hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
412f6bb857fed6454424514aa49d7f1daa1dcb5f
5,412
agda
Agda
src/TwoPassMerge/CombinedProofs.agda
jstolarek/dep-typed-wbl-heaps
57db566cb840dc70331c29eb7bf3a0c849f8b27e
[ "BSD-3-Clause" ]
1
2018-05-02T21:48:43.000Z
2018-05-02T21:48:43.000Z
src/TwoPassMerge/CombinedProofs.agda
jstolarek/dep-typed-wbl-heaps
57db566cb840dc70331c29eb7bf3a0c849f8b27e
[ "BSD-3-Clause" ]
null
null
null
src/TwoPassMerge/CombinedProofs.agda
jstolarek/dep-typed-wbl-heaps
57db566cb840dc70331c29eb7bf3a0c849f8b27e
[ "BSD-3-Clause" ]
null
null
null
---------------------------------------------------------------------- -- Copyright: 2013, Jan Stolarek, Lodz University of Technology -- -- -- -- License: See LICENSE file in root of the repo -- -- Repo address: https://github.com/jstolarek/dep-typed-wbl-heaps -- -- -- -- Weight biased leftist tree that proves both priority and rank -- -- invariants. Uses a two-pass merging algorithm. -- ---------------------------------------------------------------------- {-# OPTIONS --sized-types #-} module TwoPassMerge.CombinedProofs where open import Basics open import Sized open import TwoPassMerge.RankProof using ( makeT-lemma; proof-1; proof-2 ) -- Now that we have separate proofs of priority and rank invariants we -- can combine them into one proof. We index Heap with two indices: -- one for Priority and one for Rank. data Heap : {i : Size} → Priority → Rank → Set where empty : {i : Size} {b : Priority} → Heap {↑ i} b zero node : {i : Size} {b : Priority} → (p : Priority) → p ≥ b → {l r : Rank} → l ≥ r → Heap {i} p l → Heap {i} p r → Heap {↑ i} b (suc (l + r)) -- Now we will combine functions that prove priority invariant and -- functions that prove rank invariant into functions that prove both -- invariants. -- Let's begin with singleton. Note the type of created Heap. We set -- first index to zero, because it proves the priority invariant and -- second index to one because it proves rank invariant. The node now -- needs two ge0 evidence. singleton : Priority → Heap zero one singleton p = node p ge0 ge0 empty empty -- makeT function requires that we supply evidence that priority -- invariant holds (value of type p ≥ b), guarantees that resulting -- heap has correct size and maintains rank invariant by using Order -- type to supply evidence of rank correctness to node constructor. makeT : {b : Priority} {l r : Rank} → (p : Priority) → p ≥ b → Heap p l → Heap p r → Heap b (suc (l + r)) makeT {b} {l-rank} {r-rank} p p≥n l r with order l-rank r-rank makeT {b} {l-rank} {r-rank} p p≥n l r | ge l≥r = node p p≥n l≥r l r makeT {b} {l-rank} {r-rank} p p≥n l r | le r≥l = subst (Heap b) (makeT-lemma r-rank l-rank) (node p p≥n r≥l r l) -- merge combines previous proofs: -- -- 1) it enforces priority invariant by comparing priorities using -- order function. Recall that this function returns value of -- Order datatype that not only gives a result of comparison but -- also supplies evidence that result is true. That evidence is -- given to makeT which uses it to construct a new node. -- -- 2) it proves size invariant of merge by reusing proofs from -- TwoPassMerge.RankProof -- -- 3) it delegates the proof of rank invariant to makeT merge : {i j : Size} {b : Priority} {l r : Rank} → Heap {i} b l → Heap {j} b r → Heap b (l + r) merge empty h2 = h2 -- See [merge, proof 0a] merge {_} .{_} {b} {suc l} {zero} h1 empty = subst (Heap b) (sym (+0 (suc l))) -- See [merge, proof 0b] h1 merge .{↑ i} .{↑ j} .{b} {suc .(l1-rank + r1-rank)} {suc .(l2-rank + r2-rank)} (node {i} .{b} p1 p1≥b {l1-rank} {r1-rank} l1≥r1 l1 r1) (node {j} {b} p2 p2≥b {l2-rank} {r2-rank} l2≥r2 l2 r2) with order p1 p2 merge .{↑ i} .{↑ j} .{b} {suc .(l1-rank + r1-rank)} {suc .(l2-rank + r2-rank)} (node {i} .{b} p1 p1≥b {l1-rank} {r1-rank} l1≥r1 l1 r1) (node {j} {b} p2 p2≥b {l2-rank} {r2-rank} l2≥r2 l2 r2) | le p1≤p2 = subst (Heap b) (proof-1 l1-rank r1-rank l2-rank r2-rank) -- See [merge, proof 1] (makeT p1 p1≥b l1 (merge {i} {↑ j} r1 (node p2 p1≤p2 l2≥r2 l2 r2))) merge .{↑ i} .{↑ j} .{b} {suc .(l1-rank + r1-rank)} {suc .(l2-rank + r2-rank)} (node {i} .{b} p1 p1≥b {l1-rank} {r1-rank} l1≥r1 l1 r1) (node {j} {b} p2 p2≥b {l2-rank} {r2-rank} l2≥r2 l2 r2) | ge p1≥p2 = subst (Heap b) (proof-2 l1-rank r1-rank l2-rank r2-rank) -- See [merge, proof 2] (makeT p2 p2≥b l2 (merge {j} {↑ i} r2 (node p1 p1≥p2 l1≥r1 l1 r1))) -- Implementations of insert and findMin are the same as -- previously. We only need to update the type signature accordingly. insert : {b : Priority} {r : Rank} → Priority → Heap zero r → Heap zero (suc r) insert p h = merge (singleton p) h findMin : {b : Priority} {r : Rank} → Heap b (suc r) → Priority findMin (node p _ _ _ _) = p -- To define deleteMin we will need to update definition of -- liftBound. We need to redefine ≥trans because Agda won't let us -- import it from a module that has unfinished implementation (recall -- that we left definitions of findMin and deleteMin incomplete in -- TwoPassMerge.PriorityProof). ≥trans : {a b c : Nat} → a ≥ b → b ≥ c → a ≥ c ≥trans a≥b ge0 = ge0 ≥trans (geS a≥b) (geS b≥c) = geS (≥trans a≥b b≥c) liftBound : {p b : Priority} → b ≥ p → {r : Rank} → Heap b r → Heap p r liftBound b≥n empty = empty liftBound b≥n (node p p≥b l≥r l r) = node p (≥trans p≥b b≥n) l≥r l r -- With the new definition of liftBound we can now define deleteMin. -- Implementation is identical to the one in TwoPassMerge.RankProof - -- we only had to update type signature. deleteMin : {b : Priority} {r : Rank} → Heap b (suc r) → Heap b r deleteMin (node _ p≥b _ l r) = merge (liftBound p≥b l) (liftBound p≥b r)
47.893805
79
0.602919
38e807ef5ee7efe5c50d5ac22f64db55cb997813
14,865
agda
Agda
SeparationLogic.agda
iwilare/imp-semantics
cb98e3b3b93362654b79152bfdf2c21eb4951fcc
[ "MIT" ]
6
2020-09-08T11:54:07.000Z
2022-02-24T22:29:44.000Z
SeparationLogic.agda
iwilare/imp-semantics
cb98e3b3b93362654b79152bfdf2c21eb4951fcc
[ "MIT" ]
null
null
null
SeparationLogic.agda
iwilare/imp-semantics
cb98e3b3b93362654b79152bfdf2c21eb4951fcc
[ "MIT" ]
null
null
null
open import Data.Nat using (ℕ; _+_) renaming (_≤?_ to _≤?ₙ_) open import Data.Bool using (Bool; true; false; not; _∧_) open import Data.String using (String) open import Data.Sum using (_⊎_; [_,_]; inj₁; inj₂) open import Relation.Binary using (Decidable) open import Relation.Nullary using (yes; no; ¬_) open import Relation.Nullary.Negation using (contradiction) open import Data.List using (List; []; _∷_) open import Relation.Nullary.Decidable using (⌊_⌋) open import Data.Empty using (⊥-elim) open import Data.Product using (_×_; -,_; _-,-_; ∃; ∃-syntax) renaming (_,_ to _,,_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym) open import Level using (Level; suc; _⊔_) open import Agda.Builtin.Sigma hiding (_,_) -- renaming (_,_ to _,,_) open import Data.Maybe using (Maybe; just; nothing; Is-just) import Relation.Binary.PropositionalEquality as Eq open import IMP hiding (com; state) ---using (aexp; aval; bexp; bval) postulate _≟_ : Decidable {A = ℕ} _≡_ addr = ℕ heap = addr → Maybe val store = vname → val state = store × heap assn : ∀{l} → Set (suc l) assn {a} = store → heap → Set a emp : assn emp _ h = ∀ a → h a ≡ nothing _⊢>_ : IMP.aexp → IMP.aexp → assn _⊢>_ a a′ s h = h (aval a s) ≡ just (aval a′ s) × ∀ (a″) → ¬(a″ ≡ aval a s) → h a″ ≡ nothing _⊆_ : heap → heap → Set h₀ ⊆ h = ∀ a → (h a ≡ nothing → h₀ a ≡ nothing) × (∀{o} → h₀ a ≡ just o → h₀ a ≡ h a) heap-union : heap → heap → heap → addr → Set heap-union h h₁ h₂ a with h a ... | just o = (h₁ a ≡ just o × h₂ a ≡ nothing) ⊎ (h₁ a ≡ nothing × h₂ a ≡ just o) ... | nothing = h₁ a ≡ nothing × h₂ a ≡ nothing _∼_⊥_ : heap → heap → heap → Set h ∼ h₁ ⊥ h₂ = ∀ a → heap-union h h₁ h₂ a union-subset : ∀ h {h₁ h₂} → h ∼ h₁ ⊥ h₂ → h₁ ⊆ h union-subset h x a with h a | x a union-subset h x a | just x₁ | inj₁ (fst₁ ,, snd₁) = (λ ()) ,, (λ {x} x₁ → fst₁) union-subset h x a | just x₁ | inj₂ (fst₁ ,, snd₁) rewrite fst₁ = (λ _ → refl) ,, (λ {x} ()) union-subset h x a | nothing | fst₁ ,, snd₁ = (λ x → fst₁) ,, (λ {x} x₁ → fst₁) _*_ : ∀{l} → assn {l} → assn {l} → assn {l} _*_ P Q s h = ∃[ h₁ ] ∃[ h₂ ] ((h ∼ h₁ ⊥ h₂) × P s h₁ × Q s h₂) _dom_ : addr → heap → Set a dom h = ∃[ v ] (h a ≡ just v) _¬dom_ : addr → heap → Set a ¬dom h = h a ≡ nothing _[_::=ₕ_] : heap → addr → val → heap (h [ X ::=ₕ n ]) Y with Y ≟ X ... | yes _ = just n ... | no _ = h Y _/[_] : heap → addr → heap (h /[ X ]) Y with Y ≟ X ... | yes _ = nothing ... | no _ = h Y data com : Set where SKIP : com _::=_ : String → aexp → com _::_ : com → com → com IF_THEN_ELSE_ : bexp → com → com → com WHILE_DO_ : bexp → com → com _::=cons_ : String → addr → com _::=[_] : String → aexp → com [_]::=_ : aexp → aexp → com dispose_ : aexp → com data ⊢[_]_[_] {l} : assn {l} → com → assn {l} → Set (suc l) where Skip : ∀{P} → ⊢[ P ] SKIP [ P ] Loc : ∀{Q a x} → ⊢[ (λ s → Q (s [ x ::= aval a s ])) ] (x ::= a) [ Q ] Comp : ∀{P Q R c₁ c₂} → ⊢[ P ] c₁ [ Q ] → ⊢[ Q ] c₂ [ R ] → ⊢[ P ] c₁ :: c₂ [ R ] If : ∀{P b c₁ Q c₂} → ⊢[ (λ s h → P s h × bval b s ≡ true) ] c₁ [ Q ] → ⊢[ (λ s h → P s h × bval b s ≡ false) ] c₂ [ Q ] → ⊢[ P ] (IF b THEN c₁ ELSE c₂) [ Q ] While : ∀{P b c} → ⊢[ (λ s h → P s h × bval b s ≡ true) ] c [ P ] → ⊢[ P ] (WHILE b DO c) [ (λ s h → P s h × bval b s ≡ false) ] Conseq : ∀{P Q P′ Q′ : assn} {c} → (∀ s h → P′ s h → P s h) → ⊢[ P ] c [ Q ] → (∀ s h → Q s h → Q′ s h) → ⊢[ P′ ] c [ Q′ ] Frame : ∀{A B R c} → ⊢[ A ] c [ B ] → ⊢[ A * R ] c [ B * R ] data config : Set where ⦅_,_,_⦆ : com → store → heap → config abort : config data _⇒_ : config → config → Set where Loc : ∀{x a s h} → ⦅ x ::= a , s , h ⦆ ⇒ ⦅ SKIP , (s [ x ::= aval a s ]) , h ⦆ Comp₁ : ∀{c s h} → ⦅ SKIP :: c , s , h ⦆ ⇒ ⦅ c , s , h ⦆ Comp₂ : ∀{c₁ c₁′ c₂ s s′ h h′} → ⦅ c₁ , s , h ⦆ ⇒ ⦅ c₁′ , s′ , h′ ⦆ → ⦅ c₁ :: c₂ , s , h ⦆ ⇒ ⦅ c₁′ :: c₂ , s′ , h′ ⦆ CompFail : ∀{c₁ c₂ s h} → ⦅ c₁ , s , h ⦆ ⇒ abort → ⦅ c₁ :: c₂ , s , h ⦆ ⇒ abort IfTrue : ∀{b s c₁ c₂ h} → bval b s ≡ true → ⦅ IF b THEN c₁ ELSE c₂ , s , h ⦆ ⇒ ⦅ c₁ , s , h ⦆ IfFalse : ∀{b s c₁ c₂ h} → bval b s ≡ false → ⦅ IF b THEN c₁ ELSE c₂ , s , h ⦆ ⇒ ⦅ c₂ , s , h ⦆ While : ∀{b s c h} → ⦅ WHILE b DO c , s , h ⦆ ⇒ ⦅ IF b THEN (c :: (WHILE b DO c)) ELSE SKIP , s , h ⦆ Cons : ∀{l h s x h′ s′} → l ¬dom h → h′ ≡ h [ l ::=ₕ 0 ] → s′ ≡ s [ x ::= l ] → ⦅ x ::=cons l , s , h ⦆ ⇒ ⦅ SKIP , s′ , h′ ⦆ Lookup : ∀{a s x h v s′} → (aval a s) dom h → s′ ≡ s [ x ::= v ] → ⦅ x ::=[ a ] , s , h ⦆ ⇒ ⦅ SKIP , s′ , h ⦆ LookupFail : ∀{a s x h} → (aval a s) ¬dom h → ⦅ x ::=[ a ] , s , h ⦆ ⇒ abort Write : ∀{a s a′ h} → (aval a s) dom h → ⦅ [ a ]::= a′ , s , h ⦆ ⇒ ⦅ SKIP , s , h [ aval a s ::=ₕ aval a′ s ] ⦆ WriteFail : ∀{a s a′ x h} → (aval a s) ¬dom h → ⦅ [ x ]::= a′ , s , h ⦆ ⇒ abort Dispose : ∀{a s h} → (aval a s) dom h → ⦅ dispose a , s , h ⦆ ⇒ ⦅ SKIP , s , h /[ aval a s ] ⦆ DisposeFail : ∀{a s h} → (aval a s) ¬dom h → ⦅ dispose a , s , h ⦆ ⇒ abort data _⇒*_ : config → config → Set where _∎ : ∀ c → c ⇒* c _→⟨_⟩_ : ∀ c {c′ c″} → c ⇒ c′ → c′ ⇒* c″ → c ⇒* c″ Safe : config → Set Safe c = ¬ (c ⇒* abort) lemma1 : ∀{c s h₀ h} → h₀ ⊆ h → ⦅ c , s , h ⦆ ⇒ abort → ⦅ c , s , h₀ ⦆ ⇒ abort lemma1 sub (CompFail r) = CompFail (lemma1 sub r) lemma1 sub (LookupFail {a}{s} r) = LookupFail (fst (sub (aval a s)) r) lemma1 sub (WriteFail {a}{s} r) = WriteFail {a} (fst (sub (aval a s)) r) lemma1 sub (DisposeFail {a}{s} r) = DisposeFail (fst (sub (aval a s)) r) subset-update : ∀ l {h h₀ v} → h₀ ⊆ h → (h₀ [ l ::=ₕ v ]) ⊆ (h [ l ::=ₕ v ]) subset-update l b Y with Y ≟ l ... | yes p = (λ x → x) ,, λ {o} _ → refl ... | no ¬p = b Y subset-delete : ∀ v {h h₀} → h₀ ⊆ h → (h₀ /[ v ]) ⊆ (h /[ v ]) subset-delete l b Y with Y ≟ l ... | yes p = (λ x → refl) ,, (λ {x} x₁ → refl) ... | no ¬p = b Y lemma2 : ∀ h₀ {h c c′ s s′ h′} → h₀ ⊆ h → ⦅ c , s , h ⦆ ⇒ ⦅ c′ , s′ , h′ ⦆ → ⦅ c , s , h₀ ⦆ ⇒ abort ⊎ (∃[ h′₀ ] (h′₀ ⊆ h′ × ⦅ c , s , h₀ ⦆ ⇒ ⦅ c′ , s′ , h′₀ ⦆)) lemma2 h₀ x Loc = inj₂ (h₀ ,, x ,, Loc) lemma2 h₀ x Comp₁ = inj₂ (h₀ ,, x ,, Comp₁) lemma2 h₀ x (Comp₂ x₁) with lemma2 h₀ x x₁ lemma2 h₀ x (Comp₂ x₁) | inj₁ x₂ = inj₁ (CompFail x₂) lemma2 h₀ x (Comp₂ x₁) | inj₂ (h′₀ ,, sub ,, red) = inj₂ (h′₀ ,, sub ,, Comp₂ red) lemma2 h₀ x (IfTrue x₁) = inj₂ (h₀ ,, x ,, IfTrue x₁) lemma2 h₀ x (IfFalse x₁) = inj₂ (h₀ ,, x ,, IfFalse x₁) lemma2 h₀ x While = inj₂ (h₀ ,, x ,, While) lemma2 h₀ x (Cons {l} x₁ A B) rewrite A | B = inj₂ ( (h₀ [ l ::=ₕ 0 ]) ,, subset-update l x ,, Cons (fst (x l) x₁) refl refl) lemma2 h₀ x (Lookup {a}{s} (_ ,, p) A) rewrite A with h₀ (aval a s) | Eq.inspect h₀ (aval a s) ... | nothing | Eq.[ eq ] = inj₁ (LookupFail eq) ... | just o | Eq.[ eq ] = inj₂ ( h₀ ,, x ,, Lookup (-, Eq.trans (snd (x (aval a s)) eq) p) refl) lemma2 h₀ x (Write {a}{s}{a′} (_ ,, x₁)) with h₀ (aval a s) | Eq.inspect h₀ (aval a s) ... | nothing | Eq.[ eq ] = inj₁ (WriteFail {a} eq) ... | just o | Eq.[ eq ] = inj₂ ( (h₀ [ aval a s ::=ₕ aval a′ s ]) ,, subset-update (aval a s) x ,, Write (-, (Eq.trans (snd (x (aval a s)) eq) x₁))) lemma2 h₀ x (Dispose {a}{s} (_ ,, x₁)) with h₀ (aval a s) | Eq.inspect h₀ (aval a s) ... | nothing | Eq.[ eq ] = inj₁ (DisposeFail eq) ... | just o | Eq.[ eq ] = inj₂ ( (h₀ /[ aval a s ]) ,, subset-delete (aval a s) x ,, Dispose (-, (Eq.trans (snd (x (aval a s)) eq) x₁))) frame1sub : ∀{c s h H} → h ⊆ H → Safe ⦅ c , s , h ⦆ → Safe ⦅ c , s , H ⦆ frame1sub {c}{s}{h}{H} x x₁ (_→⟨_⟩_ .(⦅ c , s , H ⦆) {⦅ x₄ , x₅ , x₆ ⦆} x₂ x₃) with lemma2 h x x₂ ... | inj₁ x₇ = x₁ (⦅ c , s , h ⦆ →⟨ x₇ ⟩ (abort ∎)) ... | inj₂ (_ ,, fst₂ ,, snd₁) = frame1sub fst₂ (λ z → x₁ (_ →⟨ snd₁ ⟩ z)) x₃ frame1sub {c}{s}{h}{H} x x₁ (_→⟨_⟩_ .(⦅ c , s , H ⦆) {abort} x₂ x₃) = x₁ (_ →⟨ lemma1 x x₂ ⟩ (abort ∎)) frame1 : ∀{c s h H z} → H ∼ h ⊥ z → Safe ⦅ c , s , h ⦆ → Safe ⦅ c , s , H ⦆ frame1 {H = H} x x₁ x₂ = frame1sub (union-subset H x) x₁ x₂ heap-union-update : ∀{l h h₀ h₁ v} → l ¬dom h₁ → h ∼ h₀ ⊥ h₁ → (h [ l ::=ₕ v ]) ∼ (h₀ [ l ::=ₕ v ]) ⊥ h₁ heap-union-update {l}{h}{v = v} d x a with (h [ l ::=ₕ v ]) a | Eq.inspect (h [ l ::=ₕ v ]) a heap-union-update {l}{h} d x a | just x₁ | Eq.[ eq ] with a ≟ l | h a | Eq.inspect h a | x a heap-union-update {l}{h} d x a | just x₁ | Eq.[ eq ] | yes p | just x₂ | Eq.[ eq2 ] | inj₁ x₃ = inj₁ (eq ,, snd x₃) heap-union-update {l}{h} d x a | just x₁ | Eq.[ eq ] | yes p | just x₂ | Eq.[ eq2 ] | inj₂ y rewrite p = inj₁ (eq ,, d) heap-union-update {l}{h} d x a | just x₁ | Eq.[ eq ] | yes p | nothing | Eq.[ eq2 ] | C = inj₁ (eq ,, snd C) heap-union-update {l}{h} d x a | just x₁ | Eq.[ eq ] | no ¬p | just x₂ | Eq.[ eq2 ] | inj₁ x₃ rewrite (Eq.trans (sym eq) eq2) = inj₁ x₃ heap-union-update {l}{h} d x a | just x₁ | Eq.[ eq ] | no ¬p | just x₂ | Eq.[ eq2 ] | inj₂ y rewrite (Eq.trans (sym eq) eq2) = inj₂ y heap-union-update {l}{h} d x a | just x₁ | Eq.[ eq ] | no ¬p | nothing | Eq.[ eq2 ] | C rewrite (Eq.trans (sym eq) eq2) = inj₁ C heap-union-update {l}{h} d x a | nothing | Eq.[ eq ] with a ≟ l | h a | Eq.inspect h a | x a heap-union-update {l}{h} d x a | nothing | Eq.[ eq ] | no ¬p | just x₁ | Eq.[ eq2 ] | inj₁ x₂ = Eq.trans (Eq.trans (fst x₂) (sym eq2)) eq ,, snd x₂ heap-union-update {l}{h} d x a | nothing | Eq.[ eq ] | no ¬p | just x₁ | Eq.[ eq2 ] | inj₂ y = fst y ,, Eq.trans (snd y) (Eq.trans (sym eq2) eq) heap-union-update {l}{h} d x a | nothing | Eq.[ eq ] | no ¬p | nothing | Eq.[ eq2 ] | E = E heap-union-delete : ∀{h h₀ h₁ v} → v ¬dom h₁ → h ∼ h₀ ⊥ h₁ → (h /[ v ]) ∼ (h₀ /[ v ]) ⊥ h₁ heap-union-delete {h}{h₀}{h₁}{v} d x a with (h /[ v ]) a | Eq.inspect (h /[ v ]) a heap-union-delete {h} {h₀} {h₁} {v} d x a | just x₁ | Eq.[ eq ] with a ≟ v | h a | Eq.inspect h a | x a heap-union-delete {h} {h₀} {h₁} {v} d x a | just x₁ | Eq.[ () ] | yes p | just x₂ | Eq.[ eq2 ] | R heap-union-delete {h} {h₀} {h₁} {v} d x a | just x₁ | Eq.[ eq ] | no ¬p | just x₂ | Eq.[ eq2 ] | inj₁ x₃ rewrite (Eq.trans (sym eq) eq2) = inj₁ x₃ heap-union-delete {h} {h₀} {h₁} {v} d x a | just x₁ | Eq.[ eq ] | no ¬p | just x₂ | Eq.[ eq2 ] | inj₂ y rewrite (Eq.trans (sym eq) eq2) = inj₂ y heap-union-delete {h} {h₀} {h₁} {v} d x a | just x₁ | Eq.[ eq ] | no ¬p | nothing | Eq.[ eq2 ] | fst₁ ,, snd₁ = inj₂ (fst₁ ,, Eq.trans snd₁ (Eq.trans (sym eq2) eq)) heap-union-delete {h} {h₀} {h₁} {v} d x a | nothing | Eq.[ eq ] with a ≟ v | h a | Eq.inspect h a | x a heap-union-delete {h} {h₀} {h₁} {v} d x a | nothing | Eq.[ eq ] | yes p | just x₁ | Eq.[ eq2 ] | inj₁ x₂ = refl ,, snd x₂ heap-union-delete {h} {h₀} {h₁} {v} d x a | nothing | Eq.[ eq ] | yes p | just x₁ | Eq.[ eq2 ] | inj₂ y rewrite p = refl ,, d heap-union-delete {h} {h₀} {h₁} {v} d x a | nothing | Eq.[ eq ] | yes p | nothing | Eq.[ eq2 ] | E = refl ,, snd E heap-union-delete {h} {h₀} {h₁} {v} d x a | nothing | Eq.[ eq ] | no ¬p | just x₁ | Eq.[ eq2 ] | inj₁ x₂ = Eq.trans (fst x₂) (Eq.trans (sym eq2) eq) ,, snd x₂ heap-union-delete {h} {h₀} {h₁} {v} d x a | nothing | Eq.[ eq ] | no ¬p | just x₁ | Eq.[ eq2 ] | inj₂ y = fst y ,, Eq.trans (snd y) (Eq.trans (sym eq2) eq) heap-union-delete {h} {h₀} {h₁} {v} d x a | nothing | Eq.[ eq ] | no ¬p | nothing | Eq.[ eq2 ] | E = E union-exclusionᵣ : ∀{l h h₀ h₁} → h ∼ h₀ ⊥ h₁ → l ¬dom h → l ¬dom h₁ union-exclusionᵣ {l}{h} A B with h l | A l ... | nothing | fst₁ ,, snd₁ = snd₁ union-presenceᵣ : ∀{l h h₀ h₁} → h ∼ h₀ ⊥ h₁ → l dom h → l dom h₀ → l ¬dom h₁ union-presenceᵣ {l}{h} A B C with h l | A l union-presenceᵣ {l} {h} A B C | just x | inj₁ (fst₁ ,, snd₁) = snd₁ union-presenceᵣ {l} {h} A B (fst₁ ,, snd₁) | just x | inj₂ (fst₂ ,, snd₂) with Eq.trans (sym fst₂) snd₁ ... | () union-reduction : ∀{a b c s h′ h h₀ h′₀ h₁} → ⦅ c , s , h₀ ⦆ ⇒ ⦅ a , b , h′₀ ⦆ → ⦅ c , s , h ⦆ ⇒ ⦅ a , b , h′ ⦆ → h ∼ h₀ ⊥ h₁ → h′ ∼ h′₀ ⊥ h₁ union-reduction Loc Loc C = C union-reduction Comp₁ Comp₁ C = C union-reduction (Comp₂ A) (Comp₂ B) C = union-reduction A B C union-reduction (IfTrue x) (IfTrue x₁) C = C union-reduction (IfTrue x) (IfFalse x₁) C = C union-reduction (IfFalse x) (IfTrue x₁) C = C union-reduction (IfFalse x) (IfFalse x₁) C = C union-reduction While While C = C union-reduction (Cons d A B) (Cons d2 A′ B′) C a rewrite A | B | A′ | B′ = heap-union-update (union-exclusionᵣ C d2) C a union-reduction (Lookup e A) (Lookup e2 A′) C rewrite A | A′ = C union-reduction (Write x) (Write x₁) C a = heap-union-update (union-presenceᵣ C x₁ x) C a union-reduction (Dispose x) (Dispose x₁) C a = heap-union-delete (union-presenceᵣ C x₁ x) C a frame2 : ∀{c s h h₀ h₁ h′ s′} → Safe ⦅ c , s , h₀ ⦆ → h ∼ h₀ ⊥ h₁ → ⦅ c , s , h ⦆ ⇒* ⦅ SKIP , s′ , h′ ⦆ → ∃[ h′₀ ] ( ⦅ c , s , h₀ ⦆ ⇒* ⦅ SKIP , s′ , h′₀ ⦆ × h′ ∼ h′₀ ⊥ h₁ ) frame2 s t (.(⦅ SKIP , _ , _ ⦆) ∎) = _ ,, (_ ∎) ,, t frame2 {h₀ = h₀} s t (_→⟨_⟩_ .(⦅ _ , _ , _ ⦆) {⦅ _ , _ , _ ⦆} x r) with lemma2 h₀ (union-subset _ t) x ... | inj₁ x₄ = ⊥-elim (s (_ →⟨ x₄ ⟩ (abort ∎))) ... | inj₂ (fst₁ ,, fst₂ ,, snd₁) with frame2 (λ z → s (_ →⟨ snd₁ ⟩ z)) (union-reduction snd₁ x t) r ... | fst₃ ,, fst₄ ,, snd₂ = fst₃ ,, (_ →⟨ snd₁ ⟩ fst₄) ,, snd₂ frame2 s t (_→⟨_⟩_ .(⦅ _ , _ , _ ⦆) {abort} x (.abort →⟨ () ⟩ r)) ⊨[_]_[_] : assn → com → assn → Set ⊨[ A ] c [ B ] = ∀{s h} → A s h → Safe ⦅ c , s , h ⦆ × (∀{s′ h′} → ⦅ c , s , h ⦆ ⇒* ⦅ SKIP , s′ , h′ ⦆ → B s′ h′) NotInfluenced : assn → com → Set NotInfluenced R c = ∀{s s′ z h₀ h′₀ hᵣ} → z ∼ h′₀ ⊥ hᵣ → ⦅ c , s , h₀ ⦆ ⇒* ⦅ SKIP , s′ , h′₀ ⦆ → R s hᵣ → R s′ hᵣ frame-soundness : ∀{A B R : assn} {c} → NotInfluenced R c → ⊨[ A ] c [ B ] → ⊨[ A * R ] c [ B * R ] frame-soundness {A}{B}{R}{c} Inf H {s}{h} (h₀ ,, h₁ ,, ⊥ ,, A₀ ,, R₁) with H A₀ ... | safe ,, conv = frame1 ⊥ safe ,, frame2-ex where frame2-ex : ∀{s′ h′} → ⦅ c , s , h ⦆ ⇒* ⦅ SKIP , s′ , h′ ⦆ → ∃[ h₁ ] ∃[ h₂ ] ( (h′ ∼ h₁ ⊥ h₂) × B s′ h₁ × R s′ h₂) frame2-ex rs with frame2 safe ⊥ rs ... | h′₀ ,, r ,, ⊥′ = h′₀ ,, h₁ ,, ⊥′ ,, conv r ,, Inf ⊥′ r R₁
41.406685
164
0.469963
1ebfe84395caa8654bc1a75838e841d391c2a3f2
6,595
agda
Agda
TotalParserCombinators/Semantics.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
1
2020-07-03T08:56:13.000Z
2020-07-03T08:56:13.000Z
TotalParserCombinators/Semantics.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
null
null
null
TotalParserCombinators/Semantics.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Semantics of the parsers ------------------------------------------------------------------------ module TotalParserCombinators.Semantics where open import Codata.Musical.Notation open import Data.List hiding (drop) open import Data.List.Relation.Binary.BagAndSetEquality using (bag) renaming (_∼[_]_ to _List-∼[_]_) open import Data.Maybe using (Maybe); open Data.Maybe.Maybe open import Data.Product open import Data.Unit using (⊤; tt) open import Function.Base open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence as Eq using (_⇔_; module Equivalence) open import Function.Inverse using (_↔_; module Inverse) open import Function.Related as Related using (Related) open import Level import Relation.Binary.HeterogeneousEquality as H open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary open import TotalParserCombinators.Parser ------------------------------------------------------------------------ -- Semantics -- The semantics of the parsers. x ∈ p · s means that x can be the -- result of applying the parser p to the string s. Note that the -- semantics is defined inductively. infix 60 <$>_ infixl 50 _⊛_ [_-_]_⊛_ infixl 10 _>>=_ [_-_]_>>=_ infix 4 _∈_·_ data _∈_·_ {Tok} : ∀ {R xs} → R → Parser Tok R xs → List Tok → Set₁ where return : ∀ {R} {x : R} → x ∈ return x · [] token : ∀ {x} → x ∈ token · [ x ] ∣-left : ∀ {R x xs₁ xs₂ s} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} (x∈p₁ : x ∈ p₁ · s) → x ∈ p₁ ∣ p₂ · s ∣-right : ∀ {R x xs₂ s} xs₁ {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} (x∈p₂ : x ∈ p₂ · s) → x ∈ p₁ ∣ p₂ · s <$>_ : ∀ {R₁ R₂ x s xs} {p : Parser Tok R₁ xs} {f : R₁ → R₂} (x∈p : x ∈ p · s) → f x ∈ f <$> p · s _⊛_ : ∀ {R₁ R₂ f x s₁ s₂ fs xs} {p₁ : ∞⟨ xs ⟩Parser Tok (R₁ → R₂) (flatten fs)} {p₂ : ∞⟨ fs ⟩Parser Tok R₁ (flatten xs)} → (f∈p₁ : f ∈ ♭? p₁ · s₁) (x∈p₂ : x ∈ ♭? p₂ · s₂) → f x ∈ p₁ ⊛ p₂ · s₁ ++ s₂ _>>=_ : ∀ {R₁ R₂ x y s₁ s₂ xs} {f : Maybe (R₁ → List R₂)} {p₁ : ∞⟨ f ⟩Parser Tok R₁ (flatten xs)} {p₂ : (x : R₁) → ∞⟨ xs ⟩Parser Tok R₂ (apply f x)} (x∈p₁ : x ∈ ♭? p₁ · s₁) (y∈p₂x : y ∈ ♭? (p₂ x) · s₂) → y ∈ p₁ >>= p₂ · s₁ ++ s₂ nonempty : ∀ {R xs x y s} {p : Parser Tok R xs} (x∈p : y ∈ p · x ∷ s) → y ∈ nonempty p · x ∷ s cast : ∀ {R xs₁ xs₂ x s} {xs₁≈xs₂ : xs₁ List-∼[ bag ] xs₂} {p : Parser Tok R xs₁} (x∈p : x ∈ p · s) → x ∈ cast xs₁≈xs₂ p · s -- Some variants with fewer implicit arguments. (The arguments xs and -- fs can usually not be inferred, but I do not want to mention them -- in the paper, so I have made them implicit in the definition -- above.) [_-_]_⊛_ : ∀ {Tok R₁ R₂ f x s₁ s₂} xs fs {p₁ : ∞⟨ xs ⟩Parser Tok (R₁ → R₂) (flatten fs)} {p₂ : ∞⟨ fs ⟩Parser Tok R₁ (flatten xs)} → f ∈ ♭? p₁ · s₁ → x ∈ ♭? p₂ · s₂ → f x ∈ p₁ ⊛ p₂ · s₁ ++ s₂ [ xs - fs ] f∈p₁ ⊛ x∈p₂ = _⊛_ {fs = fs} {xs = xs} f∈p₁ x∈p₂ [_-_]_>>=_ : ∀ {Tok R₁ R₂ x y s₁ s₂} (f : Maybe (R₁ → List R₂)) xs {p₁ : ∞⟨ f ⟩Parser Tok R₁ (flatten xs)} {p₂ : (x : R₁) → ∞⟨ xs ⟩Parser Tok R₂ (apply f x)} → x ∈ ♭? p₁ · s₁ → y ∈ ♭? (p₂ x) · s₂ → y ∈ p₁ >>= p₂ · s₁ ++ s₂ [ f - xs ] x∈p₁ >>= y∈p₂x = _>>=_ {xs = xs} {f = f} x∈p₁ y∈p₂x ------------------------------------------------------------------------ -- Parser and language equivalence infix 4 _∼[_]_ _≈_ _≅_ _≲_ -- There are two kinds of equivalences. Parser equivalences are -- stronger, and correspond to bag equality. Language equivalences are -- weaker, and correspond to set equality. open Data.List.Relation.Binary.BagAndSetEquality public using (Kind) renaming ( bag to parser ; set to language ; subbag to subparser ; subset to sublanguage ; superbag to superparser ; superset to superlanguage ) -- General definition of equivalence between parsers. (Note that this -- definition also gives access to some ordering relations.) _∼[_]_ : ∀ {Tok R xs₁ xs₂} → Parser Tok R xs₁ → Kind → Parser Tok R xs₂ → Set₁ p₁ ∼[ k ] p₂ = ∀ {x s} → Related k (x ∈ p₁ · s) (x ∈ p₂ · s) -- Language equivalence. (Corresponds to set equality.) _≈_ : ∀ {Tok R xs₁ xs₂} → Parser Tok R xs₁ → Parser Tok R xs₂ → Set₁ p₁ ≈ p₂ = p₁ ∼[ language ] p₂ -- Parser equivalence. (Corresponds to bag equality.) _≅_ : ∀ {Tok R xs₁ xs₂} → Parser Tok R xs₁ → Parser Tok R xs₂ → Set₁ p₁ ≅ p₂ = p₁ ∼[ parser ] p₂ -- p₁ ≲ p₂ means that the language defined by p₂ contains all the -- string/result pairs contained in the language defined by p₁. _≲_ : ∀ {Tok R xs₁ xs₂} → Parser Tok R xs₁ → Parser Tok R xs₂ → Set₁ p₁ ≲ p₂ = p₁ ∼[ sublanguage ] p₂ -- p₁ ≈ p₂ iff both p₁ ≲ p₂ and p₂ ≲ p₁. ≈⇔≲≳ : ∀ {Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ≈ p₂ ⇔ (p₁ ≲ p₂ × p₂ ≲ p₁) ≈⇔≲≳ = Eq.equivalence (λ p₁≈p₂ → ((λ {x s} → _⟨$⟩_ (Equivalence.to (p₁≈p₂ {x = x} {s = s}))) , λ {x s} → _⟨$⟩_ (Equivalence.from (p₁≈p₂ {x = x} {s = s})))) (λ p₁≲≳p₂ → λ {x s} → Eq.equivalence (proj₁ p₁≲≳p₂ {s = s}) (proj₂ p₁≲≳p₂ {s = s})) -- Parser equivalence implies language equivalence. ≅⇒≈ : ∀ {Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ≅ p₂ → p₁ ≈ p₂ ≅⇒≈ p₁≅p₂ = Related.↔⇒ p₁≅p₂ -- Language equivalence does not (in general) imply parser -- equivalence. ¬≈⇒≅ : ¬ (∀ {Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ≈ p₂ → p₁ ≅ p₂) ¬≈⇒≅ hyp with Inverse.injective p₁≅p₂ {∣-left return} {∣-right [ tt ] return} (lemma _ _) where p₁ : Parser ⊤ ⊤ _ p₁ = return tt ∣ return tt p₂ : Parser ⊤ ⊤ _ p₂ = return tt p₁≲p₂ : p₁ ≲ p₂ p₁≲p₂ (∣-left return) = return p₁≲p₂ (∣-right ._ return) = return p₁≅p₂ : p₁ ≅ p₂ p₁≅p₂ = hyp $ Eq.equivalence p₁≲p₂ ∣-left lemma : ∀ {x s} (x∈₁ x∈₂ : x ∈ p₂ · s) → x∈₁ ≡ x∈₂ lemma return return = P.refl ... | () ------------------------------------------------------------------------ -- A simple cast lemma cast∈ : ∀ {Tok R xs} {p p′ : Parser Tok R xs} {x x′ s s′} → x ≡ x′ → p ≡ p′ → s ≡ s′ → x ∈ p · s → x′ ∈ p′ · s′ cast∈ P.refl P.refl P.refl x∈ = x∈
36.638889
72
0.511751
04cc77c5404f0bae332b1067b8648b17130e4029
4,632
agda
Agda
theorems/stash/homotopy/JoinAssoc.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/stash/homotopy/JoinAssoc.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/stash/homotopy/JoinAssoc.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT -- Associativity of the join (work in progress) module experimental.JoinAssoc {i j k} (A : Type i) (B : Type j) (C : Type k) where {- First map -} to : (A * B) * C → A * (B * C) to = To.f module _ where to-left-glue : (ab : A × B) → left (fst ab) == right (left (snd ab)) :> A * (B * C) to-left-glue (a , b) = glue (a , left b) module ToLeft = PushoutRec left (right ∘ left) to-left-glue to-left : A * B → A * (B * C) to-left = ToLeft.f to-glue-left : (c : C) (a : A) → to-left (left a) == right (right c) to-glue-left c a = glue (a , right c) to-glue-right : (c : C) (b : B) → to-left (right b) == right (right c) to-glue-right c b = ap right (glue (b , c)) to-glue-glue : (c : C) (ab : A × B) → to-glue-left c (fst ab) == to-glue-right c (snd ab) [ (λ x → to-left x == right (right c)) ↓ glue ab ] to-glue-glue c (a , b) = ↓-swap to-left right _ idp (ToLeft.glue-β (a , b) ◃ apd (λ x → glue (a , x)) (glue (b , c))) module ToGlue (c : C) = PushoutElim (to-glue-left c) (to-glue-right c) (to-glue-glue c) to-glue : (ab-c : (A * B) × C) → to-left (fst ab-c) == right (right (snd ab-c)) to-glue (ab , c) = M.f ab where module M = ToGlue c module To = PushoutRec {d = *-span (A * B) C} to-left (right ∘ right) to-glue {- Second map -} from : A * (B * C) → (A * B) * C from = From.f module MM where from-right-glue : (bc : B × C) → left (right (fst bc)) == right (snd bc) from-right-glue (b , c) = glue (right b , c) module FromRight = PushoutRec (left ∘ right) right from-right-glue from-right : B * C → (A * B) * C from-right = FromRight.f from-glue-left : (a : A) (b : B) → left (left a) == from-right (left b) from-glue-left a b = ap left (glue (a , b)) from-glue-right : (a : A) (c : C) → left (left a) == from-right (right c) from-glue-right a c = glue (left a , c) from-glue-glue : (a : A) (bc : B × C) → from-glue-left a (fst bc) == from-glue-right a (snd bc) [ (λ x → left (left a) == from-right x) ↓ glue bc ] from-glue-glue a (b , c) = ↓-swap! left from-right _ idp (apd (λ x → glue (x , c)) (glue (a , b)) ▹! (FromRight.glue-β (b , c))) module FromGlue (a : A) = PushoutElim (from-glue-left a) (from-glue-right a) (from-glue-glue a) from-glue : (a-bc : A × (B * C)) → left (left (fst a-bc)) == from-right (snd a-bc) from-glue (a , bc) = M.f bc where module M = FromGlue a module From = PushoutRec {d = *-span A (B * C)} (left ∘ left) from-right from-glue open MM public {- First composite -} to-from-right-glue' : (b : B) (c : C) → ap (to ∘ from-right) (glue (b , c)) =-= ap right (glue (b , c)) to-from-right-glue' b c = ap (λ z → to (from-right z)) (glue (b , c)) =⟪ ap-∘ to from-right (glue (b , c)) ⟫ ap to (ap from-right (glue (b , c))) =⟪ FromRight.glue-β (b , c) |in-ctx ap to ⟫ ap to (glue ((right b , c) :> ((A * B) × C))) =⟪ To.glue-β (right b , c)⟫ ap right (glue (b , c)) ∎∎ to-from-right-glue : (bc : B × C) → idp == idp [ (λ x → to (from (right x)) == right x) ↓ glue bc ] to-from-right-glue (b , c) = ↓-='-in' (! (↯ to-from-right-glue' b c)) module ToFromRight = PushoutElim (λ _ → idp) (λ _ → idp) to-from-right-glue to-from-right : (bc : B * C) → to (from (right bc)) == right bc to-from-right = ToFromRight.f to-from-glue-left' : (a : A) (b : B) → ap to (ap from (glue (a , left b))) =-= glue (a , left b) to-from-glue-left' a b = ap to (ap from (glue (a , left b))) =⟪ From.glue-β (a , left b) |in-ctx ap to ⟫ ap to (ap left (glue (a , b))) =⟪ ∘-ap to left (glue (a , b)) ⟫ ap to-left (glue (a , b)) =⟪ ToLeft.glue-β (a , b) ⟫ glue (a , left b) ∎∎ to-from-glue-left : (a : A) (b : B) → idp == to-from-right (left b) [ (λ x → to (from x) == x) ↓ glue (a , left b) ] to-from-glue-left a b = ↓-∘=idf-in' to from (↯ to-from-glue-left' a b) to-from-glue-right' : (a : A) (c : C) → ap to (ap from (glue (a , right c))) =-= glue (a , right c) to-from-glue-right' a c = ap to (ap from (glue (a , right c))) =⟪ From.glue-β (a , right c) |in-ctx ap to ⟫ ap to (glue (left a , c)) =⟪ To.glue-β (left a , c) ⟫ glue (a , right c) ∎∎ to-from-glue-right : (a : A) (c : C) → idp == to-from-right (right c) [ (λ x → to (from x) == x) ↓ glue (a , right c) ] to-from-glue-right a c = ↓-∘=idf-in' to from (↯ to-from-glue-right' a c) postulate -- Not proved yet. Some of it is being worked on at JoinAssoc2 *-assoc : ((A * B) * C) ≃ (A * (B * C))
42.109091
151
0.523964
ad16acde6034b7e80652154c6d74d87d631b9d7c
1,233
agda
Agda
YonedaLemma.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
21
2015-07-30T01:25:12.000Z
2021-02-13T18:02:18.000Z
YonedaLemma.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
3
2019-01-13T13:12:33.000Z
2019-05-29T09:50:26.000Z
YonedaLemma.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
1
2019-11-04T21:33:13.000Z
2019-11-04T21:33:13.000Z
module YonedaLemma where open import Library open import Categories open import Categories.Sets open import Functors open import Naturals open import FunctorCat HomF[-,_] : ∀{l m}{C : Cat {l}{m}}(X : Cat.Obj C) -> Fun (C Op) (Sets {m}) HomF[-,_] {C = C} B = functor (\ X -> Hom X B) (\ f g -> comp g f) (ext \ _ -> idr) (ext \ _ -> sym ass) where open Cat C HomN[-,_] : ∀{l m}{C : Cat {l}{m}}{X Y : Cat.Obj C}(f : Cat.Hom C X Y) -> NatT (HomF[-,_] {C = C} X) HomF[-, Y ] HomN[-,_] {C = C} f = natural (comp f) (ext \ _ -> ass) where open Cat C y : ∀{l m}(C : Cat {l}{m}) -> Fun C (FunctorCat (C Op) (Sets {m})) y C = functor HomF[-,_] HomN[-,_] (NatTEq (iext \ _ -> ext \ _ -> idl)) (NatTEq (iext \ _ -> ext \ _ -> ass)) where open Cat C yleminv : ∀{l m}(C : Cat {l}{m})(F : Fun (C Op) (Sets {m}))(X : Cat.Obj C) -> NatT (Fun.OMap (y C) X) F -> Fun.OMap F X yleminv C F X α = NatT.cmp α {X} (Cat.iden C) ylem : ∀{l m}(C : Cat {l}{m})(F : Fun (C Op) (Sets {m}))(X : Cat.Obj C) -> Fun.OMap F X -> NatT (Fun.OMap (y C) X) F ylem C F X FX = natural (\ {X'} f -> HMap f FX) (\{X'}{Y}{f} -> ext \ g -> sym (fcong FX (fcomp {f = f}{g = g})) ) where open Cat C; open Fun F
28.674419
77
0.513382
383b78a173fe79a4700f98e40bba49728b3c1373
2,763
agda
Agda
src/Algebra/Module/Limit.agda
cspollard/reals
a193aeebf1326f960975b19d3e31b46fddbbfaa2
[ "CC0-1.0" ]
null
null
null
src/Algebra/Module/Limit.agda
cspollard/reals
a193aeebf1326f960975b19d3e31b46fddbbfaa2
[ "CC0-1.0" ]
null
null
null
src/Algebra/Module/Limit.agda
cspollard/reals
a193aeebf1326f960975b19d3e31b46fddbbfaa2
[ "CC0-1.0" ]
null
null
null
open import Relation.Binary using (Rel) open import Algebra.Bundles using (CommutativeRing) open import Algebra.Module.Morphism.Structures open import Algebra.Module.Normed using (NormedModule) module Algebra.Module.Limit {r ℓr} {CR : CommutativeRing r ℓr} (open CommutativeRing CR using () renaming (Carrier to X)) {rel} {_≤_ : Rel X rel} {ma ℓma} (MA : NormedModule CR _≤_ ma ℓma) {mb ℓmb} (MB : NormedModule CR _≤_ mb ℓmb) where open import Data.Product using (Σ-syntax; ∃-syntax; _×_; proj₁) open CommutativeRing CR open import Algebra.Module.Morphism.Module using (⊸-normed) private module MA = NormedModule MA module MB = NormedModule MB module MA⊸MB = NormedModule (⊸-normed MA MB) open NormedModule MA using () renaming ( Carrierᴹ to Carrierᴬ ; _+ᴹ_ to _+ᴬ_ ; _-ᴹ_ to _-ᴬ_ ; ∥_∥ to ∥_∥ᴬ ; ⟨_,_⟩ to ⟨_,_⟩ᴬ ) open NormedModule MB using () renaming ( Carrierᴹ to Carrierᴮ ; _+ᴹ_ to _+ᴮ_ ; _-ᴹ_ to _-ᴮ_ ; ∥_∥ to ∥_∥ᴮ ; ⟨_,_⟩ to ⟨_,_⟩ᴮ ) open import Relation.Binary.Construct.NonStrictToStrict _≈_ _≤_ using (_<_) Limit-syntax : (L : Carrierᴮ) (f : Carrierᴬ → Carrierᴮ) (c : Carrierᴬ) → Set _ Limit-syntax L f c = ∀ ε → 0# < ε → ∃[ δ ] ∀ x → let d = ⟨ c , x ⟩ᴬ in (0# < d) × (d < δ) → ⟨ f x , L ⟩ᴮ < ε syntax Limit-syntax L (λ x → f) c = f ⟶ L As x ⟶ c Limit-syntax-0 : (L : Carrierᴮ) (f : Carrierᴬ → Carrierᴮ) → Set _ Limit-syntax-0 L f = ∀ ε → 0# < ε → ∃[ δ ] ∀ x → let d = ∥ x ∥ᴬ in (0# < d) × (d < δ) → ⟨ f x , L ⟩ᴮ < ε syntax Limit-syntax-0 L (λ x → f) = f ⟶ L As x ⟶0 Limit-syntax-0-0 : (f : Carrierᴬ → Carrierᴮ) → Set _ Limit-syntax-0-0 f = ∀ ε → 0# < ε → ∃[ δ ] ∀ x → let d = ∥ x ∥ᴬ in (0# < d) × (d < δ) → ∥ f x ∥ᴮ < ε syntax Limit-syntax-0-0 (λ x → f) = f ⟶0 As x ⟶0 _Approximates_At_ : (δf : MA⊸MB.Carrierᴹ) → (f : Carrierᴬ → Carrierᴮ) → (x : Carrierᴬ) → Set _ δf Approximates f At x = (f (x +ᴬ dx) -ᴮ (f x +ᴮ proj₁ δf dx)) ⟶0 As dx ⟶0 _Differentiates_ : (δf : Carrierᴬ → MA⊸MB.Carrierᴹ) → (f : Carrierᴬ → Carrierᴮ) → Set _ δf Differentiates f = ∀ x → (f (x +ᴬ dx) -ᴮ (f x +ᴮ proj₁ (δf x) dx)) ⟶0 As dx ⟶0 D[_,_]_~_ : (f : Carrierᴬ → Carrierᴮ) (df : Carrierᴬ → MA⊸MB.Carrierᴹ) → Set _ D[_,_]_~_ f df = df Differentiates f _DifferentiableAt_ : (f : Carrierᴬ → Carrierᴮ) (x : Carrierᴬ) → Set _ f DifferentiableAt x = ∃[ δf ] δf Approximates f At x Differentiable : (f : Carrierᴬ → Carrierᴮ) → Set _ Differentiable f = ∀ x → f DifferentiableAt x D[_,_][_,_] : (f : Carrierᴬ → Carrierᴮ) (x : Carrierᴬ) → Set _ D[_,_][_,_] f x = f DifferentiableAt x -- [_,_]~[_~_]_ -- : (δf : Carrierᴬ → Carrierᴮ) -- → (f : Carrierᴬ → Carrierᴮ) -- → (x : Carrierᴬ) -- → Set _ -- [_,_][_~_]_ df f x = {! df Approximates f At x !}
27.356436
81
0.5903
2e33ffa2495e784e33b88509b6ad7afce01e1822
1,177
agda
Agda
agda-stdlib/src/Relation/Binary/Properties/Preorder.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Relation/Binary/Properties/Preorder.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Relation/Binary/Properties/Preorder.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties satisfied by preorders ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.Properties.Preorder {p₁ p₂ p₃} (P : Preorder p₁ p₂ p₃) where open import Function open import Data.Product as Prod open Preorder P ------------------------------------------------------------------------ -- The inverse relation is also a preorder. invIsPreorder : IsPreorder _≈_ (flip _∼_) invIsPreorder = record { isEquivalence = isEquivalence ; reflexive = reflexive ∘ Eq.sym ; trans = flip trans } invPreorder : Preorder p₁ p₂ p₃ invPreorder = record { isPreorder = invIsPreorder } ------------------------------------------------------------------------ -- For every preorder there is an induced equivalence InducedEquivalence : Setoid _ _ InducedEquivalence = record { _≈_ = λ x y → x ∼ y × y ∼ x ; isEquivalence = record { refl = (refl , refl) ; sym = swap ; trans = Prod.zip trans (flip trans) } }
25.586957
72
0.504673
22c6e4b2c5551cbc62fd28a0815972ab50c77fdb
140
agda
Agda
test/interaction/Issue2166.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue2166.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue2166.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- {-# OPTIONS -v tc.cover.split.con:100 #-} {-# OPTIONS --show-implicit #-} data D : Set where d : {x : D} → D f : D → Set f y = {!!}
14
44
0.492857
9a1e191f9b82c43f522ef1ae3074d12e70adbc89
9,541
agda
Agda
vendor/stdlib/src/Data/List/Countdown.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Data/List/Countdown.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Data/List/Countdown.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- A data structure which keeps track of an upper bound on the number -- of elements /not/ in a given list ------------------------------------------------------------------------ open import Relation.Binary module Data.List.Countdown (D : DecSetoid) where open import Data.Empty open import Data.Fin using (Fin; zero; suc) open import Data.Function open import Data.List open import Data.List.Any as Any using (here; there) open import Data.Nat using (ℕ; zero; suc) open import Data.Product open import Data.Sum open import Relation.Nullary open import Relation.Binary.FunctionSetoid open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; cong) open PropEq.≡-Reasoning private open module D = DecSetoid D hiding (refl) renaming (carrier to Elem) open Any.Membership D.setoid ------------------------------------------------------------------------ -- Helper functions private drop-suc : ∀ {n} {i j : Fin n} → _≡_ {Fin (suc n)} (suc i) (suc j) → i ≡ j drop-suc refl = refl drop-inj₂ : ∀ {A B x y} → inj₂ {A} {B} x ≡ inj₂ y → x ≡ y drop-inj₂ refl = refl -- The /first/ occurrence of x in xs. first-occurrence : ∀ {xs} x → x ∈ xs → x ∈ xs first-occurrence x (here x≈y) = here x≈y first-occurrence x (there {x = y} x∈xs) with x ≟ y ... | yes x≈y = here x≈y ... | no _ = there $ first-occurrence x x∈xs -- The index of the first occurrence of x in xs. first-index : ∀ {xs} x → x ∈ xs → Fin (length xs) first-index x x∈xs = Any.index $ first-occurrence x x∈xs -- first-index preserves equality of its first argument. first-index-pres : ∀ {x₁ x₂ xs} (x₁∈xs : x₁ ∈ xs) (x₂∈xs : x₂ ∈ xs) → x₁ ≈ x₂ → first-index x₁ x₁∈xs ≡ first-index x₂ x₂∈xs first-index-pres {x₁} {x₂} x₁∈xs x₂∈xs x₁≈x₂ = helper x₁∈xs x₂∈xs where helper : ∀ {xs} (x₁∈xs : x₁ ∈ xs) (x₂∈xs : x₂ ∈ xs) → first-index x₁ x₁∈xs ≡ first-index x₂ x₂∈xs helper (here x₁≈x) (here x₂≈x) = refl helper (here x₁≈x) (there {x = x} x₂∈xs) with x₂ ≟ x ... | yes x₂≈x = refl ... | no x₂≉x = ⊥-elim (x₂≉x (trans (sym x₁≈x₂) x₁≈x)) helper (there {x = x} x₁∈xs) (here x₂≈x) with x₁ ≟ x ... | yes x₁≈x = refl ... | no x₁≉x = ⊥-elim (x₁≉x (trans x₁≈x₂ x₂≈x)) helper (there {x = x} x₁∈xs) (there x₂∈xs) with x₁ ≟ x | x₂ ≟ x ... | yes x₁≈x | yes x₂≈x = refl ... | yes x₁≈x | no x₂≉x = ⊥-elim (x₂≉x (trans (sym x₁≈x₂) x₁≈x)) ... | no x₁≉x | yes x₂≈x = ⊥-elim (x₁≉x (trans x₁≈x₂ x₂≈x)) ... | no x₁≉x | no x₂≉x = cong suc $ helper x₁∈xs x₂∈xs -- first-index is injective in its first argument. first-index-injective : ∀ {x₁ x₂ xs} (x₁∈xs : x₁ ∈ xs) (x₂∈xs : x₂ ∈ xs) → first-index x₁ x₁∈xs ≡ first-index x₂ x₂∈xs → x₁ ≈ x₂ first-index-injective {x₁} {x₂} = helper where helper : ∀ {xs} (x₁∈xs : x₁ ∈ xs) (x₂∈xs : x₂ ∈ xs) → first-index x₁ x₁∈xs ≡ first-index x₂ x₂∈xs → x₁ ≈ x₂ helper (here x₁≈x) (here x₂≈x) _ = trans x₁≈x (sym x₂≈x) helper (here x₁≈x) (there {x = x} x₂∈xs) _ with x₂ ≟ x helper (here x₁≈x) (there {x = x} x₂∈xs) _ | yes x₂≈x = trans x₁≈x (sym x₂≈x) helper (here x₁≈x) (there {x = x} x₂∈xs) () | no x₂≉x helper (there {x = x} x₁∈xs) (here x₂≈x) _ with x₁ ≟ x helper (there {x = x} x₁∈xs) (here x₂≈x) _ | yes x₁≈x = trans x₁≈x (sym x₂≈x) helper (there {x = x} x₁∈xs) (here x₂≈x) () | no x₁≉x helper (there {x = x} x₁∈xs) (there x₂∈xs) _ with x₁ ≟ x | x₂ ≟ x helper (there {x = x} x₁∈xs) (there x₂∈xs) _ | yes x₁≈x | yes x₂≈x = trans x₁≈x (sym x₂≈x) helper (there {x = x} x₁∈xs) (there x₂∈xs) () | yes x₁≈x | no x₂≉x helper (there {x = x} x₁∈xs) (there x₂∈xs) () | no x₁≉x | yes x₂≈x helper (there {x = x} x₁∈xs) (there x₂∈xs) eq | no x₁≉x | no x₂≉x = helper x₁∈xs x₂∈xs (drop-suc eq) -- If there are at least two elements in Fin (suc n), then Fin n is -- inhabited. This is a variant of the thick function from Conor -- McBride's "First-order unification by structural recursion". thick : ∀ {n} (i j : Fin (suc n)) → i ≢ j → Fin n thick zero zero i≢j = ⊥-elim (i≢j refl) thick zero (suc j) _ = j thick {zero} (suc ()) _ _ thick {suc n} (suc i) zero _ = zero thick {suc n} (suc i) (suc j) i≢j = suc (thick i j (i≢j ∘ cong suc)) -- thick i is injective in one of its arguments. thick-injective : ∀ {n} (i j k : Fin (suc n)) {i≢j : i ≢ j} {i≢k : i ≢ k} → thick i j i≢j ≡ thick i k i≢k → j ≡ k thick-injective zero zero _ {i≢j = i≢j} _ = ⊥-elim (i≢j refl) thick-injective zero _ zero {i≢k = i≢k} _ = ⊥-elim (i≢k refl) thick-injective zero (suc j) (suc k) j≡k = cong suc j≡k thick-injective {zero} (suc ()) _ _ _ thick-injective {suc n} (suc i) zero zero _ = refl thick-injective {suc n} (suc i) zero (suc k) () thick-injective {suc n} (suc i) (suc j) zero () thick-injective {suc n} (suc i) (suc j) (suc k) eq = cong suc $ thick-injective i j k (drop-suc eq) ------------------------------------------------------------------------ -- The countdown data structure -- If counted ⊕_n is inhabited then there are at most n values of type -- Elem which are not members of counted (up to _≈_). You can read the -- symbol _⊕_ as partitioning Elem into two parts: counted and -- uncounted. infix 4 _⊕_ record _⊕_ (counted : List Elem) (n : ℕ) : Set where field -- An element can be of two kinds: -- ⑴ It is provably in counted. -- ⑵ It is one of at most n elements which may or may not be in -- counted. The "at most n" part is guaranteed by the field -- "injective". kind : ∀ x → x ∈ counted ⊎ Fin n injective : ∀ {x y i} → kind x ≡ inj₂ i → kind y ≡ inj₂ i → x ≈ y -- A countdown can be initialised by proving that Elem is finite. empty : ∀ {n} → Injection D.setoid (PropEq.setoid (Fin n)) → [] ⊕ n empty inj = record { kind = inj₂ ∘ _⟨$⟩_ to ; injective = λ {x} {y} {i} eq₁ eq₂ → injective (begin to ⟨$⟩ x ≡⟨ drop-inj₂ eq₁ ⟩ i ≡⟨ PropEq.sym $ drop-inj₂ eq₂ ⟩ to ⟨$⟩ y ∎) } where open Injection inj -- A countdown can also be initialised by proving that Elem is finite. emptyFromList : (counted : List Elem) → (∀ x → x ∈ counted) → [] ⊕ length counted emptyFromList counted complete = empty record { to = record { _⟨$⟩_ = λ x → first-index x (complete x) ; pres = first-index-pres (complete _) (complete _) } ; injective = first-index-injective (complete _) (complete _) } -- Finds out if an element has been counted yet. lookup : ∀ {counted n} → counted ⊕ n → ∀ x → Dec (x ∈ counted) lookup {counted} _ x = Any.any (_≟_ x) counted -- When no element remains to be counted all elements have been -- counted. lookup! : ∀ {counted} → counted ⊕ zero → ∀ x → x ∈ counted lookup! counted⊕0 x with _⊕_.kind counted⊕0 x ... | inj₁ x∈counted = x∈counted ... | inj₂ () private -- A variant of lookup!. lookup‼ : ∀ {m counted} → counted ⊕ m → ∀ x → x ∉ counted → ∃ λ n → m ≡ suc n lookup‼ {suc m} counted⊕n x x∉counted = (m , refl) lookup‼ {zero} counted⊕n x x∉counted = ⊥-elim (x∉counted $ lookup! counted⊕n x) -- Counts a previously uncounted element. insert : ∀ {counted n} → counted ⊕ suc n → ∀ x → x ∉ counted → x ∷ counted ⊕ n insert {counted} {n} counted⊕1+n x x∉counted = record { kind = kind′; injective = inj } where open _⊕_ counted⊕1+n helper : ∀ x y i {j} → kind x ≡ inj₂ i → kind y ≡ inj₂ j → i ≡ j → x ≈ y helper _ _ _ eq₁ eq₂ refl = injective eq₁ eq₂ kind′ : ∀ y → y ∈ x ∷ counted ⊎ Fin n kind′ y with y ≟ x | kind x | kind y | helper x y kind′ y | yes y≈x | _ | _ | _ = inj₁ (here y≈x) kind′ y | _ | inj₁ x∈counted | _ | _ = ⊥-elim (x∉counted x∈counted) kind′ y | _ | _ | inj₁ y∈counted | _ = inj₁ (there y∈counted) kind′ y | no y≉x | inj₂ i | inj₂ j | hlp = inj₂ (thick i j (y≉x ∘ sym ∘ hlp _ refl refl)) inj : ∀ {y z i} → kind′ y ≡ inj₂ i → kind′ z ≡ inj₂ i → y ≈ z inj {y} {z} eq₁ eq₂ with y ≟ x | z ≟ x | kind x | kind y | kind z | helper x y | helper x z | helper y z inj () _ | yes _ | _ | _ | _ | _ | _ | _ | _ inj _ () | _ | yes _ | _ | _ | _ | _ | _ | _ inj _ _ | no _ | no _ | inj₁ x∈counted | _ | _ | _ | _ | _ = ⊥-elim (x∉counted x∈counted) inj () _ | no _ | no _ | inj₂ _ | inj₁ _ | _ | _ | _ | _ inj _ () | no _ | no _ | inj₂ _ | _ | inj₁ _ | _ | _ | _ inj eq₁ eq₂ | no _ | no _ | inj₂ _ | inj₂ _ | inj₂ _ | _ | _ | hlp = hlp _ refl refl $ thick-injective _ _ _ $ PropEq.trans (drop-inj₂ eq₁) (PropEq.sym (drop-inj₂ eq₂)) -- Counts an element if it has not already been counted. lookupOrInsert : ∀ {counted m} → counted ⊕ m → ∀ x → x ∈ counted ⊎ ∃ λ n → m ≡ suc n × x ∷ counted ⊕ n lookupOrInsert counted⊕n x with lookup counted⊕n x ... | yes x∈counted = inj₁ x∈counted ... | no x∉counted with lookup‼ counted⊕n x x∉counted ... | (n , refl) = inj₂ (n , refl , insert counted⊕n x x∉counted)
40.257384
107
0.531705
3d4e5fd9e8570c4dc79a5b0c96b7a4142052c5b7
973
agda
Agda
agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-bst-test.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
36
2015-01-29T14:37:15.000Z
2021-07-30T06:55:03.000Z
agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-bst-test.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
null
null
null
agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z05-01-bst-test.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
8
2015-04-13T21:40:15.000Z
2021-09-21T15:58:10.000Z
open import eq open import bool open import bool-relations using (transitive; total) open import maybe open import nat open import nat-thms using (≤-trans; ≤-total) open import product module z05-01-bst-test where open import bool-relations _≤_ hiding (transitive; total) import z05-01-bst as BST open BST nat _≤_ (λ {x} {y} {z} → ≤-trans {x} {y} {z}) (λ {x} {y} → ≤-total {x} {y}) empty : bst 0 0 empty = bst-leaf refl _ : bst-search 0 empty ≡ nothing _ = refl _ : bst-insert 5 empty ≡ bst-node 5 (bst-leaf refl) (bst-leaf refl) refl refl _ = refl bst-5 : bst 0 5 bst-5 = bst-insert 5 empty _ : maybe (Σ ℕ (λ z → (5 < z || 5 =ℕ z) && (z < 5 || z =ℕ 5) ≡ tt)) _ = bst-search 5 bst-5 _ : bst-insert 9 bst-5 ≡ bst-node 5 (bst-leaf refl) (bst-node 9 (bst-leaf refl) (bst-leaf refl) refl refl) refl refl _ = refl _ : bst 0 9 _ = bst-insert 9 bst-5 _ : bst 0 5 _ = bst-dec-lb {0} {0} {5} (bst-leaf refl) refl
23.731707
91
0.601233
fb0b907750865875e404b8e12fe16d0f24cf3d70
509
agda
Agda
agda/SOList/Lower/Properties.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/SOList/Lower/Properties.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/SOList/Lower/Properties.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
{-# OPTIONS --sized-types #-} module SOList.Lower.Properties {A : Set}(_≤_ : A → A → Set) where open import Bound.Lower A open import Bound.Lower.Order _≤_ open import Size open import List.Sorted _≤_ open import SOList.Lower _≤_ lemma-solist-sorted : {ι : Size}{b : Bound} → (xs : SOList {ι} b) → Sorted (forget xs) lemma-solist-sorted onil = nils lemma-solist-sorted (:< {x = x} _ onil) = singls x lemma-solist-sorted (:< b≤x (:< (lexy x≤y) ys)) = conss x≤y (lemma-solist-sorted (:< (lexy x≤y) ys))
29.941176
101
0.656189
c7c5ec08fd2f0126c22189082b069731c493cc8d
166
agda
Agda
test/Fail/Issue4786a.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue4786a.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue4786a.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
record R (A : Set) : Set where constructor c₂ field f : A → A g : A → A g x = f (f x) open R public _ : (@0 A : Set) → R A → A → A _ = λ A → g {A = A}
12.769231
30
0.451807
1e7c1be664eaf0b53cc3021bfdb52d6a0d9fca69
25,667
agda
Agda
core/lib/types/Truncation.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
core/lib/types/Truncation.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
core/lib/types/Truncation.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.FunctionSeq open import lib.types.TLevel open import lib.types.Pi open import lib.types.Pointed open import lib.types.Sigma open import lib.NType2 module lib.types.Truncation where module _ {i} where postulate -- HIT Trunc : (n : ℕ₋₂) (A : Type i) → Type i [_] : {n : ℕ₋₂} {A : Type i} → A → Trunc n A instance Trunc-level : {n : ℕ₋₂} {A : Type i} → has-level n (Trunc n A) module TruncElim {n : ℕ₋₂} {A : Type i} {j} {P : Trunc n A → Type j} {{p : (x : Trunc n A) → has-level n (P x)}} (d : (a : A) → P [ a ]) where postulate -- HIT f : Π (Trunc n A) P [_]-β : ∀ a → f [ a ] ↦ d a {-# REWRITE [_]-β #-} open TruncElim public renaming (f to Trunc-elim) module TruncRec {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} {{p : has-level n B}} (d : A → B) where private module M = TruncElim {{λ x → p}} d f : Trunc n A → B f = M.f open TruncRec public renaming (f to Trunc-rec) module TruncRecType {i j} {n : ℕ₋₂} {A : Type i} (d : A → n -Type j) where open TruncRec {{n -Type-level j}} d public flattening-Trunc : Σ (Trunc (S n) A) (fst ∘ f) ≃ Trunc (S n) (Σ A (fst ∘ d)) flattening-Trunc = equiv to from to-from from-to where to-aux : (x : Trunc (S n) A) → (fst (f x) → Trunc (S n) (Σ A (fst ∘ d))) to-aux = Trunc-elim (λ a b → [ (a , b) ]) to : Σ (Trunc (S n) A) (fst ∘ f) → Trunc (S n) (Σ A (fst ∘ d)) to (x , y) = to-aux x y from-aux : Σ A (fst ∘ d) → Σ (Trunc (S n) A) (fst ∘ f) from-aux (a , b) = ([ a ] , b) from : Trunc (S n) (Σ A (fst ∘ d)) → Σ (Trunc (S n) A) (fst ∘ f) from = Trunc-rec {{Σ-level ⟨⟩ (λ x → raise-level _ (snd (f x)))}} from-aux where to-from : (x : Trunc (S n) (Σ A (fst ∘ d))) → to (from x) == x to-from = Trunc-elim (λ _ → idp) from-to-aux : (a : Trunc (S n) A) (b : fst (f a)) → from (to-aux a b) == (a , b) from-to-aux = Trunc-elim {{λ _ → Π-level (λ _ → =-preserves-level (Σ-level ⟨⟩ (λ x → raise-level _ (snd (f x)))))}} (λ a b → idp) from-to : (x : Σ (Trunc (S n) A) (fst ∘ f)) → from (to x) == x from-to (a , b) = from-to-aux a b ⊙Trunc : ∀ {i} → ℕ₋₂ → Ptd i → Ptd i ⊙Trunc n ⊙[ A , a ] = ⊙[ Trunc n A , [ a ] ] ⊙Trunc-rec : ∀ {i j} {n : ℕ₋₂} {X : Ptd i} {Y : Ptd j} {{Y-level : has-level n (de⊙ Y)}} → X ⊙→ Y → ⊙Trunc n X ⊙→ Y ⊙Trunc-rec {{Y-level}} f = Trunc-rec {{Y-level}} (fst f) , snd f ⊙Trunc-rec-post-⊙∘ : ∀ {i j k} {n : ℕ₋₂} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {{Y-level : has-level n (de⊙ Y)}} {{Z-level : has-level n (de⊙ Z)}} (g : Y ⊙→ Z) (f : X ⊙→ Y) → ⊙Trunc-rec {n = n} {{Z-level}} (g ⊙∘ f) == g ⊙∘ ⊙Trunc-rec {{Y-level}} f ⊙Trunc-rec-post-⊙∘ {{Y-level}} {{Z-level}} g f = ⊙λ=' (Trunc-elim {{λ x → =-preserves-level Z-level}} (λ x → idp)) idp module _ {i} {A : Type i} where [_]₀ : A → Trunc 0 A [_]₀ = [_] {n = 0} [_]₁ : A → Trunc 1 A [_]₁ = [_] {n = 1} [_]₂ : A → Trunc 2 A [_]₂ = [_] {n = 2} module _ {i} {n : ℕ₋₂} {A : Type i} where private Trunc= : (a b : Trunc (S n) A) → n -Type i Trunc= = Trunc-elim (λ a → Trunc-elim ((λ b → (Trunc n (a == b) , Trunc-level)))) {- t is for truncated -} _=ₜ_ : (a b : Trunc (S n) A) → Type i _=ₜ_ a b = fst (Trunc= a b) =ₜ-level : (a b : Trunc (S n) A) → has-level n (a =ₜ b) =ₜ-level a b = snd (Trunc= a b) =ₜ-refl : (a : Trunc (S n) A) → a =ₜ a =ₜ-refl = Trunc-elim {{λ x → raise-level _ (=ₜ-level x x)}} (λ a → [ idp ]) =ₜ-equiv : (a b : Trunc (S n) A) → (a == b) ≃ (a =ₜ b) =ₜ-equiv a b = to a b , to-is-equiv a b where to : (a b : Trunc (S n) A) → (a == b → a =ₜ b) to a b p = transport (λ c → a =ₜ c) p (=ₜ-refl a) from-aux : (a b : A) → a == b → [ a ] == [ b ] :> Trunc (S n) A from-aux _ _ = ap [_] from : (a b : Trunc (S n) A) → a =ₜ b → a == b from = Trunc-elim (λ a → Trunc-elim (λ b → Trunc-rec (from-aux a b))) to-from-aux : (a b : A) → (p : a == b) → to _ _ (from-aux a b p) == [ p ] to-from-aux a .a idp = idp to-from : (a b : Trunc (S n) A) (x : a =ₜ b) → to a b (from a b x) == x to-from = Trunc-elim {{λ x → Π-level (λ y → Π-level (λ _ → =-preserves-level (raise-level _ (=ₜ-level x y))))}} (λ a → Trunc-elim {{λ x → Π-level (λ _ → =-preserves-level (raise-level _ (=ₜ-level [ a ] x)))}} (λ b → Trunc-elim (to-from-aux a b))) from-to-aux : (a : Trunc (S n) A) → from a a (=ₜ-refl a) == idp from-to-aux = Trunc-elim (λ _ → idp) from-to : (a b : Trunc (S n) A) (p : a == b) → from a b (to a b p) == p from-to a .a idp = from-to-aux a adj : (ta tb : Trunc (S n) A) (p : ta == tb) → ap (to ta tb) (from-to ta tb p) == to-from ta tb (to ta tb p) adj ta .ta idp = Trunc-elim {P = λ ta → ap (to ta ta) (from-to ta ta idp) == to-from ta ta (to ta ta idp)} {{λ x → =-preserves-level $ =-preserves-level $ raise-level _ $ =ₜ-level x x}} (λ _ → idp) ta to-is-equiv : ∀ a b → is-equiv (to a b) to-is-equiv a b = record { g = from a b ; f-g = to-from a b ; g-f = from-to a b ; adj = adj a b } =ₜ-path : (a b : Trunc (S n) A) → (a == b) == (a =ₜ b) =ₜ-path a b = ua (=ₜ-equiv a b) {- Universal property -} abstract Trunc-rec-is-equiv : ∀ {i j} (n : ℕ₋₂) (A : Type i) (B : Type j) {{p : has-level n B}} → is-equiv (Trunc-rec {{p}} :> ((A → B) → (Trunc n A → B))) Trunc-rec-is-equiv n A B {{p}} = is-eq _ (λ f → f ∘ [_]) (λ f → λ= (Trunc-elim (λ a → idp))) (λ f → idp) Trunc-preserves-level : ∀ {i} {A : Type i} {n : ℕ₋₂} (m : ℕ₋₂) → has-level n A → has-level n (Trunc m A) Trunc-preserves-level {n = ⟨-2⟩} _ p = has-level-in ([ contr-center p ] , Trunc-elim (λ a → ap [_] (contr-path p a))) Trunc-preserves-level ⟨-2⟩ _ = contr-has-level Trunc-level Trunc-preserves-level {n = (S n)} (S m) c = has-level-in (λ t₁ t₂ → Trunc-elim {{λ s₁ → prop-has-level-S {A = has-level n (s₁ == t₂)} has-level-is-prop}} (λ a₁ → Trunc-elim {{λ s₂ → prop-has-level-S {A = has-level n ([ a₁ ] == s₂)} has-level-is-prop}} (λ a₂ → equiv-preserves-level ((=ₜ-equiv [ a₁ ] [ a₂ ])⁻¹) {{Trunc-preserves-level {n = n} m (has-level-apply c a₁ a₂)}}) t₂) t₁) {- an n-type is equivalent to its n-truncation -} unTrunc-equiv : ∀ {i} {n : ℕ₋₂} (A : Type i) {{_ : has-level n A}} → Trunc n A ≃ A unTrunc-equiv A = equiv f [_] (λ _ → idp) g-f where f = Trunc-rec (idf _) g-f = Trunc-elim (λ _ → idp) ⊙unTrunc-equiv : ∀ {i} {n : ℕ₋₂} (X : Ptd i) {{_ : has-level n (de⊙ X)}} → ⊙Trunc n X ⊙≃ X ⊙unTrunc-equiv {n = n} X = ≃-to-⊙≃ (unTrunc-equiv (de⊙ X)) idp -- Equivalence associated to the universal property Trunc-extend-equiv : ∀ {i j} (n : ℕ₋₂) (A : Type i) (B : Type j) {{p : has-level n B}} → (A → B) ≃ (Trunc n A → B) Trunc-extend-equiv n A B = (Trunc-rec , Trunc-rec-is-equiv n A B) Trunc-fmap : ∀ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} → ((A → B) → (Trunc n A → Trunc n B)) Trunc-fmap f = Trunc-rec ([_] ∘ f) ⊙Trunc-fmap : ∀ {i j} {n : ℕ₋₂} {X : Ptd i} {Y : Ptd j} → ((X ⊙→ Y) → (⊙Trunc n X ⊙→ ⊙Trunc n Y)) ⊙Trunc-fmap F = Trunc-fmap (fst F) , ap [_] (snd F) –>-unTrunc-equiv-natural : ∀ {i} {j} {n : ℕ₋₂} {A : Type i} {B : Type j} (f : A → B) {{_ : has-level n A}} {{_ : has-level n B}} → –> (unTrunc-equiv {n = n} B) ∘ Trunc-fmap f ∼ f ∘ –> (unTrunc-equiv {n = n} A) –>-unTrunc-equiv-natural f = Trunc-elim (λ a → idp) ⊙–>-⊙unTrunc-equiv-natural : ∀ {i} {j} {n : ℕ₋₂} {X : Ptd i} {Y : Ptd j} (f : X ⊙→ Y) {{_ : has-level n (de⊙ X)}} {{_ : has-level n (de⊙ Y)}} → ⊙–> (⊙unTrunc-equiv {n = n} Y) ⊙∘ ⊙Trunc-fmap f == f ⊙∘ ⊙–> (⊙unTrunc-equiv {n = n} X) ⊙–>-⊙unTrunc-equiv-natural (f' , idp) = ⊙λ=' (–>-unTrunc-equiv-natural f') idp ⊙–>-⊙unTrunc-equiv-natural-=⊙∘ : ∀ {i} {n : ℕ₋₂} {X Y : Ptd i} (f : X ⊙→ Y) {{_ : has-level n (de⊙ X)}} {{_ : has-level n (de⊙ Y)}} → ⊙–> (⊙unTrunc-equiv {n = n} Y) ◃⊙∘ ⊙Trunc-fmap f ◃⊙idf =⊙∘ f ◃⊙∘ ⊙–> (⊙unTrunc-equiv {n = n} X) ◃⊙idf ⊙–>-⊙unTrunc-equiv-natural-=⊙∘ f = =⊙∘-in (⊙–>-⊙unTrunc-equiv-natural f) Trunc-fmap2 : ∀ {i j k} {n : ℕ₋₂} {A : Type i} {B : Type j} {C : Type k} → ((A → B → C) → (Trunc n A → Trunc n B → Trunc n C)) Trunc-fmap2 f = Trunc-rec (λ a → Trunc-fmap (f a)) ⊙Trunc-rec-⊙Trunc-fmap : ∀ {i j k} {n : ℕ₋₂} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {{Z-level : has-level n (de⊙ Z)}} (g : Y ⊙→ Z) (f : X ⊙→ Y) → ⊙Trunc-rec {n = n} {{Z-level}} g ⊙∘ ⊙Trunc-fmap f == ⊙Trunc-rec {n = n} {{Z-level}} (g ⊙∘ f) ⊙Trunc-rec-⊙Trunc-fmap {{Z-level}} g f = ⊙λ=' (Trunc-elim {{λ tx → =-preserves-level Z-level}} (λ x → idp)) $ ap (_∙ snd g) (∘-ap (Trunc-elim (fst g)) [_] (snd f)) -- XXX What is the naming convention? Trunc-fpmap : ∀ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} {f g : A → B} → f ∼ g → Trunc-fmap {n = n} f ∼ Trunc-fmap g Trunc-fpmap h = Trunc-elim (ap [_] ∘ h) Trunc-fmap-idf : ∀ {i} {n : ℕ₋₂} {A : Type i} → ∀ x → Trunc-fmap {n = n} (idf A) x == x Trunc-fmap-idf = Trunc-elim (λ _ → idp) ⊙Trunc-fmap-⊙idf : ∀ {i} {n : ℕ₋₂} {X : Ptd i} → ⊙Trunc-fmap (⊙idf X) ⊙∼ ⊙idf (⊙Trunc n X) ⊙Trunc-fmap-⊙idf = Trunc-fmap-idf , idp transport-Trunc : ∀ {i} {n : ℕ₋₂} {A B : Type i} (p : A == B) → transport (Trunc n) p == Trunc-fmap (coe p) transport-Trunc p@idp = ! (λ= Trunc-fmap-idf) ⊙transport-⊙Trunc : ∀ {i} {n : ℕ₋₂} {X Y : Ptd i} (p : X == Y) → ⊙transport (⊙Trunc n) p == ⊙Trunc-fmap (⊙coe p) ⊙transport-⊙Trunc p@idp = ! (⊙λ= ⊙Trunc-fmap-⊙idf) Trunc-fmap-cst : ∀ {i} {j} {n : ℕ₋₂} {A : Type i} {B : Type j} → ∀ (b : B) → Trunc-fmap {n = n} {A = A} (cst b) ∼ cst [ b ] Trunc-fmap-cst b = Trunc-elim (λ a → idp) ⊙Trunc-fmap-cst : ∀ {i} {j} {n : ℕ₋₂} {X : Ptd i} {Y : Ptd j} → ⊙Trunc-fmap {n = n} (⊙cst {X = X} {Y = Y}) ⊙∼ ⊙cst ⊙Trunc-fmap-cst {Y = Y} = Trunc-fmap-cst (pt Y) , idp Trunc-fmap-∘ : ∀ {i j k} {n : ℕ₋₂} {A : Type i} {B : Type j} {C : Type k} (g : B → C) (f : A → B) → ∀ x → Trunc-fmap {n = n} g (Trunc-fmap f x) == Trunc-fmap (g ∘ f) x Trunc-fmap-∘ g f = Trunc-elim (λ _ → idp) ⊙Trunc-fmap-⊙∘ : ∀ {i j k} {n : ℕ₋₂} {A : Ptd i} {B : Ptd j} {C : Ptd k} (g : B ⊙→ C) (f : A ⊙→ B) → ⊙Trunc-fmap {n = n} g ⊙∘ ⊙Trunc-fmap f ⊙∼ ⊙Trunc-fmap (g ⊙∘ f) ⊙Trunc-fmap-⊙∘ {n = n} g f = Trunc-fmap-∘ (fst g) (fst f) , pres-pt-path where pres-pt-path : snd (⊙Trunc-fmap {n = n} g ⊙∘ ⊙Trunc-fmap f) == snd (⊙Trunc-fmap (g ⊙∘ f)) pres-pt-path = ap (Trunc-fmap (fst g)) (ap [_] (snd f)) ∙ ap [_] (snd g) =⟨ ap (_∙ ap [_] (snd g)) (∘-ap (Trunc-fmap (fst g)) [_] (snd f) ∙ ap-∘ [_] (fst g) (snd f)) ⟩ ap [_] (ap (fst g) (snd f)) ∙ ap [_] (snd g) =⟨ ∙-ap [_] (ap (fst g) (snd f)) (snd g) ⟩ ap [_] (ap (fst g) (snd f) ∙ snd g) =∎ ⊙Trunc-fmap-seq : ∀ {i} {n : ℕ₋₂} {X Y : Ptd i} → X ⊙–→ Y → ⊙Trunc n X ⊙–→ ⊙Trunc n Y ⊙Trunc-fmap-seq ⊙idf-seq = ⊙idf-seq ⊙Trunc-fmap-seq (f ◃⊙∘ fs) = ⊙Trunc-fmap f ◃⊙∘ ⊙Trunc-fmap-seq fs ⊙Trunc-fmap-seq-⊙∘ : ∀ {i} {n : ℕ₋₂} {X Y : Ptd i} (fs : X ⊙–→ Y) → ⊙Trunc-fmap {n = n} (⊙compose fs) ◃⊙idf =⊙∘ ⊙Trunc-fmap-seq fs ⊙Trunc-fmap-seq-⊙∘ ⊙idf-seq = =⊙∘-in (⊙λ= (⊙Trunc-fmap-⊙idf)) ⊙Trunc-fmap-seq-⊙∘ (f ◃⊙∘ fs) = =⊙∘-in $ ⊙Trunc-fmap (f ⊙∘ ⊙compose fs) =⟨ ! $ ⊙λ= $ ⊙Trunc-fmap-⊙∘ f (⊙compose fs) ⟩ ⊙Trunc-fmap f ⊙∘ ⊙Trunc-fmap (⊙compose fs) =⟨ ap (⊙Trunc-fmap f ⊙∘_) (=⊙∘-out (⊙Trunc-fmap-seq-⊙∘ fs)) ⟩ ⊙Trunc-fmap f ⊙∘ ⊙compose (⊙Trunc-fmap-seq fs) =∎ ⊙Trunc-fmap-seq-=⊙∘ : ∀ {i} {n : ℕ₋₂} {X Y : Ptd i} {fs gs : X ⊙–→ Y} → fs =⊙∘ gs → ⊙Trunc-fmap-seq {n = n} fs =⊙∘ ⊙Trunc-fmap-seq {n = n} gs ⊙Trunc-fmap-seq-=⊙∘ {fs = fs} {gs = gs} p = ⊙Trunc-fmap-seq fs =⊙∘⟨ !⊙∘ (⊙Trunc-fmap-seq-⊙∘ fs) ⟩ ⊙Trunc-fmap (⊙compose fs) ◃⊙idf =⊙∘₁⟨ ap ⊙Trunc-fmap (=⊙∘-out p) ⟩ ⊙Trunc-fmap (⊙compose gs) ◃⊙idf =⊙∘⟨ ⊙Trunc-fmap-seq-⊙∘ gs ⟩ ⊙Trunc-fmap-seq gs ∎⊙∘ Trunc-csmap : ∀ {i₀ i₁ j₀ j₁} {n : ℕ₋₂} {A₀ : Type i₀} {A₁ : Type i₁} {B₀ : Type j₀} {B₁ : Type j₁} {f : A₀ → B₀} {g : A₁ → B₁} {hA : A₀ → A₁} {hB : B₀ → B₁} → CommSquare f g hA hB → CommSquare (Trunc-fmap {n = n} f) (Trunc-fmap g) (Trunc-fmap hA) (Trunc-fmap hB) Trunc-csmap (comm-sqr cs) = comm-sqr $ Trunc-elim (ap [_] ∘ cs) {- Pushing concatenatation through _=ₜ_ -} module _ {i} {n : ℕ₋₂} {A : Type i} where {- concatenation in _=ₜ_ -} _∙ₜ_ : {ta tb tc : Trunc (S n) A} → ta =ₜ tb → tb =ₜ tc → ta =ₜ tc _∙ₜ_ {ta = ta} {tb = tb} {tc = tc} = Trunc-elim {P = λ ta → C ta tb tc} {{λ ta → level ta tb tc}} (λ a → Trunc-elim {P = λ tb → C [ a ] tb tc} {{λ tb → level [ a ] tb tc}} (λ b → Trunc-elim {P = λ tc → C [ a ] [ b ] tc} {{λ tc → level [ a ] [ b ] tc}} (λ c → Trunc-fmap2 _∙_) tc) tb) ta where C : (ta tb tc : Trunc (S n) A) → Type i C ta tb tc = ta =ₜ tb → tb =ₜ tc → ta =ₜ tc level : (ta tb tc : Trunc (S n) A) → has-level (S n) (C ta tb tc) level ta tb tc = raise-level _ $ Π-level $ λ _ → Π-level $ λ _ → =ₜ-level ta tc {- inversion in _=ₜ_ -} !ₜ : {ta tb : Trunc (S n) A} → ta =ₜ tb → tb =ₜ ta !ₜ {ta = ta} {tb = tb} = Trunc-elim {P = λ ta → C ta tb} {{λ ta → level ta tb}} (λ a → Trunc-elim {P = λ tb → C [ a ] tb} {{λ tb → level [ a ] tb}} (λ b → Trunc-fmap !) tb) ta where C : (ta tb : Trunc (S n) A) → Type i C ta tb = ta =ₜ tb → tb =ₜ ta level : (ta tb : Trunc (S n) A) → has-level (S n) (C ta tb) level ta tb = raise-level _ $ Π-level $ λ _ → =ₜ-level tb ta ∙ₜ-assoc : {ta tb tc td : Trunc (S n) A} (tp : ta =ₜ tb) (tq : tb =ₜ tc) (tr : tc =ₜ td) → _∙ₜ_ {ta} (_∙ₜ_ {ta} tp tq) tr == _∙ₜ_ {ta} tp (_∙ₜ_ {tb} tq tr) ∙ₜ-assoc {ta = ta} {tb = tb} {tc = tc} {td = td} = Trunc-elim {P = λ ta → C ta tb tc td} {{λ ta → C-level ta tb tc td}} (λ a → Trunc-elim {P = λ tb → C [ a ] tb tc td} {{λ tb → C-level [ a ] tb tc td}} (λ b → Trunc-elim {P = λ tc → C [ a ] [ b ] tc td} {{λ tc → C-level [ a ] [ b ] tc td}} (λ c → Trunc-elim {P = λ td → C [ a ] [ b ] [ c ] td} {{λ td → C-level [ a ] [ b ] [ c ] td}} (λ d tp tq tr → Trunc-elim {P = λ tp → D [ a ] [ b ] [ c ] [ d ] tp tq tr} {{λ tp → D-level [ a ] [ b ] [ c ] [ d ] tp tq tr}} (λ p → Trunc-elim {P = λ tq → D [ a ] [ b ] [ c ] [ d ] [ p ] tq tr} {{λ tq → D-level [ a ] [ b ] [ c ] [ d ] [ p ] tq tr}} (λ q → Trunc-elim {P = λ tr → D [ a ] [ b ] [ c ] [ d ] [ p ] [ q ] tr} {{λ tr → D-level [ a ] [ b ] [ c ] [ d ] [ p ] [ q ] tr}} (λ r → ap [_] (∙-assoc p q r)) tr) tq) tp) td) tc) tb) ta where D : (ta tb tc td : Trunc (S n) A) → ta =ₜ tb → tb =ₜ tc → tc =ₜ td → Type i D ta tb tc td tp tq tr = _∙ₜ_ {ta} (_∙ₜ_ {ta} tp tq) tr == _∙ₜ_ {ta} tp (_∙ₜ_ {tb} tq tr) C : (ta tb tc td : Trunc (S n) A) → Type i C ta tb tc td = ∀ tp tq tr → D ta tb tc td tp tq tr D-level : (ta tb tc td : Trunc (S n) A) (tp : ta =ₜ tb) (tq : tb =ₜ tc) (tr : tc =ₜ td) → has-level n (D ta tb tc td tp tq tr) D-level ta tb tc td tp tq tr = =-preserves-level (=ₜ-level ta td) C-level : (ta tb tc td : Trunc (S n) A) → has-level (S n) (C ta tb tc td) C-level ta tb tc td = raise-level _ $ Π-level $ λ tp → Π-level $ λ tq → Π-level $ λ tr → D-level ta tb tc td tp tq tr abstract ∙ₜ-assoc-pentagon : {ta tb tc td te : Trunc (S n) A} (tp : ta =ₜ tb) (tq : tb =ₜ tc) (tr : tc =ₜ td) (ts : td =ₜ te) → ∙ₜ-assoc {ta} (_∙ₜ_ {ta} tp tq) tr ts ◃∙ ∙ₜ-assoc {ta} tp tq (_∙ₜ_ {tc} tr ts) ◃∎ =ₛ ap (λ u → _∙ₜ_ {ta} u ts) (∙ₜ-assoc {ta} tp tq tr) ◃∙ ∙ₜ-assoc {ta} tp (_∙ₜ_ {tb} tq tr) ts ◃∙ ap (_∙ₜ_ {ta} tp) (∙ₜ-assoc {tb} tq tr ts) ◃∎ ∙ₜ-assoc-pentagon {ta} {tb} {tc} {td} {te} = core ta tb tc td te where P : (ta tb tc td te : Trunc (S n) A) (tp : ta =ₜ tb) (tq : tb =ₜ tc) (tr : tc =ₜ td) (ts : td =ₜ te) → Type i P ta tb tc td te tp tq tr ts = ∙ₜ-assoc {ta} (_∙ₜ_ {ta} tp tq) tr ts ◃∙ ∙ₜ-assoc {ta} tp tq (_∙ₜ_ {tc} tr ts) ◃∎ =ₛ ap (λ u → _∙ₜ_ {ta} u ts) (∙ₜ-assoc {ta} tp tq tr) ◃∙ ∙ₜ-assoc {ta} tp (_∙ₜ_ {tb} tq tr) ts ◃∙ ap (_∙ₜ_ {ta} tp) (∙ₜ-assoc {tb} tq tr ts) ◃∎ P-level : ∀ ta tb tc td te → (tp : ta =ₜ tb) (tq : tb =ₜ tc) (tr : tc =ₜ td) (ts : td =ₜ te) → has-level n (P ta tb tc td te tp tq tr ts) P-level ta tb tc td te tp tq tr ts = =ₛ-level $ raise-level _ $ raise-level _ $ =ₜ-level ta te Q : (ta tb tc td te : Trunc (S n) A) → Type i Q ta tb tc td te = ∀ tp tq tr ts → P ta tb tc td te tp tq tr ts Q-level : ∀ ta tb tc td te → has-level (S n) (Q ta tb tc td te) Q-level ta tb tc td te = raise-level n $ Π-level $ λ tp → Π-level $ λ tq → Π-level $ λ tr → Π-level $ λ ts → P-level ta tb tc td te tp tq tr ts core' : ∀ {a} {b} {c} {d} {e} p q r s → P [ a ] [ b ] [ c ] [ d ] [ e ] [ p ] [ q ] [ r ] [ s ] core' idp idp r s = =ₛ-in idp core : ∀ ta tb tc td te → Q ta tb tc td te core ta tb tc td te = Trunc-elim {P = λ ta → Q ta tb tc td te} {{λ ta → Q-level ta tb tc td te}} (λ a → Trunc-elim {P = λ tb → Q [ a ] tb tc td te} {{λ tb → Q-level [ a ] tb tc td te}} (λ b → Trunc-elim {P = λ tc → Q [ a ] [ b ] tc td te} {{λ tc → Q-level [ a ] [ b ] tc td te}} (λ c → Trunc-elim {P = λ td → Q [ a ] [ b ] [ c ] td te} {{λ td → Q-level [ a ] [ b ] [ c ] td te}} (λ d → Trunc-elim {P = λ te → Q [ a ] [ b ] [ c ] [ d ] te} {{λ te → Q-level [ a ] [ b ] [ c ] [ d ] te}} (λ e → let R = P [ a ] [ b ] [ c ] [ d ] [ e ] R-level = P-level [ a ] [ b ] [ c ] [ d ] [ e ] in λ tp tq tr ts → Trunc-elim {P = λ tp → R tp tq tr ts} {{λ tp → R-level tp tq tr ts }} (λ p → Trunc-elim {P = λ tq → R [ p ] tq tr ts} {{λ tq → R-level [ p ] tq tr ts}} (λ q → Trunc-elim {P = λ tr → R [ p ] [ q ] tr ts} {{λ tr → R-level [ p ] [ q ] tr ts}} (λ r → Trunc-elim {P = λ ts → R [ p ] [ q ] [ r ] ts} {{λ ts → R-level [ p ] [ q ] [ r ] ts}} (λ s → core' p q r s ) ts ) tr ) tq ) tp ) te ) td ) tc ) tb ) ta –>-=ₜ-equiv-pres-∙ : {ta tb tc : Trunc (S n) A} (p : ta == tb) (q : tb == tc) → –> (=ₜ-equiv ta tc) (p ∙ q) == _∙ₜ_ {ta = ta} (–> (=ₜ-equiv ta tb) p) (–> (=ₜ-equiv tb tc) q) –>-=ₜ-equiv-pres-∙ {ta = ta} idp idp = Trunc-elim {P = λ ta → –> (=ₜ-equiv ta ta) idp == _∙ₜ_ {ta = ta} (–> (=ₜ-equiv ta ta) idp) (–> (=ₜ-equiv ta ta) idp)} {{λ ta → raise-level _ $ =-preserves-level $ =ₜ-level ta ta}} (λ a → idp) ta !ₜ-=ₜ-refl : ∀ (ta : Trunc (S n) A) → !ₜ {ta = ta} (=ₜ-refl ta) == =ₜ-refl ta !ₜ-=ₜ-refl = Trunc-elim {P = λ ta → !ₜ {ta = ta} (=ₜ-refl ta) == =ₜ-refl ta} {{λ ta → raise-level _ $ =-preserves-level $ =ₜ-level ta ta}} (λ a → idp) –>-=ₜ-equiv-pres-! : {ta tb : Trunc (S n) A} (p : ta == tb) → –> (=ₜ-equiv tb ta) (! p) == !ₜ {ta = ta} (–> (=ₜ-equiv ta tb) p) –>-=ₜ-equiv-pres-! {ta = ta} p@idp = ! (!ₜ-=ₜ-refl ta) abstract –>-=ₜ-equiv-pres-∙-coh : {ta tb tc td : Trunc (S n) A} (p : ta == tb) (q : tb == tc) (r : tc == td) → –>-=ₜ-equiv-pres-∙ (p ∙ q) r ◃∙ ap (λ u → _∙ₜ_ {ta = ta} u (–> (=ₜ-equiv tc td) r)) (–>-=ₜ-equiv-pres-∙ p q) ◃∙ ∙ₜ-assoc {ta = ta} (–> (=ₜ-equiv ta tb) p) (–> (=ₜ-equiv tb tc) q) (–> (=ₜ-equiv tc td) r) ◃∎ =ₛ ap (–> (=ₜ-equiv ta td)) (∙-assoc p q r) ◃∙ –>-=ₜ-equiv-pres-∙ p (q ∙ r) ◃∙ ap (_∙ₜ_ {ta = ta} (–> (=ₜ-equiv ta tb) p)) (–>-=ₜ-equiv-pres-∙ q r) ◃∎ –>-=ₜ-equiv-pres-∙-coh {ta = ta} idp idp idp = Trunc-elim {P = λ ta → P ta ta ta ta idp idp idp} {{λ ta → =ₛ-level $ raise-level (S (S n)) $ raise-level (S n) $ raise-level n $ =ₜ-level ta ta}} (λ a → =ₛ-in idp) ta where P : (ta tb tc td : Trunc (S n) A) (p : ta == tb) (q : tb == tc) (r : tc == td) → Type i P ta tb tc td p q r = –>-=ₜ-equiv-pres-∙ (p ∙ q) r ◃∙ ap (λ u → _∙ₜ_ {ta = ta} u (–> (=ₜ-equiv tc td) r)) (–>-=ₜ-equiv-pres-∙ p q) ◃∙ ∙ₜ-assoc {ta = ta} (–> (=ₜ-equiv ta tb) p) (–> (=ₜ-equiv tb tc) q) (–> (=ₜ-equiv tc td) r) ◃∎ =ₛ ap (–> (=ₜ-equiv ta td)) (∙-assoc p q r) ◃∙ –>-=ₜ-equiv-pres-∙ p (q ∙ r) ◃∙ ap (_∙ₜ_ {ta = ta} (–> (=ₜ-equiv ta tb) p)) (–>-=ₜ-equiv-pres-∙ q r) ◃∎ {- naturality of =ₜ-equiv -} module _ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} (f : A → B) where =ₜ-fmap : ∀ (a₀ a₁ : Trunc (S n) A) → a₀ =ₜ a₁ → Trunc-fmap f a₀ =ₜ Trunc-fmap f a₁ =ₜ-fmap = Trunc-elim {P = λ a₀ → ∀ a₁ → a₀ =ₜ a₁ → Trunc-fmap f a₀ =ₜ Trunc-fmap f a₁} {{λ a₀ → Π-level λ a₁ → Π-level λ _ → raise-level _ $ =ₜ-level (Trunc-fmap f a₀) (Trunc-fmap f a₁)}} (λ a₀ → Trunc-elim {P = λ a₁ → [ a₀ ] =ₜ a₁ → [ f a₀ ] =ₜ Trunc-fmap f a₁} {{λ a₁ → Π-level λ _ → raise-level _ $ =ₜ-level [ f a₀ ] (Trunc-fmap f a₁)}} (λ a₁ → Trunc-fmap (ap f))) module _ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} (f : A → B) where =ₜ-equiv-nat : ∀ (a₀ a₁ : Trunc (S n) A) (p : a₀ == a₁) → –> (=ₜ-equiv (Trunc-fmap f a₀) (Trunc-fmap f a₁)) (ap (Trunc-fmap f) p) == =ₜ-fmap f a₀ a₁ (–> (=ₜ-equiv a₀ a₁) p) =ₜ-equiv-nat a₀ .a₀ idp = Trunc-elim {P = λ a → –> (=ₜ-equiv (Trunc-fmap f a) (Trunc-fmap f a)) idp == =ₜ-fmap f a a (–> (=ₜ-equiv a a) idp)} {{λ a → raise-level _ $ =-preserves-level $ =ₜ-level (Trunc-fmap f a) (Trunc-fmap f a)}} (λ _ → idp) a₀ {- Truncation preserves equivalences - more convenient than univalence+ap - when we need to know the forward or backward function explicitly -} module _ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} where Trunc-isemap : {f : A → B} → is-equiv f → is-equiv (Trunc-fmap {n = n} f) Trunc-isemap {f-orig} ie = is-eq f g f-g g-f where f = Trunc-fmap f-orig g = Trunc-fmap (is-equiv.g ie) f-g : ∀ tb → f (g tb) == tb f-g = Trunc-elim (ap [_] ∘ is-equiv.f-g ie) g-f : ∀ ta → g (f ta) == ta g-f = Trunc-elim (ap [_] ∘ is-equiv.g-f ie) Trunc-emap : A ≃ B → Trunc n A ≃ Trunc n B Trunc-emap (f , f-ie) = Trunc-fmap f , Trunc-isemap f-ie Trunc-csemap : ∀ {i₀ i₁ j₀ j₁} {n : ℕ₋₂} {A₀ : Type i₀} {A₁ : Type i₁} {B₀ : Type j₀} {B₁ : Type j₁} {f : A₀ → B₀} {g : A₁ → B₁} {hA : A₀ → A₁} {hB : B₀ → B₁} → CommSquareEquiv f g hA hB → CommSquareEquiv (Trunc-fmap {n = n} f) (Trunc-fmap g) (Trunc-fmap hA) (Trunc-fmap hB) Trunc-csemap (cs , hA-ise , hB-ise) = Trunc-csmap cs , Trunc-isemap hA-ise , Trunc-isemap hB-ise transport-Trunc' : ∀ {i j} {A : Type i} {n : ℕ₋₂} (P : A → Type j) {x y : A} (p : x == y) (b : P x) → transport (Trunc n ∘ P) p [ b ] == [ transport P p b ] transport-Trunc' _ idp _ = idp Trunc-fuse : ∀ {i} (A : Type i) (m n : ℕ₋₂) → Trunc m (Trunc n A) ≃ Trunc (minT m n) A Trunc-fuse A m n = equiv (Trunc-rec {{raise-level-≤T (minT≤l m n) Trunc-level}} (Trunc-rec {{raise-level-≤T (minT≤r m n) Trunc-level}} [_])) (Trunc-rec ([_] ∘ [_])) (Trunc-elim (λ _ → idp)) (Trunc-elim (Trunc-elim {{λ _ → =-preserves-level (Trunc-preserves-level _ Trunc-level)}} (λ _ → idp))) where instance l : has-level (minT m n) (Trunc m (Trunc n A)) l with (minT-out m n) l | inl p = transport (λ k → has-level k (Trunc m (Trunc n A))) (! p) Trunc-level l | inr q = Trunc-preserves-level _ (transport (λ k → has-level k (Trunc n A)) (! q) Trunc-level) Trunc-fuse-≤ : ∀ {i} (A : Type i) {m n : ℕ₋₂} (m≤n : m ≤T n) → Trunc m (Trunc n A) ≃ Trunc m A Trunc-fuse-≤ A m≤n = equiv (Trunc-rec (Trunc-rec {{raise-level-≤T m≤n Trunc-level}} [_])) (Trunc-rec ([_] ∘ [_])) (Trunc-elim (λ _ → idp)) (Trunc-elim (Trunc-elim {{λ _ → =-preserves-level (Trunc-preserves-level _ Trunc-level)}} (λ _ → idp))) {- Truncating a binary product is equivalent to truncating its components -} Trunc-×-econv : ∀ {i} {j} (n : ℕ₋₂) (A : Type i) (B : Type j) → Trunc n (A × B) ≃ Trunc n A × Trunc n B Trunc-×-econv n A B = equiv f g f-g g-f where f : Trunc n (A × B) → Trunc n A × Trunc n B f = Trunc-rec (λ {(a , b) → [ a ] , [ b ]}) g : Trunc n A × Trunc n B → Trunc n (A × B) g (ta , tb) = Trunc-rec (λ a → Trunc-rec (λ b → [ a , b ]) tb) ta f-g : ∀ p → f (g p) == p f-g (ta , tb) = Trunc-elim {P = λ ta → f (g (ta , tb)) == (ta , tb)} (λ a → Trunc-elim {P = λ tb → f (g ([ a ] , tb)) == ([ a ] , tb)} (λ b → idp) tb) ta g-f : ∀ tab → g (f tab) == tab g-f = Trunc-elim {P = λ tab → g (f tab) == tab} (λ ab → idp) Trunc-×-conv : ∀ {i} {j} (n : ℕ₋₂) (A : Type i) (B : Type j) → Trunc n (A × B) == Trunc n A × Trunc n B Trunc-×-conv n A B = ua (Trunc-×-econv n A B)
38.65512
121
0.460669
ad292d398135db1f26eb02da70e96e8f63241544
134
agda
Agda
formalization/all.agda
ishantheperson/Obsidian
b5fc75b137cf86251c03709c58f940286d730e86
[ "BSD-3-Clause" ]
79
2017-08-19T16:24:10.000Z
2022-03-27T10:34:28.000Z
formalization/all.agda
ishantheperson/Obsidian
b5fc75b137cf86251c03709c58f940286d730e86
[ "BSD-3-Clause" ]
259
2017-08-18T19:50:41.000Z
2022-03-29T18:20:05.000Z
formalization/all.agda
ishantheperson/Obsidian
b5fc75b137cf86251c03709c58f940286d730e86
[ "BSD-3-Clause" ]
11
2018-05-24T08:20:52.000Z
2021-06-09T18:40:19.000Z
-- This file serves to aggregate all the top-level dependencies in the Silica project. open import preservation open import progress
26.8
86
0.813433
04faed55407fc6c62aad51b1ad94ff81409828bd
851
agda
Agda
test/Succeed/Issue383.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue383.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue383.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2011-05-09 -- {-# OPTIONS -v tc.meta:15 -v tc.inj:40 #-} module Issue383 where data D (A : Set) : A → Set where data Unit : Set where unit : Unit D′ : (A : Set) → A → Unit → Set D′ A x unit = D A x postulate Q : (A : Set) → A → Set q : (u : Unit) (A : Set) (x : A) → D′ A x u → Q A x A : Set x : A d : D A x P : (A : Set) → A → Set p : P (Q _ _) (q _ _ _ d) -- SOLVED, WORKS NOW. -- OLD BEHAVIOR: -- Agda does not infer the values of the underscores on the last line. -- Shouldn't constructor-headedness come to the rescue here? Agda does -- identify D′ as being constructor-headed, and does invert D′ /six -- times/, but still fails to infer that the third underscore should -- be unit. {- blocked _41 := d by [(D A x) =< (D′ _39 _40 _38) : Set] blocked _42 := q _38 _36 _40 _41 by [_40 == _37 : _36] -}
22.394737
70
0.582844
2927964ba90083eccb66568e5d5b0d2ac62cf402
29,728
agda
Agda
Agda/06-universes.agda
tmoux/HoTT-Intro
22023fd35023cb6804424ce12cd10d252b80fd29
[ "CC-BY-4.0" ]
333
2018-09-26T08:33:30.000Z
2022-03-22T23:50:15.000Z
Agda/06-universes.agda
tmoux/HoTT-Intro
22023fd35023cb6804424ce12cd10d252b80fd29
[ "CC-BY-4.0" ]
8
2019-06-18T04:16:04.000Z
2020-10-16T15:27:01.000Z
Agda/06-universes.agda
tmoux/HoTT-Intro
22023fd35023cb6804424ce12cd10d252b80fd29
[ "CC-BY-4.0" ]
30
2018-09-26T09:08:57.000Z
2022-03-16T00:33:50.000Z
{-# OPTIONS --without-K --exact-split --safe #-} module 06-universes where import 05-identity-types open 05-identity-types public -------------------------------------------------------------------------------- -- Section 6.3 Observational equality on the natural numbers -- Definition 6.3.1 Eq-ℕ : ℕ → ℕ → UU lzero Eq-ℕ zero-ℕ zero-ℕ = 𝟙 Eq-ℕ zero-ℕ (succ-ℕ n) = 𝟘 Eq-ℕ (succ-ℕ m) zero-ℕ = 𝟘 Eq-ℕ (succ-ℕ m) (succ-ℕ n) = Eq-ℕ m n -- Lemma 6.3.2 refl-Eq-ℕ : (n : ℕ) → Eq-ℕ n n refl-Eq-ℕ zero-ℕ = star refl-Eq-ℕ (succ-ℕ n) = refl-Eq-ℕ n -- Proposition 6.3.3 Eq-ℕ-eq : {x y : ℕ} → Id x y → Eq-ℕ x y Eq-ℕ-eq {x} {.x} refl = refl-Eq-ℕ x eq-Eq-ℕ : (x y : ℕ) → Eq-ℕ x y → Id x y eq-Eq-ℕ zero-ℕ zero-ℕ e = refl eq-Eq-ℕ (succ-ℕ x) (succ-ℕ y) e = ap succ-ℕ (eq-Eq-ℕ x y e) -------------------------------------------------------------------------------- -- Section 6.4 Peano's seventh and eighth axioms -- Theorem 6.4.1 is-injective-succ-ℕ : (x y : ℕ) → Id (succ-ℕ x) (succ-ℕ y) → Id x y is-injective-succ-ℕ x y e = eq-Eq-ℕ x y (Eq-ℕ-eq e) Peano-7 : (x y : ℕ) → ((Id x y) → (Id (succ-ℕ x) (succ-ℕ y))) × ((Id (succ-ℕ x) (succ-ℕ y)) → (Id x y)) Peano-7 x y = pair (ap succ-ℕ) (is-injective-succ-ℕ x y) -- Theorem 6.4.2 Peano-8 : (x : ℕ) → ¬ (Id zero-ℕ (succ-ℕ x)) Peano-8 x p = Eq-ℕ-eq p -------------------------------------------------------------------------------- -- Exercises -- Exercise 6.1 -- Exercise 6.1 (a) is-injective-add-ℕ : (k m n : ℕ) → Id (add-ℕ m k) (add-ℕ n k) → Id m n is-injective-add-ℕ zero-ℕ m n = id is-injective-add-ℕ (succ-ℕ k) m n p = is-injective-add-ℕ k m n (is-injective-succ-ℕ (add-ℕ m k) (add-ℕ n k) p) -- Exercise 6.1 (b) is-injective-mul-ℕ : (k m n : ℕ) → Id (mul-ℕ m (succ-ℕ k)) (mul-ℕ n (succ-ℕ k)) → Id m n is-injective-mul-ℕ k zero-ℕ zero-ℕ p = refl is-injective-mul-ℕ k (succ-ℕ m) (succ-ℕ n) p = ap succ-ℕ ( is-injective-mul-ℕ k m n ( is-injective-add-ℕ ( succ-ℕ k) ( mul-ℕ m (succ-ℕ k)) ( mul-ℕ n (succ-ℕ k)) ( ( inv (left-successor-law-mul-ℕ m (succ-ℕ k))) ∙ ( ( p) ∙ ( left-successor-law-mul-ℕ n (succ-ℕ k)))))) -- Exercise 6.1 (c) neq-add-ℕ : (m n : ℕ) → ¬ (Id m (add-ℕ m (succ-ℕ n))) neq-add-ℕ (succ-ℕ m) n p = neq-add-ℕ m n ( ( is-injective-succ-ℕ m (add-ℕ (succ-ℕ m) n) p) ∙ ( left-successor-law-add-ℕ m n)) -- Exercise 6.1 (d) neq-mul-ℕ : (m n : ℕ) → ¬ (Id (succ-ℕ m) (mul-ℕ (succ-ℕ m) (succ-ℕ (succ-ℕ n)))) neq-mul-ℕ m n p = neq-add-ℕ ( succ-ℕ m) ( add-ℕ (mul-ℕ m (succ-ℕ n)) n) ( ( p) ∙ ( ( right-successor-law-mul-ℕ (succ-ℕ m) (succ-ℕ n)) ∙ ( ap (add-ℕ (succ-ℕ m)) (left-successor-law-mul-ℕ m (succ-ℕ n))))) -- Exercise 6.2 -- Exercise 6.2 (a) Eq-𝟚 : bool → bool → UU lzero Eq-𝟚 true true = unit Eq-𝟚 true false = empty Eq-𝟚 false true = empty Eq-𝟚 false false = unit -- Exercise 6.2 (b) reflexive-Eq-𝟚 : (x : bool) → Eq-𝟚 x x reflexive-Eq-𝟚 true = star reflexive-Eq-𝟚 false = star Eq-eq-𝟚 : {x y : bool} → Id x y → Eq-𝟚 x y Eq-eq-𝟚 {x = x} refl = reflexive-Eq-𝟚 x eq-Eq-𝟚 : {x y : bool} → Eq-𝟚 x y → Id x y eq-Eq-𝟚 {true} {true} star = refl eq-Eq-𝟚 {false} {false} star = refl -- Exercise 6.2 (c) neq-neg-𝟚 : (b : bool) → ¬ (Id b (neg-𝟚 b)) neq-neg-𝟚 true = Eq-eq-𝟚 neq-neg-𝟚 false = Eq-eq-𝟚 neq-false-true-𝟚 : ¬ (Id false true) neq-false-true-𝟚 = Eq-eq-𝟚 -- Exercise 6.3 -- Exercise 6.3 (a) leq-ℕ : ℕ → ℕ → UU lzero leq-ℕ zero-ℕ m = unit leq-ℕ (succ-ℕ n) zero-ℕ = empty leq-ℕ (succ-ℕ n) (succ-ℕ m) = leq-ℕ n m _≤_ = leq-ℕ -- Some trivialities that will be useful later leq-zero-ℕ : (n : ℕ) → leq-ℕ zero-ℕ n leq-zero-ℕ n = star eq-leq-zero-ℕ : (x : ℕ) → leq-ℕ x zero-ℕ → Id zero-ℕ x eq-leq-zero-ℕ zero-ℕ star = refl succ-leq-ℕ : (n : ℕ) → leq-ℕ n (succ-ℕ n) succ-leq-ℕ zero-ℕ = star succ-leq-ℕ (succ-ℕ n) = succ-leq-ℕ n concatenate-eq-leq-eq-ℕ : {x1 x2 x3 x4 : ℕ} → Id x1 x2 → leq-ℕ x2 x3 → Id x3 x4 → leq-ℕ x1 x4 concatenate-eq-leq-eq-ℕ refl H refl = H concatenate-leq-eq-ℕ : (m : ℕ) {n n' : ℕ} → leq-ℕ m n → Id n n' → leq-ℕ m n' concatenate-leq-eq-ℕ m H refl = H concatenate-eq-leq-ℕ : {m m' : ℕ} (n : ℕ) → Id m' m → leq-ℕ m n → leq-ℕ m' n concatenate-eq-leq-ℕ n refl H = H -- Exercise 6.3 (b) reflexive-leq-ℕ : (n : ℕ) → leq-ℕ n n reflexive-leq-ℕ zero-ℕ = star reflexive-leq-ℕ (succ-ℕ n) = reflexive-leq-ℕ n leq-eq-ℕ : (m n : ℕ) → Id m n → leq-ℕ m n leq-eq-ℕ m .m refl = reflexive-leq-ℕ m transitive-leq-ℕ : (n m l : ℕ) → (n ≤ m) → (m ≤ l) → (n ≤ l) transitive-leq-ℕ zero-ℕ m l p q = star transitive-leq-ℕ (succ-ℕ n) (succ-ℕ m) (succ-ℕ l) p q = transitive-leq-ℕ n m l p q preserves-leq-succ-ℕ : (m n : ℕ) → leq-ℕ m n → leq-ℕ m (succ-ℕ n) preserves-leq-succ-ℕ m n p = transitive-leq-ℕ m n (succ-ℕ n) p (succ-leq-ℕ n) anti-symmetric-leq-ℕ : (m n : ℕ) → leq-ℕ m n → leq-ℕ n m → Id m n anti-symmetric-leq-ℕ zero-ℕ zero-ℕ p q = refl anti-symmetric-leq-ℕ (succ-ℕ m) (succ-ℕ n) p q = ap succ-ℕ (anti-symmetric-leq-ℕ m n p q) -- Exercise 6.3 (c) decide-leq-ℕ : (m n : ℕ) → coprod (leq-ℕ m n) (leq-ℕ n m) decide-leq-ℕ zero-ℕ zero-ℕ = inl star decide-leq-ℕ zero-ℕ (succ-ℕ n) = inl star decide-leq-ℕ (succ-ℕ m) zero-ℕ = inr star decide-leq-ℕ (succ-ℕ m) (succ-ℕ n) = decide-leq-ℕ m n -- Exercise 6.3 (d) preserves-order-add-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (add-ℕ m k) (add-ℕ n k) preserves-order-add-ℕ zero-ℕ m n = id preserves-order-add-ℕ (succ-ℕ k) m n = preserves-order-add-ℕ k m n reflects-order-add-ℕ : (k m n : ℕ) → leq-ℕ (add-ℕ m k) (add-ℕ n k) → leq-ℕ m n reflects-order-add-ℕ zero-ℕ m n = id reflects-order-add-ℕ (succ-ℕ k) m n = reflects-order-add-ℕ k m n -- Exercise 6.3 (e) preserves-order-mul-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (mul-ℕ m k) (mul-ℕ n k) preserves-order-mul-ℕ k zero-ℕ n p = star preserves-order-mul-ℕ k (succ-ℕ m) (succ-ℕ n) p = preserves-order-add-ℕ k ( mul-ℕ m k) ( mul-ℕ n k) ( preserves-order-mul-ℕ k m n p) reflects-order-mul-ℕ : (k m n : ℕ) → leq-ℕ (mul-ℕ m (succ-ℕ k)) (mul-ℕ n (succ-ℕ k)) → leq-ℕ m n reflects-order-mul-ℕ k zero-ℕ n p = star reflects-order-mul-ℕ k (succ-ℕ m) (succ-ℕ n) p = reflects-order-mul-ℕ k m n ( reflects-order-add-ℕ ( succ-ℕ k) ( mul-ℕ m (succ-ℕ k)) ( mul-ℕ n (succ-ℕ k)) ( p)) -- Exercise 6.3 (f) leq-min-ℕ : (k m n : ℕ) → leq-ℕ k m → leq-ℕ k n → leq-ℕ k (min-ℕ m n) leq-min-ℕ zero-ℕ zero-ℕ zero-ℕ H K = star leq-min-ℕ zero-ℕ zero-ℕ (succ-ℕ n) H K = star leq-min-ℕ zero-ℕ (succ-ℕ m) zero-ℕ H K = star leq-min-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ n) H K = star leq-min-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H K = leq-min-ℕ k m n H K leq-left-leq-min-ℕ : (k m n : ℕ) → leq-ℕ k (min-ℕ m n) → leq-ℕ k m leq-left-leq-min-ℕ zero-ℕ zero-ℕ zero-ℕ H = star leq-left-leq-min-ℕ zero-ℕ zero-ℕ (succ-ℕ n) H = star leq-left-leq-min-ℕ zero-ℕ (succ-ℕ m) zero-ℕ H = star leq-left-leq-min-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ n) H = star leq-left-leq-min-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H = leq-left-leq-min-ℕ k m n H leq-right-leq-min-ℕ : (k m n : ℕ) → leq-ℕ k (min-ℕ m n) → leq-ℕ k n leq-right-leq-min-ℕ zero-ℕ zero-ℕ zero-ℕ H = star leq-right-leq-min-ℕ zero-ℕ zero-ℕ (succ-ℕ n) H = star leq-right-leq-min-ℕ zero-ℕ (succ-ℕ m) zero-ℕ H = star leq-right-leq-min-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ n) H = star leq-right-leq-min-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H = leq-right-leq-min-ℕ k m n H leq-max-ℕ : (k m n : ℕ) → leq-ℕ m k → leq-ℕ n k → leq-ℕ (max-ℕ m n) k leq-max-ℕ zero-ℕ zero-ℕ zero-ℕ H K = star leq-max-ℕ (succ-ℕ k) zero-ℕ zero-ℕ H K = star leq-max-ℕ (succ-ℕ k) zero-ℕ (succ-ℕ n) H K = K leq-max-ℕ (succ-ℕ k) (succ-ℕ m) zero-ℕ H K = H leq-max-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H K = leq-max-ℕ k m n H K leq-left-leq-max-ℕ : (k m n : ℕ) → leq-ℕ (max-ℕ m n) k → leq-ℕ m k leq-left-leq-max-ℕ k zero-ℕ zero-ℕ H = star leq-left-leq-max-ℕ k zero-ℕ (succ-ℕ n) H = star leq-left-leq-max-ℕ k (succ-ℕ m) zero-ℕ H = H leq-left-leq-max-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H = leq-left-leq-max-ℕ k m n H leq-right-leq-max-ℕ : (k m n : ℕ) → leq-ℕ (max-ℕ m n) k → leq-ℕ n k leq-right-leq-max-ℕ k zero-ℕ zero-ℕ H = star leq-right-leq-max-ℕ k zero-ℕ (succ-ℕ n) H = H leq-right-leq-max-ℕ k (succ-ℕ m) zero-ℕ H = star leq-right-leq-max-ℕ (succ-ℕ k) (succ-ℕ m) (succ-ℕ n) H = leq-right-leq-max-ℕ k m n H -- Exercise 6.4 -- Exercise 6.4 (a) -- We define a distance function on ℕ -- dist-ℕ : ℕ → ℕ → ℕ dist-ℕ zero-ℕ n = n dist-ℕ (succ-ℕ m) zero-ℕ = succ-ℕ m dist-ℕ (succ-ℕ m) (succ-ℕ n) = dist-ℕ m n dist-ℕ' : ℕ → ℕ → ℕ dist-ℕ' m n = dist-ℕ n m ap-dist-ℕ : {m n m' n' : ℕ} → Id m m' → Id n n' → Id (dist-ℕ m n) (dist-ℕ m' n') ap-dist-ℕ refl refl = refl {- We show that two natural numbers are equal if and only if their distance is zero. -} eq-dist-ℕ : (m n : ℕ) → Id zero-ℕ (dist-ℕ m n) → Id m n eq-dist-ℕ zero-ℕ zero-ℕ p = refl eq-dist-ℕ (succ-ℕ m) (succ-ℕ n) p = ap succ-ℕ (eq-dist-ℕ m n p) dist-eq-ℕ' : (n : ℕ) → Id zero-ℕ (dist-ℕ n n) dist-eq-ℕ' zero-ℕ = refl dist-eq-ℕ' (succ-ℕ n) = dist-eq-ℕ' n dist-eq-ℕ : (m n : ℕ) → Id m n → Id zero-ℕ (dist-ℕ m n) dist-eq-ℕ m .m refl = dist-eq-ℕ' m -- The distance function is symmetric -- symmetric-dist-ℕ : (m n : ℕ) → Id (dist-ℕ m n) (dist-ℕ n m) symmetric-dist-ℕ zero-ℕ zero-ℕ = refl symmetric-dist-ℕ zero-ℕ (succ-ℕ n) = refl symmetric-dist-ℕ (succ-ℕ m) zero-ℕ = refl symmetric-dist-ℕ (succ-ℕ m) (succ-ℕ n) = symmetric-dist-ℕ m n -- We compute the distance from zero -- left-zero-law-dist-ℕ : (n : ℕ) → Id (dist-ℕ zero-ℕ n) n left-zero-law-dist-ℕ zero-ℕ = refl left-zero-law-dist-ℕ (succ-ℕ n) = refl right-zero-law-dist-ℕ : (n : ℕ) → Id (dist-ℕ n zero-ℕ) n right-zero-law-dist-ℕ zero-ℕ = refl right-zero-law-dist-ℕ (succ-ℕ n) = refl -- We prove the triangle inequality -- ap-add-ℕ : {m n m' n' : ℕ} → Id m m' → Id n n' → Id (add-ℕ m n) (add-ℕ m' n') ap-add-ℕ refl refl = refl triangle-inequality-dist-ℕ : (m n k : ℕ) → leq-ℕ (dist-ℕ m n) (add-ℕ (dist-ℕ m k) (dist-ℕ k n)) triangle-inequality-dist-ℕ zero-ℕ zero-ℕ zero-ℕ = star triangle-inequality-dist-ℕ zero-ℕ zero-ℕ (succ-ℕ k) = star triangle-inequality-dist-ℕ zero-ℕ (succ-ℕ n) zero-ℕ = tr ( leq-ℕ (succ-ℕ n)) ( inv (left-unit-law-add-ℕ (succ-ℕ n))) ( reflexive-leq-ℕ (succ-ℕ n)) triangle-inequality-dist-ℕ zero-ℕ (succ-ℕ n) (succ-ℕ k) = concatenate-eq-leq-eq-ℕ ( inv (ap succ-ℕ (left-zero-law-dist-ℕ n))) ( triangle-inequality-dist-ℕ zero-ℕ n k) ( ( ap (succ-ℕ ∘ (add-ℕ' (dist-ℕ k n))) (left-zero-law-dist-ℕ k)) ∙ ( inv (left-successor-law-add-ℕ k (dist-ℕ k n)))) triangle-inequality-dist-ℕ (succ-ℕ m) zero-ℕ zero-ℕ = reflexive-leq-ℕ (succ-ℕ m) triangle-inequality-dist-ℕ (succ-ℕ m) zero-ℕ (succ-ℕ k) = concatenate-eq-leq-eq-ℕ ( inv (ap succ-ℕ (right-zero-law-dist-ℕ m))) ( triangle-inequality-dist-ℕ m zero-ℕ k) ( ap (succ-ℕ ∘ (add-ℕ (dist-ℕ m k))) (right-zero-law-dist-ℕ k)) triangle-inequality-dist-ℕ (succ-ℕ m) (succ-ℕ n) zero-ℕ = concatenate-leq-eq-ℕ ( dist-ℕ m n) ( transitive-leq-ℕ ( dist-ℕ m n) ( succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n))) ( succ-ℕ (succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n)))) ( transitive-leq-ℕ ( dist-ℕ m n) ( add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n)) ( succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n))) ( triangle-inequality-dist-ℕ m n zero-ℕ) ( succ-leq-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n)))) ( succ-leq-ℕ (succ-ℕ (add-ℕ (dist-ℕ m zero-ℕ) (dist-ℕ zero-ℕ n))))) ( ( ap (succ-ℕ ∘ succ-ℕ) ( ap-add-ℕ (right-zero-law-dist-ℕ m) (left-zero-law-dist-ℕ n))) ∙ ( inv (left-successor-law-add-ℕ m (succ-ℕ n)))) triangle-inequality-dist-ℕ (succ-ℕ m) (succ-ℕ n) (succ-ℕ k) = triangle-inequality-dist-ℕ m n k -- Exercise 6.5 (c) -- We show that dist-ℕ x y is a solution to a simple equation. leq-dist-ℕ : (x y : ℕ) → leq-ℕ x y → Id (add-ℕ x (dist-ℕ x y)) y leq-dist-ℕ zero-ℕ zero-ℕ H = refl leq-dist-ℕ zero-ℕ (succ-ℕ y) star = left-unit-law-add-ℕ (succ-ℕ y) leq-dist-ℕ (succ-ℕ x) (succ-ℕ y) H = ( left-successor-law-add-ℕ x (dist-ℕ x y)) ∙ ( ap succ-ℕ (leq-dist-ℕ x y H)) -- If three elements are ordered linearly, then their distances add up. triangle-equality-dist-ℕ : (x y z : ℕ) → (leq-ℕ x y) → (leq-ℕ y z) → Id (add-ℕ (dist-ℕ x y) (dist-ℕ y z)) (dist-ℕ x z) triangle-equality-dist-ℕ zero-ℕ zero-ℕ zero-ℕ H1 H2 = refl triangle-equality-dist-ℕ zero-ℕ zero-ℕ (succ-ℕ z) star star = ap succ-ℕ (left-unit-law-add-ℕ z) triangle-equality-dist-ℕ zero-ℕ (succ-ℕ y) (succ-ℕ z) star H2 = left-successor-law-add-ℕ y (dist-ℕ y z) ∙ ap succ-ℕ (leq-dist-ℕ y z H2) triangle-equality-dist-ℕ (succ-ℕ x) (succ-ℕ y) (succ-ℕ z) H1 H2 = triangle-equality-dist-ℕ x y z H1 H2 rewrite-left-add-dist-ℕ : (x y z : ℕ) → Id (add-ℕ x y) z → Id x (dist-ℕ y z) rewrite-left-add-dist-ℕ zero-ℕ zero-ℕ .zero-ℕ refl = refl rewrite-left-add-dist-ℕ zero-ℕ (succ-ℕ y) .(succ-ℕ (add-ℕ zero-ℕ y)) refl = ( dist-eq-ℕ' y) ∙ ( inv (ap (dist-ℕ (succ-ℕ y)) (left-unit-law-add-ℕ (succ-ℕ y)))) rewrite-left-add-dist-ℕ (succ-ℕ x) zero-ℕ .(succ-ℕ x) refl = refl rewrite-left-add-dist-ℕ (succ-ℕ x) (succ-ℕ y) .(succ-ℕ (add-ℕ (succ-ℕ x) y)) refl = rewrite-left-add-dist-ℕ (succ-ℕ x) y (add-ℕ (succ-ℕ x) y) refl rewrite-left-dist-add-ℕ : (x y z : ℕ) → leq-ℕ y z → Id x (dist-ℕ y z) → Id (add-ℕ x y) z rewrite-left-dist-add-ℕ .(dist-ℕ y z) y z H refl = ( commutative-add-ℕ (dist-ℕ y z) y) ∙ ( leq-dist-ℕ y z H) rewrite-right-add-dist-ℕ : (x y z : ℕ) → Id (add-ℕ x y) z → Id y (dist-ℕ x z) rewrite-right-add-dist-ℕ x y z p = rewrite-left-add-dist-ℕ y x z (commutative-add-ℕ y x ∙ p) rewrite-right-dist-add-ℕ : (x y z : ℕ) → leq-ℕ x z → Id y (dist-ℕ x z) → Id (add-ℕ x y) z rewrite-right-dist-add-ℕ x .(dist-ℕ x z) z H refl = leq-dist-ℕ x z H -- We show that dist-ℕ is translation invariant translation-invariant-dist-ℕ : (k m n : ℕ) → Id (dist-ℕ (add-ℕ k m) (add-ℕ k n)) (dist-ℕ m n) translation-invariant-dist-ℕ zero-ℕ m n = ap-dist-ℕ (left-unit-law-add-ℕ m) (left-unit-law-add-ℕ n) translation-invariant-dist-ℕ (succ-ℕ k) m n = ( ap-dist-ℕ (left-successor-law-add-ℕ k m) (left-successor-law-add-ℕ k n)) ∙ ( translation-invariant-dist-ℕ k m n) -- We show that dist-ℕ is linear with respect to scalar multiplication linear-dist-ℕ : (m n k : ℕ) → Id (dist-ℕ (mul-ℕ k m) (mul-ℕ k n)) (mul-ℕ k (dist-ℕ m n)) linear-dist-ℕ zero-ℕ zero-ℕ zero-ℕ = refl linear-dist-ℕ zero-ℕ zero-ℕ (succ-ℕ k) = linear-dist-ℕ zero-ℕ zero-ℕ k linear-dist-ℕ zero-ℕ (succ-ℕ n) zero-ℕ = refl linear-dist-ℕ zero-ℕ (succ-ℕ n) (succ-ℕ k) = ap (dist-ℕ' (mul-ℕ (succ-ℕ k) (succ-ℕ n))) (right-zero-law-mul-ℕ (succ-ℕ k)) linear-dist-ℕ (succ-ℕ m) zero-ℕ zero-ℕ = refl linear-dist-ℕ (succ-ℕ m) zero-ℕ (succ-ℕ k) = ap (dist-ℕ (mul-ℕ (succ-ℕ k) (succ-ℕ m))) (right-zero-law-mul-ℕ (succ-ℕ k)) linear-dist-ℕ (succ-ℕ m) (succ-ℕ n) zero-ℕ = refl linear-dist-ℕ (succ-ℕ m) (succ-ℕ n) (succ-ℕ k) = ( ap-dist-ℕ ( right-successor-law-mul-ℕ (succ-ℕ k) m) ( right-successor-law-mul-ℕ (succ-ℕ k) n)) ∙ ( ( translation-invariant-dist-ℕ ( succ-ℕ k) ( mul-ℕ (succ-ℕ k) m) ( mul-ℕ (succ-ℕ k) n)) ∙ ( linear-dist-ℕ m n (succ-ℕ k))) -- We give an upper bound for the distantce between two numbers. upper-bound-dist-ℕ : (b x y : ℕ) → leq-ℕ x b → leq-ℕ y b → leq-ℕ (dist-ℕ x y) b upper-bound-dist-ℕ zero-ℕ zero-ℕ zero-ℕ H K = star upper-bound-dist-ℕ (succ-ℕ b) zero-ℕ zero-ℕ H K = star upper-bound-dist-ℕ (succ-ℕ b) zero-ℕ (succ-ℕ y) H K = K upper-bound-dist-ℕ (succ-ℕ b) (succ-ℕ x) zero-ℕ H K = H upper-bound-dist-ℕ (succ-ℕ b) (succ-ℕ x) (succ-ℕ y) H K = preserves-leq-succ-ℕ (dist-ℕ x y) b (upper-bound-dist-ℕ b x y H K) -------------------------------------------------------------------------------- -- Exercise 6.5 -- We introduce the absolute value of an integer. -- abs-ℤ : ℤ → ℕ abs-ℤ (inl x) = succ-ℕ x abs-ℤ (inr (inl star)) = zero-ℕ abs-ℤ (inr (inr x)) = succ-ℕ x int-abs-ℤ : ℤ → ℤ int-abs-ℤ = int-ℕ ∘ abs-ℤ eq-abs-ℤ : (x : ℤ) → Id zero-ℕ (abs-ℤ x) → Id zero-ℤ x eq-abs-ℤ (inl x) p = ex-falso (Peano-8 x p) eq-abs-ℤ (inr (inl star)) p = refl eq-abs-ℤ (inr (inr x)) p = ex-falso (Peano-8 x p) abs-eq-ℤ : (x : ℤ) → Id zero-ℤ x → Id zero-ℕ (abs-ℤ x) abs-eq-ℤ .zero-ℤ refl = refl predecessor-law-abs-ℤ : (x : ℤ) → leq-ℕ (abs-ℤ (pred-ℤ x)) (succ-ℕ (abs-ℤ x)) predecessor-law-abs-ℤ (inl x) = reflexive-leq-ℕ (succ-ℕ x) predecessor-law-abs-ℤ (inr (inl star)) = reflexive-leq-ℕ zero-ℕ predecessor-law-abs-ℤ (inr (inr zero-ℕ)) = star predecessor-law-abs-ℤ (inr (inr (succ-ℕ x))) = preserves-leq-succ-ℕ x (succ-ℕ x) (succ-leq-ℕ x) successor-law-abs-ℤ : (x : ℤ) → leq-ℕ (abs-ℤ (succ-ℤ x)) (succ-ℕ (abs-ℤ x)) successor-law-abs-ℤ (inl zero-ℕ) = star successor-law-abs-ℤ (inl (succ-ℕ x)) = preserves-leq-succ-ℕ x (succ-ℕ x) (succ-leq-ℕ x) successor-law-abs-ℤ (inr (inl star)) = reflexive-leq-ℕ zero-ℕ successor-law-abs-ℤ (inr (inr x)) = reflexive-leq-ℕ (succ-ℕ x) subadditive-abs-ℤ : (x y : ℤ) → leq-ℕ (abs-ℤ (add-ℤ x y)) (add-ℕ (abs-ℤ x) (abs-ℤ y)) subadditive-abs-ℤ x (inl zero-ℕ) = concatenate-eq-leq-eq-ℕ ( ap abs-ℤ (add-neg-one-right-ℤ x)) ( predecessor-law-abs-ℤ x) ( refl) subadditive-abs-ℤ x (inl (succ-ℕ y)) = concatenate-eq-leq-eq-ℕ ( ap abs-ℤ (right-predecessor-law-add-ℤ x (inl y))) ( transitive-leq-ℕ ( abs-ℤ (pred-ℤ (add-ℤ x (inl y)))) ( succ-ℕ (abs-ℤ (add-ℤ x (inl y)))) ( add-ℕ (abs-ℤ x) (succ-ℕ (succ-ℕ y))) ( predecessor-law-abs-ℤ (add-ℤ x (inl y))) ( subadditive-abs-ℤ x (inl y))) ( refl) subadditive-abs-ℤ x (inr (inl star)) = concatenate-eq-leq-eq-ℕ ( ap abs-ℤ (right-unit-law-add-ℤ x)) ( reflexive-leq-ℕ (abs-ℤ x)) ( refl) subadditive-abs-ℤ x (inr (inr zero-ℕ)) = concatenate-eq-leq-eq-ℕ ( ap abs-ℤ (add-one-right-ℤ x)) ( successor-law-abs-ℤ x) ( refl) subadditive-abs-ℤ x (inr (inr (succ-ℕ y))) = concatenate-eq-leq-eq-ℕ ( ap abs-ℤ (right-successor-law-add-ℤ x (inr (inr y)))) ( transitive-leq-ℕ ( abs-ℤ (succ-ℤ (add-ℤ x (inr (inr y))))) ( succ-ℕ (abs-ℤ (add-ℤ x (inr (inr y))))) ( succ-ℕ (add-ℕ (abs-ℤ x) (succ-ℕ y))) ( successor-law-abs-ℤ (add-ℤ x (inr (inr y)))) ( subadditive-abs-ℤ x (inr (inr y)))) ( refl) negative-law-abs-ℤ : (x : ℤ) → Id (abs-ℤ (neg-ℤ x)) (abs-ℤ x) negative-law-abs-ℤ (inl x) = refl negative-law-abs-ℤ (inr (inl star)) = refl negative-law-abs-ℤ (inr (inr x)) = refl -------------------------------------------------------------------------------- -- Exercise 6.6 {- In this exercise we were asked to define the relations ≤ and < on the integers. As a criterion of correctness, we were then also asked to show that the type of all integers l satisfying k ≤ l satisfy the induction principle of the natural numbers. -} diff-ℤ : ℤ → ℤ → ℤ diff-ℤ k l = add-ℤ (neg-ℤ k) l is-non-negative-ℤ : ℤ → UU lzero is-non-negative-ℤ (inl x) = empty is-non-negative-ℤ (inr k) = unit leq-ℤ : ℤ → ℤ → UU lzero leq-ℤ k l = is-non-negative-ℤ (diff-ℤ k l) reflexive-leq-ℤ : (k : ℤ) → leq-ℤ k k reflexive-leq-ℤ k = tr is-non-negative-ℤ (inv (left-inverse-law-add-ℤ k)) star is-non-negative-succ-ℤ : (k : ℤ) → is-non-negative-ℤ k → is-non-negative-ℤ (succ-ℤ k) is-non-negative-succ-ℤ (inr (inl star)) p = star is-non-negative-succ-ℤ (inr (inr x)) p = star is-non-negative-add-ℤ : (k l : ℤ) → is-non-negative-ℤ k → is-non-negative-ℤ l → is-non-negative-ℤ (add-ℤ k l) is-non-negative-add-ℤ (inr (inl star)) (inr (inl star)) p q = star is-non-negative-add-ℤ (inr (inl star)) (inr (inr n)) p q = star is-non-negative-add-ℤ (inr (inr zero-ℕ)) (inr (inl star)) p q = star is-non-negative-add-ℤ (inr (inr (succ-ℕ n))) (inr (inl star)) star star = is-non-negative-succ-ℤ ( add-ℤ (inr (inr n)) (inr (inl star))) ( is-non-negative-add-ℤ (inr (inr n)) (inr (inl star)) star star) is-non-negative-add-ℤ (inr (inr zero-ℕ)) (inr (inr m)) star star = star is-non-negative-add-ℤ (inr (inr (succ-ℕ n))) (inr (inr m)) star star = is-non-negative-succ-ℤ ( add-ℤ (inr (inr n)) (inr (inr m))) ( is-non-negative-add-ℤ (inr (inr n)) (inr (inr m)) star star) triangle-diff-ℤ : (k l m : ℤ) → Id (add-ℤ (diff-ℤ k l) (diff-ℤ l m)) (diff-ℤ k m) triangle-diff-ℤ k l m = ( associative-add-ℤ (neg-ℤ k) l (diff-ℤ l m)) ∙ ( ap ( add-ℤ (neg-ℤ k)) ( ( inv (associative-add-ℤ l (neg-ℤ l) m)) ∙ ( ( ap (λ x → add-ℤ x m) (right-inverse-law-add-ℤ l)) ∙ ( left-unit-law-add-ℤ m)))) transitive-leq-ℤ : (k l m : ℤ) → leq-ℤ k l → leq-ℤ l m → leq-ℤ k m transitive-leq-ℤ k l m p q = tr is-non-negative-ℤ ( triangle-diff-ℤ k l m) ( is-non-negative-add-ℤ ( add-ℤ (neg-ℤ k) l) ( add-ℤ (neg-ℤ l) m) ( p) ( q)) succ-leq-ℤ : (k : ℤ) → leq-ℤ k (succ-ℤ k) succ-leq-ℤ k = tr is-non-negative-ℤ ( inv ( ( right-successor-law-add-ℤ (neg-ℤ k) k) ∙ ( ap succ-ℤ (left-inverse-law-add-ℤ k)))) ( star) leq-ℤ-succ-leq-ℤ : (k l : ℤ) → leq-ℤ k l → leq-ℤ k (succ-ℤ l) leq-ℤ-succ-leq-ℤ k l p = transitive-leq-ℤ k l (succ-ℤ l) p (succ-leq-ℤ l) is-positive-ℤ : ℤ → UU lzero is-positive-ℤ k = is-non-negative-ℤ (pred-ℤ k) le-ℤ : ℤ → ℤ → UU lzero le-ℤ (inl zero-ℕ) (inl x) = empty le-ℤ (inl zero-ℕ) (inr y) = unit le-ℤ (inl (succ-ℕ x)) (inl zero-ℕ) = unit le-ℤ (inl (succ-ℕ x)) (inl (succ-ℕ y)) = le-ℤ (inl x) (inl y) le-ℤ (inl (succ-ℕ x)) (inr y) = unit le-ℤ (inr x) (inl y) = empty le-ℤ (inr (inl star)) (inr (inl star)) = empty le-ℤ (inr (inl star)) (inr (inr x)) = unit le-ℤ (inr (inr x)) (inr (inl star)) = empty le-ℤ (inr (inr zero-ℕ)) (inr (inr zero-ℕ)) = empty le-ℤ (inr (inr zero-ℕ)) (inr (inr (succ-ℕ y))) = unit le-ℤ (inr (inr (succ-ℕ x))) (inr (inr zero-ℕ)) = empty le-ℤ (inr (inr (succ-ℕ x))) (inr (inr (succ-ℕ y))) = le-ℤ (inr (inr x)) (inr (inr y)) -- Extra material -- We show that ℕ is an ordered semi-ring left-law-leq-add-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (add-ℕ m k) (add-ℕ n k) left-law-leq-add-ℕ zero-ℕ m n = id left-law-leq-add-ℕ (succ-ℕ k) m n H = left-law-leq-add-ℕ k m n H right-law-leq-add-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (add-ℕ k m) (add-ℕ k n) right-law-leq-add-ℕ k m n H = concatenate-eq-leq-eq-ℕ ( commutative-add-ℕ k m) ( left-law-leq-add-ℕ k m n H) ( commutative-add-ℕ n k) preserves-leq-add-ℕ : {m m' n n' : ℕ} → leq-ℕ m m' → leq-ℕ n n' → leq-ℕ (add-ℕ m n) (add-ℕ m' n') preserves-leq-add-ℕ {m} {m'} {n} {n'} H K = transitive-leq-ℕ ( add-ℕ m n) ( add-ℕ m' n) ( add-ℕ m' n') ( left-law-leq-add-ℕ n m m' H) ( right-law-leq-add-ℕ m' n n' K) {- right-law-leq-mul-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (mul-ℕ k m) (mul-ℕ k n) right-law-leq-mul-ℕ zero-ℕ m n H = star right-law-leq-mul-ℕ (succ-ℕ k) m n H = {!!} -} {- preserves-leq-add-ℕ { m = mul-ℕ k m} { m' = mul-ℕ k n} ( right-law-leq-mul-ℕ k m n H) H left-law-leq-mul-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (mul-ℕ m k) (mul-ℕ n k) left-law-leq-mul-ℕ k m n H = concatenate-eq-leq-eq-ℕ ( commutative-mul-ℕ k m) ( commutative-mul-ℕ k n) ( right-law-leq-mul-ℕ k m n H) -} -- We show that ℤ is an ordered ring {- leq-add-ℤ : (m k l : ℤ) → leq-ℤ k l → leq-ℤ (add-ℤ m k) (add-ℤ m l) leq-add-ℤ (inl zero-ℕ) k l H = {!!} leq-add-ℤ (inl (succ-ℕ x)) k l H = {!!} leq-add-ℤ (inr m) k l H = {!!} -} -- Section 5.5 Identity systems succ-fam-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) → (m n : ℕ) → Eq-ℕ m n → UU i succ-fam-Eq-ℕ R m n e = R (succ-ℕ m) (succ-ℕ n) e succ-refl-fam-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) (ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) → (n : ℕ) → (succ-fam-Eq-ℕ R n n (refl-Eq-ℕ n)) succ-refl-fam-Eq-ℕ R ρ n = ρ (succ-ℕ n) path-ind-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) ( ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) → ( m n : ℕ) (e : Eq-ℕ m n) → R m n e path-ind-Eq-ℕ R ρ zero-ℕ zero-ℕ star = ρ zero-ℕ path-ind-Eq-ℕ R ρ zero-ℕ (succ-ℕ n) () path-ind-Eq-ℕ R ρ (succ-ℕ m) zero-ℕ () path-ind-Eq-ℕ R ρ (succ-ℕ m) (succ-ℕ n) e = path-ind-Eq-ℕ ( λ m n e → R (succ-ℕ m) (succ-ℕ n) e) ( λ n → ρ (succ-ℕ n)) m n e comp-path-ind-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) ( ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) → ( n : ℕ) → Id (path-ind-Eq-ℕ R ρ n n (refl-Eq-ℕ n)) (ρ n) comp-path-ind-Eq-ℕ R ρ zero-ℕ = refl comp-path-ind-Eq-ℕ R ρ (succ-ℕ n) = comp-path-ind-Eq-ℕ ( λ m n e → R (succ-ℕ m) (succ-ℕ n) e) ( λ n → ρ (succ-ℕ n)) n {- -- Graphs Gph : (i : Level) → UU (lsuc i) Gph i = Σ (UU i) (λ X → (X → X → (UU i))) -- Reflexive graphs rGph : (i : Level) → UU (lsuc i) rGph i = Σ (UU i) (λ X → Σ (X → X → (UU i)) (λ R → (x : X) → R x x)) -} -- Exercise 3.7 {- With the construction of the divisibility relation we open the door to basic number theory. -} divides : (d n : ℕ) → UU lzero divides d n = Σ ℕ (λ m → Eq-ℕ (mul-ℕ d m) n) -- We prove some lemmas about inequalities -- leq-add-ℕ : (m n : ℕ) → leq-ℕ m (add-ℕ m n) leq-add-ℕ m zero-ℕ = reflexive-leq-ℕ m leq-add-ℕ m (succ-ℕ n) = transitive-leq-ℕ m (add-ℕ m n) (succ-ℕ (add-ℕ m n)) ( leq-add-ℕ m n) ( succ-leq-ℕ (add-ℕ m n)) leq-add-ℕ' : (m n : ℕ) → leq-ℕ m (add-ℕ n m) leq-add-ℕ' m n = concatenate-leq-eq-ℕ m (leq-add-ℕ m n) (commutative-add-ℕ m n) leq-leq-add-ℕ : (m n x : ℕ) → leq-ℕ (add-ℕ m x) (add-ℕ n x) → leq-ℕ m n leq-leq-add-ℕ m n zero-ℕ H = H leq-leq-add-ℕ m n (succ-ℕ x) H = leq-leq-add-ℕ m n x H leq-leq-add-ℕ' : (m n x : ℕ) → leq-ℕ (add-ℕ x m) (add-ℕ x n) → leq-ℕ m n leq-leq-add-ℕ' m n x H = leq-leq-add-ℕ m n x ( concatenate-eq-leq-eq-ℕ ( commutative-add-ℕ m x) ( H) ( commutative-add-ℕ x n)) leq-leq-mul-ℕ : (m n x : ℕ) → leq-ℕ (mul-ℕ (succ-ℕ x) m) (mul-ℕ (succ-ℕ x) n) → leq-ℕ m n leq-leq-mul-ℕ zero-ℕ zero-ℕ x H = star leq-leq-mul-ℕ zero-ℕ (succ-ℕ n) x H = star leq-leq-mul-ℕ (succ-ℕ m) zero-ℕ x H = ex-falso ( concatenate-leq-eq-ℕ ( mul-ℕ (succ-ℕ x) (succ-ℕ m)) ( H) ( right-zero-law-mul-ℕ (succ-ℕ x))) leq-leq-mul-ℕ (succ-ℕ m) (succ-ℕ n) x H = leq-leq-mul-ℕ m n x ( leq-leq-add-ℕ' (mul-ℕ (succ-ℕ x) m) (mul-ℕ (succ-ℕ x) n) (succ-ℕ x) ( concatenate-eq-leq-eq-ℕ ( inv (right-successor-law-mul-ℕ (succ-ℕ x) m)) ( H) ( right-successor-law-mul-ℕ (succ-ℕ x) n))) leq-leq-mul-ℕ' : (m n x : ℕ) → leq-ℕ (mul-ℕ m (succ-ℕ x)) (mul-ℕ n (succ-ℕ x)) → leq-ℕ m n leq-leq-mul-ℕ' m n x H = leq-leq-mul-ℕ m n x ( concatenate-eq-leq-eq-ℕ ( commutative-mul-ℕ (succ-ℕ x) m) ( H) ( commutative-mul-ℕ n (succ-ℕ x))) {- succ-relation-ℕ : {i : Level} (R : ℕ → ℕ → UU i) → ℕ → ℕ → UU i succ-relation-ℕ R m n = R (succ-ℕ m) (succ-ℕ n) succ-reflexivity-ℕ : {i : Level} (R : ℕ → ℕ → UU i) (ρ : (n : ℕ) → R n n) → (n : ℕ) → succ-relation-ℕ R n n succ-reflexivity-ℕ R ρ n = ρ (succ-ℕ n) {- In the book we suggest that first the order of the variables should be swapped, in order to make the inductive hypothesis stronger. Agda's pattern matching mechanism allows us to bypass this step and give a more direct construction. -} least-reflexive-Eq-ℕ : {i : Level} (R : ℕ → ℕ → UU i) (ρ : (n : ℕ) → R n n) → (m n : ℕ) → Eq-ℕ m n → R m n least-reflexive-Eq-ℕ R ρ zero-ℕ zero-ℕ star = ρ zero-ℕ least-reflexive-Eq-ℕ R ρ zero-ℕ (succ-ℕ n) () least-reflexive-Eq-ℕ R ρ (succ-ℕ m) zero-ℕ () least-reflexive-Eq-ℕ R ρ (succ-ℕ m) (succ-ℕ n) e = least-reflexive-Eq-ℕ (succ-relation-ℕ R) (succ-reflexivity-ℕ R ρ) m n e -} -- The definition of < le-ℕ : ℕ → ℕ → UU lzero le-ℕ m zero-ℕ = empty le-ℕ zero-ℕ (succ-ℕ m) = unit le-ℕ (succ-ℕ n) (succ-ℕ m) = le-ℕ n m _<_ = le-ℕ anti-reflexive-le-ℕ : (n : ℕ) → ¬ (n < n) anti-reflexive-le-ℕ zero-ℕ = ind-empty anti-reflexive-le-ℕ (succ-ℕ n) = anti-reflexive-le-ℕ n transitive-le-ℕ : (n m l : ℕ) → (le-ℕ n m) → (le-ℕ m l) → (le-ℕ n l) transitive-le-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ l) p q = star transitive-le-ℕ (succ-ℕ n) (succ-ℕ m) (succ-ℕ l) p q = transitive-le-ℕ n m l p q succ-le-ℕ : (n : ℕ) → le-ℕ n (succ-ℕ n) succ-le-ℕ zero-ℕ = star succ-le-ℕ (succ-ℕ n) = succ-le-ℕ n anti-symmetric-le-ℕ : (m n : ℕ) → le-ℕ m n → le-ℕ n m → Id m n anti-symmetric-le-ℕ (succ-ℕ m) (succ-ℕ n) p q = ap succ-ℕ (anti-symmetric-le-ℕ m n p q) {- -------------------------------------------------------------------------------- data Fin-Tree : UU lzero where constr : (n : ℕ) → (Fin n → Fin-Tree) → Fin-Tree root-Fin-Tree : Fin-Tree root-Fin-Tree = constr zero-ℕ ex-falso succ-Fin-Tree : Fin-Tree → Fin-Tree succ-Fin-Tree t = constr one-ℕ (λ i → t) map-assoc-coprod : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} → coprod (coprod A B) C → coprod A (coprod B C) map-assoc-coprod (inl (inl x)) = inl x map-assoc-coprod (inl (inr x)) = inr (inl x) map-assoc-coprod (inr x) = inr (inr x) map-coprod-Fin : (m n : ℕ) → Fin (add-ℕ m n) → coprod (Fin m) (Fin n) map-coprod-Fin m zero-ℕ = inl map-coprod-Fin m (succ-ℕ n) = map-assoc-coprod ∘ (functor-coprod (map-coprod-Fin m n) (id {A = unit})) add-Fin-Tree : Fin-Tree → Fin-Tree → Fin-Tree add-Fin-Tree (constr n x) (constr m y) = constr (add-ℕ n m) ((ind-coprod (λ i → Fin-Tree) x y) ∘ (map-coprod-Fin n m)) -------------------------------------------------------------------------------- data labeled-Bin-Tree {l1 : Level} (A : UU l1) : UU l1 where leaf : A → labeled-Bin-Tree A constr : (bool → labeled-Bin-Tree A) → labeled-Bin-Tree A mul-leaves-labeled-Bin-Tree : {l1 : Level} {A : UU l1} (μ : A → (A → A)) → labeled-Bin-Tree A → A mul-leaves-labeled-Bin-Tree μ (leaf x) = x mul-leaves-labeled-Bin-Tree μ (constr f) = μ ( mul-leaves-labeled-Bin-Tree μ (f false)) ( mul-leaves-labeled-Bin-Tree μ (f true)) pick-list : {l1 : Level} {A : UU l1} → ℕ → list A → coprod A unit pick-list zero-ℕ nil = inr star pick-list zero-ℕ (cons a x) = inl a pick-list (succ-ℕ n) nil = inr star pick-list (succ-ℕ n) (cons a x) = pick-list n x -}
31.491525
80
0.569631
ad9ff9a638bda48dcb778a996a4a57700a886cb5
8,632
agda
Agda
constructability.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
constructability.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
constructability.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
open import Nat open import Prelude open import List open import judgemental-erase open import statics-checks open import statics-core module constructability where -- we construct expressions and types by induction on their -- structure. for each sub term, we call the relevant theorem, then -- assemble the results with carefully chosen lists of actions that allow -- us to call the appropriate zipper lemmas and maintain well-typedness -- at every stage of the contruction. -- -- the proof term at each stage except subsumption is, morally, just the -- mapping of the fragment of the action semantics used by the constructs -- in the list in the current formation context into the list monoid. -- if the name of the given hole is irrelevant irr-hole : Nat irr-hole = 0 -- construction of types construct-type : (t : htyp) → Σ[ L ∈ List action ] runtype (▹ ⦇-⦈ ◃) L (▹ t ◃) construct-type num = [ construct num ] , DoType TMConNum DoRefl construct-type ⦇-⦈ = [ del irr-hole ] , DoType TMDel DoRefl construct-type (t1 ==> t2) with construct-type t1 | construct-type t2 ... | (l1 , ih1) | (l2 , ih2) = l1 ++ construct arrow :: l2 ++ [ move parent ] , runtype++ ih1 (DoType TMConArrow (runtype++ (ziplem-tmarr2 ih2) (DoType TMArrParent2 DoRefl))) construct-type (t1 ⊕ t2) with construct-type t1 | construct-type t2 ... | (l1 , ih1) | (l2 , ih2) = l1 ++ construct sum :: l2 ++ [ move parent ] , runtype++ ih1 (DoType TMConPlus (runtype++ (ziplem-tmplus2 ih2) (DoType TMPlusParent2 DoRefl))) construct-type (t1 ⊠ t2) with construct-type t1 | construct-type t2 ... | (l1 , ih1) | (l2 , ih2) = l1 ++ construct prod :: l2 ++ [ move parent ] , runtype++ ih1 (DoType TMConProd (runtype++ (ziplem-tmprod2 ih2) (DoType TMProdParent2 DoRefl))) mutual -- construction of expressions in synthetic positions construct-synth : {Γ : tctx} {u : Nat} {t : htyp} {e : hexp} → (Γ ⊢ e => t) → Σ[ L ∈ List action ] runsynth Γ ▹ ⦇-⦈[ u ] ◃ ⦇-⦈ L ▹ e ◃ t -- the three base cases construct-synth (SVar x) = [ construct (var _ irr-hole) ] , DoSynth (SAConVar x) DoRefl construct-synth SNum = [ construct (numlit _ irr-hole) ] , DoSynth SAConNumlit DoRefl construct-synth SEHole = [ del _ ] , DoSynth SADel DoRefl -- the inductive cases construct-synth (SPlus e1 e2 ) with construct-ana e1 | construct-ana e2 ... | (l1 , ih1) | (l2 , ih2) = construct (plus irr-hole irr-hole) :: (l2 ++ move parent :: move (child 1) :: (l1 ++ [ move parent ])) , DoSynth (SAConPlus1 TCHole2) (runsynth++ (ziplem-plus2 ih2) (DoSynth (SAMove EMPlusParent2) (DoSynth (SAMove EMPlusChild1) (runsynth++ (ziplem-plus1 ih1) (DoSynth (SAMove EMPlusParent1) DoRefl))))) construct-synth {t = t} (SAsc x) with construct-type t | construct-ana x ... | (l1 , ih1) | (l2 , ih2) = construct asc :: (l1 ++ move parent :: move (child 1) :: (l2 ++ [ move parent ])) , DoSynth SAConAsc (runsynth++ (ziplem-asc2 ETTop ETTop ih1) (DoSynth (SAMove EMAscParent2) (DoSynth (SAMove EMAscChild1) (runsynth++ (ziplem-asc1 ih2) (DoSynth (SAMove EMAscParent1) DoRefl))))) construct-synth {t = t1 ==> t2} (SLam x wt) with construct-type t1 | construct-synth wt ... | l1 , ih1 | l2 , ih2 = construct (lam _ irr-hole irr-hole) :: (l1 ++ (move parent :: move (child 2) :: (l2 ++ [ move parent ]))) , DoSynth (SAConLam x) (runsynth++ (ziplem-halflam1 x ETTop (rel◆t _) ih1) (DoSynth (SAMove EMHalfLamParent1) (DoSynth (SAMove EMHalfLamChild2) (runsynth++ (ziplem-halflam2 x EETop SEHole ih2) (DoSynth (SAMove EMHalfLamParent2) DoRefl))))) construct-synth (SAp e1 m e2) with construct-synth e1 | construct-ana e2 ... | l1 , ih1 | l2 , ih2 = l1 ++ construct (ap irr-hole irr-hole) :: (l2 ++ [ move parent ]) , runsynth++ ih1 (DoSynth (SAConApArr m) (runsynth++ (ziplem-ap2 e1 m ih2) (DoSynth (SAMove EMApParent2) DoRefl))) construct-synth (SNEHole {u = u} wt) with construct-synth wt ... | l , ih = l ++ construct (nehole u) :: move parent :: [] , runsynth++ ih (DoSynth SAConNEHole (DoSynth (SAMove EMNEHoleParent) DoRefl)) construct-synth (SPair e1 e2) with construct-synth e1 | construct-synth e2 ... | l1 , ih1 | l2 , ih2 = construct (pair irr-hole irr-hole) :: (l1 ++ move parent :: move (child 2) :: l2 ++ [ move parent ]) , DoSynth SAConPair (runsynth++ (ziplem-pair1 EETop SEHole ih1 SEHole) (DoSynth (SAMove EMPairParent1) (DoSynth (SAMove EMPairChild2) (runsynth++ (ziplem-pair2 e1 EETop SEHole ih2) (DoSynth (SAMove EMPairParent2) DoRefl))))) construct-synth (SFst e pr) with construct-synth e ... | l , ih = l ++ [ construct (fst irr-hole) ] , runsynth++ ih (DoSynth (SAConFst1 pr) DoRefl) construct-synth (SSnd e pr) with construct-synth e ... | l , ih = l ++ [ construct (snd irr-hole) ] , runsynth++ ih (DoSynth (SAConSnd1 pr) DoRefl) -- construction of expressions in analytic positions construct-ana : {Γ : tctx} {u : Nat} {t : htyp} {e : hexp} → (Γ ⊢ e <= t) → Σ[ L ∈ List action ] runana Γ ▹ ⦇-⦈[ u ] ◃ L ▹ e ◃ t construct-ana (ASubsume x c) with construct-synth x ... | l , ih = construct (nehole irr-hole) :: l ++ (move parent :: finish :: []) , DoAna (AASubsume EETop SEHole SAConNEHole TCHole1) (runana++ (ziplem-nehole-b SEHole c ih) (DoAna (AAMove EMNEHoleParent) (DoAna (AAFinish (ASubsume x c)) DoRefl))) construct-ana (ALam a m e) with construct-ana e ... | l , ih = construct (lam _ irr-hole irr-hole) :: (l ++ [ move parent ]) , DoAna (AAConLam1 a m) (runana++ (ziplem-lam a m ih) (DoAna (AAMove EMLamParent) DoRefl)) construct-ana (AInl m wt) with construct-ana wt ... | l , ih = construct (inl irr-hole irr-hole) :: l ++ [ move parent ] , DoAna (AAConInl1 m) (runana++ (ziplem-inl m ih) (DoAna (AAMove EMInlParent) DoRefl)) construct-ana (AInr m wt) with construct-ana wt ... | l , ih = construct (inr irr-hole irr-hole) :: l ++ [ move parent ] , DoAna (AAConInr1 m) (runana++ (ziplem-inr m ih) (DoAna (AAMove EMInrParent) DoRefl)) construct-ana (ACase {x = x} {y = y} x# y# m wt0 wt1 wt2) with construct-synth wt0 | construct-ana wt1 | construct-ana wt2 ... | l0 , ih0 | l1 , ih1 | l2 , ih2 = construct (case x y irr-hole irr-hole irr-hole) :: construct (nehole irr-hole) :: l0 ++ (move parent :: finish :: move parent :: move (child 2) :: l1 ++ (move parent :: move (child 3) :: l2 ++ [ move parent ])) , DoAna (AAConCase x# y#) (DoAna (AAZipCase1 x# y# EETop SEHole SAConNEHole MSHole (ASubsume SEHole TCHole1) (ASubsume SEHole TCHole1)) (runana++ (ziplem-case1b x# y# EETop SEHole ih0) (DoAna (AAZipCase1 x# y# (EENEHole EETop) (SNEHole wt0) (SAMove EMNEHoleParent) MSHole (ASubsume SEHole TCHole1) (ASubsume SEHole TCHole1)) (DoAna (AAZipCase1 x# y# EETop (SNEHole wt0) (SAFinish wt0) m (ASubsume SEHole TCHole1) (ASubsume SEHole TCHole1)) (DoAna (AAMove EMCaseParent1) (DoAna (AAMove EMCaseChild2) (runana++ (ziplem-case2 x# y# wt0 (ASubsume SEHole TCHole1) m ih1) (DoAna (AAMove EMCaseParent2) (DoAna (AAMove EMCaseChild3) (runana++ (ziplem-case3 x# y# wt0 wt1 m ih2) (DoAna (AAMove EMCaseParent3) DoRefl)))))))))))
48.768362
91
0.544486
add0cd1454a4836512a0567aa888b34a307d5f33
2,474
agda
Agda
lib/Haskell/Prim/Bounded.agda
flupe/agda2hs
4cb28f1b5032948b19b977b390fa260be292abf6
[ "MIT" ]
null
null
null
lib/Haskell/Prim/Bounded.agda
flupe/agda2hs
4cb28f1b5032948b19b977b390fa260be292abf6
[ "MIT" ]
null
null
null
lib/Haskell/Prim/Bounded.agda
flupe/agda2hs
4cb28f1b5032948b19b977b390fa260be292abf6
[ "MIT" ]
null
null
null
module Haskell.Prim.Bounded where open import Agda.Builtin.Nat open import Agda.Builtin.Bool open import Agda.Builtin.Char open import Agda.Builtin.Equality open import Agda.Builtin.List open import Haskell.Prim open import Haskell.Prim.Eq open import Haskell.Prim.Int open import Haskell.Prim.Maybe open import Haskell.Prim.Ord open import Haskell.Prim.Tuple open import Haskell.Prim.Word -------------------------------------------------- -- Bounded record BoundedBelow (a : Set) : Set where field minBound : a record BoundedAbove (a : Set) : Set where field maxBound : a record Bounded (a : Set) : Set where field overlap ⦃ below ⦄ : BoundedBelow a overlap ⦃ above ⦄ : BoundedAbove a open BoundedBelow ⦃ ... ⦄ public open BoundedAbove ⦃ ... ⦄ public instance iBounded : ⦃ BoundedBelow a ⦄ → ⦃ BoundedAbove a ⦄ → Bounded a iBounded .Bounded.below = it iBounded .Bounded.above = it instance iBoundedBelowNatural : BoundedBelow Nat iBoundedBelowNatural .minBound = 0 iBoundedBelowWord : BoundedBelow Word iBoundedBelowWord .minBound = 0 iBoundedAboveWord : BoundedAbove Word iBoundedAboveWord .maxBound = 18446744073709551615 iBoundedBelowInt : BoundedBelow Int iBoundedBelowInt .minBound = -9223372036854775808 iBoundedAboveInt : BoundedAbove Int iBoundedAboveInt .maxBound = 9223372036854775807 iBoundedBelowBool : BoundedBelow Bool iBoundedBelowBool .minBound = false iBoundedAboveBool : BoundedAbove Bool iBoundedAboveBool .maxBound = true iBoundedBelowChar : BoundedBelow Char iBoundedBelowChar .minBound = '\0' iBoundedAboveChar : BoundedAbove Char iBoundedAboveChar .maxBound = '\1114111' iBoundedBelowTuple₀ : BoundedBelow (Tuple []) iBoundedBelowTuple₀ .minBound = [] iBoundedAboveTuple₀ : BoundedAbove (Tuple []) iBoundedAboveTuple₀ .maxBound = [] iBoundedBelowTuple : ∀ {as} → ⦃ BoundedBelow a ⦄ → ⦃ BoundedBelow (Tuple as) ⦄ → BoundedBelow (Tuple (a ∷ as)) iBoundedBelowTuple .minBound = minBound ∷ minBound iBoundedAboveTuple : ∀ {as} → ⦃ BoundedAbove a ⦄ → ⦃ BoundedAbove (Tuple as) ⦄ → BoundedAbove (Tuple (a ∷ as)) iBoundedAboveTuple .maxBound = maxBound ∷ maxBound iBoundedBelowOrdering : BoundedBelow Ordering iBoundedBelowOrdering .minBound = LT iBoundedAboveOrdering : BoundedAbove Ordering iBoundedAboveOrdering .maxBound = GT -- Sanity checks private _ : addWord maxBound 1 ≡ minBound _ = refl _ : addInt maxBound 1 ≡ minBound _ = refl
27.797753
112
0.736055
9a4aa66b2dc23e0fb01c9f3714a5dee2a7323b3c
1,667
agda
Agda
src/StateSizedIO/Object.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
23
2016-06-19T12:57:55.000Z
2020-10-12T23:15:25.000Z
src/StateSizedIO/Object.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
null
null
null
src/StateSizedIO/Object.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
2
2018-09-01T15:02:37.000Z
2022-03-12T11:41:00.000Z
module StateSizedIO.Object where open import Data.Product open import Level renaming (zero to lzero; suc to lsuc) open import StateSizedIO.GUI.BaseStateDependent -- open import StateSizedIO.Base public {- -- This definition was probably moved to StateSizedIO.Base -- and by accident left here. Delete this. record Interfaceˢ : Set₁ where field Stateˢ : Set Methodˢ : Stateˢ → Set Resultˢ : (s : Stateˢ) → (m : Methodˢ s) → Set nextˢ : (s : Stateˢ) → (m : Methodˢ s) → Resultˢ s m → Stateˢ open Interfaceˢ public -} module _ (I : Interfaceˢ {lzero} {lzero} {lzero})(let S = Stateˢ I) (let M = Methodˢ I) (let R = Resultˢ I) (let next = nextˢ I) where -- A simple object just returns for a method the response -- and the object itself record Objectˢ (s : S) : Set where coinductive field objectMethod : (m : M s) → Σ[ r ∈ R s m ] Objectˢ (next s m r) open Objectˢ public _▹_ : {A : Set } → { B : Set } → A → (A → B) → B a ▹ f = f a -- Bisimilation for Objectˢ module Bisim (I : Interfaceˢ) (let S = Stateˢ I) (let M = Methodˢ I) (let R = Resultˢ I) (let next = nextˢ I) (let O = Objectˢ I) where mutual record _≅_ {s : S} (o o' : O s) : Set where coinductive field bisimMethod : (m : M s) → objectMethod o m ≡×≅ objectMethod o' m data _≡×≅_ {s m} : (p p' : Σ[ r ∈ R s m ] O (next s m r)) → Set where bisim : ∀{r} (let s' = next s m r) {o o' : O s'} (p : o ≅ o') → (r , o) ≡×≅ (r , o') open _≅_ public refl≅ : ∀{s} (o : O s) → o ≅ o bisimMethod (refl≅ o) m = bisim (refl≅ (proj₂ (objectMethod o m)))
27.783333
87
0.577085
8baa6a469ff8676ceeeadf0525ebca60e405d793
379
agda
Agda
Operator/Equals.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Operator/Equals.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Operator/Equals.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Operator.Equals {ℓ ℓₑ} where open import Data.Boolean open import Logic open import Structure.Setoid open import Type.Properties.Decidable open import Type DecidableEquiv : (T : Type{ℓ}) ⦃ equiv : Equiv{ℓₑ}(T) ⦄ → Stmt DecidableEquiv(T) = Decidable(2)(_≡_) _==_ : ∀{T : Type{ℓ}} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ ⦃ _ : DecidableEquiv(T) ⦄ → (T → T → Bool) _==_ = decide(2)(_≡_)
27.071429
89
0.670185
032b0674aab4bd51a629655b6c817fa029099c5a
1,279
agda
Agda
test/Succeed/Issue1607.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1607.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1607.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2015-07-10, issue reported by asr -- {-# OPTIONS -v scope:20 #-} -- {-# OPTIONS -v scope.createModule:10 #-} module _ where module A where module Y where module B where -- FAILS: module X = A open X public -- open A public --WORKS module C = B -- On maint and master: -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/Syntax/Scope/Monad.hs:107 {- createModule Issue1607.C module macro ScopeInfo current = Issue1607 context = TopCtx modules scope scope Issue1607 public modules A --> [Issue1607.A] B --> [Issue1607.B] scope Issue1607.A public modules Y --> [Issue1607.A.Y] scope Issue1607.A.Y scope Issue1607.B public modules X --> [Issue1607.B.X] Y --> [Issue1607.B.X.Y] scope Issue1607.B.X public modules Y --> [Issue1607.B.X.Y] scope Issue1607.B.X.Y scope Issue1607.C Copying scope Issue1607.B to Issue1607.C createModule Issue1607.C.X Copying scope Issue1607.B.X to Issue1607.C.X createModule Issue1607.C.X.Y Copying scope Issue1607.B.X.Y to Issue1607.C.X.Y createModule Issue1607.C.X.Y Copying scope Issue1607.B.X.Y to Issue1607.C.X.Y -}
21.677966
65
0.63878
4b25a6e04182709a2fedacfcb5ad3922f8b62cc5
7,752
agda
Agda
Cubical/Categories/NaturalTransformation/Base.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Categories/NaturalTransformation/Base.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Categories/NaturalTransformation/Base.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Categories.NaturalTransformation.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism renaming (iso to iIso) open import Cubical.Data.Sigma open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Categories.Commutativity open import Cubical.Categories.Morphism renaming (isIso to isIsoC) private variable ℓC ℓC' ℓD ℓD' : Level module _ {C : Precategory ℓC ℓC'} {D : Precategory ℓD ℓD'} where -- syntax for sequencing in category D infixl 15 _⋆ᴰ_ private _⋆ᴰ_ : ∀ {x y z} (f : D [ x , y ]) (g : D [ y , z ]) → D [ x , z ] f ⋆ᴰ g = f ⋆⟨ D ⟩ g open Precategory open Functor -- type aliases because it gets tedious typing it out all the time N-ob-Type : (F G : Functor C D) → Type _ N-ob-Type F G = (x : C .ob) → D [(F .F-ob x) , (G .F-ob x)] N-hom-Type : (F G : Functor C D) → N-ob-Type F G → Type _ N-hom-Type F G ϕ = {x y : C .ob} (f : C [ x , y ]) → (F .F-hom f) ⋆ᴰ (ϕ y) ≡ (ϕ x) ⋆ᴰ (G .F-hom f) record NatTrans (F G : Functor C D) : Type (ℓ-max (ℓ-max ℓC ℓC') ℓD') where constructor natTrans field -- components of the natural transformation N-ob : N-ob-Type F G -- naturality condition N-hom : N-hom-Type F G N-ob record NatIso (F G : Functor C D): Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) where field trans : NatTrans F G open NatTrans trans field nIso : ∀ (x : C .ob) → isIsoC {C = D} (N-ob x) open isIsoC -- the three other commuting squares sqRL : ∀ {x y : C .ob} {f : C [ x , y ]} → F ⟪ f ⟫ ≡ (N-ob x) ⋆ᴰ G ⟪ f ⟫ ⋆ᴰ (nIso y) .inv sqRL {x} {y} {f} = invMoveR (isIso→areInv (nIso y)) (N-hom f) sqLL : ∀ {x y : C .ob} {f : C [ x , y ]} → G ⟪ f ⟫ ⋆ᴰ (nIso y) .inv ≡ (nIso x) .inv ⋆ᴰ F ⟪ f ⟫ sqLL {x} {y} {f} = invMoveL (isIso→areInv (nIso x)) (sym sqRL') where sqRL' : F ⟪ f ⟫ ≡ (N-ob x) ⋆ᴰ ( G ⟪ f ⟫ ⋆ᴰ (nIso y) .inv ) sqRL' = sqRL ∙ (D .⋆Assoc _ _ _) sqLR : ∀ {x y : C .ob} {f : C [ x , y ]} → G ⟪ f ⟫ ≡ (nIso x) .inv ⋆ᴰ F ⟪ f ⟫ ⋆ᴰ (N-ob y) sqLR {x} {y} {f} = invMoveR (symAreInv (isIso→areInv (nIso y))) sqLL open NatTrans open NatIso infix 10 NatTrans syntax NatTrans F G = F ⇒ G infix 9 NatIso syntax NatIso F G = F ≅ᶜ G -- c superscript to indicate that this is in the context of categories -- component of a natural transformation infix 30 _⟦_⟧ _⟦_⟧ : ∀ {F G : Functor C D} → (F ⇒ G) → (x : C .ob) → D [(F .F-ob x) , (G .F-ob x)] _⟦_⟧ = N-ob idTrans : (F : Functor C D) → NatTrans F F idTrans F .N-ob x = D .id (F .F-ob x) idTrans F .N-hom f = (F .F-hom f) ⋆ᴰ (idTrans F .N-ob _) ≡⟨ D .⋆IdR _ ⟩ F .F-hom f ≡⟨ sym (D .⋆IdL _) ⟩ (D .id (F .F-ob _)) ⋆ᴰ (F .F-hom f) ∎ syntax idTrans F = 1[ F ] -- vertical sequencing seqTrans : {F G H : Functor C D} (α : NatTrans F G) (β : NatTrans G H) → NatTrans F H seqTrans α β .N-ob x = (α .N-ob x) ⋆ᴰ (β .N-ob x) seqTrans {F} {G} {H} α β .N-hom f = (F .F-hom f) ⋆ᴰ ((α .N-ob _) ⋆ᴰ (β .N-ob _)) ≡⟨ sym (D .⋆Assoc _ _ _) ⟩ ((F .F-hom f) ⋆ᴰ (α .N-ob _)) ⋆ᴰ (β .N-ob _) ≡[ i ]⟨ (α .N-hom f i) ⋆ᴰ (β .N-ob _) ⟩ ((α .N-ob _) ⋆ᴰ (G .F-hom f)) ⋆ᴰ (β .N-ob _) ≡⟨ D .⋆Assoc _ _ _ ⟩ (α .N-ob _) ⋆ᴰ ((G .F-hom f) ⋆ᴰ (β .N-ob _)) ≡[ i ]⟨ (α .N-ob _) ⋆ᴰ (β .N-hom f i) ⟩ (α .N-ob _) ⋆ᴰ ((β .N-ob _) ⋆ᴰ (H .F-hom f)) ≡⟨ sym (D .⋆Assoc _ _ _) ⟩ ((α .N-ob _) ⋆ᴰ (β .N-ob _)) ⋆ᴰ (H .F-hom f) ∎ compTrans : {F G H : Functor C D} (β : NatTrans G H) (α : NatTrans F G) → NatTrans F H compTrans β α = seqTrans α β infixl 8 seqTrans syntax seqTrans α β = α ●ᵛ β -- vertically sequence natural transformations whose -- common functor is not definitional equal seqTransP : {F G G' H : Functor C D} (p : G ≡ G') → (α : NatTrans F G) (β : NatTrans G' H) → NatTrans F H seqTransP {F} {G} {G'} {H} p α β .N-ob x -- sequence morphisms with non-judgementally equal (co)domain = seqP {C = D} {p = Gx≡G'x} (α ⟦ x ⟧) (β ⟦ x ⟧) where Gx≡G'x : ∀ {x} → G ⟅ x ⟆ ≡ G' ⟅ x ⟆ Gx≡G'x {x} i = F-ob (p i) x seqTransP {F} {G} {G'} {H} p α β .N-hom {x = x} {y} f -- compose the two commuting squares -- 1. α's commuting square -- 2. β's commuting square, but extended to G since β is only G' ≡> H = compSq {C = D} (α .N-hom f) βSq where -- functor equality implies equality of actions on objects and morphisms Gx≡G'x : G ⟅ x ⟆ ≡ G' ⟅ x ⟆ Gx≡G'x i = F-ob (p i) x Gy≡G'y : G ⟅ y ⟆ ≡ G' ⟅ y ⟆ Gy≡G'y i = F-ob (p i) y Gf≡G'f : PathP (λ i → D [ Gx≡G'x i , Gy≡G'y i ]) (G ⟪ f ⟫) (G' ⟪ f ⟫) Gf≡G'f i = p i ⟪ f ⟫ -- components of β extended out to Gx and Gy respectively βx' = subst (λ a → D [ a , H ⟅ x ⟆ ]) (sym Gx≡G'x) (β ⟦ x ⟧) βy' = subst (λ a → D [ a , H ⟅ y ⟆ ]) (sym Gy≡G'y) (β ⟦ y ⟧) -- extensions are equal to originals βy'≡βy : PathP (λ i → D [ Gy≡G'y i , H ⟅ y ⟆ ]) βy' (β ⟦ y ⟧) βy'≡βy = symP (toPathP {A = λ i → D [ Gy≡G'y (~ i) , H ⟅ y ⟆ ]} refl) βx≡βx' : PathP (λ i → D [ Gx≡G'x (~ i) , H ⟅ x ⟆ ]) (β ⟦ x ⟧) βx' βx≡βx' = toPathP refl -- left wall of square left : PathP (λ i → D [ Gx≡G'x i , H ⟅ y ⟆ ]) (G ⟪ f ⟫ ⋆⟨ D ⟩ βy') (G' ⟪ f ⟫ ⋆⟨ D ⟩ β ⟦ y ⟧) left i = Gf≡G'f i ⋆⟨ D ⟩ βy'≡βy i -- right wall of square right : PathP (λ i → D [ Gx≡G'x (~ i) , H ⟅ y ⟆ ]) (β ⟦ x ⟧ ⋆⟨ D ⟩ H ⟪ f ⟫) (βx' ⋆⟨ D ⟩ H ⟪ f ⟫) right i = βx≡βx' i ⋆⟨ D ⟩ refl {x = H ⟪ f ⟫} i -- putting it all together βSq : G ⟪ f ⟫ ⋆⟨ D ⟩ βy' ≡ βx' ⋆⟨ D ⟩ H ⟪ f ⟫ βSq i = comp (λ k → D [ Gx≡G'x (~ k) , H ⟅ y ⟆ ]) (λ j → λ { (i = i0) → left (~ j) ; (i = i1) → right j }) (β .N-hom f i) module _ ⦃ isCatD : isCategory D ⦄ {F G : Functor C D} {α β : NatTrans F G} where open Precategory open Functor open NatTrans makeNatTransPath : α .N-ob ≡ β .N-ob → α ≡ β makeNatTransPath p i .N-ob = p i makeNatTransPath p i .N-hom f = rem i where rem : PathP (λ i → (F .F-hom f) ⋆ᴰ (p i _) ≡ (p i _) ⋆ᴰ (G .F-hom f)) (α .N-hom f) (β .N-hom f) rem = toPathP (isCatD .isSetHom _ _ _ _) module _ ⦃ isCatD : isCategory D ⦄ {F F' G G' : Functor C D} {α : NatTrans F G} {β : NatTrans F' G'} where open Precategory open Functor open NatTrans makeNatTransPathP : ∀ (p : F ≡ F') (q : G ≡ G') → PathP (λ i → (x : C .ob) → D [ (p i) .F-ob x , (q i) .F-ob x ]) (α .N-ob) (β .N-ob) → PathP (λ i → NatTrans (p i) (q i)) α β makeNatTransPathP p q P i .N-ob = P i makeNatTransPathP p q P i .N-hom f = rem i where rem : PathP (λ i → ((p i) .F-hom f) ⋆ᴰ (P i _) ≡ (P i _) ⋆ᴰ ((q i) .F-hom f)) (α .N-hom f) (β .N-hom f) rem = toPathP (isCatD .isSetHom _ _ _ _) private variable ℓA ℓA' ℓB ℓB' : Level module _ {B : Precategory ℓB ℓB'} {C : Precategory ℓC ℓC'} {D : Precategory ℓD ℓD'} where open NatTrans -- whiskering -- αF _∘ˡ_ : ∀ {G H : Functor C D} (α : NatTrans G H) → (F : Functor B C) → NatTrans (G ∘F F) (H ∘F F) (_∘ˡ_ {G} {H} α F) .N-ob x = α ⟦ F ⟅ x ⟆ ⟧ (_∘ˡ_ {G} {H} α F) .N-hom f = (α .N-hom) _ -- Kβ _∘ʳ_ : ∀ (K : Functor C D) → {G H : Functor B C} (β : NatTrans G H) → NatTrans (K ∘F G) (K ∘F H) (_∘ʳ_ K {G} {H} β) .N-ob x = K ⟪ β ⟦ x ⟧ ⟫ (_∘ʳ_ K {G} {H} β) .N-hom f = preserveCommF {C = C} {D = D} {K} (β .N-hom f)
34.918919
111
0.498194
adfac348750e3222e81b4d79b732328414474565
210
agda
Agda
Light/Variable/Other.agda
zamfofex/lightlib
44b1c724f2de95d3a9effe87ca36ef9eca8b4756
[ "0BSD" ]
1
2019-12-20T21:33:05.000Z
2019-12-20T21:33:05.000Z
Light/Variable/Other.agda
zamfofex/lightlib
44b1c724f2de95d3a9effe87ca36ef9eca8b4756
[ "0BSD" ]
null
null
null
Light/Variable/Other.agda
zamfofex/lightlib
44b1c724f2de95d3a9effe87ca36ef9eca8b4756
[ "0BSD" ]
null
null
null
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Variable.Other {ℓ} (𝕒 : Set ℓ) where variable a b c d e f g h i j k l m : 𝕒 variable n o p q r s t u v w x y z : 𝕒
30
79
0.647619
29271b76de97b633496b0fcb675f73bf18f721a8
741
agda
Agda
Cubical/Algebra/AbGroup/Properties.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Algebra/AbGroup/Properties.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Algebra/AbGroup/Properties.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.AbGroup.Properties where open import Cubical.Foundations.Prelude open import Cubical.Algebra.AbGroup.Base private variable ℓ : Level module AbGroupTheory (A'@(A , Ar) : AbGroup ℓ) where open AbGroupStr Ar comm-4 : (a b c d : A) → ((a + b) + (c + d) ≡ (a + c) + (b + d)) comm-4 a b c d = ((a + b) + (c + d) ≡⟨ assoc (a + b) c d ⟩ (((a + b) + c) + d) ≡⟨ cong (λ X → X + d) (sym (assoc a b c)) ⟩ ((a + (b + c)) + d) ≡⟨ cong (λ X → (a + X) + d) (comm b c) ⟩ ((a + (c + b)) + d) ≡⟨ cong (λ X → X + d) (assoc a c b) ⟩ (((a + c) + b) + d) ≡⟨ sym (assoc (a + c) b d) ⟩ ((a + c) + (b + d)) ∎)
32.217391
82
0.42915
583c32639b0dcfbf0a42b44c534e4876b4be595b
8,428
agda
Agda
src/LibraBFT/Impl/Consensus/BlockStorage/BlockTree.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/Consensus/BlockStorage/BlockTree.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/Consensus/BlockStorage/BlockTree.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types import LibraBFT.Impl.Consensus.ConsensusTypes.ExecutedBlock as ExecutedBlock import LibraBFT.Impl.Consensus.ConsensusTypes.Vote as Vote open import LibraBFT.Impl.OBM.Logging.Logging open import LibraBFT.Impl.OBM.Prelude open import LibraBFT.Impl.OBM.Rust.RustTypes open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Interface.Output open import LibraBFT.ImplShared.Util.Crypto open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.ByteString open import Util.Hash import Util.KVMap as Map open import Util.PKCS open import Util.Prelude ------------------------------------------------------------------------------ open import Data.String using (String) module LibraBFT.Impl.Consensus.BlockStorage.BlockTree where postulate -- TODO-2: implement linkableBlockNew linkableBlockNew : ExecutedBlock → LinkableBlock module addChild (lb : LinkableBlock) (hv : HashValue) where VariantFor : ∀ {ℓ} EL → EL-func {ℓ} EL VariantFor EL = EL ErrLog LinkableBlock postulate -- TODO-2: implement addChild step₀ : VariantFor EitherD -- addChild : LinkableBlock → HashValue → Either ErrLog LinkableBlock -- addChild lb hv = -- if Set.member hv (lb ^∙ lbChildren) -- then Left fakeErr -- else Right (lb & lbChildren %~ Set.insert hv) E : VariantFor Either E = toEither step₀ D : VariantFor EitherD D = fromEither E addChild = addChild.D new : ExecutedBlock → QuorumCert → QuorumCert → Usize → Maybe TimeoutCertificate → Either ErrLog BlockTree new root0 rootQuorumCert rootLedgerInfo maxPruned mHighestTimeoutCert = do lcheck ((root0 ^∙ ebId) == (rootLedgerInfo ^∙ qcCommitInfo ∙ biId)) ("BlockTree" ∷ "newBlockTree" ∷ "inconsistent root and ledger info" ∷ []) let idToBlock = Map.insert (root0 ^∙ ebId) (linkableBlockNew root0) Map.empty idToQuorumCert = Map.insert (rootQuorumCert ^∙ qcCertifiedBlock ∙ biId) rootQuorumCert Map.empty prunedBlockIds = vdNew -- TODO in pure $ mkBlockTree idToBlock (root0 ^∙ ebId) -- _btRootId (root0 ^∙ ebId) -- _btHighestCertifiedBlockId rootQuorumCert -- _btHighestQuorumCert mHighestTimeoutCert rootLedgerInfo -- _btHighestCommitCert idToQuorumCert prunedBlockIds maxPruned replaceTimeoutCertM : TimeoutCertificate → LBFT Unit replaceTimeoutCertM tc = do lBlockStore ∙ bsInner ∙ btHighestTimeoutCert ?= tc logInfo fakeInfo -- lTO (InfoUpdateHighestTimeoutCert (Just tc)) ------------------------------------------------------------------------------ module insertBlockE (block : ExecutedBlock)(bt : BlockTree) where VariantFor : ∀ {ℓ} EL → EL-func {ℓ} EL VariantFor EL = EL ErrLog (BlockTree × ExecutedBlock) -- TODO: break into smaller steps to take advantage of the EitherD-weakestpre machinery to prove -- the contract. step₀ = do let blockId = block ^∙ ebId caseMD btGetBlock blockId bt of λ where (just existingBlock) → pure (bt , existingBlock) nothing → caseMD btGetLinkableBlock (block ^∙ ebParentId) bt of λ where nothing → LeftD fakeErr (just parentBlock) → (do parentBlock' ← addChild parentBlock blockId let bt' = bt & btIdToBlock ∙~ Map.kvm-insert-Haskell (block ^∙ ebParentId) parentBlock' (bt ^∙ btIdToBlock) pure ( (bt' & btIdToBlock ∙~ Map.kvm-insert-Haskell blockId (LinkableBlock∙new block) (bt' ^∙ btIdToBlock)) , block)) E : VariantFor Either E = toEither step₀ D : VariantFor EitherD D = fromEither E -- We make the EitherD variant the default, because the only call in code -- modeled is in EitherD, so it's nice to keep it exactly like the Haskell -- code being modeled. However, insertBlockESpec.Contract and the proof of -- executeAndInsertBlockESpec.contract' (which was written before EitherD -- support was developed) both want an Either variant, so they use -- insertBlockE.E. This demonstrates the flexibility of the VariantOf -- approach, providing variants for any EitherLike, and means to convert -- between them easily. insertBlockE = insertBlockE.D ------------------------------------------------------------------------------ module insertQuorumCertE (qc : QuorumCert) (bt0 : BlockTree) where VariantFor : ∀ {ℓ} EL → EL-func {ℓ} EL VariantFor EL = EL ErrLog (BlockTree × List InfoLog) step₁ : HashValue → VariantFor EitherD step₂ : HashValue → ExecutedBlock → VariantFor EitherD step₃ : HashValue → ExecutedBlock → ExecutedBlock → VariantFor EitherD continue1 : BlockTree → HashValue → ExecutedBlock → List InfoLog → (BlockTree × List InfoLog) continue2 : BlockTree → List InfoLog → (BlockTree × List InfoLog) here' : List String → List String here' t = "BlockTree" ∷ "insertQuorumCert" ∷ t blockId = qc ^∙ qcCertifiedBlock ∙ biId safetyInvariant = forM_ (Map.elems (bt0 ^∙ btIdToQuorumCert)) $ \x → lcheck ( (x ^∙ qcLedgerInfo ∙ liwsLedgerInfo ∙ liConsensusDataHash == qc ^∙ qcLedgerInfo ∙ liwsLedgerInfo ∙ liConsensusDataHash) ∨ (x ^∙ qcCertifiedBlock ∙ biRound /= qc ^∙ qcCertifiedBlock ∙ biRound)) (here' ("failed check" ∷ "existing qc == qc || existing qc.round /= qc.round" ∷ [])) step₀ = case safetyInvariant of λ where (Left e) → LeftD e (Right unit) → step₁ blockId step₁ blockId = maybeSD (btGetBlock blockId bt0) (LeftD fakeErr) $ step₂ blockId step₂ blockId block = maybeSD (bt0 ^∙ btHighestCertifiedBlock) (LeftD fakeErr) $ step₃ blockId block step₃ blockId block hcb = ifD ((block ^∙ ebRound) >? (hcb ^∙ ebRound)) then (let bt = bt0 & btHighestCertifiedBlockId ∙~ block ^∙ ebId & btHighestQuorumCert ∙~ qc info = (fakeInfo ∷ []) in pure (continue1 bt blockId block info)) else pure (continue1 bt0 blockId block []) continue1 bt blockId block info = continue2 ( bt & btIdToQuorumCert ∙~ lookupOrInsert blockId qc (bt ^∙ btIdToQuorumCert)) ( (fakeInfo ∷ info) ++ (if ExecutedBlock.isNilBlock block then fakeInfo ∷ [] else [] )) continue2 bt info = if-dec (bt ^∙ btHighestCommitCert ∙ qcCommitInfo ∙ biRound) <? (qc ^∙ qcCommitInfo ∙ biRound) then ((bt & btHighestCommitCert ∙~ qc) , info) else (bt , info) E : VariantFor Either E = toEither step₀ D : VariantFor EitherD D = fromEither E insertQuorumCertE = insertQuorumCertE.E insertQuorumCertM : QuorumCert → LBFT Unit insertQuorumCertM qc = do bt ← use lBlockTree case insertQuorumCertE qc bt of λ where (Left e) → logErr e (Right (bt' , info)) → do forM_ info logInfo lBlockTree ∙= bt' ------------------------------------------------------------------------------ module pathFromRoot (blockId : HashValue) (blockTree : BlockTree) where -- TODO-1 PROVE IT TERMINATES {-# TERMINATING #-} loop : ExecutedBlock → HashValue → List ExecutedBlock → Maybe (HashValue × List ExecutedBlock) loop btr curBlockId res = case btGetBlock curBlockId blockTree of λ where (just block) → if-dec (block ^∙ ebRound) ≤?ℕ (btr ^∙ ebRound) then just (curBlockId , res) else loop btr (block ^∙ ebParentId) (block ∷ res) nothing → nothing pathFromRoot : HashValue → BlockTree → Either ErrLog (List ExecutedBlock) pathFromRoot blockId blockTree = maybeS (blockTree ^∙ btRoot) (Left fakeErr) $ λ btr → maybeS (loop btr blockId []) (pure []) (pure ∘ continue) where open pathFromRoot blockId blockTree continue : (HashValue × List ExecutedBlock) → List ExecutedBlock continue (curBlockId , res) = if not (curBlockId /= (blockTree ^∙ btRootId)) then [] else res ------------------------------------------------------------------------------ getAllBlockIdM : LBFT (List HashValue) getAllBlockIdM = Map.kvm-keys <$> use (lBlockTree ∙ btIdToBlock)
39.568075
118
0.652468
38761c5a652736a061293ce3374bc6debd26df2a
5,409
agda
Agda
core/lib/types/Circle.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/types/Circle.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/types/Circle.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NConnected open import lib.NType2 open import lib.types.Paths open import lib.types.Pi open import lib.types.Truncation open import lib.types.Unit open import lib.types.Bool open import lib.types.Suspension open import lib.types.IteratedSuspension module lib.types.Circle where {- Idea : data S¹ : Type₀ where base : S¹ loop : base == base I’m using Dan Licata’s trick to have a higher inductive type with definitional reduction rule for [base] -} {- favonia (2016/05): Now [Circle] is defined as [Sphere 1]. -} module _ where -- (already defined in IteratedSuspension.agda) -- S¹ : Type₀ -- S¹ = Sphere 1 base : S¹ base = north loop : base == base loop = merid true ∙' ! (merid false) module S¹Elim {i} {P : S¹ → Type i} (base* : P base) (loop* : base* == base* [ P ↓ loop ]) where private north* = base* south* = transport P (merid false) base* merid*-general : ∀ {x : S¹} (p q : base == x) (loop* : base* == base* [ P ↓ p ∙' ! q ]) (b : Bool) → base* == transport P q base* [ P ↓ if b then p else q ] merid*-general p idp loop* true = loop* merid*-general p idp loop* false = idp merid* : ∀ (b : Bool) → north* == south* [ P ↓ merid b ] merid* true = merid*-general (merid true) (merid false) loop* true merid* false = merid*-general (merid true) (merid false) loop* false module SE = SuspElim north* south* merid* f : Π S¹ P f = SE.f private merid*-general-lemma : ∀ {x : S¹} (p q : base == x) (loop* : base* == base* [ P ↓ p ∙' ! q ]) → merid*-general p q loop* true ▹ !ᵈ (merid*-general p q loop* false) == loop* merid*-general-lemma p idp loop* = ▹idp _ loop-β : apd f loop == loop* loop-β = apd f loop =⟨ apd-∙' f (merid true) (! (merid false)) ⟩ apd f (merid true) ▹ apd f (! (merid false)) =⟨ apd-! f (merid false) |in-ctx apd f (merid true) ▹_ ⟩ apd f (merid true) ▹ !ᵈ (apd f (merid false)) =⟨ SE.merid-β true |in-ctx _▹ !ᵈ (apd f (merid false)) ⟩ merid* true ▹ !ᵈ (apd f (merid false)) =⟨ SE.merid-β false |in-ctx (λ p → merid* true ▹ !ᵈ p) ⟩ merid* true ▹ !ᵈ (merid* false) =⟨ merid*-general-lemma (merid true) (merid false) loop* ⟩ loop* =∎ open S¹Elim public using () renaming (f to S¹-elim) module S¹Rec {i} {A : Type i} (base* : A) (loop* : base* == base*) where private module M = S¹Elim base* (↓-cst-in loop*) f : S¹ → A f = M.f loop-β : ap f loop == loop* loop-β = apd=cst-in {f = f} M.loop-β open S¹Rec public using () renaming (f to S¹-rec) S¹-rec-η : ∀ {i} {A : Type i} (f : S¹ → A) → ∀ x → S¹-rec (f base) (ap f loop) x == f x S¹-rec-η f = S¹-elim idp (↓-='-in' $ ! $ S¹Rec.loop-β (f base) (ap f loop)) module S¹RecType {i} (A : Type i) (e : A ≃ A) where open S¹Rec A (ua e) public coe-loop-β : (a : A) → coe (ap f loop) a == –> e a coe-loop-β a = coe (ap f loop) a =⟨ loop-β |in-ctx (λ u → coe u a) ⟩ coe (ua e) a =⟨ coe-β e a ⟩ –> e a =∎ coe!-loop-β : (a : A) → coe! (ap f loop) a == <– e a coe!-loop-β a = coe! (ap f loop) a =⟨ loop-β |in-ctx (λ u → coe! u a) ⟩ coe! (ua e) a =⟨ coe!-β e a ⟩ <– e a =∎ ↓-loop-out : {a a' : A} → a == a' [ f ↓ loop ] → –> e a == a' ↓-loop-out {a} {a'} p = –> e a =⟨ ! (coe-loop-β a) ⟩ coe (ap f loop) a =⟨ to-transp p ⟩ a' =∎ import lib.types.Generic1HIT as Generic1HIT module S¹G = Generic1HIT Unit Unit (idf _) (idf _) module P = S¹G.RecType (cst A) (cst e) private generic-S¹ : Σ S¹ f == Σ S¹G.T P.f generic-S¹ = eqv-tot where module To = S¹Rec (S¹G.cc tt) (S¹G.pp tt) to = To.f module From = S¹G.Rec (cst base) (cst loop) from : S¹G.T → S¹ from = From.f abstract to-from : (x : S¹G.T) → to (from x) == x to-from = S¹G.elim (λ _ → idp) (λ _ → ↓-∘=idf-in' to from (ap to (ap from (S¹G.pp tt)) =⟨ From.pp-β tt |in-ctx ap to ⟩ ap to loop =⟨ To.loop-β ⟩ S¹G.pp tt =∎)) from-to : (x : S¹) → from (to x) == x from-to = S¹-elim idp (↓-∘=idf-in' from to (ap from (ap to loop) =⟨ To.loop-β |in-ctx ap from ⟩ ap from (S¹G.pp tt) =⟨ From.pp-β tt ⟩ loop =∎)) eqv : S¹ ≃ S¹G.T eqv = equiv to from to-from from-to eqv-fib : f == P.f [ (λ X → (X → Type _)) ↓ ua eqv ] eqv-fib = ↓-app→cst-in (λ {t} p → S¹-elim {P = λ t → f t == P.f (–> eqv t)} idp (↓-='-in' (ap (P.f ∘ (–> eqv)) loop =⟨ ap-∘ P.f to loop ⟩ ap P.f (ap to loop) =⟨ To.loop-β |in-ctx ap P.f ⟩ ap P.f (S¹G.pp tt) =⟨ P.pp-β tt ⟩ ua e =⟨ ! loop-β ⟩ ap f loop =∎)) t ∙ ap P.f (↓-idf-ua-out eqv p)) eqv-tot : Σ S¹ f == Σ S¹G.T P.f eqv-tot = ap (uncurry Σ) (pair= (ua eqv) eqv-fib) import lib.types.Flattening as Flattening module FlatteningS¹ = Flattening Unit Unit (idf _) (idf _) (cst A) (cst e) open FlatteningS¹ public hiding (flattening-equiv; module P) flattening-S¹ : Σ S¹ f == Wt flattening-S¹ = generic-S¹ ∙ ua FlatteningS¹.flattening-equiv S¹-conn : is-connected 0 S¹ S¹-conn = Sphere-conn 1
30.05
90
0.524866
2273b1cd8b9638cc22ea2ad88de02a6b3353e4b5
373
agda
Agda
test/agda-ocaml/Golden/Index.agda
agda/agda-ocaml
e38b699870ba638221828b07b12948d70a1bdaec
[ "BSD-3-Clause" ]
48
2017-03-29T14:19:31.000Z
2021-08-15T09:08:14.000Z
test/agda-ocaml/Golden/Index.agda
agda/agda-ocaml
e38b699870ba638221828b07b12948d70a1bdaec
[ "BSD-3-Clause" ]
8
2017-03-29T13:37:52.000Z
2018-11-05T21:28:57.000Z
test/agda-ocaml/Golden/Index.agda
agda/agda-ocaml
e38b699870ba638221828b07b12948d70a1bdaec
[ "BSD-3-Clause" ]
7
2018-05-24T10:45:59.000Z
2022-03-12T11:39:48.000Z
module Golden.Index where open import Agda.Builtin.Nat open import Agda.Builtin.List open import Agda.Builtin.Bool lst : List Nat lst = 1 ∷ 2 ∷ [] atDef : ∀ {a : Set} → a → List a -> Nat -> a atDef def (x ∷ l) zero = x atDef def (x ∷ l) (suc ix) = atDef def l ix atDef def _ _ = def l0 : Nat l0 = atDef 0 lst 0 l1 : Nat l1 = atDef 0 lst 1 l2 : Nat l2 = atDef 0 lst 2
16.217391
44
0.630027
9a0346ae9e46bcfa9bfd845f22666d6e8932eada
124
agda
Agda
test/Compiler/with-stdlib/HelloWorld.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
7
2018-11-05T22:13:36.000Z
2018-11-06T16:38:43.000Z
test/Compiler/with-stdlib/HelloWorld.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
16
2018-10-08T00:32:04.000Z
2019-09-08T13:47:04.000Z
test/Compiler/with-stdlib/HelloWorld.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
module HelloWorld where open import IO open import Data.String open import Data.Unit main = run (putStrLn "Hello World!")
15.5
36
0.774194
c7b79062b5d7e1738eafaff0eb91002663bf2cac
3,975
agda
Agda
test/succeed/SizedCoinductiveRecords.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/SizedCoinductiveRecords.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
test/succeed/SizedCoinductiveRecords.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
{-# OPTIONS --copatterns --sized-types --experimental-irrelevance #-} -- {-# OPTIONS --show-implicit --show-irrelevant #-} -- {-# OPTIONS -v tc.polarity:10 -v tc.pos:15 -v tc.size.solve:100 #-} module SizedCoinductiveRecords where open import Common.Size postulate Size< : ..(_ : Size) → Set {-# BUILTIN SIZELT Size< #-} {- THIS WOULD BE A BETTER TYPING FOR sizeSuc, but it requires builtin Size< sizeSuc : (i : Size) → Size< (↑ (↑ i)) sizeSuc i = ↑ i -} -- Subtyping for Size< emb< : {i : Size} → Size< i → Size emb< {i} j = j -- Use Size< hypotheses data Empty : {i : Size} → Set where empty : {i : Size} → Empty {i} → Empty {↑ i} subEmpty : {i : Size}{j : Size< i} → Empty {j} → Empty {i} subEmpty x = x -- SHOULD FAIL: -- fail : {i : Size}{j : Size< i} → Empty {i} → Empty {j} -- fail x = x -- Covariance for Size< co : {i : Size}{j : Size< i} → Size< j → Size< i co k = k -- Contravariance for bounded quantification Bounded : Size → Set Bounded i = (j : Size< i) → Empty {j} contra : {i : Size}{j : Size< i} → Bounded i → Bounded j contra k = k -- sized naturals data Nat {i : Size} : Set where zero : Nat suc : {j : Size< i} → Nat {j} → Nat -- polarity of successor data Bool : Set where true false : Bool -- a natural number one : Nat one = suc {i = ∞} zero mySuc : {i : Size} → Nat {i} → Nat {↑ i} mySuc x = suc x pred : {i : Size} → Nat {↑ i} → Nat {i} pred zero = zero pred (suc n) = n shift : {i : Size} → (Nat → Nat {↑ i}) → Nat → Nat {i} shift f n = pred (f (suc n)) {- Does not type check loop : {i : Size} → Nat {i} → (Nat → Nat {i}) → Set loop (suc n) f = loop n (shift f) loop zero = Nat -} data ⊥ : Set where record ⊤ : Set where mono : {i : Size}{j : Size< i} → Nat {j} → Nat {i} mono n = n id : {i : Size} → Nat {i} → Nat {i} id (zero) = zero id (suc n) = suc (id n) monus : {i : Size} → Nat {i} → Nat → Nat {i} monus x zero = x monus zero y = zero monus (suc x) (suc y) = monus x y div : {i : Size} → Nat {i} → Nat → Nat {i} div zero y = zero div (suc x) y = suc (div (monus x y) y) postulate _∪_ : {i : Size} → Size< i → Size< i → Size< i {- max : {i : Size} → Nat {i} → Nat {i} → Nat {i} max zero n = n max m zero = m max {i} (suc {j = j} m) (suc {j = k} n) = suc {j = j ∪ k} (max {j ∪ k} m n) -} -- omega inst {- DOES NOT MAKE SENSE: omegaBad' : (F : Size → Set) (i : Size) (j : Size< i) (f : (k : Size< (↑ j)) → F k) → F j omegaBad' F i j f = f j -} -- fix A : Size → Set A i = Nat {i} → Nat {-# NO_TERMINATION_CHECK #-} fix : (f : (i : Size) → ((j : Size< i) → A j) → A i) → (i : Size) → A i fix f i zero = zero fix f i (suc {j} n) = f i (fix f) (suc n) -- forever : {i : Size} → ({j : Size< i} → Nat {i} → Nat {j}) → Nat {i} → ⊥ -- forever {i} f n = forever f (f {{!!}} n) -- sized streams module STREAM where record Stream (A : Set) {i : Size} : Set where coinductive constructor _∷_ field head : A tail : {j : Size< i} → Stream A {j} open Stream map : {A B : Set}(f : A → B){i : Size} → Stream A {i} → Stream B {i} head (map f s) = f (head s) tail (map f s) = map f (tail s) -- stream antitone anti : {A : Set}{i : Size}{j : Size< i} → Stream A {i} → Stream A {j} anti s = s anti' : {A : Set}{i : Size}{j : Size< i} → (Stream A {j} → A) → (Stream A {i} → A) anti' f = f -- Spanning tree data List (A : Set) {i : Size} : Set where [] : List A _∷_ : {j : Size< i}(x : A)(xs : List A {j}) → List A map : {A B : Set}(f : A → B){i : Size} → List A {i} → List B {i} map f [] = [] map f (x ∷ xs) = f x ∷ map f xs module Graph (I : Set)(adj : I → List I) where record Span {i : Size} : Set where coinductive constructor span field root : I nodes : {j : Size< i} → List (Span {j}) open Span {-# NO_TERMINATION_CHECK #-} tree : {i : Size} → I → Span {i} root (tree root) = root nodes (tree root) = map (tree) (adj root) -- nodes (tree root) = λ {j} → map (tree {j}) (adj root)
22.331461
84
0.530314
9ac3c9398dfb681577e7512e2f533586aaeae05c
522
agda
Agda
test/Succeed/RewritingBlocked.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/Succeed/RewritingBlocked.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/RewritingBlocked.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
{-# OPTIONS --rewriting --confluence-check #-} -- {-# OPTIONS -v rewriting:100 -v tc.conv.atom:30 -v tc.inj.use:30 #-} open import Common.Equality {-# BUILTIN REWRITE _≡_ #-} data Nat : Set where zero : Nat suc : Nat → Nat _+_ : Nat → Nat → Nat zero + n = n (suc m) + n = suc (m + n) postulate plus-zero : ∀ x → (x + zero) ≡ x {-# REWRITE plus-zero #-} mutual secret-number : Nat secret-number = _ test : ∀ x → (x + secret-number) ≡ x test x = refl reveal : secret-number ≡ zero reveal = refl
16.83871
71
0.586207
130caa516b59267666f27e043625c5499b650efe
1,063
agda
Agda
Cubical/Relation/Binary/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Relation/Binary/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Relation/Binary/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Binary.Base where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function using (_on_) open import Cubical.Foundations.HLevels open import Cubical.Classes using (Cast; [_]) public private variable a b ℓ : Level A : Type a B : Type b RawREL : Type a → Type b → (ℓ : Level) → Type _ RawREL A B ℓ = A → B → Type ℓ RawRel : Type a → (ℓ : Level) → Type _ RawRel A ℓ = RawREL A A ℓ REL : Type a → Type b → (ℓ : Level) → Type _ REL A B ℓ = A → B → hProp ℓ Rel : Type a → (ℓ : Level) → Type _ Rel A ℓ = REL A A ℓ isPropValued : RawREL A B ℓ → Type _ isPropValued R = ∀ a b → isProp (R a b) instance RelCast : Cast (REL A B ℓ) (RawREL A B ℓ) RelCast = record { cast = λ R a b → R a b .fst } isProp[_] : (R : REL A B ℓ) → isPropValued [ R ] isProp[ R ] a b = R a b .snd fromRaw : (R : RawREL A B ℓ) → isPropValued R → REL A B ℓ fromRaw R isPropR a b .fst = R a b fromRaw R isPropR a b .snd = isPropR a b
23.108696
57
0.638758
39ba9767b51f470e9fa6ca1011c57e205c0d0621
1,869
agda
Agda
src/Partiality-monad/Inductive/Monotone.agda
nad/partiality-monad
f69749280969f9093e5e13884c6feb0ad2506eae
[ "MIT" ]
2
2020-05-21T22:59:18.000Z
2020-07-03T08:56:08.000Z
src/Partiality-monad/Inductive/Monotone.agda
nad/partiality-monad
f69749280969f9093e5e13884c6feb0ad2506eae
[ "MIT" ]
null
null
null
src/Partiality-monad/Inductive/Monotone.agda
nad/partiality-monad
f69749280969f9093e5e13884c6feb0ad2506eae
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Monotone functions ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} module Partiality-monad.Inductive.Monotone where open import Equality.Propositional open import Prelude open import Bijection equality-with-J using (_↔_) import Partiality-algebra.Monotone as M open import Partiality-monad.Inductive -- Definition of monotone functions. [_⊥→_⊥]⊑ : ∀ {a b} → Type a → Type b → Type (a ⊔ b) [ A ⊥→ B ⊥]⊑ = M.[ partiality-algebra A ⟶ partiality-algebra B ]⊑ module [_⊥→_⊥]⊑ {a b} {A : Type a} {B : Type b} (f : [ A ⊥→ B ⊥]⊑) = M.[_⟶_]⊑ f open [_⊥→_⊥]⊑ -- Identity. id⊑ : ∀ {a} {A : Type a} → [ A ⊥→ A ⊥]⊑ id⊑ = M.id⊑ -- Composition. infixr 40 _∘⊑_ _∘⊑_ : ∀ {a b c} {A : Type a} {B : Type b} {C : Type c} → [ B ⊥→ C ⊥]⊑ → [ A ⊥→ B ⊥]⊑ → [ A ⊥→ C ⊥]⊑ _∘⊑_ = M._∘⊑_ -- Equality characterisation lemma for monotone functions. equality-characterisation-monotone : ∀ {a b} {A : Type a} {B : Type b} {f g : [ A ⊥→ B ⊥]⊑} → (∀ x → function f x ≡ function g x) ↔ f ≡ g equality-characterisation-monotone = M.equality-characterisation-monotone -- Composition is associative. ∘⊑-assoc : ∀ {a b c d} {A : Type a} {B : Type b} {C : Type c} {D : Type d} (f : [ C ⊥→ D ⊥]⊑) (g : [ B ⊥→ C ⊥]⊑) {h : [ A ⊥→ B ⊥]⊑} → f ∘⊑ (g ∘⊑ h) ≡ (f ∘⊑ g) ∘⊑ h ∘⊑-assoc = M.∘⊑-assoc module _ {a b} {A : Type a} {B : Type b} where -- If a monotone function is applied to an increasing sequence, -- then the result is another increasing sequence. [_$_]-inc : [ A ⊥→ B ⊥]⊑ → Increasing-sequence A → Increasing-sequence B [_$_]-inc = M.[_$_]-inc -- A lemma relating monotone functions and least upper bounds. ⨆$⊑$⨆ : (f : [ A ⊥→ B ⊥]⊑) → ∀ s → ⨆ [ f $ s ]-inc ⊑ function f (⨆ s) ⨆$⊑$⨆ = M.⨆$⊑$⨆
26.7
72
0.509898
1eff43bbca0eee3788012cd069780f446157379a
891
agda
Agda
test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/Transitive/WithK.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/Transitive/WithK.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/Transitive/WithK.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Some code related to transitive closures that relies on the K rule ------------------------------------------------------------------------ {-# OPTIONS --with-K --safe #-} module Relation.Binary.Construct.Closure.Transitive.WithK where open import Function open import Relation.Binary open import Relation.Binary.Construct.Closure.Transitive open import Relation.Binary.PropositionalEquality using (_≡_; refl) module _ {a ℓ} {A : Set a} {_∼_ : Rel A ℓ} where ∼⁺⟨⟩-injectiveˡ : ∀ {x y z} {p r : x [ _∼_ ]⁺ y} {q s} → (x [ _∼_ ]⁺ z ∋ x ∼⁺⟨ p ⟩ q) ≡ (x ∼⁺⟨ r ⟩ s) → p ≡ r ∼⁺⟨⟩-injectiveˡ refl = refl ∼⁺⟨⟩-injectiveʳ : ∀ {x y z} {p r : x [ _∼_ ]⁺ y} {q s} → (x [ _∼_ ]⁺ z ∋ x ∼⁺⟨ p ⟩ q) ≡ (x ∼⁺⟨ r ⟩ s) → q ≡ s ∼⁺⟨⟩-injectiveʳ refl = refl
35.64
72
0.476992
4bb75b4d076fe4863b3a86e85da3d6a465d6643e
51,941
agda
Agda
src/Free-variables.agda
nad/chi
30966769b8cbd46aa490b6964a4aa0e67a7f9ab1
[ "MIT" ]
2
2020-05-21T22:58:07.000Z
2020-10-20T16:27:00.000Z
src/Free-variables.agda
nad/chi
30966769b8cbd46aa490b6964a4aa0e67a7f9ab1
[ "MIT" ]
1
2020-05-21T23:29:54.000Z
2020-06-08T11:08:25.000Z
src/Free-variables.agda
nad/chi
30966769b8cbd46aa490b6964a4aa0e67a7f9ab1
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Definitions of "free in" and "closed", along with some properties ------------------------------------------------------------------------ open import Atom module Free-variables (atoms : χ-atoms) where open import Dec open import Equality.Propositional.Cubical open import Logical-equivalence using (_⇔_) open import Prelude hiding (const; swap) open import Bag-equivalence equality-with-J as B using (_∈_) open import Bijection equality-with-J as Bijection using (_↔_) import Erased.Cubical equality-with-paths as E open import Equivalence equality-with-J as Eq using (_≃_) open import Finite-subset.Listed equality-with-paths as S using (Finite-subset-of) open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional equality-with-paths as T using (∥_∥) open import List equality-with-J using (_++_; foldr) open import Chi atoms open import Propositional atoms open import Substitution atoms open import Values atoms open χ-atoms atoms private variable A : Type bs : List Br c c′ : Const e e₁ e₂ e′ e″ : Exp es : List Exp x y : Var xs xs′ : A private -- Two variants of V._≟_. _≟V₁_ : (x y : Var) → Dec T.∥ x ≡ y ∥ _≟V₁_ = T.decidable→decidable-∥∥ V._≟_ _≟V₂_ : (x y : Var) → E.Dec-Erased T.∥ x ≡ y ∥ x ≟V₂ y = E.Dec→Dec-Erased (x ≟V₁ y) ------------------------------------------------------------------------ -- Definitions -- Free variables. infix 4 _∈FV_ data _∈FV_ (x : Var) : Exp → Type where apply-left : ∀ {e₁ e₂} → x ∈FV e₁ → x ∈FV apply e₁ e₂ apply-right : ∀ {e₁ e₂} → x ∈FV e₂ → x ∈FV apply e₁ e₂ lambda : ∀ {y e} → x ≢ y → x ∈FV e → x ∈FV lambda y e case-head : ∀ {e bs} → x ∈FV e → x ∈FV case e bs case-body : ∀ {e bs c xs e′} → x ∈FV e′ → branch c xs e′ ∈ bs → ¬ x ∈ xs → x ∈FV case e bs rec : ∀ {y e} → x ≢ y → x ∈FV e → x ∈FV rec y e var : ∀ {y} → x ≡ y → x ∈FV var y const : ∀ {c es e} → x ∈FV e → e ∈ es → x ∈FV const c es -- Closed, except that the given variables may occur. Closed′ : List Var → Exp → Type Closed′ xs e = ∀ x → ¬ x ∈ xs → ¬ x ∈FV e -- The property of being closed. Closed : Exp → Type Closed = Closed′ [] -- Closed expressions. Closed-exp : Type Closed-exp = ∃ Closed ------------------------------------------------------------------------ -- Inversion lemmas for _∈_ ∈apply : (x ∈FV apply e₁ e₂) ≃ (x ∈FV e₁ ⊎ x ∈FV e₂) ∈apply = Eq.↔→≃ (λ { (apply-left x∈) → inj₁ x∈ ; (apply-right x∈) → inj₂ x∈ }) [ apply-left , apply-right ] [ (λ _ → refl) , (λ _ → refl) ] (λ { (apply-left _) → refl ; (apply-right _) → refl }) ∈lambda : (x ∈FV lambda y e) ≃ (x ≢ y × x ∈FV e) ∈lambda = Eq.↔→≃ (λ { (lambda x≢y x∈e) → x≢y , x∈e }) (uncurry lambda) (λ _ → refl) (λ { (lambda _ _) → refl }) ∈case : (x ∈FV case e bs) ≃ (x ∈FV e ⊎ ∃ λ c → ∃ λ xs → ∃ λ e′ → x ∈FV e′ × branch c xs e′ ∈ bs × ¬ x ∈ xs) ∈case = Eq.↔→≃ (λ { (case-head x∈) → inj₁ x∈ ; (case-body x∈ b∈ x∉) → inj₂ (_ , _ , _ , x∈ , b∈ , x∉) }) [ case-head , (λ (_ , _ , _ , x∈ , b∈ , x∉) → case-body x∈ b∈ x∉) ] [ (λ _ → refl) , (λ _ → refl) ] (λ { (case-head _) → refl ; (case-body _ _ _) → refl }) ∈rec : (x ∈FV rec y e) ≃ (x ≢ y × x ∈FV e) ∈rec = Eq.↔→≃ (λ { (rec x≢y x∈e) → x≢y , x∈e }) (uncurry rec) (λ _ → refl) (λ { (rec _ _) → refl }) ∈var : (x ∈FV var y) ≃ (x ≡ y) ∈var = Eq.↔→≃ (λ { (var x≡y) → x≡y }) var (λ _ → refl) (λ { (var _) → refl }) ∈const : (x ∈FV const c es) ≃ (∃ λ e → x ∈FV e × e ∈ es) ∈const = Eq.↔→≃ (λ { (const ∈e ∈es) → _ , ∈e , ∈es }) (λ (_ , ∈e , ∈es) → const ∈e ∈es) (λ _ → refl) (λ { (const _ _) → refl }) ------------------------------------------------------------------------ -- Characterisation lemmas for Closed′ Closed′-apply≃ : Closed′ xs (apply e₁ e₂) ≃ (Closed′ xs e₁ × Closed′ xs e₂) Closed′-apply≃ {xs = xs} {e₁ = e₁} {e₂ = e₂} = Closed′ xs (apply e₁ e₂) ↔⟨⟩ (∀ x → ¬ x ∈ xs → ¬ x ∈FV apply e₁ e₂) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ¬-cong ext ∈apply) ⟩ (∀ x → ¬ x ∈ xs → ¬ (x ∈FV e₁ ⊎ x ∈FV e₂)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ¬⊎↔¬×¬ ext) ⟩ (∀ x → ¬ x ∈ xs → (¬ x ∈FV e₁ × ¬ x ∈FV e₂)) ↔⟨ (∀-cong ext λ _ → ΠΣ-comm) ⟩ (∀ x → (¬ x ∈ xs → ¬ x ∈FV e₁) × (¬ x ∈ xs → ¬ x ∈FV e₂)) ↔⟨ ΠΣ-comm ⟩ (∀ x → ¬ x ∈ xs → ¬ x ∈FV e₁) × (∀ x → ¬ x ∈ xs → ¬ x ∈FV e₂) ↔⟨⟩ Closed′ xs e₁ × Closed′ xs e₂ □ Closed′-lambda≃ : Closed′ xs (lambda x e) ≃ Closed′ (x ∷ xs) e Closed′-lambda≃ {xs = xs} {x = x} {e = e} = Closed′ xs (lambda x e) ↔⟨⟩ (∀ y → ¬ y ∈ xs → ¬ y ∈FV lambda x e) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ¬-cong ext ∈lambda) ⟩ (∀ y → ¬ y ∈ xs → ¬ (y ≢ x × y ∈FV e)) ↔⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → currying) ⟩ (∀ y → ¬ y ∈ xs → y ≢ x → ¬ y ∈FV e) ↔⟨ (∀-cong ext λ _ → Π-comm) ⟩ (∀ y → y ≢ x → ¬ y ∈ xs → ¬ y ∈FV e) ↔⟨ (∀-cong ext λ _ → inverse currying) ⟩ (∀ y → y ≢ x × ¬ y ∈ xs → ¬ y ∈FV e) ↝⟨ (∀-cong ext λ _ → →-cong₁ {k₁ = equivalence} ext $ inverse $ ¬⊎↔¬×¬ ext) ⟩ (∀ y → ¬ (y ≡ x ⊎ y ∈ xs) → ¬ y ∈FV e) ↔⟨⟩ Closed′ (x ∷ xs) e □ Closed′-rec≃ : Closed′ xs (rec x e) ≃ Closed′ (x ∷ xs) e Closed′-rec≃ {xs = xs} {x = x} {e = e} = Closed′ xs (rec x e) ↔⟨⟩ (∀ y → ¬ y ∈ xs → ¬ y ∈FV rec x e) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ¬-cong ext ∈rec) ⟩ (∀ y → ¬ y ∈ xs → ¬ (y ≢ x × y ∈FV e)) ↔⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → currying) ⟩ (∀ y → ¬ y ∈ xs → y ≢ x → ¬ y ∈FV e) ↔⟨ (∀-cong ext λ _ → Π-comm) ⟩ (∀ y → y ≢ x → ¬ y ∈ xs → ¬ y ∈FV e) ↔⟨ (∀-cong ext λ _ → inverse currying) ⟩ (∀ y → y ≢ x × ¬ y ∈ xs → ¬ y ∈FV e) ↝⟨ (∀-cong ext λ _ → →-cong₁ {k₁ = equivalence} ext $ inverse $ ¬⊎↔¬×¬ ext) ⟩ (∀ y → ¬ (y ≡ x ⊎ y ∈ xs) → ¬ y ∈FV e) ↔⟨⟩ Closed′ (x ∷ xs) e □ Closed′-case≃ : Closed′ xs (case e bs) ≃ (Closed′ xs e × ∀ {c ys e} → branch c ys e ∈ bs → Closed′ (ys ++ xs) e) Closed′-case≃ {xs = xs} {e = e} {bs = bs} = Closed′ xs (case e bs) ↔⟨⟩ (∀ x → ¬ x ∈ xs → ¬ x ∈FV case e bs) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ¬-cong ext ∈case) ⟩ (∀ x → ¬ x ∈ xs → ¬ (x ∈FV e ⊎ ∃ λ c → ∃ λ ys → ∃ λ e′ → x ∈FV e′ × branch c ys e′ ∈ bs × ¬ x ∈ ys)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ¬⊎↔¬×¬ ext) ⟩ (∀ x → ¬ x ∈ xs → ¬ x ∈FV e × ¬ ∃ λ c → ∃ λ ys → ∃ λ e′ → x ∈FV e′ × branch c ys e′ ∈ bs × ¬ x ∈ ys) ↔⟨ ΠΣ-comm F.∘ (∀-cong ext λ _ → ΠΣ-comm) ⟩ (∀ x → ¬ x ∈ xs → ¬ x ∈FV e) × (∀ x → ¬ x ∈ xs → ¬ ∃ λ c → ∃ λ ys → ∃ λ e′ → x ∈FV e′ × branch c ys e′ ∈ bs × ¬ x ∈ ys) ↝⟨ ∃-cong lemma ⟩ (∀ x → ¬ x ∈ xs → ¬ x ∈FV e) × (∀ {c ys e} → branch c ys e ∈ bs → ∀ x → ¬ x ∈ ys ++ xs → ¬ x ∈FV e) ↔⟨⟩ Closed′ xs e × (∀ {c ys e} → branch c ys e ∈ bs → Closed′ (ys ++ xs) e) □ where lemma = λ hyp → (∀ x → ¬ x ∈ xs → ¬ ∃ λ c → ∃ λ ys → ∃ λ e → x ∈FV e × branch c ys e ∈ bs × ¬ x ∈ ys) ↔⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → (∀-cong ext λ _ → (∀-cong ext λ _ → (∀-cong ext λ _ → currying F.∘ Π-comm F.∘ currying) F.∘ currying) F.∘ currying) F.∘ currying) ⟩ (∀ x → ¬ x ∈ xs → ∀ c ys e → branch c ys e ∈ bs → ¬ x ∈ ys → ¬ x ∈FV e) ↔⟨ (∀-cong ext λ _ → (∀-cong ext λ _ → (∀-cong ext λ _ → (∀-cong ext λ _ → (∀-cong ext λ _ → inverse currying) F.∘ currying) F.∘ Π-comm) F.∘ Π-comm) F.∘ Π-comm) F.∘ Π-comm F.∘ inverse currying ⟩ (∀ c ys e → branch c ys e ∈ bs → ∀ x → ¬ x ∈ xs × ¬ x ∈ ys → ¬ x ∈FV e) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → →-cong₁ ext $ inverse $ ¬⊎↔¬×¬ {k = equivalence} ext) ⟩ (∀ c ys e → branch c ys e ∈ bs → ∀ x → ¬ (x ∈ xs ⊎ x ∈ ys) → ¬ x ∈FV e) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → →-cong₁ ext $ ¬-cong ext ⊎-comm) ⟩ (∀ c ys e → branch c ys e ∈ bs → ∀ x → ¬ (x ∈ ys ⊎ x ∈ xs) → ¬ x ∈FV e) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → →-cong₁ ext $ ¬-cong ext $ inverse $ B.Any-++ _ _ _) ⟩ (∀ c ys e → branch c ys e ∈ bs → ∀ x → ¬ x ∈ ys ++ xs → ¬ x ∈FV e) ↔⟨ inverse $ (∀-cong ext λ _ → (∀-cong ext λ _ → Bijection.implicit-Π↔Π) F.∘ Bijection.implicit-Π↔Π) F.∘ Bijection.implicit-Π↔Π ⟩□ (∀ {c ys e} → branch c ys e ∈ bs → ∀ x → ¬ x ∈ ys ++ xs → ¬ x ∈FV e) □ Closed′-const≃ : Closed′ xs (const c es) ≃ (∀ e → e ∈ es → Closed′ xs e) Closed′-const≃ {xs = xs} {c = c} {es = es} = Closed′ xs (const c es) ↔⟨⟩ (∀ x → ¬ x ∈ xs → ¬ x ∈FV const c es) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ¬-cong ext ∈const) ⟩ (∀ x → ¬ x ∈ xs → ¬ ∃ λ e → x ∈FV e × e ∈ es) ↔⟨ currying F.∘ (∀-cong ext λ _ → currying) F.∘ Π-comm F.∘ (∀-cong ext λ _ → inverse currying F.∘ (∀-cong ext λ _ → Π-comm F.∘ currying) F.∘ currying) F.∘ inverse currying ⟩ (∀ e → e ∈ es → ∀ x → ¬ x ∈ xs → ¬ x ∈FV e) ↔⟨⟩ (∀ e → e ∈ es → Closed′ xs e) □ Closed′-var≃ : Closed′ xs (var x) ≃ ∥ x ∈ xs ∥ Closed′-var≃ {xs = xs} {x = x} = Closed′ xs (var x) ↔⟨⟩ (∀ y → ¬ y ∈ xs → ¬ y ∈FV var x) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ¬-cong ext ∈var) ⟩ (∀ y → ¬ y ∈ xs → ¬ y ≡ x) ↝⟨ (∀-cong ext λ _ → →-cong₁ ext $ inverse T.¬∥∥↔¬) ⟩ (∀ y → ¬ ∥ y ∈ xs ∥ → ¬ y ≡ x) ↝⟨ (∀-cong ext λ _ → inverse $ →≃¬→¬ (λ _ _ → T.truncation-is-proposition) (λ _ → Dec-map (from-equivalence $ inverse S.∥∈∥≃∈-from-List) (S.member? _≟V₁_ _ _)) ext) ⟩ (∀ y → y ≡ x → ∥ y ∈ xs ∥) ↝⟨ (∀-cong ext λ _ → →-cong₁ ext ≡-comm) ⟩ (∀ y → x ≡ y → ∥ y ∈ xs ∥) ↝⟨ inverse $ ∀-intro _ ext ⟩□ ∥ x ∈ xs ∥ □ ------------------------------------------------------------------------ -- Some properties -- Closed is propositional. Closed-propositional : ∀ {e} → Is-proposition (Closed e) Closed-propositional = Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ¬-propositional ext -- Closed-exp is a set. Closed-exp-set : Is-set Closed-exp Closed-exp-set = Σ-closure 2 Exp-set (λ _ → mono₁ 1 Closed-propositional) -- Two closed expressions are equal if the underlying expressions are -- equal. closed-equal-if-expressions-equal : {e₁ e₂ : Closed-exp} → proj₁ e₁ ≡ proj₁ e₂ → e₁ ≡ e₂ closed-equal-if-expressions-equal eq = Σ-≡,≡→≡ eq (Closed-propositional _ _) -- Constructor applications are closed. mutual const→closed : ∀ {e} → Constructor-application e → Closed e const→closed (const c cs) x x∉[] (const x∈e e∈es) = consts→closed cs e∈es x x∉[] x∈e consts→closed : ∀ {e es} → Constructor-applications es → e ∈ es → Closed e consts→closed [] () consts→closed (c ∷ cs) (inj₁ refl) = const→closed c consts→closed (c ∷ cs) (inj₂ e∈es) = consts→closed cs e∈es -- Closed e implies Closed′ xs e, for any xs. Closed→Closed′ : ∀ {xs e} → Closed e → Closed′ xs e Closed→Closed′ cl x _ = cl x (λ ()) -- If a variable is free in e [ x ← e′ ], then it is either free in e, -- or it is distinct from x and free in e′. mutual subst-∈FV : ∀ x e {x′ e′} → x′ ∈FV e [ x ← e′ ] → x′ ∈FV e × x′ ≢ x ⊎ x′ ∈FV e′ subst-∈FV x (apply e₁ e₂) (apply-left p) = ⊎-map (Σ-map apply-left id) id (subst-∈FV x e₁ p) subst-∈FV x (apply e₁ e₂) (apply-right p) = ⊎-map (Σ-map apply-right id) id (subst-∈FV x e₂ p) subst-∈FV x (lambda y e) (lambda x′≢y p) with x V.≟ y subst-∈FV x (lambda y e) (lambda x′≢y p) | yes x≡y = inj₁ (lambda x′≢y p , x′≢y ∘ flip trans x≡y) subst-∈FV x (lambda y e) (lambda x′≢y p) | no _ = ⊎-map (Σ-map (lambda x′≢y) id) id (subst-∈FV x e p) subst-∈FV x (case e bs) (case-head p) = ⊎-map (Σ-map case-head id) id (subst-∈FV x e p) subst-∈FV x (case e bs) (case-body p ps x′∉xs) = ⊎-map (Σ-map (λ (p : ∃ λ _ → ∃ λ _ → ∃ λ _ → _ × _ × _) → let _ , _ , _ , ps , p , ∉ = p in case-body p ps ∉) id) id (subst-∈FV-B⋆ bs p ps x′∉xs) subst-∈FV x (rec y e) p with x V.≟ y subst-∈FV x (rec y e) (rec x′≢y p) | yes x≡y = inj₁ (rec x′≢y p , x′≢y ∘ flip trans x≡y) subst-∈FV x (rec y e) (rec x′≢y p) | no x≢y = ⊎-map (Σ-map (rec x′≢y) id) id (subst-∈FV x e p) subst-∈FV x (var y) p with x V.≟ y subst-∈FV x (var y) p | yes x≡y = inj₂ p subst-∈FV x (var y) (var x′≡y) | no x≢y = inj₁ (var x′≡y , x≢y ∘ flip trans x′≡y ∘ sym) subst-∈FV x (const c es) (const p ps) = ⊎-map (Σ-map (λ { (_ , ps , p) → const p ps }) id) id (subst-∈FV-⋆ es p ps) subst-∈FV-⋆ : ∀ {x x′ e e′} es → x′ ∈FV e → e ∈ es [ x ← e′ ]⋆ → (∃ λ e → e ∈ es × x′ ∈FV e) × x′ ≢ x ⊎ x′ ∈FV e′ subst-∈FV-⋆ [] p () subst-∈FV-⋆ (e ∷ es) p (inj₁ refl) = ⊎-map (Σ-map (λ p → _ , inj₁ refl , p) id) id (subst-∈FV _ e p) subst-∈FV-⋆ (e ∷ es) p (inj₂ q) = ⊎-map (Σ-map (Σ-map id (Σ-map inj₂ id)) id) id (subst-∈FV-⋆ es p q) subst-∈FV-B⋆ : ∀ {x x′ e e′ c xs} bs → x′ ∈FV e → branch c xs e ∈ bs [ x ← e′ ]B⋆ → ¬ x′ ∈ xs → (∃ λ c → ∃ λ xs → ∃ λ e → branch c xs e ∈ bs × x′ ∈FV e × ¬ x′ ∈ xs) × x′ ≢ x ⊎ x′ ∈FV e′ subst-∈FV-B⋆ [] p () subst-∈FV-B⋆ {x} (branch c xs e ∷ bs) p (inj₁ eq) q with V.member x xs subst-∈FV-B⋆ {x} (branch c xs e ∷ bs) p (inj₁ refl) q | yes x∈xs = inj₁ ((c , xs , e , inj₁ refl , p , q) , λ x′≡x → q (subst (_∈ _) (sym x′≡x) x∈xs)) subst-∈FV-B⋆ {x} (branch c xs e ∷ bs) p (inj₁ refl) q | no x∉xs = ⊎-map (Σ-map (λ p → _ , _ , _ , inj₁ refl , p , q) id) id (subst-∈FV _ e p) subst-∈FV-B⋆ (b ∷ bs) p (inj₂ ps) q = ⊎-map (Σ-map (Σ-map _ (Σ-map _ (Σ-map _ (Σ-map inj₂ id)))) id) id (subst-∈FV-B⋆ bs p ps q) ------------------------------------------------------------------------ -- Various closure properties (or similar properties) for Closed′ Closed′-closed-under-apply : ∀ {xs e₁ e₂} → Closed′ xs e₁ → Closed′ xs e₂ → Closed′ xs (apply e₁ e₂) Closed′-closed-under-apply = curry $ _≃_.from Closed′-apply≃ Closed′-closed-under-lambda : ∀ {x xs e} → Closed′ (x ∷ xs) e → Closed′ xs (lambda x e) Closed′-closed-under-lambda = _≃_.from Closed′-lambda≃ Closed′-closed-under-rec : ∀ {x xs e} → Closed′ (x ∷ xs) e → Closed′ xs (rec x e) Closed′-closed-under-rec = _≃_.from Closed′-rec≃ Closed′-closed-under-case : ∀ {xs e bs} → Closed′ xs e → (∀ {c ys e} → branch c ys e ∈ bs → Closed′ (ys ++ xs) e) → Closed′ xs (case e bs) Closed′-closed-under-case = curry $ _≃_.from Closed′-case≃ Closed′-closed-under-const : ∀ {xs c es} → (∀ e → e ∈ es → Closed′ xs e) → Closed′ xs (const c es) Closed′-closed-under-const = _≃_.from Closed′-const≃ Closed′-closed-under-var : ∀ {x xs} → x ∈ xs → Closed′ xs (var x) Closed′-closed-under-var = _≃_.from Closed′-var≃ ∘ T.∣_∣ Closed′-closed-under-subst : ∀ {x xs e e′} → Closed′ (x ∷ xs) e → Closed′ xs e′ → Closed′ xs (e [ x ← e′ ]) Closed′-closed-under-subst cl-e cl-e′ y y∉xs = [ uncurry (λ y∈e y≢x → cl-e y [ y≢x , y∉xs ] y∈e) , cl-e′ y y∉xs ] ∘ subst-∈FV _ _ ------------------------------------------------------------------------ -- Computing free or fresh variables -- One can construct a finite set containing exactly the free -- variables in a term. mutual free : (e : Exp) → ∃ λ (fs : Finite-subset-of Var) → ∀ x → (x S.∈ fs) ⇔ (x ∈FV e) free (apply e₁ e₂) = Σ-zip S._∪_ (λ {fs₁ fs₂} hyp₁ hyp₂ x → x S.∈ fs₁ S.∪ fs₂ ↔⟨ S.∈∪≃ ⟩ x S.∈ fs₁ T.∥⊎∥ x S.∈ fs₂ ↝⟨ T.Dec→∥∥⇔ (Dec-⊎ (S.member? _≟V₁_ _ _) (S.member? _≟V₁_ _ _)) ⟩ x S.∈ fs₁ ⊎ x S.∈ fs₂ ↝⟨ hyp₁ x ⊎-cong hyp₂ x ⟩ x ∈FV e₁ ⊎ x ∈FV e₂ ↔⟨ inverse ∈apply ⟩□ x ∈FV apply e₁ e₂ □) (free e₁) (free e₂) free (lambda x e) = Σ-map (S.delete _≟V₂_ x) (λ {fs} hyp y → y S.∈ S.delete _≟V₂_ x fs ↔⟨ S.∈delete≃ _≟V₂_ ⟩ y ≢ x × y S.∈ fs ↝⟨ (∃-cong λ _ → hyp y) ⟩ y ≢ x × y ∈FV e ↔⟨ inverse ∈lambda ⟩□ y ∈FV lambda x e □) (free e) free (case e bs) = Σ-zip S._∪_ (λ {fs₁ fs₂} hyp₁ hyp₂ x → x S.∈ fs₁ S.∪ fs₂ ↔⟨ S.∈∪≃ ⟩ x S.∈ fs₁ T.∥⊎∥ x S.∈ fs₂ ↝⟨ T.Dec→∥∥⇔ (Dec-⊎ (S.member? _≟V₁_ _ _) (S.member? _≟V₁_ _ _)) ⟩ x S.∈ fs₁ ⊎ x S.∈ fs₂ ↝⟨ hyp₁ x ⊎-cong hyp₂ x ⟩ (x ∈FV e ⊎ ∃ λ c → ∃ λ xs → ∃ λ e′ → x ∈FV e′ × branch c xs e′ ∈ bs × ¬ x ∈ xs) ↔⟨ inverse ∈case ⟩□ x ∈FV case e bs □) (free e) (free-B⋆ bs) free (rec x e) = Σ-map (S.delete _≟V₂_ x) (λ {fs} hyp y → y S.∈ S.delete _≟V₂_ x fs ↔⟨ S.∈delete≃ _≟V₂_ ⟩ y ≢ x × y S.∈ fs ↝⟨ (∃-cong λ _ → hyp y) ⟩ y ≢ x × y ∈FV e ↔⟨ inverse ∈rec ⟩□ y ∈FV rec x e □) (free e) free (var x) = S.singleton x , λ y → y S.∈ S.singleton x ↔⟨ S.∈singleton≃ ⟩ T.∥ y ≡ x ∥ ↔⟨ T.∥∥↔ V.Name-set ⟩ y ≡ x ↔⟨ inverse ∈var ⟩□ y ∈FV var x □ free (const c es) = Σ-map id (λ {fs} hyp x → x S.∈ fs ↝⟨ hyp x ⟩ (∃ λ e → x ∈FV e × e ∈ es) ↔⟨ inverse ∈const ⟩□ x ∈FV const c es □) (free-⋆ es) free-⋆ : (es : List Exp) → ∃ λ (fs : Finite-subset-of Var) → ∀ x → (x S.∈ fs) ⇔ (∃ λ e → x ∈FV e × e ∈ es) free-⋆ [] = S.[] , λ x → x S.∈ S.[] ↔⟨ S.∈[]≃ ⟩ ⊥ ↔⟨ inverse ×-right-zero ⟩ Exp × ⊥₀ ↔⟨ (∃-cong λ _ → inverse ×-right-zero) ⟩ (∃ λ e → x ∈FV e × ⊥) ↔⟨⟩ (∃ λ e → x ∈FV e × e ∈ []) □ free-⋆ (e ∷ es) = Σ-zip S._∪_ (λ {fs₁ fs₂} hyp₁ hyp₂ x → x S.∈ fs₁ S.∪ fs₂ ↔⟨ S.∈∪≃ ⟩ x S.∈ fs₁ T.∥⊎∥ x S.∈ fs₂ ↝⟨ T.Dec→∥∥⇔ (Dec-⊎ (S.member? _≟V₁_ _ _) (S.member? _≟V₁_ _ _)) ⟩ x S.∈ fs₁ ⊎ x S.∈ fs₂ ↝⟨ hyp₁ x ⊎-cong hyp₂ x ⟩ x ∈FV e ⊎ (∃ λ e′ → x ∈FV e′ × e′ ∈ es) ↔⟨ inverse $ (drop-⊤-right λ _ → _⇔_.to contractible⇔↔⊤ $ singleton-contractible _) ⊎-cong F.id ⟩ x ∈FV e × (∃ λ e′ → e′ ≡ e) ⊎ (∃ λ e′ → x ∈FV e′ × e′ ∈ es) ↔⟨ ∃-comm ⊎-cong F.id ⟩ (∃ λ e′ → x ∈FV e × e′ ≡ e) ⊎ (∃ λ e′ → x ∈FV e′ × e′ ∈ es) ↔⟨ inverse ∃-⊎-distrib-left ⟩ (∃ λ e′ → (x ∈FV e × e′ ≡ e) ⊎ (x ∈FV e′ × e′ ∈ es)) ↔⟨ (∃-cong λ _ → (×-cong₁ λ e′≡e → ≡⇒↝ equivalence $ cong (_ ∈FV_) $ sym e′≡e) ⊎-cong F.id) ⟩ (∃ λ e′ → (x ∈FV e′ × e′ ≡ e) ⊎ (x ∈FV e′ × e′ ∈ es)) ↔⟨ (∃-cong λ _ → inverse ×-⊎-distrib-left) ⟩ (∃ λ e′ → x ∈FV e′ × (e′ ≡ e ⊎ e′ ∈ es)) ↔⟨⟩ (∃ λ e′ → x ∈FV e′ × e′ ∈ e ∷ es) □) (free e) (free-⋆ es) free-B : (b : Br) → ∃ λ (fs : Finite-subset-of Var) → ∀ x → (x S.∈ fs) ⇔ (∃ λ c → ∃ λ xs → ∃ λ e → x ∈FV e × branch c xs e ≡ b × ¬ x ∈ xs) free-B (branch c xs e) = Σ-map (λ fs → S.minus _≟V₂_ fs (S.from-List xs)) (λ {fs} hyp x → x S.∈ S.minus _≟V₂_ fs (S.from-List xs) ↔⟨ S.∈minus≃ ⟩ x S.∈ fs × x S.∉ S.from-List xs ↔⟨ (∃-cong λ _ → ¬-cong ext $ inverse S.∥∈∥≃∈-from-List) ⟩ x S.∈ fs × ¬ T.∥ x ∈ xs ∥ ↔⟨ (∃-cong λ _ → T.¬∥∥↔¬) ⟩ x S.∈ fs × ¬ x ∈ xs ↝⟨ hyp x ×-cong F.id ⟩ x ∈FV e × ¬ x ∈ xs ↔⟨ (inverse $ drop-⊤-right λ _ → ×-left-identity F.∘ ×-left-identity) ⟩ (x ∈FV e × ¬ x ∈ xs) × ⊤ × ⊤ × ⊤ ↔⟨ (∃-cong λ _ → inverse $ (_⇔_.to contractible⇔↔⊤ $ singleton-contractible _) ×-cong (_⇔_.to contractible⇔↔⊤ $ singleton-contractible _) ×-cong (_⇔_.to contractible⇔↔⊤ $ singleton-contractible _)) ⟩ (x ∈FV e × ¬ x ∈ xs) × (∃ λ c′ → c′ ≡ c) × (∃ λ xs′ → xs′ ≡ xs) × (∃ λ e′ → e′ ≡ e) ↔⟨ (∃-cong λ _ → (∃-cong λ _ → (∃-cong λ _ → ∃-comm F.∘ (∃-cong λ _ → ∃-comm)) F.∘ ∃-comm F.∘ (∃-cong λ _ → inverse Σ-assoc)) F.∘ inverse Σ-assoc) ⟩ (x ∈FV e × ¬ x ∈ xs) × (∃ λ c′ → ∃ λ xs′ → ∃ λ e′ → c′ ≡ c × xs′ ≡ xs × e′ ≡ e) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-comm) F.∘ (∃-cong λ _ → ∃-comm) F.∘ ∃-comm ⟩ (∃ λ c′ → ∃ λ xs′ → ∃ λ e′ → (x ∈FV e × ¬ x ∈ xs) × (c′ ≡ c × xs′ ≡ xs × e′ ≡ e)) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → (∃-cong λ _ → ×-comm) F.∘ inverse Σ-assoc) ⟩ (∃ λ c′ → ∃ λ xs′ → ∃ λ e′ → x ∈FV e × (c′ ≡ c × xs′ ≡ xs × e′ ≡ e) × ¬ x ∈ xs) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ (_ , xs′≡xs , _) → ≡⇒↝ _ $ cong (¬_ ∘ (_ ∈_)) $ sym xs′≡xs) ⟩ (∃ λ c′ → ∃ λ xs′ → ∃ λ e′ → x ∈FV e × (c′ ≡ c × xs′ ≡ xs × e′ ≡ e) × ¬ x ∈ xs′) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ×-cong₁ λ ((_ , _ , e′≡e) , _) → ≡⇒↝ _ $ cong (_ ∈FV_) $ sym e′≡e) ⟩ (∃ λ c′ → ∃ λ xs′ → ∃ λ e′ → x ∈FV e′ × (c′ ≡ c × xs′ ≡ xs × e′ ≡ e) × ¬ x ∈ xs′) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ×-cong₁ λ _ → lemma) ⟩□ (∃ λ c′ → ∃ λ xs′ → ∃ λ e′ → x ∈FV e′ × branch c′ xs′ e′ ≡ branch c xs e × ¬ x ∈ xs′) □) (free e) where lemma : c′ ≡ c × xs′ ≡ xs × e′ ≡ e ⇔ branch c′ xs′ e′ ≡ branch c xs e lemma ._⇔_.to (c′≡c , xs′≡xs , e′≡e) = cong₂ (uncurry branch) (cong₂ _,_ c′≡c xs′≡xs) e′≡e lemma ._⇔_.from eq = cong (λ { (branch c _ _) → c }) eq , cong (λ { (branch _ xs _) → xs }) eq , cong (λ { (branch _ _ e) → e }) eq free-B⋆ : (bs : List Br) → ∃ λ (fs : Finite-subset-of Var) → ∀ x → (x S.∈ fs) ⇔ (∃ λ c → ∃ λ xs → ∃ λ e → x ∈FV e × branch c xs e ∈ bs × ¬ x ∈ xs) free-B⋆ [] = S.[] , λ x → x S.∈ S.[] ↔⟨ S.∈[]≃ ⟩ ⊥ ↔⟨ (inverse $ ×-right-zero {ℓ₁ = lzero} F.∘ ∃-cong λ _ → ×-right-zero {ℓ₁ = lzero} F.∘ ∃-cong λ _ → ×-right-zero {ℓ₁ = lzero} F.∘ ∃-cong λ _ → ×-right-zero {ℓ₁ = lzero} F.∘ ∃-cong λ _ → ×-left-zero) ⟩ Const × (∃ λ xs → ∃ λ e → x ∈FV e × ⊥ × ¬ x ∈ xs) ↔⟨⟩ (∃ λ c → ∃ λ xs → ∃ λ e → x ∈FV e × branch c xs e ∈ [] × ¬ x ∈ xs) □ free-B⋆ (b ∷ bs) = Σ-zip S._∪_ (λ {fs₁ fs₂} hyp₁ hyp₂ x → x S.∈ fs₁ S.∪ fs₂ ↔⟨ S.∈∪≃ ⟩ x S.∈ fs₁ T.∥⊎∥ x S.∈ fs₂ ↝⟨ T.Dec→∥∥⇔ (Dec-⊎ (S.member? _≟V₁_ _ _) (S.member? _≟V₁_ _ _)) ⟩ x S.∈ fs₁ ⊎ x S.∈ fs₂ ↝⟨ hyp₁ x ⊎-cong hyp₂ x ⟩ (∃ λ c → ∃ λ xs → ∃ λ e → x ∈FV e × branch c xs e ≡ b × ¬ x ∈ xs) ⊎ (∃ λ c → ∃ λ xs → ∃ λ e → x ∈FV e × branch c xs e ∈ bs × ¬ x ∈ xs) ↔⟨ (inverse $ ∃-⊎-distrib-left F.∘ ∃-cong λ _ → ∃-⊎-distrib-left F.∘ ∃-cong λ _ → ∃-⊎-distrib-left F.∘ ∃-cong λ _ → ∃-⊎-distrib-left F.∘ ∃-cong λ _ → ∃-⊎-distrib-right) ⟩ (∃ λ c → ∃ λ xs → ∃ λ e → x ∈FV e × (branch c xs e ≡ b ⊎ branch c xs e ∈ bs) × ¬ x ∈ xs) ↔⟨⟩ (∃ λ c → ∃ λ xs → ∃ λ e → x ∈FV e × branch c xs e ∈ b ∷ bs × ¬ x ∈ xs) □) (free-B b) (free-B⋆ bs) -- It is possible to find a variable that is neither free in a given -- expression, nor a member of a given finite set. fresh′ : (xs : Finite-subset-of Var) (e : Exp) → ∃ λ (x : Var) → ¬ x ∈FV e × x S.∉ xs fresh′ xs e = Σ-map id (λ {x} → x S.∉ proj₁ (free e) S.∪ xs ↔⟨ ¬-cong ext S.∈∪≃ ⟩ ¬ (x S.∈ proj₁ (free e) T.∥⊎∥ x S.∈ xs) ↔⟨ T.¬∥∥↔¬ ⟩ ¬ (x S.∈ proj₁ (free e) ⊎ x S.∈ xs) ↝⟨ ¬⊎↔¬×¬ _ ⟩ x S.∉ proj₁ (free e) × x S.∉ xs ↔⟨ ¬-cong-⇔ ext (proj₂ (free e) x) ×-cong F.id ⟩□ ¬ x ∈FV e × x S.∉ xs □) (V.fresh (proj₁ (free e) S.∪ xs)) -- It is possible to find a variable that is not free in a given -- expression. fresh : (e : Exp) → ∃ λ (x : Var) → ¬ x ∈FV e fresh e = Σ-map id proj₁ (fresh′ S.[] e) -- If two expressions have the same free variables (ignoring any -- variables in xs), then fresh′ xs returns the same fresh variable -- for both expressions. fresh′-unique : (∀ x → x S.∉ xs → x ∈FV e₁ ⇔ x ∈FV e₂) → proj₁ (fresh′ xs e₁) ≡ proj₁ (fresh′ xs e₂) fresh′-unique {xs = xs} {e₁ = e₁} {e₂ = e₂} same = proj₁ (V.fresh (proj₁ (free e₁) S.∪ xs)) ≡⟨ (cong (proj₁ ∘ V.fresh) $ _≃_.from S.extensionality λ x → x S.∈ proj₁ (free e₁) S.∪ xs ↝⟨ lemma x e₁ ⟩ x S.∉ xs × x ∈FV e₁ T.∥⊎∥ x S.∈ xs ↝⟨ ∃-cong (same x) T.∥⊎∥-cong F.id ⟩ x S.∉ xs × x ∈FV e₂ T.∥⊎∥ x S.∈ xs ↝⟨ inverse $ lemma x e₂ ⟩□ x S.∈ proj₁ (free e₂) S.∪ xs □) ⟩∎ proj₁ (V.fresh (proj₁ (free e₂) S.∪ xs)) ∎ where lemma : ∀ _ _ → _ ⇔ _ lemma x e = x S.∈ proj₁ (free e) S.∪ xs ↔⟨ S.∈∪≃ ⟩ x S.∈ proj₁ (free e) T.∥⊎∥ x S.∈ xs ↝⟨ proj₂ (free e) x T.∥⊎∥-cong F.id ⟩ x ∈FV e T.∥⊎∥ x S.∈ xs ↔⟨ T.∥⊎∥≃¬×∥⊎∥ $ T.Dec→Dec-∥∥ $ S.member? _≟V₁_ x xs ⟩□ x S.∉ xs × x ∈FV e T.∥⊎∥ x S.∈ xs □ -- If two expressions have the same free variables, then fresh returns -- the same fresh variable for both expressions. fresh-unique : (∀ x → x ∈FV e₁ ⇔ x ∈FV e₂) → proj₁ (fresh e₁) ≡ proj₁ (fresh e₂) fresh-unique same = fresh′-unique (λ x _ → same x) ------------------------------------------------------------------------ -- Decision procedures -- These decision procedures could presumably be implemented using -- free. -- The free variable relation, _∈FV_, is decidable. mutual _∈?_ : ∀ x e → Dec (x ∈FV e) x ∈? apply e₁ e₂ with x ∈? e₁ x ∈? apply e₁ e₂ | yes x∈e₁ = yes (apply-left x∈e₁) x ∈? apply e₁ e₂ | no x∉e₁ = ⊎-map apply-right (λ x∉e₂ → λ { (apply-left x∈e₁) → x∉e₁ x∈e₁ ; (apply-right x∈e₂) → x∉e₂ x∈e₂ }) (x ∈? e₂) x ∈? lambda y e with x V.≟ y x ∈? lambda y e | yes x≡y = no (λ { (lambda x≢y _) → x≢y x≡y }) x ∈? lambda y e | no x≢y = ⊎-map (lambda x≢y) (λ x∉e → λ { (lambda _ x∈e) → x∉e x∈e }) (x ∈? e) x ∈? rec y e with x V.≟ y x ∈? rec y e | yes x≡y = no (λ { (rec x≢y _) → x≢y x≡y }) x ∈? rec y e | no x≢y = ⊎-map (rec x≢y) (λ x∉e → λ { (rec _ x∈e) → x∉e x∈e }) (x ∈? e) x ∈? var y with x V.≟ y x ∈? var y | yes x≡y = yes (var x≡y) x ∈? var y | no x≢y = no (λ { (var x≡y) → x≢y x≡y }) x ∈? const c es = ⊎-map (λ { (_ , e∈es , x∈e) → const x∈e e∈es }) (λ x∉es → λ { (const x∈e e∈es) → x∉es (_ , e∈es , x∈e) }) (x ∈?-⋆ es) x ∈? case e bs with x ∈? e x ∈? case e bs | yes x∈e = yes (case-head x∈e) x ∈? case e bs | no x∉e = ⊎-map (λ { (_ , _ , _ , xs→e∈bs , x∈e , x∉xs) → case-body x∈e xs→e∈bs x∉xs }) (λ x∉bs → λ { (case-head x∈e) → x∉e x∈e ; (case-body x∈e xs→e∈bs x∉xs) → x∉bs (_ , _ , _ , xs→e∈bs , x∈e , x∉xs) }) (x ∈?-B⋆ bs) _∈?-⋆_ : ∀ x es → Dec (∃ λ e → e ∈ es × x ∈FV e) x ∈?-⋆ [] = no (λ { (_ , () , _) }) x ∈?-⋆ (e ∷ es) with x ∈? e x ∈?-⋆ (e ∷ es) | yes x∈e = yes (_ , inj₁ refl , x∈e) x ∈?-⋆ (e ∷ es) | no x∉e = ⊎-map (Σ-map id (Σ-map inj₂ id)) (λ x∉es → λ { (_ , inj₁ refl , x∈e) → x∉e x∈e ; (_ , inj₂ e∈es , x∈e) → x∉es (_ , e∈es , x∈e) }) (x ∈?-⋆ es) _∈?-B⋆_ : ∀ x bs → Dec (∃ λ c → ∃ λ xs → ∃ λ e → branch c xs e ∈ bs × x ∈FV e × ¬ x ∈ xs) x ∈?-B⋆ [] = no λ { (_ , _ , _ , () , _) } x ∈?-B⋆ (branch c xs e ∷ bs) with x ∈?-B⋆ bs x ∈?-B⋆ (branch c xs e ∷ bs) | yes x∈bs = yes (Σ-map id (Σ-map id (Σ-map id (Σ-map inj₂ id))) x∈bs) x ∈?-B⋆ (branch c xs e ∷ bs) | no x∉bs with V.member x xs x ∈?-B⋆ (branch c xs e ∷ bs) | no x∉bs | yes x∈xs = no (λ { (_ , _ , _ , inj₁ refl , _ , x∉xs) → x∉xs x∈xs ; (_ , _ , _ , inj₂ e∈es , x∈e , x∉xs) → x∉bs (_ , _ , _ , e∈es , x∈e , x∉xs) }) x ∈?-B⋆ (branch c xs e ∷ bs) | no x∉bs | no x∉xs = ⊎-map (λ x∈e → _ , _ , _ , inj₁ refl , x∈e , x∉xs) (λ x∉e → λ { (_ , _ , _ , inj₁ refl , x∈e , _) → x∉e x∈e ; (_ , _ , _ , inj₂ e∈es , x∈e , x∉xs) → x∉bs (_ , _ , _ , e∈es , x∈e , x∉xs) }) (x ∈? e) -- The Closed′ relation is decidable. mutual closed′? : ∀ e xs → Dec (Closed′ xs e) closed′? (apply e₁ e₂) xs with closed′? e₁ xs closed′? (apply e₁ e₂) xs | no ¬cl₁ = no (¬cl₁ ∘ (λ cl₁ x x∉xs → cl₁ x x∉xs ∘ apply-left)) closed′? (apply e₁ e₂) xs | yes cl₁ = ⊎-map (Closed′-closed-under-apply cl₁) (_∘ (λ cl₂ x x∉xs → cl₂ x x∉xs ∘ apply-right)) (closed′? e₂ xs) closed′? (lambda x e) xs = ⊎-map Closed′-closed-under-lambda (λ ¬cl cl → ¬cl (λ y y∉x∷xs y∈e → cl y (y∉x∷xs ∘ inj₂) (lambda (y∉x∷xs ∘ inj₁) y∈e))) (closed′? e (x ∷ xs)) closed′? (rec x e) xs = ⊎-map Closed′-closed-under-rec (λ ¬cl cl → ¬cl (λ y y∉x∷xs y∈e → cl y (y∉x∷xs ∘ inj₂) (rec (y∉x∷xs ∘ inj₁) y∈e))) (closed′? e (x ∷ xs)) closed′? (var x) xs = ⊎-map Closed′-closed-under-var (λ x∉xs cl → cl x x∉xs (var refl)) (V.member x xs) closed′? (const c es) xs = ⊎-map Closed′-closed-under-const (λ ¬cl cl → ¬cl (λ _ e∈es x x∉xs x∈e → cl x x∉xs (const x∈e e∈es))) (closed′?-⋆ es xs) closed′? (case e bs) xs with closed′? e xs closed′? (case e bs) xs | no ¬cl-e = no (λ cl → ¬cl-e (λ x x∉xs → cl x x∉xs ∘ case-head)) closed′? (case e bs) xs | yes cl-e = ⊎-map (Closed′-closed-under-case cl-e) (λ ¬cl-bs cl → ¬cl-bs (λ b∈bs x x∉ys++xs x∈e → let ¬[x∈ys⊎x∈xs] = x∉ys++xs ∘ _↔_.from (B.Any-++ _ _ _) in cl x (¬[x∈ys⊎x∈xs] ∘ inj₂) (case-body x∈e b∈bs (¬[x∈ys⊎x∈xs] ∘ inj₁)))) (closed′?-B⋆ bs xs) closed′?-⋆ : ∀ es xs → Dec (∀ e → e ∈ es → Closed′ xs e) closed′?-⋆ [] xs = yes (λ _ ()) closed′?-⋆ (e ∷ es) xs with closed′? e xs closed′?-⋆ (e ∷ es) xs | no ¬cl-e = no (λ cl → ¬cl-e (cl _ (inj₁ refl))) closed′?-⋆ (e ∷ es) xs | yes cl-e = ⊎-map (λ cl-es e → [ (λ e′≡e x x∉xs → subst (λ e → ¬ x ∈FV e) (sym e′≡e) (cl-e x x∉xs)) , cl-es e ]) (λ ¬cl-es cl → ¬cl-es (λ e → cl e ∘ inj₂)) (closed′?-⋆ es xs) closed′?-B⋆ : ∀ bs xs → Dec (∀ {c ys e} → branch c ys e ∈ bs → Closed′ (ys ++ xs) e) closed′?-B⋆ [] xs = yes (λ ()) closed′?-B⋆ (branch c ys e ∷ bs) xs with closed′?-B⋆ bs xs closed′?-B⋆ (branch c ys e ∷ bs) xs | no ¬cl-bs = no (λ cl → ¬cl-bs (cl ∘ inj₂)) closed′?-B⋆ (branch c ys e ∷ bs) xs | yes cl-bs = ⊎-map (λ cl-e {c′} {ys′} {e′} → [ (λ b′≡b x x∉ys++xs′ x∈e′ → cl-e x (subst (λ ys → ¬ x ∈ ys ++ xs) (ys-lemma b′≡b) x∉ys++xs′) (subst (x ∈FV_) (e-lemma b′≡b) x∈e′)) , cl-bs ]) (λ ¬cl-e cl → ¬cl-e (cl (inj₁ refl))) (closed′? e (ys ++ xs)) where e-lemma : ∀ {c ys e c′ ys′ e′} → branch c ys e ≡ branch c′ ys′ e′ → e ≡ e′ e-lemma refl = refl ys-lemma : ∀ {c ys e c′ ys′ e′} → branch c ys e ≡ branch c′ ys′ e′ → ys ≡ ys′ ys-lemma refl = refl -- The Closed relation is decidable. closed? : ∀ e → Dec (Closed e) closed? e = closed′? e [] ------------------------------------------------------------------------ -- Substituting something for a variable that is not free -- If x is not free in e, then nothing happens when a term is -- substituted for x in e. mutual subst-∉ : ∀ x e {e′} → ¬ x ∈FV e → e [ x ← e′ ] ≡ e subst-∉ x (apply e₁ e₂) x∉ = cong₂ apply (subst-∉ x e₁ (x∉ ∘ apply-left)) (subst-∉ x e₂ (x∉ ∘ apply-right)) subst-∉ x (lambda y e) x∉ with x V.≟ y subst-∉ x (lambda y e) x∉ | yes _ = refl subst-∉ x (lambda y e) x∉ | no x≢y = cong (lambda y) (subst-∉ x e (x∉ ∘ lambda x≢y)) subst-∉ x (case e bs) x∉ = cong₂ case (subst-∉ x e (x∉ ∘ case-head)) (subst-∉-B⋆ x bs _ (λ { (_ , _ , _ , ∈bs , x∈ , x∉xs) → x∉ (case-body x∈ ∈bs x∉xs) })) subst-∉ x (rec y e) x∉ with x V.≟ y subst-∉ x (rec y e) x∉ | yes _ = refl subst-∉ x (rec y e) x∉ | no x≢y = cong (rec y) (subst-∉ x e (x∉ ∘ rec x≢y)) subst-∉ x (var y) x∉ with x V.≟ y subst-∉ x (var y) x∉ | yes x≡y = ⊥-elim (x∉ (var x≡y)) subst-∉ x (var y) x∉ | no _ = refl subst-∉ x (const c es) x∉ = cong (const c) (subst-∉-⋆ x es (x∉ ∘ (λ { (_ , ps , p) → const p ps }))) subst-∉-⋆ : ∀ x es {e′} → ¬ (∃ λ e → e ∈ es × x ∈FV e) → es [ x ← e′ ]⋆ ≡ es subst-∉-⋆ x [] x∉ = refl subst-∉-⋆ x (e ∷ es) x∉ = cong₂ _∷_ (subst-∉ x e (λ x∈ → x∉ (_ , inj₁ refl , x∈))) (subst-∉-⋆ x es (x∉ ∘ Σ-map id (Σ-map inj₂ id))) subst-∉-B⋆ : ∀ x bs e′ → ¬ (∃ λ c → ∃ λ xs → ∃ λ e → branch c xs e ∈ bs × x ∈FV e × ¬ x ∈ xs) → bs [ x ← e′ ]B⋆ ≡ bs subst-∉-B⋆ x [] _ x∉ = refl subst-∉-B⋆ x (branch c xs e ∷ bs) _ x∉ with V.member x xs | subst-∉-B⋆ x bs _ (x∉ ∘ Σ-map id (Σ-map id (Σ-map id (Σ-map inj₂ id)))) ... | yes x∈xs | eq = cong₂ _∷_ refl eq ... | no x∉xs | eq = cong₂ (λ e bs → branch c xs e ∷ bs) (subst-∉ x e λ x∈e → x∉ (_ , _ , _ , inj₁ refl , x∈e , x∉xs)) eq -- If e is closed, then nothing happens when a term is substituted for -- x in e. subst-closed : ∀ x e′ {e} → Closed e → e [ x ← e′ ] ≡ e subst-closed _ _ c = subst-∉ _ _ (c _ (λ ())) -- An n-ary variant of the previous lemma. substs-closed : ∀ e → Closed e → ∀ ps → foldr (λ ye → _[ proj₁ ye ← proj₂ ye ]) e ps ≡ e substs-closed e cl [] = refl substs-closed e cl ((y , e′) ∷ ps) = foldr (λ { (y , e) → _[ y ← e ] }) e ps [ y ← e′ ] ≡⟨ cong _[ y ← e′ ] (substs-closed e cl ps) ⟩ e [ y ← e′ ] ≡⟨ subst-closed _ _ cl ⟩∎ e ∎ ------------------------------------------------------------------------ -- Evaluation and free variables -- If a value contains a free variable, then every term that evaluates -- to this value also contains the given free variable. mutual ⇓-does-not-introduce-variables : ∀ {x v e} → e ⇓ v → x ∈FV v → x ∈FV e ⇓-does-not-introduce-variables lambda q = q ⇓-does-not-introduce-variables (const ps) (const x∈v v∈vs) with ⇓⋆-does-not-introduce-variables ps (_ , v∈vs , x∈v) ... | _ , e∈es , x∈e = const x∈e e∈es ⇓-does-not-introduce-variables (apply {e = e} p₁ p₂ p₃) q with subst-∈FV _ e (⇓-does-not-introduce-variables p₃ q) ... | inj₂ x∈v₂ = apply-right (⇓-does-not-introduce-variables p₂ x∈v₂) ... | inj₁ (x∈e , x≢x′) = apply-left (⇓-does-not-introduce-variables p₁ (lambda x≢x′ x∈e)) ⇓-does-not-introduce-variables (rec {e = e} p) q with subst-∈FV _ e (⇓-does-not-introduce-variables p q) ... | inj₂ x∈rec = x∈rec ... | inj₁ (x∈e , x≢x′) = rec x≢x′ x∈e ⇓-does-not-introduce-variables {x} {w} (case {e = e} {bs = bs} {c = c} {es = es} {xs = xs} {e′ = e′} {e″ = e″} p₁ p₂ p₃ p₄) = x ∈FV w ↝⟨ ⇓-does-not-introduce-variables p₄ ⟩ x ∈FV e″ ↝⟨ lemma₁ p₃ ⟩ (x ∈FV e′ × ¬ x ∈ xs) ⊎ ∃ (λ e″₁ → e″₁ ∈ es × x ∈FV e″₁) ↝⟨ ⊎-map id (λ { (_ , ps , p) → const p ps }) ⟩ (x ∈FV e′ × ¬ x ∈ xs) ⊎ x ∈FV const c es ↝⟨ ⊎-map (λ p → lemma₂ p₂ , p) (⇓-does-not-introduce-variables p₁) ⟩ (branch c xs e′ ∈ bs × x ∈FV e′ × ¬ x ∈ xs) ⊎ x ∈FV e ↝⟨ [ (λ { (ps , p , q) → case-body p ps q }) , case-head ] ⟩ x ∈FV case e bs □ where lemma₁ : ∀ {e e′ x xs es} → e [ xs ← es ]↦ e′ → x ∈FV e′ → (x ∈FV e × ¬ x ∈ xs) ⊎ ∃ λ e″ → e″ ∈ es × x ∈FV e″ lemma₁ {e′ = e′} {x} [] = x ∈FV e′ ↝⟨ (λ p → inj₁ (p , (λ ()))) ⟩□ x ∈FV e′ × ¬ x ∈ [] ⊎ _ □ lemma₁ {e} {x = x} (∷_ {x = y} {xs = ys} {e′ = e′} {es′ = es′} {e″ = e″} p) = x ∈FV e″ [ y ← e′ ] ↝⟨ subst-∈FV _ _ ⟩ x ∈FV e″ × x ≢ y ⊎ x ∈FV e′ ↝⟨ ⊎-map (Σ-map (lemma₁ p) id) id ⟩ (x ∈FV e × ¬ x ∈ ys ⊎ ∃ λ e‴ → e‴ ∈ es′ × x ∈FV e‴) × x ≢ y ⊎ x ∈FV e′ ↝⟨ [ uncurry (λ p x≢y → ⊎-map (Σ-map id (λ x∉ys → [ x≢y , x∉ys ])) (Σ-map id (Σ-map inj₂ id)) p) , (λ p → inj₂ (_ , inj₁ refl , p)) ] ⟩□ x ∈FV e × ¬ x ∈ y ∷ ys ⊎ (∃ λ e″ → e″ ∈ e′ ∷ es′ × x ∈FV e″) □ lemma₂ : ∀ {c bs xs e} → Lookup c bs xs e → branch c xs e ∈ bs lemma₂ here = inj₁ refl lemma₂ (there _ p) = inj₂ (lemma₂ p) ⇓⋆-does-not-introduce-variables : ∀ {x es vs} → es ⇓⋆ vs → (∃ λ v → v ∈ vs × x ∈FV v) → (∃ λ e → e ∈ es × x ∈FV e) ⇓⋆-does-not-introduce-variables [] = id ⇓⋆-does-not-introduce-variables (p ∷ ps) (v , inj₁ refl , q) = _ , inj₁ refl , ⇓-does-not-introduce-variables p q ⇓⋆-does-not-introduce-variables (p ∷ ps) (v , inj₂ v∈ , q) = Σ-map id (Σ-map inj₂ id) (⇓⋆-does-not-introduce-variables ps (v , v∈ , q)) -- A closed term's value is closed. closed⇓closed : ∀ {e v xs} → e ⇓ v → Closed′ xs e → Closed′ xs v closed⇓closed {e} {v} {xs} p q x x∉xs = x ∈FV v ↝⟨ ⇓-does-not-introduce-variables p ⟩ x ∈FV e ↝⟨ q x x∉xs ⟩□ ⊥ □ ------------------------------------------------------------------------ -- More properties -- A constructor for closed expressions. apply-cl : Closed-exp → Closed-exp → Closed-exp apply-cl (e₁ , cl-e₁) (e₂ , cl-e₂) = apply e₁ e₂ , (Closed′-closed-under-apply (Closed→Closed′ cl-e₁) (Closed→Closed′ cl-e₂)) -- A certain "swapping" lemma does not hold. no-swapping : ¬ (∀ x y e e′ e″ → x ≢ y → Closed e′ → Closed (e″ [ x ← e′ ]) → e [ x ← e′ ] [ y ← e″ [ x ← e′ ] ] ≡ e [ y ← e″ ] [ x ← e′ ]) no-swapping hyp = distinct (hyp x′ y′ e₁′ e₂′ e₃′ x≢y cl₁ cl₂) where x′ = V.name 0 y′ = V.name 1 e₁′ : Exp e₁′ = lambda x′ (var y′) e₂′ : Exp e₂′ = const (C.name 0) [] e₃′ : Exp e₃′ = var x′ x≢y : x′ ≢ y′ x≢y = V.distinct-codes→distinct-names (λ ()) cl₁ : Closed e₂′ cl₁ = from-⊎ (closed? e₂′) cl₂ : Closed (e₃′ [ x′ ← e₂′ ]) cl₂ with x′ V.≟ x′ ... | no x≢x = ⊥-elim (x≢x refl) ... | yes _ = cl₁ lhs : e₁′ [ x′ ← e₂′ ] [ y′ ← e₃′ [ x′ ← e₂′ ] ] ≡ lambda x′ e₂′ lhs with x′ V.≟ x′ ... | no x≢x = ⊥-elim (x≢x refl) ... | yes _ with y′ V.≟ x′ ... | yes y≡x = ⊥-elim (x≢y (sym y≡x)) ... | no _ with y′ V.≟ y′ ... | no y≢y = ⊥-elim (y≢y refl) ... | yes _ = refl rhs : e₁′ [ y′ ← e₃′ ] [ x′ ← e₂′ ] ≡ lambda x′ (var x′) rhs with y′ V.≟ x′ ... | yes y≡x = ⊥-elim (x≢y (sym y≡x)) ... | no _ with y′ V.≟ y′ ... | no y≢y = ⊥-elim (y≢y refl) ... | yes _ with x′ V.≟ x′ ... | no x≢x = ⊥-elim (x≢x refl) ... | yes _ = refl distinct : e₁′ [ x′ ← e₂′ ] [ y′ ← e₃′ [ x′ ← e₂′ ] ] ≢ e₁′ [ y′ ← e₃′ ] [ x′ ← e₂′ ] distinct rewrite lhs | rhs = λ () -- Another swapping lemma does hold. module _ (x≢y : x ≢ y) (x∉e″ : ¬ x ∈FV e″) (y∉e′ : ¬ y ∈FV e′) where mutual swap : ∀ e → e [ x ← e′ ] [ y ← e″ ] ≡ e [ y ← e″ ] [ x ← e′ ] swap (apply e₁ e₂) = cong₂ apply (swap e₁) (swap e₂) swap (lambda z e) with x V.≟ z | y V.≟ z … | yes _ | yes _ = refl … | yes _ | no _ = refl … | no _ | yes _ = refl … | no _ | no _ = cong (lambda z) (swap e) swap (case e bs) = cong₂ case (swap e) (swap-B⋆ bs) swap (rec z e) with x V.≟ z | y V.≟ z … | yes _ | yes _ = refl … | yes _ | no _ = refl … | no _ | yes _ = refl … | no _ | no _ = cong (rec z) (swap e) swap (var z) with x V.≟ z | y V.≟ z … | yes x≡z | yes y≡z = ⊥-elim $ x≢y (trans x≡z (sym y≡z)) … | yes x≡z | no _ = e′ [ y ← e″ ] ≡⟨ subst-∉ _ _ y∉e′ ⟩ e′ ≡⟨ sym $ var-step-≡ x≡z ⟩∎ var z [ x ← e′ ] ∎ … | no _ | yes y≡z = var z [ y ← e″ ] ≡⟨ var-step-≡ y≡z ⟩ e″ ≡⟨ sym $ subst-∉ _ _ x∉e″ ⟩∎ e″ [ x ← e′ ] ∎ … | no x≢z | no y≢z = var z [ y ← e″ ] ≡⟨ var-step-≢ y≢z ⟩ var z ≡⟨ sym $ var-step-≢ x≢z ⟩∎ var z [ x ← e′ ] ∎ swap (const c es) = cong (const c) (swap-⋆ es) swap-B : ∀ b → b [ x ← e′ ]B [ y ← e″ ]B ≡ b [ y ← e″ ]B [ x ← e′ ]B swap-B (branch c zs e) with V.member x zs | V.member y zs … | yes x∈zs | yes y∈zs = branch c zs e [ y ← e″ ]B ≡⟨ branch-step-∈ y∈zs ⟩ branch c zs e ≡⟨ sym $ branch-step-∈ x∈zs ⟩∎ branch c zs e [ x ← e′ ]B ∎ … | yes x∈zs | no y∉zs = branch c zs e [ y ← e″ ]B ≡⟨ branch-step-∉ y∉zs ⟩ branch c zs (e [ y ← e″ ]) ≡⟨ sym $ branch-step-∈ x∈zs ⟩∎ branch c zs (e [ y ← e″ ]) [ x ← e′ ]B ∎ … | no x∉zs | yes y∈zs = branch c zs (e [ x ← e′ ]) [ y ← e″ ]B ≡⟨ branch-step-∈ y∈zs ⟩ branch c zs (e [ x ← e′ ]) ≡⟨ sym $ branch-step-∉ x∉zs ⟩∎ branch c zs e [ x ← e′ ]B ∎ … | no x∉zs | no y∉zs = branch c zs (e [ x ← e′ ]) [ y ← e″ ]B ≡⟨ branch-step-∉ y∉zs ⟩ branch c zs (e [ x ← e′ ] [ y ← e″ ]) ≡⟨ cong (branch c zs) (swap e) ⟩ branch c zs (e [ y ← e″ ] [ x ← e′ ]) ≡⟨ sym $ branch-step-∉ x∉zs ⟩∎ branch c zs (e [ y ← e″ ]) [ x ← e′ ]B ∎ swap-⋆ : ∀ es → es [ x ← e′ ]⋆ [ y ← e″ ]⋆ ≡ es [ y ← e″ ]⋆ [ x ← e′ ]⋆ swap-⋆ [] = refl swap-⋆ (e ∷ es) = cong₂ _∷_ (swap e) (swap-⋆ es) swap-B⋆ : ∀ bs → bs [ x ← e′ ]B⋆ [ y ← e″ ]B⋆ ≡ bs [ y ← e″ ]B⋆ [ x ← e′ ]B⋆ swap-B⋆ [] = refl swap-B⋆ (b ∷ bs) = cong₂ _∷_ (swap-B b) (swap-B⋆ bs)
43.943316
140
0.347009
506948505ddaf8057e5aec22499bca16da888694
380
agda
Agda
test/interaction/Issue3002.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue3002.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue3002.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Builtin.Equality open import Agda.Builtin.Nat data ⊥ : Set where data Zero : Set where zero : Zero data One : Set where suc : Zero → One one : One one = suc zero data _≤_ : One → Zero → Set where leq : ∀ m n → Nat → Nat → m ≤ n → ⊥ leq (suc m) zero = λ i j () test : Nat → one ≤ zero → ⊥ test = leq one zero 5 -- Normalise: test -- Expected: λ j ()
14.615385
35
0.605263
2e410cba92fe0e81fe4361fa3cd51d506e6af768
3,992
agda
Agda
src/Categories/Category/Monoidal/Braided/Properties.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
src/Categories/Category/Monoidal/Braided/Properties.agda
andrejbauer/agda-categories
d07746023503cc8f49670e309a6170dc4b404b95
[ "MIT" ]
null
null
null
src/Categories/Category/Monoidal/Braided/Properties.agda
andrejbauer/agda-categories
d07746023503cc8f49670e309a6170dc4b404b95
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category using (Category; module Commutation) open import Categories.Category.Monoidal open import Categories.Category.Monoidal.Braided using (Braided) module Categories.Category.Monoidal.Braided.Properties {o ℓ e} {C : Category o ℓ e} {M : Monoidal C} (BM : Braided M) where open import Data.Product using (_,_) open import Categories.Category.Monoidal.Properties M open import Categories.Category.Monoidal.Reasoning M open import Categories.Category.Monoidal.Utilities M open import Categories.Functor using (Functor) open import Categories.Morphism.Reasoning C hiding (push-eq) open import Categories.NaturalTransformation.NaturalIsomorphism.Properties using (push-eq) open Category C open Braided BM open Commutation C private variable X Y Z : Obj -- A shorthand for the braiding B : ∀ {X Y} → X ⊗₀ Y ⇒ Y ⊗₀ X B {X} {Y} = braiding.⇒.η (X , Y) -- It's easier to prove the following lemma, which is the desired -- coherence theorem moduolo application of the |-⊗ unit| functor. -- Because |-⊗ unit| is equivalent to the identity functor, the -- lemma and the theorem are equivalent. -- The following diagram illustrates the hexagon that we are -- operating on. The main outer hexagon is hexagon₁, the braiding -- coherence, instantiated with X, 1 and 1 (Here we denote the unit -- by 1 for brevity). -- In the middle are X1 and 1X along with morphisms towards them. -- The lower hexagon (given by the double lines) commutes and is -- an intermediary in the final proof. It is there to effectively -- get rid of the top half of the main hexagon. -- The rest of the proof is isolating the bottom left triangle -- which represents our desired identity. It is doing that by -- proving that the pentagon to the right of it commutes. -- The pentagon commuting is, in turn, proved by gluing the -- rightmost "square" onto the middle triangle. -- -- -- ┌─────> X(11) ─────────> (11)X ──────┐ -- ┌┘ α │ B │ α └┐ -- ┌┘ │id⊗λ │λ⊗id └┐ -- ┌┘ V V V -- (X1)1 ═══════> X1 ════════════> 1X <══════ 1(1X) -- ╚╗ ρ⊗id Λ <───┐ B λ Λ -- ╚╗ │λ⊗id └────────┐ ╔╝ -- ╚╗ │ λ └┐ ╔╝ -- ╚═════> (1X)1 ═════════> 1(X1) ═════╝ -- B⊗id α id⊗B braiding-coherence⊗unit : [ (X ⊗₀ unit) ⊗₀ unit ⇒ X ⊗₀ unit ]⟨ B ⊗₁ id ⇒⟨ (unit ⊗₀ X) ⊗₀ unit ⟩ unitorˡ.from ⊗₁ id ≈ unitorʳ.from ⊗₁ id ⟩ braiding-coherence⊗unit = cancel-fromˡ braiding.FX≅GX ( begin B ∘ unitorˡ.from ⊗₁ id ∘ B ⊗₁ id ≈⟨ pullˡ (⟺ (glue◽◃ unitorˡ-commute-from coherence₁)) ⟩ (unitorˡ.from ∘ id ⊗₁ B ∘ associator.from) ∘ B ⊗₁ id ≈⟨ assoc²' ⟩ unitorˡ.from ∘ id ⊗₁ B ∘ associator.from ∘ B ⊗₁ id ≈⟨ refl⟩∘⟨ hexagon₁ ⟩ unitorˡ.from ∘ associator.from ∘ B ∘ associator.from ≈⟨ pullˡ coherence₁ ⟩ unitorˡ.from ⊗₁ id ∘ B ∘ associator.from ≈˘⟨ pushˡ (braiding.⇒.commute _) ⟩ (B ∘ id ⊗₁ unitorˡ.from) ∘ associator.from ≈⟨ pullʳ triangle ⟩ B ∘ unitorʳ.from ⊗₁ id ∎) -- The desired theorem follows from |braiding-coherence⊗unit| by -- translating it along the right unitor (which is a natural iso). braiding-coherence : [ X ⊗₀ unit ⇒ X ]⟨ B ⇒⟨ unit ⊗₀ X ⟩ unitorˡ.from ≈ unitorʳ.from ⟩ braiding-coherence = push-eq unitorʳ-naturalIsomorphism (begin (unitorˡ.from ∘ B) ⊗₁ id ≈⟨ homomorphism ⟩ (unitorˡ.from ⊗₁ id) ∘ (B ⊗₁ id) ≈⟨ braiding-coherence⊗unit ⟩ unitorʳ.from ⊗₁ id ∎) where open Functor (-⊗ unit)
42.924731
124
0.561122
38060e1a5286aa00bd517c0e7fae04d54716211a
224
agda
Agda
test/Compiler/simple/Issue2914.agda
xekoukou/agda-ocaml
026a8f8473ab91f99c3f6545728e71fa847d2720
[ "BSD-3-Clause" ]
7
2018-11-05T22:13:36.000Z
2018-11-06T16:38:43.000Z
test/Compiler/simple/Issue2914.agda
xekoukou/agda-ocaml
026a8f8473ab91f99c3f6545728e71fa847d2720
[ "BSD-3-Clause" ]
16
2018-10-08T00:32:04.000Z
2019-09-08T13:47:04.000Z
test/Compiler/simple/Issue2914.agda
xekoukou/agda-ocaml
026a8f8473ab91f99c3f6545728e71fa847d2720
[ "BSD-3-Clause" ]
null
null
null
open import Common.IO open import Common.Nat open import Common.String open import Common.Unit private n : Nat n = 7 {-# COMPILE OCaml n as val n : Z.t #-} main : IO Unit main = do putStrLn (natToString n)
14
38
0.665179
ad86933e7da743e29a130aad9329bfbbc22b439d
3,715
agda
Agda
BasicIPC/Semantics/TarskiGluedClosedHilbert.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicIPC/Semantics/TarskiGluedClosedHilbert.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicIPC/Semantics/TarskiGluedClosedHilbert.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
-- Basic intuitionistic propositional calculus, without ∨ or ⊥. -- Tarski-style semantics with glueing for α and ▻, after Coquand-Dybjer. -- Hilbert-style closed syntax. module BasicIPC.Semantics.TarskiGluedClosedHilbert where open import BasicIPC.Syntax.Common public open import Common.Semantics public -- Tarski models with explicit syntax. record Model : Set₁ where infix 3 ⊩ᵅ_ [⊢]_ field -- Forcing for atomic propositions. ⊩ᵅ_ : Atom → Set -- Hilbert-style closed syntax representation. [⊢]_ : Ty → Set [app] : ∀ {A B} → [⊢] A ▻ B → [⊢] A → [⊢] B [ci] : ∀ {A} → [⊢] A ▻ A [ck] : ∀ {A B} → [⊢] A ▻ B ▻ A [cs] : ∀ {A B C} → [⊢] (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C [cpair] : ∀ {A B} → [⊢] A ▻ B ▻ A ∧ B [cfst] : ∀ {A B} → [⊢] A ∧ B ▻ A [csnd] : ∀ {A B} → [⊢] A ∧ B ▻ B [unit] : [⊢] ⊤ infix 3 [⊢]⋆_ [⊢]⋆_ : Cx Ty → Set [⊢]⋆ ∅ = 𝟙 [⊢]⋆ Ξ , A = [⊢]⋆ Ξ × [⊢] A open Model {{…}} public -- Forcing in a particular model. module _ {{_ : Model}} where infix 3 ⊩_ ⊩_ : Ty → Set ⊩ α P = Glue ([⊢] α P) (⊩ᵅ P) ⊩ A ▻ B = Glue ([⊢] A ▻ B) (⊩ A → ⊩ B) ⊩ A ∧ B = ⊩ A × ⊩ B ⊩ ⊤ = 𝟙 infix 3 ⊩⋆_ ⊩⋆_ : Cx Ty → Set ⊩⋆ ∅ = 𝟙 ⊩⋆ Ξ , A = ⊩⋆ Ξ × ⊩ A -- Entailment, or forcing in all models. infix 3 ⊨_ ⊨_ : Ty → Set₁ ⊨ A = ∀ {{_ : Model}} → ⊩ A -- Extraction of syntax representation in a particular model. module _ {{_ : Model}} where reifyʳ : ∀ {A} → ⊩ A → [⊢] A reifyʳ {α P} s = syn s reifyʳ {A ▻ B} s = syn s reifyʳ {A ∧ B} s = [app] ([app] [cpair] (reifyʳ (π₁ s))) (reifyʳ (π₂ s)) reifyʳ {⊤} s = [unit] reifyʳ⋆ : ∀ {Ξ} → ⊩⋆ Ξ → [⊢]⋆ Ξ reifyʳ⋆ {∅} ∙ = ∙ reifyʳ⋆ {Ξ , A} (ts , t) = reifyʳ⋆ ts , reifyʳ t -- Useful theorems in functional form. module _ {{_ : Model}} where [multicut] : ∀ {Ξ A} → [⊢]⋆ Ξ → [⊢] Ξ ▻⋯▻ A → [⊢] A [multicut] {∅} ∙ u = u [multicut] {Ξ , B} (ts , t) u = [app] ([multicut] ts u) t -- Additional useful equipment. module _ {{_ : Model}} where _⟪$⟫_ : ∀ {A B} → ⊩ A ▻ B → ⊩ A → ⊩ B s ⟪$⟫ a = sem s a ⟪K⟫ : ∀ {A B} → ⊩ A → ⊩ B ▻ A ⟪K⟫ a = [app] [ck] (reifyʳ a) ⅋ K a ⟪S⟫ : ∀ {A B C} → ⊩ A ▻ B ▻ C → ⊩ A ▻ B → ⊩ A → ⊩ C ⟪S⟫ s₁ s₂ a = (s₁ ⟪$⟫ a) ⟪$⟫ (s₂ ⟪$⟫ a) ⟪S⟫′ : ∀ {A B C} → ⊩ A ▻ B ▻ C → ⊩ (A ▻ B) ▻ A ▻ C ⟪S⟫′ s₁ = [app] [cs] (reifyʳ s₁) ⅋ λ s₂ → [app] ([app] [cs] (reifyʳ s₁)) (reifyʳ s₂) ⅋ ⟪S⟫ s₁ s₂ _⟪,⟫′_ : ∀ {A B} → ⊩ A → ⊩ B ▻ A ∧ B _⟪,⟫′_ a = [app] [cpair] (reifyʳ a) ⅋ _,_ a -- Forcing in a particular model, for sequents. module _ {{_ : Model}} where infix 3 ⊩_⇒_ ⊩_⇒_ : Cx Ty → Ty → Set ⊩ Γ ⇒ A = ⊩⋆ Γ → ⊩ A infix 3 ⊩_⇒⋆_ ⊩_⇒⋆_ : Cx Ty → Cx Ty → Set ⊩ Γ ⇒⋆ Ξ = ⊩⋆ Γ → ⊩⋆ Ξ -- Entailment, or forcing in all models, for sequents. infix 3 _⊨_ _⊨_ : Cx Ty → Ty → Set₁ Γ ⊨ A = ∀ {{_ : Model}} → ⊩ Γ ⇒ A infix 3 _⊨⋆_ _⊨⋆_ : Cx Ty → Cx Ty → Set₁ Γ ⊨⋆ Ξ = ∀ {{_ : Model}} → ⊩ Γ ⇒⋆ Ξ -- Additional useful equipment, for sequents. module _ {{_ : Model}} where lookup : ∀ {A Γ} → A ∈ Γ → ⊩ Γ ⇒ A lookup top (γ , a) = a lookup (pop i) (γ , b) = lookup i γ ⟦λ⟧ : ∀ {A B Γ} → [⊢] A ▻ B → ⊩ Γ , A ⇒ B → ⊩ Γ ⇒ A ▻ B ⟦λ⟧ t s γ = t ⅋ λ a → s (γ , a) _⟦$⟧_ : ∀ {A B Γ} → ⊩ Γ ⇒ A ▻ B → ⊩ Γ ⇒ A → ⊩ Γ ⇒ B (s₁ ⟦$⟧ s₂) γ = s₁ γ ⟪$⟫ s₂ γ ⟦K⟧ : ∀ {A B Γ} → ⊩ Γ ⇒ A → ⊩ Γ ⇒ B ▻ A ⟦K⟧ {A} {B} a γ = ⟪K⟫ {A} {B} (a γ) ⟦S⟧ : ∀ {A B C Γ} → ⊩ Γ ⇒ A ▻ B ▻ C → ⊩ Γ ⇒ A ▻ B → ⊩ Γ ⇒ A → ⊩ Γ ⇒ C ⟦S⟧ s₁ s₂ a γ = ⟪S⟫ (s₁ γ) (s₂ γ) (a γ) _⟦,⟧_ : ∀ {A B Γ} → ⊩ Γ ⇒ A → ⊩ Γ ⇒ B → ⊩ Γ ⇒ A ∧ B (a ⟦,⟧ b) γ = a γ , b γ ⟦π₁⟧ : ∀ {A B Γ} → ⊩ Γ ⇒ A ∧ B → ⊩ Γ ⇒ A ⟦π₁⟧ s γ = π₁ (s γ) ⟦π₂⟧ : ∀ {A B Γ} → ⊩ Γ ⇒ A ∧ B → ⊩ Γ ⇒ B ⟦π₂⟧ s γ = π₂ (s γ)
24.281046
74
0.426918
9a24aee6ee405e2e043fc6c03b32bf0ad6fb3975
535
agda
Agda
out/Unit/Signature.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
39
2021-11-09T20:39:55.000Z
2022-03-19T17:33:12.000Z
out/Unit/Signature.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
1
2021-11-21T12:19:32.000Z
2021-11-21T12:19:32.000Z
out/Unit/Signature.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
4
2021-11-09T20:39:59.000Z
2022-01-24T12:49:17.000Z
{- This second-order signature was created from the following second-order syntax description: syntax Unit | U type 𝟙 : 0-ary term unit : 𝟙 theory (𝟙η) u : 𝟙 |> u = unit -} module Unit.Signature where open import SOAS.Context -- Type declaration data UT : Set where 𝟙 : UT open import SOAS.Syntax.Signature UT public open import SOAS.Syntax.Build UT public -- Operator symbols data Uₒ : Set where unitₒ : Uₒ -- Term signature U:Sig : Signature Uₒ U:Sig = sig λ { unitₒ → ⟼₀ 𝟙 } open Signature U:Sig public
13.375
91
0.693458
597123c617c07a6ce9e2a88bb08d8537cec05fd3
11,300
agda
Agda
RW/Language/RTermUtils.agda
VictorCMiraldo/agda-rw
2856afd12b7dbbcc908482975638d99220f38bf2
[ "MIT" ]
16
2015-02-09T15:43:38.000Z
2019-10-24T17:38:20.000Z
RW/Language/RTermUtils.agda
VictorCMiraldo/agda-rw
2856afd12b7dbbcc908482975638d99220f38bf2
[ "MIT" ]
4
2015-02-06T15:03:33.000Z
2015-05-28T14:48:03.000Z
RW/Language/RTermUtils.agda
VictorCMiraldo/agda-rw
2856afd12b7dbbcc908482975638d99220f38bf2
[ "MIT" ]
null
null
null
open import Prelude open import Data.Nat using (_≤?_) open import Data.Maybe using (Maybe; just; nothing; is-just) open import Reflection using (_≟-Lit_; _≟-Name_) open import RW.Language.RTerm open import RW.Utils.Monads module RW.Language.RTermUtils where open Monad {{...}} -- The complexity annotations might require -- a slight notational introduction. -- -- If a variable name overlaps one in the corresponding type signature, -- this is intentional. -- -- Sₜ is defined by (S t). -- #Fvₜ is defined by length (Fv t). -- Both measures are defined below. -- -------------- -- Measures -- -------------- -- The TERMINATING pragmas are required since Agda does not -- recognize a call to map as terminating. {-# TERMINATING #-} height : {A : Set} → RTerm A → ℕ height (ovar _) = 0 height (ivar _) = 0 height (rlit _) = 0 height (rlam t) = 1 + height t height (rapp _ ts) = 1 + max* (map height ts) where max : ℕ → ℕ → ℕ max a b with a ≤? b ...| yes _ = b ...| no _ = a max* : List ℕ → ℕ max* [] = 0 max* (h ∷ t) = max h (max* t) {-# TERMINATING #-} S : {A : Set} → RTerm A → ℕ S (ovar _) = 1 S (ivar _) = 1 S (rlit _) = 1 S (rlam t) = 1 + S t S (rapp n ts) = 1 + sum (map S ts) where open import Data.List using (sum) {-# TERMINATING #-} Fv : {A : Set} → RTerm A → List A Fv (ovar a) = a ∷ [] Fv (ivar _) = [] Fv (rlit _) = [] Fv (rlam t) = Fv t Fv (rapp _ ts) = concatMap Fv ts where open import Data.List using (concatMap) ------------------------------------------------------- -- Terms with Context -- -- Holes will be represented by a nothing; pattern hole = ovar nothing isHole : ∀{a}{A : Set a} → RTerm (Maybe A) → Bool isHole (ovar nothing) = true isHole _ = false -- Term Intersection -- -- Complexity analisys follows below. {-# TERMINATING #-} _∩_ : ∀{A} ⦃ eqA : Eq A ⦄ → RTerm A → RTerm A → RTerm (Maybe A) _∩_ (rapp x ax) (rapp y ay) with x ≟-RTermName y ...| no _ = ovar nothing ...| yes _ = rapp x (map (uncurry _∩_) (zip ax ay)) _∩_ (ivar x) (ivar y) with x ≟-ℕ y ...| no _ = ovar nothing ...| yes _ = ivar x _∩_ ⦃ eq _≟_ ⦄ (ovar x) (ovar y) with x ≟ y ...| no _ = ovar nothing ...| yes _ = ovar (just x) _∩_ (rlit x) (rlit y) with x ≟-Lit y ...| no _ = ovar nothing ...| yes _ = rlit x _∩_ (rlam x) (rlam y) = rlam (x ∩ y) _∩_ _ _ = ovar nothing -- The wors case for a intersection is, of course, both terms being -- equal. But in that case, (t ∩ t) is just a (fmap just), as we -- can see below. -- -- Therefore, t ∩ t ∈ O(Sₜ) -- -- In case we have two different terms, the smaller of -- them will make _∩_ halt. Therefore, -- -- t ∩ u ∈ O(min(Sₜ , Sᵤ)) -- private mutual t∩t≡t : {A : Set}⦃ eqA : Eq A ⦄{t : RTerm A} → t ∩ t ≡ replace-A (ovar ∘ just) t t∩t≡t ⦃ eq _≟_ ⦄ {t = ovar x} with x ≟ x ...| yes x≡x = refl ...| no x≢x = ⊥-elim (x≢x refl) t∩t≡t {t = ivar n} with n ≟-ℕ n ...| yes n≡n = refl ...| no n≢n = ⊥-elim (n≢n refl) t∩t≡t {t = rlit l} with l ≟-Lit l ...| yes l≡l = refl ...| no l≢l = ⊥-elim (l≢l refl) t∩t≡t {A} {t = rlam t} = trans (cong rlam (t∩t≡t {t = t})) (sym (lemma-replace-rlam {A = A} {f = ovar ∘ just} {t = t})) t∩t≡t {t = rapp n ts} with n ≟-RTermName n ...| no n≢n = ⊥-elim (n≢n refl) ...| yes n≡n = cong (rapp n) t∩t≡t* t∩t≡t* : {A : Set}⦃ eqA : Eq A ⦄{ts : List (RTerm A)} → map (uncurry _∩_) (zip ts ts) ≡ map (replace-A (ovar ∘ just)) ts t∩t≡t* {ts = []} = refl t∩t≡t* {ts = t ∷ ts} rewrite sym (t∩t≡t {t = t}) = cong (_∷_ (t ∩ t)) (t∩t≡t* {ts = ts}) -- Lifting holes. -- -- Will translate every definition with only holes as arguments -- into a single hole. -- -- The worst case for lifting holes is to find a term t -- with no holes. Therefore _↑ ∈ O(Sₜ). {-# TERMINATING #-} _↑ : ∀{a}{A : Set a} → RTerm (Maybe A) → RTerm (Maybe A) _↑ (rapp x []) = rapp x [] _↑ (rapp x ax) with all isHole ax ...| true = ovar nothing ...| false = rapp x (map _↑ ax) _↑ (rlam x) = rlam (x ↑) _↑ t = t -- It is commom to need only "linear" intersections; -- -- _∩↑_ ∈ O(Sₜ + Sₜ) ≈ O(Sₜ) -- _∩↑_ : ∀{A} ⦃ eqA : Eq A ⦄ → RTerm A → RTerm A → RTerm (Maybe A) v ∩↑ u = (v ∩ u) ↑ -- Casting ⊥2UnitCast : RTerm (Maybe ⊥) → RTerm Unit ⊥2UnitCast = replace-A (maybe ⊥-elim (ovar unit)) -- Converting Holes to Abstractions -- -- Will replace holes for "var 0", -- and increment every other non-captured variable. -- {-# TERMINATING #-} holeElim : ℕ → RTerm Unit → RTerm ⊥ holeElim d (ovar unit) = ivar zero holeElim d (ivar n) with suc n ≤? d ...| yes _ = ivar n ...| no _ = ivar (suc n) holeElim d (rlit l) = rlit l holeElim d (rlam rt) = rlam (holeElim (suc d) rt) holeElim d (rapp n ts) = rapp n (map (holeElim d) ts) -- Specialized version for handling indexes. hole2Abs : RTerm Unit → RTerm ⊥ hole2Abs = rlam ∘ holeElim 0 hole2Absℕ : RTerm Unit → RTerm ℕ hole2Absℕ = replace-A ⊥-elim ∘ hole2Abs open import Data.String hiding (_++_) postulate err : ∀{a}{A : Set a} → String → A private joinInner : {A : Set} → List (Maybe (List A)) → Maybe (List A) joinInner [] = just [] joinInner (nothing ∷ _) = nothing -- err "2" joinInner (just x ∷ xs) = maybe (λ l → just (x ++ l)) nothing (joinInner xs) lemma-joinInner : {A : Set}{x : List A}{l : List (Maybe (List A))} → joinInner (just x ∷ l) ≡ maybe (λ l → just (x ++ l)) nothing (joinInner l) lemma-joinInner = refl -- Term Subtraction -- -- Compelxity analisys follows below. -- {-# TERMINATING #-} _-_ : ∀{A} ⦃ eqA : Eq A ⦄ → RTerm (Maybe A) → RTerm A → Maybe (List (RTerm A)) hole - t = return (t ∷ []) (rapp x ax) - (rapp y ay) with x ≟-RTermName y ...| no _ = nothing -- err "1" ...| yes _ = joinInner (map (uncurry _-_) (zip ax ay)) (rlam x) - (rlam y) = x - y x - y with x ≟-RTerm (replace-A (ovar ∘ just) y) ...| yes _ = just [] ...| no _ = nothing -- err "3" -- Similarly to _∩_, we will prove the worst case complexity -- based on lemma t-t≡Fvt. -- That is, looking at term subtraction, the wors possible case -- is that our roadmap (RTerm (Maybe A)) perfectly matches the -- term we are looking for, and has all occurences of ovars as holes. -- (a simple drawing might help to see this). -- -- Well, when this is the case, our lemma tells us that -- subtraction is the same as getting the free variables -- and mapping ovar over them. -- -- It is clear that we have some additional complexity on -- the function joinInner, but we will ignore this for -- the sake of simplicity, for now. -- If we consider that most of the lemmas do not have more than 10 -- free variables, joinInner is of negligible run-time -- (TODO: dangerous afirmation!!) -- -- We'll then say that _-_ ∈ O(#Fvₜ). -- private fmap-nothing : {A : Set} → RTerm A → RTerm (Maybe A) fmap-nothing = replace-A (const $ ovar nothing) mutual t-t≡Fvt : {A : Set}⦃ eqA : Eq A ⦄(t : RTerm A) → (fmap-nothing t) - t ≡ just (map ovar (Fv t)) t-t≡Fvt (ovar x) = refl t-t≡Fvt (ivar n) with n ≟-ℕ n ...| yes n≡n = refl ...| no n≢n = ⊥-elim (n≢n refl) t-t≡Fvt (rlit l) with l ≟-Lit l ...| yes l≡l = refl ...| no l≢l = ⊥-elim (l≢l refl) t-t≡Fvt (rlam t) = t-t≡Fvt t t-t≡Fvt (rapp n ts) with n ≟-RTermName n ...| yes n≡n = t-t≡Fvt* ts ...| no n≢n = ⊥-elim (n≢n refl) t-t≡Fvt* : {A : Set}⦃ eqA : Eq A ⦄(ts : List (RTerm A)) → joinInner (map (uncurry _-_) (zip (map fmap-nothing ts) ts)) ≡ just (map ovar (concat (map Fv ts))) t-t≡Fvt* [] = refl t-t≡Fvt* (t ∷ ts) rewrite t-t≡Fvt t with joinInner (map (uncurry _-_) (zip (map fmap-nothing ts) ts)) | t-t≡Fvt* ts t-t≡Fvt* (t ∷ ts) | nothing | () t-t≡Fvt* (t ∷ ts) | just .(map ovar (foldr _++_ [] (map Fv ts))) | refl = cong just (sym (map-++-commute ovar (Fv t) (concat (map Fv ts)))) where open import Data.List.Properties using (map-++-commute) -- Term Subtraction, single result. -- -- Disconsidering lazyness, (_-↓_ t) = fmap head ∘ (_-_ t) -- Therefore, _-↓_ ∈ O(#Fvₜ). -- _-↓_ : ∀{A} ⦃ eqA : Eq A ⦄ → RTerm (Maybe A) → RTerm A → Maybe (RTerm A) t -↓ u with t - u ...| just [] = nothing ...| just (x ∷ _) = just x ...| nothing = nothing -- Structural Manipulation {-# TERMINATING #-} map-ivar : {A : Set} → ℕ → (ℕ → RTerm A) → RTerm ⊥ → RTerm A map-ivar _ f (ovar ()) map-ivar d f (ivar n) with d ≤? n ...| yes _ = f n ...| no _ = ivar n map-ivar _ f (rlit l) = rlit l map-ivar d f (rlam t) = rlam (map-ivar (suc d) f t) map-ivar d f (rapp n ts) = rapp n (map (map-ivar d f) ts) -- Lift ivar's to ovar's lift-ivar : RTerm ⊥ → RTerm ℕ lift-ivar = map-ivar 0 ovar private last : {A : Set} → List A → Maybe A last [] = nothing last (x ∷ []) = just x last (_ ∷ xs) = last xs strip-last : {A : Set} → List A → List A strip-last [] = [] strip-last (x ∷ []) = [] strip-last (x ∷ xs) = x ∷ (strip-last xs) -- last argument larg : {B : Set} → RTerm B → Maybe (RTerm B) larg (rapp n []) = nothing larg (rapp n ts) = last ts larg _ = nothing dec : ℕ → ℕ dec zero = zero dec (suc x) = x strip-larg : {B : Set} → RTerm B → RTerm B strip-larg (rapp n ts) = rapp n (strip-last ts) strip-larg t = t {-# TERMINATING #-} n-is-in : {B : Set} → ℕ → RTerm B → Bool n-is-in n (ivar k) = dec-elim (const true) (const false) (n ≟-ℕ k) n-is-in n (rapp _ ts) = foldr (λ h r → n-is-in n h or r) false ts n-is-in n (rlam t) = n-is-in (suc n) t n-is-in _ _ = false {-# TERMINATING #-} η : RTerm ⊥ → RTerm ⊥ η (ovar x) = ovar x η (ivar n) = ivar n η (rlit l) = rlit l η (rlam t) with η t ...| t' with larg t' ...| just (ivar 0) = if n-is-in 0 (strip-larg t') then rlam t' else map-ivar 0 (ivar ∘ dec) (strip-larg t') ...| _ = rlam t' η (rapp n ts) = rapp n (map η ts) -- Models a binary application RBinApp : ∀{a} → Set a → Set _ RBinApp A = RTermName × RTerm A × RTerm A -- Opens a term representing a binary application. forceBinary : ∀{a}{A : Set a} → RTerm A → Maybe (RBinApp A) forceBinary (rapp n (a₁ ∷ a₂ ∷ [])) = just (n , a₁ , a₂) forceBinary _ = nothing -- Given a 'impl' chain, return it's result. typeResult : ∀{a}{A : Set a} → RTerm A → RTerm A typeResult (rapp impl (t1 ∷ t2 ∷ [])) = typeResult t2 typeResult t = t -- Gives the length of a 'impl' chain. typeArity : ∀{a}{A : Set a} → RTerm A → ℕ typeArity (rapp impl (t1 ∷ t2 ∷ [])) = suc (typeArity t2) typeArity _ = 0
30.958904
80
0.524867
8bf138abe01d5f69397d5868f9c433bee8d4ca15
2,791
agda
Agda
Cubical/Experiments/ZCohomologyOld/Groups/WedgeOfSpheres.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/Experiments/ZCohomologyOld/Groups/WedgeOfSpheres.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/Experiments/ZCohomologyOld/Groups/WedgeOfSpheres.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Experiments.ZCohomologyOld.Groups.WedgeOfSpheres where open import Cubical.Experiments.ZCohomologyOld.Base open import Cubical.Experiments.ZCohomologyOld.Properties open import Cubical.Experiments.ZCohomologyOld.Groups.Unit open import Cubical.Experiments.ZCohomologyOld.Groups.Sn open import Cubical.Experiments.ZCohomologyOld.Groups.Wedge open import Cubical.Experiments.ZCohomologyOld.Groups.Connected open import Cubical.HITs.Sn open import Cubical.HITs.S1 open import Cubical.Foundations.Prelude open import Cubical.HITs.Susp open import Cubical.HITs.Wedge open import Cubical.HITs.Pushout open import Cubical.HITs.Truncation renaming (elim to trElim) open import Cubical.Algebra.Group S¹⋁S¹ : Type₀ S¹⋁S¹ = S₊∙ 1 ⋁ S₊∙ 1 S²⋁S¹⋁S¹ : Type₀ S²⋁S¹⋁S¹ = S₊∙ 2 ⋁ (S¹⋁S¹ , inl base) ------------- H⁰(S¹⋁S¹) ------------ H⁰-S¹⋁S¹ : GroupIso (coHomGr 0 S¹⋁S¹) intGroup H⁰-S¹⋁S¹ = H⁰-connected (inl base) (wedgeConnected _ _ (Sn-connected 0) (Sn-connected 0)) ------------- H¹(S¹⋁S¹) ------------ H¹-S¹⋁S¹ : GroupIso (coHomGr 1 S¹⋁S¹) (dirProd intGroup intGroup) H¹-S¹⋁S¹ = (Hⁿ-⋁ _ _ 0) □ dirProdGroupIso coHom1S1≃ℤ coHom1S1≃ℤ ------------- H⁰(S²⋁S¹⋁S¹) --------- H⁰-S²⋁S¹⋁S¹ : GroupIso (coHomGr 0 S²⋁S¹⋁S¹) intGroup H⁰-S²⋁S¹⋁S¹ = H⁰-connected (inl north) (wedgeConnected _ _ (Sn-connected 1) (wedgeConnected _ _ (Sn-connected 0) (Sn-connected 0))) ------------- H¹(S²⋁S¹⋁S¹) --------- H¹-S²⋁S¹⋁S¹ : GroupIso (coHomGr 1 S²⋁S¹⋁S¹) (dirProd intGroup intGroup) H¹-S²⋁S¹⋁S¹ = Hⁿ-⋁ (S₊∙ 2) (S¹⋁S¹ , inl base) 0 □ dirProdGroupIso (H¹-Sⁿ≅0 0) H¹-S¹⋁S¹ □ lUnitGroupIso ------------- H²(S²⋁S¹⋁S¹) --------- H²-S²⋁S¹⋁S¹ : GroupIso (coHomGr 2 S²⋁S¹⋁S¹) intGroup H²-S²⋁S¹⋁S¹ = compGroupIso (Hⁿ-⋁ _ _ 1) (dirProdGroupIso {B = trivialGroup} (invGroupIso (Hⁿ-Sⁿ≅ℤ 1)) ((Hⁿ-⋁ _ _ 1) □ dirProdGroupIso (Hⁿ-S¹≅0 0) (Hⁿ-S¹≅0 0) □ rUnitGroupIso) □ rUnitGroupIso) private open import Cubical.Data.Int open import Cubical.Foundations.Equiv open import Cubical.Data.Sigma to₂ : coHom 2 S²⋁S¹⋁S¹ → Int to₂ = GroupHom.fun (GroupIso.map H²-S²⋁S¹⋁S¹) from₂ : Int → coHom 2 S²⋁S¹⋁S¹ from₂ = GroupIso.inv H²-S²⋁S¹⋁S¹ to₁ : coHom 1 S²⋁S¹⋁S¹ → Int × Int to₁ = GroupHom.fun (GroupIso.map H¹-S²⋁S¹⋁S¹) from₁ : Int × Int → coHom 1 S²⋁S¹⋁S¹ from₁ = GroupIso.inv H¹-S²⋁S¹⋁S¹ to₀ : coHom 0 S²⋁S¹⋁S¹ → Int to₀ = GroupHom.fun (GroupIso.map H⁰-S²⋁S¹⋁S¹) from₀ : Int → coHom 0 S²⋁S¹⋁S¹ from₀ = GroupIso.inv H⁰-S²⋁S¹⋁S¹ {- -- Computes (a lot slower than for the torus) test : to₁ (from₁ (1 , 0) +ₕ from₁ (0 , 1)) ≡ (1 , 1) test = refl -- Does not compute: test2 : to₂ (from₂ 0) ≡ 0 test2 = refl -}
31.359551
89
0.651379
a0e026bb9c1aa1872d184687aa1606ea78dafe39
1,762
agda
Agda
Cubical/Data/Strict2Group/Explicit/Notation.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/Data/Strict2Group/Explicit/Notation.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/Data/Strict2Group/Explicit/Notation.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Strict2Group.Explicit.Notation where open import Cubical.Foundations.Prelude hiding (comp) open import Cubical.Data.Group.Base module S2GBaseNotation {ℓ : Level} (C₀ C₁ : Group ℓ) (s t : morph C₁ C₀) (i : morph C₀ C₁) (∘ : (g f : Group.type C₁) → (s .fst) g ≡ (t .fst f) → Group.type C₁) where -- group operations of the object group TC₀ = Group.type C₀ 1₀ = isGroup.id (Group.groupStruc C₀) _∙₀_ = isGroup.comp (Group.groupStruc C₀) C₀⁻¹ = isGroup.inv (Group.groupStruc C₀) rUnit₀ = isGroup.rUnit (Group.groupStruc C₀) lUnit₀ = isGroup.lUnit (Group.groupStruc C₀) assoc₀ = isGroup.assoc (Group.groupStruc C₀) lCancel₀ = isGroup.lCancel (Group.groupStruc C₀) rCancel₀ = isGroup.lCancel (Group.groupStruc C₀) -- group operation of the morphism group TC₁ = Group.type C₁ 1₁ = isGroup.id (Group.groupStruc C₁) C₁⁻¹ = isGroup.inv (Group.groupStruc C₁) _∙₁_ = isGroup.comp (Group.groupStruc C₁) rUnit₁ = isGroup.rUnit (Group.groupStruc C₁) lUnit₁ = isGroup.lUnit (Group.groupStruc C₁) assoc₁ = isGroup.assoc (Group.groupStruc C₁) lCancel₁ = isGroup.lCancel (Group.groupStruc C₁) rCancel₁ = isGroup.lCancel (Group.groupStruc C₁) -- interface for source, target and identity map src = fst s src∙₁ = snd s tar = fst t tar∙₁ = snd t id = fst i id∙₀ = snd i ∙c : {g f g' f' : Group.type C₁} → (coh1 : s .fst g ≡ t .fst f) → (coh2 : s .fst g' ≡ t .fst f') → s .fst (g ∙₁ g') ≡ t .fst (f ∙₁ f') ∙c {g} {f} {g'} {f'} coh1 coh2 = (s .snd g g') ∙ ((cong (_∙₀ (s .fst g')) coh1) ∙ (cong ((t .fst f) ∙₀_) coh2) ∙ (sym (t .snd f f'))) -- for two morphisms the condition for them to be composable CohCond : (g f : TC₁) → Type ℓ CohCond g f = src g ≡ tar f
38.304348
166
0.654938
8bcdf4d14f7c174e0f1416a7c5e8855a3750a2bd
88
agda
Agda
test/Succeed/Issue5363.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue5363.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue5363.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Primitive variable A : Set _ levelOf : A → Level levelOf {a} _ = a
11
26
0.670455
1ee3b7c85d5ad571157aa99355376c0f43e357bf
3,435
agda
Agda
Cubical/Data/List/Dependent.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Data/List/Dependent.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Data/List/Dependent.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} open import Cubical.Foundations.Everything renaming (Iso to _≅_) open import Cubical.Data.List open import Cubical.Data.Unit open import Cubical.Data.Prod hiding (map) open import Cubical.Data.Nat module Cubical.Data.List.Dependent where open _≅_ data ListP {ℓA ℓB} {A : Type ℓA} (B : A → Type ℓB) : (as : List A) → Type (ℓ-max ℓA ℓB) where [] : ListP B [] _∷_ : {x : A} (y : B x) {xs : List A} (ys : ListP B xs) → ListP B (x ∷ xs) -- Represent ListP via known operations in order to derive properties more easily. RepListP : ∀ {ℓA ℓB} {A : Type ℓA} (B : A → Type ℓB) (as : List A) → Type (ℓ-max ℓA ℓB) RepListP B [] = Lift Unit RepListP B (a ∷ as) = B a × RepListP B as isoRepListP : ∀ {ℓA ℓB} {A : Type ℓA} (B : A → Type ℓB) (as : List A) → ListP B as ≅ RepListP B as fun (isoRepListP B []) bs = lift tt inv (isoRepListP B []) u = [] rightInv (isoRepListP B []) u = refl leftInv (isoRepListP B []) [] = refl fun (isoRepListP B (a ∷ as)) (b ∷ bs) = b , fun (isoRepListP B as) bs inv (isoRepListP B (a ∷ as)) (b , br) = b ∷ inv (isoRepListP B as) br rightInv (isoRepListP B (a ∷ as)) (b , br) i = b , rightInv (isoRepListP B as) br i leftInv (isoRepListP B (a ∷ as)) (b ∷ bs) i = b ∷ leftInv (isoRepListP B as) bs i equivRepListP : ∀ {ℓA ℓB} {A : Type ℓA} (B : A → Type ℓB) (as : List A) → ListP B as ≃ RepListP B as equivRepListP B as = isoToEquiv (isoRepListP B as) pathRepListP : ∀ {ℓA ℓB} {A : Type ℓA} (B : A → Type ℓB) (as : List A) → ListP B as ≡ RepListP B as pathRepListP B as = ua (equivRepListP B as) private isOfHLevelSucSuc-RepListP : ∀ {ℓA ℓB} (n : HLevel) → {A : Type ℓA} → {B : A → Type ℓB} → ((a : A) → isOfHLevel (suc (suc n)) (B a)) → (as : List A) → isOfHLevel (suc (suc n)) (RepListP B as) isOfHLevelSucSuc-RepListP n isHB [] = isOfHLevelLift (suc (suc n)) (isOfHLevelUnit (suc (suc n))) isOfHLevelSucSuc-RepListP n isHB (a ∷ as) = isOfHLevelProd (suc (suc n)) (isHB a) (isOfHLevelSucSuc-RepListP n isHB as) isOfHLevelSucSuc-ListP : ∀ {ℓA ℓB} (n : HLevel) → {A : Type ℓA} → {B : A → Type ℓB} → ((a : A) → isOfHLevel (suc (suc n)) (B a)) → {as : List A} → isOfHLevel (suc (suc n)) (ListP B as) isOfHLevelSucSuc-ListP n {A} {B} isHB {as} = subst⁻ (isOfHLevel (suc (suc n))) (pathRepListP B as) (isOfHLevelSucSuc-RepListP n isHB as) -------------------------- mapP : ∀ {ℓA ℓA' ℓB ℓB'} {A : Type ℓA} {A' : Type ℓA'} {B : A → Type ℓB} {B' : A' → Type ℓB'} (f : A → A') (g : (a : A) → B a → B' (f a)) → ∀ as → ListP B as → ListP B' (map f as) mapP f g [] [] = [] mapP f g (a ∷ as) (b ∷ bs) = g _ b ∷ mapP f g as bs mapOverIdfun : ∀ {ℓA ℓB ℓB'} {A : Type ℓA} {B : A → Type ℓB} {B' : A → Type ℓB'} (g : (a : A) → B a → B' a) → ∀ as → ListP B as → ListP B' as mapOverIdfun g [] [] = [] mapOverIdfun g (a ∷ as) (b ∷ bs) = g a b ∷ mapOverIdfun g as bs mapOverIdfun-idfun : ∀ {ℓA ℓB} {A : Type ℓA} {B : A → Type ℓB} as → mapOverIdfun (λ a → idfun _) as ≡ (idfun (ListP B as)) mapOverIdfun-idfun [] i [] = [] mapOverIdfun-idfun (a ∷ as) i (b ∷ bs) = b ∷ mapOverIdfun-idfun as i bs mapOverIdfun-∘ : ∀ {ℓA ℓB ℓB' ℓB''} {A : Type ℓA} {B : A → Type ℓB} {B' : A → Type ℓB'} {B'' : A → Type ℓB''} (h : (a : A) → B' a → B'' a) (g : (a : A) → B a → B' a) → ∀ as → mapOverIdfun (λ a → h a ∘ g a) as ≡ mapOverIdfun h as ∘ mapOverIdfun g as mapOverIdfun-∘ h g [] i [] = [] mapOverIdfun-∘ h g (a ∷ as) i (b ∷ bs) = h a (g a b) ∷ mapOverIdfun-∘ h g as i bs
44.61039
122
0.578166
593062074f05cf20e7700abc546bea7167cd6e05
9,400
agda
Agda
src/Dodo/Binary/SplittableOrder.agda
sourcedennis/agda-dodo
376f0ccee1e1aa31470890e494bcb534324f598a
[ "BSD-3-Clause" ]
null
null
null
src/Dodo/Binary/SplittableOrder.agda
sourcedennis/agda-dodo
376f0ccee1e1aa31470890e494bcb534324f598a
[ "BSD-3-Clause" ]
null
null
null
src/Dodo/Binary/SplittableOrder.agda
sourcedennis/agda-dodo
376f0ccee1e1aa31470890e494bcb534324f598a
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Dodo.Binary.SplittableOrder where -- Stdlib imports import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open import Level using (Level; _⊔_) open import Function using (_∘_) open import Data.Empty using (⊥-elim) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_; _,_; proj₁; proj₂; ∃-syntax) open import Relation.Nullary using (¬_) open import Relation.Unary using (Pred) open import Relation.Binary using (Rel; REL; Transitive; Trichotomous; Tri; tri<; tri≈; tri>) open import Relation.Binary.Construct.Closure.Transitive using (TransClosure; [_]; _∷_; _++_) -- Local imports open import Dodo.Unary.Equality open import Dodo.Binary.Equality open import Dodo.Binary.Immediate open import Dodo.Binary.Trichotomous open import Dodo.Binary.Transitive open import Dodo.Binary.Domain open import Dodo.Binary.Filter open import Function using (flip) -- # Definitions # -- For any `R x y` there exists a /path/ from `x` to `y`. SplittableOrder : {a ℓ : Level} {A : Set a} (R : Rel A ℓ) → Set (a ⊔ ℓ) SplittableOrder R = R ⇔₂ TransClosure (immediate R) -- # Properties # module _ {a ℓ : Level} {A : Set a} {R : Rel A ℓ} where splittable-trans : SplittableOrder R → Transitive R splittable-trans splitR Rij Rjk = ⇔₂-apply-⊇₂ splitR (⇔₂-apply-⊆₂ splitR Rij ++ ⇔₂-apply-⊆₂ splitR Rjk) splittable-flip : SplittableOrder R → SplittableOrder (flip R) splittable-flip splitR = ⇔: ⊆-proof ⊇-proof where ⊆-proof : flip R ⊆₂' TransClosure (immediate (flip R)) ⊆-proof _ _ = ⁺-map _ imm-flip ∘ ⁺-flip ∘ ⇔₂-apply-⊆₂ splitR ⊇-proof : TransClosure (immediate (flip R)) ⊆₂' flip R ⊇-proof _ _ = ⇔₂-apply-⊇₂ splitR ∘ ⁺-flip ∘ ⁺-map _ imm-flip -- # Operations # -- Split the left-most element from the ordered relation chain splitˡ : ∀ {a ℓ : Level} {A : Set a} {R : Rel A ℓ} → SplittableOrder R → {x y : A} → R x y -------------------------------------------------- → immediate R x y ⊎ ∃[ z ] (immediate R x z × R z y) splitˡ splitR Rxy with ⇔₂-apply-⊆₂ splitR Rxy ... | [ immRxy ] = inj₁ immRxy ... | _∷_ {x} {z} {y} immRxz immR⁺zy = inj₂ (z , immRxz , ⇔₂-apply-⊇₂ splitR immR⁺zy) -- Split the right-most element from the ordered relation chain splitʳ : ∀ {a ℓ : Level} {A : Set a} {R : Rel A ℓ} → SplittableOrder R → {x y : A} → R x y -------------------------------------------------- → immediate R x y ⊎ ∃[ z ] (R x z × immediate R z y) splitʳ {A = A} {R = R} splitR Rxy = lemma (⇔₂-apply-⊆₂ splitR Rxy) where lemma : ∀ {x y : A} → TransClosure (immediate R) x y → immediate R x y ⊎ ∃[ z ] (R x z × immediate R z y) lemma [ immRxy ] = inj₁ immRxy lemma ( _∷_ {x} {z} {y} immRxz immR⁺zy ) with lemma immR⁺zy ... | inj₁ immRzy = inj₂ (z , proj₁ immRxz , immRzy) ... | inj₂ (w , Rzw , immRwy) = inj₂ (w , splittable-trans splitR (proj₁ immRxz) Rzw , immRwy) -- Splits the given left-most element from the chain. unsplitˡ : ∀ {a ℓ₁ ℓ₂ : Level} {A : Set a} {_≈_ : Rel A ℓ₁} {R : Rel A ℓ₂} → Trichotomous _≈_ R → SplittableOrder R → {x y z : A} → R x z → immediate R x y → y ≈ z ⊎ R y z unsplitˡ triR splitR {x} {y} {z} Rxz immRxy with splitˡ splitR Rxz unsplitˡ triR splitR {x} {y} {z} Rxz immRxy | inj₁ immRxz = inj₁ (tri-immʳ triR immRxy immRxz) unsplitˡ triR splitR {x} {y} {z} Rxz immRxy | inj₂ (v , immRxv , Rvz) with triR y z unsplitˡ triR splitR {x} {y} {z} Rxz immRxy | inj₂ (v , immRxv , Rvz) | tri< Ryz y≢z ¬Rzy = inj₂ Ryz unsplitˡ triR splitR {x} {y} {z} Rxz immRxy | inj₂ (v , immRxv , Rvz) | tri≈ ¬Ryz y≡z ¬Rzy = inj₁ y≡z unsplitˡ triR splitR {x} {y} {z} Rxz immRxy | inj₂ (v , immRxv , Rvz) | tri> ¬Ryz y≢z Rzy = ⊥-elim (proj₂ immRxy (z , Rxz , [ Rzy ])) -- Splits the given right-most element from the chain. unsplitʳ : ∀ {a ℓ₁ ℓ₂ : Level} {A : Set a} {_≈_ : Rel A ℓ₁} {R : Rel A ℓ₂} → Trichotomous _≈_ R → SplittableOrder R → {x y z : A} → R x z → immediate R y z → x ≈ y ⊎ R x y unsplitʳ triR splitR {x} {y} {z} Rxz iRyz with splitʳ splitR Rxz unsplitʳ triR splitR {x} {y} {z} Rxz iRyz | inj₁ iRxz = inj₁ (tri-immˡ triR iRxz iRyz) unsplitʳ triR splitR {x} {y} {z} Rxz iRyz | inj₂ (v , Rxv , iRvz) with triR x y unsplitʳ triR splitR {x} {y} {z} Rxz iRyz | inj₂ (v , Rxv , iRvz) | tri< Rxy x≢y ¬Ryx = inj₂ Rxy unsplitʳ triR splitR {x} {y} {z} Rxz iRyz | inj₂ (v , Rxv , iRvz) | tri≈ ¬Rxy x≡y ¬Ryx = inj₁ x≡y unsplitʳ triR splitR {x} {y} {z} Rxz iRyz | inj₂ (v , Rxv , iRvz) | tri> ¬Rxy x≢y Ryx = ⊥-elim (proj₂ iRyz (x , Ryx , [ Rxz ])) splittable-imm-udr : ∀ {a ℓ : Level} {A : Set a} {R : Rel A ℓ} → SplittableOrder R → udr R ⇔₁ udr (immediate R) splittable-imm-udr {R = R} splitR = ⇔: ⊆-proof ⊇-proof where ⊆-proof : udr R ⊆₁' udr (immediate R) ⊆-proof x (inj₁ (y , Rxy)) = inj₁ (⁺-dom (⇔₂-apply-⊆₂ splitR Rxy)) ⊆-proof y (inj₂ (x , Rxy)) = inj₂ (⁺-codom (⇔₂-apply-⊆₂ splitR Rxy)) ⊇-proof : udr (immediate R) ⊆₁' udr R ⊇-proof x (inj₁ (y , Rxy)) = inj₁ (y , proj₁ Rxy) ⊇-proof y (inj₂ (x , Rxy)) = inj₂ (x , proj₁ Rxy) -- | If any value in the chain of R satisfies P, it remains splittable after lifting. -- -- The chain is traversed /to the left/. filter-splittableˡ : ∀ {a ℓ : Level} {A : Set a} {R : Rel A ℓ} → SplittableOrder R → (P : Pred A ℓ) → (∀ {x y : A} → P y → R x y → P x) --------------------------------- → SplittableOrder (filter-rel P R) filter-splittableˡ {A = A} {R = R} splitR P f = ⇔: ⊆-proof ⊇-proof where lemma⊆-imm : ∀ {x y : A} → (Px : P x) → (Py : P y) → immediate R x y → immediate (filter-rel P R) (with-pred x Px) (with-pred y Py) lemma⊆-imm {x} {y} Px Py (Rxy , ¬∃z) = Rxy , ¬∃z' where ¬∃z' : ¬ (∃[ z ] filter-rel P R (with-pred x Px) z × TransClosure (filter-rel P R) z (with-pred y Py)) ¬∃z' (with-pred z Pz , Rxz , R⁺zy) = ¬∃z (z , Rxz , ⁺-strip-filter R⁺zy) lemma⊆ : ∀ {x y : A} → (Px : P x) → (Py : P y) → TransClosure (immediate R) x y → TransClosure (immediate (filter-rel P R)) (with-pred x Px) (with-pred y Py) lemma⊆ Px Py [ iRxy ] = [ lemma⊆-imm Px Py iRxy ] lemma⊆ Px Py ( iRxz ∷ iR⁺zy ) = let Pz = ⁺-predˡ (λ Pz → f Pz ∘ proj₁) iR⁺zy Py in lemma⊆-imm Px Pz iRxz ∷ lemma⊆ Pz Py iR⁺zy ⊆-proof : filter-rel P R ⊆₂' TransClosure (immediate (filter-rel P R)) ⊆-proof (with-pred x Px) (with-pred y Py) Rxy = lemma⊆ Px Py (⇔₂-apply-⊆₂ splitR Rxy) lemma⊇-imm : ∀ {x y : A} → (Px : P x) → (Py : P y) → immediate (filter-rel P R) (with-pred x Px) (with-pred y Py) → immediate R x y lemma⊇-imm {x} {y} Px Py (Rxy , ¬∃z) = (Rxy , ¬∃z') where ¬∃z' : ¬ (∃[ z ] R x z × TransClosure R z y) ¬∃z' (z , Rxz , R⁺zy) = let Pz = ⁺-predˡ f R⁺zy Py in ¬∃z (with-pred z Pz , Rxz , ⁺-filter-relˡ f Pz Py R⁺zy) lemma⊇ : ∀ {x y : A} → (Px : P x) → (Py : P y) → TransClosure (immediate (filter-rel P R)) (with-pred x Px) (with-pred y Py) → TransClosure (immediate R) x y lemma⊇ Px Py [ iRxy ] = [ lemma⊇-imm Px Py iRxy ] lemma⊇ Px Py ( _∷_ {_} {with-pred z Pz} iRxz iR⁺zy ) = lemma⊇-imm Px Pz iRxz ∷ lemma⊇ Pz Py iR⁺zy ⊇-proof : TransClosure (immediate (filter-rel P R)) ⊆₂' filter-rel P R ⊇-proof (with-pred x Px) (with-pred y Py) Rxy = ⇔₂-apply-⊇₂ splitR (lemma⊇ Px Py Rxy) -- | If any value in the chain of R satisfies P, it remains splittable after lifting. -- -- The chain is traversed /to the right/. filter-splittableʳ : ∀ {a ℓ : Level} {A : Set a} {R : Rel A ℓ} → SplittableOrder R → (P : Pred A ℓ) → (∀ {x y : A} → P x → R x y → P y) --------------------------------- → SplittableOrder (filter-rel P R) filter-splittableʳ {A = A} {R = R} splitR P f = ⇔: ⊆-proof ⊇-proof where lemma⊆-imm : ∀ {x y : A} → (Px : P x) → (Py : P y) → immediate R x y → immediate (filter-rel P R) (with-pred x Px) (with-pred y Py) lemma⊆-imm {x} {y} Px Py (Rxy , ¬∃z) = Rxy , ¬∃z' where ¬∃z' : ¬ (∃[ z ] filter-rel P R (with-pred x Px) z × TransClosure (filter-rel P R) z (with-pred y Py)) ¬∃z' (with-pred z Pz , Rxz , R⁺zy) = ¬∃z (z , Rxz , ⁺-strip-filter R⁺zy) lemma⊆ : ∀ {x y : A} → (Px : P x) → (Py : P y) → TransClosure (immediate R) x y → TransClosure (immediate (filter-rel P R)) (with-pred x Px) (with-pred y Py) lemma⊆ Px Py [ iRxy ] = [ lemma⊆-imm Px Py iRxy ] lemma⊆ Px Py ( iRxz ∷ iR⁺zy ) = let Pz = f Px (proj₁ iRxz) in lemma⊆-imm Px Pz iRxz ∷ lemma⊆ Pz Py iR⁺zy ⊆-proof : filter-rel P R ⊆₂' TransClosure (immediate (filter-rel P R)) ⊆-proof (with-pred x Px) (with-pred y Py) Rxy = lemma⊆ Px Py (⇔₂-apply-⊆₂ splitR Rxy) lemma⊇-imm : ∀ {x y : A} → (Px : P x) → (Py : P y) → immediate (filter-rel P R) (with-pred x Px) (with-pred y Py) → immediate R x y lemma⊇-imm {x} {y} Px Py (Rxy , ¬∃z) = Rxy , ¬∃z' where ¬∃z' : ¬ (∃[ z ] R x z × TransClosure R z y) ¬∃z' (z , Rxz , R⁺zy) = let Pz = f Px Rxz in ¬∃z (with-pred z Pz , Rxz , ⁺-filter-relʳ f Pz Py R⁺zy) lemma⊇ : ∀ {x y : A} → (Px : P x) → (Py : P y) → TransClosure (immediate (filter-rel P R)) (with-pred x Px) (with-pred y Py) → TransClosure (immediate R) x y lemma⊇ Px Py [ iRxy ] = [ lemma⊇-imm Px Py iRxy ] lemma⊇ Px Py ( _∷_ {_} {with-pred z Pz} iRxz iR⁺zy ) = lemma⊇-imm Px Pz iRxz ∷ lemma⊇ Pz Py iR⁺zy ⊇-proof : TransClosure (immediate (filter-rel P R)) ⊆₂' filter-rel P R ⊇-proof (with-pred x Px) (with-pred y Py) Rxy = ⇔₂-apply-⊇₂ splitR (lemma⊇ Px Py Rxy)
42.533937
134
0.583617
2e51af9035330a1af8ab4e4881007ca9eb9b0c38
2,472
agda
Agda
src/Categories/Category/Restriction/Instance/PartialFunctions.agda
yourboynico/agda-categories
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Category/Restriction/Instance/PartialFunctions.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Category/Restriction/Instance/PartialFunctions.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Category.Restriction.Instance.PartialFunctions where -- The Category of partial functions is a restriction category -- The proof is straightforward in the sense that it's all unwinding definitions, -- but also no-trivial in that they need to be unwound with care (a lot of -- case analyses with 'with' and inspect is used a lot). open import Data.Maybe using (Maybe; map; just; nothing; _>>=_) open import Data.Maybe.Properties open import Function using (const) open import Level using (Level) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; inspect; [_]) open import Categories.Category.Core using (Category) open import Categories.Category.Instance.PartialFunctions using (PartialFunctions) open import Categories.Category.Restriction using (Restriction) private variable o : Level A B C : Set o Restriction-PF : ∀ {o} → Restriction (PartialFunctions o) Restriction-PF {o} = record { _↓ = λ f x → map (const x) (f x) ; pidʳ = pidʳ ; ↓-comm = λ {_} {_} {_} {g} {f} → ↓-comm {g = g} {f} ; ↓-denestʳ = λ {_} {_} {_} {f} {g} → ↓-denestʳ {f = f} {g} ; ↓-skew-comm = λ {_} {_} {_} {g} {f} → ↓-skew-comm {g = g} {f} ; ↓-cong = ↓-cong } where open Category (PartialFunctions o) _↓ : (A → Maybe B) → (A → Maybe A) _↓ = λ f x → map (const x) (f x) pidʳ : {f : A → Maybe B} → f ∘ f ↓ ≈ f pidʳ {f = f} x with f x | inspect f x ... | just z | [ eq ] = eq ... | nothing | _ = refl ↓-comm : {g : A → Maybe C} {f : A → Maybe B} → g ↓ ∘ f ↓ ≈ f ↓ ∘ g ↓ ↓-comm {g = g} {f} x with f x | g x | inspect f x | inspect g x ... | just b | just b′ | [ fx=jb ] | [ gx=jb′ ] rewrite fx=jb | gx=jb′ = refl ... | just b | nothing | _ | [ eq ] rewrite eq = refl ... | nothing | just b′ | [ eq ] | _ rewrite eq = refl ... | nothing | nothing | _ | _ = refl ↓-denestʳ : {A B C : Obj} {f : A ⇒ B} {g : A ⇒ C} → (g ∘ f ↓) ↓ ≈ g ↓ ∘ f ↓ ↓-denestʳ {f = f} a with f a ... | just b = refl ... | nothing = refl ↓-skew-comm : {A B C : Obj} {g : A ⇒ B} {f : C ⇒ A} → g ↓ ∘ f ≈ f ∘ (g ∘ f) ↓ ↓-skew-comm {g = g} {f = f} a with f a | inspect f a ... | just b | [ eq ] with g b ... | just c = sym eq ... | nothing = refl ↓-skew-comm _ | nothing | _ = refl ↓-cong : {A B : Obj} {f g : A ⇒ B} → f ≈ g → f ↓ ≈ g ↓ ↓-cong eq a rewrite eq a = refl
38.030769
86
0.544094
9a5c09d751baaa7d2597f60773898aba9bbd6428
419
agda
Agda
test/Fail/Issue1615.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1615.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1615.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2015-07-22 -- {-# OPTIONS -v tc.term:20 -v tc.meta.assign:10 -v tc.conv.coerce:10 #-} {-# OPTIONS --sized-types #-} open import Common.Size data Nat (i : Size) : Set where suc : (j : Size< i) → Nat j → Nat i min : ∀ i → Nat i → Nat i → Nat i min i (suc j n) (suc k m) = suc i' (min i' n m) where i' = _ -- Size consistency check should not be circumvented -- by putting the meta in a definition.
23.277778
74
0.606205
2953a1619ec45b7b5f0a190e8b66d5cfc7ab0dc4
30,989
agda
Agda
Cubical/Algebra/Matrix/RowTransformation.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Algebra/Matrix/RowTransformation.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Algebra/Matrix/RowTransformation.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
{- Technical results about row transformation applied to matrices -} {-# OPTIONS --safe #-} module Cubical.Algebra.Matrix.RowTransformation where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Data.Nat hiding (_+_ ; _·_) open import Cubical.Data.Nat.Order open import Cubical.Data.Empty as Empty open import Cubical.Data.Sigma open import Cubical.Data.Bool open import Cubical.Data.FinData renaming (znots to znotsFin ; snotz to snotzFin) open import Cubical.Relation.Nullary open import Cubical.Algebra.Matrix open import Cubical.Algebra.CommRingSolver.Reflection open import Cubical.Algebra.Ring open import Cubical.Algebra.Ring.BigOps open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRingSolver.Reflection open import Cubical.Algebra.Matrix.CommRingCoefficient private variable ℓ : Level A : Type ℓ m n k l : ℕ takeRows : FinMatrix A (suc (suc m)) n → FinMatrix A 2 n takeRows M zero = M zero takeRows M one = M one takeRowsᶜ : FinMatrix A (suc (suc m)) n → FinMatrix A (suc m) n takeRowsᶜ M zero = M zero takeRowsᶜ M (suc i) = M (suc (suc i)) combRows : FinMatrix A (suc (suc m)) n → FinMatrix A 2 n → FinMatrix A (suc m) n combRows M M₀ zero = M₀ zero combRows M M₀ (suc i) = M (suc (suc i)) shufRows : FinMatrix A 2 n → FinMatrix A (suc m) n → FinMatrix A (suc (suc m)) n shufRows M₀ M₁ zero = M₁ zero shufRows M₀ M₁ one = M₀ one shufRows M₀ M₁ (suc (suc i)) = M₁ (suc i) module _ (T₀ : FinMatrix A 2 n → FinMatrix A 2 n) (M : FinMatrix A (suc (suc m)) n) where private M₀ = T₀ (takeRows M) takeTrans : FinMatrix A (suc (suc m)) n takeTrans zero = M₀ zero takeTrans one = M₀ one takeTrans (suc (suc i)) = M (suc (suc i)) module _ (T₁ : FinMatrix A (suc m) n → FinMatrix A (suc m) n) (M : FinMatrix A (suc (suc m)) n) where private M₁ = T₁ (takeRowsᶜ M) combTrans : FinMatrix A (suc (suc m)) n combTrans zero = M₁ zero combTrans one = M one combTrans (suc (suc i)) = M₁ (suc i) module _ (T₀ : FinMatrix A 2 n → FinMatrix A 2 n) (T₁ : FinMatrix A (suc m) n → FinMatrix A (suc m) n) (M : FinMatrix A (suc (suc m)) n) where private M₀ = T₀ (takeRows M) M₁ = T₁ (combRows M M₀) helper : takeRowsᶜ (takeTrans T₀ M) ≡ combRows M M₀ helper t zero = M₀ zero helper t (suc i) = M (suc (suc i)) takeCombShufRows : FinMatrix A (suc (suc m)) n takeCombShufRows = shufRows M₀ M₁ takeCombShufEquiv : combTrans T₁ (takeTrans T₀ M) ≡ takeCombShufRows takeCombShufEquiv t zero = T₁ (helper t) zero takeCombShufEquiv t one = M₀ one takeCombShufEquiv t (suc (suc i)) = T₁ (helper t) (suc i) -- The iterated row transformation module _ (T : FinMatrix A 2 n → FinMatrix A 2 n) where transRows : FinMatrix A (suc m) n → FinMatrix A (suc m) n transRows {m = 0} M = M transRows {m = suc m} = takeCombShufRows T transRows -- Several induction principle to prove properties after transformation module _ (invRow : (M : FinMatrix A 2 n) → M zero ≡ T M zero) where invRow₀ : (M : FinMatrix A (suc m) n) → M zero ≡ transRows M zero invRow₀ {m = 0} _ = refl invRow₀ {m = suc m} M = invRow _ ∙ invRow₀ (combRows M _) module _ (P : FinVec A n → Type ℓ) (indP : (M : FinMatrix A 2 n) → P (M zero) → P (T M zero)) where transRowsIndP : (M : FinMatrix A (suc m) n) → P (M zero) → P (transRows M zero) transRowsIndP {m = 0} _ h = h transRowsIndP {m = suc m} M h = transRowsIndP (combRows M _) (indP _ h) module _ (P : FinVec A n → Type ℓ) (indP : (M : FinMatrix A 2 n) → P (T M one)) where transRowsIndP' : (M : FinMatrix A (suc m) n) → (i : Fin m) → P (transRows M (suc i)) transRowsIndP' {m = suc m} M zero = indP _ transRowsIndP' {m = suc m} M (suc i) = transRowsIndP' _ i module _ (Q : FinVec A n → Type ℓ) (P : FinVec A n → Type ℓ) (indQ : (M : FinMatrix A 2 n) → Q (M zero) → Q (T M zero)) (indP : (M : FinMatrix A 2 n) → Q (M zero) → P (T M one )) where transRowsIndPQ : (M : FinMatrix A (suc m) n) → Q (M zero) → (i : Fin m) → P (transRows M (suc i)) transRowsIndPQ {m = suc m} M p zero = indP _ p transRowsIndPQ {m = suc m} M p (suc i) = transRowsIndPQ _ (indQ _ p) i module _ (Q : FinVec A n → Type ℓ) (P : FinVec A n → Type ℓ) (indQ : (M : FinMatrix A 2 n) → Q (M zero) → Q (T M zero)) (indP : (M : FinMatrix A 2 n) → P (M one ) → Q (T M zero)) where transRowsIndPQ' : (M : FinMatrix A (suc m) n) → (i : Fin m) → P (M (suc i)) → Q (transRows M zero) transRowsIndPQ' {m = suc m} M zero p = transRowsIndP Q indQ (combRows M _) (indP _ p) transRowsIndPQ' {m = suc m} M (suc i) p = transRowsIndPQ' (combRows M _) _ p module _ (Rel : FinVec A n → FinVec A n → Type ℓ) (indRel : (M : FinMatrix A 2 n) → Rel (M one) (T M one)) where transRowsIndRel : (M : FinMatrix A (suc m) n) → (i : Fin m) → Rel (M (suc i)) (transRows M (suc i)) transRowsIndRel {m = suc m} M zero = indRel _ transRowsIndRel {m = suc m} M (suc i) = transRowsIndRel _ i module _ (Rel3 : FinVec A n → FinVec A n → FinVec A n → Type ℓ) (invRow : (M : FinMatrix A 2 n) → M zero ≡ T M zero) (indRel3 : (M : FinMatrix A 2 n) → Rel3 (M zero) (M one) (T M one)) where transRowsIndRel3 : (M : FinMatrix A (suc m) n) → (i : Fin m) → Rel3 (M zero) (M (suc i)) (transRows M (suc i)) transRowsIndRel3 {m = suc m} M zero = indRel3 _ transRowsIndRel3 {m = suc m} M (suc i) = subst (λ V → Rel3 V (M (suc (suc i))) (transRows M (suc (suc i)))) (sym (invRow _)) (transRowsIndRel3 _ i) module _ (Rel : FinVec A n → FinVec A n → Type ℓ) (indRel : (M : FinMatrix A 2 n) → Rel (M zero) (M one) → M zero ≡ T M zero) where transRowsIndRelInv : (M : FinMatrix A (suc m) n) → ((i : Fin m) → Rel (M zero) (M (suc i))) → M zero ≡ transRows M zero transRowsIndRelInv {m = 0} _ _ = refl transRowsIndRelInv {m = suc m} M rel = let invRow = indRel _ (rel zero) rel₁ = (λ i → subst (λ V → Rel V (M (suc (suc i)))) invRow (rel (suc i))) in invRow ∙ transRowsIndRelInv _ rel₁ module _ (P : FinVec A n → Type ℓ) (Rel : FinVec A n → FinVec A n → Type ℓ) (indPRel : (M : FinMatrix A 2 n) → P (M zero) → Rel (M zero) (M one) → M zero ≡ T M zero) where transRowsIndPRelInv : (M : FinMatrix A (suc m) n) → P (M zero) → ((i : Fin m) → Rel (M zero) (M (suc i))) → M zero ≡ transRows M zero transRowsIndPRelInv {m = 0} _ _ _ = refl transRowsIndPRelInv {m = suc m} M p rel = let invRow = indPRel _ p (rel zero) p₁ = subst P invRow p rel₁ = (λ i → subst (λ V → Rel V (M (suc (suc i)))) invRow (rel (suc i))) in invRow ∙ transRowsIndPRelInv _ p₁ rel₁ module _ (P : FinVec A n → Type ℓ) (indP₀ : (M : FinMatrix A 2 n) → P (M zero) → P (M one) → P (T M zero)) (indP₁ : (M : FinMatrix A 2 n) → P (M zero) → P (M one) → P (T M one )) where transRowsIndP₀ : (M : FinMatrix A (suc m) n) → P (M zero) → ((i : Fin m) → P (M (suc i))) → P (transRows M zero) transRowsIndP₀ {m = 0} _ p _ = p transRowsIndP₀ {m = suc m} _ p q = transRowsIndP₀ _ (indP₀ _ p (q zero)) (q ∘ suc) transRowsIndP₁ : (M : FinMatrix A (suc m) n) → P (M zero) → ((i : Fin m) → P (M (suc i))) → (i : Fin m) → P (transRows M (suc i)) transRowsIndP₁ {m = 0} _ _ q = q transRowsIndP₁ {m = suc m} _ p q zero = indP₁ _ p (q zero) transRowsIndP₁ {m = suc m} M p q (suc i) = transRowsIndP₁ _ (indP₀ _ p (q zero)) (q ∘ suc) i -- Row transformation of linear coefficient matrices module LinearTransformation (𝓡 : CommRing ℓ) where private R = 𝓡 .fst 𝑹 = CommRing→Ring 𝓡 AbR = Ring→AbGroup 𝑹 open CommRingStr (𝓡 .snd) renaming ( is-set to isSetR ) open CommRingTheory 𝓡 open RingTheory 𝑹 open KroneckerDelta 𝑹 open Sum 𝑹 open Coefficient 𝓡 -- Definition of linear transformation record isLinear2×2 (T : Mat 2 n → Mat 2 n) : Type ℓ where field transMat : (M : Mat 2 n) → Mat 2 2 transEq : (M : Mat 2 n) → T M ≡ transMat M ⋆ M record isLinear (T : Mat m n → Mat k n) : Type ℓ where field transMat : (M : Mat m n) → Mat k m transEq : (M : Mat m n) → T M ≡ transMat M ⋆ M open isLinear2×2 open isLinear isLinearId : isLinear {m = m} {n = n} (idfun _) isLinearId .transMat _ = 𝟙 isLinearId .transEq _ = sym (⋆lUnit _) isInvId : (M : Mat (suc m) (suc n)) → isInv (isLinearId .transMat M) isInvId _ = isInv𝟙 module _ {T₁ : Mat (suc m) (suc n) → Mat (suc k) (suc n)} {T₂ : Mat (suc k) (suc n) → Mat (suc l) (suc n)} (isLinearT₁ : isLinear T₁) (isLinearT₂ : isLinear T₂) where isLinearComp : isLinear (T₂ ∘ T₁) isLinearComp .transMat M = let T₁M = isLinearT₁ .transMat M in isLinearT₂ .transMat (T₁ M) ⋆ T₁M isLinearComp .transEq M = isLinearT₂ .transEq _ ∙ (λ t → isLinearT₂ .transMat (T₁ M) ⋆ (isLinearT₁ .transEq M t)) ∙ ⋆Assoc (isLinearT₂ .transMat _) (isLinearT₁ .transMat M) M module _ {T₁ : Mat (suc m) (suc n) → Mat (suc m) (suc n)} {T₂ : Mat (suc m) (suc n) → Mat (suc m) (suc n)} (isLinearT₁ : isLinear T₁) (isLinearT₂ : isLinear T₂) where module _ (isInvT₁ : (M : Mat (suc m) (suc n)) → isInv (isLinearT₁ .transMat M)) (isInvT₂ : (M : Mat (suc m) (suc n)) → isInv (isLinearT₂ .transMat M)) where isInvComp : (M : Mat (suc m) (suc n)) → isInv (isLinearComp isLinearT₁ isLinearT₂ .transMat M) isInvComp M = let T₁M = isLinearT₁ .transMat M in isInv⋆ {M = isLinearT₂ .transMat (T₁ M)} {M' = T₁M} (isInvT₂ (T₁ M)) (isInvT₁ M) module _ (P : FinVec R (suc n) → Type ℓ) (indP : (M : Mat (suc m) (suc n)) → P (M zero) → P (T₁ M zero)) (isInvT₁ : (M : Mat (suc m) (suc n)) → P (M zero) → isInv (isLinearT₁ .transMat M)) (isInvT₂ : (M : Mat (suc m) (suc n)) → P (M zero) → isInv (isLinearT₂ .transMat M)) where isInvCompInd : (M : Mat (suc m) (suc n)) → P (M zero) → isInv (isLinearComp isLinearT₁ isLinearT₂ .transMat M) isInvCompInd M p = let T₁M = isLinearT₁ .transMat M in isInv⋆ {M = isLinearT₂ .transMat (T₁ M)} {M' = T₁M} (isInvT₂ (T₁ M) (indP _ p)) (isInvT₁ M p) -- Linearity of row transformation takeTransMat : Mat 2 2 → Mat (suc (suc m)) (suc (suc m)) takeTransMat P zero zero = P zero zero takeTransMat P one zero = P one zero takeTransMat P zero one = P zero one takeTransMat P one one = P one one takeTransMat _ zero (suc (suc j)) = 0r takeTransMat _ one (suc (suc j)) = 0r takeTransMat _ (suc (suc i)) zero = 0r takeTransMat _ (suc (suc i)) one = 0r takeTransMat _ (suc (suc i)) (suc (suc j)) = 𝟙 i j takeTransMat𝟙 : takeTransMat {m = m} 𝟙 ≡ 𝟙 takeTransMat𝟙 t zero zero = 1r takeTransMat𝟙 t one zero = 0r takeTransMat𝟙 t zero one = 0r takeTransMat𝟙 t one one = 1r takeTransMat𝟙 t zero (suc (suc j)) = 0r takeTransMat𝟙 t one (suc (suc j)) = 0r takeTransMat𝟙 t (suc (suc i)) zero = 0r takeTransMat𝟙 t (suc (suc i)) one = 0r takeTransMat𝟙 t (suc (suc i)) (suc (suc j)) = δ i j module _ (M N : Mat 2 2) where ⋆TakeTransMat : takeTransMat M ⋆ takeTransMat N ≡ takeTransMat {m = m} (M ⋆ N) ⋆TakeTransMat {m = m} t zero zero = M zero zero · N zero zero + (M zero one · N one zero + ∑Mul0r {n = m} (λ i → 0r) t) ⋆TakeTransMat {m = m} t one zero = M one zero · N zero zero + (M one one · N one zero + ∑Mul0r {n = m} (λ i → 0r) t) ⋆TakeTransMat {m = m} t zero one = M zero zero · N zero one + (M zero one · N one one + ∑Mul0r {n = m} (λ i → 0r) t) ⋆TakeTransMat {m = m} t one one = M one zero · N zero one + (M one one · N one one + ∑Mul0r {n = m} (λ i → 0r) t) ⋆TakeTransMat t zero (suc (suc j)) = (helper (M zero zero) (M zero one ) _ ∙ ∑Mul0r (λ i → 𝟙 i j)) t where helper : (a b c : R) → a · 0r + (b · 0r + c) ≡ c helper = solve 𝓡 ⋆TakeTransMat t one (suc (suc j)) = (helper (M one zero) (M one one ) _ ∙ ∑Mul0r (λ i → 𝟙 i j)) t where helper : (a b c : R) → a · 0r + (b · 0r + c) ≡ c helper = solve 𝓡 ⋆TakeTransMat t (suc (suc i)) zero = (helper (N zero zero) (N one zero) _ ∙ ∑Mulr0 (λ j → 𝟙 i j)) t where helper : (a b c : R) → 0r · a + (0r · b + c) ≡ c helper = solve 𝓡 ⋆TakeTransMat t (suc (suc i)) one = (helper (N zero one ) (N one one ) _ ∙ ∑Mulr0 (λ j → 𝟙 i j)) t where helper : (a b c : R) → 0r · a + (0r · b + c) ≡ c helper = solve 𝓡 ⋆TakeTransMat t (suc (suc i)) (suc (suc j)) = (helper _ ∙ (λ t → ⋆lUnit 𝟙 t i j)) t where helper : (c : R) → 0r · 0r + (0r · 0r + c) ≡ c helper = solve 𝓡 module _ (T₀ : Mat 2 (suc n) → Mat 2 (suc n)) (isLinear2×2T₀ : isLinear2×2 T₀) where module _ (M : Mat (suc (suc m)) (suc n)) where private P = isLinear2×2T₀ .transMat (takeRows M) takeTransEquiv : takeTrans T₀ M ≡ takeTransMat P ⋆ M takeTransEquiv t zero j = ((λ t → isLinear2×2T₀ .transEq (takeRows M) t zero j) ∙ mul2 P (takeRows M) _ _ ∙ helper _ _ ∙ (λ t → P zero zero · M zero j + (P zero one · M one j + ∑Mul0r (λ i → M (suc (suc i)) j) (~ t)))) t where helper : (a b : R) → a + b ≡ a + (b + 0r) helper = solve 𝓡 takeTransEquiv t one j = ((λ t → isLinear2×2T₀ .transEq (takeRows M) t one j) ∙ mul2 P (takeRows M) _ _ ∙ helper _ _ ∙ (λ t → P one zero · M zero j + (P one one · M one j + ∑Mul0r (λ i → M (suc (suc i)) j) (~ t)))) t where helper : (a b : R) → a + b ≡ a + (b + 0r) helper = solve 𝓡 takeTransEquiv t (suc (suc i)) j = ((λ t → ⋆lUnit (λ i j → M (suc (suc i)) j) (~ t) i j) ∙ helper (M zero j) (M one j) _) t where helper : (a b c : R) → c ≡ 0r · a + (0r · b + c) helper = solve 𝓡 isLinearTakeRowsTrans : isLinear (takeTrans {m = m} T₀) isLinearTakeRowsTrans .transMat M = takeTransMat _ isLinearTakeRowsTrans .transEq = takeTransEquiv isInvTakeTransMat : (M : Mat 2 2)(isInvM : isInv M) → isInv (takeTransMat {m = m} M) isInvTakeTransMat M isInvM .fst = takeTransMat (isInvM .fst) isInvTakeTransMat M isInvM .snd .fst = ⋆TakeTransMat _ _ ∙ (λ t → takeTransMat (isInvM .snd .fst t)) ∙ takeTransMat𝟙 isInvTakeTransMat M isInvM .snd .snd = ⋆TakeTransMat _ _ ∙ (λ t → takeTransMat (isInvM .snd .snd t)) ∙ takeTransMat𝟙 combTransMat : Mat (suc m) (suc m) → Mat (suc (suc m)) (suc (suc m)) combTransMat P zero zero = P zero zero combTransMat _ zero one = 0r combTransMat _ one zero = 0r combTransMat _ one one = 1r combTransMat P zero (suc (suc j)) = P zero (suc j) combTransMat _ one (suc (suc j)) = 0r combTransMat P (suc (suc i)) zero = P (suc i) zero combTransMat _ (suc (suc i)) one = 0r combTransMat P (suc (suc i)) (suc (suc j)) = P (suc i) (suc j) combTransMat𝟙 : combTransMat {m = m} 𝟙 ≡ 𝟙 combTransMat𝟙 t zero zero = 1r combTransMat𝟙 t zero one = 0r combTransMat𝟙 t one zero = 0r combTransMat𝟙 t one one = 1r combTransMat𝟙 t zero (suc (suc j)) = 0r combTransMat𝟙 t one (suc (suc j)) = 0r combTransMat𝟙 t (suc (suc i)) zero = 0r combTransMat𝟙 t (suc (suc i)) one = 0r combTransMat𝟙 t (suc (suc i)) (suc (suc j)) = δ i j module _ (M N : Mat (suc m) (suc m)) where ⋆CombTransMat : combTransMat M ⋆ combTransMat N ≡ combTransMat (M ⋆ N) ⋆CombTransMat t zero zero = helper (M zero zero · N zero zero) (∑ (λ l → M zero (suc l) · N (suc l) zero)) t where helper : (a c : R) → a + (0r · 0r + c) ≡ a + c helper = solve 𝓡 ⋆CombTransMat t zero one = (helper (M zero zero) _ ∙ ∑Mulr0 (λ j → M zero (suc j))) t where helper : (a c : R) → a · 0r + (0r · 1r + c) ≡ c helper = solve 𝓡 ⋆CombTransMat t one zero = (helper (N zero zero) _ ∙ ∑Mul0r (λ i → N (suc i) zero)) t where helper : (a c : R) → 0r · a + (1r · 0r + c) ≡ c helper = solve 𝓡 ⋆CombTransMat t one one = ((λ t → 0r · 0r + (1r · 1r + ∑Mul0r {n = m} (λ i → 0r) t)) ∙ helper) t where helper : 0r · 0r + (1r · 1r + 0r) ≡ 1r helper = solve 𝓡 ⋆CombTransMat t zero (suc (suc j)) = helper (M zero zero · N zero (suc j)) (∑ (λ l → M zero (suc l) · N (suc l) (suc j))) t where helper : (a c : R) → a + (0r · 0r + c) ≡ a + c helper = solve 𝓡 ⋆CombTransMat t one (suc (suc j)) = (helper (N zero (suc j)) _ ∙ ∑Mul0r (λ i → N (suc i) (suc j))) t where helper : (a c : R) → 0r · a + (1r · 0r + c) ≡ c helper = solve 𝓡 ⋆CombTransMat t (suc (suc i)) zero = helper (M (suc i) zero · N zero zero) (∑ (λ l → M (suc i) (suc l) · N (suc l) zero)) t where helper : (a c : R) → a + (0r · 0r + c) ≡ a + c helper = solve 𝓡 ⋆CombTransMat t (suc (suc i)) one = (helper (M (suc i) zero) _ ∙ ∑Mulr0 (λ j → M (suc i) (suc j))) t where helper : (a c : R) → a · 0r + (0r · 1r + c) ≡ c helper = solve 𝓡 ⋆CombTransMat t (suc (suc i)) (suc (suc j)) = helper (M (suc i) zero · N zero (suc j)) (∑ (λ l → M (suc i) (suc l) · N (suc l) (suc j))) t where helper : (a c : R) → a + (0r · 0r + c) ≡ a + c helper = solve 𝓡 module _ (T₁ : Mat (suc m) (suc n) → Mat (suc m) (suc n)) (isLinearT₁ : isLinear T₁) where module _ (M : Mat (suc (suc m)) (suc n)) where private P = isLinearT₁ .transMat (takeRowsᶜ M) combTransEquiv : combTrans T₁ M ≡ combTransMat P ⋆ M combTransEquiv t zero j = ((λ t → isLinearT₁ .transEq (takeRowsᶜ M) t zero j) ∙ helper _ (M one j) _) t where helper : (a b c : R) → a + c ≡ a + (0r · b + c) helper = solve 𝓡 combTransEquiv t one j = (helper _ _ ∙ (λ t → 0r · M zero j + (1r · M one j + ∑Mul0r (λ i → M (suc (suc i)) j) (~ t)))) t where helper : (a b : R) → b ≡ 0r · a + (1r · b + 0r) helper = solve 𝓡 combTransEquiv t (suc (suc i)) j = ((λ t → isLinearT₁ .transEq (takeRowsᶜ M) t (suc i) j) ∙ helper _ (M one j) _) t where helper : (a b c : R) → a + c ≡ a + (0r · b + c) helper = solve 𝓡 isLinearCombRowsTrans : isLinear (combTrans T₁) isLinearCombRowsTrans .transMat M = combTransMat _ isLinearCombRowsTrans .transEq = combTransEquiv isInvCombTransMat : (M : Mat (suc m) (suc m))(isInvM : isInv M) → isInv (combTransMat M) isInvCombTransMat M isInvM .fst = combTransMat (isInvM .fst) isInvCombTransMat M isInvM .snd .fst = ⋆CombTransMat _ _ ∙ (λ t → combTransMat (isInvM .snd .fst t)) ∙ combTransMat𝟙 isInvCombTransMat M isInvM .snd .snd = ⋆CombTransMat _ _ ∙ (λ t → combTransMat (isInvM .snd .snd t)) ∙ combTransMat𝟙 module _ {T₁ : Mat 2 (suc n) → Mat 2 (suc n)} {T₂ : Mat (suc m) (suc n) → Mat (suc m) (suc n)} (isLinearT₁ : isLinear2×2 T₁) (isLinearT₂ : isLinear T₂) where private compL = isLinearComp (isLinearTakeRowsTrans _ isLinearT₁) (isLinearCombRowsTrans _ isLinearT₂) isLinearTakeCombShufRows : isLinear (takeCombShufRows {m = m} T₁ T₂) isLinearTakeCombShufRows .transMat = compL .transMat isLinearTakeCombShufRows .transEq M = sym (takeCombShufEquiv _ _ _) ∙ compL .transEq _ module _ (T : Mat 2 (suc n) → Mat 2 (suc n)) (isLinear2×2T : isLinear2×2 T) where isLinearTransRows : (m : ℕ) → isLinear (transRows T {m = m}) isLinearTransRows 0 = isLinearId isLinearTransRows (suc m) = isLinearTakeCombShufRows isLinear2×2T (isLinearTransRows m) module _ (isInvT : (M : Mat 2 (suc n)) → isInv (isLinear2×2T .transMat M)) where isInvTransRows : (M : Mat (suc m) (suc n)) → isInv (isLinearTransRows _ .transMat M) isInvTransRows {m = 0} _ = isInv𝟙 isInvTransRows {m = suc m} M = isInv⋆ {M = combTransMat _} {M' = takeTransMat _} (isInvCombTransMat _ (isInvTransRows _)) (isInvTakeTransMat _ (isInvT _)) module _ (P : FinVec R (suc n) → Type ℓ) (indP : (M : Mat 2 (suc n)) → P (M zero) → P (T M zero)) (isInvT : (M : Mat 2 (suc n)) → P (M zero) → isInv (isLinear2×2T .transMat M)) where isInvTransRowsInd : (M : Mat (suc m) (suc n)) → P (M zero) → isInv (isLinearTransRows _ .transMat M) isInvTransRowsInd {m = 0} M _ = isInvId M isInvTransRowsInd {m = suc m} M p = isInv⋆ {M = combTransMat _} {M' = takeTransMat _} (isInvCombTransMat _ (isInvTransRowsInd _ (indP _ p))) (isInvTakeTransMat _ (isInvT _ p)) -- Some useful properties of 2-rows transformation symδ : (i j : Fin m) → δ i j ≡ δ j i symδ zero zero = refl symδ zero (suc _) = refl symδ (suc _) zero = refl symδ (suc i) (suc j) = symδ i j diagδ : (i j : Fin m)(p : i ≡ j) → δ i j ≡ 1r diagδ zero zero _ = refl diagδ (suc _) zero p = Empty.rec (snotzFin p) diagδ zero (suc _) p = Empty.rec (znotsFin p) diagδ (suc i) (suc j) p = diagδ _ _ (injSucFin p) skewδ : (i j : Fin m)(p : ¬ i ≡ j) → δ i j ≡ 0r skewδ zero zero p = Empty.rec (p refl) skewδ (suc _) zero _ = refl skewδ zero (suc _) _ = refl skewδ (suc i) (suc j) p = skewδ _ _ (λ r → p (cong suc r)) diagSet : (i₀ : Fin m)(a : R) → Mat m m diagSet {m = suc m} zero a zero zero = a diagSet {m = suc m} zero _ (suc i) zero = 0r diagSet {m = suc m} zero _ zero (suc j) = 0r diagSet {m = suc m} zero _ (suc i) (suc j) = δ i j diagSet {m = suc m} (suc i₀) _ zero zero = 1r diagSet {m = suc m} (suc i₀) _ (suc i) zero = 0r diagSet {m = suc m} (suc i₀) _ zero (suc j) = 0r diagSet {m = suc m} (suc i₀) a (suc i) (suc j) = diagSet i₀ a i j diagSet≡diagSetᵗ : (i₀ : Fin m)(a : R) → diagSet i₀ a ≡ (diagSet i₀ a)ᵗ diagSet≡diagSetᵗ {m = suc m} zero a t zero zero = a diagSet≡diagSetᵗ {m = suc m} zero _ t (suc i) zero = 0r diagSet≡diagSetᵗ {m = suc m} zero _ t zero (suc j) = 0r diagSet≡diagSetᵗ {m = suc m} zero _ t (suc i) (suc j) = symδ i j t diagSet≡diagSetᵗ {m = suc m} (suc i₀) _ t zero zero = 1r diagSet≡diagSetᵗ {m = suc m} (suc i₀) _ t (suc i) zero = 0r diagSet≡diagSetᵗ {m = suc m} (suc i₀) _ t zero (suc j) = 0r diagSet≡diagSetᵗ {m = suc m} (suc i₀) a t (suc i) (suc j) = diagSet≡diagSetᵗ i₀ a t i j diagSet1≡𝟙 : (i₀ : Fin m) → diagSet i₀ 1r ≡ 𝟙 diagSet1≡𝟙 {m = suc m} zero t zero zero = 1r diagSet1≡𝟙 {m = suc m} zero t (suc i) zero = 0r diagSet1≡𝟙 {m = suc m} zero t zero (suc j) = 0r diagSet1≡𝟙 {m = suc m} zero t (suc i) (suc j) = δ i j diagSet1≡𝟙 {m = suc m} (suc i₀) t zero zero = 1r diagSet1≡𝟙 {m = suc m} (suc i₀) t (suc i) zero = 0r diagSet1≡𝟙 {m = suc m} (suc i₀) t zero (suc j) = 0r diagSet1≡𝟙 {m = suc m} (suc i₀) t (suc i) (suc j) = diagSet1≡𝟙 i₀ t i j module _ (a b c : R) where ·DiagSetˡ : (i₀ : Fin m)(i : Fin m) → a · δ i₀ i + diagSet i₀ b i i₀ · c ≡ (a + (b · c + 0r)) · δ i₀ i ·DiagSetˡ {m = suc m} zero zero = helper _ _ _ where helper : (a b c : R) → a · 1r + b · c ≡ (a + (b · c + 0r)) · 1r helper = solve 𝓡 ·DiagSetˡ {m = suc m} (suc i₀) zero = helper _ _ _ where helper : (a b c : R) → a · 0r + 0r · c ≡ (a + (b · c + 0r)) · 0r helper = solve 𝓡 ·DiagSetˡ {m = suc m} zero (suc j) = helper _ _ _ where helper : (a b c : R) → a · 0r + 0r · c ≡ (a + (b · c + 0r)) · 0r helper = solve 𝓡 ·DiagSetˡ {m = suc m} (suc i₀) (suc j) = ·DiagSetˡ i₀ j ·DiagSetʳ : (i₀ : Fin m)(i : Fin m) → a · δ i₀ i + b · diagSet i₀ c i₀ i ≡ (a + (b · c + 0r)) · δ i₀ i ·DiagSetʳ {m = suc m} zero zero = helper _ _ _ where helper : (a b c : R) → a · 1r + b · c ≡ (a + (b · c + 0r)) · 1r helper = solve 𝓡 ·DiagSetʳ {m = suc m} (suc i₀) zero = helper _ _ _ where helper : (a b c : R) → a · 0r + b · 0r ≡ (a + (b · c + 0r)) · 0r helper = solve 𝓡 ·DiagSetʳ {m = suc m} zero (suc j) = helper _ _ _ where helper : (a b c : R) → a · 0r + b · 0r ≡ (a + (b · c + 0r)) · 0r helper = solve 𝓡 ·DiagSetʳ {m = suc m} (suc i₀) (suc j) = ·DiagSetʳ i₀ j module _ (a b : R) where ⋆DiagSet : (i₀ : Fin m) → diagSet i₀ a ⋆ diagSet i₀ b ≡ diagSet i₀ (a · b) ⋆DiagSet {m = suc m} zero t zero zero = ((λ t → a · b + ∑Mul0r {n = m} (λ i → 0r) t) ∙ helper _) t where helper : (a : R) → a + 0r ≡ a helper = solve 𝓡 ⋆DiagSet {m = suc m} zero t (suc i) zero = ((λ t → 0r · b + ∑Mulr0 (λ j → diagSet zero a (suc i) (suc j)) t) ∙ helper _) t where helper : (b : R) → 0r · b + 0r ≡ 0r helper = solve 𝓡 ⋆DiagSet {m = suc m} zero t zero (suc j) = ((λ t → a · 0r + ∑Mul0r (λ i → diagSet zero b (suc i) (suc j)) t) ∙ helper _) t where helper : (a : R) → a · 0r + 0r ≡ 0r helper = solve 𝓡 ⋆DiagSet {m = suc m} zero t (suc i) (suc j) = ((λ t → 0r · 0r + ∑Mulr1 _ (λ l → δ i l) j t) ∙ helper _) t where helper : (d : R) → 0r · 0r + d ≡ d helper = solve 𝓡 ⋆DiagSet {m = suc m} (suc i₀) t zero zero = ((λ t → 1r · 1r + ∑Mul0r {n = m} (λ i → 0r) t) ∙ helper) t where helper : 1r · 1r + 0r ≡ 1r helper = solve 𝓡 ⋆DiagSet {m = suc m} (suc i₀) t (suc i) zero = ((λ t → 0r · 1r + ∑Mulr0 (λ j → diagSet (suc i₀) a (suc i) (suc j)) t) ∙ helper) t where helper : 0r · 1r + 0r ≡ 0r helper = solve 𝓡 ⋆DiagSet {m = suc m} (suc i₀) t zero (suc j) = ((λ t → 1r · 0r + ∑Mul0r (λ i → diagSet (suc i₀) b (suc i) (suc j)) t) ∙ helper) t where helper : 1r · 0r + 0r ≡ 0r helper = solve 𝓡 ⋆DiagSet {m = suc m} (suc i₀) t (suc i) (suc j) = ((λ t → 0r · 0r + ⋆DiagSet i₀ t i j) ∙ helper _) t where helper : (a : R) → 0r · 0r + a ≡ a helper = solve 𝓡 module _ (a b c : R) where +DiagSet : (i₀ i j : Fin m) → (a · δ i₀ i) · (b · δ i₀ j) + diagSet i₀ c i j ≡ diagSet i₀ (a · b + (c + 0r)) i j +DiagSet {m = suc m} zero zero zero = helper _ _ _ where helper : (a b c : R) → (a · 1r) · (b · 1r) + c ≡ a · b + (c + 0r) helper = solve 𝓡 +DiagSet {m = suc m} zero (suc i) zero = helper _ _ where helper : (a b : R) → (a · 0r) · (b · 1r) + 0r ≡ 0r helper = solve 𝓡 +DiagSet {m = suc m} zero zero (suc j) = helper _ _ where helper : (a b : R) → (a · 1r) · (b · 0r) + 0r ≡ 0r helper = solve 𝓡 +DiagSet {m = suc m} zero (suc i) (suc j) = helper _ _ _ where helper : (a b d : R) → (a · 0r) · (b · 0r) + d ≡ d helper = solve 𝓡 +DiagSet {m = suc m} (suc i₀) zero zero = helper _ _ where helper : (a b : R) → (a · 0r) · (b · 0r) + 1r ≡ 1r helper = solve 𝓡 +DiagSet {m = suc m} (suc i₀) (suc i) zero = helper _ _ where helper : (a b : R) → a · (b · 0r) + 0r ≡ 0r helper = solve 𝓡 +DiagSet {m = suc m} (suc i₀) zero (suc j) = helper _ _ where helper : (a b : R) → (a · 0r) · b + 0r ≡ 0r helper = solve 𝓡 +DiagSet {m = suc m} (suc i₀) (suc i) (suc j) = +DiagSet i₀ i j module _ (M : Mat 2 2)(i₀ : Fin m) where trans2RowsMat : Mat (suc m) (suc m) trans2RowsMat zero zero = M zero zero trans2RowsMat (suc i) zero = M one zero · δ i₀ i trans2RowsMat zero (suc j) = M zero one · δ i₀ j trans2RowsMat (suc i) (suc j) = diagSet i₀ (M one one) i j module _ (i₀ : Fin m) where trans2RowsMat𝟙 : trans2RowsMat 𝟙 i₀ ≡ 𝟙 trans2RowsMat𝟙 t zero zero = 1r trans2RowsMat𝟙 t (suc i) zero = 0LeftAnnihilates (δ i₀ i) t trans2RowsMat𝟙 t zero (suc j) = 0LeftAnnihilates (δ i₀ j) t trans2RowsMat𝟙 t (suc i) (suc j) = diagSet1≡𝟙 i₀ t i j module _ (M N : Mat 2 2)(i₀ : Fin m) where private ∑helper00 : (x a b : R) → x + ∑(λ l → (a · δ i₀ l) · (b · δ i₀ l)) ≡ x + a · b ∑helper00 x a b = (λ t → x + ∑(λ l → helper a b (δ i₀ l) (δ i₀ l) t)) ∙ (λ t → x + ∑Mul1r _ (λ l → (δ i₀ l · (a · b))) i₀ t) ∙ (λ t → x + diagδ i₀ i₀ refl t · (a · b)) ∙ (λ t → x + ·IdL (a · b) t) where helper : (a b x y : R) → (a · x) · (b · y) ≡ x · (y · (a · b)) helper = solve 𝓡 ∑helper10 : (a b c : R)(K : Mat m m)(i : Fin m) → (a · δ i₀ i) · b + ∑ (λ l → K i l · (c · δ i₀ l)) ≡ (a · b) · δ i₀ i + K i i₀ · c ∑helper10 a b c K i = (λ t → helper1 a b (δ i₀ i) t + ∑ (λ l → helper2 (K i l) c (δ i₀ l) t)) ∙ (λ t → (a · b) · δ i₀ i + ∑Mul1r _ (λ l → K i l · c) i₀ t) where helper1 : (a b c : R) → (a · c) · b ≡ (a · b) · c helper1 = solve 𝓡 helper2 : (a b c : R) → a · (b · c) ≡ c · (a · b) helper2 = solve 𝓡 ∑helper01 : (a b c : R)(K : Mat m m)(i : Fin m) → a · (b · δ i₀ i) + ∑ (λ l → (c · δ i₀ l) · K l i) ≡ (a · b) · δ i₀ i + c · K i₀ i ∑helper01 a b c K i = (λ t → helper1 a b (δ i₀ i) t + ∑ (λ l → helper2 c (K l i) (δ i₀ l) t)) ∙ (λ t → (a · b) · δ i₀ i + ∑Mul1r _ (λ l → c · K l i) i₀ t) where helper1 : (a b c : R) → a · (b · c) ≡ (a · b) · c helper1 = solve 𝓡 helper2 : (a b c : R) → (a · c) · b ≡ c · (a · b) helper2 = solve 𝓡 ⋆Trans2RowsMat : trans2RowsMat M i₀ ⋆ trans2RowsMat N i₀ ≡ trans2RowsMat (M ⋆ N) i₀ ⋆Trans2RowsMat t zero zero = (∑helper00 _ _ _ ∙ sym (mul2 M N zero zero)) t ⋆Trans2RowsMat t (suc i) zero = (∑helper10 (M one zero) (N zero zero) (N one zero) (diagSet i₀ (M one one)) i ∙ ·DiagSetˡ _ _ _ i₀ i) t ⋆Trans2RowsMat t zero (suc j) = (∑helper01 (M zero zero) (N zero one) (M zero one ) (diagSet i₀ (N one one)) j ∙ ·DiagSetʳ _ _ _ i₀ j) t ⋆Trans2RowsMat t (suc i) (suc j) = ((λ t → (M one zero · δ i₀ i) · (N zero one · δ i₀ j) + ⋆DiagSet (M one one) (N one one) i₀ t i j) ∙ +DiagSet _ _ _ i₀ i j) t isInvTrans2RowsMat : (M : Mat 2 2)(i₀ : Fin m)(isInvM : isInv M) → isInv (trans2RowsMat M i₀) isInvTrans2RowsMat M i₀ isInvM .fst = trans2RowsMat (isInvM .fst) i₀ isInvTrans2RowsMat M i₀ isInvM .snd .fst = ⋆Trans2RowsMat _ _ _ ∙ (λ t → trans2RowsMat (isInvM .snd .fst t) i₀) ∙ trans2RowsMat𝟙 _ isInvTrans2RowsMat M i₀ isInvM .snd .snd = ⋆Trans2RowsMat _ _ _ ∙ (λ t → trans2RowsMat (isInvM .snd .snd t) i₀) ∙ trans2RowsMat𝟙 _
40.141192
116
0.54187
c7b993a3d87351aa69afd5b8945dbcf48f71d06d
7,607
agda
Agda
test/asset/agda-stdlib-1.0/Algebra/Properties/BooleanAlgebra/Expression.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Algebra/Properties/BooleanAlgebra/Expression.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Algebra/Properties/BooleanAlgebra/Expression.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Boolean algebra expressions ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra module Algebra.Properties.BooleanAlgebra.Expression {b} (B : BooleanAlgebra b b) where open BooleanAlgebra B open import Category.Applicative import Category.Applicative.Indexed as Applicative open import Category.Monad open import Data.Fin using (Fin) open import Data.Nat open import Data.Product using (_,_; proj₁; proj₂) open import Data.Vec as Vec using (Vec) import Data.Vec.Categorical as VecCat import Function.Identity.Categorical as IdCat open import Data.Vec.Properties using (lookup-map) open import Data.Vec.Relation.Binary.Pointwise.Extensional as PW using (Pointwise; ext) open import Function open import Relation.Binary.PropositionalEquality as P using (_≗_) import Relation.Binary.Reflection as Reflection -- Expressions made up of variables and the operations of a boolean -- algebra. infixr 7 _and_ infixr 6 _or_ data Expr n : Set b where var : (x : Fin n) → Expr n _or_ _and_ : (e₁ e₂ : Expr n) → Expr n not : (e : Expr n) → Expr n top bot : Expr n -- The semantics of an expression, parametrised by an applicative -- functor. module Semantics {F : Set b → Set b} (A : RawApplicative F) where open RawApplicative A ⟦_⟧ : ∀ {n} → Expr n → Vec (F Carrier) n → F Carrier ⟦ var x ⟧ ρ = Vec.lookup ρ x ⟦ e₁ or e₂ ⟧ ρ = pure _∨_ ⊛ ⟦ e₁ ⟧ ρ ⊛ ⟦ e₂ ⟧ ρ ⟦ e₁ and e₂ ⟧ ρ = pure _∧_ ⊛ ⟦ e₁ ⟧ ρ ⊛ ⟦ e₂ ⟧ ρ ⟦ not e ⟧ ρ = pure ¬_ ⊛ ⟦ e ⟧ ρ ⟦ top ⟧ ρ = pure ⊤ ⟦ bot ⟧ ρ = pure ⊥ -- flip Semantics.⟦_⟧ e is natural. module Naturality {F₁ F₂ : Set b → Set b} {A₁ : RawApplicative F₁} {A₂ : RawApplicative F₂} (f : Applicative.Morphism A₁ A₂) where open P.≡-Reasoning open Applicative.Morphism f open Semantics A₁ renaming (⟦_⟧ to ⟦_⟧₁) open Semantics A₂ renaming (⟦_⟧ to ⟦_⟧₂) open RawApplicative A₁ renaming (pure to pure₁; _⊛_ to _⊛₁_) open RawApplicative A₂ renaming (pure to pure₂; _⊛_ to _⊛₂_) natural : ∀ {n} (e : Expr n) → op ∘ ⟦ e ⟧₁ ≗ ⟦ e ⟧₂ ∘ Vec.map op natural (var x) ρ = begin op (Vec.lookup ρ x) ≡⟨ P.sym $ lookup-map x op ρ ⟩ Vec.lookup (Vec.map op ρ) x ∎ natural (e₁ or e₂) ρ = begin op (pure₁ _∨_ ⊛₁ ⟦ e₁ ⟧₁ ρ ⊛₁ ⟦ e₂ ⟧₁ ρ) ≡⟨ op-⊛ _ _ ⟩ op (pure₁ _∨_ ⊛₁ ⟦ e₁ ⟧₁ ρ) ⊛₂ op (⟦ e₂ ⟧₁ ρ) ≡⟨ P.cong₂ _⊛₂_ (op-⊛ _ _) P.refl ⟩ op (pure₁ _∨_) ⊛₂ op (⟦ e₁ ⟧₁ ρ) ⊛₂ op (⟦ e₂ ⟧₁ ρ) ≡⟨ P.cong₂ _⊛₂_ (P.cong₂ _⊛₂_ (op-pure _) (natural e₁ ρ)) (natural e₂ ρ) ⟩ pure₂ _∨_ ⊛₂ ⟦ e₁ ⟧₂ (Vec.map op ρ) ⊛₂ ⟦ e₂ ⟧₂ (Vec.map op ρ) ∎ natural (e₁ and e₂) ρ = begin op (pure₁ _∧_ ⊛₁ ⟦ e₁ ⟧₁ ρ ⊛₁ ⟦ e₂ ⟧₁ ρ) ≡⟨ op-⊛ _ _ ⟩ op (pure₁ _∧_ ⊛₁ ⟦ e₁ ⟧₁ ρ) ⊛₂ op (⟦ e₂ ⟧₁ ρ) ≡⟨ P.cong₂ _⊛₂_ (op-⊛ _ _) P.refl ⟩ op (pure₁ _∧_) ⊛₂ op (⟦ e₁ ⟧₁ ρ) ⊛₂ op (⟦ e₂ ⟧₁ ρ) ≡⟨ P.cong₂ _⊛₂_ (P.cong₂ _⊛₂_ (op-pure _) (natural e₁ ρ)) (natural e₂ ρ) ⟩ pure₂ _∧_ ⊛₂ ⟦ e₁ ⟧₂ (Vec.map op ρ) ⊛₂ ⟦ e₂ ⟧₂ (Vec.map op ρ) ∎ natural (not e) ρ = begin op (pure₁ ¬_ ⊛₁ ⟦ e ⟧₁ ρ) ≡⟨ op-⊛ _ _ ⟩ op (pure₁ ¬_) ⊛₂ op (⟦ e ⟧₁ ρ) ≡⟨ P.cong₂ _⊛₂_ (op-pure _) (natural e ρ) ⟩ pure₂ ¬_ ⊛₂ ⟦ e ⟧₂ (Vec.map op ρ) ∎ natural top ρ = begin op (pure₁ ⊤) ≡⟨ op-pure _ ⟩ pure₂ ⊤ ∎ natural bot ρ = begin op (pure₁ ⊥) ≡⟨ op-pure _ ⟩ pure₂ ⊥ ∎ -- An example of how naturality can be used: Any boolean algebra can -- be lifted, in a pointwise manner, to vectors of carrier elements. lift : ℕ → BooleanAlgebra b b lift n = record { Carrier = Vec Carrier n ; _≈_ = Pointwise _≈_ ; _∨_ = zipWith _∨_ ; _∧_ = zipWith _∧_ ; ¬_ = map ¬_ ; ⊤ = pure ⊤ ; ⊥ = pure ⊥ ; isBooleanAlgebra = record { isDistributiveLattice = record { isLattice = record { isEquivalence = PW.isEquivalence isEquivalence ; ∨-comm = λ _ _ → ext λ i → solve i 2 (λ x y → x or y , y or x) (∨-comm _ _) _ _ ; ∨-assoc = λ _ _ _ → ext λ i → solve i 3 (λ x y z → (x or y) or z , x or (y or z)) (∨-assoc _ _ _) _ _ _ ; ∨-cong = λ xs≈us ys≈vs → ext λ i → solve₁ i 4 (λ x y u v → x or y , u or v) _ _ _ _ (∨-cong (Pointwise.app xs≈us i) (Pointwise.app ys≈vs i)) ; ∧-comm = λ _ _ → ext λ i → solve i 2 (λ x y → x and y , y and x) (∧-comm _ _) _ _ ; ∧-assoc = λ _ _ _ → ext λ i → solve i 3 (λ x y z → (x and y) and z , x and (y and z)) (∧-assoc _ _ _) _ _ _ ; ∧-cong = λ xs≈ys us≈vs → ext λ i → solve₁ i 4 (λ x y u v → x and y , u and v) _ _ _ _ (∧-cong (Pointwise.app xs≈ys i) (Pointwise.app us≈vs i)) ; absorptive = (λ _ _ → ext λ i → solve i 2 (λ x y → x or (x and y) , x) (∨-absorbs-∧ _ _) _ _) , (λ _ _ → ext λ i → solve i 2 (λ x y → x and (x or y) , x) (∧-absorbs-∨ _ _) _ _) } ; ∨-∧-distribʳ = λ _ _ _ → ext λ i → solve i 3 (λ x y z → (y and z) or x , (y or x) and (z or x)) (∨-∧-distribʳ _ _ _) _ _ _ } ; ∨-complementʳ = λ _ → ext λ i → solve i 1 (λ x → x or (not x) , top) (∨-complementʳ _) _ ; ∧-complementʳ = λ _ → ext λ i → solve i 1 (λ x → x and (not x) , bot) (∧-complementʳ _) _ ; ¬-cong = λ xs≈ys → ext λ i → solve₁ i 2 (λ x y → not x , not y) _ _ (¬-cong (Pointwise.app xs≈ys i)) } } where open RawApplicative VecCat.applicative using (pure; zipWith) renaming (_<$>_ to map) ⟦_⟧Id : ∀ {n} → Expr n → Vec Carrier n → Carrier ⟦_⟧Id = Semantics.⟦_⟧ IdCat.applicative ⟦_⟧Vec : ∀ {m n} → Expr n → Vec (Vec Carrier m) n → Vec Carrier m ⟦_⟧Vec = Semantics.⟦_⟧ VecCat.applicative open module R {n} (i : Fin n) = Reflection setoid var (λ e ρ → Vec.lookup (⟦ e ⟧Vec ρ) i) (λ e ρ → ⟦ e ⟧Id (Vec.map (flip Vec.lookup i) ρ)) (λ e ρ → sym $ reflexive $ Naturality.natural (VecCat.lookup-morphism i) e ρ)
40.897849
124
0.432102
313d811603a47169720b2321066c26a3009a96be
1,330
agda
Agda
Cubical/HITs/ListedFiniteSet/Properties.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/HITs/ListedFiniteSet/Properties.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/HITs/ListedFiniteSet/Properties.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.ListedFiniteSet.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Logic open import Cubical.Foundations.Everything open import Cubical.HITs.ListedFiniteSet.Base private variable A : Type₀ _++_ : ∀ (xs ys : LFSet A) → LFSet A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) --------------------------------------------- dup x xs i ++ ys = proof i where proof : -- Need: (x ∷ x ∷ xs) ++ ys ≡ (x ∷ xs) ++ ys -- which reduces to: x ∷ x ∷ (xs ++ ys) ≡ x ∷ (xs ++ ys) proof = dup x (xs ++ ys) comm x y xs i ++ ys = comm x y (xs ++ ys) i trunc xs zs p q i j ++ ys = trunc (xs ++ ys) (zs ++ ys) (cong (_++ ys) p) (cong (_++ ys) q) i j assoc-++ : ∀ (xs : LFSet A) ys zs → xs ++ (ys ++ zs) ≡ (xs ++ ys) ++ zs assoc-++ [] ys zs = refl assoc-++ (x ∷ xs) ys zs = cong (x ∷_) (assoc-++ xs ys zs) ------------------------------------ assoc-++ (dup x xs i) ys zs j = dup x (assoc-++ xs ys zs j) i assoc-++ (comm x y xs i) ys zs j = comm x y (assoc-++ xs ys zs j) i assoc-++ (trunc xs xs' p q i k) ys zs j = trunc (assoc-++ xs ys zs j) (assoc-++ xs' ys zs j) (cong (\ xs -> assoc-++ xs ys zs j) p) (cong (\ xs -> assoc-++ xs ys zs j) q) i k
31.666667
91
0.481955
316a4a2fcebff50d380e70126b55aa760e97667e
1,523
agda
Agda
test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving/Setoid/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving/Setoid/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving/Setoid/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of interleaving using setoid equality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Setoid) module Data.List.Relation.Ternary.Interleaving.Setoid.Properties {c ℓ} (S : Setoid c ℓ) where open import Data.List.Base using (List; []; _∷_; filter; _++_) open import Relation.Unary using (Decidable) open import Relation.Nullary using (yes; no) open import Relation.Nullary.Negation using (¬?) open import Function open import Data.List.Relation.Binary.Equality.Setoid S using (≋-refl) open import Data.List.Relation.Ternary.Interleaving.Setoid S open Setoid S renaming (Carrier to A) ------------------------------------------------------------------------ -- Re-exporting existing properties open import Data.List.Relation.Ternary.Interleaving.Properties public ------------------------------------------------------------------------ -- _++_ ++-linear : (xs ys : List A) → Interleaving xs ys (xs ++ ys) ++-linear xs ys = ++-disjoint (left ≋-refl) (right ≋-refl) ------------------------------------------------------------------------ -- filter module _ {p} {P : A → Set p} (P? : Decidable P) where filter⁺ : ∀ xs → Interleaving (filter P? xs) (filter (¬? ∘ P?) xs) xs filter⁺ [] = [] filter⁺ (x ∷ xs) with P? x ... | yes px = refl ∷ˡ filter⁺ xs ... | no ¬px = refl ∷ʳ filter⁺ xs
33.844444
72
0.520026
13b1be5f7538824e95dc1f80fe7e7571a68723d8
1,599
agda
Agda
test/LibSucceed/Issue421.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/LibSucceed/Issue421.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/LibSucceed/Issue421.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- In Agda 2.5.3 the error was: -- μ₂ is not strictly positive, because it occurs -- in the third argument to ⟦_⟧ -- in the type of the constructor fix -- in the definition of μ₂. open import Data.Nat using (ℕ;zero;suc) open import Data.Fin using (Fin;zero;suc) open import Data.Vec open import Data.Empty open import Data.Product hiding (_<*>_) open import Data.Sum open import Data.Unit Σ# : {n : ℕ} -> (Fin n -> Set) -> Set Σ# {zero} f = ⊥ Σ# {suc zero} f = f zero Σ# {suc n} f = f zero ⊎ Σ# {n} λ i -> f (suc i) module Matrices {Ix : Set} {Σ : (Ix -> Set) -> Set} where Matrix : Set1 Matrix = (i j : Ix) -> Set _<+>_ : Matrix -> Matrix -> Matrix m <+> n = λ i j -> m i j ⊎ n i j {-# INLINE _<+>_ #-} _<*>_ : Matrix -> Matrix -> Matrix m <*> n = λ i j -> Σ λ k -> m i k × n k j {-# INLINE _<*>_ #-} data Poly {Coeffs : Set1} : Set1 where 0p 1p : Poly X : Poly _+_ _*_ : (D1 D2 : Poly {Coeffs}) -> Poly {Coeffs} K : Coeffs -> Poly module Dim {n : ℕ} where open Matrices {Fin n} {Σ#} ⟦_⟧ : Poly {Vec (Vec Set n) n} -> Matrix -> Matrix ⟦ 0p ⟧ x i j = ⊥ ⟦ 1p ⟧ x i j = ⊤ ⟦ X ⟧ x i j = x i j ⟦ D1 + D2 ⟧ x i j = (⟦ D1 ⟧ x <+> ⟦ D2 ⟧ x) i j ⟦ D1 * D2 ⟧ x i j = (⟦ D1 ⟧ x <*> ⟦ D2 ⟧ x) i j ⟦ K S ⟧ x i j = lookup (lookup S i) j ⟪_⟫ : Poly {Set} -> Set → Set ⟪ 0p ⟫ x = ⊥ ⟪ 1p ⟫ x = ⊤ ⟪ X ⟫ x = x ⟪ D1 + D2 ⟫ x = (⟪ D1 ⟫ x ⊎ ⟪ D2 ⟫ x) ⟪ D1 * D2 ⟫ x = (⟪ D1 ⟫ x × ⟪ D2 ⟫ x) ⟪ K S ⟫ x = S data μ₁ (p : Poly) : Set where fix : ⟪ p ⟫ (μ₁ p) -> μ₁ p data μ₂ (p : Poly) (i j : Fin n) : Set where fix : ⟦ p ⟧ (μ₂ p) i j -> μ₂ p i j
24.984375
57
0.501563
03336f5c7ae2a4497838751f1e92acea892a6d8a
8,800
agda
Agda
Cubical/HITs/CumulativeHierarchy/Constructions.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/HITs/CumulativeHierarchy/Constructions.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/HITs/CumulativeHierarchy/Constructions.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} {- Constructions of "sets" in the cumulative hierarchy. Including: - the empty set - unions - ω - replacement - separation -} module Cubical.HITs.CumulativeHierarchy.Constructions where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Structure open import Cubical.Functions.Embedding open import Cubical.Functions.Logic as L open import Cubical.Data.Sum hiding (elim) open import Cubical.Data.Sigma open import Cubical.Data.Nat hiding (elim) open import Cubical.Data.Sum as ⊎ using (_⊎_) open import Cubical.Data.Bool open import Cubical.Data.Unit open import Cubical.Data.Empty as E hiding (elim) open import Cubical.HITs.PropositionalTruncation as P hiding (elim; elim2) open import Cubical.HITs.CumulativeHierarchy.Base open import Cubical.HITs.CumulativeHierarchy.Properties import Cubical.HITs.PropositionalTruncation.Monad as PropMonad private variable ℓ ℓ' : Level ------------ -- Structures for building specific sets by giving encodings and decodings for their membership ----------- record SetStructure ℓ : Type (ℓ-suc ℓ) where field X : Type ℓ ix : X → V ℓ resSet : V ℓ resSet = sett X ix record SetPackage ℓ ℓ' : Type (ℓ-max (ℓ-suc ℓ) (ℓ-suc ℓ')) where field structure : SetStructure ℓ open SetStructure structure hiding (resSet) open SetStructure structure using (resSet) public field ∈-rep : V ℓ → hProp ℓ' unpack : (x : X) → ⟨ ∈-rep (ix x) ⟩ repack : {y : V ℓ} → ⟨ ∈-rep y ⟩ → ∥ fiber ix y ∥₁ open PropMonad classification : ⟨ ∀[ y ] (y ∈ₛ resSet ⇔ ∈-rep y) ⟩ classification y = intoClassifier , fromClassifier where intoClassifier : ⟨ y ∈ₛ resSet ⟩ → ⟨ ∈-rep y ⟩ intoClassifier (yi , yr) = proof (∈-rep y) by do (x , ix) ← ∈∈ₛ {b = resSet} .snd (yi , yr) return (subst (fst ∘ ∈-rep) ix (unpack x)) fromClassifier : ⟨ ∈-rep y ⟩ → ⟨ y ∈ₛ resSet ⟩ fromClassifier yr = ∈∈ₛ {b = resSet} .fst (repack {y = y} yr) ------------ -- Specific constructions ----------- open SetPackage using (structure; ∈-rep; unpack; repack) module EmptySet where EmptyStructure : SetStructure ℓ SetStructure.X EmptyStructure = Lift E.⊥ SetStructure.ix EmptyStructure () EmptyPackage : SetPackage ℓ ℓ-zero structure EmptyPackage = EmptyStructure ∈-rep EmptyPackage _ = L.⊥ unpack EmptyPackage () repack EmptyPackage () ∅ : V ℓ ∅ = SetStructure.resSet EmptyStructure ∅-empty : ⟨ ∀[ b ∶ V ℓ ] ¬ (b ∈ₛ ∅) ⟩ ∅-empty b = SetPackage.classification EmptyPackage b .fst open EmptySet using (∅; ∅-empty) public module UnionSet (S : V ℓ) where UnionStructure : SetStructure ℓ SetStructure.X UnionStructure = Σ[ r ∈ ⟪ S ⟫ ] ⟪ ⟪ S ⟫↪ r ⟫ SetStructure.ix UnionStructure (r , i) = ⟪ ⟪ S ⟫↪ r ⟫↪ i UNION : V ℓ UNION = SetStructure.resSet UnionStructure UnionPackage : SetPackage _ (ℓ-suc ℓ) structure UnionPackage = UnionStructure ∈-rep UnionPackage y = ∃[ v ] (v ∈ₛ S) ⊓ (y ∈ₛ v) unpack UnionPackage (vi , yi) = ∣ ⟪ S ⟫↪ vi , ∈ₛ⟪ S ⟫↪ vi , ∈ₛ⟪ ⟪ S ⟫↪ vi ⟫↪ yi ∣₁ repack UnionPackage {y = y} = P.rec squash₁ go where go : Σ[ v ∈ V _ ] ⟨ v ∈ₛ S ⟩ ⊓′ ⟨ y ∈ₛ v ⟩ → ∥ fiber _ y ∥₁ go (v , (vi , vS) , xv) = ∣ repFiber≃fiber _ _ .fst ((vi , key .fst) , key .snd) ∣₁ where path : v ≡ ⟪ S ⟫↪ vi path = sym (equivFun identityPrinciple vS) key : Σ[ i ∈ ⟪ ⟪ S ⟫↪ vi ⟫ ] ⟪ ⟪ S ⟫↪ vi ⟫↪ i ≊ y key = subst (λ v → Σ[ ix ∈ ⟪ v ⟫ ] ⟪ v ⟫↪ ix ≊ y) path xv union-ax : ⟨ ∀[ u ] (u ∈ₛ UNION ⇔ (∃[ v ] (v ∈ₛ S) ⊓ (u ∈ₛ v))) ⟩ union-ax = classification where open SetPackage UnionPackage using (classification) open UnionSet renaming (UNION to infixr 9 ⋃_) using (union-ax) public module PairingSet (a b : V ℓ) where PairingStructure : SetStructure ℓ SetStructure.X PairingStructure = Lift Bool SetStructure.ix PairingStructure (lift false) = a SetStructure.ix PairingStructure (lift true) = b open PropMonad PairingPackage : SetPackage _ (ℓ-suc ℓ) structure PairingPackage = PairingStructure ∈-rep PairingPackage d = (d ≡ₕ a) ⊔ (d ≡ₕ b) unpack PairingPackage (lift false) = L.inl refl unpack PairingPackage (lift true) = L.inr refl repack PairingPackage {y = y} = _>>= λ where (_⊎_.inl ya) → ∣ lift false , sym ya ∣₁ (_⊎_.inr yb) → ∣ lift true , sym yb ∣₁ PAIR : V ℓ PAIR = SetStructure.resSet PairingStructure pairing-ax : ⟨ ∀[ d ] (d ∈ₛ PAIR ⇔ (d ≡ₕ a) ⊔ (d ≡ₕ b)) ⟩ pairing-ax = classification where open SetPackage PairingPackage using (classification) -- pairing TODO: notation? open PairingSet renaming (PAIR to infix 12 ⁅_,_⁆) using (pairing-ax) public module SingletonSet (a : V ℓ) where SingletonStructure : SetStructure ℓ SetStructure.X SingletonStructure = Lift Unit SetStructure.ix SingletonStructure (lift tt) = a SingletonPackage : SetPackage _ (ℓ-suc ℓ) structure SingletonPackage = SingletonStructure ∈-rep SingletonPackage d = d ≡ₕ a unpack SingletonPackage _ = refl repack SingletonPackage ya = ∣ lift tt , sym ya ∣₁ SINGL : V ℓ SINGL = SetStructure.resSet SingletonStructure open SingletonSet renaming (SINGL to infix 10 ⁅_⁆s) public -- small unions _∪_ : (a b : V ℓ) → V ℓ a ∪ b = ⋃ ⁅ a , b ⁆ module InfinitySet {ℓ} where sucV : V ℓ → V ℓ sucV N = N ∪ ⁅ N ⁆s #_ : ℕ → V ℓ # zero = ∅ # suc n = sucV (# n) ωStructure : SetStructure ℓ SetStructure.X ωStructure = Lift ℕ SetStructure.ix ωStructure = #_ ∘ lower ω : V ℓ ω = SetStructure.resSet ωStructure open PropMonad ωPackage : SetPackage _ (ℓ-suc ℓ) structure ωPackage = ωStructure ∈-rep ωPackage d = (d ≡ₕ ∅) ⊔ (∃[ v ] (d ≡ₕ sucV v) ⊓ (v ∈ₛ ω)) unpack ωPackage (lift zero) = L.inl refl unpack ωPackage (lift (suc n)) = L.inr ∣ # n , refl , ∈∈ₛ {b = ω} .fst ∣ lift n , refl ∣₁ ∣₁ repack ωPackage {y = y} = ⊔-elim (y ≡ₕ ∅) ∥ _ ∥ₚ (λ _ → ∥ fiber _ y ∥ₚ) (λ e → ∣ lift zero , sym e ∣₁) (λ m → do (v , yv , vr) ← m (lift n , eq) ← ∈∈ₛ {b = ω} .snd vr ∣ lift (suc n) , sym (subst (λ v → y ≡ (v ∪ ⁅ v ⁆s)) (sym eq) yv) ∣₁ ) infinity-ax : ⟨ ∀[ y ] (y ∈ₛ ω ⇔ (y ≡ₕ ∅) ⊔ (∃[ v ] (y ≡ₕ sucV v) ⊓ (v ∈ₛ ω))) ⟩ infinity-ax = classification where open SetPackage ωPackage using (classification) ω-empty : ⟨ ∅ ∈ₛ ω ⟩ ω-empty = infinity-ax ∅ .snd (L.inl refl) ω-next : ⟨ ∀[ x ∶ V ℓ ] x ∈ₛ ω ⇒ sucV x ∈ₛ ω ⟩ ω-next x x∈ω = infinity-ax (sucV x) .snd (L.inr ∣ x , refl , x∈ω ∣₁) #-in-ω : ∀ n → ⟨ # n ∈ₛ ω ⟩ #-in-ω zero = ω-empty #-in-ω (suc n) = ω-next (# n) (#-in-ω n) open InfinitySet using (ω; ω-empty; ω-next; infinity-ax) public module ReplacementSet (r : V ℓ → V ℓ) (a : V ℓ) where ReplacementStructure : SetStructure ℓ SetStructure.X ReplacementStructure = ⟪ a ⟫ SetStructure.ix ReplacementStructure = r ∘ ⟪ a ⟫↪ REPLACED : V ℓ REPLACED = SetStructure.resSet ReplacementStructure open PropMonad ReplacementPackage : SetPackage _ (ℓ-suc ℓ) structure ReplacementPackage = ReplacementStructure ∈-rep ReplacementPackage y = ∃[ z ] (z ∈ₛ a) ⊓ (y ≡ₕ r z) unpack ReplacementPackage ⟪a⟫ = ∣ ⟪ a ⟫↪ ⟪a⟫ , (∈ₛ⟪ a ⟫↪ ⟪a⟫) , refl ∣₁ repack ReplacementPackage {y = y} m = do (z , (a , za) , yr) ← m ∣ a , cong r (equivFun identityPrinciple za) ∙ sym yr ∣₁ replacement-ax : ⟨ ∀[ y ] (y ∈ₛ REPLACED ⇔ (∃[ z ] (z ∈ₛ a) ⊓ (y ≡ₕ r z))) ⟩ replacement-ax y = classification y where open SetPackage ReplacementPackage using (classification) open ReplacementSet renaming (REPLACED to infix 12 ⁅_∣_⁆) using (replacement-ax) public module SeparationSet (a : V ℓ) (ϕ : V ℓ → hProp ℓ) where SeparationStructure : SetStructure ℓ SetStructure.X SeparationStructure = Σ[ x ∈ ⟪ a ⟫ ] ⟨ ϕ (⟪ a ⟫↪ x) ⟩ SetStructure.ix SeparationStructure = ⟪ a ⟫↪ ∘ fst SeparationPackage : SetPackage _ ℓ structure SeparationPackage = SeparationStructure ∈-rep SeparationPackage y = (y ∈ₛ a) ⊓ ϕ y unpack SeparationPackage (⟪a⟫ , phi) = (∈ₛ⟪ a ⟫↪ ⟪a⟫) , phi repack SeparationPackage ((⟪a⟫ , ya) , phi) = ∣ (⟪a⟫ , subst (fst ∘ ϕ) (sym (equivFun identityPrinciple ya)) phi) , equivFun identityPrinciple ya ∣₁ SEPAREE : V ℓ SEPAREE = SetStructure.resSet SeparationStructure separation-ax : ⟨ ∀[ y ] (y ∈ₛ SEPAREE ⇔ (y ∈ₛ a) ⊓ ϕ y) ⟩ separation-ax y = classification y .fst , classification y .snd where open SetPackage SeparationPackage using (classification) open SeparationSet renaming (SEPAREE to infix 12 ⁅_∶_⁆) using (separation-ax) public module Examples where open InfinitySet the1 : V ℓ-zero the1 = # 1 1-ok? : ∥ Bool ∥₁ 1-ok? = do prf ← infinity-ax the1 .fst (#-in-ω 1) case prf of λ { (⊎.inl _) → ∣ false ∣₁ ; (⊎.inr _) → ∣ true ∣₁ } where open PropMonad test : 1-ok? ≡ ∣ true ∣₁ test = refl
33.716475
95
0.63875
38e0561fe4b1da7f7378813be7655839e9b06773
2,575
agda
Agda
Cubical/Categories/Limits/Pullback.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Categories/Limits/Pullback.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Categories/Limits/Pullback.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Categories.Limits.Pullback where open import Cubical.Foundations.Prelude open import Cubical.Categories.Limits.Base open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Data.Sigma open import Cubical.Categories.Instances.Cospan public private variable ℓ ℓ' : Level module _ {C : Precategory ℓ ℓ'} where open Precategory C open Functor record Cospan : Type (ℓ-max ℓ ℓ') where constructor cospan field l m r : ob s₁ : C [ l , m ] s₂ : C [ r , m ] record PullbackLegs (cspn : Cospan) (c : ob) : Type (ℓ-max ℓ ℓ') where constructor pblegs open Cospan cspn field p₁ : C [ c , l ] p₂ : C [ c , r ] record PullbackCone (cspn : Cospan) (c : ob) : Type (ℓ-max ℓ ℓ') where constructor cone open Cospan cspn field pl : PullbackLegs cspn c open PullbackLegs pl public field sq : p₁ ⋆⟨ C ⟩ s₁ ≡ p₂ ⋆⟨ C ⟩ s₂ record isPullback (cspn : _) {c} (pb : PullbackLegs cspn c) : Type (ℓ-max ℓ ℓ') where open Cospan cspn open PullbackLegs field sq : pb .p₁ ⋆⟨ C ⟩ s₁ ≡ pb .p₂ ⋆⟨ C ⟩ s₂ open PullbackCone field up : ∀ {d} → (pb' : PullbackCone cspn d) → isContr (Σ[ f ∈ (C [ d , c ]) ] ((pb' .p₁ ≡ f ⋆⟨ C ⟩ pb .p₁) × (pb' .p₂ ≡ f ⋆⟨ C ⟩ pb .p₂))) Cospan→Func : Cospan → Functor CospanCat C Cospan→Func (cospan l m r f g) .F-ob ⓪ = l Cospan→Func (cospan l m r f g) .F-ob ① = m Cospan→Func (cospan l m r f g) .F-ob ② = r Cospan→Func (cospan l m r f g) .F-hom {⓪} {①} k = f Cospan→Func (cospan l m r f g) .F-hom {②} {①} k = g Cospan→Func (cospan l m r f g) .F-hom {⓪} {⓪} k = id l Cospan→Func (cospan l m r f g) .F-hom {①} {①} k = id m Cospan→Func (cospan l m r f g) .F-hom {②} {②} k = id r Cospan→Func (cospan l m r f g) .F-id {⓪} = refl Cospan→Func (cospan l m r f g) .F-id {①} = refl Cospan→Func (cospan l m r f g) .F-id {②} = refl Cospan→Func (cospan l m r f g) .F-seq {⓪} {⓪} {⓪} φ ψ = sym (⋆IdL _) Cospan→Func (cospan l m r f g) .F-seq {⓪} {⓪} {①} φ ψ = sym (⋆IdL _) Cospan→Func (cospan l m r f g) .F-seq {⓪} {①} {①} φ ψ = sym (⋆IdR _) Cospan→Func (cospan l m r f g) .F-seq {①} {①} {①} φ ψ = sym (⋆IdL _) Cospan→Func (cospan l m r f g) .F-seq {②} {②} {②} φ ψ = sym (⋆IdL _) Cospan→Func (cospan l m r f g) .F-seq {②} {②} {①} φ ψ = sym (⋆IdL _) Cospan→Func (cospan l m r f g) .F-seq {②} {①} {①} φ ψ = sym (⋆IdR _) -- TODO: show that this definition of Pullback is equivalent to the Cospan limit
31.790123
87
0.579806
4ba9f92c39884b365614daec3b8f4fe8a463b020
1,510
agda
Agda
Cubical/Structures/TypeEqvTo.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Structures/TypeEqvTo.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Structures/TypeEqvTo.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Structures.TypeEqvTo where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.HITs.PropositionalTruncation open import Cubical.Data.Sigma open import Cubical.Foundations.SIP open import Cubical.Foundations.Pointed open import Cubical.Structures.Axioms open import Cubical.Structures.Pointed private variable ℓ ℓ' ℓ'' : Level TypeEqvTo : (ℓ : Level) (X : Type ℓ') → Type (ℓ-max (ℓ-suc ℓ) ℓ') TypeEqvTo ℓ X = TypeWithStr ℓ (λ Y → ∥ Y ≃ X ∥₁) PointedEqvTo : (ℓ : Level) (X : Type ℓ') → Type (ℓ-max (ℓ-suc ℓ) ℓ') PointedEqvTo ℓ X = TypeWithStr ℓ (λ Y → Y × ∥ Y ≃ X ∥₁) module _ (X : Type ℓ') where PointedEqvToStructure : Type ℓ → Type (ℓ-max ℓ ℓ') PointedEqvToStructure = AxiomsStructure PointedStructure (λ Y _ → ∥ Y ≃ X ∥₁) PointedEqvToEquivStr : StrEquiv PointedEqvToStructure ℓ'' PointedEqvToEquivStr = AxiomsEquivStr PointedEquivStr (λ Y _ → ∥ Y ≃ X ∥₁) pointedEqvToUnivalentStr : UnivalentStr {ℓ} PointedEqvToStructure PointedEqvToEquivStr pointedEqvToUnivalentStr = axiomsUnivalentStr PointedEquivStr {axioms = λ Y _ → ∥ Y ≃ X ∥₁} (λ _ _ → squash₁) pointedUnivalentStr PointedEqvToSIP : (A B : PointedEqvTo ℓ X) → A ≃[ PointedEqvToEquivStr ] B ≃ (A ≡ B) PointedEqvToSIP = SIP pointedEqvToUnivalentStr PointedEqvTo-sip : (A B : PointedEqvTo ℓ X) → A ≃[ PointedEqvToEquivStr ] B → (A ≡ B) PointedEqvTo-sip A B = equivFun (PointedEqvToSIP A B)
35.952381
93
0.703311
387b1dc0fb1b06dadc7513b586a42b401c9c00e4
582
agda
Agda
old/Type/Functions/Inverse.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
old/Type/Functions/Inverse.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
old/Type/Functions/Inverse.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
import Lvl open import Type module Type.Functions.Inverse {ℓₗ : Lvl.Level}{ℓₒ₁}{ℓₒ₂} {X : Type{ℓₒ₁}} {Y : Type{ℓₒ₂}} where open import Function.Domains open import Type.Functions {ℓₗ}{ℓₒ₁}{ℓₒ₂} {X}{Y} open import Type.Properties.Empty open import Type.Properties.Singleton {ℓₒ₁}{ℓₒ₂} inv : (f : X → Y) → ⦃ _ : Bijective(f) ⦄ → (Y → X) inv f ⦃ Bijective.intro(proof) ⦄ (y) with proof{y} ... | IsUnit.intro (Unapply.intro x) _ = x invᵣ : (f : X → Y) → ⦃ _ : Surjective(f) ⦄ → (Y → X) invᵣ f ⦃ Surjective.intro(proof) ⦄ (y) with proof{y} ... | ◊.intro ⦃ Unapply.intro x ⦄ = x
32.333333
94
0.630584
3139dcc649a695157fe08d8f537f19892b8f642b
389
agda
Agda
Cubical/Categories/Instances/Lattice.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-02-05T01:25:26.000Z
2022-02-05T01:25:26.000Z
Cubical/Categories/Instances/Lattice.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Categories/Instances/Lattice.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Categories.Instances.Lattice where open import Cubical.Foundations.Prelude open import Cubical.Algebra.Lattice open import Cubical.Categories.Category open import Cubical.Categories.Instances.Semilattice open Category LatticeCategory : ∀ {ℓ} (L : Lattice ℓ) → Category ℓ ℓ LatticeCategory L = JoinSemilatticeCategory (Lattice→JoinSemilattice L)
24.3125
71
0.802057
59a7c84652ec1f12e8dadca33a0e6d097551b067
4,797
agda
Agda
vendor/stdlib/src/Data/Covec.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Data/Covec.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Data/Covec.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- Coinductive vectors ------------------------------------------------------------------------ module Data.Covec where open import Coinduction open import Data.Nat using (ℕ; zero; suc) open import Data.Conat open import Data.Cofin using (Cofin; zero; suc) open import Data.Vec using (Vec; []; _∷_) open import Data.Colist as Colist using (Colist; []; _∷_) open import Data.Product using (_,_) open import Relation.Binary ------------------------------------------------------------------------ -- The type infixr 5 _∷_ data Covec (A : Set) : Coℕ → Set where [] : Covec A zero _∷_ : ∀ {n} (x : A) (xs : ∞ (Covec A (♭ n))) → Covec A (suc n) ------------------------------------------------------------------------ -- Some operations map : ∀ {A B n} → (A → B) → Covec A n → Covec B n map f [] = [] map f (x ∷ xs) = f x ∷ ♯ map f (♭ xs) fromVec : ∀ {A n} → Vec A n → Covec A (fromℕ n) fromVec [] = [] fromVec (x ∷ xs) = x ∷ ♯ fromVec xs fromColist : ∀ {A} (xs : Colist A) → Covec A (Colist.length xs) fromColist [] = [] fromColist (x ∷ xs) = x ∷ ♯ fromColist (♭ xs) take : ∀ {A} m {n} → Covec A (m + n) → Covec A m take zero xs = [] take (suc n) (x ∷ xs) = x ∷ ♯ take (♭ n) (♭ xs) drop : ∀ {A} m {n} → Covec A (fromℕ m + n) → Covec A n drop zero xs = xs drop (suc n) (x ∷ xs) = drop n (♭ xs) replicate : ∀ {A} n → A → Covec A n replicate zero x = [] replicate (suc n) x = x ∷ ♯ replicate (♭ n) x lookup : ∀ {A n} → Cofin n → Covec A n → A lookup zero (x ∷ xs) = x lookup (suc n) (x ∷ xs) = lookup n (♭ xs) infixr 5 _++_ _++_ : ∀ {A m n} → Covec A m → Covec A n → Covec A (m + n) [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ ♯ (♭ xs ++ ys) [_] : ∀ {A} → A → Covec A (suc (♯ zero)) [ x ] = x ∷ ♯ [] ------------------------------------------------------------------------ -- Equality and other relations -- xs ≈ ys means that xs and ys are equal. infix 4 _≈_ data _≈_ {A} : ∀ {n} (xs ys : Covec A n) → Set where [] : [] ≈ [] _∷_ : ∀ {n} x {xs ys} (xs≈ : ∞ (♭ xs ≈ ♭ ys)) → _≈_ {n = suc n} (x ∷ xs) (x ∷ ys) -- x ∈ xs means that x is a member of xs. infix 4 _∈_ data _∈_ {A} : ∀ {n} → A → Covec A n → Set where here : ∀ {n x } {xs} → _∈_ {n = suc n} x (x ∷ xs) there : ∀ {n x y} {xs} (x∈xs : x ∈ ♭ xs) → _∈_ {n = suc n} x (y ∷ xs) -- xs ⊑ ys means that xs is a prefix of ys. infix 4 _⊑_ data _⊑_ {A} : ∀ {m n} → Covec A m → Covec A n → Set where [] : ∀ {n} {ys : Covec A n} → [] ⊑ ys _∷_ : ∀ {m n} x {xs ys} (p : ∞ (♭ xs ⊑ ♭ ys)) → _⊑_ {m = suc m} {suc n} (x ∷ xs) (x ∷ ys) ------------------------------------------------------------------------ -- Some proofs setoid : Set → Coℕ → Setoid setoid A n = record { carrier = Covec A n ; _≈_ = _≈_ ; isEquivalence = record { refl = refl ; sym = sym ; trans = trans } } where refl : ∀ {A n} → Reflexive (_≈_ {A} {n}) refl {x = []} = [] refl {x = x ∷ xs} = x ∷ ♯ refl sym : ∀ {A n} → Symmetric (_≈_ {A} {n}) sym [] = [] sym (x ∷ xs≈) = x ∷ ♯ sym (♭ xs≈) trans : ∀ {A n} → Transitive (_≈_ {A} {n}) trans [] [] = [] trans (x ∷ xs≈) (.x ∷ ys≈) = x ∷ ♯ trans (♭ xs≈) (♭ ys≈) poset : Set → Coℕ → Poset poset A n = record { carrier = Covec A n ; _≈_ = _≈_ ; _≤_ = _⊑_ ; isPartialOrder = record { isPreorder = record { isEquivalence = Setoid.isEquivalence (setoid A n) ; reflexive = reflexive ; trans = trans ; ∼-resp-≈ = ((λ {_} → ⊑-resp-≈ˡ) , λ {_} → ⊑-resp-≈ʳ) } ; antisym = antisym } } where reflexive : ∀ {A n} → _≈_ {A} {n} ⇒ _⊑_ reflexive [] = [] reflexive (x ∷ xs≈) = x ∷ ♯ reflexive (♭ xs≈) trans : ∀ {A n} → Transitive (_⊑_ {A} {n}) trans [] _ = [] trans (x ∷ xs≈) (.x ∷ ys≈) = x ∷ ♯ trans (♭ xs≈) (♭ ys≈) ⊑-resp-≈ˡ : ∀ {A n} {xs : Covec A n} → (λ ys → xs ⊑ ys) Respects _≈_ {A} {n} ⊑-resp-≈ˡ _ [] = [] ⊑-resp-≈ˡ (x ∷ xs≈) (.x ∷ p) = x ∷ ♯ ⊑-resp-≈ˡ (♭ xs≈) (♭ p) ⊑-resp-≈ʳ : ∀ {A n} {ys : Covec A n} → (λ xs → xs ⊑ ys) Respects _≈_ {A} {n} ⊑-resp-≈ʳ [] _ = [] ⊑-resp-≈ʳ (x ∷ xs≈) (.x ∷ p) = x ∷ ♯ ⊑-resp-≈ʳ (♭ xs≈) (♭ p) antisym : ∀ {A n} → Antisymmetric (_≈_ {A} {n}) _⊑_ antisym [] [] = [] antisym (x ∷ p₁) (.x ∷ p₂) = x ∷ ♯ antisym (♭ p₁) (♭ p₂) map-cong : ∀ {A B n} (f : A → B) → _≈_ {n = n} =[ map f ]⇒ _≈_ map-cong f [] = [] map-cong f (x ∷ xs≈) = f x ∷ ♯ map-cong f (♭ xs≈) take-⊑ : ∀ {A} m {n} (xs : Covec A (m + n)) → take m xs ⊑ xs take-⊑ zero xs = [] take-⊑ (suc n) (x ∷ xs) = x ∷ ♯ take-⊑ (♭ n) (♭ xs)
29.072727
72
0.406087
c7f1303506479efbb94e923f4be5e523955fb47d
7,983
agda
Agda
Cubical/Experiments/Brunerie.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/Experiments/Brunerie.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Experiments/Brunerie.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Experiments.Brunerie where open import Cubical.Foundations.Everything open import Cubical.Data.Bool open import Cubical.Data.Nat open import Cubical.Data.Int open import Cubical.Data.HomotopyGroup open import Cubical.HITs.S1 open import Cubical.HITs.S2 open import Cubical.HITs.S3 open import Cubical.HITs.Join open import Cubical.HITs.SetTruncation as SetTrunc open import Cubical.HITs.GroupoidTruncation as GroupoidTrunc open import Cubical.HITs.2GroupoidTruncation as 2GroupoidTrunc open import Cubical.Homotopy.Loopspace open import Cubical.Homotopy.Hopf open S¹Hopf -- This code is adapted from examples/brunerie3.ctt on the pi4s3_nobug branch of cubicaltt Bool∙ S¹∙ S³∙ : Pointed₀ Bool∙ = (Bool , true) S¹∙ = (S¹ , base) S³∙ = (S³ , base) ∥_∥₃∙ ∥_∥₄∙ : Pointed₀ → Pointed₀ ∥ A , a ∥₃∙ = ∥ A ∥₃ , ∣ a ∣₃ ∥ A , a ∥₄∙ = ∥ A ∥₄ , ∣ a ∣₄ join∙ : Pointed₀ → Type₀ → Pointed₀ join∙ (A , a) B = join A B , inl a Ω² Ω³ : Pointed₀ → Pointed₀ Ω² = Ω^ 2 Ω³ = Ω^ 3 mapΩrefl : {A : Pointed₀} {B : Type₀} (f : A .fst → B) → Ω A .fst → Ω (B , f (pt A)) .fst mapΩrefl f p i = f (p i) mapΩ²refl : {A : Pointed₀} {B : Type₀} (f : A .fst → B) → Ω² A .fst → Ω² (B , f (pt A)) .fst mapΩ²refl f p i j = f (p i j) mapΩ³refl : {A : Pointed₀} {B : Type₀} (f : A .fst → B) → Ω³ A .fst → Ω³ (B , f (pt A)) .fst mapΩ³refl f p i j k = f (p i j k) meridS² : S¹ → Path S² base base meridS² base _ = base meridS² (loop i) j = surf i j alpha : join S¹ S¹ → S² alpha (inl x) = base alpha (inr y) = base alpha (push x y i) = (meridS² y ∙ meridS² x) i connectionBoth : {A : Type₀} {a : A} (p : Path A a a) → PathP (λ i → Path A (p i) (p i)) p p connectionBoth {a = a} p i j = hcomp (λ k → λ { (i = i0) → p (j ∨ ~ k) ; (i = i1) → p (j ∧ k) ; (j = i0) → p (i ∨ ~ k) ; (j = i1) → p (i ∧ k) }) a data PostTotalHopf : Type₀ where base : S¹ → PostTotalHopf loop : (x : S¹) → PathP (λ i → Path PostTotalHopf (base x) (base (rotLoop x (~ i)))) refl refl tee12 : (x : S²) → HopfS² x → PostTotalHopf tee12 base y = base y tee12 (surf i j) y = hcomp (λ k → λ { (i = i0) → base y ; (i = i1) → base y ; (j = i0) → base y ; (j = i1) → base (rotLoopInv y (~ i) k) }) (loop (unglue (i ∨ ~ i ∨ j ∨ ~ j) y) i j) tee34 : PostTotalHopf → join S¹ S¹ tee34 (base x) = inl x tee34 (loop x i j) = hcomp (λ k → λ { (i = i0) → push x x (j ∧ ~ k) ; (i = i1) → push x x (j ∧ ~ k) ; (j = i0) → inl x ; (j = i1) → push (rotLoop x (~ i)) x (~ k) }) (push x x j) tee : (x : S²) → HopfS² x → join S¹ S¹ tee x y = tee34 (tee12 x y) fibΩ : {B : Pointed₀} (P : B .fst → Type₀) → P (pt B) → Ω B .fst → Type₀ fibΩ P f p = PathP (λ i → P (p i)) f f fibΩ² : {B : Pointed₀} (P : B .fst → Type₀) → P (pt B) → Ω² B .fst → Type₀ fibΩ² P f = fibΩ (fibΩ P f) refl fibΩ³ : {B : Pointed₀} (P : B .fst → Type₀) → P (pt B) → Ω³ B .fst → Type₀ fibΩ³ P f = fibΩ² (fibΩ P f) refl Ω³Hopf : Ω³ S²∙ .fst → Type₀ Ω³Hopf = fibΩ³ HopfS² base fibContrΩ³Hopf : ∀ p → Ω³Hopf p fibContrΩ³Hopf p i j k = hcomp (λ m → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base ; (k = i0) → base ; (k = i1) → isSetΩS¹ refl refl (λ i j → transp (λ n → HopfS² (p i j n)) (i ∨ ~ i ∨ j ∨ ~ j) base) (λ _ _ → base) m i j }) (transp (λ n → HopfS² (p i j (k ∧ n))) (i ∨ ~ i ∨ j ∨ ~ j ∨ ~ k) base) h : Ω³ S²∙ .fst → Ω³ (join∙ S¹∙ S¹) .fst h p i j k = tee (p i j k) (fibContrΩ³Hopf p i j k) multTwoAux : (x : S²) → Path (Path ∥ S² ∥₄ ∣ x ∣₄ ∣ x ∣₄) refl refl multTwoAux base i j = ∣ surf i j ∣₄ multTwoAux (surf k l) i j = hcomp (λ m → λ { (i = i0) → ∣ surf k l ∣₄ ; (i = i1) → ∣ surf k l ∣₄ ; (j = i0) → ∣ surf k l ∣₄ ; (j = i1) → ∣ surf k l ∣₄ ; (k = i0) → ∣ surf i j ∣₄ ; (k = i1) → ∣ surf i j ∣₄ ; (l = i0) → ∣ surf i j ∣₄ ; (l = i1) → squash₄ _ _ _ _ _ _ (λ k i j → step₁ k i j) refl m k i j }) (step₁ k i j) where step₁ : I → I → I → ∥ S² ∥₄ step₁ k i j = hcomp {A = ∥ S² ∥₄} (λ m → λ { (i = i0) → ∣ surf k (l ∧ m) ∣₄ ; (i = i1) → ∣ surf k (l ∧ m) ∣₄ ; (j = i0) → ∣ surf k (l ∧ m) ∣₄ ; (j = i1) → ∣ surf k (l ∧ m) ∣₄ ; (k = i0) → ∣ surf i j ∣₄ ; (k = i1) → ∣ surf i j ∣₄ ; (l = i0) → ∣ surf i j ∣₄ }) ∣ surf i j ∣₄ multTwoTildeAux : (t : ∥ S² ∥₄) → Path (Path ∥ S² ∥₄ t t) refl refl multTwoTildeAux ∣ x ∣₄ = multTwoAux x multTwoTildeAux (squash₄ _ _ _ _ _ _ t u k l m n) i j = squash₄ _ _ _ _ _ _ (λ k l m → multTwoTildeAux (t k l m) i j) (λ k l m → multTwoTildeAux (u k l m) i j) k l m n multTwoEquivAux : Path (Path (∥ S² ∥₄ ≃ ∥ S² ∥₄) (idEquiv _) (idEquiv _)) refl refl multTwoEquivAux i j = ( f i j , hcomp (λ l → λ { (i = i0) → isPropIsEquiv _ (idIsEquiv _) (idIsEquiv _) l ; (i = i1) → isPropIsEquiv _ (idIsEquiv _) (idIsEquiv _) l ; (j = i0) → isPropIsEquiv _ (idIsEquiv _) (idIsEquiv _) l ; (j = i1) → isPropIsEquiv _ (transp (λ k → isEquiv (f i k)) (i ∨ ~ i) (idIsEquiv _)) (idIsEquiv _) l }) (transp (λ k → isEquiv (f i (j ∧ k))) (i ∨ ~ i ∨ ~ j) (idIsEquiv _)) ) where f : I → I → ∥ S² ∥₄ → ∥ S² ∥₄ f i j t = multTwoTildeAux t i j tHopf³ : S³ → Type₀ tHopf³ base = ∥ S² ∥₄ tHopf³ (surf i j k) = Glue ∥ S² ∥₄ (λ { (i = i0) → (∥ S² ∥₄ , idEquiv _) ; (i = i1) → (∥ S² ∥₄ , idEquiv _) ; (j = i0) → (∥ S² ∥₄ , idEquiv _) ; (j = i1) → (∥ S² ∥₄ , idEquiv _) ; (k = i0) → (∥ S² ∥₄ , multTwoEquivAux i j) ; (k = i1) → (∥ S² ∥₄ , idEquiv _) }) π₃S³ : Ω³ S³∙ .fst → Ω² ∥ S²∙ ∥₄∙ .fst π₃S³ p i j = transp (λ k → tHopf³ (p j k i)) i0 ∣ base ∣₄ codeS² : S² → hGroupoid _ codeS² s = ∥ HopfS² s ∥₃ , squash₃ codeTruncS² : ∥ S² ∥₄ → hGroupoid _ codeTruncS² = 2GroupoidTrunc.rec (isOfHLevelTypeOfHLevel 3) codeS² encodeTruncS² : Ω ∥ S²∙ ∥₄∙ .fst → ∥ S¹ ∥₃ encodeTruncS² p = transp (λ i → codeTruncS² (p i) .fst) i0 ∣ base ∣₃ codeS¹ : S¹ → hSet _ codeS¹ s = ∥ helix s ∥₂ , squash₂ codeTruncS¹ : ∥ S¹ ∥₃ → hSet _ codeTruncS¹ = GroupoidTrunc.rec (isOfHLevelTypeOfHLevel 2) codeS¹ encodeTruncS¹ : Ω ∥ S¹∙ ∥₃∙ .fst → ∥ ℤ ∥₂ encodeTruncS¹ p = transp (λ i → codeTruncS¹ (p i) .fst) i0 ∣ pos zero ∣₂ -- THE BIG GAME f3 : Ω³ S³∙ .fst → Ω³ (join∙ S¹∙ S¹) .fst f3 = mapΩ³refl S³→joinS¹S¹ f4 : Ω³ (join∙ S¹∙ S¹) .fst → Ω³ S²∙ .fst f4 = mapΩ³refl alpha f5 : Ω³ S²∙ .fst → Ω³ (join∙ S¹∙ S¹) .fst f5 = h f6 : Ω³ (join∙ S¹∙ S¹) .fst → Ω³ S³∙ .fst f6 = mapΩ³refl joinS¹S¹→S³ f7 : Ω³ S³∙ .fst → Ω² ∥ S²∙ ∥₄∙ .fst f7 = π₃S³ g8 : Ω² ∥ S²∙ ∥₄∙ .fst → Ω ∥ S¹∙ ∥₃∙ .fst g8 = mapΩrefl encodeTruncS² g9 : Ω ∥ S¹∙ ∥₃∙ .fst → ∥ ℤ ∥₂ g9 = encodeTruncS¹ g10 : ∥ ℤ ∥₂ → ℤ g10 = SetTrunc.rec isSetℤ (idfun ℤ) -- don't run me brunerie : ℤ brunerie = g10 (g9 (g8 (f7 (f6 (f5 (f4 (f3 (λ i j k → surf i j k)))))))) -- simpler tests test63 : ℕ → ℤ test63 n = g10 (g9 (g8 (f7 (63n n)))) where 63n : ℕ → Ω³ S³∙ .fst 63n zero i j k = surf i j k 63n (suc n) = f6 (f3 (63n n)) foo : Ω³ S²∙ .fst foo i j k = hcomp (λ l → λ { (i = i0) → surf l l ; (i = i1) → surf l l ; (j = i0) → surf l l ; (j = i1) → surf l l ; (k = i0) → surf l l ; (k = i1) → surf l l }) base sorghum : Ω³ S²∙ .fst sorghum i j k = hcomp (λ l → λ { (i = i0) → surf j l ; (i = i1) → surf k (~ l) ; (j = i0) → surf k (i ∧ ~ l) ; (j = i1) → surf k (i ∧ ~ l) ; (k = i0) → surf j (i ∨ l) ; (k = i1) → surf j (i ∨ l) }) (hcomp (λ l → λ { (i = i0) → base ; (i = i1) → surf j l ; (j = i0) → surf k i ; (j = i1) → surf k i ; (k = i0) → surf j (i ∧ l) ; (k = i1) → surf j (i ∧ l) }) (surf k i)) goo : Ω³ S²∙ .fst → ℤ goo x = g10 (g9 (g8 (f7 (f6 (f5 x)))))
26.698997
96
0.503821
c7829e5a72c1bd87ffb5c54981aea4f28d5f5868
5,408
agda
Agda
Cubical/HITs/Ints/QuoInt/Base.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/HITs/Ints/QuoInt/Base.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/HITs/Ints/QuoInt/Base.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
1
2021-03-12T20:08:45.000Z
2021-03-12T20:08:45.000Z
-- Define the integers as a HIT by identifying +0 and -0 {-# OPTIONS --safe #-} module Cubical.HITs.Ints.QuoInt.Base where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Transport open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Relation.Nullary open import Cubical.Data.Int as Int using (Int; sucInt; predInt; discreteInt; isSetInt) open import Cubical.Data.Nat as ℕ using (ℕ; zero; suc) open import Cubical.Data.Bool as Bool using (Bool; not; notnot) variable l : Level Sign : Type₀ Sign = Bool pattern spos = Bool.false pattern sneg = Bool.true _·S_ : Sign → Sign → Sign _·S_ = Bool._⊕_ data ℤ : Type₀ where signed : (s : Sign) (n : ℕ) → ℤ posneg : signed spos 0 ≡ signed sneg 0 pattern pos n = signed spos n pattern neg n = signed sneg n sign : ℤ → Sign sign (signed _ zero) = spos sign (signed s (suc _)) = s sign (posneg i) = spos sign-pos : ∀ n → sign (pos n) ≡ spos sign-pos zero = refl sign-pos (suc n) = refl abs : ℤ → ℕ abs (signed _ n) = n abs (posneg i) = zero signed-inv : ∀ n → signed (sign n) (abs n) ≡ n signed-inv (pos zero) = refl signed-inv (neg zero) = posneg signed-inv (signed s (suc n)) = refl signed-inv (posneg i) j = posneg (i ∧ j) signed-zero : ∀ s₁ s₂ → signed s₁ zero ≡ signed s₂ zero signed-zero spos spos = refl signed-zero sneg sneg = refl signed-zero spos sneg = posneg signed-zero sneg spos = sym posneg rec : ∀ {A : Type l} → (pos' neg' : ℕ → A) → pos' 0 ≡ neg' 0 → ℤ → A rec pos' neg' eq (pos m) = pos' m rec pos' neg' eq (neg m) = neg' m rec pos' neg' eq (posneg i) = eq i elim : ∀ (P : ℤ → Type l) → (pos' : ∀ n → P (pos n)) → (neg' : ∀ n → P (neg n)) → (λ i → P (posneg i)) [ pos' 0 ≡ neg' 0 ] → ∀ z → P z elim P pos' neg' eq (pos n) = pos' n elim P pos' neg' eq (neg n) = neg' n elim P pos' neg' eq (posneg i) = eq i Int→ℤ : Int → ℤ Int→ℤ (Int.pos n) = pos n Int→ℤ (Int.negsuc n) = neg (suc n) ℤ→Int : ℤ → Int ℤ→Int (pos n) = Int.pos n ℤ→Int (neg zero) = Int.pos 0 ℤ→Int (neg (suc n)) = Int.negsuc n ℤ→Int (posneg _) = Int.pos 0 ℤ→Int→ℤ : ∀ (n : ℤ) → Int→ℤ (ℤ→Int n) ≡ n ℤ→Int→ℤ (pos n) _ = pos n ℤ→Int→ℤ (neg zero) i = posneg i ℤ→Int→ℤ (neg (suc n)) _ = neg (suc n) ℤ→Int→ℤ (posneg j) i = posneg (j ∧ i) Int→ℤ→Int : ∀ (n : Int) → ℤ→Int (Int→ℤ n) ≡ n Int→ℤ→Int (Int.pos n) _ = Int.pos n Int→ℤ→Int (Int.negsuc n) _ = Int.negsuc n Int≡ℤ : Int ≡ ℤ Int≡ℤ = isoToPath (iso Int→ℤ ℤ→Int ℤ→Int→ℤ Int→ℤ→Int) discreteℤ : Discrete ℤ discreteℤ = subst Discrete Int≡ℤ discreteInt isSetℤ : isSet ℤ isSetℤ = subst isSet Int≡ℤ isSetInt -_ : ℤ → ℤ - signed s n = signed (not s) n - posneg i = posneg (~ i) negate-invol : ∀ n → - - n ≡ n negate-invol (signed s n) i = signed (notnot s i) n negate-invol (posneg i) _ = posneg i negateEquiv : ℤ ≃ ℤ negateEquiv = isoToEquiv (iso -_ -_ negate-invol negate-invol) negateEq : ℤ ≡ ℤ negateEq = ua negateEquiv infixl 6 _+_ infixl 7 _·_ sucℤ : ℤ → ℤ sucℤ (pos n) = pos (suc n) sucℤ (neg zero) = pos 1 sucℤ (neg (suc n)) = neg n sucℤ (posneg _) = pos 1 predℤ : ℤ → ℤ predℤ = subst (λ Z → (Z → Z)) negateEq sucℤ -- definitionally equal to λ n → - (sucℤ (- n)) -- strictly more useful than the direct pattern matching version, -- see negateSuc and negatePred sucPredℤ : ∀ n → sucℤ (predℤ n) ≡ n sucPredℤ (pos zero) = sym posneg sucPredℤ (pos (suc _)) = refl sucPredℤ (neg _) = refl sucPredℤ (posneg i) j = posneg (i ∨ ~ j) predSucℤ : ∀ n → predℤ (sucℤ n) ≡ n predSucℤ (pos _) = refl predSucℤ (neg zero) = posneg predSucℤ (neg (suc _)) = refl predSucℤ (posneg i) j = posneg (i ∧ j) _+_ : ℤ → ℤ → ℤ (signed _ zero) + n = n (posneg _) + n = n (pos (suc m)) + n = sucℤ (pos m + n) (neg (suc m)) + n = predℤ (neg m + n) sucPathℤ : ℤ ≡ ℤ sucPathℤ = isoToPath (iso sucℤ predℤ sucPredℤ predSucℤ) -- We do the same trick as in Cubical.Data.Int to prove that addition -- is an equivalence addEqℤ : ℕ → ℤ ≡ ℤ addEqℤ zero = refl addEqℤ (suc n) = addEqℤ n ∙ sucPathℤ predPathℤ : ℤ ≡ ℤ predPathℤ = isoToPath (iso predℤ sucℤ predSucℤ sucPredℤ) subEqℤ : ℕ → ℤ ≡ ℤ subEqℤ zero = refl subEqℤ (suc n) = subEqℤ n ∙ predPathℤ addℤ : ℤ → ℤ → ℤ addℤ (pos m) n = transport (addEqℤ m) n addℤ (neg m) n = transport (subEqℤ m) n addℤ (posneg _) n = n isEquivAddℤ : (m : ℤ) → isEquiv (addℤ m) isEquivAddℤ (pos n) = isEquivTransport (addEqℤ n) isEquivAddℤ (neg n) = isEquivTransport (subEqℤ n) isEquivAddℤ (posneg _) = isEquivTransport refl addℤ≡+ℤ : addℤ ≡ _+_ addℤ≡+ℤ i (pos (suc m)) n = sucℤ (addℤ≡+ℤ i (pos m) n) addℤ≡+ℤ i (neg (suc m)) n = predℤ (addℤ≡+ℤ i (neg m) n) addℤ≡+ℤ i (pos zero) n = n addℤ≡+ℤ i (neg zero) n = n addℤ≡+ℤ _ (posneg _) n = n isEquiv+ℤ : (m : ℤ) → isEquiv (m +_) isEquiv+ℤ = subst (λ _+_ → (m : ℤ) → isEquiv (m +_)) addℤ≡+ℤ isEquivAddℤ _·_ : ℤ → ℤ → ℤ m · n = signed (sign m ·S sign n) (abs m ℕ.· abs n) private ·-abs : ∀ m n → abs (m · n) ≡ abs m ℕ.· abs n ·-abs m n = refl -- Natural number and negative integer literals for ℤ open import Cubical.Data.Nat.Literals public instance fromNatℤ : HasFromNat ℤ fromNatℤ = record { Constraint = λ _ → Unit ; fromNat = λ n → pos n } instance fromNegℤ : HasFromNeg ℤ fromNegℤ = record { Constraint = λ _ → Unit ; fromNeg = λ n → neg n }
25.037037
87
0.619083
04fac9552d42599d28b21558390cccad1403351d
3,510
agda
Agda
agda/Utils.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
3
2020-07-31T18:15:26.000Z
2022-02-19T12:15:21.000Z
agda/Utils.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
agda/Utils.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts #-} module Utils where -- thing that currently do not belong anywhere and do not have many dependencies open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero) private variable ℓ ℓ' ℓ'' : Level open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Relation.Nullary.Base -- ¬_ open import Cubical.Relation.Binary.Base open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_) open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_) open import Cubical.Data.Empty renaming (elim to ⊥-elim) -- `⊥` and `elim` ⊎-swap : ∀{x : Type ℓ} {y : Type ℓ'} → x ⊎ y → y ⊎ x ⊎-swap (inl x) = inr x ⊎-swap (inr x) = inl x swap : ∀{x : Type ℓ} {y : Type ℓ'} → x × y → y × x swap (x , y) = (y , x) curry : ∀{ℓ ℓ' ℓ''} {A : Type ℓ} {B : A → Type ℓ'} {C : (a : A) → (b : B a) → Type ℓ''} → ((p : Σ A B) → C (fst p) (snd p)) → ((x : A) → (y : B x) → C x y) curry f x y = f (x , y) -- NOTE: this is non-hProp logic -- contraposition : {P : Type ℓ} {Q : Type ℓ'} → (P → Q) → ¬ Q → ¬ P -- contraposition f ¬q p = ⊥-elim (¬q (f p)) deMorgan₂' : {P : Type ℓ} {Q : Type ℓ'} → ¬(P ⊎ Q) → (¬ P) × (¬ Q) deMorgan₂' {P = P} {Q = Q} ¬[p⊎q] = (λ p → ⊥-elim (¬[p⊎q] (inl p))) , λ q → ⊥-elim (¬[p⊎q] (inr q)) deMorgan₂-back' : {P : Type ℓ} {Q : Type ℓ'} → (¬ P) × (¬ Q) → ¬(P ⊎ Q) deMorgan₂-back' (¬p , ¬q) (inl p) = ¬p p deMorgan₂-back' (¬p , ¬q) (inr q) = ¬q q -- hPropRel : ∀ {ℓ} (A B : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) -- hPropRel A B ℓ' = A → B → hProp ℓ' {- NOTE: there is also `Relation.Binary.PropositionalEquality` where they write: -- Inspect can be used when you want to pattern match on the result r -- of some expression e, and you also need to "remember" that r ≡ e. -- See README.Inspect for an explanation of how/why to use this. record Reveal_·_is_ {A : Set a} {B : A → Set b} (f : (x : A) → B x) (x : A) (y : B x) : Set (a ⊔ b) where constructor [_] field eq : f x ≡ y inspect : ∀ {A : Set a} {B : A → Set b} (f : (x : A) → B x) (x : A) → Reveal f · x is f x inspect f x = [ refl ] -} {- NOTE: an example is plus-eq-with : ∀ m n → Plus-eq m n (m + n) plus-eq-with m n with m + n | inspect (m +_) n ... | zero | [ m+n≡0 ] = m+n≡0⇒m≡0 m m+n≡0 , m+n≡0⇒n≡0 m m+n≡0 ... | suc p | [ m+n≡1+p ] = m+n≡1+p -} -- so this looks like a mechanism for "@-pattern-disribution over `with` cases" record !_ {ℓ} (X : Type ℓ) : Type ℓ where inductive constructor !!_ -- map "into" `!!_ : X → ! X` field !!!_ : X -- map "out of" `!!!_ : ! X → X` infix 1 !!!_ open !_ public -- brings !!!_ into scope infix 1 !!_ infix 1 !_ !-iso : ∀{ℓ} {X : Type ℓ} → Iso (! X) X Iso.fun !-iso = !!!_ Iso.inv !-iso = !!_ Iso.rightInv !-iso = λ x → refl Iso.leftInv !-iso = λ{ (!! x) → refl } !-≡ : ∀{ℓ} {X : Type ℓ} → (! X) ≡ X !-≡ {X = X} = isoToPath !-iso !-equiv : ∀{ℓ} {X : Type ℓ} → (! X) ≃ X !-equiv = !!!_ , λ where .equiv-proof x → ((!! x) , refl) , λ{ ((!! y) , p) → λ i → (!! p (~ i)) , (λ j → p (~ i ∨ j)) } -- `A unfold refl to B` checks `A` and `B` to be definitionally equal (with `refl`) and then uses `B` -- this allows for a nicer Goal/Have at the very beginning of implementing and when using something unfold' : ∀{ℓ A} → (x y : A) → _≡_ {ℓ} x y → _ unfold' x y p = y infix -8 unfold' syntax unfold' x y p = x unfold p to y {-# DISPLAY unfold' x y p = p #-}
34.411765
120
0.535328
8be867f0aeda6f13f29504777990684139a9f7ad
23,881
agda
Agda
Grammar/Non-terminal.agda
nad/pretty
b956803ba90b6c5f57bbbaab01bb18485d948492
[ "MIT" ]
null
null
null
Grammar/Non-terminal.agda
nad/pretty
b956803ba90b6c5f57bbbaab01bb18485d948492
[ "MIT" ]
null
null
null
Grammar/Non-terminal.agda
nad/pretty
b956803ba90b6c5f57bbbaab01bb18485d948492
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Grammars defined as functions from non-terminals to productions ------------------------------------------------------------------------ {-# OPTIONS --safe #-} module Grammar.Non-terminal where open import Algebra open import Category.Monad open import Data.Bool open import Data.Bool.Properties open import Data.Char open import Data.Empty open import Data.List hiding (unfold) open import Data.List.Properties open import Data.Maybe hiding (_>>=_) open import Data.Maybe.Categorical as MaybeC open import Data.Nat open import Data.Product as Product open import Data.Unit open import Function open import Level using (Lift; lift) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_) open import Relation.Nullary open import Tactic.MonoidSolver private module LM {A : Set} = Monoid (++-monoid A) open module MM {f} = RawMonadPlus (MaybeC.monadPlus {f = f}) using () renaming (_<$>_ to _<$>M_; _⊛_ to _⊛M_; _>>=_ to _>>=M_; _∣_ to _∣M_) open import Utilities ------------------------------------------------------------------------ -- Grammars -- Productions. (Note that productions can contain choices.) infix 30 _⋆ infixl 20 _⊛_ _<⊛_ infixl 15 _>>=_ infixl 10 _∣_ data Prod (NT : Set → Set₁) : Set → Set₁ where ! : ∀ {A} → NT A → Prod NT A fail : ∀ {A} → Prod NT A return : ∀ {A} → A → Prod NT A token : Prod NT Char tok : Char → Prod NT Char _⊛_ : ∀ {A B} → Prod NT (A → B) → Prod NT A → Prod NT B _<⊛_ : ∀ {A B} → Prod NT A → Prod NT B → Prod NT A _>>=_ : ∀ {A B} → Prod NT A → (A → Prod NT B) → Prod NT B _∣_ : ∀ {A} → Prod NT A → Prod NT A → Prod NT A _⋆ : ∀ {A} → Prod NT A → Prod NT (List A) -- Grammars. Grammar : (Set → Set₁) → Set₁ Grammar NT = ∀ A → NT A → Prod NT A -- An empty non-terminal type. Empty-NT : Set → Set₁ Empty-NT _ = Lift _ ⊥ -- A corresponding grammar. empty-grammar : Grammar Empty-NT empty-grammar _ (lift ()) ------------------------------------------------------------------------ -- Production combinators -- Map. infixl 20 _<$>_ _<$_ _<$>_ : ∀ {NT A B} → (A → B) → Prod NT A → Prod NT B f <$> p = return f ⊛ p _<$_ : ∀ {NT A B} → A → Prod NT B → Prod NT A x <$ p = return x <⊛ p -- Various sequencing operators. infixl 20 _⊛>_ infixl 15 _>>_ _>>_ : ∀ {NT A B} → Prod NT A → Prod NT B → Prod NT B p₁ >> p₂ = (λ _ x → x) <$> p₁ ⊛ p₂ _⊛>_ : ∀ {NT A B} → Prod NT A → Prod NT B → Prod NT B _⊛>_ = _>>_ -- Kleene plus. infix 30 _+ _+ : ∀ {NT A} → Prod NT A → Prod NT (List A) p + = _∷_ <$> p ⊛ p ⋆ -- Elements separated by something. infixl 18 _sep-by_ _sep-by_ : ∀ {NT A B} → Prod NT A → Prod NT B → Prod NT (List A) g sep-by sep = _∷_ <$> g ⊛ (sep >> g) ⋆ -- A production for tokens satisfying a given predicate. if-true : ∀ {NT} (b : Bool) → Prod NT (T b) if-true true = return tt if-true false = fail sat : ∀ {NT} (p : Char → Bool) → Prod NT (∃ λ t → T (p t)) sat p = token >>= λ t → _,_ t <$> if-true (p t) -- A production for whitespace. whitespace : ∀ {NT} → Prod NT Char whitespace = tok ' ' ∣ tok '\n' -- A production for a given string. string : ∀ {NT} → List Char → Prod NT (List Char) string [] = return [] string (t ∷ s) = _∷_ <$> tok t ⊛ string s -- A production for the given string, possibly followed by some -- whitespace. symbol : ∀ {NT} → List Char → Prod NT (List Char) symbol s = string s <⊛ whitespace ⋆ ------------------------------------------------------------------------ -- Semantics infix 4 [_]_∈_·_ data [_]_∈_·_ {NT : Set → Set₁} (g : Grammar NT) : ∀ {A} → A → Prod NT A → List Char → Set₁ where !-sem : ∀ {A} {nt : NT A} {x s} → [ g ] x ∈ g A nt · s → [ g ] x ∈ ! nt · s return-sem : ∀ {A} {x : A} → [ g ] x ∈ return x · [] token-sem : ∀ {t} → [ g ] t ∈ token · [ t ] tok-sem : ∀ {t} → [ g ] t ∈ tok t · [ t ] ⊛-sem : ∀ {A B} {p₁ : Prod NT (A → B)} {p₂ : Prod NT A} {f x s₁ s₂} → [ g ] f ∈ p₁ · s₁ → [ g ] x ∈ p₂ · s₂ → [ g ] f x ∈ p₁ ⊛ p₂ · s₁ ++ s₂ <⊛-sem : ∀ {A B} {p₁ : Prod NT A} {p₂ : Prod NT B} {x y s₁ s₂} → [ g ] x ∈ p₁ · s₁ → [ g ] y ∈ p₂ · s₂ → [ g ] x ∈ p₁ <⊛ p₂ · s₁ ++ s₂ >>=-sem : ∀ {A B} {p₁ : Prod NT A} {p₂ : A → Prod NT B} {x y s₁ s₂} → [ g ] x ∈ p₁ · s₁ → [ g ] y ∈ p₂ x · s₂ → [ g ] y ∈ p₁ >>= p₂ · s₁ ++ s₂ left-sem : ∀ {A} {p₁ p₂ : Prod NT A} {x s} → [ g ] x ∈ p₁ · s → [ g ] x ∈ p₁ ∣ p₂ · s right-sem : ∀ {A} {p₁ p₂ : Prod NT A} {x s} → [ g ] x ∈ p₂ · s → [ g ] x ∈ p₁ ∣ p₂ · s ⋆-[]-sem : ∀ {A} {p : Prod NT A} → [ g ] [] ∈ p ⋆ · [] ⋆-+-sem : ∀ {A} {p : Prod NT A} {xs s} → [ g ] xs ∈ p + · s → [ g ] xs ∈ p ⋆ · s -- Cast lemma. cast : ∀ {NT g A} {p : Prod NT A} {x s₁ s₂} → s₁ ≡ s₂ → [ g ] x ∈ p · s₁ → [ g ] x ∈ p · s₂ cast P.refl = id ------------------------------------------------------------------------ -- Semantics combinators <$>-sem : ∀ {NT} {g : Grammar NT} {A B} {f : A → B} {x p s} → [ g ] x ∈ p · s → [ g ] f x ∈ f <$> p · s <$>-sem x∈ = ⊛-sem return-sem x∈ <$-sem : ∀ {NT g A B} {p : Prod NT B} {x : A} {y s} → [ g ] y ∈ p · s → [ g ] x ∈ x <$ p · s <$-sem y∈ = <⊛-sem return-sem y∈ >>-sem : ∀ {NT g A B} {p₁ : Prod NT A} {p₂ : Prod NT B} {x y s₁ s₂} → [ g ] x ∈ p₁ · s₁ → [ g ] y ∈ p₂ · s₂ → [ g ] y ∈ p₁ >> p₂ · s₁ ++ s₂ >>-sem x∈ y∈ = ⊛-sem (⊛-sem return-sem x∈) y∈ ⊛>-sem : ∀ {NT g A B} {p₁ : Prod NT A} {p₂ : Prod NT B} {x y s₁ s₂} → [ g ] x ∈ p₁ · s₁ → [ g ] y ∈ p₂ · s₂ → [ g ] y ∈ p₁ ⊛> p₂ · s₁ ++ s₂ ⊛>-sem = >>-sem +-sem : ∀ {NT g A} {p : Prod NT A} {x xs s₁ s₂} → [ g ] x ∈ p · s₁ → [ g ] xs ∈ p ⋆ · s₂ → [ g ] x ∷ xs ∈ p + · s₁ ++ s₂ +-sem x∈ xs∈ = ⊛-sem (⊛-sem return-sem x∈) xs∈ ⋆-∷-sem : ∀ {NT g A} {p : Prod NT A} {x xs s₁ s₂} → [ g ] x ∈ p · s₁ → [ g ] xs ∈ p ⋆ · s₂ → [ g ] x ∷ xs ∈ p ⋆ · s₁ ++ s₂ ⋆-∷-sem x∈ xs∈ = ⋆-+-sem (+-sem x∈ xs∈) ⋆-⋆-sem : ∀ {NT g A} {p : Prod NT A} {xs₁ xs₂ s₁ s₂} → [ g ] xs₁ ∈ p ⋆ · s₁ → [ g ] xs₂ ∈ p ⋆ · s₂ → [ g ] xs₁ ++ xs₂ ∈ p ⋆ · s₁ ++ s₂ ⋆-⋆-sem ⋆-[]-sem xs₂∈ = xs₂∈ ⋆-⋆-sem (⋆-+-sem (⊛-sem (⊛-sem {s₂ = s₁} return-sem x∈) xs₁∈)) xs₂∈ = cast (P.sym $ LM.assoc s₁ _ _) (⋆-∷-sem x∈ (⋆-⋆-sem xs₁∈ xs₂∈)) +-∷-sem : ∀ {NT g A} {p : Prod NT A} {x xs s₁ s₂} → [ g ] x ∈ p · s₁ → [ g ] xs ∈ p + · s₂ → [ g ] x ∷ xs ∈ p + · s₁ ++ s₂ +-∷-sem x∈ xs∈ = +-sem x∈ (⋆-+-sem xs∈) +-⋆-sem : ∀ {NT g A} {p : Prod NT A} {xs₁ xs₂ s₁ s₂} → [ g ] xs₁ ∈ p + · s₁ → [ g ] xs₂ ∈ p ⋆ · s₂ → [ g ] xs₁ ++ xs₂ ∈ p + · s₁ ++ s₂ +-⋆-sem (⊛-sem (⊛-sem {s₂ = s₁} return-sem x∈) xs₁∈) xs₂∈ = cast (P.sym $ LM.assoc s₁ _ _) (+-sem x∈ (⋆-⋆-sem xs₁∈ xs₂∈)) sep-by-sem-singleton : ∀ {NT g A B} {p : Prod NT A} {sep : Prod NT B} {x s} → [ g ] x ∈ p · s → [ g ] [ x ] ∈ p sep-by sep · s sep-by-sem-singleton x∈ = cast (proj₂ LM.identity _) (⊛-sem (<$>-sem x∈) ⋆-[]-sem) sep-by-sem-∷ : ∀ {NT g A B} {p : Prod NT A} {sep : Prod NT B} {x y xs s₁ s₂ s₃} → [ g ] x ∈ p · s₁ → [ g ] y ∈ sep · s₂ → [ g ] xs ∈ p sep-by sep · s₃ → [ g ] x ∷ xs ∈ p sep-by sep · s₁ ++ s₂ ++ s₃ sep-by-sem-∷ {s₂ = s₂} x∈ y∈ (⊛-sem (⊛-sem return-sem x′∈) xs∈) = ⊛-sem (<$>-sem x∈) (cast (LM.assoc s₂ _ _) (⋆-∷-sem (>>-sem y∈ x′∈) xs∈)) if-true-sem : ∀ {NT} {g : Grammar NT} {b} (t : T b) → [ g ] t ∈ if-true b · [] if-true-sem {b = true} _ = return-sem if-true-sem {b = false} () sat-sem : ∀ {NT} {g : Grammar NT} {p t} (pt : T (p t)) → [ g ] (t , pt) ∈ sat p · [ t ] sat-sem pt = >>=-sem token-sem (<$>-sem (if-true-sem pt)) whitespace-sem-space : ∀ {NT} {g : Grammar NT} → [ g ] ' ' ∈ whitespace · [ ' ' ] whitespace-sem-space = left-sem tok-sem whitespace-sem-newline : ∀ {NT} {g : Grammar NT} → [ g ] '\n' ∈ whitespace · [ '\n' ] whitespace-sem-newline = right-sem tok-sem string-sem : ∀ {NT} {g : Grammar NT} {s} → [ g ] s ∈ string s · s string-sem {s = []} = return-sem string-sem {s = t ∷ s} = ⊛-sem (<$>-sem tok-sem) string-sem symbol-sem : ∀ {NT} {g : Grammar NT} {s s′ s″} → [ g ] s″ ∈ whitespace ⋆ · s′ → [ g ] s ∈ symbol s · s ++ s′ symbol-sem s″∈ = <⊛-sem string-sem s″∈ ------------------------------------------------------------------------ -- Some production transformers -- Replaces all non-terminals with non-terminal-free productions. replace : ∀ {NT A} → (∀ {A} → NT A → Prod Empty-NT A) → Prod NT A → Prod Empty-NT A replace f (! nt) = f nt replace f fail = fail replace f (return x) = return x replace f token = token replace f (tok x) = tok x replace f (p₁ ⊛ p₂) = replace f p₁ ⊛ replace f p₂ replace f (p₁ <⊛ p₂) = replace f p₁ <⊛ replace f p₂ replace f (p₁ >>= p₂) = replace f p₁ >>= λ x → replace f (p₂ x) replace f (p₁ ∣ p₂) = replace f p₁ ∣ replace f p₂ replace f (p ⋆) = replace f p ⋆ -- A lemma relating the resulting production with the original one in -- case every non-terminal is replaced by fail. replace-fail : ∀ {NT A g} (p : Prod NT A) {x s} → [ empty-grammar ] x ∈ replace (λ _ → fail) p · s → [ g ] x ∈ p · s replace-fail (! nt) () replace-fail fail () replace-fail (return x) return-sem = return-sem replace-fail token token-sem = token-sem replace-fail (tok t) tok-sem = tok-sem replace-fail (p₁ ⊛ p₂) (⊛-sem f∈ x∈) = ⊛-sem (replace-fail p₁ f∈) (replace-fail p₂ x∈) replace-fail (p₁ <⊛ p₂) (<⊛-sem x∈ y∈) = <⊛-sem (replace-fail p₁ x∈) (replace-fail p₂ y∈) replace-fail (p₁ >>= p₂) (>>=-sem x∈ y∈) = >>=-sem (replace-fail p₁ x∈) (replace-fail (p₂ _) y∈) replace-fail (p₁ ∣ p₂) (left-sem x∈) = left-sem (replace-fail p₁ x∈) replace-fail (p₁ ∣ p₂) (right-sem x∈) = right-sem (replace-fail p₂ x∈) replace-fail (p ⋆) ⋆-[]-sem = ⋆-[]-sem replace-fail (p ⋆) (⋆-+-sem xs∈) = ⋆-+-sem (replace-fail (p +) xs∈) -- Unfolds every non-terminal. At most n /nested/ unfoldings are -- performed. unfold : ∀ {NT A} → (n : ℕ) → Grammar NT → Prod NT A → Prod NT A unfold zero g p = p unfold (suc n) g (! nt) = unfold n g (g _ nt) unfold n g fail = fail unfold n g (return x) = return x unfold n g token = token unfold n g (tok x) = tok x unfold n g (p₁ ⊛ p₂) = unfold n g p₁ ⊛ unfold n g p₂ unfold n g (p₁ <⊛ p₂) = unfold n g p₁ <⊛ unfold n g p₂ unfold n g (p₁ >>= p₂) = unfold n g p₁ >>= λ x → unfold n g (p₂ x) unfold n g (p₁ ∣ p₂) = unfold n g p₁ ∣ unfold n g p₂ unfold n g (p ⋆) = unfold n g p ⋆ -- Unfold is semantics-preserving. unfold-to : ∀ {NT A} {g : Grammar NT} {x s} n (p : Prod NT A) → [ g ] x ∈ p · s → [ g ] x ∈ unfold n g p · s unfold-to zero p x∈ = x∈ unfold-to (suc n) (! nt) (!-sem x∈) = unfold-to n _ x∈ unfold-to (suc n) fail x∈ = x∈ unfold-to (suc n) (return x) x∈ = x∈ unfold-to (suc n) token x∈ = x∈ unfold-to (suc n) (tok x) x∈ = x∈ unfold-to (suc n) (p₁ ⊛ p₂) (⊛-sem f∈ x∈) = ⊛-sem (unfold-to (suc n) p₁ f∈) (unfold-to (suc n) p₂ x∈) unfold-to (suc n) (p₁ <⊛ p₂) (<⊛-sem x∈ y∈) = <⊛-sem (unfold-to (suc n) p₁ x∈) (unfold-to (suc n) p₂ y∈) unfold-to (suc n) (p₁ >>= p₂) (>>=-sem x∈ y∈) = >>=-sem (unfold-to (suc n) p₁ x∈) (unfold-to (suc n) (p₂ _) y∈) unfold-to (suc n) (p₁ ∣ p₂) (left-sem x∈) = left-sem (unfold-to (suc n) p₁ x∈) unfold-to (suc n) (p₁ ∣ p₂) (right-sem x∈) = right-sem (unfold-to (suc n) p₂ x∈) unfold-to (suc n) (p ⋆) ⋆-[]-sem = ⋆-[]-sem unfold-to (suc n) (p ⋆) (⋆-+-sem xs∈) = ⋆-+-sem (unfold-to (suc n) (p +) xs∈) unfold-from : ∀ {NT A} {g : Grammar NT} {x s} n (p : Prod NT A) → [ g ] x ∈ unfold n g p · s → [ g ] x ∈ p · s unfold-from zero p x∈ = x∈ unfold-from (suc n) (! nt) x∈ = !-sem (unfold-from n _ x∈) unfold-from (suc n) fail x∈ = x∈ unfold-from (suc n) (return x) x∈ = x∈ unfold-from (suc n) token x∈ = x∈ unfold-from (suc n) (tok x) x∈ = x∈ unfold-from (suc n) (p₁ ⊛ p₂) (⊛-sem f∈ x∈) = ⊛-sem (unfold-from (suc n) p₁ f∈) (unfold-from (suc n) p₂ x∈) unfold-from (suc n) (p₁ <⊛ p₂) (<⊛-sem x∈ y∈) = <⊛-sem (unfold-from (suc n) p₁ x∈) (unfold-from (suc n) p₂ y∈) unfold-from (suc n) (p₁ >>= p₂) (>>=-sem x∈ y∈) = >>=-sem (unfold-from (suc n) p₁ x∈) (unfold-from (suc n) (p₂ _) y∈) unfold-from (suc n) (p₁ ∣ p₂) (left-sem x∈) = left-sem (unfold-from (suc n) p₁ x∈) unfold-from (suc n) (p₁ ∣ p₂) (right-sem x∈) = right-sem (unfold-from (suc n) p₂ x∈) unfold-from (suc n) (p ⋆) ⋆-[]-sem = ⋆-[]-sem unfold-from (suc n) (p ⋆) (⋆-+-sem xs∈) = ⋆-+-sem (unfold-from (suc n) (p +) xs∈) ------------------------------------------------------------------------ -- Nullability -- A production is nullable (with respect to a given grammar) if the -- empty string is a member of the language defined by the production. Nullable : ∀ {NT A} → Grammar NT → Prod NT A → Set₁ Nullable g p = ∃ λ x → [ g ] x ∈ p · [] -- Nullability is not decidable, not even for productions without -- non-terminals. If nullability were decidable, then we could decide -- if a given function of type ℕ → Bool always returns false. nullability-not-decidable : (∀ {A} (p : Prod Empty-NT A) → Dec (Nullable empty-grammar p)) → (f : ℕ → Bool) → Dec (∀ n → f n ≡ false) nullability-not-decidable dec f = goal where p : Prod Empty-NT ℕ p = return tt ⋆ >>= λ tts → let n = length tts in if f n then return n else fail true-lemma : ∀ {n s} → [ empty-grammar ] n ∈ p · s → f n ≡ true true-lemma (>>=-sem {x = tts} _ _) with f (length tts) | P.inspect f (length tts) true-lemma (>>=-sem _ return-sem) | true | P.[ fn≡true ] = fn≡true true-lemma (>>=-sem _ ()) | false | _ no-lemma : ∀ {n} → f n ≡ true → ¬ (∀ n → f n ≡ false) no-lemma {n} ≡true ≡false with begin true ≡⟨ P.sym ≡true ⟩ f n ≡⟨ ≡false n ⟩ false ∎ where open P.≡-Reasoning ... | () to-tts : ℕ → List ⊤ to-tts n = replicate n tt n∈₁ : ∀ n → [ empty-grammar ] to-tts n ∈ return tt ⋆ · [] n∈₁ zero = ⋆-[]-sem n∈₁ (suc n) = ⋆-∷-sem return-sem (n∈₁ n) n∈₂ : ∀ n → f n ≡ true → let n′ = length (replicate n tt) in [ empty-grammar ] n ∈ if f n′ then return n′ else fail · [] n∈₂ n fn≡true rewrite length-replicate n {x = tt} | fn≡true = return-sem yes-lemma : ∀ n → ¬ ([ empty-grammar ] n ∈ p · []) → f n ≢ true yes-lemma n n∉ fn≡true = n∉ (>>=-sem (n∈₁ n) (n∈₂ n fn≡true)) goal : Dec (∀ n → f n ≡ false) goal with dec p ... | yes (_ , n∈) = no (no-lemma (true-lemma n∈)) ... | no ¬[]∈ = yes λ n → ¬-not (yes-lemma n (¬[]∈ ∘ -,_)) -- However, we can implement a procedure that either proves that a -- production is nullable, or returns "don't know" as the answer. -- -- Note that, in the case of bind, the second argument is only applied -- to one input—the first argument could give rise to infinitely many -- results (as in the example above). -- -- Note also that no attempt is made to memoise non-terminals—the -- grammar could consist of an infinite number of non-terminals. -- Instead the grammar is unfolded a certain number of times (n). -- Memoisation still seems like a useful heuristic, but requires that -- equality of non-terminals is decidable. nullable? : ∀ {NT A} (n : ℕ) (g : Grammar NT) (p : Prod NT A) → Maybe (Nullable g p) nullable? {NT} n g p = Product.map id (unfold-from n _) <$>M null? (unfold n g p) where null? : ∀ {A} (p : Prod NT A) → Maybe (Nullable g p) null? (! nt) = nothing null? fail = nothing null? token = nothing null? (tok t) = nothing null? (return x) = just (x , return-sem) null? (p ⋆) = just ([] , ⋆-[]-sem) null? (p₁ ⊛ p₂) = Product.zip _$_ ⊛-sem <$>M null? p₁ ⊛M null? p₂ null? (p₁ <⊛ p₂) = Product.zip const <⊛-sem <$>M null? p₁ ⊛M null? p₂ null? (p₁ >>= p₂) = null? p₁ >>=M λ { (x , x∈) → null? (p₂ x) >>=M λ { (y , y∈) → just (y , >>=-sem x∈ y∈) }} null? (p₁ ∣ p₂) = (Product.map id left-sem <$>M null? p₁) ∣M (Product.map id right-sem <$>M null? p₂) ------------------------------------------------------------------------ -- Detecting the whitespace combinator -- A predicate for the whitespace combinator. data Is-whitespace {NT} : ∀ {A} → Prod NT A → Set₁ where is-whitespace : Is-whitespace whitespace -- Detects the whitespace combinator. is-whitespace? : ∀ {NT A} (p : Prod NT A) → Maybe (Is-whitespace p) is-whitespace? {NT} (tok ' ' ∣ p) = helper p P.refl where helper : ∀ {A} (p : Prod NT A) (eq : A ≡ Char) → Maybe (Is-whitespace (tok ' ' ∣ P.subst (Prod NT) eq p)) helper (tok '\n') P.refl = just is-whitespace helper _ _ = nothing is-whitespace? _ = nothing ------------------------------------------------------------------------ -- Trailing whitespace -- A predicate for productions that can "swallow" extra trailing -- whitespace. Trailing-whitespace : ∀ {NT A} → Grammar NT → Prod NT A → Set₁ Trailing-whitespace g p = ∀ {x s} → [ g ] x ∈ p <⊛ whitespace ⋆ · s → [ g ] x ∈ p · s -- A heuristic procedure that either proves that a production can -- swallow trailing whitespace, or returns "don't know" as the answer. trailing-whitespace : ∀ {NT A} (n : ℕ) (g : Grammar NT) (p : Prod NT A) → Maybe (Trailing-whitespace g p) trailing-whitespace {NT} n g p = convert ∘ unfold-lemma <$>M trailing? (unfold n g p) where -- An alternative formulation of Trailing-whitespace. Trailing-whitespace′ : ∀ {NT A} → Grammar NT → Prod NT A → Set₁ Trailing-whitespace′ g p = ∀ {x s₁ s₂ s} → [ g ] x ∈ p · s₁ → [ g ] s ∈ whitespace ⋆ · s₂ → [ g ] x ∈ p · s₁ ++ s₂ convert : ∀ {NT A} {g : Grammar NT} {p : Prod NT A} → Trailing-whitespace′ g p → Trailing-whitespace g p convert t (<⊛-sem x∈ w) = t x∈ w ++-lemma : ∀ s₁ {s₂} → (s₁ ++ s₂) ++ [] ≡ (s₁ ++ []) ++ s₂ ++-lemma _ = solve (++-monoid Char) unfold-lemma : Trailing-whitespace′ g (unfold n g p) → Trailing-whitespace′ g p unfold-lemma t x∈ white = unfold-from n _ (t (unfold-to n _ x∈) white) ⊛-return-lemma : ∀ {A B} {p : Prod NT (A → B)} {x} → Trailing-whitespace′ g p → Trailing-whitespace′ g (p ⊛ return x) ⊛-return-lemma t (⊛-sem {s₁ = s₁} f∈ return-sem) white = cast (++-lemma s₁) (⊛-sem (t f∈ white) return-sem) +-lemma : ∀ {A} {p : Prod NT A} → Trailing-whitespace′ g p → Trailing-whitespace′ g (p +) +-lemma t (⊛-sem (⊛-sem {s₂ = s₁} return-sem x∈) ⋆-[]-sem) white = cast (++-lemma s₁) (+-sem (t x∈ white) ⋆-[]-sem) +-lemma t (⊛-sem (⊛-sem {s₂ = s₁} return-sem x∈) (⋆-+-sem xs∈)) white = cast (P.sym $ LM.assoc s₁ _ _) (+-∷-sem x∈ (+-lemma t xs∈ white)) ⊛-⋆-lemma : ∀ {A B} {p₁ : Prod NT (List A → B)} {p₂ : Prod NT A} → Trailing-whitespace′ g p₁ → Trailing-whitespace′ g p₂ → Trailing-whitespace′ g (p₁ ⊛ p₂ ⋆) ⊛-⋆-lemma t₁ t₂ (⊛-sem {s₁ = s₁} f∈ ⋆-[]-sem) white = cast (++-lemma s₁) (⊛-sem (t₁ f∈ white) ⋆-[]-sem) ⊛-⋆-lemma t₁ t₂ (⊛-sem {s₁ = s₁} f∈ (⋆-+-sem xs∈)) white = cast (P.sym $ LM.assoc s₁ _ _) (⊛-sem f∈ (⋆-+-sem (+-lemma t₂ xs∈ white))) ⊛-∣-lemma : ∀ {A B} {p₁ : Prod NT (A → B)} {p₂ p₃ : Prod NT A} → Trailing-whitespace′ g (p₁ ⊛ p₂) → Trailing-whitespace′ g (p₁ ⊛ p₃) → Trailing-whitespace′ g (p₁ ⊛ (p₂ ∣ p₃)) ⊛-∣-lemma t₁₂ t₁₃ {s₂ = s₃} (⊛-sem {f = f} {x = x} {s₁ = s₁} {s₂ = s₂} f∈ (left-sem x∈)) white with f x | (s₁ ++ s₂) ++ s₃ | t₁₂ (⊛-sem f∈ x∈) white ... | ._ | ._ | ⊛-sem f∈′ x∈′ = ⊛-sem f∈′ (left-sem x∈′) ⊛-∣-lemma t₁₂ t₁₃ {s₂ = s₃} (⊛-sem {f = f} {x = x} {s₁ = s₁} {s₂ = s₂} f∈ (right-sem x∈)) white with f x | (s₁ ++ s₂) ++ s₃ | t₁₃ (⊛-sem f∈ x∈) white ... | ._ | ._ | ⊛-sem f∈′ x∈′ = ⊛-sem f∈′ (right-sem x∈′) ⊛-lemma : ∀ {A B} {p₁ : Prod NT (A → B)} {p₂ : Prod NT A} → Trailing-whitespace′ g p₂ → Trailing-whitespace′ g (p₁ ⊛ p₂) ⊛-lemma t₂ (⊛-sem {s₁ = s₁} f∈ x∈) white = cast (P.sym $ LM.assoc s₁ _ _) (⊛-sem f∈ (t₂ x∈ white)) <⊛-return-lemma : ∀ {A B} {p : Prod NT A} {x : B} → Trailing-whitespace′ g p → Trailing-whitespace′ g (p <⊛ return x) <⊛-return-lemma t (<⊛-sem {s₁ = s₁} f∈ return-sem) white = cast (++-lemma s₁) (<⊛-sem (t f∈ white) return-sem) <⊛-⋆-lemma : ∀ {A B} {p₁ : Prod NT A} {p₂ : Prod NT B} → Is-whitespace p₂ → Trailing-whitespace′ g (p₁ <⊛ p₂ ⋆) <⊛-⋆-lemma is-whitespace (<⊛-sem {s₁ = s₁} x∈ white₁) white₂ = cast (P.sym $ LM.assoc s₁ _ _) (<⊛-sem x∈ (⋆-⋆-sem white₁ white₂)) <⊛-lemma : ∀ {A B} {p₁ : Prod NT A} {p₂ : Prod NT B} → Trailing-whitespace′ g p₂ → Trailing-whitespace′ g (p₁ <⊛ p₂) <⊛-lemma t₂ (<⊛-sem {s₁ = s₁} f∈ x∈) white = cast (P.sym $ LM.assoc s₁ _ _) (<⊛-sem f∈ (t₂ x∈ white)) fail->>=-lemma : ∀ {A B} {p : A → Prod NT B} → Trailing-whitespace′ g (fail >>= p) fail->>=-lemma (>>=-sem () _) return->>=-lemma : ∀ {A B} {p : A → Prod NT B} {x} → Trailing-whitespace′ g (p x) → Trailing-whitespace′ g (return x >>= p) return->>=-lemma t (>>=-sem return-sem y∈) white = >>=-sem return-sem (t y∈ white) tok->>=-lemma : ∀ {A} {p : Char → Prod NT A} {t} → Trailing-whitespace′ g (p t) → Trailing-whitespace′ g (tok t >>= p) tok->>=-lemma t (>>=-sem tok-sem y∈) white = >>=-sem tok-sem (t y∈ white) ∣-lemma : ∀ {A} {p₁ p₂ : Prod NT A} → Trailing-whitespace′ g p₁ → Trailing-whitespace′ g p₂ → Trailing-whitespace′ g (p₁ ∣ p₂) ∣-lemma t₁ t₂ (left-sem x∈) white = left-sem (t₁ x∈ white) ∣-lemma t₁ t₂ (right-sem x∈) white = right-sem (t₂ x∈ white) trailing? : ∀ {A} (p : Prod NT A) → Maybe (Trailing-whitespace′ g p) trailing? fail = just (λ ()) trailing? (p ⊛ return x) = ⊛-return-lemma <$>M trailing? p trailing? (p₁ ⊛ p₂ ⋆) = ⊛-⋆-lemma <$>M trailing? p₁ ⊛M trailing? p₂ trailing? (p₁ ⊛ (p₂ ∣ p₃)) = ⊛-∣-lemma <$>M trailing? (p₁ ⊛ p₂) ⊛M trailing? (p₁ ⊛ p₃) trailing? (p₁ ⊛ p₂) = ⊛-lemma <$>M trailing? p₂ trailing? (p <⊛ return x) = <⊛-return-lemma <$>M trailing? p trailing? (p₁ <⊛ p₂ ⋆) = <⊛-⋆-lemma <$>M is-whitespace? p₂ trailing? (p₁ <⊛ p₂) = <⊛-lemma <$>M trailing? p₂ trailing? (fail >>= p) = just fail->>=-lemma trailing? (return x >>= p) = return->>=-lemma <$>M trailing? (p x) trailing? (tok t >>= p) = tok->>=-lemma <$>M trailing? (p t) trailing? (p₁ ∣ p₂) = ∣-lemma <$>M trailing? p₁ ⊛M trailing? p₂ trailing? _ = nothing private -- A unit test. test : T (is-just (trailing-whitespace 0 empty-grammar (tt <$ whitespace ⋆))) test = _
37.846276
96
0.479503
4b0dd628c7d294c4bd9bf78d3929b7b9e5028188
10,200
agda
Agda
examples/GUIgeneric/GUIFeaturesPart2.agda
stephanadls/state-dependent-gui
2bc84cb14a568b560acb546c440cbe0ddcbb2a01
[ "MIT" ]
2
2020-07-31T15:37:39.000Z
2020-07-31T17:20:59.000Z
examples/GUIgeneric/GUIFeaturesPart2.agda
stephanadls/state-dependent-gui
2bc84cb14a568b560acb546c440cbe0ddcbb2a01
[ "MIT" ]
null
null
null
examples/GUIgeneric/GUIFeaturesPart2.agda
stephanadls/state-dependent-gui
2bc84cb14a568b560acb546c440cbe0ddcbb2a01
[ "MIT" ]
null
null
null
module GUIgeneric.GUIFeaturesPart2 where open import GUIgeneric.Prelude renaming (addButton to addButton') open import GUIgeneric.GUIDefinitions renaming (add to add'; add' to add) open import GUIgeneric.GUI open import GUIgeneric.GUIExampleLib open import StateSizedIO.GUI.WxGraphicsLibLevel3 renaming (addButton to addButton') open import GUIgeneric.GUIFeatures open import GUIgeneric.GUIExample using (propOneBtn; propTwoBtn ; black ; oneColumnLayout) open import Data.Product open import Data.Fin data ReturnTypeₛ (S : Set) : Set where noChange : ReturnTypeₛ S changedState : (snew : S) → ReturnTypeₛ S -- handler GUI interface with separte state (i.e. state is a separte set instead of GUI) -- We might later separte State into a gui state and property state i.e. have -- GuiState : Set -- AttrState : GuiState → Set -- s2GUI : GuiState → GUI -- s2prop : (g : GuiState)(prop : AttrState g) → properties (s2GUI g) handlerGUIInterfₛ : (S : Set) (s2GUI : (s : S) → Frame) → Interfaceˢ handlerGUIInterfₛ S s2GUI .Stateˢ = S handlerGUIInterfₛ S s2GUI .Methodˢ s = methodsG (s2GUI s) handlerGUIInterfₛ S s2GUI .Resultˢ s m = ReturnTypeₛ S handlerGUIInterfₛ S s2GUI .nextˢ s m noChange = s handlerGUIInterfₛ S s2GUI .nextˢ s m (changedState snew) = snew handlerGUIObjectₛ : (i : Size)(S : Set) (s2GUI : (s : S) → Frame)(s : S) → Set handlerGUIObjectₛ i S s2GUI s = IOObjectˢ- GuiLev1Interface (handlerGUIInterfₛ S s2GUI) i s mutual hGuiObjₛ2ord : (i : Size)(S : Set) (s2GUI : (s : S) → Frame) (s2prop : (s : S) → properties (s2GUI s)) (obj : (s : S) → handlerGUIObjectₛ i S s2GUI s) (s : S) → HandlerObject i (s2GUI s) method (hGuiObjₛ2ord i S s2GUI s2prop obj s) {j} m = hGuiObjₛ2ordaux ∞ j S s2GUI s s2prop obj m (method (obj s) m ) hGuiObjₛ2ordaux' : (j : Size)(j' : Size)(S : Set) (s2GUI : (s : S) → Frame)(s : S) (s2prop : (s : S) → properties (s2GUI s)) (obj : (s : S) → handlerGUIObjectₛ j' S s2GUI s) (m : methodsG (s2GUI s)) (prog : IO' GuiLev1Interface j (ReturnTypeₛ S)) → IO' GuiLev1Interface j ( Σ[ r ∈ returnType (s2GUI s) ] (IOObjectˢ GuiLev1Interface handlerInterface j' (nextˢ handlerInterface (s2GUI s) m r))) hGuiObjₛ2ordaux' j j' S s2GUI s s2prop obj m (do' c f) = do' c (λ r → hGuiObjₛ2ordaux j j' S s2GUI s s2prop obj m (f r) ) hGuiObjₛ2ordaux' j j' S s2GUI s s2prop obj m (return' noChange ) = return' (noChange , hGuiObjₛ2ord j' S s2GUI s2prop obj s {-obj'-}) hGuiObjₛ2ordaux' j j' S s2GUI s s2prop obj m (return' (changedState snew)) = return' (changedGUI (s2GUI snew) (s2prop snew) , hGuiObjₛ2ord j' S s2GUI s2prop obj snew {- obj'-}) hGuiObjₛ2ordaux : (j : Size)(j' : Size)(S : Set) (s2GUI : (s : S) → Frame)(s : S) (s2prop : (s : S) → properties (s2GUI s)) (obj : (s : S) → handlerGUIObjectₛ j' S s2GUI s) (m : methodsG (s2GUI s)) (prog : IO GuiLev1Interface j (ReturnTypeₛ S)) → IO GuiLev1Interface j ( Σ[ r ∈ returnType (s2GUI s) ] (IOObjectˢ GuiLev1Interface handlerInterface j' (nextˢ handlerInterface (s2GUI s) m r))) force (hGuiObjₛ2ordaux j j' S s2GUI s s2prop obj m pr) {j''} = hGuiObjₛ2ordaux' j'' j' S s2GUI s s2prop obj m (force pr) {- *** STATE MACHINES **** -} sMachineHdl : (S : Set)(s : S) (f : Frame) → Set sMachineHdl S s f = (m : methodsG f) → IO GuiLev1Interface ∞ (ReturnTypeₛ S) record SMachineState (S : Set)(s : S) : Set where field fSM : Frame propSM : properties fSM handlSM : sMachineHdl S s fSM SMachine : Set → Set SMachine S = (s : S) → SMachineState S s open SMachineState public SMachine2HandlerGuiObjectₛ : (S : Set) (sm : SMachine S) (s : S) → handlerGUIObjectₛ ∞ S (λ s → sm s .fSM) s method (SMachine2HandlerGuiObjectₛ S sm s) = sm s .handlSM stateMachine2Obj : (S : Set) (sm : SMachine S) (s : S) → HandlerObject ∞ (sm s .fSM) stateMachine2Obj S sm = hGuiObjₛ2ord ∞ S (λ s → sm s .fSM) (λ s → sm s .propSM) (λ s → SMachine2HandlerGuiObjectₛ S sm s) stateMachine2GUI : (S : Set) (sm : SMachine S) (s : S) → GUI stateMachine2GUI S sm s .defFrame = sm s .fSM stateMachine2GUI S sm s .property = sm s .propSM stateMachine2GUI S sm s .obj = stateMachine2Obj S sm s compileSMachine : {S : Set} (sm : SMachine S) (s : S) → NativeIO Unit compileSMachine {S} sm s = compileGUI (stateMachine2GUI S sm s) {- **************** FEATURE MACHINE **** -} -- an example of a feature machine wihout additional states: record FeatureVMVers1 : Set₁ where field Features : Set State : Set GUIF : (f : Features) → SMachine State record FMachine (BaseSt : Set) : Set₁ where field Features : Set AddStateF : Set GUIF : (f : Features) → SMachine (BaseSt ⊎ AddStateF) State : Set State = BaseSt ⊎ AddStateF open FMachine public featureVMFull2GUI : (BaseSt : Set) (vm : FMachine BaseSt) (f : vm .Features) (s : State vm) → GUI featureVMFull2GUI BaseSt vm f s = stateMachine2GUI (BaseSt ⊎ vm .AddStateF) (vm .GUIF f) s featureVMFull2IOˢprog : {BaseSt : Set} (vm : FMachine BaseSt) (f : vm .Features) (s : State vm) → IOˢ GuiLev3Interface ∞ (λ _ → Unit) [] featureVMFull2IOˢprog {BaseSt} vm f s = guiFull2IOˢprog (featureVMFull2GUI BaseSt vm f s) compileFeatureVM : {BaseSt : Set} (vm : FMachine BaseSt) (f : vm .Features) (s : State vm) → NativeIO Unit compileFeatureVM {BaseSt} vm f s = compileGUI (featureVMFull2GUI BaseSt vm f s) {- methodsREduce creates from a method for the frame (addButon s g) a method for g -} mutual methodsReduce : (g : Frame)(str : String)(m : MethodsStruct) (u : methodsStruct2Method (addButton str g notOptimzed) m) → methodsStruct2Method g m methodsReduce g str (fficom) (ffibtn , gcomp) = gcomp methodsReduce g str (⊥^) () methodsReduce g str (m ⊎^unoptimized m₁) (inj₁ x) = inj₁ (methodsReduce g str m x) methodsReduce g str (m ⊎^unoptimized m₁) (inj₂ y) = inj₂ (methodsReduce g str m₁ y) methodsReduce g str (m ⊎^ m₁) x = methodsReduceaux g str m m₁ (methodsUnivIsEmpty m) (methodsUnivIsEmpty m₁) x methodsReduceaux : (g : Frame)(str : String)(m : MethodsStruct) (m₁ : MethodsStruct) (s : SemiDec (λ g' → methodsStruct2Method g' m)) (s₁ : SemiDec (λ g' → methodsStruct2Method g' m₁)) (u : methodsStruct2Methodaux (addButton str g notOptimzed) m m₁ s s₁) → methodsStruct2Methodaux g m m₁ s s₁ methodsReduceaux g str m m₁ s (isEmpty s₁) u = methodsReduce g str m u methodsReduceaux g str m m₁ (isEmpty x) posNonEmpty u = methodsReduce g str m₁ u methodsReduceaux g str m m₁ posNonEmpty posNonEmpty (inj₁ x) = inj₁ (methodsReduce g str m x) methodsReduceaux g str m m₁ posNonEmpty posNonEmpty (inj₂ y) = inj₂ (methodsReduce g str m₁ y) subMethodToFullMethod : (btnStr : String) (fr : Frame) (m : methodsStruct2Method (addButton btnStr fr notOptimzed) (methodStruct fr )) → methodsG fr subMethodToFullMethod btnStr fr m = methodsReduce fr btnStr (methodStruct fr ) m simpleAttr1Btn : (btnStr : String) → properties (addButton btnStr create-frame notOptimzed) simpleAttr1Btn btnStr = black , oneColumnLayout simpleSMState : {S : Set} (btnStr : String) {start : S} (end : S) → SMachineState S start simpleSMState btnStr end .fSM = addButton btnStr create-frame notOptimzed simpleSMState btnStr end .propSM = simpleAttr1Btn btnStr simpleSMState btnStr end .handlSM m .force = return' (changedState end) baseF : FMachine StateV baseF .Features = ⊤ baseF .AddStateF = ⊥ baseF .GUIF f (inj₁ s0) = simpleSMState "1Euro" (inj₁ s1) baseF .GUIF f (inj₁ s1) = simpleSMState "Get Change" (inj₁ s2) baseF .GUIF f (inj₁ s2) = simpleSMState "Soda" (inj₁ s0) baseF .GUIF f (inj₂ ()) addBtn2StateMachine : {S : Set}{s : S}(sm : SMachineState S s) (btnStr : String)(end : S) → SMachineState S s addBtn2StateMachine sm btnStr end .fSM = addButton btnStr (sm .fSM) notOptimzed addBtn2StateMachine sm btnStr end .propSM = black , sm .propSM addBtn2StateMachine sm btnStr end .handlSM (inj₁ x) .force = return' (changedState end) addBtn2StateMachine sm btnStr end .handlSM (inj₂ m) = sm .handlSM (subMethodToFullMethod btnStr (sm .fSM) m) simpleCancel : FMachine StateV → FMachine StateV simpleCancel vm .Features = vm .Features × FeatureCancel simpleCancel vm .AddStateF = vm .AddStateF simpleCancel vm .GUIF (f , yesCancel) (inj₁ s1) = addBtn2StateMachine (vm .GUIF f (inj₁ s1)) "Cancel" (inj₁ s0) simpleCancel vm .GUIF (f , _) s = vm .GUIF f s simpleCancelBase : FMachine StateV simpleCancelBase = simpleCancel baseF main1 : NativeIO Unit main1 = compileFeatureVM baseF _ (inj₁ s0) -- main : NativeIO Unit main = compileFeatureVM simpleCancelBase (_ , yesCancel) (inj₁ s0) --
38.202247
178
0.586176
0b8d97bd7f99575ce628e48dcff6d47fc4d0b984
3,186
agda
Agda
test/Succeed/Generalize.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/Succeed/Generalize.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Generalize.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2020-05-16T20:10:05.000Z
2020-05-16T20:10:05.000Z
{-# OPTIONS --without-K --rewriting #-} module Generalize where data _≡_ {ℓ}{A : Set ℓ} (x : A) : A → Set ℓ where refl : x ≡ x infix 4 _≡_ {-# BUILTIN REWRITE _≡_ #-} ------------------------------------------------------------------ postulate Con : Set postulate Ty : (Γ : Con) → Set postulate Tms : (Γ Δ : Con) → Set postulate Tm : (Γ : Con)(A : Ty Γ) → Set ------------------------------------------------------------------ variable {Γ Δ Θ} : Con postulate • : Con -- • is \bub postulate _▹_ : ∀ Γ → Ty Γ → Con -- ▹ is \tw2 infixl 5 _▹_ variable {A B C} : Ty _ postulate _∘ᵀ_ : Ty Δ → Tms Γ Δ → Ty Γ infixl 6 _∘ᵀ_ variable {σ δ ν} : Tms _ _ postulate _∘_ : Tms Θ Δ → Tms Γ Θ → Tms Γ Δ infixr 7 _∘_ postulate id : Tms Γ Γ postulate ε : Tms Γ • postulate _,_ : (σ : Tms Γ Δ) → Tm Γ (A ∘ᵀ σ) → Tms Γ (Δ ▹ A) infixl 5 _,_ postulate π₁ : Tms Γ (Δ ▹ A) → Tms Γ Δ variable {t u v} : Tm _ _ postulate π₂ : (σ : Tms Γ (Δ ▹ A)) → Tm Γ (A ∘ᵀ π₁ σ) postulate _∘ᵗ_ : Tm Δ A → (σ : Tms Γ Δ) → Tm Γ (A ∘ᵀ σ) infixl 6 _∘ᵗ_ postulate ass : (σ ∘ δ) ∘ ν ≡ σ ∘ δ ∘ ν {-# REWRITE ass #-} postulate idl : id ∘ δ ≡ δ {-# REWRITE idl #-} postulate idr : δ ∘ id ≡ δ {-# REWRITE idr #-} postulate εη : δ ≡ ε -- can't rewrite, so we specialize this in the next two cases postulate εηid : id ≡ ε {-# REWRITE εηid #-} postulate εη∘ : ε ∘ δ ≡ ε {-# REWRITE εη∘ #-} postulate ,β₁ : π₁ (δ , t) ≡ δ {-# REWRITE ,β₁ #-} postulate ,β₂ : π₂ (δ , t) ≡ t {-# REWRITE ,β₂ #-} postulate ,η : (π₁ δ , π₂ δ) ≡ δ {-# REWRITE ,η #-} postulate [id]ᵀ : A ∘ᵀ id ≡ A {-# REWRITE [id]ᵀ #-} postulate [∘]ᵀ : A ∘ᵀ δ ∘ᵀ σ ≡ A ∘ᵀ δ ∘ σ {-# REWRITE [∘]ᵀ #-} postulate ,∘ : (δ , t) ∘ σ ≡ δ ∘ σ , t ∘ᵗ σ {-# REWRITE ,∘ #-} postulate [∘]ᵗ : t ∘ᵗ σ ∘ᵗ δ ≡ t ∘ᵗ σ ∘ δ {-# REWRITE [∘]ᵗ #-} postulate π₁∘ : π₁ δ ∘ σ ≡ π₁ (δ ∘ σ) {-# REWRITE π₁∘ #-} postulate π₂∘ : π₂ δ ∘ᵗ σ ≡ π₂ (δ ∘ σ) {-# REWRITE π₂∘ #-} postulate ∘id : t ∘ᵗ id ≡ t {-# REWRITE ∘id #-} _↑_ : ∀ σ A → Tms (Γ ▹ A ∘ᵀ σ) (Δ ▹ A) σ ↑ A = σ ∘ π₁ id , π₂ id ⟨_⟩ : Tm Γ A → Tms Γ (Γ ▹ A) ⟨ t ⟩ = id , t ------------------------------------------------------------------ postulate U : Ty Γ variable {a b c} : Tm _ U postulate El : Tm Γ U → Ty Γ postulate U[] : U ∘ᵀ σ ≡ U {-# REWRITE U[] #-} postulate El[] : El a ∘ᵀ σ ≡ El (a ∘ᵗ σ) {-# REWRITE El[] #-} ------------------------------------------------------------------ postulate Π : (a : Tm Γ U) → Ty (Γ ▹ El a) → Ty Γ postulate Π[] : Π a B ∘ᵀ σ ≡ Π (a ∘ᵗ σ) (B ∘ᵀ σ ↑ El a) {-# REWRITE Π[] #-} postulate app : Tm Γ (Π a B) → Tm (Γ ▹ El a) B postulate app[] : app t ∘ᵗ (σ ↑ El a) ≡ app (t ∘ᵗ σ) {-# REWRITE app[] #-}
31.544554
102
0.3801
0395961e6f765e0df4216a8eab2593bc096ebfc4
143
agda
Agda
test/Fail/CompiledMustBePostulate.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/fail/CompiledMustBePostulate.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/CompiledMustBePostulate.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- Compiled things must be a postulate module CompiledMustBePostulate where postulate A : Set foo : Set foo = A {-# COMPILED foo bar #-}
11.916667
38
0.706294
182364c922291ffbc1dd6dea09c10dd0bb3e4932
579
agda
Agda
test/Fail/Issue2451.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2451.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2451.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --rewriting #-} -- {-# OPTIONS -v rewriting:30 #-} open import Agda.Builtin.Nat open import Agda.Builtin.Equality renaming (_≡_ to _≡≡_) record Eq (t : Set) : Set₁ where field _≡_ : t → t → Set open Eq {{...}} {-# BUILTIN REWRITE _≡_ #-} instance eqN : Eq Nat eqN = record { _≡_ = _≡≡_ } postulate plus0p : ∀{x} → (x + zero) ≡ x {-# REWRITE plus0p #-} -- Error: -- plus0p does not target rewrite relation -- when checking the pragma REWRITE plus0p -- The type of the postulate ends in _≡≡_ (after reduction) -- but the rewrite relation is _≡_
18.677419
59
0.625216
04ebe307bcea6d3d1a57a36fe626da651d02213b
7,272
agda
Agda
part1/connectives/Connectives.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
1
2020-07-07T09:42:22.000Z
2020-07-07T09:42:22.000Z
part1/connectives/Connectives.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
null
null
null
part1/connectives/Connectives.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
null
null
null
module Connectives where -- Imports import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong) open Eq.≡-Reasoning open import Data.Nat using (ℕ) open import Function using (_∘_) -- open import plfa.part1.Isomorphism using (_≃_; _≲_; extensionality) -- open plfa.part1.Isomorphism.≃-Reasoning postulate -- 外延性の公理 extensionality : ∀ {A B : Set} {f g : A → B} → (∀ (x : A) → f x ≡ g x) ----------------------- → f ≡ g -- 同型 infix 0 _≃_ record _≃_ (A B : Set) : Set where field to : A → B from : B → A from∘to : ∀ (x : A) → from (to x) ≡ x to∘from : ∀ (y : B) → to (from y) ≡ y open _≃_ ≃-refl : ∀ {A : Set} ----- → A ≃ A ≃-refl = record { to = λ{x → x} ; from = λ{y → y} ; from∘to = λ{x → refl} ; to∘from = λ{y → refl} } ≃-trans : ∀ {A B C : Set} → A ≃ B → B ≃ C ----- → A ≃ C ≃-trans A≃B B≃C = record { to = to B≃C ∘ to A≃B ; from = from A≃B ∘ from B≃C ; from∘to = λ{x → begin (from A≃B ∘ from B≃C) ((to B≃C ∘ to A≃B) x) ≡⟨⟩ from A≃B (from B≃C (to B≃C (to A≃B x))) ≡⟨ cong (from A≃B) (from∘to B≃C (to A≃B x)) ⟩ from A≃B (to A≃B x) ≡⟨ from∘to A≃B x ⟩ x ∎} ; to∘from = λ{y → begin (to B≃C ∘ to A≃B) ((from A≃B ∘ from B≃C) y) ≡⟨⟩ to B≃C (to A≃B (from A≃B (from B≃C y))) ≡⟨ cong (to B≃C) (to∘from A≃B (from B≃C y)) ⟩ to B≃C (from B≃C y) ≡⟨ to∘from B≃C y ⟩ y ∎} } module ≃-Reasoning where infix 1 ≃-begin_ infixr 2 _≃⟨_⟩_ infix 3 _≃-∎ ≃-begin_ : ∀ {A B : Set} → A ≃ B ----- → A ≃ B ≃-begin A≃B = A≃B _≃⟨_⟩_ : ∀ (A : Set) {B C : Set} → A ≃ B → B ≃ C ----- → A ≃ C A ≃⟨ A≃B ⟩ B≃C = ≃-trans A≃B B≃C _≃-∎ : ∀ (A : Set) ----- → A ≃ A A ≃-∎ = ≃-refl open ≃-Reasoning -- 埋め込み infix 0 _≲_ record _≲_ (A B : Set) : Set where field to : A → B from : B → A from∘to : ∀ (x : A) → from (to x) ≡ x open _≲_ -- Conjunction is product -- 直積 data _×_ (A B : Set) : Set where ⟨_,_⟩ : A → B ----- → A × B proj₁ : ∀ {A B : Set} → A × B ----- → A proj₁ ⟨ x , y ⟩ = x proj₂ : ∀ {A B : Set} → A × B ----- → B proj₂ ⟨ x , y ⟩ = y record _×′_ (A B : Set) : Set where field proj₁′ : A proj₂′ : B open _×′_ η-× : ∀ {A B : Set} (w : A × B) → ⟨ proj₁ w , proj₂ w ⟩ ≡ w η-× ⟨ x , y ⟩ = refl infixr 2 _×_ data Bool : Set where true : Bool false : Bool data Tri : Set where aa : Tri bb : Tri cc : Tri ×-count : Bool × Tri → ℕ ×-count ⟨ true , aa ⟩ = 1 ×-count ⟨ true , bb ⟩ = 2 ×-count ⟨ true , cc ⟩ = 3 ×-count ⟨ false , aa ⟩ = 4 ×-count ⟨ false , bb ⟩ = 5 ×-count ⟨ false , cc ⟩ = 6 ×-comm : ∀ {A B : Set} → A × B ≃ B × A ×-comm = record { to = λ{ ⟨ x , y ⟩ → ⟨ y , x ⟩ } ; from = λ{ ⟨ y , x ⟩ → ⟨ x , y ⟩ } ; from∘to = λ{ ⟨ x , y ⟩ → refl } ; to∘from = λ{ ⟨ y , x ⟩ → refl } } ×-assoc : ∀ {A B C : Set} → (A × B) × C ≃ A × (B × C) ×-assoc = record { to = λ{ ⟨ ⟨ x , y ⟩ , z ⟩ → ⟨ x , ⟨ y , z ⟩ ⟩ } ; from = λ{ ⟨ x , ⟨ y , z ⟩ ⟩ → ⟨ ⟨ x , y ⟩ , z ⟩ } ; from∘to = λ{ ⟨ ⟨ x , y ⟩ , z ⟩ → refl } ; to∘from = λ{ ⟨ x , ⟨ y , z ⟩ ⟩ → refl } } -- Truth is unit data ⊤ : Set where tt : -- ⊤ η-⊤ : ∀ (w : ⊤) → tt ≡ w η-⊤ tt = refl ⊤-count : ⊤ → ℕ ⊤-count tt = 1 ⊤-identityˡ : ∀ {A : Set} → ⊤ × A ≃ A ⊤-identityˡ = record { to = λ{ ⟨ tt , x ⟩ → x } ; from = λ{ x → ⟨ tt , x ⟩ } ; from∘to = λ{ ⟨ tt , x ⟩ → refl } ; to∘from = λ{ x → refl } } ⊤-identityʳ : ∀ {A : Set} → (A × ⊤) ≃ A ⊤-identityʳ {A} = ≃-begin (A × ⊤) ≃⟨ ×-comm ⟩ (⊤ × A) ≃⟨ ⊤-identityˡ ⟩ A ≃-∎ -- Disjunction is sum -- 直和 data _⊎_ (A B : Set) : Set where inj₁ : A ----- → A ⊎ B inj₂ : B ----- → A ⊎ B case-⊎ : ∀ {A B C : Set} → (A → C) → (B → C) → A ⊎ B ----------- → C case-⊎ f g (inj₁ x) = f x case-⊎ f g (inj₂ y) = g y η-⊎ : ∀ {A B : Set} (w : A ⊎ B) → case-⊎ inj₁ inj₂ w ≡ w η-⊎ (inj₁ x) = refl η-⊎ (inj₂ y) = refl uniq-⊎ : ∀ {A B C : Set} (h : A ⊎ B → C) (w : A ⊎ B) → case-⊎ (h ∘ inj₁) (h ∘ inj₂) w ≡ h w uniq-⊎ h (inj₁ x) = refl uniq-⊎ h (inj₂ y) = refl infixr 1 _⊎_ ⊎-count : Bool ⊎ Tri → ℕ ⊎-count (inj₁ true) = 1 ⊎-count (inj₁ false) = 2 ⊎-count (inj₂ aa) = 3 ⊎-count (inj₂ bb) = 4 ⊎-count (inj₂ cc) = 5 -- False is empty data ⊥ : Set where -- no clauses! ⊥-elim : ∀ {A : Set} → ⊥ -- → A ⊥-elim () uniq-⊥ : ∀ {C : Set} (h : ⊥ → C) (w : ⊥) → ⊥-elim w ≡ h w uniq-⊥ h () ⊥-count : ⊥ → ℕ ⊥-count () -- Implication is function →-elim : ∀ {A B : Set} → (A → B) → A ------- → B →-elim L M = L M η-→ : ∀ {A B : Set} (f : A → B) → (λ (x : A) → f x) ≡ f η-→ f = refl →-count : (Bool → Tri) → ℕ →-count f with f true | f false ... | aa | aa = 1 ... | aa | bb = 2 ... | aa | cc = 3 ... | bb | aa = 4 ... | bb | bb = 5 ... | bb | cc = 6 ... | cc | aa = 7 ... | cc | bb = 8 ... | cc | cc = 9 currying : ∀ {A B C : Set} → (A → B → C) ≃ (A × B → C) currying = record { to = λ{ f → λ{ ⟨ x , y ⟩ → f x y }} ; from = λ{ g → λ{ x → λ{ y → g ⟨ x , y ⟩ }}} ; from∘to = λ{ f → refl } ; to∘from = λ{ g → extensionality λ{ ⟨ x , y ⟩ → refl }} } →-distrib-⊎ : ∀ {A B C : Set} → (A ⊎ B → C) ≃ ((A → C) × (B → C)) →-distrib-⊎ = record { to = λ{ f → ⟨ f ∘ inj₁ , f ∘ inj₂ ⟩ } ; from = λ{ ⟨ g , h ⟩ → λ{ (inj₁ x) → g x ; (inj₂ y) → h y } } ; from∘to = λ{ f → extensionality λ{ (inj₁ x) → refl ; (inj₂ y) → refl } } ; to∘from = λ{ ⟨ g , h ⟩ → refl } } →-distrib-× : ∀ {A B C : Set} → (A → B × C) ≃ (A → B) × (A → C) →-distrib-× = record { to = λ{ f → ⟨ proj₁ ∘ f , proj₂ ∘ f ⟩ } ; from = λ{ ⟨ g , h ⟩ → λ x → ⟨ g x , h x ⟩ } ; from∘to = λ{ f → extensionality λ{ x → η-× (f x) } } ; to∘from = λ{ ⟨ g , h ⟩ → refl } } -- Distribution ×-distrib-⊎ : ∀ {A B C : Set} → (A ⊎ B) × C ≃ (A × C) ⊎ (B × C) ×-distrib-⊎ = record { to = λ{ ⟨ inj₁ x , z ⟩ → (inj₁ ⟨ x , z ⟩) ; ⟨ inj₂ y , z ⟩ → (inj₂ ⟨ y , z ⟩) } ; from = λ{ (inj₁ ⟨ x , z ⟩) → ⟨ inj₁ x , z ⟩ ; (inj₂ ⟨ y , z ⟩) → ⟨ inj₂ y , z ⟩ } ; from∘to = λ{ ⟨ inj₁ x , z ⟩ → refl ; ⟨ inj₂ y , z ⟩ → refl } ; to∘from = λ{ (inj₁ ⟨ x , z ⟩) → refl ; (inj₂ ⟨ y , z ⟩) → refl } } ⊎-distrib-× : ∀ {A B C : Set} → (A × B) ⊎ C ≲ (A ⊎ C) × (B ⊎ C) ⊎-distrib-× = record { to = λ{ (inj₁ ⟨ x , y ⟩) → ⟨ inj₁ x , inj₁ y ⟩ ; (inj₂ z) → ⟨ inj₂ z , inj₂ z ⟩ } ; from = λ{ ⟨ inj₁ x , inj₁ y ⟩ → (inj₁ ⟨ x , y ⟩) ; ⟨ inj₁ x , inj₂ z ⟩ → (inj₂ z) ; ⟨ inj₂ z , _ ⟩ → (inj₂ z) } ; from∘to = λ{ (inj₁ ⟨ x , y ⟩) → refl ; (inj₂ z) → refl } }
20.600567
78
0.363586
c5278de3bfbf1eb20ab2560c6814bfcafc3b73e5
2,282
agda
Agda
agda/Cardinality/Finite/Structure.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
4
2021-01-05T14:07:44.000Z
2021-01-05T15:32:14.000Z
agda/Cardinality/Finite/Structure.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
agda/Cardinality/Finite/Structure.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
1
2021-01-05T14:05:30.000Z
2021-01-05T14:05:30.000Z
{-# OPTIONS --cubical --safe --postfix-projections #-} module Cardinality.Finite.Structure where open import Prelude open import Data.Fin open import Data.Nat open import Data.Nat.Properties private variable n m : ℕ liftˡ : ∀ n m → Fin m → Fin (n + m) liftˡ zero m x = x liftˡ (suc n) m x = fs (liftˡ n m x) liftʳ : ∀ n m → Fin n → Fin (n + m) liftʳ (suc n) m f0 = f0 liftʳ (suc n) m (fs x) = fs (liftʳ n m x) mapl : (A → B) → A ⊎ C → B ⊎ C mapl f (inl x) = inl (f x) mapl f (inr x) = inr x fin-sum-to : ∀ n m → Fin n ⊎ Fin m → Fin (n + m) fin-sum-to n m = either (liftʳ n m) (liftˡ n m) fin-sum-from : ∀ n m → Fin (n + m) → Fin n ⊎ Fin m fin-sum-from zero m x = inr x fin-sum-from (suc n) m f0 = inl f0 fin-sum-from (suc n) m (fs x) = mapl fs (fin-sum-from n m x) mapl-distrib : ∀ {a b c d} {A : Type a} {B : Type b} {C : Type c} {D : Type d} (xs : A ⊎ B) (h : A → C) (f : C → D) (g : B → D) → either′ f g (mapl h xs) ≡ either′ (f ∘′ h) g xs mapl-distrib (inl x) h f g = refl mapl-distrib (inr x) h f g = refl either-distrib : ∀ {d} {D : Type d} (f : A → C) (g : B → C) (h : C → D) (xs : A ⊎ B) → either′ (h ∘ f) (h ∘ g) xs ≡ h (either′ f g xs) either-distrib f g h (inl x) = refl either-distrib f g h (inr x) = refl open import Path.Reasoning fin-sum-to-from : ∀ n m x → fin-sum-to n m (fin-sum-from n m x) ≡ x fin-sum-to-from zero m x = refl fin-sum-to-from (suc n) m f0 = refl fin-sum-to-from (suc n) m (fs x) = fin-sum-to (suc n) m (mapl fs (fin-sum-from n m x)) ≡⟨ mapl-distrib (fin-sum-from n m x) fs (liftʳ (suc n) m) (liftˡ (suc n) m) ⟩ either (liftʳ (suc n) m ∘ fs) (liftˡ (suc n) m) (fin-sum-from n m x) ≡⟨⟩ either (fs ∘ liftʳ n m) (fs ∘ liftˡ n m) (fin-sum-from n m x) ≡⟨ either-distrib (liftʳ n m) (liftˡ n m) fs (fin-sum-from n m x) ⟩ fs (either (liftʳ n m) (liftˡ n m) (fin-sum-from n m x)) ≡⟨ cong fs (fin-sum-to-from n m x) ⟩ fs x ∎ -- fin-sum-from-to : ∀ n m x → fin-sum-from n m (fin-sum-to n m x) ≡ x -- fin-sum-from-to n m (inl x) = {!!} -- fin-sum-from-to n m (inr x) = {!!} -- fin-sum : ∀ n m → Fin n ⊎ Fin m ⇔ Fin (n + m) -- fin-sum n m .fun = fin-sum-to n m -- fin-sum n m .inv = fin-sum-from n m -- fin-sum n m .rightInv = fin-sum-to-from n m -- fin-sum n m .leftInv = fin-sum-from-to n m
33.558824
177
0.558282
9aa562023843180170654e41f7f145edde040cd3
9,899
agda
Agda
src/Queue/Quotiented.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Queue/Quotiented.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Queue/Quotiented.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Quotiented queues: any two queues representing the same sequence -- are equal ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} import Equality.Path as P module Queue.Quotiented {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Prelude open import Bijection equality-with-J using (_↔_) open import Equality.Path.Isomorphisms eq import Equivalence equality-with-J as Eq open import Function-universe equality-with-J hiding (id; _∘_) open import H-level.Closure equality-with-J open import List equality-with-J as L hiding (map) import Queue equality-with-J as Q open import Quotient eq as Quotient open import Sum equality-with-J private variable a b : Level A B : Type a s s′ s₁ s₂ : Is-set A q q₁ q₂ x x₁ x₂ : A f g : A → B xs : List A ------------------------------------------------------------------------ -- Queues -- The queue type family is parametrised. module _ -- The underlying queue type family. (Q : ∀ {ℓ} → Type ℓ → Type ℓ) -- Note that the predicate is required to be trivial. Perhaps the -- code could be made more general, but I have not found a use for -- such generality. ⦃ is-queue : ∀ {ℓ} → Q.Is-queue Q (λ _ → ↑ _ ⊤) ℓ ⦄ where abstract private -- The quotienting relation: Two queues are seen as equal if -- they represent the same list. _∼_ : {A : Type a} (_ _ : Q A) → Type a q₁ ∼ q₂ = Q.to-List _ q₁ ≡ Q.to-List _ q₂ -- Queues. -- -- The type is abstract to ensure that a change to a different -- underlying queue type family does not break code that uses this -- module. -- -- Ulf Norell suggested to me that I could use parametrisation -- instead of abstract. (Because if the underlying queue type -- family is a parameter, then the underlying queues do not -- compute.) I decided to use both. (Because I want to have the -- flexibility that comes with parametrisation, but I do not want -- to force users to work in a parametrised setting.) Queue : Type a → Type a Queue A = Q A / _∼_ -- The remainder of the code uses an implicit underlying queue type -- family parameter, and an extra instance argument. module _ {Q : ∀ {ℓ} → Type ℓ → Type ℓ} ⦃ is-queue : ∀ {ℓ} → Q.Is-queue Q (λ _ → ↑ _ ⊤) ℓ ⦄ ⦃ is-queue-with-map : ∀ {ℓ₁ ℓ₂} → Q.Is-queue-with-map Q ℓ₁ ℓ₂ ⦄ where abstract -- Queue A is a set. Queue-is-set : Is-set (Queue Q A) Queue-is-set = /-is-set ------------------------------------------------------------------------ -- Conversion functions abstract -- Converts queues to lists. (The carrier type is required to be a -- set.) to-List : Is-set A → Queue Q A → List A to-List s = Quotient.rec λ where .[]ʳ → Q.to-List _ .[]-respects-relationʳ → id .is-setʳ → H-level-List 0 s -- Converts lists to queues. from-List : List A → Queue Q A from-List = [_] ∘ Q.from-List -- The function from-List is a right inverse of to-List s. to-List-from-List : to-List s (from-List q) ≡ q to-List-from-List = Q.to-List-from-List -- The function from-List is a left inverse of to-List s. from-List-to-List : (q : Queue Q A) → _≡_ {A = Queue Q A} (from-List (to-List s q)) q from-List-to-List = Quotient.elim-prop λ where .[]ʳ q → []-respects-relation ( Q.to-List ⦃ is-queue = is-queue ⦄ _ (Q.from-List (Q.to-List _ q)) ≡⟨ Q.to-List-from-List ⟩∎ Q.to-List _ q ∎) .is-propositionʳ _ → Queue-is-set -- If A is a set, then there is a bijection between Queue Q A and -- List A. Queue↔List : Is-set A → Queue Q A ↔ List A Queue↔List s = record { surjection = record { logical-equivalence = record { to = to-List s ; from = from-List } ; right-inverse-of = λ _ → to-List-from-List } ; left-inverse-of = from-List-to-List } ------------------------------------------------------------------------ -- Queue operations abstract private -- Helper functions that can be used to define unary functions -- on queues. unary : {A : Type a} {B : Type b} (f : List A → List B) (g : Q A → Q B) → (∀ {q} → Q.to-List _ (g q) ≡ f (Q.to-List _ q)) → Queue Q A → Queue Q B unary f g h = g /-map λ q₁ q₂ q₁∼q₂ → Q.to-List _ (g q₁) ≡⟨ h ⟩ f (Q.to-List _ q₁) ≡⟨ cong f q₁∼q₂ ⟩ f (Q.to-List _ q₂) ≡⟨ sym h ⟩∎ Q.to-List _ (g q₂) ∎ to-List-unary : ∀ {h : ∀ {q} → _} q → to-List s₁ (unary f g (λ {q} → h {q = q}) q) ≡ f (to-List s₂ q) to-List-unary {s₁ = s₁} {f = f} {g = g} {s₂ = s₂} {h = h} = Quotient.elim-prop λ where .[]ʳ q → to-List s₁ (unary f g h [ q ]) ≡⟨⟩ Q.to-List _ (g q) ≡⟨ h ⟩ f (Q.to-List _ q) ≡⟨⟩ f (to-List s₂ [ q ]) ∎ .is-propositionʳ _ → H-level-List 0 s₁ -- Generalisations of the functions above. unary′ : {A : Type a} {F : Type a → Type b} → (∀ {A} → Is-set A → Is-set (F A)) → (map : ∀ {A B} → (A → B) → F A → F B) → (∀ {A} {x : F A} → map id x ≡ x) → (∀ {A B C} {f : B → C} {g : A → B} x → map (f ∘ g) x ≡ map f (map g x)) → (f : List A → F (List B)) (g : Q A → F (Q B)) → (∀ {q} → map (Q.to-List _) (g q) ≡ f (Q.to-List _ q)) → Is-set B → Queue Q A → F (Queue Q B) unary′ F-set map map-id map-∘ f g h s = Quotient.rec λ where .[]ʳ → map [_] ∘ g .[]-respects-relationʳ {x = q₁} {y = q₂} q₁∼q₂ → lemma₂ ( map (to-List s) (map [_] (g q₁)) ≡⟨ sym $ map-∘ _ ⟩ map (Q.to-List _) (g q₁) ≡⟨ h ⟩ f (Q.to-List _ q₁) ≡⟨ cong f q₁∼q₂ ⟩ f (Q.to-List _ q₂) ≡⟨ sym h ⟩ map (Q.to-List _) (g q₂) ≡⟨ map-∘ _ ⟩∎ map (to-List s) (map [_] (g q₂)) ∎) .is-setʳ → F-set Queue-is-set where lemma₁ : map from-List (map (to-List s) x) ≡ x lemma₁ {x = x} = map from-List (map (to-List s) x) ≡⟨ sym $ map-∘ _ ⟩ map (from-List ∘ to-List s) x ≡⟨ cong (flip map x) $ ⟨ext⟩ $ _↔_.left-inverse-of (Queue↔List s) ⟩ map id x ≡⟨ map-id ⟩∎ x ∎ lemma₂ : map (to-List s) x₁ ≡ map (to-List s) x₂ → x₁ ≡ x₂ lemma₂ {x₁ = x₁} {x₂ = x₂} eq = x₁ ≡⟨ sym lemma₁ ⟩ map from-List (map (to-List s) x₁) ≡⟨ cong (map from-List) eq ⟩ map from-List (map (to-List s) x₂) ≡⟨ lemma₁ ⟩∎ x₂ ∎ to-List-unary′ : {F : Type a → Type b} (F-set : ∀ {A} → Is-set A → Is-set (F A)) (map : ∀ {A B} → (A → B) → F A → F B) (map-id : ∀ {A} {x : F A} → map id x ≡ x) (map-∘ : ∀ {A B C} {f : B → C} {g : A → B} x → map (f ∘ g) x ≡ map f (map g x)) (f : List A → F (List B)) (g : Q A → F (Q B)) (h : ∀ {q} → map (Q.to-List _) (g q) ≡ f (Q.to-List _ q)) (s : Is-set B) → ∀ q → map (to-List s) (unary′ F-set map map-id map-∘ f g h s q) ≡ f (to-List s′ q) to-List-unary′ {s′ = s′} F-set map map-id map-∘ f g h s = Quotient.elim-prop λ where .[]ʳ q → map (to-List s) (unary′ F-set map map-id map-∘ f g h s [ q ]) ≡⟨⟩ map (to-List s) (map [_] (g q)) ≡⟨ sym $ map-∘ _ ⟩ map (Q.to-List _) (g q) ≡⟨ h ⟩ f (Q.to-List _ q) ≡⟨⟩ f (to-List s′ [ q ]) ∎ .is-propositionʳ _ → F-set (H-level-List 0 s) -- Enqueues an element. enqueue : A → Queue Q A → Queue Q A enqueue x = unary (_++ x ∷ []) (Q.enqueue x) Q.to-List-enqueue to-List-enqueue : to-List s (enqueue x q) ≡ to-List s q ++ x ∷ [] to-List-enqueue {q = q} = to-List-unary q -- Dequeues an element, if possible. (The carrier type is required -- to be a set.) dequeue : Is-set A → Queue Q A → Maybe (A × Queue Q A) dequeue s = unary′ (Maybe-closure 0 ∘ ×-closure 2 s) (λ f → ⊎-map id (Σ-map id f)) ⊎-map-id ⊎-map-∘ (_↔_.to List↔Maybe[×List]) (Q.dequeue _) Q.to-List-dequeue s to-List-dequeue : ⊎-map id (Σ-map id (to-List s)) (dequeue s q) ≡ _↔_.to List↔Maybe[×List] (to-List s q) to-List-dequeue {q = q} = to-List-unary′ (Maybe-closure 0 ∘ ×-closure 2 _) (λ f → ⊎-map id (Σ-map id f)) ⊎-map-id ⊎-map-∘ _ (Q.dequeue _) _ _ q -- The "inverse" of the dequeue operation. dequeue⁻¹ : Maybe (A × Queue Q A) → Queue Q A dequeue⁻¹ nothing = [ Q.empty ] dequeue⁻¹ (just (x , q)) = unary (x ∷_) (Q.cons x) Q.to-List-cons q to-List-dequeue⁻¹ : to-List s (dequeue⁻¹ x) ≡ _↔_.from List↔Maybe[×List] (⊎-map id (Σ-map id (to-List s)) x) to-List-dequeue⁻¹ {x = nothing} = Q.to-List-empty to-List-dequeue⁻¹ {x = just (_ , q)} = to-List-unary q -- A map function. map : (A → B) → Queue Q A → Queue Q B map f = unary (L.map f) (Q.map f) Q.to-List-map to-List-map : to-List s₁ (map f q) ≡ L.map f (to-List s₂ q) to-List-map {q = q} = to-List-unary q
32.349673
112
0.472068
1eb4ad627a40f5e15aacbe1dac761ae6ad9e581e
4,043
agda
Agda
src/Web/Semantic/DL/Integrity.agda
agda/agda-web-semantic
8ddbe83965a616bff6fc7a237191fa261fa78bab
[ "MIT" ]
9
2015-09-13T17:46:41.000Z
2020-03-14T14:21:08.000Z
src/Web/Semantic/DL/Integrity.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
4
2018-11-14T02:32:28.000Z
2021-01-04T20:57:19.000Z
src/Web/Semantic/DL/Integrity.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
3
2017-12-03T14:52:09.000Z
2022-03-12T11:40:03.000Z
open import Data.Product using ( ∃ ; _×_ ; _,_ ; proj₁ ; proj₂ ) open import Relation.Unary using ( _∈_ ) open import Web.Semantic.DL.ABox using ( ABox ) open import Web.Semantic.DL.ABox.Interp using ( Interp ; _*_ ) open import Web.Semantic.DL.ABox.Interp.Morphism using ( _≲_ ; ≲-trans ; _**_ ; _≋_ ) open import Web.Semantic.DL.KB using ( KB ; _,_ ; tbox ) open import Web.Semantic.DL.KB.Model using ( _⊨_ ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( _,_ ) open import Web.Semantic.Util using ( _⊕_⊕_ ; inode ; enode ) module Web.Semantic.DL.Integrity {Σ : Signature} {X V Y : Set} where -- A variant of the notion of OWL integrity in: -- Boris Motik, Ian Horrocks, and Ulrike Sattler. Bridging the gap between OWL and -- relational databases. In Proc. Conf. World Wide Web (WWW2007), pp 807–816, 2007. -- They propose defining that an integrity constraint S (given as a T-Box) is valid -- for a knowlege base K whenever S is valid in every minimal Herbrand model. -- We strengthen this requirement to say that there is a minimal model of K, -- which validtes S. infixr 4 _>>_ _,_ infix 2 _⊕_⊨_ -- J ∈ Initial I K whenever J is the initial extension of I -- satisfying K, that is there is I≲J s.t. I ⊨ K -- and for any other such I≲K, there is a unique -- J≲K which commutes with I≲J and I≲K. _>>_ : ∀ {I : Interp Σ X} {J K : Interp Σ (X ⊕ V ⊕ Y)} → (I ≲ inode * J) → (J ≲ K) → (I ≲ inode * K) I≲J >> J≲K = ≲-trans I≲J (inode ** J≲K) Unique : ∀ (I : Interp Σ X) → (J K : Interp Σ (X ⊕ V ⊕ Y)) → (I ≲ inode * J) → (I ≲ inode * K) → Set Unique I J K I≲J I≲K = ∀ (J≲₁K J≲₂K : J ≲ K) → (I≲K ≋ I≲J >> J≲₁K) → (I≲K ≋ I≲J >> J≲₂K) → (J≲₁K ≋ J≲₂K) data Mediated (I : Interp Σ X) (J K : Interp Σ (X ⊕ V ⊕ Y)) (I≲J : I ≲ inode * J) (I≲K : I ≲ inode * K) : Set where _,_ : (J≲K : J ≲ K) → (I≲K ≋ I≲J >> J≲K) × (Unique I J K I≲J I≲K) → Mediated I J K I≲J I≲K med-≲ : ∀ {I} {J K : Interp Σ (X ⊕ V ⊕ Y)} {I≲J I≲K} → (Mediated I J K I≲J I≲K) → (J ≲ K) med-≲ (J≲K , I≲K≋I≲J≲K , J≲K-uniq) = J≲K med-≋ : ∀ {I} {J K : Interp Σ (X ⊕ V ⊕ Y)} {I≲J I≲K} → (m : Mediated I J K I≲J I≲K) → (I≲K ≋ I≲J >> med-≲ m) med-≋ (J≲K , I≲K≋I≲J≲K , J≲K-uniq) = I≲K≋I≲J≲K med-uniq : ∀ {I} {J K : Interp Σ (X ⊕ V ⊕ Y)} {I≲J I≲K} → (Mediated I J K I≲J I≲K) → Unique I J K I≲J I≲K med-uniq (J≲K , I≲K≋I≲J≲K , J≲K-uniq) = J≲K-uniq Mediator : ∀ (I : Interp Σ X) → (J : Interp Σ (X ⊕ V ⊕ Y)) → (I ≲ inode * J) → (KB Σ (X ⊕ V ⊕ Y)) → Set₁ Mediator I J I≲J KB = ∀ K (I≲K : I ≲ inode * K) → (K ⊨ KB) → Mediated I J K I≲J I≲K data Initial I KB (J : Interp Σ (X ⊕ V ⊕ Y)) : Set₁ where _,_ : ∀ (I≲J : I ≲ inode * J) → (J ⊨ KB) × (Mediator I J I≲J KB) → (J ∈ Initial I KB) init-≲ : ∀ {I KB} {J : Interp Σ (X ⊕ V ⊕ Y)} → (J ∈ Initial I KB) → (I ≲ inode * J) init-≲ (I≲J , J⊨KB , J-med) = I≲J init-⊨ : ∀ {I KB} {J : Interp Σ (X ⊕ V ⊕ Y)} → (J ∈ Initial I KB) → (J ⊨ KB) init-⊨ (I≲J , J⊨KB , J-med) = J⊨KB init-med : ∀ {I KB} {J : Interp Σ (X ⊕ V ⊕ Y)} → (J-init : J ∈ Initial I KB) → Mediator I J (init-≲ J-init) KB init-med (I≲J , J⊨KB , J-med) = J-med -- I ⊕ KB₁ ⊨ KB₂ whenever the initial extension of I satisfying -- KB₁ exists, and has exports satisfying KB₂. data _⊕_⊨_ I (KB₁ : KB Σ (X ⊕ V ⊕ Y)) KB₂ : Set₁ where _,_ : ∀ J → ((J ∈ Initial I KB₁) × (enode * J ⊨ KB₂)) → (I ⊕ KB₁ ⊨ KB₂) extension : ∀ {I KB₁ KB₂} → (I ⊕ KB₁ ⊨ KB₂) → (Interp Σ (X ⊕ V ⊕ Y)) extension (J , J-init , J⊨KB₂) = J ext-init : ∀ {I} {KB₁ : KB Σ (X ⊕ V ⊕ Y)} {KB₂} → (I⊕KB₁⊨KB₂ : I ⊕ KB₁ ⊨ KB₂) → (extension I⊕KB₁⊨KB₂ ∈ Initial I KB₁) ext-init (J , J-init , J⊨KB₂) = J-init ext-⊨ : ∀ {I} {KB₁ : KB Σ (X ⊕ V ⊕ Y)} {KB₂} → (I⊕KB₁⊨KB₂ : I ⊕ KB₁ ⊨ KB₂) → (enode * (extension I⊕KB₁⊨KB₂) ⊨ KB₂) ext-⊨ (J , J-init , J⊨KB₂) = J⊨KB₂ ext✓ : ∀ {I S T} {F : ABox Σ (X ⊕ V ⊕ Y)} {B} → (I⊕SF⊨TB : I ⊕ S , F ⊨ T , B) → (enode * (extension I⊕SF⊨TB) ⊨ (S , T) , B) ext✓ I⊕SF⊨TB = ( ( proj₁ (init-⊨ (ext-init I⊕SF⊨TB)) , proj₁ (ext-⊨ I⊕SF⊨TB) ) , proj₂ (ext-⊨ I⊕SF⊨TB) )
38.875
85
0.542419
58139761632cc12e0a44ba2fc45c5242c78f4849
1,892
agda
Agda
test/Compiler/simple/Forcing4.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
7
2018-11-05T22:13:36.000Z
2018-11-06T16:38:43.000Z
test/Compiler/simple/Forcing4.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
16
2018-10-08T00:32:04.000Z
2019-09-08T13:47:04.000Z
test/Compiler/simple/Forcing4.agda
xekoukou/agda-ocaml
026a8f8473ab91f99c3f6545728e71fa847d2720
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
module Forcing4 where open import Common.Nat renaming (zero to Z; suc to S) open import Lib.Fin open import Common.Equality open import Common.String open import Common.IO open import Common.Unit {- toNat : {n : Nat} → Fin n → Nat toNat (zero _) = 0 toNat (suc _ i) = suc (toNat i) -} Rel : (X : Set) -> Set1 Rel X = X -> X -> Set data _<=_ : Rel Nat where z<=n : ∀ n → Z <= n s<=s : ∀ m n (m<=n : m <= n) → S m <= S n _ℕ<_ : Rel Nat m ℕ< n = S m <= n fromℕ≤ : ∀ {m n} → m ℕ< n → Fin n fromℕ≤ (s<=s .0 n (z<=n .n)) = fz {n} fromℕ≤ (s<=s .(S m) .(S n) (s<=s m n m<=n)) = fs {S n} (fromℕ≤ (s<=s m n m<=n)) fromℕ≤-toℕ : ∀ m (i : Fin m) (i<m : forget i ℕ< m) → fromℕ≤ i<m ≡ i fromℕ≤-toℕ .(S n) (fz {n}) (s<=s .0 .n (z<=n .n)) = refl fromℕ≤-toℕ .(S (S n)) (fs .{S n} y) (s<=s .(S (forget y)) .(S n) (s<=s .(forget y) n m≤n)) = cong (\ n -> fs n) (fromℕ≤-toℕ (S n) y (s<=s (forget y) n m≤n)) [_/2] : Nat -> Nat [ 0 /2] = 0 [ 1 /2] = 0 [ S (S n) /2] = S [ n /2] [1/2]-mono : (m n : Nat) -> m <= n -> [ m /2] <= [ n /2] [1/2]-mono .0 .n (z<=n n) = z<=n [ n /2] [1/2]-mono .1 .(S n) (s<=s .0 .n (z<=n n)) = z<=n [ S n /2] [1/2]-mono .(S (S m)) .(S (S n)) (s<=s .(S m) .(S n) (s<=s m n m<=n)) = s<=s [ m /2] [ n /2] ([1/2]-mono m n m<=n) showEq : {X : Set}{A : X} -> A ≡ A -> String showEq refl = "refl" show<= : {m n : Nat} -> m <= n -> String show<= (z<=n n) = "0 <= " +S+ natToString n show<= (s<=s m n m<=n) = natToString (S m) +S+ " <= " +S+ natToString (S n) data Bot : Set where -- Only to check that it compiles.. foo : (n : Nat) -> S n <= n -> Bot foo .(S n) (s<=s .(S n) n le) = foo n le main : IO Unit main = putStrLn (showEq (fromℕ≤-toℕ 3 (inc (inject 1)) le)) ,, putStrLn (show<= ([1/2]-mono 4 6 le')) where le : 2 <= 3 le = s<=s _ _ (s<=s _ _ (z<=n _)) le' : 4 <= 6 le' = s<=s _ _ (s<=s _ _ (s<=s _ _ (s<=s _ _ (z<=n _))))
28.666667
156
0.463002
8b3c6467bf4d83949c0e620a4951f02b1437a1db
976
agda
Agda
src/MJ/Examples/While.agda
metaborg/mj.agda
0c096fea1716d714db0ff204ef2a9450b7a816df
[ "Apache-2.0" ]
10
2017-11-17T17:10:36.000Z
2021-09-24T08:02:33.000Z
src/MJ/Examples/While.agda
metaborg/mj.agda
0c096fea1716d714db0ff204ef2a9450b7a816df
[ "Apache-2.0" ]
1
2019-01-13T13:03:47.000Z
2020-10-14T13:41:58.000Z
src/MJ/Examples/While.agda
metaborg/mj.agda
0c096fea1716d714db0ff204ef2a9450b7a816df
[ "Apache-2.0" ]
1
2021-12-28T17:38:05.000Z
2021-12-28T17:38:05.000Z
module MJ.Examples.While where open import MJ.Examples.Integer open import Prelude open import MJ.Types open import MJ.Classtable.Code Σ open import MJ.Syntax Σ open import MJ.Syntax.Program Σ open import MJ.Semantics Σ Lib open import MJ.Semantics.Values Σ open import Data.List.Any open import Data.List.Membership.Propositional open import Data.Star open import Data.Bool as Bools hiding (_≤?_) open import Relation.Nullary.Decidable -- a simple program that computes 10 using a while loop p₁ : Prog int p₁ = Lib , let x = (here refl) in body ( loc int ◅ asgn x (num 1) ◅ while iop (λ x y → Bools.if ⌊ suc x ≤? y ⌋ then 0 else 1) (var x) (num 10) run ( asgn x (iop (λ x y → x + y) (var x) (num 1)) ) -- test simplest if-then-else and early return from statement ◅ if (num 0) then (ret (var x)) else (ret (num 0)) ◅ ε ) (num 0) test1 : p₁ ⇓⟨ 100 ⟩ (λ {W} (v : Val W int) → v ≡ num 10) test1 = refl
25.684211
88
0.647541
035660b58194fa527c1e47eb69e5734950344316
778
agda
Agda
Common.agda
fangyi-zhou/mpst-in-agda
3d12eed9d340207d242d70f43c6b34e01d3620de
[ "MIT" ]
1
2021-08-14T17:36:53.000Z
2021-08-14T17:36:53.000Z
Common.agda
fangyi-zhou/mpst-in-agda
3d12eed9d340207d242d70f43c6b34e01d3620de
[ "MIT" ]
1
2021-08-31T10:15:38.000Z
2021-11-24T11:30:17.000Z
Common.agda
fangyi-zhou/mpst-in-agda
3d12eed9d340207d242d70f43c6b34e01d3620de
[ "MIT" ]
null
null
null
module Common where open import Level using (Level) open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; sym; refl) open import Relation.Nullary.Decidable using (False; toWitnessFalse) open import Data.Nat using (ℕ) open import Data.Fin using (Fin; _≟_) private variable n : ℕ l : Level A : Set l x x′ y : A Label : Set Label = ℕ data Action (n : ℕ) : Set where action : (p q : Fin n) -> p ≢ q -> Label -> Action n action′ : (p q : Fin n) -> {False (p ≟ q)} -> Label -> Action n action′ p q {p≢q} l = action p q (toWitnessFalse p≢q) l ¬≡-flip : x ≢ y -> y ≢ x ¬≡-flip x≢y = λ y≡x → x≢y (sym y≡x) ≢-subst-left : x ≢ y -> x ≡ x′ -> x′ ≢ y ≢-subst-left x≢y refl = x≢y ≢-subst-right : y ≢ x -> x ≡ x′ -> y ≢ x′ ≢-subst-right y≢x refl = y≢x
23.575758
77
0.59126
20f96b3bc3593229e09f75cce6df5153eea6e5fb
1,059
agda
Agda
Thesis/Lang.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
10
2015-03-04T06:09:20.000Z
2019-07-19T07:06:59.000Z
Thesis/Lang.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
6
2015-07-01T18:09:31.000Z
2017-05-04T13:53:59.000Z
Thesis/Lang.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
1
2016-02-18T12:26:44.000Z
2016-02-18T12:26:44.000Z
module Thesis.Lang where open import Thesis.Syntax public open import Thesis.Environments public ⟦_⟧Const : ∀ {τ} → Const τ → ⟦ τ ⟧Type ⟦ unit ⟧Const = tt ⟦ lit n ⟧Const = n ⟦ plus ⟧Const = _+_ ⟦ minus ⟧Const = _-_ ⟦ cons ⟧Const v1 v2 = v1 , v2 ⟦ fst ⟧Const (v1 , v2) = v1 ⟦ snd ⟧Const (v1 , v2) = v2 ⟦ linj ⟧Const v1 = inj₁ v1 ⟦ rinj ⟧Const v2 = inj₂ v2 ⟦ match ⟧Const (inj₁ x) f g = f x ⟦ match ⟧Const (inj₂ y) f g = g y ⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧Context → ⟦ τ ⟧Type ⟦ const c ⟧Term ρ = ⟦ c ⟧Const ⟦ var x ⟧Term ρ = ⟦ x ⟧Var ρ ⟦ app s t ⟧Term ρ = ⟦ s ⟧Term ρ (⟦ t ⟧Term ρ) ⟦ abs t ⟧Term ρ = λ v → ⟦ t ⟧Term (v • ρ) open import Theorem.CongApp open import Postulate.Extensionality weaken-sound : ∀ {Γ₁ Γ₂ τ} {Γ₁≼Γ₂ : Γ₁ ≼ Γ₂} (t : Term Γ₁ τ) (ρ : ⟦ Γ₂ ⟧Context) → ⟦ weaken Γ₁≼Γ₂ t ⟧Term ρ ≡ ⟦ t ⟧Term (⟦ Γ₁≼Γ₂ ⟧≼ ρ) weaken-sound {Γ₁≼Γ₂ = Γ₁≼Γ₂} (var x) ρ = weaken-var-sound Γ₁≼Γ₂ x ρ weaken-sound (app s t) ρ = weaken-sound s ρ ⟨$⟩ weaken-sound t ρ weaken-sound (abs t) ρ = ext (λ v → weaken-sound t (v • ρ)) weaken-sound (const c) ρ = refl
31.147059
91
0.593012
03a10492932a1594f61de8f3ed029dae8fdcd9ea
1,429
agda
Agda
src/Leftovers/TraverseTerm.agda
JoeyEremondi/AgdaLeftovers
01b60b405009feaada181af175f019ceb89e42b2
[ "BSD-3-Clause" ]
null
null
null
src/Leftovers/TraverseTerm.agda
JoeyEremondi/AgdaLeftovers
01b60b405009feaada181af175f019ceb89e42b2
[ "BSD-3-Clause" ]
null
null
null
src/Leftovers/TraverseTerm.agda
JoeyEremondi/AgdaLeftovers
01b60b405009feaada181af175f019ceb89e42b2
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K #-} module Leftovers.TraverseTerm where open import Data.List -- We only need the writer monad, but as far as I can tell -- it's not in the Agda stdlib open import Category.Monad.State open import Reflection using (Term ; Meta ; Name ; Arg) import Leftovers.Everywhere open import Relation.Binary.PropositionalEquality open import Data.Product open import Data.Nat open import Data.Maybe open import Data.String LCxt : Set LCxt = List (String × Arg Term) record LeafInfoMaker (A : Set) : Set where field onVar : LCxt → ℕ → Maybe A onMeta : LCxt → Meta → Maybe A onCon : LCxt → Name → Maybe A onDef : LCxt → Name → Maybe A collectFromSubterms : ∀ {A : Set} → LeafInfoMaker A → Term → List A collectFromSubterms {A} f t = proj₂ (stateResult []) where open RawMonadState (StateMonadState (List A)) open import Leftovers.Everywhere (StateMonad (List A)) toAction : ∀ {X : Set} → (LCxt → X → Maybe A) → Action X toAction f cxt x with f (Cxt.context cxt) x ... | nothing = return x ... | just fx = do modify (fx ∷_) return x stateResult : State (List A) Term stateResult = everywhere (record { onVar = toAction (LeafInfoMaker.onVar f) ; onMeta = toAction (LeafInfoMaker.onMeta f) ; onCon = toAction (LeafInfoMaker.onCon f) ; onDef = toAction (LeafInfoMaker.onDef f) }) (λ Γ x → return x) t
27.480769
76
0.660602
ad5ca444363bc1898406147cb08e6fcd278f3081
24,762
agda
Agda
src/to-string.agda
CarlOlson/cedille
f5ce42258b7d9bc66f75cd679c785d6133b82b58
[ "MIT" ]
null
null
null
src/to-string.agda
CarlOlson/cedille
f5ce42258b7d9bc66f75cd679c785d6133b82b58
[ "MIT" ]
null
null
null
src/to-string.agda
CarlOlson/cedille
f5ce42258b7d9bc66f75cd679c785d6133b82b58
[ "MIT" ]
null
null
null
import cedille-options module to-string (options : cedille-options.options) where open import lib open import cedille-types open import constants open import syntax-util open import ctxt open import rename open import general-util open import datatype-functions open import erase data expr-side : Set where left : expr-side right : expr-side neither : expr-side not-left : expr-side → 𝔹 not-left left = ff not-left _ = tt not-right : expr-side → 𝔹 not-right right = ff not-right _ = tt exprd-eq : exprd → exprd → 𝔹 exprd-eq TERM TERM = tt exprd-eq TYPE TYPE = tt exprd-eq KIND KIND = tt exprd-eq TK TK = tt exprd-eq LIFTINGTYPE LIFTINGTYPE = tt exprd-eq QUALIF QUALIF = tt exprd-eq ARG ARG = tt exprd-eq _ _ = ff no-parens : {ed : exprd} → {ed' : exprd} → ⟦ ed ⟧ → ⟦ ed' ⟧ → expr-side → 𝔹 no-parens {_} {TERM} _ (IotaPair pi t t' og pi') lr = tt no-parens {_} {TYPE} _ (TpEq _ t t' _) lr = tt no-parens {_} {TERM} _ (Beta pi ot ot') lr = tt no-parens {_} {TERM} _ (Phi pi eq t t' pi') right = tt no-parens {_} {TERM} _ (Phi pi eq t t' pi') neither = tt no-parens {_} {TERM} _ (Rho _ _ _ _ _ _) right = tt no-parens {_} {TERM} _ (Chi _ _ _) right = tt no-parens {_} {TERM} _ (Delta _ _ _) right = tt no-parens {_} {TERM} _ (Let _ _ _ _) lr = tt no-parens {_} {TERM} _ (Lam _ _ _ _ _ _) lr = tt no-parens {_} {TERM} _ (Mu _ _ _ _ _ _ _ _) right = tt no-parens {_} {TERM} _ (Mu' _ _ _ _ _ _ _) right = tt no-parens {_} {TYPE} _ (TpLambda _ _ _ _ _) lr = tt no-parens {_} {TYPE} _ (Abs _ _ _ _ _ _) lr = tt --no-parens {_} {KIND} _ (KndPi _ _ _ _ _) lr = tt no-parens {_} {TYPE} _ (Iota _ _ _ _ _) lr = tt no-parens {_} {LIFTINGTYPE} _ (LiftPi _ _ _ _) lr = tt no-parens {TERM} {_} (App t me t') p lr = is-term-level-app p && not-right lr no-parens {TERM} {_} (AppTp t T) p lr = is-term-level-app p && not-right lr no-parens {TERM} {_} (Beta pi ot ot') p lr = tt no-parens {TERM} {_} (Chi pi mT t) p lr = ff no-parens {TERM} {_} (Delta pi mT t) p lr = ff no-parens {TERM} {_} (Epsilon pi lr' m t) p lr = is-eq-op p no-parens {TERM} {_} (Hole pi) p lr = tt no-parens {TERM} {_} (IotaPair pi t t' og pi') p lr = tt no-parens {TERM} {_} (IotaProj t n pi) p lr = tt no-parens {TERM} {_} (Lam pi l' pi' x oc t) p lr = ff no-parens {TERM} {_} (Let pi _ dtT t) p lr = ff no-parens {TERM} {_} (Open _ _ _ _ _) p lr = ff no-parens {TERM} {_} (Parens pi t pi') p lr = tt no-parens {TERM} {_} (Phi pi eq t t' pi') p lr = ff no-parens {TERM} {_} (Rho pi op on eq og t) p lr = ff no-parens {TERM} {_} (Sigma pi t) p lr = is-eq-op p no-parens {TERM} {_} (Theta pi theta t lts) p lr = ff no-parens {TERM} {_} (Var pi x) p lr = tt no-parens {TERM} {_} (Mu _ _ _ _ _ _ _ _) p lr = ff no-parens {TERM} {_} (Mu' _ _ _ _ _ _ _) p lr = ff no-parens {TYPE} {e} (Abs pi b pi' x Tk T) p lr = exprd-eq e TYPE && is-arrow p && not-left lr no-parens {TYPE} {_} (Iota pi pi' x oT T) p lr = ff no-parens {TYPE} {_} (Lft pi pi' x t lT) p lr = ff no-parens {TYPE} {_} (NoSpans T pi) p lr = tt no-parens {TYPE} {_} (TpApp T T') p lr = is-arrow p || (is-type-level-app p && not-right lr) no-parens {TYPE} {_} (TpAppt T t) p lr = is-arrow p || (is-type-level-app p && not-right lr) no-parens {TYPE} {e} (TpArrow T a T') p lr = exprd-eq e TYPE && is-arrow p && not-left lr no-parens {TYPE} {_} (TpEq _ t t' _) p lr = tt no-parens {TYPE} {_} (TpHole pi) p lr = tt no-parens {TYPE} {_} (TpLambda pi pi' x Tk T) p lr = ff no-parens {TYPE} {_} (TpParens pi T pi') p lr = tt no-parens {TYPE} {_} (TpVar pi x) p lr = tt no-parens {TYPE} {_} (TpLet _ _ _) _ _ = ff no-parens {KIND} {_} (KndArrow k k') p lr = is-arrow p && not-left lr no-parens {KIND} {_} (KndParens pi k pi') p lr = tt no-parens {KIND} {_} (KndPi pi pi' x Tk k) p lr = is-arrow p && not-left lr no-parens {KIND} {_} (KndTpArrow T k) p lr = is-arrow p && not-left lr no-parens {KIND} {_} (KndVar pi x as) p lr = tt no-parens {KIND} {_} (Star pi) p lr = tt no-parens {LIFTINGTYPE} (LiftArrow lT lT') p lr = is-arrow p && not-left lr no-parens {LIFTINGTYPE} (LiftParens pi lT pi') p lr = tt no-parens {LIFTINGTYPE} (LiftPi pi x T lT) p lr = is-arrow p && not-left lr no-parens {LIFTINGTYPE} (LiftStar pi) p lr = tt no-parens {LIFTINGTYPE} (LiftTpArrow T lT) p lr = is-arrow p && not-left lr no-parens {TK} _ _ _ = tt no-parens {QUALIF} _ _ _ = tt no-parens {ARG} _ _ _ = tt pattern ced-ops-drop-spine = cedille-options.options.mk-options _ _ _ _ ff _ _ ff pattern ced-ops-conv-arr = cedille-options.options.mk-options _ _ _ _ _ _ _ ff pattern ced-ops-conv-abs = cedille-options.options.mk-options _ _ _ _ _ _ _ tt drop-spine : cedille-options.options → {ed : exprd} → ctxt → ⟦ ed ⟧ → ⟦ ed ⟧ drop-spine ops @ ced-ops-drop-spine = h where drop-mod-args : ctxt → maybeErased → spineApp → spineApp drop-mod-args Γ me (v , as) = let qv = unqual-all (ctxt-get-qualif Γ) v in qv , maybe-else' (maybe-if (~ v =string qv) ≫maybe ctxt-qualif-args-length Γ me qv) as (λ n → reverse (drop n (reverse as))) h : {ed : exprd} → ctxt → ⟦ ed ⟧ → ⟦ ed ⟧ h {TERM} Γ t = maybe-else' (term-to-spapp t) t (spapp-term ∘ drop-mod-args Γ (cedille-options.options.erase-types ops)) h {TYPE} Γ T = maybe-else' (type-to-spapp T) T (spapp-type ∘ drop-mod-args Γ NotErased) h Γ x = x drop-spine ops Γ x = x to-string-rewrite : {ed : exprd} → ctxt → cedille-options.options → ⟦ ed ⟧ → Σi exprd ⟦_⟧ to-string-rewrite{TERM} Γ ops (Parens _ t _) = to-string-rewrite Γ ops t to-string-rewrite{TYPE} Γ ops (TpParens _ T _) = to-string-rewrite Γ ops T to-string-rewrite{KIND} Γ ops (KndParens _ k _) = to-string-rewrite Γ ops k to-string-rewrite{LIFTINGTYPE} Γ ops (LiftParens _ lT _) = to-string-rewrite Γ ops lT to-string-rewrite{TK} Γ ops (Tkt T) = to-string-rewrite Γ ops T to-string-rewrite{TK} Γ ops (Tkk k) = to-string-rewrite Γ ops k to-string-rewrite{TYPE} Γ ced-ops-conv-arr (Abs _ me _ ignored-var (Tkt T) T') = , TpArrow T me T' to-string-rewrite{KIND} Γ ced-ops-conv-arr (KndPi _ _ ignored-var (Tkt T) k) = , KndTpArrow T k to-string-rewrite{KIND} Γ ced-ops-conv-arr (KndPi _ _ ignored-var (Tkk k) k') = , KndArrow k k' to-string-rewrite{LIFTINGTYPE} Γ ced-ops-conv-arr (LiftPi _ ignored-var T lT) = , LiftTpArrow T lT to-string-rewrite{TYPE} Γ ced-ops-conv-abs (TpArrow T me T') = , Abs posinfo-gen me posinfo-gen ignored-var (Tkt T) T' to-string-rewrite{KIND} Γ ced-ops-conv-abs (KndTpArrow T k) = , KndPi posinfo-gen posinfo-gen ignored-var (Tkt T) k to-string-rewrite{KIND} Γ ced-ops-conv-abs (KndArrow k k') = , KndPi posinfo-gen posinfo-gen ignored-var (Tkk k) k' to-string-rewrite{LIFTINGTYPE} Γ ced-ops-conv-abs (LiftTpArrow T lT) = , LiftPi posinfo-gen ignored-var T lT to-string-rewrite{TERM} Γ ops @ ced-ops-conv-abs (Open _ _ _ _ t) = to-string-rewrite Γ ops t to-string-rewrite{TERM} Γ ops (Sigma pi t) with to-string-rewrite Γ ops t ...| ,_ {TERM} (Sigma pi' t') = , t' ...| ,_ {TERM} t' = , Sigma posinfo-gen t' ...| t? = , Sigma posinfo-gen t to-string-rewrite Γ ops x = , drop-spine ops Γ x ------------------------------- strM : Set strM = ∀ {ed} → rope → ℕ → 𝕃 tag → ctxt → maybe ⟦ ed ⟧ → expr-side → rope × ℕ × 𝕃 tag to-stringh : {ed : exprd} → ⟦ ed ⟧ → strM strM-Γ : (ctxt → strM) → strM strM-Γ f s n ts Γ = f Γ s n ts Γ infixr 4 _≫str_ _≫str_ : strM → strM → strM (m ≫str m') s n ts Γ pe lr with m s n ts Γ pe lr (m ≫str m') s n ts Γ pe lr | s' , n' , ts' = m' s' n' ts' Γ pe lr strAdd : string → strM strAdd s s' n ts Γ pe lr = s' ⊹⊹ [[ s ]] , n + string-length s , ts strΓ' : defScope → var → strM → strM strΓ' ds v m s n ts Γ@(mk-ctxt (fn , mn , ps , q) syms i symb-occs Δ) pe = let gl = ds iff globalScope v' = if gl then (mn # v) else v in m s n ts (mk-ctxt (fn , mn , ps , qualif-insert-params q v' (unqual-local v) (if gl then ps else [])) syms (trie-insert i v' (var-decl , ("missing" , "missing"))) symb-occs Δ) pe strΓ : var → strM → strM strΓ x m s n ts Γ = m s n ts (ctxt-var-decl x Γ) ctxt-get-file-id : ctxt → (filename : string) → ℕ ctxt-get-file-id (mk-ctxt mod (syms , mn-fn , mn-ps , ids , id) is os Δ) = trie-lookup-else 0 ids make-loc-tag : ctxt → (filename start-to end-to : string) → (start-from end-from : ℕ) → tag make-loc-tag Γ fn s e = make-tag "loc" (("fn" , [[ ℕ-to-string (ctxt-get-file-id Γ fn) ]]) :: ("s" , [[ s ]]) :: ("e" , [[ e ]]) :: []) var-loc-tag : ctxt → location → var → 𝕃 (string × 𝕃 tag) var-loc-tag Γ ("missing" , "missing") x = [] var-loc-tag Γ ("" , _) x = [] var-loc-tag Γ (_ , "") x = [] var-loc-tag Γ (fn , pi) x = let fn-tag = "fn" , [[ ℕ-to-string (ctxt-get-file-id Γ fn) ]] s-tag = "s" , [[ pi ]] e-tag = "e" , [[ posinfo-plus-str pi x ]] in [ "loc" , fn-tag :: s-tag :: e-tag :: [] ] var-tags : ctxt → qvar → var → 𝕃 (string × 𝕃 tag) var-tags Γ qv uqv = (if qv =string qualif-var Γ uqv then id else ("shadowed" , []) ::_) (var-loc-tag Γ (ctxt-var-location Γ qv) uqv) strAddTags : string → 𝕃 (string × 𝕃 tag) → strM strAddTags sₙ tsₙ sₒ n tsₒ Γ pe lr = let n' = n + string-length sₙ in sₒ ⊹⊹ [[ sₙ ]] , n' , map (uncurry λ k vs → make-tag k vs n n') tsₙ ++ tsₒ strVar : var → strM strVar v = strM-Γ λ Γ → let uqv = unqual-local v -- $ unqual-all (ctxt-get-qualif Γ) v uqv' = if cedille-options.options.show-qualified-vars options then v else uqv in strAddTags uqv' (var-tags Γ (qualif-var Γ v) uqv) strKvar : var → strM strKvar v = strM-Γ λ Γ → strVar (unqual-all (ctxt-get-qualif Γ) v) -- Only necessary to unqual-local because of module parameters strBvar : var → (class body : strM) → strM strBvar v cm bm = strAdd (unqual-local v) ≫str cm ≫str strΓ' localScope v bm strMetaVar : var → span-location → strM strMetaVar x (fn , pi , pi') s n ts Γ pe lr = let n' = n + string-length x in s ⊹⊹ [[ x ]] , n' , make-loc-tag Γ fn pi pi' n n' :: ts strEmpty : strM strEmpty s n ts Γ pe lr = s , n , ts {-# TERMINATING #-} term-to-stringh : term → strM type-to-stringh : type → strM kind-to-stringh : kind → strM liftingType-to-stringh : liftingType → strM tk-to-stringh : tk → strM ctr-to-string : ctr → strM ctrs-to-string : ctrs → strM case-to-string : case → strM cases-to-string : cases → strM caseArgs-to-string : caseArgs → strM → strM params-to-string : params → strM params-to-string' : strM → params → strM file-to-string : start → strM cmds-to-string : cmds → strM → strM cmd-to-string : cmd → strM → strM optTerm-to-string : optTerm → string → string → strM optClass-to-string : optClass → strM optGuide-to-string : optGuide → strM optNums-to-string : optNums → strM optType-to-string : string → optType → strM maybeCheckType-to-string : optType → strM lterms-to-string : lterms → strM arg-to-string : arg → strM args-to-string : args → strM binder-to-string : maybeErased → string opacity-to-string : opacity → string maybeErased-to-string : maybeErased → string lam-to-string : maybeErased → string leftRight-to-string : leftRight → string vars-to-string : vars → strM nums-to-string : nums → strM theta-to-string : theta → strM arrowtype-to-string : maybeErased → string maybeMinus-to-string : maybeMinus → string optPlus-to-string : rhoHnf → string optPublic-to-string : optPublic → string optAs-to-string : optAs → strM to-string-ed : {ed : exprd} → ⟦ ed ⟧ → strM to-string-ed{TERM} = term-to-stringh to-string-ed{TYPE} = type-to-stringh to-string-ed{KIND} = kind-to-stringh to-string-ed{LIFTINGTYPE} = liftingType-to-stringh to-string-ed{TK} = tk-to-stringh to-string-ed{ARG} = arg-to-string to-string-ed{QUALIF} q = strEmpty to-stringh' : {ed : exprd} → expr-side → ⟦ ed ⟧ → strM to-stringh' {ed} lr t {ed'} s n ts Γ mp lr' = elim-Σi (to-string-rewrite Γ options t) λ t' → parens-unless (~ isJust (mp ≫=maybe λ pe → maybe-if (~ no-parens t' pe lr))) (to-string-ed t') s n ts Γ (just t') lr where parens-unless : 𝔹 → strM → strM parens-unless p s = if p then s else (strAdd "(" ≫str s ≫str strAdd ")") to-stringl : {ed : exprd} → ⟦ ed ⟧ → strM to-stringr : {ed : exprd} → ⟦ ed ⟧ → strM to-stringl = to-stringh' left to-stringr = to-stringh' right to-stringh = to-stringh' neither ctr-to-string (Ctr _ x T) = strAdd x ≫str strAdd " : " ≫str to-stringh T ctrs-to-string [] = strEmpty ctrs-to-string (c :: []) = ctr-to-string c ctrs-to-string (c :: cs) = ctr-to-string c ≫str strAdd " | " ≫str ctrs-to-string cs {- caseArgs-drop-params : params → caseArgs → caseArgs caseArgs-drop-params (Decl _ _ NotErased x (Tkt T) _ :: ps) (CaseTermArg _ NotErased ignored-var :: as) = caseArgs-drop-params ps as caseArgs-drop-params (Decl _ _ Erased x (Tkt T) _ :: ps) (CaseTermArg _ Erased ignored-var :: as) = caseArgs-drop-params ps as caseArgs-drop-params (Decl _ _ _ x (Tkk k) _ :: ps) (CaseTypeArg _ ignored-var :: as) = caseArgs-drop-params ps as caseArgs-drop-params (_ :: ps) as = caseArgs-drop-params ps as caseArgs-drop-params [] as = as -} case-to-string (Case _ x as t) = strM-Γ λ Γ → let as-f = λ x as → strVar x ≫str caseArgs-to-string as (strAdd " ➔ " ≫str to-stringr t) in case (env-lookup Γ x , options) of uncurry λ where (just (ctr-def mps T _ _ _ , _ , _)) ced-ops-drop-spine → as-f (unqual-all (ctxt-get-qualif Γ) x) as -- $ maybe-else' mps as $ flip caseArgs-drop-params as _ _ → as-f x as cases-to-string [] = strEmpty cases-to-string (m :: []) = case-to-string m cases-to-string (m :: ms) = case-to-string m ≫str strAdd " | " ≫str cases-to-string ms caseArgs-to-string [] m = m caseArgs-to-string (CaseTermArg pi me x :: as) m = strAdd (" " ^ maybeErased-to-string me) ≫str strBvar x strEmpty (caseArgs-to-string as m) caseArgs-to-string (CaseTypeArg pi x :: as) m = strAdd " · " ≫str strBvar x strEmpty (caseArgs-to-string as m) tk-to-stringh (Tkt T) = to-stringh T tk-to-stringh (Tkk k) = to-stringh k private let-lbrack-to-string : forceErased → string let-lbrack-to-string tt = "{ " let-lbrack-to-string ff = "[ " let-rbrack-to-string : forceErased → string let-rbrack-to-string tt = " } - " let-rbrack-to-string ff = " ] - " term-to-stringh (App t me t') = to-stringl t ≫str strAdd (" " ^ maybeErased-to-string me) ≫str to-stringr t' term-to-stringh (AppTp t T) = to-stringl t ≫str strAdd " · " ≫str to-stringr T term-to-stringh (Beta pi ot ot') = strAdd "β" ≫str optTerm-to-string ot " < " " >" ≫str optTerm-to-string ot' " { " " }" term-to-stringh (Chi pi mT t) = strAdd "χ" ≫str optType-to-string " " mT ≫str strAdd " - " ≫str to-stringr t term-to-stringh (Delta pi mT t) = strAdd "δ" ≫str optType-to-string " " mT ≫str strAdd " - " ≫str to-stringr t term-to-stringh (Epsilon pi lr m t) = strAdd "ε" ≫str strAdd (leftRight-to-string lr) ≫str strAdd (maybeMinus-to-string m) ≫str to-stringh t term-to-stringh (Hole pi) = strM-Γ λ Γ → strAddTags "●" (var-loc-tag Γ (split-var pi) "●") term-to-stringh (IotaPair pi t t' og pi') = strAdd "[ " ≫str to-stringh t ≫str strAdd " , " ≫str to-stringh t' ≫str optGuide-to-string og ≫str strAdd " ]" term-to-stringh (IotaProj t n pi) = to-stringh t ≫str strAdd ("." ^ n) term-to-stringh (Lam pi l pi' x oc t) = strAdd (lam-to-string l) ≫str strAdd " " ≫str strBvar x (optClass-to-string oc) (strAdd " . " ≫str to-stringr t) term-to-stringh (Let pi fe dtT t) with dtT ...| DefTerm pi' x m t' = strAdd (let-lbrack-to-string fe) ≫str strBvar x (maybeCheckType-to-string m ≫str strAdd " = " ≫str to-stringh t' ≫str strAdd (let-rbrack-to-string fe)) (to-stringh t) ...| DefType pi' x k t' = strAdd "[ " ≫str strBvar x (strAdd " : " ≫str to-stringh k ≫str strAdd " = " ≫str to-stringh t' ≫str strAdd " ] - ") (to-stringh t) --term-to-stringh (Open elab-hide-key o pi' x t) = term-to-stringh t term-to-stringh (Open pi o pi' x t) = strAdd (if o iff OpacTrans then "open " else "close ") ≫str strVar x ≫str strAdd " - " ≫str to-stringh t term-to-stringh (Parens pi t pi') = to-stringh t term-to-stringh (Phi pi eq t t' pi') = strAdd "φ " ≫str to-stringl eq ≫str strAdd " - " ≫str to-stringh t ≫str strAdd " { " ≫str to-stringr t' ≫str strAdd " }" term-to-stringh (Rho pi op on eq og t) = strAdd "ρ" ≫str strAdd (optPlus-to-string op) ≫str optNums-to-string on ≫str strAdd " " ≫str to-stringl eq ≫str optGuide-to-string og ≫str strAdd " - " ≫str to-stringr t term-to-stringh (Sigma pi t) = strAdd "ς " ≫str to-stringh t term-to-stringh (Theta pi theta t lts) = theta-to-string theta ≫str to-stringh t ≫str lterms-to-string lts term-to-stringh (Var pi x) = strVar x term-to-stringh (Mu pi pi' x t ot pi'' cs pi''') = strAdd "μ " ≫str strBvar x (strAdd " . " ≫str to-stringl t ≫str optType-to-string " @ " ot) (strAdd " { " ≫str cases-to-string cs ≫str strAdd " }") term-to-stringh (Mu' pi ot t oT pi' cs pi'') = strAdd "μ' " ≫str optTerm-to-string ot " < " " > " ≫str to-stringl t ≫str optType-to-string " @ " oT ≫str strAdd " { " ≫str cases-to-string cs ≫str strAdd " }" type-to-stringh (Abs pi b pi' x Tk T) = strAdd (binder-to-string b ^ " ") ≫str strBvar x (strAdd " : " ≫str to-stringl Tk ≫str strAdd " . ") (to-stringh T) type-to-stringh (Iota pi pi' x T T') = strAdd "ι " ≫str strBvar x (strAdd " : " ≫str to-stringh T ≫str strAdd " . ") (to-stringh T') type-to-stringh (Lft pi pi' x t lT) = strAdd "↑ " ≫str strBvar x (strAdd " . ") (to-stringh t) ≫str strAdd " : " ≫str to-stringh lT type-to-stringh (NoSpans T pi) = to-string-ed T type-to-stringh (TpApp T T') = to-stringl T ≫str strAdd " · " ≫str to-stringr T' type-to-stringh (TpAppt T t) = to-stringl T ≫str strAdd " " ≫str to-stringr t type-to-stringh (TpArrow T a T') = to-stringl T ≫str strAdd (arrowtype-to-string a) ≫str to-stringr T' type-to-stringh (TpEq _ t t' _) = strAdd "{ " ≫str to-stringh (erase-term t) ≫str strAdd " ≃ " ≫str to-stringh (erase-term t') ≫str strAdd " }" type-to-stringh (TpHole pi) = strM-Γ λ Γ → strAddTags "●" (var-loc-tag Γ (split-var pi) "●") type-to-stringh (TpLambda pi pi' x Tk T) = strAdd "λ " ≫str strBvar x (strAdd " : " ≫str tk-to-stringh Tk ≫str strAdd " . ") (to-stringr T) type-to-stringh (TpParens pi T pi') = to-stringh T type-to-stringh (TpVar pi x) = strVar x type-to-stringh (TpLet pi dtT t) with dtT ...| DefTerm pi' x m t' = strAdd "[ " ≫str strBvar x (maybeCheckType-to-string m ≫str strAdd " = " ≫str to-stringh t' ≫str strAdd " ] - ") (to-stringh t) ...| DefType pi' x k t' = strAdd "[ " ≫str strBvar x (strAdd " : " ≫str to-stringh k ≫str strAdd " = " ≫str to-stringh t' ≫str strAdd " ] - ") (to-stringh t) kind-to-stringh (KndArrow k k') = to-stringl k ≫str strAdd " ➔ " ≫str to-stringr k' kind-to-stringh (KndParens pi k pi') = to-stringh k kind-to-stringh (KndPi pi pi' x Tk k) = strAdd "Π " ≫str strBvar x (strAdd " : " ≫str to-stringl Tk ≫str strAdd " . ") (to-stringh k) kind-to-stringh (KndTpArrow T k) = to-stringl T ≫str strAdd " ➔ " ≫str to-stringr k kind-to-stringh (KndVar pi x as) = strKvar x ≫str args-to-string as kind-to-stringh (Star pi) = strAdd "★" liftingType-to-stringh (LiftArrow lT lT') = to-stringl lT ≫str strAdd " ➔↑ " ≫str to-stringr lT' liftingType-to-stringh (LiftParens pi lT pi') = strAdd "(" ≫str to-string-ed lT ≫str strAdd ")" liftingType-to-stringh (LiftPi pi x T lT) = strAdd "Π↑ " ≫str strBvar x (strAdd " : " ≫str to-stringh T ≫str strAdd " . ") (to-stringh lT) liftingType-to-stringh (LiftStar pi) = strAdd "☆" liftingType-to-stringh (LiftTpArrow T lT) = to-stringl T ≫str strAdd " ➔↑ " ≫str to-stringr lT optTerm-to-string NoTerm c1 c2 = strEmpty optTerm-to-string (SomeTerm t _) c1 c2 = strAdd c1 ≫str to-stringh (erase-term t) ≫str strAdd c2 optClass-to-string NoClass = strEmpty optClass-to-string (SomeClass Tk) = strAdd " : " ≫str tk-to-stringh Tk optGuide-to-string NoGuide = strEmpty optGuide-to-string (Guide pi v T) = strAdd " @ " ≫str strBvar v (strAdd " . ") (to-stringh T) optType-to-string pfx NoType = strEmpty optType-to-string pfx (SomeType T) = strAdd pfx ≫str to-stringh T maybeCheckType-to-string NoType = strEmpty maybeCheckType-to-string (SomeType T) = strAdd " : " ≫str to-stringh T lterms-to-string (Lterm m t :: ts) = strAdd (" " ^ maybeErased-to-string m) ≫str to-stringh t ≫str lterms-to-string ts lterms-to-string [] = strEmpty arg-to-string (TermArg me t) = strAdd (maybeErased-to-string me) ≫str to-stringh t arg-to-string (TypeArg T) = strAdd "· " ≫str to-stringh T args-to-string = foldr' strEmpty λ t x → strAdd " " ≫str arg-to-string t ≫str x binder-to-string All = "∀" binder-to-string Pi = "Π" opacity-to-string OpacOpaque = "opaque " opacity-to-string OpacTrans = "" maybeErased-to-string Erased = "-" maybeErased-to-string NotErased = "" lam-to-string Erased = "Λ" lam-to-string NotErased = "λ" leftRight-to-string Left = "l" leftRight-to-string Right = "r" leftRight-to-string Both = "" vars-to-string (VarsStart v) = strVar v vars-to-string (VarsNext v vs) = strVar v ≫str strAdd " " ≫str vars-to-string vs theta-to-string Abstract = strAdd "θ " theta-to-string AbstractEq = strAdd "θ+ " theta-to-string (AbstractVars vs) = strAdd "θ<" ≫str vars-to-string vs ≫str strAdd "> " nums-to-string (NumsStart n) = strAdd n nums-to-string (NumsNext n ns) = strAdd n ≫str strAdd " " ≫str nums-to-string ns optNums-to-string NoNums = strEmpty optNums-to-string (SomeNums ns) = strAdd "<" ≫str nums-to-string ns ≫str strAdd ">" arrowtype-to-string NotErased = " ➔ " arrowtype-to-string Erased = " ➾ " maybeMinus-to-string EpsHnf = "" maybeMinus-to-string EpsHanf = "-" optPlus-to-string RhoPlain = "" optPlus-to-string RhoPlus = "+" optPublic-to-string NotPublic = "" optPublic-to-string IsPublic = "public " optAs-to-string NoOptAs = strEmpty optAs-to-string (SomeOptAs _ x) = strAdd " as " ≫str strAdd x braceL : maybeErased → string braceL me = if me then "{" else "(" braceR : maybeErased → string braceR me = if me then "}" else ")" param-to-string : decl → strM → strM param-to-string (Decl _ pi me v atk _) f = strAdd (braceL me) ≫str strAdd (unqual-local v) ≫str strAdd " : " ≫str tk-to-stringh atk ≫str strAdd (braceR me) ≫str strΓ' localScope v f params-to-string' f [] = f params-to-string' f (p :: []) = param-to-string p f params-to-string' f (p :: ps) = param-to-string p (strAdd " " ≫str params-to-string' f ps) params-to-string = params-to-string' strEmpty file-to-string (File is _ _ mn ps cs _) = cmds-to-string (imps-to-cmds is) (strAdd "module " ≫str strAdd mn ≫str strAdd " " ≫str params-to-string' (strAdd "." ≫str strAdd "\n" ≫str cmds-to-string cs strEmpty) ps) cmds-to-string [] f = f cmds-to-string (c :: cs) f = strAdd "\n" ≫str cmd-to-string c (strAdd "\n" ≫str cmds-to-string cs f) cmd-to-string (DefTermOrType op (DefTerm pi x mcT t) _) f = strM-Γ λ Γ → let ps = ctxt-get-current-params Γ ps' = if pi =string elab-hide-key then params-set-erased Erased ps else ps in strAdd (opacity-to-string op) ≫str strAdd x ≫str maybeCheckType-to-string (case mcT of λ where NoType → NoType (SomeType T) → SomeType (abs-expand-type ps' T)) ≫str strAdd " = " ≫str to-stringh (lam-expand-term ps' t) ≫str strAdd " ." ≫str strΓ' globalScope x f cmd-to-string (DefTermOrType op (DefType pi x k T) _) f = strM-Γ λ Γ → let ps = ctxt-get-current-params Γ ps' = if pi =string elab-hide-key then params-set-erased Erased ps else ps in strAdd (opacity-to-string op) ≫str strAdd x ≫str strAdd " : " ≫str to-stringh (abs-expand-kind ps' k) ≫str strAdd " = " ≫str to-stringh (lam-expand-type ps' T) ≫str strAdd " ." ≫str strΓ' globalScope x f cmd-to-string (DefKind pi x ps k _) f = strM-Γ λ Γ → let ps' = ctxt-get-current-params Γ in strAdd x ≫str params-to-string (ps' ++ ps) ≫str strAdd " = " ≫str to-stringh k ≫str strAdd " ." ≫str strΓ' globalScope x f cmd-to-string (ImportCmd (Import _ op _ fn oa as _)) f = strAdd "import " ≫str strAdd (optPublic-to-string op) ≫str strAdd fn ≫str optAs-to-string oa ≫str args-to-string as ≫str strAdd " ." ≫str f cmd-to-string (DefDatatype (Datatype pi pi' x ps k cs ) pi'') f = strAdd "data " ≫str strAdd x ≫str strAdd " " ≫str params-to-string ps ≫str strAdd " : " ≫str kind-to-stringh k ≫str strAdd " = " ≫str ctrs-to-string cs ≫str strΓ' globalScope x f strRun : ctxt → strM → rope strRun Γ m = fst (m {TERM} [[]] 0 [] Γ nothing neither) strRunTag : (name : string) → ctxt → strM → tagged-val strRunTag name Γ m with m {TERM} [[]] 0 [] Γ nothing neither ...| s , n , ts = name , s , ts to-string-tag : {ed : exprd} → string → ctxt → ⟦ ed ⟧ → tagged-val to-string-tag name Γ t = strRunTag name Γ (to-stringh (if cedille-options.options.erase-types options then erase t else t)) to-string : {ed : exprd} → ctxt → ⟦ ed ⟧ → rope to-string Γ t = strRun Γ (to-stringh t) tk-to-string : ctxt → tk → rope tk-to-string Γ atk = strRun Γ (tk-to-stringh atk) params-to-string-tag : string → ctxt → params → tagged-val params-to-string-tag name Γ ps = strRunTag name Γ (params-to-string ps)
45.186131
210
0.644213
1ead735f83d208f20c09b678446c9024da75943c
986
agda
Agda
test/Succeed/Issue4048.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue4048.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue4048.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --rewriting #-} module Issue4048 where data _==_ {i} {A : Set i} : (x y : A) → Set i where refl : {a : A} → a == a {-# BUILTIN REWRITE _==_ #-} postulate Π : (A : Set) (B : A → Set) → Set lam : {A : Set} {B : A → Set} (b : (a : A) → B a) → Π A B app : {A : Set} {B : A → Set} (f : Π A B) (a : A) → B a Π-β : {A : Set} {B : A → Set} (b : (a : A) → B a) (a : A) → app (lam b) a == b a {-# REWRITE Π-β #-} postulate ⊤ : Set tt : ⊤ ⊤-elim : ∀ {i} (A : ⊤ → Set i) (d : A tt) (x : ⊤) → A x ⊤-β : ∀ {i} (A : ⊤ → Set i) (d : A tt) → ⊤-elim A d tt == d {-# REWRITE ⊤-β #-} tt' : ⊤ tt' = tt module _ (C : (p : ⊤) → Set) (z : C tt) where F : (n p x : ⊤) → C p F n p = app (⊤-elim (λ n → (p : ⊤) → Π ⊤ (λ _ → C p)) (⊤-elim _ (lam (⊤-elim _ z))) n p) F-red : F tt tt tt == z F-red = refl -- Bug? F-red' : F tt tt' tt == z F-red' = refl -- Not accepted, even though tt' is tt by definition.
24.04878
82
0.396552
22d8f0128e902a2c82808909dce32a3a2073e772
490
agda
Agda
agda-stdlib/src/Data/Char.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Char.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Char.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Characters ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Char where ------------------------------------------------------------------------ -- Re-export base definitions and decidability of equality open import Data.Char.Base public open import Data.Char.Properties using (_≈?_; _≟_; _<?_; _==_) public
30.625
72
0.393878
ad4cb53c8315cedde13f1f7bd51defd878ffa113
592
agda
Agda
test/Common/Nat.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
test/Common/Nat.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
test/Common/Nat.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
module Common.Nat where open import Agda.Builtin.Nat public using ( Nat; zero; suc; _+_; _*_ ) renaming ( _-_ to _∸_ ) {-# COMPILED_JS Nat function (x,v) { return (x < 1? v.zero(): v.suc(x-1)); } #-} {-# COMPILED_JS zero 0 #-} {-# COMPILED_JS suc function (x) { return x+1; } #-} {-# COMPILED_JS _+_ function (x) { return function (y) { return x+y; }; } #-} {-# COMPILED_JS _*_ function (x) { return function (y) { return x*y; }; } #-} {-# COMPILED_JS _∸_ function (x) { return function (y) { return Math.max(0,x-y); }; } #-} pred : Nat → Nat pred zero = zero pred (suc n) = n
31.157895
89
0.586149
4a2e4094ca5cf653a394d630c38c3a4ed2ffed8c
5,453
agda
Agda
src/fot/FOTC/Program/SortList/PropertiesATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Program/SortList/PropertiesATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Program/SortList/PropertiesATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Properties stated in the Burstall's paper ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.SortList.PropertiesATP where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Bool.PropertiesATP open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.PropertiesATP open import FOTC.Data.Nat.List.Type open import FOTC.Data.Nat.Type open import FOTC.Data.List open import FOTC.Data.List.PropertiesATP open import FOTC.Program.SortList.Properties.Totality.BoolATP open import FOTC.Program.SortList.Properties.Totality.ListN-ATP open import FOTC.Program.SortList.Properties.Totality.OrdList.FlattenATP open import FOTC.Program.SortList.Properties.Totality.OrdListATP open import FOTC.Program.SortList.Properties.Totality.OrdTreeATP open import FOTC.Program.SortList.Properties.Totality.TreeATP open import FOTC.Program.SortList.SortList ------------------------------------------------------------------------------ -- Burstall's lemma: If t is ordered then totree(i, t) is ordered. toTree-OrdTree : ∀ {item t} → N item → Tree t → OrdTree t → OrdTree (toTree · item · t) toTree-OrdTree {item} Nitem tnil OTt = prf where postulate prf : OrdTree (toTree · item · nil) {-# ATP prove prf #-} toTree-OrdTree {item} Nitem (ttip {i} Ni) OTt = case prf₁ prf₂ (x>y∨x≤y Ni Nitem) where postulate prf₁ : i > item → OrdTree (toTree · item · tip i) {-# ATP prove prf₁ x≤x x<y→x≤y x>y→x≰y #-} postulate prf₂ : i ≤ item → OrdTree (toTree · item · tip i) {-# ATP prove prf₂ x≤x #-} toTree-OrdTree {item} Nitem (tnode {t₁} {i} {t₂} Tt₁ Ni Tt₂) OTtnode = case (prf₁ (toTree-OrdTree Nitem Tt₁ (leftSubTree-OrdTree Tt₁ Ni Tt₂ OTtnode)) (rightSubTree-OrdTree Tt₁ Ni Tt₂ OTtnode)) (prf₂ (toTree-OrdTree Nitem Tt₂ (rightSubTree-OrdTree Tt₁ Ni Tt₂ OTtnode)) (leftSubTree-OrdTree Tt₁ Ni Tt₂ OTtnode)) (x>y∨x≤y Ni Nitem) where postulate prf₁ : ordTree (toTree · item · t₁) ≡ true → OrdTree t₂ → i > item → OrdTree (toTree · item · node t₁ i t₂) {-# ATP prove prf₁ &&-list₄-t x>y→x≰y le-ItemTree-Bool le-TreeItem-Bool ordTree-Bool toTree-OrdTree-helper₁ #-} postulate prf₂ : ordTree (toTree · item · t₂) ≡ true → OrdTree t₁ → i ≤ item → OrdTree (toTree · item · node t₁ i t₂) {-# ATP prove prf₂ &&-list₄-t le-ItemTree-Bool le-TreeItem-Bool ordTree-Bool toTree-OrdTree-helper₂ #-} ------------------------------------------------------------------------------ -- Burstall's lemma: ord(maketree(is)). -- makeTree-TreeOrd : ∀ {is} → ListN is → OrdTree (makeTree is) -- makeTree-TreeOrd LNis = -- ind-lit OrdTree toTree nil LNis ordTree-nil -- (λ Nx y TOy → toTree-OrdTree Nx {!!} TOy) makeTree-OrdTree : ∀ {is} → ListN is → OrdTree (makeTree is) makeTree-OrdTree lnnil = prf where postulate prf : OrdTree (makeTree []) {-# ATP prove prf #-} makeTree-OrdTree (lncons {i} {is} Ni Lis) = prf (makeTree-OrdTree Lis) where postulate prf : OrdTree (makeTree is) → OrdTree (makeTree (i ∷ is)) {-# ATP prove prf makeTree-Tree toTree-OrdTree #-} ------------------------------------------------------------------------------ -- Burstall's lemma: If ord(is1) and ord(is2) and is1 ≤ is2 then -- ord(concat(is1, is2)). ++-OrdList : ∀ {is js} → ListN is → ListN js → OrdList is → OrdList js → ≤-Lists is js → OrdList (is ++ js) ++-OrdList {js = js} lnnil LNjs LOis LOjs is≤js = subst OrdList (sym (++-leftIdentity js)) LOjs ++-OrdList {js = js} (lncons {i} {is} Ni LNis) LNjs OLi∷is OLjs i∷is≤js = subst OrdList (sym (++-∷ i is js)) (lemma (++-OrdList LNis LNjs (subList-OrdList Ni LNis OLi∷is) OLjs (&&-list₂-t₂ (le-ItemList-Bool Ni LNjs) (le-Lists-Bool LNis LNjs) (trans (sym (le-Lists-∷ i is js)) i∷is≤js)))) where postulate lemma : OrdList (is ++ js) → OrdList (i ∷ is ++ js) {-# ATP prove lemma &&-list₂-t ++-OrdList-helper le-ItemList-Bool le-Lists-Bool ordList-Bool #-} ------------------------------------------------------------------------------ -- Burstall's lemma: If t is ordered then (flatten t) is ordered. flatten-OrdList : ∀ {t} → Tree t → OrdTree t → OrdList (flatten t) flatten-OrdList tnil OTt = subst OrdList (sym flatten-nil) ordList-[] flatten-OrdList (ttip {i} Ni) OTt = prf where postulate prf : OrdList (flatten (tip i)) {-# ATP prove prf #-} flatten-OrdList (tnode {t₁} {i} {t₂} Tt₁ Ni Tt₂) OTt = prf (++-OrdList (flatten-ListN Tt₁) (flatten-ListN Tt₂) (flatten-OrdList Tt₁ (leftSubTree-OrdTree Tt₁ Ni Tt₂ OTt)) (flatten-OrdList Tt₂ (rightSubTree-OrdTree Tt₁ Ni Tt₂ OTt)) (flatten-OrdList-helper Tt₁ Ni Tt₂ OTt)) where postulate prf : OrdList (flatten t₁ ++ flatten t₂) → -- Indirect IH. OrdList (flatten (node t₁ i t₂)) {-# ATP prove prf #-}
44.696721
113
0.567027
2058e722fdc8e34f529787309d8d6b1e90c4fbfb
3,163
agda
Agda
out/Monad/Syntax.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
39
2021-11-09T20:39:55.000Z
2022-03-19T17:33:12.000Z
out/Monad/Syntax.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
1
2021-11-21T12:19:32.000Z
2021-11-21T12:19:32.000Z
out/Monad/Syntax.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
4
2021-11-09T20:39:59.000Z
2022-01-24T12:49:17.000Z
{- This second-order term syntax was created from the following second-order syntax description: syntax Monad | M type T : 1-ary term ret : α -> T α bind : T α α.(T β) -> T β | _>>=_ r10 theory (LU) a : α b : α.(T β) |> bind (ret(a), x. b[x]) = b[a] (RU) t : T α |> bind (t, x. ret(x)) = t (AS) t : T α b : α.(T β) c : β.(T γ) |> bind (bind (t, x.b[x]), y.c[y]) = bind (t, x. bind (b[x], y.c[y])) -} module Monad.Syntax where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Construction.Structure open import SOAS.ContextMaps.Inductive open import SOAS.Metatheory.Syntax open import Monad.Signature private variable Γ Δ Π : Ctx α β : MT 𝔛 : Familyₛ -- Inductive term declaration module M:Terms (𝔛 : Familyₛ) where data M : Familyₛ where var : ℐ ⇾̣ M mvar : 𝔛 α Π → Sub M Π Γ → M α Γ ret : M α Γ → M (T α) Γ _>>=_ : M (T α) Γ → M (T β) (α ∙ Γ) → M (T β) Γ infixr 10 _>>=_ open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛 Mᵃ : MetaAlg M Mᵃ = record { 𝑎𝑙𝑔 = λ where (retₒ ⋮ a) → ret a (bindₒ ⋮ a , b) → _>>=_ a b ; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) } module Mᵃ = MetaAlg Mᵃ module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where open MetaAlg 𝒜ᵃ 𝕤𝕖𝕞 : M ⇾̣ 𝒜 𝕊 : Sub M Π Γ → Π ~[ 𝒜 ]↝ Γ 𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t 𝕊 (t ◂ σ) (old v) = 𝕊 σ v 𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε) 𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v 𝕤𝕖𝕞 (ret a) = 𝑎𝑙𝑔 (retₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞 (_>>=_ a b) = 𝑎𝑙𝑔 (bindₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b) 𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ Mᵃ 𝒜ᵃ 𝕤𝕖𝕞 𝕤𝕖𝕞ᵃ⇒ = record { ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t } ; ⟨𝑣𝑎𝑟⟩ = refl ; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } } where open ≡-Reasoning ⟨𝑎𝑙𝑔⟩ : (t : ⅀ M α Γ) → 𝕤𝕖𝕞 (Mᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t) ⟨𝑎𝑙𝑔⟩ (retₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (bindₒ ⋮ _) = refl 𝕊-tab : (mε : Π ~[ M ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v) 𝕊-tab mε new = refl 𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v module _ (g : M ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ Mᵃ 𝒜ᵃ g) where open MetaAlg⇒ gᵃ⇒ 𝕤𝕖𝕞! : (t : M α Γ) → 𝕤𝕖𝕞 t ≡ g t 𝕊-ix : (mε : Sub M Π Γ)(v : ℐ α Π) → 𝕊 mε v ≡ g (index mε v) 𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x 𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v 𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε)) = trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε)) 𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩ 𝕤𝕖𝕞! (ret a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (_>>=_ a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩ -- Syntax instance for the signature M:Syn : Syntax M:Syn = record { ⅀F = ⅀F ; ⅀:CS = ⅀:CompatStr ; mvarᵢ = M:Terms.mvar ; 𝕋:Init = λ 𝔛 → let open M:Terms 𝔛 in record { ⊥ = M ⋉ Mᵃ ; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ } ; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } } -- Instantiation of the syntax and metatheory open Syntax M:Syn public open M:Terms public open import SOAS.Families.Build public open import SOAS.Syntax.Shorthands Mᵃ public open import SOAS.Metatheory M:Syn public
25.508065
110
0.527031
293715f0f73b952beb23af5cb3fb49e97094a1bc
12,967
agda
Agda
src/H-level/Truncation/Propositional/One-step/Erased.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/H-level/Truncation/Propositional/One-step/Erased.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/H-level/Truncation/Propositional/One-step/Erased.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The one-step truncation HIT with an erased higher constructor ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} -- The module is parametrised by a notion of equality. The higher -- constructor of the HIT defining the one-step truncation operator -- uses path equality, but the supplied notion of equality is used for -- many other things. import Equality.Path as P module H-level.Truncation.Propositional.One-step.Erased {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq hiding (elim) open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection equality-with-J using (_↔_) open import Equality.Decidable-UIP equality-with-J using (Constant) import Equality.Decidable-UIP P.equality-with-J as PD open import Equality.Path.Isomorphisms eq open import Equivalence equality-with-J as Eq using (_≃_) open import Equivalence.Erased.Cubical eq as EEq using (_≃ᴱ_) open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level.Closure equality-with-J open import Surjection equality-with-J using (_↠_) private variable a b p : Level A B : Type a P : A → Type p e r x y : A n : ℕ ------------------------------------------------------------------------ -- The type -- One-step truncation. -- -- This definition is based on that in van Doorn's "Constructing the -- Propositional Truncation using Non-recursive HITs", but has an -- erased higher constructor. data ∥_∥¹ᴱ (A : Type a) : Type a where ∣_∣ : A → ∥ A ∥¹ᴱ @0 ∣∣-constantᴾ : PD.Constant (∣_∣ {A = A}) -- The function ∣_∣ is constant (in erased contexts). @0 ∣∣-constant : Constant (∣_∣ {A = A}) ∣∣-constant x y = _↔_.from ≡↔≡ (∣∣-constantᴾ x y) ------------------------------------------------------------------------ -- Eliminators -- A dependent eliminator, expressed using paths. record Elimᴾ {A : Type a} (P : ∥ A ∥¹ᴱ → Type p) : Type (a ⊔ p) where no-eta-equality field ∣∣ʳ : ∀ x → P ∣ x ∣ @0 ∣∣-constantʳ : (x y : A) → P.[ (λ i → P (∣∣-constantᴾ x y i)) ] ∣∣ʳ x ≡ ∣∣ʳ y open Elimᴾ public elimᴾ : Elimᴾ P → (x : ∥ A ∥¹ᴱ) → P x elimᴾ {A = A} {P = P} e = helper where module E = Elimᴾ e helper : (x : ∥ A ∥¹ᴱ) → P x helper ∣ x ∣ = E.∣∣ʳ x helper (∣∣-constantᴾ x y i) = E.∣∣-constantʳ x y i -- A non-dependent eliminator, expressed using paths. record Recᴾ (A : Type a) (B : Type b) : Type (a ⊔ b) where no-eta-equality field ∣∣ʳ : A → B @0 ∣∣-constantʳ : PD.Constant ∣∣ʳ open Recᴾ public recᴾ : Recᴾ A B → ∥ A ∥¹ᴱ → B recᴾ r = elimᴾ λ where .∣∣ʳ → R.∣∣ʳ .∣∣-constantʳ → R.∣∣-constantʳ where module R = Recᴾ r -- A dependent eliminator. record Elim {A : Type a} (P : ∥ A ∥¹ᴱ → Type p) : Type (a ⊔ p) where no-eta-equality field ∣∣ʳ : ∀ x → P ∣ x ∣ @0 ∣∣-constantʳ : (x y : A) → subst P (∣∣-constant x y) (∣∣ʳ x) ≡ ∣∣ʳ y open Elim public elim : Elim P → (x : ∥ A ∥¹ᴱ) → P x elim e = elimᴾ λ where .∣∣ʳ → E.∣∣ʳ .∣∣-constantʳ x y → subst≡→[]≡ (E.∣∣-constantʳ x y) where module E = Elim e -- A "computation" rule. @0 elim-∣∣-constant : dcong (elim e) (∣∣-constant x y) ≡ Elim.∣∣-constantʳ e x y elim-∣∣-constant = dcong-subst≡→[]≡ (refl _) -- A non-dependent eliminator. record Rec (A : Type a) (B : Type b) : Type (a ⊔ b) where no-eta-equality field ∣∣ʳ : A → B @0 ∣∣-constantʳ : Constant ∣∣ʳ open Rec public rec : Rec A B → ∥ A ∥¹ᴱ → B rec r = recᴾ λ where .∣∣ʳ → R.∣∣ʳ .∣∣-constantʳ x y → _↔_.to ≡↔≡ (R.∣∣-constantʳ x y) where module R = Rec r -- A "computation" rule. @0 rec-∣∣-constant : cong (rec r) (∣∣-constant x y) ≡ Rec.∣∣-constantʳ r x y rec-∣∣-constant = cong-≡↔≡ (refl _) -- A variant of rec. rec′ : (f : A → B) → @0 Constant f → ∥ A ∥¹ᴱ → B rec′ f c = rec λ where .Rec.∣∣ʳ → f .Rec.∣∣-constantʳ → c ------------------------------------------------------------------------ -- Some preservation lemmas -- A map function for ∥_∥¹ᴱ. ∥∥¹ᴱ-map : (A → B) → ∥ A ∥¹ᴱ → ∥ B ∥¹ᴱ ∥∥¹ᴱ-map f = rec λ where .∣∣ʳ x → ∣ f x ∣ .∣∣-constantʳ x y → ∣∣-constant (f x) (f y) -- The truncation operator preserves logical equivalences. ∥∥¹ᴱ-cong-⇔ : A ⇔ B → ∥ A ∥¹ᴱ ⇔ ∥ B ∥¹ᴱ ∥∥¹ᴱ-cong-⇔ A⇔B = record { to = ∥∥¹ᴱ-map (_⇔_.to A⇔B) ; from = ∥∥¹ᴱ-map (_⇔_.from A⇔B) } private -- A lemma used below. @0 ∥∥¹ᴱ-cong-lemma : (f : A → B) (g : B → A) (eq : ∀ x → f (g x) ≡ x) → subst (λ z → ∥∥¹ᴱ-map f (∥∥¹ᴱ-map g z) ≡ z) (∣∣-constant x y) (cong ∣_∣ (eq x)) ≡ cong ∣_∣ (eq y) ∥∥¹ᴱ-cong-lemma {x = x} {y = y} f g eq = subst (λ z → ∥∥¹ᴱ-map f (∥∥¹ᴱ-map g z) ≡ z) (∣∣-constant x y) (cong ∣_∣ (eq x)) ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong (∥∥¹ᴱ-map f ∘ ∥∥¹ᴱ-map g) (∣∣-constant x y))) (trans (cong ∣_∣ (eq x)) (cong id (∣∣-constant x y))) ≡⟨ cong₂ (λ p q → trans (sym p) (trans (cong ∣_∣ (eq x)) q)) (trans (sym $ cong-∘ _ _ _) $ trans (cong (cong (∥∥¹ᴱ-map f)) rec-∣∣-constant) $ rec-∣∣-constant) (sym $ cong-id _) ⟩ trans (sym (∣∣-constant (f (g x)) (f (g y)))) (trans (cong ∣_∣ (eq x)) (∣∣-constant x y)) ≡⟨ cong (λ f → trans _ (trans (cong ∣_∣ (f _)) _)) $ sym $ _≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext) eq ⟩ trans (sym (∣∣-constant (f (g x)) (f (g y)))) (trans (cong ∣_∣ (ext⁻¹ (⟨ext⟩ eq) x)) (∣∣-constant x y)) ≡⟨ elim₁ (λ {f} eq → trans (sym (∣∣-constant (f x) (f y))) (trans (cong ∣_∣ (ext⁻¹ eq x)) (∣∣-constant x y)) ≡ cong ∣_∣ (ext⁻¹ eq y)) ( trans (sym (∣∣-constant x y)) (trans (cong ∣_∣ (ext⁻¹ (refl id) x)) (∣∣-constant x y)) ≡⟨ cong (trans _) $ trans (cong (flip trans _) $ trans (cong (cong _) $ cong-refl _) $ cong-refl _) $ trans-reflˡ _ ⟩ trans (sym (∣∣-constant x y)) (∣∣-constant x y) ≡⟨ trans-symˡ _ ⟩ refl _ ≡⟨ trans (sym $ cong-refl _) $ cong (cong _) $ sym $ cong-refl _ ⟩∎ cong ∣_∣ (ext⁻¹ (refl _) y) ∎) _ ⟩ cong ∣_∣ (ext⁻¹ (⟨ext⟩ eq) y) ≡⟨ cong (λ f → cong ∣_∣ (f _)) $ _≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext) eq ⟩∎ cong ∣_∣ (eq y) ∎ -- The truncation operator preserves split surjections. ∥∥¹ᴱ-cong-↠ : A ↠ B → ∥ A ∥¹ᴱ ↠ ∥ B ∥¹ᴱ ∥∥¹ᴱ-cong-↠ A↠B = record { logical-equivalence = ∥∥¹ᴱ-cong-⇔ (_↠_.logical-equivalence A↠B) ; right-inverse-of = elim λ where .∣∣ʳ x → cong ∣_∣ (_↠_.right-inverse-of A↠B x) .∣∣-constantʳ x y → ∥∥¹ᴱ-cong-lemma (_↠_.to A↠B) (_↠_.from A↠B) (_↠_.right-inverse-of A↠B) } -- The truncation operator preserves bijections. ∥∥¹ᴱ-cong-↔ : A ↔ B → ∥ A ∥¹ᴱ ↔ ∥ B ∥¹ᴱ ∥∥¹ᴱ-cong-↔ A↔B = record { surjection = ∥∥¹ᴱ-cong-↠ (_↔_.surjection A↔B) ; left-inverse-of = elim λ where .∣∣ʳ x → cong ∣_∣ (_↔_.left-inverse-of A↔B x) .∣∣-constantʳ x y → ∥∥¹ᴱ-cong-lemma (_↔_.from A↔B) (_↔_.to A↔B) (_↔_.left-inverse-of A↔B) } -- The truncation operator preserves equivalences. ∥∥¹ᴱ-cong-≃ : A ≃ B → ∥ A ∥¹ᴱ ≃ ∥ B ∥¹ᴱ ∥∥¹ᴱ-cong-≃ = from-isomorphism ∘ ∥∥¹ᴱ-cong-↔ ∘ from-isomorphism -- The truncation operator preserves equivalences with erased proofs. ∥∥¹ᴱ-cong-≃ᴱ : A ≃ᴱ B → ∥ A ∥¹ᴱ ≃ᴱ ∥ B ∥¹ᴱ ∥∥¹ᴱ-cong-≃ᴱ A≃B = EEq.[≃]→≃ᴱ (EEq.[proofs] (∥∥¹ᴱ-cong-≃ (EEq.≃ᴱ→≃ A≃B))) ------------------------------------------------------------------------ -- Iterated applications of the one-step truncation operator -- Applies the one-step truncation the given number of times, from the -- "outside". -- -- This definition and the next one are taken from van Doorn's -- "Constructing the Propositional Truncation using Non-recursive -- HITs". ∥_∥¹ᴱ-out-^ : Type a → ℕ → Type a ∥ A ∥¹ᴱ-out-^ zero = A ∥ A ∥¹ᴱ-out-^ (suc n) = ∥ ∥ A ∥¹ᴱ-out-^ n ∥¹ᴱ -- A "constructor" for ∥_∥¹ᴱ-out-^. ∣_∣-out-^ : A → ∀ n → ∥ A ∥¹ᴱ-out-^ n ∣ x ∣-out-^ zero = x ∣ x ∣-out-^ (suc n) = ∣ ∣ x ∣-out-^ n ∣ -- A rearrangement lemma. ∥∥¹ᴱ-out-^+≃ : ∀ m → ∥ A ∥¹ᴱ-out-^ (m + n) ≃ ∥ ∥ A ∥¹ᴱ-out-^ n ∥¹ᴱ-out-^ m ∥∥¹ᴱ-out-^+≃ zero = F.id ∥∥¹ᴱ-out-^+≃ {A = A} {n = n} (suc m) = ∥ ∥ A ∥¹ᴱ-out-^ (m + n) ∥¹ᴱ ↝⟨ ∥∥¹ᴱ-cong-≃ (∥∥¹ᴱ-out-^+≃ m) ⟩□ ∥ ∥ ∥ A ∥¹ᴱ-out-^ n ∥¹ᴱ-out-^ m ∥¹ᴱ □ -- ∥_∥¹ᴱ commutes with ∥_∥¹ᴱ-out-^ n. ∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute : ∀ n → ∥ ∥ A ∥¹ᴱ-out-^ n ∥¹ᴱ ↔ ∥ ∥ A ∥¹ᴱ ∥¹ᴱ-out-^ n ∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute zero = F.id ∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute {A = A} (suc n) = ∥ ∥ ∥ A ∥¹ᴱ-out-^ n ∥¹ᴱ ∥¹ᴱ ↝⟨ ∥∥¹ᴱ-cong-↔ (∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute n) ⟩□ ∥ ∥ ∥ A ∥¹ᴱ ∥¹ᴱ-out-^ n ∥¹ᴱ □ private -- The lemma above is defined using _↔_ rather than _≃_ because the -- following equalities hold by definition when _↔_ is used, but (at -- the time of writing) the second one does not hold when _≃_ is -- used. _ : {x : A} → _↔_.left-inverse-of (∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute 0) ∣ x ∣ ≡ refl ∣ x ∣ _ = refl _ _ : {A : Type a} {x : ∥ A ∥¹ᴱ-out-^ (suc n)} → _↔_.left-inverse-of (∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute (1 + n)) ∣ x ∣ ≡ cong ∣_∣ (_↔_.left-inverse-of (∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute n) x) _ = refl _ -- A variant of ∥_∥¹ᴱ-out-^ which applies the one-step truncation the -- given number of times from the "inside". ∥_∥¹ᴱ-in-^ : Type a → ℕ → Type a ∥ A ∥¹ᴱ-in-^ zero = A ∥ A ∥¹ᴱ-in-^ (suc n) = ∥ ∥ A ∥¹ᴱ ∥¹ᴱ-in-^ n -- The two variants of ∥_∥¹ᴱ^ are pointwise equivalent. ∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ : ∀ n → ∥ A ∥¹ᴱ-out-^ n ≃ ∥ A ∥¹ᴱ-in-^ n ∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ zero = F.id ∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ {A = A} (suc n) = ∥ ∥ A ∥¹ᴱ-out-^ n ∥¹ᴱ ↔⟨ ∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute n ⟩ ∥ ∥ A ∥¹ᴱ ∥¹ᴱ-out-^ n ↝⟨ ∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ n ⟩□ ∥ ∥ A ∥¹ᴱ ∥¹ᴱ-in-^ n □ -- ∥_∥¹ᴱ commutes with ∥_∥¹ᴱ-in-^ n. ∥∥¹ᴱ-∥∥¹ᴱ-in-^-commute : ∀ n → ∥ ∥ A ∥¹ᴱ-in-^ n ∥¹ᴱ ≃ ∥ ∥ A ∥¹ᴱ ∥¹ᴱ-in-^ n ∥∥¹ᴱ-∥∥¹ᴱ-in-^-commute {A = A} n = ∥ ∥ A ∥¹ᴱ-in-^ n ∥¹ᴱ ↝⟨ ∥∥¹ᴱ-cong-≃ (inverse $ ∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ n) ⟩ ∥ ∥ A ∥¹ᴱ-out-^ n ∥¹ᴱ ↔⟨⟩ ∥ A ∥¹ᴱ-out-^ (suc n) ↝⟨ ∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ (suc n) ⟩ ∥ A ∥¹ᴱ-in-^ (suc n) ↔⟨⟩ ∥ ∥ A ∥¹ᴱ ∥¹ᴱ-in-^ n □ -- A "constructor" for ∥_∥¹ᴱ-in-^. ∣_,_∣-in-^ : ∀ n → ∥ A ∥¹ᴱ-in-^ n → ∥ A ∥¹ᴱ-in-^ (suc n) ∣ zero , x ∣-in-^ = ∣ x ∣ ∣ suc n , x ∣-in-^ = ∣ n , x ∣-in-^ -- ∣_,_∣-in-^ is related to ∣_∣. ∣∣≡∣,∣-in-^ : ∀ n {x : ∥ A ∥¹ᴱ-out-^ n} → _≃_.to (∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ (suc n)) ∣ x ∣ ≡ ∣ n , _≃_.to (∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ n) x ∣-in-^ ∣∣≡∣,∣-in-^ zero {x = x} = ∣ x ∣ ∎ ∣∣≡∣,∣-in-^ (suc n) {x = x} = _≃_.to (∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ (2 + n)) ∣ x ∣ ≡⟨⟩ _≃_.to (∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ (1 + n)) ∣ _↔_.to (∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute n) x ∣ ≡⟨ ∣∣≡∣,∣-in-^ n ⟩∎ ∣ n , _≃_.to (∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ n) (_↔_.to (∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute n) x) ∣-in-^ ∎ -- A variant of ∣∣≡∣,∣-in-^. ∣,∣-in-^≡∣∣ : ∀ n {x : ∥ A ∥¹ᴱ-in-^ n} → _≃_.from (∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ (suc n)) ∣ n , x ∣-in-^ ≡ ∣ _≃_.from (∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ n) x ∣ ∣,∣-in-^≡∣∣ zero {x = x} = ∣ x ∣ ∎ ∣,∣-in-^≡∣∣ (suc n) {x = x} = _≃_.from (∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ (2 + n)) ∣ 1 + n , x ∣-in-^ ≡⟨⟩ _↔_.from (∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute (1 + n)) (_≃_.from (∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ (1 + n)) ∣ n , x ∣-in-^) ≡⟨ cong (_↔_.from (∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute (1 + n))) $ ∣,∣-in-^≡∣∣ n ⟩∎ _↔_.from (∥∥¹ᴱ-∥∥¹ᴱ-out-^-commute (1 + n)) ∣ _≃_.from (∥∥¹ᴱ-out-^≃∥∥¹ᴱ-in-^ n) x ∣ ∎
34.857527
138
0.440194
57364c2817300e3ffc670dc063969ec9a9822ea9
10,515
agda
Agda
LibraBFT/Concrete/Properties/VotesOnce.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
LibraBFT/Concrete/Properties/VotesOnce.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
LibraBFT/Concrete/Properties/VotesOnce.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Optics.All open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Base.KVMap open import LibraBFT.Base.PKCS open import LibraBFT.Impl.Base.Types open import LibraBFT.Impl.NetworkMsg open import LibraBFT.Impl.Consensus.Types hiding (EpochConfigFor) open import LibraBFT.Impl.Util.Crypto open import LibraBFT.Impl.Handle sha256 sha256-cr open import LibraBFT.Concrete.System.Parameters open EpochConfig open import LibraBFT.Yasm.Yasm (ℓ+1 0ℓ) EpochConfig epochId authorsN ConcSysParms NodeId-PK-OK -- In this module, we define two "implementation obligations" -- (ImplObligationᵢ for i ∈ {1 , 2}), which are predicates over -- reachable states of a system defined by -- 'LibraBFT.Concrete.System.Parameters'. These two properties relate -- votes sent by the same sender, ensuring that if they are for the -- same epoch and round, then they vote for the same blockID; the -- first relates a vote output by the handler to a vote sent -- previously, and the second relates two votes both sent by the -- handler. -- -- We then prove that, if an implementation satisfies these two -- semantic obligations, along with a structural one about messages -- sent by honest peers in the implementation, then the implemenation -- satisfies the LibraBFT.Abstract.Properties.VotesOnce invariant. module LibraBFT.Concrete.Properties.VotesOnce where -- TODO-3: This may not be the best way to state the implementation obligation. Why not reduce -- this as much as possible before giving the obligation to the implementation? For example, this -- will still require the implementation to deal with hash collisons (v and v' could be different, -- but yield the same bytestring and therefore same signature). Also, avoid the need for the -- implementation to reason about messages sent by step-cheat, or give it something to make this -- case easy to eliminate. ImplObligation₁ : Set₁ ImplObligation₁ = ∀{e pid pid' inits' s' outs pk}{pre : SystemState e} → ReachableSystemState pre -- For any honest call to /handle/ or /init/, → StepPeerState pid (availEpochs pre) (msgPool pre) (initialised pre) (peerStates pre pid) inits' (s' , outs) → ∀{v m v' m'} → Meta-Honest-PK pk -- For signed every vote v of every outputted message → v ⊂Msg m → m ∈ outs → (sig : WithVerSig pk v) -- If v is really new and valid -- Note that this does not directly exclude possibility of previous message with -- same signature, but sent by someone else. We could prove it implies it though. → ¬ (MsgWithSig∈ pk (ver-signature sig) (msgPool pre)) → ValidSenderForPK (availEpochs pre) v pid pk -- And if there exists another v' that has been sent before → v' ⊂Msg m' → (pid' , m') ∈ (msgPool pre) → WithVerSig pk v' -- If v and v' share the same epoch and round → (v ^∙ vEpoch) ≡ (v' ^∙ vEpoch) → (v ^∙ vProposed ∙ biRound) ≡ (v' ^∙ vProposed ∙ biRound) ---------------------------------------------------------- -- Then an honest implemenation promises v and v' vote for the same blockId. → (v ^∙ vProposed ∙ biId) ≡ (v' ^∙ vProposed ∙ biId) ImplObligation₂ : Set₁ ImplObligation₂ = ∀{e pid inits' s' outs pk}{pre : SystemState e} → ReachableSystemState pre -- For any honest call to /handle/ or /init/, → StepPeerState pid (availEpochs pre) (msgPool pre) (initialised pre) (peerStates pre pid) inits' (s' , outs) → ∀{v m v' m'} → Meta-Honest-PK pk -- For every vote v represented in a message output by the call → v ⊂Msg m → m ∈ outs → (sig : WithVerSig pk v) -- If v is really new and valid → ¬ (MsgWithSig∈ pk (ver-signature sig) (msgPool pre)) → ValidSenderForPK (availEpochs pre) v pid pk -- And if there exists another v' that is also new and valid → v' ⊂Msg m' → m' ∈ outs → (sig' : WithVerSig pk v') → ¬ (MsgWithSig∈ pk (ver-signature sig') (msgPool pre)) → ValidSenderForPK (availEpochs pre) v' pid pk -- If v and v' share the same epoch and round → (v ^∙ vEpoch) ≡ (v' ^∙ vEpoch) → (v ^∙ vProposed ∙ biRound) ≡ (v' ^∙ vProposed ∙ biRound) ---------------------------------------------------------- -- Then, an honest implemenation promises v and v' vote for the same blockId. → (v ^∙ vProposed ∙ biId) ≡ (v' ^∙ vProposed ∙ biId) -- Next, we prove that, given the necessary obligations, module Proof (sps-corr : StepPeerState-AllValidParts) (Impl-VO1 : ImplObligation₁) (Impl-VO2 : ImplObligation₂) where -- Any reachable state satisfies the VO rule for any epoch in the system. module _ {e}(st : SystemState e)(r : ReachableSystemState st)(eid : Fin e) where open Structural sps-corr -- Bring in IntSystemState open import LibraBFT.Concrete.System sps-corr open PerState st r open PerEpoch eid open import LibraBFT.Concrete.Obligations.VotesOnce 𝓔 (ConcreteVoteEvidence 𝓔) as VO -- The VO proof is done by induction on the execution trace leading to 'st'. In -- Agda, this is 'r : RechableSystemState st' above. private -- From this point onwards, it might be easier to read this proof starting at 'voo' -- at the end of the file. Next, we provide an overview the proof. -- -- We wish to prove that, for any two votes v and v' cast by an honest α in the message -- pool of a state st, if v and v' have equal rounds and epochs, then they vote for the -- same block. -- -- The base case and the case for a new epoch in the system are trivial. For the base case -- we get to a contradiction because it's not possible to have any message in the msgpool. -- -- Regarding the PeerStep case. The induction hypothesis tells us that the property holds -- in the pre-state. Next, we reason about the post-state. We start by analyzing whether -- v and v' have been sent as outputs of the PeerStep under scrutiny or were already in -- the pool before. -- -- There are four possibilities: -- -- i) v and v' were aleady present in the msgPool before: use induction hypothesis. -- ii) v and v' are both in the output produced by the PeerStep under scrutiny. -- iii) v was present before, but v' is new. -- iv) v' was present before, but v is new. -- -- In order to obtain this four possiblities we invoke newMsg⊎msgSent4 lemma, which -- receives proof that some vote is in a message that is in the msgPool of the post state -- and returns evidence that either the vote is new or that some message with the same -- signature was sent before. -- -- Case (i) is trivial; cases (iii) and (iv) are symmetric and reduce to an implementation -- obligation (Impl-VO1) and case (ii) reduces to a different implementation obligation -- (Impl-VO2). VotesOnceProof : ∀ {v v' e pk} {st : SystemState e} → ReachableSystemState st → Meta-Honest-PK pk → (vv : WithVerSig pk v) → MsgWithSig∈ pk (ver-signature vv) (msgPool st) → (vv' : WithVerSig pk v') → MsgWithSig∈ pk (ver-signature vv') (msgPool st) → v ^∙ vEpoch ≡ v' ^∙ vEpoch → v ^∙ vRound ≡ v' ^∙ vRound → v ^∙ vProposedId ≡ v' ^∙ vProposedId VotesOnceProof step-0 _ _ msv _ _ _ _ = ⊥-elim (¬Any[] (msg∈pool msv)) VotesOnceProof (step-s r (step-epoch _)) pkH vv msv vv' msv' ep≡ r≡ = VotesOnceProof r pkH vv msv vv' msv' ep≡ r≡ VotesOnceProof (step-s r (step-peer cheat@(step-cheat f c))) pkH vv msv vv' msv' ep≡ r≡ with ¬cheatForgeNew cheat refl unit pkH msv | ¬cheatForgeNew cheat refl unit pkH msv' ...| msb4 | m'sb4 with msgSameSig msb4 | msgSameSig m'sb4 ...| refl | refl = VotesOnceProof r pkH vv msb4 vv' m'sb4 ep≡ r≡ VotesOnceProof (step-s r (step-peer stHon@(step-honest stPeer))) pkH vv msv vv' msv' ep≡ r≡ with msgSameSig msv | msgSameSig msv' ...| refl | refl with sameHonestSig⇒sameVoteData pkH (msgSigned msv) vv (msgSameSig msv) | sameHonestSig⇒sameVoteData pkH (msgSigned msv') vv' (msgSameSig msv') ...| inj₁ hb | _ = ⊥-elim (meta-sha256-cr hb) ...| inj₂ refl | inj₁ hb = ⊥-elim (meta-sha256-cr hb) ...| inj₂ refl | inj₂ refl with newMsg⊎msgSentB4 r stHon pkH (msgSigned msv) (msg⊆ msv) (msg∈pool msv) | newMsg⊎msgSentB4 r stHon pkH (msgSigned msv') (msg⊆ msv') (msg∈pool msv') ...| inj₂ msb4 | inj₂ m'sb4 = VotesOnceProof r pkH vv msb4 vv' m'sb4 ep≡ r≡ ...| inj₁ (m∈outs , vspk , newV) | inj₁ (m'∈outs , v'spk , newV') = Impl-VO2 r stPeer pkH (msg⊆ msv) m∈outs (msgSigned msv) newV vspk (msg⊆ msv') m'∈outs (msgSigned msv') newV' v'spk ep≡ r≡ ...| inj₁ (m∈outs , vspk , newV) | inj₂ m'sb4 with sameHonestSig⇒sameVoteData pkH (msgSigned m'sb4) vv' (msgSameSig m'sb4) ...| inj₁ hb = ⊥-elim (meta-sha256-cr hb) ...| inj₂ refl = Impl-VO1 r stPeer pkH (msg⊆ msv) m∈outs (msgSigned msv) newV vspk (msg⊆ m'sb4) (msg∈pool m'sb4) (msgSigned m'sb4) ep≡ r≡ VotesOnceProof (step-s r (step-peer (step-honest stPeer))) pkH vv msv vv' msv' ep≡ r≡ | refl | refl | inj₂ refl | inj₂ refl | inj₂ msb4 | inj₁ (m'∈outs , v'spk , newV') with sameHonestSig⇒sameVoteData pkH (msgSigned msb4) vv (msgSameSig msb4) ...| inj₁ hb = ⊥-elim (meta-sha256-cr hb) ...| inj₂ refl = sym (Impl-VO1 r stPeer pkH (msg⊆ msv') m'∈outs (msgSigned msv') newV' v'spk (msg⊆ msb4) (msg∈pool msb4) (msgSigned msb4) (sym ep≡) (sym r≡)) voo : VO.Type IntSystemState voo hpk refl sv refl sv' round≡ with vmsg≈v (vmFor sv) | vmsg≈v (vmFor sv') ...| refl | refl = let ver = vmsgSigned (vmFor sv) mswsv = mkMsgWithSig∈ (nm (vmFor sv)) (cv (vmFor sv)) (cv∈nm (vmFor sv)) _ (nmSentByAuth sv) (vmsgSigned (vmFor sv)) refl ver' = vmsgSigned (vmFor sv') mswsv' = mkMsgWithSig∈ (nm (vmFor sv')) (cv (vmFor sv')) (cv∈nm (vmFor sv')) _ (nmSentByAuth sv') (vmsgSigned (vmFor sv')) refl epoch≡ = trans (vmsgEpoch (vmFor sv)) (sym (vmsgEpoch (vmFor sv'))) in VotesOnceProof r hpk ver mswsv ver' mswsv' epoch≡ round≡
51.292683
112
0.649643
389b5a6477932b1b0ce1262a2b5ae1683debd6de
955
agda
Agda
test/interaction/Multisplit.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Multisplit.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Multisplit.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- {-# OPTIONS -v tc.lhs.unify.flexflex:100 -v tc.lhs.unify.assign:100 -v tc.lhs:100 #-} module Multisplit where data Bool : Set where true false : Bool data ℕ : Set where zero : ℕ suc : ℕ → ℕ data Fin : ℕ → Set where zero : ∀ {n} → Fin (suc n) suc : ∀ {n} → Fin n → Fin (suc n) data Vec {a} (A : Set a) : ℕ → Set a where [] : Vec A zero _∷_ : ∀ {n} (x : A) → Vec A n → Vec A (suc n) data Fin∘suc : ℕ → Set where zero : ∀ {n} → Fin∘suc n suc : ∀ {n} → Fin∘suc n → Fin∘suc (suc n) _==_ : Bool → Bool → Bool b₁ == b₂ = {!b₁ b₂!} lookup : ∀ {a n} {A : Set a} → Vec A n → Fin n → A lookup xs i = {!xs i!} 32-cases : Bool → Bool → Bool → Bool → Bool → Bool 32-cases a b c d e = {!a b c d e!} No-splits-after-absurd-pattern-encountered : (n : ℕ) → Fin n → Fin n → Set No-splits-after-absurd-pattern-encountered n i j = {!n i j!} Dotted-patterns-are-not-split : ∀ n → Fin∘suc n → Set Dotted-patterns-are-not-split n i = {!i n!}
25.131579
88
0.563351
dfb56e6feb00feb0467bbae1fe9a9bc5ce11596e
4,303
agda
Agda
binders-disjoint-checks.agda
hazelgrove/hazelnut-dynamics-agda
229dfb06ea51ebe91cb3b1c973c2f2792e66797c
[ "MIT" ]
16
2018-03-12T14:32:03.000Z
2021-12-19T02:50:23.000Z
binders-disjoint-checks.agda
hazelgrove/hazelnut-dynamics-agda
229dfb06ea51ebe91cb3b1c973c2f2792e66797c
[ "MIT" ]
54
2017-06-29T20:53:34.000Z
2018-11-29T16:32:40.000Z
binders-disjoint-checks.agda
hazelgrove/hazelnut-dynamics-agda
229dfb06ea51ebe91cb3b1c973c2f2792e66797c
[ "MIT" ]
1
2019-09-13T18:20:02.000Z
2019-09-13T18:20:02.000Z
open import Prelude open import Nat open import core module binders-disjoint-checks where -- these are fairly mechanical lemmas that show that the -- judgementally-defined binders-disjoint is really a type-directed -- function mutual lem-bdσ-lam : ∀{σ x τ d} → binders-disjoint-σ σ (·λ_[_]_ x τ d) → binders-disjoint-σ σ d lem-bdσ-lam BDσId = BDσId lem-bdσ-lam (BDσSubst x₁ bd) = BDσSubst (lem-bd-lam x₁) (lem-bdσ-lam bd) lem-bd-lam : ∀{ d1 x τ1 d} → binders-disjoint d1 (·λ_[_]_ x τ1 d) → binders-disjoint d1 d lem-bd-lam BDConst = BDConst lem-bd-lam BDVar = BDVar lem-bd-lam (BDLam bd (UBLam2 x₂ x₃)) = BDLam (lem-bd-lam bd) x₃ lem-bd-lam (BDHole x₁) = BDHole (lem-bdσ-lam x₁) lem-bd-lam (BDNEHole x₁ bd) = BDNEHole (lem-bdσ-lam x₁) (lem-bd-lam bd) lem-bd-lam (BDAp bd bd₁) = BDAp (lem-bd-lam bd) (lem-bd-lam bd₁) lem-bd-lam (BDCast bd) = BDCast (lem-bd-lam bd) lem-bd-lam (BDFailedCast bd) = BDFailedCast (lem-bd-lam bd) mutual lem-bdσ-hole : ∀{d u σ σ'} → binders-disjoint-σ σ ⦇⌜ d ⌟⦈⟨ u , σ' ⟩ → binders-disjoint-σ σ d lem-bdσ-hole BDσId = BDσId lem-bdσ-hole (BDσSubst x bd) = BDσSubst (lem-bd-hole x) (lem-bdσ-hole bd) lem-bd-hole : ∀{d1 d u σ} → binders-disjoint d1 ⦇⌜ d ⌟⦈⟨ u , σ ⟩ → binders-disjoint d1 d lem-bd-hole BDConst = BDConst lem-bd-hole BDVar = BDVar lem-bd-hole (BDLam bd (UBNEHole x₁ x₂)) = BDLam (lem-bd-hole bd) x₂ lem-bd-hole (BDHole x) = BDHole (lem-bdσ-hole x) lem-bd-hole (BDNEHole x bd) = BDNEHole (lem-bdσ-hole x) (lem-bd-hole bd) lem-bd-hole (BDAp bd bd₁) = BDAp (lem-bd-hole bd) (lem-bd-hole bd₁) lem-bd-hole (BDCast bd) = BDCast (lem-bd-hole bd) lem-bd-hole (BDFailedCast bd) = BDFailedCast (lem-bd-hole bd) mutual lem-bdσ-cast : ∀{σ d τ1 τ2} → binders-disjoint-σ σ (d ⟨ τ1 ⇒ τ2 ⟩) → binders-disjoint-σ σ d lem-bdσ-cast BDσId = BDσId lem-bdσ-cast (BDσSubst x bd) = BDσSubst (lem-bd-cast x) (lem-bdσ-cast bd) lem-bd-cast : ∀{d1 d τ1 τ2} → binders-disjoint d1 (d ⟨ τ1 ⇒ τ2 ⟩) → binders-disjoint d1 d lem-bd-cast BDConst = BDConst lem-bd-cast BDVar = BDVar lem-bd-cast (BDLam bd (UBCast x₁)) = BDLam (lem-bd-cast bd) x₁ lem-bd-cast (BDHole x) = BDHole (lem-bdσ-cast x) lem-bd-cast (BDNEHole x bd) = BDNEHole (lem-bdσ-cast x) (lem-bd-cast bd) lem-bd-cast (BDAp bd bd₁) = BDAp (lem-bd-cast bd) (lem-bd-cast bd₁) lem-bd-cast (BDCast bd) = BDCast (lem-bd-cast bd) lem-bd-cast (BDFailedCast bd) = BDFailedCast (lem-bd-cast bd) mutual lem-bdσ-failedcast : ∀{σ d τ1 τ2} → binders-disjoint-σ σ (d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩) → binders-disjoint-σ σ d lem-bdσ-failedcast BDσId = BDσId lem-bdσ-failedcast (BDσSubst x bd) = BDσSubst (lem-bd-failedcast x) (lem-bdσ-failedcast bd) lem-bd-failedcast : ∀{d1 d τ1 τ2} → binders-disjoint d1 (d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩) → binders-disjoint d1 d lem-bd-failedcast BDConst = BDConst lem-bd-failedcast BDVar = BDVar lem-bd-failedcast (BDLam bd (UBFailedCast x₁)) = BDLam (lem-bd-failedcast bd) x₁ lem-bd-failedcast (BDHole x) = BDHole (lem-bdσ-failedcast x) lem-bd-failedcast (BDNEHole x bd) = BDNEHole (lem-bdσ-failedcast x) (lem-bd-failedcast bd) lem-bd-failedcast (BDAp bd bd₁) = BDAp (lem-bd-failedcast bd) (lem-bd-failedcast bd₁) lem-bd-failedcast (BDCast bd) = BDCast (lem-bd-failedcast bd) lem-bd-failedcast (BDFailedCast bd) = BDFailedCast (lem-bd-failedcast bd) mutual lem-bdσ-into-cast : ∀{σ d τ1 τ2} → binders-disjoint-σ σ d → binders-disjoint-σ σ (d ⟨ τ1 ⇒ τ2 ⟩) lem-bdσ-into-cast BDσId = BDσId lem-bdσ-into-cast (BDσSubst x bd) = BDσSubst (lem-bd-into-cast x) (lem-bdσ-into-cast bd) lem-bd-into-cast : ∀{d1 d2 τ1 τ2} → binders-disjoint d1 d2 → binders-disjoint d1 (d2 ⟨ τ1 ⇒ τ2 ⟩) lem-bd-into-cast BDConst = BDConst lem-bd-into-cast BDVar = BDVar lem-bd-into-cast (BDLam bd x₁) = BDLam (lem-bd-into-cast bd) (UBCast x₁) lem-bd-into-cast (BDHole x) = BDHole (lem-bdσ-into-cast x) lem-bd-into-cast (BDNEHole x bd) = BDNEHole (lem-bdσ-into-cast x) (lem-bd-into-cast bd) lem-bd-into-cast (BDAp bd bd₁) = BDAp (lem-bd-into-cast bd) (lem-bd-into-cast bd₁) lem-bd-into-cast (BDCast bd) = BDCast (lem-bd-into-cast bd) lem-bd-into-cast (BDFailedCast bd) = BDFailedCast (lem-bd-into-cast bd)
51.22619
106
0.651406
10879694451a6db2c196e0f88d4e068fe2826b14
939
agda
Agda
BasicIS4/Metatheory/DyadicGentzen-BasicKripkeOno.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicIS4/Metatheory/DyadicGentzen-BasicKripkeOno.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicIS4/Metatheory/DyadicGentzen-BasicKripkeOno.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
module BasicIS4.Metatheory.DyadicGentzen-BasicKripkeOno where open import BasicIS4.Syntax.DyadicGentzen public open import BasicIS4.Semantics.BasicKripkeOno public hiding (_⊨_) -- TODO -- Soundness with respect to all models, or evaluation. eval : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊨ A eval (var i) γ δ = lookup i γ eval (lam t) γ δ = λ ξ a → eval t (mono⊩⋆ ξ γ , a) (λ ζ → δ (transR (≤→R ξ) ζ)) eval (app {A} {B} t u) γ δ = _⟪$⟫_ {A} {B} (eval t γ δ) (eval u γ δ) eval (mvar i) γ δ = lookup i (δ reflR) eval (box t) γ δ = λ ζ → eval t ∙ (λ ζ′ → δ (transR ζ ζ′)) eval (unbox t u) γ δ = eval u γ (λ ζ → δ ζ , (eval t γ δ) ζ) eval (pair t u) γ δ = eval t γ δ , eval u γ δ eval (fst t) γ δ = π₁ (eval t γ δ) eval (snd t) γ δ = π₂ (eval t γ δ) eval unit γ δ = ∙ -- TODO: Correctness of evaluation with respect to conversion.
39.125
73
0.539936
a0ba97aa6fb59304f4ef6ca45b36b8d28542ff47
7,833
agda
Agda
Cubical/Algebra/RingSolver/RawAlgebra.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Algebra/RingSolver/RawAlgebra.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Algebra/RingSolver/RawAlgebra.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.RingSolver.RawAlgebra where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat using (ℕ) open import Cubical.Data.Int renaming (_+_ to _+ℤ_ ; _·_ to _·ℤ_ ; -_ to -ℤ_ ; _-_ to _-ℤ_ ; +Assoc to +ℤAssoc ; +Comm to +ℤComm ; -DistL· to -ℤDistL·ℤ) open import Cubical.Algebra.RingSolver.RawRing renaming (⟨_⟩ to ⟨_⟩ᵣ) open import Cubical.Algebra.RingSolver.IntAsRawRing open import Cubical.Algebra.CommRing open import Cubical.Algebra.Ring private variable ℓ ℓ′ : Level record RawAlgebra (R : RawRing ℓ) (ℓ′ : Level) : Type (ℓ-suc (ℓ-max ℓ ℓ′)) where constructor rawalgebra field Carrier : Type ℓ′ scalar : ⟨ R ⟩ᵣ → Carrier 0r : Carrier 1r : Carrier _+_ : Carrier → Carrier → Carrier _·_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier infixl 8 _·_ infixl 7 -_ infixl 6 _+_ ⟨_⟩ : {R : RawRing ℓ} → RawAlgebra R ℓ′ → Type ℓ′ ⟨_⟩ = RawAlgebra.Carrier {- Mapping to integer scalars and its (homorphism) properties. -} module _ (R : CommRing ℓ) where open CommRingStr (snd R) open Cubical.Algebra.Ring.RingTheory (CommRing→Ring R) scalarℕ : ℕ → (fst R) scalarℕ ℕ.zero = 0r scalarℕ (ℕ.suc ℕ.zero) = 1r scalarℕ (ℕ.suc (ℕ.suc n)) = 1r + scalarℕ (ℕ.suc n) scalar : ℤ → (fst R) scalar (pos k) = scalarℕ k scalar (negsuc k) = - scalarℕ (ℕ.suc k) -DistScalar : (k : ℤ) → scalar (-ℤ k) ≡ - (scalar k) -DistScalar (pos ℕ.zero) = sym 0Selfinverse -DistScalar (pos (ℕ.suc n)) = refl -DistScalar (negsuc n) = sym (-Idempotent _) lemmaSuc : (k : ℤ) → scalar (sucℤ k) ≡ 1r + scalar k lemmaSuc (pos ℕ.zero) = sym (+Rid _) lemmaSuc (pos (ℕ.suc ℕ.zero)) = refl lemmaSuc (pos (ℕ.suc (ℕ.suc n))) = refl lemmaSuc (negsuc ℕ.zero) = sym (+Rinv _) lemmaSuc (negsuc (ℕ.suc n)) = scalar (negsuc n) ≡⟨ sym (+Lid (scalar (negsuc n))) ⟩ 0r + scalar (negsuc n) ≡[ i ]⟨ +Rinv 1r (~ i) + scalar (negsuc n) ⟩ (1r - 1r) + scalar (negsuc n) ≡⟨ sym (+Assoc _ _ _) ⟩ 1r + (- 1r + - scalar (pos (ℕ.suc n))) ≡[ i ]⟨ 1r + -Dist 1r (scalar (pos (ℕ.suc n))) i ⟩ 1r + -(1r + scalar (pos (ℕ.suc n))) ≡⟨ refl ⟩ 1r + -(scalar (pos (ℕ.suc (ℕ.suc n)))) ≡⟨ refl ⟩ 1r + scalar (negsuc (ℕ.suc n)) ∎ lemmaPred : (k : ℤ) → scalar (predℤ k) ≡ - 1r + scalar k lemmaPred k = sym( - 1r + scalar k ≡[ i ]⟨ - 1r + scalar (sucPred k (~ i)) ⟩ - 1r + scalar (sucℤ (predℤ k)) ≡[ i ]⟨ - 1r + lemmaSuc (predℤ k) i ⟩ - 1r + (1r + scalar (predℤ k)) ≡⟨ +Assoc _ _ _ ⟩ (- 1r + 1r) + scalar (predℤ k) ≡[ i ]⟨ +Linv 1r i + scalar (predℤ k) ⟩ 0r + scalar (predℤ k) ≡⟨ +Lid _ ⟩ scalar (predℤ k) ∎) +HomScalar : (k l : ℤ) → scalar (k +ℤ l) ≡ (scalar k) + (scalar l) +HomScalar (pos ℕ.zero) l = scalar (0 +ℤ l) ≡[ i ]⟨ scalar (sym (pos0+ l) i) ⟩ scalar l ≡⟨ sym (+Lid _) ⟩ 0r + scalar l ≡⟨ refl ⟩ scalar 0 + scalar l ∎ +HomScalar (pos (ℕ.suc ℕ.zero)) l = scalar (1 +ℤ l) ≡[ i ]⟨ scalar (+ℤComm 1 l i) ⟩ scalar (l +ℤ 1) ≡⟨ refl ⟩ scalar (sucℤ l) ≡⟨ lemmaSuc l ⟩ 1r + scalar l ≡⟨ refl ⟩ scalar (pos (ℕ.suc ℕ.zero)) + scalar l ∎ +HomScalar (pos (ℕ.suc (ℕ.suc n))) l = scalar (pos (ℕ.suc (ℕ.suc n)) +ℤ l) ≡⟨ refl ⟩ scalar ((pos (ℕ.suc n) +ℤ 1) +ℤ l) ≡[ i ]⟨ scalar ((+ℤComm (pos (ℕ.suc n)) 1 i) +ℤ l) ⟩ scalar ((1 +ℤ (pos (ℕ.suc n))) +ℤ l) ≡[ i ]⟨ scalar (+ℤAssoc 1 (pos (ℕ.suc n)) l (~ i)) ⟩ scalar (1 +ℤ (pos (ℕ.suc n) +ℤ l)) ≡⟨ +HomScalar (pos (ℕ.suc ℕ.zero)) (pos (ℕ.suc n) +ℤ l) ⟩ scalar 1 + scalar (pos (ℕ.suc n) +ℤ l) ≡⟨ refl ⟩ 1r + (scalar (pos (ℕ.suc n) +ℤ l)) ≡[ i ]⟨ 1r + +HomScalar (pos (ℕ.suc n)) l i ⟩ 1r + (scalar (pos (ℕ.suc n)) + scalar l) ≡⟨ +Assoc _ _ _ ⟩ (1r + scalar (pos (ℕ.suc n))) + scalar l ≡⟨ refl ⟩ scalar (pos (ℕ.suc (ℕ.suc n))) + scalar l ∎ +HomScalar (negsuc ℕ.zero) l = scalar (-1 +ℤ l) ≡[ i ]⟨ scalar (+ℤComm -1 l i) ⟩ scalar (l +ℤ -1) ≡⟨ refl ⟩ scalar (predℤ l) ≡⟨ lemmaPred l ⟩ - 1r + scalar l ≡⟨ refl ⟩ scalar -1 + scalar l ∎ +HomScalar (negsuc (ℕ.suc n)) l = scalar (negsuc (ℕ.suc n) +ℤ l) ≡⟨ refl ⟩ scalar ((negsuc n +ℤ -1) +ℤ l) ≡[ i ]⟨ scalar (+ℤComm (negsuc n) -1 i +ℤ l) ⟩ scalar ((-1 +ℤ negsuc n) +ℤ l) ≡[ i ]⟨ scalar (+ℤAssoc -1 (negsuc n) l (~ i)) ⟩ scalar (-1 +ℤ (negsuc n +ℤ l)) ≡⟨ +HomScalar -1 (negsuc n +ℤ l) ⟩ - 1r + scalar (negsuc n +ℤ l) ≡[ i ]⟨ - 1r + +HomScalar (negsuc n) l i ⟩ - 1r + (scalar (negsuc n) + scalar l) ≡⟨ +Assoc (- 1r) _ _ ⟩ (- 1r + (scalar (negsuc n))) + scalar l ≡⟨ refl ⟩ (- 1r + - scalar (pos (ℕ.suc n))) + scalar l ≡[ i ]⟨ -Dist 1r (scalar (pos (ℕ.suc n))) i + scalar l ⟩ (- (1r + scalar (pos (ℕ.suc n)))) + scalar l ≡⟨ refl ⟩ scalar (negsuc (ℕ.suc n)) + scalar l ∎ lemma1 : (n : ℕ) → 1r + scalar (pos n) ≡ scalar (pos (ℕ.suc n)) lemma1 ℕ.zero = +Rid _ lemma1 (ℕ.suc k) = refl lemma-1 : (n : ℕ) → - 1r + scalar (negsuc n) ≡ scalar (negsuc (ℕ.suc n)) lemma-1 ℕ.zero = -Dist _ _ lemma-1 (ℕ.suc k) = - 1r + scalar (negsuc (ℕ.suc k)) ≡⟨ refl ⟩ - 1r + - scalar (pos (ℕ.suc (ℕ.suc k))) ≡⟨ -Dist _ _ ⟩ - (1r + scalar (pos (ℕ.suc (ℕ.suc k)))) ≡⟨ refl ⟩ scalar (negsuc (ℕ.suc (ℕ.suc k))) ∎ ·HomScalar : (k l : ℤ) → scalar (k ·ℤ l) ≡ scalar k · scalar l ·HomScalar (pos ℕ.zero) l = 0r ≡⟨ sym (0LeftAnnihilates (scalar l)) ⟩ 0r · scalar l ∎ ·HomScalar (pos (ℕ.suc n)) l = scalar (l +ℤ (pos n ·ℤ l)) ≡⟨ +HomScalar l (pos n ·ℤ l) ⟩ scalar l + scalar (pos n ·ℤ l) ≡[ i ]⟨ scalar l + ·HomScalar (pos n) l i ⟩ scalar l + (scalar (pos n) · scalar l) ≡[ i ]⟨ ·Lid (scalar l) (~ i) + (scalar (pos n) · scalar l) ⟩ 1r · scalar l + (scalar (pos n) · scalar l) ≡⟨ sym (·Ldist+ 1r _ _) ⟩ (1r + scalar (pos n)) · scalar l ≡[ i ]⟨ lemma1 n i · scalar l ⟩ scalar (pos (ℕ.suc n)) · scalar l ∎ ·HomScalar (negsuc ℕ.zero) l = scalar (-ℤ l) ≡⟨ -DistScalar l ⟩ - scalar l ≡[ i ]⟨ - (·Lid (scalar l) (~ i)) ⟩ - (1r · scalar l) ≡⟨ sym (-DistL· _ _) ⟩ - 1r · scalar l ≡⟨ refl ⟩ scalar (negsuc ℕ.zero) · scalar l ∎ ·HomScalar (negsuc (ℕ.suc n)) l = scalar ((-ℤ l) +ℤ (negsuc n ·ℤ l)) ≡⟨ +HomScalar (-ℤ l) (negsuc n ·ℤ l) ⟩ scalar (-ℤ l) + scalar (negsuc n ·ℤ l) ≡[ i ]⟨ -DistScalar l i + scalar (negsuc n ·ℤ l) ⟩ - scalar l + scalar (negsuc n ·ℤ l) ≡[ i ]⟨ - scalar l + ·HomScalar (negsuc n) l i ⟩ - scalar l + scalar (negsuc n) · scalar l ≡[ i ]⟨ (- ·Lid (scalar l) (~ i)) + scalar (negsuc n) · scalar l ⟩ - (1r · scalar l) + scalar (negsuc n) · scalar l ≡[ i ]⟨ -DistL· 1r (scalar l) (~ i) + scalar (negsuc n) · scalar l ⟩ - 1r · scalar l + scalar (negsuc n) · scalar l ≡⟨ sym (·Ldist+ _ _ _) ⟩ (- 1r + scalar (negsuc n)) · scalar l ≡[ i ]⟨ lemma-1 n i · scalar l ⟩ scalar (negsuc (ℕ.suc n)) · scalar l ∎ CommRing→RawℤAlgebra : CommRing ℓ → RawAlgebra ℤAsRawRing ℓ CommRing→RawℤAlgebra (R , commringstr 0r 1r _+_ _·_ -_ isCommRing) = rawalgebra R (scalar ((R , commringstr 0r 1r _+_ _·_ -_ isCommRing))) 0r 1r _+_ _·_ -_
44.254237
152
0.486914
8bb81ec3ecebf8f700ef721dcfd188c669016e35
15,455
agda
Agda
Cubical/Categories/Instances/CommAlgebras.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Categories/Instances/CommAlgebras.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Categories/Instances/CommAlgebras.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Categories.Instances.CommAlgebras where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Powerset open import Cubical.Foundations.HLevels open import Cubical.Data.Unit open import Cubical.Data.Sigma open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.Algebra open import Cubical.Algebra.CommAlgebra open import Cubical.Algebra.CommAlgebra.Instances.Unit open import Cubical.Categories.Category open import Cubical.Categories.Functor.Base open import Cubical.Categories.Limits.Terminal open import Cubical.Categories.Limits.Pullback open import Cubical.Categories.Instances.CommRings open import Cubical.HITs.PropositionalTruncation open Category hiding (_∘_) renaming (_⋆_ to _⋆c_) open CommAlgebraHoms open Cospan open Pullback private variable ℓ ℓ' ℓ'' : Level module _ (R : CommRing ℓ) where CommAlgebrasCategory : Category (ℓ-suc (ℓ-max ℓ ℓ')) (ℓ-max ℓ ℓ') ob CommAlgebrasCategory = CommAlgebra R _ Hom[_,_] CommAlgebrasCategory = CommAlgebraHom id CommAlgebrasCategory {A} = idCommAlgebraHom A _⋆c_ CommAlgebrasCategory {A} {B} {C} = compCommAlgebraHom A B C ⋆IdL CommAlgebrasCategory {A} {B} = compIdCommAlgebraHom {A = A} {B} ⋆IdR CommAlgebrasCategory {A} {B} = idCompCommAlgebraHom {A = A} {B} ⋆Assoc CommAlgebrasCategory {A} {B} {C} {D} = compAssocCommAlgebraHom {A = A} {B} {C} {D} isSetHom CommAlgebrasCategory = isSetAlgebraHom _ _ TerminalCommAlgebra : Terminal (CommAlgebrasCategory {ℓ' = ℓ'}) fst TerminalCommAlgebra = UnitCommAlgebra R fst (fst (snd TerminalCommAlgebra A)) = λ _ → tt* snd (fst (snd TerminalCommAlgebra A)) = makeIsAlgebraHom refl (λ _ _ → refl) (λ _ _ → refl) (λ _ _ → refl) snd (snd TerminalCommAlgebra A) f = AlgebraHom≡ (funExt (λ _ → refl)) module PullbackFromCommRing (R : CommRing ℓ) (commRingCospan : Cospan (CommRingsCategory {ℓ = ℓ})) (commRingPB : Pullback _ commRingCospan) (f₁ : CommRingHom R (commRingPB .pbOb)) (f₂ : CommRingHom R (commRingCospan .r)) (f₃ : CommRingHom R (commRingCospan .l)) (f₄ : CommRingHom R (commRingCospan .m)) where open AlgebraHoms open CommAlgChar R open CommAlgebraStr ⦃...⦄ private CommAlgCat = CommAlgebrasCategory {ℓ = ℓ} R {ℓ' = ℓ} A = commRingPB .pbOb B = commRingCospan .r C = commRingCospan .l D = commRingCospan .m g₁ = commRingPB .pbPr₂ g₂ = commRingPB .pbPr₁ g₃ = commRingCospan .s₂ g₄ = commRingCospan .s₁ {- g₁ A → B ⌟ g₂ ↓ ↓ g₃ C → D g₄ -} open RingHoms univPropCommRingWithHomHom : (isRHom₁ : isCommRingWithHomHom (A , f₁) (B , f₂) g₁) (isRHom₂ : isCommRingWithHomHom (A , f₁) (C , f₃) g₂) (isRHom₃ : isCommRingWithHomHom (B , f₂) (D , f₄) g₃) (isRHom₄ : isCommRingWithHomHom (C , f₃) (D , f₄) g₄) (E,f₅ : CommRingWithHom) (h₂ : CommRingWithHomHom E,f₅ (C , f₃)) (h₁ : CommRingWithHomHom E,f₅ (B , f₂)) → g₄ ∘r fst h₂ ≡ g₃ ∘r fst h₁ → ∃![ h₃ ∈ CommRingWithHomHom E,f₅ (A , f₁) ] (fst h₂ ≡ g₂ ∘r fst h₃) × (fst h₁ ≡ g₁ ∘r fst h₃) univPropCommRingWithHomHom isRHom₁ isRHom₂ isRHom₃ isRHom₄ (E , f₅) (h₂ , comm₂) (h₁ , comm₁) squareComm = ((h₃ , h₃∘f₅≡f₁) , h₂≡g₂∘h₃ , h₁≡g₁∘h₃) , λ h₃' → Σ≡Prop (λ _ → isProp× (isSetRingHom _ _ _ _) (isSetRingHom _ _ _ _)) (Σ≡Prop (λ _ → isSetRingHom _ _ _ _) (cong fst (commRingPB .univProp h₂ h₁ squareComm .snd (h₃' .fst .fst , h₃' .snd .fst , h₃' .snd .snd)))) where h₃ : CommRingHom E A h₃ = commRingPB .univProp h₂ h₁ squareComm .fst .fst h₂≡g₂∘h₃ : h₂ ≡ g₂ ∘r h₃ h₂≡g₂∘h₃ = commRingPB .univProp h₂ h₁ squareComm .fst .snd .fst h₁≡g₁∘h₃ : h₁ ≡ g₁ ∘r h₃ h₁≡g₁∘h₃ = commRingPB .univProp h₂ h₁ squareComm .fst .snd .snd -- the crucial obervation: -- we can apply the universal property to maps R → A fgSquare : g₄ ∘r f₃ ≡ g₃ ∘r f₂ fgSquare = isRHom₄ ∙ sym isRHom₃ h₃∘f₅≡f₁ : h₃ ∘r f₅ ≡ f₁ h₃∘f₅≡f₁ = cong fst (isContr→isProp (commRingPB .univProp f₃ f₂ fgSquare) (h₃ ∘r f₅ , triangle1 , triangle2) (f₁ , (sym isRHom₂) , sym isRHom₁)) where triangle1 : f₃ ≡ g₂ ∘r (h₃ ∘r f₅) triangle1 = sym comm₂ ∙∙ cong (compRingHom f₅) h₂≡g₂∘h₃ ∙∙ sym (compAssocRingHom f₅ h₃ g₂) triangle2 : f₂ ≡ g₁ ∘r (h₃ ∘r f₅) triangle2 = sym comm₁ ∙∙ cong (compRingHom f₅) h₁≡g₁∘h₃ ∙∙ sym (compAssocRingHom f₅ h₃ g₁) algCospan : (isRHom₁ : isCommRingWithHomHom (A , f₁) (B , f₂) g₁) (isRHom₂ : isCommRingWithHomHom (A , f₁) (C , f₃) g₂) (isRHom₃ : isCommRingWithHomHom (B , f₂) (D , f₄) g₃) (isRHom₄ : isCommRingWithHomHom (C , f₃) (D , f₄) g₄) → Cospan CommAlgCat l (algCospan isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlg (C , f₃) m (algCospan isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlg (D , f₄) r (algCospan isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlg (B , f₂) s₁ (algCospan isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlgebraHom _ _ g₄ isRHom₄ s₂ (algCospan isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlgebraHom _ _ g₃ isRHom₃ algPullback : (isRHom₁ : isCommRingWithHomHom (A , f₁) (B , f₂) g₁) (isRHom₂ : isCommRingWithHomHom (A , f₁) (C , f₃) g₂) (isRHom₃ : isCommRingWithHomHom (B , f₂) (D , f₄) g₃) (isRHom₄ : isCommRingWithHomHom (C , f₃) (D , f₄) g₄) → Pullback CommAlgCat (algCospan isRHom₁ isRHom₂ isRHom₃ isRHom₄) pbOb (algPullback isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlg (A , f₁) pbPr₁ (algPullback isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlgebraHom _ _ g₂ isRHom₂ pbPr₂ (algPullback isRHom₁ isRHom₂ isRHom₃ isRHom₄) = toCommAlgebraHom _ _ g₁ isRHom₁ pbCommutes (algPullback isRHom₁ isRHom₂ isRHom₃ isRHom₄) = AlgebraHom≡ (cong fst (pbCommutes commRingPB)) univProp (algPullback isRHom₁ isRHom₂ isRHom₃ isRHom₄) {d = F} h₂' h₁' g₄∘h₂'≡g₃∘h₁' = (k , kComm₂ , kComm₁) , uniqueness where E = fromCommAlg F .fst f₅ = fromCommAlg F .snd h₁ : CommRingHom E B fst h₁ = fst h₁' IsRingHom.pres0 (snd h₁) = IsAlgebraHom.pres0 (snd h₁') IsRingHom.pres1 (snd h₁) = IsAlgebraHom.pres1 (snd h₁') IsRingHom.pres+ (snd h₁) = IsAlgebraHom.pres+ (snd h₁') IsRingHom.pres· (snd h₁) = IsAlgebraHom.pres· (snd h₁') IsRingHom.pres- (snd h₁) = IsAlgebraHom.pres- (snd h₁') h₁comm : h₁ ∘r f₅ ≡ f₂ h₁comm = RingHom≡ (funExt (λ x → IsAlgebraHom.pres⋆ (snd h₁') x 1a ∙∙ cong (fst f₂ x ·_) (IsAlgebraHom.pres1 (snd h₁')) ∙∙ ·Rid _)) where instance _ = snd F _ = snd (toCommAlg (B , f₂)) h₂ : CommRingHom E C fst h₂ = fst h₂' IsRingHom.pres0 (snd h₂) = IsAlgebraHom.pres0 (snd h₂') IsRingHom.pres1 (snd h₂) = IsAlgebraHom.pres1 (snd h₂') IsRingHom.pres+ (snd h₂) = IsAlgebraHom.pres+ (snd h₂') IsRingHom.pres· (snd h₂) = IsAlgebraHom.pres· (snd h₂') IsRingHom.pres- (snd h₂) = IsAlgebraHom.pres- (snd h₂') h₂comm : h₂ ∘r f₅ ≡ f₃ h₂comm = RingHom≡ (funExt (λ x → IsAlgebraHom.pres⋆ (snd h₂') x 1a ∙∙ cong (fst f₃ x ·_) (IsAlgebraHom.pres1 (snd h₂')) ∙∙ ·Rid _)) where instance _ = snd F _ = snd (toCommAlg (C , f₃)) commRingSquare : g₄ ∘r h₂ ≡ g₃ ∘r h₁ commRingSquare = RingHom≡ (funExt (λ x → funExt⁻ (cong fst g₄∘h₂'≡g₃∘h₁') x)) uniqueH₃ : ∃![ h₃ ∈ CommRingWithHomHom (E , f₅) (A , f₁) ] (h₂ ≡ g₂ ∘r fst h₃) × (h₁ ≡ g₁ ∘r fst h₃) uniqueH₃ = univPropCommRingWithHomHom isRHom₁ isRHom₂ isRHom₃ isRHom₄ (E , f₅) (h₂ , h₂comm) (h₁ , h₁comm) commRingSquare h₃ : CommRingHom E A h₃ = uniqueH₃ .fst .fst .fst h₃comm = uniqueH₃ .fst .fst .snd k : CommAlgebraHom F (toCommAlg (A , f₁)) fst k = fst h₃ IsAlgebraHom.pres0 (snd k) = IsRingHom.pres0 (snd h₃) IsAlgebraHom.pres1 (snd k) = IsRingHom.pres1 (snd h₃) IsAlgebraHom.pres+ (snd k) = IsRingHom.pres+ (snd h₃) IsAlgebraHom.pres· (snd k) = IsRingHom.pres· (snd h₃) IsAlgebraHom.pres- (snd k) = IsRingHom.pres- (snd h₃) IsAlgebraHom.pres⋆ (snd k) = λ r y → sym (fst f₁ r · fst h₃ y ≡⟨ cong (_· fst h₃ y) (sym (funExt⁻ (cong fst h₃comm) r)) ⟩ fst h₃ (fst f₅ r) · fst h₃ y ≡⟨ sym (IsRingHom.pres· (snd h₃) _ _) ⟩ fst h₃ (fst f₅ r · y) ≡⟨ refl ⟩ fst h₃ ((r ⋆ 1a) · y) ≡⟨ cong (fst h₃) (⋆-lassoc _ _ _) ⟩ fst h₃ (r ⋆ (1a · y)) ≡⟨ cong (λ x → fst h₃ (r ⋆ x)) (·Lid y) ⟩ fst h₃ (r ⋆ y) ∎) where instance _ = snd F _ = (toCommAlg (A , f₁) .snd) kComm₂ : h₂' ≡ toCommAlgebraHom _ _ g₂ isRHom₂ ∘a k kComm₂ = AlgebraHom≡ (cong fst (uniqueH₃ .fst .snd .fst)) kComm₁ : h₁' ≡ toCommAlgebraHom _ _ g₁ isRHom₁ ∘a k kComm₁ = AlgebraHom≡ (cong fst (uniqueH₃ .fst .snd .snd)) uniqueness : (y : Σ[ k' ∈ CommAlgebraHom F (toCommAlg (A , f₁)) ] (h₂' ≡ toCommAlgebraHom _ _ g₂ isRHom₂ ∘a k') × (h₁' ≡ toCommAlgebraHom _ _ g₁ isRHom₁ ∘a k')) → (k , kComm₂ , kComm₁) ≡ y uniqueness (k' , k'Comm₂ , k'Comm₁) = Σ≡Prop (λ _ → isProp× (isSetAlgebraHom _ _ _ _) (isSetAlgebraHom _ _ _ _)) (AlgebraHom≡ (cong (fst ∘ fst ∘ fst) uniqHelper)) where h₃' : CommRingHom E A fst h₃' = fst k' IsRingHom.pres0 (snd h₃') = IsAlgebraHom.pres0 (snd k') IsRingHom.pres1 (snd h₃') = IsAlgebraHom.pres1 (snd k') IsRingHom.pres+ (snd h₃') = IsAlgebraHom.pres+ (snd k') IsRingHom.pres· (snd h₃') = IsAlgebraHom.pres· (snd k') IsRingHom.pres- (snd h₃') = IsAlgebraHom.pres- (snd k') h₃'IsRHom : h₃' ∘r f₅ ≡ f₁ h₃'IsRHom = RingHom≡ (funExt (λ x → IsAlgebraHom.pres⋆ (snd k') x 1a ∙ cong (fst f₁ x ·_) (IsAlgebraHom.pres1 (snd k')) ∙ ·Rid (fst f₁ x))) where instance _ = snd F _ = (toCommAlg (A , f₁) .snd) h₃'Comm₂ : h₂ ≡ g₂ ∘r h₃' h₃'Comm₂ = RingHom≡ (cong fst k'Comm₂) h₃'Comm₁ : h₁ ≡ g₁ ∘r h₃' h₃'Comm₁ = RingHom≡ (cong fst k'Comm₁) -- basically saying that h₃≡h₃' but we have to give all the commuting triangles uniqHelper : uniqueH₃ .fst ≡ ((h₃' , h₃'IsRHom) , h₃'Comm₂ , h₃'Comm₁) uniqHelper = uniqueH₃ .snd ((h₃' , h₃'IsRHom) , h₃'Comm₂ , h₃'Comm₁) module PreSheafFromUniversalProp (C : Category ℓ ℓ') (P : ob C → Type ℓ) {R : CommRing ℓ''} (𝓕 : Σ (ob C) P → CommAlgebra R ℓ'') (uniqueHom : ∀ x y → C [ fst x , fst y ] → isContr (CommAlgebraHom (𝓕 y) (𝓕 x))) where private ∥P∥ : ℙ (ob C) ∥P∥ x = ∥ P x ∥ , isPropPropTrunc ΣC∥P∥Cat = ΣPropCat C ∥P∥ CommAlgCat = CommAlgebrasCategory {ℓ = ℓ''} R {ℓ' = ℓ''} 𝓕UniqueEquiv : (x : ob C) (p q : P x) → isContr (CommAlgebraEquiv (𝓕 (x , p)) (𝓕 (x , q))) 𝓕UniqueEquiv x = contrCommAlgebraHom→contrCommAlgebraEquiv (curry 𝓕 x) λ p q → uniqueHom _ _ (id C) theMap : (x : ob C) → ∥ P x ∥ → CommAlgebra R ℓ'' theMap x = recPT→CommAlgebra (curry 𝓕 x) (λ p q → 𝓕UniqueEquiv x p q .fst) λ p q r → 𝓕UniqueEquiv x p r .snd _ theAction : (x y : ob C) → C [ x , y ] → (p : ∥ P x ∥) (q : ∥ P y ∥) → isContr (CommAlgebraHom (theMap y q) (theMap x p)) theAction _ _ f = elim2 (λ _ _ → isPropIsContr) λ _ _ → uniqueHom _ _ f open Functor universalPShf : Functor (ΣC∥P∥Cat ^op) CommAlgCat F-ob universalPShf = uncurry theMap F-hom universalPShf {x = x} {y = y} f = theAction _ _ f (y .snd) (x. snd) .fst F-id universalPShf {x = x} = theAction (x .fst) (x .fst) (id C) (x .snd) (x .snd) .snd _ F-seq universalPShf {x = x} {z = z} f g = theAction _ _ (g ⋆⟨ C ⟩ f) (z .snd) (x .snd) .snd _ -- a big transport to help verifying the sheaf property module toSheaf (x y u v : ob ΣC∥P∥Cat) {f : C [ v .fst , y . fst ]} {g : C [ v .fst , u .fst ]} {h : C [ u .fst , x . fst ]} {k : C [ y .fst , x .fst ]} (Csquare : g ⋆⟨ C ⟩ h ≡ f ⋆⟨ C ⟩ k) {- v → y ↓ ↓ u → x -} (AlgCospan : Cospan CommAlgCat) (AlgPB : Pullback _ AlgCospan) (p₁ : AlgPB .pbOb ≡ F-ob universalPShf x) (p₂ : AlgCospan .l ≡ F-ob universalPShf u) (p₃ : AlgCospan .r ≡ F-ob universalPShf y) (p₄ : AlgCospan .m ≡ F-ob universalPShf v) where private -- just: 𝓕 k ⋆ 𝓕 f ≡ 𝓕 h ⋆ 𝓕 g inducedSquare : seq' CommAlgCat {x = F-ob universalPShf x} {y = F-ob universalPShf u} {z = F-ob universalPShf v} (F-hom universalPShf h) (F-hom universalPShf g) ≡ seq' CommAlgCat {x = F-ob universalPShf x} {y = F-ob universalPShf y} {z = F-ob universalPShf v} (F-hom universalPShf k) (F-hom universalPShf f) inducedSquare = F-square universalPShf Csquare f' = F-hom universalPShf {x = y} {y = v} f g' = F-hom universalPShf {x = u} {y = v} g h' = F-hom universalPShf {x = x} {y = u} h k' = F-hom universalPShf {x = x} {y = y} k gPathP : PathP (λ i → CommAlgCat [ p₂ i , p₄ i ]) (AlgCospan .s₁) g' gPathP = toPathP (sym (theAction _ _ g (v .snd) (u .snd) .snd _)) fPathP : PathP (λ i → CommAlgCat [ p₃ i , p₄ i ]) (AlgCospan .s₂) f' fPathP = toPathP (sym (theAction _ _ f (v .snd) (y .snd) .snd _)) kPathP : PathP (λ i → CommAlgCat [ p₁ i , p₃ i ]) (AlgPB .pbPr₂) k' kPathP = toPathP (sym (theAction _ _ k (y .snd) (x .snd) .snd _)) hPathP : PathP (λ i → CommAlgCat [ p₁ i , p₂ i ]) (AlgPB .pbPr₁) h' hPathP = toPathP (sym (theAction _ _ h (u .snd) (x .snd) .snd _)) fgCospan : Cospan CommAlgCat l fgCospan = F-ob universalPShf u m fgCospan = F-ob universalPShf v r fgCospan = F-ob universalPShf y s₁ fgCospan = g' s₂ fgCospan = f' cospanPath : AlgCospan ≡ fgCospan l (cospanPath i) = p₂ i m (cospanPath i) = p₄ i r (cospanPath i) = p₃ i s₁ (cospanPath i) = gPathP i s₂ (cospanPath i) = fPathP i squarePathP : PathP (λ i → hPathP i ⋆⟨ CommAlgCat ⟩ gPathP i ≡ kPathP i ⋆⟨ CommAlgCat ⟩ fPathP i) (AlgPB .pbCommutes) inducedSquare squarePathP = toPathP (CommAlgCat .isSetHom _ _ _ _) abstract lemma : isPullback CommAlgCat fgCospan {c = F-ob universalPShf x} h' k' inducedSquare lemma = transport (λ i → isPullback CommAlgCat (cospanPath i) {c = p₁ i} (hPathP i) (kPathP i) (squarePathP i)) (AlgPB .univProp)
42.226776
102
0.569589
13c0375a880985435b1287735b6a3f6bbad1cb14
6,687
agda
Agda
src/Web/Semantic/DL/Category.agda
agda/agda-web-semantic
8ddbe83965a616bff6fc7a237191fa261fa78bab
[ "MIT" ]
9
2015-09-13T17:46:41.000Z
2020-03-14T14:21:08.000Z
src/Web/Semantic/DL/Category.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
4
2018-11-14T02:32:28.000Z
2021-01-04T20:57:19.000Z
src/Web/Semantic/DL/Category.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
3
2017-12-03T14:52:09.000Z
2022-03-12T11:40:03.000Z
open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( TBox ) import Web.Semantic.DL.Category.Composition import Web.Semantic.DL.Category.Morphism import Web.Semantic.DL.Category.Object import Web.Semantic.DL.Category.Properties import Web.Semantic.DL.Category.Tensor import Web.Semantic.DL.Category.Unit import Web.Semantic.DL.Category.Wiring module Web.Semantic.DL.Category {Σ : Signature} where infix 2 _≣_ _⇒_ infixr 5 _∙_ _⊗_ _⟨⊗⟩_ -- Categorial structure Object : TBox Σ → TBox Σ → Set₁ Object = Web.Semantic.DL.Category.Object.Object _⇒_ : ∀ {S T} → (Object S T) → (Object S T) → Set₁ _⇒_ = Web.Semantic.DL.Category.Morphism._⇒_ identity : ∀ {S T} (A : Object S T) → (A ⇒ A) identity = Web.Semantic.DL.Category.Wiring.identity _∙_ : ∀ {S T} {A B C : Object S T} → (A ⇒ B) → (B ⇒ C) → (A ⇒ C) _∙_ = Web.Semantic.DL.Category.Composition._∙_ -- Symmetric monoidal structure I : ∀ {S T} → Object S T I = Web.Semantic.DL.Category.Unit.I _⊗_ : ∀ {S T} → Object S T → Object S T → Object S T _⊗_ = Web.Semantic.DL.Category.Tensor._⊗_ _⟨⊗⟩_ : ∀ {S T : TBox Σ} {A₁ A₂ B₁ B₂ : Object S T} → (A₁ ⇒ B₁) → (A₂ ⇒ B₂) → ((A₁ ⊗ A₂) ⇒ (B₁ ⊗ B₂)) _⟨⊗⟩_ = Web.Semantic.DL.Category.Tensor._⟨⊗⟩_ symm : ∀ {S T : TBox Σ} → (A B : Object S T) → ((A ⊗ B) ⇒ (B ⊗ A)) symm = Web.Semantic.DL.Category.Wiring.symm assoc : ∀ {S T : TBox Σ} → (A B C : Object S T) → (((A ⊗ B) ⊗ C) ⇒ (A ⊗ (B ⊗ C))) assoc = Web.Semantic.DL.Category.Wiring.assoc assoc⁻¹ : ∀ {S T : TBox Σ} → (A B C : Object S T) → ((A ⊗ (B ⊗ C)) ⇒ ((A ⊗ B) ⊗ C)) assoc⁻¹ = Web.Semantic.DL.Category.Wiring.assoc⁻¹ unit₁ : ∀ {S T : TBox Σ} (A : Object S T) → ((I ⊗ A) ⇒ A) unit₁ = Web.Semantic.DL.Category.Wiring.unit₁ unit₁⁻¹ : ∀ {S T : TBox Σ} (A : Object S T) → (A ⇒ (I ⊗ A)) unit₁⁻¹ = Web.Semantic.DL.Category.Wiring.unit₁⁻¹ unit₂ : ∀ {S T : TBox Σ} (A : Object S T) → ((A ⊗ I) ⇒ A) unit₂ = Web.Semantic.DL.Category.Wiring.unit₂ unit₂⁻¹ : ∀ {S T : TBox Σ} (A : Object S T) → (A ⇒ (A ⊗ I)) unit₂⁻¹ = Web.Semantic.DL.Category.Wiring.unit₂⁻¹ -- Equivalence of morphisms _≣_ : ∀ {S T} {A B : Object S T} → (A ⇒ B) → (A ⇒ B) → Set₁ _≣_ = Web.Semantic.DL.Category.Morphism._≣_ ≣-refl : ∀ {S T} {A B : Object S T} (F : A ⇒ B) → (F ≣ F) ≣-refl = Web.Semantic.DL.Category.Properties.≣-refl ≣-sym : ∀ {S T} {A B : Object S T} {F G : A ⇒ B} → (F ≣ G) → (G ≣ F) ≣-sym = Web.Semantic.DL.Category.Properties.≣-sym ≣-trans : ∀ {S T} {A B : Object S T} {F G H : A ⇒ B} → (F ≣ G) → (G ≣ H) → (F ≣ H) ≣-trans = Web.Semantic.DL.Category.Properties.≣-trans -- Equations of a category compose-resp-≣ : ∀ {S T} {A B C : Object S T} {F₁ F₂ : A ⇒ B} {G₁ G₂ : B ⇒ C} → (F₁ ≣ F₂) → (G₁ ≣ G₂) → (F₁ ∙ G₁ ≣ F₂ ∙ G₂) compose-resp-≣ = Web.Semantic.DL.Category.Properties.compose-resp-≣ compose-unit₁ : ∀ {S T} {A B C : Object S T} (F : A ⇒ B) → (identity A ∙ F ≣ F) compose-unit₁ = Web.Semantic.DL.Category.Properties.compose-unit₁ compose-unit₂ : ∀ {S T} {A B C : Object S T} (F : A ⇒ B) → (F ∙ identity B ≣ F) compose-unit₂ = Web.Semantic.DL.Category.Properties.compose-unit₂ compose-assoc : ∀ {S T} {A B C D : Object S T} (F : A ⇒ B) (G : B ⇒ C) (H : C ⇒ D) → ((F ∙ G) ∙ H ≣ F ∙ (G ∙ H)) compose-assoc = Web.Semantic.DL.Category.Properties.compose-assoc -- Tensor is a bifunctor tensor-resp-≣ : ∀ {S T} {A₁ A₂ B₁ B₂ : Object S T} {F₁ G₁ : A₁ ⇒ B₁} {F₂ G₂ : A₂ ⇒ B₂} → (F₁ ≣ G₁) → (F₂ ≣ G₂) → (F₁ ⟨⊗⟩ F₂ ≣ G₁ ⟨⊗⟩ G₂) tensor-resp-≣ = Web.Semantic.DL.Category.Properties.tensor-resp-≣ tensor-resp-compose : ∀ {S T} {A₁ A₂ B₁ B₂ C₁ C₂ : Object S T} (F₁ : A₁ ⇒ B₁) (F₂ : A₂ ⇒ B₂) (G₁ : B₁ ⇒ C₁) (G₂ : B₂ ⇒ C₂) → (((F₁ ∙ G₁) ⟨⊗⟩ (F₂ ∙ G₂)) ≣ ((F₁ ⟨⊗⟩ F₂) ∙ (G₁ ⟨⊗⟩ G₂))) tensor-resp-compose = Web.Semantic.DL.Category.Properties.tensor-resp-compose tensor-resp-id : ∀ {S T} (A₁ A₂ : Object S T) → ((identity A₁ ⟨⊗⟩ identity A₂) ≣ identity (A₁ ⊗ A₂)) tensor-resp-id = Web.Semantic.DL.Category.Properties.tensor-resp-id -- Isomorphisms of a symmetric monoidal category symm-iso : ∀ {S T} (A₁ A₂ : Object S T) → (symm A₁ A₂ ∙ symm A₂ A₁ ≣ identity (A₁ ⊗ A₂)) symm-iso = Web.Semantic.DL.Category.Properties.symm-iso assoc-iso : ∀ {S T} (A₁ A₂ A₃ : Object S T) → (assoc A₁ A₂ A₃ ∙ assoc⁻¹ A₁ A₂ A₃ ≣ identity ((A₁ ⊗ A₂) ⊗ A₃)) assoc-iso = Web.Semantic.DL.Category.Properties.assoc-iso assoc⁻¹-iso : ∀ {S T} (A₁ A₂ A₃ : Object S T) → (assoc⁻¹ A₁ A₂ A₃ ∙ assoc A₁ A₂ A₃ ≣ identity (A₁ ⊗ (A₂ ⊗ A₃))) assoc⁻¹-iso = Web.Semantic.DL.Category.Properties.assoc⁻¹-iso unit₁-iso : ∀ {S T} (A : Object S T) → (unit₁ A ∙ unit₁⁻¹ A ≣ identity (I ⊗ A)) unit₁-iso = Web.Semantic.DL.Category.Properties.unit₁-iso unit₁⁻¹-iso : ∀ {S T} (A : Object S T) → (unit₁⁻¹ A ∙ unit₁ A ≣ identity A) unit₁⁻¹-iso = Web.Semantic.DL.Category.Properties.unit₁⁻¹-iso unit₂-iso : ∀ {S T} (A : Object S T) → (unit₂ A ∙ unit₂⁻¹ A ≣ identity (A ⊗ I)) unit₂-iso = Web.Semantic.DL.Category.Properties.unit₂-iso unit₂⁻¹-iso : ∀ {S T} (A : Object S T) → (unit₂⁻¹ A ∙ unit₂ A ≣ identity A) unit₂⁻¹-iso = Web.Semantic.DL.Category.Properties.unit₂⁻¹-iso -- Coherence conditions of a symmetric monoidal category assoc-unit : ∀ {S T} (A₁ A₂ : Object S T) → (assoc A₁ I A₂ ∙ (identity A₁ ⟨⊗⟩ unit₁ A₂) ≣ unit₂ A₁ ⟨⊗⟩ identity A₂) assoc-unit = Web.Semantic.DL.Category.Properties.assoc-unit assoc-assoc : ∀ {S T} (A₁ A₂ A₃ A₄ : Object S T) → (assoc (A₁ ⊗ A₂) A₃ A₄ ∙ assoc A₁ A₂ (A₃ ⊗ A₄) ≣ (assoc A₁ A₂ A₃ ⟨⊗⟩ identity A₄) ∙ assoc A₁ (A₂ ⊗ A₃) A₄ ∙ (identity A₁ ⟨⊗⟩ assoc A₂ A₃ A₄)) assoc-assoc = Web.Semantic.DL.Category.Properties.assoc-assoc assoc-symm : ∀ {S T} (A₁ A₂ A₃ : Object S T) → (symm (A₁ ⊗ A₂) A₃ ∙ assoc⁻¹ A₃ A₁ A₂ ≣ assoc A₁ A₂ A₃ ∙ (identity A₁ ⟨⊗⟩ symm A₂ A₃) ∙ assoc⁻¹ A₁ A₃ A₂ ∙ (symm A₁ A₃ ⟨⊗⟩ identity A₂)) assoc-symm = Web.Semantic.DL.Category.Properties.assoc-symm -- Naturality conditions of a symmetric monoidal category unit₁-natural : ∀ {S T} {A B : Object S T} (F : A ⇒ B) → ((identity I ⟨⊗⟩ F) ∙ unit₁ B ≣ unit₁ A ∙ F) unit₁-natural = Web.Semantic.DL.Category.Properties.unit₁-natural unit₂-natural : ∀ {S T} {A B : Object S T} (F : A ⇒ B) → ((F ⟨⊗⟩ identity I) ∙ unit₂ B ≣ unit₂ A ∙ F) unit₂-natural = Web.Semantic.DL.Category.Properties.unit₂-natural symm-natural : ∀ {S T} {A₁ A₂ B₁ B₂ : Object S T} (F₁ : A₁ ⇒ B₁) (F₂ : A₂ ⇒ B₂) → ((F₁ ⟨⊗⟩ F₂) ∙ symm B₁ B₂ ≣ symm A₁ A₂ ∙ (F₂ ⟨⊗⟩ F₁)) symm-natural = Web.Semantic.DL.Category.Properties.symm-natural assoc-natural : ∀ {S T} {A₁ A₂ A₃ B₁ B₂ B₃ : Object S T} (F₁ : A₁ ⇒ B₁) (F₂ : A₂ ⇒ B₂) (F₃ : A₃ ⇒ B₃) → (((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) ∙ assoc B₁ B₂ B₃ ≣ assoc A₁ A₂ A₃ ∙ (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃))) assoc-natural = Web.Semantic.DL.Category.Properties.assoc-natural
36.342391
100
0.605952
191892d4282c8aae8d09a6408f5ef124e1e0f4d8
2,921
agda
Agda
src/Lambda/Interpreter/Steps.agda
nad/definitional-interpreters
dec8cd2d2851340840de25acb0feb78f7b5ffe96
[ "MIT" ]
null
null
null
src/Lambda/Interpreter/Steps.agda
nad/definitional-interpreters
dec8cd2d2851340840de25acb0feb78f7b5ffe96
[ "MIT" ]
null
null
null
src/Lambda/Interpreter/Steps.agda
nad/definitional-interpreters
dec8cd2d2851340840de25acb0feb78f7b5ffe96
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- A definitional interpreter that is instrumented with information -- about the number of steps required to run the compiled program ------------------------------------------------------------------------ open import Prelude import Lambda.Syntax module Lambda.Interpreter.Steps {Name : Type} (open Lambda.Syntax Name) (def : Name → Tm 1) where import Equality.Propositional as E open import Monad E.equality-with-J open import Vec.Data E.equality-with-J open import Delay-monad open import Delay-monad.Bisimilarity open import Lambda.Delay-crash import Lambda.Interpreter def as I open Closure Tm ------------------------------------------------------------------------ -- The interpreter -- A step annotation. infix 1 ✓_ ✓_ : ∀ {A i} → Delay-crash A i → Delay-crash A i ✓ x = later λ { .force → x } -- The instrumented interpreter. infix 10 _∙_ mutual ⟦_⟧ : ∀ {i n} → Tm n → Env n → Delay-crash Value i ⟦ var x ⟧ ρ = ✓ return (index ρ x) ⟦ lam t ⟧ ρ = ✓ return (lam t ρ) ⟦ t₁ · t₂ ⟧ ρ = do v₁ ← ⟦ t₁ ⟧ ρ v₂ ← ⟦ t₂ ⟧ ρ v₁ ∙ v₂ ⟦ call f t ⟧ ρ = do v ← ⟦ t ⟧ ρ lam (def f) [] ∙ v ⟦ con b ⟧ ρ = ✓ return (con b) ⟦ if t₁ t₂ t₃ ⟧ ρ = do v₁ ← ⟦ t₁ ⟧ ρ ⟦if⟧ v₁ t₂ t₃ ρ _∙_ : ∀ {i} → Value → Value → Delay-crash Value i lam t₁ ρ ∙ v₂ = later λ { .force → ⟦ t₁ ⟧ (v₂ ∷ ρ) } con _ ∙ _ = crash ⟦if⟧ : ∀ {i n} → Value → Tm n → Tm n → Env n → Delay-crash Value i ⟦if⟧ (lam _ _) _ _ _ = crash ⟦if⟧ (con true) t₂ t₃ ρ = ✓ ⟦ t₂ ⟧ ρ ⟦if⟧ (con false) t₂ t₃ ρ = ✓ ⟦ t₃ ⟧ ρ ------------------------------------------------------------------------ -- The semantics given above gives the same (uninstrumented) result as -- the one in Lambda.Interpreter mutual -- The result of the instrumented interpreter is an expansion of -- that of the uninstrumented interpreter. ⟦⟧≳⟦⟧ : ∀ {i n} (t : Tm n) {ρ : Env n} → [ i ] ⟦ t ⟧ ρ ≳ I.⟦ t ⟧ ρ ⟦⟧≳⟦⟧ (var x) = laterˡ (reflexive _) ⟦⟧≳⟦⟧ (lam t) = laterˡ (reflexive _) ⟦⟧≳⟦⟧ (t₁ · t₂) = ⟦⟧≳⟦⟧ t₁ >>=-cong λ _ → ⟦⟧≳⟦⟧ t₂ >>=-cong λ _ → ∙≳∙ _ ⟦⟧≳⟦⟧ (call f t) = ⟦⟧≳⟦⟧ t >>=-cong λ _ → ∙≳∙ _ ⟦⟧≳⟦⟧ (con b) = laterˡ (reflexive _) ⟦⟧≳⟦⟧ (if t₁ t₂ t₃) = ⟦⟧≳⟦⟧ t₁ >>=-cong λ _ → ⟦if⟧≳⟦if⟧ _ t₂ t₃ ∙≳∙ : ∀ {i} (v₁ {v₂} : Value) → [ i ] v₁ ∙ v₂ ≳ v₁ I.∙ v₂ ∙≳∙ (lam t₁ ρ) = later λ { .force → ⟦⟧≳⟦⟧ t₁ } ∙≳∙ (con _) = reflexive _ ⟦if⟧≳⟦if⟧ : ∀ {i n} v₁ (t₂ t₃ : Tm n) {ρ} → [ i ] ⟦if⟧ v₁ t₂ t₃ ρ ≳ I.⟦if⟧ v₁ t₂ t₃ ρ ⟦if⟧≳⟦if⟧ (lam _ _) _ _ = reflexive _ ⟦if⟧≳⟦if⟧ (con true) t₂ t₃ = laterˡ (⟦⟧≳⟦⟧ t₂) ⟦if⟧≳⟦if⟧ (con false) t₂ t₃ = laterˡ (⟦⟧≳⟦⟧ t₃)
28.637255
72
0.444368
03df42b576e5a12764b571158f0852ce1e883993
2,352
agda
Agda
proglangs-learning/Agda/sv20/assign1/Second.agda
helq/old_code
a432faf1b340cb379190a2f2b11b997b02d1cd8d
[ "CC0-1.0" ]
null
null
null
proglangs-learning/Agda/sv20/assign1/Second.agda
helq/old_code
a432faf1b340cb379190a2f2b11b997b02d1cd8d
[ "CC0-1.0" ]
4
2020-03-10T19:20:21.000Z
2021-06-07T15:39:48.000Z
proglangs-learning/Agda/sv20/assign1/Second.agda
helq/old_code
a432faf1b340cb379190a2f2b11b997b02d1cd8d
[ "CC0-1.0" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module sv20.assign1.Second where {- Code partially taken from the book "Programming Language Foundations in - Agda" by Philip Wadler, Wen Kokke, Jeremy Siek and many others. The book - can be found at https://plfa.github.io/ - - Based on chapters 6 and 7 - Connectives and Negation - https://plfa.github.io/Connectives/ - https://plfa.github.io/Negation/ -} open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩) open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_]) open import Relation.Nullary using (¬_) -- Logic can be formalised as types [1], so the current homework solution uses -- types and type operations to proof logic operations. -- -- [1] “Propositions as Types”, Philip Wadler, Communications of the ACM, December 2015. ------------------------------------------------------------------------------------------ -- HOMEWORK SOLUTION -- ------------------------------------------------------------------------------------------ -- Conjuction is formalised in type systems as product -- Prove that: A ⇒ B ⇒ C from A ∧ B ⇒ C proof₁ : ∀ {A B C : Set} → (A × B → C) ------------- → (A → B → C) proof₁ f a b = f ⟨ a , b ⟩ -- Prove that: (A ⇒ ¬ E ⇒ ¬ C) from ((A ∨ B) ⇒ (C ∨ D) ⇒ E) -- Preliminary proofs modus-tollens : ∀ {A B : Set} → (A → B) ------------- → (¬ B → ¬ A) modus-tollens a→b = λ{¬b → λ{a → ¬b (a→b a)}} -- Disjunction is formalised as Union lemma₁ : ∀ {A B E : Set} → (A ⊎ B → E) ------------- → (A → E) lemma₁ a⊎b→e a = a⊎b→e (inj₁ a) lemma₂ : ∀ {C D : Set} → ¬ (C ⊎ D) ------------- → ¬ C lemma₂ c⊎d = λ{c → c⊎d (inj₁ c)} ---- And finally the proof proof₂ : ∀ {A B C D E : Set} → (A ⊎ B → C ⊎ D → E) --------------------- → (A → ¬ E → ¬ C) proof₂ a⊎b→c⊎d→e a ¬e = let -- (A ⊎ B → C ⊎ D → E) -- → A -- --------------------- -- → (C ⊎ D → E) c⊎d→e = lemma₁ a⊎b→c⊎d→e a -- (C ⊎ D → E) -- → ¬E -- ------------- -- → ¬ (C ⊎ D) ¬c⊎d = modus-tollens c⊎d→e ¬e in -- ¬ (C ⊎ D) -- ------------- -- → ¬ C lemma₂ ¬c⊎d -------- Other stuff stuff₁ : ∀ {C D : Set} → ¬ (C ⊎ D) ------------- → (¬ C) × (¬ D) stuff₁ c⊎d = ⟨ (λ c → c⊎d (inj₁ c)) , (λ d → c⊎d (inj₂ d)) ⟩
25.846154
90
0.4375
a0781e180265bdc46ce8c52f29e4c42375bef743
6,574
agda
Agda
old/Main.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
old/Main.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
old/Main.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Main where import Automaton.DeterministicFinite import Automaton.NonDeterministicFinite import Automaton.Pushdown import Automaton.TuringMachine import Cardinal import Cardinal.Finite.Count import Cardinal.Proofs import Data import Data.Any import Data.Boolean import Data.Boolean.Stmt import Data.Boolean.Operators import Data.Boolean.Proofs import Data.Either import Data.List import Data.List.Computability import Data.List.Proofs import Data.List.Relation.Membership.Proofs import Data.List.Relation.Sublist.Proofs import Data.List.Relation import Data.List.Relation.Membership import Data.List.Relation.Sublist import Data.ListNonEmpty import Data.Option import Data.Proofs import Data.Tuple import Data.Tuple.Function import Data.Tuple.List import Data.Tuple.Proofs import Data.Tuple.Raise import Data.Tuple.Raiseᵣ import Data.Tuple.Raiseₗ import FFI.IO as FFI import FormalLanguage import FormalLanguage.ContextFreeGrammar import FormalLanguage.Proofs import FormalLanguage.RegularExpression import Functional import Function.DomainRaise import Function.Domains import Function.Domains.Proofs import Function.Equals import Function.Names import Function.PrimitiveRecursion import Function.Proofs import Function.Iteration import Function.Iteration.Proofs -- import Geometry.Test -- import Geometry.Test2 import Geometry.Test3 import Graph import Lang.Instance import Lang.Irrelevance import Logic.Classical import Logic.Classical.DoubleNegated import Logic.Classical.Mere import Logic.Computability import Logic.Computability.Binary import Logic.Convenience import Logic.DiagonalProof import Logic.LambdaCalculus import Logic.Predicate import Logic.Predicate.Theorems import Logic.Propositional import Logic.Propositional.Names import Logic.Propositional.Theorems import Lvl import Metalogic.Classical.Propositional.ProofSystem import Metalogic.Classical.Propositional.Syntax import Metalogic.Classical.Propositional.TruthSemanticsModel import Metalogic.Constructive.NaturalDeduction.TreeModel -- import Metalogic.Constructive.Provability import Metalogic.Linear.SequentCalculus import Metalogic.Linear.Syntax import Numeral.CoordinateVector import Numeral.FiniteInclusive import Numeral.Finite import Numeral.Finite.Bound import Numeral.Finite.Functions import Numeral.Finite.Oper import Numeral.Finite.Oper.Comparisons import Numeral.Finite.Proofs import Numeral.Integer import Numeral.Integer.Function import Numeral.Integer.Oper import Numeral.Integer.Proofs import Numeral.Integer.Relation import Numeral.Integer.Sign import Numeral.Matrix import Numeral.Natural import Numeral.Natural.Coprime import Numeral.Natural.Function import Numeral.Natural.Function.Proofs -- import Numeral.Natural.GreatestCommonDivisor import Numeral.Natural.Induction import Numeral.Natural.Inductions import Numeral.Natural.Oper import Numeral.Natural.Oper.Comparisons import Numeral.Natural.Oper.Comparisons.Proofs import Numeral.Natural.Oper.Divisibility import Numeral.Natural.Oper.Modulo import Numeral.Natural.Oper.Modulo.Proofs import Numeral.Natural.Oper.Proofs import Numeral.Natural.Order import Numeral.Natural.Prime import Numeral.Natural.Relation import Numeral.Natural.Relation.Computability import Numeral.Natural.Relation.Countable import Numeral.Natural.Relation.Divisibility import Numeral.Natural.Relation.Order import Numeral.Natural.Relation.Order.Computability import Numeral.Natural.Relation.Order.Existence import Numeral.Natural.Relation.Order.Existence.Proofs import Numeral.Natural.Relation.Order.Proofs import Numeral.Natural.Relation.Properties import Numeral.Natural.TotalOper import Numeral.Natural.UnclosedOper import Numeral.PositiveInteger import Numeral.PositiveInteger.Oper import Numeral.Rational.AlterAdd -- import Numeral.Rational.SternBrocot import Numeral.Real import Numeral.Real.Properties import Numeral.Sign import Numeral.Sign.Oper import Numeral.Sign.Oper0 import Operator.Equals import Relator.Bijection import Relator.Congruence import Relator.Congruence.Proofs import Relator.Countable import Relator.Equals import Relator.Equals.Proofs import Relator.Equals.Proofs.Uniqueness import Structure.Setoid.Uniqueness import Relator.Finite import Sets.BoolSet import Sets.BoolSet.Proofs import Sets.ETCS import Sets.IZF import Sets.PredicateSet import Sets.PredicateSet.Filter import Sets.PredicateSet.Finite import Sets.PredicateSet.Proofs import Sets.PredicateSet.Relations import Structure.Setoid import Structure.Setoid.Proofs import Stream import String import Structure.Arithmetic -- import Structure.Category import Structure.Function.Domain import Structure.Function.Linear import Structure.Function.Ordering import Structure.LinearAlgebra import Structure.Logic.Classical.PredicateBoundedQuantification import Structure.Logic.Classical.NaturalDeduction import Structure.Logic.Classical.NaturalDeduction.Proofs import Structure.Logic.Classical.SetTheory import Structure.Logic.Classical.SetTheory.SetBoundedQuantification import Structure.Logic.Classical.SetTheory.Function import Structure.Logic.Classical.SetTheory.Relation import Structure.Logic.Classical.SetTheory.ZFC import Structure.Logic.Classical.SetTheory.ZFC.BinaryRelatorSet -- import Structure.Logic.Classical.SetTheory.ZFC.Finite import Structure.Logic.Classical.SetTheory.ZFC.FunctionSet import Structure.Logic.Classical.SetTheory.ZFC.Proofs import Structure.Logic.Constructive.Functions.Properties import Structure.Logic.Constructive.NaturalDeduction import Structure.Operator.Field import Structure.Operator.Functions import Structure.Operator.Group import Structure.Operator.Group.Proofs import Structure.Operator.Monoid import Structure.Operator.Proofs import Structure.Operator.Properties import Structure.Operator.SetAlgebra import Structure.Operator.Vector import Structure.Real import Structure.Relator.Equivalence as Eq import Structure.Relator.Function import Structure.Relator.Ordering import Structure.Relator.Ordering.Subsets import Structure.Relator.Properties import Structure.Relator.Properties.Proofs import Syntax.Function import Syntax.Method import Syntax.Number import Type import Type.Cardinality import Type.Cardinality.Proofs import Type.Dependent import Type.Properties.Empty import Type.Properties.Empty.Proofs import Type.Functions import Type.Functions.Inverse import Type.Functions.Inverse.Proofs import Type.Functions.Proofs import Type.Singleton import Type.Singleton.Proofs import Type.Properties.Singleton import Type.Properties.Singleton.Proofs import Type.Univalence main : FFI.IO Data.Unit main = FFI.printStrLn("Okay")
31.454545
67
0.871768
1ee86657fff7bba429250db4c24179db1dd6379e
4,473
agda
Agda
Cubical/Experiments/Problem.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Experiments/Problem.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Experiments/Problem.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
-- An example of something where normalization is surprisingly slow {-# OPTIONS --safe #-} module Cubical.Experiments.Problem where open import Cubical.Foundations.Prelude open import Cubical.Data.Int open import Cubical.HITs.S1 open import Cubical.HITs.S2 open import Cubical.HITs.S3 open import Cubical.HITs.Join open import Cubical.HITs.Hopf ptType : Type _ ptType = Σ Type₀ \ A → A pt : (A : ptType) → A .fst pt A = A .snd S¹pt : ptType S¹pt = (S¹ , base) S²pt : ptType S²pt = (S² , base) S³pt : ptType S³pt = (S³ , base) joinpt : ptType joinpt = (join S¹ S¹ , inl base) Ω : (A : ptType) → ptType Ω A = Path _ (pt A) (pt A) , refl Ω² : (A : ptType) → ptType Ω² A = Ω (Ω A) Ω³ : (A : ptType) → ptType Ω³ A = Ω² (Ω A) α : join S¹ S¹ → S² α (inl _) = base α (inr _) = base α (push x y i) = (merid y ∙ merid x) i where merid : S¹ → Path S² base base merid base = refl merid (loop i) = λ j → surf i j -- The tests test0To2 : Ω³ S³pt .fst test0To2 i j k = surf i j k f3 : Ω³ S³pt .fst → Ω³ joinpt .fst f3 p i j k = S³→joinS¹S¹ (p i j k) test0To3 : Ω³ joinpt .fst test0To3 = f3 test0To2 f4 : Ω³ joinpt .fst → Ω³ S²pt .fst f4 p i j k = α (p i j k) test0To4 : Ω³ S²pt .fst test0To4 = f4 test0To3 innerpath : ∀ i j → HopfS² (test0To4 i j i1) innerpath i j = transp (λ k → HopfS² (test0To4 i j k)) i0 base -- C-c C-n problem uses a lot of memory problem : pos 0 ≡ pos 0 problem i = transp (λ j → helix (innerpath i j)) i0 (pos 0) -- Lots of tests: (thanks Evan!) winding2 : Path (Path S² base base) refl refl → ℤ winding2 p = winding (λ j → transp (λ i → HopfS² (p i j)) i0 base) test0 : ℤ test0 = winding2 (λ i j → surf i j) test1 : ℤ test1 = winding2 (λ i j → surf j i) test2 : ℤ test2 = winding2 (λ i j → hcomp (λ _ → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) (surf i j)) test3 : ℤ test3 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → surf j k ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) base) test4 : ℤ test4 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → surf j k ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) base) test5 : ℤ test5 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → surf k i ; (j = i1) → base}) base) test6 : ℤ test6 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → surf k i}) base) test7 : ℤ test7 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → surf j k ; (j = i0) → base ; (j = i1) → base}) (surf i j)) test8 : ℤ test8 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → surf k i ; (j = i1) → base}) (surf i j)) test9 : ℤ test9 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → surf k i}) (surf i j)) test10 : ℤ test10 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → surf j k ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) (surf i j)) -- Tests using HopfS²' winding2' : Path (Path S² base base) refl refl → ℤ winding2' p = winding (λ j → transp (λ i → HopfS²' (p i j)) i0 base) test0' : ℤ test0' = winding2' (λ i j → surf i j) test1' : ℤ test1' = winding2' (λ i j → surf j i) test2' : ℤ test2' = winding2' (λ i j → hcomp (λ _ → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) (surf i j)) test3' : ℤ test3' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → surf j k ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) base) test4' : ℤ test4' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → surf j k ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) base) test5' : ℤ test5' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → surf k i ; (j = i1) → base}) base) test6' : ℤ test6' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → surf k i}) base) test7' : ℤ test7' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → surf j k ; (j = i0) → base ; (j = i1) → base}) (surf i j)) test8' : ℤ test8' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → surf k i ; (j = i1) → base}) (surf i j)) test9' : ℤ test9' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → surf k i}) (surf i j)) test10' : ℤ test10' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → surf j k ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) (surf i j))
30.020134
133
0.539683
58bb4e8b44c7f803718a50a1fe42faa44e1e017f
464
agda
Agda
src/data/lib/prim/Agda/Builtin/Cubical/Path.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
src/data/lib/prim/Agda/Builtin/Cubical/Path.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
src/data/lib/prim/Agda/Builtin/Cubical/Path.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2021-04-01T18:30:09.000Z
2021-04-01T18:30:09.000Z
{-# OPTIONS --cubical --safe --no-sized-types --no-guardedness #-} module Agda.Builtin.Cubical.Path where open import Agda.Primitive.Cubical postulate PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ {-# BUILTIN PATHP PathP #-} infix 4 _≡_ -- We have a variable name in `(λ i → A)` as a hint for case -- splitting. _≡_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ _≡_ {A = A} = PathP (λ i → A) {-# BUILTIN PATH _≡_ #-}
24.421053
66
0.534483
1e5c9ea6b680509b76dbbc5f1ff37d06ff4f76c8
96
agda
Agda
Experiment/Categories/Category/Monoidal/Strict.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
3
2020-04-07T17:49:42.000Z
2020-04-21T00:03:43.000Z
Experiment/Categories/Category/Monoidal/Strict.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
Experiment/Categories/Category/Monoidal/Strict.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Experiment.Categories.Category.Monoidal.Strict where
24
59
0.75
1a6d53301320b78e3203345dd2023dbe79e75180
1,649
agda
Agda
vendor/stdlib/src/Data/Product/Record.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Data/Product/Record.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Data/Product/Record.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- Products implemented using records ------------------------------------------------------------------------ -- It it ever becomes convenient to pattern match on records I might -- make this the default implementation of products. module Data.Product.Record where open import Data.Function infixr 4 _,_ infixr 2 _×_ _-×-_ _-,-_ ------------------------------------------------------------------------ -- Definition record Σ (a : Set) (b : a → Set) : Set where field proj₁ : a proj₂ : b proj₁ open Σ public _×_ : (a b : Set) → Set a × b = Σ a (λ _ → b) ------------------------------------------------------------------------ -- Functions _,_ : ∀ {a b} → (x : a) → b x → Σ a b (x , y) = record {proj₁ = x; proj₂ = y} <_,_> : ∀ {A} {B : A → Set} {C : ∀ {x} → B x → Set} (f : (x : A) → B x) → ((x : A) → C (f x)) → ((x : A) → Σ (B x) C) < f , g > x = (f x , g x) map : ∀ {A B P Q} → (f : A → B) → (∀ {x} → P x → Q (f x)) → Σ A P → Σ B Q map f g = < f ∘ proj₁ , g ∘ proj₂ > swap : ∀ {a b} → a × b → b × a swap = < proj₂ , proj₁ > _-×-_ : ∀ {a b} → (a → b → Set) → (a → b → Set) → (a → b → Set) f -×- g = f -[ _×_ ]₁- g _-,-_ : ∀ {a b c d} → (a → b → c) → (a → b → d) → (a → b → c × d) f -,- g = f -[ _,_ ]- g curry : {a : Set} {b : a → Set} {c : Σ a b → Set} → ((p : Σ a b) → c p) → ((x : a) → (y : b x) → c (x , y)) curry f x y = f (x , y) uncurry : {a : Set} {b : a → Set} {c : Σ a b → Set} → ((x : a) → (y : b x) → c (x , y)) → ((p : Σ a b) → c p) uncurry f p = f (proj₁ p) (proj₂ p)
26.596774
72
0.349909
3d1909ffd83ded3eb9dffb63cb5e609ca23c58be
7,866
agda
Agda
agda-stdlib-0.9/src/Data/Container.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Data/Container.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Data/Container.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Containers, based on the work of Abbott and others ------------------------------------------------------------------------ module Data.Container where open import Data.M open import Data.Product as Prod hiding (map) open import Data.W open import Function renaming (id to ⟨id⟩; _∘_ to _⟨∘⟩_) open import Function.Equality using (_⟨$⟩_) open import Function.Inverse using (_↔_; module Inverse) import Function.Related as Related open import Level open import Relation.Binary using (Setoid; module Setoid; Preorder; module Preorder) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≗_; refl) open import Relation.Unary using (_⊆_) ------------------------------------------------------------------------ -- Containers -- A container is a set of shapes, and for every shape a set of -- positions. infix 5 _▷_ record Container (ℓ : Level) : Set (suc ℓ) where constructor _▷_ field Shape : Set ℓ Position : Shape → Set ℓ open Container public -- The semantics ("extension") of a container. ⟦_⟧ : ∀ {ℓ} → Container ℓ → Set ℓ → Set ℓ ⟦ C ⟧ X = Σ[ s ∈ Shape C ] (Position C s → X) -- The least and greatest fixpoints of a container. μ : ∀ {ℓ} → Container ℓ → Set ℓ μ C = W (Shape C) (Position C) ν : ∀ {ℓ} → Container ℓ → Set ℓ ν C = M (Shape C) (Position C) -- Equality, parametrised on an underlying relation. Eq : ∀ {c ℓ} {C : Container c} {X Y : Set c} → (X → Y → Set ℓ) → ⟦ C ⟧ X → ⟦ C ⟧ Y → Set (c ⊔ ℓ) Eq {C = C} _≈_ (s , f) (s′ , f′) = Σ[ eq ∈ s ≡ s′ ] (∀ p → f p ≈ f′ (P.subst (Position C) eq p)) private -- Note that, if propositional equality were extensional, then -- Eq _≡_ and _≡_ would coincide. Eq⇒≡ : ∀ {c} {C : Container c} {X : Set c} {xs ys : ⟦ C ⟧ X} → P.Extensionality c c → Eq _≡_ xs ys → xs ≡ ys Eq⇒≡ {xs = s , f} {ys = .s , f′} ext (refl , f≈f′) = P.cong (_,_ s) (ext f≈f′) setoid : ∀ {ℓ} → Container ℓ → Setoid ℓ ℓ → Setoid ℓ ℓ setoid C X = record { Carrier = ⟦ C ⟧ X.Carrier ; _≈_ = _≈_ ; isEquivalence = record { refl = (refl , λ _ → X.refl) ; sym = sym ; trans = λ {_ _ zs} → trans zs } } where module X = Setoid X _≈_ = Eq X._≈_ sym : {xs ys : ⟦ C ⟧ X.Carrier} → xs ≈ ys → ys ≈ xs sym {_ , _} {._ , _} (refl , f) = (refl , X.sym ⟨∘⟩ f) trans : ∀ {xs ys : ⟦ C ⟧ X.Carrier} zs → xs ≈ ys → ys ≈ zs → xs ≈ zs trans {_ , _} {._ , _} (._ , _) (refl , f₁) (refl , f₂) = (refl , λ p → X.trans (f₁ p) (f₂ p)) ------------------------------------------------------------------------ -- Functoriality -- Containers are functors. map : ∀ {c} {C : Container c} {X Y} → (X → Y) → ⟦ C ⟧ X → ⟦ C ⟧ Y map f = Prod.map ⟨id⟩ (λ g → f ⟨∘⟩ g) module Map where identity : ∀ {c} {C : Container c} X → let module X = Setoid X in (xs : ⟦ C ⟧ X.Carrier) → Eq X._≈_ (map ⟨id⟩ xs) xs identity {C = C} X xs = Setoid.refl (setoid C X) composition : ∀ {c} {C : Container c} {X Y : Set c} Z → let module Z = Setoid Z in (f : Y → Z.Carrier) (g : X → Y) (xs : ⟦ C ⟧ X) → Eq Z._≈_ (map f (map g xs)) (map (f ⟨∘⟩ g) xs) composition {C = C} Z f g xs = Setoid.refl (setoid C Z) ------------------------------------------------------------------------ -- Container morphisms -- Representation of container morphisms. record _⇒_ {c} (C₁ C₂ : Container c) : Set c where field shape : Shape C₁ → Shape C₂ position : ∀ {s} → Position C₂ (shape s) → Position C₁ s open _⇒_ public -- Interpretation of _⇒_. ⟪_⟫ : ∀ {c} {C₁ C₂ : Container c} → C₁ ⇒ C₂ → ∀ {X} → ⟦ C₁ ⟧ X → ⟦ C₂ ⟧ X ⟪ m ⟫ xs = (shape m (proj₁ xs) , proj₂ xs ⟨∘⟩ position m) module Morphism where -- Naturality. Natural : ∀ {c} {C₁ C₂ : Container c} → (∀ {X} → ⟦ C₁ ⟧ X → ⟦ C₂ ⟧ X) → Set (suc c) Natural {c} {C₁} m = ∀ {X} (Y : Setoid c c) → let module Y = Setoid Y in (f : X → Y.Carrier) (xs : ⟦ C₁ ⟧ X) → Eq Y._≈_ (m $ map f xs) (map f $ m xs) -- Natural transformations. NT : ∀ {c} (C₁ C₂ : Container c) → Set (suc c) NT C₁ C₂ = ∃ λ (m : ∀ {X} → ⟦ C₁ ⟧ X → ⟦ C₂ ⟧ X) → Natural m -- Container morphisms are natural. natural : ∀ {c} {C₁ C₂ : Container c} (m : C₁ ⇒ C₂) → Natural ⟪ m ⟫ natural {C₂ = C₂} m Y f xs = Setoid.refl (setoid C₂ Y) -- In fact, all natural functions of the right type are container -- morphisms. complete : ∀ {c} {C₁ C₂ : Container c} → (nt : NT C₁ C₂) → ∃ λ m → (X : Setoid c c) → let module X = Setoid X in (xs : ⟦ C₁ ⟧ X.Carrier) → Eq X._≈_ (proj₁ nt xs) (⟪ m ⟫ xs) complete (nt , nat) = (m , λ X xs → nat X (proj₂ xs) (proj₁ xs , ⟨id⟩)) where m = record { shape = λ s → proj₁ (nt (s , ⟨id⟩)) ; position = λ {s} → proj₂ (nt (s , ⟨id⟩)) } -- Identity. id : ∀ {c} (C : Container c) → C ⇒ C id _ = record {shape = ⟨id⟩; position = ⟨id⟩} -- Composition. infixr 9 _∘_ _∘_ : ∀ {c} {C₁ C₂ C₃ : Container c} → C₂ ⇒ C₃ → C₁ ⇒ C₂ → C₁ ⇒ C₃ f ∘ g = record { shape = shape f ⟨∘⟩ shape g ; position = position g ⟨∘⟩ position f } -- Identity and composition commute with ⟪_⟫. id-correct : ∀ {c} {C : Container c} {X : Set c} → ⟪ id C ⟫ {X} ≗ ⟨id⟩ id-correct xs = refl ∘-correct : ∀ {c} {C₁ C₂ C₃ : Container c} (f : C₂ ⇒ C₃) (g : C₁ ⇒ C₂) {X : Set c} → ⟪ f ∘ g ⟫ {X} ≗ (⟪ f ⟫ ⟨∘⟩ ⟪ g ⟫) ∘-correct f g xs = refl ------------------------------------------------------------------------ -- Linear container morphisms record _⊸_ {c} (C₁ C₂ : Container c) : Set c where field shape⊸ : Shape C₁ → Shape C₂ position⊸ : ∀ {s} → Position C₂ (shape⊸ s) ↔ Position C₁ s morphism : C₁ ⇒ C₂ morphism = record { shape = shape⊸ ; position = _⟨$⟩_ (Inverse.to position⊸) } ⟪_⟫⊸ : ∀ {X} → ⟦ C₁ ⟧ X → ⟦ C₂ ⟧ X ⟪_⟫⊸ = ⟪ morphism ⟫ open _⊸_ public using (shape⊸; position⊸; ⟪_⟫⊸) ------------------------------------------------------------------------ -- All and any -- All. □ : ∀ {c} {C : Container c} {X : Set c} → (X → Set c) → (⟦ C ⟧ X → Set c) □ P (s , f) = ∀ p → P (f p) □-map : ∀ {c} {C : Container c} {X : Set c} {P Q : X → Set c} → P ⊆ Q → □ {C = C} P ⊆ □ Q □-map P⊆Q = _⟨∘⟩_ P⊆Q -- Any. ◇ : ∀ {c} {C : Container c} {X : Set c} → (X → Set c) → (⟦ C ⟧ X → Set c) ◇ P (s , f) = ∃ λ p → P (f p) ◇-map : ∀ {c} {C : Container c} {X : Set c} {P Q : X → Set c} → P ⊆ Q → ◇ {C = C} P ⊆ ◇ Q ◇-map P⊆Q = Prod.map ⟨id⟩ P⊆Q -- Membership. infix 4 _∈_ _∈_ : ∀ {c} {C : Container c} {X : Set c} → X → ⟦ C ⟧ X → Set c x ∈ xs = ◇ (_≡_ x) xs -- Bag and set equality and related preorders. Two containers xs and -- ys are equal when viewed as sets if, whenever x ∈ xs, we also have -- x ∈ ys, and vice versa. They are equal when viewed as bags if, -- additionally, the sets x ∈ xs and x ∈ ys have the same size. open Related public using (Kind; Symmetric-kind) renaming ( implication to subset ; reverse-implication to superset ; equivalence to set ; injection to subbag ; reverse-injection to superbag ; bijection to bag ) [_]-Order : ∀ {ℓ} → Kind → Container ℓ → Set ℓ → Preorder ℓ ℓ ℓ [ k ]-Order C X = Related.InducedPreorder₂ k (_∈_ {C = C} {X = X}) [_]-Equality : ∀ {ℓ} → Symmetric-kind → Container ℓ → Set ℓ → Setoid ℓ ℓ [ k ]-Equality C X = Related.InducedEquivalence₂ k (_∈_ {C = C} {X = X}) infix 4 _∼[_]_ _∼[_]_ : ∀ {c} {C : Container c} {X : Set c} → ⟦ C ⟧ X → Kind → ⟦ C ⟧ X → Set c _∼[_]_ {C = C} {X} xs k ys = Preorder._∼_ ([ k ]-Order C X) xs ys
29.133333
72
0.483092
2ec5319c219b37239858cb674a90d7ba70c190fc
4,262
agda
Agda
UniDB/Examples/Lc.agda
skeuchel/unidb-agda
7ae52205db44ad4f463882ba7e5082120fb76349
[ "MIT" ]
null
null
null
UniDB/Examples/Lc.agda
skeuchel/unidb-agda
7ae52205db44ad4f463882ba7e5082120fb76349
[ "MIT" ]
null
null
null
UniDB/Examples/Lc.agda
skeuchel/unidb-agda
7ae52205db44ad4f463882ba7e5082120fb76349
[ "MIT" ]
null
null
null
module UniDB.Examples.Lc where open import UniDB data Tm (γ : Dom) : Set where var : (i : Ix γ) → Tm γ abs : (t : Tm (suc γ)) → Tm γ app : (t₁ t₂ : Tm γ) → Tm γ instance iVrTm : Vr Tm vr {{iVrTm}} = var vr-inj {{iVrTm}} refl = refl iApTm : Ap Tm Tm ap {{iApTm}} ξ (var i) = lk ξ i ap {{iApTm}} ξ (abs t) = abs (ap {Tm} (ξ ↑₁) t ) ap {{iApTm}} ξ (app t t₁) = app (ap {Tm} ξ t) (ap {Tm} ξ t₁) iApVrTm : ApVr Tm ap-vr {{iApVrTm}} ξ i = refl iApIdmTm : ApIdm Tm Tm ap-idm {{iApIdmTm}} {Ξ} (var i) = lk-idm {Tm} {Ξ} i ap-idm {{iApIdmTm}} {Ξ} (abs t) = cong abs (begin ap {Tm} (idm {Ξ} _ ↑₁) t ≡⟨ cong₂ (ap {Tm}) (idm-↑₁ {Ξ}) (refl {x = t}) ⟩ ap {Tm} (idm {Ξ} _) t ≡⟨ ap-idm {Tm} t ⟩ t ∎) ap-idm {{iApIdmTm}} {Ξ} (app t t₁) = cong₂ app (ap-idm {Tm} t) (ap-idm {Tm} t₁) iApPairTm : ApPair Tm Tm ap-pair {{iApPairTm}} ξ ζ (var i) = refl ap-pair {{iApPairTm}} ξ ζ (abs x) = cong abs (ap-pair {Tm} (ξ ↑₁) (ζ ↑₁) x) ap-pair {{iApPairTm}} ξ ζ (app x₁ x₂) = cong₂ app (ap-pair {Tm} ξ ζ x₁) (ap-pair {Tm} ξ ζ x₂) iApRelTm : ApRel Tm Tm ap-rel≅ {{iApRelTm}} hyp (var i) = lk≃ (≅-to-≃ hyp) i ap-rel≅ {{iApRelTm}} hyp (abs t) = cong abs (ap-rel≅ {Tm} {Tm} (≅-↑₁ hyp) t) ap-rel≅ {{iApRelTm}} hyp (app t₁ t₂) = cong₂ app (ap-rel≅ {Tm} {Tm} hyp t₁) (ap-rel≅ {Tm} {Tm} hyp t₂) postulate Ρ : MOR instance iIdmΡ : Idm Ρ iWkmΡ : Wkm Ρ iUpΡ : Up Ρ iUpIdmΡ : UpIdm Ρ iCompΡ : Comp Ρ iWkmHomΡ : WkmHom Ρ iLkΡ : {T : STX} {{vrT : Vr T}} → Lk T Ρ iLkIdmΡ : {T : STX} {{vrT : Vr T}} → LkIdm T Ρ iLkWkmΡ : {T : STX} {{vrT : Vr T}} → LkWkm T Ρ iLkCompAp : {T : STX} {{vrT : Vr T}} {{apTT : Ap T T}} {{apVrT : ApVr T}} → LkCompAp T Ρ iLkUpΡ : {T : STX} {{vrT : Vr T}} {{wkT : Wk T}} → LkUp T Ρ iLkRenΡ : {T : STX} {{vrT : Vr T}} → LkRen T Ρ instance iWkTm : Wk Tm wk₁ {{iWkTm}} = ap {Tm} (wkm {Ρ} 1) wk {{iWkTm}} δ t = ap {Tm} (wkm {Ρ} δ) t wk-zero {{iWkTm}} t = begin ap {Tm} (wkm {Ρ} 0) t ≡⟨ ap-rel≅ {Tm} (Ix≅-to-≅ {Tm} (≃-to-≅` (≃-↑ {Ix} (record { lk≃ = λ i → begin lk (wkm {Ρ} 0) i ≡⟨ lk-wkm {Ix} {Ρ} 0 i ⟩ i ≡⟨ sym (lk-idm {Ix} {Ρ} i) ⟩ lk (idm {Ρ} _) i ∎ })))) t ⟩ ap {Tm} (idm {Ρ} _) t ≡⟨ ap-idm {Tm} {Tm} {Ρ} t ⟩ t ∎ wk-suc {{iWkTm}} δ t = begin ap {Tm} (wkm {Ρ} (suc δ)) t ≡⟨ cong (λ ζ → ap {Tm} {Tm} {Ρ} ζ t) (wkm-suc {Ρ} δ) ⟩ ap {Tm} (wkm {Ρ} δ ⊙ wkm {Ρ} 1) t ≡⟨ ap-rel≅ {Tm} (Ix≅-to-≅ {Tm} {Ρ} {Pair Ρ Ρ} (≃-to-≅` (≃-↑ {Ix} {Ρ} {Pair Ρ Ρ} {ξ = wkm {Ρ} δ ⊙ wkm {Ρ} 1} {wkm {Ρ} δ ⊗ wkm {Ρ} 1} (record { lk≃ = lk-⊙-ap {Ix} {Ρ} (wkm {Ρ} δ) (wkm {Ρ} 1) })))) t ⟩ ap {Tm} (wkm {Ρ} δ ⊗ wkm {Ρ} 1) t ≡⟨ ap-pair {Tm} (wkm {Ρ} δ) (wkm {Ρ} 1) t ⟩ ap {Tm} (wkm {Ρ} 1) (ap {Tm} (wkm {Ρ} δ) t) ∎ instance iWkVrTm : WkVr Tm wk₁-vr {{iWkVrTm}} i = lk-wkm {Tm} {Ρ} 1 i wk-vr {{iWkVrTm}} δ i = lk-wkm {Tm} {Ρ} δ i iApWkmWkTm : ApWkmWk Tm Tm ap-wkm-wk₁ {{iApWkmWkTm}} {Ξ} = ap-wkm-rel Tm Tm Ξ Ρ 1 ap-wkm-wk {{iApWkmWkTm}} {Ξ} = ap-wkm-rel Tm Tm Ξ Ρ -- iApCompTm : ApComp Tm Tm -- ap-⊙ {{iApCompTm}} {Ξ} ξ₁ ξ₂ (var i) = lk-⊙-ap {Tm} {Ξ} ξ₁ ξ₂ i -- ap-⊙ {{iApCompTm}} {Ξ} ξ₁ ξ₂ (abs t) rewrite ⊙-↑₁ {Ξ} ξ₁ ξ₂ = -- cong abs (ap-⊙ {Tm} (ξ₁ ↑₁) (ξ₂ ↑₁) t) -- ap-⊙ {{iApCompTm}} {Ξ} ξ₁ ξ₂ (app t₁ t₂) = -- cong₂ app (ap-⊙ {Tm} {Tm} {Ξ} ξ₁ ξ₂ t₁) (ap-⊙ {Tm} {Tm} {Ξ} ξ₁ ξ₂ t₂) iApCompTm : ApComp Tm Tm iApCompTm = iApComp Tm Tm iApWkTm : ApWk Tm Tm iApWkTm = iApWk Tm Tm {-} -------------------------------------------------------------------------------- subTm : {X : STX} {{apTmX : Ap Tm X}} {γ : Dom} (s : Tm γ) (x : X (suc γ)) → X γ subTm {X} s x = ap Tm X (Sub Tm) (beta Tm (Sub Tm) s) x data Eval {γ : Dom} : Tm γ → Tm γ → Set where e-app₁ : {t₁ t₁' t₂ : Tm γ} → Eval t₁ t₁' → Eval (app t₁ t₂) (app t₁' t₂) e-app₂ : {t₁ t₂ t₂' : Tm γ} → Eval t₂ t₂' → Eval (app t₁ t₂) (app t₁ t₂') e-abs : {t t' : Tm (suc γ)} → Eval t t' → Eval (abs t) (abs t') e-beta : {s : Tm γ} {t : Tm (suc γ)} → Eval (app (abs t) s) (subTm s t) -------------------------------------------------------------------------------- -}
36.118644
104
0.456828
2e2d428338d6b115e2fb3c98ec4c61e5703647ee
3,327
agda
Agda
out/Combinatory/Syntax.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
39
2021-11-09T20:39:55.000Z
2022-03-19T17:33:12.000Z
out/Combinatory/Syntax.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
1
2021-11-21T12:19:32.000Z
2021-11-21T12:19:32.000Z
out/Combinatory/Syntax.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
4
2021-11-09T20:39:59.000Z
2022-01-24T12:49:17.000Z
{- This second-order term syntax was created from the following second-order syntax description: syntax Combinatory | CL type * : 0-ary term app : * * -> * | _$_ l20 i : * k : * s : * theory (IA) x |> app (i, x) = x (KA) x y |> app (app(k, x), y) = x (SA) x y z |> app (app (app (s, x), y), z) = app (app(x, z), app(y, z)) -} module Combinatory.Syntax where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Construction.Structure open import SOAS.ContextMaps.Inductive open import SOAS.Metatheory.Syntax open import Combinatory.Signature private variable Γ Δ Π : Ctx α : *T 𝔛 : Familyₛ -- Inductive term declaration module CL:Terms (𝔛 : Familyₛ) where data CL : Familyₛ where var : ℐ ⇾̣ CL mvar : 𝔛 α Π → Sub CL Π Γ → CL α Γ _$_ : CL * Γ → CL * Γ → CL * Γ I : CL * Γ K : CL * Γ S : CL * Γ infixl 20 _$_ open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛 CLᵃ : MetaAlg CL CLᵃ = record { 𝑎𝑙𝑔 = λ where (appₒ ⋮ a , b) → _$_ a b (iₒ ⋮ _) → I (kₒ ⋮ _) → K (sₒ ⋮ _) → S ; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) } module CLᵃ = MetaAlg CLᵃ module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where open MetaAlg 𝒜ᵃ 𝕤𝕖𝕞 : CL ⇾̣ 𝒜 𝕊 : Sub CL Π Γ → Π ~[ 𝒜 ]↝ Γ 𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t 𝕊 (t ◂ σ) (old v) = 𝕊 σ v 𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε) 𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v 𝕤𝕖𝕞 (_$_ a b) = 𝑎𝑙𝑔 (appₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b) 𝕤𝕖𝕞 I = 𝑎𝑙𝑔 (iₒ ⋮ tt) 𝕤𝕖𝕞 K = 𝑎𝑙𝑔 (kₒ ⋮ tt) 𝕤𝕖𝕞 S = 𝑎𝑙𝑔 (sₒ ⋮ tt) 𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ CLᵃ 𝒜ᵃ 𝕤𝕖𝕞 𝕤𝕖𝕞ᵃ⇒ = record { ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t } ; ⟨𝑣𝑎𝑟⟩ = refl ; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } } where open ≡-Reasoning ⟨𝑎𝑙𝑔⟩ : (t : ⅀ CL α Γ) → 𝕤𝕖𝕞 (CLᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t) ⟨𝑎𝑙𝑔⟩ (appₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (iₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (kₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (sₒ ⋮ _) = refl 𝕊-tab : (mε : Π ~[ CL ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v) 𝕊-tab mε new = refl 𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v module _ (g : CL ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ CLᵃ 𝒜ᵃ g) where open MetaAlg⇒ gᵃ⇒ 𝕤𝕖𝕞! : (t : CL α Γ) → 𝕤𝕖𝕞 t ≡ g t 𝕊-ix : (mε : Sub CL Π Γ)(v : ℐ α Π) → 𝕊 mε v ≡ g (index mε v) 𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x 𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v 𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε)) = trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε)) 𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩ 𝕤𝕖𝕞! (_$_ a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! I = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! K = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! S = sym ⟨𝑎𝑙𝑔⟩ -- Syntax instance for the signature CL:Syn : Syntax CL:Syn = record { ⅀F = ⅀F ; ⅀:CS = ⅀:CompatStr ; mvarᵢ = CL:Terms.mvar ; 𝕋:Init = λ 𝔛 → let open CL:Terms 𝔛 in record { ⊥ = CL ⋉ CLᵃ ; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ } ; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } } -- Instantiation of the syntax and metatheory open Syntax CL:Syn public open CL:Terms public open import SOAS.Families.Build public open import SOAS.Syntax.Shorthands CLᵃ public open import SOAS.Metatheory CL:Syn public
24.463235
93
0.514878
4b7dc773e29b02dcc1d1738a7d123474c51097e7
2,151
agda
Agda
RMonads/Modules.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
21
2015-07-30T01:25:12.000Z
2021-02-13T18:02:18.000Z
RMonads/Modules.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
3
2019-01-13T13:12:33.000Z
2019-05-29T09:50:26.000Z
RMonads/Modules.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
1
2019-11-04T21:33:13.000Z
2019-11-04T21:33:13.000Z
module RMonads.Modules where open import Library open import Categories open import Functors open import RMonads record Mod {a}{b}{c}{d}{C : Cat {a}{b}}{D : Cat {c}{d}}{J : Fun C D} (RM : RMonad J) : Set (a ⊔ c ⊔ d) where constructor mod open Cat open Fun open RMonad RM field M : Obj C → Obj D mbind : ∀ {X Y} → Hom D (OMap J X) (T Y) → Hom D (M X) (M Y) laweta : ∀{X} → mbind (η {X}) ≅ iden D {M X} lawbind : ∀{X Y Z} {f : Hom D (OMap J X) (T Y)}{g : Hom D (OMap J Y) (T Z)} → mbind (comp D (bind g) f) ≅ comp D (mbind g) (mbind f) -- any rel. monad is trivially a module over its J. ModJ : forall {a}{b}{c}{d}{C : Cat {a}{b}}{D : Cat {c}{d}} {J : Fun C D} (RM : RMonad J) -> Mod (trivRM J) ModJ {D = D}{J = J} RM = mod T (\ f -> bind (comp η f)) (trans (cong bind idr) law1) (trans (cong bind (trans (trans (sym ass) (cong (\ g -> comp g _) (sym law2))) ass)) law3) where open Fun J; open RMonad RM; open Cat D open import Functors.FullyFaithful open import Isomorphism -- if J is fully faithful then any suitably typed functor is a module for trivial rel monad given by J ModF : forall {a}{b}{c}{d}{C : Cat {a}{b}}{D : Cat {c}{d}} {J : Fun C D} → Full J → Faithful J → (F : Fun C D) -> Mod (trivRM J) ModF {C = C}{D = D}{J = J} P Q F = mod (OMap F) (λ f → HMap F (fst (P f))) (trans (cong (HMap F) (Q (trans (snd (P (Cat.iden D))) (sym $ fid J)))) (fid F)) (trans (cong (HMap F) (Q (trans (snd (P _)) (trans (cong₂ (Cat.comp D) (sym $ snd (P _)) (sym $ snd (P _))) (sym $ fcomp J))))) (fcomp F)) where open Fun -- any rel. monad is trivially a module over itself, 'tautalogical module' ModRM : forall {a}{b}{c}{d}{C : Cat {a}{b}}{D : Cat {c}{d}} {J : Fun C D} (RM : RMonad J) -> Mod RM ModRM RM = mod T bind law1 law3 where open RMonad RM
36.457627
102
0.483031