hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
38820211215289f92bffeb663c691f961d4b1369
346
agda
Agda
Cubical/Data/List/FinData.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Data/List/FinData.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Data/List/FinData.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Data.List.FinData where open import Cubical.Foundations.Prelude open import Cubical.Data.List open import Cubical.Data.FinData variable ℓ : Level A : Type ℓ -- copy-paste from agda-stdlib lookup : ∀ (xs : List A) → Fin (length xs) → A lookup (x ∷ xs) zero = x lookup (x ∷ xs) (suc i) = lookup xs i
21.625
46
0.682081
8b6a80e358e539d8c29a3a17d275872bec7707db
8,244
agda
Agda
lib/Explore/Universe/FromE.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
2
2016-06-05T09:25:32.000Z
2017-06-28T19:19:29.000Z
lib/Explore/Universe/FromE.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
1
2019-03-16T14:24:04.000Z
2019-03-16T14:24:04.000Z
lib/Explore/Universe/FromE.agda
crypto-agda/explore
16bc8333503ff9c00d47d56f4ec6113b9269a43e
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K #-} open import Type using (Type₀; Type_) open import Type.Identities open import Function.NP using (Π; _∘_; const) open import Function.Extensionality using (FunExt) open import Data.One using (0₁) open import Data.Two.Base using (0₂; 1₂) open import Data.Product.NP using (_,_; fst) open import Data.Sum.NP using (inl; inr) open import Relation.Binary.PropositionalEquality.NP using (_≡_; idp; ap; !_; _∙_; tr) open import HoTT using (ua; UA; module Equivalences) open Equivalences using (_≃_) open import Explore.Core open import Explore.Zero open import Explore.One open import Explore.Two open import Explore.Product open Explore.Product.Operators open import Explore.Sum open import Explore.Properties open import Explore.Explorable open import Explore.Isomorphism import Explore.Universe.Type module Explore.Universe.FromE (X : Type₀) (Xᵉ : ∀ {ℓ} → Explore ℓ X) where open Explore.Universe.Type {X} explore : ∀ {ℓ} u → Explore ℓ (El u) explore 𝟘ᵁ = 𝟘ᵉ explore 𝟙ᵁ = 𝟙ᵉ explore 𝟚ᵁ = 𝟚ᵉ explore (u₀ ×ᵁ u₁) = explore u₀ ×ᵉ explore u₁ explore (u₀ ⊎ᵁ u₁) = explore u₀ ⊎ᵉ explore u₁ explore (Σᵁ u f) = exploreΣ (explore u) λ {x} → explore (f x) explore Xᵁ = Xᵉ explore (≃ᵁ u A e) = explore-iso e (explore u) module FromXⁱ (Xⁱ : ∀ {ℓ p} → ExploreInd p (Xᵉ {ℓ})) where explore-ind : ∀ {ℓ p} u → ExploreInd {ℓ} p (explore u) explore-ind 𝟘ᵁ = 𝟘ⁱ explore-ind 𝟙ᵁ = 𝟙ⁱ explore-ind 𝟚ᵁ = 𝟚ⁱ explore-ind (u₀ ×ᵁ u₁) = explore-ind u₀ ×ⁱ explore-ind u₁ explore-ind (u₀ ⊎ᵁ u₁) = explore-ind u₀ ⊎ⁱ explore-ind u₁ explore-ind (Σᵁ u f) = exploreΣ-ind (explore-ind u) λ {x} → explore-ind (f x) explore-ind Xᵁ = Xⁱ explore-ind (≃ᵁ u A e) = explore-iso-ind e (explore-ind u) module _ (u : U) where private uᵉ : ∀ {ℓ} → Explore ℓ (El u) uᵉ = explore u uⁱ : ∀ {ℓ p} → ExploreInd {ℓ} p uᵉ uⁱ = explore-ind u open FromExploreInd uⁱ public hiding (⟦explore⟧) ΣᵉU : ∀ {ℓ} → (El u → Type ℓ) → Type ℓ ΣᵉU = Σᵉ uᵉ ΠᵉU : ∀ {ℓ} → (El u → Type ℓ) → Type ℓ ΠᵉU = Πᵉ uᵉ module Xᴱ = FromExploreInd Xⁱ ΣᵉX : ∀ {ℓ} → (X → Type ℓ) → Type ℓ ΣᵉX = Σᵉ Xᵉ ΠᵉX : ∀ {ℓ} → (X → Type ℓ) → Type ℓ ΠᵉX = Πᵉ Xᵉ open Adequacy _≡_ module FromXˢ-ok (Xˢ-ok : Adequate-sum Xᴱ.sum){{_ : UA}}{{_ : FunExt}} where adequate-sum : ∀ u → Adequate-sum (sum u) adequate-sum 𝟘ᵁ = 𝟘ˢ-ok adequate-sum 𝟙ᵁ = 𝟙ˢ-ok adequate-sum 𝟚ᵁ = 𝟚ˢ-ok adequate-sum (u₀ ×ᵁ u₁) = adequate-sumΣ (adequate-sum u₀) (adequate-sum u₁) adequate-sum (u₀ ⊎ᵁ u₁) = adequate-sum⊎ (adequate-sum u₀) (adequate-sum u₁) adequate-sum (Σᵁ u f) = adequate-sumΣ (adequate-sum u) (λ {x} → adequate-sum (f x)) adequate-sum Xᵁ = Xˢ-ok adequate-sum (≃ᵁ u A e) = sum-iso-ok e (adequate-sum u) module FromXˡ (Xˡ : ∀ {ℓ} → Lookup {ℓ} Xᵉ) where lookup : ∀ {ℓ} u → Lookup {ℓ} (explore u) lookup 𝟘ᵁ = 𝟘ˡ lookup 𝟙ᵁ = 𝟙ˡ lookup 𝟚ᵁ = 𝟚ˡ lookup (u₀ ×ᵁ u₁) = lookup× {eᴬ = explore u₀} {eᴮ = explore u₁} (lookup u₀) (lookup u₁) lookup (u₀ ⊎ᵁ u₁) = lookup⊎ {eᴬ = explore u₀} {eᴮ = explore u₁} (lookup u₀) (lookup u₁) lookup (Σᵁ u f) = lookupΣ {eᴬ = explore u} {eᴮ = λ {x} → explore (f x)} (lookup u) (λ {x} → lookup (f x)) lookup Xᵁ = Xˡ lookup (≃ᵁ u A e) = lookup-iso e {Aᵉ = explore u} (lookup u) module FromXᶠ (Xᶠ : ∀ {ℓ} → Focus {ℓ} Xᵉ) where focus : ∀ {ℓ} u → Focus {ℓ} (explore u) focus 𝟘ᵁ = 𝟘ᶠ focus 𝟙ᵁ = 𝟙ᶠ focus 𝟚ᵁ = 𝟚ᶠ focus (u₀ ×ᵁ u₁) = focus× {eᴬ = explore u₀} {eᴮ = explore u₁} (focus u₀) (focus u₁) focus (u₀ ⊎ᵁ u₁) = focus⊎ {eᴬ = explore u₀} {eᴮ = explore u₁} (focus u₀) (focus u₁) focus (Σᵁ u f) = focusΣ {eᴬ = explore u} {eᴮ = λ {x} → explore (f x)} (focus u) (λ {x} → focus (f x)) focus Xᵁ = Xᶠ focus (≃ᵁ u A e) = focus-iso e {Aᵉ = explore u} (focus u) module FromΣᵉX-ok (ΣᵉX-ok : ∀ {ℓ} → Adequate-Σ {ℓ} ΣᵉX){{_ : UA}}{{_ : FunExt}} where Σᵉ-ok : ∀ {ℓ} u → Adequate-Σ {ℓ} (ΣᵉU u) Σᵉ-ok 𝟘ᵁ = Σᵉ𝟘-ok Σᵉ-ok 𝟙ᵁ = Σᵉ𝟙-ok Σᵉ-ok 𝟚ᵁ = Σᵉ𝟚-ok Σᵉ-ok (u₀ ×ᵁ u) = Σᵉ×-ok {eᴬ = explore u₀} {eᴮ = explore u} (Σᵉ-ok u₀) (Σᵉ-ok u) Σᵉ-ok (u₀ ⊎ᵁ u) = Σᵉ⊎-ok {eᴬ = explore u₀} {eᴮ = explore u} (Σᵉ-ok u₀) (Σᵉ-ok u) Σᵉ-ok (Σᵁ u f) = ΣᵉΣ-ok {eᴬ = explore u} {eᴮ = λ {x} → explore (f x)} (Σᵉ-ok u) (λ {x} → Σᵉ-ok (f x)) Σᵉ-ok Xᵁ = ΣᵉX-ok Σᵉ-ok (≃ᵁ u A e) = Σ-iso-ok e {Aᵉ = explore u} (Σᵉ-ok u) module FromΠᵉX-ok (ΠᵉX-ok : ∀ {ℓ} → Adequate-Π {ℓ} ΠᵉX){{_ : UA}}{{_ : FunExt}} where Πᵉ-ok : ∀ {ℓ} u → Adequate-Π {ℓ} (ΠᵉU u) Πᵉ-ok 𝟘ᵁ = Πᵉ𝟘-ok Πᵉ-ok 𝟙ᵁ = Πᵉ𝟙-ok Πᵉ-ok 𝟚ᵁ = Πᵉ𝟚-ok Πᵉ-ok (u₀ ×ᵁ u) = Πᵉ×-ok {eᴬ = explore u₀} {eᴮ = explore u} (Πᵉ-ok u₀) (Πᵉ-ok u) Πᵉ-ok (u₀ ⊎ᵁ u) = Πᵉ⊎-ok {eᴬ = explore u₀} {eᴮ = explore u} (Πᵉ-ok u₀) (Πᵉ-ok u) Πᵉ-ok (Σᵁ u f) = ΠᵉΣ-ok {eᴬ = explore u} {eᴮ = λ {x} → explore (f x)} (Πᵉ-ok u) (λ {x} → Πᵉ-ok (f x)) Πᵉ-ok Xᵁ = ΠᵉX-ok Πᵉ-ok (≃ᵁ u A e) = Π-iso-ok e {Aᵉ = explore u} (Πᵉ-ok u) module From⟦Xᵉ⟧≡ (⟦Xᵉ⟧≡ : ∀ {ℓ₀ ℓ₁} ℓᵣ → ⟦Explore⟧ {ℓ₀} {ℓ₁} ℓᵣ _≡_ Xᵉ Xᵉ) {ℓ₀ ℓ₁} ℓᵣ where ⟦explore⟧≡ : ∀ u → ⟦Explore⟧ {ℓ₀} {ℓ₁} ℓᵣ _≡_ (explore u) (explore u) ⟦explore⟧≡ 𝟘ᵁ = ⟦𝟘ᵉ⟧ {ℓᵣ = ℓᵣ} ⟦explore⟧≡ 𝟙ᵁ = ⟦𝟙ᵉ⟧ {ℓᵣ = ℓᵣ} {_≡_} {idp} ⟦explore⟧≡ 𝟚ᵁ = ⟦𝟚ᵉ⟧ {ℓᵣ = ℓᵣ} {_≡_} {idp} {idp} ⟦explore⟧≡ (u₀ ×ᵁ u₁) = ⟦explore×⟧≡ {ℓᵣ = ℓᵣ} (⟦explore⟧≡ u₀) (⟦explore⟧≡ u₁) ⟦explore⟧≡ (u₀ ⊎ᵁ u₁) = ⟦explore⊎⟧≡ {ℓᵣ = ℓᵣ} (⟦explore⟧≡ u₀) (⟦explore⟧≡ u₁) ⟦explore⟧≡ (Σᵁ u F) = ⟦exploreΣ⟧≡ {ℓᵣ = ℓᵣ} (⟦explore⟧≡ u) (λ x → ⟦explore⟧≡ (F x)) ⟦explore⟧≡ Xᵁ = ⟦Xᵉ⟧≡ ℓᵣ ⟦explore⟧≡ (≃ᵁ u A e) = ⟦explore-iso⟧ e {ℓᵣ = ℓᵣ} (ap (fst e)) (⟦explore⟧≡ u) module FromΠX (ΠX : (X → U) → U) where Πᵁ : (u : U) (v : El u → U) → U Πᵁ 𝟘ᵁ v = 𝟙ᵁ Πᵁ 𝟙ᵁ v = v _ Πᵁ 𝟚ᵁ v = v 0₂ ×ᵁ v 1₂ Πᵁ (u ×ᵁ u₁) v = Πᵁ u λ x → Πᵁ u₁ λ y → v (x , y) Πᵁ (u ⊎ᵁ u₁) v = (Πᵁ u (v ∘ inl)) ×ᵁ (Πᵁ u₁ (v ∘ inr)) Πᵁ (Σᵁ u f) v = Πᵁ u λ x → Πᵁ (f x) (v ∘ _,_ x) Πᵁ Xᵁ v = ΠX v Πᵁ (≃ᵁ u A e)v = Πᵁ u (v ∘ fst e) _→ᵁ_ : (u : U) (v : U) → U u →ᵁ v = Πᵁ u (const v) module FromΠX≃ (ΠX≃ : ∀ v → El (ΠX v) ≃ Π X (El ∘ v)) where private module ΠX≃ {v} = Equivalences.Equiv (ΠX≃ v) module _ {{_ : FunExt}}{{_ : UA}} where Πᵁ-Π : ∀ u v → El (Πᵁ u v) ≡ Π (El u) (El ∘ v) Πᵁ-Π 𝟘ᵁ v = ! Π𝟘-uniq₀ _ Πᵁ-Π 𝟙ᵁ v = ! Π𝟙-uniq _ Πᵁ-Π 𝟚ᵁ v = ! Π𝟚-× Πᵁ-Π (u ×ᵁ u₁) v = Πᵁ-Π u (λ x → Πᵁ u₁ (v ∘ _,_ x)) ∙ Π=′ _ (λ _ → Πᵁ-Π u₁ _) ∙ ! ΠΣ-curry Πᵁ-Π (u ⊎ᵁ u₁) v = ×= (Πᵁ-Π u (v ∘ inl)) (Πᵁ-Π u₁ (v ∘ inr)) ∙ ! dist-×-Π Πᵁ-Π (Σᵁ u f) v = Πᵁ-Π u (λ x → Πᵁ (f _) (v ∘ _,_ x)) ∙ Π=′ _ (λ _ → Πᵁ-Π (f _) _) ∙ ! ΠΣ-curry Πᵁ-Π Xᵁ v = ua (ΠX≃ v) Πᵁ-Π (≃ᵁ u A e)v = Πᵁ-Π u (v ∘ fst e) ∙ Π≃ e λ _ → idp →ᵁ-→ : ∀ u v → El (u →ᵁ v) ≡ (El u → El v) →ᵁ-→ u v = Πᵁ-Π u (const v) Πᵁ→Π : ∀ u v → El (Πᵁ u v) → Π (El u) (El ∘ v) Πᵁ→Π 𝟘ᵁ v x₂ () Πᵁ→Π 𝟙ᵁ v x₂ x₃ = x₂ Πᵁ→Π 𝟚ᵁ v (x , y) 0₂ = x Πᵁ→Π 𝟚ᵁ v (x , y) 1₂ = y Πᵁ→Π (u ×ᵁ u₁) v x (z , t) = Πᵁ→Π u₁ (v ∘ _,_ z) (Πᵁ→Π u (λ x → Πᵁ u₁ (v ∘ _,_ x)) x z) t Πᵁ→Π (u ⊎ᵁ _) v (x , _) (inl y) = Πᵁ→Π u (v ∘ inl) x y Πᵁ→Π (_ ⊎ᵁ u) v (_ , x) (inr y) = Πᵁ→Π u (v ∘ inr) x y Πᵁ→Π (Σᵁ u f) v x (y , z) = Πᵁ→Π (f _) (v ∘ _,_ y) (Πᵁ→Π u (λ x → Πᵁ (f _) (v ∘ _,_ x)) x y) z Πᵁ→Π Xᵁ v = ΠX≃.·→ Πᵁ→Π (≃ᵁ u A e) v f x = tr (El ∘ v) (·←-inv-r x) (Πᵁ→Π u (v ∘ ·→) f (·← x)) where open Equivalences.Equiv e Π→Πᵁ : ∀ u v → Π (El u) (El ∘ v) → El (Πᵁ u v) Π→Πᵁ 𝟘ᵁ v f = 0₁ Π→Πᵁ 𝟙ᵁ v f = f 0₁ Π→Πᵁ 𝟚ᵁ v f = f 0₂ , f 1₂ Π→Πᵁ (u ×ᵁ u₁) v f = Π→Πᵁ u (λ x → Πᵁ u₁ (v ∘ _,_ x)) (λ x → Π→Πᵁ u₁ (v ∘ _,_ x) (f ∘ _,_ x)) Π→Πᵁ (u ⊎ᵁ u₁) v f = Π→Πᵁ u (v ∘ inl) (f ∘ inl) , Π→Πᵁ u₁ (v ∘ inr) (f ∘ inr) Π→Πᵁ (Σᵁ u F) v f = Π→Πᵁ u (λ x → Πᵁ (F x) (v ∘ _,_ x)) (λ x → Π→Πᵁ (F x) (v ∘ _,_ x) (f ∘ _,_ x)) Π→Πᵁ Xᵁ v = ΠX≃.·← Π→Πᵁ (≃ᵁ u A e) v f = Π→Πᵁ u (v ∘ ·→) (f ∘ ·→) where open Equivalences.Equiv e →ᵁ→→ : ∀ u v → El (u →ᵁ v) → (El u → El v) →ᵁ→→ u v = Πᵁ→Π u (const v) →→→ᵁ : ∀ u v → (El u → El v) → El (u →ᵁ v) →→→ᵁ u v = Π→Πᵁ u (const v)
40.610837
109
0.513222
3df87eec09adbde9903af55126972876b6924daf
890
agda
Agda
src/Web/Semantic/DL/FOL/Model.agda
agda/agda-web-semantic
8ddbe83965a616bff6fc7a237191fa261fa78bab
[ "MIT" ]
9
2015-09-13T17:46:41.000Z
2020-03-14T14:21:08.000Z
src/Web/Semantic/DL/FOL/Model.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
4
2018-11-14T02:32:28.000Z
2021-01-04T20:57:19.000Z
src/Web/Semantic/DL/FOL/Model.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
3
2017-12-03T14:52:09.000Z
2022-03-12T11:40:03.000Z
open import Data.Product using ( _×_ ; _,_ ) open import Data.Sum using ( _⊎_ ) open import Relation.Unary using ( _∈_ ; _∉_ ) open import Web.Semantic.DL.FOL using ( Formula ; true ; false ; _∧_ ; _∈₁_ ; _∈₁_⇒_ ; _∈₂_ ; _∈₂_⇒_ ; _∼_ ; _∼_⇒_ ; ∀₁ ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox.Interp using ( Interp ; Δ ; _⊨_≈_ ; con ; rol ) open import Web.Semantic.Util using ( True ; False ) module Web.Semantic.DL.FOL.Model {Σ : Signature} where _⊨f_ : (I : Interp Σ) → Formula Σ (Δ I) → Set I ⊨f true = True I ⊨f false = False I ⊨f (F ∧ G) = (I ⊨f F) × (I ⊨f G) I ⊨f (x ∈₁ c) = x ∈ (con I c) I ⊨f (x ∈₁ c ⇒ F) = (x ∈ (con I c)) → (I ⊨f F) I ⊨f ((x , y) ∈₂ r) = (x , y) ∈ (rol I r) I ⊨f ((x , y) ∈₂ r ⇒ F) = ((x , y) ∈ (rol I r)) → (I ⊨f F) I ⊨f (x ∼ y) = I ⊨ x ≈ y I ⊨f (x ∼ y ⇒ F) = (I ⊨ x ≈ y) → (I ⊨f F) I ⊨f ∀₁ F = ∀ x → (I ⊨f F x)
40.454545
122
0.533708
237bc90c8807ba958ed8d5a29390b7c2318c4d8b
1,323
agda
Agda
TypeTheory/Common/SumProperties.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
TypeTheory/Common/SumProperties.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
TypeTheory/Common/SumProperties.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
module Common.SumProperties where open import Function as Fun open import Data.Sum as Sum open import Relation.Binary.PropositionalEquality as PE hiding ([_]) open ≡-Reasoning copair-elimˡ : {A B C : Set} {f : A → C} {g : B → C} (x : A) → ([ f , g ]′ ) (inj₁ x) ≡ f x copair-elimˡ x = refl copair-elimʳ : {A B C : Set} {f : A → C} {g : B → C} (x : B) → ([ f , g ]′ ) (inj₂ x) ≡ g x copair-elimʳ x = refl copair-sum-map-merge : {A A' B B' C : Set} {f₁ : A → A'} {f₂ : B → B'} {g₁ : A' → C} {g₂ : B' → C} (x : A ⊎ B) → ([ g₁ , g₂ ]′ ∘ Sum.map f₁ f₂) x ≡ [ g₁ ∘ f₁ , g₂ ∘ f₂ ]′ x copair-sum-map-merge (inj₁ x) = refl copair-sum-map-merge (inj₂ y) = refl copair-cong : {A B C : Set} {f f' : A → C} {g : B → C} (p : (x : A) → f x ≡ f' x) → (x : A ⊎ B) → [ f , g ]′ x ≡ [ f' , g ]′ x copair-cong {A} {B} {C} {f} {f'} {g} p (inj₁ x) = begin ([ f , g ]′ (inj₁ x)) ≡⟨ refl ⟩ f x ≡⟨ p x ⟩ f' x ≡⟨ refl ⟩ [ f' , g ]′ (inj₁ x) ∎ copair-cong p (inj₂ y) = refl copair-distr : {A B C D : Set} {f : A → C} {g : B → C} {h : C → D} (x : A ⊎ B) → [ h ∘ f , h ∘ g ]′ x ≡ (h ∘ [ f , g ]′) x copair-distr (inj₁ x) = refl copair-distr (inj₂ y) = refl
30.068182
80
0.421013
41aa225f0cedd1e559d4ad3b87d31caf8ca5e6e5
1,568
agda
Agda
test/Succeed/TerminationRecordPatternCoerce.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/Succeed/TerminationRecordPatternCoerce.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/TerminationRecordPatternCoerce.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- 2010-10-05 Andreas module TerminationRecordPatternCoerce where data Empty : Set where record Unit : Set where constructor unit data Bool : Set where true false : Bool T : Bool -> Set T true = Unit T false = Empty data _==_ {A : Set}(a : A) : A -> Set where refl : a == a subst : forall {A a b} -> a == b -> {P : A -> Set} -> P a -> P b subst refl x = x -- Thorsten suggests on the Agda list thread "Coinductive families" -- to encode lists as records record List (A : Set) : Set where inductive constructor list field isCons : Bool head : T isCons -> A tail : T isCons -> List A open List public -- However, we have to be careful to preserve termination -- in the presence of a lie postulate lie : {b : Bool} -> T b -- if the record constructor list was counted as structural increase -- this function would not be rejected f : {A : Set} -> (b : Bool) -> (l : List A) -> b == isCons l -> Unit f .false (list false h t) refl = unit f .true (list true h t) refl = f (isCons tl) tl refl where tl : List _ tl = t unit {- dot patterns inside of record patterns not supported! f true (list .true h t) refl = f (isCons tl) tl refl where tl : List _ tl = t unit -} -- however, it is almost like the following f' : {A : Set} -> (b : Bool) -> (l : List A) -> b == isCons l -> Unit f' false l p = unit f' true (list b' h t) p = f' (isCons tl) tl refl where tl : List _ tl = t (subst p {T} unit) -- UPDATE: both of these are fine, since non-eta records patterns are not -- translated to projections.
24.888889
73
0.627551
1ede1968ee02968ea84858b0162f60ef74fe6757
702
agda
Agda
Cubical/Homotopy/Loopspace.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Homotopy/Loopspace.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
Cubical/Homotopy/Loopspace.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Homotopy.Loopspace where open import Cubical.Core.Everything open import Cubical.Data.Nat open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.GroupoidLaws {- loop space of a pointed type -} Ω : {ℓ : Level} → Pointed ℓ → Pointed ℓ Ω (_ , a) = ((a ≡ a) , refl) {- n-fold loop space of a pointed type -} Ω^_ : ∀ {ℓ} → ℕ → Pointed ℓ → Pointed ℓ (Ω^ 0) p = p (Ω^ (suc n)) p = Ω ((Ω^ n) p) {- loop space map -} Ω→ : ∀ {ℓA ℓB} {A : Pointed ℓA} {B : Pointed ℓB} (f : A →∙ B) → (Ω A →∙ Ω B) Ω→ (f , f∙) = (λ p → (sym f∙ ∙ cong f p) ∙ f∙) , cong (λ q → q ∙ f∙) (sym (rUnit (sym f∙))) ∙ lCancel f∙
28.08
104
0.602564
5985960f8bac16cbda93156720667d5ebe80b6b9
763
agda
Agda
test/Succeed/Issue5007.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue5007.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue5007.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
record R₁ : Set₂ where field _≡_ : {A : Set₁} → A → A → Set postulate A B : Set record R₂ (r₁ : R₁) : Set₂ where open R₁ r₁ field cong : (A : Set₁) (x y : A) (F : A → Set) → x ≡ y → F x ≡ F y subst : (P : Set → Set₁) → A ≡ B → P A → P B postulate _≡_ : {A : Set₁} → A → A → Set r₁ : R₁ r₁ .R₁._≡_ = _≡_ postulate r₂ : ∀ r₁ → R₂ r₁ open R₂ (r₂ r₁) record R₃ (@0 A : Set₁) : Set₁ where constructor [_] field f : A postulate r₃ : R₃ Set push-subst-[] : (P : Set → Set₁) (p : P A) (eq : A ≡ B) → subst (λ A → R₃ (P A)) eq [ p ] ≡ [ subst P eq p ] _ : (eq : A ≡ B) → (subst (λ _ → R₃ Set) eq r₃ ≡ r₃) ≡ ([ subst (λ _ → Set) eq (r₃ .R₃.f) ] ≡ r₃) _ = λ eq → cong _ _ _ (_≡ _) (push-subst-[] _ _ _)
18.609756
66
0.466579
8b644cd0c5275b3e95239ab5d6c99f0bde3af3d0
2,550
agda
Agda
Definition/Typed/Consequences/Reduction.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2018-06-21T08:39:01.000Z
2022-01-17T16:13:53.000Z
Definition/Typed/Consequences/Reduction.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
null
null
null
Definition/Typed/Consequences/Reduction.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2022-01-26T14:55:51.000Z
2022-02-15T19:42:19.000Z
{-# OPTIONS --safe #-} module Definition.Typed.Consequences.Reduction where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.EqRelInstance open import Definition.LogicalRelation open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Fundamental.Reducibility import Tools.PropositionalEquality as PE open import Tools.Product -- Helper function where all reducible types can be reduced to WHNF. whNorm′ : ∀ {A rA Γ l} ([A] : Γ ⊩⟨ l ⟩ A ^ rA) → ∃ λ B → Whnf B × Γ ⊢ A :⇒*: B ^ rA whNorm′ (Uᵣ′ _ _ r l _ e d) = Univ r l , Uₙ , PE.subst (λ ll → _ ⊢ _ :⇒*: Univ r l ^ [ ! , ll ]) e d whNorm′ (ℕᵣ D) = ℕ , ℕₙ , D whNorm′ (Emptyᵣ {l = l} D) = Empty l , Emptyₙ , D whNorm′ (ne′ K D neK K≡K) = K , ne neK , D whNorm′ (Πᵣ {l = l} (Πᵣ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) = Π F ^ rF ° lF ▹ G ° lG ° l , Πₙ , D whNorm′ (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) = ∃ F ▹ G , ∃ₙ , D whNorm′ (emb emb< [A]) = whNorm′ [A] whNorm′ (emb ∞< [A]) = whNorm′ [A] -- Well-formed types can all be reduced to WHNF. whNorm : ∀ {A rA Γ} → Γ ⊢ A ^ rA → ∃ λ B → Whnf B × Γ ⊢ A :⇒*: B ^ rA whNorm A = whNorm′ (reducible A) -- whNorm-conv : ∀ {A rA Γ} → Γ ⊢ A ≡ B ^ rA → ∃ λ B → Whnf B × Γ ⊢ A :⇒*: B ^ rA -- whNorm-conv A = whNorm′ (reducible A) -- Helper function where reducible all terms can be reduced to WHNF. whNormTerm′ : ∀ {a A Γ l lA} ([A] : Γ ⊩⟨ l ⟩ A ^ [ ! , lA ]) → Γ ⊩⟨ l ⟩ a ∷ A ^ [ ! , lA ] / [A] → ∃ λ b → Whnf b × Γ ⊢ a :⇒*: b ∷ A ^ lA whNormTerm′ (Uᵣ′ _ _ r l _ e dU) (Uₜ A d typeA A≡A [t]) = A , typeWhnf typeA , conv:⇒*: (PE.subst (λ ll → _ ⊢ _ :⇒*: _ ∷ _ ^ ll) e d) (sym (subset* (red (PE.subst (λ ll → _ ⊢ _ :⇒*: Univ r l ^ [ ! , ll ]) e dU)))) whNormTerm′ (ℕᵣ x) (ℕₜ n d n≡n prop) = let natN = natural prop in n , naturalWhnf natN , convRed:*: d (sym (subset* (red x))) whNormTerm′ (ne (ne K D neK K≡K)) (neₜ k d (neNfₜ neK₁ ⊢k k≡k)) = k , ne neK₁ , convRed:*: d (sym (subset* (red D))) whNormTerm′ (Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πₜ f d funcF f≡f [f] [f]₁) = f , functionWhnf funcF , convRed:*: d (sym (subset* (red D))) whNormTerm′ (emb emb< [A]) [a] = whNormTerm′ [A] [a] whNormTerm′ (emb ∞< [A]) [a] = whNormTerm′ [A] [a] -- Well-formed terms can all be reduced to WHNF. whNormTerm : ∀ {a A Γ lA} → Γ ⊢ a ∷ A ^ [ ! , lA ] → ∃ λ b → Whnf b × Γ ⊢ a :⇒*: b ∷ A ^ lA whNormTerm {a} {A} ⊢a = let [A] , [a] = reducibleTerm ⊢a in whNormTerm′ [A] [a]
42.5
110
0.559608
dffac9f183a2c1ac7b5307e3d4f4c1613c475d72
296
agda
Agda
notes/README/Test.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
10
2015-09-03T20:54:16.000Z
2019-12-03T13:44:25.000Z
notes/README/Test.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
121
2015-01-25T13:22:12.000Z
2018-04-22T06:01:44.000Z
notes/README/Test.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
4
2016-05-10T23:06:19.000Z
2016-08-03T03:54:55.000Z
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Test where data _∨_ (A B : Set) : Set where inj₁ : A → A ∨ B inj₂ : B → A ∨ B postulate A B : Set ∨-comm : A ∨ B → B ∨ A {-# ATP prove ∨-comm #-}
19.733333
42
0.483108
fb9ed4e58b5068b38723aa921a36ba53bb3fa5b6
986
agda
Agda
src/Categories/Category/Instance/Cartesians.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
src/Categories/Category/Instance/Cartesians.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
null
null
null
src/Categories/Category/Instance/Cartesians.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Category.Instance.Cartesians where open import Level open import Categories.Category open import Categories.Category.Helper open import Categories.Category.Cartesian.Structure open import Categories.Functor.Cartesian open import Categories.Functor.Cartesian.Properties open import Categories.NaturalTransformation.NaturalIsomorphism module _ o ℓ e where Cartesians : Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e) Cartesians = categoryHelper record { Obj = CartesianCategory o ℓ e ; _⇒_ = CartesianF ; _≈_ = λ F G → CF.F F ≃ CF.F G ; id = idF-CartesianF _ ; _∘_ = ∘-CartesianF ; assoc = λ {_ _ _ _ F G H} → associator (CF.F F) (CF.F G) (CF.F H) ; identityˡ = unitorˡ ; identityʳ = unitorʳ ; equiv = record { refl = ≃.refl ; sym = ≃.sym ; trans = ≃.trans } ; ∘-resp-≈ = _ⓘₕ_ } where module CF = CartesianF
29
75
0.621704
a0b484e32f40554d0d2c3c746fb349809d1eb5b7
3,414
agda
Agda
src/Categories/Category/Core.agda
bond15/agda-categories
6cbfdf3f1be15ef513435e3b85faae92cb1ac36f
[ "MIT" ]
null
null
null
src/Categories/Category/Core.agda
bond15/agda-categories
6cbfdf3f1be15ef513435e3b85faae92cb1ac36f
[ "MIT" ]
null
null
null
src/Categories/Category/Core.agda
bond15/agda-categories
6cbfdf3f1be15ef513435e3b85faae92cb1ac36f
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Categories.Category.Core where open import Level open import Function.Base using (flip) open import Relation.Binary using (Rel; IsEquivalence; Setoid) import Relation.Binary.Reasoning.Setoid as SetoidR -- Basic definition of a |Category| with a Hom setoid. -- Also comes with some reasoning combinators (see HomReasoning) record Category (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where eta-equality infix 4 _≈_ _⇒_ infixr 9 _∘_ field Obj : Set o _⇒_ : Rel Obj ℓ _≈_ : ∀ {A B} → Rel (A ⇒ B) e id : ∀ {A} → (A ⇒ A) _∘_ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C) field assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D} → (h ∘ g) ∘ f ≈ h ∘ (g ∘ f) -- We add a symmetric proof of associativity so that the opposite category of the -- opposite category is definitionally equal to the original category. See how -- `op` is implemented. sym-assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D} → h ∘ (g ∘ f) ≈ (h ∘ g) ∘ f identityˡ : ∀ {A B} {f : A ⇒ B} → id ∘ f ≈ f identityʳ : ∀ {A B} {f : A ⇒ B} → f ∘ id ≈ f -- We add a proof of "neutral" identity proof, in order to ensure the opposite of -- constant functor is definitionally equal to itself. identity² : ∀ {A} → id ∘ id {A} ≈ id {A} equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B}) ∘-resp-≈ : ∀ {A B C} {f h : B ⇒ C} {g i : A ⇒ B} → f ≈ h → g ≈ i → f ∘ g ≈ h ∘ i module Equiv {A B : Obj} = IsEquivalence (equiv {A} {B}) open Equiv ∘-resp-≈ˡ : ∀ {A B C} {f h : B ⇒ C} {g : A ⇒ B} → f ≈ h → f ∘ g ≈ h ∘ g ∘-resp-≈ˡ pf = ∘-resp-≈ pf refl ∘-resp-≈ʳ : ∀ {A B C} {f h : A ⇒ B} {g : B ⇒ C} → f ≈ h → g ∘ f ≈ g ∘ h ∘-resp-≈ʳ pf = ∘-resp-≈ refl pf hom-setoid : ∀ {A B} → Setoid _ _ hom-setoid {A} {B} = record { Carrier = A ⇒ B ; _≈_ = _≈_ ; isEquivalence = equiv } -- When a category is quatified, it is convenient to refer to the levels from a module, -- so we do not have to explicitly quantify over a category when universe levels do not -- play a big part in a proof (which is the case probably all the time). o-level : Level o-level = o ℓ-level : Level ℓ-level = ℓ e-level : Level e-level = e -- Reasoning combinators. _≈⟨_⟩_ and _≈˘⟨_⟩_ from SetoidR. -- Also some useful combinators for doing reasoning on _∘_ chains module HomReasoning {A B : Obj} where open SetoidR (hom-setoid {A} {B}) public -- open Equiv {A = A} {B = B} public infixr 4 _⟩∘⟨_ refl⟩∘⟨_ infixl 5 _⟩∘⟨refl _⟩∘⟨_ : ∀ {M} {f h : M ⇒ B} {g i : A ⇒ M} → f ≈ h → g ≈ i → f ∘ g ≈ h ∘ i _⟩∘⟨_ = ∘-resp-≈ refl⟩∘⟨_ : ∀ {M} {f : M ⇒ B} {g i : A ⇒ M} → g ≈ i → f ∘ g ≈ f ∘ i refl⟩∘⟨_ = Equiv.refl ⟩∘⟨_ _⟩∘⟨refl : ∀ {M} {f h : M ⇒ B} {g : A ⇒ M} → f ≈ h → f ∘ g ≈ h ∘ g _⟩∘⟨refl = _⟩∘⟨ Equiv.refl -- convenient inline versions infix 2 ⟺ infixr 3 _○_ ⟺ : {f g : A ⇒ B} → f ≈ g → g ≈ f ⟺ = Equiv.sym _○_ : {f g h : A ⇒ B} → f ≈ g → g ≈ h → f ≈ h _○_ = Equiv.trans op : Category o ℓ e op = record { Obj = Obj ; _⇒_ = flip _⇒_ ; _≈_ = _≈_ ; _∘_ = flip _∘_ ; id = id ; assoc = sym-assoc ; sym-assoc = assoc ; identityˡ = identityʳ ; identityʳ = identityˡ ; identity² = identity² ; equiv = equiv ; ∘-resp-≈ = flip ∘-resp-≈ }
31.611111
91
0.513474
13a8987cae39eb3cc889da0280f8307519e32f8d
868
agda
Agda
Cubical/HITs/S1/Properties.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/HITs/S1/Properties.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/HITs/S1/Properties.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.S1.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.HITs.S1.Base open import Cubical.HITs.PropositionalTruncation as PropTrunc isConnectedS¹ : (s : S¹) → ∥ base ≡ s ∥ isConnectedS¹ base = ∣ refl ∣ isConnectedS¹ (loop i) = squash ∣ (λ j → loop (i ∧ j)) ∣ ∣ (λ j → loop (i ∨ ~ j)) ∣ i isGroupoidS¹ : isGroupoid S¹ isGroupoidS¹ s t = PropTrunc.rec isPropIsSet (λ p → subst (λ s → isSet (s ≡ t)) p (PropTrunc.rec isPropIsSet (λ q → subst (λ t → isSet (base ≡ t)) q isSetΩS¹) (isConnectedS¹ t))) (isConnectedS¹ s)
31
62
0.699309
1eeb4c85e88ba64c6dd3012551890426d85cbb86
733
agda
Agda
Cubical/Data/Universe/Properties.agda
Rotsor/cubical
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
[ "MIT" ]
null
null
null
Cubical/Data/Universe/Properties.agda
Rotsor/cubical
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
[ "MIT" ]
null
null
null
Cubical/Data/Universe/Properties.agda
Rotsor/cubical
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Universe.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Univalence isInjectiveTransport : ∀ {ℓ : Level} {A B : Type ℓ} {p q : A ≡ B} → transport p ≡ transport q → p ≡ q isInjectiveTransport {p = p} {q} α i = hcomp (λ j → λ { (i = i0) → secEq univalence p j ; (i = i1) → secEq univalence q j }) (invEq univalence ((λ a → α i a) , t i)) where t : PathP (λ i → isEquiv (λ a → α i a)) (pathToEquiv p .snd) (pathToEquiv q .snd) t = isProp→isContrPathP isPropIsEquiv (λ i a → α i a) _ _ .fst
33.318182
83
0.657572
9a4b76265f8e944169ba6b9f93d5614078b79580
18,649
agda
Agda
a1b.agda
felixwellen/adventOfCode
834bc9e291a76bdbcd58cbff9805161f1b1cfe71
[ "MIT" ]
null
null
null
a1b.agda
felixwellen/adventOfCode
834bc9e291a76bdbcd58cbff9805161f1b1cfe71
[ "MIT" ]
null
null
null
a1b.agda
felixwellen/adventOfCode
834bc9e291a76bdbcd58cbff9805161f1b1cfe71
[ "MIT" ]
null
null
null
{- Day 1, 2nd task of https://adventofcode.com/ -} module a1b where open import Agda.Builtin.IO using (IO) open import Agda.Builtin.Unit using (⊤) open import Agda.Builtin.String using (String; primShowNat) open import Data.Nat open import Data.Bool using (if_then_else_) open import Data.List postulate putStrLn : String → IO ⊤ {-# FOREIGN GHC import qualified Data.Text as T #-} {-# COMPILE GHC putStrLn = putStrLn . T.unpack #-} doTask1 : (list : List ℕ) → ℕ doTask1 [] = 0 doTask1 (x ∷ []) = 0 doTask1 (x ∷ x₁ ∷ xs) = if x <ᵇ x₁ then 1 + doTask1 (x₁ ∷ xs) else doTask1 (x₁ ∷ xs) doTask2 : (list : List ℕ) → ℕ doTask2 list = doTask1 (sumSlidingWindow list) where sumSlidingWindow : (list : List ℕ) → List ℕ sumSlidingWindow (x₁ ∷ x₂ ∷ x₃ ∷ list) = x₁ + x₂ + x₃ ∷ sumSlidingWindow (x₂ ∷ x₃ ∷ list) sumSlidingWindow tooShortList = [] input = 104 ∷ 105 ∷ 109 ∷ 120 ∷ 124 ∷ 113 ∷ 120 ∷ 121 ∷ 122 ∷ 123 ∷ 134 ∷ 133 ∷ 134 ∷ 150 ∷ 160 ∷ 165 ∷ 179 ∷ 178 ∷ 180 ∷ 178 ∷ 196 ∷ 197 ∷ 198 ∷ 204 ∷ 197 ∷ 213 ∷ 206 ∷ 207 ∷ 209 ∷ 210 ∷ 211 ∷ 223 ∷ 212 ∷ 224 ∷ 228 ∷ 238 ∷ 237 ∷ 238 ∷ 242 ∷ 245 ∷ 249 ∷ 250 ∷ 253 ∷ 248 ∷ 261 ∷ 265 ∷ 274 ∷ 276 ∷ 274 ∷ 275 ∷ 278 ∷ 275 ∷ 276 ∷ 267 ∷ 266 ∷ 272 ∷ 275 ∷ 279 ∷ 280 ∷ 286 ∷ 282 ∷ 292 ∷ 308 ∷ 323 ∷ 324 ∷ 319 ∷ 310 ∷ 304 ∷ 309 ∷ 310 ∷ 320 ∷ 326 ∷ 322 ∷ 340 ∷ 341 ∷ 340 ∷ 339 ∷ 344 ∷ 346 ∷ 342 ∷ 353 ∷ 352 ∷ 353 ∷ 349 ∷ 346 ∷ 330 ∷ 342 ∷ 343 ∷ 344 ∷ 329 ∷ 348 ∷ 346 ∷ 367 ∷ 373 ∷ 379 ∷ 384 ∷ 388 ∷ 398 ∷ 387 ∷ 392 ∷ 391 ∷ 385 ∷ 409 ∷ 411 ∷ 416 ∷ 419 ∷ 420 ∷ 423 ∷ 422 ∷ 420 ∷ 421 ∷ 422 ∷ 421 ∷ 422 ∷ 441 ∷ 438 ∷ 428 ∷ 431 ∷ 443 ∷ 427 ∷ 433 ∷ 434 ∷ 432 ∷ 421 ∷ 429 ∷ 432 ∷ 434 ∷ 439 ∷ 437 ∷ 445 ∷ 456 ∷ 462 ∷ 464 ∷ 472 ∷ 474 ∷ 460 ∷ 433 ∷ 439 ∷ 433 ∷ 444 ∷ 456 ∷ 457 ∷ 452 ∷ 454 ∷ 455 ∷ 465 ∷ 474 ∷ 475 ∷ 486 ∷ 489 ∷ 490 ∷ 491 ∷ 472 ∷ 477 ∷ 475 ∷ 493 ∷ 497 ∷ 495 ∷ 496 ∷ 488 ∷ 500 ∷ 501 ∷ 504 ∷ 505 ∷ 524 ∷ 525 ∷ 522 ∷ 530 ∷ 548 ∷ 545 ∷ 562 ∷ 570 ∷ 582 ∷ 583 ∷ 584 ∷ 586 ∷ 585 ∷ 604 ∷ 606 ∷ 610 ∷ 617 ∷ 619 ∷ 621 ∷ 623 ∷ 620 ∷ 622 ∷ 624 ∷ 625 ∷ 633 ∷ 627 ∷ 623 ∷ 638 ∷ 639 ∷ 644 ∷ 643 ∷ 644 ∷ 648 ∷ 663 ∷ 695 ∷ 681 ∷ 682 ∷ 686 ∷ 692 ∷ 708 ∷ 712 ∷ 720 ∷ 736 ∷ 737 ∷ 738 ∷ 739 ∷ 738 ∷ 741 ∷ 742 ∷ 741 ∷ 746 ∷ 748 ∷ 751 ∷ 750 ∷ 782 ∷ 788 ∷ 793 ∷ 799 ∷ 790 ∷ 834 ∷ 852 ∷ 860 ∷ 848 ∷ 856 ∷ 857 ∷ 859 ∷ 860 ∷ 863 ∷ 849 ∷ 844 ∷ 854 ∷ 860 ∷ 862 ∷ 865 ∷ 864 ∷ 866 ∷ 887 ∷ 878 ∷ 899 ∷ 893 ∷ 895 ∷ 896 ∷ 897 ∷ 876 ∷ 877 ∷ 886 ∷ 887 ∷ 898 ∷ 905 ∷ 906 ∷ 907 ∷ 875 ∷ 877 ∷ 875 ∷ 894 ∷ 893 ∷ 871 ∷ 878 ∷ 879 ∷ 872 ∷ 868 ∷ 873 ∷ 884 ∷ 900 ∷ 899 ∷ 886 ∷ 896 ∷ 903 ∷ 909 ∷ 928 ∷ 932 ∷ 935 ∷ 928 ∷ 913 ∷ 917 ∷ 919 ∷ 920 ∷ 912 ∷ 917 ∷ 923 ∷ 926 ∷ 927 ∷ 932 ∷ 936 ∷ 944 ∷ 942 ∷ 961 ∷ 960 ∷ 961 ∷ 956 ∷ 951 ∷ 971 ∷ 980 ∷ 990 ∷ 999 ∷ 1005 ∷ 1008 ∷ 1010 ∷ 1011 ∷ 1032 ∷ 1034 ∷ 1041 ∷ 1066 ∷ 1067 ∷ 1064 ∷ 1066 ∷ 1070 ∷ 1068 ∷ 1079 ∷ 1100 ∷ 1122 ∷ 1118 ∷ 1111 ∷ 1113 ∷ 1141 ∷ 1145 ∷ 1170 ∷ 1171 ∷ 1170 ∷ 1167 ∷ 1170 ∷ 1171 ∷ 1178 ∷ 1183 ∷ 1186 ∷ 1189 ∷ 1190 ∷ 1198 ∷ 1200 ∷ 1202 ∷ 1204 ∷ 1207 ∷ 1226 ∷ 1243 ∷ 1245 ∷ 1246 ∷ 1247 ∷ 1273 ∷ 1267 ∷ 1274 ∷ 1276 ∷ 1298 ∷ 1293 ∷ 1313 ∷ 1315 ∷ 1298 ∷ 1301 ∷ 1316 ∷ 1322 ∷ 1282 ∷ 1256 ∷ 1257 ∷ 1263 ∷ 1271 ∷ 1294 ∷ 1313 ∷ 1322 ∷ 1323 ∷ 1322 ∷ 1324 ∷ 1309 ∷ 1320 ∷ 1325 ∷ 1321 ∷ 1327 ∷ 1335 ∷ 1334 ∷ 1335 ∷ 1346 ∷ 1382 ∷ 1388 ∷ 1393 ∷ 1395 ∷ 1403 ∷ 1417 ∷ 1424 ∷ 1426 ∷ 1427 ∷ 1428 ∷ 1429 ∷ 1432 ∷ 1431 ∷ 1430 ∷ 1411 ∷ 1439 ∷ 1440 ∷ 1441 ∷ 1458 ∷ 1461 ∷ 1466 ∷ 1471 ∷ 1481 ∷ 1483 ∷ 1486 ∷ 1488 ∷ 1494 ∷ 1490 ∷ 1492 ∷ 1489 ∷ 1533 ∷ 1560 ∷ 1577 ∷ 1582 ∷ 1583 ∷ 1592 ∷ 1594 ∷ 1593 ∷ 1594 ∷ 1599 ∷ 1605 ∷ 1616 ∷ 1619 ∷ 1621 ∷ 1627 ∷ 1651 ∷ 1655 ∷ 1656 ∷ 1655 ∷ 1653 ∷ 1651 ∷ 1652 ∷ 1653 ∷ 1657 ∷ 1658 ∷ 1660 ∷ 1674 ∷ 1680 ∷ 1694 ∷ 1700 ∷ 1698 ∷ 1676 ∷ 1648 ∷ 1644 ∷ 1643 ∷ 1645 ∷ 1652 ∷ 1653 ∷ 1654 ∷ 1660 ∷ 1663 ∷ 1664 ∷ 1668 ∷ 1671 ∷ 1681 ∷ 1687 ∷ 1699 ∷ 1702 ∷ 1705 ∷ 1707 ∷ 1712 ∷ 1739 ∷ 1750 ∷ 1753 ∷ 1755 ∷ 1779 ∷ 1769 ∷ 1792 ∷ 1793 ∷ 1798 ∷ 1828 ∷ 1832 ∷ 1811 ∷ 1844 ∷ 1845 ∷ 1846 ∷ 1848 ∷ 1854 ∷ 1857 ∷ 1859 ∷ 1863 ∷ 1866 ∷ 1862 ∷ 1894 ∷ 1898 ∷ 1875 ∷ 1878 ∷ 1879 ∷ 1884 ∷ 1897 ∷ 1883 ∷ 1894 ∷ 1889 ∷ 1890 ∷ 1889 ∷ 1907 ∷ 1924 ∷ 1926 ∷ 1936 ∷ 1940 ∷ 1949 ∷ 1950 ∷ 1968 ∷ 1973 ∷ 1974 ∷ 1971 ∷ 1982 ∷ 1989 ∷ 2004 ∷ 2005 ∷ 2007 ∷ 2018 ∷ 2032 ∷ 2037 ∷ 2039 ∷ 2040 ∷ 2042 ∷ 2046 ∷ 2056 ∷ 2053 ∷ 2054 ∷ 2057 ∷ 2059 ∷ 2063 ∷ 2067 ∷ 2065 ∷ 2059 ∷ 2049 ∷ 2052 ∷ 2045 ∷ 2053 ∷ 2057 ∷ 2063 ∷ 2066 ∷ 2061 ∷ 2068 ∷ 2063 ∷ 2058 ∷ 2060 ∷ 2061 ∷ 2066 ∷ 2065 ∷ 2093 ∷ 2094 ∷ 2126 ∷ 2135 ∷ 2136 ∷ 2119 ∷ 2121 ∷ 2134 ∷ 2135 ∷ 2137 ∷ 2138 ∷ 2143 ∷ 2144 ∷ 2152 ∷ 2159 ∷ 2154 ∷ 2159 ∷ 2162 ∷ 2164 ∷ 2158 ∷ 2163 ∷ 2162 ∷ 2159 ∷ 2165 ∷ 2166 ∷ 2167 ∷ 2165 ∷ 2169 ∷ 2172 ∷ 2182 ∷ 2188 ∷ 2173 ∷ 2182 ∷ 2175 ∷ 2182 ∷ 2203 ∷ 2205 ∷ 2206 ∷ 2212 ∷ 2213 ∷ 2218 ∷ 2229 ∷ 2226 ∷ 2233 ∷ 2235 ∷ 2233 ∷ 2257 ∷ 2258 ∷ 2284 ∷ 2280 ∷ 2282 ∷ 2285 ∷ 2279 ∷ 2280 ∷ 2291 ∷ 2292 ∷ 2293 ∷ 2294 ∷ 2291 ∷ 2292 ∷ 2293 ∷ 2300 ∷ 2308 ∷ 2303 ∷ 2308 ∷ 2312 ∷ 2311 ∷ 2320 ∷ 2315 ∷ 2326 ∷ 2328 ∷ 2330 ∷ 2352 ∷ 2349 ∷ 2352 ∷ 2357 ∷ 2346 ∷ 2360 ∷ 2375 ∷ 2374 ∷ 2375 ∷ 2377 ∷ 2385 ∷ 2392 ∷ 2383 ∷ 2386 ∷ 2388 ∷ 2403 ∷ 2411 ∷ 2400 ∷ 2401 ∷ 2402 ∷ 2399 ∷ 2400 ∷ 2401 ∷ 2397 ∷ 2417 ∷ 2419 ∷ 2431 ∷ 2430 ∷ 2429 ∷ 2421 ∷ 2429 ∷ 2427 ∷ 2428 ∷ 2429 ∷ 2424 ∷ 2425 ∷ 2426 ∷ 2432 ∷ 2433 ∷ 2435 ∷ 2436 ∷ 2441 ∷ 2454 ∷ 2455 ∷ 2456 ∷ 2464 ∷ 2462 ∷ 2463 ∷ 2465 ∷ 2475 ∷ 2489 ∷ 2495 ∷ 2497 ∷ 2467 ∷ 2484 ∷ 2486 ∷ 2487 ∷ 2502 ∷ 2509 ∷ 2504 ∷ 2503 ∷ 2496 ∷ 2515 ∷ 2516 ∷ 2542 ∷ 2550 ∷ 2552 ∷ 2554 ∷ 2557 ∷ 2559 ∷ 2565 ∷ 2563 ∷ 2552 ∷ 2553 ∷ 2555 ∷ 2552 ∷ 2559 ∷ 2564 ∷ 2565 ∷ 2548 ∷ 2546 ∷ 2536 ∷ 2540 ∷ 2542 ∷ 2543 ∷ 2544 ∷ 2561 ∷ 2550 ∷ 2551 ∷ 2552 ∷ 2556 ∷ 2562 ∷ 2559 ∷ 2596 ∷ 2583 ∷ 2586 ∷ 2584 ∷ 2585 ∷ 2590 ∷ 2592 ∷ 2590 ∷ 2591 ∷ 2599 ∷ 2615 ∷ 2617 ∷ 2595 ∷ 2599 ∷ 2607 ∷ 2605 ∷ 2600 ∷ 2612 ∷ 2611 ∷ 2591 ∷ 2611 ∷ 2590 ∷ 2599 ∷ 2597 ∷ 2604 ∷ 2612 ∷ 2613 ∷ 2620 ∷ 2603 ∷ 2592 ∷ 2604 ∷ 2606 ∷ 2588 ∷ 2591 ∷ 2577 ∷ 2576 ∷ 2606 ∷ 2605 ∷ 2614 ∷ 2618 ∷ 2622 ∷ 2633 ∷ 2636 ∷ 2648 ∷ 2649 ∷ 2638 ∷ 2637 ∷ 2644 ∷ 2651 ∷ 2650 ∷ 2651 ∷ 2658 ∷ 2657 ∷ 2659 ∷ 2661 ∷ 2660 ∷ 2658 ∷ 2669 ∷ 2676 ∷ 2688 ∷ 2691 ∷ 2693 ∷ 2697 ∷ 2698 ∷ 2702 ∷ 2699 ∷ 2706 ∷ 2707 ∷ 2710 ∷ 2698 ∷ 2697 ∷ 2705 ∷ 2717 ∷ 2718 ∷ 2720 ∷ 2721 ∷ 2731 ∷ 2749 ∷ 2757 ∷ 2765 ∷ 2767 ∷ 2759 ∷ 2776 ∷ 2780 ∷ 2784 ∷ 2778 ∷ 2779 ∷ 2783 ∷ 2788 ∷ 2789 ∷ 2825 ∷ 2826 ∷ 2820 ∷ 2825 ∷ 2852 ∷ 2871 ∷ 2870 ∷ 2872 ∷ 2873 ∷ 2878 ∷ 2882 ∷ 2900 ∷ 2906 ∷ 2908 ∷ 2907 ∷ 2917 ∷ 2931 ∷ 2933 ∷ 2931 ∷ 2952 ∷ 2953 ∷ 2954 ∷ 2962 ∷ 2971 ∷ 2973 ∷ 2960 ∷ 2965 ∷ 2967 ∷ 2968 ∷ 2982 ∷ 2983 ∷ 2994 ∷ 2997 ∷ 3014 ∷ 3026 ∷ 3028 ∷ 3040 ∷ 3057 ∷ 3063 ∷ 3064 ∷ 3065 ∷ 3066 ∷ 3073 ∷ 3056 ∷ 3052 ∷ 3067 ∷ 3070 ∷ 3071 ∷ 3072 ∷ 3073 ∷ 3077 ∷ 3078 ∷ 3074 ∷ 3083 ∷ 3082 ∷ 3079 ∷ 3080 ∷ 3081 ∷ 3073 ∷ 3069 ∷ 3072 ∷ 3081 ∷ 3111 ∷ 3109 ∷ 3112 ∷ 3126 ∷ 3127 ∷ 3128 ∷ 3129 ∷ 3135 ∷ 3146 ∷ 3147 ∷ 3149 ∷ 3142 ∷ 3148 ∷ 3152 ∷ 3165 ∷ 3173 ∷ 3201 ∷ 3216 ∷ 3217 ∷ 3218 ∷ 3217 ∷ 3235 ∷ 3236 ∷ 3241 ∷ 3247 ∷ 3248 ∷ 3249 ∷ 3251 ∷ 3252 ∷ 3251 ∷ 3250 ∷ 3252 ∷ 3260 ∷ 3261 ∷ 3259 ∷ 3255 ∷ 3256 ∷ 3257 ∷ 3258 ∷ 3259 ∷ 3264 ∷ 3299 ∷ 3300 ∷ 3304 ∷ 3313 ∷ 3326 ∷ 3324 ∷ 3326 ∷ 3331 ∷ 3340 ∷ 3341 ∷ 3343 ∷ 3348 ∷ 3342 ∷ 3380 ∷ 3381 ∷ 3370 ∷ 3374 ∷ 3390 ∷ 3379 ∷ 3382 ∷ 3383 ∷ 3386 ∷ 3388 ∷ 3382 ∷ 3386 ∷ 3402 ∷ 3400 ∷ 3406 ∷ 3408 ∷ 3407 ∷ 3409 ∷ 3411 ∷ 3412 ∷ 3411 ∷ 3412 ∷ 3422 ∷ 3441 ∷ 3446 ∷ 3451 ∷ 3449 ∷ 3451 ∷ 3480 ∷ 3500 ∷ 3511 ∷ 3520 ∷ 3521 ∷ 3525 ∷ 3548 ∷ 3557 ∷ 3558 ∷ 3560 ∷ 3561 ∷ 3562 ∷ 3570 ∷ 3571 ∷ 3575 ∷ 3571 ∷ 3570 ∷ 3574 ∷ 3576 ∷ 3583 ∷ 3587 ∷ 3594 ∷ 3615 ∷ 3619 ∷ 3620 ∷ 3622 ∷ 3607 ∷ 3599 ∷ 3602 ∷ 3604 ∷ 3607 ∷ 3617 ∷ 3618 ∷ 3623 ∷ 3626 ∷ 3632 ∷ 3637 ∷ 3635 ∷ 3640 ∷ 3641 ∷ 3642 ∷ 3654 ∷ 3668 ∷ 3669 ∷ 3675 ∷ 3670 ∷ 3672 ∷ 3675 ∷ 3684 ∷ 3688 ∷ 3701 ∷ 3699 ∷ 3705 ∷ 3704 ∷ 3718 ∷ 3724 ∷ 3717 ∷ 3734 ∷ 3736 ∷ 3741 ∷ 3729 ∷ 3730 ∷ 3731 ∷ 3722 ∷ 3717 ∷ 3718 ∷ 3711 ∷ 3708 ∷ 3719 ∷ 3737 ∷ 3738 ∷ 3734 ∷ 3740 ∷ 3747 ∷ 3749 ∷ 3740 ∷ 3752 ∷ 3758 ∷ 3784 ∷ 3787 ∷ 3792 ∷ 3800 ∷ 3802 ∷ 3803 ∷ 3805 ∷ 3814 ∷ 3815 ∷ 3813 ∷ 3816 ∷ 3812 ∷ 3815 ∷ 3816 ∷ 3803 ∷ 3799 ∷ 3805 ∷ 3806 ∷ 3809 ∷ 3788 ∷ 3781 ∷ 3783 ∷ 3779 ∷ 3780 ∷ 3786 ∷ 3776 ∷ 3780 ∷ 3790 ∷ 3802 ∷ 3806 ∷ 3789 ∷ 3790 ∷ 3791 ∷ 3804 ∷ 3801 ∷ 3797 ∷ 3823 ∷ 3826 ∷ 3828 ∷ 3831 ∷ 3834 ∷ 3843 ∷ 3867 ∷ 3870 ∷ 3879 ∷ 3883 ∷ 3893 ∷ 3909 ∷ 3934 ∷ 3932 ∷ 3955 ∷ 3961 ∷ 3963 ∷ 3968 ∷ 3994 ∷ 4001 ∷ 4002 ∷ 3999 ∷ 4008 ∷ 4003 ∷ 4006 ∷ 3997 ∷ 3990 ∷ 4020 ∷ 4021 ∷ 4027 ∷ 4031 ∷ 4038 ∷ 4039 ∷ 4043 ∷ 4040 ∷ 4036 ∷ 4049 ∷ 4050 ∷ 4075 ∷ 4077 ∷ 4079 ∷ 4061 ∷ 4060 ∷ 4062 ∷ 4059 ∷ 4050 ∷ 4052 ∷ 4053 ∷ 4094 ∷ 4097 ∷ 4106 ∷ 4107 ∷ 4108 ∷ 4112 ∷ 4118 ∷ 4122 ∷ 4125 ∷ 4124 ∷ 4126 ∷ 4127 ∷ 4129 ∷ 4130 ∷ 4131 ∷ 4139 ∷ 4163 ∷ 4164 ∷ 4169 ∷ 4168 ∷ 4176 ∷ 4177 ∷ 4175 ∷ 4177 ∷ 4183 ∷ 4186 ∷ 4188 ∷ 4194 ∷ 4173 ∷ 4163 ∷ 4168 ∷ 4198 ∷ 4201 ∷ 4202 ∷ 4205 ∷ 4177 ∷ 4178 ∷ 4181 ∷ 4180 ∷ 4211 ∷ 4214 ∷ 4215 ∷ 4218 ∷ 4219 ∷ 4218 ∷ 4215 ∷ 4220 ∷ 4230 ∷ 4231 ∷ 4232 ∷ 4276 ∷ 4281 ∷ 4288 ∷ 4289 ∷ 4291 ∷ 4293 ∷ 4297 ∷ 4304 ∷ 4319 ∷ 4330 ∷ 4337 ∷ 4343 ∷ 4353 ∷ 4360 ∷ 4361 ∷ 4377 ∷ 4402 ∷ 4401 ∷ 4424 ∷ 4429 ∷ 4445 ∷ 4452 ∷ 4456 ∷ 4460 ∷ 4457 ∷ 4434 ∷ 4436 ∷ 4438 ∷ 4441 ∷ 4442 ∷ 4437 ∷ 4439 ∷ 4446 ∷ 4447 ∷ 4457 ∷ 4456 ∷ 4454 ∷ 4455 ∷ 4456 ∷ 4461 ∷ 4473 ∷ 4471 ∷ 4473 ∷ 4481 ∷ 4495 ∷ 4498 ∷ 4504 ∷ 4511 ∷ 4520 ∷ 4541 ∷ 4540 ∷ 4561 ∷ 4572 ∷ 4577 ∷ 4578 ∷ 4577 ∷ 4572 ∷ 4575 ∷ 4582 ∷ 4608 ∷ 4617 ∷ 4623 ∷ 4625 ∷ 4635 ∷ 4640 ∷ 4673 ∷ 4675 ∷ 4676 ∷ 4692 ∷ 4687 ∷ 4688 ∷ 4692 ∷ 4703 ∷ 4685 ∷ 4674 ∷ 4693 ∷ 4708 ∷ 4703 ∷ 4693 ∷ 4681 ∷ 4682 ∷ 4696 ∷ 4722 ∷ 4729 ∷ 4732 ∷ 4739 ∷ 4740 ∷ 4744 ∷ 4750 ∷ 4751 ∷ 4752 ∷ 4751 ∷ 4744 ∷ 4746 ∷ 4749 ∷ 4754 ∷ 4758 ∷ 4748 ∷ 4749 ∷ 4760 ∷ 4759 ∷ 4761 ∷ 4757 ∷ 4767 ∷ 4779 ∷ 4771 ∷ 4772 ∷ 4774 ∷ 4773 ∷ 4791 ∷ 4792 ∷ 4790 ∷ 4797 ∷ 4790 ∷ 4800 ∷ 4810 ∷ 4836 ∷ 4830 ∷ 4826 ∷ 4828 ∷ 4838 ∷ 4836 ∷ 4840 ∷ 4846 ∷ 4848 ∷ 4863 ∷ 4865 ∷ 4867 ∷ 4880 ∷ 4883 ∷ 4892 ∷ 4908 ∷ 4905 ∷ 4909 ∷ 4890 ∷ 4891 ∷ 4882 ∷ 4889 ∷ 4898 ∷ 4900 ∷ 4903 ∷ 4909 ∷ 4913 ∷ 4919 ∷ 4920 ∷ 4922 ∷ 4915 ∷ 4922 ∷ 4923 ∷ 4944 ∷ 4960 ∷ 4978 ∷ 4979 ∷ 4983 ∷ 5006 ∷ 5009 ∷ 5012 ∷ 5011 ∷ 5023 ∷ 5045 ∷ 5010 ∷ 5026 ∷ 5027 ∷ 5030 ∷ 5049 ∷ 5055 ∷ 5053 ∷ 5068 ∷ 5069 ∷ 5077 ∷ 5083 ∷ 5084 ∷ 5087 ∷ 5094 ∷ 5093 ∷ 5101 ∷ 5108 ∷ 5110 ∷ 5111 ∷ 5116 ∷ 5118 ∷ 5121 ∷ 5153 ∷ 5155 ∷ 5156 ∷ 5157 ∷ 5150 ∷ 5171 ∷ 5172 ∷ 5180 ∷ 5191 ∷ 5185 ∷ 5194 ∷ 5218 ∷ 5221 ∷ 5216 ∷ 5224 ∷ 5225 ∷ 5226 ∷ 5225 ∷ 5231 ∷ 5227 ∷ 5228 ∷ 5223 ∷ 5247 ∷ 5245 ∷ 5246 ∷ 5260 ∷ 5287 ∷ 5281 ∷ 5285 ∷ 5287 ∷ 5291 ∷ 5302 ∷ 5303 ∷ 5304 ∷ 5302 ∷ 5310 ∷ 5321 ∷ 5317 ∷ 5326 ∷ 5327 ∷ 5329 ∷ 5307 ∷ 5310 ∷ 5313 ∷ 5336 ∷ 5358 ∷ 5367 ∷ 5369 ∷ 5375 ∷ 5379 ∷ 5368 ∷ 5370 ∷ 5371 ∷ 5372 ∷ 5377 ∷ 5383 ∷ 5384 ∷ 5389 ∷ 5402 ∷ 5404 ∷ 5397 ∷ 5400 ∷ 5402 ∷ 5403 ∷ 5396 ∷ 5400 ∷ 5391 ∷ 5394 ∷ 5400 ∷ 5386 ∷ 5382 ∷ 5389 ∷ 5385 ∷ 5386 ∷ 5388 ∷ 5390 ∷ 5391 ∷ 5397 ∷ 5401 ∷ 5403 ∷ 5405 ∷ 5409 ∷ 5412 ∷ 5431 ∷ 5435 ∷ 5440 ∷ 5457 ∷ 5454 ∷ 5422 ∷ 5423 ∷ 5424 ∷ 5423 ∷ 5426 ∷ 5417 ∷ 5420 ∷ 5424 ∷ 5422 ∷ 5447 ∷ 5446 ∷ 5455 ∷ 5460 ∷ 5472 ∷ 5475 ∷ 5482 ∷ 5483 ∷ 5485 ∷ 5493 ∷ 5494 ∷ 5500 ∷ 5512 ∷ 5519 ∷ 5539 ∷ 5550 ∷ 5554 ∷ 5561 ∷ 5571 ∷ 5597 ∷ 5598 ∷ 5579 ∷ 5584 ∷ 5589 ∷ 5591 ∷ 5592 ∷ 5593 ∷ 5594 ∷ 5616 ∷ 5618 ∷ 5628 ∷ 5630 ∷ 5617 ∷ 5625 ∷ 5626 ∷ 5655 ∷ 5654 ∷ 5663 ∷ 5673 ∷ 5670 ∷ 5669 ∷ 5661 ∷ 5660 ∷ 5665 ∷ 5669 ∷ 5667 ∷ 5675 ∷ 5677 ∷ 5679 ∷ 5680 ∷ 5703 ∷ 5709 ∷ 5710 ∷ 5708 ∷ 5710 ∷ 5711 ∷ 5713 ∷ 5714 ∷ 5715 ∷ 5709 ∷ 5738 ∷ 5714 ∷ 5718 ∷ 5734 ∷ 5735 ∷ 5743 ∷ 5738 ∷ 5739 ∷ 5740 ∷ 5749 ∷ 5752 ∷ 5768 ∷ 5757 ∷ 5753 ∷ 5752 ∷ 5753 ∷ 5754 ∷ 5755 ∷ 5758 ∷ 5770 ∷ 5769 ∷ 5768 ∷ 5781 ∷ 5789 ∷ 5798 ∷ 5799 ∷ 5814 ∷ 5815 ∷ 5824 ∷ 5828 ∷ 5829 ∷ 5830 ∷ 5831 ∷ 5837 ∷ 5835 ∷ 5836 ∷ 5832 ∷ 5820 ∷ 5821 ∷ 5822 ∷ 5814 ∷ 5817 ∷ 5818 ∷ 5821 ∷ 5818 ∷ 5811 ∷ 5814 ∷ 5842 ∷ 5844 ∷ 5863 ∷ 5874 ∷ 5870 ∷ 5883 ∷ 5878 ∷ 5890 ∷ 5891 ∷ 5900 ∷ 5896 ∷ 5895 ∷ 5863 ∷ 5860 ∷ 5861 ∷ 5859 ∷ 5861 ∷ 5865 ∷ 5862 ∷ 5864 ∷ 5870 ∷ 5890 ∷ 5884 ∷ 5889 ∷ 5893 ∷ 5898 ∷ 5902 ∷ 5922 ∷ 5924 ∷ 5926 ∷ 5907 ∷ 5909 ∷ 5915 ∷ 5914 ∷ 5923 ∷ 5925 ∷ 5930 ∷ 5932 ∷ 5934 ∷ 5946 ∷ 5947 ∷ 5950 ∷ 5945 ∷ 5957 ∷ 5965 ∷ 5966 ∷ 5971 ∷ 5967 ∷ 5973 ∷ 5974 ∷ 5977 ∷ 5979 ∷ 5984 ∷ 5991 ∷ 5992 ∷ 5994 ∷ 6002 ∷ 6005 ∷ 6006 ∷ 6011 ∷ 6012 ∷ 6014 ∷ 6000 ∷ 6019 ∷ 6034 ∷ 6053 ∷ 6035 ∷ 6036 ∷ 6042 ∷ 6047 ∷ 6048 ∷ 6050 ∷ 6054 ∷ 6074 ∷ 6075 ∷ 6077 ∷ 6046 ∷ 6055 ∷ 6058 ∷ 6060 ∷ 6061 ∷ 6062 ∷ 6073 ∷ 6081 ∷ 6086 ∷ 6088 ∷ 6096 ∷ 6097 ∷ 6098 ∷ 6099 ∷ 6096 ∷ 6110 ∷ 6112 ∷ 6113 ∷ 6112 ∷ 6111 ∷ 6132 ∷ 6115 ∷ 6118 ∷ 6127 ∷ 6124 ∷ 6128 ∷ 6139 ∷ 6145 ∷ 6156 ∷ 6155 ∷ 6153 ∷ 6152 ∷ 6153 ∷ 6157 ∷ 6164 ∷ 6176 ∷ 6186 ∷ 6187 ∷ 6188 ∷ 6190 ∷ 6192 ∷ 6185 ∷ 6190 ∷ 6191 ∷ 6192 ∷ 6191 ∷ 6198 ∷ 6200 ∷ 6213 ∷ 6214 ∷ 6222 ∷ 6242 ∷ 6236 ∷ 6246 ∷ 6256 ∷ 6257 ∷ 6256 ∷ 6257 ∷ 6258 ∷ 6259 ∷ 6284 ∷ 6285 ∷ 6286 ∷ 6290 ∷ 6291 ∷ 6287 ∷ 6294 ∷ 6298 ∷ 6311 ∷ 6301 ∷ 6309 ∷ 6312 ∷ 6315 ∷ 6318 ∷ 6323 ∷ 6325 ∷ 6334 ∷ 6323 ∷ 6322 ∷ 6323 ∷ 6334 ∷ 6335 ∷ 6332 ∷ 6343 ∷ 6344 ∷ 6348 ∷ 6352 ∷ 6358 ∷ 6361 ∷ 6362 ∷ 6367 ∷ 6381 ∷ 6395 ∷ 6412 ∷ 6411 ∷ 6410 ∷ 6426 ∷ 6444 ∷ 6455 ∷ 6461 ∷ 6470 ∷ 6449 ∷ 6456 ∷ 6455 ∷ 6464 ∷ 6463 ∷ 6468 ∷ 6474 ∷ 6478 ∷ 6477 ∷ 6474 ∷ 6473 ∷ 6468 ∷ 6474 ∷ 6476 ∷ 6501 ∷ 6513 ∷ 6516 ∷ 6517 ∷ 6518 ∷ 6513 ∷ 6515 ∷ 6519 ∷ 6515 ∷ 6531 ∷ 6537 ∷ 6538 ∷ 6531 ∷ 6545 ∷ 6553 ∷ 6554 ∷ 6560 ∷ 6559 ∷ 6562 ∷ 6551 ∷ 6563 ∷ 6559 ∷ 6557 ∷ 6562 ∷ 6564 ∷ 6562 ∷ 6564 ∷ 6563 ∷ 6568 ∷ 6572 ∷ 6573 ∷ 6572 ∷ 6583 ∷ 6591 ∷ 6595 ∷ 6587 ∷ 6589 ∷ 6590 ∷ 6581 ∷ 6583 ∷ 6593 ∷ 6592 ∷ 6616 ∷ 6627 ∷ 6654 ∷ 6657 ∷ 6667 ∷ 6668 ∷ 6680 ∷ 6695 ∷ 6682 ∷ 6685 ∷ 6691 ∷ 6708 ∷ 6720 ∷ 6722 ∷ 6723 ∷ 6721 ∷ 6750 ∷ 6759 ∷ 6760 ∷ 6759 ∷ 6760 ∷ 6769 ∷ 6772 ∷ 6780 ∷ 6774 ∷ 6782 ∷ 6774 ∷ 6777 ∷ 6778 ∷ 6777 ∷ 6786 ∷ 6787 ∷ 6792 ∷ 6796 ∷ 6802 ∷ 6814 ∷ 6816 ∷ 6813 ∷ 6814 ∷ 6823 ∷ 6807 ∷ 6805 ∷ 6804 ∷ 6805 ∷ 6806 ∷ 6807 ∷ 6801 ∷ 6803 ∷ 6806 ∷ 6807 ∷ 6799 ∷ 6812 ∷ 6832 ∷ 6858 ∷ 6846 ∷ 6856 ∷ 6857 ∷ 6865 ∷ 6867 ∷ 6876 ∷ 6877 ∷ 6887 ∷ 6889 ∷ 6895 ∷ 6896 ∷ 6900 ∷ 6901 ∷ 6881 ∷ 6874 ∷ 6873 ∷ 6876 ∷ 6883 ∷ 6888 ∷ 6898 ∷ 6899 ∷ 6910 ∷ 6913 ∷ 6934 ∷ 6932 ∷ 6939 ∷ 6940 ∷ 6943 ∷ 6968 ∷ 6974 ∷ 6978 ∷ 6975 ∷ 6956 ∷ 6971 ∷ 6953 ∷ 6976 ∷ 6983 ∷ 6980 ∷ 6986 ∷ 6987 ∷ 6988 ∷ 6989 ∷ 6992 ∷ 7003 ∷ 7004 ∷ 7005 ∷ 7004 ∷ 7011 ∷ 7017 ∷ 7019 ∷ 7030 ∷ 7033 ∷ 7037 ∷ 7043 ∷ 7053 ∷ 7058 ∷ 7062 ∷ 7076 ∷ 7078 ∷ 7080 ∷ 7093 ∷ 7094 ∷ 7095 ∷ 7107 ∷ 7106 ∷ 7109 ∷ 7110 ∷ 7111 ∷ 7112 ∷ 7113 ∷ 7116 ∷ 7117 ∷ 7119 ∷ 7118 ∷ 7119 ∷ 7120 ∷ 7122 ∷ 7134 ∷ 7145 ∷ 7142 ∷ 7174 ∷ 7175 ∷ 7185 ∷ 7189 ∷ 7190 ∷ 7191 ∷ 7214 ∷ 7228 ∷ 7236 ∷ 7252 ∷ 7267 ∷ 7296 ∷ 7302 ∷ 7303 ∷ 7322 ∷ 7321 ∷ 7323 ∷ 7327 ∷ 7331 ∷ 7333 ∷ 7337 ∷ 7334 ∷ 7343 ∷ 7344 ∷ 7352 ∷ 7361 ∷ 7369 ∷ 7381 ∷ 7384 ∷ 7385 ∷ 7384 ∷ 7389 ∷ 7393 ∷ 7394 ∷ 7395 ∷ 7403 ∷ 7425 ∷ 7430 ∷ 7431 ∷ 7433 ∷ 7441 ∷ 7440 ∷ 7424 ∷ 7427 ∷ 7419 ∷ 7430 ∷ 7432 ∷ 7436 ∷ 7437 ∷ 7450 ∷ 7451 ∷ 7457 ∷ 7477 ∷ 7485 ∷ 7490 ∷ 7496 ∷ 7503 ∷ 7504 ∷ 7508 ∷ 7509 ∷ 7485 ∷ 7490 ∷ 7501 ∷ 7502 ∷ 7506 ∷ 7512 ∷ 7513 ∷ 7514 ∷ 7515 ∷ 7513 ∷ 7528 ∷ 7545 ∷ 7554 ∷ 7563 ∷ 7569 ∷ 7570 ∷ 7573 ∷ 7574 ∷ 7586 ∷ 7589 ∷ 7605 ∷ 7618 ∷ 7620 ∷ 7621 ∷ 7624 ∷ 7645 ∷ 7658 ∷ 7669 ∷ 7672 ∷ 7670 ∷ 7671 ∷ 7678 ∷ 7680 ∷ 7692 ∷ 7712 ∷ 7724 ∷ 7730 ∷ 7736 ∷ 7737 ∷ 7746 ∷ 7759 ∷ [] main : IO ⊤ main = putStrLn (primShowNat (doTask2 input))
9.150638
59
0.446405
13bb69319fc814e8e4c35969b95fe0b41ce35856
2,484
agda
Agda
Function/Isomorphism.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
Function/Isomorphism.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
Function/Isomorphism.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --safe --postfix-projections #-} module Function.Isomorphism where open import Cubical.Foundations.Isomorphism using (Iso; section; retract; isoToPath; iso; isoToEquiv) public open import Level open import Path open import Function open import Data.Sigma open import Relation.Binary open Iso public infix 4 _⇔_ _⇔_ = Iso sym-⇔ : (A ⇔ B) → (B ⇔ A) fun (sym-⇔ A⇔B) = inv A⇔B inv (sym-⇔ A⇔B) = fun A⇔B leftInv (sym-⇔ A⇔B) = rightInv A⇔B rightInv (sym-⇔ A⇔B) = leftInv A⇔B sym-sym-iso : (s : A ⇔ B) → sym-⇔ (sym-⇔ s) ≡ s sym-sym-iso s i .fun = s .fun sym-sym-iso s i .inv = s .inv sym-sym-iso s i .rightInv = s .rightInv sym-sym-iso s i .leftInv = s .leftInv refl-⇔ : A ⇔ A fun refl-⇔ x = x inv refl-⇔ x = x leftInv refl-⇔ x = refl rightInv refl-⇔ x = refl trans-⇔ : A ⇔ B → B ⇔ C → A ⇔ C fun (trans-⇔ A⇔B B⇔C) = fun B⇔C ∘ fun A⇔B inv (trans-⇔ A⇔B B⇔C) = inv A⇔B ∘ inv B⇔C leftInv (trans-⇔ A⇔B B⇔C) x = cong (inv A⇔B) (leftInv B⇔C _) ; leftInv A⇔B _ rightInv (trans-⇔ A⇔B B⇔C) x = cong (fun B⇔C) (rightInv A⇔B _) ; rightInv B⇔C _ iso-Σ : {B : A → Type b} {C : A → Type c} → (∀ x → B x ⇔ C x) → Σ A B ⇔ Σ A C iso-Σ B⇔C .fun (x , xs) = x , B⇔C x .fun xs iso-Σ B⇔C .inv (x , xs) = x , B⇔C x .inv xs iso-Σ B⇔C .rightInv (x , xs) i .fst = x iso-Σ B⇔C .rightInv (x , xs) i .snd = B⇔C x .rightInv xs i iso-Σ B⇔C .leftInv (x , xs) i .fst = x iso-Σ B⇔C .leftInv (x , xs) i .snd = B⇔C x .leftInv xs i ⇔-equiv : Equivalence (Type a) a Equivalence._≋_ ⇔-equiv = _⇔_ Equivalence.sym ⇔-equiv = sym-⇔ Equivalence.refl ⇔-equiv = refl-⇔ Equivalence.trans ⇔-equiv = trans-⇔ open import HLevels open import Equiv iso⇔equiv : isSet A → (A ⇔ B) ⇔ (A ≃ B) iso⇔equiv isSetA .fun = isoToEquiv iso⇔equiv isSetA .inv = equivToIso iso⇔equiv isSetA .rightInv x i .fst = x .fst iso⇔equiv isSetA .rightInv x i .snd = isPropIsEquiv (x .fst) (isoToEquiv (equivToIso x) .snd) (x .snd) i iso⇔equiv isSetA .leftInv x i .fun = x .fun iso⇔equiv isSetA .leftInv x i .inv = x .inv iso⇔equiv isSetA .leftInv x i .rightInv = x .rightInv iso⇔equiv isSetA .leftInv x i .leftInv y = isSetA _ y (equivToIso (isoToEquiv x) .leftInv y) (x .leftInv y) i open import Function.Surjective open import Function.Injective surj×inj⇒iso : (f : A → B) → SplitSurjective f → Injective f → A ⇔ B surj×inj⇒iso f surj inj .fun = f surj×inj⇒iso f surj inj .inv = fst ∘ surj surj×inj⇒iso f surj inj .rightInv = snd ∘ surj surj×inj⇒iso f surj inj .leftInv x = inj (fst (surj (f x))) x (surj (f x) .snd)
32.684211
109
0.633655
04ae706e698eaa36a7f58aa7ccc88fa4c7106b48
1,528
agda
Agda
test/fail/Issue882a.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/fail/Issue882a.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
test/fail/Issue882a.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
{-# OPTIONS -v impossible:100 #-} module Issue882a where open import Common.Level open import Common.Equality private primitive primTrustMe : ∀ {a} {A : Set a} {x y : A} → x ≡ y -- trustMe {x = x} {y = y} evaluates to refl if x and y are -- definitionally equal. -- -- For an example of the use of trustMe, see Data.String._≟_. trustMe : ∀ {a} {A : Set a} {x y : A} → x ≡ y trustMe = primTrustMe postulate S : Set B : Set b : B M : Set M = B -> S out : M -> M out m = o where s : S s = m b postulate mko : (mm : S) -> s ≡ mm -> M o : M o n = mko (m b) trustMe n postulate unfold : (M -> M) -> M inn : M inn = unfold out postulate n : B iso1 : inn ≡ inn iso1 rewrite refl {x = n} = {!!} -- iso1 rewrite (refl {a = lzero}{A = B}{x = n}) = {!!} {- Error OLD: An internal error has occurred. Please report this as a bug. Location of the error: src/full/Agda/TypeChecking/Conversion.hs:636 NEW: Some vomit about Setω not equal to Level when checking well-formedness of with type. NEWER (2013-11-30): Cannot instantiate the metavariable _48 to solution m b since it contains the variable m which is not in scope of the metavariable or irrelevant in the metavariable but relevant in the solution when checking that the type B → (w : _x_48 ≡ _x_48) → unfold (λ m → _.mko m (m b) w) ≡ unfold (λ m → _.mko m (m b) w) of the generated with function is well-formed NOW (2014-05-17): Rewriting with refl is a no-op, so no error is triggered any more. Just an unresolved meta now. -}
19.1
70
0.645288
13a0e5f26f96ebc422c4ee7c37c2b8a6e5982760
5,308
agda
Agda
Dave/Algebra/Naturals/Multiplication.agda
DavidStahl97/formal-proofs
05213fb6ab1f51f770f9858b61526ba950e06232
[ "MIT" ]
null
null
null
Dave/Algebra/Naturals/Multiplication.agda
DavidStahl97/formal-proofs
05213fb6ab1f51f770f9858b61526ba950e06232
[ "MIT" ]
null
null
null
Dave/Algebra/Naturals/Multiplication.agda
DavidStahl97/formal-proofs
05213fb6ab1f51f770f9858b61526ba950e06232
[ "MIT" ]
null
null
null
module Dave.Algebra.Naturals.Multiplication where open import Dave.Algebra.Naturals.Addition public _*_ : ℕ → ℕ → ℕ zero * b = zero suc a * b = (a * b) + b infixl 7 _*_ *-zero : ∀ (m : ℕ) → m * zero ≡ zero *-zero zero = refl *-zero (suc m) = begin suc m * zero ≡⟨⟩ m * zero + zero ≡⟨ +-right-identity (m * zero) ⟩ m * zero ≡⟨ *-zero m ⟩ zero ∎ {- Identity -} ℕ-*-right-identity : ∀ (m : ℕ) → m * 1 ≡ m ℕ-*-right-identity zero = refl ℕ-*-right-identity (suc m) = begin suc m * 1 ≡⟨⟩ m * 1 + 1 ≡⟨ cong (λ a → a + 1) (ℕ-*-right-identity m) ⟩ m + 1 ≡⟨ +-add1ᵣ m ⟩ suc m ∎ ℕ-*-left-identity : ∀ (m : ℕ) → 1 * m ≡ m ℕ-*-left-identity m = refl ℕ-*-HasIdentity : Identity _*_ 1 Identity.left ℕ-*-HasIdentity = ℕ-*-left-identity Identity.right ℕ-*-HasIdentity = ℕ-*-right-identity {- Distributivity -} *-distrib-+ᵣ : ∀ (m n p : ℕ) → (m + n) * p ≡ m * p + n * p *-distrib-+ᵣ zero n p = refl *-distrib-+ᵣ (suc m) n p = begin (suc m + n) * p ≡⟨⟩ suc (m + n) * p ≡⟨⟩ (m + n) * p + p ≡⟨ cong (λ a → a + p) (*-distrib-+ᵣ m n p) ⟩ m * p + n * p + p ≡⟨ IsCommutativeMonoid.swap021 ℕ-+-IsCommutativeMonoid (m * p) (n * p) p ⟩ m * p + p + n * p ≡⟨ cong (λ a → m * p + a + n * p) (ℕ-*-left-identity p) ⟩ m * p + 1 * p + n * p ≡⟨ cong (λ a → a + n * p) (sym (*-distrib-+ᵣ m 1 p)) ⟩ (m + 1) * p + n * p ≡⟨ cong (λ a → a * p + n * p) (+-add1ᵣ m) ⟩ suc m * p + n * p ∎ *-distrib1ᵣ-+ᵣ : ∀ (m p : ℕ) → (m + 1) * p ≡ m * p + p *-distrib1ᵣ-+ᵣ m p = begin (m + 1) * p ≡⟨ *-distrib-+ᵣ m 1 p ⟩ m * p + 1 * p ≡⟨⟩ m * p + p ∎ *-distrib1ₗ-+ᵣ : ∀ (m p : ℕ) → (1 + m) * p ≡ p + m * p *-distrib1ₗ-+ᵣ m p = begin (1 + m) * p ≡⟨ *-distrib-+ᵣ 1 m p ⟩ 1 * p + m * p ≡⟨⟩ p + m * p ∎ *-distrib-+ₗ : ∀ (m n p : ℕ) → m * (n + p) ≡ m * n + m * p *-distrib-+ₗ zero n p = refl *-distrib-+ₗ (suc m) n p = begin suc m * (n + p) ≡⟨⟩ m * (n + p) + (n + p) ≡⟨ cong (λ a → a + (n + p)) (*-distrib-+ₗ m n p) ⟩ m * n + m * p + (n + p) ≡⟨ IsCommutativeMonoid.swap021 ℕ-+-IsCommutativeMonoid (m * n) (m * p) (n + p) ⟩ m * n + (n + p) + m * p ≡⟨ cong (λ a → a + m * p) (sym (IsSemigroup.assoc ℕ-+-IsSemigroup (m * n) n p)) ⟩ m * n + n + p + m * p ≡⟨ IsCommutativeMonoid.swap021 ℕ-+-IsCommutativeMonoid (m * n + n) p (m * p) ⟩ m * n + n + m * p + p ≡⟨⟩ m * n + 1 * n + m * p + 1 * p ≡⟨ cong (λ a → a + m * p + 1 * p) (sym (*-distrib-+ᵣ m 1 n)) ⟩ (m + 1) * n + m * p + 1 * p ≡⟨ IsSemigroup.assoc ℕ-+-IsSemigroup ((m + 1) * n) (m * p) (1 * p) ⟩ (m + 1) * n + (m * p + 1 * p) ≡⟨ cong (λ a → (m + 1) * n + a) (sym (*-distrib-+ᵣ m 1 p)) ⟩ (m + 1) * n + (m + 1) * p ≡⟨ cong (λ a → a * n + (m + 1) * p) (+-add1ᵣ m) ⟩ suc m * n + (m + 1) * p ≡⟨ cong (λ a → suc m * n + a * p) (+-add1ᵣ m) ⟩ suc m * n + suc m * p ∎ {- Semigroup -} *-assoc : associative _*_ *-assoc zero n p = refl *-assoc (suc m) n p = begin (suc m * n) * p ≡⟨⟩ (m * n + n) * p ≡⟨ *-distrib-+ᵣ (m * n) n p ⟩ m * n * p + n * p ≡⟨⟩ m * n * p + 1 * (n * p) ≡⟨ cong (λ a → a + 1 * (n * p)) (*-assoc m n p) ⟩ m * (n * p) + 1 * (n * p) ≡⟨ sym (*-distrib-+ᵣ m 1 (n * p)) ⟩ (m + 1) * (n * p) ≡⟨ cong (λ a → a * (n * p)) (+-add1ᵣ m) ⟩ suc m * (n * p) ∎ ℕ-*-IsSemigroup : IsSemigroup _*_ IsSemigroup.assoc ℕ-*-IsSemigroup = *-assoc ℕ-*-Semigroup : Semigroup Semigroup.Carrier ℕ-*-Semigroup = ℕ Semigroup._·_ ℕ-*-Semigroup = _*_ Semigroup.isSemigroup ℕ-*-Semigroup = ℕ-*-IsSemigroup {- Monoid -} ℕ-*-IsMonoid : IsMonoid _*_ 1 IsMonoid.semigroup ℕ-*-IsMonoid = ℕ-*-IsSemigroup IsMonoid.identity ℕ-*-IsMonoid = ℕ-*-HasIdentity ℕ-*-Monoid : Monoid Monoid.Carrier ℕ-*-Monoid = ℕ Monoid._·_ ℕ-*-Monoid = _*_ Monoid.e ℕ-*-Monoid = 1 Monoid.isMonoid ℕ-*-Monoid = ℕ-*-IsMonoid {- Commutative Monoid -} ℕ-*-comm : commutative _*_ ℕ-*-comm zero n = begin zero * n ≡⟨⟩ zero ≡⟨ sym (*-zero n) ⟩ n * zero ∎ ℕ-*-comm (suc m) n = begin suc m * n ≡⟨⟩ m * n + n ≡⟨ +-comm (m * n) n ⟩ n + m * n ≡⟨ sym (cong (λ a → a + m * n) (ℕ-*-right-identity n)) ⟩ n * 1 + m * n ≡⟨ cong (λ a → n * 1 + a) (ℕ-*-comm m n) ⟩ n * 1 + n * m ≡⟨ sym (*-distrib-+ₗ n 1 m) ⟩ n * (1 + m) ≡⟨⟩ n * suc m ∎ ℕ-*-IsCommutativeMonoid : IsCommutativeMonoid _*_ 1 IsCommutativeMonoid.isSemigroup ℕ-*-IsCommutativeMonoid = ℕ-*-IsSemigroup IsCommutativeMonoid.leftIdentity ℕ-*-IsCommutativeMonoid = ℕ-*-left-identity IsCommutativeMonoid.comm ℕ-*-IsCommutativeMonoid = ℕ-*-comm ℕ-*-CommutativeMonoid : CommutativeMonoid CommutativeMonoid.Carrier ℕ-*-CommutativeMonoid = ℕ CommutativeMonoid._·_ ℕ-*-CommutativeMonoid = _*_ CommutativeMonoid.e ℕ-*-CommutativeMonoid = 1 CommutativeMonoid.isCommutativeMonoid ℕ-*-CommutativeMonoid = ℕ-*-IsCommutativeMonoid *-distrib1ᵣ-+ₗ : ∀ (m p : ℕ) → m * (p + 1) ≡ m * p + m *-distrib1ᵣ-+ₗ m p = begin m * (p + 1) ≡⟨ ℕ-*-comm m (p + 1) ⟩ (p + 1) * m ≡⟨ *-distrib1ᵣ-+ᵣ p m ⟩ p * m + m ≡⟨ cong (λ a → a + m) (ℕ-*-comm p m) ⟩ m * p + m ∎ *-distrib1ₗ-+ₗ : ∀ (m p : ℕ) → m * (1 + p) ≡ m + m * p *-distrib1ₗ-+ₗ m p = begin m * (1 + p) ≡⟨ ℕ-*-comm m (1 + p) ⟩ (1 + p) * m ≡⟨ *-distrib1ₗ-+ᵣ p m ⟩ m + p * m ≡⟨ cong (λ a → m + a) (ℕ-*-comm p m) ⟩ m + m * p ∎
36.606897
109
0.480972
1e40acdb1a115bbc26058f50a2804839d534fd36
19,436
agda
Agda
theorems/homotopy/SmashFmapConn.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/homotopy/SmashFmapConn.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/homotopy/SmashFmapConn.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT module homotopy.SmashFmapConn where module _ {i} {j} {A : Type i} (B : A → Type j) where custom-assoc : {a₀ a₁ a₂ a₃ : A} {b₀ : B a₀} {b₁ b₁' b₁'' : B a₁} {b₂ : B a₂} {b₃ : B a₃} {p : a₀ == a₁} (p' : b₀ == b₁ [ B ↓ p ]) (q' : b₁ == b₁') (r' : b₁' == b₁'') {s : a₁ == a₂} (s' : b₁'' == b₂ [ B ↓ s ]) {t : a₂ == a₃} (t' : b₂ == b₃ [ B ↓ t ]) → p' ∙ᵈ (((q' ∙ r') ◃ s') ∙ᵈ t') == ((p' ▹ q') ▹ r') ∙ᵈ s' ∙ᵈ t' custom-assoc {p = idp} p'@idp q'@idp r'@idp {s = idp} s'@idp {t = idp} t' = idp transp-over : {a₀ a₁ : A} (p : a₀ == a₁) (b₀ : B a₀) → b₀ == transport B p b₀ [ B ↓ p ] transp-over p b₀ = from-transp B p (idp {a = transport B p b₀}) transp-over-naturality : ∀ {a₀ a₁ : A} (p : a₀ == a₁) {b₀ b₀' : B a₀} (q : b₀ == b₀') → q ◃ transp-over p b₀' == transp-over p b₀ ▹ ap (transport B p) q transp-over-naturality p@idp q@idp = idp to-transp-over : {a₀ a₁ : A} {p : a₀ == a₁} {b₀ : B a₀} {b₁ : B a₁} (q : b₀ == b₁ [ B ↓ p ]) → q ▹ ! (to-transp q) == transp-over p b₀ to-transp-over {p = idp} q@idp = idp module _ {i} {j} {S* : Type i} (P* : S* → Type j) where -- cpa = custom path algebra cpa₁ : {s₁ s₂ t : S*} (p* : P* s₂) (p₁ : s₁ == t) (p₂ : s₂ == t) → transport P* (! (p₁ ∙ ! p₂)) p* == transport P* p₂ p* [ P* ↓ p₁ ] cpa₁ p* p₁@idp p₂@idp = idp -- cpac = custom path algebra coherence cpac₁ : ∀ {k} {C : Type k} (f : C → S*) {c₁ c₂ : C} (q : c₁ == c₂) (d : Π C (P* ∘ f)) {t : S*} (p₁ : f c₁ == t) (p₂ : f c₂ == t) (r : ap f q == p₁ ∙' ! p₂) {u : P* (f c₂)} (v : u == transport P* (! (p₂ ∙ ! p₂)) (d c₂)) {u' : P* (f c₁)} (v' : u' == transport P* (! (p₁ ∙ ! p₂)) (d c₂)) → (v' ∙ ap (λ pp → transport P* pp (d c₂)) (ap ! (! (r ∙ ∙'=∙ p₁ (! p₂))) ∙ !-ap f q) ∙ to-transp {B = P*} {p = ap f (! q)} (↓-ap-in P* f (apd d (! q)))) ◃ apd d q == ↓-ap-out= P* f q (r ∙ ∙'=∙ p₁ (! p₂)) ((v' ◃ cpa₁ (d c₂) p₁ p₂) ∙ᵈ !ᵈ (v ◃ cpa₁ (d c₂) p₂ p₂)) ▹ (v ∙ ap (λ pp → transport P* (! pp) (d c₂)) (!-inv-r p₂)) cpac₁ f q@idp d p₁@.idp p₂@idp r@idp v@idp v'@idp = idp cpa₂ : ∀ {k} {C : Type k} (f : C → S*) {c₁ c₂ : C} (q : c₁ == c₂) (d : Π C (P* ∘ f)) {s t : S*} (p : f c₁ == s) (r : s == t) (u : f c₂ == t) (h : ap f q == p ∙' (r ∙ ! u)) → transport P* p (d c₁) == transport P* u (d c₂) [ P* ↓ r ] cpa₂ f q@idp d p@.idp r@idp u@idp h@idp = idp cpac₂ : ∀ {k} {C : Type k} (f : C → S*) {c₁ c₂ c₃ : C} (q : c₁ == c₂) (q' : c₃ == c₂) (d : Π C (P* ∘ f)) {s t : S*} (p : f c₁ == s) (p' : f c₃ == f c₂) (r : s == t) (u : f c₂ == t) (h : ap f q == p ∙' (r ∙ ! u)) (h' : ap f q' == p' ∙' u ∙ ! u) {x : P* (f c₂)} (x' : x == transport P* p' (d c₃)) {y : P* (f c₁)} (y' : y == d c₁) → ↓-ap-out= P* f q (h ∙ ∙'=∙ p (r ∙ ! u)) ((y' ◃ transp-over P* p (d c₁)) ∙ᵈ cpa₂ f q d p r u h ∙ᵈ !ᵈ (x' ◃ cpa₂ f q' d p' u u h')) ▹ (x' ∙ ap (λ pp → transport P* pp (d c₃)) (! (∙-unit-r p') ∙ ap (p' ∙_) (! (!-inv-r u)) ∙ ! (h' ∙ ∙'=∙ p' (u ∙ ! u))) ∙ to-transp (↓-ap-in P* f (apd d q'))) == y' ◃ apd d q cpac₂ f q@idp q'@idp d p@.idp p'@.idp r@idp u@idp h@idp h'@idp x'@idp y'@idp = idp module _ {i} {j} {k} {A : Ptd i} {A' : Ptd j} (f : A ⊙→ A') (B : Ptd k) {m n : ℕ₋₂} (f-is-m-conn : has-conn-fibers m (fst f)) (B-is-Sn-conn : is-connected (S n) (de⊙ B)) where private a₀ = pt A a₀' = pt A' b₀ = pt B module ConnIn (P : A' ∧ B → (n +2+ m) -Type (lmax i (lmax j k))) (d : ∀ (ab : A ∧ B) → fst (P (∧-fmap f (⊙idf B) ab))) where h : ∀ (b : de⊙ B) → (∀ (a' : de⊙ A') → fst (P (smin a' b))) → (∀ (a : de⊙ A) → fst (P (smin (fst f a) b))) h b s = s ∘ fst f Q : de⊙ B → n -Type (lmax i (lmax j k)) Q b = Q' , Q'-level where Q' : Type (lmax i (lmax j k)) Q' = hfiber (h b) (λ a → d (smin a b)) Q'-level : has-level n Q' Q'-level = conn-extend-general {n = m} {k = n} f-is-m-conn (λ a → P (smin a b)) (λ a → d (smin a b)) s₀ : ∀ (a' : de⊙ A') → fst (P (smin a' b₀)) s₀ a' = transport (fst ∘ P) (! (∧-norm-l a')) (d smbasel) ∧-fmap-smgluel-β-∙' : ∀ (a : de⊙ A) → ap (∧-fmap f (⊙idf B)) (smgluel a) == smgluel (fst f a) ∙' ! (smgluel a₀') ∧-fmap-smgluel-β-∙' a = ∧-fmap-smgluel-β' f (⊙idf B) a ∙ ∙=∙' (smgluel (fst f a)) (! (smgluel a₀')) ∧-fmap-smgluel-β-∙ : ∀ (a : de⊙ A) → ap (∧-fmap f (⊙idf B)) (smgluel a) == smgluel (fst f a) ∙ ! (smgluel a₀') ∧-fmap-smgluel-β-∙ a = ∧-fmap-smgluel-β-∙' a ∙ ∙'=∙ (smgluel (fst f a)) (! (smgluel a₀')) ∧-fmap-smgluer-β-∙' : ∀ (b : de⊙ B) → ap (∧-fmap f (⊙idf B)) (smgluer b) == ap (λ a' → smin a' b) (snd f) ∙' ∧-norm-r b ∧-fmap-smgluer-β-∙' b = ∧-fmap-smgluer-β' f (⊙idf B) b ∙ ∙=∙' (ap (λ a' → smin a' b) (snd f)) (∧-norm-r b) ∧-fmap-smgluer-β-∙ : ∀ (b : de⊙ B) → ap (∧-fmap f (⊙idf B)) (smgluer b) == ap (λ a' → smin a' b) (snd f) ∙ ∧-norm-r b ∧-fmap-smgluer-β-∙ b = ∧-fmap-smgluer-β-∙' b ∙ ∙'=∙ (ap (λ a' → smin a' b) (snd f)) (∧-norm-r b) s₀-f : ∀ (a : de⊙ A) → s₀ (fst f a) == d (smin a b₀) s₀-f a = ap (λ p → transport (λ a'b → fst (P a'b)) p (d smbasel)) q ∙ to-transp {B = fst ∘ P} {p = ap (∧-fmap f (⊙idf B)) (! (smgluel a))} (↓-ap-in (fst ∘ P) (∧-fmap f (⊙idf B)) (apd d (! (smgluel a)))) where q : ! (∧-norm-l (fst f a)) == ap (∧-fmap f (⊙idf B)) (! (smgluel a)) q = ap ! (! (∧-fmap-smgluel-β-∙ a)) ∙ !-ap (∧-fmap f (⊙idf B)) (smgluel a) q₀ : fst (Q b₀) q₀ = s₀ , s₀-lies-over-pt where s₀-lies-over-pt : h b₀ s₀ == (λ a → d (smin a b₀)) s₀-lies-over-pt = λ= s₀-f q : ∀ (b : de⊙ B) → fst (Q b) q = conn-extend {n = n} {h = cst b₀} (pointed-conn-out (de⊙ B) b₀ {{B-is-Sn-conn}}) Q (λ _ → q₀) q-f : q b₀ == q₀ q-f = conn-extend-β {n = n} {h = cst b₀} (pointed-conn-out (de⊙ B) b₀ {{B-is-Sn-conn}}) Q (λ _ → q₀) unit s : ∀ (a' : de⊙ A') (b : de⊙ B) → fst (P (smin a' b)) s a' b = fst (q b) a' s-b₀ : ∀ (a' : de⊙ A') → s a' b₀ == s₀ a' s-b₀ a' = ap (λ u → fst u a') q-f s-f : ∀ (a : de⊙ A) (b : de⊙ B) → s (fst f a) b == d (smin a b) s-f a b = app= (snd (q b)) a s-f-b₀ : ∀ (a : de⊙ A) → s-f a b₀ == s-b₀ (fst f a) ∙ s₀-f a s-f-b₀ a = app= (snd (q b₀)) a =⟨ ↓-app=cst-out' (apd (λ u → app= (snd u) a) q-f) ⟩ s-b₀ (fst f a) ∙' app= (snd q₀) a =⟨ ap (s-b₀ (fst f a) ∙'_) (app=-β s₀-f a) ⟩ s-b₀ (fst f a) ∙' s₀-f a =⟨ ∙'=∙ (s-b₀ (fst f a)) (s₀-f a) ⟩ s-b₀ (fst f a) ∙ s₀-f a =∎ s-a₀' : ∀ (b : de⊙ B) → s a₀' b == transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (d (smin a₀ b)) s-a₀' b = ↯ $ s a₀' b =⟪ ! (to-transp (↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f)))) ⟫ transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (s (fst f a₀) b) =⟪ ap (transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f))) (s-f a₀ b) ⟫ transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (d (smin a₀ b)) ∎∎ section-smbasel : fst (P smbasel) section-smbasel = transport (fst ∘ P) (smgluel a₀') (d smbasel) section-smbaser : fst (P smbaser) section-smbaser = transport (fst ∘ P) (smgluer b₀) (d smbaser) section-smgluel' : ∀ (a' : de⊙ A') → s₀ a' == section-smbasel [ fst ∘ P ↓ smgluel a' ] section-smgluel' a' = cpa₁ (fst ∘ P) (d smbasel) (smgluel a') (smgluel a₀') section-smgluel : ∀ (a' : de⊙ A') → s a' b₀ == section-smbasel [ fst ∘ P ↓ smgluel a' ] section-smgluel a' = s-b₀ a' ◃ section-smgluel' a' section-smgluer' : ∀ (b : de⊙ B) → transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (d (smin a₀ b)) == section-smbaser [ fst ∘ P ↓ smgluer b ] section-smgluer' b = cpa₂ (fst ∘ P) (∧-fmap f (⊙idf B)) (smgluer b) d (ap (λ a' → smin a' b) (snd f)) (smgluer b) (smgluer b₀) (∧-fmap-smgluer-β-∙' b) section-smgluer : ∀ (b : de⊙ B) → s a₀' b == section-smbaser [ fst ∘ P ↓ smgluer b ] section-smgluer b = s-a₀' b ◃ section-smgluer' b module Section = SmashElim {P = fst ∘ P} s section-smbasel section-smbaser section-smgluel section-smgluer section : Π (A' ∧ B) (fst ∘ P) section = Section.f is-section-smbasel : s a₀' b₀ == d smbasel is-section-smbasel = ↯ $ s a₀' b₀ =⟪ s-b₀ a₀' ⟫ s₀ a₀' =⟪idp⟫ transport (fst ∘ P) (! (∧-norm-l a₀')) (d smbasel) =⟪ ap (λ p → transport (fst ∘ P) (! p) (d smbasel)) (!-inv-r (smgluel a₀')) ⟫ d smbasel ∎∎ is-section-smgluel : ∀ (a : de⊙ A) → s-f a b₀ ◃ apd d (smgluel a) == apd (section ∘ ∧-fmap f (⊙idf B)) (smgluel a) ▹ is-section-smbasel is-section-smgluel a = s-f a b₀ ◃ apd d (smgluel a) =⟨ ap (_◃ apd d (smgluel a)) (s-f-b₀ a) ⟩ (s-b₀ (fst f a) ∙ s₀-f a) ◃ apd d (smgluel a) =⟨ cpac₁ (fst ∘ P) (∧-fmap f (⊙idf B)) (smgluel a) d (smgluel (fst f a)) (smgluel a₀') (∧-fmap-smgluel-β-∙' a) (s-b₀ a₀') (s-b₀ (fst f a)) ⟩ ↓-ap-out= (fst ∘ P) (∧-fmap f (⊙idf B)) (smgluel a) (∧-fmap-smgluel-β-∙ a) (section-smgluel (fst f a) ∙ᵈ !ᵈ (section-smgluel a₀')) ▹ is-section-smbasel =⟨ ! $ ap (_▹ is-section-smbasel) $ ap (↓-ap-out= (fst ∘ P) (∧-fmap f (⊙idf B)) (smgluel a) (∧-fmap-smgluel-β-∙ a)) $ apd-section-norm-l (fst f a) ⟩ ↓-ap-out= (fst ∘ P) (∧-fmap f (⊙idf B)) (smgluel a) (∧-fmap-smgluel-β-∙ a) (apd section (∧-norm-l (fst f a))) ▹ is-section-smbasel =⟨ ! $ ap (_▹ is-section-smbasel) $ apd-∘'' section (∧-fmap f (⊙idf B)) (smgluel a) (∧-fmap-smgluel-β-∙ a) ⟩ apd (section ∘ ∧-fmap f (⊙idf B)) (smgluel a) ▹ is-section-smbasel =∎ where apd-section-norm-l : ∀ (a' : de⊙ A') → apd section (∧-norm-l a') == section-smgluel a' ∙ᵈ !ᵈ (section-smgluel a₀') apd-section-norm-l a' = apd section (∧-norm-l a') =⟨ apd-∙ section (smgluel a') (! (smgluel a₀')) ⟩ apd section (smgluel a') ∙ᵈ apd section (! (smgluel a₀')) =⟨ ap2 _∙ᵈ_ (Section.smgluel-β a') (apd-! section (smgluel a₀') ∙ ap !ᵈ (Section.smgluel-β a₀')) ⟩ section-smgluel a' ∙ᵈ !ᵈ (section-smgluel a₀') =∎ is-section-smbaser : s a₀' b₀ == d smbaser is-section-smbaser = ↯ $ s a₀' b₀ =⟪ s-a₀' b₀ ⟫ transport (fst ∘ P) (ap (λ a' → smin a' b₀) (snd f)) (d (smin a₀ b₀)) =⟪ ap (λ p → transport (fst ∘ P) p (d (smin a₀ b₀))) (↯ r) ⟫ transport (fst ∘ P) (ap (∧-fmap f (⊙idf B)) (smgluer b₀)) (d (smin a₀ b₀)) =⟪ to-transp (↓-ap-in (fst ∘ P) (∧-fmap f (⊙idf B)) (apd d (smgluer b₀))) ⟫ d smbaser ∎∎ where r : ap (λ a' → smin a' b₀) (snd f) =-= ap (∧-fmap f (⊙idf B)) (smgluer b₀) r = ap (λ a' → smin a' b₀) (snd f) =⟪ ! (∙-unit-r _) ⟫ ap (λ a' → smin a' b₀) (snd f) ∙ idp =⟪ ap (ap (λ a' → smin a' b₀) (snd f) ∙_) (! (!-inv-r (smgluer b₀))) ⟫ ap (λ a' → smin a' b₀) (snd f) ∙ ∧-norm-r b₀ =⟪ ! (∧-fmap-smgluer-β-∙ b₀) ⟫ ap (∧-fmap f (⊙idf B)) (smgluer b₀) ∎∎ is-section-smgluer : ∀ (b : de⊙ B) → s-f a₀ b ◃ apd d (smgluer b) == apd (section ∘ ∧-fmap f (⊙idf B)) (smgluer b) ▹ is-section-smbaser is-section-smgluer b = ! $ apd (section ∘ ∧-fmap f (⊙idf B)) (smgluer b) ▹ is-section-smbaser =⟨ ap (_▹ is-section-smbaser) $ apd-∘'' section (∧-fmap f (⊙idf B)) (smgluer b) (∧-fmap-smgluer-β-∙ b) ⟩ ↓-ap-out= (fst ∘ P) (∧-fmap f (⊙idf B)) (smgluer b) (∧-fmap-smgluer-β-∙ b) (apd section (ap (λ a' → smin a' b) (snd f) ∙ ∧-norm-r b)) ▹ is-section-smbaser =⟨ ap (_▹ is-section-smbaser) $ ap (↓-ap-out= (fst ∘ P) (∧-fmap f (⊙idf B)) (smgluer b) (∧-fmap-smgluer-β-∙ b)) $ apd-section-helper ⟩ ↓-ap-out= (fst ∘ P) (∧-fmap f (⊙idf B)) (smgluer b) (∧-fmap-smgluer-β-∙ b) ((s-f a₀ b ◃ transp-over (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (d (smin a₀ b))) ∙ᵈ section-smgluer' b ∙ᵈ !ᵈ (section-smgluer b₀)) ▹ is-section-smbaser =⟨ cpac₂ (fst ∘ P) (∧-fmap f (⊙idf B)) (smgluer b) (smgluer b₀) d (ap (λ a' → smin a' b) (snd f)) (ap (λ a' → smin a' b₀) (snd f)) (smgluer b) (smgluer b₀) (∧-fmap-smgluer-β-∙' b) (∧-fmap-smgluer-β-∙' b₀) (s-a₀' b₀) (s-f a₀ b) ⟩ s-f a₀ b ◃ apd d (smgluer b) =∎ where apd-section-helper : apd section (ap (λ a' → smin a' b) (snd f) ∙ ∧-norm-r b) == (s-f a₀ b ◃ transp-over (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (d (smin a₀ b))) ∙ᵈ section-smgluer' b ∙ᵈ !ᵈ (section-smgluer b₀) apd-section-helper = apd section (ap (λ a' → smin a' b) (snd f) ∙ ∧-norm-r b) =⟨ apd-∙ section (ap (λ a' → smin a' b) (snd f)) (∧-norm-r b) ⟩ apd section (ap (λ a' → smin a' b) (snd f)) ∙ᵈ apd section (∧-norm-r b) =⟨ ap2 _∙ᵈ_ (apd-∘''' section (λ a' → smin a' b) (snd f)) (apd-∙ section (smgluer b) (! (smgluer b₀))) ⟩ ↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f)) ∙ᵈ apd section (smgluer b) ∙ᵈ apd section (! (smgluer b₀)) =⟨ ap (↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f)) ∙ᵈ_) $ ap2 _∙ᵈ_ (Section.smgluer-β b) (apd-! section (smgluer b₀) ∙ ap !ᵈ (Section.smgluer-β b₀)) ⟩ ↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f)) ∙ᵈ section-smgluer b ∙ᵈ !ᵈ (section-smgluer b₀) =⟨ custom-assoc (fst ∘ P) (↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f))) (! (to-transp (↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f))))) (ap (transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f))) (s-f a₀ b)) (section-smgluer' b) (!ᵈ (section-smgluer b₀)) ⟩ ((↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f)) ▹ ! (to-transp (↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f))))) ▹ ap (transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f))) (s-f a₀ b)) ∙ᵈ section-smgluer' b ∙ᵈ !ᵈ (section-smgluer b₀) =⟨ ap (λ u → (u ▹ ap (transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f))) (s-f a₀ b)) ∙ᵈ section-smgluer' b ∙ᵈ !ᵈ (section-smgluer b₀)) $ to-transp-over (fst ∘ P) $ ↓-ap-in (fst ∘ P) (λ a' → smin a' b) (apd (λ a' → s a' b) (snd f)) ⟩ (transp-over (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (s (fst f a₀) b) ▹ ap (transport (fst ∘ P) (ap (λ a' → smin a' b) (snd f))) (s-f a₀ b)) ∙ᵈ section-smgluer' b ∙ᵈ !ᵈ (section-smgluer b₀) =⟨ ! $ ap (_∙ᵈ section-smgluer' b ∙ᵈ !ᵈ (section-smgluer b₀)) $ transp-over-naturality (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (s-f a₀ b) ⟩ (s-f a₀ b ◃ transp-over (fst ∘ P) (ap (λ a' → smin a' b) (snd f)) (d (smin a₀ b))) ∙ᵈ section-smgluer' b ∙ᵈ !ᵈ (section-smgluer b₀) =∎ is-section : section ∘ ∧-fmap f (⊙idf B) ∼ d is-section = Smash-PathOver-elim {P = λ ab → fst (P (∧-fmap f (⊙idf B) ab))} (section ∘ ∧-fmap f (⊙idf B)) d s-f is-section-smbasel is-section-smbaser is-section-smgluel is-section-smgluer {- Proposition 4.3.2 in Guillaume Brunerie's thesis -} ∧-fmap-conn-l : has-conn-fibers (n +2+ m) (∧-fmap f (⊙idf B)) ∧-fmap-conn-l = conn-in (λ P → ConnIn.section P , ConnIn.is-section P) private ∧-swap-conn : ∀ {i} {j} (X : Ptd i) (Y : Ptd j) (n : ℕ₋₂) → has-conn-fibers n (∧-swap X Y) ∧-swap-conn X Y n yx = Trunc-preserves-level {n = -2} n $ equiv-is-contr-map (∧-swap-is-equiv X Y) yx ∧-fmap-conn-r : ∀ {i} {j} {k} (A : Ptd i) {B : Ptd j} {B' : Ptd k} (g : B ⊙→ B') {k l : ℕ₋₂} → is-connected (S k) (de⊙ A) → has-conn-fibers l (fst g) → has-conn-fibers (k +2+ l) (∧-fmap (⊙idf A) g) ∧-fmap-conn-r A {B} {B'} g {k} {l} A-is-Sk-conn g-is-l-conn = transport (has-conn-fibers (k +2+ l)) (λ= (∧-swap-fmap (⊙idf A) g)) $ ∘-conn (∧-swap A B) (∧-swap B' A ∘ ∧-fmap g (⊙idf A)) (∧-swap-conn A B _) $ ∘-conn (∧-fmap g (⊙idf A)) (∧-swap B' A) (∧-fmap-conn-l g A g-is-l-conn A-is-Sk-conn) (∧-swap-conn B' A _) private ∘-conn' : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} {n m : ℕ₋₂} (g : B → C) (f : A → B) → has-conn-fibers m g → has-conn-fibers n f → has-conn-fibers (minT n m) (g ∘ f) ∘-conn' {n = n} {m = m} g f g-conn f-conn = ∘-conn f g (λ b → connected-≤T (minT≤l n m) {{f-conn b}}) (λ c → connected-≤T (minT≤r n m) {{g-conn c}}) {- Proposition 4.3.5 in Guillaume Brunerie's thesis -} ∧-fmap-conn : ∀ {i i' j j'} {A : Ptd i} {A' : Ptd i'} (f : A ⊙→ A') {B : Ptd j} {B' : Ptd j'} (g : B ⊙→ B') {m n k l : ℕ₋₂} → is-connected (S k) (de⊙ A') → is-connected (S n) (de⊙ B) → has-conn-fibers m (fst f) → has-conn-fibers l (fst g) → has-conn-fibers (minT (n +2+ m) (k +2+ l)) (∧-fmap f g) ∧-fmap-conn {A = A} {A'} f {B} {B'} g {m} {n} {k} {l} A'-is-Sk-conn B-is-Sn-conn f-is-m-conn g-is-l-conn = transport (has-conn-fibers (minT (n +2+ m) (k +2+ l))) p $ ∘-conn' (∧-fmap (⊙idf A') g) (∧-fmap f (⊙idf B)) (∧-fmap-conn-r A' g A'-is-Sk-conn g-is-l-conn) (∧-fmap-conn-l f B f-is-m-conn B-is-Sn-conn) where p : ∧-fmap (⊙idf A') g ∘ ∧-fmap f (⊙idf B) == ∧-fmap f g p = ∧-fmap (⊙idf A') g ∘ ∧-fmap f (⊙idf B) =⟨ ! (λ= (∧-fmap-comp f (⊙idf A') (⊙idf B) g)) ⟩ ∧-fmap (⊙idf A' ⊙∘ f) (g ⊙∘ ⊙idf B) =⟨ ap (λ h → ∧-fmap h g) (⊙λ= (⊙∘-unit-l f)) ⟩ ∧-fmap f g =∎
36.397004
102
0.41454
22fdbe0b4dec6f5b7bd1c6fc1d49cf234effe479
44,570
agda
Agda
Cubical/Homotopy/Group/Pi4S3/DirectProof.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Homotopy/Group/Pi4S3/DirectProof.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Homotopy/Group/Pi4S3/DirectProof.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
{- This file contains a direct proof that the Brunerie number (the number n s.t. π₄(S³)≅ℤ/nℤ) is 2, not relying on any of the more advanced constructions in chapters 4-6 in Brunerie's thesis (but still using chapters 1-3 for the construction). The Brunerie number is defined via S³ ≃ S¹ * S¹ -ᵂ→ S² ∨ S² -ᶠᵒˡᵈ→ S² where * denotes the join, ∨ denotes the wedge sum, W is the Whitehead map (see joinTo⋁ in Cubical.Homotopy.Whitehead) and the final map is just the folding map. η := ∣ fold ∘ W ∣₀ defines an element of π₃(S²). The (absolute value) of the Brunerie number is given by the absolute value of ϕ(η) for any iso π₃(S²)≅ℤ. The reason it's hard to prove ϕ(η) = ± 2 directly is mainly because the equivalence S³ ≃ S¹ * S¹ complicates things. In this file, we try to work around this problem. The proof goes as follows. 1. Define π₃*(A) := ∥ S¹ * S¹ →∙ A ∥₀ and define explicitly an addition on this type. Prove that the equivalence π₃(A) ≃ π₃*(A) is structure preserving, thereby giving a group structure on π₃*(A) and a group iso π₃*(A) ≅ π₃(A) 2. Under this iso, η gets mapped to η₁ (by construction) defined by S¹ * S¹ -ᵂ→ S² ∨ S² -ᶠᵒˡᵈ→ S² which is much easier to work with. 3. Define a sequence of equivalences π₃*(S²) ≅ π₃*(S¹ * S¹) ≅ π₃*(S³) ≅ π₃(S³) ≅ ℤ and trace η₁ in each step, proving that it ends up at -2. It turns out that that the iso S³ ≃ S¹ * S¹, which has been relatively explicitly defined in Cubical.HITs.Sphere.Properties, kills off a good deal of ``annoying'' terms on the way, making the proof rather straightforward. 4. Conclude that π₄(S³) ≅ ℤ/2ℤ. -------------- Part 2: The file also contains a second approach: showing η₃ : π₃*(S³) ↦ -2 by computation. This is done by very carefully choosing the equivalences involved. In fact, one has to be so careful that it almost requires more work than just proving η₃ : ↦ -2 by hand. But at least, we can do it! -} {-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Homotopy.Group.Pi4S3.DirectProof where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.HLevels open import Cubical.Foundations.GroupoidLaws renaming (assoc to ∙assoc) open import Cubical.Foundations.Pointed.Homogeneous open import Cubical.Foundations.Path open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Homotopy.Loopspace open import Cubical.Homotopy.Group.Base open import Cubical.Homotopy.Group.Pi3S2 open import Cubical.Homotopy.Group.PinSn open import Cubical.Homotopy.Hopf open import Cubical.Homotopy.Whitehead using (joinTo⋁) open import Cubical.Homotopy.Connected open import Cubical.Homotopy.HopfInvariant.HopfMap using (hopfMap≡HopfMap') -- Only imports a simple equality of two constructions of the Hopf map. open import Cubical.Homotopy.Group.Pi4S3.BrunerieNumber using (fold∘W ; coFib-fold∘W∙ ; π₄S³≅π₃coFib-fold∘W∙ ; S³→S²→Pushout→Unit) -- Only imports definitions/proofs from chapter 1-3 in Brunerie's thesis open import Cubical.Homotopy.Group.Pi4S3.BrunerieExperiments using (K₂ ; f7' ; S¹∙ ; encodeTruncS²) -- For computation (alternative proof) open import Cubical.Data.Sigma open import Cubical.Data.Nat open import Cubical.Data.Int renaming (ℤ to Z ; _·_ to _·Z_ ; _+_ to _+Z_) open import Cubical.HITs.S1 as S1 renaming (_·_ to _*_) open import Cubical.HITs.S2 renaming (S¹×S¹→S² to S¹×S¹→S²') open import Cubical.HITs.Sn open import Cubical.HITs.Susp renaming (toSusp to σ) open import Cubical.HITs.Join hiding (joinS¹S¹→S³) open import Cubical.HITs.Wedge open import Cubical.HITs.Pushout open import Cubical.HITs.SetTruncation renaming (rec2 to sRec2 ; elim to sElim ; elim2 to sElim2 ; map to sMap) open import Cubical.HITs.Truncation as Trunc renaming (rec to trRec) open import Cubical.HITs.PropositionalTruncation as PropTrunc open import Cubical.HITs.GroupoidTruncation as GroupoidTrunc open import Cubical.HITs.2GroupoidTruncation as 2GroupoidTrunc open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Exact open import Cubical.Algebra.Group.ZAction open import Cubical.Algebra.Group.Instances.IntMod open import Cubical.Algebra.Group.GroupPath open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Instances.Int -- For computation (alternative proof) open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.GroupStructure open S¹Hopf open Iso open GroupStr private variable ℓ : Level A B : Pointed ℓ -- Some abbreviations and simple lemmas private σ₁ = σ (S₊∙ 1) σ₂ = σ (S₊∙ 2) σ-filler : ∀ {ℓ} {A : Type ℓ} (x y : A) (i j : I) → Susp A σ-filler x y i j = compPath-filler (merid x) (sym (merid y)) i j to3ConnectedId : {f g : A →∙ B} → (isConnected 3 (typ B)) → fst f ≡ fst g → ∣ f ∣₂ ≡ ∣ g ∣₂ to3ConnectedId {f = f} {g = g} con p = trRec (squash₂ _ _) (λ q → cong ∣_∣₂ (ΣPathP (p , q))) (fst (isConnectedPathP 1 (isConnectedPath 2 con _ _) (snd f) (snd g))) connS³ : isConnected 3 (S₊ 3) connS³ = isConnectedSubtr 3 1 (sphereConnected 3) con-joinS¹S¹ : isConnected 3 (join S¹ S¹) con-joinS¹S¹ = (isConnectedRetractFromIso 3 (IsoSphereJoin 1 1) (isConnectedSubtr 3 1 (sphereConnected 3))) -- Key goal: prove that the following element of π₃(S²) gets mapped to -2 η : π' 3 (S₊∙ 2) η = fst (π'∘∙Hom 2 (fold∘W , refl)) ∣ id∙ (S₊∙ 3) ∣₂ {- Step 1. Define an addition on π₃*(A) := ∥ S¹ * S¹ →∙ A ∥₀ -} -- On the underlying function spaces. _+join_ : (f g : (join S¹ S¹ , inl base) →∙ A) → (join S¹ S¹ , inl base) →∙ A fst (f +join g) (inl x) = fst f (inl x) fst (f +join g) (inr x) = fst g (inr x) fst (f +join g) (push a b i) = (cong (fst f) (push a b ∙ sym (push base b)) ∙∙ snd f ∙ sym (snd g) ∙∙ cong (fst g) (push base base ∙∙ sym (push a base) ∙∙ push a b)) i snd (f +join g) = snd f -- Homotopy group version _π₃*+_ : (f g : ∥ (join S¹ S¹ , inl base) →∙ S₊∙ 2 ∥₂) → ∥ (join S¹ S¹ , inl base) →∙ S₊∙ 2 ∥₂ _π₃*+_ = sRec2 squash₂ λ x y → ∣ x +join y ∣₂ -- transferring between π₃ and π₃* -- (homotopy groups defined in terms of S¹ * S¹) joinify : S₊∙ 3 →∙ A → (join S¹ S¹ , inl base) →∙ A fst (joinify f) x = fst f (joinS¹S¹→S³ x) snd (joinify f) = snd f disjoin : (join S¹ S¹ , inl base) →∙ A → S₊∙ 3 →∙ A fst (disjoin f) = λ x → fst f (Iso.inv (IsoSphereJoin 1 1) x) snd (disjoin f) = snd f -- joinify is structure preserving +join≡∙Π : (f g : S₊∙ 3 →∙ A) → joinify (∙Π f g) ≡ (joinify f +join joinify g) +join≡∙Π f' g' = ΣPathP ((funExt (λ { (inl x) → sym fp ; (inr x) → sym gp ∙ cong g (merid north) ; (push a b i) j → main a b j i})) , λ i j → fp (j ∨ ~ i)) where f = fst f' g = fst g' fp = snd f' gp = snd g' path-lem : ∀ {ℓ} {A : Type ℓ} {x y z w u : A} (p : x ≡ y) (q : y ≡ z) (r : z ≡ w) (s : w ≡ u) → (refl ∙∙ p ∙∙ q) ∙ (r ∙∙ s ∙∙ refl) ≡ (p ∙∙ (q ∙ r) ∙∙ s) path-lem p q r s = cong ((p ∙ q) ∙_) (sym (compPath≡compPath' r s)) ∙∙ sym (∙assoc p q (r ∙ s)) ∙∙ cong (p ∙_) (∙assoc q r s) ∙ sym (doubleCompPath≡compPath p (q ∙ r) s) main-helper : (a b : S¹) → Square ((refl ∙∙ cong f (σ₂ (S¹×S¹→S² a b)) ∙∙ fp) ∙ (sym gp ∙∙ cong g (σ₂ (S¹×S¹→S² a b)) ∙∙ refl)) ((cong f (merid (S¹×S¹→S² a b)) ∙ sym (cong f (merid north))) ∙∙ (fp ∙ sym gp) ∙∙ cong g (merid (S¹×S¹→S² a b))) (λ _ → f north) (cong g (merid north)) main-helper a b = path-lem (cong f (σ₂ (S¹×S¹→S² a b))) fp (sym gp) (cong g (σ₂ (S¹×S¹→S² a b))) ◁ lem where lem : PathP (λ i → f north ≡ cong g (merid north) i) ((λ i → f (σ₂ (S¹×S¹→S² a b) i)) ∙∙ fp ∙ (sym gp) ∙∙ (cong g (σ₂ (S¹×S¹→S² a b)))) ((cong f (merid (S¹×S¹→S² a b)) ∙ sym (cong f (merid north))) ∙∙ fp ∙ sym gp ∙∙ cong g (merid (S¹×S¹→S² a b))) lem i j = hcomp (λ k → λ { (i = i0) → (cong-∙ f (merid (S¹×S¹→S² a b)) (sym (merid north)) (~ k) ∙∙ fp ∙ sym gp ∙∙ (λ i → g (σ-filler (S¹×S¹→S² a b) north k i))) j ; (i = i1) → ((cong f (merid (S¹×S¹→S² a b)) ∙ sym (cong f (merid north))) ∙∙ (fp ∙ sym gp) ∙∙ cong g (merid (S¹×S¹→S² a b))) j ; (j = i0) → f north ; (j = i1) → g (merid north (~ k ∨ i))}) (((cong f (merid (S¹×S¹→S² a b)) ∙ sym (cong f (merid north))) ∙∙ (fp ∙ sym gp) ∙∙ cong g (merid (S¹×S¹→S² a b))) j) main-helper₂ : (a b : S¹) → cong (fst (joinify g')) (push base base ∙∙ sym (push a base) ∙∙ push a b) ≡ cong g (merid (S¹×S¹→S² a b)) main-helper₂ a b = cong-∙∙ (fst (joinify g')) (push base base) (sym (push a base)) (push a b) ∙ cong (cong g (merid north) ∙∙_∙∙ cong g (merid (S¹×S¹→S² a b))) (cong (cong g) (cong sym (cong merid (S¹×S¹→S²rUnit a)))) ∙ ((λ i → (cong g (λ j → merid north (j ∧ ~ i))) ∙∙ (cong g (λ j → merid north (~ j ∧ ~ i))) ∙∙ cong g (merid (S¹×S¹→S² a b))) ∙ sym (lUnit (cong g (merid (S¹×S¹→S² a b))))) main : (a b : S¹) → PathP (λ i → fp (~ i) ≡ (sym gp ∙ cong g (merid north)) i) ((sym fp ∙∙ cong f (σ₂ (S¹×S¹→S² a b)) ∙∙ fp) ∙ (sym gp ∙∙ cong g (σ₂ (S¹×S¹→S² a b)) ∙∙ gp)) ((cong (fst (joinify f')) (push a b ∙ sym (push base b)) ∙∙ fp ∙ sym gp ∙∙ cong (fst (joinify g')) (push base base ∙∙ sym (push a base) ∙∙ push a b))) main a b = ((λ i j → hcomp (λ k → λ {(i = i0) → (((λ j → fp (~ j ∧ k)) ∙∙ cong f (σ₂ (S¹×S¹→S² a b)) ∙∙ fp) ∙ (sym gp ∙∙ cong g (σ₂ (S¹×S¹→S² a b)) ∙∙ λ j → gp (j ∧ k))) j ; (i = i1) → ((cong f (merid (S¹×S¹→S² a b)) ∙ sym (cong f (merid north))) ∙∙ fp ∙ sym gp ∙∙ cong g (merid (S¹×S¹→S² a b))) j ; (j = i0) → fp (~ i ∧ k) ; (j = i1) → compPath-filler' (sym gp) (cong g (merid north)) k i}) (main-helper a b i j))) ▷ λ i → cong-∙ (fst (joinify f')) (push a b) (sym (push base b)) (~ i) ∙∙ fp ∙ sym gp ∙∙ main-helper₂ a b (~ i) -- Group structure on π₃* -- todo: remove connectivity assumption module _ (A : Pointed ℓ) (con : (isConnected 3 (typ A))) where π₃*Iso : Iso (typ (π'Gr 2 A)) ∥ (join S¹ S¹ , inl base) →∙ A ∥₂ fun π₃*Iso = sMap joinify inv π₃*Iso = sMap disjoin rightInv π₃*Iso = sElim (λ _ → isSetPathImplicit) λ f → to3ConnectedId con (funExt λ x → cong (fst f) (Iso.leftInv (IsoSphereJoin 1 1) x)) leftInv π₃*Iso = sElim (λ _ → isSetPathImplicit) λ f → to3ConnectedId con (funExt (λ x → cong (fst f) (Iso.rightInv (IsoSphereJoin 1 1) x))) π₃* : Group ℓ π₃* = InducedGroupFromPres· (π'Gr 2 A) (sRec2 squash₂ (λ x y → ∣ x +join y ∣₂)) (isoToEquiv π₃*Iso) (sElim2 (λ _ _ → isSetPathImplicit) (λ f g → cong ∣_∣₂ (+join≡∙Π f g))) π₃≅π₃* : GroupEquiv (π'Gr 2 A) π₃* π₃≅π₃* = InducedGroupEquivFromPres· (π'Gr 2 A) (sRec2 squash₂ (λ x y → ∣ x +join y ∣₂)) (isoToEquiv π₃*Iso) (sElim2 (λ _ _ → isSetPathImplicit) (λ f g → cong ∣_∣₂ (+join≡∙Π f g))) -- Induced homomorphisms (A →∙ B) → (π₃*(A) → π₃*(B)) -- todo: remove connectivity assumptions module _ (conA : (isConnected 3 (typ A))) (conB : (isConnected 3 (typ B))) (f : A →∙ B) where postCompπ₃* : GroupHom (π₃* A conA) (π₃* B conB) fst postCompπ₃* = sMap (f ∘∙_) snd postCompπ₃* = makeIsGroupHom (sElim2 (λ _ _ → isSetPathImplicit) λ h g → to3ConnectedId conB (funExt λ { (inl x) → refl ; (inr x) → refl ; (push a b i) j → (cong-∙∙ (fst f) (cong (fst h) ((push a b ∙ (sym (push base b))))) (snd h ∙ (sym (snd g))) (cong (fst g) ((push base base ∙∙ (sym (push a base)) ∙∙ push a b))) ∙ cong (cong (fst f) (cong (fst h) (push a b ∙ (sym (push base b)))) ∙∙_∙∙ cong (fst f ∘ fst g) ((push base base ∙∙ (sym (push a base)) ∙∙ push a b))) (cong-∙ (fst f) (snd h) (sym (snd g)) ∙ λ j → compPath-filler (cong (fst f) (snd h)) (snd f) j ∙ sym (compPath-filler (cong (fst f) (snd g)) (snd f) j))) j i})) -- Induced iso (A ≃∙ B) → π₃*(A) ≅ π₃*(B) -- todo: remove connectivity assumptions module _ (conA : (isConnected 3 (typ A))) (conB : (isConnected 3 (typ B))) (f : A ≃∙ B) where postCompπ₃*Equiv : GroupEquiv (π₃* A conA) (π₃* B conB) fst postCompπ₃*Equiv = isoToEquiv h where h : Iso (π₃* A conA .fst) (π₃* B conB .fst) fun h = fst (postCompπ₃* conA conB (≃∙map f)) inv h = fst (postCompπ₃* conB conA (≃∙map (invEquiv∙ f))) rightInv h = sElim (λ _ → isSetPathImplicit) λ g → to3ConnectedId conB (funExt λ x → secEq (fst f) (fst g x)) leftInv h = sElim (λ _ → isSetPathImplicit) λ g → to3ConnectedId conA (funExt λ x → retEq (fst f) (fst g x)) snd postCompπ₃*Equiv = snd (postCompπ₃* conA conB (≃∙map f)) -- The relevant groups (in order of the iso π₃(S²) ≅ ℤ) π₃S² = π'Gr 2 (S₊∙ 2) π₃*S² = π₃* (S₊∙ 2) (sphereConnected 2) π₃*joinS¹S¹ = π₃* (join S¹ S¹ , inl base) con-joinS¹S¹ π₃*S³ = π₃* (S₊∙ 3) connS³ π₃S³ = π'Gr 2 (S₊∙ 3) {- Goal now: Show that (η : π₃(S²)) ↦ (η₁ : π₃*(S²)) ↦ (η₂ : π₃*(S¹ * S¹)) ↦ (η₃ : π₃*(S³)) ↦ (η₄ : π₃(S³)) ↦ (-2 : ℤ) for some terms η₁ ... η₄ by a sequence of isomorphisms π₃(S²) ≅ π₃*(S²) ≅ π₃*(S¹ * S¹) ≅ π₃*(S³) ≅ π₃(S³) ≅ ℤ Hence, there is an is an iso π₃(S²) ≅ ℤ taking η to -2, from which we can conclude π₄(S³) ≅ ℤ/2ℤ. -} -- Underlying functions of (some of) the ηs η₁-raw : (join S¹ S¹ , inl base) →∙ S₊∙ 2 fst η₁-raw (inl x) = north fst η₁-raw (inr x) = north fst η₁-raw (push a b i) = (σ₁ b ∙ σ₁ a) i snd η₁-raw = refl η₂-raw : (join S¹ S¹ , inl base) →∙ (join S¹ S¹ , inl base) fst η₂-raw (inl x) = inr (invLooper x) fst η₂-raw (inr x) = inr x fst η₂-raw (push a b i) = (sym (push (b * invLooper a) (invLooper a)) ∙ push (b * invLooper a) b) i snd η₂-raw = sym (push base base) η₃-raw : (join S¹ S¹ , inl base) →∙ S₊∙ 3 fst η₃-raw (inl x) = north fst η₃-raw (inr x) = north fst η₃-raw (push a b i) = (sym (σ₂ (S¹×S¹→S² a b)) ∙ sym (σ₂ (S¹×S¹→S² a b))) i snd η₃-raw = refl -- Homotopy group versions η₁ : fst π₃*S² η₁ = ∣ η₁-raw ∣₂ η₂ : fst (π₃*joinS¹S¹) η₂ = ∣ η₂-raw ∣₂ η₃ : π₃*S³ .fst η₃ = ∣ η₃-raw ∣₂ η₄ : fst π₃S³ η₄ = ·π' 2 (-π' 2 ∣ idfun∙ (S₊∙ 3) ∣₂) (-π' 2 ∣ idfun∙ (S₊∙ 3) ∣₂) -- π₃S²≅π₃*S² π₃S²→π₃*S² : GroupEquiv π₃S² π₃*S² π₃S²→π₃*S² = π₃≅π₃* (S₊∙ 2) (sphereConnected 2) -- Time for π₃*(S¹ * S¹) ≅ π₃*S². -- We have this iso already, but slightly differently stated, -- so the following proof becomes a bit technical. -- We define it in terms a slight variation of the Hopf map Hopfσ : join S¹ S¹ → S₊ 2 Hopfσ (inl x) = north Hopfσ (inr x) = north Hopfσ (push a b i) = σ₁ (invLooper a * b) i π₃*joinS¹S¹→π₃*S² : GroupHom π₃*joinS¹S¹ π₃*S² π₃*joinS¹S¹→π₃*S² = postCompπ₃* con-joinS¹S¹ (sphereConnected 2) (Hopfσ , refl) π₃*joinS¹S¹≅π₃*S² : GroupEquiv π₃*joinS¹S¹ π₃*S² fst (fst π₃*joinS¹S¹≅π₃*S²) = fst π₃*joinS¹S¹→π₃*S² snd (fst π₃*joinS¹S¹≅π₃*S²) = subst isEquiv idLem isEquivπ₃*joinS¹S¹→π₃*S²' where π₃*joinS¹S¹→π₃*S²' : GroupHom π₃*joinS¹S¹ π₃*S² π₃*joinS¹S¹→π₃*S²' = postCompπ₃* con-joinS¹S¹ (sphereConnected 2) (fst ∘ JoinS¹S¹→TotalHopf , refl) isEquivπ₃*joinS¹S¹→π₃*S²' : isEquiv (fst π₃*joinS¹S¹→π₃*S²') isEquivπ₃*joinS¹S¹→π₃*S²' = transport (λ i → isEquiv (fst (help (~ i)))) (snd (fst GrEq)) where GrEq = compGroupEquiv (πS³≅πTotalHopf 2) π'₃S²≅π'₃TotalHopf help : PathP (λ i → GroupHom (GroupPath π₃*joinS¹S¹ π₃S³ .fst (compGroupEquiv (invGroupEquiv (π₃≅π₃* (join S¹ S¹ , inl base) con-joinS¹S¹)) (π'Iso 2 (isoToEquiv (IsoSphereJoin 1 1) , refl))) i) (GroupPath π₃*S² π₃S² .fst (invGroupEquiv (π₃≅π₃* (S₊∙ 2) (sphereConnected 2))) i)) π₃*joinS¹S¹→π₃*S²' (fst (fst GrEq) , snd GrEq) help = toPathP (Σ≡Prop (λ _ → isPropIsGroupHom _ _) (funExt λ f → (λ i → transportRefl ((invGroupEquiv (π₃≅π₃* (S₊∙ 2) (sphereConnected 2))) .fst .fst (fst π₃*joinS¹S¹→π₃*S²' ( ((fst (fst (π₃≅π₃* (join S¹ S¹ , inl base) con-joinS¹S¹))) (invEq (fst (π'Iso 2 (isoToEquiv (IsoSphereJoin 1 1) , refl))) (transportRefl f i)))))) i) ∙ main f)) where main : (f : _) → invEquiv (fst (π₃≅π₃* (S₊∙ 2) (sphereConnected 2))) .fst (fst π₃*joinS¹S¹→π₃*S²' (invEq (invEquiv (fst (π₃≅π₃* (join S¹ S¹ , inl base) con-joinS¹S¹))) (invEq (fst (π'Iso 2 (isoToEquiv Iso-joinS¹S¹-S³ , (λ _ → north)))) f))) ≡ fst GrEq .fst f main = sElim (λ _ → isSetPathImplicit) λ f → to3ConnectedId (sphereConnected 2) (funExt λ x → (λ i → fst (JoinS¹S¹→TotalHopf (Iso.inv (IsoSphereJoin 1 1) (fst f (Iso.rightInv (IsoSphereJoin 1 1) x i))))) ∙ sym (funExt⁻ (sym (cong fst hopfMap≡HopfMap')) (fst f x))) idLem : fst π₃*joinS¹S¹→π₃*S²' ≡ fst π₃*joinS¹S¹→π₃*S² idLem = funExt (sElim (λ _ → isSetPathImplicit) λ f → to3ConnectedId (sphereConnected 2) (funExt λ x → lem (fst f x))) where lem : (x : _) → fst (JoinS¹S¹→TotalHopf x) ≡ Hopfσ x lem (inl x) = refl lem (inr x) = sym (merid base) lem (push a b i) j = compPath-filler (merid (invLooper a * b)) (sym (merid base)) j i snd π₃*joinS¹S¹≅π₃*S² = snd π₃*joinS¹S¹→π₃*S² -- π₃*(S³) ≅ π₃*(S¹ * S¹) π₃*S³≅π₃*joinS¹S¹ : GroupEquiv π₃*S³ π₃*joinS¹S¹ π₃*S³≅π₃*joinS¹S¹ = postCompπ₃*Equiv connS³ con-joinS¹S¹ (isoToEquiv (invIso (IsoSphereJoin 1 1)) , refl) -- π₃(S³)≅π₃*(S³) π₃S³≅π₃*S³ : GroupEquiv π₃S³ π₃*S³ π₃S³≅π₃*S³ = π₃≅π₃* (S₊∙ 3) connS³ η↦η₁ : fst (fst π₃S²→π₃*S²) η ≡ η₁ η↦η₁ = to3ConnectedId (sphereConnected 2) (funExt λ x → (funExt⁻ lem₁ x) ∙ sym (lem₂ x)) where lem₁ : fold∘W ∘ joinS¹S¹→S³ ≡ fold⋁ ∘ (joinTo⋁ {A = S₊∙ 1} {B = S₊∙ 1}) lem₁ = funExt λ x → cong (fold⋁ ∘ (joinTo⋁ {A = S₊∙ 1} {B = S₊∙ 1})) (leftInv (IsoSphereJoin 1 1) x) lem₂ : (x : join S¹ S¹) → fst η₁-raw x ≡ (fold⋁ ∘ joinTo⋁) x lem₂ (inl x) = refl lem₂ (inr x) = refl lem₂ (push a b i) j = help j i where help : (σ₁ b ∙ σ₁ a) ≡ cong (fold⋁ ∘ joinTo⋁) (push a b) help = sym (cong-∙∙ fold⋁ (λ j → inr (σ₁ b j)) (sym (push tt)) (λ j → inl (σ₁ a j)) ∙ λ i → (λ j → σ₁ b (j ∧ ~ i)) ∙∙ (λ j → σ₁ b (j ∨ ~ i)) ∙∙ σ₁ a) -- We show that η₂ ↦ η₁ (this is easier than η₁ ↦ η₂) η₂↦η₁ : fst (fst π₃*joinS¹S¹≅π₃*S²) η₂ ≡ η₁ η₂↦η₁ = to3ConnectedId (sphereConnected 2) (funExt λ { (inl x) → refl ; (inr x) → refl ; (push a b i) j → main a b j i}) where lem : (a b : S¹) → (sym (σ₁ (invLooper (b * invLooper a) * invLooper a)) ≡ σ₁ b) × (σ₁ (invLooper (b * invLooper a) * b) ≡ σ₁ a) fst (lem a b) = cong sym (cong σ₁ (sym (invLooperDistr (b * invLooper a) a)) ∙ σ-invSphere 0 (b * invLooper a * a)) ∙ cong σ₁ (sym (assocS¹ b (invLooper a) a) ∙ cong (b *_) (commS¹ _ _ ∙ sym (rCancelS¹ a)) ∙ rUnitS¹ b) snd (lem a b) = cong σ₁ (cong (_* b) (invLooperDistr b (invLooper a) ∙ cong (invLooper b *_) (invSphere² 1 a) ∙ commS¹ (invLooper b) a) ∙ sym (assocS¹ a (invLooper b) b) ∙ cong (a *_) (commS¹ _ _ ∙ sym (rCancelS¹ b)) ∙ rUnitS¹ a) main : (a b : S¹) → cong Hopfσ ((sym (push (b * invLooper a) (invLooper a)) ∙ push (b * invLooper a) b)) ≡ σ₁ b ∙ σ₁ a main a b = cong-∙ Hopfσ (sym (push (b * invLooper a) (invLooper a))) (push (b * invLooper a) b) ∙ cong₂ _∙_ (fst (lem a b)) (snd (lem a b)) -- We show that η₂ ↦ η₃ η₂↦η₃ : invEq (fst π₃*S³≅π₃*joinS¹S¹) η₂ ≡ η₃ η₂↦η₃ = to3ConnectedId connS³ (funExt λ x → sym (joinS¹S¹→S³σ≡ (fst η₂-raw x)) ∙ lem x) where joinS¹S¹→S³σ : join S¹ S¹ → S₊ 3 joinS¹S¹→S³σ (inl x) = north joinS¹S¹→S³σ (inr x) = north joinS¹S¹→S³σ (push a b i) = σ₂ (S¹×S¹→S² a b) i joinS¹S¹→S³σ≡ : (x : _) → joinS¹S¹→S³σ x ≡ joinS¹S¹→S³ x joinS¹S¹→S³σ≡ (inl x) = refl joinS¹S¹→S³σ≡ (inr x) = merid north joinS¹S¹→S³σ≡ (push a b i) j = compPath-filler (merid (S¹×S¹→S² a b)) (sym (merid north)) (~ j) i lem : (x : _) → joinS¹S¹→S³σ (fst η₂-raw x) ≡ fst η₃-raw x lem (inl x) = refl lem (inr x) = refl lem (push a b i) j = main j i where left-lem : σ₂ (S¹×S¹→S² (b * invLooper a) (invLooper a)) ≡ σ₂ (S¹×S¹→S² a b) left-lem = cong σ₂ (S¹×S¹→S²-Distr b (invLooper a) ∙ sym (S¹×S¹→S²-antiComm a b)) right-lem : σ₂ (S¹×S¹→S² (b * invLooper a) b) ≡ sym (σ₂ (S¹×S¹→S² a b)) right-lem = cong σ₂ ((cong (λ x → S¹×S¹→S² x b) (commS¹ b (invLooper a)) ∙ S¹×S¹→S²-Distr (invLooper a) b) ∙∙ S¹×S¹→S²-antiComm (invLooper a) b ∙∙ invSusp∘S¹×S¹→S² b (invLooper a)) ∙∙ σ-invSphere 1 (S¹×S¹→S² b (invLooper a)) ∙∙ cong (sym ∘ σ₂) (sym (S¹×S¹→S²-antiComm a b)) main : cong (joinS¹S¹→S³σ ∘ fst η₂-raw) (push a b) ≡ sym (σ₂ (S¹×S¹→S² a b)) ∙ sym (σ₂ (S¹×S¹→S² a b)) main = cong-∙ joinS¹S¹→S³σ (sym (push (b * invLooper a) (invLooper a))) (push (b * invLooper a) b) ∙ cong₂ _∙_ (cong sym left-lem) right-lem -- We show that η₄ ↦ η₃ (this is easier than η₃ ↦ η₄) η₄↦η₃ : fst (fst π₃S³≅π₃*S³) η₄ ≡ η₃ η₄↦η₃ = IsGroupHom.pres· (snd π₃S³≅π₃*S³) (-π' 2 ∣ idfun∙ (S₊∙ 3) ∣₂) (-π' 2 ∣ idfun∙ (S₊∙ 3) ∣₂) ∙ cong₂ _+π₃*_ gen↦η₃/2 gen↦η₃/2 ∙ η₃/2+η₃/2≡η₃ where _+π₃*_ : fst π₃*S³ → fst π₃*S³ → fst π₃*S³ _+π₃*_ = GroupStr._·_ (snd π₃*S³) η₃-raw/2 : (join S¹ S¹ , inl base) →∙ S₊∙ 3 fst η₃-raw/2 (inl x) = north fst η₃-raw/2 (inr x) = north fst η₃-raw/2 (push a b i) = σ₂ (S¹×S¹→S² a b) (~ i) snd η₃-raw/2 = refl η₃/2 : π₃*S³ .fst η₃/2 = ∣ η₃-raw/2 ∣₂ gen↦η₃/2 : fst (fst π₃S³≅π₃*S³) (-π' 2 ∣ idfun∙ (S₊∙ 3) ∣₂) ≡ η₃/2 gen↦η₃/2 = to3ConnectedId connS³ (funExt λ { (inl x) → refl ; (inr x) → refl ; (push a b i) → refl}) η₃/2+η₃/2≡η₃ : η₃/2 +π₃* η₃/2 ≡ η₃ η₃/2+η₃/2≡η₃ = to3ConnectedId connS³ (funExt λ { (inl x) → refl ; (inr x) → refl ; (push a b i) → λ j → lem a b j i}) where lem : (a b : S¹) → cong (fst (η₃-raw/2 +join η₃-raw/2)) (push a b) ≡ cong (fst η₃-raw) (push a b) lem a b = (λ i → cong-∙ (fst η₃-raw/2) (push a b) (sym (push base b)) i ∙∙ rUnit refl (~ i) ∙∙ cong-∙∙ (fst η₃-raw/2) (push base base) (sym (push a base)) (push a b) i) ∙∙ (λ i → (sym (σ₂ (S¹×S¹→S² a b)) ∙ rCancel (merid north) i) ∙∙ refl ∙∙ (sym (rCancel (merid north) i) ∙∙ (cong σ₂ (S¹×S¹→S²rUnit a) ∙ rCancel (merid north)) i ∙∙ sym (σ₂ (S¹×S¹→S² a b)))) ∙∙ ((λ i → rUnit (sym (σ₂ (S¹×S¹→S² a b))) (~ i) ∙∙ refl ∙∙ lUnit (sym (σ₂ (S¹×S¹→S² a b))) (~ i)) ∙ λ i → (λ j → σ₂ (S¹×S¹→S² a b) (i ∨ ~ j)) ∙∙ (λ j → σ₂ (S¹×S¹→S² a b) (i ∧ ~ j)) ∙∙ sym (σ₂ (S¹×S¹→S² a b))) -- Agda is very keen on expanding things, so we make an abstract -- summary of the main lemmas above abstract π₃S²≅π₃*S²-abs : GroupEquiv π₃S² π₃*S² π₃S²≅π₃*S²-abs = π₃S²→π₃*S² π₃*S²≅π₃*joinS¹S¹-abs : GroupEquiv π₃*S² π₃*joinS¹S¹ π₃*S²≅π₃*joinS¹S¹-abs = invGroupEquiv π₃*joinS¹S¹≅π₃*S² π₃*joinS¹S¹≅π₃*S³-abs : GroupEquiv π₃*joinS¹S¹ π₃*S³ π₃*joinS¹S¹≅π₃*S³-abs = invGroupEquiv π₃*S³≅π₃*joinS¹S¹ π₃*S³≅π₃*S³-abs : GroupEquiv π₃*S³ π₃S³ π₃*S³≅π₃*S³-abs = invGroupEquiv π₃S³≅π₃*S³ -- stated in terms of (n : ℕ) to prevent normalisation π₃'S³≅ℤ-abs : (n : ℕ) → GroupEquiv (π'Gr n (S₊∙ (suc n))) ℤGroup π₃'S³≅ℤ-abs n = GroupIso→GroupEquiv (πₙ'Sⁿ≅ℤ n) η↦η₁-abs : fst (fst π₃S²≅π₃*S²-abs) η ≡ η₁ η↦η₁-abs = η↦η₁ η₁↦η₂-abs : fst (fst π₃*S²≅π₃*joinS¹S¹-abs) η₁ ≡ η₂ η₁↦η₂-abs = cong (fst (fst π₃*S²≅π₃*joinS¹S¹-abs)) (sym η₂↦η₁) ∙ secEq (fst π₃*S²≅π₃*joinS¹S¹-abs) η₂ η₂↦η₃-abs : fst (fst π₃*joinS¹S¹≅π₃*S³-abs) η₂ ≡ η₃ η₂↦η₃-abs = η₂↦η₃ η₃↦η₄-abs : fst (fst π₃*S³≅π₃*S³-abs) η₃ ≡ η₄ η₃↦η₄-abs = cong (invEq (fst π₃S³≅π₃*S³)) (sym η₄↦η₃) ∙ retEq (fst π₃S³≅π₃*S³) η₄ gen↦1 : (n : ℕ) → fst (fst (π₃'S³≅ℤ-abs n)) ∣ idfun∙ (S₊∙ (suc n)) ∣₂ ≡ 1 gen↦1 = πₙ'Sⁿ≅ℤ-idfun∙ -- We finally prove that η₄ ↦ -2 abstract η₄↦-2 : fst (fst (π₃'S³≅ℤ-abs 2)) η₄ ≡ -2 η₄↦-2 = speedUp (∣ idfun∙ (S₊∙ 3) ∣₂) (gen↦1 2) where speedUp : (x : _) → fst (fst (π₃'S³≅ℤ-abs (suc (suc zero)))) x ≡ (pos (suc zero)) → (fst (fst (π₃'S³≅ℤ-abs 2))) (·π' 2 (-π' 2 x) (-π' 2 x)) ≡ -2 speedUp x p = IsGroupHom.pres· (π₃'S³≅ℤ-abs 2 .snd) (-π' 2 x) (-π' 2 x) ∙ cong (λ x → x +Z x) (IsGroupHom.presinv (π₃'S³≅ℤ-abs 2 .snd) x ∙ cong (inv (ℤGroup .snd)) p) -- Puting it all together, we get our group iso π₃(S²) ≅ ℤGroup π₃'S²≅ℤ : GroupEquiv (π'Gr 2 (S₊∙ 2)) ℤGroup π₃'S²≅ℤ = compGroupEquiv π₃S²≅π₃*S²-abs (compGroupEquiv π₃*S²≅π₃*joinS¹S¹-abs (compGroupEquiv π₃*joinS¹S¹≅π₃*S³-abs (compGroupEquiv π₃*S³≅π₃*S³-abs (π₃'S³≅ℤ-abs 2)))) -- ... which takes η to -2 η↦-2 : fst (fst π₃'S²≅ℤ) η ≡ - 2 η↦-2 = cong (fst (fst (π₃'S³≅ℤ-abs 2))) (cong (fst π₃*S³≅π₃*S³-abs .fst) (cong (fst π₃*joinS¹S¹≅π₃*S³-abs .fst) (cong (fst (fst π₃*S²≅π₃*joinS¹S¹-abs)) η↦η₁-abs ∙ η₁↦η₂-abs) ∙ η₂↦η₃-abs) ∙ η₃↦η₄-abs) ∙ η₄↦-2 -- We combine this with the rest of the main conclusions of chapters -- 1-3 in Brunerie's thesis BrunerieGroupEquiv : GroupEquiv (π'Gr 3 (S₊∙ 3)) (ℤGroup/ 2) BrunerieGroupEquiv = compGroupEquiv (compGroupEquiv π₄S³≅π₃coFib-fold∘W∙ (invGroupEquiv (GroupEquiv-abstractℤ/abs-gen (π'Gr 2 (S₊∙ 3)) (π'Gr 2 (S₊∙ 2)) (π'Gr 2 coFib-fold∘W∙) (invGroupEquiv (π₃'S³≅ℤ-abs 2)) (invGroupEquiv π₃'S²≅ℤ) (π'∘∙Hom 2 (fold∘W , refl)) _ S³→S²→Pushout→Unit 2 (cong abs (cong (invEq (invEquiv (fst π₃'S²≅ℤ)) ∘ sMap (_∘∙_ (fold∘W , refl))) (sym (cong (invEq (fst (π₃'S³≅ℤ-abs 2))) (gen↦1 2)) ∙ retEq (fst (π₃'S³≅ℤ-abs 2)) ∣ idfun∙ (S₊∙ 3) ∣₂)) ∙ cong abs η↦-2)))) (abstractℤ/≅ℤ 2) ------------- Part 2: proof (partly) by computation ------------- -- Alternative version of the same proof: proving η₃ ↦ -2 by computation connS² : isConnected 3 S² connS² = ∣ base ∣ , Trunc.elim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) (S²ToSetElim (λ _ → isOfHLevelTrunc 3 _ _) refl) connSuspS² : isConnected 4 (Susp S²) fst connSuspS² = ∣ north ∣ snd connSuspS² = Trunc.elim (λ _ → isOfHLevelPath 4 (isOfHLevelTrunc 4) _ _) λ { north → refl ; south → cong ∣_∣ₕ (merid base) ; (merid a i) → lem a i} where lem : (a : S²) → PathP (λ i → ∣ north ∣ₕ ≡ ∣ merid a i ∣ₕ) refl (cong ∣_∣ₕ (merid base)) lem = S²ToSetElim (λ _ → isOfHLevelPathP' 2 (isOfHLevelTrunc 4 _ _) _ _) λ i j → ∣ merid base (i ∧ j) ∣ₕ π₃*S³' : Group₀ π₃*S³' = π₃* (Susp∙ S²) (isConnectedSubtr 3 1 connSuspS²) -- The version of η₃ we have been able to compute lies in π₃*S³' η₃'-raw : (join S¹ S¹ , inl base) →∙ (Susp S² , north) fst η₃'-raw (inl x) = north fst η₃'-raw (inr x) = north fst η₃'-raw (push a b i) = (σ (S² , base) (S¹×S¹→S²' a b) ∙ σ (S² , base) (S¹×S¹→S²' a b)) i snd η₃'-raw = refl η₃' : π₃*S³' .fst η₃' = ∣ η₃'-raw ∣₂ -- We first have to show (manually) that the following iso sends η₃ to η₃' π₃*S³≅π₃*S³' : GroupEquiv π₃*S³ π₃*S³' π₃*S³≅π₃*S³' = postCompπ₃*Equiv _ _ (isoToEquiv (congSuspIso (invIso S²IsoSuspS¹)) , refl) π₃*S³≅π₃*S³'-pres-η₃ : fst (fst π₃*S³≅π₃*S³') η₃ ≡ η₃' π₃*S³≅π₃*S³'-pres-η₃ = cong ∣_∣₂ (ΣPathP ((funExt (λ { (inl x) → refl ; (inr x) → refl ; (push a b i) j → lem a b j i})) , sym (rUnit refl))) where lem : (a b : S¹) → cong (suspFun SuspS¹→S²) (sym (σ₂ (S¹×S¹→S² a b)) ∙ sym (σ₂ (S¹×S¹→S² a b))) ≡ (σ (S² , base) (S¹×S¹→S²' a b) ∙ σ (S² , base) (S¹×S¹→S²' a b)) lem a b = cong-∙ (suspFun SuspS¹→S²) (sym (σ₂ (S¹×S¹→S² a b))) (sym (σ₂ (S¹×S¹→S² a b))) ∙ cong (λ x → x ∙ x) (cong sym (cong-∙ (suspFun SuspS¹→S²) (merid (S¹×S¹→S² a b)) (sym (merid north))) ∙ cong sym (cong (σ S²∙) (SuspS¹→S²-S¹×S¹→S² a b)) ∙ sym (S¹×S¹→S²-sym a b)) -- After this, we want to establish an iso π₃*S³'≅ℤ which is nice enough to compute. -- This requires a bit of work and some hacking. -- First iso: π₃*(Susp S²) ≅ π₁(S¹ →∙ Ω(Susp S²)) private map← : S₊∙ 1 →∙ (S₊∙ 1 →∙ Ω (Susp∙ S²) ∙) → (join S¹ S¹ , inl base) →∙ Susp∙ S² fst (map← f) (inl x) = north fst (map← f) (inr x) = north fst (map← f) (push a b i) = fst f a .fst b i snd (map← f) = refl map→ : (join S¹ S¹ , inl base) →∙ Susp∙ S² → S₊∙ 1 →∙ (S₊∙ 1 →∙ Ω (Susp∙ S²) ∙) fst (fst (map→ f) x) y = sym (snd f) ∙∙ cong (fst f) ((push base base ∙ sym (push x base)) ∙∙ push x y ∙∙ sym (push base y)) ∙∙ snd f snd (fst (map→ f) x) = cong (sym (snd f) ∙∙_∙∙ snd f) (cong (cong (fst f)) ((λ j → (push base base ∙ (λ i → push x base (~ i ∨ j))) ∙∙ (λ i → push x base (i ∨ j)) ∙∙ sym (push base base)) ∙ cong (_∙∙ refl ∙∙ sym (push base base)) (sym (rUnit (push base base))) ∙ ∙∙lCancel (sym (push base base)))) ∙ ∙∙lCancel (snd f) snd (map→ f) = coherence _ λ x → cong (sym (snd f) ∙∙_∙∙ snd f) (cong (cong (fst f)) (cong (_∙∙ push base x ∙∙ sym (push base x)) (rCancel (push base base)) ∙ rCancel (push base x))) ∙ ∙∙lCancel (snd f) where abstract coherence : (f : S₊∙ 1 →∙ Ω (Susp∙ S²)) → ((x : S¹) → fst f x ≡ refl) → f ≡ ((λ _ → refl) , refl) coherence f p = →∙Homogeneous≡ (isHomogeneousPath _ _) (funExt p) -- Iso for underlying type π₃*S³'≅π₁S¹→∙ΩS³'-raw : Iso (π₃*S³' .fst) ((π'Gr 0 (S₊∙ 1 →∙ Ω (Susp∙ S²) ∙)) .fst) fun π₃*S³'≅π₁S¹→∙ΩS³'-raw = sMap map→ inv π₃*S³'≅π₁S¹→∙ΩS³'-raw = sMap map← rightInv π₃*S³'≅π₁S¹→∙ΩS³'-raw = sElim (λ _ → isSetPathImplicit) λ f → cong ∣_∣₂ (→∙Homogeneous≡ (subst isHomogeneous (ua∙ {A = (Ω^ 2) (Susp∙ S²)} {B = (S₊∙ 1 →∙ Ω (Susp∙ S²) ∙)} (isoToEquiv (IsoΩSphereMap 1)) (ΣPathP ((funExt (λ { base → refl ; (loop i) → refl})) , refl))) (isHomogeneousPath _ _)) (funExt λ x → →∙Homogeneous≡ (isHomogeneousPath _ _) (funExt λ y → sym (rUnit ((cong (fst (map← f))) ((push base base ∙ sym (push x base)) ∙∙ push x y ∙∙ sym (push base y)))) ∙∙ cong-∙∙ (fst (map← f)) (push base base ∙ sym (push x base)) (push x y) (sym (push base y)) ∙∙ (λ i → cong-∙ (fst (map← f)) (push base base) (sym (push x base)) i ∙∙ f .fst x .fst y ∙∙ sym (snd f i .fst y)) ∙∙ cong (_∙∙ f .fst x .fst y ∙∙ refl) (cong₂ _∙_ (fst f base .snd) (cong sym (fst f x .snd)) ∙ sym (rUnit refl)) ∙∙ sym (rUnit (f .fst x .fst y))))) leftInv π₃*S³'≅π₁S¹→∙ΩS³'-raw = sElim (λ _ → isSetPathImplicit) λ f → cong ∣_∣₂ (ΣPathP ((funExt (λ { (inl x) → sym (snd f) ∙ cong (fst f) (push base base ∙ sym (push x base)) ; (inr x) → sym (snd f) ∙ cong (fst f) (push base x) ; (push a b i) j → hcomp (λ k → λ {(i = i0) → compPath-filler' (sym (snd f)) (cong (fst f) (push base base ∙ sym (push a base))) k j ; (i = i1) → compPath-filler' (sym (snd f)) (cong (fst f) (push base b)) k j ; (j = i1) → fst f (push a b i) }) (fst f (doubleCompPath-filler (push base base ∙ sym (push a base)) (push a b) (sym (push base b)) (~ j) i))})) , help f)) where help : (f : (join S¹ S¹ , inl base) →∙ Susp∙ S²) → PathP (λ i → (sym (snd f) ∙ cong (fst f) (push base base ∙ sym (push base base))) i ≡ north) refl (snd f) help f = flipSquare ((cong (sym (snd f) ∙_) (cong (cong (fst f)) (rCancel (push base base))) ∙ sym (rUnit (sym (snd f)))) ◁ λ i j → snd f (i ∨ ~ j)) -- the iso π₁S¹→∙ΩS³'≅π₃*S³' : GroupIso (π'Gr 0 (S₊∙ 1 →∙ Ω (Susp∙ S²) ∙)) π₃*S³' fst π₁S¹→∙ΩS³'≅π₃*S³' = invIso π₃*S³'≅π₁S¹→∙ΩS³'-raw snd π₁S¹→∙ΩS³'≅π₃*S³' = makeIsGroupHom (sElim2 (λ _ _ → isSetPathImplicit) λ f g → cong ∣_∣₂ (ΣPathP ((funExt (λ { (inl x) → refl ; (inr x) → refl ; (push a b i) j → main f g a b j i})) , refl))) where main : (f g : S₊∙ 1 →∙ (S₊∙ 1 →∙ Ω (Susp∙ S²) ∙)) (a b : S¹) → cong (fst (map← (∙Π f g))) (push a b) ≡ cong (fst (map← f +join map← g)) (push a b) main f g a b = (main-lem a b ∙ (λ i → (λ j → fst f a .fst b (j ∧ i)) ∙∙ ((λ j → fst f a .fst b (j ∨ i))) ∙∙ fst g a .fst b)) ∙ λ i → (rUnit (fst f a .fst b) ∙ cong (fst f a .fst b ∙_) (cong sym (sym (funExt⁻ (cong fst (snd f)) b))) ∙ sym (cong-∙ (map← f .fst) (push a b) (sym (push base b)))) i ∙∙ rUnit refl i ∙∙ ((lUnit (fst g a .fst b) ∙ (λ i → fst g base .snd (~ i) ∙∙ sym (fst g a .snd (~ i)) ∙∙ cong (map← g .fst) (push a b))) ∙ (sym (cong-∙∙ (map← g .fst) (push base base) (sym (push a base)) (push a b)))) i where JLem : ∀ {ℓ} {A : Type ℓ} (* : A) (fab : * ≡ *) (fabrefl : refl ≡ fab) (gab : * ≡ *) (gabrefl : refl ≡ gab) → (fl : fab ≡ fab) (gl : gab ≡ gab) → PathP (λ i → (rUnit refl ∙ (λ i → fabrefl i ∙ gabrefl i)) i ≡ (rUnit refl ∙ (λ i → fabrefl i ∙ gabrefl i)) i) ((fabrefl ∙∙ fl ∙∙ sym fabrefl) ∙ (gabrefl ∙∙ gl ∙∙ sym gabrefl)) (cong₂ _∙_ fl gl) JLem * = J> (J> λ fl gl → flipSquare (sym (rUnit (rUnit refl)) ◁ ((flipSquare (cong₂ _∙_ (sym (rUnit fl)) (sym (rUnit gl)) ◁ ((λ i → (cong (λ x → rUnit x i) fl ∙ cong (λ x → lUnit x i) gl)) ▷ sym (cong₂Funct _∙_ fl gl)))) ▷ rUnit (rUnit refl)))) pp : (b : S¹) → refl ∙ refl ≡ fst (fst f base) b ∙ fst (fst g base) b pp b i = fst (snd f (~ i)) b ∙ fst (snd g (~ i)) b main-lem : (a b : S¹) → cong (fst (map← (∙Π f g))) (push a b) ≡ (fst f a .fst b ∙ fst g a .fst b) main-lem base b = rUnit refl ∙ pp b main-lem (loop i) b j = hcomp (λ r → λ {(i = i0) → (rUnit refl ∙ pp b) j ; (i = i1) → (rUnit refl ∙ pp b) j ; (j = i0) → lem (~ r) i ; (j = i1) → (fst f (loop i) .fst b ∙ fst g (loop i) .fst b)}) (JLem north (fst f base .fst b) (λ i → fst (snd f (~ i)) b) (fst g base .fst b) (λ i → fst (snd g (~ i)) b) (λ i → fst f (loop i) .fst b) (λ i → fst g (loop i) .fst b) j i) where lem : cong (λ l → cong (fst (map← (∙Π f g))) (push l b)) loop ≡ ((λ i → fst (snd f (~ i)) b) ∙∙ funExt⁻ (cong fst (cong (f .fst) loop)) b ∙∙ (λ i → fst (snd f i) b)) ∙ ((λ i → fst (snd g (~ i)) b) ∙∙ funExt⁻ (cong fst (cong (g .fst) loop)) b ∙∙ (λ i → fst (snd g i) b)) lem = (λ i → funExt⁻ (cong-∙ fst (sym (snd f) ∙∙ cong (f .fst) loop ∙∙ snd f) (sym (snd g) ∙∙ cong (g .fst) loop ∙∙ snd g) i) b) ∙ λ i → funExt⁻ (cong-∙∙ fst (sym (snd f)) (cong (f .fst) loop) (snd f) i ∙ cong-∙∙ fst (sym (snd g)) (cong (g .fst) loop) (snd g) i) b -- The goal now is to establish a homomorphism from π₁S¹→∙ΩS³' to ℤ. -- We can then show that 1 is in its image via computation, establishing that it -- is an iso (since we already know that π₁S¹→∙ΩS³' ≅ ℤ) -- We first introduce the following base change map defined via pattern -- matching for better computational behaviour ΩK₂-basechange : (x : K₂) → Ω (K₂ , x) →∙ Ω (K₂ , ∣ base ∣₄) ΩK₂-basechange = 2GroupoidTrunc.elim (λ _ → isOfHLevelΣ 4 (isOfHLevelΠ 4 (λ _ → isOfHLevelPath 4 squash₄ _ _)) λ _ → isOfHLevelPath 4 (isOfHLevelPath 4 squash₄ _ _) _ _) λ { base → idfun∙ _ ; (surf i j) → coherence i j} where K₂≃coHomK2 : Iso K₂ (coHomK 2) K₂≃coHomK2 = compIso 2GroupoidTruncTrunc4Iso (mapCompIso S²IsoSuspS¹) ΩK₂≡S¹ : Ω (K₂ , ∣ base ∣₄) ≡ S¹∙ ΩK₂≡S¹ = ua∙ (isoToEquiv (compIso (congIso K₂≃coHomK2) (compIso (invIso (Iso-Kn-ΩKn+1 1)) (truncIdempotentIso 3 isGroupoidS¹)))) refl coherence : SquareP (λ i j → Ω (K₂ , ∣ surf i j ∣₄) →∙ Ω (K₂ , ∣ base ∣₄)) (λ _ → idfun∙ (Ω (K₂ , ∣ base ∣₄))) (λ _ → idfun∙ (Ω (K₂ , ∣ base ∣₄))) (λ _ → idfun∙ (Ω (K₂ , ∣ base ∣₄))) λ _ → idfun∙ (Ω (K₂ , ∣ base ∣₄)) coherence = toPathP (isOfHLevelPath' 1 (subst isSet (λ i → ΩK₂≡S¹ (~ i) →∙ Ω (K₂ , ∣ base ∣₄)) (subst isSet (isoToPath (equivToIso (Ω→SphereMap 1 {A = Ω (K₂ , ∣ base ∣₄) } , isEquiv-Ω→SphereMap 1))) (squash₄ _ _ _ _))) _ _ _ _) -- The three homomorphisms π₁S¹→∙ΩS³'→π₁S¹→∙K₂ : GroupHom (π'Gr 0 (S₊∙ 1 →∙ Ω (Susp∙ S²) ∙)) (π'Gr 0 (S₊∙ 1 →∙ (K₂ , ∣ base ∣₄ ) ∙)) π₁S¹→∙ΩS³'→π₁S¹→∙K₂ = π'∘∙Hom 0 ((λ f → (λ x → f7' (fst f x)) , (cong f7' (snd f))) , refl) π₁S¹→∙K₂→π₁S¹ : GroupHom (π'Gr 0 (S₊∙ 1 →∙ (K₂ , ∣ base ∣₄ ) ∙)) (π'Gr 0 (S₊∙ 1)) π₁S¹→∙K₂→π₁S¹ = π'∘∙Hom 0 mainMap∙ where mainMap : (S¹ → K₂) → S¹ mainMap f = GroupoidTrunc.rec isGroupoidS¹ (λ x → x) (encodeTruncS² (ΩK₂-basechange _ .fst (cong f loop))) mainMap∙ : ((S₊∙ 1 →∙ (K₂ , ∣ base ∣₄) ∙) →∙ S₊∙ 1) fst mainMap∙ f = mainMap (fst f) snd mainMap∙ = refl π₁S¹→ℤ : GroupHom ((π'Gr 0 (S₊∙ 1))) ℤGroup π₁S¹→ℤ = compGroupHom ((sMap (λ f → basechange2⁻ _ (cong (fst f) loop))) , makeIsGroupHom (sElim2 (λ _ _ → isSetPathImplicit) λ f g i → ∣ (basechange2⁻ (snd f (~ i)) (doubleCompPath-filler (sym (snd f)) (λ i → fst f (loop i)) (snd f) (~ i)) ∙ basechange2⁻ (snd g (~ i)) (doubleCompPath-filler (sym (snd g)) (λ i → fst g (loop i)) (snd g) (~ i))) ∣₂)) (_ , πₙSⁿ≅ℤ 0 .snd) -- We combine them into one computer : GroupHom π₃*S³' ℤGroup computer = compGroupHom (GroupEquiv→GroupHom (invGroupEquiv (GroupIso→GroupEquiv π₁S¹→∙ΩS³'≅π₃*S³'))) (compGroupHom (compGroupHom π₁S¹→∙ΩS³'→π₁S¹→∙K₂ π₁S¹→∙K₂→π₁S¹) π₁S¹→ℤ) -- We show that it's an iso by computation: 1 lies in its image -- It's witnessed by the following element: 1∈π₃*S³' : π₃*S³' .fst 1∈π₃*S³' = ∣ (λ { (inl x) → north ; (inr x) → north ; (push a b i) → σ S²∙ (S¹×S¹→S²' b a) i}) , refl ∣₂ -- By computation, it maps to 1 1∈π₃*S³'↦1 : fst computer 1∈π₃*S³' ≡ 1 1∈π₃*S³'↦1 = refl -- This implies that computer indeed is an iso computerIso : GroupEquiv π₃*S³' ℤGroup fst (fst computerIso) = fst computer snd (fst computerIso) = 1∈Im→isEquiv π₃*S³' (compGroupEquiv (compGroupEquiv (invGroupEquiv (GroupIso→GroupEquiv (πₙ'Sⁿ≅ℤ 2))) π₃S³≅π₃*S³) π₃*S³≅π₃*S³') computer ∣ 1∈π₃*S³' , 1∈π₃*S³'↦1 ∣₁ snd computerIso = snd computer -- We now verify via computation that η₃' maps to -2 computerIsoη₃ : fst computer η₃' ≡ -2 computerIsoη₃ = refl -- Putting this together with the info from the beginning of the file, we have an iso -- π₃S² ≅ π₃*S³' ≅ ℤ, mapping η ↦ η₃' ↦ -2 BrunerieGroupEquiv' : GroupEquiv (π'Gr 3 (S₊∙ 3)) (ℤGroup/ (abs (fst computer η₃'))) BrunerieGroupEquiv' = compGroupEquiv (compGroupEquiv π₄S³≅π₃coFib-fold∘W∙ (invGroupEquiv (GroupEquiv-abstractℤ/abs-gen (π'Gr 2 (S₊∙ 3)) (π'Gr 2 (S₊∙ 2)) (π'Gr 2 coFib-fold∘W∙) (invGroupEquiv (π₃'S³≅ℤ-abs 2)) (invGroupEquiv (compGroupEquiv (compGroupEquiv (compGroupEquiv π₃S²≅π₃*S²-abs π₃*S²≅π₃*joinS¹S¹-abs) π₃*joinS¹S¹≅π₃*S³-abs) (fst π₃*S³≅ℤ-abs))) (π'∘∙Hom 2 (fold∘W , refl)) _ S³→S²→Pushout→Unit _ (cong abs ((cong (m1 ∘ m2 ∘ m3 ∘ m4) ((cong (sMap (_∘∙_ (fold∘W , refl))) (sym (cong (invEq (fst (π₃'S³≅ℤ-abs 2))) (gen↦1 2)) ∙ retEq (fst (π₃'S³≅ℤ-abs 2)) ∣ idfun∙ (S₊∙ 3) ∣₂)) ∙ (λ _ → η))) ∙ cong (m1 ∘ m2 ∘ m3) η↦η₁-abs ∙ cong (m1 ∘ m2) η₁↦η₂-abs ∙ cong m1 η₂↦η₃-abs) ∙ cong abs (snd π₃*S³≅ℤ-abs))))) (abstractℤ/≅ℤ (abs (fst computer η₃'))) where abstract η₃-abs : Σ[ x ∈ _ ] x ≡ η₃ η₃-abs = η₃ , refl η₃-abs-pres : fst π₃*S³≅π₃*S³' .fst (fst η₃-abs) ≡ ∣ η₃'-raw ∣₂ η₃-abs-pres = π₃*S³≅π₃*S³'-pres-η₃ π₃*S³≅ℤ : GroupEquiv π₃*S³ ℤGroup π₃*S³≅ℤ = compGroupEquiv π₃*S³≅π₃*S³' computerIso π₃*S³≅ℤβ≡-2 : fst (fst π₃*S³≅ℤ) η₃ ≡ fst computer η₃' π₃*S³≅ℤβ≡-2 = (cong (fst (fst π₃*S³≅ℤ)) (sym (snd η₃-abs)) ∙ cong (fst computer) η₃-abs-pres) ∙ computerIsoη₃ abstract π₃*S³≅ℤ-abs : Σ[ f ∈ GroupEquiv π₃*S³ ℤGroup ] (fst (fst f) η₃ ≡ fst computer η₃') π₃*S³≅ℤ-abs = π₃*S³≅ℤ , π₃*S³≅ℤβ≡-2 m1 = fst (fst (fst π₃*S³≅ℤ-abs)) m2 = fst (fst π₃*joinS¹S¹≅π₃*S³-abs) m3 = fst (fst π₃*S²≅π₃*joinS¹S¹-abs) m4 = fst (fst π₃S²≅π₃*S²-abs) -- We hence get the following by computation: BrunerieGroupEquiv'' : GroupEquiv (π'Gr 3 (S₊∙ 3)) (ℤGroup/ 2) BrunerieGroupEquiv'' = BrunerieGroupEquiv'
37.453782
87
0.515392
8b8c110d66b49564a2e5beb82c088a7dd4b15dee
4,184
agda
Agda
cohomology/FlipPushout.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
cohomology/FlipPushout.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
cohomology/FlipPushout.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT open import cohomology.FunctionOver {- Flipping the pushout diagram (switching left and right) gives the - same pushout. -} module cohomology.FlipPushout where {- Span-flipping functions -} flip-span : ∀ {i j k} → Span {i} {j} {k} → Span {j} {i} {k} flip-span (span A B C f g) = span B A C g f flip-⊙span : ∀ {i j k} → ⊙Span {i} {j} {k} → ⊙Span {j} {i} {k} flip-⊙span (⊙span X Y Z f g) = ⊙span Y X Z g f {- Pushout-flipping function -} module _ {i j k} {d : Span {i} {j} {k}} where module FlipPushout = PushoutRec (right {d = flip-span d}) (left {d = flip-span d}) (λ z → ! (glue {d = flip-span d} z)) flip-pushout : Pushout d → Pushout (flip-span d) flip-pushout = FlipPushout.f flip-pushout-involutive : ∀ {i j k} (d : Span {i} {j} {k}) (s : Pushout d) → flip-pushout (flip-pushout s) == s flip-pushout-involutive d = Pushout-elim (λ a → idp) (λ b → idp) (λ c → ↓-∘=idf-in flip-pushout flip-pushout $ ap flip-pushout (ap flip-pushout (glue c)) =⟨ ap (ap flip-pushout) (FlipPushout.glue-β c) ⟩ ap flip-pushout (! (glue c)) =⟨ ap-! flip-pushout (glue c) ⟩ ! (ap flip-pushout (glue c)) =⟨ ap ! (FlipPushout.glue-β c) ⟩ ! (! (glue c)) =⟨ !-! (glue c) ⟩ glue c ∎) {- Equivalence for spans with proofs that the equivalence swaps the - injections -} module _ {i j k} (d : Span {i} {j} {k}) where open Span d flip-pushout-equiv : Pushout d ≃ Pushout (flip-span d) flip-pushout-equiv = equiv flip-pushout flip-pushout (flip-pushout-involutive (flip-span d)) (flip-pushout-involutive d) flip-pushout-path : Pushout d == Pushout (flip-span d) flip-pushout-path = ua flip-pushout-equiv flip-left : left == right [ (λ D → (A → D)) ↓ flip-pushout-path ] flip-left = codomain-over-equiv _ _ flip-right : right == left [ (λ D → (B → D)) ↓ flip-pushout-path ] flip-right = codomain-over-equiv _ _ {- Path for pointed spans with proofs that the path swaps the pointed - injections -} module _ {i j k} (ps : ⊙Span {i} {j} {k}) where open ⊙Span ps private s = ⊙span-out ps preserves : –> (flip-pushout-equiv s) (left (snd X)) == left (snd Y) preserves = snd (⊙right (flip-⊙span ps)) flip-⊙pushout : fst (⊙Pushout ps ⊙→ ⊙Pushout (flip-⊙span ps)) flip-⊙pushout = (FlipPushout.f , preserves) flip-⊙pushout-path : ⊙Pushout ps == ⊙Pushout (flip-⊙span ps) flip-⊙pushout-path = ⊙ua (⊙ify-eq (flip-pushout-equiv s) preserves) {- action of [flip-pushout] on [snd ⊙right] -} ap-flip-right : ap flip-pushout (snd (⊙right ps)) == ! (snd (⊙right (flip-⊙span ps))) ap-flip-right = lemma f g where lemma : {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (f : fst (Z ⊙→ X)) (g : fst (Z ⊙→ Y)) → ap (flip-pushout {d = ⊙span-out (⊙span X Y Z f g)}) (ap right (! (snd g)) ∙ ! (glue (snd Z)) ∙' ap left (snd f)) == ! (ap right (! (snd f)) ∙ ! (glue (snd Z)) ∙' ap left (snd g)) lemma {Z = Z} (f , idp) (g , idp) = ap flip-pushout (! (glue (snd Z))) =⟨ ap-! flip-pushout (glue (snd Z)) ⟩ ! (ap flip-pushout (glue (snd Z))) =⟨ FlipPushout.glue-β (snd Z) |in-ctx ! ⟩ ! (! (glue (snd Z))) ∎ flip-⊙left : ⊙left ps == ⊙right (flip-⊙span ps) [ (λ W → fst (X ⊙→ W)) ↓ flip-⊙pushout-path ] flip-⊙left = codomain-over-⊙equiv _ _ flip-⊙right : ⊙right ps == ⊙left (flip-⊙span ps) [ (λ W → fst (Y ⊙→ W)) ↓ flip-⊙pushout-path ] flip-⊙right = codomain-over-⊙equiv _ _ ▹ pair= idp (ap (λ w → w ∙ preserves) ap-flip-right ∙ !-inv-l preserves) flip-⊙pushout-involutive : ∀ {i j k} (ps : ⊙Span {i} {j} {k}) → flip-⊙pushout (flip-⊙span ps) ⊙∘ flip-⊙pushout ps == ⊙idf _ flip-⊙pushout-involutive ps = ⊙λ= (flip-pushout-involutive _) lemma where lemma : ap flip-pushout (snd (⊙right (flip-⊙span ps))) ∙ snd (⊙right ps) == idp lemma = ap flip-pushout (snd (⊙right (flip-⊙span ps))) ∙ snd (⊙right ps) =⟨ ap-flip-right (flip-⊙span ps) |in-ctx (λ w → w ∙ snd (⊙right ps)) ⟩ ! (snd (⊙right ps)) ∙ snd (⊙right ps) =⟨ !-inv-l (snd (⊙right ps)) ⟩ idp
33.206349
76
0.564054
8b76003155c6355617a2a047262424f9c30e1756
52
agda
Agda
agda.agda
5R33CH4/lango
3227a8a458fc7fd3618106ad054f7f3be62d0513
[ "Unlicense" ]
2
2021-10-02T05:34:09.000Z
2021-10-03T09:18:09.000Z
agda.agda
5R33CH4/lango
3227a8a458fc7fd3618106ad054f7f3be62d0513
[ "Unlicense" ]
4
2021-10-02T01:30:09.000Z
2021-10-02T05:38:00.000Z
agda.agda
5R33CH4/lango
3227a8a458fc7fd3618106ad054f7f3be62d0513
[ "Unlicense" ]
7
2021-10-01T15:13:01.000Z
2021-10-02T05:07:45.000Z
open import IO main = run (putStr "Hacktoberfest")
13
35
0.730769
9a135e289e3121a139ea0af1f5b3920067a1bc4c
4,265
agda
Agda
Cubical/Data/Sum/Properties.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Data/Sum/Properties.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Data/Sum/Properties.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Sum.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Functions.Embedding open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Data.Empty open import Cubical.Data.Nat open import Cubical.Data.Sum.Base -- Path space of sum type module SumPath {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} where Cover : A ⊎ B → A ⊎ B → Type (ℓ-max ℓ ℓ') Cover (inl a) (inl a') = Lift {j = ℓ-max ℓ ℓ'} (a ≡ a') Cover (inl _) (inr _) = Lift ⊥ Cover (inr _) (inl _) = Lift ⊥ Cover (inr b) (inr b') = Lift {j = ℓ-max ℓ ℓ'} (b ≡ b') reflCode : (c : A ⊎ B) → Cover c c reflCode (inl a) = lift refl reflCode (inr b) = lift refl encode : ∀ c c' → c ≡ c' → Cover c c' encode c _ = J (λ c' _ → Cover c c') (reflCode c) encodeRefl : ∀ c → encode c c refl ≡ reflCode c encodeRefl c = JRefl (λ c' _ → Cover c c') (reflCode c) decode : ∀ c c' → Cover c c' → c ≡ c' decode (inl a) (inl a') (lift p) = cong inl p decode (inl a) (inr b') () decode (inr b) (inl a') () decode (inr b) (inr b') (lift q) = cong inr q decodeRefl : ∀ c → decode c c (reflCode c) ≡ refl decodeRefl (inl a) = refl decodeRefl (inr b) = refl decodeEncode : ∀ c c' → (p : c ≡ c') → decode c c' (encode c c' p) ≡ p decodeEncode c _ = J (λ c' p → decode c c' (encode c c' p) ≡ p) (cong (decode c c) (encodeRefl c) ∙ decodeRefl c) encodeDecode : ∀ c c' → (d : Cover c c') → encode c c' (decode c c' d) ≡ d encodeDecode (inl a) (inl _) (lift d) = J (λ a' p → encode (inl a) (inl a') (cong inl p) ≡ lift p) (encodeRefl (inl a)) d encodeDecode (inr a) (inr _) (lift d) = J (λ a' p → encode (inr a) (inr a') (cong inr p) ≡ lift p) (encodeRefl (inr a)) d Cover≃Path : ∀ c c' → Cover c c' ≃ (c ≡ c') Cover≃Path c c' = isoToEquiv (iso (decode c c') (encode c c') (decodeEncode c c') (encodeDecode c c')) isOfHLevelCover : (n : HLevel) → isOfHLevel (suc (suc n)) A → isOfHLevel (suc (suc n)) B → ∀ c c' → isOfHLevel (suc n) (Cover c c') isOfHLevelCover n p q (inl a) (inl a') = isOfHLevelLift (suc n) (p a a') isOfHLevelCover n p q (inl a) (inr b') = isOfHLevelLift (suc n) (isProp→isOfHLevelSuc n isProp⊥) isOfHLevelCover n p q (inr b) (inl a') = isOfHLevelLift (suc n) (isProp→isOfHLevelSuc n isProp⊥) isOfHLevelCover n p q (inr b) (inr b') = isOfHLevelLift (suc n) (q b b') isEmbedding-inl : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → isEmbedding (inl {A = A} {B = B}) isEmbedding-inl w z = snd (compEquiv LiftEquiv (SumPath.Cover≃Path (inl w) (inl z))) isEmbedding-inr : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → isEmbedding (inr {A = A} {B = B}) isEmbedding-inr w z = snd (compEquiv LiftEquiv (SumPath.Cover≃Path (inr w) (inr z))) isOfHLevelSum : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} {B : Type ℓ'} → isOfHLevel (suc (suc n)) A → isOfHLevel (suc (suc n)) B → isOfHLevel (suc (suc n)) (A ⊎ B) isOfHLevelSum n lA lB c c' = isOfHLevelRetract (suc n) (SumPath.encode c c') (SumPath.decode c c') (SumPath.decodeEncode c c') (SumPath.isOfHLevelCover n lA lB c c') isSetSum : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → isSet A → isSet B → isSet (A ⊎ B) isSetSum = isOfHLevelSum 0 isGroupoidSum : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → isGroupoid A → isGroupoid B → isGroupoid (A ⊎ B) isGroupoidSum = isOfHLevelSum 1 is2GroupoidSum : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → is2Groupoid A → is2Groupoid B → is2Groupoid (A ⊎ B) is2GroupoidSum = isOfHLevelSum 2 sumIso : ∀ {ℓa ℓb ℓc ℓd} {A : Type ℓa} {B : Type ℓb} {C : Type ℓc} {D : Type ℓd} → Iso A C → Iso B D → Iso (A ⊎ B) (C ⊎ D) Iso.fun (sumIso iac ibd) (inl x) = inl (iac .Iso.fun x) Iso.fun (sumIso iac ibd) (inr x) = inr (ibd .Iso.fun x) Iso.inv (sumIso iac ibd) (inl x) = inl (iac .Iso.inv x) Iso.inv (sumIso iac ibd) (inr x) = inr (ibd .Iso.inv x) Iso.rightInv (sumIso iac ibd) (inl x) = cong inl (iac .Iso.rightInv x) Iso.rightInv (sumIso iac ibd) (inr x) = cong inr (ibd .Iso.rightInv x) Iso.leftInv (sumIso iac ibd) (inl x) = cong inl (iac .Iso.leftInv x) Iso.leftInv (sumIso iac ibd) (inr x) = cong inr (ibd .Iso.leftInv x)
39.859813
106
0.607972
2feb1f981ef075ed5b2c66e1908628076c4871d6
51
agda
Agda
extra/extra/Rec1.agda
krzygorz/plfa.github.io
10a3203624f2ea937b3892176db5de825d0c46b4
[ "CC-BY-4.0" ]
1,003
2018-07-05T18:15:14.000Z
2022-03-27T07:03:28.000Z
extra/extra/Rec1.agda
krzygorz/plfa.github.io
10a3203624f2ea937b3892176db5de825d0c46b4
[ "CC-BY-4.0" ]
323
2018-07-05T22:34:34.000Z
2022-03-30T07:42:57.000Z
extra/extra/Rec1.agda
krzygorz/plfa.github.io
10a3203624f2ea937b3892176db5de825d0c46b4
[ "CC-BY-4.0" ]
304
2018-07-16T18:24:59.000Z
2022-03-28T11:35:02.000Z
module Rec1 where import Rec2 y : ℕ y = x
6.375
17
0.568627
1acfcf0137a9cd61f7ff9dcadcd0a354818b0141
337
agda
Agda
test/Succeed/Issue418private.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue418private.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue418private.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- Andreas, 2016-07-19 revisiting issue #418 module Issue418private where open import Common.Equality abstract A : Set₁ A = Set private works : A ≡ A works = refl test : A ≡ _ test = refl -- Since test is private, abstract definitions are transparent in its type. -- The meta should be solved (by A or Set).
16.047619
75
0.670623
194925b0dc7de5d6f8d7b4a6c6e23e68f20373e0
12,824
agda
Agda
src/Categories/Adjoint/Equivalence.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/Adjoint/Equivalence.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/Adjoint/Equivalence.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Categories.Adjoint.Equivalence where open import Level open import Categories.Adjoint open import Categories.Category open import Categories.Functor renaming (id to idF) open import Categories.Functor.Properties open import Categories.NaturalTransformation using (ntHelper) open import Categories.NaturalTransformation.NaturalIsomorphism as ≃ using (_≃_; NaturalIsomorphism) open import Categories.NaturalTransformation.NaturalIsomorphism.Properties import Categories.Morphism.Reasoning as MR open import Relation.Binary using (Setoid; IsEquivalence) private variable o ℓ e : Level o′ ℓ′ e′ : Level C D E : Category o ℓ e infix 5 _⊣⊢_ record _⊣⊢_ (L : Functor C D) (R : Functor D C) : Set (levelOfTerm L ⊔ levelOfTerm R) where field unit : idF ≃ (R ∘F L) counit : (L ∘F R) ≃ idF module unit = NaturalIsomorphism unit module counit = NaturalIsomorphism counit private module C = Category C module D = Category D module L = Functor L module R = Functor R field zig : ∀ {A : C.Obj} → counit.⇒.η (L.₀ A) D.∘ L.₁ (unit.⇒.η A) D.≈ D.id zag : ∀ {B : D.Obj} → R.₁ (counit.⇒.η B) C.∘ unit.⇒.η (R.₀ B) C.≈ C.id op₁ : R.op ⊣⊢ L.op op₁ = record { unit = counit.op ; counit = unit.op ; zig = zag ; zag = zig } zag⁻¹ : {B : D.Obj} → unit.⇐.η (R.F₀ B) C.∘ R.F₁ (counit.⇐.η B) C.≈ C.id zag⁻¹ {B} = begin unit.⇐.η (R.₀ B) C.∘ R.₁ (counit.⇐.η B) ≈˘⟨ flip-fromʳ unit.FX≅GX zag ⟩∘⟨refl ⟩ R.₁ (counit.⇒.η B) C.∘ R.₁ (counit.⇐.η B) ≈⟨ [ R ]-resp-∘ (counit.iso.isoʳ B) ⟩ R.₁ D.id ≈⟨ R.identity ⟩ C.id ∎ where open C.HomReasoning open MR C zig⁻¹ : {A : C.Obj} → L.F₁ (unit.⇐.η A) D.∘ counit.⇐.η (L.F₀ A) D.≈ D.id zig⁻¹ {A} = begin L.₁ (unit.⇐.η A) D.∘ counit.⇐.η (L.₀ A) ≈˘⟨ refl⟩∘⟨ flip-fromˡ counit.FX≅GX zig ⟩ L.₁ (unit.⇐.η A) D.∘ L.₁ (unit.⇒.η A) ≈⟨ [ L ]-resp-∘ (unit.iso.isoˡ A) ⟩ L.₁ C.id ≈⟨ L.identity ⟩ D.id ∎ where open D.HomReasoning open MR D op₂ : R ⊣⊢ L op₂ = record { unit = ≃.sym counit ; counit = ≃.sym unit ; zig = zag⁻¹ ; zag = zig⁻¹ } L⊣R : L ⊣ R L⊣R = record { unit = unit.F⇒G ; counit = counit.F⇒G ; zig = zig ; zag = zag } module L⊣R = Adjoint L⊣R open L⊣R hiding (unit; counit; zig; zag; op) public R⊣L : R ⊣ L R⊣L = record { unit = counit.F⇐G ; counit = unit.F⇐G ; zig = zag⁻¹ ; zag = zig⁻¹ } module R⊣L = Adjoint R⊣L private record WithZig (L : Functor C D) (R : Functor D C) : Set (levelOfTerm L ⊔ levelOfTerm R) where field unit : idF ≃ (R ∘F L) counit : (L ∘F R) ≃ idF module unit = NaturalIsomorphism unit module counit = NaturalIsomorphism counit private module C = Category C module D = Category D module L = Functor L module R = Functor R module ℱ = Functor field zig : ∀ {A : C.Obj} → counit.⇒.η (L.₀ A) D.∘ L.₁ (unit.⇒.η A) D.≈ D.id zag : ∀ {B : D.Obj} → R.₁ (counit.⇒.η B) C.∘ unit.⇒.η (R.₀ B) C.≈ C.id zag {B} = F≃id⇒id (≃.sym unit) helper where open C open HomReasoning helper : R.₁ (L.₁ (R.₁ (counit.⇒.η B) ∘ unit.⇒.η (R.₀ B))) ≈ id helper = begin R.₁ (L.₁ (R.₁ (counit.⇒.η B) ∘ unit.⇒.η (R.₀ B))) ≈⟨ ℱ.homomorphism (R ∘F L) ⟩ R.₁ (L.₁ (R.₁ (counit.⇒.η B))) ∘ R.₁ (L.₁ (unit.⇒.η (R.₀ B))) ≈˘⟨ R.F-resp-≈ (F≃id-comm₁ counit) ⟩∘⟨refl ⟩ R.₁ (counit.⇒.η (L.₀ (R.₀ B))) ∘ R.₁ (L.₁ (unit.⇒.η (R.₀ B))) ≈⟨ [ R ]-resp-∘ zig ⟩ R.₁ D.id ≈⟨ R.identity ⟩ id ∎ record WithZag (L : Functor C D) (R : Functor D C) : Set (levelOfTerm L ⊔ levelOfTerm R) where field unit : idF ≃ (R ∘F L) counit : (L ∘F R) ≃ idF module unit = NaturalIsomorphism unit module counit = NaturalIsomorphism counit private module C = Category C module D = Category D module L = Functor L module R = Functor R module ℱ = Functor field zag : ∀ {B : D.Obj} → R.₁ (counit.⇒.η B) C.∘ unit.⇒.η (R.₀ B) C.≈ C.id zig : ∀ {A : C.Obj} → counit.⇒.η (L.₀ A) D.∘ L.₁ (unit.⇒.η A) D.≈ D.id zig {A} = F≃id⇒id counit helper where open D open HomReasoning helper : L.₁ (R.₁ (counit.⇒.η (L.₀ A) ∘ L.₁ (unit.⇒.η A))) ≈ id helper = begin L.₁ (R.₁ (counit.⇒.η (L.₀ A) ∘ L.₁ (unit.⇒.η A))) ≈⟨ ℱ.homomorphism (L ∘F R) ⟩ (L.₁ (R.₁ (counit.⇒.η (L.₀ A))) ∘ L.₁ (R.₁ (L.₁ (unit.⇒.η A)))) ≈˘⟨ refl⟩∘⟨ L.F-resp-≈ (F≃id-comm₂ (≃.sym unit)) ⟩ L.₁ (R.₁ (counit.⇒.η (L.₀ A))) ∘ L.₁ (unit.⇒.η (R.₀ (L.₀ A))) ≈⟨ [ L ]-resp-∘ zag ⟩ L.₁ C.id ≈⟨ L.identity ⟩ id ∎ module _ {L : Functor C D} {R : Functor D C} where withZig : WithZig L R → L ⊣⊢ R withZig LR = record { unit = unit ; counit = counit ; zig = zig ; zag = zag } where open WithZig LR withZag : WithZag L R → L ⊣⊢ R withZag LR = record { unit = unit ; counit = counit ; zig = zig ; zag = zag } where open WithZag LR id⊣⊢id : idF {C = C} ⊣⊢ idF id⊣⊢id {C = C} = record { unit = ≃.sym ≃.unitor² ; counit = ≃.unitor² ; zig = identity² ; zag = identity² } where open Category C module _ {L : Functor C D} {R : Functor D C} {L′ : Functor D E} {R′ : Functor E D} (L⊣⊢R : L ⊣⊢ R) (L′⊣⊢R′ : L′ ⊣⊢ R′) where private module C = Category C module D = Category D module E = Category E module L = Functor L module R = Functor R module L′ = Functor L′ module R′ = Functor R′ module ⊣⊢₁ = _⊣⊢_ L⊣⊢R module ⊣⊢₂ = _⊣⊢_ L′⊣⊢R′ unit : idF ≃ (R ∘F R′) ∘F L′ ∘F L unit = record { F⇒G = ntHelper record { η = λ c → R.₁ (⊣⊢₂.unit.⇒.η (L.₀ c)) ∘ ⊣⊢₁.unit.⇒.η c ; commute = λ {x} {y} f → begin (R.₁ (⊣⊢₂.unit.⇒.η (L.₀ y)) ∘ ⊣⊢₁.unit.⇒.η y) ∘ f ≈⟨ pullʳ (⊣⊢₁.unit.⇒.commute f) ⟩ R.₁ (⊣⊢₂.unit.⇒.η (L.₀ y)) ∘ R.₁ (L.₁ f) ∘ ⊣⊢₁.unit.⇒.η x ≈⟨ pullˡ ([ R ]-resp-square (⊣⊢₂.unit.⇒.commute (L.₁ f))) ⟩ (R.₁ (R′.₁ (L′.₁ (L.₁ f))) ∘ R.₁ (⊣⊢₂.unit.⇒.η (L.₀ x))) ∘ ⊣⊢₁.unit.⇒.η x ≈⟨ assoc ⟩ R.₁ (R′.₁ (L′.₁ (L.₁ f))) ∘ R.₁ (⊣⊢₂.unit.⇒.η (L.₀ x)) ∘ ⊣⊢₁.unit.⇒.η x ∎ } ; F⇐G = ntHelper record { η = λ c → ⊣⊢₁.unit.⇐.η c ∘ R.₁ (⊣⊢₂.unit.⇐.η (L.₀ c)) ; commute = λ {x} {y} f → begin (⊣⊢₁.unit.⇐.η y ∘ R.₁ (⊣⊢₂.unit.⇐.η (L.₀ y))) ∘ R.₁ (R′.₁ (L′.₁ (L.₁ f))) ≈⟨ pullʳ ([ R ]-resp-square (⊣⊢₂.unit.⇐.commute (L.₁ f))) ⟩ ⊣⊢₁.unit.⇐.η y ∘ R.₁ (L.₁ f) ∘ R.₁ (⊣⊢₂.unit.⇐.η (L.₀ x)) ≈⟨ pullˡ (⊣⊢₁.unit.⇐.commute f) ⟩ (f ∘ ⊣⊢₁.unit.⇐.η x) ∘ R.₁ (⊣⊢₂.unit.⇐.η (L.₀ x)) ≈⟨ assoc ⟩ f ∘ ⊣⊢₁.unit.⇐.η x ∘ R.₁ (⊣⊢₂.unit.⇐.η (L.₀ x)) ∎ } ; iso = λ c → record { isoˡ = begin (⊣⊢₁.unit.⇐.η c ∘ R.₁ (⊣⊢₂.unit.⇐.η (L.₀ c))) ∘ R.₁ (⊣⊢₂.unit.⇒.η (L.₀ c)) ∘ ⊣⊢₁.unit.⇒.η c ≈⟨ center ([ R ]-resp-∘ (⊣⊢₂.unit.iso.isoˡ (L.₀ c))) ⟩ ⊣⊢₁.unit.⇐.η c ∘ R.₁ D.id ∘ ⊣⊢₁.unit.⇒.η c ≈⟨ refl⟩∘⟨ elimˡ R.identity ⟩ ⊣⊢₁.unit.⇐.η c ∘ ⊣⊢₁.unit.⇒.η c ≈⟨ ⊣⊢₁.unit.iso.isoˡ c ⟩ id ∎ ; isoʳ = begin (R.₁ (⊣⊢₂.unit.⇒.η (L.₀ c)) ∘ ⊣⊢₁.unit.⇒.η c) ∘ ⊣⊢₁.unit.⇐.η c ∘ R.₁ (⊣⊢₂.unit.⇐.η (L.₀ c)) ≈⟨ center (⊣⊢₁.unit.iso.isoʳ c) ⟩ R.₁ (⊣⊢₂.unit.⇒.η (L.₀ c)) ∘ id ∘ R.₁ (⊣⊢₂.unit.⇐.η (L.₀ c)) ≈⟨ refl⟩∘⟨ identityˡ ⟩ R.₁ (⊣⊢₂.unit.⇒.η (L.₀ c)) ∘ R.₁ (⊣⊢₂.unit.⇐.η (L.₀ c)) ≈⟨ [ R ]-resp-∘ (⊣⊢₂.unit.iso.isoʳ (L.₀ c)) ⟩ R.₁ D.id ≈⟨ R.identity ⟩ id ∎ } } where open C open HomReasoning open MR C module unit = NaturalIsomorphism unit counit : (L′ ∘F L) ∘F R ∘F R′ ≃ idF counit = record { F⇒G = ntHelper record { η = λ e → ⊣⊢₂.counit.⇒.η e ∘ L′.₁ (⊣⊢₁.counit.⇒.η (R′.₀ e)) ; commute = λ {x} {y} f → begin (⊣⊢₂.counit.⇒.η y ∘ L′.₁ (⊣⊢₁.counit.⇒.η (R′.₀ y))) ∘ L′.₁ (L.₁ (R.₁ (R′.₁ f))) ≈⟨ pullʳ ([ L′ ]-resp-square (⊣⊢₁.counit.⇒.commute (R′.₁ f))) ⟩ ⊣⊢₂.counit.⇒.η y ∘ L′.₁ (R′.₁ f) ∘ L′.₁ (⊣⊢₁.counit.⇒.η (R′.₀ x)) ≈⟨ pullˡ (⊣⊢₂.counit.⇒.commute f) ⟩ (f ∘ ⊣⊢₂.counit.⇒.η x) ∘ L′.₁ (⊣⊢₁.counit.⇒.η (R′.₀ x)) ≈⟨ assoc ⟩ f ∘ ⊣⊢₂.counit.⇒.η x ∘ L′.₁ (⊣⊢₁.counit.⇒.η (R′.₀ x)) ∎ } ; F⇐G = ntHelper record { η = λ e → L′.₁ (⊣⊢₁.counit.⇐.η (R′.₀ e)) ∘ ⊣⊢₂.counit.⇐.η e ; commute = λ {x} {y} f → begin (L′.₁ (⊣⊢₁.counit.⇐.η (R′.₀ y)) ∘ ⊣⊢₂.counit.⇐.η y) ∘ f ≈⟨ pullʳ (⊣⊢₂.counit.⇐.commute f) ⟩ L′.₁ (⊣⊢₁.counit.⇐.η (R′.₀ y)) ∘ L′.₁ (R′.₁ f) ∘ ⊣⊢₂.counit.⇐.η x ≈⟨ pullˡ ([ L′ ]-resp-square (⊣⊢₁.counit.⇐.commute (R′.₁ f))) ⟩ (L′.₁ (L.₁ (R.₁ (R′.₁ f))) ∘ L′.₁ (⊣⊢₁.counit.⇐.η (R′.₀ x))) ∘ ⊣⊢₂.counit.⇐.η x ≈⟨ assoc ⟩ L′.₁ (L.₁ (R.₁ (R′.₁ f))) ∘ L′.₁ (⊣⊢₁.counit.⇐.η (R′.₀ x)) ∘ ⊣⊢₂.counit.⇐.η x ∎ } ; iso = λ e → record { isoˡ = begin (L′.₁ (⊣⊢₁.counit.⇐.η (R′.₀ e)) ∘ ⊣⊢₂.counit.⇐.η e) ∘ ⊣⊢₂.counit.⇒.η e ∘ L′.₁ (⊣⊢₁.counit.⇒.η (R′.₀ e)) ≈⟨ center (⊣⊢₂.counit.iso.isoˡ e) ⟩ L′.₁ (⊣⊢₁.counit.⇐.η (R′.₀ e)) ∘ id ∘ L′.₁ (⊣⊢₁.counit.⇒.η (R′.₀ e)) ≈⟨ refl⟩∘⟨ identityˡ ⟩ L′.₁ (⊣⊢₁.counit.⇐.η (R′.₀ e)) ∘ L′.₁ (⊣⊢₁.counit.⇒.η (R′.₀ e)) ≈⟨ [ L′ ]-resp-∘ (⊣⊢₁.counit.iso.isoˡ (R′.₀ e)) ⟩ L′.₁ D.id ≈⟨ L′.identity ⟩ id ∎ ; isoʳ = begin (⊣⊢₂.counit.⇒.η e ∘ L′.₁ (⊣⊢₁.counit.⇒.η (R′.₀ e))) ∘ L′.₁ (⊣⊢₁.counit.⇐.η (R′.₀ e)) ∘ ⊣⊢₂.counit.⇐.η e ≈⟨ center ([ L′ ]-resp-∘ (⊣⊢₁.counit.iso.isoʳ (R′.₀ e))) ⟩ ⊣⊢₂.counit.⇒.η e ∘ L′.₁ D.id ∘ ⊣⊢₂.counit.⇐.η e ≈⟨ refl⟩∘⟨ elimˡ L′.identity ⟩ ⊣⊢₂.counit.⇒.η e ∘ ⊣⊢₂.counit.⇐.η e ≈⟨ ⊣⊢₂.counit.iso.isoʳ e ⟩ id ∎ } } where open E open HomReasoning open MR E module counit = NaturalIsomorphism counit zig : ∀ {c} → counit.⇒.η (L′.₀ (L.₀ c)) E.∘ L′.₁ (L.₁ (unit.⇒.η c)) E.≈ E.id zig {c} = begin counit.⇒.η (L′.₀ (L.₀ c)) ∘ L′.₁ (L.₁ (unit.⇒.η c)) ≈⟨ refl⟩∘⟨ Functor.homomorphism (L′ ∘F L) ⟩ counit.⇒.η (L′.₀ (L.₀ c)) ∘ L′.₁ (L.₁ (R.₁ (⊣⊢₂.unit.⇒.η (L.₀ c)))) ∘ L′.₁ (L.₁ (⊣⊢₁.unit.⇒.η c)) ≈⟨ center ([ L′ ]-resp-square (⊣⊢₁.counit.⇒.commute (⊣⊢₂.unit.⇒.η (L.₀ c)))) ⟩ ⊣⊢₂.counit.⇒.η (L′.₀ (L.₀ c)) ∘ (L′.₁ (⊣⊢₂.unit.⇒.η (L.₀ c)) ∘ L′.₁ (⊣⊢₁.counit.⇒.η (L.₀ c))) ∘ L′.₁ (L.₁ (⊣⊢₁.unit.⇒.η c)) ≈⟨ pull-first ⊣⊢₂.zig ⟩ id ∘ L′.₁ (⊣⊢₁.counit.⇒.η (L.₀ c)) ∘ L′.₁ (L.₁ (⊣⊢₁.unit.⇒.η c)) ≈⟨ elimʳ (([ L′ ]-resp-∘ ⊣⊢₁.zig) ○ L′.identity) ⟩ id ∎ where open E open HomReasoning open MR E _∘⊣⊢_ : (L′ ∘F L) ⊣⊢ (R ∘F R′) _∘⊣⊢_ = withZig record { unit = unit ; counit = counit ; zig = zig } record ⊣Equivalence (C : Category o ℓ e) (D : Category o′ ℓ′ e′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where field L : Functor C D R : Functor D C L⊣⊢R : L ⊣⊢ R module L = Functor L module R = Functor R module L⊣⊢R = _⊣⊢_ L⊣⊢R open L⊣⊢R public refl : ⊣Equivalence C C refl = record { L = idF ; R = idF ; L⊣⊢R = id⊣⊢id } sym : ⊣Equivalence C D → ⊣Equivalence D C sym e = record { L = R ; R = L ; L⊣⊢R = op₂ } where open ⊣Equivalence e trans : ⊣Equivalence C D → ⊣Equivalence D E → ⊣Equivalence C E trans e e′ = record { L = e′.L ∘F e.L ; R = e.R ∘F e′.R ; L⊣⊢R = e.L⊣⊢R ∘⊣⊢ e′.L⊣⊢R } where module e = ⊣Equivalence e module e′ = ⊣Equivalence e′ isEquivalence : ∀ {o ℓ e} → IsEquivalence (⊣Equivalence {o} {ℓ} {e}) isEquivalence = record { refl = refl ; sym = sym ; trans = trans } setoid : ∀ o ℓ e → Setoid _ _ setoid o ℓ e = record { Carrier = Category o ℓ e ; _≈_ = ⊣Equivalence ; isEquivalence = isEquivalence }
33.309091
129
0.438163
1dbb3e275400c1c3d392e0d90f277d21a2a05c71
8,403
agda
Agda
archive/agda-3/src/Everything.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-3/src/Everything.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-3/src/Everything.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module Everything where open import Oscar.Prelude public -- meta-class open import Oscar.Class public -- classes open import Oscar.Class.Amgu public open import Oscar.Class.Apply public open import Oscar.Class.Bind public open import Oscar.Class.Category public open import Oscar.Class.Congruity public open import Oscar.Class.Fmap public open import Oscar.Class.Functor public open import Oscar.Class.HasEquivalence public open import Oscar.Class.Hmap public open import Oscar.Class.Injectivity public open import Oscar.Class.IsCategory public open import Oscar.Class.IsDecidable public open import Oscar.Class.IsEquivalence public open import Oscar.Class.IsFunctor public open import Oscar.Class.IsPrecategory public open import Oscar.Class.IsPrefunctor public open import Oscar.Class.Leftstar public open import Oscar.Class.Leftunit public open import Oscar.Class.Map public open import Oscar.Class.Precategory public open import Oscar.Class.Prefunctor public open import Oscar.Class.Properthing public open import Oscar.Class.Pure public open import Oscar.Class.Quadricity public open import Oscar.Class.Reflexivity public open import Oscar.Class.Setoid public open import Oscar.Class.Similarity public open import Oscar.Class.SimilarityM public open import Oscar.Class.SimilaritySingleton public open import Oscar.Class.Smap public open import Oscar.Class.Smapoid public open import Oscar.Class.Successor₀ public open import Oscar.Class.Successor₁ public open import Oscar.Class.Surjection public open import Oscar.Class.Surjextensionality public open import Oscar.Class.Surjidentity public open import Oscar.Class.Surjtranscommutativity public open import Oscar.Class.Symmetrical public open import Oscar.Class.Symmetry public open import Oscar.Class.Thickandthin public open import Oscar.Class.Transassociativity public open import Oscar.Class.Transextensionality public open import Oscar.Class.Transitivity public open import Oscar.Class.Transleftidentity public open import Oscar.Class.Transrightidentity public open import Oscar.Class.Unit public open import Oscar.Class.[ExtensibleType] public open import Oscar.Class.[IsExtensionB] public -- individual instances open import Oscar.Class.Amgu.Term∃SubstitistMaybe public open import Oscar.Class.Congruity.Proposequality public open import Oscar.Class.Congruity.Proposextensequality public open import Oscar.Class.HasEquivalence.ExtensionṖroperty public open import Oscar.Class.HasEquivalence.Ṗroperty public open import Oscar.Class.HasEquivalence.Substitunction public open import Oscar.Class.Hmap.Transleftidentity public open import Oscar.Class.Injectivity.Vec public open import Oscar.Class.IsDecidable.Fin public open import Oscar.Class.IsDecidable.¶ public open import Oscar.Class.Properthing.ExtensionṖroperty public open import Oscar.Class.Properthing.Ṗroperty public open import Oscar.Class.Reflexivity.Function public open import Oscar.Class.Smap.ExtensionFinExtensionTerm public open import Oscar.Class.Smap.ExtensionṖroperty public open import Oscar.Class.Smap.TransitiveExtensionLeftṖroperty public open import Oscar.Class.Surjection.⋆ public open import Oscar.Class.Symmetrical.ExtensionalUnifies public open import Oscar.Class.Symmetrical.Symmetry public open import Oscar.Class.Symmetrical.Unifies public open import Oscar.Class.Transextensionality.Proposequality public open import Oscar.Class.Transitivity.Function public open import Oscar.Class.[ExtensibleType].Proposequality public -- instance bundles open import Oscar.Property.Category.AListProposequality public open import Oscar.Property.Category.ExtensionProposextensequality public open import Oscar.Property.Category.Function public open import Oscar.Property.Functor.SubstitistProposequalitySubstitunctionProposextensequality public open import Oscar.Property.Functor.SubstitunctionExtensionTerm public open import Oscar.Property.Monad.Maybe public open import Oscar.Property.Propergroup.Substitunction public open import Oscar.Property.Setoid.ProductIndexEquivalence public open import Oscar.Property.Setoid.Proposequality public open import Oscar.Property.Setoid.Proposextensequality public open import Oscar.Property.Setoid.ṖropertyEquivalence public open import Oscar.Property.Thickandthin.FinFinProposequalityMaybeProposequality public open import Oscar.Property.Thickandthin.FinTermProposequalityMaybeProposequality public -- data open import Oscar.Data.Constraint public open import Oscar.Data.Decidable public open import Oscar.Data.Descender public open import Oscar.Data.ExtensionṖroperty public open import Oscar.Data.Fin public open import Oscar.Data.List public open import Oscar.Data.Maybe public open import Oscar.Data.ProductIndexEquivalence public open import Oscar.Data.ProperlyExtensionNothing public open import Oscar.Data.Proposequality public open import Oscar.Data.ṖropertyEquivalence public open import Oscar.Data.Substitist public open import Oscar.Data.Substitunction public open import Oscar.Data.Surjcollation public open import Oscar.Data.Surjextenscollation public open import Oscar.Data.Term public open import Oscar.Data.Vec public open import Oscar.Data.¶ public open import Oscar.Data.𝟘 public open import Oscar.Data.𝟙 public open import Oscar.Data.𝟚 public -- class derivations open import Oscar.Class.Leftunit.ToUnit public open import Oscar.Class.Symmetry.ToSym public open import Oscar.Class.Transleftidentity.ToLeftunit public
66.690476
103
0.555397
8baf4b8398572e7ad2d47123d28aac1585bc23b0
10,474
agda
Agda
agda/Text/Greek/SBLGNT/3John.agda
scott-fleischman/GreekGrammar
915c46c27c7f8aad5907474d8484f2685a4cd6a7
[ "MIT" ]
44
2015-05-29T14:48:51.000Z
2022-03-06T15:41:57.000Z
agda/Text/Greek/SBLGNT/3John.agda
scott-fleischman/GreekGrammar
915c46c27c7f8aad5907474d8484f2685a4cd6a7
[ "MIT" ]
13
2015-05-28T20:04:08.000Z
2020-09-07T11:58:38.000Z
agda/Text/Greek/SBLGNT/3John.agda
scott-fleischman/GreekGrammar
915c46c27c7f8aad5907474d8484f2685a4cd6a7
[ "MIT" ]
5
2015-02-27T22:34:13.000Z
2017-06-11T11:25:09.000Z
module Text.Greek.SBLGNT.3John where open import Data.List open import Text.Greek.Bible open import Text.Greek.Script open import Text.Greek.Script.Unicode ΙΩΑΝΝΟΥ-Γ : List (Word) ΙΩΑΝΝΟΥ-Γ = word (Ὁ ∷ []) "3John.1.1" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "3John.1.1" ∷ word (Γ ∷ α ∷ ΐ ∷ ῳ ∷ []) "3John.1.1" ∷ word (τ ∷ ῷ ∷ []) "3John.1.1" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ῷ ∷ []) "3John.1.1" ∷ word (ὃ ∷ ν ∷ []) "3John.1.1" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "3John.1.1" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ῶ ∷ []) "3John.1.1" ∷ word (ἐ ∷ ν ∷ []) "3John.1.1" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "3John.1.1" ∷ word (Ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ έ ∷ []) "3John.1.2" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "3John.1.2" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "3John.1.2" ∷ word (ε ∷ ὔ ∷ χ ∷ ο ∷ μ ∷ α ∷ ί ∷ []) "3John.1.2" ∷ word (σ ∷ ε ∷ []) "3John.1.2" ∷ word (ε ∷ ὐ ∷ ο ∷ δ ∷ ο ∷ ῦ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "3John.1.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "3John.1.2" ∷ word (ὑ ∷ γ ∷ ι ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "3John.1.2" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "3John.1.2" ∷ word (ε ∷ ὐ ∷ ο ∷ δ ∷ ο ∷ ῦ ∷ τ ∷ α ∷ ί ∷ []) "3John.1.2" ∷ word (σ ∷ ο ∷ υ ∷ []) "3John.1.2" ∷ word (ἡ ∷ []) "3John.1.2" ∷ word (ψ ∷ υ ∷ χ ∷ ή ∷ []) "3John.1.2" ∷ word (ἐ ∷ χ ∷ ά ∷ ρ ∷ η ∷ ν ∷ []) "3John.1.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "3John.1.3" ∷ word (∙λ ∷ ί ∷ α ∷ ν ∷ []) "3John.1.3" ∷ word (ἐ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "3John.1.3" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῶ ∷ ν ∷ []) "3John.1.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "3John.1.3" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "3John.1.3" ∷ word (σ ∷ ο ∷ υ ∷ []) "3John.1.3" ∷ word (τ ∷ ῇ ∷ []) "3John.1.3" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "3John.1.3" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "3John.1.3" ∷ word (σ ∷ ὺ ∷ []) "3John.1.3" ∷ word (ἐ ∷ ν ∷ []) "3John.1.3" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "3John.1.3" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "3John.1.3" ∷ word (μ ∷ ε ∷ ι ∷ ζ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "3John.1.4" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "3John.1.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "3John.1.4" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "3John.1.4" ∷ word (χ ∷ α ∷ ρ ∷ ά ∷ ν ∷ []) "3John.1.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "3John.1.4" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ω ∷ []) "3John.1.4" ∷ word (τ ∷ ὰ ∷ []) "3John.1.4" ∷ word (ἐ ∷ μ ∷ ὰ ∷ []) "3John.1.4" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "3John.1.4" ∷ word (ἐ ∷ ν ∷ []) "3John.1.4" ∷ word (τ ∷ ῇ ∷ []) "3John.1.4" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "3John.1.4" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "3John.1.4" ∷ word (Ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ έ ∷ []) "3John.1.5" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "3John.1.5" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ ς ∷ []) "3John.1.5" ∷ word (ὃ ∷ []) "3John.1.5" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "3John.1.5" ∷ word (ἐ ∷ ρ ∷ γ ∷ ά ∷ σ ∷ ῃ ∷ []) "3John.1.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "3John.1.5" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "3John.1.5" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "3John.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "3John.1.5" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "3John.1.5" ∷ word (ξ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "3John.1.5" ∷ word (ο ∷ ἳ ∷ []) "3John.1.6" ∷ word (ἐ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ η ∷ σ ∷ ά ∷ ν ∷ []) "3John.1.6" ∷ word (σ ∷ ο ∷ υ ∷ []) "3John.1.6" ∷ word (τ ∷ ῇ ∷ []) "3John.1.6" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "3John.1.6" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "3John.1.6" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "3John.1.6" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "3John.1.6" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "3John.1.6" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "3John.1.6" ∷ word (π ∷ ρ ∷ ο ∷ π ∷ έ ∷ μ ∷ ψ ∷ α ∷ ς ∷ []) "3John.1.6" ∷ word (ἀ ∷ ξ ∷ ί ∷ ω ∷ ς ∷ []) "3John.1.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "3John.1.6" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "3John.1.6" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "3John.1.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "3John.1.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "3John.1.7" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "3John.1.7" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "3John.1.7" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "3John.1.7" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "3John.1.7" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "3John.1.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "3John.1.7" ∷ word (ἐ ∷ θ ∷ ν ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "3John.1.7" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "3John.1.8" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "3John.1.8" ∷ word (ὀ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "3John.1.8" ∷ word (ὑ ∷ π ∷ ο ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "3John.1.8" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "3John.1.8" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "3John.1.8" ∷ word (ἵ ∷ ν ∷ α ∷ []) "3John.1.8" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ο ∷ ὶ ∷ []) "3John.1.8" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "3John.1.8" ∷ word (τ ∷ ῇ ∷ []) "3John.1.8" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "3John.1.8" ∷ word (Ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ ά ∷ []) "3John.1.9" ∷ word (τ ∷ ι ∷ []) "3John.1.9" ∷ word (τ ∷ ῇ ∷ []) "3John.1.9" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "3John.1.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "3John.1.9" ∷ word (ὁ ∷ []) "3John.1.9" ∷ word (φ ∷ ι ∷ ∙λ ∷ ο ∷ π ∷ ρ ∷ ω ∷ τ ∷ ε ∷ ύ ∷ ω ∷ ν ∷ []) "3John.1.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "3John.1.9" ∷ word (Δ ∷ ι ∷ ο ∷ τ ∷ ρ ∷ έ ∷ φ ∷ η ∷ ς ∷ []) "3John.1.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "3John.1.9" ∷ word (ἐ ∷ π ∷ ι ∷ δ ∷ έ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "3John.1.9" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "3John.1.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "3John.1.10" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "3John.1.10" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "3John.1.10" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ω ∷ []) "3John.1.10" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ν ∷ ή ∷ σ ∷ ω ∷ []) "3John.1.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "3John.1.10" ∷ word (τ ∷ ὰ ∷ []) "3John.1.10" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "3John.1.10" ∷ word (ἃ ∷ []) "3John.1.10" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "3John.1.10" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "3John.1.10" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ο ∷ ῖ ∷ ς ∷ []) "3John.1.10" ∷ word (φ ∷ ∙λ ∷ υ ∷ α ∷ ρ ∷ ῶ ∷ ν ∷ []) "3John.1.10" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "3John.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "3John.1.10" ∷ word (μ ∷ ὴ ∷ []) "3John.1.10" ∷ word (ἀ ∷ ρ ∷ κ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "3John.1.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "3John.1.10" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "3John.1.10" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "3John.1.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "3John.1.10" ∷ word (ἐ ∷ π ∷ ι ∷ δ ∷ έ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "3John.1.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "3John.1.10" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "3John.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "3John.1.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "3John.1.10" ∷ word (β ∷ ο ∷ υ ∷ ∙λ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "3John.1.10" ∷ word (κ ∷ ω ∷ ∙λ ∷ ύ ∷ ε ∷ ι ∷ []) "3John.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "3John.1.10" ∷ word (ἐ ∷ κ ∷ []) "3John.1.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "3John.1.10" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "3John.1.10" ∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "3John.1.10" ∷ word (Ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ έ ∷ []) "3John.1.11" ∷ word (μ ∷ ὴ ∷ []) "3John.1.11" ∷ word (μ ∷ ι ∷ μ ∷ ο ∷ ῦ ∷ []) "3John.1.11" ∷ word (τ ∷ ὸ ∷ []) "3John.1.11" ∷ word (κ ∷ α ∷ κ ∷ ὸ ∷ ν ∷ []) "3John.1.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "3John.1.11" ∷ word (τ ∷ ὸ ∷ []) "3John.1.11" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ό ∷ ν ∷ []) "3John.1.11" ∷ word (ὁ ∷ []) "3John.1.11" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ο ∷ π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "3John.1.11" ∷ word (ἐ ∷ κ ∷ []) "3John.1.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "3John.1.11" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "3John.1.11" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "3John.1.11" ∷ word (ὁ ∷ []) "3John.1.11" ∷ word (κ ∷ α ∷ κ ∷ ο ∷ π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "3John.1.11" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "3John.1.11" ∷ word (ἑ ∷ ώ ∷ ρ ∷ α ∷ κ ∷ ε ∷ ν ∷ []) "3John.1.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "3John.1.11" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "3John.1.11" ∷ word (Δ ∷ η ∷ μ ∷ η ∷ τ ∷ ρ ∷ ί ∷ ῳ ∷ []) "3John.1.12" ∷ word (μ ∷ ε ∷ μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "3John.1.12" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "3John.1.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "3John.1.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "3John.1.12" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "3John.1.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "3John.1.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "3John.1.12" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "3John.1.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "3John.1.12" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "3John.1.12" ∷ word (δ ∷ ὲ ∷ []) "3John.1.12" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "3John.1.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "3John.1.12" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ ς ∷ []) "3John.1.12" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "3John.1.12" ∷ word (ἡ ∷ []) "3John.1.12" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ []) "3John.1.12" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "3John.1.12" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ ς ∷ []) "3John.1.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "3John.1.12" ∷ word (Π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "3John.1.13" ∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "3John.1.13" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ α ∷ ι ∷ []) "3John.1.13" ∷ word (σ ∷ ο ∷ ι ∷ []) "3John.1.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "3John.1.13" ∷ word (ο ∷ ὐ ∷ []) "3John.1.13" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "3John.1.13" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "3John.1.13" ∷ word (μ ∷ έ ∷ ∙λ ∷ α ∷ ν ∷ ο ∷ ς ∷ []) "3John.1.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "3John.1.13" ∷ word (κ ∷ α ∷ ∙λ ∷ ά ∷ μ ∷ ο ∷ υ ∷ []) "3John.1.13" ∷ word (σ ∷ ο ∷ ι ∷ []) "3John.1.13" ∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ε ∷ ι ∷ ν ∷ []) "3John.1.13" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ω ∷ []) "3John.1.14" ∷ word (δ ∷ ὲ ∷ []) "3John.1.14" ∷ word (ε ∷ ὐ ∷ θ ∷ έ ∷ ω ∷ ς ∷ []) "3John.1.14" ∷ word (σ ∷ ε ∷ []) "3John.1.14" ∷ word (ἰ ∷ δ ∷ ε ∷ ῖ ∷ ν ∷ []) "3John.1.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "3John.1.14" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "3John.1.14" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "3John.1.14" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "3John.1.14" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ή ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "3John.1.14" ∷ word (Ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "3John.1.15" ∷ word (σ ∷ ο ∷ ι ∷ []) "3John.1.15" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "3John.1.15" ∷ word (σ ∷ ε ∷ []) "3John.1.15" ∷ word (ο ∷ ἱ ∷ []) "3John.1.15" ∷ word (φ ∷ ί ∷ ∙λ ∷ ο ∷ ι ∷ []) "3John.1.15" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ο ∷ υ ∷ []) "3John.1.15" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "3John.1.15" ∷ word (φ ∷ ί ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "3John.1.15" ∷ word (κ ∷ α ∷ τ ∷ []) "3John.1.15" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "3John.1.15" ∷ []
45.53913
74
0.360703
2f21c9ebcbbd8806c27e4233ce7faa237025bef2
5,451
agda
Agda
Basic/Compiler/Machine.agda
AndrasKovacs/SemanticsWithApplications
05200d60b4a4b2c6fa37806ced9247055d24db94
[ "MIT" ]
8
2016-09-12T04:25:39.000Z
2020-02-02T10:01:52.000Z
Basic/Compiler/Machine.agda
AndrasKovacs/SemanticsWithApplications
05200d60b4a4b2c6fa37806ced9247055d24db94
[ "MIT" ]
null
null
null
Basic/Compiler/Machine.agda
AndrasKovacs/SemanticsWithApplications
05200d60b4a4b2c6fa37806ced9247055d24db94
[ "MIT" ]
null
null
null
module Basic.Compiler.Machine where open import Basic.AST open import Basic.BigStep open import Basic.Compiler.Code open import Utils.Decidable open import Data.Product open import Relation.Nullary open import Relation.Nullary.Decidable open import Data.List hiding (unfold) open import Data.Bool open import Data.Nat open import Data.Maybe {- This is a simple interpreter for the abstract machine code. There's no corresponding part in the book. A nice thing about the abstract machine is that each transition is decidable, so we can tell at each point whether our program is stuck or may continue. Of course, this doesn't mean that *computation sequences* are decidable! (it's pretty much just the halting problem). What we can do is specify how many steps we'd like to compute, and then compute that far. The "steps" function below only computes the ending configuration, while "trace" returns a list of all intermediate configurations. "unfold" returns a computation sequence if the program terminates or gets stuck in the given number of steps. -} step : ∀ {n} (c : Code n) e s → Dec (∃₂ λ c' e' -> ∃ λ s' → ⟨ c , e , s ⟩▷⟨ c' , e' , s' ⟩) step [] e s = no (λ {(c' , e' , s' , ())}) step (PUSH x ∷ c) e s = yes (c , nat x ∷ e , s , PUSH x) step (FETCH x ∷ c) e s = yes (c , nat _ ∷ e , s , FETCH x) step (STORE x ∷ c) [] s = no (λ {(c' , e' , s' , ())}) step (STORE x ∷ c) (nat x₁ ∷ e) s = yes (c , e , _ , STORE x) step (STORE x ∷ c) (bool x₁ ∷ e) s = no (λ {(c' , e' , s' , ())}) step (ADD ∷ c) [] s = no (λ { (c' , e' , s' , ()) }) step (ADD ∷ c) (nat x ∷ []) s = no (λ { (c' , e' , s' , ()) }) step (ADD ∷ c) (nat x ∷ nat x₁ ∷ e) s = yes (c , nat _ ∷ e , s , ADD x x₁) step (ADD ∷ c) (nat x ∷ bool x₁ ∷ e) s = no (λ { (c' , e' , s' , ()) }) step (ADD ∷ c) (bool x ∷ e) s = no (λ { (c' , e' , s' , ()) }) step (MUL ∷ c) [] s = no (λ { (c' , e' , s' , ()) }) step (MUL ∷ c) (nat x ∷ []) s = no (λ { (c' , e' , s' , ()) }) step (MUL ∷ c) (nat x ∷ nat x₁ ∷ e) s = yes (c , nat _ ∷ e , s , MUL x x₁) step (MUL ∷ c) (nat x ∷ bool x₁ ∷ e) s = no (λ { (c' , e' , s' , ()) }) step (MUL ∷ c) (bool x ∷ e) s = no (λ { (c' , e' , s' , ()) }) step (SUB ∷ c) [] s = no (λ { (c' , e' , s' , ()) }) step (SUB ∷ c) (nat x ∷ []) s = no (λ { (c' , e' , s' , ()) }) step (SUB ∷ c) (nat x ∷ nat x₁ ∷ e) s = yes (c , nat _ ∷ e , s , SUB x x₁) step (SUB ∷ c) (nat x ∷ bool x₁ ∷ e) s = no (λ { (c' , e' , s' , ()) }) step (SUB ∷ c) (bool x ∷ e) s = no (λ { (c' , e' , s' , ()) }) step (TRUE ∷ c) e s = yes (c , bool true ∷ e , s , TRUE) step (FALSE ∷ c) e s = yes (c , bool false ∷ e , s , FALSE) step (EQ ∷ c) [] s = no (λ { (c' , e' , s' , ()) }) step (EQ ∷ c) (nat x ∷ []) s = no (λ { (c' , e' , s' , ()) }) step (EQ ∷ c) (nat x ∷ nat x₁ ∷ e) s = yes (c , bool ⌊ x ≡⁇ x₁ ⌋ ∷ e , s , EQ x x₁) step (EQ ∷ c) (nat x ∷ bool x₁ ∷ e) s = no (λ { (c' , e' , s' , ()) }) step (EQ ∷ c) (bool x ∷ e) s = no (λ { (c' , e' , s' , ()) }) step (LTE ∷ c) [] s = no (λ { (c' , e' , s' , ()) }) step (LTE ∷ c) (nat x ∷ []) s = no (λ { (c' , e' , s' , ()) }) step (LTE ∷ c) (nat x ∷ nat x₁ ∷ e) s = yes (c , bool ⌊ x ≤⁇ x₁ ⌋ ∷ e , s , LTE x x₁) step (LTE ∷ c) (nat x ∷ bool x₁ ∷ e) s = no (λ { (c' , e' , s' , ()) }) step (LTE ∷ c) (bool x ∷ e) s = no (λ { (c' , e' , s' , ()) }) step (LT ∷ c) [] s = no (λ { (c' , e' , s' , ()) }) step (LT ∷ c) (nat x ∷ []) s = no (λ { (c' , e' , s' , ()) }) step (LT ∷ c) (nat x ∷ nat x₁ ∷ e) s = yes (c , bool ⌊ x <⁇ x₁ ⌋ ∷ e , s , LT x x₁) step (LT ∷ c) (nat x ∷ bool x₁ ∷ e) s = no (λ { (c' , e' , s' , ()) }) step (LT ∷ c) (bool x ∷ e) s = no (λ { (c' , e' , s' , ()) }) step (AND ∷ c) [] s = no (λ { (c' , e' , s' , ()) }) step (AND ∷ c) (nat x ∷ e) s = no (λ { (c' , e' , s' , ()) }) step (AND ∷ c) (bool x ∷ []) s = no (λ { (c' , e' , s' , ()) }) step (AND ∷ c) (bool x ∷ nat x₁ ∷ e) s = no (λ { (c' , e' , s' , ()) }) step (AND ∷ c) (bool x ∷ bool x₁ ∷ e) s = yes (c , bool (x ∧ x₁) ∷ e , s , AND x x₁) step (NOT ∷ c) [] s = no (λ { (c' , e' , s' , ()) }) step (NOT ∷ c) (nat x ∷ e) s = no (λ { (c' , e' , s' , ()) }) step (NOT ∷ c) (bool x ∷ e) s = yes (c , bool _ ∷ e , s , NOT x) step (NOOP ∷ c) e s = yes (c , e , s , NOOP) step (BRANCH x x₁ ∷ c) [] s = no (λ { (c' , e' , s' , ()) }) step (BRANCH x x₁ ∷ c) (nat x₂ ∷ e) s = no (λ { (c' , e' , s' , ()) }) step (BRANCH x x₁ ∷ c) (bool true ∷ e) s = yes (x ++ c , e , s , BRANCH) step (BRANCH x x₁ ∷ c) (bool false ∷ e) s = yes (x₁ ++ c , e , s , BRANCH) step (LOOP x x₁ ∷ c) e s = yes (x ++ BRANCH (x₁ ++ LOOP x x₁ ∷ []) (NOOP ∷ []) ∷ c , e , s , LOOP) steps : ∀ {n} → Code n → Stack → State n → ℕ → (Code n × Stack × State n) steps c e s zero = c , e , s steps c e s (suc n) with step c e s ... | yes (c' , e' , s' , p) = steps c' e' s' n ... | no _ = c , e , s trace : ∀ {n} → Code n → Stack → State n → ℕ → List (Code n × Stack × State n) trace c e s zero = [] trace c e s (suc n) with step c e s ... | yes (c' , e' , s' , p) = (c , e , s) ∷ trace c' e' s' n ... | no _ = (c , e , s) ∷ [] unfold : ∀ {n} c e (s : State n) → ℕ → Maybe (∃₂ λ c' e' → ∃ λ s' → ⟨ c , e , s ⟩▷*⟨ c' , e' , s' ⟩) unfold [] e s n₁ = just ([] , e , s , done) unfold (x ∷ c) e s zero = nothing unfold (x ∷ c) e s (suc n) with step (x ∷ c) e s ... | no ¬p = just (x ∷ c , e , s , stuck (λ c' e' s' z → ¬p (c' , e' , s' , z))) ... | yes (c' , e' , s' , p) with unfold c' e' s' n ... | nothing = nothing ... | just (c'' , e'' , s'' , seq) = just (c'' , e'' , s'' , p ∷ seq)
43.261905
98
0.464685
8bfd76e5fbe80d160e622fc3d94d078f7077ae3e
122
agda
Agda
examples/AIM5/PolyDep/TYPE.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
examples/AIM5/PolyDep/TYPE.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/AIM5/PolyDep/TYPE.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module TYPE where data Pair (a b : Set1) : Set1 where pair : a -> b -> Pair a b data Unit : Set1 where unit : Unit
13.555556
35
0.614754
dc86594aeac1fdac1efa42787635d8e42ed693ea
951
agda
Agda
test/Succeed/Issue4525.agda
googleson78/agda
aea2c53340f509c2c67157caeac360400ea6afbc
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue4525.agda
googleson78/agda
aea2c53340f509c2c67157caeac360400ea6afbc
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue4525.agda
googleson78/agda
aea2c53340f509c2c67157caeac360400ea6afbc
[ "BSD-3-Clause" ]
null
null
null
open import Agda.Builtin.Bool open import Agda.Builtin.Equality open import Agda.Builtin.List open import Agda.Builtin.Reflection renaming (bindTC to _>>=_) open import Agda.Builtin.Unit postulate @0 A : Set @0 _ : @0 Set → (Set → Set) → Set _ = λ @0 where A G → G A @0 _ : @0 Set → (Set → Set) → Set _ = λ @0 { A G → G A } data ⊥ : Set where @0 _ : @0 ⊥ → Set _ = λ @0 { () } @0 _ : @0 ⊥ → Set _ = λ @0 where () @0 _ : @0 ⊥ → Set _ = λ @0 @ω @erased @plenty @(tactic (λ _ → Set)) @irr @irrelevant @shirr @shape-irrelevant @relevant @♭ @flat @notlock @lock @tick where () F : ⊤ → ⊤ F = λ { tt → tt } macro `F : Term → TC ⊤ `F goal = do F ← withNormalisation true (quoteTC F) F ← quoteTC F unify goal F _ : `F ≡ pat-lam (clause [] (arg (arg-info visible relevant) (con (quote tt) []) ∷ []) (con (quote tt) []) ∷ []) [] _ = refl
14.630769
64
0.513144
8b6c590c68d845123ec29ff3784b5bbacc6abbe7
11,023
agda
Agda
IPC/Syntax/Translation.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
IPC/Syntax/Translation.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
IPC/Syntax/Translation.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
-- Intuitionistic propositional calculus. -- Translation between different formalisations of syntax. module IPC.Syntax.Translation where open import IPC.Syntax.Common public import IPC.Syntax.ClosedHilbertSequential as CHS import IPC.Syntax.ClosedHilbert as CH import IPC.Syntax.HilbertSequential as HS import IPC.Syntax.Hilbert as H import IPC.Syntax.Gentzen as G open HS using () renaming (_⊦⊢_ to HS⟨_⊦⊢_⟩ ; _⊢_ to HS⟨_⊢_⟩) public open H using () renaming (_⊢_ to H⟨_⊢_⟩) public open G using () renaming (_⊢_ to G⟨_⊢_⟩) public -- Available translations. -- -- ┌─────┬─────┬─────┬─────┬─────┐ -- │ CHS │ CH │ HS │ H │ G │ -- ┌─────┼─────┼─────┼─────┼─────┼─────┤ -- │ CHS │ │ d │ d │ ∘ │ ∘ │ -- ├─────┼─────┼─────┼─────┼─────┼─────┤ -- │ CH │ d │ │ ∘ │ d │ ∘ │ -- ├─────┼─────┼─────┼─────┼─────┼─────┤ -- │ HS │ d │ ∘ │ │ d │ ∘ │ -- ├─────┼─────┼─────┼─────┼─────┼─────┤ -- │ H │ ∘ │ d │ d │ │ d │ -- ├─────┼─────┼─────┼─────┼─────┼─────┤ -- │ G │ ∘ │ ∘ │ ∘ │ d │ │ -- └─────┴─────┴─────┴─────┴─────┴─────┘ -- -- d : Direct translation. -- ∘ : Composition of translations. -- Translation from closed Hilbert-style sequential to closed Hilbert-style. chs→ch : ∀ {A} → CHS.⊢ A → CH.⊢ A chs→ch (Ξ , ts) = chs⊦→ch ts top where chs⊦→ch : ∀ {A Ξ} → CHS.⊦⊢ Ξ → A ∈ Ξ → CH.⊢ A chs⊦→ch (CHS.mp i j ts) top = CH.app (chs⊦→ch ts i) (chs⊦→ch ts j) chs⊦→ch (CHS.ci ts) top = CH.ci chs⊦→ch (CHS.ck ts) top = CH.ck chs⊦→ch (CHS.cs ts) top = CH.cs chs⊦→ch (CHS.cpair ts) top = CH.cpair chs⊦→ch (CHS.cfst ts) top = CH.cfst chs⊦→ch (CHS.csnd ts) top = CH.csnd chs⊦→ch (CHS.unit ts) top = CH.unit chs⊦→ch (CHS.cboom ts) top = CH.cboom chs⊦→ch (CHS.cinl ts) top = CH.cinl chs⊦→ch (CHS.cinr ts) top = CH.cinr chs⊦→ch (CHS.ccase ts) top = CH.ccase chs⊦→ch (CHS.mp i j ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.ci ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.ck ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.cs ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.cpair ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.cfst ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.csnd ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.unit ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.cboom ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.cinl ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.cinr ts) (pop k) = chs⊦→ch ts k chs⊦→ch (CHS.ccase ts) (pop k) = chs⊦→ch ts k -- Translation from closed Hilbert-style to closed Hilbert-style sequential. ch→chs : ∀ {A} → CH.⊢ A → CHS.⊢ A ch→chs (CH.app t u) = CHS.app (ch→chs t) (ch→chs u) ch→chs CH.ci = ∅ , CHS.ci CHS.nil ch→chs CH.ck = ∅ , CHS.ck CHS.nil ch→chs CH.cs = ∅ , CHS.cs CHS.nil ch→chs CH.cpair = ∅ , CHS.cpair CHS.nil ch→chs CH.cfst = ∅ , CHS.cfst CHS.nil ch→chs CH.csnd = ∅ , CHS.csnd CHS.nil ch→chs CH.unit = ∅ , CHS.unit CHS.nil ch→chs CH.cboom = ∅ , CHS.cboom CHS.nil ch→chs CH.cinl = ∅ , CHS.cinl CHS.nil ch→chs CH.cinr = ∅ , CHS.cinr CHS.nil ch→chs CH.ccase = ∅ , CHS.ccase CHS.nil -- Translation from Hilbert-style sequential to Hilbert-style. hs→h : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → H⟨ Γ ⊢ A ⟩ hs→h (Ξ , ts) = hs⊦→h ts top where hs⊦→h : ∀ {A Ξ Γ} → HS⟨ Γ ⊦⊢ Ξ ⟩ → A ∈ Ξ → H⟨ Γ ⊢ A ⟩ hs⊦→h (HS.var i ts) top = H.var i hs⊦→h (HS.mp i j ts) top = H.app (hs⊦→h ts i) (hs⊦→h ts j) hs⊦→h (HS.ci ts) top = H.ci hs⊦→h (HS.ck ts) top = H.ck hs⊦→h (HS.cs ts) top = H.cs hs⊦→h (HS.cpair ts) top = H.cpair hs⊦→h (HS.cfst ts) top = H.cfst hs⊦→h (HS.csnd ts) top = H.csnd hs⊦→h (HS.unit ts) top = H.unit hs⊦→h (HS.cboom ts) top = H.cboom hs⊦→h (HS.cinl ts) top = H.cinl hs⊦→h (HS.cinr ts) top = H.cinr hs⊦→h (HS.ccase ts) top = H.ccase hs⊦→h (HS.var i ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.mp i j ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.ci ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.ck ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.cs ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.cpair ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.cfst ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.csnd ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.unit ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.cboom ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.cinl ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.cinr ts) (pop k) = hs⊦→h ts k hs⊦→h (HS.ccase ts) (pop k) = hs⊦→h ts k -- Translation from Hilbert-style to Hilbert-style sequential. h→hs : ∀ {A Γ} → H⟨ Γ ⊢ A ⟩ → HS⟨ Γ ⊢ A ⟩ h→hs (H.var i) = ∅ , HS.var i HS.nil h→hs (H.app t u) = HS.app (h→hs t) (h→hs u) h→hs H.ci = ∅ , HS.ci HS.nil h→hs H.ck = ∅ , HS.ck HS.nil h→hs H.cs = ∅ , HS.cs HS.nil h→hs H.cpair = ∅ , HS.cpair HS.nil h→hs H.cfst = ∅ , HS.cfst HS.nil h→hs H.csnd = ∅ , HS.csnd HS.nil h→hs H.unit = ∅ , HS.unit HS.nil h→hs H.cboom = ∅ , HS.cboom HS.nil h→hs H.cinl = ∅ , HS.cinl HS.nil h→hs H.cinr = ∅ , HS.cinr HS.nil h→hs H.ccase = ∅ , HS.ccase HS.nil -- Deduction and detachment theorems for Hilbert-style sequential. hs-lam : ∀ {A B Γ} → HS⟨ Γ , A ⊢ B ⟩ → HS⟨ Γ ⊢ A ▻ B ⟩ hs-lam = h→hs ∘ H.lam ∘ hs→h hs-lam⋆₀ : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → HS⟨ ∅ ⊢ Γ ▻⋯▻ A ⟩ hs-lam⋆₀ = h→hs ∘ H.lam⋆₀ ∘ hs→h hs-det : ∀ {A B Γ} → HS⟨ Γ ⊢ A ▻ B ⟩ → HS⟨ Γ , A ⊢ B ⟩ hs-det = h→hs ∘ H.det ∘ hs→h hs-det⋆₀ : ∀ {A Γ} → HS⟨ ∅ ⊢ Γ ▻⋯▻ A ⟩ → HS⟨ Γ ⊢ A ⟩ hs-det⋆₀ = h→hs ∘ H.det⋆₀ ∘ hs→h -- Translation from closed Hilbert-style sequential to Hilbert-style sequential. chs→hs₀ : ∀ {A} → CHS.⊢ A → HS⟨ ∅ ⊢ A ⟩ chs→hs₀ (Ξ , ts) = Ξ , chs⊦→hs₀⊦ ts where chs⊦→hs₀⊦ : ∀ {Ξ} → CHS.⊦⊢ Ξ → HS⟨ ∅ ⊦⊢ Ξ ⟩ chs⊦→hs₀⊦ CHS.nil = HS.nil chs⊦→hs₀⊦ (CHS.mp i j ts) = HS.mp i j (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.ci ts) = HS.ci (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.ck ts) = HS.ck (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.cs ts) = HS.cs (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.cpair ts) = HS.cpair (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.cfst ts) = HS.cfst (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.csnd ts) = HS.csnd (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.unit ts) = HS.unit (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.cboom ts) = HS.cboom (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.cinl ts) = HS.cinl (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.cinr ts) = HS.cinr (chs⊦→hs₀⊦ ts) chs⊦→hs₀⊦ (CHS.ccase ts) = HS.ccase (chs⊦→hs₀⊦ ts) chs→hs : ∀ {A Γ} → CHS.⊢ Γ ▻⋯▻ A → HS⟨ Γ ⊢ A ⟩ chs→hs t = hs-det⋆₀ (chs→hs₀ t) -- Translation from Hilbert-style sequential to closed Hilbert-style sequential. hs₀→chs : ∀ {A} → HS⟨ ∅ ⊢ A ⟩ → CHS.⊢ A hs₀→chs (Ξ , ts) = Ξ , hs₀⊦→chs⊦ ts where hs₀⊦→chs⊦ : ∀ {Ξ} → HS⟨ ∅ ⊦⊢ Ξ ⟩ → CHS.⊦⊢ Ξ hs₀⊦→chs⊦ HS.nil = CHS.nil hs₀⊦→chs⊦ (HS.var () ts) hs₀⊦→chs⊦ (HS.mp i j ts) = CHS.mp i j (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.ci ts) = CHS.ci (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.ck ts) = CHS.ck (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.cs ts) = CHS.cs (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.cpair ts) = CHS.cpair (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.cfst ts) = CHS.cfst (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.csnd ts) = CHS.csnd (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.unit ts) = CHS.unit (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.cboom ts) = CHS.cboom (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.cinl ts) = CHS.cinl (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.cinr ts) = CHS.cinr (hs₀⊦→chs⊦ ts) hs₀⊦→chs⊦ (HS.ccase ts) = CHS.ccase (hs₀⊦→chs⊦ ts) hs→chs : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → CHS.⊢ Γ ▻⋯▻ A hs→chs t = hs₀→chs (hs-lam⋆₀ t) -- Translation from closed Hilbert-style to Hilbert-style. ch→h₀ : ∀ {A} → CH.⊢ A → H⟨ ∅ ⊢ A ⟩ ch→h₀ (CH.app t u) = H.app (ch→h₀ t) (ch→h₀ u) ch→h₀ CH.ci = H.ci ch→h₀ CH.ck = H.ck ch→h₀ CH.cs = H.cs ch→h₀ CH.cpair = H.cpair ch→h₀ CH.cfst = H.cfst ch→h₀ CH.csnd = H.csnd ch→h₀ CH.unit = H.unit ch→h₀ CH.cboom = H.cboom ch→h₀ CH.cinl = H.cinl ch→h₀ CH.cinr = H.cinr ch→h₀ CH.ccase = H.ccase ch→h : ∀ {A Γ} → CH.⊢ Γ ▻⋯▻ A → H⟨ Γ ⊢ A ⟩ ch→h t = H.det⋆₀ (ch→h₀ t) -- Translation from Hilbert-style to closed Hilbert-style. h₀→ch : ∀ {A} → H⟨ ∅ ⊢ A ⟩ → CH.⊢ A h₀→ch (H.var ()) h₀→ch (H.app t u) = CH.app (h₀→ch t) (h₀→ch u) h₀→ch H.ci = CH.ci h₀→ch H.ck = CH.ck h₀→ch H.cs = CH.cs h₀→ch H.cpair = CH.cpair h₀→ch H.cfst = CH.cfst h₀→ch H.csnd = CH.csnd h₀→ch H.unit = CH.unit h₀→ch H.cboom = CH.cboom h₀→ch H.cinl = CH.cinl h₀→ch H.cinr = CH.cinr h₀→ch H.ccase = CH.ccase h→ch : ∀ {A Γ} → H⟨ Γ ⊢ A ⟩ → CH.⊢ Γ ▻⋯▻ A h→ch t = h₀→ch (H.lam⋆₀ t) -- Translation from Hilbert-style to Gentzen-style. h→g : ∀ {A Γ} → H⟨ Γ ⊢ A ⟩ → G⟨ Γ ⊢ A ⟩ h→g (H.var i) = G.var i h→g (H.app t u) = G.app (h→g t) (h→g u) h→g H.ci = G.ci h→g H.ck = G.ck h→g H.cs = G.cs h→g H.cpair = G.cpair h→g H.cfst = G.cfst h→g H.csnd = G.csnd h→g H.unit = G.unit h→g H.cboom = G.cboom h→g H.cinl = G.cinl h→g H.cinr = G.cinr h→g H.ccase = G.ccase -- Translation from Gentzen-style to Hilbert-style. g→h : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → H⟨ Γ ⊢ A ⟩ g→h (G.var i) = H.var i g→h (G.lam t) = H.lam (g→h t) g→h (G.app t u) = H.app (g→h t) (g→h u) g→h (G.pair t u) = H.pair (g→h t) (g→h u) g→h (G.fst t) = H.fst (g→h t) g→h (G.snd t) = H.snd (g→h t) g→h G.unit = H.unit g→h (G.boom t) = H.boom (g→h t) g→h (G.inl t) = H.inl (g→h t) g→h (G.inr t) = H.inr (g→h t) g→h (G.case t u v) = H.case (g→h t) (g→h u) (g→h v) -- Additional translations from closed Hilbert-style sequential. chs→h₀ : ∀ {A} → CHS.⊢ A → H⟨ ∅ ⊢ A ⟩ chs→h₀ = ch→h₀ ∘ chs→ch chs→h : ∀ {A Γ} → CHS.⊢ Γ ▻⋯▻ A → H⟨ Γ ⊢ A ⟩ chs→h = ch→h ∘ chs→ch chs→g₀ : ∀ {A} → CHS.⊢ A → G⟨ ∅ ⊢ A ⟩ chs→g₀ = h→g ∘ chs→h₀ chs→g : ∀ {A Γ} → CHS.⊢ Γ ▻⋯▻ A → G⟨ Γ ⊢ A ⟩ chs→g = h→g ∘ chs→h -- Additional translations from closed Hilbert-style. ch→hs₀ : ∀ {A} → CH.⊢ A → HS⟨ ∅ ⊢ A ⟩ ch→hs₀ = chs→hs₀ ∘ ch→chs ch→hs : ∀ {A Γ} → CH.⊢ Γ ▻⋯▻ A → HS⟨ Γ ⊢ A ⟩ ch→hs = chs→hs ∘ ch→chs ch→g₀ : ∀ {A} → CH.⊢ A → G⟨ ∅ ⊢ A ⟩ ch→g₀ = h→g ∘ ch→h₀ ch→g : ∀ {A Γ} → CH.⊢ Γ ▻⋯▻ A → G⟨ Γ ⊢ A ⟩ ch→g = h→g ∘ ch→h -- Additional translations from Hilbert-style sequential. hs₀→ch : ∀ {A} → HS⟨ ∅ ⊢ A ⟩ → CH.⊢ A hs₀→ch = chs→ch ∘ hs₀→chs hs→ch : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → CH.⊢ Γ ▻⋯▻ A hs→ch = chs→ch ∘ hs→chs hs→g : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → G⟨ Γ ⊢ A ⟩ hs→g = h→g ∘ hs→h -- Additional translations from Hilbert-style. h₀→chs : ∀ {A} → H⟨ ∅ ⊢ A ⟩ → CHS.⊢ A h₀→chs = ch→chs ∘ h₀→ch h→chs : ∀ {A Γ} → H⟨ Γ ⊢ A ⟩ → CHS.⊢ Γ ▻⋯▻ A h→chs = ch→chs ∘ h→ch -- Additional translations from Gentzen-style. g₀→chs : ∀ {A} → G⟨ ∅ ⊢ A ⟩ → CHS.⊢ A g₀→chs = h₀→chs ∘ g→h g→chs : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → CHS.⊢ Γ ▻⋯▻ A g→chs = h→chs ∘ g→h g₀→ch : ∀ {A} → G⟨ ∅ ⊢ A ⟩ → CH.⊢ A g₀→ch = h₀→ch ∘ g→h g→ch : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → CH.⊢ Γ ▻⋯▻ A g→ch = h→ch ∘ g→h g→hs : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → HS⟨ Γ ⊢ A ⟩ g→hs = h→hs ∘ g→h
31.858382
80
0.48544
9ad7022b36883edfd9379430f807a25bcca3d9db
826
agda
Agda
test/Succeed/Issue1153.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1153.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1153.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Reported by Andrea, 2014-05-xx -- We cannot prune from a meta if one of its arguments is a lambda. -- (In some cases we could, but it is hard to get this right, -- probably needs a flow analysis.) -- {-# OPTIONS -v tc.meta.assign:25 -v tc.meta.kill:40 #-} open import Common.Equality open import Common.Product postulate F : Set → Set A : Set test : let H : Set H = _ M : ((Set → Set) → Set) → Set M = _ in {Z : Set} → H ≡ F (M (\ G → A → G Z)) × F H ≡ F (F (A → A)) × M ≡ \ K → K (\ _ → A) test = refl , refl , refl #1 : {A : Set} → let H : Set H = _ M : (Set → Set) → Set → Set M = _ in {Z : Set} → H ≡ F (M (\ _ → A) Z) × M ≡ (\ F X → F X) #1 = refl , refl
23.6
67
0.445521
57147d57961de8e1cd1047de435d7f96edef6b23
265
agda
Agda
Cubical/Data/Int.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Data/Int.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Data/Int.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
-- This is the preferred version of the integers in the library. Other -- versions can be found in the MoreInts directory. {-# OPTIONS --safe #-} module Cubical.Data.Int where open import Cubical.Data.Int.Base public open import Cubical.Data.Int.Properties public
33.125
70
0.773585
19652ee6937dec5b44356358f243a4a52b180b84
606
agda
Agda
archive/agda-2/Oscar/Class/Symmetry.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-2/Oscar/Class/Symmetry.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-2/Oscar/Class/Symmetry.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module Oscar.Class.Symmetry where open import Oscar.Class.Extensionality open import Oscar.Function open import Oscar.Level record Symmetry {a} {A : Set a} {ℓ} (_≤_ : A → A → Set ℓ) : Set (a ⊔ ℓ) where field ⦃ ′extensionality ⦄ : Extensionality _≤_ (λ ⋆ → flip _≤_ ⋆) id id symmetry : ∀ {x y} → x ≤ y → y ≤ x symmetry = extension (λ ⋆ → flip _≤_ ⋆) open Symmetry ⦃ … ⦄ public hiding (′extensionality) instance Symmetry⋆ : ∀ {a} {A : Set a} {ℓ} {_≤_ : A → A → Set ℓ} ⦃ _ : Extensionality _≤_ (λ ⋆ → flip _≤_ ⋆) id id ⦄ → Symmetry _≤_ Symmetry.′extensionality Symmetry⋆ = it
25.25
77
0.607261
4b82c717d6c632682012fd1bacb85040e2298819
3,119
agda
Agda
src/fot/FOTC/Program/Division/CorrectnessProofATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Program/Division/CorrectnessProofATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Program/Division/CorrectnessProofATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- The division program is correct ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- N.B This module does not contain combined proofs, but it imports -- modules which contain combined proofs. -- This module proves the correctness of the division program using -- repeated subtraction (Dybjer 1985). module FOTC.Program.Division.CorrectnessProofATP where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.PropertiesATP open import FOTC.Data.Nat.PropertiesATP import FOTC.Data.Nat.Induction.NonAcc.WF-ATP open module WFInd = FOTC.Data.Nat.Induction.NonAcc.WF-ATP.WFInd open import FOTC.Program.Division.Division open import FOTC.Program.Division.ResultATP open import FOTC.Program.Division.Specification open import FOTC.Program.Division.TotalityATP ------------------------------------------------------------------------------ -- The division program is correct when the dividend is less than the -- divisor. div-x<y-correct : ∀ {i j} → N i → N j → i < j → divSpec i j (div i j) div-x<y-correct Ni Nj i<j = div-x<y-N i<j , div-x<y-resultCorrect Ni Nj i<j -- The division program is correct dividend is greater or equal than -- the divisor. div-x≮y-correct : ∀ {i j} → N i → N j → (∀ {i'} → N i' → i' < i → divSpec i' j (div i' j)) → j > zero → i ≮ j → divSpec i j (div i j) div-x≮y-correct {i} {j} Ni Nj ah j>0 i≮j = div-x≮y-N ih i≮j , div-x≮y-resultCorrect Ni Nj ih i≮j where -- The inductive hypothesis on i ∸ j. ih : divSpec (i ∸ j) j (div (i ∸ j) j) ih = ah {i ∸ j} (∸-N Ni Nj) (x≥y→y>0→x∸y<x Ni Nj (x≮y→x≥y Ni Nj i≮j) j>0) ------------------------------------------------------------------------------ -- The division program is correct. -- We do the well-founded induction on i and we keep j fixed. divCorrect : ∀ {i j} → N i → N j → j > zero → divSpec i j (div i j) divCorrect {j = j} Ni Nj j>0 = <-wfind A ih Ni where A : D → Set A d = divSpec d j (div d j) -- The inductive step doesn't use the variable i (nor Ni). To make -- this clear we write down the inductive step using the variables m -- and n. ih : ∀ {n} → N n → (∀ {m} → N m → m < n → A m) → A n ih {n} Nn ah = case (div-x<y-correct Nn Nj) (div-x≮y-correct Nn Nj ah j>0) (x<y∨x≮y Nn Nj) ------------------------------------------------------------------------------ -- References -- -- Dybjer, Peter (1985). Program Verification in a Logical Theory of -- Constructions. In: Functional Programming Languages and Computer -- Architecture. Ed. by Jouannaud, -- Jean-Pierre. Vol. 201. LNCS. Appears in revised form as Programming -- Methodology Group Report 26, University of Gothenburg and Chalmers -- University of Technology, June 1986. Springer, pp. 334–349.
38.506173
79
0.567169
9abe886d9b728bd1de017467fb08aa129cb0231b
539
agda
Agda
agda-stdlib/src/Data/List/Relation/Lex/Strict.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/List/Relation/Lex/Strict.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/List/Relation/Lex/Strict.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.List.Relation.Binary.Lex.Strict directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Lex.Strict where open import Data.List.Relation.Binary.Lex.Strict public {-# WARNING_ON_IMPORT "Data.List.Relation.Lex.Strict was deprecated in v1.0. Use Data.List.Relation.Binary.Lex.Strict instead." #-}
29.944444
72
0.54731
adecd5911e729fce8fbb9dc353b6bdc1f99df86b
589
agda
Agda
test/Common/Product.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
null
null
null
test/Common/Product.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
6
2021-10-18T08:12:24.000Z
2021-11-24T08:31:10.000Z
test/Common/Product.agda
antoinevanmuylder/agda
bd59d5b07ffe02a43b28d186d95e1747aac5bc8c
[ "BSD-2-Clause" ]
null
null
null
{-# OPTIONS --cubical-compatible #-} module Common.Product where open import Common.Level infixr 4 _,_ _,′_ infixr 2 _×_ ------------------------------------------------------------------------ -- Definition record Σ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where constructor _,_ field proj₁ : A proj₂ : B proj₁ open Σ public syntax Σ A (λ x → B) = Σ[ x ∶ A ] B ∃ : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b) ∃ = Σ _ _×_ : ∀ {a b} (A : Set a) (B : Set b) → Set (a ⊔ b) A × B = Σ[ x ∶ A ] B _,′_ : ∀ {a b} {A : Set a} {B : Set b} → A → B → A × B _,′_ = _,_
19.633333
72
0.434635
ad5ac8050caf69cc4bc6460625a999133efc420c
383
agda
Agda
archive/agda-3/src/Oscar/Data/Descender.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-3/src/Oscar/Data/Descender.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-3/src/Oscar/Data/Descender.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
open import Oscar.Prelude open import Oscar.Data.¶ module Oscar.Data.Descender where -- m ≤ n, counting down from n-1 to m data Descender⟨_⟩ {a} (A : ¶ → Ø a) (m : ¶) : ¶ → Ø a where ∅ : Descender⟨ A ⟩ m m _,_ : ∀ {n} → A n → Descender⟨ A ⟩ m n → Descender⟨ A ⟩ m (↑ n) Vec'⟨_⟩ = λ {a} (A : Ø a) N → Descender⟨ (λ _ → A) ⟩ 0 N ⟨_⟩¶⟨_≤_↓⟩ = Descender⟨_⟩ AList⟨_⟩ = ⟨_⟩¶⟨_≤_↓⟩
25.533333
65
0.537859
4d7cef3925b47b0bdc0c503bcaf2a6e6b6f7be9a
1,573
agda
Agda
demo/agda/FRP/JS/Demo/Calculator/Model.agda
agda/agda-frp-js
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
[ "MIT", "BSD-3-Clause" ]
63
2015-04-20T21:47:00.000Z
2022-02-28T09:46:14.000Z
demo/agda/FRP/JS/Demo/Calculator/Model.agda
agda/agda-frp-js
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
[ "MIT", "BSD-3-Clause" ]
null
null
null
demo/agda/FRP/JS/Demo/Calculator/Model.agda
agda/agda-frp-js
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
[ "MIT", "BSD-3-Clause" ]
7
2016-11-07T21:50:58.000Z
2022-03-12T11:39:38.000Z
open import FRP.JS.Behaviour using ( Beh ; [_] ; map ; accumHoldBy ) open import FRP.JS.Event using ( Evt ; tag ) open import FRP.JS.DOM using ( DOM ; element ; text ; listen ; click ; _++_ ; element+ ; _+++_ ) open import FRP.JS.RSet using ( RSet ; ⟦_⟧ ; ⟨_⟩ ; _⇒_ ) open import FRP.JS.Nat using ( ℕ ; _+_ ; _*_ ; _∸_ ; show ) open import FRP.JS.Time using ( Time ) open import FRP.JS.String using ( String ) open import FRP.JS.Bool using ( Bool ; true ; false ) open import FRP.JS.Product using ( _∧_ ; _,_ ) module FRP.JS.Demo.Calculator.Model where data Op : Set where plus minus times eq : Op data Button : Set where digit : ℕ → Button op : Op → Button clear : Button data State : Set where state : ℕ → ℕ → Bool → Op → State init : State init = state 0 0 false eq eval : ℕ → Op → ℕ → ℕ eval m plus n = m + n eval m minus n = m ∸ n eval m times n = m * n eval m eq n = n step : State → Button → State step (state m n true p) (digit d) = state m (n * 10 + d) true p step (state m n false p) (digit d) = state n d true p step (state m n true p) (op q) = state n (eval m p n) false q step (state m n false p) (op q) = state m (eval m p n) false q step (state m n b p) clear = state 0 0 false eq button$ : Button → String button$ (digit d) = show d button$ (op plus) = "+" button$ (op minus) = "-" button$ (op times) = "×" button$ (op eq) = "=" button$ clear = "C" state$ : State → String state$ (state m n b p) = show n model : ⟦ Evt ⟨ Button ⟩ ⇒ Beh ⟨ State ⟩ ⟧ model = accumHoldBy step init
30.25
96
0.600127
a07abe6067a4f4a9698e168ab287bd8aa7e73db2
3,781
agda
Agda
benchmark/Syntacticosmos/Term.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
benchmark/Syntacticosmos/Term.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
benchmark/Syntacticosmos/Term.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Term (Gnd : Set)(U : Set)(El : U -> Set) where open import Basics open import Pr open import Nom import Kind open module KindGUEl = Kind Gnd U El import Loc open module LocK = Loc Kind import Cxt open module CxtK = Cxt Kind data Jud : Set where Term : Kind -> Jud Args : Kind -> Gnd -> Jud Head : Jud data _[_]-_ : Loc -> Jud -> Kind -> Set where [_] : {C : Kind}{L : Loc}{Z : Gnd} -> L [ Args C Z ]- C -> L [ Term C ]- Ty Z fn : {C : Kind}{L : Loc}(A : U){K : El A -> Kind} -> ((x : El A) -> L [ Term C ]- K x) -> L [ Term C ]- Pi A K \\ : {C : Kind}{L : Loc}{S T : Kind} -> (L * S) [ Term C ]- T -> L [ Term C ]- (S |> T) _^_ : {C : Kind}{L : Loc}{Z : Gnd}{A : U}{K : El A -> Kind} -> (x : El A) -> L [ Args C Z ]- K x -> L [ Args C Z ]- Pi A K _&_ : {C : Kind}{L : Loc}{S T : Kind}{Z : Gnd} -> L [ Term C ]- S -> L [ Args C Z ]- T -> L [ Args C Z ]- (S |> T) nil : {C : Kind}{L : Loc}{Z : Gnd} -> L [ Args C Z ]- Ty Z _$_ : {C : Kind}{L : Loc}{T : Kind}{Z : Gnd} -> L [ Head ]- T -> L [ Args C Z ]- T -> L [ Term C ]- Ty Z ` : Nom -> {S : Kind}{L : Loc} -> L [ Head ]- S # : {L : Loc}{S : Kind} -> L ! S -> L [ Head ]- S infixr 90 _^_ _&_ infix 40 _[_]-_ Good : Cxt -> {L : Loc}{j : Jud}{T : Kind} -> L [ j ]- T -> Pr Good G [ c ] = Good G c Good G (fn A f) = all (El A) \a -> Good G (f a) Good G (\\ b) = Good G b Good G (a ^ ss) = Good G ss Good G (s & ss) = Good G s /\ Good G ss Good G nil = tt Good G (x $ ss) = Good G x /\ Good G ss Good G (` x {S}) = GooN G S x Good G (# v) = tt data _[_/_]-_ (G : Cxt)(L : Loc)(j : Jud)(T : Kind) : Set where _-!_ : (t : L [ j ]- T) -> [| Good G t |] -> G [ L / j ]- T gtm : {G : Cxt}{L : Loc}{j : Jud}{T : Kind} -> G [ L / j ]- T -> L [ j ]- T gtm (t -! _) = t good : {G : Cxt}{L : Loc}{j : Jud}{T : Kind} (t : G [ L / j ]- T) -> [| Good G (gtm t) |] good (t -! g) = g _[!_!]-_ : Cxt -> Kind -> Kind -> Set G [! C !]- T = G [ EL / Term C ]- T G[_] : {G : Cxt}{C : Kind}{L : Loc}{Z : Gnd} -> G [ L / Args C Z ]- C -> ---------------------------- G [ L / Term C ]- Ty Z G[ c -! cg ] = [ c ] -! cg Gfn : {G : Cxt}{C : Kind}{L : Loc}(A : U){K : El A -> Kind} -> ((x : El A) -> G [ L / Term C ]- K x) -> ------------------------------------------- G [ L / Term C ]- Pi A K Gfn A f = fn A (gtm o f) -! (good o f) G\\ : {G : Cxt}{C : Kind}{L : Loc}{S T : Kind} -> G [ L * S / Term C ]- T -> ------------------------------ G [ L / Term C ]- (S |> T) G\\ (b -! bg) = \\ b -! bg _G^_ : {G : Cxt}{C : Kind}{L : Loc}{Z : Gnd}{A : U}{K : El A -> Kind} -> (x : El A) -> G [ L / Args C Z ]- K x -> ------------------------------ G [ L / Args C Z ]- Pi A K a G^ (s -! sg) = (a ^ s) -! sg _G&_ : {G : Cxt}{C : Kind}{L : Loc}{S T : Kind}{Z : Gnd} -> G [ L / Term C ]- S -> G [ L / Args C Z ]- T -> ---------------------------------- G [ L / Args C Z ]- (S |> T) (r -! rg) G& (s -! sg) = (r & s) -! (rg , sg) Gnil : {G : Cxt}{C : Kind}{L : Loc}{Z : Gnd} -> ----------------------------- G [ L / Args C Z ]- Ty Z Gnil = nil -! _ _G$_ : {G : Cxt}{C : Kind}{L : Loc}{T : Kind}{Z : Gnd} -> G [ L / Head ]- T -> G [ L / Args C Z ]- T -> ----------------------------- G [ L / Term C ]- Ty Z (h -! hg) G$ (s -! sg) = (h $ s) -! (hg , sg) G` : {G : Cxt}{S : Kind}{L : Loc} -> Nom :- GooN G S -> ------------------------------------------------------ G [ L / Head ]- S G` [ x / xg ] = ` x -! xg G# : {G : Cxt}{L : Loc}{S : Kind} -> L ! S -> -------------------------- G [ L / Head ]- S G# v = # v -! _ infixr 90 _G^_ _G&_
29.310078
76
0.357842
29ef33bb54609d5d2c152ffd8a05e95e2940e7d6
492
agda
Agda
test/fail/Issue1015.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/fail/Issue1015.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
test/fail/Issue1015.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- Andreas, 2014-03-27 fixed issue {-# OPTIONS --copatterns --sized-types #-} open import Common.Size mutual data D (i : Size) : Set where inn : R i → D i record R (i : Size) : Set where -- Note: not coinductive field force : (j : Size< i) → D j open R inh : (i : Size) → R i force (inh i) j = inn (inh j) -- inh should be rejected by termination checker data ⊥ : Set where elim : D ∞ → ⊥ elim (inn r) = elim (force r ∞) absurd : ⊥ absurd = elim (inn (inh ∞))
16.4
48
0.583333
1a7e720991d776b984ded657cb7d23495468c150
1,203
agda
Agda
theorems/cw/cohomology/ReconstructedCohomologyGroups.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/cw/cohomology/ReconstructedCohomologyGroups.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/cw/cohomology/ReconstructedCohomologyGroups.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cohomology.ChainComplex open import cohomology.Theory open import groups.KernelImage open import cw.CW module cw.cohomology.ReconstructedCohomologyGroups {i : ULevel} (OT : OrdinaryTheory i) where open OrdinaryTheory OT open import cw.cohomology.Descending OT open import cw.cohomology.ReconstructedCochainComplex OT open import cw.cohomology.ReconstructedZerothCohomologyGroup OT open import cw.cohomology.ReconstructedFirstCohomologyGroup OT open import cw.cohomology.ReconstructedHigherCohomologyGroups OT abstract reconstructed-cohomology-group : ∀ m {n} (⊙skel : ⊙Skeleton {i} n) → ⊙has-cells-with-choice 0 ⊙skel i → C m ⊙⟦ ⊙skel ⟧ ≃ᴳ cohomology-group (cochain-complex ⊙skel) m reconstructed-cohomology-group (pos 0) ⊙skel ac = zeroth-cohomology-group ⊙skel ac reconstructed-cohomology-group (pos 1) ⊙skel ac = first-cohomology-group ⊙skel ac reconstructed-cohomology-group (pos (S (S m))) ⊙skel ac = higher-cohomology-group m ⊙skel ac reconstructed-cohomology-group (negsucc m) ⊙skel ac = lift-iso {j = i} ∘eᴳ trivial-iso-0ᴳ (C-cw-at-negsucc ⊙skel m ac)
40.1
93
0.739817
13adbe0d4f9f6eb3628535a033a5b93fbdc4085b
1,624
agda
Agda
Cubical/Data/Queue/Finite.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Data/Queue/Finite.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Data/Queue/Finite.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Data.Queue.Finite where open import Cubical.Foundations.Everything open import Cubical.Foundations.SIP open import Cubical.Structures.Queue open import Cubical.Data.Maybe open import Cubical.Data.List open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation open import Cubical.Data.Queue.1List -- All finite queues are equal to 1List.Finite private variable ℓ : Level module _ (A : Type ℓ) (Aset : isSet A) where open Queues-on A Aset private module One = 1List A Aset open One renaming (Q to Q₁; emp to emp₁; enq to enq₁; deq to deq₁) isContrFiniteQueue : isContr FiniteQueue isContrFiniteQueue .fst = One.Finite isContrFiniteQueue .snd (Q , (S@(emp , enq , deq) , _ , deq-emp , deq-enq , _) , fin) = sip finiteQueueUnivalentStr _ _ ((f , fin) , f∘emp , f∘enq , sym ∘ f∘deq) where deq₁-enq₁ = str One.WithLaws .snd .snd .snd .fst f : Q₁ → Q f = foldr enq emp f∘emp : f emp₁ ≡ emp f∘emp = refl f∘enq : ∀ a xs → f (enq₁ a xs) ≡ enq a (f xs) f∘enq _ _ = refl fA : Q₁ × A → Q × A fA (q , a) = (f q , a) f∘returnOrEnq : (x : A) (xsr : Maybe (List A × A)) → returnOrEnq S x (deqMap f xsr) ≡ fA (returnOrEnq (str One.Raw) x xsr) f∘returnOrEnq _ nothing = refl f∘returnOrEnq _ (just _) = refl f∘deq : ∀ xs → deq (f xs) ≡ deqMap f (deq₁ xs) f∘deq [] = deq-emp f∘deq (x ∷ xs) = deq-enq x (f xs) ∙ cong (just ∘ returnOrEnq S x) (f∘deq xs) ∙ cong just (f∘returnOrEnq x (deq₁ xs)) ∙ cong (deqMap f) (sym (deq₁-enq₁ x xs))
27.525424
88
0.64101
19a1cd2898cf8da43aba6107e1fb956cd7d97f1f
10,162
agda
Agda
Structure/Operator/Properties.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Structure/Operator/Properties.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Structure/Operator/Properties.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Structure.Operator.Properties where import Lvl open import Functional open import Lang.Instance open import Logic open import Logic.Predicate open import Logic.Propositional import Structure.Operator.Names as Names open import Structure.Setoid open import Syntax.Function open import Type private variable ℓ ℓₑ ℓ₁ ℓ₂ ℓ₃ ℓₑ₁ ℓₑ₂ ℓₑ₃ : Lvl.Level module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ (_▫_ : T₁ → T₁ → T₂) where record Commutativity : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ₂} where constructor intro field proof : Names.Commutativity(_▫_) commutativity = inst-fn Commutativity.proof module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ (_▫_ : T₁ → T₂ → T₂) (id : T₁) where record Identityₗ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ₂} where constructor intro field proof : Names.Identityₗ(_▫_)(id) identityₗ = inst-fn Identityₗ.proof module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ (_▫_ : T₁ → T₂ → T₂) (null : T₂) where record Absorberᵣ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ₂} where constructor intro field proof : Names.Absorberᵣ(_▫_)(null) absorberᵣ = inst-fn Absorberᵣ.proof module _ {T₁ : Type{ℓ₁}} ⦃ _ : Equiv{ℓₑ₁}(T₁) ⦄ {T₂ : Type{ℓ₂}} (_▫_ : T₁ → T₂ → T₁) (id : T₂) where record Identityᵣ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ₁} where constructor intro field proof : Names.Identityᵣ(_▫_)(id) identityᵣ = inst-fn Identityᵣ.proof module _ {T₁ : Type{ℓ₁}} ⦃ _ : Equiv{ℓₑ₁}(T₁) ⦄ {T₂ : Type{ℓ₂}} (_▫_ : T₁ → T₂ → T₁) (null : T₁) where record Absorberₗ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ₁} where constructor intro field proof : Names.Absorberₗ(_▫_)(null) absorberₗ = inst-fn Absorberₗ.proof module _{T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) (id : T) where record Identity : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field instance ⦃ left ⦄ : Identityₗ(_▫_)(id) instance ⦃ right ⦄ : Identityᵣ(_▫_)(id) identity-left = inst-fn (Identityₗ.proof ∘ Identity.left) identity-right = inst-fn (Identityᵣ.proof ∘ Identity.right) module _{T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) where record Idempotence : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field proof : Names.Idempotence(_▫_) idempotence = inst-fn Idempotence.proof module _{T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) (id : T) where record Absorber : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field instance ⦃ left ⦄ : Absorberₗ(_▫_)(id) instance ⦃ right ⦄ : Absorberᵣ(_▫_)(id) absorber-left = inst-fn (Absorberₗ.proof ∘ Absorber.left) absorber-right = inst-fn (Absorberᵣ.proof ∘ Absorber.right) module _{T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) ⦃ identityₗ : ∃(Identityₗ(_▫_)) ⦄ where module _ (x : T) where module _ (inv : T) where record InverseElementₗ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field proof : Names.InverseElementₗ(_▫_)([∃]-witness identityₗ)(x)(inv) inverseElementₗ = inst-fn InverseElementₗ.proof InvertibleElementₗ = ∃(InverseElementₗ) module _ (inv : T → T) where record InverseFunctionₗ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field proof : Names.InverseFunctionₗ(_▫_)([∃]-witness identityₗ)(inv) inverseFunctionₗ = inst-fn InverseFunctionₗ.proof Invertibleₗ = ∃(InverseFunctionₗ) module _{T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) ⦃ identityᵣ : ∃(Identityᵣ(_▫_)) ⦄ where module _ (x : T) where module _ (inv : T) where record InverseElementᵣ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field proof : Names.InverseElementᵣ(_▫_)([∃]-witness identityᵣ)(x)(inv) inverseElementᵣ = inst-fn InverseElementᵣ.proof InvertibleElementᵣ = ∃(InverseElementᵣ) module _ (inv : T → T) where record InverseFunctionᵣ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field proof : Names.InverseFunctionᵣ(_▫_)([∃]-witness identityᵣ)(inv) inverseFunctionᵣ = inst-fn InverseFunctionᵣ.proof Invertibleᵣ = ∃(InverseFunctionᵣ) module _{T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) ⦃ identity : ∃(Identity(_▫_)) ⦄ where module _ (x : T) where module _ (inv : T) where InverseElement : Stmt InverseElement = InverseElementₗ(_▫_) ⦃ [∃]-map-proof Identity.left identity ⦄ (x)(inv) ∧ InverseElementᵣ(_▫_) ⦃ [∃]-map-proof Identity.right identity ⦄ (x)(inv) InvertibleElement = ∃(InverseElement) module _ (inv : T → T) where import Logic.IntroInstances record InverseFunction : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field instance ⦃ left ⦄ : InverseFunctionₗ(_▫_) ⦃ [∃]-map-proof Identity.left identity ⦄ (inv) instance ⦃ right ⦄ : InverseFunctionᵣ(_▫_) ⦃ [∃]-map-proof Identity.right identity ⦄ (inv) inverseFunction-left = inst-fn (InverseFunctionₗ.proof ∘ InverseFunction.left) inverseFunction-right = inst-fn (InverseFunctionᵣ.proof ∘ InverseFunction.right) Invertible = ∃(InverseFunction) -- TODO: Add some kind of inverse function module _{T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) ⦃ absorberₗ : ∃(Absorberₗ(_▫_)) ⦄ where module _ (opp : T → T) where record ComplementFunctionₗ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field proof : Names.InverseFunctionₗ(_▫_)([∃]-witness absorberₗ)(opp) oppositeFunctionₗ = inst-fn ComplementFunctionₗ.proof module _{T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) ⦃ absorberᵣ : ∃(Absorberᵣ(_▫_)) ⦄ where module _ (opp : T → T) where record ComplementFunctionᵣ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field proof : Names.InverseFunctionᵣ(_▫_)([∃]-witness absorberᵣ)(opp) oppositeFunctionᵣ = inst-fn ComplementFunctionᵣ.proof module _{T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) ⦃ absorber : ∃(Absorber(_▫_)) ⦄ where module _ (opp : T → T) where record ComplementFunction : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field instance ⦃ left ⦄ : ComplementFunctionₗ(_▫_) ⦃ [∃]-map-proof Absorber.left absorber ⦄ (opp) instance ⦃ right ⦄ : ComplementFunctionᵣ(_▫_) ⦃ [∃]-map-proof Absorber.right absorber ⦄ (opp) module _{T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_▫_ : T → T → T) where record Associativity : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ} where constructor intro field proof : Names.Associativity(_▫_) associativity = inst-fn Associativity.proof module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ (_▫₁_ : T₁ → T₂ → T₂) (_▫₂_ : T₂ → T₂ → T₂) where record Distributivityₗ : Stmt{Lvl.of(Type.of(_▫₁_)) Lvl.⊔ Lvl.of(Type.of(_▫₂_)) Lvl.⊔ ℓₑ₂} where constructor intro field proof : Names.Distributivityₗ(_▫₁_)(_▫₂_) distributivityₗ = inst-fn Distributivityₗ.proof module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ (_▫₁_ : T₂ → T₁ → T₂) (_▫₂_ : T₂ → T₂ → T₂) where record Distributivityᵣ : Stmt{Lvl.of(Type.of(_▫₁_)) Lvl.⊔ Lvl.of(Type.of(_▫₂_)) Lvl.⊔ ℓₑ₂} where constructor intro field proof : Names.Distributivityᵣ(_▫₁_)(_▫₂_) distributivityᵣ = inst-fn Distributivityᵣ.proof module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₃}(T₃) ⦄ (_▫_ : T₁ → T₂ → T₃) where record Cancellationₗ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ₂ Lvl.⊔ ℓₑ₃} where constructor intro field proof : Names.Cancellationₗ(_▫_) cancellationₗ = inst-fn Cancellationₗ.proof module _ {T₁ : Type{ℓ₁}} ⦃ _ : Equiv{ℓₑ₁}(T₁) ⦄ {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₃}(T₃) ⦄ (_▫_ : T₁ → T₂ → T₃) where record Cancellationᵣ : Stmt{Lvl.of(Type.of(_▫_)) Lvl.⊔ ℓₑ₁ Lvl.⊔ ℓₑ₃} where constructor intro field proof : Names.Cancellationᵣ(_▫_) cancellationᵣ = inst-fn Cancellationᵣ.proof module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₁}(T₁) ⦄ (_▫₁_ : T₁ → T₃ → T₁) (_▫₂_ : T₁ → T₂ → T₃) where record Absorptionₗ : Stmt{Lvl.of(Type.of(_▫₁_)) Lvl.⊔ Lvl.of(Type.of(_▫₂_)) Lvl.⊔ ℓₑ₁} where constructor intro field proof : Names.Absorptionₗ(_▫₁_)(_▫₂_) absorptionₗ = inst-fn Absorptionₗ.proof module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ (_▫₁_ : T₃ → T₂ → T₂) (_▫₂_ : T₁ → T₂ → T₃) where record Absorptionᵣ : Stmt{Lvl.of(Type.of(_▫₁_)) Lvl.⊔ Lvl.of(Type.of(_▫₂_)) Lvl.⊔ ℓₑ₂} where constructor intro field proof : Names.Absorptionᵣ(_▫₁_)(_▫₂_) absorptionᵣ = inst-fn Absorptionᵣ.proof module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ (_▫₁_ : T₁ → T₂ → T₃) (_▫₂_ : T₁ → T₃ → T₂) where record InverseOperatorₗ : Stmt{Lvl.of(Type.of(_▫₁_)) Lvl.⊔ Lvl.of(Type.of(_▫₂_)) Lvl.⊔ ℓₑ₂} where constructor intro field proof : Names.InverseOperatorₗ(_▫₁_)(_▫₂_) inverseOperₗ = inst-fn InverseOperatorₗ.proof module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₁}(T₁) ⦄ (_▫₁_ : T₁ → T₂ → T₃) (_▫₂_ : T₃ → T₂ → T₁) where record InverseOperatorᵣ : Stmt{Lvl.of(Type.of(_▫₁_)) Lvl.⊔ Lvl.of(Type.of(_▫₂_)) Lvl.⊔ ℓₑ₁} where constructor intro field proof : Names.InverseOperatorᵣ(_▫₁_)(_▫₂_) inverseOperᵣ = inst-fn InverseOperatorᵣ.proof module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ (_▫_ : T₁ → T₂ → T₂) (inv : T₁ → T₁) where InversePropertyₗ = InverseOperatorₗ(_▫_)(a ↦ b ↦ inv(a) ▫ b) module InversePropertyₗ = InverseOperatorₗ{_▫₁_ = _▫_}{_▫₂_ = a ↦ b ↦ inv(a) ▫ b} inversePropₗ = inverseOperₗ(_▫_)(a ↦ b ↦ inv(a) ▫ b) module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ (_▫_ : T₂ → T₁ → T₂) (inv : T₁ → T₁) where InversePropertyᵣ = InverseOperatorᵣ(_▫_)(a ↦ b ↦ a ▫ inv(b)) module InversePropertyᵣ = InverseOperatorᵣ{_▫₁_ = _▫_}{_▫₂_ = a ↦ b ↦ a ▫ inv(b)} inversePropᵣ = inverseOperᵣ(_▫_)(a ↦ b ↦ a ▫ inv(b)) module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ (_▫_ : T₁ → T₁ → T₂) where record Central(x : T₁) : Stmt{ℓ₁ Lvl.⊔ ℓₑ₂} where constructor intro field proof : ∀{y : T₁} → (x ▫ y ≡ y ▫ x)
47.485981
129
0.637473
03a0ffcc8c6324f0a96f486709cb33c86b18413e
2,325
agda
Agda
archive/agda-1/UnifyMguF.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-1/UnifyMguF.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-1/UnifyMguF.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
open import Relation.Binary using (IsDecEquivalence) open import Agda.Builtin.Equality module UnifyMguF (FunctionName : Set) ⦃ isDecEquivalenceA : IsDecEquivalence (_≡_ {A = FunctionName}) ⦄ where {- module UnifyMguF where postulate FunctionName : Set instance isDecEquivalenceA : IsDecEquivalence (_≡_ {A = FunctionName}) -} open IsDecEquivalence isDecEquivalenceA using () renaming (_≟_ to _≟F_) open import UnifyTermF FunctionName open import Data.Product using (∃; _,_) open import Data.Maybe using (Maybe; just; nothing) open import Category.Monad using (RawMonad) import Level open RawMonad (Data.Maybe.monad {Level.zero}) open import Relation.Nullary using (Dec; yes; no) open import Data.Nat using (ℕ; _≟_) open import Function using (flip; _∘_) open import Data.Vec using (Vec; []; _∷_) record ⋆amgu (T : ℕ → Set) : Set where field amgu : ∀ {m} (s t : T m) (acc : ∃ (AList m)) -> Maybe (∃ (AList m)) open ⋆amgu ⦃ … ⦄ public mutual instance ⋆amguTerm : ⋆amgu Term ⋆amgu.amgu ⋆amguTerm leaf leaf acc = just acc ⋆amgu.amgu ⋆amguTerm leaf (function _ _) acc = nothing ⋆amgu.amgu ⋆amguTerm leaf (s' fork t') acc = nothing ⋆amgu.amgu ⋆amguTerm (s' fork t') leaf acc = nothing ⋆amgu.amgu ⋆amguTerm (s' fork t') (function _ _) acc = nothing ⋆amgu.amgu ⋆amguTerm (s1 fork s2) (t1 fork t2) acc = amgu s2 t2 =<< amgu s1 t1 acc ⋆amgu.amgu ⋆amguTerm (function fn₁ ts₁) leaf acc = nothing ⋆amgu.amgu ⋆amguTerm (function fn₁ {n₁} ts₁) (function fn₂ {n₂} ts₂) acc with fn₁ ≟F fn₂ … | no _ = nothing … | yes _ with n₁ ≟ n₂ … | no _ = nothing … | yes refl = amgu ts₁ ts₂ acc ⋆amgu.amgu ⋆amguTerm (function fn₁ ts₁) (_ fork _) acc = nothing ⋆amgu.amgu ⋆amguTerm (i x) (i y) (m , anil) = just (flexFlex x y) ⋆amgu.amgu ⋆amguTerm (i x) t (m , anil) = flexRigid x t ⋆amgu.amgu ⋆amguTerm t (i x) (m , anil) = flexRigid x t ⋆amgu.amgu ⋆amguTerm s t (n , σ asnoc r / z) = (λ σ -> σ ∃asnoc r / z) <$> amgu ((r for z) ◃ s) ((r for z) ◃ t) (n , σ) instance ⋆amguVecTerm : ∀ {N} → ⋆amgu (flip Vec N ∘ Term) ⋆amgu.amgu ⋆amguVecTerm [] [] acc = just acc ⋆amgu.amgu ⋆amguVecTerm (t₁ ∷ t₁s) (t₂ ∷ t₂s) acc = amgu t₁s t₂s =<< amgu t₁ t₂ acc mgu : ∀ {m} -> (s t : Term m) -> Maybe (∃ (AList m)) mgu {m} s t = amgu s t (m , anil)
35.227273
109
0.637849
5829e96324aa243003201bd3daf8060ad4633971
69
agda
Agda
setoid-cats/Category/Monoidal.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
setoid-cats/Category/Monoidal.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
setoid-cats/Category/Monoidal.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
module Category.Monoidal where open import Category.NatIsomorphism
13.8
35
0.855072
2e865f5cd9acf803096cfd59165c026e7fd0db7a
2,880
agda
Agda
src/Dodo/Binary/Intersection.agda
sourcedennis/agda-dodo
376f0ccee1e1aa31470890e494bcb534324f598a
[ "BSD-3-Clause" ]
null
null
null
src/Dodo/Binary/Intersection.agda
sourcedennis/agda-dodo
376f0ccee1e1aa31470890e494bcb534324f598a
[ "BSD-3-Clause" ]
null
null
null
src/Dodo/Binary/Intersection.agda
sourcedennis/agda-dodo
376f0ccee1e1aa31470890e494bcb534324f598a
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Dodo.Binary.Intersection where -- Stdlib imports open import Level using (Level; _⊔_) open import Data.Product as P open import Data.Product using (_×_; _,_; swap; proj₁; proj₂) open import Relation.Binary using (REL) -- Local imports open import Dodo.Binary.Equality -- # Definitions infixl 30 _∩₂_ _∩₂_ : {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} → REL A B ℓ₁ → REL A B ℓ₂ → REL A B (ℓ₁ ⊔ ℓ₂) _∩₂_ P Q x y = P x y × Q x y -- # Properties module _ {a b ℓ : Level} {A : Set a} {B : Set b} {R : REL A B ℓ} where ∩₂-idem : (R ∩₂ R) ⇔₂ R ∩₂-idem = ⇔: ⊆-proof ⊇-proof where ⊆-proof : (R ∩₂ R) ⊆₂' R ⊆-proof _ _ = proj₁ ⊇-proof : R ⊆₂' (R ∩₂ R) ⊇-proof _ _ Rxy = (Rxy , Rxy) module _ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} where ∩₂-comm : (P ∩₂ Q) ⇔₂ (Q ∩₂ P) ∩₂-comm = ⇔: (λ _ _ → swap) (λ _ _ → swap) module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where ∩₂-assoc : P ∩₂ (Q ∩₂ R) ⇔₂ (P ∩₂ Q) ∩₂ R ∩₂-assoc = ⇔: ⊆-proof ⊇-proof where ⊆-proof : P ∩₂ (Q ∩₂ R) ⊆₂' (P ∩₂ Q) ∩₂ R ⊆-proof _ _ (Pxy , (Qxy , Rxy)) = ((Pxy , Qxy) , Rxy) ⊇-proof : (P ∩₂ Q) ∩₂ R ⊆₂' P ∩₂ (Q ∩₂ R) ⊇-proof _ _ ((Pxy , Qxy) , Rxy) = (Pxy , (Qxy , Rxy)) -- # Operations -- ## Operations: ⊆₂ module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where ∩₂-combine-⊆₂ : P ⊆₂ Q → P ⊆₂ R → P ⊆₂ (Q ∩₂ R) ∩₂-combine-⊆₂ (⊆: P⊆Q) (⊆: P⊆R) = ⊆: (λ x y Pxy → (P⊆Q x y Pxy , P⊆R x y Pxy)) module _ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} where ∩₂-introˡ-⊆₂ : (P ∩₂ Q) ⊆₂ Q ∩₂-introˡ-⊆₂ = ⊆: λ _ _ → proj₂ ∩₂-introʳ-⊆₂ : (P ∩₂ Q) ⊆₂ P ∩₂-introʳ-⊆₂ = ⊆: λ _ _ → proj₁ module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where ∩₂-elimˡ-⊆₂ : P ⊆₂ (Q ∩₂ R) → P ⊆₂ R ∩₂-elimˡ-⊆₂ (⊆: P⊆[Q∩R]) = ⊆: (λ x y Pxy → proj₂ (P⊆[Q∩R] x y Pxy)) ∩₂-elimʳ-⊆₂ : P ⊆₂ (Q ∩₂ R) → P ⊆₂ Q ∩₂-elimʳ-⊆₂ (⊆: P⊆[Q∩R]) = ⊆: (λ x y Pxy → proj₁ (P⊆[Q∩R] x y Pxy)) module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where ∩₂-substˡ-⊆₂ : P ⊆₂ Q → (P ∩₂ R) ⊆₂ (Q ∩₂ R) ∩₂-substˡ-⊆₂ (⊆: P⊆Q) = ⊆: (λ x y → P.map₁ (P⊆Q x y)) ∩₂-substʳ-⊆₂ : P ⊆₂ Q → (R ∩₂ P) ⊆₂ (R ∩₂ Q) ∩₂-substʳ-⊆₂ (⊆: P⊆Q) = ⊆: (λ x y → P.map₂ (P⊆Q x y)) -- ## Operations: ⇔₂ module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where ∩₂-substˡ : P ⇔₂ Q → (P ∩₂ R) ⇔₂ (Q ∩₂ R) ∩₂-substˡ = ⇔₂-compose ∩₂-substˡ-⊆₂ ∩₂-substˡ-⊆₂ ∩₂-substʳ : P ⇔₂ Q → (R ∩₂ P) ⇔₂ (R ∩₂ Q) ∩₂-substʳ = ⇔₂-compose ∩₂-substʳ-⊆₂ ∩₂-substʳ-⊆₂
26.666667
80
0.482639
034dadd8482cc54f38605fc8eaec3b45545d8fc3
144
agda
Agda
test/Compiler/with-stdlib/HelloWorldPrim.agda
ashinkarov/agda
154d1c1e3d7a3ed2a965a800c620958ecda8fb1e
[ "BSD-3-Clause" ]
null
null
null
test/Compiler/with-stdlib/HelloWorldPrim.agda
ashinkarov/agda
154d1c1e3d7a3ed2a965a800c620958ecda8fb1e
[ "BSD-3-Clause" ]
null
null
null
test/Compiler/with-stdlib/HelloWorldPrim.agda
ashinkarov/agda
154d1c1e3d7a3ed2a965a800c620958ecda8fb1e
[ "BSD-3-Clause" ]
null
null
null
module HelloWorldPrim where open import IO.Primitive.Infinite open import Codata.Musical.Costring main = putStrLn (toCostring "Hello World!")
20.571429
43
0.8125
a05534c90196e8da324eacb0a1ea129d141c846d
662
agda
Agda
agda/BHeap/Heap.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/BHeap/Heap.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/BHeap/Heap.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
module BHeap.Heap {A : Set}(_≤_ : A → A → Set) where open import BHeap _≤_ open import Bound.Lower A open import Bound.Lower.Order _≤_ open import BTree.Heap _≤_ lemma-bheap-heap : {b : Bound}(h : BHeap b) → Heap (forget h) lemma-bheap-heap lf = leaf lemma-bheap-heap (nd {x = x} _ lf lf) = single x lemma-bheap-heap (nd _ (nd (lexy x≤y) l r) lf) = left x≤y (lemma-bheap-heap (nd (lexy x≤y) l r)) lemma-bheap-heap (nd _ lf (nd (lexy x≤y) l r)) = right x≤y (lemma-bheap-heap (nd (lexy x≤y) l r)) lemma-bheap-heap (nd _ (nd (lexy x≤y) l r) (nd (lexy x≤y') l' r')) = both x≤y x≤y' (lemma-bheap-heap (nd (lexy x≤y) l r)) (lemma-bheap-heap (nd (lexy x≤y') l' r'))
47.285714
163
0.629909
1cfe0fff815324e65265166488d151576988daef
2,412
agda
Agda
LibraBFT/Impl/Consensus/ConsensusTypes/Vote.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
4
2020-12-16T19:43:41.000Z
2021-12-18T19:24:05.000Z
LibraBFT/Impl/Consensus/ConsensusTypes/Vote.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
72
2021-02-04T05:04:33.000Z
2022-03-25T05:36:11.000Z
LibraBFT/Impl/Consensus/ConsensusTypes/Vote.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
6
2020-12-16T19:43:52.000Z
2022-02-18T01:04:32.000Z
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.PKCS hiding (verify) open import LibraBFT.Hash import LibraBFT.Impl.Consensus.ConsensusTypes.VoteData as VoteData open import LibraBFT.Impl.OBM.Crypto hiding (verify) open import LibraBFT.Impl.OBM.Logging.Logging import LibraBFT.Impl.Types.ValidatorVerifier as ValidatorVerifier open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.Prelude open import Optics.All ------------------------------------------------------------------------------ open import Data.String using (String) module LibraBFT.Impl.Consensus.ConsensusTypes.Vote where ------------------------------------------------------------------------------ timeout : Vote → Timeout ------------------------------------------------------------------------------ newWithSignature : VoteData → Author → LedgerInfo → Signature → Vote newWithSignature voteData author ledgerInfo signature = Vote∙new voteData author ledgerInfo signature nothing verify : Vote → ValidatorVerifier → Either ErrLog Unit verify self validator = do lcheck (self ^∙ vLedgerInfo ∙ liConsensusDataHash == hashVD (self ^∙ vVoteData)) (here' ("Vote's hash mismatch with LedgerInfo" ∷ [])) withErrCtx' (here' ("vote" ∷ [])) (ValidatorVerifier.verify validator (self ^∙ vAuthor) (self ^∙ vLedgerInfo) (self ^∙ vSignature)) case self ^∙ vTimeoutSignature of λ where nothing → pure unit (just tos) → withErrCtx' (here' ("timeout" ∷ [])) (ValidatorVerifier.verify validator (self ^∙ vAuthor) (timeout self) tos) withErrCtx' (here' ("VoteData" ∷ [])) (VoteData.verify (self ^∙ vVoteData)) where here' : List String → List String here' t = "Vote" ∷ "verify" ∷ "failed" {-∷lsV self-} ∷ t addTimeoutSignature : Vote → Signature → Vote addTimeoutSignature self sig = if is-just (self ^∙ vTimeoutSignature) then self else self & vTimeoutSignature ?~ sig timeout v = Timeout∙new (v ^∙ vVoteData ∙ vdProposed ∙ biEpoch) (v ^∙ vVoteData ∙ vdProposed ∙ biRound) isTimeout : Vote → Bool isTimeout v = is-just (v ^∙ vTimeoutSignature)
39.540984
111
0.628939
04f58b6b09fc89acf8d0456087800d067d1e81fb
3,028
agda
Agda
agda-stdlib-0.9/src/Data/Vec/Equality.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Data/Vec/Equality.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Data/Vec/Equality.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Semi-heterogeneous vector equality ------------------------------------------------------------------------ module Data.Vec.Equality where open import Data.Vec open import Data.Nat using (suc) open import Function open import Level using (_⊔_) open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_) module Equality {s₁ s₂} (S : Setoid s₁ s₂) where private open module SS = Setoid S using () renaming (_≈_ to _≊_; Carrier to A) infix 4 _≈_ data _≈_ : ∀ {n¹} → Vec A n¹ → ∀ {n²} → Vec A n² → Set (s₁ ⊔ s₂) where []-cong : [] ≈ [] _∷-cong_ : ∀ {x¹ n¹} {xs¹ : Vec A n¹} {x² n²} {xs² : Vec A n²} (x¹≈x² : x¹ ≊ x²) (xs¹≈xs² : xs¹ ≈ xs²) → x¹ ∷ xs¹ ≈ x² ∷ xs² length-equal : ∀ {n¹} {xs¹ : Vec A n¹} {n²} {xs² : Vec A n²} → xs¹ ≈ xs² → n¹ ≡ n² length-equal []-cong = P.refl length-equal (_ ∷-cong eq₂) = P.cong suc $ length-equal eq₂ refl : ∀ {n} (xs : Vec A n) → xs ≈ xs refl [] = []-cong refl (x ∷ xs) = SS.refl ∷-cong refl xs sym : ∀ {n m} {xs : Vec A n} {ys : Vec A m} → xs ≈ ys → ys ≈ xs sym []-cong = []-cong sym (x¹≡x² ∷-cong xs¹≈xs²) = SS.sym x¹≡x² ∷-cong sym xs¹≈xs² trans : ∀ {n m l} {xs : Vec A n} {ys : Vec A m} {zs : Vec A l} → xs ≈ ys → ys ≈ zs → xs ≈ zs trans []-cong []-cong = []-cong trans (x≈y ∷-cong xs≈ys) (y≈z ∷-cong ys≈zs) = SS.trans x≈y y≈z ∷-cong trans xs≈ys ys≈zs _++-cong_ : ∀ {n₁¹ n₂¹} {xs₁¹ : Vec A n₁¹} {xs₂¹ : Vec A n₂¹} {n₁² n₂²} {xs₁² : Vec A n₁²} {xs₂² : Vec A n₂²} → xs₁¹ ≈ xs₁² → xs₂¹ ≈ xs₂² → xs₁¹ ++ xs₂¹ ≈ xs₁² ++ xs₂² []-cong ++-cong eq₃ = eq₃ (eq₁ ∷-cong eq₂) ++-cong eq₃ = eq₁ ∷-cong (eq₂ ++-cong eq₃) module DecidableEquality {d₁ d₂} (D : DecSetoid d₁ d₂) where private module DS = DecSetoid D open DS using () renaming (_≟_ to _≟′_ ; Carrier to A) open Equality DS.setoid open import Relation.Nullary _≟_ : ∀ {n m} (xs : Vec A n) (ys : Vec A m) → Dec (xs ≈ ys) _≟_ [] [] = yes []-cong _≟_ [] (y ∷ ys) = no (λ()) _≟_ (x ∷ xs) [] = no (λ()) _≟_ (x ∷ xs) (y ∷ ys) with xs ≟ ys | x ≟′ y ... | yes xs≈ys | yes x≊y = yes (x≊y ∷-cong xs≈ys) ... | no ¬xs≈ys | _ = no helper where helper : ¬ (x ∷ xs ≈ y ∷ ys) helper (_ ∷-cong xs≈ys) = ¬xs≈ys xs≈ys ... | _ | no ¬x≊y = no helper where helper : ¬ (x ∷ xs ≈ y ∷ ys) helper (x≊y ∷-cong _) = ¬x≊y x≊y module PropositionalEquality {a} {A : Set a} where open Equality (P.setoid A) public to-≡ : ∀ {n} {xs ys : Vec A n} → xs ≈ ys → xs ≡ ys to-≡ []-cong = P.refl to-≡ (P.refl ∷-cong xs¹≈xs²) = P.cong (_∷_ _) $ to-≡ xs¹≈xs² from-≡ : ∀ {n} {xs ys : Vec A n} → xs ≡ ys → xs ≈ ys from-≡ P.refl = refl _
32.913043
72
0.471598
8be896ffb948b498ec4daa67d0ddddb993c23db1
9,335
agda
Agda
examples/windController/agdaProof/SafetyProof.agda
vehicle-lang/vehicle
25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0
[ "BSD-3-Clause" ]
9
2022-02-10T12:56:42.000Z
2022-02-17T18:51:05.000Z
examples/windController/agdaProof/SafetyProof.agda
vehicle-lang/vehicle
25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0
[ "BSD-3-Clause" ]
19
2022-03-07T14:09:13.000Z
2022-03-31T20:49:39.000Z
examples/windController/agdaProof/SafetyProof.agda
vehicle-lang/vehicle
25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0
[ "BSD-3-Clause" ]
null
null
null
module SafetyProof where open import Algebra import Algebra.Properties.CommutativeSemigroup as CommutativeSemigroupProperties open import Data.List open import Data.List.Relation.Unary.All using (All; []; _∷_) open import Data.Fin.Patterns using (0F; 1F) open import Data.Nat using (z≤n; s≤s) open import Data.Integer using (+≤+; +<+; +_) open import Data.Vec using (_∷_) import Data.Vec.Functional as Vector open import Data.Product using (_×_; _,_; uncurry) open import Data.Sum open import Level using (0ℓ) open import Relation.Binary.PropositionalEquality open import Relation.Nullary using (yes; no) open import Vehicle.Data.Tensor open import AbstractRationals import WindControllerSpec as Vehicle open ≤-Reasoning ------------------------------------------------------------------------ -- Setup toTensor : ℚ → ℚ → Tensor ℚ (2 ∷ []) toTensor x y = Vector.fromList (x ∷ y ∷ []) roadWidth : ℚ roadWidth = + 3 / 1 maxWindShift : ℚ maxWindShift = 1ℚ maxSensorError : ℚ maxSensorError = + 1 / 4 roadWidth≥0 : roadWidth ≥ 0ℚ roadWidth≥0 = *≤* (+≤+ z≤n) maxWindShift≥0 : maxWindShift ≥ 0ℚ maxWindShift≥0 = *≤* (+≤+ z≤n) maxSensorError≥0 : maxSensorError ≥ 0ℚ maxSensorError≥0 = *≤* (+≤+ z≤n) ------------------------------------------------------------------------ -- Model data record State : Set where constructor state field windSpeed : ℚ position : ℚ velocity : ℚ sensor : ℚ open State record Observation : Set where constructor observe field windShift : ℚ sensorError : ℚ open Observation ------------------------------------------------------------------------ -- Model transitions initialState : State initialState = record { windSpeed = 0ℚ ; position = 0ℚ ; velocity = 0ℚ ; sensor = 0ℚ } controller : ℚ → ℚ → ℚ controller x y = Vehicle.controller (toTensor x y) nextState : Observation → State → State nextState o s = record { windSpeed = newWindSpeed ; position = newPosition ; velocity = newVelocity ; sensor = newSensor } where newWindSpeed = windSpeed s + windShift o newPosition = position s + velocity s + newWindSpeed newSensor = newPosition + sensorError o newVelocity = velocity s + controller newSensor (sensor s) finalState : List Observation → State finalState xs = foldr nextState initialState xs ------------------------------------------------------------------------ -- Definition of correctness nextPosition-windShift : State → ℚ nextPosition-windShift s = position s + velocity s + windSpeed s -- The vehicle is on the road if its position is less than the -- width of the road. OnRoad : State → Set OnRoad s = ∣ position s ∣ ≤ roadWidth -- The vehicle is in a "safe" state if it's more than the maxWindShift away -- from the edge of the road. SafeDistanceFromEdge : State → Set SafeDistanceFromEdge s = ∣ nextPosition-windShift s ∣ < roadWidth - maxWindShift -- The vehicle's previous sensor reading is accurate if it is no more than the -- maximum error away from it's true location. AccurateSensorReading : State → Set AccurateSensorReading s = ∣ position s - sensor s ∣ ≤ maxSensorError -- The vehicle's previous sensor reading was not off the road SensorReadingNotOffRoad : State → Set SensorReadingNotOffRoad s = ∣ sensor s ∣ ≤ roadWidth + maxSensorError -- A state is safe if it both a safe distance from the edge and it's sensor -- reading is accurate. SafeState : State → Set SafeState s = SafeDistanceFromEdge s × AccurateSensorReading s × SensorReadingNotOffRoad s -- An observation is valid if the observed sensor error and the wind shift -- are less than the expected maximum shifts. ValidObservation : Observation → Set ValidObservation o = ∣ sensorError o ∣ ≤ maxSensorError × ∣ windShift o ∣ ≤ maxWindShift ------------------------------------------------------------------------ -- Proof of correctness -- Initial state is both a safe distance from the edge and on the road initialState-onRoad : OnRoad initialState initialState-onRoad = roadWidth≥0 initialState-safe : SafeState initialState initialState-safe rewrite +-eq | *-eq | neg-eq = *<* (+<+ (s≤s z≤n)) , *≤* (+≤+ z≤n) , *≤* (+≤+ z≤n) -- Transitions are well-behaved controller-lem : ∀ x y → ∣ x ∣ ≤ roadWidth + maxSensorError → ∣ y ∣ ≤ roadWidth + maxSensorError → ∣ controller x y + 2ℚ * x - y ∣ < roadWidth - maxWindShift - 3ℚ * maxSensorError controller-lem x y ∣x∣≤rw+εₘₐₓ ∣y∣≤rw+εₘₐₓ rewrite +-eq | *-eq | neg-eq = uncurry -p<q<p⇒∣q∣<p (Vehicle.safe (toTensor x y) (λ { 0F → ∣p∣≤q⇒-q≤p≤q x ∣x∣≤rw+εₘₐₓ ; 1F → ∣p∣≤q⇒-q≤p≤q y ∣y∣≤rw+εₘₐₓ })) valid⇒nextState-accurateSensor : ∀ o → ValidObservation o → ∀ s → AccurateSensorReading (nextState o s) valid⇒nextState-accurateSensor o (ε≤εₘₐₓ , _) s = let s' = nextState o s in begin ∣ position s' - sensor s' ∣ ≡⟨⟩ ∣ position s' - (position s' + sensorError o) ∣ ≡⟨ cong ∣_∣ (p-[p+q]≡q (position s') (sensorError o)) ⟩ ∣ sensorError o ∣ ≤⟨ ε≤εₘₐₓ ⟩ maxSensorError ∎ valid+safe⇒nextState-onRoad : ∀ o → ValidObservation o → ∀ s → SafeState s → OnRoad (nextState o s) valid+safe⇒nextState-onRoad o (_ , δw≤δwₘₐₓ) s (safeDist , _ , _) = begin ∣ position s + velocity s + (windSpeed s + windShift o) ∣ ≡˘⟨ cong ∣_∣ (+-assoc (position s + velocity s) (windSpeed s) (windShift o)) ⟩ ∣ position s + velocity s + windSpeed s + windShift o ∣ ≤⟨ ∣p+q∣≤∣p∣+∣q∣ _ (windShift o) ⟩ ∣ nextPosition-windShift s ∣ + ∣ windShift o ∣ ≤⟨ +-mono-≤ (<⇒≤ safeDist) δw≤δwₘₐₓ ⟩ roadWidth - maxWindShift + maxWindShift ≡⟨ p-q+q≡p roadWidth maxWindShift ⟩ roadWidth ∎ valid+safe⇒nextState-sensorReadingNotOffRoad : ∀ s → SafeState s → ∀ o → ValidObservation o → SensorReadingNotOffRoad (nextState o s) valid+safe⇒nextState-sensorReadingNotOffRoad s safe o valid@(ε≤εₘₐₓ , _) = begin ∣ position (nextState o s) + sensorError o ∣ ≤⟨ ∣p+q∣≤∣p∣+∣q∣ (position s + velocity s + (windSpeed s + windShift o)) (sensorError o) ⟩ ∣ position (nextState o s) ∣ + ∣ sensorError o ∣ ≤⟨ +-mono-≤ (valid+safe⇒nextState-onRoad o valid s safe) ε≤εₘₐₓ ⟩ roadWidth + maxSensorError ∎ valid+safe⇒nextState-safeDistanceFromEdge : ∀ o → ValidObservation o → ∀ s → SafeState s → SafeDistanceFromEdge (nextState o s) valid+safe⇒nextState-safeDistanceFromEdge o valid@(ε-accurate , _) s safe@(safeDist , ε'-accurate , s-notOffRoad) = let s' = nextState o s y = position s; y' = position s' v = velocity s; v' = velocity s' w = windSpeed s; w' = windSpeed s' p = sensor s; p' = sensor s' ε = y - p; ε' = sensorError o dw = windShift o dv = controller p' p ∣dv+2p'-p∣ = ∣ dv + 2ℚ * p' - p ∣ s'-notOffRoad = valid+safe⇒nextState-sensorReadingNotOffRoad s safe o valid in begin-strict ∣ y' + v' + w' ∣ ≡⟨ cong ∣_∣ (sym (p+q-q≡p (y' + v' + w') _)) ⟩ ∣ y' + (v + dv) + w' + (y + ε' + ε' - p) - (y + ε' + ε' - p) ∣ ≡⟨ cong ∣_∣ (lem1 y' v dv w' y ε' p) ⟩ ∣ dv + (y' + ε' + (y + v + w' + ε')) - p - (ε' + ε' + (y - p)) ∣ ≡⟨⟩ ∣ dv + (p' + p') - p - (ε' + ε' + (y - p)) ∣ ≡⟨ cong ∣_∣ (cong₂ (λ a b → dv + a - p - (b + (y - p))) (sym (2*p≡p+p p')) (sym (2*p≡p+p ε'))) ⟩ ∣ dv + 2ℚ * p' - p - (2ℚ * ε' + (y - p)) ∣ ≤⟨ ∣p-q∣≤∣p∣+∣q∣ (dv + 2ℚ * p' - p) (2ℚ * ε' + (y - p)) ⟩ ∣ dv + 2ℚ * p' - p ∣ + ∣ 2ℚ * ε' + (y - p) ∣ ≤⟨ +-monoʳ-≤ _ (∣p+q∣≤∣p∣+∣q∣ (2ℚ * ε') (y - p)) ⟩ ∣ dv + 2ℚ * p' - p ∣ + (∣ 2ℚ * ε' ∣ + ∣ y - p ∣) ≡⟨ cong (λ v → ∣dv+2p'-p∣ + v) (cong (_+ _) (∣p*q∣≡∣p∣*∣q∣ 2ℚ ε')) ⟩ ∣ dv + 2ℚ * p' - p ∣ + (2ℚ * ∣ ε' ∣ + ∣ ε ∣) ≤⟨ +-monoʳ-≤ _ (+-mono-≤ (*-monoʳ-≤ 2ℚ _ ε-accurate) ε'-accurate) ⟩ ∣ dv + 2ℚ * p' - p ∣ + (2ℚ * maxSensorError + maxSensorError) ≡⟨ cong (λ v → ∣dv+2p'-p∣ + v) (2p+p≡3p maxSensorError) ⟩ ∣ dv + 2ℚ * p' - p ∣ + 3ℚ * maxSensorError <⟨ p<r-q⇒p+q<r _ _ _ (controller-lem p' p s'-notOffRoad s-notOffRoad) ⟩ roadWidth - maxWindShift ∎ safe⇒nextState-safe : ∀ s → SafeState s → ∀ o → ValidObservation o → SafeState (nextState o s) safe⇒nextState-safe s safe o valid = valid+safe⇒nextState-safeDistanceFromEdge o valid s safe , valid⇒nextState-accurateSensor o valid s , valid+safe⇒nextState-sensorReadingNotOffRoad s safe o valid finalState-safe : ∀ xs → All ValidObservation xs → SafeState (finalState xs) finalState-safe [] [] = initialState-safe finalState-safe (x ∷ xs) (px ∷ pxs) = safe⇒nextState-safe (finalState xs) (finalState-safe xs pxs) x px finalState-onRoad : ∀ xs → All ValidObservation xs → OnRoad (finalState xs) finalState-onRoad [] [] = initialState-onRoad finalState-onRoad (x ∷ xs) (px ∷ pxs) = valid+safe⇒nextState-onRoad x px (finalState xs) (finalState-safe xs pxs)
40.586957
164
0.570648
10f352792f855416f21635744ca67c55dfb4696b
209
agda
Agda
test/Succeed/Issue4869.agda
LaloHao/agda
7de768bb7bc65dbe1efa35c699cfa8b8f9510573
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue4869.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue4869.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue4869 where open import Agda.Builtin.Nat infix 4 _≤_ data _≤_ : Nat → Nat → Set where z≤n : ∀ {n} → zero ≤ n s≤s : ∀ {m n} (m≤n : m ≤ n) → suc m ≤ suc n foo : 2 ≤ 1 → Nat foo (s≤s ()) = 123
16.076923
45
0.535885
a08b95d83b8f92e217f91ca67ae86ea00531c3c9
1,683
agda
Agda
test/Fail/Issue4929.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue4929.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue4929.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
null
null
null
-- {-# OPTIONS --no-forcing #-} {-# OPTIONS --rewriting #-} {-# OPTIONS --sized-types #-} open import Agda.Builtin.Equality open import Agda.Builtin.Size {-# BUILTIN REWRITE _≡_ #-} variable i j : Size postulate ANY : ∀{A : Set} → A data Ty : Set where bool : Ty variable a b c d : Ty infixl 5 _∘_ infixr 6 _∷_ _++_ mutual data Tm (c : Ty) : Set where tm : ∀{i a} (E : Stack i a c) → Tm c data Stack (i : Size) : (a c : Ty) → Set where ε : ∀{c} → Stack i c c _∷_ : ∀{j : Size< i}{b} (u : Tm b) (E : Stack j b c) → Stack i bool c variable E E' E′ : Stack i a c _++_ : ∀{a b c} → Stack ∞ a b → Stack ∞ b c → Stack ∞ a c ε ++ E′ = E′ (u ∷ E) ++ E′ = u ∷ (E ++ E′) postulate _∘_ : ∀{a c} → Tm a → Stack ∞ a c → Tm c app-app : ∀{i j a b c}{t : Tm a} {E : Stack i a b} {E′ : Stack j b c} → t ∘ E ∘ E′ ≡ t ∘ E ++ E′ {-# REWRITE app-app #-} infix 4 _↦_ _↦ₛ_ mutual data _↦_ {c} : (t t′ : Tm c) → Set where ↦E : (r : E ↦ₛ E′) → tm E ↦ tm E′ -- ↦E : ∀{i a} {E E′ : Stack i a c} (r : E ↦ₛ E′) → tm E ↦ tm E′ -- no internal error data _↦ₛ_ {c} : ∀ {i a} (E E′ : Stack i a c) → Set where π : ∀{i a u v} {E : Stack i a c} → (u ∷ v ∷ E) ↦ₛ ((u ∘ v ∷ ε) ∷ E) there : ∀{i a u} {E E′ : Stack i a c} (r : E ↦ₛ E′) → u ∷ E ↦ₛ u ∷ E′ data SN {a} (t : Tm a) : Set where acc : (h : {t′ : Tm a} (r : t ↦ t′) → SN t′) → SN t -- {-# TERMINATING #-} -- removes internal error test : {i : Size} {a c : Ty} {t : Tm a} {E : Stack i a c} (sntE : SN (t ∘ E)) → SN (tm (t ∷ E)) test {i = i} {t = t} (acc sntE) = acc λ { (↦E (there r)) → test (sntE ANY) ; (↦E (π {i = j})) → test {i = j} (acc sntE) }
25.119403
98
0.456328
1e7d2986664a627f370e5122c773cf31b5a2b717
545
agda
Agda
test/asset/agda-stdlib-1.0/Data/Unit/Base.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Unit/Base.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Unit/Base.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- The unit type and the total relation on unit ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Unit.Base where ------------------------------------------------------------------------ -- A unit type defined as a record type -- Note that the name of this type is "\top", not T. open import Agda.Builtin.Unit public using (⊤; tt) record _≤_ (x y : ⊤) : Set where
28.684211
72
0.401835
38ab03b1d54a573dbe12eac1de6edf820fed992d
27,492
agda
Agda
Agda/05-identity-types.agda
hemangandhi/HoTT-Intro
09c710bf9c31ba88be144cc950bd7bc19c22a934
[ "CC-BY-4.0" ]
null
null
null
Agda/05-identity-types.agda
hemangandhi/HoTT-Intro
09c710bf9c31ba88be144cc950bd7bc19c22a934
[ "CC-BY-4.0" ]
null
null
null
Agda/05-identity-types.agda
hemangandhi/HoTT-Intro
09c710bf9c31ba88be144cc950bd7bc19c22a934
[ "CC-BY-4.0" ]
null
null
null
{-# OPTIONS --without-K --exact-split #-} module 05-identity-types where import 04-inductive-types open 04-inductive-types public -- Section 5.1 -- Definition 5.1.1 {- We introduce the identity type. -} data Id {i : Level} {A : UU i} (x : A) : A → UU i where refl : Id x x {- In the following definition we give a construction of path induction. However, in the development of this library we will mostly use Agda's built-in methods to give constructions by path induction. -} ind-Id : {i j : Level} {A : UU i} (x : A) (B : (y : A) (p : Id x y) → UU j) → (B x refl) → (y : A) (p : Id x y) → B y p ind-Id x B b y refl = b -- Section 5.2 The groupoid structure of types -- Definition 5.2.1 _∙_ : {i : Level} {A : UU i} {x y z : A} → Id x y → Id y z → Id x z refl ∙ q = q concat : {i : Level} {A : UU i} {x y : A} → Id x y → (z : A) → Id y z → Id x z concat p z q = p ∙ q -- Definition 5.2.2 inv : {i : Level} {A : UU i} {x y : A} → Id x y → Id y x inv refl = refl -- Definition 5.2.3 assoc : {i : Level} {A : UU i} {x y z w : A} (p : Id x y) (q : Id y z) (r : Id z w) → Id ((p ∙ q) ∙ r) (p ∙ (q ∙ r)) assoc refl q r = refl -- Definition 5.2.4 left-unit : {i : Level} {A : UU i} {x y : A} {p : Id x y} → Id (refl ∙ p) p left-unit = refl right-unit : {i : Level} {A : UU i} {x y : A} {p : Id x y} → Id (p ∙ refl) p right-unit {p = refl} = refl -- Definition 5.2.5 left-inv : {i : Level} {A : UU i} {x y : A} (p : Id x y) → Id ((inv p) ∙ p) refl left-inv refl = refl right-inv : {i : Level} {A : UU i} {x y : A} (p : Id x y) → Id (p ∙ (inv p)) refl right-inv refl = refl -- Section 5.3 The action on paths of functions -- Definition 5.3.1 ap : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {x y : A} (p : Id x y) → Id (f x) (f y) ap f refl = refl ap-id : {i : Level} {A : UU i} {x y : A} (p : Id x y) → Id (ap id p) p ap-id refl = refl ap-comp : {i j k : Level} {A : UU i} {B : UU j} {C : UU k} (g : B → C) (f : A → B) {x y : A} (p : Id x y) → Id (ap (g ∘ f) p) (ap g (ap f p)) ap-comp g f refl = refl -- Definition 5.3.2 ap-refl : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (x : A) → Id (ap f (refl {_} {_} {x})) refl ap-refl f x = refl ap-concat : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {x y z : A} (p : Id x y) (q : Id y z) → Id (ap f (p ∙ q)) ((ap f p) ∙ (ap f q)) ap-concat f refl q = refl ap-inv : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {x y : A} (p : Id x y) → Id (ap f (inv p)) (inv (ap f p)) ap-inv f refl = refl -- Section 5.4 Transport -- Definition 5.4.1 tr : {i j : Level} {A : UU i} (B : A → UU j) {x y : A} (p : Id x y) → B x → B y tr B refl b = b -- Definition 5.4.2 apd : {i j : Level} {A : UU i} {B : A → UU j} (f : (x : A) → B x) {x y : A} (p : Id x y) → Id (tr B p (f x)) (f y) apd f refl = refl path-over : {i j : Level} {A : UU i} (B : A → UU j) {x x' : A} (p : Id x x') → B x → B x' → UU j path-over B p y y' = Id (tr B p y) y' refl-path-over : {i j : Level} {A : UU i} (B : A → UU j) (x : A) (y : B x) → path-over B refl y y refl-path-over B x y = refl -- Exercises -- Exercise 5.1 -- Exercise 5.2 distributive-inv-concat : {i : Level} {A : UU i} {x y : A} (p : Id x y) {z : A} (q : Id y z) → Id (inv (p ∙ q)) ((inv q) ∙ (inv p)) distributive-inv-concat refl refl = refl -- Exercise 5.3 inv-con : {i : Level} {A : UU i} {x y : A} (p : Id x y) {z : A} (q : Id y z) (r : Id x z) → (Id (p ∙ q) r) → Id q ((inv p) ∙ r) inv-con refl q r = id con-inv : {i : Level} {A : UU i} {x y : A} (p : Id x y) {z : A} (q : Id y z) (r : Id x z) → (Id (p ∙ q) r) → Id p (r ∙ (inv q)) con-inv p refl r = ( λ α → α ∙ (inv right-unit)) ∘ (concat (inv right-unit) r) -- Exercise 5.4 lift : {i j : Level} {A : UU i} {B : A → UU j} {x y : A} (p : Id x y) (b : B x) → Id (pair x b) (pair y (tr B p b)) lift refl b = refl -- Exercise 5.5 -- Exercise 5.5(a) abstract right-unit-law-add-ℕ : (x : ℕ) → Id (add-ℕ x zero-ℕ) x right-unit-law-add-ℕ x = refl left-unit-law-add-ℕ : (x : ℕ) → Id (add-ℕ zero-ℕ x) x left-unit-law-add-ℕ zero-ℕ = refl left-unit-law-add-ℕ (succ-ℕ x) = ap succ-ℕ (left-unit-law-add-ℕ x) left-successor-law-add-ℕ : (x y : ℕ) → Id (add-ℕ (succ-ℕ x) y) (succ-ℕ (add-ℕ x y)) left-successor-law-add-ℕ x zero-ℕ = refl left-successor-law-add-ℕ x (succ-ℕ y) = ap succ-ℕ (left-successor-law-add-ℕ x y) right-successor-law-add-ℕ : (x y : ℕ) → Id (add-ℕ x (succ-ℕ y)) (succ-ℕ (add-ℕ x y)) right-successor-law-add-ℕ x y = refl -- Exercise 5.5(b) abstract associative-add-ℕ : (x y z : ℕ) → Id (add-ℕ (add-ℕ x y) z) (add-ℕ x (add-ℕ y z)) associative-add-ℕ x y zero-ℕ = refl associative-add-ℕ x y (succ-ℕ z) = ap succ-ℕ (associative-add-ℕ x y z) abstract commutative-add-ℕ : (x y : ℕ) → Id (add-ℕ x y) (add-ℕ y x) commutative-add-ℕ zero-ℕ y = left-unit-law-add-ℕ y commutative-add-ℕ (succ-ℕ x) y = (left-successor-law-add-ℕ x y) ∙ (ap succ-ℕ (commutative-add-ℕ x y)) -- Exercise 5.5(c) abstract left-zero-law-mul-ℕ : (x : ℕ) → Id (mul-ℕ zero-ℕ x) zero-ℕ left-zero-law-mul-ℕ x = refl right-zero-law-mul-ℕ : (x : ℕ) → Id (mul-ℕ x zero-ℕ) zero-ℕ right-zero-law-mul-ℕ zero-ℕ = refl right-zero-law-mul-ℕ (succ-ℕ x) = ( right-unit-law-add-ℕ (mul-ℕ x zero-ℕ)) ∙ (right-zero-law-mul-ℕ x) abstract right-unit-law-mul-ℕ : (x : ℕ) → Id (mul-ℕ x one-ℕ) x right-unit-law-mul-ℕ zero-ℕ = refl right-unit-law-mul-ℕ (succ-ℕ x) = ap succ-ℕ (right-unit-law-mul-ℕ x) left-unit-law-mul-ℕ : (x : ℕ) → Id (mul-ℕ one-ℕ x) x left-unit-law-mul-ℕ zero-ℕ = refl left-unit-law-mul-ℕ (succ-ℕ x) = ap succ-ℕ (left-unit-law-mul-ℕ x) abstract left-successor-law-mul-ℕ : (x y : ℕ) → Id (mul-ℕ (succ-ℕ x) y) (add-ℕ (mul-ℕ x y) y) left-successor-law-mul-ℕ x y = refl right-successor-law-mul-ℕ : (x y : ℕ) → Id (mul-ℕ x (succ-ℕ y)) (add-ℕ x (mul-ℕ x y)) right-successor-law-mul-ℕ zero-ℕ y = refl right-successor-law-mul-ℕ (succ-ℕ x) y = ( ( ap (λ t → succ-ℕ (add-ℕ t y)) (right-successor-law-mul-ℕ x y)) ∙ ( ap succ-ℕ (associative-add-ℕ x (mul-ℕ x y) y))) ∙ ( inv (left-successor-law-add-ℕ x (add-ℕ (mul-ℕ x y) y))) -- Exercise 5.5(d) abstract commutative-mul-ℕ : (x y : ℕ) → Id (mul-ℕ x y) (mul-ℕ y x) commutative-mul-ℕ zero-ℕ y = inv (right-zero-law-mul-ℕ y) commutative-mul-ℕ (succ-ℕ x) y = ( commutative-add-ℕ (mul-ℕ x y) y) ∙ ( ( ap (add-ℕ y) (commutative-mul-ℕ x y)) ∙ ( inv (right-successor-law-mul-ℕ y x))) -- Exercise 5.5(e) abstract left-distributive-mul-add-ℕ : (x y z : ℕ) → Id (mul-ℕ x (add-ℕ y z)) (add-ℕ (mul-ℕ x y) (mul-ℕ x z)) left-distributive-mul-add-ℕ zero-ℕ y z = refl left-distributive-mul-add-ℕ (succ-ℕ x) y z = ( left-successor-law-mul-ℕ x (add-ℕ y z)) ∙ ( ( ap (λ t → add-ℕ t (add-ℕ y z)) (left-distributive-mul-add-ℕ x y z)) ∙ ( ( associative-add-ℕ (mul-ℕ x y) (mul-ℕ x z) (add-ℕ y z)) ∙ ( ( ap ( add-ℕ (mul-ℕ x y)) ( ( inv (associative-add-ℕ (mul-ℕ x z) y z)) ∙ ( ( ap (λ t → add-ℕ t z) (commutative-add-ℕ (mul-ℕ x z) y)) ∙ ( associative-add-ℕ y (mul-ℕ x z) z)))) ∙ ( inv (associative-add-ℕ (mul-ℕ x y) y (add-ℕ (mul-ℕ x z) z)))))) abstract right-distributive-mul-add-ℕ : (x y z : ℕ) → Id (mul-ℕ (add-ℕ x y) z) (add-ℕ (mul-ℕ x z) (mul-ℕ y z)) right-distributive-mul-add-ℕ x y z = ( commutative-mul-ℕ (add-ℕ x y) z) ∙ ( ( left-distributive-mul-add-ℕ z x y) ∙ ( ( ap (λ t → add-ℕ t (mul-ℕ z y)) (commutative-mul-ℕ z x)) ∙ ( ap (λ t → add-ℕ (mul-ℕ x z) t) (commutative-mul-ℕ z y)))) -- Exercise 5.5(f) abstract associative-mul-ℕ : (x y z : ℕ) → Id (mul-ℕ (mul-ℕ x y) z) (mul-ℕ x (mul-ℕ y z)) associative-mul-ℕ zero-ℕ y z = refl associative-mul-ℕ (succ-ℕ x) y z = ( right-distributive-mul-add-ℕ (mul-ℕ x y) y z) ∙ ( ap (λ t → add-ℕ t (mul-ℕ y z)) (associative-mul-ℕ x y z)) -- Exercise 5.6 Mac-Lane-pentagon : {i : Level} {A : UU i} {a b c d e : A} (p : Id a b) (q : Id b c) (r : Id c d) (s : Id d e) → let α₁ = (ap (λ t → t ∙ s) (assoc p q r)) α₂ = (assoc p (q ∙ r) s) α₃ = (ap (λ t → p ∙ t) (assoc q r s)) α₄ = (assoc (p ∙ q) r s) α₅ = (assoc p q (r ∙ s)) in Id ((α₁ ∙ α₂) ∙ α₃) (α₄ ∙ α₅) Mac-Lane-pentagon refl refl refl refl = refl {- The following code is an experiment that shows that constructions in an abstract environment do remember the specific definitions of previous definitions in abstract environments. -} abstract abstract-concat : {l : Level} {A : UU l} {x y z : A} → Id x y → Id y z → Id x z abstract-concat refl q = q abstract-left-unit-law : {l : Level} {A : UU l} {x y : A} (q : Id x y) → Id (abstract-concat refl q) q abstract-left-unit-law q = refl {- We just make some random definition to make sure that we are not in the same abstract envirnoment anymore. -} one : ℕ one = succ-ℕ zero-ℕ abstract abstract-right-unit-law : {l : Level} {A : UU l} {x y : A} (p : Id x y) → Id (abstract-concat p refl) p abstract-right-unit-law refl = refl {- The term refl should not be accepted if the definition of abstract-concat were forgotten. A definition that would work under all circumstances is abstract-left-unit refl. -} -- The ring axioms for ℤ abstract left-inverse-pred-ℤ : (k : ℤ) → Id (pred-ℤ (succ-ℤ k)) k left-inverse-pred-ℤ (inl zero-ℕ) = refl left-inverse-pred-ℤ (inl (succ-ℕ x)) = refl left-inverse-pred-ℤ (inr (inl star)) = refl left-inverse-pred-ℤ (inr (inr zero-ℕ)) = refl left-inverse-pred-ℤ (inr (inr (succ-ℕ x))) = refl right-inverse-pred-ℤ : (k : ℤ) → Id (succ-ℤ (pred-ℤ k)) k right-inverse-pred-ℤ (inl zero-ℕ) = refl right-inverse-pred-ℤ (inl (succ-ℕ x)) = refl right-inverse-pred-ℤ (inr (inl star)) = refl right-inverse-pred-ℤ (inr (inr zero-ℕ)) = refl right-inverse-pred-ℤ (inr (inr (succ-ℕ x))) = refl {- Exercise 6.12 (a) simply asks to prove the unit laws. The left unit law holds by judgmental equality. -} abstract left-unit-law-add-ℤ : (k : ℤ) → Id (add-ℤ zero-ℤ k) k left-unit-law-add-ℤ k = refl right-unit-law-add-ℤ : (k : ℤ) → Id (add-ℤ k zero-ℤ) k right-unit-law-add-ℤ (inl zero-ℕ) = refl right-unit-law-add-ℤ (inl (succ-ℕ x)) = ap pred-ℤ (right-unit-law-add-ℤ (inl x)) right-unit-law-add-ℤ (inr (inl star)) = refl right-unit-law-add-ℤ (inr (inr zero-ℕ)) = refl right-unit-law-add-ℤ (inr (inr (succ-ℕ x))) = ap succ-ℤ (right-unit-law-add-ℤ (inr (inr x))) {- Exercise 6.12 (b) asks to show the left and right predecessor and successor laws. These are helpful to give proofs of associativity and commutativity. -} abstract left-predecessor-law-add-ℤ : (x y : ℤ) → Id (add-ℤ (pred-ℤ x) y) (pred-ℤ (add-ℤ x y)) left-predecessor-law-add-ℤ (inl n) y = refl left-predecessor-law-add-ℤ (inr (inl star)) y = refl left-predecessor-law-add-ℤ (inr (inr zero-ℕ)) y = ( ap (λ t → add-ℤ t y) (left-inverse-pred-ℤ zero-ℤ)) ∙ ( inv (left-inverse-pred-ℤ y)) left-predecessor-law-add-ℤ (inr (inr (succ-ℕ x))) y = ( ap (λ t → (add-ℤ t y)) (left-inverse-pred-ℤ (inr (inr x)))) ∙ ( inv (left-inverse-pred-ℤ (add-ℤ (inr (inr x)) y))) right-predecessor-law-add-ℤ : (x y : ℤ) → Id (add-ℤ x (pred-ℤ y)) (pred-ℤ (add-ℤ x y)) right-predecessor-law-add-ℤ (inl zero-ℕ) n = refl right-predecessor-law-add-ℤ (inl (succ-ℕ m)) n = ap pred-ℤ (right-predecessor-law-add-ℤ (inl m) n) right-predecessor-law-add-ℤ (inr (inl star)) n = refl right-predecessor-law-add-ℤ (inr (inr zero-ℕ)) n = (right-inverse-pred-ℤ n) ∙ (inv (left-inverse-pred-ℤ n)) right-predecessor-law-add-ℤ (inr (inr (succ-ℕ x))) n = ( ap succ-ℤ (right-predecessor-law-add-ℤ (inr (inr x)) n)) ∙ ( ( right-inverse-pred-ℤ (add-ℤ (inr (inr x)) n)) ∙ ( inv (left-inverse-pred-ℤ (add-ℤ (inr (inr x)) n)))) abstract left-successor-law-add-ℤ : (x y : ℤ) → Id (add-ℤ (succ-ℤ x) y) (succ-ℤ (add-ℤ x y)) left-successor-law-add-ℤ (inl zero-ℕ) y = ( ap (λ t → add-ℤ t y) (right-inverse-pred-ℤ zero-ℤ)) ∙ ( inv (right-inverse-pred-ℤ y)) left-successor-law-add-ℤ (inl (succ-ℕ x)) y = ( inv (right-inverse-pred-ℤ (add-ℤ (inl x) y))) ∙ ( ap succ-ℤ (inv (left-predecessor-law-add-ℤ (inl x) y))) left-successor-law-add-ℤ (inr (inl star)) y = refl left-successor-law-add-ℤ (inr (inr x)) y = refl right-successor-law-add-ℤ : (x y : ℤ) → Id (add-ℤ x (succ-ℤ y)) (succ-ℤ (add-ℤ x y)) right-successor-law-add-ℤ (inl zero-ℕ) y = (left-inverse-pred-ℤ y) ∙ (inv (right-inverse-pred-ℤ y)) right-successor-law-add-ℤ (inl (succ-ℕ x)) y = ( ap pred-ℤ (right-successor-law-add-ℤ (inl x) y)) ∙ ( ( left-inverse-pred-ℤ (add-ℤ (inl x) y)) ∙ ( inv (right-inverse-pred-ℤ (add-ℤ (inl x) y)))) right-successor-law-add-ℤ (inr (inl star)) y = refl right-successor-law-add-ℤ (inr (inr zero-ℕ)) y = refl right-successor-law-add-ℤ (inr (inr (succ-ℕ x))) y = ap succ-ℤ (right-successor-law-add-ℤ (inr (inr x)) y) {- Exercise 6.12 (c) asks to prove associativity and commutativity. Note that we avoid an unwieldy amount of cases by only using induction on the first argument. The resulting proof term is fairly short, and we don't have to present ℤ as a certain quotient of ℕ × ℕ. -} abstract associative-add-ℤ : (x y z : ℤ) → Id (add-ℤ (add-ℤ x y) z) (add-ℤ x (add-ℤ y z)) associative-add-ℤ (inl zero-ℕ) y z = ( ap (λ t → add-ℤ t z) (left-predecessor-law-add-ℤ zero-ℤ y)) ∙ ( ( left-predecessor-law-add-ℤ y z) ∙ ( inv (left-predecessor-law-add-ℤ zero-ℤ (add-ℤ y z)))) associative-add-ℤ (inl (succ-ℕ x)) y z = ( ap (λ t → add-ℤ t z) (left-predecessor-law-add-ℤ (inl x) y)) ∙ ( ( left-predecessor-law-add-ℤ (add-ℤ (inl x) y) z) ∙ ( ( ap pred-ℤ (associative-add-ℤ (inl x) y z)) ∙ ( inv (left-predecessor-law-add-ℤ (inl x) (add-ℤ y z))))) associative-add-ℤ (inr (inl star)) y z = refl associative-add-ℤ (inr (inr zero-ℕ)) y z = ( ap (λ t → add-ℤ t z) (left-successor-law-add-ℤ zero-ℤ y)) ∙ ( ( left-successor-law-add-ℤ y z) ∙ ( inv (left-successor-law-add-ℤ zero-ℤ (add-ℤ y z)))) associative-add-ℤ (inr (inr (succ-ℕ x))) y z = ( ap (λ t → add-ℤ t z) (left-successor-law-add-ℤ (inr (inr x)) y)) ∙ ( ( left-successor-law-add-ℤ (add-ℤ (inr (inr x)) y) z) ∙ ( ( ap succ-ℤ (associative-add-ℤ (inr (inr x)) y z)) ∙ ( inv (left-successor-law-add-ℤ (inr (inr x)) (add-ℤ y z))))) abstract commutative-add-ℤ : (x y : ℤ) → Id (add-ℤ x y) (add-ℤ y x) commutative-add-ℤ (inl zero-ℕ) y = ( left-predecessor-law-add-ℤ zero-ℤ y) ∙ ( inv ( ( right-predecessor-law-add-ℤ y zero-ℤ) ∙ ( ap pred-ℤ (right-unit-law-add-ℤ y)))) commutative-add-ℤ (inl (succ-ℕ x)) y = ( ap pred-ℤ (commutative-add-ℤ (inl x) y)) ∙ ( inv (right-predecessor-law-add-ℤ y (inl x))) commutative-add-ℤ (inr (inl star)) y = inv (right-unit-law-add-ℤ y) commutative-add-ℤ (inr (inr zero-ℕ)) y = inv ( ( right-successor-law-add-ℤ y zero-ℤ) ∙ ( ap succ-ℤ (right-unit-law-add-ℤ y))) commutative-add-ℤ (inr (inr (succ-ℕ x))) y = ( ap succ-ℤ (commutative-add-ℤ (inr (inr x)) y)) ∙ ( inv (right-successor-law-add-ℤ y (inr (inr x)))) {- Exercise 6.12 (d) finally asks to show the inverse laws, completing the verification of the group laws. Combined with associativity and commutativity we conclude that (add-ℤ x) and (λ x → add-ℤ x y) are equivalences, for every x : ℤ and y : ℤ, respectively. -} abstract left-inverse-law-add-ℤ : (x : ℤ) → Id (add-ℤ (neg-ℤ x) x) zero-ℤ left-inverse-law-add-ℤ (inl zero-ℕ) = refl left-inverse-law-add-ℤ (inl (succ-ℕ x)) = ( ap succ-ℤ (right-predecessor-law-add-ℤ (inr (inr x)) (inl x))) ∙ ( ( right-inverse-pred-ℤ (add-ℤ (inr (inr x)) (inl x))) ∙ ( left-inverse-law-add-ℤ (inl x))) left-inverse-law-add-ℤ (inr (inl star)) = refl left-inverse-law-add-ℤ (inr (inr x)) = ( commutative-add-ℤ (inl x) (inr (inr x))) ∙ ( left-inverse-law-add-ℤ (inl x)) right-inverse-law-add-ℤ : (x : ℤ) → Id (add-ℤ x (neg-ℤ x)) zero-ℤ right-inverse-law-add-ℤ x = ( commutative-add-ℤ x (neg-ℤ x)) ∙ (left-inverse-law-add-ℤ x) -- Similar for multiplication on ℤ neg-neg-ℤ : (k : ℤ) → Id (neg-ℤ (neg-ℤ k)) k neg-neg-ℤ (inl n) = refl neg-neg-ℤ (inr (inl star)) = refl neg-neg-ℤ (inr (inr n)) = refl neg-pred-ℤ : (k : ℤ) → Id (neg-ℤ (pred-ℤ k)) (succ-ℤ (neg-ℤ k)) neg-pred-ℤ (inl x) = refl neg-pred-ℤ (inr (inl star)) = refl neg-pred-ℤ (inr (inr zero-ℕ)) = refl neg-pred-ℤ (inr (inr (succ-ℕ x))) = refl pred-neg-ℤ : (k : ℤ) → Id (pred-ℤ (neg-ℤ k)) (neg-ℤ (succ-ℤ k)) pred-neg-ℤ (inl zero-ℕ) = refl pred-neg-ℤ (inl (succ-ℕ x)) = refl pred-neg-ℤ (inr (inl star)) = refl pred-neg-ℤ (inr (inr x)) = refl right-negative-law-add-ℤ : (k l : ℤ) → Id (add-ℤ k (neg-ℤ l)) (neg-ℤ (add-ℤ (neg-ℤ k) l)) right-negative-law-add-ℤ (inl zero-ℕ) l = ( left-predecessor-law-add-ℤ zero-ℤ (neg-ℤ l)) ∙ ( pred-neg-ℤ l) right-negative-law-add-ℤ (inl (succ-ℕ x)) l = ( left-predecessor-law-add-ℤ (inl x) (neg-ℤ l)) ∙ ( ( ap pred-ℤ (right-negative-law-add-ℤ (inl x) l)) ∙ ( pred-neg-ℤ (add-ℤ (inr (inr x)) l))) right-negative-law-add-ℤ (inr (inl star)) l = refl right-negative-law-add-ℤ (inr (inr zero-ℕ)) l = inv (neg-pred-ℤ l) right-negative-law-add-ℤ (inr (inr (succ-ℕ n))) l = ( left-successor-law-add-ℤ (in-pos n) (neg-ℤ l)) ∙ ( ( ap succ-ℤ (right-negative-law-add-ℤ (inr (inr n)) l)) ∙ ( inv (neg-pred-ℤ (add-ℤ (inl n) l)))) distributive-neg-add-ℤ : (k l : ℤ) → Id (neg-ℤ (add-ℤ k l)) (add-ℤ (neg-ℤ k) (neg-ℤ l)) distributive-neg-add-ℤ (inl zero-ℕ) l = ( ap neg-ℤ (left-predecessor-law-add-ℤ zero-ℤ l)) ∙ ( neg-pred-ℤ l) distributive-neg-add-ℤ (inl (succ-ℕ n)) l = ( neg-pred-ℤ (add-ℤ (inl n) l)) ∙ ( ( ap succ-ℤ (distributive-neg-add-ℤ (inl n) l)) ∙ ( ap (λ t → add-ℤ t (neg-ℤ l)) (inv (neg-pred-ℤ (inl n))))) distributive-neg-add-ℤ (inr (inl star)) l = refl distributive-neg-add-ℤ (inr (inr zero-ℕ)) l = inv (pred-neg-ℤ l) distributive-neg-add-ℤ (inr (inr (succ-ℕ n))) l = ( inv (pred-neg-ℤ (add-ℤ (in-pos n) l))) ∙ ( ap pred-ℤ (distributive-neg-add-ℤ (inr (inr n)) l)) left-zero-law-mul-ℤ : (k : ℤ) → Id (mul-ℤ zero-ℤ k) zero-ℤ left-zero-law-mul-ℤ k = refl right-zero-law-mul-ℤ : (k : ℤ) → Id (mul-ℤ k zero-ℤ) zero-ℤ right-zero-law-mul-ℤ (inl zero-ℕ) = refl right-zero-law-mul-ℤ (inl (succ-ℕ n)) = right-zero-law-mul-ℤ (inl n) right-zero-law-mul-ℤ (inr (inl star)) = refl right-zero-law-mul-ℤ (inr (inr zero-ℕ)) = refl right-zero-law-mul-ℤ (inr (inr (succ-ℕ n))) = right-zero-law-mul-ℤ (inr (inr n)) left-unit-law-mul-ℤ : (k : ℤ) → Id (mul-ℤ one-ℤ k) k left-unit-law-mul-ℤ k = refl right-unit-law-mul-ℤ : (k : ℤ) → Id (mul-ℤ k one-ℤ) k right-unit-law-mul-ℤ (inl zero-ℕ) = refl right-unit-law-mul-ℤ (inl (succ-ℕ n)) = ap (add-ℤ (neg-one-ℤ)) (right-unit-law-mul-ℤ (inl n)) right-unit-law-mul-ℤ (inr (inl star)) = refl right-unit-law-mul-ℤ (inr (inr zero-ℕ)) = refl right-unit-law-mul-ℤ (inr (inr (succ-ℕ n))) = ap (add-ℤ one-ℤ) (right-unit-law-mul-ℤ (inr (inr n))) left-neg-unit-law-mul-ℤ : (k : ℤ) → Id (mul-ℤ neg-one-ℤ k) (neg-ℤ k) left-neg-unit-law-mul-ℤ k = refl right-neg-unit-law-mul-ℤ : (k : ℤ) → Id (mul-ℤ k neg-one-ℤ) (neg-ℤ k) right-neg-unit-law-mul-ℤ (inl zero-ℕ) = refl right-neg-unit-law-mul-ℤ (inl (succ-ℕ n)) = ap (add-ℤ one-ℤ) (right-neg-unit-law-mul-ℤ (inl n)) right-neg-unit-law-mul-ℤ (inr (inl star)) = refl right-neg-unit-law-mul-ℤ (inr (inr zero-ℕ)) = refl right-neg-unit-law-mul-ℤ (inr (inr (succ-ℕ n))) = ap (add-ℤ neg-one-ℤ) (right-neg-unit-law-mul-ℤ (inr (inr n))) left-successor-law-mul-ℤ : (k l : ℤ) → Id (mul-ℤ (succ-ℤ k) l) (add-ℤ l (mul-ℤ k l)) left-successor-law-mul-ℤ (inl zero-ℕ) l = inv (right-inverse-law-add-ℤ l) left-successor-law-mul-ℤ (inl (succ-ℕ n)) l = ( ( inv (left-unit-law-add-ℤ (mul-ℤ (inl n) l))) ∙ ( ap ( λ x → add-ℤ x (mul-ℤ (inl n) l)) ( inv (right-inverse-law-add-ℤ l)))) ∙ ( associative-add-ℤ l (neg-ℤ l) (mul-ℤ (inl n) l)) left-successor-law-mul-ℤ (inr (inl star)) l = inv (right-unit-law-add-ℤ l) left-successor-law-mul-ℤ (inr (inr n)) l = refl left-predecessor-law-mul-ℤ : (k l : ℤ) → Id (mul-ℤ (pred-ℤ k) l) (add-ℤ (neg-ℤ l) (mul-ℤ k l)) left-predecessor-law-mul-ℤ (inl n) l = refl left-predecessor-law-mul-ℤ (inr (inl star)) l = ( left-neg-unit-law-mul-ℤ l) ∙ ( inv (right-unit-law-add-ℤ (neg-ℤ l))) left-predecessor-law-mul-ℤ (inr (inr zero-ℕ)) l = inv (left-inverse-law-add-ℤ l) left-predecessor-law-mul-ℤ (inr (inr (succ-ℕ x))) l = ( ap ( λ t → add-ℤ t (mul-ℤ (in-pos x) l)) ( inv (left-inverse-law-add-ℤ l))) ∙ ( associative-add-ℤ (neg-ℤ l) l (mul-ℤ (in-pos x) l)) right-successor-law-mul-ℤ : (k l : ℤ) → Id (mul-ℤ k (succ-ℤ l)) (add-ℤ k (mul-ℤ k l)) right-successor-law-mul-ℤ (inl zero-ℕ) l = inv (pred-neg-ℤ l) right-successor-law-mul-ℤ (inl (succ-ℕ n)) l = ( left-predecessor-law-mul-ℤ (inl n) (succ-ℤ l)) ∙ ( ( ap (add-ℤ (neg-ℤ (succ-ℤ l))) (right-successor-law-mul-ℤ (inl n) l)) ∙ ( ( inv (associative-add-ℤ (neg-ℤ (succ-ℤ l)) (inl n) (mul-ℤ (inl n) l))) ∙ ( ( ap ( λ t → add-ℤ t (mul-ℤ (inl n) l)) { x = add-ℤ (neg-ℤ (succ-ℤ l)) (inl n)} { y = add-ℤ (inl (succ-ℕ n)) (neg-ℤ l)} ( ( right-successor-law-add-ℤ (neg-ℤ (succ-ℤ l)) (inl (succ-ℕ n))) ∙ ( ( ap succ-ℤ ( commutative-add-ℤ (neg-ℤ (succ-ℤ l)) (inl (succ-ℕ n)))) ∙ ( ( inv ( right-successor-law-add-ℤ ( inl (succ-ℕ n)) ( neg-ℤ (succ-ℤ l)))) ∙ ( ap ( add-ℤ (inl (succ-ℕ n))) ( ( ap succ-ℤ (inv (pred-neg-ℤ l))) ∙ ( right-inverse-pred-ℤ (neg-ℤ l)))))))) ∙ ( associative-add-ℤ (inl (succ-ℕ n)) (neg-ℤ l) (mul-ℤ (inl n) l))))) right-successor-law-mul-ℤ (inr (inl star)) l = refl right-successor-law-mul-ℤ (inr (inr zero-ℕ)) l = refl right-successor-law-mul-ℤ (inr (inr (succ-ℕ n))) l = ( left-successor-law-mul-ℤ (in-pos n) (succ-ℤ l)) ∙ ( ( ap (add-ℤ (succ-ℤ l)) (right-successor-law-mul-ℤ (inr (inr n)) l)) ∙ ( ( inv (associative-add-ℤ (succ-ℤ l) (in-pos n) (mul-ℤ (in-pos n) l))) ∙ ( ( ap ( λ t → add-ℤ t (mul-ℤ (in-pos n) l)) { x = add-ℤ (succ-ℤ l) (in-pos n)} { y = add-ℤ (in-pos (succ-ℕ n)) l} ( ( left-successor-law-add-ℤ l (in-pos n)) ∙ ( ( ap succ-ℤ (commutative-add-ℤ l (in-pos n))) ∙ ( inv (left-successor-law-add-ℤ (in-pos n) l))))) ∙ ( associative-add-ℤ (inr (inr (succ-ℕ n))) l (mul-ℤ (inr (inr n)) l))))) right-predecessor-law-mul-ℤ : (k l : ℤ) → Id (mul-ℤ k (pred-ℤ l)) (add-ℤ (neg-ℤ k) (mul-ℤ k l)) right-predecessor-law-mul-ℤ (inl zero-ℕ) l = ( left-neg-unit-law-mul-ℤ (pred-ℤ l)) ∙ ( neg-pred-ℤ l) right-predecessor-law-mul-ℤ (inl (succ-ℕ n)) l = ( left-predecessor-law-mul-ℤ (inl n) (pred-ℤ l)) ∙ ( ( ap (add-ℤ (neg-ℤ (pred-ℤ l))) (right-predecessor-law-mul-ℤ (inl n) l)) ∙ ( ( inv ( associative-add-ℤ (neg-ℤ (pred-ℤ l)) (in-pos n) (mul-ℤ (inl n) l))) ∙ ( ( ap ( λ t → add-ℤ t (mul-ℤ (inl n) l)) { x = add-ℤ (neg-ℤ (pred-ℤ l)) (inr (inr n))} { y = add-ℤ (neg-ℤ (inl (succ-ℕ n))) (neg-ℤ l)} ( ( ap (λ t → add-ℤ t (in-pos n)) (neg-pred-ℤ l)) ∙ ( ( left-successor-law-add-ℤ (neg-ℤ l) (in-pos n)) ∙ ( ( ap succ-ℤ (commutative-add-ℤ (neg-ℤ l) (in-pos n))) ∙ ( inv (left-successor-law-add-ℤ (in-pos n) (neg-ℤ l))))))) ∙ ( associative-add-ℤ (in-pos (succ-ℕ n)) (neg-ℤ l) (mul-ℤ (inl n) l))))) right-predecessor-law-mul-ℤ (inr (inl star)) l = refl right-predecessor-law-mul-ℤ (inr (inr zero-ℕ)) l = refl right-predecessor-law-mul-ℤ (inr (inr (succ-ℕ n))) l = ( left-successor-law-mul-ℤ (in-pos n) (pred-ℤ l)) ∙ ( ( ap (add-ℤ (pred-ℤ l)) (right-predecessor-law-mul-ℤ (inr (inr n)) l)) ∙ ( ( inv (associative-add-ℤ (pred-ℤ l) (inl n) (mul-ℤ (inr (inr n)) l))) ∙ ( ( ap ( λ t → add-ℤ t (mul-ℤ (in-pos n) l)) { x = add-ℤ (pred-ℤ l) (inl n)} { y = add-ℤ (neg-ℤ (in-pos (succ-ℕ n))) l} ( ( left-predecessor-law-add-ℤ l (inl n)) ∙ ( ( ap pred-ℤ (commutative-add-ℤ l (inl n))) ∙ ( inv (left-predecessor-law-add-ℤ (inl n) l))))) ∙ ( associative-add-ℤ (inl (succ-ℕ n)) l (mul-ℤ (inr (inr n)) l))))) right-distributive-mul-add-ℤ : (k l m : ℤ) → Id (mul-ℤ (add-ℤ k l) m) (add-ℤ (mul-ℤ k m) (mul-ℤ l m)) right-distributive-mul-add-ℤ (inl zero-ℕ) l m = ( left-predecessor-law-mul-ℤ l m) ∙ ( ap ( λ t → add-ℤ t (mul-ℤ l m)) ( inv ( ( left-predecessor-law-mul-ℤ zero-ℤ m) ∙ ( right-unit-law-add-ℤ (neg-ℤ m))))) right-distributive-mul-add-ℤ (inl (succ-ℕ x)) l m = ( left-predecessor-law-mul-ℤ (add-ℤ (inl x) l) m) ∙ ( ( ap (add-ℤ (neg-ℤ m)) (right-distributive-mul-add-ℤ (inl x) l m)) ∙ ( inv (associative-add-ℤ (neg-ℤ m) (mul-ℤ (inl x) m) (mul-ℤ l m)))) right-distributive-mul-add-ℤ (inr (inl star)) l m = refl right-distributive-mul-add-ℤ (inr (inr zero-ℕ)) l m = left-successor-law-mul-ℤ l m right-distributive-mul-add-ℤ (inr (inr (succ-ℕ n))) l m = ( left-successor-law-mul-ℤ (add-ℤ (in-pos n) l) m) ∙ ( ( ap (add-ℤ m) (right-distributive-mul-add-ℤ (inr (inr n)) l m)) ∙ ( inv (associative-add-ℤ m (mul-ℤ (in-pos n) m) (mul-ℤ l m)))) left-negative-law-mul-ℤ : (k l : ℤ) → Id (mul-ℤ (neg-ℤ k) l) (neg-ℤ (mul-ℤ k l)) left-negative-law-mul-ℤ (inl zero-ℕ) l = ( left-unit-law-mul-ℤ l) ∙ ( inv (neg-neg-ℤ l)) left-negative-law-mul-ℤ (inl (succ-ℕ n)) l = ( ap (λ t → mul-ℤ t l) (neg-pred-ℤ (inl n))) ∙ ( ( left-successor-law-mul-ℤ (neg-ℤ (inl n)) l) ∙ ( ( ap (add-ℤ l) (left-negative-law-mul-ℤ (inl n) l)) ∙ ( right-negative-law-add-ℤ l (mul-ℤ (inl n) l)))) left-negative-law-mul-ℤ (inr (inl star)) l = refl left-negative-law-mul-ℤ (inr (inr zero-ℕ)) l = refl left-negative-law-mul-ℤ (inr (inr (succ-ℕ n))) l = ( left-predecessor-law-mul-ℤ (inl n) l) ∙ ( ( ap (add-ℤ (neg-ℤ l)) (left-negative-law-mul-ℤ (inr (inr n)) l)) ∙ ( inv (distributive-neg-add-ℤ l (mul-ℤ (in-pos n) l)))) associative-mul-ℤ : (k l m : ℤ) → Id (mul-ℤ (mul-ℤ k l) m) (mul-ℤ k (mul-ℤ l m)) associative-mul-ℤ (inl zero-ℕ) l m = left-negative-law-mul-ℤ l m associative-mul-ℤ (inl (succ-ℕ n)) l m = ( right-distributive-mul-add-ℤ (neg-ℤ l) (mul-ℤ (inl n) l) m) ∙ ( ( ap (add-ℤ (mul-ℤ (neg-ℤ l) m)) (associative-mul-ℤ (inl n) l m)) ∙ ( ap ( λ t → add-ℤ t (mul-ℤ (inl n) (mul-ℤ l m))) ( left-negative-law-mul-ℤ l m))) associative-mul-ℤ (inr (inl star)) l m = refl associative-mul-ℤ (inr (inr zero-ℕ)) l m = refl associative-mul-ℤ (inr (inr (succ-ℕ n))) l m = ( right-distributive-mul-add-ℤ l (mul-ℤ (in-pos n) l) m) ∙ ( ap (add-ℤ (mul-ℤ l m)) (associative-mul-ℤ (inr (inr n)) l m)) commutative-mul-ℤ : (k l : ℤ) → Id (mul-ℤ k l) (mul-ℤ l k) commutative-mul-ℤ (inl zero-ℕ) l = inv (right-neg-unit-law-mul-ℤ l) commutative-mul-ℤ (inl (succ-ℕ n)) l = ( ap (add-ℤ (neg-ℤ l)) (commutative-mul-ℤ (inl n) l)) ∙ ( inv (right-predecessor-law-mul-ℤ l (inl n))) commutative-mul-ℤ (inr (inl star)) l = inv (right-zero-law-mul-ℤ l) commutative-mul-ℤ (inr (inr zero-ℕ)) l = inv (right-unit-law-mul-ℤ l) commutative-mul-ℤ (inr (inr (succ-ℕ n))) l = ( ap (add-ℤ l) (commutative-mul-ℤ (inr (inr n)) l)) ∙ ( inv (right-successor-law-mul-ℤ l (in-pos n)))
37.001346
81
0.5622
9af4653093c23ea0e664946eff02fda660e3bdd4
10,551
agda
Agda
Cubical/Foundations/Equiv.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Foundations/Equiv.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Foundations/Equiv.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{- Theory about equivalences Definitions are in Core/Glue.agda but re-exported by this module - isEquiv is a proposition ([isPropIsEquiv]) - Any isomorphism is an equivalence ([isoToEquiv]) There are more statements about equivalences in Equiv/Properties.agda: - if f is an equivalence then (cong f) is an equivalence - if f is an equivalence then precomposition with f is an equivalence - if f is an equivalence then postcomposition with f is an equivalence -} {-# OPTIONS --safe #-} module Cubical.Foundations.Equiv where open import Cubical.Foundations.Function open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv.Base public open import Cubical.Data.Sigma.Base private variable ℓ ℓ' ℓ'' : Level A B C D : Type ℓ equivIsEquiv : (e : A ≃ B) → isEquiv (equivFun e) equivIsEquiv e = snd e equivCtr : (e : A ≃ B) (y : B) → fiber (equivFun e) y equivCtr e y = e .snd .equiv-proof y .fst equivCtrPath : (e : A ≃ B) (y : B) → (v : fiber (equivFun e) y) → Path _ (equivCtr e y) v equivCtrPath e y = e .snd .equiv-proof y .snd -- Proof using isPropIsContr. This is slow and the direct proof below is better isPropIsEquiv' : (f : A → B) → isProp (isEquiv f) equiv-proof (isPropIsEquiv' f u0 u1 i) y = isPropIsContr (u0 .equiv-proof y) (u1 .equiv-proof y) i -- Direct proof that computes quite ok (can be optimized further if -- necessary, see: -- https://github.com/mortberg/cubicaltt/blob/pi4s3_dimclosures/examples/brunerie2.ctt#L562 isPropIsEquiv : (f : A → B) → isProp (isEquiv f) equiv-proof (isPropIsEquiv f p q i) y = let p2 = p .equiv-proof y .snd q2 = q .equiv-proof y .snd in p2 (q .equiv-proof y .fst) i , λ w j → hcomp (λ k → λ { (i = i0) → p2 w j ; (i = i1) → q2 w (j ∨ ~ k) ; (j = i0) → p2 (q2 w (~ k)) i ; (j = i1) → w }) (p2 w (i ∨ j)) equivEq : {e f : A ≃ B} → (h : e .fst ≡ f .fst) → e ≡ f equivEq {e = e} {f = f} h = λ i → (h i) , isProp→PathP (λ i → isPropIsEquiv (h i)) (e .snd) (f .snd) i module _ {f : A → B} (equivF : isEquiv f) where funIsEq : A → B funIsEq = f invIsEq : B → A invIsEq y = equivF .equiv-proof y .fst .fst secIsEq : section f invIsEq secIsEq y = equivF .equiv-proof y .fst .snd retIsEq : retract f invIsEq retIsEq a i = equivF .equiv-proof (f a) .snd (a , refl) i .fst commSqIsEq : ∀ a → Square (secIsEq (f a)) refl (cong f (retIsEq a)) refl commSqIsEq a i = equivF .equiv-proof (f a) .snd (a , refl) i .snd commPathIsEq : ∀ a → secIsEq (f a) ≡ cong f (retIsEq a) commPathIsEq a i j = hcomp (λ k → λ { (i = i0) → secIsEq (f a) j ; (i = i1) → f (retIsEq a (j ∨ ~ k)) ; (j = i0) → f (retIsEq a (i ∧ ~ k)) ; (j = i1) → f a }) (commSqIsEq a i j) module _ (w : A ≃ B) where invEq : B → A invEq = invIsEq (snd w) retEq : retract (w .fst) invEq retEq = retIsEq (snd w) secEq : section (w .fst) invEq secEq = secIsEq (snd w) open Iso equivToIso : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → A ≃ B → Iso A B fun (equivToIso e) = e .fst inv (equivToIso e) = invEq e rightInv (equivToIso e) = secEq e leftInv (equivToIso e) = retEq e -- TODO: there should be a direct proof of this that doesn't use equivToIso invEquiv : A ≃ B → B ≃ A invEquiv e = isoToEquiv (invIso (equivToIso e)) invEquivIdEquiv : (A : Type ℓ) → invEquiv (idEquiv A) ≡ idEquiv A invEquivIdEquiv _ = equivEq refl compEquiv : A ≃ B → B ≃ C → A ≃ C compEquiv f g .fst = g .fst ∘ f .fst compEquiv {A = A} {C = C} f g .snd .equiv-proof c = contr where contractG = g .snd .equiv-proof c .snd secFiller : (a : A) (p : g .fst (f .fst a) ≡ c) → _ {- square in A -} secFiller a p = compPath-filler (cong (invEq f ∘ fst) (contractG (_ , p))) (retEq f a) contr : isContr (fiber (g .fst ∘ f .fst) c) contr .fst .fst = invEq f (invEq g c) contr .fst .snd = cong (g .fst) (secEq f (invEq g c)) ∙ secEq g c contr .snd (a , p) i .fst = secFiller a p i1 i contr .snd (a , p) i .snd j = hcomp (λ k → λ { (i = i1) → fSquare k ; (j = i0) → g .fst (f .fst (secFiller a p k i)) ; (j = i1) → contractG (_ , p) i .snd k }) (g .fst (secEq f (contractG (_ , p) i .fst) j)) where fSquare : I → C fSquare k = hcomp (λ l → λ { (j = i0) → g .fst (f .fst (retEq f a k)) ; (j = i1) → p (k ∧ l) ; (k = i0) → g .fst (secEq f (f .fst a) j) ; (k = i1) → p (j ∧ l) }) (g .fst (f .snd .equiv-proof (f .fst a) .snd (a , refl) k .snd j)) compEquivIdEquiv : (e : A ≃ B) → compEquiv (idEquiv A) e ≡ e compEquivIdEquiv e = equivEq refl compEquivEquivId : (e : A ≃ B) → compEquiv e (idEquiv B) ≡ e compEquivEquivId e = equivEq refl invEquiv-is-rinv : (e : A ≃ B) → compEquiv e (invEquiv e) ≡ idEquiv A invEquiv-is-rinv e = equivEq (funExt (retEq e)) invEquiv-is-linv : (e : A ≃ B) → compEquiv (invEquiv e) e ≡ idEquiv B invEquiv-is-linv e = equivEq (funExt (secEq e)) compEquiv-assoc : (f : A ≃ B) (g : B ≃ C) (h : C ≃ D) → compEquiv f (compEquiv g h) ≡ compEquiv (compEquiv f g) h compEquiv-assoc f g h = equivEq refl LiftEquiv : A ≃ Lift {i = ℓ} {j = ℓ'} A LiftEquiv .fst a .lower = a LiftEquiv .snd .equiv-proof = strictContrFibers lower Lift≃Lift : (e : A ≃ B) → Lift {j = ℓ'} A ≃ Lift {j = ℓ''} B Lift≃Lift e .fst a .lower = e .fst (a .lower) Lift≃Lift e .snd .equiv-proof b .fst .fst .lower = invEq e (b .lower) Lift≃Lift e .snd .equiv-proof b .fst .snd i .lower = e .snd .equiv-proof (b .lower) .fst .snd i Lift≃Lift e .snd .equiv-proof b .snd (a , p) i .fst .lower = e .snd .equiv-proof (b .lower) .snd (a .lower , cong lower p) i .fst Lift≃Lift e .snd .equiv-proof b .snd (a , p) i .snd j .lower = e .snd .equiv-proof (b .lower) .snd (a .lower , cong lower p) i .snd j isContr→Equiv : isContr A → isContr B → A ≃ B isContr→Equiv Actr Bctr = isoToEquiv (isContr→Iso Actr Bctr) propBiimpl→Equiv : (Aprop : isProp A) (Bprop : isProp B) (f : A → B) (g : B → A) → A ≃ B propBiimpl→Equiv Aprop Bprop f g = f , hf where hf : isEquiv f hf .equiv-proof y .fst = (g y , Bprop (f (g y)) y) hf .equiv-proof y .snd h i .fst = Aprop (g y) (h .fst) i hf .equiv-proof y .snd h i .snd = isProp→isSet' Bprop (Bprop (f (g y)) y) (h .snd) (cong f (Aprop (g y) (h .fst))) refl i isEquivPropBiimpl→Equiv : isProp A → isProp B → ((A → B) × (B → A)) ≃ (A ≃ B) isEquivPropBiimpl→Equiv {A = A} {B = B} Aprop Bprop = isoToEquiv isom where isom : Iso (Σ (A → B) (λ _ → B → A)) (A ≃ B) isom .fun (f , g) = propBiimpl→Equiv Aprop Bprop f g isom .inv e = equivFun e , invEq e isom .rightInv e = equivEq refl isom .leftInv _ = refl equivΠCod : ∀ {F : A → Type ℓ} {G : A → Type ℓ'} → ((x : A) → F x ≃ G x) → ((x : A) → F x) ≃ ((x : A) → G x) equivΠCod k .fst f x = k x .fst (f x) equivΠCod k .snd .equiv-proof f .fst .fst x = equivCtr (k x) (f x) .fst equivΠCod k .snd .equiv-proof f .fst .snd i x = equivCtr (k x) (f x) .snd i equivΠCod k .snd .equiv-proof f .snd (g , p) i .fst x = equivCtrPath (k x) (f x) (g x , λ j → p j x) i .fst equivΠCod k .snd .equiv-proof f .snd (g , p) i .snd j x = equivCtrPath (k x) (f x) (g x , λ k → p k x) i .snd j equivImplicitΠCod : ∀ {F : A → Type ℓ} {G : A → Type ℓ'} → ({x : A} → F x ≃ G x) → ({x : A} → F x) ≃ ({x : A} → G x) equivImplicitΠCod k .fst f {x} = k {x} .fst (f {x}) equivImplicitΠCod k .snd .equiv-proof f .fst .fst {x} = equivCtr (k {x}) (f {x}) .fst equivImplicitΠCod k .snd .equiv-proof f .fst .snd i {x} = equivCtr (k {x}) (f {x}) .snd i equivImplicitΠCod k .snd .equiv-proof f .snd (g , p) i .fst {x} = equivCtrPath (k {x}) (f {x}) (g {x} , λ j → p j {x}) i .fst equivImplicitΠCod k .snd .equiv-proof f .snd (g , p) i .snd j {x} = equivCtrPath (k {x}) (f {x}) (g {x} , λ k → p k {x}) i .snd j equiv→Iso : (A ≃ B) → (C ≃ D) → Iso (A → C) (B → D) equiv→Iso h k .Iso.fun f b = equivFun k (f (invEq h b)) equiv→Iso h k .Iso.inv g a = invEq k (g (equivFun h a)) equiv→Iso h k .Iso.rightInv g = funExt λ b → secEq k _ ∙ cong g (secEq h b) equiv→Iso h k .Iso.leftInv f = funExt λ a → retEq k _ ∙ cong f (retEq h a) equiv→ : (A ≃ B) → (C ≃ D) → (A → C) ≃ (B → D) equiv→ h k = isoToEquiv (equiv→Iso h k) equivΠ : ∀ {ℓA ℓA' ℓB ℓB'} {A : Type ℓA} {A' : Type ℓA'} {B : A → Type ℓB} {B' : A' → Type ℓB'} (eA : A ≃ A') (eB : (a : A) → B a ≃ B' (eA .fst a)) → ((a : A) → B a) ≃ ((a' : A') → B' a') equivΠ {B' = B'} eA eB = isoToEquiv isom where open Iso isom : Iso _ _ isom .fun f a' = subst B' (secEq eA a') (eB _ .fst (f (invEq eA a'))) isom .inv f' a = invEq (eB _) (f' (eA .fst a)) isom .rightInv f' = funExt λ a' → cong (subst B' (secEq eA a')) (secEq (eB _) _) ∙ fromPathP (cong f' (secEq eA a')) isom .leftInv f = funExt λ a → invEq (eB a) (subst B' (secEq eA _) (eB _ .fst (f (invEq eA (eA .fst a))))) ≡⟨ cong (λ t → invEq (eB a) (subst B' t (eB _ .fst (f (invEq eA (eA .fst a)))))) (commPathIsEq (snd eA) a) ⟩ invEq (eB a) (subst B' (cong (eA .fst) (retEq eA a)) (eB _ .fst (f (invEq eA (eA .fst a))))) ≡⟨ cong (invEq (eB a)) (fromPathP (λ i → eB _ .fst (f (retEq eA a i)))) ⟩ invEq (eB a) (eB a .fst (f a)) ≡⟨ retEq (eB _) (f a) ⟩ f a ∎ equivCompIso : (A ≃ B) → (C ≃ D) → Iso (A ≃ C) (B ≃ D) equivCompIso h k .Iso.fun f = compEquiv (compEquiv (invEquiv h) f) k equivCompIso h k .Iso.inv g = compEquiv (compEquiv h g) (invEquiv k) equivCompIso h k .Iso.rightInv g = equivEq (equiv→Iso h k .Iso.rightInv (equivFun g)) equivCompIso h k .Iso.leftInv f = equivEq (equiv→Iso h k .Iso.leftInv (equivFun f)) equivComp : (A ≃ B) → (C ≃ D) → (A ≃ C) ≃ (B ≃ D) equivComp h k = isoToEquiv (equivCompIso h k) -- Some helpful notation: _≃⟨_⟩_ : (X : Type ℓ) → (X ≃ B) → (B ≃ C) → (X ≃ C) _ ≃⟨ f ⟩ g = compEquiv f g _■ : (X : Type ℓ) → (X ≃ X) _■ = idEquiv infixr 0 _≃⟨_⟩_ infix 1 _■ composesToId→Equiv : (f : A → B) (g : B → A) → f ∘ g ≡ idfun B → isEquiv f → isEquiv g composesToId→Equiv f g id iseqf = isoToIsEquiv (iso g f (λ b → (λ i → equiv-proof iseqf (f b) .snd (g (f b) , cong (λ h → h (f b)) id) (~ i) .fst) ∙∙ cong (λ x → equiv-proof iseqf (f b) .fst .fst) id ∙∙ λ i → equiv-proof iseqf (f b) .snd (b , refl) i .fst) λ a i → id i a)
36.382759
102
0.562222
57c8357726617997acf2be34407a927e1525e58d
540
agda
Agda
test/fail/Issue691.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/fail/Issue691.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/Issue691.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
-- Andreas, 2012-09-07 -- {-# OPTIONS -v tc.polarity:10 -v tc.conv.irr:20 -v tc.conv.elim:25 -v tc.conv.term:10 #-} module Issue691 where open import Common.Equality data Bool : Set where true false : Bool assert : (A : Set) → A → Bool → Bool assert _ _ true = true assert _ _ false = false g : Bool -> Bool -> Bool g x true = true g x false = true unsolved : Bool -> Bool unsolved y = let X : Bool X = _ in assert (g X y ≡ g true y) refl X -- X should be left unsolved istrue : (unsolved false) ≡ true istrue = refl
18.62069
92
0.635185
ada976e329647f2da9e4ed4a042bc05f1b3f1e1d
2,302
agda
Agda
Experiment/Categories/Solver/Category/Cartesian/Example.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
3
2020-04-07T17:49:42.000Z
2020-04-21T00:03:43.000Z
Experiment/Categories/Solver/Category/Cartesian/Example.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
Experiment/Categories/Solver/Category/Cartesian/Example.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
-- Example usage of solver {-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Category.Cartesian module Experiment.Categories.Solver.Category.Cartesian.Example {o ℓ e} {𝒞 : Category o ℓ e} (cartesian : Cartesian 𝒞) where open import Experiment.Categories.Solver.Category.Cartesian cartesian open Category 𝒞 open Cartesian cartesian open HomReasoning private variable A B C D E F : Obj module _ {f : D ⇒ E} {g : C ⇒ D} {h : B ⇒ C} {i : A ⇒ B} where _ : (f ∘ g) ∘ id ∘ h ∘ i ≈ f ∘ (g ∘ h) ∘ i _ = solve ((∥-∥ :∘ ∥-∥) :∘ :id :∘ ∥-∥ :∘ ∥-∥) (∥-∥ :∘ (∥-∥ :∘ ∥-∥) :∘ ∥-∥) refl swap∘swap≈id : ∀ {A B} → swap {A}{B} ∘ swap {B}{A} ≈ id swap∘swap≈id {A} {B} = solve (:swap {∥ A ∥} {∥ B ∥} :∘ :swap) :id refl assocʳ∘assocˡ≈id : ∀ {A B C} → assocʳ {A}{B}{C} ∘ assocˡ {A}{B}{C} ≈ id assocʳ∘assocˡ≈id = solve (:assocʳ {∥ _ ∥} {∥ _ ∥} {∥ _ ∥} :∘ :assocˡ) :id refl module _ {f : B ⇒ C} (f′ : A ⇒ B) {g : E ⇒ F} {g′ : D ⇒ E} where ⁂-∘ : (f ⁂ g) ∘ (f′ ⁂ g′) ≈ (f ∘ f′) ⁂ (g ∘ g′) ⁂-∘ = solve lhs rhs refl where lhs = (∥ f ∥ :⁂ ∥ g ∥) :∘ (∥ f′ ∥ :⁂ ∥ g′ ∥) rhs = (∥ f ∥ :∘ ∥ f′ ∥) :⁂ (∥ g ∥ :∘ ∥ g′ ∥) module _ {A B C D} where pentagon′ : (id ⁂ assocˡ) ∘ assocˡ ∘ (assocˡ ⁂ id) ≈ assocˡ ∘ assocˡ {A × B} {C} {D} pentagon′ = solve lhs rhs refl where lhs = (:id :⁂ :assocˡ) :∘ :assocˡ :∘ (:assocˡ :⁂ :id) rhs = :assocˡ :∘ :assocˡ {∥ A ∥ :× ∥ B ∥} {∥ C ∥} {∥ D ∥} module _ {A B C} where hexagon₁′ : (id ⁂ swap) ∘ assocˡ ∘ (swap ⁂ id) ≈ assocˡ ∘ swap ∘ assocˡ {A}{B}{C} hexagon₁′ = solve lhs rhs refl where lhs = (:id :⁂ :swap) :∘ :assocˡ :∘ (:swap :⁂ :id) rhs = :assocˡ :∘ :swap :∘ :assocˡ {∥ A ∥}{∥ B ∥}{∥ C ∥} module _ {f : A ⇒ B} where commute : ⟨ ! , id ⟩ ∘ f ≈ ⟨ id ∘ π₁ , f ∘ π₂ ⟩ ∘ ⟨ ! , id ⟩ commute = solve (:⟨ :! , :id ⟩ :∘ ∥ f ∥) (:⟨ :id :∘ :π₁ , ∥ f ∥ :∘ :π₂ ⟩ :∘ :⟨ :! , :id ⟩) refl _ : id {⊤} ≈ ! _ = solve (∥ id !∥) :! refl _ : π₁ {⊤} {⊤} ≈ π₂ _ = solve (:π₁ {:⊤} {:⊤}) :π₂ refl module _ {f : A ⇒ B} {g : C ⇒ D} where first↔second′ : first f ∘ second g ≈ second g ∘ first f first↔second′ = solve (:first ∥ f ∥ :∘ :second ∥ g ∥) (:second ∥ g ∥ :∘ :first ∥ f ∥) refl
31.534247
81
0.454822
4be1c937b0e104bf38c97d9916b7afbc25d31386
1,011
agda
Agda
test/Succeed/RecordUpdateSyntax.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/RecordUpdateSyntax.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/RecordUpdateSyntax.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
module RecordUpdateSyntax where open import Common.Prelude open import Common.Equality data Param : Nat → Set where param : ∀ n → Param (suc n) record R : Set where field {i} : Nat p : Param i s : Nat old : R old = record { p = param 0; s = 1 } -- Simple update, it should be able to infer the type and the implicit. new : _ new = record old { p = param 1 } new′ : R new′ = record { i = 2; p = param 1; s = 1 } -- Here's a needlessly complex update. upd-p-s : _ → _ → _ → R upd-p-s zero s r = record r { p = param zero; s = s } upd-p-s (suc n) s r = record (upd-p-s n 0 r) { p = param n; s = s } eq₁ : new ≡ new′ eq₁ = refl eq₂ : upd-p-s zero 1 (record new { s = 0 }) ≡ old eq₂ = refl -- Check that instance arguments are handled properly postulate T : Nat → Set instance t0 : T 0 t1 : T 1 record Instance : Set where field n : Nat {{t}} : T n r0 : Instance r0 = record { n = 0 } r1 : Instance r1 = record r0 { n = 1 } check : Instance.t r1 ≡ t1 check = refl
18.053571
71
0.593472
0381bcd3202baa6897123c389e8136e3f49c6bf8
1,030
agda
Agda
test/Succeed/Issue1227.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue1227.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue1227.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
open import Common.Prelude hiding (pred) open import Common.Reflection open import Common.Equality un-function : Definition → FunDef un-function (funDef cs) = funDef unknown cs un-function _ = funDef unknown [] data Is-suc : Nat → Set where is-suc : ∀ n → Is-suc (suc n) pred : (n : Nat) → Is-suc n → Nat pred ._ (is-suc n) = n pred-def : FunDef pred-def = funDef (quoteTerm ((n : Nat) → Is-suc n → Nat)) (clause (vArg dot ∷ vArg (con (quote is-suc) (vArg (var "n") ∷ [])) ∷ []) (var 0 []) ∷ []) data Is-zero : Nat → Set where is-zero : Is-zero zero f : (n : Nat) → Is-zero n → Nat f ._ is-zero = zero f-def : FunDef f-def = funDef (quoteTerm ((n : Nat) → Is-zero n → Nat)) (clause (vArg dot ∷ vArg (con (quote is-zero) []) ∷ []) (con (quote zero) []) ∷ []) unquoteDecl pred' = define (vArg pred') pred-def unquoteDecl f' = define (vArg f') f-def check-pred : pred' 4 (is-suc _) ≡ 3 check-pred = refl check-f : f' 0 is-zero ≡ 0 check-f = refl
24.52381
82
0.574757
58a26aa4b56b4098d8df7d97e504415eb528bab8
1,655
agda
Agda
src/Categories/Category/Monoidal/Braided.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/Category/Monoidal/Braided.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/Category/Monoidal/Braided.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Category.Monoidal.Core using (Monoidal) module Categories.Category.Monoidal.Braided {o ℓ e} {C : Category o ℓ e} (M : Monoidal C) where open import Level open import Data.Product using (Σ; _,_) open import Categories.Functor.Bifunctor open import Categories.NaturalTransformation.NaturalIsomorphism open Category C open Commutation private variable X Y Z : Obj -- braided monoidal category -- it has a braiding natural isomorphism has two hexagon identities. -- these two identities are directly expressed in the morphism level. record Braided : Set (levelOfTerm M) where open Monoidal M public field braiding : NaturalIsomorphism ⊗ (flip-bifunctor ⊗) module braiding = NaturalIsomorphism braiding private B : ∀ {X Y} → X ⊗₀ Y ⇒ Y ⊗₀ X B {X} {Y} = braiding.⇒.η (X , Y) field hexagon₁ : [ (X ⊗₀ Y) ⊗₀ Z ⇒ Y ⊗₀ Z ⊗₀ X ]⟨ B ⊗₁ id ⇒⟨ (Y ⊗₀ X) ⊗₀ Z ⟩ associator.from ⇒⟨ Y ⊗₀ X ⊗₀ Z ⟩ id ⊗₁ B ≈ associator.from ⇒⟨ X ⊗₀ Y ⊗₀ Z ⟩ B ⇒⟨ (Y ⊗₀ Z) ⊗₀ X ⟩ associator.from ⟩ hexagon₂ : [ X ⊗₀ Y ⊗₀ Z ⇒ (Z ⊗₀ X) ⊗₀ Y ]⟨ id ⊗₁ B ⇒⟨ X ⊗₀ Z ⊗₀ Y ⟩ (associator.to ⇒⟨ (X ⊗₀ Z) ⊗₀ Y ⟩ B ⊗₁ id) ≈ associator.to ⇒⟨ (X ⊗₀ Y) ⊗₀ Z ⟩ (B ⇒⟨ Z ⊗₀ X ⊗₀ Y ⟩ associator.to) ⟩
30.648148
95
0.503927
22c02196ad4559723ef4300bc2d674d534cc5f83
1,291
agda
Agda
vendor/stdlib/src/Data/Fin/Substitution/List.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Data/Fin/Substitution/List.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Data/Fin/Substitution/List.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- Application of substitutions to lists, along with various lemmas ------------------------------------------------------------------------ -- This module illustrates how Data.Fin.Substitution.Lemmas.AppLemmas -- can be used. open import Data.Fin.Substitution.Lemmas module Data.Fin.Substitution.List {T} (lemmas₄ : Lemmas₄ T) where open import Data.List open import Data.List.Properties open import Data.Fin.Substitution import Data.Function as Fun open import Relation.Binary.PropositionalEquality open ≡-Reasoning private open module L = Lemmas₄ lemmas₄ using (_/_; id; _⊙_) infixl 8 _//_ _//_ : ∀ {m n} → List (T m) → Sub T m n → List (T n) ts // ρ = map (λ σ → σ / ρ) ts appLemmas : AppLemmas (λ n → List (T n)) T appLemmas = record { application = record { _/_ = _//_ } ; lemmas₄ = lemmas₄ ; id-vanishes = λ ts → begin ts // id ≡⟨ map-cong L.id-vanishes ts ⟩ map Fun.id ts ≡⟨ map-id ts ⟩ ts ∎ ; /-⊙ = λ {_ _ _ ρ₁ ρ₂} ts → begin ts // ρ₁ ⊙ ρ₂ ≡⟨ map-cong L./-⊙ ts ⟩ map (λ σ → σ / ρ₁ / ρ₂) ts ≡⟨ map-compose ts ⟩ ts // ρ₁ // ρ₂ ∎ } open AppLemmas appLemmas public hiding (_/_) renaming (_/✶_ to _//✶_)
30.023256
72
0.540666
12d52ea83ffb8797206a738ac3eccaf47611b435
882
agda
Agda
Cubical/Data/Nat/Base.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Data/Nat/Base.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
Cubical/Data/Nat/Base.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-exact-split --safe #-} module Cubical.Data.Nat.Base where open import Cubical.Core.Primitives open import Agda.Builtin.Nat public using (zero; suc; _+_; _*_) renaming (Nat to ℕ; _-_ to _∸_) open import Cubical.Data.Nat.Literals public predℕ : ℕ → ℕ predℕ zero = zero predℕ (suc n) = n caseNat : ∀ {ℓ} → {A : Type ℓ} → (a0 aS : A) → ℕ → A caseNat a0 aS zero = a0 caseNat a0 aS (suc n) = aS doubleℕ : ℕ → ℕ doubleℕ zero = zero doubleℕ (suc x) = suc (suc (doubleℕ x)) -- doublesℕ n m = 2^n * m doublesℕ : ℕ → ℕ → ℕ doublesℕ zero m = m doublesℕ (suc n) m = doublesℕ n (doubleℕ m) -- iterate iter : ∀ {ℓ} {A : Type ℓ} → ℕ → (A → A) → A → A iter zero f z = z iter (suc n) f z = f (iter n f z) elim : ∀ {ℓ} {A : ℕ → Type ℓ} → A zero → ((n : ℕ) → A n → A (suc n)) → (n : ℕ) → A n elim a₀ _ zero = a₀ elim a₀ f (suc n) = f n (elim a₀ f n)
22.05
52
0.580499
2e3bba34d44f53febf0871225ea9fdc81d83dcf3
1,306
agda
Agda
demo/agda/FRP/JS/Demo/Calculator/View.agda
agda/agda-frp-js
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
[ "MIT", "BSD-3-Clause" ]
63
2015-04-20T21:47:00.000Z
2022-02-28T09:46:14.000Z
demo/agda/FRP/JS/Demo/Calculator/View.agda
agda/agda-frp-js
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
[ "MIT", "BSD-3-Clause" ]
null
null
null
demo/agda/FRP/JS/Demo/Calculator/View.agda
agda/agda-frp-js
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
[ "MIT", "BSD-3-Clause" ]
7
2016-11-07T21:50:58.000Z
2022-03-12T11:39:38.000Z
open import FRP.JS.Behaviour using ( Beh ; [_] ; map ) open import FRP.JS.Event using ( Evt ; tag ) open import FRP.JS.DOM using ( DOM ; click ; element ; text ; _++_ ; element+ ; text+ ; listen+ ; _+++_ ) open import FRP.JS.RSet using ( RSet ; ⟦_⟧ ; ⟨_⟩ ; _⇒_ ) open import FRP.JS.Product using ( _∧_ ; _,_ ) open import FRP.JS.Demo.Calculator.Model using ( Button ; State ; digit ; op ; clear ; eq ; plus ; minus ; times ; button$ ; state$ ; model ) module FRP.JS.Demo.Calculator.View where button : ∀ {w} → Button → ⟦ Beh (DOM w) ∧ Evt ⟨ Button ⟩ ⟧ button b = listen+ click (λ _ → b) (element+ "button" (text+ [ button$ b ])) keypad : ∀ {w} → ⟦ Beh (DOM w) ∧ Evt ⟨ Button ⟩ ⟧ keypad = element+ "div" (button (digit 7) +++ button (digit 8) +++ button (digit 9) ) +++ element+ "div" (button (digit 4) +++ button (digit 5) +++ button (digit 6) ) +++ element+ "div" (button (digit 1) +++ button (digit 2) +++ button (digit 3) ) +++ element+ "div" (button (op eq) +++ button (digit 0) +++ button clear ) +++ element+ "div" (button (op plus) +++ button (op minus) +++ button (op times)) display : ∀ {w} → ⟦ Beh ⟨ State ⟩ ⇒ Beh (DOM w) ⟧ display σ = element "div" (text (map state$ σ)) view : ∀ {w} → ⟦ Beh (DOM w) ⟧ view with keypad ... | (dom , evt) = display (model evt) ++ dom
46.642857
96
0.579632
192c5246872183b9704ff61b8df89584db7b730c
746
agda
Agda
test/Succeed/Issue3390.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3390.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3390.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --allow-unsolved-metas #-} module _ where open import Agda.Builtin.Equality module Case₀ where postulate I : Set P : I → Set variable p : P _ postulate D : P _ → Set d : D p module Case₁ where postulate I : Set P : I → Set Q : ∀ n → P n → Set variable q : Q _ _ postulate D : ∀ {p} → Q _ p → Set d : D q module Case₂ where postulate I : Set P : I → Set Q : ∀ n → P n → Set record R n (p : P n) : Set where constructor c field f : Q _ p variable q : Q _ _ data D {p} : R _ p → Set where d : D (c q) module Case₃ where variable A : Set a : A record B : Set where id = λ x → x ≡ x field b : id a
12.229508
38
0.504021
22953af969acc076bd6e4659d2e37795bd4f98dc
30,384
agda
Agda
Cubical/ZCohomology/Properties.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
Cubical/ZCohomology/Properties.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
Cubical/ZCohomology/Properties.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.ZCohomology.Properties where open import Cubical.ZCohomology.Base open import Cubical.HITs.S1 open import Cubical.HITs.Sn open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Transport open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Univalence open import Cubical.Data.Empty open import Cubical.Data.Sigma hiding (_×_) open import Cubical.HITs.Susp open import Cubical.HITs.Wedge open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to sRec2 ; elim to sElim ; elim2 to sElim2 ; setTruncIsSet to §) open import Cubical.Data.Int renaming (_+_ to _ℤ+_) open import Cubical.Data.Nat open import Cubical.HITs.Truncation renaming (elim to trElim ; map to trMap ; rec to trRec ; elim3 to trElim3) open import Cubical.Homotopy.Loopspace open import Cubical.Homotopy.Connected open import Cubical.Homotopy.Freudenthal open import Cubical.Algebra.Group open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Data.NatMinusOne open import Cubical.HITs.Pushout open import Cubical.Data.Sum.Base open import Cubical.Data.HomotopyGroup open import Cubical.ZCohomology.KcompPrelims open Iso renaming (inv to inv') private variable ℓ ℓ' : Level A : Type ℓ B : Type ℓ' A' : Pointed ℓ infixr 34 _+ₖ_ infixr 34 _+ₕ_ is2ConnectedKn : (n : ℕ) → isConnected 2 (coHomK (suc n)) is2ConnectedKn zero = ∣ ∣ base ∣ ∣ , trElim (λ _ → isOfHLevelPath 2 (isOfHLevelTrunc 2) _ _) (trElim (λ _ → isOfHLevelPath 3 (isOfHLevelSuc 2 (isOfHLevelTrunc 2)) _ _) (toPropElim (λ _ → isOfHLevelTrunc 2 _ _) refl)) is2ConnectedKn (suc n) = ∣ ∣ north ∣ ∣ , trElim (λ _ → isOfHLevelPath 2 (isOfHLevelTrunc 2) _ _) (trElim (λ _ → isProp→isOfHLevelSuc (3 + n) (isOfHLevelTrunc 2 _ _)) (suspToPropElim (ptSn (suc n)) (λ _ → isOfHLevelTrunc 2 _ _) refl)) isConnectedKn : (n : ℕ) → isConnected (2 + n) (coHomK (suc n)) isConnectedKn n = isOfHLevelRetractFromIso 0 (invIso (truncOfTruncIso (2 + n) 1)) (sphereConnected (suc n)) -- Induction principles for cohomology groups -- If we want to show a proposition about some x : Hⁿ(A), it suffices to show it under the -- assumption that x = ∣f∣₂ and that f is pointed coHomPointedElim : {A : Type ℓ} (n : ℕ) (a : A) {B : coHom (suc n) A → Type ℓ'} → ((x : coHom (suc n) A) → isProp (B x)) → ((f : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → B ∣ f ∣₂) → (x : coHom (suc n) A) → B x coHomPointedElim {ℓ' = ℓ'} {A = A} n a isprop indp = sElim (λ _ → isOfHLevelSuc 1 (isprop _)) λ f → helper n isprop indp f (f a) refl where helper : (n : ℕ) {B : coHom (suc n) A → Type ℓ'} → ((x : coHom (suc n) A) → isProp (B x)) → ((f : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → B ∣ f ∣₂) → (f : A → coHomK (suc n)) → (x : coHomK (suc n)) → f a ≡ x → B ∣ f ∣₂ -- pattern matching a bit extra to avoid isOfHLevelPlus' helper zero isprop ind f = trElim (λ _ → isOfHLevelPlus {n = 1} 2 (isPropΠ λ _ → isprop _)) (toPropElim (λ _ → isPropΠ λ _ → isprop _) (ind f)) helper (suc zero) isprop ind f = trElim (λ _ → isOfHLevelPlus {n = 1} 3 (isPropΠ λ _ → isprop _)) (suspToPropElim base (λ _ → isPropΠ λ _ → isprop _) (ind f)) helper (suc (suc zero)) isprop ind f = trElim (λ _ → isOfHLevelPlus {n = 1} 4 (isPropΠ λ _ → isprop _)) (suspToPropElim north (λ _ → isPropΠ λ _ → isprop _) (ind f)) helper (suc (suc (suc n))) isprop ind f = trElim (λ _ → isOfHLevelPlus' {n = 5 + n} 1 (isPropΠ λ _ → isprop _)) (suspToPropElim north (λ _ → isPropΠ λ _ → isprop _) (ind f)) coHomPointedElim2 : {A : Type ℓ} (n : ℕ) (a : A) {B : coHom (suc n) A → coHom (suc n) A → Type ℓ'} → ((x y : coHom (suc n) A) → isProp (B x y)) → ((f g : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → g a ≡ coHom-pt (suc n) → B ∣ f ∣₂ ∣ g ∣₂) → (x y : coHom (suc n) A) → B x y coHomPointedElim2 {ℓ' = ℓ'} {A = A} n a isprop indp = sElim2 (λ _ _ → isOfHLevelSuc 1 (isprop _ _)) λ f g → helper n a isprop indp f g (f a) (g a) refl refl where helper : (n : ℕ) (a : A) {B : coHom (suc n) A → coHom (suc n) A → Type ℓ'} → ((x y : coHom (suc n) A) → isProp (B x y)) → ((f g : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → g a ≡ coHom-pt (suc n) → B ∣ f ∣₂ ∣ g ∣₂) → (f g : A → coHomK (suc n)) → (x y : coHomK (suc n)) → f a ≡ x → g a ≡ y → B ∣ f ∣₂ ∣ g ∣₂ helper zero a isprop indp f g = elim2 (λ _ _ → isOfHLevelPlus {n = 1} 2 (isPropΠ2 λ _ _ → isprop _ _)) (toPropElim2 (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g)) helper (suc zero) a isprop indp f g = elim2 (λ _ _ → isOfHLevelPlus {n = 1} 3 (isPropΠ2 λ _ _ → isprop _ _)) (suspToPropElim2 base (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g)) helper (suc (suc zero)) a isprop indp f g = elim2 (λ _ _ → isOfHLevelPlus {n = 1} 4 (isPropΠ2 λ _ _ → isprop _ _)) (suspToPropElim2 north (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g)) helper (suc (suc (suc n))) a isprop indp f g = elim2 (λ _ _ → isOfHLevelPlus' {n = 5 + n} 1 (isPropΠ2 λ _ _ → isprop _ _)) (suspToPropElim2 north (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g)) {- Equivalence between cohomology of A and reduced cohomology of (A + 1) -} coHomRed+1Equiv : (n : ℕ) → (A : Type ℓ) → (coHom n A) ≡ (coHomRed n ((A ⊎ Unit , inr (tt)))) coHomRed+1Equiv zero A i = ∥ helpLemma {C = (Int , pos 0)} i ∥₂ module coHomRed+1 where helpLemma : {C : Pointed ℓ} → ( (A → (typ C)) ≡ ((((A ⊎ Unit) , inr (tt)) →∙ C))) helpLemma {C = C} = isoToPath (iso map1 map2 (λ b → linvPf b) (λ _ → refl)) where map1 : (A → typ C) → ((((A ⊎ Unit) , inr (tt)) →∙ C)) map1 f = map1' , refl module helpmap where map1' : A ⊎ Unit → fst C map1' (inl x) = f x map1' (inr x) = pt C map2 : ((((A ⊎ Unit) , inr (tt)) →∙ C)) → (A → typ C) map2 (g , pf) x = g (inl x) linvPf : (b :((((A ⊎ Unit) , inr (tt)) →∙ C))) → map1 (map2 b) ≡ b linvPf (f , snd) i = (λ x → helper x i) , λ j → snd ((~ i) ∨ j) where helper : (x : A ⊎ Unit) → ((helpmap.map1') (map2 (f , snd)) x) ≡ f x helper (inl x) = refl helper (inr tt) = sym snd coHomRed+1Equiv (suc zero) A i = ∥ coHomRed+1.helpLemma A i {C = (coHomK 1 , ∣ base ∣)} i ∥₂ coHomRed+1Equiv (suc (suc n)) A i = ∥ coHomRed+1.helpLemma A i {C = (coHomK (2 + n) , ∣ north ∣)} i ∥₂ ----------- Kn→ΩKn+1 : (n : ℕ) → coHomK n → typ (Ω (coHomK-ptd (suc n))) Kn→ΩKn+1 n = Iso.fun (Iso-Kn-ΩKn+1 n) ΩKn+1→Kn : (n : ℕ) → typ (Ω (coHomK-ptd (suc n))) → coHomK n ΩKn+1→Kn n = Iso.inv (Iso-Kn-ΩKn+1 n) Kn≃ΩKn+1 : {n : ℕ} → coHomK n ≃ typ (Ω (coHomK-ptd (suc n))) Kn≃ΩKn+1 {n = n} = isoToEquiv (Iso-Kn-ΩKn+1 n) ---------- Algebra/Group stuff -------- 0ₖ : (n : ℕ) → coHomK n 0ₖ = coHom-pt _+ₖ_ : {n : ℕ} → coHomK n → coHomK n → coHomK n _+ₖ_ {n = n} x y = ΩKn+1→Kn n (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y) -ₖ_ : {n : ℕ} → coHomK n → coHomK n -ₖ_ {n = n} x = ΩKn+1→Kn n (sym (Kn→ΩKn+1 n x)) -- subtraction as a binary operator _-ₖ_ : {n : ℕ} → coHomK n → coHomK n → coHomK n _-ₖ_ {n = n} x y = ΩKn+1→Kn n (Kn→ΩKn+1 n x ∙ sym (Kn→ΩKn+1 n y)) +ₖ-syntax : (n : ℕ) → coHomK n → coHomK n → coHomK n +ₖ-syntax n = _+ₖ_ {n = n} -ₖ-syntax : (n : ℕ) → coHomK n → coHomK n -ₖ-syntax n = -ₖ_ {n = n} -'ₖ-syntax : (n : ℕ) → coHomK n → coHomK n → coHomK n -'ₖ-syntax n = _-ₖ_ {n = n} syntax +ₖ-syntax n x y = x +[ n ]ₖ y syntax -ₖ-syntax n x = -[ n ]ₖ x syntax -'ₖ-syntax n x y = x -[ n ]ₖ y Kn→ΩKn+10ₖ : (n : ℕ) → Kn→ΩKn+1 n (0ₖ n) ≡ refl Kn→ΩKn+10ₖ zero = sym (rUnit refl) Kn→ΩKn+10ₖ (suc zero) i j = ∣ (rCancel (merid base) i j) ∣ Kn→ΩKn+10ₖ (suc (suc n)) i j = ∣ (rCancel (merid north) i j) ∣ ΩKn+1→Kn-refl : (n : ℕ) → ΩKn+1→Kn n refl ≡ 0ₖ n ΩKn+1→Kn-refl zero = refl ΩKn+1→Kn-refl (suc zero) = refl ΩKn+1→Kn-refl (suc (suc zero)) = refl ΩKn+1→Kn-refl (suc (suc (suc zero))) = refl ΩKn+1→Kn-refl (suc (suc (suc (suc zero)))) = refl ΩKn+1→Kn-refl (suc (suc (suc (suc (suc n))))) = refl -0ₖ : {n : ℕ} → -[ n ]ₖ (0ₖ n) ≡ (0ₖ n) -0ₖ {n = n} = (λ i → ΩKn+1→Kn n (sym (Kn→ΩKn+10ₖ n i))) ∙∙ (λ i → ΩKn+1→Kn n (Kn→ΩKn+10ₖ n (~ i))) ∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 n) (0ₖ n) +ₖ→∙ : (n : ℕ) (a b : coHomK n) → Kn→ΩKn+1 n (a +[ n ]ₖ b) ≡ Kn→ΩKn+1 n a ∙ Kn→ΩKn+1 n b +ₖ→∙ n a b = Iso.rightInv (Iso-Kn-ΩKn+1 n) (Kn→ΩKn+1 n a ∙ Kn→ΩKn+1 n b) lUnitₖ : (n : ℕ) (x : coHomK n) → (0ₖ n) +[ n ]ₖ x ≡ x lUnitₖ 0 x = Iso.leftInv (Iso-Kn-ΩKn+1 zero) x lUnitₖ (suc zero) = trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) λ x → Iso.leftInv (Iso-Kn-ΩKn+1 1) ∣ x ∣ lUnitₖ (suc (suc n)) x = (λ i → ΩKn+1→Kn (2 + n) (Kn→ΩKn+10ₖ (2 + n) i ∙ Kn→ΩKn+1 (2 + n) x)) ∙∙ (cong (ΩKn+1→Kn (2 + n)) (sym (lUnit (Kn→ΩKn+1 (2 + n) x)))) ∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 (2 + n)) x rUnitₖ : (n : ℕ) (x : coHomK n) → x +[ n ]ₖ (0ₖ n) ≡ x rUnitₖ 0 x = Iso.leftInv (Iso-Kn-ΩKn+1 zero) x rUnitₖ (suc zero) = trElim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) λ x → Iso.leftInv (Iso-Kn-ΩKn+1 1) ∣ x ∣ rUnitₖ (suc (suc n)) x = (λ i → ΩKn+1→Kn (2 + n) (Kn→ΩKn+1 (2 + n) x ∙ Kn→ΩKn+10ₖ (2 + n) i)) ∙∙ (cong (ΩKn+1→Kn (2 + n)) (sym (rUnit (Kn→ΩKn+1 (2 + n) x)))) ∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 (2 + n)) x rCancelₖ : (n : ℕ) (x : coHomK n) → x +[ n ]ₖ (-[ n ]ₖ x) ≡ (0ₖ n) rCancelₖ zero x = (λ i → ΩKn+1→Kn 0 (Kn→ΩKn+1 zero x ∙ Iso.rightInv (Iso-Kn-ΩKn+1 zero) (sym (Kn→ΩKn+1 zero x)) i)) ∙ cong (ΩKn+1→Kn 0) (rCancel (Kn→ΩKn+1 zero x)) rCancelₖ (suc n) x = (λ i → ΩKn+1→Kn (suc n) (Kn→ΩKn+1 (1 + n) x ∙ Iso.rightInv (Iso-Kn-ΩKn+1 (1 + n)) (sym (Kn→ΩKn+1 (1 + n) x)) i)) ∙ cong (ΩKn+1→Kn (suc n)) (rCancel (Kn→ΩKn+1 (1 + n) x)) ∙ (λ i → ΩKn+1→Kn (suc n) (Kn→ΩKn+10ₖ (suc n) (~ i))) ∙ Iso.leftInv (Iso-Kn-ΩKn+1 (suc n)) (0ₖ (suc n)) lCancelₖ : (n : ℕ) (x : coHomK n) → (-[ n ]ₖ x) +[ n ]ₖ x ≡ (0ₖ n) lCancelₖ 0 x = (λ i → ΩKn+1→Kn 0 (Iso.rightInv (Iso-Kn-ΩKn+1 zero) (sym (Kn→ΩKn+1 zero x)) i ∙ Kn→ΩKn+1 zero x)) ∙ cong (ΩKn+1→Kn 0) (lCancel (Kn→ΩKn+1 zero x)) lCancelₖ (suc n) x = (λ i → ΩKn+1→Kn (suc n) (Iso.rightInv (Iso-Kn-ΩKn+1 (1 + n)) (sym (Kn→ΩKn+1 (1 + n) x)) i ∙ Kn→ΩKn+1 (1 + n) x)) ∙ cong (ΩKn+1→Kn (suc n)) (lCancel (Kn→ΩKn+1 (1 + n) x)) ∙ (λ i → (ΩKn+1→Kn (suc n)) (Kn→ΩKn+10ₖ (suc n) (~ i))) ∙ Iso.leftInv (Iso-Kn-ΩKn+1 (suc n)) (0ₖ (suc n)) assocₖ : (n : ℕ) (x y z : coHomK n) → ((x +[ n ]ₖ y) +[ n ]ₖ z) ≡ (x +[ n ]ₖ (y +[ n ]ₖ z)) assocₖ n x y z = ((λ i → ΩKn+1→Kn n (Kn→ΩKn+1 n (ΩKn+1→Kn n (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y)) ∙ Kn→ΩKn+1 n z)) ∙∙ (λ i → ΩKn+1→Kn n (Iso.rightInv (Iso-Kn-ΩKn+1 n) (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y) i ∙ Kn→ΩKn+1 n z)) ∙∙ (λ i → ΩKn+1→Kn n (assoc (Kn→ΩKn+1 n x) (Kn→ΩKn+1 n y) (Kn→ΩKn+1 n z) (~ i)))) ∙ (λ i → ΩKn+1→Kn n ((Kn→ΩKn+1 n x) ∙ Iso.rightInv (Iso-Kn-ΩKn+1 n) ((Kn→ΩKn+1 n y ∙ Kn→ΩKn+1 n z)) (~ i))) cancelₖ : (n : ℕ) (x : coHomK n) → x -[ n ]ₖ x ≡ (0ₖ n) cancelₖ zero x = cong (ΩKn+1→Kn 0) (rCancel (Kn→ΩKn+1 zero x)) cancelₖ (suc zero) x = cong (ΩKn+1→Kn 1) (rCancel (Kn→ΩKn+1 1 x)) cancelₖ (suc (suc zero)) x = cong (ΩKn+1→Kn 2) (rCancel (Kn→ΩKn+1 2 x)) cancelₖ (suc (suc (suc zero))) x = cong (ΩKn+1→Kn 3) (rCancel (Kn→ΩKn+1 3 x)) cancelₖ (suc (suc (suc (suc zero)))) x = cong (ΩKn+1→Kn 4) (rCancel (Kn→ΩKn+1 4 x)) cancelₖ (suc (suc (suc (suc (suc n))))) x = cong (ΩKn+1→Kn (5 + n)) (rCancel (Kn→ΩKn+1 (5 + n) x)) -rUnitₖ : (n : ℕ) (x : coHomK n) → x -[ n ]ₖ 0ₖ n ≡ x -rUnitₖ zero x = rUnitₖ zero x -rUnitₖ (suc n) x = cong (λ y → ΩKn+1→Kn (suc n) (Kn→ΩKn+1 (suc n) x ∙ sym y)) (Kn→ΩKn+10ₖ (suc n)) ∙∙ cong (ΩKn+1→Kn (suc n)) (sym (rUnit (Kn→ΩKn+1 (suc n) x))) ∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 (suc n)) x isComm∙ : ∀ {ℓ} (A : Pointed ℓ) → Type ℓ isComm∙ A = (p q : typ (Ω A)) → p ∙ q ≡ q ∙ p abstract isCommA→isCommTrunc : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → isComm∙ A → isOfHLevel (suc n) (typ A) → isComm∙ (∥ typ A ∥ (suc n) , ∣ pt A ∣) isCommA→isCommTrunc {A = (A , a)} n comm hlev p q = ((λ i j → (Iso.leftInv (truncIdempotentIso (suc n) hlev) ((p ∙ q) j) (~ i))) ∙∙ (λ i → cong {B = λ _ → ∥ A ∥ (suc n) } (λ x → ∣ x ∣) (cong (trRec hlev (λ x → x)) (p ∙ q))) ∙∙ (λ i → cong {B = λ _ → ∥ A ∥ (suc n) } (λ x → ∣ x ∣) (congFunct {A = ∥ A ∥ (suc n)} {B = A} (trRec hlev (λ x → x)) p q i))) ∙ ((λ i → cong {B = λ _ → ∥ A ∥ (suc n) } (λ x → ∣ x ∣) (comm (cong (trRec hlev (λ x → x)) p) (cong (trRec hlev (λ x → x)) q) i)) ∙∙ (λ i → cong {B = λ _ → ∥ A ∥ (suc n) } (λ x → ∣ x ∣) (congFunct {A = ∥ A ∥ (suc n)} {B = A} (trRec hlev (λ x → x)) q p (~ i))) ∙∙ (λ i j → (Iso.leftInv (truncIdempotentIso (suc n) hlev) ((q ∙ p) j) i))) isCommΩK1 : (n : ℕ) → isComm∙ ((Ω^ n) (coHomK-ptd 1)) isCommΩK1 zero = isCommA→isCommTrunc 2 comm-ΩS¹ isGroupoidS¹ isCommΩK1 (suc n) = Eckmann-Hilton n open Iso renaming (inv to inv') ptdIso→comm : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Type ℓ'} (e : Iso (typ A) B) → isComm∙ A → isComm∙ (B , Iso.fun e (pt A)) ptdIso→comm {A = (A , a)} {B = B} e comm p q = sym (rightInv (congIso e) (p ∙ q)) ∙∙ (cong (fun (congIso e)) ((invCongFunct e p q) ∙∙ (comm (inv' (congIso e) p) (inv' (congIso e) q)) ∙∙ (sym (invCongFunct e q p)))) ∙∙ rightInv (congIso e) (q ∙ p) isCommΩK : (n : ℕ) → isComm∙ (coHomK-ptd n) isCommΩK zero p q = isSetInt _ _ (p ∙ q) (q ∙ p) isCommΩK (suc zero) = isCommA→isCommTrunc 2 comm-ΩS¹ isGroupoidS¹ isCommΩK (suc (suc n)) = subst isComm∙ (λ i → coHomK (2 + n) , ΩKn+1→Kn-refl (2 + n) i) (ptdIso→comm {A = (_ , _)} (invIso (Iso-Kn-ΩKn+1 (2 + n))) (Eckmann-Hilton 0)) commₖ : (n : ℕ) (x y : coHomK n) → (x +[ n ]ₖ y) ≡ (y +[ n ]ₖ x) commₖ 0 x y i = ΩKn+1→Kn 0 (isCommΩK1 0 (Kn→ΩKn+1 0 x) (Kn→ΩKn+1 0 y) i) commₖ 1 x y i = ΩKn+1→Kn 1 (ptdIso→comm {A = ((∣ north ∣ ≡ ∣ north ∣) , snd ((Ω^ 1) (coHomK 3 , ∣ north ∣)))} {B = coHomK 2} (invIso (Iso-Kn-ΩKn+1 2)) (Eckmann-Hilton 0) (Kn→ΩKn+1 1 x) (Kn→ΩKn+1 1 y) i) commₖ 2 x y i = ΩKn+1→Kn 2 (ptdIso→comm {A = (∣ north ∣ ≡ ∣ north ∣) , snd ((Ω^ 1) (coHomK 4 , ∣ north ∣))} {B = coHomK 3} (invIso (Iso-Kn-ΩKn+1 3)) (Eckmann-Hilton 0) (Kn→ΩKn+1 2 x) (Kn→ΩKn+1 2 y) i) commₖ 3 x y i = ΩKn+1→Kn 3 (ptdIso→comm {A = (∣ north ∣ ≡ ∣ north ∣) , snd ((Ω^ 1) (coHomK 5 , ∣ north ∣))} {B = coHomK 4} (invIso (Iso-Kn-ΩKn+1 4)) (Eckmann-Hilton 0) (Kn→ΩKn+1 3 x) (Kn→ΩKn+1 3 y) i) commₖ (suc (suc (suc (suc n)))) x y i = ΩKn+1→Kn (4 + n) (ptdIso→comm {A = (∣ north ∣ ≡ ∣ north ∣) , snd ((Ω^ 1) (coHomK (6 + n) , ∣ north ∣))} {B = coHomK (5 + n)} (invIso (Iso-Kn-ΩKn+1 (5 + n))) (Eckmann-Hilton 0) (Kn→ΩKn+1 (4 + n) x) (Kn→ΩKn+1 (4 + n) y) i) rUnitₖ' : (n : ℕ) (x : coHomK n) → x +[ n ]ₖ (0ₖ n) ≡ x rUnitₖ' n x = commₖ n x (0ₖ n) ∙ lUnitₖ n x -distrₖ : (n : ℕ) (x y : coHomK n) → -[ n ]ₖ (x +[ n ]ₖ y) ≡ (-[ n ]ₖ x) +[ n ]ₖ (-[ n ]ₖ y) -distrₖ n x y = ((λ i → ΩKn+1→Kn n (sym (Kn→ΩKn+1 n (ΩKn+1→Kn n (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y))))) ∙∙ (λ i → ΩKn+1→Kn n (sym (Iso.rightInv (Iso-Kn-ΩKn+1 n) (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y) i))) ∙∙ (λ i → ΩKn+1→Kn n (symDistr (Kn→ΩKn+1 n x) (Kn→ΩKn+1 n y) i))) ∙∙ (λ i → ΩKn+1→Kn n (Iso.rightInv (Iso-Kn-ΩKn+1 n) (sym (Kn→ΩKn+1 n y)) (~ i) ∙ (Iso.rightInv (Iso-Kn-ΩKn+1 n) (sym (Kn→ΩKn+1 n x)) (~ i)))) ∙∙ commₖ n (-[ n ]ₖ y) (-[ n ]ₖ x) private rCancelLem : (n : ℕ) (x : coHomK n) → ΩKn+1→Kn n ((Kn→ΩKn+1 n x) ∙ refl) ≡ ΩKn+1→Kn n (Kn→ΩKn+1 n x) rCancelLem zero x = refl rCancelLem (suc n) x = cong (ΩKn+1→Kn (suc n)) (sym (rUnit (Kn→ΩKn+1 (suc n) x))) lCancelLem : (n : ℕ) (x : coHomK n) → ΩKn+1→Kn n (refl ∙ (Kn→ΩKn+1 n x)) ≡ ΩKn+1→Kn n (Kn→ΩKn+1 n x) lCancelLem zero x = refl lCancelLem (suc n) x = cong (ΩKn+1→Kn (suc n)) (sym (lUnit (Kn→ΩKn+1 (suc n) x))) -cancelRₖ : (n : ℕ) (x y : coHomK n) → (y +[ n ]ₖ x) -[ n ]ₖ x ≡ y -cancelRₖ n x y = (cong (ΩKn+1→Kn n) ((cong (_∙ sym (Kn→ΩKn+1 n x)) (+ₖ→∙ n y x)) ∙∙ sym (assoc _ _ _) ∙∙ cong (Kn→ΩKn+1 n y ∙_) (rCancel _))) ∙∙ rCancelLem n y ∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 n) y -cancelLₖ : (n : ℕ) (x y : coHomK n) → (x +[ n ]ₖ y) -[ n ]ₖ x ≡ y -cancelLₖ n x y = cong (λ z → z -[ n ]ₖ x) (commₖ n x y) ∙ -cancelRₖ n x y -+cancelₖ : (n : ℕ) (x y : coHomK n) → (x -[ n ]ₖ y) +[ n ]ₖ y ≡ x -+cancelₖ n x y = (cong (ΩKn+1→Kn n) ((cong (_∙ (Kn→ΩKn+1 n y)) (Iso.rightInv (Iso-Kn-ΩKn+1 n) (Kn→ΩKn+1 n x ∙ sym (Kn→ΩKn+1 n y)))) ∙∙ sym (assoc _ _ _) ∙∙ cong (Kn→ΩKn+1 n x ∙_) (lCancel _))) ∙∙ rCancelLem n x ∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 n) x ---- Group structure of cohomology groups --- _+ₕ_ : {n : ℕ} → coHom n A → coHom n A → coHom n A _+ₕ_ {n = n} = sRec2 § λ a b → ∣ (λ x → a x +[ n ]ₖ b x) ∣₂ -ₕ_ : {n : ℕ} → coHom n A → coHom n A -ₕ_ {n = n} = sRec § λ a → ∣ (λ x → -[ n ]ₖ a x) ∣₂ _-ₕ_ : {n : ℕ} → coHom n A → coHom n A → coHom n A _-ₕ_ {n = n} = sRec2 § λ a b → ∣ (λ x → a x -[ n ]ₖ b x) ∣₂ +ₕ-syntax : (n : ℕ) → coHom n A → coHom n A → coHom n A +ₕ-syntax n = _+ₕ_ {n = n} -ₕ-syntax : (n : ℕ) → coHom n A → coHom n A -ₕ-syntax n = -ₕ_ {n = n} -ₕ'-syntax : (n : ℕ) → coHom n A → coHom n A → coHom n A -ₕ'-syntax n = _-ₕ_ {n = n} syntax +ₕ-syntax n x y = x +[ n ]ₕ y syntax -ₕ-syntax n x = -[ n ]ₕ x syntax -ₕ'-syntax n x y = x -[ n ]ₕ y 0ₕ : (n : ℕ) → coHom n A 0ₕ n = ∣ (λ _ → (0ₖ n)) ∣₂ rUnitₕ : (n : ℕ) (x : coHom n A) → x +[ n ]ₕ (0ₕ n) ≡ x rUnitₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → rUnitₖ n (a x)) i ∣₂ lUnitₕ : (n : ℕ) (x : coHom n A) → (0ₕ n) +[ n ]ₕ x ≡ x lUnitₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → lUnitₖ n (a x)) i ∣₂ rCancelₕ : (n : ℕ) (x : coHom n A) → x +[ n ]ₕ (-[ n ]ₕ x) ≡ 0ₕ n rCancelₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → rCancelₖ n (a x)) i ∣₂ lCancelₕ : (n : ℕ) (x : coHom n A) → (-[ n ]ₕ x) +[ n ]ₕ x ≡ 0ₕ n lCancelₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → lCancelₖ n (a x)) i ∣₂ assocₕ : (n : ℕ) (x y z : coHom n A) → ((x +[ n ]ₕ y) +[ n ]ₕ z) ≡ (x +[ n ]ₕ (y +[ n ]ₕ z)) assocₕ n = elim3 (λ _ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b c i → ∣ funExt (λ x → assocₖ n (a x) (b x) (c x)) i ∣₂ commₕ : (n : ℕ) (x y : coHom n A) → (x +[ n ]ₕ y) ≡ (y +[ n ]ₕ x) commₕ n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ funExt (λ x → commₖ n (a x) (b x)) i ∣₂ cancelₕ : (n : ℕ) (x : coHom n A) → x -[ n ]ₕ x ≡ 0ₕ n cancelₕ n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → cancelₖ n (a x)) i ∣₂ -ₖ-ₖ : (n : ℕ) (x : coHomK n) → (-[ n ]ₖ (-[ n ]ₖ x)) ≡ x -ₖ-ₖ n x = cong ((ΩKn+1→Kn n) ∘ sym) (Iso.rightInv (Iso-Kn-ΩKn+1 n) (sym (Kn→ΩKn+1 n x))) ∙ Iso.leftInv (Iso-Kn-ΩKn+1 n) x -- Proof that rUnitₖ and lUnitₖ agree on 0ₖ. Needed for Mayer-Vietoris. private rUnitlUnitGen : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {b : B} (e : Iso A (b ≡ b)) (0A : A) (0fun : fun e 0A ≡ refl) → Path (inv' e (fun e 0A ∙ fun e 0A) ≡ 0A) (cong (inv' e) (cong (_∙ fun e 0A) 0fun) ∙∙ cong (inv' e) (sym (lUnit (fun e 0A))) ∙∙ Iso.leftInv e 0A) (cong (inv' e) (cong (fun e 0A ∙_) 0fun) ∙∙ cong (inv' e) (sym (rUnit (fun e 0A))) ∙∙ Iso.leftInv e 0A) rUnitlUnitGen e 0A 0fun = (λ i → cong (inv' e) (cong (_∙ fun e 0A) 0fun) ∙∙ rUnit (cong (inv' e) (sym (lUnit (fun e 0A)))) i ∙∙ Iso.leftInv e 0A) ∙ ((λ i → (λ j → inv' e (0fun (~ i ∧ j) ∙ 0fun (j ∧ i))) ∙∙ ((λ j → inv' e (0fun (~ i ∨ j) ∙ 0fun i)) ∙∙ cong (inv' e) (sym (lUnit (0fun i))) ∙∙ λ j → inv' e (0fun (i ∧ (~ j)))) ∙∙ Iso.leftInv e 0A) ∙∙ (λ i → (λ j → inv' e (fun e 0A ∙ 0fun j)) ∙∙ (λ j → inv' e (0fun (j ∧ ~ i) ∙ refl)) ∙∙ cong (inv' e) (sym (rUnit (0fun (~ i)))) ∙∙ (λ j → inv' e (0fun (~ i ∧ ~ j))) ∙∙ Iso.leftInv e 0A) ∙∙ λ i → cong (inv' e) (cong (fun e 0A ∙_) 0fun) ∙∙ rUnit (cong (inv' e) (sym (rUnit (fun e 0A)))) (~ i) ∙∙ Iso.leftInv e 0A) rUnitlUnit0 : (n : ℕ) → rUnitₖ n (0ₖ n) ≡ lUnitₖ n (0ₖ n) rUnitlUnit0 0 = refl rUnitlUnit0 (suc zero) = refl rUnitlUnit0 (suc (suc n)) = sym (rUnitlUnitGen (Iso-Kn-ΩKn+1 (2 + n)) (0ₖ (2 + n)) (Kn→ΩKn+10ₖ (2 + n))) -cancelLₕ : (n : ℕ) (x y : coHom n A) → (x +[ n ]ₕ y) -[ n ]ₕ x ≡ y -cancelLₕ n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ (λ x → -cancelLₖ n (a x) (b x) i) ∣₂ -cancelRₕ : (n : ℕ) (x y : coHom n A) → (y +[ n ]ₕ x) -[ n ]ₕ x ≡ y -cancelRₕ n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ (λ x → -cancelRₖ n (a x) (b x) i) ∣₂ -+cancelₕ : (n : ℕ) (x y : coHom n A) → (x -[ n ]ₕ y) +[ n ]ₕ y ≡ x -+cancelₕ n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ (λ x → -+cancelₖ n (a x) (b x) i) ∣₂ -- Group structure of reduced cohomology groups (in progress - might need K to compute properly first) --- +ₕ∙ : {A : Pointed ℓ} (n : ℕ) → coHomRed n A → coHomRed n A → coHomRed n A +ₕ∙ zero = sRec2 § λ { (a , pa) (b , pb) → ∣ (λ x → a x +[ zero ]ₖ b x) , (λ i → (pa i +[ zero ]ₖ pb i)) ∣₂ } +ₕ∙ (suc zero) = sRec2 § λ { (a , pa) (b , pb) → ∣ (λ x → a x +[ 1 ]ₖ b x) , (λ i → pa i +[ 1 ]ₖ pb i) ∙ lUnitₖ 1 (0ₖ 1) ∣₂ } +ₕ∙ (suc (suc n)) = sRec2 § λ { (a , pa) (b , pb) → ∣ (λ x → a x +[ (2 + n) ]ₖ b x) , (λ i → pa i +[ (2 + n) ]ₖ pb i) ∙ lUnitₖ (2 + n) (0ₖ (2 + n)) ∣₂ } open IsSemigroup open IsMonoid open GroupStr open GroupHom coHomGr : ∀ {ℓ} (n : ℕ) (A : Type ℓ) → Group {ℓ} coHomGr n A = coHom n A , coHomGrnA where coHomGrnA : GroupStr (coHom n A) 0g coHomGrnA = 0ₕ n GroupStr._+_ coHomGrnA = λ x y → x +[ n ]ₕ y - coHomGrnA = λ x → -[ n ]ₕ x isGroup coHomGrnA = helper where abstract helper : IsGroup (0ₕ n) (λ x y → x +[ n ]ₕ y) (λ x → -[ n ]ₕ x) helper = makeIsGroup § (λ x y z → sym (assocₕ n x y z)) (rUnitₕ n) (lUnitₕ n) (rCancelₕ n) (lCancelₕ n) ×coHomGr : (n : ℕ) (A : Type ℓ) (B : Type ℓ') → Group ×coHomGr n A B = dirProd (coHomGr n A) (coHomGr n B) coHomFun : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (n : ℕ) (f : A → B) → coHom n B → coHom n A coHomFun n f = sRec § λ β → ∣ β ∘ f ∣₂ -distrLemma : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (n m : ℕ) (f : GroupHom (coHomGr n A) (coHomGr m B)) (x y : coHom n A) → fun f (x -[ n ]ₕ y) ≡ fun f x -[ m ]ₕ fun f y -distrLemma n m f' x y = sym (-cancelRₕ m (f y) (f (x -[ n ]ₕ y))) ∙∙ cong (λ x → x -[ m ]ₕ f y) (sym (isHom f' (x -[ n ]ₕ y) y)) ∙∙ cong (λ x → x -[ m ]ₕ f y) ( cong f (-+cancelₕ n _ _)) where f = fun f' --- the loopspace of Kₙ is commutative regardless of base addIso : (n : ℕ) (x : coHomK n) → Iso (coHomK n) (coHomK n) fun (addIso n x) y = y +[ n ]ₖ x inv' (addIso n x) y = y -[ n ]ₖ x rightInv (addIso n x) y = -+cancelₖ n y x leftInv (addIso n x) y = -cancelRₖ n x y isCommΩK-based : (n : ℕ) (x : coHomK n) → isComm∙ (coHomK n , x) isCommΩK-based zero x p q = isSetInt _ _ (p ∙ q) (q ∙ p) isCommΩK-based (suc zero) x = subst isComm∙ (λ i → coHomK 1 , lUnitₖ 1 x i) (ptdIso→comm {A = (_ , 0ₖ 1)} (addIso 1 x) (isCommΩK 1)) isCommΩK-based (suc (suc n)) x = subst isComm∙ (λ i → coHomK (suc (suc n)) , lUnitₖ (suc (suc n)) x i) (ptdIso→comm {A = (_ , 0ₖ (suc (suc n)))} (addIso (suc (suc n)) x) (isCommΩK (suc (suc n)))) addLemma : (a b : Int) → a +[ 0 ]ₖ b ≡ (a ℤ+ b) addLemma a b = (cong (ΩKn+1→Kn 0) (sym (congFunct ∣_∣ (intLoop a) (intLoop b)))) ∙∙ (λ i → ΩKn+1→Kn 0 (cong ∣_∣ (intLoop-hom a b i))) ∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 0) (a ℤ+ b) --- -- hidden versions of cohom stuff using the "lock" hack. The locked versions can be used when proving things. -- Swapping "key" for "tt*" will then give computing functions. Unit' : Type₀ Unit' = lockUnit {ℓ-zero} lock : ∀ {ℓ} {A : Type ℓ} → Unit' → A → A lock unlock = λ x → x module lockedCohom (key : Unit') where +K : (n : ℕ) → coHomK n → coHomK n → coHomK n +K n = lock key (_+ₖ_ {n = n}) -K : (n : ℕ) → coHomK n → coHomK n -K n = lock key (-ₖ_ {n = n}) -Kbin : (n : ℕ) → coHomK n → coHomK n → coHomK n -Kbin n = lock key (_-ₖ_ {n = n}) rUnitK : (n : ℕ) (x : coHomK n) → +K n x (0ₖ n) ≡ x rUnitK n x = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) x (0ₖ n) ≡ x pm unlock = rUnitₖ n x lUnitK : (n : ℕ) (x : coHomK n) → +K n (0ₖ n) x ≡ x lUnitK n x = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) (0ₖ n) x ≡ x pm unlock = lUnitₖ n x rCancelK : (n : ℕ) (x : coHomK n) → +K n x (-K n x) ≡ 0ₖ n rCancelK n x = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) x (lock t (-ₖ_ {n = n}) x) ≡ 0ₖ n pm unlock = rCancelₖ n x lCancelK : (n : ℕ) (x : coHomK n) → +K n (-K n x) x ≡ 0ₖ n lCancelK n x = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) (lock t (-ₖ_ {n = n}) x) x ≡ 0ₖ n pm unlock = lCancelₖ n x -cancelRK : (n : ℕ) (x y : coHomK n) → -Kbin n (+K n y x) x ≡ y -cancelRK n x y = pm key where pm : (t : Unit') → lock t (_-ₖ_ {n = n}) (lock t (_+ₖ_ {n = n}) y x) x ≡ y pm unlock = -cancelRₖ n x y -cancelLK : (n : ℕ) (x y : coHomK n) → -Kbin n (+K n x y) x ≡ y -cancelLK n x y = pm key where pm : (t : Unit') → lock t (_-ₖ_ {n = n}) (lock t (_+ₖ_ {n = n}) x y) x ≡ y pm unlock = -cancelLₖ n x y -+cancelK : (n : ℕ) (x y : coHomK n) → +K n (-Kbin n x y) y ≡ x -+cancelK n x y = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) (lock t (_-ₖ_ {n = n}) x y) y ≡ x pm unlock = -+cancelₖ n x y cancelK : (n : ℕ) (x : coHomK n) → -Kbin n x x ≡ 0ₖ n cancelK n x = pm key where pm : (t : Unit') → (lock t (_-ₖ_ {n = n}) x x) ≡ 0ₖ n pm unlock = cancelₖ n x assocK : (n : ℕ) (x y z : coHomK n) → +K n (+K n x y) z ≡ +K n x (+K n y z) assocK n x y z = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) (lock t (_+ₖ_ {n = n}) x y) z ≡ lock t (_+ₖ_ {n = n}) x (lock t (_+ₖ_ {n = n}) y z) pm unlock = assocₖ n x y z commK : (n : ℕ) (x y : coHomK n) → +K n x y ≡ +K n y x commK n x y = pm key where pm : (t : Unit') → lock t (_+ₖ_ {n = n}) x y ≡ lock t (_+ₖ_ {n = n}) y x pm unlock = commₖ n x y -- cohom +H : (n : ℕ) (x y : coHom n A) → coHom n A +H n = sRec2 § λ a b → ∣ (λ x → +K n (a x) (b x)) ∣₂ -H : (n : ℕ) (x : coHom n A) → coHom n A -H n = sRec § λ a → ∣ (λ x → -K n (a x)) ∣₂ -Hbin : (n : ℕ) → coHom n A → coHom n A → coHom n A -Hbin n = sRec2 § λ a b → ∣ (λ x → -Kbin n (a x) (b x)) ∣₂ rUnitH : (n : ℕ) (x : coHom n A) → +H n x (0ₕ n) ≡ x rUnitH n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → rUnitK n (a x)) i ∣₂ lUnitH : (n : ℕ) (x : coHom n A) → +H n (0ₕ n) x ≡ x lUnitH n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → lUnitK n (a x)) i ∣₂ rCancelH : (n : ℕ) (x : coHom n A) → +H n x (-H n x) ≡ 0ₕ n rCancelH n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → rCancelK n (a x)) i ∣₂ lCancelH : (n : ℕ) (x : coHom n A) → +H n (-H n x) x ≡ 0ₕ n lCancelH n = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → lCancelK n (a x)) i ∣₂ assocH : (n : ℕ) (x y z : coHom n A) → (+H n (+H n x y) z) ≡ (+H n x (+H n y z)) assocH n = elim3 (λ _ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b c i → ∣ funExt (λ x → assocK n (a x) (b x) (c x)) i ∣₂ commH : (n : ℕ) (x y : coHom n A) → (+H n x y) ≡ (+H n y x) commH n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ funExt (λ x → commK n (a x) (b x)) i ∣₂ -cancelRH : (n : ℕ) (x y : coHom n A) → -Hbin n (+H n y x) x ≡ y -cancelRH n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ (λ x → -cancelRK n (a x) (b x) i) ∣₂ -cancelLH : (n : ℕ) (x y : coHom n A) → -Hbin n (+H n x y) x ≡ y -cancelLH n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ (λ x → -cancelLK n (a x) (b x) i) ∣₂ -+cancelH : (n : ℕ) (x y : coHom n A) → +H n (-Hbin n x y) y ≡ x -+cancelH n = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ (λ x → -+cancelK n (a x) (b x) i) ∣₂ +K→∙ : (key : Unit') (n : ℕ) (a b : coHomK n) → Kn→ΩKn+1 n (lockedCohom.+K key n a b) ≡ Kn→ΩKn+1 n a ∙ Kn→ΩKn+1 n b +K→∙ unlock = +ₖ→∙ +H≡+ₕ : (key : Unit') (n : ℕ) → lockedCohom.+H key {A = A} n ≡ _+ₕ_ {n = n} +H≡+ₕ unlock _ = refl rUnitlUnit0K : (key : Unit') (n : ℕ) → lockedCohom.rUnitK key n (0ₖ n) ≡ lockedCohom.lUnitK key n (0ₖ n) rUnitlUnit0K unlock = rUnitlUnit0
46.601227
168
0.493944
8bfe688b2f1b88a948a0eedd401033ec9b43d794
900
agda
Agda
Cubical/Data/Nat/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Data/Nat/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Data/Nat/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Data.Nat.Base where open import Cubical.Core.Primitives open import Agda.Builtin.Nat public using (zero; suc; _+_; _*_) renaming (Nat to ℕ; _-_ to _∸_) open import Cubical.Data.Nat.Literals public predℕ : ℕ → ℕ predℕ zero = zero predℕ (suc n) = n caseNat : ∀ {ℓ} → {A : Type ℓ} → (a0 aS : A) → ℕ → A caseNat a0 aS zero = a0 caseNat a0 aS (suc n) = aS doubleℕ : ℕ → ℕ doubleℕ zero = zero doubleℕ (suc x) = suc (suc (doubleℕ x)) -- doublesℕ n m = 2^n * m doublesℕ : ℕ → ℕ → ℕ doublesℕ zero m = m doublesℕ (suc n) m = doublesℕ n (doubleℕ m) -- iterate iter : ∀ {ℓ} {A : Type ℓ} → ℕ → (A → A) → A → A iter zero f z = z iter (suc n) f z = f (iter n f z) elim : ∀ {ℓ} {A : ℕ → Type ℓ} → A zero → ((n : ℕ) → A n → A (suc n)) → (n : ℕ) → A n elim a₀ _ zero = a₀ elim a₀ f (suc n) = f n (elim a₀ f n)
22.5
67
0.583333
587ea47c39fee4fb78a316fd62cbbd395932153e
522
agda
Agda
test/interaction/Issue59.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue59.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue59.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- {-# OPTIONS -v term.with.inline:20 -v term.with.call:30 #-} data Nat : Set where zero : Nat suc : Nat → Nat _+_ : Nat → Nat → Nat zero + m = m suc n + m = suc (n + m) data [_] : Nat → Set where ⟨_⟩ : ∀ n → [ n ] f : Nat → Nat g : Nat → Nat h : ∀ n → [ f n ] f zero = zero f (suc n) with f n f (suc n) | zero = zero f (suc n) | suc m = f n + m -- f's with-function should not get inlined into the clauses of g! g zero = zero g (suc n) = _ -- f (suc n) | f n h zero = ⟨ zero ⟩ h (suc n) = ⟨ g (suc n) ⟩
17.4
66
0.517241
9add0152db9a764a56179fadb0488f172c489bc5
439
agda
Agda
test/asset/agda-stdlib-1.0/Data/List/Relation/Permutation/Inductive.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/List/Relation/Permutation/Inductive.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/List/Relation/Permutation/Inductive.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.List.Relation.Binary.Permutation.Inductive directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Permutation.Inductive where open import Data.List.Relation.Binary.Permutation.Inductive public
33.769231
72
0.517084
228cda68ac8ea3ea21f73a89c364e0af1c5c6075
1,019
agda
Agda
test/Succeed/Issue1796.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue1796.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue1796.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- Andreas, 2016-01-23, issue 1796 -- Need to run size constraint solver before with-abstraction -- {-# OPTIONS -v tc.size:100 -v tc.meta.assign:30 #-} open import Common.Size postulate anything : ∀{A : Set} → A mutual record IO i : Set where coinductive field force : ∀{j : Size< i} → IO' j data IO' i : Set where cons : IO i → IO' i mutual record All i (s : IO ∞) : Set where field force : ∀{j : Size< i} → All' j (IO.force s) data All' i : (s : IO' ∞) → Set where always : ∀ e → All' i (cons e) runIO : ∀{i} (s : IO ∞) → IO i IO.force (runIO s) with IO.force s ... | cons e = cons e -- With abstraction fails when _ in IO.force s {_} -- has not been solved to ∞. test : ∀ i s → All i (runIO s) All.force (test i s) with IO.force s -- works with {∞} added All.force (test i s) | cons e = always e -- cons e != IO.force (runIO {∞} s) {∞} | IO.force s of type IO' ∞ -- when checking that the expression always e has type -- All' .j (IO.force (runIO {∞} s) {∞} | IO.force s)
24.261905
66
0.589794
cb2c43edbf53a1d31ee371a030fefb8b7d1a5f7e
9,403
agda
Agda
Numbers/Rationals/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Numbers/Rationals/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Numbers/Rationals/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Naturals.Order.WellFounded open import Numbers.Naturals.Order.Lemmas open import Numbers.Integers.Definition open import Numbers.Integers.Integers open import Numbers.Integers.Order open import Groups.Groups open import Groups.Definition open import Rings.Definition open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Fields.Fields open import Numbers.Primes.PrimeNumbers open import Setoids.Setoids open import Functions.Definition open import Sets.EquivalenceRelations open import Numbers.Rationals.Definition open import Semirings.Definition open import Orders.Total.Definition open import Orders.WellFounded.Induction open import Setoids.Orders.Total.Definition module Numbers.Rationals.Lemmas where open import Semirings.Lemmas ℕSemiring open PartiallyOrderedRing ℤPOrderedRing open import Rings.Orders.Total.Lemmas ℤOrderedRing open import Rings.Orders.Total.AbsoluteValue ℤOrderedRing open SetoidTotalOrder (totalOrderToSetoidTotalOrder ℤOrder) evenOrOdd : (a : ℕ) → (Sg ℕ (λ i → i *N 2 ≡ a)) || (Sg ℕ (λ i → succ (i *N 2) ≡ a)) evenOrOdd zero = inl (zero , refl) evenOrOdd (succ zero) = inr (zero , refl) evenOrOdd (succ (succ a)) with evenOrOdd a evenOrOdd (succ (succ a)) | inl (a/2 , even) = inl (succ a/2 , applyEquality (λ i → succ (succ i)) even) evenOrOdd (succ (succ a)) | inr (a/2-1 , odd) = inr (succ a/2-1 , applyEquality (λ i → succ (succ i)) odd) parity : (a b : ℕ) → succ (2 *N a) ≡ 2 *N b → False parity zero (succ b) pr rewrite Semiring.commutative ℕSemiring b (succ (b +N 0)) = bad pr where bad : (1 ≡ succ (succ ((b +N 0) +N b))) → False bad () parity (succ a) (succ b) pr rewrite Semiring.commutative ℕSemiring b (succ (b +N 0)) | Semiring.commutative ℕSemiring a (succ (a +N 0)) | Semiring.commutative ℕSemiring (a +N 0) a | Semiring.commutative ℕSemiring (b +N 0) b = parity a b (succInjective (succInjective pr)) sqrt0 : (p : ℕ) → p *N p ≡ 0 → p ≡ 0 sqrt0 zero pr = refl sqrt0 (succ p) () -- So as to give us something easy to induct down, introduce a silly extra variable evil' : (k : ℕ) → ((a b : ℕ) → (0 <N a) → (pr : k ≡ a +N b) → a *N a ≡ (b *N b) *N 2 → False) evil' = rec <NWellfounded (λ z → (x x₁ : ℕ) (pr' : 0 <N x) (x₂ : z ≡ x +N x₁) (x₃ : x *N x ≡ (x₁ *N x₁) *N 2) → False) go where go : (k : ℕ) (indHyp : (k' : ℕ) (k'<k : k' <N k) (r s : ℕ) (0<r : 0 <N r) (r+s : k' ≡ r +N s) (x₇ : r *N r ≡ (s *N s) *N 2) → False) (a b : ℕ) (0<a : 0 <N a) (a+b : k ≡ a +N b) (pr : a *N a ≡ (b *N b) *N 2) → False go k indHyp a b 0<a a+b pr = contr where open import Semirings.Solver ℕSemiring multiplicationNIsCommutative aEven : Sg ℕ (λ i → i *N 2 ≡ a) aEven with evenOrOdd a aEven | inl x = x aEven | inr (a/2-1 , odd) rewrite equalityCommutative odd = -- Derive a pretty mechanical contradiction using the automatic solver. -- This line looks hellish, but it was almost completely mechanical. exFalso (parity (a/2-1 +N (a/2-1 *N succ (a/2-1 *N 2))) (b *N b) (transitivity ( -- truly mechanical bit starts here from (succ (plus (plus (const a/2-1) (times (const a/2-1) (succ (times (const a/2-1) (succ (succ zero)))))) (plus (plus (const a/2-1) (times (const a/2-1) (succ (times (const a/2-1) (succ (succ zero)))))) (times zero (plus (const a/2-1) (times (const a/2-1) (succ (times (const a/2-1) (succ (succ zero)))))))))) to succ (plus (times (const a/2-1) (succ (succ zero))) (times (times (const a/2-1) (succ (succ zero))) (succ (times (const a/2-1) (succ (succ zero)))))) -- truly mechanical bit ends here by applyEquality (λ i → succ (a/2-1 +N i)) ( -- Grinding out some manipulations transitivity (equalityCommutative (Semiring.+Associative ℕSemiring a/2-1 _ _)) (applyEquality (a/2-1 +N_) (transitivity (Semiring.commutative ℕSemiring (a/2-1 *N (a/2-1 +N a/2-1)) _) (transitivity (equalityCommutative (Semiring.+Associative ℕSemiring a/2-1 _ _)) (applyEquality (a/2-1 +N_) (transitivity (equalityCommutative (Semiring.+Associative ℕSemiring a/2-1 _ _)) (applyEquality (a/2-1 +N_) (transitivity (equalityCommutative (Semiring.+DistributesOver* ℕSemiring a/2-1 _ _)) (applyEquality (a/2-1 *N_) (equalityCommutative (Semiring.+Associative ℕSemiring a/2-1 _ _)))))))))) )) (transitivity pr (multiplicationNIsCommutative (b *N b) 2)))) next : (underlying aEven *N 2) *N (underlying aEven *N 2) ≡ (b *N b) *N 2 next with aEven ... | a/2 , even rewrite even = pr next2 : (underlying aEven *N 2) *N underlying aEven ≡ b *N b next2 = productCancelsRight 2 _ _ (le 1 refl) (transitivity (equalityCommutative (Semiring.*Associative ℕSemiring (underlying aEven *N 2) _ _)) next) next3 : b *N b ≡ (underlying aEven *N underlying aEven) *N 2 next3 = equalityCommutative (transitivity (transitivity (equalityCommutative (Semiring.*Associative ℕSemiring (underlying aEven) _ _)) (multiplicationNIsCommutative (underlying aEven) _)) next2) halveDecreased : underlying aEven <N a halveDecreased with aEven halveDecreased | zero , even rewrite equalityCommutative even = exFalso (TotalOrder.irreflexive ℕTotalOrder 0<a) halveDecreased | succ a/2 , even = le a/2 (transitivity (applyEquality succ (transitivity (Semiring.commutative ℕSemiring a/2 _) (applyEquality succ (transitivity (doubleIsAddTwo a/2) (multiplicationNIsCommutative 2 a/2))))) even) reduced : b +N underlying aEven <N k reduced with lessRespectsAddition b halveDecreased ... | bl rewrite a+b = identityOfIndiscernablesLeft _<N_ bl (Semiring.commutative ℕSemiring _ b) 0<b : 0 <N b 0<b with TotalOrder.totality ℕTotalOrder 0 b 0<b | inl (inl 0<b) = 0<b 0<b | inl (inr ()) 0<b | inr 0=b rewrite equalityCommutative 0=b = exFalso (TotalOrder.irreflexive ℕTotalOrder {0} (identityOfIndiscernablesRight _<N_ 0<a (sqrt0 a pr))) contr : False contr = indHyp (b +N underlying aEven) reduced b (underlying aEven) 0<b refl next3 evil : (a b : ℕ) → (0 <N a) → a *N a ≡ (b *N b) *N 2 → False evil a b 0<a = evil' (a +N b) a b 0<a refl absNonneg : (x : ℕ) → abs (nonneg x) ≡ nonneg x absNonneg x with totality (nonneg 0) (nonneg x) absNonneg x | inl (inl 0<x) = refl absNonneg x | inr 0=x = refl absNegsucc : (x : ℕ) → abs (negSucc x) ≡ nonneg (succ x) absNegsucc x with totality (nonneg 0) (negSucc x) absNegsucc x | inl (inr _) = refl toNats : (numerator denominator : ℤ) → .(denominator ≡ nonneg 0 → False) → (abs numerator) *Z (abs numerator) ≡ ((abs denominator) *Z (abs denominator)) *Z nonneg 2 → Sg (ℕ && ℕ) (λ nats → ((_&&_.fst nats *N _&&_.fst nats) ≡ (_&&_.snd nats *N _&&_.snd nats) *N 2) && (_&&_.snd nats ≡ 0 → False)) toNats (nonneg num) (nonneg 0) pr _ = exFalso (pr refl) toNats (nonneg num) (nonneg (succ denom)) _ pr = (num ,, (succ denom)) , (nonnegInjective (transitivity (transitivity (equalityCommutative (absNonneg (num *N num))) (absRespectsTimes (nonneg num) (nonneg num))) pr) ,, λ ()) toNats (nonneg num) (negSucc denom) _ pr = (num ,, succ denom) , (nonnegInjective (transitivity (transitivity (equalityCommutative (absNonneg (num *N num))) (absRespectsTimes (nonneg num) (nonneg num))) pr) ,, λ ()) toNats (negSucc num) (nonneg (succ denom)) _ pr = (succ num ,, succ denom) , (nonnegInjective pr ,, λ ()) toNats (negSucc num) (negSucc denom) _ pr = (succ num ,, succ denom) , (nonnegInjective pr ,, λ ()) sqrt2Irrational : (a : ℚ) → (a *Q a) =Q (injectionQ (nonneg 2)) → False sqrt2Irrational (record { num = numerator ; denom = denominator ; denomNonzero = denom!=0 }) pr = bad where -- We have in hand `pr`, which is the following (almost by definition): pr' : (numerator *Z numerator) ≡ (denominator *Z denominator) *Z nonneg 2 pr' = transitivity (equalityCommutative (transitivity (Ring.*Commutative ℤRing) (Ring.identIsIdent ℤRing))) pr -- Move into the naturals so that we can do nice divisibility things. lemma1 : abs ((denominator *Z denominator) *Z nonneg 2) ≡ (abs denominator *Z abs denominator) *Z nonneg 2 lemma1 = transitivity (absRespectsTimes (denominator *Z denominator) (nonneg 2)) (applyEquality (_*Z nonneg 2) (absRespectsTimes denominator denominator)) amenableToNaturals : (abs numerator) *Z (abs numerator) ≡ ((abs denominator) *Z (abs denominator)) *Z nonneg 2 amenableToNaturals = transitivity (equalityCommutative (absRespectsTimes numerator numerator)) (transitivity (applyEquality abs pr') lemma1) naturalsStatement : Sg (ℕ && ℕ) (λ nats → ((_&&_.fst nats *N _&&_.fst nats) ≡ (_&&_.snd nats *N _&&_.snd nats) *N 2) && (_&&_.snd nats ≡ 0 → False)) naturalsStatement = toNats numerator denominator denom!=0 amenableToNaturals bad : False bad with naturalsStatement bad | (num ,, 0) , (pr1 ,, pr2) = exFalso (pr2 refl) bad | (num ,, succ denom) , (pr1 ,, pr2) = evil num (succ denom) 0<num pr1 where 0<num : 0 <N num 0<num with TotalOrder.totality ℕTotalOrder 0 num 0<num | inl (inl 0<num) = 0<num 0<num | inr 0=num rewrite equalityCommutative 0=num = exFalso (naughtE pr1)
62.686667
596
0.664681
1a7a8510aedc9237aa5a4907dcac17c749ab89f8
5,627
agda
Agda
nicolai/pseudotruncations/PseudoTruncs.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
nicolai/pseudotruncations/PseudoTruncs.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
null
null
null
nicolai/pseudotruncations/PseudoTruncs.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.NType2 open import lib.PathFunctor open import lib.PathGroupoid open import lib.types.Bool open import lib.types.IteratedSuspension open import lib.types.LoopSpace open import lib.types.Nat open import lib.types.Paths open import lib.types.Pi open import lib.types.Pointed open import lib.types.Sigma open import lib.types.Suspension open import lib.types.TLevel open import lib.types.Unit open import nicolai.pseudotruncations.Preliminary-definitions open import nicolai.pseudotruncations.Liblemmas open import nicolai.pseudotruncations.SeqColim open import nicolai.pseudotruncations.wconstSequence module nicolai.pseudotruncations.PseudoTruncs where {- Definition of the Pseudo-truncation -} module _ {i} where private data #Pseudotrunc-aux (n : ℕ) (A : Type i) : Type i where #point : A → #Pseudotrunc-aux n A #hub : (r : Sphere' n → A) → #Pseudotrunc-aux n A data #Pseudotrunc (n : ℕ) (A : Type i) : Type i where #trick-aux : #Pseudotrunc-aux n A → (Unit → Unit) → #Pseudotrunc n A Pseudo_-1-trunc : (n : ℕ) (A : Type i) → Type i Pseudo_-1-trunc = #Pseudotrunc point_-1 : {A : Type i} → (n : ℕ) → A → Pseudo n -1-trunc A point_-1 {A} n a = #trick-aux (#point a) _ hub_-1 : {A : Type i} (n : ℕ) (r : Sphere' n → A) → Pseudo n -1-trunc A hub_-1 {A} n r = #trick-aux (#hub r) _ postulate spoke_-1 : {A : Type i} (n : ℕ) (r : Sphere' n → A) (x : Sphere' n) → point n -1 (r x) == hub n -1 r {- The induction principle -} module PseudotruncInduction {A : Type i} (n : ℕ) {j} {P : Pseudo n -1-trunc A → Type j} (Point-1 : (a : A) → P (point n -1 a)) (Hub-1 : (r : Sphere' n → A) → P (hub n -1 r)) (Spoke-1 : (r : Sphere' n → A) → (x : Sphere' n) → Point-1 (r x) == Hub-1 r [ P ↓ spoke n -1 r x ]) where f : Π (Pseudo n -1-trunc A) P f = f-aux phantom where f-aux : Phantom Spoke-1 → Π (Pseudo n -1-trunc A) P f-aux phantom (#trick-aux (#point x) _) = Point-1 x f-aux phantom (#trick-aux (#hub r) _) = Hub-1 r postulate pathβ : (r : Sphere' {i} n → A) → (x : Sphere' {i} n) → apd f (spoke n -1 r x) == Spoke-1 r x open PseudotruncInduction public renaming (f to Pseudotrunc-ind ; pathβ to Pseudotrunc-ind-pathβ) {- We derive the recursion principle from the induction principle -} module PseudotruncRecursion {i j} {A : Type i} {P : Type j} (n : ℕ) (Point-1 : A → P) (Hub-1 : (r : Sphere' {i} n → A) → P) (Spoke-1 : (r : Sphere' n → A) (x : Sphere' n) → Point-1 (r x) == Hub-1 r) where rec : Pseudo n -1-trunc A → P rec = Pseudotrunc-ind n {P = λ _ → P} Point-1 Hub-1 (λ r x → from-transp (λ _ → P) (spoke n -1 r x) ((transport (λ _ → P) (spoke n -1 r x) (Point-1 (r x))) =⟨ transport-const-fam (spoke n -1 r x) (Point-1 (r x)) ⟩ Point-1 (r x) =⟨ Spoke-1 r x ⟩ Hub-1 r ∎)) open PseudotruncRecursion public renaming (rec to Pseudotrunc-rec) {- A lemma that will be important later: any map from the sphere, composed with the points constructor, is null. -} open import nicolai.pseudotruncations.pointed-O-Sphere open import nicolai.pseudotruncations.LoopsAndSpheres open null module _ {i} {A : Type i} (n : ℕ) where from-sphere-null : (g : Sphere' {i} n → A) → isNull (point n -1 (g (nor' n))) ((point n -1) ∘ g) from-sphere-null g x = point n -1 (g x) =⟨ spoke n -1 g x ⟩ hub n -1 g =⟨ ! (spoke n -1 g (nor' n)) ⟩ point n -1 (g (nor' n)) ∎ module cmp-nll {i} {Â : Ptd i} (n : ℕ) (g : ⊙Sphere' {i} n →̇ Â) where {- Pointed version of first constructor -} -- points∙ : Â →̇ (Pseudo n -1-trunc (fst Â) , point n -1 (snd Â)) -- points∙ = point n -1 , idp from-sphere-null∙ : isNulld ((point n -1 , idp) ⊙∘ g) from-sphere-null∙ = λ x → point n -1 ((fst g) x) =⟨ spoke n -1 (fst g) x ⟩ hub n -1 (fst g) =⟨ ! (spoke n -1 (fst g) (nor' n)) ⟩ point n -1 ((fst g) (nor' n)) =⟨ ap (point n -1) (snd g) ⟩ point n -1 (snd Â) ∎ {- Unfortunately, we will need this lemma not for maps g : Sphere' (S n) → A, but we will need it for maps g : Susp (Sphere' n) → A, and Sphere' (S n) is NOT judgmentally equal to Susp (Sphere' n). We have to give a second proof. -} module cmp-nll' {i} {Â : Ptd i} (n : ℕ) (g : ⊙Susp (⊙Sphere' {i} n) →̇ Â) where {- "translate" equivalence -} tr≃⊙ : ⊙Sphere' {i} (S n) ⊙≃ ⊙Susp (⊙Sphere' {i} n) tr≃⊙ = coe-equiv∙ (susp'-switch n) tr≃ : Sphere' {i} (S n) ≃ fst (⊙Susp (⊙Sphere' {i} n)) tr≃ = fst (fst tr≃⊙) , snd tr≃⊙ tr–̇> : (⊙Sphere' {i} (S n)) →̇ ⊙Susp (⊙Sphere' {i} n) tr–̇> = fst tr≃⊙ -- –> (fst (fst tr-eq) , snd tr-eq) , {!!} from-sphere-null'∙ : isNulld ((point S n -1 , idp) ⊙∘ g) from-sphere-null'∙ = λ x → fst ((point S n -1 , idp) ⊙∘ g) x =⟨ ap (fst ((point S n -1 , idp) ⊙∘ g)) (! (<–-inv-r tr≃ x)) ⟩ fst ((point S n -1 , idp) ⊙∘ g) (–> tr≃ (<– tr≃ x)) =⟨ cmp-nll.from-sphere-null∙ {i} {Â} (S n) (g ⊙∘ tr–̇>) (<– tr≃ x) ⟩ point S n -1 (snd Â) ∎
33.1
81
0.519815
8b9d6a4e3d3d45dc261f82fbd4a52af80aa7a867
307
agda
Agda
test/interaction/Issue2609.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue2609.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue2609.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Common.Bool open import Common.Nat data cheesy : Bool → Set where chocolate : cheesy false cheese : cheesy true bread : ∀ x → cheesy x foo : ∀ {x : Bool} → cheesy x → cheesy x → Bool foo x chocolate = {!!} foo x cheese = {!!} foo x (bread false) = {!x!} foo x (bread true) = {!!}
21.928571
47
0.609121
1e46aa46ad9c37c4b4f6d2112404ff1785b3e888
4,817
agda
Agda
Base/Change/Sums.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
10
2015-03-04T06:09:20.000Z
2019-07-19T07:06:59.000Z
Base/Change/Sums.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
6
2015-07-01T18:09:31.000Z
2017-05-04T13:53:59.000Z
Base/Change/Sums.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
1
2016-02-18T12:26:44.000Z
2016-02-18T12:26:44.000Z
module Base.Change.Sums where open import Data.Sum open import Data.Product open import Relation.Binary.PropositionalEquality open import Level open import Base.Ascription open import Base.Change.Algebra open import Base.Change.Equivalence open import Base.Change.Equivalence.Realizers open import Postulate.Extensionality module SumChanges ℓ {X Y : Set ℓ} {{CX : ChangeAlgebra X}} {{CY : ChangeAlgebra Y}} where open ≡-Reasoning -- This is an indexed datatype, so it has two constructors per argument. But -- erasure would probably not be smart enough to notice. -- Should we rewrite this as two separate datatypes? data SumChange : X ⊎ Y → Set ℓ where ch₁ : ∀ {x} → (dx : Δ x) → SumChange (inj₁ x) rp₁₂ : ∀ {x} → (y : Y) → SumChange (inj₁ x) ch₂ : ∀ {y} → (dy : Δ y) → SumChange (inj₂ y) rp₂₁ : ∀ {y} → (x : X) → SumChange (inj₂ y) _⊕_ : (v : X ⊎ Y) → SumChange v → X ⊎ Y inj₁ x ⊕ ch₁ dx = inj₁ (x ⊞ dx) inj₂ y ⊕ ch₂ dy = inj₂ (y ⊞ dy) inj₁ x ⊕ rp₁₂ y = inj₂ y inj₂ y ⊕ rp₂₁ x = inj₁ x _⊝_ : ∀ (v₂ v₁ : X ⊎ Y) → SumChange v₁ inj₁ x₂ ⊝ inj₁ x₁ = ch₁ (x₂ ⊟ x₁) inj₂ y₂ ⊝ inj₂ y₁ = ch₂ (y₂ ⊟ y₁) inj₂ y₂ ⊝ inj₁ x₁ = rp₁₂ y₂ inj₁ x₂ ⊝ inj₂ y₁ = rp₂₁ x₂ s-nil : (v : X ⊎ Y) → SumChange v s-nil (inj₁ x) = ch₁ (nil x) s-nil (inj₂ y) = ch₂ (nil y) s-update-diff : ∀ (u v : X ⊎ Y) → v ⊕ (u ⊝ v) ≡ u s-update-diff (inj₁ x₂) (inj₁ x₁) = cong inj₁ (update-diff x₂ x₁) s-update-diff (inj₂ y₂) (inj₂ y₁) = cong inj₂ (update-diff y₂ y₁) s-update-diff (inj₁ x₂) (inj₂ y₁) = refl s-update-diff (inj₂ y₂) (inj₁ x₁) = refl s-update-nil : ∀ v → v ⊕ (s-nil v) ≡ v s-update-nil (inj₁ x) = cong inj₁ (update-nil x) s-update-nil (inj₂ y) = cong inj₂ (update-nil y) instance changeAlgebraSums : ChangeAlgebra (X ⊎ Y) changeAlgebraSums = record { Change = SumChange ; update = _⊕_ ; diff = _⊝_ ; nil = s-nil ; isChangeAlgebra = record { update-diff = s-update-diff ; update-nil = s-update-nil } } inj₁′ : Δ (inj₁ as (X → (X ⊎ Y))) inj₁′ = nil inj₁ inj₁′-realizer : RawChange (inj₁ as (X → (X ⊎ Y))) inj₁′-realizer x dx = ch₁ dx inj₁′Derivative : IsDerivative (inj₁ as (X → (X ⊎ Y))) inj₁′-realizer inj₁′Derivative x dx = refl inj₁′-realizer-correct : ∀ a da → apply inj₁′ a da ≙₍ inj₁ a as (X ⊎ Y) ₎ inj₁′-realizer a da inj₁′-realizer-correct a da = diff-update inj₁′-faster-w-proof : equiv-raw-change-to-change-ResType inj₁ inj₁′-realizer inj₁′-faster-w-proof = equiv-raw-change-to-change inj₁ inj₁′ inj₁′-realizer inj₁′-realizer-correct inj₁′-faster : Δ inj₁ inj₁′-faster = proj₁ inj₁′-faster-w-proof inj₂′ : Δ (inj₂ as (Y → (X ⊎ Y))) inj₂′ = nil inj₂ inj₂′-realizer : RawChange (inj₂ as (Y → (X ⊎ Y))) inj₂′-realizer y dy = ch₂ dy inj₂′Derivative : IsDerivative (inj₂ as (Y → (X ⊎ Y))) inj₂′-realizer inj₂′Derivative y dy = refl inj₂′-realizer-correct : ∀ b db → apply inj₂′ b db ≙₍ inj₂ b as (X ⊎ Y) ₎ inj₂′-realizer b db inj₂′-realizer-correct b db = diff-update inj₂′-faster-w-proof : equiv-raw-change-to-change-ResType inj₂ inj₂′-realizer inj₂′-faster-w-proof = equiv-raw-change-to-change inj₂ inj₂′ inj₂′-realizer inj₂′-realizer-correct inj₂′-faster : Δ inj₂ inj₂′-faster = proj₁ inj₂′-faster-w-proof module _ {Z : Set ℓ} {{CZ : ChangeAlgebra Z}} where -- Elimination form for sums. This is a less dependently-typed version of -- [_,_]. match : (X → Z) → (Y → Z) → X ⊎ Y → Z match f g (inj₁ x) = f x match f g (inj₂ y) = g y match′ : Δ match match′ = nil match match′-realizer : (f : X → Z) → Δ f → (g : Y → Z) → Δ g → (s : X ⊎ Y) → Δ s → Δ (match f g s) match′-realizer f df g dg (inj₁ x) (ch₁ dx) = apply df x dx match′-realizer f df g dg (inj₁ x) (rp₁₂ y) = ((g ⊞ dg) y) ⊟ (f x) match′-realizer f df g dg (inj₂ y) (rp₂₁ x) = ((f ⊞ df) x) ⊟ (g y) match′-realizer f df g dg (inj₂ y) (ch₂ dy) = apply dg y dy match′-realizer-correct : (f : X → Z) → (df : Δ f) → (g : Y → Z) → (dg : Δ g) → (s : X ⊎ Y) → (ds : Δ s) → apply (apply (apply match′ f df) g dg) s ds ≙₍ match f g s ₎ match′-realizer f df g dg s ds match′-realizer-correct f df g dg (inj₁ x) (ch₁ dx) = ≙-incrementalization f df x dx match′-realizer-correct f df g dg (inj₁ x) (rp₁₂ y) = ≙-refl match′-realizer-correct f df g dg (inj₂ y) (ch₂ dy) = ≙-incrementalization g dg y dy match′-realizer-correct f df g dg (inj₂ y) (rp₂₁ x) = ≙-refl -- We need a ternary variant of the lemma here. match′-faster-w-proof : equiv-raw-change-to-change-ternary-ResType match match′-realizer match′-faster-w-proof = equiv-raw-change-to-change-ternary match match′ match′-realizer match′-realizer-correct match′-faster : Δ match match′-faster = proj₁ match′-faster-w-proof
37.053846
115
0.61366
c5d18aae30192775739410458ff518da7619b4f0
9,873
agda
Agda
Groups/FreeGroup/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Groups/FreeGroup/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Groups/FreeGroup/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error #-} open import Sets.Cardinality.Infinite.Definition open import Sets.EquivalenceRelations open import Setoids.Setoids open import Groups.FreeGroup.Definition open import Groups.Homomorphisms.Definition open import Groups.Definition open import Decidable.Sets open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import LogicalFormulae open import Semirings.Definition open import Functions.Definition open import Functions.Lemmas open import Groups.Isomorphisms.Definition open import Groups.FreeGroup.Word open import Groups.FreeGroup.Group open import Groups.FreeGroup.UniversalProperty open import Groups.Abelian.Definition open import Groups.QuotientGroup.Definition open import Groups.Lemmas open import Groups.Homomorphisms.Lemmas module Groups.FreeGroup.Lemmas {a : _} {A : Set a} (decA : DecidableSet A) where freeGroupNonAbelian : AbelianGroup (freeGroup decA) → (a : A) → Sg (A → True) Bijection freeGroupNonAbelian record { commutative = commutative } a = (λ _ → record {}) , b where b : Bijection (λ _ → record {}) Bijection.inj b {x} {y} _ with decA x y ... | inl pr = pr ... | inr neq = exFalso (neq (ofLetterInjective (prependLetterInjective' decA t))) where t : prependLetter {decA = decA} (ofLetter x) (prependLetter (ofLetter y) empty (wordEmpty refl)) (wordEnding (succIsPositive 0) refl) ≡ prependLetter (ofLetter y) (prependLetter (ofLetter x) empty (wordEmpty refl)) (wordEnding (succIsPositive 0) refl) t = commutative {prependLetter (ofLetter x) empty (wordEmpty refl)} {prependLetter (ofLetter y) empty (wordEmpty refl)} Bijection.surj b record {} = a , refl private iso : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → Bijection f → ReducedWord decA → ReducedWord decB iso decB {f} bij = universalPropertyFunction decA (freeGroup decB) λ a → freeEmbedding decB (f a) isoHom : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → (bij : Bijection f) → GroupHom (freeGroup decA) (freeGroup decB) (iso decB bij) isoHom decB {f} bij = universalPropertyHom decA (freeGroup decB) λ a → iso decB bij (freeEmbedding decA a) iso2 : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → Bijection f → ReducedWord decB → ReducedWord decA iso2 decB {f} bij = universalPropertyFunction decB (freeGroup decA) λ b → freeEmbedding decA (Invertible.inverse (bijectionImpliesInvertible bij) b) iso2Hom : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → (bij : Bijection f) → GroupHom (freeGroup decB) (freeGroup decA) (iso2 decB bij) iso2Hom decB {f} bij = universalPropertyHom decB (freeGroup decA) λ b → iso2 decB bij (freeEmbedding decB b) fixesF : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → (bij : Bijection f) → (x : A) → iso2 decB bij (iso decB bij (freeEmbedding decA x)) ≡ freeEmbedding decA x fixesF decB {f} bij x with Bijection.surj bij (f x) ... | _ , pr rewrite Bijection.inj bij pr = refl fixesF' : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → (bij : Bijection f) → (x : B) → iso decB bij (iso2 decB bij (freeEmbedding decB x)) ≡ freeEmbedding decB x fixesF' decB {f} bij x with Bijection.surj bij x ... | _ , pr rewrite pr = refl uniq : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → (bij : Bijection f) → (x : ReducedWord decA) → x ≡ universalPropertyFunction decA (freeGroup decA) (λ x → iso2 decB bij (iso decB bij (freeEmbedding decA x))) x uniq decB {f} bij x = universalPropertyUniqueness decA (freeGroup decA) (λ x → iso2 decB bij (iso decB bij (freeEmbedding decA x))) {id} (record { wellDefined = id ; groupHom = refl }) (fixesF decB bij) x uniqLemm : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → (bij : Bijection f) → (x : ReducedWord decA) → iso2 decB bij (iso decB bij x) ≡ universalPropertyFunction decA (freeGroup decA) (λ x → iso2 decB bij (iso decB bij (freeEmbedding decA x))) x uniqLemm decB {f} bij x = universalPropertyUniqueness decA (freeGroup decA) (λ i → freeEmbedding decA (underlying (Bijection.surj bij (f i)))) {λ i → iso2 decB bij (iso decB bij i)} (groupHomsCompose (isoHom decB bij) (iso2Hom decB bij)) (λ _ → refl) x uniq! : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → (bij : Bijection f) → (x : ReducedWord decA) → iso2 decB bij (iso decB bij x) ≡ x uniq! decB bij x = transitivity (uniqLemm decB bij x) (equalityCommutative (uniq decB bij x)) uniq' : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → (bij : Bijection f) → (x : ReducedWord decB) → x ≡ universalPropertyFunction decB (freeGroup decB) (λ x → iso decB bij (iso2 decB bij (freeEmbedding decB x))) x uniq' decB {f} bij x = universalPropertyUniqueness decB (freeGroup decB) (λ x → iso decB bij (iso2 decB bij (freeEmbedding decB x))) {id} (record { wellDefined = id ; groupHom = refl }) (fixesF' decB bij) x uniq'Lemm : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → (bij : Bijection f) → (x : ReducedWord decB) → iso decB bij (iso2 decB bij x) ≡ universalPropertyFunction decB (freeGroup decB) (λ x → iso decB bij (iso2 decB bij (freeEmbedding decB x))) x uniq'Lemm decB {f} bij x = universalPropertyUniqueness decB (freeGroup decB) (λ i → freeEmbedding decB (f (Invertible.inverse (bijectionImpliesInvertible bij) i))) {λ i → iso decB bij (iso2 decB bij i)} (groupHomsCompose (iso2Hom decB bij) (isoHom decB bij)) (λ _ → refl) x uniq'! : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → (bij : Bijection f) → (x : ReducedWord decB) → iso decB bij (iso2 decB bij x) ≡ x uniq'! decB bij x = transitivity (uniq'Lemm decB bij x) (equalityCommutative (uniq' decB bij x)) inBijection : {b : _} {B : Set b} (decB : DecidableSet B) {f : A → B} (bij : Bijection f) → Bijection (iso decB bij) inBijection decB bij = invertibleImpliesBijection (record { inverse = iso2 decB bij ; isLeft = uniq'! decB bij ; isRight = uniq! decB bij }) freeGroupFunctorWellDefined : {b : _} {B : Set b} (decB : DecidableSet B) → {f : A → B} → Bijection f → GroupsIsomorphic (freeGroup decA) (freeGroup decB) GroupsIsomorphic.isomorphism (freeGroupFunctorWellDefined decB {f} bij) = iso decB bij GroupIso.groupHom (GroupsIsomorphic.proof (freeGroupFunctorWellDefined decB {f} bij)) = universalPropertyHom decA (freeGroup decB) λ a → freeEmbedding decB (f a) SetoidInjection.wellDefined (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof (freeGroupFunctorWellDefined decB {f} bij)))) refl = refl SetoidInjection.injective (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof (freeGroupFunctorWellDefined decB {f} bij)))) {x} {y} pr = Bijection.inj (inBijection decB bij) pr SetoidSurjection.wellDefined (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (freeGroupFunctorWellDefined decB {f} bij)))) refl = refl SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (freeGroupFunctorWellDefined decB {f} bij)))) {x} = Bijection.surj (inBijection decB bij) x {- freeGroupFunctorInjective : {b : _} {B : Set b} (decB : DecidableSet B) → GroupsIsomorphic (freeGroup decA) (freeGroup decB) → Sg (A → B) (λ f → Bijection f) freeGroupFunctorInjective decB iso = {!!} everyGroupQuotientOfFreeGroup : {b : _} → (S : Setoid {a} {b} A) → {_+_ : A → A → A} → (G : Group S _+_) → GroupsIsomorphic G (quotientGroupByHom (freeGroup decA) (universalPropertyHom decA {!!} {!!})) everyGroupQuotientOfFreeGroup = {!!} everyFGGroupQuotientOfFGFreeGroup : {!!} everyFGGroupQuotientOfFGFreeGroup = {!!} freeGroupTorsionFree : {!!} freeGroupTorsionFree = {!!} -} private mapNToGrp : (a : A) → (n : ℕ) → ReducedWord decA mapNToGrpLen : (a : A) → (n : ℕ) → wordLength decA (mapNToGrp a n) ≡ n mapNToGrpFirstLetter : (a : A) → (n : ℕ) → .(pr : 0 <N wordLength decA (mapNToGrp a (succ n))) → firstLetter decA (mapNToGrp a (succ n)) pr ≡ (ofLetter a) lemma : (a : A) → (n : ℕ) → .(pr : 0 <N wordLength decA (mapNToGrp a (succ n))) → ofLetter a ≡ freeInverse (firstLetter decA (mapNToGrp a (succ n)) pr) → False lemma a zero _ () lemma a (succ n) _ () mapNToGrp a zero = empty mapNToGrp a 1 = prependLetter (ofLetter a) empty (wordEmpty refl) mapNToGrp a (succ (succ n)) = prependLetter (ofLetter a) (mapNToGrp a (succ n)) (wordEnding (identityOfIndiscernablesRight _<N_ (succIsPositive n) (equalityCommutative (mapNToGrpLen a (succ n)))) (freeCompletionEqualFalse decA λ p → lemma a n ((identityOfIndiscernablesRight _<N_ (succIsPositive n) (equalityCommutative (mapNToGrpLen a (succ n))))) p)) mapNToGrpFirstLetter a zero pr = refl mapNToGrpFirstLetter a (succ n) pr = refl mapNToGrpLen a zero = refl mapNToGrpLen a (succ zero) = refl mapNToGrpLen a (succ (succ n)) = applyEquality succ (mapNToGrpLen a (succ n)) mapNToGrpInj : (a : A) → (x y : ℕ) → mapNToGrp a x ≡ mapNToGrp a y → x ≡ y mapNToGrpInj a zero zero pr = refl mapNToGrpInj a zero (succ zero) () mapNToGrpInj a zero (succ (succ y)) () mapNToGrpInj a (succ zero) zero () mapNToGrpInj a (succ (succ x)) zero () mapNToGrpInj a (succ zero) (succ zero) pr = refl mapNToGrpInj a (succ zero) (succ (succ y)) pr = exFalso (naughtE (transitivity (applyEquality (wordLength decA) (prependLetterInjective decA pr)) (mapNToGrpLen a (succ y)))) mapNToGrpInj a (succ (succ x)) (succ 0) pr = exFalso (naughtE (transitivity (equalityCommutative (applyEquality (wordLength decA) (prependLetterInjective decA pr))) (mapNToGrpLen a (succ x)))) mapNToGrpInj a (succ (succ x)) (succ (succ y)) pr = applyEquality succ (mapNToGrpInj a (succ x) (succ y) (prependLetterInjective decA pr)) freeGroupInfinite : (nonempty : A) → DedekindInfiniteSet (ReducedWord decA) DedekindInfiniteSet.inj (freeGroupInfinite nonempty) = mapNToGrp nonempty DedekindInfiniteSet.isInjection (freeGroupInfinite nonempty) {x} {y} = mapNToGrpInj nonempty x y
74.233083
354
0.701307
19e9b2e52a7dbd4c2854bdcea2e86ecbdc66abfa
8,816
agda
Agda
Cubical/Functions/Logic.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Functions/Logic.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Functions/Logic.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
-- Various functions for manipulating hProps. -- -- This file used to be part of Foundations, but it turned out to be -- not very useful so moved here. Feel free to upstream content. -- -- Note that it is often a bad idea to use hProp instead of having the -- isProp proof separate. The reason is that Agda can rarely infer -- isProp proofs making it easier to just give them explicitly instead -- of having them bundled up with the type. -- {-# OPTIONS --safe #-} module Cubical.Functions.Logic where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Structure open import Cubical.Foundations.Function open import Cubical.Foundations.Univalence using (hPropExt) import Cubical.Data.Empty as ⊥ open import Cubical.Data.Sum as ⊎ using (_⊎_) open import Cubical.Data.Unit open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation as PropTrunc open import Cubical.Relation.Nullary hiding (¬_) -------------------------------------------------------------------------------- -- The type hProp of mere propositions -- the definition hProp is given in Foundations.HLevels -- hProp ℓ = Σ (Type ℓ) isProp private variable ℓ ℓ' ℓ'' : Level P Q R : hProp ℓ A B C : Type ℓ infix 10 ¬_ infixr 8 _⊔_ infixr 8 _⊔′_ infixr 8 _⊓_ infixr 8 _⊓′_ infixr 6 _⇒_ infixr 4 _⇔_ infix 30 _≡ₚ_ infix 30 _≢ₚ_ infix 2 ∃[]-syntax infix 2 ∃[∶]-syntax infix 2 ∀[∶]-syntax infix 2 ∀[]-syntax infix 2 ⇒∶_⇐∶_ infix 2 ⇐∶_⇒∶_ ∥_∥ₚ : Type ℓ → hProp ℓ ∥ A ∥ₚ = ∥ A ∥₁ , isPropPropTrunc _≡ₚ_ : (x y : A) → hProp _ x ≡ₚ y = ∥ x ≡ y ∥ₚ hProp≡ : ⟨ P ⟩ ≡ ⟨ Q ⟩ → P ≡ Q hProp≡ = TypeOfHLevel≡ 1 isProp⟨⟩ : (A : hProp ℓ) → isProp ⟨ A ⟩ isProp⟨⟩ = snd -------------------------------------------------------------------------------- -- Logical implication of mere propositions _⇒_ : (A : hProp ℓ) → (B : hProp ℓ') → hProp _ A ⇒ B = (⟨ A ⟩ → ⟨ B ⟩) , isPropΠ λ _ → isProp⟨⟩ B ⇔toPath : ⟨ P ⇒ Q ⟩ → ⟨ Q ⇒ P ⟩ → P ≡ Q ⇔toPath {P = P} {Q = Q} P⇒Q Q⇒P = hProp≡ (hPropExt (isProp⟨⟩ P) (isProp⟨⟩ Q) P⇒Q Q⇒P) pathTo⇒ : P ≡ Q → ⟨ P ⇒ Q ⟩ pathTo⇒ p x = subst fst p x pathTo⇐ : P ≡ Q → ⟨ Q ⇒ P ⟩ pathTo⇐ p x = subst fst (sym p) x substₚ : {x y : A} (B : A → hProp ℓ) → ⟨ x ≡ₚ y ⇒ B x ⇒ B y ⟩ substₚ {x = x} {y = y} B = PropTrunc.elim (λ _ → isPropΠ λ _ → isProp⟨⟩ (B y)) (subst (fst ∘ B)) -------------------------------------------------------------------------------- -- Mixfix notations for ⇔-toPath -- see ⊔-identityˡ and ⊔-identityʳ for the difference ⇒∶_⇐∶_ : ⟨ P ⇒ Q ⟩ → ⟨ Q ⇒ P ⟩ → P ≡ Q ⇒∶_⇐∶_ = ⇔toPath ⇐∶_⇒∶_ : ⟨ Q ⇒ P ⟩ → ⟨ P ⇒ Q ⟩ → P ≡ Q ⇐∶ g ⇒∶ f = ⇔toPath f g -------------------------------------------------------------------------------- -- False and True ⊥ : hProp _ ⊥ = ⊥.⊥ , λ () ⊤ : ∀ {ℓ} → hProp ℓ ⊤ = Unit* , (λ _ _ _ → tt*) -------------------------------------------------------------------------------- -- Pseudo-complement of mere propositions ¬_ : hProp ℓ → hProp _ ¬ A = (⟨ A ⟩ → ⊥.⊥) , isPropΠ λ _ → ⊥.isProp⊥ _≢ₚ_ : (x y : A) → hProp _ x ≢ₚ y = ¬ x ≡ₚ y -------------------------------------------------------------------------------- -- Disjunction of mere propositions _⊔′_ : Type ℓ → Type ℓ' → Type _ A ⊔′ B = ∥ A ⊎ B ∥₁ _⊔_ : hProp ℓ → hProp ℓ' → hProp _ P ⊔ Q = ∥ ⟨ P ⟩ ⊎ ⟨ Q ⟩ ∥ₚ inl : A → A ⊔′ B inl x = ∣ ⊎.inl x ∣₁ inr : B → A ⊔′ B inr x = ∣ ⊎.inr x ∣₁ ⊔-elim : (P : hProp ℓ) (Q : hProp ℓ') (R : ⟨ P ⊔ Q ⟩ → hProp ℓ'') → (∀ x → ⟨ R (inl x) ⟩) → (∀ y → ⟨ R (inr y) ⟩) → (∀ z → ⟨ R z ⟩) ⊔-elim _ _ R P⇒R Q⇒R = PropTrunc.elim (snd ∘ R) (⊎.elim P⇒R Q⇒R) -------------------------------------------------------------------------------- -- Conjunction of mere propositions _⊓′_ : Type ℓ → Type ℓ' → Type _ A ⊓′ B = A × B _⊓_ : hProp ℓ → hProp ℓ' → hProp _ A ⊓ B = ⟨ A ⟩ ⊓′ ⟨ B ⟩ , isOfHLevelΣ 1 (isProp⟨⟩ A) (\ _ → isProp⟨⟩ B) ⊓-intro : (P : hProp ℓ) (Q : ⟨ P ⟩ → hProp ℓ') (R : ⟨ P ⟩ → hProp ℓ'') → (∀ a → ⟨ Q a ⟩) → (∀ a → ⟨ R a ⟩) → (∀ (a : ⟨ P ⟩) → ⟨ Q a ⊓ R a ⟩ ) ⊓-intro _ _ _ = \ f g a → f a , g a -------------------------------------------------------------------------------- -- Logical bi-implication of mere propositions _⇔_ : hProp ℓ → hProp ℓ' → hProp _ A ⇔ B = (A ⇒ B) ⊓ (B ⇒ A) ⇔-id : (P : hProp ℓ) → ⟨ P ⇔ P ⟩ ⇔-id P = (idfun ⟨ P ⟩) , (idfun ⟨ P ⟩) -------------------------------------------------------------------------------- -- Universal Quantifier ∀[∶]-syntax : (A → hProp ℓ) → hProp _ ∀[∶]-syntax {A = A} P = (∀ x → ⟨ P x ⟩) , isPropΠ (isProp⟨⟩ ∘ P) ∀[]-syntax : (A → hProp ℓ) → hProp _ ∀[]-syntax {A = A} P = (∀ x → ⟨ P x ⟩) , isPropΠ (isProp⟨⟩ ∘ P) syntax ∀[∶]-syntax {A = A} (λ a → P) = ∀[ a ∶ A ] P syntax ∀[]-syntax (λ a → P) = ∀[ a ] P -------------------------------------------------------------------------------- -- Existential Quantifier ∃[]-syntax : (A → hProp ℓ) → hProp _ ∃[]-syntax {A = A} P = ∥ Σ A (⟨_⟩ ∘ P) ∥ₚ ∃[∶]-syntax : (A → hProp ℓ) → hProp _ ∃[∶]-syntax {A = A} P = ∥ Σ A (⟨_⟩ ∘ P) ∥ₚ syntax ∃[∶]-syntax {A = A} (λ x → P) = ∃[ x ∶ A ] P syntax ∃[]-syntax (λ x → P) = ∃[ x ] P -------------------------------------------------------------------------------- -- Decidable mere proposition Decₚ : (P : hProp ℓ) → hProp ℓ Decₚ P = Dec ⟨ P ⟩ , isPropDec (isProp⟨⟩ P) -------------------------------------------------------------------------------- -- Negation commutes with truncation ∥¬A∥≡¬∥A∥ : (A : Type ℓ) → ∥ (A → ⊥.⊥) ∥ₚ ≡ (¬ ∥ A ∥ₚ) ∥¬A∥≡¬∥A∥ _ = ⇒∶ (λ ¬A A → PropTrunc.elim (λ _ → ⊥.isProp⊥) (PropTrunc.elim (λ _ → isPropΠ λ _ → ⊥.isProp⊥) (λ ¬p p → ¬p p) ¬A) A) ⇐∶ λ ¬p → ∣ (λ p → ¬p ∣ p ∣₁) ∣₁ -------------------------------------------------------------------------------- -- (hProp, ⊔, ⊥) is a bounded ⊔-semilattice ⊔-assoc : (P : hProp ℓ) (Q : hProp ℓ') (R : hProp ℓ'') → P ⊔ (Q ⊔ R) ≡ (P ⊔ Q) ⊔ R ⊔-assoc P Q R = ⇒∶ ⊔-elim P (Q ⊔ R) (λ _ → (P ⊔ Q) ⊔ R) (inl ∘ inl) (⊔-elim Q R (λ _ → (P ⊔ Q) ⊔ R) (inl ∘ inr) inr) ⇐∶ assoc2 where assoc2 : (A ⊔′ B) ⊔′ C → A ⊔′ (B ⊔′ C) assoc2 ∣ ⊎.inr a ∣₁ = ∣ ⊎.inr ∣ ⊎.inr a ∣₁ ∣₁ assoc2 ∣ ⊎.inl ∣ ⊎.inr b ∣₁ ∣₁ = ∣ ⊎.inr ∣ ⊎.inl b ∣₁ ∣₁ assoc2 ∣ ⊎.inl ∣ ⊎.inl c ∣₁ ∣₁ = ∣ ⊎.inl c ∣₁ assoc2 ∣ ⊎.inl (squash₁ x y i) ∣₁ = isPropPropTrunc (assoc2 ∣ ⊎.inl x ∣₁) (assoc2 ∣ ⊎.inl y ∣₁) i assoc2 (squash₁ x y i) = isPropPropTrunc (assoc2 x) (assoc2 y) i ⊔-idem : (P : hProp ℓ) → P ⊔ P ≡ P ⊔-idem P = ⇒∶ (⊔-elim P P (\ _ → P) (\ x → x) (\ x → x)) ⇐∶ inl ⊔-comm : (P : hProp ℓ) (Q : hProp ℓ') → P ⊔ Q ≡ Q ⊔ P ⊔-comm P Q = ⇒∶ (⊔-elim P Q (\ _ → (Q ⊔ P)) inr inl) ⇐∶ (⊔-elim Q P (\ _ → (P ⊔ Q)) inr inl) ⊔-identityˡ : (P : hProp ℓ) → ⊥ ⊔ P ≡ P ⊔-identityˡ P = ⇒∶ (⊔-elim ⊥ P (λ _ → P) (λ ()) (λ x → x)) ⇐∶ inr ⊔-identityʳ : (P : hProp ℓ) → P ⊔ ⊥ ≡ P ⊔-identityʳ P = ⇔toPath (⊔-elim P ⊥ (λ _ → P) (λ x → x) λ ()) inl -------------------------------------------------------------------------------- -- (hProp, ⊓, ⊤) is a bounded ⊓-lattice ⊓-assoc : (P : hProp ℓ) (Q : hProp ℓ') (R : hProp ℓ'') → P ⊓ Q ⊓ R ≡ (P ⊓ Q) ⊓ R ⊓-assoc _ _ _ = ⇒∶ (λ {(x , (y , z)) → (x , y) , z}) ⇐∶ (λ {((x , y) , z) → x , (y , z) }) ⊓-comm : (P : hProp ℓ) (Q : hProp ℓ') → P ⊓ Q ≡ Q ⊓ P ⊓-comm _ _ = ⇔toPath (\ p → p .snd , p .fst) (\ p → p .snd , p .fst) ⊓-idem : (P : hProp ℓ) → P ⊓ P ≡ P ⊓-idem _ = ⇔toPath fst (λ x → x , x) ⊓-identityˡ : (P : hProp ℓ) → ⊤ {ℓ} ⊓ P ≡ P ⊓-identityˡ _ = ⇔toPath snd λ x → tt* , x ⊓-identityʳ : (P : hProp ℓ) → P ⊓ ⊤ {ℓ} ≡ P ⊓-identityʳ _ = ⇔toPath fst λ x → x , tt* -------------------------------------------------------------------------------- -- Distributive laws ⇒-⊓-distrib : (P : hProp ℓ) (Q : hProp ℓ')(R : hProp ℓ'') → P ⇒ (Q ⊓ R) ≡ (P ⇒ Q) ⊓ (P ⇒ R) ⇒-⊓-distrib _ _ _ = ⇒∶ (λ f → (fst ∘ f) , (snd ∘ f)) ⇐∶ (λ { (f , g) x → f x , g x}) ⊓-⊔-distribˡ : (P : hProp ℓ) (Q : hProp ℓ')(R : hProp ℓ'') → P ⊓ (Q ⊔ R) ≡ (P ⊓ Q) ⊔ (P ⊓ R) ⊓-⊔-distribˡ P Q R = ⇒∶ (λ { (x , a) → ⊔-elim Q R (λ _ → (P ⊓ Q) ⊔ (P ⊓ R)) (λ y → ∣ ⊎.inl (x , y) ∣₁ ) (λ z → ∣ ⊎.inr (x , z) ∣₁ ) a }) ⇐∶ ⊔-elim (P ⊓ Q) (P ⊓ R) (λ _ → P ⊓ Q ⊔ R) (λ y → fst y , inl (snd y)) (λ z → fst z , inr (snd z)) ⊔-⊓-distribˡ : (P : hProp ℓ) (Q : hProp ℓ')(R : hProp ℓ'') → P ⊔ (Q ⊓ R) ≡ (P ⊔ Q) ⊓ (P ⊔ R) ⊔-⊓-distribˡ P Q R = ⇒∶ ⊔-elim P (Q ⊓ R) (λ _ → (P ⊔ Q) ⊓ (P ⊔ R) ) (\ x → inl x , inl x) (\ p → inr (p .fst) , inr (p .snd)) ⇐∶ (λ { (x , y) → ⊔-elim P R (λ _ → P ⊔ Q ⊓ R) inl (λ z → ⊔-elim P Q (λ _ → P ⊔ Q ⊓ R) inl (λ y → inr (y , z)) x) y }) ⊓-∀-distrib : (P : A → hProp ℓ) (Q : A → hProp ℓ') → (∀[ a ∶ A ] P a) ⊓ (∀[ a ∶ A ] Q a) ≡ (∀[ a ∶ A ] (P a ⊓ Q a)) ⊓-∀-distrib P Q = ⇒∶ (λ {(p , q) a → p a , q a}) ⇐∶ λ pq → (fst ∘ pq ) , (snd ∘ pq)
30.295533
101
0.420599
1daec78cc4875922e4f3782aed83abc252804464
5,528
agda
Agda
Structure/Sets/ZFC/Classical.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Structure/Sets/ZFC/Classical.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Structure/Sets/ZFC/Classical.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
open import Type open import Structure.Relator open import Structure.Setoid renaming (_≡_ to _≡ₑ_) module Structure.Sets.ZFC.Classical {ℓₛ ℓₗ ℓₑ} {S : Type{ℓₛ}} ⦃ equiv : Equiv{ℓₑ}(S) ⦄ (_∈_ : S → S → Type{ℓₗ}) ⦃ [∈]-binaryRelator : BinaryRelator(_∈_) ⦄ where open import Data.Either as Either using () open import Functional open import Logic.Classical open import Logic.Predicate open import Logic.Propositional open import Logic.Propositional.Theorems import Lvl open import Structure.Operator open import Structure.Relator.Proofs open import Structure.Relator.Properties import Structure.Sets.Names open Structure.Sets.Names.From-[∈] (_∈_) open Structure.Sets.Names.Relations (_∈_) open import Structure.Sets.ZFC(_∈_) ⦃ [∈]-binaryRelator ⦄ open import Syntax.Function open import Syntax.Implication open import Syntax.Transitivity private variable ℓ : Lvl.Level private variable T A B : Type{ℓ} private variable x : S module _ ⦃ zfc : ZFC ⦄ where open ZFC(zfc) -- ZFC implies excluded middle. -- Note that this only requires the following set related axioms: -- • Set extensionality (Not really neccessary if every equality is replaced with set equality instead). -- • Axiom of choice (TODO: Is this really neccessary? The proof only uses the choice function on finite sets? Further investigation on choice functions for finite sets would clear this up). -- • Choice functions are functions. -- • Restricted set comprehension. -- • Existence of at least two different sets (In this proof, ∅ and {∅} (𝑇 and 𝐹) is used). -- • Existence of a set containing the two different sets, and the existence of all subsets of this set. -- Also called: Diaconescu's theorem, Goodman–Myhill theorem. excluded-middle-by-choice : ∀{P : Type{ℓ}} → Classical(P) excluded-middle-by-choice{P = P} = intro $ᵢₙₛₜ let instance pos-rel : UnaryRelator(x ↦ P ∨ (x ≡ 𝑇)) pos-rel = [∨]-unaryRelator ⦃ rel-Q = binary-unaryRelatorᵣ ⦄ instance neg-rel : UnaryRelator(x ↦ P ∨ (x ≡ 𝐹)) neg-rel = [∨]-unaryRelator ⦃ rel-Q = binary-unaryRelatorᵣ ⦄ pos = filter (x ↦ P ∨ (x ≡ 𝑇)) BoolSet neg = filter (x ↦ P ∨ (x ≡ 𝐹)) BoolSet -- The contents of pos by definition. A subset of BoolSet which is equal to BoolSet when P, {𝑇} otherwise. pos-containment : (x ∈ pos) ↔ (x ∈ BoolSet) ∧ (P ∨ (x ≡ 𝑇)) pos-containment = restricted-comprehension -- The contents of neg by definition. A subset of BoolSet which is equal to BoolSet when P, {𝐹} otherwise. neg-containment : (x ∈ neg) ↔ (x ∈ BoolSet) ∧ (P ∨ (x ≡ 𝐹)) neg-containment = restricted-comprehension -- pos is non-empty because it should at least contain 𝑇 from filtering BoolSet. instance ne-pos : NonEmpty(pos) ne-pos = [↔]-to-[←] (nonEmpty-filter) ([∃]-intro 𝑇 ⦃ [∧]-intro 𝑇-in-BoolSet ([∨]-introᵣ (\{_} → [↔]-reflexivity)) ⦄) -- neg is non-empty because it should at least contain 𝐹 from filtering BoolSet. instance ne-neg : NonEmpty(neg) ne-neg = [↔]-to-[←] (nonEmpty-filter) ([∃]-intro 𝐹 ⦃ [∧]-intro 𝐹-in-BoolSet ([∨]-introᵣ (\{_} → [↔]-reflexivity)) ⦄) -- Chooses an element in respective sets pos and neg. pos-choose = choose (pair pos neg) pos neg-choose = choose (pair pos neg) neg -- By definition of pos, either P holds or pos-choose have to be 𝑇. pos-choice : P ∨ (pos-choose ≡ 𝑇) pos-choice = [∧]-elimᵣ ([↔]-to-[→] pos-containment (choice {pair pos neg} {pos} ⦃ ne-pos ⦄ ⦃ pair-contains-left ⦄)) -- By definition of neg, either P holds or neg-choose have to be 𝐹. neg-choice : P ∨ (neg-choose ≡ 𝐹) neg-choice = [∧]-elimᵣ ([↔]-to-[→] neg-containment (choice {pair pos neg} {neg} ⦃ ne-neg ⦄ ⦃ pair-contains-right ⦄)) in • ( -- Contrapositive of the argument below states that if pos-choose and neg-choose is inequal, then (¬ P) (_⇒ -- When P holds, both pos and neg is BoolSet, so they are equal. The pos-choose and neg-choose is the choice function applied to the equal sets pos and neg respectively, and because choose is a function (it respects equality, specifically set equality), pos-choose and neg-choose is also equal. P ⇒-[ (\p {x} → [↔]-transitivity (pos-containment {x}) ([↔]-transitivity ([∧]-mapᵣ-[↔] ([↔]-intro (const([∨]-introₗ p)) (const([∨]-introₗ p)))) ([↔]-symmetry (neg-containment {x})))) ] (pos ≡ neg) ⇒-[ [↔]-to-[←] set-extensionality ] (pos ≡ₑ neg) ⇒-[ congruence₂(choose) (reflexivity(_≡ₑ_)) ] (pos-choose ≡ₑ neg-choose) ⇒-end ) ⇒ (P → (pos-choose ≡ₑ neg-choose)) ⇒-[ contrapositiveᵣ ] ((¬ P) ← (pos-choose ≢ neg-choose)) ⇒-end ) • ( -- The case other than P is that pos and neg only contains 𝑇 and 𝐹 respectively. This forces pos-choose and neg-choose to be 𝑇 and 𝐹 respectively, which means that they are inequal. • pos-choice • neg-choice ⇒₂-[ [∧]-intro ] (P ∨ (pos-choose ≡ 𝑇)) ∧ (P ∨ (neg-choose ≡ 𝐹)) ⇒-[ [↔]-to-[←] [∨][∧]-distributivityₗ ] P ∨ ((pos-choose ≡ 𝑇) ∧ (neg-choose ≡ 𝐹)) ⇒-[ Either.mapRight (\{([∧]-intro p0 n1) → [≡][≢]-semitransitivityᵣ([≡][≢]-semitransitivityₗ ([↔]-to-[←] set-extensionality p0) zero-one-ineq) (symmetry(_≡ₑ_) ([↔]-to-[←] set-extensionality n1))}) ] P ∨ (pos-choose ≢ neg-choose) ⇒-end ) ⇒₂-[ Either.mapRight ] (P ∨ (¬ P)) ⇒-end
52.647619
306
0.624819
134367bbfc51f3e9acaa5136a5fbcf628f06a338
37
agda
Agda
Structure/Sets/Relators.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Structure/Sets/Relators.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Structure/Sets/Relators.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Structure.Sets.Relators where
18.5
36
0.864865
1ea299f203b68cfe8591f0e955040582cdff5334
15,847
agda
Agda
theorems/stash/modalities/gbm/CoherenceData.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/stash/modalities/gbm/CoherenceData.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/stash/modalities/gbm/CoherenceData.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT hiding (left; right) import homotopy.ModalWedgeExtension module stash.modalities.gbm.CoherenceData {ℓ} (M : Modality ℓ) {A : Type ℓ} {B : Type ℓ} (Q : A → B → Type ℓ) (H : {a₀ : A} {b₀ : B} (q₀ : Q a₀ b₀) {a₁ : A} (q₁ : Q a₁ b₀) {b₁ : B} (q₂ : Q a₀ b₁) → Modality.is-◯-connected M (((a₀ , q₀) == (a₁ , q₁)) * ((b₀ , q₀) == (b₁ , q₂)))) where open Modality M module WedgeExt {A} {a₀} {B} {b₀} = homotopy.ModalWedgeExtension M {A} {a₀} {B} {b₀} open import stash.modalities.gbm.Pushout Q -- {- goal : -- ◯ (hfiber (λ q₁₀ → bmglue q₀₀ ∙' ! (bmglue q₁₀) ∙' bmglue q₁₁) r) -- ≃ ◯ (hfiber bmglue r) -- -} α₁=α₁α₂⁻¹α₂ : ∀ {p₁ p₂ p₃ : BMPushout} (α₁ : p₁ == p₂) (α₂ : p₃ == p₂) → α₁ == α₁ ∙' ! α₂ ∙' α₂ α₁=α₁α₂⁻¹α₂ _ idp = idp α₁=α₂α₂⁻¹α₁ : ∀ {p₁ p₂ p₃ : BMPushout} (α₁ : p₁ == p₂) (α₂ : p₁ == p₃) → α₁ == α₂ ∙' ! α₂ ∙' α₁ α₁=α₂α₂⁻¹α₁ idp α₂ = ! (!-inv'-r α₂) private path-lemma₁ : ∀ {a₀ a₁ b} (q₀ : Q a₀ b) (q₁ : Q a₁ b) → bmglue q₀ == bmglue q₀ ∙' ! (bmglue q₁) ∙' bmglue q₁ path-lemma₁ q₀ q₁ = α₁=α₁α₂⁻¹α₂ (bmglue q₀) (bmglue q₁) path-lemma₂ : ∀ {a b₀ b₁} (q₀ : Q a b₀) (q₁ : Q a b₁) → bmglue q₀ == bmglue q₁ ∙' ! (bmglue q₁) ∙' bmglue q₀ path-lemma₂ q₀ q₁ = α₁=α₂α₂⁻¹α₁ (bmglue q₀) (bmglue q₁) abstract path-coherence : ∀ {a b} (q : Q a b) → path-lemma₁ q q == path-lemma₂ q q path-coherence q = lemma (bmglue q) where lemma : ∀ {p₀ p₁ : BMPushout} (path : p₀ == p₁) → α₁=α₁α₂⁻¹α₂ path path == α₁=α₂α₂⁻¹α₁ path path lemma idp = idp module To {a₁ b₀} (q₁₀ : Q a₁ b₀) where U = Σ A λ a → Q a b₀ u₀ : U u₀ = (a₁ , q₁₀) V = Σ B λ b → Q a₁ b v₀ : V v₀ = (b₀ , q₁₀) P : U → V → Type ℓ P u v = (r : bmleft (fst u) == bmright (fst v)) → bmglue (snd u) ∙' ! (bmglue q₁₀) ∙' bmglue (snd v) == r → ◯ (hfiber bmglue r) template : ∀ (u : U) (v : V) → (r : bmleft (fst u) == bmright (fst v)) → (shift : bmglue (snd u) ∙' ! (bmglue q₁₀) ∙' bmglue (snd v) == r) → ∀ q₀₁ → bmglue q₀₁ == bmglue (snd u) ∙' ! (bmglue q₁₀) ∙' bmglue (snd v) → ◯ (hfiber bmglue r) template u v r shift q₀₁ path = η (q₀₁ , path ∙' shift) f = λ u r shift → template u v₀ r shift (snd u) (path-lemma₁ (snd u) q₁₀) g = λ v r shift → template u₀ v r shift (snd v) (path-lemma₂ (snd v) q₁₀) p' = λ r shift → ap (template u₀ v₀ r shift q₁₀) (path-coherence q₁₀) p = λ= λ r → λ= λ shift → p' r shift args : WedgeExt.args {A = U} {a₀ = u₀} {B = V} {b₀ = v₀} args = record { join-conn = λ u v → H q₁₀ (snd u) (snd v); R = λ u v → P u v , Π-is-local λ _ → Π-is-local λ _ → ◯-is-local; f = f; g = g; p = p} ext : ∀ u v → P u v ext = WedgeExt.ext args β-l : ∀ u r shift → ext u v₀ r shift == f u r shift β-l u r shift = app= (app= (WedgeExt.β-l u) r) shift β-r : ∀ v r shift → ext u₀ v r shift == g v r shift β-r v r shift = app= (app= (WedgeExt.β-r v) r) shift abstract coh : ∀ r shift → ! (β-l u₀ r shift) ∙ β-r v₀ r shift == p' r shift coh r shift = ! (β-l u₀ r shift) ∙ β-r v₀ r shift =⟨ ap (_∙ β-r v₀ r shift) (!-ap (_$ shift) (app= (WedgeExt.β-l u₀) r)) ∙ ∙-ap (_$ shift) (! (app= (WedgeExt.β-l {r = args} u₀) r)) (app= (WedgeExt.β-r {r = args} v₀) r) ∙ ap (λ p → app= p shift) ( ap (_∙ app= (WedgeExt.β-r {r = args} v₀) r) (!-ap (_$ r) (WedgeExt.β-l {r = args} u₀)) ∙ ∙-ap (_$ r) (! (WedgeExt.β-l {r = args} u₀)) (WedgeExt.β-r {r = args} v₀)) ⟩ app= (app= (! (WedgeExt.β-l {r = args} u₀) ∙ WedgeExt.β-r {r = args} v₀) r) shift =⟨ ap (λ p → app= (app= p r) shift) (WedgeExt.coh {r = args}) ⟩ app= (app= (λ= λ r → λ= λ shift → p' r shift) r) shift =⟨ ap (λ p → app= p shift) (app=-β (λ r → λ= λ shift → p' r shift) r) ∙ app=-β (λ shift → p' r shift) shift ⟩ p' r shift =∎ to' : ∀ {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) → (r : bmleft a₀ == bmright b₁) → hfiber (λ q₁₀ → bmglue q₀₀ ∙' ! (bmglue q₁₀) ∙' bmglue q₁₁) r → ◯ (hfiber bmglue r) to' q₀₀ q₁₁ r (q₁₀ , shift) = To.ext q₁₀ (_ , q₀₀) (_ , q₁₁) r shift to : ∀ {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) → (r : bmleft a₀ == bmright b₁) → ◯ (hfiber (λ q₁₀ → bmglue q₀₀ ∙' ! (bmglue q₁₀) ∙' bmglue q₁₁) r) → ◯ (hfiber bmglue r) to q₀₀ q₁₁ r = ◯-rec ◯-is-local (to' q₀₀ q₁₁ r) to-η-β : ∀ {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) → (r : bmleft a₀ == bmright b₁) → (fiber : hfiber (λ q₁₀ → bmglue q₀₀ ∙' ! (bmglue q₁₀) ∙' bmglue q₁₁) r) → to q₀₀ q₁₁ r (η fiber) == to' q₀₀ q₁₁ r fiber to-η-β q₀₀ q₁₁ r = ◯-rec-β ◯-is-local (to' q₀₀ q₁₁ r) module From {a₀ b₁} (q₀₁ : Q a₀ b₁) where U = Σ A λ a → Q a b₁ u₀ : U u₀ = (a₀ , q₀₁) V = Σ B λ b → Q a₀ b v₀ : V v₀ = (b₁ , q₀₁) P : U → V → Type ℓ P u v = (r : bmleft a₀ == bmright b₁) → bmglue q₀₁ == r → ◯ (hfiber (λ q₁₀ → bmglue (snd v) ∙' ! (bmglue q₁₀) ∙' bmglue (snd u)) r) template : ∀ (u : U) (v : V) → (r : bmleft a₀ == bmright b₁) → (shift : bmglue q₀₁ == r) → ∀ q₁₀ → bmglue q₀₁ == bmglue (snd v) ∙' ! (bmglue q₁₀) ∙' bmglue (snd u) → ◯ (hfiber (λ q₁₀ → bmglue (snd v) ∙' ! (bmglue q₁₀) ∙' bmglue (snd u)) r) template u v r shift q₁₀ path = η (q₁₀ , ! path ∙' shift) f = λ u r shift → template u v₀ r shift (snd u) (path-lemma₁ q₀₁ (snd u)) g = λ v r shift → template u₀ v r shift (snd v) (path-lemma₂ q₀₁ (snd v)) p' = λ r shift → ap (template u₀ v₀ r shift q₀₁) (path-coherence q₀₁) p = λ= λ r → λ= λ shift → p' r shift args : WedgeExt.args {A = U} {a₀ = u₀} {B = V} {b₀ = v₀} args = record { join-conn = λ u v → H q₀₁ (snd u) (snd v); R = λ u v → P u v , Π-is-local λ _ → Π-is-local λ _ → ◯-is-local; f = f; g = g; p = p} ext : ∀ u v → P u v ext = WedgeExt.ext args β-l : ∀ u r shift → ext u v₀ r shift == f u r shift β-l u r shift = app= (app= (WedgeExt.β-l u) r) shift β-r : ∀ v r shift → ext u₀ v r shift == g v r shift β-r v r shift = app= (app= (WedgeExt.β-r v) r) shift abstract coh : ∀ r shift → ! (β-l u₀ r shift) ∙ β-r v₀ r shift == p' r shift coh r shift = ! (β-l u₀ r shift) ∙ β-r v₀ r shift =⟨ ap (_∙ β-r v₀ r shift) (!-ap (_$ shift) (app= β-l' r)) ∙ ∙-ap (_$ shift) (! (app= β-l' r)) (app= β-r' r) ∙ ap (λ p → app= p shift) ( ap (_∙ app= β-r' r) (!-ap (_$ r) β-l') ∙ ∙-ap (_$ r) (! β-l') β-r') ⟩ app= (app= (! β-l' ∙ β-r') r) shift =⟨ ap (λ p → app= (app= p r) shift) (WedgeExt.coh {r = args}) ⟩ app= (app= (λ= λ r → λ= λ shift → p' r shift) r) shift =⟨ ap (λ p → app= p shift) (app=-β (λ r → λ= λ shift → p' r shift) r) ∙ app=-β (λ shift → p' r shift) shift ⟩ p' r shift =∎ where β-l' = WedgeExt.β-l {r = args} u₀ β-r' = WedgeExt.β-r {r = args} v₀ from' : ∀ {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) → (r : bmleft a₀ == bmright b₁) → hfiber bmglue r → ◯ (hfiber (λ q₁₀ → bmglue q₀₀ ∙' ! (bmglue q₁₀) ∙' bmglue q₁₁) r) from' q₀₀ q₁₁ r (q₀₁ , shift) = From.ext q₀₁ (_ , q₁₁) (_ , q₀₀) r shift from : ∀ {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) → (r : bmleft a₀ == bmright b₁) → ◯ (hfiber bmglue r) → ◯ (hfiber (λ q₁₀ → bmglue q₀₀ ∙' ! (bmglue q₁₀) ∙' bmglue q₁₁) r) from q₀₀ q₁₁ r = ◯-rec ◯-is-local (from' q₀₀ q₁₁ r) from-η-β : ∀ {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) → (r : bmleft a₀ == bmright b₁) → (fiber : hfiber bmglue r) → from q₀₀ q₁₁ r (η fiber) == from' q₀₀ q₁₁ r fiber from-η-β q₀₀ q₁₁ r = ◯-rec-β ◯-is-local (from' q₀₀ q₁₁ r) -- Equivalence {- First step: Pack relevant rules into records. -} record βPair {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) (q₀₁ : Q a₀ b₁) (q₁₀ : Q a₁ b₀) (r : bmleft a₀ == bmright b₁) : Type ℓ where constructor βpair field path : bmglue q₀₁ == bmglue q₀₀ ∙' ! (bmglue q₁₀) ∙' bmglue q₁₁ to-β : ∀ shift → To.ext q₁₀ (_ , q₀₀) (_ , q₁₁) r shift == To.template q₁₀ (_ , q₀₀) (_ , q₁₁) r shift q₀₁ path from-β : ∀ shift → From.ext q₀₁ (_ , q₁₁) (_ , q₀₀) r shift == From.template q₀₁ (_ , q₁₁) (_ , q₀₀) r shift q₁₀ path βpair-bmleft : ∀ {a₀ a₁ b} (q₀ : Q a₀ b) (q₁ : Q a₁ b) r → βPair q₀ q₁ q₀ q₁ r βpair-bmleft q₀ q₁ r = record { path = path-lemma₁ q₀ q₁ ; to-β = To.β-l q₁ (_ , q₀) r ; from-β = From.β-l q₀ (_ , q₁) r } βpair-bmright : ∀ {a b₀ b₁} (q₀ : Q a b₀) (q₁ : Q a b₁) r → βPair q₀ q₁ q₁ q₀ r βpair-bmright q₀ q₁ r = record { path = path-lemma₂ q₁ q₀ ; to-β = To.β-r q₀ (_ , q₁) r ; from-β = From.β-r q₁ (_ , q₀) r } abstract βpair= : ∀ {a₀ a₁} {b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) (q₀₁ : Q a₀ b₁) (q₁₀ : Q a₁ b₀) (r : bmleft a₀ == bmright b₁) {p₁ p₂ : bmglue q₀₁ == bmglue q₀₀ ∙' ! (bmglue q₁₀) ∙' bmglue q₁₁} (p= : p₁ == p₂) {toβ₁} {toβ₂} (toβ= : ∀ shift → toβ₁ shift ∙ ap (To.template q₁₀ (_ , q₀₀) (_ , q₁₁) r shift q₀₁) p= == toβ₂ shift) {fromβ₁} {fromβ₂} (fromβ= : ∀ shift → fromβ₁ shift ∙ ap (From.template q₀₁ (_ , q₁₁) (_ , q₀₀) r shift q₁₀) p= == fromβ₂ shift) → βpair p₁ toβ₁ fromβ₁ == βpair p₂ toβ₂ fromβ₂ βpair= q₀₀ q₁₁ q₀₁ q₁₀ r {p} idp toβ= fromβ= = lemma (λ= λ shift → ! (∙-unit-r _) ∙ toβ= shift) (λ= λ shift → ! (∙-unit-r _) ∙ fromβ= shift) where lemma : ∀ {toβ₁} {toβ₂} (toβ= : toβ₁ == toβ₂) {fromβ₁} {fromβ₂} (fromβ= : fromβ₁ == fromβ₂) → βpair p toβ₁ fromβ₁ == βpair p toβ₂ fromβ₂ lemma idp idp = idp abstract βpair-glue : ∀ {a} {b} (q : Q a b) r → βpair-bmleft q q r == βpair-bmright q q r βpair-glue q r = βpair= q q q q r (path-coherence q) (λ shift → To.β-l q (_ , q) r shift ∙ To.p' q r shift =⟨ ! $ ap (To.β-l q (_ , q) r shift ∙_) (To.coh q r shift) ⟩ To.β-l q (_ , q) r shift ∙ ! (To.β-l q (_ , q) r shift) ∙ To.β-r q (_ , q) r shift =⟨ ! (∙-assoc (To.β-l q (_ , q) r shift) (! (To.β-l q (_ , q) r shift)) (To.β-r q (_ , q) r shift)) ∙ ap (_∙ To.β-r q (_ , q) r shift) (!-inv-r (To.β-l q (_ , q) r shift)) ⟩ To.β-r q (_ , q) r shift ∎) (λ shift → From.β-l q (_ , q) r shift ∙ From.p' q r shift =⟨ ! $ ap (From.β-l q (_ , q) r shift ∙_) (From.coh q r shift) ⟩ From.β-l q (_ , q) r shift ∙ ! (From.β-l q (_ , q) r shift) ∙ From.β-r q (_ , q) r shift =⟨ ! (∙-assoc (From.β-l q (_ , q) r shift) (! (From.β-l q (_ , q) r shift)) (From.β-r q (_ , q) r shift)) ∙ ap (_∙ From.β-r q (_ , q) r shift) (!-inv-r (From.β-l q (_ , q) r shift)) ⟩ From.β-r q (_ , q) r shift ∎) -- Lemmas private abstract to-from-template : ∀ {a₀ a₁ b₀ b₁} {q₀₀ : Q a₀ b₀} {q₁₁ : Q a₁ b₁} {q₀₁ : Q a₀ b₁} {q₁₀ : Q a₁ b₀} {r} (params : βPair q₀₀ q₁₁ q₀₁ q₁₀ r) shift → to q₀₀ q₁₁ r (from q₀₀ q₁₁ r (η (q₀₁ , shift ))) == η (q₀₁ , shift) to-from-template {q₀₀ = q₀₀} {q₁₁} {q₀₁} {q₁₀} {r} params shift = to q₀₀ q₁₁ r (from q₀₀ q₁₁ r (η (q₀₁ , shift))) =⟨ ap (to q₀₀ q₁₁ r) $ from-η-β q₀₀ q₁₁ r (q₀₁ , shift) ∙ from-β shift ⟩ to q₀₀ q₁₁ r (η (q₁₀ , ! path ∙' shift)) =⟨ to-η-β q₀₀ q₁₁ r (q₁₀ , ! path ∙' shift) ∙ to-β (! path ∙' shift) ⟩ η (q₀₁ , path ∙' ! path ∙' shift) =⟨ ap (λ p → η (q₀₁ , p)) $ ! (∙'-assoc path (! path) shift) ∙ ap (_∙' shift) (!-inv'-r path) ∙ ∙'-unit-l shift ⟩ η (q₀₁ , shift) =∎ where open βPair params module FromTo {a₁ b₀} (q₁₀ : Q a₁ b₀) where -- upper U = To.U q₁₀ u₀ = To.u₀ q₁₀ -- lower V = To.V q₁₀ v₀ = To.v₀ q₁₀ P : U → V → Type ℓ P u v = (r : bmleft (fst u) == bmright (fst v)) → (shift : bmglue (snd u) ∙' ! (bmglue q₁₀) ∙' bmglue (snd v) == r) → from (snd u) (snd v) r (to (snd u) (snd v) r (η (q₁₀ , shift))) == η (q₁₀ , shift) abstract template : ∀ (u : U) (v : V) r shift q₀₁ → βPair (snd u) (snd v) q₀₁ q₁₀ r → from (snd u) (snd v) r (to (snd u) (snd v) r (η (q₁₀ , shift))) == η (q₁₀ , shift) template (_ , q₀₀) (_ , q₁₁) r shift q₀₁ params = from q₀₀ q₁₁ r (to q₀₀ q₁₁ r (η (q₁₀ , shift))) =⟨ ap (from q₀₀ q₁₁ r) $ to-η-β q₀₀ q₁₁ r (q₁₀ , shift) ∙ to-β shift ⟩ from q₀₀ q₁₁ r (η (q₀₁ , path ∙' shift)) =⟨ from-η-β q₀₀ q₁₁ r (q₀₁ , path ∙' shift) ∙ from-β (path ∙' shift) ⟩ η (q₁₀ , ! path ∙' path ∙' shift) =⟨ ap (λ p → η (q₁₀ , p)) $ ! (∙'-assoc (! path) path shift) ∙ ap (_∙' shift) (!-inv'-l path) ∙ ∙'-unit-l shift ⟩ η (q₁₀ , shift) =∎ where open βPair params f = λ u r shift → template u v₀ r shift (snd u) (βpair-bmleft (snd u) q₁₀ r) g = λ v r shift → template u₀ v r shift (snd v) (βpair-bmright q₁₀ (snd v) r) abstract p : f u₀ == g v₀ p = λ= λ r → λ= λ shift → ap (template u₀ v₀ r shift q₁₀) (βpair-glue q₁₀ r) args : WedgeExt.args {A = U} {a₀ = u₀} {B = V} {b₀ = v₀} args = record { join-conn = λ u v → H q₁₀ (snd u) (snd v); R = λ u v → P u v , Π-is-local λ _ → Π-is-local λ _ → ◯-=-is-local _ _; f = f; g = g; p = p} abstract ext : ∀ u v → P u v ext = WedgeExt.ext args abstract from-to' : ∀ {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) r fiber → from q₀₀ q₁₁ r (to q₀₀ q₁₁ r (η fiber)) == η fiber from-to' q₀₀ q₁₁ r (q₁₀ , shift) = FromTo.ext q₁₀ (_ , q₀₀) (_ , q₁₁) r shift from-to : ∀ {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) r fiber → from q₀₀ q₁₁ r (to q₀₀ q₁₁ r fiber) == fiber from-to q₀₀ q₁₁ r = ◯-elim (λ _ → ◯-=-is-local _ _) (from-to' q₀₀ q₁₁ r) module ToFrom {a₀ b₁} (q₀₁ : Q a₀ b₁) where -- upper U = From.U q₀₁ u₀ = From.u₀ q₀₁ -- lower V = From.V q₀₁ v₀ = From.v₀ q₀₁ P : U → V → Type ℓ P u v = (r : bmleft a₀ == bmright b₁) → (shift : bmglue q₀₁ == r) → to (snd v) (snd u) r (from (snd v) (snd u) r (η (q₀₁ , shift))) == η (q₀₁ , shift) abstract template : ∀ (u : U) (v : V) r shift q₁₀ → βPair (snd v) (snd u) q₀₁ q₁₀ r → to (snd v) (snd u) r (from (snd v) (snd u) r (η (q₀₁ , shift))) == η (q₀₁ , shift) template (_ , q₁₁) (_ , q₀₀) r shift q₁₀ params = to q₀₀ q₁₁ r (from q₀₀ q₁₁ r (η (q₀₁ , shift))) =⟨ ap (to q₀₀ q₁₁ r) $ from-η-β q₀₀ q₁₁ r (q₀₁ , shift) ∙ from-β shift ⟩ to q₀₀ q₁₁ r (η (q₁₀ , ! path ∙' shift)) =⟨ to-η-β q₀₀ q₁₁ r (q₁₀ , ! path ∙' shift) ∙ to-β (! path ∙' shift) ⟩ η (q₀₁ , path ∙' ! path ∙' shift) =⟨ ap (λ p → η (q₀₁ , p)) $ ! (∙'-assoc path (! path) shift) ∙ ap (_∙' shift) (!-inv'-r path) ∙ ∙'-unit-l shift ⟩ η (q₀₁ , shift) =∎ where open βPair params f = λ u r shift → template u v₀ r shift (snd u) (βpair-bmleft q₀₁ (snd u) r) g = λ v r shift → template u₀ v r shift (snd v) (βpair-bmright (snd v) q₀₁ r) abstract p : f u₀ == g v₀ p = λ= λ r → λ= λ shift → ap (template u₀ v₀ r shift q₀₁) (βpair-glue q₀₁ r) args : WedgeExt.args {A = U} {a₀ = u₀} {B = V} {b₀ = v₀} args = record { join-conn = λ u v → H q₀₁ (snd u) (snd v); R = λ u v → P u v , Π-is-local λ _ → Π-is-local λ _ → ◯-=-is-local _ _; f = f; g = g; p = p} abstract ext : ∀ u v → P u v ext = WedgeExt.ext args abstract to-from' : ∀ {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) r fiber → to q₀₀ q₁₁ r (from q₀₀ q₁₁ r (η fiber)) == η fiber to-from' q₀₀ q₁₁ r (q₀₁ , shift) = ToFrom.ext q₀₁ (_ , q₁₁) (_ , q₀₀) r shift to-from : ∀ {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) r fiber → to q₀₀ q₁₁ r (from q₀₀ q₁₁ r fiber) == fiber to-from q₀₀ q₁₁ r = ◯-elim (λ _ → ◯-=-is-local _ _) (to-from' q₀₀ q₁₁ r) eqv : ∀ {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) r → ◯ (hfiber (λ q₁₀ → bmglue q₀₀ ∙' ! (bmglue q₁₀) ∙' bmglue q₁₁) r) ≃ ◯ (hfiber bmglue r) eqv q₀₀ q₁₁ r = equiv (to q₀₀ q₁₁ r) (from q₀₀ q₁₁ r) (to-from q₀₀ q₁₁ r) (from-to q₀₀ q₁₁ r)
38.277778
121
0.50691
fb6679891bb9fb2a9b3df0b14fc72c5c0e2d19a1
469
agda
Agda
Sets/Cardinality/Infinite/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Sets/Cardinality/Infinite/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Sets/Cardinality/Infinite/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import Functions.Definition open import LogicalFormulae open import Numbers.Naturals.Definition open import Sets.FinSet.Definition module Sets.Cardinality.Infinite.Definition where InfiniteSet : {a : _} (A : Set a) → Set a InfiniteSet A = (n : ℕ) → (f : FinSet n → A) → (Bijection f) → False record DedekindInfiniteSet {a : _} (A : Set a) : Set a where field inj : ℕ → A isInjection : Injection inj
27.588235
68
0.69936
18a798bc9d9a243ea3d9fa7e6ebf5235cad9a238
281
agda
Agda
test/Fail/SplitOnIrrelevant.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/SplitOnIrrelevant.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/SplitOnIrrelevant.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- 2010-09-07 Andreas -- 2011-10-04 may not work even in the presence of experimental irr. {-# OPTIONS --experimental-irrelevance #-} module SplitOnIrrelevant where data Bool : Set where true false : Bool not : .Bool -> Bool not true = false -- needs to fail not false = true
23.416667
68
0.711744
58da8e2c7e084dd658e93be97dea28546118e275
173
agda
Agda
Cubical/HITs/Join.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/Join.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/HITs/Join.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Join where open import Cubical.HITs.Join.Base public open import Cubical.HITs.Join.Properties public
28.833333
50
0.768786
1e5f0c124dc78f53c35e72cf80abba7265f0f4fa
1,420
agda
Agda
test/Fail/Issue738.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue738.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue738.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- {-# OPTIONS -v tc.lhs.unify:100 #-} -- Reported by project member adamgundry, 2012-10-26 -- I was trying to extend Conor's KIPLING technique (Outrageous but -- Meaningful Coincidences, WGP 2010) which depends on indexing a -- syntax by functions, when I hit this problem: module Issue738 where open import Common.Equality data U : Set where a : U b : U -- works, with explicit equality: module Param where data D (f : U → U) : Set where da : (f ≡ λ x → a) → D f db : (f ≡ λ x → b) → D f app : ∀ {A B : Set}{f g : A → B} → f ≡ g → ∀ x → f x ≡ g x app refl x = refl fu : D (λ x → a) → Set fu (da refl) = U fu (db p) with app p a ... | () -- original formulation: module Index where data Foo : (U -> U) -> Set where mka : Foo (\ x -> a) mkb : Foo (\ x -> b) foo : Foo (\ x -> a) -> Set foo mka = ? -- This gives the error message: -- -- Cannot decide whether there should be a case for the constructor -- -- mkb, since the unification gets stuck on unifying the inferred -- -- indices -- -- [λ x → b] -- -- with the expected indices -- -- [λ x → a] -- -- when checking the definition of foo -- But these indices cannot be unified (a and b are constants) so it -- should be possible to exclude this case. Could we improve the -- unifier to notice this? -- Andreas, 2012-10-29 No, because if the domain type is empty, -- these two lambdas cannot be disunified
24.067797
70
0.61831
cb97159919fc130035d110dfc633edeb9a812887
12,851
agda
Agda
04-cubical-type-theory/material/Part1.agda
tomdjong/EPIT-2020
54b18e4adf890b3533bbefda373912423be7f490
[ "MIT" ]
null
null
null
04-cubical-type-theory/material/Part1.agda
tomdjong/EPIT-2020
54b18e4adf890b3533bbefda373912423be7f490
[ "MIT" ]
null
null
null
04-cubical-type-theory/material/Part1.agda
tomdjong/EPIT-2020
54b18e4adf890b3533bbefda373912423be7f490
[ "MIT" ]
null
null
null
{- Part 1: The interval and path types • The interval in Cubical Agda • Path and PathP types • Function extensionality • Equality in Σ-types -} -- To make Agda cubical add the following options {-# OPTIONS --cubical #-} module Part1 where -- To load an Agda file type "C-c C-l" in emacs (the notation "C-c" -- means that one should hold "CTRL" and press "c", for general -- documentation about emacs keybindings see: -- https://www.gnu.org/software/emacs/manual/html_node/efaq/Basic-keys.html) -- The "Core" package of the agda/cubical library sets things for us open import Cubical.Core.Primitives public -- The "Foundations" package of agda/cubical contains a lot of -- important results (in particular the univalence theorem). As we -- will develop many things from scratch we don't import it here, but -- a typical file in the library would import the relevant files from -- Foundations which it uses. To get everything in Foundations write: -- -- open import Cubical.Foundations.Everything -- To search for something among the imported files press C-s C-z and -- then write what you want to search for. -- Documentation of the Cubical Agda mode can be found at: -- https://agda.readthedocs.io/en/v2.6.1.3/language/cubical.html ------------------------------------------------------------------------------ -- Agda Basic -- ------------------------------------------------------------------------------ -- We parametrize everything by some universe levels (as opposed to -- Coq we always have to give these explicitly unless we work with the -- lowest universe) variable ℓ ℓ' ℓ'' : Level -- Universes in Agda are called "Set", but in order to avoid confusion -- with h-sets we rename them to "Type". -- Functions in Agda are written using equations: id : {A : Type ℓ} → A → A id x = x -- The {A : Type} notation says that A is an implicit argument of Type ℓ. -- The notation (x : A) → B and {x : A} → B introduces a dependent -- function (so B might mention B), in other words an element of a -- Π-type. -- We could also write this using a λ-abstraction: id' : {A : Type ℓ} → A → A id' = λ x → x -- To input a nice symbol for the lambda write "\lambda". Agda support -- Unicode symbols natively: -- https://agda.readthedocs.io/en/latest/tools/emacs-mode.html#unicode-input -- To input the "ℓ" write "\ell" -- We can build Agda terms interactively in emacs by writing a ? as RHS: -- -- id'' : {A : Type ℓ} → A → A -- id'' = ? -- -- Try uncommenting this and pressing "C-c C-l". This will give us a -- hole and by entering it with the cursor we can get information -- about what Agda expects us to provide and get help from Agda in -- providing this. -- -- By pressing "C-c C-," while having the cursor in the goal Agda -- shows us the current context and goal. As we're trying to write a -- function we can press "C-c C-r" (for refine) to have Agda write the -- λ-abstraction "λ x → ?" automatically for us. If one presses "C-c C-," -- in the hole again "x : A" will now be in the context. If we type -- "x" in the hole and press "C-c C-." Agda will show us that we have -- an A, which is exactly what we want to provide to fill the goal. By -- pressing "C-c C-SPACE" Agda will then fill the hole with "x" for us. -- -- Agda has lots of handy commands like this for manipulating goals: -- https://agda.readthedocs.io/en/latest/tools/emacs-mode.html#commands-in-context-of-a-goal -- A good resource to get start with Agda is the documentation: -- https://agda.readthedocs.io/en/latest/getting-started/index.html ------------------------------------------------------------------------------ -- The interval and path types -- ------------------------------------------------------------------------------ -- The interval in Cubical Agda is written I and the endpoints are -- -- i0 : I -- i1 : I -- -- These stand for "interval 0" and "interval 1". -- We can apply a function out of the interval to an endpoint just -- like we would apply any Agda function: apply0 : (A : Type ℓ) (p : I → A) → A apply0 A p = p i0 -- The equality type _≡_ is not inductively defined in Cubical Agda, -- instead it's a builtin primitive. An element of x ≡ y consists of a -- function p : I → A such that p i0 is definitionally x and p i1 is -- definitionally y. The check that the endpoints are correct when we -- provide a p : I → A is automatically checked by Agda during -- typechecking, so introducing an element of x ≡ y is done just like -- how we introduce elements of I → A but Agda will check the side -- conditions. -- -- So we can write paths using λ-abstraction: path1 : {A : Type ℓ} (x : A) → x ≡ x path1 x = λ i → x -- -- As explained above Agda checks that whatever we write as definition -- matches the path that we have written (so the endpoints have to be -- correct). In this case everything is fine and path1 can be thought -- of as a proof reflexivity. Let's give it a nicer name and more -- implicit arguments: -- refl : {A : Type ℓ} {x : A} → x ≡ x refl {x = x} = λ i → x -- -- The notation {x = x} lets us access the implicit argument x (the x -- in the LHS) and rename it to x (the x in the RHS) in the body of refl. -- We could just as well have written: -- -- refl : {A : Type ℓ} {x : A} → x ≡ x -- refl {x = y} = λ i → y -- Note that we cannot pattern-match on interval variables as I is not -- inductively defined: -- -- foo : {A : Type} → I → A -- foo r = {!r!} -- Try typing C-c C-c -- It often gets tiring to write {A : Type ℓ} everywhere, so let's -- assume that we have some types: variable A B : Type ℓ -- This will make A and B elements of different universes (all -- arguments is maximally generalized) and all definitions that use -- them will have them as implicit arguments. -- We can now implement some basic operations on _≡_. Let's start with -- cong (called "ap" in the HoTT book): cong : (f : A → B) {x y : A} → x ≡ y → f x ≡ f y cong f p i = f (p i) -- Note that the definition differs from the HoTT definition in that -- it is not defined by J or pattern-matching on p, but rather it's -- just a direct definition as a composition fo functions. Agda treats -- p : x ≡ y as a function, so we can just apply it to i to get an -- element of A which at i0 is x and at i1 is y. By applying f to this -- element we hence get an element of B which at i0 is f x and at i1 -- is f y. -- As this is just function composition it satisfies lots of nice -- definitional equalities, see the Warmup.agda file. Some of these -- are not satisfied by the HoTT definition of cong/ap. -- In HoTT function extensionality is proved as a consequence of -- univalence using a rather ingenious proof due to Voevodsky, but in -- cubical systems it has a much more direct proof. As paths are just -- functions we can get it by just swapping the arguments to p: funExt : {f g : A → B} (p : (x : A) → f x ≡ g x) → f ≡ g funExt p i x = p x i -- To see that this has the correct type not that when i is i0 we have -- "p x i0 = f x" and when i is i1 we have "p x i1 = g x", so by η for -- functions we have a path f ≡ g as desired. -- The interval has additional operations: -- -- Minimum: _∧_ : I → I → I -- Maximum: _∨_ : I → I → I -- Symmetry: ~_ : I → I -- These satisfy the equations of a De Morgan algebra (i.e. a -- distributive lattice (_∧_ , _∨_ , i0 , i1) with an involution -- ~). So we have the following kinds of equations definitionally: -- -- i0 ∨ i = i -- i ∨ i1 = i1 -- i ∨ j = j ∨ i -- i0 ∧ i = i0 -- i1 ∧ i = i -- i ∧ j = j ∧ i -- ~ (~ i) = i -- i0 = ~ i1 -- ~ (i ∨ j) = ~ i ∧ ~ j -- ~ (i ∧ j) = ~ i ∨ ~ j -- These operations are very useful as they let us define even more -- things directly. For example symmetry of paths is easily defined -- using ~: sym : {x y : A} → x ≡ y → y ≡ x sym p i = p (~ i) -- The operations _∧_ and _∨_ are called "connections" and lets us -- build higher dimensional cubes from lower dimensional ones, for -- example if we have a path p : x ≡ y then -- -- sq i j = p (i ∧ j) -- -- is a square (as we've parametrized by i and j) with the following -- boundary: -- -- sq i0 j = p (i0 ∧ j) = p i0 = x -- sq i1 j = p (i1 ∧ j) = p j -- sq i i0 = p (i ∧ i0) = p i0 = x -- sq i i1 = p (i ∧ i1) = p i -- -- So if we draw this we get: -- -- p -- x --------> y -- ^ ^ -- ¦ ¦ -- refl ¦ sq ¦ p -- ¦ ¦ -- ¦ ¦ -- x --------> x -- refl -- -- These operations are very useful, for example let's prove that -- singletons are contractible (aka based path induction). -- -- We first need the notion of contractible types. For this we need -- to use a Σ-type: isContr : Type ℓ → Type ℓ isContr A = Σ[ x ∈ A ] ((y : A) → x ≡ y) -- Σ-types are introduced in the file Agda.Builtin.Sigma as the record -- (modulo some renaming): -- -- record Σ {ℓ ℓ'} (A : Type ℓ) (B : A → Type ℓ') : Type (ℓ-max ℓ ℓ') where -- constructor _,_ -- field -- fst : A -- snd : B fst -- -- So the projections are fst/snd and the constructor is _,_. We -- also define non-dependent product as a special case of Σ-types in -- Cubical.Data.Sigma.Base as: -- -- _×_ : ∀ {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') → Type (ℓ-max ℓ ℓ') -- A × B = Σ A (λ _ → B) -- -- The notation ∀ {ℓ ℓ'} lets us omit the type of ℓ and ℓ' in the -- definition. -- We define the type of singletons as follows singl : {A : Type ℓ} (a : A) → Type ℓ singl {A = A} a = Σ[ x ∈ A ] a ≡ x -- To show that this type is contractible we need to provide a center -- of contraction and the fact that any element of it is path-equal to -- the center isContrSingl : (x : A) → isContr (singl x) isContrSingl x = ctr , prf where -- The center is just a pair with x and refl ctr : singl x ctr = x , refl -- We then need to prove that ctr is equal to any element s : singl x. -- This is an equality in a Σ-type, so the first component is a path -- and the second is a path over the path we pick as first argument, -- so the second component is a square. In fact, we need a square -- relating refl and pax, so we can use an _∧_ connection. prf : (s : singl x) → ctr ≡ s prf (y , pax) i = (pax i) , λ j → pax (i ∧ j) -- As we saw in the second component of prf we often need squares when -- proving things. In fact, pax (i ∧ j) is a path relating refl to pax -- *over* another path "λ j → x ≡ pax j". This notion of path over a -- path is very useful when working in HoTT as well as cubically. In -- HoTT these are called path-overs and are defined using transport, -- but in Cubical Agda they are a primitive notion called PathP ("Path -- of a Path"). In general PathP A x y has -- -- A : I → Type ℓ -- x : A i0 -- y : A i1 -- -- So PathP lets us natively define heteorgeneous paths, i.e. paths -- where the endpoints lie in different types. This lets us specify -- the type of the second component of prf: prf' : (x : A) (s : singl x) → (x , refl) ≡ s prf' x (y , pax) i = (pax i) , λ j → goal i j where goal : PathP (λ j → x ≡ pax j) refl pax goal i j = pax (i ∧ j) -- Just like _×_ is a special case of Σ-types we have that _≡_ is a -- special case of PathP. In fact, x ≡ y is just short for PathP (λ _ → A) x y: reflP : {x : A} → PathP (λ _ → A) x x reflP {x = x} = λ _ → x -- Having the primitive notion of equality be heterogeneous is an -- easily overlooked, but very important, strength of cubical type -- theory. This allows us to work directly with equality in Σ-types -- without using transport: module _ {A : Type ℓ} {B : A → Type ℓ'} {x y : Σ A B} where ΣPathP : Σ[ p ∈ fst x ≡ fst y ] PathP (λ i → B (p i)) (snd x) (snd y) → x ≡ y ΣPathP eq i = fst eq i , snd eq i PathPΣ : x ≡ y → Σ[ p ∈ fst x ≡ fst y ] PathP (λ i → B (p i)) (snd x) (snd y) PathPΣ eq = (λ i → fst (eq i)) , (λ i → snd (eq i)) -- The fact that these cancel is proved by refl -- If one looks carefully the proof of prf uses ΣPathP inlined, in -- fact this is used all over the place when working cubically and -- simplifies many proofs which in HoTT requires long complicated -- reasoning about transport. isContrΠ : {B : A → Type ℓ'} (h : (x : A) → isContr (B x)) → isContr ((x : A) → B x) isContrΠ h = (λ x → fst (h x)) , (λ f i x → snd (h x) (f x) i) -- Let us end this session with defining propositions and sets isProp : Type ℓ → Type ℓ isProp A = (x y : A) → x ≡ y isSet : Type ℓ → Type ℓ isSet A = (x y : A) → isProp (x ≡ y) -- In the agda/cubical library we call these h-levels following -- Voevodsky instead of n-types and index by natural numbers instead -- of ℕ₋₂. So isContr is h-level 0, isProp is h-level 1, isSet is -- h-level 2, etc. For details see Cubical/Foundations/HLevels.agda
35.997199
92
0.62571
1d025dabede913ffacb172151beda179d6c3bc05
20,699
agda
Agda
src/lc/LC.agda
kcaliban/ldlc
a87fb6402639c3d2bb393cc5466426c28e7a0398
[ "BSD-3-Clause" ]
null
null
null
src/lc/LC.agda
kcaliban/ldlc
a87fb6402639c3d2bb393cc5466426c28e7a0398
[ "BSD-3-Clause" ]
null
null
null
src/lc/LC.agda
kcaliban/ldlc
a87fb6402639c3d2bb393cc5466426c28e7a0398
[ "BSD-3-Clause" ]
1
2019-03-14T17:52:29.000Z
2019-03-14T17:52:29.000Z
-- simply-typed λ-calculus w/ DeBruijn indices module LC where open import Agda.Primitive open import Agda.Builtin.Bool open import Data.Bool.Properties hiding (≤-trans ; <-trans ; ≤-refl ; <-irrefl) open import Data.Empty open import Data.Nat renaming (_+_ to _+ᴺ_ ; _≤_ to _≤ᴺ_ ; _≥_ to _≥ᴺ_ ; _<_ to _<ᴺ_ ; _>_ to _>ᴺ_) open import Data.Nat.Properties renaming (_<?_ to _<ᴺ?_) open import Data.Integer renaming (_+_ to _+ᶻ_ ; _≤_ to _≤ᶻ_ ; _≥_ to _≥ᶻ_ ; _<_ to _<ᶻ_ ; _>_ to _>ᶻ_) open import Data.Integer.Properties using (⊖-≥ ; 0≤n⇒+∣n∣≡n ; +-monoˡ-≤) open import Data.List open import Data.List.Relation.Unary.All open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Relation.Nullary.Decidable open import Relation.Nullary.Negation open import Auxiliary module defs where data Exp : Set where Var : ℕ → Exp Abs : Exp → Exp App : Exp → Exp → Exp data Ty : Set where Fun : Ty → Ty → Ty -- typing Env = List Ty data _∶_∈_ : ℕ → Ty → Env → Set where here : {T : Ty} {Γ : Env} → 0 ∶ T ∈ (T ∷ Γ) there : {n : ℕ} {T₁ T₂ : Ty} {Γ : Env} → n ∶ T₁ ∈ Γ → (ℕ.suc n) ∶ T₁ ∈ (T₂ ∷ Γ) data _⊢_∶_ : Env → Exp → Ty → Set where TVar : {n : ℕ} {Γ : Env} {T : Ty} → n ∶ T ∈ Γ → Γ ⊢ (Var n) ∶ T TAbs : {Γ : Env} {T₁ T₂ : Ty} {e : Exp} → (T₁ ∷ Γ) ⊢ e ∶ T₂ → Γ ⊢ (Abs e) ∶ (Fun T₁ T₂) TApp : {Γ : Env} {T₁ T₂ : Ty} {e₁ e₂ : Exp} → Γ ⊢ e₁ ∶ (Fun T₁ T₂) → Γ ⊢ e₂ ∶ T₁ → Γ ⊢ (App e₁ e₂) ∶ T₂ -- denotational semantics module denotational where open defs Valᵈ : Ty → Set Valᵈ (Fun Ty₁ Ty₂) = (Valᵈ Ty₁) → (Valᵈ Ty₂) access : {n : ℕ} {Γ : Env} {T : Ty} → n ∶ T ∈ Γ → All Valᵈ Γ → Valᵈ T access here (V ∷ Γ) = V access (there J) (V ∷ Γ) = access J Γ eval : {Γ : Env} {T : Ty} {e : Exp} → Γ ⊢ e ∶ T → All Valᵈ Γ → Valᵈ T eval (TVar c) Val-Γ = access c Val-Γ eval (TAbs TJ) Val-Γ = λ V → eval TJ (V ∷ Val-Γ) eval (TApp TJ TJ₁) Val-Γ = (eval TJ Val-Γ) (eval TJ₁ Val-Γ) -- operational semantics (call-by-value) module operational where open defs -- shifting, required to avoid variable-capturing in substitution -- see Pierce 2002, pg. 78/79 ↑_,_[_] : ℤ → ℕ → Exp → Exp ↑ d , c [ Var x ] with (x <ᴺ? c) ... | yes p = Var x ... | no ¬p = Var (∣ (ℤ.pos x) +ᶻ d ∣) -- should always be positive anyway ↑ d , c [ Abs t ] = Abs (↑ d , (ℕ.suc c) [ t ]) ↑ d , c [ App t t₁ ] = App (↑ d , c [ t ]) (↑ d , c [ t₁ ]) -- shifting in range [n, m]; by def. m < n implies no shift ↑[_,_]_[_] : ℕ → ℕ → ℤ → Exp → Exp ↑[ n , m ] d [ Var x ] with (x <ᴺ? n) ... | yes p = Var x ... | no ¬p with (m <ᴺ? x) ... | yes p' = Var x ... | no ¬p' = Var (∣ (ℤ.pos x) +ᶻ d ∣) ↑[ n , m ] d [ Abs e ] = Abs (↑[ ℕ.suc n , ℕ.suc m ] d [ e ]) ↑[ n , m ] d [ App e e₁ ] = App (↑[ n , m ] d [ e ]) (↑[ n , m ] d [ e₁ ]) -- shorthands ↑¹[_] : Exp → Exp ↑¹[ e ] = ↑ (ℤ.pos 1) , 0 [ e ] ↑⁻¹[_] : Exp → Exp ↑⁻¹[ e ] = ↑ (ℤ.negsuc 0) , 0 [ e ] -- substitution -- see Pierce 2002, pg. 80 [_↦_]_ : ℕ → Exp → Exp → Exp [ k ↦ s ] Var x with (Data.Nat._≟_ x k) ... | yes p = s ... | no ¬p = Var x [ k ↦ s ] Abs t = Abs ([ ℕ.suc k ↦ ↑¹[ s ] ] t) [ k ↦ s ] App t t₁ = App ([ k ↦ s ] t) ([ k ↦ s ] t₁) data Val : Exp → Set where VFun : {e : Exp} → Val (Abs e) -- reduction relation data _⇒_ : Exp → Exp → Set where ξ-App1 : {e₁ e₁' e₂ : Exp} → e₁ ⇒ e₁' → App e₁ e₂ ⇒ App e₁' e₂ ξ-App2 : {e e' v : Exp} → Val v → e ⇒ e' → App v e ⇒ App v e' β-App : {e v : Exp} → Val v → (App (Abs e) v) ⇒ (↑⁻¹[ ([ 0 ↦ ↑¹[ v ] ] e) ]) ---- properties & lemmas --- properties of shifting ↑-var-refl : {d : ℤ} {c : ℕ} {x : ℕ} {le : ℕ.suc x ≤ᴺ c} → ↑ d , c [ Var x ] ≡ Var x ↑-var-refl {d} {c} {x} {le} with (x <ᴺ? c) ... | no ¬p = contradiction le ¬p ... | yes p = refl ↑[]-var-refl-< : {n m x : ℕ} {d : ℤ} {le : x <ᴺ n} → ↑[ n , m ] d [ Var x ] ≡ Var x ↑[]-var-refl-< {n} {m} {x} {d} {le} with (x <ᴺ? n) ... | yes p = refl ... | no ¬p = contradiction le ¬p ↑[]-var-refl-> : {n m x : ℕ} {d : ℤ} {le : m <ᴺ x} → ↑[ n , m ] d [ Var x ] ≡ Var x ↑[]-var-refl-> {n} {m} {x} {d} {le} with (x <ᴺ? n) ... | yes p = refl ... | no p with (m <ᴺ? x) ... | no ¬q = contradiction le ¬q ... | yes q = refl ↑[]-var-shift : {n m x : ℕ} {d : ℤ} (le1 : n ≤ᴺ x) (le2 : x ≤ᴺ m) → ↑[ n , m ] d [ Var x ] ≡ Var (∣ (ℤ.pos x) +ᶻ d ∣) ↑[]-var-shift {n} {m} {x} {d} le1 le2 with x <ᴺ? n ... | yes p = contradiction p (<⇒≱ (s≤s le1)) ... | no ¬p with m <ᴺ? x ... | yes p' = contradiction p' (<⇒≱ (s≤s le2)) ... | no ¬p' = refl ↑¹-var : {x : ℕ} → ↑¹[ Var x ] ≡ Var (ℕ.suc x) ↑¹-var {zero} = refl ↑¹-var {ℕ.suc x} rewrite (sym (n+1≡sucn{x +ᴺ 1})) | (sym (n+1≡sucn{x})) = cong ↑¹[_] (↑¹-var{x}) ↑⁻¹ₖ[↑¹ₖ[s]]≡s : {e : Exp} {k : ℕ} → ↑ -[1+ 0 ] , k [ ↑ + 1 , k [ e ] ] ≡ e ↑⁻¹ₖ[↑¹ₖ[s]]≡s {Var x} {k} with (x <ᴺ? k) -- x < k -- => ↑⁻¹ₖ(↑¹ₖ(Var n)) = ↑⁻¹ₖ(Var n) = Var n ... | yes p = ↑-var-refl{ -[1+ 0 ]}{k}{x}{p} -- x ≥ k -- => ↑⁻¹ₖ(↑¹ₖ(Var n)) = ↑⁻¹ₖ(Var |n + 1|) = Var (||n + 1| - 1|) = Var n ... | no ¬p with (¬[x≤k]⇒¬[sucx≤k] ¬p) ... | ¬p' with (x +ᴺ 1) <ᴺ? k ... | yes pp = contradiction pp ¬p' ... | no ¬pp rewrite (∣nℕ+1⊖1∣≡n{x}) = refl ↑⁻¹ₖ[↑¹ₖ[s]]≡s {Abs e} {k} = cong Abs ↑⁻¹ₖ[↑¹ₖ[s]]≡s ↑⁻¹ₖ[↑¹ₖ[s]]≡s {App e e₁} = cong₂ App ↑⁻¹ₖ[↑¹ₖ[s]]≡s ↑⁻¹ₖ[↑¹ₖ[s]]≡s ↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] : {k l : ℤ} {c : ℕ} {s : Exp} → l ≥ᶻ +0 → ↑ k , c [ ↑ l , c [ s ] ] ≡ ↑ (l +ᶻ k) , c [ s ] ↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {k} {l} {c} {Var x} ge with x <ᴺ? c ↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {k} {l} {c} {Var x} ge | no ¬p with ∣ + x +ᶻ l ∣ <ᴺ? c ... | yes q = contradiction q (<⇒≱ (n≤m⇒n<sucm (≤-trans (≮⇒≥ ¬p) (m≥0⇒∣n+m∣≥n ge)))) ... | no ¬q rewrite (0≤n⇒+∣n∣≡n{+ x +ᶻ l} (m≥0⇒n+m≥0 ge)) | (Data.Integer.Properties.+-assoc (+_ x) l k) = refl ↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {k} {l} {c} {Var x} ge | yes p with x <ᴺ? c ... | yes p' = refl ... | no ¬p' = contradiction p ¬p' ↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {k} {l} {c} {Abs s} le = cong Abs (↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s]{k}{l}{ℕ.suc c}{s} le) ↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s] {k} {l} {c} {App s s₁} le = cong₂ App (↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s]{k}{l}{c}{s} le) (↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s]{k}{l}{c}{s₁} le) ↑k,q[↑l,c[s]]≡↑l+k,c[s] : {k l : ℤ} {q c : ℕ} {s : Exp} → + q ≤ᶻ + c +ᶻ l → c ≤ᴺ q → ↑ k , q [ ↑ l , c [ s ] ] ≡ ↑ (l +ᶻ k) , c [ s ] ↑k,q[↑l,c[s]]≡↑l+k,c[s] {k} {l} {q} {c} {Var x} ge₁ ge₂ with x <ᴺ? c ... | yes p with x <ᴺ? q ... | yes p' = refl ... | no ¬p' = contradiction (≤-trans p ge₂) ¬p' ↑k,q[↑l,c[s]]≡↑l+k,c[s] {k} {l} {q} {c} {Var x} ge₁ ge₂ | no ¬p with ∣ + x +ᶻ l ∣ <ᴺ? q ... | yes p' = contradiction p' (≤⇒≯ (+a≤b⇒a≤∣b∣{q}{+ x +ᶻ l} (Data.Integer.Properties.≤-trans ge₁ ((Data.Integer.Properties.+-monoˡ-≤ l (+≤+ (≮⇒≥ ¬p))))))) ... | no ¬p' rewrite (0≤n⇒+∣n∣≡n{+ x +ᶻ l} (Data.Integer.Properties.≤-trans (+≤+ z≤n) ((Data.Integer.Properties.≤-trans ge₁ ((Data.Integer.Properties.+-monoˡ-≤ l (+≤+ (≮⇒≥ ¬p)))))))) | (Data.Integer.Properties.+-assoc (+_ x) l k) = refl ↑k,q[↑l,c[s]]≡↑l+k,c[s] {k} {l} {q} {c} {Abs s} ge₁ ge₂ = cong Abs (↑k,q[↑l,c[s]]≡↑l+k,c[s] {k} {l} {ℕ.suc q} {ℕ.suc c} {s} (+q≤+c+l⇒+1q≤+1c+l{q}{c}{l} ge₁) (s≤s ge₂)) ↑k,q[↑l,c[s]]≡↑l+k,c[s] {k} {l} {q} {c} {App s s₁} ge₁ ge₂ = cong₂ App (↑k,q[↑l,c[s]]≡↑l+k,c[s] {k} {l} {q} {c} {s} ge₁ ge₂) (↑k,q[↑l,c[s]]≡↑l+k,c[s] {k} {l} {q} {c} {s₁} ge₁ ge₂) --- properties of substitution subst-trivial : {x : ℕ} {s : Exp} → [ x ↦ s ] Var x ≡ s subst-trivial {x} {s} with x Data.Nat.≟ x ... | no ¬p = contradiction refl ¬p ... | yes p = refl var-subst-refl : {n m : ℕ} {neq : n ≢ m} {e : Exp} → [ n ↦ e ] (Var m) ≡ (Var m) var-subst-refl {n} {m} {neq} {e} with Data.Nat._≟_ n m | map′ (≡ᵇ⇒≡ m n) (≡⇒≡ᵇ m n) (Data.Bool.Properties.T? (m ≡ᵇ n)) ... | yes p | _ = contradiction p neq ... | no ¬p | yes q = contradiction q (≢-sym ¬p) ... | no ¬p | no ¬q = refl --- properties and manipulation of environments var-env-< : {Γ : Env} {T : Ty} {n : ℕ} (j : n ∶ T ∈ Γ) → n <ᴺ (length Γ) var-env-< {.(T ∷ _)} {T} {.0} here = s≤s z≤n var-env-< {.(_ ∷ _)} {T} {.(ℕ.suc _)} (there j) = s≤s (var-env-< j) -- type to determine whether var type judgement in env. (Δ ++ Γ) is in Δ or Γ data extract-env-or {Δ Γ : Env} {T : Ty} {x : ℕ} : Set where in-Δ : x ∶ T ∈ Δ → extract-env-or -- x ≥ length Δ makes sure that x really is in Γ; e.g. -- x = 1, Δ = (S ∷ T), Γ = (T ∷ Γ'); here 1 ∶ T ∈ Δ as well as (1 ∸ 2) ≡ 0 ∶ T ∈ Γ in-Γ : (x ≥ᴺ length Δ) → (x ∸ length Δ) ∶ T ∈ Γ → extract-env-or extract : {Δ Γ : Env} {T : Ty} {x : ℕ} (j : x ∶ T ∈ (Δ ++ Γ)) → extract-env-or{Δ}{Γ}{T}{x} extract {[]} {Γ} {T} {x} j = in-Γ z≤n j extract {x₁ ∷ Δ} {Γ} {.x₁} {.0} here = in-Δ here extract {x₁ ∷ Δ} {Γ} {T} {ℕ.suc x} (there j) with extract {Δ} {Γ} {T} {x} j ... | in-Δ j' = in-Δ (there j') ... | in-Γ ge j'' = in-Γ (s≤s ge) j'' ext-behind : {Δ Γ : Env} {T : Ty} {x : ℕ} → x ∶ T ∈ Δ → x ∶ T ∈ (Δ ++ Γ) ext-behind here = here ext-behind (there j) = there (ext-behind j) ext-front : {n : ℕ} {Γ Δ : Env} {S : Ty} → n ∶ S ∈ Γ → (n +ᴺ (length Δ)) ∶ S ∈ (Δ ++ Γ) ext-front {n} {Γ} {[]} {S} j rewrite (n+length[]≡n{A = Ty}{n = n}) = j ext-front {n} {Γ} {T ∷ Δ} {S} j rewrite (+-suc n (foldr (λ _ → ℕ.suc) 0 Δ)) = there (ext-front j) swap-env-behind : {Γ Δ : Env} {T : Ty} → 0 ∶ T ∈ (T ∷ Γ) → 0 ∶ T ∈ (T ∷ Δ) swap-env-behind {Γ} {Δ} {T} j = here swap-type : {Δ ∇ Γ : Env} {T : Ty} → (length Δ) ∶ T ∈ (Δ ++ T ∷ ∇ ++ Γ) → (length Δ +ᴺ length ∇) ∶ T ∈ (Δ ++ ∇ ++ T ∷ Γ) swap-type {Δ} {∇} {Γ} {T} j with extract{Δ}{T ∷ ∇ ++ Γ} j ... | in-Δ x = contradiction (var-env-< {Δ} {T} x) (<-irrefl refl) ... | in-Γ le j' with extract{T ∷ ∇}{Γ} j' ... | in-Δ j'' rewrite (n∸n≡0 (length Δ)) | (sym (length[A++B]≡length[A]+length[B]{lzero}{Ty}{Δ}{∇})) | (sym (++-assoc{lzero}{Ty}{Δ}{∇}{T ∷ Γ})) = ext-front{0}{T ∷ Γ}{Δ ++ ∇}{T} (swap-env-behind{∇}{Γ}{T} j'') ... | in-Γ le' j'' rewrite (length[A∷B]≡suc[length[B]]{lzero}{Ty}{T}{∇}) | (n∸n≡0 (length Δ)) = contradiction le' (<⇒≱ (s≤s z≤n)) env-pred : {Γ : Env} {S T : Ty} {y : ℕ} {gt : y ≢ 0} → y ∶ T ∈ (S ∷ Γ) → ∣ y ⊖ 1 ∣ ∶ T ∈ Γ env-pred {Γ} {S} {.S} {.0} {gt} here = contradiction refl gt env-pred {Γ} {S} {T} {.(ℕ.suc _)} {gt} (there j) = j env-type-equiv-here : {Γ : Env} {S T : Ty} → 0 ∶ T ∈ (S ∷ Γ) → T ≡ S env-type-equiv-here {Γ} {S} {.S} here = refl env-type-equiv : {Δ ∇ : Env} {S T : Ty} → length Δ ∶ T ∈ (Δ ++ S ∷ ∇) → T ≡ S env-type-equiv {Δ} {∇} {S} {T} j with extract{Δ}{S ∷ ∇} j ... | in-Δ x = contradiction (var-env-< x) (≤⇒≯ ≤-refl) ... | in-Γ x j' rewrite (n∸n≡0 (length Δ)) = env-type-equiv-here {∇} {S} {T} j' env-type-equiv-j : {Γ : Env} {S T : Ty} {n : ℕ} → T ≡ S → n ∶ T ∈ Γ → n ∶ S ∈ Γ env-type-equiv-j {Γ} {S} {T} {n} eq j rewrite eq = j -- extension of environment ext : {Γ Δ ∇ : Env} {S : Ty} {s : Exp} → (∇ ++ Γ) ⊢ s ∶ S → (∇ ++ Δ ++ Γ) ⊢ ↑ (ℤ.pos (length Δ)) , length ∇ [ s ] ∶ S ext {Γ} {Δ} {∇} (TVar {n} x) with extract{∇}{Γ} x ... | in-Δ x₁ with n <ᴺ? length ∇ ... | yes p = TVar (ext-behind x₁) ... | no ¬p = contradiction (var-env-< x₁) ¬p ext {Γ} {Δ} {∇} (TVar {n} x) | in-Γ x₁ x₂ with n <ᴺ? length ∇ ... | yes p = contradiction x₁ (<⇒≱ p) ... | no ¬p with (ext-front{n ∸ length ∇}{Γ}{∇ ++ Δ} x₂) ... | w rewrite (length[A++B]≡length[A]+length[B]{lzero}{Ty}{∇}{Δ}) | (sym (+-assoc (n ∸ length ∇) (length ∇) (length Δ))) | (m∸n+n≡m{n}{length ∇} (≮⇒≥ ¬p)) | (++-assoc{lzero}{Ty}{∇}{Δ}{Γ}) = TVar w ext {Γ} {Δ} {∇} {Fun T₁ T₂} {Abs e} (TAbs j) = TAbs (ext{Γ}{Δ}{T₁ ∷ ∇} j) ext {Γ} {Δ} {∇} {S} {App s₁ s₂} (TApp{T₁ = T₁} j₁ j₂) = TApp (ext{Γ}{Δ}{∇}{Fun T₁ S} j₁) (ext{Γ}{Δ}{∇}{T₁} j₂) ---- progress and preservation -- progress theorem, i.e. a well-typed closed expression is either a value -- or can be reduced further data Progress (e : Exp) {T : Ty} {j : [] ⊢ e ∶ T} : Set where step : {e' : Exp} → e ⇒ e' → Progress e value : Val e → Progress e progress : (e : Exp) {T : Ty} {j : [] ⊢ e ∶ T} → Progress e {T} {j} progress (Var x) {T} {TVar ()} progress (Abs e) = value VFun progress (App e e₁) {T} {TApp{T₁ = T₁}{T₂ = .T} j j₁} with progress e {Fun T₁ T} {j} ... | step x = step (ξ-App1 x) ... | value VFun with progress e₁ {T₁} {j₁} ... | step x₁ = step (ξ-App2 VFun x₁) ... | value x₁ = step (β-App x₁) --- -- preservation under substitution preserve-subst : {T S : Ty} {Γ Δ : Env} {e s : Exp} (j : (Δ ++ (S ∷ Γ)) ⊢ e ∶ T) (j' : Γ ⊢ s ∶ S) → (Δ ++ Γ) ⊢ ↑ -[1+ 0 ] , length Δ [ [ length Δ ↦ ↑ (ℤ.pos (ℕ.suc (length Δ))) , 0 [ s ] ] e ] ∶ T preserve-subst {T} {S} {Γ} {Δ} {e} {s} (TVar{n} x) j' with extract{Δ}{S ∷ Γ}{T}{n} x ... | in-Δ x₁ with n Data.Nat.≟ length Δ ... | yes p = contradiction p (<⇒≢ (var-env-< x₁)) ... | no ¬p with n <ᴺ? length Δ ... | yes q = TVar (ext-behind{Δ}{Γ} x₁) ... | no ¬q = contradiction (var-env-< x₁) ¬q preserve-subst {T} {S} {Γ} {Δ} {e} {s} (TVar{n} x) j' | in-Γ x₁ x₂ with n Data.Nat.≟ length Δ ... | yes p rewrite (↑k,q[↑l,c[s]]≡↑l+k,c[s]{ -[1+ 0 ]}{+[1+ length Δ ]}{length Δ}{0}{s} (+≤+ n≤sucn) z≤n) | p | (env-type-equiv x) = ext{Γ}{Δ}{[]} j' ... | no ¬p with n <ᴺ? length Δ ... | yes q = contradiction x₁ (<⇒≱ q) ... | no ¬q rewrite (sym (minus-1{n}{length Δ}{≤∧≢⇒< x₁ (≢-sym ¬p)})) = TVar (ext-front{Δ = Δ} (env-pred{Γ}{S}{T}{gt = ≢-sym (<⇒≢ (m>n⇒m∸n≥1 (≤∧≢⇒< x₁ (≢-sym ¬p))))} x₂)) preserve-subst {T} {S} {Γ} {Δ} {Abs e'} {s} (TAbs{T₁ = T₁}{T₂} j) j' with preserve-subst{T₂}{S}{Γ}{T₁ ∷ Δ}{e'}{s} j j' ... | w rewrite (↑ᵏ[↑ˡ[s]]≡↑ᵏ⁺ˡ[s]{+ 1}{+[1+ length Δ ]}{0}{s} (+≤+ z≤n)) | (length[A∷B]≡suc[length[B]]{lzero}{Ty}{T₁}{Δ}) | (n+1≡sucn{length Δ}) = TAbs w preserve-subst (TApp j j₁) j' = TApp (preserve-subst j j') (preserve-subst j₁ j') -- preservation theorem, i.e. a well-typed expression reduces to a well-typed expression preserve : {T : Ty} {Γ : Env} (e e' : Exp) (j : Γ ⊢ e ∶ T) (r : e ⇒ e') → Γ ⊢ e' ∶ T preserve (App s₁ s₂) .(App _ s₂) (TApp j j') (ξ-App1{e₁' = s₁'} r) = TApp (preserve s₁ s₁' j r) j' -- IH on inner reduction preserve (App s₁ s₂) .(App s₁ _) (TApp j j') (ξ-App2{e' = s₂'} x r) = TApp j (preserve s₂ s₂' j' r) preserve (App (Abs e) s') .(↑⁻¹[ [ 0 ↦ ↑¹[ s' ] ] e ]) (TApp (TAbs j) j') (β-App x) = preserve-subst{Δ = []} j j' ----------------------------------------------------------------------------------------------------------- -- swap-subst lemma: swap the position of a type in an environment (did not need this after all) -- aux. calculations length-≡ : {Δ ∇ Γ : Env} {S : Ty} → ℕ.suc (length Δ +ᴺ (length Γ +ᴺ length ∇)) ≡ length (Δ ++ S ∷ ∇ ++ Γ) length-≡ {Δ} {∇} {Γ} {S} rewrite (length[A++B]≡length[A]+length[B]{lzero}{Ty}{Δ}{S ∷ ∇ ++ Γ}) | (length[A++B]≡length[A]+length[B]{lzero}{Ty}{∇}{Γ}) | (+-suc (length Δ) (length ∇ +ᴺ length Γ)) | (+-comm (length ∇) (length Γ)) = refl length-≡' : {Δ ∇ : Env} {S : Ty} → length (Δ ++ ∇ ++ S ∷ []) ≡ length Δ +ᴺ ℕ.suc (length ∇) length-≡' {Δ} {∇} {S} rewrite (length[A++B]≡length[A]+length[B]{lzero}{Ty}{Δ}{∇ ++ S ∷ []}) | (length[A++B]≡length[A]+length[B]{lzero}{Ty}{∇}{S ∷ []}) | (+-suc (length ∇) (0)) | (+-identityʳ (length ∇)) = refl length-≡'' : {Δ ∇ : Env} {S : Ty} → length (Δ ++ ∇ ++ S ∷ []) ≡ ℕ.suc (length ∇ +ᴺ length Δ) length-≡'' {Δ} {∇} {S} rewrite (cong (ℕ.suc) (+-comm (length ∇) (length Δ))) | (sym (+-suc (length Δ) (length ∇))) = length-≡'{Δ}{∇}{S} --- why the "r"? we have to "remember" where S was --- cannot substitute its position for zero, since ↑ would increase that --- cannot do ↑ and then subtitute its position for zero, since (position - 1) would be affected aswell --- fix: cache in unreachable variable r swap-subst : {T S : Ty} {Γ Δ ∇ : Env} {e : Exp} {r : ℕ} {gt : r >ᴺ ℕ.suc (length Δ +ᴺ (length Γ +ᴺ length ∇))} → (Δ ++ (S ∷ ∇) ++ Γ) ⊢ e ∶ T → (Δ ++ ∇ ++ (S ∷ Γ)) ⊢ [ r ↦ Var (length Δ +ᴺ length ∇) ] ↑[ ℕ.suc (length Δ) , length Δ +ᴺ length ∇ ] -[1+ 0 ] [ [ length Δ ↦ Var r ] e ] ∶ T swap-subst {(Fun T₁ T₂)} {S} {Γ} {Δ} {∇} {(Abs e)} {r} {gt} (TAbs j) rewrite (↑¹-var{length Δ +ᴺ length ∇}) | (n+1≡sucn{r}) = TAbs (swap-subst{T₂}{S}{Γ}{T₁ ∷ Δ}{∇}{e}{ℕ.suc r}{s≤s gt} j) swap-subst {T} {S} {Γ} {Δ} {∇} {(App e e₁)} {r} {gt} (TApp{T₁ = T₁}{T₂} j j₁) = TApp (swap-subst{Fun T₁ T₂}{S}{Γ}{Δ}{∇}{e}{r}{gt} j) (swap-subst{T₁}{S}{Γ}{Δ}{∇}{e₁}{r}{gt} j₁) swap-subst {T} {S} {Γ} {Δ} {∇} {Var y} {r} {gt} (TVar j) with extract{Δ} {(S ∷ ∇) ++ Γ} {T} {y} j | y <ᴺ? (foldr (λ _ → ℕ.suc) 0 Δ) | Data.Nat._≟_ y (length Δ) -- y ∈ Δ ... | in-Δ x | yes p | yes q = contradiction q (<⇒≢ p) ... | in-Δ x | yes p | no ¬q rewrite (↑[]-var-refl-<{ℕ.suc (length Δ)}{length Δ +ᴺ length ∇}{y}{ -[1+ 0 ] }{[k<x]⇒[k<sucx] p}) | (var-subst-refl{r}{y}{≢-sym (<⇒≢ (a<b≤c⇒a<c p (≤-trans (n≤m⇒n≤sucm (m≤m+n (length Δ) (length Γ +ᴺ length ∇))) (<-trans (s≤s ≤-refl) gt))) )} {Var (foldr (λ _ → ℕ.suc) 0 Δ +ᴺ foldr (λ _ → ℕ.suc) 0 ∇)}) = TVar (ext-behind x) ... | in-Δ x | no ¬p | _ = contradiction (var-env-< x) ¬p -- y ∈ (S ∷ ∇ ++ Γ) ... | in-Γ ge x | p | q with extract{S ∷ ∇} {Γ} {T} {y ∸ length Δ} x --- y ∈ (S ∷ ∇) ---- y @ S swap-subst {T} {S} {Γ} {Δ} {∇} {Var y} {r} {gt} (TVar j) | in-Γ ge x | p | yes q' | in-Δ x' rewrite (↑[]-var-refl->{ℕ.suc (length Δ)}{length Δ +ᴺ length ∇}{r}{ -[1+ 0 ] }{<-trans (s≤s (n+m≤n+q+m {length Δ} {length ∇} {length Γ})) gt}) | (subst-trivial{r} {Var (length Δ +ᴺ length ∇)}) | q' | (env-type-equiv j) = TVar (swap-type{Δ}{∇}{Γ}{S} (env-type-equiv-j (env-type-equiv j) j)) ---- y ∈ ∇ swap-subst {T} {S} {Γ} {Δ} {∇} {Var y} {r} {gt} (TVar j) | in-Γ ge x | p | no ¬q' | in-Δ x' rewrite (↑[]-var-shift{ℕ.suc (length Δ)}{length Δ +ᴺ length ∇}{y}{ -[1+ 0 ]} (≤∧≢⇒< ge (≢-sym ¬q')) (≤-trans (≤-pred (m≤n∧m≡q⇒q≤n (m≤n⇒m+o≤n+o{o = length Δ} (var-env-< x')) (cong ℕ.suc (m∸n+n≡m ge)))) (≤-refl-+-comm{length ∇}{length Δ}))) | length-≡ {Δ} {∇} {Γ} {S} | (var-subst-refl {r} {∣ y ⊖ 1 ∣} {≢-sym (<⇒≢ (<-trans (n>0⇒n>∣n⊖1∣ (≤-trans (s≤s z≤n) ((≤∧≢⇒< ge (≢-sym ¬q'))))) (<-trans (var-env-< j) gt)))} {Var (length Δ +ᴺ length ∇)}) | sym (minus-1{y}{length Δ}{≤∧≢⇒< ge (≢-sym ¬q')} ) = TVar (ext-front{Δ = Δ}(ext-behind{∇}{S ∷ Γ}{T} (env-pred{gt = ≢-sym (<⇒≢ (m>n⇒m∸n≥1{y}{length Δ} ((≤∧≢⇒< ge (≢-sym ¬q')))))} x'))) --- y ∈ Γ swap-subst {T} {S} {Γ} {Δ} {∇} {Var y} {r} {gt} (TVar j) | in-Γ ge x | no ¬p | yes q | in-Γ ge' x' = contradiction q (≢-sym (<⇒≢ (m∸n≢0⇒n<m{y}{length Δ} (≢-sym (<⇒≢ (a<b≤c⇒a<c (s≤s z≤n) (≤-trans (length[A∷B]≥1{lzero}{Ty}{S}{∇}) ge'))))))) swap-subst {T} {S} {Γ} {Δ} {∇} {Var y} {r} {gt} (TVar j) | in-Γ ge x | yes p | yes q | in-Γ ge' x' = contradiction q (<⇒≢ p) swap-subst {T} {S} {Γ} {Δ} {∇} {Var y} {r} {gt} (TVar j) | in-Γ ge x | p | no ¬q' | in-Γ ge' x' rewrite (↑[]-var-refl->{ℕ.suc (length Δ)}{length Δ +ᴺ length ∇}{y}{ -[1+ 0 ]}{a<b≤c⇒a<c (s≤s (≤-refl-+-comm{length Δ}{length ∇})) (m≤n∧n≡q⇒m≤q (m≤n⇒m+o≤n+o{o = length Δ} ge') (m∸n+n≡m ge))}) | (var-subst-refl{r}{y}{≢-sym (<⇒≢ (<-trans (var-env-< j) (m≤n∧m≡q⇒q≤n gt (cong ℕ.suc (length-≡{Δ}{∇}{Γ}{S})))))}{ Var (foldr (λ _ → ℕ.suc) 0 Δ +ᴺ foldr (λ _ → ℕ.suc) 0 ∇)}) with ext-front{((y ∸ (length Δ)) ∸ ℕ.suc (length ∇))}{Γ}{Δ ++ ∇ ++ (S ∷ [])}{T} ... | w rewrite (∸-+-assoc y (length Δ) (ℕ.suc (length ∇))) | (sym (length-≡'{Δ}{∇}{S})) | (m∸n+n≡m{y}{length (Δ ++ ∇ ++ S ∷ [])} (m≤n∧m≡q⇒q≤n (m≤n∧n≡q⇒m≤q (m≤n⇒m+o≤n+o{o = length Δ} ge') (m∸n+n≡m ge)) (sym (length-≡''{Δ}{∇}{S})))) | (A++B++D∷[]++C≡A++B++D∷C{lzero}{Ty}{Δ}{∇}{Γ}{S}) = TVar (w x')
44.513978
199
0.441905
291da66f49ad32ab1c3bd193766cfc0a7fa7e243
8,624
agda
Agda
src/Basics/Reasoning.agda
jstolarek/dep-typed-wbl-heaps
57db566cb840dc70331c29eb7bf3a0c849f8b27e
[ "BSD-3-Clause" ]
1
2018-05-02T21:48:43.000Z
2018-05-02T21:48:43.000Z
src/Basics/Reasoning.agda
jstolarek/dep-typed-wbl-heaps
57db566cb840dc70331c29eb7bf3a0c849f8b27e
[ "BSD-3-Clause" ]
null
null
null
src/Basics/Reasoning.agda
jstolarek/dep-typed-wbl-heaps
57db566cb840dc70331c29eb7bf3a0c849f8b27e
[ "BSD-3-Clause" ]
null
null
null
---------------------------------------------------------------------- -- Copyright: 2013, Jan Stolarek, Lodz University of Technology -- -- -- -- License: See LICENSE file in root of the repo -- -- Repo address: https://github.com/jstolarek/dep-typed-wbl-heaps -- -- -- -- Refl datatype and functions required for equational reasoning. -- ---------------------------------------------------------------------- module Basics.Reasoning where open import Basics.Nat hiding (_≥_) open import Basics.Ordering -- Basic definition we will need in our proofs is propositional -- equality (known as refl). Unlike refl definition provided by Agda's -- standard library the definition below is not universe -- polymorphic. It works only on Set, but not on Set1 and higher Sets -- - this will be perfectly sufficient for our purposes. This datatype -- allows to express equality between types belonging to Set. data _≡_ {S : Set} (s : S) : S → Set where refl : s ≡ s infixl 1 _≡_ -- Below we prove basic properties of relations: symmetry, -- transitivity, congruence and substitution. If these proofs are not -- familiar I encourage to take a look at tutorials on Agda Wiki. The -- most useful source in my opinion are the online lecture notes for -- the Computer Aided Formal Reasoning course by Thorsten Altenkirch: -- -- http://www.cs.nott.ac.uk/~txa/g53cfr/ sym : {A : Set} → {a b : A} → a ≡ b → b ≡ a sym refl = refl trans : {A : Set}{a b c : A} → a ≡ b → b ≡ c → a ≡ c trans refl refl = refl cong : {A B : Set} (f : A → B) → ∀ {a b} → a ≡ b → f a ≡ f b cong f refl = refl subst : {A : Set}(P : A → Set) → {a b : A} → a ≡ b → P a → P b subst prp refl p = p -- We prove some basic properties of addition that we will need later -- in more complex proofs. I assume that you had previous exposure to -- these basic proofs, but nevertheless I provide extensive -- explanations. Make sure you understand how these proofs work before -- proceeding with rest of the paper. -- Note [0 is right identity of addition] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- The fact that 0 is left identity of addition (ie. 0 + a ≡ a) -- follows directly from our definition of _+_: -- -- _+_ : Nat → Nat → Nat -- zero + m = m -- suc n + m = suc (n + m) -- -- But we need a separate proof that 0 is also right identity of -- addition, ie. a + 0 ≡ a. Proof proceeds by induction on a. If a is -- zero then we have: -- -- 0 + 0 = 0 -- -- And the proof follows from the definition of addition - hence we -- use refl. In a recursive case we have: -- -- (suc a) + zero ≡ (suc a) -- -- Applying definition of addition to LHS we have: -- -- suc (a + zero) ≡ suc a -- -- Since we have suc on both sides of the equality, we use -- congruence. This leaves us with a proof that equality holds for the -- parameters of suc: -- -- a + zero ≡ a -- -- But that happens to be the equality we are proving at the -- moment. We therefore make a recursive call to (+0 a), which is -- equivalent of applying inductive hypothesis in an inductive proof. -- -- ∎ +0 : (a : Nat) → a + zero ≡ a -- See Note [0 is right identity of addition] +0 zero = refl +0 (suc a) = cong suc (+0 a) -- Note [1 + (a + b) equals a + (1 + b)] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- We will need this property surprisingly often. We proceed by -- inductive proof on a. In the base case, when a = 0, we have: -- -- suc (0 + b) ≡ 0 + (suc b) -- -- Applying definition of + to both sides of equality we get: -- -- suc b ≡ suc b -- -- Which is true by definition, hence we use refl. In the recursive -- case we have: -- -- suc ((suc a) + b) ≡ (suc a) + (suc b) -- -- We apply definition of + to both sides and get: -- -- suc (suc (a + b)) ≡ suc (a + (suc b)) -- -- Again, since we have suc on both sides we use congruence and are -- left with a proof: -- -- suc (a + b) ≡ a + (suc b) -- -- Which again is the equality we are proving. We appeal to inductive -- hypothesis by making a recursive call. -- -- ∎ +suc : (a b : Nat) → suc (a + b) ≡ a + (suc b) +suc zero b = refl +suc (suc a) b = cong suc (+suc a b) -- Note [Commutativity of addition] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- Everyone knows that a + b ≡ b + a. But Agda won't take our word and -- requires a formal proof. Let's proceed by induction on second -- argument. In the base case we have: -- -- a + 0 ≡ 0 + a -- -- Right side reduces by the definition of + which leaves us with -- -- a + 0 ≡ a -- -- We proved that earlier so we appeal to already existing proof. In -- the inductive case we have: -- -- a + suc b ≡ (suc b) + a [1] -- -- Right hand side reduces by definition of + giving us: -- -- a + suc b ≡ suc (b + a) [2] -- -- [2] is therefore the equality we have to prove. From +suc we know -- that -- -- suc (a + b) ≡ a + (suc b) [3] -- -- And we can use that to transform left hand side of [1]. Note -- however that in order to apply [3] to left hand side of [1] we need -- to reverse sides of the equality [3]: -- -- a + (suc b) ≡ suc (a + b) [4] -- -- We achieve this by using symmetry. -- -- Looking at right hand sides of [2] and [4] we see they differ by -- the order of arguments to +. We can prove them equal by using -- congruence on suc and appealing to our inductive hypothesis of -- commutativity of addition. This means we have proven two things: -- -- a + (suc b) ≡ suc (a + b) [4, repeated], from symmetry of +suc -- suc (a + b) ≡ suc (b + a) [5], from congruence on suc and -- inductive hypothesis -- -- Combining [4] and [5] using transitivity yields the proof of [2]. -- -- ∎ -- -- Here is a diagram, showing how code relates to the proof: -- -- a + b ≡ b + a -- ____|____ -- / \ -- trans (sym (+suc a b)) (cong suc (+comm a b)) -- ̲\_____________/ \__________________/ -- | | -- a + (suc b) ≡ suc (a + b) | -- suc (a + b) ≡ suc (b + a) +comm : (a b : Nat) → a + b ≡ b + a +comm a zero = +0 a +comm a (suc b) = trans (sym (+suc a b)) (cong suc (+comm a b)) -- Note [Associativity of addition] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- We proceed by induction on the first parameter. In the base case we -- have a = 0: -- -- 0 + (b + c) ≡ (0 + b) + c -- -- Both sides can be normalized using the definition of + giving us -- -- b + c ≡ b + c -- -- Since this is true by definition we use refl. In the inductive case -- we have to prove: -- -- suc a + (b + c) ≡ (suc a + b) + c -- -- Again, Agda normalizes each side using definition of + : -- -- LHS: suc a + (b + c) ≡ suc (a + (b + c)) -- RHS: (suc a + b) + c ≡ suc (a + b) + c ≡ suc ((a + b) + c) -- -- This means we have to prove: -- -- suc (a + (b + c)) ≡ suc ((a + b) + c) -- -- We can use congruence to remove the outer suc on both sides which -- leaves us with a proof of: -- -- a + (b + c) ̄≡ (a + b) + c -- -- Which happens to be our inductive hypothesis - hence a recursive -- call to +assoc. -- -- ∎ +assoc : (a b c : Nat) → a + (b + c) ≡ (a + b) + c +assoc zero b c = refl +assoc (suc a) b c = cong suc (+assoc a b c) -- Note [If numbers are equal they are in the greater-equal relation] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- Finally, we need a proof that if a = b then a ≥ b. This property is -- specific to our task, so you most likely haven't seen it other -- tutorials. There are three interesting things in this proof: -- -- 1) a value of type m ≥ n proves that m is greater-equal than n. We -- therefore need to construct the value of this type. -- -- 2) since refl is the only constructor of type ≡ we always use refl -- when pattern matching on a value of ≡. We also always pass refl -- as a value of ≡ in calls. -- -- 3) we need to match on implicit parameters to construct a -- proof. Note that although type signature specifies Nats m and -- n, in the proof we require that these are always equal. This -- requirement comes from the fact that m ≡ n, i.e. that m and n -- are equal. -- -- In the base case we need to construct a proof that 0 ≥ 0, which we -- do by using ge0. Inductive case simply applies geS to result of -- recursive call to ≥sym. ≥sym : {m n : Nat} → m ≡ n → m ≥ n ≥sym {zero} {zero} refl = ge0 ≥sym {.(suc n)} {(suc n)} refl = geS (≥sym {n} {n} refl)
33.55642
75
0.57166
8bd5212e13cd032b14ab376637ea16433290559d
10,574
agda
Agda
Cubical/Foundations/Path.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/Foundations/Path.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/Foundations/Path.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Path where open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence private variable ℓ ℓ' : Level A : Type ℓ -- Less polymorphic version of `cong`, to avoid some unresolved metas cong′ : ∀ {B : Type ℓ'} (f : A → B) {x y : A} (p : x ≡ y) → Path B (f x) (f y) cong′ f = cong f {-# INLINE cong′ #-} PathP≡Path : ∀ (P : I → Type ℓ) (p : P i0) (q : P i1) → PathP P p q ≡ Path (P i1) (transport (λ i → P i) p) q PathP≡Path P p q i = PathP (λ j → P (i ∨ j)) (transport-filler (λ j → P j) p i) q PathP≡Path⁻ : ∀ (P : I → Type ℓ) (p : P i0) (q : P i1) → PathP P p q ≡ Path (P i0) p (transport⁻ (λ i → P i) q) PathP≡Path⁻ P p q i = PathP (λ j → P (~ i ∧ j)) p (transport⁻-filler (λ j → P j) q i) PathP≃Path : ∀ (P : I → Type ℓ) (p : P i0) (q : P i1) → PathP P p q ≃ Path (P i1) (transport (λ i → P i) p) q PathP≃Path P p q = transportEquiv (PathP≡Path P p q) -- Alternative more unfolded proof toPathP-isEquiv : ∀ (A : I → Type ℓ) {x y} → isEquiv (toPathP {A = A} {x} {y}) toPathP-isEquiv A {x} {y} = isoToIsEquiv (iso toPathP fromPathP to-from from-to) where to-from : ∀ (p : PathP A x y) → toPathP (fromPathP p) ≡ p to-from p h i = outS (hcomp-unique (λ { j (i = i0) → x ; j (i = i1) → fromPathP p j }) (inS (transp (λ j → A (i ∧ j)) (~ i) x)) \ h → inS (sq1 h i)) h where sq1 : (\ h → A [ x ≡ transp (\ j → A (h ∨ j)) h (p h) ]) [ (\ i → transp (λ j → A (i ∧ j)) (~ i) x) ≡ p ] sq1 = \ h i → comp (\ z → (hcomp (\ w → \ { (z = i1) → A (i ∧ (w ∨ h)) ; (z = i0) → A (i ∧ h) ; (i = i0) → A i0 ; (i = i1) → A (h ∨ (w ∧ z)) ; (h = i0) → A (i ∧ (w ∧ z)) ; (h = i1) → A i}) ((A (i ∧ h))))) (\ z → \ { (i = i0) → x ; (i = i1) → transp (\ j → A (h ∨ (z ∧ j))) (h ∨ ~ z) (p h) ; (h = i0) → transp (λ j → A ((i ∧ z) ∧ j)) (~ (i ∧ z)) x ; (h = i1) → p i }) (p (i ∧ h)) from-to : ∀ (q : transp (\ i → A i) i0 x ≡ y) → fromPathP (toPathP {A = A} q) ≡ q from-to q = (\ h i → outS (transp-hcomp i {A' = A i1} (\ j → inS (A (i ∨ j))) ((λ { j (i = i0) → x ; j (i = i1) → q j })) (inS ((transp (λ j → A (i ∧ j)) (~ i) x)))) h) ∙ (\ h i → outS (hcomp-unique {A = A i1} ((λ { j (i = i0) → transp (\ i → A i) i0 x ; j (i = i1) → q j })) (inS ((transp (λ j → A (i ∨ j)) i (transp (λ j → A (i ∧ j)) (~ i) x)))) \ h → inS (sq2 h i)) h) ∙ sym (lUnit q) where sq2 : (\ h → transp (\ i → A i) i0 x ≡ q h) [ (\ i → transp (\ j → A (i ∨ j)) i (transp (\ j → A (i ∧ j)) (~ i) x)) ≡ refl ∙ q ] sq2 = \ h i → comp (\ z → hcomp (\ w → \ { (i = i1) → A i1 ; (i = i0) → A (h ∨ (w ∧ z)) ; (h = i0) → A (i ∨ (w ∧ z)) ; (h = i1) → A i1 ; (z = i0) → A (i ∨ h) ; (z = i1) → A ((i ∨ h) ∨ w) }) (A (i ∨ h))) (\ z → \ { (i = i0) → transp (λ j → A ((z ∨ h) ∧ j)) (~ z ∧ ~ h) x ; (i = i1) → q (z ∧ h) ; (h = i1) → compPath-filler refl q z i ; (h = i0) → transp (\ j → A (i ∨ (z ∧ j))) (i ∨ ~ z) (transp (\ j → A (i ∧ j)) (~ i) x) }) (transp (\ j → A ((i ∨ h) ∧ j)) (~ (i ∨ h)) x) PathP≡compPath : ∀ {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : y ≡ z) (r : x ≡ z) → (PathP (λ i → x ≡ q i) p r) ≡ (p ∙ q ≡ r) PathP≡compPath p q r k = PathP (λ i → p i0 ≡ q (i ∨ k)) (λ j → compPath-filler p q k j) r PathP≡doubleCompPathˡ : ∀ {A : Type ℓ} {w x y z : A} (p : w ≡ y) (q : w ≡ x) (r : y ≡ z) (s : x ≡ z) → (PathP (λ i → p i ≡ s i) q r) ≡ (p ⁻¹ ∙∙ q ∙∙ s ≡ r) PathP≡doubleCompPathˡ p q r s k = PathP (λ i → p (i ∨ k) ≡ s (i ∨ k)) (λ j → doubleCompPath-filler (p ⁻¹) q s k j) r PathP≡doubleCompPathʳ : ∀ {A : Type ℓ} {w x y z : A} (p : w ≡ y) (q : w ≡ x) (r : y ≡ z) (s : x ≡ z) → (PathP (λ i → p i ≡ s i) q r) ≡ (q ≡ p ∙∙ r ∙∙ s ⁻¹) PathP≡doubleCompPathʳ p q r s k = PathP (λ i → p (i ∧ (~ k)) ≡ s (i ∧ (~ k))) q (λ j → doubleCompPath-filler p r (s ⁻¹) k j) compPathl-cancel : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : x ≡ z) → p ∙ (sym p ∙ q) ≡ q compPathl-cancel p q = p ∙ (sym p ∙ q) ≡⟨ assoc p (sym p) q ⟩ (p ∙ sym p) ∙ q ≡⟨ cong (_∙ q) (rCancel p) ⟩ refl ∙ q ≡⟨ sym (lUnit q) ⟩ q ∎ compPathr-cancel : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : z ≡ y) (q : x ≡ y) → (q ∙ sym p) ∙ p ≡ q compPathr-cancel {x = x} p q i j = hcomp-equivFiller (doubleComp-faces (λ _ → x) (sym p) j) (inS (q j)) (~ i) compPathl-isEquiv : {x y z : A} (p : x ≡ y) → isEquiv (λ (q : y ≡ z) → p ∙ q) compPathl-isEquiv p = isoToIsEquiv (iso (p ∙_) (sym p ∙_) (compPathl-cancel p) (compPathl-cancel (sym p))) compPathlEquiv : {x y z : A} (p : x ≡ y) → (y ≡ z) ≃ (x ≡ z) compPathlEquiv p = (p ∙_) , compPathl-isEquiv p compPathr-isEquiv : {x y z : A} (p : y ≡ z) → isEquiv (λ (q : x ≡ y) → q ∙ p) compPathr-isEquiv p = isoToIsEquiv (iso (_∙ p) (_∙ sym p) (compPathr-cancel p) (compPathr-cancel (sym p))) compPathrEquiv : {x y z : A} (p : y ≡ z) → (x ≡ y) ≃ (x ≡ z) compPathrEquiv p = (_∙ p) , compPathr-isEquiv p -- Variations of isProp→isSet for PathP isProp→SquareP : ∀ {B : I → I → Type ℓ} → ((i j : I) → isProp (B i j)) → {a : B i0 i0} {b : B i0 i1} {c : B i1 i0} {d : B i1 i1} → (r : PathP (λ j → B j i0) a c) (s : PathP (λ j → B j i1) b d) → (t : PathP (λ j → B i0 j) a b) (u : PathP (λ j → B i1 j) c d) → SquareP B t u r s isProp→SquareP {B = B} isPropB {a = a} r s t u i j = hcomp (λ { k (i = i0) → isPropB i0 j (base i0 j) (t j) k ; k (i = i1) → isPropB i1 j (base i1 j) (u j) k ; k (j = i0) → isPropB i i0 (base i i0) (r i) k ; k (j = i1) → isPropB i i1 (base i i1) (s i) k }) (base i j) where base : (i j : I) → B i j base i j = transport (λ k → B (i ∧ k) (j ∧ k)) a isProp→isPropPathP : ∀ {ℓ} {B : I → Type ℓ} → ((i : I) → isProp (B i)) → (b0 : B i0) (b1 : B i1) → isProp (PathP (λ i → B i) b0 b1) isProp→isPropPathP {B = B} hB b0 b1 = isProp→SquareP (λ _ → hB) refl refl isProp→isContrPathP : {A : I → Type ℓ} → (∀ i → isProp (A i)) → (x : A i0) (y : A i1) → isContr (PathP A x y) isProp→isContrPathP h x y = isProp→PathP h x y , isProp→isPropPathP h x y _ -- Flipping a square along its diagonal flipSquare : {a₀₀ a₀₁ : A} {a₀₋ : a₀₀ ≡ a₀₁} {a₁₀ a₁₁ : A} {a₁₋ : a₁₀ ≡ a₁₁} {a₋₀ : a₀₀ ≡ a₁₀} {a₋₁ : a₀₁ ≡ a₁₁} → Square a₀₋ a₁₋ a₋₀ a₋₁ → Square a₋₀ a₋₁ a₀₋ a₁₋ flipSquare sq i j = sq j i flipSquareEquiv : {a₀₀ a₀₁ : A} {a₀₋ : a₀₀ ≡ a₀₁} {a₁₀ a₁₁ : A} {a₁₋ : a₁₀ ≡ a₁₁} {a₋₀ : a₀₀ ≡ a₁₀} {a₋₁ : a₀₁ ≡ a₁₁} → Square a₀₋ a₁₋ a₋₀ a₋₁ ≃ Square a₋₀ a₋₁ a₀₋ a₁₋ flipSquareEquiv = isoToEquiv (iso flipSquare flipSquare (λ _ → refl) (λ _ → refl)) flipSquarePath : {a₀₀ a₀₁ : A} {a₀₋ : a₀₀ ≡ a₀₁} {a₁₀ a₁₁ : A} {a₁₋ : a₁₀ ≡ a₁₁} {a₋₀ : a₀₀ ≡ a₁₀} {a₋₁ : a₀₁ ≡ a₁₁} → Square a₀₋ a₁₋ a₋₀ a₋₁ ≡ Square a₋₀ a₋₁ a₀₋ a₁₋ flipSquarePath = isoToPath (iso flipSquare flipSquare (λ _ → refl) (λ _ → refl)) module _ {a₀₀ a₁₁ : A} {a₋ : a₀₀ ≡ a₁₁} {a₁₀ : A} {a₁₋ : a₁₀ ≡ a₁₁} {a₋₀ : a₀₀ ≡ a₁₀} where slideSquareFaces : (i j k : I) → Partial (i ∨ ~ i ∨ j ∨ ~ j) A slideSquareFaces i j k (i = i0) = a₋ (j ∧ ~ k) slideSquareFaces i j k (i = i1) = a₁₋ j slideSquareFaces i j k (j = i0) = a₋₀ i slideSquareFaces i j k (j = i1) = a₋ (i ∨ ~ k) slideSquare : Square a₋ a₁₋ a₋₀ refl → Square refl a₁₋ a₋₀ a₋ slideSquare sq i j = hcomp (slideSquareFaces i j) (sq i j) slideSquareEquiv : (Square a₋ a₁₋ a₋₀ refl) ≃ (Square refl a₁₋ a₋₀ a₋) slideSquareEquiv = isoToEquiv (iso slideSquare slideSquareInv fillerTo fillerFrom) where slideSquareInv : Square refl a₁₋ a₋₀ a₋ → Square a₋ a₁₋ a₋₀ refl slideSquareInv sq i j = hcomp (λ k → slideSquareFaces i j (~ k)) (sq i j) fillerTo : ∀ p → slideSquare (slideSquareInv p) ≡ p fillerTo p k i j = hcomp-equivFiller (λ k → slideSquareFaces i j (~ k)) (inS (p i j)) (~ k) fillerFrom : ∀ p → slideSquareInv (slideSquare p) ≡ p fillerFrom p k i j = hcomp-equivFiller (slideSquareFaces i j) (inS (p i j)) (~ k) -- The type of fillers of a square is equivalent to the double composition identites Square≃doubleComp : {a₀₀ a₀₁ a₁₀ a₁₁ : A} (a₀₋ : a₀₀ ≡ a₀₁) (a₁₋ : a₁₀ ≡ a₁₁) (a₋₀ : a₀₀ ≡ a₁₀) (a₋₁ : a₀₁ ≡ a₁₁) → Square a₀₋ a₁₋ a₋₀ a₋₁ ≃ (a₋₀ ⁻¹ ∙∙ a₀₋ ∙∙ a₋₁ ≡ a₁₋) Square≃doubleComp a₀₋ a₁₋ a₋₀ a₋₁ = transportEquiv (PathP≡doubleCompPathˡ a₋₀ a₀₋ a₁₋ a₋₁) Square≡doubleComp : {a₀₀ a₀₁ a₁₀ a₁₁ : A} (a₀₋ : a₀₀ ≡ a₀₁) (a₁₋ : a₁₀ ≡ a₁₁) (a₋₀ : a₀₀ ≡ a₁₀) (a₋₁ : a₀₁ ≡ a₁₁) → Square a₀₋ a₁₋ a₋₀ a₋₁ ≡ (a₋₀ ⁻¹ ∙∙ a₀₋ ∙∙ a₋₁ ≡ a₁₋) Square≡doubleComp a₀₋ a₁₋ a₋₀ a₋₁ = ua (Square≃doubleComp a₀₋ a₁₋ a₋₀ a₋₁) -- sym induces an equivalence on identity types of paths symIso : {a b : A} (p q : a ≡ b) → Iso (p ≡ q) (q ≡ p) symIso p q = iso sym sym (λ _ → refl) λ _ → refl
51.082126
135
0.424154
2e64e746be0839e8c7e329c38b44218b4c7ecc58
4,619
agda
Agda
theorems/experimental/JoinAssoc.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
theorems/experimental/JoinAssoc.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
theorems/experimental/JoinAssoc.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT -- Associativity of the join (work in progress) module experimental.JoinAssoc {i j k} (A : Type i) (B : Type j) (C : Type k) where {- First map -} to : (A * B) * C → A * (B * C) to = To.f module _ where to-left-glue : (ab : A × B) → left (fst ab) == right (left (snd ab)) :> A * (B * C) to-left-glue (a , b) = glue (a , left b) module ToLeft = PushoutRec left (right ∘ left) to-left-glue to-left : A * B → A * (B * C) to-left = ToLeft.f to-glue-left : (c : C) (a : A) → to-left (left a) == right (right c) to-glue-left c a = glue (a , right c) to-glue-right : (c : C) (b : B) → to-left (right b) == right (right c) to-glue-right c b = ap right (glue (b , c)) to-glue-glue : (c : C) (ab : A × B) → to-glue-left c (fst ab) == to-glue-right c (snd ab) [ (λ x → to-left x == right (right c)) ↓ glue ab ] to-glue-glue c (a , b) = ↓-swap to-left right _ idp (ToLeft.glue-β (a , b) ◃ apd (λ x → glue (a , x)) (glue (b , c))) module ToGlue (c : C) = PushoutElim (to-glue-left c) (to-glue-right c) (to-glue-glue c) to-glue : (ab-c : (A * B) × C) → to-left (fst ab-c) == right (right (snd ab-c)) to-glue (ab , c) = M.f ab where module M = ToGlue c module To = PushoutRec {d = *-span (A * B) C} to-left (right ∘ right) to-glue {- Second map -} from : A * (B * C) → (A * B) * C from = From.f module MM where from-right-glue : (bc : B × C) → left (right (fst bc)) == right (snd bc) from-right-glue (b , c) = glue (right b , c) module FromRight = PushoutRec (left ∘ right) right from-right-glue from-right : B * C → (A * B) * C from-right = FromRight.f from-glue-left : (a : A) (b : B) → left (left a) == from-right (left b) from-glue-left a b = ap left (glue (a , b)) from-glue-right : (a : A) (c : C) → left (left a) == from-right (right c) from-glue-right a c = glue (left a , c) from-glue-glue : (a : A) (bc : B × C) → from-glue-left a (fst bc) == from-glue-right a (snd bc) [ (λ x → left (left a) == from-right x) ↓ glue bc ] from-glue-glue a (b , c) = ↓-swap! left from-right _ idp (apd (λ x → glue (x , c)) (glue (a , b)) ▹! (FromRight.glue-β (b , c))) module FromGlue (a : A) = PushoutElim (from-glue-left a) (from-glue-right a) (from-glue-glue a) from-glue : (a-bc : A × (B * C)) → left (left (fst a-bc)) == from-right (snd a-bc) from-glue (a , bc) = M.f bc where module M = FromGlue a module From = PushoutRec {d = *-span A (B * C)} (left ∘ left) from-right from-glue open MM public {- First composite -} to-from-right-glue' : (b : B) (c : C) → ap (to ∘ from-right) (glue (b , c)) =-= ap right (glue (b , c)) to-from-right-glue' b c = ap (λ z → to (from-right z)) (glue (b , c)) =⟪ ap-∘ to from-right (glue (b , c)) ⟫ ap to (ap from-right (glue (b , c))) =⟪ FromRight.glue-β (b , c) |in-ctx ap to ⟫ ap to (glue ((right b , c) :> ((A * B) × C))) =⟪ To.glue-β (right b , c)⟫ ap right (glue (b , c)) ∎∎ to-from-right-glue : (bc : B × C) → idp == idp [ (λ x → to (from (right x)) == right x) ↓ glue bc ] to-from-right-glue (b , c) = ↓-='-in (! (↯ to-from-right-glue' b c)) module ToFromRight = PushoutElim (λ _ → idp) (λ _ → idp) to-from-right-glue to-from-right : (bc : B * C) → to (from (right bc)) == right bc to-from-right = ToFromRight.f to-from-glue-left' : (a : A) (b : B) → ap to (ap from (glue (a , left b))) =-= glue (a , left b) to-from-glue-left' a b = ap to (ap from (glue (a , left b))) =⟪ From.glue-β (a , left b) |in-ctx ap to ⟫ ap to (ap left (glue (a , b))) =⟪ ∘-ap to left (glue (a , b)) ⟫ ap to-left (glue (a , b)) =⟪ ToLeft.glue-β (a , b) ⟫ glue (a , left b) ∎∎ to-from-glue-left : (a : A) (b : B) → idp == to-from-right (left b) [ (λ x → to (from x) == x) ↓ glue (a , left b) ] to-from-glue-left a b = ↓-∘=idf-in to from (↯ to-from-glue-left' a b) to-from-glue-right' : (a : A) (c : C) → ap to (ap from (glue (a , right c))) =-= glue (a , right c) to-from-glue-right' a c = ap to (ap from (glue (a , right c))) =⟪ From.glue-β (a , right c) |in-ctx ap to ⟫ ap to (glue (left a , c)) =⟪ To.glue-β (left a , c) ⟫ glue (a , right c) ∎∎ to-from-glue-right : (a : A) (c : C) → idp == to-from-right (right c) [ (λ x → to (from x) == x) ↓ glue (a , right c) ] to-from-glue-right a c = ↓-∘=idf-in to from (↯ to-from-glue-right' a c) postulate -- Not proved yet. Some of it is being worked on at JoinAssoc2 *-assoc : ((A * B) * C) ≃ (A * (B * C))
41.990909
151
0.52349
593d38b102bef48e009ab67303411d40a94a66fd
2,565
agda
Agda
examples/outdated-and-incorrect/Alonzo/PrintFloat.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/Alonzo/PrintFloat.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/Alonzo/PrintFloat.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module PrintFloat where import AlonzoPrelude import PreludeShow import PreludeList import PreludeString import PreludeNat open AlonzoPrelude open PreludeShow open PreludeList, hiding(_++_) open PreludeString open PreludeNat typeS : Char -> Set typeS 'f' = Float show : (c : Char) -> (typeS c) -> String show 'f' f = showFloat f data Unit : Set where unit : Unit data Format : Set where stringArg : Format natArg : Format intArg : Format floatArg : Format charArg : Format litChar : Char -> Format badFormat : Char -> Format data BadFormat (c:Char) : Set where format' : List Char -> List Format format' ('%' :: 's' :: fmt) = stringArg :: format' fmt format' ('%' :: 'n' :: fmt) = natArg :: format' fmt -- format' ('%' :: 'd' :: fmt) = intArg :: format' fmt format' ('%' :: 'f' :: fmt) = floatArg :: format' fmt format' ('%' :: 'c' :: fmt) = charArg :: format' fmt format' ('%' :: '%' :: fmt) = litChar '%' :: format' fmt format' ('%' :: c :: fmt) = badFormat c :: format' fmt format' (c :: fmt) = litChar c :: format' fmt format' [] = [] format : String -> List Format format s = format' (toList s) -- Printf1 : Format -> Set -- Printf1 floatArg = Float Printf' : List Format -> Set Printf' (stringArg :: fmt) = String × Printf' fmt Printf' (natArg :: fmt) = Nat × Printf' fmt Printf' (intArg :: fmt) = Int × Printf' fmt Printf' (floatArg :: fmt) = Float × Printf' fmt Printf' (charArg :: fmt) = Char × Printf' fmt Printf' (badFormat c :: fmt) = BadFormat c Printf' (litChar _ :: fmt) = Printf' fmt Printf' [] = Unit × Unit Printf : String -> Set Printf fmt = Printf' (format fmt) printf' : (fmt : List Format) -> Printf' fmt -> String printf' (stringArg :: fmt) < s | args > = s ++ printf' fmt args printf' (natArg :: fmt) < n | args > = showNat n ++ printf' fmt args printf' (intArg :: fmt) < n | args > = showInt n ++ printf' fmt args printf' (floatArg :: fmt) < x | args > = showFloat x ++ printf' fmt args printf' (charArg :: fmt) < c | args > = showChar c ++ printf' fmt args printf' (litChar c :: fmt) args = fromList (c :: []) ++ printf' fmt args printf' (badFormat _ :: fmt) () printf' [] < unit | unit > = "" printf : (fmt : String) -> Printf fmt -> String printf fmt = printf' (format fmt) -- mainS = show 'f' 3.14 -- mainS = printf' (format "%f") < 3.14 | < unit | unit > > mainS = printf "pi = %f" < 3.14159 | < unit | unit > > -- mainS = fromList ( 'p' :: [] )
31.280488
75
0.574659
03beb8ee32a1eb92f5158e4da707d457f1cf564a
8,326
agda
Agda
Formalization/ClassicalPropositionalLogic/NaturalDeduction/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Formalization/ClassicalPropositionalLogic/NaturalDeduction/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Formalization/ClassicalPropositionalLogic/NaturalDeduction/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Formalization.ClassicalPropositionalLogic.NaturalDeduction.Proofs where open import Data.Boolean open import Data.Either open import Functional open import Formalization.ClassicalPropositionalLogic.NaturalDeduction open import Formalization.ClassicalPropositionalLogic.Place open import Formalization.ClassicalPropositionalLogic.Syntax import Lvl open import Logic import Logic.Propositional as Meta open import Relator.Equals open import Relator.Equals.Proofs.Equiv open import Sets.PredicateSet using (PredSet ; _∈_ ; _∉_ ; _∪_ ; _∪•_ ; _∖_ ; _⊆_ ; _⊇_ ; ∅ ; [≡]-to-[⊆] ; [≡]-to-[⊇]) renaming (•_ to singleton ; _≡_ to _≡ₛ_) open import Type private variable ℓₚ ℓ ℓ₁ ℓ₂ : Lvl.Level private variable T A B : Type{ℓ} private variable P : Type{ℓₚ} private variable φ ψ γ : Formula(P) private variable Γ : Formulas(P){ℓ} private variable f : A → B private variable s e : Bool private variable p : P module _ where [¬]-intro-converse : ((Γ ∪ singleton(φ)) ⊢ ⊥) ← (Γ ⊢ (¬ φ)) [¬]-intro-converse {Γ = Γ}{φ = φ} Γ¬φ = [⊥]-intro (direct (Right [≡]-intro)) (weaken-union Γ¬φ) excluded-middle : Γ ⊢ (φ ∨ (¬ φ)) excluded-middle = ([¬¬]-elim ([¬]-intro ([⊥]-intro ([∨]-introᵣ ([¬]-intro ([⊥]-intro ([∨]-introₗ (direct (Right [≡]-intro))) (direct (Left (Right [≡]-intro))) ) ) ) (direct (Right [≡]-intro)) ) ) ) [→]-disjunctive-form : (Γ ⊢ (φ ⟶ ψ)) Meta.↔ (Γ ⊢ ((¬ φ) ∨ ψ)) [→]-disjunctive-form = Meta.[↔]-intro l r where l = [∨]-elim ([⟶]-intro ([⊥]-elim ([⊥]-intro (direct (Right [≡]-intro)) (direct (Left (Right [≡]-intro))) ))) ([⟶]-intro (direct (Left (Right [≡]-intro)))) r = pq ↦ ([∨]-elim ([∨]-introᵣ ([⟶]-elim (direct (Right [≡]-intro)) (weaken Left pq))) ([∨]-introₗ (direct (Right [≡]-intro))) excluded-middle ) [⟷]-negated : (Γ ⊢ (φ ⟷ ψ)) → (Γ ⊢ ((¬ φ) ⟷ (¬ ψ))) [⟷]-negated p = [⟷]-intro ([¬]-intro ([⊥]-intro ([⟷]-elimᵣ (direct (Right [≡]-intro)) (weaken (Left ∘ Left) p)) (direct (Left (Right [≡]-intro))))) (([¬]-intro ([⊥]-intro ([⟷]-elimₗ (direct (Right [≡]-intro)) (weaken (Left ∘ Left) p)) (direct (Left (Right [≡]-intro)))))) [⟷]-conjunction-disjunction-negation : (Γ ⊢ (φ ⟷ ψ)) Meta.↔ (Γ ⊢ ((φ ∧ ψ) ∨ ((¬ φ) ∧ (¬ ψ)))) [⟷]-conjunction-disjunction-negation = Meta.[↔]-intro l r where l = [∨]-elim ([⟷]-intro ([∧]-elimₗ (direct (Left (Right [≡]-intro)))) ([∧]-elimᵣ (direct (Left (Right [≡]-intro)))) ) ([⟷]-intro ([⊥]-elim ([⊥]-intro (direct (Right [≡]-intro)) ([∧]-elimᵣ (direct (Left (Right [≡]-intro)))))) ([⊥]-elim ([⊥]-intro (direct (Right [≡]-intro)) ([∧]-elimₗ (direct (Left (Right [≡]-intro)))))) ) r = p ↦ [∨]-elim ([∨]-introₗ ([∧]-intro (direct (Right [≡]-intro)) ([⟷]-elimᵣ (direct (Right [≡]-intro)) (weaken Left p)) )) ([∨]-introᵣ ([∧]-intro (direct (Right [≡]-intro)) ([⟷]-elimᵣ (direct (Right [≡]-intro)) (weaken Left ([⟷]-negated p))) )) excluded-middle -- TODO: The two proofs contain very similar cases (the structure is identical in all cases). Are there any good ways to generalize? Maybe by using the strict variants? positive-congruence : Positive(P) f → (Γ ⊢ (φ ⟶ ψ) ⟶ (f(φ) ⟶ f(ψ))) negative-congruence : Negative(P) f → (Γ ⊢ (φ ⟶ ψ) ⟶ (f(φ) ⟵ f(ψ))) positive-congruence identity = [⟶]-intro ([⟶]-intro ([⟶]-elim (direct (Right [≡]-intro)) (direct (Left (Right [≡]-intro))))) positive-congruence (conjunctionₗ ctx) = [⟶]-intro ([⟶]-intro ([∧]-intro ([∧]-elimₗ (direct (Right [≡]-intro))) ([⟶]-elim ([∧]-elimᵣ (direct (Right [≡]-intro))) ([⟶]-elim (direct (Left (Right [≡]-intro))) (positive-congruence ctx))) )) positive-congruence (conjunctionᵣ ctx) = [⟶]-intro ([⟶]-intro ([∧]-intro ([⟶]-elim ([∧]-elimₗ (direct (Right [≡]-intro))) ([⟶]-elim (direct (Left (Right [≡]-intro))) (positive-congruence ctx))) ([∧]-elimᵣ (direct (Right [≡]-intro))) )) positive-congruence (disjunctionₗ ctx) = [⟶]-intro ([⟶]-intro ([∨]-elim ([∨]-introₗ (direct (Right [≡]-intro))) ([∨]-introᵣ ([⟶]-elim (direct (Right [≡]-intro)) ([⟶]-elim (direct (Left (Left (Right [≡]-intro)))) (positive-congruence ctx)))) (direct (Right [≡]-intro)) )) positive-congruence (disjunctionᵣ ctx) = [⟶]-intro ([⟶]-intro ([∨]-elim ([∨]-introₗ ([⟶]-elim (direct (Right [≡]-intro)) ([⟶]-elim (direct (Left (Left (Right [≡]-intro)))) (positive-congruence ctx)))) ([∨]-introᵣ (direct (Right [≡]-intro))) (direct (Right [≡]-intro)) )) positive-congruence (implicationₗ ctx) = [⟶]-intro ([⟶]-intro ([⟶]-intro ([⟶]-elim ([⟶]-elim (direct(Right [≡]-intro)) (direct (Left (Right [≡]-intro)))) ([⟶]-elim (direct (Left (Left (Right [≡]-intro)))) (positive-congruence ctx)) ))) positive-congruence (implicationᵣ ctx) = [⟶]-intro ([⟶]-intro ([⟶]-intro ([⟶]-elim ([⟶]-elim (direct (Right [≡]-intro)) ([⟶]-elim (direct (Left (Left (Right [≡]-intro)))) (negative-congruence ctx))) (direct (Left (Right [≡]-intro))) ))) negative-congruence (conjunctionₗ ctx) = [⟶]-intro ([⟶]-intro ([∧]-intro ([∧]-elimₗ (direct (Right [≡]-intro))) ([⟶]-elim ([∧]-elimᵣ (direct (Right [≡]-intro))) ([⟶]-elim (direct (Left (Right [≡]-intro))) (negative-congruence ctx))) )) negative-congruence (conjunctionᵣ ctx) = [⟶]-intro ([⟶]-intro ([∧]-intro ([⟶]-elim ([∧]-elimₗ (direct (Right [≡]-intro))) ([⟶]-elim (direct (Left (Right [≡]-intro))) (negative-congruence ctx))) ([∧]-elimᵣ (direct (Right [≡]-intro))) )) negative-congruence (disjunctionₗ ctx) = [⟶]-intro ([⟶]-intro ([∨]-elim ([∨]-introₗ (direct (Right [≡]-intro))) ([∨]-introᵣ ([⟶]-elim (direct (Right [≡]-intro)) ([⟶]-elim (direct (Left (Left (Right [≡]-intro)))) (negative-congruence ctx)))) (direct (Right [≡]-intro)) )) negative-congruence (disjunctionᵣ ctx) = [⟶]-intro ([⟶]-intro ([∨]-elim ([∨]-introₗ ([⟶]-elim (direct (Right [≡]-intro)) ([⟶]-elim (direct (Left (Left (Right [≡]-intro)))) (negative-congruence ctx)))) ([∨]-introᵣ (direct (Right [≡]-intro))) (direct (Right [≡]-intro)) )) negative-congruence (implicationₗ ctx) = [⟶]-intro ([⟶]-intro ([⟶]-intro ([⟶]-elim ([⟶]-elim (direct(Right [≡]-intro)) (direct (Left (Right [≡]-intro)))) ([⟶]-elim (direct (Left (Left (Right [≡]-intro)))) (negative-congruence ctx)) ))) negative-congruence (implicationᵣ ctx) = [⟶]-intro ([⟶]-intro ([⟶]-intro ([⟶]-elim ([⟶]-elim (direct (Right [≡]-intro)) ([⟶]-elim (direct (Left (Left (Right [≡]-intro)))) (positive-congruence ctx))) (direct (Left (Right [≡]-intro))) ))) -- TODO: Mainly for results in minimal logic data NegativeFragment {P : Type{ℓₚ}} : Formula(P) → Type{Lvl.of(P)} where atom : NegativeFragment(¬(• p)) bottom : NegativeFragment(⊥) top : NegativeFragment(⊤) neg : NegativeFragment(φ) → NegativeFragment(¬ φ) and : NegativeFragment(φ) → NegativeFragment(ψ) → NegativeFragment(φ ∧ ψ) impl : NegativeFragment(φ) → NegativeFragment(ψ) → NegativeFragment(φ ⟶ ψ) eq : NegativeFragment(φ) → NegativeFragment(ψ) → NegativeFragment(φ ⟷ ψ) open import Functional open import Type.Dependent open import Type.Dependent.Functions module GGNegativeTranslation where trans : Formula(P) → Formula(P) trans (• p) = ¬(¬(• p)) trans ⊤ = ⊤ trans ⊥ = ⊥ trans (¬ φ) = ¬(trans φ) trans (φ ∧ ψ) = (trans φ) ∧ (trans ψ) trans (φ ∨ ψ) = ¬((¬(trans φ)) ∧ (¬(trans ψ))) trans (φ ⟶ ψ) = (trans φ) ⟶ (trans ψ) trans (φ ⟷ ψ) = (trans φ) ⟷ (trans ψ) trans-negativeFragment : NegativeFragment(trans(φ)) trans-negativeFragment {φ = • p} = neg atom trans-negativeFragment {φ = ⊤} = top trans-negativeFragment {φ = ⊥} = bottom trans-negativeFragment {φ = ¬ φ} = neg trans-negativeFragment trans-negativeFragment {φ = φ ∧ ψ} = and trans-negativeFragment trans-negativeFragment trans-negativeFragment {φ = φ ∨ ψ} = neg(and(neg trans-negativeFragment) (neg trans-negativeFragment)) trans-negativeFragment {φ = φ ⟶ ψ} = impl trans-negativeFragment trans-negativeFragment trans-negativeFragment {φ = φ ⟷ ψ} = eq trans-negativeFragment trans-negativeFragment
42.697436
168
0.571943
03734d2c50fc6c13af1c1247930406c7e5df8440
1,688
agda
Agda
Mockingbird/Problems/Chapter10.agda
splintah/combinatory-logic
df8bf877e60b3059532c54a247a36a3d83cd55b0
[ "MIT" ]
1
2022-02-28T23:44:42.000Z
2022-02-28T23:44:42.000Z
Mockingbird/Problems/Chapter10.agda
splintah/combinatory-logic
df8bf877e60b3059532c54a247a36a3d83cd55b0
[ "MIT" ]
null
null
null
Mockingbird/Problems/Chapter10.agda
splintah/combinatory-logic
df8bf877e60b3059532c54a247a36a3d83cd55b0
[ "MIT" ]
null
null
null
open import Mockingbird.Forest using (Forest) -- Is There a Sage Bird? module Mockingbird.Problems.Chapter10 {b ℓ} (forest : Forest {b} {ℓ}) where open import Data.Product using (_,_; proj₁; proj₂; ∃-syntax) open import Function using (_$_) open import Mockingbird.Forest.Birds forest open Forest forest module _ ⦃ _ : HasComposition ⦄ ⦃ _ : HasMockingbird ⦄ ⦃ _ : HasLark ⦄ where private hasMockingbirdComposer : ∃[ A ] (∀ x y → A ∙ x ∙ y ≈ x ∙ (M ∙ y)) hasMockingbirdComposer = (L , isMockingbirdComposer) where isMockingbirdComposer = λ x y → begin L ∙ x ∙ y ≈⟨ isLark x y ⟩ x ∙ (y ∙ y) ≈˘⟨ congˡ $ isMockingbird y ⟩ x ∙ (M ∙ y) ∎ hasSageBird : HasSageBird hasSageBird = record { Θ = M ∘ L ; isSageBird = λ x → begin x ∙ ((M ∘ L) ∙ x) ≈⟨ congˡ $ isComposition M L x ⟩ x ∙ (M ∙ (L ∙ x)) ≈⟨ congˡ $ isMockingbird (L ∙ x) ⟩ x ∙ ((L ∙ x) ∙ (L ∙ x)) ≈˘⟨ isLark x (L ∙ x) ⟩ (L ∙ x) ∙ (L ∙ x) ≈˘⟨ isMockingbird (L ∙ x) ⟩ M ∙ (L ∙ x) ≈˘⟨ isComposition M L x ⟩ (M ∘ L) ∙ x ∎ } module _ ⦃ _ : HasComposition ⦄ ⦃ _ : HasMockingbird ⦄ (hasMockingbirdComposer : ∃[ A ] (∀ x y → A ∙ x ∙ y ≈ x ∙ (M ∙ y))) where private A = proj₁ hasMockingbirdComposer [Ax]y≈x[My] = proj₂ hasMockingbirdComposer instance hasLark : HasLark hasLark = record { L = A ; isLark = λ x y → begin (A ∙ x) ∙ y ≈⟨ [Ax]y≈x[My] x y ⟩ x ∙ (M ∙ y) ≈⟨ congˡ $ isMockingbird y ⟩ x ∙ (y ∙ y) ∎ } hasSageBird′ : HasSageBird hasSageBird′ = hasSageBird
31.259259
82
0.51481
13d1226578752a1674d1d6656fe24b87ea485fa1
3,296
agda
Agda
BasicIPC/Metatheory/GentzenSpinalNormalForm-HereditarySubstitution.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicIPC/Metatheory/GentzenSpinalNormalForm-HereditarySubstitution.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicIPC/Metatheory/GentzenSpinalNormalForm-HereditarySubstitution.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
module BasicIPC.Metatheory.GentzenSpinalNormalForm-HereditarySubstitution where open import BasicIPC.Syntax.GentzenSpinalNormalForm public -- Hereditary substitution and reduction. mutual [_≔_]ⁿᶠ_ : ∀ {A B Γ} → (i : A ∈ Γ) → Γ ∖ i ⊢ⁿᶠ A → Γ ⊢ⁿᶠ B → Γ ∖ i ⊢ⁿᶠ B [ i ≔ s ]ⁿᶠ neⁿᶠ (spⁿᵉ j xs) with i ≟∈ j [ i ≔ s ]ⁿᶠ neⁿᶠ (spⁿᵉ .i xs) | same = reduce s ([ i ≔ s ]ˢᵖ xs) [ i ≔ s ]ⁿᶠ neⁿᶠ (spⁿᵉ ._ xs) | diff j = neⁿᶠ (spⁿᵉ j ([ i ≔ s ]ˢᵖ xs)) [ i ≔ s ]ⁿᶠ lamⁿᶠ t = lamⁿᶠ ([ pop i ≔ mono⊢ⁿᶠ weak⊆ s ]ⁿᶠ t) [ i ≔ s ]ⁿᶠ pairⁿᶠ t u = pairⁿᶠ ([ i ≔ s ]ⁿᶠ t) ([ i ≔ s ]ⁿᶠ u) [ i ≔ s ]ⁿᶠ unitⁿᶠ = unitⁿᶠ [_≔_]ˢᵖ_ : ∀ {A B C Γ} → (i : A ∈ Γ) → Γ ∖ i ⊢ⁿᶠ A → Γ ⊢ˢᵖ B ⦙ C → Γ ∖ i ⊢ˢᵖ B ⦙ C [ i ≔ s ]ˢᵖ nilˢᵖ = nilˢᵖ [ i ≔ s ]ˢᵖ appˢᵖ xs u = appˢᵖ ([ i ≔ s ]ˢᵖ xs) ([ i ≔ s ]ⁿᶠ u) [ i ≔ s ]ˢᵖ fstˢᵖ xs = fstˢᵖ ([ i ≔ s ]ˢᵖ xs) [ i ≔ s ]ˢᵖ sndˢᵖ xs = sndˢᵖ ([ i ≔ s ]ˢᵖ xs) reduce : ∀ {A C Γ} → Γ ⊢ⁿᶠ A → Γ ⊢ˢᵖ A ⦙ C → Γ ⊢ⁿᶠ C reduce t nilˢᵖ = t reduce (lamⁿᶠ t) (appˢᵖ xs u) = reduce ([ top ≔ u ]ⁿᶠ t) xs reduce (pairⁿᶠ t u) (fstˢᵖ xs) = reduce t xs reduce (pairⁿᶠ t u) (sndˢᵖ xs) = reduce u xs -- Reduction-based normal forms. appⁿᶠ : ∀ {A B Γ} → Γ ⊢ⁿᶠ A ▻ B → Γ ⊢ⁿᶠ A → Γ ⊢ⁿᶠ B appⁿᶠ t u = reduce t (appˢᵖ nilˢᵖ u) fstⁿᶠ : ∀ {A B Γ} → Γ ⊢ⁿᶠ A ∧ B → Γ ⊢ⁿᶠ A fstⁿᶠ t = reduce t (fstˢᵖ nilˢᵖ) sndⁿᶠ : ∀ {A B Γ} → Γ ⊢ⁿᶠ A ∧ B → Γ ⊢ⁿᶠ B sndⁿᶠ t = reduce t (sndˢᵖ nilˢᵖ) -- Useful equipment for deriving neutrals. ≪appˢᵖ : ∀ {A B C Γ} → Γ ⊢ˢᵖ C ⦙ A ▻ B → Γ ⊢ⁿᶠ A → Γ ⊢ˢᵖ C ⦙ B ≪appˢᵖ nilˢᵖ t = appˢᵖ nilˢᵖ t ≪appˢᵖ (appˢᵖ xs u) t = appˢᵖ (≪appˢᵖ xs t) u ≪appˢᵖ (fstˢᵖ xs) t = fstˢᵖ (≪appˢᵖ xs t) ≪appˢᵖ (sndˢᵖ xs) t = sndˢᵖ (≪appˢᵖ xs t) ≪fstˢᵖ : ∀ {A B C Γ} → Γ ⊢ˢᵖ C ⦙ A ∧ B → Γ ⊢ˢᵖ C ⦙ A ≪fstˢᵖ nilˢᵖ = fstˢᵖ nilˢᵖ ≪fstˢᵖ (appˢᵖ xs u) = appˢᵖ (≪fstˢᵖ xs) u ≪fstˢᵖ (fstˢᵖ xs) = fstˢᵖ (≪fstˢᵖ xs) ≪fstˢᵖ (sndˢᵖ xs) = sndˢᵖ (≪fstˢᵖ xs) ≪sndˢᵖ : ∀ {A B C Γ} → Γ ⊢ˢᵖ C ⦙ A ∧ B → Γ ⊢ˢᵖ C ⦙ B ≪sndˢᵖ nilˢᵖ = sndˢᵖ nilˢᵖ ≪sndˢᵖ (appˢᵖ xs u) = appˢᵖ (≪sndˢᵖ xs) u ≪sndˢᵖ (fstˢᵖ xs) = fstˢᵖ (≪sndˢᵖ xs) ≪sndˢᵖ (sndˢᵖ xs) = sndˢᵖ (≪sndˢᵖ xs) -- Derived neutrals. varⁿᵉ : ∀ {A Γ} → A ∈ Γ → Γ ⊢ⁿᵉ A varⁿᵉ i = spⁿᵉ i nilˢᵖ appⁿᵉ : ∀ {A B Γ} → Γ ⊢ⁿᵉ A ▻ B → Γ ⊢ⁿᶠ A → Γ ⊢ⁿᵉ B appⁿᵉ (spⁿᵉ i xs) t = spⁿᵉ i (≪appˢᵖ xs t) fstⁿᵉ : ∀ {A B Γ} → Γ ⊢ⁿᵉ A ∧ B → Γ ⊢ⁿᵉ A fstⁿᵉ (spⁿᵉ i xs) = spⁿᵉ i (≪fstˢᵖ xs) sndⁿᵉ : ∀ {A B Γ} → Γ ⊢ⁿᵉ A ∧ B → Γ ⊢ⁿᵉ B sndⁿᵉ (spⁿᵉ i xs) = spⁿᵉ i (≪sndˢᵖ xs) -- Iterated expansion. expand : ∀ {A Γ} → Γ ⊢ⁿᵉ A → Γ ⊢ⁿᶠ A expand {α P} t = neⁿᶠ t expand {A ▻ B} t = lamⁿᶠ (expand (appⁿᵉ (mono⊢ⁿᵉ weak⊆ t) (expand (varⁿᵉ top)))) expand {A ∧ B} t = pairⁿᶠ (expand (fstⁿᵉ t)) (expand (sndⁿᵉ t)) expand {⊤} t = unitⁿᶠ -- Expansion-based normal forms. varⁿᶠ : ∀ {A Γ} → A ∈ Γ → Γ ⊢ⁿᶠ A varⁿᶠ i = expand (varⁿᵉ i) -- Translation from simple terms to normal forms. tm→nf : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ⁿᶠ A tm→nf (var i) = varⁿᶠ i tm→nf (lam t) = lamⁿᶠ (tm→nf t) tm→nf (app t u) = appⁿᶠ (tm→nf t) (tm→nf u) tm→nf (pair t u) = pairⁿᶠ (tm→nf t) (tm→nf u) tm→nf (fst t) = fstⁿᶠ (tm→nf t) tm→nf (snd t) = sndⁿᶠ (tm→nf t) tm→nf unit = unitⁿᶠ -- Normalisation by hereditary substitution. norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A norm = nf→tm ∘ tm→nf
30.238532
84
0.533981
57c0f5e2b081d63cfa0e72eceb1dd7394577b770
1,238
agda
Agda
src/Selective/Examples/Main-template.agda
Zalastax/singly-typed-actors
ae541df13d069df4eb1464f29fbaa9804aad439f
[ "MIT" ]
1
2019-10-29T09:30:26.000Z
2019-10-29T09:30:26.000Z
src/Selective/Examples/Main-template.agda
Zalastax/singly-typed-actors
ae541df13d069df4eb1464f29fbaa9804aad439f
[ "MIT" ]
null
null
null
src/Selective/Examples/Main-template.agda
Zalastax/singly-typed-actors
ae541df13d069df4eb1464f29fbaa9804aad439f
[ "MIT" ]
null
null
null
module Selective.Examples.Main-generated where import Selective.Examples.PingPong as PingPong import Selective.Examples.TestCall as Call import Selective.Examples.TestCall2 as Call2 import Selective.Examples.Fibonacci as Fib import Selective.Examples.Chat as Chat import Selective.Examples.Bookstore as Bookstore import Selective.Examples.TestAO as TestAO import Selective.Examples.TestSelectiveReceive as SelectiveReceive import Selective.Examples.TestSelectiveReceive-calc as SelectiveReceive-calc open import Selective.Runtime open import Selective.SimulationEnvironment open import Selective.ActorMonad import IO open ∞ActorM pingpongEntry = singleton-env (PingPong.spawner .force) callEntry = singleton-env (Call.calltestActor .force) call2Entry = singleton-env (Call2.calculator-test-actor .force) fibEntry = singleton-env (Fib.spawner .force) chatEntry = singleton-env (Chat.chat-supervisor .force) bookstoreEntry = singleton-env (Bookstore.bookstore-supervisor .force) testaoEntry = singleton-env (TestAO.calculator-test-actor .force) testsrcalcEntry = singleton-env (SelectiveReceive-calc.calculator-test-actor .force) testsrEntry = singleton-env (SelectiveReceive.receive-42-with-reference) main = IO.run (run-env __ENTRY__)
42.689655
84
0.837641
d0c98786c1806005e461de9cda8ae4cc29d62b00
779
agda
Agda
test/Succeed/fol-theorems/PropositionalFunction3.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
10
2015-09-03T20:54:16.000Z
2019-12-03T13:44:25.000Z
test/Succeed/fol-theorems/PropositionalFunction3.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
121
2015-01-25T13:22:12.000Z
2018-04-22T06:01:44.000Z
test/Succeed/fol-theorems/PropositionalFunction3.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
4
2016-05-10T23:06:19.000Z
2016-08-03T03:54:55.000Z
------------------------------------------------------------------------------ -- Testing the translation of the propositional functions ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module PropositionalFunction3 where ------------------------------------------------------------------------------ postulate D : Set P : D → Set a : D _∨_ : Set → Set → Set -- In this case, the propositional function uses predicates and logical -- constants, and it is an anonymous function. postulate foo : (λ x → P x ∨ P x) a → (λ x → P x ∨ P x) a {-# ATP prove foo #-}
32.458333
78
0.41335
59b2767df25dd806f850080bc1f2c115de7af545
971
agda
Agda
src/AssocFree/Util.agda
agda/agda-assoc-free
08337fdb8375137a52cc9b3ade766305191b2394
[ "MIT" ]
3
2016-11-22T11:48:31.000Z
2020-08-27T20:56:20.000Z
src/AssocFree/Util.agda
agda/agda-assoc-free
08337fdb8375137a52cc9b3ade766305191b2394
[ "MIT" ]
null
null
null
src/AssocFree/Util.agda
agda/agda-assoc-free
08337fdb8375137a52cc9b3ade766305191b2394
[ "MIT" ]
2
2018-03-03T04:39:31.000Z
2022-03-12T11:38:44.000Z
open import Data.List using ( List ; [] ; _∷_ ) open import Data.Nat using ( ℕ ; zero ; suc ) open import Data.Maybe using ( Maybe ; just ; nothing ) open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; subst ) open import Relation.Binary.PropositionalEquality.TrustMe using ( trustMe ) module AssocFree.Util where ≡-relevant : ∀ {α} {A : Set α} {a b : A} → .(a ≡ b) → (a ≡ b) ≡-relevant a≡b = trustMe δsubst₂ : ∀ {a b p} {A : Set a} {B : A → Set b} (P : ∀ a → B a → Set p) {x₁ x₂ y₁ y₂} → (x₁≡x₂ : x₁ ≡ x₂) → (subst B x₁≡x₂ y₁ ≡ y₂) → P x₁ y₁ → P x₂ y₂ δsubst₂ P refl refl p = p subst-natural : ∀ {α β γ} {A : Set α} {B : A → Set β} {C : A → Set γ} {a₁ a₂ : A} (p : a₁ ≡ a₂) (f : ∀ {a} → B a → C a) (b : B a₁) → subst C p (f b) ≡ f (subst B p b) subst-natural refl f b = refl lookup : ∀ {α} {A : Set α} → List A → ℕ → Maybe A lookup [] n = nothing lookup (a ∷ as) zero = just a lookup (a ∷ as) (suc n) = lookup as n
38.84
88
0.559217
1a4fb508e80332c3195be2b67d53abf31ca3c48c
152
agda
Agda
examples/simple-lib/Lib/Maybe.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
examples/simple-lib/Lib/Maybe.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/simple-lib/Lib/Maybe.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
module Lib.Maybe where data Maybe (A : Set) : Set where nothing : Maybe A just : A -> Maybe A {-# COMPILED_DATA Maybe Maybe Nothing Just #-}
15.2
46
0.644737
581c08721086347bb37307741f459acaf9d6e06e
1,475
agda
Agda
test/succeed/CopatternTrailingImplicit.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
null
null
null
test/succeed/CopatternTrailingImplicit.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
null
null
null
test/succeed/CopatternTrailingImplicit.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
{-# OPTIONS --copatterns --sized-types #-} -- {-# OPTIONS -v tc.size.solve:30 #-} -- {-# OPTIONS -v term:40 -v term.proj:60 --show-implicit #-} -- Andreas, 2013-10-01 Make sure trailing implicit insertion -- works with copatterns module CopatternTrailingImplicit where import Common.Level open import Common.Size open import Common.Prelude -- Sized streams record Stream (A : Set) {i : Size} : Set where coinductive field head : A tail : {j : Size< i} → Stream A {j} open Stream -- Mapping over streams map : {A B : Set} (f : A → B) {i : Size} → Stream A {i} → Stream B {i} tail (map f {i} s) {j} = map f (tail s) head (map f s) = f (head s) -- Nats defined using map nats : {i : Size} → Stream Nat {i} head nats = 0 tail nats = map suc nats -- Before this patch, Agda would insert a {_} also in the `head' clause -- leading to a type error. -- 2013-10-12 works now also without manual {_} insertion -- (See TermCheck.introHiddenLambdas.) nats' : {i : Size} → Stream Nat {i} head nats' = 0 tail nats' = map suc nats' -- Before this latest patch, the termination checker would complain -- since it would not see the type of the hidden {j : Size< i} -- which is the argument to the recursive call. -- All this would not be an issue if Agda still eagerly introduced -- trailing hidden arguments on the LHS, but this has other -- drawbacks (Q: even with varying arity?): cannot have -- hidden lambdas on rhs (used to name trailing hiddens in with-clauses).
30.102041
73
0.680678
38fc06798144a2be7529dfa347509dcbc1cc5592
5,048
agda
Agda
Categories/Category/Monoidal/Closed/IsClosed/L.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Category/Monoidal/Closed/IsClosed/L.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Category/Monoidal/Closed/IsClosed/L.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category using (Category) open import Categories.Category.Monoidal using (Monoidal) open import Categories.Category.Monoidal.Closed using (Closed) module Categories.Category.Monoidal.Closed.IsClosed.L {o ℓ e} {C : Category o ℓ e} {M : Monoidal C} (Cl : Closed M) where open import Data.Product using (_,_) open import Function using (_$_) renaming (_∘_ to _∙_) open import Function.Equality as Π using (Π) open import Categories.Morphism.Reasoning C using (pull-last; pull-first; pullˡ; pushˡ; center; center⁻¹; pullʳ) open import Categories.Functor using (Functor) open import Categories.Functor.Bifunctor.Properties open Closed Cl open Category C open HomReasoning private module ℱ = Functor α⇒ = associator.from α⇐ = associator.to module ⊗ = Functor ⊗ open Π.Π open adjoint renaming (unit to η; counit to ε; Ladjunct to 𝕃; Ladjunct-comm′ to 𝕃-comm′; Ladjunct-resp-≈ to 𝕃-resp-≈) L : (X Y Z : Obj) → [ Y , Z ]₀ ⇒ [ [ X , Y ]₀ , [ X , Z ]₀ ]₀ L X Y Z = 𝕃 (𝕃 (ε.η Z ∘ (id ⊗₁ ε.η Y) ∘ α⇒)) private [g]₁ : {W Z Z′ : Obj} {g : Z ⇒ Z′} → [ W , Z ]₀ ⇒ [ W , Z′ ]₀ [g]₁ {g = g} = [ id , g ]₁ push-α⇒-right : {X Y Z Z′ : Obj} {g : Z ⇒ Z′} → (ε.η Z′ ∘ (id ⊗₁ ε.η {X} Y) ∘ α⇒) ∘ ([g]₁ ⊗₁ id) ⊗₁ id ≈ (g ∘ ε.η Z) ∘ (id ⊗₁ ε.η Y) ∘ α⇒ push-α⇒-right {X} {Y} {Z} {Z′} {g} = begin (ε.η Z′ ∘ (id ⊗₁ ε.η {X} Y) ∘ α⇒) ∘ ([g]₁ ⊗₁ id) ⊗₁ id ≈⟨ pull-last assoc-commute-from ⟩ ε.η Z′ ∘ (id ⊗₁ ε.η {X} Y) ∘ ([g]₁ ⊗₁ (id ⊗₁ id)) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ℱ.F-resp-≈ ⊗ (refl , ⊗.identity) ⟩∘⟨refl ⟩ ε.η Z′ ∘ (id ⊗₁ ε.η Y) ∘ [g]₁ ⊗₁ id ∘ α⇒ ≈⟨ refl⟩∘⟨ pullˡ [ ⊗ ]-commute ⟩ ε.η Z′ ∘ ([g]₁ ⊗₁ id ∘ (id ⊗₁ ε.η Y)) ∘ α⇒ ≈⟨ pull-first (ε.commute g) ⟩ (g ∘ ε.η Z) ∘ (id ⊗₁ ε.η Y) ∘ α⇒ ∎ L-g-swap : {X Y Z Z′ : Obj} {g : Z ⇒ Z′} → L X Y Z′ ∘ [ id , g ]₁ ≈ [ [ id , id ]₁ , [ id , g ]₁ ]₁ ∘ L X Y Z L-g-swap {X} {Y} {Z} {Z′} {g} = begin L X Y Z′ ∘ [g]₁ ≈˘⟨ 𝕃-comm′ ⟩ 𝕃 (𝕃 (ε.η Z′ ∘ (id ⊗₁ ε.η Y) ∘ α⇒) ∘ [g]₁ ⊗₁ id) ≈˘⟨ 𝕃-resp-≈ 𝕃-comm′ ⟩ 𝕃 (𝕃 $ (ε.η Z′ ∘ (id ⊗₁ ε.η Y) ∘ α⇒) ∘ ([g]₁ ⊗₁ id) ⊗₁ id) ≈⟨ 𝕃-resp-≈ $ 𝕃-resp-≈ push-α⇒-right ⟩ 𝕃 (𝕃 $ (g ∘ ε.η Z) ∘ (id ⊗₁ ε.η Y) ∘ α⇒) ≈⟨ 𝕃-resp-≈ $ pushˡ $ X-resp-≈ assoc ○ ℱ.homomorphism [ X ,-] ⟩ 𝕃 ([ id , g ]₁ ∘ 𝕃 (ε.η Z ∘ (id ⊗₁ ε.η Y) ∘ α⇒)) ≈⟨ pushˡ (ℱ.homomorphism [ XY ,-]) ⟩ [ id , [g]₁ ]₁ ∘ L X Y Z ≈˘⟨ [-,-].F-resp-≈ ([-,-].identity , refl) ⟩∘⟨refl ⟩ [ [ id , id ]₁ , [g]₁ ]₁ ∘ L X Y Z ∎ where XY = [ X , Y ]₀ X-resp-≈ = ℱ.F-resp-≈ [ X ,-] L-f-swap : {X Y Y′ Z : Obj} {f : Y′ ⇒ Y} → L X Y′ Z ∘ [ f , id ]₁ ≈ [ [ id , f ]₁ , [ id , id ]₁ ]₁ ∘ L X Y Z L-f-swap {X} {Y} {Y′} {Z} {f} = begin L X Y′ Z ∘ [fˡ]₁ ≈˘⟨ 𝕃-comm′ ⟩ 𝕃 (𝕃 inner-L ∘ [fˡ]₁ ⊗₁ id) ≈˘⟨ 𝕃-resp-≈ 𝕃-comm′ ⟩ 𝕃 (𝕃 (inner-L ∘ ([fˡ]₁ ⊗₁ id) ⊗₁ id)) ≈⟨ 𝕃-resp-≈ $ 𝕃-resp-≈ fˡ⇒fʳ ⟩ 𝕃 (𝕃 $ inner-L ∘ (id ⊗₁ [fʳ]₁) ⊗₁ id) ≈⟨ 𝕃-resp-≈ $ ∘-resp-≈ˡ $ ℱ.homomorphism [ X ,-] ⟩ 𝕃 (([ id , inner-L ]₁ ∘ [ id , (id ⊗₁ [fʳ]₁) ⊗₁ id ]₁) ∘ η.η (YZ ⊗₀ XY′)) ≈⟨ 𝕃-resp-≈ $ pullʳ (⟺ (η.commute _)) ○ (⟺ assoc) ⟩ 𝕃 (𝕃 inner-L ∘ id ⊗₁ [fʳ]₁) ≈⟨ ℱ.homomorphism [ XY′ ,-] ⟩∘⟨refl ⟩ ([ id , 𝕃 inner-L ]₁ ∘ [ id , id ⊗₁ [fʳ]₁ ]₁) ∘ η.η YZ ≈⟨ pullʳ (mate.commute₁ [fʳ]₁) ⟩ [ id , 𝕃 inner-L ]₁ ∘ [ [fʳ]₁ , id ]₁ ∘ η.η YZ ≈⟨ pullˡ [ [-,-] ]-commute ○ assoc ○ ∘-resp-≈ˡ ([-,-].F-resp-≈ (refl , ⟺ [-,-].identity)) ⟩ [ [fʳ]₁ , [ id , id ]₁ ]₁ ∘ L X Y Z ∎ where XY′ = [ X , Y′ ]₀ YZ = [ Y , Z ]₀ [fʳ]₁ : ∀ {W} → [ W , Y′ ]₀ ⇒ [ W , Y ]₀ [fʳ]₁ = [ id , f ]₁ [fˡ]₁ : ∀ {W} → [ Y , W ]₀ ⇒ [ Y′ , W ]₀ [fˡ]₁ = [ f , id ]₁ inner-L : ∀ {W} → ([ W , Z ]₀ ⊗₀ [ X , W ]₀) ⊗₀ X ⇒ Z inner-L {W} = ε.η Z ∘ id ⊗₁ ε.η {X} W ∘ α⇒ fˡ⇒fʳ : inner-L {Y′} ∘ ([fˡ]₁ ⊗₁ id) ⊗₁ id ≈ inner-L {Y} ∘ (id ⊗₁ [fʳ]₁) ⊗₁ id fˡ⇒fʳ = begin inner-L ∘ ([fˡ]₁ ⊗₁ id) ⊗₁ id ≈⟨ pull-last assoc-commute-from ⟩ ε.η Z ∘ (id ⊗₁ ε.η Y′) ∘ [fˡ]₁ ⊗₁ id ⊗₁ id ∘ α⇒ ≈⟨ ∘-resp-≈ʳ $ pullˡ (∘-resp-≈ʳ (ℱ.F-resp-≈ ⊗ (refl , ⊗.identity)) ○ [ ⊗ ]-commute) ⟩ ε.η Z ∘ ([fˡ]₁ ⊗₁ id ∘ id ⊗₁ ε.η Y′) ∘ α⇒ ≈⟨ pull-first (mate.commute₂ f) ⟩ (ε.η Z ∘ id ⊗₁ f) ∘ id ⊗₁ ε.η Y′ ∘ α⇒ ≈⟨ center $ ⟺ (ℱ.homomorphism (YZ ⊗-)) ⟩ ε.η Z ∘ id ⊗₁ (f ∘ ε.η Y′) ∘ α⇒ ≈⟨ ∘-resp-≈ʳ $ ∘-resp-≈ˡ $ ℱ.F-resp-≈ (YZ ⊗-) $ ⟺ (ε.commute f) ⟩ ε.η Z ∘ id ⊗₁ (ε.η Y ∘ [fʳ]₁ ⊗₁ id) ∘ α⇒ ≈⟨ ∘-resp-≈ʳ $ ∘-resp-≈ˡ $ ℱ.homomorphism (YZ ⊗-) ⟩ ε.η Z ∘ (id ⊗₁ ε.η Y ∘ id ⊗₁ [fʳ]₁ ⊗₁ id) ∘ α⇒ ≈⟨ (center⁻¹ refl (⟺ assoc-commute-from)) ○ pullˡ assoc ⟩ inner-L ∘ (id ⊗₁ [fʳ]₁) ⊗₁ id ∎
53.702128
149
0.417987
a0c973623a96e11509362b262594d514c467d462
1,791
agda
Agda
Example.agda
fangyi-zhou/mpst-in-agda
3d12eed9d340207d242d70f43c6b34e01d3620de
[ "MIT" ]
1
2021-08-14T17:36:53.000Z
2021-08-14T17:36:53.000Z
Example.agda
fangyi-zhou/mpst-in-agda
3d12eed9d340207d242d70f43c6b34e01d3620de
[ "MIT" ]
1
2021-08-31T10:15:38.000Z
2021-11-24T11:30:17.000Z
Example.agda
fangyi-zhou/mpst-in-agda
3d12eed9d340207d242d70f43c6b34e01d3620de
[ "MIT" ]
null
null
null
open import Common open import Global open import Projection open import Local open import Data.Fin open import Data.Product open import Data.Vec open import Relation.Binary.PropositionalEquality n = 4 Role = Fin n p : Role p = zero q : Role q = suc zero r : Role r = suc (suc zero) s : Role s = suc (suc (suc zero)) l : Label l = 0 l′ : Label l′ = 1 g₁ : Global n g₁ = msgSingle′ p q l endG lp : Local n lp = sendSingle q l endL g₁-proj-p-is-lp : project g₁ p ≡ lp g₁-proj-p-is-lp = refl lq : Local n lq = recvSingle p l endL g₁-proj-q-is-lq : project g₁ q ≡ lq g₁-proj-q-is-lq = refl p→q : Action n p→q = action′ p q l r→s : Action n r→s = action′ r s l′ g₂ : Global n g₂ = msgSingle′ r s l′ g₁ g₂′ : Global n g₂′ = msgSingle′ r s l′ endG g₁→end : g₁ - p→q →g endG g₁→end = →g-prefix g₂→g₁ : g₂ - r→s →g g₁ g₂→g₁ = →g-prefix g₂→g₂′ : g₂ - p→q →g g₂′ g₂→g₂′ = →g-cont g₁→end (λ ()) (λ ()) (λ ()) (λ ()) g₁-proj-p→end : (p , project g₁ p) - p→q →l (p , endL) g₁-proj-p→end = →l-send p refl λ () g₁-proj-q→end : (q , project g₁ q) - p→q →l (q , endL) g₁-proj-q→end = →l-recv q refl λ () g₂-proj-p→g₂′-proj-p : (p , project g₂ p) - p→q →l (p , project g₂′ p) g₂-proj-p→g₂′-proj-p = →l-send p refl λ () g₂-proj-q→g₂′-proj-q : (q , project g₂ q) - p→q →l (q , project g₂′ q) g₂-proj-q→g₂′-proj-q = →l-recv q refl λ () c₁ : Configuration n c₁ = lp ∷ lq ∷ endL ∷ endL ∷ [] cEnd : Configuration n cEnd = endL ∷ endL ∷ endL ∷ endL ∷ [] c₁→cEnd : c₁ - p→q →c cEnd c₁→cEnd = →c-comm c₁ (λ ()) refl refl refl g₁-proj-p→end g₁-proj-q→end g₁↔c₁ : g₁ ↔ c₁ g₁↔c₁ = record { isProj = refls } where refls : (p : Fin n) -> lookup c₁ p ≡ project g₁ p refls zero = refl refls (suc zero) = refl refls (suc (suc zero)) = refl refls (suc (suc (suc zero))) = refl
18.27551
70
0.59464