC/Data/Colist/Type/Consistency/Axioms.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Data/Colist/Type/Consistency/Axioms.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Data/Colist/Type/Consistency/Axioms.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Test the consistency of FOTC.Data.Colist.Type ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- In the module FOTC.Data.Colist.Type we declare Agda postulates as -- first-order logic axioms. We test if it is possible to prove an -- unprovable theorem from these axioms. module FOTC.Data.Colist.Type.Consistency.Axioms where open import FOTC.Base open import FOTC.Data.Colist.Type ------------------------------------------------------------------------------ postulate impossible : ∀ d e → d ≡ e {-# ATP prove impossible #-}
35.521739
78
0.473684
1d649634be5cfc9aaf63d60df1e3defd00b18264
1,453
agda
Agda
Sets/Cardinality/Infinite/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Sets/Cardinality/Infinite/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Sets/Cardinality/Infinite/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import Functions.Definition open import Functions.Lemmas open import LogicalFormulae open import Numbers.Naturals.Definition open import Numbers.Naturals.Order open import Sets.Cardinality.Infinite.Definition open import Sets.FinSet.Definition open import Sets.FinSet.Lemmas module Sets.Cardinality.Infinite.Lemmas where finsetNotInfinite : {n : ℕ} → InfiniteSet (FinSet n) → False finsetNotInfinite {n} isInfinite = isInfinite n id idIsBijective noInjectionNToFinite : {n : ℕ} → {f : ℕ → FinSet n} → Injection f → False noInjectionNToFinite {n} {f} inj = pigeonhole (le 0 refl) tInj where t : FinSet (succ n) → FinSet n t m = f (toNat m) tInj : Injection t tInj {x} {y} fx=fy = toNatInjective x y (inj fx=fy) dedekindInfiniteImpliesInfinite : {a : _} (A : Set a) → DedekindInfiniteSet A → InfiniteSet A dedekindInfiniteImpliesInfinite A record { inj = inj ; isInjection = isInjection } zero f x with Invertible.inverse (bijectionImpliesInvertible x) (inj 0) ... | () dedekindInfiniteImpliesInfinite A record { inj = inj ; isInjection = isInj } (succ n) f isBij = noInjectionNToFinite {f = t} tInjective where t : ℕ → FinSet (succ n) t n = Invertible.inverse (bijectionImpliesInvertible isBij) (inj n) tInjective : Injection t tInjective pr = isInj ((Bijection.inj (invertibleImpliesBijection (inverseIsInvertible (bijectionImpliesInvertible isBij)))) pr)
42.735294
154
0.741913
224874210130a2017bf0e63e3c52acb8e5ee89cd
912
agda
Agda
test/Succeed/Conat-Sized.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/Succeed/Conat-Sized.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Conat-Sized.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- Andreas, 2018-10-18, re issue #2757 -- -- Extracted this snippet from the standard library -- as it caused problems during work in #2757 -- (runtime erasue using 0-quantity). -- {-# OPTIONS -v tc.lhs.unify:65 -v tc.irr:50 #-} open import Agda.Builtin.Size data ⊥ : Set where mutual data Conat (i : Size) : Set where zero : Conat i suc : ∞Conat i → Conat i record ∞Conat (i : Size) : Set where coinductive field force : ∀{j : Size< i} → Conat j open ∞Conat infinity : ∀ {i} → Conat i infinity = suc λ where .force → infinity data Finite : Conat ∞ → Set where zero : Finite zero suc : ∀ {n} → Finite (n .force) → Finite (suc n) ¬Finite∞ : Finite infinity → ⊥ ¬Finite∞ (suc p) = ¬Finite∞ p -- The problem was that the usableMod check in the -- unifier (LHS.Unify) refuted this pattern match -- because a runtime-erased argument ∞ (via meta-variable) -- the the extended lambda.
24.648649
58
0.656798
ad45aa4dafe31eab50930db6bf478e19fa72b542
3,261
agda
Agda
agda/MorePropAlgebra/Properties/Ring.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
3
2020-07-31T18:15:26.000Z
2022-02-19T12:15:21.000Z
agda/MorePropAlgebra/Properties/Ring.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
agda/MorePropAlgebra/Properties/Ring.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts #-} open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Function.Base using (_∋_; _$_) open import MorePropAlgebra.Bundles import Cubical.Algebra.Ring as Std module MorePropAlgebra.Properties.Ring {ℓ} (assumptions : Ring {ℓ}) where open Ring assumptions renaming (Carrier to R) import MorePropAlgebra.Properties.AbGroup module AbGroup'Properties = MorePropAlgebra.Properties.AbGroup (record { Ring assumptions renaming (+-AbGroup to is-AbGroup) }) module AbGroup' = AbGroup (record { Ring assumptions renaming (+-AbGroup to is-AbGroup) }) ( AbGroup') = AbGroup ∋ (record { Ring assumptions renaming (+-AbGroup to is-AbGroup) }) import MorePropAlgebra.Properties.Monoid module Monoid'Properties = MorePropAlgebra.Properties.Monoid (record { Ring assumptions renaming (·-Monoid to is-Monoid) }) module Monoid' = Monoid (record { Ring assumptions renaming (·-Monoid to is-Monoid) }) ( Monoid') = Monoid ∋ (record { Ring assumptions renaming (·-Monoid to is-Monoid) }) stdIsRing : Std.IsRing 0r 1r _+_ _·_ (-_) stdIsRing .Std.IsRing.+-isAbGroup = AbGroup'Properties.stdIsAbGroup stdIsRing .Std.IsRing.·-isMonoid = Monoid'Properties.stdIsMonoid stdIsRing .Std.IsRing.dist = is-dist stdRing : Std.Ring {ℓ} stdRing = record { Ring assumptions ; isRing = stdIsRing } module RingTheory' = Std.Theory stdRing {- -- NOTE: a few facts about rings that might be collected from elsewhere a+b-b≡a : ∀ a b → a ≡ (a + b) - b a+b-b≡a a b = let P = sym (fst (+-inv b)) Q = sym (fst (+-identity a)) R = transport (λ i → a ≡ a + P i) Q S = transport (λ i → a ≡ (+-assoc a b (- b)) i ) R in S -- NOTE: this is called `simplL` and `simplL` in `Cubical.Structures.Group.Properties.GroupLemmas` +-preserves-≡ : ∀{a b} → ∀ c → a ≡ b → a + c ≡ b + c +-preserves-≡ c a≡b i = a≡b i + c +-preserves-≡-l : ∀{a b} → ∀ c → a ≡ b → c + a ≡ c + b +-preserves-≡-l c a≡b i = c + a≡b i a+b≡0→a≡-b : ∀{a b} → a + b ≡ 0r → a ≡ - b a+b≡0→a≡-b {a} {b} a+b≡0 = transport (λ i → let RHS = snd (+-identity (- b)) LHS₁ : a + (b + - b) ≡ a + 0r LHS₁ = +-preserves-≡-l a (fst (+-inv b)) LHS₂ : (a + b) - b ≡ a LHS₂ = transport (λ j → (+-assoc a b (- b)) j ≡ fst (+-identity a) j) LHS₁ in LHS₂ i ≡ RHS i ) (+-preserves-≡ (- b) a+b≡0) -- NOTE: there is already -- -commutesWithRight-· : (x y : R) → x · (- y) ≡ - (x · y) a·-b≡-a·b : ∀ a b → a · (- b) ≡ - (a · b) a·-b≡-a·b a b = let P : a · 0r ≡ 0r P = 0-rightNullifies a Q : a · (- b + b) ≡ 0r Q = transport (λ i → a · snd (+-inv b) (~ i) ≡ 0r) P R : a · (- b) + a · b ≡ 0r R = transport (λ i → ·-rdist-+ a (- b) b i ≡ 0r) Q in a+b≡0→a≡-b R a·b-a·c≡a·[b-c] : ∀ a b c → a · b - (a · c) ≡ a · (b - c) a·b-a·c≡a·[b-c] a b c = let P : a · b + a · (- c) ≡ a · (b + - c) P = sym (·-rdist-+ a b (- c)) Q : a · b - a · c ≡ a · (b + - c) Q = transport (λ i → a · b + a·-b≡-a·b a c i ≡ a · (b + - c) ) P in Q -}
38.364706
129
0.534805
04540d89c7520754acbc944ffa8586e5afc8a01a
3,052
agda
Agda
src/fot/FOTC/Data/Nat/UnaryNumbers.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Data/Nat/UnaryNumbers.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Data/Nat/UnaryNumbers.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Unary naturales numbers ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Nat.UnaryNumbers where open import FOTC.Base ------------------------------------------------------------------------------ 0' = zero 1' = succ₁ 0' 2' = succ₁ 1' 3' = succ₁ 2' 4' = succ₁ 3' 5' = succ₁ 4' 6' = succ₁ 5' 7' = succ₁ 6' 8' = succ₁ 7' 9' = succ₁ 8' {-# ATP definitions 0' 1' 2' 3' 4' 5' 6' 7' 8' 9' #-} 10' = succ₁ 9' 11' = succ₁ 10' 12' = succ₁ 11' 13' = succ₁ 12' 14' = succ₁ 13' 15' = succ₁ 14' 16' = succ₁ 15' 17' = succ₁ 16' 18' = succ₁ 17' 19' = succ₁ 18' {-# ATP definition 10' 11' 12' 13' 14' 15' 16' 17' 18' 19' #-} 20' = succ₁ 19' 21' = succ₁ 20' 22' = succ₁ 21' 23' = succ₁ 22' 24' = succ₁ 23' 25' = succ₁ 24' 26' = succ₁ 25' 27' = succ₁ 26' 28' = succ₁ 27' 29' = succ₁ 28' {-# ATP definition 20' 21' 22' 23' 24' 25' 26' 27' 28' 29' #-} 30' = succ₁ 29' 31' = succ₁ 30' 32' = succ₁ 31' 33' = succ₁ 32' 34' = succ₁ 33' 35' = succ₁ 34' 36' = succ₁ 35' 37' = succ₁ 36' 38' = succ₁ 37' 39' = succ₁ 38' {-# ATP definition 30' 31' 32' 33' 34' 35' 36' 37' 38' 39' #-} 40' = succ₁ 39' 41' = succ₁ 40' 42' = succ₁ 41' 43' = succ₁ 42' 44' = succ₁ 43' 45' = succ₁ 44' 46' = succ₁ 45' 47' = succ₁ 46' 48' = succ₁ 47' 49' = succ₁ 48' {-# ATP definition 40' 41' 42' 43' 44' 45' 46' 47' 48' 49' #-} 50' = succ₁ 49' 51' = succ₁ 50' 52' = succ₁ 51' 53' = succ₁ 52' 54' = succ₁ 53' 55' = succ₁ 54' 56' = succ₁ 55' 57' = succ₁ 56' 58' = succ₁ 57' 59' = succ₁ 58' {-# ATP definition 50' 51' 52' 53' 54' 55' 56' 57' 58' 59' #-} 60' = succ₁ 59' 61' = succ₁ 60' 62' = succ₁ 61' 63' = succ₁ 62' 64' = succ₁ 63' 65' = succ₁ 64' 66' = succ₁ 65' 67' = succ₁ 66' 68' = succ₁ 67' 69' = succ₁ 68' {-# ATP definition 60' 61' 62' 63' 64' 65' 66' 67' 68' 69' #-} 70' = succ₁ 69' 71' = succ₁ 70' 72' = succ₁ 71' 73' = succ₁ 72' 74' = succ₁ 73' 75' = succ₁ 74' 76' = succ₁ 75' 77' = succ₁ 76' 78' = succ₁ 77' 79' = succ₁ 78' {-# ATP definition 70' 71' 72' 73' 74' 75' 76' 77' 78' 79' #-} 80' = succ₁ 79' 81' = succ₁ 80' 82' = succ₁ 81' 83' = succ₁ 82' 84' = succ₁ 83' 85' = succ₁ 84' 86' = succ₁ 85' 87' = succ₁ 86' 88' = succ₁ 87' 89' = succ₁ 88' {-# ATP definition 80' 81' 82' 83' 84' 85' 86' 87' 88' 89' #-} 90' = succ₁ 89' 91' = succ₁ 90' 92' = succ₁ 91' 93' = succ₁ 92' 94' = succ₁ 93' 95' = succ₁ 94' 96' = succ₁ 95' 97' = succ₁ 96' 98' = succ₁ 97' 99' = succ₁ 98' {-# ATP definition 90' 91' 92' 93' 94' 95' 96' 97' 98' 99' #-} 100' = succ₁ 99' 101' = succ₁ 100' 102' = succ₁ 101' 103' = succ₁ 102' 104' = succ₁ 103' 105' = succ₁ 104' 106' = succ₁ 105' 107' = succ₁ 106' 108' = succ₁ 107' 109' = succ₁ 108' {-# ATP definition 100' 101' 102' 103' 104' 105' 106' 107' 108' 109' #-} 110' = succ₁ 109' 111' = succ₁ 110' {-# ATP definition 110' 111' #-}
18.839506
78
0.505898
13c378e41620356a14f15aba94c198ba06dfbce4
1,882
agda
Agda
test/LibSucceed/SizeInconsistentMeta4.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/LibSucceed/SizeInconsistentMeta4.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/LibSucceed/SizeInconsistentMeta4.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- Andreas, 2012-02-24 example by Ramana Kumar {-# OPTIONS --sized-types #-} -- {-# OPTIONS --show-implicit -v tc.size.solve:20 -v tc.conv.size:15 #-} module SizeInconsistentMeta4 where open import Data.Nat using (ℕ;zero;suc) renaming (_<_ to _N<_) open import Data.Product using (_,_;_×_) open import Data.Product.Relation.Binary.Lex.Strict using (×-Lex; ×-transitive) open import Data.List using (List) open import Data.List.Relation.Binary.Lex.Strict using (Lex-<) renaming (<-transitive to Lex<-trans) open import Relation.Binary using (Rel;_Respects₂_;Transitive;IsEquivalence) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_) import Level open import Size using (Size;↑_) -- keeping the definition of Vec for the positivity check infixr 5 _∷_ data Vec {a} (A : Set a) : ℕ → Set a where [] : Vec A zero _∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n) {- produces different error data Lex-< {A : _} (_≈_ _<_ : Rel A Level.zero) : Rel (List A) Level.zero where postulate Lex<-trans : ∀ {P _≈_ _<_} → IsEquivalence _≈_ → _<_ Respects₂ _≈_ → Transitive _<_ → Transitive (Lex-< _≈_ _<_) -} postulate N<-trans : Transitive _N<_ -- Vec : ∀ {a} (A : Set a) → ℕ → Set a Vec→List : ∀ {a n} {A : Set a} → Vec A n → List A data Type : {z : Size} → Set where TyApp : {z : Size} (n : ℕ) → (as : Vec (Type {z}) n) → Type {↑ z} infix 4 _<_ data _<_ : {z : Size} → Rel (Type {z}) Level.zero where TyApp<TyApp : ∀ {z} {n₁} {as₁} {n₂} {as₂} → ×-Lex _≡_ _N<_ (Lex-< _≡_ (_<_ {z})) (n₁ , Vec→List as₁) (n₂ , Vec→List as₂) → _<_ {↑ z} (TyApp n₁ as₁) (TyApp n₂ as₂) <-trans : {z : Size} → Transitive (_<_ {z}) <-trans (TyApp<TyApp p) (TyApp<TyApp q) = TyApp<TyApp (×-transitive PropEq.isEquivalence (PropEq.resp₂ _N<_) N<-trans {_≤₂_ = Lex-< _≡_ _<_ } (Lex<-trans PropEq.isEquivalence (PropEq.resp₂ _<_) <-trans) p q)
40.913043
207
0.6339
c7943ad893b31cd7dacca662ad0286240ab081fc
7,816
agda
Agda
Cubical/Algebra/Group/Instances/IntMod.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/Instances/IntMod.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/Instances/IntMod.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.Group.Instances.IntMod where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Unit open import Cubical.Data.Bool hiding (isProp≤) open import Cubical.Data.Nat renaming (_+_ to _+ℕ_) open import Cubical.Data.Nat.Mod open import Cubical.Data.Nat.Order open import Cubical.Data.Int renaming (_+_ to _+ℤ_) open import Cubical.Data.Fin open import Cubical.Data.Fin.Arithmetic open import Cubical.Data.Sigma open import Cubical.Algebra.Monoid.Base open import Cubical.Algebra.Semigroup.Base open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.Properties open import Cubical.Algebra.Group.Instances.Unit open import Cubical.Algebra.Group.Instances.Bool open import Cubical.Algebra.Group.Instances.Int open GroupStr open IsGroup open IsMonoid ℤGroup/_ : ℕ → Group₀ ℤGroup/ zero = ℤGroup fst (ℤGroup/ suc n) = Fin (suc n) 1g (snd (ℤGroup/ suc n)) = 0 GroupStr._·_ (snd (ℤGroup/ suc n)) = _+ₘ_ inv (snd (ℤGroup/ suc n)) = -ₘ_ isGroup (snd (ℤGroup/ suc n)) = makeIsGroup isSetFin (λ x y z → sym (+ₘ-assoc x y z)) +ₘ-rUnit +ₘ-lUnit +ₘ-rCancel +ₘ-lCancel ℤGroup/1≅Unit : GroupIso (ℤGroup/ 1) UnitGroup₀ ℤGroup/1≅Unit = contrGroupIsoUnit isContrFin1 Bool≅ℤGroup/2 : GroupIso BoolGroup (ℤGroup/ 2) Iso.fun (fst Bool≅ℤGroup/2) false = 1 Iso.fun (fst Bool≅ℤGroup/2) true = 0 Iso.inv (fst Bool≅ℤGroup/2) (zero , p) = true Iso.inv (fst Bool≅ℤGroup/2) (suc zero , p) = false Iso.inv (fst Bool≅ℤGroup/2) (suc (suc x) , p) = ⊥.rec (¬-<-zero (predℕ-≤-predℕ (predℕ-≤-predℕ p))) Iso.rightInv (fst Bool≅ℤGroup/2) (zero , p) = Σ≡Prop (λ _ → isProp≤) refl Iso.rightInv (fst Bool≅ℤGroup/2) (suc zero , p) = Σ≡Prop (λ _ → isProp≤) refl Iso.rightInv (fst Bool≅ℤGroup/2) (suc (suc x) , p) = ⊥.rec (¬-<-zero (predℕ-≤-predℕ (predℕ-≤-predℕ p))) Iso.leftInv (fst Bool≅ℤGroup/2) false = refl Iso.leftInv (fst Bool≅ℤGroup/2) true = refl snd Bool≅ℤGroup/2 = makeIsGroupHom λ { false false → refl ; false true → refl ; true false → refl ; true true → refl} ℤGroup/2≅Bool : GroupIso (ℤGroup/ 2) BoolGroup ℤGroup/2≅Bool = invGroupIso Bool≅ℤGroup/2 -- Definition of the quotient map homomorphism ℤ → ℤGroup/ (suc n) -- as a group homomorphism. ℤ→Fin : (n : ℕ) → ℤ → Fin (suc n) ℤ→Fin n (pos x) = x mod (suc n) , mod< n x ℤ→Fin n (negsuc x) = -ₘ (suc x mod suc n , mod< n (suc x)) ℤ→Fin-presinv : (n : ℕ) (x : ℤ) → ℤ→Fin n (- x) ≡ -ₘ ℤ→Fin n x ℤ→Fin-presinv n (pos zero) = Σ≡Prop (λ _ → isProp≤) ((λ _ → zero) ∙ sym (cong fst help)) where help : (-ₘ_ {n = n} 0) ≡ 0 help = GroupTheory.inv1g (ℤGroup/ (suc n)) ℤ→Fin-presinv n (pos (suc x)) = Σ≡Prop (λ _ → isProp≤) refl ℤ→Fin-presinv n (negsuc x) = sym (GroupTheory.invInv (ℤGroup/ (suc n)) _) -ₘ1-id : (n : ℕ) → Path (Fin (suc n)) (-ₘ (1 mod (suc n) , mod< n 1)) (n mod (suc n) , mod< n n) -ₘ1-id zero = refl -ₘ1-id (suc n) = cong -ₘ_ (FinPathℕ ((1 mod suc (suc n)) , mod< (suc n) 1) 1 (modIndBase (suc n) 1 (n , +-comm n 2)) .snd) ∙ Σ≡Prop (λ _ → isProp≤) ((+inductionBase (suc n) _ (λ x _ → ((suc (suc n)) ∸ x) mod (suc (suc n))) λ _ x → x) 1 (n , (+-comm n 2))) suc-ₘ1 : (n y : ℕ) → ((suc y mod suc n) , mod< n (suc y)) -ₘ (1 mod (suc n) , mod< n 1) ≡ (y mod suc n , mod< n y) suc-ₘ1 zero y = isContr→isProp (isOfHLevelRetractFromIso 0 (fst ℤGroup/1≅Unit) isContrUnit) _ _ suc-ₘ1 (suc n) y = (λ i → ((suc y mod suc (suc n)) , mod< (suc n) (suc y)) +ₘ (-ₘ1-id (suc n) i)) ∙ Σ≡Prop (λ _ → isProp≤) (cong (_mod (2 +ℕ n)) (cong (_+ℕ (suc n) mod (2 +ℕ n)) (mod+mod≡mod (suc (suc n)) 1 y)) ∙∙ sym (mod+mod≡mod (suc (suc n)) ((1 mod suc (suc n)) +ℕ (y mod suc (suc n))) (suc n)) ∙∙ (mod-rCancel (suc (suc n)) ((1 mod suc (suc n)) +ℕ (y mod suc (suc n))) (suc n) ∙ cong (_mod (suc (suc n))) (cong (_+ℕ (suc n mod suc (suc n))) (+-comm (1 mod suc (suc n)) (y mod suc (suc n))) ∙ sym (+-assoc (y mod suc (suc n)) (1 mod suc (suc n)) (suc n mod suc (suc n)))) ∙∙ mod-rCancel (suc (suc n)) (y mod suc (suc n)) ((1 mod suc (suc n)) +ℕ (suc n mod suc (suc n))) ∙∙ (cong (_mod (2 +ℕ n)) (cong ((y mod suc (suc n)) +ℕ_) (sym (mod+mod≡mod (suc (suc n)) 1 (suc n)) ∙ zero-charac (suc (suc n))) ∙ +-comm _ 0) ∙ mod-idempotent y))) 1-ₘsuc : (n y : ℕ) → ((1 mod (suc n) , mod< n 1) +ₘ (-ₘ (((suc y mod suc n) , mod< n (suc y))))) ≡ -ₘ ((y mod suc n) , mod< n y) 1-ₘsuc n y = sym (GroupTheory.invInv (ℤGroup/ (suc n)) _) ∙ cong -ₘ_ (GroupTheory.invDistr (ℤGroup/ (suc n)) (modInd n 1 , mod< n 1) (-ₘ (modInd n (suc y) , mod< n (suc y))) ∙ cong (_-ₘ (modInd n 1 , mod< n 1)) (GroupTheory.invInv (ℤGroup/ (suc n)) (modInd n (suc y) , mod< n (suc y))) ∙ suc-ₘ1 n y) isHomℤ→Fin : (n : ℕ) → IsGroupHom (snd ℤGroup) (ℤ→Fin n) (snd (ℤGroup/ (suc n))) isHomℤ→Fin n = makeIsGroupHom λ { (pos x) y → pos+case x y ; (negsuc x) (pos y) → cong (ℤ→Fin n) (+Comm (negsuc x) (pos y)) ∙∙ pos+case y (negsuc x) ∙∙ +ₘ-comm (ℤ→Fin n (pos y)) (ℤ→Fin n (negsuc x)) ; (negsuc x) (negsuc y) → sym (cong (ℤ→Fin n) (-Dist+ (pos (suc x)) (pos (suc y)))) ∙∙ ℤ→Fin-presinv n (pos (suc x) +ℤ (pos (suc y))) ∙∙ cong -ₘ_ (pos+case (suc x) (pos (suc y))) ∙∙ GroupTheory.invDistr (ℤGroup/ (suc n)) (modInd n (suc x) , mod< n (suc x)) (modInd n (suc y) , mod< n (suc y)) ∙∙ +ₘ-comm (ℤ→Fin n (negsuc y)) (ℤ→Fin n (negsuc x))} where +1case : (y : ℤ) → ℤ→Fin n (1 +ℤ y) ≡ ℤ→Fin n 1 +ₘ ℤ→Fin n y +1case (pos zero) = sym (GroupStr.·IdR (snd (ℤGroup/ (suc n))) _) +1case (pos (suc y)) = cong (ℤ→Fin n) (+Comm 1 (pos (suc y))) ∙ Σ≡Prop (λ _ → isProp≤) (mod+mod≡mod (suc n) 1 (suc y)) +1case (negsuc zero) = Σ≡Prop (λ _ → isProp≤) refl ∙ sym (GroupStr.·InvR (snd (ℤGroup/ (suc n))) (modInd n 1 , mod< n 1)) +1case (negsuc (suc y)) = Σ≡Prop (λ _ → isProp≤) (cong fst (cong (ℤ→Fin n) (+Comm 1 (negsuc (suc y)))) ∙∙ cong fst (cong -ₘ_ (refl {x = suc y mod suc n , mod< n (suc y)})) ∙∙ cong fst (sym (1-ₘsuc n (suc y))) ∙ λ i → fst ((1 mod (suc n) , mod< n 1) +ₘ (-ₘ (((suc (suc y) mod suc n) , mod< n (suc (suc y))))))) pos+case : (x : ℕ) (y : ℤ) → ℤ→Fin n (pos x +ℤ y) ≡ ℤ→Fin n (pos x) +ₘ ℤ→Fin n y pos+case zero y = cong (ℤ→Fin n) (+Comm 0 y) ∙ sym (GroupStr.·IdL (snd (ℤGroup/ (suc n))) (ℤ→Fin n y)) pos+case (suc zero) y = +1case y pos+case (suc (suc x)) y = cong (ℤ→Fin n) (cong (_+ℤ y) (+Comm (pos (suc x)) 1) ∙ sym (+Assoc 1 (pos (suc x)) y)) ∙∙ +1case (pos (suc x) +ℤ y) ∙∙ (cong ((modInd n 1 , mod< n 1) +ₘ_) (pos+case (suc x) y) ∙∙ sym (+ₘ-assoc (modInd n 1 , mod< n 1) (modInd n (suc x) , mod< n (suc x)) (ℤ→Fin n y)) ∙∙ cong (_+ₘ ℤ→Fin n y) (lem x)) where lem : (x : ℕ) → (modInd n 1 , mod< n 1) +ₘ (modInd n (suc x) , mod< n (suc x)) ≡ ℤ→Fin n (pos (suc (suc x))) lem x = Σ≡Prop (λ _ → isProp≤) (sym (mod+mod≡mod (suc n) 1 (suc x)))
38.693069
81
0.531474
38d11d9454280a888e8b794cb94f316ece8a9513
5,889
agda
Agda
old/Spaces/LoopSpaceCircle.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
old/Spaces/LoopSpaceCircle.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
old/Spaces/LoopSpaceCircle.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K #-} open import Base open import Spaces.Circle open import Integers module Spaces.LoopSpaceCircle where -- Path fibration path-fib : S¹ → Set path-fib t = (t ≡ base) tot-path-fib : Set tot-path-fib = Σ S¹ path-fib tot-path-fib-is-contr : is-contr tot-path-fib tot-path-fib-is-contr = pathto-is-contr base -- Universal cover succ-path : ℤ ≡ ℤ succ-path = eq-to-path succ-equiv universal-cover : S¹ → Set universal-cover = S¹-rec-nondep Set ℤ succ-path tot-cover : Set tot-cover = Σ S¹ universal-cover -- Transport in the universal cover loop-to-succ : (n : ℤ) → transport universal-cover loop n ≡ succ n loop-to-succ n = ! (trans-ap (λ A → A) universal-cover loop n) ∘ (ap (λ t → transport (λ A → A) t n) (S¹-β-loop-nondep Set ℤ succ-path) ∘ trans-id-eq-to-path succ-equiv n) {- The flattening lemma Here is an HIT declaration for the CW-complex of real numbers: data ℝ : Set where z : ℤ → ℝ e : (n : ℤ) → z n ≡ z (succ n) We want to show that [tot-cover] has the same introduction and elimination rules. -} -- Introduction rules R-z : ℤ → tot-cover R-z n = (base , n) R-e : (n : ℤ) → R-z n ≡ R-z (succ n) R-e n = Σ-eq loop (loop-to-succ n) -- Elimination rule module Tot-cover-is-ℝ {i} (P : tot-cover → Set i) (z : (n : ℤ) → P (R-z n)) (e : (n : ℤ) → transport P (R-e n) (z n) ≡ z (succ n)) where -- I redefine [R-e] and [e] to have something involving -- [transport universal-cover loop] instead of [succ] R-e' : (n : ℤ) → R-z n ≡ R-z (transport universal-cover loop n) R-e' n = Σ-eq loop refl e' : (n : ℤ) → transport P (R-e' n) (z n) ≡ z (transport universal-cover loop n) e' n = (trans-totalpath universal-cover P {x = (base , n)} {y = (base , transport universal-cover loop n)} loop refl z ∘ move!-transp-left (λ z → P (base , z)) _ (loop-to-succ n) (z (succ n)) (! (trans-totalpath universal-cover P {x = (base , n)} {y = (base , succ n)} loop (loop-to-succ n) z) ∘ e n)) ∘ apd z (! (loop-to-succ n)) -- Now I can prove what I want by induction on the circle P-base : (t : universal-cover base) → P (base , t) P-base t = z t P-loop : (t : universal-cover base) → transport (λ x → (u : universal-cover x) → P (x , u)) loop P-base t ≡ P-base t P-loop t = transport (λ t → transport (λ x → (u : universal-cover x) → P (x , u)) loop P-base t ≡ P-base t) (trans-trans-opposite universal-cover loop t) (! (trans-totalpath universal-cover P loop refl z) ∘ e' (transport universal-cover (! loop) t)) P-R-rec : (x : S¹) → (t : universal-cover x) → P (x , t) P-R-rec = S¹-rec (λ x → (t : universal-cover x) → P (x , t)) P-base (funext P-loop) -- Here is the conclusion of the elimination rule R-rec : (t : tot-cover) → P t R-rec (x , y) = P-R-rec x y -- We can now prove that [tot-cover] is contractible using [R-rec], that’s a -- little tedious but not difficult P-R-contr : (x : tot-cover) → Set _ P-R-contr x = R-z O ≡ x R-contr-base : (n : ℤ) → P-R-contr (R-z n) R-contr-base O = refl R-contr-base (pos O) = R-e O R-contr-base (pos (S y)) = R-contr-base (pos y) ∘ R-e (pos y) R-contr-base (neg O) = ! (R-e (neg O)) R-contr-base (neg (S y)) = R-contr-base (neg y) ∘ ! (R-e (neg (S y))) R-contr-loop : (n : ℤ) → transport P-R-contr (R-e n) (R-contr-base n) ≡ (R-contr-base (succ n)) R-contr-loop O = trans-cst≡id (R-e O) refl R-contr-loop (pos O) = trans-cst≡id (R-e (pos O)) (R-e O) R-contr-loop (pos (S y)) = trans-cst≡id (R-e (pos (S y))) (R-contr-base (pos y) ∘ R-e (pos y)) R-contr-loop (neg O) = trans-cst≡id (R-e (neg O)) (! (R-e (neg O))) ∘ opposite-left-inverse (R-e (neg O)) R-contr-loop (neg (S y)) = ((trans-cst≡id (R-e (neg (S y))) (R-contr-base (neg y) ∘ ! (R-e (neg (S y)))) ∘ concat-assoc (R-contr-base (neg y)) (! (R-e (neg (S y)))) (R-e (neg (S y)))) ∘ (whisker-left (R-contr-base (neg y)) (opposite-left-inverse (R-e (neg (S y)))))) ∘ refl-right-unit (R-contr-base (neg y)) R-contr : (x : tot-cover) → P-R-contr x R-contr = Tot-cover-is-ℝ.R-rec P-R-contr R-contr-base R-contr-loop tot-cover-is-contr : is-contr tot-cover tot-cover-is-contr = (R-z O , λ x → ! (R-contr x)) -- We define now a fiberwise map between the two fibrations [path-fib] -- and [universal-cover] fiberwise-map : (x : S¹) → (path-fib x → universal-cover x) fiberwise-map x p = transport universal-cover (! p) O -- This induces an equivalence on the total spaces, because both total spaces -- are contractible total-is-equiv : is-equiv (total-map fiberwise-map) total-is-equiv = contr-to-contr-is-equiv (total-map fiberwise-map) tot-path-fib-is-contr tot-cover-is-contr -- Hence an equivalence fiberwise fiberwise-map-is-equiv : (x : S¹) → is-equiv (fiberwise-map x) fiberwise-map-is-equiv x = fiberwise-is-equiv fiberwise-map total-is-equiv x -- We can then conclude that the based loop space of the circle is equivalent to -- the type of the integers ΩS¹≃ℤ : (base ≡ base) ≃ ℤ ΩS¹≃ℤ = (fiberwise-map base , fiberwise-map-is-equiv base) -- We can also deduce that the circle is 1-truncated ΩS¹-is-set : is-set (base ≡ base) ΩS¹-is-set = equiv-types-truncated _ (ΩS¹≃ℤ ⁻¹) ℤ-is-set S¹-is-gpd : is-gpd S¹ S¹-is-gpd = S¹-rec _ (S¹-rec _ ΩS¹-is-set -- [base ≡ base] is a set (π₁ (is-truncated-is-prop _ _ _))) (funext (S¹-rec _ (π₁ (is-truncated-is-prop _ _ _)) (prop-has-all-paths (≡-is-truncated _ (is-truncated-is-prop _)) _ _)))
33.271186
80
0.572253
adf1903088ea88ed8968ff8744acd82741d0ba80
20,831
agda
Agda
Definition/LogicalRelation/Substitution/Introductions/IdUPiPi.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2018-06-21T08:39:01.000Z
2022-01-17T16:13:53.000Z
Definition/LogicalRelation/Substitution/Introductions/IdUPiPi.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
null
null
null
Definition/LogicalRelation/Substitution/Introductions/IdUPiPi.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2022-01-26T14:55:51.000Z
2022-02-15T19:42:19.000Z
{-# OPTIONS --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Introductions.IdUPiPi {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped as U hiding (wk) open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.Weakening as T hiding (wk; wkTerm; wkEqTerm) open import Definition.Typed.RedSteps open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Weakening open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Application open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Properties open import Definition.LogicalRelation.Substitution.Irrelevance as S open import Definition.LogicalRelation.Substitution.Reflexivity open import Definition.LogicalRelation.Substitution.Introductions.Sigma open import Definition.LogicalRelation.Substitution.Introductions.Fst open import Definition.LogicalRelation.Substitution.Introductions.Pi open import Definition.LogicalRelation.Substitution.Introductions.Lambda open import Definition.LogicalRelation.Substitution.Introductions.Application open import Definition.LogicalRelation.Substitution.Introductions.Cast open import Definition.LogicalRelation.Substitution.Introductions.Id open import Definition.LogicalRelation.Substitution.Introductions.Transp open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst open import Definition.LogicalRelation.Substitution.MaybeEmbed open import Definition.LogicalRelation.Substitution.Escape open import Definition.LogicalRelation.Substitution.Introductions.Universe open import Definition.LogicalRelation.Substitution.Reduction open import Definition.LogicalRelation.Substitution.Weakening open import Definition.LogicalRelation.Substitution.ProofIrrelevance open import Definition.LogicalRelation.Fundamental.Variable open import Tools.Product open import Tools.Nat import Tools.PropositionalEquality as PE lemma0 : ∀ σ A → (wk1 (wk1 (subst σ A))) PE.≡ subst (liftSubst (liftSubst σ)) (wk1 (wk1 A)) lemma0 σ A = PE.trans (PE.cong wk1 (PE.sym (Idsym-subst-lemma σ A))) (PE.sym (Idsym-subst-lemma (liftSubst σ) (wk1 A))) lemma1 : ∀ {σ rA} A A' B → wk1d (subst (liftSubst σ) B) [ cast ⁰ (wk1 (wk1 (subst σ A'))) (wk1 (wk1 (subst σ A))) (Idsym (Univ rA ⁰) (wk1 (wk1 (subst σ A))) (wk1 (wk1 (subst σ A'))) (var 1)) (var 0)]↑ PE.≡ subst (liftSubst (liftSubst σ)) (U.wk (lift (step id)) B [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0)]↑) lemma1 {σ} {rA} A A' B = PE.trans (PE.cong₂ (λ X Y → X [ Y ]↑) (PE.sym (Idsym-subst-lemma-wk1d σ B)) (PE.cong₃ (λ X Y Z → cast ⁰ X Y Z (var 0)) (lemma0 σ A') (lemma0 σ A) (PE.trans (PE.cong₂ (λ X Y → Idsym (Univ rA ⁰) X Y (var 1)) (lemma0 σ A) (lemma0 σ A')) (PE.sym (subst-Idsym (liftSubst (liftSubst σ)) (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)))))) (PE.sym ((singleSubstLift↑ (liftSubst σ) (U.wk (lift (step id)) B) _))) lemma2 : ∀ {σ} B → U.wk (lift (step id)) (subst (liftSubst σ) B) PE.≡ subst (liftSubst (liftSubst σ)) (U.wk (lift (step id)) B) lemma2 B = PE.sym (Idsym-subst-lemma-wk1d _ B) Id-U-ΠΠ-resᵗᵛ : ∀ {A B A' B' rA Γ} ([Γ] : ⊩ᵛ Γ) → let l = ∞ lΠ = ⁰ [UA] = maybeEmbᵛ {A = Univ rA _} [Γ] (Uᵛ emb< [Γ]) [UΠ] = maybeEmbᵛ {A = Univ ! _} [Γ] (Uᵛ emb< [Γ]) Id-U-ΠΠ-res A A' B B' = (Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) (wk1d B [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑) (wk1d B') ° ¹ ° ¹) in ([A] : Γ ⊩ᵛ⟨ l ⟩ A ^ [ rA , ι lΠ ] / [Γ]) ([A'] : Γ ⊩ᵛ⟨ l ⟩ A' ^ [ rA , ι lΠ ] / [Γ]) ([UB] : Γ ∙ A ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A]) ([UB'] : Γ ∙ A' ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A']) ([A]ₜ : Γ ⊩ᵛ⟨ l ⟩ A ∷ Univ rA lΠ ^ [ ! , next lΠ ] / [Γ] / [UA]) ([B]ₜ : Γ ∙ A ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ B ∷ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A] / (λ {Δ} {σ} → [UB] {Δ} {σ})) ([A']ₜ : Γ ⊩ᵛ⟨ l ⟩ A' ∷ Univ rA lΠ ^ [ ! , next lΠ ] / [Γ] / [UA]) ([B']ₜ : Γ ∙ A' ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ B' ∷ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A'] / (λ {Δ} {σ} → [UB'] {Δ} {σ})) → let [IdAA'] = Idᵛ {A = Univ rA ⁰} {t = A} {u = A'} [Γ] (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ [A']ₜ [ΓId] = _∙_ {A = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [wA'] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A'} {lG = ⁰} [Γ] [IdAA'] [A']ₜ [wA']' = wk1ᵛ {A = A'} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A'] [wA]' = wk1ᵛ {A = A} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A] [wA] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A} {lG = ⁰} [Γ] [IdAA'] [A]ₜ [ΓIdA'] = _∙_ {A = wk1 A'} [ΓId] [wA']' [wwA']' = wk1ᵛ {A = wk1 A'} {F = wk1 A'} [ΓId] [wA']' [wA']' [wwA'] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A'} {lG = ⁰} [ΓId] [wA']' [wA'] [wwA] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A} {lG = ⁰} [ΓId] [wA']' [wA] [wwUA'] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓIdA'] (λ {Δ} {σ} → Uᵛ emb< [ΓIdA'] {Δ} {σ}) {Δ} {σ} [wwIdAA'] = Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 A)} {u = wk1 (wk1 A')} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA] [wwA'] [SProp] = Uᵛ {rU = %} ∞< [ΓId] in ([var0]ₜ : (Γ ∙ Id (Univ rA ⁰) A A' ^ [ % , ι ¹ ] ∙ wk1 A' ^ [ rA , ι ⁰ ]) ⊩ᵛ⟨ ∞ ⟩ var 0 ∷ wk1 (wk1 A') ^ [ rA , ι ⁰ ] / [ΓIdA'] / [wwA']') ([var1]ₜ : (Γ ∙ Id (Univ rA ⁰) A A' ^ [ % , ι ¹ ] ∙ wk1 A' ^ [ rA , ι ⁰ ]) ⊩ᵛ⟨ ∞ ⟩ var 1 ∷ Id (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) ^ [ % , ι ¹ ] / [ΓIdA'] / [wwIdAA']) → Γ ∙ Id (Univ rA ⁰) A A' ^ [ % , ι ¹ ] ⊩ᵛ⟨ ∞ ⟩ Id-U-ΠΠ-res A A' B B' ∷ SProp ¹ ^ [ ! , ∞ ] / [ΓId] / (λ {Δ} {σ} → [SProp] {Δ} {σ}) Id-U-ΠΠ-resᵗᵛ {A} {B} {A'} {B'} {rA} {Γ} [Γ] [A] [A'] [UB] [UB'] [A]ₜ [B]ₜ [A']ₜ [B']ₜ [var0]ₜ [var1]ₜ = let l = ∞ lΠ = ⁰ [SProp] = Uᵛ {rU = %} ∞< [Γ] [UA] = maybeEmbᵛ {A = Univ rA _} [Γ] (Uᵛ emb< [Γ]) [UΠ] = maybeEmbᵛ {A = Univ ! _} [Γ] (Uᵛ emb< [Γ]) ⊢AΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UA] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([A]ₜ ⊢Δ [σ])) ⊢A'Δ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UA] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([A']ₜ ⊢Δ [σ])) ⊢A = λ {Δ} {σ} ⊢Δ [σ] → escape (proj₁ ([A] {Δ} {σ} ⊢Δ [σ])) ⊢A' = λ {Δ} {σ} ⊢Δ [σ] → escape (proj₁ ([A'] {Δ} {σ} ⊢Δ [σ])) [ΓA] = (_∙_ {Γ} {A} [Γ] [A]) [ΓA'] = (_∙_ {Γ} {A'} [Γ] [A']) ⊢BΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UB] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([B]ₜ {Δ} {σ} ⊢Δ [σ])) [A]' = univᵛ {A = A} [Γ] (≡is≤ PE.refl) (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ [A']' = univᵛ {A = A'} [Γ] (≡is≤ PE.refl) (λ {Δ} {σ} → [UA] {Δ} {σ}) [A']ₜ [B]' = univᵛ {A = B} [ΓA] (≡is≤ PE.refl) (λ {Δ} {σ} → [UB] {Δ} {σ}) [B]ₜ [B] = maybeEmbᵛ {A = B} [ΓA] [B]' [B']' = univᵛ {A = B'} [ΓA'] (≡is≤ PE.refl) (λ {Δ} {σ} → [UB'] {Δ} {σ}) [B']ₜ [B'] = maybeEmbᵛ {A = B'} [ΓA'] [B']' ⊢B'Δ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UB'] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([B']ₜ {Δ} {σ} ⊢Δ [σ])) [liftσ] = λ {Δ} {σ} ⊢Δ [σ] → liftSubstS {F = A} {σ = σ} {Δ = Δ} [Γ] ⊢Δ [A] [σ] [liftσ'] = λ {Δ} {σ} ⊢Δ [σ] → liftSubstS {F = A'} {σ = σ} {Δ = Δ} [Γ] ⊢Δ [A'] [σ] [ΠAB] = Πᵗᵛ {A} {B} (≡is≤ PE.refl) (≡is≤ PE.refl) [Γ] [A] (λ {Δ} {σ} → [UB] {Δ} {σ}) [A]ₜ [B]ₜ [ΠA'B'] = Πᵗᵛ {A'} {B'} (≡is≤ PE.refl) (≡is≤ PE.refl) [Γ] [A'] (λ {Δ} {σ} → [UB'] {Δ} {σ}) [A']ₜ [B']ₜ [IdAA']ₜ = Idᵗᵛ {A = Univ rA ⁰} {t = A} {u = A'} [Γ] (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ [A']ₜ (Uᵗᵛ [Γ]) [IdAA'] = Idᵛ {A = Univ rA ⁰} {t = A} {u = A'} [Γ] (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ [A']ₜ Id-U-ΠΠ-res A A' B B' = ∃ (Id (Univ rA ⁰) A A') ▹ (Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) ((U.wk (lift (step id)) B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑) (U.wk (lift (step id)) B') ° ¹ ° ¹) [ΓId] = _∙_ {A = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [wSProp] = Uᵛ {rU = %} ∞< [ΓId] [wA'] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A'} {lG = ⁰} [Γ] [IdAA'] [A']ₜ [wA']' = wk1ᵛ {A = A'} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A'] [wA]' = wk1ᵛ {A = A} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A] [wA] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A} {lG = ⁰} [Γ] [IdAA'] [A]ₜ [ΓIdA'] = _∙_ {A = wk1 A'} [ΓId] [wA']' [wwU¹] = λ {Δ} {σ} r → Uᵛ {rU = r} ∞< [ΓIdA'] {Δ} {σ} [wwUA'] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓIdA'] (λ {Δ} {σ} → Uᵛ emb< [ΓIdA'] {Δ} {σ}) {Δ} {σ} [wwUA']ᵗ = Uᵗᵛ [ΓIdA'] [ΓIdA] = _∙_ {A = wk1 A} [ΓId] [wA]' [wwA'] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A'} {lG = ⁰} [ΓId] [wA']' [wA'] [wwA] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A} {lG = ⁰} [ΓId] [wA']' [wA] [wwA']' = wk1ᵛ {A = wk1 A'} {F = wk1 A'} [ΓId] [wA']' [wA']' [wwA]' = wk1ᵛ {A = wk1 A} {F = wk1 A'} [ΓId] [wA']' [wA]' [wwU0A] = maybeEmbᵛ {A = Univ ! _ } [ΓIdA] (λ {Δ} {σ} → Uᵛ emb< [ΓIdA] {Δ} {σ}) [wB'] = wk1dᵗᵛ {F = A'} {F' = Id (Univ rA ⁰) A A'} {G = B'} [Γ] [A'] [IdAA'] (λ {Δ} {σ} → [UB'] {Δ} {σ}) (λ {Δ} {σ} → [wwUA'] {Δ} {σ} !) [B']ₜ [wB] = wk1dᵗᵛ {F = A} {F' = Id (Univ rA ⁰) A A'} {G = B} [Γ] [A] [IdAA'] (λ {Δ} {σ} → [UB] {Δ} {σ}) (λ {Δ} {σ} → [wwU0A] {Δ} {σ}) [B]ₜ [wwIdAA'] = Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 A)} {u = wk1 (wk1 A')} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA] [wwA'] [wwIdA'A] = Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 A')} {u = wk1 (wk1 A)} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA'] [wwA] in Πᵗᵛ {wk1 A'} {Id (U ⁰) (U.wk (lift (step id)) B [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑) (U.wk (lift (step id)) B')} (<is≤ 0<1) (≡is≤ PE.refl) [ΓId] [wA']' (λ {Δ} {σ} → [wwU¹] {Δ} {σ} %) [wA'] (Idᵗᵛ {A = U ⁰} {t = (U.wk (lift (step id)) B [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑)} {u = U.wk (lift (step id)) B'} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} !) (subst↑STerm {F = wk1 A'} {F' = wk1 A} {G = wk1d B} {t = cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0)} [ΓId] [wA']' [wA]' (λ {Δ} {σ} → [wwUA'] {Δ} {σ} !) (λ {Δ} {σ} → [wwU0A] {Δ} {σ}) [wB] (castᵗᵛ {A = wk1 (wk1 A')} {B = wk1 (wk1 A)} {t = var 0} {e = (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1))} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA'] [wwA] [wwA']' [wwA]' [var0]ₜ (Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 A')} {u = wk1 (wk1 A)} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA'] [wwA]) (IdSymᵗᵛ {A = Univ rA ⁰} {t = wk1 (wk1 A)} {u = wk1 (wk1 A')} {e = var 1} [ΓIdA'] ((λ {Δ} {σ} → [wwU¹] {Δ} {σ} !)) (λ {Δ} {σ} → [wwUA']ᵗ {Δ} {σ}) (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA] [wwA'] [wwIdAA'] [wwIdA'A] [var1]ₜ))) [wB'] (λ {Δ} {σ} → Uᵗᵛ [ΓIdA'] {Δ} {σ})) abstract Id-U-ΠΠᵗᵛ : ∀ {A B A' B' rA Γ} ([Γ] : ⊩ᵛ Γ) → let l = ∞ lΠ = ⁰ [UA] = maybeEmbᵛ {A = Univ rA _} [Γ] (Uᵛ emb< [Γ]) [UΠ] = maybeEmbᵛ {A = Univ ! _} [Γ] (Uᵛ emb< [Γ]) in ([A] : Γ ⊩ᵛ⟨ l ⟩ A ^ [ rA , ι lΠ ] / [Γ]) ([A'] : Γ ⊩ᵛ⟨ l ⟩ A' ^ [ rA , ι lΠ ] / [Γ]) ([UB] : Γ ∙ A ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A]) ([UB'] : Γ ∙ A' ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A']) ([A]ₜ : Γ ⊩ᵛ⟨ l ⟩ A ∷ Univ rA lΠ ^ [ ! , next lΠ ] / [Γ] / [UA]) ([B]ₜ : Γ ∙ A ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ B ∷ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A] / (λ {Δ} {σ} → [UB] {Δ} {σ})) ([A']ₜ : Γ ⊩ᵛ⟨ l ⟩ A' ∷ Univ rA lΠ ^ [ ! , next lΠ ] / [Γ] / [UA]) ([B']ₜ : Γ ∙ A' ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ B' ∷ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A'] / (λ {Δ} {σ} → [UB'] {Δ} {σ})) → [ Γ ⊩ᵛ⟨ l ⟩ (Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰)) ≡ ∃ (Id (Univ rA ⁰) A A') ▹ (Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) ((U.wk (lift (step id)) B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑) (U.wk (lift (step id)) B') ° ¹ ° ¹) ∷ SProp ¹ ^ [ ! , next ¹ ] / [Γ] ] Id-U-ΠΠᵗᵛ {A} {B} {A'} {B'} {rA} {Γ} [Γ] [A] [A'] [UB] [UB'] [A]ₜ [B]ₜ [A']ₜ [B']ₜ = let l = ∞ lΠ = ⁰ [SProp] = Uᵛ {rU = %} ∞< [Γ] [UA] = maybeEmbᵛ {A = Univ rA _} [Γ] (Uᵛ emb< [Γ]) [UΠ] = maybeEmbᵛ {A = Univ ! _} [Γ] (Uᵛ emb< [Γ]) ⊢AΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UA] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([A]ₜ ⊢Δ [σ])) ⊢A'Δ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UA] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([A']ₜ ⊢Δ [σ])) ⊢A = λ {Δ} {σ} ⊢Δ [σ] → escape (proj₁ ([A] {Δ} {σ} ⊢Δ [σ])) ⊢A' = λ {Δ} {σ} ⊢Δ [σ] → escape (proj₁ ([A'] {Δ} {σ} ⊢Δ [σ])) [ΓA] = (_∙_ {Γ} {A} [Γ] [A]) [ΓA'] = (_∙_ {Γ} {A'} [Γ] [A']) ⊢BΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UB] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([B]ₜ {Δ} {σ} ⊢Δ [σ])) [A]' = univᵛ {A = A} [Γ] (≡is≤ PE.refl) (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ [A']' = univᵛ {A = A'} [Γ] (≡is≤ PE.refl) (λ {Δ} {σ} → [UA] {Δ} {σ}) [A']ₜ [B]' = univᵛ {A = B} [ΓA] (≡is≤ PE.refl) (λ {Δ} {σ} → [UB] {Δ} {σ}) [B]ₜ [B] = maybeEmbᵛ {A = B} [ΓA] [B]' [B']' = univᵛ {A = B'} [ΓA'] (≡is≤ PE.refl) (λ {Δ} {σ} → [UB'] {Δ} {σ}) [B']ₜ [B'] = maybeEmbᵛ {A = B'} [ΓA'] [B']' ⊢B'Δ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UB'] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([B']ₜ {Δ} {σ} ⊢Δ [σ])) [liftσ] = λ {Δ} {σ} ⊢Δ [σ] → liftSubstS {F = A} {σ = σ} {Δ = Δ} [Γ] ⊢Δ [A] [σ] [liftσ'] = λ {Δ} {σ} ⊢Δ [σ] → liftSubstS {F = A'} {σ = σ} {Δ = Δ} [Γ] ⊢Δ [A'] [σ] [ΠAB] = Πᵗᵛ {A} {B} (≡is≤ PE.refl) (≡is≤ PE.refl) [Γ] [A] (λ {Δ} {σ} → [UB] {Δ} {σ}) [A]ₜ [B]ₜ [ΠA'B'] = Πᵗᵛ {A'} {B'} (≡is≤ PE.refl) (≡is≤ PE.refl) [Γ] [A'] (λ {Δ} {σ} → [UB'] {Δ} {σ}) [A']ₜ [B']ₜ [IdAA']ₜ = Idᵗᵛ {A = Univ rA ⁰} {t = A} {u = A'} [Γ] (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ [A']ₜ (Uᵗᵛ [Γ]) [IdAA'] = Idᵛ {A = Univ rA ⁰} {t = A} {u = A'} [Γ] (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ [A']ₜ Id-U-ΠΠ-res A A' B B' = ∃ (Id (Univ rA ⁰) A A') ▹ (Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) ((U.wk (lift (step id)) B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑) (U.wk (lift (step id)) B') ° ¹ ° ¹) [ΓId] = _∙_ {A = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [wSProp] = Uᵛ {rU = %} ∞< [ΓId] [wA'] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A'} {lG = ⁰} [Γ] [IdAA'] [A']ₜ [wA']' = wk1ᵛ {A = A'} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A'] [wA]' = wk1ᵛ {A = A} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A] [wA] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A} {lG = ⁰} [Γ] [IdAA'] [A]ₜ [ΓIdA'] = _∙_ {A = wk1 A'} [ΓId] [wA']' [wwU¹] = λ {Δ} {σ} r → Uᵛ {rU = r} ∞< [ΓIdA'] {Δ} {σ} [wwUA'] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓIdA'] (λ {Δ} {σ} → Uᵛ emb< [ΓIdA'] {Δ} {σ}) {Δ} {σ} [ΓIdA] = _∙_ {A = wk1 A} [ΓId] [wA]' [wwA'] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A'} {lG = ⁰} [ΓId] [wA']' [wA'] [wwA] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A} {lG = ⁰} [ΓId] [wA']' [wA] [wwA']' = wk1ᵛ {A = wk1 A'} {F = wk1 A'} [ΓId] [wA']' [wA']' [wwA]' = wk1ᵛ {A = wk1 A} {F = wk1 A'} [ΓId] [wA']' [wA]' [wwU0A] = maybeEmbᵛ {A = Univ ! _ } [ΓIdA] (λ {Δ} {σ} → Uᵛ emb< [ΓIdA] {Δ} {σ}) [wB'] = wk1dᵗᵛ {F = A'} {F' = Id (Univ rA ⁰) A A'} {G = B'} [Γ] [A'] [IdAA'] (λ {Δ} {σ} → [UB'] {Δ} {σ}) (λ {Δ} {σ} → [wwUA'] {Δ} {σ} !) [B']ₜ [wB] = wk1dᵗᵛ {F = A} {F' = Id (Univ rA ⁰) A A'} {G = B} [Γ] [A] [IdAA'] (λ {Δ} {σ} → [UB] {Δ} {σ}) (λ {Δ} {σ} → [wwU0A] {Δ} {σ}) [B]ₜ [wwIdAA'] = Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 A)} {u = wk1 (wk1 A')} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA] [wwA'] [wwIdA'A] = Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 A')} {u = wk1 (wk1 A)} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA'] [wwA] [var0]ₜ : (Γ ∙ Id (Univ rA ⁰) A A' ^ [ % , ι ¹ ] ∙ wk1 A' ^ [ rA , ι ⁰ ]) ⊩ᵛ⟨ ∞ ⟩ var 0 ∷ wk1 (wk1 A') ^ [ rA , ι ⁰ ] / [ΓIdA'] / [wwA']' [var0]ₜ = proj₂ (fundamentalVar here [ΓIdA']) [var1]ₜ : (Γ ∙ Id (Univ rA ⁰) A A' ^ [ % , ι ¹ ] ∙ wk1 A' ^ [ rA , ι ⁰ ]) ⊩ᵛ⟨ ∞ ⟩ var 1 ∷ Id (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) ^ [ % , ι ¹ ] / [ΓIdA'] / [wwIdAA'] [var1]ₜ = let X = fundamentalVar (there here) [ΓIdA'] in S.irrelevanceTerm {A = Id (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A'))} {t = var 1} [ΓIdA'] [ΓIdA'] (proj₁ X) [wwIdAA'] (proj₂ X) [Id-U-ΠΠ-res] : Γ ⊩ᵛ⟨ ∞ ⟩ Id-U-ΠΠ-res A A' B B' ∷ SProp ¹ ^ [ ! , ∞ ] / [Γ] / [SProp] [Id-U-ΠΠ-res] = ∃ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = (Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) ((U.wk (lift (step id)) B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑) (U.wk (lift (step id)) B') ° ¹ ° ¹)} [Γ] [IdAA'] (λ {Δ} {σ} → [wSProp] {Δ} {σ}) [IdAA']ₜ (Id-U-ΠΠ-resᵗᵛ {A} {B} {A'} {B'} [Γ] [A] [A'] (λ {Δ} {σ} → [UB] {Δ} {σ}) (λ {Δ} {σ} → [UB'] {Δ} {σ}) [A]ₜ [B]ₜ [A']ₜ [B']ₜ [var0]ₜ [var1]ₜ) [Id-U-ΠΠ] : Γ ⊩ᵛ Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰) ⇒ Id-U-ΠΠ-res A A' B B' ∷ SProp ¹ ^ ∞ / [Γ] [Id-U-ΠΠ] = λ {Δ} {σ} ⊢Δ [σ] → let Aσ = ⊢AΔ {Δ} {σ} ⊢Δ [σ] Bσ = ⊢BΔ {Δ ∙ subst σ A ^ _} {liftSubst σ} (⊢Δ ∙ ⊢A {Δ} {σ} ⊢Δ [σ]) ([liftσ] {Δ} {σ} ⊢Δ [σ]) A'σ = ⊢A'Δ {Δ} {σ} ⊢Δ [σ] B'σ = ⊢B'Δ {Δ ∙ subst σ A' ^ _} {liftSubst σ} (⊢Δ ∙ ⊢A' {Δ} {σ} ⊢Δ [σ]) ([liftσ'] {Δ} {σ} ⊢Δ [σ]) X : Δ ⊢ Id (U ⁰) (Π (subst σ A) ^ rA ° ⁰ ▹ (subst (liftSubst σ) B) ° ⁰ ° ⁰) (Π (subst σ A') ^ rA ° ⁰ ▹ (subst (liftSubst σ) B') ° ⁰ ° ⁰) ⇒ Id-U-ΠΠ-res (subst σ A) (subst σ A') (subst (liftSubst σ) B) (subst (liftSubst σ) B') ∷ SProp ¹ ^ ∞ X = Id-U-ΠΠ {Δ} {subst σ A} {subst σ A'} {rA} {subst (liftSubst σ) B} {subst (liftSubst σ) B'} Aσ Bσ A'σ B'σ in PE.subst (λ BB → Δ ⊢ Id (U ⁰) (Π (subst σ A) ^ rA ° ⁰ ▹ (subst (liftSubst σ) B) ° ⁰ ° ⁰) (Π (subst σ A') ^ rA ° ⁰ ▹ (subst (liftSubst σ) B') ° ⁰ ° ⁰) ⇒ BB ∷ SProp ¹ ^ ∞ ) (PE.cong₃ (λ X Y Z → ∃ Id (Univ rA ⁰) (subst σ A) (subst σ A') ▹ Π X ^ rA ° ⁰ ▹ Id (U ⁰) Y Z ° ¹ ° ¹) ((PE.sym (Idsym-subst-lemma σ A'))) (lemma1 A A' B) (lemma2 B')) X [id] , [eq] = redSubstTermᵛ {SProp ¹} {Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰)} {Id-U-ΠΠ-res A A' B B'} [Γ] [Id-U-ΠΠ] (λ {Δ} {σ} → [SProp] {Δ} {σ}) [Id-U-ΠΠ-res] in modelsTermEq [SProp] [id] [Id-U-ΠΠ-res] [eq]
75.749091
192
0.400221
1ee689168849441f25abcbbc3aa06d417f868c15
12,313
agda
Agda
Cubical/HITs/SetQuotients/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-02-05T01:25:26.000Z
2022-02-05T01:25:26.000Z
Cubical/HITs/SetQuotients/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/HITs/SetQuotients/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{- Set quotients: -} {-# OPTIONS --safe #-} module Cubical.HITs.SetQuotients.Properties where open import Cubical.HITs.SetQuotients.Base open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Univalence open import Cubical.Functions.FunExtEquiv open import Cubical.Data.Sigma open import Cubical.Relation.Nullary open import Cubical.Relation.Binary.Base open import Cubical.HITs.TypeQuotients as TypeQuot using (_/ₜ_ ; [_] ; eq/) open import Cubical.HITs.PropositionalTruncation as PropTrunc using (∥_∥ ; ∣_∣ ; squash) open import Cubical.HITs.SetTruncation as SetTrunc using (∥_∥₂ ; ∣_∣₂ ; squash₂ ; isSetSetTrunc) private variable ℓ ℓ' ℓ'' : Level A B C : Type ℓ R S T : A → A → Type ℓ elimProp : {P : A / R → Type ℓ} → (∀ x → isProp (P x)) → (∀ a → P [ a ]) → ∀ x → P x elimProp prop f [ x ] = f x elimProp prop f (squash/ x y p q i j) = isOfHLevel→isOfHLevelDep 2 (λ x → isProp→isSet (prop x)) (g x) (g y) (cong g p) (cong g q) (squash/ x y p q) i j where g = elimProp prop f elimProp prop f (eq/ a b r i) = isProp→PathP (λ i → prop (eq/ a b r i)) (f a) (f b) i elimProp2 : {P : A / R → B / S → Type ℓ} → (∀ x y → isProp (P x y)) → (∀ a b → P [ a ] [ b ]) → ∀ x y → P x y elimProp2 prop f = elimProp (λ x → isPropΠ (prop x)) λ a → elimProp (prop [ a ]) (f a) elimProp3 : {P : A / R → B / S → C / T → Type ℓ} → (∀ x y z → isProp (P x y z)) → (∀ a b c → P [ a ] [ b ] [ c ]) → ∀ x y z → P x y z elimProp3 prop f = elimProp (λ x → isPropΠ2 (prop x)) λ a → elimProp2 (prop [ a ]) (f a) -- sometimes more convenient: elimContr : {P : A / R → Type ℓ} → (∀ a → isContr (P [ a ])) → ∀ x → P x elimContr contr = elimProp (elimProp (λ _ → isPropIsProp) λ _ → isContr→isProp (contr _)) λ _ → contr _ .fst elimContr2 : {P : A / R → B / S → Type ℓ} → (∀ a b → isContr (P [ a ] [ b ])) → ∀ x y → P x y elimContr2 contr = elimContr λ _ → isOfHLevelΠ 0 (elimContr λ _ → inhProp→isContr (contr _ _) isPropIsContr) -- lemma 6.10.2 in hott book []surjective : (x : A / R) → ∃[ a ∈ A ] [ a ] ≡ x []surjective = elimProp (λ x → squash) (λ a → ∣ a , refl ∣) elim : {P : A / R → Type ℓ} → (∀ x → isSet (P x)) → (f : (a : A) → (P [ a ])) → ((a b : A) (r : R a b) → PathP (λ i → P (eq/ a b r i)) (f a) (f b)) → ∀ x → P x elim set f feq [ a ] = f a elim set f feq (eq/ a b r i) = feq a b r i elim set f feq (squash/ x y p q i j) = isOfHLevel→isOfHLevelDep 2 set (g x) (g y) (cong g p) (cong g q) (squash/ x y p q) i j where g = elim set f feq rec : isSet B → (f : A → B) → ((a b : A) (r : R a b) → f a ≡ f b) → A / R → B rec set f feq [ a ] = f a rec set f feq (eq/ a b r i) = feq a b r i rec set f feq (squash/ x y p q i j) = set (g x) (g y) (cong g p) (cong g q) i j where g = rec set f feq rec2 : isSet C → (f : A → B → C) → (∀ a b c → R a b → f a c ≡ f b c) → (∀ a b c → S b c → f a b ≡ f a c) → A / R → B / S → C rec2 set f feql feqr = rec (isSetΠ (λ _ → set)) (λ a → rec set (f a) (feqr a)) (λ a b r → funExt (elimProp (λ _ → set _ _) (λ c → feql a b c r))) -- the recursor for maps into groupoids: -- i.e. for any type A with a binary relation R and groupoid B, -- we can construct a map A / R → B from a map A → B satisfying the conditions -- (i) ∀ (a b : A) → R a b → f a ≡ f b -- (ii) ∀ (a b : A) → isProp (f a ≡ f b) -- We start by proving that we can recover the set-quotient -- by set-truncating the (non-truncated type quotient) typeQuotSetTruncIso : Iso (A / R) ∥ A /ₜ R ∥₂ Iso.fun typeQuotSetTruncIso = rec isSetSetTrunc (λ a → ∣ [ a ] ∣₂) λ a b r → cong ∣_∣₂ (eq/ a b r) Iso.inv typeQuotSetTruncIso = SetTrunc.rec squash/ (TypeQuot.rec [_] eq/) Iso.rightInv typeQuotSetTruncIso = SetTrunc.elim (λ _ → isProp→isSet (squash₂ _ _)) (TypeQuot.elimProp (λ _ → squash₂ _ _) λ _ → refl) Iso.leftInv typeQuotSetTruncIso = elimProp (λ _ → squash/ _ _) λ _ → refl module rec→Gpd {B : Type ℓ''} (Bgpd : isGroupoid B) (f : A → B) (feq : ∀ (a b : A) → R a b → f a ≡ f b) (fprop : ∀ (a b : A) → isProp (f a ≡ f b)) where fun : A / R → B fun = f₁ ∘ f₂ where f₁ : ∥ A /ₜ R ∥₂ → B f₁ = SetTrunc.rec→Gpd.fun Bgpd f/ congF/Const where f/ : A /ₜ R → B f/ = TypeQuot.rec f feq congF/Const : (a b : A /ₜ R) (p q : a ≡ b) → cong f/ p ≡ cong f/ q congF/Const = TypeQuot.elimProp2 (λ _ _ → isPropΠ2 λ _ _ → Bgpd _ _ _ _) (λ a b p q → fprop a b (cong f/ p) (cong f/ q)) f₂ : A / R → ∥ A /ₜ R ∥₂ f₂ = Iso.fun typeQuotSetTruncIso setQuotUniversalIso : isSet B → Iso (A / R → B) (Σ[ f ∈ (A → B) ] ((a b : A) → R a b → f a ≡ f b)) Iso.fun (setQuotUniversalIso Bset) g = (λ a → g [ a ]) , λ a b r i → g (eq/ a b r i) Iso.inv (setQuotUniversalIso Bset) h = rec Bset (fst h) (snd h) Iso.rightInv (setQuotUniversalIso Bset) h = refl Iso.leftInv (setQuotUniversalIso Bset) g = funExt λ x → PropTrunc.rec (Bset (out (intro g) x) (g x)) (λ sur → cong (out (intro g)) (sym (snd sur)) ∙ (cong g (snd sur))) ([]surjective x) where intro = Iso.fun (setQuotUniversalIso Bset) out = Iso.inv (setQuotUniversalIso Bset) setQuotUniversal : isSet B → (A / R → B) ≃ (Σ[ f ∈ (A → B) ] ((a b : A) → R a b → f a ≡ f b)) setQuotUniversal Bset = isoToEquiv (setQuotUniversalIso Bset) open BinaryRelation setQuotUnaryOp : (-_ : A → A) → (∀ a a' → R a a' → R (- a) (- a')) → (A / R → A / R) setQuotUnaryOp -_ h = rec squash/ (λ a → [ - a ]) (λ a b x → eq/ _ _ (h _ _ x)) -- characterisation of binary functions/operations on set-quotients setQuotUniversal2Iso : isSet C → isRefl R → isRefl S → Iso (A / R → B / S → C) (Σ[ _∗_ ∈ (A → B → C) ] (∀ a a' b b' → R a a' → S b b' → a ∗ b ≡ a' ∗ b')) Iso.fun (setQuotUniversal2Iso {R = R} {S = S} Bset isReflR isReflS) _∗/_ = _∗_ , h where _∗_ = λ a b → [ a ] ∗/ [ b ] h : ∀ a a' b b' → R a a' → S b b' → a ∗ b ≡ a' ∗ b' h a a' b b' r s = cong (_∗/ [ b ]) (eq/ _ _ r) ∙ cong ([ a' ] ∗/_) (eq/ _ _ s) Iso.inv (setQuotUniversal2Iso {R = R} {S = S} Bset isReflR isReflS) (_∗_ , h) = rec2 Bset _∗_ hleft hright where hleft : ∀ a a' b → R a a' → (a ∗ b) ≡ (a' ∗ b) hleft _ _ b r = h _ _ _ _ r (isReflS b) hright : ∀ a b b' → S b b' → (a ∗ b) ≡ (a ∗ b') hright a _ _ r = h _ _ _ _ (isReflR a) r Iso.rightInv (setQuotUniversal2Iso Bset isReflR isReflS) (_∗_ , h) = Σ≡Prop (λ _ → isPropΠ4 λ _ _ _ _ → isPropΠ2 λ _ _ → Bset _ _) refl Iso.leftInv (setQuotUniversal2Iso Bset isReflR isReflS) _∗/_ = funExt₂ (elimProp2 (λ _ _ → Bset _ _) λ _ _ → refl) setQuotUniversal2 : isSet C → isRefl R → isRefl S → (A / R → B / S → C) ≃ (Σ[ _∗_ ∈ (A → B → C) ] (∀ a a' b b' → R a a' → S b b' → a ∗ b ≡ a' ∗ b')) setQuotUniversal2 Bset isReflR isReflS = isoToEquiv (setQuotUniversal2Iso Bset isReflR isReflS) -- corollary for binary operations -- TODO: prove truncated inverse for effective relations setQuotBinOp : isRefl R → isRefl S → (_∗_ : A → B → C) → (∀ a a' b b' → R a a' → S b b' → T (a ∗ b) (a' ∗ b')) → (A / R → B / S → C / T) setQuotBinOp isReflR isReflS _∗_ h = rec2 squash/ (λ a b → [ a ∗ b ]) (λ _ _ _ r → eq/ _ _ (h _ _ _ _ r (isReflS _))) (λ _ _ _ s → eq/ _ _ (h _ _ _ _ (isReflR _) s)) setQuotSymmBinOp : isRefl R → isTrans R → (_∗_ : A → A → A) → (∀ a b → R (a ∗ b) (b ∗ a)) → (∀ a a' b → R a a' → R (a ∗ b) (a' ∗ b)) → (A / R → A / R → A / R) setQuotSymmBinOp {A = A} {R = R} isReflR isTransR _∗_ ∗Rsymm h = setQuotBinOp isReflR isReflR _∗_ h' where h' : ∀ a a' b b' → R a a' → R b b' → R (a ∗ b) (a' ∗ b') h' a a' b b' ra rb = isTransR _ _ _ (h a a' b ra) (isTransR _ _ _ (∗Rsymm a' b) (isTransR _ _ _ (h b b' a' rb) (∗Rsymm b' a'))) effective : (Rprop : isPropValued R) (Requiv : isEquivRel R) → (a b : A) → [ a ] ≡ [ b ] → R a b effective {A = A} {R = R} Rprop (equivRel R/refl R/sym R/trans) a b p = transport aa≡ab (R/refl _) where helper : A / R → hProp _ helper = rec isSetHProp (λ c → (R a c , Rprop a c)) (λ c d cd → Σ≡Prop (λ _ → isPropIsProp) (hPropExt (Rprop a c) (Rprop a d) (λ ac → R/trans _ _ _ ac cd) (λ ad → R/trans _ _ _ ad (R/sym _ _ cd)))) aa≡ab : R a a ≡ R a b aa≡ab i = helper (p i) .fst isEquivRel→effectiveIso : isPropValued R → isEquivRel R → (a b : A) → Iso ([ a ] ≡ [ b ]) (R a b) Iso.fun (isEquivRel→effectiveIso {R = R} Rprop Req a b) = effective Rprop Req a b Iso.inv (isEquivRel→effectiveIso {R = R} Rprop Req a b) = eq/ a b Iso.rightInv (isEquivRel→effectiveIso {R = R} Rprop Req a b) _ = Rprop a b _ _ Iso.leftInv (isEquivRel→effectiveIso {R = R} Rprop Req a b) _ = squash/ _ _ _ _ isEquivRel→isEffective : isPropValued R → isEquivRel R → isEffective R isEquivRel→isEffective Rprop Req a b = isoToIsEquiv (invIso (isEquivRel→effectiveIso Rprop Req a b)) discreteSetQuotients : Discrete A → isPropValued R → isEquivRel R → (∀ a₀ a₁ → Dec (R a₀ a₁)) → Discrete (A / R) discreteSetQuotients {A = A} {R = R} Adis Rprop Req Rdec = elim (λ a₀ → isSetΠ (λ a₁ → isProp→isSet (isPropDec (squash/ a₀ a₁)))) discreteSetQuotients' discreteSetQuotients'-eq where discreteSetQuotients' : (a : A) (y : A / R) → Dec ([ a ] ≡ y) discreteSetQuotients' a₀ = elim (λ a₁ → isProp→isSet (isPropDec (squash/ [ a₀ ] a₁))) dis dis-eq where dis : (a₁ : A) → Dec ([ a₀ ] ≡ [ a₁ ]) dis a₁ with Rdec a₀ a₁ ... | (yes p) = yes (eq/ a₀ a₁ p) ... | (no ¬p) = no λ eq → ¬p (effective Rprop Req a₀ a₁ eq ) dis-eq : (a b : A) (r : R a b) → PathP (λ i → Dec ([ a₀ ] ≡ eq/ a b r i)) (dis a) (dis b) dis-eq a b ab = J (λ b ab → ∀ k → PathP (λ i → Dec ([ a₀ ] ≡ ab i)) (dis a) k) (λ k → isPropDec (squash/ _ _) _ _) (eq/ a b ab) (dis b) discreteSetQuotients'-eq : (a b : A) (r : R a b) → PathP (λ i → (y : A / R) → Dec (eq/ a b r i ≡ y)) (discreteSetQuotients' a) (discreteSetQuotients' b) discreteSetQuotients'-eq a b ab = J (λ b ab → ∀ k → PathP (λ i → (y : A / R) → Dec (ab i ≡ y)) (discreteSetQuotients' a) k) (λ k → funExt (λ x → isPropDec (squash/ _ _) _ _)) (eq/ a b ab) (discreteSetQuotients' b) -- Quotienting by the truncated relation is equivalent to quotienting by untruncated relation truncRelIso : Iso (A / R) (A / (λ a b → ∥ R a b ∥)) Iso.fun truncRelIso = rec squash/ [_] λ _ _ r → eq/ _ _ ∣ r ∣ Iso.inv truncRelIso = rec squash/ [_] λ _ _ → PropTrunc.rec (squash/ _ _) λ r → eq/ _ _ r Iso.rightInv truncRelIso = elimProp (λ _ → squash/ _ _) λ _ → refl Iso.leftInv truncRelIso = elimProp (λ _ → squash/ _ _) λ _ → refl truncRelEquiv : A / R ≃ A / (λ a b → ∥ R a b ∥) truncRelEquiv = isoToEquiv truncRelIso -- Using this we can obtain a useful characterization of -- path-types for equivalence relations (not prop-valued) -- and their quotients isEquivRel→TruncIso : isEquivRel R → (a b : A) → Iso ([ a ] ≡ [ b ]) ∥ R a b ∥ isEquivRel→TruncIso {A = A} {R = R} Req a b = compIso (isProp→Iso (squash/ _ _) (squash/ _ _) (cong (Iso.fun truncRelIso)) (cong (Iso.inv truncRelIso))) (isEquivRel→effectiveIso (λ _ _ → PropTrunc.isPropPropTrunc) ∥R∥eq a b) where open isEquivRel ∥R∥eq : isEquivRel λ a b → ∥ R a b ∥ reflexive ∥R∥eq a = ∣ reflexive Req a ∣ symmetric ∥R∥eq a b = PropTrunc.map (symmetric Req a b) transitive ∥R∥eq a b c = PropTrunc.map2 (transitive Req a b c) -- quotienting by 'logically equivalent' relations gives the same quotient relBiimpl→TruncIso : ({a b : A} → R a b → S a b) → ({a b : A} → S a b → R a b) → Iso (A / R) (A / S) Iso.fun (relBiimpl→TruncIso R→S S→R) = rec squash/ [_] λ _ _ Rab → eq/ _ _ (R→S Rab) Iso.inv (relBiimpl→TruncIso R→S S→R) = rec squash/ [_] λ _ _ Sab → eq/ _ _ (S→R Sab) Iso.rightInv (relBiimpl→TruncIso R→S S→R) = elimProp (λ _ → squash/ _ _) λ _ → refl Iso.leftInv (relBiimpl→TruncIso R→S S→R) = elimProp (λ _ → squash/ _ _) λ _ → refl
36.755224
100
0.563551
c744807096bd5d3aa1dcdb722ea2ecfc5ca4986b
250
agda
Agda
test/Succeed/Issue3659.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/Succeed/Issue3659.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue3659.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
{-# OPTIONS --cubical --allow-unsolved-metas #-} open import Agda.Primitive.Cubical module _ where postulate PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ {-# BUILTIN PATHP PathP #-} data D {ℓ} (A : Set ℓ) : Set ℓ where c : PathP _ _ _
19.230769
53
0.604
41b4ab767d76019a85de84f3c3f5b21f726d147d
273
agda
Agda
test/interaction/Issue2413.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue2413.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue2413.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2017-01-18, issue #2413 -- As-patterns of variable patterns data Bool : Set where true false : Bool test : Bool → Bool test x@y = {!x!} -- split on x test1 : Bool → Bool test1 x@_ = {!x!} -- split on x test2 : Bool → Bool test2 x@y = {!y!} -- split on y
18.2
35
0.608059
2206c58e6804f6adc8ad4a0c27f5f1bf503e8c48
118
agda
Agda
test/interaction/Issue589.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue589.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue589.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue589 where data N : Set where zero : N suc : N -> N _+_ : N -> N -> N zero + y = y suc x + y = suc ?
11.8
21
0.516949
8b82d0396f73915901b501485051e561dfe6d648
123
agda
Agda
Cubical/HITs/RPn.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/RPn.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/HITs/RPn.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.RPn where open import Cubical.HITs.RPn.Base public
24.6
50
0.731707
adb14fb6302315b71a06ee262012b6fb3b97ca77
884
agda
Agda
test/Succeed/EtaInductiveRecord.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/EtaInductiveRecord.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/EtaInductiveRecord.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
-- 2014-02-08 Andreas -- Eta-equality for records that are recursive via some data type module _ where open import Common.Equality module Nested where data List (A : Set) : Set where [] : List A _∷_ : (x : A)(xs : List A) → List A record Tree (A : Set) : Set where inductive constructor tree field elem : A subtrees : List (Tree A) open Tree test : ∀ {A} (t : Tree A) → t ≡ tree (elem t) (subtrees t) test t = refl -- we should have eta for Tree! module Mutual where mutual data TreeList (A : Set) : Set where [] : TreeList A _∷_ : (x : Tree A)(xs : TreeList A) → TreeList A record Tree (A : Set) : Set where inductive constructor tree field elem : A subtrees : TreeList A open Tree test : ∀ {A} (t : Tree A) → t ≡ tree (elem t) (subtrees t) test t = refl
19.644444
65
0.573529
9a02215e6fe673c112f6bee8ab9faa0bfa21b502
29,114
agda
Agda
Cubical/Experiments/ZCohomologyOld/Properties.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Experiments/ZCohomologyOld/Properties.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Experiments/ZCohomologyOld/Properties.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Experiments.ZCohomologyOld.Properties where open import Cubical.ZCohomology.Base open import Cubical.HITs.S1 open import Cubical.HITs.Sn open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Transport open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Univalence open import Cubical.Data.Empty open import Cubical.Data.Sigma hiding (_×_) open import Cubical.HITs.Susp open import Cubical.HITs.Wedge open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to sRec2 ; elim to sElim ; elim2 to sElim2 ; setTruncIsSet to §) open import Cubical.Data.Int renaming (_+_ to _ℤ+_) hiding (-_) open import Cubical.Data.Nat open import Cubical.HITs.Truncation renaming (elim to trElim ; map to trMap ; rec to trRec ; elim3 to trElim3) hiding (map2) open import Cubical.Homotopy.Loopspace open import Cubical.Homotopy.Connected open import Cubical.Homotopy.Freudenthal open import Cubical.Algebra.Group open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Data.NatMinusOne open import Cubical.HITs.Pushout open import Cubical.Data.Sum.Base open import Cubical.Data.HomotopyGroup open import Cubical.Experiments.ZCohomologyOld.KcompPrelims open Iso renaming (inv to inv') private variable ℓ ℓ' : Level A : Type ℓ B : Type ℓ' A' : Pointed ℓ infixr 34 _+ₖ_ infixr 34 _+ₕ_ is2ConnectedKn : (n : ℕ) → isConnected 2 (coHomK (suc n)) is2ConnectedKn zero = ∣ ∣ base ∣ ∣ , trElim (λ _ → isOfHLevelPath 2 (isOfHLevelTrunc 2) _ _) (trElim (λ _ → isOfHLevelPath 3 (isOfHLevelSuc 2 (isOfHLevelTrunc 2)) _ _) (toPropElim (λ _ → isOfHLevelTrunc 2 _ _) refl)) is2ConnectedKn (suc n) = ∣ ∣ north ∣ ∣ , trElim (λ _ → isOfHLevelPath 2 (isOfHLevelTrunc 2) _ _) (trElim (λ _ → isProp→isOfHLevelSuc (3 + n) (isOfHLevelTrunc 2 _ _)) (suspToPropElim (ptSn (suc n)) (λ _ → isOfHLevelTrunc 2 _ _) refl)) isConnectedKn : (n : ℕ) → isConnected (2 + n) (coHomK (suc n)) isConnectedKn n = isOfHLevelRetractFromIso 0 (invIso (truncOfTruncIso (2 + n) 1)) (sphereConnected (suc n)) -- Induction principles for cohomology groups -- If we want to show a proposition about some x : Hⁿ(A), it suffices to show it under the -- assumption that x = ∣f∣₂ and that f is pointed coHomPointedElim : {A : Type ℓ} (n : ℕ) (a : A) {B : coHom (suc n) A → Type ℓ'} → ((x : coHom (suc n) A) → isProp (B x)) → ((f : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → B ∣ f ∣₂) → (x : coHom (suc n) A) → B x coHomPointedElim {ℓ' = ℓ'} {A = A} n a isprop indp = sElim (λ _ → isOfHLevelSuc 1 (isprop _)) λ f → helper n isprop indp f (f a) refl where helper : (n : ℕ) {B : coHom (suc n) A → Type ℓ'} → ((x : coHom (suc n) A) → isProp (B x)) → ((f : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → B ∣ f ∣₂) → (f : A → coHomK (suc n)) → (x : coHomK (suc n)) → f a ≡ x → B ∣ f ∣₂ -- pattern matching a bit extra to avoid isOfHLevelPlus' helper zero isprop ind f = trElim (λ _ → isOfHLevelPlus {n = 1} 2 (isPropΠ λ _ → isprop _)) (toPropElim (λ _ → isPropΠ λ _ → isprop _) (ind f)) helper (suc zero) isprop ind f = trElim (λ _ → isOfHLevelPlus {n = 1} 3 (isPropΠ λ _ → isprop _)) (suspToPropElim base (λ _ → isPropΠ λ _ → isprop _) (ind f)) helper (suc (suc zero)) isprop ind f = trElim (λ _ → isOfHLevelPlus {n = 1} 4 (isPropΠ λ _ → isprop _)) (suspToPropElim north (λ _ → isPropΠ λ _ → isprop _) (ind f)) helper (suc (suc (suc n))) isprop ind f = trElim (λ _ → isOfHLevelPlus' {n = 5 + n} 1 (isPropΠ λ _ → isprop _)) (suspToPropElim north (λ _ → isPropΠ λ _ → isprop _) (ind f)) coHomPointedElim2 : {A : Type ℓ} (n : ℕ) (a : A) {B : coHom (suc n) A → coHom (suc n) A → Type ℓ'} → ((x y : coHom (suc n) A) → isProp (B x y)) → ((f g : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → g a ≡ coHom-pt (suc n) → B ∣ f ∣₂ ∣ g ∣₂) → (x y : coHom (suc n) A) → B x y coHomPointedElim2 {ℓ' = ℓ'} {A = A} n a isprop indp = sElim2 (λ _ _ → isOfHLevelSuc 1 (isprop _ _)) λ f g → helper n a isprop indp f g (f a) (g a) refl refl where helper : (n : ℕ) (a : A) {B : coHom (suc n) A → coHom (suc n) A → Type ℓ'} → ((x y : coHom (suc n) A) → isProp (B x y)) → ((f g : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → g a ≡ coHom-pt (suc n) → B ∣ f ∣₂ ∣ g ∣₂) → (f g : A → coHomK (suc n)) → (x y : coHomK (suc n)) → f a ≡ x → g a ≡ y → B ∣ f ∣₂ ∣ g ∣₂ helper zero a isprop indp f g = elim2 (λ _ _ → isOfHLevelPlus {n = 1} 2 (isPropΠ2 λ _ _ → isprop _ _)) (toPropElim2 (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g)) helper (suc zero) a isprop indp f g = elim2 (λ _ _ → isOfHLevelPlus {n = 1} 3 (isPropΠ2 λ _ _ → isprop _ _)) (suspToPropElim2 base (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g)) helper (suc (suc zero)) a isprop indp f g = elim2 (λ _ _ → isOfHLevelPlus {n = 1} 4 (isPropΠ2 λ _ _ → isprop _ _)) (suspToPropElim2 north (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g)) helper (suc (suc (suc n))) a isprop indp f g = elim2 (λ _ _ → isOfHLevelPlus' {n = 5 + n} 1 (isPropΠ2 λ _ _ → isprop _ _)) (suspToPropElim2 north (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g)) {- Equivalence between cohomology of A and reduced cohomology of (A + 1) -} coHomRed+1Equiv : (n : ℕ) → (A : Type ℓ) → (coHom n A) ≡ (coHomRed n ((A ⊎ Unit , inr (tt)))) coHomRed+1Equiv zero A i = ∥ helpLemma {C = (Int , pos 0)} i ∥₂ module coHomRed+1 where helpLemma : {C : Pointed ℓ} → ( (A → (typ C)) ≡ ((((A ⊎ Unit) , inr (tt)) →∙ C))) helpLemma {C = C} = isoToPath (iso map1 map2 (λ b → linvPf b) (λ _ → refl)) where map1 : (A → typ C) → ((((A ⊎ Unit) , inr (tt)) →∙ C)) map1 f = map1' , refl module helpmap where map1' : A ⊎ Unit → fst C map1' (inl x) = f x map1' (inr x) = pt C map2 : ((((A ⊎ Unit) , inr (tt)) →∙ C)) → (A → typ C) map2 (g , pf) x = g (inl x) linvPf : (b :((((A ⊎ Unit) , inr (tt)) →∙ C))) → map1 (map2 b) ≡ b linvPf (f , snd) i = (λ x → helper x i) , λ j → snd ((~ i) ∨ j) where helper : (x : A ⊎ Unit) → ((helpmap.map1') (map2 (f , snd)) x) ≡ f x helper (inl x) = refl helper (inr tt) = sym snd coHomRed+1Equiv (suc zero) A i = ∥ coHomRed+1.helpLemma A i {C = (coHomK 1 , ∣ base ∣)} i ∥₂ coHomRed+1Equiv (suc (suc n)) A i = ∥ coHomRed+1.helpLemma A i {C = (coHomK (2 + n) , ∣ north ∣)} i ∥₂ ----------- Kn→ΩKn+1 : (n : ℕ) → coHomK n → typ (Ω (coHomK-ptd (suc n))) Kn→ΩKn+1 n = Iso.fun (Iso-Kn-ΩKn+1 n) ΩKn+1→Kn : (n : ℕ) → typ (Ω (coHomK-ptd (suc n))) → coHomK n ΩKn+1→Kn n = Iso.inv (Iso-Kn-ΩKn+1 n) Kn≃ΩKn+1 : {n : ℕ} → coHomK n ≃ typ (Ω (coHomK-ptd (suc n))) Kn≃ΩKn+1 {n = n} = isoToEquiv (Iso-Kn-ΩKn+1 n) ---------- Algebra/Group stuff -------- 0ₖ : (n : ℕ) → coHomK n 0ₖ = coHom-pt _+ₖ_ : {n : ℕ} → coHomK n → coHomK n → coHomK n _+ₖ_ {n = n} x y = ΩKn+1→Kn n (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y) -ₖ_ : {n : ℕ} → coHomK n → coHomK n -ₖ_ {n = n} x = ΩKn+1→Kn n (sym (Kn→ΩKn+1 n x)) -- subtraction as a binary operator _-ₖ_ : {n : ℕ} → coHomK n → coHomK n → coHomK n _-ₖ_ {n = n} x y = ΩKn+1→Kn n (Kn→ΩKn+1 n x ∙ sym (Kn→ΩKn+1 n y)) +ₖ-syntax : (n : ℕ) → coHomK n → coHomK n → coHomK n +ₖ-syntax n = _+ₖ_ {n = n} -ₖ-syntax : (n : ℕ) → coHomK n → coHomK n -ₖ-syntax n = -ₖ_ {n = n} -'ₖ-syntax : (n : ℕ) → coHomK n → coHomK n → coHomK n -'ₖ-syntax n = _-ₖ_ {n = n} syntax +ₖ-syntax n x y = x +[ n ]ₖ y syntax -ₖ-syntax n x = -[ n ]ₖ x syntax -'ₖ-syntax n x y = x -[ n ]ₖ y Kn→ΩKn+10ₖ : (n : ℕ) → Kn→ΩKn+1 n (0ₖ n) ≡ refl Kn→ΩKn+10ₖ zero = sym (rUnit refl) Kn→ΩKn+10ₖ (suc zero) i j = ∣ (rCancel (merid base) i j) ∣ Kn→ΩKn+10ₖ (suc (suc n)) i j = ∣ (rCancel (merid north) i j) ∣ ΩKn+1→Kn-refl : (n : ℕ) → ΩKn+1→Kn n refl ≡ 0ₖ n ΩKn+1→Kn-refl zero = refl ΩKn+1→Kn-refl (suc zero) = refl ΩKn+1→Kn-refl (suc (suc zero)) = refl ΩKn+1→Kn-refl (suc (suc (suc zero))) = refl ΩKn+1→Kn-refl (suc (suc (suc (suc zero)))) = refl ΩKn+1→Kn-refl (suc (suc (suc (suc (suc n))))) = refl -0ₖ : {n : ℕ} → -[ n ]ₖ (0ₖ n) ≡ (0ₖ n) -0ₖ {n = n} = (λ i → ΩKn+1→Kn n (sym (Kn→ΩKn+10ₖ n i))) ∙∙ (λ i → ΩKn+1→Kn n (Kn→ΩKn+10ₖ n (~ i))) ∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 n) (0ₖ n) +ₖ→∙ : (n : ℕ) (a b : coHomK n) → Kn→ΩKn+1 n (a +[ n ]ₖ b) ≡ Kn→ΩKn+1 n a ∙ Kn→ΩKn+1 n b +ₖ→∙ n a b = Iso.rightInv (Iso-Kn-ΩKn+1 n) (Kn→ΩKn+1 n a ∙ Kn→ΩKn+1 n b) lUnitₖ : (n : ℕ) (x : coHomK n) → (0ₖ n) +[ n ]ₖ x ≡ x lUnitₖ 0 x = Iso.leftInv (Iso-Kn-ΩKn+1 zero) x lUnitₖ (suc zero) = trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) λ x → Iso.leftInv (Iso-Kn-ΩKn+1 1) ∣ x ∣ lUnitₖ (suc (suc n)) x = (λ i → ΩKn+1→Kn (2 + n) (Kn→ΩKn+10ₖ (2 + n) i ∙ Kn→ΩKn+1 (2 + n) x)) ∙∙ (cong (ΩKn+1→Kn (2 + n)) (sym (lUnit (Kn→ΩKn+1 (2 + n) x)))) ∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 (2 + n)) x rUnitₖ : (n : ℕ) (x : coHomK n) → x +[ n ]ₖ (0ₖ n) ≡ x rUnitₖ 0 x = Iso.leftInv (Iso-Kn-ΩKn+1 zero) x rUnitₖ (suc zero) = trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) λ x → Iso.leftInv (Iso-Kn-ΩKn+1 1) ∣ x ∣ rUnitₖ (suc (suc n)) x = (λ i → ΩKn+1→Kn (2 + n) (Kn→ΩKn+1 (2 + n) x ∙ Kn→ΩKn+10ₖ (2 + n) i)) ∙∙ (cong (ΩKn+1→Kn (2 + n)) (sym (rUnit (Kn→ΩKn+1 (2 + n) x)))) ∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 (2 + n)) x rCancelₖ : (n : ℕ) (x : coHomK n) → x +[ n ]ₖ (-[ n ]ₖ x) ≡ (0ₖ n) rCancelₖ zero x = (λ i → ΩKn+1→Kn 0 (Kn→ΩKn+1 zero x ∙ Iso.rightInv (Iso-Kn-ΩKn+1 zero) (sym (Kn→ΩKn+1 zero x)) i)) ∙ cong (ΩKn+1→Kn 0) (rCancel (Kn→ΩKn+1 zero x)) rCancelₖ (suc n) x = (λ i → ΩKn+1→Kn (suc n) (Kn→ΩKn+1 (1 + n) x ∙ Iso.rightInv (Iso-Kn-ΩKn+1 (1 + n)) (sym (Kn→ΩKn+1 (1 + n) x)) i)) ∙ cong (ΩKn+1→Kn (suc n)) (rCancel (Kn→ΩKn+1 (1 + n) x)) ∙ (λ i → ΩKn+1→Kn (suc n) (Kn→ΩKn+10ₖ (suc n) (~ i))) ∙ Iso.leftInv (Iso-Kn-ΩKn+1 (suc n)) (0ₖ (suc n)) lCancelₖ : (n : ℕ) (x : coHomK n) → (-[ n ]ₖ x) +[ n ]ₖ x ≡ (0ₖ n) lCancelₖ 0 x = (λ i → ΩKn+1→Kn 0 (Iso.rightInv (Iso-Kn-ΩKn+1 zero) (sym (Kn→ΩKn+1 zero x)) i ∙ Kn→ΩKn+1 zero x)) ∙ cong (ΩKn+1→Kn 0) (lCancel (Kn→ΩKn+1 zero x)) lCancelₖ (suc n) x = (λ i → ΩKn+1→Kn (suc n) (Iso.rightInv (Iso-Kn-ΩKn+1 (1 + n)) (sym (Kn→ΩKn+1 (1 + n) x)) i ∙ Kn→ΩKn+1 (1 + n) x)) ∙ cong (ΩKn+1→Kn (suc n)) (lCancel (Kn→ΩKn+1 (1 + n) x)) ∙ (λ i → (ΩKn+1→Kn (suc n)) (Kn→ΩKn+10ₖ (suc n) (~ i))) ∙ Iso.leftInv (Iso-Kn-ΩKn+1 (suc n)) (0ₖ (suc n)) assocₖ : (n : ℕ) (x y z : coHomK n) → ((x +[ n ]ₖ y) +[ n ]ₖ z) ≡ (x +[ n ]ₖ (y +[ n ]ₖ z)) assocₖ n x y z = ((λ i → ΩKn+1→Kn n (Kn→ΩKn+1 n (ΩKn+1→Kn n (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y)) ∙ Kn→ΩKn+1 n z)) ∙∙ (λ i → ΩKn+1→Kn n (Iso.rightInv (Iso-Kn-ΩKn+1 n) (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y) i ∙ Kn→ΩKn+1 n z)) ∙∙ (λ i → ΩKn+1→Kn n (assoc (Kn→ΩKn+1 n x) (Kn→ΩKn+1 n y) (Kn→ΩKn+1 n z) (~ i)))) ∙ (λ i → ΩKn+1→Kn n ((Kn→ΩKn+1 n x) ∙ Iso.rightInv (Iso-Kn-ΩKn+1 n) ((Kn→ΩKn+1 n y ∙ Kn→ΩKn+1 n z)) (~ i))) cancelₖ : (n : ℕ) (x : coHomK n) → x -[ n ]ₖ x ≡ (0ₖ n) cancelₖ zero x = cong (ΩKn+1→Kn 0) (rCancel (Kn→ΩKn+1 zero x)) cancelₖ (suc zero) x = cong (ΩKn+1→Kn 1) (rCancel (Kn→ΩKn+1 1 x)) cancelₖ (suc (suc zero)) x = cong (ΩKn+1→Kn 2) (rCancel (Kn→ΩKn+1 2 x)) cancelₖ (suc (suc (suc zero))) x = cong (ΩKn+1→Kn 3) (rCancel (Kn→ΩKn+1 3 x)) cancelₖ (suc (suc (suc (suc zero)))) x = cong (ΩKn+1→Kn 4) (rCancel (Kn→ΩKn+1 4 x)) cancelₖ (suc (suc (suc (suc (suc n))))) x = cong (ΩKn+1→Kn (5 + n)) (rCancel (Kn→ΩKn+1 (5 + n) x)) -rUnitₖ : (n : ℕ) (x : coHomK n) → x -[ n ]ₖ 0ₖ n ≡ x -rUnitₖ zero x = rUnitₖ zero x -rUnitₖ (suc n) x = cong (λ y → ΩKn+1→Kn (suc n) (Kn→ΩKn+1 (suc n) x ∙ sym y)) (Kn→ΩKn+10ₖ (suc n)) ∙∙ cong (ΩKn+1→Kn (suc n)) (sym (rUnit (Kn→ΩKn+1 (suc n) x))) ∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 (suc n)) x abstract isCommΩK1 : (n : ℕ) → isComm∙ ((Ω^ n) (coHomK-ptd 1)) isCommΩK1 zero = isCommA→isCommTrunc 2 comm-ΩS¹ isGroupoidS¹ isCommΩK1 (suc n) = Eckmann-Hilton n open Iso renaming (inv to inv') isCommΩK : (n : ℕ) → isComm∙ (coHomK-ptd n) isCommΩK zero p q = isSetInt _ _ (p ∙ q) (q ∙ p) isCommΩK (suc zero) = isCommA→isCommTrunc 2 comm-ΩS¹ isGroupoidS¹ isCommΩK (suc (suc n)) = subst isComm∙ (λ i → coHomK (2 + n) , ΩKn+1→Kn-refl (2 + n) i) (ptdIso→comm {A = (_ , _)} (invIso (Iso-Kn-ΩKn+1 (2 + n))) (Eckmann-Hilton 0)) commₖ : (n : ℕ) (x y : coHomK n) → (x +[ n ]ₖ y) ≡ (y +[ n ]ₖ x) commₖ 0 x y i = ΩKn+1→Kn 0 (isCommΩK1 0 (Kn→ΩKn+1 0 x) (Kn→ΩKn+1 0 y) i) commₖ 1 x y i = ΩKn+1→Kn 1 (ptdIso→comm {A = ((∣ north ∣ ≡ ∣ north ∣) , snd ((Ω^ 1) (coHomK 3 , ∣ north ∣)))} {B = coHomK 2} (invIso (Iso-Kn-ΩKn+1 2)) (Eckmann-Hilton 0) (Kn→ΩKn+1 1 x) (Kn→ΩKn+1 1 y) i) commₖ 2 x y i = ΩKn+1→Kn 2 (ptdIso→comm {A = (∣ north ∣ ≡ ∣ north ∣) , snd ((Ω^ 1) (coHomK 4 , ∣ north ∣))} {B = coHomK 3} (invIso (Iso-Kn-ΩKn+1 3)) (Eckmann-Hilton 0) (Kn→ΩKn+1 2 x) (Kn→ΩKn+1 2 y) i) commₖ 3 x y i = ΩKn+1→Kn 3 (ptdIso→comm {A = (∣ north ∣ ≡ ∣ north ∣) , snd ((Ω^ 1) (coHomK 5 , ∣ north ∣))} {B = coHomK 4} (invIso (Iso-Kn-ΩKn+1 4)) (Eckmann-Hilton 0) (Kn→ΩKn+1 3 x) (Kn→ΩKn+1 3 y) i) commₖ (suc (suc (suc (suc n)))) x y i = ΩKn+1→Kn (4 + n) (ptdIso→comm {A = (∣ north ∣ ≡ ∣ north ∣) , snd ((Ω^ 1) (coHomK (6 + n) , ∣ north ∣))} {B = coHomK (5 + n)} (invIso (Iso-Kn-ΩKn+1 (5 + n))) (Eckmann-Hilton 0) (Kn→ΩKn+1 (4 + n) x) (Kn→ΩKn+1 (4 + n) y) i) rUnitₖ' : (n : ℕ) (x : coHomK n) → x +[ n ]ₖ (0ₖ n) ≡ x rUnitₖ' n x = commₖ n x (0ₖ n) ∙ lUnitₖ n x -distrₖ : (n : ℕ) (x y : coHomK n) → -[ n ]ₖ (x +[ n ]ₖ y) ≡ (-[ n ]ₖ x) +[ n ]ₖ (-[ n ]ₖ y) -distrₖ n x y = ((λ i → ΩKn+1→Kn n (sym (Kn→ΩKn+1 n (ΩKn+1→Kn n (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y))))) ∙∙ (λ i → ΩKn+1→Kn n (sym (Iso.rightInv (Iso-Kn-ΩKn+1 n) (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y) i))) ∙∙ (λ i → ΩKn+1→Kn n (symDistr (Kn→ΩKn+1 n x) (Kn→ΩKn+1 n y) i))) ∙∙ (λ i → ΩKn+1→Kn n (Iso.rightInv (Iso-Kn-ΩKn+1 n) (sym (Kn→ΩKn+1 n y)) (~ i) ∙ (Iso.rightInv (Iso-Kn-ΩKn+1 n) (sym (Kn→ΩKn+1 n x)) (~ i)))) ∙∙ commₖ n (-[ n ]ₖ y) (-[ n ]ₖ x) private rCancelLem : (n : ℕ) (x : coHomK n) → ΩKn+1→Kn n ((Kn→ΩKn+1 n x) ∙ refl) ≡ ΩKn+1→Kn n (Kn→ΩKn+1 n x) rCancelLem zero x = refl rCancelLem (suc n) x = cong (ΩKn+1→Kn (suc n)) (sym (rUnit (Kn→ΩKn+1 (suc n) x))) lCancelLem : (n : ℕ) (x : coHomK n) → ΩKn+1→Kn n (refl ∙ (Kn→ΩKn+1 n x)) ≡ ΩKn+1→Kn n (Kn→ΩKn+1 n x) lCancelLem zero x = refl lCancelLem (suc n) x = cong (ΩKn+1→Kn (suc n)) (sym (lUnit (Kn→ΩKn+1 (suc n) x))) -cancelRₖ : (n : ℕ) (x y : coHomK n) → (y +[ n ]ₖ x) -[ n ]ₖ x ≡ y -cancelRₖ n x y = (cong (ΩKn+1→Kn n) ((cong (_∙ sym (Kn→ΩKn+1 n x)) (+ₖ→∙ n y x)) ∙∙ sym (assoc _ _ _) ∙∙ cong (Kn→ΩKn+1 n y ∙_) (rCancel _))) ∙∙ rCancelLem n y ∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 n) y -cancelLₖ : (n : ℕ) (x y : coHomK n) → (x +[ n ]ₖ y) -[ n ]ₖ x ≡ y -cancelLₖ n x y = cong (λ z → z -[ n ]ₖ x) (commₖ n x y) ∙ -cancelRₖ n x y -+cancelₖ : (n : ℕ) (x y : coHomK n) → (x -[ n ]ₖ y) +[ n ]ₖ y ≡ x -+cancelₖ n x y = (cong (ΩKn+1→Kn n) ((cong (_∙ (Kn→ΩKn+1 n y)) (Iso.rightInv (Iso-Kn-ΩKn+1 n) (Kn→ΩKn+1 n x ∙ sym (Kn→ΩKn+1 n y)))) ∙∙ sym (assoc _ _ _) ∙∙ cong (Kn→ΩKn+1 n x ∙_) (lCancel _))) ∙∙ rCancelLem n x ∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 n) x ---- Group structure of cohomology groups --- _+ₕ_ : {n : ℕ} → coHom n A → coHom n A → coHom n A _+ₕ_ {n = n} = sRec2 § λ a b → ∣ (λ x → a x +[ n ]ₖ b x) ∣₂ -ₕ_ : {n : ℕ} → coHom n A → coHom n A -ₕ_ {n = n} = sRec § λ a → ∣ (λ x → -[ n ]ₖ a x) ∣₂ _-ₕ_ : {n : ℕ} → coHom n A → coHom n A → coHom n A _-ₕ_ {n = n} = sRec2 § λ a b → ∣ (λ x → a x -[ n ]ₖ b x) ∣₂ +ₕ-syntax : (n : ℕ) → coHom n A → coHom n A → coHom n A +ₕ-syntax n = _+ₕ_ {n = n} -ₕ-syntax : (n : ℕ) → coHom n A → coHom n A -ₕ-syntax n = -ₕ_ {n = n} -ₕ'-syntax : (n : ℕ) → coHom n A → coHom n A → coHom n A -ₕ'-syntax n = _-ₕ_ {n = n} syntax +ₕ-syntax n x y = x +[ n ]ₕ y syntax -ₕ-syntax n x = -[ n ]ₕ x syntax -ₕ'-syntax n x y = x -[ n ]ₕ y 0ₕ : (n : ℕ) → coHom n A 0ₕ n = ∣ (λ _ → (0ₖ n)) ∣₂ rUnitₕ : (n : ℕ) (x : coHom n A) → x +[ n ]ₕ (0ₕ n) ≡ x rUnitₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → rUnitₖ n (a x)) i ∣₂ lUnitₕ : (n : ℕ) (x : coHom n A) → (0ₕ n) +[ n ]ₕ x ≡ x lUnitₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → lUnitₖ n (a x)) i ∣₂ rCancelₕ : (n : ℕ) (x : coHom n A) → x +[ n ]ₕ (-[ n ]ₕ x) ≡ 0ₕ n rCancelₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → rCancelₖ n (a x)) i ∣₂ lCancelₕ : (n : ℕ) (x : coHom n A) → (-[ n ]ₕ x) +[ n ]ₕ x ≡ 0ₕ n lCancelₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → lCancelₖ n (a x)) i ∣₂ assocₕ : (n : ℕ) (x y z : coHom n A) → ((x +[ n ]ₕ y) +[ n ]ₕ z) ≡ (x +[ n ]ₕ (y +[ n ]ₕ z)) assocₕ n = elim3 (λ _ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b c i → ∣ funExt (λ x → assocₖ n (a x) (b x) (c x)) i ∣₂ commₕ : (n : ℕ) (x y : coHom n A) → (x +[ n ]ₕ y) ≡ (y +[ n ]ₕ x) commₕ n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ funExt (λ x → commₖ n (a x) (b x)) i ∣₂ cancelₕ : (n : ℕ) (x : coHom n A) → x -[ n ]ₕ x ≡ 0ₕ n cancelₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → cancelₖ n (a x)) i ∣₂ -ₖ-ₖ : (n : ℕ) (x : coHomK n) → (-[ n ]ₖ (-[ n ]ₖ x)) ≡ x -ₖ-ₖ n x = cong ((ΩKn+1→Kn n) ∘ sym) (Iso.rightInv (Iso-Kn-ΩKn+1 n) (sym (Kn→ΩKn+1 n x))) ∙ Iso.leftInv (Iso-Kn-ΩKn+1 n) x -- Proof that rUnitₖ and lUnitₖ agree on 0ₖ. Needed for Mayer-Vietoris. private rUnitlUnitGen : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {b : B} (e : Iso A (b ≡ b)) (0A : A) (0fun : fun e 0A ≡ refl) → Path (inv' e (fun e 0A ∙ fun e 0A) ≡ 0A) (cong (inv' e) (cong (_∙ fun e 0A) 0fun) ∙∙ cong (inv' e) (sym (lUnit (fun e 0A))) ∙∙ Iso.leftInv e 0A) (cong (inv' e) (cong (fun e 0A ∙_) 0fun) ∙∙ cong (inv' e) (sym (rUnit (fun e 0A))) ∙∙ Iso.leftInv e 0A) rUnitlUnitGen e 0A 0fun = (λ i → cong (inv' e) (cong (_∙ fun e 0A) 0fun) ∙∙ rUnit (cong (inv' e) (sym (lUnit (fun e 0A)))) i ∙∙ Iso.leftInv e 0A) ∙ ((λ i → (λ j → inv' e (0fun (~ i ∧ j) ∙ 0fun (j ∧ i))) ∙∙ ((λ j → inv' e (0fun (~ i ∨ j) ∙ 0fun i)) ∙∙ cong (inv' e) (sym (lUnit (0fun i))) ∙∙ λ j → inv' e (0fun (i ∧ (~ j)))) ∙∙ Iso.leftInv e 0A) ∙∙ (λ i → (λ j → inv' e (fun e 0A ∙ 0fun j)) ∙∙ (λ j → inv' e (0fun (j ∧ ~ i) ∙ refl)) ∙∙ cong (inv' e) (sym (rUnit (0fun (~ i)))) ∙∙ (λ j → inv' e (0fun (~ i ∧ ~ j))) ∙∙ Iso.leftInv e 0A) ∙∙ λ i → cong (inv' e) (cong (fun e 0A ∙_) 0fun) ∙∙ rUnit (cong (inv' e) (sym (rUnit (fun e 0A)))) (~ i) ∙∙ Iso.leftInv e 0A) rUnitlUnit0 : (n : ℕ) → rUnitₖ n (0ₖ n) ≡ lUnitₖ n (0ₖ n) rUnitlUnit0 0 = refl rUnitlUnit0 (suc zero) = refl rUnitlUnit0 (suc (suc n)) = sym (rUnitlUnitGen (Iso-Kn-ΩKn+1 (2 + n)) (0ₖ (2 + n)) (Kn→ΩKn+10ₖ (2 + n))) -cancelLₕ : (n : ℕ) (x y : coHom n A) → (x +[ n ]ₕ y) -[ n ]ₕ x ≡ y -cancelLₕ n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ (λ x → -cancelLₖ n (a x) (b x) i) ∣₂ -cancelRₕ : (n : ℕ) (x y : coHom n A) → (y +[ n ]ₕ x) -[ n ]ₕ x ≡ y -cancelRₕ n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ (λ x → -cancelRₖ n (a x) (b x) i) ∣₂ -+cancelₕ : (n : ℕ) (x y : coHom n A) → (x -[ n ]ₕ y) +[ n ]ₕ y ≡ x -+cancelₕ n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ (λ x → -+cancelₖ n (a x) (b x) i) ∣₂ -- Group structure of reduced cohomology groups (in progress - might need K to compute properly first) --- +ₕ∙ : {A : Pointed ℓ} (n : ℕ) → coHomRed n A → coHomRed n A → coHomRed n A +ₕ∙ zero = sRec2 § λ { (a , pa) (b , pb) → ∣ (λ x → a x +[ zero ]ₖ b x) , (λ i → (pa i +[ zero ]ₖ pb i)) ∣₂ } +ₕ∙ (suc zero) = sRec2 § λ { (a , pa) (b , pb) → ∣ (λ x → a x +[ 1 ]ₖ b x) , (λ i → pa i +[ 1 ]ₖ pb i) ∙ lUnitₖ 1 (0ₖ 1) ∣₂ } +ₕ∙ (suc (suc n)) = sRec2 § λ { (a , pa) (b , pb) → ∣ (λ x → a x +[ (2 + n) ]ₖ b x) , (λ i → pa i +[ (2 + n) ]ₖ pb i) ∙ lUnitₖ (2 + n) (0ₖ (2 + n)) ∣₂ } open IsSemigroup open IsMonoid open GroupStr open GroupHom coHomGr : ∀ {ℓ} (n : ℕ) (A : Type ℓ) → Group {ℓ} coHomGr n A = coHom n A , coHomGrnA where coHomGrnA : GroupStr (coHom n A) 0g coHomGrnA = 0ₕ n GroupStr._+_ coHomGrnA = λ x y → x +[ n ]ₕ y - coHomGrnA = λ x → -[ n ]ₕ x isGroup coHomGrnA = helper where abstract helper : IsGroup {G = coHom n A} (0ₕ n) (λ x y → x +[ n ]ₕ y) (λ x → -[ n ]ₕ x) helper = makeIsGroup § (λ x y z → sym (assocₕ n x y z)) (rUnitₕ n) (lUnitₕ n) (rCancelₕ n) (lCancelₕ n) ×coHomGr : (n : ℕ) (A : Type ℓ) (B : Type ℓ') → Group ×coHomGr n A B = dirProd (coHomGr n A) (coHomGr n B) coHomFun : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (n : ℕ) (f : A → B) → coHom n B → coHom n A coHomFun n f = sRec § λ β → ∣ β ∘ f ∣₂ -distrLemma : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (n m : ℕ) (f : GroupHom (coHomGr n A) (coHomGr m B)) (x y : coHom n A) → fun f (x -[ n ]ₕ y) ≡ fun f x -[ m ]ₕ fun f y -distrLemma n m f' x y = sym (-cancelRₕ m (f y) (f (x -[ n ]ₕ y))) ∙∙ cong (λ x → x -[ m ]ₕ f y) (sym (isHom f' (x -[ n ]ₕ y) y)) ∙∙ cong (λ x → x -[ m ]ₕ f y) ( cong f (-+cancelₕ n _ _)) where f = fun f' --- the loopspace of Kₙ is commutative regardless of base addIso : (n : ℕ) (x : coHomK n) → Iso (coHomK n) (coHomK n) fun (addIso n x) y = y +[ n ]ₖ x inv' (addIso n x) y = y -[ n ]ₖ x rightInv (addIso n x) y = -+cancelₖ n y x leftInv (addIso n x) y = -cancelRₖ n x y isCommΩK-based : (n : ℕ) (x : coHomK n) → isComm∙ (coHomK n , x) isCommΩK-based zero x p q = isSetInt _ _ (p ∙ q) (q ∙ p) isCommΩK-based (suc zero) x = subst isComm∙ (λ i → coHomK 1 , lUnitₖ 1 x i) (ptdIso→comm {A = (_ , 0ₖ 1)} (addIso 1 x) (isCommΩK 1)) isCommΩK-based (suc (suc n)) x = subst isComm∙ (λ i → coHomK (suc (suc n)) , lUnitₖ (suc (suc n)) x i) (ptdIso→comm {A = (_ , 0ₖ (suc (suc n)))} (addIso (suc (suc n)) x) (isCommΩK (suc (suc n)))) addLemma : (a b : Int) → a +[ 0 ]ₖ b ≡ (a ℤ+ b) addLemma a b = (cong (ΩKn+1→Kn 0) (sym (congFunct ∣_∣ (intLoop a) (intLoop b)))) ∙∙ (λ i → ΩKn+1→Kn 0 (cong ∣_∣ (intLoop-hom a b i))) ∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 0) (a ℤ+ b) --- -- hidden versions of cohom stuff using the "lock" hack. The locked versions can be used when proving things. -- Swapping "key" for "tt*" will then give computing functions. Unit' : Type₀ Unit' = lockUnit {ℓ-zero} lock : ∀ {ℓ} {A : Type ℓ} → Unit' → A → A lock unlock = λ x → x module lockedCohom (key : Unit') where +K : (n : ℕ) → coHomK n → coHomK n → coHomK n +K n = lock key (_+ₖ_ {n = n}) -K : (n : ℕ) → coHomK n → coHomK n -K n = lock key (-ₖ_ {n = n}) -Kbin : (n : ℕ) → coHomK n → coHomK n → coHomK n -Kbin n = lock key (_-ₖ_ {n = n}) rUnitK : (n : ℕ) (x : coHomK n) → +K n x (0ₖ n) ≡ x rUnitK n x = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) x (0ₖ n) ≡ x pm unlock = rUnitₖ n x lUnitK : (n : ℕ) (x : coHomK n) → +K n (0ₖ n) x ≡ x lUnitK n x = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) (0ₖ n) x ≡ x pm unlock = lUnitₖ n x rCancelK : (n : ℕ) (x : coHomK n) → +K n x (-K n x) ≡ 0ₖ n rCancelK n x = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) x (lock t (-ₖ_ {n = n}) x) ≡ 0ₖ n pm unlock = rCancelₖ n x lCancelK : (n : ℕ) (x : coHomK n) → +K n (-K n x) x ≡ 0ₖ n lCancelK n x = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) (lock t (-ₖ_ {n = n}) x) x ≡ 0ₖ n pm unlock = lCancelₖ n x -cancelRK : (n : ℕ) (x y : coHomK n) → -Kbin n (+K n y x) x ≡ y -cancelRK n x y = pm key where pm : (t : Unit') → lock t (_-ₖ_ {n = n}) (lock t (_+ₖ_ {n = n}) y x) x ≡ y pm unlock = -cancelRₖ n x y -cancelLK : (n : ℕ) (x y : coHomK n) → -Kbin n (+K n x y) x ≡ y -cancelLK n x y = pm key where pm : (t : Unit') → lock t (_-ₖ_ {n = n}) (lock t (_+ₖ_ {n = n}) x y) x ≡ y pm unlock = -cancelLₖ n x y -+cancelK : (n : ℕ) (x y : coHomK n) → +K n (-Kbin n x y) y ≡ x -+cancelK n x y = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) (lock t (_-ₖ_ {n = n}) x y) y ≡ x pm unlock = -+cancelₖ n x y cancelK : (n : ℕ) (x : coHomK n) → -Kbin n x x ≡ 0ₖ n cancelK n x = pm key where pm : (t : Unit') → (lock t (_-ₖ_ {n = n}) x x) ≡ 0ₖ n pm unlock = cancelₖ n x assocK : (n : ℕ) (x y z : coHomK n) → +K n (+K n x y) z ≡ +K n x (+K n y z) assocK n x y z = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) (lock t (_+ₖ_ {n = n}) x y) z ≡ lock t (_+ₖ_ {n = n}) x (lock t (_+ₖ_ {n = n}) y z) pm unlock = assocₖ n x y z commK : (n : ℕ) (x y : coHomK n) → +K n x y ≡ +K n y x commK n x y = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) x y ≡ lock t (_+ₖ_ {n = n}) y x pm unlock = commₖ n x y -- cohom +H : (n : ℕ) (x y : coHom n A) → coHom n A +H n = sRec2 § λ a b → ∣ (λ x → +K n (a x) (b x)) ∣₂ -H : (n : ℕ) (x : coHom n A) → coHom n A -H n = sRec § λ a → ∣ (λ x → -K n (a x)) ∣₂ -Hbin : (n : ℕ) → coHom n A → coHom n A → coHom n A -Hbin n = sRec2 § λ a b → ∣ (λ x → -Kbin n (a x) (b x)) ∣₂ rUnitH : (n : ℕ) (x : coHom n A) → +H n x (0ₕ n) ≡ x rUnitH n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → rUnitK n (a x)) i ∣₂ lUnitH : (n : ℕ) (x : coHom n A) → +H n (0ₕ n) x ≡ x lUnitH n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → lUnitK n (a x)) i ∣₂ rCancelH : (n : ℕ) (x : coHom n A) → +H n x (-H n x) ≡ 0ₕ n rCancelH n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → rCancelK n (a x)) i ∣₂ lCancelH : (n : ℕ) (x : coHom n A) → +H n (-H n x) x ≡ 0ₕ n lCancelH n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → lCancelK n (a x)) i ∣₂ assocH : (n : ℕ) (x y z : coHom n A) → (+H n (+H n x y) z) ≡ (+H n x (+H n y z)) assocH n = elim3 (λ _ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b c i → ∣ funExt (λ x → assocK n (a x) (b x) (c x)) i ∣₂ commH : (n : ℕ) (x y : coHom n A) → (+H n x y) ≡ (+H n y x) commH n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ funExt (λ x → commK n (a x) (b x)) i ∣₂ -cancelRH : (n : ℕ) (x y : coHom n A) → -Hbin n (+H n y x) x ≡ y -cancelRH n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ (λ x → -cancelRK n (a x) (b x) i) ∣₂ -cancelLH : (n : ℕ) (x y : coHom n A) → -Hbin n (+H n x y) x ≡ y -cancelLH n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ (λ x → -cancelLK n (a x) (b x) i) ∣₂ -+cancelH : (n : ℕ) (x y : coHom n A) → +H n (-Hbin n x y) y ≡ x -+cancelH n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ (λ x → -+cancelK n (a x) (b x) i) ∣₂ +K→∙ : (key : Unit') (n : ℕ) (a b : coHomK n) → Kn→ΩKn+1 n (lockedCohom.+K key n a b) ≡ Kn→ΩKn+1 n a ∙ Kn→ΩKn+1 n b +K→∙ unlock = +ₖ→∙ +H≡+ₕ : (key : Unit') (n : ℕ) → lockedCohom.+H key {A = A} n ≡ _+ₕ_ {n = n} +H≡+ₕ unlock _ = refl rUnitlUnit0K : (key : Unit') (n : ℕ) → lockedCohom.rUnitK key n (0ₖ n) ≡ lockedCohom.lUnitK key n (0ₖ n) rUnitlUnit0K unlock = rUnitlUnit0
45.848819
168
0.496187
c77e5e426e10f58be576b49f1efacd9ab04a393e
5,372
agda
Agda
Cubical/Data/Fin/Properties.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Data/Fin/Properties.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Data/Fin/Properties.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Fin.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Embedding open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence open import Cubical.Data.Fin.Base open import Cubical.Data.Nat open import Cubical.Data.Nat.Order open import Cubical.Data.Empty open import Cubical.Data.Sum open import Cubical.Data.Sigma open import Cubical.Induction.WellFounded private -- Σ is more convenient than the inductive ×, but I don't -- want to have to write λ_→ all over. _×_ : Type₀ → Type₀ → Type₀ A × B = Σ A λ _ → B -- Fin 0 is empty, and thus a proposition. Fin0-isProp : isProp (Fin 0) Fin0-isProp = ⊥-elim ∘ ¬Fin0 -- Fin 1 has only one value. Fin1-isContr : isContr (Fin 1) Fin1-isContr = fzero , λ { (zero , _) → toℕ-injective refl ; (suc k , sk<1) → ⊥-elim (¬-<-zero (pred-≤-pred sk<1)) } -- Regardless of k, Fin k is a set. isSetFin : ∀{k} → isSet (Fin k) isSetFin {k} = isOfHLevelΣ 2 isSetℕ (λ _ → isProp→isSet m≤n-isProp) -- Helper function for the reduction procedure below. -- -- If n = expand o k m, then n is congruent to m modulo k. expand : ℕ → ℕ → ℕ → ℕ expand 0 k m = m expand (suc o) k m = k + expand o k m expand≡ : ∀ k m o → expand o k m ≡ o * k + m expand≡ k m zero = refl expand≡ k m (suc o) = cong (k +_) (expand≡ k m o) ∙ +-assoc k (o * k) m -- Expand a pair. This is useful because the whole function is -- injective. expand× : ∀{k} → (Fin k × ℕ) → ℕ expand× {k} (f , o) = expand o k (toℕ f) private lemma₀ : ∀{k m n r} → r ≡ n → k + m ≡ n → k ≤ r lemma₀ {k = k} {m} p q = m , +-comm m k ∙ q ∙ sym p expand×Inj : ∀ k → {t1 t2 : Fin (suc k) × ℕ} → expand× t1 ≡ expand× t2 → t1 ≡ t2 expand×Inj k {f1 , zero} {f2 , zero} p i = toℕ-injective {fj = f1} {f2} p i , zero expand×Inj k {f1 , suc o1} {(r , r<sk) , zero} p = ⊥-elim (<-asym r<sk (lemma₀ refl p)) expand×Inj k {(r , r<sk) , zero} {f2 , suc o2} p = ⊥-elim (<-asym r<sk (lemma₀ refl (sym p))) expand×Inj k {f1 , suc o1} {f2 , suc o2} = cong (λ { (f , o) → (f , suc o) }) ∘ expand×Inj k {f1 , o1} {f2 , o2} ∘ inj-m+ {suc k} expand×Emb : ∀ k → isEmbedding (expand× {k}) expand×Emb 0 = ⊥-elim ∘ ¬Fin0 ∘ fst expand×Emb (suc k) = injEmbedding (isOfHLevelΣ 2 isSetFin (λ _ → isSetℕ)) isSetℕ (expand×Inj k) -- A Residue is a family of types representing evidence that a -- natural is congruent to a value of a finite type. Residue : ℕ → ℕ → Type₀ Residue k n = Σ[ tup ∈ Fin k × ℕ ] expand× tup ≡ n extract : ∀{k n} → Residue k n → Fin k extract = fst ∘ fst -- There is at most one canonical finite value congruent to each -- natural. isPropResidue : ∀ k n → isProp (Residue k n) isPropResidue k = isEmbedding→hasPropFibers (expand×Emb k) -- A value of a finite type is its own residue. Fin→Residue : ∀{k} → (f : Fin k) → Residue k (toℕ f) Fin→Residue f = (f , 0) , refl -- Fibers of numbers that differ by k are equivalent in a more obvious -- way than via the fact that they are propositions. Residue+k : (k n : ℕ) → Residue k n → Residue k (k + n) Residue+k k n ((f , o) , p) = (f , suc o) , cong (k +_) p Residue-k : (k n : ℕ) → Residue k (k + n) → Residue k n Residue-k k n (((r , r<k) , zero) , p) = ⊥-elim (<-asym r<k (lemma₀ p refl)) Residue-k k n ((f , suc o) , p) = ((f , o) , inj-m+ p) Residue+k-k : (k n : ℕ) → (R : Residue k (k + n)) → Residue+k k n (Residue-k k n R) ≡ R Residue+k-k k n (((r , r<k) , zero) , p) = ⊥-elim (<-asym r<k (lemma₀ p refl)) Residue+k-k k n ((f , suc o) , p) = ΣProp≡ (λ tup → isSetℕ (expand× tup) (k + n)) refl Residue-k+k : (k n : ℕ) → (R : Residue k n) → Residue-k k n (Residue+k k n R) ≡ R Residue-k+k k n ((f , o) , p) = ΣProp≡ (λ tup → isSetℕ (expand× tup) n) refl private Residue≃ : ∀ k n → Residue k n ≃ Residue k (k + n) Residue≃ k n = Residue+k k n , isoToIsEquiv (iso (Residue+k k n) (Residue-k k n) (Residue+k-k k n) (Residue-k+k k n)) Residue≡ : ∀ k n → Residue k n ≡ Residue k (k + n) Residue≡ k n = ua (Residue≃ k n) -- For positive `k`, all `n` have a canonical residue mod `k`. module Reduce (k₀ : ℕ) where k : ℕ k = suc k₀ base : ∀ n (n<k : n < k) → Residue k n base n n<k = Fin→Residue (n , n<k) step : ∀ n → Residue k n → Residue k (k + n) step n = transport (Residue≡ k n) reduce : ∀ n → Residue k n reduce = +induction k₀ (Residue k) base step reduce≡ : ∀ n → transport (Residue≡ k n) (reduce n) ≡ reduce (k + n) reduce≡ n = sym (+inductionStep k₀ _ base step n) reduceP : ∀ n → PathP (λ i → Residue≡ k n i) (reduce n) (reduce (k + n)) reduceP n = toPathP (reduce≡ n) open Reduce using (reduce; reduce≡) public private lemma₅ : ∀ k n (R : Residue k n) → extract R ≡ extract (transport (Residue≡ k n) R) lemma₅ k n = sym ∘ cong extract ∘ uaβ (Residue≃ k n) -- The residue of n modulo k is the same as the residue of k + n. extract≡ : ∀ k n → extract (reduce k n) ≡ extract (reduce k (suc k + n)) extract≡ k n = lemma₅ (suc k) n (reduce k n) ∙ cong extract (Reduce.reduce≡ k n) isContrResidue : ∀{k n} → isContr (Residue (suc k) n) isContrResidue {k} {n} = inhProp→isContr (reduce k n) (isPropResidue (suc k) n)
31.232558
82
0.606664
04a2f3e48231e2010116a3b1be625f8ce2c6c193
6,435
agda
Agda
archive/agda-2/Oscar/Data6.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-2/Oscar/Data6.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-2/Oscar/Data6.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
{- -} -- starting from builtins -- forgot what the point of this was... module Oscar.Data6 where open import Oscar.Category.Semigroupoid open import Oscar.Category.Category open import Oscar.Category.Morphism open import Oscar.Category.Setoid open import Oscar.Function open import Agda.Builtin.Unit using () renaming (⊤ to 𝟙; tt to ∅) open import Agda.Builtin.Nat using () renaming (Nat to ℕ; zero to ∅; suc to ↑_) open import Agda.Builtin.List using () renaming (List to [_]ℕ; [] to ∅; _∷_ to _+_) open import Oscar.Level ⟦_⟧ℕ[<_↓] ⟦_⟧ℕ[_≤_↓] ⟦_⟧ℕ[↥_≤_] ⟦_⟧ℕ[↓_≤_↓] -- Fin (with a payload) data ⟦_⟧ℕ[0…_-1] {a} (A : ℕ → Set a) : ℕ → Set a where ∅ : ∀ {n} → ⟦ A ⟧ℕ[<↑ ↑ n ] _∷_ : ∀ {n} → A n → ⟦ A ⟧ℕ[ n ] → ⟦ A ⟧ℕ[<↑ ↑ n ] -- Vec (with an (optional) index) data ⟦_⟧ℕ[≤_] {a} (A : ℕ → Set a) : ℕ → Set a where ∅ : ⟦ A ⟧ℕ[ ∅ ₀] _∷_ : ∀ {n} → A n → ⟦ A ⟧ℕ[ n ₀] → ⟦ A ⟧ℕ[ ¡ n ₀] -- m ≤ n, counting down from n-1 to m data ⟦_⟧ℕ[_≤_↓] {a} (A : ℕ → Set a) (m : ℕ) : ℕ → Set a where ∅ : ⟦ A ⟧ℕ[ m ≤ m ↓] _∷_ : ∀ {n} → A n → ⟦ A ⟧ℕ[ m ≤ n ↓] → ⟦ A ⟧ℕ[ m ≤ ¡ n ↓] -- m ≤ n, counting up from m to n-1 data ⟦_⟧ℕ[↑_≤_] {a} (A : ℕ → Set a) (m : ℕ) : ℕ → Set a where ∅ : ⟦ A ⟧ℕ[↑ m ≤ m ] _∷_ : ∀ {n} → A m → ⟦ A ⟧ℕ[↑ ¡ m ≤ n ] → ⟦ A ⟧ℕ[↑ m ≤ n ] -- Inj (almost) data ⟦_⟧ℕ[↓_≤_↓] {a} (A : ℕ → ℕ → Set a) : ℕ → ℕ → Set a where ∅ : ∀ {n} → ⟦ A ⟧ℕ[↓ ∅ ≤ n ↓] _∷_ : ∀ {m n} → A m n → ⟦ A ⟧ℕ[↓ m ≤ n ↓] → ⟦ A ⟧ℕ[↓ ¡ m ≤ ¡ n ↓] ⟦_⟧ℕ[_⇒_]∞ : ∀ {a} (A : ℕ → Set a) → ℕ → ℕ → Set a ⟦ A ⟧ℕ[ m ⇒ n ]∞ = A m → A n -- Fin (with a payload) data ⟦_⟧ℕ[<_↓] {a} (A : ℕ → Set a) : ℕ → Set a where ∅ : ∀ {n} → ⟦ A ⟧[< ↑ n ↓] _∷_ : ∀ {n} → A n → ⟦ A ⟧ℕ[< n ] → ⟦ A ⟧[< ↑ n ↓] -- -- Vec (with an (optional) index) data ℕ[_]=_ {a} (A : ℕ → Set a) : ℕ → Set a where ∅ : ℕ[ A ]= ∅ _∷_ : ∀ {n} → A n → ℕ[ A ]= ↑ n → ℕ[ A ]= ↑ n ℕ=_ = ℕ[ const 𝟙 ]=_ -- m ≤ n, counting down from n-1 to m data ℕ[_]≥_<↓_ {a} (A : ℕ → Set a) (m : ℕ) : ℕ → Set a where ∅ : ℕ[ A ]≥ m <↓ m _∷_ : ∀ {n} → A n → ℕ[ A ]≥ m <↓ n → ℕ[ A ]≥ m <↓ ↑ n ℕ≥_<↓_ = ℕ[ const 𝟙 ]≥_<↓_ -- m ≤ n, counting up from m to n-1 data ℕ[_]≥↑_<_ {a} (A : ℕ → Set a) (m : ℕ) : ℕ → Set a where ∅ : ℕ[ A ]≥↑ m < m _∷_ : ∀ {n} → A m → ℕ[ A ]≥↑ ↑ m < n → ℕ[ A ]≥↑ m < n ℕ≥↑_<_ = ℕ[ const 𝟙 ]≥↑_<_ -- -- Inj (almost) -- data ⟦_⟧[↓_≤_↓] {a} (A : ⟦⟧ → ⟦⟧ → Set a) : ⟦⟧ → ⟦⟧ → Set a where -- ∅ : ∀ {n} → ⟦ A ⟧[↓ ∅ ≤ n ↓] -- _∷_ : ∀ {m n} → A m n → ⟦ A ⟧[↓ m ≤ n ↓] → ⟦ A ⟧[↓ ¡ m ≤ ¡ n ↓] -- ⟦⟧[↓_≤_↓] = ⟦ Const Const ⊤ ⟧[↓_≤_↓] -- ⟦_⟧[_⇒_]∞ : ∀ {a} (A : ⟦⟧ → Set a) → ⟦⟧ → ⟦⟧ → Set a -- ⟦ A ⟧[ m ⇒ n ]∞ = A m → A n -- --open import Oscar.Data.Equality -- --open import Oscar.Data.Equality.properties -- module _ {𝔬 𝔪 𝔮} (G : Semigroupoid 𝔬 𝔪 𝔮) where -- open Semigroupoid G -- {- -- _≋̇_ : ∀ {a} {A : ⋆ → Set a} {m n : ⋆} → (A m → A n) → (A m → A n) → Set 𝔮 -- _≋̇_ {A = A} {m = m} m→n₁ m→n₂ = {!∀ (am : A m) → m→n₁ am ≋ m→n₂ am!} -- cat2 : ∀ {a} (A : ⋆ → Set a) → Category {!!} {!!} {!!} -- Semigroupoid.⋆ (Category.semigroupoid (cat2 A)) = ⋆ -- Setoid.⋆ ((Semigroupoid.𝔐 (Category.semigroupoid (cat2 A)) Morphism.⇒ m) n) = A m → A n -- IsSetoid._≋_ (Setoid.isSetoid ((Semigroupoid.𝔐 (Category.semigroupoid (cat2 A)) Morphism.⇒ m) n)) = _≡̇_ -- IsSetoid.isEquivalence (Setoid.isSetoid ((Semigroupoid.𝔐 (Category.semigroupoid (cat2 A)) Morphism.⇒ m) n)) = it -- Semigroupoid._∙_ (Category.semigroupoid (cat2 A)) g f = g ∘ f -- Semigroupoid.isSemigroupoid (Category.semigroupoid (cat2 A)) = it -- Category.ε (cat2 A) = id -- Category.isCategory (cat2 A) = it -- cat2G : ∀ {a} (A : ⋆ → Set a) → ∀ ℓ ⦃ _ : ∀ {n : ⋆} → IsSetoid (A n) ℓ ⦄ → Category {!!} {!!} {!!} -- Semigroupoid.⋆ (Category.semigroupoid (cat2G A ℓ)) = ⋆ -- Setoid.⋆ ((Semigroupoid.𝔐 (Category.semigroupoid (cat2G A ℓ)) Morphism.⇒ m) n) = A m → A n -- IsSetoid._≋_ (Setoid.isSetoid ((Semigroupoid.𝔐 (Category.semigroupoid (cat2G A ℓ)) Morphism.⇒ m) n)) m↦n₁ m↦n₂ = ∀ (am : A m) → m↦n₁ am ≋ m↦n₂ am -- -- ∀ (am : A m) → m↦n₁ am ≋ m↦n₂ am -- {- -- _≋̇_ : ∀ {a} {A : ⋆ → Set a} {m n : ⋆} → (A m → A n) → (A m → A n) → Set 𝔮 -- _≋̇_ {A = A} {m = m} m→n₁ m→n₂ = {!∀ (am : A m) → m→n₁ am ≋ m→n₂ am!} -- -} -- IsSetoid.isEquivalence (Setoid.isSetoid ((Semigroupoid.𝔐 (Category.semigroupoid (cat2G A ℓ)) Morphism.⇒ m) n)) = {!it!} -- Semigroupoid._∙_ (Category.semigroupoid (cat2G A ℓ)) g f = g ∘ f -- Semigroupoid.isSemigroupoid (Category.semigroupoid (cat2G A ℓ)) = {!it!} -- Category.ε (cat2G A ℓ) = id -- Category.isCategory (cat2G A ℓ) = {!it!} -- -} -- infix 21 ‼_ -- pattern ‼_ ⟦A⟧ = tt ∷ ⟦A⟧ -- tricky, works for all above _∷_ constructors only because it is defined afterwards, won't work for any later-defined constructors -- open import Agda.Primitive -- open import Oscar.Data.Product -- open import Oscar.Function -- postulate -- ℓ : Level -- Term : ⟦⟧ → Set ℓ -- Step : ⟦⟧ → Set ℓ -- Fin = ⟦⟧[_] -- Inj = ⟦ Const Fin ⟧[↓_≤_↓] -- Terms = λ N n → ⟦ Const (Term n) ⟧[ N ₀] -- AList = ⟦ (λ n → Term n × Fin (¡ n)) ⟧[_≤_↓] -- Fx : ∀ {a} {A : Set a} → A → A → ∀ {b₁} (B₁ : A → Set b₁) → ∀ {b₂} (B₂ : A → Set b₂) → Set (b₁ ⊔ b₂) -- Fx m n B₁ B₂ = B₁ m → B₂ n -- Fx₁ : ∀ {a} {A : Set a} → A → ∀ {b₁} (B₁ : A → Set b₁) → ∀ {b₂} (B₂ : A → Set b₂) → Set (b₁ ⊔ b₂) -- Fx₁ n B₁ B₂ = Fx n n B₁ B₂ -- ListStep = λ n → ⟦ Step n ⟧ -- Rel : ∀ {a} {A : Set a} {b₁} (B₁ : A → Set b₁) {b₂} (B₂ : A → Set b₂) {c₁} (C₁ : A → Set c₁) {c₂} (C₂ : A → Set c₂) → Set (a ⊔ b₁ ⊔ b₂ ⊔ c₁ ⊔ c₂) -- Rel B₁ B₂ C₁ C₂ = ∀ {m n} → Fx m n B₁ B₂ → Fx m n C₁ C₂ -- Morph : ∀ {a} {A : Set a} {b₁} {b₂} (B : (A → Set b₁) × (A → Set b₂)) {c₁} {c₂} (C₂ : (A → Set c₁) × (A → Set c₂)) → Set (a ⊔ b₁ ⊔ b₂ ⊔ c₁ ⊔ c₂) -- Morph (B₁ , B₂) (C₁ , C₂) = ∀ {m n} → Fx m n B₁ B₂ → Fx m n C₁ C₂ -- -- functor mappings -- postulate -- _◃_ : Morph (Fin , Term) (Term , Term) -- _◃s_ : ∀ N → Morph (Fin , Term) (Terms N , Terms N) -- sub : ∀ {m n} → AList m n → Fx m n Fin Term -- fmapS : Morph (Term , Term) (Step , Step) -- _◃S_ : Morph (Fin , Term) (ListStep , ListStep) -- -- ? -- postulate -- _⊹_ : ∀ {n} → ⟦ Step n ⟧ → Fx₁ n Term Term -- testNat : ⟦⟧ -- testNat = ¡ ∅ -- testListNat : ⟦ ⟦⟧ ⟧ -- testListNat = ¡ ∅ ∷ ‼ ∅ ∷ ‼ ‼ ∅ ∷ ∅ ∷ ¡ ¡ ¡ ∅ ∷ ∅ -- testFin : ⟦⟧[ ¡ ¡ ∅ ] -- testFin = ‼ ∅ -- test≤↓ : ⟦⟧[ ‼ ‼ ‼ ∅ ≤ ‼ ‼ ‼ ‼ ‼ ∅ ↓] -- test≤↓ = ‼ ‼ ∅ -- ⓪ ⑴ ⑵ ⑶ : ⟦⟧ -- ⓪ = ∅ -- ⑴ = ‼ ∅ -- ⑵ = ‼ ⑴ -- ⑶ = ‼ ⑵ -- testInj : Inj ⑵ ⑶ -- testInj = ‼ ∅ ∷ ∅ ∷ ∅
32.831633
161
0.471639
1e75a12d9d1821a5bc73ae8844ad46d693e717f6
1,138
agda
Agda
currypp/.cpm/packages/currycheck/examples/withVerification/PROOF-sortPreservesLength.agda
phlummox/curry-tools
7905bc4f625a94a725f9f6d8a2de1140bea5e471
[ "BSD-3-Clause" ]
null
null
null
currypp/.cpm/packages/currycheck/examples/withVerification/PROOF-sortPreservesLength.agda
phlummox/curry-tools
7905bc4f625a94a725f9f6d8a2de1140bea5e471
[ "BSD-3-Clause" ]
null
null
null
currypp/.cpm/packages/currycheck/examples/withVerification/PROOF-sortPreservesLength.agda
phlummox/curry-tools
7905bc4f625a94a725f9f6d8a2de1140bea5e471
[ "BSD-3-Clause" ]
null
null
null
-- Agda program using the Iowa Agda library open import bool module PROOF-sortPreservesLength (Choice : Set) (choose : Choice → 𝔹) (lchoice : Choice → Choice) (rchoice : Choice → Choice) where open import eq open import nat open import list open import maybe --------------------------------------------------------------------------- -- Translated Curry operations: insert : ℕ → 𝕃 ℕ → 𝕃 ℕ insert x [] = x :: [] insert y (z :: u) = if y ≤ z then y :: (z :: u) else z :: (insert y u) sort : 𝕃 ℕ → 𝕃 ℕ sort [] = [] sort (x :: y) = insert x (sort y) --------------------------------------------------------------------------- insertIncLength : (x : ℕ) → (xs : 𝕃 ℕ) → length (insert x xs) ≡ suc (length xs) insertIncLength x [] = refl insertIncLength x (y :: ys) with (x ≤ y) ... | tt = refl ... | ff rewrite insertIncLength x ys = refl sortPreservesLength : (xs : 𝕃 ℕ) → length (sort xs) ≡ length xs sortPreservesLength [] = refl sortPreservesLength (x :: xs) rewrite insertIncLength x (sort xs) | sortPreservesLength xs = refl ---------------------------------------------------------------------------
26.465116
75
0.505272
13917ab6ef1cbb0e2cf0878b23b9628177b1686f
563
agda
Agda
notes/papers/implicit/examples/Dangerous-AgdaLight.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
notes/papers/implicit/examples/Dangerous-AgdaLight.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
notes/papers/implicit/examples/Dangerous-AgdaLight.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
data N : Set where zero : N suc : N -> N data B : Set where true : B false : B data False : Set where data True : Set where tt : True F : B -> Set F true = N F false = B G : (x:B) -> F x -> Set G false _ = N G true zero = B G true (suc n) = N (==) : B -> B -> Set true == true = True false == false = True _ == _ = False data Equal (x,y:B) : Set where equal : x == y -> Equal x y refl : (x:B) -> Equal x x refl true = equal tt refl false = equal tt f : (x:B) -> (y : F x) -> Equal x true -> G x y h : N h = f _ false (refl true)
14.075
47
0.520426
2ef2fd44746a56ddd35b39d397a33dc50f767b2d
1,524
agda
Agda
Definition/Typed/Reduction.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
30
2017-05-20T03:05:21.000Z
2022-03-30T18:01:07.000Z
Definition/Typed/Reduction.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
4
2017-06-22T12:49:23.000Z
2021-02-22T10:37:24.000Z
Definition/Typed/Reduction.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
8
2017-10-18T14:18:20.000Z
2021-11-27T15:58:33.000Z
{-# OPTIONS --without-K --safe #-} module Definition.Typed.Reduction where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Tools.Nat private variable n : Nat Γ : Con Term n A A′ B B′ : Term n a a′ b b′ : Term n -- Weak head expansion of type equality reduction : Γ ⊢ A ⇒* A′ → Γ ⊢ B ⇒* B′ → Whnf A′ → Whnf B′ → Γ ⊢ A′ ≡ B′ → Γ ⊢ A ≡ B reduction D D′ whnfA′ whnfB′ A′≡B′ = trans (subset* D) (trans A′≡B′ (sym (subset* D′))) reduction′ : Γ ⊢ A ⇒* A′ → Γ ⊢ B ⇒* B′ → Whnf A′ → Whnf B′ → Γ ⊢ A ≡ B → Γ ⊢ A′ ≡ B′ reduction′ D D′ whnfA′ whnfB′ A≡B = trans (sym (subset* D)) (trans A≡B (subset* D′)) -- Weak head expansion of term equality reductionₜ : Γ ⊢ A ⇒* B → Γ ⊢ a ⇒* a′ ∷ B → Γ ⊢ b ⇒* b′ ∷ B → Whnf B → Whnf a′ → Whnf b′ → Γ ⊢ a′ ≡ b′ ∷ B → Γ ⊢ a ≡ b ∷ A reductionₜ D d d′ whnfB whnfA′ whnfB′ a′≡b′ = conv (trans (subset*Term d) (trans a′≡b′ (sym (subset*Term d′)))) (sym (subset* D)) reductionₜ′ : Γ ⊢ A ⇒* B → Γ ⊢ a ⇒* a′ ∷ B → Γ ⊢ b ⇒* b′ ∷ B → Whnf B → Whnf a′ → Whnf b′ → Γ ⊢ a ≡ b ∷ A → Γ ⊢ a′ ≡ b′ ∷ B reductionₜ′ D d d′ whnfB whnfA′ whnfB′ a≡b = trans (sym (subset*Term d)) (trans (conv a≡b (subset* D)) (subset*Term d′))
24.580645
55
0.446194
1ed5f3b51ff67762636c6b9182af9e7fc39586ee
2,037
agda
Agda
agda-stdlib/src/Data/AVL/IndexedMap.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/AVL/IndexedMap.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/AVL/IndexedMap.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Finite maps with indexed keys and values, based on AVL trees ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Data.Product as Prod open import Relation.Binary open import Relation.Binary.PropositionalEquality using (_≡_; cong; subst) import Data.AVL.Value module Data.AVL.IndexedMap {i k v ℓ} {Index : Set i} {Key : Index → Set k} (Value : Index → Set v) {_<_ : Rel (∃ Key) ℓ} (isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_) where import Data.AVL open import Data.Bool.Base open import Data.List.Base as List using (List) open import Data.Maybe.Base as Maybe open import Function open import Level -- Key/value pairs. KV : Set (i ⊔ k ⊔ v) KV = ∃ λ i → Key i × Value i -- Conversions. private fromKV : KV → Σ[ ik ∈ ∃ Key ] Value (proj₁ ik) fromKV (i , k , v) = ((i , k) , v) toKV : Σ[ ik ∈ ∃ Key ] Value (proj₁ ik) → KV toKV ((i , k) , v) = (i , k , v) -- The map type. private open module AVL = Data.AVL (record { isStrictTotalOrder = isStrictTotalOrder }) using () renaming (Tree to Map') Map = Map' (AVL.MkValue (Value ∘ proj₁) (subst Value ∘′ cong proj₁)) -- Repackaged functions. empty : Map empty = AVL.empty singleton : ∀ {i} → Key i → Value i → Map singleton k v = AVL.singleton (-, k) v insert : ∀ {i} → Key i → Value i → Map → Map insert k v = AVL.insert (-, k) v delete : ∀ {i} → Key i → Map → Map delete k = AVL.delete (-, k) lookup : ∀ {i} → Key i → Map → Maybe (Value i) lookup k m = AVL.lookup (-, k) m infix 4 _∈?_ _∈?_ : ∀ {i} → Key i → Map → Bool _∈?_ k = AVL._∈?_ (-, k) headTail : Map → Maybe (KV × Map) headTail m = Maybe.map (Prod.map toKV id) (AVL.headTail m) initLast : Map → Maybe (Map × KV) initLast m = Maybe.map (Prod.map id toKV) (AVL.initLast m) fromList : List KV → Map fromList = AVL.fromList ∘ List.map fromKV toList : Map → List KV toList = List.map toKV ∘ AVL.toList
24.25
74
0.587629
1eedfffd448b35a1aa8c8b1aef4782deee51f5ae
6,142
agda
Agda
src/Categories/Object/Product/Core.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/Object/Product/Core.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/Object/Product/Core.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Object.Product.Core {o ℓ e} (𝒞 : Category o ℓ e) where open import Level open import Function using (flip; _$_) open import Categories.Morphism 𝒞 open import Categories.Morphism.Reasoning 𝒞 open Category 𝒞 open HomReasoning private variable A B C D X Y Z : Obj h i j : A ⇒ B -- Borrowed from Dan Doel's definition of products record Product (A B : Obj) : Set (o ⊔ ℓ ⊔ e) where infix 10 ⟨_,_⟩ field A×B : Obj π₁ : A×B ⇒ A π₂ : A×B ⇒ B ⟨_,_⟩ : C ⇒ A → C ⇒ B → C ⇒ A×B project₁ : π₁ ∘ ⟨ h , i ⟩ ≈ h project₂ : π₂ ∘ ⟨ h , i ⟩ ≈ i unique : π₁ ∘ h ≈ i → π₂ ∘ h ≈ j → ⟨ i , j ⟩ ≈ h g-η : ⟨ π₁ ∘ h , π₂ ∘ h ⟩ ≈ h g-η = unique refl refl η : ⟨ π₁ , π₂ ⟩ ≈ id η = unique identityʳ identityʳ ⟨⟩-cong₂ : ∀ {f f′ : C ⇒ A} {g g′ : C ⇒ B} → f ≈ f′ → g ≈ g′ → ⟨ f , g ⟩ ≈ ⟨ f′ , g′ ⟩ ⟨⟩-cong₂ f≡f′ g≡g′ = unique (project₁ ○ ⟺ f≡f′) (project₂ ○ ⟺ g≡g′) ∘-distribʳ-⟨⟩ : ∀ {f : C ⇒ A} {g : C ⇒ B} {q : D ⇒ C} → ⟨ f , g ⟩ ∘ q ≈ ⟨ f ∘ q , g ∘ q ⟩ ∘-distribʳ-⟨⟩ = ⟺ $ unique (pullˡ project₁) (pullˡ project₂) unique′ : π₁ ∘ h ≈ π₁ ∘ i → π₂ ∘ h ≈ π₂ ∘ i → h ≈ i unique′ eq₁ eq₂ = trans (sym (unique eq₁ eq₂)) g-η module _ {A B : Obj} where open Product {A} {B} renaming (⟨_,_⟩ to _⟨_,_⟩) repack : (p₁ p₂ : Product A B) → A×B p₁ ⇒ A×B p₂ repack p₁ p₂ = p₂ ⟨ π₁ p₁ , π₂ p₁ ⟩ repack∘ : (p₁ p₂ p₃ : Product A B) → repack p₂ p₃ ∘ repack p₁ p₂ ≈ repack p₁ p₃ repack∘ p₁ p₂ p₃ = ⟺ $ unique p₃ (glueTrianglesʳ (project₁ p₃) (project₁ p₂)) (glueTrianglesʳ (project₂ p₃) (project₂ p₂)) repack≡id : (p : Product A B) → repack p p ≈ id repack≡id = η repack-cancel : (p₁ p₂ : Product A B) → repack p₁ p₂ ∘ repack p₂ p₁ ≈ id repack-cancel p₁ p₂ = repack∘ p₂ p₁ p₂ ○ repack≡id p₂ up-to-iso : ∀ (p₁ p₂ : Product A B) → Product.A×B p₁ ≅ Product.A×B p₂ up-to-iso p₁ p₂ = record { from = repack p₁ p₂ ; to = repack p₂ p₁ ; iso = record { isoˡ = repack-cancel p₂ p₁ ; isoʳ = repack-cancel p₁ p₂ } } transport-by-iso : ∀ (p : Product A B) → ∀ {X} → Product.A×B p ≅ X → Product A B transport-by-iso p {X} p≅X = record { A×B = X ; π₁ = π₁ ∘ to ; π₂ = π₂ ∘ to ; ⟨_,_⟩ = λ h₁ h₂ → from ∘ ⟨ h₁ , h₂ ⟩ ; project₁ = cancelInner isoˡ ○ project₁ ; project₂ = cancelInner isoˡ ○ project₂ ; unique = λ {_ i l r} pf₁ pf₂ → begin from ∘ ⟨ l , r ⟩ ≈˘⟨ refl⟩∘⟨ ⟨⟩-cong₂ pf₁ pf₂ ⟩ from ∘ ⟨ (π₁ ∘ to) ∘ i , (π₂ ∘ to) ∘ i ⟩ ≈⟨ refl⟩∘⟨ unique sym-assoc sym-assoc ⟩ from ∘ to ∘ i ≈⟨ cancelˡ isoʳ ⟩ i ∎ } where open Product p open _≅_ p≅X Reversible : (p : Product A B) → Product B A Reversible p = record { A×B = A×B ; π₁ = π₂ ; π₂ = π₁ ; ⟨_,_⟩ = flip ⟨_,_⟩ ; project₁ = project₂ ; project₂ = project₁ ; unique = flip unique } where open Product p Commutative : (p₁ : Product A B) (p₂ : Product B A) → Product.A×B p₁ ≅ Product.A×B p₂ Commutative p₁ p₂ = up-to-iso p₁ (Reversible p₂) Associable : ∀ (p₁ : Product X Y) (p₂ : Product Y Z) (p₃ : Product X (Product.A×B p₂)) → Product (Product.A×B p₁) Z Associable p₁ p₂ p₃ = record { A×B = A×B p₃ ; π₁ = p₁ ⟨ π₁ p₃ , π₁ p₂ ∘ π₂ p₃ ⟩ ; π₂ = π₂ p₂ ∘ π₂ p₃ ; ⟨_,_⟩ = λ f g → p₃ ⟨ π₁ p₁ ∘ f , p₂ ⟨ π₂ p₁ ∘ f , g ⟩ ⟩ ; project₁ = λ {_ f g} → begin p₁ ⟨ π₁ p₃ , π₁ p₂ ∘ π₂ p₃ ⟩ ∘ p₃ ⟨ π₁ p₁ ∘ f , p₂ ⟨ π₂ p₁ ∘ f , g ⟩ ⟩ ≈⟨ ∘-distribʳ-⟨⟩ p₁ ⟩ p₁ ⟨ π₁ p₃ ∘ p₃ ⟨ π₁ p₁ ∘ f , p₂ ⟨ π₂ p₁ ∘ f , g ⟩ ⟩ , (π₁ p₂ ∘ π₂ p₃) ∘ p₃ ⟨ π₁ p₁ ∘ f , p₂ ⟨ π₂ p₁ ∘ f , g ⟩ ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ p₁ (project₁ p₃) (glueTrianglesˡ (project₁ p₂) (project₂ p₃)) ⟩ p₁ ⟨ π₁ p₁ ∘ f , π₂ p₁ ∘ f ⟩ ≈⟨ g-η p₁ ⟩ f ∎ ; project₂ = λ {_ f g} → glueTrianglesˡ (project₂ p₂) (project₂ p₃) ; unique = λ {_ i f g} pf₁ pf₂ → begin p₃ ⟨ π₁ p₁ ∘ f , p₂ ⟨ π₂ p₁ ∘ f , g ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ p₃ (∘-resp-≈ʳ (sym pf₁)) (⟨⟩-cong₂ p₂ (∘-resp-≈ʳ (sym pf₁)) (sym pf₂)) ⟩ p₃ ⟨ π₁ p₁ ∘ p₁ ⟨ π₁ p₃ , π₁ p₂ ∘ π₂ p₃ ⟩ ∘ i , p₂ ⟨ π₂ p₁ ∘ p₁ ⟨ π₁ p₃ , π₁ p₂ ∘ π₂ p₃ ⟩ ∘ i , (π₂ p₂ ∘ π₂ p₃) ∘ i ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ p₃ (pullˡ (project₁ p₁)) (⟨⟩-cong₂ p₂ (trans (pullˡ (project₂ p₁)) assoc) assoc) ⟩ p₃ ⟨ π₁ p₃ ∘ i , p₂ ⟨ π₁ p₂ ∘ π₂ p₃ ∘ i , π₂ p₂ ∘ π₂ p₃ ∘ i ⟩ ⟩ ≈⟨ ⟨⟩-cong₂ p₃ refl (g-η p₂) ⟩ p₃ ⟨ π₁ p₃ ∘ i , π₂ p₃ ∘ i ⟩ ≈⟨ g-η p₃ ⟩ i ∎ } where open Product renaming (⟨_,_⟩ to _⟨_,_⟩) Associative : ∀ (p₁ : Product X Y) (p₂ : Product Y Z) (p₃ : Product X (Product.A×B p₂)) (p₄ : Product (Product.A×B p₁) Z) → (Product.A×B p₃) ≅ (Product.A×B p₄) Associative p₁ p₂ p₃ p₄ = up-to-iso (Associable p₁ p₂ p₃) p₄ Mobile : ∀ {A₁ B₁ A₂ B₂} (p : Product A₁ B₁) → A₁ ≅ A₂ → B₁ ≅ B₂ → Product A₂ B₂ Mobile p A₁≅A₂ B₁≅B₂ = record { A×B = A×B ; π₁ = from A₁≅A₂ ∘ π₁ ; π₂ = from B₁≅B₂ ∘ π₂ ; ⟨_,_⟩ = λ h k → ⟨ to A₁≅A₂ ∘ h , to B₁≅B₂ ∘ k ⟩ ; project₁ = begin (from A₁≅A₂ ∘ π₁) ∘ ⟨ to A₁≅A₂ ∘ _ , to B₁≅B₂ ∘ _ ⟩ ≈⟨ pullʳ project₁ ⟩ from A₁≅A₂ ∘ (to A₁≅A₂ ∘ _) ≈⟨ cancelˡ (isoʳ A₁≅A₂) ⟩ _ ∎ ; project₂ = begin (from B₁≅B₂ ∘ π₂) ∘ ⟨ to A₁≅A₂ ∘ _ , to B₁≅B₂ ∘ _ ⟩ ≈⟨ pullʳ project₂ ⟩ from B₁≅B₂ ∘ (to B₁≅B₂ ∘ _) ≈⟨ cancelˡ (isoʳ B₁≅B₂) ⟩ _ ∎ ; unique = λ pfˡ pfʳ → unique (switch-fromtoˡ A₁≅A₂ (sym-assoc ○ pfˡ)) (switch-fromtoˡ B₁≅B₂ (sym-assoc ○ pfʳ)) } where open Product p open _≅_
38.149068
150
0.45604
0300fadf0b9e22f18eff270fcbdfa8c4eb01aa74
3,641
agda
Agda
examples/lib/Data/Permutation.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/lib/Data/Permutation.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/lib/Data/Permutation.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Data.Permutation where {- open import Prelude open import Data.Fin as Fin hiding (_==_; _<_) open import Data.Nat open import Data.Vec open import Logic.Identity open import Logic.Base import Logic.ChainReasoning -- What is a permutation? -- Answer 1: A bijection between Fin n and itself data Permutation (n : Nat) : Set where permutation : (π π⁻¹ : Fin n -> Fin n) -> (forall {i} -> π (π⁻¹ i) ≡ i) -> Permutation n module Permutation {n : Nat}(P : Permutation n) where private π' : Permutation n -> Fin n -> Fin n π' (permutation x _ _) = x π⁻¹' : Permutation n -> Fin n -> Fin n π⁻¹' (permutation _ x _) = x proof : (P : Permutation n) -> forall {i} -> π' P (π⁻¹' P i) ≡ i proof (permutation _ _ x) = x π : Fin n -> Fin n π = π' P π⁻¹ : Fin n -> Fin n π⁻¹ = π⁻¹' P module Proofs where ππ⁻¹-id : {i : Fin n} -> π (π⁻¹ i) ≡ i ππ⁻¹-id = proof P open module Chain = Logic.ChainReasoning.Poly.Homogenous _≡_ (\x -> refl) (\x y z -> trans) π⁻¹-inj : (i j : Fin n) -> π⁻¹ i ≡ π⁻¹ j -> i ≡ j π⁻¹-inj i j h = chain> i === π (π⁻¹ i) by sym ππ⁻¹-id === π (π⁻¹ j) by cong π h === j by ππ⁻¹-id -- Generalise lem : {n : Nat}(f g : Fin n -> Fin n) -> (forall i -> f (g i) ≡ i) -> (forall i -> g (f i) ≡ i) lem {zero} f g inv () lem {suc n} f g inv i = ? where gz≠gs : {i : Fin n} -> g fzero ≢ g (fsuc i) gz≠gs {i} gz=gs = fzero≠fsuc $ chain> fzero === f (g fzero) by sym (inv fzero) === f (g (fsuc i)) by cong f gz=gs === fsuc i by inv (fsuc i) z≠f-thin-gz : {i : Fin n} -> fzero ≢ f (thin (g fzero) i) z≠f-thin-gz {i} z=f-thin-gz = ? -- f (g fzero) -- = fzero -- = f (thin (g fzero) i) g' : Fin n -> Fin n g' j = thick (g fzero) (g (fsuc j)) gz≠gs f' : Fin n -> Fin n f' j = thick fzero (f (thin (g fzero) j)) ? g'f' : forall j -> g' (f' j) ≡ j g'f' = lem {n} f' g' ? π⁻¹π-id : forall {i} -> π⁻¹ (π i) ≡ i π⁻¹π-id = ? -- Answer 2: A Vec (Fin n) n with no duplicates {- infixr 40 _◅_ _↦_,_ infixr 20 _○_ data Permutation : Nat -> Set where ε : Permutation zero _◅_ : {n : Nat} -> Fin (suc n) -> Permutation n -> Permutation (suc n) _↦_,_ : {n : Nat}(i j : Fin (suc n)) -> Permutation n -> Permutation (suc n) fzero ↦ j , π = j ◅ π fsuc i ↦ j , j' ◅ π = thin j j' ◅ i ↦ ? , π indices : {n : Nat} -> Permutation n -> Vec (Fin n) n indices ε = [] indices (i ◅ π) = i :: map (thin i) (indices π) -- permute (i ◅ π) xs with xs [!] i where -- permute₁ (i ◅ π) .(insert i x xs) (ixV x xs) = x :: permute π xs permute : {n : Nat}{A : Set} -> Permutation n -> Vec A n -> Vec A n permute (i ◅ π) xs = permute' π i xs (xs [!] i) where permute' : {n : Nat}{A : Set} -> Permutation n -> (i : Fin (suc n))(xs : Vec A (suc n)) -> IndexView i xs -> Vec A (suc n) permute' π i .(insert i x xs') (ixV x xs') = x :: permute π xs' delete : {n : Nat} -> Fin (suc n) -> Permutation (suc n) -> Permutation n delete fzero (j ◅ π) = π delete {zero} (fsuc ()) _ delete {suc _} (fsuc i) (j ◅ π) = ? ◅ delete i π identity : {n : Nat} -> Permutation n identity {zero } = ε identity {suc n} = fzero ◅ identity _⁻¹ : {n : Nat} -> Permutation n -> Permutation n ε ⁻¹ = ε (i ◅ π) ⁻¹ = ? _○_ : {n : Nat} -> Permutation n -> Permutation n -> Permutation n ε ○ π₂ = ε i ◅ π₁ ○ π₂ = (indices π₂ ! i) ◅ (π₁ ○ delete i π₂) -} -}
27.171642
95
0.495468
a02392aabe37c827b74f6a03cefafbe5da93e663
7,235
agda
Agda
Cubical/Categories/DistLatticeSheaf.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/Categories/DistLatticeSheaf.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Categories/DistLatticeSheaf.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Categories.DistLatticeSheaf where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Structure open import Cubical.Foundations.Powerset open import Cubical.Data.Sigma open import Cubical.Relation.Binary.Poset open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.Semilattice open import Cubical.Algebra.Lattice open import Cubical.Algebra.DistLattice open import Cubical.Algebra.DistLattice.Basis open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Categories.NaturalTransformation open import Cubical.Categories.Limits.Pullback open import Cubical.Categories.Limits.Terminal open import Cubical.Categories.Instances.Functors open import Cubical.Categories.Instances.CommRings open import Cubical.Categories.Instances.Poset open import Cubical.Categories.Instances.Semilattice open import Cubical.Categories.Instances.Lattice open import Cubical.Categories.Instances.DistLattice private variable ℓ ℓ' ℓ'' : Level module _ (L : DistLattice ℓ) (C : Category ℓ' ℓ'') (T : Terminal C) where open Category hiding (_⋆_) open Functor open Order (DistLattice→Lattice L) open DistLatticeStr (snd L) open JoinSemilattice (Lattice→JoinSemilattice (DistLattice→Lattice L)) open MeetSemilattice (Lattice→MeetSemilattice (DistLattice→Lattice L)) using (∧≤RCancel ; ∧≤LCancel) open PosetStr (IndPoset .snd) hiding (_≤_) 𝟙 : ob C 𝟙 = terminalOb C T DLCat : Category ℓ ℓ DLCat = DistLatticeCategory L open Category DLCat -- C-valued presheaves on a distributive lattice DLPreSheaf : Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'') DLPreSheaf = Functor (DLCat ^op) C hom-∨₁ : (x y : L .fst) → DLCat [ x , x ∨l y ] hom-∨₁ = ∨≤RCancel -- TODO: isn't the fixity of the operators a bit weird? hom-∨₂ : (x y : L .fst) → DLCat [ y , x ∨l y ] hom-∨₂ = ∨≤LCancel hom-∧₁ : (x y : L .fst) → DLCat [ x ∧l y , x ] hom-∧₁ _ _ = (≤m→≤j _ _ (∧≤RCancel _ _)) hom-∧₂ : (x y : L .fst) → DLCat [ x ∧l y , y ] hom-∧₂ _ _ = (≤m→≤j _ _ (∧≤LCancel _ _)) {- x ∧ y ----→ y | | | sq | V V x ----→ x ∨ y -} sq : (x y : L .fst) → hom-∧₂ x y ⋆ hom-∨₂ x y ≡ hom-∧₁ x y ⋆ hom-∨₁ x y sq x y = is-prop-valued (x ∧l y) (x ∨l y) (hom-∧₂ x y ⋆ hom-∨₂ x y) (hom-∧₁ x y ⋆ hom-∨₁ x y) {- F(x ∨ y) ----→ F(y) | | | Fsq | V V F(x) ------→ F(x ∧ y) -} Fsq : (F : DLPreSheaf) (x y : L .fst) → F .F-hom (hom-∨₂ x y) ⋆⟨ C ⟩ F .F-hom (hom-∧₂ x y) ≡ F .F-hom (hom-∨₁ x y) ⋆⟨ C ⟩ F .F-hom (hom-∧₁ x y) Fsq F x y = sym (F-seq F (hom-∨₂ x y) (hom-∧₂ x y)) ∙∙ cong (F .F-hom) (sq x y) ∙∙ F-seq F (hom-∨₁ x y) (hom-∧₁ x y) isDLSheaf : (F : DLPreSheaf) → Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'') isDLSheaf F = (F-ob F 0l ≡ 𝟙) × ((x y : L .fst) → isPullback C _ _ _ (Fsq F x y)) -- TODO: might be better to define this as a record DLSheaf : Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'') DLSheaf = Σ[ F ∈ DLPreSheaf ] isDLSheaf F module SheafOnBasis (L : DistLattice ℓ) (C : Category ℓ' ℓ'') (T : Terminal C) (L' : ℙ (fst L)) (hB : IsBasis L L') where open Category open Functor open DistLatticeStr ⦃...⦄ open SemilatticeStr ⦃...⦄ open PosetStr ⦃...⦄ hiding (_≤_) open IsBasis hB private BasisCat = MeetSemilatticeCategory (Basis→MeetSemilattice L L' hB) DLBasisPreSheaf = Functor (BasisCat ^op) C -- to avoid writing 𝟙 L C T 1c : ob C 1c = terminalOb C T instance _ = snd L _ = snd (Basis→MeetSemilattice L L' hB) module condSquare (x y : ob BasisCat) (x∨y∈L' : fst x ∨l fst y ∈ L') where open MeetSemilattice (Lattice→MeetSemilattice (DistLattice→Lattice L)) using (∧≤RCancel ; ∧≤LCancel) open MeetSemilattice (Basis→MeetSemilattice L L' hB) using (IndPoset) instance _ = snd IndPoset x∨y : ob BasisCat -- = Σ[ x ∈ L ] (x ∈ L') x∨y = fst x ∨l fst y , x∨y∈L' Bhom-∨₁ : BasisCat [ x , x∨y ] Bhom-∨₁ = Σ≡Prop (λ _ → L' _ .snd) (∧lAbsorb∨l _ _) Bhom-∨₂ : BasisCat [ y , x∨y ] Bhom-∨₂ = Σ≡Prop (λ _ → L' _ .snd) (cong (fst y ∧l_) (∨lComm _ _) ∙ ∧lAbsorb∨l _ _) Bhom-∧₁ : BasisCat [ x · y , x ] Bhom-∧₁ = Σ≡Prop (λ _ → L' _ .snd) (∧≤RCancel _ _) Bhom-∧₂ : BasisCat [ x · y , y ] Bhom-∧₂ = Σ≡Prop (λ _ → L' _ .snd) (∧≤LCancel _ _) {- x ∧ y ----→ y | | | sq | V V x ----→ x ∨ y -} Bsq : Bhom-∧₂ ⋆⟨ BasisCat ⟩ Bhom-∨₂ ≡ Bhom-∧₁ ⋆⟨ BasisCat ⟩ Bhom-∨₁ Bsq = is-prop-valued (x · y) x∨y (Bhom-∧₂ ⋆⟨ BasisCat ⟩ Bhom-∨₂) (Bhom-∧₁ ⋆⟨ BasisCat ⟩ Bhom-∨₁) {- F(x ∨ y) ----→ F(y) | | | Fsq | V V F(x) ------→ F(x ∧ y) -} BFsq : (F : DLBasisPreSheaf) → F .F-hom Bhom-∨₂ ⋆⟨ C ⟩ F .F-hom Bhom-∧₂ ≡ F .F-hom Bhom-∨₁ ⋆⟨ C ⟩ F .F-hom Bhom-∧₁ BFsq F = sym (F-seq F Bhom-∨₂ Bhom-∧₂) ∙∙ cong (F .F-hom) Bsq ∙∙ F-seq F Bhom-∨₁ Bhom-∧₁ -- TODO: check that this is equivalent to the functor -- preserving terminal objects and pullbacks isDLBasisSheaf : DLBasisPreSheaf → Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'') isDLBasisSheaf F = ((0∈L' : 0l ∈ L') → F .F-ob (0l , 0∈L') ≡ 1c) × ((x y : ob BasisCat) (x∨y∈L' : fst x ∨l fst y ∈ L') → isPullback C _ _ _ (BFsq x y x∨y∈L' F)) where open condSquare DLBasisSheaf : Type (ℓ-max (ℓ-max ℓ ℓ') ℓ'') DLBasisSheaf = Σ[ F ∈ DLBasisPreSheaf ] isDLBasisSheaf F -- To prove the statement we probably need that C is: -- 1. univalent -- 2. has finite limits (or pullbacks and a terminal object) -- 3. isGroupoid (C .ob) -- The last point is not strictly necessary, but we have to have some -- control over the hLevel as we want to write F(x) in terms of its -- basis cover which is information hidden under a prop truncation... -- Alternatively we just prove the statement for C = CommRingsCategory -- TODO: is unique existence expressed like this what we want? -- statement : (F' : DLBasisSheaf) -- → ∃![ F ∈ DLSheaf L C T ] ((x : fst L) → (x ∈ L') → CatIso C (F-ob (fst F) x) (F-ob (fst F') x)) -- TODO: if C is univalent the CatIso could be ≡? -- statement (F' , h1 , hPb) = ? -- It might be easier to prove all of these if we use the definition -- in terms of particular limits instead -- Scrap zone: -- -- Sublattices: upstream later -- record isSublattice (L' : ℙ (fst L)) : Type ℓ where -- field -- 1l-closed : 1l ∈ L' -- 0l-closed : 0l ∈ L' -- ∧l-closed : {x y : fst L} → x ∈ L' → y ∈ L' → x ∧l y ∈ L' -- ∨l-closed : {x y : fst L} → x ∈ L' → y ∈ L' → x ∨l y ∈ L' -- open isSublattice -- Sublattice : Type (ℓ-suc ℓ) -- Sublattice = Σ[ L' ∈ ℙ (fst L) ] isSublattice L' -- restrictDLSheaf : DLSheaf → Sublattice → DLSheaf -- F-ob (fst (restrictDLSheaf F (L' , HL'))) x = {!F-ob (fst F) x!} -- Hmm, not nice... -- F-hom (fst (restrictDLSheaf F L')) = {!!} -- F-id (fst (restrictDLSheaf F L')) = {!!} -- F-seq (fst (restrictDLSheaf F L')) = {!!} -- snd (restrictDLSheaf F L') = {!!}
31.320346
161
0.575536
a0eb057a40d6d5a74f7e3ab7f1a1c9deea29ae09
5,257
agda
Agda
Algebra/Construct/Free/Semilattice/Direct.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
Algebra/Construct/Free/Semilattice/Direct.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
Algebra/Construct/Free/Semilattice/Direct.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --safe --postfix-projections #-} module Algebra.Construct.Free.Semilattice.Direct where open import Algebra open import Prelude open import Path.Reasoning infixl 6 _∪_ data 𝒦 (A : Type a) : Type a where η : A → 𝒦 A _∪_ : 𝒦 A → 𝒦 A → 𝒦 A ∅ : 𝒦 A ∪-assoc : ∀ xs ys zs → (xs ∪ ys) ∪ zs ≡ xs ∪ (ys ∪ zs) ∪-commutative : ∀ xs ys → xs ∪ ys ≡ ys ∪ xs ∪-idempotent : ∀ xs → xs ∪ xs ≡ xs ∪-identity : ∀ xs → xs ∪ ∅ ≡ xs trunc : isSet (𝒦 A) module _ (semiLattice : Semilattice b) where open Semilattice semiLattice module _ (sIsSet : isSet 𝑆) (h : A → 𝑆) where μ : 𝒦 A → 𝑆 μ (η x) = h x μ (xs ∪ ys) = μ xs ∙ μ ys μ ∅ = ε μ (∪-assoc xs ys zs i) = assoc (μ xs) (μ ys) (μ zs) i μ (∪-commutative xs ys i) = comm (μ xs) (μ ys) i μ (∪-idempotent xs i) = idem (μ xs) i μ (∪-identity xs i) = ∙ε (μ xs) i μ (trunc xs ys x y i j) = sIsSet (μ xs) (μ ys) (cong μ x) (cong μ y) i j module Eliminators where record _⇘_ {a p} (A : Type a) (P : 𝒦 A → Type p) : Type (a ℓ⊔ p) where constructor elim field ⟦_⟧-set : ∀ {xs} → isSet (P xs) ⟦_⟧∅ : P ∅ ⟦_⟧_∪_⟨_∪_⟩ : ∀ xs ys → P xs → P ys → P (xs ∪ ys) ⟦_⟧η : ∀ x → P (η x) private z = ⟦_⟧∅; f = ⟦_⟧_∪_⟨_∪_⟩ field ⟦_⟧-assoc : ∀ xs ys zs pxs pys pzs → f (xs ∪ ys) zs (f xs ys pxs pys) pzs ≡[ i ≔ P (∪-assoc xs ys zs i ) ]≡ f xs (ys ∪ zs) pxs (f ys zs pys pzs) ⟦_⟧-commutative : ∀ xs ys pxs pys → f xs ys pxs pys ≡[ i ≔ P (∪-commutative xs ys i) ]≡ f ys xs pys pxs ⟦_⟧-idempotent : ∀ xs pxs → f xs xs pxs pxs ≡[ i ≔ P (∪-idempotent xs i) ]≡ pxs ⟦_⟧-identity : ∀ xs pxs → f xs ∅ pxs z ≡[ i ≔ P (∪-identity xs i) ]≡ pxs ⟦_⟧⇓ : ∀ xs → P xs ⟦ η x ⟧⇓ = ⟦_⟧η x ⟦ xs ∪ ys ⟧⇓ = f xs ys ⟦ xs ⟧⇓ ⟦ ys ⟧⇓ ⟦ ∅ ⟧⇓ = z ⟦ ∪-assoc xs ys zs i ⟧⇓ = ⟦_⟧-assoc xs ys zs ⟦ xs ⟧⇓ ⟦ ys ⟧⇓ ⟦ zs ⟧⇓ i ⟦ ∪-commutative xs ys i ⟧⇓ = ⟦_⟧-commutative xs ys ⟦ xs ⟧⇓ ⟦ ys ⟧⇓ i ⟦ ∪-idempotent xs i ⟧⇓ = ⟦_⟧-idempotent xs ⟦ xs ⟧⇓ i ⟦ ∪-identity xs i ⟧⇓ = ⟦_⟧-identity xs ⟦ xs ⟧⇓ i ⟦ trunc xs ys x y i j ⟧⇓ = isOfHLevel→isOfHLevelDep 2 (λ xs → ⟦_⟧-set {xs}) ⟦ xs ⟧⇓ ⟦ ys ⟧⇓ (cong ⟦_⟧⇓ x) (cong ⟦_⟧⇓ y) (trunc xs ys x y) i j open _⇘_ public infixr 0 ⇘-syntax ⇘-syntax = _⇘_ syntax ⇘-syntax A (λ xs → Pxs) = xs ∈𝒦 A ⇒ Pxs record _⇲_ {a p} (A : Type a) (P : 𝒦 A → Type p) : Type (a ℓ⊔ p) where constructor elim-prop field ∥_∥-prop : ∀ {xs} → isProp (P xs) ∥_∥∅ : P ∅ ∥_∥_∪_⟨_∪_⟩ : ∀ xs ys → P xs → P ys → P (xs ∪ ys) ∥_∥η : ∀ x → P (η x) private z = ∥_∥∅; f = ∥_∥_∪_⟨_∪_⟩ ∥_∥⇑ = elim (λ {xs} → isProp→isSet (∥_∥-prop {xs})) z f ∥_∥η (λ xs ys zs pxs pys pzs → toPathP (∥_∥-prop (transp (λ i → P (∪-assoc xs ys zs i)) i0 (f (xs ∪ ys) zs (f xs ys pxs pys) pzs)) (f xs (ys ∪ zs) pxs (f ys zs pys pzs) ))) (λ xs ys pxs pys → toPathP (∥_∥-prop (transp (λ i → P (∪-commutative xs ys i)) i0 (f xs ys pxs pys)) (f ys xs pys pxs) )) (λ xs pxs → toPathP (∥_∥-prop (transp (λ i → P (∪-idempotent xs i)) i0 (f xs xs pxs pxs)) pxs)) (λ xs pxs → toPathP (∥_∥-prop (transp (λ i → P (∪-identity xs i)) i0 (f xs ∅ pxs z)) pxs)) ∥_∥⇓ = ⟦ ∥_∥⇑ ⟧⇓ open _⇲_ public elim-prop-syntax : ∀ {a p} → (A : Type a) → (𝒦 A → Type p) → Type (a ℓ⊔ p) elim-prop-syntax = _⇲_ syntax elim-prop-syntax A (λ xs → Pxs) = xs ∈𝒦 A ⇒∥ Pxs ∥ module _ {a} {A : Type a} where open Semilattice open CommutativeMonoid open Monoid 𝒦-semilattice : Semilattice a 𝒦-semilattice .commutativeMonoid .monoid .𝑆 = 𝒦 A 𝒦-semilattice .commutativeMonoid .monoid ._∙_ = _∪_ 𝒦-semilattice .commutativeMonoid .monoid .ε = ∅ 𝒦-semilattice .commutativeMonoid .monoid .assoc = ∪-assoc 𝒦-semilattice .commutativeMonoid .monoid .ε∙ x = ∪-commutative ∅ x ; ∪-identity x 𝒦-semilattice .commutativeMonoid .monoid .∙ε = ∪-identity 𝒦-semilattice .commutativeMonoid .comm = ∪-commutative 𝒦-semilattice .idem = ∪-idempotent import Algebra.Construct.Free.Semilattice as Listed Listed→Direct : Listed.𝒦 A → 𝒦 A Listed→Direct = Listed.μ 𝒦-semilattice trunc η Direct→Listed : 𝒦 A → Listed.𝒦 A Direct→Listed = μ Listed.𝒦-semilattice Listed.trunc (Listed._∷ Listed.[]) Listed→Direct→Listed : (xs : Listed.𝒦 A) → Direct→Listed (Listed→Direct xs) ≡ xs Listed→Direct→Listed = ∥ ldl ∥⇓ where open Listed using (_⇲_; elim-prop-syntax) open _⇲_ ldl : xs ∈𝒦 A ⇒∥ Direct→Listed (Listed→Direct xs) ≡ xs ∥ ∥ ldl ∥-prop = Listed.trunc _ _ ∥ ldl ∥[] = refl ∥ ldl ∥ x ∷ xs ⟨ Pxs ⟩ = cong (x Listed.∷_) Pxs open Eliminators Direct→Listed→Direct : (xs : 𝒦 A) → Listed→Direct (Direct→Listed xs) ≡ xs Direct→Listed→Direct = ∥ dld ∥⇓ where dld : xs ∈𝒦 A ⇒∥ Listed→Direct (Direct→Listed xs) ≡ xs ∥ ∥ dld ∥-prop = trunc _ _ ∥ dld ∥∅ = refl ∥ dld ∥η x = ∪-identity (η x) ∥ dld ∥ xs ∪ ys ⟨ Pxs ∪ Pys ⟩ = sym (Listed.∙-hom 𝒦-semilattice trunc η (Direct→Listed xs) (Direct→Listed ys)) ; cong₂ _∪_ Pxs Pys Direct⇔Listed : 𝒦 A ⇔ Listed.𝒦 A Direct⇔Listed .fun = Direct→Listed Direct⇔Listed .inv = Listed→Direct Direct⇔Listed .rightInv = Listed→Direct→Listed Direct⇔Listed .leftInv = Direct→Listed→Direct
36.006849
179
0.548602
2e309a94689a9df1dcf90d9091d70dfd503f504d
502
agda
Agda
lib/Explore/Experimental/Maybe.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
2
2016-06-05T09:25:32.000Z
2017-06-28T19:19:29.000Z
lib/Explore/Experimental/Maybe.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
1
2019-03-16T14:24:04.000Z
2019-03-16T14:24:04.000Z
lib/Explore/Experimental/Maybe.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K #-} open import Function.Related.TypeIsomorphisms.NP open import Function.Inverse.NP open import Data.Maybe.NP open import Data.Nat open import Explore.Type open import Explore.Explorable open import Explore.Sum module Explore.Explorable.Maybe where μMaybe : ∀ {A} → Explorable A → Explorable (Maybe A) μMaybe μA = μ-iso (sym Maybe↔𝟙⊎) (μ𝟙 ⊎-μ μA) μMaybe^ : ∀ {A} n → Explorable A → Explorable (Maybe^ n A) μMaybe^ zero μA = μA μMaybe^ (suc n) μA = μMaybe (μMaybe^ n μA)
26.421053
58
0.719124
597cd56871ba5edd3e9119412ea351d4383015ee
6,566
agda
Agda
Cubical/Foundations/Path.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Foundations/Path.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Foundations/Path.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Foundations.Path where open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Transport private variable ℓ ℓ' : Level A : Type ℓ -- Less polymorphic version of `cong`, to avoid some unresolved metas cong′ : ∀ {B : Type ℓ'} (f : A → B) {x y : A} (p : x ≡ y) → Path B (f x) (f y) cong′ f = cong f PathP≡Path : ∀ (P : I → Type ℓ) (p : P i0) (q : P i1) → PathP P p q ≡ Path (P i1) (transport (λ i → P i) p) q PathP≡Path P p q i = PathP (λ j → P (i ∨ j)) (transp (λ j → P (i ∧ j)) (~ i) p) q PathP≃Path : ∀ (P : I → Type ℓ) (p : P i0) (q : P i1) → PathP P p q ≃ Path (P i1) (transport (λ i → P i) p) q PathP≃Path P p q = transportEquiv (PathP≡Path P p q) -- Alternative more unfolded proof toPathP-isEquiv : ∀ (A : I → Set ℓ) {x y} → isEquiv (toPathP {A = A} {x} {y}) toPathP-isEquiv A {x} {y} = isoToIsEquiv (iso toPathP fromPathP to-from from-to) where to-from : ∀ (p : PathP A x y) → toPathP (fromPathP p) ≡ p to-from p h i = outS (hcomp-unique (λ { j (i = i0) → x ; j (i = i1) → fromPathP p j }) (inS (transp (λ j → A (i ∧ j)) (~ i) x)) \ h → inS (sq1 h i)) h where sq1 : (\ h → A [ x ≡ transp (\ j → A (h ∨ j)) h (p h) ]) [ (\ i → transp (λ j → A (i ∧ j)) (~ i) x) ≡ p ] sq1 = \ h i → comp (\ z → (hcomp (\ w → \ { (z = i1) → A (i ∧ (w ∨ h)) ; (z = i0) → A (i ∧ h) ; (i = i0) → A i0 ; (i = i1) → A (h ∨ (w ∧ z)) ; (h = i0) → A (i ∧ (w ∧ z)) ; (h = i1) → A i}) ((A (i ∧ h))))) (\ z → \ { (i = i0) → x ; (i = i1) → transp (\ j → A (h ∨ (z ∧ j))) (h ∨ ~ z) (p h) ; (h = i0) → transp (λ j → A ((i ∧ z) ∧ j)) (~ (i ∧ z)) x ; (h = i1) → p i }) (p (i ∧ h)) from-to : ∀ (q : transp A i0 x ≡ y) → fromPathP (toPathP {A = A} q) ≡ q from-to q = (\ h i → outS (transp-hcomp i {A' = A i1} (\ j → inS (A (i ∨ j))) ((λ { j (i = i0) → x ; j (i = i1) → q j })) (inS ((transp (λ j → A (i ∧ j)) (~ i) x)))) h) ∙ (\ h i → outS (hcomp-unique {A = A i1} ((λ { j (i = i0) → transp A i0 x ; j (i = i1) → q j })) (inS ((transp (λ j → A (i ∨ j)) i (transp (λ j → A (i ∧ j)) (~ i) x)))) \ h → inS (sq2 h i)) h) ∙ sym (lUnit q) where sq2 : (\ h → transp A i0 x ≡ q h) [ (\ i → transp (\ j → A (i ∨ j)) i (transp (\ j → A (i ∧ j)) (~ i) x)) ≡ refl ∙ q ] sq2 = \ h i → comp (\ z → hcomp (\ w → \ { (i = i1) → A i1 ; (i = i0) → A (h ∨ (w ∧ z)) ; (h = i0) → A (i ∨ (w ∧ z)) ; (h = i1) → A i1 ; (z = i0) → A (i ∨ h) ; (z = i1) → A ((i ∨ h) ∨ w) }) (A (i ∨ h))) (\ z → \ { (i = i0) → transp (λ j → A ((z ∨ h) ∧ j)) (~ z ∧ ~ h) x ; (i = i1) → q (z ∧ h) ; (h = i1) → compPath-filler refl q z i ; (h = i0) → transp (\ j → A (i ∨ (z ∧ j))) (i ∨ ~ z) (transp (\ j → A (i ∧ j)) (~ i) x) }) (transp (\ j → A ((i ∨ h) ∧ j)) (~ (i ∨ h)) x) PathP≡compPath : ∀ {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : y ≡ z) (r : x ≡ z) → (PathP (λ i → x ≡ q i) p r) ≡ (p ∙ q ≡ r) PathP≡compPath p q r k = PathP (λ i → p i0 ≡ q (i ∨ k)) (λ j → compPath-filler p q k j) r PathP≡doubleCompPathˡ : ∀ {A : Type ℓ} {w x y z : A} (p : w ≡ y) (q : w ≡ x) (r : y ≡ z) (s : x ≡ z) → (PathP (λ i → p i ≡ s i) q r) ≡ (p ⁻¹ ∙∙ q ∙∙ s ≡ r) PathP≡doubleCompPathˡ p q r s k = PathP (λ i → p (i ∨ k) ≡ s (i ∨ k)) (λ j → doubleCompPath-filler (p ⁻¹) q s k j) r PathP≡doubleCompPathʳ : ∀ {A : Type ℓ} {w x y z : A} (p : w ≡ y) (q : w ≡ x) (r : y ≡ z) (s : x ≡ z) → (PathP (λ i → p i ≡ s i) q r) ≡ (q ≡ p ∙∙ r ∙∙ s ⁻¹) PathP≡doubleCompPathʳ p q r s k = PathP (λ i → p (i ∧ (~ k)) ≡ s (i ∧ (~ k))) q (λ j → doubleCompPath-filler p r (s ⁻¹) k j) compPathl-cancel : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : x ≡ z) → p ∙ (sym p ∙ q) ≡ q compPathl-cancel p q = p ∙ (sym p ∙ q) ≡⟨ assoc p (sym p) q ⟩ (p ∙ sym p) ∙ q ≡⟨ cong (_∙ q) (rCancel p) ⟩ refl ∙ q ≡⟨ sym (lUnit q) ⟩ q ∎ compPathr-cancel : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : z ≡ y) (q : x ≡ y) → (q ∙ sym p) ∙ p ≡ q compPathr-cancel p q = (q ∙ sym p) ∙ p ≡⟨ sym (assoc q (sym p) p) ⟩ q ∙ (sym p ∙ p) ≡⟨ cong (q ∙_) (lCancel p) ⟩ q ∙ refl ≡⟨ sym (rUnit q) ⟩ q ∎ compPathl-isEquiv : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) → isEquiv (λ (q : y ≡ z) → p ∙ q) compPathl-isEquiv p = isoToIsEquiv (iso (p ∙_) (sym p ∙_) (compPathl-cancel p) (compPathl-cancel (sym p))) compPathr-isEquiv : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : y ≡ z) → isEquiv (λ (q : x ≡ y) → q ∙ p) compPathr-isEquiv p = isoToIsEquiv (iso (_∙ p) (_∙ sym p) (compPathr-cancel p) (compPathr-cancel (sym p))) -- Variation of isProp→isSet for PathP isProp→isSet-PathP : ∀ {ℓ} {B : I → Type ℓ} → ((i : I) → isProp (B i)) → (b0 : B i0) (b1 : B i1) → isProp (PathP (λ i → B i) b0 b1) isProp→isSet-PathP {B = B} hB b0 b1 = transport (λ i → isProp (PathP≡Path B b0 b1 (~ i))) (isProp→isSet (hB i1) _ _)
56.603448
125
0.347853